

HEIDENHAIN

Lods Klartext-dialog

iTNC 530

NC-software 340 490-04 340 491-04 340 492-04 340 493-04 340 494-04

Dansk (da) 12/2007

Lodsen

... er en programmerings-hjælp for HEIDENHAIN-styringen iTNC 530 i kortfattet udgave. En komplet vejledning for programmering og betjening af TNC´en finder De i brugerhåndbogen. Der finder De også informationer

- om Q-parameter-programmering
- om det centrale værktøjslager
- om 3D-værktøjs-korrektur
- om værktøjs-opmåling

Symboler i lodsen

Vigtige informationer bliver fremvist i lodsen med følgende symboler:

Vigtig Anvisning!

Advarsel: Ved ikke synlig fare for bruger eller maskine!

Maskine og TNC skal være forberedt af maskinfabrikanten for denne funktion.

T

Kapitel i bruger-håndbog. Her finder De udførlige informationer om det pågældende tema.

Styring	NC-software-nummer
iTNC 530	340 490-04
iTNC 530, Export-udgave	340 491-04
iTNC 530 med Windows XP	340 492-04
iTNC 530 med Windows XP, eksport-udgave	340 493-04
iTNC 530 programmeringsplads	340 494-04

Indhold

Lodsen	3
Grundlaget	5
Konturer tilkørsel og frakørsel	16
Banefunktioner	22
Fri kontur-programmering FK	31
Underprogrammer og programdel-gentagelser	41
Arbejde med cykler	44
Cykler for fremstilling af boringer og gevind	46
Lommer, tappe og noter	63
Punktmønster	70
SL-cykler	72
Cyklen for nedfræsning	83
Cykler for koordinat-omregning	87
Special-cykler	95
PLANE-funktionen (software option 1)	99
Grafik og status-visning	113
DIN/ISO-programmering	116
Hjælpe-funktioner M	123

Grundlaget

Programmer/filer

F
7

Se "programmering, fil-styring".

Programmer, tabeller og tekster gemmer TNC´en i filer. Fil-betegnelsen består af to komponenter:

PROG20	.Н
Fil-navn	Fil-type
Maximal længde	Se tabellen til højre

Filer i TNC'en	Туре
Programmer i HEIDENHAIN-format i DIN/ISO-format	.H .I
smart.NC-programmer unit-program Kontur programmering Punkt-tabeller	.HU .HC .HP
Tabeller for Værktøjer Værktøjs-veksler Paletter Nulpunkter Punkter Presets (henf.punkter) Snitdata Skærmaterialer, materialer	.T .TCH .P .D .PNT .PR .CDT .TAB
Tekst som ASCII-filer Hjælp-filer	.A .CHM

Åbning af et nyt bearbejdnings-program

- PGM MGT
- Vælg biblioteket, i hvilket programmet skal gemmes
- Indlæs det nye program-navn, bekræft med tasten ENT
- Vælg måleenhed: Tryk softkey MM eller TOMME. TNC'en skifter til program-vindue og åbner dialogen for definition af BLK-FORM (råemne)
- Indlæs spindelakse
- Indlæs efter hinanden X-, Y- og Z-koordinaterne for MINpunkter
- Indlæs efter hinanden X-, Y- og Z-koordinaterne for MAXpunkter

1 BLK FORM 0.1 Z X+0 Y+0 Z-50

2 BLK FORM 0.2 X+100 Y+100 Z+0

Fastlægge billedskærm- opdeling

B

Se "introduktion, iTNC 530".

▶ Vis softkeys for fastlæggelse af billedskærmopdeling

Driftsart	Billedskærm-indhold	
Manuel drift og El.håndhjul	Positioner	POSITION
	Positioner til venstre, status til højre	POSITION + STATUS
Positionering med manuel indlæsning	Program	PGM
	Positioner til venstre, status til højre	PROGRAM + STATUS

MAN	UEL [RIFT							PF IM	OGRAM- IDLÆSNING
										M
AKT.	X	+23	37.86	8	Oversigt	PGM	LBL	сус м	POS	•
	Y	-21	18.28	6	RESTV					S
*- <u>B</u>	Z		6.95	7	X +941	.654	*B -	99924.3	00	1 🕈
_	* a		0.00	0	Y +1383 Z +5025	.003	*C -	•999999.0	00	
	* A		0.00	0	* a +99999	. 000				тД
	* B	+ 7	4.70	0	*A +99999	. 000				
	* C		0.00	р р	VT 🕺	+0.000	90			
				- -	A +0.	0000				Python
					B +0.	0000 0000				Demos
	S 1	0.0	00		Grundda	rej.	+0.0000	•		DIAGNOS
@: 15	T S F Ø	[Z 5 2500	15 /9						
				0% 0%	S-IST SENm]	LII	MIT	1 23	3:22	
М		s	F	KF TR	NT- PR STER TF	ESET		1.	3D ROT	VÆRKTØJ

Grundlaget

1

Driftsart	Billedskærm-indhold		PROGI	RAMLØB	B BLO	KFØLG	E			PRO	GRAM- LÆSNING
Programafvikling blokfølge Programafvikling enkeltblok	Program	PGM	0 BEGIN 1 BLK FC 2 BLK FC	PGM 17011 ORM 0.1 Z ORM 0.2 X+	MM X-60 Y-7 130 Y+50	8 Z-20 Z+45					H
Program-test	Program til venstre, program- inddeling til højre	PROGRAM + OPDELING	3 TOOL 0 4 L X-5 5 L X-3 6 RND R2	CALL 3 Z 53 50 Y-30 Z 30 Y-40 Z 20	500 +20 R0 F1 +10 RR	900 M3					
	Positioner til venstre, status til højre	PROGRAM + STATUS	7 L X+7 8 CT X+	70 Y-60 Z +70 Y+30 0%	-10 S-IST			-		I	Python Demos
	Program til venstre, grafik til højre	PROGRAM + GRAFIK	₩ **a **C	+237. +0. +0.	. 868 . 000 ++ . 000	Y – A	·218. +0.	286 Z 000 + E	+	6.957 4.700	DIAGNOSIS
	Grafik	GRAPHICS		. 15	SI	5 DE 5	Z S Z	S 2 500 F BLOK FREMLØB	Værktøjs brugs kontrol	NULPUNKTS	VÆRKTØJS
Programafvikling blokfølge og programafvikling	Program til venstre, aktive kollisionslegeme til højre	PROGRAM + KINEMATIK	MANUEL	P	ROGRA	M-IND	LÆSN	IING			
enkeitbiok	Aktive kollisionslegeme	KINEMATIK	Ø BEGIN 1 BLK FC	PGM EMOSEF	тк мм X-80 Y-8	0 Z-20					M
Program-indlagring/ editering	Program	PGM	3 TOOL (4 L Z+5 5 L X+6	CALL 5 Z 54 50 R0 FMAX 0 Y+0 R0 F	1000 M3 MAX	2+0			Ì		S J
	Program til venstre, program- inddelingtil højre	PROGRAM + OPDELING	5 L Z-5 7 FPOL 8 FL PF 9 FC DR-	5 R0 FMAX X+0 Y+0 R+22.5 PA+ + R22.5 CLS	⊧0 RL F750 3D+ CCX+0	CCA+6					Python Demos
	Program til venstre, programmeringsgrafik til højre	PROGRAM + GRAFIK	10 FCT DF 11 FL X- 12 FSELEC 13 FL LEP	R- R60 +2 Y+55 LE CT2 N23 AN+0	EN16 AN+9	0		\sim		//	DIAGNOSIS
	Program til venstre, 3D-liniegrafik til højre	PROGRAM + 3D LINIER	14 FC DR-	SLUT	F0	DE	SIDE	FIND	START	ENKEL START	RESET + START

Retvinklede koordinater - absolut

Målangivelser henfører sig til det aktuelle nulpunkt. Værktøjet kører **til** absolutte koordinater.

Programmerbare akser i en NC-blok

Retliniebevægelse Cirkelbevægelse 5 vilkårlige akser 2 lineær-akser et plan eller 3 Lineær-akser med cyklus 19 BEARBEJDNINGSPLAN

Retvinklede koordinater - inkremental

Målangivelser henfører sig til den sidst programmerede position for værktøjet. Værktøjet kører **med** inkrementale koordinater.

Cirkelmidtpunkt og Pol: CC

Cirkelmidtpunkt **CC** skal indlæses, for at programmere cirkelformede banebevægelser med banefunktionen **C** (se side 26). **CC** bliver på den anden side anvendt som Pol for målangivelser i polarkoordinater.

CC bliver fastlagt i retvinklede koordinater.

Et absolut fastlagt cirkelmidtpunkt eller Pol **CC** henfører sig altid til det i øjeblikket aktive nulpunkt.

Et inkremental fastlagt cirkelmidtpunkt eller Pol **CC** henfører sig altid til den sidst programmerede position for værktøjet.

Vinkelhenf.akse

En vinkel – som polarkoordinat-vinkel **PA** og drejevinkel **ROT** – henfører sig til henførengsaksen.

Arbejdsplan	Henf.akse og 0°-retning
X/Y	+X
Y/Z	+Y
Z/X	+Z

Polarkoordinater

Målangivelser i polarkoordinater henfører sig til polen **CC**. En position bliver fastlagt i arbejdsplanet med:

Polarkoordinat-radius PR = afstanden af position fra polen CC

Polarkoordinat-vinkel PA = vinklen fra vinkelhenf.akse til strækningen CC – PR

Inkremental målangivelse

Inkrementale Mmålangivelser i polarkoordinater henfører sig til den sidst programmerede position.

Programmering af polarkoordinater

▶ Vælg banefunktion

Tryk P-tasteSvare på dialogspørgsmål

Definere værktøjer

Værktøjs-data

Alle værktøjer bliver kendetegnet med et værktøjs-nummer mellem 0 og 254. Når De arbejder med værktøjs-tabeller, kan De anvende højere numre og tildele yderligere værktøjs-navne.

Indlæse værktøjs-data

Værktøjs-data (længde L og radius R) kan indlæses:

- I form af en værktøjs-tabel (central, program TOOL.T)
- eller

TOOL DEF

umiddelbart i programmet med TOOL DEF-blokke (lokal)

- ▶ Værktøjs-nummer
- ▶ Værktøjs-længde L
- ▶ Værktøjs-radius R
- Den virkelige værktøjs-længde fremskaffes med et forindstilleudstyr; Den fremskaffede længde bliver programmeret.

Kald af værktøjs-data

- Værktøjs-nummer eller -navn
- Spindelakse parallel X/Y/Z: Værktøjs-akse
- Spindelomdrejningstal S
- Tilspænding F
- Sletspån værktøjs-længde DL (f.eks. slitage)
- Sletspån værktøjs-radius DR (f.eks. slitage)
- Sletspån værktøjs-radius DR2 (f.eks. slitage)
- 3 TOOL DEF 6 L+7.5 R+3
- 4 TOOL CALL 6 Z S2000 F650 DL+1 DR+0.5 DR2+0.1
- 5 L Z+100 R0 FMAX
- 6 L X-10 Y-10 R0 FMAX M6

Værktøjs-skift

- Ved kørsel til værktøjsskift-position pas på kollisionsfare!
- Fastlægge drejeretning for spindel med M-funktion:
 - M3: højreløb
 - M4: venstreløb
- Sletspån for værktøjs-radius eller -længde maksimal ± 99.999 mm!

Værktøjs-korrekturer

Ved bearbejdningen tilgodeser TNC'en længden L og radius R for det kaldte værktøj.

Længdekorrektur

Begynd aktiviteten:

Kør værktøjet i spindelaksen

Slut aktiviteten:

Kald et nyt værktøj eller værktøj med længden L=0

Radiuskorrektur

Begynd aktiviteten:

- Kør værktøjet i bearbejdningsplanet med RR eller RL Slut aktiviteten:
- Programmér positioneringsblok med R0
- Arbejde uden radiuskorrektur (f.eks. boring):
- Programmér positioneringsblok med R0

Grundlaget

Henf.punkt-fastlæggelse uden 3D-tastsystem

Ved henføringspunkt-fastlæggelse bliver TNC'ens display sat på koordinaterne til en kendt emne-position.

- Nulværktøj med kendt radius indveksles
- Vælg driftsart manuel drift eller el.håndhjul
- Berør henf.flade i værktøjsaksen og indlæs værktøjs-længden
- Berør henf.flade i bearbejdnings-plan og indlæs positionen for værktøjsmidtpunktet

Indretning og måling med 3D-tastsystemer

Særdeles hurtig, enkel og præcis sker indretningen af maskinen med et HEIDENHAIN 3D-tastsystem.

Ved siden af tast-funktionen for klargøring af maskinen i driftsart manuel og el. håndhjul, står i programafviklings-driftsarten et stort antal målecykler til rådighed (se også bruger-håndbogen Tastsystem-cykler)

- Målecykle for registrering og kompensation af en emne-skråflade
- Målecykler for automatisk fastlæggelse af et henf.punkt
- Målecykler for automatisk emne-opmåling med tolerancesammenligning og automatisk værktøjs-korrektur

Grundlaget

Konturer tilkørsel og frakørsel

Startpunkt P_S

P_S ligger udenfor konturen og skal tilkøres uden radiuskorrektur.

Hjælpepunkt P_H

 P_H ligger udenfor konturen og bliver udregnet af TNC`en.

TNC'en kører værktøjet fra startpunktet P_S til hjælpepunktet P_H med den sidst programmerede tilspænding!

Første konturpunkt P_A og sidste konturpunkt P_E

Det første konturpunkt P_A bliver programmeret i en **APPR**-blok (eng: approach = kør til). Det sidste konturpunkt bliver programmeret som vanligt.

Slutpunkt P_N

 P_N ligger udenfor konturen og fremkommer ud fra **DEP**-blokkem (eng: depart = forlade). P_N bliver automatisk tilkørt med **R0**.

B anefunktioner fved tilkørsel og frakørsel

▶ Tryk softkey′en med den ønskede banefunktion:

DED IT

Retlinie med tangential tilslutning

Retlinie vinkelret på konturpunktet

Cirkelbane med tangential tilslutning

Retliniestykke med tangential overgangscirkel på konturen

Radiuskorrekturen programmeres i en APPR-blok!
DEP-blokke fastlægger radiuskorrekturen fra RO!

