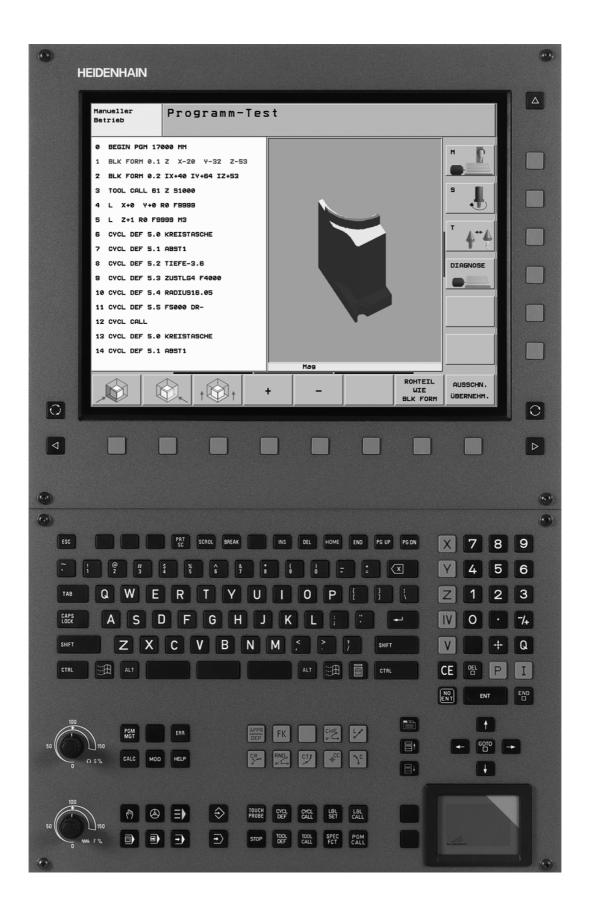


HEIDENHAIN

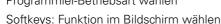

Benutzer-Handbuch DIN/ISO-Programmierung

iTNC 530

Software NC 340 490-04 340 491-04 340 492-04 340 493-04 340 494-04

Deutsch (de) 10/2007

Bedienelemente der Bildschirm-Einheit



Bildschirm-Aufteilung wählen

Bildschirm zwischen Maschinen- und Programmier-Betriebsart wählen

Softkey-Leisten umschalten

Alpha-Tastatur: Buchstaben und Zeichen eingeben

Datei-Namen Kommentare DIN/ISO-Programme

Maschinen-Betriebsarten wählen

Manueller Betrieb

El. Handrad

smarT.NC

Positionieren mit Handeingabe

Programmlauf Einzelsatz

Programmlauf Satzfolge

Programmier-Betriebsarten wählen

Programm Einspeichern/Editieren

 $\overline{\bullet}$

Programm-Test

Programme/Dateien verwalten, TNC-Funktionen

Programme/Dateien wählen und löschen Externe Datenübertragung

PGM CALL

Programm-Aufruf definieren, Nullpunkt- und Punkte Tabellen wählen

MOD

MOD-Funktion wählen

HELP

Hilfstexte anzeigen bei NC-Fehlermeldungen

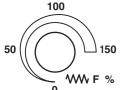
ERR

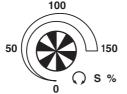
Alle anstehenden Fehlermeldungen anzeigen

CALC

Taschenrechner einblenden

Hellfeld verschieben und Sätze, Zyklen und Parameter-Funktionen direkt wählen





Hellfeld verschieben

Sätze, Zyklen und Parameter-Funktionen direkt wählen

Override Drehknöpfe für Vorschub/Spindeldrehzahl

Bahnbewegungen programmieren

Kontur anfahren/verlassen

Freie Konturprogrammierung FK

Gerade

Kreismittelpunkt/Pol für Polarkoordinaten

ζc

Kreisbahn um Kreismittelpunkt

Kreisbahn mit Radius

Kreisbahn mit tangentialem Anschluss

Fase/Ecken-Runden

Angaben zu Werkzeugen

Werkzeug-Länge und -Radius eingeben und aufrufen

Zyklen, Unterprogramme und Programmteil-Wiederholungen

Zyklen definieren und aufrufen

LBL CALL

Unterprogramme und Programmteil-Wiederholungen eingeben und aufrufen

Programm-Halt in ein Programm eingeben

TOUCH

Tastsystem-Zyklen definieren

Koordinatenachsen und Ziffern eingeben, Editieren X

٧

Koordinatenachsen wählen bzw. ins Programm eingeben

0

9 Ziffern

Dezimal-Punkt/Vorzeichen umkehren Polarkoordinaten Eingabe/

Inkremental-Werte

Q

P

Q-Parameter-Programmierung/Q-Parameter-Status Ist-Position, Werte vom Taschenrechner übernehmen

Dialogfragen übergehen und Wörter löschen

ENT

Eingabe abschließen und Dialog fortsetzen

END

Satz abschließen, Eingabe beenden

CE

Zahlenwert-Eingaben rücksetzen oder TNC Fehlermeldung löschen

DEL

Dialog abbrechen, Programmteil löschen

Sonderfunktionen/smarT.NC

Sonderfunktionen anzeigen

smarT.NC: Erstes Eingabefeld im vorherigen/ nächsten Rahmen wählen

TNC-Typ, Software und Funktionen

Dieses Handbuch beschreibt Funktionen, die in den TNCs ab den folgenden NC-Software-Nummern verfügbar sind.

TNC-Typ	NC-Software-Nr.
iTNC 530	340 490-04
iTNC 530 E	340 491-04
iTNC 530	340 492-04
iTNC 530 E	340 493-04
iTNC 530 Programmierplatz	340 494-04

Der Kennbuchstabe E kennzeichnet die Exportversion der TNC. Für die Exportversione der TNC gilt folgende Einschränkung:

■ Geradenbewegungen simultan bis zu 4 Achsen

Der Maschinenhersteller paßt den nutzbaren Leistungsumfang der TNC über Maschinen-Parameter an die jeweilige Maschine an. Daher sind in diesem Handbuch auch Funktionen beschrieben, die nicht an jeder TNC verfügbar sind.

TNC-Funktionen, die nicht an allen Maschinen zur Verfügung stehen, sind beispielsweise:

■ Werkzeug-Vermessung mit dem TT

Setzen Sie sich bitte mit dem Maschinenhersteller in Verbindung, um den tatsächlichen Funktionsumfang Ihrer Maschine kennenzulernen.

Viele Maschinenhersteller und HEIDENHAIN bieten für die TNCs Programmier-Kurse an. Die Teilnahme an solchen Kursen ist empfehlenswert, um sich intensiv mit den TNC-Funktionen vertraut zu machen.

Benutzer-Handbuch Tastsystem-Zyklen:

Alle Tastsystem-Funktionen sind in einem separaten Benutzer-Handbuch beschrieben. Wenden Sie sich ggf. an HEIDENHAIN, wenn Sie dieses Benutzer-Handbuch benötigen. ID 533 189-xx

Benutzer-Dokumentation smarT.NC:

Die Betriebsart smarT.NC ist in einem separaten Lotsen beschrieben. Wenden Sie sich ggf. an HEIDENHAIN, wenn Sie diesen Lotsen benötigen. ID 533 191-xx.

Software-Optionen

Die iTNC 530 verfügt über verschiedene Software-Optionen, die von Ihnen oder Ihrem Maschinen-Hersteller freigeschaltet werden können. Jede Option ist separat freizuschalten und beinhaltet jeweils die nachfolgend aufgeführten Funktionen:

Software-Option 1

Zylindermantel-Interpolation (Zyklen 27, 28, 29 und 39)

Vorschub in mm/min bei Rundachsen: M116

Schwenken der Bearbeitungsebene (Zyklus 19, **PLANE**-Funktion und Softkey 3D-ROT in der Betriebsart Manuell)

Kreis in 3 Achsen bei geschwenkter Bearbeitungsebene

Software-Option 2

Satzverarbeitungszeit 0.5 ms anstelle 3.6 ms

5-Achs-Interpolation

Spline-Interpolation

3D-Bearbeitung:

- M114: Automatische Korrektur der Maschinengeometrie beim Arbeiten mit Schwenkachsen
- M128: Position der Werkzeugspitze beim Positionieren von Schwenkachsen beibehalten (TCPM)
- **FUNCTION TCPM**: Position der Werkzeugspitze beim Positionieren von Schwenkachsen beibehalten (TCPM) mit Einstellmöglichkeit der Wirkungsweise
- M144: Berücksichtigung der Maschinen-Kinematik in IST/SOLL-Positionen am Satzende
- Zusätzliche Parameter Schlichten/Schruppen und Toleranz für Drehachsen im Zyklus 32 (G62)
- LN-Sätze (3D-Korrektur)

Software-Option DCM Collison	Beschreibung
Funktion, die vom Maschinenhersteller definierte Bereiche überwacht, um Kollisionen zu vermeiden.	Seite 96

Software-Option DXF-Converter	Beschreibung
Konturen aus DXF-Dateien (Format R12) extrahieren.	Seite 252

Software-Option zusätzliche Dialogsprache	Beschreibung
Funktion, zur Freischaltung der Seite 658 Dialogsprachen slowenisch, slowakisch, norwegisch, lettisch, estnisch, koreanisch, ürkisch, rumänisch.	
Software-Option Globale Programm- Einstellungen	Beschreibung
Funktion zur Überlagerung von Koordinaten- Transformationen in den Abarbeiten- Betriebsarten, handragüberlagertes Verfahren in virtueller Achsrichtung.	Seite 605
Software-Option AFC	Beschreibung
Funktion adaptive Vorschubregelung zur Optimierung der Schnittbedingungen bei Serienproduktion.	Seite 613
Software-Option KinematicsOpt	Beschreibung
Tastsystem-Zyklen zur Prüfung und Optimierung der Maschinengenauigkeit.	Benutzer- Handbuch Tastsystem- Zyklen

Entwicklungsstand (Upgrade-Funktionen)

Neben Software-Optionen werden wesentliche Weiterentwicklungen der TNC-Software über Upgrade-Funktionen, den sogenannten **F**eature **C**ontent **L**evel (engl. Begriff für Entwicklungsstand), verwaltet. Funktionen die dem FCL unterliegen, stehen Ihnen nicht zur Verfügung, wenn Sie an Ihrer TNC einen Software-Update erhalten.

Wenn Sie eine neue Maschine erhalten, dann stehen Ihnen alle Upgrade-Funktionen ohne Mehrkosten zur Verfügung.

Upgrade-Funktionen sind im Handbuch mit \mathbf{FCL} \mathbf{n} gekennzeichnet, wobei \mathbf{n} die fortlaufende Nummer des Entwicklungsstandes kennzeichnet.

Sie können durch eine käuflich zu erwerbende Schlüsselzahl die FCL-Funktionen dauerhaft freischalten. Setzen Sie sich hierzu mit Ihrem Maschinenhersteller oder mit HEIDENHAIN in Verbindung.

FCL 4-Funktionen	Beschreibung
Grafische Darstellung des Schutzraumes bei aktiver Kollisionsüberwachung DCM	Seite 96
Handradüberlagerung in gestopptem Zustand bei aktiver Kollisionsüberwachung DCM	Seite 280
3D-Grunddrehung (Aufspannkompensation)	Maschinen-Handbuch

FOL 0 F 141	B 1 1
FCL 3-Funktionen	Beschreibung
Tastsystem-Zyklus zum 3D-Antasten	Benutzer-Handbuch Tastsystem-Zyklen
Tastsystem-Zyklen zum automatischen Bezugspunkt-Setzen Mitte Nut/Mitte Steg	Benutzer-Handbuch Tastsystem-Zyklen
Vorschubreduzierung bei Konturtaschenbearbeitung wenn Werkzeug im Volleingriff ist	Seite 408
PLANE-Funktion: Achswinkeleingabe	Seite 505
Benutzer-Dokumentation als Kontextsensitives Hilfesystem	Seite 167
smarT.NC: smarT.NC programmieren parallel zur Bearbeitung	Benutzer-Handbuch Klartext-Dialog
smarT.NC: Konturtasche auf Punktemuster	Lotse smarT.NC

FCL 3-Funktionen	Beschreibung
smarT.NC: Preview von Konturprogrammen im Datei-Manager	Lotse smarT.NC
smarT.NC: Positionierstrategie bei Punkte-Bearbeitungen	Lotse smarT.NC

FCL 2-Funktionen	Beschreibung
3D-Liniengrafik	Seite 150
Virtuelle Werkzeug-Achse	Seite 95
USB-Unterstützung von Block-Geräten (Speicher-Sticks, Festplatten, CD-ROM-Laufwerke)	Seite 135
Konturen filtern, die extern erstellt wurden	Benutzer-Handbuch Klartext-Dialog
Möglichkeit, jeder Teilkontur bei der Konturformel unterschiedliche Tiefen zuzuweisen	Benutzer-Handbuch Klartext-Dialog
Dynamische IP-Adressen-Verwaltung DHCP	Seite 633
Tastsystem-Zyklus zum globalen Einstellen von Tastsystem-Parametern	Benutzer-Handbuch Tastsystem-Zyklen
smarT.NC: Satzvorlauf grafisch unterstützt	Lotse smarT.NC
smarT.NC: Koordinaten- Transformationen	Lotse smarT.NC
smarT.NC: PLANE-Funktion	Lotse smarT.NC

Vorgesehener Einsatzort

Die TNC entspricht der Klasse A nach EN 55022 und ist hauptsächlich für den Betrieb in Industriegebieten vorgesehen.

Rechtlicher Hinweis

Dieses Produkt verwendet Open Source Software. Weitere Informationen finden Sie auf der Steuerung unter

- ▶ Betriebsart Einspeichern/Editieren
- ▶ MOD-Funktion
- ► Softkey RECHTLICHE HINWEISE

Neue Funktionen 340 49x-01 bezogen auf die Vorgänger-Versionen 340 422-xx/340 423-xx

- Es wurde die neue formularbasierte Betriebsart smarT.NC eingeführt. Hierfür steht eine separate Benutzer-Dokumentation zur Verfügung. In diesem Zusammenhang wurde auch das TNC Bedienfeld erweitert. Es stehen neue Tasten zur Verfügung, mit denen innerhalb von smarT.NC schnell navigiert werden kann (siehe "Bedienfeld" auf Seite 49)
- Die Einprozessor-Version unterstützt via USB 2.0-Schnittstelle Zeigegeräte (Mäuse)
- Neuer Zyklus ZENTRIEREN (siehe "ZENTRIEREN (Zyklus 240)" auf Seite 312)
- Neue M-Funktion M150 zum Unterdrücken von Endschaltermeldungen (siehe "Endschaltermeldung unterdrücken: M150" auf Seite 286)
- M128 ist jetzt auch bei Satzvorlauf erlaubt (siehe "Beliebiger Einstieg ins Programm (Satzvorlauf)" auf Seite 596)
- Die Anzahl der zur Verfügung stehenden Q-Parameter wurde auf 2000 erweitert (siehe "Programmieren: Q-Parameter" auf Seite 529)
- Die Anzahl der zur Verfügung stehenden Label-Nummern wurde auf 1000 erweitert. Zusätzlich können jetzt auch Label-Namen vergeben werden (siehe "Unterprogramme und Programmteil-Wiederholungen kennzeichnen" auf Seite 514)
- Bei den Q-Parameter-Funktionen D9 bis D12 können als Sprungziel auch Label-Namen vergeben werden (siehe "Wenn/dann-Entscheidungen mit Q-Parametern" auf Seite 539)
- In der zusätzlichen Status-Anzeige wird jetzt auch die aktuelle Uhrzeit angezeigt (siehe "Allgemeine Programm-Information (Reiter PGM)" auf Seite 56)
- Die Werkzeug-Tabelle wurde um verschiedene Spalten erweitert (siehe "Werkzeug-Tabelle: Standard Werkzeug-Daten" auf Seite 195)
- Der Programm-Test kann jetzt auch innerhalb von Bearbeitungszyklen angehalten und wieder fortgesetzt werden (siehe "Programm-Test ausführen" auf Seite 589)

Neue Funktionen 340 49x-02

- DXF-Dateien können jetzt direkt auf der TNC geöffnet werden, um daraus Konturen in ein Klartext-Dialog-Programm zu extrahieren (siehe "DXF-Dateien verarbeiten (Software-Option)" auf Seite 252)
- In der Betriebsart Programm-Einspeichern steht jetzt eine 3D-Liniengrafik zur Verfügung (siehe "3D-Liniengrafik (FCL2-Funktion)" auf Seite 150)
- Die aktive Werkzeugachs-Richtung kann jetzt im manuellen Betrieb als aktive Bearbeitungsrichtung gesetzt werden (siehe "Aktuelle Werkzeugachs-Richtung als aktive Bearbeitungsrichtung setzen (FCL 2-Funktion)" auf Seite 95)
- Der Maschinenhersteller kann jetzt beliebig definierbare Bereiche der Maschine auf Kollision überwachen (siehe "Dynamische Kollisionsüberwachung (Software-Option)" auf Seite 96)
- Frei definierbare Tabellen kann die TNC jetzt in der bisherigen Tabellenansicht oder alternativ in einer Formularansicht darstellen (siehe "Wechseln zwischen Tabellen- und Formularansicht" auf Seite 220)
- Bei Konturen, die Sie über die Konturformel verknüpfen, kann jetzt für jede Teilkontur eine separate Bearbeitungstiefe eingegeben werden (siehe "SL-Zyklen mit Konturformel" auf Seite 434)
- Die Einprozessor-Version unterstützt jetzt neben Zeigegeräten (Mäuse) auch USB-Blockgeräte (Memory-Stick, Disketten-Laufwerke, Festplatten, CD-ROM-Laufwerke) (siehe "USB-Geräte an der TNC (FCL 2-Funktion)" auf Seite 135)

Neue Funktionen 340 49x-03

- Es wurde die Funktion automatische Vorschubregelung AFC (Adaptive Feed Control) eingeführt (siehe "Adaptive Vorschubregelung AFC (Software-Option)" auf Seite 613)
- Mit der Funktion globale Programmeinstellungen lassen sich verschiedenen Transformationen und Programmeinstellungen in den Programmlauf-Betriebsarten einstellen (siehe "Globale Programm-einstellungen (Software-Option)" auf Seite 605)
- Mit dem **TNCguide** steht jetzt ein kontextsensitives Hilfesystem auf der TNC zur Verfügung (siehe "Kontextsensitives Hilfesystem TNCguide (FCL3-Funktion)" auf Seite 167)
- Aus DXF-Dateien können Sie jetzt auch Punktefiles extrahieren (siehe "Bearbeitungspositionen wählen und speichern" auf Seite 262)
- Im DXF-Konverter können Sie jetzt bei der Konturauswahl stumpf aneinanderstoßende Konturelement teilen bzw. verlängern (siehe "Konturelemente teilen, verlängern, verkürzen" auf Seite 260)
- Bei der **PLANE**-Funktion kann die Bearbeitungsebene jetzt auch direkt über Achswinkel definiert werden (siehe "Bearbeitungsebene über Achswinkel: PLANE AXIAL (FCL 3-Funktion)" auf Seite 505)
- Im Zyklus 22 **RÄUMEN**, können Sie jetzt eine Vorschubreduzierung definieren, wenn das Werkzeug mit vollem Umfang schneidet (FCL3-Funktion, siehe "RAEUMEN (Zyklus G122)", Seite 408)
- Im Zyklus 208 BOHRFRÄSEN, können Sie jetzt die Fräsart (Gleich-/ Gegenlauf) wählen (siehe "BOHRFRAESEN (Zyklus G208)" auf Seite 328)
- Bei der Q-Parameter-Programmierung wurde die String-Verarbeitung eingeführt (siehe "String-Parameter" auf Seite 552)
- Über den Maschinen-Parameter 7392 lässt sich ein Bildschirmschoner aktivieren (siehe "Allgemeine Anwenderparameter" auf Seite 658)
- Die TNC unterstützt jetzt auch eine Netzwerk-Verbindung über das NFS V3-Protokoll (siehe "Ethernet-Schnittstelle" auf Seite 633)
- Die Anzahl der in einer Platz-Tabelle verwaltbaren Werkzeuge wurde auf 9999 erhöht (siehe "Platz-Tabelle für Werkzeug-Wechsler" auf Seite 203)
- Über die MOD-Funktion lässt sich jetzt die Systemzeit einstellen (siehe "Systemzeit einstellen" auf Seite 654)

Neue Funktionen 340 49x-04

- Mit der Funktion globale Programmeinstellungen lässt sich nun auch das handradüberlagerte Verfahren in aktiver Werkzeugachs-Richtung (virtuelle Achse) aktivieren (siehe "Virtuelle Achse VT" auf Seite 612)
- Neuer Zyklus 256 zum Fräsen von Rechteckzapfen (siehe "RECHTECKZAPFEN (Zyklus 256)" auf Seite 382)
- Neuer Zyklus 257 zum Fräsen von Kreiszapfen (siehe "KREISZAPFEN (Zyklus 257)" auf Seite 386)
- Im Zyklus 209 **GEINDEBOHREN SPANBRUCH**, können Sie jetzt einen Faktor für die Rückzugsdrehzahl definieren, damit Sie schneller aus der Bohrung herausfahren können (siehe "GEWINDEBOHREN SPANBRUCH (Zyklus G209)" auf Seite 334)
- Im Zyklus 22 **RÄUMEN**, können Sie jetzt die Nachräumstrategie definieren, (siehe "RAEUMEN (Zyklus G122)" auf Seite 408)
- Im neuen Zyklus 270 KONTURZUG-DATEN, können Sie die Anfahrart des Zyklus 25 KONTUR-ZUG festlgen (siehe "KONTURZUG-Daten (Zyklus G270)" auf Seite 415)
- Neue Q-Parameter-Funktion zum Lesen eines Systemdatums wurde eingeführt (siehe "Systemdaten in einen String-Parameter kopieren", Seite 556)
- DCM: Kollisionskörper können beim Abarbeiten jetzt dreidimensional angezeigt werden (siehe "Grafische Darstellung des Schutzraumes (FCL4-Funktion)", Seite 99)
- DXF-Konverter: Neue Einstellmöglichkeit wurde eingeführt, mit der die TNC bei Punkteübernahme aus Kreiselementen den Kreismittelpunkt automatisch selektiert (siehe "Grundeinstellungen", Seite 254)
- DXF-Konverter: Elementinformationen werden zusätzlich in einem Infofenster angezeigt (siehe "Elementinformationen", Seite 261)
- AFC: In der zusätzlichen Status-Anzeige für AFC wird jetzt ein Liniendiagramm angezeigt (siehe "Adaptive Vorschubregelung AFC (Reiter AFC, Software-Option)" auf Seite 61)
- AFC: Regeleingangsparameter vom Maschinenhersteller wählbar (siehe "Adaptive Vorschubregelung AFC (Software-Option)" auf Seite 613)
- AFC: Im Lernmodus wird die aktuell eingelernte Spindelreferenzlast in einem Überblendfenster angezeigt. Zusätzlich kann die Lernpase jederzeit per Softkeydruck neu gestartet werden (siehe "Lernschnitt durchführen" auf Seite 617)
- AFC: Die abhängige Datei <name>.H.AFC.DEP lässt sich jetzt auch in der Betriebsart Programm-Einspeichern/Editieren modifizieren (siehe "Lernschnitt durchführen" auf Seite 617)

- Der maximal erlaubte Weg beim LIFTOFF wurde auf 30 mm erhöht (siehe "Werkzeug bei NC-Stopp automatisch von der Kontur abheben: M148" auf Seite 285)
- Die Datei-Verwaltung wurde an die Datei-Verwaltung in smarT.NC angepasst (siehe "Übersicht: Funktionen der Datei-Verwaltung" auf Seite 116)
- Neue Funktion zum Erzeugen von Servicedateien eingeführt (siehe "Servicedateien erzeugen" auf Seite 166)
- Window-Manager wurde eingeführt (siehe "Window-Manager" auf Seite 62)
- Die neuen Dialogsprachen Türkisch und Rumänisch wurden eingeführt (Software-Option, ab Seite 658)

Geänderte Funktionen 340 49x-01 bezogen auf die Vorgänger-Versionen 340 422-xx/340 423-xx

- Das Layout der Status-Anzeige und der zusätzlichen Status-Anzeige wurde neu gestaltet (siehe "Status-Anzeigen" auf Seite 53)
- Die Software 340 490 unterstützt keine kleine Auflösung in Verbindung mit dem Bildschirm BC 120 mehr (siehe "Bildschirm" auf Seite 47)
- Neues Tastatur-Layout der Tastatur-Einheit TE 530 B (siehe "Bedienfeld" auf Seite 49)
- In Vorbereitung auf zukünftige Funktionen wurden die zur Auswahl stehenden Werkzeugtypen in der Werkzeug-Tabelle erweitert

Geänderte Funktionen 340 49x-02

- Der Zugriff auf die Preset-Tabelle wurde vereinfacht. Desweiteren stehen auch neue Möglichkeiten zur Eingabe von Werten in die Preset-Tabelle zur Verfügung (siehe "Bezugspunkte manuell in der Preset-Tabelle speichern" auf Seite 85)
- Die Funktion M136 in Inch-Programmen (Vorschub in 0.1 inch/U) ist nicht mehr mit der Funktion FU kombinierbar
- Die Vorschub-Potentiometer des HR 420 werden jetzt beim Anwählen des Handrades nicht mehr automatisch umgeschaltet. Die Auswahl erfolgt per Sotkey auf dem Handrad. Zusätzlich wurde das Überblendfenster bei aktivem Handrad verkleinert, um die Sicht auf die darunterliegende Anzeige zu verbessern (siehe "Potentiometer-Einstellungen" auf Seite 75)
- Die Maximalanzahl der Konturelemenet bei SL-Zyklen wurde auf 8192 erhöht, so dass wesentlich komplexere Konturen bearbeitet werden können (siehe "SL-Zyklen" auf Seite 399)
- FN16: F-PRINT: Die Maximalanzahl der ausgebbaren Q-Parameterwerte pro Zeile in der Format-Beschreibungsdatei wurde auf 32 erhöht (Benutzer-Handbuch Klartext-Dialog)
- Die Softkeys START sowie START EINZELSATZ in der Betreibsart Programm-Test wurden getauscht, damit in allen Betriebsarten (Einspeichern, SmarT.NC, Test) dieselbe Softkey-Anodnung verfügbar ist (siehe "Programm-Test ausführen" auf Seite 589)
- Das Softkey-Design wurde komplett überarbeitet

Geänderte Funktionen 340 49x-03

- Im Zyklus 22 können Sie jetzt für das Vorräum-Werkzeug auch einen Werkzeug-Name definieren (siehe "RAEUMEN (Zyklus G122)" auf Seite 408)
- Beim Abarbeiten von Programmen in denen ungeregelte Achsen programmiert sind, unterbricht die TNC jetzt den Programmlauf und zeigt ein Menü zum Anfahren der programmierten Position an (siehe "Programmieren von nicht gesteuerten Achsen (Zählerachsen)" auf Seite 593)
- In der Werkzeug-Einsatzdatei wird jetzt auch die Gesamtbearbeitungszeit eingetragen, die als Gundlage für die prozentuale Fortschritts-Anzeige in der Betriebsart Programmlauf Satzfolge dient (siehe "Werkzeug-Einsatzprüfung" auf Seite 599)
- Bei der Berechnung der Bearbeitungszeit im Programm-Test berücksichtigt die TNC jetzt auch Verweilzeiten (siehe "Bearbeitungszeit ermitteln" auf Seite 585)
- Kreise, die nicht in der aktiven Bearbeitungsebene programmiert sind, können jetzt auch gedreht ausgefürt werden (siehe "Kreisbahn G02/G03/G05 um Kreismittelpunkt I, J" auf Seite 237)
- Der Softkey EDITIEREN AUS/EIN in der Platz-Tabelle kann vom Maschinenhersteller deaktiviert werden (siehe "Platz-Tabelle für Werkzeug-Wechsler" auf Seite 203)
- Die zusätzliche Status-Anzeige wurde überarbeitet. Folgende Erweiterungen wurden durchgeführt (siehe "Zusätzliche Status-Anzeigen" auf Seite 55):
 - Eine neue Übersichtsseite mit den wichtigsten Status-Anzeigen wurde eingeführt
 - Die einzelnen Status-Seiten werden jetzt in Reiter-Form (analog zu smarT.NC) dargestellt. Per Blättern-Softkey oder per Mouse können die einzelnen Reiter angewählt werden
 - Die aktuelle Laufzeit des Programmes wird prozentual in einem Fortschrittsbalken angezeigt
 - Die mit dem Zyklus 32 Toleranz eingestellten Werte werden angezeigt
 - Aktive globale Programmeinstellungen werden angezeigt, sofern diese Software-Option freigeschaltet wurde
 - Der Status der adaptiven Vorschubregelung AFC wird angezeigt, sofern diese Software-Option freigeschaltet ist

Geänderte Funktionen 340 49x-04

- DCM: Freifahren nach Kollision vereinfacht
- Der Eingabebereich von Polarwinkeln wurde vergrößert (siehe "Schraubenlinie (Helix)" auf Seite 247)
- Der Wertebereich für Q-Parameter-Zuweisungen wurde erhöht (siehe "Programmierhinweise", Seite 531)
- Die Taschen-, Zapfen und Nutenfräszyklen 210 bis 214 wurden aus der Standard-Softkeyleiste (CYCL DEF > TASCHEN/ZAPFEN/NUTEN) entfernt. Die Zyklen stehen aus Kompatibilitätsgründe weiterhin zur Verfügung und können über die Taste GOTO gewählt werden
- Die Softkeyleisten in der Betriebsart Programm-Test wurden angepasst an die Softkey-Leisten in der Betriebsart smarT.NC
- Bei der Zweiprozessor-Version wird jetzt Windows XP verwendet (siehe "Einführung" auf Seite 688)
- Die Übernahme von Werten in den Taschenrechner wurde geändert (siehe "Berechneten Wert ins Programm übernehmen" auf Seite 161)

Inhalt

Einführung
Handbetrieb und Einrichten
Positionieren mit Handeingabe
Programmieren: Grundlagen Dateiverwaltung, Programmierhilfen
Programmieren: Werkzeuge
Programmieren: Konturen programmieren
Programmieren: Zusatz-Funktionen
Programmieren: Zyklen
Programmieren: Sonderfunktionen
Programmieren: Unterprogramme und Programmteil-Wiederholungen
Programmieren: Q-Parameter
Programmtest und Programmlauf
MOD-Funktionen
Tabellen und Übersichten
iTNC 530 mit Windows XP (Option)

1 Einführung 45

```
1.1 Die iTNC 530 ..... 46
       Programmierung: HEIDENHAIN Klartext-Dialog, smarT.NC und DIN/ISO ..... 46
       Kompatibilität ..... 46
1.2 Bildschirm und Bedienfeld ..... 47
       Bildschirm ..... 47
       Bildschirm-Aufteilung festlegen ..... 48
       Bedienfeld ..... 49
1.3 Betriebsarten ..... 50
       Manueller Betrieb und El. Handrad ..... 50
       Positionieren mit Handeingabe ..... 50
       Programm-Einspeichern/Editieren ..... 51
       Programm-Test ..... 51
       Programmlauf Satzfolge und Programmlauf Einzelsatz ..... 52
1.4 Status-Anzeigen ..... 53
       "Allgemeine" Status-Anzeige ..... 53
       Zusätzliche Status-Anzeigen ..... 55
1.5 Window-Manager ..... 62
1.6 Zubehör: 3D-Tastsysteme und elektronische Handräder von HEIDENHAIN ..... 63
       3D-Tastsysteme ..... 63
       Elektronische Handräder HR ..... 64
```


2 Handbetrieb und Einrichten 65

2.1 Einschalten, Ausschalten 66
Einschalten 66
Ausschalten 69
2.2 Verfahren der Maschinenachsen 70
Hinweis 70
Achse mit den externen Richtungstasten verfahren 70
Schrittweises Positionieren 71
Verfahren mit dem elektronischen Handrad HR 410 72
Elektronisches Handrad HR 420 73
2.3 Spindeldrehzahl S, Vorschub F und Zusatzfunktion M 79
Anwendung 79
Werte eingeben 79
Spindeldrehzahl und Vorschub ändern 80
2.4 Bezugspunkt-Setzen (ohne 3D-Tastsystem) 81
Hinweis 81
Vorbereitung 81
Bezugspunkt setzen mit Achstasten 82
Bezugspunkt-Verwaltung mit der Preset-Tabelle 83
2.5 Bearbeitungsebene schwenken (Software-Option 1) 90
Anwendung, Arbeitsweise 90
Referenzpunkte-Anfahren bei geschwenkten Achsen 91
Bezugspunkt-Setzen im geschwenkten System 92
Bezugspunkt-Setzen bei Maschinen mit Rundtisch 92
Bezugspunkt-Setzen bei Maschinen mit Kopfwechsel-Systemen 93
Positionsanzeige im geschwenkten System 93
Einschränkungen beim Schwenken der Bearbeitungsebene 93
Manuelles Schwenken aktivieren 94
Aktuelle Werkzeugachs-Richtung als aktive Bearbeitungsrichtung setzen (FCL 2-Funktion) 95
2.6 Dynamische Kollisionsüberwachung (Software-Option) 96
Funktion 96
Kollisionsüberwachung in den manuellen Betriebsarten 97
Kollisionsüberwachung im Automatikbetrieb 99

3 Positionieren mit Handeingabe 101

3.1 Einfache Bearbeitungen programmieren und abarbeiten 102 Positionieren mit Handeingabe anwenden 102 Programme aus \$MDI sichern oder löschen 105

4 Programmieren: Grundlagen, Datei-Verwaltung, Programmierhilfen, Paletten-Verwaltung 107

4.1 Grundlagen 108
Wegmessgeräte und Referenzmarken 108
Bezugssystem 108
Bezugssystem an Fräsmaschinen 109
Polarkoordinaten 110
Absolute und inkrementale Werkstück-Positionen 111
Bezugspunkt wählen 112
4.2 Datei-Verwaltung: Grundlagen 113
Dateien 113
Datensicherung 114
4.3 Arbeiten mit der Datei-Verwaltung 115
Verzeichnisse 115
Pfade 115
Übersicht: Funktionen der Datei-Verwaltung 116
Datei-Verwaltung aufrufen 117
Laufwerke, Verzeichnisse und Dateien wählen 118
Neues Verzeichnis erstellen (nur auf Laufwerk TNC:\ möglich) 12°
Neue Datei erstellen (nur auf Laufwerk TNC:\ möglich) 121
Einzelne Datei kopieren 122
Datei in ein anderes Verzeichnis kopieren 123
Tabelle kopieren 124
Verzeichnis kopieren 125
Eine der zuletzt gewählten Dateien auswählen 125
Datei löschen 126
Verzeichnis löschen 126
Dateien markieren 127
Datei umbenennen 129
Zusätzliche Funktionen 129
Arbeiten mit Shortcuts 131
Datenübertragung zu/von einem externen Datenträger 132
Die TNC am Netzwerk 134
USB-Geräte an der TNC (FCL 2-Funktion) 135
4.4 Programme eröffnen und eingeben 137
Aufbau eines NC-Programms im DIN/ISO-Format 137
Rohteil definieren: G30/G31 137
Neues Bearbeitungs-Programm eröffnen 138
Werkzeug-Bewegungen programmieren 140
Ist-Positionen übernehmen 141
Programm editieren 142
Die Suchfunktion der TNC 146

4.5 Programmier-Grafik 148
Programmier-Grafik mitführen/nicht mitführen 148
Programmier-Grafik für bestehendes Programm erstellen 148
Satz-Nummern ein- und ausblenden 149
Grafik löschen 149
Ausschnittsvergrößerung oder -verkleinerung 149
4.6 3D-Liniengrafik (FCL2-Funktion) 150
Anwendung 150
Funktionen der 3D-Liniengrafik 151
NC-Sätze in der Grafik farblich hervorheben 153
Satz-Nummern ein- und ausblenden 153
Grafik löschen 153
4.7 Programme gliedern 154
Definition, Einsatzmöglichkeit 154
Gliederungs-Fenster anzeigen/Aktives Fenster wechseln 154
Gliederungs-Satz im Programm-Fenster (links) einfügen 154
Sätze im Gliederungs-Fenster wählen 154
4.8 Kommentare einfügen 155
Anwendung 155
Kommentar während der Programmeingabe 155
Kommentar nachträglich einfügen 155
Kommentar in eigenem Satz 155
Funktionen beim Editieren des Kommentars 155
4.9 Text-Dateien erstellen 156
Anwendung 156
Text-Datei öffnen und verlassen 156
Texte editieren 157
Zeichen, Wörter und Zeilen löschen und wieder einfügen 158
Textblöcke bearbeiten 159
Textteile finden 160
4.10 Der Taschenrechner 161
Bedienung 161
4.11 Direkte Hilfe bei NC-Fehlermeldungen 162
Fehlermeldungen anzeigen 162
Hilfe anzeigen 162
4.12 Liste aller anstehenden Fehlermeldungen 163
Funktion 163
Fehlerliste anzeigen 163
Fenster-Inhalt 164
Hilfesystem TNCguide aufrufen 165
Servicedateien erzeugen 166

4.13 Kontextsensitives Hilfesystem INCguide (FCL3-Funktion) 16
Anwendung 167
Arbeiten mit dem TNCguide 168
Aktuelle Hilfedateien downloaden 172
4.14 Paletten-Verwaltung 174
Anwendung 174
Paletten-Tabelle wählen 176
Paletten-Datei verlassen 176
Paletten-Datei abarbeiten 177
4.15 Palettenbetrieb mit werkzeugorientierter Bearbeitung 178
Anwendung 178
Paletten-Datei wählen 182
Paletten-Datei mit Eingabeformular einrichten 183
Ablauf der werkzeugorientierten Bearbeitung 188
Paletten-Datei verlassen 189
Paletten-Datei abarbeiten 189

5 Programmieren: Werkzeuge 191

5.1 Werkzeugbezogene Eingaben 192 Vorschub F 192 Spindeldrehzahl S 192 5.2 Werkzeug-Daten 193 Voraussetzung für die Werkzeug-Korrektur 193 Werkzeug-Nummer, Werkzeug-Name 193 Werkzeug-Länge L 193 Werkzeug-Radius R 194 Delta-Werte für Längen und Radien 194 Werkzeug-Daten ins Programm eingeben 194 Werkzeug-Daten in die Tabelle eingeben 195 Einzelne Werkzeugdaten von einem externen PC aus überschreiben 202 Platz-Tabelle für Werkzeug-Wechsler 203 Werkzeug-Daten aufrufen 206 Werkzeugwechsel 207 5.3 Werkzeug-Korrektur 209 Einführung 209 Werkzeug-Längenkorrektur 209 Werkzeug-Radiuskorrektur 210 5.4 Peripheral Milling: 3D-Radiuskorrektur mit Werkzeug-Orientierung 213 Anwendung 213 5.5 Arbeiten mit Schnittdaten-Tabellen 214 Hinweis 214 Einsatzmöglichkeiten 214 Tabelle für Werkstück-Materialien 215 Tabelle für Werkzeug-Schneidstoffe 216 Tabelle für Schnittdaten 216 Erforderliche Angaben in der Werkzeug-Tabelle 217 Vorgehensweise beim Arbeiten mit automatischer Drehzahl-Vorschub-Berechnung 218 Tabellen-Struktur verändern 219 Wechseln zwischen Tabellen- und Formularansicht 220 Datenübertragung von Schnittdaten-Tabellen 221 Konfigurations-Datei TNC.SYS 221

6 Programmieren: Konturen programmieren 223

6.1 Werkzeug-Bewegungen 224
Bahnfunktionen 224
Zusatzfunktionen M 224
Unterprogramme und Programmteil-Wiederholungen 224
Programmieren mit Q-Parametern 224
6.2 Grundlagen zu den Bahnfunktionen 225
Werkzeugbewegung für eine Bearbeitung programmieren 225
6.3 Kontur anfahren und verlassen 228
Start- und Endpunkt 228
Tangential An- und Wegfahren 230
6.4 Bahnbewegungen – rechtwinklige Koordinaten 232
Übersicht der Bahnfunktionen 232
Gerade im Eilgang G00
Gerade mit Vorschub G01 F 233
Fase zwischen zwei Geraden einfügen 234
Ecken-Runden G25 235
Kreismittelpunkt I, J 236
Kreisbahn G02/G03/G05 um Kreismittelpunkt I, J 237
Kreisbahn G02/G03/G05 mit festgelegtem Radius 238
Kreisbahn G06 mit tangentialem Anschluss 240
6.5 Bahnbewegungen – Polarkoordinaten 245
Übersicht der Bahnfunktionen mit Polarkoordinaten 245
Polarkoordinaten-Ursprung: Pol I, J 245
Gerade im Eilgang G10
Gerade mit Vorschub G11 F 246
Kreisbahn G12/G13/G15 um Pol I, J 246
Kreisbahn G16 mit tangentialem Anschluss 247
Schraubenlinie (Helix) 247
6.6 DXF-Dateien verarbeiten (Software-Option) 252
Anwendung 252
DXF-Datei öffnen 253
Grundeinstellungen 254
Layer einstellen 256
Bezugspunkt festlegen 257
Kontur wählen und speichern 259
Bearbeitungspositionen wählen und speichern 262
Zoom-Funktion 263

7 Programmieren: Zusatz-Funktionen 265

7.1 Zusatz-Funktionen M und G38 eingeben 266 Grundlagen 266 7.2 Zusatz-Funktionen für Programmlauf-Kontrolle, Spindel und Kühlmittel 267 Übersicht 267 7.3 Zusatz-Funktionen für Koordinatenangaben 268 Maschinenbezogene Koordinaten programmieren: M91/M92 268 Zuletzt gesetzten Bezugspunkt aktivieren: M104 270 Positionen im ungeschwenkten Koordinaten-System bei geschwenkter Bearbeitungsebene anfahren: M130 270 7.4 Zusatz-Funktionen für das Bahnverhalten 271 Ecken verschleifen: M90 271 Definierten Rundungskreis zwischen Geradenstücken einfügen: M112 272 Punkte beim Abarbeiten von nicht korrigierten Geradensätzen nicht berücksichtigen: M124 272 Kleine Konturstufen bearbeiten: M97 273 Offene Konturecken vollständig bearbeiten: M98 275 Vorschubfaktor für Eintauchbewegungen: M103 276 Vorschub in Millimeter/Spindel-Umdrehung: M136 277 Vorschubgeschwindigkeit bei Kreisbögen: M109/M110/M111 278 Radiuskorrigierte Kontur vorausberechnen (LOOK AHEAD): M120 278 Handrad-Positionierung während des Programmlaufs überlagern: M118 280 Rückzug von der Kontur in Werkzeugachsen-Richtung: M140 281 Tastsystem-Überwachung unterdrücken: M141 283 Modale Programminformationen löschen: M142 284 Grunddrehung löschen: M143 284 Werkzeug bei NC-Stopp automatisch von der Kontur abheben: M148 285 Endschaltermeldung unterdrücken: M150 286 7.5 Zusatz-Funktionen für Drehachsen 287 Vorschub in mm/min bei Drehachsen A, B, C: M116 (Software-Option 1) 287 Drehachsen wegoptimiert fahren: M126 288 Anzeige der Drehachse auf Wert unter 360° reduzieren: M94 289 Automatische Korrektur der Maschinengeometrie beim Arbeiten mit Schwenkachsen: M114 (Software-Option 2) 290 Position der Werkzeugspitze beim Positionieren von Schwenkachsen beibehalten (TCPM): M128 (Software-Option 2) 291 Genauhalt an Ecken mit nicht tangentialen Übergängen: M134 294 Auswahl von Schwenkachsen: M138 294 Berücksichtigung der Maschinen-Kinematik in IST/SOLL-Positionen am Satzende: M144 (Software-Option 2) 295

7.6 Zusatz-Funktionen für Laser-Schneidmaschinen 296

Prinzip 296

Programmierte Spannung direkt ausgeben: M200 296

Spannung als Funktion der Strecke: M201 296

Spannung als Funktion der Geschwindigkeit: M202 297

Spannung als Funktion der Zeit ausgeben (zeitabhängige Rampe): M203 297 Spannung als Funktion der Zeit ausgeben (zeitabhängiger Puls): M204 297

8 Programmieren: Zyklen 299

8.1 Mit Zyklen arbeiten 300
Maschinenspezifische Zyklen 300
Zyklus definieren über Softkeys 301
Zyklus aufrufen 303
Zyklus-Aufruf mit G79 (CYCL CALL) 303
Zyklus-Aufruf mit G79 PAT (CYCL CALL PAT) 303
Zyklus-Aufruf mit G79:G01 (CYCL CALL POS) 304
Zyklus-Aufruf mit M99/M89 304
Arbeiten mit Zusatzachsen U/V/W 305
8.2 Punkte-Tabellen 306
Anwendung 306
Punkte-Tabelle eingeben 306
Einzelne Punkte für die Bearbeitung ausblenden 307
Punkte-Tabelle im Programm wählen 307
Zyklus in Verbindung mit Punkte-Tabellen aufrufen 308
8.3 Zyklen zum Bohren, Gewindebohren und Gewindefräsen 310
Übersicht 310
ZENTRIEREN (Zyklus 240) 312
BOHREN (Zyklus G200) 314
REIBEN (Zyklus G201) 316
AUSDREHEN (Zyklus G202) 318
UNIVERSAL-BOHREN (Zyklus G203) 320
RUECKWAERTS-SENKEN (Zyklus G204) 322
UNIVERSAL-TIEFBOHREN (Zyklus G205) 325
BOHRFRAESEN (Zyklus G208) 328
GEWINDEBOHREN NEU mit Ausgleichsfutter (Zyklus G206) 330
GEWINDEBOHREN ohne Ausgleichsfutter GS NEU (Zyklus G207) 332
GEWINDEBOHREN SPANBRUCH (Zyklus G209) 334
Grundlagen zum Gewindefräsen 337
GEWINDEFRAESEN (Zyklus G262) 339
SENKGEWINDEFRAESEN (Zyklus G263) 341
BOHRGEWINDEFRAESEN (Zyklus G264) 345
HELIX- BOHRGEWINDEFRAESEN (Zyklus G265) 349
AUSSENGEWINDE-FRAESEN (Zyklus G267) 353
8.4 Zyklen zum Fräsen von Taschen, Zapfen und Nuten 363
Übersicht 363
RECHTECKTASCHE (Zyklus G251) 364
KREISTASCHE (Zyklus G252) 369
NUTENFRAESEN (Zyklus 253) 373
RUNDE NUT (Zyklus 254) 377
RECHTECKZAPFEN (Zyklus 256) 382
KREISZAPFEN (Zyklus 257) 386

8.5 Zyklen zum Herstellen von Punktemustern 392
Übersicht 392
PUNKTEMUSTER AUF KREIS (Zyklus G220) 393
PUNKTEMUSTER AUF LINIEN (Zyklus G221) 395
8.6 SL-Zyklen 399
Grundlagen 399
Übersicht SL-Zyklen 401
KONTUR (Zyklus G37) 402
Überlagerte Konturen 403
KONTUR-DATEN (Zyklus G120) 406
VORBOHREN (Zyklus G121) 407
RAEUMEN (Zyklus G122) 408
SCHLICHTEN TIEFE (Zyklus G123) 411
SCHLICHTEN SEITE (Zyklus G124) 412
KONTUR-ZUG (Zyklus G125) 413
KONTURZUG-Daten (Zyklus G270) 415
ZYLINDER-MANTEL (Zyklus G127, Software-Option 1) 416
ZYLINDER-MANTEL Nutenfräsen (Zyklus G128, Software-Option 1) 418
ZYLINDER-MANTEL Stegfräsen (Zyklus G129, Software-Option 1) 421
ZYLINDER-MANTEL Außenkontur fräsen (Zyklus G139, Software-Option 1) 423
8.7 SL-Zyklen mit Konturformel 434
Grundlagen 434
Programm mit Konturdefinitionen wählen 435
Konturbeschreibungen definieren 436
Konturformel eingeben 437
Überlagerte Konturen 438
Kontur Abarbeiten mit SL-Zyklen 440
8.8 Zyklen zum Abzeilen 444
Übersicht 444
3D-DATEN ABARBEITEN (Zyklus G60) 445
ABZEILEN (Zyklus G230) 446
REGELFLAECHE (Zyklus G231) 448
PLANFRAESEN (Zyklus G232) 451


```
8.9 Zyklen zur Koordinaten-Umrechnung ..... 459

Übersicht ..... 459

Wirksamkeit der Koordinaten-Umrechnungen ..... 459

NULLPUNKT-Verschiebung (Zyklus G54) ..... 460

NULLPUNKT-Verschiebung mit Nullpunkt-Tabellen (Zyklus G53) ..... 461

BEZUGSPUNKT SETZEN (Zyklus G247) ..... 465

SPIEGELN (Zyklus G28) ..... 466

DREHUNG (Zyklus G73) ..... 468

MASSFAKTOR (Zyklus G72) ..... 469

BEARBEITUNGSEBENE (Zyklus G80, Software-Option 1) ..... 470

8.10 Sonder-Zyklen ..... 478

VERWEILZEIT (Zyklus G04) ..... 478

PROGRAMM-AUFRUF (Zyklus G39) ..... 479

SPINDEL-ORIENTIERUNG (Zyklus G36) ..... 480

TOLERANZ (Zyklus G62) ..... 481
```

9 Programmieren: Sonderfunktionen 485

9.1 Übersicht Sonderfunktionen 486
Hauptmenü Sonderfunktionen SPEC FCT 486
Menü Programmvorgaben 486
Menü Funktionen für Kontur- und Punktbearbeitungen 487
Menü verschiedene DIN/ISO-Funktionen definieren 487
Menü Programmierhilfen (nur Klartext-Dialog) 488
9.2 Die PLANE-Funktion: Schwenken der Bearbeitung-sebene (Software-Option 1) 489
Einführung 489
PLANE-Funktion definieren 491
Positions-Anzeige 491
PLANE-Funktion rücksetzen 492
9.3 Bearbeitungsebene über Raumwinkel definieren: PLANE SPATIAL 493
Anwendung 493
Eingabeparameter 494
9.4 Bearbeitungsebene über Projektionswinkel definieren: PLANE PROJECTED 495
Anwendung 495
Eingabeparameter 496
9.5 Bearbeitungsebene über Eulerwinkel definieren: PLANE EULER 497
Anwendung 497
Eingabeparameter 498
9.6 Bearbeitungsebene über zwei Vektoren definieren: PLANE VECTOR 499
Anwendung 499
Eingabeparameter 500
9.7 Bearbeitungsebene über drei Punkte definieren: PLANE POINTS 501
Anwendung 501
Eingabeparameter 502
9.8 Bearbeitungsebene über einen einzelnen, inkrementalen Raumwinkel definieren: PLANE RELATIVE 503
Anwendung 503
Eingabeparameter 504
9.9 Bearbeitungsebene über Achswinkel: PLANE AXIAL (FCL 3-Funktion) 505
Anwendung 505
Eingabeparameter 506
9.10 Positionierverhalten der PLANE-Funktion festlegen 507
Ubersicht 507
Automatisches Einschwenken: MOVE/TURN/STAY (Eingabe zwingend erforderlich) 507
Auswahl von alternativen Schwenk-möglichkeiten: SEQ +/- (Eingabe optional) 510
Auswahl der Transformationsart (Eingabe optional) 511
9.11 Sturzfräsen in der geschwenkten Ebene 512
Funktion 512
Sturzfräsen durch inkrementales Verfahren einer Drehachse 512

10 Programmieren: Unterprogramme und Programmteil-Wiederholungen 513

$10.1\ Unterprogramme\ und\ Programmteil-Wiederholungen\ kennzeichnen\\ 514$
Label 514
10.2 Unterprogramme 515
Arbeitsweise 515
Programmier-Hinweise 515
Unterprogramm programmieren 515
Unterprogramm aufrufen 515
10.3 Programmteil-Wiederholungen 516
Label G98 516
Arbeitsweise 516
Programmier-Hinweise 516
Programmteil-Wiederholung programmieren 516
Programmteil-Wiederholung aufrufen 516
10.4 Beliebiges Programm als Unterprogramm 517
Arbeitsweise 517
Programmier-Hinweise 517
Beliebiges Programm als Unterprogramm aufrufen 518
10.5 Verschachtelungen 519
Verschachtelungsarten 519
Verschachtelungstiefe 519
Unterprogramm im Unterprogramm 519
Programmteil-Wiederholungen wiederholen 520
Unterprogramm wiederholen 521
10.6 Programmier-Beispiele 522

11 Programmieren: Q-Parameter 529

11.1 Prinzip und Funktionsübersicht 530
Programmierhinweise 531
Q-Parameter-Funktionen aufrufen 532
11.2 Teilefamilien – Q-Parameter statt Zahlenwerte 533
NC-Beispielsätze 533
Beispiel 533
11.3 Konturen durch mathematische Funktionen beschreiben 534
Anwendung 534
Übersicht 534
Grundrechenarten programmieren 535
11.4 Winkelfunktionen (Trigonometrie) 537
Definitionen 537
Winkelfunktionen programmieren 538
11.5 Wenn/dann-Entscheidungen mit Q-Parametern 539
Anwendung 539
Unbedingte Sprünge 539
Wenn/dann-Entscheidungen programmieren 539
Verwendete Abkürzungen und Begriffe 540
11.6 Q-Parameter kontrollieren und ändern 541
Vorgehensweise 541
11.7 Zusätzliche Funktionen 542
Übersicht 542
D14: ERROR: Fehlermeldungen ausgeben 543
D15: PRINT: Texte oder Q-Parameter-Werte ausgeben 547
D19: PLC: Werte an PLC übergeben 547
11.8 Formel direkt eingeben 548
Formel eingeben 548
Rechenregeln 550
Eingabe-Beispiel 551
11.9 String-Parameter 552
Funktionen der Stringverarbeitung 552
String-Parameter zuweisen 553
String-Parameter verketten 553
Numerischen Wert in einen String-Parameter umwandeln 554
Teilstring aus einem String-Parameter kopieren 555
Systemdaten in einen String-Parameter kopieren 556
String-Parameter in einen numerischen Wert umwandeln 558
Prüfen eines String-Parameters 559
Länge eines String-Parameters ermitteln 560
Alphabetische Reihenfolge vergleichen 561

11.10 Vorbelegte Q-Parameter 562

Werte aus der PLC: Q100 bis Q107 562

WMAT-Satz: QS100 562

Aktiver Werkzeug-Radius: Q108 562

Werkzeugachse: Q109 563 Spindelzustand: Q110 563 Kühlmittelversorgung: Q111 564 Überlappungsfaktor: Q112 564

Maßangaben im Programm: Q113 564

Werkzeug-Länge: Q114 564

Koordinaten nach Antasten während des Programmlaufs 565

Ist-Sollwert-Abweichung bei automatischer Werkzeug-Vermessung mit dem TT 130 565

Schwenken der Bearbeitungsebene mit Werkstück-Winkeln: von der TNC berechnete Koordinaten für

Drehachsen 565

Messergebnisse von Tastsystem-Zyklen

(siehe auch Benutzer-Handbuch Tastsystem-Zyklen) 566

11.11 Programmier-Beispiele 568

12 Programm-Test und Programmlauf 575

12.1 Grafiken 576
Anwendung 576
Übersicht: Ansichten 578
Draufsicht 578
Darstellung in 3 Ebenen 579
3D-Darstellung 580
Ausschnitts-Vergrößerung 583
Grafische Simulation wiederholen 584
Werkzeug anzeigen 584
Bearbeitungszeit ermitteln 585
12.2 Funktionen zur Programmanzeige 586
Übersicht 586
12.3 Programm-Test 587
Anwendung 587
12.4 Programmlauf 591
Anwendung 591
Bearbeitungs-Programm ausführen 591
Bearbeitung unterbrechen 592
Maschinenachsen während einer Unterbrechung verfahren 59
Programmlauf nach einer Unterbrechung fortsetzen 595
Beliebiger Einstieg ins Programm (Satzvorlauf) 596
Wiederanfahren an die Kontur 598
Werkzeug-Einsatzprüfung 599
12.5 Automatischer Programmstart 602
Anwendung 602
12.6 Sätze überspringen 603
Anwendung 603
Löschen des "/"-Zeichens 603
12.7 Wahlweiser Programmlauf-Halt 604
Anwendung 604
12.8 Globale Programm-einstellungen (Software-Option) 605
Anwendung 605
Funktion aktivieren/deaktivieren 606
Achsen tauschen 608
Grunddrehung 608
Zusätzliche, additive Nullpunkt-Verschiebung 609
Überlagertes Spiegeln 609
Überlagerte Drehung 610
Sperren von Achsen 610
Vorschubfaktor 610
Handrad-Überlagerung 611

12.9 Adaptive Vorschubregelung AFC (Software-Option) 613

Anwendung 613

AFC-Grundeinstellungen definieren 615

Lernschnitt durchführen 617

AFC aktivieren/deaktivieren 620

Protokolldatei 621

13 MOD-Funktionen 623

13.1 MOD-Funktion wählen 624
MOD-Funktionen wählen 624
Einstellungen ändern 624
MOD-Funktionen verlassen 624
Übersicht MOD-Funktionen 625
13.2 Software-Nummern 626
Anwendung 626
13.3 Schlüssel-Zahl eingeben 627
Anwendung 627
13.4 Service-Packs laden 628
Anwendung 628
13.5 Datenschnittstellen einrichten 629
Anwendung 629
RS-232-Schnittstelle einrichten 629
RS-422-Schnittstelle einrichten 629
BETRIEBSART des externen Geräts wählen 629
BAUD-RATE einstellen 629
Zuweisung 630
Software für Datenübertragung 631
13.6 Ethernet-Schnittstelle 633
Einführung 633
Anschluss-Möglichkeiten 633
iTNC direkt mit einem Windows PC verbinden 634
TNC konfigurieren 636
13.7 PGM MGT konfigurieren 641
Anwendung 641
Einstellung PGM MGT ändern 641
Abhängige Dateien 642
13.8 Maschinenspezifische Anwenderparameter 643
Anwendung 643
13.9 Rohteil im Arbeitsraum darstellen 644
Anwendung 644
Gesamte Darstellung drehen 645
13.10 Positions-Anzeige wählen 646
Anwendung 646
13.11 Maßsystem wählen 647
Anwendung 647
13.12 Programmiersprache für \$MDI wählen 648
Anwendung 648
13.13 Achsauswahl für Linear-Satz-Generierung 649
Anwendung 649

13.14 Verfahrbereichs-Begrenzungen eingeben, Nullpunkt-Anzeige 650 Anwendung 650 Arbeiten ohne Verfahrbereichs-Begrenzung 650 Maximalen Verfahrbereich ermitteln und eingeben 650 Bezugspunkt-Anzeige 651 13.15 HILFE-Dateien anzeigen 652 Anwendung 652 HILFE-DATEIEN wählen 652 13.16 Betriebszeiten anzeigen 653 Anwendung 653 13.17 Systemzeit einstellen 654 Anwendung 654 Einstellungen vornehmen 654 13.18 Teleservice 655 Anwendung 655 Teleservice aufrufen/beenden 655 13.19 Externer Zugriff 656 Anwendung 656

14 Tabellen und Übersichten 657

14.1 Allgemeine Anwenderparameter 658
Eingabemöglichkeiten für Maschinen-Parameter 658
Allgemeine Anwenderparameter anwählen 658
14.2 Steckerbelegung und Anschlusskabel für Datenschnittstellen 674
Schnittstelle V.24/RS-232-C HEIDEHAIN-Geräte 674
Fremdgeräte 675
Schnittstelle V.11/RS-422 676
Ethernet-Schnittstelle RJ45-Buchse 676
14.3 Technische Information 677
14.4 Puffer-Batterie wechseln 685

15 iTNC 530 mit Windows XP (Option) 687

15.1 Einführung 688
Endbenutzer-Lizenzvertrag (EULA) für Windows XP 688
Allgemeines 688
Technische Daten 689
15.2 iTNC 530-Anwendung starten 690
Windows-Anmeldung 690
Anmeldung als TNC-Bediener 690
Anmeldung als lokaler Administrator 691
15.3 iTNC 530 ausschalten 693
Grundsätzliches 693
Abmelden eines Benutzers 693
iTNC-Anwendung beenden 694
Herunterfahren von Windows 695
15.4 Netzwerk-Einstellungen 696
Voraussetzung 696
Einstellungen anpassen 696
Zugriffssteuerung 697
15.5 Besonderheiten in der Datei-Verwaltung 698
Laufwerk der iTNC 698
Daten-Übertragung zur iTNC 530 699

1.1 Die iTNC 530

HEIDENHAIN TNC's sind werkstattgerechte Bahnsteuerungen, mit denen Sie herkömmliche Fräs- und Bohrbearbeitungen direkt an der Maschine im leicht verständlichen Klartext-Dialog programmieren. Sie sind für den Einsatz an Fräs- und Bohrmaschinen sowie Bearbeitungszentren ausgelegt. Die iTNC 530 kann bis zu 12 Achsen steuern. Zusätzlich können Sie die Winkelposition der Spindel programmiert einstellen.

Auf der integrierten Festplatte können Sie beliebig viele Programme speichern, auch wenn diese extern erstellt wurden. Für schnelle Berechnungen lässt sich ein Taschenrechner jederzeit aufrufen.

Bedienfeld und Bildschirmdarstellung sind übersichtlich gestaltet, so dass Sie alle Funktionen schnell und einfach erreichen können.

Programmierung: HEIDENHAIN Klartext-Dialog, smarT.NC und DIN/ISO

Besonders einfach ist die Programm-Erstellung im benutzerfreundlichen HEIDENHAIN-Klartext-Dialog. Eine Programmier-Grafik stellt die einzelnen Bearbeitungs-Schritte während der Programmeingabe dar. Zusätzlich hilft die Freie Kontur-Programmierung FK, wenn einmal keine NC-gerechte Zeichnung vorliegt. Die grafische Simulation der Werkstückbearbeitung ist sowohl während des Programm-Tests als auch während des Programmlaufs möglich.

TNC-Neueinsteigern bietet die Betriebsart smarT.NC eine besonders komfortable Möglichkeit, schnell und ohne großen Schulungsaufwand strukturierte Klartext-Dialog-Programme zu erstellen. Für smarT.NC steht eine separate Benutzer-Dokumentation zur Verfügung.

Zusätzlich können Sie die TNC's auch nach DIN/ISO oder im DNC-Betrieb programmieren.

Ein Programm lässt sich auch dann eingeben und testen, während ein anderes Programm gerade eine Werkstückbearbeitung ausführt (gilt nicht für smarT.NC).

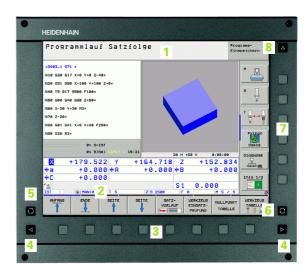
Kompatibilität

Die TNC kann Bearbeitungs-Programme abarbeiten, die an HEIDENHAIN-Bahnsteuerungen ab der TNC 150 B erstellt wurden. Sofern alte TNC-Programme Herrsteller-Zyklen enthalten, ist seitens der iTNC 530 eine Anpassung mit der PC-Software CycleDesign durchzuführen. Setzen Sie sich dazu mit Ihrem Maschinen-Hersteller oder mit HEIDENHAIN in Verbindung.

1.2 Bildschirm und Bedienfeld

Bildschirm

Die TNC wird mit dem Farb-Flachbildschirm BF 150 (TFT) geliefert (siehe Bild rechts oben).


1 Kopfzeile

Bei eingeschalteter TNC zeigt der Bildschirm in der Kopfzeile die angewählten Betriebsarten an: Maschinen-Betriebsarten links und Programmier-Betriebsarten rechts. Im größeren Feld der Kopfzeile steht die Betriebsart, auf die der Bildschirm geschaltet ist: dort erscheinen Dialogfragen und Meldetexte (Ausnahme: Wenn die TNC nur Grafik anzeigt).

2 Softkeys

In der Fußzeile zeigt die TNC weitere Funktionen in einer Softkey-Leiste an. Diese Funktionen wählen Sie über die darunterliegenden Tasten. Zur Orientierung zeigen schmale Balken direkt über der Softkey-Leiste die Anzahl der Softkey-Leisten an, die sich mit den außen angeordneten schwarzen Pfeil-Tasten wählen lassen. Die aktive Softkey-Leiste wird als aufgehellter Balken dargestellt.

- 3 Softkey-Wahltasten
- 4 Softkey-Leisten umschalten
- 5 Festlegen der Bildschirm-Aufteilung
- 6 Bildschirm-Umschalttaste für Maschinen- und Programmier-Betriebsarten
- 7 Softkey-Wahltasten für Maschinenhersteller-Softkeys
- 8 Softkey-Leisten für Maschinenhersteller-Softkeys umschalten

HEIDENHAIN iTNC 530

47

Bildschirm-Aufteilung festlegen

Der Benutzer wählt die Aufteilung des Bildschirms: So kann die TNC z.B. in der Betriebsart Programm-Einspeichern/Editieren das Programm im linken Fenster anzeigen, während das rechte Fenster gleichzeitig z.B. eine Programmier-Grafik darstellt. Alternativ lässt sich im rechten Fenster auch die Programm-Gliederung anzeigen oder ausschließlich das Programm in einem großen Fenster. Welche Fenster die TNC anzeigen kann, hängt von der gewählten Betriebsart ab.

Bildschirm-Aufteilung festlegen:

Bildschirm-Umschalttaste drücken: Die Softkey-Leiste zeigt die möglichen Bildschirm-Aufteilungen an, siehe "Betriebsarten", Seite 50

Bildschirm-Aufteilung mit Softkey wählen

Bedienfeld

Die TNC wird mit dem Bedienfeld TE 530 geliefert. Die Abbildung rechts oben zeigt die Bedienelemente des Bedienfeldes TE 530:

1 Alpha-Tastatur für Texteingaben, Dateinamen und DIN/ISO-Programmierungen.

Zwei-Prozessor-Version: Zusätzliche Tasten zur Windows-Bedienung

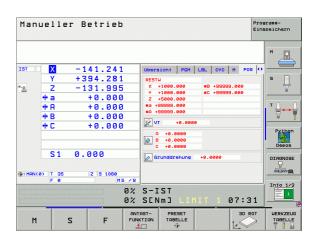
- 2 Datei-Verwaltung
 - Taschenrechner
 - MOD-Funktion
 - HELP-Funktion
- 3 Programmier-Betriebsarten
- 4 Maschinen-Betriebsarten
- 5 Eröffnen der Programmier-Dialoge
- 6 Pfeil-Tasten und Sprunganweisung GOTO
- 7 Zahleneingabe und Achswahl
- 8 Mausepad: Nur für die Bedienung der Zwei-Prozessor-Version, von Softkeys und von smarT.NC
- 9 smarT.NC-Navigationstasten

Die Funktionen der einzelnen Tasten sind auf der ersten Umschlagsseite zusammengefasst.

Manche Maschinenhersteller verwenden nicht das Standard-Bedienfeld von HEIDENHAIN. Beachten Sie in diesen Fällen das Maschinenhandbuch.

Externe Tasten, wie z.B. NC-START oder NC-STOPP, sind ebenfalls im Maschinenhandbuch beschrieben.

1.3 Betriebsarten

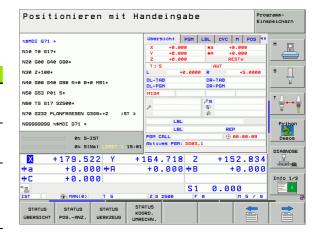

Manueller Betrieb und El. Handrad

Das Einrichten der Maschinen geschieht im Manuellen Betrieb. In dieser Betriebsart lassen sich die Maschinenachsen manuell oder schrittweise positionieren, die Bezugspunkte setzen und die Bearbeitungsebene schwenken.

Die Betriebsart El. Handrad unterstützt das manuelle Verfahren der Maschinenachsen mit einem elektronischen Handrad HR.

Softkeys zur Bildschirm-Aufteilung (wählen wie zuvor beschrieben)

Fenster	Softkey
Positionen	POSITION
Links: Positionen, rechts: Status-Anzeige	POSITION + STATUS
Links: Positionen, rechts: Aktive Kollisionskörper (FCL4-Funktion)	PROGRAMM + KINEMATIK

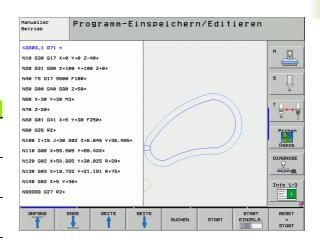


Positionieren mit Handeingabe

In dieser Betriebsart lassen sich einfache Verfahrbewegungen programmieren, z.B. um planzufräsen oder vorzupositionieren.

Softkeys zur Bildschirm-Aufteilung

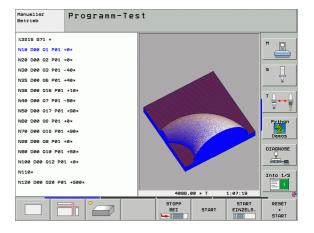
Fenster	Softkey
Programm	PROGRAMM
Links: Programm, rechts: Status-Anzeige	POSITION + STATUS
Links: Programm, rechts: Aktive Kollisionskörper (FCL4-Funktion). Wenn Sie diese Ansicht gewählt haben, zeigt die TNC eine Kollision durch rote Umrandung des Grafikfensters an.	PROGRAMM + KINEMATIK



Programm-Einspeichern/Editieren

Ihre Bearbeitungs-Programme erstellen Sie in dieser Betriebsart. Vielseitige Unterstützung und Ergänzung beim Programmieren bieten die verschiedenen Zyklen und die Q-Parameter-Funktionen. Auf Wunsch zeigt die Programmier-Grafik die einzelnen Schritte an.

Softkeys zur Bildschirm-Aufteilung


Fenster	Softkey
Programm	PROGRAMM
Links: Programm, rechts: Programm-Gliederung	PROGRAMM + GLIEDER.
Links: Programm, rechts: Programmier-Grafik	PROGRAMM + GRAFIK
Links: Programm, rechts: 3D-Liniengrafik	PROGRAMM + 3D-LINIEN

Programm-Test

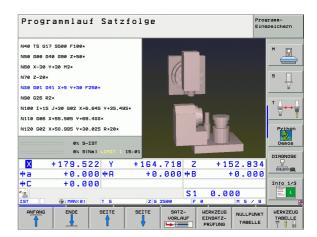
Die TNC simuliert Programme und Programmteile in der Betriebsart Programm-Test, um z.B. geometrische Unverträglichkeiten, fehlende oder falsche Angaben im Programm und Verletzungen des Arbeitsraumes herauszufinden. Die Simulation wird grafisch mit verschiedenen Ansichten unterstützt.

Softkeys zur Bildschirm-Aufteilung: siehe "Programmlauf Satzfolge und Programmlauf Einzelsatz", Seite 52.

Programmlauf Satzfolge und Programmlauf Einzelsatz

In Programmlauf Satzfolge führt die TNC ein Programm bis zum Programm-Ende oder zu einer manuellen bzw. programmierten Unterbrechung aus. Nach einer Unterbrechung können Sie den Programmlauf wieder aufnehmen.

In Programmlauf Einzelsatz starten Sie jeden Satz mit der externen START-Taste einzeln


Softkeys zur Bildschirm-Aufteilung

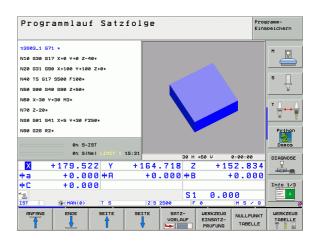
Fenster	Softkey
Programm	PROGRAMM
Links: Programm, rechts: Programm-Gliederung	PROGRAMM + + GLIEDER.
Links: Programm, rechts: Status	PROGRAMM + STATUS
Links: Programm, rechts: Grafik	PROGRAMM + GRAFIK
Grafik	GRAFIK
Links: Programm, rechts: Aktive Kollisionskörper (FCL4-Funktion). Wenn Sie diese Ansicht gewählt haben, zeigt die TNC eine Kollision durch rote Umrandung des Grafikfensters an.	PROGRAMM * KINEMATIK
Aktive Kollisionskörper (FCL4-Funktion). Wenn Sie diese Ansicht gewählt haben, zeigt die TNC eine Kollision durch rote Umrandung des Grafikfensters an.	KINEMATIK

Softkeys zur Bildschirm-Aufteilung bei Paletten-Tabellen

Fenster	Softkey
Paletten-Tabelle	PALETTE
Links: Programm, rechts: Paletten-Tabelle	PROGRAMM + PALETTE
Links: Paletten-Tabelle, rechts: Status	PALETTE + STATUS
Links: Paletten-Tabelle, rechts: Grafik	PALETTE + GRAFIK

1.4 Status-Anzeigen

"Allgemeine" Status-Anzeige


Die allgemeine Status-Anzeige informiert Sie über den aktuellen Zustand der Maschine. Sie erscheint automatisch in den Betriebsarten

- Programmlauf Einzelsatz und Programmlauf Satzfolge, solange für die Anzeige nicht ausschließlich "Grafik" gewählt wurde, und beim
- Positionieren mit Handeingabe.

In den Betriebsarten Manueller Betrieb und El. Handrad erscheint die Status-Anzeige im großen Fenster.

Informationen der Status-Anzeige

Symbol	Bedeutung
IST	Ist- oder Soll-Koordinaten der aktuellen Position
XYZ	Maschinenachsen; Hilfsachsen zeigt die TNC mit kleinen Buchstaben an. Die Reihenfolge und Anzahl der angezeigten Achsen legt Ihr Maschinenhersteller fest. Beachten Sie Ihr Maschinenhandbuch
ESM	Die Anzeige des Vorschubs in Zoll entspricht dem zehnten Teil des wirksamen Wertes. Drehzahl S, Vorschub F und wirksame Zusatzfunktion M
*	Programmlauf ist gestartet
→	Achse ist geklemmt
\bigcirc	Achse kann mit dem Handrad verfahren werden
	Achsen werden unter Berücksichtigung der Grund- drehung verfahren
	Achsen werden in geschwenkter Bearbeitungsebene verfahren
<u> </u>	Die Funktion M128 oder FUNCTION TCPM ist aktiv
4.	Die Funktion Dynamische Kollisionsüberwachung DCM ist aktiv

Symbol	Bedeutung
* <u> </u> %	Die Funktion Adaptive Vorschubregelung AFC ist aktiv (Software-Option)
8	Eine oder mehrere globale Programmeinstellungen sind aktiv (Software-Option)
⊕	Nummer des aktiven Bezugspunkts aus der Preset- Tabelle. Wenn der Bezugspunkt manuell gesetzt wurde, zeigt die TNC hinter dem Symbol den Text MAN an

Zusätzliche Status-Anzeigen

Die zusätzlichen Status-Anzeigen geben detaillierte Informationen zum Programm-Ablauf. Sie lassen sich in allen Betriebsarten aufrufen, mit Ausnahme der Betriebsart Programm-Einspeichern/Editieren.

Zusätzliche Status-Anzeige einschalten

Softkey-Leiste für die Bildschirm-Aufteilung aufrufen

Bildschirmdarstellung mit zusätzlicher Status-Anzeige wählen: Die TNC zeigt in der rechten Bildschirmhälfte das Statusformular **Übersicht** an

Zusätzliche Status-Anzeigen wählen

Softkey-Leiste umschalten, bis STATUS-Softkeys erscheinen

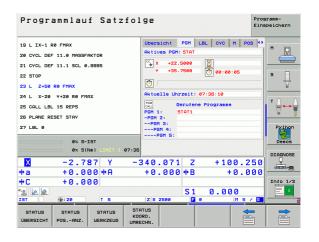
Zusätzliche Status-Anzeige direkt per Softkey wählen, z.B. Positionen und Koordinaten, oder

Gewünschte Ansicht per Umschalt-Softkeys wählen

Nachfolgend sind die verfügbaren Status-Anzeigen beschrieben, die Sie über direkt über Softkeys oder über die Umschalt-Softkeys wählen können.

Beachten Sie bitte, dass einige der nachfolgend beschriebenen Status-Informationen nur dann zur Verfügung stehen, wenn Sie die dazugehörende Software-Option an Ihrer TNC freigeschaltet haben.

Übersicht


Das Status-Formular **Übersicht** zeigt die TNC nach dem Einschalten der TNC an, sofern Sie die Bildschirm-Aufteilung PROGRAMM+STATUS (bzw. POSITION + STATUS) gewählt haben. Das Übersichtsformular enthält zusammengefasst die wichtigsten Status-Informationen, die Sie auch verteilt auf den entsprechenden Detailformularen finden.

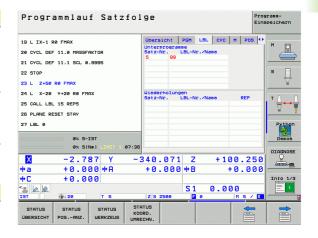
Softkey	Bedeutung
STATUS ÜBERSICHT	Positionsanzeige in bis zu 5 Achsen
	Werkzeug-Informationen
	Aktive M-Funktionen
	Aktive Koordinaten-Transformtaionen
	Aktives Unterprogramm
	Aktive Programmteil-Wiederholung
	Mit PGM CALL gerufenes Programm
	Aktuelle Bearbeitungszeit
	Name des aktiven Hauptprogrammes

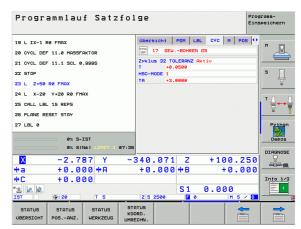
19 L IX-1	RØ FMAX			Übersi	cht	PGM	LBL CY	C H PI	os 🕩	
20 CYCL DE	F 11.0 MASSF	AKTOR		X	+0.0		*8	+0.000		M .
	F 11.1 SCL 0			Z	+0.0		#H	RESTW		
	F 11.1 SCL 0	. 9995		T:5			AUT			
22 STOP						0.0000		+5.0	000	S
23 L Z+50	RØ FMAX			DL-TAB DL-PGM		E00	DR-TAB	+0.1000		1
24 L X-20	Y+20 R0 FM	ex		H110			DK-FGII			
25 CALL LBL 15 REPS				+25.0		. ⁰ # 1 Ф x y	,		T ⊕	
26 PLANE R	ESET STAY						₽			
27 LBL 0				5	LBL					Pyth
					LBL			REP	_	2
	0% S-		07:36	PGM CA				• 00:00:	05	DEMO
X	-2.7	87 Y	-3	340.	071	Z	+	100.2	250	-
++a	+0.0	00 #A		+0.	000	# B		+0.0	900	22 22
+ C	+0.0	00								Info 1
100 D 1						S 1	0.	000		
* <u>*</u>										

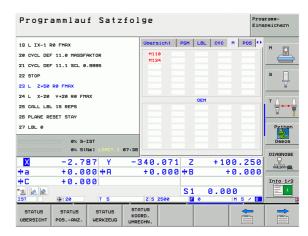
Allgemeine Programm-Information (Reiter PGM)

Softkey	Bedeutung
Keine Direktanwahl möglich	Name des aktiven Hauptprogrammes
	Kreismittelpunkt CC (Pol)
	Zähler für Verweilzeit
	Bearbeitungszeit
	Aktuelle Bearbeitungszeit in %
	Aktuelle Uhrzeit
	Aktueller/programmierter Bahnvorschub
	Aufgerufene Programme

Programmteil-Wiederholung/Unterprogramme (Reiter LBL)

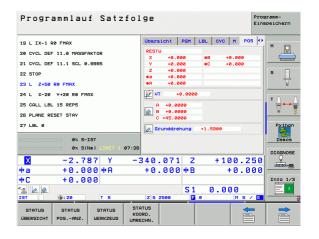

Softkey	Bedeutung
Keine Direktanwahl möglich	Aktive Programmteil-Wiederholungen mit Satz- Nummer, Label-Nummer und Anzahl der programmierten/noch auszuführenden Wiederholungen
	Aktive Unterprogramm-Nummern mit Satz- Nummer, in der das Unterprogramm gerufen wurde und Label-Nummer die aufgerufen wurde

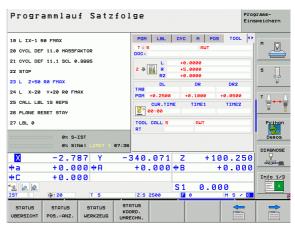

Informationen zu Standard-Zyklen (Reiter CYC)


Softkey	Bedeutung
Keine Direktanwahl möglich	Aktiver Bearbeitungs-Zyklus
	Aktuve Werte des Zyklus G62 Toleranz

Aktive Zusatzfunktionen M (Reiter M)

Softkey	Bedeutung
Keine Direktanwahl möglich	Liste der aktiven M-Funktionen mit festgelegter Bedeutung
	Liste der aktiven M-Funktionen, die von Ihrem Maschinen-Hersteller angepasst werden

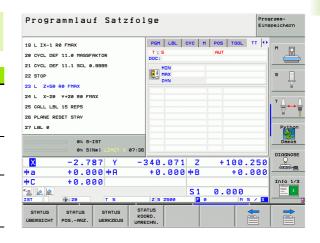



Positionen und Koordinaten (Reiter POS)

Softkey	Bedeutung
STATUS POSANZ.	Art der Positionsanzeige, z.B. Ist-Position
	Schwenkwinkel für die Bearbeitungsebene
	Winkel der Grunddrehung

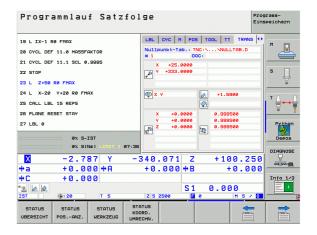
Informationen zu den Werkzeugen (Reiter TOOL)

Softkey	Bedeutung
STATUS WERKZEUG	 Anzeige T: Werkzeug-Nummer und -Name Anzeige RT: Nummer und Name eines Schwester-Werkzeugs
	Werkzeugachse
	Werkzeug-Länge und -Radien
	Aufmaße (Delta-Werte) aus der der Werkzeug- Tabelle (TAB) und dem TOOL CALL (PGM)
	Standzeit, maximale Standzeit (TIME 1) und maximale Standzeit bei TOOL CALL (TIME 2)
	Anzeige des aktiven Werkzeugs und des (nächsten) Schwester-Werkzeugs



Werkzeug-Vermessung (Reiter TT)

Die TNC zeigt den Reiter TT nur dann an, wenn diese Funktion an Ihrer Maschine aktiv ist.


Softkey	Bedeutung
Keine Direktanwahl möglich	Nummer des Werkzeugs, das vermessen wird
	Anzeige, ob Werkzeug-Radius oder -Länge vermessen wird
	MIN- und MAX-Wert Einzelschneiden- Vermessung und Ergebnis der Messung mit rotierendem Werkzeug (DYN)
	Nummer der Werkzeug-Schneide mit zugehörigem Messwert. Der Stern hinter dem Messwert zeigt an, dass die Toleranz aus der Werkzeug-Tabelle überschritten wurde

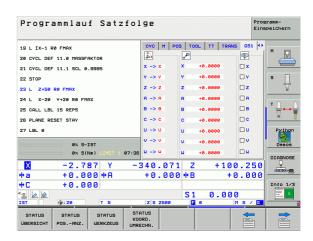
Koordinaten-Umrechnungen (Reiter TRANS)

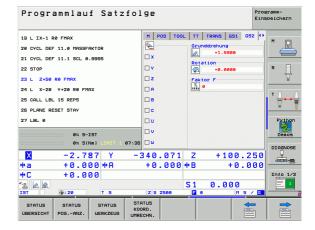
Softkey	Bedeutung
STATUS KOORD. UMRECHN.	Name der aktiven Nullpunkt-Tabelle
	Aktive Nullpunkt-Nummer (#), Kommentar aus der aktiven Zeile der aktiven Nullpunkt-Nummer (DOC) aus Zyklus G53
	Aktive Nullpunkt-Verschiebung (Zyklus G54); Die TNC zeigt eine aktive Nullpunkt-Verschiebung in bis zu 8 Achsen an
	Gespiegelte Achsen (Zyklus G28)
	Aktive Grunddrehung
	Aktiver Drehwinkel (Zyklus G73)
	Aktiver Maßfaktor / Maßfaktoren (Zyklen G72); Die TNC zeigt einen aktiven Maßfaktor in bis zu 6 Achsen an
	Mittelpunkt der zentrischen Streckung

Siehe "Zyklen zur Koordinaten-Umrechnung" auf Seite 459.

Globale Programmeinstellungen 1 (Reiter GPS1, Software-Option)

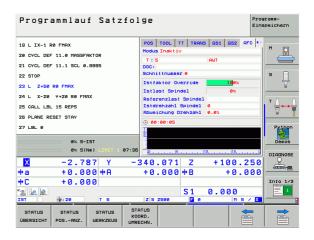
Die TNC zeigt den Reiter nur dann an, wenn diese Funktion an Ihrer Maschine aktiv ist.


Softkey	Bedeutung
Keine Direktanwahl möglich	Getauschte Achsen
	Überlagerte Nullpunkt-Verschiebung
	Überlagerte Spiegelung


Globale Programmeinstellungen 2 (Reiter GPS2, Software-Option)

Die TNC zeigt den Reiter nur dann an, wenn diese Funktion an Ihrer Maschine aktiv ist.

Softkey	Bedeutung
Keine Direktanwahl möglich	Gesperrte Achsen
	Überlagerte Grunddrehung
	Überlagerte Rotation
	Aktiver Vorschubfaktor



Adaptive Vorschubregelung AFC (Reiter AFC, Software-Option)

Die TNC zeigt den Reiter **AFC** nur dann an, wenn diese Funktion an Ihrer Maschine aktiv ist.

Softkey	Bedeutung
Keine Direktanwahl möglich	Aktiver Modus, in dem die adaptive Vorschubregelung betrieben wird
	Aktives Werkzeug (Nummer und Name)
	Schnittnummer
	Aktueller Faktor des Vorschub-Potentiometers in %
	Aktuelle Spindellast in %
	Referenzlast der Spindel
	Aktuelle Drehzahl der Spindel
	Aktuelle Abweichung der Drehzahl
	Aktuelle Bearbeitungszeit
	Liniendiagramm, in dem die aktuelle Spindellast und der von der TNC kommandierte Wert des Vorschub-Overrides angezeigt wird

1.5 Window-Manager

Ihr Maschinenhersteller legt den Funktionsumfang und das Verhalten des Window-Managers fest.
Maschinenhandbuch beachten!

Auf der TNC steht der Window-Manager XFCE zur Verfügung. XFCE ist ein Standardanwendung für UNIX-basierte Betriebssysteme, mit der sich die grafischen Benutzer-Oberfläche verwalten lässt. Mit dem Window-Manager sind folgende Funktionen möglich:

- Taskleiste zum Umschalten zwischen verschiedenen Anwendungen (Oberflächen) anzeigen.
- Zusätzlichen Desktop verwalten, auf dem Sonderanwendungen Ihres Maschinenherstellers ablaufen können.
- Steuern des Fokus zwischen Anwendungen der NC-Software und Anwendungen des Maschinenherstellers.
- Überblendfenster (Pop-Up Fenster) können in Größe und Position verändert werden. Schließen, Wiederherstellen und Minimieren der Überblendfenster ist ebenfalls möglich.

1.6 Zubehör: 3D-Tastsysteme und elektronische Handräder von HEIDENHAIN

3D-Tastsysteme

Mit den verschiedenen 3D-Tastsystemen von HEIDENHAIN können Sie:

- Werkstücke automatisch ausrichten
- Schnell und genau Bezugspunkte setzen
- Messungen am Werkstück während des Programmlaufs ausführen
- Werkzeuge vermessen und prüfen

Alle Tastsystem-Funktionen sind in einem separaten Benutzer-Handbuch beschrieben. Wenden Sie sich ggf. an HEIDENHAIN, wenn Sie dieses Benutzer-Handbuch benötigen. Id.-Nr.: 533 189-xx.

Die schaltenden Tastsysteme TS 220, TS 640 und TS 440

Diese Tastsysteme eignen sich besonders gut zum automatischen Werkstück-Ausrichten, Bezugspunkt-Setzen, für Messungen am Werkstück. Das TS 220 überträgt die Schaltsignale über ein Kabel und ist zudem eine kostengünstige Alternative, wenn Sie gelegentlich digitalisieren müssen.

Speziell für Maschinen mit Werkzeugwechsler eignen sich die Tastsysteme TS 640 (siehe Bild) und das kleinere TS 440, die die Schaltsignale via Infrarot-Strecke kabellos übertragen.

Das Funktionsprinzip: In den schaltenden Tastsystemen von HEIDENHAIN registriert ein verschleißfreier optischer Schalter die Auslenkung des Taststifts. Das erzeugte Signal veranlasst, den Istwert der aktuellen Tastsystem-Position zu speichern.

Das Werkzeug-Tastsystem TT 140 zur Werkzeug-Vermessung

Das TT 140 ist ein schaltendes 3D-Tastsystem zum Vermessen und Prüfen von Werkzeugen. Die TNC stellt hierzu 3 Zyklen zur Verfügung, mit denen sich Werkzeug-Radius und -Länge bei stehender oder rotierender Spindel ermitteln lassen. Die besonders robuste Bauart und die hohe Schutzart machen das TT 140 gegenüber Kühlmittel und Spänen unempfindlich. Das Schaltsignal wird mit einem verschleißfreien optischen Schalter gebildet, der sich durch eine hohe Zuverlässigkeit auszeichnet.

Elektronische Handräder HR

Die elektronischen Handräder vereinfachen das präzise manuelle Verfahren der Achsschlitten. Der Verfahrweg pro Handrad-Umdrehung ist in einem weiten Bereich wählbar. Neben den Einbau-Handrädern HR 130 und HR 150 bietet HEIDENHAIN auch die portablen Handräder HR 410 und HR 420 an. Eine detaillierte Beschreibung des HR 420 finden Sie im Kapitel 2 (siehe "Elektronisches Handrad HR 420" auf Seite 73)

Handbetrieb und Einrichten

2.1 Einschalten, Ausschalten

Einschalten

Das Einschalten und das Anfahren der Referenzpunkte sind maschinenabhängige Funktionen. Beachten Sie Ihr Maschinenhandbuch.

Die Versorgungsspannung von TNC und Maschine einschalten. Danach zeigt die TNC folgenden Dialog an:

SPEICHERTEST

Speicher der TNC wird automatisch überprüft

STROMUNTERBRECHUNG

TNC-Meldung, dass Stromunterbrechung vorlag – Meldung löschen

PLC-PROGRAMM ÜBERSETZEN

PLC-Programm der TNC wird automatisch übersetzt

STEUERSPANNUNG FÜR RELAIS FEHLT

Steuerspannung einschalten. Die TNC überprüft die Funktion der Not-Aus-Schaltung

MANUELLER BETRIEB REFERENZPUNKTE ÜBERFAHREN

Referenzpunkte in vorgegebener Reihenfolge überfahren: Für jede Achse externe START-Taste drücken, oder

Referenzpunkte in beliebiger Reihenfolge überfahren: Für jede Achse externe Richtungstaste drücken und halten, bis Referenzpunkt überfahren ist

Wenn Ihre Maschine mit absoluten Messgeräten ausgerüstet ist, entfällt das Überfahren der Referenzmarken. Die TNC ist dann sofort nach dem Einschalten der Steuerspannungs funktionsbereit.

Wenn Ihre Maschine mit inkrementalen Messgeräten ausgerüstet ist, dann können Sie bereits vor dem Anfahren des Referenzpunktes die Verfahrbereichsüberwachung durch Drücken des Softkeys ÜBERWACH. SW-ENDSCH. aktivieren. Diese Funktion kann Ihr Maschinenhersteller achsspezifisch zur Verfügung stellen. Beachten Sie, dass durch Drücken des Softkeys die Verfahrbereichsüberwachung nicht in allen Achsen aktiv sein muss. Maschinenhandbuch beachten.

Die TNC ist jetzt funktionsbereit und befindet sich in der Betriebsart Manueller Betrieb.

Die Referenzpunkte müssen Sie nur dann überfahren, wenn Sie die Maschinenachsen verfahren wollen. Wenn Sie nur Programme editieren oder testen wollen, dann wählen Sie nach dem Einschalten der Steuerspannung sofort die Betriebsart Programm-Einspeichern/Editieren oder Programm-Test.

Die Referenzpunkte können Sie dann nachträglich überfahren. Drücken Sie dazu in der Betriebsart Manueller Betrieb den Softkey REF.-PKT. ANFAHREN.

Referenzpunkt überfahren bei geschwenkter Bearbeitungsebene

Referenzpunkt-Überfahren im geschwenkten Koordinatensystem ist über die externen Achsrichtungs-Tasten möglich. Dazu muss die Funktion "Bearbeitungsebene schwenken" in Manueller Betrieb aktiv sein, siehe "Manuelles Schwenken aktivieren", Seite 94. Die TNC interpoliert dann beim Betätigen einer Achsrichtungs-Taste die entsprechenden Achsen.

Beachten Sie, dass die im Menü eingetragenen Winkelwerte mit den tatsächlichen Winkeln der Schwenkachse übereinstimmen.

Sofern verfügbar, können Sie die Achsen auch in der aktuellen Werkzeugachs-Richtung verfahren (siehe "Aktuelle Werkzeugachs-Richtung als aktive Bearbeitungsrichtung setzen (FCL 2-Funktion)" auf Seite 95).

Wenn Sie diese Fuktion nutzen, dann müssen Sie bei nicht absoluten Messgeräten die Position der Drehachsen, die die TNC dann in einem Überblendfenster anzeigt, bestätigen. Die angezeigte Position entspricht der letzten, vor dem Auschalten aktiven Position der Drehachsen.

Sofern eine der Beiden zuvor aktiven Funktionen aktiv ist, hat die NC-START-Taste keine Funktion. Die TNC gibt eine entsprechende Fehlermeldung aus.

Ausschalten

iTNC 530 mit Windows XP: Siehe "iTNC 530 ausschalten", Seite 693.

Um Datenverluste beim Ausschalten zu vermeiden, müssen Sie das Betriebssystem der TNC gezielt herunterfahren:

▶ Betriebsart Manuell wählen

- ► Funktion zum Herunterfahren wählen, nochmal mit Softkey JA bestätigen
- ▶ Wenn die TNC in einem Überblendfenster den Text Jetzt können Sie ausschalten anzeigt, dürfen Sie die Versorgungsspannung zur TNC unterbrechen

Willkürliches Ausschalten der TNC kann zu Datenverlust führen.

Beachten Sie, dass das Betätigen der END-Taste nach dem Herunterfahren der Steuerung zu einem Neustart der Steuerung führt. Auch das Ausschalten während dem Neustart kann zu Datenverlust führen!

2.2 Verfahren der Maschinenachsen

Hinweis

Das Verfahren mit den externen Richtungstasten ist maschinenabhängig. Maschinenhandbuch beachten!

Achse mit den externen Richtungstasten verfahren

Betriebsart Manueller Betrieb wählen

Externe Richtungstaste drücken und halten, solange Achse verfahren soll, oder

 $\widehat{\mathbf{I}}$

Achse kontinuierlich verfahren: Externe Richtungstaste gedrückt halten und externe START-Taste kurz drücken

Anhalten: Externe STOPP-Taste drücken

Mit beiden Methoden können Sie auch mehrere Achsen gleichzeitig verfahren. Der Vorschub, mit dem die Achsen verfahren, ändern Sie über den Softkey F, siehe "Spindeldrehzahl S, Vorschub F und Zusatzfunktion M", Seite 79.

Schrittweises Positionieren

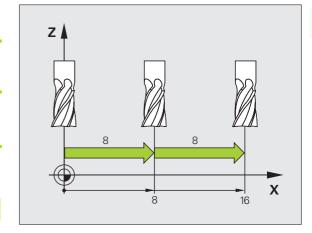
Beim schrittweisen Positionieren verfährt die TNC eine Maschinenachse um ein von Ihnen festgelegtes Schrittmaß.

Betriebsart Manuell oder El. Handrad wählen

Softkey-Leiste umschalten

Schrittweises Positionieren wählen: Softkey SCHRITTMASS auf EIN

ZUSTELLUNG =


Zustellung in mm eingeben, z.B. 8 mm

Externe Richtungstaste drücken: beliebig oft positionieren

Der maximal eingebbare Wert für eine Zustellung beträgt 10 mm.

Verfahren mit dem elektronischen Handrad HR 410

Das tragbare Handrad HR 410 ist mit zwei Zustimmtasten ausgerüstet. Die Zustimmtasten befinden sich unterhalb des Sterngriffs.

Sie können die Maschinenachsen nur verfahren, wenn eine der Zustimmtasten gedrückt ist (maschinenabhängige Funktion).

Das Handrad HR 410 verfügt über folgende Bedienelemente:

- 1 NOT-AUS-Taste
- 2 Handrad
- 3 Zustimmtasten
- 4 Tasten zur Achswahl
- 5 Taste zur Übernahme der Ist-Position
- 6 Tasten zum Festlegen des Vorschubs (langsam, mittel, schnell; Vorschübe werden vom Maschinenhersteller festgelegt)
- 7 Richtung, in die die TNC die gewählte Achse verfährt
- 8 Maschinen-Funktionen (werden vom Maschinenhersteller festgelegt)

Die roten Anzeigen signalisieren, welche Achse und welchen Vorschub Sie gewählt haben.

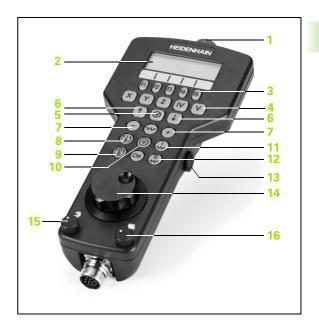
Verfahren mit dem Handrad ist bei aktivem **M118** auch während des Programmlaufs möglich.

Verfahren

Elektronisches Handrad HR 420

Im Gegensatz zum HR 410 ist das tragbare Handrad HR 420 mit einem Display ausgestattet, auf dem verschiedene Informationen angezeigt werden. Darüber hinaus können Sie über die Handrad-Softkeys wichtige Einrichte-Funktionen ausführen, z.B. Bezugspunkte setzen oder M-Funktionen eingeben und abarbeiten.

Sobald Sie das Handrad über die Handrad-Aktivierungstaste aktiviert haben, ist keine Bedienung über das Bedienpult mehr möglich. Die TNC zeigt diesen Zustand am TNC-Bildschirm durch ein Überblendfenster an.


Das Handrad HR 420 verfügt über folgende Bedienelemente:

- 1 NOT-AUS-Taste
- 2 Handrad-Display zur Status-Anzeige und Auswahl von Funktionen
- 3 Softkeys
- 4 Achswahltasten
- 5 Handrad-Aktivierungstaste
- 6 Pfeiltasten zur Definition der Handrad-Empfindlichkeit
- 7 Richtungstaste, in die die TNC die gewählte Achse verfährt
- 8 Spindel einschalten (maschinenabhängige Funktion)
- 9 Spindel ausschalten (maschinenabhängige Funktion)
- 10 Taste "NC-Satz generieren"
- 11 NC-Start
- 12 NC-Stopp
- 13 Zustimmtaste
- 14 Handrad
- 15 Spindeldrehzahl-Potentiometer
- 16 Vorschub-Potentiometer

Verfahren mit dem Handrad ist – bei aktivem **M118** – auch während des Programmlaufs möglich.

Ihr Maschinen-Hersteller kann zusätzliche Funktionen für das HR 420 zur Verfügung stellen. Maschinen-Handbuch beachten

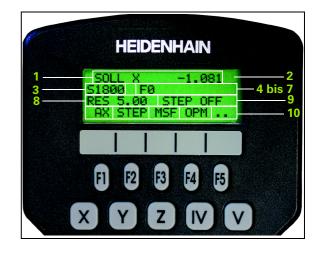
HEIDENHAIN iTNC 530 73

Display

Das Handrad-Display (siehe Bild) besteht aus 4 Zeilen. Die TNC zeigt darin folgende Informationen an:

- SOLL X+1.563: Art der Positionsanzeige und Position der gewählten Achse
- 2 *: STIB (Steuerung in Betrieb)
- 3 **\$1000**: Aktuelle Spindeldrehzahl
- 4 F500: Aktueller Vorschub, mit dem die gewählte Achse momentan verfahren wird
- 5 E: Fehler steht an
- **3D**: Funktion Bearbeitungsebene schwenken ist aktiv
- 7 2D: Funktion Grunddrehung ist aktiv
- 8 RES 5.0: Aktive Handrad-Auflösung. Weg in mm/Umdrehung (°/ Umdrehung bei Drehachsen), den die gewählte Achse bei einer Handradumdrehung verfährt
- 9 STEP 0N bzw. 0FF: Schrittweises Positionieren aktiv bzw. inaktiv. Bei aktiver Funktion zeigt die TNC zusätzlich das aktive Verfahrschritt an
- 10 Softkey-Leiste: Auswahl verschiedener Funktionen, Beschreibung in den nachfolgenden Abschnitten

Zu verfahrende Achse wählen


Die Hauptachsen X, Y und Z, sowie zwei weitere, vom Maschinenhersteller definierbare Achsen, können Sie direkt über die Achswahltasten aktivieren. Wenn Sie die virtuelle Achse VT wählen wollen, oder wenn Ihre Maschine über weitere Achsen verfügt, gehen Sie wie folgt vor:

- ▶ Handrad-Softkey F1 (AX) drücken: Die TNC zeigt auf dem Handrad-Display alle aktiven Achsen an. Die momentan aktive Achse blinkt
- ▶ Gewünschte Achse mit Handrad-Softkeys F1 (->) oder F2 (<-) wählen und mit Handrad-Softkey F3 (0K) bestätigen</p>

Handrad-Empfindlichkeit einstellen

Die Handrad-Empfindlichkeit legt fest, welchen Weg eine Achse pro Handrad-Umdrehung verfahren soll. Die definierbaren Empfindlichkeiten sind fest eingestellt und über die Handrad-Pfeiltasten direkt wählbar (nur wenn Schrittmaß nicht aktiv ist).

Einstellbare Empfindlichkeiten: 0.01/0.02/0.05/0.1/0.2/0.5/1/2/5/10/20 [mm/Umdrehung bzw. Grad/Umdrehung]

Achsen verfahren

Handrad aktiveren: Handrad-Taste auf dem HR 420 drücken. Die TNC kann jetzt nur noch über das HR 420 bedient werden, ein Überblendfenster mit Hinweistext wird am TNC-Bildschirm angezeigt

Ggf. über Softkey OPM die gewünschte Betriebsart wählen (siehe "Betriebsarten wechseln" auf Seite 77)

ENT	Ggf. Zustimmtaste gedrückt halten
X	Auf dem Handrad Achse wählen die verfahren werden soll. Zusatz-Achsen über Softkeys wählen
+	Aktive Achse in Richtung + verfahren, oder
-	Aktive Achse in Richtung – verfahren
(A)	Handrad deaktiveren: Handrad-Taste auf dem HR 420 drücken. Die TNC kann jetzt wieder über das Bedienfeld bedient werden

Potentiometer-Einstellungen

Nachdem Sie das Handrad aktiviert haben, sind weiterhin die Potentiometer des Maschinen-Bedienfeldes aktiv. Wenn Sie die Potentiometer am Handrad nutzen wollen, gehen Sie wie folgt vor:

- ► Tasten Ctrl und Handrad am HR 420 drücken, die TNC zeigt im Handrad-Display das Softkey-Menü zur Potentiometer-Auswahl an
- Softkey HW drücken, um die Handrad-Potentiometer aktiv zu schalten

Sobald Sie die Handrad-Potentiometer aktiviert haben, müssen Sie vor der Abwahl des Handrades die Potentiometer des Maschinen-Bedienfeldes wieder aktivieren. Gehen Sie wie folgt vor:

- ► Tasten Ctrl und Handrad am HR 420 drücken, die TNC zeigt im Handrad-Display das Softkey-Menü zur Potentiometer-Auswahl an
- Softkey KBD drücken, um die Potentiometer auf dem Maschinen-Bedienfeld aktiv zu schalten

HEIDENHAIN iTNC 530 75

Schrittweise positionieren

Beim schrittweisen Positionieren verfährt die TNC die momentan aktive Handrad-Achse um ein von Ihnen festgelegtes Schrittmaß:

- ► Handrad-Softkey F2 (STEP) drücken
- Schrittweise positionieren aktivieren: Handrad-Softkey 3 (0N) drücken
- Gewünschtes Schrittmaß durch Drücken der Tasten F1 oder F2 wählen. Wenn Sie die jeweilige Taste gedrückt halten, erhöht die TNC den Zählschritt bei einem Zehnerwechsel jeweils um den Faktor 10. Durch zusätzliches Drücken der Taste Ctrl erhöht sich der Zählschritt auf 1. Kleinstmögliches Schrittmaß ist 0.0001 mm, größtmögliches Schrittmaß ist 10 mm
- ▶ Gewähltes Schrittmaß mit Softkey 4 (**0K**) übernehmen
- Mit Handrad-Taste + bzw. die aktive Handrad-Achse in die entsprechende Richtung verfahren

Zusatz-Funktionen M eingeben

- ► Handrad-Softkey F3 (MSF) drücken
- ► Handrad-Softkey F1 (M) drücken
- Gewünschte M-Funktionsnummer durch Drücken der Tasten F1 oder F2 wählen
- ▶ Zusatz-Funktion M mit Taste NC-Start ausführen

Spindeldrehzahl S eingeben

- ► Handrad-Softkey F3 (MSF) drücken
- ► Handrad-Softkev F2 (S) drücken
- Gewünschte Drehzahl durch Drücken der Tasten F1 oder F2 wählen. Wenn Sie die jeweilige Taste gedrückt halten, erhöht die TNC den Zählschritt bei einem Zehnerwechsel jeweils um den Faktor 10. Durch zusätzliches Drücken der Taste Ctrl erhöht sich der Zählschritt auf 1000
- ▶ Neue Drehzahl S mit Taste NC-Start aktivieren

Vorschub F eingeben

- ► Handrad-Softkey F3 (MSF) drücken
- ► Handrad-Softkey F3 (F) drücken
- Gewünschten Vorschub durch Drücken der Tasten F1 oder F2 wählen. Wenn Sie die jeweilige Taste gedrückt halten, erhöht die TNC den Zählschritt bei einem Zehnerwechsel jeweils um den Faktor 10. Durch zusätzliches Drücken der Taste Ctrl erhöht sich der Zählschritt auf 1000
- ▶ Neuen Vorschub F mit Handrad-Softkey F3 (**0K**) übernehmen

Bezugspunkt setzen

- ► Handrad-Softkey F3 (MSF) drücken
- ► Handrad-Softkey F4 (PRS) drücken
- ▶ Ggf. Achse wählen, in der der Bezugspunkt gesetzt werden soll
- ▶ Achse mit Handrad-Softkey F3 (**0K**) abnullen, oder mit Handrad-Softkeys F1 und F2 gewünschten Wert einstellen und dann mit Handrad-Softkey F3 (**0K**) übernehmen. Durch zusätzliches Drücken der Taste Ctrl erhöht sich der Zählschritt auf 10

Betriebsarten wechseln

Über den Handrad-Softkey F4 (**0PM**) können Sie vom Handrad aus die Betriebsart umschalten, sofern der aktuelle Zustand der Steuerung ein Umschalten erlaubt.

- ► Handrad-Softkey F4 (**OPM**) drücken
- ▶ Über Handrad-Softkeys gewünschte Betriebsart wählen
 - MAN: Manueller Betrieb
 - MDI: Positionieren mit Handeingabe
 - SGL: Programmlauf Einzelsatz
 - RUN: Programmlauf Satzfolge

Kompletten G-Satz erzeugen

Über die MOD-Funktion die Achswerte definieren, die in einen NC-Satz übernommen werden sollen (siehe "Achsauswahl für Linear-Satz-Generierung" auf Seite 649).

Sind keine Achsen ausgewählt, zeigt die TNC die Fehlermeldung Keine Achsauswahl vorhanden an

- ▶ Betriebsart **Positionieren mit Handeingabe** wählen
- ▶ Ggf. mit den Pfeiltasten auf der TNC-Tastatur den NC-Satz wählen, hinter den Sie den neuen L-Satz einfügen wollen
- ► Handrad aktivieren
- ► Handrad-Taste "NC-Satz generieren" drücken: Die TNC fügt einen kompletten L-Satz ein, der alle über die MOD-Funktion ausgewählten Achspositionen enthält

Funktionen in den Programmlauf-Betriebsarten

In den Programmlauf-Betriebsarten können Sie folgende Funktionen ausführen:

- NC-Start (Handrad-Taste NC-Start)
- NC-Stopp (Handrad-Taste NC-Stopp)
- Wenn NC-Stopp betätigt wurde: Interner Stopp (Handrad-Softkeys MOP und dann Stopp)
- Wenn NC-Stopp betätigt wurde: Manuell Achsen verfahren (Handrad-Softkeys MOP und dann MAN)
- Wiederanfahren an die Kontur, nachdem Achsen während einer Programm-Unterbrechung manuell verfahren wurden (Handrad-Softkeys MOP und dann REPO). Die Bedienung erfolgt per Handrad-Softkeys, wie über die Bildschirm-Softkeys (siehe "Wiederanfahren an die Kontur" auf Seite 598)
- Ein-/Ausschalten der Funktion Bearbeitungsebene schwenken (Handrad-Softkeys MOP und dann 3D)

2.3 Spindeldrehzahl S, Vorschub F und Zusatzfunktion M

Anwendung

In den Betriebsarten Manueller Betrieb und El. Handrad geben Sie Spindeldrehzahl S, Vorschub F und Zusatzfunktion M über Softkeys ein. Die Zusatzfunktionen sind in "7. Programmieren: Zusatzfunktionen" beschrieben.

Der Maschinenhersteller legt fest, welche Zusatzfunktionen M Sie nutzen können und welche Funktion sie haben.

Werte eingeben

Spindeldrehzahl S, Zusatzfunktion M

S

Eingabe für Spindeldrehzahl wählen: Softkey S

SPINDELDREHZAHL S=

1000

Spindeldrehzahl eingeben und mit der externen START-Taste übernehmen

Die Spindeldrehung mit der eingegebenen Drehzahl S starten Sie mit einer Zusatzfunktion M. Eine Zusatzfunktion M geben Sie auf die gleiche Weise ein.

Vorschub F

Die Eingabe eines Vorschub F müssen Sie anstelle mit der externen START-Taste mit der Taste ENT bestätigen.

Für den Vorschub F gilt:

- Wenn F=0 eingegeben, dann wirkt der kleinste Vorschub aus MP1020
- F bleibt auch nach einer Stromunterbrechung erhalten

Spindeldrehzahl und Vorschub ändern

Mit den Override-Drehknöpfen für Spindeldrehzahl S und Vorschub F lässt sich der eingestellte Wert von 0% bis 150% ändern.

Der Override-Drehknopf für die Spindeldrehzahl wirkt nur bei Maschinen mit stufenlosem Spindelantrieb.

2.4 Bezugspunkt-Setzen (ohne 3D-Tastsystem)

Hinweis

Bezugspunkt-Setzen mit 3D-Tastsystem: Siehe Benutzer-Handbuch Tastsystem-Zyklen.

Beim Bezugspunkt-Setzen wird die Anzeige der TNC auf die Koordinaten einer bekannten Werkstück-Position gesetzt.

Vorbereitung

- ▶ Werkstück aufspannen und ausrichten
- Nullwerkzeug mit bekanntem Radius einwechseln
- ▶ Sicherstellen, dass die TNC Ist-Positionen anzeigt

Bezugspunkt setzen mit Achstasten

Schutzmaßnahme

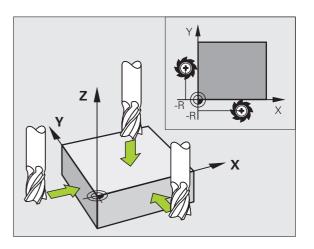
Falls die Werkstück-Oberfläche nicht angekratzt werden darf, wird auf das Werkstück ein Blech bekannter Dicke d gelegt. Für den Bezugspunkt geben Sie dann einen um d größeren Wert ein.

Betriebsart Manueller Betrieb wählen

Werkzeug vorsichtig verfahren, bis es das Werkstück berührt (ankratzt)

Achse wählen (alle Achsen sind auch über die ASCII-Tastatur wählbar)

BEZUGSPUNKT-SETZEN Z=



Nullwerkzeug, Spindelachse: Anzeige auf bekannte Werkstück-Position (z.B. 0) setzen oder Dicke d des Blechs eingeben. In der Bearbeitungsebene: Werkzeug-Radius berücksichtigen

Die Bezugspunkte für die verbleibenden Achsen setzen Sie auf die aleiche Weise.

Wenn Sie in der Zustellachse ein voreingestelltes Werkzeug verwenden, dann setzen Sie die Anzeige der Zustellachse auf die Länge L des Werkzeugs bzw. auf die Summe Z=L+d.

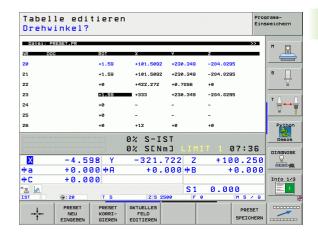
Bezugspunkt-Verwaltung mit der Preset-Tabelle

Die Preset-Tabelle sollten Sie unbedingt verwenden, wenn

- Ihre Maschine mit Drehachsen (Schwenktisch oder Schwenkkopf) ausgerüstet ist und Sie mit der Funktion Bearbeitungsebene schwenken arbeiten
- Ihre Maschine mit einem Kopfwechsel-System ausgerüstet ist
- Sie bisher an älteren TNC-Steuerungen mit REF-bezogenen Nullpunkt-Tabellen gearbeitet haben
- Sie mehrere gleiche Werkstücke bearbeiten wollen, die mit unterschiedlicher Schieflage aufgespannt sind

Die Preset-Tabelle darf beliebig viel Zeilen (Bezugspunkte) enthalten. Um die Dateigröße und die Verarbeitungs-Geschwindigkeit zu optimieren, sollten Sie nur so viele Zeilen verwenden, wie Sie für Ihre Bezugspunkt-Verwaltung auch benötigen.

Neue Zeilen können Sie aus Sicherheitsgründen nur am Ende der Preset-Tabelle einfügen.


Bezugspunkte in der Preset-Tabelle speichern

Die Preset-Tabelle hat den Namen PRESET.PR und ist im Verzeichnis TNC:\ gespeichert. PRESET.PR ist nur in der Betriebsart Manuell und El. Handrad editierbar. In der Betriebsart Programm-Einspeichern/ Editieren können Sie die Tabelle nur lesen, nicht jedoch verändern.

Das Kopieren der Preset-Tabelle in ein anderes Verzeichnis (zur Datensicherung) ist erlaubt. Zeilen, die von Ihrem Maschinen-Hersteller schreibgeschützt wurden, sind auch in den kopierten Tabellen grundsätzlich schreibgeschützt, können also von Ihnen nicht verändert werden.

Verändern Sie in den kopierten Tabellen die Anzahl der Zeilen grundsätzlich nicht! Dies könnte zu Problemen führen, wenn Sie die Tabelle wieder aktivieren wollen.

Um die in ein anderes Verzeichnis kopierte Preset-Tabelle zu aktivieren, müssen Sie diese wieder in das Verzeichnis TNC:\zurückkopieren.

Sie haben mehrere Möglichkeiten, Bezugspunkte/Grunddrehungen in der Preset-Tabelle zu speichern:

- Über Antast-Zyklen in der Betriebsart Manuell bzw. El. Handrad (siehe Benutzer-Handbuch Tastsystem-Zyklen, Kapitel 2)
- Über die Antast-Zyklen 400 bis 402 und 408 bis 419 im Automatik-Betrieb (siehe Benutzer-Handbuch Tastsystem-Zyklen, Kapitel 3)
- Manuelles eintragen (siehe nachfolgende Beschreibung)

Grunddrehungen aus der Preset-Tabelle drehen das Koordinatensystem um den Preset, der in derselben Zeile steht wie die Grunddrehung.

Die TNC prüft beim Setzten des Bezugspunktes, ob die Position der Schwenkachsen mit den entsprechenden Werten des 3D ROT-Menüs übereinstimmt (abhängig von MP-Einstellung). Daraus folgt:

- Bei inaktiver Funktion Bearbeitungsebene Schwenken muss die Positionsanzeige der Drehachsen = 0° sein (ggf. Drehachsen abnullen)
- Bei aktiver Funktion Bearbeitungsebene Schwenken müssen die Positionsanzeigen der Drehachsen und die eingetragenen Winkel im 3D ROT-Menü übereinstimmen

Ihr Maschinenhersteller kann beliebige Zeilen der Preset-Tabelle sperren, um darin feste Bezugspunkte abzulegen (z.B. einen Rundtisch-Mittelpunkt). Solche Zeilen sind in der Preset-Tabelle andersfarbig markiert (Standardmarkierung ist rot).

Die Zeile 0 in der Preset-Tabelle ist grundsätzlich schreibgeschützt. Die TNC speichert in der Zeile 0 immer den Bezugspunkt, den Sie zuletzt manuell über die Achstasten oder per Softkey gesetzt haben. Ist der manuell gesetzte Bezugspunkt aktiv, zeigt die TNC in der Status-Anzeige den Text PR MAN(0) an

Wenn Sie mit den Tastsystem-Zyklen zum Bezugspunkt-Setzen automatisch die TNC-Anzeige setzen, dann speichert die TNC diese Werte nicht in der Zeile 0.

Bezugspunkte manuell in der Preset-Tabelle speichern

Um Bezugspunkte in der Preset-Tabelle speichern zu können, gehen Sie wie folgt vor

Betriebsart Manueller Betrieb wählen

Werkzeug vorsichtig verfahren, bis es das Werkstück berührt (ankratzt), oder Messuhr entsprechend positionieren

Preset-Tabelle anzeigen lassen: Die TNC öffnet die Preset-Tabelle und setzt den Cursor auf die aktive Tabellenzeile

Funktionen zur Preset-Eingabe wählen: Die TNC zeigt in der Softkey-Leiste die verfügbaren Eingabemöglichkeiten an. Beschreibung der Eingabemöglichkeiten: siehe nachfolgende Tabelle

Zeile in der Preset-Tabelle wählen, die Sie ändern wollen (Zeilennummer entspricht der Preset-Nummer)

Ggf. Spalte (Achse) in der Preset-Tabelle wählen, die Sie ändern wollen

Per Softkey eine der verfügbaren Eingabemöglichkeiten wählen (siehe nachfolgende Tabelle)

HEIDENHAIN iTNC 530 85

Funktion Softkey

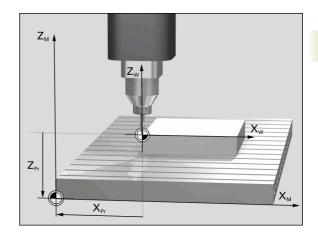
Die Ist-Position des Werkzeugs (der Messuhr) als neuen Bezugspunkt direkt übernehmen: Funktion speichert den Bezugspunkt nur in der Achse ab, in der das Hellfeld gerade steht

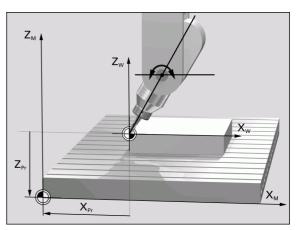
Der Ist-Position des Werkzeugs (der Messuhr) einen beliebigen Wert zuweisen: Funktion speichert den Bezugspunkt nur in der Achse ab, in der das Hellfeld gerade steht. Gewünschten Wert im Überblendfenster eingeben

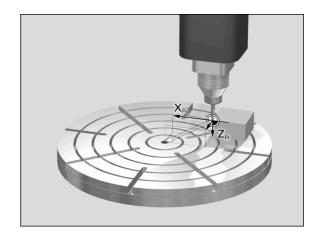
Einen bereits in der Tabelle gespeicherten Bezugspunkt inkremental verschieben: Funktion speichert den Bezugspunkt nur in der Achse ab, in der das Hellfeld gerade steht. Gewünschten Korrekturwert vorzeichenrichtig im Überblendfenster eingeben. Bei aktiver inch-Anzeige: Wert in inch eingeben, die TNC rechnet intern den eingegebenen Wert nach mm um

Neuen Bezugspunkt ohne Verrechnung der Kinematik direkt eingeben (achsspezifisch). Diese Funktion nur dann verwenden, wenn Ihre Maschine mit einem Rundtisch ausgerüstet ist und Sie durch direkte Eingabe von 0 den Bezugspunkt in die Rundtisch-Mitte setzen wollen. Funktion speichert den Wert nur in der Achse ab, in der das Hellfeld gerade steht. Gewünschten Wert im Überblendfenster eingeben. Bei aktiver inch-Anzeige: Wert in inch eingeben, die TNC rechnet intern den eingegebenen Wert nach mm um

Den momentan aktiven Bezugspunkt in eine wählbare Tabellenzeile schreiben: Funktion speichert den Bezugspunkt in allen Achsen ab und aktiviert die jeweilige Tabellenzeile dann automatisch. Bei aktiver inch-Anzeige: Wert in inch eingeben, die TNC rechnet intern den eingegebenen Wert nach mm um




Erläuterung zu den in der Preset-Tabelle gespeicherten Werten


- Einfache Maschine mit drei Achsen ohne Schwenkvorrichtung Die TNC speichert in der Preset-Tabelle den Abstand vom Werkstück-Bezugspunkt zum Referenzpunkt ab (vorzeichenrichtig)
- Maschine mit Schwenkkopf
 Die TNC speichert in der Preset-Tabelle den Abstand vom Werkstück-Bezugspunkt zum Referenzpunkt ab (vorzeichenrichtig)
- Maschine mit Rundtisch
 Die TNC speichert in der Preset-Tabelle den Abstand vom
 Werkstück-Bezugspunkt zum Zentrum des Rundtisches ab
 (vorzeichenrichtig)
- Maschine mit Rundtisch und Schwenkkopf Die TNC speichert in der Preset-Tabelle den Abstand vom Werkstück-Bezugspunkt zum Zentrum des Rundtisches ab

Beachten Sie, dass beim Verschieben eines Teilapparates auf Ihrem Maschinentisch (realisiert durch Veränderung der Kinematik-Beschreibung) ggf. auch Presets verschoben werden, die nicht direkt mit dem Teilapparat zusammenhängen.

Preset-Tabelle editieren

Editier-Funktion im Tabellenmodus	Softkey
Tabellen-Anfang wählen	ANFANG
Tabellen-Ende wählen	ENDE
Vorherige Tabellen-Seite wählen	SEITE
Nächste Tabellen-Seite wählen	SEITE
Funktionen zur Preset-Eingabe wählen	PRESET ANDERN
Den Bezugspunkt der aktuell angewählten Zeile der Preset-Tabelle aktivieren	PRESET AKTI- VIEREN
Eingebbare Anzahl von Zeilen am Tabellenende anfügen (2. Softkey-Leiste)	N ZEILEN AM ENDE ANFÜGEN
Hell hinterlegtes Feld kopieren 2. Softkey-Leiste)	AKTUELLEN WERT KOPIEREN
Kopiertes Feld einfügen (2. Softkey-Leiste)	KOPIERTEN WERT EINFÜGEN
Aktuell angewählte Zeile zurücksetzen: Die TNC trägt in alle Spalten – ein (2. Softkey-Leiste)	ZEILE ZURÜCK- SETZEN
Einzelne Zeile am Tabellen-Ende einfügen (2. Softkey-Leiste)	ZEILE EINFÜGEN
Einzelne Zeile am Tabellen-Ende löschen (2. Softkey-Leiste)	ZEILE LÖSCHEN

Bezugspunkt aus der Preset-Tabelle in der Betriebsart Manuell aktivieren

Beim Aktivieren eines Bezugspunktes aus der Preset-Tabelle, setzt die TNC eine aktive Nullpunkt-Verschiebung zurück.

Eine Koordinaten-Umrechnung die Sie über Zyklus G80, Bearbeitungsebene schwenken oder die PLANE-Funktion programmiert haben, bleibt dagegen aktiv.

Wenn Sie einen Preset aktivieren, der nicht in allen Koordinaten Werte enthält, dann bleibt in diesen Achsen der zuletzt wiksame Bezugspunkt aktiv.

Betriebsart Manueller Betrieb wählen

Preset-Tabelle anzeigen lassen

Bezugspunkt-Numer wählen, die Sie aktivieren wollen, oder

über die Taste GOTO die Bezugspunkt-Numer wählen, die Sie aktivieren wollen, mit der Taste ENT bestätigen

Bezugspunkt aktivieren

Aktivieren des Bezugspunktes bestätigen. Die TNC setzt die Anzeige und - wenn definiert - die Grunddrehung

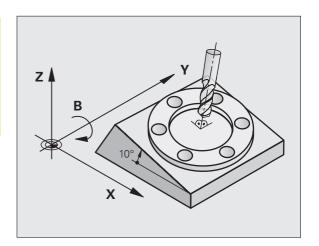
Preset-Tabelle verlassen

Bezugspunkt aus der Preset-Tabelle in einem NC-Programm aktivieren

Um Bezugspunkte aus der Preset-Tabelle während des Programmlaufs zu aktivieren, benutzen Sie den Zyklus 247. Im Zyklus 247 definieren Sie lediglich die Nummer des Bezugspunktes den Sie aktivieren wollen (siehe "BEZUGSPUNKT SETZEN (Zyklus G247)" auf Seite 465).

2.5 Bearbeitungsebene schwenken (Software-Option 1)

Anwendung, Arbeitsweise


Die Funktionen zum Schwenken der Bearbeitungsebene werden vom Maschinenhersteller an TNC und Maschine angepasst. Bei bestimmten Schwenkköpfen (Schwenktischen) legt der Maschinenhersteller fest, ob die im Zyklus programmierten Winkel von der TNC als Koordinaten der Drehachsen oder als Winkelkomponenten einer schiefen Ebene interpretiert werden. Beachten Sie Ihr Maschinenhandbuch.

Die TNC unterstützt das Schwenken von Bearbeitungsebenen an Werkzeugmaschinen mit Schwenkköpfen sowie Schwenktischen. Typische Anwendungen sind z.B. schräge Bohrungen oder schräg im Raum liegende Konturen. Die Bearbeitungsebene wird dabei immer um den aktiven Nullpunkt geschwenkt. Wie gewohnt, wird die Bearbeitung in einer Hauptebene (z.B. X/Y-Ebene) programmiert, jedoch in der Ebene ausgeführt, die zur Hauptebene geschwenkt wurde.

Für das Schwenken der Bearbeitungsebene stehen drei Funktionen zur Verfügung:

- Manuelles Schwenken mit dem Softkey 3D ROT in den Betriebsarten Manueller Betrieb und El. Handrad, siehe "Manuelles Schwenken aktivieren", Seite 94
- Gesteuertes Schwenken, Zyklus 19 BEARBEITUNGSEBENE im Bearbeitungs-Programm (siehe "BEARBEITUNGSEBENE (Zyklus G80, Software-Option 1)" auf Seite 470)
- Gesteuertes Schwenken, PLANE-Funktion im Bearbeitungs-Programm (siehe "Die PLANE-Funktion: Schwenken der Bearbeitung-sebene (Software-Option 1)" auf Seite 489)

Die TNC-Funktionen zum "Schwenken der Bearbeitungsebene" sind Koordinaten-Transformationen. Dabei steht die Bearbeitungs-Ebene immer senkrecht zur Richtung der Werkzeugachse.

Grundsätzlich unterscheidet die TNC beim Schwenken der Bearbeitungsebene zwei Maschinen-Typen:

■ Maschine mit Schwenktisch

- Sie müssen das Werkstück durch entsprechende Positionierung des Schwenktisches, z.B. mit einem L-Satz, in die gewünschte Bearbeitungslage bringen
- Die Lage der transformierten Werkzeugachse ändert sich im Bezug auf das maschinenfeste Koordinatensystem nicht. Wenn Sie Ihren Tisch – also das Werkstück – z.B. um 90° drehen, dreht sich das Koordinatensystem nicht mit. Wenn Sie in der Betriebsart Manueller Betrieb die Achsrichtungs-Taste Z+ drücken, verfährt das Werkzeug in die Richtung Z+
- Die TNC berücksichtigt für die Berechnung des transformierten Koordinatensystems lediglich mechanisch bedingte Versätze des jeweiligen Schwenktisches - sogenannte "translatorische" Anteile

■ Maschine mit Schwenkkopf

- Sie müssen das Werkzeug durch entsprechende Positionierung des Schwenkkopfs, z.B. mit einem L-Satz, in die gewünschte Bearbeitungslage bringen
- Die Lage der geschwenkten (transformierten) Werkzeugachse ändert sich im Bezug auf das maschinenfeste Koordinatensystem: Drehen Sie den Schwenkkopf Ihrer Maschine – also das Werkzeug – z.B. in der B-Achse um +90°, dreht sich das Koordinatensystem mit. Wenn Sie in der Betriebsart Manueller Betrieb die Achsrichtungs-Taste Z+ drücken, verfährt das Werkzeug in die Richtung X+ des maschinenfesten Koordinatensystems
- Die TNC berücksichtigt für die Berechnung des transformierten Koordinatensystems mechanisch bedingte Versätze des Schwenkkopfs ("translatorische" Anteile) und Versätze, die durch das Schwenken des Werkzeugs entstehen (3D Werkzeug-Längenkorrektur)

Referenzpunkte-Anfahren bei geschwenkten Achsen

Bei geschwenkten Achsen fahren Sie die Referenzpunkte mit den externen Richtungstasten an. Die TNC interpoliert dabei die entsprechenden Achsen. Beachten Sie, dass die Funktion "Bearbeitungsebene schwenken" in der Betriebsart Manueller Betrieb aktiv ist und der Ist-Winkel der Drehachse im Menüfeld eingetragen wurde.

Bezugspunkt-Setzen im geschwenkten System

Nachdem Sie die Drehachsen positioniert haben, setzen Sie den Bezugspunkt wie im ungeschwenkten System. Das Verhalten der TNC beim Bezugspunkt-Setzen ist dabei abhängig von der Einstellung des Maschinen-Parameters 7500 in Ihrer Kinematik-Tabelle:

■ MP 7500, Bit 5=0

Die TNC prüft bei aktiver geschwenkter Bearbeitungsebene, ob beim Setzen des Bezugspunktes in den Achsen X, Y und Z die aktuellen Koordinaten der Drehachsen mit den von Ihnen definierten Schwenkwinkeln (3D-ROT-Menü) übereinstimmen. Ist die Funktion Bearbeitungsebe schwenken inaktiv, dann prüft die TNC, ob die Drehachsen auf 0° stehen (Ist-Positionen). Stimmen die Positionennicht überein, gibt die TNC eine Fehlermeldung aus.

■ MP 7500, Bit 5=1

Die TNC prüft nicht, ob die aktuellen Koordinaten der Drehachsen (lst-Positionen) mit den von Ihnen definierten Schwenkwinkeln übereinstimmen.

Bezugspunkt grundsätzlich immer in allen drei Hauptachsen setzen.

Falls die Drehachsen Ihrer Maschine nicht geregelt sind, müssen Sie die Ist-Position der Drehachse ins Menü zum manuellen Schwenken eintragen: Stimmt die Ist-Position der Drehachse(n) mit dem Eintrag nicht überein, berechnet die TNC den Bezugspunkt falsch.

Bezugspunkt-Setzen bei Maschinen mit Rundtisch

Wenn Sie das Werkstück durch eine Rundtischdrehung ausrichten, z.B. mit dem Antast-Zyklus 403, müssen Sie vor dem Setzen des Bezugspunktes in den Linearachsen X, Y und Z die Rundtischachse nach dem Ausricht-Vorgang abnullen. Ansonsten gibt die TNC eine Fehlermeldung aus. Der Zyklus 403 bietet diese Möglichkeit direkt an, indem Sie einen Eingabeparameter setzen (siehe Benutzer-Handbuch Tastsystem-Zyklen, "Grunddrehung über eine Drehachse kompensieren").

Bezugspunkt-Setzen bei Maschinen mit Kopfwechsel-Systemen

Wenn Ihre Maschine mit einem Kopfwechsel-System ausgerüstet ist, sollten Sie Bezugspunkte grundsätzlich über die Preset-Tabelle verwalten. Bezugspunkte, die in Preset-Tabellen gespeichert sind, beinhalten die Verrechnung der aktiven Maschinen-Kinematik (Kopfgeometrie). Wenn Sie einen neuen Kopf einwechseln, berücksichtigt die TNC die neuen, veränderten Kopfabmessungen, so dass der aktive Bezugspunkt erhalten bleibt.

Positionsanzeige im geschwenkten System

Die im Status-Feld angezeigten Positionen (**SOLL** und **IST**) beziehen sich auf das geschwenkte Koordinatensystem.

Einschränkungen beim Schwenken der Bearbeitungsebene

- Die Antastfunktion Grunddrehung steht nicht zur Verfügung, wenn Sie in der Betriebsart Manuell die Funktion Bearbeitungsebene schwenken aktiviert haben
- PLC-Positionierungen (vom Maschinenhersteller festgelegt) sind nicht erlaubt

Manuelles Schwenken aktivieren

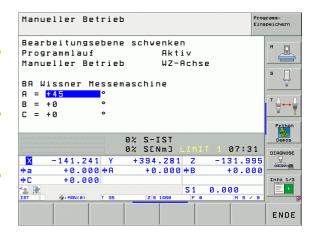
Manuelles Schwenken wählen: Softkey 3D ROT drücken

Hellfeld per Pfeiltaste auf Menüpunkt Manueller Betrieb positionieren

Manuelles Schwenken aktivieren: Softkey AKTIV drücken

Hellfeld per Pfeiltaste auf gewünschte Drehachse positionieren

Schwenkwinkel eingeben



Eingabe beenden: Taste END

Zum Deaktivieren setzen Sie im Menü Bearbeitungsebene schwenken die gewünschten Betriebsarten auf Inaktiv.

Wenn die Funktion Bearbeitungsebene schwenken aktiv ist und die TNC die Maschinenachsen entsprechend der geschwenkten Achsen verfährt, blendet die Status-Anzeige das Symbol [a] ein.

Falls Sie die Funktion Bearbeitungsebene schwenken für die Betriebsart Programmlauf auf Aktiv setzen, gilt der im Menü eingetragene Schwenkwinkel ab dem ersten Satz des abzuarbeitenden Bearbeitungs-Programms. Verwenden Sie im Bearbeitungs-Programm den Zyklus G80 **BEARBEITUNGSEBENE** oder die **PLANE**-Funktion, sind die dort definierten Winkelwerte wirksam. Im Menü eingetragene Winkelwerte werden mit den aufgerufenen Werten überschrieben.

Aktuelle Werkzeugachs-Richtung als aktive Bearbeitungsrichtung setzen (FCL 2-Funktion)

Diese Funktion muss vom Maschinenhersteller freigeschaltet werden. Beachten Sie Ihr Maschinenhandbuch.

Mit dieser Funktion können Sie in den Betriebsarten Manuell und El. Handrad das Werkzeug per externer Richtungstasten oder mit dem Handrad in der Richtung verfahren, in der die Werkzeugachse momentan zeigt. Diese Funktion benützen, wenn

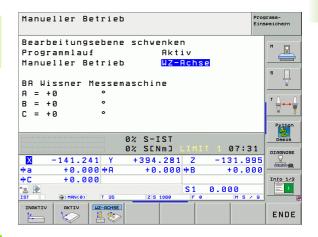
- Sie das Werkzeug während einer Programm-Unterbrechung in einem 5-Achs-Programm in Werkzeug-Achsrichtung freifahren wollen
- Sie mit dem Handrad oder den externen Richtungstasten im Manuellen Betrieb eine Bearbeitung mit angestelltem Werkzeug durchführen wollen

Manuelles Schwenken wählen: Softkey 3D ROT drükken

Hellfeld per Pfeiltaste auf Menüpunkt Manueller Betrieb positionieren

Aktive Werkzeugachs-Richtung als aktive Bearbeitungsrichtung aktivieren: Softkey WZ-ACHSE drücken

Eingabe beenden: Taste END


Zum Deaktivieren setzen Sie im Menü Bearbeitungsebene schwenken den Menüpunkt Manueller Betrieb auf Inaktiv.

Wenn die Funktion **Verfahren in Werkzeugachs-Richtung** aktiv ist, blendet die Status-Anzeige das Symbol **b** ein.

Diese Funktion steht auch dann zur Verfügung, wenn Sie den Programmlauf unterbrechen und die Achsen manuell verfahren wollen.

Die Hauptachse der aktiven Bearbeitungsebene (X bei Werkzeug-Achse Z) liegt immer in der maschinenfesten Hauptebene (Z/X bei Werkzeug-Achse Z).

HEIDENHAIN iTNC 530 95

2.6 Dynamische Kollisionsüberwachung (Software-Option)

Funktion

Die dynamische Kollisionsüberwachung **DCM** (engl.: **D**ynamic **C**ollision **M**onitoring) muss von Ihrem Maschinenhersteller an die TNC und an die Maschine angepasst werden. Beachten Sie Ihr Maschinenhandbuch.

Der Maschinenhersteller kann beliebige Objekte definieren, die von der TNC bei allen Maschinenbewegungen überwacht werden. Unterschreiten zwei kollisionsüberwachte Objekte einen bestimmten Abstand zueinander, gibt die TNC eine Fehlermeldung aus. Die definierten Kollisionskörper kann die TNC in einer Programmlauf-Betriebsart grafisch darstellen (siehe "Grafische Darstellung des Schutzraumes (FCL4-Funktion)" auf Seite 99).

Die TNC überwacht auch das aktive Werkzeug mit der in der Werkzeug-Tabelle eingetragenen Länge und dem eingetragenen Radius auf Kollision (zylindrisches Werkzeug vorausgesetzt).

Beachten Sie folgende Einschränkungen:

- DCM hilft die Kollisionsgefahr zu reduzieren. Die TNC kann jedoch nicht alle Konstellationen im Betrieb berücksichtigen.
- Kollisionen von definierten Maschinenkomponenten und dem Werkzeug mit dem Werkstück werden von der TNC nicht erkannt.
- DCM kann nur Maschinenkomponenten vor Kollision schützen, die Ihr Maschinen-Hersteller richtig bezüglich Abmessungen und Position im Maschinen-Koordinatensystem definiert hat.
- Die TNC kann das Werkzeug nur dann überwachen, wenn in der Werkzeug-Tabelle ein **positiver Werkzeug-Radius** definiert ist. Ein Werkzeug mit Radius 0 (kommt oftmals bei Bohrwerkzeugen zum Einsatz) kann die TNC nicht überwachen.
- Bei bestimmten Werkzeugen (z.B. bei Messerköpfen) kann der kollisionsverursachende Durchmesser größer sein als die durch die Werkzeug-Korrekturdaten definierten Abmessungen.

Beachten Sie folgende Einschränkungen:

- Die Funktion "Handradüberlagerung" mit M118 ist in Verbindung mit der Kollisionsüberwachung nur in gestopptem Zustand (STIB blinkt) möglich. Um M118 ohne Einschränkung nutzen zu können müssen Sie DCM entweder über Softkey im Menü Kollisionsüberwachung (DCM) abwählen, oder eine Kinematik ohne Kollisionskörper (CMOs) aktivieren
- Bei den Zyklen zum "Gewindebohren ohne Ausgleichsfutter" funktioniert DCM nur dann, wenn per MP7160 die exakte Interpolation der Werkzeugachse mit der Spindel aktiviert ist
- Momentan steht keine Funktion zur Verfügung, mit der Sie Kollisionen vor der Bearbeitung des Werkstücks (z. B. in der Betriebsart Programm-Test) prüfen können

Kollisionsüberwachung in den manuellen Betriebsarten

In den Betriebsarten Manuell oder El. Handrad stoppt die TNC eine Bewegung, wenn zwei kollisionsüberwachte Objekte einen Abstand zueinander von 3 bis 5 mm unterschreiten. In diesem Fall zeigt die TNC eine Fehlermeldung an, in der die beiden kollisionsverursachenden Körper benannt sind.

Wenn Sie die Bildschirm-Aufteilung so gewählt haben, dass links Positionen und rechts Kollisionskörper dargestellt werden, dann färbt die TNC zusätzlich die kollidierenden Kollisionskörper rot ein.

Nach Anzeige der Kollisionswarnung ist eine Maschinenbewegung mit Richtungstaste oder Handrad nur noch möglich, wenn die Bewegung den Abstand der Kollisionskörper vergrößert, also beispielsweise durch Drücken der entgegengesetzten Achs-Richtungstaste.

Bewegungen, die den Abstand verkleinern oder gleich lassen, sind nicht erlaubt, solange die Kollisionsüberwachung aktiv ist.

Kollisionsüberwachung deaktivieren

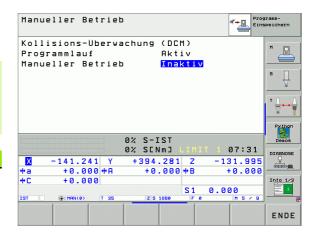
Wenn Sie den Abstand zwischen kollisionsüberwachten Objekten aus Platzgründen verringern müssen, ist die Kollisionsüberwachung zu deaktivieren.

Kollisionsgefahr!

Wenn Sie die Kollisionsüberwachung deaktiviert haben, blinkt in der Betriebsartenzeile das Symbol für die Kollisionsüberwachung (siehe nachfolgende Tabelle).

Funktion Symbol

Symbol, das in der Betriebsartenzeile blinkt, wenn die Kollisionsüberwachung nicht aktiv ist.



Menü zum Deaktivieren der Kollisionsüberwachung wählen

- ▶ Menüpunkt Manueller Betrieb wählen
- ▶ Kollisionsüberwachung deaktivieren: Taste ENT drücken, das Symbol für die Kollisionsüberwachung in der Betriebsartenzeile blinkt
- Achsen manuell fahren, auf Verfahrrichtung achten
- ▶ Kollisionsüberwachung wieder aktivieren: Taste ENT drücken

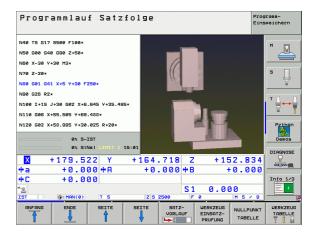
Kollisionsüberwachung im Automatikbetrieb

Die Funktion Handradüberlagerung mit M118 ist in Verbindung mit der Kollisionsüberwachung nur in gestopptem Zustand (STIB blinkt) möglich.

Wenn die Kollisions-Überwachung aktiv ist, zeigt die TNC in der Positions-Anzeige das Symbol 🔩 an.

Wenn Sie die Kollisionsüberwachung deaktiviert haben, dann blinkt das Symbol für die Kollisionsüberwachung in der Betriebsartenzeile.

Die Funktionen M140 (siehe "Rückzug von der Kontur in Werkzeugachsen-Richtung: M140" auf Seite 281) und M150 (siehe "Endschaltermeldung unterdrücken: M150" auf Seite 286) führen ggf. zu nicht programmierten Bewegungen, wenn beim Abarbeiten dieser Funktionen von der TNC eine Kollision erkannt wird!


Die TNC überwacht Bewegungen satzweise, gibt also eine Kollisionswarnung in dem Satz aus, der eine Kollision verursachen würde und unterbricht den Programmlauf. Eine Vorschubreduzierung wie im Manuellen Betrieb findet generell nicht statt.

Grafische Darstellung des Schutzraumes (FCL4-Funktion)

Über die Taste Bildschirm-Aufteilung können Sie die an Ihrer Maschine definierten Kollisionskörper dreidimensional anzeigen lassen (siehe "Programmlauf Satzfolge und Programmlauf Einzelsatz" auf Seite 52).

Mit gedrückter rechter Mouse-Taste können Sie die Gesamtansicht der Kollisionskörper drehen. Per Softkey können Sie auch zwischen verschiedenen Ansichtmodi wählen:

Funktion	Softkey
Umschalten zwischen Drahtmodell und Volumenansicht	Ø
Umschalten zwischen Volumenansicht und transparenter Ansicht	
Einblenden/ausblenden der Koordinatensysteme, die durch Transformationen in der Kinematikbeschreibung entstehen	L.
Funktionen zum Drehen, Rotieren und Zoomen	

3

Positionieren mit Handeingabe

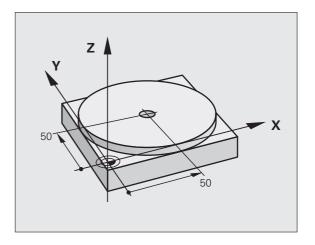
3.1 Einfache Bearbeitungen programmieren und abarbeiten

Für einfache Bearbeitungen oder zum Vorpositionieren des Werkzeugs eignet sich die Betriebsart Positionieren mit Handeingabe. Hier können Sie ein kurzes Programm im HEIDENHAIN-Klartext-Format oder nach DIN/ISO eingeben und direkt ausführen lassen. Auch die Zyklen der TNC lassen sich aufrufen. Das Programm wird in der Datei \$MDI gespeichert. Beim Positionieren mit Handeingabe lässt sich die zusätzliche Status-Anzeige aktivieren.

Positionieren mit Handeingabe anwenden

Betriebsart Positionieren mit Handeingabe wählen. Die Datei \$MDI beliebig programmieren

Programmlauf starten: Externe START-Taste


Einschränkung

Die Freie Kontur-Programmierung FK, die Programmier-Grafiken und Programmlauf-Grafiken stehen nicht zur Verfügung.

Die Datei \$MDI darf keinen Programm-Aufruf enthalten (%).

Ein einzelnes Werkstück soll mit einer 20 mm tiefen Bohrung versehen werden. Nach dem Aufspannen des Werkstücks, dem Ausrichten und Bezugspunkt-Setzen lässt sich die Bohrung mit wenigen Programmzeilen programmieren und ausführen.

Zuerst wird das Werkzeug mit L-Sätzen (Geraden) über dem Werkstück vorpositioniert und auf einen Sicherheitsabstand von 5 mm über dem Bohrloch positioniert. Danach wird die Bohrung mit dem Zyklus 1 **TIEFBOHREN** ausgeführt.

%\$MDI G71 *			
N10 G99 T1 L+0 R+5 *	Werkzeug definieren: Nullwerkzeug, Radius 5		
N20 T1 G17 S2000 *	Werkzeug aufrufen: Werkzeugachse Z,		
	Spindeldrehzahl 2000 U/min		
N30 G00 G40 G90 Z+200 *	Werkzeug freifahren (Eilgang)		
N40 X+50 Y+50 M3 *	Werkzeug im Eilgang über Bohrloch positionieren,		
	Spindel ein		
N50 G01 Z+2 F2000 *	Werkzeug 2 mm über Bohrloch positionieren		
N60 G200 BOHREN *	Zyklus G200 Bohren definieren		
Q200=2 ;SICHERHEITS-ABST.	Sicherheitsabstand des Wkz über Bohrloch		
Q201=-20 ;TIEFE	Tiefe des Bohrlochs (Vorzeichen=Arbeitsrichtung)		
Q206=250 ;F TIEFENZUST.	Bohrvorschub		
Q202=10 ;ZUSTELL-TIEFE	Tiefe der jeweiligen Zustellung vor dem Rückzug		
Q210=O ;FZEIT OBEN	Verweilzeit oben beim Entspanen in Sekunden		
Q203=+0 ;KOOR. OBERFL.	Koordinate Oberkante Werkstück		
Q204=50 ;2. SABSTAND	Position nach dem Zyklus, bezogen auf Q203		
Q211=0.5 ;VERWEILZEIT UNTEN	Verweilzeit am Bohrungsgrund in Sekunden		
N70 G79 *	Zyklus G200 Tiefbohren aufrufen		
N80 G00 G40 Z+200 M2 *	Werkzeug freifahren		
N9999999 %\$MDI G71 *	Programm-Ende		

Geraden-Funktion **G00** (siehe "Gerade im Eilgang G00 Gerade mit Vorschub G01 F..." auf Seite 233), Zyklus **G200** BOHREN (siehe "BOHREN (Zyklus G200)" auf Seite 314).

