

HEIDENHAIN

Przewodnik programowania i obsługi Dialog tekstem otwartym

iTNC 530

NC-software 340 490-04 340 491-04 340 492-04 340 493-04 340 494-04

Polski (pl) 1/2008

Lotse (locman)

... jest pomocą przy programowaniu dla sterowania firmy HEIDENHAIN iTNC 530 w skróconej formie. Pełna instrukcja programowania i obsługi TNC znajduje się w Instrukcji obsługi dla użytkownika. Można tam znaleźć także informacje

- dotyczące programowania Q-parametrów
- dotyczące centralnego magazynu narzędzi
- 3D-korekcji narzędzi
- pomiaru narzędzi

Symbole w Przewodniku

Ważne informacje zostają wyróżnione w Przewodniku za pomocą następujących symboli:

Ważna wskazówka!

Ostrzeżenie: przy nieprzestrzeganiu niebezpieczeństwo dla operatora i maszyny!

Maszyna i TNC muszą zostać przygotowane przez producenta maszyn dla opisanej funkcji!

3
7

Rozdział w Instrukcji obsługi. Tu znajdują się wyczerpujące informacje na dany temat.

Sterowanie	NC-software-numer
iTNC 530	340 490-04
iTNC 530, wersja eksportowa	340 491-04
iTNC 530 z Windows XP	340 492-04
iTNC 530 z Windows XP; wersja eksportowa	340 493-04
iTNC 530 stanowisko programowania	340 494-04

Spis treści

Lotse (przewodnik programowania i obsługi)	3
Podstawy	5
Najazd konturu i odsunięcie narzędzia od konturu	16
Funkcje toru kształtowego	22
Programowanie dowolnego konturu FK	31
Podprogramy i powtórzenia części programu	41
Praca z cyklami	44
Cykle dla wytwarzania odwiertów i gwintów	46
Kieszenie, czopy i rowki wpustowe	63
Wzory punktowe	70
SL-cykle	72
Cykle dla frezowania metodą wierszowania	83
Cykle dla przeliczania współrzędnych	87
Cykle specjalne	95
Funkcja PLANE (software opcja 1)	99
Grafiki i wyświetlacze stanu	113
DIN/ISO-programowanie	116
Funkcje dodatkowe M	123

Spis treści

Podstawy

Programy/pliki

Patrz "Programowanie, zarządzanie plikami".

Programy; tabele i teksty TNC zapisuje do pamięci w postaci plików. Oznaczenie pliku składa się z dwóch komponentów:

PROG20	.H
Nazwa pliku	Typ pliku
maksymalna długość	patrz tabela z prawej strony

Pliki w TNC	Тур
Programy w formacie firmy HEIDENHAIN w formacie DIN/ISO	.H .I
smart.NC-programy unit-program program konturu tabele punktów	.HU .HC .HP
Tabele dla narzędzi zmieniacza narzędzi palet punktów zerowych punktów presets (punkty odniesienia) danych skrawania materiałów narzędzi skrawających, materiałów produkcyjnych	.T .TCH .P .D .PNT .PR .CDT .TAB
Teksty jako ASCII-pliki pliki pomocy	.A .CHM

Otworzenie nowego programu obróbki

- Wybrać skoroszyt; w którym ma zostać zapisany program do pamięci
- Wprowadzić nową nazwę programu, potwierdzić przy pomocy klawisza ENT.
- Wybrać jednostkę miary: softkey MM lub INCH nacisnąć. TNC przechodzi do okna programu i otwiera dialog dla definicji BLK-FORM (półwyrób)
- Wprowadzić dane osi wrzeciona
- Po kolei wprowadzić współrzędne X, Y i Z MIN-punktu
- Po kolei wprowadzić współrzędne X, Y i Z MAX-punktu

1 BLK FORM 0.1 Z X+0 Y+0 Z-50

2 BLK FORM 0.2 X+100 Y+100 Z+0

Określenie rozplanowania ekranu

B

Patrz "Wprowadzenie, iTNC 530".

Wyświetlenie softkeys dla określenia rozplanowania ekranu monitora

Tryb pracy	Zawartość ekranu monitora	
Obsługa ręczna i Elektr. kółko obrotowe	Pozycje	POZYCJA
	pozycje z lewej, status z prawej	POZYCJA + POLOZENIE
Pozycjonowanie z ręcznym wprowadzeniem danych	Program	PROGRAM
	program z lewej, status z prawej	PROGRAM + POLOZENIE

Pra	ca rę	czna							Prog WPr.	ram do pami.
					1			_		M _
RZECZ	X	+24	4.46	3	Przes	gląd PGM	LBL CY	C M POS	5 •	
	Y	-21	8.28	6	ODLE	G				s 📙
1	Z	+	7.33	7	Ŷ	+1383.003	*C +99	3922.300	-1	
	* a	+	0.00	0	z	+5025.497				- 0
	* A	+	0.00	0	*8 +	99999.000				T ≟↔
	* B	+7	6.70	0						a '
	* C	+	0.00	0	ľ	T +0.00	30			Dutter
						+0.0000				
						+0.0000				Demos
	S 1	0.00	0 0			brót podst.	+0.000	•		DIAGNOSI
. 15	TS	Z	5 2500							
	F 0		•	15 /9						Toto 1/
				0% 0%	S-I SEN	IST Mmj Li		09:0	8	1
		s	F	DC	NDA	PRESET		3D R	тот	NARZEDZI

1 L X-230 Y+200 R0 FMAX ODLEG X +0.000 0B 2 L Z-150 R0 FMAX Y +0.000 0C 2 Y +0.000 0C	+8.800
2 L Z-150 R0 FMRX 2 L Z-160 R0 FMRX 2 +0.000 *C Z +0.000	+0.000
Z +9,899	+0.000
3 L 8-20 R0 FMRX #8 +0.000	s 🗋
4 L B+20 R0 FMAX *A +0.000	
5 L 8+8 R8 FMAX	ТЛ
5 TOOL CALL 2 Z 7 CYCL DEF 255 KIESZEN PROSTOKATNA >	
8 CYCL CALL M3	Python Demos
0% SINm) LINET 1 09:09	DIAGNOSI
🗙 +244.463 Y -218.286 Z	+7.337 🖳
+a +0.000 +A +0.000 +B +	76.700
+C +0.000	Info 1/3

Podstawy

Tryb pracy	Zawartość ekranu monitora		Wykonar	nie program	nu, aı	utomatyc	cz.	Pro	gram . do pami.
Przebieg programu sekwencją wierszy	Program	PROGRAM	0 BEGIN PGM : 1 BLK FORM 0 2 BLK FORM 0	17011 MM .1 Z X-60 Y-70 Z- .2 X+130 Y+50 Z+4	20				
pojedyńczymi wierszami test programu	program z lewej, segmentowanie programu z prawej	PROGRAM + CZLONY	3 TOOL CALL 3 4 L X-50 Y- 5 L X-30 Y- 6 RND R20	3 Z 53500 -30 Z+20 R0 F1000 M -40 Z+10 RR	3				
	program z lewej, status z prawej	PROGRAM + POLOZENIE	7 L X+70 Y- 8 CT X+70 Y	-60 Z-10 Y+30 0% S-IST					Python Demos
	program z lewej, grafika z prawej	PROGRAM + GRAFIKA	★ + 2 **a **C	44.463 Y +0.000 ++ R +0.000	- 2 1 +	8.286 Z 0.000 #B	+ ⁻ + 7 (7.337 5.700	DIAGNOSE
	Grafika	GRAFIKA		KONIEC STRONA	STRONA	S 2500 F SKANOU. BLOKOU	0.00 e TEST UZYCIA NARZEDZIA	M 5 / 9 PKT.ZEROW TABELA	NARZEDZIE TABLICA
Przebieg programu sekwencją wierszy lub	program z lewej, aktywny objekt kolizji z prawej	KINEMATYKA + PROGRAMOWA	Praca	Program	wpr.	do pami(eci i e	dvcia	1
przebieg programu pojedyńczymi wierszami	Aktywne objekty kolizji	KINEMATYKA	0 BEGIN PGM I 1 BLK FORM 0	EMOSEFK MM .1 Z X-80 Y-80 Z-	20				M
Programowanie/edycja	Program	PROGRAM	2 BLK FORM 0 3 TOOL CALL 4 4 L Z+50 R0 5 L X+0 Y+1	.2 X+80 Y+80 Z+0 5 Z \$4000 FMAX M3 0 R0 FMAX		\square			S
	program z lewej, segmentowanie programu z prawej	PROGRAM + CZLONY	6 L Z-5 R0 1 7 FPOL X+0 8 FL PR+22.1 9 FC DR+ R22	FMAX Y+0 5 PA+0 RL F750 .5 CLSD+ CCX+0 CCY	+0			$\left \right\rangle$	Python Demos
	program z lewej grafika programowa z prawej	PROGRAM + GRAFIKA	10 FCT DR- R6 11 FL X+2 Y 12 FSELECT2 13 FL LEN23	0 +55 LEN16 AN+90 AN+0	(DIAGNOSIS
	program z lewej, 3D-grafika liniowa z prawej	PROGRAM + 3D-LINIE	14 FC DR- R65		STRONA	ZNAJDZ	START	START POJ. BLOK	RESET + START

Współrzędne prostokątne - absolutne

Dane wymiarowe odnoszą się do aktualnego punktu zerowego. Narzędzie przemieszcza się **na** współrzędne absolutne.

Programowalne w NC-bloku osie

przemieszczenia po prostej Ruchy kołowe 2 osie liniowe płaszczyzny lub 3 osie liniowe z cyklem 19 PŁASZCZYZNA OBROBKI

Współrzędne prostokątne - przyrostowe

Dane wymiarowe odnoszą się do ostatnio zaprogramowanej pozycji narzędzia. Narzędzie przemieszcza się **o** współrzędne przyrostowe.

Punkt środkowy okręgu i biegun: CC

Punkt środkowy okręgu **CC** należy wprowadzić, aby móc programować kołowe ruchy po torze przy pomocy funkcji toru kształtowego **C** (patrz strona 26) . **CC** zostaje wykorzystywany z drugiej strony jako biegun dla danych wymiarowych we współrzędnych biegunowych.

CC zostaje określony we współrzędnych prostokątnych.

Określony absolutnie punkt środkowy okręgu lub biegun **CC** odnosi się zawsze do momentalnie aktywnego punktu zerowego.

Inkrementalnie określony punkt środkowy okręgu lub biegun **CC** odnosi się zawsze do ostatnio zaprogramowanej pozycji narzędzia.

CCY CCX CCX X

Oś bazowa kąta

Kąt – jak i kąt we współrzędnych biegunowych $\mbox{\bf PA}$ i kąt obrotu $\mbox{\bf ROT}$ – odnoszą się do osi bazowej.

Płaszczyzna robocza	Oś bazowa i 0°-kierunek
X/Y	+X
Y/Z	+Y
Z/X	+Z

Podstawy

Współrzędne biegunowe

Dane wymiarowe we współrzędnych biegunowych odnoszą się do bieguna **CC**. Pozycja

zostaje określona na płaszczyźnie roboczej poprzez:

- Promień we współrzędnych biegunowych PR = odstęp pozycji od bieguna CC
- Kąt we współrzędnych biegunowych PA = kąt od osi bazowej kąta do odcinka CC – PR

Przyrostowe dane wymiarowe

Przyrostowe dane wymiarowe we współrzędnych biegunowych odnoszą się do ostatnio zaprogramowanej pozycji.

Programowanie współrzędnych biegunowych

- L
- Wybór funkcji toru kształtowego

- Nacisnąć klawisz P
- Odpowiedzieć na pytania dialogu

Definiowanie narzędzi

Dane o narzędziach

Każde narzędzie oznaczone jest numerem od 0 do 254. Jeśli pracujemy z tabelami narzędzi, to możemy używać wyższych numerów i dodatkowo nadawać nazwy narzędzi.

Wprowadzanie danych narzędzia

Dane narzędzia (długość L i promień R) mogą zostać zapisane:

w formie tabeli narzędzi (centralnie, program TOOL.T)

lub

TOOL DEF

Podstawy

bezpośrednio w programie za pomocą TOOL DEF-wierszy (lokalnie)

- Numer narzędzia
- Długość narzędzia L
- Promień narzędzia R
- Ustalić rzeczywistą długość narzędzia przy pomocy przyrządu wstępnego nastawienia, zaprogramowana zostaje ustalona długość.

Wywołanie danych narzędzia

- Numer narzędzia lub nazwa narzędzia
- Oś wrzeciona równoległa do X/Y/Z: oś narzędzia
- Prędkość obrotowa wrzeciona S
- Posuw F
- Naddatek długości narzędzia DL (np. zużycie)
- Naddatek promienia narzędzia DR (np. zużycie)
- Naddatek promienia narzędzia DR2 (np. zużycie)
- 3 TOOL DEF 6 L+7.5 R+3
- 4 TOOL CALL 6 Z S2000 F650 DL+1 DR+0.5 DR2+0.1
- 5 L Z+100 R0 FMAX
- 6 L X-10 Y-10 RO FMAX M6

Zmiana narzędzia

- Przy najeździe na pozycję zmiany narzędzia zwrócić uwagę na niebezpieczeństwo kolizji!
- Określić kierunek obrotu wrzeciona poprzez funkcję M:
 - M3: bieg prawy
 - M4: bieg lewy
- Naddatki dla promienia lub długości narzędzia maksymalnie ± 99.999 mm!

Korekcje narzędzia

Przy obróbce TNC uwzględnia długość L i promień R wywoływanego narzędzia.

Korekcja długości

Początek działania:

przemieszczenie narzędzia na osi wrzeciona

Koniec działania:

wywołanie nowego narzędzia lub narzędzia o długości L=0

Podstawy

Korekcja promienia

- Początek działania:
- przemieszczenie narzędzia na płaszczyźnie obróbki z RR lub RL Koniec działania:
- zaprogramować wiersz pozycjonowania z R0
- Bez korekcji promienia pracować (np. wiercenie):
- zaprogramować wiersz pozycjonowania z R0

Wyznaczenie punktu odniesienia bez 3D-sondy impulsowej

Przy wyznaczaniu punktów odniesienia ustawia się wyświetlacz TNC na współrzędne znanej pozycji obrabianego przedmiotu:

- narzędzie zerowe o znanym promieniu zamontować
- Wybrać rodzaj pracy Obsługa ręczna lub Elektr. kółko ręczne
- zarysować powierzchnię bazową na osi narzędzia i wprowadzić długość narzędzia
- zarysować powierzchnie bazowe na płaszczyźnie obróbki i zapisać pozycję punktu środkowego narzędzia

Ustawianie i pomiar przy pomocy 3D-sond pomiarowych

Szczególnie szybko, prosto i dokładnie następuje nastawienie maszyny przy pomocy 3D-sondy impulsowej firmy HEIDENHAIN.

Oprócz funkcji próbkowania dla zbrojenia obrabiarki w trybach pracy Obsługa ręczna i El. Kółko ręczne; znajduje się w trybach pracy przebiegu programu cały szereg cykli pomiarowych do dyspozycji (patrz także Instrukcja obsługi Cykle sondy pomiarowej):

- cykle pomiarowe dla ustalenia i kompensowania ukośnego położenia obrabianego przedmiotu
- cykle pomiarowe dla automatycznego wyznaczenia punktu odniesienia
- cykle pomiarowe dla automatycznego pomiaru obrabianego przedmiotu z porównaniem tolerancji i automatycznej korekcji narzędzia

Najazd konturu i odsunięcie narzędzia od konturu

Punkt startu P_S

P_S leży poza konturem i musi zostać najechany bez korekcji promienia.

Punkt pomocniczy P_H

P_H leży poza konturem i zostaje obliczony przez TNC.

TNC przemieszcza narzędzie od punktu startu P_S do punktu pomocniczego P_H z ostatnio zaprogramowanym posuwem!

Pierwszy punkt konturu P_A i ostatni punkt konturu P_E

Pierwszy punkt konturu P_A zostaje zaprogramowany w **APPR**-wierszu (angl: approach = najazd). Ostatnio punkt konturu zostaje programowany standardowo.

Punkt końcowy P_N

 P_N leży poza konturem i wynika z **DEP**-wiersza (angl: depart = odjazd). P_N zostaje automatycznie z **R0** najechany.

Funkcje toru kształtowego przy dosunięciu i odsunięciu

ᇞ

Nacisnąć softkey z żądaną funkcją toru kształtowego:

APPR LT	DEP
~ P	~0
9	G

prosta z przejściem tangencjalnym

prosta prostopadła do punktu konturu

Tor kołowy z przejściem tangencjalnym

odcinek prostej z tangencjalnym przejściem po okręgu do konturu

Korekcję promienia programować w APPR-wierszu!
 DEP-wiersze ustawiają korekcję promienia na R0!