17

Tilkørsel til en retlinie med tangential tilslutning: APPR LT

- Koordinater til første konturpunkt P_A
- ► LEN: Afstand fra hjælpepunktet P_H til første konturpunkt P_A
- Radiuskorrektur RR/RL

7 L X+40 Y+10 R0 FMAX M3

8 APPR LT X+20 Y+20 Z-10 LEN15 RR F100

9 L Y+35 Y+35

10 L ...

APPR LN

Kørsel ad en retlinie vinkelret på første konturpunkt: APPR LN

- Koordinater til første konturpunkt P_A
- ► LEN: Afstand fra hjælpepunktet P_H til første konturpunkt P_A
- Radiuskorrektur RR/RL

7 L X+40 Y+10 R0 FMAX M3

8 APPR LN X+10 Y+20 Z-10 LEN15 RR F100

9 L X+20 Y+35

10 L ...

18

Tilkørsel til en cirkelbane med tangential tilslutning: APPR CT

- ▶ Koordinater til første konturpunkt P_A
- Radius RIndlæs R > 0
- Midtpunktsvinkel CCAIndlæs CCA > 0
- Radiuskorrektur RR/RL

7 L X+40 Y+10 R0 FMAX M3

8 APPR CT X+10 Y+20 Z-10 CCA180 R+10 RR F100

9 L X+20 Y+35

10 L ...

Tilkørsel til en cirkelbane med tangential tilslutning til konturen og retliniestykke: APPR LCT

- Koordinater til første konturpunkt P_A
- Radius RIndlæs R > 0
- Radiuskorrektur RR/RL

7 L X+40 Y+10 R0 FMAX M3

8 APPR LCT X+10 Y+20 Z-10 R10 RR F100

9 L X+20 Y+35

10 L ...

19

Frakørsel på en retlinie med tangential tilslutning: DEP LT

Afstand længde mellem P_E og P_NIndlæs LEN > 0

23 L Y+20 RR F100

- 24 DEP LT LEN12.5 F100
- 25 L Z+100 FMAX M2

Frakørsel på en retlinie vinkelret på sidste konturpunkt: DEP LN

Afstand længde mellem P_E og P_NIndlæs LEN > 0

23 L Y+20 RR F100

24 DEP LN LEN+20 F100

25 L Z+100 FMAX M2

ĺ

Frakørsel på en cirkelbane med tangential tilslutning: DEP CT

- Radius RIndlæs R > 0
- Midtpunktsvinkel CCA

23 L Y+20 RR F100

24 DEP CT CCA 180 R+8 F100

25 L Z+100 FMAX M2

Frakørsel på en cirkelbane med tangential tilslutning til konturen og retliniestykke: DEP LCT

 Koordinaterne til slutpunktet _{PN}
Radius RIndlæs R > 0

23 L Y+20 RR F100

24 DEP LCT X+10 Y+12 R+8 F100

25 L Z+100 FMAX M2

Banefunktioner

Banefunktioner for positioneringsblokke

		R
1	_	

Se "Programmering: Programmere konturer".

Aftale

For programmeringen af værktøjs-bevægelse bliver det grundlæggende antaget, at det er værktøjet der bevæges og at emnet står stille.

Indlæsning af mål-positionen

Mål-positionen kan indlæses i retvinklede eller polarkoordinater - såvel absolut som også inkrementalt eller blandet absolut og inkrementalt.

Angivelser i en positioneringsblok

En komplet positioneringsblok indeholder følgende angivelser:

- Banefunktion
- Koordinater til konturelement-slutpunktet (mål-position)
- Radiuskorrektur RR/RL/RO
- Tilspænding F
- Hjælpe-funktion M

吵

Værktøj forpositioneres således ved starten af et bearbejdningsprogram, at en beskadigelse af værktøj og emne er udelukket.

Banefunktioner		Side
Retlinie	L	23
Affasning mellem to retlinier	CHE o:Lo	24
Hjørne-runding		25
Cirkelmidtpunkt ellerindlæs Pol-koordinater	ф СС	26
Cirkelbane om cirkelmidtpunkt CC	Jc	26
Cirkelbane med radius- angivelse	CR	27
Cirkelbane med tangential tilslutning til forrige konturelement	CT ?	28
Fri konturprogrammering FK	FK	31

Banefunktioner

Retlinie L

- ▶ Koordinater til retlinie-slutpunkt
- Radiuskorrektur RR/RL/RO
- ▶ Tilspænding F
- ▶ Hjælpe-funktion M

Med retvinklede koordinater

7 E X IO I 40 KE I 200 H3

- 8 L IX+20 IY-15
- 9 L X+60 IY-10

Med polarkoordinater

- 12 CC X+45 Y+25
- 13 LP PR+30 PA+0 RR F300 M3
- 14 LP PA+60
- 15 LP IPA+60
- 16 LP PA+180

- Fastlæg polen **CC**, før De programmerer polarkoordinater.
- Programmér kun polen **CC** i retvinklede koordinater.
- Polen CC er virksom indtil, en ny pol CC bliver fastlagt!

i

23

Indføj affasning CHF mellem to retlinier

- Længde af affase-afsnit
- ▶ Tilspænding F

7 L X+0 Y+30 RL F300 M3

- 8 L X+40 IY+5
- 9 CHF 12 F250

10 L IX+5 Y+0

- En kontur kan ikke begyndes med en CHF-blok!
- Radiuskorrekturerne før og efter **CHF**-blokken skal være ens
- Affasningen skal kunne udføres med det kaldte værktøj!

Hjørne-runding RND

Cirkelbuer start og -ende danner tangentiale overgange med det forudgående og efterfølgenden konturelement.

Radius **R** til cirkelbuen

Tilspænding **F** for hjørne-rundingen

5 L X+10 Y+40 RL F300 M3

6 L X+40 Y+25

7 RND R5 F100

Cirkelbane om cirkelmidtpunkt CC

°℃

- ► Koordinater til cirkelcentrum CC
- Koordinater til cirkelbue-endepunkt
- Drejeretning DR

Med C og CP kan en helcirkel blive programmeret i en blok.

Med retvinklede koordinater

5 CC X+25 Y+25
6 L X+45 Y+25 RR F200 M3
7 C X+45 Y+25 DR+

Med polarkoordinater

18 CC X+25 Y+25

19 LP PR+20 PA+0 RR F250 M3

20 CP PA+180 DR+

- Fastlæg polen **CC**, før De programmerer polarkoordinater.
- Programmér kun polen **CC** i retvinklede koordinater.
- Polen **CC** er virksom indtil, en ny pol **CC** bliver fastlagt!
- Cirkel-slutpunkt bliver kun fastlagt med PA!

Banefunktioner

Banefunktioner

Cirkelbane CR med radius-angivelse

- Koordinater til cirkelbue-endepunkt
- Radius R stor cirkelbue: ZV > 180, R negativ lille cirkelbue: ZV < 180, R positiv</p>
- Drejeretning DR

10 L X+40 Y+40 RL F200 M3

11 CR X+70 Y+40 R+20 DR- (BUE 1)

eller

11 CR X+70 Y+40 R+20 DR+ (BUE 2)

eller

10 L X+40 Y+40 RL F200 M3

11 CR X+70 Y+40 R-20 DR- (BUE 3)

eller

11 CR X+70 Y+40 R-20 DR+ (BOGEN 4)

27

Cirkelbane CT med tangential tilslutning

Banefunktioner

- Koordinater til cirkelbue-endepunkt
- Radiuskorrektur RR/RL/RO
- ► Tilspænding F
- ▶ Hjælpe-funktion M

Med retvinklede koordinater

7 L X+0 Y+25 RL F300 M3	
8 L X+25 Y+30	
9 CT X+45 Y+20	
10 L Y+0	
Med polarkoordinater	
12 CC V+40 V+25	

	12	u	· ^+'	+υ Ι Τ.	22		
I	13	L	X+0	Y+35	RL	F250	M3

14 LP PR+25 PA+120	
--------------------	--

15 CTP PR+30 PA+30

16 L Y+0

- Fastlæg polen **CC**, før De programmerer polarkoordinater.
- Programmér kun polen **CC** i retvinklede koordinater.
- Polen CC er virksom indtil, en ny pol CC bliver fastlagt!

ľ

Banefunktioner

Skruelinie (kun i polarkoordinater)

Beregninger (fræseretning nedefra og op)

Antal gevind:	n	gevind + gevindoverløb ved gevind-start og -ende
Totalhøjde:	h	Stigning P x antal gevind n
Inkr. Polarcvinkel:	IPA	Antal gevind n x 360°
Startvinkel:	PA	vinkel for gevind-start + vinkel for gevindoverløb
Startkoordinater:	Z	stigning P x (gevind + gevindoverløb ved gevind-start)

29

Form af skruelinie

Indv. gevind	Arbejds- retning	Drejeretning	Radius- korrektur
højregevind	Z+	DR+	RL
venstregevind	Z+	DR-	RR
højregevind	Z-	DR-	RR
venstregevind	Z-	DR+	RL

Udvgevind	Arbejds- retning	Drejeretning	Radius- korrektur
højregevind	Z+	DR+	RR
venstregevind	Z+	DR-	RL
højregevind	Z-	DR-	RL
venstregevind	Z-	DR+	RR

Gevind M6 x 1 mm med 5 gevind:

12 CC X+40 Y+25
13 L Z+0 F100 M3
14 LP PR+3 PA+270 RL F50
15 CP IPA-1800 IZ+5 DR-

Fri kontur-programmering FK

Fri kontur-programmering FK

B

Se "Banebevægelser - fri kontur-programmering FK"

Fejl i emne-tegningen, målpunkt-koordinater eller indeholder denne tegning angivelser, der ikke kunne indlæses med de grå banefunktionstaster, går man over til den "Frie kontur-programmering FK".

Mulige oplysninger om et konturelement:

- Kendte koordinater til slutpunktet
- Hjælpepunkter på konturelementet
- Hjælpepunkter i nærheden af konturelementet
- Relativ henf. til et andet konturelement
- Retningsangivelse (vinkel) / stedangivelse
- Angivelser om konturforløb

Brug FK-programmering rigtigt:

- Alle konturelementer skal ligge i bearbejdningsplanet
- Alle disponible angivelser til et konturelement indlæses
- Ved blanding af konventionelle og FK-blokke skal hvert afsnit være entydigt bestemt, der blev programmeret med FK. Først da tillader TNC'en indlæsningen af konventionelle banefunktioner.

Arbejde med programmeringsgrafikken

Vælg billedskærm-opdeling PROGRAM+GRAFIK!

Vise de forskellige løsninger

VIS LØSNING

ᇞ

Vælge den viste løsning og overtage den

Programmere yderligere konturelementer

Fremstille programmeringsgrafik for den næste programmerede blok

Standardfarver for programmeringsgrafik

- blå Konturelementet er entydigt bestemt
- grøn De indlæste data giver flere løsninger; De udvælger den rigtige
- **rød** De indlæste data fastlægger endnu ikke konturelementet tilstrækkeligt; De indlæser yderligere angivelser
- lyseblå Bevægelse i ilgang programmeret

Åbning af FK-dialog

Åbne FK dialog, følgende funktioner står til rådighed:

FK-Element	Softkeys
Retlinie med tangential tilslutning	FLT
Retlinie uden tangential tilslutning	FL
Cirkelbue med tangential tilslutning	FCT
Cirkelbue uden tangential tilslutning	FC
Pol for FK-programmering	FPOL

Slutpunkt-koordinater X, Y eller PA, PR

Kendte angivelser	Softkeys	
Retvinklede koordinater X og Y		Y.
Polarkoordinater henført til FPOL	PR	PA
Inkremental indlæsning	Ι	
7 FPOL X+20 Y+30		
8 FL IX+10 Y-20 RR F100		
9 FCT PR+15 IPA+30 DR+ R15		

Cirkelmidtpunkt CC i FC/FCT-blok

Kendte angivelser	Softkeys	
Midtpunkt i retvinklede koordinater		
Midtpunkt i polarkoordinater	CC PR	
Inkremental indlæsning	Ι	

10 FC CCX+20 CCY+15 DR+ R15

11 FPOL X+20 Y+15

12 FL AN+40

13 FC DR+ R15 CCPR+35 CCPA+40

Hjælpepunkter på eller ved siden af en kontur

14 FLT AH-70 PDX+50 PDY+53 D10

Kendte angivelser Softkeys
X-koordinater til et hjælpepunkt P1 eller P2 en retlinie
Y-koordinater til et hjælpepunkt P1 eller P2 en retlinie
X-koordinater til et hjælpepunkt P1, P2 eller P3 en cirkelbane
Y-koordinater til et hjælpepunkt P1, P2 eller P3 en cirkelbane
Kendte angivelser Softkeys
X- og Y- koordinater til hjælpepunktet ved siden af retlinie
Afstand til hjælpepunkt for retlinie
X- og Y-koordinater til et hjælpepunkt ved siden af en cirkelbane
Afstand fra hjælpepunkt til cirkelbane

36
Fri kontur-programmering FK

Retning og længde af konturelementet

37

Relativ henføring til blok N: Slutpunkt-koordinater

빤

Koordinater med relativ henføring indlæses inkrementalt. Indlæs yderligere blok-nummer for konturelementet, til hvilket det skal henføre sig.

14 FL AN+45

15 FCT IX+20 DR- R20 CCA+90 RX 13

16 FL IPR+35 PA+0 RPR 13

Fri kontur-programmering FK

Relativ henføring til blok N: Retning og afstand for konturelementet

吵

Koordinater med relativ henføring indlæses inkrementalt. Indlæs yderligere blok-nummer for konturelementet, til hvilket det skal henføre sig.

Kendte angivelser

RAN N...

Vinkel mellem retlinie og et andet konturelement hhv. mellem cirkelbueindstikstangent og et andet konturelement

Retlinie parallelt med andet konturelement

Afstand af retlinie til parallelt konturelement

0.00	A	1
/	/ DP	
	~	
-	-	

17	EL .	IFN	20	$\Delta N + 15$
÷/			20	- AU - 12

18 FL AN+105 LEN 12.5

19 FL PAR 17 DP 12.5

20 FSELECT 2

21 FL LEN 20 IAN+95

22 FL IAN+220 RAN 18

Relativ henføring til blok N: Cirkelmidtpunkt CC

Fri kontur-programmering FK

Koordinater med relativ henføring indlæses inkrementalt. ᇞ Indlæs yderligere blok-nummer for konturelementet, til hvilket det skal henføre sig. Kendte angivelser Softkeys Retvinklede koordinater til RCCX N... RCCY N... cirkelcentrum henført til blok N Polarkoordinater for cirkelcentrum RCCPR N... RCCPA N... henført til blok N RL

γ 20 35 -10 Х 10

12 FL X+10 Y+10	
-----------------	--

13 FL ...

14 FL X+18 Y+35

15 FL ...

16 FL ...

17 FC DR- R10 CCA+0 ICCX+20 ICCY-15 RCCX12 RCCY14

40

Underprogrammer og programdelgentagelser

Èn gang programmerede bearbejdningsskridt lader sig med underprogrammer og programdel-gentagelser udføre gentagne gange.