Beispiel 2: Werkstück-Schieflage bei Maschinen mit Rundtisch beseitigen

Grunddrehung mit 3D-Tastsystem durchführen. Siehe Benutzer-Handbuch Tastsystem-Zyklen, "Tastsystem-Zyklen in den Betriebsarten Manueller Betrieb und El. Handrad", Abschnitt "Werkstück-Schieflage kompensieren".

Drehwinkel notieren und Grunddrehung wieder aufheben

Betriebsart wählen: Positionieren mit Handeingabe

IV

Rundtischachse wählen, notierten Drehwinkel und Vorschub eingeben z.B. **G01 G40 G90 C+2.561 F50**

Eingabe abschließen

Externe START-Taste drücken: Schieflage wird durch Drehung des Rundtischs beseitigt

Programme aus \$MDI sichern oder löschen

Die Datei \$MDI wird gewöhnlich für kurze und vorübergehend benötigte Programme verwendet. Soll ein Programm trotzdem gespeichert werden, gehen Sie wie folgt vor:

Betriebsart wählen: Programm- Einspeichern/ Editieren

Datei-Verwaltung aufrufen: Taste PGM MGT (Program Management)

Datei \$MDI markieren

"Datei kopieren" wählen: Softkey KOPIEREN

ZIEL-DATEI =

BOHRUNG

Geben Sie einen Namen ein, unter dem der aktuelle Inhalt der Datei \$MDI gespeichert werden soll

Kopieren ausführen

ENDE

Datei-Verwaltung verlassen: Softkey ENDE

Zum Löschen des Inhalts der Datei \$MDI gehen Sie ähnlich vor: Anstatt sie zu kopieren, löschen Sie den Inhalt mit dem Softkey LÖSCHEN. Beim nächsten Wechsel in die Betriebsart Positionieren mit Handeingabe zeigt die TNC eine leere Datei \$MDI an.

Wenn Sie \$MDI löschen wollen, dann

- dürfen Sie die Betriebsart Positionieren mit Handeingabe nicht angewählt haben (auch nicht im Hintergrund)
- dürfen Sie die Datei \$MDI in der Betriebsart Programm Einspeichern/Editieren nicht angewählt haben

Weitere Informationen: siehe "Einzelne Datei kopieren", Seite 122.

Programmieren: Grundlagen, Datei-Verwaltung, Programmierhilfen, Paletten-Verwaltung

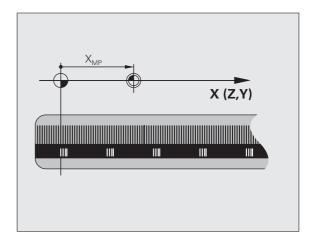
4.1 Grundlagen

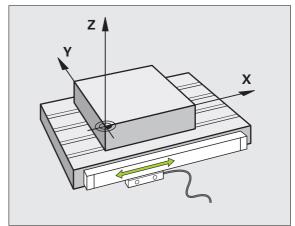
Wegmessgeräte und Referenzmarken

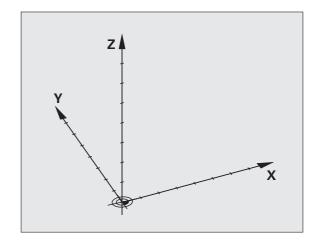
An den Maschinenachsen befinden sich Wegmessgeräte, die die Positionen des Maschinentisches bzw. des Werkzeugs erfassen. An Linearachsen sind üblicherweise Längenmessgeräte angebaut, an Rundtischen und Schwenkachsen Winkelmessgeräte.

Wenn sich eine Maschinenachse bewegt, erzeugt das dazugehörige Wegmessgerät ein elektrisches Signal, aus dem die TNC die genaue Ist-Position der Maschinenachse errechnet.

Bei einer Stromunterbrechung geht die Zuordnung zwischen der Maschinenschlitten-Position und der berechneten Ist-Position verloren. Um diese Zuordnung wieder herzustellen, verfügen inkrementale Wegmessgeräte über Referenzmarken. Beim Überfahren einer Referenzmarke erhält die TNC ein Signal, das einen maschinenfesten Bezugspunkt kennzeichnet. Damit kann die TNC die Zuordnung der Ist-Position zur aktuellen Maschinenposition wieder herstellen. Bei Längenmessgeräten mit abstandscodierten Referenzmarken müssen Sie die Maschinenachsen maximal 20 mm verfahren, bei Winkelmessgeräten um maximal 20°.

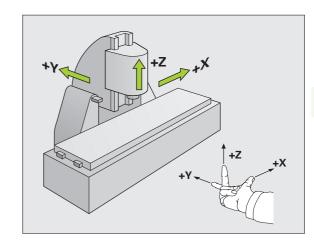

Bei absoluten Messgeräten wird nach dem Einschalten ein absoluter Positionswert zur Steuerung übertragen. Dadurch ist, ohne Verfahren der Maschinenachsen, die Zuordnung zwischen der Ist-Position und der Maschinenschlitten-Position direkt nach dem Einschalten wieder hergestellt.

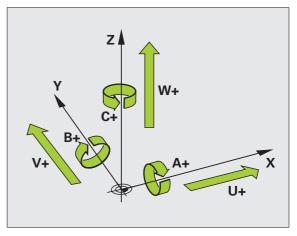

Bezugssystem


Mit einem Bezugssystem legen Sie Positionen in einer Ebene oder im Raum eindeutig fest. Die Angabe einer Position bezieht sich immer auf einen festgelegten Punkt und wird durch Koordinaten beschrieben.

Im rechtwinkligen System (kartesisches System) sind drei Richtungen als Achsen X, Y und Z festgelegt. Die Achsen stehen jeweils senkrecht zueinander und schneiden sich in einem Punkt, dem Nullpunkt. Eine Koordinate gibt den Abstand zum Nullpunkt in einer dieser Richtungen an. So lässt sich eine Position in der Ebene durch zwei Koordinaten und im Raum durch drei Koordinaten beschreiben.

Koordinaten, die sich auf den Nullpunkt beziehen, werden als absolute Koordinaten bezeichnet. Relative Koordinaten beziehen sich auf eine beliebige andere Position (Bezugspunkt) im Koordinatensystem. Relative Koordinaten-Werte werden auch als inkrementale Koordinaten-Werte bezeichnet.





Bezugssystem an Fräsmaschinen

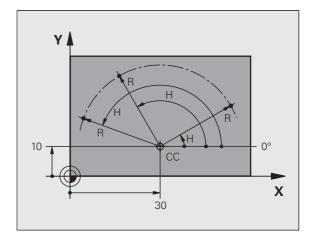
Bei der Bearbeitung eines Werkstücks an einer Fräsmaschine beziehen Sie sich generell auf das rechtwinklige Koordinatensystem. Das Bild rechts zeigt, wie das rechtwinklige Koordinatensystem den Maschinenachsen zugeordnet ist. Die Drei-Finger-Regel der rechten Hand dient als Gedächtnisstütze: Wenn der Mittelfinger in Richtung der Werkzeugachse vom Werkstück zum Werkzeug zeigt, so weist er in die Richtung Z+, der Daumen in die Richtung X+ und der Zeigefinger in Richtung Y+.

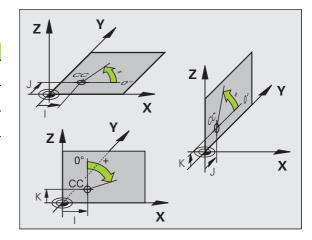
Die iTNC 530 kann insgesamt maximal 9 Achsen steuern. Neben den Hauptachsen X, Y und Z gibt es parallel laufende Zusatzachsen U, V und W. Drehachsen werden mit A, B und C bezeichnet. Das Bild rechts unten zeigt die Zuordnung der Zusatzachsen bzw. Drehachsen zu den Hauptachsen.

Polarkoordinaten

Wenn die Fertigungszeichnung rechtwinklig bemaßt ist, erstellen Sie das Bearbeitungs-Programm auch mit rechtwinkligen Koordinaten. Bei Werkstücken mit Kreisbögen oder bei Winkelangaben ist es oft einfacher, die Positionen mit Polarkoordinaten festzulegen.

Im Gegensatz zu den rechtwinkligen Koordinaten X, Y und Z beschreiben Polarkoordinaten nur Positionen in einer Ebene. Polarkoordinaten haben ihren Nullpunkt im Pol CC (CC = circle centre; engl. Kreismittelpunkt). Eine Position in einer Ebene ist so eindeutig festgelegt durch:


- Polarkoordinaten-Radius: der Abstand vom Pol CC zur Position
- Polarkoordinaten-Winkel: Winkel zwischen der Winkel-Bezugsachse und der Strecke, die den Pol CC mit der Position verbindet


Siehe Bild rechts oben

Festlegen von Pol und Winkel-Bezugsachse

Den Pol legen Sie durch zwei Koordinaten im rechtwinkligen Koordinatensystem in einer der drei Ebenen fest. Damit ist auch die Winkel-Bezugsachse für den Polarkoordinaten-Winkel PA eindeutig zugeordnet.

Pol-Koordinaten (Ebene)	Winkel-Bezugsachse
X/Y	+X
Y/Z	+Y
Z/X	+Z

Absolute und inkrementale Werkstück-Positionen

Absolute Werkstück-Positionen

Wenn sich die Koordinaten einer Position auf den Koordinaten-Nullpunkt (Ursprung) beziehen, werden diese als absolute Koordinaten bezeichnet. Jede Position auf einem Werkstück ist durch ihre absoluten Koordinaten eindeutig festgelegt.

Beispiel 1: Bohrungen mit absoluten Koordinaten

Bohrung 1	Bohrung 2	Bohrung 3
X = 10 mm	X = 30 mm	X = 50 mm
Y = 10 mm	Y = 20 mm	Y = 30 mm

Inkrementale Werkstück-Positionen

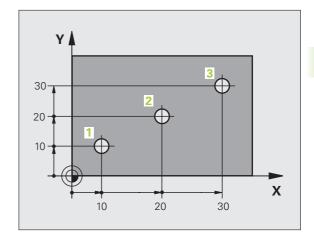
Inkrementale Koordinaten beziehen sich auf die zuletzt programmierte Position des Werkzeugs, die als relativer (gedachter) Nullpunkt dient. Inkrementale Koordinaten geben bei der Programmerstellung somit das Maß zwischen der letzten und der darauf folgenden Soll-Position an, um die das Werkzeug verfahren soll. Deshalb wird es auch als Kettenmaß bezeichnet.

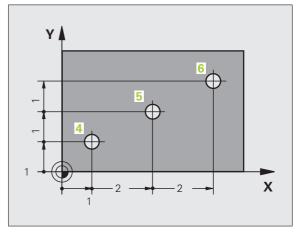
Ein Inkremental-Maß kennzeichnen Sie durch die Funktion **691** vor der Achsbezeichnung.

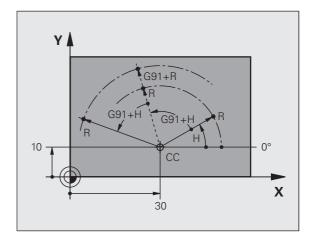
Beispiel 2: Bohrungen mit inkrementalen Koordinaten

Absolute Koordinaten der Bohrung 4

X = 10 mmY = 10 mm


Bohrung 5, bezogen auf 4 Bohrung 6, bezogen auf 5


G91 X = 20 mm **G91** Y = 10 mm **G91** Y = 10 mm

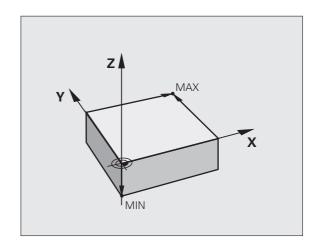

Absolute und inkrementale Polarkoordinaten

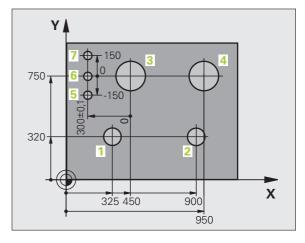
Absolute Koordinaten beziehen sich immer auf den Pol und die Winkel-Bezugsachse.

Inkrementale Koordinaten beziehen sich immer auf die zuletzt programmierte Position des Werkzeugs..

Bezugspunkt wählen

Eine Werkstück-Zeichnung gibt ein bestimmtes Formelement des Werkstücks als absoluten Bezugspunkt (Nullpunkt) vor, meist eine Werkstück-Ecke. Beim Bezugspunkt-Setzen richten Sie das Werkstück zuerst zu den Maschinenachsen aus und bringen das Werkzeug für jede Achse in eine bekannte Position zum Werkstück. Für diese Position setzen Sie die Anzeige der TNC entweder auf Null oder einen vorgegebenen Positionswert. Dadurch ordnen Sie das Werkstück dem Bezugssystem zu, das für die TNC-Anzeige bzw. Ihr Bearbeitungs-Programm gilt.


Gibt die Werkstück-Zeichnung relative Bezugspunkte vor, so nutzen Sie einfach die Zyklen zur Koordinaten-Umrechnung (siehe "Zyklen zur Koordinaten-Umrechnung" auf Seite 459).


Wenn die Werkstück-Zeichnung nicht NC-gerecht bemaßt ist, dann wählen Sie eine Position oder eine Werkstück-Ecke als Bezugspunkt, von dem aus sich die Maße der übrigen Werkstückpositionen möglichst einfach ermitteln lassen.

Besonders komfortabel setzen Sie Bezugspunkte mit einem 3D-Tastsystem von HEIDENHAIN. Siehe Benutzer-Handbuch Tastsystem-Zyklen "Bezugspunkt-Setzen mit 3D-Tastsystemen".

Beispiel

Die Werkstück-Skizze rechts zeigt Bohrungen (1 bis 4). deren Bemaßungen sich auf einen absoluten Bezugspunkt mit den Koordinaten X=0 Y=0 beziehen. Die Bohrungen (5 bis 7) beziehen sich auf einen relativen Bezugspunkt mit den absoluten Koordinaten X=450 Y=750. Mit dem Zyklus NULLPUNKT-VERSCHIEBUNG können Sie den Nullpunkt vorübergehend auf die Position X=450, Y=750 verschieben, um die Bohrungen (5 bis 7) ohne weitere Berechnungen zu programmieren.

4.2 Datei-Verwaltung: Grundlagen

Dateien

Dateien in der TNC	Тур
Programme im HEIDENHAIN-Format im DIN/ISO-Format	.H .I
smarT.NC-Dateien Strukturierte Unit-Programm Konturbeschreibungen Punkte-Tabellen für Bearbeitungspositionen	.HU .HC .HP
Tabellen für Werkzeuge Werkzeug-Wechsler Paletten Nullpunkte Punkte Presets Schnittdaten Schneidstoffe, Werkstoffe Abhängige Daten (z.B. Gliederungspunkte)	.T .TCH .P .D .PNT .PR .CDT .TAB .DEP
Texte als ASCII-Dateien Hilfe-Dateien	.A .CHM
Zeichnungsdaten als ASCII-Dateien	.DXF

Wenn Sie ein Bearbeitungs-Programm in die TNC eingeben, geben Sie diesem Programm zuerst einen Namen. Die TNC speichert das Programm auf der Festplatte als eine Datei mit dem gleichen Namen ab. Auch Texte und Tabellen speichert die TNC als Dateien.

Damit Sie die Dateien schnell auffinden und verwalten können, verfügt die TNC über ein spezielles Fenster zur Datei-Verwaltung. Hier können Sie die verschiedenen Dateien aufrufen, kopieren, umbenennen und löschen.

Sie können mit der TNC nahezu beliebig viele Dateien verwalten, mindestens jedoch **25 GByte** (2-Prozessor-Version: **13 GByte**).

Namen von Dateien

Bei Programmen, Tabellen und Texten hängt die TNC noch eine Erweiterung an, die vom Datei-Namen durch einen Punkt getrennt ist. Diese Erweiterung kennzeichnet den Datei-Typ.

Datei-Name

Datei-Typ

Die Länge von Dateinamen sollte 25 Zeichen nicht überschreiten, ansonsten zeigt die TNC den Programm-Namen nicht mehr vollständig an. Die Zeichen * \ / " ? < > . sind in Dateinamen nicht erlaubt.

Andere Sonderzeichen und insbesondere Leerzeichen dürfen Sie in Dateinamen nicht verwenden.

Die maximal erlaubte Länge von Dateinamen darf so lang sein, dass die maximal erlaubte Pfadlänge von 256 Zeichen nicht überschritten wird (siehe "Pfade" auf Seite 115).

Datensicherung

HEIDENHAIN empfiehlt, die auf der TNC neu erstellten Programme und Dateien in regelmäßigen Abständen auf einem PC zu sichern.

Mit der kostenlosen Datenübertragungs-Software TNCremo NT stellt HEIDENHAIN eine einfache Möglichkeit zur Verfügung, Backups von auf der TNC gespeicherten Daten zu erstellen .

Weiterhin benötigen Sie einen Datenträger, auf dem alle maschinenspezifischen Daten (PLC-Programm, Maschinen-Parameter usw.) gesichert sind. Wenden Sie sich hierzu ggf. an Ihren Maschinenhersteller.

Falls Sie alle auf der Festplatte befindlichen Dateien (> 2 GByte) sichern wollen, nimmt dies mehrere Stunden in Anspruch. Verlagern Sie den Sicherungsvorgang ggf. in die Nachtstunden.

Löschen Sie von Zeit zu Zeit nicht mehr benötigte Dateien, damit die TNC für Systemdateien (z.B. Werkzeug-Tabelle) immer genügend freien Festplattenspeicher zur Verfügung hat.

Bei Festplatten ist, abhängig von den Betriebsbedingungen (z.B. Vibrationsbelastung), nach einer Dauer von 3 bis 5 Jahren mit einer erhöhten Ausfallrate zu rechnen. HEIDENHAIN empfiehlt daher die Festplatte nach 3 bis 5 Jahren prüfen zu lassen.

4.3 Arbeiten mit der Datei-Verwaltung

Verzeichnisse

Da Sie auf der Festplatte sehr viele Programme bzw. Dateien speichern können, legen Sie die einzelnen Dateien in Verzeichnissen (Ordnern) ab, um den Überblick zu wahren. In diesen Verzeichnissen können Sie weitere Verzeichnisse einrichten, sogenannte Unterverzeichnisse. Mit der Taste -/+ oder ENT können Sie Unterverzeichnisse ein- bzw. ausblenden.

Die TNC verwaltet maximal 6 Verzeichnis-Ebenen!

Wenn Sie mehr als 512 Dateien in einem Verzeichnis speichern, dann sortiert die TNC die Dateien nicht mehr alphabetisch!

Namen von Verzeichnissen

Der Name eines Verzeichnisses darf so lang sein, dass die maximal erlaubte Pfadlänge 256 Zeichen nicht überschreitet (siehe "Pfade" auf Seite 115).

Pfade

Ein Pfad gibt das Laufwerk und sämtliche Verzeichnisse bzw. Unterverzeichnisse an, in denen eine Datei gespeichert ist. Die einzelnen Angaben werden mit "\" getrennt.

Die maximal erlaubte Pfadlänge, also alle Zeichen von Laufwerk, Verzeichniss und Dateiname inklusive Erweiterung, darf 256 Zeichen nicht überschreiten!

Beispiel

Auf dem Laufwerk TNC:\ wurde das Verzeichnis AUFTR1 angelegt. Danach wurde im Verzeichnis AUFTR1 noch das Unterverzeichnis NCPROG angelegt und dort das Bearbeitungs-Programm PROG1.H hineinkopiert. Das Bearbeitungs-Programm hat damit den Pfad:

TNC:\AUFTR1\NCPROG\PROG1.H

Die Grafik rechts zeigt ein Beispiel für eine Verzeichnisanzeige mit verschiedenen Pfaden.

AUFTR1

NCPROG

WZTAB

A35K941

ZYLM

TESTPROG

HUBER

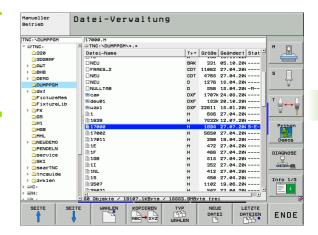
KAR25T

Übersicht: Funktionen der Datei-Verwaltung

Wenn Sie mit der alten Datei-Verwaltung arbeiten wollen, dann müssen Sie über die MOD-Funktion auf die alte Datei-Verwaltung umstellen (siehe "Einstellung PGM MGT ändern" auf Seite 641)

Funktion	Softkey	Seite
Einzelne Datei kopieren (und konvertieren)	KOPIEREN ABC → XYZ	Seite 122
Ziel-Verzeichnis wählen		Seite 122
Bestimmten Datei-Typ anzeigen	TYP SAL	Seite 118
Neue Datei anlegen	NEUE DATEI	Seite 121
Die letzten 10 gewählten Dateien anzeigen	LETZTE DATEIEN	Seite 125
Datei oder Verzeichnis löschen	Löschen	Seite 126
Datei markieren	MARKIEREN	Seite 127
Datei umbenennen	UMBENEN.	Seite 129
Datei gegen Löschen und Ändern schützen	SCHÜTZEN	Seite 129
Datei-Schutz aufheben	UNGESCH.	Seite 129
smarT.NC-Programm öffnen	ÖFFNEN MIT	Seite 120
Netzlaufwerke verwalten	NETZWERK	Seite 134
Verzeichnis kopieren	KOPIEREN XYZ	Seite 125
Verzeichnisse eines Laufwerks anzeigen	BAUM	
Verzeichnis mit allen Unterverzeichnissen löschen	LÖSCHE	Seite 129

Datei-Verwaltung aufrufen



Taste PGM MGT drücken: Die TNC zeigt das Fenster zur Datei-Verwaltung (das Bild zeigt die Grundeinstellung. Wenn die TNC eine andere Bildschirm-Aufteilung anzeigt, drücken Sie den Softkey FENSTER)

Das linke, schmale Fenster zeigt die vorhandenen Laufwerke und Verzeichnisse an. Laufwerke bezeichnen Geräte, mit denen Daten gespeichert oder übertragen werden. Ein Laufwerk ist die Festplatte der TNC, weitere Laufwerke sind die Schnittstellen (RS232, RS422, Ethernet), an die Sie beispielsweise einen Personal-Computer anschließen können. Ein Verzeichnis ist immer durch ein Ordner-Symbol (links) und den Verzeichnis-Namen (rechts) gekennzeichnet. Unterverzeichnisse sind nach rechts eingerückt. Befindet sich ein Dreieck vor dem Ordner-Symbol, dann sind noch weitere Unterverzeichnisse vorhanden, die Sie mit der Taste -/+ oder ENT einblenden können.

Das rechte, breite Fenster zeigt alle Dateien an, die in dem gewählten Verzeichnis gespeichert sind. Zu jeder Datei werden mehrere Informationen gezeigt, die in der Tabelle unten aufgeschlüsselt sind.

Anzeige	Bedeutung
Datei-Name	Name mit maximal 25 Zeichen
Тур	Datei-Typ
Größe	Dateigröße in Byte
Geändert	Datum und Uhrzeit, an der die Datei das letzte Mal geändert wurde. Datumsformat einstellbar
Status	Eigenschaft der Datei: E: Programm ist in der Betriebsart Programm-Einspeichern/Editieren angewählt S: Programm ist in der Betriebsart Programm-Test angewählt M: Programm ist in einer Programmlauf- Betriebsart angewählt P: Datei ist gegen Löschen und Ändern geschützt (Protected) +: Es sind abhängige Dateien vorhanden (Gliederungs-Datei, Werkzeug-Einsatzdatei)

Laufwerke, Verzeichnisse und Dateien wählen

Datei-Verwaltung aufrufen

Benutzen Sie die Pfeil-Tasten oder die Softkeys, um das Hellfeld an die gewünschte Stelle auf dem Bildschirm zu bewegen:

Bewegt das Hellfeld vom rechten ins linke Fenster und umgekehrt

Bewegt das Hellfeld in einem Fenster auf und ab

Bewegt das Hellfeld in einem Fenster seitenweise auf und ab

Schritt 1: Laufwerk wählen

Laufwerk im linken Fenster markieren:

Laufwerk wählen: Softkey WÄHLEN drücken, oder

Taste ENT drücken

Schritt 2: Verzeichnis wählen

Verzeichnis im linken Fenster markieren: Das rechte Fenster zeigt automatisch alle Dateien aus dem Verzeichnis an, das markiert (hell hinterlegt) ist

Softkey TYP WÄHLEN drücken

Softkey des gewünschten Datei-Typs drücken, oder

alle Dateien anzeigen: Softkey ALLE ANZ. drücken, oder

Wildcards benutzen, z.B. alle Dateien vom Dateityp .H anzeigen, die mit 4 beginnen

Datei im rechten Fenster markieren:

Softkey WÄHLEN drücken, oder

Taste ENT drücken

Die TNC aktiviert die gewählte Datei in der Betriebsart, aus der Sie die Datei-Verwaltung aufgerufen haben

smarT.NC-Programme wählen

In der Betriebsart smarT.NC erstellte Programme können Sie in der Betriebsart **Programm Einspeichern/Editiern** wahlweise mit dem smarT.NC-Editor oder mit dem Klartext-Editor öffnen. Standardmäßig öffnet die TNC .HU- und .HC-Programme immer mit dem smarT.NC-Editor. Wenn Sie die Programme mit dem Klartext-Editor öffnen wollen, gehen Sie wie folgt vor:

Datei-Verwaltung aufrufen

Benutzen Sie die Pfeil-Tasten oder die Softkeys, um das Hellfeld auf eine .HU oder eine .HC-Datei zu bewegen:

Bewegt das Hellfeld vom rechten ins linke Fenster und umgekehrt

Bewegt das Hellfeld in einem Fenster auf und ab

Bewegt das Hellfeld in einem Fenster seitenweise auf und ab

Softkey-Leiste umschalten

Untermenü zur Auswahl des Editors wählen

.HU- oder .HC-Programm mit Klartext-Editor öffnen

.HU-Programm mit smarT.NC-Editor öffnen

.HC-Programm mit smarT.NC-Editor öffnen

Neues Verzeichnis erstellen (nur auf Laufwerk TNC:\möglich)

Verzeichnis im linken Fenster markieren, in dem Sie ein Unterverzeichnis erstellen wollen

Den neuen Verzeichnisnamen eingeben, Taste ENT drücken

VERZEICHNIS \NEU ERZEUGEN?

Mit Softkey JA bestätigen, oder

NEIN

mit Softkey NEIN abbrechen

Neue Datei erstellen (nur auf Laufwerk TNC:\ möglich)

Verzeichnis wählen, in dem Sie die neue Datei erstellen wollen

NEU

Den neuen Dateinamen mit Datei-Endung eingeben, Taste ENT drücken

Dialog zum Erstellen einer neuen Datei öffnen

NEU

Den neuen Dateinamen mit Datei-Endung eingeben, Taste ENT drücken

Einzelne Datei kopieren

▶ Bewegen Sie das Hellfeld auf die Datei, die kopiert werden soll

▶ Softkey KOPIEREN drücken: Kopierfunktion wählen. Die TNC blendet eine Softkeyleiste mit mehreren Funktionen ein. Alternativ können Sie auch den Shortcut CTRL+C verwenden, um den Kopiervorgang zu starten

Namen der Ziel-Datei eingeben und mit Taste ENT oder Softkey OK übernehmen: Die TNC kopiert die Datei ins aktuelle Verzeichnis, bzw. ins gewählte Ziel-Verzeichnis. Die ursprüngliche Datei bleibt erhalten, oder

▶ Drücken Sie den Softkey Ziel-Verzeichnis wählen, um in einem Überblendfenster das Ziel-Verzeichnis zu wählen und mit Taste ENT oder Softkey OK übernehmen: Die TNC kopiert die Datei mit dem gleichen Namen ins gewählte Verzeichnis. Die ursprüngliche Datei bleibt erhalten

Die TNC zeigt ein Überblendfenster mit der Fortschrittanzeige, wenn Sie den Kopiervorgang mit der Taste ENT oder dem Softkey OK gestartet haben.

Datei in ein anderes Verzeichnis kopieren

- ▶ Bildschirm-Aufteilung mit gleich großen Fenstern wählen
- ▶ In beiden Fenstern Verzeichnisse anzeigen: Softkey PFAD drücken

Rechtes Fenster

Hellfeld auf das Verzeichnis bewegen, in das Sie die Dateien kopieren möchten und mit Taste ENT Dateien in diesem Verzeichnis anzeigen

Linkes Fenster

Verzeichnis mit den Dateien wählen, die Sie kopieren möchten und mit Taste ENT Dateien anzeigen

Funktionen zum Markieren der Dateien anzeigen

Hellfeld auf Datei bewegen, die Sie kopieren möchten und markieren. Falls gewünscht, markieren Sie weitere Dateien auf die gleiche Weise

Die markierten Dateien in das Zielverzeichnis kopieren

Weitere Markierungs-Funktionen: siehe "Dateien markieren", Seite 127.

Wenn Sie sowohl im linken als auch im rechten Fenster Dateien markiert haben, dann kopiert die TNC von dem Verzeichnis aus in dem das Hellfeld steht

Dateien überschreiben

Wenn Sie Dateien in ein Verzeichnis kopieren, in dem sich Dateien mit gleichem Namen befinden, dann fragt die TNC, ob die Dateien im Zielverzeichnis überschrieben werden dürfen:

- ▶ Alle Dateien überschreiben: Softkey JA drücken oder
- ▶ Keine Datei überschreiben: Softkey NEIN drücken oder
- Überschreiben jeder einzelnen Datei bestätigen: Softkey BESTÄTIG. drücken

Wenn Sie eine geschütze Datei überschreiben wollen, müssen Sie dies separat bestätigen bzw. abbrechen.

Tabelle kopieren

Wenn Sie Tabellen kopieren, können Sie mit dem Softkey FELDER ERSETZEN einzelne Zeilen oder Spalten in der Ziel-Tabelle überschreiben. Voraussetzungen:

- die Ziel-Tabelle muss bereits existieren
- die zu kopierende Datei darf nur die zu ersetzenden Spalten oder Zeilen enthalten

Der Softkey **FELDER ERSETZEN** erscheint nicht, wenn Sie von extern mit einer Datenübertragungssoftware z. B. TNCremoNT die Tabelle in der TNC überschreiben wollen. Kopieren Sie die extern erstellte Datei in ein anderes Verzeichnis und führen Sie anschließend den Kopiervorgang mit der Dateiverwaltung der TNC aus.

Der Datei-Typ der extern erstellten Tabelle sollte .A (ASCII) sein. In diesen Fällen kann die Tabelle dann beliebige Zeilennummern enthalten. Wenn Sie den Datei-Typ .T erstellen, dann muss die Tabelle fortlaufende, mit 0 beginnende Zeilennummern enthalten.

Beispiel

Sie haben auf einem Voreinstellgerät die Werkzeug-Länge und den Werkzeug-Radius von 10 neuen Werkzeugen vermessen. Anschließend erzeugt das Voreinstellgerät die Werkzeug-Tabelle TOOL.A mit 10 Zeilen (sprich 10 Werkzeugen) und den Spalten

- Werkzeug-Nummer (Spalte T)
- Werkzeug-Länge (Spalte L)
- Werkzeug-Radius (Spalte R)
- ▶ Kopieren Sie diese Tabelle von dem externen Datenträger in ein beliebiges Verzeichnis
- ▶ Kopieren Sie die extern erstellte Tabelle mit der Dateiverwaltung der TNC über die bestehende Tabelle TOOL.T: Die TNC fragt, ob die bestehende Werkzeug-Tabelle TOOL.T überschrieben werden soll:
- Drücken Sie den Softkey JA, dann überschreibt die TNC die aktuelle Datei TOOL.T vollständig. Nach dem Kopiervorgang besteht TOOL.T also aus 10 Zeilen. Alle Spalten – natürlich außer den Spalten Nummer, Länge und Radius– werden zurückgesetzt
- Oder drücken Sie den Softkey FELDER ERSETZEN, dann überschreibt die TNC in der Datei TOOL.T nur die Spalten Nummer, Länge und Radius der ersten 10 Zeilen. Die Daten der restlichen Zeilen und Spalten werden von der TNC nicht verändert

Verzeichnis kopieren

Um Verzeichnisse kopieren zu können, müssen Sie die Ansicht so eingestellt haben, dass die TNC Verzeichnisse im rechten Fenster anzeigt (siehe "Datei-Verwaltung anpassen" auf Seite 130).

Beachten Sie, dass die TNC beim Kopieren von Verzeichnissen nur die Dateien kopiert, die durch die aktuelle Filtereinstellung auch angezeigt werden.

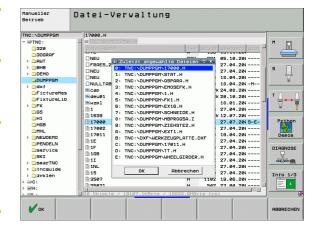
- Bewegen Sie das Hellfeld im rechten Fenster auf das Verzeichnis das Sie kopieren wollen
- Drücken Sie den Softkey KOPIEREN: Die TNC blendet das Fenster zur Auswahl des Zielverzeichnisses ein
- ▶ Zielverzeichnis wählen und mit Taste ENT oder Softkey OK bestätigen: Die TNC kopiert das gewählte Verzeichnis inclusive Unterverzeichnisse in das gewählte Zielverzeichnis

Eine der zuletzt gewählten Dateien auswählen

Datei-Verwaltung aufrufen

Die letzten 15 angewählten Dateien anzeigen: Softkey LETZTE DATEIEN drücken

Benutzen Sie die Pfeil-Tasten, um das Hellfeld auf die Datei zu bewegen, die Sie anwählen wollen:


Bewegt das Hellfeld in einem Fenster auf und ab

Datei wählen: Softkey WÄHLEN drücken, oder

Taste ENT drücken

Datei löschen

▶ Bewegen Sie das Hellfeld auf die Datei, die löschen möchten

- ▶ Löschfunktion wählen: Softkey LÖSCHEN drücken. Die TNC fragt, ob die Datei tatsächlich gelöscht werden soll
- Löschen bestätigen: Softkey JA drücken oder
- Löschen abbrechen: Softkey NEIN drücken

Verzeichnis löschen

- Löschen Sie zunächst alle Dateien und Unterverzeichnisse aus dem Verzeichnis, das Sie löschen möchten
- Bewegen Sie das Hellfeld auf das Verzeichnis, das Sie löschen möchten

- ▶ Löschfunktion wählen: Softkey LÖSCHEN drücken. Die TNC fragt, ob das Verzeichnis tatsächlich gelöscht werden soll
- Löschen bestätigen: Softkey JA drücken oder
- Löschen abbrechen: Softkey NEIN drücken

Dateien markieren

Markierungs-Funktion	Softkey
Cursor nach oben bewegen	↑
Cursor nach unten bewegen	↓
Einzelne Datei markieren	DATEI MARKIEREN
Alle Dateien im Verzeichnis markieren	ALLE DATEIEN MARKIEREN
Markierung für einzelne Datei aufheben	MARK. AUFHEBEN
Markierung für alle Dateien aufheben	ALLE MARK. AUFHEBEN
Alle markierten Dateien kopieren	KOP. HARK.

Funktionen, wie das Kopieren oder Löschen von Dateien, können Sie sowohl auf einzelne als auch auf mehrere Dateien gleichzeitig anwenden. Mehrere Dateien markieren Sie wie folgt:

Hellfeld auf erste Datei bewegen

Markierungs-Funktionen anzeigen: Softkey MARKIEREN drücken

Datei markieren: Softkey DATEI MARKIEREN drücken

Hellfeld auf weitere Datei bewegen. Funktioniert nur über Softkeys, nicht mit den Pfeiltasten navigieren!

Weitere Datei markieren: Softkey DATEI MARKIEREN drücken usw.

Markierte Dateien kopieren: Softkey KOP. MARK. drücken, oder

Markierte Dateien löschen: Softkey ENDE drücken, um Markierungs-Funktionen zu verlassen und anschließend Softkey LÖSCHEN drücken, um markierte Dateien zu löschen

Dateien markieren mit Shortcuts

- ▶ Hellfeld auf erste Datei bewegen
- ► Taste CTRL drücken und gedrückt halten
- Mit Pfeiltasten denn Cursor-Rahmen auf weitere Dateien bewegen
- ▶ BLANK-Taste markiert die Datei
- Wenn Sie alle gewünschten Dateien markiert haben: CTRL-Taste loslassen und gewünschte Dateioperation ausführen

CTRL+A markiert alle im aktuellen Verzeichnis befindlichen Dateien.

Wenn Sie anstelle der Taste CTRL die Taste SHIFT drücken, markiert die TNC automatisch alle Dateien, die sie mit den Pfeiltasten anwählen.

Datei umbenennen

▶ Bewegen Sie das Hellfeld auf die Datei, die umbenennen möchten

- Funktion zum Umbenennen wählen
- ▶ Neuen Datei-Namen eingeben; der Datei-Typ kann nicht geändert werden
- ▶ Umbenennen ausführen: Taste ENT drücken

Zusätzliche Funktionen

Datei schützen/Dateischutz aufheben

▶ Bewegen Sie das Hellfeld auf die Datei, die Sie schützen möchten

► Zusätzliche Funktionen wählen: Softkey ZUSÄTZL. FUNKT. drücken

Dateischutz aktivieren: Softkey SCHÜTZEN drücken, die Datei erhält Status P

Dateischutz aufheben: Softkey UNGESCH. drücken

USB-Gerät anbinden/entfernen

▶ Bewegen Sie das Hellfeld ins linke Fenster

► Zusätzliche Funktionen wählen: Softkey ZUSÄTZL. FUNKT, drücken

- Nach USB-Gerät suchen
- ▶ Um das USB-**Gerät** zu entfernen: Bewegen Sie das Hellfeld auf das USB-Gerät

▶ USB-Gerät entfernen

Weitere Informationen: Siehe "USB-Geräte an der TNC (FCL 2-Funktion)", Seite 135.

Datei-Verwaltung anpassen

Das Menü zur Anpassung der Datei-Verwaltung können Sie entweder durch Mouse-Klick auf den Pfadnamen, oder per Softkeys öffnen:

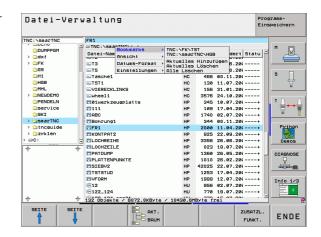
- ▶ Datei-Verwaltung wählen: Taste PGM MGT drücken
- ▶ Dritte Softkey-Leiste wählen
- ► Softkey ZUSÄTZL. FUNKT. drücken
- Softkey OPTIONEN drücken: Die TNC blendet das Menü zur Anpassung der Datei-Verwaltung ein
- Mit den Pfeiltasten Hellfeld auf die gewünschte Einstellung schieben
- Mit der Blank-Taste die gewünschte Einstellung aktivieren/ deaktivieren

Folgende Anpassungen können Sie an der Datei-Verwaltung vornehmen:

■ Bookmarks

Über Bookmarks verwalten Sie Ihre Verzeichnis-Favoriten. Sie können das aktive Verzeichnis hinzufügen oder löschen oder alle Bookmarks löschen. Alle von Ihnen hinzugefügten Verzeichnisse erscheinen in der Bookmark-Liste und lassen sich somit schnell anwählen

■ Ansicht


Im Menüpunkt Ansicht legen Sie fest, welche Informationen die TNC im Dateifenster anzeigen soll

■ Datums-Format

Im Menüpunkt Datums-Format legen Sie fest, in welchem Format die TNC das Datum in der Spalte **Geändert** anzeigen soll

■ Einstellungen

Wenn Cursor im Verzeichnisbaum steht: Festlegen, ob die TNC beim Drücken der Pfeil nach rechts-Taste das Fenster wechseln soll, oder ob die TNC ggf. vorhandene Unterverzeichnisse aufklappen soll

Arbeiten mit Shortcuts

Shortcuts sind Kurzbefehle, die Sie durch bestimmte Tastenkombinationen auslösen. Kurzbefehle führen immer eine Funktion aus, die Sie durch einen Softkey ebenfalls ausführen können. Folgende Shortcuts stehen zur Verfügung:

■ CTRL+S:

Datei wählen (siehe auch "Laufwerke, Verzeichnisse und Dateien wählen" auf Seite 118)

■ CTRL+N:

Dialog starten, um eine neue Datei/ein neues Verzeichnis zu erstellen (siehe auch "Neue Datei erstellen (nur auf Laufwerk TNC:\möglich)" auf Seite 121)

■ CTRL+C:

Dialog starten, um gewählte Dateien/Verzeichnisse zu kopieren (siehe auch "Einzelne Datei kopieren" auf Seite 122)

CTRL +R

Dialog starten, um gewählte Datei/Verzeichnis umzubenennen (siehe auch "Datei umbenennen" auf Seite 129)

■ Taste DFI

Dialog starten, um gewählte Dateien/Verzeichnisse zu löschen (siehe auch "Datei löschen" auf Seite 126)

■ CTRL+O:

Öffnen-Mit-Dialog starten (siehe auch "smarT.NC-Programme wählen" auf Seite 120)

CTRI +W:

Bildschirm-Aufteilung umschalten (siehe auch "Datenübertragung zu/von einem externen Datenträger" auf Seite 132)

■ CTRL+E:

Funktionen zum Anpassen der Datei-Verwaltung einblenden (siehe auch "Datei-Verwaltung anpassen" auf Seite 130)

CTRL +M:

USB-Gerät verbinden (siehe auch "USB-Geräte an der TNC (FCL 2-Funktion)" auf Seite 135)

■ CTRL+K:

USB-Gerät lösen (siehe auch "USB-Geräte an der TNC (FCL 2-Funktion)" auf Seite 135)

■ Shift+Pfeiltaste auf bzw. ab:

Mehrere Dateien bzw. Verzeichnisse markieren (siehe auch "Dateien markieren" auf Seite 127)

■ Taste ESC:

Funktion abbrechen

Datenübertragung zu/von einem externen Datenträger

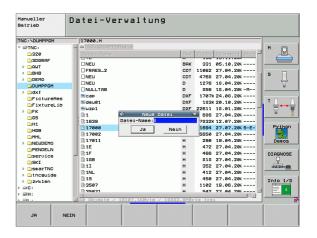
Bevor Sie Daten zu einem externen Datenträger übertragen können, müssen Sie die Datenschnittstelle einrichten (siehe "Datenschnittstellen einrichten" auf Seite 629).

Wenn Sie über die serielle Schnittstelle Daten übertragen, dann können in Abhängigkeit von der verwendeten Datenübertragungs-Software Probleme auftreten, die Sie durch wiederholtes Ausführen der Übertragung beheben können.

Datei-Verwaltung aufrufen

Bildschirm-Aufteilung für die Datenübertragung wählen: Softkey FENSTER drücken. Die TNC zeigt in der linken Bildschirmhälfte alle Dateien des aktuellen Verzeichnisses und in der rechten Bildschirmhälfte alle Dateien, die im Root-Verzeichnis TNC:\
gespeichert sind

Benutzen Sie die Pfeil-Tasten, um das Hellfeld auf die Datei zu bewegen, die Sie übertragen wollen:


Bewegt das Hellfeld in einem Fenster auf und ab

Bewegt das Hellfeld vom rechten Fenster ins linke und umgekehrt

Wenn Sie von der TNC zum externen Datenträger kopieren wollen, schieben Sie das Hellfeld im linken Fenster auf die zu übertragende Datei.

Wenn Sie vom externen Datenträger in die TNC kopieren wollen, schieben Sie das Hellfeld im rechten Fenster auf die zu übertragende Datei.

Anderes Laufwerk oder Verzeichnis wählen: Softkey zur Verzeichniswahl drücken, die TNC zeigt ein Überblendfenster. Wählen Sie im Überblendfenster mit den Pfeiltasten und der Taste ENT das gewünschte Verzeichnis

Einzelne Datei übertragen: Softkey KOPIEREN drücken, oder

mehrere Dateien übertragen: Softkey MARKIEREN drücken (auf der zweiten Softkey-Leiste, siehe "Dateien markieren", Seite 127)

Mit Softkey OK oder mit der Taste ENT bestätigen. Die TNC blendet ein Status-Fenster ein, das Sie über den Kopierfortschritt informiert, oder

Datenübertragung beenden: Hellfeld ins linke Fenster schieben und danach Softkey FENSTER drücken. Die TNC zeigt wieder das Standardfenster für die Datei-Verwaltung

Um bei der doppelten Dateifenster-Darstellung ein anderes Verzeichnis zu wählen, drücken Sie den Softkey zur Verzeichniswahl. Wählen Sie im Überblendfenster mit den Pfeiltasten und der Taste ENT das gewünschte Verzeichnis!

Die TNC am Netzwerk

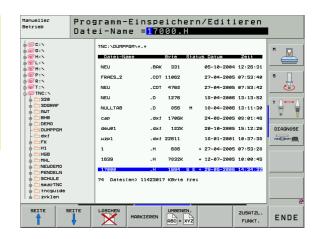
Um die Ethernet-Karte an Ihr Netzwerk anzuschließen, siehe "Ethernet-Schnittstelle", Seite 633.

Um die iTNC mit Windows XP an Ihr Netzwerk anzuschließen, siehe "Netzwerk-Einstellungen", Seite 696.

Fehlermeldungen während des Netzwerk-Betriebs protokolliert die TNC (siehe "Ethernet-Schnittstelle" auf Seite 633).

Wenn die TNC an ein Netzwerk angeschlossen ist, stehen Ihnen bis zu 7 zusätzliche Laufwerke im linken Verzeichnis-Fenster zur Verfügung (siehe Bild). Alle zuvor beschriebenen Funktionen (Laufwerk wählen, Dateien kopieren usw.) gelten auch für Netzlaufwerke, sofern Ihre Zugriffsberechtigung dies erlaubt.

Netzlaufwerk verbinden und lösen


▶ Datei-Verwaltung wählen: Taste PGM MGT drücken, ggf. mit Softkey FENSTER die Bildschirm-Aufteilung so wählen, wie im Bild rechts oben dargestellt

Netzlaufwerke verwalten: Softkey NETZWERK (zweite Softkey-Leiste) drücken. Die TNC zeigt im rechten Fenster mögliche Netzlaufwerke an, auf die Sie Zugriff haben. Mit den nachfolgend beschriebenen Softkeys legen Sie für jedes Laufwerk die Verbindungen fest

Funktion	Softkey
Netzwerk-Verbindung herstellen, die TNC schreibt in die Spalte Mnt ein M , wenn die Verbindung aktiv ist. Sie können bis zu 7 zusätzliche Laufwerke mit der TNC verbinden	LAUFHERK VERBINDEN
Netzwerk-Verbindung beenden	LAUFWERK LÖSEN
Netzwerk-Verbindung beim Einschalten der TNC automatisch herstellen. Die TNC schreibt in die Spalte Auto ein A , wenn die Verbindung automatisch hergestellt wird	AUTOM. VERBINDEN
Netzwerk-Verbindung beim Einschalten der TNC nicht automatisch herstellen	NICHT AUTOM. VERBINDEN

Der Aufbau der Netzwerk-Verbindung kann einige Zeit in Anspruch nehmen. Die TNC zeigt dann rechts oben am Bildschirm **[READ DIR]** an. Die maximale Übertragungs-Geschwindigkeit liegt bei 2 bis 5 MBit/s, je nachdem welchen Datei-Typ Sie übertragen und wie hoch die Netzauslastung ist.

USB-Geräte an der TNC (FCL 2-Funktion)

Besonders einfach können Sie Daten über USB-Geräte sichern bzw. in die TNC einspielen. Die TNC unterstützt folgende USB-Blockgeräte:

- Disketten-Laufwerke mit Dateisystem FAT/VFAT
- Memory-Sticks mit Dateisystem FAT/VFAT
- Festplatten mit Dateisystem FAT/VFAT
- CD-ROM-Laufwerke mit Dateisystem Joliet (ISO9660)

Solche USB-Geräte erkennt die TNC beim Anstecken automatisch. USB-Geräte mit anderen Dateisystemen (z.B. NTFS) unterstützt die TNC nicht. Die TNC gibt beim Anstecken dann die Fehlermeldung **USB: TNC unterstützt Gerät nicht** aus.

Die TNC gibt die Fehlermeldung **USB: TNC unterstützt Gerät nicht** auch dann aus, wenn Sie einen USB-Hub anschließen. In diesem Fall die Meldung einfach mit der Taste CE quittieren.

Prinzipiell sollten alle USB-Geräte mit oben erwähnten Dateisystemen an die TNC anschließbar sein. Sollten dennoch Probleme auftreten, setzen Sie sich bitte mit HEIDENHAIN in Verbindung.

In der Datei-Verwaltung sehen Sie USB-Geräte als eigenes Laufwerk im Verzeichnisbaum, so dass Sie die in den vorherigen Abschnitten beschriebenen Funktionen zur Datei-Verwaltung entsprechend nutzen können.

Ihr Maschinenhersteller kann für USB-Geräte feste Namen vergeben. Maschinen-Handbuch beachten!

Um ein USB-Gerät zu entfernen, müssen Sie grundsätzlich wie folgt vorgehen:

- Datei-Verwaltung wählen: Taste PGM MGT drücken
- +
- Mit der Pfeiltaste das linke Fenster wählen

- ▶ Mit einer Pfeiltaste das zu trennende USB-Gerät wählen
- \triangleright
- ► Softkey-Leiste weiterschalten
- NETZWERK
- ► Zusätzliche Funktionen wählen

► Funktion zum Entfernen von USB-Geräten wählen: Die TNC entfernt das USB-Geräte aus dem Verzeichnisbaum

▶ Datei-Verwaltung beenden

Umgekehrt können Sie ein zuvor entferntes USB-Gerät wieder anbinden, indem Sie folgenden Softkey betätigen:

Funktion zum Wiederanbinden von USB-Geräten wählen

4.4 Programme eröffnen und eingeben

Aufbau eines NC-Programms im DIN/ISO-Format

Ein Bearbeitungs-Programm besteht aus einer Reihe von Programm-Sätzen. Das Bild rechts zeigt die Elemente eines Satzes.

Die TNC numeriert die Sätze eines Bearbeitungs-Programms automatisch, in Abhängigkeit von MP7220. MP7220 definiert die Satznummern-Schrittweite.

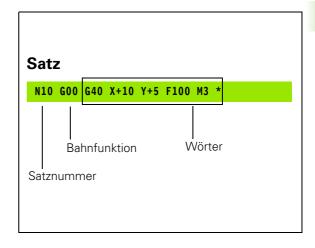
Der erste Satz eines Programms ist mit %, dem Programm-Namen und der gültigen Maßeinheit (G70/G71) gekennzeichnet.

Die darauffolgenden Sätze enthalten Informationen über:

- das Rohteil
- Werkzeug-Aufrufe
- Vorschübe und Drehzahlen
- Anfahren einer Sicherheits-Position
- Bahnbewegungen, Zyklen und weitere Funktionen

Der letzte Satz eines Programms ist mit N99999999 %, dem Programm-Namen und der gültigen Maßeinheit (G70/G71) gekennzeichnet.

HEIDENHAIN empfiehlt, dass Sie nach dem Werkzeug-Aufruf grundsätzlich eine Sicherheits-Position anfahren, von der aus die TNC kollisionsfrei zur Bearbeitung positionieren kann!


Rohteil definieren: G30/G31

Direkt nach dem Eröffnen eines neuen Programms definieren Sie ein quaderförmiges, unbearbeitetes Werkstück. Diese Definition benötigt die TNC für die grafischen Simulationen. Die Seiten des Quaders dürfen maximal 100 000 mm lang sein und liegen parallel zu den Achsen X,Y und Z. Das Rohteil ist durch zwei seiner Eckpunkte festgelegt:

- MIN-Punkt G30: kleinste X-,Y- und Z-Koordinate des Quaders; Absolut-Werte eingeben
- MAX-Punkt G31: größte X-,Y- und Z-Koordinate des Quaders; Absolut- oder Inkremental-Werte (mit G91) eingeben

Die Rohteil-Definition ist nur erforderlich, wenn Sie das Programm grafisch testen wollen!

Neues Bearbeitungs-Programm eröffnen

Ein Bearbeitungs-Programm geben Sie immer in der Betriebsart Programm-Einspeichern/Editieren ein. Beispiel für eine Programm-Eröffnung:

Betriebsart Programm-Einspeichern/Editieren wählen

Datei-Verwaltung aufrufen: Taste PGM MGT drücken

Wählen Sie das Verzeichnis, in dem Sie das neue Programm speichern wollen:

DATEI-NAME = ALT.H

Neuen Programm-Namen eingeben, mit Taste ENT bestätigen

MM

Maßeinheit wählen: Softkey MM oder INCH drücken. Die TNC wechselt ins Programm-Fenster und eröffnet den Dialog zur Definition der BLK-FORM (Rohteil)

SPINDELACHSE PARALLEL X/Y/Z?

Spindelachse eingeben

DEF BLK-FORM: MIN-PUNKT?

0

ENT

Nacheinander X-, Y- und Z-Koordinaten des MIN-Punkts eingeben

0

-40 ENT

DEF BLK-FORM: MAX-PUNKT? 100 ENT Nacheinander X-, Y- und Z-Koordinaten des MAX-Punkts eingeben 100 ENT ENT

Beispiel: Anzeige des Rohteils im NC-Programm

%NEU G71 *	Programm-Anfang, Name, Maßeinheit
N10 G30 G17 X+0 Y+0 Z-40 *	Spindelachse, MIN-Punkt-Koordinaten
N20 G31 G90 X+100 Y+100 Z+0 *	MAX-Punkt-Koordinaten
N9999999 %NEU G71 *	Programm-Ende, Name, Maßeinheit

Die TNC erzeugt den ersten und letzten Satz des Programms automatisch.

Wenn Sie keine Rohteil-Definition programmieren wollen, brechen Sie den Dialog bei **Spindelachse Z - Ebene XY** mit der Taste DEL ab!

Die TNC kann die Grafik nur dann darstellen, wenn die kürzeste Seite mindestens 50 μm und die längste Seite maximal 99 999,999 mm groß ist.

Werkzeug-Bewegungen programmieren

Um einen Satz zu programmieren, wählen Sie eine DIN/ISO-Funktionstaste auf der Alpha-Tastatur. Sie können auch die grauen Bahnfunktionstasten benutzen, um den entsprechenden G-Code zu erhalten.

Achten Sie darauf, dass die Großschreibung aktiv ist.

Beispiel für einen Positioniersatz

Satz eröffnen

KOORDINATEN?

Zielkoordinate für X-Achse eingeben

Zielkoordinate für Y-Achse eingeben, mit Taste ENT zur nächste Frage

FRÄSERMITTELSPUNKTSBAHN

Ohne Werkzeug-Radiuskorrektur verfahren: Mit Taste ENT bestätigen, oder

G 4 1

Links bzw. rechts der programmierten Kontur verfahren: G41 bzw. G42 über Softkey wählen

VORSCHUB? F=

750

Vorschub für diese Bahnbewegung 750 mm/min, mit Taste ENT bestätigen

ZUSATZ-FUNKTION M?

Gewünschte Zusatzfunktion (z.B. M3 Spindel ein) eingeben, mit Taste END Satz beenden und speichern

M120

Von der TNC in der Softkey-Leiste angezeigte Zusatzfunktion wählen

Das Programmfenster zeigt die Zeile:

N30 G01 G40 X+10 Y+5 F100 M3 *

Ist-Positionen übernehmen

Die TNC ermöglicht die aktuelle Position des Werkzeugs in das Programm zu übernehmen, z.B. wenn Sie

- Verfahrsätze programmieren
- Zyklen programmieren
- Werkzeuge mit **G99** definieren

Um die richtigen Positionswerte zu übernehmen, gehen Sie wie folgt vor:

▶ Eingabfeld an die Stelle in einem Satz positionieren, an der Sie eine Position übernehmen wollen

► Funktion Ist-Position übernehmen wählen: Die TNC zeigt in der Softkey-Leiste die Achsen an, deren Positionen Sie übernehmen können

Achse wählen: Die TNC schreibt die aktuelle Position der gewählten Achse in das aktive Eingabefeld

Die TNC übernimmt in der Bearbeitungsebene immer die Koordinaten des Werkzeug-Mittelpunktes, auch wenn die Werkzeug-Radiuskorrektur aktiv ist.

Die TNC übernimmt in der Werkzeug-Achse immer die Koordinate der Werkzeug-Spitze, berücksichtigt also immer die aktive Werkzeug-Längenkorrektur.

Die TNC lässt die Softkey-Leiste zur Achsauswahl so lange aktiv, bis Sie diese durch erneutes Drücken der Taste "Ist-Position übernehmen" wieder ausschalten. Dieses Verhalten gilt auch dann, wenn Sie den aktuellen Satz speichern und per Bahnfunktionstaste einen neuen Satz eröffnen. Wenn Sie ein Satzelement wählen, in dem Sie per Softkey eine Eingabealternative wählen müssen (z.B. die Radiuskorrektur), dann schließt die TNC die Softkey-Leiste zur Achsauswahl ebenfalls.

Die Funktion "Ist-Position übernehmen" ist nicht erlaubt, wenn die Funktion Bearbeitungsebene schwenken aktiv ist.

Programm editieren

Sie können ein Programm nur dann editieren, wenn es nicht gerade in einer Maschinen-Betriebsart von der TNC abgearbeitet wird. Die TNC erlaubt zwar das Eincursorn in den Satz, unterbindet jedoch das Speichern von Änderungen mit einer Fehlermeldung.

Während Sie ein Bearbeitungs-Programm erstellen oder verändern, können Sie mit den Pfeil-Tasten oder mit den Softkeys jede Zeile im Programm und einzelne Wörter eines Satzes wählen:

Funktion	Softkey/Tasten
Seite nach oben blättern	SEITE
Seite nach unten blättern	SEITE
Sprung zum Programm-Anfang	PINFANG
Sprung zum Programm-Ende	ENDE
Position des aktuellen Satzes im Bildschirm verändern. Damit können Sie mehr Programmsätze anzeigen lassen, die vor dem aktuellen Satz programmiert sind	
Position des aktuellen Satzes im Bildschirm verändern. Damit können Sie mehr Programmsätze anzeigen lassen, die hinter dem aktuellen Satz programmiert sind	
Von Satz zu Satz springen	+ +
Einzelne Wörter im Satz wählen	
Bestimmten Satz wählen: Taste GOTO drükken, gewünschte Satznummer eingeben, mit Taste ENT bestätigen. Oder: Satznummernschritt eingeben und die Anzahl der eingegeben Zeilen durch Druck auf Softkey N ZEILEN nach oben oder unten überspringen	оото

Funktion	Softkey/Taste
Wert eines gewählten Wortes auf Null setzen	CE
Falschen Wert löschen	CE
Fehlermeldung (nicht blinkend) löschen	CE
Gewähltes Wort löschen	NO ENT
Gewählten Satz löschen	DEL
Zyklen und Programmteile löschen	DEL
Satz einfügen, den Sie zuletzt editiert bzw. gelöscht haben	LETZTEN NC-SATZ EINFÜGEN

Sätze an beliebiger Stelle einfügen

▶ Wählen Sie den Satz, hinter dem Sie einen neuen Satz einfügen wollen und eröffnen Sie den Dialog

Wörter ändern und einfügen

- Wählen Sie in einem Satz ein Wort und überschreiben Sie es mit dem neuen Wert. Während Sie das Wort gewählt haben, steht der Klartext-Dialog zur Verfügung
- ▶ Änderung abschließen: Taste END drücken

Wenn Sie ein Wort einfügen wollen, betätigen Sie die Pfeil-Tasten (nach rechts oder links), bis der gewünschte Dialog erscheint und geben den gewünschten Wert ein.

Gleiche Wörter in verschiedenen Sätzen suchen

Für diese Funktion Softkey AUTOM. ZEICHNEN auf AUS setzen.

Ein Wort in einem Satz wählen: Pfeil-Tasten so oft drücken, bis gewünschtes Wort markiert ist

Satz mit Pfeiltasten wählen

Die Markierung befindet sich im neu gewählten Satz auf dem gleichen Wort, wie im zuerst gewählten Satz.

Wenn Sie in sehr langen Programmen die Suche gestartet haben, blendet die TNC ein Fenster mit Fortschritts-Anzeige ein. Zusätzlich können Sie dann per Softkey die Suche abbrechen.

Die TNC übernimmt in der Werkzeug-Achse immer die Koordinate der Werkzeug-Spitze, berücksichtigt also immer die aktive Werkzeug-Längenkorrektur.

Beliebigen Text finden

- Suchfunktion wählen: Softkey SUCHEN drücken. Die TNC zeigt den Dialog Suche Text:
- ► Gesuchten Text eingeben
- ► Text suchen: Softkey AUSFÜHREN drücken

Programmteile markieren, kopieren, löschen und einfügen

Um Programmteile innerhalb eines NC-Programms, bzw. in ein anderes NC-Programm zu kopieren, stellt die TNC folgende Funktionen zur Verfügung: Siehe Tabelle unten.

Um Programmteile zu kopieren gehen Sie wie folgt vor:

- ► Softkeyleiste mit Markierungsfunktionen wählen
- ▶ Ersten (letzten) Satz des zu kopierenden Programmteils wählen
- ▶ Ersten (letzten) Satz markieren: Softkey BLOCK MARKIEREN drücken. Die TNC hinterlegt die erste Stelle der Satznummer mit einem Hellfeld und blendet den Softkey MARKIEREN ABBRECHEN ein
- Bewegen Sie das Hellfeld auf den letzten (ersten) Satz des Programmteils den Sie kopieren oder löschen wollen. Die TNC stellt alle markierten Sätze in einer anderen Farbe dar. Sie können die Markierungsfunktion jederzeit beenden, indem Sie den Softkey MARKIEREN ABBRECHEN drücken
- Markiertes Programmteil kopieren: Softkey BLOCK KOPIEREN drücken, markiertes Programmteil löschen: Softkey BLOCK LÖSCHEN drücken. Die TNC speichert den markierten Block
- Wählen Sie mit den Pfeiltasten den Satz, hinter dem Sie das kopierte (gelöschte) Programmteil einfügen wollen

Um das kopierte Programmteil in einem anderen Programm einzufügen, wählen Sie das entsprechende Programm über die Datei-Verwaltung und markieren dort den Satz, hinter dem Sie einfügen wollen.

Gespeichertes Programmteil einfügen: Softkey BLOCK EINFÜGEN drücken

Funktion	Softkey
Markierungsfunktion einschalten	BLOCK MARKIEREN
Markierungsfunktion ausschalten	MARKIEREN ABBRECHEN
Markierten Block löschen	BLOCK LÖSCHEN
Im Speicher befindlichen Block einfügen	BLOCK EINFÜGEN
Markierten Block kopieren	BLOCK KOPIEREN

Die Suchfunktion der TNC

Mit der Suchfunktion der TNC können Sie beliebige Texte innerhalb eines Programmes suchen und bei Bedarf auch durch einen neuen Text ersetzen.

Nach beliebigen Texten suchen

▶ Ggf. Satz wählen, in dem das zu suchende Wort gespeichert ist

Suchfunktion wählen: Die TNC blendet das Suchfenster ein und zeigt in der Softkey-Leiste die zur Verfügung stehenden Suchfunktionen an (siehe Tabelle Suchfunktionen)

► Zu suchenden Text eingeben, auf Groß-/ Kleinschreibung achten

Suchvorgang einleiten: Die TNC zeigt in der Softkey-Leiste die zur Verfügung stehenden Suchoptionen an (siehe Tabelle Suchoptionen)

▶ Ggf. Suchoptionen ändern

Suchvorgang starten: Die TNC springt auf den nächsten Satz, in dem der gesuchte Text gespeichert ist

Suchvorgang wiederholen: Die TNC springt auf den nächsten Satz, in dem der gesuchte Text gespeichert ist

▶ Suchfunktion beenden

Suchfunktionen	Softkey
Überblendfenster anzeigen, in dem die letzten Suchelemente angezeigt werden. Über Pfeiltaste Suchelement wählbar, mit Taste ENT übernehmen	LETZTE SUCH- ELEMENTE
Überblendfenster anzeigen, in dem mögliche Suchelemente des aktuellen Satzes gespeichert sind. Über Pfeiltaste Suchelement wählbar, mit Taste ENT übernehmen	ELEMENTE AKT. SATZ
Überblendfenster anzeigen, in dem eine Auswahl der wichtigsten NC-Funktionen angezeigt werden. Über Pfeiltaste Suchelement wählbar, mit Taste ENT übernehmen	NC SATZE
Suchen/Ersetzen-Funktion aktivieren	SUCHEN + ERSETZEN

Suchoptionen	Softkey
Suchrichtung festlegen	AUFWARTS ABWARTS ABWARTS
Suchende festlegen: Einstellung KOMPLETT sucht vom aktuellen Satz bis zum aktuellen Satz	KOMPLETT BEGIN/END KOMPLETT BEGIN/END
Neue Suche starten	NEUE SUCHE

Suchen/Ersetzen von beliebigen Texten

Die Funktion Suchen/Ersetzen ist nicht möglich, wenn

- Ein Programm geschützt ist
- Wenn das Programm von der TNC gerade abgearbeitet

Bei der Funktion ALLES ERSETZEN darauf achten, dass Sie nicht versehentlich Textteile ersetzen, die eigentlich unverändert bleiben sollen. Ersetzte Texte sind unwiederbringlich verloren.

▶ Ggf. Satz wählen, in dem das zu suchende Wort gespeichert ist

▶ Suchfunktion wählen: Die TNC blendet das Suchfenster ein und zeigt in der Softkey-Leiste die zur Verfügung stehenden Suchfunktionen an

Ersetzen aktivieren: Die TNC zeigt im Überblendfenster eine zusätzlich Eingabemöglichkeit für den Text an, der eingesetzt werden soll

▶ Zu suchenden Text eingeben, auf Groß-/ Kleinschreibung achten, mit Taste ENT bestätigen

▶ Text eingeben der eingesetzt werden soll, auf Groß-/ Kleinschreibung achten

▶ Suchvorgang einleiten: Die TNC zeigt in der Softkey-Leiste die zur Verfügung stehenden Suchoptionen an (siehe Tabelle Suchoptionen)

► Gaf Suchoptionen ändern

▶ Suchvorgang starten: Die TNC springt auf den nächsten gesuchten Text

▶ Um den Text zu ersetzen und anschließend die nächste Fundstelle anzuspringen: Softkey ERSETZEN drücken, oder um alle gefundenen Textstellen zu ersetzen: Softkey ALLES ERSETZEN drücken, oder um den Text nicht zu ersetzen und die nächste Fundstelle anzuspringen: Softkey NICHT ERSETZEN drücken

▶ Suchfunktion beenden

4.5 Programmier-Grafik

Programmier-Grafik mitführen/nicht mitführen

Während Sie ein Programm erstellen, kann die TNC die programmierte Kontur mit einer 2D-Strichgrafik anzeigen.

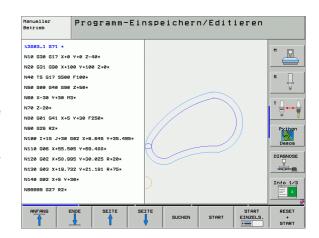
Zur Bildschirm-Aufteilung Programm links und Grafik rechts wechseln: Taste SPLIT SCREEN und Softkey PROGRAMM + GRAFIK drücken

Softkey AUTOM. ZEICHNEN auf EIN setzen. Während Sie die Programmzeilen eingeben, zeigt die TNC jede programmierte Bahnbewegung im Grafik-Fenster rechts an

Wenn die TNC die Grafik nicht mitführen soll, setzen Sie den Softkey AUTOM. ZEICHNEN auf AUS.

AUTOM. ZEICHNEN EIN zeichnet keine Programmteil-Wiederholungen mit.

Programmier-Grafik für bestehendes Programm erstellen


Wählen Sie mit den Pfeil-Tasten den Satz, bis zu dem die Grafik erstellt werden soll oder drücken Sie GOTO und geben die gewünschte Satz-Nummer direkt ein

▶ Grafik erstellen: Softkey RESET + START drücken

Weitere Funktionen:

Funktion	Softkey
Programmier-Grafik vollständig erstellen	RESET + START
Programmier-Grafik satzweise erstellen	START EINZELS.
Programmier-Grafik komplett erstellen oder nach RESET + START vervollständigen	START
Programmier-Grafik anhalten. Dieser Softkey erscheint nur, während die TNC eine Programmier-Grafik erstellt	STOPP
Programmier-Grafik neu zeichnen, wenn z.B. durch Überschneidungen Linien gelöscht wurden	NEU ZEICHNEN

Satz-Nummern ein- und ausblenden

- ▶ Softkey-Leiste umschalten: Siehe Bild rechts oben
- Satz-Nummern einblenden: Softkey ANZEIGEN AUSBLEND. SATZ-NR. auf ANZEIGEN setzen
- Satz-Nummern ausblenden: Softkey ANZEIGEN AUSBLEND, SATZ-NR, auf AUSBLEND, setzen

Grafik löschen

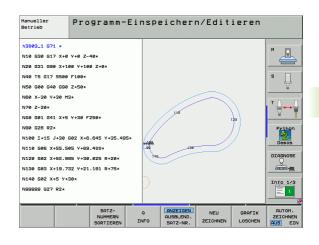
▶ Softkey-Leiste umschalten: Siehe Bild rechts oben

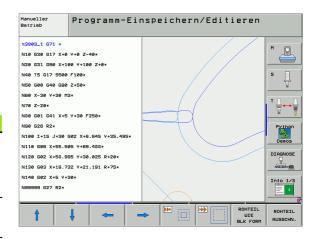
► Grafik löschen: Softkey GRAFIK LÖSCHEN drücken

Ausschnittsvergrößerung oder -verkleinerung

Sie können die Ansicht für eine Grafik selbst festlegen. Mit einem Rahmen wählen Sie den Ausschnitt für die Vergrößerung oder Verkleinerung.

Softkey-Leiste für Ausschnitts-Vergrößerung/Verkleinerung wählen (zweite Leiste, siehe Bild rechts Mitte)

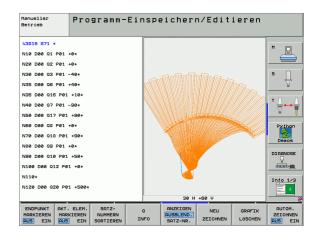

Damit stehen folgende Funktionen zur Verfügung:


Funktion	Softkey
Rahmen einblenden und verschieben. Zum Verschieben jeweiligen Softkey gedrückt halten	→ †
Rahmen verkleinern – zum Verkleinern Softkey gedrückt halten	
Rahmen vergrößern – zum Vergrößern Softkey gedrückt halten	

Mit Softkey ROHTEIL AUSSCHN. ausgewählten Bereich übernehmen

Mit dem Softkey ROHTEIL WIE BLK FORM stellen Sie den ursprünglichen Ausschnitt wieder her.

4.6 3D-Liniengrafik (FCL2-Funktion)


Anwendung

Mit der dreidimensionalen Liniengrafik können Sie die programmierten Verfahrwege von der TNC dreidimensional darstellen lassen. Um Details schnell erkennen zu können, steht eine leistungsfähige Zoom-Funktion zur Verfügung.

Insbesondere extern erstellte Programme können Sie mit der 3D-Liniengrafik schon vor der Bearbeitung auf Unregelmäßigkeiten prüfen, um unerwünschte Bearbeitungsmarken am Werkstück zu vermeiden. Solche Bearbeitungsmarken treten beispielsweise dann auf, wenn Punkte vom Postprozessor falsch ausgegeben wurden.

Damit Sie schnell Fehlerstellen aufspüren können, markiert die TNC den im linken Fenster aktiven Satz in der 3D-Liniengrafik andersfarbig (Grundeinstellung: Rot).

Zur Bildschirm-Aufteilung Programm links und 3D-Linien rechts wechseln: Taste SPLIT SCREEN und Softkey PROGRAMM + 3D-LINIEN drücken

Funktionen der 3D-Liniengrafik

Funktion	Softkey
Zoom-Rahmen einblenden und nach oben verschieben. Zum Verschieben Softkey gedrückt halten	↑
Zoom-Rahmen einblenden und nach unten verschieben. Zum Verschieben Softkey gedrückt halten	•
Zoom-Rahmen einblenden und nach links verschieben. Zum Verschieben Softkey gedrückt halten	←
Zoom-Rahmen einblenden und nach rechts verschieben. Zum Verschieben Softkey gedrückt halten	⇒
Rahmen vergrößern – zum Vergrößern Softkey gedrückt halten	
Rahmen verkleinern – zum Verkleinern Softkey gedrückt halten	•••
Ausschnitts-Vergrößerung zurücksetzen, so dass die TNC das Werkstück gemäß programmierter BLK-Form anzeigt	ROHTEIL WIE BLK FORM
Ausschnitt übernehmen	AUSSCHN. ÜBERNEHM.
Werkstück im Uhrzeigersinn drehen	
Werkstück im Gegen-Uhrzeigersinn drehen	
Werkstück nach hinten kippen	□ ^
Werkstück nach vorne kippen	
Darstellung schrittweise vergrößern. Ist die Darstellung vergrößert, zeigt die TNC in der Fußzeile des Grafikfensters den Buchstaben Z an	+
Darstellung schrittweise verkleinern. Ist die Darstellung verkleinert, zeigt die TNC in der Fußzeile des Grafikfensters den Buchstaben Z an	-
Werkstück in Originalgröße anzeigen	1:1
Werkstück in der zuletzt aktiven Ansicht anzeigen	LETZTE ANSICHT

Funktion	Softkey
Programmierte Endpunkte durch einen Punkt auf der Linie anzeigen/nicht anzeigen	ENDPUNKT MARKIEREN AUS EIN
Den im linken Fenster angewählten NC-Satz in der 3D-Liniengrafik farblich hervorgehoben anzeigen/nicht anzeigen	AKT. ELEM. MARKIEREN AUS EIN
Satz-Nummern anzeigen/nicht anzeigen	ANZEIGEN AUSBLEND. SATZ-NR.

Sie können die 3D-Liniengrafik auch mit der Mouse bedienen. Folgende Funktionen stehen zur Verfügung:

- ▶ Um das dargestellte Drahtmodell dreidimensional zu drehen: rechte Mouse-Taste gedrückt halten und Mouse bewegen. Die TNC zeigt ein Koordinatensystem an, das die momentan aktive Ausrichtung des Wekstückes darstellt. Nachdem Sie die rechte Mouse-Taste losgelassen haben, orientiert die TNC das Werkstück auf die definierte Ausrichtung
- Um das dargestellte Drahtmodell zu verschieben: mittlere Mouse-Taste, bzw. Mouse-Rad, gedrückt halten und Mouse bewegen. Die TNC verschiebt das Werkstück in die entsprechende Richtung. Nachdem Sie die mittlere Mouse-Taste losgelassen haben, verschiebt die TNC das Werkstück auf die definierte Position
- ▶ Um mit der Mouse einen bestimmten Bereich zu zoomen: mit gedrückter linker Mouse-Taste den rechteckigen Zoom-Bereichs markieren. Nachdem Sie die linke Mouse-Taste losgelassen haben, vergrößert die TNC das Werkstück auf den definierten Bereich
- Um mit der Mouse schnell aus- und einzuzoomen: Mouserad vor bzw. zurückdrehen

NC-Sätze in der Grafik farblich hervorheben

► Softkey-Leiste umschalten

- Im Bildschirm links angewählten NC-Satz in der 3D-Liniengrafik rechts farblich markiert anzeigen: Softkey AKT. ELEM. MARKIEREN AUS / EIN. auf EIN setzen
- Im Bildschirm links angewählten NC-Satz in der 3D-Liniengrafik rechts nicht farblich markiert anzeigen: Softkey AKT. ELEM. MARKIEREN AUS / EIN. auf AUS setzen

Satz-Nummern ein- und ausblenden

► Softkey-Leiste umschalten

- ► Satz-Nummern einblenden: Softkey ANZEIGEN AUSBLEND. SATZ-NR. auf ANZEIGEN setzen
- ► Satz-Nummern ausblenden: Softkey ANZEIGEN AUSBLEND, SATZ-NR, auf AUSBLEND, setzen

Grafik löschen

► Softkey-Leiste umschalten

► Grafik löschen: Softkey GRAFIK LÖSCHEN drücken

4.7 Programme gliedern

Definition, Einsatzmöglichkeit

Die TNC gibt Ihnen die Möglichkeit, die Bearbeitungs-Programme mit Gliederungs-Sätzen zu kommentieren. Gliederungs-Sätze sind kurze Texte (max. 37 Zeichen), die als Kommentare oder Überschriften für die nachfolgenden Programmzeilen zu verstehen sind.

Lange und komplexe Programme lassen sich durch sinnvolle Gliederungs-Sätze übersichtlicher und verständlicher gestalten.

Das erleichtert besonders spätere Änderungen im Programm. Gliederungs-Sätze fügen Sie an beliebiger Stelle in das Bearbeitungs-Programm ein. Sie lassen sich zusätzlich in einem eigenen Fenster darstellen und auch bearbeiten bzw. ergänzen.

Die eingefügten Gliederungspunkte werden von der TNC in einer separaten Datei verwaltet (Endung .SEC.DEP). Dadurch erhöht sich die Geschwindigkeit beim Navigieren im Gliederungsfenster.

Gliederungs-Fenster anzeigen/Aktives Fenster wechseln

▶ Gliederungs-Fenster anzeigen: Bildschirm-Aufteilung PROGRAMM + GLIEDER. wählen

Das aktive Fenster wechseln: Softkey "Fenster wechseln" drücken

Gliederungs-Satz im Programm-Fenster (links) einfügen

Gewünschten Satz wählen, hinter dem Sie den Gliederungs-Satz einfügen wollen


- Softkey GLIEDERUNG EINFÜGEN oder Taste * auf der ASCII-Tastatur drücken
- ► Gliederungs-Text über Alpha-Tastatur eingeben

Ggf. Gliederungstiefe per Softkey verändern

Sätze im Gliederungs-Fenster wählen

Wenn Sie im Gliederungs-Fenster von Satz zu Satz springen, führt die TNC die Satz-Anzeige im Programm-Fenster mit. So können Sie mit wenigen Schritten große Programmteile überspringen.

4.8 Kommentare einfügen

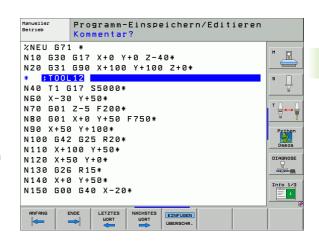
Anwendung

Jeden Satz in einem Bearbeitungs-Programm können Sie mit einem Kommentar versehen, um Programmschritte zu erläutern oder Hinweise zu geben. Sie haben drei Möglichkeiten, einen Kommentar einzugeben:

Kommentar während der Programmeingabe

- ▶ Daten für einen Programm-Satz eingeben, dann ";" (Semikolon) auf der Alpha-Tastatur drücken – die TNC zeigt die Frage Kommentar?
- ▶ Kommentar eingeben und den Satz mit der Taste END abschließen

Kommentar nachträglich einfügen


- ▶ Den Satz wählen, an den Sie den Kommentar anfügen wollen
- Mit der Pfeil-nach-rechts-Taste das letzte Wort im Satz wählen: Ein Semikolon erscheint am Satzende und die TNC zeigt die Frage Kommentar?
- ► Kommentar eingeben und den Satz mit der Taste END abschließen

Kommentar in eigenem Satz

- ▶ Satz wählen, hinter dem Sie den Kommentar einfügen wollen
- Programmier-Dialog mit der Taste ";" (Semikolon) auf der Alpha-Tastatur eröffnen
- ▶ Kommentar eingeben und den Satz mit der Taste END abschließen

Funktionen beim Editieren des Kommentars

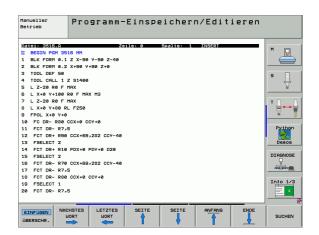
Funktion	Softkey
An den Anfang des Kommentars springen	ANFANG
An das Ende des Kommentars springen	ENDE
An den Anfang eines Wortes springen. Wörter sind durch ein Blank zu trennen	LETZTES WORT
An das Ende eines Wortes springen. Wörter sind durch ein Blank zu trennen	NACHSTES WORT
Umschalten zwischen Einfüge- und Überschreib- Modus	EINFÜGEN UBERSCHR.

4.9 Text-Dateien erstellen

Anwendung

An der TNC können Sie Texte mit einem Text-Editor erstellen und überarbeiten. Typische Anwendungen:

- Erfahrungswerte festhalten
- Arbeitsabläufe dokumentieren
- Formelsammlungen erstellen


Text-Dateien sind Dateien vom Typ .A (ASCII). Wenn Sie andere Dateien bearbeiten möchten, dann konvertieren Sie diese zuerst in den Typ .A.

Text-Datei öffnen und verlassen

- ▶ Betriebsart Programm-Einspeichern/Editieren wählen
- ▶ Datei-Verwaltung aufrufen: Taste PGM MGT drücken
- Dateien vom Typ .A anzeigen: Nacheinander Softkey TYP WÄHLEN und Softkey ANZEIGEN .A drücken
- Datei wählen und mit Softkey WÄHLEN oder Taste ENT öffnen oder eine neue Datei öffnen: Neuen Namen eingeben, mit Taste ENT bestätigen

Wenn Sie den Text-Editor verlassen wollen, dann rufen Sie die Datei-Verwaltung auf und wählen eine Datei eines anderen Typs, wie z.B. ein Bearbeitungs-Programm.

Cursor-Bewegungen	Softkey
Cursor ein Wort nach rechts	NACHSTES WORT
Cursor ein Wort nach links	LETZTES WORT
Cursor auf die nächste Bildschirmseite	SEITE
Cursor auf die vorherige Bildschirmseite	SEITE
Cursor zum Datei-Anfang	ANFANG
Cursor zum Datei-Ende	ENDE

Texte editieren

In der ersten Zeile des Text-Editors befindet sich ein Informations-Balken, der den Datei-Namen, den Aufenthaltsort und den Schreibmodus des Cursors (Engl. Einfügemarke) anzeigt:

Datei: Name der Text-Datei

Zeile: Aktuelle Zeilenposition des Cursors
Spalte: Aktuelle Spaltenposition des Cursors

INSERT: Neu eingegebene Zeichen werden eingefügt

OVERWRITE: Neu eingegebene Zeichen überschreiben vorhandenen Text an der Cursor-Position

Der Text wird an der Stelle eingefügt, an der sich der Cursor gerade befindet. Mit den Pfeil-Tasten bewegen Sie den Cursor an jede beliebige Stelle der Text-Datei.

Die Zeile, in der sich der Cursor befindet, wird farblich hervorgehoben. Eine Zeile kann maximal 77 Zeichen enthalten und wird mit der Taste RET (Return) oder ENT umbrochen.

Zeichen, Wörter und Zeilen löschen und wieder einfügen

Mit dem Text-Editor können Sie ganze Worte oder Zeilen löschen und an anderer Stelle wieder einfügen.

- Cursor auf Wort oder Zeile bewegen, die gelöscht und an anderer Stelle eingefügt werden soll
- Softkey WORT LÖSCHEN bzw. ZEILE LÖSCHEN drücken: Der Text wird entfernt und zwischengespeichert
- ► Cursor auf Position bewegen, an der der Text eingefügt werden soll und Softkey ZEILE/WORT EINFÜGEN drücken

Funktion	Softkey
Zeile löschen und zwischenspeichern	ZEILE LÖSCHEN
Wort löschen und zwischenspeichern	WORT LÖSCHEN
Zeichen löschen und zwischenspeichern	ZEICHEN LÖSCHEN
Zeile oder Wort nach Löschen wieder einfügen	ZEILE / WORT EINFÜGEN

Textblöcke bearbeiten

Sie können Textblöcke beliebiger Größe kopieren, löschen und an anderer Stelle wieder einfügen. In jedem Fall markieren Sie zuerst den gewünschten Textblock:

▶ Textblock markieren: Cursor auf das Zeichen bewegen, an dem die Textmarkierung beginnen soll

- ▶ Softkey BLOCK MARKIEREN drücken
- Cursor auf das Zeichen bewegen, an dem die Textmarkierung enden soll. Wenn Sie den Cursor mit den Pfeil-Tasten direkt nach oben und unten bewegen, werden die dazwischenliegenden Textzeilen vollständig markiert – der markierte Text wird farblich hervorgehoben

Nachdem Sie den gewünschten Textblock markiert haben, bearbeiten Sie den Text mit folgenden Softkeys weiter:

Funktion	Softkey
Markierten Block löschen und zwischenspeichern	BLOCK LÖSCHEN
Markierten Block zwischenspeichern, ohne zu löschen (kopieren)	BLOCK EINFÜGEN

Wenn Sie den zwischengespeicherten Block an anderer Stelle einfügen wollen, führen Sie noch folgende Schritte aus:

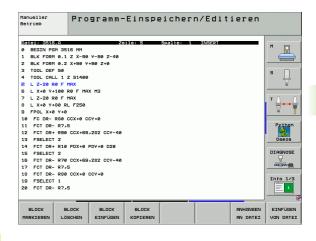
Cursor auf die Position bewegen, an der Sie den zwischengespeicherten Textblock einfügen wollen

Softkey BLOCK EINFÜGEN drücken: Text wird eingefügt

Solange sich der Text im Zwischenspeicher befindet, können Sie ihn beliebig oft einfügen.

Markierten Block in andere Datei übertragen

▶ Den Textblock wie bereits beschrieben markieren


- ▶ Softkey ANHÄNGEN AN DATEI drücken. Die TNC zeigt den Dialog Ziel-Datei =
- Pfad und Namen der Zieldatei eingeben. Die TNC hängt den markierten Textblock an die Zieldatei an. Wenn keine Zieldatei mit dem eingegebenen Namen existiert, dann schreibt die TNC markierten Text in eine neue Datei

Andere Datei an Cursor-Position einfügen

Den Cursor an die Stelle im Text bewegen, an der Sie eine andere Textdatei einfügen möchten

- ▶ Softkey EINFÜGEN VON DATEI drücken. Die TNC zeigt den Dialog Datei-Name =
- Pfad und Namen der Datei eingeben, die Sie einfügen wollen

Textteile finden

Die Suchfunktion des Text-Editors findet Worte oder Zeichenketten im Text. Die TNC stellt zwei Möglichkeiten zur Verfügung.


Aktuellen Text finden

Die Suchfunktion soll ein Wort finden, das dem Wort entspricht, in dem sich der Cursor gerade befindet:

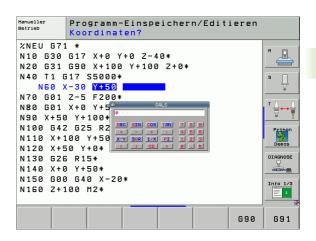
- Cursor auf das gewünschte Wort bewegen
- ▶ Suchfunktion wählen: Softkey SUCHEN drücken
- ▶ Softkey AKTUELLES WORT SUCHEN drücken
- ▶ Suchfunktion verlassen: Softkey ENDE drücken

Beliebigen Text finden

- Suchfunktion wählen: Softkey SUCHEN drücken. Die TNC zeigt den Dialog Suche Text:
- ► Gesuchten Text eingeben
- ► Text suchen: Softkey AUSFÜHREN drücken
- ▶ Suchfunktion verlassen Softkey ENDE drücken

4.10 Der Taschenrechner

Bedienung


Die TNC verfügt über einen Taschenrechner mit den wichtigsten mathematischen Funktionen.

- Mit der Taste CALC den Taschenrechner einblenden bzw. wieder schließen
- ▶ Rechenfunktionen über Kurzbefehle mit der Alpha-Tastatur wählen. Die Kurzbefehler sind im Taschenrechner farblich gekennzeichnet

Rechen-Funktion	Kurzbefehl (Taste)
Addieren	+
Subtrahieren	-
Multiplizieren	*
Dividieren	:
Sinus	S
Cosinus	С
Tangens	T
Arcus-Sinus	AS
Arcus-Cosinus	AC
Arcus-Tangens	AT
Potenzieren	٨
Quadratwurzel ziehen	Q
Umkehrfunktion	1
Klammer-Rechnung	()
PI (3.14159265359)	Р
Ergebnis anzeigen	=

Berechneten Wert ins Programm übernehmen

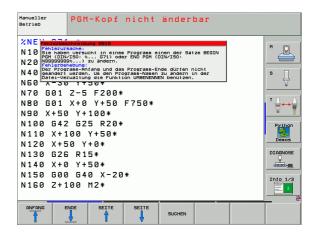
- Mit den Pfeiltasten das Wort wählen, in das der berechnete Wert übernommen werden soll
- Mit der Taste CALC den Taschenrechner einblenden und gewünschte Berechnung durchführen
- ▶ Taste "Ist-Position-übernehmen" drücken: Die TNC übernimmt den berechneten Wert ins aktive Eingabefeld und schließt den Taschenrechner

4.11 Direkte Hilfe bei NC-Fehlermeldungen

Fehlermeldungen anzeigen

Fehlermeldungen zeigt die TNC automatisch unter anderem bei

- falschen Eingaben
- logischen Fehlern im Programm
- nicht ausführbaren Konturelementen
- unvorschriftsmäßigen Tastsystem-Einsätzen


Eine Fehlermeldung, die die Nummer eines Programmsatzes enthält, wurde durch diesen Satz oder einen vorhergegangenen verursacht. TNC-Meldetexte löschen Sie mit der Taste CE, nachdem Sie die Fehlerursache beseitigt haben.

Um nähere Informationen zu einer anstehenden Fehlermeldung zu erhalten, drücken Sie die Taste HELP. Die TNC blendet dann ein Fenster ein, in dem die Fehlerursache und die Fehlerbehebung beschrieben sind.

Hilfe anzeigen

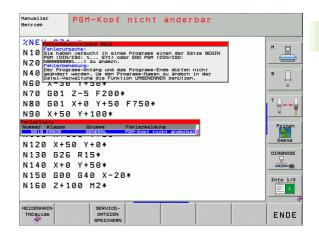
- ▶ Hilfe anzeigen: Taste HELP drücken
- ▶ Fehlerbeschreibung und die Möglichkeiten zur Fehlerbeseitigung durchlesen. Ggf. zeigt die TNC noch Zusatz-Informationen an, die bei der Fehlersuche durch HEIDENHAIN-Mitarbeiter hilfreich sind. Mit der Taste CE schließen Sie das Hilfe-Fenster und quittieren gleichzeitig die anstehende Fehlermeldung
- ▶ Fehler gemäß der Beschreibung im Hilfe-Fenster beseitigen

4.12 Liste aller anstehenden Fehlermeldungen

Funktion

Mit dieser Funktion können Sie ein Überblendfenster anzeigen lassen, in der die TNC alle anstehenden Fehlermeldungen anzeigt. Die TNC zeigt sowohl Fehler die aus der NC kommen als auch Fehler, die von Ihrem Maschinenhersteller ausgegeben werden.

Fehlerliste anzeigen


Sobald mindestens eine Fehlermeldungen ansteht können Sie die Liste anzeigen lassen:

- Liste anzeigen: Taste ERR drücken
- Mit den Pfeiltasten können Sie eine der anstehenden Fehlermeldungen anwählen
- Mit der Taste CE oder der Taste DEL löschen Sie die Fehlermeldung aus dem Überblendfenster, die momentan angwählt ist. Wenn nur eine Fehlermeldung ansteht, schließen sich gleichzeitig das Überblendfenster
- Überblendfenster schließen: Taste ERR erneut drükken. Anstehende Fehlermeldungen bleiben erhalten

Parallel zur Fehlerliste können Sie auch den jeweils zugehörigen Hilfetext in einem separaten Fenster anzeigen lassen: Taste HELP drücken.

Fenster-Inhalt

Spalte	Bedeutung
Nummer	Fehlernummer (-1: Keine Fehlernummer definiert), die von HEIDENHAIN oder Ihrem Maschinenhersteller vergeben wird
Klasse	Fehlerklasse. Legt fest, wie die TNC diesen Fehler verarbeitet:
	■ ERROR Programmlauf wird von der TNC unterbrochen (INTERNER STOPP)
	■ FEED HOLD Die Vorschub-Freigabe wird gelöscht
	■ PGM HOLD Der Programmlauf wird unterbrochen (STIB blinkt)
	■ PGM ABORT Der Programmlauf wird abgebrochen (INTERNER STOPP)
	■ EMERG. STOPP NOT-AUS wird ausgelöst
	■ RESET TNC führt einen Warmstart aus
	WARNING Warnmeldung, Programmlauf wird fortgesetzt
	■ INFO Info-Meldung, Programmlauf wird fortgesetzt
Gruppe	Gruppe. Legt fest, aus welchem Teil der Betriebssystem-Software die Fehlermeldung erzeugt wurde
	OPERATING
	■ PROGRAMMING ■ PLC
	■ GENERAL
Fehlermeldung	Fehlertext, den die TNC jeweils anzeigt

Hilfesystem TNCguide aufrufen

Per Softkey können Sie das Hilfesystem der TNC aufrufen. Momentan erhalten Sie innerhalb des Hilfesystems dieselbe Fehlererklärung, die Sie auch beim Druck auf die Taste HELP erhalten.

Wenn Ihr Maschinenhersteller auch ein Hilfesystem zur Verfügung stellt, dann blendet die TNC den zusätzlichen Softkey MASCHINEN-HERSTELLER ein, über den Sie dieses separate Hilfesystem aufrufen können. Dort finden Sie dann weitere, detailiertere Informationen zur anstehenden Fehlermeldung.

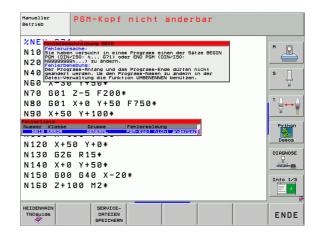
► Hilfe zu HEIDENHAIN-Fehlermeldungen aufrufen

▶ Wenn verfügbar, Hilfe zu maschinenspezifischen Fehlermeldungen aufrufen

Servicedateien erzeugen

Mit dieser Funktion können Sie alle für Servicezwecke relevante Daten in eine ZIP-Datei speichern. Die entsprechenden Daten der NC und PLC werden von der TNC in der Datei

TNC:\service\service<xxxxxxxx>.zip gespeichert. Den Namen der Datei legt die TNC automatisch fest, wobei **<xxxxxxxx>** als eindeutige Zeichenfolge die Systemzeit darstellt.


Es stehen folgende Möglichkeiten zur Verfügung eine Servicedatei zu erzeugen:

- Drücken des Softkeys SERVICE-DATEIEN SPEICHERN nachdem Sie die Taste ERR betätigt haben
- Von extern über die Datenübertragungs-Software TNCremoNT
- Beim Absturz der NC-Software aufgrund eines schwerwiegenden Fehlers erzeugt die TNC die Servicedateien automatisch
- Zusätzlich kann Ihr Maschinenhersteller für PLC-Fehlermeldungen ebenfalls automatisch Servicedateien erzeugen lassen.

Unter anderem werden folgende Daten in die Servicedatei gespeichert:

- Logbuch
- PLC-Logbuch
- Angewählte Dateien (*.H/*.I/*.T/*.TCH/*.D) aller Betriebsarten
- *.SYS-Dateien
- Maschinen-Parameter
- Informations- und Protokolldateien des Betriebssystems (teilweise über MP7691 aktivierbar)
- PLC-Speicherinhalte
- In PLC:\NCMACRO.SYS definierte NC-Makros
- Informationen über die Hardware

Zusätzlich können Sie auf Anweisung des Kundendienstes eine weitere Steuerdatei TNC:\service\userfiles.sys im ASCII-Format hinterlegen. Die TNC packt dann auch die dort definierten Daten mit in die ZIP-Datei.

4.13 Kontextsensitives Hilfesystem TNCguide (FCL3-Funktion)

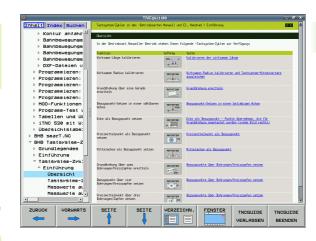
Anwendung

Das Hilfesystem TNCguide steht nur zur Verfügung, wenn Ihre Steuerungshardware über mindestens 256 MByte Arbeitsspeicher verfügt und zusätzlich FCL3 gesetzt ist.

Das kontextsensitive Hilfesystem **TNCguide** enthält die Benutzer-Dokumentation im HTML-Format. Der Aufruf des TNCguide erfolgt über die HELP-Taste, wobei die TNC teilweise situationsabhängig die zugehörige Information direkt anzeigt (kontextsensitiver Aufruf).

Standardmäßig werden die deutsche und englische Dokumentation mit der jeweiligen NC-Software ausgeliefert. Die restlichen Dialogsprachen stellt HEIDENHAIN zum kostenlosen Download zur Verfügung, sobald die jeweiligen Übersetzungen verfügbar sind (siehe "Aktuelle Hilfedateien downloaden" auf Seite 172).

Die TNC versucht grundsätzlich den TNCguide in der Sprache zu starten, die Sie als Dialogsprache an Ihrer TNC eingestellt haben. Wenn die Dateien dieser Dialogsprache an Ihrer TNC noch nicht zur Verfügung stehen, dann öffnet die TNC die englische Version.


Folgende Benutzer-Dokumentationen sind momentan im TNCguide verfügbar:

- Benutzer-Handbuch Klartext-Dialog (**BHBKlartext.chm**)
- Benutzer-Handbuch DIN/ISO (BHBIso.chm)
- Benutzer-Handbuch Tastsystem-Zyklen (**BHBtchprobe.chm**)
- Benutzer-Handbuch smarT.NC (Lotsenformat, **BHBSmart.chm**)
- Liste aller NC-Fehlermeldungen (errors.chm)

Zusätzlich ist noch die Buchdatei **main.chm** verfügbar, in der alle vorhandenen chm-Dateien zusammengefasst dargestellt sind.

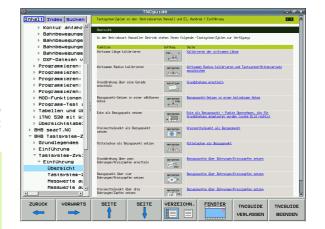
Optional kann Ihr Maschinenhersteller noch maschinenspezifische Dokumentationen in den **TNCguide** einbetten. Diese Dokumente erscheinen dann als separates Buch in der Datei **main.chm**.

Arbeiten mit dem TNCguide

TNCguide aufrufen

Um den TNCguide zu starten, stehen mehrere Möglichkeiten zur Verfügung:

- Taste HELP drücken, wenn die TNC nicht gerade eine Fehlermeldung anzeigt
- Per Mouse-Klick auf Softkeys, wenn Sie zuvor das rechts unten im Bildschirm eingeblendete Hilfesymbol angeklickt haben
- Über die Datei-Verwaltung eine Hilfe-Datei (CHM-Datei) öffnen. Die TNC kann jede beliebige CHM-Datei öffnen, auch wenn diese nicht auf der Festplatte der TNC gespeichert ist



Wenn eine oder mehrere Fehlermeldungen anstehen, dann blendet die TNC die direkte Hilfe zu den Fehlermeldungen ein. Um den **TNCguide** starten zu können müssen Sie zunächst alle Fehlermeldungen quittieren.

Die TNC startet beim Aufruf des Hilfesystems auf dem Programmierplatz und der Zwei-Prozessor-Version den systemintern definierten Standardbrowser (in der Regel den Internet Explorer) und auf der Einprozessor-Version einen von HEIDENHAIN angepassten Browser.

Zu vielen Softkeys steht ein kontextsensitiver Aufruf zur Verfügung, über den sie direkt zur Funktionsbeschreibung des jeweiligen Softkeys gelangen. Diese Funktionalität steht Ihnen nur über Mouse-Bedienung zur Verfügung. Gehen Sie wie folgt vor:

- Softkey-Leiste wählen, in der der gewünschte Softkey angezeigt wird
- Mit der Mouse auf das Hilfesymbol klicken, das die TNC direkt rechts über der Softkey-Leiste anzeigt: Der Mouse-Cursor ändert sich zum Fragezeichen
- Mit dem Fragezeichen auf den Softkey klicken, dessen Funktion Sie erklärt haben wollen: Die TNC öffnet den TNCguide (Klartext-Dialog-Dokumentation). Wenn für den von Ihnen gewählten Softkey keine Einsprungstelle existiert, dann öffnet die TNC die Buchdatei main.chm, von der aus Sie per Volltextsuche oder per Navigation manuell die gewünschte Erklärung suchen müssen

Im TNCguide navigieren

Am einfachsten können Sie per Mouse im TNCquide navigieren. Auf der linken Seite ist das Inhaltsverzeichnis sichtbar. Sie können durch Klick auf das nach rechts zeigende Dreieck die darunterliegenden Kapitel anzeigen lassen oder direkt duch Klick auf den jeweiligen Eintrag die entsprechende Seite anzeigen lassen. Die Bedienung ist identisch zur Bedienung des Windows Explorers.

Verlinkte Textstellen (Querverweise) sind blau und unterstrichen dargestellt. Ein Klick auf einen Link öffnet die entsprechende Seite.

Selbstverständlich könne Sie den TNCguide auch per Tasten und Softkeys bedienen. Nachfolgende Tabelle enthält eine Übersicht der entsprechenden Tastenfunktionen.

Nachfolgend beschriebene Tastenfunktionen stehen nur auf der Einprozessor-Version der TNC zur Verfügung.

Funktion Softkey

■ Inhaltsverzeichnis links ist aktiv: Den darunter- bzw. darüberliegenden Eintrag wählen

- Textfenster rechts ist aktiv: Seite nach unten bzw. nach oben verschieben, wenn Text oder Grafiken nicht vollständig angezeigt werden
- Inhaltsverzeichnis links ist aktiv: Inhaltsverzeichnis aufklappen. Wenn Inhaltsverzeichnis nicht mehr aufklappbar, dann Sprung ins rechte Fenster

- Textfenster rechts ist aktiv: Keine Funktion
- Inhaltsverzeichnis links ist aktiv: Inhaltsverzeichnis zuklappen

- Textfenster rechts ist aktiv: Keine Funktion
- Inhaltsverzeichnis links ist aktiv: Per Cursor-Taste gewählte Seite anzeigen

- Textfenster rechts ist aktiv: Wenn Cursor auf einem Link steht, dann Sprung auf die verlinkte Seite
- Inhaltsverzeichnis links ist aktiv: Reiter umschalten zwischen Anzeige des Inhalts-Verzeichnisses, Anzeige des Stichwort-Verzeichnisses und der Funktion Volltextsuche und Umschalten auf die rechte Bildschirmseite

■ Textfenster rechts ist aktiv: Sprung zurück ins linke Fenster

Funktion	Softkey
 Inhaltsverzeichnis links ist aktiv: Den darunter- bzw. darüberliegenden Eintrag wählen Textfenster rechts ist aktiv: Nächsten Link anspringen 	
Zuletzt angezeigte Seite wählen	ZURÜCK
Vorwärts blättern, wenn Sie mehrfach die Funktion "zuletzt angezeigte Seite wählen" verwendet haben	VORWARTS
Eine Seite zurück blättern	SEITE
Eine Seite nach vorne blättern	SEITE
Inhaltsverzeichnis anzeigen/ausblenden	VERZEICHN.
Wechseln zwischen Vollbild-Darstellung und reduzierter Darstellung. Bei reduzierter Darstellung sehen Sie noch einen Teil der TNC- Oberfläche	FENSTER
Der Fokus wird intern auf die TNC-Anwendung gewechselt, so dass Sie bei geöffnetem TNCguide die Steuerung bedienen können. Wenn die Vollbild-Darstellung aktiv ist, dann reduziert die TNC vor dem Fokuswechsel automatisch die Fenstergröße	TNCGUIDE VERLASSEN
TNCguide beenden	TNCGUIDE BEENDEN

Stichwort-Verzeichnis

Die wichtigsten Stichwörter sind im Stichwortverzeichnis (Reiter **Index**) aufgeführt und können von Ihnen per Mouse-Klick oder durch Selektieren per Cursor-Tasten direkt angewählt werden.

Die linke Seite ist aktiv.

- ▶ Reiter Index wählen
- ► Eingabefeld Schlüsslwort aktivieren
- Zu suchendes Wort eingeben, die TNC synchronisiert dann das Stichwortverzeichnis bezogen auf den eingegebenen Text, so dass Sie das Stichwort in der aufgeführten Liste schneller finden können, oder
- Per Pfeiltaste gewünschtes Stichwort hell hinterlegen
- Mit Taste ENT Informationen zum gewählten Stichwort anzeigen lassen

Volltext-Suche

Im Reiter **Suchen** haben Sie die Möglichkeit, den kompletten TNCguide nach einem bestimmten Wort zu durchsuchen.

Die linke Seite ist aktiv.

- ▶ Reiter Suchen wählen
- ► Eingabefeld Suchen: aktivieren
- Zu suchendes Wort eingeben, mit Taste ENT bestätigen: Die TNC listet alle Fundstellen auf, die dieses Wort enthalten
- ▶ Per Pfeiltaste gewünschte Stelle hell hinterlegen
- Mit Taste ENT die gewählte Fundstelle anzeigen

Die Volltext-Suche können Sie immer nur mit einem einzelnen Wort durchführen.

Wenn Sie die Funktion **Nur in Titeln suchen** aktivieren (per Mouse-Taste oder durch ancursorn und anschließendes Betätigen der Blank-Taste), durchsucht die TNC nicht den kompletten Text sondern nur alle Überschriften.

Aktuelle Hilfedateien downloaden

Die zu Ihrer TNC-Software passenden Hilfedateien finden sie auf der HEIDENHAIN-Homepage **www.heidenhain.de** unter:

- ► Services und Dokumentation
- Software
- ► Hilfesystem iTNC 530
- NC-Software-Nummer Ihrer TNC, z.B. 34049x-04
- ▶ Gewünschte Sprache wählen, z.B. Deutsch: Sie sehen dann ein ZIP-File mit den entsprechenden Hilfedateien
- ► ZIP-Datei herunterladen und auspacken
- ▶ Die ausgepackten CHM-Dateien auf die TNC in das Verzeichnis TNC:\tncguide\de bzw. in das entsprechende Sprach-Unterverzeichnis übertragen (siehe auch nachfolgende Tabelle)

Binärformat die Extension . CHM eintragen.

Wenn Sie die CHM-Dateien mit TNCremoNT zur TNC übertragen, müssen Sie im Menüpunkt Extras>Konfiguration>Modus>Übertragung im

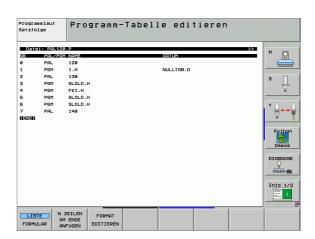
Sprache	TNC-Verzeichnis
Deutsch	TNC:\tncguide\de
Englisch	TNC:\tncguide\en
Tschechisch	TNC:\tncguide\cs
Französisch	TNC:\tncguide\fr
Italienisch	TNC:\tncguide\it
Spanisch	TNC:\tncguide\es
Portugiesisch	TNC:\tncguide\pt
Schwedisch	TNC:\tncguide\sv
Dänisch	TNC:\tncguide\da
Finnisch	TNC:\tncguide\fi
Niederländisch	TNC:\tncguide\n1
Polnisch	TNC:\tncguide\p1
Ungarisch	TNC:\tncguide\hu
Russisch	TNC:\tncguide\ru
Chinesisch (simplified)	TNC:\tncguide\zh
Chinesisch (Traditional)	TNC:\tncguide\zh-tw
Slowenisch (Software-Option)	TNC:\tncguide\s1

Sprache	TNC-Verzeichnis
Norwegisch	TNC:\tncguide\no
Slowakisch	TNC:\tncguide\sk
Lettisch	TNC:\tncguide\lv
Koreanisch	TNC:\tncguide\kr
Estnisch	TNC:\tncguide\et
Türkisch	TNC:\tncguide\tr
Rumänisch	TNC:\tncguide\ro

4.14 Paletten-Verwaltung

Anwendung

Die Paletten-Verwaltung ist eine maschinenabhängige Funktion. Im folgenden wird der Standard-Funktionsumfang beschrieben. Beachten Sie zusätzlich Ihr Maschinenhandbuch


Paletten-Tabellen werden in Bearbeitungs-Zentren mit Paletten-Wechslern eingesetzt: Die Paletten-Tabelle ruft für die verschiedenen Paletten die zugehörigen Bearbeitungs-Programme auf und aktiviert Nullpunkt-Verschiebungen bzw. Nullpunkt-Tabellen.

Sie können Paletten-Tabellen auch verwenden, um verschiedene Programme mit unterschiedlichen Bezugspunkten hintereinander abzuarbeiten.

Paletten-Tabellen enthalten folgende Angaben:

- PAL/PGM (Eintrag zwingend erforderlich): Kennung Palette oder NC-Programm (mit Taste ENT bzw. NO ENT wählen)
- NAME (Eintrag zwingend erforderlich):
 Paletten-, bzw. Programm-Name. Die Paletten-Namen legt der
 Maschinenhersteller fest (Maschinenhandbuch beachten).
 Programm-Namen müssen im selben Verzeichnis gespeichert sein
 wie die Paletten-Tabelle, ansonsten müssen Sie den vollständigen
 Pfadnamen des Programms eingeben
- PRESET (Eintrag wahlweise):

 Preset-Nummer aus der Preset-Tabelle. Die hier definierte PresetNummer wird von der TNC entweder als Paletten-Bezugspunkt
 (Eintrag PAL in Spalte PAL/PGM) oder als Werkstück-Bezugspunkt
 (Eintrag PGM in Zeile PAL/PGM) interpretiert
- DATUM (Eintrag wahlweise):
 Name der Nullpunkt-Tabelle. Nullpunkt-Tabellen müssen im selben
 Verzeichnis gespeichert sein wie die Paletten-Tabelle, ansonsten
 müssen Sie den vollständigen Pfadnamen der Nullpunkt-Tabelle
 eingeben. Nullpunkte aus der Nullpunkt-Tabelle aktivieren Sie im
 NC-Programm mit dem Zyklus 7 NULLPUNKT-VERSCHIEBUNG

■ X, Y, Z (Eintrag wahlweise, weitere Achsen möglich): Bei Paletten-Namen beziehen sich die programmierten Koordinaten auf den Maschinen-Nullpunkt. Bei NC-Programmen beziehen sich die programmierten Koordinaten auf den Paletten-Nullpunkt. Diese Einträge überschreiben den Bezugspunkt, den Sie zuletzt in der Betriebsart Manuell gesetzt haben. Mit der Zusatz-Funktion M104 können Sie den letzten gesetzten Bezugspunkt wieder aktivieren. Mit der Taste "Ist-Position übernehmen", blendet die TNC ein Fenster ein, mit dem Sie verschiedene Punkte von der TNC als Bezugspunkt eintragen lassen können (siehe folgende Tabelle)

Position	Bedeutung
Istwerte	Koordinaten der aktuellen Werkzeug-Position bezogen auf das aktive Koordinaten-System eintragen
Referenzwerte	Koordinaten der aktuellen Werkzeug-Position bezogen auf den Maschinen-Nullpunkt eintragen
Messwerte IST	Koordinaten bezogen auf das aktive Koordinaten- System des zuletzt in der Betriebsart Manuell angetasteten Bezugspunkts eintragen
Messwerte REF	Koordinaten bezogen auf den Maschinen- Nullpunkt des zuletzt in der Betriebsart Manuell angetasteten Bezugspunkts eintragen

Mit den Pfeiltasten und der Taste ENT wählen Sie die Position die Sie übernehmen wollen. Anschließend wählen Sie mit dem Softkey ALLE WERTE, dass die TNC die jeweiligen Koordinaten aller aktiven Achsen in die Paletten-Tabelle speichert. Mit dem Softkey AKTUELLEN WERT speichert die TNC die Koordinate der Achse, auf der das Hellfeld in der Paletten-Tabelle gerade steht.

Wenn Sie vor einem NC-Programm keine Palette definiert haben, beziehen sich die programmierten Koordinaten auf den Maschinen-Nullpunkt. Wenn Sie keinen Eintrag definieren, bleibt der manuell gesetzte Bezugspunkt aktiv.

Editier-Funktion	Softkey
Tabellen-Anfang wählen	ANFANG
Tabellen-Ende wählen	ENDE
Vorherige Tabellen-Seite wählen	SEITE
Nächste Tabellen-Seite wählen	SEITE
Zeile am Tabellen-Ende einfügen	ZEILE EINFÜGEN

Editier-Funktion	Softkey
Zeile am Tabellen-Ende löschen	ZEILE LÖSCHEN
Anfang der nächsten Zeile wählen	NÄCHSTE ZEILE
Eingebbare Anzahl von Zeilen am Tabellenende anfügen	N ZEILEN AM ENDE ANFÜGEN
Hell hinterlegtes Feld kopieren (2. Softkey- Leiste)	AKTUELLEN WERT KOPIEREN
Kopiertes Feld einfügen (2. Softkey-Leiste)	KOPIERTEN WERT EINFÜGEN

Paletten-Tabelle wählen

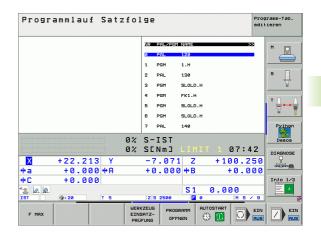
- ▶ In der Betriebsart Programm-Einspeichern/Editieren oder Programmlauf Datei-Verwaltung wählen: Taste PGM MGT drücken
- Dateien vom Typ .P anzeigen: Softkeys TYP WÄHLEN und ANZEIGEN .P drücken
- ▶ Paletten-Tabelle mit Pfeil-Tasten wählen oder Namen für eine neue Tabelle eingeben
- ► Auswahl mit Taste ENT bestätigen

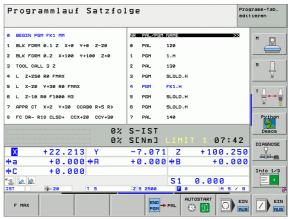
Paletten-Datei verlassen

- ▶ Datei-Verwaltung wählen: Taste PGM MGT drücken
- ▶ Anderen Datei-Typ wählen: Softkey TYP WÄHLEN und Softkey für den gewünschten Datei-Typ drücken, z.B. ANZEIGEN .H
- ► Gewünschte Datei wählen

Paletten-Datei abarbeiten

Per Maschinen-Parameter ist festgelegt, ob die Paletten-Tabelle satzweise oder kontinuierlich abgearbeitet wird.


Sofern über den Maschinen-Parameter 7246 die Werkzeug-Einsatzprüfung aktiviert ist, können Sie die Werkzeug-Standzeit für alle in einer Palette verwendeten Werkzeuge überprüfen (siehe "Werkzeug-Einsatzprüfung" auf Seite 599).


- ▶ In der Betriebsart Programmlauf Satzfolge oder Programmlauf Einzelsatz Datei-Verwaltung wählen: Taste PGM MGT drücken
- ▶ Dateien vom Typ .P anzeigen: Softkeys TYP WÄHLEN und ANZEIGEN .P drücken
- ▶ Paletten-Tabelle mit Pfeil-Tasten wählen, mit Taste ENT bestätigen
- Paletten-Tabelle abarbeiten: Taste NC-Start drücken, die TNC arbeitet die Paletten ab wie im Maschinen-Parameter 7683 festgelegt

Bildschirm-Aufteilung beim Abarbeiten der Paletten-Tabelle

Wenn Sie den Programm-Inhalt und den Inhalt der Paletten-Tabelle gleichzeitig sehen wollen, dann wählen Sie die Bildschirm-Aufteilung PROGRAMM + PALETTE. Während des Abarbeitens stellt die TNC dann auf der linken Bildschirmseite das Programm und auf der rechten Bildschirmseite die Palette dar. Um den Programm-Inhalt vor dem Abarbeiten ansehen zu können gehen Sie wie folgt vor:

- ▶ Paletten-Tabelle wählen
- Mit Pfeiltasten Programm wählen, das Sie kontrollieren wollen
- Softkey PROGRAMM ÖFFNEN drücken: Die TNC zeigt das gewählte Programm am Bildschirm an. Mit den Pfeiltasten können Sie jetzt im Programm blättern
- ▶ Zurück zur Paletten-Tabelle: Drücken Sie den Softkey END PGM

4.15 Palettenbetrieb mit werkzeugorientierter Bearbeitung

Anwendung

Die Paletten-Verwaltung in Verbindung mit der werkzeugorientierten Bearbeitung ist eine maschinenabhängige Funktion. Im folgenden wird der Standard-Funktionsumfang beschrieben. Beachten Sie zusätzlich Ihr Maschinenhandbuch.

Paletten-Tabellen werden in Bearbeitungs-Zentren mit Paletten-Wechslern eingesetzt: Die Paletten-Tabelle ruft für die verschiedenen Paletten die zugehörigen Bearbeitungs-Programme auf und aktiviert Nullpunkt-Verschiebungen bzw. Nullpunkt-Tabellen.

Sie können Paletten-Tabellen auch verwenden, um verschiedene Programme mit unterschiedlichen Bezugspunkten hintereinander abzuarbeiten.

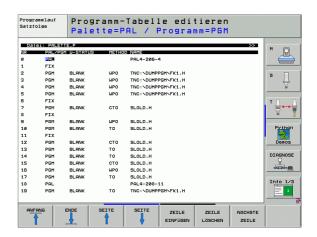
Paletten-Tabellen enthalten folgende Angaben:

■ PAL/PGM (Eintrag zwingend erforderlich):

Der Eintrag PAL legt die Kennung für eine Palette fest, mit FIX wird eine Aufspannungsebene gekennzeichnet und mit PGM geben Sie ein Werkstück an

■ W-STATE:

Aktueller Bearbeitungs-Status. Durch den Bearbeitungs-Status wird der Fortschritt der Bearbeitung festgelegt. Geben Sie für das unbearbeitete Werkstück **BLANK** an. Die TNC ändert diesen Eintrag bei der Bearbeitung auf **INCOMPLETE** und nach der vollständigen Bearbeitung auf **ENDED**. Mit dem Eintrag **EMPTY** wird ein Platz gekennzeichnet, an dem kein Werkstück aufgespannt ist oder keine Bearbeitung stattfinden soll


METHOD (Eintrag zwingend erforderlich):

Angaba, pach wolcher Methodo die Pro

Angabe, nach welcher Methode die Programm-Optimierung erfolgt. Mit WPO erfolgt die Bearbeitung werkstückorientiert. Mit TO erfolgt die Bearbeitung für das Teil werkzeugorientiert. Um nachfolgende Werkstücke in die werkzeugorientierte Bearbeitung miteinzubeziehen müssen Sie den Eintrag CTO (continued tool oriented) verwenden. Die werkzeugorientierte Bearbeitung ist auch über Aufspannungen einer Palette hinweg möglich, nicht jedoch über mehrere Paletten

■ NAME (Eintrag zwingend erforderlich):

Paletten-, bzw. Programm-Name. Die Paletten-Namen legt der Maschinenhersteller fest (Maschinenhandbuch beachten). Programme müssen im selben Verzeichnis gespeichert sein wie die Paletten-Tabelle, ansonsten müssen Sie den vollständigen Pfadnamen des Programms eingeben

■ PRESET (Eintrag wahlweise):

Preset-Nummer aus der Preset-Tabelle. Die hier definierte Preset-Nummer wird von der TNC entweder als Paletten-Bezugspunkt (Eintrag PAL in Spalte PAL/PGM) oder als Werkstück-Bezugspunkt (Eintrag PGM in Zeile PAL/PGM) interpretiert

■ **DATUM** (Eintrag wahlweise):

Name der Nullpunkt-Tabelle. Nullpunkt-Tabellen müssen im selben Verzeichnis gespeichert sein wie die Paletten-Tabelle, ansonsten müssen Sie den vollständigen Pfadnamen der Nullpunkt-Tabelle eingeben. Nullpunkte aus der Nullpunkt-Tabelle aktivieren Sie im NC-Programm mit dem Zyklus 7 NULLPUNKT-VERSCHIEBUNG

■ X, Y, Z (Eintrag wahlweise, weitere Achsen möglich):
Bei Paletten und Aufspannungen beziehen sich die programmierten Koordinaten auf den Maschinen-Nullpunkt. Bei NC-Programmen beziehen sich die programmierten Koordinaten auf den Palettenbzw. Aufspannungs-Nullpunkt. Diese Einträge überschreiben den Bezugspunkt, den Sie zuletzt in der Betriebsart Manuell gesetzt haben. Mit der Zusatz-Funktion M104 können Sie den letzten gesetzten Bezugspunkt wieder aktivieren. Mit der Taste "Ist-Position übernehmen", blendet die TNC ein Fenster ein, mit dem Sie verschiedene Punkte von der TNC als Bezugspunkt eintragen lassen können (siehe folgende Tabelle)

Position	Bedeutung
Istwerte	Koordinaten der aktuellen Werkzeug-Position bezogen auf das aktive Koordinaten-System eintragen
Referenzwerte	Koordinaten der aktuellen Werkzeug-Position bezogen auf den Maschinen-Nullpunkt eintragen
Messwerte IST	Koordinaten bezogen auf das aktive Koordinaten- System des zuletzt in der Betriebsart Manuell angetasteten Bezugspunkts eintragen
Messwerte REF	Koordinaten bezogen auf den Maschinen- Nullpunkt des zuletzt in der Betriebsart Manuell angetasteten Bezugspunkts eintragen

Mit den Pfeiltasten und der Taste ENT wählen Sie die Position die Sie übernehmen wollen. Anschließend wählen Sie mit dem Softkey ALLE WERTE, dass die TNC die jeweiligen Koordinaten aller aktiven Achsen in die Paletten-Tabelle speichert. Mit dem Softkey AKTUELLEN WERT speichert die TNC die Koordinate der Achse, auf der das Hellfeld in der Paletten-Tabelle gerade steht.

Wenn Sie vor einem NC-Programm keine Palette definiert haben, beziehen sich die programmierten Koordinaten auf den Maschinen-Nullpunkt. Wenn Sie keinen Eintrag definieren, bleibt der manuell gesetzte Bezugspunkt aktiv.

- SP-X, SP-Y, SP-Z (Eintrag wahlweise, weitere Achsen möglich): Für die Achsen können Sicherheitspositionen angegeben werden, welche mit SYSREAD FN18 ID510 NR 6 von NC-Makros aus gelesen werden können. Mit SYSREAD FN18 ID510 NR 5 kann ermittelt werden, ob in der Spalte ein Wert programmiert wurde. Die angegebenen Positionen werden nur angefahren, wenn in den NC-Makros diese Werte gelesen und entsprechend programmiert werden.
- CTID (Eintrag erfolgt durch TNC):
 Die Kontext-Identnummer wird von der TNC vergeben und enthält
 Hinweise über den Bearbeitungs-Fortschritt. Wird der Eintrag
 gelöscht, bzw. geändert, ist ein Wiedereinstieg in die Bearbeitung
 nicht möglich

The first trie given	
Editier-Funktion im Tabellenmodus	Softkey
Tabellen-Anfang wählen	ANFANG
Tabellen-Ende wählen	ENDE
Vorherige Tabellen-Seite wählen	SEITE
Nächste Tabellen-Seite wählen	SEITE
Zeile am Tabellen-Ende einfügen	ZEILE EINFÜGEN
Zeile am Tabellen-Ende löschen	ZEILE LÖSCHEN
Anfang der nächsten Zeile wählen	NÄCHSTE ZEILE
Eingebbare Anzahl von Zeilen am Tabellenende anfügen	N ZEILEN AM ENDE ANFÜGEN
Tabellenformat editieren	FORMAT EDITIEREN
Editier-Funktion im Formularmodus	Softkey
Vorherige Palette wählen	PALETTE
Nächste Palette wählen	PALETTE
Vorherige Aufspannung wählen	AUFSP.
Nächste Aufspannung wählen	AUFSP.

Editier-Funktion im Formularmodus	Softkey
Vorheriges Werkstück wählen	WERKSTÜCK
Nächstes Werkstück wählen	JERKSTÜCK
Auf Palettenebene wechseln	ANSICHT PALETTEN- EBENE
Auf Aufspannungsebene wechseln	ANSICHT AUFSPANN- EBENE
Auf Werkstückebene wechseln	ANSICHT WERKST EBENE
Standardansicht Palette wählen	PALETTE DETAIL PALETTE
Detailansicht Palette wählen	PALETTE DETAIL PALETTE
Standardansicht Aufspannung wählen	AUFSP. DETAIL AUFSP.
Detailansicht Aufspannung wählen	AUFSP. DETAIL AUFSP.
Standardansicht Werkstück wählen	WERKSTÜCK DETAIL WERKSTÜCK
Detailansicht Werkstück wählen	UERKSTÜCK DETAIL UERKSTÜCK
Palette einfügen	PALETTE EINFÜGEN
Aufspannung einfügen	AUFSP. EINFÜGEN
Werkstück einfügen	WERKSTÜCK EINFÜGEN
Palette löschen	PALETTE LÖSCHEN
Aufspannung löschen	AUFSP. LÖSCHEN
Werkstück löschen	WERKSTÜCK LÖSCHEN
Zwischenspeicher löschen	ZWISCHEN- SPEICHER LOSCHEN
Werkzeugoptimierte Bearbeitung	WERKZEUG ORIENT.

Editier-Funktion im Formularmodus	Softkey
Werkstückoptimierte Bearbeitung	WERKSTÜCK ORIENT.
Verbinden bzw. Trennen der Bearbeitungen	UERBUNDEN GETRENNT
Ebene als leer kennzeichnen	FREIER PLATZ
Ebene als unbearbeitet kennzeichnen	ROHTEIL

Paletten-Datei wählen

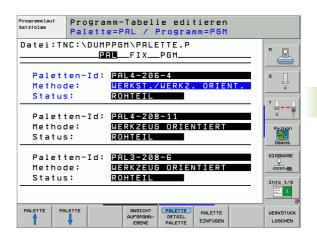
- ▶ In der Betriebsart Programm-Einspeichern/Editieren oder Programmlauf Datei-Verwaltung wählen: Taste PGM MGT drücken
- ▶ Dateien vom Typ .P anzeigen: Softkeys TYP WÄHLEN und ANZEIGEN .P drücken
- ▶ Paletten-Tabelle mit Pfeil-Tasten wählen oder Namen für eine neue Tabelle eingeben
- ► Auswahl mit Taste ENT bestätigen

Paletten-Datei mit Eingabeformular einrichten

Der Palettenbetrieb mit werkzeug- bzw. werkstückorientierter Bearbeitung gliedert sich in die drei Ebenen:

- Palettenebene PAL
- Aufspannungsebene FIX
- Werkstückebene **PGM**

Auf jeder Ebene ist ein Wechsel in die Detailansicht möglich. In der normalen Ansicht können Sie die Bearbeitungsmethode und den Status für die Palette, Aufspannung und Werkstück festlegen. Falls Sie eine vorhandene Paletten-Datei editieren, werden die aktuellen Einträge angezeigt. Verwenden Sie die Detailansicht zum Einrichten der Paletten-Datei.



Richten Sie die Paletten-Datei entsprechend der Maschinenkonfiguration ein. Falls Sie nur eine Aufspannvorrichtung mit mehreren Werkstücken haben, ist es ausreichend eine Aufspannung FIX mit Werkstücken PGM zu definieren. Enthält eine Palette mehrere Aufspannvorrichtungen oder wird eine Aufspannung mehrseitig bearbeitet, müssen Sie eine Palette PAL mit entsprechenden Aufspannungsebenen FIX definieren.

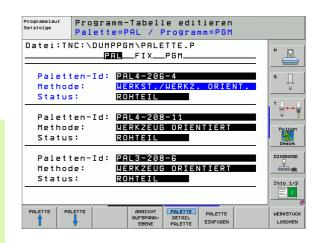
Sie können zwischen der Tabellenansicht und der Formularansicht mit der Taste für die Bildschirm-Aufteilung wechseln.

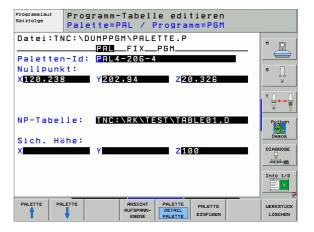
Die grafische Unterstützung der Formulareingabe ist noch nicht verfügbar.

Die verschiedenen Ebenen im Eingabeformular sind mit den jeweiligen Softkeys erreichbar. In der Statuszeile wird im Eingabeformular immer die aktuelle Ebene hell hinterlegt. Wenn Sie mit der Taste für die Bildschirm-Aufteilung in die Tabellendarstellung wechseln, steht der Cursor auf der gleichen Ebene wie in der Formulardarstellung.

Palettenebene einstellen

- Paletten-Id: Der Name der Palette wird angezeigt
- Methode: Sie können die Bearbeitungsmethoden WORKPIECE ORIENTED bzw. TOOL ORIENTED auswählen. Die getroffene Auswahl wird in die dazugehörige Werkstückebene mit übernommen und überschreibt eventuell vorhandene Einträge. In der Tabellenansicht erscheint die Methode WERKSTÜCK ORIENTIERT mit WPO und WERKZEUG ORIENTIERT mit TO.


Der Eintrag TO-/WP-ORIENTED kann nicht über Softkey eingestellt werden. Dieser erscheint nur, wenn in der Werkstück- bzw. Aufspannungsebene unterschiedliche Bearbeitungsmethoden für die Werkstücke eingestellt wurden.


Wird die Bearbeitungsmethode in der Aufspannungsebene eingestellt, werden die Einträge in die Werkstückebene übernommen und eventuell vorhandene überschrieben.

■ Status: Der Sofkey ROHTEIL kennzeichnet die Palette mit den dazugehörigen Aufspannungen bzw. Werkstücken als noch nicht bearbeitet, im Feld Status wird BLANK eingetragen. Verwenden Sie den Softkey FREIER PLATZ, falls Sie die Palette bei der Bearbeitung überspringen möchten, im Feld Status erscheint EMPTY

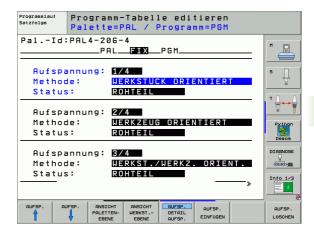
Details in der Palettenebene einrichten

- Paletten-Id: Geben Sie den Namen der Palette ein
- Nullpunkt: Nullpunkt für Palette eingeben
- NP-Tabe11e: Tragen Sie Namen und Pfad der Nullpunkt-Tabelle für das Werkstück ein. Die Eingabe wird in die Aufspannungs- und Werkstückebene übernommen.
- **Sich. Höhe**: (optional): Sichere Position für die einzelnen Achsen bezogen auf die Palette. Die angegebenen Positionen werden nur angefahren, wenn in den NC-Makros diese Werte gelesen und entsprechend programmiert wurden.

Aufspannungsebene einstellen

- Aufspannung: Die Nummer der Aufspannung wird angezeigt, nach dem Schrägstrich wird die Anzahl der Aufspannungen innerhalb dieser Ebene angezeigt
- Methode: Sie können die Bearbeitungsmethoden WORKPIECE ORIENTED bzw. TOOL ORIENTED auswählen. Die getroffene Auswahl wird in die dazugehörige Werkstückebene mit übernommen und überschreibt eventuell vorhandene Einträge. In der Tabellenansicht erscheint der Eintrag WORKPIECE ORIENTED mit WPO und TOOL ORIENTED mit TO.

 Mit dem Softkey VERBINDEN/TRENNEN kennzeichnen Sie Aufspannungen, welche bei werkzeugorientierter Bearbeitung in die Berechnung für den Arbeitsablauf mit eingehen. Verbundene Aufspannungen werden durch einen unterbrochenen Trennungsstrich gekennzeichnet, getrennte Aufspannungen durch eine durchgehende Linie. In der Tabellenansicht werden verbundene Werkstücke in der Spalte METHOD mit CTO



aekennzeichnet.

Der Eintrag TO-/WP-ORIENTATE kann nicht über Softkey eingestellt werden, der erscheint nur, wenn in der Werkstückebene unterschiedliche Bearbeitungsmethoden für die Werkstücke eingestellt wurden.

Wird die Bearbeitungsmethode in der Aufspannungsebene eingestellt, werden die Einträge in die Werkstückebene übernommen und eventuell vorhandene überschrieben.

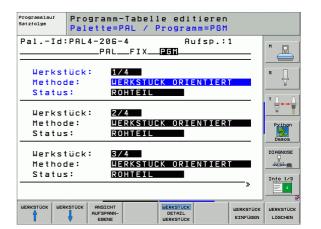
■ Status: Mit dem Softkey ROHTEIL wird die Aufspannung mit den dazugehörigen Werkstücken als noch nicht bearbeitet gekennzeichnet und im Feld Status wird BLANK eingetragen. Verwenden Sie den Softkey FREIER PLATZ, falls Sie die Aufspannung bei der Bearbeitung überspringen möchten, im Feld STATUS erscheint EMPTY

Details in der Aufspannungsebene einrichten

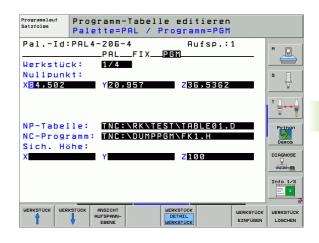
- Aufspannung: Die Nummer der Aufspannung wird angezeigt, nach dem Schrägstrich wird die Anzahl der Aufspannungen innerhalb dieser Ebene angezeigt
- Nullpunkt: Nullpunkt für Aufspannung eingeben
- NP-Tabelle: Tragen Sie Namen und Pfad der Nullpunkt-Tabelle ein, welche für die Bearbeitung des Werkstückes gültig ist. Die Eingabe wird in die Werkstückebene übernommen.
- NC-Makro: Bei werkzeugorientierter Bearbeitung wird das Makro TCTOOLMODE anstelle des normalen Werkzeugwechsel-Makro ausgeführt.
- Sich. Höhe: (optional): Sichere Position für die einzelnen Achsen bezogen auf die Aufspannung

Für die Achsen können Sicherheitspositionen angegeben werden, welche mit SYSREAD FN18 ID510 NR 6 von NC-Makros aus gelesen werden können. Mit SYSREAD FN18 ID510 NR 5 kann ermittelt werden, ob in der Spalte ein Wert programmiert wurde. Die angegebenen Positionen werden nur angefahren, wenn in den NC-Makros diese Werte gelesen und entsprechend programmiert werden

Programmlauf Programm-Tabelle editieren Satzfolge Palette=PAL / Programm=PGM Pal.-Id:PAL4-206-4 P PAL__FIX_ _PGM Aufspannung: 1/4 Nullpunkt: TNC:\RK\TEST\TABLE01.D NP-Tabelle: NC-Makro: Sich. Höhe: -Info 1/3 AUFSP PALETTEN


Werkstückebene einstellen

- Werkstück: Die Nummer des Werkstückes wird angezeigt, nach dem Schrägstrich wird die Anzahl der Werkstücke innerhalb dieser Aufspannungsebene angezeigt
- Methode: Sie können die Bearbeitungsmethoden WORKPIECE ORIENTET bzw. TOOL ORIENTED auswählen. In der Tabellenansicht erscheint der Eintrag WORKPIECE ORIENTED mit WPO und TOOL ORIENTED mit TO.
 - Mit dem Softkey **VERBINDEN/TRENNEN** kennzeichnen Sie Werkstücke, welche bei werkzeugorientierter Bearbeitung in die Berechnung für den Arbeitsablauf miteingehen. Verbundene Werkstücke werden durch einen unterbrochenen Trennungsstrich gekennzeichnet, getrennte Werkstücke durch eine durchgehende Linie. In der Tabellenansicht werden verbundene Werkstücke in der Spalte METHOD mit **CT0** gekennzeichnet.
- Status: Mit dem Sofkey ROHTEIL wird das Werkstück als noch nicht bearbeitet gekennzeichnet und im Feld Status wird BLANK eingetragen. Verwenden Sie den Softkey FREIER PLATZ, falls Sie ein Werkstück bei der Bearbeitung überspringen möchten, im Feld Status erscheint EMPTY


Stellen Sie Methode und Status in der Paletten- bzw. Aufspannungsebene ein, die Eingabe wird für alle dazugehörigen Werkstücke übernommen.

Bei mehreren Werkstückvarianten innerhalb einer Ebene sollten Werkstücke einer Variante nacheinander angegeben werden. Bei werkzeugorientierter Bearbeitung können die Werkstücke der jeweiligen Variante dann mit dem Softkey VERBINDEN/TRENNEN gekennzeichnet und gruppenweise bearbeitet werden.

Details in der Werkstückebene einrichten

- Werkstück: Die Nummer des Werkstückes wird angezeigt, nach dem Schrägstrich wird die Anzahl der Werkstücke innerhalb dieser Aufspannungs- bzw. Palettenebene angezeigt
- Nullpunkt: Nullpunkt für Werkstück eingeben
- NP-Tabelle: Tragen Sie Namen und Pfad der Nullpunkt-Tabelle ein, welche für die Bearbeitung des Werkstückes gültig ist. Falls Sie für alle Werkstücke die gleiche Nullpunkttabelle verwenden, tragen Sie den Namen mit der Pfadangabe in die Paletten- bzw. Aufspannungsebenen ein. Die Angaben werden automatisch in die Werkstückebene übernommen.
- NC-Programm: Geben Sie den Pfad des NC-Programmes an, welches für die Bearbeitung des Werkstücks notwendig ist
- **Sich.** Höhe: (optional): Sichere Position für die einzelnen Achsen bezogen auf das Werkstück. Die angegebenen Positionen werden nur angefahren, wenn in den NC-Makros diese Werte gelesen und entsprechend programmiert wurden.

Ablauf der werkzeugorientierten Bearbeitung

Die TNC führt eine werkzeugorientierte Bearbeitung nur dann durch, wenn bei der Methode WERKZEUG ORIENTIERT gewählt wurde und dadurch der Eintrag TO bzw. CTO in der Tabelle steht.

- Die TNC erkennt durch den Eintrag TO bzw. CTO im Feld Methode, das über diese Zeilen hinweg die optimierte Bearbeitung erfolgen muss.
- Die Palettenverwaltung startet das NC-Programm, welches in der Zeile mit dem Eintrag TO steht
- Das erste Werkstück wird bearbeitet, bis der nächste TOOL CALL ansteht. In einem speziellen Werkzeugwechselmakro wird vom Werkstück weggefahren
- In der Spalte W-STATE wird der Eintrag BLANK auf INCOMPLETE geändert und im Feld CTID wird von der TNC ein Wert in hexadezimaler Schreibweise eingetragen

Der im Feld CTID eingetragene Wert stellt für die TNC eine eindeutige Information für den Bearbeitungsfortschritt dar. Wird dieser Wert gelöscht oder geändert, ist eine weitergehende Bearbeitung oder ein Vorauslauf bzw. Wiedereintritt nicht mehr möglich.

- Alle weiteren Zeilen der Paletten-Datei, die im Feld METHODE die Kennung CTO haben, werden in gleicher Weise abgearbeitet, wie das erste Werkstück. Die Bearbeitung der Werkstücke kann über mehrere Aufspannungen hinweg erfolgen.
- Die TNC führt mit dem nächsten Werkzeug die weiteren Bearbeitungsschritte wieder beginnend ab der Zeile mit dem Eintrag TO aus, wenn sich folgende Situation ergibt:
 - im Feld PAL/PGM der nächsten Zeile würde der Eintrag PAL stehen
 - im Feld METHOD der nächsten Zeile würde der Eintrag TO oder WPO stehen
 - in den bereits abgearbeiteten Zeilen befinden sich unter METHODE noch Einträge, welche nicht den Status EMPTY oder ENDED haben
- Aufgrund des im Feld CTID eingetragenen Wertes wird das NC-Programm an der gespeicherten Stelle fortgesetzt. In der Regel wird bei dem ersten Teil ein Werkzeugwechsel ausgeführt, bei den nachfolgenden Werkstücken unterdrückt die TNC den Werkzeugwechsel
- Der Eintrag im Feld CTID wird bei jedem Bearbeitungsschritt aktualisiert. Wird im NC-Programm ein END PGM oder M02 abgearbeitet, wird ein eventuell vorhandener Eintrag gelöscht und im Feld Bearbeitungs-Status ENDED eingetragen.

Wenn alle Werkstücke innerhalb einer Gruppe von Einträgen mit TO bzw. CTO den Status ENDED haben, werden in der Paletten-Datei die nächsten Zeilen abgearbeitet

Bei einem Satzvorlauf ist nur eine werkstückorientierte Bearbeitung möglich. Nachfolgende Teile werden nach der eingetragenen Methode bearbeitet.

Der im Feld CT-ID eingetragene Wert bleibt maximal 2 Woche lang erhalten. Innerhalb dieser Zeit kann die Bearbeitung an der gespeicherten Stelle fortgesetzt werden. Danach wird der Wert gelöscht, um zu große Datenmengen auf der Festplatte zu vermeiden.

Der Wechsel der Betriebsart ist nach dem Abarbeiten einer Gruppe von Einträgen mit TO bzw. CTO erlaubt

Folgende Funktionen sind nicht erlaubt:

- Verfahrbereichsumschaltung
- PLC-Nullpunktverschieben
- M118

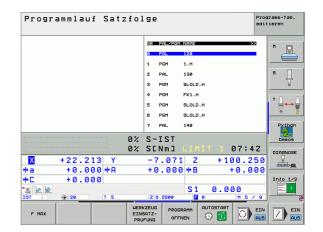
Paletten-Datei verlassen

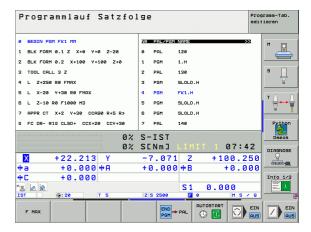
- Datei-Verwaltung wählen: Taste PGM MGT drücken
- ▶ Anderen Datei-Typ wählen: Softkey TYP WÄHLEN und Softkey für den gewünschten Datei-Typ drücken, z.B. ANZEIGEN .H
- ▶ Gewünschte Datei wählen

Paletten-Datei abarbeiten

Im Maschinen-Parameter 7683 legen Sie fest, ob die Paletten-Tabelle satzweise oder kontinuierlich abgearbeitet wird (siehe "Allgemeine Anwenderparameter" auf Seite 658).

Sofern über den Maschinen-Parameter 7246 die Werkzeug-Einsatzprüfung aktiviert ist, können Sie die Werkzeug-Standzeit für alle in einer Palette verwendeten Werkzeuge überprüfen (siehe "Werkzeug-Einsatzprüfung" auf Seite 599).


- ▶ In der Betriebsart Programmlauf Satzfolge oder Programmlauf Einzelsatz Datei-Verwaltung wählen: Taste PGM MGT drücken
- ▶ Dateien vom Typ .P anzeigen: Softkeys TYP WÄHLEN und ANZEIGEN .P drücken
- ▶ Paletten-Tabelle mit Pfeil-Tasten wählen, mit Taste ENT bestätigen
- ▶ Paletten-Tabelle abarbeiten: Taste NC-Start drücken, die TNC arbeitet die Paletten ab wie im Maschinen-Parameter 7683 festgelegt



Bildschirm-Aufteilung beim Abarbeiten der Paletten-Tabelle

Wenn Sie den Programm-Inhalt und den Inhalt der Paletten-Tabelle gleichzeitig sehen wollen, dann wählen Sie die Bildschirm-Aufteilung PROGRAMM + PALETTE. Während des Abarbeitens stellt die TNC dann auf der linken Bildschirmseite das Programm und auf der rechten Bildschirmseite die Palette dar. Um den Programm-Inhalt vor dem Abarbeiten ansehen zu können gehen Sie wie folgt vor:

- ▶ Paletten-Tabelle wählen
- Mit Pfeiltasten Programm wählen, das Sie kontrollieren wollen
- Softkey PROGRAMM ÖFFNEN drücken: Die TNC zeigt das gewählte Programm am Bildschirm an. Mit den Pfeiltasten können Sie jetzt im Programm blättern
- ▶ Zurück zur Paletten-Tabelle: Drücken Sie den Softkey END PGM

5

Programmieren: Werkzeuge

5.1 Werkzeugbezogene Eingaben

Vorschub F

Der Vorschub **F** ist die Geschwindigkeit in mm/min (inch/min), mit der sich der Werkzeugmittelpunkt auf seiner Bahn bewegt. Der maximale Vorschub kann für jede Maschinenachse unterschiedlich sein und ist durch Maschinen-Parameter festgelegt.

Eingabe

Den Vorschub können Sie im **T**-Satz (Werkzeug-Aufruf) und in jedem Positioniersatz eingeben (siehe "Werkzeugbewegung für eine Bearbeitung programmieren" auf Seite 225). In Millimeter-Programmen geben Sie den Vorschub in der Einheit mm/min ein, in Inch-Programmen aus gründen der Auflösung in 1/10 inch/min.

Eilgang

Für den Eilgang geben Sie 600 ein.

Wirkungsdauer

Der mit einem Zahlenwert programmierte Vorschub gilt bis zu dem Satz, in dem ein neuer Vorschub programmiert wird. Ist der neue Vorschub **600** (Eilgang), gilt nach dem nächsten Satz mit **601** wieder der letzte mit Zahlenwert programmierte Vorschub.

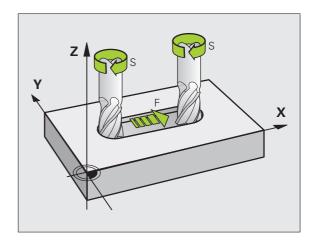
Änderung während des Programmlaufs

Während des Programmlaufs ändern Sie den Vorschub mit dem Override-Drehknopf F für den Vorschub.

Spindeldrehzahl S

Die Spindeldrehzahl S geben Sie in Umdrehungen pro Minute (U/min) in einem beliebigen Satz ein (z.B. beim Werkzeug-Aufruf).

Programmierte Änderung


Im Bearbeitungs-Programm können Sie die Spindeldrehzahl mit einem S-Satz ändern:

- ▶ Spindeldrehzahl programmieren: Taste S auf der Alpha-Tastatur drücken
- ▶ Neue Spindeldrehzahl eingeben

Änderung während des Programmlaufs

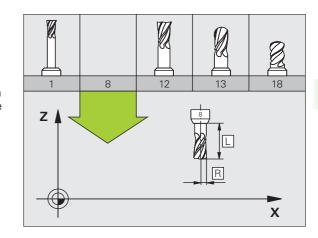
Während des Programmlaufs ändern Sie die Spindeldrehzahl mit dem Override-Drehknopf S für die Spindeldrehzahl.

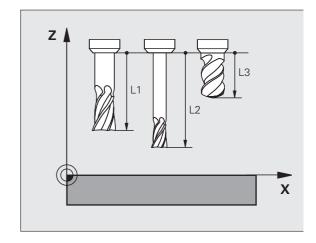
5.2 Werkzeug-Daten

Voraussetzung für die Werkzeug-Korrektur

Üblicherweise programmieren Sie die Koordinaten der Bahnbewegungen so, wie das Werkstück in der Zeichnung bemaßt ist. Damit die TNC die Bahn des Werkzeug-Mittelpunkts berechnen, also eine Werkzeug-Korrektur durchführen kann, müssen Sie Länge und Radius zu iedem eingesetzten Werkzeug eingeben.

Werkzeug-Daten können Sie entweder mit der Funktion **699** direkt im Programm oder separat in Werkzeug-Tabellen eingeben. Wenn Sie die Werkzeug-Daten in Tabellen eingeben, stehen weitere werkzeugspezifische Informationen zur Verfügung. Die TNC berücksichtigt alle eingegebenen Informationen, wenn das Bearbeitungs-Programm läuft.


