

Bruksanvisning HEIDENHAINdialogprogrammering

> Svensk (sv) 1/2002

Kontroller på bildskärmen

50

150

WW F %

50

150

S %

Programmering av konturförflyttningar

Fram-/frånkörning kontur

- Flexibel konturprogrammering FK
- Rätlinje

APPR

DEP

FK

Lø

¢cc

c

CR

сту

CHE

- Cirkelcentrum/Pol för polära koordinater
- Cirkelbåge runt cirkelcentrum
- Cirkelbåge med radie
- Cirkelbåge med tangentiell anslutning

Fas

Hörnrundning

Uppgifter om verktyg

Ange och anropa verktygslängd och -radie

Cykler, underprogram och programdelsupprepningar

CYCL DEF LBL SET CALL

STOP

TOUCH

Χ

0

Ρ

Ι

Q

NO ENT

CE

ENT

Definiera och anropa cykler Ange och anropa underprogram och

programdelsupprepningar

Väli koordinataxlar resp.

- Ange programstopp i ett program
- Ange avkännarfunktioner i ett program

Ange och editera koordinataxlar och siffror

- V ange dem i ett program . . . 9 Siffror Decimalpunkt Växla förtecken Ange polära koordinater Inkrementalt värde Q-parameter Överför är-position Hoppa över dialogfråga och radera ord Avsluta inmatning och fortsätt dialogen Avsluta block Radera inmatat siffervärde eller radera TNC-felmeddelande
- Avbryt dialog, radera programdel

TNC-typ, mjukvara och funktioner

Denna handbok beskriver funktioner som finns tillgängliga i TNC styrsystem med följande NC-mjukvarunummer.

TNC-typ	NC-mjukvarunummer
iTNC 530	340 420-xx
iTNC 530 E	340 421-xx

Bokstavsbeteckningen E anger att det är en exportversion av TNC:n. I exportversionerna av TNC gäller följande begränsningar:

Rätlinjeförflyttning simultant i upp till 4 axlar

Maskintillverkaren anpassar, via maskinparametrar, lämpliga funktioner i TNC:n till den specifika maskinen. Därför förekommer det funktioner, som beskrivs i denna handbok, vilka inte finns tillgängliga i alla TNC-utrustade maskiner.

TNC-funktioner som inte finns tillgängliga i alla maskiner är exempelvis:

- Avkännarfunktioner för 3D-avkännarsystemet
- Verktygsmätning med TT 130
- Gängning utan flytande gängtappshållare
- Återkörning till konturen efter avbrott

Kontakta maskintillverkaren för att klargöra vilka funktioner som finns tillgängliga i Er maskin.

Många maskintillverkare och HEIDENHAIN erbjuder programmeringskurser för TNC. Att deltaga i sådana kurser ger oftast en god inblick i användandet av TNC-funktionerna.

Bruksanvisning Avkännarcykler:

Alla avkännarfunktioner beskrivs i en separat bruksanvisning. Kontakta HEIDENHAIN om du behöver denna bruksanvisning. Ident-Nr.: 329 203-xx.

Avsett användningsområde

TNC:n motsvarar klass A enligt EN 55022 och är huvudsakligen avsedd för användning inom industrin.

1 2 3 4 5 6 7 8 9 10 2 3

Innehåll

Introduktion

Manuell drift och inställning

Manuell positionering

Programmering: Grunder, filhantering, programmeringshjälp

Programmering: Verktyg

Programmering: Programmering av konturer

Programmering: Tilläggsfunktioner

Programmering: Cykler

Programmering: Underprogram och programdelsupprepning

Programmering: Q-parametrar

Programtest och programkörning

MOD-funktioner

Tabeller och översikt

1 Introduktion 1

1.1 iTNC 530 2
Programmering: HEIDENHAIN Klartext-Dialog och DIN/ISO 2
Kompatibilitet 2
1.2 Bildskärm och knappsats 3
Bildskärm 3
Välja bildskärmsuppdelning 4
Knappsats 5
1.3 Driftarter 6
Manuell drift och El. handratt 6
Manuell positionering 6
Programinmatning/Editering 7
Programtest 7
Program blockföljd och Program enkelblock 8
1.4 Statuspresentation 9
"Allmän" statuspresentation 9
Utökad statuspresentation 10
1.5 Tillbehör: HEIDENHAIN 3D-avkännarsystem och elektroniska handrattar 13
3D-avkännarsystem 13
Elektroniska handrattar HR 14
lanuall drift och inställning 15

