

HEIDENHAIN

Pilote
Dialogue conversationnel
Texte clair

iTNC 530

Logiciel CN 340 490-04 340 491-04 340 492-04 340 493-04 340 494-04

Français (fr) 12/2007

Le pilote

... est un outil concis de programmation pour l'iTNC 530 HEIDENHAIN. Si vous désirez compulser le guide complet de programmation et d'utilisation de l'iTNC, reportez-vous au Manuel d'utilisation. Vous y trouverez également les informations sur

- la programmation des paramètres Q
- la mémoire centrale d'outils
- la correction d'outil 3D
- l'étalonnage d'outils

Symboles utilisés dans le Pilote:

Les informations importantes sont signalées dans ce Pilote au moyen des symboles suivants:

Remarque importante!

Avertissement: Danger pour l'opérateur ou la machine en cas de non-observance!

La machine et la TNC doivent être préparées par le constructeur de la machine pour la fonction décrite!

Chapitre du Manuel d'utilisation. Vous trouverez ici les informations détaillées sur le thème évoqué.

Commande	Numéro du logiciel CN
iTNC 530	340 490-04
iTNC 530, version Export	340 491-04
iTNC 530 avec Windows XP	340 492-04
iTNC 530 avec Windows XP, version Export	340 493-04
Poste de programmation iTNC 530	340 494-04

Table des matières

Le pilote	3
Principes de base	5
Approche et sortie des contours	16
Fonctions de contournage	22
Programmation flexible de contours FK	31
Sous-programmes et répétitions de parties de programme	41
Travail à l'aide des cycles	44
Cycles d'usinage de trous et filets	46
Poches, tenons et rainures	63
Motifs de points	70
Cycles SL	72
Cycles d'usinage ligne à ligne	83
Cycles de conversion de coordonnées	87
Cycles spéciaux	95
La fonction PLANE (option de logiciel 1)	99
Graphismes et affichages d'état	113
Programmation en DIN/ISO	116
Fonctions auxiliaires M	123

Principes de base

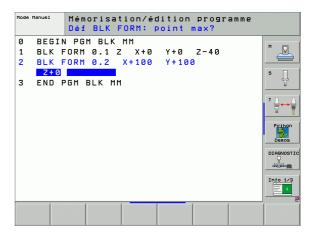
Programmes/fichiers

Cf. "Programmation, Gestionnaire de fichiers".

La TNC mémorise les programmes, tableaux et textes dans des fichiers. La désignation des fichiers comporte deux éléments:

PROG20	H.
Nom de fichier	Type de fichier
Longueur max.	Cf. tableau de droite

Fichiers dans la TNC	Туре
Programmes en format HEIDENHAIN en format DIN/ISO	.H .I
Programmes smarT.NC Programme Unit Programme de contour Tableaux de points	.HU .HC .HP
Tableaux pour outils changeur d'outils palettes points zéro points presets (points de référence) données de coupe matières de pièce, matières de coupe	.T .TCH .P .D .PNT .PR .CDT .TAB
Textes sous forme de fichiers ASCII fichiers d'aide	.A .CHM

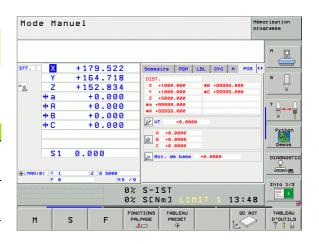


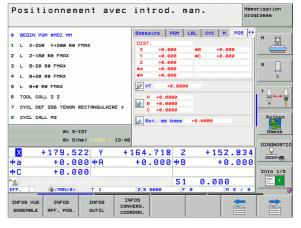
Ouverture d'un nouveau programme d'usinage

- ▶ Sélectionner le répertoire où le fichier doit être mémorisé
- ▶ Introduire le nom du nouveau programme, valider avec la touche ENT
- Sélectionner l'unité de mesure: Appuyer sur la softkey MM ou INCH. La TNC change de fenêtre et ouvre le dialogue de définition de la BLK-FORM (pièce brute)
- ▶ Introduire l'axe de broche
- ▶ Introduire les unes après les autres les coordonnées en X, Y et Z du point MIN
- ▶ Introduire les unes après les autres les coordonnées en X, Y et Z du point MAX

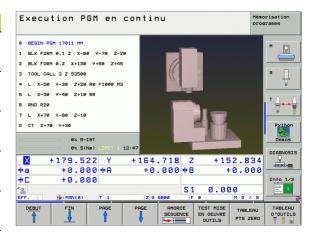
1 BLK FORM 0.1 Z X+0 Y+0 Z-50 2 BLK FORM 0.2 X+100 Y+100 Z+0

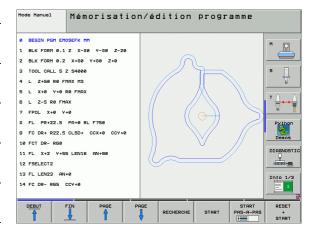
Définir le partage de l'écran




Cf. "Introduction, l'iTNC 530".

Afficher les softkeys permettant de définir le partage de l'écran


Mode fonctionnement	Contenu de l'écran	
Mode Manuel et Manivelle électronique	Positions	POSITION
	Positions à gauche, infos à droite	POSITION + INFOS
Positionnement avec introduction manuelle	Programme	PROGRAMME
	Programme à gauche, infos à droite	PROGRAMME + INFOS



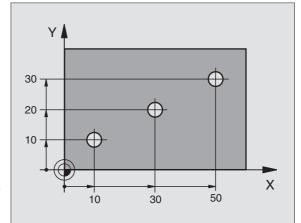
Mode fonctionnement	Contenu de l'écran	
Exécution de programme en continu, Exécution de programme pas à pas,	Programme	PROGRAMME
Test de programme	Programme à gauche, articulation de programme à droite	PROGRAMME + ARTICUL.
	Programme à gauche, infos à droite	PROGRAMME + INFOS
	Programme à gauche, graphisme à droite	PROGRAMME + GRAPHISME
	Graphisme	GRAPHISME
Exécution de programme en continu, exécution de programme pas à pas	Programme à gauche, corps de collision actifs à droite	CINEMAT. + PROGRAMME
programme pas a pas	Corps de collision actifs	CINEMATIQ.
Mémorisation/édition de programme	Programme	PROGRAMME
	Programme à gauche, articulation de programme à droite	PROGRAMME + ARTICUL.
	Programme à gauche, graph. de programmation à droite	PROGRAMME + GRAPHISME
	Programme à gauche, graphisme filaire 3D à droite	PROGRAMME + LIGNES 3D

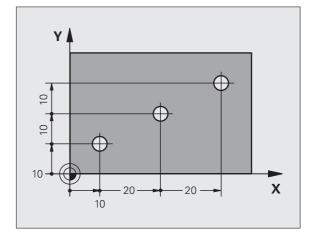
Coordonnées cartésiennes – en valeur absolue

Les cotes se réfèrent au point zéro actuel. L'outil se déplace à des coordonnées absolues.

Axes programmables dans une séquence CN

Déplacement linéaire 5 axes au choix


Course circulaire 2 axes linéaires d'un même plan ou


3 axes linéaires avec le cycle 19 PLAN

D'USINAGE

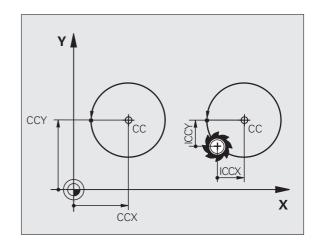
Coordonnées cartésiennes – en valeur incrémentale

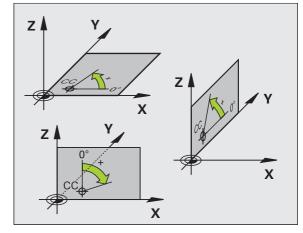
Les cotes se réfèrent à la dernière position d'outil programmée. L'outil se déplace **de la valeur** des coordonnées incrémentales.

Centre de cercle et pôle: CC

On introduit le centre de cercle CC pour programmer des trajectoires circulaires à l'aide de la fonction de contournage C (cf. page 26). Par ailleurs, CC est utilisé comme pôle pour des cotes en coordonnées polaires.

CC est défini en coordonnées cartésiennes.


Un centre de cercle ou un pôle **CC** défini en valeur absolue se réfère toujours au point zéro pièce.


Un centre de cercle ou un pôle **CC** défini en valeur incrémentale se réfère toujours à la dernière position programmée de l'outil.

Axe de référence angulaire

L'angle – tel l'angle en coordonnées polaires **PA** et l'angle de rotation **ROT** – se réfèrent à l'axe de référence.

Plan d'usinage	Axe de référence et sens 0°
X/Y	+X
Y/Z	+Y
Z/X	+Z

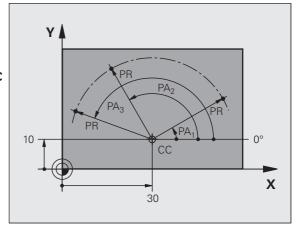
Coordonnées polaires

Les cotes en coordonnées polaires se réfèrent au pôle **CC**. Une position est définie dans le plan d'usinage par:

- le rayon polaire PR = distance entre la position et le pôle CC
- l'angle polaire PA = angle compris entre l'axe de référence et la ligne CC PR

Cotes incrémentales

Les cotes incrémentales en coordonnées polaires se réfèrent à la dernière position programmée.


Programmation de coordonnées polaires

► Sélectionner la fonction de contournage

- Appuyer sur la touche P
- ▶ Répondre aux questions de dialogue

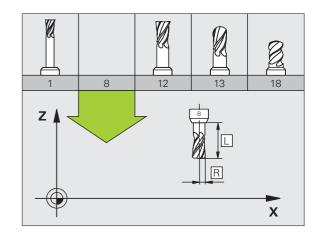
Définir les outils

Données d'outils

Chaque outil porte un numéro d'outil compris entre 0 et 254. Si vous travaillez avec les tableaux d'outils, vous pouvez utiliser des numéros plus élevés et, en outre, attribuer des noms aux outils.

Introduire les données de l'outil

Les données de l'outil (longueur L et rayon R) peuvent être introduites:


sous la forme d'un tableau d'outils (de manière centrale, programme TOOL.T)

ou

directement dans le programme dans des séquences TOOL DEF (de manière locale)

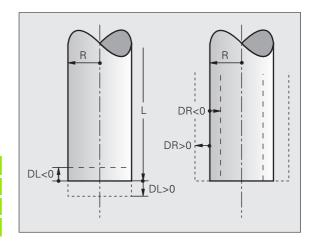
- Numéro d'outil
- Longueur d'outil L
- ▶ Rayon d'outil R
- Déterminer la longueur réelle de l'outil à l'aide d'un appareil de préréglage d'outils; on programme la longueur ainsi obtenue.

Appeler les données de l'outil

- Numéro d'outil ou nom de l'outil
- ► Axe broche parallèle X/Y/Z: Axe d'outil
- ▶ Vitesse de rotation broche S
- Avance F
- ▶ Surépaisseur longueur d'outil DL (ex. usure)
- ► Surépaisseur rayon d'outil DR (ex. usure)
- ► Surépaisseur rayon d'outil DR2 (ex. usure)

3 TOOL DEF 6 L+7.5 R+3

4 TOOL CALL 6 Z S2000 F650 DL+1 DR+0.5 DR2+0.1


5 L Z+100 R0 FMAX

6 L X-10 Y-10 RO FMAX M6

Changement d'outil

- En abordant la position de changement de l'outil, veiller à éviter tous risques de collision!
- Avec la fonction M, définir le sens de rotation de la broche:
 - M3: Rotation vers la droite
 - M4: Rotation vers la gauche
- Surépaisseurs pour le rayon ou la longueur de l'outil: ± 99.999 mm max.!

Corrections d'outils

Lors de l'usinage, la TNC tient compte de la longueur L et du rayon R de l'outil qui a été appelé.

Correction linéaire

Début de l'effet:

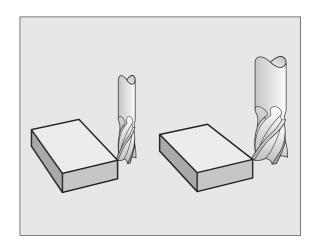
Déplacer l'outil dans l'axe de broche

Fin de l'effet:

▶ Appeler le nouvel outil ou bien l'outil de longueur L=0

Correction de rayon

Début de l'effet:


Déplacer l'outil dans le plan d'usinage avec RR ou RL


Fin de l'effet:

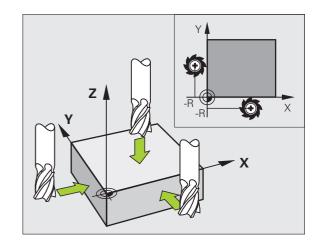
▶ Programmer une séquence de positionnement avec R0

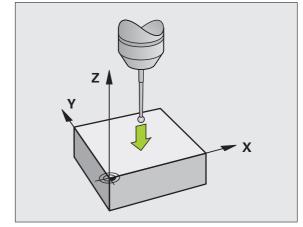
Travailler sans correction de rayon (perçage par exemple):

Programmer une séquence de positionnement avec R0

Initialisation du point de référence sans palpeur 3D

Lors de l'initialisation du point de référence, l'affichage de la TNC est initialisé aux coordonnées d'une position pièce connue:


- Installer l'outil zéro de rayon connu
- ▶ Sélectionner le mode Manuel ou Manivelle électronique
- Affleurer la surface de référence dans l'axe d'outil et introduire la longueur de l'outil
- Affleurer les surfaces de référence dans le plan d'usinage et introduire la position du centre de l'outil


Dégauchissage et mesure avec les palpeurs 3D

Le dégauchissage de la machine s'effectue de manière à la fois rapide, simple et précise à l'aide d'un palpeur 3D de HEIDENHAIN.

Outre les fonctions de palpage pour préparer la machine en modes Manuel et Manivelle électronique, la commande propose de nombreux cycles de mesure dans les modes Exécution de programme (cf. également Manuel d'utilisation des cycles palpeurs):

- Cycles de mesure pour enregistrer et compenser le désaxage d'une pièce
- Cycles de mesure pour l'initialisation automatique d'un point de référence
- Cycles de mesure pour l'étalonnage automatique de la pièce avec comparaison de tolérances et correction automatique d'outil

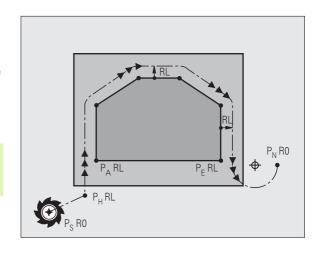
Approche et sortie des contours

Point initial P_S

 P_{S} est situé en dehors du contour et doit être abordé sans correction de rayon.

Point auxiliaire PH

P_H est situé en dehors du contour et il est calculé par la TNC.


La TNC déplace l'outil suivant la dernière avance programmée, pour aller du point initial P_S jusqu'au point auxiliaire P_H !

Premier point du contour PA et dernier point du contour PE

Le premier point du contour P_A est programmé dans la séquence **APPR** (= approche). Le dernier point du contour est programmé de la manière habituelle.

Point final P_N

 P_N est situé en dehors du contour et résulte de la séquence **DEP** (= départ). P_N est abordé automatiquement avec **RO**.

Fonctions de contournage pour approche/sortie

▶ Appuyer sur la softkey de la fonction désirée:

Droite avec raccordement tangentiel

Droite perpendiculaire au point du contour

Trajectoire circulaire avec raccordement tangentiel

Segment de droite avec cercle de transition tangentiel au contour

- Programmer la correction de rayon dans la séquence APPR!
- Les séquences DEP ont pour effet d'initialiser la correction de rayon à RO!

Approche par une droite avec raccordement tangentiel: APPR LT

- ► Coordonnées pour le premier point du contour P_A
- \blacktriangleright LEN: Distance entre le point auxiliaire P_H et le premier point du contour P_A
- Correction de rayon RR/RL

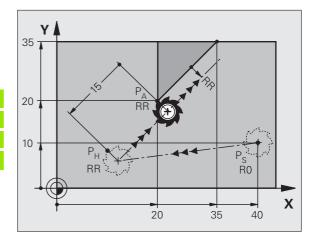
7 L X+40 Y+10 R0 FMAX M3

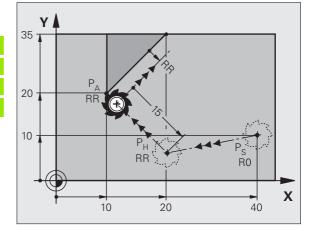
8 APPR LT X+20 Y+20 Z-10 LEN15 RR F100

9 L Y+35 Y+35

10 L ...

Approche par une droite perpendiculaire au premier point du contour: APPR LN


- ▶ Coordonnées pour le premier point du contour P_A
- \blacktriangleright LEN: Distance entre le point auxiliaire P_H et le premier point du contour P_Δ
- ► Correction de rayon RR/RL

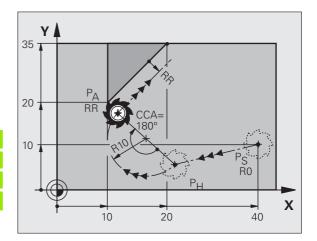

7 L X+40 Y+10 RO FMAX M3

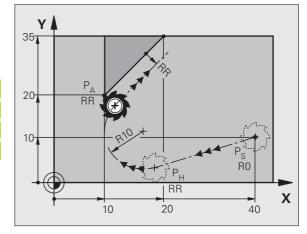
8 APPR LN X+10 Y+20 Z-10 LEN15 RR F100

9 L X+20 Y+35

10 L ...

Approche par une trajectoire circulaire avec raccordement tangentiel: APPR CT




- ► Coordonnées pour le premier point du contour P_A
- ► Rayon R Introduire R > 0
- Angle au centre CCA Introduire CCA > 0
- ► Correction de rayon RR/RL
- 7 L X+40 Y+10 RO FMAX M3
- 8 APPR CT X+10 Y+20 Z-10 CCA180 R+10 RR F100
- 9 L X+20 Y+35
- 10 L ...

Approche par une trajectoire circulaire avec raccordement tangentiel au contour et segment de droite: APPR LCT

- ▶ Coordonnées pour le premier point du contour P_A
- ► Rayon R Introduire R > 0
- ► Correction de rayon RR/RL
- 7 L X+40 Y+10 RO FMAX M3
- 8 APPR LCT X+10 Y+20 Z-10 R10 RR F100
- 9 L X+20 Y+35
- 10 L ...

Sortie du contour par une droite avec raccordement tangentiel: DEP LT

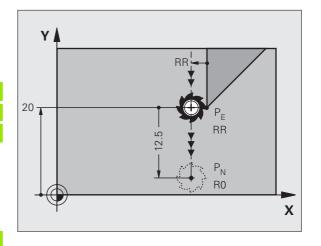
► Ecart linéaire entre P_E et P_N Introduire LEN > 0

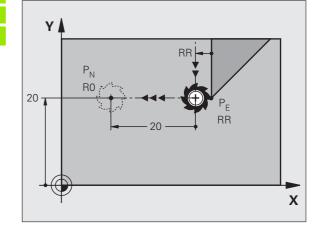
23 L Y+20 RR F100

24 DEP LT LEN12.5 F100

25 L Z+100 FMAX M2

Sortie du contour par une droite perpendiculaire au dernier point du contour: DEP LN




► Ecart linéaire entre P_E et P_N Introduire LEN > 0

23 L Y+20 RR F100

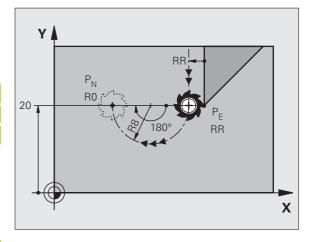
24 DEP LN LEN+20 F100

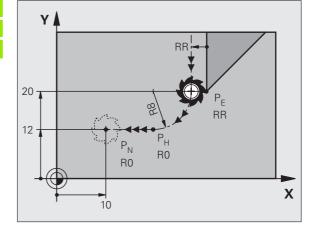
25 L Z+100 FMAX M2

Sortie du contour par une trajectoire circulaire avec raccordement tangentiel: DEP CT

- ► Rayon R Introduire R > 0
- ► Angle au centre CCA
- 23 L Y+20 RR F100
- 24 DEP CT CCA 180 R+8 F100
- 25 L Z+100 FMAX M2

Sortie par une trajectoire circulaire avec raccordement tangentiel au contour et segment de droite: DEP LCT




- Coordonnées du point final P_N
- ► Rayon R Introduire R > 0

23 L Y+20 RR F100

24 DEP LCT X+10 Y+12 R+8 F100

25 L Z+100 FMAX M2

Fonctions de contournage

Fonctions de contournage pour séquences de positionnement

Cf. "Programmation: Programmer les contours".