Werkzeug-Nummer, Werkzeug-Name


Jedes Werkzeug ist durch eine Nummer zwischen 0 und 254 gekennzeichnet. Wenn Sie mit Werkzeug-Tabellen arbeiten, können Sie höhere Nummern verwenden und zusätzlich Werkzeug-Namen vergeben. Werkzeug-Namen dürfen maximal aus 16 Zeichen bestehehen.

Das Werkzeug mit der Nummer 0 ist als Null-Werkzeug festgelegt und hat die Länge L=0 und den Radius R=0. In Werkzeug-Tabellen sollten Sie das Werkzeug T0 ebenfalls mit L=0 und R=0 definieren.

Werkzeug-Länge L

Die Werkzeug-Länge L sollten Sie grundsätzlich als absolute Länge bezogen auf den Werkzeug-Bezugspunkt eingeben. Die TNC benötigt für zahlreiche Funktionen in Verbindung mit Mehrachsbearbeitung zwingend die Gesamtlänge des Werkzeugs.

Werkzeug-Radius R

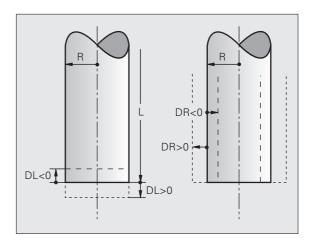
Den Werkzeug-Radius R geben Sie direkt ein.

Delta-Werte für Längen und Radien

Delta-Werte bezeichnen Abweichungen für die Länge und den Radius von Werkzeugen.

Ein positiver Delta-Wert steht für ein Aufmaß (DL, DR, DR2>0). Bei einer Bearbeitung mit Aufmaß geben Sie den Wert für das Aufmaß beim Programmieren des Werkzeug-Aufrufs mit T ein.

Ein negativer Delta-Wert bedeutet ein Untermaß (DL, DR, DR2<0). Ein Untermaß wird in der Werkzeug-Tabelle für den Verschleiß eines Werkzeugs eingetragen.


Delta-Werte geben Sie als Zahlenwerte ein, in einem T-Satz können Sie den Wert auch mit einem Q-Parameter übergeben.

Eingabebereich: Delta-Werte dürfen maximal ± 99.999 mm betragen.

Delta-Werte aus der Werkzeug-Tabelle beeinflussen die grafische Darstellung des Werkzeuges. Die Darstellung des Werkstückes in der Simulation bleibt gleich.

Delta-Werte aus dem T-Satz verändern in der Simulation die dargestellte Größe des Werkstückes. Die simulierte Werkzeuggröße bleibt gleich.

Werkzeug-Daten ins Programm eingeben

Nummer, Länge und Radius für ein bestimmtes Werkzeug legen Sie im Bearbeitungs-Programm einmal in einem **G99**-Satz fest:

▶ Werkzeug-Definition wählen: Taste TOOL DEF drücken

- ▶ Werkzeug-Nummer: Mit der Werkzeug-Nummer ein Werkzeug eindeutig kennzeichnen
- ▶ Werkzeug-Länge: Korrekturwert für die Länge
- ▶ Werkzeug-Radius: Korrekturwert für den Radius

Während des Dialogs können Sie den Wert für die Länge und den Radius direkt in das Dialogfeld einfügen: Gewünschten Achs-Softkey drücken.

Beispiel

N40 G99 T5 L+10 R+5 *

Werkzeug-Daten in die Tabelle eingeben

In einer Werkzeug-Tabelle können Sie bis zu 30000 Werkzeuge definieren und deren Werkzeug-Daten speichern. Die Anzahl der Werkzeuge, die die TNC beim Öffnen einer neuen Tabelle anlegt, definieren Sie mit dem Maschinen-Parameter 7260. Beachten Sie auch die Editier-Funktionen weiter unten in diesem Kapitel. Um zu einem Werkzeug mehrere Korrekturdaten eingeben zu können (Werkzeug-Nummer indizieren), setzen Sie den Maschinen-Parameter 7262 ungleich 0.

Sie müssen die Werkzeug-Tabellen verwenden, wenn

- Sie indizierte Werkzeuge, wie z.B. Stufenbohrer mit mehreren Längenkorrekturen, einsetzen wollen (Seite 200)
- Ihre Maschine mit einem automatischen Werkzeug-Wechsler ausgerüstet ist
- Sie mit dem TT 130 Werkzeuge automatisch vermessen wollen, siehe Benutzer-Handbuch Tastsystem-Zyklen, Kapitel 4
- Sie mit dem Bearbeitungs-Zyklus G122 nachräumen wollen (siehe "RAEUMEN (Zyklus G122)" auf Seite 408)
- Sie mit den Bearbeitungs-Zyklen G251 bis G254 arbeiten wollen (siehe "RECHTECKTASCHE (Zyklus G251)" auf Seite 364)
- Sie mit automatischer Schnittdaten-Berechnung arbeiten wollen

Werkzeug-Tabelle: Standard Werkzeug-Daten

Abk.	Eingaben	Dialog
Т	Nummer, mit der das Werkzeug im Programm aufgerufen wird (z.B. 5, indiziert: 5.2)	-
NAME	Name, mit dem das Werkzeug im Programm aufgerufen wird	Werkzeug-Name?
L	Korrekturwert für die Werkzeug-Länge L	Werkzeug-Länge?
R	Korrekturwert für den Werkzeug-Radius R	Werkzeug-Radius R?
R2	Werkzeug-Radius R2 für Ecken-Radiusfräser (nur für dreidimensionale Radiuskorrektur oder grafische Darstellung der Bearbeitung mit Radiusfräser)	Werkzeug-Radius R2?
DL	Delta-Wert Werkzeug-Länge L	Aufmaß Werkzeug-Länge?
DR	Delta-Wert Werkzeug-Radius R	Aufmaß Werkzeug-Radius?
DR2	Delta-Wert Werkzeug-Radius R2	Aufmaß Werkzeug-Radius R2?
LCUTS	Schneidenlänge des Werkzeugs für Zyklus G122	Schneidenlänge in der Wkz-Achse?
ANGLE	Maximaler Eintauchwinkel des Werkzeug bei pendelnder Eintauchbewegung für Zyklen G122 , G208 und G251 bis G254	Maximaler Eintauchwinkel?
TL	Werkzeug-Sperre setzen (TL : für T ool L ocked = engl. Werkzeug gesperrt)	Wkz gesperrt? Ja = ENT / Nein = NO ENT

Schwester-Werkzeug? Max. Standzeit? Maximale Standzeit bei TOOL CALL? Aktuelle Standzeit?
Maximale Standzeit bei TOOL CALL?
Aktuelle Standzeit?
Verkzeug-Kommentar?
PLC-Status?
PLC-Wert?
Werkzeugtyp für Platztabelle?
Maximaldrehzahl [1/min]?
Verkzeug abheben Y/N ?
vert?
Zusätzl. Kinematikbeschreibung?
Spitzenwinkel (Typ DRILL+CSINK)?
) N

Abk.	Eingaben	Dialog
PITCH	Gewindesteigung des Werkzeuges (Momentan noch ohne Funktion)	Gewindesteigung (nur WZ-Typ TAP)?
AFC	Regeleinstellung für die adaptive Vorschubregelung AFC, die Sie in der Spalte NAME der Tabelle AFC.TAB festgelegt haben. Regelstrategie per Softkey AFC REGELEIN. ZUWEISEN (3. Softkey-Leiste) übernehmen	Regelstrategie?

Werkzeug-Tabelle: Werkzeug-Daten für die automatische Werkzeug-Vermessung

Beschreibung der Zyklen zur automatischen Werkzeug-Vermessung: Siehe Benutzer-Handbuch Tastsystem-Zyklen, Kapitel 4.

Eingaben	Dialog
Anzahl der Werkzeug-Schneiden (max. 20 Schneiden)	Anzahl der Schneiden?
Zulässige Abweichung von der Werkzeug-Länge L für Verschleiß- Erkennung. Wird der eingegebene Wert überschritten, sperrt die TNC das Werkzeug (Status L). Eingabebereich: 0 bis 0,9999 mm	Verschleiß-Toleranz: Länge?
Zulässige Abweichung vom Werkzeug-Radius R für Verschleiß- Erkennung. Wird der eingegebene Wert überschritten, sperrt die TNC das Werkzeug (Status L). Eingabebereich: 0 bis 0,9999 mm	Verschleiß-Toleranz: Radius?
Schneid-Richtung des Werkzeugs für Vermessung mit drehendem Werkzeug	Schneid-Richtung (M3 = -)?
Längenvermessung: Versatz des Werkzeugs zwischen Stylus- Mitte und Werkzeug-Mitte. Voreinstellung: Werkzeug-Radius R (Taste NO ENT erzeugt R)	Werkzeug-Versatz Radius?
Radiusvermessung: zusätzlicher Versatz des Werkzeugs zu MP6530 zwischen Stylus-Oberkante und Werkzeug-Unterkante. Voreinstellung: 0	Werkzeug-Versatz Länge?
Zulässige Abweichung von der Werkzeug-Länge L für Bruch- Erkennung. Wird der eingegebene Wert überschritten, sperrt die TNC das Werkzeug (Status L). Eingabebereich: 0 bis 0,9999 mm	Bruch-Toleranz: Länge?
Zulässige Abweichung vom Werkzeug-Radius R für Bruch- Erkennung. Wird der eingegebene Wert überschritten, sperrt die TNC das Werkzeug (Status L). Eingabebereich: 0 bis 0,9999 mm	Bruch-Toleranz: Radius?
	Anzahl der Werkzeug-Schneiden (max. 20 Schneiden) Zulässige Abweichung von der Werkzeug-Länge L für Verschleiß-Erkennung. Wird der eingegebene Wert überschritten, sperrt die TNC das Werkzeug (Status L). Eingabebereich: 0 bis 0,9999 mm Zulässige Abweichung vom Werkzeug-Radius R für Verschleiß-Erkennung. Wird der eingegebene Wert überschritten, sperrt die TNC das Werkzeug (Status L). Eingabebereich: 0 bis 0,9999 mm Schneid-Richtung des Werkzeugs für Vermessung mit drehendem Werkzeug Längenvermessung: Versatz des Werkzeugs zwischen Stylus-Mitte und Werkzeug-Mitte. Voreinstellung: Werkzeug-Radius R (Taste NO ENT erzeugt R) Radiusvermessung: zusätzlicher Versatz des Werkzeugs zu MP6530 zwischen Stylus-Oberkante und Werkzeug-Unterkante. Voreinstellung: 0 Zulässige Abweichung von der Werkzeug-Länge L für Bruch-Erkennung. Wird der eingegebene Wert überschritten, sperrt die TNC das Werkzeug (Status L). Eingabebereich: 0 bis 0,9999 mm Zulässige Abweichung vom Werkzeug-Radius R für Bruch-Erkennung. Wird der eingegebene Wert überschritten, sperrt die

Werkzeug-Tabelle: Werkzeug-Daten für automatische Drehzahl-/ Vorschub-Berechnung

Abk.	Eingaben	Dialog
ТҮР	Werkzeugtyp: Softkey TYP ZUWEISEN (3. Softkey-Leiste); Die TNC blendet ein Fenster ein, in dem Sie den Werkzeugtyp wählen können. Nur die Werkzeug-Typen DRILL und MILL sind momentan mit Funktionen belegt	Werkzeugtyp?
TMAT	Werkzeug-Schneidstoff: Softkey SCHNEIDSTOFF ZUWEISEN (3. Softkey-Leiste); Die TNC blendet ein Fenster ein, in dem Sie den Schneidstoff wählen können	Werkzeug-Schneidstoff?
CDT	Schnittdaten-Tabelle: Softkey CDT ZUWEISEN (3. Softkey- Leiste); Die TNC blendet ein Fenster ein, in dem Sie die Schnittdaten-Tabelle wählen können	Name Schnittdaten-Tabelle?

Werkzeug-Tabelle: Werkzeug-Daten für schaltende 3D-Tastsysteme (nur wenn Bit1 in MP7411 = 1 gesetzt ist, siehe auch Benutzer-Handbuch Tastsystem-Zyklen)

Abk.	Eingaben	Dialog
CAL-0F1	Die TNC legt beim Kalibrieren den Mittenversatz in der Hauptachse eines 3D-Tasters in dieser Spalte ab, wenn im Kalibriermenü eine Werkzeugnummer angegeben ist	Taster-Mittenversatz Hauptachse?
CAL-0F2	Die TNC legt beim Kalibrieren den Mittenversatz in der Nebenachse eines 3D-Tasters in dieser Spalte ab, wenn im Kalibriermenü eine Werkzeugnummer angegeben ist	Taster-Mittenversatz Nebenachse?
CAL-ANG	Die TNC legt beim Kalibrieren den Spindelwinkel ab, bei dem ein 3D-Tasters kalibriert wurde, wenn im Kalibriermenü eine Werkzeugnummer angegeben ist	Spindelwinkel beim Kalibrieren?

Werkzeug-Tabellen editieren

Die für den Programmlauf gültige Werkzeug-Tabelle hat den Datei-Namen TOOL.T. TOOL T muss im Verzeichnis TNC:\ gespeichert sein und kann nur in einer Maschinen-Betriebsart editiert werden. Werkzeug-Tabellen, die Sie archivieren oder für den Programm-Test einsetzen wollen, geben Sie einen beliebigen anderen Datei-Namen mit der Endung .T .

Werkzeug-Tabelle TOOL.T öffnen:

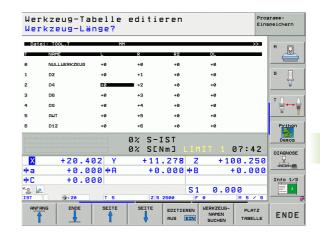
▶ Beliebige Maschinen-Betriebsart wählen

► Werkzeug-Tabelle wählen: Softkey WERKZEUG TABELLE drücken

► Softkey EDITIEREN auf "EIN" setzen

Beliebige andere Werkzeug-Tabelle öffnen

▶ Betriebsart Programm-Einspeichern/Editieren wählen



- ▶ Datei-Verwaltung aufrufen
- Wahl der Datei-Typen anzeigen: Softkey TYPE WÄHLEN drücken
- Dateien vom Typ .T anzeigen: Softkey ZEIGE .T drücken
- Wählen Sie eine Datei oder geben einen neuen Dateinamen ein. Bestätigen Sie mit der Taste ENT oder mit dem Softkey WÄHLEN

Wenn Sie eine Werkzeug-Tabelle zum Editieren geöffnet haben, dann können Sie das Hellfeld in der Tabelle mit den Pfeiltasten oder mit den Softkeys auf jede beliebige Position bewegen. An einer beliebigen Position können Sie die gespeicherten Werte überschreiben oder neue Werte eingeben. Zusätzliche Editierfunktionen entnehmen Sie bitte aus nachfolgender Tabelle.

Wenn die TNC nicht alle Positionen in der Werkzeug-Tabelle gleichzeitig anzeigen kann, zeigt der Balken oben in der Tabelle das Symbol ">>" bzw. "<<".

Editierfunktionen für Werkzeug-Tabellen	Softkey
Tabellen-Anfang wählen	ANFANG
Tabellen-Ende wählen	ENDE
Vorherige Tabellen-Seite wählen	SEITE
Nächste Tabellen-Seite wählen	SEITE
Werkzeug-Namen in der Tabelle suchen	WERKZEUG- NAMEN SUCHEN

Editierfunktionen für Werkzeug-Tabellen	Softkey
Informationen zum Werkzeug spaltenweise darstellen oder alle Informationen zu einem Werkzeug auf einer Bildschirmseite darstellen	LISTE FORMULAR
Sprung zum Zeilenanfang	ZEILEN- ANFANG
Sprung zum Zeilenende	ZEILEN- ENDE
Hell hinterlegtes Feld kopieren	AKTUELLEN WERT KOPIEREN
Kopiertes Feld einfügen	KOPIERTEN WERT EINFÜGEN
Eingebbare Anzahl von Zeilen (Werkzeugen) am Tabellenende anfügen	N ZEILEN AM ENDE ANFÜGEN
Zeile mit indizierter Werkzeug-Nummer hinter der aktuellen Zeile einfügen. Funktion ist nur aktiv, wenn Sie für ein Werkzeug mehrere Korrekturdaten ablegen dürfen (Maschinen-Parameter 7262 ungleich 0). Die TNC fügt hinter dem letzten vorhandenen Index eine Kopie der Werkzeug-Daten ein und erhöht den Index um 1. Anwendung: z.B. Stufenbohrer mit mehreren Längenkorrekturen	ZEILE EINFÜGEN
Aktuelle Zeile (Werkzeug) löschen	ZEILE LÖSCHEN
Platznummern anzeigen / nicht anzeigen	PLATZ-NR. [ANZEIGEN] AUSBLEND.
Alle Werkzeuge anzeigen / nur die Werkzeuge anzeigen, die in der Platz-Tabelle gespeichert sind	WERKZEUGE ANZEIGEN AUSBLEND.

Werkzeug-Tabelle verlassen

Datei-Verwaltung aufrufen und eine Datei eines anderen Typs wählen, z.B. ein Bearbeitungs-Programm

Hinweise zu Werkzeug-Tabellen

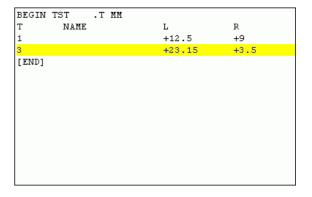
Über den Maschinen-Parameter 7266.x legen Sie fest, welche Angaben in einer Werkzeug-Tabelle eingetragen werden können und in welcher Reihenfolge sie aufgeführt werden.

Sie können einzelne Spalten oder Zeilen einer Werkzeug-Tabelle mit dem Inhalt einer anderen Datei überschreiben. Voraussetzungen:

- Die Ziel-Datei muss bereits existieren
- Die zu kopierende Datei darf nur die zu ersetzenden Spalten (Zeilen) enthalten

Einzelne Spalten oder Zeilen kopieren Sie mit dem Softkey FELDER ERSETZEN (siehe "Einzelne Datei kopieren" auf Seite 122).

Einzelne Werkzeugdaten von einem externen PC aus überschreiben


Eine besonders komfortable Möglichkeit, beliebige Werkzeugdaten von einem externen PC aus zu überschreiben, bietet die HEIDENHAIN Datenübertragungs-Software TNCremoNT (siehe "Software für Datenübertragung" auf Seite 631). Dieser Anwendungsfall tritt dann ein, wenn Sie Werkzeugdaten auf einem externen Voreinstellgerät ermitteln und anschließend zur TNC übertragen wollen. Beachten Sie folgende Vorgehensweise:

- ▶ Werkzeug-Tabelle TOOL.T auf der TNC kopieren, z.B. nach TST.T
- ▶ Datenübertragungs-Software TNCremoNT auf dem PC starten
- ▶ Verbindung zur TNC erstellen
- ► Kopierte Werkzeug-Tabelle TST.T zum PC übertragen
- Datei TST.T mit einem beliebigen Texteditor auf die Zeilen und Spalten reduzieren, die geändert werden sollen (siehe Bild). Darauf achten, dass die Kopfzeile nicht verändert wird und die Daten immer bündig in der Spalte stehen. Die Wekzeug-Nummer (Spalte T) muss nicht fortlaufend sein
- ▶ In der TNCremoNT den Menüpunkt <Extras> und <TNCcmd> wählen: TNCcmd wird gestartet
- ▶ Um die Datei TST.T zur TNC zu übertragen, folgenden Befehl eingeben und mit Return ausführen (siehe Bild): put tst.t tool.t /m

Bei der Übrtragung werden nur die Werkzeug-Daten überschrieben, die in der Teildatei (z.B. TST.T) definiert sind. Alle anderen Werkzeug-Daten der Tabelle TOOL.T bleiben unverändert.

Wie Sie Werkzeug-Tabellen über die TNC-Datei-Verwaltung kopieren können in der Datei-Verwaltung beschrieben (siehe "Tabelle kopieren" auf Seite 124).

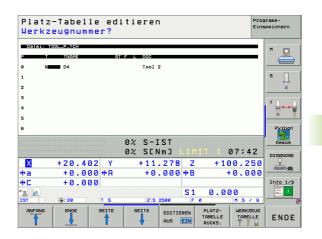
Platz-Tabelle für Werkzeug-Wechsler

Der Maschinen-Hersteller passt den Funktionsumfang der Platz-Tabelle an Ihre Maschine an. Maschinenhandbuch beachten!

Für den automatischen Werkzeugwechsel benötigen Sie die Platz-Tabelle TOOL_P.TCH. Die TNC verwaltet mehrere Platz-Tabellen mit beliebigen Dateinamen. Die Platz-Tabelle, die Sie für den Programmlauf aktivieren wollen, wähle-n Sie in einer Programmlauf-Betriebsart über die Datei-Verwaltung aus (Status M). Um in einer Platztabelle mehrere Magazine verwalten zu können (Platz-Nummer indizieren), setzen Sie die Maschinen-Parameter 7261.0 bis 7261.3 ungleich 0.

Die TNC kann bis zu **9999 Magazinplätze** in der Platz-Tabelle verwalten

Platz-Tabelle in einer Programmlauf-Betriebsart editieren


► Werkzeug-Tabelle wählen: Softkey WERKZEUG TABELLE drücken

▶ Platz-Tabelle wählen: Softkey PLATZ TABELLE wählen

Softkey EDITIEREN auf EIN setzen, kann ggf. an Ihrer Maschine nicht nötig bzw. möglich sein: Maschinenhandbuch beachten

HEIDENHAIN iTNC 530 203

Platz-Tabelle in der Betriebsart Programm-Einspeichern/ Editieren wählen

- ▶ Datei-Verwaltung aufrufen
- ▶ Wahl der Datei-Typen anzeigen: Softkey TYPE WÄHLEN drücken
- ▶ Dateien vom Typ .TCH anzeigen: Softkey TCH FILES drücken (zweite Softkey-Leiste)
- ▶ Wählen Sie eine Datei oder geben einen neuen Dateinamen ein. Bestätigen Sie mit der Taste ENT oder mit dem Softkey WÄHLEN

Abk.	Eingaben	Dialog
P	Platz-Nummer des Werkzeugs im Werkzeug-Magazin	-
T	Werkzeug-Nummer	Werkzeug-Nummer?
ST	Werkzeug ist Sonderwerkzeug (ST : für S pecial T ool = engl. Sonderwerkzeug); wenn Ihr Sonderwerkzeug Plätze vor und hinter seinem Platz blokkiert, dann sperren Sie den entsprechenden Platz in der Spalte L (Status L)	Sonderwerkzeug?
F	Werkzeug immer auf gleichen Platz im Magazin zurückwechseln (F : für F ixed = engl. festgelegt)	Festplatz? Ja = ENT / Nein = NO ENT
L	Platz sperren (L : für L ocked = engl. gesperrt, siehe auch Spalte ST)	Platz gesperrt Ja = ENT / Nein = NO ENT
PLC	Information, die zu diesem Werkzeug-Platz an die PLC übertragen werden soll	PLC-Status?
TNAME	Anzeige des Werkzeugnamen aus TOOL.T	-
DOC	Anzeige des Kommentar zum Werkzeug aus TOOL.T	-
РТҮР	Werkzeugtyp. Funktion wird vom Maschinenhersteller definiert. Maschinendokumentation beachten	Werkzeugtyp für Platztabelle?
P1 P5	Funktion wird vom Maschinenhersteller definiert. Maschinendokumentation beachten	Wert?
RSV	Platz-Reservierung für Flächenmagazin	Platz reserv.: Ja=ENT/ Nein = NOENT
LOCKED_ABOVE	Flächenmagazin: Platz oberhalb sperren	Platz oben sperren?
LOCKED_BELOW	Flächenmagazin: Platz unterhalb sperren	Platz unten sperren?
LOCKED_LEFT	Flächenmagazin: Platz links sperren	Platz links sperren?
LOCKED_RIGHT	Flächenmagazin: Platz rechts sperren	Platz rechts sperren?

Editierfunktionen für Platz-Tabellen	Softkey
Tabellen-Anfang wählen	ANFANG
Tabellen-Ende wählen	ENDE
Vorherige Tabellen-Seite wählen	SEITE
Nächste Tabellen-Seite wählen	SEITE
Platz-Tabelle rücksetzen	PLATZ- TABELLE RÜCKS.
Spalte Werkzeug-Nummer T rücksetzen	RÜCKS. SPALTE T
Sprung zum Anfang der nächsten Zeile	NACHSTE ZEILE
Spalte rücksetzen in Grundzustand. Gilt nur für Spalten RSV, LOCKED_ABOVE, LOCKED_BELOW, LOCKED_LEFT und LOCKED_RIGHT	SPALTE ZURÜCK- SETZEN

Werkzeug-Daten aufrufen

Einen Werkzeug-Aufruf **T** im Bearbeitungs-Programm programmieren Sie mit folgenden Angaben:

▶ Werkzeug-Aufruf mit Taste TOOL CALL wählen

- ▶ Werkzeug-Nummer: Nummer oder Name des Werkzeugs eingeben. Das Werkzeug haben Sie zuvor in einem G99-Satz oder in der Werkzeug-Tabelle festgelegt. Einen Werkzeug-Namen setzt die TNC automatisch in Anführungszeichen. Namen beziehen sich auf einen Eintrag in der aktiven Werkzeug-Tabelle TOOL.T. Um ein Werkzeug mit anderen Korrekturwerten aufzurufen, geben Sie den in der Werkzeug-Tabelle definierten Index nach einem Dezimalpunkt mit ein
- ► Spindelachse parallel X/Y/Z: Werkzeugachse eingeben
- ▶ Spindeldrehzahl S: Spindeldrehzahl direkt eingeben, oder von der TNC berechnen lassen, wenn Sie mit Schnittdaten-Tabellen arbeiten. Drücken Sie dazu den Softkey S AUTOM. BERECHNEN. Die TNC begrenzt die Spindeldrehzahl auf den maximalen Wert, der in Maschinen-Parameter 3515 festgelegt ist. Alternativ können Sie eine Schnittgeschwindigkeit Vc [m/min] definieren. Drücken Sie dazu den Softkey VC
- ▶ Vorschub F: Vorschub direkt eingeben, oder von der TNC berechnen lassen, wenn Sie mit Schnittdaten-Tabellen arbeiten. Drücken Sie dazu den Softkey F AUTOM. BERECHNEN. Die TNC begrenzt den Vorschub auf den maximalen Vorschub der "langsamsten Achse" (in Maschinen-Parameter 1010 festgelegt). F wirkt solange, bis Sie in einem Positioniersatz oder in einem T-Satz einen neuen Vorschub programmieren
- Aufmaß Werkzeug-Länge DL: Delta-Wert für die Werkzeug-Länge
- ▶ Aufmaß Werkzeug-Radius DR: Delta-Wert für den Werkzeug-Radius
- Aufmaß Werkzeug-Radius DR2: Delta-Wert für den Werkzeug-Radius 2

Beispiel: Werkzeug-Aufruf

Aufgerufen wird Werkzeug Nummer 5 in der Werkzeugachse Z mit der Spindeldrehzahl 2500 U/min und einem Vorschub von 350 mm/min. Das Aufmaß für die Werkzeug-Länge und den Werkzeug-Radius 2 betragen 0,2 bzw. 0,05 mm, das Untermaß für den Werkzeug-Radius 1 mm.

N20 T 5.2 G17 S2500 DL+0.2 DR-1

Das D vor L und R steht für Delta-Wert.

i

Vorauswahl bei Werkzeug-Tabellen

Wenn Sie Werkzeug-Tabellen einsetzen, dann treffen Sie mit einem **G51**-Satz eine Vorauswahl für das nächste einzusetzende Werkzeug. Dazu geben Sie die Werkzeug-Nummer bzw. einen Q-Parameter ein, oder einen Werkzeug-Namen in Anführungszeichen.

Werkzeugwechsel

Der Werkzeugwechsel ist eine maschinenabhängige Funktion. Maschinenhandbuch beachten!

Werkzeugwechsel-Position

Die Werkzeugwechsel-Position muss kollisionsfrei anfahrbar sein. Mit den Zusatzfunktionen M91 und M92 können Sie eine maschinenfeste Wechselposition anfahren. Wenn Sie vor dem ersten Werkzeug-Aufruf T0 programmieren, dann verfährt die TNC den Einspannschaft in der Spindelachse auf eine Position, die von der Werkzeug-Länge unabhängig ist.

Manueller Werkzeugwechsel

Vor einem manuellen Werkzeugwechsel wird die Spindel gestoppt und das Werkzeug auf die Werkzeugwechsel-Position gefahren:

- ► Werkzeugwechsel-Position programmiert anfahren
- Programmlauf unterbrechen, siehe "Bearbeitung unterbrechen", Seite 592
- ► Werkzeug wechseln
- Programmlauf fortsetzen, siehe "Programmlauf nach einer Unterbrechung fortsetzen", Seite 595

Automatischer Werkzeugwechsel

Beim automatischen Werkzeugwechsel wird der Programmlauf nicht unterbrochen. Bei einem Werkzeug-Aufruf mit **T** wechselt die TNC das Werkzeug aus dem Werkzeug-Magazin ein.

HEIDENHAIN iTNC 530 207

Automatischer Werkzeugwechsel beim Überschreiten der Standzeit: M101

M101 ist eine maschinenabhängige Funktion. Maschinenhandbuch beachten!

Ein automatischer Werkzeugwechsel mit aktiver Radiuskorrektur ist nicht möglich, wenn an Ihrer Maschine für den Werkzeugwechsel ein NC-Wechselprogramm verwendet wird. Maschinenhandbuch beachten!

Wenn die Standzeit eines Werkzeugs TIME1 erreicht, wechselt die TNC automatisch ein Schwester-Werkzeug ein. Dazu aktivieren Sie am Programm-Anfang die Zusatzfunktion M101. Die Wirkung von M101 können Sie mit M102 aufheben.

Die Nummer des einzuwechslenden Schwester-Werkzeuges tragen Sie in der Spalte RT der Werkzeug-Tabelle ein. Ist dort keine Werkzeug-Nummer eingetragen, dann wechselt die TNC ein Werkzeug ein, das denselben Namen hat wie das momentan aktive. Die TNC startet die Suche nach dem Schwester-Werkzeug immer am Anfang der Werkzeug-Tabelle, wechselt also immer das erste Werkzeug ein, das vom Tabellenanfang gesehen zu finden ist.

Der automatische Werkzeugwechsel erfolgt

- nach dem nächsten NC-Satz nach Ablauf der Standzeit, oder
- spätestens eine Minute nach Ablauf der Standzeit (Berechnung erfolgt für 100%-Potentiometerstellung. Gilt nur, wenn der NC-Satz nicht länger als eine Minute verfährt, ansonsten erfolgt der Wechsel nachdem der NC-Satz beendet ist

Läuft die Standzeit bei aktivem M120 (Look Ahead) ab, so wechselt die TNC das Werkzeug erst nach dem Satz ein, in dem Sie die Radiuskorrektur mit einem G40-Satz aufgehoben haben.

Die TNC führt einen automatischen Werkzeugwechsel auch dann aus, wenn zum Wechselzeitpunkt gerade ein Bearbeitungszyklus abgearbeitet wird.

Die TNC führt keinen automatischen Werkzeugwechsel aus, solange ein Werkzeug-Wechselprogramm abgearbeitet wird.

Voraussetzungen für Standard-NC-Sätze mit Radiuskorrektur G40, G41, G42

Der Radius des Schwester-Werkzeugs muss gleich dem Radius des ursprünglich eingesetzten Werkzeugs sein. Sind die Radien nicht gleich, zeigt die TNC einen Meldetext an und wechselt das Werkzeug nicht ein.

5.3 Werkzeug-Korrektur

Einführung

Die TNC korrigiert die Werkzeugbahn um den Korrekturwert für Werkzeug-Länge in der Spindelachse und um den Werkzeug-Radius in der Bearbeitungsebene.

Wenn Sie das Bearbeitungs-Programm direkt an der TNC erstellen, ist die Werkzeug-Radiuskorrektur nur in der Bearbeitungsebene wirksam. Die TNC berücksichtigt dabei bis zu fünf Achsen incl. der Drehachsen.

Wenn ein CAM-System Programm-Sätze mit Flächennormalen-Vektoren erstellt, kann die TNC eine dreidimensionale Werkzeug-Korrektur durchführen, siehe "Peripheral Milling: 3D-Radiuskorrektur mit Werkzeug-Orientierung", Seite 213.

Werkzeug-Längenkorrektur

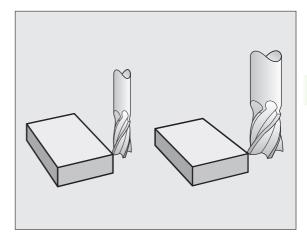
Die Werkzeug-Korrektur für die Länge wirkt, sobald Sie ein Werkzeug aufrufen und in der Spindelachse verfahren. Sie wird aufgehoben, sobald ein Werkzeug mit der Länge L=0 aufgerufen wird.

Wenn Sie eine Längenkorrektur mit positivem Wert mit **T0** aufheben, verringert sich der Abstand vom Werkzeug zu Werkstück.

Nach einem Werkzeug-Aufruf **TOOL CALL** ändert sich der programmierte Weg des Werkzeugs in der Spindelachse um die Längendifferenz zwischen altem und neuem Werkzeug.

Bei der Längenkorrektur werden Delta-Werte sowohl aus dem ${\bf T}$ -Satz als auch aus der Werkzeug-Tabelle berücksichtigt.

Korrekturwert = $\mathbf{L} + \mathbf{DL}_{TOOL\ CALL} + \mathbf{DL}_{TAB}$ mit


L: Werkzeug-Länge L aus G99-Satz oder Werkzeug-

Tabelle

DL TOOL CALL: Aufmaß **DL** für Länge aus **T**-Satz (von der

Positionsanzeige nicht berücksichtigt)

DL TAB: Aufmaß **DL** für Länge aus der Werkzeug-Tabelle

HEIDENHAIN iTNC 530 209

Werkzeug-Radiuskorrektur

Der Programm-Satz für eine Werkzeug-Bewegung enthält

- RL oder RR für eine Radiuskorrektur
- R+ oder R−, für eine Radiuskorrektur bei einer achsparallelen Verfahrbewegung
- RO, wenn keine Radiuskorrektur ausgeführt werden soll

Die Radiuskorrektur wirkt, sobald ein Werkzeug aufgerufen und mit einem Geradensatz in der Bearbeitungsebene mit RL oder RR verfahren wird.

Die TNC hebt die Radiuskorrektur auf, wenn Sie:

- einen Geradensatz mit RO programmieren
- die Kontur mit der Funktion DEP verlassen
- einen **PGM CALL** programmieren
- ein neues Programm mit PGM MGT anwählen

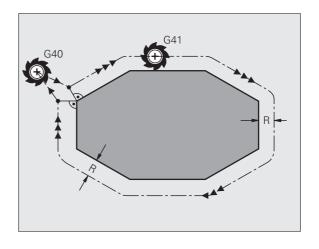
Bei der Radiuskorrektur werden Delta-Werte sowohl aus dem **T00L CALL**-Satz als auch aus der Werkzeug-Tabelle berücksichtigt:

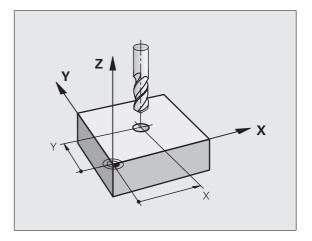
Korrekturwert = $\mathbf{R} + \mathbf{DR}_{TOOL CALL} + \mathbf{DR}_{TAB}$ mit

R: Werkzeug-Radius R aus G99-Satz oder Werkzeug-

Tabelle

DR TOOL CALL: Aufmaß DR für Radius aus T-Satz (von der


Positionsanzeige nicht berücksichtigt)


DR TAB: Aufmaß DR für Radius aus der Werkzeug-Tabelle

Bahnbewegungen ohne Radiuskorrektur: G40

Das Werkzeug verfährt in der Bearbeitungsebene mit seinem Mittelpunkt auf der programmierten Bahn, bzw. auf die programmierten Koordinaten.

Anwendung: Bohren, Vorpositionieren.

Bahnbewegungen mit Radiuskorrektur: G42 und G41

G42 Das Werkzeug verfährt rechts von der Kontur

G41 Das Werkzeug verfährt links von der Kontur

Der Werkzeug-Mittelpunkt hat dabei den Abstand des Werkzeug-Radius von der programmierten Kontur. "Rechts" und "links" bezeichnet die Lage des Werkzeugs in Verfahrrichtung entlang der Werkstück-Kontur. Siehe Bilder rechts.

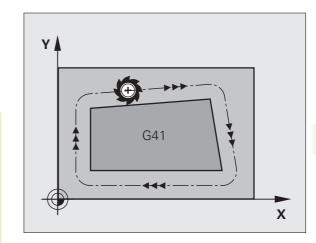
Zwischen zwei Programm-Sätzen mit unterschiedlicher Radiuskorrektur **G42** und **G41** muss mindestens ein Verfahrsatz in der Bearbeitungsebene ohne Radiuskorrektur (also mit **G40**) stehen.

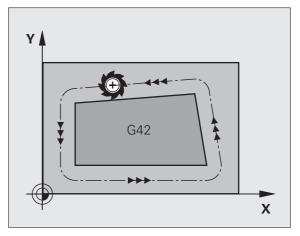
Eine Radiuskorrektur wird zum Ende des Satzes aktiv, in dem sie das erste Mal programmiert wurde.

Sie können die Radiuskorrektur auch für Zusatzachsen der Bearbeitungsebene aktivieren. Programmieren Sie die Zusatzachsen auch in jedem nachfolgenden Satz, da die TNC ansonsten die Radiuskorrektur wieder in der Hauptachse durchführt.

Beim ersten Satz mit Radiuskorrektur **G42/G41** und beim Aufheben mit G40 positioniert die TNC das Werkzeug immer senkrecht auf den programmierten Start- oder Endpunkt. Positionieren Sie das Werkzeug so vor dem ersten Konturpunkt bzw. hinter dem letzten Konturpunkt, dass die Kontur nicht beschädigt wird.

Eingabe der Radiuskorrektur


Die Radiuskorrektur geben Sie in einen G01-Satz ein:


Werkzeugbewegung links von der programmierten Kontur: G41-Funktion wählen, oder

Werkzeugbewegung rechts von der programmierten Kontur: G42-Funktion wählen, oder

Werkzeugbewegung ohne Radiuskorrektur bzw.
Radiuskorrektur aufheben: G40-Funktion wählen

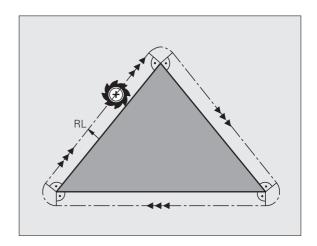
Satz beenden: Taste END drücken

Radiuskorrektur: Ecken bearbeiten

Außenecken:

Wenn Sie eine Radiuskorrektur programmiert haben, dann führt die TNC das Werkzeug an den Außenecken entweder auf einem Übergangskreis oder auf einem Spline (Auswahl über MP7680). Falls nötig, reduziert die TNC den Vorschub an den Außenecken, zum Beispiel bei großen Richtungswechseln.

■ Innenecken:


An Innenecken errechnet die TNC den Schnittpunkt der Bahnen, auf denen der Werkzeug-Mittelpunkt korrigiert verfährt. Von diesem Punkt an verfährt das Werkzeug am nächsten Konturelement entlang. Dadurch wird das Werkstück an den Innenecken nicht beschädigt. Daraus ergibt sich, dass der Werkzeug-Radius für eine bestimmte Kontur nicht beliebig groß gewählt werden darf.



Legen Sie den Start- oder Endpunkt bei einer Innenbearbeitung nicht auf einen Kontur-Eckpunkt, da sonst die Kontur beschädigt werden kann.

Ecken ohne Radiuskorrektur bearbeiten

Ohne Radiuskorrektur können Sie Werkzeugbahn und Vorschub an Werkstück-Ecken mit der Zusatzfunktion **M90** beeinflussen, siehe "Ecken verschleifen: M90", Seite 271.

5 Programmieren: Werkzeuge

5.4 Peripheral Milling: 3D-Radiuskorrektur mit Werkzeug-Orientierung

Anwendung

Beim Peripheral Milling versetzt die TNC das Werkzeug senkrecht zur Bewegungsrichtung und senkrecht zur Werkzeugrichtung um die Summe der Delta-Werte **DR** (Werkzeug-Tabelle und **T**-Satz). Die Korrekturrichtung legen Sie mit der Radiuskorrektur **G41/G42** fest (siehe Bild rechts oben, Bewegungsrichtung Y+).

Damit die TNC die vorgegebene Werkzeug-Orientierung erreichen kann, müssen Sie die Funktion M128 (siehe "Position der Werkzeugspitze beim Positionieren von Schwenkachsen beibehalten (TCPM): M128 (Software-Option 2)" auf Seite 291) und anschließend die Werkzeug-Radiuskorrektur aktivieren. Die TNC positioniert dann die Drehachsen der Maschine automatisch so, dass das Werkzeug die durch die Drehachsen-Koordinaten vorgegebene Werkzeug-Orientierung mit der aktiven Korrektur erreicht.

Diese Funktion ist nur an Maschinen möglich, für deren Schwenkachsen-Konfiguration Raumwinkel definierbar sind. Beachten Sie Ihr Maschinenhandbuch.

Die TNC kann nicht bei allen Maschinen die Drehachsen automatisch positionieren. Beachten Sie Ihr Maschinenhandbuch.

Beachten Sie, dass die TNC eine Korrektur um die definierten **Delta-Werte** durchführt. Ein in der Werkzeug-Tabelle definierter Werkzeug-Radius R hat keinen Einfluss auf die Korrektur.

Kollisionsgefahr!

Bei Maschinen, deren Drehachsen nur einen eingeschränkten Verfahrbereich erlauben, können beim automatischen Positionieren Bewegungen auftreten, die beispielsweise eine 180°-Drehung des Tisches erfordern. Achten Sie auf Kollisionsgefahr des Kopfes mit dem Werkstück oder mit Spannmitteln.

Die Werkzeug-Orientierung können Sie in einem G01-Satz wie nachfolgend beschrieben definieren.

Beispiel: Definition der Werkzeug-Orientierung mit M128 und Koordinaten der Drehachsen

N10 G00 G90 X-20 Y+0 Z+0 B+0 C+0 *	Vorpositionieren
N20 M128 *	M128 aktivieren
N30 G01 G42 X+0 Y+0 Z+0 B+0 C+0 F1000 *	Radius-Korrektur aktivieren
N40 X+50 Y+0 Z+0 B-30 C+0 *	Drehachse anstellen (Werkzeug-Orientierung)

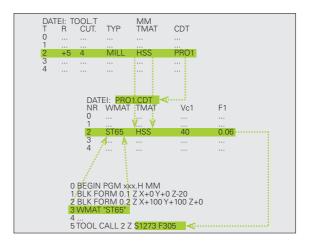
Z RR X

5.5 Arbeiten mit Schnittdaten-Tabellen

Hinweis

Die TNC muss vom Maschinenhersteller für das Arbeiten mit Schnittdaten-Tabellen vorbereitet sein.

Ggf. stehen an Ihrer Maschine nicht alle hier beschriebenen oder zusätzliche Funktionen zur Verfügung. Beachten Sie Ihr Maschinenhandbuch.


Einsatzmöglichkeiten

Über Schnittdaten-Tabellen, in denen beliebige Werkstoff/ Schneidstoff-Kombinationen festgelegt sind, kann die TNC aus der Schnittgeschwindigkeit $V_{\rm C}$ und dem Zahnvorschub f $_{\rm Z}$ die Spindeldrehzahl S und den Bahnvorschub F berechnen. Grundlage für die Berechnung ist, dass Sie im Programm das Werkstück-Material und in einer Werkzeug-Tabelle verschiedene werkzeugspezifische Eigenschaften festgelegt haben.

Bevor Sie Schnittdaten automatisch von der TNC berechnen lassen, müssen Sie in der Betriebsart Programm-Test die Werkzeug-Tabelle aktiviert haben (Status S), aus der die TNC die werkzeugspezifischen Daten entnehmen soll.

Editierfunktionen für Schnittdaten-Tabellen	Softkey
Zeile einfügen	ZEILE EINFÜGEN
Zeile löschen	ZEILE
Anfang der nächsten Zeile wählen	NÄCHSTE ZEILE
Tabelle sortieren	SATZ- NUMMERN SORTIEREN
Hell hinterlegtes Feld kopieren (2. Softkey-Leiste)	AKTUELLEN WERT KOPIEREN
Kopiertes Feld einfügen (2. Softkey-Leiste)	KOPIERTEN WERT EINFÜGEN
Tabellenformat editieren (2. Softkey-Leiste)	FORMAT EDITIEREN

Tabelle für Werkstück-Materialien

Werkstück-Materialien definieren Sie in der Tabelle WMAT.TAB (siehe Bild). WMAT.TAB ist standardmäßig im Verzeichnis TNC:\ gespeichert und kann beliebig viele Materialnamen enthalten. Der Materialnamen darf maximal 32 Zeichen (auch Leerzeichen) lang sein. Die TNC zeigt den Inhalt der Spalte NAME an, wenn Sie im Programm das Werkstück-Material festlegen (siehe nachfolgenden Abschnitt).

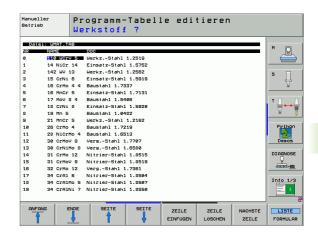
Wenn Sie die Standard Werkstoff-Tabelle verändern, müssen Sie diese in ein anderes Verzeichnis kopieren. Ansonsten werden Ihre Änderungen bei einem Software-Update mit den HEIDENHAIN-Standarddaten überschrieben. Definieren Sie dann den Pfad in der Datei TNC.SYS mit dem Schlüsselwort WMAT= (siehe "Konfigurations-Datei TNC.SYS", Seite 221).

Um Datenverlust zu vermeiden, sichern Sie die Datei WMAT.TAB in regelmäßigen Abständen.

Werkstück-Material im NC-Programm festlegen

Im NC-Programm wählen Sie den Werkstoff über den Softkey WMAT aus der Tabelle WMAT.TAB aus:

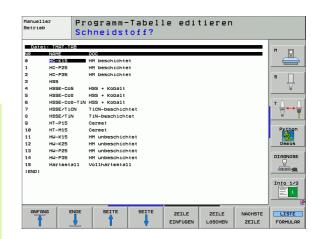
▶ Softkey-Leiste mit Sonderfunktionen einblenden


Werkstück-Material programmieren: In der Betriebsart Programm-Einspeichern/Editieren Softkey WMAT drücken.

- ▶ Tabelle WMAT.TAB einblenden: Softkey AUSWAHL FENSTER drücken, die TNC blendet in einem überlagerten Fenster die Werkstoffe ein, die in WMAT.TAB gespeichert sind
- Werkstück-Material wählen: Bewegen Sie das Hellfeld mit den Pfeiltasten auf das gewünschte Material und bestätigen Sie mit der Taste ENT. Die TNC übernimmt den Werkstoff in den WMAT-Satz
- ▶ Dialog beenden: Taste END drücken

Wenn Sie in einem Programm den WMAT-Satz ändern, gibt die TNC eine Warnmeldung aus. Überprüfen Sie, ob die im T-Satz gespeicherten Schnittdaten noch gültig sind.

HEIDENHAIN iTNC 530 215


Tabelle für Werkzeug-Schneidstoffe

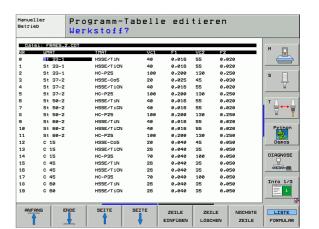
Werkzeug-Schneidstoffe definieren Sie in der Tabelle TMAT.TAB. TMAT.TAB ist standardmäßig im Verzeichnis TNC:\ gespeichert und kann beliebig viele Schneidstoffnamen enthalten (siehe Bild). Der Schneidstoffname darf maximal 16 Zeichen (auch Leerzeichen) lang sein. Die TNC zeigt den Inhalt der Spalte NAME an, wenn Sie in der Werkzeug-Tabelle TOOL.T den Werkzeug-Schneidstoff festlegen.

Wenn Sie die Standard Schneidstoff-Tabelle verändern, müssen Sie diese in ein anderes Verzeichnis kopieren. Ansonsten werden Ihre Änderungen bei einem Software-Update mit den HEIDENHAIN-Standarddaten überschrieben. Definieren Sie dann den Pfad in der Datei TNC.SYS mit dem Schlüsselwort TMAT= (siehe "Konfigurations-Datei TNC.SYS", Seite 221).

Um Datenverlust zu vermeiden, sichern Sie die Datei TMAT.TAB in regelmäßigen Abständen.

Tabelle für Schnittdaten

Die Werkstoff/Schneidstoff-Kombinationen mit den zugehörigen Schnittdaten definieren Sie in einer Tabelle mit dem Nachnamen .CDT (engl. cutting data file: Schnittdaten-Tabelle; siehe Bild). Die Einträge in der Schnittdaten-Tabelle können von Ihnen frei konfiguriert werden. Neben den zwingend erforderlichen Spalten NR, WMAT und TMAT kann die TNC bis zu vier Schnittgeschwindigkeit (V_C)/Vorschub (F)-Kombinationen verwalten.


Im Verzeichnis TNC:\ ist die Standard Schnittdaten-Tabelle FRAES_2.CDT gespeichert. Sie können FRAES_2.CDT beliebig editieren und ergänzen oder beliebig viele neu Schnittdaten-Tabellen hinzufügen.

Wenn Sie die Standard Schnittdaten-Tabelle verändern, müssen Sie diese in ein anderes Verzeichnis kopieren. Ansonsten werden Ihre Änderungen bei einem Software-Update mit den HEIDENHAIN-Standarddaten überschrieben (siehe "Konfigurations-Datei TNC.SYS", Seite 221).

Alle Schnittdaten-Tabellen müssen im selben Verzeichnis gespeichert sein. Ist das Verzeichnis nicht das Standardverzeichnis TNC:\, müssen Sie in der Datei TNC.SYS nach dem Schlüsselwort PCDT= den Pfad eingeben, in dem Ihre Schnittdaten-Tabellen gespeichert sind.

Um Datenverlust zu vermeiden, sichern Sie Ihre Schnittdaten-Tabellen in regelmäßigen Abständen.

Neue Schnittdaten-Tabelle anlegen

- ▶ Betriebsart Programm-Einspeichern/Editieren wählen
- ▶ Datei-Verwaltung wählen: Taste PGM MGT drücken
- ▶ Verzeichnis wählen, in dem die Schnittdaten-Tabellen gespeichert sein müssen (Standard: TNC:\)
- Beliebigen Dateinamen und Datei-Typ .CDT eingeben, mit Taste ENT bestätigen
- ▶ Die TNC öffnet eine Standard-Schnittdaten-Tabelle oder zeigt in der rechten Bildschirmhälfte verschiedene Tabellenformate an (maschinenabhängig), die sich in der Anzahl der Schnittgeschwindigkeit/Vorschub-Kombinationen unterscheiden. Schieben Sie in diesem Fall das Hellfeld mit den Pfeiltasten auf das gewünschte Tabellenformat und bestätigen mit der Taste ENT. Die TNC erzeugt eine neue leere Schnittdaten-Tabelle

Erforderliche Angaben in der Werkzeug-Tabelle

- Werkzeug-Radius Spalte R (DR)
- Anzahl der Zähne (nur bei Fräswerkzeugen) Spalte CUT
- Werkzeugtyp Spalte TYP

z: Anzahl der Zähne

- Der Werkzeugtyp beeinflusst die Berechnung des Bahnvorschubs: Fräswerkzeuge: F = S · f_Z · z Alle anderen Werkzeuge: F = S · f_U
 S: Spindeldrehzahl f_Z: Vorschub pro Zahn f_{II}: Vorschub pro Umdrehung
- Werkzeug-Schneidstoff Spalte TMAT
- Name der Schnittdaten-Tabelle, die für dieses Werkzeug verwendet werden soll Spalte CDT
- Den Werkzeugtyp, den Werkzeug-Schneidstoff und den Namen der Schnittdaten-Tabelle wählen Sie in der Werkzeug-Tabelle über Softkey (siehe "Werkzeug-Tabelle: Werkzeug-Daten für automatische Drehzahl-Worschub-Berechnung", Seite 198).

Vorgehensweise beim Arbeiten mit automatischer Drehzahl-/Vorschub-Berechnung

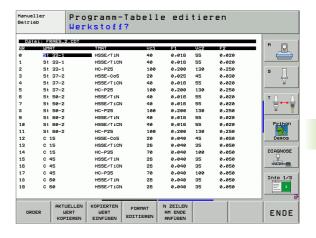
- 1 Wenn noch nicht eingetragen: Werkstück-Material in Datei WMAT.TAB eintragen
- **2** Wenn noch nicht eingetragen: Schneidstoff-Material in Datei TMAT.TAB eintragen
- Wenn noch nicht eingetragen: Alle für die Schnittdaten-Berechnung erforderlichen werkzeugspezifischen Daten in der Werkzeug-Tabelle eintragen:
 - Werkzeug-Radius
 - Anzahl der Zähne
 - Werkzeug-Typ
 - Werkzeug-Schneidstoff
 - Zum Werkzeug gehörende Schnittdaten-Tabelle
- **4** Wenn noch nicht eingetragen: Schnittdaten in einer beliebigen Schnittdaten-Tabelle (CDT-Datei) eintragen
- **5** Betriebsart Test: Werkzeug-Tabelle aktivieren, aus der die TNC die werkzeugspezifischen Daten entnehmen soll (Status S)
- 6 Im NC-Programm: Über Softkey WMAT Werkstück-Material festlegen
- 7 Im NC-Programm: Im TOOL CALL-Satz Spindeldrehzahl und Vorschub über Softkey automatisch berechnen lassen

Tabellen-Struktur verändern

Schnittdaten-Tabellen sind für die TNC sogenannte "frei definierbare Tabellen". Das Format frei definierbarer Tabellen können Sie mit dem Struktur-Editor ändern. Desweiteren können Sie zwischen einer Tabellen-Ansicht (Standard-Einstellung) und einer Formular-Ansicht wechseln.

Die TNC kann maximal 200 Zeichen pro Zeile und maximal 30 Spalten verarbeiten.

Wenn Sie in eine bestehende Tabelle nachträglich eine Spalte einfügen, dann verschiebt die TNC bereits eingetragene Werte nicht automatisch.


Struktur-Editor aufrufen

▶ Drücken Sie den Softkey FORMAT EDITIEREN (2. Softkey-Ebene). Die TNC öffnet das Editor-Fenster (siehe Bild), in dem die Tabellenstruktur "um 90° gedreht" dargestellt ist. Eine Zeile im Editor-Fenster definiert eine Spalte in der zugehörigen Tabelle. Entnehmen Sie die Bedeutung des Strukturbefehls (Kopfzeileneintrag) aus nebenstehender Tabelle.

Struktur-Editor beenden

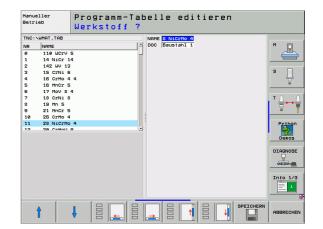
▶ Drücken Sie die Taste END. Die TNC wandelt Daten, die bereits in der Tabelle gespeichert waren, ins neue Format um. Elemente, die die TNC nicht in die neue Struktur wandeln konnte, sind mit # gekennzeichnet (z.B. wenn Sie die Spaltenbreite verkleinert haben).

Strukturbefehl	Bedeutung
NR	Spaltennummer
NAME	Spaltenüberschrift
TYP	N: Numerische Eingabe C: Alphanumerische Eingabe
WIDTH	Breite der Spalte. Bei Typ N einschließlich Vorzeichen, Komma und Nachkommastellen
DEC	Anzahl der Nachkommastellen (max. 4, nur bei Typ N wirksam)
ENGLISH bis HUNGARIA	Sprachabhängige Dialoge bis (max. 32 Zeichen)

Wechseln zwischen Tabellen- und Formularansicht

Alle Tabellen mit der Dateiendung .TAB können Sie sich entweder in der Listenansicht oder in der Formularansicht anzeigen lassen.

Drücken Sie den Softkey LISTE FORMULAR. Die TNC wechselt zu der Ansicht, die im Softkey jeweils nicht hell hinterlegt ist


In der Formularansicht listet die TNC in der linken Bildschirmhälfte die Zeilennummern mit dem Inhalt der ersten Spalte.

In der rechten Bildschirmhälfte können Sie die Daten ändern.

- ▶ Drücken Sie dazu die Taste ENT oder klicken Sie mit dem Mousezeiger in ein Eingabefeld
- Um geänderte Daten zu speichern, drücken Sie die Taste END oder den Softkey SPEICHERN
- Um Änderungen zu verwerfen, drücken Sie die Taste DEL oder den Softkey ABBRECHEN

Die TNC richtet die Eingabefelder auf der rechten Seite linksbündig am längsten Dialog aus. Wenn ein Eingabefeld die maximal darstellbare Breite überschreitet, erscheint am unteren Fensterende eine Scrollbar. Die Scrollbar können Sie per Mouse oder per Softkey bedienen.

Datenübertragung von Schnittdaten-Tabellen

Wenn Sie eine Datei vom Datei-Typ .TAB oder .CDT über eine externe Datenschnittstelle ausgeben, speichert die TNC die Strukturdefinition der Tabelle mit ab. Die Strukturdefinition beginnt mit der Zeile #STRUCTBEGIN und endet mit der Zeile #STRUCTEND. Entnehmen Sie die Bedeutung der einzelnen Schlüsselwörter aus der Tabelle "Strukturbefehl" (siehe "Tabellen-Struktur verändern", Seite 219). Hinter #STRUCTEND speichert die TNC den eigentlichen Inhalt der Tabelle ab.

Konfigurations-Datei TNC.SYS

Die Konfigurations-Datei TNC.SYS müssen Sie verwenden, wenn Ihre Schnittdaten-Tabellen nicht im Standard-Verzeichnis TNC:\ gespeichert sind. Dann legen Sie in der TNC.SYS die Pfade fest, in denen Ihre Schnittdaten-Tabellen gespeichert sind.

Die Datei TNC.SYS muss im Root-Verzeichnis TNC:\ gespeichert sein.

Einträge in TNC.SYS	Bedeutung
WMAT=	Pfad für Werkstoff-Tabelle
TMAT=	Pfad für Schneidstoff-Tabelle
PCDT=	Pfad für Schnittdaten-Tabellen

Beispiel für TNC.SYS

WMAT=TNC:\CUTTAB\WMAT_GB.TAB

TMAT=TNC:\CUTTAB\TMAT GB.TAB

PCDT=TNC:\CUTTAB\

HEIDENHAIN iTNC 530

6

Programmieren: Konturen programmieren

6.1 Werkzeug-Bewegungen

Bahnfunktionen

Eine Werkstück-Kontur setzt sich gewöhnlich aus mehreren Konturelementen wie Geraden und Kreisbögen zusammen. Mit den Bahnfunktionen programmieren Sie die Werkzeugbewegungen für **Geraden** und **Kreisbögen**.

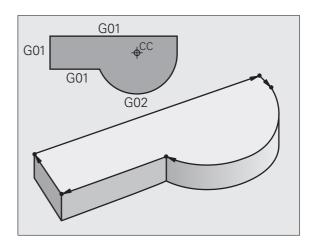
Zusatzfunktionen M

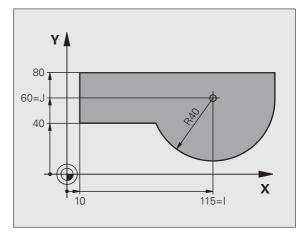
Mit den Zusatzfunktionen der TNC steuern Sie

- den Programmlauf, z.B. eine Unterbrechung des Programmlaufs
- die Maschinenfunktionen, wie das Ein- und Ausschalten der Spindeldrehung und des Kühlmittels
- das Bahnverhalten des Werkzeugs

Unterprogramme und Programmteil-Wiederholungen

Bearbeitungs-Schritte, die sich wiederholen, geben Sie nur einmal als Unterprogramm oder Programmteil-Wiederholung ein. Wenn Sie einen Teil des Programms nur unter bestimmten Bedingungen ausführen lassen möchten, dann legen Sie diese Programmschritte ebenfalls in einem Unterprogramm fest. Zusätzlich kann ein Bearbeitungs-Programm ein weiteres Programm aufrufen und ausführen lassen.


Das Programmieren mit Unterprogrammen und Programmteil-Wiederholungen ist in Kapitel 10 beschrieben.


Programmieren mit Q-Parametern

Im Bearbeitungs-Programm stehen Q-Parameter stellvertretend für Zahlenwerte: Einem Q-Parameter wird an anderer Stelle ein Zahlenwert zugeordnet. Mit Q-Parametern können Sie mathematische Funktionen programmieren, die den Programmlauf steuern oder die eine Kontur beschreiben.

Zusätzlich können Sie mit Hilfe der Q-Parameter-Programmierung Messungen mit dem 3D-Tastsystem während des Programmlaufs ausführen.

Das Programmieren mit Q-Parametern ist in Kapitel 11 beschrieben.

6.2 Grundlagen zu den Bahnfunktionen

Werkzeugbewegung für eine Bearbeitung programmieren

Wenn Sie ein Bearbeitungs-Programm erstellen, programmieren Sie nacheinander die Bahnfunktionen für die einzelnen Elemente der Werkstück-Kontur. Dazu geben Sie gewöhnlich **die Koordinaten für die Endpunkte der Konturelemente** aus der Maßzeichnung ein. Aus diesen Koordinaten-Angaben, den Werkzeug-Daten und der Radiuskorrektur ermittelt die TNC den tatsächlichen Verfahrweg des Werkzeugs.

Die TNC fährt gleichzeitig alle Maschinenachsen, die Sie in dem Programm-Satz einer Bahnfunktion programmiert haben.

Bewegungen parallel zu den Maschinenachsen

Der Programm-Satz enthält eine Koordinaten-Angabe: Die TNC fährt das Werkzeug parallel zur programmierten Maschinenachse.

Je nach Konstruktion Ihrer Maschine bewegt sich beim Abarbeiten entweder das Werkzeug oder der Maschinentisch mit dem aufgespannten Werkstück. Beim Programmieren der Bahnbewegung tun Sie grundsätzlich so, als ob sich das Werkzeug bewegt.

Beispiel:

N50 G00 X+100 *

N50 Satznummer

G00 Bahnfunktion "Gerade im Eilgang"
X+100 Koordinaten des Endpunkts

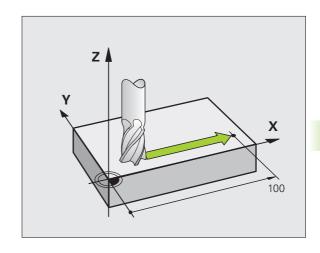
Das Werkzeug behält die Y- und Z-Koordinaten bei und fährt auf die Position X=100. Siehe Bild rechts oben.

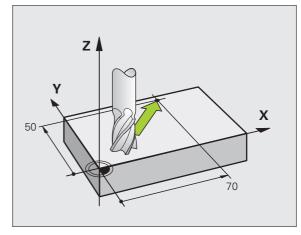
Bewegungen in den Hauptebenen

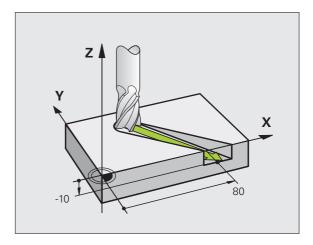
Der Programm-Satz enthält zwei Koordinaten-Angaben: Die TNC fährt das Werkzeug in der programmierten Ebene.

Beispiel:

N50 G00 X+70 Y+50 *


Das Werkzeug behält die Z-Koordinate bei und fährt in der XY-Ebene auf die Position X=70, Y=50. Siehe Bild rechts Mitte


Dreidimensionale Bewegung


Der Programm-Satz enthält drei Koordinaten-Angaben: Die TNC fährt das Werkzeug räumlich auf die programmierte Position.

Beispiel:

N50 G01 X+80 Y+0 Z-10 *

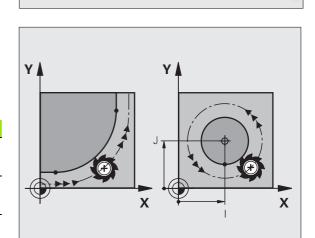
Eingabe von mehr als drei Koordinaten

Die TNC kann bis zu 5 Achsen gleichzeitig steuern. Bei einer Bearbeitung mit 5 Achsen bewegen sich beispielsweise 3 Linear- und 2 Drehachsen gleichzeitig.

Das Bearbeitungs-Programm für eine solche Bearbeitung liefert gewöhnlich ein CAM-System und kann nicht an der Maschine erstellt werden.

Beispiel:

N123 G01 G40 X+20 Y+10 Z+2 A+15 C+6 F100 M3 *

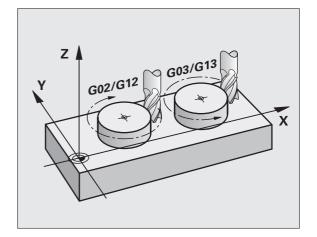

Eine Bewegung von mehr als 3 Achsen wird von der TNC grafisch nicht unterstützt.

Kreise und Kreisbögen

Bei Kreisbewegungen fährt die TNC zwei Maschinenachsen gleichzeitig: Das Werkzeug bewegt sich relativ zum Werkstück auf einer Kreisbahn. Für Kreisbewegungen können Sie einen Kreismittelpunkt eingeben.

Mit den Bahnfunktionen für Kreisbögen programmieren Sie Kreise in den Hauptebenen: Die Hauptebene ist beim Werkzeug-Aufruf mit dem Festlegen der Spindelachse zu definieren:

Spindelachse	Hauptebene	Kreismittelpunkt
Z (G17)	XY , auch UV, XV, UY	I, J
Y (G18)	ZX , auch WU, ZU, WX	К, І
X (G19)	YZ , auch VW, YW, VZ	J, K


Kreise, die nicht parallel zur Hauptebene liegen, programmieren Sie auch mit der Funktion "Bearbeitungsebene schwenken" (siehe "BEARBEITUNGSEBENE (Zyklus G80, Software-Option 1)", Seite 470), oder mit Q-Parametern (siehe "Prinzip und Funktionsübersicht", Seite 530).

Drehsinn bei Kreisbewegungen

Für Kreisbewegungen ohne tangentialen Übergang zu anderen Konturelementen geben Sie den Drehsinn über folgende Funktionen ein:

■ Drehung im Uhrzeigersinn: G02/G12

■ Drehung gegen den Uhrzeigersinn: G03/G13

Radiuskorrektur

Die Radiuskorrektur muss in dem Satz stehen, mit dem Sie das erste Konturelement anfahren. Die Radiuskorrektur darf nicht in einem Satz für eine Kreisbahn begonnen werden. Programmieren Sie diese zuvor in einem Geraden-Satz (siehe "Bahnbewegungen – rechtwinklige Koordinaten", Seite 232).

Vorpositionieren

Positionieren Sie das Werkzeug zu Beginn eines Bearbeitungs-Programms so vor, dass eine Beschädigung von Werkzeug und Werkstück ausgeschlossen ist.

6.3 Kontur anfahren und verlassen

Start- und Endpunkt

Das Werkzeug fährt vom Startpunkt aus den ersten Konturpunkt an. Anforderungen an den Startpunkt:

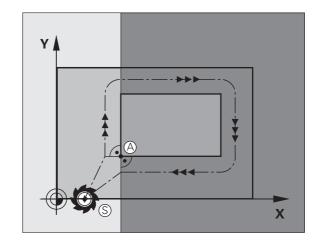
- Ohne Radiuskorrektur programmiert
- Kollisionsfrei anfahrbar
- Nahe am ersten Konturpunkt

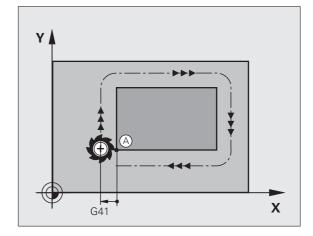
Beispiel

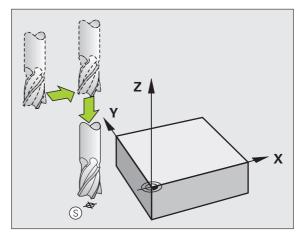
Bild rechts oben: Wenn Sie den Startpunkt im dunkelgrauen Bereich festlegen, dann wird die Kontur beim Anfahren des ersten Konturpunkts beschädigt.

Erster Konturpunkt

Für die Werkzeugbewegung auf den ersten Konturpunkt programmieren Sie eine Radiuskorrektur.


Startpunkt in der Spindelachse anfahren


Beim Anfahren des Startpunkts muss das Werkzeug in der Spindelachse auf Arbeitstiefe fahren. Bei Kollisionsgefahr den Startpunkt in der Spindelachse separat anfahren.


NC-Beispielsätze

N30 G00 G40 X+20 Y+30 *

N40 Z-10 *

Endpunkt

Voraussetzungen für die Wahl des Endpunkts:

- Kollisionsfrei anfahrbar
- Nahe am letzten Konturpunkt
- Konturbeschädigung ausschließen: Der optimale Endpunkt liegt in der Verlängerung der Werkzeugbahn für die Bearbeitung des letzten Konturelements

Beispiel

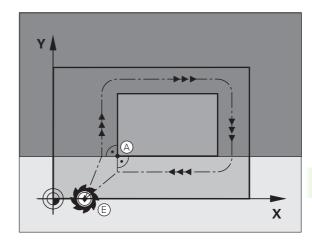
Bild rechts oben: Wenn Sie den Endpunkt im dunkelgrauen Bereich festlegen, dann wird die Kontur beim Anfahren des Endpunkts beschädigt.

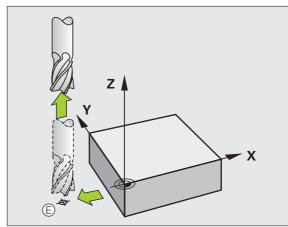
Endpunkt in der Spindelachse verlassen:

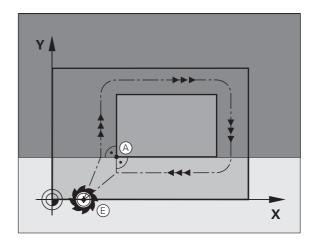
Beim Verlassen des Endpunkts programmieren Sie die Spindelachse separat. Siehe Bild rechts Mitte.

NC-Beispielsätze

N50 G00 G40 X+60 Y+70 *
N60 Z+250 *


Gemeinsamer Start- und Endpunkt


Für einen gemeinsamen Start- und Endpunkt programmieren Sie keine Radiuskorrektur.


Konturbeschädigung ausschließen: Der optimale Startpunkt liegt zwischen den Verlängerungen der Werkzeugbahnen für die Bearbeitung des ersten und letzten Konturelements.

Beispiel

Bild rechts oben: Wenn Sie den Endpunkt im schraffierten Bereich festlegen, dann wird die Kontur beim Anfahren des ersten Konturpunktes beschädigt.

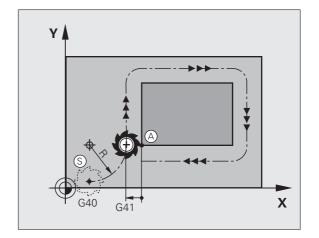
Tangential An- und Wegfahren

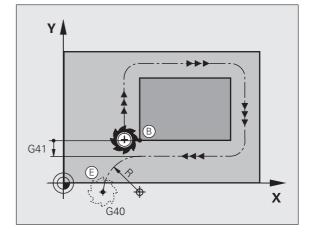
Mit **G26** (Bild rechts Mitte) können Sie an das Werkstück tangential anfahren und mit **G27** (Bild rechts unten) vom Werkstück tangential wegfahren. Dadurch vermeiden Sie Freischneidemarkierungen.

Start- und Endpunkt

Start- und Endpunkt liegen nahe am ersten bzw. letzten Konturpunkt außerhalb des Werkstücks und sind ohne Radiuskorrektur zu programmieren.

Anfahren


G26 nach dem Satz eingeben, in dem der erste Konturpunkt programmiert ist: Das ist der erste Satz mit Radiuskorrektur G41/G42


Wegfahren

G27 nach dem Satz eingeben, in dem der letzte Konturpunkt programmiert ist: Das ist der letzte Satz mit Radiuskorrektur G41/G42

Den Radius für **G26** und **G27** müssen Sie so wählen, dass die TNC die Kreisbahn zwischen Startpunkt und erstem Konturpunkt sowie letztem Konturpunkt und Endpunkt ausführen kann.

N50 G00 G40 G90 X-30 Y+50 *	Startpunkt
N60 G01 G41 X+0 Y+50 F350 *	Erster Konturpunkt
N70 G26 R5 *	Tangential anfahren mir Radius R = 5 mm
KONTURELEMENTE PROGRAMMIEREN	
	Letzter Konturpunkt
N210 G27 R5 *	Tangential Wegfahren mit Radius R = 5 mm
N220 G00 G40 X-30 Y+50 *	Endpunkt

NC-Beispielsätze

6.4 Bahnbewegungen – rechtwinklige Koordinaten

Übersicht der Bahnfunktionen

Werkzeug-Bewegung	Funktion	Erforderliche Eingaben	Seite
Gerade im Vorschub Gerade im Eilgang	G00 G01	Koordinaten des Geraden-Endpunkts	Seite 233
Fase zwischen zwei Geraden	G24	Fasenlänge R	Seite 234
-	I, J, K	Koordinaten des Kreismittelpunkts	Seite 236
Kreisbahn im Uhrzeigersinn Kreisbahn im Gegen-Uhrzeigersinn	G02 G03	Koordinaten des Kreis-Endpunkts in Verbindung mit I , J , K oder zusätzlich Kreisradius R	Seite 237
Kreisbahn entsprechend aktiver Drehrichtung	G05	Koordinaten des Kreis-Endpunkts und Kreisradius R	Seite 238
Kreisbahn mit tangentialem Anschluss an vorhergehendes Konturelement	G06	Koordinaten des Kreis-Endpunkts	Seite 240
Kreisbahn mit tangentialem Anschluss an vorhergehendes und nachfolgendes Konturelement	G25	Eckenradius R Seite 23	

Gerade im Eilgang G00 Gerade mit Vorschub G01 F...

Die TNC fährt das Werkzeug auf einer Geraden von seiner aktuellen Position zum Endpunkt der Geraden. Der Startpunkt ist der Endpunkt des vorangegangenen Satzes.

Programmierung

▶ Koordinaten des Endpunkts der Geraden

Falls nötig:

- ▶ Radiuskorrektur G40/G41/G42
- ▶ Vorschub F
- ► Zusatz-Funktion M

NC-Beispielsätze

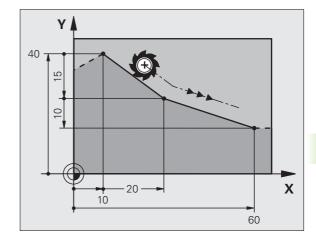
N70 G01 G41 X+10 Y+40 F200 M3 *

N80 G91 X+20 Y-15 *

N90 G90 X+60 G91 Y-10 *

Ist-Position übernehmen

Einen Geraden-Satz (G01-Satz) können Sie auch mit der Taste "IST-POSITION-ÜBERNEHMEN" generieren:


- ▶ Fahren Sie das Werkzeug in der Betriebsart Manueller Betrieb auf die Position, die übernommen werden soll
- ▶ Bildschirm-Anzeige auf Programm-Einspeichern/Editieren wechseln
- ▶ Programm-Satz wählen, hinter dem der Satz eingefügt werden soll

▶ Taste "IST-POSITION-ÜBERNEHMEN" drücken: Die TNC generiert einen G01-Satz mit den Koordinaten der Ist-Position

Die Anzahl der Achsen, die die TNC im G01-Satz speichert, legen Sie über die MOD-Funktion fest (siehe "MOD-Funktion wählen", Seite 624).

Fase zwischen zwei Geraden einfügen

Konturecken, die durch den Schnitt zweier Geraden entstehen, können Sie mit einer Fase versehen.

- In den Geradensätzen vor und nach dem 624-Satz programmieren Sie jeweils beide Koordinaten der Ebene, in der die Fase ausgeführt wird
- Die Radiuskorrektur vor und nach **G24**-Satz muss gleich sein
- Die Fase muss mit dem aktuellen Werkzeug ausführbar sein

Programmierung

► Fasen-Abschnitt: Länge der Fase

Falls nötig:

▶ **Vorschub F** (wirkt nur im **G24**-Satz)

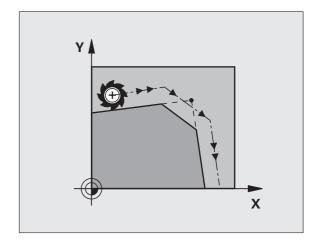
NC-Beispielsätze

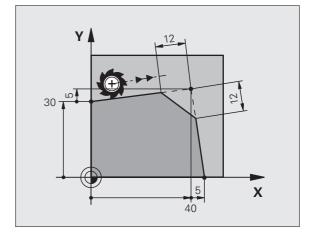
N70 G01 G41 X+0 Y+30 F300 M3 *

N80 X+40 G91 Y+5 *

N90 G24 R12 F250 *

N100 G91 X+5 G90 Y+0 *




Eine Kontur nicht mit einem G24-Satz beginnen.

Eine Fase wird nur in der Bearbeitungsebene ausgeführt.

Der von der Fase abgeschnittene Eckpunkt wird nicht angefahren.

Ein im **G24**-Satz programmierter Vorschub wirkt nur in diesem **G24**-Satz. Danach ist wieder der vor dem **G24**-Satz programmierte Vorschub gültig.

Ecken-Runden G25

Die Funktion G25 rundet Kontur-Ecken ab.

Das Werkzeug fährt auf einer Kreisbahn, die sowohl an das vorhergegangene als auch an das nachfolgende Konturelement tangential anschließt.

 $\label{lem:continuous} Der Rundungskreis \, muss \, mit \, dem \, aufgerufenen \, Werkzeug \, ausführbar \, sein.$

Programmierung

▶ Rundungs-Radius: Radius des Kreisbogens

Falls nötig:

► Vorschub F (wirkt nur im G25-Satz)

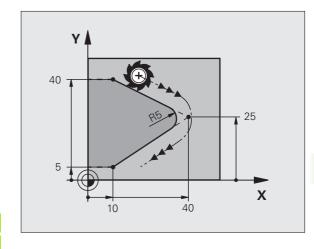
NC-Beispielsätze

N50 G01 G41 X+10 Y+40 F300 M3 *

N60 X+40 Y+25 *

N70 G25 R5 F100 *

N80 X+10 Y+5 *



Das vorhergehende und nachfolgende Konturelement sollte beide Koordinaten der Ebene enthalten, in der das Ecken-Runden ausgeführt wird. Wenn Sie die Kontur ohne Werkzeug-Radiuskorrektur bearbeiten, dann müssen Sie beide Koordinaten der Bearbeitungsebene programmieren.

Der Eckpunkt wird nicht angefahren.

Ein im **G25**-Satz programmierter Vorschub wirkt nur in diesem **G25**-Satz. Danach ist wieder der vor dem **G25**-Satz programmierte Vorschub gültig.

Ein **G25**-Satz lässt sich auch zum weichen Anfahren an die Kontur nutzen, siehe "Tangential An- und Wegfahren", Seite 230.

Kreismittelpunkt I, J

Den Kreismittelpunkt legen Sie für Kreisbahnen fest, die Sie mit den Funktionen G02, G03 oder G05 programmieren. Dazu

- geben Sie die rechtwinkligen Koordinaten des Kreismittelpunkts ein oder
- übernehmen Sie die zuletzt programmierte Position mit G29 oder
- übernehmen Sie die Koordinaten über die Funktion Ist-Position übernehmen

Programmierung

Koordinaten für den Kreismittelpunkt eingeben oder um die zuletzt programmierte Position zu übernehmen: G29 eingeben

NC-Beispielsätze

N50 I+25 J+25 *

oder

N10 G00 G40 X+25 Y+25 *

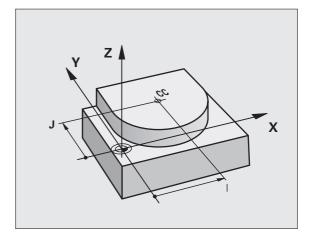
N20 G29 *

Die Programmzeilen N10 und N20 beziehen sich nicht auf das Bild.

Gültigkeit

Der Kreismittelpunkt bleibt solange festgelegt, bis Sie einen neuen Kreismittelpunkt programmieren. Einen Kreismittelpunkt können Sie auch für die Zusatzachsen U, V und W festlegen.

Kreismittelpunkt I, J inkremental eingeben


Eine inkremental eingegebene Koordinate für den Kreismittelpunkt bezieht sich immer auf die zuletzt programmierte Werkzeug-Position.

Mit I und J kennzeichnen Sie eine Position als Kreismittelpunkt: Das Werkzeug fährt nicht auf diese Position.

Der Kreismittelpunkt ist gleichzeitig Pol für Polarkoordinaten.

Wenn Sie Parallelachsen als Pol definieren wollen, drücken Sie zuerst die Taste **I** (**J**) auf der ASCII-Tastatur und anschließend die orangene Achstaste der entsprechenden Parallelachse.

Kreisbahn G02/G03/G05 um Kreismittelpunkt I, J

Legen Sie den Kreismittelpunkt I. J fest, bevor Sie die Kreisbahn programmieren. Die zuletzt programmierte Werkzeug-Position vor der Kreisbahn ist der Startpunkt der Kreisbahn.

Drehsinn

- Im Uhrzeigersinn: **G02**
- Im Gegen-Uhrzeigersinn: **G03**
- Ohne Drehrichtungs-Angabe: **G05**. Die TNC fährt die Kreisbahn mit der zuletzt programmierten Drehrichtung

Programmierung

▶ Werkzeug auf den Startpunkt der Kreisbahn fahren

► Koordinaten des Kreisbogen-Endpunkts eingeben

Falls nötig:

- ▶ Vorschub F
- ► Zusatz-Funktion M

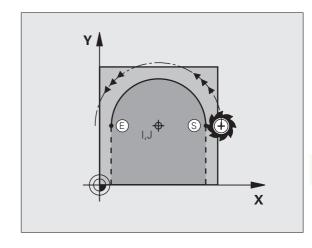
Die TNC verfährt Kreisbewegungen normalerweise in der aktiven Bearbeitungsebene. Wenn Sie Kreise programmieren, die nicht in der aktiven Bearbeitungseben liegen, z.B. G2 Z... X... bei Werkzeug-Achse Z, und gleichzeitig diese Bewegung rotieren, dann verfährt die TNC einen Raumkreis, also einen Kreis in 3 Achsen.

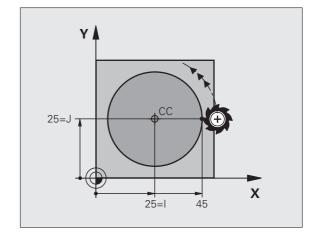
N50 I+25 J+25 *

N60 G01 G42 X+45 Y+25 F200 M3 *

N70 G03 X+45 Y+25 *

Vollkreis


Programmieren Sie für den Endpunkt die gleichen Koordinaten wie für den Startpunkt.



Start- und Endpunkt der Kreisbewegung müssen auf der Kreisbahn liegen.

Eingabe-Toleranz: bis 0.016 mm (über MP7431 wählbar)

Kleinstmöglicher Kreis, den die TNC verfahren kann: 0.0016 µm.

Kreisbahn G02/G03/G05 mit festgelegtem Radius

Das Werkzeug fährt auf einer Kreisbahn mit dem Radius R.

Drehsinn

- Im Uhrzeigersinn: G02
- Im Gegen-Uhrzeigersinn: **G03**
- Ohne Drehrichtungs-Angabe: 605. Die TNC f\u00e4hrt die Kreisbahn mit der zuletzt programmierten Drehrichtung

Programmierung

- ► Koordinaten des Kreisbogen-Endpunkts eingeben
- Radius R Achtung: Das Vorzeichen legt die Größe des Kreisbogens fest!


Falls nötig:

- ▶ Vorschub F
- ► Zusatz-Funktion M

Vollkreis

Für einen Vollkreis programmieren Sie zwei CR-Sätze hintereinander:

Der Endpunkt des ersten Halbkreises ist Startpunkt des zweiten. Endpunkt des zweiten Halbkreises ist Startpunkt des ersten.

Zentriwinkel CCA und Kreisbogen-Radius R

Startpunkt und Endpunkt auf der Kontur lassen sich durch vier verschiedene Kreisbögen mit gleichem Radius miteinander verbinden:

Kleinerer Kreisbogen: CCA<180° Radius hat positives Vorzeichen R>0

Größerer Kreisbogen: CCA>180° Radius hat negatives Vorzeichen R<0

Über den Drehsinn legen Sie fest, ob der Kreisbogen außen (konvex) oder nach innen (konkav) gewölbt ist:

Konvex: Drehsinn **602** (mit Radiuskorrektur **641**) Konkav: Drehsinn **603** (mit Radiuskorrektur **641**)

NC-Beispielsätze

N100 G01 G41 X+40 Y+40 F200 M3 *

N110 G02 X+70 Y+40 R+20 * (B0GEN 1)

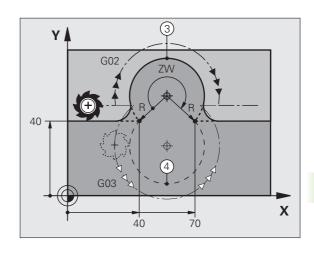
oder

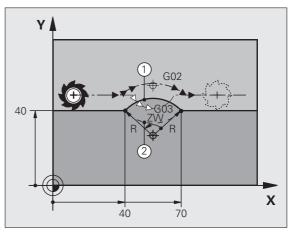
N110 G03 X+70 Y+40 R+20 * (B0GEN 2)

oder

N110 G02 X+70 Y+40 R-20 * (B0GEN 3)

oder


N110 G03 X+70 Y+40 R-20 * (B0GEN 4)



Der Abstand von Start- und Endpunkt des Kreisdurchmessers darf nicht größer als der Kreisdurchmesser sein.

Der maximale Radius beträgt 99,9999 m.

Winkelachsen A, B und C werden unterstützt.

Kreisbahn G06 mit tangentialem Anschluss

Das Werkzeug fährt auf einem Kreisbogen, der tangential an das zuvor programmierte Konturelement anschließt.

Ein Übergang ist "tangential", wenn am Schnittpunkt der Konturelemente kein Knick- oder Eckpunkt entsteht, die Konturelemente also stetig ineinander übergehen.

Das Konturelement, an das der Kreisbogen tangential anschließt, programmieren Sie direkt vor dem **G06**-Satz. Dazu sind mindestens zwei Positionier-Sätze erforderlich

Programmierung

► Koordinaten des Kreisbogen-Endpunkts eingeben

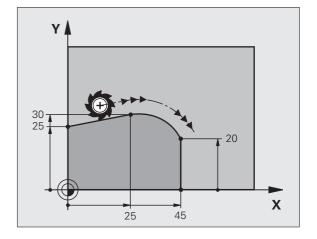
Falls nötig:

▶ Vorschub F

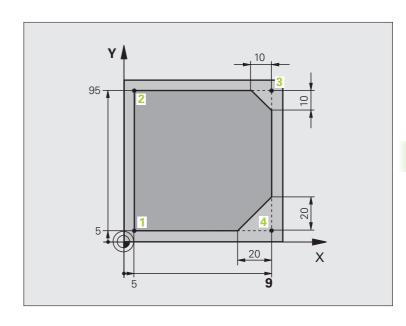
► Zusatz-Funktion M

NC-Beispielsätze

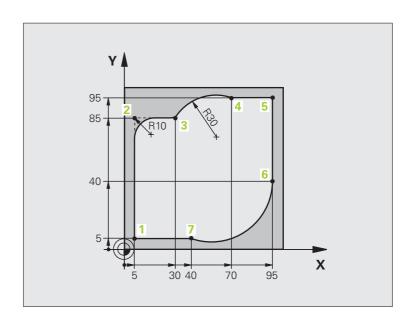
N70 G01 G41 X+0 Y+25 F300 M3 *


N80 X+25 Y+30 *

N90 G06 X+45 Y+20 *

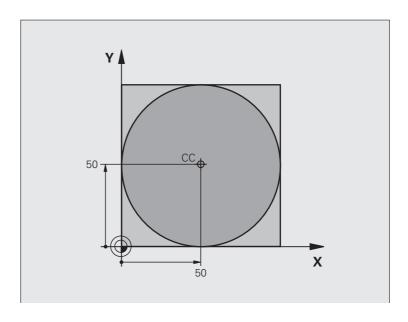

G01 Y+0 *

Der **G06**-Satz und das zuvor programmierte Konturelement sollten beide Koordinaten der Ebene enthalten, in der der Kreisbogen ausgeführt wird!


Beispiel: Geradenbewegung und Fasen kartesisch

%LINEAR G71 *			
N10 G30 G17 X+0 Y+0 Z-20 *	Rohteil-Definition für grafische Simulation der Bearbeitung		
N20 G31 G90 X+100 Y+100 Z+0 *			
N30 G99 T1 L+0 R+10 *	Werkzeug-Definition im Programm		
N40 T1 G17 S4000 *	Werkzeug-Aufruf mit Spindelachse und Spindeldrehzahl		
N50 G00 G40 G90 Z+250 *	Werkzeug freifahren in der Spindelachse mit Eilgang		
N60 X-10 Y-10 *	Werkzeug vorpositionieren		
N70 G01 Z-5 F1000 M3 *	Auf Bearbeitungstiefe fahren mit Vorschub F = 1000 mm/min		
N80 G01 G41 X+5 Y+5 F300 *	Kontur an Punkt 1 anfahren, Radiuskorrektur G41 aktivieren		
N90 G26 R5 F150 *	Tangentiales Anfahren		
N100 Y+95 *	Punkt 2 anfahren		
N110 X+95 *	Punkt 3: erste Gerade für Ecke 3		
N120 G24 R10 *	Fase mit Länge 10 mm programmieren		
N130 Y+5 *	Punkt 4: zweite Gerade für Ecke 3, erste Gerade für Ecke 4		
N140 G24 R20 *	Fase mit Länge 20 mm programmieren		
N150 X+5 *	Letzten Konturpunkt 1 anfahren, zweite Gerade für Ecke 4		
N160 G27 R5 F500 *	Tangentiales Wegfahren		
N170 G40 X-20 Y-20 F1000 *	Freifahren in der Bearbeitungsebene, Radiuskorrektur aufheben		
N180 G00 Z+250 M2 *	Werkzeug freifahren, Programm-Ende		
N99999999 %LINEAR G71 *			

Beispiel: Kreisbewegung kartesisch



%CIRCULAR G71 *		
N10 G30 G17 X+0 Y+0 Z-20 *	Rohteil-Definition für grafische Simulation der Bearbeitung	
N20 G31 G90 X+100 Y+100 Z+0 *		
N30 G99 T1 L+0 R+10 *	Werkzeug-Definition im Programm	
N40 T1 G17 S4000 *	Werkzeug-Aufruf mit Spindelachse und Spindeldrehzahl	
N50 G00 G40 G90 Z+250 *	Werkzeug freifahren in der Spindelachse mit Eilgang	
N60 X-10 Y-10 *	Werkzeug vorpositionieren	
N70 G01 Z-5 F1000 M3 *	Auf Bearbeitungstiefe fahren mit Vorschub F = 1000 mm/min	
N80 G01 G41 X+5 Y+5 F300 *	Kontur an Punkt 1 anfahren, Radiuskorrektur G41 aktivieren	
N90 G26 R5 F150 *	Tangentiales Anfahren	
N100 Y+85 *	Punkt 2: erste Gerade für Ecke 2	
N110 G25 R10 *	Radius mit R = 10 mm einfügen, Vorschub: 150 mm/min	
N120 X+30 *	Punkt 3 anfahren: Startpunkt des Kreises	
N130 G02 X+70 Y+95 R+30 *	Punkt 4 anfahren: Endpunkt des Kreises mit G02, Radius 30 mm	
N140 G01 X+95 *	Punkt 5 anfahren	
N150 Y+40 *	Punkt 6 anfahren	
N160 G06 X+40 Y+5 *	Punkt 7 anfahren: Endpunkt des Kreises, Kreisbogen mit tangentia-	
	lem Anschluss an Punkt 6, TNC berechnet den Radius selbst	

N170 G01 X+5 *	Letzten Konturpunkt 1 anfahren
N180 G27 R5 F500 *	Kontur verlassen auf einer Kreisbahn mit tangentialem Anschluss
N190 G40 X-20 Y-20 F1000 *	Freifahren in der Bearbeitungsebene, Radiuskorrektur aufheben
N200 G00 Z+250 M2 *	Werkzeug freifahren in der Werkzeug-Achse, Programm-Ende
N99999999 %CIRCULAR G71 *	

Beispiel: Vollkreis kartesisch

%C-CC G71 *		
N10 G30 G17 X+0 Y+0 Z-20 *	Rohteil-Definition	
N20 G31 G90 X+100 Y+100 Z+0 *		
N30 G99 T1 L+0 R+12,5 *	Werkzeug-Definition	
N40 T1 G17 S3150 *	Werkzeug-Aufruf	
N50 G00 G40 G90 Z+250 *	Werkzeug freifahren	
N60 I+50 J+50 *	Kreismittelpunkt definieren	
N70 X-40 Y+50 *	Werkzeug vorpositionieren	
N80 G01 Z-5 F1000 M3 *	Auf Bearbeitungstiefe fahren	
N90 G41 X+0 Y+50 F300 *	Kreisstartpunkt anfahren, Radiuskorrektur G41	
N100 G26 R5 F150 *	Tangentiales Anfahren	
N110 G02 X+0 *	Kreisendpunkt (=Kreisstartpunkt) anfahren	
N120 G27 R5 F500 *	Tangentiales Wegfahren	
N130 G01 G40 X-40 Y-50 F1000 *	Freifahren in der Bearbeitungsebene, Radiuskorrektur aufheben	
N140 G00 Z+250 M2 *	Werkzeug freifahren in der Werkzeug-Achse, Programm-Ende	
N99999999 %C-CC G71 *		

6.5 Bahnbewegungen – Polarkoordinaten

Übersicht der Bahnfunktionen mit Polarkoordinaten

Mit Polarkoordinaten legen Sie eine Position über einen Winkel **H** und einen Abstand **R** zu einem zuvor definierten Pol **I**, **J** fest (siehe "Festlegen von Pol und Winkel-Bezugsachse", Seite 110).

Polarkoordinaten setzen Sie vorteilhaft ein bei:

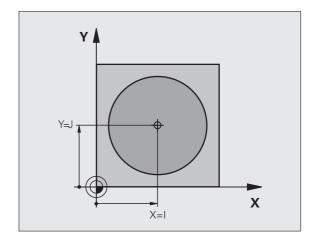
- Positionen auf Kreisbögen
- Werkstück-Zeichnungen mit Winkelangaben, z.B. bei Lochkreisen

Werkzeug-Bewegung Fe		Erforderliche Eingaben	Seite
Gerade im Vorschub Gerade im Eilgang	G10 G11	Polarradius, Polarwinkel des Geraden- Endpunkts	Seite 246
Kreisbahn im Uhrzeigersinn Kreisbahn im Gegen-Uhrzeigersinn	G12 G13	Polarwinkel des Kreisendpunkts	Seite 246
Kreisbahn entsprechend aktiver Drehrichtung	G15	Polarwinkel des Kreisendpunkts	Seite 246
Kreisbahn mit tangentialem Anschluss an vorhergehendes Konturelement	G16	Polarradius, Polarwinkel des Kreisendpunkts Sei	

Polarkoordinaten-Ursprung: Pol I, J

Den Pol I, J können Sie an beliebigen Stellen im Bearbeitungs-Programm festlegen, bevor Sie Positionen durch Polarkoordinaten angeben. Gehen Sie beim Festlegen des Pols vor, wie beim Programmieren des Kreismittelpunkts.

Programmierung



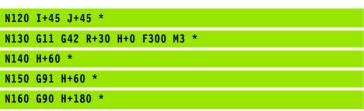
▶ Rechtwinklige Koordinaten für den Pol eingeben oder um die zuletzt programmierte Position zu übernehmen: 629 eingeben. Den Pol festlegen, bevor Sie Polarkoordinaten programmieren. Pol nur in rechtwinkligen Koordinaten programmieren. Der Pol ist solange wirksam, bis Sie einen neuen Pol festlegen.

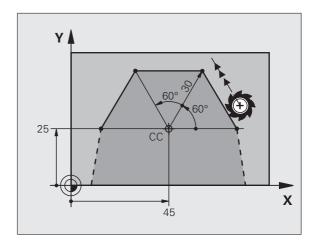
NC-Beispielsätze

N120 I+45 J+45 *

Gerade im Eilgang G10 Gerade mit Vorschub G11 F...

Das Werkzeug fährt auf einer Geraden von seiner aktuellen Position zum Endpunkt der Geraden. Der Startpunkt ist der Endpunkt des vorangegangenen Satzes.


Programmierung



- ▶ Polarkoordinaten-Radius **R**: Abstand des Geraden-Endpunkts zum Pol **I**, **J** eingeben
- ▶ Polarkoordinaten-Winkel H: Winkelposition des Geraden-Endpunkts zwischen –360° und +360°

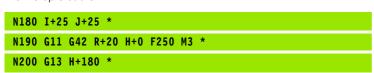
Das Vorzeichen von **H** ist durch die Winkel-Bezugsachse festgelegt:

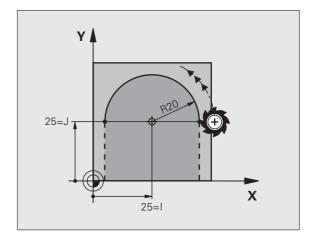
- Winkel von der Winkel-Bezugsachse zu **R** gegen den Uhrzeigersinn: **H** >0
- Winkel von der Winkel-Bezugsachse zu **R** im Uhrzeigersinn: **H**<0 NC-Beispielsätze

Kreisbahn G12/G13/G15 um Pol I, J

Der Polarkoordinaten-Radius **R** ist gleichzeitig Radius des Kreisbogens. R ist durch den Abstand des Startpunkts zum Pol **I**, **J** festgelegt. Die zuletzt programmierte Werkzeug-Position vor dem **G12**-, **G13**- oder **G15**-Satz ist der Startpunkt der Kreisbahn.

Drehsinn


- Im Uhrzeigersinn: **G12**
- Im Gegen-Uhrzeigersinn: **G13**
- Ohne Drehrichtungs-Angabe: G15. Die TNC f\u00e4hrt die Kreisbahn mit der zuletzt programmierten Drehrichtung


Programmierung

▶ Polarkoordinaten-Winkel II: Winkelposition des Kreisbahn-Endpunkts zwischen –99 999,9999° und +99 999,9999°

NC-Beispielsätze

Kreisbahn G16 mit tangentialem Anschluss

Das Werkzeug fährt auf einer Kreisbahn, die tangential an ein vorangegangenes Konturelement anschließt.

Programmierung

- ▶ Polarkoordinaten-Radius R: Abstand des Kreisbahn-Endpunkts zum Pol I, J
- ▶ Polarkoordinaten-Winkel #: Winkelposition des Kreisbahn-Endpunkts

NC-Beispielsätze

N120 I+40 J+35 *

N130 G01 G42 X+0 Y+35 F250 M3 *

N140 G11 R+25 H+120 *

N150 G16 R+30 H+30 *

N160 G01 Y+0 *

Der Pol ist nicht Mittelpunkt des Konturkreises!

35=J

Schraubenlinie (Helix)

Eine Schraubenlinie entsteht aus der Überlagerung einer Kreisbewegung und einer Geradenbewegung senkrecht dazu. Die Kreisbahn programmieren Sie in einer Hauptebene.

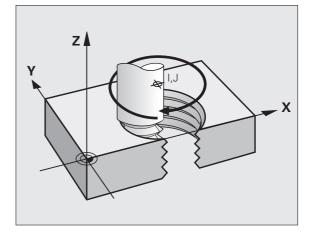
Die Bahnbewegungen für die Schraubenlinie können Sie nur in Polarkoordinaten programmieren.

Einsatz

- Innen- und Außengewinde mit größeren Durchmessern
- Schmiernuten

Berechnung der Schraubenlinie

Zum Programmieren benötigen Sie die inkrementale Angabe des Gesamtwinkels, den das Werkzeug auf der Schraubenlinie fährt und die Gesamthöhe der Schraubenlinie.


Für die Berechnung in Fräsrichtung von unten nach oben gilt:

Anzahl Gänge n Gewindegänge + Gangüberlauf am

Gewindeanfang und -ende

Gesamthöhe h Steigung P x Anzahl der Gänge n
Inkrementaler Anzahl der Gänge x 360° + Winkel für
Gesamtwinkel H Gewinde-Anfang + Winkel für Gangüberlauf
Anfangskoordinate Z Steigung P x (Gewindegänge + Gangüberlauf

am Gewinde-Anfang)

Form der Schraubenlinie

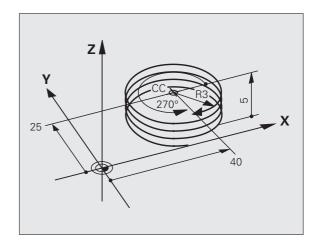
Die Tabelle zeigt die Beziehung zwischen Arbeitsrichtung, Drehsinn und Radiuskorrektur für bestimmte Bahnformen.

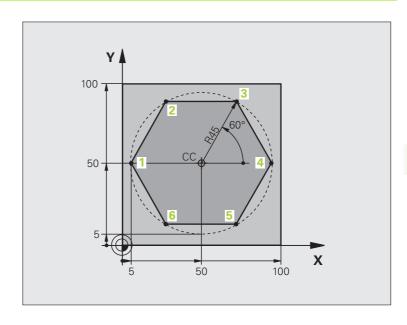
Innengewinde	Arbeits- richtung	Drehsinn	Radius- korrektur
rechtsgängig	Z+	G13	G41
linksgängig	Z+	G12	G42
rechtsgängig	Z–	G12	G42
linksgängig	Z–	G13	G41

Außengewinde				
rechtsgängig	Z+	G13	G42	
linksgängig	Z+	G12	G41	
rechtsgängig	Z–	G12	G41	
linksgängig	Z–	G13	G42	

Schraubenlinie programmieren

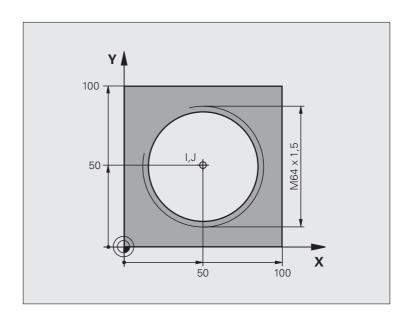
Geben Sie Drehsinn und den inkrementalen Gesamtwinkel G91 H mit gleichem Vorzeichen ein, sonst kann das Werkzeug in einer falschen Bahn fahren.


Für den Gesamtwinkel IPA ist einen Wert von -99 999,9999° bis +99 999,9999° eingebbar.


- ▶ Polarkoordinaten-Winkel H: Gesamtwinkel inkremental eingeben, den das Werkzeug auf der Schraubenlinie fährt. Nach der Eingabe des Winkels wählen Sie die Werkzeug-Achse mit einer Achswahltaste.
- ▶ Koordinate für die Höhe der Schraubenlinie inkremental eingeben
- ► Radiuskorrektur **G41/G42** gemäß Tabelle eingeben

NC-Beispielsätze: Gewinde M6 x 1 mm mit 5 Gängen

N120 I+40 J+25 *
N130 G01 Z+0 F100 M3 *
N140 G11 G41 R+3 H+270 *
N150 G12 G91 H-1800 Z+5 *


Beispiel: Geradenbewegung polar

%LINEARPO G71 *	
N10 G30 G17 X+0 Y+0 Z-20 *	Rohteil-Definition
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+7,5 *	Werkzeug-Definition
N40 T1 G17 S4000 *	Werkzeug-Aufruf
N50 G00 G40 G90 Z+250 *	Bezugspunkt für Polarkoordinaten definieren
N60 I+50 J+50 *	Werkzeug freifahren
N70 G10 R+60 H+180 *	Werkzeug vorpositionieren
N80 G01 Z-5 F1000 M3 *	Auf Bearbeitungstiefe fahren
N90 G11 G41 R+45 H+180 F250 *	Kontur an Punkt 1 anfahren
N100 G26 R5 *	Kontur an Punkt 1 anfahren
N110 H+120 *	Punkt 2 anfahren
N120 H+60 *	Punkt 3 anfahren
N130 H+0 *	Punkt 4 anfahren
N140 H-60 *	Punkt 5 anfahren
N150 H-120 *	Punkt 6 anfahren
N160 H+180 *	Punkt 1 anfahren
N170 G27 R5 F500 *	Tangentiales Wegfahren
N180 G40 R+60 H+180 F1000 *	Freifahren in der Bearbeitungsebene, Radiuskorrektur aufheben
N190 G00 Z+250 M2 *	Freifahren in der Spindelachse, Programm-Ende
N99999999 %LINEARPO G71 *	

Beispiel: Helix

%HELIX G71 *	
N10 G30 G17 X+0 Y+0 Z-20 *	Rohteil-Definition
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+5 *	Werkzeug-Definition
N40 T1 G17 S1400 *	Werkzeug-Aufruf
N50 G00 G40 G90 Z+250 *	Werkzeug freifahren
N60 X+50 Y+50 *	Werkzeug vorpositionieren
N70 G29 *	Letzte programmierte Position als Pol übernehmen
N80 G01 Z-12,75 F1000 M3 *	Auf Bearbeitungstiefe fahren
N90 G11 G41 R+32 H+180 F250 *	Ersten Konturpunkt anfahren
N100 G26 R2 *	Anschluss
N110 G13 G91 H+3240 Z+13,5 F200 *	Helix fahren
N120 G27 R2 F500 *	Tangentiales Wegfahren
N170 G01 G40 G90 X+50 Y+50 F1000 *	Werkzeug freifahren, Programm-Ende
N180 G00 Z+250 M2 *	

Wenn Sie mehr als 16 Gänge fertigen müssen:

•••	
N80 G01 Z-12,75 F1000 M3 *	
N90 G11 G41 H+180 R+32 F250 *	
N100 G26 R2 *	Tangentiales Anfahren

N110 G98 L1 *	Beginn der Programmteil-Wiederholung
N120 G13 G91 H+360 Z+1,5 F200 *	Steigung direkt als inkrementalen Z-Wert eingeben
N130 L1,24 *	Anzahl der Wiederholungen (Gänge)
N99999999 %HELIX G71 *	

6.6 DXF-Dateien verarbeiten (Software-Option)

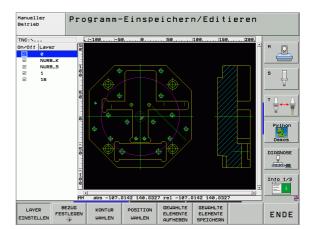
Anwendung

Auf einem CAD-System erzeugte DXF-Dateien können Sie direkt auf der TNC öffnen, um daraus Konturen oder Bearbeitungspositionen zu extrahieren und diese als Klartext-Dialog-Programme bzw. als Punkte-Dateien zu speichern. Die bei der Konturselektion gewonnen Klartext-Dialog-Programme können auch von älteren TNC-Steuerungen abgearbeitet werden, da die Konturprogramme nur L- und CC-/C-Sätze enthalten.

Wenn Sie DXF-Dateien in der Betriebsart **Programm-Einspeichern/ Editieren** verarbeiten, dann erzeugt die TNC Konturprogramme mit der Dateiendung **.H** und Punkte-Dateien mit der Endung **.PNT**. Wenn Sie DXF-Dateien in der Betriebsart smarT.NC verarbeiten, dann erzeugt die TNC Kontur-Programme mit der Dateiendung **.HC** und Punkte-Dateien mit der Endung **.HP**.

Die zu verarbeitende DXF-Datei muss auf der Festplatte der TNC gespeichert sein.

Vor dem Einlesen in die TNC darauf achten, dass der Dateiname der DXF-Datei keine Leerzeichen bzw. nicht erlaubte Sonderzeichen enthält (siehe "Namen von Dateien" auf Seite 114).


Die zu öffnende DXF-Datei muss mindestens einen Layer enthalten.

Die TNC unterstützt das am weitesten verbreitete DXF-Format R12 (entspricht AC1009).

Die TNC unterstützt kein binäres DXF-Format. Beim Erzeugen der DXF-Datei aus dem CAD- oder Zeichenprogramm darauf achten, dass Sie die Datei im ASCII-Format speichern.

Als Kontur selektierbar sind folgende DXF-Elemente:

- LINE (Gerade)
- CIRCLE (Vollkreis)
- ARC (Teilkreis)

DXF-Datei öffnen

▶ Betriebsart Einspeichern/Editieren wählen

▶ Datei-Verwaltung wählen

Softkey-Menü zur Auswahl der anzuzeigenden Datei-Typen wählen: Softkey TYP WÄHLEN drücken

- Alle DXF-Dateien anzeigen lassen: Softkey ZEIGE DXF
- ▶ Verzeichnis wählen, in dem die DXF-Datei gespeichert

▶ Gewünschte DXF-Datei wählen, mit Taste ENT übernehmen: Die TNC startet den DXF-Konverter und zeigt den Inhalt der DXF-Datei am Bildschirm an. Im linken Fenster zeigt die TNC die sogenannten Layer (Ebenen) an, im rechten Fenster die Zeichnung

HEIDENHAIN TNC iTNC 530 253

Grundeinstellungen

Auf der dritten Softkey-Leiste stehen verschiede Einstellmöglichkeiten zur Verfügung:

Einstellung

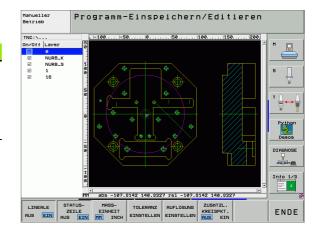
Softkey

Lineale anzeigen/nicht anzeigen: Die TNC zeigt die Lineale am linken und oberen Rand der Zeichnung an. Die auf dem Lineal angezeigten Werte beziehen sich auf den Zeichnungs-Nullpunkt.

Statuszeile anzeigen/nicht anzeigen: Die TNC zeigt die Statuszeile am unteren Rand der Zeichnung an. In der Stauszeile stehen folgende Informationen zur Verfügung:

- Aktive Maßeinheit (MM oder INCH)
- X- und Y-Koordinate der aktuellen Mouse-Position
- Im Modus KONTUR WÄHLEN zeigt die TNC an, ob die selektierte Kontur offen (open contour) oder geschlossen (closed contour) ist

Maßeinheit MM/INCH: Maßeinheit der DXF-Datei einstellen. In dieser Maßeinheit gibt die TNC auch das Konturprogramm aus



Toleranz einstellen. Die Toleranz legt fest, wie weit benachbarte Konturelemente voneinder entfernt sein dürfen. Mit der Toleranz können Sie Ungenauigkeiten ausgleichen, die bei der Zeichnungserstellung gemacht wurden. Grundeinstellung ist abhängig von der Ausdehnung der gesamten DXF-Datei

Auflösung einstellen. Die Auflösung legt fest, mit wieviel Nachkommastellen die TNC das Kontur-Programm erzeugen soll. Grundeinstellung: 4 Nachkommastellen (entspricht 0.1 µm Auflösung bei aktiver Maßeinheit MM)

Einstellung Softkey

Modus für Punktübernahme bei Kreisen und Teilkreisen. Modus legt fest, ob die TNC beim Wählen von Bearbeitungspositionen mit einem Mouse-Klick den Kreismittelpunkt direkt übernehmen soll (AUS), oder ob zunächst zusätzliche Kreispunkte angezeigt werden

AUS

Zusätzliche Kreispunkte **nicht anzeigen**, Kreismittelpunkt direkt übernehmen, wenn Sie einen Kreis oder einen Teilkreis anklicken

■ EIN

Zusätzliche Kreispunkte **anzeigen**, gewünschten Kreispunkt durch erneutes Anklicken übernehmen

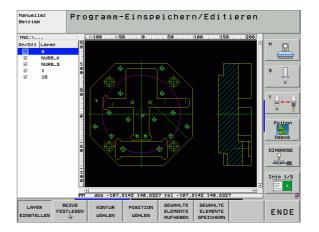
Beachten Sie, dass Sie die richtige Maßeinheit einstellen müssen, da in der DXF-Datei diesbezüglich keine Informationen enthalten sind.

Wenn Sie Programme für ältere TNC-Steuerungen erzeugen wollen, müssen Sie die Auflösung auf 3 Nachkommastellen begrenzen. Zusätzlich müssen Sie die Kommentare entfernen, die der DXF-Konverter mit in das Konturprogramm ausgibt.

Layer einstellen

DXF-Dateien enthalten in der Regel mehrere Layer (Ebenen), mit denen der Konstrukteur seine Zeichnung organisieren kann. Mit Hilfe der Layertechnik gruppiert der Konstrukteur verschiedenartige Elemente, z.B. die eigentliche Werkstück-Kontur, Bemaßungen, Hilfsund Konstruktionslinien, Schraffuren und Texte.

Um bei der Konturauswahl möglichst wenig überflüssige Informationen am Bildschirm zu haben, können Sie alle überflüssigen, in der DXF-Datei enthaltenen Layer ausblenden.



Die zu verarbeitende DXF-Datei muss mindestens einen Layer enthalten.

Sie können eine Kontur auch dann selektieren, wenn der Konstrukteur diese auf unterschiedlichen Layern gespeichert hat.

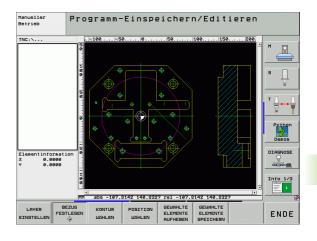
- Wenn nicht schon aktiv, den Modus zum Einstellen der Layer wählen: Die TNC zeigt im linken Fenster alle Layer an, die in der aktiven DXF-Datei enthalten sind
- Um einen Layer auszublenden: Mit der linken Mouse-Taste den gewünschten Layer wählen und durch Klicken auf das Kontrollkästchen ausblenden
- Um einen Layer einzublenden: Mit der linken Mouse-Taste den gewünschten Layer wählen und durch Klicken auf das Kontrollkästchen wieder einblenden

Bezugspunkt festlegen

Der Zeichnungs-Nullpunkt der DXF-Datei liegt nicht immer so, dass Sie diesen direkt als Werkstück-Bezugspunkt verwenden können. Die TNC stellt daher eine Funktion zur Verfügung, mit der Sie den Zeichnungs-Nullpunkt durch Anklicken eines Elementes an eine sinnvolle Stelle verschieben können.

An folgenden Stellen können Sie den Bezugspunkt definieren:

- Am Anfangs-, Endpunkt oder in der Mitte einer Geraden
- Am Anfangs- oder Endpunkt eines Kreisbogens
- Jeweils am Quadrantenübergang oder in der Mitte eines Vollkreises
- Im Schnittpunkt von
 - Gerade Gerade, auch wenn der Schnittpunkt in der Verlängerung der jeweiligen Geraden liegt
 - Gerade Kreisbogen
 - Gerade Vollkreis
 - Kreis Kreis (unabhängig ob Teil- oder Vollkreis)


Um einen Bezugspunkt festlegen zu können, müssen Sie das Touch-Pad auf der TNC-Tastatur oder eine über USB angeschlossene Mouse verwenden.

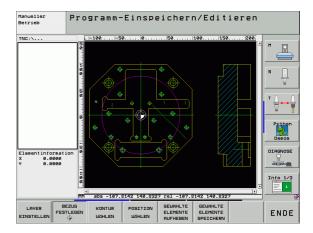
Sie können den Bezugspunkt auch noch verändern, wenn Sie die Kontur bereits gewählt haben. Die TNC berechnet die tatsächlichen Konturdaten erst, wenn Sie die gewählte Kontur in ein Konturprogramm speichern.

Bezugspunkt auf einzelnem Element wählen

- Modus zum Festlegen des Bezugspunktes wählen
- Mit der linken Mouse-Taste das gewünschte Element anklicken auf das Sie den Bezugspunkt legen wollen: Die TNC zeigt per Stern wählbare Bezugspunkte an, die auf dem selektierten Element liegen
- Auf den Stern klicken, den Sie als Bezugspunkt wählen wollen: Die TNC setzt das Bezugspunkt-Symbol auf die gewählte Stelle. Ggf. Zoom-Funktion verwenden, wenn das gewählte Element zu klein ist

Bezugspunkt als Schnittpunkt zweier Elemente wählen

- ► Modus zum Festlegen des Bezugspunktes wählen
- Mit der linken Mouse-Taste das erste Element (Gerade, Vollkreis oder Kreisbogen) anklicken: Die TNC zeigt per Stern wählbare Bezugspunkte an, die auf dem selektierten Element liegen
- Mit der linken Mouse-Taste das zweite Element (Gerade, Vollkreis oder Kreisbogen) anklicken: Die TNC setzt das Bezugspunkt-Symbol auf den Schnittpunkt


Die TNC berechnet den Schnittpunkt zweier Elemente auch dann, wenn dieser in der Verlängerung eines Elementes liegt.

Wenn die TNC mehrere Schnittpunkte berechnen kann, dann wählt die Steuerung den Schnittpunkt, der dem Mouseklick des zweiten Elementes am nächsten liegt.

Wenn die TNC keinen Schnittpunkt berechnen kann, dann hebt sie ein bereits markiertes Element wieder auf.

Elementinformationen

Die TNC zeigt im Bildschirm links unten an, wie weit der von Ihnen gewählte Bezugspunkt vom Zeichnungsnullpunkt entfernt ist.

Kontur wählen und speichern

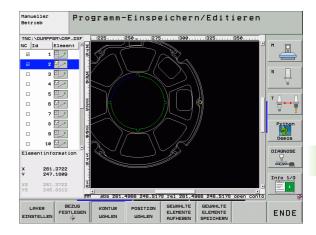
Um eine Kontur wählen zu können, müssen Sie das Touch-Pad auf der TNC-Tastatur oder eine über USB angeschlossene Mouse verwenden.

Wenn Sie das Kontur-Programm nicht in der Betriebsart smarT.NC verwenden, dann müssen Sie die Umlaufrichtung bei der Konturauswahl so festlegen, dass sie mit der gewünschten Bearbeitungsrichtung übereinstimmt.

Wählen Sie das erste Konturelement so aus, dass ein kollisionsfreies Anfahren möglich ist.

Sollten die Konturelemente sehr dicht aufeinander liegen, Zoom-Funktion nutzen.

KONTUR WÄHLEN


- Modus zum Selektieren der Kontur wählen: Die TNC blendet die im linken Fenster angezeigten Layer aus und das rechte Fenster ist für die Konturauswahl aktiv
- ▶ Um ein Konturelement zu wählen: Mit der linken Mouse-Taste auf das gewünschten Konturelement klicken. Die TNC stellt das ausgewählte Konturelement blau dar. Gleichzeitig zeigt die TNC das gewählte Element mit einem Symbol (Kreis oder Gerade) im linken Fenster an
- ▶ Um das nächste Konturelement zu wählen: Mit der linken Mouse-Taste auf das gewünschte Konturelement klicken. Die TNC stellt das ausgewählte Konturelement blau dar. Wenn weitere Konturelemente in der gewählten Umlaufrichtung eindeutig selektierbar sind, dann kennzeichnet die TNC diese Elemente grün. Durch Klicken auf das letzte grüne Element übernehmen Sie alle Elemente in das Kontur-Programm. Im linken Fenster zeigt die TNC alle selektierten Konturelemente an. Noch grün markierte Elemente zeigt die TNC ohne Häkchen in der Spalte NC an. Solche Elemente werden beim Speichern nicht in das Konturprogramm ausgegeben
- Bei Bedarf können Sie bereits selektierte Elemente wieder deselektieren, indem Sie das Element im rechten Fenster erneut anklicken, jedoch zusätzlich die Taste CTRL gedrückt halten

▶ Gewählte Konturelemente in einem Klartext-Dialog-Programm speichen: Die TNC zeigt ein Überblendfenster, in dem Sie einen beliebigen Dateinamen eingeben können. Grundeinstellung: Name der DXF-Datei. Wenn der Name der DXF Umlaute oder Leerstellen enthält, dann ersetzt die TNC diese Zeichen durch einen Unterstrich

Eingabe bestätigen: Die TNC speichert das Kontur-Programm in dem Verzeichnis, in dem auch die DXF-Datei gespeichert ist

i

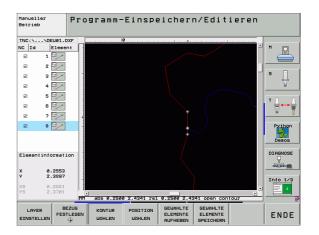
Wenn Sie noch weitere Konturen wählen wollen: Softkey GEWÄHLTE ELEMENTE AUFHEBEN drücken und nächste Kontur wie zuvor beschrieben wählen

Die TNC gibt zwei Rohteil-Definitionen (**BLK FORM**) mit ins Konturprogramm aus. Die erste Definition enthält die Abmessungen der gesamten DXF-Datei, die zweite und damit - zunächst wirksame Definition - umschließt die selektierten Konturelemente, so dass eine optimierte Rohteilgröße entsteht.

Die TNC speichert nur die Elemente, die tatsächlich auch selektiert sind (blaue markierte Elemente), also mit einem Häckchen im linken Fenster versehen sind.

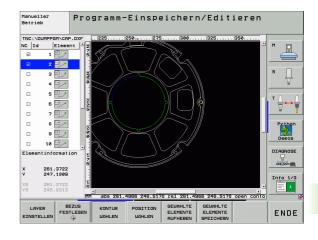
Konturelemente teilen, verlängern, verkürzen

Wenn zu selektierende Konturelemente in der Zeichnung stumpf aneinderstoßen, müssen Sie das entsprechende Konturelement zunächst teilen. Diese Funktion steht Ihnen automatisch zur Verfügung, wenn Sie sich im Modus zum Selektieren einer Kontur befinden.


Gehen Sie wie folgt vor:

- Das stumpf anstoßende Konturelement ist ausgewählt, also blau markiert
- ➤ Zu teilendes Konturelement anklicken: Die TNC zeigt den Schnittpunkt durch einen Stern mit Kreis an und die selektierbaren Endpunkte durch einen einfachen Stern
- ▶ Mit gedrückter Taste CTRL auf den Schnittpunkt klicken: Die TNC teilt das Konturelement im Schnittpunkt und blendet die Punkte wieder aus. Ggf. verlängert oder verkürzt die TNC das stumpf anstoßende Konturelement bis an den Schnittpunkt beider Elemente
- Das geteilte Konturelement erneut anklicken: Die TNC blendet den Schnitt- und die Endpunkte wieder ein
- Gewünschten Endpunkt anklicken: Die TNC markiert das jetzt geteilte Element blau
- Nächstes Konturelement wählen

Wenn das zu verlängernde/zu verkürzende Konturelement eine Gerade ist, dann verlängert/verkürzt die TNC das Konturelement linear. Wenn das zu verlängernde/zu verkürzende Konturelement ein Kreisbogen ist, dann verlängert/verkürzt die TNC den Kreisbogen zirkular.


Um diese Funktionen nutzen zu können, müssen mindestens zwei Konturelemente bereits selektiert sein, damit die Richtung eindeutig bestimmt ist.

Elementinformationen

Die TNC zeigt im Bildschirm links unten verschiedene Informationen zu dem Konturelement an, das Sie zuletzt im linken oder rechten Fenster per Mouse-Klick gewählt haben.

- Gerade
 Endpunkt der Geraden und zusätzlich ausgegraut den Startpunkt der Geraden
- Kreis, Teilkreis Kreismittelpunkt, Kreisendpunkt und Drehsinn. Zusätzlich ausgegraut Startpunkt und Radius des Kreises

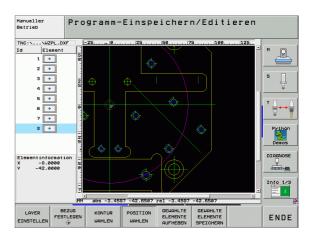
Bearbeitungspositionen wählen und speichern

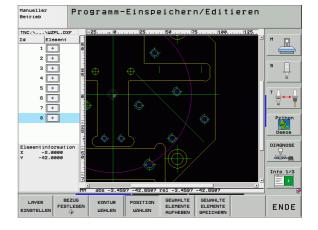
Um Bearbeitungspositionen wählen zu können, müssen Sie das Touch-Pad auf der TNC-Tastatur oder eine über USB angeschlossene Mouse verwenden.

Sollten die zu wählenden Positionen sehr dicht aufeinander liegen, Zoom-Funktion nutzen.

- Modus zum Selektieren von Bearbeitungsposition wählen: Die TNC blendet die im linken Fenster angezeigten Layer aus und das rechte Fenster ist für die Positionsauswahl aktiv
- ▶ Um eine Bearbeitungsposition zu wählen: Mit der linken Mouse-Taste das gewünschte Element anklicken: Die TNC zeigt per Stern wählbare Bearbeitungspositionen an, die auf dem selektierten Element liegen. Einen der Sterne anklicken: Die TNC übernimmt die gewählte Position ins linke Fenster (anzeigen eines Punkt-Symbols)
- Bei Bedarf können Sie bereits selektierte Elemente wieder deselektieren, indem Sie das Element im rechten Fenster erneut anklicken, jedoch zusätzlich die Taste CTRL gedrückt halten
- Wenn Sie die Bearbeitungsposition durch Schneiden zweier Elemente bestimmen wollen, erstes Element mit der linken Mouse-Taste anklicken: Die TNC zeigt per Stern wählbare Bearbeitungspositionen an
- ▶ Mit der linken Mouse-Taste das zweite Element (Gerade, Vollkreis oder Kreisbogen) anklicken: Die TNC übernimmt den Schnittpunkt der Elemente ins linke Fenster (anzeigen eines Punkt-Symbols)

▶ Gewählte Bearbeitungspositionen in eine Punkte-Datei speichen: Die TNC zeigt ein Überblendfenster, in dem Sie einen beliebigen Dateinamen eingeben können. Grundeinstellung: Name der DXF-Datei. Wenn der Name der DXF Umlaute oder Leerstellen enthält, dann ersetzt die TNC diese Zeichen durch einen Unterstrich


Eingabe bestätigen: Die TNC speichert das Kontur-Programm in dem Verzeichnis, in dem auch die DXF-Datei gespeichert ist



Wenn Sie noch weiter Bearbeitungspositionen wählen wollen um diese in einer anderen Datei zu speichern: Softkey GEWÄHLTE ELEMENTE AUFHEBEN drücken und wie zuvor beschrieben wählen

Elementinformationen

Die TNC zeigt im Bildschirm links unten die Koordinaten der Bearbeitungsposition an, die Sie zuletzt im linken oder rechten Fenster per Mouse-Klick gewählt haben.

Zoom-Funktion

合

Um bei der Kontur- oder Punkteauswahl auch kleine Details leicht erkennen zu können, stellt die TNC eine leistungsfähige Zoom-Funktion zur Verfügung:

Funktion Softkey

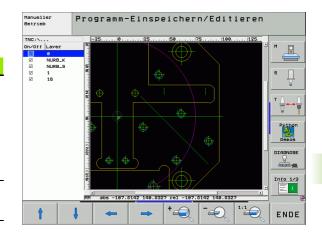
Werkstück vergrößern. Die TNC vergrößert grundsätzlich so, dass die Mitte des momentan dargestellten Ausschnittes jeweils vergrößert wird. Ggf. mit den Bildlaufleisten die Zeichnung so im Fenster positionieren, dass das gewünschte Detail nach Betätigung des Softkeys direkt sichtbar ist

Softkeys direkt sichtbar ist.

Werkstück verkleinern

Werkstück in Originalgröße anzeigen

Zoombereich nach oben verschieben


Zoombereich nach unten verschieben

Zoombereich nach links verschieben

Zoombereich nach rechts verschieben

Wenn Sie eine Mouse mit Rad verwenden, dann können Sie durch Drehen des Rades Aus- und Einzoomen. Das Zoomzentrum liegt an der Stelle, an der sich der Mouse-Zeiger gerade befindet.

Programmieren: Zusatz-Funktionen

7.1 Zusatz-Funktionen M und G38 eingeben

Grundlagen

Mit den Zusatz-Funktionen der TNC – auch M-Funktionen genannt – steuern Sie

- den Programmlauf, z.B. eine Unterbrechung des Programmlaufs
- die Maschinenfunktionen, wie das Ein- und Ausschalten der Spindeldrehung und des Kühlmittels
- das Bahnverhalten des Werkzeugs

Der Maschinenhersteller kann Zusatz-Funktionen freigeben, die nicht in diesem Handbuch beschrieben sind. Beachten Sie Ihr Maschinenhandbuch.

Sie können bis zu zwei Zusatz-Funktionen M am Ende eines Positionier-Satzes oder auch in einem separaten Satz eingeben. Die TNC zeigt dann den Dialog: Zusatz-Funktion M ?

Gewöhnlich geben Sie im Dialog nur die Nummer der Zusatz-Funktion an. Bei einigen Zusatz-Funktionen wird der Dialog fortgeführt, damit Sie Parameter zu dieser Funktion eingeben können.

In den Betriebsarten Manueller Betrieb und El. Handrad geben Sie die Zusatz-Funktionen über den Softkey M ein.

Beachten Sie, dass einige Zusatz-Funktionen zu Beginn eines Positionier-Satzes wirksam werden, andere am Ende, unabhängig von der Reihenfolge, in der sie im jeweilgen NC-Satz stehen.

Die Zusatz-Funktionen wirken ab dem Satz, in dem sie aufgerufen werden.

Einige Zusatz-Funktionen gelten nur in dem Satz, in dem sie programmiert sind. Wenn die Zusatz-Funktion nicht nur satzweise wirksam ist, müssen Sie diese in einem nachfolgenden Satz mit einer separaten M-Funktion wieder aufheben, oder Sie wird automatisch von der TNC am Programm-Ende aufgehoben.

Zusatz-Funktion im STOPP-Satz eingeben

Ein programmierter STOPP-Satz unterbricht den Programmlauf bzw. den Programm-Test, z.B. für eine Werkzeug-Überprüfung. In einem STOPP-Satz können Sie eine Zusatz-Funktion M programmieren:

- Programmlauf-Unterbrechung programmieren: Taste STOPP drücken
- ► Zusatz-Funktion M eingeben

NC-Beispielsätze

87 G38 M6

7.2 Zusatz-Funktionen für Programmlauf-Kontrolle, Spindel und Kühlmittel

Übersicht

М	Wirkung W	irkung am Satz -	Anfang	Ende
M00	Programmlauf HAL Spindel HALT Kühlmittel AUS	T		•
M01	Wahlweiser Progra	mmlauf HALT		
M02	Programmlauf HAL Spindel HALT Kühlmittel aus Rücksprung zu Satz Löschen der Status (abhängig von Mass 7300)	z 1 s-Anzeige		
M03	Spindel EIN im Uhr	zeigersinn	-	
M04	Spindel EIN gegen	den Uhrzeigersinn		
M05	Spindel HALT			-
M06	Werkzeugwechsel Spindel HALT Programmlauf HAL Maschinen-Parame			•
M08	Kühlmittel EIN		-	
M09	Kühlmittel AUS			
M13	Spindel EIN im Uhr Kühlmittel EIN	zeigersinn		
M14	Spindel EIN gegen Kühlmittel ein	den Uhrzeigersinn		
M30	wie M02			

7.3 Zusatz-Funktionen für Koordinatenangaben

Maschinenbezogene Koordinaten programmieren: M91/M92

Maßstab-Nullpunkt

Auf dem Maßstab legt eine Referenzmarke die Position des Maßstab-Nullpunkts fest.

Maschinen-Nullpunkt

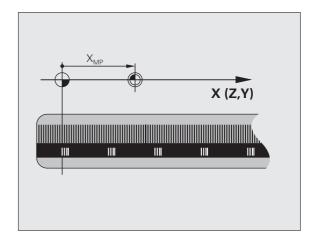
Den Maschinen-Nullpunkt benötigen Sie, um

- Verfahrbereichs-Begrenzungen (Software-Endschalter) zu setzen
- maschinenfeste Positionen (z.B. Werkzeugwechsel-Position) anzufahren
- einen Werkstück-Bezugspunkt zu setzen

Der Maschinenhersteller gibt für jede Achse den Abstand des Maschinen-Nullpunkts vom Maßstab-Nullpunkt in einen Maschinen-Parameter ein.

Standardverhalten

Koordinaten bezieht die TNC auf den Werkstück-Nullpunkt, siehe "Bezugspunkt-Setzen (ohne 3D-Tastsystem)", Seite 81.


Verhalten mit M91 - Maschinen-Nullpunkt

Wenn sich Koordinaten in Positionier-Sätzen auf den Maschinen-Nullpunkt beziehen sollen, dann geben Sie in diesen Sätzen M91 ein.

Wenn Sie in einem M91-Satz inkrementale Koordinaten programmieren, dann beziehen sich diese Koordinaten auf die letzte programmierte M91-Position. Ist im aktiven NC-Programm keine M91-Position programmiert, dann beziehen sich die Koordinaten auf die aktuelle Werkzeug-Position.

Die TNC zeigt die Koordinatenwerte bezogen auf den Maschinen-Nullpunkt an. In der Status-Anzeige schalten Sie die Koordinaten-Anzeige auf REF, siehe "Status-Anzeigen", Seite 53.

Verhalten mit M92 - Maschinen-Bezugspunkt

Neben dem Maschinen-Nullpunkt kann der Maschinenhersteller noch eine weitere maschinenfeste Position (Maschinen-Bezugspunkt) festlegen.

Der Maschinenhersteller legt für jede Achse den Abstand des Maschinen-Bezugspunkts vom Maschinen-Nullpunkt fest (siehe Maschinenhandbuch).

Wenn sich die Koordinaten in Positionier-Sätzen auf den Maschinen-Bezugspunkt beziehen sollen, dann geben Sie in diesen Sätzen M92 ein.

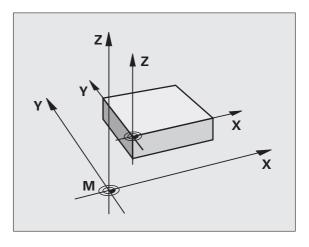
Auch mit M91 oder M92 führt die TNC die Radiuskorrektur korrekt aus. Die Werkzeug-Länge wird jedoch **nicht** berücksichtigt.

Wirkung

M91 und M92 wirken nur in den Programmsätzen, in denen M91 oder M92 programmiert ist.

M91 und M92 werden wirksam am Satz-Anfang.

Werkstück-Bezugspunkt


Wenn sich Koordinaten immer auf den Maschinen-Nullpunkt beziehen sollen, dann kann das Bezugspunkt-Setzen für eine oder mehrere Achsen gesperrt werden.

Wenn das Bezugspunkt-Setzen für alle Achsen gesperrt ist, dann zeigt die TNC den Softkey BEZUGSPUNKT SETZEN in der Betriebsart Manueller Betrieb nicht mehr an.

Das Bild rechts zeigt Koordinatensysteme mit Maschinen- und Werkstück-Nullpunkt.

M91/M92 in der Betriebsart Programm-Test

Um M91/M92-Bewegungen auch grafisch simulieren zu können, müssen Sie die Arbeitsraum-Überwachung aktivieren und das Rohteil bezogen auf den gesetzten Bezugspunkt anzeigen lassen, siehe "Rohteil im Arbeitsraum darstellen", Seite 644.

Zuletzt gesetzten Bezugspunkt aktivieren: M104

Funktion

Beim Abarbeiten von Paletten-Tabellen überschreibt die TNC ggf. den zuletzt von Ihnen gesetzten Bezugspunkt mit Werten aus der Paletten-Tabelle. Mit der Funktion M104 aktivieren Sie wieder den zuletzt von Ihnen gesetzten Bezugspunkt.

Wirkung

M104 wirkt nur in den Programm-Sätzen, in denen M104 programmiert ist.

M104 wird wirksam am Satz-Ende.

Die TNC verändert die aktive Grunddrehung beim Ausführen der Funktion M104 nicht.

Positionen im ungeschwenkten Koordinaten-System bei geschwenkter Bearbeitungsebene anfahren: M130

Standardverhalten bei geschwenkter Bearbeitungsebene

Koordinaten in Positionier-Sätzen bezieht die TNC auf das geschwenkte Koordinatensystem.

Verhalten mit M130

Koordinaten in Geraden-Sätzen bezieht die TNC bei aktiver, geschwenkter Bearbeitungsebene auf das ungeschwenkte Koordinatensystem

Die TNC positioniert dann das (geschwenkte) Werkzeug auf die programmierte Koordinate des ungeschwenkten Systems.

Nachfolgende Positionensätze bzw. Bearbeitungszyklen werden wieder im geschwenkten Koordinaten-System ausgeführt, dies kann bei Bearbeitungszyklen mit absoluter Vorpositionierung zu Problemen führen.

Die Funktion M130 ist nur erlaubt, wenn die Funktion Bearbeitungsebene Schwenken aktiv ist.

Wirkung

M130 ist satzweise wirksam in Geraden-Sätzen ohne Werkzeug-Radiuskorrektur.

7.4 Zusatz-Funktionen für das Bahnverhalten

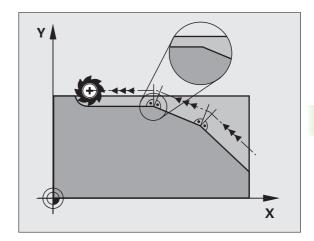
Ecken verschleifen: M90

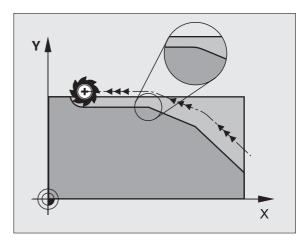
Standardverhalten

Die TNC hält bei Positionier-Sätzen ohne Werkzeug-Radiuskorrektur das Werkzeug an den Ecken kurz an (Genau-Halt).

Bei Programmsätzen mit Radiuskorrektur (RR/RL) fügt die TNC an Außenecken automatisch einen Übergangskreis ein.

Verhalten mit M90


Das Werkzeug wird an eckigen Übergängen mit konstanter Bahngeschwindigkeit geführt: Die Ecken verschleifen und die Werkstück-Oberfläche wird glatter. Zusätzlich verringert sich die Bearbeitungszeit. Siehe Bild rechts Mitte.


Anwendungsbeispiel: Flächen aus kurzen Geradenstücken.

Wirkung

M90 wirkt nur in dem Programmsatz, in dem M90 programmiert ist.

 $\,$ M90 wird wirksam am Satz-Anfang. Betrieb mit Schleppabstand muss angewählt sein.

Definierten Rundungskreis zwischen Geradenstücken einfügen: M112

Kompatibilität

Aus Kompatibilitätsgründen ist die Funktion M112 weiterhin verfügbar. Um die Toleranz beim schnellen Konturfräsen festzulegen, empfiehlt HEIDENHAIN jedoch die Verwendung des Zyklus TOLERANZ, siehe "Sonder-Zyklen", Seite 478.

Punkte beim Abarbeiten von nicht korrigierten Geradensätzen nicht berücksichtigen: M124

Standardverhalten

Die TNC arbeitet alle Geradensätze ab, die im aktiven Programm eingegeben sind.

Verhalten mit M124

Beim Abarbeiten von **nicht korrigierten Geradensätzen** mit sehr kleinen Punktabständen können Sie über den Parameter **T** einen minimalen Punktabstand definieren, bis zu dem die TNC Punkte beim Abarbeiten nicht berücksichtigen soll.

Wirkung

M124 wird wirksam am Satzanfang.

Die TNC setzt M124 automatisch zurück, wenn Sie ein neues Programm anwählen.

M124 eingeben

Wenn Sie in einem Positionier-Satz M124 eingeben, dann führt die TNC den Dialog für diesen Satz fort und erfragt den minimalen Punktabstand \mathbf{T} .

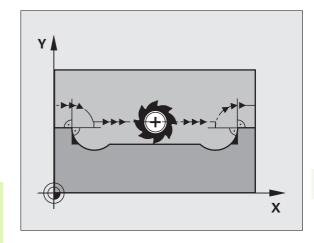
T können Sie auch über Q-Parameter festlegen (siehe "Prinzip und Funktionsübersicht" auf Seite 530).

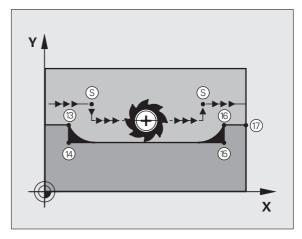
Kleine Konturstufen bearbeiten: M97

Standardverhalten

Die TNC fügt an der Außenecke einen Übergangskreis ein. Bei sehr kleinen Konturstufen würde das Werkzeug dadurch die Kontur beschädigen.

Die TNC unterbricht an solchen Stellen den Programmlauf und gibt die Fehlermeldung "Werkzeug-Radius zu groß" aus.


Verhalten mit M97


Die TNC ermittelt einen Bahnschnittpunkt für die Konturelemente – wie bei Innenecken – und fährt das Werkzeug über diesen Punkt.

Programmieren Sie M97 in dem Satz, in dem der Außeneckpunkt festgelegt ist.

Anstelle M97 sollten Sie die wesentlich leistungsfähigere Funktion M120 LA verwenden (siehe "Radiuskorrigierte Kontur vorausberechnen (LOOK AHEAD): M120" auf Seite 278)!

Wirkung

M97 wirkt nur in dem Programmsatz, in dem M97 programmiert ist.

Die Konturecke wird mit M97 nur unvollständig bearbeitet. Eventuell müssen Sie die Konturecke mit einem kleineren Werkzeug nachbearbeiten.

NC-Beispielsätze

N50 G99 G01 R+20 *	Großer Werkzeug-Radius
•••	
N130 X Y F M97 *	Konturpunkt 13 anfahren
N140 G91 Y-0,5 F *	Kleine Konturstufe 13 und 14 bearbeiten
N150 X+100 *	Konturpunkt 15 anfahren
N160 Y+0,5 F M97 *	Kleine Konturstufe 15 und 16 bearbeiten
N170 G90 X Y *	Konturpunkt 17 anfahren

Offene Konturecken vollständig bearbeiten: M98

Standardverhalten

Die TNC ermittelt an Innenecken den Schnittpunkt der Fräserbahnen und fährt das Werkzeug ab diesem Punkt in die neue Richtung.

Wenn die Kontur an den Ecken offen ist, dann führt das zu einer unvollständigen Bearbeitung:

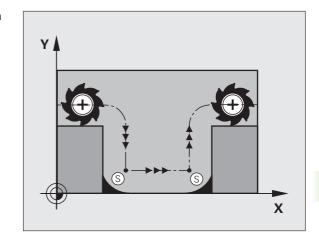
Verhalten mit M98

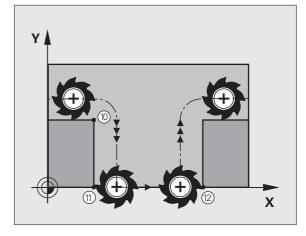
Mit der Zusatz-Funktion M98 fährt die TNC das Werkzeug so weit, dass jeder Konturpunkt tatsächlich bearbeitet wird:

Wirkung

M98 wirkt nur in den Programmsätzen, in denen M98 programmiert ist

M98 wird wirksam am Satz-Ende.


NC-Beispielsätze


Nacheinander Konturpunkte 10, 11 und 12 anfahren:

N100 G01 G41 X ... Y ... F ... *

N110 X ... G91 Y ... M98 *

N120 X+ ... *

Vorschubfaktor für Eintauchbewegungen: M103

Standardverhalten

Die TNC fährt das Werkzeug unabhängig von der Bewegungsrichtung mit dem zuletzt programmierten Vorschub.

Verhalten mit M103

Die TNC reduziert den Bahnvorschub, wenn das Werkzeug in negativer Richtung der Werkzeugachse fährt. Der Vorschub beim Eintauchen FZMAX wird errechnet aus dem zuletzt programmierten Vorschub FPROG und einem Faktor F%:

FZMAX = FPROG x F%

M103 eingeben

Wenn Sie in einem Positionier-Satz M103 eingeben, dann führt die TNC den Dialog fort und erfragt den Faktor F.

Wirkung

M103 wird wirksam am Satz-Anfang.

M103 aufheben: M103 ohne Faktor erneut programmieren

M103 wirkt auch bei aktiver geschwenkter Bearbeitungsebene. Die Vorschubreduzierung wirkt dann beim Verfahren in negativer Richtung der **geschwenkten** Werkzeugachse.

NC-Beispielsätze

Vorschub beim Eintauchen beträgt 20% des Ebenenvorschubs.

	Tatsächlicher Bahnvorschub (mm/min):
N170 G01 G41 X+20 Y+20 F500 M103 F20 *	500
N180 Y+50 *	500
N190 G91 Z-2,5 *	100
N200 Y+5 Z-5 *	141
N210 X+50 *	500
N220 G90 Z+5 *	500

Vorschub in Millimeter/Spindel-Umdrehung: M136

Standardverhalten

Die TNC verfährt das Werkzeug mit dem im Programm festgelegten Vorschub F in mm/min.

Verhalten mit M136

In Inch-Programmen ist M136 in Kombination mit der neu eingeführten Vorschub-Alternative FU nicht erlaubt.

Bei aktivem M136 darf die Spindel nicht in Regelung sein.

Mit M136 verfährt die TNC das Werkzeug nicht in mm/min sondern mit dem im Programm festgelegten Vorschub F in Millimeter/Spindel-Umdrehung. Wenn Sie die Drehzahl über den Spindel-Override verändern, passt die TNC den Vorschub automatisch an.

Wirkung

M136 wird wirksam am Satz-Anfang.

M136 heben Sie auf, indem Sie M137 programmieren.

HEIDENHAIN iTNC 530

Vorschubgeschwindigkeit bei Kreisbögen: M109/M110/M111

Standardverhalten

Die TNC bezieht die programmierte Vorschubgeschwindigkeit auf die Werkzeug-Mittelpunktsbahn.

Verhalten bei Kreisbögen mit M109

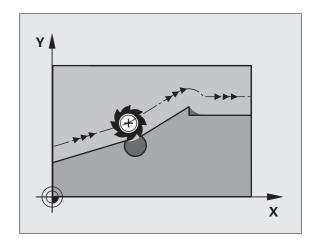
Die TNC hält bei Innen- und Außenbearbeitungen den Vorschub von Kreisbögen an der Werkzeug-Schneide konstant.

Verhalten bei Kreisbögen mit M110

Die TNC hält den Vorschub bei Kreisbögen ausschließlich bei einer Innenbearbeitung konstant. Bei einer Außenbearbeitung von Kreisbögen wirkt keine Vorschub-Anpassung.

M110 wirkt auch bei der Innenbearbeitung von Kreisbögen mit Konturzyklen. Wenn Sie M109 bzw. M110 vor dem Aufruf eines Bearbeitungszyklus definieren, wirkt die Vorschub-Anpassung auch bei Kreisbögen innerhalb von Bearbeitungszyklen. Am Ende oder nach Abbruch eines Bearbeitungszyklus wird der Ausgangszustand wieder hergestellt.

Wirkung


M109 und M110 werden wirksam am Satz-Anfang. M109 und M110 setzen Sie mit M111 zurück.

Radiuskorrigierte Kontur vorausberechnen (LOOK AHEAD): M120

Standardverhalten

Wenn der Werkzeug-Radius größer ist, als eine Konturstufe, die radiuskorrigiert zu fahren ist, dann unterbricht die TNC den Programmlauf und zeigt eine Fehlermeldung. M97 (siehe "Kleine Konturstufen bearbeiten: M97" auf Seite 273) verhindert die Fehlermeldung, führt aber zu einer Freischneidemarkierung und verschiebt zusätzlich die Ecke.