Dosunięcie narzędzia po prostej z przyleganiem stycznym: APPR LT

- współrzędne dla pierwszego punktu konturu P_A
- LEN: odległość punktu pomocniczego P_H do pierwszego punktu konturu P_A
- korekcja promienia RR/RL

7 L X+40 Y+10 RO FMAX M3

- 8 APPR LT X+20 Y+20 Z-10 LEN15 RR F100
- 9 L Y+35 Y+35

10 L ...

Dosunąć narzędzie po prostej prostopadle do pierwszego punktu konturu: APPR LN

- współrzędne dla pierwszego punktu konturu P_A
- LEN: odległość punktu pomocniczego P_H do pierwszego punktu konturu P_A
- korekcja promienia RR/RL

7 L X+40 Y+10 RO FMAX M3

8 APPR LN X+10 Y+20 Z-10 LEN15 RR F100

9 L X+20 Y+35

10 L ...

Najazd konturu i odsunięcie narzędzia od konturu

Dosunąć narzędzie na torze kołowym z przyleganiem stycznym: APPR CT

- współrzędne dla pierwszego punktu konturu P_A
- promień R R > 0 zapisać
- kąt punktu środkowego CCA CCA > 0 zapisać
- korekcja promienia RR/RL

7 L X+40 Y+10 RO FMAX M3

8 APPR CT X+10 Y+20 Z-10 CCA180 R+10 RR F100

9 L X+20 Y+35

10 L ...

Dosuw narzędzia po torze kołowym z przejściem tangencjalnym do konturu i po odcinku prostej: APPR LCT

AF	PR	LCI	T I
2	. 7		
	9		

- współrzędne dla pierwszego punktu konturu P_A
- promień R
- R > 0 zapisać
 korekcja promienia RR/RL
- 7 L X+40 Y+10 RO FMAX M3
- 8 APPR LCT X+10 Y+20 Z-10 R10 RR F100
- 9 L X+20 Y+35

10 L ...

20

Najazd konturu i odsunięcie narzędzia od konturu

Odsunąć narzędzie na torze kołowym z przyleganiem stycznym: DEP CT

- promień R
 - R > 0 zapisać
- kąt punktu środkowego CCA

23 L Y+20 RR F100

24 DEP CT CCA 180 R+8 F100

25 L Z+100 FMAX M2

Odsunięcie narzędzia na torze kołowym z przyleganiem stycznym do konturu i odcinkiem prostej: DEP LCT

- współrzędne punktu końcowego P_N
 promień R
 - R > 0 zapisać

23 L Y+20 RR F100

24 DEP LCT X+10 Y+12 R+8 F100

25 L Z+100 FMAX M2

10

i

X

Funkcje toru kształtowego

Funkcje toru kształtowego dla wierszy pozycjonowania

Patrz "Programowanie: programowanie konturów".

Uzgodnienie

Dla programowania przemieszczenia narzędzia przyjmuje się zasadniczo, iż narzędzie się porusza a obrabiany przedmiot stoi nieruchomo.

Zapis pozycji docelowych

Pozycje docelowe mogą zostać podawane we współrzędnych prostokątnych lub biegunowych – zarówno absolutnych jak i przyrostowych lub mieszanych absolutnych i przyrostowych.

Dane w wierszu pozycjonowania

Pełny wiersz pozycjonowania zawiera następujące dane:

- funkcja toru kształtowego
- Współrzędne końcowego punktu elementu konturu (pozycja docelowa)
- Korekcja promienia RR/RL/R0
- Posuw F
- Funkcja dodatkowa M

Tak wypozycjonować narzędzie na początku programu obróbki; iż wykluczone zostanie uszkodzenie narzędzia jak i obrabianego przedmiotu.

Funkcje toru kształtowego		Strona
Prosta	L	23
Fazka pomiędzy dwoma prostymi	CHF o ⁻ Lo	24
Zaokrąglanie naroży		25
Punkt środkowy okręgu lub Współrzędne bieguna wprowadzić	ф О	26
Tor kołowy wokół środka koła CC	2°	26
Tor kołowy z promieniem	CR	27
Tor kołowy ze stycznym przyleganiem do poprzedniego elementu konturu	CTP	28
Programowanie swobodnego konturu FK	FK	31

Prosta L

- Współrzędne punktu końcowego prostej
- Korekcja promienia RR/RL/R0
- Posuw F
- Funkcja dodatkowa M

Przy pomocy współrzędnych prostokątnych

- 7 L X+10 Y+40 RL F200 M3
- 8 L IX+20 IY-15
- 9 L X+60 IY-10

Przy pomocy współrzędnych biegunowych

12 CC X+45 Y+25

13 LP PR+30 PA+0 RR F300 M3

14 LP PA+60

- 15 LP IPA+60
- 16 LP PA+180

- Określić biegun CC, zanim zostaną zaprogramowane współrzędne biegunowe!
- Zaprogramować biegun CC tylko przy pomocy współrzędnych prostokątnych!
- Biegun CC istnieje tak długo, aż zostanie określony nowy CC biegun!

23

Fazkę CHF umieścić pomiędzy dwoma prostymi

- Długość odcinka fazki
- Posuw F

7 L X+0 Y+30 RL F300 M3

8 L X+40 IY+5

9 CHF 12 F250

10 L IX+5 Y+0

- Kontur nie może rozpoczynać się od CHF-wiersza!
- Korekcja promienia przed i po CHF-zapisie musi być taka sama!
- Fazka musi być wykonywalna przy pomocy wywołanego narzędzia!

Funkcje toru kształtowego

Zaokrąglanie rogów RND

Początek i koniec łuku kołowego tworzą tangencjalne przejścia z poprzednim i następnym elementem konturu.

Promień R łuku kołowego

Posuw F dla zaokrąglania naroży

5 L X+10 Y+40 RL F300 M3

6 L X+40 Y+25

7 RND R5 F100

Tor kołowy wokół środka okręgu CC

- Współrzędne punktu środkowego okręgu CC
- Współrzędne punktu końcowego łuku kołowego
- Kierunek obrotu DR

Przy pomocy ${\bf C}$ und ${\bf CP}$ można zaprogramować koło pełne w jednym wierszu.

Przy pomocy współrzędnych prostokątnych

6 L X+45 Y+25 RR F200 M3

7 C X+45 Y+25 DR+

Przy pomocy współrzędnych biegunowych

18 CC X+25 Y+25

19 LP PR+20 PA+0 RR F250 M3

20 CP PA+180 DR+

- Określić biegun CC, zanim zostaną zaprogramowane współrzędne biegunowe!
- Zaprogramować biegun CC tylko przy pomocy współrzędnych prostokątnych!
- Biegun CC istnieje tak długo, aż zostanie określony nowy CC biegun!
- Punkt końcowy okręgu zostaje tylko przy pomocy PA ustalony!

Funkcje toru kształtowego

Tor kołowy CR z promieniem

- Współrzędne punktu końcowego łuku kołowego
 Promień R
- duży łuk kołowy: ZW > 180, R ujemny mały łuk kołowy: ZW < 180, R dodatni
- Kierunek obrotu DR

10 L X+40 Y+40 RL F200 M3

11 CR X+70 Y+40 R+20 DR- (łUK 1)

lub

11 CR X+70 Y+40 R+20 DR+ (łUK 2)

lub

10 L X+40 Y+40 RL F200 M3

11 CR X+70 Y+40 R-20 DR- (łUK 3)

lub

11 CR X+70 Y+40 R-20 DR+ (łUK 4)

27

Tor kołowy CT ze stycznym przyleganiem

- Współrzędne punktu końcowego łuku kołowego
- Korekcja promienia RR/RL/R0
- Posuw F
- Funkcja dodatkowa M
- Przy pomocy współrzędnych prostokątnych

7 L X+0 Y+25 RL F300 M3	
8 L X+25 Y+30	
9 CT X+45 Y+20	
10 L Y+0	
Przy nomocy wspołrządnych biadunowych	

ponzęunych biegunowych

12 CC X+40 Y+3	5
----------------	---

13 L X+0 Y+35 RL F250 M3

14 LP PR+25 PA+120

15 CTP PR+30 PA+30

16 L Y+0

- Określić biegun CC, zanim zostaną zaprogramowane współrzędne biegunowe!
- Zaprogramować biegun CC tylko przy pomocy współrzędnych prostokątnych!
- Biegun **CC** istnieje tak długo, aż zostanie określony nowy CC biegun!

Linia śrubowa (tylko we współrzędnych biegunowych)

Obliczenia (kierunek frezowania od dołu do góry)

Liczba przejść:	n	Zwoje gwintu + przepełnienie gwintu na początku i końcu gwintu
Ogólna wysokość:	h	Skok gwintu P x liczba zwojów n
Przyr. kąt wsp.bieg.:	IPA	Liczba zwojów n x 360°
Kąt początkowy:	ΡΑ	kąt dla początku gwintu + kąt dla wybiegu
Współrzędna początkowa:	Z	Skok gwintu P x (zwoje gwintu + nadmiar zwojów na początku gwintu)

Forma linii śrubowej

Gwint	Kierunek	Kierunek	promień
wewnętrzny	pracy	obrotu	-korekcja
prawoskrętny	Z+	DR+	RL
lewoskrętny	Z+	DR-	RR
prawoskrętny	Z-	DR-	RR
lewoskrętny	Z-	DR+	RL

Gwint	Kierunek	Kierunek	promień
zewnętrzny	pracy	obrotu	-korekcja
prawoskrętny	Z+	DR+	RR
lewoskrętny	Z+	DR-	RL
prawoskrętny	Z-	DR-	RL
lewoskrętny	Z-	DR+	RR

Gwint M6 x 1 mm z 5 zwojami:

12	СС	X+40	Y+25	

13 L Z+0 F100 M3

14 LP PR+3 PA+270 RL F50

15 CP IPA-1800 IZ+5 DR-

Swobodne Programowanie Konturu SK (niem. FK)

Swobodne Programowanie Konturu SK (niem. FK)

3
Y

Patrz "Ruchy po torze kształtowym – Programowanie dowolnego konturu FK"

Jeśli na rysunku technicznym brak współrzędnych punktu docelowego lub jeśli rysunek zawiera dane, które nie mogą zostać wprowadzone poprzez szare klawisze funkcji toru kształtowego, to przechodzi się do "Programowania dowolnego konturu SK".

Możliwe dane do elementu konturu:

- znane współrzędne punktu końcowego
- punkty pomocnicze na elemencie konturu
- punkty pomocnicze w pobliżu elementu konturu
- stosunek względny do innego elementu konturu
- dane dotyczące kierunku (kąt) / dane dotyczące położenia
- dane dotyczące przebiegu konturu

Właściwe wykorzystanie SK-programowania:

- wszystkie elementy konturu muszą leżeć na płaszczyźnie obróbki
- zapis wszystkich znajdujących się w dyspozycji danych do elementu konturu
- Przy mieszaniu konwencjonalnych wierszy i wierszy SK każdy fragment musi być jednoznacznie określony, który został zaprogramowany z SK. Dopiero wówczas TNC pozwala na zapis konwencjonalnych funkcji toru kształtowego.

Praca z grafiką programowania

Wybrać maskę ekranową PROGRAM+GRAFIKA!

- wyświetlanie różnych rozwiązań
- ROZWIAZ. WYBOR

WSKAZ

wyświetlone rozwiązanie wybrać i przejąć

- zaprogramować dalsze elementy konturu
- START POJ. BLOK
- generowanie grafiki programowania dla następnego programowanego wiersza

Kolory standardowe grafiki programowania

niebieski	element konturu jest jednoznacznie określony
zielony	wprowadzone dane dopuszczają kilka rozwiązań operator wybiera właściwe rozwiązanie
czerwony	wprowadzone dane nie określają jeszcze wystarczająco elementu konturu: operator wprowadza dodatkowe dane
kolor jasnoniebieski	zaprogramowano przemieszczenie na biegu szybkim

Otworzenie FK-dialogu

Otworzyć dialog FK, następujące funkcje znajdują się w dyspozycji:

FK-element	Softkeys
prosta z przejściem tangencjalnym	FLT
prosta bez tangencjalnego przejścia	FL
łuk kołowy z przejściem tangencjalnym	FCT
łuk kołowy bez tangencjalnego przejścia	FC
biegun dla SK-programowania	FPOL

Swobodne Programowanie Konturu SK (niem. FK)

Współrzędne punktu końcowego X, Y lub PA, PR

34

Punkt środkowy okręgu CC w FC/FCT-wierszu

Znane dane	Softkeys	
punkt środkowy o współrzędnych prostokątnych		
punkt środkowy o współrzędnych biegunowych		
zapisać inkrementalnie	Ι	

10 FC CCX+20 CCY+15 DR+ R15

11 FPOL X+20 Y+15

12 FL AN+40

13 FC DR+ R15 CCPR+35 CCPA+40

Swobodne Programowanie Konturu SK (niem. FK)

Punkty pomocnicze na konturze lub obok konturu

14 FLT AH-70 PDX+50 PDY+53 D10

36
Kierunek i długość elementu konturu

Znane dane	Softkeys		
długość prostej	LEN		
kąt wzniosu prostej	ÂN Î		
długość cięciwy LEN wycinka łuku ko	ołowego		
kąt wzniosu AN stycznej wejściowej			
27 FLT X+25 LEN 12.5 AN+35 RL	F200		
28 FC DR+ R6 LEN 10 A-45			
29 FCT DR- R15 LEN 15			
Oznaczenie zamkniętego konturu			
początek konturu: koniec konturu:	CLSD+ CLSD-		
12 L X+5 Y+35 RL F500 M3			
13 FC DR- R15 CLSD+ CCX+20 C	CY+35		
17 FCT DR- R+15 CLSD-			

Swobodne Programowanie Konturu SK (niem. FK)

Odniesienie względne do bloku N: współrzędne punktu końcowego

Współrzędne z odniesieniem względnym proszę wprowadzać zawsze przyrostowo. Dodatkowo proszę wprowadzić numer wiersza elementu konturu, do którego się odnosimy.

12 FPOL X+10 Y+10

13 FL PR+20 PA+20

14 FL AN+45

15 FCT IX+20 DR- R20 CCA+90 RX 13

16 FL IPR+35 PA+0 RPR 13

Swobodne Programowanie Konturu SK (niem. FK)

Referencja względna do wiersza N: kierunek i odległość elementu konturu

Współrzędne z odniesieniem względnym proszę wprowadzać zawsze przyrostowo. Dodatkowo proszę wprowadzić numer wiersza elementu konturu, do którego się odnosimy.

Znane dane

Softkeys

kąt pomiędzy prostą i innym elementem konturu lub pomiędzy styczną wejściową łuku kołowego i innym elementem konturu

prosta równoległa do innego elementu konturu

RAN N...

odległość prostej do równoległego elementu konturu

17.75	4	ottettet	
	/*	DP	
1		V	
٠	/		

17 FL LEN 20 AN+15

18 FL AN+105 LEN 12.5

19 FL PAR 17 DP 12.5

20 FSELECT 2

21 FL LEN 20 IAN+95

22 FL IAN+220 RAN 18

Referencja względna do bloku N: punkt środkowy okręgu CC

Swobodne Programowanie Konturu SK (niem. FK)

ᇞ

Współrzędne z odniesieniem względnym proszę wprowadzać zawsze przyrostowo. Dodatkowo proszę wprowadzić numer wiersza elementu konturu, do którego się odnosimy.

12 FL X+10 Y+10 RL 13 FL ... 14 FL X+18 Y+35 15 FL ...

16 FL ...

17 FC DR- R10 CCA+0 ICCX+20 ICCY-15 RCCX12 RCCY14

i

40

Podprogramy i powtórzenia części programu

Podprogramy i powtórzenia części programu

Raz zaprogramowane kroki obróbki można przy pomocy podprogramów i powtórzeń części programu ponownie wykonać.

Praca z podprogramami

- 1 Program główny przebiega do wywołania podprogramu CALL LBL 1
- 2 Następnie podprogram oznaczony przy pomocy LBL 1 zostaje wykonany do końca podprogramu LBL 0.
- 3 Program główny zostaje kontynuowany

Podprogramy uplasować za końcem programu głównego (M2)!

哟

Pytanie dialogu REP z NO ENT odpowiedzieć!

CALL LBL0 jest niedopuszczalne!

Praca z powtórzeniami części programu

- 1 Program główny przebiega do wywołania powtórzenia części programu CALL LBL 1 REP2.
- 2 Część programu pomiędzy LBL 1 i CALL LBL 1 REP2 zostaje tak często powtórzona, jak to podano w REP
- 3 Po ostatnim powtórzeniu program główny zostaje kontynuowany

Powtarzana część programu zostaje w ten sposób jeden raz więcej wykonana, niż zaprogramowano powtórzeń!