Convention

Lors de la programmation d'un déplacement d'outil, on part toujours du principe que c'est l'outil qui se déplace tandis que la pièce reste immobile.

Introduction des positions nominales

Les positions nominales peuvent être introduites en coordonnées cartésiennes ou polaires – aussi bien en absolu qu'en incrémental ou en mixant l'absolu et l'incrémental.

Contenu de la séquence de positionnement

Une séquence de positionnement complète comprend:

- Fonction de contournage
- Coordonnées du point final de l'élément de contour (position nominale)
- Correction de rayon RR/RL/R0
- Avance F
- Fonction auxiliaire M

Au début d'un programme d'usinage, l'outil doit toujours être positionné de telle manière qu'il ne puisse en aucun cas endommager l'outil ou la pièce.

Fonctions de contournage		Page
Droite	L	23
Chanfrein entre deux droites	CHE o: Lo	24
Arrondi d'angle	RND _o	25
Introduire le centre de cercle ou les coordonnées polaires	cc o	26
Trajectoire circulaire autour du centre de cercle CC	J ^c	26
Trajectoire circulaire avec indication du rayon	CR	27
Trajectoire circulaire avec raccordement tangentiel à l'élément de contour précédent	СТ?	28
Programmation flexible des contours FK	FK	31

Droite L

- ► Coordonnées du point final de la droite
- ► Correction de rayon RR/RL/R0
- ▶ Avance **F**
- ► Fonction auxiliaire M

En coordonnées cartésiennes

7 L X+10 Y+40 RL F200 M3

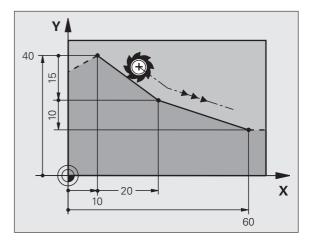
8 L IX+20 IY-15

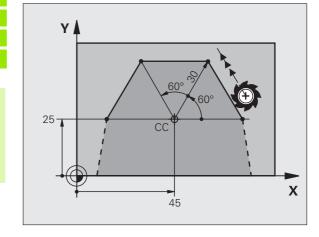
9 L X+60 IY-10

En coordonnées polaires

12 CC X+45 Y+25

13 LP PR+30 PA+0 RR F300 M3


14 LP PA+60


15 LP IPA+60

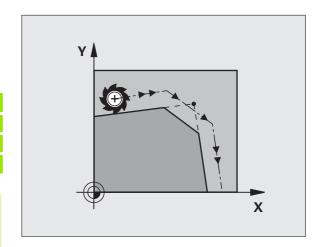
16 LP PA+180

- Définir le pôle **CC** avant de programmer les coordonnées polaires!
- Ne programmer le pôle CC qu'en coordonnées cartésiennes!
- Le pôle **CC** reste actif jusqu'à ce que vous programmiez un nouveau pôle **CC**!

Insérer un chanfrein CHF entre deux droites

- Longueur du chanfrein
- Avance F

7 L X+0 Y+30 RL F300 M3


8 L X+40 IY+5

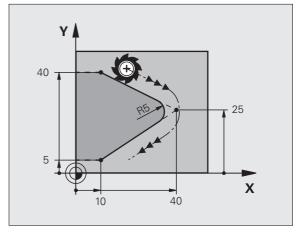
9 CHF 12 F250

10 L IX+5 Y+0

- Un contour ne doit pas débuter par une séquence **CHF**!
- La correction de rayon doit être identique avant et après la séquence CHF!
- Le chanfrein doit pouvoir être usiné avec l'outil qui a été appelé!

Arrondi d'angle RND

Le début et la fin de l'arc de cercle constituent des raccordements tangentiels avec l'élément de contour précédent et l'élément de contour suivant.



- ▶ Rayon **R** de l'arc de cercle
- ▶ Avance **F** pour l'arrondi d'angle

5 L X+10 Y+40 RL F300 M3

6 L X+40 Y+25

7 RND R5 F100

Trajectoire circulaire autour du centre de cercle CC

▶ Coordonnées du centre de cercle CC

- ► Coordonnées du point final de l'arc de cercle
- ▶ Sens de rotation **DR**

C et CP permettent de programmer un cercle entier dans une séquence.

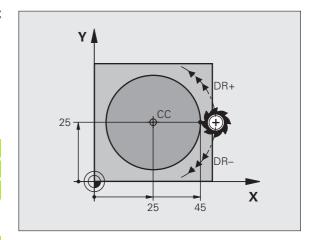
En coordonnées cartésiennes

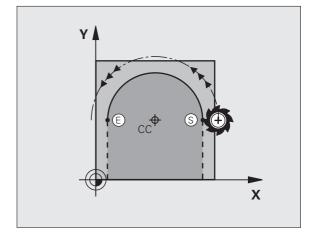
5 CC X+25 Y+25

6 L X+45 Y+25 RR F200 M3

7 C X+45 Y+25 DR+

En coordonnées polaires


18 CC X+25 Y+25


19 LP PR+20 PA+0 RR F250 M3

20 CP PA+180 DR+

- Définir le pôle CC avant de programmer les coordonnées polaires!
- Ne programmer le pôle CC qu'en coordonnées cartésiennes!
- Le pôle **CC** reste actif jusqu'à ce que vous programmiez un nouveau pôle **CC**!
- Le point final du cercle ne peut être défini qu'avec PA!

Trajectoire circulaire CR avec indication du rayon

► Coordonnées du point final de l'arc de cercle

Rayon R Grand arc de cercle: ZW > 180, R négatif Petit arc de cercle: ZW < 180, R positif</p>

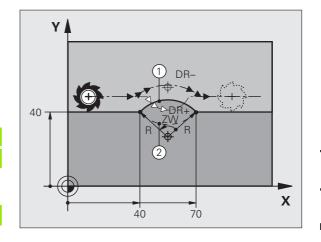
▶ Sens de rotation **DR**

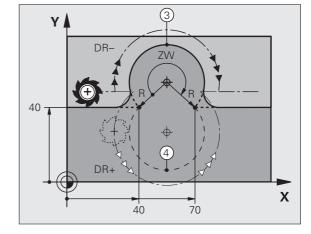
10 L X+40 Y+40 RL F200 M3

11 CR X+70 Y+40 R+20 DR- (ARC 1)

ou

11 CR X+70 Y+40 R+20 DR+ (ARC 2)


ou


10 L X+40 Y+40 RL F200 M3

11 CR X+70 Y+40 R-20 DR- (ARC 3)

ou

11 CR X+70 Y+40 R-20 DR+ (ARC 4)

Trajectoire circulaire CT avec raccordement tangentiel

- ► Coordonnées du point final de l'arc de cercle
- ► Correction de rayon RR/RL/R0
- ▶ Avance **F**
- ► Fonction auxiliaire M

En coordonnées cartésiennes

7 L X+0 Y+25 RL F300 M3

8 L X+25 Y+30

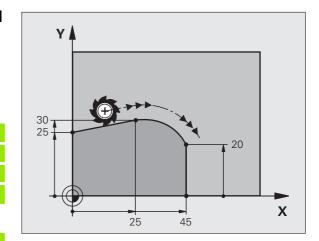
9 CT X+45 Y+20

10 L Y+0

En coordonnées polaires

12 CC X+40 Y+35

13 L X+0 Y+35 RL F250 M3


14 LP PR+25 PA+120

15 CTP PR+30 PA+30

16 L Y+0

- Définir le pôle CC avant de programmer les coordonnées polaires!
- Ne programmer le pôle **CC** qu'en coordonnées cartésiennes!
- Le pôle **CC** reste actif jusqu'à ce que vous programmiez un nouveau pôle **CC**!

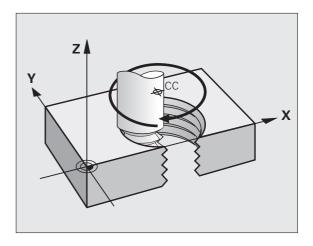
Hélice (en coordonnées polaires seulement)

Calculs (fraisage de bas en haut)

Nombre de passes: \mathbf{n} Rotations + dépassement de course en

début et en fin de filet

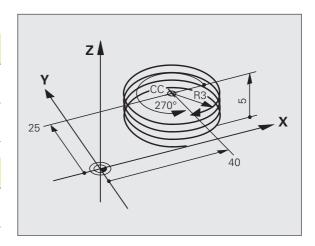
Hauteur totale: **h** Pas de vis P x nombre de rotations n


Angle polaire incr.: **IPA** Nombre de rotations n x 360°

Angle initial: **PA** Angle en début de filet + angle pour

dépassement de course

Coord. de départ: **Z** Pas de vis P x (rotations + dépassement


de course en début de filet)

Forme de la trajectoire hélicoïdale

Filet interne	Sens d'usinage	Sens de rotation	Correction de rayon
vers la droite	Z+	DR+	RL
vers la gauche	Z+	DR-	RR
vers la droite	Z-	DR-	RR
vers la gauche	Z-	DR+	RL

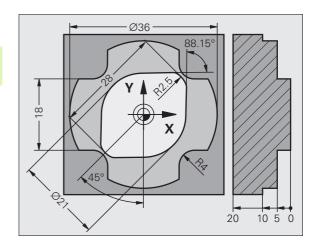
Filetage	Sens d'usinage	Sens de rotation	Correction de rayon
vers la droite	Z+	DR+	RR
vers la gauche	Z+	DR-	RL
vers la droite	Z-	DR-	RL
vers la gauche	Z-	DR+	RR

Filetage M6 x 1 mm avec 5 rotations:

12 CC X+40 Y+25
13 L Z+0 F100 M3
14 LP PR+3 PA+270 RL F50
15 CP IPA-1800 IZ+5 DR-

Programmation flexible de contours FK

Cf. "Contournages – Programmation flexible de contours FK"


Si le plan de la pièce ne comporte pas les coordonnées de la position nominale ou s'il contient des indications qui ne peuvent pas être introduites avec les touches de fonction grises, on peut alors avoir recours à la "programmation flexible de contours FK".

Indications possibles pour définir un élément de contour:

- Coordonnées connues du point final
- Points auxiliaires situés sur l'élément du contour
- Points auxiliaires situés à proximité de l'élément du contour
- Rapport relatif à un autre élément du contour
- Indications de sens (angle) / indications de position
- Indications concernant la courbe du contour

Comment utiliser correctement la programmation FK:

- Tous les éléments de contour doivent être situés dans le plan d'usinage
- Introduire toutes les indications dont on dispose sur l'élément de contour
- Si l'on amalgame des séquences conventionnelles et des séquences FK, chaque segment programmé en FK doit être défini de manière précise. La TNC n'acceptera l'introduction des fonctions de contournage conventionnelles que si cette condition est remplie.

Travailler à l'aide du graphisme de programmation

Sélectionner le partage d'écran PROGRAMME+GRAPHISME!

▶ Afficher les différentes solutions

▶ Sélectionner la solution affichée et la valider

Programmer d'autres éléments du contour

 Elaborer le graphisme de programmation pour la séquence suivante programmée

Couleurs standard du graphisme de programmation

bleu L'élément de contour est clairement défini

vert Les données introduites donnent lieu à plusieurs

solutions; sélectionnez la bonne

rouge Les données introduites ne suffisent pas encore pour

définir l'élément de contour; introduisez d'autres

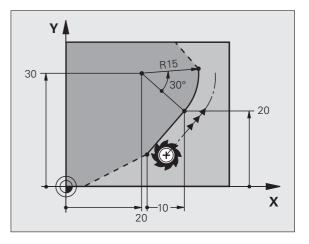
données

bleu ciel Déplacement programmé en avance rapide

Mémorisation/édition programme

Mode Manuel

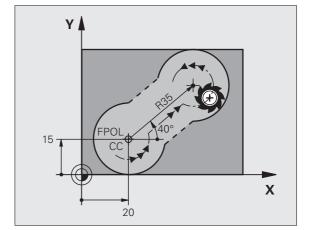
Ouvrir le dialogue FK

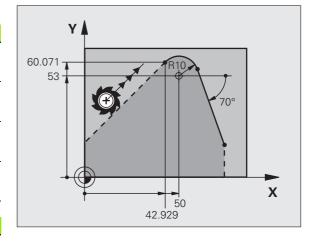


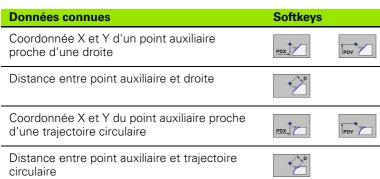
Ouvrir le dialogue FK; les fonctions suivantes sont disponibles:

Elément FK	Softkeys
Droite avec raccordement tangentiel	FLT
Droite sans raccordement tangentiel	FL
Arc de cercle avec raccordement tangentiel	FCT
Arc de cercle sans raccordement tangentiel	FC
Pôle pour programmation FK	FPOL

Coordonnées du point final X, Y ou PA, PR

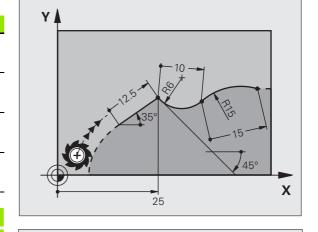

Données connues	Softkeys	
Coordonnées cartésiennes X et Y	X	Y
Coordonnées polaires se référant à FPOL	PR	PA
Introduction en incrémental	1	
7 FPOL X+20 Y+30		
8 FL IX+10 Y-20 RR F100		
9 FCT PR+15 IPA+30 DR+ R15		


Centre de cercle CC dans la séquence FC/FCT


Données connues	Softkeys	
Centre en coordonnées cartésiennes	ccx	<u>ccy</u>
Centre en coordonnées polaires	CC PR	CC PA
Introduction en incrémental	I	
10 FC CCX+20 CCY+15 DR+ R15		
11 FPOL X+20 Y+15		
12 FL AN+40		
13 FC DR+ R15 CCPR+35 CCPA+40		

Points auxiliaires sur un contour ou proche d'un contour

roints auxilialies sur un contour ou proche à un contour					
Données connues	Softkeys				
Coordonnée X d'un point auxiliaire P1 ou P2 d'une droite	PIX	P2X			
Coordonnée Y d'un point auxiliaire P1 ou P2 d'une droite	PIY	P2V			
Coordonnée X d'un point auxiliaire P1, P2 ou P3 d'une traj. circulaire	P1X	P2X	РЗХ		
Coordonnée Y d'un point auxiliaire P1, P2 ou P3 d'une traj. circulaire	P1Y	P2Y	PSY		


13 FC DR- R10 P1X+42.929 P1Y+60.071

14 FLT AH-70 PDX+50 PDY+53 D10

Programmation flexible de contours FK

Sens et longueur de l'élément de contour

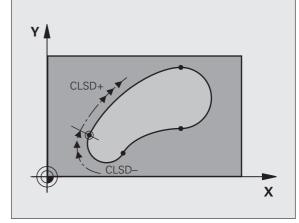
Données connues	Softkeys
Longueur de la droite	LEN
Angle de montée de la droite	AN
Longueur de corde LEN du segment de l'arc de cercle	LEN
Angle de montée AN de la tangente d'entrée	an 🔼

27 FLT X+25 LEN 12.5 AN+35 RL F200

28 FC DR+ R6 LEN 10 A-45

29 FCT DR- R15 LEN 15

Désignation d'un contour fermé

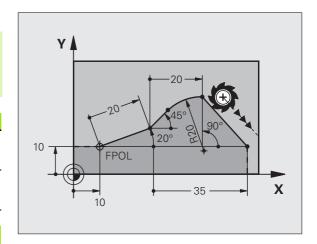

Début du contour: CLSD+
Fin du contour: CLSD-

12 L X+5 Y+35 RL F500 M3

13 FC DR- R15 CLSD+ CCX+20 CCY+35

. . .

17 FCT DR- R+15 CLSD-


Rapport relatif à la séquence N: Coordonnées du point final

Les coordonnées avec rapport relatif doivent toujours être introduites en incrémental. Vous devez en plus indiquer le numéro de la séquence de l'élément de contour auquel vous vous référez.

Données connues	Softkeys	
Coordonnées cartésiennes se référant à la séquence N	RX N	RY N
Coordonnées polaires se référant à la séquence N	RPR N	RAN N

12 FPOL X+10 Y+10
13 FL PR+20 PA+20
14 FL AN+45
15 FCT IX+20 DR- R20 CCA+90 RX 13
16 FL IPR+35 PA+0 RPR 13

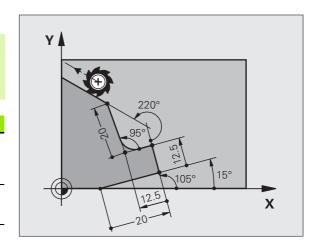
Rapport relatif à la séquence N: Sens et distance de l'élément de contour

Les coordonnées avec rapport relatif doivent toujours être introduites en incrémental. Vous devez en plus indiquer le numéro de la séquence de l'élément de contour auquel vous vous référez.

Données connues

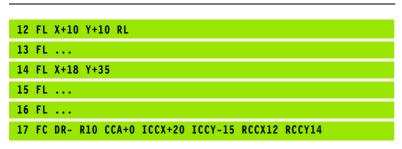
Softkeys

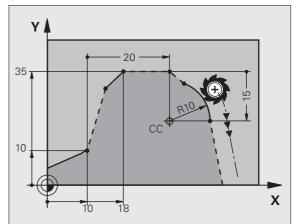
Angle entre droite et autre élément de contour ou entre la tangente d'entrée sur l'arc de cercle et l'autre élément du contour


Droite parallèle à un autre élément de contour

Distance entre droite et élément de contour parallèle

- 17 FL LEN 20 AN+15
- 18 FL AN+105 LEN 12.5
- 19 FL PAR 17 DP 12.5
- 20 FSELECT 2
- 21 FL LEN 20 IAN+95
- 22 FL IAN+220 RAN 18




Rapport relatif à la séquence N: Centre de cercle CC

Les coordonnées avec rapport relatif doivent toujours être introduites en incrémental. Vous devez en plus indiquer le numéro de la séquence de l'élément de contour auquel vous vous référez.

