

Priročnik za uporabnika

Cikli tipalnega sistema

NC programska oprema 340 422-xx 340 423-xx 340 480-xx 340 481-xx

TNC tip, programska oprema in funkcije

Ta priročnik opisuje funkcije, ki so v strojih TNC na voljo od naslednjih številk NC programske opreme dalje.

TNC tip	NC – št. programske opreme
iTNC 530	340 422-11
iTNC 530 E	340 423-11
iTNC 530	340 480-11
iTNC 530 E	340 481-11
iTNC 530 prostor za programiranje	374 150-11

Označbena črka E označuje eksportno verzijo TNC. Za eksportne verzije TNC velja naslednja omejitev:

Ravni premiki simultano do 4 osi

Proizvajalec stroja prilagodi posameznemu stroju uporabni obseg zmogljivosti TNC preko strojnih parametrov. Zato so v tem priročniku opisane tudi funkcije, ki niso na voljo na vsakem TNC.

TNC funkcije, ki niso na voljo na vseh strojih, so na primer:

```
Izmera orodja s TT
```

Prosimo, da stopite v stik s proizvajalcem stroja, da boste spoznali dejanski obseg funkcij vašega stroja.

Mnogi proizvajalci strojev in HEIDENHAIN nudijo tečaje za programiranje TNC strojev. Priporočamo vam udeležbo na takšnih tečajih, da se boste intenzivno seznanili s funkcijami TNC stroja.

Priročnik za uporabnika:

Vse TNC funkcije, ki niso povezane s tipalnim sistemom, so opisane v priročniku za uporabnika iTNC 530. Če potrebujete ta priročnik se po potrebi obrnite na HEIDENHAIN.

Predvideno mesto uporabe

TNC odgovarja razredu A po EN 55022 in je v glavnem namenjen uporabi v industrijskih področjih.

3

Nove funkcije v primerjavi s prejšnjimi verzijami 340 420-xx/340 421-xx

- Shranjevanje aktivne osnovne rotacije v preset tabelo (glej "Shranjevanje osnovnega vrtenja v preset tabelo" na strani 31)
- Pisanje merilnih vrednosti v preset tabelo (glej "Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v preset tabelo" na strani 25)
- Nov cikel 419 za nameščanje posamične navezne točke v izbirni osi (glej "NAVEZNA TOČKA POSAMEZNA OS (cikel tipalnega sistema 419, DIN/ISO: G419)" na strani 88)
- Cikel 3 je bil razširjen z možnostjo navedbe povratne poti MB in z možnostjo izbire, v kateri koordinati naj se odloži merilni rezultat (glej "MERJENJE (cikel tipalnega sistema 3," na strani 132)
- Cikel 403 namesti opcionalno vrtljivo os v preset tabelo ačo aktivno tabelo ničelnih točk na 0. Dodatno se lahko navede kot, na katerega naj se naravna (glej "Kompenziranje OSNOVNEGA VRTENJA preko vrtljive osi (cikel tipalnega sistema 403, DIN/ISO: G403)" na strani 50)
- Cikel 9 izvede avtomatsko dolžinsko kalibriranje. (glej "TS ALIBRIRANJE DOLŽINE (cikel tipalnega sistema 9," na strani 131)
- Cikli za nameščanje navezne točke 410, 411, 412, 413, 414, 415, 416 in 418 so bile razširjene v toliko, da se sedaj lahko opcionalno namesti tudi navezna točka v osi tipalnega sistema (glej "NASTAVITEV OSNOVNEGA VRTENJA ZNOTRAJ (cikel tipalnega sistema 410, DIN/ISO: G410)" na strani 62)
- Nova ročna nastavitev tipanja: Nastavitev navezne točke v srednji osi (glej "Srednja os kot navezna točka" na strani 35)
- Uporaba tipalnih funkcij TNC z mehanskimi tipkami ali merilnimi urami (glej "Uporaba tipalnih funkcij TNC z mehanskimi tipkami ali merilnimi urami" na strani 40)

Spremenjene funkcije glede na prejšnje verzije 340 420-xx/340 421-xx

Novi parametri za navedbe ugotovljene navezne točke pri ciklih za avtomatsko nameščanje navezne točke (glej "Shranjevanje obračunane navezne točke" na strani 61)

Pred programiranjem upoštevajte

S sprostitvijo NC programske opreme 340 422-01 in 340 423-01, oz. 340 480-01 in 340 481-01 je bila na novo uvedena funkcija preset tabele. Upoštevajte iz tega izhajajoče spremembe v povezavi s cikli tipalnega sistema za nastavitev navezne točke.

- Pisanje merilnih vrednosti v tabelo ničelnih točk (glej "Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v tabelo ničelnih točk" na strani 24)
- Cikel 403 je razširjen z možnostjo, po usmerjanju vrtljive osi nastavitev na ničlo (glej "Kompenziranje OSNOVNEGA VRTENJA preko vrtljive osi (cikel tipalnega sistema 403, DIN/ISO: G403)" na strani 50)
- Cikli 400, 401 in 402 razširjeni z možnostjo pisanja ugotovljene osnovne rotacije v preset tabelo (glej "OSNOVNO VRTENJE (cikel tipalnega sistema 400, DIN/ISO: G400)" na strani 43), (glej "OSNOVNO VRTENJE preko dveh vrtin (cikel tipalnega sistema 401, DIN/ISO: G401)" na strani 45) in (glej "OSNOVNO VRTENJE preko dveh čepov (cikel tipalnega sistema 402, DIN/ISO: G402)" na strani 47)
- Postavljanje navezne točke z ročnimi tipalnimi cikli je bilo spremenjeno. Namesto s tipko ENT se mora sedaj navezna točka postaviti s soft tipko (glej "Postavljanje navezne točke v poljubni osi (glej sliko desno)" na strani 32)

5

Novi/spremenjeni opisi v tem priročniku

 Opis potrebnih vrednosti za vnos v orodno tabelo za avtomatsko izmero orodja sprejeto (glej "Navedbe v orodni tabeli TOOL.T" na strani 138)

Vsebina

Uvod

Cikli tipalnega sistema v vrstah obratovanja ročno in el. ročno kolo

Cikli tipalnega sistema za avtomatsko kontrolo obdelovalnih delov

Cikli tipalnega sistema za avtomatsko izmero orodja

1 Uvod 13

1.1 Splošno o ciklih tipalnega sistema 14

Načini delovanja 14

Cikli tipalnega sistema v vrstah obratovanja ročno in el. ročno kolo 15

Cikli tipalnega sistema za avtomatsko obratovanje 15

1.2 Preden delate s cikli tipalnega sistema! 17

Maksimalna pot premika do tipalne točke: MP6130 17

Varnostni razmak od tipalne točke: MP6140 17

Orientiranje infrardečega tipalnega sistema na programirano smer tipanja: MP6165 17

Večkratna meritev: MP6170 17

Zaupno področje za večkratno merjenje: MP6171 17

Stikalni tipalni sistem, premik tipanja naprej: MP6120 18

Stikalni tipalni sistem, hitra pot za predpozicioniranje: MP6150 18

Opravljanje ciklov tipalnega sistema 19

2 Cikli tipalnega sistema v vrstah obratovanja ročno in el. ročno kolo 21

2.1 Uvod 22
Pregled 22
Izbira cikla tipalnega sistema 22
Protokoliranje vrednosti iz ciklov tipalnega sistema 23
Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v tabelo ničelnih točk 24
Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v preset tabelo 25
2.2 Stikalni tipalni sistem, kalibriranje 26
Uvod 26
Kalibriranje dejavne dolžine 26
Kalibriranje dejavnega radija in srednji zamik tipalnega sistema 27
Prikaz vrednosti kalibriranja 28
Upravljanje več blokov v kalibrirnih podatkih 29
2.3 Kompenziranje poševnega položaja obdelovalnega kosa 30
Uvod 30
Ugotavljanje osnovnega vrtenja 30
Shranjevanje osnovnega vrtenja v preset tabelo 31
Prikaz osnovnega vrtenja 31
Ukinitev osnovnega vrtenja 31
2.4 Postavljanje navezne točke s 3D tipalnimi sistemi 32
Uvod 32
Postavljanje navezne točke v poljubni osi (glej sliko desno) 32
Vogal kot navezna točka – prevzem točk, ki so bile dotaknjene za osnovno vrtenje (glej sliko desno) 33
Vogal kot navezna točka – brez prevzema točk, ki so bile otipane za osnovno vrtenje 33
Središčna točka kroga kot navezna točka 34
Srednja os kot navezna točka 35
Postavljanje navezne točke preko vrtin / krožnih čepov 36
2.5 Merjenje obdelovalnih kosov s 3D-tipalnimi sistemi 37
Uvod 37
Določanje koordinate neke pozicije na izravnanem obdelovalnem kosu 37
Določanje koordinate vogalne točke v obratovalni ravni 37
Določanje dimenzij obdelovalnega kosa 38
Določanje kota med kotno navezno točko in robom obdelovalnega kosa 39
2.6 Uporaba tipalnih funkcij TNC z mehanskimi tipkami ali merilnimi urami 40
Uvod 40

i

3 Cikli tipalnega sistema za avtomatsko kontrolo obdelovalnih kosov 41

- 3.1 Avtomatsko ugotavljanje poševnega položaja obdelovalnih kosov 42
 - Pregled 42

Skupne lastnosti ciklov tipalnega sistema za ugotavljanje poševnega položaja obdelovalnih kosov 42 OSNOVNO VRTENJE (cikel tipalnega sistema 400, DIN/ISO: G400) 43

OSNOVNO VRTENJE preko dveh vrtin (cikel tipalnega sistema 401, DIN/ISO: G401) 45

OSNOVNO VRTENJE preko dveh čepov (cikel tipalnega sistema 402, DIN/ISO: G402) 47

Kompenziranje OSNOVNEGA VRTENJA preko vrtljive osi (cikel tipalnega sistema 403, DIN/ISO: G403) 50

NASTAVITEV OSNOVNEGA VRTENJa (cikel tipalnega sistema 404, DIN/ISO: G404) 53

Usmeritev poševnega položaja obdelovalnega kosa preko osi C (cikel tipalnega sistema 405, DIN/ISO: G405) 54

- 3.2 Avtomatsko ugotavljanje naveznih točk 58
 - Pregled 58

Postavitev skupnih točk vseh ciklov tipalnega sistema za navezno točko 60

NASTAVITEV OSNOVNEGA VRTENJA ZNOTRAJ (cikel tipalnega sistema 410, DIN/ISO: G410) 62 NASTAVITEV OSNOVNEGA VRTENJA ZUNAJ (cikel tipalnega sistema 411, DIN/ISO: G411) 65 NAVEZNA TOČKA KROG ZNOTRAJ (cikel tipalnega sistema 412, DIN/ISO: G412) 68 NASTAVITEV KROGA ZUNAJ ZUNAJ (cikel tipalnega sistema 413, DIN/ISO: G413) 71 NASTAVITEV KOT ZUNAJ (cikel tipalnega sistema 414, DIN/ISO: G414) 74 NAVEZNA TOČKA VOGAL ZNOTRAJ (cikel tipalnega sistema 415, DIN/ISO: G415) 77 NASTAVITEV SREDINE KROŽNE LUKNJE (cikel tipalnega sistema 416, DIN/ISO: G416) 80 NAVEZNA TOČKA OS TIPALNEGA SISTEMA (cikel tipalnega sistema 417, DIN/ISO: G417) 83 NAVEZNA TOČKA SREDIŠČE 4 VRTIN (cikel tipalnega sistema 18, DIN/ISO: G418) 85 NAVEZNA TOČKA POSAMEZNA OS (cikel tipalnega sistema 419, DIN/ISO: G419) 88

- Vsebina
- 3.3 Avtomatsko merjenje obdelovalnih kosov 94

Pregled 94

Protokoliranje merilnih rezultatov 95 Merilni rezultati v Q parametrih 95 Status merjenja 96 Nadzor tolerance 96

Nadzor orodja 97

Navezni sistem za merilne rezultate 97

NAVEZNI NIVO (cikel tipalnega sistema 0, DIN/ISO: G55) 98 NAVEZNI NIVO Polarno (cikel tipalnega sistema 1) 99 MERJENJE KOTA (cikel tipalnega sistema 420, DIN/ISO: G420) 100 MERJENJE VRTINE (cikel tipalnega sistema 421, DIN/ISO: G421) 102 MERITEV KROGA ZUNAJ ZUNAJ (cikel tipalnega sistema 422, DIN/ISO: G422) 105 MERJENJE PRAVOKOTNIKA ZNOTRAJ (cikel tipalnega sistema 423, DIN/ISO: G423) 108 MERJENJE PRAVOKOTNIKA ZNOTRAJ (cikel tipalnega sistema 424, DIN/ISO: G424) 111 MERJENJE PRAVOKOTNIK ZUNAJ (cikel tipalnega sistema 425, DIN/ISO: G425) 114 MERITEV MOST ZUNAJ (cikel tipalnega sistema 426, DIN/ISO: G426) 116 MERJENJE KOORDINATA (cikel tipalnega sistema 427, DIN/ISO: G427) 118 MERJENJE krožne luknje (cikel tipalnega sistema 430, DIN/ISO: G430) 120 MERJENJE NIVOJA (cikel tipalnega sistema 431, DIN/ISO: G431) 123

3.4 Posebni cikli 129

Pregled 129

KALIBRIRANJE TS (cikel tipalnega sistema 2, 130 TS ALIBRIRANJE DOLŽINE (cikel tipalnega sistema 9, 131

IS ALIBRIRANJE DOLZINE (CIKEI tipainega sistema 9,

MERJENJE (cikel tipalnega sistema 3, 132

MERJENJE ZAMIKA OSI (cikel tipalnega sistema 440, DIN/ISO: G440) 133

4 Cikli tipalnega sistema za avtomatsko izmero orodja 135

4.1 Izmera orodja z namiznim tipalnim sistemom TT 136

Pregled 136

Nastavitev strojnih parametrov 136

Navedbe v orodni tabeli TOOL.T 138

Prikaz merilnih rezultatov 139

4.2 Razpoložljivi cikli 140

Pregled 140

Razlike med cikli 31 do 33 in 481 do 483 140 Kalibriranje TT (cikel tipalnega sistema 30 ali 480, DIN/ISO: G480) 141

Merjenje dolžine orodja (cikel tipalnega sistema 31 ali 481, DIN/ISO: G481) 142

Merjenje orodnega radija (cikel tipalnega sistema 32 ali 482, DIN/ISO: G482) 144

Kompletno merjenje orodja (cikel tipalnega sistema 33 ali 483, DIN/ISO: G483) 146

Uvod

i

1.1 Splošno o ciklih tipalnega sistema

TNC mora biti s strani proizvajalca stroja pripravljen za uporabo 3D tipalnih sistemov.

ſ

Če izvajate meritve med potekom programa, potem upoštevajte, da se lahko uporabijo orodni podatki (dolžina, radij) iz kalibriranih podatkov, ali pa iz zadnjega bloka TOOL-CALL (izbira preko MP7411).

Načini delovanja

Če TNC obdeluje cikel tipalnega sistema, teče 3D tipalni sistem osno vzporedno proti obdelovalnemu kosu (tudi pri aktivni osnovni rotaciji in pri obrnjenem obdelovalnem nivoju). Proizvajalec stroj določi pomik naprej za tipanje v strojnem parametru (glej "Preden delate s cikli tipalnega sistema" malo nazaj v tem poglavju).

Če se tipalna konica dotakne obdelovalnega kosa,

- 3D tipalni sistem pošlje signal na TNC: Koordinate otipane pozicije se shranijo v pomnilnik
- 3D tipalni sistem se zaustavi in
- se v hitrem pomiku pomakne nazaj na startno pozicijo tipalnega postopka

Če se znotraj določene poti tipalna igla ne odkloni, odda TNC ustrezno sporočilo o napaki (pot: MP6130).

1 Uvod

Cikli tipalnega sistema v vrstah obratovanja ročno in el. ročno kolo

TNC da v obratovalnih vrstah ročno in el. ročno kolo na voljo cikle tipalnega sistema, s katerimi:

- kalibrirate tipalni sistem
- kompenzirate poševne položaje obdelovalnega kosa
- postavljate navezne točke

Cikli tipalnega sistema za avtomatsko obratovanje

Poleg ciklov tipalnega sistema, ki jih uporabljate v vrsti obratovanja ročno in el. ročno kolo, nudi TNC vrsto ciklov za najrazličnejše vrste uporabe v avtomatskem obratovanju:

- Kalibriranje stikalnega tipalnega sistema (poglavje 3)
- Kompenziranje poševnih položajev obdelovalnega kosa (poglavje 3)
- Nastavljanje navezne točke (poglavje 3)
- Avtomatska kontrola obdelovalnega kosa (poglavje 3)
- Avtomatska izmera obdelovalnega kosa (poglavje 4)

Cikle tipalnih sistemov programirate v vrsti obratovanja Shranjevanje/ editiranje programa preko tipke TOUCH PROBE. Uporabljajte cikle tipalnega sistema od številke 400 dalje, prav tako kot novejše obdelovalne cikle, Q parametre kot predajne parametre. Parametri z isto funkcijo, ki hih TNC potrebuje v različnih ciklih, imajo vedno isto številko: npr. Q260 je vedno varna višina, Q261 vedno merilna višina itd.

Da bi bilo programiranje poenostavljeno, prikazuje TNC med definiranjem cikla sliko za pomoč. V sliki za pomoč ima svetlo podlago parameter, ki ga morate vnesti (glej sliko desno).

TOUCH

٢

410

Cikel tipalnega sistema v vrsti obr	ratovanja Shranjevanje /	editiranje
-------------------------------------	--------------------------	------------

- Seznam softkey tipk prikazuje razčlenjeno po skupinah – vse razpoložljive funkcije tipalnega sistema
- Izbira skupine tipalnega cikla, npr nastavitev navezne točke. Digitalizirni cikli in cikli za avtomatsko izmero orodja so na voljo samo, če je stroj za to pripravljen
- Izbira cikla, npr. nastavitev navezne točke sredina žepa. TNC odpre dialog in povpraša vse navedbene vrednosti; istočasno TNC v desno polovico zaslona doda grafiko, na kateri ima parameter, ki se mora navesti, svetlo podlago
- Navedite vse parametre, ki jih zahteva TNC in vsako navedbo zaključite s tipko ENT
- TNC zaključi dialog potem, ko navedete vse potrebne podatke

Skupina Merilni cikel	Softkey
Cikli za avtomatsko ugotavljanje in kompenziranje poševnega položaja obdelovalnega kosa	
Cikli za avtomatsko nastavljanje navezne točke	\bigcirc
Cikli za avtomatsko kontrolo obdelovalnih delov	
Avtomatski cikel za kalibriranje	SPECIAL CYCLES
Cikli za avtomatsko izmero orodja (sprosti jih proizvajalec orodja)	Z

Beispiel: NC bloki

TCH PROBE 4	10 NAVEZ.TOČ ZNOTRAJ
Q321=+50	;SREDINA 1. OSI
Q322=+50	;SREDINA 2. OSI
Q323=60	;1. STRANSKA DOLŽINA
Q324=20	;2. STRANSKA DOLŽINA
Q261=-5	;MERILNA VIŠINA
Q320=0	;VARNOST. RAZMAK
Q260=+20	;VARNA VIŠINA
Q301=0	;PREMIK V VARNO VIŠINO
Q305=10	;ŠT. V TABELI
Q331=+0	;NAVEZNA TOČKA
Q332=+0	;NAVEZNA TOČKA
Q303=+1	;PREDAJA MERILNE VREDNOSTI

1.2 Preden delate s cikli tipalnega sistema!

Da bi se pokrilo kar najširše področje uporabe pri merilnih nalogah, so vam preko strojnih parametrov na voljo nastavitvene možnosti, ki določajo osnovno ravnanje vseh ciklov tipalnega sistema:

Maksimalna pot premika do tipalne točke: MP6130

Če se tipalna konica ne premakne znotraj poti, ki je določena v MP6130, TNC sproži javljanje motnje.

Varnostni razmak od tipalne točke: MP6140

V MP6140 določite, kako daleč od definirane – oz. s strani cikla izračunane - tipalne točke naj TNC vnaprej pozicionira tipalni sistem. Kolikor manjšo vrednost navedete za to, toliko natančneje morate definirati tipalni položaj. V mnogih ciklih tipalnega sistema lahko dodatno definirate varnostni razmak, ki deluje aditivno k strojnemu parametru 6140.

Orientiranje infrardečega tipalnega sistema na programirano smer tipanja: MP6165

Da bi se povečala natančnost merjenja, lahko preko MP 6165 = 1 dosežete, da se infrardeči tipalni sistem pred vsakim tipalnim postopkom orientira v programirani smeri tipanja. Tipalna konica se tako pomakne vedno v isto smer.

Večkratna meritev: MP6170

Da bi se povečala natančnost merjenja, lahko TNC vsak tipalni postopek izvede do trikrat zaporedoma. Če izmerjene pozicijske vrednosti preveč odstopajo druga od druge, odda TNC javljanje motnje (mejna vrednost je določen v MP6171). S pomočjo večkratnega merjenja lahko npr. ugotovite naključne napake pri merjenju, ki nastanejo npr. zaradi zamazanosti.

Če ležijo merilne vrednosti znotraj zaupnega področja, TNC shrani srednjo vrednost iz ugotovljenih pozicij.

Zaupno področje za večkratno merjenje: MP6171

Če opravljate večkratno meritev, v MP6171 določite vrednost, do katere lahko merilne vrednosti medsebojno odstopajo. Če razlika merilnih vrednosti presega vrednost v MP6171, odda TNC javljanje motnje.

' (

Stikalni tipalni sistem, premik tipanja naprej: MP6120

V MP6120 določite premik naprej, s katerim naj TNC tipa obdelovalni kos.

Stikalni tipalni sistem, hitra pot za predpozicioniranje: MP6150

V MP6150 določite premik naprej, s katerim TNC predpozicionira tipalni sistem oziroma ga pozicionira med merilnimi točkami.

1 Uvod

i

Opravljanje ciklov tipalnega sistema

Vsi cikli tipalnega sistema so DEF aktivni. TNC torej cikel avtomatsko opravi, če se v poteku programa oddela definicija cikla TNC.

Bodite pozorni na to, da bodo na začetku cikla aktivni korekturni podatki (dolžina, radij) iz kalibriranih podatkov ali iz zadnjega TOOL-CALL bloka (izbira s pomočjo MP7411, glej priročnik za uporabnike iTNC 530, "Splošni uporabniški parametri").

Cikle tipalnega sistema 410 lahko 419 opravljate tudi pri aktiviranem osnovnem vrtenju. Vendar bodite pozorni na to, da se kot osnovnega vrtenja ne spremeni več, če po merilne mciklu delate s ciklom 7 premik ničelne točke iz tabele ničelnih točk.

Cikli tipalnega sistema s številko, ki je večja kot 400, predpozicionirajo tipalni sistem v skladu z logiko pozicioniranja:

- Če je aktualna koordinata južnega pola tipalne konice manjša kot koordinata varne višine (definirane v ciklu), TNC povleče tipalni sistem najprej v osi tipalnega sistema nazaj na varno višino in ga zatem pozicionira v obdelovalnem nivoju k prvi tipalni točki
- Če je aktualna koordinata južnega pola tipalne konice večja kot koordinata varne višine, TNC pozicionira tipalni sistem najprej v obdelovalnem nivoju na prvi tipalno točko in zatem v osi tipalnega sistema direktno na merilni višini

Cikli tipalnega sistema v vrstah obratovanja ročno in el. ročno kolo

2.1 Uvod

Pregled

V vrsti obratovanja ročno so vam na voljo naslednji cikli tipalnega sistema:

Funkcija	Softkey
Kalibriranje dejavne dolžine	CALL
Kalibriranje dejavnega radija	CAL
Ugotavljanje osnovnega vrtenja preko ravne črte	PROBING
Postavljanje navezne točke v prosto izbrani osi	PROBING POS
Postavljanje vogala za navezno točko	
Postavljanje središčne točke kroga za navezno točko	PROBING
Ugotavljanje osnovnega vrtenja preko dveh vrtin / krožnih čepov	
Postavljanje navezne točke preko štirih vrtin / krožnih čepov	PROBING P
Postavljanje središča klroga preko treh vrtin 7 čepov	PROBING

Izbira cikla tipalnega sistema

Izbira vrste obratovanja ročno obratovanje ali el. ročno kolo

Izbira tipalnih funkcij: Pritisnite softkey TIPALNA FUNKCIJA. TNC prikazuje ostale softkey tipke: Glej tabelo zgoraj

Izbira cikla tipalnega sistema: Pritisnite softkey TIPANJE ROT, TNC prikazuje na zaslonu ustrezni meni

1

Protokoliranje vrednosti iz ciklov tipalnega sistema

TNC mora biti za to funkcijo pripravljen s strani proizvajalca stroja. Upoštevajte priročnik o stroju!

Potem ko TNC izvede poljubni cikel tipalnega sistema, prikaže TNC softkey TISKANJE. Če pritisnete softkey tipko, TNC protokolira aktualne vrednosti aktivnega cikla tipalnega sistema. Preko funkcije PRINT v meniju konfiguracije vmesnikobv (glej priročnik za uporabnika, "12 MOD-funkcije, Nastavitev podatkovnega vmesnika") določite, ali naj TNC:

- natisne merilne rezultate
- shrani merilne rezultate na trdi disk
- shrani merilne rezultate v PC

Če želite merilne rezultate shraniti, TNC pripravi ASCII datoteko %TCHPRNT.A. Če v konfiguracijskem meniju vmesnika niste določili poti in vmesnika, shrani TNC datoteko %TCHPRNT v glavnem seznamu TNC:\.

Če pritisnete softkey tipkoTISKANJE, datoteka %TCHPRNT.A ne sme biti izbrana v vrsti obratoovanja Shranjevanje

/editiranje programa. V nasprotnem primeru TNC odda javljanje napake.

TNC zapiše merilne vrednosti izključno v datoteko %TCHPRNT.A. Če izvedete več ciklov tipalnega sistema zaporedno in želite shraniti njihove rezultate, morate vsebino datoteke %TCHPRNT.A med cikli tipalnega sistema shraniti, tako da jo kopirate ali preimenujete.

Format in vsebino datoteke %TCHPRNT določi proizvajalec vašega stroja.

Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v tabelo ničelnih točk

Ta funkcija je aktivna samo, če so na vašem TNC aktivne tabele ničelnih točk (Bit 3 v strojnem parametru 7224.0 =0).

Uporabite to funkcijo, če želite merilne vrednosti shraniti v orodni koordinatni sistem. Če želite merilne vrednosti shraniti v fiksni koordinatni sistem stroja (REF koordinate), uporabite softkey tipkoVNOS PRESET TABELA (glej "Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v preset tabelo" na strani 25).

Preko softkey tipke VNOS TABELA NIČELNIH TOČK lahko, potem ko je bil opravljen poljuben cikel tipalnega sistema, zapiše merilne vrednosti v tabelo ničelnih točk:

Upoštevajte, da TNC pri aktivnem premiku ničelne točke tipalno vrednost vedno nanaša na aktivni preset (oziroma na zadnjo v vrsti obratovanja ročno nastavljeno navezno točko), čeprav se na pozicijskem prikazu obračuna premik ničelne točke.

- Opravljanje poljubne tipalne funkcije
- Želene koordinate navezne točke vnesite v za to namenjena polja za vnos (odvisno od izvedenega cikla tipalnega sistema)
- Vnesite številko ničelne točke v polje za vnos Številka v tabeli =
- Navedite ime tabele ničelnih točk (popolna pot) v polju za vnos Tabela ničelnih točk
- Pritisnite softkey VNOS TABELA NIČELNIH TOČK, TNC shrani ničelno točko pod navedeno številko v navedeno tabelo ničelnih točk

Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v preset tabelo

Uporabite to funkcijo, če želite merilne vrednosti shraniti v fiksni koordinatni sistem stroja (REF koordinate). Če želite merilne vrednosti shraniti v orodni koordinatni sistem, uporabite softkey tipkoVNOS TABELA NIČELNIH TOČK (glej "Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v tabelo ničelnih točk" na strani 24).

Preko softkey tipke VNOS PRESET lahko, potem ko je bil opravljen poljuben cikel tipalnega sistema, zapiše merilne vrednosti v preset tabelo. Merilne vrednosti se nato zapišejo tako. da se nanašajo na fiksni koordinatni sistem stroja (REF koordinate). Preset tabela ima naziv PRESET.PR in je shranjena v seznamu TNC:\.

吵

Upoštevajte, da TNC pri aktivnem premiku ničelne točke tipalno vrednost vedno nanaša na aktivni preset (oziroma na zadnjo v vrsti obratovanja ročno nastavljeno navezno točko), čeprav se na pozicijskem prikazu obračuna premik ničelne točke.

- Opravljanje poljubne tipalne funkcije
- Želene koordinate navezne točke vnesite v za to namenjena polja za vnos (odvisno od izvedenega cikla tipalnega sistema)
- Vnesite preset številko v polje za vnos Številka v tabeli =.
- Pritisnite softkey VNOS PRESET TABELA , TNC shrani ničelno točko pod navedeno številko v navedeno preser tabelo

2.2 Stikalni tipalni sistem, kalibriranje

Uvod

Tipalni sitem morate kalibrirati pri

- zagonu
- Iomu tipalne konice
- menjavi tipalne konice
- spremembi potiska tipalnega sistema
- nenavadnih pojavih, na primer pri segrevanju stroja

Pri kalibriranju TNC ugotovi "dejavno" dolžino tipalne konice in "dejavni" radij tipalne krogle. Za kalibriranje 3D tipalnega sistema vpnite nastavitveni obroč z znano višino in znanim radijem na strojno mizo.

Kalibriranje dejavne dolžine

Dejavna dolžina tipalnega sistema se nanaša vedno na navezno točko orodja. Praviloma postavi proizvajalec orodja orodno navezno točko na konico vretena.

Navezno točko v osi vretena postavite tako, da velja za strojno mito: Z=0.