Pakietowane podprogramy

Podprogram w podprogramie

- 1 Program główny przebiega do pierwszego wywołania podprogramu CALL LBL 1 .
- 2 Podprogram 1 zostaje wykonywany do drugiego wywołania podprogramu CALL LBL 2.
- 3 Podprogram 2 przebiega do końca podprogramu
- 4 Podprogram 1 zostaje kontynuowany i przebiega do jego końca
- 5 Program główny zostaje kontynuowany

Podprogramy i powtórzenia części programu

- Podprogram nie może sam się wywołać!
- Podprogramy mogą zostać pakietowane do maksymalnie 8 poziomów.

Dowolny program jako podprogram

- 1 Wywołujący program główny A przebiega do wywołania CALL PGM B.
- 2 Wywołany program B zostaje w pełni wykonany
- 3 Wywołujący program główny A zostaje kontynuowany

Wywołany program nie może zostać zakończony przy pomocy M2 lub M30 !

Praca z cyklami

Często powtarzające się zabiegi obróbkowe zostają zapisane w pamięci TNC jako cykle. Także przeliczenia współrzędnych i niektóre funkcje specjalne są oddane do dyspozycji w postaci cykli.

- Aby uniknąć błędnych danych przy definiowaniu cyklu, należy przeprowadzić przed odpracowaniem test graficzny programu!
 - Znak liczby parametru cyklu Głębokość określa kierunek obróbki!
 - We wszystkich cyklach z numerami większymi od 200 TNC pozycjonuje wstępnie narzędzie automatycznie na osi narzędzia.

Definiowanie cykli

ᇞ

wybór przeglądu cykli:

WIERCENIE GWINT	wybór grupy cykli
200	wybór cyklu

nięci	Grupa cykli	
- 'nv	cykle dla wiercenia głębokiego, dokładnego rozwiercania otworu, wytaczania, pogłębiania, gwintowania, cięcia gwintów i frezowania gwintów	WIERCENIE GWINT
k.	cykle dla frezowania kieszeni,czopów i rowków wpustowych	KIESZENIE CZOPY
۷C	cykle dla wytwarzania regularnych wzorów punktowych, np. okrąg odwiertów lub powierzchnie z odwiertami	PUNKTY WZORZEC
	SL-cykle (Subcontur-List/ lista podkonturów), przy pomocy których bardziej skomplikowane kontury równolegle do konturu głównego zostają obrabiane, składające się z kilku nakładających się na siebie częściowych konturów,interpolacja powierzchni bocznej cylindra	SL II
	cykle do frezowania metodą wierszowania równych lub zwichrowanych w sobie powierzchni	POWIERZ.
	cykle dla przeliczania współrzędnych,przy pomocy których dowolne kontury zostają przesunięte, obrócone, odbite w lustrzepowiększone lub pomniejszone	WSPOLRZ. PRZELICZ.
	cykle specjalne Czas przerwy, Wywołanie programu, Orientacja wrzeciona i Tolerancja	SPECJALNE CYKLE

44

Wspomaganie graficzne przy programowaniu cykli

TNC wspomaga operatora przy definicji cyklu poprzez graficzne przedstawienie wprowadzanych parametrów.

Wywołanie cykli

Następujące cykle działają od ich zdefiniowania w programie obróbki:

- Cykle dla przeliczania współrzędnych
- cykl CZAS PRZERWY
- SL-cykle KONTUR i DANE KONTURU
- Wzory punktowe
- cykl TOLERANCJA

Wszystkie inne cykle działają po wywołaniu z:

- CYCL CALL: działa oddzielnymi wierszami
- CYCL CALL PAT: działa pojedyńczymi wierszami w połączeniu z tabelami punktów i PATTERN DEF
- CYCL CALL POS: działa pojedyńczymi wierszami, po najechaniu zdefiniowanej w CYCL CALL POS-wierszu pozycji
- M99: działa pojedyńczymi wierszami
- M89: działa modalnie (w zależności od parametrów maszyny)

Cykle dla wytwarzania odwiertów i gwintów

Przegląd

Znajd	ujące się do dyspozycji cykle	Strona
240	NAKIEŁKOWANIE	47
200	WIERCENIE	48
201	ROZWIERCANIE DOKŁADNE OTWORU	49
202	WYTACZANIE	50
203	UNIWERSALNE WIERCENIE	51
204	POGŁĘBIANIE WSTECZNE	52
205	WIERCENIE UNIWERSALNE GŁEBOKIE	53
208	FREZOWANIE PO LINII SRUBOWEJ	54
206	GWINTOWANIE NOWE	55
207	GWINTOWANIE GS NOWE	56
209	GWINTOWANIE ŁAMANIE WIORA	57
262	FREZOWANIE GWINTÓW	58
263	FREZOWANIE GWINTÓW WPUSZCZANYCH	59
264	FREZOWANIE GWINTÓW POD ODWIERTY	60
265	HELIX-FREZOWANIE GWIN.	61
267	FREZOWANIE GWINTOW ZEWNETRZNYCH	62

NAKIEŁKOWANIE (cykl 240)

CYCL DEF: cykl 400 NAKIEłKOWANIE wybrać

- Odstęp bezpieczeństwa: Q200
- Wybór Głębokość/średnica: określić, czy należy dokonać nakiełkowania na zapisaną głębokość czy też na zapisaną średnicę: Q343
- Głębokość: odległość powierzchnia przedmiotu dno odwiertu: Q201
- Srednica: znak liczby określa kierunek pracy: Q344
- Posuw wcięcia na głębokość: Q206
- Czas przerwy na dole: Q211
- współ. powierzchni obrabianego przedmiotu: Q203
- 2. bezpieczna wysokość: Q204

11 CYCL DEF 240 CENTROWANIE

Q200=2	;ODSTĘP BEZPIECZEŃSTWA
Q343=1	;WYBÓR GłĘBOKOŚĆ/ŚREDN
Q201=+0	;GłĘBOKOŚĆ
Q344=-10	;ŚREDNICA
Q206=250	;POSUW WCIĘCIA W MATERIAł
Q211=0	;CZAS ZATRZYMANIA U DOłU
Q203=+20	;WSPÓł.POWIERZCHNI
Q204=100	;2-GI ODSTĘP BEZPIECZEŃSTWA
12 CYCL CALL P	OS X+30 Y+20 M3
13 CYCL CALL P	OS X+80 Y+50

Cykle dla wytwarzania odwiertów i gwintów

47

WIERCENIE (cykl 200)

- CYCL DEF: cykl 200 WIERCENIE wybrać
 - Odstęp bezpieczeństwa: Q200
 - Głębokość: odległość powierzchnia przedmiotu dno odwiertu: Q201
 - Posuw wcięcia na głębokość: Q206
- Głębokość wejścia w materiał: Q202
- Czas zatrzymania u góry: Q210
- współ. powierzchni obrabianego przedmiotu: Q203
- 2. Odstęp bezpieczeństwa: Q204
- Czas zatrzymania u dołu: Q211

11 CYCL DEF 200 WIERCENIE

	Q200=2	;ODSTĘP BEZPIECZEŃSTWA
	Q201=-15	;GłĘBOKOŚĆ
	Q206=250	;POSUW WCIĘCIA W MATERIAł
	Q202=5	;GłĘBOKOŚĆ WCIĘCIA
	Q210=0	;CZAS ZATRZYMANIA U GÓRY
	Q203=+20	;WSPÓł.POWIERZCHNI
	Q204=100	;2-GI ODSTĘP BEZPIECZEŃSTWA
	Q211=0.1	;CZAS ZATRZYMANIA U DOłU
12	CYCL CALL PO	S X+30 Y+20 M3
13	CYCL CALL PO	S X+80 Y+50

Cykle dla wytwarzania odwiertów i gwintów

ROZWIERCANIE (cykl 201)

- CYCL DEF: cykl 201 ROZWIERCANIE wybrać
 - Odstęp bezpieczeństwa: Q200
 - Głębokość: odległość powierzchnia przedmiotu dno odwiertu: Q201
 - Posuw wcięcia na głębokość: Q206
 - Czas przerwy na dole: Q211
 - Posuw powrotu: Q208
 - współ. powierzchni obrabianego przedmiotu: Q203
 - 2. bezpieczna wysokość: Q204

10 L Z+100 R0 FMAX

11	CYCL	DEF	201	ROZV	VIERC	ANIE
----	------	-----	-----	------	-------	------

Q200=2	;ODSTĘP BEZPIECZEŃSTWA	
Q201=-15	;GłĘBOKOŚĆ	
Q206=100	;POSUW WCIĘCIA W MATERIAł	
Q211=0.5	CZAS ZATRZYMANIA U DOłU	
Q208=250	;POSUW POWROTU	
Q203=+20	;WSPÓł.POWIERZCHNI	
Q204=100	;2-GI ODSTĘP BEZPIECZEŃSTWA	
12 CYCL CALL F	POS X+30 Y+20 M3	
13 CYCL CALL F	POS X+80 Y+50	

49

WYTACZANIE (cykl 202)

 Maszyna i TNC muszą być przygotowane przez producenta maszyn dla cyklu WYTACZANIE!
 Obróbka zostaje wykonana z wyregulowanym wrzecionem!

Niebezpieczeństwo kolizji! Tak wybrać kierunek wyjścia z materiału, aby narzędzie odsunęło się od brzegu odwiertu!

- CYCL DEF: cykl 202 WYTACZANIE wybrać
 - Odstęp bezpieczeństwa: Q200
 - Głębokość: odległość powierzchnia przedmiotu dno odwiertu: Q201
 - Posuw wcięcia na głębokość: Q206
 - Czas przerwy na dole: Q211
 - Posuw powrotu: Q208
 - współ. powierzchni obrabianego przedmiotu: Q203
 - 2. Odstęp bezpieczeństwa: Q204
 - Kierunek wyjścia z materiału (0/1/2/3/4) na dnie odwiertu: Q214
 - Kąt dla orientacji wrzeciona: Q336

Cykle dla wytwarzania odwiertów i gwintów

UNIWERSALNE WIERCENIE (cykl 203)

- CYCL DEF: cykl 203 UNIWERSALNE WIERCENIE wybrać
 - Odstęp bezpieczeństwa: Q200
 - Głębokość: odległość powierzchnia przedmiotu dno odwiertu: Q201
 - Posuw wcięcia na głębokość: Q206
 - Głębokość wejścia w materiał: Q202
 - Czas zatrzymania u góry: Q210
 - współ. powierzchni obrabianego przedmiotu: Q203
 - 2. Odstęp bezpieczeństwa: Q204
 - Ilość zdejmowanego materiału po każdym wcięciu w materiał: Q212
 - Licz. łamań wióra do powrotu: Q213
 - minimalna głębokość wcięcia w materiał jeżeli zapisano ilość skrawanego materiału: Q205
 - Czas przerwy na dole: Q211
 - Posuw powrotu: Q208
 - Odsunięcie przy łamaniu wióra: Q256

WSTECZNE POGŁĘBIANIE (cykl 204)

- Maszyna i TNC muszą być przygotowane przez producenta maszyn dla cyklu POGŁEBIANIE POWROTNE!
- Obróbka zostaje wykonana z wyregulowanym wrzecionem!

- Niebezpieczeństwo kolizji! Tak wybrać kierunek wyjścia z materiału, aby narzędzie odsunęło się od dna odwiertu!
- materiaru, aby narzędzie odsunęło się od dna odwier
- Używać cyklu tylko z wytaczadłami wstecznymi!
- CYCL DEF: cykl 204 WSTECZNE POGŁEBIANIE wybrać
 - Odstęp bezpieczeństwa: Q200
 - Głębokość pogłębiania: Q249
 - Grubość materiału: Q250
 - Wymiar mimośrodu: Q251
 - Wysokość ostrzy: Q252
 - Posuw pozycjonowania wstępnego: Q253
 - Posuw pogłębiania: Q254
 - Czas zatrzymania na dnie zagłębienia: Q255
 - współ. powierzchni obrabianego przedmiotu: Q203
 - 2. Odstęp bezpieczeństwa: Q204
 - Kierunek wyjścia z materiału (0/1/2/3/4): Q214
 - Kąt dla orientacji wrzeciona: Q336

Cykle dla wytwarzania odwiertów i gwintów

UNIWERSALNE WIERCENIE GŁĘBOKIE (cykl 205)

- CYCL DEF: cykl 205 UNIWERSALNE WIERCENIE GŁEBOKIE wybrać
 - Odstęp bezpieczeństwa: Q200
 - Głębokość: odległość powierzchnia przedmiotu dno odwiertu: Q201
 - Posuw wcięcia na głębokość: Q206
 - Głębokość wejścia w materiał: Q202
 - współ. powierzchni obrabianego przedmiotu: Q203
 - 2. Odstęp bezpieczeństwa: Q204
 - Ilość zdejmowanego materiału po każdym wcięciu w materiał: Q212
 - minimalna głębokość wcięcia w materiał jeżeli zapisano ilość skrawanego materiału: Q205
 - Dystans wyprzedzenia u góry: Q258
 - Dystans wyprzedzenia u dołu: Q259
 - Głębokość wiercenia do łamania wióra: Q257
 - Odsunięcie przy łamaniu wióra: Q256
 - Czas przerwy na dole: Q211
 - Pogrążony punkt startu: Q379
 - Posuw pozycjonowania wstępnego: Q253

FREZOWANIE PO LINII SRUBOWEJ (cykl 208)

- pozycjonowanie wstępne na środku odwiertu z R0
- CYCL DEF: cykl 208 FREZOWANIE PO LINII SRUBOWEJ wybrać
- Odstęp bezpieczeństwa: Q200
- Głębokość: odległość powierzchnia przedmiotu dno odwiertu: Q201
- Posuw wcięcia na głębokość: Q206
- Wcięcie w materiał na jedną linię śrubową: Q334
- Współ. powierzchni obrabianego przedmiotu: Q203
- 2. Odstęp bezpieczeństwa: Q204
- Zadana średnica odwiertu: Q335
- Wywiercona wstępnie średnica: Q342
- Rodzaj frezowania: Q351
- frezowanie współbieżne: +1
- frezowanie przeciwbieżne: -1

12 CYCL DEF 208	FREZOWANIE PO LINII ŚRUBOWEJ
Q200=2	;ODSTĘP BEZPIECZEŃSTWA
Q201=-80	;GłĘBOKOŚĆ
Q206=150	;POSUW WCIĘCIA W MATERIAł
Q334=1.5	;GłĘBOKOŚĆ WCIĘCIA
Q203=+100	;WSPÓł.POWIERZCHNI
Q204=50	;2-GI ODSTĘP BEZPIECZEŃSTWA
Q335=25	;ZADANA ŚREDNICA
Q342=0	;WYWIERC. ŚREDNICA
Q351=0	;RODZAJ FREZOWANIA

GWINTOWANIE NOWE (cykl 206) z uchwytem wyrównawczym

哟

Dla prawoskrętnych gwintów uaktywnić wrzeciono przy pomocy M3, dla lewoskrętnych gwintów przy pomocy M4!

- zamontować uchwyt wyrównawczy długości
- CYCL DEF: cykl 206 GWINTOWANIE NOWE wybrać
 - Odstęp bezpieczeństwa: Q200
 - Głębokość wiercenia: długość gwintu = odstęp pomiędzy powierzchnią obrabianego przedmiotu i końcem gwintu: Q201
 - Posuw F = prędkość obrotowa wrzeciona S x skok gwintu P: Q206
 - Czas przerwy u dołu (wartość pomiędzy 0 i 0,5 sekundy) zapisać: Q211
 - Współ. powierzchni obrabianego przedmiotu: Q203
 - 2. Odstęp bezpieczeństwa: Q204

25 CYCL DEF 206 GWINTOWANIE NOWE

Q200=2	;ODSTĘP BEZPIECZEŃSTWA
Q201=-20	;GłĘBOKOŚĆ
Q206=150	;POSUW WCIĘCIA W MATERIAł
Q211=0.25	;CZAS ZATRZYMANIA NA DOLE
Q203=+25	;WSPÓł.POWIERZCHNI
Q204=50	;2-GI ODSTĘP BEZPIECZEŃSTWA

GWINTOWANIE GS NOWE (cykl 207) bez uchwytu wyrównawczego

- Maszyna i TNC muszą być przygotowane przez producenta maszyn dla gwintowania bez uchwytu wyrównawczego!
- Obróbka zostaje wykonana z wyregulowanym wrzecionem!
- CYCL DEF: cykl 207 GWINTOWANIE GS NOWE wybrać
 - Odstęp bezpieczeństwa: Q200
- Głębokość wiercenia: długość gwintu = odstęp pomiędzy powierzchnią obrabianego przedmiotu i końcem gwintu: Q201
- Skok gwintu: Q239 znak liczby określa gwint prawo- i lewoskrętny: gwint prawoskrętny: + gwint lewoskrętny: -
- Współ. powierzchni obrabianego przedmiotu: Q203
- 2. Odstęp bezpieczeństwa: Q204

26 CYCL DEF 207 GWINTOWANIE GS NOWE

Q200=2	;ODSTĘP BEZPIECZEŃSTWA
Q201=-20	;GłĘBOKOŚĆ
Q239=+1	;SKOK GWINTU
Q203=+25	;WSPÓł.POWIERZCHNI
Q204=50	;2-GI ODSTĘP BEZPIECZEŃSTWA

Cykle dla wytwarzania odwiertów i gwintów

GWINTOWANIE ŁAMANIE WIÓRA (cykl 209)

 Maszyna i TNC muszą być przygotowane przez producenta maszyn dla gwintowania!
 Obróbka zostaje wykonana z wyregulowanym wrzecionem!