Données connues	Softkeys	
Coordonnées cartésiennes du centre de cercle se référant à la séquence N	RCCX N	RCCY N
Coordonnées polaires du centre de cercle se référant à la séquence N	RCCPR N	RCCPA N

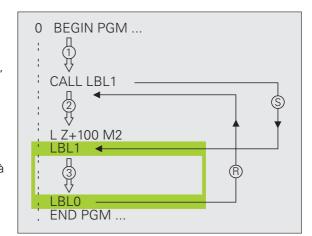
Sous-programmes et répétitions de parties de programme

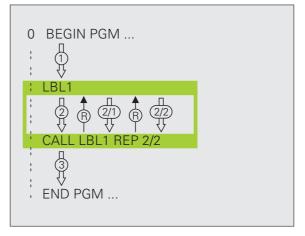
A l'aide des sous-programmes et répétitions de parties de programmes, des phases d'usinage déjà programmées une fois peuvent être exécutées plusieurs fois.

Travailler avec les sous-programmes

- 1 Le programme principal est exécuté jusqu'à l'appel du sousprogramme CALL LBL 1
- 2 Le sous-programme désigné par LBL 1 est ensuite exécuté jusqu'à la fin du sous-programme LBL 0
- 3 Le programme principal se poursuit

Placer les sous-programmes après la fin du programme principal (M2)!


- A la question de dialogue **REP**, répondre par NO ENT!
- CALL LBLO n'est pas autorisé!


Travailler avec répétitions de partie de programme

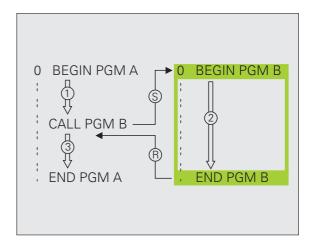
- 1 Le programme principal est exécuté jusqu'à l'appel de la répétition de partie de programme CALL LBL 1 REP2
- 2 La partie de programme située entre LBL 1 et CALL LBL 1 REP2 est répétée autant de fois qu'il est indiqué sous REP
- 3 A l'issue de la dernière répétition, le programme principal se poursuit

La partie de programme à répéter est donc exécutée une fois de plus que le nombre de répétitions programmé!

Imbrications de sous-programmes

Sous-programme dans sous-programme

- 1 Le programme principal est exécuté jusqu'au premier appel du sousprogramme CALL LBL 1
- 2 Le sous-programme 1 est exécuté jusqu'au deuxième appel de sousprogramme CALL LBL 2
- 3 Le sous-programme 2 est exécuté jusqu'à la fin du sous-programme
- 4 Le sous-programme 1 se poursuit jusqu'à ce qu'il soit terminé
- 5 Le programme principal se poursuit


- Un sous-programme ne peut pas s'appeler lui-même!
- Niveaux d'imbrications max. des sous-programmes: 8.

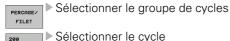
Programme quelconque pris comme sous-programme

- Le programme principal A qui appelle est exécuté jusqu'à l'appel de CALL PGM B
- 2 Le programme B qui est appelé est exécuté intégralement
- 3 Le programme principal A qui appelle se poursuit

Le programme **qui est appelé** ne peut pas s'achever par **M2** ou **M30**!

Travail à l'aide des cycles

Les opérations d'usinage répétitives sont mémorisées dans la TNC sous forme de cycles. Il en va de même pour les conversions du système de coordonnées et certaines fonctions spéciales.



- Pour remédier aux erreurs d'introduction des données lors de la définition du cycle, testez graphiquement le programme avant de l'exécuter!
- Le signe du paramètre de cycle Profondeur détermine le sens de l'usinage!
- Dans tous les cycles dont le numéro est supérieur à 200, la TNC positionne l'outil automatiquement dans l'axe d'outil.

Définition des cycles

▶ Sélectionner la liste des cycles:

Groupe de cycles

Cycles perçage profond, alésage à l'alésoir, alésage à l'outil, contreperçage, taraudage, filetage et fraisage de filets

PERCAGE/ FILET

Cycles de fraisage de poches, tenons, rainures

POCHES/ TENONS/ RAINURES

Cycles d'usinage de motifs de points, ex. cercle de trous ou surface de trous

MOTIFS DE POINTS

Cycles SL (Subcontur-List) pour l'usinage parallèle à l'axe de contours complexes composés de plusieurs segments de contour superposés, interpolation du corps d'un cylindre

SL II

Cycles d'usinage ligne à ligne de surfaces planes ou gauchies

USINAGE LIGNE -A-LIGNE

Cycles de conversion de coordonnées: les contours peuvent subir un décalage du point zéro, une rotation, être usinés en image miroir, agrandis ou réduits

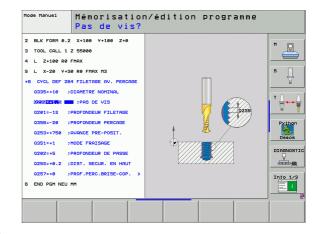
CONVERS.

Cycles spéciaux: Temporisation, appel de programme, orientation broche, tolérance

CYCLES

Aide graphique lors de la programmation des cycles

Grâce à la représentation graphique des paramètres d'introduction, la TNC vous apporte son concours dans la définition des cycles.


Appeler les cycles

Les cycles suivants sont actifs dès leur définition dans le programme d'usinage:

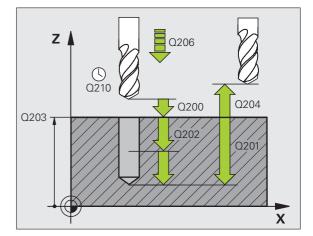
- Cycles de conversion de coordonnées
- Cycle TEMPORISATION
- Cycles SL CONTOUR et DONNEES DE CONTOUR
- Motifs de points
- Cycle TOLERANCE

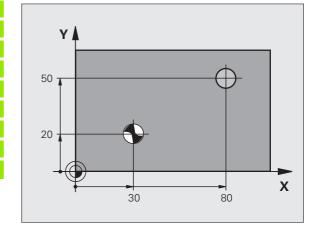
Tous les autres cycles sont actifs après avoir été appelés avec:

- CYCL CALL: Effet pas à pas
- CYCL CALL PAT: Effet pas à pas en liaison avec les tableaux de points et PATTERN DEF
- CYCL CALL POS: Effet pas à pas après que la position définie dans la séquence CYCL CALL POS a été abordée
- M99: Effet pas à pas
- M89: Effet modal (en fonction des paramètres-machine)

Cycles d'usinage de trous et filets

Vue d'ensemble


Cycle	s disponibles	Page
240	CENTRAGE	47
200	PERCAGE	48
201	ALESAGE A L'ALESOIR	49
202	ALESAGE A L'OUTIL	50
203	PERCAGE UNIVERSEL	51
204	CONTRE PERCAGE	52
205	PERCAGE PROFOND UNIVERSEL	53
208	FRAISAGE DE TROUS	54
206	NOUVEAU TARAUDAGE	55
207	NOUVEAU TARAUDAGE RIGIDE	56
209	TARAUDAGE BRISE COPEAUX	57
262	FRAISAGE DE FILETS	58
263	FILETAGE SUR UN TOUR	59
264	FILETAGE AVEC PERCAGE	60
265	FILETAGE HELICOÏDAL AVEC PERCAGE	61
267	FILETAGE EXTERIFUR SUR TENON	62



CENTRAGE (cycle 240)

- ▶ CYCL DEF: Sélectionner le cycle 400 CENTRAGE
 - ▶ Distance d'approche: **Q200**
 - Choix profondeur/diamètre.: Définir si le centrage doit être réalisé à la profondeur ou au diamètre programmé(e): Q343
 - ▶ Profondeur: Distance entre surface de la pièce et fond du trou: **Q201**
 - Diamètre: Le signe détermine le sens de l'usinage: Q344
 - ► Avance plongée en profondeur: **Q206**
 - ► Temporisation au fond: **Q211**
 - ► Coordonnée surface pièce: **Q203**
 - ▶ Saut de bride: **Q204**

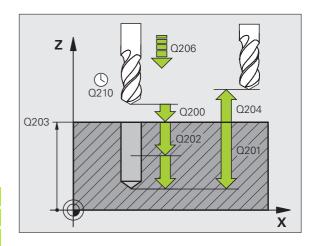
11 CYCL DEF 240	CENTRAGE
Q200=2	;DISTANCE D'APPROCHE
0343=1	;CHOIX PROFOND./DIAM.
Q201=+0	; PROFONDEUR
0344=-10	;DIAMÈTRE
Q206=250	;AVANCE PLONGÉE PROF.
Q211=0	;TEMPO. AU FOND
Q203=+20	;COORD. SURFACE PIÈCE
Q204=100	;SAUT DE BRIDE
12 CYCL CALL POS	5 X+30 Y+20 M3
13 CYCL CALL POS	5 X+80 Y+50

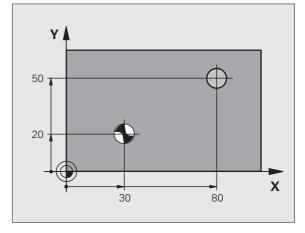
PERCAGE (cycle 200)

▶ CYCL DEF: Sélectionner le cycle 200 PERCAGE

▶ Distance d'approche: **Q200**

▶ Profondeur: Distance entre surface de la pièce et fond du trou: **Q201**


▶ Avance plongée en profondeur: **Q206**


Profondeur de passe: Q202
 Temporisation en haut: Q210
 Coordonnée surface pièce: Q203

▶ Saut de bride: **Q204**

► Temporisation au fond: **Q211**

11 CYCL DEF 200	PERÇAGE
Q200=2	;DISTANCE D'APPROCHE
0201=-15	; PROFONDEUR
Q206=250	;AVANCE PLONGÉE PROF.
Q202=5	;PROFONDEUR DE PASSE
Q210=0	;TEMPO. EN HAUT
0203=+20	;COORD. SURFACE PIÈCE
0204=100	;SAUT DE BRIDE
0211=0,1	;TEMPO. AU FOND
12 CYCL CALL POS	S X+30 Y+20 M3
13 CYCL CALL PO	S X+80 Y+50

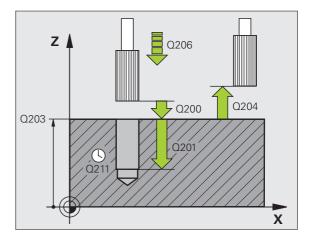
ALESAGE A L'ALESOIR (cycle 201)

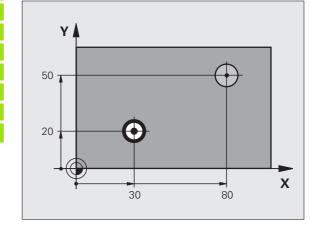
▶ CYCL DEF: Sélectionner le cycle 201 ALESAGE A L'ALESOIR

▶ Distance d'approche: **Q200**

▶ Profondeur: Distance entre surface de la pièce et fond du trou: **Q201**

▶ Avance plongée en profondeur: **Q206**


► Temporisation au fond: **Q211**

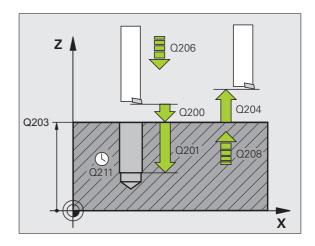

Avance de retrait: **Q208**

► Coordonnée surface pièce: **Q203**

▶ Saut de bride: **Q204**

10 L Z+100 RO FMAX	
11 CYCL DEF 201 AL	ES. A L'ALESOIR
Q200=2	;DISTANCE D'APPROCHE
Q201=-15	; PROFONDEUR
Q206=100	;AVANCE PLONGÉE PROF.
Q211=0.5	;TEMPO. AU FOND
Q208=250	;AVANCE RETRAIT
Q203=+20	;COORD. SURFACE PIÈCE
Q204=100	;SAUT DE BRIDE
12 CYCL CALL POS X	+30 Y+20 M3
13 CYCL CALL POS X	+80 Y+50

ALESAGE A L'OUTIL (cycle 202)



- La machine et la TNC doivent avoir été préparées par le constructeur de la machine pour l'utilisation du cycle ALESAGE A L'OUTIL.
- L'usinage est exécuté avec l'asservissement de la broche!

Danger de collision! Sélectionner le sens de dégagement de l'outil de manière à ce que l'outil s'éloigne du bord du trou!

- ► CYCL DEF: Sélectionner le cycle 202 ALESAGE A L'OUTIL
 - ▶ Distance d'approche: **Q200**
 - ▶ Profondeur: Distance entre surface de la pièce et fond du trou: **Q201**
 - Avance plongée en profondeur: **Q206**
 - ► Temporisation au fond: **Q211**
 - ▶ Avance de retrait: **0208**
 - Coordonnée surface pièce: **Q203**
 - ▶ Saut de bride: **0204**
 - ► Sens de dégagement (0/1/2/3/4) au fond du trou: **Q214**
 - ▶ Angle pour orientation broche: **Q336**

PERCAGE UNIVERSEL (cycle 203)

▶ CYCL DEF: Sélectionner le cycle 203 PERCAGE UNIVERSEL

▶ Distance d'approche: **Q200**

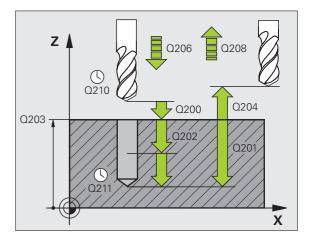
▶ Profondeur: Distance entre surface de la pièce et fond du trou: **Q201**

► Avance plongée en profondeur: **Q206**

Profondeur de passe: Q202
 Temporisation en haut: Q210
 Coordonnée surface pièce: Q203

▶ Saut de bride: **Q204**

▶ Valeur de réduction après chaque passe: **Q212**

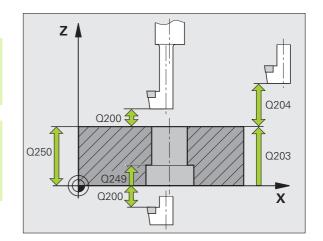

▶ Nombre brise copeaux avant retrait: **Q213**

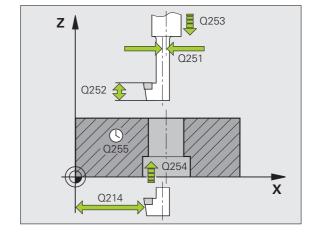
▶ Profondeur de passe min. si valeur de réduction programmée: **Q205**

► Temporisation au fond: **Q211**

▶ Avance de retrait: **Q208**

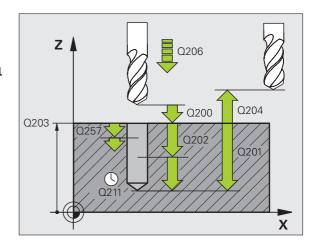
▶ Retrait avec brise-copeaux: **Q256**


CONTRE PERCAGE (cycle 204)



- La machine et la TNC doivent avoir été préparées par le constructeur de la machine pour l'utilisation du cycle CONTRE-PERCAGE!
- L'usinage est exécuté avec l'asservissement de la broche!

- Danger de collision! Sélectionner le sens de dégagement de l'outil de manière à ce que l'outil s'éloigne du fond du trou!
- N'utiliser ce cycle qu'avec des outils pour usinage en tirant!
- ► CYCL DEF: Sélectionner le cycle 204 CONTRE-PERCAGE
 - ▶ Distance d'approche: **Q200**
 - ▶ Profondeur de plongée: **Q249**
 - ► Epaisseur matériau: **Q250**
 - ► Cote excentrique: **Q251**
 - ► Hauteur de la dent: **Q252**
 - ► Avance de pré-positionnement: **Q253**
 - ► Avance plongée: **Q254**
 - ► Temporisation à la base de contre-perçage: **Q255**
 - ► Coordonnée surface pièce: **Q203**
 - ▶ Saut de bride: **Q204**
 - ▶ Sens de dégagement (0/1/2/3/4): **Q214**
 - ▶ Angle pour orientation broche: **Q336**



PERCAGE PROFOND UNIVERSEL (cycle 205)

- ▶ CYCL DEF: Sélectionner le cycle 205 PERCAGE PROFOND UNIVERSEL
 - ▶ Distance d'approche: **Q200**
 - ▶ Profondeur: Distance entre surface de la pièce et fond du trou: **Q201**
 - ► Avance plongée en profondeur: **Q206**
 - ▶ Profondeur de passe: **Q202**
 - ► Coordonnée surface pièce: **Q203**
 - ► Saut de bride: **Q204**
 - ▶ Valeur de réduction après chaque passe: **Q212**
 - ▶ Profondeur de passe min. si valeur de réduction programmée: **Q205**
 - Distance de sécurité en haut: Q258
 Distance de sécurité en bas: Q259
 - ▶ Profondeur de perçage pour brise-copeaux: **Q257**
 - ▶ Retrait avec brise-copeaux: **Q256**
 - ▶ Temporisation au fond: **Q211**
 - Point de départ plus profond: **Q379**
 - Avance de pré-positionnement: **Q253**

FRAISAGE DE TROUS (cycle 208)

▶ Prépositionnement au centre du trou avec R0

▶ CYCL DEF: Sélectionner le cycle 208 FRAISAGE DE TROUS

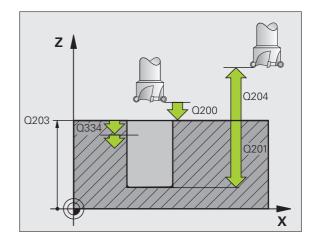
▶ Distance d'approche: **Q200**

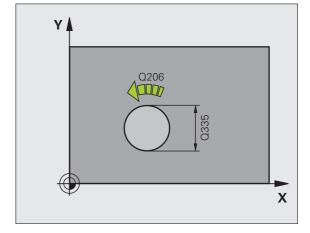
▶ Profondeur: Distance entre surface de la pièce et fond du trou: **Q201**

Avance plongée en profondeur: **Q206**

Passe par rotation hélic. (pas de vis): **Q334**

► Coordonnée surface pièce: **Q203**

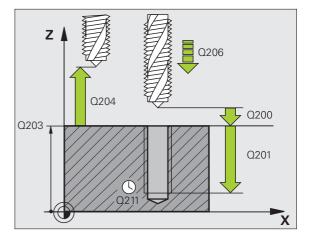

▶ Saut de bride: **Q204**


Diamètre nominal du trou: Q335Diamètre de pré-perçage: Q342

■ Mode de fraisage: **Q351**

En avalant: +1 En opposition: -1

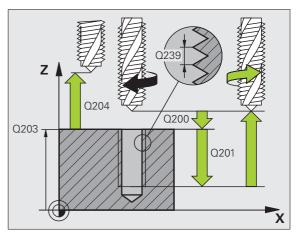
12 CYCL DEF 208	FRAISAGE DE TROUS
Q200=2	;DISTANCE D'APPROCHE
Q201=-80	; PROFONDEUR
Q206=150	;AVANCE PLONGÉE PROF.
Q334=1.5	;PROFONDEUR DE PASSE
Q203=+100	;COORD. SURFACE PIÈCE
Q204=50	;SAUT DE BRIDE
Q335=25	;DIAMÈTRE NOMINAL
Q342=0	;DIAMÈTRE PRÉ-PERÇAGE
Q351=0	;MODE FRAISAGE


NOUVEAU TARAUDAGE (cycle 206) avec mandrin de compensation

Pour le taraudage à droite, activer la broche avec M3, et à gauche, avec M4!