- Izbira kalibrirne funkcije za dolžino tipalnega sistema: Pritisnite softkey TIPALNA FUNKCIJA in KAL. L. TNC prikaže okno menija s štirimi polji za vnos
- Navedba orodne osi (osna tipka)
- Navezna točka: Navedba višine nastavitvenega obroča
- Točki menija Dejavni radij krogle in Dejavna dolžina ne zahtevata nobene navedbe
- Tipalni sistem premaknite tesno nad površino nastavitvenega obroča
- Če je potrebno, spremenite smer premika: izberite preko softkey tipke ali tipk s puščicami
- Tipanje površine: Pritisnite eksterno START tipko

2.2 Stikalni tipalni sistem, kalib<mark>rira</mark>nje

Kalibriranje dejavnega radija in srednji zamik tipalnega sistema

Os tipalnega sistema se v normalnem primeru ne prilagaja natančno osi vretena. Funkcija kalibriranja zajame zamik med osjo tipalnega sistema in osjo vretena in ga računsko izravna.

Pri tej funkcijo TNC zavrti 3D tipalni sistem za 180°. Vrtenje se sproži z dodatno funkcijo, ki jo proizvajalec stroja določi v strojnem parametru 6160.

Meritev za sredinski zamik tipalnega sistema izvedete po kalibriranju dejavnega radija tipalne krogle.

Pozicioniranje tipalne krogle v ročnem obratovanju v vrtino nastavitvenega obroča

Izbira kalibrirne funkcije za radij tipalne krogle in srednji zamik tipalnega sistema: Pritisnite softkey KAL. R

- Izberite orodno os, navedite radij nastavitvenega obroča
- Tipanje: Pritisnite 4-x eksterno START tipko 3D tipalni sitem tipa v vsaki smeri pozicijo vrtine in izračuna dejavni radij tipalne krogle
- Če želite kalibrirno funkcijo sedaj končati, pritisnite softkey KONEC

Za določanje srednjega zamika tipalne krogle mora biti TNC za to pripravljen s strani proizvajalca stroja. Upoštevajte priročnik o stroju!

- 180°
- Določanje rdnjega zamika tipalne krogle: Pritisnite softkey 180°. TNC zavrti tipalni sistem za 180°
- Tipanje: Pritisnite 4-x eksterno START tipko 3D tipalni sitem tipa v vsaki smeri pozicijo v vrtini in izračuna srednji zamik tipalnega sistema

Prikaz vrednosti kalibriranja

TNC shrani dejavno dlžino, dejavni radij in vrednost srednjega zamika tipalnega sistema in upošteva te vrednosti pri poznejših uporabah 3D tipalnega sistema. Za priklic shranjenih vrednosti pritisnite KAL. L in KAL. R.

Shranjevanje vrednosti kalibriranja v orodni tabeli TOOL.T

Ta funkcija je na voljo samo v primeru, če ste postavili Bit 0 v strojnem parametru 7411 = 1 (podatke tipalnega sistema aktivirajte s **TOOL CALL**) in je aktivna orodna tabela TOOL.T (strojni parameter 7260 ni enak 0).

Če izvedete merjenje med potekom programa, lahko preko **TOOL CALL** aktivirate korekturne podatke za tipalni sistem iz orodne tabele. Za shranjevanje kalibrirnih vrednosti v orodni tabeli TOOL.T navedite v meniju kalibriranja orodno številko (potrdite z ENT) in zatem pritisnite softkey R-VNOS ORODNA TABELA oz. L-VNOS ORODNA TABELA.

Manual operation Te			Test	run			
Radiu Effec Styl. Styl. Tool	s ring tive p tip ce tip ce number	gauge robe r nter o nter o =	= adius ffset ffset	= 1. X=+0 Y=-0 12	5.0012 995 0.012 0.0025		2 2
		10	4% S-0	VR 14	36		~ 4
<mark>⊠ -</mark> ₩ A	-191.90 +0.00	90+C	3% F-C +253. +0.	850 Z 000	-345 -345	i.170	s 🖡
ACTL.		TS	Z 5 3	S 2612 F	359.9 °	38 M 5/9	s I
X+	x –	Y +	Y –		ENTER R IN TOOL TABLE	PRINT	END

i

Upravljanje več blokov v kalibrirnih podatkih

Če na vašem stroju uporabljate več tipalnih sistemov ali tipalnih vložkov z razporeditvijo v križni obliki, morate po potrebi uporabljati več blokov kalibrirnih podatkov.

Za uporabo več blokov kalibrirnih podatkov morate postaviti Bit 1 v strojnem parametru 7411. Kalibrirni podatki sami (dolžina, radij, srednji zamik in kt vretena) se v kalibrirnem meniju sicer ugotovijo, venda jih morate načelno shraniti v orodno tabelo TOOL.T pod orodno številko, ki se izbere v meniju kalibriranja (glej tudi uporabniški priročnik, poglavje "5.2 orodni podatki):

- Funkcijo kalibriranja opravite kot je opisano zgoraj
- V za to namenjeno polje vnesite orodno številko
- Zapisovanje ugotovljenih vrednosti kalibriranja v orodno tabelo. Pritisnite softkey R-VNOS V ORODNO TABELO oz. L-VNOS V ORODNO TABELO

če zatem uporabljate tipalni sistem, morate pred izvedbo cikla tipalnega sistema aktivirati ustrezno orodno številko v priklicu orodja, neodvisno od tega, ali želite izvesti cikel tipalnega sistema v avtomatskem obratovanju ali v ročnem obratovanju.

V meniju kalibriranja lahko pregledate podatke kalibriranja in jih spreminjate, morate pa paziti na to, da spremembe ponovno zapišete nazaj v orodno tabelo tako, da pritisnete softkey R-VNOS V ORODNO TABELO oz. L-VNOS V ORODNO TABELO. TNC vrednosti kalibriranja ne shrani avtomatsko v tabelo!

2.3 Kompenziranje poševnega položaja obdelovalnega kosa

Uvod

TNC kompenzira poševni položaj obdelovalnega kosa računsko z "Osnovnim vrtenjem".

V ta namen posatvi TNC vrtilni kot na kot, ki naj ga tvori površina obdelovalnega kosa s kotno navedno osjo obdelovalnega nivoja. Glej sliko desno.

Smer tipanja za merjenje poševnega položaja obdelovalnega kosa vedno izberite navpično k osi naveznega kota.

Da bi se snovno vrtenje v poteku programa pravilno obračunalo, morate v prvem bloku premika programirati obe koordinati obdelovalnega nivoja.

Ugotavljanje osnovnega vrtenja

- Izbira tipalne funkcije: Pritisnite softkey TIPANJE ROT
- Tipalni sistem pozicionirajte v bližino prve tipalne točke
- Izbira smeri tipanja navpično k osi naveznega kota: Os in smer izberite s softkey tipko
- Tipanje: Pritisnite eksterno START tipko
- Tipalni sistem pozicionirajte v bližino druge tipalne točke
- Tipanje: Pritisnite eksterno START tipko. TNC ugotovi osnovno vrtenje in prikaže kot za dioalogom Vrtilni kot =

Shranjevanje osnovnega vrtenja v preset tabelo

- Po prvem tipalnem postopku vnesite preset številko v polje za vnos Številka v tabeli = v katero naj TNC shrani osnovno vrtenje
- Pritisnite softkey VNOS PRESET TABELA, da shranite osnovno vrtenje v preset tabelo

Prikaz osnovnega vrtenja

Kot osnovnega vrtenja je po ponovni izbiti TIPANJE ROT prikazan na prikazu vrtilnega kota. TNC prikaže kot vrtenja tudi na dodatnem statusnem prikazu (STATUS POS.)

Na statusnem prikazu se doda simbol za osnovno vrtenje, če se TNC premakne preko strojnih osi ustrezno s smerjo vrtenja.

Ukinitev osnovnega vrtenja

- Izbira tipalne funkcije: Pritisnite softkey TIPANJE ROT
- Vnesite kot vrtenja "0", prevzemite s tipko ENT
- Konec funkcije tipanja: Pritisnite tipko END

2.4 Postavljanje navezne točke s 3D tipalnimi sistemi

Uvod

Funkcije za postavljanje navezne točke na poravnanem obdelovalnem kosu se izberejo z naslednjimi softkey tipkami:

- Postavljanje navezne točke v poljubni osi z TIPANJE POZ.
- Postavljanje vogala za navezno točko sTIPANJE P
- Postavljanje središčne točke kroga za navezno točko sTIPANJE CC
- Srednja os koz navezna točka s TIPANJE

Upoštevajte, da TNC pri aktivnem premiku ničelne točke tipalno vrednost vedno nanaša na aktivni preset (oziroma na zadnjo v vrsti obratovanja ročno nastavljeno navezno točko), čeprav se na pozicijskem prikazu obračuna premik ničelne točke.

Postavljanje navezne točke v poljubni osi (glej sliko desno)

- Izbira tipalne funkcije: Pritisnite softkey TIPANJE POZ.
- Tipalni sistem pozicionirajte v bližino tipalne točke
- Izberite smer tipanja in istočasno os, za katero se postavlja navezna točka npr Z v smeri Z začetek tipanja: Izbira preko softkey tipke
- ▶ Tipanje: Pritisnite eksterno START tipko
- Navezna točka: Navedite želeno korodinato, s softkey tipko POSTAV. NAVEZ. TOČKE prevzemite, ali vrednost zapišite v tabelo (glej "Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v tabelo ničelnih točk", strani 24, ali glej "Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v preset tabelo", strani 25)
- Konec tipalne funkcije: Pritisnite tipko END

Vogal kot navezna točka – prevzem točk, ki so bile dotaknjene za osnovno vrtenje (glej sliko desno)

- Izbira tipalne funkcije: Pritisnite softkey TIPANJE P
- Tipalne točke iz osnovnega vrtenja ?: Pritisnite tipko ENT, da prevzamete koordinate tipalnih točk
- Tipalni sistem pozicionirajte v bližino prve tipalne točke na robu obdelovalnega kosa, ki ni bil otipan za osnovno vrtenje
- Izbira tipalne smeri: Izbira preko softkey tipke
- ▶ Tipanje: Pritisnite eksterno START tipko
- Tipalni sistem pozicionirajte v bližino druge tipalne točke na istem robu
- ▶ Tipanje: Pritisnite eksterno START tipko
- Navezna točka: Navedite obe koordinati navezne točke v oknu menija, s softkey tipko POSTAV. NAVEZ. TOČKE prevzemite, ali vrednost zapišite v tabelo (glej "Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v tabelo ničelnih točk", strani 24, ali glej "Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v preset tabelo", strani 25)
- Konec tipalne funkcije: Pritisnite tipko END

Vogal kot navezna točka – brez prevzema točk, ki so bile otipane za osnovno vrtenje

- Izbira tipalne funkcije: Pritisnite softkey TIPANJE P
- Tipalne točke iz osnovnega vrtenja ?: Zanikajte s tipko NO ENT (vprašanje dialoga se pojavi samo, če ste prej izvedli osnovno vrtenje)
- Oba roba obdelovalnega kosa tipajte po dvakrat
- Navezna točka: Navedite koordinate navezne točke, s softkey tipko POSTAV. NAVEZ. TOČKE prevzemite, ali vrednost zapišite v tabelo (glej "Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v tabelo ničelnih točk", strani 24, ali glej "Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v preset tabelo", strani 25)
- Konec tipalne funkcije: Pritisnite tipko END

Središčna točka kroga kot navezna točka

Središčne točke vrtin, krožnih žepov, polnih cilindrov, čepov, okroglih otokov itd. lahko postavite za navezne točke.

Notranji krog:

TNC otipa notranjo steno kroga v vseh štirih smereh koordinatnih osi.

Pri prekinjenih krogih (krožnih lokih) lahko smer tipanja poljubno izberete.

- Tipalno kroglo pozicionirajte približno v sredini kroga
- PROBING
- Izbira tipalne funkcije: Izberite softkey TIPANJE CC
 - Tipanje: Štirikrat pritisnite eksterno START tipko. Tipalni sistem tipa zaporedoma 4 točke notranje stene kroga
 - Če čelite delati z obratnim merjenjem (samo pri strojih z orentacijo vretena, odvisno od MP6160) pritisnite softkey 180° in ponovno otipajte 4 točke notranje stene kroga
 - Če želite delati brez obratnega merjenja: Pritisnite tipko END
 - Navezna točka: Navedite obe koordinati središča kroga v oknu menija, s softkey tipko POSTAV. NAVEZ. TOČKE prevzemite, ali vrednost zapišite v tabelo (glej "Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v tabelo ničelnih točk", strani 24, ali glej "Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v preset tabelo", strani 25)
 - Konec funkcije tipanja: Pritisnite tipko END

Zunanji krog:

- Tipalno kroglo pozicionirajte v bližino prve točke tipanja zunaj kroga
- Izbira tipalne smeri: Izbira ustrezne softkey tipke
- Tipanje: Pritisnite eksterno START tipko
- Ponovite postopek tipanja za preostale 3 točke. Glej sliko desno spodaj
- Navezna točka: Navedite koordinate navezne točke, s softkey tipko POSTAV. NAVEZ. TOČKE prevzemite, ali vrednost zapišite v tabelo (glej "Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v tabelo ničelnih točk", strani 24, ali glej "Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v preset tabelo", strani 25)

Konec tipalne funkcije: Pritisnite tipko END

Po tipanju TNC prikaže aktualne koordinate središčne točke kroga in krožni radij PR.

2.4 Postavljanje navezne točke s 3D tipalnimi s<mark>ist</mark>emi

Srednja os kot navezna točka

- ▶ Izbira tipalne funkcije: Pritisnite softkey TIPANJE
- Tipalni sistem pozicionirajte v bližino prve tipalne točke
- Smer tipanja izberite s softke tipko
- Tipanje: Pritisnite eksterno START tipko
- Tipalni sistem pozicionirajte v bližino druge tipalne točke
- ▶ Tipanje: Pritisnite eksterno START tipko
- Navezna točka: Navedite koordinato navezne točke v oknu menija, s softkey tipko POSTAV. NAVEZ. TOČKE prevzemite, ali vrednost zapišite v tabelo (glej "Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v tabelo ničelnih točk", strani 24, ali glej "Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v preset tabelo", strani 25)
- Konec tipalne funkcije: Pritisnite tipko END

Postavljanje navezne točke preko vrtin / krožnih čepov

V drugi softkey letvi so na voljo softkey tipke, s katerimi lahko postavljate vrtine ali krožne čepe za navezne točke.

Določite, ali naj se tipa vrtina ali krožni čep

V osnovbni nastavitvi se tipajo vrtine.

тоисн

- Izbira tipalne funkcije: Pritisnite softkey TIPALNA FUNKCIJA, preklopite softkey letev naprej
- Izbira tipalne funkcije: npr. pritisnite softkey TIPANJE ROT
- Tipajo naj se krožni žepi: preko softkey tipke določite

▶ Tipajo naj se vrtine: preko softkey tipke določite

Tipanje vrtin

Tipalni sistem pozicionirajte približno v sredino vrtine. Potem, ko pritisnete tipko START, TNC avtomatsko tipa štiri točke na steni vrtine.

Zatem se tipalni sistem premakne k naslednji vrtini in le-to prav tako obtipa. TNC ponavlja ta postopek, dokler niso otipane vse vrtine za določanje navezne točke.

Tipanje krožnega žepa

Tipalni sistem pozicionirajte v bližino prve tipalne točke na krožnem čepu Preko softkey tipke izberite smer tipanja, tipalni postopek izvedite z eksterno START tipko. Postopek izvedite skupno štirikrat.

Pregled

Cikel	Softkey
Osnovno vrtenje preko 2 vrtin: TNC ogotovi kot med povezovalno črto središčnih točk vrtin in potrebno dolžino (kot –navezna os)	PROBING
Osnovno vrtenje preko 4 vrtin: TNC ugotovi sečišče prvih dveh najprej in prvih dveh nazadnje tipanih vrtin. Pri tem tipajte križno (kot je prikazano na softkey tipki), ker sicer TNC obračuna napačno navezno točko	PROBING
Središčna točka kroga preko 3 vrtin: TNC ugotovi krožno progo, na kateri ležijo vse 3 vrtine in orbačuna središčno točko kroga za krožno progo.	PROBING

2.5 Merjenje obdelovalnih kosov s 3D-tipalnimi sistemi

Uvod

Tipalni sistem v obratovalnih vrstah Ročno in El. ročno kolo lahko uporabite tudi za enostavne meritve na obdelovalnem kosu. Za kompletne merilne naloge so na voljo kompleksnejši tipalni cikli, ki se jih lahko programira (glej "Avtomatsko merjenje obdelovalnih kosov" na strani 94). S 3D tipalnim sistemom določize:

pozicijske kordinate in iz njih

izmere in kote na obdelovalnem kosu

Določanje koordinate neke pozicije na izravnanem obdelovalnem kosu

	PROBING
1	

- Izbira tipalne funkcije: Pritisnite softkey TIPANJE POZ.
- Tipalni sistem pozicionirajte v bližino tipalne točke
- Izberite smer tipanja in obenem os, na katero naj se nanaša koordinata: Izberite ustrezno softkey tipko.
- Startanje tipalnega postopka: Pritisnite eksterno START tipko

TNC prikaže koordinate tipalne točke kot navezno točko.

Določanje koordinate vogalne točke v obratovalni ravni

Določanje koordinat vogalne točke: Glej "Vogal kot navezna točka – brez prevzema točk, ki so bile otipane za osnovno vrtenje", strani 33. TNC prikazuje koordinate tipanega vogala kot navezno točko.

Določanje dimenzij obdelovalnega kosa

PROBING

2.5 Merjenje obdelovalnih kosov s 3D-tipalnimi s<mark>ist</mark>emi

- Izbira tipalne funkcije: Pritisnite softkey TIPANJE POZ.
- Tipalni sistem pozicionirajte v bližino prve tipalne točke A
- Smer tipanja izberite s softke tipko
- Tipanje: Pritisnite eksterno START tipko
- Zapišite si vrednost, ki je prikazana kot navezna točka (samo, če prej postavljena navezna točka ostane dejavna)
- Navezna točka: navedite "0"
- Prekinitev dialoga: Pritisnite tipko END
- Ponovna izbira tipalne funkcije: Pritisnite softkey TIPANJE POZ.
- Tipalni sistem pozicionirajte v bližino druge tipalne točke B
- Smer tipanja izberite s softkey tipko: Ista os, vendar nasprotna smer kot pri prvem tipanju.
- ▶ Tipanje: Pritisnite eksterno START tipko

V prikazu Navezna točka je prikazan razmak med dvema točkama na koordinatni osi.

Prikaz pozicioniranja ponovno postavite na vrednosti pred meritvijo dolžine

- ▶ Izbira tipalne funkcije: Pritisnite softkey TIPANJE POZ.
- Ponovno tipanje prve tipalne točke
- Postavljanje navezne točke na zapisano vrednost
- Prekinitev dialoga: Pritisnite tipko END

Merjenje kota

S 3D tipalnim sistemom lahko določite kot v obdelovalnem nivoju. Meri se

- kot med kotno navezno točko in robom obdelovalnega kosa ali
- kot med dvema robovoma

Izmerjeni kot je prikazan kot vrednost, ki znaša maksimalno 90°.

Določanje kota med kotno navezno točko in robom obdelovalnega kosa

- Izbira tipalne funkcije: Pritisnite softkey TIPANJE ROT
- Vrtljivi kot: Zapišite si prikazani vrtljivi kot, če želite pozneje ponovno vzpostaviti poprej opravljeno osnovno vrtenje
- Izvedba osnovnega vrtenja s primerjalno stranjo (glej "Kompenziranje poševnega položaja obdelovalnega kosa" na strani 30)
- S softkey tipko ANTASTEN ROT prikličite kot med osjo kotne navezne točke in robom obdelovalnega kosa kot krožni kot
- Ukinitev osnovnega vrtenja ali ponovna vzpostavitev osnovnega vrtenja
- Postavljanje vrtljivega kota na zapisano vrednost

Določanje kota med dvema roboma obdelovalnega kosa

- Izbira tipalne funkcije: Pritisnite softkey TIPANJE ROT
- Vrtljivi kot: Zapišite si prikazani vrtljivi kot, če želite ponovno vzpostaviti poprej opravljeno osnovno vrtenje
- Izvedba osnovnega vrtenja za prvo stran (glej "Kompenziranje poševnega položaja obdelovalnega kosa" na strani 30)
- Tipanje druge strani izvedite tako kot pro osnovnem vrtenju, vrtljivega kota tukaj ne nastavite na 0!
- S softkey tipko ANTASTEN ROT prikličite kot PA med robovi obdelovalnega kosa kot krožni kot
- Ukinitev osnovnega vrtenja ali ponovna vzpostavitev osnovnega vrtenja: Postavljanje vrtljivega kota na zapisano vrednost

2.6 Uporaba tipalnih funkcij TNC z mehanskimi tipkami ali merilnimi urami

Uvod

V primerum, da vam na vašem stroju ni na voljo elektronski 3D tipalni sistem, lahko vse prej opisane točne tipalne funkcije (izjema: funkcije kalibriranja) izvedete tudi z mehanskimi tipali ali tudi z enostavnim strganjem.

Namesto elektronskega signala, ki ga 3D tipalni sistem avtomatsko proizvaja med funkcijo tipanja, aktivirate stikalni signal za prevzem **tipalne pozicije** ročno preko tipke. Pri tem ravnajte kot sledi:

- S softkey tipko izberite poljubno funkcijo
- Mehansko tipalo premaknite na prvo pozicijo, ki naj jo TNC prevzame
- -*-

+

- Prevzem pozicije: Pritisnite tipko Prevzem dejanske pozicije, TNC shrani aktualno pozicijo
- Mehansko tipalo premaknite na naslednjo pozicijo, ki naj jo TNC prevzame
- Prevzem pozicije: Pritisnite tipko Prevzem dejanske pozicije, TNC shrani aktualno pozicijo
- Po potrebi premknite sistem na dodatne pozicije in lete prevzemite kot je opisano zgoraj
- Navezna točka: Navedite obe koordinati nove navezne točke v oknu menija, s softkey tipko POSTAV. NAVEZ. TOČKE prevzemite, ali vrednost zapišite v tabelo (glej "Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v tabelo ničelnih točk", strani 24, ali glej "Zapisovanje merilnih vrednosti iz ciklov tipalnega sistema v preset tabelo", strani 25)
- Konec funkcije tipanja: Pritisnite tipko END

Cikli tipalnega sistema za avtomatsko kontrolo obdelovalnih kosov

3.1 Avtomatsko ugotavljanje poševnega položaja obdelovalnih kosov

Pregled

TNC daje na voljo pet ciklov, s katerimi lahko ugotovite in kompenzirate poševen položaj obdelovalnega kosa. Dodatno lahko s ciklom 404 vrnete osnovno vrtenje nazaj:

Cikel	Softkey
400 OSNOVNO VRTENJE Avtomatsko ugotavljanje preko dveh točk, kompenzacija preko funkcije Osnovno vrtenje	400
401 ROT 2 VRTINE Avtomatsko vrtenje preko dveh vrtin, kompenzacija preko funkcije Osnovno vrtenje	481
402 ROT 2 ČEP Avtomatsko vrtenje preko dveh čepov, kompenzacija preko funkcije Osnovno vrtenje	482
403 ROT PREKO VRTLJIVE OSI Avtomatsko ugotavljanje preko dveh točk, kompenzacija preko funkcije Osnovno vrtenje	403 Z V X X V X
405 ROT PREKO C OSI Avtomatska izravnava kotnega premika med središčem vrtine in pozitivno Y osjo, kompenzacija preko vrtenja okrogle mize	405 ROT Y
404 NASTAVITEV OSNOVNEGA VRTENJA Nastavitev poljubnega vrtenja	484 0°

Skupne lastnosti ciklov tipalnega sistema za ugotavljanje poševnega položaja obdelovalnih kosov

Pri ciklih 400, 401 in 402 lahko preko parametra Q307 **vnaprejšnja nastavitev osnovnega vrtenja** določite, če naj se rezultat merjenja korigira za poznani kot α (gklej sliko desno). S tem lahko osnovno vrtenje izmerite v poljubni ravni črti 1 obdelovanega kosa ter vzpostavite povezavo s pravšnjo 0° smerjo 2.

i

3.1 Avtomatsko ugotavljanje poševnega položaja obdeloval<mark>nih</mark> kosov

OSNOVNO VRTENJE (cikel tipalnega sistema 400, DIN/ISO: G400)

Ciklus tipalnega sistema 400 z meritvijo dveh točk, ki morata ležati v ravni črti ugotovi poševni položaj obdelovalnega kosa. Preko funkcije Osnovno vrtenje TNC kompenzira izmerjeno vrednost (Glej "Kompenziranje poševnega položaja obdelovalnega kosa" na strani 30).

- 1 TNC pozicionira tipalni sistem s hitrim premikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k programirani toöki tipanja 1. TNC pri tem premakne tipalni sistem za varnostno razdaljo proti določeni smeri premika
- 2 Zatem tipalni sistem zapelje na navedeno merilno višino in izvede prvi začetni postopek tipanja s pomikom tipanja naprej (MP6120 oz. MP6360)
- 3 Zatem se tipalni sistem zapelje na naslednjo tipalno točko 2 in izvede drugi tipalni postopek
- 4 TNC pozicionira tipalni sistem nazaj na varno višino in izvede ugotovljeno osnovo vrtenje

Pred programiranjem upoštevajte

Pred definicijo cikla morate programirati priklic orodja za definicijo osi tipalnega sistema.

TNC izvede aktivno osnovno vrtenje na začetku cikla.

- 1 merilna točka 1. os Q263 (absolutno): Koordinata prve tipalne točke v glavni osi obdelovalnega nivoja
- 1 merilna točka 2. os Q264 (absolutno): Koordinata prve tipalne točke v stranski osi obdelovalnega nivoja
- 2 merilna točka 1. os Q265 (absolutno): Koordinata druge tipalne točke v glavni osi obdelovalnega nivoja
- 2 merilna točka 2. os Q266 (absolutno): Koordinata druge tipalne točke v stranski osi obdelovalnega nivoja
- Merilna os Q272: Os obdelovalnega nivoja, v katerem naj se izvede meritev: 1:Glavna os = merilna os 2:Stranska os = merilna os
- Smer premika 1 Q267: Smer, v kateri naj se tipalni sistem premakne k obdelovalnemu kosu:
 -1:Smer premika negativna
 +1:Smer premika pozitivna
- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Premik na varno višino Q301: Določanje, kako naj se tipalni sistem premika med merilnimi točkami:
 0: Premik med merilnimi točkami na merilno višino
 1: Premik med merilnimi točkami na varno višino
- Vnaprejšnja nastavitev osnovnega vrtenja Q307 (absolutno): Če naj se poševni položaj, ki se meri, ne nanaša na glavno os, ampak na poljubno ravno črto, navedite kot naveznih ravnih črt. TNC zatem ugotovi samo za osnovno vrtenje diferenco iz izmerjene vrednosti in kota naveznih ravnih točk
- Preset številka v tabeli Q305: Navedite številko v preset tabeli, v kateri naj TNC shrani ugotovljeno osnovno vrtenje. Pri navedbi Q305=0, shrani TNC utotovljeno osnovno vrtenje v ROT meni vrst obratovanja Ročno

Beispiel: NC bloki

5 TCH PROBE 400 OSNOVNO VRTENJE
Q263=+10 ;1. TOČKA 1. OS
Q264=+3,5 ;1. TOČKA 2. OS
Q265=+25 ;2. TOČKA 1. OS
Q266=+2 ;2. TOČKA 2. OS
Q272=2 ;MERILNA OS
Q267=+1 ;SMER PREMIKA
Q261=-5 ;MERILNA VIŠINA
Q320=0 ;VARNOSTNI RAZMAK
Q260=+20 ;VARNA VIŠINA
Q301=0 ;PREMIK NA VAR. VIŠINO
Q307=0 ;PREDNAST. OSN. VRT.
Q305=0 ;ŠT. V TABELI

OSNOVNO VRTENJE preko dveh vrtin (cikel tipalnega sistema 401, DIN/ISO: G401)

Cikel tipalnega sistema 401 ugotovi središča dveh vrtin. Zatem TNC obračuna kot med glavno osjo obdelovalnega nivoja in povezovalnimi ravnimi črtami središč vrtin. Preko funkcije Osnovno vrtenje TNC kompenzira obračunano vrednost (Glej "Kompenziranje poševnega položaja obdelovalnega kosa" na strani 30).

- 1 TNC pozicionira tipalni sistem s hitrim premikom (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) na navedeno središčno točko prve vrtine1
- 2 Zatem se tipalni sistem premakne na navedeno merilno višino in s štirimi tipanji ugotovi središče prve vrtine
- 3 Zatem se tipalni sistem premakne nazaj na varno višino in se pozicionira na navedeno središče druge vrtine 2
- 4 Zatem TNC premakne tipalni sistem na navedeno merilno višino in s štirimi tipanji ugotovi središče druge vrtine
- 5 Končno TNC premakne tipalni sistem nazaj na varno višino in izvede ugotovljeno osnovno vrtenje

Pred programiranjem upoštevajte

Pred definicijo cikla morate programirati priklic orodja za definicijo osi tipalnega sistema.

TNC izvede aktivno osnovno vrtenje na začetku cikla.