Arbejde med underprogrammer

- 1 Hovedprogrammet forløber indtil underprogram-kald CALL LBL 1
- 2 Herefter bliver underprogrammet kendetegnet med LBL 1 udført indtil underprogram-slut LBL 0
- **3** Hovedprogrammet bliver fortsat

Stille underprogrammer efter hovedprogram-ende (M2)!

ᇝ

Besvar dialogspørgsmålet **REP** med NO ENT!

CALL LBLO er ikke tilladt!

Arbejde med programdel-gentagelser

- 1 Hovedprogrammet forløber indtil kald af programdel-gentagelse CALL LBL 1 REP2
- 2 Programdelen mellem LBL 1 og CALL LBL 1 REP2 bliver gentaget så mange gange, som angivet under REP
- 3 Efter den sidste gentagelse bliver hovedprogrammet fortsat

Programdelen der skal gentages bliver altså udført en gang oftere, end der er programmeret gentagelser!

Indlejrede underprogrammer

Underprogram i underprogram

- 1 Hovedprogrammet forløber indtil første underprogram-kald CALL LBL 1
- 2 Underprogram 1 bliver udført indtil andet underprogram-kald CALL LBL 2
- 3 Underprogram 2 forløber indtil underprogram-slut
- 4 Underprogram 1 bliver fortsat og forløber indtil sin ende
- 5 Hovedprogrammet bliver fortsat

- Et underprogram må ikke kalde sig selv!
- Underprogrammer kan være indlejret i indtil maximalt 8 planer.

Vilkårligt program som underprogram

- 1 Det kaldte hovedprogram A forløber indtil kald CALL PGM B
- 2 Det kaldte program B bliver udført fuldstændigt
- 3 Det kaldte hovedprogram A bliver fortsat

Det **kaldte** program må ikke blive afsluttet med **M2** eller **M30**!

Underprogrammer og programdel-gentagelser

Arbejde med cykler

Ofte tilbagevendende bearbejdninger er gemt i TNC'en som cykler. Også koordinatomregninger og enkelte specialfunktioner står til rådighed som cykler.

- For at undgå fejlindlæsninger ved cyklus-definition,
- gennemføres før afviklingen en grafisk program-test !
- fortegnet for cyklusparameter dybde fastlægger bearbejdnings-retningen!
- TNC'en forpositionerer i alle cykler med numre større end 200 værktøjet i værktøjs-aksen automatisk.

Definere cykler

- CYCL DEF

GEVIND

200

Vælg cyklusgruppe BORING/

► Vælg cyklusoversigt:

Vælg cyklus

Cyklus-gruppe	
Cykler for dybdeboring, reifning, uddrejning, undersænkning, gevindboring, gevindskæring og gevindfræsning	BORING/ GEVIND
Cykler for fræsning af Lommer, Tappe og Noter	LOMME/ TAP/ NOT
Cykler for fremstilling af punktmønstre, f.eks. hulkreds el. hulflade	HUL MØNSTER
SL-cykler (Subcontur-List), med hvilke kostbare konturer bliver bearbejdet konturparallelt, som sammensættes af flere overlejrede delkonturer, cylinderflade-interpolation	SL II
Cykler for nedfræsning af planer eller i beskadigede flader	PLANFRÆS FRAESNING
Cykler for koordinat-omregning, med hvilke vilkårlige konturer bliver forskudt, drejet, spejlet, forstørret og formindsket	KOORD. OMREG.
Special-cykler dvæletid, program-kald, spindel-orientering, tolerance	SPECIAL CYKLUS

Grafisk understøttelse ved programmeringen af cykler

TNC`en understøtter Dem ved cyklus-definitionen med grafisk fremstilling af indlæseparameteren.

Kalde cykler

De følgende cykler virker fra deres definition i bearbejdningsprogrammet:

- Cykler for koordinat-omregning
- Cyklus DVÆLETID
- SL-cyklerne KONTUR og KONTURDATA
- Punktmønster
- Cyklus TOLERANCE

Alle andre cykler virker efter kaldet med:

- **CYCL CALL**: Virker blokvis
- CYCL CALL PAT: Virker blokvis i forbindelse med punkt-tabeller og PATTERN DEF
- CYCL CALL POS: Virker blokvis, efter at den i CYCL CALL POS-blok definerede position er blevet tilkørt
- M99: Virker blokvis
- **M89**: Virker modal (afhængig af maskin-parametre)

Cykler for fremstilling af boringer og gevind

Oversigt

Dispo	Side	
240	CENTRERING	47
200	BORING	48
201	REIFNING	49
202	UDDREJNING	50
203	UNIVERSAL-BORING	51
204	UNDERSÆNKNING-BAGFRA	52
205	UNIVERSAL-DYBDEBORING	53
208	BOREFRÆSNING	54
206	GEVINDBORING NY	55
207	GEVBORING GS NY	56
209	GEVBORING SPÅNBR.	57
262	GEVINDFRÆSNING	58
263	UNDERSÆNK.GEVINDFRÆSNING	59
264	BOREGEVINDFRÆSNING	60
265	HELIX-BOREGEVINDEFR.	61
267	FRÆSE UDV.GEVIND	62

Cykler for fremstilling af boringer og gevind

CENTRERING (cyklus 240)

- CYCL DEF: Vælg cyklus 400 CENTRERING
 - Sikkerheds-afstand: **Q200**
 - Valg af dybde/diameter: Fastlæg, om der skal centreres på den indlæste dybde eller på den indlæste diameter: Q343
 - Dybde: Afstand emne-overflade bunden af boring: Q201
 - Diameter: Fortegnet fastlægger arbejdsretningen: Q344
 - Tilspænding dybde Q206
 - Dvæletid nede: Q211
 - ▶ Koord. Emne-overflade: **Q203**
 - 2. sikkerheds-afstand: Q204

11 CYCL DEF 240	CENTRERING
Q200=2	;SIKKERHEDS-AFST.
Q343=1	;VÆLG DYBDE/DIAMETER
Q201=+0	;DYBDE
Q344=-10	;DIAMETER
Q206=250	;TILSP. DYBDEFREMR.
Q211=0	;DVÆLETID NEDE
Q203=+20	;KOOR. OVERFLADE
Q204=100	;2. SIKKERHEDS-AFST.
12 CYCL CALL POS	X+30 Y+20 M3
13 CYCL CALL POS	X+80 Y+50

47

BORING (cyklus 200)

- CYCL DEF: Vælg cyklus 200 BORING
- Sikkerheds-afstand: **Q200**
- Dybde: Afstand emne-overflade bunden af boring: Q201
- Tilspænding dybde Q206
- Fremryk-dybde: Q202
- Dvæletid oppe: Q210
- ▶ Koord. Emne-overflade: **Q203**
- > 2. Sikkerheds-afstand: **Q204**
- Dvæletid nede: Q211

11 CYCL DEF 200	BORING
Q200=2	;SIKKERHEDS-AFST.
Q201=-15	;DYBDE
Q206=250	;TILSP. DYBDEFREMR.
Q202=5	;FREMRYK-DYBDE
Q210=0	;DVÆLETID OPPE
Q203=+20	;KOOR. OVERFLADE
Q204=100	;2. SIKKERHEDS-AFST.
Q211=0.1	;DVÆLETID NEDE
12 CYCL CALL PO	5 X+30 Y+20 M3
13 CYCL CALL PO	S X+80 Y+50

REIFNING (cyklus 201)

- CYCL DEF: Vælg cyklus 201 REIFNING
 - Sikkerheds-afstand: **Q200**
 - Dybde: Afstand emne-overflade bunden af boring: Q201
 - Tilspænding dybde **Q206**
 - Dvæletid nede: Q211
 - Tilspænding udkørsel: **Q208**
 - ▶ Koord. Emne-overflade: **Q203**
 - 2. sikkerheds-afstand: **Q204**

10 L Z+100 R0 FMAX

11 CYCL DEF 201	REIFNING
Q200=2	;SIKKERHEDS-AFST.
Q201=-15	;DYBDE
Q206=100	;TILSP. DYBDEFREMR.
Q211=0.5	;DVÆLETID NEDE
Q208=250	;TILSPÆNDING UDKØRSEL
Q203=+20	;KOOR. OVERFLADE
Q204=100	;2. SIKKERHEDS-AFST.
12 CYCL CALL PO	S X+30 Y+20 M3
13 CYCL CALL PO	S X+80 X+50

Cykler for fremstilling af boringer og gevind

UDDREJNING (cyklus 202)

Masine og TNC skal af fabrikanten være forberedt for cyklus UDDREJNING!

Bearbejdningen bliver udført med styret spindel!

Kollisionsfare! Vælg frikørsels-retning således, at værktøjet kører væk fra kanten af boringen!

- CYCL DEF: Vælg cyklus 202 UDDREJNING
- Sikkerheds-afstand: **Q200**
- Dybde: Afstand emne-overflade bunden af boring: Q201
- Tilspænding dybde Q206
- Dvæletid nede: Q211
- ► Tilspænding udkørsel: **Q208**
- Koord. Emne-overflade: **Q203**
- 2. Sikkerheds-afstand: Q204
- Frikørsels-retning (0/1/2/3/4) ved bunden af boring: Q214
- Vinkel for spindelorientering: Q336

Cykler for fremstilling af boringer og gevind

UNIVERSAL-BORING (cyklus 203)

- CYCL DEF: Vælg cyklus 203 UNIVERSAL-BORING
 - Sikkerheds-afstand: **Q200**
 - Dybde: Afstand emne-overflade bunden af boring: Q201
 - Tilspænding dybde Q206
 - Fremryk-dybde: **Q202**
 - Dvæletid oppe: Q210
 - Koord. Emne-overflade: **Q203**
 - 2. Sikkerheds-afstand: Q204
 - Reduktionsbidrag efter hver fremrykning: Q212
 - Ant. Spånbrud til udkørsel: **Q213**
 - Minimale fremryk-dybde hvis reduktionsbidrag er indlæst: **Q205**
 - Dvæletid nede: Q211
 - Tilspænding udkørsel: **Q208**
 - Udkørsel ved spånbrud: Q256

UNDERSÆNKNING BAGFRA (cyklus 204)

- Maskine og TNC skal af fabrikanten være forberedt fr cyklus UNDERSÆNKNING-BAGFRA!
- Bearbejdningen bliver udført med styret spindel!

Kollisionsfare! Vælg frikørsels-retning således, at værktøjet kører væk fra kanten af boringen!

- Anvend kun cyklus med bagfra-borstang!
- CYCL DEF: Vælg cyklus 204 UNDERSÆNKNING BAGFRA
 - Sikkerheds-afstand: **Q200**
 - Undersænknings dybde Q249
 - Materialetykkelse: **Q250**.
 - Ekcentermål: Q251.
 - Skærhøjde: Q252.
 - Tilspænding forpositionering: Q253
 - Tilspænding undersænkning: Q254
 - Dvæletid ved bunden af undersænkning: Q255
 - Koord. Emne-overflade: **Q203**
 - 2. Sikkerheds-afstand: Q204
 - Frikørsels-retning (0/1/2/3/4): **0214**
 - Vinkel for spindelorientering: Q336

Cykler for fremstilling af boringer og gevind

UNIVERSAL-DYBDEBORING (cyklus 205)

- CYCL DEF: Vælg cyklus 205 UNIVERSAL-DYBDEBORING
 - Sikkerheds-afstand: **Q200**
 - Dybde: Afstand emne-overflade bunden af boring: Q201
 - Tilspænding dybde Q206
 - Fremryk-dybde: **Q202**
 - Koord. Emne-overflade: **Q203**
 - 2. Sikkerheds-afstand: Q204
 - Reduktionsbidrag efter hver fremrykning: Q212
 - Minimale fremryk-dybde hvis reduktionsbidrag er indlæst: **Q205**
 - Forstopafstand oppe: **Q258**
 - Forstopafstand nede: **Q259**
 - Boredybde til spånbrud: **Q257**
 - Udkørsel ved spånbrud: Q256
 - Dvæletid nede: **Q211**
 - Fordybet startpunkt: **Q379**
 - Tilspænding forpositionering: **Q253**

BOREFRÆSNING (cyklus 208)

- ▶ Forpositionering i midten af boring med R0
- CYCL DEF: Vælg cyklus 208 BOREFRÆSNING
 - Sikkerheds-afstand: **Q200**
 - Dybde: Afstand emne-overflade bunden af boring: Q201
 - Tilspænding dybde **Q206**
 - Fremrykning pr. skruelinie: Q334
 - ▶ Koord. Emne-overflade: **Q203**
 - 2. Sikkerheds-afstand: **Q204**
 - Soll-diameter af boring: **Q335**
 - Forboret diameter: **Q342**
 - Fræseart: Q351
 - medløb: +1
 - modløb: -1

12 CYCL DEF 208	BOREFRÆSNING
Q200=2	;SIKKERHEDS-AFST.
Q201=-80	;DYBDE
Q206=150	;TILSP. DYBDEFREMR.
Q334=1.5	;FREMRYK-DYBDE
Q203=+100	;KOOR. OVERFLADE
Q204=50	;2. SIKKERHEDS-AFST.
Q335=25	;SOLL-DIAMETER
Q342=0	;FORUDGIVET. DIAMETER
Q351=0	;FRÆSEART

Ť

GEVINDBORING NY (cyklus 206) med kompenserende patron

For højregevind skal spindelen aktiveres med M3, for venstregevind med M4!

- Længdekompenserende patron indskiftes
- CYCL DEF: Vælg cyklus 206 GEVINDBORING NY
 - Sikkerheds-afstand: **Q200**
 - Boredybde: Gevindlængde = afstanden mellem emne-overflade og enden af gevindet: Q201
 - Tilspænding F = spindelomdr.tal S x gevindstigning P: Q206
 - Indlæs dvæletid nede (værdi mellem 0 og 0,5 sekunder): Q211
 - Koord. Emne-overflade: **Q203**
 - 2. Sikkerheds-afstand: Q204

25 CYCL DEF 206 GEVINDBORING NY

Q200=2	;SIKKERHEDS-AFST.
Q201=-20	;DYBDE
Q206=150	;TILSP. DYBDEFREMR.
Q211=0.25	;DVÆLETID NEDE
Q203=+25	;KOOR. OVERFLADE
Q204=50	;2. SIKKERHEDS-AFST.

Cykler for fremstilling af boringer og gevind

GEVINDBORING GS NY (cyklus 207) uden kompenserende patron

 Maskinen og TNC'en skal af maskinfabrikanten være forberedt for gevindboring uden kompenserende patron.
 Bearbeidningen bliver udført med styret spindel!