Bei Hinterschneidungen verletzt die TNC u.U. die Kontur.

Verhalten mit M120

Die TNC überprüft eine radiuskorrigierte Kontur auf Hinterschneidungen und Überschneidungen und berechnet die Werkzeugbahn ab dem aktuellen Satz voraus. Stellen, an denen das Werkzeug die Kontur beschädigen würde, bleiben unbearbeitet (im Bild rechts dunkel dargestellt). Sie können M120 auch verwenden, um Digitalisierdaten oder Daten, die von einem externen Programmier-System erstellt wurden, mit Werkzeug-Radiuskorrektur zu versehen. Dadurch sind Abweichungen vom theoretischen Werkzeug-Radius kompensierbar.

Die Anzahl der Sätze (maximal 99), die die TNC vorausrechnet, legen Sie mit LA (engl. Look Ahead: schaue voraus) hinter M120 fest. Je größer Sie die Anzahl der Sätze wählen, die die TNC vorausrechnen soll, desto langsamer wird die Satzverarbeitung.

Eingabe

Wenn Sie in einem Positionier-Satz M120 eingeben, dann führt die TNC den Dialog für diesen Satz fort und erfragt die Anzahl der vorauszuberechnenden Sätze LA.

Wirkung

M120 muss in einem NC-Satz stehen, der auch die Radiuskorrektur RL oder RR enthält. M120 wirkt ab diesem Satz bis Sie

- die Radiuskorrektur mit R0 aufheben
- M120 LA0 programmieren
- M120 ohne LA programmieren
- mit PGM CALL ein anderes Programm aufrufen
- mit Zyklus G80 oder mit der PLANE-Funktion die Bearbeitungsebene schwenken

M120 wird wirksam am Satz-Anfang.

Einschränkungen

- Den Wiedereintritt in eine Kontur mit M120 nach Extern/Intern Stopp dürfen Sie nur mit der Funktion VORLAUF ZU SATZ N durchführen
- Wenn Sie die Bahnfunktionen G25 und G24 verwenden, dürfen die Sätze vor und hinter G25 bzw. G26 nur Koordinaten der Bearbeitungsebene enthalten
- Vor Verwendung der nachfolgend aufgeführte Funktionen müssen Sie M120 und die Radiuskorrektur aufheben:
 - Zyklus G60 Toleranz
 - Zyklus G80 Bearbeitungsebene
 - M114
 - M128
 - M138
 - M144
 - PLANE-Funktion
 - FUNCTION TCPM (nur Klartext-Dialog)
 - WRITE TO KINEMATIC (nur Klartext-Dialog)

Handrad-Positionierung während des Programmlaufs überlagern: M118

Standardverhalten

Die TNC fährt das Werkzeug in den Programmlauf-Betriebsarten wie im Bearbeitungs-Programm festgelegt.

Verhalten mit M118

Mit M118 können Sie während des Programmlaufs manuelle Korrekturen mit dem Handrad durchführen. Dazu programmieren Sie M118 und geben einen achsspezifischen Wert (Linearachse oder Drehachse) in mm ein.

Eingabe

Wenn Sie in einem Positionier-Satz M118 eingeben, dann führt die TNC den Dialog fort und erfragt die achsspezifischen Werte. Benutzen Sie die orangefarbenen Achstasten oder die ASCII-Tastatur zur Koordinaten-Eingabe.

Wirkung

Die Handrad-Positionierung heben Sie auf, indem Sie M118 ohne Koordinaten-Eingabe erneut programmieren.

M118 wird wirksam am Satz-Anfang.

NC-Beispielsätze

Während des Programmlaufs soll mit dem Handrad in der Bearbeitungsebene X/Y um ± 1 mm und in der Drehachse B um $\pm 5^\circ$ vom programmierten Wert verfahren werden können:

N250 G01 G41 X+0 Y+38.5 F125 M118 X1 Y1 B5 *

M118 wirkt immer im Original-Koordinatensystem, auch wenn die Funktion Bearbeitungsebene schwenken aktiv ist!

M118 wirkt auch in der Betriebsart Positionieren mit Handeingabe!

Wenn M118 aktiv ist, steht bei einer Programm-Unterbrechung die Funktion MANUELL VERFAHREN nicht zur Verfügung!

M118 ist in Verbindung mit der Kollisionsüberwachung DCM nur in gestopptem Zustand (STIB blinkt) möglich.

Rückzug von der Kontur in Werkzeugachsen-Richtung: M140

Standardverhalten

Die TNC fährt das Werkzeug in den Programmlauf-Betriebsarten wie im Bearbeitungs-Programm festgelegt.

Verhalten mit M140

Mit M140 MB (move back) können Sie einen eingebbaren Weg in Richtung der Werkzeugachse von der Kontur wegfahren.

Eingabe

Wenn Sie in einem Positionier-Satz M140 eingeben, dann führt die TNC den Dialog fort und erfragt den Weg, den das Werkzeug von der Kontur wegfahren soll. Geben Sie den gewünschten Weg ein, den das Werkzeug von der Kontur wegfahren soll oder drücken Sie den Softkey MAX, um bis an den Rand des Verfahrbereichs zu fahren.

Zusätzlich ist ein Vorschub programmierbar, mit dem das Werkzeug den eingegebenen Weg verfährt. Wenn Sie keinen Vorschub eingeben, verfährt die TNC den programmierten Weg im Eilgang.

Wirkung

M140 wirkt nur in dem Programmsatz, in dem M140 programmiert ist.

M140 wird wirksam am Satz-Anfang.

NC-Beispielsätze

Satz N45: Werkzeug 50 mm von der Kontur wegfahren

Satz N55: Werkzeug bis an den Rand des Verfahrbereichs fahren

N45 G01 X+0 Y+38.5 F125 M140 MB50 *

N55 G01 X+0 Y+38.5 F125 M140 MB MAX *

M140 wirkt auch wenn die Funktion Bearbeitungsebene schwenken, M114 oder M128 aktiv ist. Bei Maschinen mit Schwenkköpfen verfährt die TNC das Werkzeug dann im geschwenkten System.

Mit der Funktion FN18: SYSREAD ID230 NR6 können Sie den Abstand von der aktuellen Position zur Verfahrbereichsgrenze der positiven Werkzeugachse ermitteln.

Mit M140 MB MAX können Sie nur in positiver Richtung freifahren.

Vor **M140** grundsätzliche einen **T00L CALL** mit Werkzeug-Achse definieren, ansonsten ist die Verfahrrichtung nicht definiert.

Bei aktiver Kollisions-Überwachung DCM, verfährt die TNC das Werkzeug ggf. nur bis eine Kollision erkannt wird und arbeitet das NC-Programm dann von dort aus ohne Fehlermeldung weiter ab. Dadurch können Bewegungen enstehen, die so nicht programmiert wurden!

Tastsystem-Überwachung unterdrücken: M141

Standardverhalten

Die TNC gibt bei ausgelenktem Taststift eine Fehlermeldung aus, sobald Sie eine Maschinenachse verfahren wollen.

Verhalten mit M141

Die TNC verfährt die Maschinenachsen auch dann, wenn das Tastsystem ausgelenkt ist. Diese Funktion ist erforderlich, wenn Sie einen eigenen Messzyklus in Verbindung mit dem Messzyklus 3 schreiben, um das Tastsystem nach dem Auslenken mit einem Positioniersatz wieder freizufahren.

Wenn Sie die Funktion M141 einsetzen, dann darauf achten, dass Sie das Tastsystem in die richtige Richtung freifahren.

M141 wirkt nur in Verfahrbewegungen mit Geraden-Sätzen.

Wirkung

M141 wirkt nur in dem Programmsatz, in dem M141 programmiert ist. M141 wird wirksam am Satz-Anfang.

Modale Programminformationen löschen: M142

Standardverhalten

Die TNC setzt modale Programminformationen in folgenden Situationen zurück:

- Neues Programm wählen
- Zusatzfunktionen M02, M30 oder den Satz N999999 %.... ausführen (abhängig von Maschinen-Parameter 7300)
- Zyklus mit Werten für das Grundverhalten erneut definieren

Verhalten mit M142

Alle modalen Programminformationen bis auf die Grunddrehung, 3D-Rotation und Q-Parameter werden zurückgesetzt.

Die Funktion M142 ist bei einem Satzvorlauf nicht erlaubt.

Wirkung

M142 wirkt nur in dem Programmsatz, in dem M142 programmiert ist. M142 wird wirksam am Satz-Anfang.

Grunddrehung löschen: M143

Standardverhalten

Die Grunddrehung bleibt solange wirksam, bis sie zurückgesetzt oder mit einen neuen Wert überschrieben wird.

Verhalten mit M143

Die TNC löscht eine programmierte Grunddrehung im NC-Programm.

Die Funktion M143 ist bei einem Satzvorlauf nicht erlaubt.

Wirkung

M143 wirkt nur in dem Programmsatz, in dem M143 programmiert ist. M143 wird wirksam am Satz-Anfang.

Werkzeug bei NC-Stopp automatisch von der Kontur abheben: M148

Standardverhalten

Die TNC stoppt bei einem NC-Stopp alle Verfahrbewegungen. Das Werkzeug bleibt am Unterbrechungspunkt stehen.

Verhalten mit M148

Die Funktion M148 muss vom Maschinenhersteller freigegeben sein. Der Maschinenhersteller definiert in einem Maschinen-Parameter den Weg, den die TNC bei einem **LIFTOFF** verfahren soll.

Die TNC fährt das Werkzeug um bis zu 30 mm in Richtung der Werkzeug-Achse von der Kontur zurück, wenn Sie in der Werkzeug-Tabelle in der Spalte **LIFT0FF** für das aktive Werkzeug den Parameter **Y** gesetzt haben (siehe "Werkzeug-Tabelle: Standard Werkzeug-Daten" auf Seite 195).

LIFTOFF wirkt in folgenden Situationen:

- Bei einem von Ihnen ausgelösten NC-Stopp
- Bei einem von der Software ausgelösten NC-Stopp, z.B. wenn im Antriebssystem ein Fehler aufgetreten ist
- Bei einer Stromunterbrechung

Beachten Sie, dass beim Wiederanfahren an die Kontur insbesondere bei gekrümmten Flächen Konturverletzungen entstehen können. Werkzeug vor dem Wiederanfahren freifahren!

Wirkung

M148 wirkt solange, bis die Funktion mit M149 deaktiviert wird.

M148 wird wirksam am Satz-Anfang, M149 am Satz-Ende.

Endschaltermeldung unterdrücken: M150

Standardverhalten

Die TNC stoppt den Programmlauf mit einer Fehlermeldung, wenn das Werkzeug in einem Positioniersatz den aktiven Arbeitsraum verlassen würde. Die Fehlermeldung wird ausgegeben, bevor der Positioniersatz ausgeführt wird.

Verhalten mit M150

Liegt der Endpunkt eines Positioniersatzes mit M150 ausserhalb des aktiven Arbeitsraumes, dann verfährt die TNC das Werkzeug bis an die Grenze des Arbeitsraumes und setzt den Programmlauf dann ohne Fehlermeldung fort.

Kollisionsgefahr!

Beachten Sie, dass sich der Anfahrweg auf die nach dem M150-Statz programmierte Position ggf. erheblich verändern kann!

M150 wirkt auch auf Verfahrbereichsgrenzen, die Sie über die MOD-Funktion definiert haben.

Bei aktiver Kollisions-Überwachung DCM, verfährt die TNC das Werkzeug ggf. nur bis eine Kollision erkannt wird und arbeitet das NC-Programm dann von dort aus ohne Fehlermeldung weiter ab. Dadurch können Bewegungen enstehen, die so nicht programmiert wurden!

Wirkung

M150 wirkt nur bei Geradensätzen und in dem Programmsatz, in dem M150 programmiert ist.

M150 wird wirksam am Satz-Anfang.

7.5 Zusatz-Funktionen für Drehachsen

Vorschub in mm/min bei Drehachsen A, B, C: M116 (Software-Option 1)

Standardverhalten

Die TNC interpretiert den programmierten Vorschub bei einer Drehachse in Grad/min. Der Bahnvorschub ist also abhängig von der Entfernung des Werkzeug-Mittelpunktes zum Drehachsen-Zentrum.

Je größer diese Entfernung wird, desto größer wird der Bahnvorschub.

Vorschub in mm/min bei Drehachsen mit M116

Die Maschinengeometrie muss vom Maschinenhersteller in den Maschinen-Parametern 7510 und folgenden festgelegt sein.

M116 wirkt nur bei Rund- und Drehtischen. Bei Schwenkköpfen kann M116 nicht verwendet werden. Sollte Ihre Maschine mit einer Tisch-/Kopf-Kombination ausgerüstet sein, ignoriert die TNC Schwenkkopf-Drehachsen.

M116 wirkt auch bei aktiver geschwenkter Bearbeitungsebene.

M128 und M116 können nicht gleichzeitig aktiv sein, sie schließen sich gegenseitig aus. M128 führt Ausgleichsbewegungen durch, die den Vorschub des Werkzeuges relativ zum Werkstück nicht verändern dürfen. Die Ausgleichsbewegung wird ganz gezielt mit einem separaten Vorschub, den Sie im M128-Satz definieren können, parallel und unabhängig zum Bearbeitungsvorschub ausgeführt. Im Gegensatz dazu muss die TNC bei aktivem M116 den Vorschub an der Schneide beim Bewegen einer Drehachse so berechnen, dass sich der programmierte Vorschub an der Werkzeugschneide (am TCP, tool center point) auch ergibt. Dabei berücksichtigt die TNC die Entfernung des TCP vom Zentrum der Drehachse.

Die TNC interpretiert den programmierten Vorschub bei einer Drehachse in mm/min. Dabei berechnet die TNC jeweils am Satz-Anfang den Vorschub für diesen Satz. Der Vorschub bei einer Drehachse ändert sich nicht, während der Satz abgearbeitet wird, auch wenn sich das Werkzeug auf das Drehachsen-Zentrum zubewegt.

Wirkung

M116 wirkt in der Bearbeitungsebene Mit M117 setzen Sie M116 zurück; am Programm-Ende wird M116 ebenfalls unwirksam.

M116 wird wirksam am Satz-Anfang.

Drehachsen wegoptimiert fahren: M126

Standardverhalten

Das Standardverhalten der TNC beim Positionieren von Drehachsen, deren Anzeige auf Werte unter 360° reduziert ist, ist abhängig vom Maschinen-Parameter 7682. Dort ist festgelegt, ob die TNC die Differenz Soll-Position – Ist-Position, oder ob die TNC grundsätzlich immer (auch ohne M126) auf kürzestem Weg die programmierte Position anfahren soll. Beispiele:

Ist-Position	Soll-Position	Fahrweg
350°	10°	–340°
10°	340°	+330°

Verhalten mit M126

Mit M126 fährt die TNC eine Drehachse, deren Anzeige auf Werte unter 360° reduziert ist, auf kurzem Weg. Beispiele:

Ist-Position	Soll-Position	Fahrweg
350°	10°	+20°
10°	340°	–30°

Wirkung

M126 wird wirksam am Satzanfang. M126 setzen Sie mit M127 zurück; am Programm-Ende wird M126 ebenfalls unwirksam.

Anzeige der Drehachse auf Wert unter 360° reduzieren: M94

Standardverhalten

Die TNC fährt das Werkzeug vom aktuellen Winkelwert auf den programmierten Winkelwert.

Beispiel:

Aktueller Winkelwert: 538° 180° Programmierter Winkelwert: Tatsächlicher Fahrweg: -358°

Verhalten mit M94

Die TNC reduziert am Satzanfang den aktuellen Winkelwert auf einen Wert unter 360° und fährt anschließend auf den programmierten Wert. Sind mehrere Drehachsen aktiv, reduziert M94 die Anzeige aller Drehachsen. Alternativ können Sie hinter M94 eine Drehachse eingeben. Die TNC reduziert dann nur die Anzeige dieser Achse.

NC-Beispielsätze

Anzeigewerte aller aktiven Drehachsen reduzieren:

N50 M94 *

Nur Anzeigewert der C-Achse reduzieren:

N50 M94 C *

Anzeige aller aktiven Drehachsen reduzieren und anschließend mit der C-Achse auf den programmierten Wert fahren:

N50 G00 C+180 M94 *

Wirkung

M94 wirkt nur in dem Programmsatz, in dem M94 programmiert ist.

M94 wird wirksam am Satz-Anfang.

Automatische Korrektur der Maschinengeometrie beim Arbeiten mit Schwenkachsen: M114 (Software-Option 2)

Standardverhalten

Die TNC fährt das Werkzeug auf die im Bearbeitungs-Programm festgelegten Positionen. Ändert sich im Programm die Position einer Schwenkachse, so muss der Postprozessor den daraus entstehenden Versatz in den Linearachsen berechnen und in einem Positioniersatz verfahren. Da hier auch die Maschinen-Geometrie eine Rolle spielt, muss für jede Maschine das NC-Programm separat berechnet werden.

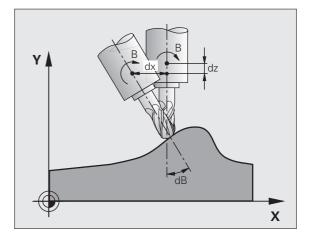
Verhalten mit M114

Die Maschinengeometrie muss vom Maschinenhersteller in Kinematik-Tabellen festgelegt sein.

Ändert sich im Programm die Position einer gesteuerten Schwenkachse, so kompensiert die TNC den Versatz des Werkzeugs mit einer 3D-Längenkorrektur automatisch. Da die Geometrie der Maschine in Maschinen-Parametern abgelegt ist, kompensiert die TNC auch maschinenspezifische Versätze automatisch. Programme müssen vom Postprozessor nur einmal berechnet werden, auch wenn sie auf unterschiedlichen Maschinen mit TNC-Steuerung abgearbeitet werden.

Wenn Ihre Maschine keine gesteuerten Schwenkachsen besitzt (Kopf manuell zu schwenken, Kopf wird von der PLC positioniert), können Sie hinter M114 die jeweils gültige Schwenkkopf-Position eingeben (z.B. M114 B+45, Q-Parameter erlaubt).

Die Werkzeug-Radiuskorrektur muss vom CAM-System bzw. vom Postprozessor berücksichtigt werden. Eine programmierte Radiuskorrektur G41/G42 führt zu einer Fehlermeldung.


Wenn die TNC die Werkzeug-Längenkorrektur vornimmt, dann bezieht sich der programmierte Vorschub auf die Werkzeugspitze, sonst auf den Werkzeug-Bezugspunkt.

Wenn Ihre Maschine einen gesteuerten Schwenkkopf hat, können Sie den Programmlauf unterbrechen und die Stellung der Schwenkachse verändern (z.B. mit dem Handrad).

Mit der Funktion VORLAUF ZU SATZ N können Sie das Bearbeitungs-Programm danach an der Unterbrechungsstelle fortführen. Die TNC berücksichtigt bei aktivem M114 automatisch die neue Stellung der Schwenkachse.

Um die Stellung der Schwenkachse mit dem Handrad während des Programmlaufs zu ändern, benutzen Sie M118 in Verbindung mit M128.

Wirkung

M114 wird wirksam am Satz-Anfang, M115 am Satz-Ende. M114 wirkt nicht bei aktiver Werkzeug-Radiuskorrektur.

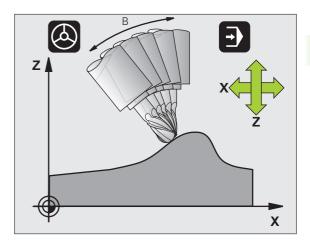
M114 setzen Sie mit M115 zurück. Am Programm-Ende wird M114 ebenfalls unwirksam.

Position der Werkzeugspitze beim Positionieren von Schwenkachsen beibehalten (TCPM): M128 (Software-Option 2)

Standardverhalten

Die TNC fährt das Werkzeug auf die im Bearbeitungs-Programm festgelegten Positionen. Ändert sich im Programm die Position einer Schwenkachse, so muss der daraus entstehende Versatz in den Linearachsen berechnet und in einem Positioniersatz verfahren werden (siehe Bild bei M114).

Verhalten mit M128 (TCPM: Tool Center Point Management)


Die Maschinengeometrie muss vom Maschinenhersteller in Kinematik-Tabellen festgelegt sein.

Ändert sich im Programm die Position einer gesteuerten Schwenkachse, dann bleibt während des Schwenkvorganges die Position der Werkzeugspitze gegenüber dem Werkstück unverändert.

Verwenden Sie **M128** in Verbindung mit **M118**, wenn Sie während des Programmlaufs die Stellung der Schwenkachse mit dem Handrad verändern wollen. Die Überlagerung einer Handrad-Positionierung erfolgt bei aktivem **M128** im maschinenfesten Koordinatensystem.

Bei Schwenkachsen mit Hirth-Verzahnung: Stellung der Schwenkachse nur verändern, nachdem Sie das Werkzeug freigefahren haben. Ansonsten können durch das Herausfahren aus der Verzahnung Konturverletzungen entstehen.

Hinter M128 können Sie noch einen Vorschub eingeben, mit dem die TNC die Ausgleichsbewegungen in den Linearachsen ausführt. Wenn Sie keinen Vorschub eingeben, oder einen der größer ist als im Maschinen-Parameter 7471 festgelegt ist, wirkt der Vorschub aus Maschinen-Parameter 7471.

Vor Positionierungen mit M91 oder M92 und vor einem T00L CALL: M128 rücksetzen.

Um Kontur-Verletzungen zu vermeiden dürfen Sie mit **M128** nur Radiusfräser verwenden.

Die Werkzeug-Länge muss sich auf das Kugelzentrum des Radiusfräsers beziehen.

Wenn M128 aktiv ist, zeigt die TNC in der Status-Anzeige das Symbol an.

M128 und M116 können nicht gleichzeitig aktiv sein, sie schließen sich gegenseitig aus. M128 führt Ausgleichsbewegungen durch, die den Vorschub des Werkzeuges relativ zum Werkstück nicht verändern dürfen. Die Ausgleichsbewegung wird ganz gezielt mit einem separaten Vorschub, den Sie im M128-Satz definieren können, parallel und unabhängig zum Bearbeitungsvorschub ausgeführt. Im Gegensatz dazu muss die TNC bei aktivem M116 den Vorschub an der Schneide beim Bewegen einer Drehachse so berechnen, dass sich der programmierte Vorschub an der Werkzeugschneide (am TCP, tool center point) auch ergibt. Dabei berücksichtigt die TNC die Entfernung des TCP vom Zentrum der Drehachse.

M128 bei Schwenktischen

Wenn Sie bei aktivem **M128** eine Schwenktisch-Bewegung programmieren, dann dreht die TNC das Koordinaten-System entsprechend mit. Drehen Sie z.B. die C-Achse um 90° (durch positionieren oder durch Nullpunkt-Verschiebung) und programmieren anschließend eine Bewegung in der X-Achse, dann führt die TNC die Bewegung in der Maschinenachse Y aus.

Auch den gesetzten Bezugspunkt, der sich durch die Rundtisch-Bewegung verlagert, transformiert die TNC.

M128 bei dreidimensionaler Werkzeug-Korrektur

Wenn Sie bei aktivem **M128** und aktiver Radiuskorrektur **G41/G42** eine dreidimensionale Werkzeug-Korrektur durchführen, positioniert die TNC bei bestimmten Maschinengeometrien die Drehachsen automatisch.

Wirkung

M128 wird wirksam am Satz-Anfang, M129 am Satz-Ende. M128 wirkt auch in den manuellen Betriebsarten und bleibt nach einem Betriebsartenwechsel aktiv. Der Vorschub für die Ausgleichsbewegung bleibt so lange wirksam, bis Sie einen neuen programmieren oder M128 mit M129 rücksetzen.

M128 setzen Sie mit **M129** zurück. Wenn Sie in einer Programmlauf-Betriebsart ein neues Programm wählen, setzt die TNC **M128** ebenfalls zurück.

NC-Beispielsätze

Ausgleichsbewegungen mit einem Vorschub von 1000 mm/min durchführen:

N50 G01 G41 X+0 Y+38.5 IB-15 F125 M128 F1000 *

Genauhalt an Ecken mit nicht tangentialen Übergängen: M134

Standardverhalten

Die TNC verfährt das Werkzeug bei Positionierungen mit Drehachsen so, dass an nicht tangentialen Konturübergängen ein Übergangselement eingefügt wird. Der Konturübergang ist abhängig von der Beschleunigung, dem Ruck und der festgelegten Toleranz der Konturabweichung.

Das Standardverhalten der TNC können Sie mit dem Maschinen-Parametern 7440 so ändern, das mit Anwahl eines Programmes M134 automatisch aktiv wird, siehe "Allgemeine Anwenderparameter", Seite 658.

Verhalten mit M134

Die TNC verfährt das Werkzeug bei Positionierungen mit Drehachsen so, dass an nicht tangentialen Konturübergängen ein Genauhalt ausgeführt wird.

Wirkung

M134 wird wirksam am Satz-Anfang, M135 am Satz-Ende.

M134 setzen Sie mit M135 zurück. Wenn Sie in einer Programmlauf-Betriebsart ein neues Programm wählen, setzt die TNC M134 ebenfalls zurück.

Auswahl von Schwenkachsen: M138

Standardverhalten

Die TNC berücksichtigt bei den Funktionen M114, M128 und Bearbeitungsebene schwenken die Drehachsen, die von Ihrem Maschinen-Hersteller in Maschinen-Parametern festgelegt sind.

Verhalten mit M138

Die TNC berücksichtigt bei den oben aufgeführten Funktionen nur die Schwenkachsen, die Sie mit M138 definiert haben.

Wirkung

M138 wird wirksam am Satz-Anfang.

M138 setzen Sie zurück, indem Sie M138 ohne Angabe von Schwenkachsen erneut programmieren.

NC-Beispielsätze

Für die oben aufgeführten Funktionen nur die Schwenkachse C berücksichtigen:

N50 G00 Z+100 R0 M138 C *

Berücksichtigung der Maschinen-Kinematik in IST/SOLL-Positionen am Satzende: M144 (Software-Option 2)

Standardverhalten

Die TNC fährt das Werkzeug auf die im Bearbeitungs-Programm festgelegten Positionen. Ändert sich im Programm die Position einer Schwenkachse, so muss der daraus entstehende Versatz in den Linearachsen berechnet und in einem Positioniersatz verfahren werden.

Verhalten mit M144

Die TNC berücksichtigt eine Änderung der Maschinen-Kinematik in der Positionsanzeige, wie sie z.B. durch Einwechseln einer Vorsatzspindel entsteht. Ändert sich die Position einer gesteuerten Schwenkachse, dann wird während des Schwenkvorganges auch die Position der Werkzeugspitze gegenüber dem Werkstück verändert. Der entstandene Versatz wird in der Positionsanzeige verrechnet.

Positionierungen mit M91/M92 sind bei aktivem M144 erlaubt.

Die Positionsanzeige in den Betriebsarten SATZFOLGE und EINZELSATZ ändert sich erst, nachdem die Schwenkachsen ihre Endposition erreicht haben.

Wirkung

M144 wird wirksam am Satz-Anfang. M144 wirkt nicht in Verbindung mit M114, M128 oder Bearbeitungsebene Schwenken.

M144 heben Sie auf, indem Sie M145 programmieren.

Die Maschinengeometrie muss vom Maschinenhersteller in den Maschinen-Parametern 7502 und folgenden festgelegt sein. Der Maschinenhersteller legt die Wirkungsweise in den Automatik-Betriebsarten und manuellen Betriebsarten fest. Beachten Sie Ihr Maschinenhandbuch.

7.6 Zusatz-Funktionen für Laser-Schneidmaschinen

Prinzip

Zum Steuern der Laserleistung gibt die TNC über den S-Analog-Ausgang Spannungswerte aus. Mit den M-Funktionen M200 bis M204 können Sie während des Programmlaufs die Laserleistung beeinflussen.

Zusatz-Funktionen für Laser-Schneidmaschinen eingeben

Wenn Sie in einem Positionier-Satz eine M-Funktion für Laser-Schneidmaschinen eingeben, dann führt die TNC den Dialog fort und erfragt die jeweiligen Parameter der Zusatz-Funktion.

Alle Zusatz-Funktionen für Laser-Schneidmaschinen werden wirksam am Satz-Anfang.

Programmierte Spannung direkt ausgeben: M200

Verhalten mit M200

Die TNC gibt den hinter M200 programmierten Wert als Spannung V aus.

Eingabebereich: 0 bis 9.999 V

Wirkung

M200 wirkt solange, bis über M200, M201, M202, M203 oder M204 eine neue Spannung ausgegeben wird.

Spannung als Funktion der Strecke: M201

Verhalten mit M201

M201 gibt die Spannung abhängig vom zurückgelegten Weg aus. Die TNC erhöht oder verringert die aktuelle Spannung linear auf den programmierten Wert V.

Eingabebereich: 0 bis 9.999 V

Wirkung

M201 wirkt solange, bis über M200, M201, M202, M203 oder M204 eine neue Spannung ausgegeben wird.

Spannung als Funktion der Geschwindigkeit: M202

Verhalten mit M202

Die TNC gibt die Spannung als Funktion der Geschwindigkeit aus. Der Maschinenhersteller legt in Maschinen-Parametern bis zu drei Kennlinien FNR. fest, in denen Vorschub-Geschwindigkeiten Spannungen zugeordnet werden. Mit M202 wählen Sie die Kennlinie FNR., aus der die TNC die auszugebende Spannung ermittelt.

Eingabebereich: 1 bis 3

Wirkung

M202 wirkt solange, bis über M200, M201, M202, M203 oder M204 eine neue Spannung ausgegeben wird.

Spannung als Funktion der Zeit ausgeben (zeitabhängige Rampe): M203

Verhalten mit M203

Die TNC gibt die Spannung V als Funktion der Zeit TIME aus. Die TNC erhöht oder verringert die aktuelle Spannung linear in einer programmierten Zeit TIME auf den programmierten Spannungs-Wert V.

Eingabebereich

Spannung V: 0 bis 9.999 Volt Zeit TIME: 0 bis 1.999 Sekunden

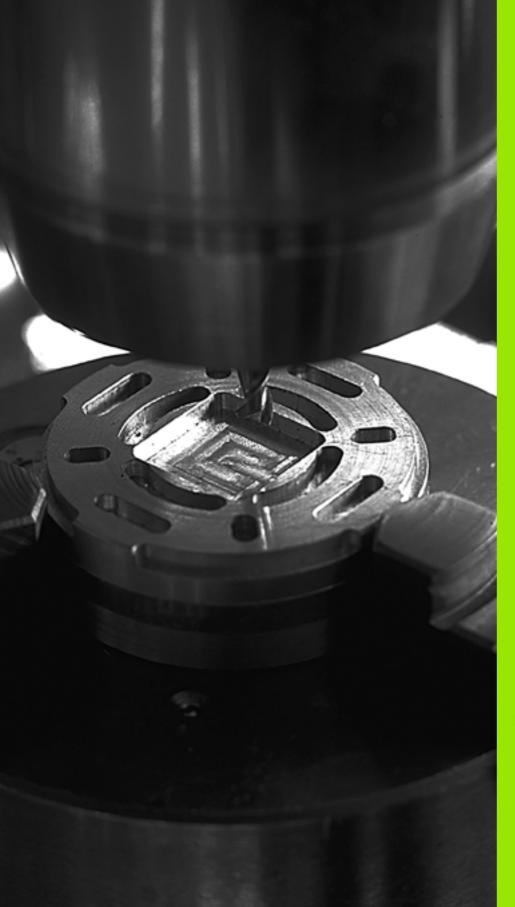
Wirkung

M203 wirkt solange, bis über M200, M201, M202, M203 oder M204 eine neue Spannung ausgegeben wird.

Spannung als Funktion der Zeit ausgeben (zeitabhängiger Puls): M204

Verhalten mit M204

Die TNC gibt eine programmierte Spannung als Puls mit einer programmierten Dauer TIME aus.


Eingabebereich

Spannung V: 0 bis 9.999 Volt Zeit TIME: 0 bis 1.999 Sekunden

Wirkung

M204 wirkt solange bis über M200, M201, M202, M203 oder M204 eine neue Spannung ausgegeben wird.

8

Programmieren: Zyklen

8.1 Mit Zyklen arbeiten

Häufig wiederkehrende Bearbeitungen, die mehrere Bearbeitungsschritte umfassen, sind in der TNC als Zyklen gespeichert. Auch Koordinaten-Umrechnungen und einige Sonderfunktionen stehen als Zyklen zur Verfügung (siehe Tabelle nächste Seite).

Bearbeitungs-Zyklen mit Nummern ab 200 verwenden Q-Parameter als Übergabeparameter. Parameter mit gleicher Funktion, die die TNC in verschiedenen Zyklen benötigt, haben immer dieselbe Nummer: z.B. Q200 ist immer der Sicherheits-Abstand, Q202 immer die Zustell-Tiefe usw.

Um Fehleingaben bei der Zyklus-Definition zu vermeiden, vor dem Abarbeiten einen grafischen Programm-Test durchführen (siehe "Programm-Test" auf Seite 587)!

Maschinenspezifische Zyklen

An vielen Maschinen stehen Zyklen zur Verfügung, die von Ihrem Maschinenhersteller zusätzlich zu den HEIDENHAIN-Zyklen in die TNC implementiert werden. Hierfür steht ein separater Zyklen-Nummernkreis zur Verfügung:

- Zyklen G300 bis G399 Maschinensprezifische Zyklen, die über die Taste CYCLE DEF zu definieren sind
- Zyklen G500 bis G599
 Maschinenspezifische Tastsystem-Zyklen, die über die Taste TOUCH PROBE zu definieren sind

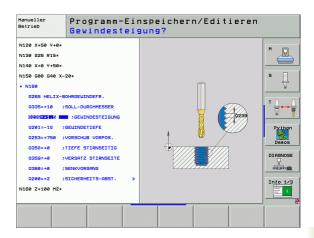
Beachten Sie hierzu die jeweilige Funktionsbeschreibung im Maschinenhandbuch.

Unter Umständen werden bei maschinenspezifischen Zyklen auch Übergabe-Parameter verwendet, die HEIDENHAIN bereits in Standard-Zyklen verwendet hat. Um bei der gleichzeitigen Verwendung von DEF-aktiven Zyklen (Zyklen, die die TNC automatisch bei der Zyklus-Definition abarbeitet, siehe auch "Zyklus aufrufen" auf Seite 303) und CALL-aktiven Zyklen (Zyklen, die Sie zur Ausführung aufrufen müssen, siehe auch "Zyklus aufrufen" auf Seite 303) Probleme hinsichtlich des Überschreibens von mehrfach verwendeten Übergabe-Parametern zu vermeiden, folgende Vorgehensweise beachten:

- Grundsätzlich DEF-aktive Zyklen vor CALL-aktiven Zyklen programmieren
- Zwischen der Definition eines CALL-aktiven Zyklus und dem jeweiligen Zyklus-Aufruf einen DEF-aktiven Zyklus nur dann programmieren, wenn keine Überschneidungen bei den Übergabeparametern dieser beiden Zyklen auftreten

300 8 Programmieren: Zyklen

Zyklus definieren über Softkeys



- Die Softkey-Leiste zeigt die verschiedenen Zyklus-Gruppen
- ► Zyklus-Gruppe wählen, z.B. Bohrzyklen
- Zyklus wählen, z.B. BOHREN. Die TNC eröffnet einen Dialog und erfragt alle Eingabewerte; gleichzeitig blendet die TNC in der rechten Bildschirmhälfte eine Grafik ein, in der der einzugebende Parameter hell hinterlegt ist
- ▶ Geben Sie alle von der TNC geforderten Parameter ein und schließen Sie jede Eingabe mit der Taste ENT ab
- ▶ Die TNC beendet den Dialog, nachdem Sie alle erforderlichen Daten eingegeben haben

NC-Beispielsatz

N10 G200 BOHREN	
Q200=2	;SICHERHEITS-ABST.
Q201=3	;TIEFE
Q206=150	;VORSCHUB TIEFENZ.
Q202=5	;ZUSTELL-TIEFE
Q210=0	;VERWEILZEIT OBEN
Q203=+0	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q211=0.25	;VERWEILZEIT UNTEN

Zyklus-Gruppe	Softkey	Seite
Zyklen zum Tiefbohren, Reiben, Ausdrehen, Senken, Gewindebohren, Gewindeschneiden und Gewindefräsen	BOHREN/ GEWINDE	Seite 310
Zyklen zum Fräsen von Taschen, Zapfen und Nuten	TASCHEN/ ZAPFEN/ NUTEN	Seite 363
Zyklen zur Herstellung von Punktemustern, z.B. Lochkreis oder Lochfläche	PUNKTE- MUSTER	Seite 392
SL-Zyklen (Subcontur-List), mit denen aufwendigere Konturen konturparallel bearbeitet werden, die sich aus mehreren überlagerten Teilkonturen zusammensetzen, Zylindermantel-Interpolation	SL- ZYKLEN	Seite 399
Zyklen zum Abzeilen ebener oder in sich verwundener Flächen	ABZEILEN	Seite 444
Zyklen zur Koordinaten-Umrechnung, mit denen beliebige Konturen verschoben, gedreht, gespiegelt, vergrößert und verkleinert werden	KOORD UMRECHN.	Seite 459
Sonder-Zyklen Verweilzeit, Programm- Aufruf, Spindel-Orientierung, Toleranz	SONDER- ZYKLEN	Seite 478

Wenn Sie bei Bearbeitungszyklen mit Nummern größer 200 indirekte Parameter-Zuweisungen (z.B. **D00 Q210 = Q1)** verwenden, wird eine Änderung des zugewiesenen Parameters (z.B. Q1) nach der Zyklus-Definition nicht wirksam. Definieren Sie in solchen Fällen den Zyklusparameter (z.B. **D00 Q210 = 5)** direkt.

Um die Bearbeitungszyklen G83 bis G86, G74 bis G78 und G56 bis G59 auch auf älteren TNC-Bahnsteuerungen abarbeiten zu können, müssen Sie beim Sicherheits-Abstand und bei der Zustell-Tiefe zusätzlich ein negatives Vorzeichen programmieren.

Zyklus aufrufen

Voraussetzungen

Vor einem Zyklus-Aufruf programmieren Sie in jedem Fall:

- G30/G31 zur grafischen Darstellung (nur für Testgrafik erforderlich)
- Werkzeug-Aufruf
- Drehsinn der Spindel (Zusatz-Funktion M3/M4)
- Zyklus-Definition

Beachten Sie weitere Voraussetzungen, die bei den nachfolgenden Zyklusbeschreibungen aufgeführt sind.

Folgende Zyklen wirken ab ihrer Definition im Bearbeitungs-Programm. Diese Zyklen können und dürfen Sie nicht aufrufen:

- die Zyklen G220 Punktemuster auf Kreis und G221 Punktemuster auf Linien
- den SL-Zyklus G14 KONTUR
- den SL-Zyklus G20 KONTUR-DATEN
- Zyklus G62 TOLERANZ
- Zyklen zur Koordinaten-Umrechnung
- den Zyklus G04 VERWEILZEIT

Alle übrigen Zyklen können Sie mit den nachfolgend beschriebenen Funktionen aufrufen.

Zyklus-Aufruf mit G79 (CYCL CALL)

Die Funktion **G79** ruft den zuletzt definierten Bearbeitungszyklus einmal auf. Startpunkt des Zyklus ist die zuletzt vor dem G79-Satz programmierte Position.

- Zyklus-Aufruf programmieren: Taste CYCL CALL drücken
- Zyklus-Aufruf eingeben: Softkey CYCL CALL M drücken
- Ggf. Zusatz-Funktion M eingeben (z.B. M3 um die Spindel einzuschalten), oder mit der Taste END den Dialog beenden

Zyklus-Aufruf mit G79 PAT (CYCL CALL PAT)

Die Funktion **G79 PAT** ruft den zuletzt definierten Bearbeitungszyklus an allen Positionen auf, die in einer Punkte-Tabelle definiert sind (siehe "Punkte-Tabellen" auf Seite 306).

Zyklus-Aufruf mit G79:G01 (CYCL CALL POS)

Die Funktion **G79:G01** ruft den zuletzt definierten Bearbeitungszyklus einmal auf. Startpunkt des Zyklus ist die Position, die Sie im **G79:G01**-Satz definiert haben.

Die TNC fährt die im **CYCL CALL POS**-Satz angegebene Position mit Positionierlogik an:

- Ist die aktuelle Werkzeugposition in der Werkzeugachse größer als die Oberkante des Werkstücks (Q203), dann positioniert die TNC zuerst in der Bearbeitungsebene auf die programmierte Position und anschließend in der Werkzeugachse
- Liegt die aktuelle Werkzeugposition in der Werkzeugachse unterhalb der Oberkante des Werkstücks (Q203), dann positioniert die TNC zuerst in Werkzeugachse auf die Sichere Höhe und anschließend in der Bearbeitungsebene auf die prorammierte Position

Im **G79:G01**-Satz müssen immer drei Koordinatenachsen programmiert sein. Über die Koordinate in der Werkzeug-Achse können Sie auf einfache Weise die Startposition verändern. Sie wirkt wie eine zusätzliche Nullpunkt-Verschiebung.

Der im **G79:G01**-Satz definierte Vorschub gilt nur zum Anfahren der in diesem Satz programmierten Startposition.

Die TNC fährt die im **G79:G01**-Satz definierte Position grundsätzlich mit inaktiver Radiuskorrektur (R0) an.

Wenn Sie mit **G79:601** einen Zyklus aufrufen in dem eine Startposition definiert ist (z.B. Zyklus 212), dann wirkt die im Zyklus definierte Position wie eine zusätzliche Verschiebung auf die im **G79:601**-Satz definierte Position. Sie sollten daher die im Zyklus festzulegende Startposition immer mit 0 definieren.

Zyklus-Aufruf mit M99/M89

Die satzweise wirksame Funktion M99 ruft den zuletzt definierten Bearbeitungszyklus einmal auf. M99 können Sie am Ende eines Positioniersatzes programmieren, die TNC fährt dann auf diese Position und ruft anschließend den zuletzt definierten Bearbeitungszyklus auf.

Soll die TNC den Zyklus nach jedem Positionier-Satz automatisch ausführen, programmieren Sie den ersten Zyklus-Aufruf mit **M89** (abhängig von Maschinen-Parameter 7440).

Um die Wirkung von M89 aufzuheben, programmieren Sie

- M99 in dem Positioniersatz, in dem Sie den letzten Startpunkt anfahren, oder
- **G79**, oder
- Sie definieren mit CYCL DEF einen neuen Bearbeitungszyklus

8 Programmieren: Zyklen

Arbeiten mit Zusatzachsen U/V/W

Die TNC führt Zustellbewegungen in der Achse aus, die Sie im TOOL CALL-Satz als Spindelachse definiert haben. Bewegungen in der Bearbeitungsebene führt die TNC grundsätzlich nur in den Hauptachsen X, Y oder Z aus. Ausnahmen:

- Wenn Sie im Zyklus G74 NUTENFRAESEN und im Zyklus G75/G76 TASCHENFRAESEN für die Seitenlängen direkt Zusatzachsen programmieren
- Wenn Sie bei SL-Zyklen Zusatzachsen im Kontur-Unterprogramm programmieren
- Bei den Zyklen G77/G78 (KREISTASCHE), G251 (RECHTECKTASCHE), G252 (KREISTASCHE), G253 (NUT) und G254 (RUNDE NUT) arbeitet die TNC den Zyklus in den Achsen ab, die Sie im letzten Positioniersatz vor dem jeweiligen Zyklus-Aufruf programmiert haben. Bei aktiver Werkzeugachse Z sind folgende Kombinationen zulässig:
 - X/Y
 - X/V
 - U/Y
 - U/V

8.2 Punkte-Tabellen

Anwendung

Wenn Sie einen Zyklus, bzw. mehrere Zyklen hintereinander, auf einem unregelmäßigen Punktemuster abarbeiten wollen, dann erstellen Sie Punkte-Tabellen.

Wenn Sie Bohrzyklen verwenden, entsprechen die Koordinaten der Bearbeitungsebene in der Punkte-Tabelle den Koordinaten der Bohrungs-Mittelpunkte. Setzen Sie Fräszyklen ein, entsprechen die Koordinaten der Bearbeitungsebene in der Punkte-Tabelle den Startpunkt-Koordinaten des jeweiligen Zyklus (z.B. Mittelpunkts-Koordinaten einer Kreistasche). Koordinaten in der Spindelachse entsprechen der Koordinate der Werkstück-Oberfläche.

Punkte-Tabelle eingeben

Betriebsart Programm-Einspeichern/Editieren wählen:

Datei-Verwaltung aufrufen: Taste PGM MGT drücken

DATEI-NAME?

NEU.PNT

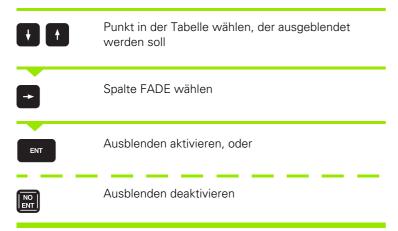
Name und Datei-Typ der Punkte-Tabelle eingeben, mit Taste ENT bestätigen

MM

Maßeinheit wählen: Softkey MM oder INCH drücken. Die TNC wechselt ins Programm-Fenster und stellt eine leere Punkte-Tabelle dar

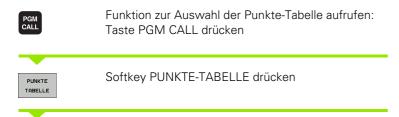
Mit Softkey ZEILE EINFÜGEN neue Zeile einfügen und die Koordinaten des gewünschten Bearbeitungsortes eingeben

Vorgang wiederholen, bis alle gewünschten Koordinaten eingegeben sind



Mit den Softkeys X AUS/EIN, Y AUS/EIN, Z AUS/EIN (zweite Softkey-Leiste) legen Sie fest, welche Koordinaten Sie in die Punkte-Tabelle eingeben können.

i


Einzelne Punkte für die Bearbeitung ausblenden

In der Punkte-Tabelle können Sie über die Spalte **FADE** den in der jeweiligen Zeile definierten Punkt so kennzeichnen, das dieser für die Bearbeitung wahlweise ausgeblendet wird (siehe "Sätze überspringen" auf Seite 603).

Punkte-Tabelle im Programm wählen

In der Betriebsart Programm-Einspeichern/Editieren das Programm wählen, für das die Punkte-Tabelle aktiviert werden soll:

Name der Punkte-Tabelle eingeben, mit Taste END bestätigen.

NC-Beispielsatz

N72 %:PAT: "NAMEN" *

Zyklus in Verbindung mit Punkte-Tabellen aufrufen

Die TNC arbeitet mit **G79 PAT** die Punkte-Tabelle ab, die Sie zuletzt definiert haben (auch wenn Sie die Punkte-Tabelle in einem mit % verschachtelten Programm definiert haben).

Die TNC verwendet die Koordinate in der Spindelachse als sichere Höhe, an der das Werkzeug beim Zyklus-Aufruf steht. In einem Zyklus separat definierte Sichere Höhen bzw. 2. Sicherheits-Abstände dürfen nicht größer als die globale Pattern-Sicherheitshöhe sein.

Soll die TNC den zuletzt definierten Bearbeitungszyklus an den Punkten aufrufen, die in einer Punkte-Tabelle definiert sind, programmieren Sie den Zyklus-Aufruf mit **G79 PAT**:

- Zyklus-Aufruf programmieren: Taste CYCL CALL drücken
- ▶ Punkte-Tabelle rufen: Softkey CYCL CALL PAT drücken
- Vorschub eingeben, mit dem die TNC zwischen den Punkten verfahren soll (keine Eingabe: Verfahren mit zuletzt programmiertem Vorschub)
- Bei Bedarf Zusatz-Funktion M eingeben, mit Taste END bestätigen

Die TNC zieht das Werkzeug zwischen den Startpunkten zurück auf die sichere Höhe (sichere Höhe = Spindelachsen-Koordinate beim Zyklus-Aufruf). Um diese Arbeitsweise auch bei den Zyklen mit Nummern 200 und größer einsetzen zu können, müssen Sie den 2. Sicherheits-Abstand (Q204) mit 0 definieren.

Wenn Sie beim Vorpositionieren in der Spindelachse mit reduziertem Vorschub fahren wollen, verwenden Sie die Zusatz-Funktion M103 (siehe "Vorschubfaktor für Eintauchbewegungen: M103" auf Seite 276)

Wirkungsweise der Punkte-Tabellen mit Zyklen G83, G84 und G74 bis G78

Die TNC interpretiert die Punkte der Bearbeitungsebene als Koordinaten des Bohrungs-Mittelpunktes. Die Koordinate der Spindel-Achse legt die Oberkante des Werkstücks fest, so dass die TNC automatisch vorpositionieren kann (Reihenfolge: Bearbeitungsebene, dann Spindelachse).

Wirkungsweise der Punkte-Tabellen mit SL-Zyklen und Zyklus G39

Die TNC interpretiert die Punkte als zusätzliche Nullpunkt-Verschiebung.

308 8 Programmieren: Zyklen

Wirkungsweise der Punkte-Tabellen mit Zyklen G200 bis G208 und G262 bis G267

Die TNC interpretiert die Punkte der Bearbeitungsebene als Koordinaten des Bohrungs-Mittelpunktes. Wenn Sie die in der Punkte-Tabelle definierte Koordinate in der Spindel-Achse als Startpunkt-Koordinate nutzen wollen, müssen Sie die Werkstück-Oberkante (Q203) mit 0 definieren.

Wirkungsweise der Punkte-Tabellen mit Zyklen G210 bis G215

Die TNC interpretiert die Punkte als zusätzliche Nullpunkt-Verschiebung. Wenn Sie die in der Punkte-Tabelle definierten Punkte als Startpunkt-Koordinaten nutzen wollen, müssen Sie die Startpunkte und die Werkstück-Oberkante (Q203) im jeweiligen Fräszyklus mit 0 programmieren.

Wirkungsweise der Punkte-Tabellen mit Zyklen G251 bis G254

Die TNC interpretiert die Punkte der Bearbeitungsebene als Koordinaten der Zyklus-Startposition. Wenn Sie die in der Punkte-Tabelle definierte Koordinate in der Spindel-Achse als Startpunkt-Koordinate nutzen wollen, müssen Sie die Werkstück-Oberkante (Q203) mit 0 definieren.

Gilt für alle Zyklen 2xx

Sobald beim **G79 PAT** die aktuelle Werkzeug-Achspositon unterhalb der Sicheren Höhe liegt, gibt die TNC die Fehlermeldung **PNT: Sicherheitshöhe zu klein** aus. Die Sichere Höhe berechnet sich aus der Summe der Koordinate Werkstück-Oberkante (Q203) und dem 2. Sicherheits-Abstand (Q204, bzw. Sicherheits-Abstand Q200, wenn Q200 vom Betrag größer ist als Q204).

8.3 Zyklen zum Bohren, Gewindebohren und Gewindefräsen

Übersicht

Die TNC stellt insgesamt 16 Zyklen für die verschiedensten Bohrbearbeitungen zur Verfügung:

Zyklus	Softkey	Seite
G240 ZENTRIEREN Mit automatischer Vorpositionierung, 2. Sicherheits-Abstand, wahlweise Eingabe Zentrierdurchmesser/ Zentriertiefe	240	Seite 312
G200 BOHREN Mit automatischer Vorpositionierung, 2. Sicherheits-Abstand	200	Seite 314
G201 REIBEN Mit automatischer Vorpositionierung, 2. Sicherheits-Abstand	201	Seite 316
G202 AUSDREHEN Mit automatischer Vorpositionierung, 2. Sicherheits-Abstand	202	Seite 318
G203 UNIVERSAL-BOHREN Mit automatischer Vorpositionierung, 2. Sicherheits-Abstand, Spanbruch, Degression	203	Seite 320
G204 RUECKWAERTS-SENKEN Mit automatischer Vorpositionierung, 2. Sicherheits-Abstand	204	Seite 322
G205 UNIVERSAL-TIEFBOHREN Mit automatischer Vorpositionierung, 2. Sicherheits-Abstand, Spanbruch, Vorhalteabstand	205	Seite 325
G208 BOHRFRAESEN Mit automatischer Vorpositionierung, 2. Sicherheits-Abstand	208	Seite 328
G206 GEWINDEBOHREN NEU Mit Ausgleichsfutter, mit automatischer Vorpositionierung, 2. Sicherheits- Abstand	206	Seite 330
G207 GEWINDEBOHREN GS NEU Ohne Ausgleichsfutter, mit automatischer Vorpositionierung, 2. Sicherheits-Abstand	207 RT	Seite 332

8 Programmieren: Zyklen

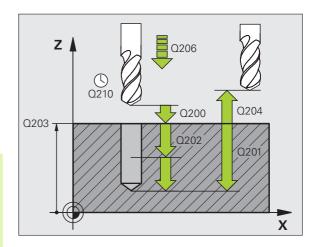
Zyklus	Softkey	Seite
G209 GEWINDEBOHREN SPANBRUCH Ohne Ausgleichsfutter, mit automatischer Vorpositionierung, 2. Sicherheits-Abstand; Spanbruch	209 RT	Seite 334
G262 GEWINDEFRAESEN Zyklus zum Fräsen eines Gewindes ins vorgebohrte Material	262	Seite 339
G263 SENKGEWINDEFRAESEN Zyklus zum Fräsen eines Gewindes ins vorgebohrte Material mit Herstellung einer Senkfase	263	Seite 341
G264 BOHRGEWINDEFRAESEN Zyklus zum Bohren ins volle Material und anschließendem Fräsen des Gewindes mit einem Werkzeug	264	Seite 345
G265 HELIX-BOHRGEWINDEFRAESEN Zyklus zum Fräsen des Gewindes ins volle Material	265	Seite 349
G267 AUSSENGEWINDE FRAESEN Zyklus zum Fräsen eines Aussengewindes mit Herstellung einer Senkfase	267	Seite 353

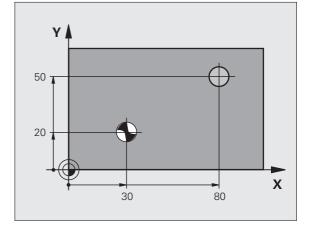
ZENTRIEREN (Zyklus 240)

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang FMAX auf den Sicherheits-Abstand über der Werkstück-Oberfläche
- **2** Das Werkzeug zentriert mit dem programmierten Vorschub F bis auf den eingegebenen Zentrierdurchmesser, bzw. auf die eingegebene Zentriertiefe
- 3 Falls definiert, verweilt das Werkzeug am Zentriergrund
- **4** Abschließend fährt das Werkzeug mit FMAX auf Sicherheits-Abstand oder – falls eingegeben – auf den 2. Sicherheits-Abstand

Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur G40 programmieren.


Das Vorzeichen des Zyklusparameters Q344 (Durchmesser, bzw. Q201 (Tiefe) legt die Arbeitsrichtung fest. Wenn Sie den Durchmesser oder die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.



Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).

Achtung Kollisionsgefahr!

Beachten Sie, dass die TNC bei **positiv eingegebenem Durchmesser bzw. bei positiv eingegebener Tiefe** die
Berechnung der Vorposition umkehrt. Das Werkzeug fährt
also in der Werkzeug-Achse mit Eilgang auf SicherheitsAbstand **unter** die Werkstück-Oberfläche!

8 Programmieren: Zyklen

- ➤ Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze Werkstück-Oberfläche; Wert positiv eingeben
- ▶ Auswahl Tiefe/Durchmesser (0/1) Q343: Auswahl, ob auf eingegebenen Durchmesser oder auf eingegebene Tiefe zentriert werden soll. Wenn auf eingegebenen Durchmesser zentriert werden soll, müssen Sie den Spitzenwinkel des Werkzeugs in der Spalte T-ANGLE. der Werkzeug-Tabelle TOOL.T definieren
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Zentriergrund (Spitze des Zentrierkegels). Nur wirksam, wenn Q343=0 definiert ist
- ▶ Durchmesser (Vorzeichen) Q344: Zentrierdurchmesser. Nur wirksam, wenn Q343=1 definiert ist
- ➤ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Zentrieren in mm/min
- ▶ Verweilzeit unten Q211: Zeit in Sekunden, die das Werkzeug am Bohrungsgrund verweilt
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann

Beispiel: NC-Sätze

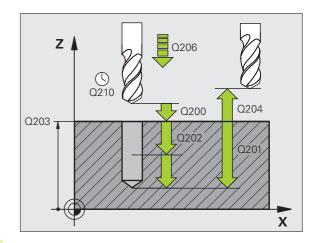
N100 G00 Z+100 G40
N110 G240 ZENTRIEREN
Q200=2 ;SICHERHEITS-ABST.
Q343=1 ;AUSWAHL TIEFE/DURCHM.
Q201=+0 ;TIEFE
Q344=-9 ;DURCHMESSER
Q206=250 ;VORSCHUB TIEFENZ.
Q211=0.1 ;VERWEILZEIT UNTEN
Q203=+20 ;KOOR. OBERFLAECHE
Q204=100 ;2. SICHERHEITS-ABST.
N120 X+30 Y+20 M3 M99
N130 X+80 Y+50 M99
N140 Z+100 M2

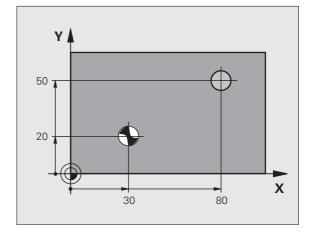
BOHREN (Zyklus G200)

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang auf den Sicherheits-Abstand über der Werkstück-Oberfläche
- 2 Das Werkzeug bohrt mit dem programmierten Vorschub F bis zur ersten Zustell-Tiefe
- 3 Die TNC f\u00e4hrt das Werkzeug mit Eilgang auf den Sicherheits-Abstand zur\u00fcck, verweilt dort - falls eingegeben - und f\u00e4hrt anschlie\u00dfend wieder mit Eilgang bis auf Sicherheits-Abstand \u00fcber die erste Zustell-Tiefe
- 4 Anschließend bohrt das Werkzeug mit eingegebenem Vorschub F um eine weitere Zustell-Tiefe
- 5 Die TNC wiederholt diesen Ablauf (2 bis 4), bis die eingegebene Bohrtiefe erreicht ist
- 5 Vom Bohrungsgrund f\u00e4hrt das Werkzeug mit Eilgang auf Sicherheits-Abstand oder – falls eingegeben – auf den 2. Sicherheits-Abstand

Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur **G40** programmieren.


Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.



Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).

Achtung Kollisionsgefahr!

Beachten Sie, dass die TNC bei **positiv eingegebener Tiefe** die Berechnung der Vorposition umkehrt. Das
Werkzeug fährt also in der Werkzeug-Achse mit Eilgang
auf Sicherheits-Abstand **unter** die Werkstück-Oberfläche!

314 8 Programmieren: Zyklen

- ➤ Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze Werkstück-Oberfläche; Wert positiv eingeben
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Bohrungsgrund (Spitze des Bohrkegels)
- ▶ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Bohren in mm/min
- ➤ Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird. Die Tiefe muss kein Vielfaches der Zustell-Tiefe sein. Die TNC fährt in einem Arbeitsgang auf die Tiefe wenn:
 - Zustell-Tiefe und Tiefe gleich sind
 - die Zustell-Tiefe größer als die Tiefe ist
- ▶ Verweilzeit oben Q210: Zeit in Sekunden, die das Werkzeug auf dem Sicherheits-Abstand verweilt, nachdem es die TNC zum Entspanen aus der Bohrung herausgefahren hat
- ► Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Verweilzeit unten Q211: Zeit in Sekunden, die das Werkzeug am Bohrungsgrund verweilt

Beispiel: NC-Sätze

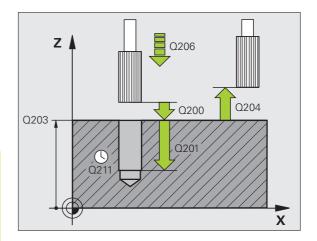
N100 G00 Z+100 G	40
N110 G200 BOHREN	
Q200=2	;SICHERHEITS-ABST.
Q291=-15	;TIEFE
Q206=250	;VORSCHUB TIEFENZ.
Q202=5	;ZUSTELL-TIEFE
Q210=0	;VERWEILZEIT OBEN
Q203=+20	;KOOR. OBERFLAECHE
Q204=100	;2. SICHERHEITS-ABST.
Q211=0.1	;VERWEILZEIT UNTEN
N120 X+30 Y+20 M	3 M99
N130 X+80 Y+50 M	99
N140 Z+100 M2	

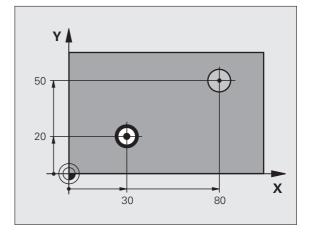
REIBEN (Zyklus G201)

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche
- **2** Das Werkzeug reibt mit dem eingegebenen Vorschub F bis zur programmierten Tiefe
- Am Bohrungsgrund verweilt das Werkzeug, falls eingegeben
- 4 Anschließend fährt die TNC das Werkzeug im Vorschub F zurück auf den Sicherheits-Abstand und von dort falls eingegeben mit Eilgang auf den 2. Sicherheits-Abstand

Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur **G40** programmieren.


Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.



Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).

Achtung Kollisionsgefahr!

Beachten Sie, dass die TNC bei **positiv eingegebener Tiefe** die Berechnung der Vorposition umkehrt. Das
Werkzeug fährt also in der Werkzeug-Achse mit Eilgang
auf Sicherheits-Abstand **unter** die Werkstück-Oberfläche!

i

- ➤ Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze Werkstück-Oberfläche
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Bohrungsgrund
- ➤ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Reiben in mm/min
- ▶ **Verwei1zeit unten** Q211: Zeit in Sekunden, die das Werkzeug am Bohrungsgrund verweilt
- ▶ Vorschub Rückzug Q208: Verfahrgeschwindigkeit des Werkzeugs beim Herausfahren aus der Bohrung in mm/min. Wenn Sie Q208 = 0 eingeben, dann gilt Vorschub Reiben
- ► Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann

Beispiel: NC-Sätze

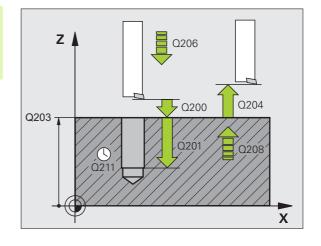
N100 G00 Z+100 G40
N110 G201 REIBEN
Q200=2 ;SICHERHEITS-ABST.
Q201=-15 ;TIEFE
Q206=100 ;VORSCHUB TIEFENZ.
Q211=0.5 ;VERWEILZEIT UNTEN
Q208=250 ; VORSCHUB RUECKZUG
Q203=+20 ;KOOR. OBERFLAECHE
Q204=100 ;2. SICHERHEITS-ABST.
N120 X+30 Y+20 M3 M99
N130 X+80 Y+50 M99
N140 G00 Z+100 M2

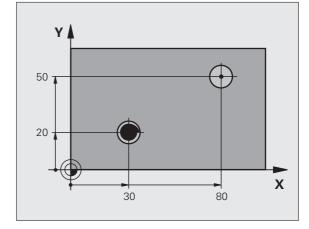
AUSDREHEN (Zyklus G202)

Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein.

Zyklus nur an Maschinen mit geregelter Spindel verwendbar.

- Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang auf den Sicherheits-Abstand über der Werkstück-Oberfläche
- Das Werkzeug bohrt mit dem Bohrvorschub bis zur Tiefe
- Am Bohrungsgrund verweilt das Werkzeug falls eingegeben mit laufender Spindel zum Freischneiden
- Anschließend führt die TNC eine Spindel-Orientierung auf die Position durch, die im Parameter Q336 definiert ist
- Falls Freifahren gewählt ist, fährt die TNC in der eingegebenen Richtung 0,2 mm (fester Wert) frei
- Anschließend fährt die TNC das Werkzeug im Vorschub Rückzug auf den Sicherheits-Abstand und von dort – falls eingegeben – mit Eilgang auf den 2. Sicherheits-Abstand. Wenn **0214=0** erfolgt der Rückzug an der Bohrungswand




Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur G40 programmieren.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Die TNC stellt am Zyklus-Ende den Kühlmittel- und Spindelzustand wieder her, der vor dem Zyklus-Aufruf aktiv war.

Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).

Achtung Kollisionsgefahr!

Beachten Sie, dass die TNC bei positiv eingegebener **Tiefe** die Berechnung der Vorposition umkehrt. Das Werkzeug fährt also in der Werkzeug-Achse mit Eilgang auf Sicherheits-Abstand unter die Werkstück-Oberfläche!

8 Programmieren: Zyklen

- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze Werkstück-Oberfläche
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Bohrungsgrund
- ➤ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Ausdrehen in mm/min
- ▶ Verwei1zeit unten Q211: Zeit in Sekunden, in der das Werkzeug am Bohrungsgrund verweilt
- ▶ Vorschub Rückzug Q208: Verfahrgeschwindigkeit des Werkzeugs beim Herausfahren aus der Bohrung in mm/min. Wenn Sie Q208=0 eingeben, dann gilt Vorschub Tiefenzustellung
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- Freifahr-Richtung (0/1/2/3/4) Q214: Richtung festlegen, in der die TNC das Werkzeug am Bohrungsgrund freifährt (nach der Spindel-Orientierung)
- 0: Werkzeug nicht freifahren
- 1: Werkzeug freifahren in Minus-Richtung der Hauptachse
- 2: Werkzeug freifahren in Minus-Richtung der Nebenachse
- **3:** Werkzeug freifahren in Plus-Richtung der Hauptachse
- 4: Werkzeug freifahren in Plus-Richtung der Nebenachse

Kollisionsgefahr!

Wählen Sie die Freifahr-Richtung so, dass das Werkzeug vom Bohrungsrand wegfährt.

Überprüfen Sie, wo die Werkzeug-Spitze steht, wenn Sie eine Spindel-Orientierung auf den Winkel programmieren, den Sie im Q336 eingeben (z.B. in der Betriebsart Positionieren mit Handeingabe). Wählen Sie den Winkel so, dass die Werkzeug-Spitze parallel zu einer Koordinaten-Achse steht.

Die TNC berücksichtigt beim Freifahren eine aktive Drehung des Koordinatensystems automatisch.

▶ Winkel für Spindel-Orientierung Q336 (absolut): Winkel, auf den die TNC das Werkzeug vor dem Freifahren positioniert

Beispiel:

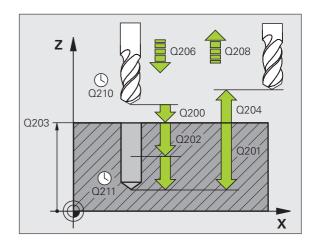
N100 G00 Z+100	G40
N110 G202 AUSDI	REHEN
Q200=2	;SICHERHEITS-ABST.
Q201=-15	;TIEFE
Q206=100	;VORSCHUB TIEFENZ.
Q211=0.5	;VERWEILZEIT UNTEN
Q208=250	;VORSCHUB RUECKZUG
Q203=+20	;KOOR. OBERFLAECHE
Q204=100	;2. SICHERHEITS-ABST.
Q214=1	;FREIFAHR-RICHTUNG
Q336=0	;WINKEL SPINDEL
N120 X+30 Y+20	М3
N130 G79	
N140 X+80 Y+50	FMAX M99

UNIVERSAL-BOHREN (Zyklus G203)

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche
- 2 Das Werkzeug bohrt mit dem eingegebenen Vorschub F bis zur ersten Zustell-Tiefe
- Falls Spanbruch eingegeben, fährt die TNC das Werkzeug um den eingegebenen Rückzugswert zurück. Wenn Sie ohne Spanbruch arbeiten, dann fährt die TNC das Werkzeug mit dem Vorschub Rückzug auf den Sicherheits-Abstand zurück, verweilt dort falls eingegeben und fährt anschließend wieder im Eilgang bis auf Sicherheits-Abstand über die erste Zustell-Tiefe
- 4 Anschließend bohrt das Werkzeug mit Vorschub um eine weitere Zustell-Tiefe. Die Zustell-Tiefe verringert sich mit jeder Zustellung um den Abnahmebetrag – falls eingegeben
- 5 Die TNC wiederholt diesen Ablauf (2-4), bis die Bohrtiefe erreicht ist
- Am Bohrungsgrund verweilt das Werkzeug falls eingegeben zum Freischneiden und wird nach der Verweilzeit mit dem Vorschub Rückzug auf den Sicherheits-Abstand zurückgezogen. Falls Sie einen 2. Sicherheits-Abstand eingegeben haben, fährt die TNC das Werkzeug mit Eilgang dorthin

Beachten Sie vor dem Programmieren

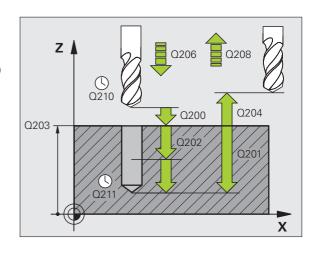
Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur **G40** programmieren.


Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).

Achtung Kollisionsgefahr!

Beachten Sie, dass die TNC bei **positiv eingegebener Tiefe** die Berechnung der Vorposition umkehrt. Das
Werkzeug fährt also in der Werkzeug-Achse mit Eilgang
auf Sicherheits-Abstand **unter** die Werkstück-Oberfläche!


Beispiel: NC-Sätze

N110 G203 UNIVER	SAL-BOHREN
Q200=2	;SICHERHEITS-ABST.
Q201=-20	;TIEFE
Q206=150	;VORSCHUB TIEFENZ.
Q202=5	;ZUSTELL-TIEFE
Q210=0	;VERWEILZEIT OBEN
Q203=+20	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q212=0.2	; ABNAHMEBETRAG
Q213=3	;SPANBRUECHE
Q205=3	;MIN. ZUSTELL-TIEFE
Q211=0.25	;VERWEILZEIT UNTEN
Q208=500	; VORSCHUB RUECKZUG
Q256=0.2	;RZ BEI SPANBRUCH

320 8 Programmieren: Zyklen

- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze Werkstück-Oberfläche
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Bohrungsgrund (Spitze des Bohrkegels)
- ▶ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Bohren in mm/min
- ▶ Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird. Die Tiefe muss kein Vielfaches der Zustell-Tiefe sein. Die TNC fährt in einem Arbeitsgang auf die Tiefe wenn:
 - Zustell-Tiefe und Tiefe gleich sind
 - die Zustell-Tiefe größer als die Tiefe ist
- ▶ Verweilzeit oben Q210: Zeit in Sekunden, die das Werkzeug auf Sicherheits-Abstand verweilt, nachdem es die TNC zum Entspanen aus der Bohrung herausgefahren hat
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Abnahmebetrag Q212 (inkremental): Wert, um den die TNC die Zustell-Tiefe Q202 nach jeder Zustellung verkleinert
- Anz. Spanbrüche bis Rückzug Q213: Anzahl der Spanbrüche bevor die TNC das Werkzeug aus der Bohrung zum Entspanen herausfahren soll. Zum Spanbrechen zieht die TNC das Werkzeug jeweils um den Rückzugswert Q256 zurück
- ▶ Minimale Zustell-Tiefe Q205 (inkremental): Falls Sie einen Abnahmebetrag eingegeben haben, begrenzt die TNC die Zustellung auf den mit Q205 eingegeben Wert
- ▶ **Verwei1zeit unten** Q211: Zeit in Sekunden, die das Werkzeug am Bohrungsgrund verweilt
- ▶ Vorschub Rückzug Q208: Verfahrgeschwindigkeit des Werkzeugs beim Herausfahren aus der Bohrung in mm/min. Wenn Sie Q208=0 eingeben, dann fährt die TNC das Werkzeug mit Vorschub Q206 heraus
- ▶ Rückzug bei Spanbruch Q256 (inkremental): Wert, um die die TNC das Werkzeug beim Spanbrechen zurückfährt

Beispiel: NC-Sätze

N110 G203 UNIVERSA	AL-BOHREN
Q200=2	;SICHERHEITS-ABST.
Q201=-20	;TIEFE
Q206=150	;VORSCHUB TIEFENZ.
Q202=5	;ZUSTELL-TIEFE
Q210=0	;VERWEILZEIT OBEN
Q203=+20	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q212=0.2	;ABNAHMEBETRAG
Q213=3	;SPANBRUECHE
Q205=3	;MIN. ZUSTELL-TIEFE
Q211=0.25	;VERWEILZEIT UNTEN
Q208=500	;VORSCHUB RUECKZUG
Q256=0.2	;RZ BEI SPANBRUCH

RUECKWAERTS-SENKEN (Zyklus G204)

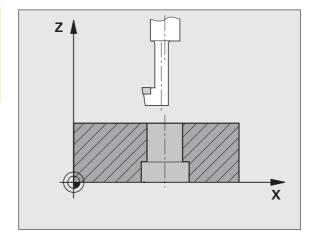
Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein.

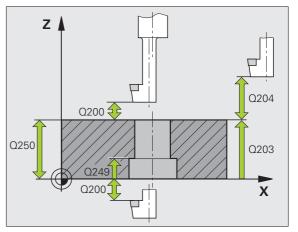
Zyklus nur an Maschinen mit geregelter Spindel verwendbar.

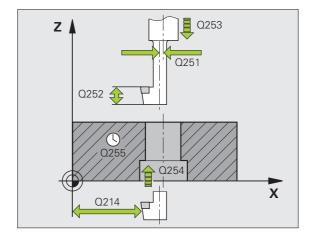
Zyklus arbeitet nur mit Rückwärtsbohrstangen.

Mit diesem Zyklus stellen Sie Senkungen her, die sich auf der Werkstück-Unterseite befinden.

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang auf den Sicherheits-Abstand über der Werkstück-Oberfläche
- 2 Dort führt die TNC eine Spindel-Orientierung auf die 0°-Position durch und versetzt das Werkzeug um das Exzentermaß
- 3 Anschließend taucht das Werkzeug mit dem Vorschub Vorpositionieren in die vorgebohrte Bohrung ein, bis die Schneide im Sicherheits-Abstand unterhalb der Werkstück-Unterkante steht
- **4** Die TNC fährt jetzt das Werkzeug wieder auf Bohrungsmitte, schaltet die Spindel und ggf. das Kühlmittel ein und fährt dann mit dem Vorschub Senken auf die eingegebene Tiefe Senkung
- Falls eingegeben, verweilt das Werkzeug am Senkungsgrund und fährt anschließend wieder aus der Bohrung heraus, führt eine Spindelorientierung durch und versetzt erneut um das Exzentermaß
- Anschließend fährt die TNC das Werkzeug im Vorschub Vorpositionieren auf den Sicherheits-Abstand und von dort – falls eingegeben – mit Eilgang auf den 2. Sicherheits-Abstand.


Beachten Sie vor dem Programmieren


Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur **G40** programmieren.


Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung beim Senken fest. Achtung: Positives Vorzeichen senkt in Richtung der positiven Spindelachse.

Werkzeug-Länge so eingeben, dass nicht die Schneide, sondern die Unterkante der Bohrstange vermaßt ist.

Die TNC berücksichtigt bei der Berechnung des Startpunktes der Senkung die Schneidenlänge der Bohrstange und die Materialstärke.

i

- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze Werkstück-Oberfläche
- ▶ Tiefe Senkung Q249 (inkremental): Abstand Werkstück-Unterkante – Senkungsgrund. Positives Vorzeichen stellt die Senkung in positiver Richtung der Spindelachse her
- ▶ Material stärke Q250 (inkremental): Dicke des Werkstücks
- ▶ Exzentermaß Q251 (inkremental): Exzentermaß der Bohrstange; aus Werkzeug-Datenblatt entnehmen
- ➤ Schneidenhöhe Q252 (inkremental): Abstand Unterkante Bohrstange Hauptschneide; aus Werkzeug-Datenblatt entnehmen
- ▶ Vorschub Vorpositionieren Q253: Verfahrgeschwindigkeit des Werkzeugs beim Eintauchen in das Werkstück bzw. beim Herausfahren aus dem Werkstück in mm/min
- ▶ Vorschub Senken Q254: Verfahrgeschwindigkeit des Werkzeugs beim Senken in mm/min
- ▶ Verweilzeit Q255: Verweilzeit in Sekunden am Senkungsgrund
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Freifahr-Richtung (0/1/2/3/4) Q214: Richtung festlegen, in der die TNC das Werkzeug um das Exzentermaß versetzen soll (nach der Spindel-Orientierung); Eingabe von 0 nicht erlaubt
 - Werkzeug freifahren in Minus-Richtung der Hauptachse
 - Werkzeug freifahren in Minus-Richtung der Nebenachse
 - 3 Werkzeug freifahren in Plus-Richtung der Hauptachse
 - 4 Werkzeug freifahren in Plus-Richtung der Nebenachse

Beispiel: NC-Sätze

N110 G204 RUECKWA	ERTS-SENKEN
Q200=2	;SICHERHEITS-ABST.
Q249=+5	;TIEFE SENKUNG
Q250=20	;MATERIALSTAERKE
Q251=3.5	; EXZENTERMASS
Q252=15	;SCHNEIDENHOEHE
Q253=750	; VORSCHUB VORPOS.
Q254=200	;VORSCHUB SENKEN
Q255=0	;VERWEILZEIT
Q203=+20	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q214=1	;FREIFAHR-RICHTUNG
Q336=0	;WINKEL SPINDEL

Kollisionsgefahr!

Überprüfen Sie, wo die Werkzeug-Spitze steht, wenn Sie eine Spindel-Orientierung auf den Winkel programmieren, den Sie im Q336 eingeben (z.B. in der Betriebsart Positionieren mit Handeingabe). Wählen Sie den Winkel so, dass die Werkzeug-Spitze parallel zu einer Koordinaten-Achse steht. Wählen Sie die Freifahr-Richtung so, dass das Werkzeug vom Bohrungsrand wegfährt.

▶Winkel für Spindel-Orientierung Q336 (absolut): Winkel, auf den die TNC das Werkzeug vor dem Eintauchen und vor dem Herausfahren aus der Bohrung positioniert

 $oxed{\mathbf{i}}$

UNIVERSAL-TIEFBOHREN (Zyklus G205)

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche
- 2 Wenn ein vertiefter Startpunkt eingegeben, fährt die TNC mit dem definierten Positioniervorschub auf den Sicherheits-Abstand über den vertieften Startpunkt
- 3 Das Werkzeug bohrt mit dem eingegebenen Vorschub F bis zur ersten Zustell-Tiefe
- 4 Falls Spanbruch eingegeben, fährt die TNC das Werkzeug um den eingegebenen Rückzugswert zurück. Wenn Sie ohne Spanbruch arbeiten, dann fährt die TNC das Werkzeug im Eilgang auf den Sicherheits-Abstand zurück und anschließend wieder mit Eilgang bis auf den eingegebenen Vorhalteabstand über die erste Zustell-Tiefe
- 5 Anschließend bohrt das Werkzeug mit Vorschub um eine weitere Zustell-Tiefe. Die Zustell-Tiefe verringert sich mit jeder Zustellung um den Abnahmebetrag falls eingegeben
- 6 Die TNC wiederholt diesen Ablauf (2-4), bis die Bohrtiefe erreicht ist
- 7 Am Bohrungsgrund verweilt das Werkzeug falls eingegeben zum Freischneiden und wird nach der Verweilzeit mit dem Vorschub Rückzug auf den Sicherheits-Abstand zurückgezogen. Falls Sie einen 2. Sicherheits-Abstand eingegeben haben, fährt die TNC das Werkzeug mit Eilgang dorthin

Beachten Sie vor dem Programmieren

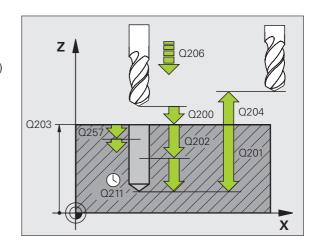
Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur **G40** programmieren.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).

Achtung Kollisionsgefahr!

Beachten Sie, dass die TNC bei **positiv eingegebener Tiefe** die Berechnung der Vorposition umkehrt. Das
Werkzeug fährt also in der Werkzeug-Achse mit Eilgang
auf Sicherheits-Abstand **unter** die Werkstück-Oberfläche!



- ► Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze Werkstück-Oberfläche
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Bohrungsgrund (Spitze des Bohrkegels)
- ➤ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Bohren in mm/min
- Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird. Die Tiefe muss kein Vielfaches der Zustell-Tiefe sein. Die TNC fährt in einem Arbeitsgang auf die Tiefe wenn:
 - Zustell-Tiefe und Tiefe gleich sind
 - die Zustell-Tiefe größer als die Tiefe ist
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- Abnahmebetrag Q212 (inkremental): Wert, um den die TNC die Zustell-Tiefe Q202 verkleinert
- Minimale Zustell-Tiefe Q205 (inkremental): Falls Sie einen Abnahmebetrag eingegeben haben, begrenzt die TNC die Zustellung auf den mit Q205 eingegeben Wert
- ▶ Vorhal teabstand oben Q258 (inkremental): Sicherheits-Abstand für Eilgang-Positionierung, wenn die TNC das Werkzeug nach einem Rückzug aus der Bohrung wieder auf die aktuelle Zustell-Tiefe fährt; Wert bei erster Zustellung
- ▶ Vorhal teabstand unten Q259 (inkremental): Sicherheits-Abstand für Eilgang-Positionierung, wenn die TNC das Werkzeug nach einem Rückzug aus der Bohrung wieder auf die aktuelle Zustell-Tiefe fährt; Wert bei letzter Zustellung

Wenn Sie Q258 ungleich Q259 eingeben, dann verändert die TNC den Vorhalteabstand zwischen der ersten und letzten Zustellung gleichmäßig.

Beispiel: NC-Sätze

N110 G205 UNIVER	SAL-TIEFBOHREN
Q200=2	;SICHERHEITS-ABST.
Q201=-80	;TIEFE
Q206=150	;VORSCHUB TIEFENZ.
Q202=15	;ZUSTELL-TIEFE
Q203=+100	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q212=0.5	; ABNAHEBETRAG
Q205=3	;MIN. ZUSTELL-TIEFE
Q258=0.5	;VORHALTEABSTAND OBEN
Q259=1	;VORHALTEABST. UNTEN
Q257=5	;BOHRTIEFE SPANBRUCH
Q256=0.2	;RZ BEI SPANBRUCH
Q211=0.25	;VERWEILZEIT UNTEN
Q379=7.5	;STARTPUNKT
Q253=750	; VORSCHUB VORPOS.

- ▶ Bohrtiefe bis Spanbruch Q257 (inkremental): Zustellung, nach der die TNC einen Spanbruch durchführt. Kein Spanbruch, wenn 0 eingegeben
- ▶ Rückzug bei Spanbruch Q256 (inkremental): Wert, um die die TNC das Werkzeug beim Spanbrechen zurückfährt. Die TNC fährt den Rückzug fest mit 3000 mm/min
- ▶ **Verweilzeit unten** Q211: Zeit in Sekunden, die das Werkzeug am Bohrungsgrund verweilt
- ▶ Vertiefter Startpunkt Q379 (inkremental bezogen auf die Werkstück-Oberfläche): Startpunkt der eigentlichen Bohrbearbeitung, wenn bereits mit einem kürzeren Werkzeug auf eine bestimmte Tiefe vorgebohrt wurde. Die TNC fährt im Vorschub Vorpositionieren vom Sicherheits-Abstand auf den vertieften Startpunkt
- ▶ Vorschub Vorpositionieren Q253: Verfahrgeschwindigkeit des Werkzeugs beim Positionieren vom Sicherheits-Abstand auf einen vertieften Startpunkt in mm/min. Wirkt nur, wenn Q379 ungleich 0 eingegeben ist

Wenn Sie über Q379 einen vertieften Startpunkt eingeben, dann verändert die TNC lediglich den Startpunkt der Zustell-Bewegung. Rückzugsbewegung werden von der TNC nicht verändert, beziehen sich also auf die Koordinate der Werkstück-Oberfläche.

BOHRFRAESEN (Zyklus G208)

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche und fährt den eingegebenen Durchmesser auf einem Rundungskreis an (wenn Platz vorhanden ist)
- 2 Das Werkzeug fräst mit dem eingegebenen Vorschub F in einer Schraubenlinie bis zur eingegebenen Bohrtiefe
- Wenn die Bohrtiefe erreicht ist, f\u00e4hrt die TNC nochmals einen Vollkreis, um das beim Eintauchen stehengelassene Material zu entfernen
- 4 Danach positioniert die TNC das Werkzeug wieder zurück in die Bohrungsmitte
- 5 Abschließend fährt die TNC im Eilgang zurück auf den Sicherheits-Abstand. Falls Sie einen 2. Sicherheits-Abstand eingegeben haben, fährt die TNC das Werkzeug im Eilgang dorthin

Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur **G40** programmieren.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

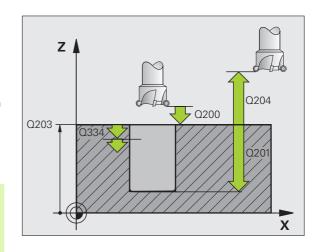
Wenn Sie den Bohrungs-Durchmesser gleich dem Werkzeug-Durchmesser eingegeben haben, bohrt die TNC ohne Schraubenlinien-Interpolation direkt auf die eingegebene Tiefe.

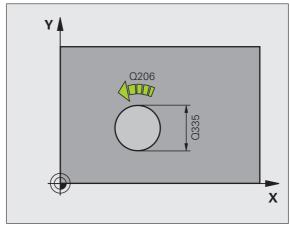
Eine aktive Spiegelung beeinflusst **nicht** die im Zyklus definierte Fräsart.

Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).

Achtung Kollisionsgefahr!

Beachten Sie, dass die TNC bei **positiv eingegebener Tiefe** die Berechnung der Vorposition umkehrt. Das Werkzeug fährt also in der Werkzeug-Achse mit Eilgang auf Sicherheits-Abstand **unter** die Werkstück-Oberfläche!


- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeug-Unterkante - Werkstück-Oberfläche
- ► Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Bohrungsgrund
- ► Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Bohren auf der Schraubenlinie in mm/min
- ▶ Zustellung pro Schraubenlinie Q334 (inkremental): Maß, um welches das Werkzeug auf einer Schraubenlinie (=360°) jeweils zugestellt wird



Beachten Sie, dass Ihr Werkzeug bei zu großer Zustellung sowohl sich selbst als auch das Werkstück beschädigt.

Um die Eingabe zu großer Zustellungen zu vermeiden, geben Sie in der Werkzeug-Tabelle in der Spalte ANGLE den maximal möglichen Eintauchwinkel des Werkzeugs an, siehe "Werkzeug-Daten", Seite 193. Die TNC berechnet dann automatisch die maximal erlaubte Zustellung und ändert gaf. Ihren eingegebenen Wert ab.

- ► Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Soll-Durchmesser Q335 (absolut): Bohrungs-Durchmesser. Wenn Sie den Soll-Durchmesser gleich dem Werkzeug-Durchmesser eingeben, dann bohrt die TNC ohne Schraubenlinien-Interpolation direkt auf die eingegebene Tiefe
- ▶ Vorgebohrter Durchmesser Q342 (absolut): Sobald Sie in Q342 einen Wert größer 0 eingeben, führt die TNC keine Überprüfung bzgl. des Durchmesser-Verhältnisses Soll- zu Werkzeug-Durchmesser mehr durch. Dadurch können Sie Bohrungen ausfräsen, deren Durchmesser mehr als doppelt so groß sind wie der Werkzeug-Durchmesser
- Fräsart Q351: Art der Fräsbearbeitung bei M3 +1 = Gleichlauffräsen
 - -1 = Gegenlauffräsen

Beispiel: NC-Sätze

N120 G208 BOHRFRAESEN		
Q200=2	;SICHERHEITS-ABST.	
Q201=-80	;TIEFE	
Q206=150	;VORSCHUB TIEFENZ.	
Q334=1.5	;ZUSTELL-TIEFE	
Q203=+100	;KOOR. OBERFLAECHE	
Q204=50	;2. SICHERHEITS-ABST.	
Q335=25	;SOLL-DURCHMESSER	
Q342=0	;VORGEB. DURCHMESSER	
Q351=+1	; FRAESART	

HEIDENHAIN iTNC 530 329

GEWINDEBOHREN NEU mit Ausgleichsfutter (Zyklus G206)

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche
- 2 Das Werkzeug fährt in einem Arbeitsgang auf die Bohrtiefe
- 3 Danach wird die Spindeldrehrichtung umgekehrt und das Werkzeug nach der Verweilzeit auf den Sicherheits-Abstand zurückgezogen. Falls Sie einen 2. Sicherheits-Abstand eingegeben haben, fährt die TNC das Werkzeug mit Eilgang dorthin
- 4 Auf Sicherheits-Abstand wird die Spindeldrehrichtung erneut umgekehrt

Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur **G40** programmieren.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Das Werkzeug muss in ein Längenausgleichsfutter gespannt sein. Das Längenausgleichsfutter kompensiert Toleranzen von Vorschub und Drehzahl während der Bearbeitung.

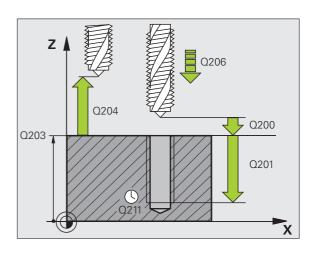
Während der Zyklus abgearbeitet wird, ist der Drehknopf für den Drehzahl-Override unwirksam. Der Drehknopf für den Vorschub-Override ist noch begrenzt aktiv (vom Maschinenhersteller festgelegt, Maschinenhandbuch beachten).

Für Rechtsgewinde Spindel mit M3 aktivieren, für Linksgewinde mit M4.

Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).

Achtung Kollisionsgefahr!

Beachten Sie, dass die TNC bei **positiv eingegebener Tiefe** die Berechnung der Vorposition umkehrt. Das Werkzeug fährt also in der Werkzeug-Achse mit Eilgang auf Sicherheits-Abstand **unter** die Werkstück-Oberfläche!


- ➤ Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze (Startposition) Werkstück-Oberfläche; Richtwert: 4x Gewindesteigung
- ▶ Bohrtiefe Q201 (Gewindelänge, inkremental): Abstand Werkstück-Oberfläche – Gewindeende
- ▶ Vorschub F Q206: Verfahrgeschwindigkeit des Werkzeugs beim Gewindebohren
- ▶ Verweilzeit unten Q211: Wert zwischen 0 und 0,5 Sekunden eingeben, um ein Verkeilen des Werkzeugs beim Rückzug zu vermeiden
- ► Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann

Vorschub ermitteln: $F = S \times p$

- F: Vorschub (mm/min)
- S: Spindel-Drehzahl (U/min)
- p: Gewindesteigung (mm)

Freifahren bei Programm-Unterbrechung

Wenn Sie während des Gewindebohrens die externe Stopp-Taste drücken, zeigt die TNC einen Softkey an, mit dem Sie das Werkzeug freifahren können.

Beispiel: NC-Sätze

BOHREN NEU
;SICHERHEITS-ABST.
;TIEFE
;VORSCHUB TIEFENZ.
;VERWEILZEIT UNTEN
;KOOR. OBERFLAECHE
;2. SICHERHEITS-ABST.

GEWINDEBOHREN ohne Ausgleichsfutter GS NEU (Zyklus G207)

Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein.

Die TNC schneidet das Gewinde entweder in einem oder in mehreren Arbeitsgängen ohne Längenausgleichsfutter.

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche
- 2 Das Werkzeug fährt in einem Arbeitsgang auf die Bohrtiefe
- 3 Danach wird die Spindeldrehrichtung umgekehrt und das Werkzeug nach der Verweilzeit auf den Sicherheits-Abstand zurückgezogen. Falls Sie einen 2. Sicherheits-Abstand eingegeben haben, fährt die TNC das Werkzeug mit Eilgang dorthin
- 4 Auf Sicherheits-Abstand hält die TNC die Spindel an

Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) in der Bearbeitungsebene mit Radiuskorrektur **G40** programmieren.

Das Vorzeichen des Parameters Bohrtiefe legt die Arbeitsrichtung fest.

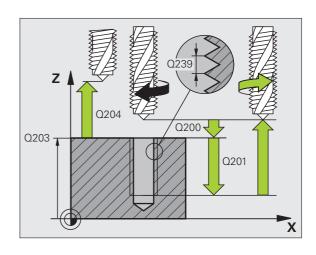
Die TNC berechnet den Vorschub in Abhängigkeit von der Drehzahl. Wenn Sie während des Gewindebohrens den Drehknopf für den Drehzahl-Override betätigen, passt die TNC den Vorschub automatisch an.

Der Drehknopf für den Vorschub-Override ist nicht aktiv.

Am Zyklusende steht die Spindel. Vor der nächsten Bearbeitung Spindel mit M3 (bzw. M4) wieder einschalten.

Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).

Achtung Kollisionsgefahr!


Beachten Sie, dass die TNC bei **positiv eingegebener Tiefe** die Berechnung der Vorposition umkehrt. Das
Werkzeug fährt also in der Werkzeug-Achse mit Eilgang
auf Sicherheits-Abstand **unter** die Werkstück-Oberfläche!

- ➤ Sicherheits-Abstand O200 (inkremental): Abstand Werkzeugspitze (Startposition) Werkstück-Oberfläche
- ▶ Bohrtiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Gewindeende
- ▶ Gewindesteigung Q239 Steigung des Gewindes. Das Vorzeichen legt Rechtsoder Linksgewinde fest:
 - **+**= Rechtsgewinde
 - -= Linksgewinde
- ► Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann

Freifahren bei Programm-Unterbrechung

Wenn Sie während des Gewindeschneid-Vorgangs die externe Stopp-Taste drücken, zeigt die TNC den Softkey MANUELL FREIFAHREN an. Wenn Sie MANUEL FREIFAHREN drücken, können Sie das Werkzeug gesteuert freifahren. Drücken Sie dazu die positive Achsrichtungs-Taste der aktiven Spindelachse.

Beispiel: NC-Sätze

N26 G207 GEWBOHREN GS NEU		
Q200=2	;SICHERHEITS-ABST.	
Q201=-20	;TIEFE	
Q239=+1	;GEWINDESTEIGUNG	
Q203=+25	;KOOR. OBERFLAECHE	
Q204=50	;2. SICHERHEITS-ABST.	

HEIDENHAIN iTNC 530

GEWINDEBOHREN SPANBRUCH (Zyklus G209)

Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein.

Zyklus nur an Maschinen mit geregelter Spindel verwendbar.

Die TNC schneidet das Gewinde in mehreren Zustellungen auf die eingegebene Tiefe. Über einen Parameter können Sie festlegen, ob beim Spanbruch ganz aus der Bohrung herausgefahren werden soll oder nicht.

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche und führt dort eine Spindelorientierung durch
- 2 Das Werkzeug f\u00e4hrt auf die eingegebene Zustell-Tiefe, kehrt die Spindeldrehrichtung um und f\u00e4hrt – je nach Definition – einen bestimmten Betrag zur\u00fcck oder zum Entspanen aus der Bohrung heraus. Sofern Sie einen Faktor f\u00fcr Drehzahlerh\u00f6hung definiert haben, f\u00e4hrt die TNC mit entsprechend h\u00f6herer Spindeldrehzahl aus der Bohrung heraus
- 3 Danach wird die Spindeldrehrichtung wieder umgekehrt und auf die nächste Zustelltiefe gefahren
- 4 Die TNC wiederholt diesen Ablauf (2 bis 3), bis die eingegebene Gewindetiefe erreicht ist
- 5 Danach wird das Werkzeug auf den Sicherheits-Abstand zurückgezogen. Falls Sie einen 2. Sicherheits-Abstand eingegeben haben, fährt die TNC das Werkzeug mit Eilgang dorthin
- 6 Auf Sicherheits-Abstand hält die TNC die Spindel an

Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) in der Bearbeitungsebene mit Radiuskorrektur **G40** programmieren.

Das Vorzeichen des Parameters Gewindetiefe legt die Arbeitsrichtung fest.

Die TNC berechnet den Vorschub in Abhängigkeit von der Drehzahl. Wenn Sie während des Gewindebohrens den Drehknopf für den Drehzahl-Override betätigen, passt die TNC den Vorschub automatisch an.

Der Drehknopf für den Vorschub-Override ist nicht aktiv.

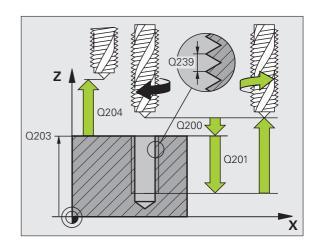
Am Zyklusende steht die Spindel. Vor der nächsten Bearbeitung Spindel mit M3 (bzw. M4) wieder einschalten.

Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).

Achtung Kollisionsgefahr!

Beachten Sie, dass die TNC bei **positiv eingegebener Tiefe** die Berechnung der Vorposition umkehrt. Das Werkzeug fährt also in der Werkzeug-Achse mit Eilgang auf Sicherheits-Abstand **unter** die Werkstück-Oberfläche!

HEIDENHAIN iTNC 530



- ➤ Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze (Startposition) Werkstück-Oberfläche
- ▶ Gewindetiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Gewindeende
- ▶ Gewindesteigung O239 Steigung des Gewindes. Das Vorzeichen legt Rechtsoder Linksgewinde fest:
 - += Rechtsgewinde
 - -= Linksgewinde
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand O204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Bohrtiefe bis Spanbruch Q257 (inkremental): Zustellung, nachdem die TNC einen Spanbruch durchführt
- ▶ Rückzug bei Spanbruch Q256: Die TNC multipliziert die Steigung Q239 mit dem eingegebenen Wert und fährt das Werkzeug beim Spanbrechen um diesen errechneten Wert zurück. Wenn Sie Q256 = 0 eingeben, dann fährt die TNC zum Entspanen vollständig aus der Bohrung heraus (auf Sicherheits-Abstand)
- ▶ Winkel für Spindel-Orientierung Q336 (absolut): Winkel, auf den die TNC das Werkzeug vor dem Gewindeschneid-Vorgang positioniert. Dadurch können Sie das Gewinde ggf. nachschneiden
- ▶ Faktor Drehzahländerung Rückzug Q403: Faktor, um den die TNC die Spindeldrehzahl und damit auch den Rückzugsvorschub beim Herausfahren aus der Bohrung erhöht. Eingabebereich 0,0001 bis 10

Freifahren bei Programm-Unterbrechung

Wenn Sie während des Gewindeschneid-Vorgangs die externe Stopp-Taste drücken, zeigt die TNC den Softkey MANUELL FREIFAHREN an. Wenn Sie MANUEL FREIFAHREN drücken, können Sie das Werkzeug gesteuert freifahren. Drücken Sie dazu die positive Achsrichtungs-Taste der aktiven Spindelachse.

Beispiel: NC-Sätze

N260 G207 GEWB	OHREN SPANBR.
Q200=2	;SICHERHEITS-ABST.
Q201=-20	;GEWINDETIEFE
Q239=+1	;GEWINDESTEIGUNG
Q203=+25	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q257=5	;BOHRTIEFE SPANBRUCH
Q256=1	;RZ BEI SPANBRUCH
Q336=+0	;WINKEL SPINDEL
Q403=1.5	;FAKTOR DREHZAHL

Grundlagen zum Gewindefräsen

Voraussetzungen

- Die Maschine sollte mit einer Spindelinnenkühlung (Kühlschmiermittel min. 30 bar, Druckluft min. 6 bar) ausgerüstet sein
- Da beim Gewindefräsen in der Regel Verzerrungen am Gewindeprofil entstehen, sind in der Regel werkzeugspezifische Korrekturen erforderlich, die Sie aus dem Werkzeugkatalog entnehmen oder bei Ihrem Werkzeughersteller erfragen können. Die Korrektur erfolgt beim Werkzeug-Aufruf über den Delta-Radius DR
- Die Zyklen 262, 263, 264 und 267 sind nur mit rechtsdrehenden Werkzeugen verwendbar. Für den Zyklus 265 können Sie rechtsund linksdrehende Werkzeuge einsetzen
- Die Arbeitsrichtung ergibt sich aus folgenden Eingabeparametern: Vorzeichen der Gewindesteigung Q239 (+ = Rechtsgewinde /- = Linksgewinde) und Fräsart Q351 (+1 = Gleichlauf /-1 = Gegenlauf). Anhand nachfolgender Tabelle sehen sie die Beziehung zwischen den Eingabeparametern bei rechtsdrehenden Werkzeugen.

Innengewinde	Steigung	Fräsart	Arbeitsrichtung
rechtsgängig	+	+1(RL)	Z+
linksgängig	_	-1(RR)	Z+
rechtsgängig	+	-1(RR)	Z–
linksgängig	_	+1(RL)	Z–

Außengewinde	Steigung	Fräsart	Arbeitsrichtung
rechtsgängig	+	+1(RL)	Z–
linksgängig	_	-1(RR)	Z–
rechtsgängig	+	-1(RR)	Z+
linksgängig	_	+1(RL)	Z+

HEIDENHAIN iTNC 530

Kollisionsgefahr!

Programmieren Sie bei den Tiefenzustellungen immer die gleichen Vorzeichen, da die Zyklen mehrere Abläufe enthalten, die voneinander unabhängig sind. Die Rangfolge nach welcher die Arbeitsrichtung entschieden wird, ist bei den jeweiligen Zyklen beschrieben. Wollen Sie z.B. einen Zyklus nur mit dem Senkvorgang wiederholen, so geben Sie bei der Gewindetiefe 0 ein, die Arbeitsrichtung wird dann über die Senktiefe bestimmt.

Verhalten bei Werkzeugbruch!

Wenn während des Gewindeschneidens ein Werkzeugbruch erfolgt, dann stoppen Sie den Programmlauf, wechseln in die Betriebsart Positionieren mit Handeingabe und fahren dort das Werkzeug in einer Linearbewegung auf die Bohrungsmitte. Anschließend können Sie das Werkzeug in der Zustellachse freifahren und auswechseln.

Die TNC bezieht den programmierten Vorschub beim Gewindefräsen auf die Werkzeug-Schneide. Da die TNC aber den Vorschub bezogen auf die Mittelpunktsbahn anzeigt, stimmt der angezeigte Wert nicht mit dem programmierten Wert überein.

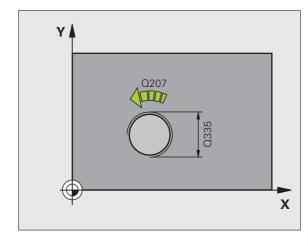
Der Umlaufsinn des Gewindes ändert sich, wenn Sie einen Gewindefräszyklus in Verbindung mit Zyklus 8 SPIEGELN in nur einer Achse abarbeiten.

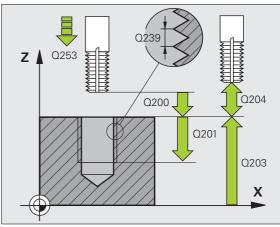
i

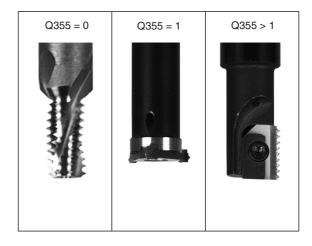
GEWINDEFRAESEN (Zyklus G262)

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche
- 2 Das Werkzeug f\u00e4hrt mit dem programmierten Vorschub Vorpositionieren auf die Startebene, die sich aus dem Vorzeichen der Gewindesteigung, der Fr\u00e4sart und der Anzahl der G\u00e4nge zum Nachsetzen ergibt
- 3 Anschließend fährt das Werkzeug tangential in einer Helix-Bewegung an den Gewindenenndurchmesser. Dabei wird vor der Helix-Anfahrbewegung noch eine Ausgleichsbewegung in der Werk-zeugachse durchgeführt, um mit der Gewindebahn auf der pro-grammierten Startebene zu beginnen
- **4** Abhängig vom Parameter Nachsetzen fräst das Werkzeug das Gewinde in einer, in mehreren versetzten oder in einer kontinuierlichen Schraubenlinienbewegung
- **5** Danach fährt das Werkzeug tangential von der Kontur zurück zum Startpunkt in der Bearbeitungsebene
- 6 Am Ende des Zyklus fährt die TNC das Werkzeug im Eilgang auf den Sicherheits-Abstand oder falls eingegeben auf den 2. Sicherheits-Abstand

Beachten Sie vor dem Programmieren


Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur **G40** programmieren.


Das Vorzeichen des Zyklusparameters Gewindetiefe legt die Arbeitsrichtung fest. Wenn Sie die Gewindetiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.


Die Anfahrbewegung an den Gewindenenndurchmesser erfolgt im Halbkreis von der Mitte aus. Ist der Werkzeugdurchmesser und die 4fache Steigung kleiner als der Gewindenenndurchmesser wird eine seitliche Vorpositionierung ausgeführt.

Beachten Sie, dass die TNC vor der Anfahrbewegung eine Ausgleichsbewegung in der Werkzeug-Achse durchführt. Die Größe der Ausgleichsbewegung beträgt maximal die halbe Gewindesteigung. Auf ausreichend Platz in der Bohrung achten!

Wenn Sie die Gewindetiefe verändern, ändert die TNC automatisch den Startpunkt für die Helix-Bewegung.

HEIDENHAIN iTNC 530

Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).

Achtung Kollisionsgefahr!

Beachten Sie, dass die TNC bei **positiv eingegebener Tiefe** die Berechnung der Vorposition umkehrt. Das Werkzeug fährt also in der Werkzeug-Achse mit Eilgang auf Sicherheits-Abstand **unter** die Werkstück-Oberfläche!

- ▶ Soll-Durchmesser Q335: Gewindenenndurchmesser
- ▶ Gewindesteigung Q239: Steigung des Gewindes. Das Vorzeichen legt Rechts- oder Linksgewinde fest:
 - += Rechtsgewinde
 - = Linksgewinde
- ▶ Gewindetiefe Q201 (inkremental): Abstand zwischen Werkstück-Oberfläche und Gewindegrund
- Nachsetzen Q355: Anzahl der Gewindegänge um die das Werkzeug versetzt wird, siehe Bild rechts unten 0 = eine 360° Schraubenlinie auf die Gewindetiefe 1 = kontinuierliche Schraubenlinie auf der gesamten Gewindelänge
 - >1 = mehrere Helixbahnen mit An -und Wegfahren, dazwischen versetzt die TNC das Werkzeug um Q355 mal der Steigung
- ▶ Vorschub Vorpositionieren Q253: Verfahrgeschwindigkeit des Werkzeugs beim Eintauchen in das Werkstück bzw. beim Herausfahren aus dem Werkstück in mm/min
- ▶ Fräsart Q351: Art der Fräsbearbeitung bei M03
 - +1 = Gleichlauffräsen
 - -1 = Gegenlauffräsen
- Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeugspitze und Werkstück-Oberfläche
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min

Beispiel: NC-Sätze

N250 G262 GEWINDEFRAESEN		
Q335=10	;SOLL-DURCHMESSER	
Q239=+1.5	;STEIGUNG	
Q201=-20	;GEWINDETIEFE	
Q355=0	; NACHSETZEN	
Q253=750	; VORSCHUB VORPOS.	
Q351=+1	; FRAESART	
Q200=2	;SICHERHEITS-ABST.	
Q203=+30	;KOOR. OBERFLAECHE	
Q204=50	;2. SICHERHEITS-ABST.	
Q207=500	;VORSCHUB FRAESEN	

SENKGEWINDEFRAESEN (Zyklus G263)

1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche

Senken

- 2 Das Werkzeug fährt im Vorschub Vorpositionieren auf Senktiefe minus Sicherheitsabstand und anschließend im Vorschub Senken auf die Senktiefe
- **3** Falls ein Sicherheits-Abstand Seite eingeben wurde, positioniert die TNC das Werkzeug gleich im Vorschub Vorpositionieren auf die Senktiefe
- 4 Anschließend fährt die TNC je nach Platzverhältnissen aus der Mitte heraus oder mit seitlichem Vorpositionieren den Kerndurchmesser weich an und führt eine Kreisbewegung aus

Stirnseitig Senken

- 5 Das Werkzeug fährt im Vorschub Vorpositionieren auf die Senktiefe Stirnseitig
- 6 Die TNC positioniert das Werkzeug unkorrigiert aus der Mitte über einen Halbkreis auf den Versatz Stirnseitig und führt eine Kreisbewegung im Vorschub Senken aus
- 7 Anschließend fährt die TNC das Werkzeug wieder auf einem Halbkreis in die Bohrungsmitte

Gewindefräsen

- 8 Die TNC fährt das Werkzeug mit dem programmierten Vorschub Vorpositionieren auf die Startebene für das Gewinde, die sich aus dem Vorzeichen der Gewindesteigung und der Fräsart ergibt
- 9 Anschließend fährt das Werkzeug tangential in einer Helix-Bewegung an den Gewindenenndurchmesser und fräst mit einer 360°- Schraubenlinienbewegung das Gewinde
- 10 Danach f\u00e4hrt das Werkzeug tangential von der Kontur zur\u00fcck zum Startpunkt in der Bearbeitungsebene
- 11 Am Ende des Zyklus f\u00e4hrt die TNC das Werkzeug im Eilgang auf den Sicherheits-Abstand oder – falls eingegeben – auf den 2. Sicherheits-Abstand

Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur **G40** programmieren.

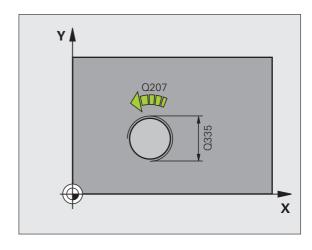
Die Vorzeichen der Zyklenparameter Gewindetiefe, Senktiefe bzw. Tiefe Stirnseitig legen die Arbeitsrichtung fest. Die Arbeitsrichtung wird nach folgender Reihenfolge entschieden:

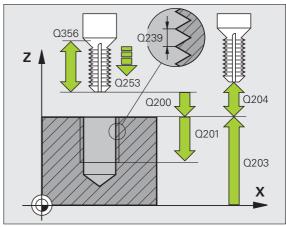
- 1. Gewindetiefe
- 2. Senktiefe
- 3. Tiefe Stirnseitig

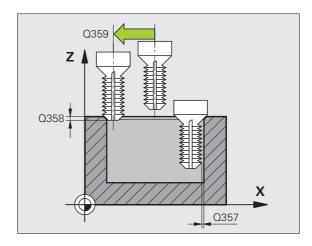
Falls Sie einen der Tiefenparameter mit 0 belegen, führt die TNC diesen Arbeitsschritt nicht aus.

Wenn Sie Stirnseitig senken wollen, dann den Parameter Senktiefe mit 0 definieren.

Programmieren Sie die Gewindetiefe mindestens um ein Drittel mal der Gewindesteigung kleiner als die Senktiefe.


Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).


Achtung Kollisionsgefahr!


Beachten Sie, dass die TNC bei **positiv eingegebener Tiefe** die Berechnung der Vorposition umkehrt. Das
Werkzeug fährt also in der Werkzeug-Achse mit Eilgang
auf Sicherheits-Abstand **unter** die Werkstück-Oberfläche!

- ▶ Soll-Durchmesser Q335: Gewindenenndurchmesser
- ▶ Gewindesteigung Q239: Steigung des Gewindes. Das Vorzeichen legt Rechts- oder Linksgewinde fest:
 - += Rechtsgewinde
 - = Linksgewinde
- ▶ **Gewindetiefe** Q201 (inkremental): Abstand zwischen Werkstück-Oberfläche und Gewindegrund
- ➤ Senktiefe Q356: (inkremental): Abstand zwischen Werkstück-Oberfläche und Werkzeugspitze
- ▶ Vorschub Vorpositionieren Q253: Verfahrgeschwindigkeit des Werkzeugs beim Eintauchen in das Werkstück bzw. beim Herausfahren aus dem Werkstück in mm/min
- ► Fräsart Q351: Art der Fräsbearbeitung bei M03
 - +1 = Gleichlauffräsen
 - **-1** = Gegenlauffräsen
- ➤ Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeugspitze und Werkstück-Oberfläche
- Sicherheits-Abstand Seite Q357 (inkremental):
 Abstand zwischen Werkzeugschneide und
 Bohrungswand
- ▶ Tiefe Stirnseitig Q358 (inkremental): Abstand zwischen Werkstück-Oberfläche und Werkzeugspitze beim stirnseitigen Senkvorgang
- ▶ Versatz Senken Stirnseite Q359 (inkremental): Abstand um den die TNC die Werkzeugmitte aus der Bohrungsmitte versetzt

- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Vorschub Senken Q254: Verfahrgeschwindigkeit des Werkzeugs beim Senken in mm/min
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min

Beispiel: NC-Sätze

N250 G263 SENKGEWINDEFRAESEN		
Q335=10	;SOLL-DURCHMESSER	
Q239=+1.5	;STEIGUNG	
Q201=-16	;GEWINDETIEFE	
Q356=-20	;SENKTIEFE	
Q253=750	;VORSCHUB VORPOS.	
Q351=+1	; FRAESART	
Q200=2	;SICHERHEITS-ABST.	
Q357=0.2	;SIABST. SEITE	
Q358=+0	;TIEFE STIRNSEITIG	
Q359=+0	;VERSATZ STIRNSEITIG	
Q203=+30	;KOOR. OBERFLAECHE	
Q204=50	;2. SICHERHEITS-ABST.	
Q254=150	;VORSCHUB SENKEN	
Q207=500	; VORSCHUB FRAESEN	

BOHRGEWINDEFRAESEN (Zyklus G264)

1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche

Bohren

- 2 Das Werkzeug bohrt mit dem eingegebenen Vorschub Tiefenzustellung bis zur ersten Zustell-Tiefe
- 3 Falls Spanbruch eingegeben, fährt die TNC das Werkzeug um den eingegebenen Rückzugswert zurück. Wenn Sie ohne Spanbruch arbeiten, dann fährt die TNC das Werkzeug im Eilgang auf den Sicherheits-Abstand zurück und anschließend wieder mit Eilgang bis auf den eingegebenen Vorhalteabstand über die erste Zustell-Tiefe
- **4** Anschließend bohrt das Werkzeug mit Vorschub um eine weitere Zustell-Tiefe
- 5 Die TNC wiederholt diesen Ablauf (2-4), bis die Bohrtiefe erreicht ist

Stirnseitig Senken

- 6 Das Werkzeug f\u00e4hrt im Vorschub Vorpositionieren auf die Senktiefe Stirnseitig
- 7 Die TNC positioniert das Werkzeug unkorrigiert aus der Mitte über einen Halbkreis auf den Versatz Stirnseitig und führt eine Kreisbewegung im Vorschub Senken aus
- **8** Anschließend fährt die TNC das Werkzeug wieder auf einem Halbkreis in die Bohrungsmitte

Gewindefräsen

- 9 Die TNC f\u00e4hrt das Werkzeug mit dem programmierten Vorschub Vorpositionieren auf die Startebene f\u00fcr das Gewinde, die sich aus dem Vorzeichen der Gewindesteigung und der Fr\u00e4sart ergibt
- 10 Anschließend fährt das Werkzeug tangential in einer Helix-Bewegung an den Gewindenenndurchmesser und fräst mit einer 360°- Schraubenliniebewegung das Gewinde
- 11 Danach f\u00e4hrt das Werkzeug tangential von der Kontur zur\u00fcck zum Startpunkt in der Bearbeitungsebene
- 12 Am Ende des Zyklus f\u00e4hrt die TNC das Werkzeug im Eilgang auf den Sicherheits-Abstand oder – falls eingegeben – auf den 2. Sicherheits-Abstand

Beachten Sie vor dem Programmieren

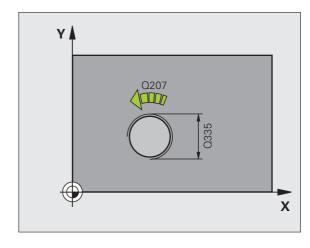
Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur **G40** programmieren.

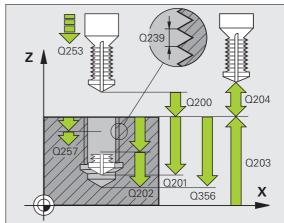
Die Vorzeichen der Zyklenparameter Gewindetiefe, Senktiefe bzw. Tiefe Stirnseitig legen die Arbeitsrichtung fest. Die Arbeitsrichtung wird nach folgender Reihenfolge entschieden:

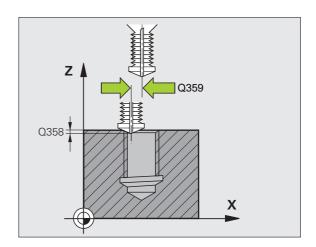
- 1. Gewindetiefe
- 2. Bohrtiefe
- 3. Tiefe Stirnseitig

Falls Sie einen der Tiefenparameter mit 0 belegen, führt die TNC diesen Arbeitsschritt nicht aus.

Programmieren Sie die Gewindetiefe mindestens um ein Drittel mal der Gewindesteigung kleiner als die Bohrtiefe.


Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).


Achtung Kollisionsgefahr!


Beachten Sie, dass die TNC bei **positiv eingegebener Tiefe** die Berechnung der Vorposition umkehrt. Das Werkzeug fährt also in der Werkzeug-Achse mit Eilgang auf Sicherheits-Abstand **unter** die Werkstück-Oberfläche!

- ▶ Soll-Durchmesser Q335: Gewindenenndurchmesser
- ▶ Gewindesteigung Q239: Steigung des Gewindes. Das Vorzeichen legt Rechts- oder Linksgewinde fest:
 - += Rechtsgewinde
 - = Linksgewinde
- ▶ **Gewindetiefe** Q201 (inkremental): Abstand zwischen Werkstück-Oberfläche und Gewindegrund
- ▶ **Bohrtiefe** Q356: (inkremental): Abstand zwischen Werkstück-Oberfläche und Bohrungsgrund
- ▶ Vorschub Vorpositionieren Q253: Verfahrgeschwindigkeit des Werkzeugs beim Eintauchen in das Werkstück bzw. beim Herausfahren aus dem Werkstück in mm/min
- ▶ Fräsart Q351: Art der Fräsbearbeitung bei M03
 - +1 = Gleichlauffräsen
 - -1 = Gegenlauffräsen
- ▶ Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird. Die Tiefe muss kein Vielfaches der Zustell-Tiefe sein. Die TNC fährt in einem Arbeitsgang auf die Tiefe wenn:
 - Zustell-Tiefe und Tiefe gleich sind
 - die Zustell-Tiefe größer als die Tiefe ist
- ▶ Vorhalteabstand oben Q258 (inkremental): Sicherheits-Abstand für Eilgang-Positionierung, wenn die TNC das Werkzeug nach einem Rückzug aus der Bohrung wieder auf die aktuelle Zustell-Tiefe fährt
- ▶ Bohrtiefe bis Spanbruch Q257 (inkremental): Zustellung, nachdem die TNC einen Spanbruch durchführt. Kein Spanbruch, wenn 0 eingegeben
- Rückzug bei Spanbruch Q256 (inkremental): Wert, um die die TNC das Werkzeug beim Spanbrechen zurückfährt
- ▶ Tiefe Stirnseitig Q358 (inkremental): Abstand zwischen Werkstück-Oberfläche und Werkzeugspitze beim stirnseitigen Senkvorgang
- ▶ **Versatz Senken Stirnseite** Q359 (inkremental): Abstand um den die TNC die Werkzeugmitte aus der Bohrungsmitte versetzt

- ➤ Sicherheits-Abstand O200 (inkremental): Abstand zwischen Werkzeugspitze und Werkstück-Oberfläche
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Bohren in mm/min
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min

Beispiel: NC-Sätze

N250 G264 BOHRGE	VINDEFRAESEN
Q335=10	;SOLL-DURCHMESSER
Q239=+1.5	;STEIGUNG
Q201=-16	;GEWINDETIEFE
Q356=-20	;BOHRTIEFE
Q253=750	; VORSCHUB VORPOS.
Q351=+1	; FRAESART
Q202=5	;ZUSTELL-TIEFE
Q258=0.2	; VORHALTEABSTAND
Q257=5	;BOHRTIEFE SPANBRUCH
Q256=0.2	;RZ BEI SPANBRUCH
Q358=+O	;TIEFE STIRNSEITIG
Q359=+0	;VERSATZ STIRNSEITIG
Q200=2	;SICHERHEITS-ABST.
Q203=+30	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q206=150	;VORSCHUB TIEFENZ.
Q207=500	;VORSCHUB FRAESEN

HELIX- BOHRGEWINDEFRAESEN (Zyklus G265)

1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche

Stirnseitig Senken

- 2 Beim Senken vor der Gewindebearbeitung f\u00e4hrt das Werkzeug im Vorschub Senken auf die Senktiefe Stirnseitig. Beim Senkvorgang nach der Gewindebearbeitung f\u00e4hrt die TNC das Werkzeug auf die Senktiefe im Vorschub Vorpositionieren
- 3 Die TNC positioniert das Werkzeug unkorrigiert aus der Mitte über einen Halbkreis auf den Versatz Stirnseitig und führt eine Kreisbewegung im Vorschub Senken aus
- **4** Anschließend fährt die TNC das Werkzeug wieder auf einem Halbkreis in die Bohrungsmitte

Gewindefräsen

- **5** Die TNC fährt das Werkzeug mit dem programmierten Vorschub Vorpositionieren auf die Startebene für das Gewinde
- **6** Anschließend fährt das Werkzeug tangential in einer Helix-Bewegung an den Gewindenenndurchmesser
- 7 Die TNC fährt das Werkzeug auf einer kontinuierlichen Schraubenlinie nach unten, bis die Gewindetiefe erreicht ist
- 8 Danach fährt das Werkzeug tangential von der Kontur zurück zum Startpunkt in der Bearbeitungsebene
- **9** Am Ende des Zyklus fährt die TNC das Werkzeug im Eilgang auf den Sicherheits-Abstand oder falls eingegeben auf den 2. Sicherheits-Abstand

Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur **G40** programmieren.

Die Vorzeichen der Zyklenparameter Gewindetiefe oder Tiefe Stirnseitig legen die Arbeitsrichtung fest. Die Arbeitsrichtung wird nach folgender Reihenfolge entschieden:

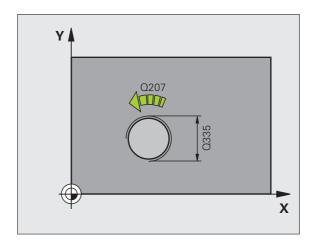
- 1. Gewindetiefe
- 2. Tiefe Stirnseitig

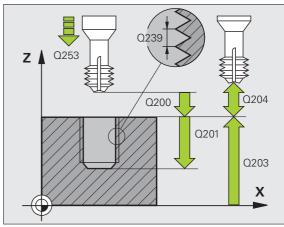
Falls Sie einen der Tiefenparameter mit 0 belegen, führt die TNC diesen Arbeitsschritt nicht aus.

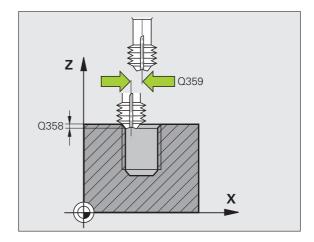
Wenn Sie die Gewindetiefe verändern, ändert die TNC automatisch den Startpunkt für die Helix-Bewegung.

Die Fräsart (Gegen-/Gleichlauf) ist durch das Gewinde (Rechts-/Linksgewinde) und die Drehrichtung des Werkzeugs bestimmt, da nur die Arbeitsrichtung von der Werkstückoberfläche ins Teil hinein möglich ist.

Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).


Achtung Kollisionsgefahr!


Beachten Sie, dass die TNC bei **positiv eingegebener Tiefe** die Berechnung der Vorposition umkehrt. Das Werkzeug fährt also in der Werkzeug-Achse mit Eilgang auf Sicherheits-Abstand **unter** die Werkstück-Oberfläche!


en 1

- ▶ Soll-Durchmesser Q335: Gewindenenndurchmesser
- ▶ Gewindesteigung Q239: Steigung des Gewindes. Das Vorzeichen legt Rechts- oder Linksgewinde fest:
 - += Rechtsgewinde
 - = Linksgewinde
- ▶ **Gewindetiefe** Q201 (inkremental): Abstand zwischen Werkstück-Oberfläche und Gewindegrund
- ▶ Vorschub Vorpositionieren Q253: Verfahrgeschwindigkeit des Werkzeugs beim Eintauchen in das Werkstück bzw. beim Herausfahren aus dem Werkstück in mm/min
- ▶ Tiefe Stirnseitig Q358 (inkremental): Abstand zwischen Werkstück-Oberfläche und Werkzeugspitze beim stirnseitigen Senkvorgang
- ▶ Versatz Senken Stirnseite Q359 (inkremental): Abstand um den die TNC die Werkzeugmitte aus der Bohrungsmitte versetzt
- Senkvorgang Q360: Ausführung der Fase
 0 = vor der Gewindebearbeitung
 1 = nach der Gewindebearbeitung
- ➤ Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeugspitze und Werkstück-Oberfläche

- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Vorschub Senken Q254: Verfahrgeschwindigkeit des Werkzeugs beim Senken in mm/min
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min

Beispiel: NC-Sätze

N250 G265 HELIX-B	OHRGEWINDEFR.
Q335=10	;SOLL-DURCHMESSER
Q239=+1.5	;STEIGUNG
Q201=-16	;GEWINDETIEFE
Q253=750	; VORSCHUB VORPOS.
Q358=+O	;TIEFE STIRNSEITIG
Q359=+0	;VERSATZ STIRNSEITIG
Q360=0	; SENKVORGANG
Q200=2	;SICHERHEITS-ABST.
Q203=+30	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q254=150	; VORSCHUB SENKEN
Q207=500	;VORSCHUB FRAESEN

AUSSENGEWINDE-FRAESEN (Zyklus G267)

1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche

Stirnseitig Senken

- 2 Die TNC f\u00e4hrt den Startpunkt f\u00fcr das stirnseitige Senken ausgehend von der Zapfenmitte auf der Hauptachse der Bearbeitungsebene an. Die Lage des Startpunktes ergibt sich aus Gewinderadius, Werkzeugradius und Steigung
- 3 Das Werkzeug fährt im Vorschub Vorpositionieren auf die Senktiefe Stirnseitig
- **4** Die TNC positioniert das Werkzeug unkorrigiert aus der Mitte über einen Halbkreis auf den Versatz Stirnseitig und führt eine Kreisbewegung im Vorschub Senken aus
- 5 Anschließend fährt die TNC das Werkzeug wieder auf einem Halbkreis auf den Startpunkt

Gewindefräsen

- **6** Die TNC positioniert das Werkzeug auf den Startpunkt falls vorher nicht stirnseitig gesenkt wurde. Startpunkt Gewindefräsen = Startpunkt Stirnseitig Senken
- 7 Das Werkzeug fährt mit dem programmierten Vorschub Vorpositionieren auf die Startebene, die sich aus dem Vorzeichen der Gewindesteigung, der Fräsart und der Anzahl der Gänge zum Nachsetzen ergibt
- **8** Anschließend fährt das Werkzeug tangential in einer Helix-Bewegung an den Gewindenenndurchmesser
- **9** Abhängig vom Parameter Nachsetzen fräst das Werkzeug das Gewinde in einer, in mehreren versetzten oder in einer kontinuierlichen Schraubenlinienbewegung
- **10** Danach fährt das Werkzeug tangential von der Kontur zurück zum Startpunkt in der Bearbeitungsebene

HEIDENHAIN iTNC 530

11 Am Ende des Zyklus f\u00e4hrt die TNC das Werkzeug im Eilgang auf den Sicherheits-Abstand oder – falls eingegeben – auf den 2. Sicherheits-Abstand

Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Zapfenmitte) der Bearbeitungsebene mit Radiuskorrektur **G40** programmieren.

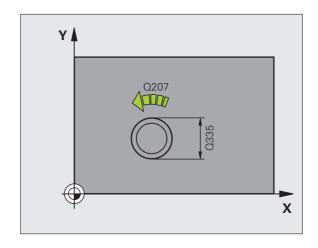
Der erforderliche Versatz für das Senken Stirnseite sollte vorab ermittelt werden. Sie müssen den Wert von Zapfenmitte bis Werkzeugmitte (unkorrigierter Wert) angeben.

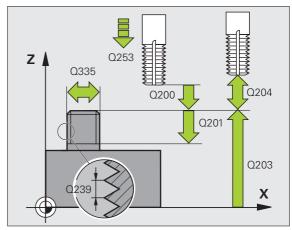
Die Vorzeichen der Zyklenparameter Gewindetiefe, Senktiefe bzw. Tiefe Stirnseitig legen die Arbeitsrichtung fest. Die Arbeitsrichtung wird nach folgender Reihenfolge entschieden:

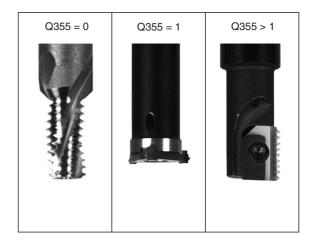
- 1. Gewindetiefe
- 2. Tiefe Stirnseitig

Falls Sie einen der Tiefenparameter mit 0 belegen, führt die TNC diesen Arbeitsschritt nicht aus.

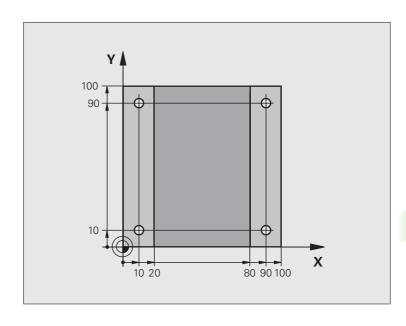
Das Vorzeichen des Zyklusparameters Gewindetiefe legt die Arbeitsrichtung fest.


Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).


Achtung Kollisionsgefahr!


Beachten Sie, dass die TNC bei **positiv eingegebener Tiefe** die Berechnung der Vorposition umkehrt. Das
Werkzeug fährt also in der Werkzeug-Achse mit Eilgang
auf Sicherheits-Abstand **unter** die Werkstück-Oberfläche!

- ▶ Soll-Durchmesser Q335: Gewindenenndurchmesser
- ▶ Gewindesteigung Q239: Steigung des Gewindes. Das Vorzeichen legt Rechts- oder Linksgewinde fest:
 - += Rechtsgewinde
 - = Linksgewinde
- ▶ Gewindetiefe Q201 (inkremental): Abstand zwischen Werkstück-Oberfläche und Gewindegrund
- ▶ Nachsetzen Q355: Anzahl der Gewindegänge um die das Werkzeug versetzt wird, siehe Bild rechts unten
 - **0** = eine Schraubenlinie auf die Gewindetiefe
 - **1** = kontinuierliche Schraubenlinie auf der gesamten Gewindelänge
 - >1 = mehrere Helixbahnen mit An- und Wegfahren, dazwischen versetzt die TNC das Werkzeug um Q355 mal der Steigung
- ▶ Vorschub Vorpositionieren Q253: Verfahrgeschwindigkeit des Werkzeugs beim Eintauchen in das Werkstück bzw. beim Herausfahren aus dem Werkstück in mm/min
- Fräsart Q351: Art der Fräsbearbeitung bei M03
 - +1 = Gleichlauffräsen
 - -1 = Gegenlauffräsen



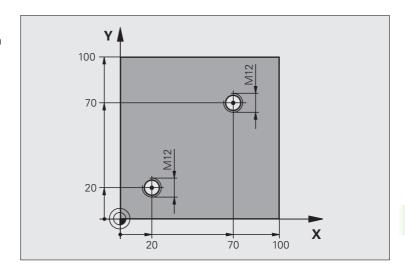
- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeugspitze und Werkstück-Oberfläche
- ▶ Tiefe Stirnseitig Q358 (inkremental): Abstand zwischen Werkstück-Oberfläche und Werkzeugspitze beim stirnseitigen Senkvorgang
- ▶ Versatz Senken Stirnseite Q359 (inkremental): Abstand um den die TNC die Werkzeugmitte aus der Zapfenmitte versetzt
- ► Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand O204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Vorschub Senken Q254: Verfahrgeschwindigkeit des Werkzeugs beim Senken in mm/min
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min

Beispiel: NC-Sätze

N250 G267 AUSSEN	GEWINDE FR.
Q335=10	;SOLL-DURCHMESSER
Q239=+1.5	;STEIGUNG
Q201=-20	;GEWINDETIEFE
Q355=0	; NACHSETZEN
Q253=750	; VORSCHUB VORPOS.
Q351=+1	; FRAESART
Q200=2	;SICHERHEITS-ABST.
Q358=+O	;TIEFE STIRNSEITIG
Q359=+0	;VERSATZ STIRNSEITIG
Q203=+30	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q254=150	; VORSCHUB SENKEN
Q207=500	; VORSCHUB FRAESEN

Beispiel: Bohrzyklen

%C200 G71 *	
N10 G30 G17 X+0 Y+0 Z-20 *	Rohteil-Definition
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+3 *	Werkzeug-Definition
N40 T1 G17 S4500 *	Werkzeug-Aufruf
N50 G00 G40 G90 Z+250 *	Werkzeug freifahren
N60 G200 BOHREN	Zyklus-Definition
Q200=2 ;SICHERHEITS-ABST.	
Q201=-15 ;TIEFE	
Q206=250 ;F TIEFENZUST.	
Q202=5 ;ZUSTELL-TIEFE	
Q210=O ;FZEIT OBEN	
Q203=-10 ;KOOR. OBERFL.	
Q204=20 ;2. SABSTAND	
Q211=0.2 ; VERWEILZEIT UNTEN	



N70 X+10 Y+10 M3 *	Bohrung 1 anfahren, Spindel einschalten
N80 Z-8 M99 *	Vorpositionieren in der Spindelachse, Zyklus-Aufruf
N90 Y+90 M99 *	Bohrung 2 anfahren, Zyklus-Aufruf
N100 Z+20 *	Spindelachse freifahren
N110 X+90 *	Bohrung 3 anfahren
N120 Z-8 M99 *	Vorpositionieren in der Spindelachse, Zyklus-Aufruf
N130 Y+10 M99 *	Bohrung 4 anfahren, Zyklus-Aufruf
N140 G00 Z+250 M2 *	Werkzeug freifahren, Programm-Ende
N99999999 %C200 G71 *	Zyklus-Aufruf

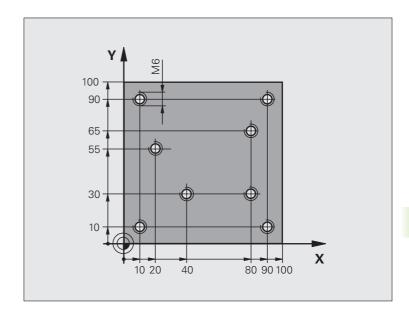
Beispiel: Bohrzyklen

Programm-Ablauf

- Bohrzyklus programmieren im Hauptprogramm
- Bearbeitung programmieren im Unterprogramm, siehe "Unterprogramme", Seite 515

%C18 G71 *	
N10 G30 G17 X+0 Y+0 Z-20 *	Rohteil-Definition
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+3 *	Werkzeug-Definition
N40 T1 G17 S4500 *	Werkzeug-Aufruf
N50 G00 G40 G90 Z+250 *	Werkzeug freifahren
N60 G86 P01 +30 P02 -1,75 *	Zyklus-Definition Gewindeschneiden
N70 X+20 Y+20 *	Bohrung 1 anfahren
N80 L1,0 *	Unterprogramm 1 rufen
N90 X+70 Y+70 *	Bohrung 2 anfahren
N100 L1,0 *	Unterprogramm 1 rufen
N110 G00 Z+250 M2 *	Werkzeug freifahren, Ende des Hauptprogramms

N120 G98 L1 *	Unterprogramm 1: Gewindeschneiden
N130 G36 S0 *	Spindelwinkel für Orientierung festlegen
N140 M19 *	Spindel orientieren (wiederholtes Schneiden möglich)
N150 G01 G91 X-2 F1000 *	Werkzeug versetzen für kollisionsfreies Eintauchen (abhängig
	vom Kerndurchmesser und Werkzeug)
N160 G90 Z-30 *	Auf Starttiefe fahren
N170 G91 X+2 *	Werkzeug wieder auf Bohrungsmitte
N180 G79 *	Zyklus 18 aufrufen
N190 G90 Z+5 *	freifahren
N200 G98 L0 *	Ende Unterprogramm 1
N99999999 %C18 G71 *	


Beispiel: Bohrzyklen in Verbindung mit Punkte-Tabelle

Die Bohrungskoordinaten sind in der Punkte-Tabelle TAB1.PNT gespeichert und werden von der TNC mit G79 PAT gerufen.

Die Werkzeug-Radien sind so gewählt, dass alle Arbeitsschritte in der Testgrafik zu sehen sind.

Programm-Ablauf

- Zentrieren
- Bohren
- Gewindebohren

%1 G71 *	
N10 G30 G17 X+0 Y+0 Z-20 *	Rohteil-Definition
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+4 *	Werkzeug-Definition Zentrierer
N40 G99 T2 L+0 R+2,4 *	Werkzeug-Definition Bohrer
N50 G99 T3 L+0 R+3 *	Werkzeug-Definition Gewindebohrer
N60 T1 G17 S5000 *	Werkzeug-Aufruf Zentrierer
N70 G01 G40 Z+10 F5000 *	Werkzeug auf sichere Höhe fahren (F mit Wert programmieren,
	die TNC positioniert nach jedem Zyklus auf die sichere Höhe)
N80 %:PAT: "TAB1" *	Punkte-Tabelle festlegen
N90 G200 BOHREN	Zyklus-Definition Zentrieren
Q200=2 ;SICHERHEITS-ABST.	
Q201=-2 ;TIEFE	
Q206=150 ;F TIEFENZUST.	
Q202=2 ;ZUSTELL-TIEFE	
Q210=0 ;FZEIT OBEN	
Q203=+0 ;KOOR. OBERFL.	Zwingend 0 eingeben, wirkt aus Punkte-Tabelle
Q204=0 ;2. SABSTAND	Zwingend 0 eingeben, wirkt aus Punkte-Tabelle
Q211=0.2 ; VERWEILZEIT UNTEN	

N100 G79 "PAT" F5000 M3 *	Zyklus-Aufruf in Verbindung mit Punkte-Tabelle TAB1.PNT,
	Vorschub zwischen den Punkten: 5000 mm/min
N110 G00 G40 Z+100 M6 *	Werkzeug freifahren, Werkzeug-Wechsel
N120 T2 G17 S5000 *	Werkzeug-Aufruf Bohrer
N130 G01 G40 Z+10 F5000 *	Werkzeug auf sichere Höhe fahren (F mit Wert programmieren)
N140 G200 BOHREN	Zyklus-Definition Bohren
Q200=2 ;SICHERHEITS-ABST.	
Q201=-25 ;TIEFE	
Q206=150 ;F TIEFENZUST.	
Q202=5 ;ZUSTELL-TIEFE	
Q210=0 ;FZEIT OBEN	
Q203=+0 ;KOOR. OBERFL.	Zwingend 0 eingeben, wirkt aus Punkte-Tabelle
Q204=0 ;2. SABSTAND	Zwingend 0 eingeben, wirkt aus Punkte-Tabelle
Q211=0.2 ;VERWEILZEIT UNTEN	
N150 G79 "PAT" F5000 M3 *	Zyklus-Aufruf in Verbindung mit Punkte-Tabelle TAB1.PNT
N160 G00 G40 Z+100 M6 *	Werkzeug freifahren, Werkzeug-Wechsel
N170 T3 G17 S200 *	Werkzeug-Aufruf Gewindebohrer
N180 G00 G40 Z+50 *	Werkzeug auf sichere Höhe fahren
N190 G84 P01 +2 P02 -15 P03 0 P04 150 *	Zyklus-Definition Gewindebohren
N200 G79 "PAT" F5000 M3 *	Zyklus-Aufruf in Verbindung mit Punkte-Tabelle TAB1.PNT
N210 G00 G40 Z+100 M2 *	Werkzeug freifahren, Programm-Ende
N99999999 %1 G71 *	

Punkte-Tabelle TAB1.PNT

	TAB1.	PNT	ММ	
NR	X	Υ	Z	
0	+10	+10	+0	
1	+40	+30	+0	
2	+90	+10	+0	
3	+80	+30	+0	
4	+80	+65	+0	
5	+90	+90	+0	
6	+10	+90	+0	
7	+20	+55	+0	
[END)]			

8.4 Zyklen zum Fräsen von Taschen, Zapfen und Nuten

Übersicht

Zyklus	Softkey	Seite
G251RECHTECKTASCHE Schrupp-/Schlicht-Zyklus mit Auswahl des Bearbei-tungsumfanges und helixförmigem Eintauchen	251	Seite 364
G252 KREISTASCHE Schrupp-/Schlicht-Zyklus mit Auswahl des Bearbeitungsumfanges und helixförmigem Eintauchen	252	Seite 369
G253 NUTENFRAESEN Schrupp-/Schlicht-Zyklus mit Auswahl des Bearbei-tungsumfanges und pendelndem/helixförmigem Ein-tauchen	253	Seite 373
G254 RUNDE NUT Schrupp-/Schlicht-Zyklus mit Auswahl des Bearbeitungsumfanges und pendelndem/helixförmigem Eintauchen	254	Seite 377
G256 RECHTECKZAPFEN Schrupp-/Schlicht-Zyklus mit seitlicher Zustellung, wenn Mehrfachumlauf erforderlich	256	Seite 382
G257 KREISZAPFEN Schrupp-/Schlicht-Zyklus mit seitlicher Zustellung, wenn Mehrfachumlauf erforderlich	257	Seite 386

RECHTECKTASCHE (Zyklus G251)

Mit dem Rechtecktaschen-Zyklus G251 können Sie eine Rechtecktasche vollständig bearbeiten. In Abhängigkeit der Zyklus-Parameter stehen folgende Bearbeitungsalternativen zur Verfügung:

- Komplettbearbeitung: Schruppen, Schlichten Tiefe, Schlichten Seite
- Nur Schruppen
- Nur Schlichten Tiefe und Schlichten Seite
- Nur Schlichten Tiefe
- Nur Schlichten Seite

Bei inaktiver Werkzeug-Tabelle müssen Sie immer senkrecht eintauchen (Q366=0), da sie keinen Eintauchwinkel definieren können.

Schruppen

- 1 Das Werkzeug taucht in der Taschenmitte in das Werkstück ein und fährt auf die erste Zustell-Tiefe. Die Eintauchstrategie legen Sie mit dem Parameter Q366 fest
- 2 Die TNC räumt die Tasche von innen nach aussen unter Berücksichtigung des Überlappungsfaktors (Parameter Q370) und der Schlichtaufmaße (Parameter Q368 und Q369) aus
- 3 Am Ende des Ausräumvorgangs fährt die TNC das Werkzeug tangential von der Taschenwand weg, fährt um den Sicherheits-Abstand über die aktuelle Zustell-Tiefe und von dort aus im Eilgang zurück zur Taschenmitte
- **4** Dieser Vorgang wiederholt sich, bis die programmierte Taschentiefe erreicht ist

Schlichten

- 5 Sofern Schlichtaufmaße definiert sind, schlichtet die TNC zunächst die Taschenwände, falls eingegeben in mehreren Zustellungen. Die Taschenwand wird dabei tangential angefahren
- 6 Anschließend schlichtet die TNC den Boden der Tasche von innen nach aussen. Der Taschenboden wird dabei tangential angefahren

Beachten Sie vor dem Programmieren

Werkzeug auf Startposition in der Bearbeitungsebene vorpositionieren mit Radiuskorrektur RO. Parameter Q367 (Taschenlage) beachten.

Die TNC führt den Zyklus in den Achsen (Bearbeitungsebene) aus, mit denen Sie die Startposition angefahren haben, Z.B. in X und Y. wenn Sie mit G79:G01 X... Y... und in U und V, wenn Sie G79:G01 U... V... programmiert haben.

Die TNC positioniert das Werkzeug in der Werkzeug-Achse automatisch vor. Parameter Q204 (2. Sicherheits-Abstand) beachten.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

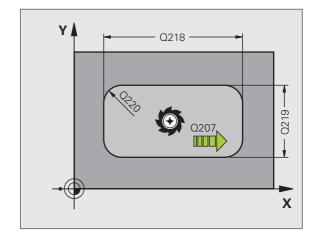
Die TNC positioniert das Werkzeug am Zyklusende wieder zurück auf die Startposition.

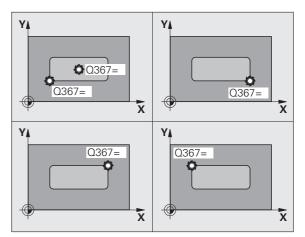
Die TNC positioniert das Werkzeug am Ende eines Ausräum-Vorgangs im Eilgang zurück zur Taschenmitte. Das Werkzeug steht dabei um den Sicherheits-Abstand über der aktuellen Zustell-Tiefe. Sicherheits-Abstand so eingeben, dass das Werkzeug beim Verfahren nicht mit abgetragenen Spänen verklemmen kann.

Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).

Achtung Kollisionsgefahr!

Beachten Sie, dass die TNC bei positiv eingegebener **Tiefe** die Berechnung der Vorposition umkehrt. Das Werkzeug fährt also in der Werkzeug-Achse mit Eilgang auf Sicherheits-Abstand unter die Werkstück-Oberfläche!