- 1. vrtina: Sredina 1. os Q268 (absolutno): Središčna točka prve vrtine v glavni osi obdelovalnega nivoja
- 1. vrtina: Sredina 2. os Q269 (absolutno): Središčna točka prve vrtine v stranski osi obdelovalnega nivoja
- 2. vrtina: Sredina 1. os Q270 (absolutno): Središčna točka druge vrtine v glavni osi obdelovalnega nivoja
- 2. vrtina: Sredina 2. os Q271 (absolutno): Središčna točka druge vrtine v stranski osi obdelovalnega nivoja
- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Vnaprejšnja nastavitev osnovnega vrtenja Q307 (absolutno): Če naj se poševni položaj, ki se meri, ne nanaša na glavno os, ampak na poljubno ravno črto, navedite kot naveznih ravnih črt. TNC zatem ugotovi samo za osnovno vrtenje diferenco iz izmerjene vrednosti in kota naveznih ravnih točk
- Preset številka v tabeli Q305: Navedite številko v preset tabeli, v kateri naj TNC shrani ugotovljeno osnovno vrtenje. Pri navedbi Q305=0, shrani TNC utotovljeno osnovno vrtenje v ROT meni vrst obratovanja Ročno

Beispiel: NC bloki

5	TCH PROB	E 401 ROT 2 VRTINE
	Q268=-37	;1. SREDINA 1. OS
	Q269=+12	;1. SREDINA 2. OS
	Q270=+75	;2. SREDINA 1. OS
	Q271=+20	;2. SREDINA 2. OS
	Q261=-5	;MERILNA VIŠINA
	Q260=+20	;VARNA VIŠINA
	Q307=0	;PREDNAST. OSN. VRT.
	Q305=0	;ŠT. V TABELI

OSNOVNO VRTENJE preko dveh čepov (cikel tipalnega sistema 402, DIN/ISO: G402)

Cikel tipalnega sistema 402 ugotovi središča dveh čepov. Zatem TNC obračuna kot med glavno osjo obdelovalnega nivoja in povezovalnimi ravnimi črtami središč čepov. Preko funkcije Osnovno vrtenje TNC kompenzira obračunano vrednost (Glej "Kompenziranje poševnega položaja obdelovalnega kosa" na strani 30).

- 1 TNC pozicionira tipalni sistem s hitrim pomikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k tipalni točki prvega čepa 1
- 2 Zatem se tipalni sistem premakne na navedeno merilno višino 1 in s štirimi tipanji ugotovi središče prvega čepa. Med tipalnimi točkami, ki so zamaknjene za po 90°, se tipalni sistem premika po krožnem loku
- 3 Zatem se tipalni sistem premakne nazaj na varno višino in se pozicionira na tipalno točko 5 drugega čepa
- Zatem TNC premakne tipalni sistem na navedeno merilno 4 višino 2 in s štirimi tipanji ugotovi središče drugega čepa
- 5 Končno TNC premakne tipalni sistem nazaj na varno višino in izvede ugotovljeno osnovno vrtenje

Pred programiranjem upoštevajte

Pred definicijo cikla morate programirati priklic orodja za definicijo osi tipalnega sistema.

TNC izvede aktivno osnovno vrtenje na začetku cikla.

- 402
- 1. čep: Sredina 1. os (absolutno): Središčna točka prvega čepa v glavni osi obdelovalnega nivoja
- 1. čep: Sredina 2. os Q269 (absolutno): Središčna točka prvega čepa v stranski osi obdelovalnega nivoja
- Premer čepa 1 Q313: Približni premer 1. čepa. Vrednost raje navedite preveliko
- Merilna višina čep 1 v TS osi Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje čepa 1
- 2. čep: Sredina 1. os Q270 (absolutno): Središčna točka drugega čepa v glavni osi obdelovalnega nivoja
- 2. čep: Sredina 2. os Q271 (absolutno): Središčna točka drugega čepa v stranski osi obdelovalnega nivoja
- Premer čepa 2 Q314: Približni premer 2. čepa. Vrednost raje navedite preveliko
- Merilna višina čep 2 v TS osi Q315 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje čepa 2
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)

3.1 Avtomatsko ugotavljanje poševnega položaja obdeloval<mark>nih</mark> kosov

- Premik na varno višino Q301: Določanje, kako naj se tipalni sistem premika med merilnimi točkami:
 0: Premik med merilnimi točkami na merilno višino
 1: Premik med merilnimi točkami na varno višino
- Vnaprejšnja nastavitev osnovnega vrtenja Q307 (absolutno): Če naj se poševni položaj, ki se meri, ne nanaša na glavno os, ampak na poljubno ravno črto, navedite kot naveznih ravnih črt. TNC zatem ugotovi samo za osnovno vrtenje diferenco iz izmerjene vrednosti in kota naveznih ravnih točk
- Preset številka v tabeli Q305: Navedite številko v preset tabeli, v kateri naj TNC shrani ugotovljeno osnovno vrtenje. Pri navedbi Q305=0, shrani TNC utotovljeno osnovno vrtenje v ROT meni vrst obratovanja Ročno

Beispiel: NC bloki

5 TCH PROBE 402 ROT 2 ČEPI
Q268=-37 ;1. SREDINA 1. OS
Q269=+12 ;1. SREDINA 2. OS
Q313=60 ;PREMER ČEPA 1
Q261=-5 ;MERILNA VIŠINA
Q270=+75 ;2. SREDINA 1. OS
Q271=+20 ;2. SREDINA 2. OS
Q314=60 ;PREMER ČEPA 2
Q315=-5 ;MERILNA VIŠINA 2
Q320=0 ;VARNOSTNI RAZMAK
Q260=+20 ;VARNA VIŠINA
Q301=0 ;PREMIK NA VAR. VIŠINO
Q307=0 ;PREDNAST. OSN. VRT.
Q305=0 ;ŠT. V TABELI

Kompenziranje OSNOVNEGA VRTENJA preko vrtljive osi (cikel tipalnega sistema 403, DIN/ISO: G403)

Ciklus tipalnega sistema 403 z meritvijo dveh točk, ki morata ležati v ravni črti ugotovi poševni položaj obdelovalnega kosa. TNC kompenzira ugotovljeni poševni položaj obdelovalnega kosa z vrtenjem A, B ali C osi. Obdelovalni kos sme biti pri tem vpet na okroglo mizo.

- TNC pozicionira tipalni sistem s hitrim premikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k programirani toöki tipanja
 TNC pri tem premakne tipalni sistem za varnostno razdaljo proti določeni smeri premika
- 2 Zatem tipalni sistem zapelje na navedeno merilno višino in izvede prvi začetni postopek tipanja s pomikom tipanja naprej (MP6120 oz. MP6360)
- 3 Zatem se tipalni sistem zapelje na naslednjo tipalno točko 2 in izvede drugi tipalni postopek
- 4 TNC pozicionira tipalni sistem nazaj na varno višino in pozicionira v ciklu definirano vrtljivo os za ugotovljeno vrednost. Opcionalno lahko prikaz po uravnavanju premaknete nazaj na 0

Pred definicijo cikla morate programirati priklic orodja za definicijo osi tipalnega sistema.

TNC shrani ugotovljeni kot tudi v parametru Q150.

- 1 merilna točka 1. os Q263 (absolutno): Koordinata prve tipalne točke v glavni osi obdelovalnega nivoja
- 1 merilna točka 2. os Q264 (absolutno): Koordinata prve tipalne točke v stranski osi obdelovalnega nivoja
- 2 merilna točka 1. os Q265 (absolutno): Koordinata druge tipalne točke v glavni osi obdelovalnega nivoja
- 2 merilna točka 2. os Q266 (absolutno): Koordinata druge tipalne točke v stranski osi obdelovalnega nivoja
- Merilna os Q272: Os, v kateri naj se izvede meritev:
 - 1: Glavna os = merilna os
 - 2: Stranska os = merilna os3: Os tipalnega sistema = merilna os
- Smer premika 1 Q267: Smer, v kateri naj se tipalni sistem premakne k obdelovalnemu kosu:
 -1: Smer premika negativna
 +1:Smer premika pozitivna
- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)

- Premik na varno višino Q301: Določanje, kako naj se tipalni sistem premika med merilnimi točkami:
 0: Premik med merilnimi točkami na merilno višino
 - 1: Premik med merilnimi točkami na varno višino
- Os za izravnalni premik Q312: Določite, s katero vrtljivo osjo naj TNC kompenzira izmerjeni poševni položaj:
 - 4: Kompenziranje poševnega položaja z osjo A
 - 5: Kompenziranje poševnega položaja z osjo B
 - Kompenziranje poševnega položaja z osjo C
- Postavitev na ničlo po uravnavanju Q337: Določite, ali naj TNC prikaz poravnane vrtljive osi postavi na 0:
 0: Prikaz vrtljive osi naj se po izravnavi ne postavi na 0
 1: Prikaz vrtljive osi naj se po izravnavi postavi na 0
- Številka v tabeli Q305: Navedite številko v Preset tabeli/tabeli ničelnih točk, v kateri naj TNC vrtljivo os postavi na 0. Aktivno samo, če je nastavljen Q337 = 1
- Prenos merilne vrednosti (0,1) Q303: Določite, ali naj se ugotovljeno osnovno vrtenje shrani v tabelo ničelnih točk ali v preset tabelo:

0: Ugotovljeno osnovno vrtenje naj se kot premik ničelne točke zapiše v aktivno tabelo ničelnih točk. Navezni sistem je aktivni koordinatni sistem obdelovalnega kosa

1: Ugotovljeno osnovno vrtenje naj se zapiše v preset tabelo. Navezni sistem je koordinatni sistem stroja (REF sistem)

Navezni kot ?(0=glavna os) Q380: Kot, na katerega naj TNC otipano ravno črto. Deluje samo, če je izbrana vrtljiva os = C (Q312 = 6)

Beispiel: NC bloki

5 TCH PROBE 403 ROT PREKO C OSI
Q263=+0 ;1. TOČKA 1. OS
Q264=+0 ;1. TOČKA 2. OS
Q265=+20 ;2. TOČKA 1. OS
Q266=+30 ;2. TOČKA 2. OS
Q272=1 ;MERILNA OS
Q267=-1 ;SMER PREMIKA
Q261=-5 ;MERILNA VIŠINA
Q320=0 ;VARNOSTNI RAZMAK
Q260=+20 ;VARNA VIŠINA
Q301=0 ;PREMIK NA VAR. VIŠINO
Q312=6 ;IZRAVNALNA OS
Q337=0 ;POSTAVITEV NA NIČLO
Q305=1 ;ŠT. V TABELI
Q303=+1 ;PRENOS MERILNE VREDNOSTI
Q380=+90 ;NAVEZNI KOT

NASTAVITEV OSNOVNEGA VRTENJa (cikel tipalnega sistema 404, DIN/ISO: G404)

S ciklom tipalnega sistema 404 lahko med potekom programa avtomatsko nastavite poljubno osnovno vrtenje. Prvenstveni se mora uporabiti ta cikel, če želite resetirati neko poprej izvedeno osnovno vrtenje.

Vnaprejšnja nastavitev Osnovno vrtenje: Vrednost kota, s katerim naj se nastavi osnovno vrtenje Beispiel: NC bloki

5	TCH PRO	BE 404 OSNOVNO VRTENJE	
	307 = +0	PREDNASTAV OSN VRTEN	1

Usmeritev poševnega položaja obdelovalnega kosa preko osi C (cikel tipalnega sistema 405, DIN/ISO: G405)

S ciklom tipalnega sistema 405 ugotovite

- premik kota med pozitivno osjo Y aktivnega koordinatnega sistema in središčno črto neke vrtine ali
- premik kota med želeno pozicijo in dejansko pozicijo središčne črte neke vrtine

TNC kompenzira ugotovljeni premik kota z vrtenjem osi C. Obdelovalni kos sme biti pri tem poljubno zopet v okroglo mizo, vendar mora biti Y koordinata vrtine pozitivna. Če zamik kota vrtine merite z osjo tipalnega sistema Y (horizontalni položaj vrtine), je lahko potrebno, da morate cikel večkrat izvesti, ker z merilno strategijo nastane nenatančnost, ki znaša približno 1% poševnega položaja.

- 1 TNC pozicionira tipalni sistem s hitrim premikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k točki tipanja 1. TNC izračuna tipalne točke iz navedb v ciklusu in varnostnim razmakom iz MP6140
- 2 Zatem tipalni sistem zapelje na navedeno merilno višino in izvede prvi začetni postopek tipanja s pomikom tipanja naprej (MP6120 oz. MP6360). TNC določa smer tipanja avtomatsko, odvisno od programiranega startnega kota
- 3 Zatem se tipalni sistem cirkularno premakne ali na merilno višino ali na varno višino, ali pa na naslednjo tipalno točko 2 in tam izvede drugi tipalni postopek
- 4 TNC pozicionira tipalni sistem na tipalno točko 3 in zatem na tipalno točko 4 ter tam opravi tretji oz. četrti tipalni postopek in pozicionira tipalni sistem na ogotovljeno središče vrtine
- 5 Končno TNC pozicionira tipalni sistem nazaj na varno višino in izravna obdelovalni kos z vrtenjem okrogle mize. TNC pri tem zavrti okroglo mizo tako, da leži središče vrtine po kompenzaciji – tako pri vertikalni kot tudi pri horizontalni osi tipalnega sistema – v smeri pozitivne osi Y, ali v želeni poziciji središča vrtine. Izmerjeni zamik kota je na voljo dodatno v parametru Q150

Pred programiranjem upoštevajte

Da preprečite kolizijo med tipalnim sistemom in obdelovalnim kosom, navedite za želeni premer žepa / vrtine) raje **prenizko** vrednost.

Če izmere žepa in varnostni razmak ne dovoljujejo predpozicioniranja v bližini tipalnih točk, TNC tipa vedno izhajajoč od sredine žepa. Med štirimi merilnimi točkami se tipalni sistem v tem primeru ne premakne na varno višino.

Pred definicijo cikla morate programirati priklic orodja za definicijo osi tipalnega sistema.

ᇞ

- Sredina 1. os Q321 (absolutno): Središče prve vrtine v glavni osi obdelovalnega nivoja
- Sredina 2. os Q322 (absolutno): Središče prve vrtine v stranski osi obdelovalnega nivoja Če programirate Q322 = 0, potem TNC usmeri središčno točko vrtine na pozitivno os Y, če programirate, da Q322 ni enak 0, potem TNC usmeri središčno točko vrtine na želeno pozicijo (kot, ki izhaja iz središča vrtine)
- Želeni premer Q262: Približni premer krožnega žepa (vrtina). Vrednost raje navedite prenizko
- Startni kot Q325 (absolutno): Kot med glavno osjo obdelovalnega nivoja in prvo tipalno točko
- Kotni korak Q247 (inkrementalno): Kot med prvima dvema merilnima točkama, predznak kotnega koraka določi smer vrtenja (- = smer urinega kazalca), s katerem se tipalni sistem premakne na naslednjo merilno točko. Če želite meriti krožni lok, potem programirajte kotni korak na manj kot 90°

Čim manjši kotni korak programirate, tem manj natančno TNC izračuna središčno točko kroga. Najnižja vrednost navedbe: 5°.

; (

- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Premik na varno višino Q301: Določanje, kako naj se tipalni sistem premika med merilnimi točkami:
 0: Premik med merilnimi točkami na merilno višino
 - 1: Premik med merilnimi točkami na varno višino
- Postavitev na ničlo po uravnavanju Q337: Določite, ali naj TNC prikaz osi C postavi na 0, ali naj kotni zamik zapiše v stolpec C tabele ničelnih točk:
 0: Postavitev prikaza v osi C na 0
 >0:Zapis izmerjenega kotnega zamika s pravilnim predznakom v tabelo ničelnih točk. Številka vrstice = vrednost iz Q337. Če je zamik C že vpisan v tabelo

ničelnih točk, potem TNC prišteje izmerjeni kotni zamik s pravilnim predznakom

Beispiel: NC bloki

5 TCH PROBE 405 ROT PREKO C OSI
Q321=+50 ;SREDINA 1. OS
Q322=+50 ;SREDINA 2. OS
Q262=10 ;ŽELENI PREMER
Q325=+0 ;STARTNI KOT
Q247=90 ;KOTNI KORAK
Q261=-5 ;MERILNA VIŠINA
Q320=0 ;VARNOSTNI RAZMAK
Q260=+20 ;VARNA VIŠINA
Q301=0 ;PREMIK NA VAR. VIŠINO
Q337=0 ;POSTAVITEV NA NIČLO

Primer: Določitev osnovnega vrtenja preko dveh vrtin

0 BEGIN PGM CYC401 MM	
1 TOOL CALL 0 Z	
2 TCH PROBE 401 ROT 2 VRTINE	
Q268=+25 ;1. SREDINA 1. OS	Središčna točka 1. vrtine: X koordinata
Q269=+15 ;1. SREDINA 2. OS	Središčna točka 1. vrtine: Y koordinata
Q270=+80 ;2. SREDINA 1. OS	Središčna točka 2. vrtine: X koordinata
Q271=+35 ;2. SREDINA 2. OS	Središčna točka 2. vrtine: Y koordinata
Q261=-5 ;MERILNA VIŠINA	Koordinata v osi tipalnega sistema, v kateri poteka merjenje
Q260=+20 ;VARNA VIŠINA	Višina, na kateri se lahko os tipalnega sistema lahko premika brez kolizije
Q307=+0 ;PREDNAST. OSN. VRT.	Kot naveznih ravnih črt
3 CALL PGM 35K47	Priklic obdelovalnega programa
4 END PGM CYC401 MM	

i

3.2 Avtomatsko ugotavljanje naveznih točk

Pregled

TNC daje na voljo deset ciklov, s katerimi se lahko navezne točke avtomatsko ugotovijo in obdelajo kot sledi:

- Postavitev ugotovljenih vrednosti direktno kot prikazovalne vrednosti
- Zapisovanje ugotovljenih vrednosti v preset tabelo.
- Zapisovanje ugotovljenih vrednosti v tabelo ničelnih točk

Cikel	Softkey
410 NAVEZ. TOČKA PRAVOKOTNIK ZNOTR. Merjenje dolžine in širine pravokotnika znotraj, postavitev središča pravokotnika za navezno točko	418 9
411 NAVEZ. TOČKA PRAVOKOTNIK ZUN. Merjenje dolžine in širine pravokotnika zunaj, postavitev središča pravokotnika za navezno točko	
412 NAVEZ. TOČ. KROG ZNOTR. Merjenje štirih poljubnih krožnih točk znotraj, postavitev središča kroga za navezno točko	412
413 NAVEZ. TOČ. KROG ZUN. Merjenje štirih poljubnih krožnih točk zunaj, postavitev središča kroga za navezno točko	413
414 NAVEZ. TOČ. KOT ZUN. Merjenje dveh ravnih črt zunaj, postavitev stičišča ravnih črt za navezno točko	414
415 NAVEZ. TOČ. KOT ZNOTR. Merjenje dveh ravnih črt znotraj, postavitev stičišča ravnih črt za navezno točko	415
416 NAVEZ. TOČ. KROŽNE LUKNJE SREDINA (2. softkey nivo) merjenje treh poljubnih vrtin na krožni luknji, postavitev sredine krožne luknje za navezno točko	416 9
417 NAVEZ. TOČKA TS OS (2. softkey nivo) Merjenje poljubne pozicije v osi tipalnega sistema in jo postaviti za navezno točko	417 1
418 NAVEZ.TOČ 4 vrtine (2. softkey nivo) Križno merjenje po 2 vrtin, postavitev stičišča povezovalnih ravnih črt za navezno točko	418

i

Cikel

419 NAVEZ. TOČKA POSAMIČNA OS (2. softkey nivo) Merjenje poljubne pozicije v prosto izbrani in jo postaviti za navezno točko

Postavitev skupnih točk vseh ciklov tipalnega sistema za navezno točko

Cikle tipalnega sistema 410 do 419 lahko obdelate tudi pri aktivni rotaciji (osnovno vrtenje ali cikel 10).

Navezna točka in os tipalnega sistema

TNC postavi navezno točko v obdelovalnem nivoju odbisno od osi tipalnega sistema, ki ste jo definirali v vašem merilnem programu:

Aktivna os tipalnega sistema	Nastavljanje navezne točke v
Z ali W	X in Y
Y ali V	Z in X
X ali U	Y in Z

i

Shranjevanje obračunane navezne točke

Pri vseh ciklih za postavljanje navezne točke lahko preko parametrov za navedbo Q303 in Q305 določite, kako naj TNC shrani izračunano navezno točko:

Q305 = 0, Q303 = poljubna vrednost:

TNC postavi obračunano navezno točko v prikaz. Nova navezna točka je takoj aktivna

Q305 ni enak 0, Q303 = -1

Ta kombinacija nastane lahko samo, če

- prikličete programe s cikli 410 do 418, ki so bili izdelani na TNC 4xx
- prikličete programe s cikli 410 do 418, ki so bili izdelani s starejšo verzijo programske opreme iTNC 530
- pri definiciji cikla predaja merilnih vrednosti preko parametra Q303 zavestno ni bila definirana

V takšnih primerih odda TNC javljanje motnje, ker se je kompletni handling v zvezi s tabelami ničelnih vrednosti, navezan na REF spremenil in morate preko parametra Q303 določiti definirano predajo merilnih vrednosti.

Q305 ni enak 0, Q303 = 0

TNC zapiše obračunano navezno točko v aktivno tableto ničelnih točk. Navezni sistem je aktivni koordinatni sistem obdelovalnega kosa. Vrednost parametra Q305 določi številko ničelne točke. **Aktiviranje ničelne točke preko cikla 7 v NC programu**

Q305 ni enak 0, Q303 = 1

TNC zapiše obračunano navezno točko v preset tabelo. Navezni sistem je koordinatni sistem stroja (REF koordinate) Vrednost parametra Q305 določi preset številko. Aktiviranje preset preko cikla 247 v NC programu

NASTAVITEV OSNOVNEGA VRTENJA ZNOTRAJ (cikel tipalnega sistema 410, DIN/ISO: G410)

Cikel tipalnega sistema 410 ugotovi središče osi pravokotnika im postavi to središče za navezno točko. Po izbiri lahko TNC središče zapiše tudi v tabelo ničelnih točk ali v preset tabelo.

- 1 TNC pozicionira tipalni sistem s hitrim premikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k točki tipanja 1. TNC izračuna tipalne točke iz navedb v ciklusu in varnostnim razmakom iz MP6140
- 2 Zatem se tipalni sistem premakne na navedeno merilno višino in izvede prvi tipalni postopek s pomikom tipanja naprej (MP6120 oz. MP6360)
- 3 Zatem se tipalni sistem ali osno premakne na merilno višino ali linearno na varno višino, ali pa na naslednjo tipalno točko 2 in tam izvede drugi tipalni postopek
- 4 TNC pozicionira tipalni sistem na tipalno točko 3 in zatem na tipalno točko 4 in tam opravi tretji oz. četrti tipalni postopek
- 5 Končno TNC pozicionira tipalni sistem nazaj na varno višino in obdela ugotovljeno navezno točko odvisno od parametrov cikla Q303 in Q305 (glej "Shranjevanje obračunane navezne točke" na strani 61)
- 6 Po želji TNC zatem v osebnem tipalnem postopku ugotovi še navezno točko v osi tipalnega sistema

Pred programiranjem upoštevajte

Da preprečite kolizijo med tipalnim sistemom in obdelovalnim kosom, navedite 1. in 2. stransko dolžino za želeni premer žepa /vrtine) raje **prenizko** vrednost.

Če izmere žepa in varnostni razmak ne dovoljujejo predpozicioniranja v bližini tipalnih točk, TNC tipa vedno izhajajoč od sredine žepa. Med štirimi merilnimi točkami se tipalni sistem v tem primeru ne premakne na varno višino.

Pred definicijo cikla morate programirati priklic orodja za definicijo osi tipalnega sistema.

- Sredina 1. os Q321 (absolutno): Središče žepa v glavni osi obdelovalnega nivoja
- Sredina 2. os Q322 (absolutno): Središče žepa v stranski osi obdelovalnega nivoja
- 1. stranska dolžina Q323 (inkrementalno): Dolžina žepa, paralelno k glavni osi obdelovalnega nivoja
- 2. stranska dolžina Q324 (inkrementalno): Dolžina žepa, paralelno k stranski osi obdelovalnega nivoja
- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Premik na varno višino Q301: Določanje, kako naj se tipalni sistem premika med merilnimi točkami:
 0: Premik med merilnimi točkami na merilno višino
 1: Premik med merilnimi točkami na varno višino
- Številka ničelne točke v tabeli Q305: Navedite številko v tabeli ničelnih točk / v preset tabeli, v kateri naj TNC shrani koordinate središča žepa. Pri navedbi Q305=0, TNC postavi prikaz avtomatsko tako, da se nova navezna točka nahaja v središču žepa
- Nova navezna točka glavne osi Q331 (absolutno): Koordinata v glavni osi, na kateri naj TNC postavi ugotovljeno središče žepa. Osnovna nastavitev = 0
- Nova navezna točka stranske osi Q332 (absolutno): Koordinata v stranski osi, na kateri naj TNC postavi ugotovljeno središče žepa. Osnovna nastavitev = 0

 Prenos merilne vrednosti (0,1) Q303: Določite, ali naj se ugotovljena navezna točka shrani v tabelo ničelnih točk ali v preset tabelo:
 -1: Ne uporabljajte! TNC vnese vrednost, če naj se

naložijo stari programi (glej "Shranjevanje obračunane navezne točke" na strani 61)
O: Zapisovanje ugotovljene navezne točke v aktivno tabelo ničelnih točk. Navezni sistem je aktivni koordinatni sistem obdelovalnega kosa
1: Ugotovljeno navezno točko naj se zapiše v preset tabelo. Navezni sistem je koordinatni sistem stroja (REF sistem)

 Tipanje v TS osi Q381: Določanje, ali naj TNC tudi navezno točko postavi v os tipalnega sistema:
 0: Navezni sistem se ne postavi v os tipalnega sistema

1: Navezni sistem se postavi v os tipalnega sistema

- Tipanje TS osi: Koor. 1. osi Q382 (absolutno): Koordinata tipalne točke v glavni osi obdelovalnega nivoja, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Tipanje TS osi: Koor. 2. osi Q383 (absolutno): Koordinata tipalne točke v stranski osi obdelovalnega nivoja, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Tipanje TS osi: Koor. 3. osi Q384 (absolutno): Koordinata tipalne točke v osi tipalnega sistema, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Nova navezna točka TS osi Q333 (absolutno): Koordinata v osi tipalnega sistema, na katero naj TNC postavi navezno točko. Osnovna nastavitev = 0

Beispiel: NC bloki

5 TCH PROBE 410 NAVEZ. TOČKA PRAVOKOTNIK ZNOTR.
Q321=+50 ;SREDINA 1. OS
Q322=+50 ;SREDINA 2. OS
Q323=60 ;1. STRANSKA DOLŽINA
Q324=20 ;2. STRANSKA DOLŽINA
Q261=-5 ;MERILNA VIŠINA
Q320=0 ;VARNOSTNI RAZMAK
Q260=+20 ;VARNA VIŠINA
Q301=0 ;PREMIK NA VAR. VIŠINO
Q305=1 ;ŠT. V TABELI
Q331=+0 ;NAVEZNA TOČKA
Q332=+0 ;NAVEZNA TOČKA
Q303=+1 ;PRENOS MERILNE VREDNOSTI
Q381=1 ;TIPANJE TS OS
Q382=+85 ;1. KO. ZA TS OS
Q383=+50 ;2. KO. ZA TS OS
Q384=+0 ;3. KO. ZA TS OS
Q332=+1 ;NAVEZNA TOČKA

NASTAVITEV OSNOVNEGA VRTENJA ZUNAJ (cikel tipalnega sistema 411, DIN/ISO: G411)

Cikel tipalnega sistema 411 ugotovi središče osi pravokotnega čepa in postavi njegovo središče za navezno točko. Po izbiri lahko TNC središče zapiše tudi v tabelo ničelnih točk ali v preset tabelo.

- 1 TNC pozicionira tipalni sistem s hitrim premikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k točki tipanja 1. TNC izračuna tipalne točke iz navedb v ciklusu in varnostnim razmakom iz MP6140
- 2 Zatem tipalni sistem zapelje na navedeno merilno višino in izvede prvi začetni postopek tipanja s pomikom tipanja naprej (MP6120 oz. MP6360)
- 3 Zatem se tipalni sistem ali osno premakne na merilno višino ali linearno na varno višino, ali pa na naslednjo tipalno točko 2 in tam izvede drugi tipalni postopek
- 4 TNC pozicionira tipalni sistem na tipalno točko 3 in zatem na tipalno točko 4 in tam opravi tretji oz. četrti tipalni postopek
- 5 Končno TNC pozicionira tipalni sistem nazaj na varno višino in obdela ugotovljeno navezno točko odvisno od parametrov cikla Q303 in Q305 (glej "Shranjevanje obračunane navezne točke" na strani 61)
- 6 Po želji TNC zatem v osebnem tipalnem postopku ugotovi še navezno točko v osi tipalnega sistema

Pred programiranjem upoštevajte

Da preprečite kolizijo med tipalnim sistemom in obdelovalnim kosom, navedite 1. in 2. stransko dolžino žepa raje **previsoko** vrednost.

Pred definicijo cikla morate programirati priklic orodja za definicijo osi tipalnega sistema.