- ► CYCL DEF: Vælg cyklus 207 GEVINDBORING GS NY
 - Sikkerheds-afstand: **Q200**
 - Boredybde: Gevindlængde = afstanden mellem emne-overflade og enden af gevindet: Q201
 - Gevindstigning: Q239
 Fortegnet fastlægger højre- og venstregevind:
 Højregevind: +
 Venstregevind: -
- ▶ Koord. Emne-overflade: **Q203**
- > 2. Sikkerheds-afstand: Q204

26 CYCL DEF 207	GEVBORING GS NY	
Q200=2	;SIKKERHEDS-AFST.	
Q201=-20	; DYBDE	
Q239=+1	;GEVINDSTIGNING	
Q2O3=+25	;KOOR. OVERFLADE	
Q204=50	;2. SIKKERHEDS-AFST.	

Cykler for fremstilling af boringer og gevind

GEVINDBORING SPÅNDBRUD (cyklus 209)

Maskine og TNC skal af fabrikanten være forberedt for gevindboring!

Bearbejdningen bliver udført med styret spindel!

- CYCL DEF: Vælg cyklus 209 GEV-BORING SPÅNBRUD
 - Sikkerheds-afstand: **Q200**
 - Boredybde: Gevindlængde = afstanden mellem emne-overflade og enden af gevindet: Q201
 - Gevindstigning: Q239
 Fortegnet fastlægger højre- og venstregevind: Højregevind: +
 Venstregevind: -
 - Koord. Emne-overflade: **Q203**
 - 2. Sikkerheds-afstand: **Q204**
 - Boredybde til spånbrud: Q257
 - Udkørsel ved spånbrud: Q256
 - Vinkel for spindelorientering: Q336
 - Faktor omdr.talændring udkørsel: **Q403**

57

GEVINDFRÆSNING (cyklus 262)

- ▶ Forpositionering i midten af boring med R0
- CYCL DEF: Vælg cyklus 262 GEVINDFRÆSNING
 - Soll-diameter for gevindet: **Q335**
 - Gevindstigning: Q239
 Fortegnet fastlægger højre- og venstregevind: Højregevind: +
 Venstregevind: -
 - Gevinddybde: Afstanden mellem emne-overflade og enden af gevindet: Q201
 - Antal gevind for eftersætning: Q355
 - Tilspænding forpositionering: Q253
 - Fræsart: Q351
 - medløb: +1
 - modløb: -1
 - Sikkerheds-afstand: **Q200**
 - ▶ Koord. Emne-overflade: **Q203**
 - > 2. Sikkerheds-afstand: Q204
 - Tilspænding fræsning: Q207

Pas på, at TNC en før tilkørselsbevægelsen gennemfører en udligningsbevægelse i værktøjs-aksen. Størrelsen af udligningsbevægelsen er afhængig af gevindstigningen. Pas på at der er tilstrækkelig plads i boringen!

Cykler for fremstilling af boringer og gevind

UNDERSÆNK-GEV.FRÆSNING (cyklus 263)

- ▶ Forpositionering i midten af boring med R0
- CYCL DEF: Vælg cyklus 263 UNDERSÆNK-GEV.FRÆSNING
 - Soll-diameter for gevindet: **Q335**
 - Gevindstigning: Q239
 Fortegnet fastlægger højre- og venstregevind: Højregevind: +
 Venstregevind: -
 - Gevinddybde: Afstanden mellem emne-overflade og enden af gevindet: Q201
 - Undersænkningsdybde: Afstand emne-overflade bunden af boring: Q356
 - Tilspænding forpositionering: **Q253**
 - Fræsart: Q351 medløb: +1 modløb: -1
 - Sikkerheds-afstand: **Q200**
 - Sikkerheds-afstand: Q357
 - Undersænkningsdybde endeflade: Q358
 - Forskyde undersænkning på endeflade: Q359
 - Koord. Emne-overflade: **Q203**
 - 2. Sikkerheds-afstand: Q204
 - Tilspænding undersænkning: Q254
 - Tilspænding fræsning: Q207

BORGEVINDFRÆSNING (cyklus 264)

- ▶ Forpositionering i midten af boring med R0
- CYCL DEF: Vælg cyklus 264 BOREGEVINDFRÆSNING
 - Soll-diameter for gevindet: **Q335**
 - Gevindstigning: Q239
 Fortegnet fastlægger højre- og venstregevind: Højregevind: +
 Venstregevind: -
 - Gevinddybde: Afstanden mellem emne-overflade og enden af gevindet: Q201
 - Boredybde: Afstand emne-overflade bunden af boring: Q356
 - Tilspænding forpositionering: Q253
 - Fræsart: Q351
 - medløb: +1
 - modløb: -1
 - Fremrykdybde: Q202.
 - Forstopafstand oppe: **Q258**
 - Boredybde til spånbrud: Q257
 - Udkørsel ved spånbrud: Q256
 - Dvæletid nede: Q211
 - Undersænkningsdybde endeflade: Q358
 - Forskyde undersænkning på endeflade: Q359
 - Sikkerheds-afstand: **Q200**
 - Koord. Emne-overflade: **Q203**
 - 2. Sikkerheds-afstand: **Q204**
 - Tilspænding dybdefremrykning: Q206
 - ▶ Tilspænding fræsning: **Q207**

Cykler for fremstilling af boringer og gevind

HELIX- BORGEVINDFRÆSNING (cyklus 265)

- ▶ Forpositionering i midten af boring med R0
- CYCL DEF: Vælg cyklus 265 HELIX-BOREGEVINDFRÆSNING
 - Soll-diameter for gevindet: Q335
 - Gevindstigning: Q239
 Fortegnet fastlægger højre- og venstregevind: Højregevind: +
 Venstregevind: -
 - Gevinddybde: Afstanden mellem emne-overflade og enden af gevindet: Q201
 - Tilspænding forpositionering: Q253
 - Undersænkningsdybde endeflade: Q358
 - Forskyde undersænkning på endeflade: Q359
 - Undersænkningsforløb: Q360
 - Fremrykdybde: **Q202**.
 - Sikkerheds-afstand: **Q200**
 - Koord. Emne-overflade: **Q203**
 - 2. Sikkerheds-afstand: Q204
 - Tilspænding undersænkning: Q254
 - Tilspænding fræsning: **Q207**

UDV.GEVINDFRÆSNING (cyklus 267)

- ▶ Forpositionering i midten af boring med R0
- CYCL DEF: Vælg cyklus 267 UDVENDIG-GEV.FRÆSNING
 - Soll-diameter for gevindet: **Q335**
 - Gevindstigning: Q239
 Fortegnet fastlægger højre- og venstregevind: Højregevind: +
 Venstregevind: -
 - Gevinddybde: Afstanden mellem emne-overflade og enden af gevindet: Q201
 - Antal gevind for eftersætning: Q355
 - Tilspænding forpositionering: Q253
 - Fræsart: Q351
 - medløb: +1
 - modløb: -1
 - Sikkerheds-afstand: **Q200**
 - Undersænkningsdybde endeflade: Q358
 - Forskyde undersænkning på endeflade: Q359
 - Koord. Emne-overflade: **Q203**
 - 2. Sikkerheds-afstand: Q204
 - Tilspænding undersænkning: Q254
 - ▶ Tilspænding fræsning: **Q207**

Lommer, tappe og noter

Oversigt

Disponible cykler		Side
251	FIRKANTLOMME komplet	64
252	RUND LOMME komplet	65
253	NOT komplet	66
254	RUND NOT komplet	67
256	FIRKANTEDE TAPPE	68
257	RUNDE TAPPE	69

FIRKANTET LOMME (cyklus 251)

- CYCL DEF: Vælg cyklus 251 FIRKANTET LOMME
 - Bearbejdningsomfang (0/1/2): Q215
 - ▶ 1. Side-længde: **Q218**
 - > 2. Side-længde: **Q219**
- Hjørneradius: Q220
- Sletovermål side Q368
- Drejested: Q224.
- Lommens position: Q367
- Tilspænding fræsning: Q207
- Fræsart: Q351 Medløb: +1, modløb: -1
- Dybde: Afstand emne-overflade bunden af lommen: Q201
- Fremryk-dybde: **Q202**
- Sletovermål dybde Q369
- Tilspænding dybde **Q206**
- Fremrykning slette: **Q338**
- Sikkerheds-afstand: **Q200**
- ▶ Koord. Emne-overflade: **Q203**
- > 2. Sikkerheds-afstand: Q204
- Bane-overlapnings faktor: **Q370**
- Indstiks-strategie: Q366. 0 = vinkelret indstikning, 1 = helixformet indstikning, 2 = pendlende indstikning
- Tilspænding slette: **Q385**

Lommer, tappe og noter

- CYCL DEF: Vælg cyklus 252 CIRKULÆR LOMME
 - Bearbejdningsomfang (0/1/2): Q215
 - Færdigdel-diameter: Q223
 - Sletovermål side Q368
 - Tilspænding fræsning: Q207
 - Fræsart: Q351 Medløb: +1, modløb: -1
 - Dybde: Afstand emne-overflade bunden af lommen: Q201
 - Fremryk-dybde: Q202
 - Sletovermål dybde Q369
 - Tilspænding dybde Q206
 - Fremrykning slette: Q338
 - Sikkerheds-afstand: **Q200**
 - Koord. Emne-overflade: **Q203**
 - 2. Sikkerheds-afstand: Q204
 - Bane-overlapnings faktor: **Q370**
 - Indstiks-strategie: Q366. 0 = vinkelret indstikning, 1 = helixformet indstikning
 - ▶ Tilspænding slette: **Q385**

NOTFRÆSNING (cyklus 253)

- CYCL DEF: Vælg cyklus 253 NOTFRÆSNING
 - Bearbejdningsomfang (0/1/2): **Q215**
 - ▶ 1. Side-længde: **Q218**
 - > 2. Side-længde: **Q219**
 - Sletovermål side Q368
 - Drejevinkel med hvilken den totale not bliver drejet: Q374
 - Placering af not (0/1/2/3/4): Q367
 - Tilspænding fræsning: Q207
 - Fræsart: **Q351** Medløb: +1, modløb: -1
 - Dybde: Afstand emne-overflade bunden af not: Q201
 - Fremryk-dybde: **Q202**
 - Sletovermål dybde Q369
 - ▶ Tilspænding dybde **Q206**
 - Fremrykning slette: Q338
 - Sikkerheds-afstand: **Q200**
 - Koord. Emne-overflade: **Q203**
 - > 2. Sikkerheds-afstand: Q204
 - Indstiks-strategie: Q366. 0 = vinkelret indstikning 1 = pendlende indstikning
 - Tilspænding slette: **Q385**

Lommer, tappe og noter

- CYCL DEF: Vælg cyklus 254 RUND NOT
 - Bearbejdningsomfang (0/1/2): **Q215**
 - 2. Side-længde: Q219
 - Sletovermål side Q368
 - Delcirkel-diameter: **Q375**
 - Placering af not (0/1/2/3/4): Q367
 - Midte 1. akse: **Q216**
 - Midte 2. akse: Q217
 - Startvinkel: **Q376**.
 - Åbnings-vinkel for not: Q248
 - Vinkelskridt: Q378.
 - Antal bearbejdninger: **Q377**
 - Tilspænding fræsning: Q207
 - Fræsart: Q351 Medløb: +1, modløb: -1
 - Dybde: Afstand emne-overflade bunden af not: Q201
 - Fremryk-dybde: Q202
 - Sletovermål dybde Q369
 - Tilspænding dybde Q206
 - Fremrykning slette: Q338
 - Sikkerheds-afstand: **Q200**
 - Koord. Emne-overflade: **Q203**
 - 2. Sikkerheds-afstand: Q204
 - Indstiks-strategie: Q366. 0 = vinkelret indstikning, 1 = helixformet indstikning
 - Tilspænding slette: **Q385**

67

FIRKANTEDE TAPPE (cyklus 256)

- CYCL DEF: Vælg cyklus 256 FIRKANTET LOMME
 - ▶ 1. Side-længde: **Q218**
 - Råemnemål 1: Q424
 - 2. Side-længde: **Q219**
 - Råemnemål 2: Q425
- Hjørneradius: Q220
- Sletovermål side Q368
- Drejested: Q224.
- Tappens placering: **Q367**.
- Tilspænding fræsning: **Q207**
- Fræsart: Q351 Medløb: +1, modløb: -1
- Dybde: Afstand emne-overflade bunden af tappen: Q201
- Fremryk-dybde: Q202
- Tilspænding dybde **Q206**
- Sikkerheds-afstand: **Q200**
- Koord. Emne-overflade: **Q203**
- > 2. Sikkerheds-afstand: Q204
- Bane-overlapnings faktor: **Q370**

Lommer, tappe og noter

RUND TAP (cyklus 257)

- CYCL DEF: Vælg cyklus 257 RUND TAP
 - Færdigdel-diameter: Q223
 - Råemne-diameter: **Q222**
 - Sletovermål side Q368
 - Tilspænding fræsning: Q207
 - Fræsart: Q351 Medløb: +1, modløb: -1
 - Dybde: Afstand emne-overflade bunden af tappen: Q201
 - Fremryk-dybde: **Q202**
 - Tilspænding dybde **Q206**
 - Sikkerheds-afstand: **Q200**
 - ▶ Koord. Emne-overflade: **Q203**
 - > 2. Sikkerheds-afstand: **Q204**
 - Bane-overlapnings faktor: **Q370**

Punktmønster

Oversigt

Disponible cyklerSide220PUNKTMØNSTER PÅ CIRKEL70221PUNKTMØNSTER på LINIER71

PUNKTMØNSTER PÅ CIRKEL (cyklus 220)

- CYCL DEF: Vælg cyklus 220 PUNKTMØNSTER PÅ CIRKEL
 - Midte 1. akse: **Q216**
- Midte 2. akse: **Q217**
- Delcirkel-diameter: **Q244**
- Startvinkel: **Q245**.
- Slutvinkel: Q246.
- Vinkelskridt: **Q247**.
- Antal bearbejdninger: Q241
- Sikkerheds-afstand: **Q200**
- Koord. Emne-overflade: **Q203**
- 2. Sikkerheds-afstand: Q204
- Kør til sikker højde: Q301
- Kørselsart: Q365.

ᇞ

Med cyklus 220 kan De kombinere følgende cykler: 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 240, 251, 252, 253, 254, 256, 257, 262, 263, 264, 265, 267.