CYCL DEF: cykl 209 GWINTOWANIE ŁAMANIE WIORA wybrać

- Odstęp bezpieczeństwa: Q200
- Głębokość wiercenia: długość gwintu = odstęp pomiędzy powierzchnią obrabianego przedmiotu i końcem gwintu: Q201
- Skok gwintu: Q239 znak liczby określa gwint prawo- i lewoskrętny: gwint prawoskrętny: + gwint lewoskrętny: -
- Współ. powierzchni obrabianego przedmiotu: Q203
- 2. Odstęp bezpieczeństwa: Q204
- Głębokość wiercenia do łamania wióra: Q257
- Odsunięcie przy łamaniu wióra: Q256
- Kąt dla orientacji wrzeciona: Q336
- Współczynnik zmiany obrotów przy powrocie: Q403

FREZOWANIE GWINTU (cykl 262)

- pozycjonowanie wstępne na środku odwiertu z R0
- CYCL DEF: cykl 262 FREZOWANIE GWINTU wybrać
 - Zadana średnica gwintu: Q335
 - Skok gwintu: Q239 znak liczby określa gwint prawo- i lewoskrętny: gwint prawoskrętny: + gwint lewoskrętny: -
 - Głębokość gwintu: odstęp pomiędzy powierzchnią obrabianego przedmiotu i końcem gwintu: Q201
 - Liczba zwojów do przestawienia: Q355
 - Posuw pozycjonowania wstępnego: Q253
 - Rodzaj frezowania: Q351 frezowanie współbieżne: +1 frezowanie przeciwbieżne: -1
 - Odstęp bezpieczeństwa: Q200
 - Współ. powierzchni obrabianego przedmiotu: Q203
 - 2. Odstęp bezpieczeństwa: Q204
 - Posuw frezowania: Q207

Proszę zwrócić uwagę, iż TNC wykonuje przed ruchem dosuwowym przemieszczenie wyrównujące w osi narzędzia. Rozmiar tego przemieszczenia wyrównującego zależne jest od skoku gwintu. Zwrócić uwagę na dostatecznie dużo miejsca w odwiercie!

Cykle dla wytwarzania odwiertów i gwintów

FREZOWANIE GWINTÓW WPUSZCZANYCH (cykl 263)

- pozycjonowanie wstępne na środku odwiertu z R0
- CYCL DEF: cykl 263 FREZOWANIE GWINTOW WPUSZCZANYCH wybrać
 - Zadana średnica gwintu: Q335
 - Skok gwintu: Q239 znak liczby określa gwint prawo- i lewoskrętny: gwint prawoskrętny: + gwint lewoskrętny: -
 - Głębokość gwintu: odstęp pomiędzy powierzchnią obrabianego przedmiotu i końcem gwintu: Q201
 - Głębokość pogłębienia: odległość powierzchnia przedmiotu dno odwiertu: Q356
 - Posuw pozycjonowania wstępnego: Q253
 - Rodzaj frezowania: Q351 frezowanie współbieżne: +1 frezowanie przeciwbieżne: -1
 - Odstęp bezpieczeństwa: Q200
 - Odstęp bezpieczeństwa z boku: Q357
 - Głębokość zagłębienia czołowo: Q358
 - Przesunięcie pogłębiania czołowo: Q359
 - Współ. powierzchni obrabianego przedmiotu: Q203
 - 2. Odstęp bezpieczeństwa: Q204
 - Posuw pogłębiania: Q254
 - Posuw frezowania: Q207

59

FREZOWANIE ODWIERTOW Z GWINTEM (cykl 264)

- pozycjonowanie wstępne na środku odwiertu z R0
- CYCL DEF: cykl 264 FREZOWANIE OTWOROW POD GWINT wybrać
 - Zadana średnica gwintu: Q335
 - Skok gwintu: Q239 znak liczby określa gwint prawo- i lewoskrętny: gwint prawoskrętny: + gwint lewoskrętny: -
 - Głębokość gwintu: odstęp pomiędzy powierzchnią obrabianego przedmiotu i końcem gwintu: Q201
 - Głębokość wiercenia: odległość powierzchnia przedmiotu dno odwiertu: Q356
 - Posuw pozycjonowania wstępnego: Q253
 - Rodzaj frezowania: Q351 frezowanie współbieżne: +1 frezowanie przeciwbieżne: -1
 - Głębokość wcięcia: Q202
 - Dystans wyprzedzenia u góry: Q258
 - Głębokość wiercenia do łamania wióra: Q257
 - Odsunięcie przy łamaniu wióra: Q256
 - Czas przerwy na dole: Q211
 - Głębokość zagłębienia czołowo: Q358
 - Przesunięcie pogłębiania czołowo: Q359
 - Odstęp bezpieczeństwa: Q200
 - Współ. powierzchni obrabianego przedmiotu: Q203
 - 2. Odstęp bezpieczeństwa: Q204
 - Posuw wcięcia na głębokość: Q206
 - Posuw frezowania: Q207

Cykle dla wytwarzania odwiertów i gwintów

HELIX- FREZOWANIE GWINTÓW RDZENIOWYCH (cykl 265)

- pozycjonowanie wstępne na środku odwiertu z R0
- CYCL DEF: cykl 265 FREZOWANIE OTWOROW HELIX wybrać
 - Zadana średnica gwintu: Q335
 - Skok gwintu: Q239 znak liczby określa gwint prawo- i lewoskrętny: gwint prawoskrętny: + gwint lewoskrętny: -
 - Głębokość gwintu: odstęp pomiędzy powierzchnią obrabianego przedmiotu i końcem gwintu: Q201
 - Posuw pozycjonowania wstępnego: Q253
 - Głębokość zagłębienia czołowo: Q358
 - Przesunięcie pogłębiania czołowo: Q359
 - Operacja pogłębiania: Q360
 - Głębokość wcięcia: Q202
 - Odstęp bezpieczeństwa: Q200
 - Współ. powierzchni obrabianego przedmiotu: Q203
 - 2. Odstęp bezpieczeństwa: Q204
 - Posuw pogłębiania: Q254
 - Posuw frezowania: Q207

FREZOWANIE GWINTU ZEWNETRZNEGO (cykl 267)

- pozycjonowanie wstępne na środku odwiertu z R0
- CYCL DEF: cykl 267 FREZOWANIE GWINTOW ZEWNETRZNYCH wybrać
 - Zadana średnica gwintu: Q335
 - Skok gwintu: Q239 znak liczby określa gwint prawo- i lewoskrętny: gwint prawoskrętny: + gwint lewoskrętny: -
 - Głębokość gwintu: odstęp pomiędzy powierzchnią obrabianego przedmiotu i końcem gwintu: Q201
- Liczba zwojów do przestawienia: Q355
- Posuw pozycjonowania wstępnego: Q253
- Rodzaj frezowania: Q351 frezowanie współbieżne: +1 frezowanie przeciwbieżne: -1
- Odstęp bezpieczeństwa: Q200
- Głębokość zagłębienia czołowo: Q358
- Przesunięcie pogłębiania czołowo: Q359
- Współ. powierzchni obrabianego przedmiotu: Q203
- 2. Odstęp bezpieczeństwa: Q204
- Posuw pogłębiania: Q254
- Posuw frezowania: Q207

Kieszenie, czopy i rowki wpustowe

Przegląd

Znajdujące się do dyspozycji cykle		Strona
251	KIESZEN PROSTOKATNA kompletnie	64
252	KIESZEN OKRAGŁA kompletnie	65
253	ROWEK WPUSTOWY kompletnie	66
254	ROWEK OKRAGŁY kompletnie	67
256	CZOP PROSTOKATNY	68
257	CZOP OKRAGŁY	69

KIESZEN PROSTOKATNA (cykl 251)

- CYCL DEF: cykl 251 KIESZEN PROSTOKATNA wybrać
 - Zakres obróbki (0/1/2): Q215
 - 1. Długość boku: Q218
 - 2. Długość boku: Q219
 - Promień naroża: Q220
 - Naddatek na obróbkę wykańczającą boku: Q368
 - Kąt obrotu: Q224
 - Położenie kieszeni: Q367
 - Posuw frezowania: Q207
 - Rodzaj frezowania: Q351. współbieżne: +1, przeciwbieżne: -1
 - Głębokość: odległość powierzchnia przedmiotu dno kieszeni: Q201
 - Głębokość wejścia w materiał: Q202
 - Naddatek na obróbkę wykańczającą dna: Q369
 - Posuw wcięcia na głębokość: Q206
 - Wcięcie obróbka wykańczająca: Q338
 - Odstęp bezpieczeństwa: Q200
 - Współ. powierzchni obrabianego przedmiotu: Q203
 - 2. Odstęp bezpieczeństwa: Q204
 - Współczynnik nakładania się torów: Q370
 - Strategia wejścia w materiał: Q366. 0 = prostopadłe zagłębienie, 1 = zagłębienie po linii śrubowej, 2 = zagłębienie ruchem wahadłowym
 - Posuw obróbki wykańczającej: Q385

KIESZEN OKRAGŁA (cykl 252)

- CYCL DEF: cykl 252 KIESZEN OKRAGŁA wybrać
 - Zakres obróbki (0/1/2): Q215
 - Srednica części gotowej: Q223
 - Naddatek na obróbkę wykańczającą boku: Q368
 - Posuw frezowania: Q207
 - Rodzaj frezowania: Q351. współbieżne: +1, przeciwbieżne: -1
 - Głębokość: odległość powierzchnia przedmiotu dno kieszeni: Q201
 - Głębokość wejścia w materiał: Q202
 - Naddatek na obróbkę wykańczającą dna: Q369
 - Posuw wcięcia na głębokość: Q206
 - Wcięcie obróbka wykańczająca: Q338
 - Odstęp bezpieczeństwa: Q200
 - Współ. powierzchni obrabianego przedmiotu: Q203
 - 2. Odstęp bezpieczeństwa: Q204
 - Współczynnik nakładania się torów: Q370
 - Strategia wejścia w materiał: Q366. 0 = zagłębienie prostopadłe, 1 = zagłębienie po linii śrubowej
 - Posuw obróbki wykańczającej: Q385

Kieszenie, czopy i rowki wpustowe

FREZOWANIE ROWKÓW (cykl 253)

- CYCL DEF: cykl 253 FREZOWANIE ROWKOW wybrać
 - Zakres obróbki (0/1/2): Q215
 - 1. Długość boku: Q218
 - 2. Długość boku: Q219
 - Naddatek na obróbkę wykańczającą boku: Q368
 - Kąt, o który zostaje obrócony cały rowek: Q374
 - Położenie rowka (0/1/2/3/4): Q367
 - Posuw frezowania: Q207
 - Rodzaj frezowania: Q351. współbieżne: +1, przeciwbieżne: -1
 - Głębokość: odległość powierzchnia przedmiotu dno rowka: Q201
 - Głębokość wejścia w materiał: Q202
 - Naddatek na obróbkę wykańczającą dna: Q369
 - Posuw wcięcia na głębokość: Q206
 - Wcięcie obróbka wykańczająca: Q338
 - Odstęp bezpieczeństwa: Q200
 - Współ. powierzchni obrabianego przedmiotu: Q203
 - 2. Odstęp bezpieczeństwa: Q204
 - Strategia wejścia w materiał: Q366. 0 = zagłębienie prostopadłe, 1 = zagłębienie po linii śrubowej
 - Posuw obróbki wykańczającej: Q385

Kieszenie, czopy i rowki wpustowe

OKRAGŁY ROWEK (cykl 254)

- CYCL DEF: cykl 254 OKRAGŁY ROWEK wybrać
 - Zakres obróbki (0/1/2): Q215
 - 2. Długość boku: Q219
 - Naddatek na obróbkę wykańczającą boku: Q368
 - Srednica wycinka koła: Q375
 - Położenie rowka (0/1/2/3): Q367
 - Srodek 1. osi: Q216
 - Srodek 2. osi: Q217
 - Kąt startu: Q376
 - Kąt rozwarcia rowka: Q248
 - Krok kąta: Q378
 - Liczba zabiegów obróbkowych: Q377
 - Posuw frezowania: Q207
 - Rodzaj frezowania: Q351. współbieżne: +1, przeciwbieżne: -1
 - Głębokość: odległość powierzchnia przedmiotu dno rowka: Q201
 - Głębokość wejścia w materiał: Q202
 - Naddatek na obróbkę wykańczającą dna: Q369
 - Posuw wcięcia na głębokość: Q206
 - Wcięcie obróbka wykańczająca: Q338
 - Odstęp bezpieczeństwa: Q200
 - Współ. powierzchni obrabianego przedmiotu: Q203
 - 2. Odstęp bezpieczeństwa: Q204
 - Strategia wejścia w materiał: Q366. 0 = zagłębienie prostopadłe, 1 = zagłębienie po linii śrubowej
 - Posuw obróbki wykańczającej: Q385

CZOP PROSTOKATNY (cykl 256)

- CYCL DEF: cykl 256 CZOP PROSTOKąTNY wybrać
 - 1. Długość boku: Q218
 - Wymiar półwyrobu 1: Q424
 - 2. Długość boku: Q219
 - Wymiar półwyrobu 2: Q425
 - Promień naroża: Q220
 - Naddatek na obróbkę wykańczającą boku: Q368
 - Kąt obrotu: Q224
 - Położenie czopu: Q367
 - Posuw frezowania: Q207
 - Rodzaj frezowania: Q351. współbieżne: +1, przeciwbieżne: -1
 - Głębokość: odległość powierzchnia przedmiotu podstawa czopu: Q201
 - Głębokość wejścia w materiał: Q202
 - Posuw wcięcia na głębokość: Q206
 - Odstęp bezpieczeństwa: Q200
 - Współ. powierzchni obrabianego przedmiotu: Q203
 - 2. Odstęp bezpieczeństwa: Q204
 - Współczynnik nakładania się torów: Q370

CZOP OKRAGŁY (cykl 257)

- CYCL DEF: cykl 257 CZOP OKRąGłY wybrać
 - Srednica części gotowej: Q223
 - Srednica półwyrobu: Q222
 - Naddatek na obróbkę wykańczającą boku: Q368
 - Posuw frezowania: Q207
 - Rodzaj frezowania: Q351. współbieżne: +1, przeciwbieżne: -1
 - Głębokość: odległość powierzchnia przedmiotu podstawa czopu: Q201
 - Głębokość wejścia w materiał: Q202
 - Posuw wcięcia na głębokość: Q206
 - Odstęp bezpieczeństwa: Q200
 - Współ. powierzchni obrabianego przedmiotu: Q203
 - 2. Odstęp bezpieczeństwa: Q204
 - Współczynnik nakładania się torów: Q370

Kieszenie, czopy i rowki wpustowe

Wzory punktowe

Przegląd

Znajdujące się do dyspozycji cykle		Strona
220	WZORY PUNKTOWE NA OKREGU	70
221	WZORY PUNKTOWE NA LINIACH	71

WZORY PUNKTOWE NA OKRĘGU (cykl 220)

- CYCL DEF: cykl 220 WZORY PUNKTOWE NA OKREGU wybrać
 Srodek 1. osi: Q216
 - Srodek 2. osi: Q217
 - Srednica wycinka koła: Q244
 - Kąt startu: Q245
 - Kąt końcowy: Q246
 - Krok kąta: Q247
 - Liczba zabiegów obróbkowych: Q241
 - Odstęp bezpieczeństwa: Q200
 - Współ. powierzchni obrabianego przedmiotu: Q203
 - 2. Odstęp bezpieczeństwa: Q204
 - Przejazd na bezpieczną wysokość: Q301
 - Rodzaj przemieszczenia: Q365

Z cyklem 220 można kombinować następujące cykle: 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 240, 251, 252, 253, 254, 256, 257, 262, 263, 264, 265, 267.