3.2 Avtomatsko ugotavljanje nav<mark>ezn</mark>ih točk

411 📍

- Sredina 1. os Q321 (absolutno): Središče čepa v glavni osi obdelovalnega nivoja
- Sredina 2. os Q322 (absolutno): Središče čepa v stranski osi obdelovalnega nivoja
- 1. stranska dolžina Q323 (inkrementalno): Dolžina čepa, paralelno k glavni osi obdelovalnega nivoja
- 2. stranska dolžina Q324 (inkrementalno): Dolžina čepa, paralelno k stranski osi obdelovalnega nivoja
- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Premik na varno višino Q301: Določanje, kako naj se tipalni sistem premika med merilnimi točkami:
 0: Premik med merilnimi točkami na merilno višino
 1: Premik med merilnimi točkami na varno višino
- Številka ničelne točke v tabeli Q305: Navedite številko v tabeli ničelnih točk/v preset tabeli, v kateri naj TNC shrani koordinate središča čepa. Pri navedbi Q305=0, TNC postavi prikaz avtomatsko tako, da se nova navezna točka nahaja v središču čepa
- Nova navezna točka glavne osi Q331 (absolutno): Koordinata v glavni osi, na kateri naj TNC postavi ugotovljeno središče čepa. Osnovna nastavitev = 0
- Nova navezna točka stranske osi Q332 (absolutno): Koordinata v stranski osi, na kateri naj TNC postavi ugotovljeno središče čepa. Osnovna nastavitev = 0

- Prenos merilne vrednosti (0,1) Q303: Določite, ali naj se ugotovljena navezna točka shrani v tabelo ničelnih točk ali v preset tabelo:

 1: Ne uporabljajte! TNC vnese vrednost, če naj se naložijo stari programi (glej "Shranjevanje obračunane navezne točke" na strani 61)
 0: Zapisovanje ugotovljene navezne točke v aktivno tabelo ničelnih točk. Navezni sistem je aktivni koordinatni sistem obdelovalnega kosa
 1: Ugotovljeno navezno točko naj se zapiše v preset tabelo. Navezni sistem je koordinatni sistem stroja (REF sistem)
- Tipanje v TS osi Q381: Določanje, ali naj TNC tudi navezno točko postavi v os tipalnega sistema:
 0: Navezni sistem se ne postavi v os tipalnega sistema

1: Navezni sistem se postavi v os tipalnega sistema

- Tipanje TS osi: Koor. 1. osi Q382 (absolutno): Koordinata tipalne točke v glavni osi obdelovalnega nivoja, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Tipanje TS osi: Koor. 2. osi Q383 (absolutno): Koordinata tipalne točke v stranski osi obdelovalnega nivoja, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Tipanje TS osi: Koor. 3. osi Q384 (absolutno): Koordinata tipalne točke v osi tipalnega sistema, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Nova navezna točka TS osi Q333 (absolutno): Koordinata v osi tipalnega sistema, na katero naj TNC postavi navezno točko. Osnovna nastavitev = 0

Beispiel: NC bloki

5 TCH PROBE 411 NAVEZ. TOČKA PRAVOKOTNIK ZUN.
Q321=+50 ;SREDINA 1. OS
Q322=+50 ;SREDINA 2. OS
Q323=60 ;1. STRANSKA DOLŽINA
Q324=20 ;2. STRANSKA DOLŽINA
Q261=-5 ;MERILNA VIŠINA
Q320=0 ;VARNOSTNI RAZMAK
Q260=+20 ;VARNA VIŠINA
Q301=0 ;PREMIK NA VAR. VIŠINO
Q305=0 ;ŠT. V TABELI
Q331=+0 ;NAVEZNA TOČKA
Q332=+0 ;NAVEZNA TOČKA
Q303=+1 ;PRENOS MERILNE VREDNOSTI
Q381=1 ;TIPANJE TS OS
Q382=+85 ;1. KO. ZA TS OS
Q383=+50 ;2. KO. ZA TS OS
Q384=+0 ;3. KO. ZA TS OS
Q332=+1 ;NAVEZNA TOČKA

NAVEZNA TOČKA KROG ZNOTRAJ (cikel tipalnega sistema 412, DIN/ISO: G412)

Cikel tipalnega sistema 412 ugotovi središče krožnega žepa (vrtine) in postavi to središče za navezno točko. Po izbiri lahko TNC središče zapiše tudi v tabelo ničelnih točk ali v preset tabelo.

- 1 TNC pozicionira tipalni sistem s hitrim premikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k točki tipanja 1. TNC izračuna tipalne točke iz navedb v ciklusu in varnostnim razmakom iz MP6140
- 2 Zatem tipalni sistem zapelje na navedeno merilno višino in izvede prvi začetni postopek tipanja s pomikom tipanja naprej (MP6120 oz. MP6360). TNC določa smer tipanja avtomatsko, odvisno od programiranega startnega kota
- 3 Zatem se tipalni sistem cirkularno premakne ali na merilno višino ali na varno višino, ali pa na naslednjo tipalno točko 2 in tam izvede drugi tipalni postopek
- 4 TNC pozicionira tipalni sistem na tipalno točko 3 in zatem na tipalno točko 4 in tam opravi tretji oz. četrti tipalni postopek
- 5 Končno TNC pozicionira tipalni sistem nazaj na varno višino in obdela ugotovljeno navezno točko odvisno od parametrov cikla Q303 in Q305 (glej "Shranjevanje obračunane navezne točke" na strani 61)
- 6 Po želji TNC zatem v osebnem tipalnem postopku ugotovi še navezno točko v osi tipalnega sistema

Pred programiranjem upoštevajte

Da preprečite kolizijo med tipalnim sistemom in obdelovalnim kosom, navedite za želeni premer žepa / vrtine) raje **prenizko** vrednost.

Če izmere žepa in varnostni razmak ne dovoljujejo predpozicioniranja v bližini tipalnih točk, TNC tipa vedno izhajajoč od sredine žepa. Med štirimi merilnimi točkami se tipalni sistem v tem primeru ne premakne na varno višino.

Pred definicijo cikla morate programirati priklic orodja za definicijo osi tipalnega sistema.

- Sredina 1. os Q321 (absolutno): Središče žepa v glavni osi obdelovalnega nivoja
- Sredina 2. os Q322 (absolutno): Središče žepa v stranski osi obdelovalnega nivoja. Če programirate Q322 = 0, potem TNC usmeri središčno točko vrtine na pozitivno os Y, če programirate, da Q322 ni enak 0, potem TNC usmeri središčno točko vrtine na želeno pozicijo
- Želeni premer Q262: Približni premer krožnega žepa (vrtina). Vrednost raje navedite prenizko
- Startni kot Q325 (absolutno): Kot med glavno osjo obdelovalnega nivoja in prvo tipalno točko
- Kotni korak Q247 (inkrementalno): Kot med prvima dvema merilnima točkama, predznak kotnega koraka določi smer vrtenja (- = smer urinega kazalca), s katerem se tipalni sistem premakne na naslednjo merilno točko. Če želite meriti krožni lok, potem programirajte kotni korak na manj kot 90°

Čim manjši kotni korak programirate, tem manj natančno TNC izračuna navezno točko. Najnižja vrednost navedbe: 5°.

- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Premik na varno višino Q301: Določanje, kako naj se tipalni sistem premika med merilnimi točkami:
 0: Premik med merilnimi točkami na merilno višino
 1: Premik med merilnimi točkami na varno višino
- Številka ničelne točke v tabeli Q305: Navedite številko v tabeli ničelnih točk v preset tabeli , v kateri naj TNC shrani koordinate središča žepa. Pri navedbi Q305=0, TNC postavi prikaz avtomatsko tako, da se nova navezna točka nahaja v središču žepa

- Nova navezna točka glavne osi Q331 (absolutno): Koordinata v glavni osi, na kateri naj TNC postavi ugotovljeno središče žepa. Osnovna nastavitev = 0
- Nova navezna točka stranske osi Q332 (absolutno): Koordinata v stranski osi, na kateri naj TNC postavi ugotovljeno središče žepa. Osnovna nastavitev = 0
- Prenos merilne vrednosti (0,1) Q303: Določite, ali naj se ugotovljena navezna točka shrani v tabelo ničelnih točk ali v preset tabelo:

-1: Ne uporabljajte! TNC vnese vrednost, če naj se naložijo stari programi (glej "Shranjevanje obračunane navezne točke" na strani 61)
0: Zapisovanje ugotovljene navezne točke v aktivno tabelo ničelnih točk. Navezni sistem je aktivni koordinatni sistem obdelovalnega kosa
1: Ugotovljeno navezno točko naj se zapiše v preset tabelo. Navezni sistem je koordinatni sistem stroja (REF sistem)

- Tipanje v TS osi Q381: Določanje, ali naj TNC tudi navezno točko postavi v os tipalnega sistema:
 0: Navezni sistem se ne postavi v os tipalnega sistema
 - 1: Navezni sistem se postavi v os tipalnega sistema
- Tipanje TS osi: Koor. 1. osi Q382 (absolutno): Koordinata tipalne točke v glavni osi obdelovalnega nivoja, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Tipanje TS osi: Koor. 2. osi Q383 (absolutno): Koordinata tipalne točke v stranski osi obdelovalnega nivoja, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Tipanje TS osi: Koor. 3. osi Q384 (absolutno): Koordinata tipalne točke v osi tipalnega sistema, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Nova navezna točka TS osi Q333 (absolutno): Koordinata v osi tipalnega sistema, na katero naj TNC postavi navezno točko. Osnovna nastavitev = 0

Beispiel: NC bloki

5 TCH PROBE 412 NAVEZ. TOČKA KROG ZNOTR.
Q321=+50 ;SREDINA 1. OS
Q322=+50 ;SREDINA 2. OS
Q262=65 ;ŽELENI PREMER
Q325=+0 ;STARTNI KOT
Q247=90 ;KOTNI KORAK
Q261=-5 ;MERILNA VIŠINA
Q320=0 ;VARNOSTNI RAZMAK
Q260=+20 ;VARNA VIŠINA
Q301=0 ;PREMIK NA VAR. VIŠINO
Q305=12 ;ŠT. V TABELI
Q331=+0 ;NAVEZNA TOČKA
Q332=+0 ;NAVEZNA TOČKA
Q303=+1 ;PRENOS MERILNE VREDNOSTI
Q381=1 ;TIPANJE TS OS
Q382=+85 ;1. KO. ZA TS OS
Q383=+50 ;2. KO. ZA TS OS
Q384=+0 ;3. KO. ZA TS OS
Q332=+1 ;NAVEZNA TOČKA

3.2 Avtomatsko ugotavljanje nav<mark>ezn</mark>ih točk

NASTAVITEV KROGA ZUNAJ ZUNAJ (cikel tipalnega sistema 413, DIN/ISO: G413)

Cikel tipalnega sistema 413 ugotovi središče osi krožnega čepa in postavi njegovo središče za navezno točko. Po izbiri lahko TNC središče zapiše tudi v tabelo ničelnih točk ali v preset tabelo.

- 1 TNC pozicionira tipalni sistem s hitrim premikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k točki tipanja 1. TNC izračuna tipalne točke iz navedb v ciklusu in varnostnim razmakom iz MP6140
- 2 Zatem tipalni sistem zapelje na navedeno merilno višino in izvede prvi začetni postopek tipanja s pomikom tipanja naprej (MP6120 oz. MP6360). TNC določa smer tipanja avtomatsko, odvisno od programiranega startnega kota
- 3 Zatem se tipalni sistem cirkularno premakne ali na merilno višino ali na varno višino, ali pa na naslednjo tipalno točko 2 in tam izvede drugi tipalni postopek
- 4 TNC pozicionira tipalni sistem na tipalno točko 3 in zatem na tipalno točko 4 in tam opravi tretji oz. četrti tipalni postopek
- 5 Končno TNC pozicionira tipalni sistem nazaj na varno višino in obdela ugotovljeno navezno točko odvisno od parametrov cikla Q303 in Q305 (glej "Shranjevanje obračunane navezne točke" na strani 61)
- 6 Po želji TNC zatem v osebnem tipalnem postopku ugotovi še navezno točko v osi tipalnega sistema

Pred programiranjem upoštevajte

Da preprečite kolizijo med tipalnim sistemom in obdelovalnim kosom, navedite za želeni premer žepa / vrtine) raje **previsoko** vrednost.

Pred definicijo cikla morate programirati priklic orodja za definicijo osi tipalnega sistema.

413 🕊

•

- Sredina 1. os Q321 (absolutno): Središče čepa v glavni osi obdelovalnega nivoja
- Sredina 2. os Q322 (absolutno): Središče čepa v stranski osi obdelovalnega nivoja. Če programirate Q322 = 0, potem TNC usmeri središčno točko vrtine na pozitivno os Y, če programirate, da Q322 ni enak 0, potem TNC usmeri središčno točko vrtine na želeno pozicijo
- Želeni premer Q262: Približni premer čepa. Vrednost raje navedite preveliko
- Startni kot Q325 (absolutno): Kot med glavno osjo obdelovalnega nivoja in prvo tipalno točko
- Kotni korak Q247 (inkrementalno): Kot med prvima dvema merilnima točkama, predznak kotnega koraka določi smer vrtenja (- = smer urinega kazalca), s katerem se tipalni sistem premakne na naslednjo merilno točko. Če želite meriti krožni lok, potem programirajte kotni korak na manj kot 90°

Čim manjši kotni korak programirate, tem manj natančno TNC izračuna navezno točko. Najnižja vrednost navedbe: 5°.

- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Premik na varno višino Q301: Določanje, kako naj se tipalni sistem premika med merilnimi točkami:
 0: Premik med merilnimi točkami na merilno višino
 1: Premik med merilnimi točkami na varno višino
- Številka ničelne točke v tabeli Q305: Navedite številko v tabeli ničelnih točk/v preset tabeli, v kateri naj TNC shrani koordinate središča čepa. Pri navedbi Q305=0, TNC postavi prikaz avtomatsko tako, da se nova navezna točka nahaja v središču čepa

- Nova navezna točka glavne osi Q331 (absolutno): Koordinata v glavni osi, na kateri naj TNC postavi ugotovljeno središče čepa. Osnovna nastavitev = 0
- Nova navezna točka stranske osi Q332 (absolutno): Koordinata v stranski osi, na kateri naj TNC postavi ugotovljeno središče čepa. Osnovna nastavitev = 0
- Prenos merilne vrednosti (0,1) Q303: Določite, ali naj se ugotovljena navezna točka shrani v tabelo ničelnih točk ali v preset tabelo:

 1: Ne uporabljajte! TNC vnese vrednost, če naj se naložijo stari programi (glej "Shranjevanje obračunane navezne točke" na strani 61)
 0: Zapisovanje ugotovljene navezne točke v aktivno tabelo ničelnih točk. Navezni sistem je aktivni koordinatni sistem obdelovalnega kosa
 1: Ugotovljeno navezno točko naj se zapiše v preset tabelo. Navezni sistem je koordinatni sistem stroja (REF sistem)
- Tipanje v TS osi Q381: Določanje, ali naj TNC tudi navezno točko postavi v os tipalnega sistema:
 0: Navezni sistem se ne postavi v os tipalnega sistema
 - 1: Navezni sistem se postavi v os tipalnega sistema
- Tipanje TS osi: Koor. 1. osi Q382 (absolutno): Koordinata tipalne točke v glavni osi obdelovalnega nivoja, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Tipanje TS osi: Koor. 2. osi Q383 (absolutno): Koordinata tipalne točke v stranski osi obdelovalnega nivoja, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Tipanje TS osi: Koor. 3. osi Q384 (absolutno): Koordinata tipalne točke v osi tipalnega sistema, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Nova navezna točka TS osi Q333 (absolutno): Koordinata v osi tipalnega sistema, na katero naj TNC postavi navezno točko. Osnovna nastavitev = 0

5 TCH PROBE 413 NAVEZ. TOCKA KROG ZUNAJ
Q321=+50 ;SREDINA 1. OS
Q322=+50 ;SREDINA 2. OS
Q262=65 ;ŽELENI PREMER
Q325=+0 ;STARTNI KOT
Q247=90 ;KOTNI KORAK
Q261=-5 ;MERILNA VIŠINA
Q320=0 ;VARNOSTNI RAZMAK
Q260=+20 ;VARNA VIŠINA
Q301=0 ;PREMIK NA VAR. VIŠINO
Q305=15 ;ŠT. V TABELI
Q331=+0 ;NAVEZNA TOČKA
Q332=+0 ;NAVEZNA TOČKA
Q303=+1 ;PRENOS MERILNE VREDNOSTI
Q381=1 ;TIPANJE TS OS
Q382=+85 ;1. KO. ZA TS OS
Q383=+50 ;2. KO. ZA TS OS
Q384=+0 ;3. KO. ZA TS OS
Q332=+1 ;NAVEZNA TOČKA

NASTAVITEV KOT ZUNAJ (cikel tipalnega sistema 414, DIN/ISO: G414)

Cikel tipalnega sistema 414 ugotovi sečišče med dvema ravnima črtama in postavi to središče za navezno točko. Po izbiri lahko TNC sečišče zapiše tudi v tabelo ničelnih točk ali v preset tabelo.

- 1 TNC pozicionira tipalni sistem s hitrim pomikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k prvi točki tipanja 1 (glej sliko desno zgoraj). TNC pri tem premakne tipalni sistem za varnostno razdaljo proti vsakokratni smeri premika
- 2 Zatem tipalni sistem zapelje na navedeno merilno višino in izvede prvi začetni postopek tipanja s pomikom tipanja naprej (MP6120 oz. MP6360). TNC določa smer tipanja avtomatsko, odvisno od programirane merilne točke

TNC meri prvo ravno črto vedno v smeri stranske osi obdelovalnega nivoja.

- 3 Nato se tipalni sistem zapelje na naslednjo tipalno točko 2 in izvede drugi tipalni postopek
- 4 TNC pozicionira tipalni sistem na tipalno točko 3 in zatem na tipalno točko 4 in tam opravi tretji oz. četrti tipalni postopek
- 5 Končno TNC pozicionira tipalni sistem nazaj na varno višino in obdela ugotovljeno navezno točko odvisno od parametrov cikla Q303 in Q305 (glej "Shranjevanje obračunane navezne točke" na strani 61)
- 6 Po želji TNC zatem v osebnem tipalnem postopku ugotovi še navezno točko v osi tipalnega sistema

Pred programiranjem upoštevajte

S položajem merilnih točk 1 in 3 določite vogal, na katerem TNC postavi navezno točko (glej sliko desno v sredini in naslednjo tabelo).

Voga I	Koordinata X	Koordinata Y
А	Točka 1 velika točka 3	Točka 1 mala točka 3
В	Točka 1 mala točka 3	Točka 1 mala točka 3
С	Točka 1 mala točka 3	Točka 1 velika točka 3
D	Točka 1 velika točka 3	Točka 1 velika točka 3

- 1 merilna točka 1. os Q263 (absolutno): Koordinata prve tipalne točke v glavni osi obdelovalnega nivoja
- 1 merilna točka 2. os Q264 (absolutno): Koordinata prve tipalne točke v stranski osi obdelovalnega nivoja
- Sredina 1. os Q326 (inkrementalno): Razmak med prvo in drugo merilno točko v glavni osi obdelovalnega nivoja
- 3 merilna točka 1. os Q296 (absolutno): Koordinata tretje tipalne točke v glavni osi obdelovalnega nivoja
- 3 merilna točka 2. os Q297 (absolutno): Koordinata tretje tipalne točke v stranski osi obdelovalnega nivoja
- Sredina 2. os Q327 (inkrementalno): Razmak med tretjo in četrto merilno točko v glavni osi obdelovalnega nivoja
- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Premik na varno višino Q301: Določanje, kako naj se tipalni sistem premika med merilnimi točkami:
 0: Premik med merilnimi točkami na merilno višino
 1: Premik med merilnimi točkami na varno višino
- Izvedba osnovnega vrtenja Q304: Določitev, ali naj TNC poševni položaj obdelovalnega kosa kompenzira z osnovnim vrtenjem:
 - 0: Osnovno vrtenje se ne izvede
 - 1: Osnovno vrtenje se izvede

- Številka ničelne točke v tabeli Q305: Navedite številko v tabeli ničelnih točk v preset tabeli, v kateri naj TNC shrani koordinate središča vogala. Pri navedbi Q305=0, TNC postavi prikaz avtomatsko tako, da se nova navezna točka nahaja v vogalu
- Nova navezna točka glavne osi Q331 (absolutno): Koordinata v glavni osi, na kateri naj TNC postavi ugotovljeni vogal. Osnovna nastavitev = 0
- Nova navezna točka stranske osi Q332 (absolutno): Koordinata v stranski osi, na kateri naj TNC postavi ugotovljeni vogal. Osnovna nastavitev = 0
- Prenos merilne vrednosti (0,1) Q303: Določite, ali naj se ugotovljena navezna točka shrani v tabelo ničelnih točk ali v preset tabelo:
 -1: Ne uporabljajte! TNC vnese vrednost, če naj se naložijo stari programi (glej "Shranjevanje obračunane navezne točke" na strani 61)
 0: Zapisovanje ugotovljene navezne točke v aktivno tabelo ničelnih točk. Navezni sistem je aktivni koordinatni sistem obdelovalnega kosa
 1: Ugotovljeno navezno točko naj se zapiše v preset tabelo. Navezni sistem je koordinatni sistem stroja (REF sistem)
- Tipanje v TS osi Q381: Določanje, ali naj TNC tudi navezno točko postavi v os tipalnega sistema:
 0: Navezni sistem se ne postavi v os tipalnega sistema

1: Navezni sistem se postavi v os tipalnega sistema

- Tipanje TS osi: Koor. 1. osi Q382 (absolutno): Koordinata tipalne točke v glavni osi obdelovalnega nivoja, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Tipanje TS osi: Koor. 2. osi Q383 (absolutno): Koordinata tipalne točke v stranski osi obdelovalnega nivoja, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Tipanje TS osi: Koor. 3. osi Q384 (absolutno): Koordinata tipalne točke v osi tipalnega sistema, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Nova navezna točka TS osi Q333 (absolutno): Koordinata v osi tipalnega sistema, na katero naj TNC postavi navezno točko. Osnovna nastavitev = 0

5	TCH PROBE 414 NAVEZ. VOGAL ZUNAJ
	Q263=+37 ;1. TOČKA 1. OS
	Q264=+7 ;1. TOČKA 2. OS
	Q326=50 ;SREDINA 1. OS
	Q296=+95 ;3. TOČKA 1. OS
	Q297=+25 ;3. TOČKA 2. OS
	Q327=45 ;RAZMAK 2. OS
	Q261=-5 ;MERILNA VIŠINA
	Q320=0 ;VARNOSTNI RAZMAK
	Q260=+20 ;VARNA VIŠINA
	Q301=0 ;PREMIK NA VAR. VIŠINO
	Q304=0 ;OSNOVNO VRTENJE
	Q305=7 ;ŠT. V TABELI
	Q331=+0 ;NAVEZNA TOČKA
	Q332=+0 ;NAVEZNA TOČKA
	Q303=+1 ;PRENOS MERILNE VREDNOSTI
	Q381=1 ;TIPANJE TS OS
	Q382=+85 ;1. KO. ZA TS OS
	Q383=+50 ;2. KO. ZA TS OS
	Q384=+0 ;3. KO. ZA TS OS
	Q332=+1 ;NAVEZNA TOČKA

3.2 Avtomatsko ugotavljanje nav<mark>ezn</mark>ih točk

NAVEZNA TOČKA VOGAL ZNOTRAJ (cikel tipalnega sistema 415, DIN/ISO: G415)

Cikel tipalnega sistema 415 ugotovi sečišče med dvema ravnima črtama in postavi to središče za navezno točko. Po izbiri lahko TNC sečišče zapiše tudi v tabelo ničelnih točk ali v preset tabelo.

- 1 TNC pozicionira tipalni sistem s hitrim pomikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k prvi točki tipanja 1 (glej sliko desno zgoraj), ki jo definirate v ciklu. TNC pri tem premakne tipalni sistem za varnostno razdaljo proti vsakokratni smeri premika
- 2 Zatem tipalni sistem zapelje na navedeno merilno višino in izvede prvi začetni postopek tipanja s pomikom tipanja naprej (MP6120 oz. MP6360). Smer tipanja izhaja iz številke kotov

TNC meri prvo ravno črto vedno v smeri stranske osi obdelovalnega nivoja.

- 3 Nato se tipalni sistem zapelje na naslednjo tipalno točko 2 in izvede drugi tipalni postopek
- 4 TNC pozicionira tipalni sistem na tipalno točko 3 in zatem na tipalno točko 4 in tam opravi tretji oz. četrti tipalni postopek
- 5 Končno TNC pozicionira tipalni sistem nazaj na varno višino in obdela ugotovljeno navezno točko odvisno od parametrov cikla Q303 in Q305 (glej "Shranjevanje obračunane navezne točke" na strani 61)
- 6 Po želji TNC zatem v osebnem tipalnem postopku ugotovi še navezno točko v osi tipalnega sistema

Pred programiranjem upoštevajte

- 415
- 1 merilna točka 1. os Q263 (absolutno): Koordinata prve tipalne točke v glavni osi obdelovalnega nivoja
- 1 merilna točka 2. os Q264 (absolutno): Koordinata prve tipalne točke v stranski osi obdelovalnega nivoja
- Sredina 1. os Q326 (inkrementalno): Razmak med prvo in drugo merilno točko v glavni osi obdelovalnega nivoja
- Sredina 2. os Q327 (inkrementalno): Razmak med tretjo in četrto merilno točko v glavni osi obdelovalnega nivoja
- Vogal Q308: Številka kota, v katerem naj TNC postavi navezno točko
- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Premik na varno višino Q301: Določanje, kako naj se tipalni sistem premika med merilnimi točkami:
 0: Premik med merilnimi točkami na merilno višino
 1: Premik med merilnimi točkami na varno višino
- Izvedba osnovnega vrtenja Q304: Določitev, ali naj TNC poševni položaj obdelovalnega kosa kompenzira z osnovnim vrtenjem:
 - 0: Osnovno vrtenje se ne izvede
 - 1: Osnovno vrtenje se izvede

- Številka ničelne točke v tabeli Q305: Navedite številko v tabeli ničelnih točk v preset tabeli, v kateri naj TNC shrani koordinate središča vogala. Pri navedbi Q305=0, TNC postavi prikaz avtomatsko tako, da se nova navezna točka nahaja v vogalu
- Nova navezna točka glavne osi Q331 (absolutno): Koordinata v glavni osi, na kateri naj TNC postavi ugotovljeni vogal. Osnovna nastavitev = 0
- Nova navezna točka stranske osi Q332 (absolutno): Koordinata v stranski osi, na kateri naj TNC postavi ugotovljeni vogal. Osnovna nastavitev = 0
- Prenos merilne vrednosti (0,1) Q303: Določite, ali naj se ugotovljena navezna točka shrani v tabelo ničelnih točk ali v preset tabelo:
 -1: Ne uporabljajte! TNC vnese vrednost, če naj se naložijo stari programi (glej "Shranjevanje obračunane navezne točke" na strani 61)
 0: Zapisovanje ugotovljene navezne točke v aktivno tabelo ničelnih točk. Navezni sistem je aktivni koordinatni sistem obdelovalnega kosa
 1: Ugotovljeno navezno točko naj se zapiše v preset tabelo. Navezni sistem je koordinatni sistem stroja (REF sistem)
- Tipanje v TS osi Q381: Določanje, ali naj TNC tudi navezno točko postavi v os tipalnega sistema:
 Navezni sistem se ne postavi v os tipalnega sistema
 - 1: Navezni sistem se postavi v os tipalnega sistema
- Tipanje TS osi: Koor. 1. osi Q382 (absolutno): Koordinata tipalne točke v glavni osi obdelovalnega nivoja, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Tipanje TS osi: Koor. 2. osi Q383 (absolutno): Koordinata tipalne točke v stranski osi obdelovalnega nivoja, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Tipanje TS osi: Koor. 3. osi Q384 (absolutno): Koordinata tipalne točke v osi tipalnega sistema, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Nova navezna točka TS osi Q333 (absolutno): Koordinata v osi tipalnega sistema, na katero naj TNC postavi navezno točko. Osnovna nastavitev = 0

5 TCH PROBE 415 NAVEZ. VOGAL ZUNAJ
Q263=+37 ;1. TOČKA 1. OS
Q264=+7 ;1. TOČKA 2. OS
Q326=50 ;SREDINA 1. OS
Q327=45 ;RAZMAK 2. OS
Q308=3 ;VOGAL
Q261=-5 ;MERILNA VIŠINA
Q320=0 ;VARNOSTNI RAZMAK
Q260=+20 ;VARNA VIŠINA
Q301=0 ;PREMIK NA VAR. VIŠINO
Q304=0 ;OSNOVNO VRTENJE
Q305=8 ;ŠT. V TABELI
Q331=+0 ;NAVEZNA TOČKA
Q332=+0 ;NAVEZNA TOČKA
Q303=+1 ;PRENOS MERILNE VREDNOSTI
Q381=1 ;TIPANJE TS OS
Q382=+85 ;1. KO. ZA TS OS
Q383=+50 ;2. KO. ZA TS OS
Q384=+0 ;3. KO. ZA TS OS
Q332=+1 ;NAVEZNA TOČKA

NASTAVITEV SREDINE KROŽNE LUKNJE (cikel tipalnega sistema 416, DIN/ISO: G416)

Cikel tipalnega sistema 416 obračuna središče krožne luknje z merjenjem treh vrtin in postavi to središče za navezno točko. Po izbiri lahko TNC središče zapiše tudi v tabelo ničelnih točk ali v preset tabelo.