PUNKTMØNSTRE PÅ LINIER (cyklus 221)

- CYCL DEF: Vælg cyklus 221 PUNKTMØNSTER PÅ LINIE
 - Startpunkt 1. akse: **Q225**
 - Startpunkt 2. akse: **Q226**
 - Afstand 1. akse: Q237
 - Afstand 2. akse: Q238
 - Antal spalter: **Q242**
 - Antal linier: **Q243**
 - Drejested: Q224.
 - Sikkerheds-afstand: **Q200**
 - Koord. Emne-overflade: **Q203**
 - > 2. Sikkerheds-afstand: **Q204**
 - Kør til sikker højde: Q301

- Cyklus 221 PUNKTMØNSTER PÅ LINIER virker fra sin definition!
- Cyklus 221 kalder automatisk den sidst definerede bearbejdnings-cyklus!
- Med cyklus 221 kan De kombinere følgende cykler: 1, 2, 3, 4, 5, 17, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 240, 251, 252, 253, 256, 257, 262, 263, 264, 265, 267
- Sikkerheds-afstand, koord. Emne-overflade og 2. sikkerheds-afstand virker altid fra cyklus 221!

TNC'en forpositionerer automatisk værktøjet i værktøjs-aksen og i bearbejdningsplanet.

71

SL-cykler

Oversigt

Disponible cykler		Side
14	KONTUR	74
20	KONTUR-DATA	75
21	FORBORING	76
22	RØMNING	76
23	SLETFRÆS DYBDE	77
24	SLETFRÆS SIDE	77
25	KONTUR-KÆDE	78
27	CYLINDER-FLADE	79
28	CYLINDER-FLADE NOT	80
29	CYLINDER-FLADE TRIN	81
39	CYLINDER-FLADE KONTUR	82

Generelt

SL-cykler er så fordelagtig, hvis konturer sammensættes af flere delkonturer (maximal 12 Ø´er eller lommer).

Delkonturen bliver defineret i underprogrammer.

For delkonturer skal man passe på:

- Ved en lomme bliver konturen omløbet indvendig, ved en Ø udvendig!
- Til- og frakørselsbevægelser såvelsom fremrykninger i værktøjs-aksen kan ikke programmeres!
- De i cyklus 14 KONTUR oplistede delkonturer skal altid resultere i lukkede konturer!
- Hukommelsen for en SL-cyklus er begrænset. De kan i en SL-cyklus f.eks. maximalt programmere ca. 2048 retlinieblokke.

Konturen for cyklus 25 KONTURKÆDE må ikke være lukket!

Før programafviklingen gennemføres en grafisk simulering. Den viser, om konturen blev rigtigt defineret!

73

KONTUR (cyklus 14)

l cyklus **14 KONTUR** bliver underprogrammerne oplistet, som til en lukket totalkontur bliver overlappet.

- CYCL DEF: Vælg cyklus 14 KONTUR
 - Label-numre for kontur: Opliste LABEL-numre på underprogrammer, som skal overlappe en lukket totalkontur.

Cyklus 14 KONTUR virker fra sin definition!

4 CYCL DEF 14.0 KONTUR
5 CYCL DEF 14.1 KONTURLABEL 1/2/3
····
36 L Z+200 RO FMAX M2
37 LBL1
38 L X+0 Y+10 RR
39 L X+20 Y+10
40 CC X+50 Y+50
····
45 LBLO
46 LBL2

KONTUR-DATA (cyklus 20)

l cyklus **20 KONTUR-DATA** bliver bearbejdnings-informatione for cyklerne 21 til 24 fastlagt.

- CYCL DEF: Vælg cyklus 20 KONTUR-DATA
 - Fræsedybde: Afstand emne-overflade bunden af lommen: Q1
 - Bane-overlapnings faktor: **Q2**
 - Sletovermål side Q3
 - Sletspån dybde Q4
 - Koord. Emne-overflade: Koordinater til emne-overfladen henført til det aktuelle nulpunkt: Q5
 - Sikkerheds-afstand: Afstanden værktøj emne-overflade: Q6
 - Sikker højde: Højden, i hvilken der ingen kollision med emnet kan ske: Q7
 - Indv.-rundingsradius: Afrundings-radius for værktøjsmidtpunktbanen på det indvendige-hjørne: Q8
 - Drejeretning: Q9: Medurs Q9 = -1, modurs Q9 = +1

呣

Cyklus 20 KONTUR-DATA virker fra sin definition!

75

FORBORING (cyklus 21)

- CYCL DEF: Vælg cyklus 21 FORBORING
 - Fremryk-dybde: **Q10** inkremental
 - Tilspænding dybdefremrykning: Q11
 - Skrub-værktøjs nummer: Q13

SKRUBNING (cyklus 22)

Rømning sker konturparallelt for hver fremryk-dybde.

- CYCL DEF: Vælg cyklus 22 SKRUBBE
 - Fremryk-dybde: **Q10**
 - Tilspænding dybdefremrykning: Q11
 - Tilspænding skrubbe: Q12
 - Forskrubbe-værktøjs nummer: **Q18**
 - Tilspænding pendling: Q19
 - Tilspænding udkørsel: Q208
 - Tilspændingsfaktor i %: Tilspændingsreducering, når værktøæjet er i fuldt indgreb: Q401
 - Efterskrubbe strategi: Fastlæg, hvorledes TNC´en skal køre værktøjet ved efterskrubning: Q404

SLETFRÆSE DYBDE (cyklus 23)

Planet der skal bearbejdes bliver sletfræset med sletspån dybde konturparallelt.

- CYCL DEF: Vælg cyklus 23 SLETTE DYBDE
 - Tilspænding dybdefremrykning: Q11
 - Tilspænding skrubbe: **Q12**
 - Tilspænding udkørsel: **Q208**

Kald cyklus 22 SKRUBBE før cyklus 23!

SLETFRÆSE SIDE (cyklus 24)

Slette de enkelte delkonturer.

- CYCL DEF: Vælg cyklus 24 SLETTE SIDE
 - Drejeretning: Q9. Medurs Q9 = -1, modurs Q9 = +1
 - Fremryk-dybde: **Q10**
 - Tilspænding dybdefremrykning: Q11
 - ▶ Tilspænding skrubbe: **Q12**
 - Sletovermål side: Q14: Overmål ved sletning flere gange

网

Kald cyklus 22 SKRUBBE før cyklus 24!

SL-cykler

KONTUR-KÆDE (cyklus 25)

Med denne cyklus bliver dataerne for bearbejdning af en åben kontur fastlagt som er defineret i et kontur-underprogram.

- CYCL DEF: Vælg cyklus 25 KONTUR-KÆDE
 - Fræsedybde: **Q1**
 - Sletovermål side Q3 Sletspån i bearbejdningsplanet
 - ▶ Koord. Emne-overflade: **Q5** Koordinater til emne-overflade
 - Sikker højde: Q7: Højden, i hvilken værktøjet og emnet ikke kan kollidere
 - Fremryk-dybde: **Q10**
 - Tilspænding dybdefremrykning: Q11
- Tilspænding fræsning: Q12
- Fræsart: Q15 Medløbs-fræsning: Q15 = +1, modløbs-fræsning: Q15 = -1, pendlende, ved flere fremrykninger: Q15 = 0
 - Cyklus 14 KONTUR må kun indeholde et label-nummer!
 - Et underprogram må kun indeholde ca. 2048 retliniestykker!
 - Efter cyklus-kald må ingen kædemål programmeres, kollisionsfare.
 - Efter cyklus-kald køres til en defineret absolut position.

则

CYLINDER-OVERFLADE (cyklus 27, software-option 1)

Maskine og TNC skal være forberedt af fabrikanten for cyklus **27 ZYLINDER-FLADE**!

Med cyklus **27 CYLINDER-FLADE** kan en kontur defineret før afviklingen overføres til en cylinder flade.

- Definere en kontur i et underprogram og fastlægge med cyklus 14 KONTUR
- CYCL DEF: Vælg cyklus 27 CYLINDER-FLADE
 - Fræsedybde: **Q1**
 - Sletovermål side Q3
 - Sikkerheds-afstand: Q6 Afstand mellem værktøj og emne-overflade
 - Fremryk-dybde: **Q10**
 - Tilspænding dybdefremrykning: Q11
 - Tilspænding fræsning: Q12
 - Cylinderradius: **Q16**. Radius til cylinderen
 - Målsætningsart: Q17. Grad = 0, mm/tomme = 1

- Emnet skal være opspændt centrisk!
- Værktøjs-aksen skal stå vinkelret på rundbords-aksen!
- Cyklus 14 KONTUR må kun indeholde et label-nummer!
- Et underprogram må kun indeholde ca. 1024 retliniestykker!

z

С

CYLINDER-FLADE (cyklus 28, software-option 1)

_	Ū.	
		Г

Maskine og TNC skal være forberedt af fabrikanten for cyklus **28 ZYLINDER-FLADE**!

Med cyklus **28 CYLINDER-FLADE** lader en forud for afviklingen defineret not overføre uden forvridning af sidevæggen til fladen på en cylinder.

- Definere en kontur i et underprogram og fastlægge med cyklus 14 KONTUR
- CYCL DEF: Vælg cyklus 28 CYLINDER-FLADE
 - Fræsedybde: **Q1**
 - Sletovermål side Q3
 - Sikkerheds-afstand: Q6 Afstand mellem værktøj og emne-overflade
 - Fremryk-dybde: **Q10**
 - Tilspænding dybdefremrykning: Q11
 - ► Tilspænding fræsning: **Q12**
 - Cylinderradius: **Q16**. Radius til cylinderen
 - Målsætningsart: Q17. Grad = 0, mm/tomme = 1
 - Notbredde: **Q20**
 - ► Tolerance: **Q21**:

ᇞ

- Emnet skal være opspændt centrisk!
- Værktøjs-aksen skal stå vinkelret på rundbords-aksen!
- Cyklus 14 KONTUR må kun indeholde et label-nummer!
- Et underprogram må kun indeholde ca. 2048 retliniestykker!

SL-cykler

CYLINDER-FLADE (cyklus 29, software-option 1)

	Ŷ	
Τ		T

Maskine og TNC skal være forberedt af fabrikanten for cyklus **29 ZYLINDER-FLADE**!

Med cyklus **29 CYLINDER-FLADE** lader et forud for afviklingen defineret trin overføre uden forvridning af sidevæggen til fladen på en cylinder.

- Definere en kontur i et underprogram og fastlægge med cyklus 14 KONTUR
- CYCL DEF: Vælg cyklus 29 CYLINDER-FLADE TRIN
 - Fræsedybde: Q1
 - Sletovermål side Q3
 - Sikkerheds-afstand: Q6 Afstand mellem værktøj og emne-overflade
 - Fremryk-dybde: **Q10**
 - Tilspænding dybdefremrykning: Q11
 - Tilspænding skrubbe: Q12
 - Cylinderradius: **Q16**. Radius til cylinderen
 - Målsætningsart: Q17. Grad = 0, mm/tomme = 1
 - Trinbredde: **Q20**

- Emnet skal være opspændt centrisk!
- Værktøjs-aksen skal stå vinkelret på rundbords-aksen!
- Cyklus 14 KONTUR må kun indeholde et label-nummer!
- Et underprogram må kun indeholde ca. 2048 retliniestykker!

SL-cykler

CYLINDER-FLADE (cyklus 39, software-option 1)

ŢŢ	
	7

Maskine og TNC skal være forberedt af fabrikanten for cyklus **39 ZYLINDER-FLADE KONTUR**!

Med cyklus **39 CYLINDER-FLADE** kan en kontur defineret før afviklingen åben kontur overføres til en cylinder flade.

- Definere en kontur i et underprogram og fastlægge med cyklus 14 KONTUR
- CYCL DEF: Vælg cyklus 39 CYLINDER-FLADE KONTUR
 - Fræsedybde: **Q1**
 - Sletovermål side Q3
 - Sikkerheds-afstand: **Q6** Afstand mellem værktøj og emne-overflade
 - Fremryk-dybde: **Q10**
 - Tilspænding dybdefremrykning: Q11
 - Tilspænding fræsning: Q12
 - Cylinderradius: Q16. Radius til cylinderen
 - Målsætningsart: Q17. Grad = 0, mm/tomme = 1

- Emnet skal være opspændt centrisk!
- Værktøjs-aksen skal stå vinkelret på rundbords-aksen!
- Cyklus 14 KONTUR må kun indeholde et label-nummer!
- Et underprogram må kun indeholde ca. 2048 retliniestykker!

Cyklen for planfræsning

Oversigt

Dispo	nible cykler	Side
30	AFVIKLE 3D-DATA	83
230	PLANFRÆSNING	84
231	STYRET FLADE	85
232	PLANFRÆSNING	86

AFVIKLE 3D-DATA (cyklus 14)

Cyklus'en kræver en fræser med centrumskær (DIN 844

- CYCL DEF: Vælg cyklus 30 AFVIKLE 3D-DATA
 - PGM-navn digitaliseringsdata
 - MIN-punkt område
 - MAX-punkt område
 - Sikkerheds-afstand: 1
 - Fremryk-dybde: 2
 - Tilspænding dybdefremrykning: 3
 - ▶ Tilspænding: 4
 - ▶ Hjælpe-funktion M.

83

NEDFRÆSNING (cyklus 230)

TNC'en positionerer værktøjet - gående ud fra den aktuelle position - derefter i bearbejdningsplanet og herefter i værktøjs-aksen til startpunktet. Værktøj forpositioneres, så at der ikke kan ske en kollision med emne eller spændejern!

- CYCL DEF: Vælg cyklus 230 NEDFRÆSNING
 - Startpunkt 1. akse: **Q225**
 - Startpunkt 2. akse: **Q226**
 - Startpunkt 3. akse: **Q227**
 - ▶ 1. Sidelængde: **Q218**.
 - ▶ 2. Sidelængde: **Q219**.
 - Antal snit: **Q240**
 - Tilspænding dybdefremrykning: Q206
 - ▶ Tilspænding fræsning: **Q207**
 - Tilspænding på tværs: Q209
 - Sikkerheds-afstand: **Q200**

Cyklen for planfræsning

SKRÅFLADE (cyklus 231)

TNC en positionerer værktøjet - gående ud fra den aktuelle position - derefter i bearbejdningsplanet og herefter i værktøjs-aksen til startpunktet (punkt 1). Værktøj forpositioneres, så at der ikke kan ske en kollision med emne eller spændejern!