ᇞ

WZORY PUNKTOWE NA LINIACH (cykl 221)

- CYCL DEF: cykl 221 WZORY PUNKTOWE NA LINIACH wybrać
 - Punkt startu 1. osi: Q225
 - Punkt startu 2. osi: Q226
 - Odległość 1.osi: Q237
 - Odległość 2.osi: Q238
 - Liczba kolumn: Q242
 - Liczba wierszy: Q243
 - Kąt obrotu: Q224
 - Odstęp bezpieczeństwa: Q200
 - Współ. powierzchni obrabianego przedmiotu: Q203
 - 2. Odstęp bezpieczeństwa: Q204
 - Przejazd na bezpieczną wysokość: Q301

- Cykl 221 WZORY PUNKTOWE NA LINIACH działa od jego definicji!
- Cykl 221 wywołuje automatycznie ostatnio zdefinowany cykl obróbki!
- Z cyklem 221 można kombinować następujące cykle: 1, 2, 3, 4, 5, 17, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 240, 251, 252, 253, 256, 257, 262, 263, 264, 265, 267
- Odstęp bezpieczeństwa, współrz. powierzchni obrabianego przedmiotu i 2. odstęp bezpieczeństwa działają zawsze z cyklu 221!

TNC pozycjonuje narzędzie w osi narzędzia i na płaszczyźnie obróbki automatycznie.

SL-cykle

Przegląd

Znajo	lujące się do dyspozycji cykle	Strona
14	KONTUR	74
20	DANE KONTURU	75
21	WIERCENIE WSTEPNE	76
22	ROZWIERCANIE	76
23	OBROBKA NA GOTOWO NA DNIE	77
24	OBROBKA NA GOTOWO Z BOKU	77
25	LINIA KONTURU	78
27	POW.BOCZNA CYLINDRA	79
28	POW.BOCZNA CYLINDRA ROWEK	80
29	POW.BOCZNA CYLINDRA MOSTEK	81
39	POW.BOCZNA CYLINDRA KONTUR	82

SL-cykle

Informacje ogólne

SL-cykle są zalecane, jeśli kontury zestawiane są z kilku podkonturów (maksymalnie 12 wysepek lub kieszeni).

Podkontury są defniowane w podprogramach.

W przypadku podkonturów należy uwzględnić:

- W przypadku kieszeni kontur zostaje obrabiany wewnątrz, w przypadku wysepki na zewnątrz!
- Przemieszczenia najazdu i odsuwu jak i wcięcia w materiał na osi narzędzia nie mogą być programowane!
- W cyklu 14 KONTUR przedstawione podkontury muszą tworzyć zamknięte kontury!
- Pamięć dla SL-cyklu jest ograniczona. Dlatego też w jednym SL-cyklu można zaprogramować np. maksymalnie 2048 wierszy prostych.

Kontur dla cyklu 25 LINIA KONTURU nie może być konturem zamkniętym!

Przed przebiegiem programu należy przeprowadzić symulację graficzną. Pokazuje ona, czy kontury zostały poprawnie zdefiniowane!

KONTUR (cykl 14)

W cyklu **14 KONTUR** zostają przedstawione podprogramy, które zostaną zestawione w jeden zamknięty kontur.

CYCL DEF: cykl 14 KONTUR wybrać

Numery etykiet dla konturu: LABEL-numery tych podprogramów wyświetlić; które zostały zestawione w jeden zamknięty kontur.

Cykl 14 KONTUR działa od swojej definicji!

4 CYCL DEF 14.0 KONTUR	
5 CYCL DEF 14.1 LABEL KONTURU 1/2/3	
36 L Z+200 R0 FMAX M2	
37 LBL1	
38 L X+0 Y+10 RR	
39 L X+20 Y+10	
40 CC X+50 Y+50	
45 LBL0	
46 LBL2	

i

DANE KONTURU (cykl 20)

W cyklu **20 DANE KONTURU** zostają określone informacje dotyczące obróbki dla cykli 21 do 24.

- CYCL DEF: cykl 20 DANE KONTURU wybrać
 - Głębokość frezowania: odległość powierzchnia przedmiotu dno kieszeni: Q1
 - Współczynnik nakładania się torów: Q2
 - Naddatek na obróbkę wykańczającą boku: Q3
 - naddatek na obróbkę wykańczającą dna Q4
 - Współ. powierzchni obrabianego przedmiotu: absolutne współrzędne powierzchni przedmiotu odniesione do aktualnego punktu zerowego: Q5
 - Odstęp bezpieczeństwa: odległość narzędzie powierzchnia obrabianego przedmiotu: Q6
 - Bezpieczna wysokość: wysokość, na której nie może dojść do kolizji z obrabianym przedmiotem: Q7
 - Promień wewnętrznego zaokrąglenia: promień zaokrąglenia toru punktu środkowego narzędzia na narożach wewnętrznych: Q8
 - Kierunek obrotu: Q9: zgodnie z kierunkiem wskazówek zegara Q9 = -1, w kierunku przeciwnym do wskazówek zegara Q9 = +1

Cykl 20 DANE KONTURU działa od jego definicji!

sL-cykle

WIERCENIE WSTĘPNE (cykl 21)

- CYCL DEF: cykl 21 WIERCENIE WSTEPNE wybrać
 - Głębokość wcięcia: Q10 inkrementalnie
 - Posuw wcięcia na głębokość: Q11
 - Numer rozwiertaka: Q13

ROZWIERCANIE (cykl 22)

Rozwiercanie następuje równolegle do konturu dla każdej głębokości dosuwu.

- CYCL DEF: cykl 22 ROZWIERCANIE wybrać
 Głębokość wejścia w materiał: Q10
 - Posuw wcięcia na głębokość: Q11
 - Posuw rozwiercania: Q12
 - Numer rozwiertaka zgrubnego: Q18
 - Posuw ruchem wahadłowym: Q19
 - Posuw powrotu: Q208
 - Współczynnik posuwu w %: redukowanie posuwu, jeśli narzędzie wchodzi całkowicie w materiał: Q401
 - Strategia rozwiercania na gotowo: określić, jak TNC ma przemieszczać się przy rozwiercaniu na gotowo: Q404

OBRÓBKA NA GOT.DNA (cykl 23)

Obrabiana płaszczyzna zostaje obrabiana na gotowo o wymiar naddatku na obróbkę wykańczającą dna równolegle do konturu.

- CYCL DEF: cykl 23 OBROBKA NA GOTOWO DNA wybrać
 - Posuw wcięcia na głębokość: Q11
 - Posuw rozwiercania: Q12
 - Posuw powrotu: Q208

哟

cykl 22 ROZWIERCANIE wywołać przed cyklem 23!

FREZOW.NA GOT. POWIERZCHNI BOCZNYCH (cykl 24)

Obróbka na gotowo pojedyńczych podkonturów.

- CYCL DEF: cykl 24 OBROBKA NA GOTOWO BOKU wybrać
 - Kierunek obrotu: Q9. zgodnie z ruchem wskazówek zegara Q9 = -1, w kierunku przeciwnym do ruchu wskazówek zegara Q9 = +1
 - Głębokość wejścia w materiał: Q10
 - Posuw wcięcia na głębokość: Q11
 - Posuw rozwiercania: Q12
 - Naddatek na obróbkę wykańczającą boku: Q14: naddatek dla wielokrotnej obróbki wykańczającej

cykl 22 ROZWIERCANIE wywołać przed cyklem 24!

SL-cykle

LINIA KONTURU- (cykl 25)

Przy pomocy tego cyklu zostają określone dane dla obróbki otwartego konturu, które zdefiniowane są w podprogramie konturu.

- CYCL DEF: cykl 25 LINIA KONTURU wybrać
 - Głębokość frezowania: Q1
 - Naddatek na obróbkę wykańczającą boku: Q3. naddatek na obróbkę wykańczającą na płaszczyźnie obróbki
 - Współ. powierzchni obrabianego przedmiotu: Q5. Współrzędna powierzchni obrabianego przedmiotu
 - Bezpieczna wysokość: Q7: wysokość; na której narzędzie i obrabiany przedmiot nie mogą kolidować ze sobą
- Głębokość wejścia w materiał: Q10
- Posuw wcięcia na głębokość: Q11
- Posuw frezowania: Q12
- Rodzaj frezowania: Q15. frezowanie współbieżne: Q15 = +1, frezowanie przeciwbieżne: Q15 = -1, ruchem wahadłowym, kilkoma wcięciami: Q15 = 0

- Cykl 14 KONTUR może zawierać tylko jeden numer Label!
- Podprogram może zawierać ok.2048 odcinków prostych!
- Po wywołaniu cyklu nie programować wymiarów łańcuchowych, niebezpieczeństwo kolizji.
- Po wywołaniu cyklu najechać zdefiniowaną absolutną pozycję.

POW.BOCZNA CYLINDRA (cykl 27, opcja sofware 1)

Maszyna i TNC muszą być przygotowane przez producenta maszyn dla cyklu **27 POW.BOCZNA CYLINDRA** !

Przy pomocy cyklu **27 POW.BOCZNA CYLINDRA** można przenieść zdefiniowany uprzednio na rozwinięciu kontur na powierzchnię boczną cylindra.

- Zdefiniować kontur w podprogramie i poprzez cykl 14 KONTUR ustalić
- CYCL DEF: cykl 27 POW.BOCZNA CYLINDRA wybrać
 - Głębokość frezowania: Q1
 - Naddatek na obróbkę wykańczającą boku: Q3
 - Odstęp bezpieczeństwa: Q6. Odstęp pomiędzy narzędziem i powierzchnią obrabianego przedmiotu
 - Głębokość wejścia w materiał: Q10
 - Posuw wcięcia na głębokość: Q11
 - Posuw frezowania: Q12
 - Promień cylindra: Q16. promień cylindra
 - Rodzaj wymiarowania: Q17. stopnie = 0, mm/cale = 1

- Obrabiany przedmiot musi zostać zamocowany centrycznie!
- Oś narzędzia musi leżeć prostopadle do osi stołu obrotowego!
- Cykl 14 KONTUR może zawierać tylko jeden numer Label!
- Podprogram może zawierać ok.1024 odcinków prostych!

POW.BOCZNA CYLINDRA (cykl 28, opcja sofware 1)

ΓŢ,	1
	T

Maszyna i TNC muszą być przygotowane przez producenta maszyn dla cyklu **28 POW.BOCZNA CYLINDRA** !

Przy pomocy cyklu **28 POW.BOCZNA CYLINDRA** można przenieść zdefiniowany uprzednio na rozwinięciu rowek bez zniekształceń ścianek bocznych na powierzchni bocznej cylindra.

- Zdefiniować kontur w podprogramie i poprzez cykl 14 KONTUR ustalić
- CYCL DEF: cykl 28 POW.BOCZNA CYLINDRA wybrać
 - Głębokość frezowania: Q1
- Naddatek na obróbkę wykańczającą boku: Q3
- Odstęp bezpieczeństwa: Q6. Odstęp pomiędzy narzędziem i powierzchnią obrabianego przedmiotu
- Głębokość wejścia w materiał: Q10
- Posuw wcięcia na głębokość: Q11
- Posuw frezowania: Q12
- Promień cylindra: Q16. promień cylindra
- Rodzaj wymiarowania: Q17. stopnie = 0, mm/cale = 1
- Szerokość rowka: Q20
- Tolerancja: Q21
- 呐
- Obrabiany przedmiot musi zostać zamocowany centrycznie!
- Oś narzędzia musi leżeć prostopadle do osi stołu obrotowego!
- Cykl 14 KONTUR może zawierać tylko jeden numer Label!
- Podprogram może zawierać ok.2048 odcinków prostych!

POW.BOCZNA CYLINDRA (cykl 29, opcja sofware 1)

	ĥ	
Г		Γ

Maszyna i TNC muszą być przygotowane przez producenta maszyn dla cyklu **29 POW.BOCZNA CYLINDRA** !

Przy pomocy cyklu **29 POW.BOCZNA CYLINDRA** można przenieść zdefiniowany uprzednio na rozwinięciu mostek bez zniekształceń ścianek bocznych na powierzchni bocznej cylindra.

- Zdefiniować kontur w podprogramie i poprzez cykl 14 KONTUR ustalić
- CYCL DEF: cykl 29 POW.BOCZNA CYLINDRA MOSTEK wybrać
 - Głębokość frezowania: Q1
 - Naddatek na obróbkę wykańczającą boku: Q3
 - Odstęp bezpieczeństwa: Q6. Odstęp pomiędzy narzędziem i powierzchnią obrabianego przedmiotu
 - Głębokość wejścia w materiał: Q10
 - Posuw wcięcia na głębokość: Q11
 - Posuw rozwiercania: Q12
 - Promień cylindra: Q16. promień cylindra
 - Rodzaj wymiarowania: Q17. stopnie = 0, mm/cale = 1
 - Szerokość mostka: Q20

- Obrabiany przedmiot musi zostać zamocowany centrycznie!
- Oś narzędzia musi leżeć prostopadle do osi stołu obrotowego!
- Cykl **14 KONTUR** może zawierać tylko jeden numer Label!
- Podprogram może zawierać ok.2048 odcinków prostych!

POW.BOCZNA CYLINDRA (cykl 39, opcja sofware 1)

Maszyna i TNC muszą być przygotowane przez producenta do realizowania cyklu **39 OSŁONA CYLINDRA KONTUR**!

Przy pomocy cyklu **39 POW.BOCZNA CYLINDRA KONTUR** można przenieść zdefiniowany uprzednio na rozwinięciu otwarty kontur na powierzchnię boczną cylindra.

- Zdefiniować kontur w podprogramie i poprzez cykl 14 KONTUR ustalić
- CYCL DEF: cykl 39 POW.BOCZNA CYLINDRA KONTUR wybrać
 - Głębokość frezowania: Q1
- Naddatek na obróbkę wykańczającą boku: Q3
- Odstęp bezpieczeństwa: Q6. Odstęp pomiędzy narzędziem i powierzchnią obrabianego przedmiotu
- Głębokość wejścia w materiał: Q10
- Posuw wcięcia na głębokość: Q11
- Posuw frezowania: Q12
- Promień cylindra: Q16. promień cylindra
- Rodzaj wymiarowania: Q17. stopnie = 0, mm/cale = 1

- Obrabiany przedmiot musi zostać zamocowany centrycznie!
- Oś narzędzia musi leżeć prostopadle do osi stołu obrotowego!
- Cykl 14 KONTUR może zawierać tylko jeden numer Label!
- Podprogram może zawierać ok.2048 odcinków prostych!

Cykle dla frezowania metodą wierszowania

Przegląd

Znajdujące się do dyspozycji cykle		Strona
30	3D-DANE ODPRACOWYWAC	83
230	FREZOWANIE METODA WIERSZOWANIA	84
231	POWIERZCHNIA REGULACJI	85
232	FREZOWANIE PŁASZCZYZN	86

3D-DANE ODPRACOWAC (cykl 14)

Cykle ten wymaga freza z zębem czołowym tnącym przez środek (DIN 844)!

CYCL DEF: cykl 30 3D-DANE ODPRACOWAC wybrać

- PGM-nazwa dane ocyfrowywania
- MIN-Punkt obszar
- MAX-punkt obszaru
- Odstęp bezpieczeństwa: 1
- Głębokość wcięcia: 2
- Posuw wcięcia w materiał: 3
- Posuw: 4
- Funkcja dodatkowa M.

FREZOWANIE METODĄ WIERSZOWANIA (cykl 230)

TNC pozycjonuje narzędzie - wychodząc z aktualnej pozycji - najpierw na płaszczyźnie obróbki i następnie w osi wrzeciona do punktu startu. Tak wypozycjonować narzędzie, aby nie mogło dojść do kolizji z przedmiotem lub mocowadłami!

- CYCL DEF: cykl 230 WIERSZOWANIE wybrać
- Punkt startu 1. osi: Q225
- Punkt startu 2. osi: Q226
- Punkt startu 3. osi: Q227
- 1. Długość boku: Q218
- 2. Długość boku: Q219
- Liczba przejść: Q240
- Posuw wcięcia na głębokość: Q206
- Posuw frezowania: Q207
- Posuw poprzecznie: Q209
- Odstęp bezpieczeństwa: Q200

84

POWIERZCHNIA REGULACJI (cykl 231)

TNC pozycjonuje narzędzie - wychodząc z aktualnej pozycji - najpierw na płaszczyźnie obróbki i następnie w osi narzędzia do punktu startu (punkt 1). Tak wypozycjonować narzędzie, aby nie mogło dojść do kolizji z przedmiotem lub mocowadłami!