- Installer le mandrin de compensation linéaire
- ► CYCL DEF: Sélectionner le cycle 206 NOUVEAU TARAUDAGE
 - ▶ Distance d'approche: **Q200**
 - ▶ Profondeur de perçage: Longueur du filet = distance entre la surface de la pièce et la fin du filet: **Q201**
 - Avance F = vitesse de rotation broche S x pas de vis P: **Q206**
 - ▶ Temporisation au fond (introduire une valeur comprise entre 0 et 0,5 seconde): 0211
 - ► Coordonnée surface pièce: **Q203**
 - ▶ Saut de bride: **Q204**

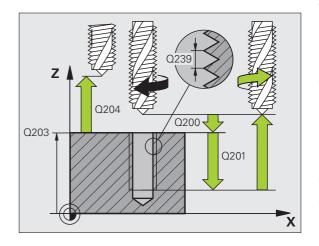
25 CYCL DEF 206	NOUVEAU TARAUDAGE
Q200=2	;DISTANCE D'APPROCHE
Q201=-20	; PROFONDEUR
Q206=150	;AVANCE PLONGÉE PROF.
Q211=0.25	;TEMPO. AU FOND
Q203=+25	;COORD. SURFACE PIÈCE
Q204=50	;SAUT DE BRIDE



NOUVEAU TARAUDAGE RIGIDE (cycle 207) sans mandrin de compensation

- La machine et la TNC doivent avoir été préparées par le constructeur de la machine pour le taraudage rigide.
- L'usinage est exécuté avec l'asservissement de la broche!
- ▶ CYCL DEF: Sélectionner le cycle 207 NOUVEAU TARAUDAGE RIGIDE
 - ▶ Distance d'approche: **Q200**
 - ▶ Profondeur de perçage: Longueur du filet = distance entre la surface de la pièce et la fin du filet: **Q201**
 - ▶ Pas de vis: **Q239**Le signe détermine le sens du filet vers la droite ou vers la gauche:
 Filet à droite: +
 Filet à gauche: -
 - ► Coordonnée surface pièce: **Q203**
 - ▶ Saut de bride: **Q204**

26 CYCL DEF 207	NOUV. TARAUDAGE RIG.
Q200=2	;DISTANCE D'APPROCHE
Q201=-20	; PROFONDEUR
Q239=+1	;PAS DE VIS
Q203=+25	;COORD. SURFACE PIÈCE
Q204=50	;SAUT DE BRIDE

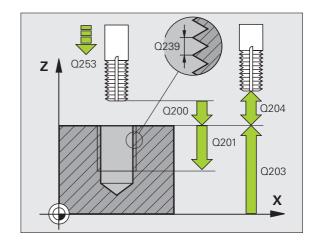


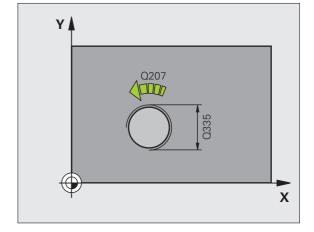
TARAUDAGE BRISE-COPEAUX (cycle 209)

- La machine et la TNC doivent avoir été préparées par le constructeur de la machine pour le taraudage.
- L'usinage est exécuté avec l'asservissement de la broche!
- ► CYCL DEF: Sélectionner le cycle 209 TARAUDAGE BRISE-COPEAUX
 - ▶ Distance d'approche: **Q200**
 - Profondeur de perçage: Longueur du filet = distance entre la surface de la pièce et la fin du filet: **Q201**
 - ▶ Pas de vis: **Q239** Le signe détermine le sens du filet vers la droite ou vers la gauche: Filet à droite: + Filet à gauche: -
 - ► Coordonnée surface pièce: **0203**
 - ▶ Saut de bride: **Q204**
 - ▶ Profondeur de perçage pour brise-copeaux: **Q257**
 - ▶ Retrait avec brise-copeaux: **Q256**
 - ▶ Angle pour orientation broche: **Q336**
 - ► Facteur de vitesse de rotation pour retrait: **Q403**

FRAISAGE DE FILETS (cycle 262)

- ▶ Prépositionnement au centre du trou avec R0
- ▶ CYCL DEF: Sélectionner le cycle 262 FRAISAGE DE FILETS
 - Diamètre nominal du filet: 0335
 - ▶ Pas de vis: **Q239**


Le signe détermine le sens du filet vers la droite ou vers la gauche:


Filet à droite: + Filet à gauche: -

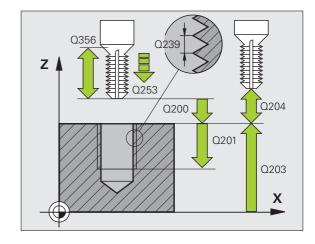
- ▶ Profondeur de filetage: Distance entre la surface de la pièce et la fin du filet: **Q201**
- Nombre de filets par pas: Q355
- Avance de pré-positionnement: **Q253**
- ► Mode de fraisage: **Q351** En avalant: +1 En opposition: -1
- ▶ Distance d'approche: **Q200**
- ► Coordonnée surface pièce: **0203**
- ▶ Saut de bride: **Q204**
- ▶ Avance de fraisage: **Q207**

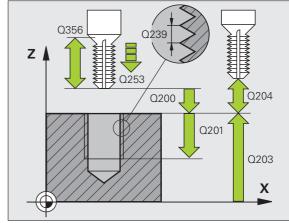
Notez que la TNC exécute un déplacement compensatoire dans l'axe d'outil avant le déplacement d'approche. L'importance du déplacement compensatoire dépend du pas de vis. Le trou doit présenter un emplacement suffisant!

FILETAGE SUR UN TOUR (cycle 263)

- ▶ Prépositionnement au centre du trou avec R0
- ▶ CYCL DEF: Sélectionner le cycle 263 FILETAGE SUR UN TOUR
 - Diamètre nominal du filet: **Q335**
 - ▶ Pas de vis: **Q239**

Le signe détermine le sens du filet vers la droite ou vers la gauche:

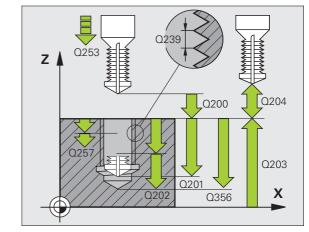

Filet à droite: + Filet à gauche: -

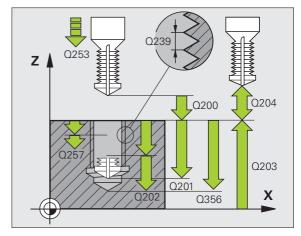

- Profondeur de filetage: Distance entre la surface de la pièce et la fin du filet: 0201
- Profondeur de plongée: Distance entre surface de la pièce et fond du trou: 0356
- ▶ Avance de pré-positionnement: **Q253**
- ▶ Mode de fraisage: **Q351**

En avalant: +1
En opposition: -1

- ▶ Distance d'approche: **Q200**
- Distance d'approche latérale: Q357
 Profondeur pour chanfrein: Q358
- ▶ Décalage jusqu'au chanfrein: Q359
- ► Coordonnée surface pièce: **Q203**

Saut de bride: **Q204**Avance plongée: **Q254**Avance fraisage: **Q207**


FILETAGE AVEC PERCAGE (cycle 264)

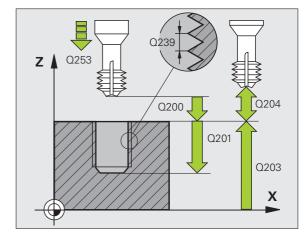

- ▶ Prépositionnement au centre du trou avec R0
- ▶ CYCL DEF: Sélectionner le cycle 264 FILETAGE AVEC PERCAGE
 - Diamètre nominal du filet: **Q335**
 - ▶ Pas de vis: **Q239**

Le signe détermine le sens du filet vers la droite ou vers la gauche:

Filet à droite: + Filet à gauche: -

- ▶ Profondeur de filetage: Distance entre la surface de la pièce et la fin du filet: **Q201**
- ▶ Profondeur de perçage: Distance entre surface de la pièce et fond du trou: 0356
- Avance de pré-positionnement: **Q253**
- ► Mode de fraisage: **Q351** En avalant: +1 En opposition: -1
- ▶ Profondeur de passe: **Q202**
- Distance de sécurité en haut: **0258**
- ▶ Profondeur de perçage pour brise-copeaux: **Q257**
- ▶ Retrait avec brise-copeaux: **Q256**
- ► Temporisation au fond: **Q211**
- ▶ Profondeur pour chanfrein: **Q358**
- ▶ Décalage jusqu'au chanfrein: **Q359**
- ▶ Distance d'approche: **Q200**
- Coordonnée surface pièce: **Q203**
- ▶ Saut de bride: **Q204**
- Avance plongée en profondeur: **Q206**
- ► Avance fraisage: **Q207**

FILETAGE HELICOIDAL AVEC PERCAGE (cycle 265)

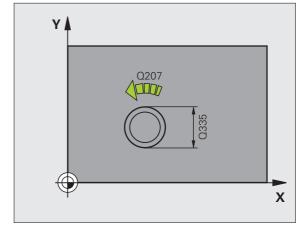

- ▶ Prépositionnement au centre du trou avec R0
- ► CYCL DEF: Sélectionner le cycle 265 FILETAGE HELICOIDAL AVEC PERCAGE
 - ▶ Diamètre nominal du filet: **Q335**
 - Pas de vis: **Q239**

Le signe détermine le sens du filet vers la droite ou vers la gauche:

Filet à droite: + Filet à gauche: -

- Profondeur de filetage: Distance entre la surface de la pièce et la fin du filet: Q201
- Avance de pré-positionnement: **Q253**
- ▶ Profondeur pour chanfrein: **Q358**
- ▶ Décalage jusqu'au chanfrein: **Q359**
- Procédure de plongée: **Q360**
- ▶ Profondeur de passe: **Q202**
- ▶ Distance d'approche: **Q200**
- Coordonnée surface pièce: **Q203**
- Saut de bride: **Q204**Avance plongée: **Q254**Avance fraisage: **Q207**

FILETAGE EXTERNE SUR TENON (cycle 267)


- ▶ Prépositionnement au centre du trou avec R0
- ▶ CYCL DEF: Sélectionner le cycle 267 FILETAGE EXTERNE SUR TENON
 - Diamètre nominal du filet: **Q335**
 - ▶ Pas de vis: **Q239**

Le signe détermine le sens du filet vers la droite ou vers la gauche:

Filet à droite: + Filet à gauche: -

- ▶ Profondeur de filetage: Distance entre la surface de la pièce et la fin du filet: **Q201**
- Nombre de filets par pas: Q355
- Avance de pré-positionnement: **Q253**
- ► Mode de fraisage: **Q351** En avalant: +1 En opposition: -1
- ▶ Distance d'approche: **Q200**
- ▶ Profondeur pour chanfrein: **Q358**
- Décalage jusqu'au chanfrein: **Q359**
- ► Coordonnée surface pièce: **Q203**
- Saut de bride: **Q204**Avance plongée: **Q254**Avance fraisage: **Q207**

Poches, tenons et rainures

Vue d'ensemble

Cycles disponibles		Page
251	POCHE RECTANGULAIRE intégrale	64
252	POCHE CIRCULAIRE intégrale	65
253	RAINURE intégrale	66
254	RAINURE CIRCULAIRE intégrale	67
256	TENON RECTANGULAIRE	68
257	TENON CIRCULAIRE	69

POCHE RECTANGULAIRE (cycle 251)

▶ CYCL DEF: Sélectionner le cycle 251 POCHE RECTANGULAIRE

▶ Opérations d'usinage (0/1/2): **Q215**

1er côté: Q218
 2ème côté: Q219
 Rayon d'angle: Q220

► Surépaisseur de finition latérale **Q368**

Position angulaire: Q224
 Position poche: Q367
 Avance de fraisage: Q207

▶ Mode de fraisage: **Q351** En avalant: +1, en opposition: -1

▶ Profondeur: Distance entre la surface de la pièce et le fond de la

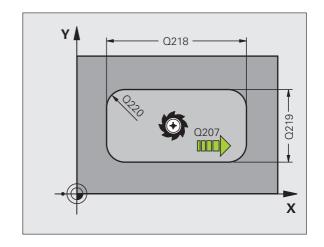
poche: **Q201**

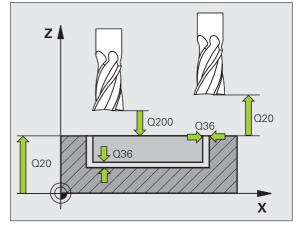
▶ Profondeur de passe: **Q202**

► Surépaisseur de finition en profondeur: **Q369**

Avance plongée en profondeur: **Q206**

Passe de finition: **Q338**Distance d'approche: **Q200**


► Coordonnée surface pièce: **Q203**


▶ Saut de bride: **Q204**

► Facteur de recouvrement: **Q370**

Stratégie de plongée: Q366. 0 = plongée perpendiculaire, 1 = plongée hélicoïdale, 2 = plongée pendulaire

▶ Avance de finition: **Q385**

POCHE CIRCULAIRE (cycle 252)

▶ CYCL DEF: Sélectionner le cycle 252 POCHE CIRCULAIRE

▶ Opérations d'usinage (0/1/2): **Q215**

▶ Diamètre pièce finie: **Q223**

► Surépaisseur de finition latérale **Q368**

Avance de fraisage: **Q207**

▶ Mode de fraisage: **Q351** En avalant: +1, en opposition: -1

▶ Profondeur: Distance entre la surface de la pièce et le fond de la

poche: **Q201**

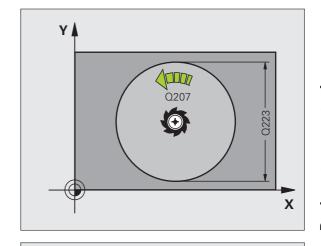
▶ Profondeur de passe: **Q202**

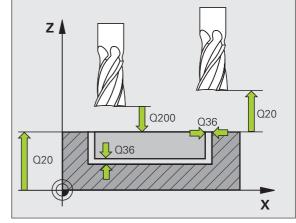
Surépaisseur de finition en profondeur: Q369

▶ Avance plongée en profondeur: **Q206**

Passe de finition: Q338Distance d'approche: Q200

► Coordonnée surface pièce: **Q203**


▶ Saut de bride: **0204**


Facteur de recouvrement: **Q370**

Stratégie de plongée: **Q366**. 0 = plongée perpendiculaire, 1 = plongée

hélicoïdale

Avance de finition: **Q385**

RAINURAGE (cycle 253)

► CYCL DEF: Sélectionner le cycle 253 RAINURAGE

▶ Opérations d'usinage (0/1/2): **Q215**

1er côté: **Q218**2ème côté: **Q219**

► Surépaisseur de finition latérale **Q368**

▶ Angle de rotation de toute la rainure: **Q374**

▶ Position rainure (0/1/2/3/4): **Q367**

▶ Avance de fraisage: **Q207**

▶ Mode de fraisage: **Q351** En avalant: +1, en opposition: -1

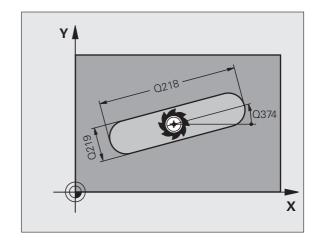
Profondeur: Distance entre surface de la pièce et fond de la rainure: Q201

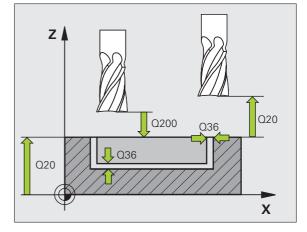
▶ Profondeur de passe: **Q202**

▶ Surépaisseur de finition en profondeur: **Q369**

► Avance plongée en profondeur: **Q206**

Passe de finition: **Q338**


▶ Distance d'approche: **Q200**


► Coordonnée surface pièce: **Q203**

► Saut de bride: **Q204**

Stratégie de plongée: Q366. 0 = plongée perpendiculaire, 1 = plongée pendulaire

▶ Avance de finition: **Q385**

RAINURE CIRCULAIRE (cycle 254)

▶ CYCL DEF: Sélectionner le cycle 254 RAINURE CIRCULAIRE

▶ Opérations d'usinage (0/1/2): **Q215**

≥ 2ème côté: **Q219**

► Surépaisseur de finition latérale Q368

Diamètre du cercle primitif: Q375

▶ Position rainure (0/1/2/3): **Q367**

Centre 1er axe: Q216Centre 2ème axe: Q217

► Angle initial: **Q376**

► Angle d'ouverture de la rainure: **Q248**

Incrément angulaire: Q378
 Nombre d'usinages: Q377
 Avance de fraisage: Q207

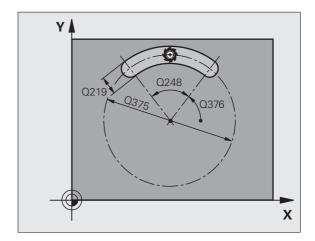
▶ Mode de fraisage: **Q351** En avalant: +1, en opposition: -1

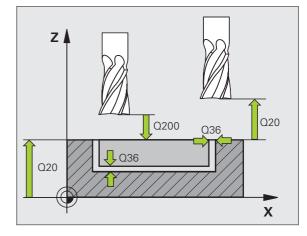
Profondeur: Distance entre surface de la pièce et fond de la rainure: 0201

▶ Profondeur de passe: **Q202**

Surépaisseur de finition en profondeur: Q369

Avance plongée en profondeur: **Q206**


Passe de finition: Q338Distance d'approche: Q200


Coordonnée surface pièce: **Q203**

► Saut de bride: **Q204**

Stratégie de plongée: Q366. 0 = plongée perpendiculaire, 1 = plongée hélicoïdale

Avance de finition: **Q385**

TENON RECTANGULAIRE (cycle 256)

▶ CYCL DEF: Sélectionner le cycle 256 TENON RECTANGULAIRE

▶ 1er côté: **Q218**

► Cote pièce brute côté 1: **Q424**

■ 2ème côté: **0219**

► Cote pièce brute côté 2: **Q425**

■ Rayon d'angle: **Q220**

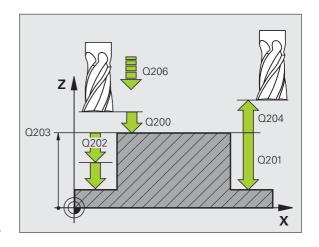
► Surépaisseur de finition latérale **Q368**

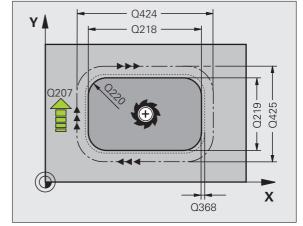
Position angulaire: Q224
 Position tenon: Q367
 Avance de fraisage: Q207

▶ Mode de fraisage: **Q351** En avalant: +1, en opposition: -1

▶ Profondeur: Distance entre surface de la pièce et fond du tenon: **Q201**

▶ Profondeur de passe: **Q202**


Avance plongée en profondeur: **Q206**


▶ Distance d'approche: **Q200**

► Coordonnée surface pièce: **Q203**

▶ Saut de bride: **Q204**

■ Facteur de recouvrement: 0370

TENON CIRCULAIRE (cycle 257)

▶ CYCL DEF: Sélectionner le cycle 257 TENON CIRCULAIRE

Diamètre pièce finie: **Q223**Diamètre pièce brute: **Q222**

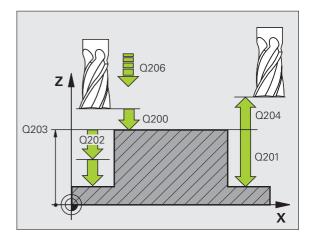
■ Surépaisseur de finition latérale **Q368**

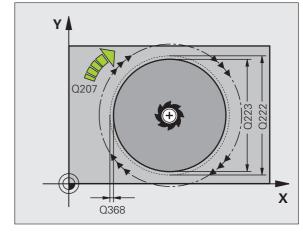
▶ Avance de fraisage: **Q207**

▶ Mode de fraisage: **Q351** En avalant: +1, en opposition: -1

▶ Profondeur: Distance entre surface de la pièce et fond du tenon: **Q201**

▶ Profondeur de passe: **Q202**


▶ Avance plongée en profondeur: **Q206**


▶ Distance d'approche: **Q200**

► Coordonnée surface pièce: **Q203**

▶ Saut de bride: **Q204**

► Facteur de recouvrement: 0370

Motifs de points

Vue d'ensemble

Cycles	s disponibles	Page
220	MOTIFS DE TROUS SUR UN CERCLE	70
221	MOTIFS DE TROUS EN GRILLE	71

MOTIFS DE POINTS SUR UN CERCLE (cycle 220)

▶ CYCL DEF: Sélectionner le cycle 220 MOTIFS DE POINTS SUR UN CERCLE

Centre 1er axe: **Q216**Centre 2ème axe: **Q217**

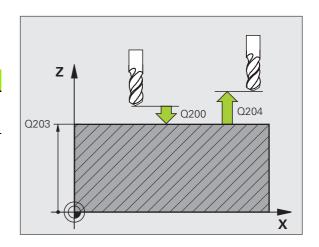
Diamètre du cercle primitif: **Q244**

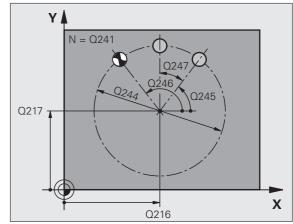
Angle initial: **Q245**Angle final: **Q246**

Incrément angulaire: **Q247**Nombre d'usinages: **Q241**

▶ Distance d'approche: **Q200**

Coordonnée surface pièce: **Q203**


▶ Saut de bride: **Q204**


Déplacement à la hauteur de sécurité: **Q301**

▶ Type de déplacement: **Q365**

Vous pouvez combiner les cycles suivants avec le cycle 220: 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 240, 251, 252, 253, 254, 256, 257, 262, 263, 264, 265, 267.