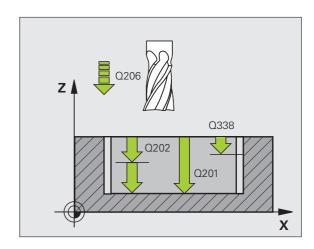


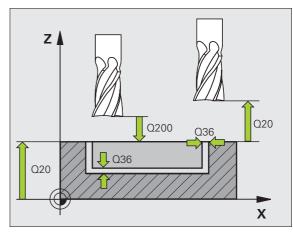



- Bearbeitungs-Umfang (0/1/2) Q215: Bearbeitungs-Umfang festlegen:
 - 0: Schruppen und Schlichten
 - 1: Nur Schruppen
 - 2: Nur Schlichten

Schlichten Seite und Schlichten Tiefe werden nur ausgeführt, wenn das jeweilige Schlichtaufmaß (Q368, Q369) definiert ist

- ▶ 1. Seiten-Länge Q218 (inkremental): Länge der Tasche, parallel zur Hauptachse der Bearbeitungsebene
- ▶ 2. Seiten-Länge Q219 (inkremental): Länge der Tasche, parallel zur Nebenachse der Bearbeitungsebene
- ▶ Eckenradius Q220: Radius der Taschenecke. Wenn nicht eingegeben, setzt die TNC den Eckenradius gleich dem Werkzeug-Radius
- Schlichtaufmaß Seite Q368 (inkremental): Schlicht-Aufmaß in der Bearbeitungs-Ebene
- ▶ Drehlage Q224 (absolut): Winkel, um den die gesamte Tasche gedreht wird. Das Drehzentrum liegt in der Position, auf der das Werkzeug beim Zyklus-Aufruf steht
- ▶ Taschenlage Q367: Lage der Tasche bezogen auf die Position des Werkzeuges beim Zyklus-Aufruf (siehe Bild rechts Mitte):
 - 0: Werkzeuaposition = Taschenmitte
 - 1: Werkzeugposition = Linke untere Ecke
 - 2: Werkzeugposition = Rechte untere Ecke
 - 3: Werkzeugposition = Rechte obere Ecke
 - 4: Werkzeugposition = Linke obere Ecke
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min
- Fräsart Q351: Art der Fräsbearbeitung bei M03:
 - +1 = Gleichlauffräsen
 - -1 = Gegenlauffräsen





- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche - Taschengrund
- ▶ Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird; Wert größer 0 eingeben
- ▶ Schlichtaufmaß Tiefe Q369 (inkremental): Schlicht-Aufmaß für die Tiefe
- ▶ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Fahren auf Tiefe in mm/min
- ► Zustellung Schlichten Q338 (inkremental): Maß, um welches das Werkzeug in der Spindelachse beim Schlichten zugestellt wird. Q338=0: Schlichten in einer Zustellung
- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeug-Stirnfläche und Werkstück-Oberfläche
- ► Koordinate Werkstück-Oberfläche Q203 (absolut): Absolute Koordinate der Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann

- ▶ Bahn-Über1appung Faktor Q370: Q370 x Werkzeug-Radius ergibt die seitliche Zustellung k
- ▶ Eintauchstrategie Q366: Art der Eintauchstrategie:
 - 0 = senkrecht eintauchen. Unabhängig vom in der Werkzeug-Tabelle definierten Eintauchwinkel
 ANGLE taucht die TNC senkrecht ein
 - 1 = helixförmig eintauchen. In der Werkzeug-Tabelle muss für das aktive Werkzeug der Eintauchwinkel **ANGLE** ungleich 0 definiert sein. Ansonsten gibt die TNC eine Fehlermeldung aus
 - 2 = pendelnd eintauchen. In der Werkzeug-Tabelle muss für das aktive Werkzeug der Eintauchwinkel ANGLE ungleich 0 definiert sein. Ansonsten gibt die TNC eine Fehlermeldung aus. Die Pendellänge ist abhängig vom Eintauchwinkel, als Minimalwert verwendet die TNC den doppelten Werkzeug-Durchmesser
- ▶ Vorschub Schlichten Q385: Verfahrgeschwindigkeit des Werkzeugs beim Seiten- und Tiefenschlichten in mm/min

N10 G251 RECHTEC	KTASCHE
Q215=0	;BEARBEITUNGS-UMFANG
Q218=80	;1. SEITEN-LAENGE
Q219=60	;2. SEITEN-LAENGE
Q220=5	; ECKENRADIUS
0368=0.2	;AUFMASS SEITE
0224=+0	;DREHLAGE
Q367=0	;TASCHENLAGE
Q207=500	; VORSCHUB FRAESEN
Q351=+1	; FRAESART
Q201=-20	;TIEFE
Q202=5	;ZUSTELL-TIEFE
0369=0.1	;AUFMASS TIEFE
Q206=150	;VORSCHUB TIEFENZ.
Q338=5	;ZUST. SCHLICHTEN
0200=2	;SICHERHEITS-ABST.
0203=+0	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q370=1	;BAHN-UEBERLAPPUNG
Q366=1	; EINTAUCHEN
Q385=500	; VORSCHUB SCHLICHTEN
N20 G79:G01 X+50	Y+50 Z+0 F15000 M3

KREISTASCHE (Zyklus G252)

Mit dem Kreistaschen-Zyklus 252 können Sie eine Kreistasche vollständig bearbeiten. In Abhängigkeit der Zyklus-Parameter stehen folgende Bearbeitungsalternativen zur Verfügung:

- Komplettbearbeitung: Schruppen, Schlichten Tiefe, Schlichten Seite
- Nur Schruppen
- Nur Schlichten Tiefe und Schlichten Seite
- Nur Schlichten Tiefe
- Nur Schlichten Seite

Bei inaktiver Werkzeug-Tabelle müssen Sie immer senkrecht eintauchen (Q366=0), da sie keinen Eintauchwinkel definieren können.

Schruppen

- 1 Das Werkzeug taucht in der Taschenmitte in das Werkstück ein und fährt auf die erste Zustell-Tiefe. Die Eintauchstrategie legen Sie mit dem Parameter Q366 fest
- 2 Die TNC räumt die Tasche von innen nach aussen unter Berücksichtigung des Überlappungsfaktors (Parameter Q370) und der Schlichtaufmaße (Parameter Q368 und Q369) aus
- 3 Am Ende des Ausräumvorgangs fährt die TNC das Werkzeug tangential von der Taschenwand weg, fährt um den Sicherheits-Abstand über die aktuelle Zustell-Tiefe und von dort aus im Eilgang zurück zur Taschenmitte
- 4 Dieser Vorgang wiederholt sich, bis die programmierte Taschentiefe erreicht ist

Schlichten

- Sofern Schlichtaufmaße definiert sind, schlichtet die TNC zunächst die Taschenwände, falls eingegeben in mehreren Zustellungen. Die Taschenwand wird dabei tangential angefahren
- Anschließend schlichtet die TNC den Boden der Tasche von innen nach aussen. Der Taschenboden wird dabei tangential angefahren

Beachten Sie vor dem Programmieren

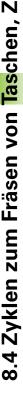
Werkzeug auf Startposition (Kreismitte) in der Bearbeitungsebene vorpositionieren mit Radiuskorrektur

Die TNC führt den Zyklus in den Achsen (Bearbeitungsebene) aus, mit denen Sie die Startposition angefahren haben. Z.B. in X und Y, wenn Sie mit G79:G01 X... Y... und in U und V, wenn Sie **G79:G01 U... V**... programmiert haben.

Die TNC positioniert das Werkzeug in der Werkzeug-Achse automatisch vor. Parameter Q204 (2. Sicherheits-Abstand) beachten.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

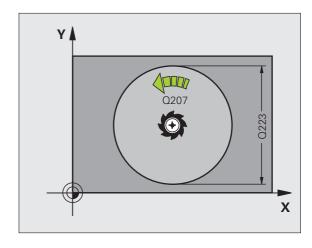
Die TNC positioniert das Werkzeug am Zyklusende wieder zurück auf die Startposition.

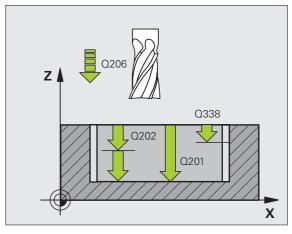

Die TNC positioniert das Werkzeug am Ende eines Ausräum-Vorgangs im Eilgang zurück zur Taschenmitte. Das Werkzeug steht dabei um den Sicherheits-Abstand über der aktuellen Zustell-Tiefe. Sicherheits-Abstand so eingeben, dass das Werkzeug beim Verfahren nicht mit abgetragenen Spänen verklemmen kann.

Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).

Achtung Kollisionsgefahr!

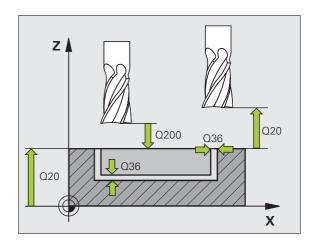
Beachten Sie, dass die TNC bei positiv eingegebener **Tiefe** die Berechnung der Vorposition umkehrt. Das Werkzeug fährt also in der Werkzeug-Achse mit Eilgang auf Sicherheits-Abstand unter die Werkstück-Oberfläche!





- ▶ Bearbeitungs-Umfang (0/1/2) Q215: Bearbeitungs-Umfang festlegen:
 - 0: Schruppen und Schlichten
 - 1: Nur Schruppen
 - 2: Nur Schlichten

Schlichten Seite und Schlichten Tiefe werden nur ausgeführt, wenn das jeweilige Schlichtaufmaß (Q368, Q369) definiert ist


- ▶ Kreisdurchmesser Q223: Durchmesser der fertig bearbeiteten Tasche
- Schlichtaufmaß Seite Q368 (inkremental): Schlicht-Aufmaß in der Bearbeitungs-Ebene
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min
- ▶ Fräsart Q351: Art der Fräsbearbeitung bei M03:
 - **+1** = Gleichlauffräsen
 - **-1** = Gegenlauffräsn
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Taschengrund
- ➤ Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird; Wert größer 0 eingeben
- ▶ Schlichtaufmaß Tiefe Q369 (inkremental): Schlicht-Aufmaß für die Tiefe
- ➤ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Fahren auf Tiefe in mm/min
- ➤ Zustellung Schlichten Q338 (inkremental): Maß, um welches das Werkzeug in der Spindelachse beim Schlichten zugestellt wird. Q338=0: Schlichten in einer Zustellung

- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeug-Stirnfläche und Werkstück-Oberfläche
- ► Koordinate Werkstück-Oberfläche Q203 (absolut): Absolute Koordinate der Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Bahn-Über1appung Faktor Q370: Q370 x Werkzeug-Radius ergibt die seitliche Zustellung k
- ▶ Eintauchstrategie Q366: Art der Eintauchstrategie:
 - 0 = senkrecht eintauchen. Unabhängig vom in der Werkzeug-Tabelle definierten Eintauchwinkel
 ANGLE taucht die TNC senkrecht ein
 - 1 = helixförmig eintauchen. In der Werkzeug-Tabelle muss für das aktive Werkzeug der Eintauchwinkel **ANGLE** ungleich 0 definiert sein. Ansonsten gibt die TNC eine Fehlermeldung aus
- Vorschub Schlichten Q385: Verfahrgeschwindigkeit des Werkzeugs beim Seiten- und Tiefenschlichten in mm/min

N10 G252 KREISTA	SCHE
Q215=0	;BEARBEITUNGS-UMFANG
Q223=60	; KREISDURCHMESSER
Q368=0.2	;AUFMASS SEITE
Q207=500	; VORSCHUB FRAESEN
Q351=+1	;FRAESART
Q201=-20	;TIEFE
Q202=5	;ZUSTELL-TIEFE
Q369=0.1	;AUFMASS TIEFE
Q206=150	;VORSCHUB TIEFENZ.
Q338=5	;ZUST. SCHLICHTEN
Q200=2	;SICHERHEITS-ABST.
Q203=+0	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q370=1	;BAHN-UEBERLAPPUNG
Q366=1	; EINTAUCHEN
Q385=500	; VORSCHUB SCHLICHTEN
N20 G79:G01 X+50	Y+50 Z+0 F15000 M3

NUTENFRAESEN (Zyklus 253)

Mit dem Zyklus 253 können Sie eine Nut vollständig bearbeiten. In Abhängigkeit der Zyklus-Parameter stehen folgende Bearbeitungsalternativen zur Verfügung:

- Komplettbearbeitung: Schruppen, Schlichten Tiefe, Schlichten Seite
- Nur Schruppen
- Nur Schlichten Tiefe und Schlichten Seite
- Nur Schlichten Tiefe
- Nur Schlichten Seite

Bei inaktiver Werkzeug-Tabelle müssen Sie immer senkrecht eintauchen (Q366=0), da sie keinen Eintauchwinkel definieren können.

Schruppen

- 1 Das Werkzeug pendelt ausgehend vom linken Nutkreis-Mittelpunkt mit dem in der Werkzeug-Tabelle definierten Eintauchwinkel auf die erste Zustell-Tiefe. Die Eintauchstrategie legen Sie mit dem Parameter Q366 fest
- 2 Die TNC räumt die Nut von innen nach aussen unter Berücksichtigung der Schlichtaufmaße (Parameter Q368 und Q369) aus
- 3 Dieser Vorgang wiederholt sich, bis die programmierte Nuttiefe erreicht ist

Schlichten

- Sofern Schlichtaufmaße definiert sind, schlichtet die TNC zunächst die Nutwände, falls eingegeben in mehreren Zustellungen. Die Nutwand wird dabei tangential im rechten Nutkreis angefahren
- Anschließend schlichtet die TNC den Boden der Nut von innen nach aussen. Der Nutboden wird dabei tangential angefahren

Beachten Sie vor dem Programmieren

Werkzeug auf Startposition in der Bearbeitungsebene vorpositionieren mit Radiuskorrektur RO. Parameter Q367 (Nutlage) beachten.

Die TNC führt den Zyklus in den Achsen (Bearbeitungsebene) aus, mit denen Sie die Startposition angefahren haben. Z.B. in X und Y, wenn Sie mit G79:G01 X... Y... und in U und V, wenn Sie **G79:G01 U... V**... programmiert haben.

Die TNC positioniert das Werkzeug in der Werkzeug-Achse automatisch vor. Parameter Q204 (2. Sicherheits-Abstand) beachten.

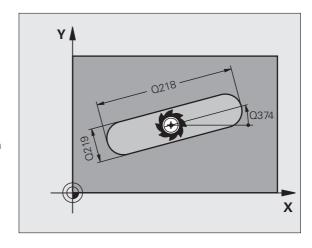
Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

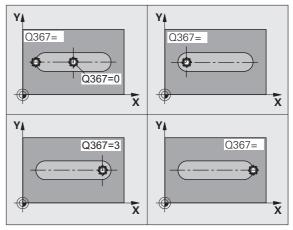
Ist die Nutbreite größer als der doppelte Werkzeug-Durchmesser, dann räumt die TNC die Nut von innen nach aussen entsprechend aus. Sie können also auch mit kleinen Werkzeugen beliebige Nuten fräsen.

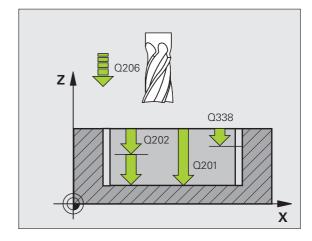
Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).

Achtung Kollisionsgefahr!

Beachten Sie, dass die TNC bei positiv eingegebener Tiefe die Berechnung der Vorposition umkehrt. Das Werkzeug fährt also in der Werkzeug-Achse mit Eilgang auf Sicherheits-Abstand unter die Werkstück-Oberfläche!

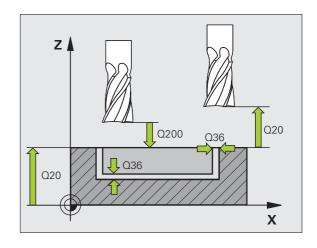





- ▶ Bearbeitungs-Umfang (0/1/2) △215: Bearbeitungs-Umfang festlegen:
- 0: Schruppen und Schlichten
- 1: Nur Schruppen
- 2: Nur Schlichten

Schlichten Seite und Schlichten Tiefe werden nur ausgeführt, wenn das jeweilige Schlichtaufmaß (Q368, Q369) definiert ist

- Nut1änge Q218 (Wert parallel zur Hauptachse der Bearbeitungsebene): Längere Seite der Nut eingeben
- Nutbreite Q219 (Wert parallel zur Nebenachse der Bearbeitungsebene): Breite der Nut eingeben; wenn Nutbreite gleich Werkzeug-Durchmesser eingegeben, dann schruppt die TNC nur (Langloch fräsen). Maximale Nutbreite beim Schruppen: Doppelter Werkzeug-Durchmesser
- ► Schlichtaufmaß Seite Q368 (inkremental): Schlicht-Aufmaß in der Bearbeitungs-Ebene
- ▶ Drehlage Q374 (absolut): Winkel, um den die gesamte Nut gedreht wird. Das Drehzentrum liegt in der Position, auf der das Werkzeug beim Zyklus-Aufruf steht
- ▶ Lage der Nut (0/1/2/3/4) Q367: Lage der Nut bezogen auf die Position des Werkzeuges beim Zyklus-Aufruf (siehe Bild rechts Mitte):
 - 0: Werkzeugposition = Nutmitte
 - 1: Werkzeugposition = Linkes Ende der Nut
 - 2: Werkzeugposition = Zentrum linker Nutkreis
 - **3**: Werkzeugposition = Zentrum rechter Nutkreis
 - **4**: Werkzeugposition = Rechtes Ende der Nut
- ▶ Vorschub Fräsen O207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min
- Fräsart Q351: Art der Fräsbearbeitung bei M03:
 - **+1** = Gleichlauffräsen
 - **-1** = Gegenlauffräsn
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Nutgrund
- ➤ Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird; Wert größer 0 eingeben
- ▶ Schlichtaufmaß Tiefe Q369 (inkremental): Schlicht-Aufmaß für die Tiefe
- ▶ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Fahren auf Tiefe in mm/min
- ➤ Zustellung Schlichten Q338 (inkremental): Maß, um welches das Werkzeug in der Spindelachse beim Schlichten zugestellt wird. Q338=0: Schlichten in einer Zustellung



- Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeug-Stirnfläche und Werkstück-Oberfläche
- ▶ Koordinate Werkstück-Oberfläche Q203 (absolut): Absolute Koordinate der Werkstück-Oberfläche
- 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Eintauchstrategie Q366: Art der Eintauchstrategie:
 - 0 = senkrecht eintauchen. Unabhängig vom in der Werkzeug-Tabelle definierten Eintauchwinkel
 ANGLE taucht die TNC senkrecht ein
 - 1 = helixförmig eintauchen. In der Werkzeug-Tabelle muss für das aktive Werkzeug der Eintauchwinkel **ANGLE** ungleich 0 definiert sein. Ansonsten gibt die TNC eine Fehlermeldung aus. Nur helixförmig eintauchen, wenn genügend Platz vorhanden ist
 - 2 = pendelnd eintauchen. In der Werkzeug-Tabelle muss für das aktive Werkzeug der Eintauchwinkel ANGLE ungleich 0 definiert sein. Ansonsten gibt die TNC eine Fehlermeldung aus
- ▶ Vorschub Schlichten Q385: Verfahrgeschwindigkeit des Werkzeugs beim Seiten- und Tiefenschlichten in mm/min

N10 G253 NUTENFR	AESEN
Q215=0	;BEARBEITUNGS-UMFANG
Q218=80	; NUTLAENGE
Q219=12	;NUTBREITE
Q368=0.2	;AUFMASS SEITE
Q374=+0	; DREHLAGE
Q367=0	; NUTLAGE
Q207=500	; VORSCHUB FRAESEN
Q351=+1	; FRAESART
Q201=-20	;TIEFE
Q202=5	;ZUSTELL-TIEFE
Q369=0.1	;AUFMASS TIEFE
Q206=150	;VORSCHUB TIEFENZ.
Q338=5	;ZUST. SCHLICHTEN
Q200=2	;SICHERHEITS-ABST.
Q203=+0	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q366=1	; EINTAUCHEN
Q385=500	; VORSCHUB SCHLICHTEN
N20 G79:G01 X+50	Y+50 Z+0 F15000 M3

RUNDE NUT (Zyklus 254)

Mit dem Zyklus 254 können Sie eine runde Nut vollständig bearbeiten. In Abhängigkeit der Zyklus-Parameter stehen folgende Bearbeitungsalternativen zur Verfügung:

- Komplettbearbeitung: Schruppen, Schlichten Tiefe, Schlichten Seite
- Nur Schruppen
- Nur Schlichten Tiefe und Schlichten Seite
- Nur Schlichten Tiefe
- Nur Schlichten Seite

Bei inaktiver Werkzeug-Tabelle müssen Sie immer senkrecht eintauchen (Q366=0), da sie keinen Eintauchwinkel definieren können.

Schruppen

- 1 Das Werkzeug pendelt im Nutzentrum mit dem in der Werkzeug-Tabelle definierten Eintauchwinkel auf die erste Zustell-Tiefe. Die Eintauchstrategie legen Sie mit dem Parameter Q366 fest
- 2 Die TNC räumt die Nut von innen nach aussen unter Berücksichtigung der Schlichtaufmaße (Parameter Q368 und Q369) aus
- 3 Dieser Vorgang wiederholt sich, bis die programmierte Nuttiefe erreicht ist

Schlichten

- 4 Sofern Schlichtaufmaße definiert sind, schlichtet die TNC zunächst die Nutwände, falls eingegeben in mehreren Zustellungen. Die Nutwand wird dabei tangential angefahren
- 5 Anschließend schlichtet die TNC den Boden der Nut von innen nach aussen. Der Nutboden wird dabei tangential angefahren

Beachten Sie vor dem Programmieren

Werkzeug in der Bearbeitungsebene vorpositionieren mit Radiuskorrektur R0. Parameter Q367 (**Bezug für Nutlage**) entsprechend definieren.

Die TNC führt den Zyklus in den Achsen (Bearbeitungsebene) aus, mit denen Sie die Startposition angefahren haben. Z.B. in X und Y, wenn Sie mit **G79:G01** X... Y... und in U und V, wenn Sie **G79:G01** U... V... programmiert haben.

Die TNC positioniert das Werkzeug in der Werkzeug-Achse automatisch vor. Parameter Q204 (2. Sicherheits-Abstand) beachten.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

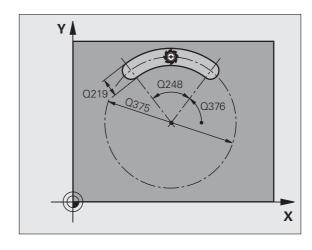
Ist die Nutbreite größer als der doppelte Werkzeug-Durchmesser, dann räumt die TNC die Nut von innen nach aussen entsprechend aus. Sie können also auch mit kleinen Werkzeugen beliebige Nuten fräsen.

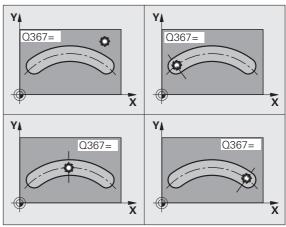
Wenn Sie den Zyklus G254 Runde Nut in Verbindung mit Zyklus G221 verwenden, dann ist die Nutlage 0 nicht erlaubt.

Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).

Achtung Kollisionsgefahr!

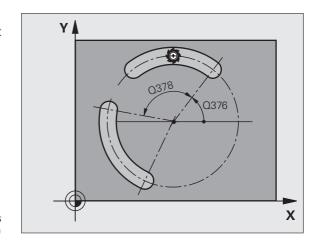
Beachten Sie, dass die TNC bei **positiv eingegebener Tiefe** die Berechnung der Vorposition umkehrt. Das Werkzeug fährt also in der Werkzeug-Achse mit Eilgang auf Sicherheits-Abstand **unter** die Werkstück-Oberfläche!

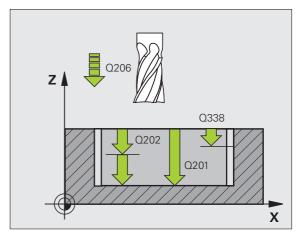


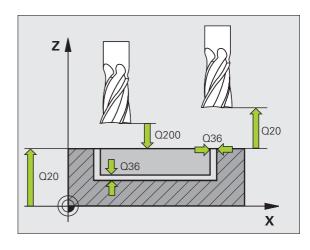


- ▶ Bearbeitungs-Umfang (0/1/2) Q215: Bearbeitungs-Umfang festlegen:
 - 0: Schruppen und Schlichten
 - 1: Nur Schruppen
 - 2: Nur Schlichten

Schlichten Seite und Schlichten Tiefe werden nur ausgeführt, wenn das jeweilige Schlichtaufmaß (Q368, Q369) definiert ist


- Nutbreite Q219 (Wert parallel zur Nebenachse der Bearbeitungsebene): Breite der Nut eingeben; wenn Nutbreite gleich Werkzeug-Durchmesser eingegeben, dann schruppt die TNC nur (Langloch fräsen). Maximale Nutbreite beim Schruppen: Doppelter Werkzeug-Durchmesser
- Schlichtaufmaß Seite Q368 (inkremental): Schlicht-Aufmaß in der Bearbeitungs-Ebene
- ▶ Teilkreis-Durchmesser Q375: Durchmesser des Teilkreises eingeben
- ▶ Bezug für Nutlage (0/1/2/3) Q367: Lage der Nut bezogen auf die Position des Werkzeuges beim Zyklus-Aufruf (siehe Bild rechts Mitte):
 - **0**: Werkzeugposition wird nicht berücksichtigt. Nutlage ergibt sich aus eingegebener Teilkreis-Mitte und Startwinkel
 - 1: Werkzeugposition = Zentrum linker Nutkreis. Startwinkel Q376 bezieht sich auf diese Position. Eingegebene Teilkreis-Mitte wird nicht berücksichtigt
 - 2: Werkzeugposition = Zentrum Mittelachse. Startwinkel Q376 bezieht sich auf diese Position. Eingegebene Teilkreis-Mitte wird nicht berücksichtigt 3: Werkzeugposition = Zentrum rechter Nutkreis.
 - Startwinkel Q376 bezieht sich auf diese Position. Eingegebene Teilkreis-Mitte wird nicht berücksichtigt
- Mitte 1. Achse Q216 (absolut): Mitte des Teilkreises in der Hauptachse der Bearbeitungsebene. Nur wirksam, wenn Q367 = 0
- Mitte 2. Achse Q217 (absolut): Mitte des Teilkreises in der Nebenachse der Bearbeitungsebene. Nur wirksam, wenn Q367 = 0
- Startwinkel Q376 (absolut): Polarwinkel des Startpunkts eingeben
- ▶ Öffnungs-Winke1 der Nut Q248 (inkremental): Öffnungs-Winkel der Nut eingeben




- ▶ Winkelschritt Q378 (inkremental): Winkel, um den die gesamte Nut gedreht wird. Das Drehzentrum liegt in der Teilkreis-Mitte
- ▶ Anzahl Bearbeitungen Q377: Anzahl der Bearbeitungen auf dem Teilkreis
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min
- Fräsart Q351: Art der Fräsbearbeitung bei M03:
 - +1 = Gleichlauffräsen
 - -1 = Gegenlauffräsen
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche - Nutgrund
- ▶ Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird; Wert größer 0 eingeben
- ▶ Schlichtaufmaß Tiefe Q369 (inkremental): Schlicht-Aufmaß für die Tiefe
- ▶ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Fahren auf Tiefe in mm/min
- ▶ Zustellung Schlichten Q338 (inkremental): Maß, um welches das Werkzeug in der Spindelachse beim Schlichten zugestellt wird. Q338=0: Schlichten in einer Zustellung

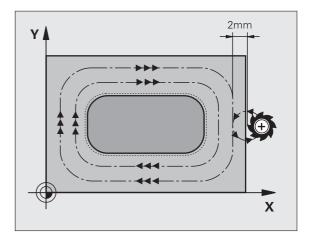
- ➤ Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeug-Stirnfläche und Werkstück-Oberfläche
- ▶ Koordinate Werkstück-Oberfläche Q203 (absolut): Absolute Koordinate der Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Eintauchstrategie Q366: Art der Eintauchstrategie:
 - 0 = senkrecht eintauchen. Unabhängig vom in der Werkzeug-Tabelle definierten Eintauchwinkel
 ANGLE taucht die TNC senkrecht ein
 - 1 = helixförmig eintauchen. In der Werkzeug-Tabelle muss für das aktive Werkzeug der Eintauchwinkel **ANGLE** ungleich 0 definiert sein. Ansonsten gibt die TNC eine Fehlermeldung aus. Nur helixförmig eintauchen, wenn genügend Platz vorhanden ist
 - 2 = pendelnd eintauchen. In der Werkzeug-Tabelle muss für das aktive Werkzeug der Eintauchwinkel ANGLE ungleich 0 definiert sein. Ansonsten gibt die TNC eine Fehlermeldung aus
- ▶ Vorschub Schlichten Q385: Verfahrgeschwindigkeit des Werkzeugs beim Seiten- und Tiefenschlichten in mm/min

N10 G254 RUNDE N	UT
Q215=0	;BEARBEITUNGS-UMFANG
Q219=12	;NUTBREITE
Q368=0.2	;AUFMASS SEITE
Q375=80	;TEILKREIS-DURCHM.
Q367=0	;BEZUG NUTLAGE
Q216=+50	;MITTE 1. ACHSE
Q217=+50	;MITTE 2. ACHSE
Q376=+45	;STARTWINKEL
Q248=90	;OEFFNUNGSWINKEL
Q378=0	;WINKELSCHRITT
Q377=1	;ANZAHL BEARBEITUNGEN
Q207=500	; VORSCHUB FRAESEN
Q351=+1	; FRAESART
Q201=-20	;TIEFE
Q202=5	;ZUSTELL-TIEFE
Q369=0.1	;AUFMASS TIEFE
Q206=150	;VORSCHUB TIEFENZ.
Q338=5	;ZUST. SCHLICHTEN
Q200=2	;SICHERHEITS-ABST.
Q203=+0	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q366=1	; EINTAUCHEN
Q385=500	;VORSCHUB SCHLICHTEN
N20 G79:G01 X+50	Y+50 Z+0 F15000 M3

RECHTECKZAPFEN (Zyklus 256)

Mit dem Rechteckzapfen-Zyklus 256 können Sie einen Rechteckzapfen bearbeiten. Wenn ein Rohteilmaß größer als die maximal mögliche seitliche Zustellung ist, dann führt die TNC mehrere seitliche Zustellungen aus bis das Fertigmaß ereicht ist.

- Das Werkzeug f\u00e4hrt von der Zyklus-Startposition aus (Zapfenmitte) in positiver X-Richtung auf die Startposition der Zapfenbearbeitung. Die Startposition liegt 2 mm rechts neben dem Zapfenrohteil
- 2 Falls das Werkzeug auf dem 2. Sicherheits-Abstand steht, f\u00e4hrt die TNC das Werkzeug im Eilgang FMAX auf den Sicherheits-Abstand und von dort mit dem Vorschub Tiefenzustellung auf die erste Zustelltiefe
- 3 Anschließend fährt das Werkzeug in einem Halbkreis tangential an die Zapfenkontur und fräst danach einen Umlauf.
- Wenn sich das Fertigmaß nicht in einem Umlauf erreichen lässt, stellt die TNC das Werkzeug auf der aktuellen Zustell-Tiefe seitlich zu und fräst danach erneut einen Umlauf. Die TNC berücksichtigt dabei das Rohteilmaß, das Fertigmaß und die erlaubte seitliche Zustellung. Dieser Vorgang wiederholt sich, bis das definierte Fertigmaß erreicht ist
- **5** Danach fährt das Werkzeug in einem Halbkreis tangential von der Kontur weg zurück zum Startpunkt der Zapfenbearbeitung
- 6 Anschließend fährt die TNC das Werkzeug auf die nächste Zustell-Tiefe und bearbeitet den Zapfen auf dieser Tiefe
- 7 Dieser Vorgang wiederholt sich, bis die programmierte Zapfentiefe erreicht ist


Beachten Sie vor dem Programmieren

Werkzeug auf Startposition in der Bearbeitungsebene vorpositionieren mit Radiuskorrektur R0. Parameter Q367 (Zapfenlage) beachten.

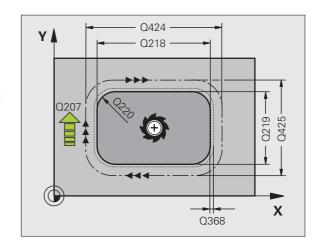
Die TNC positioniert das Werkzeug in der Werkzeug-Achse automatisch vor. Parameter Q204 (2. Sicherheits-Abstand) beachten.

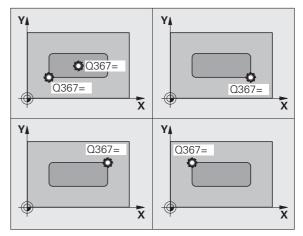
Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

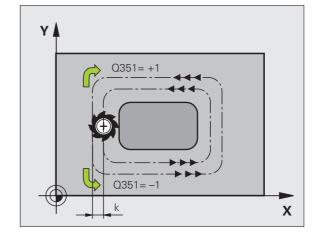
Die TNC positioniert das Werkzeug am Ende zurück auf den Sicherheits-Abstand, wenn eingegeben auf den 2. Sicherheits-Abstand.

Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).

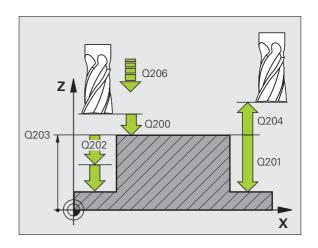
Achtung Kollisionsgefahr!


Beachten Sie, dass die TNC bei **positiv eingegebener Tiefe** die Berechnung der Vorposition umkehrt. Das
Werkzeug fährt also in der Werkzeug-Achse mit Eilgang
auf Sicherheits-Abstand **unter** die Werkstück-Oberfläche!


Rechts neben dem Zapfen ausreichend Platz für die Anfahrbewegung lassen. Minmum: Werkzeug-Durchmesser + 2 mm.



- ▶ 1. Seiten-Länge Q218: Länge des Zapfens, parallel zur Hauptachse der Bearbeitungs-ebene
- ▶ Rohteilmaß Seitenlänge 1 Q424: Länge des Zapfenrohteils, parallel zur Hauptachse der Bearbeitungsebene. Rohteilmaß Seitenlänge 1 größer als 1. Seiten-Länge eingeben. Die TNC führt mehrere seitliche Zustellungen aus, wenn die Differenz zwischen Rohteilmaß 1 und Fertigmaß 1 größer ist als die erlaubte seitliche Zustellung (Werkzeug-Radius mal Bahn-Überlappung Q370). Die TNC berechnet immer eine konstante seitliche Zustellung
- ▶ 2. Seiten-Länge O219: Länge des Zapfens, parallel zur Nebenachse der Bearbeitungs-ebene. Rohteilmaß Seitenlänge 2 größer als 2. Seiten-Länge eingeben. Die TNC führt mehrere seitliche Zustellungen aus, wenn die Differenz zwischen Rohteilmaß 2 und Fertigmaß 2 größer ist als die erlaubte seitliche Zustellung (Werkzeug-Radius mal Bahn-Überlappung Q370). Die TNC berechnet immer eine konstante seitliche Zustellung
- ▶ Rohteilmaß Seitenlänge 2 Q425: Länge des Zapfenrohteils, parallel zur Nebenachse der Bearbeitungsebene
- ► Eckenradius Q220: Radius der Zapfenecke
- ▶ Schlichtaufmaß Seite Q368 (inkremental): Schlicht-Aufmaß in der Bearbeitungs-Ebene, das die TNC bei der Bearbeitung stehen lässt
- ▶ Drehlage Q224 (absolut): Winkel, um den der gesamte Zapfen gedreht wird. Das Drehzentrum liegt in der Position, auf der das Werkzeug beim Zyklus-Aufruf steht
- Zapfenlage Q367: Lage des Zapfens bezogen auf die Position des Werkzeuges beim Zyklus-Aufruf:
 - 0: Werkzeugposition = Zapfenmitte
 - 1: Werkzeugposition = Linke untere Ecke
 - 2: Werkzeugposition = Rechte untere Ecke
 - 3: Werkzeugposition = Rechte obere Ecke
 - 4: Werkzeugposition = Linke obere Ecke
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min
- Fräsart Q351: Art der Fräsbearbeitung bei M3:
 - +1 = Gleichlauffräsen
 - -1 = Gegenlauffräsen



i

- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Zapfengrund
- ➤ Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird; Wert größer 0 eingeben
- ▶ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Fahren auf Tiefe in mm/min
- ➤ Sicherheits-Abstand O200 (inkremental): Abstand zwischen Werkzeug-Stirnfläche und Werkstück-Oberfläche
- ▶ Koordinate Werkstück-Oberfläche Q203 (absolut): Absolute Koordinate der Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Bahn-Überlappung Faktor Q370: Q370 x Werkzeug-Radius ergibt die seitliche Zustellung k. Maximaler Eingabewert: 1,9999

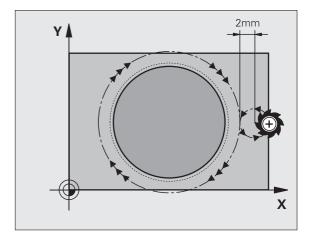
N80 G256 RECHTE	CKZAPFEN
Q218=60	;1. SEITEN-LAENGE
Q424=74	;ROHTEILMASS 1
Q219=40	;2. SEITEN-LAENGE
Q425=60	;ROHTEILMASS 2
Q220=5	; ECKENRADIUS
Q368=0.2	;AUFMASS SEITE
Q224=+0	;DREHLAGE
Q367=0	;ZAPFENLAGE
Q207=500	; VORSCHUB FRAESEN
Q351=+1	; FRAESART
Q201=-20	;TIEFE
Q202=5	;ZUSTELL-TIEFE
Q206=150	;VORSCHUB TIEFENZ.
Q200=2	;SICHERHEITS-ABST.
Q203=+0	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q370=1	;BAHN-UEBERLAPPUNG
N90 G00 G40 G90	X+50 Y+50 M3

KREISZAPFEN (Zyklus 257)

Mit dem Kreiszapfen-Zyklus 257 können Sie einen Kreiszapfen bearbeiten. Wenn der Rohteil-Durchmesser größer als die maximal mögliche seitliche Zustellung ist, dann führt die TNC mehrere seitliche Zustellungen aus bis der Fertigteil-Durchmesser ereicht ist.

- 1 Das Werkzeug f\u00e4hrt von der Zyklus-Startposition aus (Zapfenmitte) in positiver X-Richtung auf die Startposition der Zapfenbearbeitung. Die Startposition liegt 2 mm rechts neben dem Zapfenrohteil
- 2 Falls das Werkzeug auf dem 2. Sicherheits-Abstand steht, f\u00e4hrt die TNC das Werkzeug im Eilgang FMAX auf den Sicherheits-Abstand und von dort mit dem Vorschub Tiefenzustellung auf die erste Zustelltiefe
- 3 Anschließend fährt das Werkzeug in einem Halbkreis tangential an die Zapfenkontur und fräst danach einen Umlauf.
- 4 Wenn sich der Fertigteil-Durchmesser nicht in einem Umlauf erreichen lässt, stellt die TNC das Werkzeug auf der aktuellen Zustell-Tiefe seitlich zu und fräst danach erneut einen Umlauf. Die TNC berücksichtigt dabei den Rohteil-Durchmesser, den Fertigteil-Durchmesser und die erlaubte seitliche Zustellung. Dieser Vorgang wiederholt sich, bis der definierte Fertigteil-Durchmesser erreicht ist
- 5 Danach fährt das Werkzeug in einem Halbkreis tangential von der Kontur weg zurück zum Startpunkt der Zapfenbearbeitung
- 6 Anschließend fährt die TNC das Werkzeug auf die nächste Zustell-Tiefe und bearbeitet den Zapfen auf dieser Tiefe
- 7 Dieser Vorgang wiederholt sich, bis die programmierte Zapfentiefe erreicht ist

Beachten Sie vor dem Programmieren


Werkzeug auf Startposition in der Bearbeitungsebene (Zapfenmitte) vorpositionieren mit Radiuskorrektur R0.

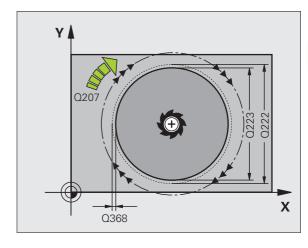
Die TNC positioniert das Werkzeug in der Werkzeug-Achse automatisch vor. Parameter Q204 (2. Sicherheits-Abstand) beachten.

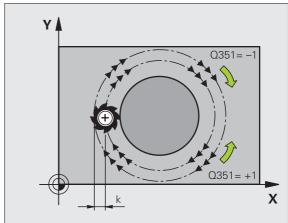
Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Die TNC positioniert das Werkzeug am Zyklusende wieder zurück auf die Startposition.

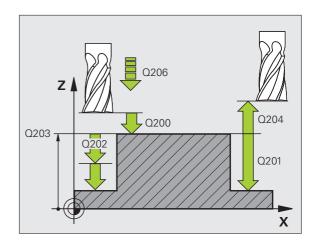
Die TNC positioniert das Werkzeug am Ende zurück auf den Sicherheits-Abstand, wenn eingegeben auf den 2. Sicherheits-Abstand.

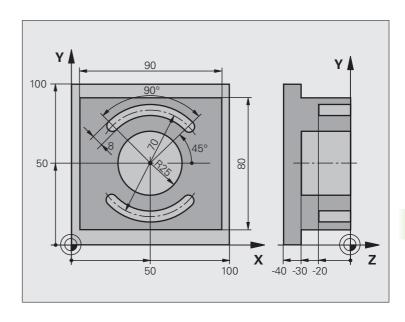
Mit Maschinen-Parameter 7441 Bit 2 stellen Sie ein, ob die TNC bei der Eingabe einer positiven Tiefe eine Fehlermeldung ausgeben soll (Bit 2=1) oder nicht (Bit 2=0).


Achtung Kollisionsgefahr!


Beachten Sie, dass die TNC bei **positiv eingegebener Tiefe** die Berechnung der Vorposition umkehrt. Das Werkzeug fährt also in der Werkzeug-Achse mit Eilgang auf Sicherheits-Abstand **unter** die Werkstück-Oberfläche!

Rechts neben dem Zapfen ausreichend Platz für die Anfahrbewegung lassen. Minmum: Werkzeug-Durchmesser + 2 mm.


- ▶ Fertigteil-Durchmesser Q223: Durchmesser des fertig bearbeiteten Zapfens
- ▶ Rohtei1-Durchmesser Q222: Durchmesser des Rohteils. Rohteil-Durchmesser größer Fertigteil-Durchmesser eingeben. Die TNC führt mehrere seitliche Zustellungen aus, wenn die Differenz zwischen Rohteil-Durchmesser und Fertigteil-Durchmesser größer ist als die erlaubte seitliche Zustellung (Werkzeug-Radius mal Bahn-Überlappung Q370). Die TNC berechnet immer eine konstante seitliche Zustellung
- ▶ Schlichtaufmaß Seite Q368 (inkremental): Schlicht-Aufmaß in der Bearbeitungs-Ebene
- ▶ Vorschub Fräsen O207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min
- Fräsart Q351: Art der Fräsbearbeitung bei M3:
 - **+1** = Gleichlauffräsen
 - -1 = Gegenlauffräsn


- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Zapfengrund
- ➤ Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird; Wert größer 0 eingeben
- ➤ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Fahren auf Tiefe in mm/min
- ➤ Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeug-Stirnfläche und Werkstück-Oberfläche
- ▶ Koordinate Werkstück-Oberfläche Q203 (absolut): Absolute Koordinate der Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Bahn-Überlappung Faktor Q370: Q370 x Werkzeug-Radius ergibt die seitliche Zustellung k. Maximaler Eingabewert: 1,9999

N80 G257 KREISZ	APFEN
Q223=60	;FERTIGTEIL-DURCHM.
Q222=60	;ROHTEIL-DURCHM.
Q368=0.2	;AUFMASS SEITE
Q207=500	;VORSCHUB FRAESEN
Q351=+1	; FRAESART
Q201=-20	;TIEFE
Q202=5	;ZUSTELL-TIEFE
Q206=150	;VORSCHUB TIEFENZ.
Q200=2	;SICHERHEITS-ABST.
Q203=+0	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q370=1	;BAHN-UEBERLAPPUNG
N90 G00 G40 G90	X+50 Y+50 M3

Beispiel: Tasche, Zapfen und Nuten fräsen

%C210 G71 *	
N10 G30 G17 X+0 Y+0 Z-40 *	Rohteil-Definition
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+6 *	Werkzeug-Definition Schruppen/Schlichten
N40 G99 T2 L+0 R+3 *	Werkzeug-Definition Nutenfräser
N50 T1 G17 S3500 *	Werkzeug-Aufruf Schruppen/Schlichten
N60 G00 G40 G90 Z+250 *	Werkzeug freifahren
N70 G256 RECHTECKZAPFEN	Zyklus-Definition Außenbearbeitung
Q218=90 ;1. SEITEN-LAENGE	
Q424=100 ;ROHTEILMASS 1	
Q219=80 ;2. SEITEN-LAENGE	
Q425=100 ;ROHTEILMASS 2	
Q220=0 ; ECKENRADIUS	
Q368=O ; AUFMASS SEITE	
Q224=0 ; DREHLAGE	
Q367=0 ;ZAPFENLAGE	
Q207=250 ; VORSCHUB FRAESEN	
Q351=+1 ;FRAESART	
Q201=-30 ;TIEFE	
Q202=5 ;ZUSTELL-TIEFE	

	Q206=250	; VORSCHUB TIEFENZUST.	
	Q200=2	;SICHERHEITS-ABST.	
	Q203=+0	;KOOR. OBERFL.	
		;2. SABSTAND	
	Q370=1	;BAHN-UEBERLAPPUNG	ĺ
N80	G79 M03 *	,	
	G252 KREISTASC	HE	I
		;BEARBEITUNGS-UMFANG	I
	Q223=50	; KREISDURCHMESSER	
		;AUFMASS SEITE	
	Q351=+1	; FRAESART	Ì
	Q201=-30	;TIEFE	
	Q202=5	;ZUSTELL-TIEFE	
	Q369=0.1	;AUFMASS TIEFE	
	Q206=150	;VORSCHUB TIEFENZ.	
	Q338=5	;ZUST. SCHLICHTEN	
	Q200=2	;SICHERHEITS-ABST.	
	Q203=+0	;KOOR. OBERFLAECHE	
	Q204=50	;2. SICHERHEITS-ABST.	
	Q370=1	;BAHN-UEBERLAPPUNG	
	Q366=1	; EINTAUCHEN	Ì
	Q385=750	; VORSCHUB SCHLICHTEN	ĺ
N100	G00 G40 X+50	Y+50 *	
N110	Z+2 M99 *		
N120	Z+250 M06 *		
N130	T2 G17 S5000	*	ĺ

N140 G254 RUNDE NUT		Zyklus-Definition Nuten
Q215=0	;BEARBEITUNGS-UMFANG	
Q219=8	; NUTBREITE	
Q368=0.2	;AUFMASS SEITE	
Q375=70	;TEILKREIS-DURCHM.	
Q367=0	;BEZUG NUTLAGE	Keine Vorpositionierung in X/Y erforderlich
Q216=+50	;MITTE 1. ACHSE	
Q217=+50	;MITTE 2. ACHSE	
Q376=+45	;STARTWINKEL	
Q248=90	;OEFFNUNGSWINKEL	
Q378=180	;WINKELSCHRITT	Startpunkt 2. Nut
Q377=2	;ANZAHL BEARBEITUNGEN	
Q207=500	; VORSCHUB FRAESEN	
Q351=+1	; FRAESART	
Q201=-20	;TIEFE	
Q202=5	;ZUSTELL-TIEFE	
Q369=0.1	;AUFMASS TIEFE	
Q206=150	;VORSCHUB TIEFENZ.	
Q338=5	;ZUST. SCHLICHTEN	
Q200=2	;SICHERHEITS-ABST.	
Q203=+0	;KOOR. OBERFLAECHE	
Q204=50	;2. SICHERHEITS-ABST.	
Q366=1	; EINTAUCHEN	
Q385=750	; VORSCHUB SCHLICHTEN	
N150 G01 X+50 Y+50 F10000 M03 G79 *		Zyklus-Aufruf Nuten
N160 G00 Z+250 M02 *		Werkzeug freifahren, Programm-Ende
N99999999 %C210 G71 *		

8.5 Zyklen zum Herstellen von Punktemustern

Übersicht

Die TNC stellt 2 Zyklen zur Verfügung, mit denen Sie Punktemuster direkt fertigen können:

Zyklus	Softkey	Seite
G220 PUNKTEMUSTER AUF KREIS	220	Seite 393
G221 PUNKTEMUSTER AUF LINIEN	221	Seite 395

Folgende Bearbeitungszyklen können Sie mit den Zyklen G220 und G221 kombinieren:

Wenn Sie unregelmäßige Punktemuster fertigen müssen, dann verwenden Sie Punkte-Tabellen mit **G79 "PAT"** (siehe "Punkte-Tabellen" auf Seite 306).

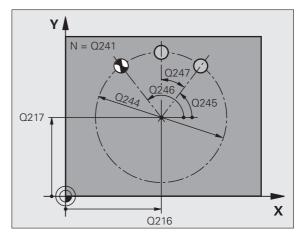
Zyklus G200	BOHREN
Zyklus G201	REIBEN
Zyklus G202	AUSDREHEN
Zyklus G203	UNIVERSAL-BOHREN
Zyklus G204	RUECKWAERTS-SENKEN
Zyklus G205	UNIVERSAL-TIEFBOHREN
Zyklus G206	GEWINDEBOHREN NEU mit Ausgleichsfutter
Zyklus G207	GEWINDEBOHREN GS NEU ohne Ausgleichsfutter
Zyklus G208	BOHRFRAESEN
Zyklus G209	GEWINDEBOHREN SPANBRUCH
Zyklus G240	ZENTRIEREN
Zyklus G251	RECHTECKTASCHE
Zyklus G252	KREISTASCHE
Zyklus G253	NUTENFRAESEN
Zyklus G254	RUNDE NUT (nicht mit Zyklus 220 kombinierbar)
Zyklus G256	RECHTECKZAPFEN
Zyklus G257	KREISZAPFEN
Zyklus G262	GEWINDEFRAESEN
Zyklus G263	SENKGEWINDEFRAESEN
Zyklus G264	BOHRGEWINDEFRAESEN
Zyklus G265	HELIX-BOHRGEWINDEFRAESEN
Zyklus G267	AUSSEN-GEWINDEFRAESEN

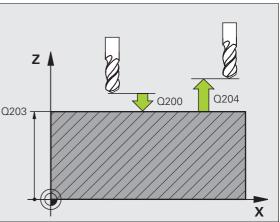
PUNKTEMUSTER AUF KREIS (Zyklus G220)

1 Die TNC positioniert das Werkzeug im Eilgang von der aktuellen Position zum Startpunkt der ersten Bearbeitung.

Reihenfolge:

- 2. Sicherheits-Abstand anfahren (Spindelachse)
- Startpunkt in der Bearbeitungsebene anfahren
- Auf Sicherheits-Abstand über Werkstück-Oberfläche fahren (Spindelachse)
- 2 Ab dieser Position führt die TNC den zuletzt definierten Bearbeitungszyklus aus
- 3 Anschließend positioniert die TNC das Werkzeug mit einer Geraden-Bewegung auf den Startpunkt der nächsten Bearbeitung; das Werkzeug steht dabei auf Sicherheits-Abstand (oder 2. Sicherheits-Abstand)
- **4** Dieser Vorgang (1 bis 3) wiederholt sich, bis alle Bearbeitungen ausgeführt sind


Beachten Sie vor dem Programmieren


Zyklus G220 ist DEF-Aktiv, das heißt, Zyklus G220 ruft automatisch den zuletzt definierten Bearbeitungszyklus auf.

Wenn Sie einen der Bearbeitungszyklen G200 bis G209 und G251 bis G267 mit Zyklus G220 kombinieren, wirken der Sicherheits-Abstand, die Werkstück-Oberfläche und der 2. Sicherheits-Abstand aus Zyklus G220.

- ▶ Mitte 1. Achse Q216 (absolut): Teilkreis-Mittelpunkt in der Hauptachse der Bearbeitungsebene
- Mitte 2. Achse Q217 (absolut): Teilkreis-Mittelpunkt in der Nebenachse der Bearbeitungsebene
- ▶ Teilkreis-Durchmesser Q244: Durchmesser des Teilkreises
- ▶ Startwinkel Q245 (absolut): Winkel zwischen der Hauptachse der Bearbeitungsebene und dem Startpunkt der ersten Bearbeitung auf dem Teilkreis
- ▶ Endwinke1 Q246 (absolut): Winkel zwischen der Hauptachse der Bearbeitungsebene und dem Startpunkt der letzten Bearbeitung auf dem Teilkreis (gilt nicht für Vollkreise); Endwinkel ungleich Startwinkel eingeben; wenn Endwinkel größer als Startwinkel eingegeben, dann Bearbeitung im Gegen-Uhrzeigersinn, sonst Bearbeitung im Uhrzeigersinn

- ▶ Winkel schritt Q247 (inkremental): Winkel zwischen zwei Bearbeitungen auf dem Teilkreis; wenn der Winkelschritt gleich null ist, dann berechnet die TNC den Winkelschritt aus Startwinkel, Endwinkel und Anzahl Bearbeitungen; wenn ein Winkelschritt eingegeben ist, dann berücksichtigt die TNC den Endwinkel nicht; das Vorzeichen des Winkelschritts legt die Bearbeitungsrichtung fest (− = Uhrzeigersinn)
- ► Anzahl Bearbeitungen Q241: Anzahl der Bearbeitungen auf dem Teilkreis
- Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeugspitze und Werkstück-Oberfläche; Wert positiv eingeben
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann; Wert positiv eingeben
- ▶ Fahren auf sichere Höhe Q301: Festlegen, wie das Werkzeug zwischen den Bearbeitungen verfahren soll:
 - **0**: Zwischen den Bearbeitungen auf Sicherheits-Abstand verfahren
 - 1: Zwischen den Messpunkten auf 2. Sicherheits-Abstand verfahren
- ▶ Verfahrart? Gerade=0/Kreis=1 Q365: Festlegen, mit welcher Bahnfunktion das Werkzeug zwischen den Bearbeitungen verfahren soll:
 - **0**: Zwischen den Bearbeitungen auf einer Geraden verfahren
 - 1: Zwischen den Bearbeitungen zirkular auf dem Teilkreis-Durchmesser verfahren

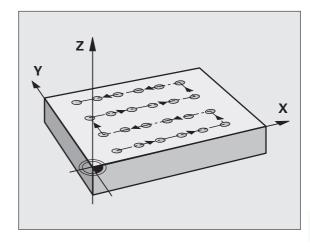
N530 G220 MUSTER	KREIS
Q216=+50	;MITTE 1. ACHSE
Q217=+50	;MITTE 2. ACHSE
Q244=80	;TEILKREIS-DURCHM.
Q245=+0	;STARTWINKEL
Q246=+360	; ENDWINKEL
Q247=+0	;WINKELSCHRITT
Q241=8	;ANZAHL BEARBEITUNGEN
Q200=2	;SICHERHEITS-ABST.
Q203=+30	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q203=1	;FAHREN AUF S. HOEHE
Q365=0	; VERFAHRART

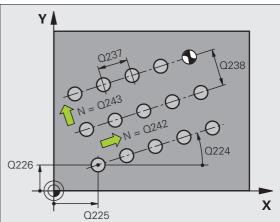
PUNKTEMUSTER AUF LINIEN (Zyklus G221)

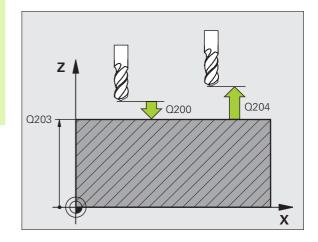
1 Die TNC positioniert das Werkzeug automatisch von der aktuellen Position zum Startpunkt der ersten Bearbeitung

Reihenfolge:

- 2. Sicherheits-Abstand anfahren (Spindelachse)
- Startpunkt in der Bearbeitungsebene anfahren
- Auf Sicherheits-Abstand über Werkstück-Oberfläche fahren (Spindelachse)
- 2 Ab dieser Position führt die TNC den zuletzt definierten Bearbeitungszyklus aus
- 3 Anschließend positioniert die TNC das Werkzeug in positiver Richtung der Hauptachse auf den Startpunkt der nächsten Bearbeitung; das Werkzeug steht dabei auf Sicherheits-Abstand (oder 2. Sicherheits-Abstand)
- 4 Dieser Vorgang (1 bis 3) wiederholt sich, bis alle Bearbeitungen auf der ersten Zeile ausgeführt sind; das Werkzeug steht am letzten Punkt der ersten Zeile
- 5 Danach fährt die TNC das Werkzeug zum letzten Punkt der zweiten Zeile und führt dort die Bearbeitung durch
- **6** Von dort aus positioniert die TNC das Werkzeug in negativer Richtung der Hauptachse auf den Startpunkt der nächsten Bearbeitung
- 7 Dieser Vorgang (6) wiederholt sich, bis alle Bearbeitungen der zweiten Zeile ausgeführt sind
- 8 Anschließend fährt die TNC das Werkzeug auf den Startpunkt der nächsten Zeile
- **9** In einer Pendelbewegung werden alle weiteren Zeilen abgearbeitet

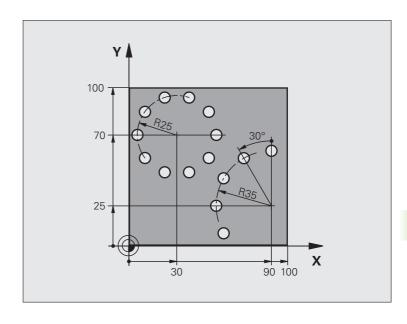



Beachten Sie vor dem Programmieren


Zyklus G221 ist DEF-Aktiv, das heißt, Zyklus G221 ruft automatisch den zuletzt definierten Bearbeitungszyklus auf.

Wenn Sie einen der Bearbeitungszyklen G200 bis G209 und G251 bis G267 mit Zyklus G221 kombinieren, wirken der Sicherheits-Abstand, die Werkstück-Oberfläche, der 2. Sicherheits-Abstand und die Drehlage aus Zyklus G221.

Wenn Sie den Zyklus G254 Runde Nut in Verbindung mit Zyklus G221 verwenden, dann ist die Nutlage 0 nicht erlaubt.



- ▶ Startpunkt 1. Achse Q225 (absolut): Koordinate des Startpunktes in der Hauptachse der Bearbeitungsebene
- ▶ Startpunkt 2. Achse Q226 (absolut): Koordinate des Startpunktes in der Nebenachse der Bearbeitungsebene
- ▶ Abstand 1. Achse Q237 (inkremental): Abstand der einzelnen Punkte auf der Zeile
- ▶ **Abstand 2. Achse** Q238 (inkremental): Abstand der einzelnen Zeilen voneinander
- Anzahl Spalten Q242: Anzahl der Bearbeitungen auf der Zeile
- ▶ Anzahl Zeilen Q243: Anzahl der Zeilen
- Drehwinkel Q224 (absolut): Winkel, um den das gesamte Anordnungsbild gedreht wird; das Drehzentrum liegt im Startpunkt
- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeugspitze und Werkstück-Oberfläche
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Fahren auf sichere Höhe Q301: Festlegen, wie das Werkzeug zwischen den Bearbeitungen verfahren soll:
 - **0:** Zwischen den Bearbeitungen auf Sicherheits-Abstand verfahren
 - **1:** Zwischen den Bearbeitungen auf 2. Sicherheits-Abstand verfahren

N540 G221 MUSTER	LINIEN
Q225=+15	;STARTPUNKT 1. ACHSE
Q226=+15	;STARTPUNKT 2. ACHSE
Q237=+10	;ABSTAND 1. ACHSE
Q238=+8	;ABSTAND 2. ACHSE
Q242=6	;ANZAHL SPALTEN
Q243=4	;ANZAHL ZEILEN
Q224=+15	;DREHLAGE
Q200=2	;SICHERHEITS-ABST.
Q203=+30	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
0301=1	;FAHREN AUF S. HOEHE

Beispiel: Lochkreise

%BOHRB G71 *	
N10 G30 G17 X+0 Y+0 Z-40 *	Rohteil-Definition
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+3 *	Werkzeug-Definition
N40 T1 G17 S3500 *	Werkzeug-Aufruf
N50 G00 G40 G90 Z+250 M03 *	Werkzeug freifahren
N60 G200 BOHREN	Zyklus-Definition Bohren
Q200=2 ;SICHERHEITS-ABST.	
Q201=-15 ;TIEFE	
Q206=250 ;F TIEFENZUST.	
Q202=4 ;ZUSTELL-TIEFE	
Q210=0 ; VZEIT	
Q203=+0 ;KOOR. OBERFL.	
Q204=0 ;2. SABSTAND	
Q211=0.25 ;VERWEILZEIT UNTEN	

N70	G220 MUSTER K	REIS	Zyklus-Definition Lochkreis 1, CYCL 200 wird automatisch gerufen,
	Q216=+30	;MITTE 1. ACHSE	Q200, Q203 und Q204 wirken aus Zyklus 220
	Q217=+70	;MITTE 2. ACHSE	
	Q244=50	;TEILKREIS-DURCH.	
	Q245=+0	;STARTWINKEL	
	Q246=+360	; ENDWINKEL	
	Q247=+0	;WINKELSCHRITT	
	Q241=10	; ANZAHL	
	Q200=2	;SICHERHEITS-ABST.	
	Q203=+0	;KOOR. OBERFL.	
	Q204=100	;2. SABSTAND	
	Q301=1	;FAHREN AUF S. HOEHE	
	Q365=1	;VERFAHRART	
N80	G220 MUSTER K	REIS	Zyklus-Definition Lochkreis 2, CYCL 200 wird automatisch gerufen,
	Q216=+90	;MITTE 1. ACHSE	Q200, Q203 und Q204 wirken aus Zyklus 220
	Q217=+25	;MITTE 2. ACHSE	
	Q244=70	;TEILKREIS-DURCH.	
	Q245=+90	;STARTWINKEL	
	Q246=+360	; ENDWINKEL	
	Q247=30	;WINKELSCHRITT	
	Q241=5	; ANZAHL	
	Q200=2	;SICHERHEITSABST.	
	Q203=+0	;KOOR. OBERFL.	
	Q204=100	;2. SABSTAND	
	0301=1	;FAHREN AUF S. HOEHE	
	Q365=1	;VERFAHRART	
N90	G00 G40 Z+250	M02 *	Werkzeug freifahren, Programm-Ende
N999	999999 %BOHRB	G71 *	

398 8 Programmieren: Zyklen

8.6 SL-Zyklen

Grundlagen

Mit den SL-Zyklen können Sie komplexe Konturen aus bis zu 12 Teilkonturen (Taschen oder Inseln) zusammensetzen. Die einzelnen Teilkonturen geben Sie als Unterprogramme ein. Aus der Liste der Teilkonturen (Unterprogramm-Nummern), die Sie im Zyklus **G37** KONTUR angeben, berechnet die TNC die Gesamtkontur.

Der Speicher für einen SL-Zyklus (alle Kontur-Unterprogramme) ist begrenzt. Die Anzahl der möglichen Konturelemente hängt von der Konturart (Innen-/ Außenkontur) und der Anzahl der Teilkonturen ab und beträgt z.B. ca. 8192 Geradensätze.

SL-Zyklen führen intern umfangreiche und komplexe Berechnungen und daraus resultierende Bearbeitungen durch. Aus Sicherheitsgründen in jedem Fall vor dem Abarbeiten einen grafischen Programm-Test durchführen! Dadurch können Sie auf einfache Weise feststellen, ob die von der TNC ermittelte Bearbeitung richtig abläuft.

Eigenschaften der Unterprogramme

- Koordinaten-Umrechnungen sind erlaubt. Werden sie innerhalb der Teilkonturen programmiert, wirken sie auch in den nachfolgenden Unterprogrammen, müssen aber nach dem Zyklusaufruf nicht zurückgesetzt werden
- Die TNC ignoriert Vorschübe F und Zusatz-Funktionen M
- Die TNC erkennt eine Tasche, wenn Sie die Kontur innen umlaufen, z.B. Beschreibung der Kontur im Uhrzeigersinn mit Radius-Korrektur
 642
- Die TNC erkennt eine Insel, wenn Sie die Kontur außen umlaufen, z.B. Beschreibung der Kontur im Uhrzeigersinn mit Radius-Korrektur
 641
- Die Unterprogramme dürfen keine Koordinaten in der Spindelachse enthalten
- Im ersten Koordinatensatz des Unterprogramms legen Sie die Bearbeitungsebene fest. Zusatzachsen U,V,W sind in sinnvoller Kombination erlaubt. Im ersten Satz grundsätzlich immer beide Achsen der Bearbeitungsebene definieren
- Wenn Sie Q-Parameter verwenden, dann die jeweiligen Berechnungen und Zuweisungen nur innerhalb des jeweiligen Kontur-Unterprogrammes durchführen

Beispiel: Schema: Abarbeiten mit SL-Zyklen

```
%SL2 G71 *
N120 G37 ... *
N130 G120 ... <sup>3</sup>
N160 G121 ... *
N170 G79 *
N180 G122 ... *
N190 G79 *
N220 G123 ... *
N230 G79 *
N260 G124 ... *
N270 G79 *
N500 G00 G40 Z+250 M2 *
N510 G98 L1 *
N550 G98 L0 *
N560 G98 L2 *
N600 G98 L0 *
N99999999 %SL2 G71 *
```


Eigenschaften der Bearbeitungszyklen

- Die TNC positioniert vor jedem Zyklus automatisch auf den Sicherheits-Abstand
- Jedes Tiefen-Niveau wird ohne Werkzeug-Abheben gefräst; Inseln werden seitlich umfahren
- Um Freischneidemarkierungen zur vermeiden, fügt die TNC an nicht tangentialen "Innen-Ecken" einen global definierbaren Verrundungsradius ein. Der im Zyklus G20 eingebbare Rundungsradius wirkt auf die Werkzeug-Mittelpunktsbahn, vergrößert also ggf. eine durch den Werkzeug-Radius definierte Rundung (gilt beim Ausräumen und Seiten-Schlichten)
- Beim Seiten-Schlichten fährt die TNC die Kontur auf einer tangentialen Kreisbahn an
- Beim Tiefen-Schlichten fährt die TNC das Werkzeug ebenfalls auf einer tangentialen Kreisbahn an das Werkstück (z.B.: Spindelachse Z: Kreisbahn in Ebene Z/X)
- Die TNC bearbeitet die Kontur durchgehend im Gleichlauf bzw. im Gegenlauf

Mit MP7420 legen Sie fest, wohin die TNC das Werkzeug am Ende der Zyklen G121 bis 124 positioniert.

Die Maßangaben für die Bearbeitung, wie Frästiefe, Aufmaße und Sicherheits-Abstand geben Sie zentral im Zyklus **G120** als KONTUR-DATEN ein.

8 Programmieren: Zyklen

Übersicht SL-Zyklen

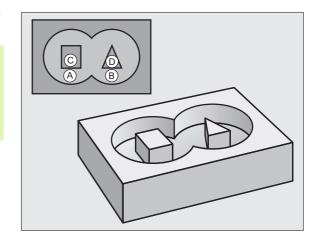
Zyklus	Softkey	Seite
G37 KONTUR (zwingend erforderlich)	37 LBL 1N	Seite 402
G120 KONTUR-DATEN (zwingend erforderlich)	120 KONTUR- DATEN	Seite 406
G121 VORBOHREN (wahlweise verwendbar)	121	Seite 407
G122 RAEUMEN (zwingend erforderlich)	122	Seite 408
G123 SCHLICHTEN TIEFE (wahlweise verwendbar)	123	Seite 411
G124 SCHLICHTEN SEITE (wahlweise verwendbar)	124	Seite 412

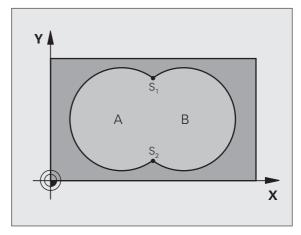
Erweiterte Zyklen:

Zyklus	Softkey	Seite
G125 KONTUR-ZUG	125	Seite 413
G270 KONTURZUG-DATEN	270	Seite 415
G127 ZYLINDER-MANTEL	127	Seite 416
G128 ZYLINDER-MANTEL Nutenfräsen	128	Seite 418
G129 ZYLINDER-MANTEL Stegfräsen	29	Seite 421
G139 ZYLINDER-MANTEL Außenkontur fräsen	39	Seite 423

KONTUR (Zyklus G37)

In Zyklus **G37** KONTUR listen Sie alle Unterprogramme auf, die zu einer Gesamtkontur überlagert werden sollen.


Beachten Sie vor dem Programmieren


Zyklus **637** ist DEF-Aktiv, das heißt ab seiner Definition im Programm wirksam.

In Zyklus **637** können Sie maximal 12 Unterprogramme (Teilkonturen) auflisten.

▶ Label-Nummern für die Kontur: Alle Label-Nummern der einzelnen Unterprogramme eingeben, die zu einer Kontur überlagert werden sollen. Jede Nummer mit der Taste ENT bestätigen und die Eingaben mit der Taste END abschließen.

Beispiel: NC-Sätze

N120 G37 P01 1 P02 5 P03 7 P04 8 *

i

Überlagerte Konturen

Taschen und Inseln können Sie zu einer neuen Kontur überlagern. Damit können Sie die Fläche einer Tasche durch eine überlagerte Tasche vergrößern oder eine Insel verkleinern.

Unterprogramme: Überlagerte Taschen

Die nachfolgenden Programmierbeispiele sind Kontur-Unterprogramme, die in einem Hauptprogramm von Zyklus **637** KONTUR aufgerufen werden.

Die Taschen A und B überlagern sich.

Die TNC berechnet die Schnittpunkte S1 und S2, sie müssen nicht programmiert werden.

Die Taschen sind als Vollkreise programmiert.

Unterprogramm 1: Tasche A

N510 G98 L1 *
N520 G01 G42 Y+10 Y+50 *
N530 I+35 J+50 *
N540 G02 X+10 Y+50 *
N550 G98 L0 *

Unterprogramm 2: Tasche B

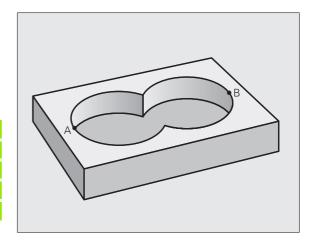
N560 G98 L2 *
N570 G01 G42 X+90 Y+50 *
N580 I+65 J+50 *
N590 G02 X+90 Y+50 *
N600 G90 L0 *

"Summen"-Fläche

Beide Teilflächen A und B inklusive der gemeinsam überdeckten Fläche sollen bearbeitet werden:

- Die Flächen A und B müssen Taschen sein.
- Die erste Tasche (in Zyklus **637**) muss außerhalb der zweiten beginnen.

Fläche A:


N510 G98 L1 *

N520 G01 G42 X+10 Y+50 *

N530 I+35 J+50 *

N540 G02 X+10 Y+50 *

N550 G98 L0 *

Fläche B:

N560 G98 L2 *

N570 G01 G42 X+90 Y+50 *

N580 I+65 J+50 *

N590 G02 X+90 Y+50 *

N600 G98 L0 *

"Differenz"-Fläche

Fläche A soll ohne den von B überdeckten Anteil bearbeitet werden:

- Fläche A muss Tasche und B muss Insel sein.
- A muss außerhalb B beginnen.

Fläche A:

N510 G98 L1 *

N520 G01 G42 X+10 Y+50 *

N530 I+35 J+50 *

N540 G02 X+10 Y+50 *

N550 G98 L0 *

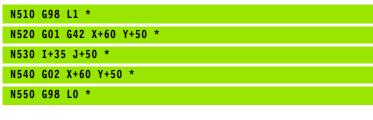

N560 G98 L2 *

N570 G01 G41 X+90 Y+50 *

N580 I+65 J+50 *

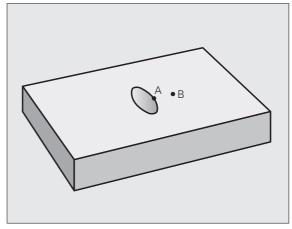
N590 G02 X+90 Y+50 *

N600 G98 L0 *



"Schnitt"-Fläche

Die von A und B überdeckte Fläche soll bearbeitet werden. (Einfach überdeckte Flächen sollen unbearbeitet bleiben.)


- A und B müssen Taschen sein.
- A muss innerhalb B beginnen.

Fläche A:

Fläche B:

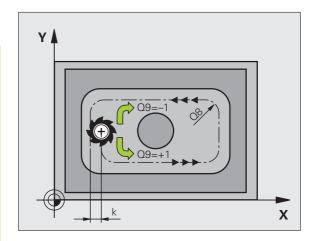
KONTUR-DATEN (Zyklus G120)

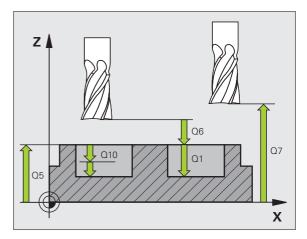
In Zyklus **G120** geben Sie Bearbeitungs-Informationen für die Unterprogramme mit den Teilkonturen an.

Beachten Sie vor dem Programmieren

Zyklus **G120** ist DEF-Aktiv, das heißt Zyklus **G120** ist ab seiner Definition im Bearbeitungs-Programm aktiv.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den jeweiligen Zyklus nicht aus.


Die in Zyklus **G120** angegebenen Bearbeitungs-Informationen gelten für die Zyklen G121 bis G124.


Wenn Sie SL-Zyklen in Q-Parameter-Programmen anwenden, dann dürfen Sie die Parameter Q1 bis Q19 nicht als Programm-Parameter benutzen.

- ► Frästiefe Q1 (inkremental): Abstand Werkstückoberfläche Taschengrund.
- Bahn-Überlappung Faktor Q2: Q2 x Werkzeug-Radius ergibt die seitliche Zustellung k.
- ▶ Schlichtaufmaß Seite Q3 (inkremental): Schlicht-Aufmaß in der Bearbeitungs-Ebene.
- Schlichtaufmaß Tiefe Q4 (inkremental): Schlicht-Aufmaß für die Tiefe.
- ▶ Koordinate Werkstück-Oberfläche Q5 (absolut): Absolute Koordinate der Werkstück-Oberfläche
- ➤ Sicherheits-Abstand Q6 (inkremental): Abstand zwischen Werkzeug-Stirnfläche und Werkstück-Oberfläche
- ➤ Sichere Höhe Q7 (absolut): Absolute Höhe, in der keine Kollision mit dem Werkstück erfolgen kann (für Zwischenpositionierung und Rückzug am Zyklus-Ende)
- ▶ Innen-Rundungsradius Q8: Verrundungs-Radius an Innen-"Ecken"; Eingegebener Wert bezieht sich auf die Werkzeug-Mittelpunktsbahn
- ▶ Drehsinn? Uhrzeigersinn = -1 Q9: Bearbeitungs-Richtung für Taschen
 - im Uhrzeigersinn (Q9 = -1 Gegenlauf für Tasche und Insel)
 - im Gegenuhrzeigersinn (Q9 = +1 Gleichlauf für Tasche und Insel)

Sie können die Bearbeitungs-Parameter bei einer Programm-Unterbrechung überprüfen und ggf. überschreiben.

Beispiel: NC-Satz

N57 G120 KONTUR-DATEN		
Q1=-20	;FRAESTIEFE	
Q2=1	;BAHN-UEBERLAPPUNG	
Q3=+0.2	;AUFMASS SEITE	
Q4=+0.1	;AUFMASS TIEFE	
Q5=+30	;KOOR. OBERFLAECHE	
Q6=2	;SICHERHEITS-ABST.	
Q7=+80	;SICHERE HOEHE	
Q8=0.5	; RUNDUNGSRADIUS	
Q9=+1	; DREHSINN	

8 Programmieren: Zyklen

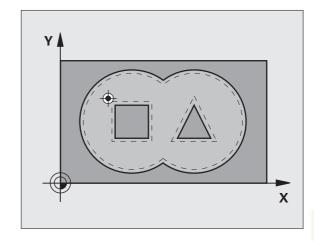
VORBOHREN (Zyklus G121)

Zyklus-Ablauf

- 1 Das Werkzeug bohrt mit dem eingegebenen Vorschub F von der aktuellen Position bis zur ersten Zustell-Tiefe
- 2 Danach fährt die TNC das Werkzeug im Eilgang zurück und wieder bis zur ersten Zustell-Tiefe, verringert um den Vorhalte-Abstand t.
- 3 Die Steuerung ermittelt den Vorhalte-Abstand selbsttätig:
 - Bohrtiefe bis 30 mm: t = 0.6 mm
 - Bohrtiefe über 30 mm: t = Bohrtiefe/50
 - maximaler Vorhalte-Abstand: 7 mm
- **4** Anschließend bohrt das Werkzeug mit dem eingegebenen Vorschub F um eine weitere Zustell-Tiefe
- 5 Die TNC wiederholt diesen Ablauf (1 bis 4), bis die eingegebene Bohrtiefe erreicht ist
- 6 Am Bohrungsgrund zieht die TNC das Werkzeug, nach der Verweilzeit zum Freischneiden, mit Eilgang zur Startposition zurück

Einsatz

Zyklus **G121** VORBOHREN berücksichtigt für die Einstichpunkte das Schlichtaufmaß Seite und das Schlichtaufmaß Tiefe, sowie den Radius des Ausräum-Werkzeugs. Die Einstichpunkte sind gleichzeitig die Startpunkte fürs Räumen.


- Zustell-Tiefe Q10 (inkremental): Maß, um das das Werkzeug jeweils zugestellt wird (Vorzeichen bei negativer Arbeitsrichtung "-")
- ▶ Vorschub Tiefenzustellung Q11: Bohrvorschub in mm/min
- Ausräum-Werkzeug Nummer Q13: Werkzeug-Nummer des Ausräum-Werkzeugs

Beachten Sie vor dem Programmieren

Die TNC berücksichtigt einen im **T**-Satz programmierten Deltawert **DR** nicht zur Berechnung der Einstichpunkte.

An Engstellen kann die TNC ggf. nicht mit einem Werkzeug vorbohren das größer ist als das Schruppwerkzeug.

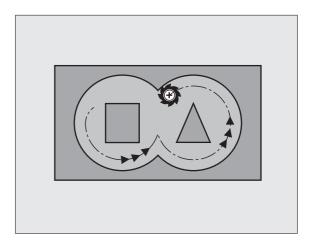
Beispiel: NC-Sätze

N58 G121 VORBOHREN		
Q10=+5	;ZUSTELL-TIEFE	
Q11=100	;VORSCHUB TIEFENZ.	
Q13=1	; AUSRAEUM-WERKZEUG	

RAEUMEN (Zyklus G122)

- 1 Die TNC positioniert das Werkzeug über den Einstichpunkt; dabei wird das Schlichtaufmaß Seite berücksichtigt
- 2 In der ersten Zustell-Tiefe fräst das Werkzeug mit dem Fräsvorschub Q12 die Kontur von innen nach außen
- **3** Dabei werden die Inselkonturen (hier: C/D) mit einer Annäherung an die Taschenkontur (hier: A/B) freigefräst
- **4** Im nächsten Schritt fährt die TNC das Werkzeug auf die nächste Zustell-Tiefe und wiederholt den Ausräum-Vorgang, bis die programmierte Tiefe erreicht ist
- 5 Abschließend fährt die TNC das Werkzeug auf die Sichere Höhe zurück

Beachten Sie vor dem Programmieren


Ggf. Fräser mit einem über Mitte schneidenden Stirnzahn verwenden (DIN 844), oder Vorbohren mit Zyklus **G121**.

Das Eintauchverhalten des Zyklus 22 legen Sie mit dem Parameter Q19 und in der Werkzeug-Tabelle mit den Spalten ANGLE und LCUTS fest:

- Wenn Q19=0 definiert ist, dann taucht die TNC grundsätzlich senkrecht ein, auch wenn für das aktive Werkzeug ein Eintauchwinkel (ANGLE) definiert ist
- Wenn Sie ANGLE=90° definieren, taucht die TNC senkrecht ein. Als Eintauchvorschub wird dann der Pendelvorschub Q19 verwendet
- Wenn der Pendelvorschub Q19 im Zyklus 22 definiert ist und ANGLE zwischen 0.1 und 89.999 in der Werkzeug-Tabelle definiert ist, taucht die TNC mit dem festgelegten ANGLE helixförmig ein
- Wenn der Pendelvorschub im Zyklus 22 definiert ist und kein ANGLE in der Werkzeug-Tabelle steht, dann gibt die TNC eine Fehlermeldung aus
- Sind die Geometrieverhältnisse so, dass nicht helixförmig eingetaucht werden kann (Nutgeometrie), so versucht die TNC pendelnd einzutauchen. Die Pendellänge berechnet sich dann aus LCUTS und ANGLE (Pendellänge = LCUTS / tan ANGLE)

Bei Taschenkonturen mit spitzen Innenecken kann bei Verwendung eines Überlappungsfaktors von größer 1 Restmaterial beim Ausräumen stehen bleiben. Insbesondere die innerste Bahn per Testgrafik prüfen und ggf. den Überlappungsfaktor geringfügig ändern. Dadurch lässt sich eine andere Schnittaufteilung erreichen, was oftmals zum gewünschten Ergebnis führt.

Beim Nachräumen berücksichtigt die TNC einen definierten Verschleißwert DR des Vorräumwerkzeuges nicht.

408 8 Programmieren: Zyklen

- ➤ Zustell-Tiefe Q10 (inkremental): Maß, um das das Werkzeug jeweils zugestellt wird
- ▶ Vorschub Tiefenzustellung Q11: Eintauchvorschub in mm/min
- ▶ Vorschub Ausräumen Q12: Fräsvorschub in mm/min
- Vorräum-Werkzeug Q18 bzw. QS18: Nummer oder Name des Werkzeugs, mit dem die TNC bereits vorgeräumt hat. Umschalten auf Namen-Eingabe: Softkey WERKZEUG-NAME drücken. Spezieller Hinweis für AWT-Weber: Die TNC fügt das Anführungszeichen oben-Zeichen automatisch ein, wenn Sie das Eingabefeld verlassen. Falls nicht vorgeräumt wurde "0" eingeben; falls Sie hier eine Nummer oder einen Namen eingeben, räumt die TNC nur den Teil aus, der mit dem Vorräum-Werkzeug nicht bearbeitet werden konnte. Falls der Nachräumbereich nicht seitlich anzufahren ist, taucht die TNC pendelnd ein; dazu müssen Sie in der Werkzeug-Tabelle TOOL T, siehe "Werkzeug-Daten", Seite 193 die Schneidenlänge LCUTS und den maximalen Eintauchwinkel ANGLE des Werkzeugs definieren. Ggf. gibt die TNC eine Fehlermeldung aus
- ▶ Vorschub Pendeln Q19: Pendelvorschub in mm/min
- ▶ Vorschub Rückzug Q208: Verfahrgeschwindigkeit des Werkzeugs beim Herausfahren nach der Bearbeitung in mm/min. Wenn Sie Q208=0 eingeben, dann fährt die TNC das Werkzeug mit Vorschub Q12 heraus

Beispiel: NC-Satz

N59 G122 RAEUMEN	
Q10=+5	;ZUSTELL-TIEFE
Q11=100	;VORSCHUB TIEFENZ.
Q12=350	;VORSCHUB RAEUMEN
Q18=1	;VORRAEUM-WERKZEUG
Q19=150	;VORSCHUB PENDELN
Q208=99999	;VORSCHUB RUECKZUG
Q401=80	; VORSCHUBREDUZIERUNG
Q404=0	;NACHRAEUMSTRATEGIE

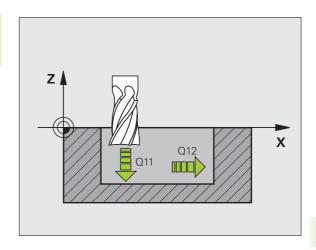
▶ Vorschubfaktor in % Q401: Prozentualer Faktor, auf den die TNC den Bearbeitungs-Vorschub (Q12) reduziert, sobald das Werkzeug beim Ausräumen mit dem vollen Umfang im Material verfährt. Wenn Sie die Vorschubreduzierung nutzen, dann können Sie den Vorschub Ausräumen so groß definieren, dass bei der im Zyklus 20 festgelegten Bahn-Überlappung (Q2) optimale Schnittbedingungen herrschen. Die TNC reduziert dann an Übergängen oder Engstellen den Vorschub wie von Ihnen definiert, so dass die Bearbeitungszeit insgesamt kleiner sein sollte

Die Vorschubreduzierung über den Parameter Q401 ist eine FCL3-Funktion und steht nach einem Software-Update nicht automatisch zur Verfügung (siehe "Entwicklungsstand (Upgrade-Funktionen)" auf Seite 8).

- ▶ Nachräumstrategie Q404: Festlegen, wie die TNC beim Nachräumen verfahren soll, wenn der Radius des Nachräumwerkzeuges größer als die Hälfte des Vorräumwerkzeuges ist:
 - Q404 = 0 Das Werkzeug zwischen nachzuräumenden Bereichen auf aktueller Tiefe entlang der Kontur verfahren
 - Q404 = 1 Das Werkzeug zwischen nachzuräumenden Bereichen auf Sicherheits-Abstand abheben und zum Startpunkt des nächsten Ausräumbereiches fahren

8 Programmieren: Zyklen

SCHLICHTEN TIEFE (Zyklus G123)



Die TNC ermittelt den Startpunkt fürs Schlichten selbständig. Der Startpunkt ist abhängig von den Platzverhältnissen in der Tasche.

Die TNC fährt das Werkzeug weich (vertikaler Tangentialkreis) auf die zu bearbeitende Fläche. Anschließend wird das beim Ausräumen verbliebene Schlichtaufmaß abgefräst.

- ▶ Vorschub Tiefenzustellung Q11: Verfahrgeschwindigkeit des Werkzeugs beim Einstechen
- ▶ Vorschub Ausräumen Q12: Fräsvorschub
- ▶ Vorschub Rückzug Q208: Verfahrgeschwindigkeit des Werkzeugs beim Herausfahren nach der Bearbeitung in mm/min. Wenn Sie Q208=0 eingeben, dann fährt die TNC das Werkzeug mit Vorschub Q12 heraus

Beispiel: NC-Satz

N60 G123 SCHLICHTE	EN TIEFE
Q11=100	;VORSCHUB TIEFENZ.
Q12=350	; VORSCHUB RAEUMEN
Q208=99999	; VORSCHUB RUECKZUG

SCHLICHTEN SEITE (Zyklus G124)

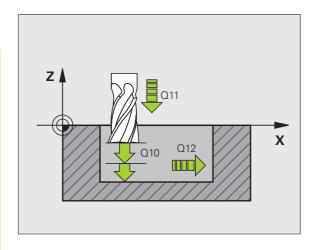
Die TNC fährt das Werkzeug auf einer Kreisbahn tangential an die Teilkonturen. Jede Teilkontur wird separat geschlichtet.

Beachten Sie vor dem Programmieren

Die Summe aus Schlichtaufmaß Seite (Q14) und Schlichtwerkzeug-Radius muss kleiner sein als die Summe aus Schlichtaufmaß Seite (Q3,Zyklus **G120**) und Räumwerkzeug-Radius.

Wenn Sie Zyklus **G124** abarbeiten ohne zuvor mit Zyklus **G122** ausgeräumt zu haben, gilt oben aufgestellte Berechnung ebenso; der Radius des Räum-Werkzeugs hat dann den Wert "O".

Sie können Zyklus **G124** auch zum Konturfräsen verwenden. Sie müssen dann


- die zu fräsende Kontur als einzelne Insel definieren (ohne Taschenbegrenzung) und
- im Zyklus G120 das Schlichtaufmaß (Q3) größer eingeben, als die Summe aus Schlichtaufmaß Q14 + Radius des verwendeten Werkzeugs

Die TNC ermittelt den Startpunkt fürs Schlichten selbständig. Der Startpunkt ist abhängig von den Platzverhältnissen in der Tasche und dem im Zyklus G120 programmierten Aufmaß.

Die TNC berechnet den Startpunkt auch in Abhbängigkeit von der Reihenfolge beim Abarbeiten. Wenn Sie den Schlichtzyklus mit der Taste GOTO anwählen und das Programm dann starten, kann der Startpunkt an einer anderen Stelle liegen, als wenn Sie das Programm in der definierten Reihenfolge abarbeiten.

- ▶ Drehsinn? Uhrzeigersinn = -1 Q9: Bearbeitungsrichtung:
 - +1: Drehung im Gegen-Uhrzeigersinn
 - -1: Drehung im Uhrzeigersinn
- ➤ Zustell-Tiefe Q10 (inkremental): Maß, um das das Werkzeug jeweils zugestellt wird
- ▶ Vorschub Tiefenzustellung Q11: Eintauchvorschub
- ▶ Vorschub Ausräumen Q12: Fräsvorschub
- Schlichtaufmaß Seite Q14 (inkremental): Aufmaß für mehrmaliges Schlichten; der letzte Schlicht-Rest wird ausgeräumt, wenn Sie Q14 = 0 eingeben

Beispiel: NC-Satz

N61 G124 SCHLIC	HTEN SEITE
Q9=+1	;DREHSINN
Q10=+5	;ZUSTELL-TIEFE
Q11=100	;VORSCHUB TIEFENZ.
Q12=350	;VORSCHUB RAEUMEN
Q14=+0	;AUFMASS SEITE

KONTUR-ZUG (Zyklus G125)

Mit diesem Zyklus lassen sich zusammen mit Zyklus **G37** KONTUR - "offene" Konturen bearbeiten: Konturbeginn und -ende fallen nicht zusammen.

Der Zyklus **G125** KONTUR-ZUG bietet gegenüber der Bearbeitung einer offenen Kontur mit Positioniersätzen erhebliche Vorteile:

- Die TNC überwacht die Bearbeitung auf Hinterschneidungen und Konturverletzungen. Kontur mit der Test-Grafik überprüfen
- Ist der Werkzeug-Radius zu groß, so muss die Kontur an Innenecken eventuell nachbearbeitet werden
- Die Bearbeitung läßt sich durchgehend im Gleich- oder Gegenlauf ausführen. Die Fräsart bleibt sogar erhalten, wenn Konturen gespiegelt werden
- Bei mehreren Zustellungen kann die TNC das Werkzeug hin und her verfahren: Dadurch verringert sich die Bearbeitungszeit
- Sie können Aufmaße eingeben, um in mehreren Arbeitsgängen zu schruppen und zu schlichten

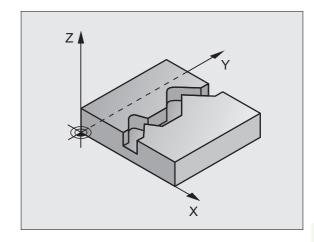
Beachten Sie vor dem Programmieren

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Die TNC berücksichtigt nur das erste Label aus Zyklus **G37** KONTUR.

Der Speicher für einen SL-Zyklus ist begrenzt. Sie können in einem SL-Zyklus z.B. maximal 1024 Geraden-Sätze programmieren.

Zyklus G120 KONTUR-DATEN wird nicht benötigt.


Direkt nach Zyklus **G125** programmierte Positionen im Kettenmaß beziehen sich auf die Position des Werkzeugs am Zyklus-Ende.

Achtung Kollisionsgefahr!

Um mögliche Kollisionen zu vermeiden:

- Direkt nach Zyklus 6125 keine Kettenmaße programmieren, da sich Kettenmaße auf die Position des Werkzeugs am Zyklus-Ende beziehen
- In allen Hauptachsen eine definierte (absolute) Position anfahren, da die Position des Werkzeugs am Zyklusende nicht mit der Position am Zyklusanfang übereinstimmt.

414

- ► Frästiefe Q1 (inkremental): Abstand zwischen Werkstück-Oberfläche und Konturgrund
- Schlichtaufmaß Seite Q3 (inkremental): Schlichtaufmaß in der Bearbeitungsebene
- Koord. Werkstück-Oberfläche Q5 (absolut): Absolute Koordinate der Werkstück Oberfläche bezogen auf den Werkstück-Nullpunkt
- ▶ Sichere Höhe Q7 (absolut): Absolute Höhe, in der keine Kollision zwischen Werkzeug und Werkstück erfolgen kann; Werkzeug-Rückzugposition am Zyklus-Ende
- ➤ Zustell-Tiefe Q10 (inkremental): Maß, um das das Werkzeug jeweils zugestellt wird
- ▶ Vorschub Tiefenzustellung Q11: Vorschub bei Verfahrbewegungen in der Spindelachse
- ▶ Vorschub Fräsen Q12: Vorschub bei Verfahrbewegungen in der Bearbeitungsebene
- ► Fräsart? Gegenlauf = -1 Q15: Gleichlauf-Fräsen: Eingabe = +1 Gegenlauf-Fräsen: Eingabe = -1

Abwechselnd im Gleich- und Gegenlauf fräsen bei

mehreren Zustellungen: Eingabe = 0

Beispiel: NC-Satz

N62 G125 KONTUR-ZUG		
Q1=-20	;FRAESTIEFE	
Q3=+0	;AUFMASS SEITE	
Q5=+0	;KOOR. OBERFLAECHE	
Q7=+50	;SICHERE HOEHE	
Q10=+5	;ZUSTELL-TIEFE	
Q11=100	;VORSCHUB TIEFENZ.	
Q12=350	;VORSCHUB FRAESEN	
Q15=-1	; FRAESART	

8 Programmieren: Zyklen

KONTURZUG-Daten (Zyklus G270)

Mit diesem Zyklus können Sie - wenn gewünscht - verschiedene Eigenschaften des Zyklus G125 **KONTUR-ZUG** festlegen.

Beachten Sie vor dem Programmieren

Zyklus G270 ist DEF-Aktiv, das heißt Zyklus G270 ist ab seiner Definition im Bearbeitungs-Programm aktiv.

Bei Verwendung von Zyklus G270 im Kontur-Unterprogramm keine Radius-Korrektur definieren.

An- und Wegfahreigenschaften werden von der TNC immer identisch (symmetrisch) durchgeführt.

Zyklus G270 vor Zyklus G125 definieren.

- Anfahrart/Wegfahrart Q390: Definition der Anfahrart/ Wegfahrart:
 - Q390 = 0:

Kontur tangential auf einem Kreisbogen anfahren

■ Q390 = 1:

Kontur tangential auf einer Geraden anfahren

■ Q390 = 2:

Kontur senkrecht anfahren

- Radius-Korr. (0=R0/1=RL/2=RR) Q391: Definition der Radius-Korrektur:
 - \square Q391 = 0:

Definierte Kontur ohne Radius-Korrektur bearbeiten

 \square 0391 = 1

Definierte Kontur linkskorrigiert bearbeiten

 \square Q391 = 2:

Definierte Kontur rechtskorrigiert bearbeiten

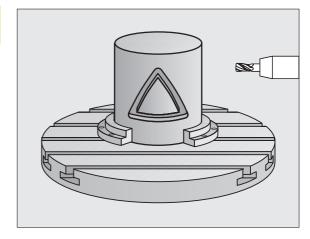
- Anfahrradius/Wegfahrradius Q392: Nur wirksam, wenn tangentiales Anfahren auf einem Kreisbogen gewählt ist. Radius des Einfahrkreises/ Wegfahrkreises
- ▶ Mittelpunktswinkel Q393: Nur wirksam, wenn tangentiales Anfahren auf einem Kreisbogen gewählt ist. Öffnungswinkel des Einfahrkreises
- Abstand Hilfspunkt Q394: Nur wirksam, wenn tangentiales Anfahren auf einer Geraden oder senkrechtes Anfahren gewählt ist. Abstand des Hilfspunktes, von dem aus die TNC die Kontur anfahren soll

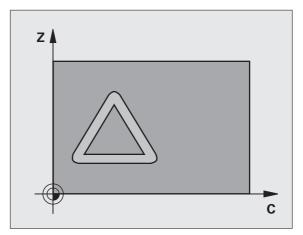
Beispiel: NC-Sätze

62 G270 KONTURZUG	-DATEN
Q390=0	; ANFAHRART
Q391=1	; RADIUS-KORREKTUR
Q392=3	; RADIUS
Q393=+45	;MITTELPUNKTSWINKEL
Q394=+2	; ABSTAND

ZYLINDER-MANTEL (Zyklus G127, Software-Option 1)

Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein.


Mit diesem Zyklus können Sie eine auf der Abwicklung definierte Kontur auf den Mantel eines Zylinders übertragen. Verwenden Sie den Zyklus **G128**, wenn Sie Führungsnuten auf dem Zylinder fräsen wollen.


Die Kontur beschreiben Sie in einem Unterprogramm, das Sie über Zyklus **637** (KONTUR) festlegen.

Das Unterprogramm enthält Koordinaten in einer Winkelachse (z.B. C-Achse) und der Achse, die dazu parallel verläuft (z.B. Spindelachse). Als Bahnfunktionen stehen G1, G11, G24, G25 und G2/G3/G12/G13 mit R zur Verfügung.

Die Angaben in der Winkelachse können Sie wahlweise in Grad oder in mm (Inch) eingeben (bei der Zyklus-Definition festlegen).

- 1 Die TNC positioniert das Werkzeug über den Einstichpunkt; dabei wird das Schlichtaufmaß Seite berücksichtigt
- 2 In der ersten Zustell-Tiefe fräst das Werkzeug mit dem Fräsvorschub Q12 entlang der programmierten Kontur
- 3 Am Konturende fährt die TNC das Werkzeug auf Sicherheitsabstand und zurück zum Einstichpunkt
- **4** Die Schritte 1 bis 3 wiederholen sich, bis die programmierte Frästiefe Q1 erreicht ist
- 5 Anschließend fährt das Werkzeug auf Sicherheitsabstand

Beachten Sie vor dem Programmieren

Der Speicher für einen SL-Zyklus ist begrenzt. Sie können in einem SL-Zyklus maximal 8192 Konturelemente programmieren.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Fräser mit einem über Mitte schneidenden Stirnzahn verwenden (DIN 844).

Der Zylinder muss mittig auf dem Rundtisch aufgespannt sein.

Die Spindelachse muss senkrecht zur Rundtisch-Achse verlaufen. Wenn dies nicht der Fall ist, dann gibt die TNC eine Fehlermeldung aus.

Diesen Zyklus können Sie auch bei geschwenkter Bearbeitungsebene ausführen.

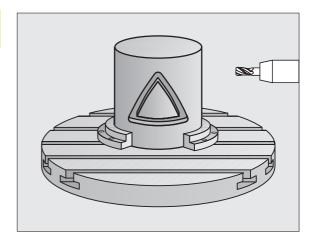
Die TNC überprüft, ob die korrigierte und unkorrigierte Bahn des Werkzeugs innerhalb des Anzeige-Bereichs der Drehachse liegt (im Maschinen-Parameter 810.x definiert ist). Bei Fehlermeldung "Kontur-Programmierfehler" ggf. MP 810.x = 0 setzen.

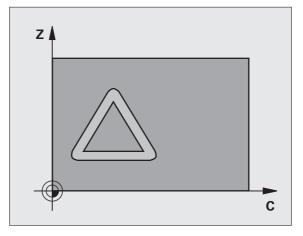
- ► Frästiefe Q1 (inkremental): Abstand zwischen Zylinder-Mantel und Konturgrund
- Schlichtaufmaß Seite Q3 (inkremental): Schlichtaufmaß in der Ebene der Mantel-Abwicklung; das Aufmaß wirkt in der Richtung der Radiuskorrektur
- Sicherheits-Abstand Q6 (inkremental): Abstand zwischen Werkzeug-Stirnfläche und Zylinder Mantelfläche
- ➤ Zustell-Tiefe Q10 (inkremental): Maß, um das das Werkzeug jeweils zugestellt wird
- ▶ Vorschub Tiefenzustellung Q11: Vorschub bei Verfahrbewegungen in der Spindelachse
- ▶ Vorschub Fräsen Q12: Vorschub bei Verfahrbewegungen in der Bearbeitungsebene
- Zylinderradius Q16: Radius des Zylinders, auf dem die Kontur bearbeitet werden soll
- Bemaßungsart? Grad =0 MM/INCH=1 Q17: Koordinaten der Drehachse im Unterprogramm in Grad oder mm (inch) programmieren

Beispiel: NC-Satz

N63 G127 ZYLINDE	R-MANTEL
Q1=-8	;FRAESTIEFE
03=+0	;AUFMASS SEITE
Q6=+0	;SICHERHEITS-ABST.
Q10=+3	;ZUSTELL-TIEFE
Q11=100	;VORSCHUB TIEFENZ.
Q12=350	; VORSCHUB FRAESEN
Q16=25	; RADIUS
017=0	; BEMASSUNGSART

ZYLINDER-MANTEL Nutenfräsen (Zyklus G128, Software-Option 1)


Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein.


Mit diesem Zyklus können Sie eine auf der Abwicklung definierte Führungsnut auf den Mantel eines Zylinders übertragen. Im Gegensatz zum Zyklus 27, stellt die TNC das Werkzeug bei diesem Zyklus so an, dass die Wände bei aktiver Radiuskorrektur nahezu parallel zueinander verlaufen. Exakt parallel verlaufende Wände erhalten Sie dann, wenn Sie ein Werkzeug verwenden, das exakt so groß ist wie die Nutbreite.

Je kleiner das Werkzeug im Verhältnis zur Nutbreite ist, desto größere Verzerrungen enstehen bei Kreisbahnen und schrägen Geraden. Um diese verfahrensbedingten Verzerrungen zu minimieren, können Sie über den Parameter Q21 eine Toleranz definieren, mit der die TNC die herzustellende Nut an eine Nut annähert, die mit einem Werkzeug hergestellt wurde, dessen Durchmesser der Nutbreite entspricht.

Programmieren Sie die Mittelpunktsbahn der Kontur mit Angabe der Werkzeug-Radiuskorrektur. Über die Radiuskorrektur legen Sie fest, ob die TNC die Nut im Gleich- oder Gegenlauf herstellt.

- 1 Die TNC positioniert das Werkzeug über den Einstichpunkt
- 2 In der ersten Zustelltiefe fräst das Werkzeug mit dem Fräsvorschub Q12 entlang der Nutwand; dabei wird das Schlichtaufmaß Seite berücksichtigt
- **3** Am Konturende versetzt die TNC das Werkzeug an die gegenüberliegende Nutwand und fährt zurück zum Einstichpunkt
- **4** Die Schritte 2 und 3 wiederholen sich, bis die programmierte Frästiefe Q1 erreicht ist
- Wenn Sie die Toleranz Q21 definiert haben, dann führt die TNC die Nachbearbeitung aus, um möglichst parallele Nutwände zu erhalten.
- **6** Abschließend fährt das Werkzeug in der Werkzeug-Achse zurück auf die sichere Höhe oder auf die zuletzt vor dem Zyklus programmierte Position (abhängig von Maschinen-Parameter 7420)

418 8 Programmieren: Zyklen

Beachten Sie vor dem Programmieren

Im ersten NC-Satz des Kontur-Unterprogramms immer beide Zylindermantel-Koordinaten programmieren.

Der Speicher für einen SL-Zyklus ist begrenzt. Sie können in einem SL-Zyklus maximal 8192 Konturelemente programmieren.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Fräser mit einem über Mitte schneidenden Stirnzahn verwenden (DIN 844).

Der Zylinder muss mittig auf dem Rundtisch aufgespannt sein.

Die Spindelachse muss senkrecht zur Rundtisch-Achse verlaufen. Wenn dies nicht der Fall ist, dann gibt die TNC eine Fehlermeldung aus.

Diesen Zyklus können Sie auch bei geschwenkter Bearbeitungsebene ausführen.

Die TNC überprüft, ob die korrigierte und unkorrigierte Bahn des Werkzeugs innerhalb des Anzeige-Bereichs der Drehachse liegt (ist in Maschinen-Parameter 810.x definiert). Bei Fehlermeldung "Kontur-Programmierfehler" ggf. MP 810.x = 0 setzen.

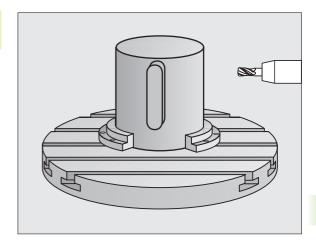
- ► Frästiefe Q1 (inkremental): Abstand zwischen Zylinder-Mantel und Konturgrund
- Schlichtaufmaß Seite Q3 (inkremental): Schlichtaufmaß in der Ebene der Mantel-Abwicklung; das Aufmaß wirkt in der Richtung der Radiuskorrektur
- Sicherheits-Abstand Q6 (inkremental): Abstand zwischen Werkzeug-Stirnfläche und Zylinder Mantelfläche
- ➤ Zustell-Tiefe Q10 (inkremental): Maß, um das das Werkzeug jeweils zugestellt wird
- ▶ Vorschub Tiefenzustellung Q11: Vorschub bei Verfahrbewegungen in der Spindelachse
- ▶ Vorschub Fräsen Q12: Vorschub bei Verfahrbewegungen in der Bearbeitungsebene
- Zylinderradius Q16: Radius des Zylinders, auf dem die Kontur bearbeitet werden soll
- ▶ Bemaßungsart? Grad =0 MM/INCH=1 Q17: Koordinaten der Drehachse im Unterprogramm in Grad oder mm (inch) programmieren
- Nutbreite Q20: Breite der herzustellenden Nut
- ▶ Toleranz? Q21: Wenn Sie ein Werkzeug verwenden, das kleiner ist als die programmierte Nutbreite Q20, entstehen verfahrensbedingt Verrzerrungen an der Nutwand bei Kreisen und schrägen Geraden. Wenn Sie die Toleranz Q21 definieren, dann nähert die TNC die Nut in einem nachgeschalteten Fräsvorgang so an, als ob Sie die Nut mit einem Werkzeug gefräst hätten, das exakt so groß ist wie die Nutbreite. Mit Q21 definieren Sie die erlaubte Abweichung von dieser idealen Nut. Die Anzahl der Nachbearbeitungsschritte hängt ab vom Zylinderradius, dem verwendeten Werkzeug und der Nuttiefe. Je kleiner die Toleranz definiert ist, desto exakter wird die Nut, desto länger dauert aber auch die Nachbearbeitung. Empfehlung: Toleranz von 0.02 mm verwenden.

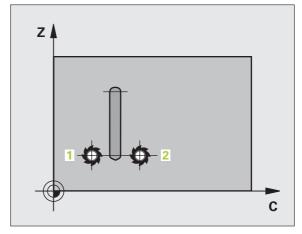
0: Funktion inaktiv

Beispiel: NC-Satz

N63 G128 ZYLINDE	R-MANTEL
Q1=-8	;FRAESTIEFE
Q3=+0	;AUFMASS SEITE
Q6=+0	;SICHERHEITS-ABST.
Q10=+3	;ZUSTELL-TIEFE
Q11=100	;VORSCHUB TIEFENZ.
Q12=350	;VORSCHUB FRAESEN
Q16=25	;RADIUS
Q17=0	;BEMASSUNGSART
020=12	;NUTBREITE
Q21=0	;TOLERANZ

420 8 Programmieren: Zyklen


ZYLINDER-MANTEL Stegfräsen (Zyklus G129, Software-Option 1)


Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein

Mit diesem Zyklus können Sie einen auf der Abwicklung definierten Steg auf den Mantel eines Zylinders übertragen. Die TNC stellt das Werkzeug bei diesem Zyklus so an, dass die Wände bei aktiver Radiuskorrektur immer parallel zueinander verlaufen. Programmieren Sie die Mittelpunktsbahn des Steges mit Angabe der Werkzeug-Radiuskorrektur. Über die Radiuskorrektur legen Sie fest, ob die TNC den Steg im Gleich- oder Gegenlauf herstellt.

An den Stegenden fügt die TNC grundsätzlich immer einen Halbkreis an, dessen Radius der halben Stegbreite entspricht.

- 1 Die TNC positioniert das Werkzeug über den Startpunkt der Bearbeitung. Den Startpunkt berechnet die TNC aus der Stegbreite und dem Werkzeug-Durchmesser. Er liegt um die halbe Stegbreite und dem Werkzeug-Durchmesser versetzt neben dem ersten im Kontur-Unterprogramm definierten Punkt. Die Radius-Korrektur bestimmt, ob links (1, RL=Gleichlauf) oder rechts vom Steg (2, RR=Gegenlauf) gestartet wird (siehe Bild rechts Mitte)
- 2 Nachdem die TNC auf die erste Zustelltiefe positioniert hat, fährt das Werkzeug auf einem Kreisbogen mit Fräsvorschub Q12 tangential an die Stegwand an. Ggf. wird das Schlichtaufmaß Seite berücksichtigt
- **3** Auf der ersten Zustelltiefe fräst das Werkzeug mit dem Fräsvorschub Q12 entlang der Stegwand, bis der Zapfen vollständig hergestellt ist
- **4** Anschließend fährt das Werkzeug tangential von der Stegwand weg zurück zum Startpunkt der Bearbeitung
- **5** Die Schritte 2 bis 4 wiederholen sich, bis die programmierte Frästiefe Q1 erreicht ist
- **6** Abschließend fährt das Werkzeug in der Werkzeug-Achse zurück auf die sichere Höhe oder auf die zuletzt vor dem Zyklus programmierte Position (abhängig von Maschinen-Parameter 7420)

Beachten Sie vor dem Programmieren

Im ersten NC-Satz des Kontur-Unterprogramms immer beide Zylindermantel-Koordinaten programmieren.

Achten Sie darauf, dass das Werkzeug für die An- und Wegfahrbewegung seitlich genügend Platz hat.

Der Speicher für einen SL-Zyklus ist begrenzt. Sie können in einem SL-Zyklus z.B. maximal 8192 Geraden-Sätze programmieren.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Der Zylinder muss mittig auf dem Rundtisch aufgespannt sein

Die Spindelachse muss senkrecht zur Rundtisch-Achse verlaufen. Wenn dies nicht der Fall ist, dann gibt die TNC eine Fehlermeldung aus.

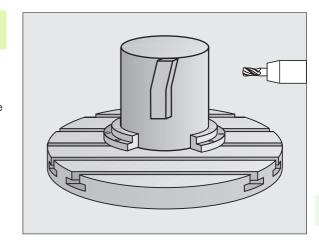
Diesen Zyklus können Sie auch bei geschwenkter Bearbeitungsebene ausführen.

Die TNC überprüft, ob die korrigierte und unkorrigierte Bahn des Werkzeugs innerhalb des Anzeige-Bereichs der Drehachse liegt (ist in Maschinen-Parameter 810.x definiert). Bei Fehlermeldung "Kontur-Programmierfehler" ggf. MP 810.x = 0 setzen.

- ► Frästiefe Q1 (inkremental): Abstand zwischen Zylinder-Mantel und Konturgrund
- Schlichtaufmaß Seite Q3 (inkremental): Schlichtaufmaß an der Stegwand. Das Schlichtaufmaß vergrößert die Stegbreite um den zweifachen eingegebenen Wert
- Sicherheits-Abstand Q6 (inkremental): Abstand zwischen Werkzeug-Stirnfläche und Zylinder Mantelfläche
- Zustell-Tiefe Q10 (inkremental): Maß, um das das Werkzeug jeweils zugestellt wird
- ▶ Vorschub Tiefenzustellung Q11: Vorschub bei Verfahrbewegungen in der Spindelachse
- ▶ Vorschub Fräsen Q12: Vorschub bei Verfahrbewegungen in der Bearbeitungsebene
- Zylinder-Radius Q16: Radius des Zylinders, auf dem die Kontur bearbeitet werden soll
- ▶ Bemaßungsart? Grad =0 MM/INCH=1 Q17: Koordinaten der Drehachse im Unterprogramm in Grad oder mm (inch) programmieren
- ▶ Stegbreite Q20: Breite des herzustellenden Steges

Beispiel: NC-Sätze

N50 G129 ZYLINDER-	MANTEL STEG
Q1=-8	;FRAESTIEFE
Q3=+0	;AUFMASS SEITE
Q6=+0	;SICHERHEITS-ABST.
Q10=+3	;ZUSTELL-TIEFE
Q11=100	; VORSCHUB TIEFENZ.
Q12=350	; VORSCHUB FRAESEN
Q16=25	; RADIUS
Q17=0	; BEMASSUNGSART
Q20=12	;STEGBREITE


ZYLINDER-MANTEL Außenkontur fräsen (Zyklus G139, Software-Option 1)

Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein

Mit diesem Zyklus können Sie eine auf der Abwicklung definierte offene Kontur auf den Mantel eines Zylinders übertragen. Die TNC stellt das Werkzeug bei diesem Zyklus so an, dass die Wand der gefrästen Kontur bei aktiver Radiuskorrektur parallel zur Zylinderachse verläuft.

Im Gegensatz zu den Zyklen 28 und 29 definieren Sie im Kontur-Unterprogramm die tatsächlich herzustellende Kontur.

- 1 Die TNC positioniert das Werkzeug über den Startpunkt der Bearbeitung. Den Startpunkt legt die TNC um dem Werkzeug-Durchmesser versetzt neben dem ersten im Kontur-Unterprogramm definierten Punkt
- 2 Nachdem die TNC auf die erste Zustelltiefe positioniert hat, f\u00e4hrt das Werkzeug auf einem Kreisbogen mit Fr\u00e4svorschub Q12 tangential an die Kontur an. Ggf. wird das Schlichtaufma\u00df Seite ber\u00fccksichtigt
- **3** Auf der ersten Zustelltiefe fräst das Werkzeug mit dem Fräsvorschub Q12 entlang der Kontur, bis der definierte Konturzug vollständig hergestellt ist
- 4 Anschließend fährt das Werkzeug tangential von der Stegwand weg zurück zum Startpunkt der Bearbeitung
- **5** Die Schritte 2 bis 4 wiederholen sich, bis die programmierte Frästiefe Q1 erreicht ist
- **6** Abschließend fährt das Werkzeug in der Werkzeug-Achse zurück auf die sichere Höhe oder auf die zuletzt vor dem Zyklus programmierte Position (abhängig von Maschinen-Parameter 7420)

Beachten Sie vor dem Programmieren

Achten Sie darauf, dass das Werkzeug für die An- und Wegfahrbewegung seitlich genügend Platz hat.

Der Speicher für einen SL-Zyklus ist begrenzt. Sie können in einem SL-Zyklus maximal 8192 Konturelemente programmieren.

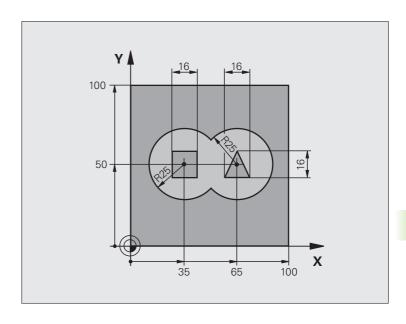
Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Der Zylinder muss mittig auf dem Rundtisch aufgespannt sein.

Die Spindelachse muss senkrecht zur Rundtisch-Achse verlaufen. Wenn dies nicht der Fall ist, dann gibt die TNC eine Fehlermeldung aus.

Diesen Zyklus können Sie auch bei geschwenkter Bearbeitungsebene ausführen.

Die TNC überprüft, ob die korrigierte und unkorrigierte Bahn des Werkzeugs innerhalb des Anzeige-Bereichs der Drehachse liegt (ist in Maschinen-Parameter 810.x definiert). Bei Fehlermeldung "Kontur-Programmierfehler" ggf. MP 810.x = 0 setzen.


- ► Frästiefe Q1 (inkremental): Abstand zwischen Zylinder-Mantel und Konturgrund
- Schlichtaufmaß Seite Q3 (inkremental): Schlichtaufmaß an der Konturwand
- ➤ Sicherheits-Abstand Q6 (inkremental): Abstand zwischen Werkzeug-Stirnfläche und Zylinder Mantelfläche
- ▶ **Zustell-Tiefe** Q10 (inkremental): Maß, um das das Werkzeug jeweils zugestellt wird
- ▶ Vorschub Tiefenzustellung Q11: Vorschub bei Verfahrbewegungen in der Spindelachse
- ▶ Vorschub Fräsen Q12: Vorschub bei Verfahrbewegungen in der Bearbeitungsebene
- Zylinder-Radius Q16: Radius des Zylinders, auf dem die Kontur bearbeitet werden soll
- Bemaßungsart? Grad =0 MM/INCH=1 Q17: Koordinaten der Drehachse im Unterprogramm in Grad oder mm (inch) programmieren

Beispiel: NC-Sätze

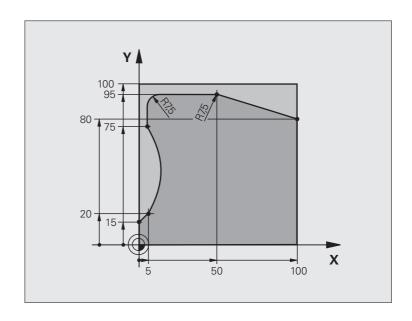
N50 G139 ZYLINDE	R-MAN. KONTUR
Q1=-8	;FRAESTIEFE
Q3=+0	;AUFMASS SEITE
Q6=+0	;SICHERHEITS-ABST.
Q10=+3	;ZUSTELL-TIEFE
Q11=100	;VORSCHUB TIEFENZ.
Q12=350	; VORSCHUB FRAESEN
Q16=25	;RADIUS
Q17=0	;BEMASSUNGSART

i

Beispiel: Überlagerte Konturen vorbohren, schruppen, schlichten

%C21 G71 *	
N10 G30 G17 X+0 Y+0 Z-40 *	Rohteil-Definition
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+6 *	Werkzeug-Definition Bohrer
N40 G99 T2 L+0 R+6 *	Werkzeug-Definition Schruppen/Schlichten
N50 T1 G17 S4000 *	Werkzeug-Aufruf Bohrer
N60 G00 G40 G90 Z+250 *	Werkzeug freifahren
N70 G37 P01 1 P02 2 P03 3 P04 4 *	Kontur-Unterprogramme festlegen
N80 G120 KONTUR-DATEN	Allgemeine Bearbeitungs-Parameter festlegen
Q1=-20 ;FRAESTIEFE	
Q2=1 ;BAHN-UEBERLAPPUNG	
Q3=+O ;AUFMASS SEITE	
Q4=+0 ;AUFMASS TIEFE	
Q5=+0 ;KOOR. OBERFLAECHE	
Q6=2 ;SICHERHEITS-ABST.	
Q7=+100 ;SICHERE HOEHE	
Q8=0.1 ; RUNDUNGSRADIUS	
Q9=-1 ; DREHSINN	

N90 G121 VORBOHREN	Zyklus-Definition Vorbohren
Q10=5 ;ZUSTELL-TIEFE	
Q11=250 ; VORSCHUB TIEFENZ.	
Q13=0 ;AUSRAEUM WERKZEUG	
N100 G79 M3 *	Zyklus-Aufruf Vorbohren
N110 Z+250 M6 *	Werkzeug-Wechsel
N120 T2 G17 S3000 *	Werkzeug-Aufruf Schruppen/Schlichten
N130 G122 RAEUMEN	Zyklus-Definition Vorräumen
Q10=5 ;ZUSTELL-TIEFE	
Q11=100 ;VORSCHUB TIEFENZ.	
Q12=350 ; VORSCHUB RAEUMEN	
Q18=0 ; VORRAEUM-WERKZEUG	
Q19=150 ; VORSCHUB PENDELN	
Q208=2000 ; VORSCHUB RUECKZUG	
Q401=100 ; VORSCHUBFAKTOR	
Q404=0 ; NACHRAEUMSTRATEGIE	
N140 G79 M3 *	Zyklus-Aufruf Räumen
N150 G123 SCHLICHTEN TIEFE	Zyklus-Definition Schlichten Tiefe
Q11=100 ; VORSCHUB TIEFENZ.	
Q12=200 ; VORSCHUB RAEUMEN	
N160 G79 *	Zyklus-Aufruf Schlichten Tiefe
N170 G124 SCHLICHTEN SEITE	Zyklus-Definition Schlichten Seite
Q9=+1 ; DREHSINN	
Q10=-5 ;ZUSTELL-TIEFE.	
Q11=100 ; VORSCHUB TIEFENZ.	
Q12=400 ; VORSCHUB RAEUMEN	
Q14=0 ;AUFMASS SEITE	
N180 G79 *	Zyklus-Aufruf Schlichten Seite
N190 G00 Z+250 M2 *	Werkzeug freifahren, Programm-Ende

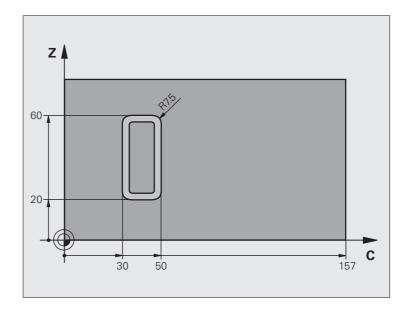

426 8 Programmieren: Zyklen

N200 G98 L1 *	Kontur-Unterprogramm 1: Tasche links
N210 I+25 J+50 *	, ,
N220 G01 G42 X+10 Y+50 *	
N230 G02 X+10 *	
N240 G98 L0 *	
N250 G98 L2 *	Kontur-Unterprogramm 2: Tasche rechts
N260 I+65 J+50 *	
N270 G01 G42 X+90 Y+50 *	
N280 G02 X+90 *	
N290 G98 L0 *	
N300 G98 L3 *	Kontur-Unterprogramm 3: Insel Viereckig links
N310 G01 G41 X+27 Y+50 *	
N320 Y+58 *	
N330 X+43 *	
N340 Y+42 *	
N350 X+27 *	
N360 G98 L0 *	
N370 G98 L0 *	Kontur-Unterprogramm 4: Insel Dreieckig rechts
N380 G01 G41 X+65 Y+42 *	
N390 X+57 *	
N400 X+65 Y+58 *	
N410 X+73 Y+42 *	
N420 G98 L0 *	
N99999999 %C21 G71 *	

Beispiel: Kontur-Zug

%C25 G71 *	
N10 G30 G17 X+0 Y+0 Z-40 *	Rohteil-Definition
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+10 *	Werkzeug-Definition
N40 T1 G17 S2000 *	Werkzeug-Aufruf
N50 G00 G40 G90 Z+250 *	Werkzeug freifahren
N60 G37 P01 1 *	Kontur-Unterprogramm festlegen
N70 G125 KONTUR-ZUG	Bearbeitungs-Parameter festlegen
Q1=-20 ;FRAESTIEFE	
Q3=+O ;AUFMASS SEITE	
Q5=+O ;KOOR. OBERFLAECHE	
Q7=+250 ;SICHERE HOEHE	
Q10=5 ;ZUSTELL-TIEFE	
Q11=100 ; VORSCHUB TIEFENZ.	
Q12=200 ; VORSCHUB FRAESEN	
Q15=+1 ;FRAESART	
N80 G79 M3 *	Zyklus-Aufruf
N90 G00 G90 Z+250 M2 *	Werkzeug freifahren, Programm-Ende

i


N100 G98 L1 *	Kontur-Unterprogramm
N110 G01 G41 X+0 Y+15 *	
N120 X+5 Y+20 *	
N130 G06 X+5 Y+75 *	
N140 G01 Y+95 *	
N150 G25 R7,5 *	
N160 X+50 *	
N170 G25 R7,5 *	
N180 X+100 Y+80 *	
N190 G98 LO *	
N99999999 %C25 G71 *	

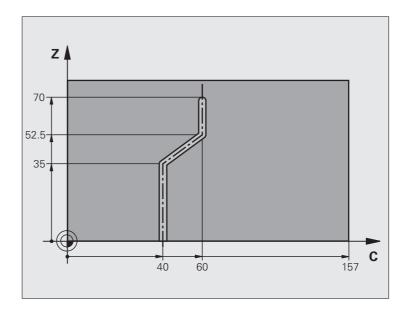
Beispiel: Zylinder-Mantel mit Zyklus G127

Hinweis:

- Zylinder mittig auf Rundtisch aufgespannt
- Bezugspunkt liegt in der Rundtisch-Mitte

%C27 G71 *	
N10 G99 T1 L+0 R3,5 *	Werkzeug-Definition
N20 T1 G18 S2000 *	Werkzeug-Aufruf, Werkzeug-Achse Y
N30 G00 G40 G90 Y+250 *	Werkzeug freifahren
N40 G37 P01 1 *	Kontur-Unterprogramm festlegen
N70 G127 ZYLINDER-MANTEL	Bearbeitungs-Parameter festlegen
Q1=-7 ;FRAESTIEFE	
Q3=+0 ;AUFMASS SEITE	
Q6=2 ;SICHERHEITS-ABST.	
Q10=4 ;ZUSTELL-TIEFE	
Q11=100 ; VORSCHUB TIEFENZ.	
Q12=250 ; VORSCHUB FRAESEN	
Q16=25 ; RADIUS	
Q17=1 ;BEMASSUNGSART	
N60 C+0 M3 *	Rundtisch vorpositionieren
N70 G79 *	Zyklus-Aufruf
N80 G00 G90 Z+250 M2 *	Werkzeug freifahren, Programm-Ende

8 Programmieren: Zyklen


N90 G98 L1 *	Kontur-Unterprogramm
N100 G01 G41 C+91,72 Z+20 *	Angaben in der Drehachse in Grad;
N110 C+114,65 Z+20 *	Zeichnungsmaße umgerechnet von mm in Grad (157 mm = 360°)
N120 G25 R7,5 *	
N130 G91+Z+40 *	
N140 G90 G25 R7,5 *	
N150 G91 C-45,86 *	
N160 G90 G25 R7,5 *	
N170 Z+20 *	
N180 G25 R7,5 *	
N190 C+91,72 *	
N200 G98 L0 *	
N99999999 %C27 G71 *	

Beispiel: Zylinder-Mantel mit Zyklus G128

Hinweise:

- Zylinder mittig auf Rundtisch aufgespannt.
- Bezugspunkt liegt in der Rundtisch-Mitte
- Beschreibung der Mittelpunktsbahn im Kontur-Unterprogramm

%C28 G71 *	
N10 G99 T1 L+0 R3,5 *	Werkzeug-Definition
N20 T1 G18 S2000 *	Werkzeug-Aufruf, Werkzeug-Achse Y
N30 G00 G40 G90 Y+250 *	Werkzeug freifahren
N40 G37 P01 1 *	Kontur-Unterprogramm festlegen
N50 X+0 *	Werkzeug auf Rundtisch-Mitte positionieren
N60 G128 ZYLINDER-MANTEL	Bearbeitungs-Parameter festlegen
Q1=-7 ;FRAESTIEFE	
Q3=+O ;AUFMASS SEITE	
Q6=2 ;SICHERHEITS-ABST.	
Q10=-4 ;ZUSTELL-TIEFE	
Q11=100 ; VORSCHUB TIEFENZ.	
Q12=250 ; VORSCHUB FRAESEN	
Q16=25 ;RADIUS	
Q17=1 ;BEMASSUNGSART	
Q20=10 ;NUTBREITE	
Q21=0.02 ;TOLERANZ	
N70 C+0 M3 *	Rundtisch vorpositionieren
N80 G79 *	Zyklus-Aufruf
N90 G00 G40 Y+250 M2 *	Werkzeug freifahren, Programm-Ende

i

N100 G98 L1 *	Kontur-Unterprogramm, Beschreibung der Mittelpunktsbahn
N110 G01 G41 C+40 Z+0 *	Angaben in der Drehachse in mm (Q17=1)
N120 Z+35 *	
N130 C+60 Z+52,5 *	
N140 Z+70 *	
N150 G98 L0 *	
N99999999 %C28 G71 *	

HEIDENHAIN iTNC 530

8.7 SL-Zyklen mit Konturformel

Grundlagen

Mit den SL-Zyklen und der Konturformel können Sie komplexe Konturen aus Teilkonturen (Taschen oder Inseln) zusammensetzen. Die einzelnen Teilkonturen (Geometriedaten) geben Sie als separate Programme ein. Dadurch sind alle Teilkonturen beliebig wiederverwendbar. Aus den gewählten Teilkonturen, die Sie über eine Konturformel miteinander verknüpfen, berechnet die TNC die Gesamtkontur.

Der Speicher für einen SL-Zyklus (alle Konturbeschreibungs-Programme) ist auf maximal **128 Konturen** begrenzt. Die Anzahl der möglichen Konturelemente hängt von der Konturart (Innen-/ Außenkontur) und der Anzahl der Konturbeschreibungen ab und beträgt maximal **16384** Konturelementee.

Die SL-Zyklen mit Konturformel setzen einen strukturierten Programmaufbau voraus und bieten die Möglichkeit, immer wiederkehrende Konturen in einzelnen Programmen abzulegen. Über die Konturformel verknüpfen Sie die Teilkonturen zu einer Gesamtkontur und legen fest, ob es sich um eine Tasche oder Insel handelt.

Die Funktion SL-Zyklen mit Konturformel ist in der Bedienoberfläche der TNC auf mehrere Bereiche verteilt und dient als Grundlage für weitergehende Entwicklungen.

Eigenschaften der Teilkonturen

- Die TNC erkennt grundsätzlich alle Konturen als Tasche. Programmieren Sie keine Radiuskorrektur. In der Konturformel können Sie eine Tasche durch negieren in eine Insel umwandeln.
- Die TNC ignoriert Vorschübe F und Zusatz-Funktionen M
- Koordinaten-Umrechnungen sind erlaubt. Werden sie innerhalb der Teilkonturen programmiert, wirken sie auch in den nachfolgenden Unterprogrammen, müssen aber nach dem Zyklusaufruf nicht zurückgesetzt werden
- Die Unterprogramme dürfen auch Koordinaten in der Spindelachse enthalten, diese werden aber ignoriert
- Im ersten Koordinatensatz des Unterprogramms legen Sie die Bearbeitungsebene fest. Zusatzachsen U,V,W sind erlaubt

Beispiel: Schema: Abarbeiten mit SL-Zyklen und Konturformel

%KONTUR G71 *
...

N50 %:CNT: "MODEL"

N60 G120 Q1= ...

N70 G122 Q10= ...

N80 G79 *
...

N120 G123 Q11= ...

N130 G79 *
...

N160 G124 Q9= ...

N170 G79

N180 G00 G40 G90 Z+250 M2 *

N99999999 %KONTUR G71 *

Beispiel: Schema: Verrechnung der Teilkonturen mit Konturformel

8 Programmieren: Zyklen

Eigenschaften der Bearbeitungszyklen

- Die TNC positioniert vor jedem Zyklus automatisch auf den Sicherheits-Abstand
- Jedes Tiefen-Niveau wird ohne Werkzeug-Abheben gefräst; Inseln werden seitlich umfahren
- Der Radius von "Innen-Ecken" ist programmierbar das Werkzeug bleibt nicht stehen, Freischneide-Markierungen werden verhindert (gilt für äußerste Bahn beim Räumen und Seiten-Schlichten)
- Beim Seiten-Schlichten fährt die TNC die Kontur auf einer tangentialen Kreisbahn an
- Beim Tiefen-Schlichten fährt die TNC das Werkzeug ebenfalls auf einer tangentialen Kreisbahn an das Werkstück (z.B.: Spindelachse Z: Kreisbahn in Ebene Z/X)
- Die TNC bearbeitet die Kontur durchgehend im Gleichlauf bzw. im Gegenlauf

Mit MP7420 legen Sie fest, wohin die TNC das Werkzeug am Ende der Zyklen G121 bis G124 positioniert.

Die Maßangaben für die Bearbeitung, wie Frästiefe, Aufmaße und Sicherheits-Abstand geben Sie zentral im Zyklus G120 als KONTUR-DATEN ein.

Programm mit Konturdefinitionen wählen

Mit der Funktion %: CNT wählen Sie ein Programm mit Kontur-Definitionen, aus denen die TNC die Konturbeschreibungen entnimmt:

▶ Funktionen zum Programm-Aufruf wählen: Taste PGM CALL drücken

► Softkey KONTUR WÄHLEN drücken

Vollständigen Programmnamen des Programms mit der Kontur-Definitionen eingeben, mit Taste END bestätigen

%:CNT-Satz vor den SL-Zyklen programmieren. Zyklus 14 KONTUR ist bei der Verwendung von %:CNT nicht mehr erforderlich

Konturbeschreibungen definieren

Mit der Funktion **DECLARE CONTOUR** geben Sie einem Programm den Pfad für Programme an, aus denen die TNC die Konturbeschreibungen entnimmt:

- ► Softkey DECLARE drücken
- ► Softkey CONTOUR drücken
- Nummer für den Konturbezeichner QC eingeben, mit Taste ENT bestätigen
- Vollständigen Programmnamen des Programms mit den Kontur-Beschreibung eingeben, mit Taste END bestätigen

Mit den angegebenen Konturbezeichnern QC können Sie in der Konturformel die verschiedenen Konturen miteinander verrechnen

Mit der Funktion **DECLARE STRING** definieren Sie einen Text. Diese Funktion wird vorest noch nicht ausgewertet.

i

Konturformel eingeben

Über Softkeys können Sie verschiedene Konturen in einer mathematischen Formel miteinander verknüpfen:

- ▶ Q-Parameter-Funktion wählen: Taste Q drücken (im Feld für Zahlen-Eingabe, rechts). Die Softkey-Leiste zeigt die Q-Parameter-Funktionen
- ► Funktion zur Eingabe der Konturformel wählen: Softkey KONTUR FORMEL drücken. Die TNC zeigt folgende Softkeys an:

Verknüpfungs-Funktion	Softkey
geschnitten mit z.B. QC10 = QC1 & QC5	
vereinigt mit z.B. QC25 = QC7 QC18	
vereinigt mit, aber ohne Schnitt z.B. QC12 = QC5 ^ QC25	
geschnitten mit Komplement von z.B. QC25 = QC1 \ QC2	
Komplement des Konturgebietes z.B. Q12 = #Q11	#0
Klammer auf z.B. QC12 = QC1 * (QC2 + QC3)	(
Klammer zu z.B. QC12 = QC1 * (QC2 + QC3)	,
Einzelne Kontur definieren z.B. QC12 = QC1	

HEIDENHAIN iTNC 530

Überlagerte Konturen

Die TNC betrachtet grundsätzlich eine programmierte Kontur als Tasche. Mit den Funktionen der Konturformel haben Sie die Möglichkeit, eine Kontur in eine Insel umzuwandeln

Taschen und Inseln können Sie zu einer neuen Kontur überlagern. Damit können Sie die Fläche einer Tasche durch eine überlagerte Tasche vergrößern oder eine Insel verkleinern.

Unterprogramme: Überlagerte Taschen

Die nachfolgenden Programmierbeispiele sind Konturbeschreibungs-Programme, die in einem Konturdefinitions-Programm definiert werden. Das Konturdefinitions-Programm wiederum wird über die Funktion %: CNT im eigentlichen Hauptprogramm aufgerufen.

Die Taschen A und B überlagern sich.

Die TNC berechnet die Schnittpunkte S1 und S2, sie müssen nicht programmiert werden.

Die Taschen sind als Vollkreise programmiert.

i

Konturbeschreibungs-Programm 1: Tasche A

```
%TASCHE_A G71 *
N10 G01 X+10 Y+50 G40 *
N20 I+35 J+50 *
N30 G02 X+10 Y+50 *
N99999999 %TASCHE_A G71 *
```

Konturbeschreibungs-Programm 2: Tasche B

```
%TASCHE_B G71 *
N10 G01 X+90 Y+50 G40 *
N20 I+65 J+50 *
N30 G02 X+90 Y+50 *
N99999999 %TASCHE_B G71 *
```

"Summen"-Fläche

Beide Teilflächen A und B inklusive der gemeinsam überdeckten Fläche sollen bearbeitet werden:

- Die Flächen A und B müssen in separaten Programmen ohne Radiuskorrektur programmiert sein
- In der Konturformel werden die Flächen A und B mit der Funktion "vereinigt mit" verrechnet

Konturdefinitions-Programm:

```
N50 ...

N60 ...

N70 DECLARE CONTOUR QC1 = "TASCHE_A.H" *

N80 DECLARE CONTOUR QC2 = "TASCHE_B.H" *

N90 QC10 = QC1 | QC2 *

N100 ...

N110 ...
```


HEIDENHAIN iTNC 530

"Differenz"-Fläche

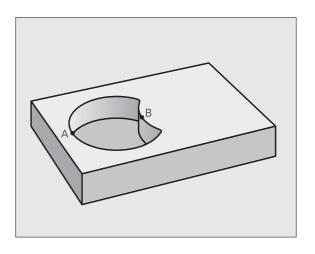
Fläche A soll ohne den von B überdeckten Anteil bearbeitet werden:

- Die Flächen A und B müssen in separaten Programmen ohne Radiuskorrektur programmiert sein
- In der Konturformel wird die Fläche B mit der Funktion "geschnitten mit Komplement von" von der Fläche A abgezogen

Konturdefinitions-Programm:

```
N50 ...

N60 ...


N70 DECLARE CONTOUR QC1 = "TASCHE_A.H" *

N80 DECLARE CONTOUR QC2 = "TASCHE_B.H" *

N90 QC10 = QC1 \ QC2 *

N100 ...

N110 ...
```


"Schnitt"-Fläche

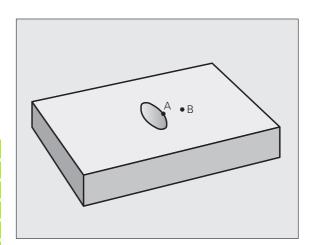
Die von A und B überdeckte Fläche soll bearbeitet werden. (Einfach überdeckte Flächen sollen unbearbeitet bleiben.)

- Die Flächen A und B müssen in separaten Programmen ohne Radiuskorrektur programmiert sein
- In der Konturformel werden die Flächen A und B mit der Funktion "geschnitten mit" verrechnet

Konturdefinitions-Programm:

```
N50 ...

N60 ...

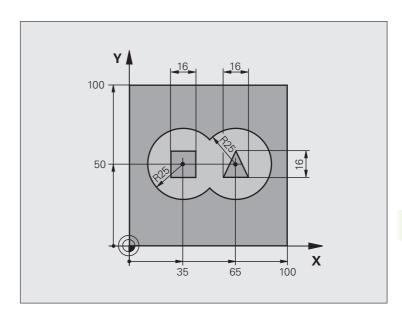

N70 DECLARE CONTOUR QC1 = "TASCHE_A.H" *

N80 DECLARE CONTOUR QC2 = "TASCHE_B.H" *

N90 QC10 = QC1 & QC2 *

N100 ...

N110 ...
```



Kontur Abarbeiten mit SL-Zyklen

Die Bearbeitung der Gesamtkontur erfolgt mit den SL-Zyklen G120 bis G124 (siehe "SL-Zyklen" auf Seite 399)

i

Beispiel: Überlagerte Konturen mit Konturformel schruppen und schlichten

%C21 G71 *	
N10 G30 G17 X+0 Y+0 Z-40 *	Rohteil-Definition
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+2,5 *	Werkzeug-Definition Schruppfräser
N40 G99 T2 L+0 R+3 *	Werkzeug-Definition Schlichtfräser
N50 T1 G17 S2500 *	Werkzeug-Aufruf Schruppfräser
N60 G00 G40 G90 Z+250 *	Werkzeug freifahren
N70 %:CNT: "MODEL" *	Konturdefinitions-Programm festlegen
N80 G120 KONTUR-DATEN	Allgemeine Bearbeitungs-Parameter festlegen
Q1=-20 ;FRAESTIEFE	
Q2=1 ;BAHN-UEBERLAPPUNG	
Q3=+0.5 ;AUFMASS SEITE	
Q4=+0.5 ;AUFMASS TIEFE	
Q5=+0 ;KOOR. OBERFLAECHE	
Q6=2 ;SICHERHEITS-ABST.	
Q7=+100 ;SICHERE HOEHE	
Q8=0.1 ;RUNDUNGSRADIUS	
Q9=-1 ; DREHSINN	

HEIDENHAIN iTNC 530

N90 G122 RAEUMEN	Zyklus-Definition Räumen
Q10=5 ;ZUSTELL-TIEFE	
Q11=100 ; VORSCHUB TIEFENZ.	
Q12=350 ; VORSCHUB RAEUMEN	
Q18=O ; VORRAEUM-WERKZEUG	
Q19=150 ; VORSCHUB PENDELN	
Q208=750 ; VORSCHUB RUECKZUG	
Q401=100 ; VORSCHUBFAKTOR	
Q404=0 ; NACHRAEUMSTRATEGIE	
N100 G79 M3 *	Zyklus-Aufruf Räumen
N110 T2 G17 S5000 *	Werkzeug-Aufruf Schlichtfräser
N150 G123 SCHLICHTEN TIEFE	Zyklus-Definition Schlichten Tiefe
Q11=100 ;VORSCHUB TIEFENZ.	
Q12=200 ; VORSCHUB RAEUMEN	
N160 G79 *	Zyklus-Aufruf Schlichten Tiefe
N170 G124 SCHLICHTEN SEITE	Zyklus-Definition Schlichten Seite
Q9=+1 ;DREHSINN	
Q10=-5 ;ZUSTELL-TIEFE.	
Q11=100 ;VORSCHUB TIEFENZ.	
Q12=400 ; VORSCHUB RAEUMEN	
Q14=O ;AUFMASS SEITE	
N180 G79 *	Zyklus-Aufruf Schlichten Seite
N190 G00 Z+250 M2 *	Werkzeug freifahren, Programm-Ende
N99999999 %C21 G71 *	

Konturdefinitions-Programm mit Konturformel:

%MODEL G71 *	Konturdefinitions-Programm
N10 DECLARE CONTOUR QC1 = "KREIS1" *	Definition des Konturbezeichners für das Programm "KREIS1"
N20 D00 Q1 P01 +35 *	Wertzuweisung für verwendete Parameter im PGM "KREIS31XY"
N30 D00 Q2 P01 50 *	
N40 D00 Q3 P01 +25 *	
N50 DECLARE CONTOUR QC2 = "KREIS31XY" *	Definition des Konturbezeichners für das Programm "KREIS31XY"
N60 DECLARE CONTOUR QC3 = "DREIECK" *	Definition des Konturbezeichners für das Programm "DREIECK"
N70 DECLARE CONTOUR QC1 = "QUADRAT" *	Definition des Konturbezeichners für das Programm "QUADRAT"
N80 QC10 = (QC1 QC2) \ QC3 \ QC4 *	Konturformel
N99999999 %MODEL G71 *	

442 8 Programmieren: Zyklen

Konturbeschreibungs-Programme:

%KREIS1 G71 *	Konturbeschreibungs-Programm: Kreis rechts
N10 I+65 J+50 *	
N20 G11 R+25 H+0 G40 *	
N30 CP IPA+360 DR+ *	
N99999999 %KREIS1 G71 *	
%KREOS31XY G71 *	Konturbeschreibungs-Programm: Kreis links
N10 I+Q1 J+Q2 *	
N20 G11 R+Q3 H+O G40 *	
N30 G13 G91 H+360 *	
N99999999 %KREIS31XY G71 *	
%DREIECK G71 *	Konturbeschreibungs-Programm: Dreieck rechts
N10 G01 X+73 Y+42 G40 *	
N20 G01 X+65 Y+58 *	
N30 G01 X+42 Y+42 *	
N49 G01 X+73 *	
N99999999 %DREIECK G71 *	
%QUADRAT G71 *	Konturbeschreibungs-Programm: Quadrat links
N10 G01 X+27 Y+58 G40 *	
N20 G01 X+43 *	
N30 G01 Y+42 *	
N40 G01 X+27 *	
N50 G01 Y+58 *	
N9999999 %QUADRAT G71 *	

HEIDENHAIN iTNC 530

8.8 Zyklen zum Abzeilen

Übersicht

Die TNC stellt vier Zyklen zur Verfügung, mit denen Sie Flächen mit folgenden Eigenschaften bearbeiten können:

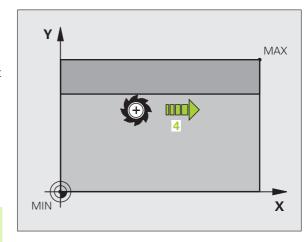
- Von einem CAM-System erzeugt
- Eben rechteckig
- Eben schiefwinklig
- Beliebig geneigt
- In sich verwunden

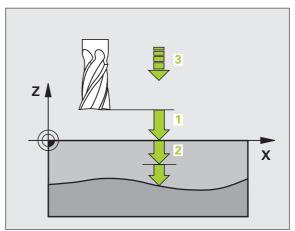
Zyklus	Softkey	Seite
G60 3D-DATEN ABARBEITEN Zum Abzeilen von 3D-Daten in mehreren Zustellungen	60 3D-DATEN FRÄSEN	Seite 445
G230 ABZEILEN Für ebene rechteckige Flächen	230	Seite 446
G231 REGELFLAECHE Für schiefwinklige, geneigte und verwundene Flächen	231	Seite 448
G232 PLANFRAESEN Für ebene rechteckige Flächen, mit Aufmaß-Angabe und mehreren Zustellungen	232	Seite 451

klen

3D-DATEN ABARBEITEN (Zyklus G60)

- 1 Die TNC positioniert das Werkzeug im Eilgang von der aktuellen Position aus in der Spindelachse auf Sicherheits-Abstand über den im Zyklus programmierten MAX-Punkt
- 2 Anschließend fährt die TNC das Werkzeug mit Eilgang in der Bearbeitungsebene auf den im Zyklus programmierten MIN-Punkt
- **3** Von dort aus fährt das Werkzeug mit Vorschub Tiefenzustellung auf den ersten Konturpunkt
- 4 Anschließend arbeitet die TNC alle in der 3D-Daten-Datei gespeicherten Punkte im Vorschub Fräsen ab; falls nötig fährt die TNC zwischendurch auf Sicherheits-Abstand, um unbearbeitete Bereiche zu überspringen
- 5 Am Ende fährt die TNC das Werkzeug mit Eilgang zurück auf den Sicherheits-Abstand




Beachten Sie vor dem Programmieren

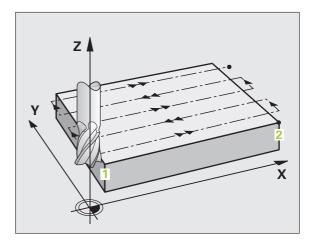
Mit Zyklus 30 können Sie extern erstellte Klartext-Dialog-Programme in mehreren Zustellungen abarbeiten.

- ▶ Datei-Name 3D-Daten: Name der Datei eingeben, in der die zu bearbeitenden Daten gespeichert sind; wenn die Datei nicht im aktuellen Verzeichnis steht, kompletten Pfad eingeben
- ► MIN-Punkt Bereich: Minimal-Punkt (X-, Y- und Z-Koordinate) des Bereichs, in dem gefräst werden soll
- MAX-Punkt Bereich: Maximal-Punkt (X-, Y- und Z-Koordinate) des Bereichs, in dem gefräst werden soll
- Sicherheits-Abstand 1 (inkremental): Abstand zwischen Werkzeugspitze und Werkstück-Oberfläche bei Eilgang-Bewegungen
- Zustell-Tiefe 2 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird
- ► Vorschub Tiefenzustellung 3: Verfahrgeschwindigkeit des Werkzeugs beim Eintauchen in mm/min
- ▶ Vorschub Fräsen 4: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min
- Zusatz-Funktion M: Optionale Eingabe einer Zusatz-Funktion, z.B. M13

Beispiel: NC-Satz

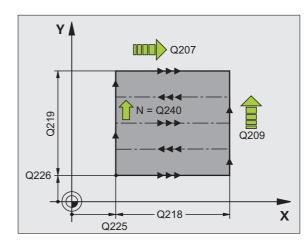
N64 G60 P01 BSP.I P01 X+0 P02 Y+0 P03 Z-20 P04 X+100 P05 Y+100 P06 Z+0 P07 2 P08 +5 P09 100 P10 350 M13 *

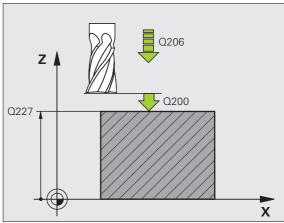
ABZEILEN (Zyklus G230)


- 1 Die TNC positioniert das Werkzeug im Eilgang von der aktuellen Position aus in der Bearbeitungsebene auf den Startpunkt 1; die TNC versetzt das Werkzeug dabei um den Werkzeug-Radius nach links und nach oben
- 2 Anschließend fährt das Werkzeug mit Eilgang in der Spindelachse auf Sicherheits-Abstand und danach im Vorschub Tiefenzustellung auf die programmierte Startposition in der Spindelachse
- 3 Danach f\u00e4hrt das Werkzeug mit dem programmierten Vorschub Fr\u00e4sen auf den Endpunkt 2; den Endpunkt berechnet die TNC aus dem programmierten Startpunkt, der programmierten L\u00e4nge und dem Werkzeug-Radius
- **4** Die TNC versetzt das Werkzeug mit Vorschub Fräsen quer auf den Startpunkt der nächsten Zeile; die TNC berechnet den Versatz aus der programmierten Breite und der Anzahl der Schnitte
- 5 Danach f\u00e4hrt das Werkzeug in negativer Richtung der 1. Achse zur\u00fcck
- **6** Das Abzeilen wiederholt sich, bis die eingegebene Fläche vollständig bearbeitet ist
- 7 Am Ende f\u00e4hrt die TNC das Werkzeug mit Eilgang zur\u00fcck auf den Sicherheits-Abstand

Beachten Sie vor dem Programmieren

Die TNC positioniert das Werkzeug von der aktuellen Position zunächst in der Bearbeitungsebene und anschließend in der Spindelachse auf den Startpunkt.


Werkzeug so vorpositionieren, dass keine Kollision mit dem Werkstück oder Spannmitteln erfolgen kann.