- CYCL DEF: cykl 231 POW.PROSTOKRESLNA wybrać
 - Punkt startu 1. osi: Q225
 - Punkt startu 2. osi: Q226
 - Punkt startu 3. osi: Q227
 - 2. Punkt 1. osi: Q228
 - 2. Punkt 2. osi: Q229
 - 2. Punkt 3. osi: Q230
 - 3. Punkt 1. osi: Q232
 - ▶ 3. Punkt 2. osi: Q232
 - 3. Punkt 3. osi: Q233
 - 4. Punkt 1. osi: Q234
 - 4. Punkt 2. osi: Q235
 - 4. Punkt 3. osi: Q236
 - Liczba przejść: Q240
 - Posuw frezowania: Q207

i

FREZOWANIE PŁASZCZYZN (cykl 232)

2. Tak zapisać odstęp bezpieczeństwa Q204, aby nie mogło dojść do kolizji z przedmiotem lub mocowadłami!

- CYCL DEF: cykl 232 PLANOWANIE wybrać
 - Strategia obróbki: Q389
 - Punkt startu 1. osi: Q225
- Punkt startu 2. osi: Q226
- Punkt startu 3.osi: Q227
- Punkt końcowy 3. osi: Q386
- 1. Długość boku: Q218
- 2. Długość boku: Q219
- Maksymalna głębokość wcięcia: Q202
- Naddatek na obróbkę wykańczającą dna: Q369
- Maks.współczynnik nakładania się torów: Q370
- Posuw frezowania: Q207
- Posuw obróbki wykańczającej: Q385
- Posuw pozycjonowania wstępnego: Q253
- Odstęp bezpieczeństwa: Q200
- Odstęp bezpieczeństwa z boku: Q357
- 2. bezpieczna wysokość: Q204

Cykle dla przeliczania współrzędnych

Przegląd

Przy pomocy cykli dla przeliczania współrzędnych można przesuwać kontury, dokonywać odbicia lustrzanego, obracać kontury (na płaszczyźnie), nachylać (z płaszczyzny) zmniejszać i powiększać.

Znajd	ujące się do dyspozycji cykle	Strona
7	PUNKT ZEROWY	88
247	WYZNACZANIE PUNKTU ODNIESIENIA	89
8	ODBICIE LUSTRZANE	90
10	OBROT	91
11	WSPOŁCZYNNIK WYMIAROWY	92
26	WSPÓŁCZYNNIK WYMIAROWY SPECYFICZNY DLA DANEJ OSI (POOSIOWY)	93
19	PŁASZCZYZNA OBROBKI (opcja software)	94

Cykle dla przeliczania współrzędnych działają tak długo po ich definicji; aż zostaną wycofane lub na nowo zdefiniowane. Pierwotny kontur powinien zostać określony w podprogramie. Zapisywane wartości mogą zostać podawane absolutnie jak i również przyrostowo.

PRZESUNIECIE PUNKTU ZEROWEGO (cykl 7)

CYCL DEF: cykl 7 PRZESUNIECIE PUNKTU ZEROWEGO wybrać

Zapisać współrzędne nowego punktu zerowego lub numer punktu zerowego z tabeli punktów zerowych

Zresetować przesunięcie punktu zerowego: ponowna definicja cyklu z wartościami wprowadzenia 0.

13 CYCL	DEF 7.0	PUNKT	ZEROWY

14 CYCL DEF 7.1 X+60

16 CYCL DEF 7.3 Z-5

15 CYCL DEF 7.2 Y+40

Przeprowadzić przesunięcie punktu zerowego przed dalszymi przeliczaniami współrzędnych!

Ť

Cykle dla przeliczania współrzędnych

WYZNACZANIE PUNKTU ODNIESIENIA (cykl 247)

CYCL DEF: cykl 247 USTALIC PUNKT BAZOWY wybrać

Numer dla punktu odniesienia: Q339. Numer aktywnego punktu odniesienia z tabeli preset zapisać

13 CYCL DEF 247 USTALIĆ PUNKT BAZOWY

Q339=4 ;NUMER PUNKTU BAZOWEGO

Przy aktywowaniu punktu odniesienia z tabeli preset, TNC wycofuje wszystkie aktywne przeliczenia współrzędnych, aktywowane przy pomocy następujących cykli:

- Cykl 7, przesunięcie punktu zerowego
- Cykl 8, odbicie lustrzane
- Cykl 10, obrót
- Cykl 11, współczynnik wymiarowy
- Cykl 26, współczynnik wymiarowy specyficzny dla osi

Przeliczenie współrzędnych z cyklu 19, nachylenie płaszczyzny obróbki pozostaje nadal aktywne.

Jeśli aktywujemy numer preset 0 (wiersz 0), to aktywujemy tym samym punkt odniesienia, który ostatnio został wyznaczony w trybie obsługi ręcznej manualnie.

W trybie pracy PGM-Test cykl 247 nie działa.

ODBICIE LUSTRZANE (cykl 8)

CYCL DEF: cykl 8 ODBICIE LUSTRZANE wybrać

Zapisać odbijaną oś: X lub Y albo X i Y

Resetowanie ODBICIA LUSTRZANEGO: ponowne zdefiniowanie cyklu z wprowadzeniem NO ENT.

15 CALL LBL1

16 CYCL DEF 7.0 PUNKT ZEROWY

17 CYCL DEF 7.1 X+60

18 CYCL DEF 7.2 Y+40

19 CYCL DEF 8.0 ODBICIE LUSTRZANE

20 CYCL DEF 8.1 Y

21 CALL LBL1

Ζ

Oś narzędzia nie może zostać odbijana!

Cykl odbija zawsze oryginalny kontur (tu na przykład zapisany w podprogramie LBL 1)!

Cykle dla przeliczania współrzędnych

OBRÓT (cykl 10)

CYCL DEF: cykl 10 OBROT wybrać

 Zapisać kąt obrotu: Zakres wprowadzenia -360° do +360°
 Oś odniesienia dla kąta obrotu

Płaszczyzna robocza	Oś bazowa i 0°-kierunek
X/Y	Х
Y/Z	Y
Z/X	Z

Zresetować OBROT: ponowna definicja cyklu z wartościami wprowadzenia 0.

12 CALL LBL1

- **13 CYCL DEF 7.0 PUNKT ZEROWY**
- 14 CYCL DEF 7.1 X+60

15 CYCL DEF 7.2 Y+40

16 CYCL DEF 10.0 OBROT

17 CYCL DEF 10.1 ROT+35

18 CALL LBL1

Cykle dla przeliczania współrzędnych

i

WSPÓŁCZYNNIK WYMIAROWY (cykl 11)

CYCL DEF: cykl 11 WSPOŁCZ. SKALOWANIA wybrać

Współczynnik skalowania SCL (angl: scale = skala) zapisać: Zakres wprowadzenia 0.000001 bis 99,999999 Zmniejszyć.... SCL<1

Powiększyć.... SCL>1

Zresetować WSPOŁCZYNNIK SKALOWANIA: ponowna definicja cyklu z SCL1.

11 CALL LBL1

12 CYCL DEF 7.0 PUNKT ZEROWY

13 CYCL DEF 7.1 X+60

14 CYCL DEF 7.2 Y+40

15 CYCL DEF 11.0 WSPOŁCZ. SKALOWANIA

16 CYCL DEF 11.1 SCL 0.75

17 CALL LBL1

ф,

WSPOŁCZYNNIK WYMIAROWY działa na płaszczyźnie obróbki lub w trzech osiach (w zależności od parametru maszynowego 7410)!

Cykle dla przeliczania współrzędnych

Cykle dla przeliczania współrzędnych

WSPÓŁCZYNNIK WYMIAROWY SPECYFICZNY DLA OSI (cykl 26)

CYCL DEF: cykl 26 WSPOŁCZ. SKALOWANIA OSI wybrać

- Osie i współczynnik: osie współrzędnych i współczynniki specyficznego dla osi wydłużenia lub skrócenia
- Współrzędne centrum: centrum specyficznego dla osi wydłużenia lub spiętrzenia

Zresetowanie WSPOŁCZ. SKALOWANIA OSI: ponowna definicja cyklu ze współczynnikiem 1 dla zmienionych osi.

吵

Osie współrzędnych z pozycjami dla torów kołowych nie wolno wydłużać lub skrócać przy pomocy różnych co do wartości współczynników!

25 CALL LBL1

26 CYCL DEF 26.0 WSPOŁCZ. SKALOWANIA OSI

27 CYCL DEF 26.1 X 1.4 Y 0.6 CCX+15 CCY+20

28 CALL LBL1

PŁASZCZYZNA OBROBKI (cykl 19, opcja software)

Maszyna i TNC muszą być przygotowane przez producenta maszyn dla nachylenia PŁASZCZYZNY OBROBKI.

Cykl **19 PŁASZCZYZNA OBROBKI** wspomaga pracę z głowicami obrotowymi i stołami nachylnymi.

- Wywołanie narzędzia
- Swobodne przemieszczenie narzędzia na osi narzędzi (zapobiega kolizji)
- W razie potrzeby pozycjonować osie obrotu przy pomocy L-wiersza pod żądanym kątem
- CYCL DEF: cykl 19 PŁASZCZYZNA OBROBKI wybrać
 - Zapisać kąt nachylenia odpowiedniej osi lub kąt przestrzenny
 - W razie konieczności zapisać posuw osi obrotu przy automatycznym pozycjonowaniu
 - W razie konieczności zapisać odstęp bezpieczeństwa
- Aktywowanie korekcji: przemieścić wszystkie osie

Zaprogramować obróbkę, tak jakby płaszczyzna nie była nachylona Zresetować cykl PŁASZCZYZNE OBROBKI nachylić: ponowna definicja cyklu z kątem nachylenia 0.

4 TOOL CALL 1 Z S2500 5 L Z+350 R0 FMAX 6 L B+10 C+90 R0 FMAX 7 CYCL DEF 19.0 PŁASZCZYZNA OBROBKI 8 CYCL DEF 19.1 B+10 C+90 F1000 ODST 50

Cykle specjalne

Przegląd

Znajdujące się do dyspozycji cykle		Strona
9	CZAS PRZERWANIA	96
12	PGM CALL	96
13	ORIENTACJA	97
32	TOLERANCJA	98

i

CZAS PRZERWY (cykl 9)

Przebieg programu zostaje na okres CZASU ZATRZYMANIA zatrzymany.

- CYCL DEF: cykl 9 CZAS PRZERWY wybrać
 - Wprowadzić czas przerwy w sekundach

48 CYCL DEF 9.0 CZAS PRZERWY

49 CYCL DEF 9.1 CZ.PRZER 0.5

PGM CALL (cykl 12)

- CYCL DEF: cykl 12 PGM CALL wybrać
 Wprowadzić pazwo wawohawapago prog
 - Wprowadzić nazwę wywoływanego programu

Cykl 12 PGM CALL musi zostać wywołany!

7 CYCL DEF 12.0 PGM CALL

8 CYCL DEF 12.1 LOT31

9 L X+37.5 Y-12 R0 FMAX M99

i

ORIENTACJA wrzeciona (cykl 13)

Maszyna i TNC muszą być przygotowane przez producenta maszyn dla cyklu ORIENTACJA wrzeciona!

- CYCL DEF: cykl 13 ORIENTACJA wybrać
 - Zapisać kąt orientacji w odniesieniu do osi bazowej kąta płaszczyzny roboczej:

Zakres wprowadzenia 0 do 360° Dokładność wprowadzenia 0,1°

Wywołać cykl przy pomocy M19 lub M20

12 CYCL DEF 13.0 ORIENTACJA

13 CYCL DEF 13.1 KaT 90

TOLERANCJA (cykl 32)

Maszyna i TNC muszą zostać przygotowane przez producenta maszyn dla szybkiego frezowania konturu!

Cykle specjalne

Cykl 32 TOLERANCJA działa od swojej definicji!

TNC wygładza automatycznie kontur pomiędzy dowolnymi (nieskorygowanymi lub skorygowanymi) elementami konturu. Dlatego też narządzie przemieszcza się nieprzerwanie na powierzchni obrabianego przedmiotu. Jeśli to konieczne, TNC redukuje zaprogramowany posuw automatycznie, tak że program zostaje zawsze wykonywany bez "szarpnięć" i z **największą możliwą** prędkością.

Poprzez wygładzanie powstaje odchylenie od konturu. Wielkość odchylenia od konturu (WARTOSC TOLERANCJI) określona jest w parametrze maszynowym przez producenta maszyn. Przy pomocy cyklu 32 zmienia się nastawioną z góry wartość tolerancji (patrz rysunek z prawej u góry).

- CYCL DEF: cykl 32 TOLERANCJA wybrać
 - Tolerancja T: dopuszczalne odchylenie od konturu w mm
 - Obróbka wykańczająca/obróbka zgrubna: (opcja software) wybrać nastawienie filtra
 - 0: frezowanie konturu z większą dokładnością
 - 1: frezowanie z większym posuwem
 - Tolerancja dla osi obrotu: (opcja software) Dopuszczalne odchylenia od osi obrotu w stopniach przy aktywnym M128

Funkcja PLANE (software opcja 1)

Przegląd

P	

Maszyna i TNC muszą być przygotowane przez producenta maszyn dla nachylenia przy pomocy **PLANE**-funkcji.

Przy pomocy **PLANE**-funkcji (angl. plane = płaszczyzna), bardzo wydajnej funkcji, operator może w różny sposób definiować nachylone płaszczyzny obróbki.

Wszystkie znajdujące się w dyspozycji **PLANE**-funkcje opisują wymagane płaszczyzny obróbki niezależnie od osi obrotu, znajdujące się rzeczywiście na maszynie. Następujące możliwości znajdują się do dyspozycji:

Znajdujące się do dyspozycji definicje płaszczyzn	Strona
Definicja kąta przestrzennego	100
Definicja kąta projekcyjnego	101
Definicja kąta Eulera	102
Definicja wektora	103
Definicja punktów	104
Przyrostowy kąt przestrzenny	105
Kąt pochylenia osi	106
Resetowanie definicji płaszczyzn	107

Definicja kąta przestrzennego (PLANE SPATIAL)

- SPECJALNE FUNKCJE TNC wybrać
- NACHYLENIE PŁ.OBROBKI, PLANE SPATIAL wybrać
 - Kąt przestrzenny A?: kąt obrotu SPA wokół stałej osi maszyny X (patrz ilustracja po prawej u góry)
 - Kąt przestrzenny B?: kąt obrotu SPB wokół stałej osi maszyny Y (patrz ilustracja po prawej u góry)
 - Kąt przestrzenny C?: kąt obrotu SPC wokół stałej osi maszyny Z (patrz ilustracja po prawej u dołu)
 - Dalej przy pomocy właściwości pozycjonowania (patrz "Automatyczne inicjalizowanie (MOVE/STAY/TURN)" na stronie 108)

5 PLANE SPATIAL SPA+27 SPB+0 SPC+45 MOVE ABST10 F50 0 SEQ-

Proszę uwzględnić przed programowaniem

Należy zawsze definiować wszystkie trzy kąty przestrzenne **SPA**, **SPB** i **SPC** , nawet jeśli jeden z kątów jest równy 0.

Opisana uprzednio kolejność obrotów obowiązuje niezależnie od aktywnej osi narzędzia.

Definicja kąta projekcji (PLANE PROJECTED)

- SPECJALNE FUNKCJE TNC wybrać
- NACHYLENIE PŁ.OBROBKI, PLANE PROJECTED wybrać
 - Kąt projek. 1. płaszczyzny współrzędnych?: kąt projekcji nachylonej płaszczyzny obróbki na 1. płaszczyznę współrzędnych stałego układu współrzędnych maszyny (patrz ilustracja z prawej u góry)
 - Kąt projek. 2. płaszczyzny współrzędnych?: kąt projekcji na 2. płaszczyznę współrzędnych stałego układu współrzędnych maszyny (patrz ilustracja z prawej u góry)
 - ROT-kąt nachylonej płaszcz.?: obrót nachylonego układu współrzędnych wokół nachylonej osi narzędzia (odpowiada treściowo rotacji przy pomocy cyklu 10 OBROT; patrz ilustracja po prawej u dołu)
 - Dalej przy pomocy właściwości pozycjonowania (patrz "Automatyczne inicjalizowanie (MOVE/STAY/TURN)" na stronie 108)

5 PLANE PROJECTED PROPR+24 PROMIN+24 PROROT+30 MO VE ABST10 F500

Proszę uwzględnić przed programowaniem

Kąt projekcyjny może zostać używany tylko wówczas, jeśli ma zostać obrabiany prostokątny prostopadłościan. W przeciwnym razie powstaną zniekształcenia na obrabianym przedmiocie.