MOTIFS DE POINTS EN GRILLE (cycle 221)

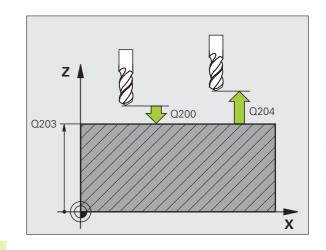
▶ CYCL DEF: Sélectionner le cycle 221 MOTIFS DE POINTS EN GRILLE

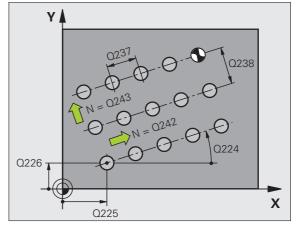
Point initial 1er axe: Q225
 Point initial 2ème axe: Q226
 Distance 1er axe: Q237

Distance 2ème axe: **Q238**Nombre de colonnes: **Q242**

Nombre de lignes: **Q243** Position angulaire: **Q224** Distance d'approche: **Q200**

▶ Coordonnée surface pièce: **Q203**


► Saut de bride: **Q204**


Déplacement à la hauteur de sécurité: **Q301**

- Le cycle **221 MOTIFS DE POINTS EN GRILLE** est actif dès qu'il a été défini!
- Le cycle 221 appelle automatiquement le dernier cycle d'usinage défini!
- Vous pouvez combiner les cycles suivants avec le cycle 221: 1, 2, 3, 4, 5, 17, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 240, 251, 252, 253, 256, 257, 262, 263, 264, 265, 267
- Distance d'approche, coordonnée surface pièce et saut de bride sont toujours activés par le cycle 221!

La TNC pré-positionne automatiquement l'outil dans l'axe d'outil et dans le plan d'usinage.

Cycles SL

Vue d'ensemble

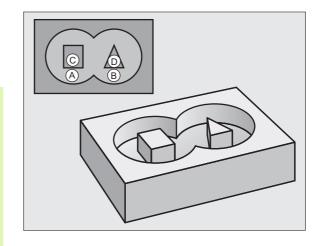
Cycles disponibles		Page
14	CONTOUR	74
20	DONNEES DU CONTOUR	75
21	PRE-PERCAGE	76
22	EVIDEMENT	76
23	FINITION EN PROFONDEUR	77
24	FINITION LATERALE	77
25	TRACE DE CONTOUR	78
27	CORPS D'UN CYLINDRE	79
28	CORPS D'UN CYLINDRE, RAINURE	80
29	CORPS D'UN CYLINDRE, OBLONG CONVEXE	81
39	CORPS D'UN CYLINDRE, CONTOUR EXTERNE	82

Généralités

Les cycles SL sont avantageux lorsque les contours sont constitués de plusieurs éléments de contour (au maximum 12 îlots ou poches).

Les éléments de contour sont définis dans des sous-programmes.

Remarques concernant les éléments de contour:


- Avec une poche, la fraise se déplace à l'intérieur du contour, avec un îlot, elle se déplace à l'extérieur de l'îlot!
- Les déplacements d'approche et de sortie du contour ainsi que les passes dans l'axe d'outil ne peuvent pas être programmés!
- Les éléments de contour dans le cycle 14 CONTOUR doivent former des contours fermés!
- La mémoire réservée à un cycle SL est limitée. Dans un tel cycle SL, vous pouvez programmer, par exemple, environ 2048 séquences linéaires.

Le contour du cycle 25 TRACE DE CONTOUR ne doit pas être un contour fermé!

Avant le déroulement du programme, exécuter une simulation graphique. Celle-ci vous permettre de voir si les contours sont définis correctement!

CONTOUR (cycle 14)

Le cycle **14 CONTOUR** comprend la liste des sous-programmes superposés pour former un contour entier.

- ► CYCL DEF: Sélectionner le cycle 14 CONTOUR
 - Numéros de labels pour contour: Enumérer les numéros de LABEL des sous-programmes qui doivent être superposés pour former un contour fermé.

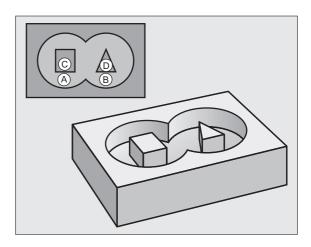
Le cycle 14 CONTOUR est actif dès qu'il a été défini!

4 CYCL DEF 14.0 CONTOUR

5 CYCL DEF 14.1 LABEL DE CONTOUR 1/2/3
...

36 L Z+200 RO FMAX M2

37 LBL1


38 L X+0 Y+10 RR

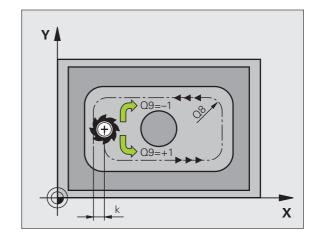
39 L X+20 Y+10

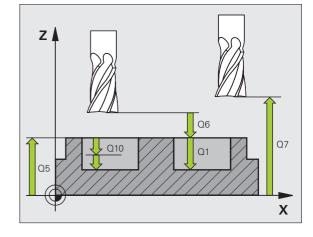
40 CC X+50 Y+50
...

45 LBL0

46 LBL2

. . .


DONNEES DU CONTOUR (cycle 20)


Dans le cycle **20 DONNEES DU CONTOUR**, vous définissez les informations concernant l'usinage avec les cycles 21 à 24.

- ► CYCL DEF: Sélectionner le cycle 20 DONNEES DU CONTOUR
 - ▶ Profondeur de fraisage: Distance entre la surface de la pièce et le fond de la poche: Q1
 - ► Facteur de recouvrement: **Q2**
 - ► Surépaisseur de finition latérale Q3
 - ► Surépaisseur de finition en profondeur **Q4**
 - Coordonnée surface pièce: Coordonnée de la surface de la pièce par rapport au point zéro actuel: Q5
 - Distance d'approche: Distance entre l'outil et la surface de la pièce: 06
 - Hauteur de sécurité: Hauteur excluant tout risque de collision avec la pièce: Q7
 - ▶ Rayon interne d'arrondi: Rayon d'arrondi de la trajectoire du centre de l'outil aux angles internes: **Q8**
 - ▶ Sens de rotation: **Q9**: Sens horaire Q9 = -1, sens anti-horaire Q9 = +1

Le cycle **20 DONNEES DU CONTOUR** est actif dès qu'il a été défini!

PRE-PERCAGE (cycle 21)

▶ CYCL DEF: Sélectionner le cycle 21 PRE-PERCAGE

▶ Profondeur de passe: **Q10** en incrémental

Avance plongée en profondeur: **Q11**

Numéro outil d'évidement: **Q13**

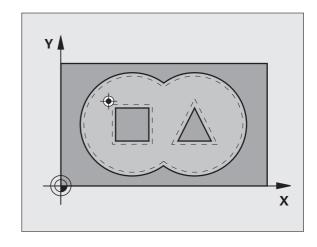
EVIDEMENT (cycle 22)

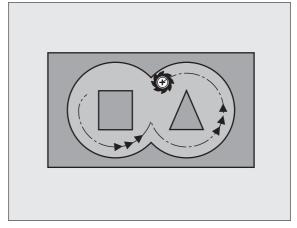
L'évidement est réalisé parallèlement au contour et pour chaque profondeur de passe.

► CYCL DEF: Sélectionner le cycle 22 EVIDEMENT

▶ Profondeur de passe: **Q10**

► Avance plongée en profondeur: **Q11**


► Avance d'évidement: **Q12**


Numéro outil de pré-évidement: Q18

Avance pendulaire: Q19Avance de retrait: 0208

► Facteur d'avance en %: Réduction de l'avance lorsque l'outil est en position de pleine attaque: **Q401**

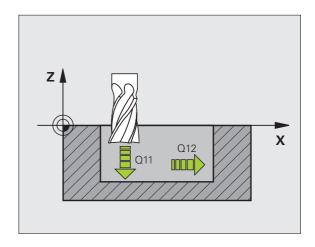
▶ Stratégie de semi-finitiion: Définir le comportement de la TNC lors de la semi-finition: **0404**

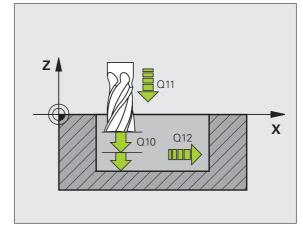
FINITION EN PROFONDEUR (cycle 23)

On effectue la finition du plan à usiner parallèlement au contour en tenant compte de la surépaisseur de profondeur.

- ▶ CYCL DEF: Sélectionner le cycle 23 FINITION EN PROFONDEUR
 - ► Avance plongée en profondeur: **Q11**
 - Avance d'évidement: **Q12**
 - Avance de retrait: **Q208**

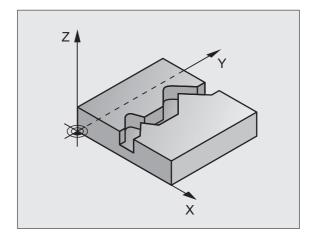
Appeler le cycle 22 EVIDEMENT avant le cycle 23!


FINITION LATERALE (cycle 24)


Finition des différents éléments de contour.

- ► CYCL DEF: Sélectionner le cycle 24 FINITION LATERALE
 - ▶ Sens de rotation: **Q9**. Sens horaire Q9 = -1, sens anti-horaire Q9 = +1
 - ▶ Profondeur de passe: **Q10**
 - Avance plongée en profondeur: **Q11**
 - Avance d'évidement: **Q12**
 - Surépaisseur de finition latérale: Q14: Surépaisseur pour plusieurs opérations de finition

Appeler le cycle 22 EVIDEMENT avant le cycle 24!

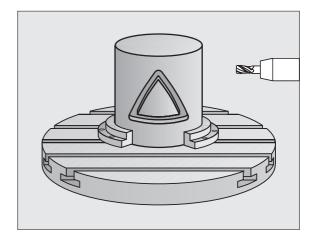

TRACE DE CONTOUR (cycle 25)

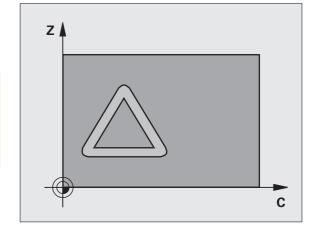
Ce cycle permet de définir les données de l'usinage d'un contour ouvert, lui-même défini dans un sous-programme de contour.

- ▶ CYCL DEF: Sélectionner le cycle 25 TRACE DE CONTOUR
 - ▶ Profondeur de fraisage: **Q1**
 - Surépaisseur de finition latérale: Q3. Surépaisseur de finition dans le plan d'usinage
 - Coordonnée surface pièce: **Q5**. Coordonnée de la surface de la pièce
 - ▶ Hauteur de sécurité: **Q7**: Hauteur à laquelle ne peut se produire aucune collision entre l'outil et la pièce
 - ▶ Profondeur de passe: **Q10**
 - Avance plongée en profondeur: Q11
 - ► Avance de fraisage: **Q12**
 - Mode de fraisage: Q15 Fraisage en avalant: Q15 = +1, fraisage en opposition: Q15 = -1, pendulaire, avec plusieurs passes: Q15 = 0

- Le cycle **14 CONTOUR** ne peut contenir qu'un n° de label!
- Le sous-programme peut contenir jusqu'à environ 2048 segments de droite!
- Après l'appel du cycle, ne pas programmer de cotes incrémentales, risque de collision.
- Après l'appel du cycle, aborder une position absolue définie.

CORPS D'UN CYLINDRE (cycle 27, option de logiciel 1)

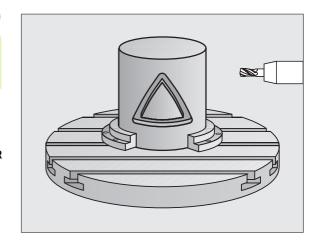

La machine et la TNC doivent avoir été préparées par le constructeur de la machine pour l'utilisation du cycle 27 CORPS D'UN CYLINDRE!

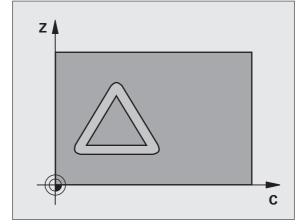

Avec le cycle **27 CORPS D'UN CYLINDRE**, vous pouvez transposer sur le corps d'un cylindre un contour préalablement défini à plat sur le déroulé.

- ▶ Définir le contour dans un sous-programme et avec le cycle **14 CONTOUR**
- ► CYCL DEF: Sélectionner le cycle 27 CORPS D'UN CYLINDRE
 - ▶ Profondeur de fraisage: **Q1**
 - ► Surépaisseur de finition latérale **Q3**
 - Distance d'approche: **Q6** Distance entre l'outil et la surface de la pièce
 - ▶ Profondeur de passe: **Q10**
 - ► Avance plongée en profondeur: **Q11**
 - Avance de fraisage: **Q12**
 - Rayon du cylindre: **Q16**. .
 - ▶ Unité de mesure: **Q17**. Degré = 0, mm/inch = 1

- Le bridage de la pièce doit être centré!
- L'axe d'outil doit être perpendiculaire à l'axe du plateau circulaire!
- Le cycle **14 CONTOUR** ne peut contenir qu'un n° de label!
- Le sous-programme peut contenir jusqu'à environ 1024 segments de droite!

CORPS D'UN CYLINDRE (cycle 28, option de logiciel 1)

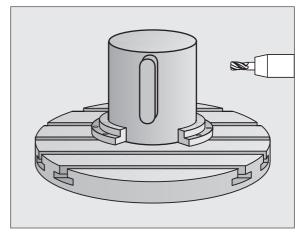

La machine et la TNC doivent avoir être préparées par le constructeur de la machine pour l'utilisation du cycle **28 CORPS D'UN CYLINDRE!**

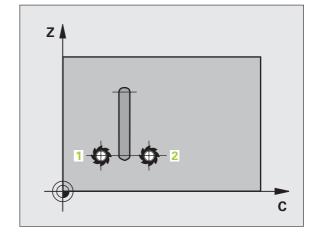

Avec le cycle **28 CORPS D'UN CYLINDRE**, vous pouvez transposer sur le corps d'un cylindre une rainure préalablement définie à plat sur le déroulé, sans distorsions des parois.

- ▶ Définir le contour dans un sous-programme et avec le cycle 14 CONTOUR
- ► CYCL DEF: Sélectionner le cycle 28 CORPS D'UN CYLINDRE
 - ▶ Profondeur de fraisage: **Q1**
 - ► Surépaisseur de finition latérale **Q3**
 - Distance d'approche: Q6 Distance entre l'outil et la surface de la pièce
 - ▶ Profondeur de passe: **Q10**
 - Avance plongée en profondeur: **Q11**
 - Avance de fraisage: **Q12**
 - Rayon du cylindre: Q16. .
 - ▶ Unité de mesure: **Q17**. Degré = 0, mm/inch = 1
 - Largeur rainure: **Q20**
 - ► Tolérance: **Q21**

- Le bridage de la pièce doit être centré!
- L'axe d'outil doit être perpendiculaire à l'axe du plateau circulaire!
- Le cycle **14 CONTOUR** ne peut contenir qu'un n° de label!
- Le sous-programme peut contenir jusqu'à environ 2048 segments de droite!

CORPS D'UN CYLINDRE (cycle 29, option de logiciel 1)

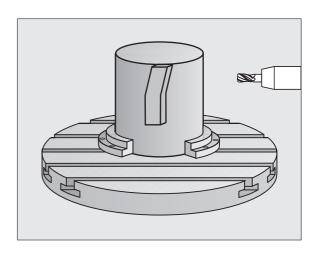

La machine et la TNC doivent avoir être préparées par le constructeur de la machine pour l'utilisation du cycle **29 CORPS D'UN CYLINDRE!**


Avec le cycle **29 CORPS D'UN CYLINDRE**, vous pouvez transposer sur le corps d'un cylindre un oblong convexe préalablement défini à plat sur le déroulé, sans distorsions des parois.

- ▶ Définir le contour dans un sous-programme et avec le cycle **14 CONTOUR**
- ► CYCL DEF: Sélectionner le cycle 29 CORPS D'UN CYLINDRE, OBLONG CONVEXE
 - ▶ Profondeur de fraisage: **Q1**
 - ► Surépaisseur de finition latérale **Q3**
 - ▶ Distance d'approche: Q6 Distance entre l'outil et la surface de la pièce
 - ▶ Profondeur de passe: **Q10**
 - Avance plongée en profondeur: Q11
 - Avance d'évidement: **Q12**
 - Rayon du cylindre: **Q16**. .
 - ▶ Unité de mesure: **Q17**. Degré = 0, mm/inch = 1
 - Largeur oblong: Q20

- Le bridage de la pièce doit être centré!
- L'axe d'outil doit être perpendiculaire à l'axe du plateau circulaire!
- Le cycle **14 CONTOUR** ne peut contenir qu'un n° de label!
- Le sous-programme peut contenir jusqu'à environ 2048 segments de droite!

CORPS D'UN CYLINDRE (cycle 39, option de logiciel 1)


La machine et la TNC doivent avoir être préparées par le constructeur de la machine pour l'utilisation du cycle 39 CORPS D'UN CYLINDRE, CONTOUR EXTERNE!

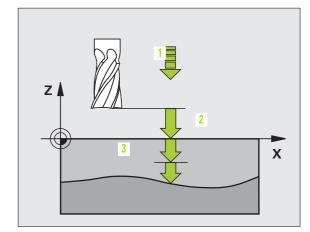
Avec le cycle **39 CORPS D'UN CYLINDRE CONTOUR EXTERNE**, vous pouvez transposer sur le corps d'un cylindre un contour ouvert préalablement défini à plat sur le déroulé.