2 Manuell drift och inställning 15

2.1 Uppstart, avstängning 16 Uppstart 16 Avstängning 17 2.2 Förflyttning av maskinaxlarna 18 Hänvisning 18 Förflytta axel med de externa riktningsknapparna 18 Förflyttning med den elektroniska handratten HR 410 19 Stegvis positionering 20 2.3 Spindelvarvtal S, Matning F och Tilläggsfunktion M 21 Användningsområde 21 Ange värde 21 Ändra spindelvarvtal och matning 21 2.4 Inställning av utgångspunkt (utan 3D-avkännarsystem) 22 Hänvisning 22 Förberedelse 22 Inställning av utgångspunkt 23

2.5 3D-vridning av bearbetningsplanet 24

Användning, arbetssätt 24 Referenspunktssökning vid vridna axlar 25 Inställning av utgångspunkt i vridet system 25 Inställning av utgångspunkt i maskiner med rundbord 26 Positionsindikering i vridet system 26 Begränsningar vid 3D-vridning av bearbetningsplanet 26 Aktivering av manuell vridning 27

3 Manuell positionering 29

3.1 Programmera och utföra enkla bearbetningar 30
 Använda manuell positionering 30
 Säkra eller radera program från \$MDI 32

4 Programmering: Grunder, Filhantering, Programmeringshjälp, Paletthantering 33

4.1 Grunder 34 Positionsmätsystem och referensmärken 34 Positionssystem 34 Positionssystem i fräsmaskiner 35 Polära koordinater 36 Absoluta och inkrementala arbetsstyckespositioner 37 Inställning av utgångspunkt 38 4.2 Filhantering: Grunder 39 Filer 39 Datasäkerhet 40 4.3 Standard filhantering 41 Hänvisning 41 Kalla upp filhanteringen 41 Välja fil 42 Radera fil 42 Kopiera fil 43 Dataöverföring till/från en extern dataenhet 44 Kalla upp en av de 10 sist valda filerna 46 Döp om fil 46 Skydda filer/upphäv filskydd 47

4.4 Utökad filhantering 48 Hänvisning 48 Kataloger 48 Sökväg 48 Översikt: Den utökade filhanteringens funktioner 49 Kalla upp filhanteringen 50 Väli enhet, katalog och fil 51 Skapa en ny katalog (endast möjligt på enhet TNC:\) 52 Kopiera enstaka fil 53 Kopiera katalog 54 Kalla upp en av de 10 sist valda filerna 54 Radera fil 55 Radera katalog 55 Markera filer 56 Döp om fil 57 Specialfunktioner 57 Dataöverföring till/från en extern dataenhet 58 Kopiera filer till en annan katalog 59 TNC:n i nätverk 60 4.5 Öppna och mata in program 62 Uppbyggnad av ett NC-program i HEIDENHAIN-klartext-format 62 Definiera råämne: BLK FORM 62 Öppna ett nytt bearbetningsprogram 63 Programmera verktygsrörelser i Klartext-dialog 65 Editering av program 66 4.6 Programmeringsgrafik 69 Medritning / ej medritning av programmeringsgrafik 69 Framställning av programmeringsgrafik för ett program 69 Visa eller ta bort radnummer 70 Radera grafik 70 Delförstoring eller delförminskning 70 4.7 Infoga kommentarer 71 Användningsområde 71 Kommentar under programinmatningen 71 Infoga kommentar i efterhand 71 Kommentar i ett eget block 71

4.8 Skapa textfiler 72 Användningsområde 72 Öppna och lämna textfiler 72 Editera text 73 Radera tecken, ord och rader samt återinfoga 74 Bearbeta textblock 74 Söka textdelar 75 4.9 Kalkylatorn 76 Användning 76 4.10 Direkt hjälp vid NC-felmeddelanden 77 Presentation av felmeddelanden 77 Visa hjälp 77 4.11 Paletthantering 78 Användningsområde 78 Välj palettfil 80 Lämna palettfil 80 Exekvera palettfil 80 4.12 Palettdrift med verktygsorienterad bearbetning 82 Användningsområde 82 Välja palettfil 87 Visa palettfil med inmatningsformulär 87 Förlopp vid verktygsorienterad bearbetning 91 Lämna palettfil 92 Exekvera palettfil 92