- 1 TNC pozicionira tipalni sistem s hitrim premikom (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) na navedeno središčno točko prve vrtine1
- 2 Zatem se tipalni sistem premakne na navedeno merilno višino in s štirimi tipanji ugotovi središče prve vrtine
- 3 Zatem se tipalni sistem premakne nazaj na Varno višino in se pozicionira na navedeno središče druge vrtine 2
- 4 Zatem TNC premakne tipalni sistem na navedeno merilno višino in s štirimi tipanji ugotovi središče druge vrtine
- 5 Zatem se tipalni sistem premakne nazaj na Varno višino in se pozicionira na navedeno središče tretje vrtine 3
- 6 Zatem TNC premakne tipalni sistem na navedeno merilno višino in s štirimi tipanji ugotovi tretje središče vrtine
- 7 Končno TNC pozicionira tipalni sistem nazaj na varno višino in obdela ugotovljeno navezno točko odvisno od parametrov cikla Q303 in Q305 (glej "Shranjevanje obračunane navezne točke" na strani 61)
- 8 Po želji TNC zatem v osebnem tipalnem postopku ugotovi še navezno točko v osi tipalnega sistema

Pred programiranjem upoštevajte

- Sredina 1. os Q273 (absolutno): Središče krožne luknje (želena vrednost) v glavni osi obdelovalnega nivoja
- Sredina 2. os Q274 (absolutno): Središče krožne luknje (želena vrednost) v stranski osi obdelovalnega nivoja
- Želeni premer Q262: Navedite približni premer krožne luknje. Kolikor manjši je premer vrtine, toliko natančneje morate navesti potrebni premer
- Kot 1. vrtine Q291 (absolutno): Kot polarnih koordinat prvega središča vrtine v obdelovalnem nivoju
- Kot 2. vrtine Q292 (absolutno): Kot polarnih koordinat drugega središča vrtine v obdelovalnem nivoju
- Kot 3. vrtine Q293 (absolutno): Kot polarnih koordinat tretjega središča vrtine v obdelovalnem nivoju
- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Številka ničelne točke v tabeli Q305: Navedite številko v tabeli ničelnih točk / preset tabeli, v kateri naj TNC shrani koordinate središča krožne luknje. Pri navedbi Q305=0, TNC postavi prikaz avtomatsko tako, da se nova navezna točka nahaja v središču krožne luknje
- Nova navezna točka glavne osi Q331 (absolutno): Koordinata v glavni osi, na kateri naj TNC postavi ugotovljeno središče krožne luknje. Osnovna nastavitev = 0
- Nova navezna točka stranske osi Q332 (absolutno): Koordinata v stranski osi, na kateri naj TNC postavi ugotovljeno središče krožne luknje. Osnovna nastavitev = 0

 Prenos merilne vrednosti (0,1) Q303: Določite, ali naj se ugotovljena navezna točka shrani v tabelo ničelnih točk ali v preset tabelo:
 -1: Ne uporabljajte! TNC vnese vrednost, če naj se

-1: Ne uporabljajte! INC vnese vrednost, ce naj se naložijo stari programi (glej "Shranjevanje obračunane navezne točke" na strani 61)
0: Zapisovanje ugotovljene navezne točke v aktivno tabelo ničelnih točk. Navezni sistem je aktivni koordinatni sistem obdelovalnega kosa
1: Ugotovljeno navezno točko naj se zapiše v preset tabelo. Navezni sistem je koordinatni sistem stroja (REF sistem)

 Tipanje v TS osi Q381: Določanje, ali naj TNC tudi navezno točko postavi v os tipalnega sistema:
 0: Navezni sistem se ne postavi v os tipalnega sistema

1: Navezni sistem se postavi v os tipalnega sistema

- Tipanje TS osi: Koor. 1. osi Q382 (absolutno): Koordinata tipalne točke v glavni osi obdelovalnega nivoja, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Tipanje TS osi: Koor. 2. osi Q383 (absolutno): Koordinata tipalne točke v stranski osi obdelovalnega nivoja, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Tipanje TS osi: Koor. 3. osi Q384 (absolutno): Koordinata tipalne točke v osi tipalnega sistema, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Nova navezna točka TS osi Q333 (absolutno): Koordinata v osi tipalnega sistema, na katero naj TNC postavi navezno točko. Osnovna nastavitev = 0

5 TCH PROBE 416 NAVEZ. TOČ. SREDIŠČE KROŽNE LUKNJE	
Q273=+50 ;SREDINA 1. OS	
Q274=+50 ;SREDINA 2. OS	
Q262=90 ;ŽELENI PREMER	
Q291=+35 ;KOT 1. VRTINA	
Q292=+70 ;KOT 2. VRTINA	
Q293=+210 ;KOT 3. VRTINA	
Q261=-5 ;MERILNA VIŠINA	
Q260=+20 ;VARNA VIŠINA	
Q305=12 ;ŠT. V TABELI	
Q331=+0 ;NAVEZNA TOČKA	
Q332=+0 ;NAVEZNA TOČKA	
Q303=+1 ;PRENOS MERILNE VREDNOSTI	
Q381=1 ;TIPANJE TS OS	
Q382=+85 ;1. KO. ZA TS OS	
Q383=+50 ;2. KO. ZA TS OS	
Q384=+0 ;3. KO. ZA TS OS	
Q332=+1 ;NAVEZNA TOČKA	

NAVEZNA TOČKA OS TIPALNEGA SISTEMA (cikel tipalnega sistema 417, DIN/ISO: G417)

Cikel tipalnega sistema 417 meri poljubno koordinato v osi tipalnega sistema in postavi to koordinato kot navezno točko. Po izbiri lahko TNC izmerjeno koordinato zapiše tudi v tabelo ničelnih točk ali v preset tabelo.

- TNC pozicionira tipalni sistem s hitrim premikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k programirani točki tipanja
 TNC pri tem premakne tipalni sistem za varnostno razdaljo v smeri pozitivne osi tipalnega sistema
- 2 Zatem se tipalni sistem premakne v osi tipalnega sistema na navedeno koordinato tipalne točke 1 in z enostavnim tipanjem zajame dejansko pozicijo
- 3 Končno TNC pozicionira tipalni sistem nazaj na varno višino in obdela ugotovljeno navezno točko odvisno od parametrov cikla Q303 in Q305 (glej "Shranjevanje obračunane navezne točke" na strani 61)

Pred programiranjem upoštevajte

Pred definicijo cikla morate programirati priklic orodja za definicijo osi tipalnega sistema. TNC zatem v tej osi postavi navezno točko.

417

1 merilna točka 1. os Q263 (absolutno): Koordinata prve tipalne točke v glavni osi obdelovalnega nivoja

- 1 merilna točka 2. os Q264 (absolutno): Koordinata prve tipalne točke v stranski osi obdelovalnega nivoja
- 1 merilna točka 3. os Q294 (absolutno): Koordinata prve tipalne točke v osi tipalnega sistema
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)

- Številka ničelne točke v tabeli Q305: Navedite številko v tabeli ničelnih točk / v preset tabeli, v kateri naj TNC shrani koordinato. Pri navedbi Q305=0, TNC postavi prikaz avtomatsko tako, da se nova navezna točka nahaja na otipani površini
- Nova navezna točka TS osi Q333 (absolutno): Koordinata v osi tipalnega sistema, na katero naj TNC postavi navezno točko. Osnovna nastavitev = 0
- Prenos merilne vrednosti (0,1) Q303: Določite, ali naj se ugotovljena navezna točka shrani v tabelo ničelnih točk ali v preset tabelo:

 1: Ne uporabljajte! TNC vnese vrednost, če naj se naložijo stari programi (glej "Shranjevanje obračunane navezne točke" na strani 61)
 0: Zapisovanje ugotovljene navezne točke v aktivno tabelo ničelnih točk. Navezni sistem je aktivni koordinatni sistem obdelovalnega kosa
 1: Ugotovljeno navezno točko naj se zapiše v preset tabelo. Navezni sistem je koordinatni sistem stroja (REF sistem)

Beispiel: NC bloki

5	TCH PROBE 417 NAVEZ. TOČ. TS OS
	Q263=+25 ;1. TOČKA 1. OS
	Q264=+25 ;1. TOČKA 2. OS
	Q294=+25 ;1. TOČKA 3. OS
	Q320=0 ;VARNOSTNI RAZMAK
	Q260=+60 ;VARNA VIŠINA
	Q305=0 ;ŠT. V TABELI
	Q333=+0 ;NAVEZNA TOČKA
	Q303=+1 :PRENOS MERILNE VREDNOSTI

1

NAVEZNA TOČKA SREDIŠČE 4 VRTIN (cikel tipalnega sistema18, DIN/ISO: G418)

Cikel tipalnega sistema 418 obračuna sečišče povezovalnih črt med po dvema središčema vrtin in postavi to sečišče kot navezno točko. Po izbiri lahko TNC sečišče zapiše tudi v tabelo ničelnih točk ali v preset tabelo.

- TNC pozicionira tipalni sistem s hitrim pomikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) v središče prve vrtine 1
- 2 Zatem se tipalni sistem premakne na navedeno merilno višino in s štirimi tipanji ugotovi središče prve vrtine
- 3 Zatem se tipalni sistem premakne nazaj na Varno višino in se pozicionira na navedeno središče druge vrtine 2
- 4 Zatem TNC premakne tipalni sistem na navedeno merilno višino in s štirimi tipanji ugotovi središče druge vrtine
- 5 TNC ponovi postopek 3 in 4 za vrtini 3 in 4
- 6 Končno TNC pozicionira tipalni sistem nazaj na varno višino in obdela ugotovljeno navezno točko odvisno od parametrov cikla Q303 in Q305 (glej "Shranjevanje obračunane navezne točke" na strani 61). TNC obračuna navezno točko kot sečišče povezovalnih črt središča vrtin 1/3 in 2/4.
- 7 Po želji TNC zatem v osebnem tipalnem postopku ugotovi še navezno točko v osi tipalnega sistema

Pred programiranjem upoštevajte

- 418 9
- 1 središče 1. os Q268 (absolutno): Središčna točka 1. vrtine v glavni osi obdelovalnega nivoja
- 1 središče 2. os Q269 (absolutno): Središčna točka 1. vrtine v stranski osi obdelovalnega nivoja
- 2 središče 1. os Q270 (absolutno): Središčna točka 2. vrtine v glavni osi obdelovalnega nivoja
- 2 središče 2. os Q271 (absolutno): Središčna točka 2. vrtine v stranski osi obdelovalnega nivoja
- 3 središče 1. os Q316 (absolutno): Središčna točka 3. vrtine v glavni osi obdelovalnega nivoja
- 3 središče 2. os Q317 (absolutno): Središčna točka
 3. vrtine v stranski osi obdelovalnega nivoja
- 4 središče 1. os Q318 (absolutno): Središčna točka 4. vrtine v glavni osi obdelovalnega nivoja
- 4 središče 2. os Q319 (absolutno): Središčna točka
 4. vrtine v stranski osi obdelovalnega nivoja
- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)

- Številka ničelne točke v tabeli Q305: Navedite številko v tabeli ničelnih točk / preset tabeli, v kateri naj TNC shrani koordinate sečišča povezovalnih črt. Pri navedbi Q305=0, TNC postavi prikaz avtomatsko tako, da se nova navezna točka nahaja v sečišču povezovalnih črt
- Nova navezna točka glavne osi Q331 (absolutno): Koordinata v glavni osi, na katero naj TNC postavi ugotovljeno sečišče povezovalnih črt. Osnovna nastavitev = 0
- Nova navezna točka stranske osi Q332 (absolutno): Koordinata v stranski osi, na katero naj TNC postavi ugotovljeno sečišče povezovalnih črt. Osnovna nastavitev = 0
- Prenos merilne vrednosti (0,1) Q303: Določite, ali naj se ugotovljena navezna točka shrani v tabelo ničelnih točk ali v preset tabelo:

-1: Ne uporabljajte! TNC vnese vrednost, če naj se naložijo stari programi (glej "Shranjevanje obračunane navezne točke" na strani 61)
0: Zapisovanje ugotovljene navezne točke v aktivno tabelo ničelnih točk. Navezni sistem je aktivni koordinatni sistem obdelovalnega kosa
1: Ugotovljeno navezno točko naj se zapiše v preset tabelo. Navezni sistem je koordinatni sistem stroja (REF sistem)

 Tipanje v TS osi Q381: Določanje, ali naj TNC tudi navezno točko postavi v os tipalnega sistema:
 0: Navezni sistem se ne postavi v os tipalnega sistema

1: Navezni sistem se postavi v os tipalnega sistema

- Tipanje TS osi: Koor. 1. osi Q382 (absolutno): Koordinata tipalne točke v glavni osi obdelovalnega nivoja, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Tipanje TS osi: Koor. 2. osi Q383 (absolutno): Koordinata tipalne točke v stranski osi obdelovalnega nivoja, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Tipanje TS osi: Koor. 3. osi Q384 (absolutno): Koordinata tipalne točke v osi tipalnega sistema, v katero naj se postavi navezna točka v osi tipalnega sistema. Deluje samo, če je Q381 = 1
- Nova navezna točka TS osi Q333 (absolutno): Koordinata v osi tipalnega sistema, na katero naj TNC postavi navezno točko. Osnovna nastavitev = 0

Beispiel: NC bloki

5	TCH PROBE 418 NAVEZ. TOČ. 4 VRTINE
	Q268=+20 ;1. SREDINA 1. OS
	Q269=+25 ;1. SREDINA 2. OS
	Q270=+150 ;2. SREDINA 1. OS
	Q271=+25 ;2. SREDINA 2. OS
	Q316=+150 ;3. SREDINA 1. OS
	Q317=+85 ;3. SREDINA 2. OS
	Q318=+22 ;4. SREDINA 1. OS
	Q319=+80 ;4. SREDINA 2. OS
	Q261=-5 ;MERILNA VIŠINA
	Q260=+10 ;VARNA VIŠINA
	Q305=12 ;ŠT. V TABELI
	Q331=+0 ;NAVEZNA TOČKA
	Q332=+0 ;NAVEZNA TOČKA
	Q303=+1 ;PRENOS MERILNE VREDNOSTI
	Q381=1 ;TIPANJE TS OS
	Q382=+85 ;1. KO. ZA TS OS
	Q383=+50 ;2. KO. ZA TS OS
	Q384=+0 ;3. KO. ZA TS OS
	Q333=+0 ;NAVEZNA TOČKA

.

NAVEZNA TOČKA POSAMEZNA OS (cikel tipalnega sistema 419, DIN/ISO: G419)

Cikel tipalnega sistema 419 meri poljubno koordinato v poljubni osi tipalnega sistema in postavi to koordinato kot navezno točko. Po izbiri lahko TNC izmerjeno koordinato zapiše tudi v tabelo ničelnih točk ali v preset tabelo.

- TNC pozicionira tipalni sistem s hitrim premikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k programirani toöki tipanja
 TNC pri tem premakne tipalni sistem za varnostno razdaljo proti programirani smeri tipanja
- 2 Zatem se tipalni sistem premakne na navedeno merilno višino in z enostavnim tipanjem zazna dejansko pozicijo
- 3 Končno TNC pozicionira tipalni sistem nazaj na varno višino in obdela ugotovljeno navezno točko odvisno od parametrov cikla Q303 in Q305 (glej "Shranjevanje obračunane navezne točke" na strani 61)

Pred programiranjem upoštevajte

- 1 merilna točka 1. os Q263 (absolutno): Koordinata prve tipalne točke v glavni osi obdelovalnega nivoja
- 1 merilna točka 2. os Q264 (absolutno): Koordinata prve tipalne točke v stranski osi obdelovalnega nivoja
- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)

- Merilna os (1...3: 1=glavna os) Q272: Os, v kateri naj se izvede meritev:
 - 1: Glavna os = merilna os
 - 2: Stranska os = merilna os
 - **3**: Os tipalnega sistema = merilna os

Aktivna os tipalnega sistema: Q272 = 3	Pripadnosti osi Pripadajoča glavna os: Q272 = 1	Pripadajoča stranska os: Q272 = 2
Z	Х	Y
Y	Z	Х
Х	Y	Z

- Smer premika Q267: Smer, v kateri naj se tipalni sistem premakne k obdelovalnemu kosu:
 -1: Smer premika negativna
 +1:Smer premika pozitivna
 - T.Smer premika pozitivna
- Številka ničelne točke v tabeli Q305: Navedite številko v tabeli ničelnih točk / v preset tabeli, v kateri naj TNC shrani koordinato. Pri navedbi Q305=0, TNC postavi prikaz avtomatsko tako, da se nova navezna točka nahaja na otipani površini
- Nova navezna točka Q333 (absolutno): Koordinata, na kateri naj TNC postavi navezno točko. Osnovna nastavitev = 0
- Prenos merilne vrednosti (0,1) Q303: Določite, ali naj se ugotovljena navezna točka shrani v tabelo ničelnih točk ali v preset tabelo:

-1: Ne uporabljajte! Glej "Shranjevanje obračunane navezne točke", strani 61

0: Zapisovanje ugotovljene navezne točke v aktivno tabelo ničelnih točk. Navezni sistem je aktivni koordinatni sistem obdelovalnega kosa
1: Ugotovljeno navezno točko naj se zapiše v preset tabelo. Navezni sistem je koordinatni sistem stroja (REF sistem)

5 TCH PROBE 419 NAVEZ. PSAMEZNA OS
Q263=+25 ;1. TOČKA 1. OS
Q264=+25 ;1. TOČKA 2. OS
Q261=+25 ;MERILNA VIŠINA
Q320=0 ;VARNOSTNI RAZMAK
Q260=+60 ;VARNA VIŠINA
Q272=+1 ;MERILNA OS
Q267=+1 ;SMER PREMIKA
Q305=0 ;ŠT. V TABELI
Q333=+0 ;NAVEZNA TOČKA
Q303=+1 ;PRENOS MERILNE VREDNOSTI

Primer: Postavljanje navezne točke sredina krožnega segmenta in zgornji rob obdelovalnega kosa

0 BEGIN PGM CYC413 MM	
1 TOOL CALL 0 Z	Priklic orodja 0 za določitev osi tipalnega sistema

2 TCH PROBE 413 NAVEZ. TOČKA KROG ZUNAJ	
Q321=+25 ;SREDINA 1. OS	Središče kroga: X koordinata
Q322=+25 ;SREDINA 2. OS	Središče kroga: Y koordinata
Q262=30 ;POTREBNI PREMER	Premer kroga
Q325=+90 ;STARTNI KOT	Kot polarnih koordinat za 1. tipalno točko
Q247=+45 ;KOTNI KORAT	Kotni korak za obračun tipalnih točk 2 do 4
Q261=-5 ;MERILNA VIŠINA	Koordinata v osi tipalnega sistema, v kateri poteka merjenje
Q320=2 ;VARNOSTNI RAZMAK	Varnostni razmak dodatno k MP6140
Q260=+10 ;VARNA VIŠINA	Višina, na kateri se lahko os tipalnega sistema lahko premika brez kolizije
Q301=0 ;PREMIK NA VAR. VIŠINO	Med dvema merilnima točkama ne zapeljite na varno višino
Q305=0 ;ŠT. V TABELI	Postavljanje prikaza
Q331=+0 ;NAVEZNA TOČKA	Postavljanje prikaza v X na 0
Q332=+10 ;NAVEZNA TOČKA	Postavljanje prikaza v Y na 10
Q303=+0 ;PRENOS MERILNE VREDNOSTI	Brez funkcije, ker naj se prikaz postavi
Q381=1 ;TIPANJE TS OS	Navezna točka se postavi v TS os
Q382=+25 ;1. KO. ZA TS OS	X koordinata tipalna točka
Q383=+25 ;2. KO. ZA TS OS	Y koordinata tipalna točka
Q384=+25 ;3. KO. ZA TS OS	Z koordinata tipalna točka
Q333=+0 ;NAVEZNA TOČKA	Postavljanje prikaza v Z na 0
3 CALL PGM 35K47	Priklic obdelovalnega programa
4 END PGM CYC413 MM	

Primer: Postavljanje navezne točke zgornji rob obdelovalnega kosa in sredina krožne luknje

Izmerjeno središče krožne luknje naj se za poznejšo uporabo zapiše v preset tabelo.

0 BEGIN PGM CYC416 MM	
1 TOOL CALL 0 Z	Priklic orodja 0 za določitev osi tipalnega sistema
2 TCH PROBE 417 NAVEZ. TOČ. TS OS	Definicija cikla za postavitev navezne točke v osi tipalnega sistema
Q263=+7,5 ;1. TOČKA 1. OS	Tipalna točka: X koordinata
Q264=+7,5 ;1. TOČKA 2. OS	Tipalna točka: Y koordinata
Q294=+25 ;1. TOČKA 3. OS	Tipalna točka: Z koordinata
Q320=0 ;VARNOSTNI RAZMAK	Varnostni razmak dodatno k MP6140
Q260=+50 ;VARNA VIŠINA	Višina, na kateri se lahko os tipalnega sistema lahko premika brez kolizije
Q305=1 ;ŠT. V TABELI	Pisanje Z koordinate v vrstico 1
Q333=+0 ;NAVEZNA TOČKA	Postavitev osi tipalnega sistema 0
Q303=+1 ;PRENOS MERILNE VREDNOSTI	Zapisovanje obračunane navezne točke, ki se nanaša na fiksni strojni koordinatni sistem (REF sistem) v preset tabelo PRESET.PR

3 TCH PROBE 416 NAVEZ. TOČ. SREDIŠČE KROŽNE LUKNJE	
Q273=+35 ;SREDINA 1. OS	Središčna točka krožne luknje: X koordinata
Q274=+35 ;SREDINA 2. OS	Središčna točka krožne luknje: Y koordinata
Q262=50 ;POTREBNI PREMER	Premer krožne luknje
Q291=+90 ;KOT 1. VRTINA	Kot polarnih koordinat za 1. središčno točko vrtine 1
Q292=+180 ;KOT 2. VRTINA	Kot polarnih koordinat za 2. središčno točko vrtine 2
Q293=+270 ;KOT 3. VRTINA	Kot polarnih koordinat za 3. središčno točko vrtine 3
Q261=+15 ;MERILNA VIŠINA	Koordinata v osi tipalnega sistema, v kateri poteka merjenje
Q260=+10 ;VARNA VIŠINA	Višina, na kateri se lahko os tipalnega sistema lahko premika brez kolizije
Q305=1 ;ŠT. V TABELI	Zapisovanje središča krožne luknje (X in Y) v vrstico 1
Q331=+0 ;NAVEZNA TOČKA	
Q332=+0 ;NAVEZNA TOČKA	
Q303=+1 ;PRENOS MERILNE VREDNOSTI	Zapisovanje obračunane navezne točke, ki se nanaša na fiksni strojni koordinatni sistem (REF sistem) v preset tabelo PRESET.PR
Q381=0 ;TIPANJE TS OS	Navezna točka se ne postavi v TS os
Q382=+0 ;1. KO. ZA TS OS	Brez funkcije
Q383=+0 ;2. KO. ZA TS OS	Brez funkcije
Q384=+0 ;3. KO. ZA TS OS	Brez funkcije
Q333=+0 ;NAVEZNA TOČKA	Brez funkcije
4 CYCL DEF 247 POSTAVLJANJE NAVEZ. TOČKE	Aktiviranje novega preseta s ciklusom 247
Q339=1 ;ŠTEVILKA NAVEZNE TOČKE	
6 CALL PGM 35KL7	Priklic obdelovalnega programa
7 END PGM CYC416 MM	

3.3 Avtomatsko merjenje obdelovalnih kosov

Pregled

TNC daje na voljo dvanajst ciklov, s katerimi se obdelovalni kosi avtomatsko merijo:

Cikel	Softkey
0 NAVEZNI NIVO Merjenje koordinate v izbirni osi	•
1 NAVEZNI NIVO POLARNO Merjenje točke, smer tipanja preko kota	1 P A
420 MERJENJE KOTA Merjenje kota v obdelovalnem nivoju	420
421 Merjenje vrtine Merjenje položaja in premera vrtine	421
422 MERJENJE ZUNANJEGA KROGA Merjenje položaja in vrtine čepa v obliki kroga	422
423 MERJENJE PRAVOKOTNIKA ZNOTRAJ, Merjenje položaja, dolžine in širine pravokotnega žepa	423
424 MERJENJE PRAVOKOTNIKA ZUNRAJ, Merjenje položaja, dolžine in širine pravokotnega čepa	424
425 MERJENJE ŠIRINE ZNOTRAJ (2. softkey nivo) Merjenje širine utora znotraj	425
426 MERJENJE MOSTIČKA ZUNAJ (2. softkey nivo) Merjenje širine mostička zunaj	426
427 MERJENJE KOORDINATE (2. softkey nivo) merjenje poljubne koordinate v izbrani osi	427 1
430 MERJENJE KROŽNE LUKNJE (2. softkey -nivo) Merjenje položaja in premera krožne luknje	430
431 MERJENJE RAVNI (2. softkey nivo) Merjenje osnega kota A in B neke ravni	431

3.3 Avtomatsko merjenje obdeloval<mark>nih</mark> kosov

Protokoliranje merilnih rezultatov

Za vse cikle, s katerimi se obdelovalni kosi lahko avtomatsko merijo (izjeme: cikel 0 in1), sestavi TNC merilni protokol. ZNC shranjuje merilni protokol standardno kot ASCII datoteko v seznamu, iz katerega obdeluje merilni program. Alternativno lahko merilni protokol preko podatkovnega vmesnika pošljete tudi direktno na tiskalnik ali shranite v PC. V ta namen aktivirajte funkcijo (v konfiguracisjkem meniju vmesnika) na RS232:\ (glej tudi priročnik za uporabnika, MOD funkcije, nastavitev podatkovnega vmesnika").

> Vse merilne vrednosti, ki so navedeni v protokolni datoteki, se nanačajo na ničelno točko, ki je aktivna v trenutku izvedbe posameznega cikla. Dodatno se lahko koordinatni sistem v nivoju še zavrti ali obrne z 3D-ROT. V teh primerih TNC preračuna merilne rezultate v vsakič aktivni koordinatni sistem.

Uporabite HEIDENHAIN programsko opremo za prenos podatkov TNCremo, če ćelite merilni protokol predati preko podatkovnega vmesnika.

Primer: protokolna datoteka za tipalni cikel 423:

白

****** merilni protokol tipalni cikel 421 merjenje vrtine *******

Datum: 29-11-1997 Ura: 6:55:04 Merilni program: TNC:\GEH35712\CHECK1.H

------Želene vrednosti:Sredina glavne osi: 50.0000 Sredina stranske osi: 65.0000 Premer: 12.0000

Sredina glavne osi: 50.0810 Sredina stranske osi: 64.9530 Premer: 12.0259

------ Odstopanja:Sredina glavne osi: 0.0810 Sredina stranske osi: -0.0470 Premer: 0.0259

rezultati: Izmerjena višina : -5.0000

Merilni rezultati v Q parametrih

ſ

Merilne rezultate vsakokratnega tipalnega cikla TNC odloži v globalno dejavnih Q parametrih Q150 do Q160. Odstopanja od želene vrednosti so shranjena v parametrih Q161 do Q166. Upoštevajte tabelo parametrov rezultatov, ki je navedena pri vsakem opisu cikla.

TNC pri definiciji cikla dodatno prikazuje v pomožni sliki posamičnega cikla parametre rezultatov (glej sliko zgoraj desno). Pri tem spada parameter s svetlo podlago k vsakkratnemu parametru navdbe.

Status merjenja

Pri nekaterih ciklih lahko preko globalno dejavnih Q parametrov Q180 do Q182 odčitate status merjenja:

Status merjenja	Vrednost parametra
Merilne vrednosti ležijo znotraj tolerance	Q180 = 1
Potrebna dodatna obdelava	Q181 = 1
Škart	Q182 = 1

TNC postavi označbo za naknadno obdelavo oz. škart, ko ena od merilnih vrednosti leži izven tolerance. Da ugotovite, kateri merilni rezultat leži izven tolerance, dodatno upoštevajte merilni protokol, ali pa preverite vsakokratne merilne rezultate (Q150 do Q160) glede njihovih mejnih vrednosti.

TNC postavi statusno označbo tudi tedaj, če ne navedete nobenih tolerančnih vrednosti ali minimalnih/maksimalnih izmer.

Nadzor tolerance

Pri večini ciklov za kontrolo obdelovalnega kosa lahko preko TNC izvedete nadzor tolerance. V ta namen morate pri definiciji cikla definiratio potrebne mejne vrednosti. Če ne želite izvesti nobenega nadzora tolerance, vpišite za te parametre 0 (= vnaprej nastavljena vrednost)

Nadzor orodja

Pri nekaterih ciklih za kontrolo obdelovalnega kosa lahko preko TNC izvedete nadzor orodja. TNC nato nadzoruje, ali

- mora biti zaradi odstopanja od potrebne vrednosti (vrednosti v Q16x) korigirati orodni radij
- so odstopanja od potrebne vrednosti (vrednosti v Q16x) višja od tolerance loma orodja

Korigiranje orodja

Funkcija deluje samo

- pri aktivni orodni tabeli
- če vključite nadzor orodja v ciklu (Q330 ni enako 0)

TNC korigira orodni radij v stolpcu DR orodne tabele načeloma vedno, tudi če izmerjeno odstopanje leži znotraj vnaprej določene tolerance. V vašem NC programu lahko preverite, ali morate opraviti dodatno obdelavo, preko parametra Q181: Potrebna dodatna obdelava.

Za cikel 427 velja poleg tega:

- Če je kot merilna os definirana neka os aktivnega obdelovalnega nivoja (Q272 = 1 ali 2), izvede TNC korekturo orodnega radija, kot je opisano zgoraj. Smer korekture TNC ugotovi na osnovi definirane smeri premika (Q267)
- Če je kot merilna os izbrana os tipalnega sistema (Q272 = 3), izvede TNC korekturo dolžine orodja

Kontrola loma orodja

Funkcija deluje samo

- pri aktivni orodni tabeli
- če vključite nadzor orodja v ciklu (Q330 ni enako 0)
- če je za navedeno številko orodja v tabeli tolerance loma RBREAK navedena višje kot 0 (glej tudi Priročnik za uporabnika, poglavje 5.2 "Podatki o orodju")

TNC odda javljanje napake in zaustavi potek programa, če je izmerjeno odstopanje višje kot toleranca loma orodja. Istočasno blokira orodje v orodni tabeli (stolpec TL = L).

Navezni sistem za merilne rezultate

TNC odda vse merilne rezultate v parametre rezultatov in v datoteko protokola v aktivnem – torej event. v premaknjenem ali/in obrnjenem – koordinatnem sistemu.

NAVEZNI NIVO (cikel tipalnega sistema 0, DIN/ ISO: G55)

- Tipalni sistem se premakne v 3D-gibanju s hitrim premikom (vrednost iz MP6150 oz. MP6361) v predpozicijo 1, ki je definirana v ciklu
- 2 Zatem izvede tipalni sistem tipalni postopek s premikom tipanja naprej (MP6120 oz. MP6360). Smer tipanja se mora določiti v ciklu
- 3 Potem, ko je TNC obdelal pozicijo, se tipalni sistem premakne nazaj na startno točko tipalnega postopka in shrani izmerjene koordinate v Q parametru. TNC dodatno shrani koordinate pozicije, na kateri se tipalni sistem nahaja v trenutku stikalnega signala, v parametre Q115 do Q119. Za vrednosti v teh parametrih TNC ne upošteva dolžine in radija tipalne igle

Pred programiranjem upoštevajte Tipalni sistem pozicionirajte vnaprej tako, da se prepreči kolizija pri premiku na programirano prvo pozicijo.