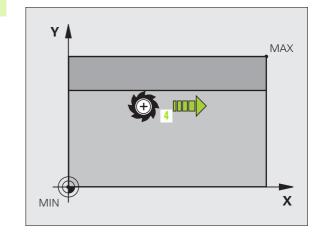
- ▶ Définir le contour dans un sous-programme et avec le cycle 14 CONTOUR
- ► CYCL DEF: Sélectionner le cycle 39 CORPS D'UN CYLINDRE, CONTOUR EXTERNE
 - ▶ Profondeur de fraisage: **Q1**
 - Surépaisseur de finition latérale Q3
 - ▶ Distance d'approche: Q6 Distance entre l'outil et la surface de la pièce
 - ▶ Profondeur de passe: **Q10**
 - Avance plongée en profondeur: **Q11**
 - ▶ Avance de fraisage: **Q12**
 - Rayon du cylindre: **Q16**...
 - ▶ Unité de mesure: **Q17**. Degré = 0, mm/inch = 1

- Le bridage de la pièce doit être centré!
- L'axe d'outil doit être perpendiculaire à l'axe du plateau circulaire!
- Le cycle **14 CONTOUR** ne peut contenir qu'un n° de label!
- Le sous-programme peut contenir jusqu'à environ 2048 segments de droite!

Cycles d'usinage ligne à ligne

Vue d'ensemble


Cycles disponibles		Page
30	EXECUTION DE DONNEES 3D	83
230	LIGNE A LIGNE	84
231	SURFACE REGULIERE	85
232	SURFACAGE	86


EXECUTION DE DONNEES 3D (cycle 14)

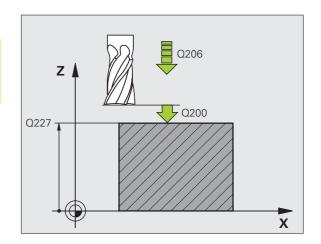
Le cycle requiert l'utilisation d'une fraise avec denture frontale (DIN 844)!

- ▶ CYCL DEF: Sélectionner le cycle 30 EXECUTION DE DONNEES 3D
 - Nom du programme de données digitalisées
 - ► Zone point MIN
 - ▶ Zone point MAX
 - Distance d'approche: 1
 - ▶ Profondeur de passe: 2
 - Avance plongée en profondeur: 3
 - Avance: 4
 - Fonction auxiliaire M.

USINAGE LIGNE A LIGNE (cycle 230)

Partant de la position actuelle, la TNC positionne tout d'abord l'outil dans le plan d'usinage, puis dans l'axe d'outil au point initial. Pré-positionner l'outil de manière à éviter toute collision avec la pièce ou les matériels de bridage!

▶ CYCL DEF: Sélectionner le cycle 230 LIGNE A LIGNE

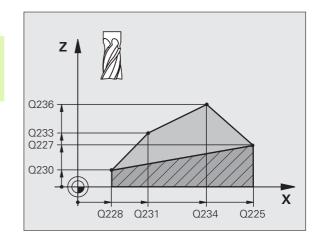

Point initial 1er axe: Q225
 Point initial 2ème axe: Q226
 Point initial 3ème axe: Q227

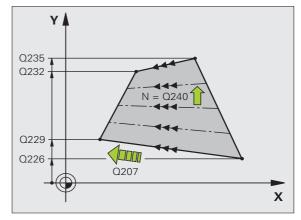
1er côté: **Q218**2ème côté: **Q219**

▶ Nombre de coupes: **Q240**

Avance plongée en profondeur: **Q206**

▶ Avance de fraisage: **Q207**▶ Avance transversale: **Q209**▶ Distance d'approche: **Q200**




SURFACE REGULIERE (cycle 231)

Partant de la position actuelle, la TNC positionne tout d'abord l'outil dans le plan d'usinage, puis dans l'axe d'outil au point initial (point 1). Pré-positionner l'outil de manière à éviter toute collision avec la pièce ou les matériels de bridage!

- ▶ CYCL DEF: Sélectionner le cycle 231 SURFACE REGULIERE
 - Point initial 1er axe: **Q225**
 - ▶ Point initial 2ème axe: **Q226**
 - ▶ Point initial 3ème axe: **Q227**
 - ▶ 2ème 1er axe **0228**
 - ▶ 2ème 2ème axe **Q229**
 - ▶ 2ème 3ème axe **0230**
 - ▶ 3ème 1er axe **0232**
 - ▶ 3ème 2ème axe **0232**
 - ▶ 3ème 3ème axe **Q233**
 - ▶ 4ème 1er axe **0234**
 - ▶ 4ème 2ème axe **Q235**
 - ▶ 4. point 3ème axe **Q236**
 - Nombre de coupes: **Q240**
 - Avance fraisage: **Q207**

SURFACAGE (cycle 232)

Introduire le saut de bride Q204 de manière à éviter toute collision avec la pièce ou les matériels de bridage.

► CYCL DEF: Sélectionner le cycle 232 SURFAÇAGE

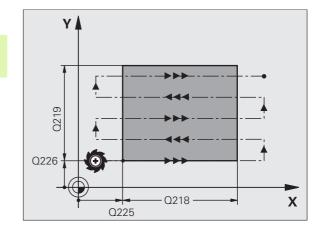
Stratégie d'usinage: Q389
Point initial 1er axe: Q225
Point initial 2ème axe: Q226
Point initial 3ème axe: Q227
Point final 3ème axe: Q386

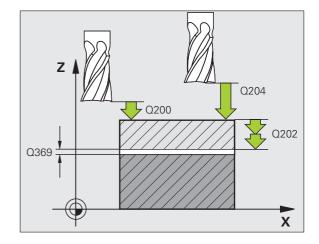
1er côté: **Q218**2ème côté: **Q219**

▶ Profondeur de passe max.: **Q202**

▶ Surépaisseur de finition en profondeur: **Q369**

► Facteur de recouvrement max.: **Q370**


Avance de fraisage: **Q207**Avance de finition: **Q385**


► Avance de pré-positionnement: **Q253**

▶ Distance d'approche: **Q200**

Distance d'approche latérale: **Q357**

▶ Saut de bride: **Q204**

Cycles de conversion de coordonnées

Vue d'ensemble

Grâce aux cycles de conversion de coordonnées, les contours peuvent être décalés, inversés en image miroir, subir une rotation (dans le plan), être pivotés (hors du plan), réduits et agrandis.

Cycles disponibles		Page
7	POINT ZERO	88
247	INITIALISATION DU POINT DE REFERENCE	89
8	IMAGE MIROIR	90
10	ROTATION	91
11	FACTEUR ECHELLE	92
26	FACTEUR ECHELLE SPECIF. DE L'AXE	93
19	PLAN D'USINAGE (option de logiciel)	94

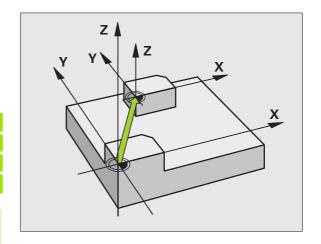
Les cycles pour la conversion du système de coordonnées sont actifs dès qu'ils ont été définis et jusqu'à ce qu'ils soient annulés ou redéfinis. Le contour initial est à définir dans un sous-programme. Les valeurs sont introduites, soit en valeur absolue, soit en valeur incrémentale.

DECALAGE DU POINT ZERO (cycle 7)

- ▶ CYCL DEF: Sélectionner le cycle 7 DECALAGE DU POINT ZERO
 - ▶ Introduire les coordonnées du nouveau point zéro ou le numéro du point zéro pris dans le tableau de points zéro

Annulation du décalage de point zéro: Redéfinir le cycle avec valeur d'introduction 0.

13 CYCL DEF 7.0 POINT ZERO


14 CYCL DEF 7.1 X+60

16 CYCL DEF 7.3 Z-5

15 CYCL DEF 7.2 Y+40

Exécuter le décalage de point zéro avant toute autre conversion du système de coordonnées!

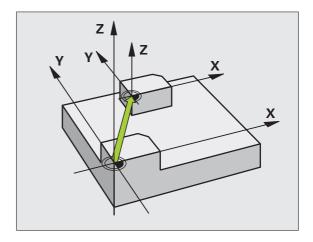
INITIALISATION DU POINT DE REFERENCE (cycle 247)

- ► CYCL DEF: Sélectionner le cycle 247 INITIALISATION DU POINT DE REFERENCE
 - Numéro point de référence: **Q339**. Introduire le numéro du nouveau point de référence provenant du tableau Preset

13 CYCL DEF 247 INIT. PT DE RÉF.

0339=4

;NUMÉRO POINT DE RÉF.


Lors de l'activation d'un point de référence du tableau Preset, la TNC annule toutes les conversions de coordonnées actives qui avaient été activées précédemment avec les cycles suivants:

- Cycle 7, décalage du point zéro
- Cycle 8, image miroir
- Cycle 10, rotation
- Cycle 11, facteur échelle
- Cycle 26, facteur échelle spécifique de l'axe

En revanche, la conversion de coordonnées du cycle 19 et l'inclinaison du plan d'usinage restent activées.

Si vous activez le numéro de Preset 0 (ligne 0), activez dans ce cas le dernier point de référence que vous avez initialisé manuellement en mode manuel.

Le cycle 247 n'a pas d'effet en mode Test de programme.

IMAGE MIROIR (cycle 8)

▶ CYCL DEF: Sélectionner le cycle 8 IMAGE MIROIR

▶ Introduire l'axe réfléchi: X ou Y ou bien X etY

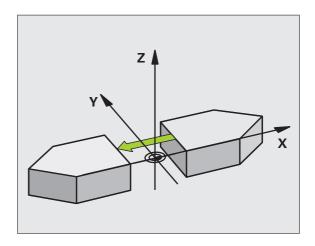
Annuler l'IMAGE MIROIR: Redéfinir le cycle en introduisant NO ENT.

15 CALL LBL1

16 CYCL DEF 7.0 POINT ZERO

17 CYCL DEF 7.1 X+60

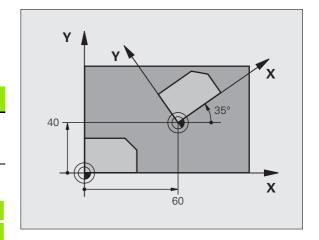
18 CYCL DEF 7.2 Y+40


19 CYCL DEF 8.0 IMAGE MIROIR

20 CYCL DEF 8.1 Y

21 CALL LBL1

- L'axe d'outil ne peut pas être réfléchi!
- Le cycle réfléchit toujours le contour d'origine (dans cet exemple, situé à l'intérieur du sous-programme LBL1)!


ROTATION (cycle 10)

- ► CYCL DEF: Sélectionner le cycle 10 ROTATION
 - ▶ Introduire l'angle de rotation:
 Plage d'introduction -360° à +360°
 Axe de référence pour l'angle de rotation

Plan d'usinage	Axe de référence et sens 0°
X/Y	X
Y/Z	Y
Z/X	Z

Annuler la ROTATION: Redéfinir le cycle avec l'angle de rotation 0.

- 12 CALL LBL1
- 13 CYCL DEF 7.0 POINT ZERO
- 14 CYCL DEF 7.1 X+60
- 15 CYCL DEF 7.2 Y+40
- 16 CYCL DEF 10.0 ROTATION
- 17 CYCL DEF 10.1 ROT+35
- 18 CALL LBL1

FACTEUR ECHELLE (cycle 11)

- ▶ CYCL DEF: Sélectionner le cycle 11 FACTEUR ECHELLE
 - ► Introduire le facteur échelle SCL (de l'anglais: scale = échelle): Plage d'introduction 0,000001 à 99,999999

Réduction ... SCL<1

Agrandissement ... SCL>1

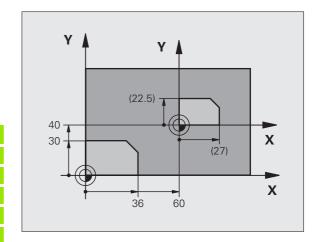
Annulation du FACTEUR ECHELLE: Redéfinir le cycle avec SCL1.

11 CALL LBL1

12 CYCL DEF 7.0 POINT ZERO

13 CYCL DEF 7.1 X+60

14 CYCL DEF 7.2 Y+40


15 CYCL DEF 11.0 FACTEUR ECHELLE

16 CYCL DEF 11.1 SCL 0.75

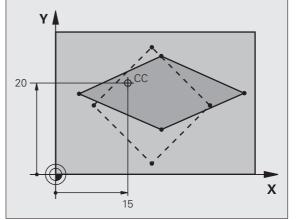
17 CALL LBL1

Le FACTEUR ECHELLE est actif dans le plan d'usinage ou dans les trois plans principaux (en fonction du paramètre-machine 7410)!

FACTEUR ECHELLE SPECIFIQUE. DE L'AXE (cycle 26)

- ► CYCL DEF: Sélectionner le cycle 26 FACTEUR ECHELLE SPECIF. DE L'AXE
 - Axe et facteur: Axes de coordonnées et facteurs d'étirement ou de compression spécifique de l'axe
 - ▶ Coordonnées du centre: Centre de l'étirement ou de la compression

Annulation du FACTEUR ECHELLE SPECIFIQUE DE L'AXE: Redéfinir le cycle en introduisant le facteur 1 pour les axes modifiés.


Les axes de coordonnées comportant des positions de trajectoires circulaires ne doivent pas être étirés ou comprimés à partir de facteur dont la valeur n'est pas la même.

25 CALL LBL1

26 CYCL DEF 26.0 FACTEUR ECHELLE AXE

27 CYCL DEF 26.1 X 1.4 Y 0.6 CCX+15 CCY+20

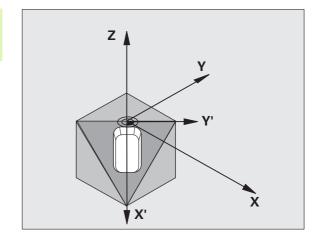
28 CALL LBL1

PLAN D'USINAGE (cycle 19, option de logiciel)

La machine et la TNC doivent avoir été préparées par le constructeur de la machine pour l'inclinaison du PLAN D'USINAGE.

Le cycle **19 PLAN D'USINAGE** est particulièrement utile lorsque l'on travaille avec des têtes pivotantes et/ou tables pivotantes.

- ▶ Appeler l'outil
- Dégager l'outil dans l'axe d'outil (ce qui permet d'éviter les collisions)
- Si nécessaire, positionner les axes rotatifs avec une séquence L sur les angles désirés
- ► CYCL DEF: Sélectionner le cycle 19 PLAN D'USINAGE
 - ▶ Introduire l'angle d'inclinaison de l'axe correspondant ou l'angle solide
 - Si nécessaire, introduire l'avance des axes rotatifs lors du positionnement automatique
 - ▶ Si nécessaire, introduire la distance d'approche
- ► Activer la correction: Déplacer tous les axes
- ▶ Programmer l'usinage comme si le plan ne devait pas être incliné Annulation du cycle Inclinaison du PLAN D'USINAGE: Redéfinir le cycle en introduisant l'angle d'inclinaison 0.


4 TOOL CALL 1 Z S2500

5 L Z+350 RO FMAX

6 L B+10 C+90 R0 FMAX

7 CYCL DEF 19.0 PLAN D'USINAGE

8 CYCL DEF 19.1 B+10 C+90 F1000 DIST 50

Cycles spéciaux

Vue d'ensemble

Cycles disponibles		Page
9	TEMPORISATION	96
12	PGM CALL	96
13	ORIENTATION	97
32	TOLERANCE	98

TEMPORISATION (cycle 9)

L'exécution du programme est suspendue pendant la durée de la TEMPORISATION.

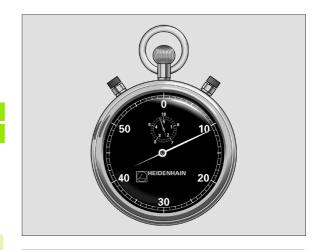
- ► CYCL DEF: Sélectionner le cycle 9 TEMPORISATION
 - ► Introduire la temporisation en secondes

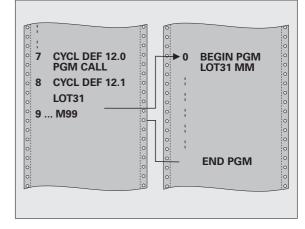
48 CYCL DEF 9.0 TEMPORISATION

49 CYCL DEF 9.1 TEMPO. 0.5

PGM CALL (cycle 12)

CYCL DEF: Sélectionner le cycle 12 PGM CALL
 Introduire le nom du programme à appeler



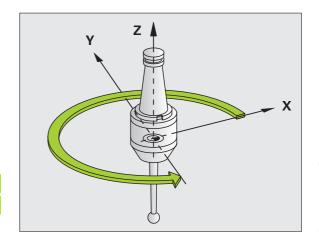

Le cycle 12 PGM CALL doit être appelé!

7 CYCL DEF 12.0 PGM CALL

8 CYCL DEF 12.1 LOT31

9 L X+37.5 Y-12 RO FMAX M99

ORIENTATION broche (cycle 13)



La machine et la TNC doivent avoir été préparées par l'ORIENTATION broche!

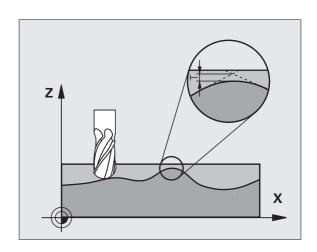
- ► CYCL DEF: Sélectionner le cycle 13 ORIENTATION
 - Introduire l'angle d'orientation par rapport à l'axe de référence angulaire du plan d'usinage:
 Plage d'introduction 0 à 360°
 Finesse d'introduction 0,1°
- ▶ Appeler le cycle avec M19 ou M20

12 CYCL DEF 13.0 ORIENTATION

13 CYCL DEF 13.1 ANGLE 90

TOLERANCE (cycle 32)

La machine et la TNC doivent être préparées par le constructeur de la machine pour le fraisage rapide des contours!



Le cycle 32 TOLERANCE est actif dès qu'il a été défini!

La TNC lisse automatiquement le contour compris entre deux éléments de contour quelconques (non corrigés ou corrigés). De cette manière, l'outil se déplace en continu sur la surface de la pièce. Si nécessaire, la TNC réduit automatiquement l'avance programmée de telle sorte que le programme soit toujours exécuté "sans à-coups" par la TNC et à la vitesse la plus rapide possible.

Le lissage implique un écart de contour. La valeur de l'écart de contour (TOLERANCE) est définie par le constructeur de votre machine dans un paramètre-machine. Vous modifiez la tolérance configurée à l'aide du cycle 32 (cf. fig. en haut et à droite).

- ► CYCL DEF: Sélectionner le cycle 32 TOLERANCE
 - ► Tolérance T: Ecart de contour admissible, en mm
 - Finition/ébauche: (option de logiciel) Sélectionner la configuration des filtres
 - 0: Fraisage avec précision de contour encore supérieure
 - 1: Fraisage avec avance supérieure
 - ▶ Tolérance pour axes rotatifs: (option de logiciel) Ecart de position admissible des axes rotatifs en degrés avec M128 active

La fonction PLANE (option de logiciel 1)

Vue d'ensemble

La machine et la TNC doivent avoir été préparées par le constructeur de la machine pour l'inclinaison avec la fonction **PLANE**.

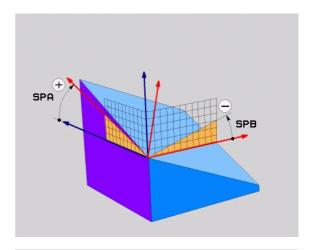
Avec la fonction **PLANE** (de l'anglais plane = plan), vous disposez d'une fonction performante vous permettant de définir de diverses manières des plans d'usinage inclinés.