101

Definicja kątów Eulera (PLANE EULER)

- SPECJALNE FUNKCJE TNC wybrać
- NACHYLENIE PŁ.OBROBKI, PLANE EULER wybrać
- Kąt obr. Główna płaszczyzna współrzędnych?: kąt obrotu EULPR wokół osi Z-(patrz ilustracja po prawej u góry)
- Kąt nachylenia osi narzędzia?: kąt nachylenia EULNUT układu współrzędnych wokół obróconej przez kąt precesji osi X-(patrz ilustracja po prawej u dołu)
- ROT-kąt nachylonej płaszcz.?: obrót EULROT obrót nachylonego układu współrzędnych wokół nachylonej osi Z (odpowiada treściowo rotacji przy pomocy cyklu 10 OBROT). Przy pomocy kąta rotacji można w prosty sposób określić kierunek osi X-na nachylonej płaszczyźnie obróbki
- Dalej przy pomocy właściwości pozycjonowania (patrz "Automatyczne inicjalizowanie (MOVE/STAY/TURN)" na stronie 108)

5 PLANE EULER EULPR+45 EULNU20 EULROT22 MOVE ABST 10 F500

Proszę uwzględnić przed programowaniem

Kolejność obrotów obowiązuje niezależnie od aktywnej osi narzędzia.

Definicja wektora (PLANE VECTOR)

- SPECJALNE FUNKCJE TNC wybrać
- NACHYLENIE PŁ.OBROBKI, PLANE VECTOR wybrać
 - X-komponent wektora bazowego?: X-komponent BX wektora bazowego B (patrz ilustracja po prawej u góry)
 - Y-komponent wektora bazowego?: Y-komponent BY wektora bazowego B (patrz ilustracja po prawej u góry)
 - Z-komponent wektora bazowego?: Z-komponent BZ wektora bazowego B (patrz ilustracja po prawej u góry)
 - X-komponent wektora normalnego?: X-komponent NX wektora normalnego N (patrz ilustracja po prawej na środku)
 - Y-komponent wektora normalnego?: Y-komponent NY wektora normalnego N (patrz ilustracja po prawej u dołu)
 - Z-komponent wektora normalnego?: Z-komponent NZ wektora normalnego N
 - Dalej przy pomocy właściwości pozycjonowania (patrz "Automatyczne inicjalizowanie (MOVE/STAY/TURN)" na stronie 108)

5 PLANE VECTOR BX0.8 BY-0.4 BZ-0.4472 NX0.2 NY0.2 NZ0.9592 MOVE ABST10 F500

Proszę uwzględnić przed programowaniem

TNC oblicza wewnętrznie z wprowadzonych przez operatora wartości normowane wektory.

103

Definicja punktów (PLANE POINTS)

SPECJALNE FUNKCJE TNC wybrać

- NACHYLENIE PŁ.OBROBKI, PLANE POINTS wybrać
 - X-współrzędna 1. punktu płaszczyzny?: X-współrzędna P1X
 - Y-współrzędna 1. punktu płaszczyzny?: Y-współrzędna P1Y
 - Z-współrzędna 1. punktu płaszczyzny?: Z-współrzędna P1Z
- X-współrzędna 2. punktu płaszczyzny?: X-współrzędna P2X
- Y-współrzędna 2. punktu płaszczyzny?: Y-współrzędna P2Y
- Z-współrzędna 2. punktu płaszczyzny?: Z-współrzędna P2Z
- > X-współrzędna 3. punktu płaszczyzny?: X-współrzędna P3X
- > Y-współrzędna 3. punktu płaszczyzny?: Y-współrzędna P3Y
- Z-współrzędna 3. punktu płaszczyzny?: Z-współrzędna P3Z
- Dalej przy pomocy właściwości pozycjonowania (patrz "Automatyczne inicjalizowanie (MOVE/STAY/TURN)" na stronie 108)

5 POINTS P1X+0 P1Y+0 P1Z+20 P2X+30 P2Y+31 P2Z+20 P3X+0 P3Y+41 P3Z+32.5 MOVE ABST10 F500

Proszę uwzględnić przed programowaniem

Połączenie punktu 1 z punktem 2 określa kierunek nachylonej osi głównej (X w przypadku osi narzędzi Z).

Te trzy punkty definiują nachylenie płaszczyzny. Położenie aktywnego punktu zerowego nie zostaje zmienione przez TNC.

Funkcja PLANE (software opcja 1)

Przyrostowy kąt przestrzenny (PLANE RELATIVE)

- SPECJALNE FUNKCJE TNC wybrać
- ▶ NACHYLENIE PŁ.OBROBKI, PLANE RELATIVE wybrać
 - Inkrementalny kąt?: kąt przestrzenny, o który aktywna płaszczyzna obróbki ma zostać dalej nachylona (patrz ilustracja po prawej u góry). Wybrać oś, o którą ma zostać dokonywany obrót poprzez softkey
 - Dalej przy pomocy właściwości pozycjonowania (patrz "Automatyczne inicjalizowanie (MOVE/STAY/TURN)" na stronie 108)

5 PLANE RELATIV SPB-45 MOVE ABST10 F500 SEQ-

Proszę uwzględnić przed programowaniem

Zdefiniowany kąt działa zawsze w odniesieniu do aktywnej płaszczyzny obróbki, bez względu na to, przy pomocy jakiej funkcji została ona aktywowana.

Można zaprogramować dowolnie dużo **PLANE RELATIVE**funkcji jedna po drugiej.

Jeśli chcemy powrócić na płaszczyznę obróbki, która była aktywna przed **PLANE RELATIVE** funkcją, to należy zdefiniować **PLANE RELATIVE** z tym samym kątem, jednakże o przeciwnym znaku liczby.

Jeżeli używamy **PLANE RELATIVE** na nienachylonej płaszczyźnie obróbki, to obracamy nienachyloną płaszczyznę po prostu o zdefiniowany w **PLANE**-funkcji kąt przestrzenny.

Definiowanie kąta pochylenia osi (PLANE AXIAL)

- SPECJALNE FUNKCJE TNC wybrać
- ▶ NACHYLENIE PŁ.OBROBKI, PLANE AXIAL wybrać
 - ► Kąt osi A?: pozycja osi A, na którą ma pozycjonować TNC
- Kąt osi B?: pozycja osi B, na którą ma pozycjonować TNC
- Kąt osi C?: pozycja osi C, na którą ma pozycjonować TNC
- Dalej przy pomocy właściwości pozycjonowania (patrz "Automatyczne inicjalizowanie (MOVE/STAY/TURN)" na stronie 108)

5 PLANE AXIAL B+90 MOVE ABST10 F500 SEQ+

Proszę uwzględnić przed programowaniem

Operator może definiować tylko te osie obrotu, które znajdują się do dyspozycji na obrabiarce.

Resetowanie definicji płaszczyzn (PLANE RESET)

- SPECJALNE FUNKCJE TNC wybrać
- NACHYLENIE PŁ.OBROBKI, PLANE RESET wybrać
 - Dalej przy pomocy właściwości pozycjonowania (patrz "Automatyczne inicjalizowanie (MOVE/STAY/TURN)" na stronie 108)

5 PLANE RESET MOVE ABST10 F500 SEQ-

Proszę uwzględnić przed programowaniem

Funkcja **PLANE RESET** resetuje kompletnie aktywną **PLANE**-funkcję – lub aktywny cykl 19 - (kąt = 0 i funkcja nieaktywna). Wielokrotna definicja nie jest konieczna.

Automatyczne inicjalizowanie (MOVE/STAY/TURN)

Po wprowadzeniu wszystkich parametrów dla zdefiniowania płaszczyzny, należy określić, jak mają zostać przesunięte osie obrotu na obliczone wartości osiowe:

MOVE

STAY

TURN

- Funkcja PLANE ma przesunąć osie obrotu na obliczone wartości osiowe, przy czym położenie względne pomiędzy przedmiotem i narzędziem nie zmienia się. TNC wykonuje przemieszczenie wyrównujące w osiach linearnych
- Funkcja PLANE ma przemieścić osie obrotu automatycznie na obliczone wartości osiowe, przy czym tylko osie obrotu zostają wypozycjonowane. TNC nie wykonuje żadnego przemieszczenia wyrównującego osi linearnych
- Przesuwamy osie obrotu w następnym, oddzielnym bloku pozycjonowania

Jeśli wybrano opcję **MOVE** lub **TURN** (**PLANE**-funkcja ma automatycznie przesunąć), to należy koniecznie zdefiniować dwa następujące parametry:

- Odległość punktu obrotu od ostrza narz. (inkrementalnie): TNC przesuwa narzędzie (stół) wokół ostrza narzędzia. Poprzez wprowadzony parametr ODST przesuwamy punkt obrotu ruchu wysunięcia w odniesieniu do aktualnej pozycji ostrza narzędzia.
- Posuw? F=: prędkość po torze konturu, z którą narzędzie ma zostać wysunięte

Wybór możliwego rozwiązania (SEQ +/-)

Na podstawie zdefiniowanego przez operatora położenia płaszczyzny obróbki TNC musi obliczyć odpowiednie położenie znajdujących się na maszynie osi obrotu. Z reguły pojawiają się zawsze dwie możliwości rozwiązania.

Poprzez przełącznik **SEQ** nastawiamy, którą możliwość rozwiązania TNC zastosować

SEQ+ tak pozycjonuje oś nadrzędną, iż przyjmuje ona kąt dodatni. Oś nadrzędna to 2. oś obrotu wychodząc od stołu i 1. oś obrotu wychodząc od narzędzia (w zależności od konfiguracji maszyny, patrz także ilustracja po prawej u góry)

SEQ- tak pozycjonuje oś nadrzędną, iż przyjmuje ona kąt ujemny Jeżeli wybrane poprzez SEQ rozwiązanie nie leży w obrębie zakresu przemieszczenia maszyny, to TNC wydaje komunikat o błędach kąt nie dozwolony

Wybór rodzaju transformacji

Dla maszyn posiadających stół obrotowy C, znajduje się do dyspozycji funkcja, umożliwiająca określenie rodzaju przekształcenia:

COORD ROT określa, iż funkcja PLANE ma obracać układ współrzędnych na zdefiniowaną wartość kąta nachylenia. Stół obrotowy nie zostaje przemieszczony, kompensacja obrotu następuje obliczeniowo

TABLE ROT określa, iż funkcja PLANE ma pozycjonować stół obrotowy na zdefiniowaną wartość kąta nachylenia. Kompensacja następuje poprzez obrót przedmiotu

Frezowanie nachylonym narzędziem na pochylonej płaszczyźnie

W połączeniu z nowymi **PLANE**-funkcjami i M128 można dokonywać na pochylonej płaszczyźnie obróbki **frezowania nachylonym narzędziem**. Dla tego celu znajdują się dwie możliwości definiowania do dyspozycji:

 frezowanie nachylonym narzędziem poprzez przyrostowe przemieszenie osi obrotu

frezowanie nachylonym narzędziem poprzez wektory normalnej

Frezowanie nachylonym narzędziem na pochylonej płaszczyźnie funkcjonuje tylko przy pomocy frezów kształtowych.

W przypadku 45°-głowic obrotowych/stołów nachylnych, można zdefiniować kąt nachylenia także jako kąt przestrzenny. Dla tego celu znajduje się funkcja **FUNCTION TCPM** do dyspozycji.

Przetwarzanie danych DXF (opcja software)

Pliki DXF utworzone w systemie CAD można otworzyć bezpośrednio w TNC, aby dokonać z nich ekstrakcji konturów lub pozycji obróbkowych i zapisać je do pamięci jako programy z dialogiem tekstem otwartym albo jako pliki punktów.

Uzyskane przy selekcjonowaniu konturów programy z dialogiem tekstem otwartym mogą być odpracowywane także przez starsze modele sterowań TNC, ponieważ programy konturu zawierają tylko L- i CC-/CP-wiersze.

NASTAWIC LAYER REFEREN. OKRESLIC

WYBIERZ

KONTUR

WYBOR

POZYCJI

- DXF-warstwy wyświetlać lub maskować, aby ukazać tylko istotne dane rysunku technicznego
- Punkt zerowy na rysunku technicznym w pliku DXF przesunąć na sensowną pozycję na obrabianym przedmiocie
- Aktywować tryb dla wyboru konturu. Podział, skracanie lub wydłużanie konturów jest możliwe
- Aktywować tryb dla wyboru pozycji obróbki. Przejęcie pozycji kliknięciem na klawisz myszy
- Ponowne anulowanie już wybranych konturów lub pozycji
- Zapis do pamięci wybranych konturów lub pozycji w oddzielnym pliku

Grafiki i wyświetlacze stanu

B

Patrz "Grafiki i wyświetlacze stanu"

Określenie obrabianego przedmiotu w oknie grafiki

Dialog dla BLK-formy pojawia się automatycznie, jeśli zostaje otwarty nowy program.

- Nowy program otworzyć lub w już otwartym programie nacisnąć softkey BLK FORM
 - Oś wrzeciona
 - MIN- i MAX-punkt

Poniżej przegląd niektórych najczęściej używanych funkcji.

Grafika programowania

Wybrać rozplanowanie monitora PROGRAM+GRAFIKA!

Podczas wprowadzenia programu TNC może przedstawić zaprogramowany kontur za pomocą dwuwymiarowej grafiki:

automatyczne rysowanie współbieżnie

START POJ. BLOK

START

manualne uruchomienie grafiki
uruchamianie grafiki wierszami

Grafika testowa i grafika przebiegu programu

Wybrać podział ekranu GRAFIKA lub PROGRAM+GRAFIKA!

W trybie pracy Test programu i w trybach pracy przebiegu programu TNC może symulować graficznie obróbkę. Poprzez softkey wybieralne są następujące perspektywy:

widok z góry

ᇞ

- przedstawienie w 3 płaszczyznach
- 3D-prezentacja
- 3D-prezentacja wysokiej rozdzielczości

Pra rec	ica izna	Test prog	amu				
0 1	BEGIN PGM 17	200 MM Z X-20 Y-32 Z-53		-			M
2	BLK FORM 0.2	IX+40 IY+64 IZ+53					
з	TOOL CALL 61	Z 51000			_		S
4	L X+0 Y+0	RØ F9999					7
5	L Z+1 R0 F9	999 M3					
6	CYCL DEF 5.0	WYBRANIE KOLOWE					I ' ≜↔ 🚽
7	CYCL DEF 5.1	ODSTEP1					<u> </u>
8	CYCL DEF 5.2	GLEBOK-3.6					Python
9	CYCL DEF 5.3	DOSUW4 F4000					Demos
10	CYCL DEF 5.4	PROM.R16.05					DECONOCE
11	CYCL DEF 5.5	F5000 DR-					DIAGNOSIS
12	CYCL CALL						
13	CYCL DEF 5.0	WYBRANIE KOLOWE		Y			Info 1/3
14	CYCL DEF 5.1	ODSTEP1					<u> </u>
_				4096.0	10 * T	0:00:37	
ſ		╡╫ I° I		STOP W	START	START POJ. BLOK	RESET +

Wskazania stanu

(ĮI	Ŗ

Wybrać rozplanowanie ekranu PROGRAM+STATUS lub POZYCJA+STATUS!

W dolnej części ekranu znajdują się w trybach pracy przebiegu programu informacje o

- pozvcji narzedzia
- posuwie
- aktywnych funkcjach dodatkowych

Poprzez softkeys można wyświetlić dalsze informacje o statusie w oknie ekranu:

Suwak POS aktywować: wskazanie pozycji

- Suwak Przeglad aktywować: wskazanie najważniejszych informacji o stanie
- STATUS WSPOŁRZ.
- POŁOZENIE NARZEDZIE POŁOZENIE
- Suwak TRANS aktywować: wskazanie aktywnych ►

Suwak TOOL aktywować: wskazanie danych narzędzi

- WSPOŁRZ. PRZELICZ.
- transformacji współrzędnych przełaczanie klawiszy dalej w lewo

przełączanie klawiszy dalej w prawo

Wykonanie programu	, autom;	atyc	z.			Pros WPr.	jram . do pami.
19 L IX-1 R0 FMAX	Przegląd	PGM	LBL	CYC	M PC	os 🕩	
20 CYCL DEF 11.0 WSPOLCZYNNIK SKALI	X +0. Y +0.	000 000	#8 #A	++	0.000		" 💾
21 CYCL DEF 11.1 SCL 0.9995 22 STOP	T : 5 L +:	120.000	a R	амт	+5.0	000	S
23 L Z+50 R0 FMAX	DL-TAB DL-PGM +0	.2500	DR- DR-	TAB PGM 4	0.1000		
24 L X-20 Y+20 R0 FMAX	M110						
25 CALL LBL 15 REPS	X +25. P Y +333.	0000 0000	₽# Ф	1 X Y		-	
	5 1	88 18	1.44		1.000		
27 LBL 0		BL		RE	P		Python
8% S-ISI	PGM CALL ST	FAT1		۲	00:00:	84	Demos
0% SINm1 LIMIT 1 09:	14 Aktywny PG	M: STAT					
X -2.787 Y	-340.07	1 Z		+10	30.2	250	DIAGNOSIS
*a +0.000 *A	+0.00	0 + B		+ 7	76.7	00	
*C +0.000		1					Info 1/3
*3 0 0 PZECZ 0:20 T.5	7 5 7500	S1		0.00	00	2.0	
RZE02 (0.20 1 5	2 3 2366				11 3	/ 0	
STATUS STATUS POŁOZENIE PC PRZEGLADU WSPOŁRZ. NARZEDZIE PF	SPOLRZ. RZELICZ.						