- Št. parametra za rezultat: Navedite številko Q parametra, ki mu pripada vrednost koordinate
- Tipalna os / tipalna smer: Navedite tipalno os s tipko izbira osi ali preko ASCII tipkovnice s predznakom za smer tipanja. Potrdite s tipko ENT
- Želena vrednost pozicije: Preko tipk za izbiro osi ali preko ASCII tipkovnice navedite vse koordinate za vnaprejšnje pozicioniranje tipalnega sistema
- Zaključek navedbe: Pritisnite tipko ENT

Beispiel: NC bloki

67 TCH PROBE 0.0 NAVEZNI NIVO Q5 X-68 TCH PROBE 0.1 X+5 Y+0 Z-5

NAVEZNI NIVO Polarno (cikel tipalnega sistema 1)

Cikel tipalnega sistema 1 ugotovi v neki poljubni smeri tipanja poljubno pozicijo na obdelovalnem kosu.

- Tipalni sistem se premakne v 3D-gibanju s hitrim premikom (vrednost iz MP6150 oz. MP6361) v predpozicijo 1, ki je definirana v ciklu
- 2 Zatem izvede tipalni sistem tipalni postopek s premikom tipanja naprej (MP6120 oz. MP6360). Pri tipalnem postopku se TNC istočasno premika v 2 oseh (odvisno od kota tipanja). Tipalna smer se mora določiti preko polarnega kota v ciklu
- 3 Potem, ko TNC ugotovi pozicijo, se tipalni sistem vrne nazaj na startno točko tipalnega postopka. TNC shrani koordinate pozicije, na kateri se tipalni sistem nahaja v trenutku stikalnega signala, v parametre Q115 do Q119.

PA

Pred programiranjem upoštevajte

Tipalni sistem pozicionirajte vnaprej tako, da se prepreči kolizija pri premiku na programirano prvo pozicijo.

- Tipalna os: Navedite tipalno os s tipko izbira osi ali preko ASCII tipkovnice. Potrdite s tipko ENT
- Tipalni kot: Kot zadeva tipalno os, v kateri naj se tipalni sistem premika
- Želena vrednost pozicije: Preko tipk za izbiro osi ali preko ASCII tipkovnice navedite vse koordinate za vnaprejšnje pozicioniranje tipalnega sistema
- Zaključek navedbe: Pritisnite tipko ENT

67 TCH PROBE 1.0 NAVEZNI NIVO POLARNO
68 TCH PROBE 1,1 X KOT: +30
69 TCH PROBE 1,2 X+5 Y+0 Z-5

420 ¶

MERJENJE KOTA (cikel tipalnega sistema 420, DIN/ISO: G420)

Cikel tipalnega sistema 420 ugotovi kot med poljubno ravno črto in glavno osjo obdelovalnega nivoja.

- TNC pozicionira tipalni sistem s hitrim premikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k programirani točki tipanja
 TNC pri tem premakne tipalni sistem za varnostno razdaljo proti določeni smeri premika
- 2 Zatem tipalni sistem zapelje na navedeno merilno višino in izvede prvi začetni postopek tipanja s pomikom tipanja naprej (MP6120 oz. MP6360)
- 3 Zatem se tipalni sistem zapelje na naslednjo tipalno točko 2 in izvede drugi tipalni postopek
- 4 TNC poziconira tipalni sistem nazaj na varno višino in shrani ugotovljeni kot v naslednjem Q parametru:

Številk	a parametra	Pomen
Q150		Izmerjeni kot glede na glavno os obdelovalnega nivoja
	Pred programi	ranjem upoštevajte

- 1 merilna točka 1. os Q263 (absolutno): Koordinata prve tipalne točke v glavni osi obdelovalnega nivoja
- 1 merilna točka 2. os Q264 (absolutno): Koordinata prve tipalne točke v stranski osi obdelovalnega nivoja
- 2 merilna točka 1. os Q265 (absolutno): Koordinata druge tipalne točke v glavni osi obdelovalnega nivoja
- 2 merilna točka 2. os Q266 (absolutno): Koordinata druge tipalne točke v stranski osi obdelovalnega nivoja
- Merilna os Q272: Os, v kateri naj se izvede meritev:
 - 1:Glavna os = merilna os
 - 2: Stranska os = merilna os
 - 3: Os tipalnega sistema = merilna os

Pri osi tipalnega sistema = upoštevajte merilno os

Q263 in Q265 izberite enako, če naj se kot meri v smeri osi A; Q263 in Q265 izberite neenako, če naj se kot meri v smeri osi B.

- Smer premika 1 Q267: Smer, v kateri naj se tipalni sistem premakne k obdelovalnemu kosu:
 -1: Smer premika negativna
 +1:Smer premika pozitivna
- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Premik na varno višino Q301: Določanje, kako naj se tipalni sistem premika med merilnimi točkami:
 0: Premik med merilnimi točkami na merilno višino
- 1: Premik med merilnimi točkami na varno višino
- Merilni protokol Q281: Določanje, ali naj TNC sestavi merilni protokol:
 - 0: Merilni protokol se ne sestavi

1: Merilni protokol naj se sestavi: TNC shrani datoteko protokola TCHPR420.TXT standardno v seznamu, v katerem se shrani tudi merilni program

Beispiel: NC bloki

5 TCH PROBE 420 MERJENJE KOTA:	
Q263=+10 ;1. TOČKA 1. OS	
Q264=+10 ;1. TOČKA 2. OS	
Q265=+15 ;2. TOČKA 1. OS	
Q266=+95 ;2. TOČKA 2. OS	
Q272=1 ;MERILNA OS	
Q267=-1;SMER PREMIKA	
Q261=-5 ;MERILNA VIŠINA	
Q320=0 ;VARNOSTNI RAZMAK	
Q260=+10 ;VARNA VIŠINA	
Q301=1 ;PREMIK NA VAR. VIŠINO	
Q281=1 :MERILNI PROTOKOL	

(

MERJENJE VRTINE (cikel tipalnega sistema 421, DIN/ISO: G421)

Cikel tipalnega sistema 421 ugotovi središčno točko in premer vrtine (krožni žep). Če v ciklu definirate ustrezne tolerančne vrednosti, TNC izvede primerjavo želenih in dejanskih vrednosti in shrani odstopanja v sistemskih parametrih.

- 1 TNC pozicionira tipalni sistem s hitrim premikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k točki tipanja 1. TNC izračuna tipalne točke iz navedb v ciklusu in varnostnim razmakom iz MP6140
- 2 Zatem tipalni sistem zapelje na navedeno merilno višino in izvede prvi začetni postopek tipanja s pomikom tipanja naprej (MP6120 oz. MP6360). TNC določa smer tipanja avtomatsko, odvisno od programiranega startnega kota
- 3 Zatem se tipalni sistem cirkularno premakne ali na merilno višino ali na varno višino, ali pa na naslednjo tipalno točko 2 in tam izvede drugi tipalni postopek
- 4 TNC pozicionira tipalni sistem na tipalno točko 3 in zatem na tipalno točko 4 in tam opravi tretji oz. četrti tipalni postopek
- 5 Zatem TNC pozicionira tipalni sistem nazaj na varno višino ter shrani dejanske vrednosti in odstopanja v naslednjih Q parametrih:

Številka parametra	Pomen
Q151	Dejanska vrednost sredina glavne osi
Q152	Dejanska vrednost sredina stranske osi
Q153	Dejanska vrednost premera
Q161	Odstopanje sredina glavne osi
Q162	Odstopanje sredina stranske osi
Q163	Odstopanje premer

Pred programiranjem upoštevajte

- Sredina 1. os Q273 (absolutno): Središče prve vrtine v glavni osi obdelovalnega nivoja
- Sredina 2. os Q274 (absolutno): Središče vrtine v stranski osi obdelovalnega nivoja
- Želeni premer Q262: navedite premer vrtine
- Startni kot Q325 (absolutno): Kot med glavno osjo obdelovalnega nivoja in prvo tipalno točko
- Kotni korak Q247 (inkrementalno): Kot med dvema merilnima točkama, predznak kotnega koraka določi smer obdelave (- = smer urinega kazalca). Če želite meriti krožni lok, potem programirajte kotni korak na manj kot 90°

Čim manjši kotni korak programirate, tem manj natančno TNC izračuna izmere vrtine. Najnižja vrednost navedbe: 5°.

- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Premik na varno višino Q301: Določanje, kako naj se tipalni sistem premika med merilnimi točkami:
 0: Premik med merilnimi točkami na merilno višino
 1: Premik med merilnimi točkami na varno višino
- Največja dimenzija vrtine Q275: Maksimalni dopustni premer vrtine (krožni žep)
- Najmanjša dimenzija vrtine Q276: Najnižji dopustni premer vrtine (krožni žep)
- Tolerančna vrednost sredina 1. os Q279: Dovoljeno odstopanje položaja v glavni osi obdelovalnega nivoja
- Tolerančna vrednost sredina 2. os Q280: Dovoljeno odstopanje položaja v stranski osi obdelovalnega nivoja

- Merilni protokol Q281: Določanje, ali naj TNC sestavi merilni protokol:
 - 0: Merilni protokol se ne sestavi

1: Merilni protokol naj se sestavi: TNC shrani datoteko protokola TCHPR421.TXT standardno v seznamu, v katerem se shrani tudi merilni program

Stop programa pri napaki v toleranci Q309: Določanje, ali naj TNC pri prekoračitvi tolerančnih vrednosti prekine tek programa in odda sporočilo o napaki:

 ${\bf 0}$: Tek programa naj se ne prekine, sporočilo o napaki naj se ne odda

1: Tek programa naj se prekine, odda naj se sporočilo o napaki

 Orodna številka za nadzor Q330: Določanje, ali naj TNC izvede nadzor orodja (glej "Nadzor orodja" na strani 97)

0: Nadzor ni aktiven

>0: Orodna številka v orodni tabeli TOOL.T

Beispiel: NC bloki

5 TCH PROBE 421 MERJENJE VRTINE
Q273=+50 ;SREDINA 1. OS
Q274=+50 ;SREDINA 2. OS
Q262=75 ;ŽELENI PREMER
Q325=+0 ;STARTNI KOT
Q247=+60 ;KOTNI KORAK
Q261=-5 ;MERILNA VIŠINA
Q320=0 ;VARNOSTNI RAZMAK
Q260=+20 ;VARNA VIŠINA
Q301=1 ;PREMIK NA VAR. VIŠINO
Q275=75,12;NAJVEČJA DIMENZIJA
Q276=74,95;NAJNIŽJA DIMENZIJA
Q279=0,1 ;TOLERANCA 1. SREDINA
Q280=0,1 ;TOLERANCA 2. SREDINA
Q281=1 ;MERILNI PROTOKOL
Q309=0 ;STOP PROGR. PRI NAPAKI
Q330=0 ;ORODNA ŠTEVILKA

1

MERITEV KROGA ZUNAJ ZUNAJ (cikel tipalnega sistema 422, DIN/ISO: G422)

Cikel tipalnega sistema 422 ugotovi središčno točko in premer krožnega čepa. Če v ciklu definirate ustrezne tolerančne vrednosti, TNC izvede primerjavo želenih in dejanskih vrednosti in shrani odstopanja v sistemskih parametrih.

- 1 TNC pozicionira tipalni sistem s hitrim premikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k točki tipanja 1. TNC izračuna tipalne točke iz navedb v ciklusu in varnostnim razmakom iz MP6140
- 2 Zatem tipalni sistem zapelje na navedeno merilno višino in izvede prvi začetni postopek tipanja s pomikom tipanja naprej (MP6120 oz. MP6360). TNC določa smer tipanja avtomatsko, odvisno od programiranega startnega kota
- 3 Zatem se tipalni sistem cirkularno premakne ali na merilno višino ali na varno višino, ali pa na naslednjo tipalno točko 2 in tam izvede drugi tipalni postopek
- 4 TNC pozicionira tipalni sistem na tipalno točko 3 in zatem na tipalno točko 4 in tam opravi tretji oz. četrti tipalni postopek
- 5 Zatem TNC pozicionira tipalni sistem nazaj na varno višino ter shrani dejanske vrednosti in odstopanja v naslednjih Q parametrih:

Številka parametra	Pomen
Q151	Dejanska vrednost sredina glavne osi
Q152	Dejanska vrednost sredina stranske osi
Q153	Dejanska vrednost premera
Q161	Odstopanje sredina glavne osi
Q162	Odstopanje sredina stranske osi
Q163	Odstopanje premer

Pred programiranjem upoštevajte

422

- Sredina 1. os Q273 (absolutno): Središče čepa v glavni osi obdelovalnega nivoja
- Sredina 2. os Q274 (absolutno): Središče čepa v stranski osi obdelovalnega nivoja
- Želeni premer Q262: Navedba premera čepa
- Startni kot Q325 (absolutno): Kot med glavno osjo obdelovalnega nivoja in prvo tipalno točko
- Kotni korak Q247 (inkrementalno): Kot med dvema merilnima točkama, predznak kotnega koraka določi smer obdelave (- = smer urinega kazalca). Če želite meriti krožni lok, potem programirajte kotni korak na manj kot 90°

Čim manjši kotni korak programirate, tem manj natančno TNC izračuna izmere čepa. Najnižja vrednost navedbe: 5°.

- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Premik na varno višino Q301: Določanje, kako naj se tipalni sistem premika med merilnimi točkami:
 0: Premik med merilnimi točkami na merilno višino
 1: Premik med merilnimi točkami na varno višino
- Največja dimenzija čepa Q277: Nnajvečji dopustni premer čepa
- Najmanjša dimenzija čepa Q278: Najmanjši dopustni premer čepa
- Tolerančna vrednost sredina 1. os Q279: Dovoljeno odstopanje položaja v glavni osi obdelovalnega nivoja
- Tolerančna vrednost sredina 2. os Q280: Dovoljeno odstopanje položaja v stranski osi obdelovalnega nivoja

- Merilni protokol Q281: Določanje, ali naj TNC sestavi merilni protokol:
 - 0: Merilni protokol se ne sestavi

1: Merilni protokol naj se sestavi: TNC shrani datoteko protokola TCHPR422.TXT standardno v seznamu, v katerem se shrani tudi merilni program

Stop programa pri napaki v toleranci Q309: Določanje, ali naj TNC pri prekoračitvi tolerančnih vrednosti prekine tek programa in odda sporočilo o napaki:

0: Tek programa naj se ne prekine, sporočilo o napaki naj se ne odda

1: Tek programa naj se prekine, odda naj se sporočilo o napaki

Orodna številka za nadzor Q330: Določanje, ali naj TNC izvede nadzor orodja (glej "Nadzor orodja" na strani 97):

0: Nadzor ni aktiven

>0: Orodna številka v orodni tabeli TOOL.T

MERJENJE PRAVOKOTNIKA ZNOTRAJ (cikel tipalnega sistema 423, DIN/ISO: G423)

Cikel tipalnega sistema 423 ugotovi središče in dolćino ter širino pravokotnega žepa. Če v ciklu definirate ustrezne tolerančne vrednosti, TNC izvede primerjavo želenih in dejanskih vrednosti in shrani odstopanja v sistemskih parametrih.

- 1 TNC pozicionira tipalni sistem s hitrim premikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k točki tipanja 1. TNC izračuna tipalne točke iz navedb v ciklusu in varnostnim razmakom iz MP6140
- 2 Zatem tipalni sistem zapelje na navedeno merilno višino in izvede prvi začetni postopek tipanja s pomikom tipanja naprej (MP6120 oz. MP6360)
- 3 Zatem se tipalni sistem ali osno premakne na merilno višino ali linearno na varno višino, ali pa na naslednjo tipalno točko 2 in tam izvede drugi tipalni postopek
- 4 TNC pozicionira tipalni sistem na tipalno točko 3 in zatem na tipalno točko 4 in tam opravi tretji oz. četrti tipalni postopek
- 5 Zatem TNC pozicionira tipalni sistem nazaj na varno višino ter shrani dejanske vrednosti in odstopanja v naslednjih Q parametrih:

Številka parametra	Pomen
Q151	Dejanska vrednost sredina glavne osi
Q152	Dejanska vrednost sredina stranske osi
Q154	Dejanska vrednost stranske dolžine – glavna os
Q155	Dejanska vrednost stranske dolžine – stranska os
Q161	Odstopanje sredina glavne osi
Q162	Odstopanje sredina stranske osi
Q164	Odstopanje stranske dolžine – glavna os
Q165	Odstopanje stranske dolžine – stranska os

Pred programiranjem upoštevajte

Pred definicijo cikla morate programirati priklic orodja za definicijo osi tipalnega sistema.

Če izmere žepa in varnostni razmak ne dovoljujejo predpozicioniranja v bližini tipalnih točk, TNC tipa vedno izhajajoč od sredine žepa. Med štirimi merilnimi točkami se tipalni sistem v tem primeru ne premakne na varno višino.

- Sredina 1. os Q273 (absolutno): Središče žepa v glavni osi obdelovalnega nivoja
- Sredina 2. os Q274 (absolutno): Središče žepa v stranski osi obdelovalnega nivoja
- 1. stranska dolžina Q282: Dolžina žepa, paralelno k glavni osi obdelovalnega nivoja
- 2. stranska dolžina Q283: Dolžina žepa, paralelno k stranski osi obdelovalnega nivoja
- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Premik na varno višino Q301: Določanje, kako naj se tipalni sistem premika med merilnimi točkami:
 0: Premik med merilnimi točkami na merilno višino
 1: Premik med merilnimi točkami na varno višino
- Maksimalna izmera 1. stranske dolžine Q284: Največja dopustna dolžina žepa
- Najnižja izmera 1. stranske dolžine Q285: Najmanjša dopustna dolžina žepa
- Maksimalna izmera 2. stranske dolžine Q286: Največja dopustna širina žepa
- Najnižja izmera 2. stranske dolžine Q287: Najmanjša dopustna širina žepa
- Tolerančna vrednost sredina 1. os Q279: Dovoljeno odstopanje položaja v glavni osi obdelovalnega nivoja
- Tolerančna vrednost sredina 2. os Q280: Dovoljeno odstopanje položaja v stranski osi obdelovalnega nivoja

- Merilni protokol Q281: Določanje, ali naj TNC sestavi merilni protokol:
 - 0: Merilni protokol se ne sestavi

1: Merilni protokol naj se sestavi: TNC shrani datoteko protokola TCHPR423.TXT standardno v seznamu, v katerem se shrani tudi merilni program

Stop programa pri napaki v toleranci Q309: Določanje, ali naj TNC pri prekoračitvi tolerančnih vrednosti prekine tek programa in odda sporočilo o napaki:

0: Tek programa naj se ne prekine, sporočilo o napaki naj se ne odda

1: Tek programa naj se prekine, odda naj se sporočilo o napaki

 Orodna številka za nadzor Q330: Določanje, ali naj TNC izvede nadzor orodja (glej "Nadzor orodja" na strani 97)

0: Nadzor ni aktiven

>0: Orodna številka v orodni tabeli TOOL.T

Beispiel: NC bloki

1

MERJENJE PRAVOKOTNIK ZUNAJ (cikel tipalnega sistema 424, DIN/ISO: G424)

Cikel tipalnega sistema 424 ugotovi središče in dolžino ter širino pravokotnega čepa. Če v ciklu definirate ustrezne tolerančne vrednosti, TNC izvede primerjavo želenih in dejanskih vrednosti in shrani odstopanja v sistemskih parametrih.

- 1 TNC pozicionira tipalni sistem s hitrim premikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k točki tipanja 1. TNC izračuna tipalne točke iz navedb v ciklusu in varnostnim razmakom iz MP6140
- 2 Zatem tipalni sistem zapelje na navedeno merilno višino in izvede prvi začetni postopek tipanja s pomikom tipanja naprej (MP6120 oz. MP6360)
- 3 Zatem se tipalni sistem ali osno premakne na merilno višino ali linearno na varno višino, ali pa na naslednjo tipalno točko 2 in tam izvede drugi tipalni postopek
- 4 TNC pozicionira tipalni sistem na tipalno točko 3 in zatem na tipalno točko 4 in tam opravi tretji oz. četrti tipalni postopek
- 5 Zatem TNC pozicionira tipalni sistem nazaj na varno višino ter shrani dejanske vrednosti in odstopanja v naslednjih Q parametrih:

Številka parametra	Pomen
Q151	Dejanska vrednost sredina glavne osi
Q152	Dejanska vrednost sredina stranske osi
Q154	Dejanska vrednost stranske dolžine – glavna os
Q155	Dejanska vrednost stranske dolžine – stranska os
Q161	Odstopanje sredina glavne osi
Q162	Odstopanje sredina stranske osi
Q164	Odstopanje stranske dolžine – glavna os
Q165	Odstopanje stranske dolžine – stranska os

Pred programiranjem upoštevajte

Pred definicijo cikla morate programirati priklic orodja za definicijo osi tipalnega sistema.

- 424 9
- Sredina 1. os Q273 (absolutno): Središče čepa v glavni osi obdelovalnega nivoja
- Sredina 2. os Q274 (absolutno): Središče čepa v stranski osi obdelovalnega nivoja
- 1. stranska dolžina Q282: Dolžina čepa, paralelno k glavni osi obdelovalnega nivoja
- 2. stranska dolžina Q283: Dolžina čepa, paralelno k stranski osi obdelovalnega nivoja
- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Premik na varno višino Q301: Določanje, kako naj se tipalni sistem premika med merilnimi točkami:
 0: Premik med merilnimi točkami na merilno višino
 1: Premik med merilnimi točkami na varno višino
- Maksimalna izmera 1. stranske dolžine Q284: Največja dopustna dolžina čepa
- Najnižja izmera 1. stranske dolžine Q285: Najmanjša dopustna dolžina čepa
- Maksimalna izmera 2. stranske dolžine Q286: Največja dopustna širina čepa
- Najnižja izmera 2. stranske dolžine Q287: Najmanjša dopustna širina čepa
- Tolerančna vrednost sredina 1. os Q279: Dovoljeno odstopanje položaja v glavni osi obdelovalnega nivoja
- Tolerančna vrednost sredina 2. os Q280: Dovoljeno odstopanje položaja v stranski osi obdelovalnega nivoja

Merilni protokol Q281: Določanje, ali naj TNC sestavi merilni protokol:

0: Merilni protokol se ne sestavi

1: Merilni protokol naj se sestavi: TNC shrani datoteko protokola TCHPR424.TXT standardno v seznamu, v katerem se shrani tudi merilni program

Stop programa pri napaki v toleranci Q309: Določanje, ali naj TNC pri prekoračitvi tolerančnih vrednosti prekine tek programa in odda sporočilo o napaki:

0: Tek programa naj se ne prekine, sporočilo o napaki naj se ne odda

1: Tek programa naj se prekine, odda naj se sporočilo o napaki

Orodna številka za nadzor Q330: Določanje, ali naj TNC izvede nadzor orodja (glej "Nadzor orodja" na strani 97):

0: Nadzor ni aktiven

>0: Orodna številka v orodni tabeli TOOL.T

5 TCH PROBE 424 MERJENJE PRAVOKOTNIK ZUNAN.
Q273=+50 ;SREDINA 1. OS
Q274=+50 ;SREDINA 2. OS
Q282=75 ;1. STRANSKA DOLŽINA
Q283=35 ;2. STRANSKA DOLŽINA
Q261=-5 ;MERILNA VIŠINA
Q320=0 ;VARNOSTNI RAZMAK
Q260=+20 ;VARNA VIŠINA
Q301=0 ;PREMIK NA VAR. VIŠINO
Q284=75,1 ;NAJVEČ. DIMENZ. 1. STRAN.
Q285=74,9 ;NAJMANJ. DIMENZ. 1. STRAN.
Q286=35 ;NAJVEČ. DIMENZ. 2. STRAN.
Q287=34,95;NAJMANJ. DIMENZ. 2. STRAN.
Q279=0,1 ;TOLERANCA 1. SREDINA
Q280=0,1 ;TOLERANCA 2. SREDINA
Q281=1 ;MERILNI PROTOKOL
Q281=1 ;MERILNI PROTOKOL Q309=0 ;STOP PROGR. PRI NAPAKI

MERJENJE ŠIRINE ZNOTRAJ (cikel tipalnega sistema 425, DIN/ISO: G425)

Cikel tipalnega sistema 425 ugotovi položaj in širino utora (žepa). Če v ciklu definirate ustrezne tolerančne vrednosti, TNC izvede primerjavo želenih in dejanskih vrednosti in shrani odstopanje v sistemskem parametru.

- 1 TNC pozicionira tipalni sistem s hitrim premikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k točki tipanja 1. TNC izračuna tipalne točke iz navedb v ciklusu in varnostnim razmakom iz MP6140
- 2 Zatem tipalni sistem zapelje na navedeno merilno višino in izvede prvi začetni postopek tipanja s pomikom tipanja naprej (MP6120 oz. MP6360). 1. Tipanje vedno v pozitivni smeri programirane osi
- 3 Če za drugo meritev navedete zamik, potem TNC tipalni sistem osno paralelno pomakne na naslednjo tipalno točko 2 in izvede drugi tipalni postopek. Če ne navedete zamika, TNC izmeri širino direktno v nasprotni smeri
- 4 Zatem TNC pozicionira tipalni sistem nazaj na varno višino ter shrani dejanske vrednosti in odstopanje v naslednjih Q parametrih:

Številka parametra	Pomen
Q156	Dejanska vrednost izmerjene dolžine
Q157	Dejanska vrednost dolžine srednje osi
Q166	Odstopanje izmerjene dolžine

Pred programiranjem upoštevajte

Pred definicijo cikla morate programirati priklic orodja za definicijo osi tipalnega sistema.

- Startna točka 1. os Q328 (absolutno): Središče tipalnega postopka v glavni osi obdelovalnega nivoja
- Startna točka 2. os Q329 (absolutno): Središče tipalnega postopka v stranski osi obdelovalnega nivoja
- Zamik za 2. merjenje Q310 (inkrementalno): Vrednost, za katero naj se sistem pred drugo meritvijo premakne. Če navedete 0, TNC ne premakne tipalnega sistema
- Merilna os Q272: Os obdelovalnega nivoja, v katerem naj se izvede meritev: 1:Glavna os = merilna os 2:Stranska os = merilna os
- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Želena dolžina Q311: Želena vrednost merjene dolžine
- Najvišja izmera Q288: Največja dopustna dolžina
- Najnižja izmera Q289: Najmanjša dopustna dolžina
- Merilni protokol Q281: Določanje, ali naj TNC sestavi merilni protokol:
 - 0: Merilni protokol se ne sestavi

1: Merilni protokol naj se sestavi: TNC shrani datoteko protokola TCHPR425.TXT standardno v seznamu, v katerem se shrani tudi merilni program

Stop programa pri napaki v toleranci Q309: Določanje, ali naj TNC pri prekoračitvi tolerančnih vrednosti prekine tek programa in odda sporočilo o napaki:

0: Tek programa naj se ne prekine, sporočilo o napaki naj se ne odda

1: Tek programa naj se prekine, odda naj se sporočilo o napaki

 Orodna številka za nadzor Q330: Določanje, ali naj TNC izvede nadzor orodja (glej "Nadzor orodja" na strani 97):
 O: Nadzor ni oktivon

0: Nadzor ni aktiven

>0: Orodna številka v orodni tabeli TOOL.T

5 TCH PROBE 425 MERJENJE ŠIRINE ZNOTR.
Q328=+75 ;STARTNA TOČKA 1. OS
Q329=-12,5;STARTNA TOČKA 2. OS
Q310=+0 ;ZAMIK 2. MERJENJE
Q272=1 ;MERILNA OS
Q261=-5 ;MERILNA VIŠINA
Q260=+10 ;VARNA VIŠINA
Q311=25 ;ŽELENA DOLŽINA
Q288=25,05;NAJVEČJA DIMENZIJA
Q289=25 ;NAJMANJŠA DIMENZIJA
Q281=1 ;MERILNI PROTOKOL
Q309=0 ;STOP PROGR. PRI NAPAKI
Q330=0 :ORODNA ŠTEVILKA

MERITEV MOST ZUNAJ (cikel tipalnega sistema 426, DIN/ISO: G426)

Cikel tipalnega sistema 426 ugotovi položaj in širino mostička. Če v ciklu definirate ustrezne tolerančne vrednosti, TNC izvede primerjavo želenih in dejanskih vrednosti in shrani odstopanje v sistemskih parametrih.

- 1 TNC pozicionira tipalni sistem s hitrim premikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k točki tipanja 1. TNC izračuna tipalne točke iz navedb v ciklusu in varnostnim razmakom iz MP6140
- 2 Zatem tipalni sistem zapelje na navedeno merilno višino in izvede prvi začetni postopek tipanja s pomikom tipanja naprej (MP6120 oz. MP6360). 1. Tipanje vedno v negativni smeri programirane osi
- 3 Zatem se tipalni sistem zapelje na varno višino k naslednji tipalni točki in tam izvede drugi tipalni postopek
- 4 Zatem TNC pozicionira tipalni sistem nazaj na varno višino ter shrani dejanske vrednosti in odstopanje v naslednjih Q parametrih:

Številka parametra	Pomen
Q156	Dejanska vrednost izmerjene dolžine
Q157	Dejanska vrednost dolžine srednje osi
Q166	Odstopanje izmerjene dolžine

Pred programiranjem upoštevajte

Pred definicijo cikla morate programirati priklic orodja za definicijo osi tipalnega sistema.