- CYCL DEF: Vælg cyklus 231 SKRÅFLADE
 - Startpunkt 1. akse: **Q225**
 - Startpunkt 2. akse: **Q226**
 - Startpunkt 3. akse: **Q227**
 - 2. Punkt 1. akse: Q228
 - 2. Punkt 2. akse: Q229
 - 2. Punkt 3. akse: Q230
 - 3. Punkt 1. akse: Q232
 - 3. Punkt 2. akse: Q232
 - 3. Punkt 3. akse: Q233
 - 4. Punkt 1. akse: Q234
 - 4. Punkt 2. akse: Q235
 - 4. Punkt 3. akse: Q236
 - Antal snit: **Q240**
 - Tilspænding fræsning: **Q207**

85

PLANFRÆSNING (cyklus 232)

2. sikkerheds-afstand Q204 indlæses således, at der ingen kollision kan ske med emne eller spændejern!

- CYCL DEF: Vælg cyklus 232 PLANFRÆSNING
 - Bearbejdnings-strategi: **Q389**.
 - Startpunkt 1. akse: **Q225**
 - Startpunkt 2. akse: Q226
 - Startpunkt 3. akse: **Q227**
 - Slutpunkt 3. akse: **Q386**
 - ▶ 1. Sidelængde: **Q218**.
 - ▶ 2. Sidelængde: **Q219**.
 - Maksimal fremryk-dybde: **Q202**
 - Sletovermål dybde Q369
 - Maks. bane-overlapnings faktor: **Q370**
 - Tilspænding fræsning: Q207
 - ▶ Tilspænding slette: **Q385**
 - Tilspænding forpositionering: Q253
 - Sikkerheds-afstand: **Q200**
 - Sikkerheds-afstand: **Q357**
 - 2. sikkerheds-afstand: Q204

Cykler for koordinat-omregning

Oversigt

Med cyklerne for koordinat-omregning lader konturer sig forskyde, spejle, dreje (i planet), transformere (ud fra planet) formindske og forstørre.

Dispo	nible cykler	Side
7	NULPUNKT	88
247	HENF.PUNKT FASTLÆGGELSE	89
8	SPEJLING	90
10	DREJNING	91
11	DIM.FAKTOR	92
26	DIM.FAKTOR AKSESPEC.	93
19	BEARBEJDNINGSPLAN (software-option)	94

Cyklerne for koordinat-omregning er ifølge deres definition virksomme indtil de tilbagestilles eller defineres påny. Den oprindeligee kontur skal være fastlagt i et underprogram. Indlæse-værdier kan angives såvel absolut som også inkrementalt.

NULPUNKT-FORSKYDNING (cyklus 7)

- CYCL DEF: Vælg cyklus 7 NULPUNKT-FORSKYDNING
 - Indlæs koordinaterne til det nye nulpunkt eller nummeret på nulpunktet fra nulpunkt-tabellen

Tilbagestille nulpunktforskydning: Fornyet cyklus-definition med indlæseværdien 0.

15 CICL DEL / TO MOLIONKI

14 CYCL DEF 7.1 X+60

16 CYCL DEF 7.3 Z-5

15 CYCL DEF 7.2 Y+40

岎

Gennemføre nulpunkt-forskydning før andre koordinatomregninger!

HENFØRINGSPUNKT FASTLÆGGELSE (cyklus 247)

CYCL DEF: Vælg cyklus 247 HENFØRINGSPUNKT FASTLÆGGELSE

Nummer for henføringspunkt: Q339. Indlæs nummeret på det nye henf.punkt fra preset-tabellen

13 CYCL DEF 247 HENF.PUNKT FASTL.

Q339=4

;HENF.PUNKT-NUMMER

Ved aktivering af et henf.punkt fra preset-tabellen, tilbagestiller TNC en alle aktive koordinat-omregninger, der blev aktiveret med følgende cykler:

- Cyklus 7, nulpunkt-forskydning
- Cyklus 8, spejling
- Cyklus 10, drejning
- Cyklus 11, dim.faktor
- Cyklus 26, aksespecifik dim.faktor

Koordinat-omregningen fra cyklus 19, Transformere bearbejdningsplan bliver derimod aktiv.

Når De aktiverer preset nummer 0 (linie 0), så aktiverer De det henf.punkt, som De sidst manuelt har fastlagt i en manuel driftsart.

I driftsart PGM-test er cyklus 247 ikke virksom.

SPEJLING (cyklus 8)

CYCL DEF: Vælg cyklus 8 SPEJLING
 Indlæs den spejlede akse: X eller Y hhv. X og Y
 Tilbagestille SPEJLING: Fornyet cyklus-definition med indlæsning NO ENT.

15 CALL LBL1

16 CYCL DEF 7.0 NULPUNKT

17 CYCL DEF 7.1 X+60

18 CYCL DEF 7.2 Y+40

19 CYCL DEF 8.0 SPEJLING

20 CYCL DEF 8.1 Y

21 CALL LBL1

Z Y X

- Værktøjs-aksen kan ikke spejles!
- Cyklus'en spejler altid original-konturen (her i eksemplet lagt i underprogram LBL 1)!

Cykler for koordinat-omregning

DREJNING (cyklus 10)

- CYCL DEF: Vælg cyklus 10 DREJNING
 - Indlæs drejevinkel: Indlæseområde -360° til +360° Henføringsakse for drejevinklen

Arbejdsplan	Henf.akse og 0°-retning
X/Y	X
Y/Z	Y
Z/X	Z

Tilbagestille DREJNING: Fornyet cyklus-definition med drejevinkel 0.

12 CALL LBL1
13 CYCL DEF 7.0 NULPUNKT
14 CYCL DEF 7.1 X+60
15 CYCL DEF 7.2 Y+40
16 CYCL DEF 10.0 DREJNING
17 CYCL DEF 10.1 ROT+35
18 CALL LBL1

DIM.FAKTOR (cyklus 11)

- ► CYCL DEF: Vælg cyklus 11 DIM. FAKTOR
 - Indlæs dim.faktor SCL (engl: scale = målestav): Indlæseområde 0,000001 til 99,999999: Formindske ... SCL<1 Forstørre ... SCL>1

Nulstille DIM.FAKTOR: Fornyet cyklus-definition med SCL1.

11 CALL LBL1 12 CYCL DEF 7.0 NULPUNKT

- 12 CICL DEF 7.0 NOLFOND
- 13 CYCL DEF 7.1 X+60
- 14 CYCL DEF 7.2 Y+40
- 15 CYCL DEF 11.0 DIM.FAKTOR
- 16 CYCL DEF 11.1 SCL 0.75

17 CALL LBL1

DIM.FAKTOR virker i bearbejdningsplanet eller i de tre hovedakser (afhængig af maskin-parameter 7410)!

Cykler for koordinat-omregning

DIM.FAKTOR AKSESPECIFIK (cyklus 26)

- CYCL DEF: Vælg cyklus 26 DIM.FAKTOR AKSESPEC.
 - Akse og faktor: Koordinatakser og faktorer for den aksespecifikke strækning eller klemning
 - Centrum-koordinater: Centrum for strækning eller klemning

Nulstille DIM.FAKTOR AKSESPEC.: Fornyet cyklus-definition med faktor 1 for den ændrede akse.

Koordinatakser med positioner for cirkelbaner må ikke med forskellige faktorer strækkes eller klemmes!

25 CALL LBL1

- 26 CYCL DEF 26.0 DIM.FAKTOR AKSESP.
- 27 CYCL DEF 26.1 X 1.4 Y 0.6 CCX+15 CCY+20
- 28 CALL LBL1

BEARBEJDNINGSPLAN (cyklus 19, software-option)

ĥ	
	_

Maskine og TNC skal af fabrikanten være forberedt for transformering af BEARBEJDNINGSPLANET.

Cyklus **19 BEARBEJDNINGSPLAN** understøtter arbejdet med svinghoveder og/eller rundborde.

- Kald værktøj
- Frikør værktøj i værktøjsakse (forhindrer kollision)
- Evt. positioneres drejeaksen med en L-blok til den ønskede vinkel
- CYCL DEF: Vælg cyklus 19 BEARBEJDNINGSPLAN
 - ▶ Indlæs svingvinkel for den tilsvarende akse eller rumvinkel
 - > Evt. indlæs tilspænding for drejeaksen ved automatisk positionering
 - Evt. indlæs sikkerheds-afstand
- Aktivere korrektur: Køre alle akser
- Programmere bearbejdning, som var planet ikke transformeret

Tilbagestilling af cyklus transformere BEARBEJDNINGSPLAN: Fornyet cyklus-definition med svinginkel 0.

4	TOOL	CALL	1 Z	S2500	

5 L Z+350 R0 FMAX

6 L B+10 C+90 R0 FMAX

7 CYCL DEF 19.0 BEARBEJDNINGSPLAN

8 CYCL DEF 19.1 B+10 C+90 F1000 AFST 50

Special-cykler

Oversigt

Dispo	onible cykler	Side
9	DVÆLETID	96
12	PGM CALL	96
13	ORIENTERING	97
32	TOLERANCE	98

DVÆLETID (cyklus 9)

Programafviklingen bliver standset med varigheden DVÆLETID.

CYCL DEF: Vælg cyklus 9 DVÆLETID

Indlæs dvæletiden i sekunder

48 CYCL DEF 9.0 DVÆLETID

49 CYCL DEF 9.1 DV.TID 0.5

PGM CALL (cyklus 12)

CYCL DEF: Vælg cyklus 12 PGM CALL
 Indlæs navnet på programmet der skal kaldes

吗

Cyklus 12 PGM CALL skal kaldes!

7 CYCL DEF 12.0 PGM CALL

8 CYCL DEF 12.1 L0T31

9 L X+37.5 Y-12 RO FMAX M99

SPINDEL-ORIENTERING (cyklus 13)

	ΓŢ	1
٦	-	T

Maskine og TNC skal af fabrikanten være forberedt for spindel-ORIENTERING!

- CYCL DEF: Vælg cyklus 13 ORIENTERING
 - Orienteringsvinkel henført til vinkelhenf.aksen for arbejdsplanet: Indlæse-område 0 til 360° Indlæse-finhed 0,1°
- ▶ Kald cyklus med M19 eller M20

12 CYCL DEF 13.0 ORIENTERING

13 CYCL DEF 13.1 VINKEL 90

TOLERANCE (cyklus 32)

Maskine og TNC skal være forberedt af maskinfabrikanten for den hurtige konturfræsning!

Special-cykler

Cyklus 32 TOLERANCE virker fra sin definition!

TNC en udglatter automatisk konturen mellem vilkårlige (ukorrigerede eller korrigerede) konturelementer. Herved kører værktøjet kontinuierligt på emne-overfladen. Om nødvendigt, reducerer TNC en automatisk den programmerede tilspænding, så at programmet altid bliver afviklet "rykfrit" med den **hurtigst mulige** hastighed af TNC en.

Under udglatningen opstår en konturafvigelse. Størrelsen af konturafvigelsen (TOLERANCEVÆRDI) er fastlagt i en maskin-parameter af maskinfabrikanten. Med cyklus 32 kan De ændre den forindstillede toleranceværdi (se billedet til højre for oven).

- CYCL DEF: Vælg cyklus 32 TOLERANCE
 - Tolerance T: Tilladelige konturafvigelse i mm
 - Slette/skrubbe: (software-option)
 Vælg filterindstillng
 0:Fræse med større konturnøjagtighed
 1: Fræse med større tilspænding
 - Tolerance for drejeakser: (software-option)
 Tilladelig positionsafvigelse for drejeaksen i grader med aktiv M128

PLANE-funktionen (software option 1)

Oversigt

Maskine og TNC skal være forberedt af fabrikanten for transformering med **PLANE**-funktionen.

Med **PLANE**-funktionen (eng. plane = plan) står en kraftfuld funktion til Deres rådighed, med hvilken De på forskellige måder kan definere transformerede bearbejdningsplaner.

Alle de i TNC´en til rådighed værende **PLANE**-funktioner beskriver de ønskede bearbejdningsplaner uafhængig af drejeakserne, der faktisk er til rådighed på Deres maskine. Følgende muligheder står til rådighed:

Disponible planfinitioner	Side
Rumvinkel-definition	100
Projektionsvinkel-definition	101
Eulervinkel-definition	102
Vektor-definition	103
Punkt-Definition	104
Inkremental rumvinkel	105
Aksevinkel	106
Tilbagestille plan-definition	107

Rumvinkel-definition (PLANE SPATIAL)

- ▶ Vælg SPECIELLE TNC-FUNKTIONER
- ▶ Vælg TRANSFORMERE BEARB.-PLAN, PLANE SPATIAL
 - Rumvinkel A?: Drejevinkel SPA om den maskinfaste akse X (se billedet øverst til højre).
 - Rumvinkel B?: Drejevinkel SPB om den maskinfaste akse Y (se billedet øverst til højre).
 - Rumvinkel C?: Drejevinkel SPC om den maskinfaste akse Z (se billedet øverst til højre).
- Videre med positioneringsegenskaberne (se "Automatisk indsvingning (MOVE/STAY/TURN)" på side 108)

5 PLANE SPATIAL SPA+27 SPB+0 SPC+45 MOVE AFST10 F500 SEQ-

Pas på før programmeringen

De skal altid definere alle tre rumvinkler SPA, SPB og SPC, også hvis en af vinklerne er 0.

Den forud beskrevne rækkefølge af drejningerne gælder uafhængig af den aktive værktøjs-akse.

PLANE-funktionen (software option 1)

ᇞ

Projektionsvinkel-definition (PLANE PROJECTED)

- ▶ Vælg SPECIELLE TNC-FUNKTIONER
- ▶ Vælg TRANSFORMERE BEARB.-PLAN, PLANE SPATIAL
 - Proj.-vinkel 1. koordinatplan?: Projicerede vinkel for det transformerede bearbejdningsplan i det 1. koordinatplan for det maskinfaste koordinatsystem (se billedet øverst til højre).
 - Proj.-vinkel 2. koordinatplan?: Projicerede vinkel i det 2. koordinatplan for det maskinfaste koordinatsystem (se billedet øverst til højre).
 - R0T-vinkel for det transf. plan?: Drejning af det transformerede koordinatsystem om den svingede værktøjs-akse (svarer til en rotation med cyklus 10 DREJNING; se billedet nederst til højre).
 - Videre med positioneringsegenskaberne (se "Automatisk indsvingning (MOVE/STAY/TURN)" på side 108)

5 PLANE PROJECTED PROPR+24 PROMIN+24 PROROT+30 MOVE AFST10 F500

Pas på før programmeringen

En projektionsvinkel kan De så kun anvende, når en retvinklet kasse skal bearbejdes. Ellers opstår forvridninger på emnet.