DIN/ISO-programowanie

Programowanie ruchów narzędzia przy pomocy współrzędnych prostokątnych		
G00	przemieszczenia po prostej na biegu szybkim	
G01	przemieszczenia po prostej	
G02	ruchy kołowe zgodnie z ruchem wskazówek zegara	
G03	ruchy kołowe w kierunku przeciwnym do ruchu wskazówek zegara	
G05	ruchy kołowe bez informacji o kierunku obrotu	
G06	ruchy kołowe z tangencjalnym przejściem konturu	
G07*	równolgły do osi wiersz pozycjonowania	
D	en en entre anna de économie de la commune en entre en el	

Programowanie ruchów narzędzia przy pomocy współrzędnych biegunowych

- G10 przemieszczenia po prostej na biegu szybkim
- G11 przemieszczenia po prostej
- G12 ruchy kołowe zgodnie z ruchem wskazówek zegara
- G13 ruchy kołowe w kierunku przeciwnym do ruchu wskazówek zegara
- G15 ruchy kołowe bez informacji o kierunku obrotu
- G16 ruchy kołowe z tangencjalnym przejściem konturu

Cykle w	Cykle wiercenia		
G240	centrowanie		
G200	wiercenie		
G201	rozwiercanie dokładne otworu		
G202	wytaczanie		
G203	wiercenie uniwersalne		
G204	pogłębianie wsteczne		
G205	wiercenie głębokich otworów uniwersalne		
G208	frezowanie po linii śrubowej na gotowo		
G206	gwintowanie NOWE		
G207	gwintowanie GS (wyregulowane wrzeciono) NOWE		
G209	gwintowanie łamanie wióra		
G240	centrowanie		
G262	frezowanie gwintów		
G263	frezowanie gwintów wpuszczanych		
G264	frezowanie odwiertów z gwintem		
G265	helix-frezowanie gwintów po linii śrubowej		
G267	frezowanie gwintów zewnętrznych		

*) funkcja działająca wierszami

ŝ
U
3
2
<
~
0
-
<u> </u>
20
=
σ
0
~
D
\mathbf{n}
\mathbf{U}
ഗ
<u> </u>
\geq
Z
=
ō

Kieszenie, czopy i rowki wpustowe		
G251	kieszeń prostokątna kompletnie	
G252	kieszeń okrągła kompletnie	
G253	rowek kompletnie	
G254	okrągły rowek kompletnie	
G256	obróbka czopu prostokątnego	
G257	obróbka czopu okrągłego	

Wzory punktowe		
G220	wzory punktowe na okręgu	
G221	wzory punktowe na liniach	

SL-сукі	e grupa II
G37	określenie podprogramów konturu
G120	dane konturu
G121	wiercenie wstępne
G122	rozwiercanie
G123	obróbka wykańczająca dna
G124	obróbka na gotowo krawędzi bocznych
G125	trajektoria konturu
G127	powierzchnia boczna cylindra (opcja software)
G128	pow. boczna cylindra frezowanie rowków (opcja software)
G129	pow.boczna cylindra frezowanie mostka (opcja software)
G139	pow.boczna cylindra frezowanie konturu (opcja software)
G270	dane trajektorii konturu
Frezow	anie metodą wierszowania
G60	3D-dane odpracować

- G230 frezowanie metodą wierszowania
- G231 powierzchnia regulacji
- **G232** frezowanie płaszczyzn

Cykle so	ndy pomiarowej	Cykle so	ondy pomiarowej
G55*	pomiar współrzędnych	G420*	pomiar kąta
G400*	obrót podstawowy 2 punkty	G421*	pomiar odwiertu
G401*	obrót podstawowy 2 odwierty	G422*	pomiar czopu okrągłego
G402*	obrót podstawowy 2 czopy	G423*	pomiar kieszeni prostokątnej
G403*	obrót podstawowy przez stół obrotowy	G424*	pomiar czopu prostokątnego
G404*	nastawienie obrotu podstawowego	G425*	pomiar rowka wewnątrz
G405*	obrót podstawowy przez stół obrotowy	G426*	pomiar żebra zewnątrz
	punkt środkowy odwiertu	G427*	pomiar dowolnych współrzędnych
G408*	punkt odniesienia środek rowka	G430*	pomiar okręgu odwiertów
G409*	punkt odniesienia środek mostka	G431*	pomiar płaszczyzny
G410*	punkt odniesienia środek kieszeni prostokątnej	G440*	kompensacja cieplna
G411*	punkt odniesienia środek czopu prostokątnego	G450*	zapis do pamięci kinematyki (opcja)
G412*	punkt odniesienia środek odwiertu	G451*	pomiar kinematyki (opcja)
G413*	punkt odniesienia środek czopu okrągłego	G480*	kalibrowanie TT
G414*	baza naroże zewnątrz	G481*	pomiar długości narzędzia
G415*	baza naroże wewnątrz	G482*	pomiar promienia narzędzia
G416*	punkt odniesienia środek okręgu odwiertów	G483*	pomiar długości i promienia narzędzia
G417*	punkt odniesienia oś sondy impulsowej		
G418*	punkt odniesienia środek 4 odwiertow		
G419*	punkt odniesienia pojedyńczej osi		

*) funkcja działająca wierszami

Cykle dla przeliczania współrzędnych

- G53 przesunięcie punktu zerowego z tabeli punktów zerowych
- **G54** bezpośredni zapis przesunięcia punktu zerowego
- G247 wyznaczyć punkt odniesienia
- G28 odbicie lustrzane konturów
- G73 obracanie układu współrzędnych
- G72 współczynnik wymiarowy, kontur zmniejszyć/ powiększyć
- G80 płaszczyzna obróbki (opcja software)

Cykle specjalne

G04*	czas przerwy
G36	orientacja wrzeciona
G39	zadeklarowanie programu jako cykl
G79*	wywołanie cyklu
G62	tolerancja (opcja software)

Ustalić płaszczyznę obróbki

- G17 płaszczyzna X/Y, oś narzędzia Z
- G18 płaszczyzna Z/X, oś narzędzia Y
- G19 płaszczyzna Y/Z, oś narzędzia X
- G20 czwarta oś jest osią narzędzia

Najechać lub opuścić fazkę, zaokrąglenie, kontur

- G24* fazka o długości R
- G25* zaokrąglanie naroży z promieniem R
- G26* najechanie tangencjalne konturu na okręgu z promieniem R
- **G27*** opuszczenie tangencjalne konturu na okręgu z promieniem R

Definicja narzędzia

G99* definicja narzędzia w programie o długości L i promieniu R

Korekcje promienia narzędzia

G40 bez korekcji promienia

*) funkcja działająca wierszami

- G41 korekcja promienia narzędzia, na lewo od konturu
- G42 korekcja promienia narzędzia, na prawo od konturu
- G43 równoległa do osi korekcja promienia, wydłużenie odcinka przemieszczenia
- **G44** równoległa do osi korekcja promienia, skrócenie odcinka przemieszczenia

Dane wymiarowe

- **G90** dane wymiarowe absolutne
- G91 dane wymiarowe przyrostowe (wymiar łańcuchowy)

Określenie jednostki miary (początek programu)

- G70 jednostka miary cale
- G71 jednostka miary mm

Zdefiniowanie półwyrobu dla grafiki

- G30 określenie płaszczyzny; współrzędne MIN-punktu
- **G31** dane wymiarowe (z G90, G91), współrzędne MAXpunktu

Inne G-funkcje

- G29 ostatnią pozycję przejąć jako biegun
- G38 zatrzymanie przebiegu programu
- G51* wywołać następny numer narzędzia (tylko w przypadku centralnego magazynu narzędzi)
- G98* znacznik (numer Label) wyznaczyć

Funkcje Q-parametrów

D00	przypisać bezpośrednio wartość
D01	tworzyć sumę z dwóch wartości i przyporządkować
D02	utworzenie różnicy z dwóch wartości i przyporządkowanie
D03	utworzenie iloczynu z dwóch wartości i przyporządkowanie
D04	utworzyć iloraz z dwóch wartości i przyporządkować
D05	obliczyć pierwiastek z liczby i przyporządkować
D06	sinus kąta w stopniach ustalić i przyporządkować
D07	cosinus kąta w stopniach określić i przyporządkować
D08	pierwiastek sumy kwadratów dwóch liczb obliczyć i przyporządkować (Pitagoras)
D09	jeśli równy, skok do podanego label
D10	jeśli nie równy, skok do podanego label
D11	jeśli większy, skok do podanego label
D12	jeśli mniejszy, skok do podanego label
D13	kąt z arctan z dwóch boków lub sin i cos kąta określić i przyporządkować
D14	wyświetlanie tekstu na ekranie
D15	wydawanie tekstu lub treści parametrów poprzez interfejs danych
D19	przekazywanie wartości liczbowych lub Q- parametrów do PLC

Adresy			
%	początek programu	R	współrzędne biegunowe-promień przy G10/G11/ G12/G13/G15/G16
% A B C D E F F G H H I J K L L	początek programu oś obrotu wokół X oś obrotu wokół Y oś obrotu wokół Z definiowanie funkcji Q-parametrów tolerancja dla okręgu zaokrąglenia z M112 posuw w mm/min przy wierszach pozycjonowania czas przerwania w sec przy G04 współczynnik wymiarowy przy G72 G-funkcja (patrz lista G-funkcji) współrzędne biegunowe-kąt kąt obrotu przy G73 X-współrzędna punktu środkowego koła/bieguna Y-współrzędna punktu środkowego koła/bieguna Z-współrzędna punktu środkowego koła/bieguna numer Label wyznaczyć przy G98 skok do znacznika (numeru label)	R R R R R S S T T T U V W X Y Z *	współrzędne biegunowe-promień przy G10/G11/ G12/G13/G15/G16 promień okręgu z G02/G03/G05 promień zaokrąglenia z G25/G26/G27 długość fazki przy G24 promień narzędzia z G99 prędkość obrotowa wrzeciona w obr/min kąt dla orientacjiwrzeciona przy G36 numer narzędzia przy G99 wywołanie narzędzia wywołanie następnego narzędzia przy G51 oś równoległa do X oś równoległa do Y oś równoległa do Z X-oś Y-oś Z-oś znak dla końca wiersza
M	funkcja dodatkowa		
Ν	numer wiersza		
Ρ	parametry cyklu w przypadków cyklów obróbkowych		
Р	wartość lub Q-parametr w definicji Q-parametrów		
Q	parametry (zajmowane pozycje)-oznaczenie		

122

Funkcje dodatkowe M

M00 Przebieg programu-stop/wrzeciono-stop/chłodziwowyłaczyć M01 Zatrzymanie przebiegu programu do wyboru operatora M02 Przebieg programu-stop/wrzeciono-stop/chłodziwowyłączyć/skok powrotny do wiersza1/w razie konieczności skasować wyświetlacz stanu M03 Właczenie wrzeciona w kierunku ruchu wskazówek zegara M04 Włączenie wrzeciona w kierunku przeciwnym do ruchu wskazówek zegara M05 Zatrzymanie wrzeciona M06 Zwolnienie zmiany narzędzia/przebieg programu-stop (w zależności od parametru maszynowego)/wrzeciono-stop M08 Chłodziwo ON M09 Chłodziwo OFF M13 Włączenie wrzeciona w kierunku ruchu wskazówek zegara/chłodziwo-właczyć M14 Wrzeciono włączyć w kierunku przeciwnym do ruchu wskazówek zegara/Chłodziwo-właczyć M30 Ta sama funkcja jak M02 M89 Wolna funkcja dodatkowa, wywołanie cyklu, działanie modalne (zależy od parametrów maszyny) M90 Stała predkość torowa na narożach (działa tylko w trybie z opóźnieniem) W bloku pozycjonowania: współrzędne odnosza się do M91 punktu zerowego maszyny

M92	W wierszu pozycjonowania: współrzędne odnoszą się do określonych przez producenta maszyn pozycji
M93	Zarezerwowany
M94	Wskazanie osi obrotowej zredukować do wartości poniżej 360 stopni
M95	Zarezerwowany
M96	Zarezerwowany
M97	Obróbka niewielkich stopni konturu
M98	Koniec korekcji toru
M99	Wywołanie cyklu, działa wierszami
M101	Automatyczna zmiana narzędzia po upływie okresu trwałości
M102	M101 wycofać
M103	Zredukować posuw przy zagłębianiu w materiał do współczynnika F
M104	Aktywować ponownie ostatnio wyznaczony punkt odniesienia
M105	Przeprowadzić obróbkę z drugim k _V - współczynnikiem
M106	Przeprowadzić obróbkę z pierwszym k _V - współczynnikiem
M107	Patrz Instrukcja obsługi dla operatora
M108	M107 zreseetować

123

M109	Stała prędkość torowa ostrza narzędzia na promieniu (zwiększenie posuwu i jego redukcja)	M130	W wierszu pozycjonowania: punkty odnoszą się do nienachylonego układu współrzędnych
M110	Stała prędkość torowa ostrza narzędzia na promieniu (tylko zredukowanie posuwu)	M134	Zatrzymanie dokładnościowe przy pozycjonowaniu z osiami obrotu
M111	M109/M110 skasować	M135	M134 skasować
M114	Autom. Korekcja geometrii maszyny przy pracy z	M136 M137	Posuw F w milimetrach na obrót wrzeciona
M445		M138	Wybér osi nachylenia dla M114, M128 i cyklu
MAAC	MIII4 SKASOWAC	WI I JO	Nachylenie płaszczyzny obróbki
	software)	M140	Odsunięcie od konturu w kierunku osi narzędzia
M117	M116 zresetować	M141	Anulować nadzór układu impulsowego
M118	Włączenie pozycjonowania kółkiem ręcznym w czasie przebiegu programu:	M142	Usunąć modalne informacje o programie
		M143	Usunięcie obrotu podstawowego
M120	Obliczanie wstępne konturu ze skorygowanym promieniem LOOK AHEAD	M144	Uwzględnienie kinematyki maszyny na pozycjach RZECZ/ZAD przy końcu wiersza (opcia software)
M124	Nie uwzględniać punktów przy odpracowaniu nie skorygowanych wierszy prostych	M145	M144 wycofać
M126	Przemieszczenie osi obrotu po zoptymalizowanym torze ruchu	M148	W przypadku NC-stop odsunąć narzędzie automatycznie od konturu
M127	M126 wycofać	M149	M148 wycofać
M128	Zachować pozycję ostrza narzędzia przy pozycionowaniu osi nachylenia (TCPM) ¹⁾	M150	Skasować komunikat o błędach końcowego wyłącznika
	(opcja software)	M200	Funkcje dodatkowe dla laserowych maszyn do
M129	M128 zresetować		cięcia
¹⁾ TCPM:	Tool Center Point Management	· ·	
		M204	patrz Instrukcja obsługi dla operatora

124

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH DrJohannes-Heidenhain-Straße 5 83301 Traunreut, Germany [®] +49 (8669) 31-0 [™] +49 (8669) 5061 E-Mail: info@heidenhain.de	APS Husarska 19 B 02-489 Warszawa, Poland ℗ (22) 8639737 FAX (22) 8639744
Technical supportEAX+49 (86 69) 32-1000Measuring systems***+49 (86 69) 31-3104E-Mail: service.ms-support@heidenhain.deTNC support***TNC support*********E-Mail: service.nc-support@heidenhain.deNC programming*******NC programming*************E-Mail: service.nc-pgm@heidenhain.dePLC programming********PLC programming****************E-Mail: service.plc@heidenhain.de**************Lathe controls***************E-Mail: service.lathe-support@heidenhain.de**********	

www.heidenhain.de