- 1 merilna točka 1. os Q263 (absolutno): Koordinata prve tipalne točke v glavni osi obdelovalnega nivoja
- 1 merilna točka 2. os Q264 (absolutno): Koordinata prve tipalne točke v stranski osi obdelovalnega nivoja
- 2 merilna točka 1. os Q265 (absolutno): Koordinata druge tipalne točke v glavni osi obdelovalnega nivoja
- 2 merilna točka 2. os Q266 (absolutno): Koordinata druge tipalne točke v stranski osi obdelovalnega nivoja

- Merilna os Q272: Os obdelovalnega nivoja, v katerem naj se izvede meritev: 1:Glavna os = merilna os
 2:Stranska os = merilna os
- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Želena dolžina Q311: Želena vrednost merjene dolžine
- Najvišja izmera Q288: Največja dopustna dolžina
- Najnižja izmera Q289: Najmanjša dopustna dolžina
- Merilni protokol Q281: Določanje, ali naj TNC sestavi merilni protokol:
 - 0: Merilni protokol se ne sestavi

1: Merilni protokol naj se sestavi: TNC shrani datoteko protokola TCHPR426.TXT standardno v seznamu, v katerem se shrani tudi merilni program

Stop programa pri napaki v toleranci Q309: Določanje, ali naj TNC pri prekoračitvi tolerančnih vrednosti prekine tek programa in odda sporočilo o napaki:

0: Tek programa naj se ne prekine, sporočilo o napaki naj se ne odda

1: Tek programa naj se prekine, odda naj se sporočilo o napaki

Orodna številka za nadzor Q330: Določanje, ali naj TNC izvede nadzor orodja (glej "Nadzor orodja" na strani 97)

0: Nadzor ni aktiven

>0: Orodna številka v orodni tabeli TOOL.T

5 TCH PROBE 426 MERJENJE MOST ZUNAJ
Q263=+50 ;1.TOČKA 1. OS
Q264=+25 ;1. TOČKA 2. OS
Q265=+50 ;2. TOČKA 1. OS
Q266=+85 ;2. TOČKA 2. OS
Q272=2 ;MERILNA OS
Q261=-5 ;MERILNA VIŠINA
Q320=0 ;VARNOSTNI RAZMAK
Q260=+20 ;VARNA VIŠINA
Q311=45 ;ŽELENA DOLŽINA
Q288=45 ;NAJVEČJA DIMENZIJA
Q289=44,95;NAJNIŽJA DIMENZIJA
Q281=1 ;MERILNI PROTOKOL
Q309=0 ;STOP PROGR. PRI NAPAKI
Q330=0 ;ORODNA ŠTEVILKA

MERJENJE KOORDINATA (cikel tipalnega sistema 427, DIN/ISO: G427)

Cikel tipalnega sistema 427 ugotovi koordinato v osi, ki se lahko izbere in odloži vrednost v sistemskem parametru. Če definirate ustrezne tolerančne vrednosti v ciklusu, izvede TNC primerjavo med želenimi – dejanskimi vrednosti in shrani odstopanje v sistemskih parametrih.

- 1 TNC pozicionira tipalni sistem s hitrim premikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k točki tipanja 1. TNC pri tem premakne tipalni sistem za varnostno razdaljo proti določeni smeri premika
- 2 Zatem TNC pozicionira tipalni sistem v obdelovalnem nivoju na navedeno tipalno točko 1 ter tam izmeri dejansko vrednost v izbrani osi
- 3 Končno TNC pozicionira tipalni sistem nazaj na varno višino in shrani ugotovljeno koordinato v naslednjem Q parametru:

Številka parametra	Pomen
Q160	Izmerjena koordinata

Pred programiranjem upoštevajte

Pred definicijo cikla morate programirati priklic orodja za definicijo osi tipalnega sistema.

٦

427

- 1 merilna točka 1. os Q263 (absolutno): Koordinata prve tipalne točke v glavni osi obdelovalnega nivoja
- ▶ 1 merilna točka 2. os Q264 (absolutno): Koordinata prve tipalne točke v stranski osi obdelovalnega nivoja
- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Merilna os (1..3: 1=glavna os) Q272: Os, v kateri naj se izvede meritev: 1:Glavna os = merilna os
 - 2: Stranska os = merilna os
 - 3: Os tipalnega sistema = merilna os
- Smer premika 1 Q267: Smer, v kateri naj se tipalni sistem premakne k obdelovalnemu kosu: -1: Smer premika negativna
 - +1:Smer premika pozitivna
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Merilni protokol Q281: Določanje, ali naj TNC sestavi merilni protokol:

0: Merilni protokol se ne sestavi

1: Merilni protokol naj se sestavi: TNC shrani datoteko protokola TCHPR427.TXT standardno v seznamu, v katerem se shrani tudi merilni program

- ▶ Najvišja izmera Q288: Največja dopustna merilna vrednost
- ▶ Najnižja izmera Q289: Najnižja dopustna merilna vrednost
- Stop programa pri napaki v toleranci Q309: Določanie, ali naj TNC pri prekoračitvi tolerančnih vrednosti prekine tek programa in odda sporočilo o napaki:

0: Tek programa naj se ne prekine, sporočilo o napaki nai se ne odda

1: Tek programa naj se prekine, odda naj se sporočilo o napaki

Orodna številka za nadzor Q330: Določanje, ali naj TNC izvede nadzor orodja (glej "Nadzor orodja" na strani 97):

0: Nadzor ni aktiven

>0: Orodna številka v orodni tabeli TOOL.T

5 TCH PROBE 427 MERJENJE KOORDINATE
Q263=+35 ;1. TOČKA 1. OS
Q264=+45 ;1. TOČKA 2. OS
Q261=+5 ;MERILNA VIŠINA
Q320=0 ;VARNOSTNI RAZMAK
Q272=3 ;MERILNA OS
Q267=-1 ;SMER PREMIKA
Q260=+20 ;VARNA VIŠINA
Q281=1 ;MERILNI PROTOKOL
Q288=5,1 ;NAJVEČJA DIMENZIJA
Q289=4,95;NAJNIŽJA DIMENZIJA
Q309=0 ;STOP PROGR. PRI NAPAKI
Q330=0 :ORODNA ŠTEVILKA

MERJENJE krožne luknje (cikel tipalnega sistema 430, DIN/ISO: G430)

Cikel tipalnega sistema 430 ugotovi središčno točko in premer krožne luknje preko meritve treh vrtin. Če v ciklu definirate ustrezne tolerančne vrednosti, TNC izvede primerjavo želenih in dejanskih vrednosti in shrani odstopanje v sistemskih parametrih.

- 1 TNC pozicionira tipalni sistem s hitrim premikom (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) na navedeno središčno točko prve vrtine1
- 2 Zatem se tipalni sistem premakne na navedeno merilno višino in s štirimi tipanji ugotovi središče prve vrtine
- 3 Zatem se tipalni sistem premakne nazaj na Varno višino in se pozicionira na navedeno središče druge vrtine 2
- 4 Zatem TNC premakne tipalni sistem na navedeno merilno višino in s štirimi tipanji ugotovi središče druge vrtine
- 5 Zatem se tipalni sistem premakne nazaj na Varno višino in se pozicionira na navedeno središče tretje vrtine 3
- 6 Zatem TNC premakne tipalni sistem na navedeno merilno višino in s štirimi tipanji ugotovi tretje središče vrtine
- 7 Zatem TNC pozicionira tipalni sistem nazaj na varno višino ter shrani dejanske vrednosti in odstopanja v naslednjih Q parametrih:

Številka parametra	Pomen
Q151	Dejanska vrednost sredina glavne osi
Q152	Dejanska vrednost sredina stranske osi
Q153	Dejanska vrednost premera krožne luknje
Q161	Odstopanje sredina glavne osi
Q162	Odstopanje sredina stranske osi
Q163	Odstopanje premera krožne luknje

Pred programiranjem upoštevajte

Pred definicijo cikla morate programirati priklic orodja za definicijo osi tipalnega sistema.

- Sredina 1. os Q273 (absolutno): Središče krožne luknje (želena vrednost) v glavni osi obdelovalnega nivoja
- Sredina 2. os Q274 (absolutno): Središče krožne luknje (želena vrednost) v stranski osi obdelovalnega nivoja
- Želeni premer Q262: Navedite premer krožne luknje.
- Kot 1. vrtine Q291 (absolutno): Kot polarnih koordinat prvega središča vrtine v obdelovalnem nivoju
- Kot 2. vrtine Q292 (absolutno): Kot polarnih koordinat drugega središča vrtine v obdelovalnem nivoju
- Kot 3. vrtine Q293 (absolutno): Kot polarnih koordinat tretjega središča vrtine v obdelovalnem nivoju
- Merilna višina v osi tipalnega sistema Q261 (absolutno): Koordinata središča krogle (=točka dotika) v osi tipalnega sistema, na kateri naj se opravi merjenje
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Najvišja izmera Q288: Največji dopustni premer krožne luknje
- Najnižja izmera Q289: Najmanjši dopustni premer krožne luknje
- Tolerančna vrednost sredina 1. os Q279: Dovoljeno odstopanje položaja v glavni osi obdelovalnega nivoja
- Tolerančna vrednost sredina 2. os Q280: Dovoljeno odstopanje položaja v stranski osi obdelovalnega nivoja

呣

- Merilni protokol Q281: Določanje, ali naj TNC sestavi merilni protokol:
 - 0: Merilni protokol se ne sestavi

1: Merilni protokol naj se sestavi: TNC shrani datoteko protokola TCHPR430.TXT standardno v seznamu, v katerem se shrani tudi merilni program

Stop programa pri napaki v toleranci Q309: Določanje, ali naj TNC pri prekoračitvi tolerančnih vrednosti prekine tek programa in odda sporočilo o napaki:

0: Tek programa naj se ne prekine, sporočilo o napaki naj se ne odda

1: Tek programa naj se prekine, odda naj se sporočilo o napaki

Orodna številka za nadzor Q330: Določanje, ali naj TNC izvede nadzor loma orodja (glej "Nadzor orodja" na strani 97):

0: Nadzor ni aktiven

>0: Orodna številka v orodni tabeli TOOL.T

Pozor, tukaj samo kotrola loma, brez avtomatske korekture orodja.

Beispiel: NC bloki

5 TCH PROBE 430 MERJENJE KROŽNE LUKNJE
Q273=+50 ;SREDINA 1. OS
Q274=+50 ;SREDINA 2. OS
Q262=80 ;ŽELENI PREMER
Q291=+40 ;KOT 1. VRTINA
Q292=+90 ;KOT 2. VRTINA
Q293=+180 ;KOT 3. VRTINA
Q261=-5 ;MERILNA VIŠINA
Q260=+10 ;VARNA VIŠINA
Q288=80 ;NAJVEČJA DIMENZIJA
Q289=79,9;NAJNIŽJA DIMENZIJA
Q279=0,15 ;TOLERANCA 1. SREDINA
Q280=0,15 ;TOLERANCA 2. SREDINA
Q281=1 ;MERILNI PROTOKOL
Q309=0 ;STOP PROGR. PRI NAPAKI
Q330=0 :ORODNA ŠTEVILKA

1

MERJENJE NIVOJA (cikel tipalnega sistema 431,

DIN/ISO: G431)

Cikel tipalnega sistema 431 ugotovi kot enega nivoja z merjenjem treh točk in shrani vrednosti v sistemskih parametrih.

- 1 TNC pozicionira tipalni sistem s hitrim pomikom naprej (vrednost iz MP6150 oz. MP6361) in s pozicionirno logiko (glej "Opravljanje ciklov tipalnega sistema" na strani 19) k programirani začetni točki tipanja 1 ter tam izmeri prvo točko nivoja. TNC pri tem zamakne tipalni sistem za varnostni razmak proti smeri tipanja
- 2 Zatem se tipalni sistem premakne nazaj na varno višino, nato v obdelovalnem nivoju k tipalni točki 2 in tam izmeri dejansko vrednost druge točke nivoja
- 3 Zatem se tipalni sistem premakne nazaj na varno višino, nato v obdelovalnem nivoju k tipalni točki 3 in tam izmeri dejansko vrednost tretje točke nivoja
- 4 Končno TNC pozicionira tipalni sistem nazaj na varno višino in shrani ugotovljene kotne vrednosti v naslednjem Q parametru:

Številka parametra	Pomen
Q158	Kot osi A
Q159	Kot osi B
Q170	Prostorski kot A
Q171	Prostorski kot B
Q172	Prostorski kot C

Pred programiranjem upoštevajte

Pred definicijo cikla morate programirati priklic orodja za definicijo osi tipalnega sistema.

Da bi TNC lahko obračunal kotne vrednosti, tri merilne točke ne smejo ležati v ravni črti.

V paramerih Q170 - Q172 se shranijo prostorski koti, ki so potrebni pri funkciji Obračanje obdelovalnega nivoja. Preko prvih dveh merilnih točk določite usmeritev glavne osi pri obračanju obdelovalnega nivoja.

- 431 1
- 3.3 Avtomatsko merjenje obdeloval<mark>nih</mark> kosov
- 1 merilna točka 1. os Q263 (absolutno): Koordinata prve tipalne točke v glavni osi obdelovalnega nivoja
- 1 merilna točka 2. os Q264 (absolutno): Koordinata prve tipalne točke v stranski osi obdelovalnega nivoja
- 1 merilna točka 3. os Q294 (absolutno): Koordinata prve tipalne točke v osi tipalnega sistema
- 2 merilna točka 1. os Q265 (absolutno): Koordinata druge tipalne točke v glavni osi obdelovalnega nivoja
- 2 merilna točka 2. os Q266 (absolutno): Koordinata druge tipalne točke v stranski osi obdelovalnega nivoja
- 2 merilna točka 3. os Q295 (absolutno): Koordinata druge tipalne točke v osi tipalnega sistema
- 3 merilna točka 1. os Q296 (absolutno): Koordinata tretje tipalne točke v glavni osi obdelovalnega nivoja
- 3 merilna točka 2. os Q297 (absolutno): Koordinata tretje tipalne točke v stranski osi obdelovalnega nivoja
- 3 merilna točka 3. os Q298 (absolutno): Koordinata tretje tipalne točke v osi tipalnega sistema
- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in kroglo merilnega sistema. Q320 deluje aditivno k MP6140
- Varna višina Q260 (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (vpenjalnim sredstvom)
- Merilni protokol Q281: Določanje, ali naj TNC sestavi merilni protokol:
 - 0: Merilni protokol se ne sestavi

1: Merilni protokol naj se sestavi: TNC shrani datoteko protokola TCHPR431.TXT standardno v seznamu, v katerem se shrani tudi merilni program

5 TCH PROBE 431 MERJENJE RAVNI
Q263=+20 ;1. TOČKA 1. OS
Q264=+20 ;1. TOČKA 2. OS
Q294=+10 ;1. TOČKA 3. OS
Q265=+50 ;2. TOČKA 1. OS
Q266=+80 ;2. TOČKA 2. OS
Q265=+0 ;2. TOČKA 3. OS
Q296=+90 ;3. TOČKA 1. OS
Q297=+35 ;3. TOČKA 2. OS
Q298=+12 ;3. TOČKA 3. OS
Q320=0 ;VARNOSTNI RAZMAK
Q260=+5 ;VARNA VIŠINA
Q281=1 ;MERILNI PROTOKOL

Primer: Merjenje in naknadna obdelava pravokotnega čepa

Potek programa:

- Grobo struženje pravokotnega čepa s predizmero 0,5

- Merjenje pravokotnega lepa

- Ravnanje pravokotnega čepa ob upoštevanju merilnih vrednosti

0 BEGIN PGM BEAMS MM	
1 TOOL CALL 0 Z	Predobdelava priklic orodja
2 L Z+100 R0 F MAX	Sprostitev orodja
3 FN 0: Q1 = +81	Dolžina žepa v X (izmera grobega struženja)
4 FN 0: Q2 = +61	Dolžina žepa v Y (izmera grobega struženja)
5 CALL LBL 1	Priklic subprograma za obdelovanje
6 L Z+100 R0 F MAX M6	Sprostitev orodja, menjava orodja
7 TOOL CALL 99 Z	Priklic tipanja
8 TCH PROBE 424 MERJENJE PRAVOKOTNIK ZUNAN.	Merjenje struženega pravokotnika
Q273=+50 ;SREDINA 1. OS	
Q274=+50 ;SREDINA 2. OS	
Q282=80 ;1. STRANSKA DOLŽINA	Želena dolžina X (končna izmera)
Q283=60 ;2. STRANSKA DOLŽINA	Želena dolžina Y (končna izmera)
Q261=-5 ;MERILNA VIŠINA	
Q320=0 ;VARNOSTNI RAZMAK	
Q260=+30 ;VARNA VIŠINA	
Q301=0 ;PREMIK NA VAR. VIŠINO	
Q284=0 ;NAJVEČ. DIMENZ. 1. STRAN.	Navedba vrednosti za tolerančno preverjanje ni potrebna
Q285=0 ;NAJMANJ. DIMENZ. 1. STRAN.	
Q286=0 ;NAJVEČ. DIMENZ. 2. STRAN.	

Q287=0 ;NAJMANJ. DIMENZ. 2. STRAN.	
Q279=0 ;TOLERANCA 1. SREDINA	
Q280=0 ;TOLERANCA 2. SREDINA	
Q281=0 ;MERILNI PROTOKOL	Ni izdaje merilnega protokola
Q309=0 ;STOP PROGR. PRI NAPAKI	Ni izdaje sporočila o napaki
Q330=0 ;ORODNA ŠTEVILKA	Ni nadzora orodja
9 FN 2: Q1 = +Q1 - + Q164	Izračun dolžine v X na osnovi izmerjenega odstopanja
10 FN 2: Q2 = +Q2 - + Q165	Izračun dolžine v Y na osnovi izmerjenega odstopanja
11 L Z+100 R0 F MAX M6	Sprostitev tipke, menjava orodja
12 TOOL CALL 1 Z S5000	Priklic orodja Ravnanje
13 CALL LBL 1	Priklic subprograma za obdelovanje
14 L Z+100 R0 F MAX M2	Sprostitev orodja, konec programa
15 LBL 1	Subprogram z obdelovalnim ciklom pravokotni čep
16 CYCL DEF 213 ZAPFEN SCHLICHTEN	
Q200=20 ;VARNOSTNI RAZMAK	
Q201=-10 ;GLOBINA	
Q206=150 ;PREMIK NAPR. GLOB. DOST.	
Q202=5 ;DOST. GLOB.	
Q207=500 ;POMIK NAPR. REZKANJE	
Q203=+10 ;KOOR. POVRŠINA	
Q204=20 ;2. VARNOST. RAZMAK	
Q16=+50 ;SREDINA 1. OS	
Q217=+50 ;SREDINA 2. OS	
Q218=Q1 ;1. STRANSKA DOLŽINA	Dolžina v X variabilno za grobo struženje in ravnanje
Q219=Q2 ;2. STRANSKA DOLŽINA	Dolžina v Y variabilno za grobo struženje in ravnanje
Q220=0 ;KROŽNI RADIJ	
Q221=0 ;PREDIZMERA 1. OS	
17 CYCL CALL M3	Priklic cikla
18 LBL 0	Konmec subprograma
19 END PGM BEAMS MM	

Primer: Merjenje pravokotnega žepa, protokoliranje merilnih vrenosti

0 BEGIN PGM BSMESS MM	
1 TOOL CALL 1 Z	Tipka priklic orodja
2 L Z+100 R0 F MAX	Sprostitev tipke
3 TCH PROBE 423 MERJENJE PRAVOKOTNIK ZNOTR.	
Q273=+50 ;SREDINA 1. OS	
Q274=+40 ;SREDINA 2. OS	
Q282=90 ;1. STRANSKA DOLŽINA	Želena dolžina v X
Q283=70 ;2. STRANSKA DOLŽINA	Želena dolžina v Y
Q261=-5 ;MERILNA VIŠINA	
Q320=0 ;VARNOSTNI RAZMAK	
Q260=+20 ;VARNA VIŠINA	
Q301=0 ;PREMIK NA VAR. VIŠINO	
Q284=90,15 ;NAJVEČ. DIMENZ. 1. STRAN.	Največja izmera v X
Q285=89,95;NAJMANJ. DIMENZ. 1. STRAN.	Najmanjša izmera v X
Q286=70,1 ;NAJVEČ. DIMENZ. 2. STRAN.	Največja dimenzija v Y
Q287=69,9 ;NAJMANJ. DIMENZ. 2. STRAN.	Najmanjša dimenzija v Y
Q279=0,15 ;TOLERANCA 1. SREDINA	Dovoljeno odstopanje položaja v X
Q280=0,1 ;TOLERANCA 2. SREDINA	Dovoljeno odstopanje položaja v Y

Q281=1 ;MERILNI PROTOKOL	Izdaja merilnega protokola
Q309=0 ;STOP PROGR. PRI NAPAKI	Pri prekoračitvi tolerance ni prikaza javljanja napake
Q330=0 ;ORODNA ŠTEVILKA	Ni nadzora orodja
4 L Z+100 R0 F MAX M2	Sprostitev orodja, konec programa
5 END PGM BSMESS MM	

Merilni protokol (Datoteka TCPR423.TXT)

			ŽELENE
VREDNOSTI:	SREDINA GLAVNE OSI:	50.0000	
	SREDINA STRANSKE OSI:	40.0000	
	STRANSKA DOLŽINA GLAVNA OS	S: 90.0000	
	STRANSKA DOLŽINA – STRANSK	A OS: 70.0000	
			VNAPREJ DOLOČENE
MEJNE VREDNOSTI:	NAJVIŠJA VREDNOST SREDINE O	GLAVNE OSI:: 50.1	500
	NAJNIZJA VREDNOST SREDINE (GLAVNE OSI:49.850	10
	NAJVIŠJA VREDNOST SREDINE S	STRANSKE OSI: 40	.1000
	NAJNIŽJA VREDNOST SREDINE (GLAVNE OSI:39.900	0
	NAJVIŠJA MERA GLAVNE OSI:	90.1500	
	NAJNIŽJA IZMERA GLAVNE OSI::	89.9500	
	NAJVEČJA MERA STRANSKE DO	LŽINE – STRANSKA	OS: 70.1000
	NAJNIŽJA MERA STRANSKE DOL	ŽINE – STRANSKA	OS: 69.9500
*************************	*****		DEJANSKE VREDNOSTI:
SREDINA GLAVNE OSI:	50.0905		
	SREDINA STRANSKE OSI:	39.9347	
	STRANSKA DOLŽINA – GLAVNA (OS: 90.1200	
	STRANSKA DOLŽINA – STRANSK	A OS: 69.9920	
		(DSTOPANJA: SREDINA
GLAVNE OSI:	0.0905		
	SREDINA STRANSKE OSI:	-0.0653	
	STRANSKA DOLŽINA – GLAVNA (OS: 0.1200	
	STRANSKA DOLŽINA – STRANSK	A OS: -0.0080	

3.4 Posebni cikli

Pregled

TNC daje na voljo štiri cikle za naslednje posebne potrebe:

Cikel	Softkey
2 TS KALIBRIRANJE: Kalibriranje radija preklopnega tipalnega sistema	2 CAL.
9 TS KAL. DOLŽ. Kalibriranje dolžine preklopnega tipalnega sistema	S TICHT'R
3 MERJENJE Merilni cikel za izdelavo proizvajalčevih ciklov	3 P A
440 MERJENJE ZAMIKA OSI	440

KALIBRIRANJE TS (cikel tipalnega sistema 2,

Cikel tipalnega sistema 2 kalibrira stikalni tipalni sitem avtomatsko na kalibrirnem obroču ali kalibrirnem čepu.

Preden kalibrirate, morate v strojnih parametrih 6180.0 do 6180.2 določiti center kalinbrirnega orodja v delovnem področju stroja (REF koordinate).

Če delate z več premičnimi področji, lahko za vsako premično odročje shranite lasten komplet koordinat za center kalibrirnega orodja (MP6181.1 do 6181.2 in MP6182.1 do 6182.2.).

- Tipalni sistem se s hitrim premikom (vrednost iz MP6150) premakne na varno višino (samo če aktualna pozicija leži pod varno višino)
- 2 Zatem TNC pozicionira tipalni sistem na obdelovalnem nivoju v center kalibrirneg obroča (notranje kalibriranje) ali v bližino prve tipalne točke (zunanje kalibriranje)
- 3 Zatem se tipalni sistem premakne na merilno globino (to določata strojna parametra 618x.2 in 6185.x) in tipa kalibrirni področ zaporedno v X+, Y+, X- in Y-
- 4 Zatem TNC premakne tipalni sistem na varno višino in zapiše dejavni radij tipalne krogle v kalibrirne podatken

- Varna višina (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in kalibrirnim kosom (vpenjalnim sredstvom)
- Kalibriranje radija: Radijh kalibrirneg orodja
- Notranje kalibr.=0/zunanje kalibr.=1: Določitev, ali nai TNC kalibrira znotraj ali zunaj:
 - **0**: Notranje kalibriranje
 - 1: Zunanje kalibriranje

- 5 TCH PROBE 2,0 TS KALIBRIRANJE
- 6 TCH PROBE 2,1 VIŠINA: +50 R+25,003
 - VRSTA MERJENJA: 0

TS ALIBRIRANJE DOLŽINE (cikel tipalnega sistema 9,

Cikel tipalnega sistema 9 kalibrira dolžino stikalnega tipalnega sistema avtomatsko v skladu s točko, ki jo določite.

- 1 Tipalni sistem predpozicionirajte tako, da se lahko koordinata osi tipalnega sistema, ki je definirana ciklu, doseže brez kolizije
- 2 TNC premakne tipalni sistem v smeri negativne orodne osi, dokler se ne sproži stikalni signal
- 3 Zatem TNC premakne tipalni sistem ponovno nazaj na startno točko tipalnega postopka in zapiše dejavno dolžino tipalnega sistema v kalibrirne podatke

Koordinata navezna točka (absolutno): Natančna koordinata točke, ki naj se tipa

Navezni sistem? (0=IST/1=REF): Določitev, na kateri koordinatni sistem naj se nanaša vnešena navezna točka:

0: Navedena navezna točka se nanaša na aktivni orodni koordinatni sistem (DEJANSKI sistem)
1: Navedena navezna točka se nanaša na aktivni strojni koordinatni sistem (REF sistem)

- 5 L X-235 Y+356 R0 FMAX
- 6 TCH PROBE 9.0 TS KAL. DOLŽINA
- 7 TCH PROBE 9.1 NAVEZNA TOČKA+50
 - NAVEZNI SISTEM 0

MERJENJE (cikel tipalnega sistema 3,

Cikel tipalnega sistema 3 ugotovi v neki izbrani smeri tipanja poljubno pozicijo na obdelovalnem kosu. V nasprotju z drugimi merilnimi cikli lahko v ciklu 3 merilno pot in merilni pomik naprej direktno navedete. Tudi povratek po zugotavljanju merilne vrednosti se izvede v skladu z vrednostjo, ki se lahko navede.

- Tipalni sistem se premakne z aktualne pozicije z navedenim premikom naprej v določeni smeri tipanja. Smer tipanja se mora določiti preko polarnega kota v ciklu
- 2 Potem, ko TNC ugotovi pozicijo, se tipalni sistem zaustavi. Koordinate središčne točke tipalne kroge X, Y, Z TNC shrani v tri zaporedne Q parametre. Številko prvega parametra definirate v ciklu
- 3 Zatem TNC premakne tipalni sistem nasproti smeri tipanja za vrednost, ki ste jo definirali v parametru **MB**

Pred programiranjem upoštevajte

S funkcijo FN17: SYSWRITE ID 990 NR 6 lahko določite, ali naj cikel deluje na vhod tipke X12 ali X13.

Maksimalno pot povratka **MB** navedite samo tako veliko, da ne more priti do kolizije.

Če TNC ni mogel ugotoviti nobene veljavne tipalne točke dobi 4. parameter rezultatov vrednost -1.

- Št. parametra za rezultat: Navedite številko Q parametra, ki naj za TNC določi vrednost prve koordinate (X)
- Tipalna os: Navedite glavno os obdelovalnega nivoja (X orodni osi Z, Z pri orodni osi Y in Y pri orodni osi X), s tipko ENT potrdite
- Tipalni kot: Kot zadeva tipalno os, v kateri naj se tipalni sistem premika, s tipko ENT potrdite
- Maksimalna pot merjenja: Navedite pot premika, kako daleč naj se tipalni sistem premakne od startne točke, potrdite s tipko ENT
- Merjenje pomika napej: Merjenje pomika navedite v mm/min.
- Maksimalna pot povratka: Pot premika nasprotna smeri tipanja, potm ko se tipalna igla odmakne
- NAVEZNI SISTEM (0=DEJAN./1=REF): Določanje, ali naj se merilni rezultat shrani v aktualnem koordinatnem sistemu (DEJAN.) ali v navezi s strojnim koordinatnim sistemom (REF)
- Zaključek navedbe: Pritisnite tipko ENT

- 5 TCH PROBE 3,0 MERJENJE
- 6 TCH PROBE 3.1 Q1
- 7 TCH PROBE 3.2 X KOT: +15
- 8 TCH PROBE 3.3 ABST +10 F100 MB:1 NAVEZNI SISTEM:0

MERJENJE ZAMIKA OSI (cikel tipalnega sistema 440, DIN/ISO: G440)

S ciklom tipalnega sistema 440 lahko ugotovite osne zamike vašega stroja. V ta namen uporabite natančno izmerjeno cilindrično kalibrirno orodje v povezavi s TT 130.

Predpostavke:

Preden prvikrat oddelate cikel 440, mmorate TT kalibrirati s ciklom TT 30.

Orodni podatki kalibrirnega orodja morajo biti odloženi v orodni tabeli TOOL.T.

Preden se cikel oddela, morate aktivirati kalibrirno orodje s TOOL CALL.

namizni tipalni sistem TT mora biti priključen na tipalni sistem - vhod X13 logične enote in mora biti pripravljen za delovanje (strojni parameter 65xx).

- 1 TNC pozicionira kalibrirno orodje s hitrim pomikom naprej (vrednost iz MP6550) in s pozicionirno logiko (glej poglavje 1.2) v bližino TT
- 2 Najprej TNC opravi merjenje v osi tipalnega sistema. Pri tem se kalibrirno orodje zamakne za vrednost, ki ste jo določili v orodni tabeli TOOL.T v stolpcu TT:R-OFFS (standard = orodni radij). Meritev v osi tipalnega sistema se izvede vedno
- 3 Zatem TNC izvede meritev v obdelovalnem nivoju. V kateri osi in v kateri smeri na obdelovalnem nivoju na se opravi merjenje, določite preko parametra Q364
- 4 Če izvedete kalibriranje, TNC interno shrani kalirbrirne podatke. Če izvedete meritev, TNC primerja merilne podatke s kalibrirnimi podatki in zapiše odstopanja v naslednje Q parametre:

Številka parametra	Pomen
Q185	Odstopanje od kalibrirne vrednosti v X
Q186	Odstopanje od kalibrirne vrednosti v Y
Q187	Odstopanje od kalibrirne vrednosti v Z

odstopanje lahko direktno uporabite, da preko inkrementalnega zamika ničeln točke (cikel 7) izvedete kompenzacijo.