PLANE-funktionen (software option 1

Eulervinkel-definition (PLANE EULER)

- ▶ Vælg SPECIELLE TNC-FUNKTIONER
- ▶ Vælg TRANSFORMERE BEARB.-PLAN, PLANE EULER
 - Drejev. Hoved-koordinatplan?: Drejevinkel EULPR om Z-aksen (se billedet øverst til højre)
 - Svingvinkel værktøjs-akse?: Svingvinkel EULNUT for koordinatsystemet om den med præcessionsvinkel drejede X-akse (se billedet nederst til højre)
 - R0T-vinkel for det transf. plan?: Drejning EULROT af det transformerede koordinatsystem om den svingede Z-akse (svarer til en rotation med cyklus 10 DREJNING). Med rotations-vinklen kan De på enkel vis bestemme retningen af X-aksen i det transformerede bearbejdningsplan
- Videre med positioneringsegenskaberne (se "Automatisk indsvingning (MOVE/STAY/TURN)" på side 108)

5 PLANE EULER EULPR+45 EULNU20 EULROT22 MOVE AFST10 F500

叱

Pas på før programmeringen

Rækkefølgen af drejninger gælder uafhængig af den aktive værktøjs-akse.

PLANE-funktionen (software option 1

Vektor-definition (PLANE VECTOR)

- ▶ Vælg SPECIELLE TNC-FUNKTIONER
- ▶ Vælg TRANSFORMERE BEARB.-PLAN, PLANE VECTOR
 - X-komponent basisvektor?: X-komponent BX for basisvektor B (se billedet øverst til højre).
 - Y-komponent basisvektor?: Y-komponent BY for basisvektor B (se billedet øverst til højre).
 - Z-komponent basisvektor?: Z-komponent BYZ for basisvektor B (se billedet øverst til højre).
 - X-komponent normalvektor?: X-komponent NX for normalvektor N (se billedet nederst til højre).
 - Ykomponent normalvektor?: Y-komponent NY for normalvektor N (se billedet nederst til højre).
 - > Z-komponent normalvektor?: Z-komponent NZ for normalvektoren N
 - Videre med positioneringsegenskaberne (se "Automatisk indsvingning (MOVE/STAY/TURN)" på side 108)

5 PLANE VECTOR BX0.8 BY-0.4 BZ-0.4472 NX0.2 NY0.2 NZ0.9592 MOVE AFST10 F500

Pas på før programmeringen

TNC'en beregner internt fra de af Dem til enhver tid indlæste værdier normerede vektorer.

PLANE-funktionen (software option 1

Punkt-definition (PLANE POINTS)

- ▶ Vælg SPECIELLE TNC-FUNKTIONER
- ▶ Vælg BEARB.-PLAN TRANSFORMERE, PLANE POINTS
 - **X-koordinat 1. planpunkt?**: X-koordinat **P1X**
 - Y-koordinat 1. planpunkt?: Y-koordinat P1Y
 - Z-koordinat 1. planpunkt?: Z-koordinat P1Z
 - **X-koordinat 2. planpunkt?**: X-koordinat P2X
 - Y-koordinat 2. planpunkt?: Y-koordinat P2Y
 - Z-koordinat 2. planpunkt?: Z-koordinat P2Z
 - **X-koordinat 3. planpunkt?**: X-koordinat **P3X**
 - Y-koordinat 3. planpunkt?: Y-koordinat P3Y
 - **Z-koordinat 3. planpunkt?**: Z-koordinat P3Z
- Videre med positioneringsegenskaberne (se "Automatisk indsvingning (MOVE/STAY/TURN)" på side 108)

5 POINTS P1X+0 P1Y+0 P1Z+20 P2X+30 P2Y+31 P2Z+20 P3X+0 P3Y+41 P3Z+32.5 MOVE AFST10 F500

Pas på før programmeringen

Forbindelsen fra punkt 1 til punkt 2 fastlægger retningen af den svingede hovedakse (X ved værktøjsakse Z).

De tre punkter definerer nedbøjningen af planet. Stedet for det aktive nulpunkts bliver ikke ændret af TNC'en.

Inkremental rumvinkel (PLANE RELATIVE)

- ▶ Vælg SPECIELLE TNC-FUNKTIONER
- ▶ Vælg TRANSFORMERE BEARB.-PLAN, PLANE SPATIAL
 - Inkremental vinkel?: Rumvinkel, om hvilken det aktive bearbejdningsplan skal videredrejes (se billedet øverst til højre). Vælg aksen om hvilken der skal transformeres pr. softkey
 - Videre med positioneringsegenskaberne (se "Automatisk indsvingning (MOVE/STAY/TURN)" på side 108)

5 PLANE RELATIV SPB-45 MOVE AFST10 F500 SEQ-

Pas på før programmeringen

Den definerede vinkel virker altid henført til det aktive bearbejdningsplan, helt lig med hvilken funktion De har aktiveret denne.

De kan vilkårligt mange **PLANE RELATIVE**-funktioner programmere efter hinanden.

Vil De igen tilbage til bearbejdningsplanet, som var aktiv før **PLANE RELATIVE** funktionen, så definerer De **PLANE RELATIVE** med den samme vinkel, dog med det modsatte fortegn.

Når De anvender **PLANE RELATIVE** på et utransformeret bearbejdningsplan, så drejer De det utransformerede plan simpelt hen om den i **PLANE**-funktionen definerede rumvinkel.

PLANE-funktionen (software option 1

Aksevinkel-definition (PLANE AXIAL)

Vælg SPECIELLE TNC-FUNKTIONER

▶ Vælg BEARB.-PLAN TRANSFORMERING, PLANE AXIAL

- Aksevinkel A?: Positionen af A-aksen på hvilken TNC´en skal positionere
- Aksevinke1 B?: Positionen af B-aksen på hvilken TNC´en skal positionere
- Aksevinkel C?: Positionen af C-aksen på hvilken TNC´en skal positionere
- Videre med positioneringsegenskaberne (se "Automatisk indsvingning (MOVE/STAY/TURN)" på side 108)

5 PLANE AXIAL B+90 MOVE AFST10 F500 SEQ+

Pas på før programmeringen

De må kun definere drejeakser, som også er til rådighed på Deres maskine.

PLANE-funktionen (software option 1

Tilbagestille plan-definition (PLANE RESET)

- ▶ Vælg SPECIELLE TNC-FUNKTIONER
- ▶ Vælg TRANSFORMERE BEARB.-PLAN, **PLANE RESET**
 - Videre med positioneringsegenskaberne (se "Automatisk indsvingning (MOVE/STAY/TURN)" på side 108)
- 5 PLANE RESET MOVE AFST10 F500 SEQ-

Pas på før programmeringen

Funktionen **PLANE RESET** sætter den aktive **PLANE**-funktion – eller en aktive cyklus 19 – fuldstændigt tilbage (vinkel = 0 og funktion inaktiv). En multidefinition er ikke nødvendig.

Automatisk indsvingning (MOVE/STAY/TURN)

Efter at De har indlæst alle parametre for plandefinition, skal De fastlægge, hvorledes drejeaksen skal indsvinges på de beregnede akseværdier:

- PLANE-funktionen skal indsvinge drejeaksen automatisk til de beregnede akseværdier, hvorved relativpositionen mellem emne og værktøj ikke ændres. TNC´en udfører en udligningsbevægelse i liniæraksen
- PLANE-funktionen skal indsvinge drejeaksen automatisk til de beregnede akseværdier, hvorved kun drejeaksen bliver positioneret. TNC´en udfører ingen udligningsbevægelse i liniæraksen
- De svinger drejeaksen ind i en efterfølgende, separat positioneringsblok

Når De har valgt en af optionerne **MOVE** eller **TURN** (**PLANE**-funktion skal indsvinge automatisk), skal også de to følgende parametre defineres:

- Afstand drejepunkt fra WZ-Spitze (inkremental): Die TNC indsvinger værktøjet (bordet) om værktøjsspidsen. Med parameter ABST overfører De drejepunktet for indsvingningsbevægelsen henført til den aktuelle position for værktøjsspidsen.
- Tilspænding? F=: Banehastighed, med hvilken værktøjet skal indsvinge med

MOVE

STAY

TURN
Vælg mulig løsning (SEQ +/-)

Fra det af Dem definerede sted for bearbejdningsplanet skal TNC'en beregne den dertil passende stilling for de på Deres maskine værende drejeakser. I regelen fremkommer der altid to løsningsmuligheder.

Med kontakten SEQ indstiller De, hvilken løsningsmulighed TNC $\acute{}$ en skal anvende:

- SEQ+ positionerer masteraksen således, at den indtager en positiv vinkel. Masteraksen er den 2. drejeakse gående ud fra bordet eller den 1. drejeakse gående ud fra værktøjet (afhængig af maskinkonfigurationen, se også billedet øverst til højre)
- SEQ- positionerer masteraksem således, at den indtager en negativ vinkel

Ligger den af Dem med **SEQ** valgte løsning ikke i kørselsområdet for maskinen, afgiver TNC en fejlmeldingen **vinkel ikke tilladt**.

PLANE-funktionen (software option 1

Valg af transformationsart

For maskiner der har et rundbord, står en funktion til rådighed, med hvilken De kan fastlægge arten af transformation:

COORD ROT fastlægger, at PLANE-funktionen kun skal dreje koordinatsystemet til den definerede svingvinkel. Rundbordet bliver ikke bevæget, kompenseringen af drejningen sker regnemæssigt

 TABLE ROT fastlægger, at PLANE-funktionen for rundbordet skal positionere til den definerede svingvinkel.
Kompensationen sker med en emne-drejning

Dykfræsning i det transformerede plan

I forbindelse med de nye **PLANE**-funktioner og M128 kan De i et transformeret bearbejdningsplan **dykfræse**. Herfor står to definitionsmuligheder til rådighed:

Dykfræsning med inkremental kørsel af en drejeakseDykfræsning med normalvektorer

~	
L	Ŧ

Dykfræsning i det transformerede plan fungerer kun med radiusfræsere.

Ved 45°-svinghoveder/svingborde, kan De også definere styrtvinklen også som rumvinkel. Herfor står funktionen **FUNCTION TCPM** til rådighed.

PLANE-funktionen (software option 1

Forarbejde DXF-data (software-option)

På et CAD-system genererede DXF-filer kan De direkte åbne på TNC`en, for derfra at ekstrahere konturer eller bearbejdningspositioner og at gemme disse som Klartext-dialog-programmer hhv. som punkt-filer.

De med konturselektionen indvundne klartext-dialog-programmer kan også afvikles af ældre TNC-styringer, da konturprogrammerne kun indeholder L- og CC-/CP-blokke.

- INDSTIL LAYER
 - Ind- eller udblænde DXF-Layer, for kun at vise de væsentlige tegningsdata
 - Tegnings-nulpunktet for DXF-filen forskydes til en meningsfyldt position på emnet
 - Aktivere modus for valg af en kontur. Forkorte og forlænge dele af konturen er mulig
 - Aktivere modus for valg af bearbejdningspositioner. Overtage positioner pr. muse-klik.
 - ▶ Ophæve igen allerede valgte konturer hhv. positioner
 - Gemme valgte konturer hhv. positioner i en separat fil

PLANE-funktionen (software option 1

SLET DET VALGTE ELEMENT
GEM DET VALGTE ELEMENT

FASTLAG REFERENCE

۲

VÆLG

KONTUR

VÆLG POSITION

Grafik og status-visning

Se "Grafik og Status-visning"

Fastlægge emnet i grafik vinduet

Dialogen for BLK-form vises automatisk, når et nyt program bliver åbnet.

- Åbne et nyt program eller i et allerede åbnet program trykkes softkey BLK FORM
 - Spindelakse
 - MIN- og MAX-punkt

Efterfølgende et udvalg af ofte påkrævede funktioner.

Programmeringsgrafik

Vælg billedskærmopdeling PROGRAM+GRAFIK!

Under program-indlæsningen kan TNC´en fremstille den programmerede kontur med en to-dimensional grafik:

Automatisk med tegning

Starte grafik manuelt

Starte grafik blokvis

Test-grafik og programafviklings-grafik

ᇞ

Vælg billedskærmopdelingenng GRAFIK eller PROGRAM+GRAFIK!

I driftsart program-test og i programafviklings-driftsarter kan TNC´en simulere en bearbejdning grafisk. Med softkey er følgende billeder valgbare:

Set ovenfra

Fremstilling i 3 planer

► Højopløsende 3D-fremstilling

MANUEL DRIFT	PROGRAMTEST				
Ø BEGIN PGM 1	7000 MM				
1 BLK FORM 0.	1 Z X-20 Y-32 Z-53				
2 BLK FORM 0.	2 IX+40 IY+64 IZ+53				
3 TOOL CALL E	31 Z S1000				S
4 L X+0 Y+0	RØ F9999				4
5 L Z+1 RØ F	'9999 M3				
6 CYCL DEF 5.	0 RUND LOMMEFRAESNING				╵╴
7 CYCL DEF 5.	1 AFST.1				<u> </u>
8 CYCL DEF 5.	2 DYBDE-3.6				Python
9 CYCL DEF 5.	3 UDSP.4 F4000				
10 CYCL DEF 5.	4 RADIUS16.05				Demos
11 CYCL DEF 5.	5 F5000 DR-				DIAGNOSIS
12 CYCL CALL					
13 CYCL DEF 5.	Ø RUND LOMMEFRAESNING				Info 1/3
14 CYCL DEF 5.	1 AFST.1				1
		4096.	00 * T	0:00:37	
		STOP VED	START	ENKEL	RESET + START

Status-display

ᇞ

Vælg billedskærmopdeling PROGRAM+STATUS eller POSITION+STATUS!

I nederste afsnit på billedskærmen står i programafviklings-driftsarten informationer om

- Værktøjs-position
- Tilspænding
- Aktive hjælpe-funktioner

Med softkeys kan yderligere status-informationer blive indblændet i et billedskærmsvindue:

Aktivere fanen **POS**: Visning af positioner

STATUS
OVERSIGT

- Aktivere fanen **0versigt**: Viser de vigtigste statusinformationer
- STATUS POS.
- Aktivere fanen TOOL: Visning af værktøjs-data

 Aktivere fanen TRANS: Visning af aktive koordinattranformationer
Viderekoble rytter mod venstre

Viderekoble rytter mod højre

PROGRAMLØB BLOKF	ØLGE								PROG	RAM- ASNING
19 L IX-1 R0 FMAX		Overs	igt	PGM	LBL	CYC	M	POS		
20 CYCL DEF 11.0 DIMFAKTOR		× Y	+0.0	100 100	*a *A		+0.0	00 00	-	
21 CYCL DEF 11.1 SCL 0.9995		Z	+0.0	00			REST	v		
22 STOP		T:5 L	+1	20.000	90 R	AWT		5.000	0	S 🗌
23 L Z+50 R0 FMAX		DL-TAR	1 +0.:	2500	DR	-TAB -PGM	+0.1	.000	-	Ŧ
24 L X-20 Y+20 R0 FMAX		M110								
25 CALL LBL 15 REP5		, × , Р У	+25.0	9999	2 ⁰ # Ф	1 X Y				│ [′]
26 PLANE RESET STAY									_	
27 LBL 0		5	LB	L 99						Python
			LB	L.		1.2	REP		_	. 🥺
0% S-IST		Aktiu	PGM:	STAT		1	9 66:	00:04	-	Demos
0% SINm1 LINIT 1	23:27									DIAGNOSIS
X -2.787 Y	- 3	40.	07:	1 Z	2	+ 1	00	.25	50	_
*a +0.000*A		+0.	000	3 ++ E	}	+	74	.70	00	
+C +0.000				1						Info 1/3
* <u>3</u> 🖉 🖉		70.5	500	S :		0.0	000	- /		
	STA	TUS						4		
OVERSIGT POS. VÆRKTØJ	K00 OMR	RD. EG.								