8 Programmieren: Zyklen

- ▶ Startpunkt 1. Achse Q225 (absolut): Min-Punkt-Koordinate der abzuzeilenden Fläche in der Hauptachse der Bearbeitungsebene
- ► Startpunkt 2. Achse Q226 (absolut): Min-Punkt-Koordinate der abzuzeilenden Fläche in der Nebenachse der Bearbeitungsebene
- Startpunkt 3. Achse Q227 (absolut): Höhe in der Spindelachse, auf der abgezeilt wird
- ▶ 1. Seiten-Länge Q218 (inkremental): Länge der abzuzeilenden Fläche in der Hauptachse der Bearbeitungsebene, bezogen auf den Startpunkt 1. Achse
- ▶ 2. Seiten-Länge Q219 (inkremental): Länge der abzuzeilenden Fläche in der Nebenachse der Bearbeitungsebene, bezogen auf den Startpunkt 2. Achse
- ▶ Anzahl Schnitte Q240: Anzahl der Zeilen, auf denen die TNC das Werkzeug in der Breite verfahren soll
- ▶ Vorschub Tiefenzustellung Q206:Verfahrgeschwindigkeit des Werkzeugs beim Fahren vom Sicherheits-Abstand auf die Frästiefe in mm/min
- ▶ Vorschub Fräsen O207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min
- Vorschub quer Q209: Verfahrgeschwindigkeit des Werkzeugs beim Fahren auf die nächste Zeile in mm/min; wenn Sie im Material quer fahren, dann Q209 kleiner als Q207 eingeben; wenn Sie im Freien quer fahren, dann darf Q209 größer als Q207 sein
- ➤ **Sicherheits-Abstand** Q200 (inkremental): zwischen Werkzeugspitze und Frästiefe für Positionierung am Zyklus-Anfang und am Zyklus-Ende

Beispiel: NC-Satz

;STARTPUNKT 1. ACHSE
;STARTPUNKT 2. ACHSE
;STARTPUNKT 3. ACHSE
;1. SEITEN-LAENGE
;2. SEITEN-LAENGE
;ANZAHL SCHNITTE
; VORSCHUB TIEFENZ.
; VORSCHUB FRAESEN
; VORSCHUB QUER
;SICHERHEITS-ABST.

REGELFLAECHE (Zyklus G231)

- 1 Die TNC positioniert das Werkzeug von der aktuellen Position aus mit einer 3D-Geradenbewegung auf den Startpunkt 1
- 2 Anschließend fährt das Werkzeug mit dem programmierten Vorschub Fräsen auf den Endpunkt 2
- 3 Dort f\u00e4hrt die TNC das Werkzeug im Eilgang um den Werkzeug-Durchmesser in positive Spindelachsenrichtung und danach wieder zur\u00fcck zum Startpunkt 1
- 4 Am Startpunkt 1 fährt die TNC das Werkzeug wieder auf den zuletzt gefahrenen Z-Wert
- **5** Anschließend versetzt die TNC das Werkzeug in allen drei Achsen von Punkt **1** in Richtung des Punktes **4** auf die nächste Zeile
- 6 Danach fährt die TNC das Werkzeug auf den Endpunkt dieser Zeile. Den Endpunkt berechnet die TNC aus Punkt 2 und einem Versatz in Richtung Punkt 3
- 7 Das Abzeilen wiederholt sich, bis die eingegebene Fläche vollständig bearbeitet ist
- 8 Am Ende positioniert die TNC das Werkzeug um den Werkzeug-Durchmesser über den höchsten eingegebenen Punkt in der Spindelachse

Schnittführung

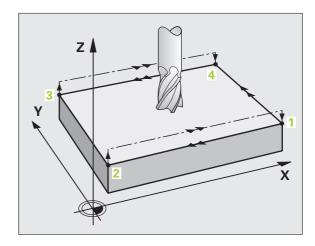
Der Startpunkt und damit die Fräsrichtung ist frei wählbar, weil die TNC die Einzelschnitte grundsätzlich von Punkt 1 nach Punkt 2 fährt und der Gesamtablauf von Punkt 1/2 nach Punkt 3/4 verläuft. Sie können Punkt 1 an jede Ecke der zu bearbeitenden Fläche legen.

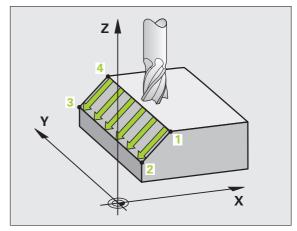
Die Oberflächengüte beim Einsatz von Schaftfräsern können Sie optimieren:

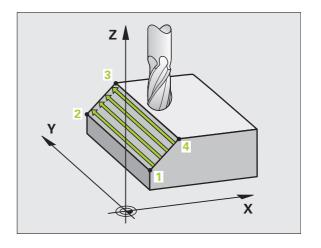
- Durch stoßenden Schnitt (Spindelachsenkoordinate Punkt 1 größer als Spindelachsenkoordinate Punkt 2) bei wenig geneigten Flächen.
- Durch ziehenden Schnitt (Spindelachsenkoordinate Punkt 1 kleiner als Spindelachsenkoordinate Punkt 2) bei stark geneigten Flächen
- Bei windschiefen Flächen, Hauptbewegungs-Richtung (von Punkt 1 nach Punkt 2) in die Richtung der stärkeren Neigung legen

Die Oberflächengüte beim Einsatz von Radiusfräsern können Sie optimieren:

Bei windschiefen Flächen Hauptbewegungs-Richtung (von Punkt 1 nach Punkt 2) senkrecht zur Richtung der stärksten Neigung legen

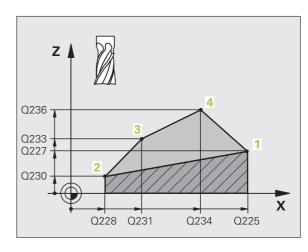


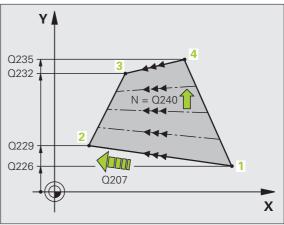

Beachten Sie vor dem Programmieren


Die TNC positioniert das Werkzeug von der aktuellen Position mit einer 3D-Geradenbewegung auf den Startpunkt 1. Werkzeug so vorpositionieren, dass keine Kollision mit dem Werkstück oder Spannmitteln erfolgen kann.

Die TNC fährt das Werkzeug mit Radiuskorrektur **G40** zwischen den eingegebenen Positionen.

Ggf. Fräser mit einem über Mitte schneidenden Stirnzahn verwenden (DIN 844).





448 8 Programmieren: Zyklen

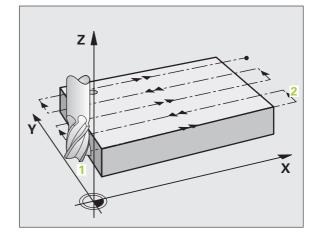
- ▶ Startpunkt 1. Achse Q225 (absolut): Startpunkt-Koordinate der abzuzeilenden Fläche in der Hauptachse der Bearbeitungsebene
- ▶ Startpunkt 2. Achse Q226 (absolut): Startpunkt-Koordinate der abzuzeilenden Fläche in der Nebenachse der Bearbeitungsebene
- Startpunkt 3. Achse Q227 (absolut): Startpunkt-Koordinate der abzuzeilenden Fläche in der Spindelachse
- ▶ 2. Punkt 1. Achse Q228 (absolut): Endpunkt-Koordinate der abzuzeilenden Fläche in der Hauptachse der Bearbeitungsebene
- ▶ 2. Punkt 2. Achse O229 (absolut): Endpunkt-Koordinate der abzuzeilenden Fläche in der Nebenachse der Bearbeitungsebene
- ▶ 2. Punkt 3. Achse Q230 (absolut): Endpunkt-Koordinate der abzuzeilenden Fläche in der Spindelachse
- ▶ 3. Punkt 1. Achse Q231 (absolut): Koordinate des Punktes 3 in der Hauptachse der Bearbeitungsebene
- ▶ 3. Punkt 2. Achse Q232 (absolut): Koordinate des Punktes 3 in der Nebenachse der Bearbeitungsebene
- ▶ 3. Punkt 3. Achse Q233 (absolut): Koordinate des Punktes 3 in der Spindelachse

- ▶ 4. Punkt 1. Achse Q234 (absolut): Koordinate des Punktes 4 in der Hauptachse der Bearbeitungsebene
- ▶ 4. Punkt 2. Achse Q235 (absolut): Koordinate des Punktes 4 in der Nebenachse der Bearbeitungsebene
- ▶ 4. Punkt 3. Achse Q236 (absolut): Koordinate des Punktes 4 in der Spindelachse
- ▶ Anzahl Schnitte Q240: Anzahl der Zeilen, die die TNC das Werkzeug zwischen Punkt 1 und 4, bzw. zwischen Punkt 2 und 3 verfahren soll
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min. Die TNC führt den ersten Schnitt mit dem halben programmierten Wert aus

Beispiel: NC-Sätze

N72 G231 REGELFLA	ECHE
Q225=+0	;STARTPUNKT 1. ACHSE
Q226=+5	;STARTPUNKT 2. ACHSE
Q227=-2	;STARTPUNKT 3. ACHSE
Q228=+100	;2. PUNKT 1. ACHSE
Q229=+15	;2. PUNKT 2. ACHSE
Q230=+5	;2. PUNKT 3. ACHSE
Q231=+15	;3. PUNKT 1. ACHSE
Q232=+125	;3. PUNKT 2. ACHSE
Q233=+25	;3. PUNKT 3. ACHSE
Q234=+15	;4. PUNKT 1. ACHSE
Q235=+125	;4. PUNKT 2. ACHSE
Q236=+25	;4. PUNKT 3. ACHSE
Q240=40	;ANZAHL SCHNITTE
Q207=500	;VORSCHUB FRAESEN

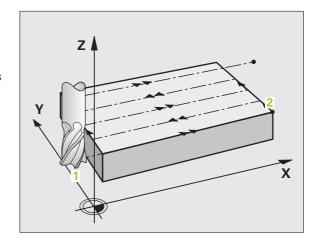
450 8 Programmieren: Zyklen


PLANFRAESEN (Zyklus G232)

Mit dem Zyklus G232 können Sie eine ebene Fläche in mehreren Zustellungen und unter Berücksichtigung eines Schlicht-Aufmaßes planfräsen. Dabei stehen drei Bearbeitungsstrategien zur Verfügung:

- Strategie Q389=0: Mäanderförmig bearbeiten, seitliche Zustellung ausserhalb der zu bearbeitenden Fläche
- Strategie Q389=1: Mäanderförmig bearbeiten, seitliche Zustellung innerhalb der zu bearbeitenden Fläche
- Strategie Q389=2: Zeilenweise bearbeiten, Rückzug und seitliche Zustellung im Positionier-Vorschub
- 1 Die TNC positioniert das Werkzeug im Eilgang von der aktuellen Position aus mit Positionier-Logik auf den Startpunkt 1: Ist die aktuelle Position in der Spindelachse größer als der 2. Sicherheits-Abstand, dann fährt die TNC das Werkzeug zunächst in der Bearbeitungsebene und dann in der Spindelachse, ansonsten zuerst auf den 2. Sicherheits-Abstand und dann in der Bearbeitungsebene. Der Startpunkt in der Bearbeitungsebene liegt um den Werkzeug-Radius und um den seitlichen Sicherheits-Abstand versetzt neben dem Werkstück
- 2 Anschließend fährt das Werkzeug mit Positionier-Vorschub in der Spindelachse auf die von der TNC berechnete erste Zustell-Tiefe

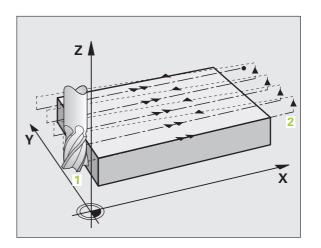
Strategie Q389=0


- 3 Danach fährt das Werkzeug mit dem programmierten Vorschub Fräsen auf den Endpunkt 2. Der Endpunkt liegt **außerhalb** der Fläche, die TNC berechnet ihn aus dem programmierten Startpunkt, der programmierten Länge, dem programmierten seitlichen Sicherheits-Abstand und dem Werkzeug-Radius
- **4** Die TNC versetzt das Werkzeug mit Vorschub Vorpositionieren quer auf den Startpunkt der nächsten Zeile; die TNC berechnet den Versatz aus der programmierten Breite, dem Werkzeug-Radius und dem maximalen Bahn-Überlappungs-Faktor
- 5 Danach f\u00e4hrt das Werkzeug wieder zur\u00fcck in Richtung des Startpunktes 1
- **6** Der Vorgang wiederholt sich, bis die eingegebene Fläche vollständig bearbeitet ist. Am Ende der letzten Bahn erfolgt die Zustellung auf die nächste Bearbeitungstiefe
- 7 Um Leerwege zu vermeiden, wird die Fläche anschließend in umgekehrter Reihenfolge bearbeitet
- 8 Der Vorgang wiederholt sich, bis alle Zustellungen ausgeführt sind. Bei der letzten Zustellung wird lediglich das eingegebene Schlichtaufmaß im Vorschub Schlichten abgefräst
- **9** Am Ende fährt die TNC das Werkzeug mit Eilgang zurück auf den 2. Sicherheits-Abstand

Strategie Q389=1

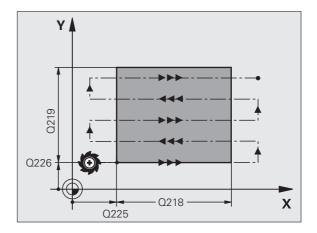
- 3 Danach fährt das Werkzeug mit dem programmierten Vorschub Fräsen auf den Endpunkt 2. Der Endpunkt liegt **innerhalb** der Fläche, die TNC berechnet ihn aus dem programmierten Startpunkt, der programmierten Länge und dem Werkzeug-Radius
- 4 Die TNC versetzt das Werkzeug mit Vorschub Vorpositionieren quer auf den Startpunkt der nächsten Zeile; die TNC berechnet den Versatz aus der programmierten Breite, dem Werkzeug-Radius und dem maximalen Bahn-Überlappungs-Faktor
- 5 Danach f\u00e4hrt das Werkzeug wieder zur\u00fcck in Richtung des Startpunktes 1. Der Versatz auf die n\u00e4chste Zeile erfolgt wieder innerhalb des Werkst\u00fcckes
- 6 Der Vorgang wiederholt sich, bis die eingegebene Fläche vollständig bearbeitet ist. Am Ende der letzten Bahn erfolgt die Zustellung auf die nächste Bearbeitungstiefe
- 7 Um Leerwege zu vermeiden, wird die Fläche anschließend in umgekehrter Reihenfolge bearbeitet
- 8 Der Vorgang wiederholt sich, bis alle Zustellungen ausgeführt sind. Bei der letzten Zustellung wird lediglich das eingegebene Schlichtaufmaß im Vorschub Schlichten abgefräst
- **9** Am Ende fährt die TNC das Werkzeug mit Eilgang zurück auf den 2. Sicherheits-Abstand

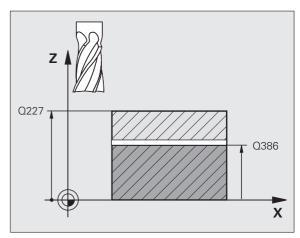
452 8 Programmieren: Zyklen

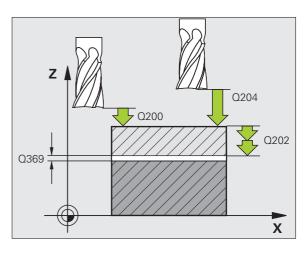

Strategie Q389=2

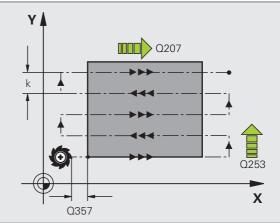
- 3 Danach fährt das Werkzeug mit dem programmierten Vorschub Fräsen auf den Endpunkt 2. Der Endpunkt liegt ausserhalb der Fläche, die TNC berechnet ihn aus dem programmierten Startpunkt, der programmierten Länge, dem programmierten seitlichen Sicherheits-Abstand und dem Werkzeug-Radius
- 4 Die TNC fährt das Werkzeug in der Spindelachse auf Sicherheits-Abstand über die aktuelle Zustell-Tiefe und fährt im Vorschub Vorpositionieren direkt zurück auf den Startpunkt der nächsten Zeile. Die TNC berechnet den Versatz aus der programmierten Breite, dem Werkzeug-Radius und dem maximalen Bahn-Überlappungs-Faktor
- 5 Danach fährt das Werkzeug wieder auf die aktuelle Zustell-Tiefe und anschließend wieder in Richtung des Endpunktes 2
- **6** Der Abzeil-Vorgang wiederholt sich, bis die eingegebene Fläche vollständig bearbeitet ist. Am Ende der letzten Bahn erfolgt die Zustellung auf die nächste Bearbeitungstiefe
- 7 Um Leerwege zu vermeiden, wird die Fläche anschließend in umgekehrter Reihenfolge bearbeitet
- **8** Der Vorgang wiederholt sich, bis alle Zustellungen ausgeführt sind. Bei der letzten Zustellung wird lediglich das eingegebene Schlichtaufmaß im Vorschub Schlichten abgefräst
- **9** Am Ende fährt die TNC das Werkzeug mit Eilgang zurück auf den 2. Sicherheits-Abstand

Beachten Sie vor dem Programmieren


2. Sicherheits-Abstand Q204 so eingeben, dass keine Kollision mit dem Werkstück oder Spannmitteln erfolgen kann.

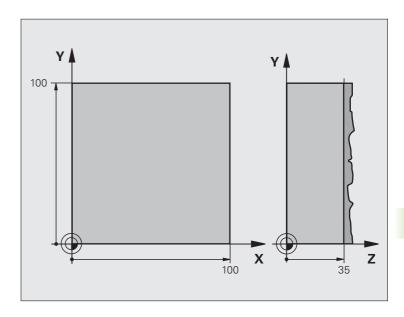



- ▶ Bearbeitungsstrategie (0/1/2) Q389: Festlegen, wie die TNC die Fläche bearbeiten soll:
 - **0**: Mäanderförmig bearbeiten, seitliche Zustellung im Positionier-Vorschub ausserhalb der zu bearbeitenden Fläche
 - 1: Mäanderförmig bearbeiten, seitliche Zustellung im Fräsvorschub innerhalb der zu bearbeitenden Fläche
 - **2**: Zeilenweise bearbeiten, Rückzug und seitliche Zustellung im Positionier-Vorschub
- ▶ Startpunkt 1. Achse Q225 (absolut): Startpunkt-Koordinate der zu bearbeitenden Fläche in der Hauptachse der Bearbeitungsebene
- ► Startpunkt 2. Achse Q226 (absolut): Startpunkt-Koordinate der abzuzeilenden Fläche in der Nebenachse der Bearbeitungsebene
- ➤ Startpunkt 3. Achse Q227 (absolut): Koordinate Werkstück-Oberfläche, von der aus die Zustellungen berechnet werden
- ▶ Endpunkt 3. Achse Q386 (absolut): Koordinate in der Spindelachse, auf die die Fläche plangefräst werden soll
- ▶ 1. Seiten-Länge O218 (inkremental): Länge der zu bearbeitenden Fläche in der Hauptachse der Bearbeitungsebene. Über das Vorzeichen können Sie die Richtung der ersten Fräsbahn bezogen auf den Startpunkt 1. Achse festlegen
- ▶ 2. Seiten-Länge Q219 (inkremental): Länge der zu bearbeitenden Fläche in der Nebenachse der Bearbeitungsebene. Über das Vorzeichen können Sie die Richtung der ersten Querzustellung bezogen auf den Startpunkt 2. Achse festlegen



454 8 Programmieren: Zyklen

- ▶ Maximale Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug jeweils maximal zugestellt wird. Die TNC berechnet die tatsächliche Zustell-Tiefe aus der Differenz zwischen Endpunkt und Startpunkt in der Werkzeugachse unter Berücksichtigung des Schlichtaufmaßes so, dass jeweils mit gleichen Zustell-Tiefen bearbeitet wird
- Schlichtaufmaß Tiefe Q369 (inkremental): Wert, mit dem die letzte Zustellung verfahren werden soll
- ▶ Max. Bahn-Überlappung Faktor Q370: Maximale seitliche Zustellung k. Die TNC berechnet die tatsächliche seitliche Zustellung aus der 2. Seitenlänge (Q219) und dem Werkzeug-Radius so, dass jeweils mit konstanter seitlicher Zustellung bearbeitet wird. Wenn Sie in der Werkzeug-Tabelle einen Radius R2 eingetragen haben (z.B. Plattenradius bei Verwendung eines Messerkopfes), verringert die TNC die seitlichen Zustellung entsprechend
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min
- ▶ Vorschub Schlichten Q385: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen der letzten Zustellung in mm/min
- ▶ Vorschub Vorpositionieren Q253: Verfahrgeschwindigkeit des Werkzeugs beim Anfahren der Startposition und beim Fahren auf die nächste Zeile in mm/min; wenn Sie im Material quer fahren (Q389=1), dann fährt die TNC die Querzustellung mit Fräsvorschub Q207


- ➤ Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeugspitze und Startposition in der Werkzeugachse. Wenn Sie mit Bearbeitungsstrategie Q389=2 fräsen, fährt die TNC im Sicherheits-Abstand über der aktuellen Zustell-Tiefe den Startpunkt auf der nächsten Zeile an
- ▶ Sicherheits-Abstand Seite Q357 (inkremental): Seitlicher Abstand des Werkzeuges vom Werkstück beim Anfahren der ersten Zustell-Tiefe und Abstand, auf dem die seitliche Zustellung bei Bearbeitungsstrategie Q389=0 und Q389=2 verfahren wird
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann

Beispiel: NC-Sätze

N70 G232 PLANFRAE	SEN
Q389=2	;STRATEGIE
Q225=+10	;STARTPUNKT 1. ACHSE
Q226=+12	;STARTPUNKT 2. ACHSE
Q227=+2.5	;STARTPUNKT 3. ACHSE
Q386=-3	; ENDPUNKT 3. ACHSE
Q218=150	;1. SEITEN-LAENGE
Q219=75	;2. SEITEN-LAENGE
Q202=2	;MAX. ZUSTELL-TIEFE
Q369=0.5	;AUFMASS TIEFE
Q370=1	;MAX. UEBERLAPPUNG
Q207=500	;VORSCHUB FRAESEN
Q385=800	;VORSCHUB SCHLICHTEN
Q253=2000	; VORSCHUB VORPOS.
Q200=2	;SICHERHEITS-ABST.
Q357=2	;SIABSTAND SEITE
Q204=2	;2. SICHERHEITS-ABST.

456 8 Programmieren: Zyklen

Beispiel: Abzeilen

%C230 G71 *	
N10 G30 G17 X+0 Y+0 Z-40 *	Rohteil-Definition
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+5 *	Werkzeug-Definition
N40 T1 G17 S3500 *	Werkzeug-Aufruf
N50 G00 G40 G90 Z+250 *	Werkzeug freifahren
N60 G230 ABZEILEN	Zyklus-Definition Abzeilen
Q225=+0 ;STARTPUNKT 1. ACHSE	
Q226=+0 ;STARTPUNKT 2. ACHSE	
Q227=+35 ;STARTPUNKT 3. ACHSE	
Q218=100 ;1. SEITEN-LAENGE	
Q219=100 ;2. SEITEN-LAENGE	
Q240=25 ;ANZAHL SCHNITTE	
Q206=250 ;VORSCHUB TIEFENZ.	
Q207=400 ; VORSCHUB FRAESEN	
Q209=150 ; VORSCHUB QUER	
Q200=2 ;SICHERHEITS-ABST.	

N70 X-25 Y+0 M03 *	Vorpositionieren in die Nähe des Startpunkts
N80 G79 *	Zyklus-Aufruf
N90 G00 G40 Z+250 M02 *	Werkzeug freifahren, Programm-Ende
N99999999 %C230 G71 *	

8 Programmieren: Zyklen

8.9 Zyklen zur Koordinaten-Umrechnung

Übersicht

Mit Koordinaten-Umrechnungen kann die TNC eine einmal programmierte Kontur an verschiedenen Stellen des Werkstücks mit veränderter Lage und Größe ausführen. Die TNC stellt folgende Koordinaten-Umrechnungszyklen zur Verfügung:

Zyklus	Softkey	Seite
G54 NULLPUNKT Konturen verschieben direkt im Programm	54	Seite 460
G53 NULLPUNKT aus Nullpunkt-Tabelle	53	Seite 461
G247 BEZUGSPUNKT SETZEN Bezugspunkt während des Programmlaufs setzen	247	Seite 465
G28 SPIEGELN Konturen spiegeln	28	Seite 466
G73 DREHUNG Konturen in der Bearbeitungsebene drehen	73	Seite 468
G72 MASSFAKTOR Konturen verkleinern oder vergrößern	72	Seite 469
G80 BEARBEITUNGSEBENE Bearbeitungen im geschwenkten Koordinatensystem durchführen für Maschinen mit Schwenkköpfen und/oder Drehtischen	30	Seite 470

Wirksamkeit der Koordinaten-Umrechnungen

Beginn der Wirksamkeit: Eine Koordinaten-Umrechnung wird ab ihrer Definition wirksam – wird also nicht aufgerufen. Sie wirkt so lange, bis sie rückgesetzt oder neu definiert wird.

Koordinaten-Umrechnung rücksetzen:

- Zyklus mit Werten für das Grundverhalten erneut definieren, z.B. Maßfaktor 1,0
- Zusatzfunktionen M02, M30 oder den Satz N999999 %... ausführen (abhängig von Maschinen-Parameter 7300)
- Neues Programm wählen
- Zusatzfunktion M142 Modale Programminformationen löschen programmieren

NULLPUNKT-Verschiebung (Zyklus G54)

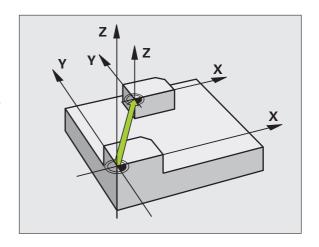
Mit der NULLPUNKT-VERSCHIEBUNG können Sie Bearbeitungen an beliebigen Stellen des Werkstücks wiederholen.

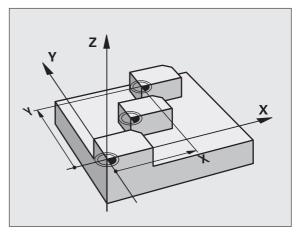
Wirkung

Nach einer Zyklus-Definition NULLPUNKT-VERSCHIEBUNG beziehen sich alle Koordinaten-Eingaben auf den neuen Nullpunkt. Die Verschiebung in jeder Achse zeigt die TNC in der zusätzlichen Status-Anzeige an. Die Eingabe von Drehachsen ist auch erlaubt.

▶ Verschiebung: Koordinaten des neuen Nullpunkts eingeben; Absolutwerte beziehen sich auf den Werkstück-Nullpunkt, der durch das Bezugspunkt-Setzen festgelegt ist; Inkrementalwerte beziehen sich immer auf den zuletzt gültigen Nullpunkt – dieser kann bereits verschoben sein

Rücksetzen


Die Nullpunkt-Verschiebung mit den Koordinatenwerten X=0, Y=0 und Z=0 hebt eine Nullpunkt-Verschiebung wieder auf.


Grafik

Wenn Sie nach einer Nullpunkt-Verschiebung eine neues Rohteil programmieren, können Sie über den Maschinen-Parameter 7310 entscheiden, ob sich das Rohteil auf den neuen oder alten Nullpunkt beziehen soll. Bei der Bearbeitung mehrerer Teile kann die TNC dadurch jedes Teil einzeln grafisch darstellen.

Status-Anzeigen

- Die große Positions-Anzeige bezieht sich auf den aktiven (verschobenen) Nullpunkt
- Alle in der zusätzlichen Status-Anzeige angezeigte Koordinaten (Positionen, Nullpunkte) beziehen sich auf den manuell gesetzten Bezugspunkt

Beispiel: NC-Sätze

N72 G54 G90 X+25 Y-12,5 Z+100 *

. . .

N78 G54 G90 REF X+25 Y-12,5 Z+100 *

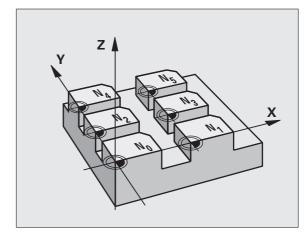
8 Programmieren: Zyklen

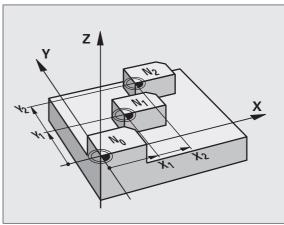
NULLPUNKT-Verschiebung mit Nullpunkt-Tabellen (Zyklus G53)

Nullpunkte aus der Nullpunkt-Tabelle beziehen sich immer und ausschließlich auf den aktuellen Bezugspunkt (Preset).

Der Maschinen-Parameter 7475, mit dem früher festgelegt wurde, ob sich Nullpunkte auf den Maschinen-Nullpunkt oder den Werkstück-Nullpunkt beziehen, hat nur noch eine Sicherheits-Funktion. Ist MP7475 = 1 gesetzt gibt die TNC eine Fehlermeldung aus, wenn eine Nullpunkt-Verschiebung aus einer Nullpunkt-Tabelle aufgerufen wird.

Nullpunkt-Tabellen aus der TNC 4xx, deren Koordinaten sich auf den Maschinen-Nullpunkt bezogen (MP7475 = 1), dürfen in der iTNC 530 nicht verwendet werden.


Wenn Sie Nullpunkt-Verschiebungen mit Nullpunkt-Tabellen einsetzen, dann verwenden Sie die Funktion Select Table, um die gewünschte Nullpunkt-Tabelle vom NC-Programm aus zu aktivieren.


Wenn Sie ohne den Select Table-Satz **%:TAB:** arbeiten, müssen Sie die gewünschte Nullpunkt-Tabelle vor dem Programm-Test oder dem Programm-Lauf aktivieren (gilt auch für die Programmier-Grafik):

- Gewünschte Tabelle für Programm-Test in der Betriebsart **Programm-Test** über die Datei-Verwaltung wählen: Tabelle erhält den Status S
- Gewünschte Tabelle für den Programmlauf in einer Programmlauf-Betriebsart über die Datei-Verwaltung wählen: Tabelle erhält den Status M

Die Koordinaten-Werte aus Nullpunkt-Tabellen sind ausschließlich absolut wirksam.

Neue Zeilen können Sie nur am Tabellen-Ende einfügen

Beispiel: NC-Sätze

N72 G53 P01 12 *

Anwendung

Nullpunkt-Tabellen setzen Sie z.B. ein bei

- häufig wiederkehrenden Bearbeitungsgängen an verschiedenen Werkstück-Positionen oder
- häufiger Verwendung derselben Nullpunktverschiebung

Innerhalb eines Programms können Sie Nullpunkte sowohl direkt in der Zyklus-Definition programmieren als auch aus einer Nullpunkt-Tabelle heraus aufrufen.

▶ Verschiebung: Tabellenzeile? P01: Nummer des Nullpunktes aus der Nullpunkt-Tabelle oder einen Q-Parameter eingeben; Wenn Sie einen Q-Parameter eingeben, dann aktiviert die TNC die Nullpunkt-Nummer, die im Q-Parameter steht

Rücksetzen

- Aus der Nullpunkt-Tabelle Verschiebung zu den Koordinaten X=0: Y=0 etc. aufrufen
- Verschiebung zu den Koordinaten X=0; Y=0 etc. direkt mit einer Zyklus-Definition aufrufen

Nullpunkt-Tabelle im NC-Programm wählen

Mit der Funktion Select Table(%: TAB:) wählen Sie die Nullpunkt-Tabelle, aus der die TNC die Nullpunkte entnimmt:

%:TAB:-Satz vor Zyklus **G53** Nullpunkt-Verschiebung programmieren.

Eine mit Select Table gewählte Nullpunkt-Tabelle bleibt solange aktiv, bis Sie mit **%:TAB:** oder über PGM MGT eine andere Nullpunkt-Tabelle wählen.

► Funktionen zum Programm-Aufruf wählen: Taste PGM CALL drücken

- ► Softkey NULLPUNKT TABELLE drücken
- ▶ Vollständigen Pfadnamen der Nullpunkt-Tabelle eingeben, mit Taste END bestätigen

8 Programmieren: Zyklen

Nullpunkt-Tabelle editieren

Die Nullpunkt-Tabelle wählen Sie in der Betriebsart **Programm-Einspeichern/Editieren**

- ▶ Datei-Verwaltung aufrufen: Taste PGM MGT drücken, siehe "Datei-Verwaltung: Grundlagen", Seite 113
- Nullpunkt-Tabellen anzeigen: Softkeys TYP WÄHLEN und ZEIGE .D drücken
- Gewünschte Tabelle wählen oder neuen Dateinamen eingeben
- Datei editieren. Die Softkey-Leiste zeigt dazu folgende Funktionen an:

Funktion	Softkey
Tabellen-Anfang wählen	ANFANG
Tabellen-Ende wählen	ENDE
Seitenweise blättern nach oben	SEITE
Seitenweise blättern nach unten	SEITE
Zeile einfügen (nur möglich am Tabellen-Ende)	ZEILE EINFÜGEN
Zeile löschen	ZEILE LÖSCHEN
Eingegebene Zeile übernehmen und Sprung zur nächsten Zeile	NÄCHSTE ZEILE
Eingebbare Anzahl von Zeilen (Nullpunkten) am Tabellenende anfügen	N ZEILEN AM ENDE ANFÜGEN

Nullpunkt-Tabelle in einer Programmlauf-Betriebsart editieren

In einer Programmlauf-Betriebsart können Sie die jeweils aktive Nullpunkt-Tabelle wählen. Drücken Sie dazu den Softkey NULLPUNKT-TABELLE. Ihnen stehen dann die selben Editierfunktionen zur Verfügung wie in der Betriebsart **Programm-Einspeichern/Editieren**

HEIDENHAIN iTNC 530

Istwerte in die Nullpunkt-Tabelle übernehmen

Über die Taste "Ist-Position übernehmen" können Sie die aktuelle Werkzeug-Position oder dei zuletzt angetastete Positionen in die Nullpunkt-Tabelle übernehmen:

▶ Eingabefeld auf die Zeile und in die Spalte positionieren, in die eine Position übernommen werden soll

- ▶ Funktion Ist-Position übernehmen wählen: Die TNC fragt in einem Überblendfenster ab, ob Sie die aktuelle Werkzeug-Position oder zuletzt angetastete Werte übernehmen wollen
- ► Gewünschte Funktion mit Pfeiltasten wählen und mit Taste ENT bestätigen

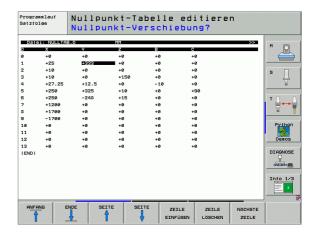
Werte in allen Achsen übernehmen: Softkey ALLE WERTE drücken, oder

Wert in der Achse übernehmen, auf der das Eingabefeld steht: Softkey AKTUELLEN WERT drücken

Nullpunkt-Tabelle konfigurieren

Auf der zweiten und dritten Softkeyleiste können Sie für jede Nullpunkt-Tabelle die Achsen festlegen, für die Sie Nullpunkte definieren wollen. Standardmäßig sind alle Achsen aktiv. Wenn Sie eine Achse aussperren wollen, dann setzen Sie den entsprechenden Achs-Softkey auf AUS. Die TNC löscht dann die zugehörige Spalte in der Nullpunkt-Tabelle.

Wenn Sie zu einer aktiven Achse keinen Nullpunkt definieren wollen, drücken Sie die Taste NO ENT. Die TNC trägt dann einen Bindestrich in die entsprechende Spalte ein.


Nullpunkt-Tabelle verlassen

In der Datei-Verwaltung anderen Datei-Typ anzeigen lassen und gewünschte Datei wählen.

Status-Anzeigen

In der zusätzlichen Status-Anzeige werden folgende Daten aus der Nullpunkt-Tabelle angezeigt (siehe "Koordinaten-Umrechnungen (Reiter TRANS)" auf Seite 59):

- Name und Pfad der aktiven Nullpunkt-Tabelle
- Aktive Nullpunkt-Nummer
- Kommentar aus der Spalte DOC der aktiven Nullpunkt-Nummer

i

BEZUGSPUNKT SETZEN (Zyklus G247)

Mit dem Zyklus BEZUGSPUNKT SETZEN können Sie einen in einer Preset-Tabelle definierten Nullpunkt als neuen Bezugspunkt aktivieren.

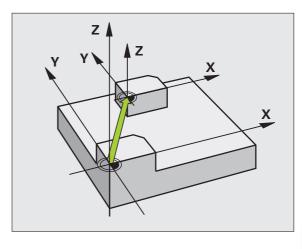
Wirkung

Nach einer Zyklus-Definition BEZUGSPUNKT SETZEN beziehen sich alle Koordinaten-Eingaben und Nullpunkt-Verschiebungen (absolute und inkrementale) auf den neuen Preset.

Beim Aktivieren eines Bezugspunktes aus der Preset-Tabelle, setzt die TNC eine aktive Nullpunkt-Verschiebung zurück.

Die TNC setzt den Preset nur in den Achsen, die in der Preset-Tabelle mit Werten definiert sind. Der Bezugspunkt von Achsen, die mit – gekennzeichnet sind bleibt unverändert.

Wenn Sie den Preset Nummer 0 (Zeile 0) aktivieren, dann aktivieren Sie den Bezugspunkt, den Sie zuletzt in einer manuellen Betriebsart gesetzt haben.


In der Betriebsart PGM-Test ist Zyklus G247 nicht wirksam.

Nummer für Bezugspunkt?: Nummer des Bezugspunktes aus der Preset-Tabelle angeben, der aktiviert werden soll

Status-Anzeigen

In der Status-Anzeige zeigt die TNC die aktive Preset-Nummer hinter dem Bezugspunkt-Symbol an

Beispiel: NC-Satz

N13 G247 BEZUGSPUNKT SETZEN

0339=4

; BEZUGSPUNKT-NUMMER

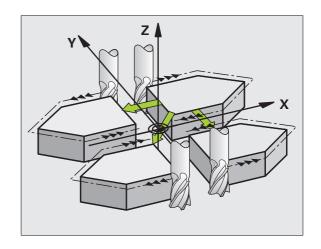
HEIDENHAIN iTNC 530

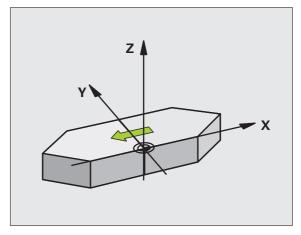
SPIEGELN (Zyklus G28)

Die TNC kann Bearbeitung in der Bearbeitungsebene spiegelbildlich ausführen.

Wirkung

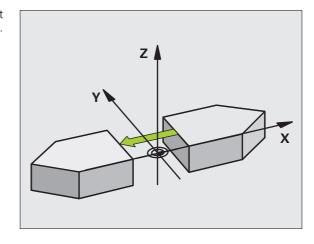
Die Spiegelung wirkt ab ihrer Definition im Programm. Sie wirkt auch in der Betriebsart Positionieren mit Handeingabe. Die TNC zeigt aktive Spiegelachsen in der zusätzlichen Status-Anzeige an.


- Wenn Sie nur eine Achse spiegeln, ändert sich der Umlaufsinn des Werkzeugs. Dies gilt nicht bei Bearbeitungszyklen.
- Wenn Sie zwei Achsen spiegeln, bleibt der Umlaufsinn erhalten.


Das Ergebnis der Spiegelung hängt von der Lage des Nullpunkts ab:

- Nullpunkt liegt auf der zu spiegelnden Kontur: Das Element wird direkt am Nullpunkt gespiegelt
- Nullpunkt liegt außerhalb der zu spiegelnden Kontur: Das Element verlagert sich zusätzlich

Wenn Sie nur eine Achse Spiegeln, ändert sich der Umlaufsinn bei den Frässzyklen mit 200er Nummer. Außnahme: Zyklus 208, bei dem der im Zyklus definierte Umlaufsinn erhalten bleibt.


i

▶ Gespiegelte Achse?: Achsen eingeben, die gespiegelt werden sollen; Sie können alle Achsen spiegeln – incl. Drehachsen – mit Ausnahme der Spindelachse und der dazugehörigen Nebenachse. Erlaubt ist die Eingabe von maximal drei Achsen

Rücksetzen

Zyklus SPIEGELN mit Eingabe NO ENT erneut programmieren.

Beispiel: NC-Satz

N72 G28 X Y *

DREHUNG (Zyklus G73)

Innerhalb eines Programms kann die TNC das Koordinatensystem in der Bearbeitungsebene um den aktiven Nullpunkt drehen.

Wirkung

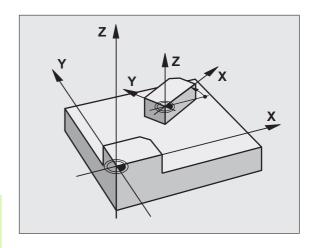
Die DREHUNG wirkt ab ihrer Definition im Programm. Sie wirkt auch in der Betriebsart Positionieren mit Handeingabe. Die TNC zeigt den aktiven Drehwinkel in der zusätzlichen Status-Anzeige an.

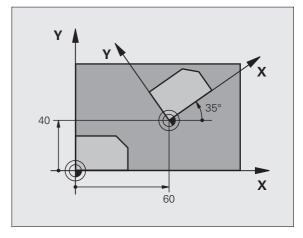
Bezugsachse für den Drehwinkel:

- X/Y-Ebene X-Achse
- Y/Z-Ebene Y-Achse
- Z/X-Ebene Z-Achse

Beachten Sie vor dem Programmieren

Die TNC hebt eine aktive Radius-Korrektur durch Definieren von Zyklus **673** auf. Ggf. Radius-Korrektur erneut programmieren.


Nachdem Sie Zyklus **G73** definiert haben, verfahren Sie beide Achsen der Bearbeitungsebene, um die Drehung zu aktivieren.



▶ Drehung: Drehwinkel in Grad (°) eingeben. Eingabe-Bereich: -360° bis +360° (absolut G90 vor H oder inkremental G91 vor H)

Rücksetzen

Zyklus DREHUNG mit Drehwinkel 0° erneut programmieren.

Beispiel: NC-Satz

N72 G73 G90 H+25 *

MASSFAKTOR (Zyklus G72)

Die TNC kann innerhalb eines Programms Konturen vergrößern oder verkleinern. So können Sie beispielsweise Schrumpf- und Aufmaß-Faktoren berücksichtigen.

Wirkung

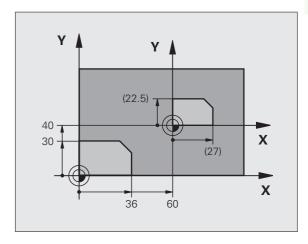
Der MASSFAKTOR wirkt ab seiner Definition im Programm. Er wirkt auch in der Betriebsart Positionieren mit Handeingabe. Die TNC zeigt den aktiven Maßfaktor in der zusätzlichen Status-Anzeige an.

Der Maßfaktor wirkt

- in der Bearbeitungsebene, oder auf alle drei Koordinatenachsen gleichzeitig (abhängig von Maschinen-Parameter 7410)
- auf Maßangaben in Zyklen
- auch auf Parallelachsen U,V,W

Voraussetzung

Vor der Vergrößerung bzw. Verkleinerung sollte der Nullpunkt auf eine Kante oder Ecke der Kontur verschoben werden.


▶ Faktor?: Faktor F eingeben; die TNC multipliziert Koordinaten und Radien mit F (wie in "Wirkung" beschrieben

Vergrößern: F größer als 1 bis 99,999 999 Verkleinern: F kleiner als 1 bis 0,000 001

Rücksetzen

Zyklus MASSFAKTOR mit Faktor 1 für die entsprechende Achse erneut programmieren.

Z A X X

Beispiel: NC-Sätze

N72 G72 F0,750000 *

BEARBEITUNGSEBENE (Zyklus G80, Software-Option 1)

Die Funktionen zum Schwenken der Bearbeitungsebene werden vom Maschinenhersteller an TNC und Maschine angepasst. Bei bestimmten Schwenkköpfen (Schwenktischen) legt der Maschinenhersteller fest, ob die im Zyklus programmierten Winkel von der TNC als Koordinaten der Drehachsen oder als mathematische Winkel einer schiefen Ebene interpretiert werden. Beachten Sie Ihr Maschinenhandbuch.

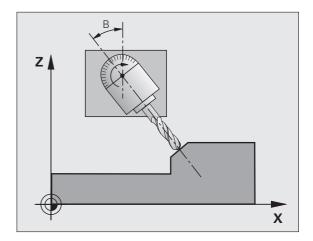
Das Schwenken der Bearbeitungsebene erfolgt immer um den aktiven Nullpunkt.

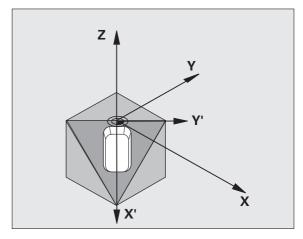
Wenn Sie den Zyklus 19 bei aktivem M120 verwenden, dann hebt die TNC die Radius-Korrektur und damit auch die Funktion M120 automatisch auf.

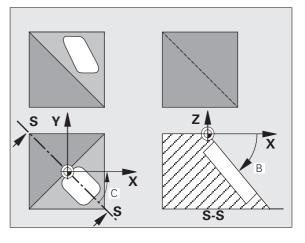
Grundlagen siehe "Bearbeitungsebene schwenken (Software-Option 1)", Seite 90: Lesen Sie diesen Abschnitt vollständig durch.

Wirkung

Im Zyklus **680** definieren Sie die Lage der Bearbeitungsebene – sprich die Lage der Werkzeugachse bezogen auf das maschinenfeste Koordinatensystem – durch die Eingabe von Schwenkwinkeln. Sie können die Lage der Bearbeitungsebene auf zwei Arten festlegen:


- Stellung der Schwenkachsen direkt eingeben
- Lage der Bearbeitungsebene durch bis zu drei Drehungen (Raumwinkel) des **maschinenfesten** Koordinatensystems beschreiben. Die einzugebenden Raumwinkel erhalten Sie, indem Sie einen Schnitt senkrecht durch die geschwenkte Bearbeitungsebene legen und den Schnitt von der Achse aus betrachten, um die Sie schwenken wollen. Mit zwei Raumwinkeln ist bereits jede beliebige Werkzeuglage im Raum eindeutig definiert.




Beachten Sie, dass die Lage des geschwenkten Koordinatensystems und damit auch Verfahrbewegungen im geschwenkten System davon abhängen, wie Sie die geschwenkte Ebene beschreiben.

Wenn Sie die Lage der Bearbeitungsebene über Raumwinkel programmieren, berechnet die TNC die dafür erforderlichen Winkelstelllungen der Schwenkachsen automatisch und legt diese in den Parametern Q120 (A-Achse) bis Q122 (C-Achse) ab. Sind zwei Lösungen möglich, wählt die TNC – ausgehend von der Nullstellung der Drehachsen – den kürzeren Weg.

Die Reihenfolge der Drehungen für die Berechnung der Lage der Ebene ist festgelegt: Zuerst dreht die TNC die A-Achse, danach die B-Achse und schließlich die C-Achse.

470 8 Programmieren: Zyklen

Zyklus 19 wirkt ab seiner Definition im Programm. Sobald Sie eine Achse im geschwenkten System verfahren, wirkt die Korrektur für diese Achse. Wenn die Korrektur in allen Achsen verrechnet werden soll, dann müssen Sie alle Achsen verfahren.

Falls Sie die Funktion SCHWENKEN Programmlauf in der Betriebsart Manuell auf AKTIV gesetzt haben (siehe "Bearbeitungsebene schwenken (Software-Option 1)", Seite 90) wird der in diesem Menü eingetragene Winkelwert vom Zyklus **G80** BEARBEITUNGSEBENE überschrieben.

▶ Drehachse und -winkel?: Drehachse mit zugehörigem Drehwinkel eingeben; die Drehachsen A, B und C über Softkeys programmieren

Da nicht programmierte Drehachsenwerte grundsätzlich immer als unveränderte Werte interpretiert werden, sollten Sie immer alle drei Raumwinkel definieren, auch wenn einer oder mehrere Winkel gleich 0 sind.

Wenn die TNC die Drehachsen automatisch positioniert, dann können Sie noch folgende Parameter eingeben

- ▶ Vorschub? F=: Verfahrgeschwindigkeit der Drehachse beim automatischen Positionieren
- ▶ Sicherheits-Abstand? (inkremental): Die TNC positioniert den Schwenkkopf so, dass die Position, die sich aus der Verlängerung des Werkzeugs um den Sicherheits-Abstand, sich relativ zum Werkstück nicht ändert

Rücksetzen

Um die Schwenkwinkel rückzusetzen, Zyklus BEARBEITUNGSEBENE erneut definieren und für alle Drehachsen 0° eingeben. Anschließend Zyklus BEARBEITUNGSEBENE nochmal definieren, und den Satz ohne Achsangabe abschließen. Dadurch setzen Sie die Funktion inaktiv.

Drehachse positionieren

Der Maschinenhersteller legt fest, ob Zyklus **680** die Drehachse(n) automatisch positioniert, oder ob Sie die Drehachsen im Programm vorpositionieren müssen. Beachten Sie Ihr Maschinenhandbuch.

Wenn Zyklus **G80** die Drehachsen automatisch positioniert, gilt:

- Die TNC kann nur geregelte Achsen automatisch positionieren
- In der Zyklus-Definition müssen Sie zusätzlich zu den Schwenkwinkeln einen Sicherheits-Abstand und einen Vorschub eingeben, mit dem die Schwenkachsen positioniert werden
- Nur voreingestellte Werkzeuge verwenden (volle Werkzeuglänge im G99-Satz bzw. in der Werkzeug-Tabelle)
- Beim Schwenkvorgang bleibt die Position der Werkzeugspitze gegenüber dem Werkstück nahezu unverändert
- Die TNC führt den Schwenkvorgang mit dem zuletzt programmierten Vorschub aus. Der maximal erreichbare Vorschub hängt ab von der Komplexität des Schwenkkopfes (Schwenktisches)

Wenn Zyklus **G80** die Drehachsen nicht automatisch positioniert, positionieren Sie die Drehachsen z.B. mit einem G01-Satz vor der Zyklus-Definition.

NC-Beispielsätze:

N50 G00 G40 Z+100 *	
N60 X+25 Y+10 *	
N70 G01 A+15 F1000 *	Drehachse positionieren
N80 G80 A+15 *	Winkel für Korrekturberechnung definieren
N90 G00 GG40 Z+80 *	Korrektur aktivieren Spindelachse
N100 X-7,5 Y-10 *	Korrektur aktivieren Bearbeitungsebene

472 8 Programmieren: Zyklen

Positions-Anzeige im geschwenkten System

Die angezeigten Positionen (**SOLL** und **IST**) und die Nullpunkt-Anzeige in der zusätzlichen Status-Anzeige beziehen sich nach dem Aktivieren von Zyklus **G80** auf das geschwenkte Koordinatensystem. Die angezeigte Position stimmt direkt nach der Zyklus-Definition also ggf. nicht mehr mit den Koordinaten der zuletzt vor Zyklus **G80** programmierten Position überein.

Arbeitsraum-Überwachung

Die TNC überprüft im geschwenkten Koordinatensystem nur die Achsen auf Endschalter, die verfahren werden. Ggf. gibt die TNC eine Fehlermeldung aus.

Positionieren im geschwenkten System

Mit der Zusatz-Funktion M130 können Sie auch im geschwenkten System Positionen anfahren, die sich auf das ungeschwenkte Koordinatensystem beziehen, siehe "Zusatz-Funktionen für Koordinatenangaben", Seite 268.

Auch Positionierungen mit Geradensätzen die sich auf das Maschinen-Koordinatensystem beziehen (Sätze mit M91 oder M92), lassen sich bei geschwenkter Bearbeitungsebene ausführen. Einschränkungen:

- Positionierung erfolgt ohne Längenkorrektur
- Positionierung erfolgt ohne Maschinengeometrie-Korrektur
- Werkzeug-Radiuskorrektur ist nicht erlaubt

Kombination mit anderen Koordinaten-Umrechnungszyklen

Bei der Kombination von Koordinaten-Umrechnungszyklen ist darauf zu achten, dass das Schwenken der Bearbeitungsebene immer um den aktiven Nullpunkt erfolgt. Sie können eine Nullpunkt-Verschiebung vor dem Aktivieren von Zyklus **680** durchführen: dann verschieben Sie das "maschinenfeste Koordinatensystem".

Falls Sie den Nullpunkt nach dem Aktivieren von Zyklus **G80** verschieben, dann verschieben Sie das "geschwenkte Koordinatensystem".

Wichtig: Gehen Sie beim Rücksetzen der Zyklen in der umgekehrten Reihenfolge wie beim Definieren vor:

- 1. Nullpunkt-Verschiebung aktivieren
- 2. Bearbeitungsebene schwenken aktivieren
- 3. Drehung aktivieren

..

Werkstückbearbeitung

. . .

- 1. Drehung rücksetzen
- 2. Bearbeitungsebene schwenken rücksetzen
- 3. Nullpunkt-Verschiebung rücksetzen

Automatisches Messen im geschwenkten System

Mit den Messzyklen der TNC können Sie Werkstücke im geschwenkten System vermessen. Die Messergebnisse werden von der TNC in Q-Parametern gespeichert, die Sie anschließend weiterverarbeiten können (z.B. Messergebnisse auf Drucker ausgeben).

Leitfaden für das Arbeiten mit Zyklus G80 BEARBEITUNGSEBENE 1 Programm erstellen

- Werkzeug definieren (entfällt, wenn TOOL.T aktiv), volle Werkzeug-Länge eingeben
- ▶ Werkzeug aufrufen
- Spindelachse so freifahren, dass beim Schwenken keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Ggf. Drehachse(n) mit **601**-Satz positionieren auf entsprechenden Winkelwert (abhängig von einem Maschinen-Parameter)
- ► Ggf. Nullpunkt-Verschiebung aktivieren
- Zyklus 680 BEARBEITUNGSEBENE definieren; Winkelwerte der Drehachsen eingeben
- Alle Hauptachsen (X, Y, Z) verfahren, um die Korrektur zu aktivieren
- Bearbeitung so programmieren, als ob sie in der ungeschwenkten Ebene ausgeführt werden würde
- Ggf. Zyklus G80 BEARBEITUNGSEBENE mit anderen Winkeln definieren, um die Bearbeitung in einer anderen Achsstellung auszuführen. Es ist in diesem Fall nicht erforderlich Zyklus G80 zurückzusetzen, Sie können direkt die neuen Winkelstellungen definieren
- Zyklus G80 BEARBEITUNGSEBENE rücksetzen; für alle Drehachsen 0° eingeben
- ► Funktion BEARBEITUNGSEBENE deaktivieren; Zyklus **680** erneut definieren, Satz ohne Achsangabe abschließen
- ► Gaf. Nullpunkt-Verschiebung rücksetzen
- ▶ Ggf. Drehachsen in die 0°-Stellung positionieren

2 Werkstück aufspannen

3 Vorbereitungen in der Betriebsart Positionieren mit Handeingabe

Drehachse(n) zum Setzen des Bezugspunkts auf entsprechenden Winkelwert positionieren. Der Winkelwert richtet sich nach der von Ihnen gewählten Bezugsfläche am Werkstück.

474 8 Programmieren: Zyklen

4 Vorbereitungen in der Betriebsart Manueller Betrieb

Funktion Bearbeitungsebene schwenken mit Softkey 3D-ROT auf AKTIV setzen für Betriebsart Manueller Betrieb; bei nicht geregelten Achsen Winkelwerte der Drehachsen ins Menü eintragen.

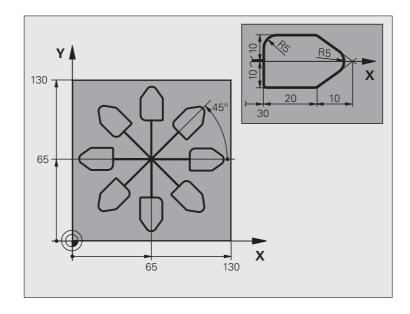
Bei nicht geregelten Achsen müssen die eingetragenen Winkelwerte mit der Ist-Position der Drehachse(n) übereinstimmen, sonst berechnet die TNC den Bezugspunkt falsch.

5 Bezugspunkt-Setzen

- Manuell durch Ankratzen wie im ungeschwenkten System siehe "Bezugspunkt-Setzen (ohne 3D-Tastsystem)", Seite 81
- Gesteuert mit einem HEIDENHAIN 3D-Tastsystem (siehe Benutzer-Handbuch Tastsystem-Zyklen, Kapitel 2)
- Automatisch mit einem HEIDENHAIN 3D-Tastsystem (siehe Benutzer-Handbuch Tastsystem-Zyklen, Kapitel 3)

6 Bearbeitungsprogramm in der Betriebsart Programmlauf Satzfolge starten

7 Betriebsart Manueller Betrieb


Funktion Bearbeitungsebene schwenken mit Softkey 3D-ROT auf INAKTIV setzen. Für alle Drehachsen Winkelwert 0° ins Menü eintragen, siehe "Manuelles Schwenken aktivieren", Seite 94.

Beispiel: Koordinaten-Umrechnungszyklen

Programm-Ablauf

- Koordinaten-Umrechnungen im Hauptprogramm
- Bearbeitung im Unterprogramm, siehe "Unterprogramme", Seite 515

%KOUMR G71 *	
N10 G30 G17 X+0 Y+0 Z-40 *	Rohteil-Definition
N20 G31 G90 X+130 Y+130 Z+0 *	
N30 G99 T1 L+0 R+1 *	Werkzeug-Definition
N40 T1 G17 S3500 *	Werkzeug-Aufruf
N50 G00 G40 G90 Z+250 *	Werkzeug freifahren
N60 G54 X+65 Y+65 *	Nullpunkt-Verschiebung ins Zentrum
N70 L1,0 *	Fräsbearbeitung aufrufen
N80 G98 L10 *	Marke für Programmteil-Wiederholung setzen
N90 G73 G91 H+45 *	Drehung um 45° inkremental
N100 L1,0 *	Fräsbearbeitung aufrufen
N110 L10,6 *	Rücksprung zu LBL 10; insgesamt sechsmal
N120 G73 G90 H+0	Drehung rücksetzen
N130 G54 X+0 Y+0 *	Nullpunkt-Verschiebung rücksetzen
N140 G00 Z+250 M2 *	Werkzeug freifahren, Programm-Ende

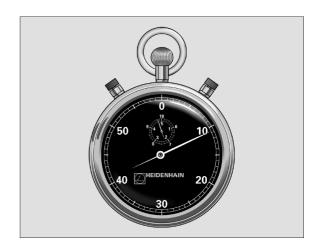
476 8 Programmieren: Zyklen

N150 G98 L1 *	Unterprogramm 1:
N160 G00 G40 X+0 Y+0 *	Festlegung der Fräsbearbeitung
N170 Z+2 M3 *	
N180 G01 Z-5 F200 *	
N190 G41 X+30 *	
N200 G91 Y+10 *	
N210 G25 R5 *	
N220 X+20 *	
N230 X+10 Y-10 *	
N240 G25 R5 *	
N250 X-10 Y-10 *	
N260 X-20 *	
N270 Y+10 *	
N280 G40 G90 X+0 Y+0 *	
N290 G00 Z+20 *	
N300 G98 L0 *	
N99999999 %KOUMR G71 *	

8.10 Sonder-Zyklen

VERWEILZEIT (Zyklus G04)

Der Programmlauf wird für die Dauer der VERWEILZEIT angehalten. Eine Verweilzeit kann beispielsweise zum Spanbrechen dienen.


Wirkung

Der Zyklus wirkt ab seiner Definition im Programm. Modal wirkende (bleibende) Zustände werden dadurch nicht beeinflusst, wie z.B. die Drehung der Spindel.

▶ Verweilzeit in Sekunden: Verweilzeit in Sekunden eingeben

Eingabebereich 0 bis 3 600 s (1 Stunde) in 0,001 s-Schritten

Beispiel: NC-Satz

N74 G04 F1,5 *

PROGRAMM-AUFRUF (Zyklus G39)

Sie können beliebige Bearbeitungs-Programme, wie z.B. spezielle Bohrzyklen oder Geometrie-Module, einem Bearbeitungs-Zyklus gleichstellen. Sie rufen dieses Programm dann wie einen Zyklus auf.

Beachten Sie vor dem Programmieren

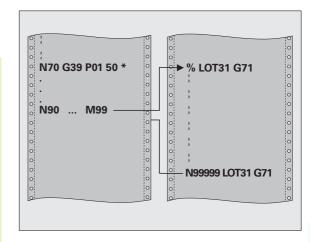
Das aufgerufene Programm muss auf der Festplatte der TNC gespeichert sein.

Wenn Sie nur den Programm-Namen eingeben, muss das zum Zyklus deklarierte Programm im selben Verzeichnis stehen wie das rufende Programm.

Wenn das zum Zyklus deklarierte Programm nicht im selben Verzeichnis steht wie das rufende Programm, dann geben Sie den vollständigen Pfadnamen ein, z.B.TNC:\KLAR35\FK1\50.I.

Wenn Sie ein DIN/ISO-Programm zum Zyklus deklarieren wollen, dann geben Sie den Datei-Typ .I hinter dem Programm-Namen ein.

Q-Parameter wirken bei einem Programm-Aufruf mit Zyklus G39 grundsätzlich global. Beachten Sie daher, dass Änderungen an Q-Parametern im aufgerufenen Programm sich ggf. auch auf das aufrufende Programm auswirken.


▶ Programm-Name: Name des aufzurufenden Programms ggf. mit Pfad, in dem das Programm steht

Das Programm rufen Sie auf mit

- **G79** (separater Satz) oder
- M99 (satzweise) oder
- M89 (wird nach jedem Positionier-Satz ausgeführt)

Beispiel: Programm-Aufruf

Aus einem Programm soll ein über Zyklus aufrufbares Programm 50 gerufen werden.

Beispiel: NC-Sätze

N550 G39 P01 50 *

N560 G00 X+20 Y+50 M99 *

SPINDEL-ORIENTIERUNG (Zyklus G36)

Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein.

In den Bearbeitungszyklen 202, 204 und 209 wird intern Zyklus 13 verwendet. Beachten Sie in Ihrem NC-Programm, dass Sie ggf. Zyklus 13 nach einem der oben genannten Bearbeitungszyklen erneut programmieren müssen.

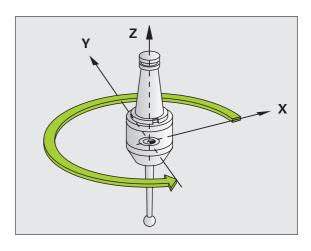
Die TNC kann die Hauptspindel einer Werkzeugmaschine ansteuern und in eine durch einen Winkel bestimmte Position drehen.

Die Spindel-Orientierung wird z.B. benötigt

- bei Werkzeugwechsel-Systemen mit bestimmter Wechsel-Position für das Werkzeug
- zum Ausrichten des Sende- und Empfangsfensters von 3D-Tastsystemen mit Infrarot-Übertragung

Wirkung

Die im Zyklus definierte Winkelstellung positioniert die TNC durch Programmieren von M19 oder M20 (maschinenabhängig).


Wenn Sie M19, bzw. M20 programmieren, ohne zuvor den Zyklus G36 definiert zu haben, dann positioniert die TNC die Hauptspindel auf einen Winkelwert, der in einem Maschinen-Parameter festgelegt ist (siehe Maschinenhandbuch).

▶ Orientierungswinkel: Winkel bezogen auf die Winkel-Bezugsachse der Arbeitsebene eingeben

Eingabe-Bereich: 0 bis 360°

Eingabe-Feinheit: 0,001°

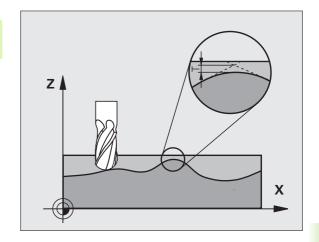
Beispiel: NC-Satz

N76 G36 S25 *

TOLERANZ (Zyklus G62)

Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein.

Durch die Angaben im Zyklus G62 können Sie das Ergebnis bei der HSC-Bearbeitung hinsichtlich Genauigkeit, Oberflächengüte und Geschwindigkeit beeinflussen, sofern die TNC an die maschinenspezifischen Eigenschaften angepasst wurde.


Die TNC glättet automatisch die Kontur zwischen beliebigen (unkorrigierten oder korrigierten) Konturelementen. Dadurch verfährt das Werkzeug kontinuierlich auf der Werkstück-Oberfläche und schont dabei die Maschinenmechanik. Zusäztlich wirkt die im Zyklus definierte Toleranz auch bei Verfahrbewegungen auf Kreisbögen.

Falls erforderlich, reduziert die TNC den programmierten Vorschub automatisch, so dass das Programm immer "ruckelfrei" mit der schnellstmöglichen Geschwindigkeit von der TNC abgearbeitet wird. Auch wenn die TNC mit nicht reduzierter Geschwindigkeit verfährt, wird die von Ihnen definierte Toleranz grundsätzlich immer eingehalten. Je größer Sie die Toleranz definieren, desto schneller kann die TNC verfahren.

Durch das Glätten der Kontur entsteht eine Abweichung. Die Größe dieser Konturabweichung (**Toleranzwert**) ist in einem Maschinen-Parameter von Ihrem Maschinenhersteller festgelegt. Mit dem Zyklus **32** können Sie den voreingestellten Toleranzwert verändern und unterschiedliche Filtereinstellungen wählen, vorausgesetzt ihr Maschinenhersteller nutzt diese Einstellmöglichkeiten.

Bei sehr kleinen Toleranzwerten kann die Maschine die Kontur nicht mehr ruckelfrei bearbeiten. Das Ruckeln liegt nicht an fehlender Rechenleistung der TNC, sondern an der Tatsache, dass die TNC die Konturübergänge nahezu exakt anfahren, die Verfahrgeschwindigkeit also ggf. drastisch reduzieren muss.

Einflüsse bei der Geometriedefinition im CAM-System

Der wesentlichste Einflussfaktor bei der externen NC-Programmerstellung ist der im CAM-System definierbare Sehnenfehler S. Über den Sehnenfehler definiert sich der maximale Punktabstand des über einen Postprozessor (PP) erzeugten NC-Programmes. Ist der Sehnenfehler gleich oder kleiner als der im Zyklus G62 gewählte Toleranzwert T, dann kann die TNC die Konturpunkte glätten, sofern durch spezielle Maschineneinstellungen der programmierte Vorschub nicht begrenzt wird.

Eine optimale Glättung der Kontur erhalten Sie, wenn Sie den Toleranzwert im Zyklus G62 zwischen dem 1,1 und 2-fachen des CAM-Sehnenfehlers wählen.

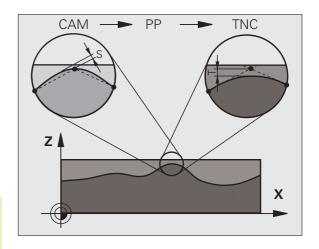
Programmierung

Beachten Sie vor dem Programmieren

Zyklus G62 ist DEF-Aktiv, das heißt ab seiner Definition im Programm wirksam.

Die TNC setzt den Zyklus G62 zurück, wenn Sie

- den Zyklus G62 erneut definieren und die Dialogfrage nach dem Toleranzwert mit NO ENT bestätigen
- über die Taste PGM MGT ein neues Programm anwählen


Nachdem Sie den Zyklus G62 zurückgesetzt haben, aktiviert die TNC wieder die über Maschinen-Parameter voreingestellte Toleranz.

Der eingegebene Toleranzwert T wird von der TNC in MMprogramm in der Maßeinheit mm und in einem Inch-Programm in der Maßeinheit Inch interpretiert.

Wenn Sie ein Programm mit Zyklus G62 einlesen, dass als Zyklusparameter nur den **Toleranzwert** T beinhaltet, fügt die TNC ggf. die beiden restlichen Parameter mit dem Wert 0 ein.

Bei zunehmender Toleranzeingabe verkleinert sich bei Kreisbewegungen im Regelfall der Kreisdurchmesser. Wenn an Ihrer Maschine der HSC-Filter aktiv ist (ggf. beim Maschinenhersteller nachfragen), kann der Kreis auch größer werden.

Wenn Zyklus G62 aktiv ist, zeigt die TNC in der zusätzlichen Status-Anzeige, Reiter **CYC** die definierten G32-Parameter an.

8 Programmieren: Zyklen

▶ Toleranzwert: Zulässige Konturabweichung in mm (bzw. inch bei Inch-Programmen)

► Schlichten=0, Schruppen=1: Filter aktivieren:

■ Eingabewert 0:

Mit höherer Konturgenauigkeit fräsen. Die TNC verwendet die von Ihrem Maschinenhersteller definierten Schlicht-Filtereinstellungen.

■ Eingabewert 1:

Mit höherer Vorschub-Geschwindigkeit fräsen. Die TNC verwendet die von Ihrem Maschinenhersteller definierten Schrupp-Filtereinstellungen. Die TNC arbeitet mit optimaler Glättung der Konturpunkte was zu einer Reduzierung der Bearbeitungszeit führt

Positionsabweichung von Drehachsen in Grad bei aktivem M128. Die TNC reduziert den Bahnvorschub immer so, dass bei mehrachsigen Bewegungen die langsamste Achse mit ihrem maximalen Vorschub verfährt. In der Regel sind Drehachsen wesentlich langsamer als Linearachsen. Durch Eingabe einer großen Toleranz (z.B. 10°), können Sie die Bearbeitungszeit bei mehrachsigen Bearbeitungs-Programmen erheblich verkürzen, da die TNC die Drehachse dann nicht immer auf die vorgegebene Soll-Position fahren muss. Die Kontur wird durch Eingabe der Drehachsen-Toleranz nicht verletzt. Es verändert sich lediglich die Stellung der Drehachse bezogen auf die Werkstück-Oberfläche

Die Parameter **P01** und **P02** stehen nur dann zur Vefügung, wenn Sie an Ihrer Maschine die Software-Option 2 (HSC-Bearbeitung) aktiv haben.

Beispiel: NC-Satz

N78 G62 T0,05 P01 0 P02 5

HEIDENHAIN iTNC 530

Programmieren: Sonderfunktionen

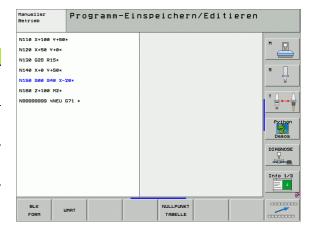
9.1 Übersicht Sonderfunktionen

Über die Taste SPEC FCT und die entsprechenden Softkeys, haben Sie Zugriff auf die verschiedensten Sonderfunktionen der TNC. In den folgenden Tabellen erhalten Sie eine Übersicht, welche Funktionen verfügbar sind.

Hauptmenü Sonderfunktionen SPEC FCT

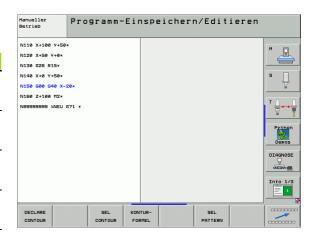
► Sonderfunktionen wählen

Funktion	Softkey	Beschreibung
Programmvorgaben definieren	PROGRAMM VORGABEN	Seite 486
Funktionen für Kontur- und Punktbearbeitungen	KONTUR/- PUNKT BEARB.	Seite 487
PLANE-Funktion definieren	BEARB EBENE SCHWENKEN	Seite 489
Verschiedene DIN/ISO- Funktionen definieren	PROGRAMM FUNKTIONEN	Seite 487
Programmierhilfen verwenden	PROGRAM- MIER HILFEN	Seite 488
Gliederungspunkt definieren	GLIEDE- RUNG EINFÜGEN	Seite 154



Menü Programmvorgaben

Menü Programmvorgaben wählen


Funktion	Softkey	Beschreibung
Rohteil definieren	BLK FORM	Seite 137
Werkstoff definieren	WMAT	Seite 215
Nullpunkt-Tabelle wählen	NULLPUNKT TABELLE	Seite 462

Menü Funktionen für Kontur- und Punktbearbeitungen

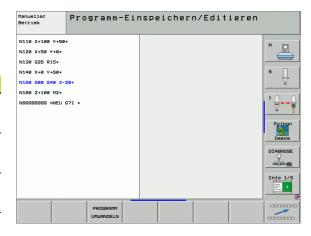
KONTUR/-PUNKT BEARB. Menü für Funktionen zur Kontur- und Punktbearbeitung wählen

Funktion	Softkey	Beschreibung
Konturbeschreibung zuweisen	DECLARE CONTOUR	Seite 436
Konturdefinition wählen	SEL CONTOUR	Seite 435
Komplexe Konturformel definieren	KONTUR- FORMEL	Seite 434
Punkte-Datei mit Bearbeitungspositionen wählen	SEL PATTERN	Seite 307

Menü verschiedene DIN/ISO-Funktionen definieren

► Menü zur Definition verschiedener Klartext-Funktionen wählen

Funktion	Softkey	Beschreibung
String-Funktionen definieren	STRING FUNKTIONEN	Seite 552



Menü Programmierhilfen (nur Klartext-Dialog)

- ▶ Menü für Programmierhilfen wählen
- Menü zur Umwandlung/Konvertierung von Dateien wählen

Funktion	Softkey	Beschreibung
Strukturierte Programm- Konvertierung FK nach H	UMWANDELN FK->H STRUKTUR	Klartext- Handbuch
Unstrukturierte Programm- Konvertierung FK nach H	UMWANDELN FK->H LINEAR	Klartext- Handbuch
Rückwärts-Programm erzeugen	UMWANDELN PGM 4 FWD .REV	Klartext- Handbuch
Konturen filtern	UMWANDELN	Klartext- Handbuch

9.2 Die PLANE-Funktion: Schwenken der Bearbeitungsebene (Software-Option 1)

Einführung

Die Funktionen zum Schwenken der Bearbeitungsebene müssen von Ihrem Maschinenhersteller freigegeben sein!

Die PLANE-Funktion können Sie grundsätzlich nur an Maschinen einsetzen, die über mindestens zwei Drehachsen (Tisch oder/und Kopf) verfügen. Ausnahme: Die Funktion **PLANE AXIAL** können Sie auch dann verwenden, wenn an Ihrer Maschine nur eine einzelne Drehachse vorhanden bzw. aktiv ist.

Mit der PLANE-Funktion (engl. plane = Ebene) steht Ihnen eine leistungsfähige Funktion zur Verfügung, mit der Sie auf unterschiedliche Weisen geschwenkte Bearbeitungsebenen definieren können.

Alle in der TNC verfügbaren **PLANE**-Funktionen beschreiben die gewünschte Bearbeitungsebene unabhängig von den Drehachsen, die tatsächlich an Ihrer Maschine vorhanden sind. Folgende Möglichkeiten stehen zur Verfügung:

Funktion	Erforderliche Parameter	Softkey	Seite
SPATIAL	Drei Raumwinkel SPA, SPB, SPC	SPATIAL	Seite 493
PROJECTED	Zwei Projektionswinkel PROPR und PROMIN sowie ein Rotationswinkel ROT	PROJECTED	Seite 495
EULER	Drei Eulerwinkel Präzession (EULPR), Nutation (EULNU) und Rotation (EULROT)	EULER	Seite 497
VECTOR	Normalenvektor zur Definition der Ebene und Basisvektor zur Definition der Richtung der geschwenkten X-Achse	VECTOR	Seite 499
POINTS	Koordinaten von drei beliebigen Punkten der zu schwenkenden Ebene	POINTS	Seite 501
RELATIV	Einzelner, inkremental wirkender Raumwinkel	REL. SPA.	Seite 503

Funktion	Erforderliche Parameter	Softkey	Seite
AXIAL	Bis zu drei absolute oder inkrementale Achswinkel A, B, C	AXIAL	Seite 505
RESET	PLANE-Funktion rücksetzen	RESET	Seite 492

Um die Unterschiede zwischen den einzelnen Definitionsmöglichkeiten bereits vor der Funktionsauswahl zu verdeutlichen, können Sie per Softkey eine Animation starten.

Die Parameter-Definition der **PLANE**-Funktion ist in zwei Teile gegliedert:

- Die geometrische Definition der Ebene, die für jede der verfügbaren PLANE-Funktionen unterschiedlich ist
- Das Positionierverhalten der PLANE-Funktion, das unabhängig von der Ebenendefinition zu sehen ist und für alle PLANE-Funktionen identisch ist (siehe "Positionierverhalten der PLANE-Funktion festlegen" auf Seite 507)

Die Funktion Ist-Position übernehmen ist bei aktiver geschwenkter Bearbeitungsebene nicht möglich.

Wenn Sie die **PLANE**-Funktion bei aktivem M120 verwenden, dann hebt die TNC die Radius-Korrektur und damit auch die Funktion M120 automatisch auf.

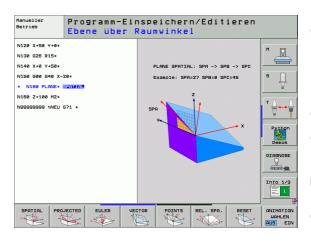
PLANE-Funktion definieren

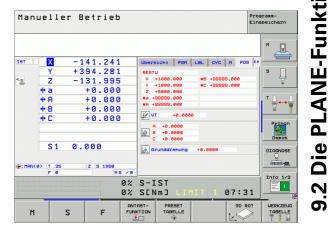
▶ Softkey-Leiste mit Sonderfunktionen einblenden

► TNC Sonderfunktionen wählen: Softkey SPEZIELLE TNC FUNKT, drücken

▶ PLANE-Funktion wählen: Softkey BEARB.-EBENE SCHWENKEN drücken: Die TNC zeigt in der Softkey-Leiste die zur Verfügung stehenden Definitionsmöglichkeiten an

Funktion wählen bei aktiver Animation


- Animation einschalten: Softkey ANIMATION WÄHLEN EIN/AUS auf EIN stellen
- ► Animation für die verschiedenen Definitionsmöglichkeiten starten: Einen der zur Verfügung stehenden Softkeys drücken, die TNC hinterlegt den gedrückten Softkey andersfarbig und startet die zugehörige Animation
- ▶ Um die momentan aktive Funktion zu übernehmen: Taste ENT drücken oder Softkey der aktiven Funktion erneut drücken: Die TNC führt den Dialog fort und fragt die erforderlichen Parameter ab


Funktion wählen bei inaktiver Animation

▶ Gewünschte Funktion per Softkey direkt wählen: Die TNC führt den Dialog fort und fragt die erforderlichen Parameter ab

Positions-Anzeige

Sobald eine beliebige **PLANE**-Funktion aktiv ist, zeigt die TNC in der zusätzlichen Status-Anzeige den berechneten Raumwinkel an (siehe Bild). Grundsätzlich rechnet die TNC – unabhängig von der verwendeten **PLANE**-Funktion – intern immer zurück auf Raumwinkel.

HEIDENHAIN iTNC 530

PLANE-Funktion rücksetzen

► TNC Sonderfunktionen wählen: Softkey SPEZIELLE TNC FUNKT. drücken

N25 PLANE RESET MOVE ABST50 F1000 *

▶ PLANE-Funktion wählen: Softkey BEARB.-EBENE SCHWENKEN drücken: Die TNC zeigt in der Softkey-Leiste die zur Verfügung stehenden Definitionsmöglichkeiten an

► Funktion zum Rücksetzen wählen: Damit ist die PLANE-Funktion intern zurückgesetzt, an den aktuellen Achspositionen ändert sich dadurch nichts

▶ Festlegen, ob die TNC die Schwenkachsen automatisch in Grundstellung fahren soll (MOVE oder TURN) oder nicht (STAY), (siehe "Automatisches Einschwenken: MOVE/TURN/STAY (Eingabe zwingend erforderlich)" auf Seite 507)

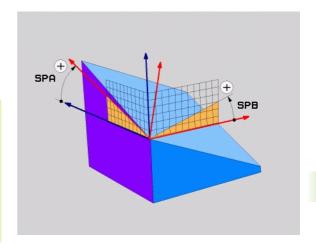
▶ Eingabe beenden: Taste END drücken

Die Funktion **PLANE RESET** setzt die aktive **PLANE**-Funktion – oder einen aktiven Zyklus 19 – vollständig zurück (Winkel = 0 und Funktion inaktiv). Eine Mehrfachdefinition ist nicht erforderlich.

9.3 Bearbeitungsebene über Raumwinkel definieren: PLANE SPATIAL

Anwendung

Raumwinkel definieren eine Bearbeitungsebene durch bis zu drei **Drehungen um das maschinenfesten Koordinatensystems**. Die Reihenfolge der Drehungen ist fest eingestellt und erfolgt zunächst um die Achse A, dann um B, dann um C (die Funktionsweise entspricht der des Zyklus 19, sofern die Eingaben im Zyklus 19 auf Raumwinkel gestellt waren).



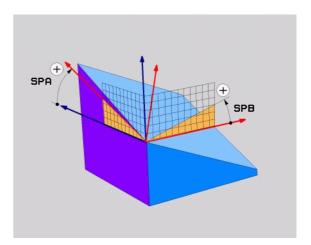
Beachten Sie vor dem Programmieren

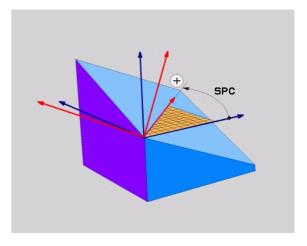
Sie müssen immer alle drei Raumwinkel SPA, SPB und SPC definieren, auch wenn einer der Winkel 0 ist.

Die zuvor beschriebene Reihenfolge der Drehungen gilt unabhängig von der aktiven Werkzeug-Achse.

Parameterbeschreibung für das Positionierverhalten: siehe "Positionierverhalten der PLANE-Funktion festlegen", Seite 507.

HEIDENHAIN iTNC 530


Eingabeparameter



- ▶ Raumwinkel A?: Drehwinkel SPA um die maschinenfeste Achse X (siehe Bild rechts oben). Eingabebereich von -359.9999° bis +359.9999°
- ▶ Raumwinkel B?: Drehwinkel SPB um die maschinenfeste Achse Y (siehe Bild rechts oben). Eingabebereich von -359.9999° bis +359.9999°
- ▶ Raumwinkel C?: Drehwinkel SPC um die maschinenfeste Achse Z (siehe Bild rechts Mitte). Eingabebereich von -359.9999° bis +359.9999°
- Weiter mit den Positioniereigenschaften (siehe "Positionierverhalten der PLANE-Funktion festlegen" auf Seite 507)

Verwendete Abkürzungen

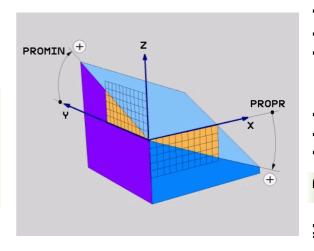
Abkürzung	Bedeutung
SPATIAL	Engl. spatial = räumlich
SPA	spatial A: Drehung um X-Achse
SPB	spatial B: Drehung um Y-Achse
SPC	spatial C : Drehung um Z-Achse

Beispiel: NC-Satz

N50 PLANE SPATIAL SPA+27 SPB+0 SPC+45 ...

9.4 Bearbeitungsebene über Projektionswinkel definieren: PLANE PROJECTED

Anwendung

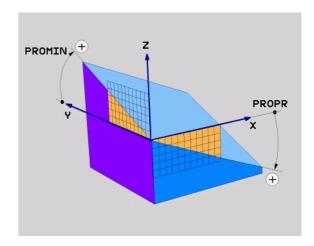

Projektionswinkel definieren eine Bearbeitungsebene durch die Angabe von zwei Winkeln, die Sie durch Projektion der 1. Koordinatenebene (Z/X bei Werkzeugachse Z) und der 2. Koordinatenebene (Y/Z bei Werkzeugachse Z) in die zu definierende Bearbeitungsebene ermitteln können.

Beachten Sie vor dem Programmieren

Projektionswinkel können Sie nur dann verwenden, wenn ein rechtwinkliger Quader bearbeitet werden soll. Ansonsten entstehen Verzerrungen am Werkstück.

Parameterbeschreibung für das Positionierverhalten: Siehe "Positionierverhalten der PLANE-Funktion festlegen", Seite 507.

HEIDENHAIN iTNC 530


Eingabeparameter

- ▶ Proj.-Winkel 1. Koordinatenebene?: Projizierter Winkel der geschwenkten Bearbeitungsebene in die 1. Koordinatenebene des maschinenfesten Koordinatensystems (Z/X bei Werkzeugachse Z, siehe Bild rechts oben). Eingabebereich von 89.9999° bis +89.9999°. 0°-Achse ist die Hauptachse der aktiven Bearbeitungsebene (X bei Werkzeugachse Z, positive Richtung siehe Bild rechts oben)
- ▶ Proj.-Winkel 2. Koordinatenebene?: Projizierter Winkel in die 2. Koordinatenebene des maschinenfesten Koordinatensystems (Y/Z bei Werkzeugachse Z, siehe Bild rechts oben). Eingabebereich von -89.9999° bis +89.9999°. 0°-Achse ist die Nebenachse der aktiven Bearbeitungsebene (Y bei Werkzeugachse Z)
- ▶ ROT-Winke1 der geschw. Ebene?: Drehung des geschwenkten Koordinatensystems um die geschwenkte Werkzeug-Achse (entspricht sinngemäß einer Rotation mit Zyklus 10 DREHUNG). Mit dem Rotations-Winkel können Sie auf einfache Weise die Richtung der Hauptachse der Bearbeitungsebene (X bei Werkzeug-Achse Z, Z bei Werkzeug-Achse Y, siehe Bild rechts Mitte) bestimmen. Eingabebereich von 0° bis +360°
- Weiter mit den Positioniereigenschaften (siehe "Positionierverhalten der PLANE-Funktion festlegen" auf Seite 507)

Verwendete Abkürzungen

Abkürzung	Bedeutung
PROJECTED	Engl. projected = projiziert
PROPR	pr inciple plane: Hauptebene
PROMIN	minor plane: Nebenebene
PROROT	Engl. rot ation: Rotation

Beispiel: NC-Satz

N50 PLANE PROJECTED PROPR+24 PROMIN+24 PRO ROT+30 ...

9.5 Bearbeitungsebene über Eulerwinkel definieren: **PLANE EULER**

Anwendung

Eulerwinkel definieren eine Bearbeitungsebene durch bis zu drei Drehungen um das jeweils geschwenkte Koordinatensystem. Die drei Eulerwinkel wurden vom Schweizer Mathematiker Euler definiert. Übertragen auf das Maschinen-Koordinatensystem ergeben sich folgende Bedeutungen:

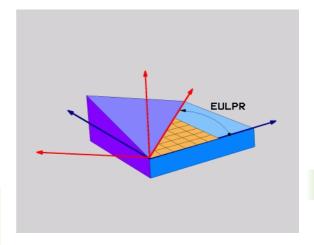
Präzessionswinkel Drehung des Koordinatensystems um die **EULPR**

Z-Achse

Nutationswinkel Drehung des Koordinatensystems um die durch

EULNU den Präzessionswinkel verdrehte X-Achse

Rotationswinkel Drehung der geschwenkten Bearbeitungsebene


EULROT um die geschwenkte Z-Achse

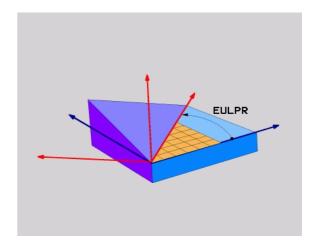
Beachten Sie vor dem Programmieren

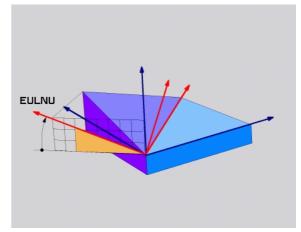
Die zuvor beschriebene Reihenfolge der Drehungen gilt unabhängig von der aktiven Werkzeug-Achse.

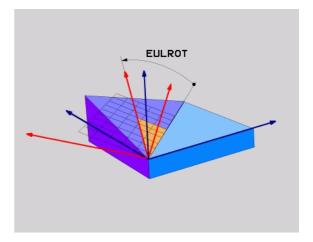
Parameterbeschreibung für das Positionierverhalten: Siehe "Positionierverhalten der PLANE-Funktion festlegen", Seite 507.

HEIDENHAIN iTNC 530 497

Eingabeparameter


- ▶ Drehw. Haupt-Koordinatenebene?: Drehwinkel EULPR um die Z-Achse (siehe Bild rechts oben). Beachten Sie:
 - Eingabebereich ist -180.0000° bis 180.0000°
 - 0°-Achse ist die X-Achse
- ➤ Schwenkwinkel Werkzeug-Achse?: Schwenkwinkel EULNUT des Koordinatensystems um die durch den Präzessionswinkel verdrehte X-Achse (siehe Bild rechts Mitte). Beachten Sie:
 - Eingabebereich ist 0° bis 180.0000°
 - 0°-Achse ist die Z-Achse
- ▶ ROT-Winke1 der geschw. Ebene?: Drehung EULROT des geschwenkten Koordinatensystems um die geschwenkte Z-Achse (entspricht sinngemäß einer Rotation mit Zyklus 10 DREHUNG). Mit dem Rotations-Winkel können Sie auf einfache Weise die Richtung der X-Achse in der geschwenkten Bearbeitungsebene bestimmen (siehe Bild rechts unten). Beachten Sie:
 - Eingabebereich ist 0° bis 360.0000°
 - 0°-Achse ist die X-Achse
- Weiter mit den Positioniereigenschaften (siehe "Positionierverhalten der PLANE-Funktion festlegen" auf Seite 507)




N50 PLANE EULER EULPR45 EULNU20 EULROT22 ...

Verwendete Abkürzungen

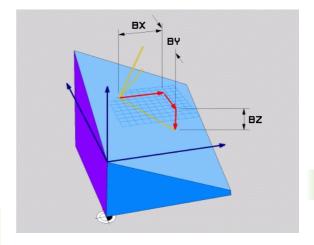
Abkürzung	Bedeutung
EULER	Schweizer Mathematiker, der die sogenannten Euler-Winkel definierte
EULPR	Pr äzessions-Winkel: Winkel, der die Drehung des Koordinatensystems um die Z-Achse beschreibt
EULNU	Nu tationswinkel: Winkel, der die Drehung des Koordinatensystems um die durch den Präzessionswinkel verdrehte X-Achse beschreibt
EULROT	Rot ations-Winkel: Winkel, der die Drehung der geschwenkten Bearbeitungsebene um die geschwenkte Z-Achse beschreibt

9.6 Bearbeitungsebene über zwei Vektoren definieren: PLANE VECTOR

Anwendung

Die Definition einer Bearbeitungsebene über **zwei Vektoren** können Sie dann verwenden, wenn Ihr CAM-System den Basisvektor und den Normalenvektor der geschwenkten Bearbeitungsebene berechnen kann. Eine normierte Eingabe ist nicht erforderlich. Die TNC berechnet die Normierung intern, so dass Sie Werte zwischen -99.99999 und +99.999999 eingeben können.

Der für die Definition der Bearbeitungsebene erforderliche Basisvektor ist durch die Komponenten BX, BY und BZ definiert (siehe Bild rechts oben). Der Normalenvektor ist durch die Komponenten NX, NY und NZ definiert.


Der Basisvektor definiert die Richtung der X-Achse in der geschwenkten Bearbeitunsebene, der Normalenvektor bestimmt die Richtung der Bearbeitungsebene und steht senkrecht darauf.

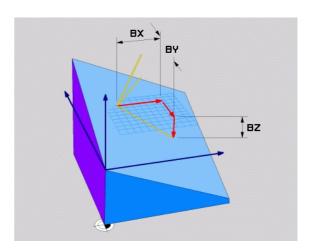
Beachten Sie vor dem Programmieren

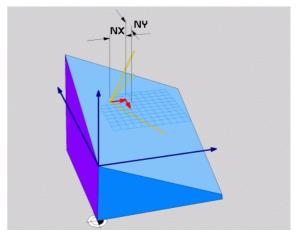
Die TNC berechnet intern aus den von Ihnen eingegebenen Werten jeweils normierte Vektoren.

Parameterbeschreibung für das Positionierverhalten: Siehe "Positionierverhalten der PLANE-Funktion festlegen", Seite 507.

HEIDENHAIN iTNC 530

Eingabeparameter


- ▶ X-Komponente Basisvektor?: X-Komponente BX des Basisvektors B (siehe Bild rechts oben). Eingabebereich: -99.9999999 bis +99.9999999
- ▶ Y-Komponente Basisvektor?: Y-Komponente BY des Basisvektors B (siehe Bild rechts oben). Eingabebereich: -99.9999999 bis +99.9999999
- ► **Z-Komponente Basisvektor?**: Z-Komponente **BZ** des Basisvektors B (siehe Bild rechts oben). Eingabebereich: -99.9999999 bis +99.9999999
- ➤ X-Komponente Normalenvektor?: X-Komponente NX des Normalenvektors N (siehe Bild rechts Mitte). Eingabebereich: -99.9999999 bis +99.9999999
- ▶ Y-Komponente Normalenvektor?: Y-Komponente NY des Normalenvektors N (siehe Bild rechts Mitte). Eingabebereich: -99.999999 bis +99.9999999
- ► Z-Komponente Normalenvektor?: Z-Komponente NZ des Normalenvektors N (siehe Bild rechts unten). Eingabebereich: -99.9999999 bis +99.9999999
- Weiter mit den Positioniereigenschaften (siehe "Positionierverhalten der PLANE-Funktion festlegen" auf Seite 507)




N50 PLANE VECTOR BX0.8 BY-0.4 BZ-0.4472 NX0.2 NY0.2 NZ0.9592 ...

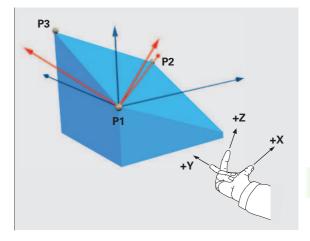
Verwendete Abkürzungen

Abkürzung	Bedeutung
VECTOR	Englisch vector = Vektor
BX, BY, BZ	Basisvektor: X-, Y- und Z-Komponente
NX, NY, NZ	N ormalenvektor: X -, Y - und Z -Komponente

9.7 Bearbeitungsebene über drei Punkte definieren: PLANE POINTS

Anwendung

Eine Bearbeitungsebene lässt sich eindeutig definieren durch die Angabe **dreier beliebiger Punkte P1 bis P3 dieser Ebene**. Diese Möglichkeit ist in der Funktion **PLANE P0INTS** realisiert.


Beachten Sie vor dem Programmieren

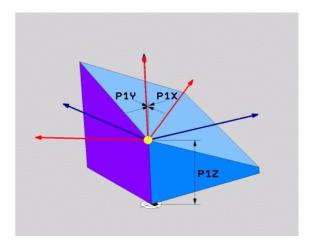
Die Verbindung von Punkt 1 zu Punkt 2 legt die Richtung der geschwenkten Hauptachse fest (X bei Werkzeugachse Z).

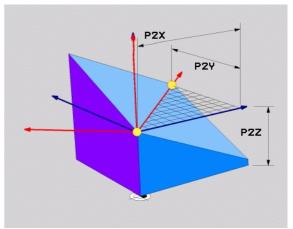
Die Richtung der geschwenkten Werkzeugachse bestimmen Sie durch die Lage des 3. Punktes bezogen auf die Verbindungslinie zwischen Punkt 1und Punkt 2. Mit Hilfe der Rechte-Hand-Regel (Daumen = X-Achse, Zeigefinger = Y-Achse, Mittelfinger = Z-Achse, siehe Bild rechts oben), gilt: Daumen (X-Achse) zeigt von Punkt 1 nach Punkt 2, Zeigefinger (Y-Achse) zeigt parallel zur geschwenkten Y-Achse in Richtung Punkt 3. Dann zeigt der Mittelfinger in Richtung der geschwenkten Werkzeug-Achse.

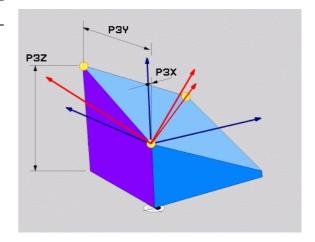
Die drei Punkte definieren die Neigung der Ebene. Die Lage des aktiven Nullpunkts wird von der TNC nicht verändert.

Parameterbeschreibung für das Positionierverhalten: Siehe "Positionierverhalten der PLANE-Funktion festlegen", Seite 507.

Eingabeparameter


- ➤ X-Koordinate 1. Ebenenpunkt?: X-Koordinate P1X des 1. Ebenenpunktes (siehe Bild rechts oben)
- ▶ Y-Koordinate 1. Ebenenpunkt?: Y-Koordinate P1Y des 1. Ebenenpunktes (siehe Bild rechts oben)
- ➤ **Z-Koordinate 1. Ebenenpunkt?**: Z-Koordinate **P1Z** des 1. Ebenenpunktes (siehe Bild rechts oben)
- ► X-Koordinate 2. Ebenenpunkt?: X-Koordinate P2X des 2. Ebenenpunktes (siehe Bild rechts Mitte)
- ▶ Y-Koordinate 2. Ebenenpunkt?: Y-Koordinate P2Y des 2. Ebenenpunktes (siehe Bild rechts Mitte)
- ➤ **Z-Koordinate 2. Ebenenpunkt?**: Z-Koordinate **P2Z** des 2. Ebenenpunktes (siehe Bild rechts Mitte)
- ➤ X-Koordinate 3. Ebenenpunkt?: X-Koordinate P3X des 3. Ebenenpunktes (siehe Bild rechts unten)
- ▶ Y-Koordinate 3. Ebenenpunkt?: Y-Koordinate P3Y des 3. Ebenenpunktes (siehe Bild rechts unten)
- ➤ **Z-Koordinate 3. Ebenenpunkt?**: Z-Koordinate **P3Z** des 3. Ebenenpunktes (siehe Bild rechts unten)
- Weiter mit den Positioniereigenschaften (siehe "Positionierverhalten der PLANE-Funktion festlegen" auf Seite 507)




N50 PLANE POINTS P1X+0 P1Y+0 P1Z+20 P2X+30 P2Y+31 P2Z+20 P3X+0 P3Y+41 P3Z+32.5 ...

Verwendete Abkürzungen

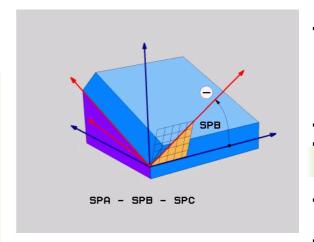
Abkürzung	Bedeutung
POINTS	Englisch points = Punkte

9.8 Bearbeitungsebene über einen einzelnen, inkrementalen Raumwinkel definieren: PLANE RELATIVE

Anwendung

Den inkrementalen Raumwinkel verwenden Sie dann, wenn eine bereits aktive geschwenkte Bearbeitungsebene durch **eine weitere Drehung** geschwenkt werden soll. Beispiel 45° Fase an einer geschwenkten Ebene anbringen.

Beachten Sie vor dem Programmieren

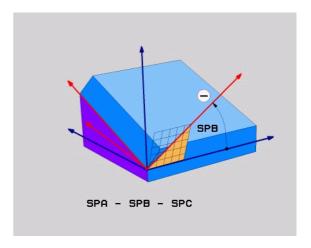

Der definierte Winkel wirkt immer bezogen auf die aktive Bearbeitungsebene, ganz gleich mit welcher Funktion Sie diese aktiviert haben.

Sie können beliebig viele **PLANE RELATIVE**-Funktionen nacheinander programmieren.

Wollen Sie wieder auf die Bearbeitungsebene zurück, die vor der **PLANE RELATIVE** Funktion aktive war, dann definieren Sie **PLANE RELATIVE** mit dem gleichen Winkel, jedoch mit dem entgegengesetzen Vorzeichen.

Wenn Sie **PLANE RELATIVE** auf eine ungeschwenkte Bearbeitungsebene anwenden, dann drehen Sie die ungeschwenkte Ebene einfach um den in der **PLANE**-Funktion definierten Raumwinkel.

Parameterbeschreibung für das Positionierverhalten: siehe "Positionierverhalten der PLANE-Funktion festlegen", Seite 507.


Eingabeparameter

- ▶ Inkrementaler Winkel?: Raumwinkel, um den die aktive BearbeitungsebEne weitergeschwenkt werden soll (siehe Bild rechts oben). Achse um die geschwenkt werden soll per Softkey wählen. Eingabebereich: -359.9999° bis +359.9999°
- Weiter mit den Positioniereigenschaften (siehe "Positionierverhalten der PLANE-Funktion festlegen" auf Seite 507)

Verwendete Abkürzungen

Abkürzung	Bedeutung
RELATIV	Englisch relative = bezogen auf

Beispiel: NC-Satz

N50 PLANE RELATIV SPB-45 ...

9.9 Bearbeitungsebene über Achswinkel: PLANE AXIAL (FCL 3-Funktion)

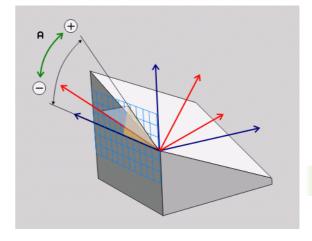
Anwendung

Die Funktion **PLANE AXIAL** definiert sowohl die Lage der Bearbeitungsebene als auch die Soll-Koordinaten der Drehachsen. Insbesondere bei Maschinen mit rechtwinkligen Kinematiken und mit Kinematiken in denen nur eine Drehachse aktiv ist, lässt sich diese Funktion einfach einsetzen.

Die Funktion **PLANE AXIAL** können Sie auch dann verwenden, wenn Sie nur eine Drehachse an Ihrer Maschine aktiv haben.

Die Funktion **PLANE RELATIV** können Sie nach **PLANE AXIAL** verwenden, wenn Ihre Maschine Raumwinkeldefinitionen erlaubt. Maschinenhandbuch beachten.

Beachten Sie vor dem Programmieren

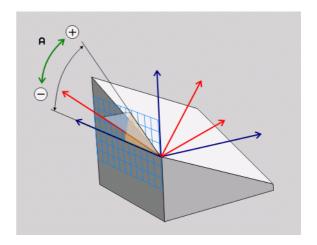

Nur Achswinkel eingeben, die tatsächlich an Ihrer Maschine vorhanden sind, ansonsten gibt die TNC eine Fehlermeldung aus.

Mit **PLANE AXIAL** definierte Drehachs-Koordinaten sind modal wirksam. Mehrfachdefinitionen bauen also aufeinander auf, inkrementale Eingaben sind erlaubt.

Zum Rücksetzen der Funktion **PLANE AXIS** die Funktion **PLANE RESET** verwenden. Rücksetzen durch Eingabe von 0 deaktiviert **PLANE AXIAL** nicht.

Die Funktionen SEQ, TABLE ROT und COORD ROT haben in Verbindung mit PLANE AXIS keine Funktion.

Parameterbeschreibung für das Positionierverhalten: Siehe "Positionierverhalten der PLANE-Funktion festlegen", Seite 507.


Eingabeparameter

- ▶ Achswinkel A?: Achswinkel, auf den die A-Achse eingeschwenkt werden soll. Wenn inkremental eingegeben, dann Winkel, um den die A-Achse von der aktuellen Position aus weitergeschwenkt werden soll. Eingabebereich: -99999,9999° bis +99999,9999°
- Achswinkel B?: Achswinkel, auf den die B-Achse eingeschwenkt werden soll. Wenn inkremental eingegeben, dann Winkel, um den die B-Achse von der aktuellen Position aus weitergeschwenkt werden soll. Eingabebereich: -99999,9999° bis +99999,9999°
- Achswinkel C?: Achswinkel, auf den die C-Achse eingeschwenkt werden soll. Wenn inkremental eingegeben, dann Winkel, um den die C-Achse von der aktuellen Position aus weitergeschwenkt werden soll. Eingabebereich: -99999,9999° bis +99999,9999°
- Weiter mit den Positioniereigenschaften (siehe "Positionierverhalten der PLANE-Funktion festlegen" auf Seite 507)

Verwendete Abkürzungen

Abkürzung	Bedeutung
AXIAL	Englisch axial = achsenförmig

Beispiel: NC-Satz

5 PLANE AXIAL B-45

9.10 Positionierverhalten der PLANE-Funktion festlegen

Übersicht

Unabhängig davon, welche PLANE-Funktion Sie verwenden um die geschwenkte Bearbeitungsebene zu definieren, stehen folgende Funktionen zum Positionierverhalten immer zur Verfügung:

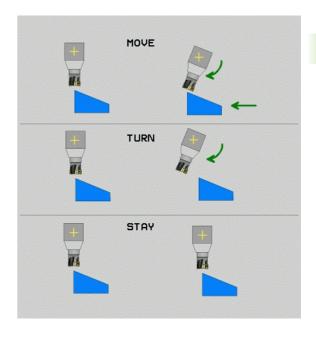
- Automatisches Einschwenken
- Auswahl von alternativen Schwenkmöglichkeiten
- Auswahl der Transformationsart

Automatisches Einschwenken: MOVE/TURN/STAY (Eingabe zwingend erforderlich)

Nachdem Sie alle Parameter zur Ebenendefinition eingegeben haben, müssen Sie festlegen, wie die Drehachsen auf die berechneten Achswerte eingeschwenkt werden sollen:

▶ Die PLANE-Funktion soll die Drehachsen automatisch auf die berechneten Achswerte einschwenken, wobei sich die Relativposition zwischen Werkstück und Werkzeug nicht verändert. Die TNC führt eine Ausgleichsbewegung in den Linearachsen aus

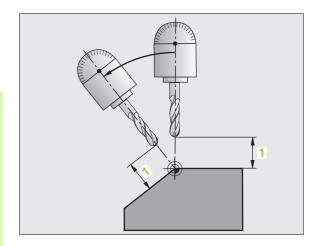
▶ Die PLANE-Funktion soll die Drehachsen automatisch auf die berechneten Achswerte einschwenken, wobei nur die Drehachsen positioniert werden. Die TNC führt keine Ausgleichsbewegung in den Linearachsen aus

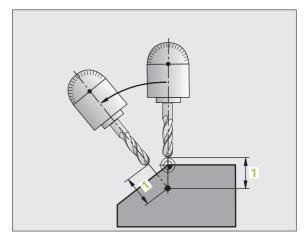


Sie schwenken die Drehachsen in einem nachfolgenden, separaten Positioniersatz ein

Wenn Sie die Option MOVE (PLANE-Funktion soll automatisch mit Ausgleichsbewegung einschwenken) gewählt haben, sind noch die zwei nachfolgend erklärten Parameter Abstand Drehpunkt von WZ-Spitze und Vorschub? F= zu definieren. Wenn Sie die Option TURN (PLANE-Funktion soll automatisch ohne Ausgleichsbewegung einschwenken) gewählt haben, ist noch der nachfolgend erklärte Parameter Vorschub? F= zu definieren.

Wenn Sie die Funktion **PLANE AXIAL** in Verbindung mit **STAY** verwenden, dann müssen Sie die Drehachsen in einem separaten Positioniersatz nach der **PLANE**-Funktion einschwenken.




▶ Abstand Drehpunkt von WZ-Spitze (inkremental): Die TNC schwenkt das Werkzeug (den Tisch) um die Werkzeugspitze ein. Über den Parameter ABST verlagern Sie den Drehpunkt der Einschwenkbewegung bezogen auf die aktuelle Position der Werkzeugspitze.

Beachten Sie!

- Wenn das Werkzeug vor dem Einschwenken auf dem angegebenen Abstand zum Werkstück steht, dann steht das Werkzeug auch nach dem Einschwenken relativ gesehen auf der gleichen Position (siehe Bild rechts Mitte, 1 = ABST)
- Wenn das Werkzeug vor dem Einschwenken nicht auf dem angegebenen Abstand zum Werkstück steht, dann steht das Werkzeug nach dem Einschwenken relativ gesehen versetzt zur ursprünglichen Position (siehe Bild rechts unten, 1 = ABST)
- ▶ Vorschub? F=: Bahngeschwindigkeit, mit der das Werkzeug einschwenken soll

Drehachsen in einem separaten Satz einschwenken

Wenn Sie die Drehachsen in einem separaten Positioniersatz einschwenken wollen (Option **STAY** gewählt), gehen Sie wie folgt vor:

Werkzeug so vorpositionieren, dass beim Einschwenken keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann.

- ▶ Beliebige **PLANE**-Funkion wählen, automatisches Einschwenken mit **STAY** definieren. Beim Abarbeiten berechnet die TNC die Positionswerte der an Ihrer Maschine vorhandenen Drehachsen und legt diese in den Systemparametern Q120 (A-Achse), Q121 (B-Achse) und Q122 (C-Achse) ab
- ▶ Positioniersatz definieren mit den von der TNC berechneten Winkelwerten

NC-Beispielsätze: Maschine mit C-Rundtisch und A-Schwenktisch auf einen Raumwinkel B+45° einschwenken.

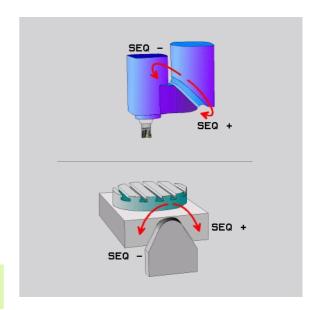
•••	
N120 G00 G40 Z+250 *	Auf sichere Höhe positionieren
N130 PLANE SPATIAL SPA+O SPB+45 SPC+O STAY *	PLANE-Funktion definieren und aktivieren
N140 G01 F2000 A+Q120 C+Q122 *	Drehachse positionieren mit den von der TNC berechneten Werten
•••	Bearbeitung in der geschwenkten Ebene definieren

Auswahl von alternativen Schwenkmöglichkeiten: SEQ +/- (Eingabe optional)

Aus der von Ihnen definierten Lage der Bearbeitungsebene muss die TNC die dazu passende Stellung der an Ihrer Maschine vorhandenen Drehachsen berechnen. In der Regel ergeben sich immer zwei Lösungsmöglichkeiten.

Über den Schalter **SEQ** stellen Sie ein, welche Lösungsmöglichkeit die TNC verwenden soll:

- SEQ+ positioniert die Masterachse so, dass sie einen positiven Winkel einnimmt. Die Masterachse ist die 2. Drehachse ausgehend vom Tisch oder die 1. Drehachse ausgehend vom Werkzeug (abhängig von der Maschinenkonfiguration, siehe auch Bild rechts oben)
- SEQ- positioniert die Masterachse so, dass sie einen negativen Winkel einnimmt


Liegt die von Ihnen über **SEQ** gewählte Lösung nicht im Verfahrbereich der Maschine, gibt die TNC die Fehlermeldung **Winkel nicht erlaubt** aus

Bei Verwendung der Funktion **PLANE AXIS** hat der Schalter **SEO** keine Funktion.

Wenn Sie SEQ nicht definieren, ermittelt die TNC die Lösung wie folgt:

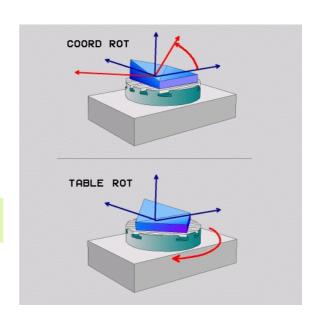
- 1 Die TNC prüft zunächst, ob beide Lösungsmöglichkeiten im Verfahrbereich der Drehachsen liegen
- 2 Trifft dies zu, wählt die TNC die Lösung, die auf dem kürzesten Weg zu erreichen ist
- 3 Liegt nur eine Lösung im Verfahrbereich, dann verwendet die TNC diese Lösung
- 4 Liegt keine Lösung im Verfahrbereich, dann gibt die TNC die Fehlermeldung Winkel nicht erlaubt aus

Beispiel für eine Maschine mit C-Rundtisch und A-Schwenktisch. Programmierte Funktion: PLANE SPATIAL SPA+0 SPB+45 SPC+0

Endschalter	Startposition	SEQ	Ergebnis Achsstellung
Keine	A+0, C+0	nicht progr.	A+45, C+90
Keine	A+0, C+0	+	A+45, C+90
Keine	A+0, C+0	_	A-45, C-90
Keine	A+0, C-105	nicht progr.	A-45, C-90
Keine	A+0, C-105	+	A+45, C+90
Keine	A+0, C-105	_	A-45, C-90
-90 < A < +10	A+0, C+0	nicht progr.	A-45, C-90
-90 < A < +10	A+0, C+0	+	Fehlermeldung
Keine	A+0, C-135	+	A+45, C+90

Auswahl der Transformationsart (Eingabe optional)

Für Maschinen die einen C-Rundtisch haben, steht eine Funktion zur Verfügung, mit der Sie die Art der Transformation festlegen können:

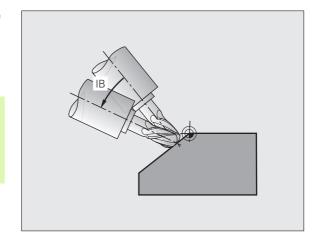

▶ COORD ROT legt fest, dass die PLANE-Funktion nur das Koordinatensystem auf den definierten Schwenkwinkel drehen soll. Der Rundtisch wird nicht bewegt, die Kompensation der Drehung erfolgt rechnerisch

▶ TABLE ROT legt fest, dass die PLANE-Funktion den Rundtisch auf den definierten Schwenkwinkel positionieren soll. Die Kompensation erfolgt durch eine Werkstück-Drehung

Bei Verwendung der Funktion PLANE AXIS haben die Funktionen COORD ROT und TABLE ROT keine Funktion.

9.11 Sturzfräsen in der geschwenkten Ebene

Funktion


In Verbindung mit den neuen **PLANE**-Funktionen und M128 können Sie in einer geschwenkten Bearbeitungsebene **sturzfräsen**. Hierfür stehen zwei Definitionsmöglichkeiten zur Verfügung:

- Sturzfräsen durch inkrementales Verfahren einer Drehachse
- Sturzfräsen über Normalenvektoren (nur Klartext-Dialog)

Sturzfräsen in der geschwenkten Ebene funktioniert nur mit Radiusfräsern.

Bei 45°-Schwenkköpfen/Schwenktischen, können Sie den Sturzwinkel auch als Raumwinkel definieren. Verwenden Sie dazu **FUNCTION TCPM** (nur Klartext-Dialog).

Sturzfräsen durch inkrementales Verfahren einer Drehachse

- ► Werkzeug freifahren
- ► M128 aktivieren
- Beliebige PLANE-Funktion definieren, Positionierverhalten beachten
- ▶ Über einen L-Satz den gewünschten Sturzwinkel in der entsprechenden Achse inkremental verfahren

NC-Beispielsätze:

•••	
N120 G00 G40 Z+50 M128 *	Auf sichere Höhe positionieren, M128 aktivieren
N130 PLANE SPATIAL SPA+O SPB- 45 SPC+O MOVE ABST50 F1000 *	PLANE-Funktion definieren und aktivieren
N140 G01 G91 F1000 B-17 *	Sturzwinkel einstellen
•••	Bearbeitung in der geschwenkten Ebene definieren

Programmieren: Unterprogramme und Programmteil-Wiederholungen

10.1 Unterprogramme und Programmteil-Wiederholungen kennzeichnen

Einmal programmierte Bearbeitungsschritte können Sie mit Unterprogrammen und Programmteil-Wiederholungen wiederholt ausführen lassen.

Label

Unterprogramme und Programmteil-Wiederholungen beginnen im Bearbeitungsprogramm mit der Marke **G98 L**. L ist eine Abkürzung für label (engl. für Marke, Kennzeichnung).

LABEL erhalten eine Nummer zwischen 1 und 999 oder einen von Ihnen definierbaren Namen. Jede LABEL-Nummer, bzw. jeden LABEL-Namen, dürfen Sie im Programm nur einmal vergeben mit **G98**. Die Anzahl von eingebbaren Label-Namen ist lediglich durch den internen Speicher begrenzt.

Wenn Sie eine Label-Nummer bzw. einen Label-Namen mehrmals vergeben, gibt die TNC beim Beenden des **698**-Satzes eine Fehlermeldung aus.

Bei sehr langen Programmen können Sie über MP7229 die Überprüfung auf eine eingebbare Anzahl von Sätzen begrenzen.

Label 0 ($\mathbf{698}\ \mathbf{L0}$) kennzeichnet ein Unterprogramm-Ende und darf deshalb beliebig oft verwendet werden.

10.2 Unterprogramme

Arbeitsweise

- 1 Die TNC führt das Bearbeitungs-Programm bis zu einem Unterprogramm-Aufruf LN,0 aus. n ist eine beliebige Label-Nummer
- 2 Ab dieser Stelle arbeitet die TNC das aufgerufene Unterprogramm bis zum Unterprogramm-Ende **G98 L0** ab
- **3** Danach führt die TNC das Bearbeitungs-Programm mit dem Satz fort, der auf den Unterprogramm-Aufruf **LN,0** folgt

Programmier-Hinweise

- Ein Hauptprogramm kann bis zu 254 Unterprogramme enthalten
- Sie k\u00f6nnen Unterprogramme in beliebiger Reihenfolge beliebig oft aufrufen
- Ein Unterprogramm darf sich nicht selbst aufrufen
- Unterprogramme ans Ende des Hauptprogramms (hinter dem Satz mit M2 bzw. M30) programmieren
- Wenn Unterprogramme im Bearbeitungs-Programm vor dem Satz mit M02 oder M30 stehen, dann werden sie ohne Aufruf mindestens einmal abgearbeitet

Unterprogramm programmieren

- Anfang kennzeichnen: Taste LBL SET drücken
- Unterprogramm-Nummer eingeben, mit Taste END bestätigen. Wenn Sie LABEL-Namen verwenden wollen: Taste " drücken, um zur Texteingabe zu wechseln
- ► Ende kennzeichnen: Taste LBL SET drücken und Label-Nummer "0"eingeben

Unterprogramm aufrufen

- ▶ Unterprogramm aufrufen: Taste LBL CALL drücken
- ▶ Labe1-Nummer: Label-Nummer des aufzurufenden Unterprogramms eingeben, mit Taste ENT bestätigen. Wenn Sie LABEL-Namen verwenden wollen: Softkey LBL-NAME drücken, um zur Texteingabe zu wechseln

L0,0 ist nicht erlaubt, da es dem Aufruf eines Unterprogramm-Endes entspricht.

10.3 Programmteil-Wiederholungen

Label G98

Programmteil-Wiederholungen beginnen mit der Marke **G98 L**. Eine Programmteil-Wiederholung schließt mit Ln,m ab. m ist die Anzahl der Wiederholungen.

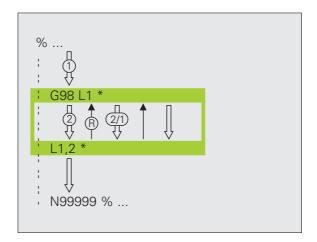
Arbeitsweise

- 1 Die TNC führt das Bearbeitungs-Programm bis zum Ende des Programmteils (L1,2) aus
- 2 Anschließend wiederholt die TNC den Programmteil zwischen dem aufgerufenen Label und dem Label-Aufruf L 1,2 so oft, wie Sie hinter dem Komma angegeben haben
- 3 Danach arbeitet die TNC das Bearbeitungs-Programm weiter ab

Programmier-Hinweise

- Sie können einen Programmteil bis zu 65 534 mal hintereinander wiederholen
- Programmteile werden von der TNC immer einmal häufiger ausgeführt, als Wiederholungen programmiert sind

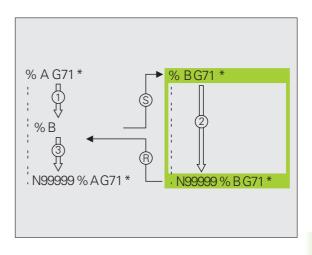
Programmteil-Wiederholung programmieren



- Anfang kennzeichnen: Taste LBL SET drücken, mit Taste ENT bestätigen
- ▶ Label-Nummer für den zu wiederholenden Programmteil eingeben, mit Taste ENT bestätigen. Wenn Sie LABEL-Namen verwenden wollen: Taste " drücken, um zur Texteingabe zu wechseln

Programmteil-Wiederholung aufrufen

- ▶ Taste LBL CALL drücken
- ▶ Labe1-Nummer: Label-Nummer des zu wiederholenden Programmteils eingeben, mit Taste ENT bestätigen. Wenn Sie LABEL-Namen verwenden wollen: Taste " drücken, um zur Texteingabe zu wechseln
- ▶ Wiederholung REP: Anzahl der Wiederholung eingeben, mit Taste ENT bestätigen


10.4 Beliebiges Programm als Unterprogramm

Arbeitsweise

- 1 Die TNC führt das Bearbeitungs-Programm aus, bis Sie ein anderes Programm mit % aufrufen
- 2 Anschließend führt die TNC das aufgerufene Programm bis zu seinem Ende aus
- 3 Danach arbeitet die TNC das (aufrufende) Bearbeitungs-Programm mit dem Satz weiter ab, der auf den Programm-Aufruf folgt

Programmier-Hinweise

- Um ein beliebiges Programm als Unterprogramm zu verwenden benötigt die TNC keine Label's
- Das aufgerufene Programm darf keine Zusatz-Funktion M2 oder M30 enthalten
- Das aufgerufene Programm darf keinen Aufruf mit % ins aufrufende Programm enthalten (Endlosschleife)

Beliebiges Programm als Unterprogramm aufrufen

- Funktionen zum Programm-Aufruf wählen: Taste PGM CALL drücken
- ► Softkey PROGRAMM drücken
- ▶ Vollständigen Pfadnamen des aufzurufenden Programms eingeben, mit Taste END bestätigen

Das aufgerufene Programm muss auf der Festplatte der TNC gespeichert sein.

Wenn Sie nur den Programm-Namen eingeben, muss das aufgerufene Programm im selben Verzeichnis stehen wie das rufende Programm.

Wenn das aufgerufene Programm nicht im selben Verzeichnis steht wie das rufende Programm, dann geben Sie den vollständigen Pfadnamen ein, z.B.

TNC:\ZW35\SCHRUPP\PGM1.H

Wenn Sie ein Klartext-Dialog-Programm aufrufen wollen, dann geben Sie den Datei-Typ .H hinter dem Programm-Namen ein.

Sie können ein beliebiges Programm auch über den Zyklus **G39** aufrufen.

Q-Parameter wirken bei einem % (PGM CALL) grundsätzlich global. Beachten Sie daher, dass Änderungen an Q-Parametern im aufgerufenen Programm sich ggf. auch auf das aufrufende Programm auswirken.

Koordinaten-Umrechnungen, die Sie im gerufenen Programm definieren und nicht gezielt zurücksetzen, bleiben grundsätzlich auch für das rufende Programm aktiv. Die Einstellung des Maschinen-Parameters MP7300 hat hierauf keinen Einfluss.

10.5 Verschachtelungen

Verschachtelungsarten

- Unterprogramme im Unterprogramm
- Programmteil-Wiederholungen in Programmteil-Wiederholung
- Unterprogramme wiederholen
- Programmteil-Wiederholungen im Unterprogramm

Verschachtelungstiefe

Die Verschachtelungs-Tiefe legt fest, wie oft Programmteile oder Unterprogramme weitere Unterprogramme oder Programmteil-Wiederholungen enthalten dürfen.

- Maximale Verschachtelungstiefe für Unterprogramme: 8
- Maximale Verschachtelungstiefe für Hauptprogramm-Aufrufe: 4
- Programmteil-Wiederholungen können Sie beliebig oft verschachteln

Unterprogramm im Unterprogramm

NC-Beispielsätze

%UPGMS G71 *	
•••	
N170 L1,0 *	Unterprogramm bei G98 L1 wird aufgerufen
•••	
N350 G00 G40 Z+100 M2 *	Letzter Programmsatz des
	Hauptprogramms (mit M2)
N260 G98 L1 *	Anfang von Unterprogramm 1
•••	
N390 L2,0 *	Unterprogramm bei G98 L2 wird aufgerufen
•••	
N450 G98 L0 *	Ende von Unterprogramm 1
N460 G98 L2 *	Anfang von Unterprogramm 2
•••	
N620 G98 L0 *	Ende von Unterprogramm 2
N99999999 %UPGMS G71 *	

Programm-Ausführung

- 1 Hauptprogramm UPGMS wird bis Satz N170 ausgeführt
- 2 Unterprogramm 1 wird aufgerufen und bis Satz N390 ausgeführt
- 3 Unterprogramm 2 wird aufgerufen und bis Satz N620 ausgeführt. Ende von Unterprogramm 2 und Rücksprung zum Unterprogramm, von dem es aufgerufen wurde
- 4 Unterprogramm 1 wird von Satz N400 bis Satz N450 ausgeführt. Ende von Unterprogramm 1 und Rücksprung ins Hauptprogramm UPGMS
- **5** Hauptprogramm UPGMS wird von Satz N180 bis Satz N350 ausgeführt. Rücksprung zu Satz 1 und Programm-Ende

Programmteil-Wiederholungen wiederholen

NC-Beispielsätze

%REPS G71 *	
•••	
N150 G98 L1 *	Anfang der Programmteil-Wiederholung 1
•••	
N200 G98 L2 *	Anfang der Programmteil-Wiederholung 2
•••	
N270 L2,2 *	Programmteil zwischen diesem Satz und G98 L2
•••	(Satz N200) wird 2 mal wiederholt
N350 L1,1 *	Programmteil zwischen diesem Satz und G98 L1
•••	(Satz N150) wird 1 mal wiederholt
N99999999 %REPS G71 *	

Programm-Ausführung

- 1 Hauptprogramm REPS wird bis Satz N270 ausgeführt
- 2 Programmteil zwischen Satz N270 und Satz N200 wird 2 mal wiederholt
- **3** Hauptprogramm REPS wird von Satz N280 bis Satz N350 ausgeführt
- **4** Programmteil zwischen Satz N350 und Satz N150 wird 1 mal wiederholt (beinhaltet die Programmteil-Wiederholung zwischen Satz N200 und Satz N270)
- **5** Hauptprogramm REPS wird von Satz N360 bis Satz N999999 ausgeführt (Programm-Ende)

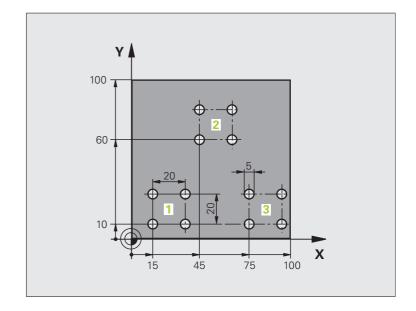
Unterprogramm wiederholen

NC-Beispielsätze

%UPGREP G71 *	
N100 G98 L1 *	Anfang der Programmteil-Wiederholung 1
N110 L2,0 *	Unterprogramm-Aufruf
N120 L1,2 *	Programmteil zwischen diesem Satz und G98 L1
	(Satz N100) wird 2 mal wiederholt
N190 G00 G40 Z+100 M2 *	Letzter Satz des Hauptprogramms mit M2
N200 G98 L2 *	Anfang des Unterprogramms
N280 G98 L0 *	Ende des Unterprogramms
N99999999 %UPGREP G71 *	

Programm-Ausführung

- 1 Hauptprogramm UPGREP wird bis Satz N110 ausgeführt
- 2 Unterprogramm 2 wird aufgerufen und ausgeführt
- **3** Programmteil zwischen Satz N120 und Satz N100 wird 2 mal wiederholt: Unterprogramm 2 wird 2 mal wiederholt
- **4** Hauptprogramm UPGREP wird von Satz N130 bis Satz N190 einmal ausgeführt; Programm-Ende



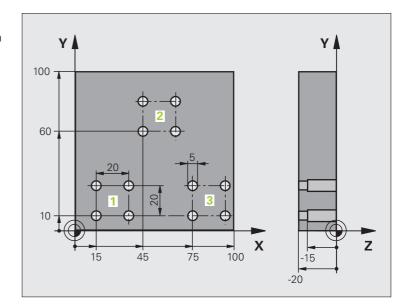
10.6 Programmier-Beispiele

Beispiel: Konturfräsen in mehreren Zustellungen

Programm-Ablauf

- Werkzeug vorpositionieren auf Oberkante Werkstück
- Zustellung inkremental eingeben
- Konturfräsen
- Zustellung und Konturfräsen wiederholen

%PGMWDH G71 *	
N10 G30 G17 X+0 Y+0 Z-40 *	
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+7,5 *	Werkzeug-Definition
N40 T1 G17 S3500 *	Werkzeug-Aufruf
N50 G00 G40 G90 Z+250 *	Werkzeug freifahren
N60 I+50 J+50 *	Pol setzen
N70 G10 R+60 H+180 *	Vorpositionieren Bearbeitungsebene
N80 G01 Z+0 F1000 M3 *	Vorpositionieren auf Oberkante Werkstück

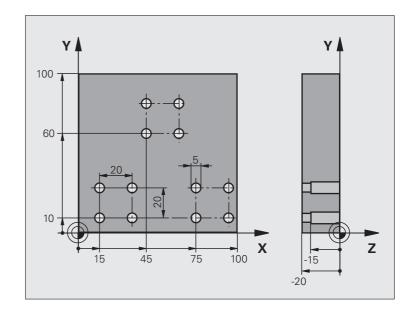

N90 G98 L1 *	Marke für Programmteil-Wiederholung
N100 G91 Z-4 *	Inkrementale Tiefen-Zustellung (im Freien)
N110 G11 G41 G90 R+45 H+180 F250 *	Erster Konturpunkt
N120 G26 R5 *	Kontur anfahren
N130 H+120 *	
N140 H+60 *	
N150 H+0 *	
N160 H-60 *	
N170 H-120 *	
N180 H+180 *	
N190 G27 R5 F500 *	Kontur verlassen
N200 G40 R+60 H+180 F1000 *	Freifahren
N210 L1,4 *	Rücksprung zu Label 1; insgesamt viermal
N220 G00 Z+250 M2 *	Werkzeug freifahren, Programm-Ende
N99999999 %PGMWDH G71 *	

Beispiel: Bohrungsgruppen

Programm-Ablauf

- Bohrungsgruppen anfahren im Hauptprogramm
- Bohrungsgruppe aufrufen (Unterprogramm 1)
- Bohrungsgruppe nur einmal im Unterprogramm 1 programmieren

%UP1 G71 *	
N10 G30 G17 X+0 Y+0 Z-40 *	
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+2,5 *	Werkzeug-Definition
N40 T1 G17 S3500 *	Werkzeug-Aufruf
N50 G00 G40 G90 Z+250 *	Werkzeug freifahren
N60 G200 BOHREN	Zyklus-Definition Bohren
Q200=2 ;SICHERHEITS-ABST.	
Q201=-30 ;TIEFE	
Q206=300 ;F TIEFENZUST.	
Q202=5 ;ZUSTELL-TIEFE	
Q210=0 ;FZEIT OBEN	
Q203=+0 ;KOOR. OBERFL.	
Q204=2 ;2. SABSTAND	
Q211=O ;VERWEILZEIT UNTEN	


N70 X+15 Y+10 M3 *	Startpunkt Bohrungsgruppe 1 anfahren
N80 L1,0 *	Unterprogramm für Bohrungsgruppe rufen
N90 X+45 Y+60 *	Startpunkt Bohrungsgruppe 2 anfahren
N100 L1,0 *	Unterprogramm für Bohrungsgruppe rufen
N110 X+75 Y+10 *	Startpunkt Bohrungsgruppe 3 anfahren
N120 L1,0 *	Unterprogramm für Bohrungsgruppe rufen
N130 G00 Z+250 M2 *	Ende des Hauptprogramms
N140 G98 L1 *	Anfang des Unterprogramms 1: Bohrungsgruppe
N150 G79 *	Zyklus aufrufen für Bohrung 1
N160 G91 X+20 M99 *	Bohrung 2 anfahren, Zyklus aufrufen
N170 Y+20 M99 *	Bohrung 3 anfahren, Zyklus aufrufen
N180 X-20 G90 M99 *	Bohrung 4 anfahren, Zyklus aufrufen
N190 G98 L0 *	Ende des Unterprogramms 1
N99999999 %UP1 G71 *	

Beispiel: Bohrungsgruppe mit mehreren Werkzeugen

Programm-Ablauf

- Bearbeitungs-Zyklen programmieren im Hauptprogramm
- Komplettes Bohrbild aufrufen (Unterprogramm 1)
- Bohrungsgruppen anfahren im Unterprogramm 1, Bohrungsgruppe aufrufen (Unterprogramm 2)
- Bohrungsgruppe nur einmal im Unterprogramm 2 programmieren

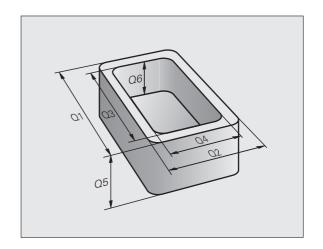
%UP2 G71 *	
N10 G30 G17 X+0 Y+0 Z-40 *	
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+4 *	Werkzeug-Definition Zentrierbohrer
N40 G99 T2 L+0 R+3 *	Werkzeug-Definition Bohrer
N50 G99 T3 L+0 R+3,5 *	Werkzeug-Definition Reibahle
N60 T1 G17 S5000 *	Werkzeug-Aufruf Zentrierbohrer
N70 G00 G40 G90 Z+250 *	Werkzeug freifahren
N80 G200 BOHREN	Zyklus-Definition Zentrieren
Q200=2 ;SICHERHEITS-ABST.	
Q201=-3 ;TIEFE	
Q206=250 ;F TIEFENZUST.	
Q202=3 ;ZUSTELL-TIEFE	
Q210=O ;FZEIT OBEN	
Q203=+0 ;KOOR. OBERFL.	
Q204=10 ;2. SABSTAND	
Q211=0.2 ; VERWEILZEIT UNTEN	
N90 L1,0 *	Unterprogramm 1 für komplettes Bohrbild rufen

N100 G00 Z+250 M6 *	Werkzeug-Wechsel
N110 T2 G17 S4000 *	Werkzeug-Aufruf Bohrer
N120 D0 Q201 P01 -25 *	Neue Tiefe fürs Bohren
N130 D0 Q202 P01 +5 *	Neue Zustellung fürs Bohren
N140 L1,0 *	Unterprogramm 1 für komplettes Bohrbild rufen
N150 G00 Z+250 M6 *	Werkzeug-Wechsel
N160 T3 G17 S500 *	Werkzeug-Aufruf Reibahle
N80 G201 REIBEN	Zyklus-Definition Reiben
Q200=2 ;SICHERHEITS-ABST.	
Q201=-15 ;TIEFE	
Q206=250 ; VORSCHUB TIEFENZ.	
Q211=0.5 ;VERWEILZEIT UNTEN	
Q208=400 ; VORSCHUB RUECKZUG	
Q203=+0 ;KOOR. OBERFL.	
Q204=10 ;2. SABSTAND	
N180 L1,0 *	Unterprogramm 1 für komplettes Bohrbild rufen
N190 G00 Z+250 M2 *	Ende des Hauptprogramms
N200 G98 L1 *	Anfang des Unterprogramms 1: Komplettes Bohrbild
N210 G00 G40 G90 X+15 Y+10 M3 *	Startpunkt Bohrungsgruppe 1 anfahren
N220 L2,0 *	Unterprogramm 2 für Bohrungsgruppe rufen
N230 X+45 Y+60 *	Startpunkt Bohrungsgruppe 2 anfahren
N240 L2,0 *	Unterprogramm 2 für Bohrungsgruppe rufen
N250 X+75 Y+10 *	Startpunkt Bohrungsgruppe 3 anfahren
N260 L2,0 *	Unterprogramm 2 für Bohrungsgruppe rufen
N270 G98 L0 *	Ende des Unterprogramms 1
N280 G98 L2 *	Anfang des Unterprogramms 2: Bohrungsgruppe
N290 G79 *	Zyklus aufrufen für Bohrung 1
N300 G91 X+20 M99 *	Bohrung 2 anfahren, Zyklus aufrufen
N310 Y+20 M99 *	Bohrung 3 anfahren, Zyklus aufrufen
N320 X-20 G90 M99 *	Bohrung 4 anfahren, Zyklus aufrufen
N330 G98 L0 *	Ende des Unterprogramms 2
N340 %UP2 G71 *	

Programmieren: Q-Parameter

11.1 Prinzip und Funktionsübersicht

Mit Q-Parametern können Sie mit einem Bearbeitungs-Programm eine ganze Teilefamilie definieren. Dazu geben Sie anstelle von Zahlenwerten Platzhalter ein: die Q-Parameter.


Q-Parameter stehen beispielsweise für

- Koordinatenwerte
- Vorschübe
- Drehzahlen
- Zyklus-Daten

Außerdem können Sie mit Q-Parametern Konturen programmieren, die über mathematische Funktionen bestimmt sind oder die Ausführung von Bearbeitungsschritten von logischen Bedingungen abhängig machen.

Ein Q-Parameter ist durch den Buchstaben Q und eine Nummer zwischen 0 und 1999 gekennzeichnet. Die Q-Parameter sind in verschiedene Bereiche unterteilt:

Bedeutung	Bereich
Frei verwendbare Parameter, global für alle im TNC-Speicher befindlichen Programme wirksam	Q1600 bis Q1999
Frei verwendbare Parameter, sofern keine Überschneidungen mit SL-Zyklen auftreten können, global für alle im TNC-Speicher befindlichen Programme wirksam	Q0 bis Q99
Parameter für Sonderfunktionen der TNC	Q100 bis Q199
Parameter, die bevorzugt für Zyklen verwendet werden, global für alle im TNC-Speicher befindlichen Programme wirksam	Q200 bis Q1199
Parameter, die bevorzugt für Hersteller-Zyklen verwendet werden, global für alle im TNC- Speicher befindlichen Programme wirksam. Ggf. Abstimmung mit Maschinenhersteller oder Drittanbieter erforderlich	Q1200 bis Q1399
Parameter, die bevorzugt für Call-Aktive Hersteller-Zyklen verwendet werden, global für alle im TNC-Speicher befindlichen Programme wirksam	Q1400 bis Q1499
Parameter, die bevorzugt für Def-Aktive Hersteller-Zyklen verwendet werden, global für alle im TNC-Speicher befindlichen Programme wirksam	Q1500 bis Q1599

Zusätzlich stehen Ihnen auch QS-Parameter (das S steht für String) zur Verfügung, mit denen Sie auf der TNC auch Texte verarbeiten können. Prinzipiell gelten für QS-Parameter dieselben Bereiche wie für Q-Parameter (siehe Tabelle oben).

Beachten Sie, dass auch bei den QS-Parametern der Bereich **Q\$100** bis **Q\$199** für interne Texte reserviert ist.

Programmierhinweise

Q-Parameter und Zahlenwerte dürfen in ein Programm gemischt eingegeben werden.

Sie können Q-Parametern Zahlenwerte zwischen –999 999 999 und +999 999 999 zuweisen, insgesamt sind also inclusive Vorzeichen 10 Stellen erlaubt. Das Dezimalkomma können Sie an beliebiger Stelle setzen. Intern kann die TNC Zahlenwerte bis zu einer Breite von 57 Bit vor und bis zu 7 Bit nach dem Dezimalpunkt berechnen (32 bit Zahlenbreite entsprechen einem Dezimalwert von 4 294 967 296).

QS-Parametern können Sie maximal 254 Zeichen zuweisen.

Die TNC weist einigen Q-Parametern selbsttätig immer die gleichen Daten zu, z.B. dem Q-Parameter Q108 den aktuellen Werkzeug-Radius, siehe "Vorbelegte Q-Parameter", Seite 562.

Wenn Sie die Parameter Q60 bis Q99 in verschlüsselten Hersteller-Zyklen verwenden, legen Sie über den Maschinen-Parameter MP7251 fest, ob diese Parameter nur lokal im Hersteller-Zyklus wirken oder global für alle Programme.

Mit dem Maschinen-Parameter 7300 legen Sie fest, ob die TNC Q-Parameter am Programmende zurücksetzen soll, oder ob die Werte erhalten bleiben sollen. Darauf achten, dass diese Einstellung keine Auswirkung auf Ihre Q-Parameter-Programme hat!

Q-Parameter-Funktionen aufrufen

Während Sie ein Bearbeitungsprogramm eingeben, drücken Sie die Taste "Q" (im Feld für Zahlen-Eingaben und Achswahl unter –/+ - Taste). Dann zeigt die TNC folgende Softkeys:

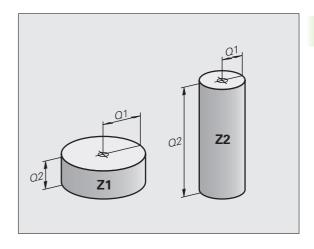
Funktionsgruppe	Softkey	Seite
Mathematische Grundfunktionen	GRUND- FUNKT.	Seite 534
Winkelfunktionen	WINKEL- FUNKT.	Seite 537
Wenn/dann-Entscheidungen, Sprünge	SPRÜNGE	Seite 539
Sonstige Funktionen	SONDER- FUNKT.	Seite 542
Formel direkt eingeben	FORMEL	Seite 548
Funktion zur Bearbeitung komplexer Konturen	KONTUR- FORMEL	Seite 434
Funktion zur String-Verarbeitung	STRING- FORMEL	Seite 552

11.2 Teilefamilien – Q-Parameter statt Zahlenwerte

Mit der Q-Parameter-Funktion D0: ZUWEISUNG können Sie Q-Parametern Zahlenwerte zuweisen. Dann setzen Sie im Bearbeitungs-Programm statt dem Zahlenwert einen Q-Parameter ein.

NC-Beispielsätze

N150 D00 Q10 P01 +25 *	Zuweisung
	Q10 erhält den Wert 25
N250 G00 X +Q10 *	entspricht G00 X +25


Für Teilefamilien programmieren Sie z.B. die charakteristischen Werkstück-Abmessungen als Q-Parameter.

Für die Bearbeitung der einzelnen Teile weisen Sie dann jedem dieser Parameter einen entsprechenden Zahlenwert zu.

Beispiel

Zylinder mit Q-Parametern

Zylinder-Radius	R = Q1
Zylinder-Höhe	H = Q2
Zylinder Z1	Q1 = +30
	Q2 = +10
Zylinder Z2	Q1 = +10
	Q2 = +50

11.3 Konturen durch mathematische Funktionen beschreiben

Anwendung

Mit Q-Parametern können Sie mathematische Grundfunktionen im Bearbeitungsprogramm programmieren:

- Q-Parameter-Funktion w\u00e4hlen: Taste Q dr\u00fccken (im Feld f\u00fcr Zahlen-Eingabe, rechts). Die Softkey-Leiste zeigt die Q-Parameter-Funktionen
- Mathematische Grundfunktionen wählen: Softkey GRUNDFUNKT. drücken. Die TNC zeigt folgende Softkeys:

Übersicht

Funktion	Softkey
D00: ZUWEISUNG z.B. D00 Q5 P01 +60 * Wert direkt zuweisen	DØ X = Y
D01: ADDITION z.B. D01 Q1 P01 -Q2 P02 -5 * Summe aus zwei Werten bilden und zuweisen	D1 X + Y
D02: SUBTRAKTION z.B. D02 Q1 P01 +10 P02 +5 * Differenz aus zwei Werten bilden und zuweisen	D2 X - Y
D03: MULTIPLIKATION z.B. D03 Q2 P01 +3 P02 +3 * Produkt aus zwei Werten bilden und zuweisen	X * A
D04: DIVISION z.B. D04 Q4 P01 +8 P02 +Q2 * Quotient aus zwei Werten bilden und zuweisen Verboten: Division durch 0!	D4 X / Y
D05: WURZEL z.B. D05 Q50 P01 4 * Wurzel aus einer Zahl ziehen und zuweisen Verboten: Wurzel aus negativem Wert!	DS HURZEL

Rechts vom "="-Zeichen dürfen Sie eingeben:

- zwei Zahlen
- zwei Q-Parameter
- eine Zahl und einen Q-Parameter

Die Q-Parameter und Zahlenwerte in den Gleichungen können Sie beliebig mit Vorzeichen versehen.

i

Grundrechenarten programmieren

Eingabebeispiel 1:

Q-Parameter-Funktionen wählen: Taste Q drücken

Mathematische Grundfunktionen wählen: Softkey GRUNDFUNKT. drücken

Q-Parameter-Funktion ZUWEISUNG wählen: Softkey D0 X = Y drücken

PARAMETER-NR. FÜR ERGEBNIS?

5 ENT

Nummer des Q-Parameters eingeben: 5

1. WERT ODER PARAMETER?

10 ENT

Q5 den Zahlenwert 10 zuweisen

Beispiel: NC-Satz

N16 D00 P01 +10 *

i

Eingabebeispiel 2:

Q-Parameter-Funktionen wählen: Taste Q drücken

Mathematische Grundfunktionen wählen: Softkey GRUNDFUNKT. drücken

Q-Parameter-Funktion MULTIPLIKATION wählen: Softkey D03 X * Y drücken

PARAMETER-NR. FÜR ERGEBNIS?

12

Nummer des Q- Parameters eingeben: 12

1. WERT ODER PARAMETER?

Q5

Q5 als ersten Wert eingeben

2. WERT ODER PARAMETER?

7 EN

7 als zweiten Wert eingeben

Beispiel: NC-Satz

N17 D03 Q12 P01 +Q5 P02 +7 *

11.4 Winkelfunktionen (Trigonometrie)

Definitionen

Sinus, Cosinus und Tangens entsprechen den Seitenverhältnissen eines rechtwinkligen Dreiecks. Dabei entspricht

Sinus: $\sin \alpha = a/c$ Cosinus: $\cos \alpha = b/c$

Tangens: $\tan \alpha = a / b = \sin \alpha / \cos \alpha$

Dabei ist

■ c die Seite gegenüber dem rechten Winkel

a die Seite gegenüber dem Winkel a

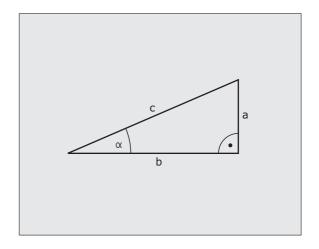
■ b die dritte Seite

Aus dem Tangens kann die TNC den Winkel ermitteln:

 α = arctan α = arctan (a / b) = arctan (sin α / cos α)

Beispiel:

a = 10 mm


b = 10 mm

 α = arctan (a / b) = arctan 1 = 45°

Zusätzlich gilt:

 $a^2 + b^2 = c^2$ (mit $a^2 = a \times a$)

$$C = \sqrt{(a^2 + b^2)}$$

Winkelfunktionen programmieren

Die Winkelfunktionen erscheinen mit Druck auf den Softkey WINKELFUNKT. Die TNC zeigt die Softkeys in nachfolgender Tabelle.

Programmierung: vergleiche "Beispiel: Grundrechenarten programmieren"

Funktion	Softkey
D06: SINUS z.B. D06 Q20 P01 -Q5 * Sinus eines Winkels in Grad (°) bestimmen und zuweisen	DB
D07: COSINUS z.B. D07 Q21 P01 -Q5 * Cosinus eines Winkels in Grad (°) bestimmen und zuweisen	D7 COS(X)
D08: WURZEL AUS QUADRATSUMME z.B. D08 Q10 P01 +5 P02 +4 * Länge aus zwei Werten bilden und zuweisen	D8 X LEN Y
D13: WINKEL z.B. D13 Q20 P01 +10 P02 -Q1 * Winkel mit arctan aus zwei Seiten oder sin und cos des Winkels (0 < Winkel < 360°) bestimmen und zuweisen	D13 X ANG Y

11.5 Wenn/dann-Entscheidungen mit Q-Parametern

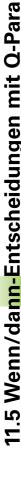
Anwendung

Bei Wenn/dann-Entscheidungen vergleicht die TNC einen Q-Parameter mit einem anderen Q-Parameter oder einem Zahlenwert. Wenn die Bedingung erfüllt ist, dann setzt die TNC das Bearbeitungs-Programm an dem Label fort, der hinter der Bedingung programmiert ist (Label siehe "Unterprogramme und Programmteil-Wiederholungen kennzeichnen", Seite 514). Wenn die Bedingung nicht erfüllt ist, dann führt die TNC den nächsten Satz aus.