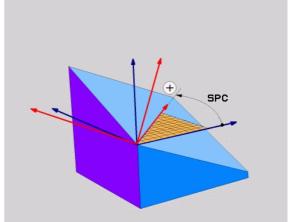
Toutes les fonctions **PLANE** disponibles dans la TNC décrivent le plan d'usinage souhaité indépendamment des axes rotatifs réellement présents sur votre machine. Vous disposez des possibilités suivantes:

Définitions possibles pour le plan	Page
Définition avec angles dans l'espace	100
Définition avec angles de projection	101
Définition avec angles eulériens	102
Définition avec vecteurs	103
Définition avec points	104
Angle incrémental dans l'espace	105
Angle d'axe	106
Annuler la définition du plan	107

Définition angles dans l'espace (PLANE SPATIAL)

- ▶ Sélectionner FONCTIONS TNC SPECIALES
- ▶ Sélectionner INCLINAISON PLAN D'USINAGE, PLANE SPATIAL
 - ▶ Angle dans l'espace A?: Angle de rotation SPA autour de l'axe machine X (cf. figure en haut et à droite)
 - ▶ Angle dans l'espace B?: Angle de rotation SPB autour de l'axe machine Y (cf. figure en haut et à droite)
 - ▶ Angle dans l'espace C?: Angle de rotation SPC autour de l'axe machine Z (cf. figure de droite, en bas)
 - ▶ Poursuivre avec les propriétés de positionnement (cf. "Inclinaison automatique (MOVE/STAY/TURN)" à la page 108)


5 PLANE SPATIAL SPA+27 SPB+0 SPC+45 MOVE DIST10 F500 SEQ-

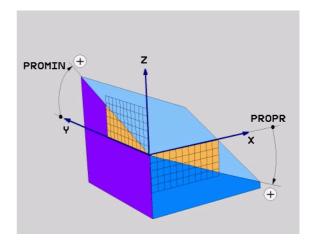


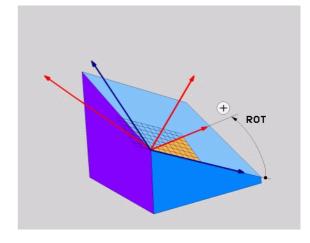
Remarques avant que vous ne programmiez

Vous devez toujours définir les trois angles dans l'espace SPA, SPB et SPC, même si l'un d'entre eux est égal à 0.

L'ordre chronologique des rotations défini préalablement est valable indépendamment de l'axe d'outil actif.

Définition angles de projection (PLANE PROJECTED)

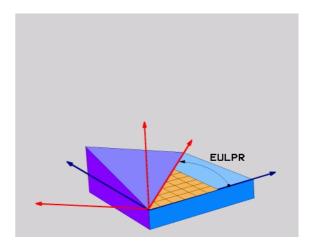

- ▶ Sélectionner FONCTIONS TNC SPECIALES
- ▶ Sélectionner INCLINAISON PLAN D'USINAGE, PLANE PROJECTED
- ▶ Angle proj. 1er plan de coord.?: Angle projeté du plan d'usinage incliné dans le 1er plan de coordonnées du système de coordonnées machine (cf. figure en haut et à droite)
- ▶ Angle proj. 2ème plan de coord.?: Angle projeté dans le 2ème plan de coordonnées du système de coordonnées machine (cf. figure en haut et à droite)
- ▶ Angle ROT du plan incliné?: Rotation du système de coordonnées incliné autour de l'axe d'outil incliné (par analogie, correspond à une rotation avec le cycle 10 ROTATION; cf. figure en bas et à droite).
- ▶ Poursuivre avec les propriétés de positionnement (cf. "Inclinaison automatique (MOVE/STAY/TURN)" à la page 108)

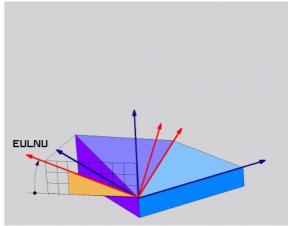

5 PLANE PROJECTED PROPR+24 PROMIN+24 PROROT+30 MOVE DIST10 F500

Remarques avant que vous ne programmiez

Vous ne pouvez utiliser les angles de projection que pour l'usinage d'un parallélépipède rectangle. Si tel n'est pas le cas, l'usinage peut induire des distorsions sur la pièce.

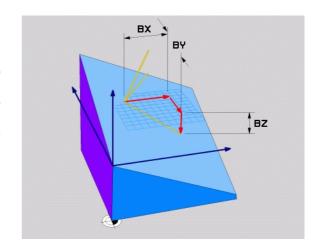
Définition avec angles eulériens (PLANE EULER)

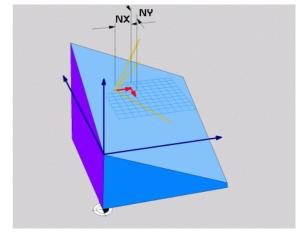

- ▶ Sélectionner FONCTIONS TNC SPECIALES
- ▶ Sélectionner INCLINAISON PLAN D'USINAGE, PLANE EULER
 - ▶ Angle rot. plan coord. princip.?: Angle de rotation EULPR autour de l'axe Z (cf. figure en haut et à droite)
 - ▶ Angle d'inclinaison axe d'outil?: Angle d'inclinaison EULNUT du système de coordonnées autour de l'axe X qui a subi une torsion de la valeur de l'angle de précession (cf. figure en bas et à droite)
 - ▶ Angle ROT du plan incliné?: Rotation EULROT du système de coordonnées incliné autour de l'axe Z incliné (par analogie, correspond à une rotation avec le cycle 10 ROTATION). Avec l'angle de rotation, vous pouvez déterminer de manière simple le sens de l'axe X dans le plan d'usinage incliné
- ▶ Poursuivre avec les propriétés de positionnement (cf. "Inclinaison automatique (MOVE/STAY/TURN)" à la page 108)


5 PLANE EULER EULPR+45 EULNU20 EULROT22 MOVE DIST10 F500

Remarques avant que vous ne programmiez

L'ordre chronologique des rotations défini préalablement est valable indépendamment de l'axe d'outil actif.


Définition avec vecteur (PLANE VECTOR)

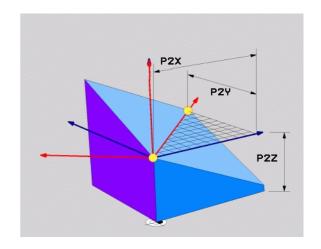

- ► Sélectionner FONCTIONS TNC SPECIALES
- ▶ Sélectionner INCLINAISON PLAN D'USINAGE, PLANE VECTOR
- ▶ Composante X du vecteur de base?: Composante X BX du vecteur de base B (cf. figure en haut et à droite)
- ▶ Composante Y du vecteur de base?: Composante Y BY du vecteur de base B (cf. figure en haut et à droite)
- ▶ Composante Z du vecteur de base?: Composante Z BZ du vecteur de base B (cf. figure en haut et à droite)
- ▶ Composante X du vecteur normal?: Composante X NX du vecteur normal N (cf. figure en bas et à droite)
- ▶ Composante Y du vecteur normal?: Composante Y NY du vecteur normal N (cf. figure en bas et à droite)
- ▶ Composante Z du vecteur normal?: Composante Z NZ du vecteur normal N
- ▶ Poursuivre avec les propriétés de positionnement (cf. "Inclinaison automatique (MOVE/STAY/TURN)" à la page 108)
- 5 PLANE VECTOR BXO.8 BY-0.4 BZ-
- 0.4472 NX0.2 NY0.2 NZ0.9592 MOVE DIST10 F500

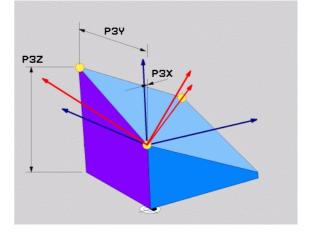
Remarques avant que vous ne programmiez

En interne, la TNC calcule des vecteurs normaux à partir des valeurs que vous avez introduites.

Définition avec points (PLANE POINTS)

- Sélectionner FONCTIONS TNC SPECIALES
- ▶ Sélectionner INCLINAISON PLAN D'USINAGE, PLANE POINTS
 - ▶ Coordonnée X 1er point du plan?: Coordonnée X P1X
 - ▶ Coordonnée Y 1er point du plan?: Coordonnée Y P1Y
 - ▶ Coordonnée Z 1er point du plan?: Coordonnée Z P1Z
 - ▶ Coordonnée X 2ème point du plan?: Coordonnée X P2X
 - ▶ Coordonnée Y 2ème point du plan?: Coordonnée Y P2Y
 - ▶ Coordonnée Z 2ème point du plan?: Coordonnée Z P2Z
 - Coordonnée X 3ème point du plan?: Coordonnée X P3X
 - **No.** 1 6 7 00 1 1 1 2 0 0 1 7 1 1 2 0 0
 - ▶ Coordonnée Y 3ème point du plan?: Coordonnée Y P3Y
 - ▶ Coordonnée Z 3ème point du plan?: Coordonnée Z P3Z
 - ▶ Poursuivre avec les propriétés de positionnement (cf. "Inclinaison automatique (MOVE/STAY/TURN)" à la page 108)


5 POINTS P1X+0 P1Y+0 P1Z+20 P2X+30 P2Y+31 P2Z+20 P3X+0 P3Y+41 P3Z+32.5 MOVE DIST10 F500



Remarques avant que vous ne programmiez

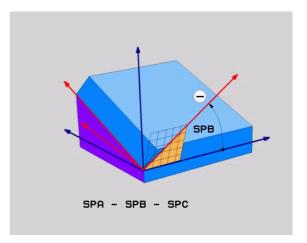
La jonction du point 1 et du point 2 détermine le sens de l'axe principal incliné (X avec axe d'outil Z).

Les trois points définissent l'inclinaison du plan. La position du point zéro actif n'est pas modifiée par la TNC.

Angle incrémental dans l'espace (PLANE RELATIVE)

- ▶ Sélectionner FONCTIONS TNC SPECIALES
- ▶ Sélectionner INCLINAISON PLAN D'USINAGE, PLANE RELATIVE
 - ▶ Angle incrémental?: Angle dans l'espace en fonction duquel le plan d'usinage actif doit continuer d'être incliné (cf. figure en haut et à droite). Sélectionner par softkey l'axe autour duquel doit s'effectuer l'inclinaison
 - ▶ Poursuivre avec les propriétés de positionnement (cf. "Inclinaison automatique (MOVE/STAY/TURN)" à la page 108)

5 PLANE RELATIV SPB-45 MOVE DIST10 F500 SEQ-


Remarques avant que vous ne programmiez

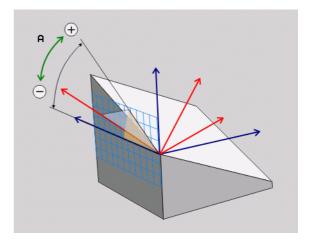
L'angle défini agit toujours par rapport au plan d'usinage actif et ce, quelle que soit la fonction utilisée pour l'activer.

Vous pouvez programmer successivement autant de fonctions **PLANE RELATIVE** que vous le désirez.

Si vous voulez retourner au plan d'usinage qui était actif avant la fonction **PLANE RELATIVE**, définissez dans ce cas **PLANE RELATIVE** avec le même angle mais en utilisant le signe inverse.

Si vous utilisez **PLANE RELATIVE** sur un plan d'usinage non incliné, faites simplement pivoter le plan non incliné autour de l'angle dans l'espace que vous avez défini dans la fonction **PLANE**.

Définition d'un angle d'axe (PLANE AXIAL)


- Sélectionner FONCTIONS TNC SPECIALES
- ▶ Sélectionner INCLINAISON PLAN D'USINAGE, PLANE AXIAL
 - ▶ Angle d'axe A?: Position de l'axe A à laquelle la TNC doit effectuer le positionnement
 - ▶ Angle d'axe B?: Position de l'axe B à laquelle la TNC doit effectuer le positionnement
 - ▶ Angle d'axe C?: Position de l'axe C à laquelle la TNC doit effectuer le positionnement
 - ▶ Poursuivre avec les propriétés de positionnement (cf. "Inclinaison automatique (MOVE/STAY/TURN)" à la page 108)

5 PLANE AXIAL B+90 MOVE DIST10 F500 SEQ+

Remarques avant que vous ne programmiez

Vous ne pouvez définir que les axes rotatifs disponibles sur votre machine.

Annuler la définition du plan (PLANE RESET)

- ▶ Sélectionner FONCTIONS TNC SPECIALES
- ▶ Sélectionner INCLINAISON PLAN D'USINAGE, PLANE RESET
 - ▶ Poursuivre avec les propriétés de positionnement (cf. "Inclinaison automatique (MOVE/STAY/TURN)" à la page 108)

5 PLANE RESET MOVE DIST10 F500 SEQ-

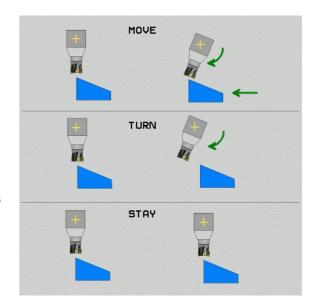
Remarques avant que vous ne programmiez

La fonction **PLANE RESET** annule complètement la fonction **PLANE** active – ou un cycle 19 actif (angle = 0 et fonction inactive). Une définition multiple n'est pas nécessaire.

Inclinaison automatique (MOVE/STAY/TURN)

Après avoir introduit tous les paramètres de définition du plan, vous devez définir la manière dont les axes rotatifs doivent être orientés sur les valeurs des axes calculées:

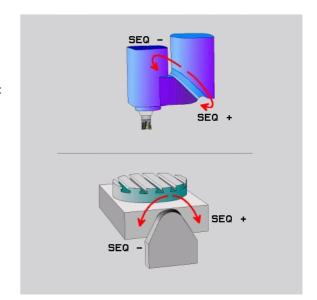
▶ La fonction PLANE doit orienter automatiquement les axes rotatifs aux positions d'axes calculées; dans ce processus, la position relative entre la pièce et l'outil ne varie pas. La TNC exécute un déplacement de compensation sur les axes linéaires


La fonction PLANE doit orienter automatiquement les axes rotatifs aux positions d'axes calculées; dans ce processus, seuls les axes rotatifs sont positionnés. La TNC n'exécute pas de déplacement de compensation sur les axes linéaires

▶ Vous orientez les axes rotatifs au moyen d'une séquence de positionnement séparée qui suit

Si vous avez sélectionné l'une des options MOVE oder TURN (la fonction (PLANE doit effectuer une orientation automatique), vous devez encore définir les deux paramètres suivants:

- ▶ Dist. pt rotation de pointe outil (en incrémental): La TNC oriente l'outil (la table) autour de la pointe de l'outil. Au moyen du paramètre DIST, vous décalez le point de rotation du déplacement d'orientation par rapport à la position actuelle de la pointe de l'outil.
- ▶ Avance? F=: Vitesse pour l'orientation de l'outil



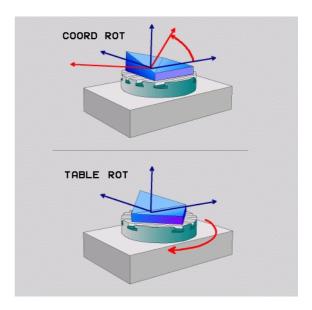
Sélectionner une solution possible (SEQ +/-)

A partir de la situation que vous avez choisie pour le plan d'usinage, la TNC doit calculer pour les axes rotatifs présents sur votre machine la position qui leur convient. Généralement, on a toujours deux solutions.

Avec le sélecteur **SEQ**, vous définissez la solution que doit utiliser la TNC:

- ▶ SEQ+ positionne l'axe maître de manière à adopter un angle positif. L'axe maître est le 2ème axe rotatif en partant de la table ou bien le 1er axe rotatif en partant de l'outil (en fonction de la configuration de la machine; cf. également fig. en haut et à droite)
- ▶ SEQ- positionne l'axe maître de manière à adopter un angle négatif. Si la solution que vous avez choisie avec SEQ ne se situe pas dans la zone de déplacement de la machine, la TNC délivre le message d'erreur Angle non autorisé.

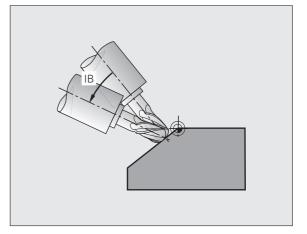
Sélection du mode de transformation


Pour les machines équipées d'un plateau circulaire C, vous disposez d'une fonction qui vous permet de définir le mode de transformation:

▶ COORD ROT définit que la fonction PLANE ne doit faire pivoter que le système de coordonnées en fonction de l'angle d'inclinaison défini. Le plateau circulaire ne bouge pas; la compensation de la rotation s'effectue mathématiquement

▶ TABLE ROT définit que la fonction PLANE doit positionner le plateau circulaire sur l'angle d'inclinaison défini. La compensation s'effectue par rotation de la pièce

Usinage cinq axes dans le plan incliné


En liaison avec les nouvelles fonctions **PLANE** et avec M128, vous pouvez réaliser un **usinage cinq axes avec TCPM** sur un plan d'usinage incliné. Pour cela, vous disposez de deux définitions possibles:

- Usinage cinq axes par déplacement incrémental d'un axe rotatif
- Usinage cinq axes par vecteurs normaux

L'usinage cinq axes avec TCPM dans le plan incliné ne peut être réalisé qu'en utilisant des fraises à bout hémisphérique.

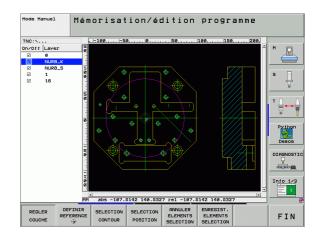
Sur les têtes/tables pivotantes à 45°, vous pouvez également définir l'angle d'orientation comme angle dans l'espace. Pour cela, on dispose de la fonction **FUNCTION TCPM**.

Traiter les données DXF (option de logiciel)

Vous pouvez ouvrir directement sur la TNC des fichiers DXF créés sur un système CAO pour en extraire des contours ou des positions d'usinage et enregistrer ceux-ci sous forme de programmes conversationnels Texte clair ou de fichiers de points.

Les programmes conversationnels Texte clair obtenus en sélectionnant le contour peuvent être également traités par d'anciennes commandes TNC dans la mesure où les programmes de contour ne contiennent que des séquences L et CC/CP.

REGLER
COUCHE
DEFINITE



- ▶ Afficher ou occulter les couches DXF pour n'afficher que les données essentielles du plan
- Décaler le point zéro du plan du fichier DXF à une position judicieuse sur la pièce
- Activer le mode de sélection d'un contour. On peut partager, raccourcir ou rallonger les contours
- Activer le mode de sélection des positions d'usinage. Valider les positions en cliquant avec la souris
- ► Annuler les contours ou positions sélectionné(e)s
- ▶ Enregistrer dans un fichier séparé les contours ou positions sélectionné(e)s

Graphismes et affichages d'état

Cf. "Graphismes et affichages d'état"

Définir la pièce dans la fenêtre du graphisme

Le dialogue de la pièce brute BLK-Form apparaît automatiquement à l'ouverture d'un nouveau programme.