DIN/ISO-programmering

Programmere værktøjs-bevægelser med retvinklede koordinater			
G00	Retliniebevægelse i ilgang		
G01	Retliniebevægelse		
G02	Cirkelbevægelse medurs		
G03	Cirkelbevægelse modurs		
_	.		

G05 Cirkelbevægelse uden drejeretningsangivelse

- **G06** Cirkelbevægelse med tangential konturtilslutning
- **G07*** Akseparallel positioneringsblok

Programmere værktøjs-bevægelser med Polarkoordinater G10 Betlinjebevægelse i ilgang

GIU	Retilnlebevægelse i ligang
G11	Retliniebevægelse
G12	Cirkelbevægelse medurs
G13	Cirkelbevægelse modurs
G15	Cirkelbevægelse uden drejeretningsangivelse
G16	Cirkelbevægelse med tangential konturtilslutning

*) blokvis virksom funktion

Borecyl	der
G240	Centrering
G200	Boring
G201	Reifning
G202	Uddrejning
G203	Universal-boring
G204	Undersænkning bagfra
G205	Universal-dybdeboring
G208	Borefræsning
G206	Gevindboring NY
G207	Gevindboring GS (styret spindel) NY
G209	Gevindboring spånbrud
G240	Centrering
G262	Gevindfræsning
G263	Undersænknings-gevindfræsning
G264	Borgevindfræsning
G265	Helix-borgevindfræsning
G267	Udvgevindfræsning

116

Ť

5
ž
<u> </u>
1
~
Ψ.
F
<u> </u>
2
σ
<u> </u>
ž
<u> </u>
-
<u>o</u>
0
×
U
_
\geq
Z
=
\mathbf{n}
-

Lommer, tappe og noter		
G251	Firkantlomme komplet	
G252	Rund lomme komplet	
G253	Not komplet	
G254	Rund not komplet	
G256	Bearbejde firkant tappe	
G257	Bearbejde cirkulære tappe	

Punktmønster		
G220	Punktmønster på cirkel	
G221	Punktmønster på linier	

Эс-сукіе	r gruppe II
G37	Kontur-underprogram fastlægges
G120	Kontur-data
G121	Forboring
G122	Skrubning
G123	Sletfræs dybde
G124	Sletfræs side
G125	Kontur-kæde
G127	Cylinder-flade (software-option)
G128	Cylinder-flade notfræsning (software-option)
G129	Cylinder-flade trinfræsning (software-option)
G139	Cylinder-flade konturfræsning (software-option)
G270	Kontur-data

Nedfræsning

G60	Afvikling af 3D-data
G230	Nedfræsning

- G231 Skråflade
- G232 Planfræsning

Tastsyst	tem-cykler	Tastsyst	tem-cykler
G55*	Måle koordinater	G420*	Måle vinkel
G400*	Grunddrejning 2 punkter	G421*	Måling af boring
G401*	Grunddrejning 2 boringer	G422*	Måling af rund tap
G402*	Grunddrejning 2 tappe	G423*	Måling af firkant lomme
G403*	Grunddrejning med rundbord	G424*	Måling af firkantet tap
G404*	Fastlæg grunddrejning	G425*	Måling af not indv.
G405*	Grunddrejning med rundbord	G426*	Måling af trin udv.
	Borings-midtpunkt	G427*	Måling af vilkårlig koordinat
G408*	Henføringspunkt midt i not	G430*	Måling af hulkreds
G409*	Henføringspunkt midt i trin	G431*	Måling af plan
G410*	Henf.punkt midt i firkantlomme	G440*	Varme-kompensation
G411*	Henf.punkt midt i firkanttap	G450*	Sikre kinematik (option)
G412*	Henf.punkt midt i boring	G451*	Opmåle kinematik (option)
G413*	Henf.punkt midt i rund tap	G480*	Kalibrerere TT
G414*	Henf.punkt udv. hjørne	G481*	Måling af værktøjs-længde
G415*	Henføringspunkt indv. hjørne	G482*	Måling af værktøjs-radius
G416*	Henf.punkt hulkredsmidte	G483*	Måling af værktøjs-længde og -radius
G417*	Henf.punkt tastsystemakse		
G418*	Henf.punkt i midten af 4 boringer		
G419*	Henf.punkt enkelt akse		

*) blokvis virksom funktion

Cykler for koordinat-omregning

- **G53** Nulpunkt-forskydning fra nulpunkt-tabellen
- **G54** Nulpunkt-forskydning indlæses direkte
- G247 Henføringspunkt-fastlæggelse
- G28 Spejling af konturer
- **G73** Dreje koordinatsystem
- **G72** Dim.faktor; Konturer formindske/forstørre
- **G80** Bearbejdningsplan (software-option)

Special-cykler

G04*	Dvæletid
G36	Spindel-orientering
G39	Program for cyklus deklarering
G79*	Cyklus-kald
G62	Tolerance (software-option)

Bearbej	dnings-plan fastlægning
G17	Plan X/Y, værktøjs-akse Z
G18	Plan Z/X, værktøjs-akse Y
G19	Plan Y/Z, værktøjs-akse X
G20	Fjerde akse er værktøjs-akse
Fase, ru	nding, Kontur tilkøre/forlade
G24*	Affasning med faselængde R
G25*	Hjørne afrunding med radius R
G26*	Tilkøre kontur tangentialt på cirkel med radius R
G27*	Forlade kontur tangentialt på cirkel med radius R
Værktø	js-definition
G99*	Værktøjs definition i program med længde L og radius R
Værktø	js-radiuskorrektur
G40	Ingen radiuskorrektur
G41	Værktøjs-banekorrektur, til venstre for konturen

- G42 Værktøjs-banekorrektur, til højre for konturen
- G43 Akseparallel radiuskorrektur; Forlænge kørselsvejen
- **G44** Akseparallel radiuskorrektur; Forkorte kørselsvejen

*) blokvis virksom funktion

Målangivlse		
G90	Målangivelse absolut	
G91	Målangivelse inkrementalt (kædemål)	

Fastlægge måleenhed (program-start)		
G70	Måleenhed tommer	
G71	Måleenhed mm	

Definere råemne for grafik		
G30	Fastlægge plan, koordinater MIN-punkt	
G31	Målangivelse (med G90, G91), koordinater MAX- punkt	

Specielle G-funktioner		
G29	Overtage sidste position som Pol	
G38	Standse programafvikling	
G51*	Kalde næste værktøjs-nummer (kun med centralt værktøjs-lager)	
G98*	Fastlægge mærke (label-nummer)	

DIN/ISO-programmering

Q-parameter-funktioner Anvise værdi direkte D00 D01 Beregn og anvis summen af de to værdier Beregn og anvis differensen af de to værdier D02 D03 Beregn og anvis produktet af to værdier D04 Beregn og anvis kvotienten af to værdier D05 Uddrag roden af et tal og anvis dette D06 Bestemmelse og anvisning af sinus til en vinkel i grader D07 Bestemmelse og anvisning af sinus til en vinkel i grader Uddrage og anvise roden af summen på kvadratet D08 af to tal (Pythagoras) D09 Hvis lig med, spring til den angivne label D10 Hvis ulig med, spring til den angivne label D11 Hvis større, spring til den angivne label D12 Hvis mindre, spring til den angivne label D13 Bestemme og anvise vinkel med arctan af to sider eller sin og cos til vinklen D14 Udlæs tekst på billedskærm D15 Udlæs tekst eller parameter-indhold over datainterfacet D19 Overfør talværdier eller Q-parametre til PLC'en

Adres	ser		
%	Program-start	R	Polarkoordinat-radius med G10/G11/G12/G13/ G15/G16
Α	Sving-akse om X	R	Cirkel-radius med G02/G03/G05
В	Sving-akse om Y	D	Bundings radius mod 625/626/627
С	Dreje-akse om Z	n D	Face Impade med C24
D	Definere Q-parameter-funktioner	R	Fase-længde med G24
Е	Tolerance for rundingskreds med M112	ĸ	Værktøjs-radius med G99
F	Tilspænding i mm/min med positionerings-blokke	S	Spindelomdr.tal i omdr./min
F	Dvæletid i sek med G04	5	Vinkel for spindel-orientering med G36
F	Dim.faktor med G72	T _	Værktøjs-nummer med G99
G	G-funktioner (se liste over G-funktioner)	Т	Værktøjs-kald
н	Polarkoordinat-vinkel	Т	Næste værktøj kaldes med G51
н	Drejevinkel med G73	U	Parallel-akse til X
I	X-koordinat for cirkel-midtpunktet/pol	v	Parallel-akse til Y
J	Y-koordinat for cirkel-midtpunktet/pol	v	Parallel-akse til Z
к	Z-koordinat for cirkel-midtpunktet/pol	Х	X-akse
L	Fastlæg mærke (label-nummer) med G98	Υ	Y-akse
L	Spring til et mærke (label-nummer)	Z	Z-akse
L	Værktøjs-længde med G99	*	Tegn for blokenden
М	Hjælpe-funktion		
Ν	Blok-nummer		
Р	Cyklus-parameter ved bearbejdnings-cykler		
Ρ	Værdi eller Q-parameter ved Q-parameter- definitioner		
Q	Parameter (pladsholder)-betegnelse		

122

Hjælpe-funktioner M

M00	Programafvikling-stop/spindel-stop/kølemiddel- ude
M01	Valgfrit programafviklings-stop
M02	Programafviklings-stop/spindel-stop/kølemiddel- ud/tilbagespring til blok 1/evt. slette status-visning
M03	Spindel-inde medurs
M04	Spindel-inde modurs
M05	Spindel-stop
M06	Værktøjsskift-frigivelse/programafviklings-stop (afhængig af maskin-parameter) /spindel-stop
M08	Kølemiddel-inde
M09	Kølemiddel-ude
M13	Spindel-inde medurs/kølemiddel-inde
M14	Spindel-inde modurs/kølemiddel-inde
M30	Samme funktion som M02
M89	Fri hjælpe-funktion eller cyklus-kald, modal virksom (afhængig af maskin-parameter)
M90	Konstant banehastighed ved hjørne (virker kun i slæbe drift)
M91	l en positioneringsblok: Koordinater henfører sig til maskin-nulpunktet

M92	l positioneringsblok: Koordinater henfører sig til en af maskinfabrikanten fastlagt position.
M93	Reserveret
M94	Reducere visning af drejeakse til en værdi under 360 grader
M95	Reserveret
M96	Reserveret
M97	Bearbejdning af små konturtrin
M98	Enden på banekorrektur
M99	Cyklus-kald, blokvis virksom
M101	Automatisk værktøjsskift efter udløb af brugstiden
M102	M101 tilbagestilles
M103	Tilspænding ved indstikning reduceres med faktor F
M104	Aktivere sidst fastlagte henf.punkt igen
M105	Gennemføre bearbejdning med anden k _V -faktor
M106	Gennemføre bearbejdning med anden k _V -faktor
M107	Se bruger-håndbogen
M108	M107 tilbagestilling

123

M109	Konstant banehastighed på værktøjsskæret ved radier (Tilspændings-forhøjelse og -reducering)	M130	l positioneringsblok: Punkter henfører sig til det utransformerede koordinatsystem
M110	Konstant banehastighed på værktøjsskæret ved	M134	Præc.stop ved positionering med drejeakser
	radier (kun tilspændings-reducering)	M135	Tilbagestille M134
M111	Tilbagestille M109/M110	M136	Tilspænding F i millimeter pr. spindel-omdrejning
M114	Autom. korrektur af maskingeometri ved arbejde	M137	Tilspænding F i millimeter pr. minut
	med svingakser (software-option)	M138	Udvalg af svingakse for M114, M128 og cyklus
M115	Tilbagestille M114		transformering af bearbejdningsplan
M116	Tilspænding ved vinkelakser i mm/min (software-	M140	Kørsel fra konturen i værktøjsakse-retning
	option)	M141	Undertrykke tastsystem-overvågning
M117	Tilbagestille M116	M142	Slette modal programinformation
M118	Overlejre håndhjul-positionering under	M143	Slette grunddrejning
	programatviklingen	M144	Hensyntagen til maskin-kinematik i AKT./SOLL-
M120	Forudberegne radiuskorrigeret position LOOK		positioner ved blokende (software-option)
N4104	AREAD Dupleter und of vikling of ikke korrigerede	M145	tilbagestille M144
IVI 124	retlinieblokke tilgodeses ikke	M148	Automatisk løfte værktøj op fra konturen ved NC-
M126	Køre drejeakser vejoptimeret		stop
M127	M126 tilbagestilles	M149	Tilbagestille M148
M128	Position af værktøjsspids ved positionering af	M150	Undertrykke endekontakt fejlmelding
	svingakse bibeholdes (TCPM) ¹⁾	M200	Hjælpe funktioner for laser-skæremaskiner
	(software-option)	•	
M129	Tilbagestille M128		
¹⁾ TCPM: Tool Center Point Management		M204	Se bruger-håndbogen

124

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH Dr - Johannes-Heidenhain-Straße 5 83301 Traunreut, Germany 2 +49 (8669) 31-0 FAX +49 (8669) 5061 F-Mail: info@heidenhain de **Technical support** FAX +49 (8669) 32-1000 Measuring systems 2 +49 (8669) 31-3104 E-Mail: service.ms-support@heidenhain.de TNC support E-Mail: service.nc-support@heidenhain.de NC programming 2 +49 (86 69) 31-31 03 E-Mail: service.nc-pgm@heidenhain.de **PLC programming** 2 +49 (8669) 31-3102 E-Mail: service.plc@heidenhain.de Lathe controls

E-Mail: service.lathe-support@heidenhain.de

www.heidenhain.de

TP TEKNIK A/S

Korskildelund 4 2670 Greve, Denmark (70) 100966 (70) 100165