Wenn Sie ein anderes Programm als Unterprogramm aufrufen möchten, dann programmieren Sie hinter dem Label G98 einen Programm-Aufruf mit %.

Unbedingte Sprünge

Unbedingte Sprünge sind Sprünge, deren Bedingung immer (=unbedingt) erfüllt ist, z.B.


D09 P01 +10 P02 +10 P03 1 *

Wenn/dann-Entscheidungen programmieren

Die Wenn/dann-Entscheidungen erscheinen mit Druck auf den Softkey SPRÜNGE. Die TNC zeigt folgende Softkeys:

Funktion	Softkey
D09: WENN GLEICH, SPRUNG z.B. D09 P01 +Q1 P02 +Q3 P03 "UPCAN25" * Wenn beide Werte oder Parameter gleich, Sprung zu angegebenem Label	D9 IF X EQ Y GOTO
D10: WENN UNGLEICH, SPRUNG z.B. D10 P01 +10 P02 -Q5 P03 10 * Wenn beide Werte oder Parameter ungleich, Sprung zu angegebenem Label	D10 IF X NE Y GOTO
D11: WENN GROESSER, SPRUNG z.B. D11 P01 +Q1 P02 +10 P03 5 * Wenn erster Wert oder Parameter größer als zweiter Wert oder Parameter, Sprung zu angegebenem Label	D11 IF X GT Y GOTO
D12: WENN KLEINER, SPRUNG z.B. D12 P01 +Q5 P02 +0 P03 "ANYNAME" * Wenn erster Wert oder Parameter kleiner als zweiter Wert oder Parameter, Sprung zu angegebenem Label	D12 IF X LT Y GOTO

HEIDENHAIN iTNC 530 539

Verwendete Abkürzungen und Begriffe

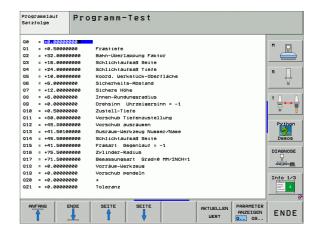
IF Wenn (engl.): EQU (engl. equal): Gleich NE (engl. not equal): Nicht gleich GT Größer als (engl. greater than): LT Kleiner als (engl. less than): **GOTO** Gehe zu (engl. go to):

11.6 Q-Parameter kontrollieren und ändern

Vorgehensweise

Sie können Q-Parameter beim Erstellen, Testen und Abarbeiten in den Betriebsarten Programm Einspeichern/Editieren, Programm Test, Programmlauf Satzfolge und Programmlauf Einzelsatz kontrollieren und auch ändern.

▶ Ggf. Programmlauf abbrechen (z.B. externe STOPP-Taste und Softkey INTERNER STOPP drücken) bzw. Programm-Test anhalten



- Q-Parameter-Funktionen aufrufen: Taste Q bzw. Softkey Q INFO in der Betriebsart Programm Einspeichern/Editieren drücken
- Die TNC listet alle Parameter und die dazugehörigen aktuellen Werte auf. Wählen Sie mit den Pfeil-Tasten oder den Softkeys zum seitenweise Blättern den gewünschten Parameter an
- Wenn Sie den Wert ändern möchten, geben Sie einen neuen Wert ein, bestätigen Sie mit der Taste ENT
- Wenn Sie den Wert nicht ändern möchten, dann drücken Sie den Softkey AKTUELLEN WERT oder beenden Sie den Dialog mit der Taste END

Von der TNC verwendete Parameter, sind mit Kommentaren versehen.

Wenn Sie String-Parameter kontrollieren oder ändern wollen, drücken Sie den Softkey PARAMETER ANZEIGEN Q... QS.... Die TNC stellt dann alle String-Parameter dar, die zuvor beschriebenen Funktionen gelten ebenso.

11.7 Zusätzliche Funktionen

Übersicht

Die zusätzlichen Funktionen erscheinen mit Druck auf den Softkey SONDER-FUNKT. Die TNC zeigt folgende Softkeys:

Funktion	Softkey	Seite
D14:ERROR Fehlermeldungen ausgeben	D14 FEHLER=	Seite 543
D15:PRINT Texte oder Q-Parameter-Werte unformatiert ausgeben	D15 DRUCKEN	Seite 547
FD19:PLC Werte an die PLC übergeben	D19 PLC=	Seite 547

D14: ERROR: Fehlermeldungen ausgeben

NC-Beispielsatz

Die TNC soll eine Meldung ausgeben, die unter der Fehler-Nummer 254 gespeichert ist

N180 D14 P01 254 *

Mit der Funktion D14: ERROR können Sie programmgesteuert Meldungen ausgeben lassen, die vom Maschinenhersteller bzw. von HEIDENHAIN vorprogrammiert sind: Wenn die TNC im Programmlauf oder Programm-Test zu einem Satz mit D 14 kommt, so unterbricht sie und gibt eine Meldung aus. Anschließend müssen Sie das Programm neu starten. Fehler-Nummern: siehe Tabelle unten.

Bereich Fehler-Nummern	Standard-Dialog
0 299	D 14: Fehler-Nummer 0 299
300 999	Maschinenabhängiger Dialog
1000 1099	Interne Fehlermeldungen (siehe Tabelle rechts)

Von HEIDENHAIN vorbelegte Fehlermeldung

Fehler-Nummer	Text
1000	Spindel?
1001	Werkzeugachse fehlt
1002	Werkzeug-Radius zu klein
1003	Werkzeug-Radius zu groß
1004	Bereich überschritten
1005	Anfangs-Position falsch
1006	DREHUNG nicht erlaubt
1007	MASSFAKTOR nicht erlaubt
1008	SPIEGELUNG nicht erlaubt
1009	Verschiebung nicht erlaubt
1010	Vorschub fehlt
1011	Eingabewert falsch
1012	Vorzeichen falsch
1013	Winkel nicht erlaubt
1014	Antastpunkt nicht erreichbar
1015	Zu viele Punkte

Fehler-Nummer	Text
1016	Eingabe widersprüchlich
1017	CYCL unvollständig
1018	Ebene falsch definiert
1019	Falsche Achse programmiert
1020	Falsche Drehzahl
1021	Radius-Korrektur undefiniert
1022	Rundung nicht definiert
1023	Rundungs-Radius zu groß
1024	Undefinierter Programmstart
1025	Zu hohe Verschachtelung
1026	Winkelbezug fehlt
1027	Kein BearbZyklus definiert
1028	Nutbreite zu klein
1029	Tasche zu klein
1030	Q202 nicht definiert
1031	Q205 nicht definiert
1032	Q218 größer Q219 eingeben
1033	CYCL 210 nicht erlaubt
1034	CYCL 211 nicht erlaubt
1035	Q220 zu groß
1036	Q222 größer Q223 eingeben
1037	Q244 größer 0 eingeben
1038	Q245 ungleich Q246 eingeben
1039	Winkelbereich < 360° eingeben
1040	Q223 größer Q222 eingeben
1041	Q214: 0 nicht erlaubt

Fehler-Nummer	Text
1042	Verfahrrichtung nicht definiert
1043	Keine Nullpunkt-Tabelle aktiv
1044	Lagefehler: Mitte 1. Achse
1045	Lagefehler: Mitte 2. Achse
1046	Bohrung zu klein
1047	Bohrung zu groß
1048	Zapfen zu klein
1049	Zapfen zu groß
1050	Tasche zu klein: Nacharbeit 1.A.
1051	Tasche zu klein: Nacharbeit 2.A.
1052	Tasche zu groß: Ausschuss 1.A.
1053	Tasche zu groß: Ausschuss 2.A.
1054	Zapfen zu klein: Ausschuss 1.A.
1055	Zapfen zu klein: Ausschuss 2.A.
1056	Zapfen zu groß: Nacharbeit 1.A.
1057	Zapfen zu groß: Nacharbeit 2.A.
1058	TCHPROBE 425: Fehler Größtmaß
1059	TCHPROBE 425: Fehler Kleinstmaß
1060	TCHPROBE 426: Fehler Größtmaß
1061	TCHPROBE 426: Fehler Kleinstmaß
1062	TCHPROBE 430: Durchm. zu groß
1063	TCHPROBE 430: Durchm. zu klein
1064	Keine Messachse definiert
1065	Werkzeug-Bruchtoleranz überschr.
1066	Q247 ungleich 0 eingeben
1067	Betrag Q247 größer 5 eingeben
1068	Nullpunkt-Tabelle?
1069	Fraesart Q351 ungleich 0 eingeben
1070	Gewindetiefe verringern

Fehler-Nummer	Text
1071	Kalibrierung durchführen
1072	Toleranz überschritten
1073	Satzvorlauf aktiv
1074	ORIENTIERUNG nicht erlaubt
1075	3DROT nicht erlaubt
1076	3DROT aktivieren
1077	Tiefe negativ eingeben
1078	Q303 im Messzyklus undefiniert!
1079	Werkzeugachse nicht erlaubt
1080	Berechnete Werte fehlerhaft
1081	Messpunkte widersprüchlich
1082	Sichere Höhe falsch eingegeben
1083	Eintauchart widersprüchlich
1084	Bearbeitungszyklus nicht erlaubt
1085	Zeile ist schreibgeschützt
1086	Aufmaß größer als Tiefe
1087	Kein Spitzenwinkel definiert
1088	Daten widersprüchlich
1089	Nutlage 0 nicht erlaubt
1090	Zustellung ungleich 0 eingeben

D15: PRINT: Texte oder Q-Parameter-Werte ausgeben

Datenschnittstelle einrichten: Im Menüpunkt PRINT bzw. PRINT-TEST legen Sie den Pfad fest, auf dem die TNC die Texte oder Q-Parameter-Werte speichern soll, siehe "Zuweisung", Seite 630.

Mit der Funktion D15: PRINT können Sie Werte von Q-Parametern und Fehlermeldungen über die Datenschnittstelle ausgeben, zum Beispiel an einen Drucker. Wenn Sie die Werte intern abspeichern oder an einen Rechner ausgeben, speichert die TNC die Daten in der Datei %FN 15RUN.A (Ausgabe während des Programmlaufs) oder in der Datei %FN15SIM.A (Ausgabe während des Programm-Tests). Die Ausgabe erfolgt gepuffert und wird spätestens am PGM-Ende, oder wenn das PGM angehalten wird, ausgelöst. In der BA Einzelsatz startet die Datenübertragung am Satzende.

Dialoge und Fehlermeldung ausgeben mit D15: PRINT "Zahlenwert"

Zahlenwert 0 bis 99: Dialoge für Hersteller-Zyklen ab 100: PLC-Fehlermeldungen

Beispiel: Dialog-Nummer 20 ausgeben

N67 D15 P01 20 *

Dialoge und Q-Parameter ausgeben mit D15: PRINT "Q-Parameter"

Anwendungsbeispiel: Protokollieren einer Werkstück-Vermessung.

Sie können bis zu sechs Q-Parameter und Zahlenwerte gleichzeitig ausgeben.

Beispiel: Dialog 1 und Zahlenwert Q1 ausgeben

N70 D15 P01 1 P02 Q1 *

D19: PLC: Werte an PLC übergeben

Mit der Funktion D19: PLC können Sie bis zu zwei Zahlenwerte oder Q-Parameter an die PLC übergeben.

Schrittweiten und Einheiten: 0,1 µm bzw. 0,0001°

Beispiel: Zahlenwert 10 (entspricht 1µm bzw. 0,001°) an PLC übergeben

N56 D19 P01 +10 P02 +Q3 *

11.8 Formel direkt eingeben

Formel eingeben

Über Softkeys können Sie mathematische Formeln, die mehrere Rechenoperationen beinhalten, direkt ins Bearbeitungs-Programm eingeben.

Die Formeln erscheinen mit Druck auf den Softkey FORMEL. Die TNC zeigt folgende Softkeys in mehreren Leisten:

Zonge rongorido dorento your morniori or zonocom.	0.61
Verknüpfungs-Funktion	Softkey
Addition z.B. Q10 = Q1 + Q5	*
Subtraktion z.B. Q25 = Q7 - Q108	-
Multiplikation z.B. Q12 = 5 * Q5	*
Division z.B. Q25 = Q1 / Q2	,
Klammer auf z.B. Q12 = Q1 * (Q2 + Q3)	(
Klammer zu z.B. Q12 = Q1 * (Q2 + Q3)	,
Wert quadrieren (engl. square) z.B. Q15 = \$Q 5	So
Wurzel ziehen (engl. square root) z.B. Q22 = SQRT 25	SORT
Sinus eines Winkels z.B. Q44 = SIN 45	SIN
Cosinus eines Winkels z.B. Q45 = C0S 45	cos
Tangens eines Winkels z.B. Q46 = TAN 45	TAN
Arcus-Sinus Umkehrfunktion des Sinus; Winkel bestimmen aus dem Verhältnis Gegenkathete/Hypotenuse z.B. Q10 = ASIN 0,75	ASIN
Arcus-Cosinus Umkehrfunktion des Cosinus; Winkel bestimmen aus dem Verhältnis Ankathete/Hypotenuse z.B. Q11 = ACOS Q40	ACOS

Verknüpfungs-Funktion	Softkey
Arcus-Tangens Umkehrfunktion des Tangens; Winkel bestimmen aus dem Verhältnis Gegenkathete/Ankathete z.B. Q12 = ATAN Q50	ATAN
Werte potenzieren z.B. Q15 = 3^3	^
Konstante PI (3,14159) z.B. Q15 = PI	PI
Logarithmus Naturalis (LN) einer Zahl bilden Basiszahl 2,7183 z.B. Q15 = LN Q11	LN
Logarithmus einer Zahl bilden, Basiszahl 10 z.B. Q33 = L0G Q22	LOG
Exponentialfunktion, 2,7183 hoch n z.B. Q1 = EXP Q12	ЕХР
Werte negieren (Multiplikation mit -1) z.B. Q2 = NEG Q1	NEG
Nachkomma-Stellen abschneiden Integer-Zahl bilden z.B. Q3 = INT Q42	INT
Absolutwert einer Zahl bilden z.B. Q4 = ABS Q22	ABS
Vorkomma-Stellen einer Zahl abschneiden Fraktionieren z.B. Q5 = FRAC Q23	FRAC
Vorzeichen einer Zahl prüfen z.B. Q12 = SGN Q50 Wenn Rückgabewert Q12 = 1, dann Q50 >= 0 Wenn Rückgabewert Q12 = -1, dann Q50 < 0	SGN
Modulowert (Divisionsrest) berechnen z.B. Q12 = 400 % 360 Ergebnis: Q12 = 40	*

Rechenregeln

Für das Programmieren mathematischer Formeln gelten folgende Regeln:

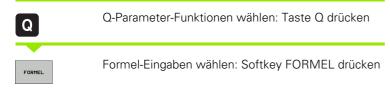
Punkt- vor Strichrechnung

- **1.** Rechenschritt 5 * 3 = 15
- **2.** Rechenschritt 2 * 10 = 20
- **3.** Rechenschritt 15 + 20 = 35

oder

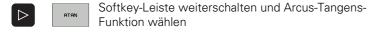
$$N113$$
 Q2 = SQ 10 - 3^3 = 73 *

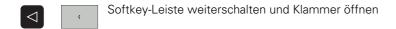
- 1. Rechenschritt 10 quadrieren = 100
- 2. Rechenschritt 3 mit 3 potenzieren = 27
- **3.** Rechenschritt 100 27 = 73


Distributivgesetz

Gesetz der Verteilung beim Klammerrechnen

$$a * (b + c) = a * b + a * c$$


Eingabe-Beispiel


Winkel berechnen mit arctan aus Gegenkathete (Q12) und Ankathete (Q13); Ergebnis Q25 zuweisen:

PARAMETER-NR. FÜR ERGEBNIS?



NC-Beispielsatz

N30 Q25 = ATAN (Q12/Q13) *

11.9 String-Parameter

Funktionen der Stringverarbeitung

Die Stringverarbeitung (engl. string = Zeichenkette) über **QS**-Parameter können Sie verwenden, um variable Zeichenketten zu erstellen.

Einem String-Parametern können Sie eine Zeichenkette (Buchstaben, Ziffern, Sonderzeichen, Steuerzeichen und Leerzeichen) mit einer Länge von bis zu 256 Zeichen zuweisen. Die zugewiesenen bzw.eingelesenen Werte können Sie mit den nachfolgend beschriebenen Funktionen weiter verarbeiten und überprüfen. Wie bei der Q-Parameter-Programmierung stehen Ihnen insgesamt 2000 QS-Parameter zur Verfügung (siehe auch "Prinzip und Funktionsübersicht" auf Seite 530)

In den Q-Parameter-Funktionen STRING FORMEL und FORMEL sind unterschiedliche Funktionen für die Verarbeitung von String-Parametern enthalten.

Funktionen der STRING FORMEL	Softkey	Seite
String-Parameter zuweisen	STRING	Seite 553
String-Parameter verketten		Seite 553
Numerischen Wert in einen String- Parameter umwandeln	TOCHAR	Seite 554
Teilstring aus einem String-Parameter kopieren	SUBSTR	Seite 555
Systemdaten in einen String-Parameter kopieren	SYSSTR	Seite 556

String-Funktionen in der FORMEL- Funktion	Softkey	Seite
String-Parameter in einen numerischen Wert umwandeln	TONUMB	Seite 558
Prüfen eines String-Parameters	INSTR	Seite 559
Länge eines String-Parameters ermitteln	STRLEN	Seite 560
Alphabetische Reihenfolge vergleichen	STRCOMP	Seite 561

Wenn Sie die Funktion STRING FORMEL verwenden, ist das Ergebnis der durchgeführten Rechenoperation immer ein String. Wenn Sie die Funktion FORMEL verwenden, ist das Ergebnis der durchgeführten Rechenoperation immer ein numerischen Wert.

i

String-Parameter zuweisen

Bevor Sie String-Variablen verwenden, müssen Sie diese zuerst zuweisen. Dazu verwenden Sie den Befehl DECLARE STRING.

► TNC Sonderfunktionen wählen: Taste SPEC FCT drücken

► Funktion DECLARE wählen

► Softkey STRING wählen

NC-Beispielsatz:

N37 DECLARE STRING QS10 = "WERKSTÜCK"

String-Parameter verketten

Mit dem Verkettungsoperator (String-Parameter | | String-Parameter) können Sie mehrere String-Parameter miteinander verbinden.

▶ Q-Parameter-Funktionen wählen

- ▶ Funktion STRING-FORMEL wählen
- Nummer des String-Parameters eingeben, in den die TNC den verketteten String speichern soll, mit Taste ENT bestätigen
- Nummer des String-Parameters eingeben, in dem der erste Teilstring gespeichert ist, mit Taste ENT bestätigen: Die TNC zeigt das Verkettungs-Symbol | | an
- ► Mit Taste ENT bestätigen
- Nummer des String-Parameters eingeben, in dem der zweite Teilstring gespeichert ist, mit Taste ENT bestätigen
- Vorgang widerholen, bis Sie alle zu verkettenden Teilstrings gewählt haben, mit Taste END beenden

Beispiel: QS10 soll den kompletten Text von QS12, QS13 und QS14 enthalten

N37 QS10 = QS12 || QS13 || QS14

Parameter-Inhalte:

- QS12: Werkstück
- QS13: Status:
- QS14: Ausschuss
- QS10: Werkstück Status: Ausschuss

Numerischen Wert in einen String-Parameter umwandeln

Mit der Funktion **TOCHAR** wandelt die TNC einen numerischen Wert in einen String-Parameter um. Auf diese Weise können Sie Zahlenwerte mit Stringvariablen verketten.

► Funktion STRING-FORMEL wählen

- Funktion zum Umwandeln eines numerischen Wertes in einen String-Parameter wählen
- ► Zahl oder gewünschten Q-Parameter eingeben, den die TNC wandeln soll, mit Taste ENT bestätigen
- Wenn gewünscht die Anzahl der Nachkommastellen eingeben, die die TNC mit umwandeln soll, mit Taste ENT bestätigen
- ► Klammerausdruck mit Taste ENT schließen und Eingabe mit Taste END beenden

Beispiel: Parameter Q50 in String-Parameter QS11 umwandeln, 3 Dezimalstellen verwenden

N37 QS11 = TOCHAR (DAT+Q50 DECIMALS3)

Teilstring aus einem String-Parameter kopieren

Mit der Funktion SUBSTR können Sie aus einem String-Parameter einen definierbaren Bereich herauskopieren.

Q-Parameter-Funktionen wählen

- ▶ Funktion STRING-FORMEL wählen
- Nummer des Parameters eingeben, in den die TNC die kopierte Zeichenfolge speichern soll, mit Taste ENT bestätigen

- Funktion zum Ausschneiden eines Teilstrings wählen
- Nummer des QS-Parameters eingeben, aus dem Sie den Teilstring herauskopieren wollen, mit Taste ENT bestätigen
- Nummer der Stelle eingeben, ab der Sie den Teilstring kopieren wollen, mit Taste ENT bestätigen
- Anzahl der Zeichen eingeben, die Sie kopieren wollen, mit Taste ENT bestätigen
- ▶ Klammerausdruck mit Taste ENT schließen und Eingabe mit Taste END beenden

Darauf achten, dass das erste Zeichen einer Textfolge intern an der 0. Stelle beginnt.

Beispiel: Aus dem String-Parameter QS10 ist ab der dritten Stelle (BEG2) ein vier Zeichen langer Teilstring (LEN4) zu lesen

N37 QS13 = SUBSTR (SRC QS10 BEG2 LEN4)

HEIDENHAIN iTNC 530 555

Systemdaten in einen String-Parameter kopieren

Mit der Funktion **SYSSTR** können Sie Systemdaten in einen String-Parameter kopieren. Momentan steht nur das Auslesen der aktuellen Systemzeit zur Verfügung:

SYSSTR

- ► Funktion STRING-FORMEL wählen
- Nummer des Parameters eingeben, in den die TNC die kopierte Zeichenfolge speichern soll, mit Taste ENT bestätigen
- Funktion zum Kopieren von Systemdaten wählen
- Nummer des Systemschlüssels, für die Systemzeit ID321 eingeben, den Sie kopieren wollen, mit Taste ENT bestätigen
- Index des Systemschlüssels eingeben, ab der Sie den Teilstring kopieren wollen, mit Taste ENT bestätigen. Der Index legt beim Lesen bzw. Wandeln des Systemdatums das Datumsformat fest (siehe Beschreibung weiter unten)
- Arrayindex des zu lesenden Systemdatums eingeben (hat noch keine Funktion, mit Taste NO ENT bestätigen)
- Nummer des Q-Parameters, aus dem die TNC das kalendarische Datum ermitteln soll, sofern Sie die Systemzeit zuvor mit FN18: SYSREAD 1D320 gelesen haben. Wenn DAT nicht eingegeben, dann ermittelt die TNC das kalendarische Datum der aktuellen Systemzeit
- Klammerausdruck mit Taste ENT schließen und Eingabe mit Taste END beenden

Diese Funktion ist für zukünftige Erweiterungen vorbereitet. Der Parameter IDX hat noch keine Funktion.

Für die Formatierung des Datums können Sie folgende Formate verwenden:

- 0: TT.MM.JJJJ hh:mm:ss
- 1: T.MM.JJJJ h:mm:ss
- 2: T.MM.JJJJ h:mm
- 3: T.MM.JJ h:mm
- 4: JJJJ-MM-TT- hh:mm:ss
- 5: JJJJ-MM-TT hh:mm
- 6: JJJJ-MM-TT h:mm
- 7: JJ-MM-TT h:mm
- 8: TT.MM.JJJJ
- 9: T.MM.JJJJ
- 10: T.MM.JJ
- 11: JJJJ-MM-TT
- 12: JJ-MM--TT
- 13: hh:mm:ss
- 14: h:mm:ss
- 15: h:mm

Beispiel: Aktuelle Systemzeit im Format TT.MM.JJJJ hh:mm:ss auslesen und im Parameter QS13 ablegen.

N70 QS13 = SYSSTR (ID321 NRO LEN4)

String-Parameter in einen numerischen Wert umwandeln

Die Funktion TONUMB wandelt einen String-Parameter in einen numerischen Wert um. Der umzuwandelnde Wert sollte nur aus Zahlenwerten bestehen.

Der umzuwandelnde QS-Parameter darf nur einen Zahlenwert enthalten, ansonsten gibt die TNC eine Fehlermeldung aus.

▶ Q-Parameter-Funktionen wählen

- ► Funktion FORMEL wählen
- Nummer des Parameters eingeben, in den die TNC den numerischen Wert speichern soll, mit Taste ENT bestätigen

▶ Softkey-Leiste umschalten

- Funktion zum Umwandeln eines String-Parameters in einen numerischen Wert wählen
- Nummer des QS-Parameters eingeben, den die TNC wandeln soll, mit Taste ENT bestätigen
- ▶ Klammerausdruck mit Taste ENT schließen und Eingabe mit Taste END beenden

Beispiel: String-Parameter QS11 in einen numerischen Parameter Q82 umwandeln

N37 Q82 = TONUMB (SRC QS11)

Prüfen eines String-Parameters

Mit der Funktion INSTR können Sie überprüfen, ob bzw. wo ein String-Parameter in einem anderen String-Parameter enthalten ist.

Q-Parameter-Funktionen wählen

- ► Funktion FORMEL wählen
- Nummer des Q-Parameters eingeben, in den die TNC die Stelle speichern soll, an der der zu suchende Text beginnt, mit Taste ENT bestätigen

Softkev-Leiste umschalten

- Nummer des QS-Parameters eingeben, in dem der zu suchende Text gespeichert ist, mit Taste ENT bestätigen

Funktion zum Prüfen eines String-Parameters wählen

- Nummer des QS-Parameters eingeben, den die TNC durchsuchen soll, mit Taste ENT bestätigen
- Nummer der Stelle eingeben, ab der die TNC den Teilstring suchen soll, mit Taste ENT bestätigen
- ► Klammerausdruck mit Taste ENT schließen und Eingabe mit Taste END beenden

Darauf achten, dass das erste Zeichen einer Textfolge intern an der 0. Stelle beginnt.

Wenn die TNC den zu suchenden Teilstring nicht findet, dann speichert sie die Gesamtlänge des zu durchsuchenden Strings (Zählung beginnt hier bei 1) in den Ergebnis-Parameter.

Tritt der zu suchende Teilstring mehrfach auf, dann liefert die TNC die erste Stelle zurück, an der Sie den Teilstring findet.

Beispiel: QS10 durchsuchen auf den in Parameter QS13 gespeicherten Text. Suche ab der dritten Stelle beginnen

N37 Q50 = INSTR (SRC QS10 SEA QS13 BEG2)

HEIDENHAIN iTNC 530 559

Länge eines String-Parameters ermitteln

Die Funktion **STRLEN** liefert die Länge des Textes, der in einem wählbaren String-Parameter gespeichert ist.

▶ Q-Parameter-Funktionen wählen

- ► Funktion FORMEL wählen
- Nummer des Q-Parameters eingeben, in dem die TNC die zu ermittelnde Stringlänge speichern soll, mit Taste ENT bestätigen
- \bigcirc
- ▶ Softkey-Leiste umschalten

Parameters wählen

- ► Funktion zum ermitteln der Textlänge eines String-
- Nummer des QS-Parameters eingeben, von dem die TNC die Länge ermitteln soll, mit Taste ENT bestätigen
- ► Klammerausdruck mit Taste ENT schließen und Eingabe mit Taste END beenden

Beispiel: Länge von QS15 ermitteln

N37 Q52 = STRLEN (SRC_QS15)

Alphabetische Reihenfolge vergleichen

Mit der Funktion STRCOMP können Sie die alphabetische Reihenfolge von String-Parametern vergleichen.

Q-Parameter-Funktionen wählen

- ► Funktion FORMEL wählen
- Nummer des Q-Parameters eingeben, in dem die TNC das Vergleichsergebnis speichern soll, mit Taste ENT bestätigen

► Softkey-Leiste umschalten

wählen

- ► Funktion zum Vergleichen von String-Parametern
- Nummer des ersten QS-Parameters eingeben, den die TNC vergleichen soll, mit Taste ENT bestätigen
- Nummer des zweiten QS-Parameters eingeben, den die TNC vergleichen soll, mit Taste ENT bestätigen
- ► Klammerausdruck mit Taste ENT schließen und Eingabe mit Taste END beenden

Die TNC liefert folgende Ergebnisse zurück:

- 0: Die verglichenen QS-Parameter sind identisch
- +1: Der erste QS-Parameter liegt alphabetisch vor dem zweiten QS-Parameter
- -1: Der erste QS-Parameter liegt alphabetisch hinter dem zweiten QS-Parameter

Beispiel: Alphabetische Reihenfolge von QS12 und QS14 vergleichen

N37 Q52 = STRCOMP (SRC QS12 SEA QS14)

HEIDENHAIN iTNC 530 561

11.10 Vorbelegte Q-Parameter

Die Q-Parameter Q100 bis Q122 werden von der TNC mit Werten belegt. Den Q-Parametern werden zugewiesen:

- Werte aus der PLC
- Angaben zu Werkzeug und Spindel
- Angaben zum Betriebszustand
- Messergebnisse aus Tastsystem-Zyklen usw.

Vorbelegte Q-Parameter zwischen Q100 und Q199 dürfen Sie in NC-Programmen nicht als Rechenparameter verwenden, ansonsten können unerwünschte Effekte auftreten.

Werte aus der PLC: Q100 bis Q107

Die TNC benutzt die Parameter Q100 bis Q107, um Werte aus der PLC in ein NC-Programm zu übernehmen.

WMAT-Satz: QS100

Die TNC legt das im WMAT-Satz definierte Material im Parameter **0\$100** ab.

Aktiver Werkzeug-Radius: Q108

Der aktive Wert des Werkzeug-Radius wird Q108 zugewiesen. Q108 setzt sich zusammen aus:

- Werkzeug-Radius R (Werkzeug-Tabelle oder G99-Satz)
- Delta-Wert DR aus der Werkzeug-Tabelle
- Delta-Wert DR aus dem TOOL CALL-Satz

Werkzeugachse: Q109

Der Wert des Parameters Q109 hängt von der aktuellen Werkzeugachse ab:

Werkzeugachse	Parameter-Wert
Keine Werkzeugachse definiert	Q109 = -1
X-Achse	Q109 = 0
Y-Achse	Q109 = 1
Z-Achse	Q109 = 2
U-Achse	Q109 = 6
V-Achse	Q109 = 7
W-Achse	Q109 = 8

Spindelzustand: Q110

Der Wert des Parameters Q110 hängt von der zuletzt programmierten M-Funktion für die Spindel ab:

M-Funktion	Parameter-Wert
Kein Spindelzustand definiert	Q110 = -1
M03: Spindel EIN, Uhrzeigersinn	Q110 = 0
M04: Spindel EIN, Gegenuhrzeigersinn	Q110 = 1
M05 nach M03	Q110 = 2
M05 nach M04	Q110 = 3

Kühlmittelversorgung: Q111

M-Funktion	Parameter-Wert
M08: Kühlmittel EIN	Q111 = 1
M09: Kühlmittel AUS	Q111 = 0

Überlappungsfaktor: Q112

Die TNC weist Q112 den Überlappungsfaktor beim Taschenfräsen (MP7430) zu.

Maßangaben im Programm: Q113

Der Wert des Parameters Q113 hängt bei Verschachtelungen mit %... von den Maßangaben des Programms ab, das als erstes andere Programme ruft.

Maßangaben des Hauptprogramms	Parameter-Wert
Metrisches System (mm)	Q113 = 0
Zoll-System (inch)	Q113 = 1

Werkzeug-Länge: Q114

Der aktuelle Wert der Werkzeug-Länge wird Q114 zugewiesen.

Koordinaten nach Antasten während des Programmlaufs

Die Parameter Q115 bis Q119 enthalten nach einer programmierten Messung mit dem 3D-Tastsystem die Koordinaten der Spindelposition zum Antast-Zeitpunkt. Die Koordinaten beziehen sich auf den Bezugspunkt, der in der Betriebsart Manuell aktiv ist.

Die Länge des Taststifts und der Radius der Tastkugel werden für diese Koordinaten nicht berücksichtigt.

Koordinatenachse	Parameter-Wert
X-Achse	Q115
Y-Achse	Q116
Z-Achse	Q117
IV. Achse abhängig von MP100	Q118
V. Achse abhängig von MP100	Q119

Ist-Sollwert-Abweichung bei automatischer Werkzeug-Vermessung mit dem TT 130

Ist-Soll-Abweichung	Parameter-Wert
Werkzeug-Länge	Q115
Werkzeug-Radius	Q116

Schwenken der Bearbeitungsebene mit Werkstück-Winkeln: von der TNC berechnete Koordinaten für Drehachsen

Koordinaten	Parameter-Wert
A-Achse	Q120
B-Achse	Q121
C-Achse	Q122

Messergebnisse von Tastsystem-Zyklen

(siehe auch Benutzer-Handbuch Tastsystem-Zyklen)

Gemessene Istwerte	Parameter-Wert
Winkel einer Geraden	Q150
Mitte in der Hauptachse	Q151
Mitte in der Nebenachse	Q152
Durchmesser	Q153
Taschenlänge	Q154
Taschenbreite	Q155
Länge in der im Zyklus gewählten Achse	Q156
Lage der Mittelachse	Q157
Winkel der A-Achse	Q158
Winkel der B-Achse	Q159
Koordinate der im Zyklus gewählten Achse	Q160

Ermittelte Abweichung	Parameter-Wert
Mitte in der Hauptachse	Q161
Mitte in der Nebenachse	Q162
Durchmesser	Q163
Taschenlänge	Q164
Taschenbreite	Q165
Gemessene Länge	Q166
Lage der Mittelachse	Q167

Ermittelte Raumwinkel	Parameter-Wert
Drehung um die A-Achse	Q170
Drehung um die B-Achse	Q171
Drehung um die C-Achse	Q172

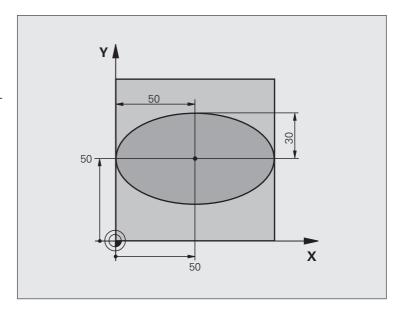
Werkstück-Status	Parameter-Wert
Gut	Q180
Nacharbeit	Q181
Ausschuss	Q182

Gemessene Abweichung mit Zyklus 440	Parameter-Wert
X-Achse	Q185
Y-Achse	Q186
Z-Achse	Q187

Werkzeug-Vermessung mit BLUM-Laser	Parameter-Wert
Reserviert	Q190
Reserviert	Q191
Reserviert	Q192
Reserviert	Q193

Reserviert für interne Verwendung	Parameter-Wert
Merker für Zyklen (Bearbeitungsbilder)	Q197
Nummer des aktiven Tastsystem-Zyklus	Q198

Status Werkzeug-Vermessung mit TT	Parameter-Wert
Werkzeug innerhalb Toleranz	Q199 = 0.0
Werkzeug ist verschlissen (LTOL/RTOL überschritten)	Q199 = 1,0
Werkzeug ist gebrochen (LBREAK/RBREAK überschritten)	Q199 = 2,0



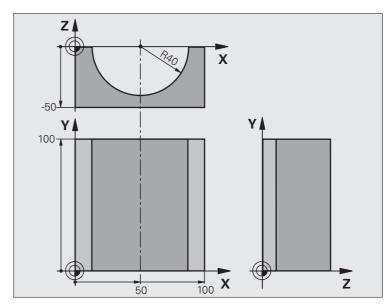
11.11 Programmier-Beispiele

Beispiel: Ellipse

Programm-Ablauf

- Die Ellipsen-Kontur wird durch viele kleine Geradenstücke angenähert (über Q7 definierbar). Je mehr Berechnungsschritte definiert sind, desto glatter wird die Kontur
- Die Fräsrichtung bestimmen Sie über den Startund Endwinkel in der Ebene:
 Bearbeitungsrichtung im Uhrzeigersinn:
 Startwinkel > Endwinkel
 Bearbeitungsrichtung im Gegen-Uhrzeigersinn:
 Startwinkel < Endwinkel
- Werkzeug-Radius wird nicht berücksichtigt

%ELLIPSE G71 *	
N10 D00 Q1 P01 +50 *	Mitte X-Achse
N2O D00 Q2 P01 +50 *	Mitte Y-Achse
N30 D00 Q3 P01 +50 *	Halbachse X
N40 D00 Q4 P01 +30 *	Halbachse Y
N50 D00 Q5 P01 +0 *	Startwinkel in der Ebene
N60 D00 Q6 P01 +360 *	Endwinkel in der Ebene
N70 D00 Q7 P01 +40 *	Anzahl der Berechnungs-Schritte
N80 D00 Q8 P01 +30 *	Drehlage der Ellipse
N90 D00 Q9 P01 +5 *	Frästiefe
N100 D00 Q10 P01 +100 *	Tiefenvorschub
N110 D00 Q11 P01 +350 *	Fräsvorschub
N120 D00 Q12 P01 +2 *	Sicherheits-Abstand für Vorpositionierung
N130 G30 G17 X+0 Y+0 Z-20 *	Rohteil-Definition
N140 G31 G90 X+100 Y+100 Z+0 *	
N150 G99 T1 L+0 R+2,5 *	Werkzeug-Definition
N160 T1 G17 S4000 *	Werkzeug-Aufruf
N170 G00 G40 G90 Z+250 *	Werkzeug freifahren

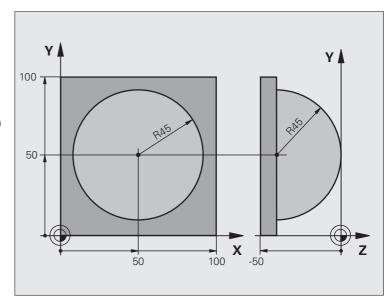

N180 L10,0 *	Bearbeitung aufrufen
N190 G00 Z+250 M2 *	Werkzeug freifahren, Programm-Ende
N200 G98 L10 *	Unterprogramm 10: Bearbeitung
N210 G54 X+Q1 Y+Q2 *	Nullpunkt ins Zentrum der Ellipse verschieben
N220 G73 G90 H+Q8 *	Drehlage in der Ebene verrechnen
N230 Q35 = (Q6 - Q5) / Q7 *	Winkelschritt berechnen
N240 D00 Q36 P01 +Q5 *	Startwinkel kopieren
N250 D00 Q37 P01 +0 *	Schnittzähler setzen
N260 Q21 = Q3 * COS Q36 *	X-Koordinate des Startpunkts berechnen
N270 Q22 = Q4 * SIN Q36 *	Y-Koordinate des Startpunkts berechnen
N280 G00 G40 X+Q21 Y+Q22 M3 *	Startpunkt anfahren in der Ebene
N290 Z+Q12 *	Vorpositionieren auf Sicherheits-Abstand in der Spindelachse
N300 G01 Z-Q9 FQ10 *	Auf Bearbeitungstiefe fahren
N310 G98 L1 *	
N320 Q36 = Q36 + Q35 *	Winkel aktualisieren
N330 Q37 = Q37 + 1 *	Schnittzähler aktualisieren
N340 Q21 = Q3 * COS Q36 *	Aktuelle X-Koordinate berechnen
N350 Q22 = Q4 * SIN Q36 *	Aktuelle Y-Koordinate berechnen
N360 G01 X+Q21 Y+Q22 FQ11 *	Nächsten Punkt anfahren
N370 D12 P01 +Q37 P02 +Q7 P03 1 *	Abfrage ob unfertig, wenn ja dann Rücksprung zu Label 1
N380 G73 G90 H+0 *	Drehung rücksetzen
N390 G54 X+0 Y+0 *	Nullpunkt-Verschiebung rücksetzen
N400 G00 G40 Z+Q12 *	Auf Sicherheits-Abstand fahren
N410 G98 L0 *	Unterprogramm-Ende
N99999999 %ELLIPSE G71 *	

Beispiel: Zylinder konkav mit Radiusfräser

Programm-Ablauf

- Programm funktioniert nur mit Radiusfräser, die Werkzeuglänge bezieht sich auf das Kugelzentrum
- Die Zylinder-Kontur wird durch viele kleine Geradenstücke angenähert (über Q13 definierbar). Je mehr Schnitte definiert sind, desto glatter wird die Kontur
- Der Zylinder wird in Längsschnitten (hier: Parallel zur Y-Achse) gefräst
- Die Fräsrichtung bestimmen Sie über den Startund Endwinkel im Raum:
 Bearbeitungsrichtung im Uhrzeigersinn:
 Startwinkel > Endwinkel
 Bearbeitungsrichtung im Gegen-Uhrzeigersinn:
 Startwinkel < Endwinkel
- Werkzeug-Radius wird automatisch korrigiert

%ZYLIN G71 *	
N10 D00 Q1 P01 +50 *	Mitte X-Achse
N20 D00 Q2 P01 +0 *	Mitte Y-Achse
N30 D00 Q3 P01 +0 *	Mitte Z-Achse
N40 D00 Q4 P01 +90 *	Startwinkel Raum (Ebene Z/X)
N50 D00 Q5 P01 +270 *	Endwinkel Raum (Ebene Z/X)
N60 D00 Q6 P01 +40 *	Zylinderradius
N70 D00 Q7 P01 +100 *	Länge des Zylinders
N80 D00 Q8 P01 +0 *	Drehlage in der Ebene X/Y
N90 D00 Q10 P01 +5 *	Aufmaß Zylinderradius
N100 D00 Q11 P01 +250 *	Vorschub Tiefenzustellung
N110 D00 Q12 P01 +400 *	Vorschub Fräsen
N120 D00 Q13 P01 +90 *	Anzahl Schnitte
N130 G30 G17 X+0 Y+0 Z-50 *	Rohteil-Definition
N140 G31 G90 X+100 Y+100 Z+0 *	
N150 G99 T1 L+0 R+3 *	Werkzeug-Definition
N160 T1 G17 S4000 *	Werkzeug-Aufruf
N170 G00 G40 G90 Z+250 *	Werkzeug freifahren
N180 L10,0 *	Bearbeitung aufrufen
N190 D00 Q10 P01 +0 *	Aufmaß rücksetzen


N200 L10,0	Bearbeitung aufrufen		
N210 G00 G40 Z+250 M2 *	Werkzeug freifahren, Programm-Ende		
N220 G98 L10 *	Unterprogramm 10: Bearbeitung		
N230 Q16 = Q6 - Q10 - Q108 *	Aufmaß und Werkzeug bezogen auf Zylinder-Radius verrechnen		
N240 D00 Q20 P01 +1 *	Schnittzähler setzen		
N250 D00 Q24 P01 +Q4 *	Startwinkel Raum (Ebene Z/X) kopieren		
N260 Q25 = (Q5 - Q4) / Q13 *	Winkelschritt berechnen		
N270 G54 X+Q1 Y+Q2 Z+Q3 *	Nullpunkt in die Mitte des Zylinders (X-Achse) verschieben		
N280 G73 G90 H+Q8 *	Drehlage in der Ebene verrechnen		
N290 G00 G40 X+0 Y+0 *	Vorpositionieren in der Ebene in die Mitte des Zylinders		
N300 G01 Z+5 F1000 M3 *	Vorpositionieren in der Spindelachse		
N310 G98 L1 *			
N320 I+0 K+0 *	Pol setzen in der Z/X-Ebene		
N330 G11 R+Q16 H+Q24 FQ11 *	Startposition auf Zylinder anfahren, schräg ins Material eintauchend		
N340 G01 G40 Y+Q7 FQ12 *	Längsschnitt in Richtung Y+		
N350 D01 Q20 P01 +Q20 P02 +1 *	Schnittzähler aktualisieren		
N360 D01 Q24 P01 +Q24 P02 +Q25 *	Raumwinkel aktualisieren		
N370 D11 P01 +Q20 P02 +Q13 P03 99 *	Abfrage ob bereits fertig, wenn ja, dann ans Ende springen		
N380 G11 R+Q16 H+Q24 FQ11 *	Angenäherten "Bogen" fahren für nächsten Längsschnitt		
N390 G01 G40 Y+0 FQ12 *	Längsschnitt in Richtung Y-		
N400 D01 Q20 P01 +Q20 P02 +1 *	Schnittzähler aktualisieren		
N410 D01 Q24 P01 +Q24 P02 +Q25 *	Raumwinkel aktualisieren		
N420 D12 P01 +Q20 P02 +Q13 P03 1 *	Abfrage ob unfertig, wenn ja dann Rücksprung zu LBL 1		
N430 G98 L99 *			
N440 G73 G90 H+0 *	Drehung rücksetzen		
N450 G54 X+0 Y+0 Z+0 *	Nullpunkt-Verschiebung rücksetzen		
N460 G98 L0 *	Unterprogramm-Ende		
N99999999 %ZYLIN G71 *			

Beispiel: Kugel konvex mit Schaftfräser

Programm-Ablauf

- Programm funktioniert nur mit Schaftfräser
- Die Kugel-Kontur wird durch viele kleine Geradenstücke angenähert (Z/X-Ebene, über Q14 definierbar). Je kleiner der Winkelschritt definiert ist, desto glatter wird die Kontur
- Die Anzahl der Kontur-Schnitte bestimmen Sie durch den Winkelschritt in der Ebene (über Q18)
- Die Kugel wird im 3D-Schnitt von unten nach oben gefräst
- Werkzeug-Radius wird automatisch korrigiert

%KUGEL G71 *	
N10 D00 Q1 P01 +50 *	Mitte X-Achse
N20 D00 Q2 P01 +50 *	Mitte Y-Achse
N30 D00 Q4 P01 +90 *	Startwinkel Raum (Ebene Z/X)
N40 D00 Q5 P01 +0 *	Endwinkel Raum (Ebene Z/X)
N50 D00 Q14 P01 +5 *	Winkelschritt im Raum
N60 D00 Q6 P01 +45 *	Kugelradius
N70 D00 Q8 P01 +0 *	Startwinkel Drehlage in der Ebene X/Y
N80 D00 Q9 P01 +360 *	Endwinkel Drehlage in der Ebene X/Y
N90 D00 Q18 P01 +10 *	Winkelschritt in der Ebene X/Y fürs Schruppen
N100 D00 Q10 P01 +5 *	Aufmaß Kugelradius fürs Schruppen
N110 D00 Q11 P01 +2 *	Sicherheits-Abstand für Vorpositionierung in der Spindelachse
N120 D00 Q12 P01 +350 *	Vorschub Fräsen
N130 G30 G17 X+0 Y+0 Z-50 *	Rohteil-Definition
N140 G31 G90 X+100 Y+100 Z+0 *	
N150 G99 T1 L+0 R+7,5 *	Werkzeug-Definition
N160 T1 G17 S4000 *	Werkzeug-Aufruf
N170 G00 G40 G90 Z+250 *	Werkzeug freifahren
N180 L10,0 *	Bearbeitung aufrufen
N190 D00 Q10 P01 +0 *	Aufmaß rücksetzen

N200 D00 Q18 P01 +5 *	Winkelschritt in der Ebene X/Y fürs Schlichten		
N210 L10,0 *	Bearbeitung aufrufen		
N220 G00 G40 Z+250 M2 *	Werkzeug freifahren, Programm-Ende		
N230 G98 L10 *	Unterprogramm 10: Bearbeitung		
N240 D01 Q23 P01 +Q11 P02 +Q6 *	Z-Koordinate für Vorpositionierung berechnen		
N250 D00 Q24 P01 +Q4 *	Startwinkel Raum (Ebene Z/X) kopieren		
N260 D01 Q26 P01 +Q6 P02 +Q108 *	Kugelradius korrigieren für Vorpositionierung		
N270 D00 Q28 P01 +Q8 *	Drehlage in der Ebene kopieren		
N280 D01 Q16 P01 +Q6 P02 -Q10 *	Aufmaß berücksichtigen beim Kugelradius		
N290 G54 X+Q1 Y+Q2 Z-Q16 *	Nullpunkt ins Zentrum der Kugel verschieben		
N300 G73 G90 H+Q8 *	Startwinkel Drehlage in der Ebene verrechnen		
N310 G98 L1 *	Vorpositionieren in der Spindelachse		
N320 I+0 J+0 *	Pol setzen in der X/Y-Ebene für Vorpositionierung		
N330 G11 G40 R+Q26 H+Q8 FQ12 *	Vorpositionieren in der Ebene		
N340 I+Q108 K+0 *	Pol setzen in der Z/X-Ebene, um Werkzeug-Radius versetzt		
N350 G01 Y+0 Z+0 FQ12 *	Fahren auf Tiefe		
N360 G98 L2 *			
N370 G11 G40 R+Q6 H+Q24 FQ12 *	Angenäherten "Bogen" nach oben fahren		
N380 D02 Q24 P01 +Q24 P02 +Q14 *	Raumwinkel aktualisieren		
N390 D11 P01 +Q24 P02 +Q5 P03 2 *	Abfrage ob ein Bogen fertig, wenn nicht, dann zurück zu LBL 2		
N400 G11 R+Q6 H+Q5 FQ12 *	Endwinkel im Raum anfahren		
N410 G01 G40 Z+Q23 F1000 *	In der Spindelachse freifahren		
N420 G00 G40 X+Q26 *	Vorpositionieren für nächsten Bogen		
N430 D01 Q28 P01 +Q28 P02 +Q18 *	Drehlage in der Ebene aktualisieren		
N440 D00 Q24 P01 +Q4 *	Raumwinkel rücksetzen		
N450 G73 G90 H+Q28 *	Neue Drehlage aktivieren		
N460 D12 P01 +Q28 P02 +Q9 P03 1 *	Abfrage ob unfertig, wenn ja, dann Rücksprung zu LBL 1		
N470 D09 P01 +Q28 P02 +Q9 P03 1 *			
N480 G73 G90 H+0 *	Drehung rücksetzen		
N490 G54 X+0 Y+0 Z+0 *	Nullpunkt-Verschiebung rücksetzen		
N500 G98 L0 *	Unterprogramm-Ende		
N99999999 %KUGEL G71 *			

12

Programm-Test und Programmlauf

12.1 Grafiken

Anwendung

In den Programmlauf-Betriebsarten und der Betriebsart Programm-Test simuliert die TNC eine Bearbeitung grafisch. Über Softkeys wählen sie, ob als

- Draufsicht
- Darstellung in 3 Ebenen
- 3D-Darstellung

Die TNC-Grafik entspricht der Darstellung eines Werkstücks, das mit einem zylinderförmigen Werkzeug bearbeitet wird. Bei aktiver Werkzeug-Tabelle können Sie die Bearbeitung mit einem Radiusfräser darstellen lassen. Geben Sie dazu in der Werkzeug-Tabelle R2 = R ein.

Die TNC zeigt keine Grafik, wenn

- das aktuelle Programm keine gültige Rohteil-Definition enthält
- kein Programm angewählt ist

Über die Maschinen-Parameter 7315 bis 7317 können Sie einstellen, dass die TNC auch dann eine Grafik anzeigt, wenn Sie keine Spindelachse definiert haben oder verfahren.

Mit der neuen 3D-Grafik können Sie auch Bearbeitungen in der geschwenkten Bearbeitungsebene und Mehrseiten-Bearbeitungen grafisch darstellen, nachdem Sie das Programm in einer anderen Ansicht simuliert haben. Um diese Funktion nutzen zu können, benötigen Sie zumindest die Hardware MC 422 B. Um bei älteren Hardware-Versionen die Geschwindigkeit der Test-Grafik zu beschleunigen, sollten Sie das Bit 5 des Maschinen-Parameters 7310 = 1 setzen. Dadurch werden Funktionen, die speziell für die neue 3D-Grafik implementiert wurden, deaktiviert.

Die TNC stellt ein im **T**-Satz programmiertes Radius-Aufmaß **DR** nicht in der Grafik dar.

Geschwindigkeit des Programm-Tests einstellen

Die Geschwindigkeit beim Programm-Test können Sie nur dann einstellen, wenn Sie die Funktion "Bearbeitungszeit anzeigen" aktiv haben (siehe "Stoppuhr-Funktion anwählen" auf Seite 585). Ansonsten führt die TNC den Programm-Test immer mit maximal möglicher Geschwindigkeit aus.

Die zuletzt eingestellte Geschwindigkeit bleibt so lange aktiv (auch über eine Stromunterbrechung hinaus), bis Sie diese erneut verstellen

Nachdem Sie ein Programm gestartet haben, zeigt die TNC folgende Softkeys, mit der Sie die Simulations-Geschwindigkeit einstellen können:

Funktionen	Softkey
Programm mit der Geschwindigkeiten testen, mit der es auch abgearbeitet wird (programmierte Vorschübe werden berücksichtigt)	1:1
Testgeschwindigkeit schrittweise erhöhen	
Testgeschwindigkeit schrittweise verkleinern	
Programm mit maximal möglicher Geschwindigkeit testen (Grundeinstellung)	MAX

Sie können die Simulations-Geschwindigkeit auch einstellen, bevor Sie ein Programm starten:

► Softkeyleiste weiterschalten

Funktionen zur Einstellung der Simulationsgeschwindigkeit wählen

▶ Gewünschte Funktion per Softkey wählen, z.B. Testgeschwindigkeit schrittweise erhöhen

Übersicht: Ansichten

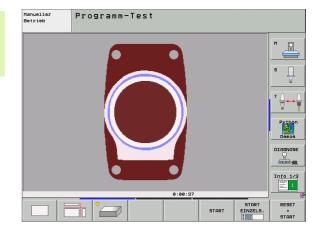
In den Programmlauf-Betriebsarten und in der Betriebsart Programm-Test zeigt die TNC folgende Softkeys:

Ansicht	Softkey
Draufsicht	
Darstellung in 3 Ebenen	
3D-Darstellung	

Einschränkung während des Programmlaufs

Die Bearbeitung lässt sich nicht gleichzeitig grafisch darstellen, wenn der Rechner der TNC durch komplizierte Bearbeitungsaufgaben oder großflächige Bearbeitungen bereits ausgelastet ist. Beispiel: Abzeilen über das ganze Rohteil mit großem Werkzeug. Die TNC führt die Grafik nicht mehr fort und blendet den Text **ERROR** im Grafik-Fenster ein. Die Bearbeitung wird jedoch weiter ausgeführt.

Draufsicht



Sofern Sie eine Mouse an Ihrer Maschine verfügbar haben, können Sie durch Positionieren des Mousezeigers über eine beliebige Stelle des Werkstücks, die Tiefe an dieser Stelle in der Statuszeile ablesen.

Diese grafische Simulation läuft am schnellsten ab

- ▶ Draufsicht mit Softkey wählen
- Für die Tiefendarstellung dieser Grafik gilt: Je tiefer, desto dunkler

Darstellung in 3 Ebenen

Die Darstellung zeigt eine Draufsicht mit 2 Schnitten, ähnlich einer technischen Zeichnung. Ein Symbol links unter der Grafik gibt an, ob die Darstellung der Projektionsmethode 1 oder der Projektionsmethode 2 nach DIN 6, Teil 1 entspricht (über MP7310 wählbar).

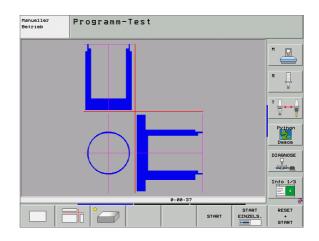
Bei der Darstellung in 3 Ebenen stehen Funktionen zur Ausschnitts-Vergrößerung zur Verfügung, siehe "Ausschnitts-Vergrößerung", Seite 583.

Zusätzlich können Sie die Schnittebene über Softkeys verschieben.:

► Wählen Sie den Softkey für die Darstellung des Werkstücks in 3 Ebenen

Softkey-Leiste umschalten, bis der Auswahl-Softkey für die Funktionen zum Verschieben der Schnittebene erscheint

► Funktionen zum Verschieben der Schnittebene wählen: Die TNC zeigt folgende Softkeys


Funktion	Softkeys
Vertikale Schnittebene nach rechts oder links verschieben	
Vertikale Schnittebene nach vorne oder hinten verschieben	***
Horizontale Schnittebene nach oben oder unten verschieben	

Die Lage der Schnittebene ist während des Verschiebens am Bildschirm sichtbar.

Die Grundeinstellung der Schnittebene ist so gewählt, dass sie in der Bearbeitungsebene in der Werkstück-Mitte liegt und in der Werkzeug-Achse auf der Werkstück-Oberkante.

Koordinaten der Schnittlinie

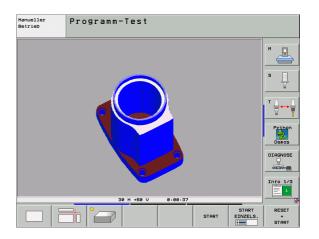
Die TNC blendet die Koordinaten der Schnittlinie, bezogen auf den Werkstück-Nullpunkt unten im Grafik-Fenster ein. Angezeigt werden nur Koordinaten in der Bearbeitungsebene. Diese Funktion aktivieren Sie mit Maschinen-Parameter 7310.

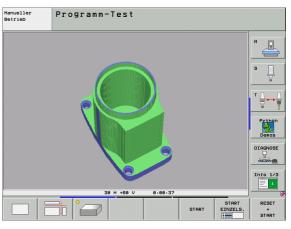
3D-Darstellung

Die TNC zeigt das Werkstück räumlich. Wenn Sie über eine entsprechende Hardware verfügen, dann stellt die TNC in der hochauflösenden 3D-Grafik auch Bearbeitungen in der geschwenkten Bearbeitungsebene und Mehrseitenbearbeitungen grafisch dar.

Die 3D-Darstellung können Sie um die vertikale Achse drehen und um die horizontale Achse kippen. Sofern Sie eine Mouse an ihre TNC angeschlossen haben, können Sie durch gedrückt halten der rechten Mouse-Taste diese Funktion ebenso ausführen.

Die Umrisse des Rohteils zu Beginn der grafischen Simulation können Sie als Rahmen anzeigen lassen.


In der Betriebsart Programm-Test stehen Funktionen zur Ausschnitts-Vergrößerung zur Verfügung, siehe "Ausschnitts-Vergrößerung", Seite 583.



■ 3D-Darstellung mit Softkey wählen. Durch zweimaliges Drücken des Softkeys schalten Sie um auf die hochauflösende 3D-Grafik. Die Umschaltung ist nur möglich, wenn die Simulation bereits beendet ist. Die hochauflösende Grafik zeigt detaillierter die Oberfläche des bearbeiteten Werkstücks an.

Die Geschwindigkeit der 3D-Grafik hängt von der Schneidlänge (Spalte **LCUTS** in der Werkzeug-Tabelle) ab. Ist **LCUTS** mit 0 definiert (Grundeinstellung), dann rechnet die Simulation mit einer unendlich langen Schneidlänge, was zu hohen Rechenzeit führt. Sofern Sie kein **LCUTS** definieren wollen, können Sie den Maschinen-Parameter 7312 auf einen Wert zwischen 5 und 10 setzen. Dadurch begrenzt die TNC intern die Schneidlänge auf einen Wert, der sich errechnet aus MP7312 mal Werkzeug-Durchmesser.

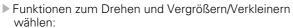
3D-Darstellung drehen und vergrößern/verkleinern

Softkey-Leiste umschalten, bis der Auswahl-Softkey für die Funktionen Drehen und Vergrößern/ Verkleinern erscheint

► Funktionen zum Drehen und Vergrößern/Verkleinern wählen:

Funktion	Softkeys
Darstellung in 5°-Schritten vertikal drehen	
Darstellung in 5°-Schritten horizontal kippen	
Darstellung schrittweise vergrößern. Ist die Darstellung vergrößert, zeigt die TNC in der Fußzeile des Grafikfensters den Buchstaben Z an	+
Darstellung schrittweise verkleinern. Ist die Darstellung verkleinert, zeigt die TNC in der Fußzeile des Grafikfensters den Buchstaben Z an	- -
Darstellung auf programmierte Größe rüchsetzen	1:1

Sofern Sie eine Mouse an ihre TNC angeschlossen haben, können Sie die zuvor beschriebenen Funktionen auch mit der Mouse durchführen:


- ▶ Um die dargestellte Grafik dreidimensional zu drehen: rechte Mouse-Taste gedrückt halten und Mouse bewegen. Bei der hochauflösenden 3D-Grafik zeigt die TNC ein Koordinatensystem an, das die momentan aktive Ausrichtung des Wekstückes darstellt, bei der normalen 3D-Darstellung dreht sich das Werkstück komplett mit. Nachdem Sie die rechte Mouse-Taste losgelassen haben, orientiert die TNC das Werkstück auf die definierte Ausrichtung
- Um die dargestellte Grafik zu verschieben: mittlere Mouse-Taste, bzw. Mouse-Rad, gedrückt halten und Mouse bewegen. Die TNC verschiebt das Werkstück in die entsprechende Richtung. Nachdem Sie die mittlere Mouse-Taste losgelassen haben, verschiebt die TNC das Werkstück auf die definierte Position
- ▶ Um mit der Mouse einen bestimmten Bereich zu zoomen: mit gedrückter linker Mouse-Taste den rechteckigen Zoom-Bereichs markieren. Nachdem Sie die linke Mouse-Taste losgelassen haben, vergrößert die TNC das Werkstück auf den definierten Bereich
- Um mit der Mouse schnell aus- und einzuzoomen: Mouserad vor bzw. zurückdrehen

Rahmen für die Umrisse des Rohteils ein- und ausblenden

Softkey-Leiste umschalten, bis der Auswahl-Softkey für die Funktionen Drehen und Vergrößern/Verkleinern erscheint

- ▶ Rahmen für BLK-FORM einblenden: Hellfeld im Softkey auf ANZEIGEN stellen
- ▶ Rahmen für BLK-FORM ausblenden: Hellfeld im Softkey auf AUSBLEND. stellen

Ausschnitts-Vergrößerung

Den Ausschnitt können Sie in der Betriebsart Programm-Test und in einer Programmlauf-Betriebsart in allen Ansichten verändern.

Dafür muss die grafische Simulation bzw. der Programmlauf gestoppt sein. Eine Ausschnitts-Vergrößerung ist immer in allen Darstellungsarten wirksam.

Ausschnitts-Vergrößerung ändern

Softkeys siehe Tabelle

Falls nötig, grafische Simulation stoppen

Softkey-Leiste umschalten, bis der Auswahl-Softkey mit Funktionen zur Auschnitts-Vergrößerung erscheint

- Funktionen zur Auschnitts-Vergrößerung wählen
- Werkstückseite mit Softkey (siehe Tabelle unten) wählen
- ▶ Rohteil verkleinern oder vergrößern: Softkey "-" bzw. "+" gedrückt halten
- Programm-Test oder Programmlauf neu starten mit Softkey START (RESET + START stellt das ursprüngliche Rohteil wieder her)

Funktion	Softkeys
Linke/rechte Werkstückseite wählen	
Vordere/hintere Werkstückseite wählen	
Obere/untere Werkstückseite wählen	†⊕†
Schnittfläche zum Verkleinern oder Vergrößern des Rohteils verschieben	- +
Ausschnitt übernehmen	AUSSCHN. ÜBERNEHM.

Cursor-Position bei der Ausschnitts-Vergrößerung

Die TNC zeigt während einer Ausschnitts-Vergrößerung die Koordinaten der Achse an, die Sie gerade beschneiden. Die Koordinaten entsprechen dem Bereich, der für die Ausschnitts-Vergrößerung festgelegt ist. Links vom Schrägstrich zeigt die TNC die kleinste Koordinate des Bereichs (MIN-Punkt), rechts davon die größte (MAX-Punkt).

Bei einer vergrößerten Abbildung blendet die TNC unten rechts am Bildschirm MAGN ein.

Wenn die TNC das Rohteil nicht weiter verkleinern bzw. vergrößern kann, blendet die Steuerung eine entsprechende Fehlermeldung ins Grafik-Fenster ein. Um die Fehlermeldung zu beseitigen, vergrößern bzw. verkleinern Sie das Rohteil wieder.

Grafische Simulation wiederholen

Ein Bearbeitungs-Programm lässt sich beliebig oft grafisch simulieren. Dafür können Sie die Grafik wieder auf das Rohteil oder einen vergrößerten Ausschnitt aus dem Rohteil zurücksetzen.

Funktion	Softkey
Unbearbeitetes Rohteil in der zuletzt gewählten Ausschnitts-Vergrößerung anzeigen	ROHTEIL ZURÜCK- SETZEN
Ausschnitts-Vergrößerung zurücksetzen, so dass die TNC das bearbeitete oder unbearbeitete Werkstück gemäß programmierter BLK-Form anzeigt	ROHTEIL WIE BLK FORM

Mit dem Softkey ROHTEIL WIE BLK FORM zeigt die TNC – auch nach einem Ausschnitt ohne AUSSCHN. ÜBERNEHM. – das Rohteil wieder in programmierter Größe an.

Werkzeug anzeigen

In der Draufsicht und in der Darstellung in 3 Ebenen können Sie sich das Werkzeug während der Simulation anzeigen lassen. Die TNC stellt das Werkzeug in dem Durchmesser dar, der in der Werkzeug-Tabelle definiert ist.

Funktion	Softkey
Werkzeug bei der Simulation nicht anzeigen	WERKZEUGE ANZEIGEN AUSBLEND.
Werkzeug bei der Simulation anzeigen	WERKZEUGE RNZEIGEN RUSBLEND.

Bearbeitungszeit ermitteln

Programmlauf-Betriebsarten

Anzeige der Zeit vom Programm-Start bis zum Programm-Ende. Bei Unterbrechungen wird die Zeit angehalten.

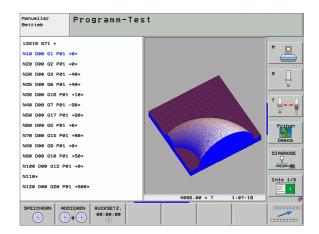
Programm-Test

Anzeige der Zeit, die die TNC für die Dauer der Werkzeug-Bewegungen, die mit Vorschub ausgeführt werden, errechnet, Verweilzeiten werden von der TNC mit eingerechnet. Die von der TNC ermittelte Zeit eignet sich nur bedingt zur Kalkulation der Fertigungszeit, da die TNC keine maschinenabhängigen Zeiten (z.B. für Werkzeug-Wechsel) berücksichtigt.

Wenn Sie Bearbeitungszeit ermitteln auf ein gestellt haben, können Sie sich eine Datei erzeugen lassen, in der die Einsatzzeiten aller in einem Programm verwendeten Werkzeuge aufgeführt sind (siehe "Abhängige Dateien" auf Seite 642).

Stoppuhr-Funktion anwählen

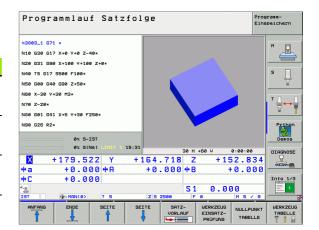
▶ Softkey-Leiste umschalten, bis der Auswahl-Softkey für die Stoppuhr-Funktionen erscheint


Stoppuhr-Funktionen wählen

Gewünschte Funktion per Softkey wählen, z.B. angezeigte zeit speichern

Stoppuhr-Funktionen	Softkey
Funktion Bearbeitungszeit ermitteln einschalten (EIN)/ ausschalten (AUS)	AUS + EIN
Angezeigte Zeit speichern	SPEICHERN
Summe aus gespeicherter und angezeigter Zeit anzeigen	ADDIEREN +
Angezeigte Zeit löschen	RÜCKSETZ. 00:00:00

Die TNC setzt während des Programm-Tests die Bearbeitungszeit zurück, sobald eine neues Rohteil **G30/G31** abgearbeitet wird.



12.2 Funktionen zur Programmanzeige

Übersicht

In den Programmlauf-Betriebsarten und der Betriebsart Programm-Test zeigt die TNC Softkeys, mit denen Sie das Bearbeitungs-Programm seitenweise anzeigen lassen können:

Funktionen	Softkey
Im Programm um eine Bildschirm-Seite zurückblättern	SEITE
Im Programm um eine Bildschirm-Seite vorblättern	SEITE
Programm-Anfang wählen	ANFANG
Programm-Ende wählen	ENDE

12.3 Programm-Test

Anwendung

In der Betriebsart Programm-Test simulieren Sie den Ablauf von Programmen und Programmteilen, um Fehler im Programmlauf auszuschließen. Die TNC unterstützt Sie beim Auffinden von

- geometrischen Unverträglichkeiten
- fehlenden Angaben
- nicht ausführbaren Sprüngen
- Verletzungen des Arbeitsraums

Zusätzlich können Sie folgende Funktionen nutzen:

- Programm-Test satzweise
- Testabbruch bei beliebigem Satz
- Sätze überspringen
- Funktionen für die grafische Darstellung
- Bearbeitungszeit ermitteln
- Zusätzliche Status-Anzeige

Die TNC kann bei der grafischen Simulation nicht alle tatsächlich von der Maschine ausgeführten Verfahrbewegungen simulieren, z.B.

- Verfahrbewegungen beim Werkzeugwechsel, die der Maschinenhersteller in einem Werkzeugwechsel-Macro oder über die PLC definiert hat
- Positionierungen, die der Maschinenhersteller in einem M-Funktions-Macro definiert hat
- Positionierungen, die der Maschinenhersteller über die PLC ausführt
- Positionierungen, die einen Palettenwechsel durchführen

HEIDENHAIN empfiehlt daher jedes Programm mit entsprechender Vorsicht einzufahren, auch wenn der Programm-Test zu keiner Fehlermeldung und zu keinen sichtbaren Beschädigungen des Werkstücks geführt hat.

Die TNC startet einen Programm-Test nach einem Werkzeug-Aufruf grundsätzlich immer auf folgender Position:

- In der Bearbeitungsebene auf der Position X=0, Y=0
- In der Werkzeugachse 1 mm überhalb des in der Rohteildefinition definierten MAX-Punktes

Wenn Sie dasselbe Werkzeug aufrufen, dann simuliert die TNC das Programm weiter von der zuletzt, vor dem Werkzeug-Aufruf programmierten Position.

Um auch beim Abarbeiten ein eindeutiges Verhalten zu haben, sollten Sie nach einem Werkzeugwechsel grundsätzlich eine Position anfahren, von der aus die TNC kollisionsfrei zur Bearbeitung positionieren kann.

Ihr Maschinenhersteller kann auch für die Betriebsart Programm-Test ein Werkzeug-Wechselmakro definieren, dass das Verhalten der Maschine exakt simuliert, Maschinenhandbuch beachten.

Programm-Test ausführen

Bei aktivem zentralen Werkzeug-Speicher müssen Sie für den Programm-Test eine Werkzeug-Tabelle aktiviert haben (Status S). Wählen Sie dazu in der Betriebsart Programm-Test über die Datei-Verwaltung (PGM MGT) eine Werkzeug-Tabelle aus.

Mit der MOD-Funktion ROHTEIL IM ARB.-RAUM aktivieren Sie für den Programm-Test eine Arbeitsraum-Überwachung, siehe "Rohteil im Arbeitsraum darstellen", Seite 644.

- ▶ Betriebsart Programm-Test wählen
- Datei-Verwaltung mit Taste PGM MGT anzeigen und Datei wählen, die Sie testen möchten oder
- ▶ Programm-Anfang wählen: Mit Taste GOTO Zeile "0" wählen und Eingabe mit Taste ENT bestätigen

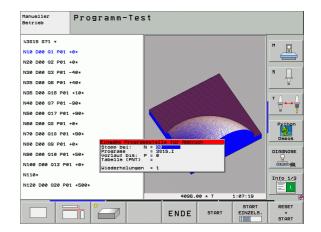
Die TNC zeigt folgende Softkeys:

Funktionen	Softkey
Rohteil rücksetzen und gesamtes Programm testen	RESET + START
Gesamtes Programm testen	START
Jeden Programm-Satz einzeln testen	START EINZELS.
Programm-Test anhalten (Softkey erscheint nur, wenn Sie den Programm-Test gestartet haben)	STOPP

Sie können den Programm-Test zu jeder Zeit – auch innerhalb von Bearbeitungs-Zyklen – unterbrechen und wieder fortsetzen. Um den Test wieder fortsetzen zu können dürfen Sie folgende Aktionen nicht durchführen:

- mit der Taste GOTO einen anderen Satz wählen
- Änderungen am Programm durchführen
- die Betriebsart wechseln
- ein neues Programm wählen

HEIDENHAIN iTNC 530 589


Programm-Test bis zu einem bestimmten Satz ausführen

Mit STOPP BEI N führt die TNC den Programm-Test nur bis zum Satz mit der Satz-Nummer N durch.

- ▶ In der Betriebsart Programm-Test den Programm-Anfang wählen
- Programm-Test bis zu bestimmtem Satz wählen: Softkey STOPP BEI N drücken

- Stopp bei N: Satz-Nummer eingeben, bei der der Programm-Test gestoppt werden soll
- ▶ Programm: Name des Programms eingeben, in dem der Satz mit der gewählten Satz-Nummer steht; die TNC zeigt den Namen des gewählten Programms an; wenn der Programm-Stopp in einem mit PGM CALL aufgerufenen Programm stattfinden soll, dann diesen Namen eintragen
- ▶ Vorlauf bis: P: Wenn Sie in eine Punkte-Tabelle einsteigen wollen, hier die Zeilennummer eingeben, an der Sie einsteigen wollen
- ▶ Tabelle (PNT): Wenn Sie in eine Punkte-Tabelle einsteigen wollen, hier den Namen der Punkte-Tabelle eingeben, in die Sie einsteigen wollen
- ▶ Wiederholungen: Anzahl der Wiederholungen eingeben, die durchgeführt werden sollen, falls N innerhalb einer Programmteil-Wiederholung steht
- Programm-Abschnitt testen: Softkey START drücken; die TNC testet das Programm bis zum eingegebenen Satz

12.4 Programmlauf

Anwendung

In der Betriebsart Programmlauf Satzfolge führt die TNC ein Bearbeitungs-Programm kontinuierlich bis zum Programm-Ende oder bis zu einer Unterbrechung aus.

In der Betriebsart Programmlauf Einzelsatz führt die TNC jeden Satz nach Drücken der externen START-Taste einzeln aus.

Die folgenden TNC-Funktionen können Sie in den Programmlauf-Betriebsarten nutzen:

- Programmlauf unterbrechen
- Programmlauf ab bestimmtem Satz
- Sätze überspringen
- Werkzeug-Tabelle TOOL.T editieren
- Q-Parameter kontrollieren und ändern
- Handrad-Positionierung überlagern
- Funktionen für die grafische Darstellung
- Zusätzliche Status-Anzeige

Programmlauf Satzfolge N20 G31 G90 X+100 Y+100 Z+0* N40 T5 G17 S500 F100+ NB0 X-30 Y+30 M3* NS0 G01 G41 X+5 Y+30 F250* N90 G26 R2× +179.522 Y +164.718 Z +152.834 +0.000 #A +0.000 +B +0.000 +0.000 Info 1/3 0.000 TABELLE NULLPUNK

Bearbeitungs-Programm ausführen

Vorbereitung

- 1 Werkstück auf dem Maschinentisch aufspannen
- 2 Bezugspunkt setzen
- 3 Benötigte Tabellen und Paletten-Dateien wählen (Status M)
- 4 Bearbeitungs-Programm wählen (Status M)

Vorschub und Spindeldrehzahl können Sie mit den Override-Drehknöpfen ändern.

Über den Softkey FMAX können Sie die Vorschub-Geschwindigkeit reduzieren, wenn Sie das NC-Programm einfahren wollen. Die Reduzierung gilt für alle Eilgang- und Vorschubbewegungen. Der von Ihnen eingegebene Wert ist nach dem Aus-/Einschalten der Maschine nicht mehr aktiv. Um die jeweils festgelegte maximale Vorschub-Geschwindigkeit nach dem Einschalten wiederherzustellen, müssen Sie den entsprechenden Zahlenwert erneut eingeben.

Programmlauf Satzfolge

▶ Bearbeitungs-Programm mit externer START-Taste starten

Programmlauf Einzelsatz

▶ Jeden Satz des Bearbeitungs-Programms mit der externen START-Taste einzeln starten

Bearbeitung unterbrechen

Sie haben verschiedene Möglichkeiten, einen Programmlauf zu unterbrechen:

- Programmierte Unterbrechungen
- Externe STOPP-Taste
- Umschalten auf Programmlauf Einzelsatz
- Programmieren von nicht gesteuerten Achsen (Zählerachsen)

Registriert die TNC während eines Programmlaufs einen Fehler, so unterbricht sie die Bearbeitung automatisch.

Programmierte Unterbrechungen

Unterbrechungen können Sie direkt im Bearbeitungs-Programm festlegen. Die TNC unterbricht den Programmlauf, sobald das Bearbeitungs-Programm bis zu dem Satz ausgeführt ist, der eine der folgenden Eingaben enthält:

- **G38** (mit und ohne Zusatzfunktion)
- Zusatzfunktion M0, M2 oder M30
- Zusatzfunktion M6 (wird vom Maschinenhersteller festgelegt)

Unterbrechung durch externe STOPP-Taste

- ▶ Externe STOPP-Taste drücken: Der Satz, den die TNC zum Zeitpunkt des Tastendrucks abarbeitet, wird nicht vollständig ausgeführt; in der Status-Anzeige blinkt das "*"-Symbol
- ▶ Wenn Sie die Bearbeitung nicht fortführen wollen, dann die TNC mit dem Softkey INTERNER STOPP zurücksetzen: das "*"-Symbol in der Status-Anzeige erlischt. Programm in diesem Fall vom Programm-Anfang aus erneut starten

Bearbeitung unterbrechen durch Umschalten auf Betriebsart Programmlauf Einzelsatz

Während ein Bearbeitungs-Programm in der Betriebsart Programmlauf Satzfolge abgearbeitet wird, Programmlauf Einzelsatz wählen. Die TNC unterbricht die Bearbeitung, nachdem der aktuelle Bearbeitungsschritt ausgeführt wurde.

Programmieren von nicht gesteuerten Achsen (Zählerachsen)

Diese Funktion muss von Ihrem Maschinenhersteller angepasst werden. Beachten Sie Ihr Maschinenhandbuch.

Die TNC unterbricht den Programmlauf automatisch, sobald in einem Verfahrsatz eine Achse programmiert ist, die vom Maschinenhersteller als nicht gesteuerte Achse (Zählerachse) definiert wurde. In diesem Zustand können Sie die nicht gesteuerte Achse manuell auf die gewünschte Position fahren. Die TNC zeigt dabei im linken Bildschirmfenster alle anzufahrenden Sollpositionen an, die in diesem Satz programmiert sind. Bei nicht gesteuerten Achsen zeigt die TNC zusätzlich den Restweg an.

Sobald in allen Achsen die richtige Position erreicht ist, können Sie den Programlauf mit NC-Start fortsetzen.

▶ Die gewünschte Anfahrfolge wählen und jeweils mit NC-Start ausführen. Nicht geregelte Achsen manuell positionieren, die TNC zeigt den noch verbleibenden Restweg in dieser Achse mit an (siehe "Wiederanfahren an die Kontur" auf Seite 598)

Bei Bedarf wählen, ob geregelte Achsen im geschwenkten oder im ungeschwenkten Koordinatensystem verfahren werden sollen

▶ Bei Bedarf geregelte Achsen per Handrad oder per Achsrichtungs-Taste verfahren

Maschinenachsen während einer Unterbrechung verfahren

Sie können die Maschinenachsen während einer Unterbrechung wie in der Betriebsart Manueller Betrieb verfahren.

Kollisionsgefahr!

Wenn sie bei geschwenkter Bearbeitungsebene den Programmlauf unterbrechen, können Sie mit dem Softkey 3D ROT das Koordinatensystem zwischen geschwenkt/ ungeschwenkt und aktive Werkzeugachs-Richtung umschalten.

Die Funktion der Achsrichtungstasten, des Handrads und der Wiederanfahrlogik werden dann von der TNC entsprechend ausgewertet. Achten Sie beim Freifahren darauf, dass das richtige Koordinatensystem aktiv ist, und die Winkelwerte der Drehachsen im 3D-ROT-Menü eingetragen sind.

Anwendungsbeispiel: Freifahren der Spindel nach Werkzeugbruch

- ▶ Bearbeitung unterbrechen
- Externe Richtungstasten freigeben: Softkey MANUEL VERFAHREN drücken.
- Ggf. per Softkey 3D ROT das Koordinatensystem aktivieren, in dem Sie verfahren wollen
- ▶ Maschinenachsen mit externen Richtungstasten verfahren

Bei einigen Maschinen müssen Sie nach dem Softkey MANUEL VERFAHREN die externe START-Taste zur Freigabe der externen Richtungstasten drücken. Beachten Sie Ihr Maschinenhandbuch.

Ihr Maschinenhersteller kann festlegen, dass Sie die Achsen bei einer Programm-Unterbrechung immer im momentan aktiven, ggf. also im geschwenkten, Koordinatensystem verfahren. Beachten Sie Ihr Maschinenhandbuch.

Programmlauf nach einer Unterbrechung fortsetzen

Wenn Sie den Programmlauf während eines Bearbeitungszyklus unterbrechen, müssen Sie beim Wiedereinstieg mit dem Zyklusanfang fortfahren. Bereits ausgeführte Bearbeitungsschritte muss die TNC dann erneut abfahren.

Wenn Sie den Programmlauf innerhalb einer Programmteil-Wiederholung oder innerhalb eines Unterprogramms unterbrechen, müssen Sie mit der Funktion VORLAUF ZU SATZ N die Unterbrechungsstelle wieder anfahren.

Die TNC speichert bei einer Programmlauf-Unterbrechung

- die Daten des zuletzt aufgerufenen Werkzeugs
- aktive Koordinaten-Umrechnungen (z.B. Nullpunkt-Verschiebung, Drehung, Spiegelung)
- die Koordinaten des zuletzt definierten Kreismittelpunkts

Beachten Sie, dass die gespeicherten Daten solange aktiv bleiben, bis Sie sie zurücksetzen (z.B. indem Sie ein neues Programm anwählen).

Die gespeicherten Daten werden für das Wiederanfahren an die Kontur nach manuellem Verfahren der Maschinenachsen während einer Unterbrechung (Softkey POSITION ANFAHREN) genutzt.

Programmlauf mit START-Taste fortsetzen

Nach einer Unterbrechung können Sie den Programmlauf mit der externen START-Taste fortsetzen, wenn Sie das Programm auf folgende Art angehalten haben:

- Externe STOPP-Taste gedrückt
- Programmierte Unterbrechung

Programmlauf nach einem Fehler fortsetzen

Bei nichtblinkender Fehlermeldung:

- ► Fehlerursache beseitigen
- ▶ Fehlermeldung am Bildschirm löschen: Taste CE drücken
- Neustart oder Programmlauf fortsetzen an der Stelle, an der unterbrochen wurde

Bei blinkender Fehlermeldung:

- ▶ Taste END zwei Sekunden gedrückt halten, TNC führt einen Warmstart aus
- ► Fehlerursache beseitigen
- ▶ Neustart

Bei wiederholtem Auftreten des Fehlers notieren Sie bitte die Fehlermeldung und benachrichtigen den Kundendienst.

Beliebiger Einstieg ins Programm (Satzvorlauf)

Die Funktion VORLAUF ZU SATZ N muss vom Maschinenhersteller freigegeben und angepasst werden. Beachten Sie Ihr Maschinenhandbuch.

Mit der Funktion VORLAUF ZU SATZ N (Satzvorlauf) können Sie ein Bearbeitungs-Programm ab einem frei wählbaren Satz N abarbeiten. Die Werkstück-Bearbeitung bis zu diesem Satz wird von der TNC rechnerisch berücksichtigt. Sie kann von der TNC grafisch dargestellt werden.

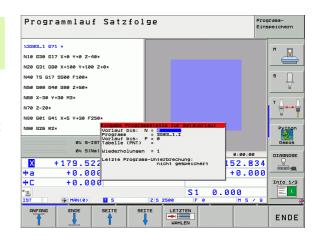
Wenn Sie ein Programm mit einem INTERNEN STOPP abgebrochen haben, dann bietet die TNC automatisch den Satz N zum Einstieg an, in dem Sie das Programm abgebrochen haben.

Sofern das Programm durch einen der nachfolgend aufgeführten Umstände unterbrochen wurde, speichert die TNC diesen Unterbrechungspunkt:

- Durch einen NOT-AUS
- Durch einen Stromausfall
- Durch einen Steuerungsabsturz

Nachdem Sie die Funktion Satzvorlauf aufgerufen haben, können Sie über den Softkey LETZTEN N WÄHLEN den Unterbrechungspunkt wieder aktivieren und per NC-Start anfahren. Die TNC zeigt dann nach dem Einschalten die Meldung NC-Programm wurde abgebrochen.

Der Satzvorlauf darf nicht in einem Unterprogramm beginnen.


Alle benötigten Programme, Tabellen und Paletten-Dateien müssen in einer Programmlauf-Betriebsart angewählt sein (Status M).

Enthält das Programm bis zum Ende des Satzvorlaufs eine programmierte Unterbrechung, wird dort der Satzvorlauf unterbrochen. Um den Satzvorlauf fortzusetzen, die externe START-Taste drücken.

Nach einem Satzvorlauf müssen Sie das Werkzeug mit der Funktion POSITION ANFAHREN auf die ermittelte Position fahren.

Die Werkzeug-Längenkorrektur wird erst durch den Werkzeug-Aufruf und einen nachfolgenden Positioniersatz wirksam. Das gilt auch dann, wenn Sie nur die Werkzeuglänge geänderte haben.

Die Zusatz-Funktionen **M142** (modale Programminformationen löschen) und **M143** (Grunddrehung löschen) sind bei einem Satzvorlauf nicht erlaubt.

Über Maschinen-Parameter 7680 wird festgelegt, ob der Satzvorlauf bei verschachtelten Programmen im Satz 0 des Hauptprogramms oder im Satz 0 des Programms beginnt, in dem der Programmlauf zuletzt unterbrochen wurde.

Mit dem Softkey 3D ROT können Sie das Koordinatensystem zum Anfahren der Einstiegspostion zwischen geschwenkt/ungeschwenkt und aktive Werkzeugachs-Richtung umschalten.

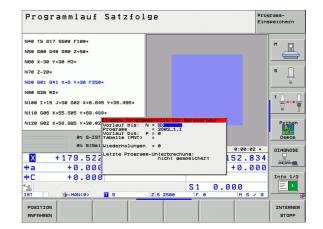
Wenn Sie den Satzvorlauf innerhalb einer Paletten-Tabelle einsetzen wollen, dann wählen Sie zunächst mit den Pfeiltasten in der Paletten-Tabelle das Programm, in das Sie einsteigen wollen und wählen dann direkt den Softkey VORLAUF ZU SATZ N.

Alle Tastsystemzyklen werden bei einem Satzvorlauf von der TNC übersprungen. Ergebnisparameter, die von diesen Zyklen beschrieben werden, enthalten dann ggf. keine Werte.

Die Funktionen M142/M143 sind bei einem Satzvorlauf nicht erlaubt.

Wenn Sie einen Satzvorlauf in einem Programm ausführen, das M128 enthält, führt die TNC ggf. Ausgleichsbewegungen durch. Die Ausgleichsbewegungen werden der Anfahrbewegung überlagert.

Ersten Satz des aktuellen Programms als Beginn für Vorlauf wählen: GOTO "0" eingeben.

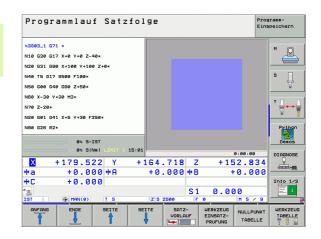

- ▶ Satzvorlauf wählen: Softkey SATZVORLAUF drücken
- ▶ Vorlauf bis N: Nummer N des Satzes eingeben, bei dem der Vorlauf enden soll
- Programm: Namen des Programms eingeben, in dem der Satz N steht
- Wiederholungen: Anzahl der Wiederholungen eingeben, die im Satz-Vorlauf berücksichtigt werden sollen, falls Satz N innerhalb einer Programmteil-Wiederholung steht
- ▶ Satzvorlauf starten: Externe START-Taste drücken
- ► Kontur anfahren (siehe filgenden Abschnitt)

Wiederanfahren an die Kontur

Mit der Funktion POSITION ANFAHREN fährt die TNC das Werkzeug in folgenden Situationen an die Werkstück-Kontur:

- Wiederanfahren nach dem Verfahren der Maschinenachsen während einer Unterbrechung, die ohne INTERNER STOPP ausgeführt wurde
- Wiederanfahren nach einem Vorlauf mit VORLAUF ZU SATZ N, z.B. nach einer Unterbrechung mit INTERNER STOPP
- Wenn sich die Position einer Achse nach dem Öffnen des Regelkreises während einer Programm-Unterbrechung verändert hat (maschinenabhängig)
- Wenn in einem Verfahrsatz auch eine ungeregelte Achse programmiert ist (siehe "Programmieren von nicht gesteuerten Achsen (Zählerachsen)" auf Seite 593)
- Wiederanfahren an die Kontur wählen: Softkey POSITION ANFAHREN wählen
- ▶ Gaf. Maschinenstatus wiederherstellen
- Achsen in der Reihenfolge verfahren, die die TNC am Bildschirm vorschlägt: Externe START-Taste drücken oder
- Achsen in beliebiger Reihenfolge verfahren: Softkeys ANFAHREN X, ANFAHREN Z usw. drücken und jeweils mit externer START-Taste aktivieren
- ▶ Bearbeitung fortsetzen: Externe START-Taste drücken

Werkzeug-Einsatzprüfung


Die Funktion Werkzeug-Einsatzprüfung muss vom Maschinenhersteller freigegeben werden. Beachten Sie Ihr Maschinenhandbuch.

Um eine Werkzeug-Einsatzprüfung durchführen zu können, müssen folgende Voraussetzungen erfüllt sein:

- Bit2 des Maschinen-Parameters 7246 muss =1 gesetzt sein
- Bearbeitungszeit ermitteln in der Betriebsart Programm-Test muss aktiv sein
- Das zu prüfende Klartext-Dialog-Programm muss in der Betriebsart
 Programm-Test vollständig simuliert worden sein

Über den Softkey WERKZEUG EINSATZPRÜFUNG können sie vor dem Start eines Programmes in der Betriebsart Abarbeiten prüfen, ob die verwendeten Werkzeuge noch über genügend Reststandzeit verfügen. Die TNC vergleicht hierbei die Standzeit-Istwerte aus der Werkzeug-Tabelle, mit den Sollwerten aus der Werkzeug-Einsatzdatei.

Die TNC zeigt, nachdem Sie den Softkey betätigt haben, das Ergebnis der Einsatzprüfung in einem Überblendfenster an. Überblendfenster mit Taste CE schließen.

Die TNC speichert die Werkzeug-Einsatzzeiten in einer separaten Datei mit der Endung **pgmname.H.T.DEP**. (siehe "MOD-Einstellung Abhängige Dateien ändern" auf Seite 642). Die erzeugte Werkzeug-Einsatzdatei enthält folgende Informationen:

Spalte	Bedeutung
TOKEN	 T00L: Werkzeug-Einsatzzeit pro T00L CALL. Die Einträge sind in chronologischer Reihenfolge aufgelistet TT0TAL: Gesamte Einsatzzeit eines Werkzeugs
	■ STOTAL: Aufruf eines Unterprogramms (einschließlich Zyklen); die Einträge sind in chronologischer Reihenfolge aufgelistet
	■ TIMETOTAL: Gesamtbearbeitungszeit des NC-Programms wird in der Spalte WTIME eingetragen. In der Spalte PATH hinterlegt die TNC den Pfadnahmen des entsprechenden NC-Programms. Die Spalte TIME enthält die Summe aller TIME-Eintrage (nur mit Spindel-Ein und ohne Eilgangbewegungen). Alle übrigen Spalten setzt die TNC auf 0
	■ T00LFILE: In der Spalte PATH hinterlegt die TNC den Pfadnahmen der Werkzeug-Tabelle, mit der Sie den Programm-Test durchgeführt haben. Dadurch kann die TNC bei der eigentlichen Werkzeug-Einsatzprüfung festellen, ob Sie den Programm-Test mit TOOL.T durchgeführt haben
TNR	Werkzeug-Nummer (–1 : noch kein Werkzeug eingewechselt)
IDX	Werkzeug-Index
NAME	Werkzeug-Name aus der Werkzeug-Tabelle
TIME	Werkzeugeinsatz-Zeit in Sekunden

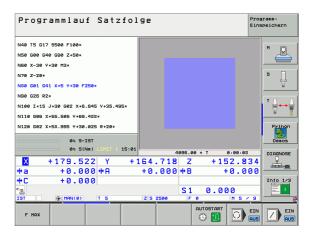
Spalte	Bedeutung
RAD	Werkzeug-Radius R + Aufmaß Werkzeug-Radius DR aus der Werkzeug-Tabelle. Einheit ist 0.1 μm
BLOCK	Satznummer, in dem der T00L CALL -Satz programmiert wurde
PATH	■ TOKEN = TOOL: Pfadname des aktiven Haupt- bzw. Unterprogramms
	■ TOKEN = STOTAL : Pfadname des Unterprogramms

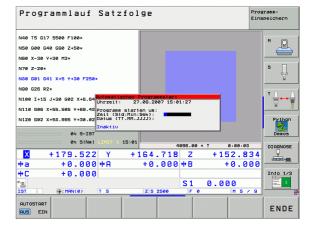
Bei der Werkzeug-Einsatzprüfung einer Paletten-Datei stehen zwei Möglichkeiten zur Verfügung:

- Hellfeld steht in der Paletten-Datei auf einem Paletten-Eintrag: Die TNC führt für die Werkzeug-Einsatzprüfung für die komplette Palette durch
- Hellfeld steht in der Paletten-Datei auf einem Programm-Eintrag: Die TNC führt nur für das angewählte Programm die Werkzeug-Einsatzprüfung durch

12.5 Automatischer Programmstart

Anwendung




Um einen automatischen Programmstart durchführen zu können, muss die TNC von Ihrem Maschinen-Hersteller vorbereitet sein, Maschinen-Handbuch beachten.

Über den Softkey AUTOSTART (siehe Bild rechts oben), können Sie in einer Programmlauf-Betriebsart zu einem eingebbaren Zeitpunkt das in der jeweiligen Betriebsart aktive Programm starten:

- ► Fenster zur Festlegung des Startzeitpunktes einblenden (siehe Bild rechts MItte)
- Zeit (Std:Min:Sek): Uhrzeit, zu der das Programm gestartet werden soll
- Datum (TT.MM.JJJJ): Datum, an dem das Programm gestartet werden soll
- Um den Start zu aktivieren: Softkey AUTOSTART auf EIN stellen

12.6 Sätze überspringen

Anwendung

Sätze, die Sie beim Programmieren mit einem "/"-Zeichen gekennzeichnet haben, können Sie beim Programm-Test oder Programmlauf überspringen lassen:

▶ Programm-Sätze mit "/"-Zeichen nicht ausführen oder testen: Softkey auf EIN stellen

▶ Programm-Sätze mit "/"-Zeichen ausführen oder testen: Softkey auf AUS stellen

Diese Funktion wirkt nicht für 699-Sätze.

Die zuletzt gewählte Einstellung bleibt auch nach einer Stromunterbrechung erhalten.

Löschen des "/"-Zeichens

▶ In der Betriebsart **Programm-Einspeichern/Editieren** den Satz wählen, bei dem das Ausblendzeichen gelöscht werden soll

▶ "/"-Zeichen löschen

12.7 Wahlweiser Programmlauf-Halt

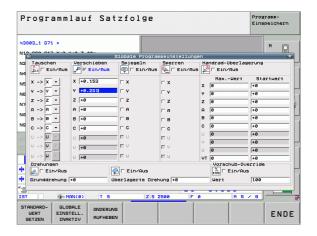
Anwendung

Die TNC unterbricht wahlweise den Programmlauf oder den Programm-Test bei Sätzen in denen ein M01 programmiert ist. Wenn Sie M01 in der Betriebsart Programmlauf verwenden, dann schaltet die TNC die Spindel und das Kühlmittel nicht ab.

O EIN AUS

- ▶ Programmlauf oder Programm-Test bei Sätzen mit M01 nicht unterbrechen: Softkey auf AUS stellen
- ▶ Programmlauf oder Programm-Test bei Sätzen mit M01 unterbrechen: Softkey auf EIN stellen

12.8 Globale Programmeinstellungen (Software-Option)


Anwendung

Die Funktion **Globale Programmeinstellungen**, die insbesondere im Großformenbau zum Einsatz kommt, steht in den Programmlauf-Betriebsarten und im MDI-Betrieb zur Verfügung. Sie können damit verschiedene Koordinaten-Transformationen und Einstellungen definieren, die global und überlagert für das jeweils angewählte NC-Programm wirken, ohne dass Sie hierfür das NC-Programm verändern müssen.

Sie können globale Programmeinstellungen auch mitten im Programm aktivieren bzw. deaktivieren, sofern Sie den Programmlauf unterbrochen haben (siehe "Bearbeitung unterbrechen" auf Seite 592).

Folgende globale Programmeinstellungen stehen zur Verfügung:

Funktionen	lcon	Seite
Achsen tauschen	\$	Seite 608
Grunddrehung		Seite 608
Zusätzliche, additive Nullpunkt- Verschiebung	**	Seite 609
Überlagertes Spiegeln	40	Seite 609
Überlagerte Drehung		Seite 610
Sperren von Achsen	+	Seite 610
Definition einer Handrad-Überlagerung, auch in virtueller Achsrichtung	⊗	Seite 611
Definition eines global gültigen Vorschubfaktors	% !!!>	Seite 610

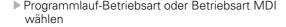
Globale Programmlaufeinstellungen können Sie nicht verwenden, wenn Sie die Funktion M91/M92 (Verfahren auf maschinenfeste Positionen) in Ihrem NC-Programm verwendet haben.

Die Look Ahead-Funktion **M120** können Sie dann verwenden, wenn Sie die globalen Programmeinstellungen vor dem Start des Programms aktiviert haben. Sobald Sie bei aktivem **M120** mitten im Programm globale Programmeinstellungen ändern, gibt die TNC eine Fehlermeldung aus und sperrt das weitere Abarbeiten.

Bei aktiver Kollisionsüberwachung DCM dürfen Sie keine Handrad-Überlagerung definieren.

Die TNC stellt alle Achsen, die an Ihrer Maschine nicht aktiv sind, im Formular ausgegraut dar.

Funktion aktivieren/deaktivieren


Globale Programmeinstellungen bleiben solange aktiv, bis Sie von Ihnen wieder manuell zurückgesetzt werden.

Die TNC zeigt in der Positions-Anzeige das Symbol an, wenn eine globale Programmeinstellung aktiv ist.

Wenn Sie über die Datei-Verwaltung ein Programm wählen, gibt die TNC eine Warnmeldung aus, wenn globale Programmeinstellungen aktiv sind. Sie können dann per Softkey die Meldung einfach quittieren oder das Formular direkt aufrufen, um Änderungen vorzunehmen.

Globale Programmeinstellungen wirken in der Betriebsart smarT.NC generell nicht.

- Formular globale Programmeinstellungen aufrufen
- Gewünschte Funktionen mit entsprechenden Werten aktivieren

Wenn Sie mehrere globale Programmeinstellungen gleichzeitig aktivieren, dann berechnet die TNC die Transformationen intern in folgender Reihenfolge:

- 1: Achsentausch
- 2: Grunddrehung
- 3: Verschiebung
- 4: Spiegeln
- 5: Überlagerte Drehung

Die restlichen Funktionen Achsen sperren, Handrad-Überlagerung und Vorschubfaktor wirken unabhängig voneinander.

Um im Formular navigieren zu können stehen die nachfolgend tabellarisch aufgeführten Funktionen zur Verfügung. Zusätzlich können Sie das Formular auch per Mouse bedienen.

Funktionen	Taste/ Softkey
Sprung zur vorherigen Funktion	
Sprung zur nächsten Funktion	
Nächstes Element wählen	•
Vorheriges Element wählen	t
Funktion Achsen tauschen: Liste der verfügbaren Achsen aufklappen	GОТО П
Funktion Ein-/Ausschalten, wenn Fokus auf einer Checkbox steht	SPACE
Funktion globale Programmeinstellungen rücksetzen: Alle Funktionen deaktivieren Alle eingegebenen Werte = 0 setzen, Vorschubfaktor = 100 setzen. Grunddrehung = 0 setzen, wenn kein Preset aus der Preset-Tabelle aktiv ist, ansonsten setzt die TNC die in der Preset-Tabelle zum aktiven Preset eingetragene Grunddrehung	STANDARD- HERT SETZEN
Alle Änderungen seit dem letzten Aufruf des Formulares verwerfen	ÄNDERUNG AUFHEBEN
Alle aktiven Funktionen deaktivieren, eingegebene bzw. eingestellte Werte bleiben erhalten	GLOBALE EINSTELL. INAKTIV
Alle Änderungen speichern und Formular schließen	ENDE

Achsen tauschen

Mit der Funktion Achsen tauschen können Sie die in einem beliebigen NC-Programm programmierten Achsen auf die Achskonfiguration Ihrer Maschine oder auf die jeweilige Aufspannsituation anpassen:

Nach Aktivierung der Funktion Achsen tauschen wirken alle nachfolgend durchgeführten Transformationen auf die getauschte Achse.

Darauf achten, dass Sie den Achsentausch sinnvoll durchführen, ansonsten gibt die TNC Fehlermeldungen aus

Darauf achten, dass nach Aktivierung dieser Funktion ggf. ein Wiederanfahren an die Kontur erforderlich wird. Die TNC ruft das Wiederanfahr-Menü dann automatisch nach dem Schließen des Formulars auf (siehe "Wiederanfahren an die Kontur" auf Seite 598).

- Im Formular globale Programmeinstellungen den Fokus auf Tauschen Ein/Aus setzen, Funktion mit Taste SPACE aktivieren
- Mit der Pfeiltaste nach unten den Fokus auf die Zeile setzen, in der links die zu tauschende Achse steht
- Taste GOTO drücken, um die Liste der Achsen anzuzeigen, auf die Sie tauschen wollen
- Mit der Pfeiltaste nach unten die Achse wählen auf die Sie tauschen wollen und mit Taste ENT übernehmen

Wenn Sie mit einer Mouse arbeiten, dann können Sie durch Klick auf das jeweilige Pull-Down-Menü die gewünschte Achse direkt wählen.

Grunddrehung

Mit der Funktion Grunddrehung kompensieren Sie eine Werkstück-Schieflage. Die Wirkungsweise entsprich der Funktion Grunddrehung, die Sie im manuellen Betrieb über Antastfunktionen erfassen können. Demzufolge synchronisiert die TNC im Formular eingetragene Werte mit den Werten im Grunddrehungs-Menü und umgekehrt.

Darauf achten, dass nach Aktivierung dieser Funktion ggf. ein Wiederanfahren an die Kontur erforderlich wird. Die TNC ruft das Wiederanfahr-Menü dann automatisch nach dem Schließen des Formulars auf (siehe "Wiederanfahren an die Kontur" auf Seite 598).

Zusätzliche, additive Nullpunkt-Verschiebung

Mit der Funktion additive Nullpunkt-Verschiebung können Sie beliebige Versätze in allen aktiven Achsen kompensieren.

Die im Formular definierten Werte wirken zusätzlich zu bereits im Programm über Zyklus 7 (Nullpunkt-Verschiebung) definierten Werten.

Beachten Sie, dass die Verschiebungen bei aktiver geschwenkter Bearbeitungsebene im Maschinenkoordinatensystem wirken.

Darauf achten, dass nach Aktivierung dieser Funktion ggf. ein Wiederanfahren an die Kontur erforderlich wird. Die TNC ruft das Wiederanfahr-Menü dann automatisch nach dem Schließen des Formulars auf (siehe "Wiederanfahren an die Kontur" auf Seite 598).

Überlagertes Spiegeln

Mit der Funktion überlagertes Spiegeln können Sie alle aktiven Achsen spiegeln.

Die im Formular definierten Spiegelachsen wirken zusätzlich zu bereits im Programm über Zyklus 8 (Spiegeln) definierten Werten.

Darauf achten, dass nach Aktivierung dieser Funktion ggf. ein Wiederanfahren an die Kontur erforderlich wird. Die TNC ruft das Wiederanfahr-Menü dann automatisch nach dem Schließen des Formulars auf (siehe "Wiederanfahren an die Kontur" auf Seite 598).

- Im Formular globale Programmeinstellungen den Fokus auf Spiegeln Ein/Aus setzen, Funktion mit Taste SPACE aktivieren
- Mit der Pfeiltaste nach unten den Fokus auf die Achse setzen die Sie spiegeln wollen
- ▶ Taste SPACE drücken, um die Achse zu spiegeln. Erneutes Betätigen der Taste SPACE hebt die Funktion wieder auf

Wenn Sie mit einer Mouse arbeiten, dann können Sie durch Klick auf die jeweilige Achse die gewünschte Achse direkt aktivieren.

Überlagerte Drehung

Mit der Funktion überlagerte Drehung können Sie eine beliebige Drehung des Koordinatensystem in der momentan aktiven Bearbeitungsebene definieren.

Die im Formular definierte überlagerte Drehung wirkt zusätzlich zum bereits im Programm über Zyklus 10 (Rotation) definierten Wert.

Darauf achten, dass nach Aktivierung dieser Funktion ggf. ein Wiederanfahren an die Kontur erforderlich wird. Die TNC ruft das Wiederanfahr-Menü dann automatisch nach dem Schließen des Formulars auf (siehe "Wiederanfahren an die Kontur" auf Seite 598).

Sperren von Achsen

Mit dieser Funktion können Sie alle aktiven Achsen sperren. Die TNC führt dann beim Abarbeiten des Programmes keine Bewegungen in den von Ihnen gesperrten Achsen aus.

Darauf achten, dass beim Aktivieren dieser Funktion die Position der ausgesperrten Achse keine Kollisionen verursacht.

- Im Formular globale Programmeinstellungen den Fokus auf **Sperren Ein/Aus** setzen, Funktion mit Taste SPACE aktivieren
- ▶ Mit der Pfeiltaste nach unten den Fokus auf die Achse setzen die Sie sperren wollen
- ▶ Taste SPACE drücken, um die Achse zu sperren. Erneutes Betätigen der Taste SPACE hebt die Funktion wieder auf

Wenn Sie mit einer Mouse arbeiten, dann können Sie durch Klick auf die jeweilige Achse die gewünschte Achse direkt aktivieren.

Vorschubfaktor

Mit der Funktion Vorschubfaktor können Sie den programmierten Vorschub prozentual reduzieren oder erhöhen. Die TNC erlaubt Eingaben zwischen 1 und 1000%.

Darauf achten, dass die TNC den Vorschubfaktor immer auf den aktuellen Vorschub bezieht, den Sie ggf. bereits durch Änderung des Vorschub-Overrides erhöht oder reduziert haben können.

Handrad-Überlagerung

Mit der Funktion Handrad-Überlagerung erlauben Sie das überlagerte Verfahren mit dem Handrad während die TNC ein Programm abarbeitet.

In der Spalte Max.-Wert definieren Sie den maximal erlaubten Weg, den Sie per Handrad verfahren können. Den tatsächlich in jeder Achse verfahrenen Wert übernimmt die TNC in die Spalte Startwert, sobald Sie den Programmlauf unterbrechen (STIB=OFF). Der Startwert bleibt so lange gespeichert, bis Sie diesen löschen, auch über eine Stromunterbrechung hinaus. Den Startwert können Sie auch editieren, die TNC reduziert den von Ihnen eingegebenen Wert ggf. auf den jeweiligen Max.-Wert.

Wenn beim Aktivieren der Funktion ein **Startwert** eingetragen ist, dann ruft die TNC beim Schließen des Fensters die Funktion Wiederanfahren an die Kontur auf, um den definierten Wert zu verfahren (siehe "Wiederanfahren an die Kontur" auf Seite 598).

Ein bereits im NC-Programm mit M118 definierter maximaler Verfahrweg wird vom eingetragenen Wert im Formular überschrieben. Bereits mit dem Handrad über M118 verfahrene Werte trägt die TNC wiederum in die Spalte Startwert des Formulares ein, so dass beim Aktivieren kein Sprung in der Anzeige entsteht. Ist der über M118 bereits verfahrene Weg größer als der im Formular erlaubte Maximalwert, dann ruft die TNC beim Schließen des Fensters die Funktion Wiederanfahren an die Kontur auf, um den Differenzwert zu verfahren (siehe "Wiederanfahren an die Kontur" auf Seite 598).

Wenn Sie versuchen einen **Startwert** einzugeben, der größer als der **Max.-Wert** ist, gibt die TNC eine Fehlermeldung aus. **Startwert** grundsätzlich nicht größer als **Max.-Wert** eingeben.

Max.-Wert nicht zu groß eingeben. Die TNC reduziert den Verfahrbereich um den von Ihnen eingegebenen Wert in positiver und negativer Richtung.

Virtuelle Achse VT

Sie können eine Handrad-Überlagerung auch in der momentan aktiven Werkzeug-Achsrichtung ausführen. Für die Aktivierung dieser Funktion steht die Zeile **VT** (**V**irtual **T**oolaxis) zur Verfügung.

Über das Handrad HR 420 können Sie die Achse VT anwählen, um überlagert in virtueller Achsrichtung verfahren zu können (siehe "Zu verfahrende Achse wählen" auf Seite 74).

Auch in der zusätzlichen Status-Anzeige (Reiter **P0S**) zeigt die TNC den in der virtuellen Achse verfahrenen Wert in einer eigenen Positionsanzeige **VT** an.

Die TNC deaktiviert den in virtueller Achsrichtung verfahren Wert, sobald Sie ein neues Werkzeug aufrufen.

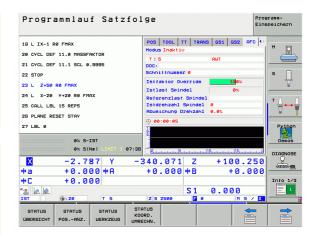
In virtueller Achsrichtung können Sie handradüberlagert nur bei inaktivem DCM oder im gestoppten Zustand (Stib blinkt) verfahren.

12.9 Adaptive Vorschubregelung AFC (Software-Option)

Anwendung

Die Funktion **AFC** muss vom Maschinenhersteller freigegeben und angepasst werden. Beachten Sie Ihr Maschinenhandbuch

Insbesondere kann Ihr Maschinenhersteller auch festgelegt haben, ob die TNC die Spindelleistung oder einen beliebigen anderen Wert als Eingangsgröße für die Vorschubregelung verwenden soll.


Für Werkzeuge unter 5 mm Durchmesser ist die adaptive Vorschubregelung nicht sinnvoll. Der Grenzdurchmesser kann auch größer sein, wenn die Nennleistung der Spindel sehr hoch ist.

Bei Bearbeitungen, bei denen Vorschub und Spindeldrehzahl zueinander passen müssen (z.B. beim Gewindebohren), dürfen Sie nicht mit adaptiver Vorschubregelung arbeiten.

Bei der adaptiven Vorschubregelung regelt die TNC abhängig von der aktuellen Spindelleistung den Bahnvorschub beim Abarbeiten eines Programmes automatisch. Die zu jedem Bearbeitungsabschnitt gehörende Spindelleistung ist in einem Lernschnitt zu ermitteln und wird von der TNC in einer zum Bearbeitungs-Programm gehörenden Datei gespeichert. Beim Start des jeweiligen Bearbeitungsabschnitts, der im Normalfall durch das Einschalten der Spindel mit M3 erfolgt, regelt die TNC dann den Vorschub so, dass sich dieser innerhalb von Ihnen definierbarer Grenzen befindet.

Auf diese Weise lassen sich negative Auswirkungen auf Werkzeug, Werkstück und Maschine vermeiden, die durch sich ändernde Schnittbedingungen entstehen können. Schnittbedingungen ändern sich insbesondere durch:

- Werkzeug-Verschleiß
- Schwankende Schnitttiefen, die vermehrt bei Gussteilen auftreten
- Härteschwankungen, die durch Materialeinschlüsse entstehen

Der Einsatz der adaptiven Vorschubregelung AFC bietet folgende Vorteile:

- Optimierung der Bearbeitungszeit Durch Regelung des Vorschubs versucht die TNC, die vorher gelernte maximale Spindelleistung während der gesamten Bearbeitungszeit einzuhalten. Die Gesamtbearbeitungszeit wird durch Vorschuberhöhung in Bearbeitungszonen mit weniger Materialabtrag verkürzt
- Werkzeug-Überwachung
 Überschreitet die Spindelleistung den eingelernten Maximalwert,
 reduziert die TNC den Vorschub so weit, bis die ReferenzSpindelleistung wieder erreicht ist. Wird beim Bearbeiten die
 maximale Spindelleistung überschritten und dabei gleichzeitig der
 von Ihnen definierte Mindestvorschub unterschritten, führt die TNC
 eine Abschaltreaktion durch. Dadurch lassen sich Folgeschäden
 nach Fräserbruch oder Fräserverschleiß verhindern.
- Schonung der Maschinenmechanik
 Durch rechtzeitige Vorschubreduzierung bzw. durch entsprechende
 Abschaltreaktionen lassen sich Überlastschäden an der Maschine vermeiden

AFC-Grundeinstellungen definieren

In der Tabelle **AFC.TAB**, die im Root-Verzeichnis **TNC:**\ gespeichert sein muss, legen Sie die Regeleinstellungen fest, mit denen die TNC die Vorschubregelung durchführen soll.

Die Daten in dieser Tabelle stellen Defaultwerte dar, die beim Lernschnitt in eine zum jeweiligen Bearbeitungs-Programm gehörende abhängige Datei kopiert werden und als Grundlage für die Regelung dienen. Folgende Daten sind in dieser Tabelle zu definieren:

Spalte	Funktion
NR	Laufende Zeilennummer in der Tabelle (hat sonst keine weitere Funktion)
AFC	Name der Regeleinstellung. Diesen Namen müssen Sie in die Spalte AFC der Werkzeug-Tabelle eintragen. Er legt die Zuordnung der Regelparameter zum Werkzeug fest
FMIN	Vorschub, bei dem die TNC eine Überlastreaktion ausführen soll. Wert prozentual bezogen auf den programmierten Vorschub eingeben. Eingabebereich: 50 bis 100%
FMAX	Maximaler Vorschub im Material, bis zu dem die TNC automatisch erhöhen darf. Wert prozentual bezogen auf den programmierten Vorschub eingeben
FIDL	Vorschub mit dem die TNC verfahren soll, wenn das Werkzeug nicht schneidet (Vorschub in der Luft). Wert prozentual bezogen auf den programmierten Vorschub eingeben
FENT	Vorschub mit dem die TNC verfahren soll, wenn das Werkzeug ins Material hinein- oder herausfährt. Wert prozentual bezogen auf den programmierten Vorschub eingeben. Maximaler Eingabewert: 100%
OVLD	Reaktion, die die TNC bei Überlast ausführen soll:
	 M: Abarbeiten eines vom Maschinenhersteller definierten Makros S: Sofort NC-Stopp ausführen F: NC-Stopp ausführen, wenn das Werkzeug freigefahren ist E: Nur eine Fehlermeldung am Bildschirm anzeigen -: Keine Überlastreaktion ausführen Die Überlastreaktion führt die TNC aus, wenn bei aktiver Regelung die maximale Spindelleistung für mehr als 1 Sekunde überschritten und dabei gleichzeitig der von Ihnen definierte Mindestvorschub
	unterschritten wird. Gewünschte Funktion über die ASCII-Tastatur eingeben

Spalte	Funktion
POUT	Spindelleistung bei der die TNC einen Werkstück- Austritt erkennen soll. Wert prozentual bezogen auf die gelernte Referenzlast eingeben. Empfohlener Wert: 8%
SENS	Empfindlichkeit (Aggressivität) der Regelung. Wert zwischen 50 und 200 eingebbar. 50 entspricht einer trägen, 200 einer sehr aggressiven Regelung. Eine aggressive Regelung reagiert schnell und mit hohen Werteänderungen, neigt jedoch zum Überschwingen. Empfohlener Wert: 100
PLC	Wert, den die TNC zu Beginn eines Bearbeitungsabschnittes an die PLC übertragen soll. Funktion legt der Maschinenhersteller fest, Maschinenhandbuch beachten

Sie können in der Tabelle **AFC.TAB** beliebig viele Regeleinstellungen (Zeilen) definieren.

Wenn im Verzeichnis **TNC:**\ keine Tabelle AFC.TAB vorhanden ist, dann verwendet die TNC einen intern fest definierte Regeleinstellungen für den Lernschnitt. Es empfiehlt sich jedoch grundsätzlich mit der Tabelle AFC.TAB zu arbeiten.

Gehen Sie wie folgt vor, um die Datei AFC.TAB anzulegen (nur erforderlich, wenn die Datei noch nicht vorhanden ist):

- ▶ Betriebsart **Programm-Einspeichern/Editieren** wählen
- Datei-Verwaltung wählen: Taste PGM MGT drücken
- ► Verzeichnis TNC:\ wählen
- Neue Datei AFC.TAB eröffnen, mit Taste ENT bestätigen: Die TNC blendet eine Liste mit Tabellen-Formaten ein
- ▶ Tabellenformat AFC.TAB wählen und mit Taste ENT bestätigen: Die TNC legt die Tabelle mit der Regeleinstellung Standard an

Lernschnitt durchführen

Bei einem Lernschnitt kopiert die TNC zunächst für jeden Bearbeitungsabschnitt die in der Tabelle AFC.TAB definierten Grundeinstellungen in die Datei <name>.H.AFC.DEP. <name> entspricht dabei dem Namen des NC-Programms, für das Sie den Lernschnitt durchgeführt haben. Zusätzlich erfasst die TNC die während des Lernschnitts aufgetretene maximale Spindelleistung und speichert diesen Wert ebenfalls in die Tabelle ab.

Jede Zeile der Datei <name>.H.AFC.DEP entspricht einem Bearbeitungsabschnitt, den Sie mit M3 (bzw. M4) starten und mit M5 beenden. Alle Daten der Datei <name>.H.AFC.DEP können Sie editieren, sofern Sie noch Optimierungen vornehmen wollen. Wenn Sie Optimierungen im Vergleich zu den in der Tabelle AFC.TAB eingetragenen Werten durchgeführt haben, schreibt die TNC einen * vor die Regeleinstellung in der Spalte AFC. Neben den Daten aus der Tabelle AFC.TAB (siehe "AFC-Grundeinstellungen definieren" auf Seite 615), speichert die TNC noch folgende zusätzliche Informationen in die Datei <name>.H.AFC.DEP:

Spalte	Funktion
NR	Nummer des Bearbeitungsabschnitts
T00L	Nummer oder Name des Werkzeugs, mit dem der Bearbeitungsabschnitt durchgeführt wurde (nicht editierbar)
IDX	Index des Werkzeugs, mit dem der Bearbeitungsabschnitt durchgeführt wurde (nicht editierbar)
N	Unterscheidung für Werkzeug-Aufruf:
	 0: Werkzeug wurde mit seiner Werkzeug-Nummer aufgerufen 1: Werkzeug wurde mit seinem Werkzeug-Namen aufgerufen
PREF	Referenzlast der Spindel. Die TNC ermittelt den Wert prozentual, bezogen auf die Nennleistung der Spindel
ST	Status des Bearbeitungsabschnitts:
	■ L: Beim nächsten Abarbeiten erfolgt für diesen Bearbeitungsabschnitt ein Lernschnitt, bereits eingetragene Werte in dieser Zeile werden von der TNC überschrieben
	■ C: Lernschnitt wurde erfolgreich durchgeführt. Beim nächsten Abarbeiten kann automatische Vorschubregelung erfolgen
AFC	Name der Regeleinstellung

Bevor Sie einen Lernschnitt durchführen, auf folgende Voraussetzungen achten:

- Bei Bedarf die Regeleinstellungen in der Tabelle AFC.TAB anpassen
- Gewünschte Regeleinstellung für alle Werkzeuge in der Spalte AFC der Werkzeug-Tabelle TOOL.T eintragen
- Programm anwählen das Sie einlernen wollen
- Funktion adaptive Vorschubregelung per Softkey aktivieren (siehe "AFC aktivieren/deaktivieren" auf Seite 620)

Wenn Sie einen Lernschnitt durchführen, zeigt die TNC in einem Überblendfenster die bis dato ermittelte Spindel-Referenzleistung an.

Sie können die Referenzleistung jederzeit zurücksetzen, indem Sie den Softkey PREF RESET drücken. Die TNC startet dann die Lernphase neu.

Wenn Sie einen Lernschnitt durchführen, setzt die TNC intern den Spindel-Override auf 100%. Sie können die Spindeldrehzahl dann nicht mehr verändern.

Sie können während des Lernschnittes über den Vorschub-Override den Bearbeitungsvorschub beliebig verändern und somit Einfluss auf die ermittelte Referenzlast nehmen.

Sie müssen nicht den vollständigen Bearbeitungsschritt im Lernmodus fahren. Wenn sich die Schnittbedingungen nicht mehr wesentlich verändern, dann können Sie sofort in den Modus Regeln wechseln. Drücken Sie dazu den Softkey LERNEN BEENDEN, der Status ändert sich dann von L auf C.

Sie können einen Lernschnitt bei Bedarf beliebig oft wiederholen. Setzen Sie dazu den Status ST manuell wieder auf L. Eine Wiederholung des Lernschnitts kann erforderlich sein, wenn der programmierte Vorschub viel zu hoch programmiert war und Sie während des Bearbeitungsschrittes den Vorschub-Override stark zurückdrehen müssen.

Die TNC wechselt den Status von Lernen (L) auf Regeln (C) nur dann, wenn die ermittelte Referenzlast größer als 2% beträgt. Bei kleineren Werten ist eine adaptive Vorschubregelung nicht möglich.

Sie können zu einem Werkzeug beliebig viele Bearbeitungsschritte einlernen. Hierfür stellt Ihr Maschinenhersteller entweder eine Funktion zur Verfügung oder integriert diese Möglichkeit in die Funktionen M3/M4 und M5. Maschinenhandbuch beachten.

Ihr Maschinenhersteller kann eine Funktion zur Verfügung stellen, mit der sich der Lernschnitt nach einer wählbaren Zeit automatisch beenden lässt. Maschinenhandbuch beachten. Gehen Sie wie folgt vor, um die Datei <name>.H.AFC.DEP anzuwählen und ggf. zu editieren:

▶ Betriebsart **Programmlauf Satzfolge** wählen

► Softkeyleiste umschalten

- ► Tabelle der AFC-Einstellungen wählen
- ► Wenn erforderlich Optimierungen durchführen

Beachten Sie, das die Datei <name>.H.AFC.DEP zum Editieren gesperrt ist, solange Sie das NC-Programm <name>.H abarbeiten. Die TNC zeigt die Daten in der Tabelle dann rot an.

Die TNC setzt die Editiersperre erst zurück, wenn eine der folgenden Funktionen abgearbeitet wurde:

- M02
- M30
- END PGM

Sie können die Datei <name>.H.AFC.DEP auch in der Betriebsart Programm-Einspeichern/Editieren verändern. Falls erforderlich, können Sie dort auch einen Bearbeitungsabschitt (komplette Zeile) löschen.

Um die Datei <name>.H.AFC.DEP editieren zu können, müssen Sie agf. die Datei-Verwaltung son einstellen, das die TNC abhängige dateien anzeigen soll (siehe "PGM MGT konfigurieren" auf Seite 641).

HEIDENHAIN iTNC 530 619

AFC aktivieren/deaktivieren

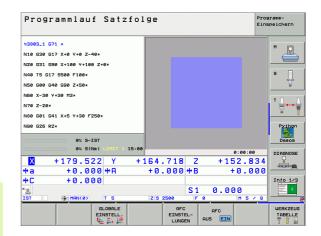
▶ Softkeyleiste umschalten

▶ Adaptive Vorschubregelung aktivieren: Softkey auf EIN stellen, die TNC zeigt in der Positions-Anzeige das AFC-Symbol an (siehe "Adaptive Vorschubregelung AFC (Reiter AFC, Software-Option)" auf Seite 61)

 Adaptive Vorschubregelung deaktivieren: Softkey auf AUS stellen

Die adaptive Vorschubregelung bleibt so lange aktiv, bis Sie diese wieder per Softkey deaktivieren. Die TNC speichert die Stellung des Softkeys auch über eine Stromunterbrechung hinaus.

Wenn die adaptive Vorschubregelung im Modus **Regeln** aktiv ist, setzt die TNC intern den Spindel-Override auf 100%. Sie können die Spindeldrehzahl dann nicht mehr verändern.


Wenn die adaptive Vorschubregelung im Modus Regeln aktiv ist, übernimmt die TNC die Funktion des Vorschub-Overrides:

- Wenn Sie den Vorschub-Override erhöhen, hat dies keinen Einfluss auf die Regelung.
- Wenn Sie den Vorschub-Override um mehr als 10% bezogen auf die maximale Stellung reduzieren, dann schaltet die TNC die adaptive Vorschubregelung ab. In diesem Fall blendet die TNC ein Fenster mit entsprechendem Hinweistext ein

In NC-Sätzen, in denen **FMAX** programmiert ist, ist die adaptive Vorschubregelung **nicht aktiv**.

Satzvorlauf bei aktiver Vorschubregelung ist erlaubt, die TNC berücksichtigt die Schnittnummer der Einstiegsstelle.

Die TNC zeigt in der zusätzlichen Status-Anzeige verschiedene Informationen an, wenn die adaptive Vorschubregelung aktiv ist (siehe "Adaptive Vorschubregelung AFC (Reiter AFC, Software-Option)" auf Seite 61). Zusätzlich zeigt die TNC in der Positions-Anzeige das Symbol

Protokolldatei

Während eines Lernschnitts speichert die TNC für jeden Bearbeitungsabschnitt verschiedene Informationen in der Datei <name>.H.AFC2.DEP ab. <name> entspricht dabei dem Namen des NC-Programms, für das Sie den Lernschnitt durchgeführt haben. Beim Regeln aktualisiert die TNC die Daten und führt verschiedene Auswertungen durch. Folgende Daten sind in dieser Tabelle gespeichert:

Spalte	Funktion
NR	Nummer des Bearbeitungsabschnitts
T00L	Nummer oder Name des Werkzeugs, mit dem der Bearbeitungsabschnitt durchgeführt wurde
IDX	Index des Werkzeugs, mit dem der Bearbeitungsabschnitt durchgeführt wurde
SNOM	Solldrehzahl der Spindel [U/min]
SDIF	Maximale Differenz der Spindeldrehzahl in % von der Solldrehzahl
LTIME	Bearbeitungszeit für den Lernschnitt
CTIME	Bearbeitungszeit für den Regelschnitt
TDIFF	Zeitunterschied zwischen der Bearbeitungszeit beim Lernen und Regeln in %
PMAX	Maximal aufgetretene Spindelleistung während der Bearbeitung. Die TNC zeigt den Wert prozentual, bezogen auf die Nennleistung der Spindel an
PREF	Referenzlast der Spindel. Die TNC zeigt den Wert prozentual, bezogen auf die Nennleistung der Spindel an
OVLD	Reaktion, die die TNC bei Überlast ausgeführt hat:
	 M: Ein vom Maschinenhersteller definiertes Makro wurde abgearbeitet S: Direkter NC-Stopp wurde ausgeführt
	■ F : NC-Stopp wurde ausgeführ, nachdem das Werkzeug freigefahren wurde
	■ E: Es wurde eine Fehlermeldung am Bildschirm angezeigt
	■ -: Es wurde keine Überlastreaktion ausführt
BLOCK	Satznummer, an der der Bearbeitungsabschnitt beginnt

Die TNC ermittelt die gesamte Bearbeitungszeit für alle Lernschnitte (LTIME), alle Regelschnitte (CTIME) und den gesamten Zeitunterschied (TDIFF) und trägt diese Daten hinter dem Schlüsselwort TOTAL in die letzte Zeile der Protokolldatei ein.

Gehen Sie wie folgt vor, um die Datei <name>.H.AFC2.DEP anzuwählen:

- ▶ Betriebsart Programmlauf Satzfolge wählen
- \bigcirc
- ► Softkeyleiste umschalten

- ▶ Tabelle der AFC-Einstellungen wählen
- TABELLE AUS-WERTUNG
- ▶ Protokoll-Datei anzeigen

13

13.1 MOD-Funktion wählen

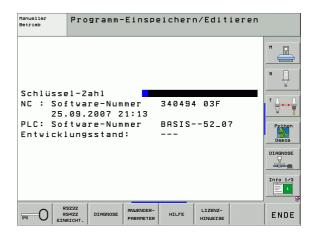
Über die MOD-Funktionen können Sie zusätzliche Anzeigen und Eingabemöglichkeiten wählen. Welche MOD-Funktionen zur Verfügung stehen, hängt von der gewählten Betriebsart ab.

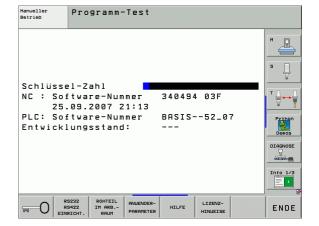
MOD-Funktionen wählen

Betriebsart wählen, in der Sie MOD-Funktionen ändern möchten.

▶ MOD-Funktionen wählen: Taste MOD drücken. Die Bilder rechts zeigen typische Bildschirm-Menüs für Programm-Einspeichern/Editieren (Bild rechts oben), Programm-Test (Bild rechts unten) und in einer Maschinen-Betriebsart (Bild nächste Seite)

Einstellungen ändern


MOD-Funktion im angezeigten Menü mit Pfeiltasten wählen


Um eine Einstellung zu ändern, stehen – abhängig von der gewählten Funktion – drei Möglichkeiten zur Verfügung:

- Zahlenwert direkt eingeben, z.B. beim Festlegen der Verfahrbereichs-Begrenzung
- Einstellung durch Drücken der Taste ENT ändern, z.B. beim Festlegen der Programm-Eingabe
- Einstellung ändern über ein Auswahlfenster. Wenn mehrere Einstellmöglichkeiten zur Verfügung stehen, können Sie durch Drücken der Taste GOTO ein Fenster einblenden, in dem alle Einstellmöglichkeiten auf einen Blick sichtbar sind. Wählen Sie die gewünschte Einstellung direkt durch Drücken der entsprechenden Zifferntaste (links vom Doppelpunkt), oder mit der Pfeiltaste und anschließendem bestätigen mit der Taste ENT. Wenn Sie die Einstellung nicht ändern wollen, schließen Sie das Fenster mit der Taste END

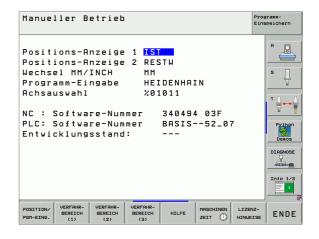
MOD-Funktionen verlassen

▶ MOD-Funktion beenden: Softkey ENDE oder Taste END drücken

Übersicht MOD-Funktionen

Abhängig von der gewählten Betriebsart können Sie folgende Änderungen vornehmen:

Programm-Einspeichern/Editieren:


- Verschiedene Software-Nummern anzeigen
- Schlüsselzahl eingeben
- Schnittstelle einrichten
- Ggf. Maschinenspezifische Anwenderparameter
- Ggf. HILFE-Dateien anzeigen
- Laden von Service-Packs
- Zeitzone einstellen
- Rechtliche Hinweise

Programm-Test:

- Verschiedene Software-Nummern anzeigen
- Schlüsselzahl eingeben
- Datenschnittstelle einrichten
- Rohteil im Arbeitsraum darstellen
- Ggf. Maschinenspezifische Anwenderparameter
- Ggf. HILFE-Dateien anzeige
- Zeitzone einstellen
- Rechtliche Hinweise

Alle übrigen Betriebsarten:

- Verschiedene Software-Nummern anzeigen
- Kennziffern für vorhandene Optionen anzeigen
- Positions-Anzeigen wählen
- Maß-Einheit (mm/inch) festlegen
- Programmier-Sprache festlegen für MDI
- Achsen für Ist-Positions-Übernahme festlegen
- Verfahrbereichs-Begrenzung setzen
- Bezugspunkte anzeigen
- Betriebszeiten anzeigen
- Ggf. HILFE-Dateien anzeigen
- Zeitzone einstellen
- Rechtliche Hinweise

13.2 Software-Nummern

Anwendung

Folgende Software-Nummern stehen nach Anwahl der MOD-Funktionen im TNC-Bildschirm:

- **NC**: Nummer der NC-Software (wird von HEIDENHAIN verwaltet)
- PLC: Nummer oder Name der PLC-Software (wird von Ihrem Maschinen-Hersteller verwaltet)
- Entwicklungsstand (FCL=Feature Content Level): Auf der Steuerung installierter Entwicklungsstand (siehe "Entwicklungsstand (Upgrade-Funktionen)" auf Seite 8)
- **DSP1** bis **DSP3**: Nummer der Drehzahlregler-Software (wird von HEIDENHAIN verwaltet)
- ICTL1 und ICTL3: Nummer der Stromregler-Software (wird von HEIDENHAIN verwaltet)

13.3 Schlüssel-Zahl eingeben

Anwendung

Die TNC benötigt für folgende Funktionen eine Schlüssel-Zahl:

Funktion	Schlüssel-Zahl
Anwender-Parameter wählen	123
Ethernet-Karte konfigurieren (nicht iTNC 530 mit Windows XP)	NET123
Sonder-Funktionen bei der Q- Parameter- Programmierung freigeben	555343

Zusätzlich können Sie über das Schlüsselwort **version** eine Datei erstellen, die alle aktuellen Software-Nummern Ihrer Steuerung enthält:

- ▶ Schlüsselwort **version** eingeben, mit Taste ENT bestätigen
- ▶ Die TNC zeigt am Bildschirm alle aktuellen Software-Nummern an
- ▶ Versionsübersicht beenden: Taste END drücken

Bei Bedarf können Sie die im Verzeichnis TNC: gespeicherte Datei **version.a** auslesen und für Diagnosezwecke Ihrem Maschinenhersteller oder HEIDENHAIN zusenden.

13.4 Service-Packs laden

Anwendung

Setzen Sie sich unbedingt mit Ihrem Maschinenhersteller in Verbindung, bevor Sie ein Service-Pack installieren.

Die TNC führt nach Beendigung des Installations-Vorgangs einen Warmstart aus. Maschine vor dem Laden des Service-Packs in den NOT-AUS-Zustand bringen.

Falls noch nicht durchgeführt: Netzlaufwerk verbinden, von dem aus Sie das Service-Pack einspielen wollen.

Mit dieser Funktion können Sie auf einfache Weise an Ihrer TNC ein Software-Update durchführen

- ▶ Betriebsart **Programm-Einspeichern/Editieren** wählen
- ▶ Taste MOD drücken
- Software-Update starten: Softkey "Service-Pack laden" drücken, die TNC zeigt ein Überblendfenster zur Auswahl des Update-Files
- Mit den Pfeiltasten das Verzeichnis wählen, in dem das Service-Pack gespeichert ist. Die Taste ENT klappt die jeweilige Unter-Verzeichnisstruktur auf
- Datei wählen: Taste ENT auf dem gewählten Verzeichnis zweimal drücken. Die TNC wechselt vom Verzeichnisfenster ins Dateifenster
- ▶ Update-Vorgang starten: Datei mit Taste ENT wählen: Die TNC entpackt alle erforderlichen Dateien und startet anschließend die Steuerung neu. Dieser Vorgang kann einige Minuten in Anspruch nehmen

13.5 Datenschnittstellen einrichten

Anwendung

Zum Einrichten der Datenschnittstellen drücken Sie den Softkey RS 232- / RS 422 - EINRICHT. Die TNC zeigt ein Bildschirm-Menü, in das Sie folgende Einstellungen eingeben:

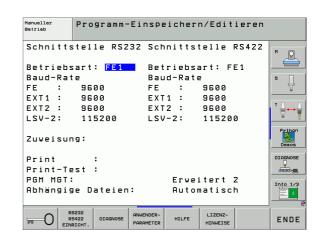
RS-232-Schnittstelle einrichten

Betriebsart und Baud-Raten werden für die RS-232-Schnittstelle links im Bildschirm eingetragen.

RS-422-Schnittstelle einrichten

Betriebsart und Baud-Raten werden für die RS-422-Schnittstelle rechts im Bildschirm eingetragen.

BETRIEBSART des externen Geräts wählen



In den Betriebsarten FE2 und EXT können Sie die Funktionen "alle Programme einlesen", "angebotenes Programm einlesen" und "Verzeichnis einlesen" nicht nutzen

BAUD-RATE einstellen

Die BAUD-RATE (Datenübertragungs-Geschwindigkeit) ist zwischen 110 und 115.200 Baud wählbar.

Externes Gerät	Betriebsart	Symbol
PC mit HEIDENHAIN Übertragungs-Software TNCremo NT	FE1	
HEIDENHAIN Disketten-Einheiten FE 401 B FE 401 ab ProgNr. 230 626 03	FE1 FE1	
Fremdgeräte, wie Drucker, Leser, Stanzer, PC ohne TNCremo NT	EXT1, EXT2	Ðy

Zuweisung

Mit dieser Funktion legen Sie fest, wohin Daten von der TNC übertragen werden.

Anwendungen:

- Werte mit der Q-Parameter-Funktion FN15 ausgeben
- Werte mit der Q-Parameter-Funktion FN16 ausgeben

Von der TNC-Betriebsart hängt ab, ob die Funktion PRINT oder PRINT-TEST benutzt wird:

TNC-Betriebsart	Übertragungs-Funktion
Programmlauf Einzelsatz	PRINT
Programmlauf Satzfolge	PRINT
Programm-Test	PRINT-TEST

PRINT und PRINT-TEST können Sie wie folgt einstellen:

Funktion	Pfad
Daten über RS-232 ausgeben	RS232:\
Daten über RS-422 ausgeben	RS422:\
Daten auf der Festplatte der TNC ablegen	TNC:\
Daten in dem Verzeichnis speichern, in dem das Programm mit FN15/FN16 steht	leer

Datei-Namen:

Daten	Betriebsart	Datei-Name
Werte mit FN15	Programmlauf	%FN15RUN.A
Werte mit FN15	Programm-Test	%FN15SIM.A
Werte mit FN16	Programmlauf	%FN16RUN.A
Werte mit FN16	Programm-Test	%FN16SIM.A

Software für Datenübertragung

Zur Übertragung von Dateien von der TNC und zur TNC, sollten Sie die HEIDENHAIN-Software zur Datenübertragung TNCremoNT benutzen. Mit TNCremoNT können Sie über die serielle Schnittstelle oder über die Ethernet-Schnitstelle alle HEIDENHAIN-Steuerungen ansteuern.

Die aktuelle Version von TNCremo NT können Sie kostenlos von der HEIDENHAIN Filebase herunterladen (www.heidenhain.de, <Service>, <Download-Bereich>, <TNCremo NT>).

System-Voraussetzungen für TNCremoNT:

- PC mit 486 Prozessor oder besser
- Betriebssystem Windows 95, Windows 98, Windows NT 4.0, Windows XP, Windows XP
- 16 MByte Arbeitsspeicher
- 5 MByte frei auf Ihrer Festplatte
- Eine freie serielle Schnittstelle oder Anbindung ans TCP/IP-Netzwerk

Installation unter Windows

- Starten Sie das Installations-Programm SETUP.EXE mit dem Datei-Manager (Explorer)
- ▶ Folgen Sie den Anweisungen des Setup-Programms

TNCremoNT unter Windows starten

Klicken Sie auf <Start>, <Programme>, <HEIDENHAIN Anwendungen>, <TNCremoNT>

Wenn Sie TNCremoNT das erste Mal starten, versucht TNCremoNT automatisch eine Verbindung zur TNC herzustellen.

Datenübertragung zwischen TNC und TNCremoNT

Bevor Sie ein Programm von der TNC zum PC übertragen ünbedingt sicherstellen, dass Sie das momentan auf der TNC angewählte Programm auch gespeichert haben. Die TNC speichert Änderungen automatisch, wenn Sie die Betriebsart auf der TNC wechseln oder wenn Sie über die Taste PGM MGT die Datei-Verwaltung anwählen.

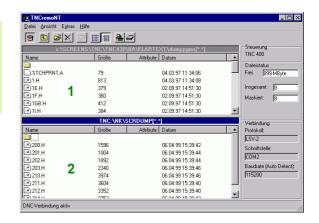
Überprüfen Sie, ob die TNC an der richtigen seriellen Schnittstelle Ihres Rechners, bzw. am Netzwerk angeschlossen ist.

Nachdem Sie die TNCremoNT gestartet haben, sehen Sie im oberen Teil des Hauptfensters 1 alle Dateien, die im aktiven Verzeichnis gespeichert sind. Über <Datei>, <Ordner wechseln> können Sie ein beliebiges Laufwerk bzw. ein anderes Verzeichnis auf Ihrem Rechner wählen.

Wenn Sie die Datenübertragung vom PC aus steuern wollen, dann bauen Sie die Verbindung auf dem PC wie folgt auf:

- Wählen Sie <Datei>, <Verbindung erstellen>. Die TNCremoNT empfängt nun die Datei- und Verzeichnis-Struktur von der TNC und zeigt diese im unteren Teil des Hauptfensters 2 an
- Um eine Datei von der TNC zum PC zu übertragen, wählen Sie die Datei im TNC-Fenster durch Mausklick und ziehen die markierte Datei bei gedrückter Maustaste in das PC-Fenster 1
- Um eine Datei vom PC zur TNC zu übertragen, wählen Sie die Datei im PC-Fenster durch Mausklick und ziehen die markierte Datei bei gedrückter Maustaste in das TNC-Fenster 2

Wenn Sie die Datenübertragung von der TNC aus steuern wollen, dann bauen Sie die Verbindung auf dem PC wie folgt auf:


- Wählen Sie <Extras>, <TNCserver>. Die TNCremoNT startet dann den Serverbetrieb und kann von der TNC Daten empfangen, bzw. an die TNC Daten senden
- Wählen Sie auf der TNC die Funktionen zur Datei-Verwaltung über die Taste PGM MGT (siehe "Datenübertragung zu/von einem externen Datenträger" auf Seite 132) und übertragen die gewünschten Dateien

TNCremoNT beenden

Wählen Sie den Menüpunkt < Datei>, < Beenden>

Beachten Sie auch die kontextsensitive Hilfefunktion von TNCremoNT, in der alle Funktionen erklärt sind. Der Aufruf erfolgt über die Taste F1.

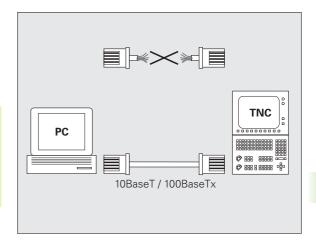
13.6 Ethernet-Schnittstelle

Einführung

Die TNC ist standardmäßig mit einer Ethernet-Karte ausgerüstet, um die Steuerung als Client in Ihr Netzwerk einzubinden. Die TNC überträgt Daten über die Ethernet-Karte mit

- dem smb-Protokoll (server message block) für Windows-Betriebssysteme, oder
- der TCP/IP-Protokoll-Familie (Transmission Control Protocol/Internet Protocol) und mit Hilfe des NFS (Network File System). Die TNC unterstützt auch das NFS V3-Protokoll, mit dem sich höhere Datenübertragungsraten erzielen lassen

Anschluss-Möglichkeiten


Sie können die Ethernet-Karte der TNC über den RJ45-Anschluss (X26,100BaseTX bzw. 10BaseT) in Ihr Netzwerk einbinden oder direkt mit einem PC verbinden. Der Anschluss ist galvanisch von der Steuerungselektronik getrennt.

Beim 100BaseTX bzw. 10BaseT-Anschluss verwenden Sie Twisted Pair-Kabel, um die TNC an Ihr Netzwerk anzuschließen.

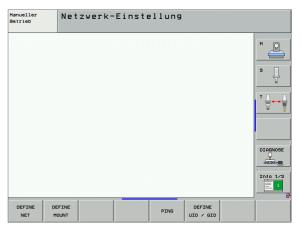
Die maximale Kabellänge zwischen TNC und einem Knotenpunkt ist Abhängig von der Güteklasse des Kabels, von der Ummantelung und von der Art des Netzwerks (100BaseTX oder 10BaseT).

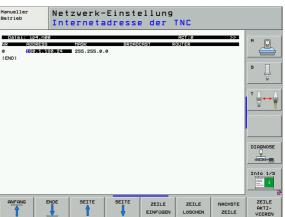
Wenn Sie die TNC direkt mit einem PC verbinden, müssen Sie ein gekreuztes Kabel verwenden.

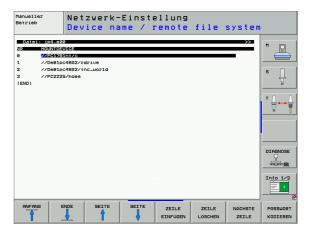
iTNC direkt mit einem Windows PC verbinden

Sie können ohne großen Aufwand und ohne Netzwerk-Kenntnisse die iTNC 530 direkt mit einem PC verbinden, der mit einer Ethernet-Karte ausgerüstet ist. Dazu müssen Sie lediglich einige Einstellungen auf der TNC und die dazu passenden Einstellungen auf dem PC durchführen.

Einstellungen auf der iTNC

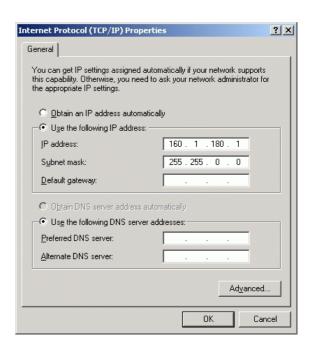

- ▶ Verbinden Sie die iTNC (Anschluss X26) und den PC mit einem gekreuzten Ethernet-Kabel (Handelsbezeichnung: Patchkabel gekreuzt oder STP-Kabel gekreuzt)
- Drücken Sie in der Betriebsart Programm-Einspeichern/Editieren die Taste MOD. Geben Sie die Schlüsselzahl NET123 ein, die iTNC zeigt den Hauptbildschirm zur Netzwerk-Konfiguration (siehe Bild rechts oben)
- Drücken Sie den Softkey DEFINE NET zur Eingabe der allgemeinen Netzwerk-Einstellungen (siehe Bild rechts Mitte)
- ▶ Geben Sie eine beliebige Netzwerk-Adresse ein. Netzwerk-Adressen setzen sich aus vier durch einen Punkt getrennte Zahlenwerten zusammen, z.B. 160.1.180.23
- ▶ Wählen Sie mit der Pfeiltaste nach rechts die nächste Spalte und geben die Subnet-Mask ein. Die Subnet-Mask setzt sich ebenfalls aus vier durch einen Punkt getrennte Zahlenwerten zusammen, z.B. 255.255.0.0
- Drücken Sie die Taste END, um die allgemeinen Netzwerk-Einstellungen zu verlassen
- Drücken Sie den Softkey DEFINE MOUNT zur Eingabe der PCspezifischen Netzwerk-Einstellungen (siehe Bild rechts unten)
- Definieren Sie den PC-Namen und das Laufwerk des PC's auf das Sie zugreifen wollen, beginnend mit zwei Schrägstrichen, z.B. // PC3444/C
- Wählen Sie mit der Pfeiltaste nach rechts die nächste Spalte und geben den Namen ein, unter dem der PC in der Datei-Verwaltung der iTNC angezeigt werden soll, z.B. PC3444:
- ▶ Wählen Sie mit der Pfeiltaste nach rechts die nächste Spalte und geben den Dateisystem Typ smb ein
- Wählen Sie mit der Pfeiltaste nach rechts die nächste Spalte und geben folgende Informationen ein, die vom Betriebssystem des PC's abhängen:


ip=160.1.180.1,username=abcd,workgroup=SALES,password=uvwx


▶ Beenden Sie die Netzwerk-Konfiguration: Taste END zwei Mal betätigen, die iTNC startet automatisch neu

Die Parameter **username**, **workgroup** und **password** müssen nicht in allen Windows Betriebssystemen angegeben werden.