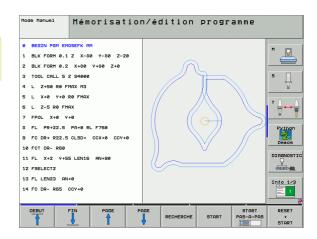
- Ouvrir un nouveau programme ou appuyer sur la softkey BLK FORM dans le programme déjà ouvert
 - Axe de broche
 - Point MIN et point MAX

Ci-dessous, une sélection des fonctions les plus fréquemment utilisées.

Graphisme de programmation

Sélectionner le partage d'écran PROGRAMME+GRAPHISME!

Pendant l'introduction du programme, la TNC peut représenter le contour programmé par un graphisme en 2D:


Dessin automatique du contour

Lancer le graphisme manuellement

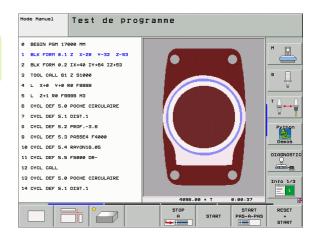
Lancer le graphisme pas à pas

Graphisme de test et d'exécution du programme

Sélectionner le partage d'écran GRAPHISME ou PROGRAMME+GRAPHISME!

En mode de fonctionnement Test de programme et dans les modes de fonctionnement Exécution de programme, la TNC peut simuler l'usinage de manière graphique. Les représentations graphiques sont sélectionnables par softkey:

▶ Vue de dessus


► Représentation en 3 plans

▶ Représentation 3D

▶ Représentation 3D à haute résolution

Affichages d'état

Sélectionner le partage d'écran PROGRAMME+INFOS ou POSITION+INFOS!

En modes de fonctionnement Exécution de programme, la partie inférieure de l'écran renferme des informations concernant

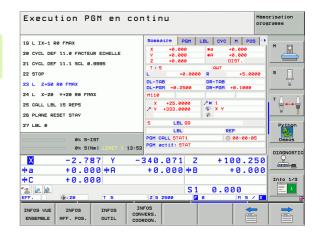
- Position de l'outil
- Avance
- Fonctions auxiliaires actives

A l'intérieur d'une fenêtre d'écran, on peut faire apparaître par softkey d'autres informations concernant l'état:

Activer l'onglet Sommaire: Affichage des principales informations sur l'état

Activer l'onglet **P0S**: Affichage de positions

Activer l'onglet T00L: Affichage des données d'outils


Activer l'onglet TRANS: Affichage de conversions de coordonnées actives

Commuter vers l'onglet de gauche

Commuter vers l'onglet de droite

Programmation en DIN/ISO

Programmer les déplacements d'outils avec coordonnées cartésiennes	
G00	Déplacement linéaire en rapide
G01	Déplacement linéaire
G02	Déplacement circulaire sens horaire
G03	Déplacement circulaire sen anti-horaire
G05	Déplacement circulaire sans indication de sens
G06	Déplacement circulaire avec raccordement tangentiel
G07*	Séquence de positionnement paraxiale

Programmer les déplacements d'outils avec coordonnées polaires	
G10	Déplacement linéaire en rapide
G11	Déplacement linéaire
G12	Déplacement circulaire sens horaire
G13	Déplacement circulaire sen anti-horaire
G15	Déplacement circulaire sans indication de sens
G16	Déplacement circulaire avec raccordement tangentiel

^{*)} fonction active pas à pas

Cycles de	perçage
G240	Centrage
G200	Perçage
G201	Alésage à l'alésoir
G202	Alésage à l'outil
G203	Perçage universel
G204	Contre-perçage
G205	Perçage profond universel
G208	Fraisage de trous
G206	NOUVEAU taraudage
G207	NOUVEAU taraudage rigide (asservissement de broche)
G209	Taraudage avec brise copeaux
G240	Centrage
G262	Fraisage de filets
G263	Filetage sur un tour
G264	Filetage avec perçage
G265	Filetage hélicoïdal avec perçage
G267	Filetage externe sur tenon

Poches, tenons et rainures	
G251	Poche rectangulaire intégrale
G252	Poche circulaire intégrale
G253	Rainure intégrale
G254	Rainure circulaire intégrale
G256	Tenon rectangulaire
G257	Tenon circulaire

Motifs de points	
G220	Motifs de points sur un cercle
G221	Motifs de points en grille

Cycles SL, groupe II	
G37	Définir les sous-programmes de contour
G120	Données du contour
G121	Pré-perçage
G122	Evidement
G123	Finition en profondeur
G124	Finition latérale
G125	Tracé de contour
G127	Corps d'un cylindre (option de logiciel)
G128	Corps d'un cylindre, rainure (option de logiciel)
G129	Corps d'un cylindre, fraisage d'un oblong convexe (option de logiciel)
G139	Corps d'un cylindre, fraisage d'un contour externe
2.50	(option de logiciel)
G270	Données du tracé du contour

Usinage ligne à ligne	
G60	Exécution de données 3D
G230	Usinage ligne à ligne
G231	Surface régulière
G232	Surfaçage

Cycles p	Cycles palpeurs	
G55*	Mesure de coordonnées	
G400*	Rotation de base avec 2 points	
G401*	Rotation de base avec 2 trous	
G402*	Rotation de base avec 2 tenons	
G403*	Rotation de base avec plateau circulaire	
G404*	Initialiser la rotation de base	
G405*	Rotation de base avec plateau circulaire, centre du trou	
G408*	Point de référence au centre d'une rainure	
G409*	Point de référence au centre d'un oblong	
G410*	Point de référence centre poche rectangulaire	
G411*	Point de référence centre tenon rectangulaire	
G412*	Point de référence centre d'un trou	
G413*	Point de référence centre d'un tenon circulaire	
G414*	Point de référence extérieur d'un angle	
G415*	Point de référence intérieur d'un angle	
G416*	Point de référence centre d'un cercle de trous	
G417*	Point de référence dans l'axe du palpeur	
G418*	Point de référence centre de 4 trous	
G419*	Point de référence sur axe donné	

^{*)} fonction active pas à pas

Cycles palpeurs	
G420*	Mesure d'angle
G421*	Mesure d'un trou
G422*	Mesure d'un tenon circulaire
G423*	Mesure d'une poche rectangulaire
G424*	Mesure d'un tenon rectangulaire
G425*	Mesure intérieur d'une rainure
G426*	Mesure extérieur d'une traverse
G427*	Mesure d'une coordonnée au choix
G430*	Mesure d'un cercle de trous
G431*	Mesure d'un plan
G440*	Compensation thermique
G450*	Sauvegarder la cinématique (option)
G451*	Mesurer la cinématique (option)
G480*	Etalonnage du TT
G481*	Mesure de la longueur d'outil
G482*	Mesure du rayon d'outil

Mesure de la longueur et du rayon de l'outil

G483*

Cycles de conversion de coordonnées	
G53	Décalage du point zéro à partir des tableaux de points zéro
G54	Introduction directe du décalage du point zéro
G247	Initialisation du point de référence
G28	Image miroir de contours
G73	Rotation du système de coordonnées
G72	Facteur échelle, réduction/agrandissement de contours
G80	Plan d'usinage (option de logiciel)

Cycles spéciaux	
G04*	Temporisation
G36	Orientation broche
G39	Appel de programme
G79*	Appel du cycle
G62	Tolérance (option de logiciel)

Définition du plan d'usinage		
G17	Plan X/Y, axe d'outil Z	
G18	Plan Z/X, axe d'outil Y	
G19	Plan Y/Z, axe d'outil X	
G20	Le quatrième axe est l'axe d'outil	

Chanfrein, arrondi, approche/sortie du contour

G24*	Chanfrein de longueur R
G25*	Arrondi d'angle avec rayon R
G26*	Approche tangentielle du contour sur un cercle de rayon R
G27*	Sortie tangent. du contour sur cercle de rayon R

Définition de l'outil

G99*	Définition d'outil dans le programme avec
	longueur L et rayon R

Corrections du rayon d'outil

G40	Pas de correction de rayon
G41	Correction du rayon d'outil, à gauche du contour
G42	Correction du rayon d'outil, à droite du contour
G43	Correction de rayon d'outil paraxiale; allonger le déplacement
G44	Correction de rayon d'outil paraxiale; raccourcir le déplacement

^{*)} fonction active pas à pas

Cotation	1
G90	Cotation absolue
G91	Cotation incrémentale
Définir l'unité de mesure (début du programme)	

	•	•	
G70	Unité de mesure en pouces		
G71	Unité de mesure en mm		

Définir la pièce brute pour le graphisme	
G30	Définir le plan, coordonnées du point MIN
G31	Cotation (avec G90, G91), coordonnées du point MAX

Autres fonctions G	
G29	Valider comme pôle la dernière position
G38	Arrêter l'exécution du programme
G51*	Appeler le numéro d'outil suivant (avec magasin central d'outils seulement)
G98*	Affectation d'un numéro de label

Fonction	s des paramètres Q
D00	Affecter directement une valeur
D01	Définir la somme de deux valeurs et l'affecter
D02	Définir la différence de deux valeurs et l'affecter
D03	Définir le produit de deux valeurs et l'affecter
D04	Définir le quotient de deux valeurs et l'affecter
D05	Extraire la racine carrée d'un nombre et l'affecter
D06	Définir le sinus d'un angle en degrés et l'affecter
D07	Définir le cosinus d'un angle en degrés et l'affecter
D08	Extraire la racine d'une somme de carrés de deux nombres et l'affecter (Pythagore)
D09	Si égal, saut au label indiqué
D10	Si différent, saut au label indiqué
D11	Si supérieur, saut au label indiqué
D12	Si inférieur, saut au label indiqué
D13	Définir l'angle avec arctan à partir de deux côtés ou sin et cos de l'angle et l'affecter
D14	Délivrer un message à l'écran
D15	Restitution de texte ou du contenu de paramètres via l'interface de données
D19	Transfert de valeurs numériques ou de paramètres Q à l'automate

Adresses	s ,
%	Début du programme
Α	Axe de pivotement autour de X
В	Axe de pivotement autour de Y
С	Axe de rotation autour Z
D	Définir des fonctions des paramètres Q
E	Tolérance pour cercle d'arrondi avec M112
F	Avance en mm/min. pour séquences de positionnement
F	Temporisation en secondes avec G04
F	Facteur échelle avec G72
G	Fonction G (cf. liste des fonctions G)
Н	Angle polaire
Н	Angle de rotation avec G73
I	Coordonnée X du centre du cercle/pôle
J	Coordonnée Y du centre du cercle/pôle
K	Coordonnée Z du centre du cercle/pôle
L	Affectation d'un numéro de label avec G98
L	Sauter à un numéro de label
L	Longueur d'outil avec G99
M	Fonction auxiliaire
N	Numéro de séquence
P	Paramètre de cycle dans les cycles d'usinage
Р	Valeur ou paramètre Q dans les définitions de paramètres Q
Q	Désignation de paramètre (emplacement)

R Rayon du cercle avec G02/G03/G05 R Rayon d'arrondi avec G25/G26/G27 R Longueur du chanfrein avec G24 R Rayon d'outil avec G99 S Vitesse de rotation broche en tours/min. S Angle pour l'orientation de la broche avec G36 T Numéro d'outil avec G99 T Appel de l'outil T Appel de l'outil suivant avec G51 U Axe parallèle à l'axe X V Axe parallèle à l'axe Z		
R Rayon d'arrondi avec G25/G26/G27 R Longueur du chanfrein avec G24 R Rayon d'outil avec G99 S Vitesse de rotation broche en tours/min. S Angle pour l'orientation de la broche avec G36 T Numéro d'outil avec G99 T Appel de l'outil T Appel de l'outil suivant avec G51 U Axe parallèle à l'axe X V Axe parallèle à l'axe Y W Axe parallèle à l'axe Z X Axe X Y Axe Y Z Axe Z	R	Rayon polaire avec G10/G11/G12/G13/G15/G16
R Longueur du chanfrein avec G24 R Rayon d'outil avec G99 S Vitesse de rotation broche en tours/min. S Angle pour l'orientation de la broche avec G36 T Numéro d'outil avec G99 T Appel de l'outil T Appel de l'outil suivant avec G51 U Axe parallèle à l'axe X V Axe parallèle à l'axe Y W Axe parallèle à l'axe Z X Axe X Y Axe Y Z Axe Z	R	Rayon du cercle avec G02/G03/G05
R Rayon d'outil avec G99 S Vitesse de rotation broche en tours/min. S Angle pour l'orientation de la broche avec G36 T Numéro d'outil avec G99 T Appel de l'outil T Appel de l'outil suivant avec G51 U Axe parallèle à l'axe X V Axe parallèle à l'axe Y W Axe parallèle à l'axe Z X Axe X Y Axe Y Z Axe Z	R	Rayon d'arrondi avec G25/G26/G27
S Vitesse de rotation broche en tours/min. S Angle pour l'orientation de la broche avec G36 T Numéro d'outil avec G99 T Appel de l'outil T Appel de l'outil suivant avec G51 U Axe parallèle à l'axe X V Axe parallèle à l'axe Y W Axe parallèle à l'axe Z X Axe X Y Axe Y Z Axe Z	R	Longueur du chanfrein avec G24
S Angle pour l'orientation de la broche avec G36 T Numéro d'outil avec G99 T Appel de l'outil T Appel de l'outil suivant avec G51 U Axe parallèle à l'axe X V Axe parallèle à l'axe Y W Axe parallèle à l'axe Z X Axe X Y Axe Y Z Axe Z	R	Rayon d'outil avec G99
T Numéro d'outil avec G99 T Appel de l'outil T Appel de l'outil suivant avec G51 U Axe parallèle à l'axe X V Axe parallèle à l'axe Y W Axe parallèle à l'axe Z X Axe X Y Axe Y Z Axe Z	S	Vitesse de rotation broche en tours/min.
T Appel de l'outil T Appel de l'outil suivant avec G51 U Axe parallèle à l'axe X V Axe parallèle à l'axe Y W Axe parallèle à l'axe Z X Axe X Y Axe Y Z Axe Z	S	Angle pour l'orientation de la broche avec G36
T Appel de l'outil suivant avec G51 U Axe parallèle à l'axe X V Axe parallèle à l'axe Y W Axe parallèle à l'axe Z X Axe X Y Axe Y Z Axe Z	T	Numéro d'outil avec G99
 U Axe parallèle à l'axe X V Axe parallèle à l'axe Y W Axe parallèle à l'axe Z X Axe X Y Axe Y Z Axe Z 	Т	Appel de l'outil
V Axe parallèle à l'axe Y W Axe parallèle à l'axe Z X Axe X Y Axe Y Z Axe Z	T	Appel de l'outil suivant avec G51
W Axe parallèle à l'axe Z X Axe X Y Axe Y Z Axe Z	U	Axe parallèle à l'axe X
X	V	Axe parallèle à l'axe Y
Y Axe Y Z Axe Z	W	Axe parallèle à l'axe Z
Z Axe Z	Χ	Axe X
_	Υ	Axe Y
* Signe de fin de séquence	Z	Axe Z
	*	Signe de fin de séquence

Fonctions auxiliaires M

M00	Arrêt de l'exécution du programme/arrêt broche/ arrêt arrosage
M01	Arrêt facultatif d'exécution du programme
M02	Arrêt de l'exécution du programme/arrêt broche/ arrêt arrosage/retour séquence 1/le cas échéant, effacement de l'affichage d'état
M03	Marche broche sens horaire
M04	Marche broche sens anti-horaire
M05	Arrêt broche
M06	Changement d'outil/arrêt exécution du programme (en fonction du paramètre-machine)/ arrêt broche
M08	Marche arrosage
M09	Arrêt arrosage
M13	Marche broche sens horaire/Marche arrosage
M14	Marche broche sens anti-horaire/Marchearrosage
M30	Fonction dito M02
M89	Fonction auxiliaire libre ou appel de cycle, effet modal (en fonction du paramètre-machine)
M90	Vitesse de contournage constante aux angles (actif en mode de poursuite seulement)
M91	Séquence de positionnement: les coordonnées se réfèrent au point zéro machine

M92	Séquence de positionnement: Les coordonnées se réfèrent à une position définie par le constructeur de la machine		
M93	réservée		
M94	Réduction de l'affichage de l'axe rotatif à une valeur inférieure à 360°		
M95	réservée		
M96	réservée		
M97	Usinage de petits éléments de contour		
M98	Fin de la correction de trajectoire		
M99	Appel de cycle actif pas à pas		
M101	Changement d'outil automatique après écoulement de la durée d'utilisation		
M102	Annulation de M101		
M103	Réduire au facteur F l'avance de plongée		
M104	Réactiver le dernier point de référence initialisé		
M105	Exécuter l'usinage avec le deuxième facteur k _V		
M106	Exécuter l'usinage avec le premier facteur k _V		
M107	Cf. Manuel d'utilisation		
M108	8 Annulation de M107		

M109	Vitesse de contournage constante au tranchant de l'outil pour les rayons (augmentation et	M130	Séquence de positionnement: Les points se réfèrent au système de coordonnées non incliné
	réduction de l'avance)	M134	Arrêt précis lors du positionnement avec axes
M110	Vitesse de contournage constante au tranchant		rotatifs
	de l'outil pour les rayons (augmentation de l'avance seulement)	M135	Annulation de M134
M111	Annulation de M109/M110	M136	Avance F en millimètres par tour de broche
		M137	Avance F en millimètres par minute
M114	Correction auto. de la géométrie machine lors de l'usinage avec axes inclinés (option de logiciel)	M138	Sélection d'axes inclinés pour M114, M128 et cycle d'inclinaison du plan d'usinage
M115	Annulation de M114	M140	Retrait du contour dans le sens de l'axe d'outil
M116	Avance des axes angulaires en mm/min. (option	M141	Annuler le contrôle du palpeur
	de logiciel)	M142	Effacer l'information de programme modale
M117	Annulation de M116	M143	Effacer la rotation de base
M118	Autoriser le positionnement avec la manivelle en cours d'exécution du programme	M144	Validation cinématique machine dans positions EFF/NOM en fin de séquence (option de logiciel)
M120	Pré-calcul d'une position avec correction de rayon (LOOK AHEAD)	M145	Annulation de M144
M124	Ne pas tenir compte des poins lors de l'exécution de séquences linéaires sans correction	M148	Lors du stop CN, éloigner l'outil automatiquement du contour
M126	Déplacement des axes rotatifs avec optimisation	M149	Annulation de M148
141120	de course	M150	Inhibition du message de commutateur de fin de
M127	Annulation de M126		course
M128	Conserver position pointe d'outil lors du positionnement des axes inclinés (TCPM) ¹⁾ (option de logiciel)	M200	Fonctions auxiliaires pour machines à découpe laser
M129	Annulation de M128	•	
1) TCPM:	1) TCPM: Tool Center Point Management		cf. Manuel d'utilisation

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH

Dr.-Johannes-Heidenhain-Straße 5

83301 Traunreut, Germany

② +49 (8669) 31-0 FAX +49 (8669) 5061

E-Mail: info@heidenhain.de

Technical support FAX +49 (8669) 32-10 00 **Measuring systems ②** +49 (8669) 31-31 04

NC programming +49 (8669) 31-3103
E-Mail: service.nc-pgm@heidenhain.de

E-Mail: service.plc@heidenhain.de

www.heidenhain.de

HEIDENHAIN FRANCE sarl

2 avenue de la Cristallerie 92310 Sèvres

2 0141143000

FAX 0141143030

HEIDENHAIN (SCHWEIZ) AG

Vieristrasse 14 8603 Schwerzenbach, Switzerland

② 044 806 27 27 FAX 044 806 27 28

HEIDENHAIN NV/SA

Pamelse Klei 47, 1760 Roosdaal, Belgium © (054) 343158

FAX (054) 343173