5 Zatem se kalibrirno orodje premakne nazaj na varno višino

Pro Pro

Pred programiranjem upoštevajte

Preden izvedete meritev, morate najmanj enkrat kalibrirate, sicer TNC odda javljanje napake. Ce delate z več področji premika, morate za vsako področje premika izvesti kalibriranje.

Z oddelavo cikla 440 TNC resetira parametre rezultatov Q185 do Q187.

Če želite določiti mejno vrednost za zamik osi v oseh stroja, potem navedite želene vrednosti v orodni tabeli TOOL.T v stolpcih LTOL (za os vretena) in RTOL (za obdelovalni nivo. Pri prekoračitvi mejne vrednosti odda TNC zatem po kontrolni meritvi ustrezno javljanje npake.

Na koncu cikla TNC ponovno vzpostavi stanje vretena, ki je bilo aktivno pred ciklom (M3/M4).

Vrsta merjenja: 0=Kalibr., 1=Merjenje?: Določitev, ali naj se izbede kalibriranje ali kontrolna meritev:

- 0: Kalibriranje
- 1: Merjenje
- Smeri tipanja: Definiranje smeri tipanja v obdelovalnem nivoju:
 - 0: Merjenje samo v pozitivni smeri glavne osi
 - 1: Merjenje samo v pozitivni smeri stranske osi
 - 2: Merjenje samo v negativni smeri glavne osi
 - 3: Merjenje samo v negativni smeri stranske osi

4: Merjenje v pozitivni smeri glavne osi in v pozitivni smeri stranske osi

5: Merjenje v pozitivni smeri glavne osi in v negativni smeri stranske osi

6: Merjenje v negativni smeri glavne osi in v pozitivni smeri stranske osi

7: Merjenje v negativni smeri glavne osi in v negativni smeri stranske osi

Smeri tipanja pri kalibriranju in merjenju se morajo ujemati, sicer TNC ugotovi napačne vrednosti.

- Varnostni razmak Q320 (inkrementalno): Dodatni razmak med merilno točko in ploščo merilnega sistema. Q320 deluje aditivno k MP6540
- Varna višina (absolutno): Koordinata v osi tipalnega sistema, v kateri ne more priti do nobene kolizije med tipalnim sistemom in obdelovalnim kosom (v povezavi z aktivno navezno točko)

5 TCH PROB	E 440 MERJENJE ZAMIKA OSI
Q363=1	;VRSTA MERJENJA
Q364=0	;SMERI TIPANJA
Q320=2	;VARNOSTNI RAZMAK
Q260=+50	;VARNA VIŠINA

Cikli tipalnega sistema za avtomatsko izmero orodja

4.1 Izmera orodja z namiznim tipalnim sistemom TT

Pregled

Stroj in TNC morata biti s strani proizvajalca stroja pripravljena za tipalni sistem TT.

Event. na stroju niso na voljo vsi opisani cikli in funkcije. Upoštevajte vaš priročnik o stroju.

Z namiznim tipalnim sistemom in cikli za merjenje orodja TNC izmerite orodje avtomatsko: Korekturne vrednosti za dolžino in radij TNC so odloženi v centralnem orodnem pomnilniku TOOL.T in se avtomatsko obračunajo na koncu tipalnega cikla. Na voljo so naslednje vrste merjenja:

- Izmera orodja pri stoječem orodju
- Izmera orodja pri rotirajočem orodju
- Izmera posamičnih rezil

Nastavitev strojnih parametrov

TNC uporablja za merjenje s stoječim vretenom tipalni pomik naprej iz MP6520.

Pri merjenju z rotirajočim orodjem izračuna TNC število vrtljajev vretena in potisk tipanja naprej avtomatsko.

Število vrtljajev vretena se pri tem obračunava kot sledi:

n = MP6570 / (r • 0,0063) s/z

n	Število vrtljajev [U/min.]
MP6570	Maksimalno dopustna hitrost obratov [m/min.]
r	Aktivni radij orodja [mm]

Potisk tipanja naprej se obračuna iz:

v = merilne tolerance • n s/z

v	Potisk tipanja naprej [mm/min.]
Merilna toleranca	Merilna toleranca [mm], odvisna od MP6507
n	Število vrtljajev [1/min.]

1

Z MP6507 nastavite obračunavanje potiska tipanja naprej:

MP6507=0:

Merilna toleranca ostane konstantna – neodvisno od orodnega radija. Pri zelo velikih orodjih pa se potisk tipanja naprej zmanjša do ničle. Ta efekt je opazen toliko prej, kolikor manjšo izberete maksimalno hitrost obratov (MP6570) in dopustno toleranco (MP6510).

MP6507=1:

Merilna toleranca se spreminja s povečanjem orodnega radija. To tudi pri velikih orodjih zagotavlja še zadosten pomik tipanja naprej. TNC spreminja merilno toleranco po naslednji tabeli:

Orodni radij	Merilna toleranca
do 30 mm	MP6510
30 do 60 mm	2 • MP6510
60 do 90 mm	3 • MP6510
90 do 120 mm	4 • MP6510

MP6507=2:

Pomik tipanja naprej ostane konstanten, napaka pri merjenju pa narašča linearno s povečevanjem orodnega radija:

merilna toleranca = (r • MP6510)/ 5 mm) s/z

r Aktivni radij orodja [mm] MP6510 Maksimalno dopustna merilna napaka

Navedbe v orodni tabeli TOOL.T

Okrajš.	Navedbe	Dialog
CUT	Število orodnih rezil (maks. 20 rezil)	Število rezil?
LTOL	Dopustno odstopanje od dolžine orodja L za prepoznavanje obrabe. Če se navedena vrednost prekorači, TNC blokira orodje (status L). Področje vpisa: 0 do 0,9999 mm	Obrabna toleranca: Dolžina?
RTOL	Dopustno odstopanje od radija orodja R za prepoznavanje obrabe. Če se navedena vrednost prekorači, TNC blokira orodje (status L). Področje vpisa: 0 do 0,9999 mm	Obrabna toleranca: Radij?
DIRECT.	Rezalna smer orodja za merjenje z rotirajočim orodjem	Rezalna smer (M3 = –)?
TT:R-OFFS	Merjenje dolžine: Premik orodja med Stylus-sredina in Sredina orodja. Vnaprejšnja nastavitev: Orodni radij R (tipka NO ENT povzroči R)	Premik orodnega radija
TT:R-OFFS	Merjenje radija: dodatni premik orodja k MP6530 med Stylus - zgornjim robom in spodnjim robom orodja. Vnaprejšnja nastavitev: 0	Dolžina premika orodja?
LBREAK	Dopustno odstopanje od dolžine orodja L za prepoznavanje loma. Če se navedena vrednost prekorači, TNC blokira orodje (status L). Področje vpisa: 0 do 0,9999 mm	Toleranca za lom: Dolžina?
RBREAK	Dopustno odstopanje od radija orodja R za prepoznavanje loma. Če se navedena vrednost prekorači, TNC blokira orodje (status L). Področje vpisa: 0 do 0,9999 mm	Toleranca za lom: Radij?

Primeri vnosa za običajne tipe orodja

Tip orodja	CUT	TT:R-OFFS	TT:R-OFFS
Sveder	– (brez funkcije)	0 (premik ni potreben, ker se mora meriti konica svedra)	
Cilindrično rezkalo s premerom < 19 mm	4 (4 rezila)	0 (premik ni potreben, ker je premer orodja manjši kot premer krožnika TT)	0 (pri merjenju radija ni potreben noben dodatni premik. Uporablja se premik iz MP6530)
Cilindrično rezkalo s premerom > 19 mm	4 (4 rezila)	0 (premik je potreben, ker je premer orodja večji kot premer krožnika TT)	0 (pri merjenju radija ni potreben noben dodatni premik. Uporablja se premik iz MP6530)
Rezkalo radija	4 (4 rezila)	0 (premik ni potreben, ker se mora meriti južni pol krogle)	5 (vedno definirajte radij orodja kot premik, da se premer ne bo meril v radiju)

Prikaz merilnih rezultatov

S soft tipko STATUS TOOL PROBE lahko rezultate merjenja orodja prikažete v dodatnem prikazu statusa (v vrstah obratovanja stroja). TNC nato prikazuje program in desno merilne rezultate. Merilne vrednosti, ki so prekoračile dopustno toleranco obrabe, TNC označi z "*"– merilne vrednosti, ki so prekoračile toleranco loma pa z "B".

4.2 Razpoložljivi cikli

Pregled

Cikle merjena orodja programirate v vrsti obratovanja Shranjevanje/ editiranje programa preko tipke TOUCH PROBE. Na voljo so naslednji cikli:

Cikel	Stari format	Novi format
Kalibriranje TT	30 L.	480
Merjenje dolžine orodja	31 I I.	481 II.
Merjenje orodnega radija	32	482
Merjenja dolžine in radija orodja	33	483

Merilni cikli delujejo samo pri aktivnem centralnem orodnem pomnilniku TOOL.T.

Preden delate z merilnimi cikli, morate v centralni pomnilnik orodja vnesti vse podatke, ki so potrebni za meritev in s TOOL CALL priklicati orodje, ki naj se meri.

Orodje lahko merite tudi pri obrnjenem obdelovalnem nivoju.

Razlike med cikli 31 do 33 in 481 do 483

Obseg funkcije in potek cikla je absolutno identičen. Med cikli 31 do 33 in 481 do 483 obstajata pravzaprav naslednji dve razliki:

- Cikli 481 do 483 so na voljo pod G481 do G483 tudi v DIN/ISO.
- Namesto parametra po prosti izbiri za status merjenja uporabljajo novi cikli fiksni parameter Q199

Kalibriranje TT (cikel tipalnega sistema 30 ali 480, DIN/ISO: G480)

Način delovanja kalibrirnega cikla je odvisen od strojnega parametra. Upoštevajte vaš priročnik o stroju.

Preden kalibrirate, morate v orodno tabelo TOOL.T vnesti natančen radij in natančno dolžino kalibrirnega orodja.

V strojnem parametru 6580.0 do 6580.2 mora biti določen poloćaj TT v delovnem področju stroja.

Če spremenite enega od strojnih parametrov 6580.0 do 6580.2, morate ponovno kalibrirati.

TT kalibrirajte z merilnim ciklom TCH PROBE 30 ali TCH PROBE 480 (siehe auch "Razlike med cikli 31 do 33 in 481 do 483" auf Seite 140). Postopek kalibriranja poteka avtomatično. TNC avtomatsko ugotovi tudi srednji premik kalibrirnega orodja. V ta namen TNC zavrti vreteno po polovici kalibrirnega cikla za 180°.

Kot kalibrirno orodje uporabite eksaktno cilindrični del, npr. cilindrična igla. Kalibrirne vrednosti TNC shrani in jih upošteva pri nasledjih meritvah orodja.

Varna višina: Navedite pozicijo v osi vretena, v kateri je izključena kolizija z obdelovalnimi kosi ali vpenjalnimi sredstvi. Varna višina se nanaša na aktivno navezno točko obdelovalnega kosa. Če je varna višina navedena tako nizko, da bi konica orodja ležala pod zgornjim robom krožnika, TNC pozicionira kalibrirno orodje avtomatsko nad krožnik (varnostna cona izMP6540) Beispiel: NC bloki - stari format

6 TOOL CALL 1 Z

- 7 TCH PROBE 30.0 KALIBRIRANJE TT
- 8 TCH PROBE 30.1 VIŠINA: +90

Beispiel: NC bloki - novi format

6 TOOL CALL 1 Z

7 TCH PROBE 480 KALIBRIRANJE TT

Q260=+100 ;VARNA VIŠINA

Merjenje dolžine orodja (cikel tipalnega sistema 31 ali 481, DIN/ISO: G481)

Preden prvikrat izmerite orodja, vnesite približni radij, približno dolžino, število rezil in smer rezanja posameznega orodja v orodno tabelo TOOL.T.

Za merjenje dolžine orodja programirajte merilni cikel TCH PROBE 31 oder TCH PROBE 480 (glej "Razlike med cikli 31 do 33 in 481 do 483", strani 140). Preko navedbenega parametra lahko dolžino orodja določite na tri različne vrste:

- Če je premer orodja večji kot premer merilne površine TT, potem merite z rotirajočim orodjem
- Če je premer orodja manjši kot premer merilne površine TT ali če določate dolžino svedrov ali rezkal radija, potem merite pri mirujočem orodju
- Če je premer orodja večji kot premer merilne površine TT, potem izvedite merjenje posamičnih rezil z mirujočim orodjem.

Potek merjenja "Izmera orodja pri rotirajočem orodju"

Za ugotavljanje najdaljšega rezila se orodje, ki ga je potrebno izmeriti, premakne v središče tipalnega sistema in rotirajoče zapelje na merilno površino TT. Premik programirajte v orodni tabeli pod Premik orodja: Radij (**TT: R-OFFS**).

Potek merjenja "Merjenje z mirujočim orodjem" (npr. za svedre)

Orodje, ki ga je potrebno izmeriti se pelje sredinsko preko merilne površine. Zatem pelje s stoječim vretenom na merilno površino TT. Za to meritev vnesite premik orodja: Radij (**TT: R-OFFS**) v orodno tabelo z $_{,0}^{"}$.

Potek merjenja "Izmera posamičnih rezil"

TNC pozicionira orodje, ki ga je potrebno izmeriti, stransko od tipalne glave. Čelna površina orodja se pri tem nahaja pod zgornjim robom merulne glave kot je določeno v MP6530. V orodni tabeli lahko pod Premik orodja: dolžina (**TT: L-OFFS**) določite dodatni premik. TNC začne tipati radialno z rotirajočim orodjem, da določi začetni kot za merjenje posamičnih rezil. Zatem izmeri dolžino vseh rezil s spremembo orientacije vretena. Za to merjenje programirajte MERJENJE REZIL v CIKLU TCH PROBE 31 = 1.

4.2 Raz<mark>pol</mark>ožljivi cikli

Definicija cikla

- 31 |||| 2 481 ||||| 2
- Merjenje orodja=0 / preverjanje=1: Določite, ali se izvaja prva meritev orodja ali pa želite preveriti že izmerjeno orodje. Pri prvem merjenju TNC na novo zapiše dolžino orodja L v centralnem orodnem pomnilniku TOOL.T in postavi Delta vrednost DL = 0. Če orodje preverjate, se izmerjena dolžina primerja z dolžino orodja L iz TOOL.T. TNC izračuna odstopanje s pravilnim predznakom in to vnese kot Delta vrednost DL v TOOL.T. Dodatno je odstopanje na voljo tudi v Q parametru Q115. Če je Delta vrednost višja kot dopustna toleranca obrabe ali toleranca loma za dolžino orodja, potem TNC blokira orodje (status L v TOOL.T)

Št. parametra za rezultat?: Številka parametra, v kateri TNC shrani status meritve:
 0,0: Ordoje znotraj tolerance
 1,0: Orodje je obrabljeno (LTOL prekoračen)
 2,0: Orodje je zlomljeno (LBREAK prekoračen). Če

merilnega rezultata ne želite obdelovati dalje znotraj programa, potrditi vprašanje dialoga s tipko NO ENT

Varna višina: Navedite pozicijo v osi vretena, v kateri je izključena kolizija z obdelovalnimi kosi ali vpenjalnimi sredstvi. Varna višina se nanaša na aktivno navezno točko obdelovalnega kosa. Če je varna višina navedena tako nizko, da bi konica oordja ležala pod zgornjim robom krožnika, TNC pozicionira orodje avtomatsko nad krožnik (varnostna cona iz MP6540)

Meritev rezil 0=Ne / 1=Da: Določite, ali naj se izvede meritev posamičnega rezila Beispiel: Prvo merjenje z rotirajočim orodjem; stari format

|--|

7 TCH PROBE 31.0 DOLŽINA ORODJA

8 TCH PROBE 31.1 PREVERJANJE: 0

9 TCH PROBE 31.2 VIŠINA: +120

10 TCH PROBE 31.3 MERJENJE REZIL: 0

Beispiel: Preverjanje z merjenjem posamičnih rezil, shranjevanje statusa v Q5; stari format

6 TOOL CALL 12 Z
7 TCH PROBE 31.0 DOLŽINA ORODJA
8 TCH PROBE 31.1 PREVERJANJE: 1 Q5
9 TCH PROBE 31.2 VIŠINA: +120
10 TCH PROBE 31.3 MERJENJE REZIL: 1

Beispiel: NC bloki; novi format

6 TOOL CALL 12 Z 7 TCH PROBE 481 DOLŽINA ORODJA Q340=1 ;PREVERJANJE Q260=+100 ;VARNA VIŠINA Q341=1 ;MERJENJE REZIL

Merjenje orodnega radija (cikel tipalnega sistema 32 ali 482, DIN/ISO: G482)

ᇞ

Preden prvikrat izmerite orodja, vnesite približni radij, približno dolžino, število rezil in smer rezanja posameznega orodja v orodno tabelo TOOL.T.

Za merjenje orodnega radija programirajte merilni cikel TCH PROBE 32 oder TCH PROBE 482 (siehe auch "Razlike med cikli 31 do 33 in 481 do 483" auf Seite 140). Preko navedbenega parametra lahko orodni radij določite na tri različne vrste:

- Izmera orodja pri rotirajočem orodju
- Merjenje pri rotirajočem orodju in zatem merjenje posamičnih rezil

Orodja v obliki cilindra d diamantno površino se lahki izmerijo s stoječim vretenom. V ta namen morate v orodni tabeli definirati število rezil CUT z 0 in prilagoditi strojni parameter 6500. Upoštevajte vaš priročnik o stroju.

Potek meritve

TNC pozicionira orodje, ki ga je potrebno izmeriti, stransko od tipalne glave. Čelna površina rezkala se pri tem nahaja pod zgornjim robom merilne glave kot je določeno v MP6530. TNC začne tipanje radialno z rotirajočim orodjem. Če naj se dodatno izvede merjenje osamičnih rezil, se radiji vseh rezil izmerijo s pomočjo orientacije vretena.

Definicija cikla

- ³²
- Merjenje orodja=0 / preverjanje=1: Določite, ali se naj izvaja prva meritev orodja ali naj se preveri že izmerjeno orodje. Pri prvem merjenju TNC na novo zapiše orodni radij R v centralnem orodnem pomnilniku TOOL.T in postavi Delta vrednost DR = 0. Če orodje preverjate, se izmerjeni radij primerja z orodnim radijem R iz TOOL.T. TNC izračuna odstopanje s pravilnim predznakom in to vnese kot Delta vrednost DR v TOOL.T. Dodatno je odstopanje na voljo tudi v Q parametru Q116. Če je Delta vrednost višja kot dopustna toleranca obrabe ali toleranca loma za orodni radij, potem TNC blokira orodje (status L v TOOL.T)

Št. parametra za rezultat?: Številka parametra, v kateri TNC shrani status meritve:
 0,0: Orodje znotraj tolerance
 1,0: Orodje je obrabljeno (RTOL prekoračen)
 2,0: Orodje je zlomljeno (RBREAK prekoračen). Če merilnega rezultata ne želite obdelovati dalje znotraj programa, potrditi vprašanje dialoga s tipko NO ENT

Varna višina: Navedite pozicijo v osi vretena, v kateri je izključena kolizija z obdelovalnimi kosi ali vpenjalnimi sredstvi. Varna višina se nanaša na aktivno navezno točko obdelovalnega kosa. Če je varna višina navedena tako nizko, da bi konica orodja ležala pod zgornjim robom krožnika, TNC pozicionira orodje avtomatsko nad krožnik (varnostna cona iz MP6540)

Meritev rezil 0=Ne / 1=Da: Določite, ali naj se dodatno izvede meritev posamičnega rezila ali ne Beispiel: Prvo merjenje z rotirajočim orodjem; stari format

TOOL	CALL	12 Z	

6

7 TCH PROBE 32.0 ORODNI RADIJ

8 TCH PROBE 32.1 PREVERJANJE: 0

9 TCH PROBE 32.2 VIŠINA: +120

10 TCH PROBE 32.3 MERJENJE REZIL: 0

Beispiel: Preverjanje z merjenjem posamičnih rezil, shranjevanje statusa v Q5; stari format

6 TOOL CALL 12 Z
7 TCH PROBE 32.0 ORODNI RADIJ
8 TCH PROBE 32.1 PREVERJANJE: 1 Q5
9 TCH PROBE 32.2 VIŠINA: +120
10 TCH PROBE 32.3 MERJENJE REZIL: 1

Beispiel: NC bloki; novi format

6 TOOL CALL 12 Z 7 TCH PROBE 482 ORODNI RADIJ Q340=1 ;PREVERJANJE Q260=+100 ;VARNA VIŠINA Q341=1 ;MERJENJE REZIL

Kompletno merjenje orodja (cikel tipalnega sistema 33 ali 483, DIN/ISO: G483)

Preden prvikrat izmerite orodja, vnesite približni radij, približno dolžino, število rezil in smer rezanja posameznega orodja v orodno tabelo TOOL.T.

Za kompletno merjenje orodja (dolžina in radij) programirajte merilni cikel TCH PROBE 33 oder TCH PROBE 482 (siehe auch "Razlike med cikli 31 do 33 in 481 do 483" auf Seite 140). Cikel je posebno primeren za prvo merjenje orodij, ker – v primerjavi s posamičnim merjenjem dolžine in radija – obstaja znaten prihranek časa. Preko navedbenega parametra lahko orodje izmerite na tri različne vrste:

- Izmera orodja pri rotirajočem orodju
- Merjenje pri rotirajočem orodju in zatem merjenje posamičnih rezil

Orodja v obliki cilindra d diamantno površino se lahki izmerijo s stoječim vretenom. V ta namen morate v orodni tabeli definirati število rezil CUT z 0 in prilagoditi strojni parameter 6500. Upoštevajte vaš priročnik o stroju.

Potek meritve

TNC izmeri orodje v skladu s fiksno programiranim potekom. Najprej se izmeri orodni radij, zatem pa dolžina orodja. Potek meritve odgovarja potekom iz merilnega cikla 31 in 32.

4.2 Raz<mark>pol</mark>ožljivi cikli

Definicija cikla

- Merjenje orodja=0 / preverjanje=1: Določite, ali se izvaja prva meritev orodja ali pa želite preveriti že izmerjeno orodje. Pri prvem merjenju TNC na novo zapiše orodni radij R in dolžino orodja L v centralnem orodnem pomnilniku TOOL.T in postavi Delta vrednost DR in DL = 0. Če orodje preverjate, se izmerjeni orodni podatki primerjajo z orodnimi podatki iz TOOL.T. TNC izračuna odstopanje s pravilnim predznakom in to vnese kot Delta vrednost DR in DL v TOOL.T. Dodatno so odstopanja na voljo tudi v Q parametrih Q115 in Q116 zur Verfügung. Če je ena od Delta vrednosti višja kot dopustna toleranca obrabe ali toleranca loma, potem TNC blokira orodje (status L v TOOL.T)

Št. parametra za rezultat?: Številka parametra, v kateri TNC shrani status meritve:
 0,0: Orodje znotraj tolerance
 1,0: Orodje je obrabljeno (LTOL ali/in RTOL prekoračen)
 2,0: Orodje je zlomljeno (LBREAK ali/in RBREAK prekoračen). Če merilnega rezultata ne želite obdelovati dalje znotraj programa, potrditi vprašanje dialoga s tipko NO ENT

- Varna višina: Navedite pozicijo v osi vretena, v kateri je izključena kolizija z obdelovalnimi kosi ali vpenjalnimi sredstvi. Varna višina se nanaša na aktivno navezno točko obdelovalnega kosa. Če je varna višina navedena tako nizko, da bi konica orodja ležala pod zgornjim robom krožnika, TNC pozicionira orodje avtomatsko nad krožnik (varnostna cona iz MP6540)
- Meritev rezil 0=Ne / 1=Da: Določite, ali naj se dodatno izvede meritev posamičnega rezila ali ne

Beispiel: Prvo merjenje z rotirajočim orodjem; stari format

тоо	L CA	LL	12 Z	Z	
TOU		DE	22	<u>~ MED</u>	

6

۰.	1011	1 13	ODL	55.0	UNOD3/

8 TCH PROBE 33.1 PREVERJANJE: 0

9 TCH PROBE 33.2 VIŠINA: +120

10 TCH PROBE 33.3 MERJENJE REZIL: 0

Beispiel: Preverjanje z merjenjem posamičnih rezil, shranjevanje statusa v Q5; stari format

6 TOOL CALL 12 Z
7 TCH PROBE 33.0 MERJENJE ORODJA
8 TCH PROBE 33.1 PREVERJANJE: 1 Q5
9 TCH PROBE 33.2 VIŠINA: +120
10 TCH PROBE 33.3 MERJENJE REZIL: 1

Beispiel: NC bloki; novi format

6	TOOL CALL 12 Z
7	TCH PROBE 483 MERJENJE ORODJA
	Q340=1 ;PREVERJANJE
	Q260=+100 ;VARNA VIŠINA
	Q341=1 ;MERJENJE REZIL

Symbole

3D tipalni sistemi ... 14 kalibriranje preklopno ... 26, 130, 131 Shranjevanje vrednosti kalibriranja v TOOL.T ... 28 Upravljanje različnih kalibrirnih podatkov ... 29

Α

Avtomatska izmera orodja ... 138 Avtomatsko merjenje orodja - glej merjenje orodja Avtomatsko nastavljanje navezne točke ... 58 Kot zunaj ... 74 Središče 4 vrtin ... 85 Središče krožne luknje ... 80 Središče krožnega žepa (vrtina) ... 68 Središče krožnega čepa ... 71 Središče osi pravokotnika ... 62 Središče pravokotnega čepa ... 65 v neki poljubni osi ... 88 v osi tipalnega sistema ... 83 Vogal znotraj ... 77

I

Izmera orodja ... 138 Dolžina orodja ... 142 Kalibriranje TT ... 141 ompletno merjenje ... 146 Orodni radij ... 144 Pregled ... 140 Prikaz merilnih rezultatov ... 139 Strojni parametri ... 136

Κ

Kompenziranje poševnega položaja obdelovalnega kosa preko dveh čepov ... 36, 47 preko dveh vrtin ... 36, 45 preko vrtljive osi ... 50, 54 z merjenjem dveh točk v ravni črti ... 30, 43 Korigiranje orodja ... 97

L

Logika pozicioniranja ... 19

Μ

Merilni rezultati v Q parametrih ... 95 Merjenja mostička zunaj ... 116 Merjenje širine utora ... 114 Merjenje kota ... 100 Merjenje kota enega nivoja ... 123 Merjenje kota nivoja ... 123 Merjenje krožne luknje ... 120 Merjenje kroga znotraj ... 102 Merjenje kroga zunaj ... 105 Merjenje obdelovalnih kosov ... 37, 94 Merjenje posamezne koordinate ... 118 Merjenje pravokotnega žepa ... 111 Merjenje pravokotnega čepa ... 108 Merjenje toplotnega raztezanja ... 133 Merjenje vrtine ... 102 Merjenje zunanje širine ... 116 Mrjenje notranje širine ... 114

Ν

Nadzor orodja ... 97 Nadzor tolerance ... 96 Navezna točka shranjevanje v preset tabelo ... 61 shranjevanje v tabelo ničelnih točk ... 61

0

Osnovno vrtenje direktno postavljanje ... 53 ugotavljanje med tekom programa ... 42 ugotavljanje v vrsti obratovanja Ročno ... 30

Ρ

Parameter rezultatov ... 95 Premik tipanja naprej ... 18 Preset tabela ... 61 Prevzem tipalnih rezultatov ... 25 Protokoliranje merilnih rezultatov ... 95

R

Ročno postavljanje navezne točke preko vrtin / čepov ... 36 Središčna točka kroga kot navezna točka ... 34 Srednja os kot navezna točka ... 35 v neki poljubni osi ... 32 Vogal kot navezna točka ... 33

S

Status merjenja ... 96 Strojni parametri za 3D tipalni sistem ... 17

Т

Tabela ničelnih točk Prevzem tipalnih rezultatov ... 24 Tipalni cikli Vrsta obratovanja ročno ... 22 za avtomatsko obratovanje ... 16

U

Uporaba tipalnih funkcij z mehanskimi tipkami ali merilnimi urami ... 40

V

Večkratna meritev ... 17

Ζ

Zapisovanje tipalnih vrednosti v preset ... 25 Zapisovanje tipalnih vrednosti v tabelo ničelnih točk ... 24 Zaupno področje ... 17

1

HEIDENHAIN

 DR. JOHANNES HEIDENHAIN GmbH

 Dr.-Johannes-Heidenhain-Straße 5

 83301 Traunreut, Germany

 Image: +49 (8669) 31-0

 Image: +49 (8669) 5061

 e-mail: info@heidenhain.de

 Technical support

 Image: +49 (8669) 31-1000

 e-mail: service@heidenhain.de

e-mail: service@neidenhain.de Measuring systems @ +49 (8669) 31-3104 e-mail: service.ms-support@heidenhain.de TNC support @ +49 (8669) 31-3101 e-mail: service.nc-support@heidenhain.de NC programming @ +49 (8669) 31-3103 e-mail: service.nc-pgm@heidenhain.de PLC programming @ +49 (8669) 31-3102 e-mail: service.plc@heidenhain.de Lathe controls @ +49 (711) 952803-0 e-mail: service.hsf@heidenhain.de

www.heidenhain.de

3D tipalni sistemi HEIDENHAIN

Vam pomagajo skrajšati čas čakanja:

Na primer

- naravnavanje obdelovalnih kosov
- postavljate naveznih točk
- merjenje obdelovalnih kosov
- digitaliziranje 3D oblik

s tipalnimi sistemi za orodja **TS 220** s kablom **TS 640** z infrardečim prenosom

- merjenje orodij
- merjenje obrabe
- ugotavljanje loma orodja

s tipalnim sistemom za orodje **TT 130**