Einstellungen auf einem PC mit Windows XP



Voraussetzung:

Die Netzwerkkarte muss auf dem PC bereits installiert und funktionsfähig sein.

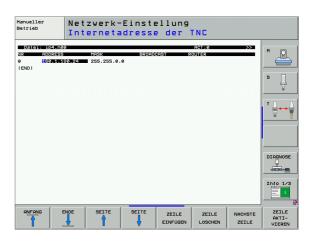
Wenn Sie den PC, mit dem Sie die iTNC verbinden wollen, bereits in ihrem Firmennetz eingebunden haben, sollten Sie die PC-Netzwerk-Adresse beibehalten und die Netzwerk-Adresse der TNC anpassen.

- ▶ Wählen Sie die Netzwerkeinstellungen über <Start>, <Einstellungen>, <Netzwerk- und DFÜ-Verbindungen>
- Klicken Sie mit der rechten Maustaste auf das Symbol <LAN-Verbindung> und anschließend im angezeigten Menü auf <Eigenschaften>
- ▶ Doppelklicken Sie auf <Internetprotokoll (TCP/IP)> um die IP-Einstellungen (siehe Bild rechts oben) zu ändern
- ► Falls noch nicht aktiv, wählen Sie die Option <Folgende IP-Adresse verwenden>
- ▶ Geben Sie im Eingabefeld <IP-Adresse > dieselbe IP-Adresse ein, die Sie in der iTNC unter den PC-spezifischen Netzwerk-Einstellungen festgelegt haben, z.B. 160.1.180.1
- ▶ Geben Sie im Eingabefeld <Subnet Mask> 255.255.0.0 ein
- ▶ Bestätigen Sie die Einstellungen mit <OK>
- ▶ Speichern Sie die Netzwerk-Konfiguration mit <OK>, ggf. müssen Sie Windows jetzt neu starten

TNC konfigurieren

Konfiguration der Zwei-Prozessor-Version: siehe "Netzwerk-Einstellungen", Seite 696.

Lassen Sie die TNC von einem Netzwerk-Spezialisten konfigurieren.


Beachten Sie, dass die TNC einen autamtischen Warmstart durchführt, wenn Sie die IP-Adresse der TNC ändern.

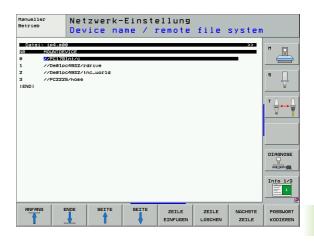
Drücken Sie in der Betriebsart Programm-Einspeichern/Editieren die Taste MOD. Geben Sie die Schlüsselzahl NET123 ein, die TNC zeigt den Hauptbildschirm zur Netzwerk-Konfiguration

Allgemeine Netzwerk-Einstellungen

Drücken Sie den Softkey DEFINE NET zur Eingabe der allgemeinen Netzwerk-Einstellungen und geben Sie folgende Informationen ein:

Einstellung	Bedeutung
ADDRESS	Adresse, die Ihr Netzwerk-Spezialist für die TNC vergeben muss. Eingabe: Vier durch Punkt getrennte Zahlenwerte, z.B. 160.1.180.20. Alternativ kann die TNC die IP-Adresse auch dynamisch von einem DHCP-Server beziehen. In diesem Fall DHCP eintragen. Anmerkung: Die DHCP-Anbindung ist eine FCL 2-Funktion.
MASK	Die SUBNET MASK dient zur Unterscheidung der Netz- und Host-ID des Netzwerks. Eingabe: Vier durch Punkt getrennte Zahlenwerte, Wert beim Netzwerk-Spezialisten erfragen, z.B. 255.255.0.0
BROADCAST	Die Broadcastadresse der Steuerung wird nur benötigt, wenn sie von der Standardeinstellung abweicht. Die Standardeinstellung wird gebildet aus Netz-ID und Host-ID, bei der alle Bits auf 1 gesetzt sind, z.B. 160.1.255.255
ROUTER	Internet-Adresse Ihres Default-Routers. Nur eingeben, wenn Ihr Netzwerk aus mehreren Teilnetzen besteht. Eingabe: Vier durch Punkt getrennte Zahlenwerte, Wert beim Netzwerk- Spezialisten erfragen, z.B. 160.1.0.2
HOST	Name, mit dem sich die TNC im Netzwerk meldet
DOMAIN	Name einer Domäne Ihres Firmennetzwerkes

Einstellung	Bedeutung
NAMESERVER	Netzwerkadresse des Domainservers. Sind DOMAIN und NAMESERVER definiert, können Sie in der Mount-Tabelle die symbolischen Rechnernamen verwenden, so dass die Eingabe der IP-Adresse entfällt. Alternativ können Sie auch DHCP für die dynamische Verwaltung zuweisen



Die Angabe über das Protokoll entfällt bei der iTNC 530, es wird das Übertragungsprotokoll gemäß RFC 894 verwendet.

Gerätespezifische Netzwerk-Einstellungen

▶ Drücken Sie den Softkey DEFINE MOUNT zur Eingabe der gerätespezifischen Netzwerk-Einstellungen. Sie können beliebig viele Netzwerk-Einstellungen festlegen, jedoch nur maximal 7 gleichzeitig verwalten

Einstellung	Bedeutung
MOUNTDEVICE	Anbindung über nfs: Name des Verzeichnisses das angemeldet werden soll. Dieser wird gebildet durch die Netzwerkadresse des Servers, einem Doppelpunkt und dem Namen des zu mountenden Verzeichnisses. Eingabe: Vier durch Punkt getrennte Zahlenwerte, Wert beim Netzwerk-Spezialisten erfragen, z.B. 160.1.13.4. Verzeichnis des NFS-Servers, das Sie mit der TNC verbinden wollen. Achten Sie bei der Pfadangabe auf die Groß-Kleinschreibung
	Anbindung über smb: Netzwerkname und Freigabename des Rechners eingeben, z.B. //PC1791NT/C
MOUNTPOINT	Name, den die TNC in der Datei-Verwaltung anzeigt, wenn die TNC mit dem Gerät verbunden ist. Beachten Sie, der Name muß mit einem Doppelpunkt enden
FILESYSTEM- TYPE	Dateisystemtyp. NFS: Network File System SMB: Server Message Block (Windows- Protokoll)

Einstellung	Bedeutung	
OPTIONS bei FILESYSTEM- TYPE=nfs	Angaben ohne Leerzeichen, durch Komma getrennt und hintereinander geschrieben. Groß-/Kleinschreibung beachten. RSIZE=: Paketgröße für Datenempfang in Byte. Eingabebereich: 512 bis 8 192 WSIZE=: Paketgröße für Datenversand in Byte. Eingabebereich: 512 bis 8 192 TIMEO=: Zeit in Zehntel-Sekunden, nach der die TNC einen vom Server nicht beantworteten Remote Procedure Call wiederholt. Eingabebereich: 0 bis 100 000. Wenn kein Eintrag erfolgt, wird der Standardwert 7 verwendet. Höhere Werte nur verwenden, wenn die TNC über mehrere Router mit dem Server kommunizieren muss. Wert beim Netzwerk-Spezialisten erfragen SOFT=: Definition, ob die TNC den Remote Procedure Call solange wiederholen soll, bis der NFS-Server antwortet. soft eingetragen: Remote Procedure Call nicht wiederholen soft nicht eingetragen: Remote Procedure Call immer wiederholen	
OPTIONS bei FILESYSTEM- TYPE=smb zur direkten Anbin- dung an Win- dows-Netz- werke	Angaben ohne Leerzeichen, durch Komma getrennt und hintereinander geschrieben. Groß-/Kleinschreibung beachten. IP=: ip-Adresse des PC's, mit dem die TNC verbunden werden soll USERNAME=: Benutzername mit dem sich die TNC anmeldem soll WORKGROUP=: Arbeitsgruppe unter der sich die TNC anmelden soll PASSWORD=: Passwort mit dem sich die TNC anmelden soll (maximal 80 Zeichen)	
AM	Definition, ob sich die TNC beim Einschalten automatisch mit dem Netzlaufwerk verbinden soll. 0: Nicht automatisch verbinden 1: Automatisch verbinden	
Die Einträge USERNAME , WORKGROUP und PASSWORD in der		
Spalte OPTIONS können bei Windows 95- und		

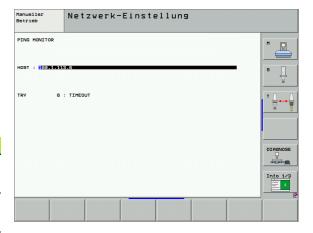
Spalte OPTIONS können bei Windows 95- und Windows 98-Netzwerken evtl. entfallen.

Über den Softkey PASSWORT KODIEREN können Sie das unter OPTIONS definierte Passwort verschlüsseln.

Netzwerk-Identifikation definieren

▶ Softkey DEFINE UID / GID zur Eingabe der Netzwerk-Identifikation drücken

Einstellung	Bedeutung
TNC USER ID	Definition, mit welcher User-Identifikation der Endanwender im Netzwerk auf Dateien zugreift. Wert beim Netzwerk-Spezialisten erfragen
OEM USER ID	Definition, mit welcher User-Identifikation der Maschinenhersteller im Netzwerk auf Dateien zugreift. Wert beim Netzwerk-Spezialisten erfragen
TNC GROUP ID	Definition, mit welcher Gruppen-Identifikation Sie im Netzwerk auf Dateien zugreifen. Wert beim Netzwerk-Spezialisten erfragen. Die Gruppen-Identifikation ist für Endanwender und Maschinenhersteller gleich
UID for mount	Definition, mit welcher User-Identifikation der Anmeldevorgang ausgeführt wird. USER : Die Anmeldung erfolgt mit der USER- Identifikation R00T : Die Anmeldung erfolgt mit der Identifikation des ROOT-Users, Wert = 0



Netzwerk-Verbindung prüfen

- ► Softkey PING drücken
- ▶ Im Eingabefeld **HOST** die Internet-Adresse des Gerätes eingeben, zu dem Sie die Netzwerk-Verbindung prüfen wollen
- ▶ Mit Taste ENT bestätigen. Die TNC sendet Datenpakete so lange, bis Sie mit der Taste END den Prüfmonitor verlassen

In der Zeile **TRY** zeigt die TNC die Anzahl der Datenpaket an, die an den zuvor definierten Empfänger abgeschickt wurden. Hinter der Anzahl der abgeschickten Datenpaket zeigt die TNC den Status:

Status-Anzeige	Bedeutung
HOST RESPOND	Datenpaket wieder empfangen, Verbindung in Ordnung
TIMEOUT	Datenpaket nicht wieder empfangen, Verbindung prüfen
CAN NOT ROUTE	Datenpaket konnte nicht gesendet werden, Internet-Adresse des Servers und des Routers an der TNC prüfen

13.7 PGM MGT konfigurieren

Anwendung

Über die MOD-Funktion legen Sie fest, welche Verzeichnisse bzw. Dateien von der TNC angezeigt werden sollen:

- Einstellung **PGM MGT**: Vereinfachte Datei-Verwaltung ohne Verzeichnis-Anzeige oder erweiterte Datei-Verwaltung mit Verzeichnis-Anzeige
- Einstellung **Abhängige Dateien**: Definieren, ob abhängige Dateien angezeigt werden sollen oder nicht

Beachten Sie: Siehe "Arbeiten mit der Datei-Verwaltung", Seite 115.

Einstellung PGM MGT ändern

- ▶ Datei-Verwaltung in der Betriebsart Programm-Einspeichern/ Editieren wählen: Taste PGM MGT drücken
- ▶ MOD-Funktion wählen: Taste MOD drücken
- ▶ Einstellung PGM MGT wählen: Hellfeld mit Pfeiltasten auf Einstellung PGM MGT schieben, mit Taste ENT zwischen STANDARD und ERWEITERT umschalten

Die Neue Datei-Verwaltung (Einstellung **Erweitert 2**) bietet folgende Vorteile:

- Vollständige Mouse-Bedienung zusätzlich zur Tastenbedienung möglich
- Sortierfunktion verfügbar
- Texteingabe synchronisiert das Hellfeld auf den nächstmöglichen Dateinamen
- Favoritten-Verwaltung
- Konfigurationsmöglichkeit der anzuzeigenden Informationen
- Datumsformat einstellbar
- Fenstergrößen flexibel einstellbar
- Schnellbedienung durch Verwendung von Shortcuts möglich

Abhängige Dateien

Abhängige Dateien haben zusätzlich zur Dateikennung die Endung .SEC.DEP (SECtion = engl. Gliederung, DEPendent = engl. abhängig). Folgende unterschiedliche Typen stehen zur Verfügung:

.I.SEC.DEP

Dateien mit der Endung .SEC.DEP erzeugt die TNC, wenn Sie mit der Gliederungsfunktion arbeiten. In der Datei stehen Informationen, die die TNC benötigt, um schneller von einem Gliederungspunkt auf den nächsten zu springen

- .T.DEP: Werkzeug-Einsatzdatei für einzelne Klartext-Dialog-Programme (siehe "Werkzeug-Einsatzprüfung" auf Seite 599)
- .P.T.DEP: Werkzeug-Einsatzdatei für eine komplette Palette Dateien mit der Endung .P.T.DEP erzeugt die TNC, wenn Sie in einer Programmlauf-Betriebsart die Werkzeug-Einsatzprüfung (siehe "Werkzeug-Einsatzprüfung" auf Seite 599) für einen Paletteneintrag der aktiven Paletten-Datei durchführen. In dieser Datei ist dann die Summe aller Werkzeug-Einsatzzeiten aufgeführt, also die Einsatzzeiten aller Werkzeuge, die Sie innerhalb der Palette verwenden
- .I.AFC.DEP: Datei, in der die TNC die Regelparameter für die adaptive Vorschubregelung AFC speichert (siehe "Adaptive Vorschubregelung AFC (Software-Option)" auf Seite 613)
- .I.AFC2.DEP: Datei, in der die TNC statistische Daten der adaptiven Vorschubregelung AFC speichert (siehe "Adaptive Vorschubregelung AFC (Software-Option)" auf Seite 613)

MOD-Einstellung Abhängige Dateien ändern

- Datei-Verwaltung in der Betriebsart Programm-Einspeichern/ Editieren wählen: Taste PGM MGT drücken
- ▶ MOD-Funktion wählen: Taste MOD drücken
- Einstellung Abhängige Dateien wählen: Hellfeld mit Pfeiltasten auf Einstellung Abhängige Dateien schieben, mit Taste ENT zwischen AUTOMATISCH und MANUELL umschalten

Abhängige Dateien sind in der Datei-Verwaltung nur sichtbar, wenn Sie die Einstellung MANUELL gewählt haben.

Existieren zu einer Datei abhängige Dateien, dann zeigt die TNC in der Status-Spalte der Datei-Verwaltung ein +-Zeichen an (nur wenn **Abhängige Dateien** auf **AUTOMATISCH** gestellt ist).

13.8 Maschinenspezifische Anwenderparameter

Anwendung

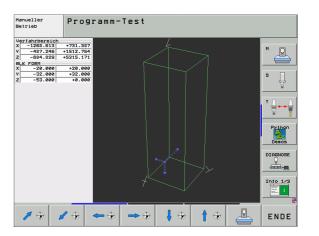
Um die Einstellung maschinenspezifischer Funktionen für den Anwender zu ermöglichen, kann Ihr Maschinenhersteller bis zu 16 Maschinen-Parameter als Anwender-Parameter definieren.

Diese Funktion steht nicht bei allen TNC's zur Verfügung. Beachten Sie Ihr Maschinenhandbuch.

13.9 Rohteil im Arbeitsraum darstellen

Anwendung

In der Betriebsart Programm-Test können Sie die Lage des Rohteils im Arbeitsraum der Maschine grafisch überprüfen und die Arbeitsraum-Überwachung in der Betriebsart Programm-Test aktivieren.


Die TNC stellt einen transparenten Quader als Arbeitsraum dar, dessen Maße in der Tabelle **Verfahrbereich** aufgeführt sind (Standardfarbe: Grün). Die Maße für den Arbeitsraum entnimmt die TNC aus den Maschinen-Parametern für den aktiven Verfahrbereich. Da der Verfahrbereich im Referenzsystem der Maschine definiert ist, entspricht der Nullpunkt des Quaders dem Maschinen-Nullpunkt. Die Lage des Maschinen-Nullpunkts im Quader können Sie durch drücken des Softkeys M91 (2. Softkey-Leiste) sichtbar machen (Standardfarbe: Weiß).

Ein weiterer transparenter Quader stellt das Rohteil dar, dessen Abmaße in der Tabelle **BLK FORM** aufgeführt sind (Standardfarbe: Blau). Die Abmaße übernimmt die TNC aus der Rohteil-Definition des angewählten Programms. Der Rohteil-Quader definiert das Eingabe-Koordinatensystem, dessen Nullpunkt innerhalb des Verfahrbereichs-Quaders liegt. Die Lage des aktiven Nullpunkts innerhalb des Verfahrbereiches können Sie durch Drücken des Softkeys "Werkstück-Nullpunkt anzeigen" (2. Softkey-Leiste) sichtbar machen.

Wo sich das Rohteil innerhalb des Arbeitsraumes befindet ist im Normalfall für den Programm-Test unerheblich. Wenn Sie jedoch Programme testen, die Verfahrbewegungen mit M91 oder M92 enthalten, müssen Sie das Rohteil "grafisch" so verschieben, dass keine Konturverletzungen auftreten. Benützen Sie dazu die in der nachfolgenden Tabelle aufgeführten Softkeys.

Darüber hinaus können Sie auch die Arbeitsraum-Überwachung für die Betriebsart Programm-Test aktivieren, um das Programm mit dem aktuellen Bezugspunkt und den aktiven Verfahrbereichen zu testen (siehe nachfolgende Tabelle, letzte Zeile).

Funktion	Softkey
Rohteil nach links verschieben	← ⊕
Rohteil nach rechts verschieben	→ ⊕
Rohteil nach vorne verschieben	
Rohteil nach hinten verschieben	1 +
Rohteil nach oben verschieben	↑ •

Funktion	Softkey
Rohteil nach unten verschieben	↓ ◆
Rohteil bezogen auf den gesetzten Bezugspunkt anzeigen	- W
Gesamten Verfahrbereich bezogen auf das dargestellte Rohteil anzeigen	MIN MAX
Maschinen-Nullpunkt im Arbeitsraum anzeigen	M91
Vom Maschinenhersteller festgelegte Position (z.B. Werkzeug- Wechselpunkt) im Arbeitsraum anzeigen	M92
Werkstück-Nullpunkt im Arbeitsraum anzeigen	•
Arbeitsraum-Überwachung beim Programm-Test einschalten (EIN)/ ausschalten (AUS)	AUS EIN

Gesamte Darstellung drehen

Auf der dritten Softkey-Leiste stehen Ihnen Funktionen zur Verfügung, mit denen Sie die Gesamtdarstellung drehen und kippen können:

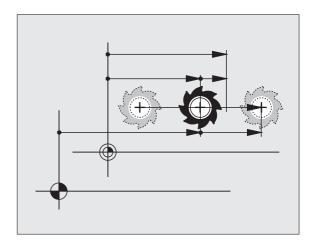
Funktion	Softkeys	
Darstellung vertikal drehen		
Darstellung horizontal kippen		

13.10 Positions-Anzeige wählen

Anwendung

Für den Manuellen Betrieb und die Programmlauf-Betriebsarten können Sie die Anzeige der Koordinaten beeinflussen:

Das Bild rechts zeigt verschiedene Positionen des Werkzeugs


- Ausgangs-Position
- Ziel-Position des Werkzeugs
- Werkstück-Nullpunkt
- Maschinen-Nullpunkt

Für die Positions-Anzeigen der TNC können Sie folgende Koordinaten wählen:

Funktion	Anzeige
Soll-Position; von der TNC aktuell vorgegebener Wert	SOLL
Ist-Position; momentane Werkzeug-Position	IST
Referenz-Position; Ist-Position bezogen auf den Maschinen-Nullpunkt	REF
Restweg zur programmierten Position; Differenz zwischen Ist- und Ziel-Position	RESTW
Schleppfehler; Differenz zwischen Soll und Ist- Position	SCHPF
Auslenkung des messenden Tastsystems	AUSL.
Verfahrwege, die mit der Funktion Handrad- Überlagerung (M118) ausgeführt wurden (Nur Positions-Anzeige 2)	M118

Mit der MOD-Funktion Positions-Anzeige 1 wählen Sie die Positions-Anzeige in der Status-Anzeige.

Mit der MOD-Funktion Positions-Anzeige 2 wählen Sie die Positions-Anzeige in der zusätzlichen Status-Anzeige.

13.11 Maßsystem wählen

Anwendung

Mit dieser MOD-Funktion legen Sie fest, ob die TNC Koordinaten in mm oder Inch (Zoll-System) anzeigen soll.

- Metrisches Maßsystem: z.B. X = 15,789 (mm) MOD-Funktion Wechsel mm/inch = mm. Anzeige mit 3 Stellen nach dem Komma
- Zoll-System: z.B. X = 0,6216 (inch) MOD-Funktion Wechsel mm/inch = inch. Anzeige mit 4 Stellen nach dem Komma

Wenn Sie die Inch-Anzeige aktiv haben, zeigt die TNC auch den Vorschub in inch/min an. In einem Inch-Programm müssen Sie den Vorschub mit einem Faktor 10 größer eingeben.

13.12 Programmiersprache für \$MDI wählen

Anwendung

Mit der MOD-Funktion Programm-Eingabe schalten Sie der Programmierung der Datei \$MDI um.

- \$MDI.H im Klartext-Dialog programmieren: Programm-Eingabe: HEIDENHAIN
- \$MDI.I gemäß DIN/ISO programmieren:

Programm-Eingabe: ISO

13.13 Achsauswahl für Linear-Satz-Generierung

Anwendung

Im Eingabe-Feld für die Achsauswahl legen Sie fest, welche Koordinaten der aktuellen Werkzeug-Position in einen L-Satz übernommen werden. Die Generierung eines separaten L-Satzes erfolgt mit der Taste "Ist-Position übernehmen". Die Auswahl der Achsen erfolgt wie bei Maschinen-Parametern bitorientiert:

Achsauswahl %11111: X, Y, Z, IV., V. Achse übernehmen

Achsauswahl %01111: X, Y, Z, IV. Achse übernehmen

Achsauswahl %00111: X, Y, Z Achse übernehmen

Achsauswahl %00011: X, Y Achse übernehmen

Achsauswahl %00001: X Achse übernehmen

13.14 Verfahrbereichs-Begrenzungen eingeben, Nullpunkt-Anzeige

Anwendung

Innerhalb des maximalen Verfahrbereichs können Sie den tatsächlich nutzbaren Verfahrweg für die Koordinatenachsen einschränken.

Anwendungsbeispiel: Teilapparat gegen Kollisionen sichern.

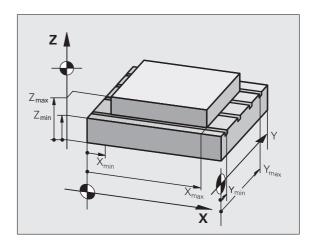
Der maximale Verfahrbereich ist durch Software-Endschalter begrenzt. Der tatsächlich nutzbare Verfahrweg wird mit der MOD-Funktion VERFAHRBEREICH eingeschränkt: Dazu geben Sie die Maximalwerte in positiver und negativer Richtung der Achsen bezogen auf den Maschinen-Nullpunkt ein. Wenn Ihre Maschine über mehrere Verfahrbereiche verfügt, können Sie die Begrenzung für jeden Verfahrbereich separat einstellen (Softkey VERFAHRBEREICH (1) bis VERFAHRBEREICH (3)).

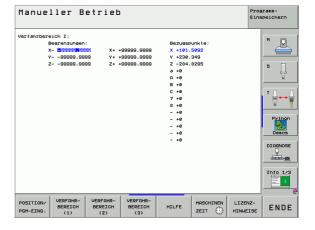
Arbeiten ohne Verfahrbereichs-Begrenzung

Für Koordinatenachsen, die ohne Verfahrbereichs-Begrenzungen verfahren werden sollen, geben Sie den maximalen Verfahrweg der TNC (+/- 99999 mm) als VERFAHRBEREICH ein.

Maximalen Verfahrbereich ermitteln und eingeben

- Positions-Anzeige REF anwählen
- Gewünschte positive und negative End-Positionen der X-, Y- und Z-Achse anfahren
- ▶ Werte mit Vorzeichen notieren
- ▶ MOD-Funktionen wählen: Taste MOD drücken




- ▶ Verfahrbereichs-Begrenzung eingeben: Softkey VERFAHRBEREICH drücken. Notierte Werte für die Achsen als Begrenzungen eingeben
- MOD-Funktion verlassen: Softkey ENDE drücken

Aktive Werkzeug-Radiuskorrekturen werden bei Verfahrbereichs-Begrenzungen nicht berücksichtigt.

Verfahrbereichs-Begrenzungen und Software-Endschalter werden berücksichtigt, nachdem die Referenz-Punkte überfahren sind.

650 13 MOD-Funktionen

Bezugspunkt-Anzeige

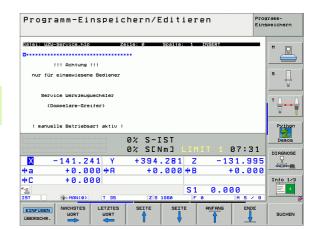
Die im Bildschirm rechts oben angezeigten Werte definieren den momentan aktiven Bezugspunkt. Der Bezugspunkt kann manuell gesetzt oder aus der Preset-Tabelle aktiviert worden sein. Sie können den Bezugspunkt im Bildschirm-Menü nicht verändern.

Die angezeigten Werte sind abhängig von Ihrer Maschinen-Konfiguration. Beachten Sie die Hinweise in Kapitel 2 (siehe "Erläuterung zu den in der Preset-Tabelle gespeicherten Werten" auf Seite 87)

13.15 HILFE-Dateien anzeigen

Anwendung

Hilfe-Dateien sollen den Bediener in Situationen unterstützen, in denen festgelegte Handlungsweisen, z.B. das Freifahren der Maschine nach einer Stromunterbrechung, erforderlich sind. Auch Zusatz-Funktionen lassen sich in einer HILFE-Datei dokumentieren. Das Bild rechts zeigt die Anzeige einer HILFE-Datei.


Die HILFE-Dateien sind nicht an jeder Maschine verfügbar. Nähere Informationen erteilt Ihr Maschinenhersteller.

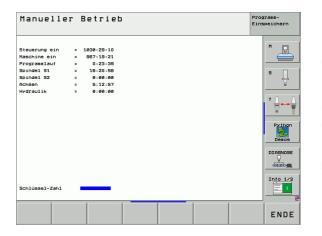
HILFE-DATEIEN wählen

▶ MOD-Funktion wählen: Taste MOD drücken

- Wählen der zuletzt aktiven HILFE-Datei: Softkey HILFE drücken
- ► Falls nötig, Datei Verwaltung aufrufen (Taste PGM MGT) und andere Hilfe-Datei wählen

i

13.16 Betriebszeiten anzeigen


Anwendung

Der Maschinenhersteller kann noch zusätzliche Zeiten anzeigen lassen. Maschinenhandbuch beachten!

Über den Softkey MASCHINEN ZEIT können Sie sich verschiedene Betriebszeiten anzeigen lassen:

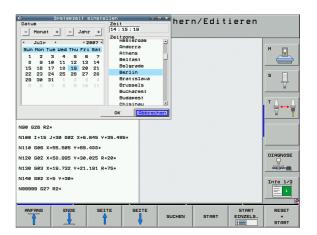
Betriebszeit	Bedeutung
Steuerung ein	Betriebszeit der Steuerung seit der Inbetriebnahme
Maschine ein	Betriebszeit der Maschine seit der Inbetriebnahme
Programmlauf	Betriebszeit für den gesteuerten Betrieb seit der Inbetriebnahme

13.17 Systemzeit einstellen

Anwendung

Über den Softkey DATUM/ UHZEIT EINSTELLEN können Sie die Zeitzone, das Datum und die System-Uhrzeit einstellen.

Einstellungen vornehmen



Wenn Sie Zeitzone, Datum oder Systemzeit verstellen, dann ist ein Neustart der TNC erforderlich. Die TNC gibt in diesen Fällen beim Schließen des Fensters eine Warnung

- ▶ MOD-Funktion wählen: Taste MOD drücken
- ► Softkey-Leiste weiterschalten

- ► Zeitzonenfenster anzeigen: Softkey ZEITZONE EINSTELLEN drücken
- Im linken Bereich des Überblendfensters per Mouse-Klick das Jahr, den Monat und den Tag einstellen
- Im rechten Teil Zeitzone per Mouse-Klick wählen, in der Sie sich befinden
- ▶ Bei Bedarf die Uhrzeit verstellen per Zahleneingabe
- ▶ Einstellungen speichern: Schaltfläche **0K** anklicken
- Änderungen verwerfen und Dialog abbrechen: Schaltfläche Abbrechen anklicken

D-Funktionen

13.18 Teleservice

Anwendung

Die Funktionen zum Teleservice werden vom Maschinen-Hersteller freigegeben und festgelegt. Maschinenhandbuch beachten!

Die TNC stellt zwei Softkeys für den Teleservice zur Verfügung, damit zwei verschiedene Servicestellen eingerichten werden können.

Die TNC verfügt über die Möglichkeit, Teleservice durchführen zu können. Dazu sollte Ihre TNC mit einer Ethernet-Karte ausgerüstet sein, mit der sich eine höhere Datenübertragungs-Geschwindigkeit erreichen lässt als über die serielle Schnittstelle RS-232-C.

Mit der HEIDENHAIN TeleService-Software, kann Ihr Maschinen-Hersteller dann zu Diagnosezwecken über ein ISDN- Modem eine Verbindung zur TNC aufbauen. Folgende Funktionen stehen zur Verfügung:

- Online-Bildschirmübertragung
- Abfragen von Maschinenzuständen
- Übertragung von Dateien
- Fernsteuerung der TNC

Teleservice aufrufen/beenden

- ▶ Beliebige Maschinenbetriebsart wählen
- ▶ MOD-Funktion wählen: Taste MOD drücken

- ▶ Verbindung zur Servicestelle aufbauen: Softkey SERVICE bzw. SUPPORT auf EIN stellen. Die TNC beendet die Verbindung automatisch, wenn für eine vom Maschinen-Hersteller festgelegte Zeit (Standard: 15 min) keine Datenübertragung durchgeführt wurde
- Verbindung zur Servicestelle lösen: Softkey SERVICE bzw. SUPPORT auf AUS stellen. Die TNC beendet die Verbindung nach ca. einer Minute

13.19 Externer Zugriff

Anwendung

Der Maschinenhersteller kann die externen Zugriffsmöglichkeiten über die LSV-2 Schnittstelle konfigurieren. Maschinenhandbuch beachten!

Mit dem Softkey EXTERNER ZUGRIFF können Sie den Zugriff über die LSV-2 Schnittstelle freigeben oder sperren.

Durch einen Eintrag in der Konfigurationsdatei TNC.SYS können Sie ein Verzeichnis einschließlich vorhandener Unterverzeichnisse mit einem Passwort schützen. Bei einem Zugriff über die LSV-2 Schnittstelle auf die Daten aus diesem Verzeichnis wird das Passwort abgefragt. Legen Sie in der Konfigurationsdatei TNC.SYS den Pfad und das Passwort für den externen Zugriff fest.

Die Datei TNC.SYS muss im Root-Verzeichnis TNC:\ gespeichert sein.

Wenn Sie nur einen Eintrag für das Passwort vergeben, wird das ganze Laufwerk TNC:\ geschützt.

Verwenden Sie für die Datenübertragung die aktualisierten Versionen der HEIDENHAIN-Software TNCremo oder TNCremoNT.

Einträge in TNC.SYS	Bedeutung
REMOTE.TNCPASSWORD=	Passwort für LSV-2 Zugriff
REMOTE.TNCPRIVATEPATH=	Pfad der geschützt werden soll

Beispiel für TNC.SYS

REMOTE.TNCPASSWORD=KR1402

REMOTE.TNCPRIVATEPATH=TNC:\RK

Externen Zugriff erlauben/sperren

- ▶ Beliebige Maschinenbetriebsart wählen
- ► MOD-Funktion wählen: Taste MOD drücken

- ▶ Verbindung zur TNC erlauben: Softkey EXTERNER ZUGRIFF auf EIN stellen. Die TNC lässt den Zugriff auf Daten über die LSV-2 Schnittstelle zu. Bei einem Zugriff auf ein Verzeichnis, welches in der Konfigurationsdatei TNC.SYS angegeben wurde, wird das Passwort abgefragt
- Verbindung zur TNC sperren: Softkey EXTERNER ZUGRIFF auf AUS stellen. Die TNC sperrt den Zugriff über die LSV-2 Schnittstelle

656 13 MOD-Funktionen

editle!

			F	2
	E1	Vc2	9	,020
	0,016	55		,020
	0,016	55		0,250
	0,200	130		0,030
ð	0,025	45		0,020
	0,016	55		0,250
)	0,200	13		0,020
90	0,016	55		0,02
0	0,015	55		0,25
40	0,200	a -	30	0,0
100	0,01	6	55	0,0
40	0,01	6	55	0 - 2
40	0,2	00	130	0,
100	0,0	40	45	0,
20	0.0	340	35	0
26	0 -	040	100	0
70	α.	.040	35	Q
00			35	

Tabellen und Übersichten

14.1 Allgemeine Anwenderparameter

Allgemeine Anwenderparameter sind Maschinen-Parameter, die das Verhalten der TNC beeinflussen.

Typische Anwenderparameter sind z.B.

- die Dialogsprache
- das Schnittstellen-Verhalten
- Verfahrgeschwindigkeiten
- Bearbeitungsabläufe
- die Wirkung der Override

Eingabemöglichkeiten für Maschinen-Parameter

Maschinen-Parameter lassen sich beliebig programmieren als

■ Dezimalzahlen

Zahlenwert direkt eingeben

■ Dual-/Binärzahlen

Prozent-Zeichen "%" vor Zahlenwert eingeben

Hexadezimalzahlen

Dollar-Zeichen "\$" vor Zahlenwert eingeben

Beispiel:

Anstelle der Dezimalzahl 27 können Sie auch die Binärzahl %11011 oder die Hexadezimalzahl \$1B eingeben.

Die einzelnen Maschinen-Parameter dürfen gleichzeitig in den verschiedenen Zahlensystemen angegeben sein.

Einige Maschinen-Parameter haben Mehrfach-Funktionen. Der Eingabewert solcher Maschinen-Parameter ergibt sich aus der Summe der mit einem + gekennzeichneten Einzeleingabewerte.

Allgemeine Anwenderparameter anwählen

Allgemeine Anwenderparameter wählen Sie in den MOD-Funktionen mit der Schlüsselzahl 123 an.

In den MOD-Funktionen stehen auch maschinenspezifische ANWENDERPARAMETER zur Verfügung.

Externe Datenübertragung	
TNC-Schnittstellen EXT1 (5020.0) und EXT2 (5020.1) an externes Gerät anpassen	MP5020.x 7 Datenbit (ASCII-Code, 8.bit = Parität): Bit 0 = 0 8 Datenbit (ASCII-Code, 9.bit = Parität): Bit 0 = 1
	Block-Check-Charakter (BCC) beliebig: Bit 1 = 0 Block-Check-Charakter (BCC) Steuerzeichen nicht erlaubt: Bit 1 = 1
	Übertragungs-Stopp durch RTS aktiv: Bit 2 = 1 Übertragungs-Stopp durch RTS nicht aktiv: Bit 2 = 0
	Übertragungs-Stopp durch DC3 aktiv: Bit 3 = 1 Übertragungs-Stopp durch DC3 nicht aktiv: Bit 3 = 0
	Zeichenparität geradzahlig: Bit 4 = 0 Zeichenparität ungeradzahlig: Bit 4 = 1
	Zeichenparität unerwünscht: Bit 5 = 0 Zeichenparität erwünscht: Bit 5 = 1
	Anzahl der Stopp-Bits, die am Ende eines Zeichens gesendet werden: 1 Stoppbit: Bit 6 = 0 2 Stoppbits: Bit 6 = 1 1 Stoppbit: Bit 7 = 1 1 Stoppbit: Bitt 7 = 0
	Beispiel:
	TNC-Schnittstelle EXT2 (MP 5020.1) auf externes Fremdgerät mit folgender Einstellung anpassen:
	8 Datenbit, BCC beliebig, Übertragungs-Stopp durch DC3, geradzahlige Zeichenparität, Zeichenparität erwünscht, 2 Stoppbit
	Eingabe für MP 5020.1 : %01101001
Schnittstellen-Typ für EXT1 (5030.0) und EXT2 (5030.1) festlegen	MP5030.x Standard-Übertragung: 0 Schnittstelle für blockweises Übertragen: 1
3D-Tastsysteme	
Übertragungsart wählen	MP6010 Tastsystem mit Kabel-Übertragung: 0 Tastsystem mit Infrarot-Übertragung: 1
Antastvorschub für schaltendes Tastsystem	MP6120

3D-Tastsysteme	
Übertragungsart wählen	MP6010 Tastsystem mit Kabel-Übertragung: 0 Tastsystem mit Infrarot-Übertragung: 1
Antastvorschub für schaltendes Tastsystem	MP6120 1 bis 3 000 [mm/min]
Maximaler Verfahrweg zum Antastpunkt	MP6130 0,001 bis 99 999,9999 [mm]
Sicherheitsabstand zum Antastpunkt bei automatischem Messen	MP6140 0,001 bis 99 999,9999 [mm]
Eilgang zum Antasten für schaltendes Tastsystem	MP6150 1 bis 300 000 [mm/min]

3D-Tastsysteme	
Vorpositionieren mit Maschinen-Eilgang	MP6151 Vorpositionieren mit Geschwindigkeit aus MP6150: 0 Vorpositionieren mit Maschinen-Eilgang: 1
Tastsystem-Mittenversatz messen beim Kalibrieren des schaltenden Tastsystems	MP6160 Keine 180°-Drehung des 3D-Tastsystems beim Kalibrieren: 0 M-Funktion für 180°-Drehung des Tastsystems beim Kalibrieren: 1 bis 999
M-Funktion um Infrarottaster vor jedem Messvorgang zu orientieren	MP6161 Funktion inaktiv: 0 Orientierung direkt über die NC: -1 M-Funktion für Orientierung des Tastsystems: 1 bis 999
Orientierungswinkel für den Infrarottaster	MP6162 0 bis 359,9999 [°]
Differenz zwischen aktuellem Orientierungswinkel und Orientierungswinkel aus MP 6162 ab dem eine Spindelorientierung durchgeführt werden soll	MP6163 0 bis 3,0000 [°]
Automatik-Betrieb: Infrarottaster vor dem Antasten automatisch auf die programmierte Antastrichtung orientieren	MP6165 Funktion inaktiv: 0 Infrarottaster orientieren: 1
Manueller Betrieb: Antast-Richtung unter Berücksichtigung einer aktiven Grunddreung korrigieren	MP6166 Funktion inaktiv: 0 Grunddrehung berücksichtigen: 1
Mehrfachmessung für programmierbare Antastfunktion	MP6170 1 bis 3
Vertrauensbereich für Mehrfachmessung	MP6171 0,001 bis 0,999 [mm]
Automatischer Kalibrierzyklus: Mitte des Kalibrierrings in der X-Achse bezogen auf den Maschinen-Nullpunkt	MP6180.0 (Verfahrbereich 1) bis MP6180.2 (Verfahrbereich3) 0 bis 99 999,9999 [mm]
Automatischer Kalibrierzyklus: Mitte des Kalibrierrings in der Y-Achse bezogen auf den Maschinen-Nullpunkt	MP6181.x (Verfahrbereich 1) bis MP6181.2 (Verfahrbereich3) 0 bis 99 999,9999 [mm]
Automatischer Kalibrierzyklus: Oberkante des Kalibrierrings in der Z-Achse bezogen auf den Maschinen-Nullpunkt	MP6182.x (Verfahrbereich 1) bis MP6182.2 (Verfahrbereich3) 0 bis 99 999,9999 [mm]
Automatischer Kalibrierzyklus: Abstand unterhalb der Ringoberkante, an der die TNC die Kalibrierung durchführt	MP6185.x (Verfahrbereich 1) bis MP6185.2 (Verfahrbereich3) 0,1 bis 99 999,9999 [mm]
Radiusvermessung mit TT 130: Antastrichtung	MP6505.0 (Verfahrbereich 1) bis 6505.2 (Verfahrbereich 3) Positive Antastrichtung in der Winkel-Bezugsachse (0°-Achse): 0 Positive Antastrichtung in der +90°-Achse: 1 Negative Antastrichtung in der Winkel-Bezugsachse (0°-Achse): 2 Negative Antastrichtung in der +90°-Achse: 3

14 Tabellen und Übersichten

Antastvorschub für zweite Messung mit	MP6507
TT 120, Stylus-Form, Korrekturen in TOOL.T	Antastvorschub für zweite Messung mit TT 130 berechnen,
•	mit konstanter Toleranz: Bit 0 = 0
	Antastvorschub für zweite Messung mit TT 130 berechnen, mit variabler Toleranz: Bit 0 = 1
	Konstanter Antastvorschub für zweite Messung mit TT 130: Bit 1 = 1
Maximal zulässiger Messfehler mit TT 130 bei der Messung mit rotierendem Werkzeug	MP6510.0 0,001 bis 0,999 [mm] (Empfehlung: 0,005 mm)
Notwendig für die Berechnung des Antastvorschubs in Verbindung mit MP6570	MP6510.1 0,001 bis 0,999 [mm] (Empfehlung: 0,01 mm)
Antastvorschub für TT 130 bei stehendem Werkzeug	MP6520 1 bis 3 000 [mm/min]
Radius-Vermessung mit TT 130: Abstand Werkzeug-Unterkante zu Stylus-Oberkante	MP6530.0 (Verfahrbereich 1) bis MP6530.2 (Verfahrbereich 3) 0,001 bis 99,9999 [mm]
Sicherheits-Abstand in der Spindelachse über dem Stylus des TT 130 bei Vorpositionierung	MP6540.0 0,001 bis 30 000,000 [mm]
Sicherheitszone in der Bearbeitungsebene um den Stylus des TT 130 bei Vorpositionierung	MP6540.1 0,001 bis 30 000,000 [mm]
Eilgang im Antastzyklus für TT 130	MP6550 10 bis 10 000 [mm/min]
M-Funktion für Spindel-Orientierung bei	MP6560
Einzelschneiden-Vermessung	0 bis 999 -1 : Funktion inaktiv
Messung mit rotierendem Werkzeug:	MP6570
Zulässige Umlaufgeschwindigkeit am Fräserumfang	1,000 bis 120,000 [m/min]
Notwendig für die Berechnung von Drehzahl und Antastvorschub	
Messung mit rotierendem Werkzeug:	MP6572
Maximal zulässige Drehzahl	0,000 bis 1 000,000 [U/min] Bei Eingabe 0 wird die Drehzahl auf 1000 U/min begrenzt

Koordinaten des TT-120-Stylus Mittelpunkts bezogen auf den Maschinen-	MP6580.0 (Verfahrbereich 1) X-Achse
Nullpunkt	MP6580.1 (Verfahrbereich 1) Y-Achse
	MP6580.2 (Verfahrbereich 1) Z-Achse
	MP6581.0 (Verfahrbereich 2) X-Achse
	MP6581.1 (Verfahrbereich 2) Y-Achse
	MP6581.2 (Verfahrbereich 2) Z-Achse
	MP6582.0 (Verfahrbereich 3) X-Achse
	MP6582.1 (Verfahrbereich 3) Y-Achse
	MP6582.2 (Verfahrbereich 3) Z-Achse
Überwachung der Stellung von Dreh- und Parallelachsen	MP6585 Funktion inaktiv: 0 Achsstellung überwachen, bitcodiert für jede Achse definierbar: 1
Dreh- und Parallelachsen definieren, die überwacht werden sollen	MP6586.0 Stellung der A-Achse nicht überwachen: 0 Stellung der A-Achse überwachen: 1
	MP6586.1 Stellung der B-Achse nicht überwachen: 0 Stellung der B-Achse überwachen: 1
	MP6586.2 Stellung der C-Achse nicht überwachen: 0 Stellung der C-Achse überwachen: 1
	MP6586.3 Stellung der U-Achse nicht überwachen: 0 Stellung der U-Achse überwachen: 1
	MP6586.4 Stellung der V-Achse nicht überwachen: 0 Stellung der V-Achse überwachen: 1
	MP6586.5 Stellung der W-Achse nicht überwachen: 0 Stellung der W-Achse überwachen: 1
KinematicsOpt: Toleranzgrenze für Fehlermeldung im Modus Optimieren	MP6600 0.001 bis 0.999

3D-Tastsysteme

KinematicsOpt: Maximal erlaubte Abweichung vom eingegebenen

Kalibrierkugelradius

MP6601 0.01 bis 0.1

TNC-Anzeigen, TNC-Editor

Zvklus 17, 18 und 207:

Spindelorientierung am Zyklus-Anfang

MP7160 Spindelorientierung durchführen: 0 Keine Spindelorientierung durchführen: 1

Programmierplatz

einrichten

TNC mit Maschine: 0

TNC als Programmierplatz mit aktiver PLC: 1 TNC als Programmierplatz mit nicht aktiver PLC: 2

Dialog

Stromunterbrechung nach dem Einschalten auittieren

MP7212

MP7210

Mit Taste quittieren: 0 Automatisch quittieren: 1

DIN/ISO-Programmierung: Satznummern-Schrittweite festlegen MP7220 0 bis 150

Anwahl von Datei-Typen sperren

MP7224.0

Alle Datei-Typen über Softkey anwählbar: %0000000

Anwahl von HEIDENHAIN-Programme sperren (Softkey ZEIGE .H): Bit 0 = 1 Anwahl von DIN/ISO-Programme sperren (Softkey ZEIGE .I): Bit 1 = 1 Anwahl von Werkzeug-Tabellen sperren (Softkey ZEIGE .T): Bit 2 = 1 Anwahl von Nullpunkt-Tabellen sperren (Softkey ZEIGE .D): Bit 3 = 1 Anwahl von Paletten-Tabellen sperren (Softkey ZEIGE .P): Bit 4 = 1 Anwahl von Text-Dateien sperren (Softkey ZEIGE .A): Bit 5 = 1 Anwahl von Punkte-Tabellen sperren (Softkey ZEIGE .PNT): Bit 6 = 1

Editieren von Datei-Typen sperren

MP7224.1 Editor nicht sperren: %0000000

Editor sperren für

Hinweis:

Falls Sie Datei-Typen sperren, löscht die TNC alle Dateien dieses Typs. ■ HEIDENHAIN-Programme: **Bit 0 = 1**

■ DIN/ISO-Programme: **Bit 1 = 1** ■ Werkzeug-Tabellen: Bit 2 = 1

■ Nullpunkt-Tabellen: Bit 3 = 1 ■ Paletten-Tabellen: **Bit 4 = 1** ■ Text-Dateien: Bit 5 = 1 ■ Punkte-Tabellen: Bit 6 = 1

HEIDENHAIN iTNC 530 663

TNC-Anzeigen, TNC-Editor Softkey bei Tabellen MP7224.2 sperren Softkev EDITIEREN AUS/EIN nicht sperren: **%0000000** Softkey EDITIEREN AUS/EIN sperren für ■ Ohne Funktion: Bit 0 = 1 Ohne Funktion: Bit 1 = 1 ■ Werkzeug-Tabellen: Bit 2 = 1 ■ Nullpunkt-Tabellen: Bit 3 = 1 ■ Paletten-Tabellen: **Bit 4 = 1** Ohne Funktion: Bit 5 = 1 ■ Punkte-Tabellen: Bit 6 = 1 Paletten-Tabellen MP7226.0 konfigurieren Paletten-Tabelle nicht aktiv: 0 Anzahl der Paletten pro Paletten-Tabelle: 1 bis 255 **Nullpunkt-Dateien** MP7226.1 konfigurieren Nullpunkt-Tabelle nicht aktiv: 0 Anzahl der Nullpunkte pro Nullpunkt-Tabelle: 1 bis 255 Programmlänge, bis zu MP7229.0 der LBL-Nummern Sätze 100 bis 9 999 überprüft werden MP7229.1 Programmlänge, bis zu der FK-Sätze überprüft Sätze 100 bis 9 999 werden Dialogsprache MP7230.0 bis MP7230.3 festlegen Englisch: 0 Deutsch: 1 Tschechisch: 2 Französisch: 3 Italienisch: 4 Spanisch: 5 Portugiesisch: 6 Schwedisch: 7 Dänisch: 8 Finnisch: 9 Niederländisch: 10 Polnisch: 11 Ungarisch: 12 reserviert: 13 Russisch (kyrillischer Zeichensatz): 14 (nur möglich bei MC 422 B) Chinesisch (simplified): 15 (nur möglich bei MC 422 B) Chinesisch (traditional): 16 (nur möglich bei MC 422 B) Slowenisch: 17 (nur möglich ab MC 422 B, Software-Option) Norwegisch: **18** (nur möglich ab MC 422 B, **Software-Option**) Slowakisch: 19 (nur möglich ab MC 422 B, Software-Option) Lettisch: 20 (nur möglich ab MC 422 B, Software-Option) Koreanisch: 21 (nur möglich ab MC 422 B, Software-Option) Estnisch: 22 (nur möglich ab MC 422 B, Software-Option) Türkisch: 23 (nur möglich ab MC 422 B, Software-Option) Rumänisch: 24 (nur möglich ab MC 422 B, Software-Option)

Werkzeug-Tabelle konfigurieren	MP7260 Nicht aktiv: 0 Anzahl der Werkzeuge, die die TNC beim Öffnen einer neuen Werkzeug-Tabelle generiert: 1 bis 254 Wenn Sie mehr als 254 Werkzeuge benötigen, können Sie die Werkzeug-Tabelle erweitern mi der Funktion N ZEILEN AM ENDE ANFÜGEN, siehe "Werkzeug-Daten", Seite 193
Werkzeug-Platztabelle konfigurieren	MP7261.0 (Magazin 1) MP7261.1 (Magazin 2) MP7261.2 (Magazin 3) MP7261.3 (Magazin 4) Nicht aktiv: 0 Anzahl der Plätze im Werkzeug-Magazin: 1 bis 9999 Wird in MP 7261.1 bis MP7261.3 der Wert 0 eingetragen, wird nur ein Werkzeug-Magazin verwendet.
Werkzeug-Nummern indizieren, um zu einer Werkzeug-Nummer mehrere Korrekturdaten abzulegen	MP7262 Nicht indizieren: 0 Anzahl der erlaubten Indizierung: 1 bis 9
Softkey Platztabelle	MP7263 Softkey PLATZ TABELLE in der Werkzeug-Tabelle anzeigen: 0 Softkey PLATZ TABELLE in der Werkzeug-Tabelle nicht anzeigen: 1

Werkzeug-Tabelle konfigurieren (Nicht aufführen: 0); Spalten-Nummer in der Werkzeug-Tabelle für MP7266.0

Werkzeug-Name – NAME: **0** bis **32**; Spaltenbreite: 16 Zeichen

MP7266.1

Werkzeug-Länge – L: 0 bis 32; Spaltenbreite: 11 Zeichen

MP7266.2

Werkzeug-Radius – R: **0** bis **32**; Spaltenbreite: 11 Zeichen

MP7266.3

Werkzeug-Radius 2 – R2: 0 bis 32; Spaltenbreite: 11 Zeichen

MP7266.4

Aufmaß Länge – DL: 0 bis 32; Spaltenbreite: 8 Zeichen

MP7266.5

Aufmaß Radius – DR: **0** bis **32**; Spaltenbreite: 8 Zeichen

MP7266.6

Aufmaß Radius 2 - DR2: 0 bis 32; Spaltenbreite: 8 Zeichen

MP7266.7

Werkzeug gesperrt - TL: 0 bis 32; Spaltenbreite: 2 Zeichen

MP7266.8

Schwester-Werkzeug - RT: 0 bis 32; Spaltenbreite: 3 Zeichen

MP7266.9

Maximale Standzeit - TIME1: 0 bis 32; Spaltenbreite: 5 Zeichen

MP7266.10

Max. Standzeit bei TOOL CALL – TIME2: **0** bis **32**; Spaltenbreite: 5 Zeichen

MP7266.11

Aktuelle Standzeit - CUR. TIME: 0 bis 32; Spaltenbreite: 8 Zeichen

MP7266.12

Werkzeug-Kommentar – DOC: 0 bis 32; Spaltenbreite: 16 Zeichen

MP7266.13

Anzahl der Schneiden – CUT.: **0** bis **32**; Spaltenbreite: 4 Zeichen

MP7266.14

Toleranz für Verschleiß-Erkennung Werkzeug-Länge – LTOL: 0 bis 32; Spaltenbreite: 6 Zeichen

MP7266.15

Toleranz für Verschleiß-Erkennung Werkzeug-Radius – RTOL: 0 bis 32; Spaltenbreite: 6 Zeichen

Werkzeug-Tabelle konfigurieren (Nicht aufführen: 0); Spalten-Nummer in der Werkzeug-Tabelle für MP7266.16

Schneid-Richtung – DIRECT.: **0** bis **32**; Spaltenbreite: 7 Zeichen

MP7266.17

PLC-Status - PLC: 0 bis 32; Spaltenbreite: 9 Zeichen

MP7266.18

Zusätzlicher Versatz des Werkzeugs in der Werkzeugachse zu MP6530 – TT:L-OFFS: 0 bis 32;

Spaltenbreite: 11 Zeichen

MP7266.19

Versatz des Werkzeugs zwischen Stylus-Mitte und Werkzeug-Mitte – TT:R-OFFS: 0 bis 32;

Spaltenbreite: 11 Zeichen

MP7266.20

Toleranz für Bruch-Erkennung Werkzeug-Länge – LBREAK.: 0 bis 32: Spaltenbreite: 6 Zeichen

MP7266.21

Toleranz für Bruch-Erkennung Werkzeug-Radius – RBREAK: 0 bis 32; Spaltenbreite: 6 Zeichen

MP7266.22

Schneidenlänge (Zyklus 22) – LCUTS: **0** bis **32**; Spaltenbreite: 11 Zeichen

MP7266.23

Maximaler Eintauchwinkel (Zyklus 22) – ANGLE.: 0 bis 32; Spaltenbreite: 7 Zeichen

MP7266.24

Werkzeug-Typ –TYP: **0** bis **32**; Spaltenbreite: 5 Zeichen

MP7266.25

Werkzeug-Schneidstoff – TMAT: 0 bis 32; Spaltenbreite: 16 Zeichen

MP7266.26

Schnittdaten-Tabelle – CDT: **0** bis **32**; Spaltenbreite: 16 Zeichen

MP7266.27

PLC-Wert – PLC-VAL: **0** bis **32**; Spaltenbreite: 11 Zeichen

MP7266.28

Taster-Mittenversatz Hauptachse - CAL-OFF1: 0 bis 32; Spaltenbreite: 11 Zeichen

MP7266.29

Taster-Mittenversatz Nebenachse – CALL-OFF2: 0 bis 32; Spaltenbreite: 11 Zeichen

MP7266.30

Spindelwinkel beim Kalibrieren – CALL-ANG: **0** bis **32**; Spaltenbreite: 11 Zeichen

MP7266.31

Werkzeug-Typ für die Platz-Tabelle – PTYP: **0** bis **32**; Spaltenbreite: 2 Zeichen

MP7266.32

Begrenzung Spindeldrehzahl – NMAX: – bis 999999; Spaltenbreite: 6 Zeichen

MP7266.33

Freifahren bei NC-Stopp – LIFTOFF: Y / N; Spaltenbreite: 1 Zeichen

MP7266.34

Maschinenabhängige Funktion - P1: -99999.9999 bis +99999.9999; Spaltenbreite: 10 Zeichen

MP7266.35

Maschinenabhängige Funktion – P2: -99999.9999 bis +99999.9999; Spaltenbreite: 10 Zeichen

MP7266.36

Maschinenabhängige Funktion – P3: -99999.9999 bis +99999.9999; Spaltenbreite: 10 Zeichen

MP7266.37

Werkzeugspezifische Kinematikbeschreibung - KINEMATIC: Name der Kinematik-

Beschreibung; Spaltenbreite: 16 Zeichen

MP7266.38

Spitzenwinkel T_ANGLE: 0 bis 180; Spaltenbreite: 9 Zeichen

MP7266.39

Gewindesteigung PITCH: 0 bis 99999.9999; Spaltenbreite: 10 Zeichen

MP7266.40

Adaptive Vorschubregelung AFC: Name der Regeleinstellung aus der Tabelle AFC.TAB;

Spaltenbreite: 10 Zeichen

Werkzeug-Platztabelle konfigurieren (nicht aufführen: 0); Spalten-Nummer in der Platz-Tabelle für MP7267.0

Werkzeugnummer – T: 0 bis 7

MP7267.1

Sonderwerkzeug - ST: 0 bis 7

MP7267.2

Festplatz – F: 0 bis 7

MP7267.3

Platz gesperrt - L: 0 bis 7

MP7267.4

PLC - Status - PLC: 0 bis 7

MP7267.5

Werkzeugname aus der Werkzeug-Tabelle – TNAME: 0 bis 7

MP7267.6

Kommentar aus der Werkzeug-Tabelle – DOC: 0 bis 77

MP7267.7

Werkzeugtyp - PTYP: 0 bis 99

MP7267.8

Wert für PLC - P1: -99999.9999 bis +99999.9999

MP7267.9

Wert für PLC - P2: -99999.9999 bis +99999.9999

MP7267.10

Wert für PLC - P3: -99999.9999 bis +99999.9999

MP7267.11

Wert für PLC - P4: -99999.9999 bis +99999.9999

MP7267.12

Wert für PLC - P5: -99999.9999 bis +99999.9999

MP7267.13

Reservierter Platz - RSV: 0 bis 1

MP7267.14

Platz oben sperren – LOCKED_ABOVE: 0 bis 65535

MP7267.15

Platz unten sperren - LOCKED_BELOW: 0 bis 65535

MP7267.16

Platz links sperren – LOCKED_LEFT: 0 bis 65535

MP7267.17

Platz rechts sperren - LOCKED_RIGHT: 0 bis 65535

Betriebsart Manueller

Betrieb: Anzeige des

Vorschubs

MP7270

Vorschub F nur anzeigen, wenn Achsrichtungs-Taste gedrückt wird: 0

Vorschub F anzeigen, auch wenn keine Achsrichtungs-Taste gedrückt wird (Vorschub, der über

Softkey F definiert wurde oder Vorschub der "langsamsten" Achse): 1

Dezimalzeichen festlegen

MP7280

Komma als Dezimalzeichen anzeigen: **0** Punkt als Dezimalzeichen anzeigen: **1**

Positions-Anzeige in der Werkzeugachse

MP7285

Anzeige bezieht sich auf den Werkzeug-Bezugspunkt: **0** Anzeige in der Werkzeugachse bezieht sich auf die

Werkzeug-Stirnfläche: 1

i

Anzeigeschritt für die Spindelposition

MP7289
0,1 °: 0
0,05 °: 1
0,01 °: 2
0,005 °: 3
0,001 °: 4
0,0005 °: 5
0,0001 °: 6

Anzeigeschritt

MP7290.0 (X-Achse) bis MP7290.13 (14. Achse)

0,1 mm: 0 0,05 mm: 1 0,01 mm: 2 0,005 mm: 3 0,001 mm: 4 0,0005 mm: 5 0,0001 mm: 6

Bezugspunkt-Setzen in der Preset-Tabelle sperren

MP7294

Bezugspunkt-Setzen sperren

MP7295

Bezugspunkt-Setzen mit orangenen Achstasten sperren

MP7296

Bezugspunkt-Setzen nicht sperren: 0

Bezugspunkt-Setzen über orangefarbige Achstasten sperren: 1

TNC-Anzeigen, TNC-Editor Status-Anzeige, Q-**MP7300** Parameter. Alles rücksetzen, wenn Programm angewählt wird: 0 Alles rücksetzen, wenn Programm angewählt wird und bei M2, M30, END PGM: 1 Werkzeugdaten und **Bearbeitungszeit** Nur Status-Anzeige, Bearbeitungszeit und Werkzeugdaten rücksetzen, wenn Programm rücksetzen angewählt wird: 2 Nur Status-Anzeige, Bearbeitungszeit und Werkzeugdaten rücksetzen, wenn Programm angewählt wird und bei M2, M30, END PGM: 3 Status-Anzeige, Bearbeitungszeit und Q-Parameter rücksetzen, wenn Programm angewählt wird: 4 Status-Anzeige, Bearbeitungszeit und Q-Parameter rücksetzen, wenn Programm angewählt wird und bei M2, M30, END PGM: 5 Status-Anzeige und Bearbeitungszeit rücksetzen, wenn Programm angewählt wird: 6 Status-Anzeige und Bearbeitungszeit rücksetzen, wenn Programm angewählt wird und bei M2, M30. END PGM: 7 Festlegungen für **MP7310 Grafik-Darstellung** Grafische Darstellung in drei Ebenen nach DIN 6, Teil 1, Projektionsmethode 1: Bit 0 = 0 Grafische Darstellung in drei Ebenen nach DIN 6, Teil 1, Projektionsmethode 2: Bit 0 = 1 Neue BLK FORM bei Zykl. 7 NULLPUNKT bezogen auf den alten Nullpunkt anzeigen: Bit 2 = 0 Neue BLK FORM bei Zykl. 7 NULLPUNKT bezogen auf den neuen Nullpunkt anzeigen: Bit 2 = 1 Cursorposition bei der Darstellung in drei Ebenen nicht anzeigen: Bit 4 = 0 Cursorposition bei der Darstellung in drei Ebenen anzeigen: Bit 4 = 1 Software-Funktionen der neuen 3D-Grafik aktiv: Bit 5 = 0 Software-Funktionen der neuen 3D-Grafik inaktiv: Bit 5 = 1 **MP7312** Begrenzung der zu simulierenden 0 bis 99 999,9999 [mm] Schneidlänge eines Faktor mit dem der Werkzeug-Durchmesser multipliziert wird, um die Simulationsgeschwindigkeit zu erhöhen. Bei Eingabe von 0 nimmt die TNC eine unendlich lange Werkzeuges. Nur wirksam, wenn kein Schneidlänge an, was die Simulationsgeschwindigkeit erhöht. **LCUTS** definiert ist **Grafische Simulation** MP7315 ohne programmierte **0** bis **99 999,9999** [mm] Spindelachse: Werkzeug-Radius Grafische Simulation **MP7316** ohne programmierte 0 bis 99 999,9999 [mm] Spindelachse: Eindringtiefe

Grafische Simulation ohne programmierte Spindelachse: M-Funktion für Start MP7317.0

0 bis 88 (0: Funktion nicht aktiv)

i

TNC-Anzeigen, TNC-Ed	TNC-Anzeigen, TNC-Editor		
Grafische Simulation ohne programmierte Spindelachse: M- Funktion für Ende	MP7317.1 0 bis 88 (0: Funktion nicht aktiv)		
Bildschirmschoner einstellen	MP7392.0 0 bis 99 [min] Zeit in Minuten nach der der Bildschirmschoner einschaltet (0: Funktion nicht aktiv)		
	MP7392.1 Kein Bildschirmschoner aktiv: 0 Standard-Bildschirmschoner des X-Servers: 1 3D-Linienmuster: 2		

Wirksomkeit Zuklus 11 MACCEAUTOD	MP7410
Wirksamkeit Zyklus 11 MASSFAKTOR	MASSFAKTOR wirkt in 3 Achsen: 0
	MASSFAKTOR wirkt nur in der Bearbeitungsebene: 1
	·
Werkzeugdaten/Kalibrierdaten verwalten	MP7411 Dia TNC analahart dia Kalibriardatan für das 2D Tastavatam intern: 10
	Die TNC speichert die Kalibrierdaten für das 3D-Tastsystem intern: +0 Die TNC verwendet als Kalibrierdaten für das 3D-Tastsystem die
	Korrekturwerte des Tastsystems aus der Werkzeug-Tabelle: +1
SL-Zyklen	MP7420
	Kanal um die Kontur fräsen im Uhrzeigersinn für Inseln und im
	Gegen-Uhrzeigersinn für Taschen: Bit 0 = 0
	Kanal um die Kontur fräsen im Uhrzeigersinn für Taschen und im
	Gegen-Uhrzeigersinn für Inseln: Bit 0 = 1
	Konturkanal vor dem Ausräumen fräsen: Bit 1 = 0 Konturkanal nach dem Ausräumen fräsen: Bitt 1 = 1
	Korrigierte Konturen vereinigen: Bit 2 = 0
	Unkorrigierte Konturen vereinigen: Bit 2 = 1
	Ausräumen jeweils bis zur Taschentiefe: Bit 3 = 0
	Tasche vor jeder weiteren Zustellung vollständig umfräsen und
	ausräumen: Bit 3 = 1
	Für die Zyklen 6, 15, 16, 21, 22, 23, 24 gilt:
	Werkzeug am Zyklusende auf die letzte vor dem Zyklus-Aufruf
	programmierte Position fahren: Bit 4 = 0
	Werkzeug zum Zyklus-Ende nur in der Spinddelachse freifahren: Bit 4 =
Zyklus 4 TASCHENFRAESEN, Zyklus 5	MP7430
KREISTASCHE: Überlappungsfaktor	0,1 bis 1,414
Zulässige Abweichung des Kreisradius am	MP7431
Kreis-Endpunkt im Vergleich zum Kreis- Anfangspunkt	0,0001 bis 0,016 [mm]
Endschaltertoleranz für M140 und M150	MP7432
	Funktion inaktiv: 0
	Toleranz, um die der Software-Endschalter noch mit M140/M150
	überfahren werden darf: 0.0001 bis 1.0000
Wirkungsweise verschiedener Zusatz-	MP7440
Funktionen M	Programmlauf-Halt bei M6: Bit 0 = 0
	Programmlauf-Halt bei M6: Bit 0 = 0 Kein Programmlauf-Halt bei M6: Bit 0 = 1 Kein Zyklus-Aufruf mit M89: Bit 1 = 0
Funktionen M Hinweis: Die k _V -Faktoren werden vom	Programmlauf-Halt bei M6: Bit 0 = 0 Kein Programmlauf-Halt bei M6: Bit 0 = 1 Kein Zyklus-Aufruf mit M89: Bit 1 = 0 Zyklus-Aufruf mit M89: Bit 1 = 1
Funktionen M Hinweis: Die k _V -Faktoren werden vom Maschinenhersteller festgelegt. Beachten Sie	Programmlauf-Halt bei M6: Bit 0 = 0 Kein Programmlauf-Halt bei M6: Bit 0 = 1 Kein Zyklus-Aufruf mit M89: Bit 1 = 0 Zyklus-Aufruf mit M89: Bit 1 = 1 Programmlauf-Halt bei M-Funktionen: Bit 2 = 0
Funktionen M Hinweis: Die k _V -Faktoren werden vom	Programmlauf-Halt bei M6: Bit 0 = 0 Kein Programmlauf-Halt bei M6: Bit 0 = 1 Kein Zyklus-Aufruf mit M89: Bit 1 = 0 Zyklus-Aufruf mit M89: Bit 1 = 1 Programmlauf-Halt bei M-Funktionen: Bit 2 = 0 Kein Programmlauf-Halt bei M-Funktionen: Bit 2 = 4
Funktionen M Hinweis: Die k _V -Faktoren werden vom Maschinenhersteller festgelegt. Beachten Sie	Programmlauf-Halt bei M6: Bit 0 = 0 Kein Programmlauf-Halt bei M6: Bit 0 = 1 Kein Zyklus-Aufruf mit M89: Bit 1 = 0 Zyklus-Aufruf mit M89: Bit 1 = 1 Programmlauf-Halt bei M-Funktionen: Bit 2 = 0 Kein Programmlauf-Halt bei M-Funktionen: Bit 2 = 4 k _V -Faktoren über M105 und M106 nicht umschaltbar: Bit 3 = 0
Funktionen M Hinweis: Die k _V -Faktoren werden vom Maschinenhersteller festgelegt. Beachten Sie	Programmlauf-Halt bei M6: Bit 0 = 0 Kein Programmlauf-Halt bei M6: Bit 0 = 1 Kein Zyklus-Aufruf mit M89: Bit 1 = 0 Zyklus-Aufruf mit M89: Bit 1 = 1 Programmlauf-Halt bei M-Funktionen: Bit 2 = 0 Kein Programmlauf-Halt bei M-Funktionen: Bit 2 = 4 k _V -Faktoren über M105 und M106 nicht umschaltbar: Bit 3 = 0 k _V -Faktoren über M105 und M106 umschaltbar: Bit 3 = 1
Funktionen M Hinweis: Die k _V -Faktoren werden vom Maschinenhersteller festgelegt. Beachten Sie	Programmlauf-Halt bei M6: Bit 0 = 0 Kein Programmlauf-Halt bei M6: Bit 0 = 1 Kein Zyklus-Aufruf mit M89: Bit 1 = 0 Zyklus-Aufruf mit M89: Bit 1 = 1 Programmlauf-Halt bei M-Funktionen: Bit 2 = 0 Kein Programmlauf-Halt bei M-Funktionen: Bit 2 = 4 k _V -Faktoren über M105 und M106 nicht umschaltbar: Bit 3 = 0 k _V -Faktoren über M105 und M106 umschaltbar: Bit 3 = 1 Vorschub in der Werkzeugachse mit M103 F Reduzieren nicht aktiv: Bit 4 = 0
Funktionen M Hinweis: Die k _V -Faktoren werden vom Maschinenhersteller festgelegt. Beachten Sie	Programmlauf-Halt bei M6: Bit 0 = 0 Kein Programmlauf-Halt bei M6: Bit 0 = 1 Kein Zyklus-Aufruf mit M89: Bit 1 = 0 Zyklus-Aufruf mit M89: Bit 1 = 1 Programmlauf-Halt bei M-Funktionen: Bit 2 = 0 Kein Programmlauf-Halt bei M-Funktionen: Bit 2 = 4 k _V -Faktoren über M105 und M106 nicht umschaltbar: Bit 3 = 0 k _V -Faktoren über M105 und M106 umschaltbar: Bit 3 = 1 Vorschub in der Werkzeugachse mit M103 F Reduzieren nicht aktiv: Bit 4 = 0 Vorschub in der Werkzeugachse mit M103 F
Funktionen M Hinweis: Die k _V -Faktoren werden vom Maschinenhersteller festgelegt. Beachten Sie	Programmlauf-Halt bei M6: Bit 0 = 0 Kein Programmlauf-Halt bei M6: Bit 0 = 1 Kein Zyklus-Aufruf mit M89: Bit 1 = 0 Zyklus-Aufruf mit M89: Bit 1 = 1 Programmlauf-Halt bei M-Funktionen: Bit 2 = 0 Kein Programmlauf-Halt bei M-Funktionen: Bit 2 = 4 k _V -Faktoren über M105 und M106 nicht umschaltbar: Bit 3 = 0 k _V -Faktoren über M105 und M106 umschaltbar: Bit 3 = 1 Vorschub in der Werkzeugachse mit M103 F Reduzieren nicht aktiv: Bit 4 = 0

14 Tabellen und Übersichten

Fehlermeldung bei Zyklusaufruf	MP7441 Fehlermeldung ausgeben, wenn kein M3/M4 aktiv: Bit 0 = 0 Fehlermeldung unterdrücken, wenn kein M3/M4 aktiv: Bit 0 = 1 reserviert: Bit 1 Fehlermeldung unterdrücken, wenn Tiefe positiv programmiert: Bit 2 = 0 Fehlermeldung ausgeben, wenn Tiefe positiv programmiert: Bit 2 = 1
M-Funktion für Spindel-Orientierung in den Bearbeitungszyklen	MP7442 Funktion inaktiv: 0 Orientierung direkt über die NC: -1 M-Funktion für die Spindel-Orientierung: 1 bis 999
Maximale Bahngeschwindigkeit bei Vorschub-Override 100% in den Programmlauf-Betriebsarten	MP7470 0 bis 99 999 [mm/min]
Vorschub für Ausgleichsbewegungen von Drehachsen	MP7471 0 bis 99 999 [mm/min]
Kompatibilitäts-Maschinen-Parameter für Nullpunkt-Tabellen	MP7475 Nullpunkt-Verschiebungen beziehen sich auf den Werkstück-Nullpunkt: 0 Bei Eingabe von 1 in älteren TNC-Steuerungen und in der Software 340 420-xx bezogen sich Nullpunkt-Verschiebungen auf den Maschinen- Nullpunkt. Diese Funktion steht jetzt nicht mehr zur Verfügung. Anstelle REF-bezogener Nullpunkt-Tabellen ist jetzt die Preset-Tabelle zu verwenden (siehe "Bezugspunkt-Verwaltung mit der Preset-Tabelle" auf Seite 83)

14.2 Steckerbelegung und Anschlusskabel für Datenschnittstellen

Schnittstelle V.24/RS-232-C HEIDEHAIN-Geräte

Die Schnittstelle erfüllt EN 50 178 "Sichere Trennung vom Netz"

Bitte beachten, dass PIN 6 und 8 des Verbindungskabels 274 545 gebrückt sind.

Bei Verwendung des 25-poligen Adapterblocks:

TNC		VB 365 725-xx		Adapterblock 310 085-01		VB 274 545-xx			
Stift	Belegung	Buchse	Farbe	Buchse	Stift	Buchse	Stift	Farbe	Buchse
1	nicht belegen	1		1	1	1	1	weiß/braun	1
2	RXD	2	gelb	3	3	3	3	gelb	2
3	TXD	3	grün	2	2	2	2	grün	3
4	DTR	4	braun	20	20	20	20	braun	8
5	Signal GND	5	rot	7	7	7	7	rot	7
6	DSR	6	blau	6	6	6	6		6
7	RTS	7	grau	4	4	4	4	grau	5
8	CTR	8	rosa	5	5	5	5	rosa	4
9	nicht belegen	9					8	violett	20
Geh.	Außenschirm	Geh.	Außenschirm	Geh.	Geh.	Geh.	Geh.	Außenschirm	Geh.

Bei Verwendung des 9-poligen Adapterblocks:

TNC VB 355 484-xx			Adapterblock 363 987-02		VB 366 964-xx				
Stift	Belegung	Buchse	Farbe	Stift	Buchse	Stift	Buchse	Farbe	Buchse
1	nicht belegen	1	rot	1	1	1	1	rot	1
2	RXD	2	gelb	2	2	2	2	gelb	3
3	TXD	3	weiß	3	3	3	3	weiß	2
4	DTR	4	braun	4	4	4	4	braun	6
5	Signal GND	5	schwarz	5	5	5	5	schwarz	5
6	DSR	6	violett	6	6	6	6	violett	4
7	RTS	7	grau	7	7	7	7	grau	8
8	CTS	8	weiß/grün	8	8	8	8	weiß/grün	7
9	nicht belegen	9	grün	9	9	9	9	grün	9
Geh.	Außenschirm	Geh.	Außenschirm	Geh.	Geh.	Geh.	Geh.	Außenschirm	Geh.

i

Fremdgeräte

Die Stecker-Belegung am Fremdgerät kann erheblich von der Stecker-Belegung eines HEIDENHAIN-Gerätes abweichen.

Sie ist vom Gerät und der Übertragungsart abhängig. Entnehmen Sie bitte die Steckerbelegung des Adapter-Blocks der untenstehenden Tabelle.

Adapterblock 3	63 987-02	VB 366 964-xx			
Buchse	Stift	Buchse	Farbe	Buchse	
1	1	1	rot	1	
2	2	2	gelb	3	
3	3	3	weiß	2	
4	4	4	braun	6	
5	5	5	schwarz	5	
6	6	6	violett	4	
7	7	7	grau	8	
8	8	8	weiß/grün	7	
9	9	9	grün	9	
Geh.	Geh.	Geh.	Außen- schirm	Geh.	

Schnittstelle V.11/RS-422

An der V.11-Schnittstelle werden nur Fremdgeräte angeschlossen.

Die Schnittstelle erfüllt EN 50 178 "Sichere Trennung vom Netz" .

Die Steckerbelegungen von TNC-Logikeinheit (X28) und Adapter-Block sind identisch.

TNC		VB 35	5 484-xx	Adapterblock 363 987-01		
Buchse	Belegung	Stift	Farbe	Buchse	Stift	Buchse
1	RTS	1	rot	1	1	1
2	DTR	2	gelb	2	2	2
3	RXD	3	weiß	3	3	3
4	TXD	4	braun	4	4	4
5	Signal GND	5	schwarz	5	5	5
6	CTS	6	violett	6	6	6
7	DSR	7	grau	7	7	7
8	RXD	8	weiß/ grün	8	8	8
9	TXD	9	grün	9	9	9
Geh.	Außenschirm	Geh.	Außen- schirm	Geh.	Geh.	Geh.

Ethernet-Schnittstelle RJ45-Buchse

Maximale Kabellänge:

Ungeschirmt: 100 mGeschirmt: 400 m

Pin	Signal	Beschreibung
1	TX+	Transmit Data
2	TX-	Transmit Data
3	REC+	Receive Data
4	frei	
5	frei	
6	REC-	Receive Data
7	frei	
8	frei	

i

14.3 Technische Information

Symbolerklärung

- Standard
- Achs-Option
- Software-Option 1
- Software-Option 2

Benutzer-Funktionen	
Kurzbeschreibung	 Grundausführung: 3 Achsen plus Spindel Vierte NC-Achse plus Hilfsachse oder 8 weitere Achsen oder 7 weitere Achsen plus 2. Spindel Digitale Strom- und Drehzahl-Regelung
Programm-Eingabe	Im HEIDENHAIN-Klartext-Dialog, mit smarT.NC und nach DIN/ISO
Positions-Angaben	 Soll-Positionen für Geraden und Kreise in rechtwinkligen Koordinaten oder Polarkoordinaten Maßangaben absolut oder inkremental Anzeige und Eingabe in mm oder inch Anzeige des Handrad-Wegs bei der Bearbeitung mit Handrad-Überlagerung
Werkzeug-Korrekturen	 Werkzeug-Radius in der Bearbeitungsebene und Werkzeug-Länge Radiuskorrigierte Kontur bis zu 99 Sätze vorausberechnen (M120) Dreidimensionale Werkzeug-Radiuskorrektur zur nachträglichen Änderung von Werkzeugdaten, ohne das Programm erneut berechnen zu müssen
Werkzeug-Tabellen	Mehrere Werkzeug-Tabellen mit jeweils bis zu 30000 Werkzeugen
Schnittdaten-Tabellen	Schnittdaten-Tabellen zur automatischen Berechnung von Spindel-Drehzahl und Vorschub aus werkzeugspezifischen Daten (Schnittgeschwindigkeit, Vorschub pro Zahn)
Konstante Bahngeschwindigkeit	Bezogen auf die Werkzeug-MittelpunktsbahnBezogen auf die Werkzeugschneide
Parallelbetrieb	Programm mit grafischer Unterstützung erstellen, während ein anderes Programm abgearbeitet wird
3D-Bearbeitung (Software- Option 2)	 Besonders ruckarme Bewegungsführung 3D-Werkzeug-Korrektur über Flächennormalen-Vektor Ändern der Schwenkkopfstellung mit dem elektronischen Handrad während des Programmlaufs; Position der Werkzeugspitze bleibt unverändert (TCPM = Tool Center Point Management) Werkzeug senkrecht auf der Kontur halten Werkzeug-Radiuskorrektur senkrecht zur Bewegungs- und Werkzeugrichtung Spline-Interpolation
Rundtisch-Bearbeitung (Software-Option 1)	Programmieren von Konturen auf der Abwicklung eines ZylindersVorschub in mm/min

Benutzer-Funktionen	
Konturelemente	 Gerade Fase Kreisbahn Kreismittelpunkt Kreisradius Tangential anschließende Kreisbahn Ecken-Runden
Anfahren und Verlassen der Kontur	■ Über Gerade: tangential oder senkrecht ■ Über Kreis
Freie Konturprogrammierung FK	■ Freie Konturprogrammierung FK im HEIDENHAIN-Klartext mit grafischer Unterstützung für nicht NC-gerecht bemaßte Werkstücke
Programmsprünge	 Unterprogramme Programmteil-Wiederholung Beliebiges Programm als Unterprogramm
Bearbeitungs-Zyklen	 Bohrzyklen zum Bohren, Tiefbohren, Reiben, Ausdrehen, Senken Gewindebohren mit und ohne Ausgleichsfutter Zyklen zum Fräsen von Innen- und Außengewinden Rechteck- und Kreistasche schruppen und schlichten Zyklen zum Abzeilen ebener und schiefwinkliger Flächen Zyklen zum Fräsen gerader und kreisförmiger Nuten Punktemuster auf Kreis und Linien Konturtasche – auch konturparallel Konturzug Zusätzlich können Herstellerzyklen – spezielle vom Maschinenhersteller erstellte Bearbeitungszyklen – integriert werden
Koordinaten-Umrechnung	 Verschieben, Drehen, Spiegeln Maßfaktor (achsspezifisch) Schwenken der Bearbeitungsebene (Software-Option 1)
Q-Parameter Programmieren mit Variablen	 Mathematische Funktionen =, +, -, *, /, sin α, cos α Logische Verknüpfungen (=, =/, <, >) Klammerrechnung tan α, arcus sin, arcus cos, arcus tan, aⁿ, eⁿ, In, log, Absolutwert einer Zahl, Konstante π, Negieren, Nachkommastellen oder Vorkommastellen abschneiden Funktionen zur Kreisberechnung String-Parameter
Programmierhilfen	 Taschenrechner Kontextsensitive Hilfe-Funktion bei Fehlermeldungen Kontextsensitives Hilfesystem TNCguide (FCL 3-Funktion) Grafische Unterstützung beim Programmieren von Zyklen Kommentar-Sätze im NC-Programm

Teach-In Test-Grafik Darstellungsarten	■ Ist-Postitionen werden direkt ins NC-Programm übernommen Grafische Simulation des Bearbeitungsablaufs auch wenn ein anderes Programm abgearbeitet wird
	■ Draufsicht / Darstellung in 3 Ebenen / 3D-Darstellung
	■ Ausschnitt-Vergrößerung
Programmier-Grafik	■ In der Betriebsart "Programm-Einspeichern" werden die eingegebenen NC-Sätze mitgezeichnet (2D-Strich-Grafik) auch wenn ein anderes Programm abgearbeitet wird
Bearbeitungs-Grafik Darstellungsarten	■ Grafische Darstellung des abgearbeiteten Programms in Draufsicht / Darstellung in 3 Ebenen / 3D-Darstellung
Bearbeitungszeit	■ Berechnen der Bearbeitungszeit in der Betriebsart "Programm-Test"
	Anzeige der aktuellen Bearbeitungszeit in den Programmlauf-Betriebsarten
Wiederanfahren an die Kontur	Satzvorlauf zu einem beliebigen Satz im Programm und Anfahren der errechneten Soll- Position zum Fortführen der Bearbeitung
	■ Programm unterbrechen, Kontur verlassen und wieder anfahren
Nullpunkt-Tabellen	■ Mehrere Nullpunkt-Tabellen
Paletten-Tabellen	Paletten-Tabellen mit beliebig vielen Einträge zur Auswahl von Paletten, NC- Programmen und Nulllpunkten können werkstück- oder werkzeugorientiert abgearbeitet werden
Tastsystem-Zyklen	■ Tastsystem kalibrieren
	■ Werkstück-Schieflage manuell und automatisch kompensieren
	■ Bezugspunkt manuell und automatisch setzen
	■ Werkstücke automatisch vermessen
	■ Zyklen zur automatischen Werkzeugvermessung
	Zyklen zur automatischen Kinematik-Vermessung
Technische-Daten	
Komponenten	 Hauptrechner MC 420 oder MC 422 C Regler-Einheit CC 422 oder CC 424 Bedienfeld TFT-Farb-Flachbildschirm mit Softkeys
	15,1 Zoll
Programm-Speicher	Mindestens 25 GByte, Zwei-Prozessor-System mindestens 13 GByte
Eingabefeinheit und	■ bis 0,1 µm bei Linearachsen
Anzeigeschritt	■ bis 0,000 1° bei Winkelachsen
Eingabebereich	■ Maximum 99 999,999 mm (3.937 Zoll) bzw. 99 999,999°

Technische-Daten	
Interpolation	 ■ Gerade in 4 Achsen ◆ Gerade in 5 Achsen (Export genehmigungspflichtig, Software-Option 1) ■ Kreis in 2 Achsen
	◆ Kreis in 3 Achsen bei geschwenkter Bearbeitungsebene (Software-Option 1) ■ Schraubenlinie:
	Überlagerung von Kreisbahn und Gerade ■ Spline: Abarbeiten von Splines (Polynom 3. Grades)
Satzverarbeitungszeit 3D-Gerade ohne Radiuskorrektur	■ 3,6 ms
SD-Gerade offile hadiuskoffektur	• 0,5 ms (Software-Option 2)
Achsregelung	■ Lageregelfeinheit: Signalperiode des Positionsmessgeräts/1024 ■ Zykluszeit Lageregler:1,8 ms ■ Zykluszeit Drehzahlregler: 600 µs
	■ Zykluszeit Stromregler: minimal 100 µs
Verfahrweg	■ Maximal 100 m (3 937 Zoll)
Spindeldrehzahl	Maximal 40 000 U/min (bei 2 Polpaaren)
Fehler-Kompensation	 Lineare und nichtlineare Achsfehler, Lose, Umkehrspitzen bei Kreisbewegungen, Wärmeausdehnung Haftreibung
Datenschnittstellen	■ je eine V.24 / RS-232-C und V.11 / RS-422 max. 115 kBaud
	■ Erweiterte Datenschnittstelle mit LSV-2-Protokoll zum externenBedienen der TNC über die Datenschnittstelle mit HEIDENHAIN-Software TNCremo
	■ Ethernet-Schnittstelle 100 Base T ca. 2 bis 5 MBaud (abhängig vom Dateityp und der Netzauslastung)
	■ USB 1.1-Schnittstelle Zum Anschluss von Zeigegeräten (Maus) und Block-Geräten (Speicher-Sticks, Festplatten, CD-ROM-Laufwerke)
Umgebungstemperatur	■ Betrieb: 0°C bis +45°C
	■ Lagerung:–30°C bis +70°C
Zubehör	
Elektronische Handräder	■ ein HR 420 tragbares Handrad mit Display oder
	■ ein HR 410 tragbares Handrad oder
	ein HR 130 Einbau-Handrad oder
	■ bis zu drei HR 150 Einbau-Handräder über Handrad-Adapter HRA 110
Tastsysteme	■ TS 220: schaltendes 3D-Tastsystem mit Kabelanschluss oder
	■ TS 440: schaltendes 3D-Tastsystem mit Infrarot-Übertragung
	■ TS 640: schaltendes 3D-Tastsystem mit Infrarot-Übertragung
	■ TT 140: schaltendes 3D-Tastsystem zur Werkzeug-Vermessung

Software-Option 1				
Rundtisch-Bearbeitung	Programmieren von Konturen auf der Abwicklung eines Zylinders			
	◆ Vorschub in mm/min			
Koordinaten-Umrechnungen	Schwenken der Bearbeitungsebene			
Interpolation	◆ Kreis in 3 Achsen bei geschwenkter Bearbeitungsebene			
Software-Option 2				
3D-Bearbeitung	 Besonders ruckarme Bewegungsführung 			
	3D-Werkzeug-Korrektur über Flächennormalen-Vektor			
	 Ändern der Schwenkkopfstellung mit dem elektronischen Handrad während des Programmlaufs; Position der Werkzeugspitze bleibt unverändert (TCPM = Tool Center Point Management) 			
	Werkzeug senkrecht auf der Kontur halten			
	Werkzeug-Radiuskorrektur senkrecht zur Bewegungs- und Werkzeugrichtung			
	Spline-Interpolation			
Interpolation	Gerade in 5 Achsen (Export genehmigungspflichtig)			
Satzverarbeitungszeit	• 0,5 ms			
Software-Option DXF-Konverte	r			
Aus DXF-Daten Kontur-	■ Unterstütztes Format: AC1009 (AutoCAD R12)			
Programme und	■ Für Klartext-Dialog- und smarT.NC			
Bearbeitungspositionen extrahieren	■ Komfortable Bezugspunkt-Festlegung			
Software-Option dynamische K	Collisions-Überwachung (DCM)			
Kollisions-Überwachung in	■ Maschinen-Hersteller definiert zu überwachende Objekte			
allen Maschinen-Betriebsarten	■ Dreistufige Warnung im Manuellen Betrieb			
	■ Programm-Unterbrechung im Automatik-Betrieb			
	■ Überwachung auch von 5-Achs-Bewegungen			

Software-Option zusätzliche Dialogsprachen

Software-Option zusätzliche D	naiogspractien
Zusätzliche Dialogsprachen	Slowenisch
	Norwegisch
	■ Slowakisch
	■ Lettisch
	■ Koreanisch
	■ Estnisch
	■ Türkisch
	Rumänisch

Software-Option Globale Programm-Einstellungen

Funktion zur Überlagerung von Koordinaten-Transformationen in den Abarbeiten-Betriebsarten

- Achsen tauschen
- Überlagerte Nullpunkt-Verschiebung
- Überlagertes Spiegeln
- Sperren von Achsen
- Handrad-Überlagerung
- Überlagerte Grunddrehung und Rotation
- Vorschubfaktor

Software-Option Adaptive Vorschubregelung AFC

Funktion adaptive Vorschubregelung zur Optimierung der Schnittbedingungen bei Serienproduktion

- Erfassung der tatsächlichen Spindelleistung durch einen Lernschnitt
- Definition von Grenzen, in denen die automatische Vorschubregelung stattfindet
- Vollautomatische Vorschubregelung beim Abarbeiten

Software-Option KinematicsOpt

Tastsystem-Zyklen zum automatischen Prüfen und Optimieren der Maschinenkinematik

- Aktive Kinematik sichern/wiederherstellen
- Aktive Kinematik prüfen
- AKtive Kinematik optimieren

Upgrade-Funktionen FCL 2

Freischaltung von wesentlichen Weiterentwicklungen

- Virtuelle Werkzeugachse
- Antast-Zyklus 441, schnelles Antasten
- CAM offline Punktefilter
- 3D-Liniengrafik
- Konturtasche: Jeder Teilkontur separate Tiefe zuweisen
- smarT.NC: Koordinaten-Transformationen
- smarT.NC: **PLANE**-Funktion
- smarT.NC: Grafisch unterstützter Satzvorlauf
- Erweiterte USB-Funktionalität
- Netzwerk-Einbindung über DHCP und DNS

Upgrade-Funktionen FCL 3

Freischaltung von wesentlichen Weiterentwicklungen

- Tastsystem-Zyklus zum 3D-Antasten
- Antastzyklen 408 und 409 (UNIT 408 und 409 in smarT.NC) zum Setzen eines Bezugspunktes in der Mitte einer Nut bzw. in der Mitte eines Steges
- PLANE-Funktion: Achswinkel-Eingabe
- Benutzer-Dokumentation als kontextsensitive Hilfe direkt auf der TNC
- Vorschubreduzierung bei Konturtaschenbearbeitung wenn Werkzeug im Volleingriff ist
- smarT.NC: Konturtasche auf Muster
- smarT.NC: Parallel-Programmierung möglich
- smarT.NC: Preview von Konturprogrammen im Datei-Manager
- smarT.NC: Positionierstrategie bei Punkte-Bearbeitungen

Upgrade-Funktionen FCL 4

Freischaltung von wesentlichen Weiterentwicklungen

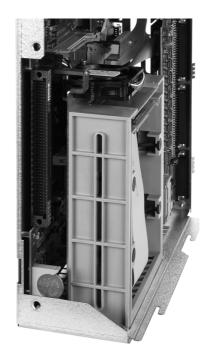
- Grafische Darstellung des Schutzraumes bei aktiver Kollisionsüberwachung DCM
- Handradüberlagerung in gestopptem Zustand bei aktiver Kollisionsüberwachung DCM
- 3D-Grunddrehung (Aufspannkompensation, muss vom Maschinenhersteller angepasst werden)

Eingabe-Formate und Einheiten von TNC-Funk	ctionen
Positionen, Koordinaten, Kreisradien, Fasenlängen	-99 999.9999 bis +99 999.9999 (5,4: Vorkommastellen, Nachkommastellen) [mm]
Werkzeug-Nummern	0 bis 32 767,9 (5,1)
Werkzeug-Namen	16 Zeichen, bei TOOL CALL zwischen "" geschrieben. Erlaubte Sonderzeichen: #, \$, %, &, -
Delta-Werte für Werkzeug-Korrekturen	-99,9999 bis +99,9999 (2,4) [mm]
Spindeldrehzahlen	0 bis 99 999,999 (5,3) [U/min]
Vorschübe	0 bis 99 999,999 (5,3) [mm/min] oder [mm/Zahn] oder [mm/U]
Verweilzeit in Zyklus 9	0 bis 3 600,000 (4,3) [s]
Gewindesteigung in diversen Zyklen	-99,9999 bis +99,9999 (2,4) [mm]
Winkel für Spindel-Orientierung	0 bis 360,0000 (3,4) [°]
Winkel für Polar-Koordinaten, Rotation, Ebene schwenken	-360,0000 bis 360,0000 (3,4) [°]
Polarkoordinaten-Winkel für Schraubenlinien-Interpolation (CP)	-99 999,9999 bis +99 999,9999 (5,4) [°]
Nullpunkt-Nummern in Zyklus 7	0 bis 2 999 (4,0)
Maßfaktor in Zyklen 11 und 26	0,000001 bis 99,999999 (2,6)
Zusatz-Funktionen M	0 bis 999 (3,0)
Q-Parameter-Nummern	0 bis 1999 (4,0)
Q-Parameter-Werte	-999 999 999 bis +999 999 999 (9 Stellen, Gleitkomma)
Marken (LBL) für Programm-Sprünge	0 bis 999 (3,0)
Marken (LBL) für Programm-Sprünge	Beliebiger Textstring zwischen Hochkommas ("")
Anzahl von Programmteil-Wiederholungen REP	1 bis 65 534 (5,0)
Fehler-Nummer bei Q-Parameter-Funktion FN14	0 bis 1 099 (4,0)
Spline-Parameter K	-9,9999999 bis +9,9999999 (1,7)
Exponent für Spline-Parameter	-255 bis 255 (3,0)
Normalenvektoren N und T bei 3D-Korrektur	-9,9999999 bis +9,9999999 (1,7)

14.4 Puffer-Batterie wechseln

Wenn die Steuerung ausgeschaltet ist, versorgt eine Puffer-Batterie die TNC mit Strom, um Daten im RAM-Speicher nicht zu verlieren.

Wenn die TNC die Meldung **Puffer-Batterie wechseln** anzeigt, müssen die Batterien ausgetauscht werden:



Zum Wechseln der Puffer-Batterie Maschine und TNC ausschalten!

Die Puffer-Batterie darf nur von entsprechend geschultem Personal gewechselt werden!

Batterie-Typ:1 Lithium-Batterie, Typ CR 2450N (Renata) Id.-Nr. 315 878-01

- 1 Die Puffer-Batterie befindet sich an der Rückseite der MC 422 B
- 2 Batterie wechseln; neue Batterie kann nur in der richtigen Lage eingesetzt werden

15

iTNC 530 mit Windows XP (Option)

15.1 Einführung

Endbenutzer-Lizenzvertrag (EULA) für Windows XP

Beachten Sie bitte den Microsoft Endbenutzer-Lizenzvertrag (EULA), der Ihrer Maschinen-Dokumentation beiliegt.

Sie finden die EULA auch auf den Internetseiten der Fa. HEIDENHAIN unter www.heidenhain.de, >Service, >Download-Bereich, >Lizenzbestimmungen.

Allgemeines

In diesem Kapitel sind die Besonderheiten der iTNC 530 mit Windows XP beschreiben. Alle Systemfunktionen von Windows Kapitel sind in der Windows-Dokumentation nachzulesen.

Die TNC-Steuerungen von HEIDENHAIN waren immer schon anwenderfreundlich: einfache Programmierung im HEIDENHAIN-Klartext-Dialog, praxisgerechte Zyklen, eindeutige Funktionstasten, und anschauliche Grafikfunktionen machen sie zu den beliebten werkstattprogrammierbaren Steuerungen.

Jetzt steht dem Anwender auch das Standard-Windows-Betriebssystem als Benutzer-Schnittstelle zur Verfügung. Die neue leistungsstarke HEIDENHAIN-Hardware mit zwei Prozessoren bildet dabei die Basis für die iTNC 530 mit Windows XP.

Ein Prozessor kümmert sich um die Echtzeitaufgaben und das HEIDENHAIN-Betriebssystem, während der zweite Prozessor ausschließlich dem Standard-Windows-Betriebssystem zur Verfügung steht und so dem Anwender die Welt der Informations-Technologie öffnet.

Auch hier steht der Bedienkomfort an erster Stelle:

- In das Bedienfeld ist eine komplette PC-Tastatur mit Touchpad integriert
- Der hochauflösende 15-Zoll-Farb-Flachbildschirm zeigt sowohl die iTNC-Oberfläche als auch die Windows-Anwendungen
- Über die USB-Schnittstellen können PC-Standard-Geräte wie beispielsweise Maus, Laufwerke usw. einfach an die Steuerung angeschlossen werden

Technische Daten

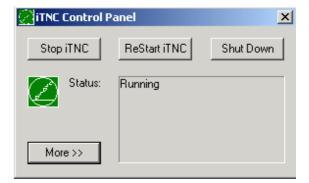
Technische Daten	iTNC 530 mit Windows XP
Ausführung	Zwei-Prozessor-Steuerung mit
	 Echtzeit-Betriebssystem HEROS zur Maschinensteuerung PC-Betriebssystem Windows XP als Benutzerschnittstelle
Speicher	RAM-Speicher:512 MByte für Steuerungs- Anwendungen
	■ 512 MByte für Windows-Anwendungen
	■ Festplatte ■ 13 GByte für TNC-Dateien
	13 GByte für Windows-Daten, davon sind ca. 13 GByte für Anwendungen verfügbar
Datenschittstellen	 Ethernet 10/100 BaseT (bis 100 MBit/s; abhängig von der Netzauslastung) V.24-RS232C (max. 115 200 Bit/s) V.11-RS422 (max. 115 200 Bit/s) 2 x USB 2 x PS/2

15.2 iTNC 530-Anwendung starten

Windows-Anmeldung

Nachdem Sie die Stromversorgung eingeschaltet haben, bootet die iTNC 530 automatisch. Wenn der Eingabedialog zur Windows-Anmeldung erscheint, stehen zwei Möglichkeiten der Anmeldung zur Verfügung:

- Anmeldung als TNC-Bediener
- Anmeldung als lokaler Administrator


Anmeldung als TNC-Bediener

- ▶ Im Eingabefeld **User name** den Benutzernamen "TNC" eingeben, im Eingabefeld **Password** nichts eingeben, mit Button OK bestätigen
- ▶ Die TNC-Software wird automatisch gestartet, im iTNC Control Panel erscheint die Statusmeldung **Starting**, **Please wait...**

Solange das iTNC Control Panel angezeigt wird (siehe Bild), noch keine anderen Windows-Programme starten bzw. bedienen. Wenn die iTNC-Software erfolgreich gestartet ist, minimiert sich das Control Panel zu einem HEIDENHAIN Symbol in der Task-Leiste.

Diese Benutzer-Kennung erlaubt nur sehr eingeschränkten Zugriff im Windows-Betriebssystem. Sie dürfen weder Netzwerk-Einstellungen ändern, noch neue Software installieren.

Anmeldung als lokaler Administrator

Setzen Sie sich mit Ihrem Maschinenhersteller in Verbindung, um den Benutzernamen und das Passwort zu erfragen.

Als lokaler Administrator dürfen Sie Software-Installationen und Netzwerk-Einstellungen vornehmen.

HEIDENHAIN leistet keine Unterstützung bei der Installation von Windows-Anwendungen und übernimmt keine Gewähr für die Funktion der von Ihnen installierten Anwendungen.

HEIDENHAIN haftet nicht für fehlerhafte Festplatteninhalte, die durch Installation von Updates von Fremdsoftware oder zusätzlicher Anwendungssoftware entstehen.

Sind nach Änderungen an Programmen oder Daten Service-Einsätze von HEIDENHAIN erforderlich, dann stellt HEIDENHAIN die angefallenen Service-Kosten in Rechnung.

Um die einwandfreie Funktion der iTNC-Anwendung zu gewährleisten, muss das Windows XP System zu jedem Zeitpunkt genügend

- CPU-Leistung
- freien Festplattenspeicher auf dem Laufwerk C
- Arbeitsspeicher
- Bandbreite des Festplatten-Interfaces

zur Verfügung haben.

Die Steuerung gleicht kurze Einbrüche (bis zu einer Sekunde bei einer Blockzykluszeit von 0,5ms) in der Datenübertragung vom Windowsrechner durch eine umfangreiche Pufferung der TNC-Daten aus. Bricht jedoch die Datenübertragung vom Windows-System über einen längeren Zeitraum erheblich ein, kann es zu Vorschubeinbrüchen beim Programmlauf und dadurch zur Beschädigung des Werkstücks kommen.

Folgende Voraussetzungen bei Software-Installationen beachten:

Das zu installierende Programm darf den Windows-Rechner nicht bis an seine Leistungsgrenze beanspruchen (256 MByte RAM, 266 MHz Taktfrequenz).

Programme, die unter Windows in den Prioritätsstufen höher als normal (above normal), hoch (high) oder **Echtzeit** (real time) ausgeführt werden (z.B. Spiele), dürfen nicht installiert werden.

Virenscanner sollten Sie prinzipiell nur dann verwenden, wenn die TNC gerade kein NC-Programm abarbeitet. HEIDENHAIN emfiehlt, Virenscanner entweder direkt nach dem Einschalten oder direkt vor dem Ausschalten der Steuerung anzuwenden.

15.3 iTNC 530 ausschalten

Grundsätzliches

Um Datenverluste beim Ausschalten zu vermeiden, müssen Sie die iTNC 530 gezielt herunterfahren. Dafür stehen mehrere Möglichkeiten zur Verfügung, die in den folgenden Abschnitten beschrieben sind.

Willkürliches Ausschalten der iTNC 530 kann zu Datenverlust führen.

Bevor Sie Windows beenden, sollten Sie die iTNC 530-Anwendung beenden.

Abmelden eines Benutzers

Sie können Sich jederzeit von Windows abmelden, ohne dass die iTNC-Software davon beeinträchtigt wird. Während des Abmeldevorganges ist jedoch der iTNC-Bildschirm nicht mehr sichtbar und Sie können keine Eingaben mehr machen.

Beachten Sie, dass maschinenspezifische Tasten (z.B. NC-Start oder die Achsrichtungstasten) aktiv bleiben.

Nachdem sich ein neuer Benutzer angemeldet hat, ist der iTNC-Bildschirm wieder sichtbar.

iTNC-Anwendung beenden

Achtung!

Bevor Sie die iTNC-Anwendung beenden, unbedingt die Not-Aus-Taste betätigen. Ansonsten könnte Datenverlust entstehen oder die Maschine könnte beschädigt werden.

Zum Beenden der iTNC-Anwendung stehen zwei Möglichkeiten zur Verfügung:

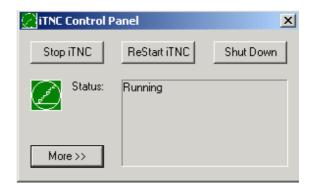
- Internes Beenden über die Betriebsart Manuell: beendet gleichzeitig Windows
- Externes Beenden über das iTNC-ControlPanel: beendet nur die iTNC-Anwendung

Internes Beenden über die Betriebsart Manuell

- ▶ Betriebsart Manuell wählen
- Softkey-Leiste weiterschalten, bis Softkey zum Herunterfahren der iTNC-Anwendung angezeigt wird

- Funktion zum Herunterfahren wählen, anschließende Dialogfrage nochmals mit Softkey JA bestätigen
- ➤ Wenn auf dem iTNC-Bildschirm die Meldung It's now safe to turn off your computer erscheint, dann dürfen Sie die Versorgungsspannung zur iTNC 530 unterbrechen

Externes Beenden über das iTNC-ControlPanel


- Auf der ASCII-Tastatur die Windows-Taste betätigen: Die iTNC-Anwendung wird minimiert und die Task-Leiste angezeigt
- Auf das grüne HEIDENHAIN-Symbol rechts unten in der Task-Leiste doppelklicken: Das iTNC-ControlPanel erscheint (siehe Bild)

- ► Funktion zum Beenden der iTNC 530-Anwendung wählen: Schaltfläche **Stop iTNC** drücken
- Nachdem Sie die Not-Aus-Taste betätigt haben iTNC-Meldung mit Schaltfläche Yes bestätigen: Die iTNC-Anwendung wird gestoppt
- Das iTNC-ControlPanel bleibt aktiv. Über die Schaltfläche Restart iTNC könen Sie die iTNC 530 wieder neu starten

Um Windows zu beenden wählen Sie

- ▶ die Schaltfläche **Start**
- den Menüpunkt Shut down...
- rneut den Menüpunkt Shut down
- ▶ und bestätigen mit OK

Herunterfahren von Windows

Wenn Sie versuchen, Windows herunterzufahren während die iTNC-Software noch aktiv ist, gibt die Steuerung eine Warnung aus (siehe Bild).

Achtung!

Bevor Sie mit OK bestätigen, unbedingt die Not-Aus-Taste betätigen. Ansonsten könnte Datenverlust entstehen oder die Maschine könnte beschädigt werden.

Falls Sie mit OK bestätigen, wird die iTNC-Software heruntergefahren und anschließend Windows beendet.

Achtung!

Windows blendet nach einigen Sekunden eine eigene Warnung ein (siehe Bild), die die TNC-Warnung überdeckt. Warnung niemals mit End Now bestätigen, ansonsten könnte Datenverlust entstehen oder die Maschine könnte beschädigt werden.

15.4 Netzwerk-Einstellungen

Voraussetzung

Um Netzwerk-Einstellungen vornehmen zu können müssen Sie sich als lokaler Administrator anmelden. Setzen Sie sich mit Ihrem Maschinenhersteller in Verbindung, um den dafür erforderlichen Benutzernamen und das Passwort zu erfragen.

Einstellungen sollten nur von einem Netzwerk-Spezialisten vorgenommen werden.

Einstellungen anpassen

Im Auslieferungszustand enthält die iTNC 530 zwei Netzwerk-Verbindungen, die **Local Area Connection** und die **iTNC Internal Connection** (siehe Bild).

Die **Local Area Connection** ist die Verbindung der iTNC an Ihr Netzwerk. Alle von Windows XP her bekannten Einstellungen dürfen Sie an Ihr Netzwerk anpassen (siehe hierzu auch die Windows XP Netzwerk-Beschreibung).

Die **iTNC Internal Connection** ist eine interne iTNC-Verbindung. Änderungen an den Einstellungen dieser Verbindung sind nicht erlaubt und können zur Funktionsunfähigkeit der iTNC führen.

Diese interne Netzwerk-Adresse ist voreingestellt auf 192.168.252.253 und darf nicht mit Ihrem Firmennetzwerk kollidieren, Das Subnet 192.168.254.xxx darf also nicht vorhanden sein. Setzen Sie sich bei Adressenkonflikten agf. mit HIEDENHAIN in Verbindung.

Die Option **Obtain IP adress automatically** (Netzwerkadresse automatisch beziehen) darf nicht aktiv sein.

Zugriffssteuerung

Administratoren haben Zugriff auf die TNC-Laufwerke D, E und F. Beachten Sie, dass die Daten auf diesen Partitionen teilweise binär codiert sind und schreibende Zugriffe zu undefiniertem Verhalten der iTNC führen können.

Die Partitionen D, E und F haben Zugriffsrechte für die Benutzergruppen **SYSTEM** und **Administrators**. Durch die Gruppe **SYSTEM** wird sichergestellt, dass der Windows-Service, der die Steuerung startet, Zugriff erhält. Durch die Gruppe **Administrators** wird erreicht, dass der Echtzeitrechner der iTNC über die **iTNC Internal Connection** Netzwerkverbindung erhält.

Sie dürfen weder den Zugriff für diese Gruppen einschränken, noch andere Gruppen hinzufügen und in diesen Gruppen bestimmte Zugriffe verbieten (Zugriffsbeschränkungen haben unter Windows Vorrang gegenüber Zugriffsberechtigungen).

15.5 Besonderheiten in der Datei-Verwaltung

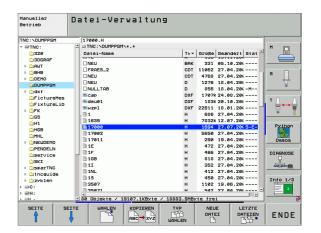
Laufwerk der iTNC

Wenn Sie die Datei-Verwaltung der iTNC aufrufen, erhalten Sie im linken Fenster eine Auflistung aller verfügbaren Laufwerke, z.B.

■ C:\: Windows-Partition der eingebauten Festplatte

■ RS232:\: Serielle Schnittstelle 1
■ RS422:\: Serielle Schnittstelle 2
■ TNC:\: Daten-Partition der iTNC

Zusätzlich können noch weitere Netzlaufwerke vorhanden sein, die Sie über den Windows-Explorer angebunden haben.


Beachten Sie, dass das Daten-Laufwerk der iTNC unter dem Namen TNC:\ in der Datei-Verwaltung erscheint. Dieses Laufwerk (Partition) besitzt im Windows-Explorer den Namen **D**.

Unterverzeichnisse auf dem TNC-Laufwerk (z.B. **RECYCLER** und **SYSTEM VOLUME IDENTIFIER**) werden von Windows XP angelegt und dürfen von Ihnen nicht gelöscht werden.

Über den Maschinen-Parameter 7225 können Sie Laufwerksbuchstaben definieren, die in der Datei-Verwaltung der TNC nicht angezeigt werden sollen.

Wenn Sie im Windows-Explorer ein neues Netzlaufwerk angebunden haben, müssen Sie ggf. die iTNC-Anzeige der verfügbaren Laufwerke aktualisieren:

- ▶ Datei-Verwaltung aufrufen: Taste PGM MGT drücken
- ▶ Hellfeld nach links ins Laufwerk-Fenster setzen
- ▶ Softkey-Leiste auf die zweite Ebene umschalten
- Laufwerk-Ansicht aktualisieren: Softkey AKT. BAUM drücken

Daten-Übertragung zur iTNC 530

Bevor Sie von der iTNC aus eine Daten-Übertragung starten können, müssen Sie das entsprechende Netzlaufwerk über den Windows-Explorer angebunden haben. Der Zugriff auf sogenannte UNC-Netzwerknamen (z.B. \\PC0815\DIR1) ist nicht möglich.

TNC-spezifische Dateien

Nachdem Sie die iTNC 530 in Ihr Netzwerk eingebunden haben, können Sie von der iTNC aus auf einen beliebigen Rechner zugreifen und Dateien übertragen. Sie dürfen bestimmte Datei-Typen jedoch nur durch eine Daten-Übertragung von der iTNC aus starten. Grund dafür ist, dass bei der Daten-Übertragung zur iTNC die Dateien in ein Binärformat gewandelt werden müssen.

Kopieren der nachfolgend aufgeführten Datei-Typen über den Windows-Explorer auf das Daten-Laufwerk D ist nicht erlaubt!

Datei-Typen, die nicht über den Windows-Explorer kopiert werden dürfen:

- Klartext-Dialog-Programme (Endung .H)
- smarT.NC Unit-Programme (Endung .HU)
- smarT.NC Kontur-Programme (Endung .HC)
- DIN/ISO-Programme (Endung .I)
- Werkzeug-Tabellen (Endung .T)
- Werkzeug-Platztabellen (Endung .TCH)
- Paletten-Tabellen (Endung .P)
- Nullpunkt-Tabellen (Endung .D)
- Punkte-Tabellen (Endung .PNT)
- Schnittdaten-Tabellen (Endung .CDT)
- Frei definierbare Tabellen (Endung .TAB)

Vorgehensweise bei der Daten-Übertragung: Siehe "Datenübertragung zu/von einem externen Datenträger", Seite 132.

ASCII-Dateien

ASCII-Dateien (Dateien mit der Endung .A), können Sie ohne Einschränkung direkt über den Explorer kopieren.

Beachten Sie, dass alle Dateien, die Sie auf der TNC bearbeiten wollen, auf dem Laufwerk D gespeichert sein müssen.

SYMBOLE	В	D
3D-Darstellung 580	Bahnbewegungen	Darstellung in 3 Ebenen 579
3D-Daten abarbeiten 445	Polarkoordinaten	Datei
3D-Korrektur	Gerade 246	erstellen 121
Peripheral Milling 213	Kreisbahn mit tangetialem	Datei-Status 117
	Anschluß 247	Datei-Verwaltung 115
Α	Kreisbahn um Pol CC 246	Abhängige Dateien 642
Abhängige Dateien 642	rechtwinklige Koordinaten	aufrufen 117
Achsen tauschen 608	Gerade 233	Datei
Adaptive Vorschubregelung 613	Kreisbahn mit festgelegtem	erstellen 121
AFC 613	Radius 238	Datei kopieren 122
Anbohren 312	Kreisbahn mit tangentialem	Datei löschen 126
Animation PLANE-Funktion 491	Anschluß 240	Datei schützen 129
Antastzyklen: Siehe Benutzer-	Kreisbahn um Kreismittelpunkt	Datei umbenennen 129
Handbuch Tastsystem-Zyklen	CC 237	Datei wählen 118
Anwender-Parameter 658	Übersicht 232, 245	Dateien markieren 127
Anwenderparameter	Bahnfunktionen	Dateien überschreiben 123
allgemeine	Grundlagen 224	Datei-Name 114
für 3D-Tastsysteme 659	Kreise und Kreisbögen 226	Datei-Typ 113
für Bearbeitung und	Vorpositionieren 227	externe Datenübertragung 132
Programmlauf 672	BAUD-Rate einstellen 629	Funktions-Übersicht 116
für externe	Bearbeitung unterbrechen 592	konigurieren über MOD 641
Datenübertragung 659	Bearbeitungsebene	Shortcuts 131
für TNC-Anzeigen, TNC-	schwenken 90, 470	Tabellen kopieren 124
Editor 663	Leitfaden 474	Verzeichnisse 115
maschinenspezifische 643	manuell 90	erstellen 121
Arbeitsraum-Überwachung 589, 644	Zyklus 470	kopieren 125
ASCII-Dateien 156	Bearbeitungszeit ermitteln 585	Datenschnittstelle
Ausdrehen 318	Bedienfeld 49	einrichten 629
Ausräumen: Siehe SL-Zyklen, Räumen	Betriebsarten 50	Steckerbelegungen 674
Ausschalten 69	Betriebszeiten 653	zuweisen 630
Automatische Schnittdaten-	Bezugspunkt setzen 81	Datensicherung 114
Berechnung 198, 214	ohne 3D-Tastsystem 81	Datenübertragungs-
Automatische Werkzeug-	Bezugspunkt wählen 112	Geschwindigkeit 629
Vermessung 197	Bezugspunkte verwalten 83	Datenübertragungs-Software 631
Automatischer Programmstart 602	Bezugssystem 109	Dialog 140
	Bildschirm 47	Draufsicht 578
	Bildschirm-Aufteilung 48	Drehachse
	Bohren 314, 320, 325	Anzeige reduzieren: M94 289
	Vertiefter Startpunkt 327	wegoptimiert
	Bohrfräsen 328	verfahren: M126 288
	Bohrgewindefräsen 345	Drehung 468
	Bohrzyklen 310	DXF-Daten verarbeiten 252

HEIDENHAIN iTNC 530

E	Н	M
Ecken-Runden 235	Handrad-Positionierungen	Maschinenachsen verfahren 70
Eilgang 192	überlagern: M118 280	mit dem elektronischen
Einschalten 66	Hauptachsen 109	Handrad 72, 73
Ellipse 568	Helix-Bohrgewindefräsen 349	mit externen Richtungstasten 70
Entwicklungsstand 8	Helix-Interpolation 247	schrittweise 71
Ersetzen von Texten 147	Help-Dateien anzeigen 652	Maschinenfeste Koordinaten: M91,
Ethernet-Schnittstelle	Hilfe bei Fehlermeldungen 162	M92 268
Anschluss-Möglichkeiten 633	Hilfedateien downloaden 172	Maschinen-Parameter
Einführung 633		
	Hilfesystem 167	für 3D-Tastsysteme 659
konfigurieren 636	1	für Bearbeitung und
Netzlaufwerke verbinden und	In dividual A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Programmlauf 672
lösen 134	Indizierte Werkzeuge 200	für externe
Externe Datenübertragung	Ist-Position übernehmen 141	Datenübertragung 659
iTNC 530 132	iTNC 530 46	für TNC-Anzeigen und den TNC-
iTNC 530 mit Windows XP 698	mit Windows XP 688	Editor 663
Externer Zugriff 656		Maßeinheit wählen 138
	K	Maßfaktor 469
F	Klammerrechnung 548	M-Funktionen: Siehe Zusatz-Funktioner
Fase 234	Klartext-Dialog 140	MOD-Funktion
FCL 626	Kollisionsüberwachung 96	Übersicht 625
FCL-Funktion 8	Kommentare einfügen 155	verlassen 624
Fehlerliste 163	Konstante	wählen 624
Fehlermeldungen 162, 163	Bahngeschwindigkeit: M90 271	wanten 024
ausgeben 543	Kontextsensitive Hilfe 167	N
	Kontur anfahren 228	
Hilfe bei 162	Kontur verlassen 228	NC-Fehlermeldungen 162, 163
Festplatte 113		Netzwerk-Anschluß 134
FN xx: Siehe Q-Parameter-	Kontur wählen aus DXF 259	Netzwerk-Einstellungen 636
Programmierung	Kontur-Zug 413, 415	iTNC 530 mit Windows XP 696
Formatinformationen 684	Koordinaten-Umrechnung 459	Netzwerk-Verbindung prüfen 640
Formularansicht 220	Kopieren von Programmteilen 145	Nullpunkt-Verschiebung
	Kreisbahn 237, 238, 240, 246, 247	im Programm 460
G	Kreismittelpunkt 236	mit Nullpunkt-Tabellen 461
Gerade 233, 246	Kreistasche	Nutenfräsen
Gewindebohren	Schruppen+Schlichten 369	Schruppen+Schlichten 373
mit Ausgleichsfutter 330	Kreiszapfen 386	
ohne Ausgleichsfutter 332, 334	Kugel 572	0
Gewindefräsen außen 353		Offene Konturecken: M98 275
Gewindefräsen Grundlagen 337	L	Options-Nummer 626
Gewindefräsen innen 339	Laserschneiden, Zusatz-	
Gliedern von Programmen 154	Funktionen 296	P
Globale Programmeinstellungen 605	Lernschnitt 617	Paletten-Tabelle
Grafiken	Liste von Fehlermeldungen 163	abarbeiten 177, 189
Ansichten 578	Lochkreis 393	Anwendung 174, 178
	Look ahead 278	Übernehmen von
Ausschnitts-Vergrößerung 583		
beim Programmieren 148, 150	L-Satz-Generierung 649	Koordinaten 175, 179
Ausschnittsvergrößerung 149		wählen und verlassen 176, 182
Grafische Simulation 584		Parameter-Programmierung: Siehe Q-
Werkzeug anzeigen 584		Parameter-Programmierung
Groß-/Kleinschreibung		Pfad 115
umschalten 157		Ping 640
Grundlagen 108		

P	P	S
PLANE-Funktion 489	Programmteile kopieren 145	Satz
Achswinkel-Definition 505	Programmteil-Wiederholung 516	einfügen, ändern 143
Animation 491	Programm-Test	löschen 143
Auswahl möglicher	ausführen 589	Satzvorlauf 596
Lösungen 510	bis zu einem bestimmten	nach Stromausfall 596
Automatisches	Satz 590	Schlüssel-Zahlen 627
Einschwenken 507	Geschwindigkeit einstellen 577	Schnittdaten-Berechnung 214
Eulerwinkel-Definition 497	Übersicht 586	Schnittdaten-Tabelle 214
Inkrementale Definition 503	Programm-Verwaltung: Siehe Datei-	Schraubenlinie 247
Positionierverhalten 507	Verwaltung	Schwenkachsen 290, 291
Projektionswinkel-Definition 495	Programmvorgaben 486	Schwenken der
Punkte-Definition 501	Puffer-Batterie wechseln 685	Bearbeitungsebene 90, 470, 489
Raumwinkel-Definition 493	Punktemuster	Seitenschlichten 412
Sturzfräsen 512	auf Kreis 393	Senkgewindefräsen 341
Vektor-Definition 499	auf Linien 395	Service-Pack installieren 628
Zurücksetzen 492	Übersicht 392	SL-Zyklen
Planfräsen 451	Punkte-Tabellen 306	Ausräumen 408
Platz-Tabelle 203		Grundlagen 399, 434
Polarkoordinaten	Q	Kontur-Daten 406
Grundlagen 110	Q-Paramete-Programmierung	Kontur-Zug 413, 415
Programmieren 245	Programmierhinweise 553, 554,	Schlichten Seite 412
Positionen wählen aus DXF 262	555, 558, 559, 561	Schlichten Tiefe 411
Positionieren	Q-Parameter	Überlagerte Konturen 403, 438
bei geschwenkter	kontrollieren 541	Vorbohren 407
Bearbeitungsebene 270, 295	unformatiert ausgeben 547	Zyklus Kontur 402
mit Handeingabe 102	vorbelegte 562	SL-Zyklen mit Konturformel
Preset-Tabelle 83	Werte an PLC übergeben 547	Software-Nummer 626
Programm	Q-Parameter-	Software-Optionen 681
-Aufbau 137	Programmierung 530, 552	Software-Update durchführen 628
editieren 142	Mathematische	Sonderfunktionen 486
gliedern 154	Grundfunktionen 534	SPEC FCT 486
neues eröffnen 138	Programmierhinweise 531	Spiegeln 466
Programm-Aufruf	Wenn/dann-Entscheidungen 539	Spindeldrehzahl ändern 80
Beliebiges Programm als	Winkelfunktionen 537	Spindeldrehzahl eingeben 206
Unterprogramm 517	Zusätzliche Funktionen 542	Spindel-Orientierung 480
über Zyklus 479	R	Status-Anzeige 53
Programmierhilfen 488	Radiuskorrektur 210	allgemeine 53
Programmlauf	Außenecken, Innenecken 212	zusätzliche 55
ausführen 591		Steckerbelegung
fortsetzen nach	Eingabe 211	Datenschnittstellen 674
Unterbrechung 595	Rechtecktasche Schruppen+Schlichten 364	String-Parameter 552
Globale	Rechteckzapfen 382	Sturzfräsen in geschwenkter
Programmeinstellungen 605	Referenzpunkte überfahren 66	Ebene 512
Sätze überspringen 603	Regelfläche 448	Suchfunktion 146
Satzvorlauf 596	Reiben 316	Systemzeit einstellen 654
Ubersicht 591	Rohteil definieren 138	Systemzeit lesen 556
unterbrechen 592	Rückwärts-Senken 322	
Programm-Name: Siehe Datei-	Rückzug von der Kontur 281	
Verwaltung, Datei-Name	Runde Nut	
	Schruppen+Schlichten 377	

••	Werkstück-Material festlegen 215	Zeitzone einstellen 654
Tastsystem-Überwachung 283 Teach In 141, 233 Technische Daten 677	Werkstück-Positionen absolute 111 inkrementale 111	Zentrieren 312 Zubehör 63 Zusatzachsen 109
iTNC 530 mit Windows XP 689 Teilefamilien 533	Werkzeug-Bewegungen programmieren 140 Werkzeug-Daten aufrufen 206 Delta-Werte 194	Zusatz-Funktionen eingeben 266 für das Bahnverhalten 271 für Drehachsen 287 für Koordinatenangaben 268
Lösch-Funktionen 158 öffnen und verlassen 156 Textteile finden 160 Text-Variablen 552	in die Tabelle eingeben 195 indizieren 200 ins Programm eingeben 194 Werkzeug-Einsatz-Datei 599 Werkzeug-Einsatzprüfung 599	für Laser-Schneidmaschinen 296 für Programmlauf-Kontrolle 267 für Spindel und Kühlmittel 267 Zyklen und Punkte-Tabellen 308 Zyklus
Vertiefter Startpunkt 327 Tiefenschlichten 411 TNCguide 167 TNCremo 631	Werkzeug-Korrektur Länge 209 Radius 210 Werkzeug-Länge 193	aufrufen 303 definieren 301 Gruppen 302 Zylinder 570
TNC-Software updaten 628 Trigonometrie 537	Werkzeug-Name 193 Werkzeug-Nummer 193 Werkzeug-Radius 194 Werkzeug-Schneidstoff 198, 216 Werkzeug-Tabelle	Zylinder-Mantel 416, 418 Konturfräsen 423 Steg bearbeiten 421
	editieren, verlassen 199 Editierfunktionen 199 Eingabemöglichkeiten 195 Werkzeugtyp wählen 198 Werkzeug-Vermessung 197	
USB-Geräte anschließen/ entfernen 135 USB-Schnittstelle 688	Werkzeugwechsel 207 Wiederanfahren an die Kontur 598 Windows XP 688 Windows-Anmeldung 690	
-	Winkelfunktionen 537 WMAT.TAB 215	
Verweilzeit 478 Verzeichnis 115, 121 erstellen 121 kopieren 125 löschen 126		
Vollkreis 237 Vorschub 79 ändern 80 bei Drehachsen, M116 287		
Vorschub in Millimeter/Spindel- Umdrehung: M136 277 Vorschubfaktor für Eintauchbewegungen: M103 276 Vorschubregelung,		

automatische ... 613

Übersichtstabelle: Zusatz-Funktionen

M	Wirkung am Satz -	Anfang	Ende	Seite
M00	Programmlauf HALT/Spindel HALT/Kühlmittel AUS			Seite 267
M01	Wahlweiser Programmlauf HALT			Seite 604
M02	Programmlauf HALT/Spindel HALT/Kühlmittel AUS/ggf. Löschen der Status-Anzeige (abhängig von Maschinen-Parameter)/Rücksprung zu Satz 1		•	Seite 267
M03 M04 M05	Spindel EIN im Uhrzeigersinn Spindel EIN gegen den Uhrzeigersinn Spindel HALT			Seite 267
M06	Werkzeugwechsel/Programmlauf HALT (abhängig von Maschinen-Parameter)/Spindel HALT			Seite 267
M08 M09	Kühlmittel EIN Kühlmittel AUS			Seite 267
M13 M14	Spindel EIN im Uhrzeigersinn/Kühlmittel EIN Spindel EIN gegen den Uhrzeigersinn/Kühlmittel ein	:		Seite 267
M30	Gleiche Funktion wie M02			Seite 267
M89	Freie Zusatz-Funktion oder Zyklus-Aufruf, modal wirksam (abhängig von Maschinen-Parameter)			Seite 303
M90	Nur im geschleppten Betrieb: konstante Bahngeschwindigkeit an Ecken			Seite 271
M91	Im Positioniersatz: Koordinaten beziehen sich auf den Maschinen-Nullpunkt			Seite 268
M92	Im Positioniersatz: Koordinaten beziehen sich auf eine vom Maschinenhersteller definierte Position, z.B. auf die Werkzeugwechsel-Position			Seite 268
M94	Anzeige der Drehachse reduzieren auf einen Wert unter 360°			Seite 289
M97	Kleine Konturstufen bearbeiten			Seite 273
M98	Offene Konturen vollständig bearbeiten			Seite 275
M99	Satzweiser Zyklus-Aufruf			Seite 303
M101 M102	Automatischer Werkzeugwechsel mit Schwesterwerkzeug, bei abgelaufener Standzeit M101 rücksetzen			Seite 208
M103	Vorschub beim Eintauchen reduzieren auf Faktor F (prozentualer Wert)			Seite 276
M104	Zuletzt gesetzten Bezugspunkt wieder aktivieren			Seite 270
M105 M106	Bearbeitung mit zweitem k _v -Faktor durchführen Bearbeitung mit erstem k _v -Faktor durchführen	:		Seite 672
M107 M108	Fehlermeldung bei Schwesterwerkzeugen mit Aufmaß unterdrücken M107 rücksetzen	•		Seite 207

M	Wirkung Wirkung am Satz -	Anfang	Ende	Seite
M109	Konstante Bahngeschwindigkeit an der Werkzeug-Schneide (Vorschub-Erhöhung und -Reduzierung)			Seite 278
M110	Konstante Bahngeschwindigkeit an der Werkzeug-Schneide (nur Vorschub-Reduzierung)			
M111	M109/M110 rücksetzen			
	Autom. Korrektur der Maschinengeometrie beim Arbeiten mit Schwenkachsen M114 rücksetzen			Seite 290
	Vorschub bei Winkelachsen in mm/min M116 rücksetzen			Seite 28
M118	Handrad-Positionierung während des Programmlaufs überlagern			Seite 28
M120	Radiuskorrigierte Kontur vorausberechnen (LOOK AHEAD)			Seite 27
M124	Punkte beim Abarbeiten von nicht korrigierten Geradensätzen nicht berücksichtigen			Seite 27
	Drehachsen wegoptimiert verfahren M126 rücksetzen			Seite 28
	Position der Werkzeugspitze beim Positionieren von Schwenkachsen beibehalten (TCPM) M128 rücksetzen			Seite 29
M130	Im Positioniersatz: Punkte beziehen sich auf das ungeschwenkte Koordinatensystem			Seite 27
	Genauhalt an nicht tangentialen Konturübergängen bei Positionierungen mit Drehachsen M134 rücksetzen			Seite 29
	Vorschub F in Millimeter pro Spindel-Umdrehung M136 rücksetzen			Seite 27
M138	Auswahl von Schwenkachsen			Seite 29
M140	Rückzug von der Kontur in Werkzeugachsen-Richtung			Seite 28
M141	Tastsystem-Überwachung unterdrücken			Seite 28
M142	Modale Programminformationen löschen			Seite 28
M143	Grunddrehung löschen			Seite 28
M144 M145	Berücksichtigung der Machinen-Kinematik in IST/SOLL-Positionen am Satzende M144 zurücksetzen			Seite 29
	Werkzeug bei NC-Stopp automatisch von der Kontur abheben M148 zurücksetzen			Seite 28
M150	Endschaltermeldung unterdrücken (satzweise wirksame Funktion)			Seite 28
M201 M202 M203	Laserschneiden: Programmierte Spannung direkt ausgeben Laserschneiden: Spannung als Funktion der Strecke ausgeben Laserschneiden: Spannung als Funktion der Geschwindigkeit ausgeben Laserschneiden: Spannung als Funktion der Zeit ausgeben (Rampe) Laserschneiden: Spannung als Funktion der Zeit ausgeben (Puls)			Seite 29

Funktionsübersicht DIN/ISO iTNC 530

M-Funl	ktionen		
M00 M01 M02	Programmlauf HALT/Spindel HALT/ Kühlmittel AUS Wahlweiser Programmlauf HALT Programmlauf HALT/Spindel HALT/Kühlmittel AUS/ggf. Löschen der Status-Anzeige (abhängig		
 M03	von Maschinen-Parameter)/Rücksprung zu Satz 1 Spindel EIN im Uhrzeigersinn		
M04 M05	Spindel EIN III Ollizeigersiili Spindel EIN gegen den Uhrzeigersinn Spindel HALT		
M06	Werkzeugwechsel/Programmlauf HALT (abhängig von Maschinen-Parameter)/Spindel HALT		
M08 M09	Kühlmittel EIN Kühlmittel AUS		
M13 M14	Spindel EIN im Uhrzeigersinn/Kühlmittel EIN Spindel EIN gegen den Uhrzeigersinn/Kühlmittel ein		
M30	Gleiche Funktion wie M02		
M89	Freie Zusatz-Funktion oder Zyklus-Aufruf, modal wirksam (abhängig von Maschinen-Parameter)		
M90	Nur im geschleppten Betrieb: konstante Bahngeschwindigkeit an Ecken		
M99	Satzweiser Zyklus-Aufruf		
M91 M92	Im Positioniersatz: Koordinaten beziehen sich auf den Maschinen-Nullpunkt Im Positioniersatz: Koordinaten beziehen sich auf eine vom Maschinenhersteller definierte Position, z.B. auf die Werkzeugwechsel-Position		
M94	Anzeige der Drehachse reduzieren auf einen Wert unter 360°		
M97 M98	Kleine Konturstufen bearbeiten Offene Konturen vollständig bearbeiten		
M101 M102	Automatischer Werkzeugwechsel mit Schwesterwerkzeug, bei abgelaufener Standzeit M101 rücksetzen		
M103	Vorschub beim Eintauchen reduzieren auf Faktor F (prozentualer Wert)		
M104	Zuletzt gesetzten Bezugspunkt wieder aktivieren		
M105 M106	Bearbeitung mit zweitem kv-Faktor durchführen Bearbeitung mit erstem kv-Faktor durchführen		
M107 M108	Fehlermeldung bei Schwesterwerkzeugen mit Aufmaß unterdrücken M107 rücksetzen		
101100	IVITO/ TUUKSULLUIT		

M-Funl	ctionen
M109 M110 M111	Konstante Bahngeschwindigkeit an der Werkzeug- Schneide (Vorschub-Erhöhung und -Reduzierung Konstante Bahngeschwindigkeit an der Werkzeug- Schneide (nur Vorschub–Reduzierung M109/M110 rücksetzen
M114	Autom. Korrektur der Maschinengeometrie beim
M115	Arbeiten mit Schwenkachsen M114 rücksetzen
M116 M117	Vorschub bei Winkelachsen in mm/min M116 rücksetzen
M118	Handrad-Positionierung während des Programmlaufs überlagern
M120	Radiuskorrigierte Kontur vorausberechnen (LOOK AHEAD)
M124	Punkte beim Abarbeiten von nicht korrigierten Geradensätzen nicht berücksichtigen
M126 M127	Drehachsen wegoptimiert verfahren M126 rücksetzen
M128	Position der Werkzeugspitze beim Positionieren von Schwenkachsen beibehalten (TCPM)
M129	M128 rücksetzen
M130	Im Positioniersatz: Punkte beziehen sich auf das ungeschwenkte Koordinatensystem
M134 M135	Genauhalt an nicht tangentialen Konturübergängen bei Positionierungen mit Drehachsen M134 rücksetzen
M136 M137	Vorschub F in Millimeter pro Spindel-Umdrehung M136 rücksetzen
M138	Auswahl von Schwenkachsen
M142	Modale Programminformationen löschen
M143	Grunddrehung löschen
M144	Berücksichtigung der Maschinen-Kinematik in IST,
M145	SOLL-Positionen am Satzende M144 rücksetzen
M150	Endschaltermeldung unterdrücken
M200	Laserschneiden: Programmierte Spannung direkt
M201	ausgeben Laserschneiden: Spannung als Funktion der
M202	Strecke ausgeben Laserschneiden: Spannung als Funktion der
M203	Geschwindigkeit ausgeben Laserschneiden: Spannung als Funktion der Zeit ausgeben (Rampe)
M204	Laserschneiden: Spannung als Funktion der Zeit ausgeben (Puls)

G-Funktionen G-Funktionen Werkzeug-Bewegungen Zyklen zur Herstellung von Bohrungen und Gewinden G00 Geraden-Interpolation, kartesisch, im Eilgang G262 Gewindefräsen G01 Geraden-Interpolation, kartesisch G263 Senkgewindefräsen G02 Kreis-Interpolation, kartesisch, im Uhrzeigersinn G264 Bohrgewindefräsen G03 Kreis-Interpolation, kartesisch, im G265 Helix-Bohrgewindefräsen Gegenuhrzeigersinn G267 Aussengewinde Fräsen G05 Kreis-Interpolation, kartesisch, ohne Zyklen zum Fräsen von Taschen, Zapfen und Nuten Drehrichtungsangabe G06 Kreis-Interpolation, kartesisch, tangentialer G251 Rechtecktasche komplett Konturanschluss Kreistasche komplett G252 Achsparalleler Positionier-Satz G07* G253 Nut komplett G10 Geraden-Interpolation, polar, im Eilgang G254 Runde Nut komplett Geraden-Interpolation, polar G11 Rechteckzapfen G256 G12 Kreis-Interpolation, polar, im Uhrzeigersinn G257 Kreiszapfen G13 Kreis-Interpolation, polar, im Gegenuhrzeigersinn G15 Kreis-Interpolation, polar, ohne Zyklen zur Herstellung von Punktemuster Drehrichtungsangabe Kreis-Interpolation, polar, tangentialer G16 G220 Punktemuster auf Kreis Konturanschluss G221 Punktemuster auf Linien Fase/Rundung/Kontur anfahren bzw. verlassen SL-Zyklen Gruppe 2 G24* Fasen mit Fasenlänge R G37 Kontur, Definition der Teilkontur-Unterprogramm-G25* Ecken-Runden mit Radius R Nummern Weiches (tangentiales) Anfahren einer Kontur G26* G120 Kontur-Daten festlegen (gültig für G121 bis G124) mit Radius R G121 Vorbohren G27* Weiches (tangentiales) Verlassen einer Kontur Konturparallel Ausräumen (Schruppen) G122 mit Radius R G123 Tiefen-Schlichten G124 Seiten-Schlichten Werkzeug-Definition G125 Kontur-Zug (offene Kontur bearbeiten) G127 Zvlinder-Mantel G99* Mit Werkzeug-NummerT, Länge L, Radius R G128 Zylinder-Mantel Nutenfräsen Werkzeug-Radiuskorrektur Koordinaten-Umrechnungen G40 Keine Werkzeug-Radiuskorrektur G53 Nullpunkt-Verschiebung aus Nullpunkt-Tabellen G41 Werkzeug-Bahnkorrektur, links von der Kontur G54 Nullpunkt-Verschiebung im Programm G42 Werkzeug-Bahnkorrektur, rechts von der Kontur G28 Spiegeln der Kontur G43 Achsparallele Korrektur für G07, Verlängerung G73 Drehung des Koordinatensystems G44 Achsparallele Korrektur für G07, Verkürzung G72 Maßfaktor, Kontur verkleinern/vergrößern Bearbeitungsebene schwenken Rohteil-Definition für Grafik G80 G247 Bezugspunkt Setzen G30 (G17/G18/G19) Minimal-Punkt Zyklen zum Abzeilen G31 (G90/G91) Maximal-Punkt G60 3D-Daten abarbeiten Zyklen zur Herstellung von Bohrungen und Gewinden G230 Abzeilen ebener Flächen G240 G231 Abzeilen von beliebig geneigten Flächen Zentrieren G200 Bohren *) Satzweise wirksame Funktion G201 Reiben G202 Ausdrehen Tastsystem-Zyklen zur Erfassung einer Schieflage G203 Universal-Bohren G204 Rückwärts-Senken G400 Grunddrehung über zwei Punkte G205 Universal-Tiefbohren G401 Grunddrehung über zwei Bohrungen G206 Gewindebohren mit Ausgleichsfutter G402 Grunddrehung über zwei Zapfen G207 Gewindebohren ohne Ausgleichsfutter

G403

G404

G405

G208

G209

Bohrfräsen

Gewindebohren mit Spanbruch

Grunddrehung über eine Drehachse

Schieflage über C-Achse kompensieren

kompensieren

Grunddrehung setzen

G-Funktionen	G-Funktionen		
Tastsystem-Zyklen zum Bezugspunkt-Setzen	Maßeinheit		
G408 Bezugspunkt Mitte Nut G409 Bezugspunkt Mitte Steg G410 Bezugspunkt Rechteck innen G411 Bezugspunkt Rechteck aussen G412 Bezugspunkt Kreis innen	G70 Maßeinheit inch (am Programm-Anfang festlegen G71 Maßeinheit Millimeter (am Programm-Anfang festlegen) Sonstige G-Funktionen		
G413 Bezugspunkt Kreis aussen G414 Bezugspunkt Ecke aussen G415 Bezugspunkt Ecke innen G416 Bezugspunkt Lockreis-Mitte G417 Bezugspunkt in der Tastystem-Achse G418 Bezugspunkt in der Mitte von 4 Bohrungen G419 Bezugspunkt in wählbarer Achse Tastsystem-Zyklen zur Werkstück-Vermessung	G29 Letzten Positions-Sollwert als Pol (Kreismittelpunkt) G38 Programmlauf-STOPP G51* Werkzeug-Vorauswahl (bei zentralem Werkzeug- Speicher G79* Zyklus-Aufruf G98* Label-Nummer setzen		
G55 Messen beliebige Koordinate	*) Satzweise wirksame Funktion		
G420 Messen beliebiger Winkel	Adressen		
G421 Messen Bohrung G422 Messen Kreiszapfen G423 Messen Rechtecktasche G424 Messen Rechteckzapfen	% Programm-Anfang % Programm-Aufruf		
G425 Messen Nut	# Nullpunkt-Nummer mit G53		
G426 Messen Stegbreite G427 Messen beliebige Koordinate G430 Messen Lockreis-Mitte G431 Messen beliebige Ebene	A Drehbewegung um X-Achse B Drehbewegung um Y-Achse C Drehbewegung um Z-Achse		
Tastsystem-Zyklen zur Kinematik-Vermessung	D Q-Parameter-Definitionen		
G450 TT kalibrieren G481 Messen Werkzeug-Länge	DL Verschleiß-Korrektur Länge mit T DR Verschleiß-Korrektur Radius mit T		
G482 Messen Werkzeug-Radius G483 Messen Werkzeug-Länge und -Radius	E Toleranz mit M112 und M124		
Tastsystem-Zyklen zur Werkzeug-Vermessung G480 TT kalibrieren G481 Messen Werkzeug-Länge	F Vorschub F Verweilzeit mit G04 F Maßfaktor mit G72 F Faktor F-Reduzierung mit M103		
G482 Messen Werkzeug-Radius G483 Messen Werkzeug-Länge und -Radius	G G-Funktionen		
Sonder-Zyklen G04* Verweilzeit mit F Sekunden	H Polarkoordinaten-Winkel H Drehwinkel mit G73 H Grenzwinkel mit M112		
G36 Spindel-Orientierung G39* Programm-Aufruf	I X-Koordinate des Kreismittelpunkts/Pols		
G62 Toleranzabweichung für schnelles Konturfräsen	J Y-Koordinate des Kreismittelpunkts/Pols		
G440 Achsverschiebung messen G441 Schnelles Antasten	K Z-Koordinate des Kreismittelpunkts/Pols		
Bearbeitungs-Ebene festlegen G17 Ebene X/Y, Werkzeug-Achse Z	L Setzen einer Label-Nummer mit G98 L Sprung auf eine Label-Nr.		
G18 Ebene Z/X, Werkzeug-Achse Y	L Werkzeug-Länge mit G99		
G19 Ebene Y/Z, Werkzeug-Achse X G20 Werkzeug-Achse IV	M M-Funktionen		
Maßangaben	N Satznummer		
G90 Maßangaben absolut G91 Maßangaben inkremental	P Zyklus-Parameter in Bearbeitungszyklen P Wert oder Q-Parameter in Q-Parameter-Definition		
Co. Maisangason ma ciriontal	Q Parameter Q		

Adres	Adressen		
R	Polarkoordinaten-Radius		
R	Kreis-Radius mit G02/G03/G05		
R	Rundungs-Radius mit G25/G26/G27		
R	Werkzeug-Radius mit G99		
S	Spindeldrehzahl		
S	Spindel-Orientierung mit G36		
T	Werkzeug-Definition mit G99		
T	Werkzeug-Aufruf		
T	nächstes Werkzeug mit G51		
U	Achse parallel zur X-Achse		
V	Achse parallel zur Y-Achse		
W	Achse parallel zur Z-Achse		
X	X-Achse		
Y	Y-Achse		
Z	Z-Achse		
*	Satzende		

Konturzyklen

Programm-Aufbau bei Bearbeitung mit mehreren Werkzeugen	
Liste der Kontur-Unterprogramme	G37 P01
Kontur-Daten definieren	G120 Q1
Bohrer definieren/aufrufen Konturzyklus: Vorbohren Zyklus-Aufruf	G121 Q10
Schruppfräser definieren/aufrufen Konturzyklus: Ausräumen Zyklus-Aufruf	G122 Q10
Schlichtfräser definieren/aufrufen Konturzyklus: Schlichten Tiefe Zyklus-Aufruf	G123 Q11
Schlichtfräser definieren/aufrufen Konturzyklus: Schlichten Seite Zyklus-Aufruf	G124 Q11
Ende des Haupt-Programmes, Rücksprung	M02
Kontur-Unterprogramme	G98 G98 L0

Radiuskorrektur der Kontur-Unterprogramme

Kontur	Programmierreihenfolge der Konturelemente	Radius- Korrektur
Innen	im Uhrzeigersinn (CW)	G42 (RR)
(Tasche)	Im Gegenuhrzeigersinn (CCW)	G41 (RL)
Außen	im Uhrzeigersinn (CW)	G41 (RL)
(Insel)	Im Gegenuhrzeigersinn (CCW)	G42 (RR)

Koordinaten-Umrechnungen

Koordinaten- Umrechnung	Aktivieren	Aufheben
Nullpunkt- Verschiebung	G54 X+20 Y+30 Z+10	G54 X0 Y0 Z0
Spiegeln	G28 X	G28
Drehung	G73 H+45	G73 H+0
Maßfaktor	G72 F 0,8	G72 F1
Bearbeitungs- ebene	G80 A+10 B+10 C+15	G80
Bearbeitungs- ebene	PLANE	PLANE RESET

Q-Parameter-Definitionen

D	Funktion
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14	Zuweisung Addition Subtraktion Multiplikation Division Wurzel Sinus Cosinus Wurzel aus Quadratsumme c = √a²+b² Wenn gleich, Sprung auf Label-Nummer Wenn ungleich, Sprung auf Label-Nummer Wenn größer, Sprung auf Label-Nummer Wenn kleiner, Sprung auf Label-Nummer Angle (Winkel aus c sin a und c cos a) Fehler-Nummer Print Zuweisung PLC
13	Zuweisung FLC

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH

Dr.-Johannes-Heidenhain-Straße 5

83301 Traunreut, Germany

② +49 (8669) 31-0 EAX +49 (8669) 5061 E-Mail: info@heidenhain.de

 Technical support
 FAX
 +49 (8669) 32-10 00

 Measuring systems
 ⊕
 +49 (8669) 31-31 04

 E-Mail: service.ms-support@heidenhain.de

 TNC support
 ⊕
 +49 (8669) 31-31 01

 E-Mail: service.nc-support@heidenhain.de

 NC programming
 ⊕
 +49 (8669) 31-31 03

 E-Mail: service.nc-pgm@heidenhain.de

 PLC programming
 ⊕
 +49 (8669) 31-31 02

E-Mail: service.lathe-support@heidenhain.de

E-Mail: service.plc@heidenhain.de

www.heidenhain.de

Lathe controls

3D-Tastsysteme von HEIDENHAIN helfen Ihnen, Nebenzeiten zu reduzieren:

2 +49 (8669) 31-3105

Zum Beispiel

- Werkstücke ausrichten
- Bezugspunkte setzen
- Werkstücke vermessen
- 3D-Formen digitalisieren

mit den Werkstück-Tastsystemen **TS 220** mit Kabel **TS 640** mit Infrarot-Übertragung

- Werkzeuge vermessen
- Verschleiß überwachen
- Werkzeugbruch erfassen

mit dem Werkzeug-Tastsystem **TT 140**