5 Programmering: Verktyg 95

5.1 Verktygsrelaterade uppgifter 96 Matning F 96 Spindelvarvtal S 96 5.2 Verktygsdata 97 Förutsättning för verktygskompenseringen 97 Verktygsnummer, verktygsnamn 97 Verktygslängd L 97 Verktygsradie R 98 Delta-värde för längd och radie 98 Inmatning av verktygsdata i program 98 Inmatning av verktygsdata i tabell 99 Platstabell för verktygsväxlare 104 Anropa verktygsdata 105 Verktygsväxling 106 5.3 Verktygskompensering 108 Introduktion 108 Kompensering för verktygslängd 108 Kompensering för verktygsradie 109 5.4 Tredimensionell verktygskompensering 112 Introduktion 112 Definition av en normaliserad vektor 113 Tillåtna verktygsformer 113 Använda andra verktyg: Delta-värde 114 3D-kompensering utan verktygsorientering 114 Face Milling: 3D-kompensering utan och med verktygsorientering 114 Peripheral Milling: 3D-radiekompensering med verktygsorientering 116 5.5 Arbeta med skärdatatabeller 118 Anmärkning 118 Användningsområde 118 Tabeller för arbetsstyckets material 119 Tabell för verktygsskärets material 120 Tabell för skärdata 120 Erforderliga uppgifter i verktygstabellen 121 Tillvägagångssätt vid arbete med automatisk beräkning av varvtal/matning 122 Förändra tabellstruktur 122 Dataöverföring av skärdatatabeller 124 Konfigurationsfil TNC.SYS 124

6 Programmering: Programmering av konturer 125

6.1 Verktygsrörelser 126
Konturfunktioner 126
Flexibel konturprogrammering FK 126
Tilläggsfunktioner M 126
Underprogram och programdelsupprepningar 126
Programmering med Q-parametrar 126
6.2 Allmänt om konturfunktioner 127
Programmera verktygsrörelser för en bearbetning 127
6.3 Framkörning till och frånkörning från kontur 131
Översikt: Konturformer för framkörning till och frånkörning från konturen 131
Viktiga positioner vid fram- och frånkörning 131
Framkörning på en rät linje med tangentiell anslutning: APPR LT 133
Framkörning på en rätlinje vinkelrät mot första konturpunkten: APPR LN 133
Framkörning på en cirkelbåge med tangentiell anslutning: APPR CT 134
Framkörning på en cirkelbåge med tangentiell anslutning till kontur och rätlinje: APPR LCT 134
Frånkörning på en rät linje med tangentiell anslutning: DEP LT 135
Frånkörning på en rätlinje vinkelrät från den sista konturpunkten: DEP LN 135
Frånkörning på en cirkelbåge med tangentiell anslutning: DEP CT 136
Frånkörning på en cirkelbåge med tangentiell anslutning till kontur och rätlinje: DEP LCT 136
6.4 Konturrörelser – rätvinkliga koordinater 137
Översikt konturfunktioner 137
Rätlinje L 138
Infoga fas CHF mellan två räta linjer 139
Hörnrundning RND 140
Cirkelcentrum CC 141
Cirkelbåge C runt cirkelcentrum CC 142
Cirkelbåge CR med bestämd radie 143
Cirkelbåge CT med tangentiell anslutning 144

6.5 Konturrörelser – polära koordinater 149 Översikt 149 Polära koordinater utgångspunkt: Pol CC 149 Rätlinje LP 150 Cirkelbåge CP runt Pol CC 150 Cirkelbåge CTP med tangentiell anslutning 151 Skruvlinje (Helix) 151 6.6 Konturrörelser – Flexibel konturprogrammering FK 156 Grunder 156 Grafik vid FK-programmering 157 Öppna FK-dialog 158 Flexibel programmering av räta linjer 158 Flexibel programmering av cirkelbågar 159 Inmatningsmöjligheter 160 Hjälppunkter 162 Relativ referens 163 6.7 Konturrörelser – Spline-interpolering 170 Användningsområde 170

7 Programmering: Tilläggsfunktioner 173

7.1 Inmatning av tilläggsfunktioner M och STOPP 174
Grunder 174
7.2 Tillaggstunktioner for kontroll av programkorning, spindel och kylvatska 175 Översikt 175
7.3 Tilläggsfunktioner för koordinatuppgifter 176
Programmering av maskinfasta koordinater: M91/M92 176
Aktivera den sist inställda utgångsnunkten: M104 178
Förflyttning till positioner i icke vridet koordinatsystem vid 3D-vridet bearbetningsplan: M130 178
7.4 Tilläggsfunktioner för konturbeteende 179
Bundning av hörn: M90 179
Infora definierad rundningshåge mellan räta linier: M112 180
Rearbeta små kontursteg: M97 180
Fullständig bearbetning av öppna konturbörn: M98 181
Matningsfaktor vid nedmatningsrörelse: M103 181
Matning i millimeter/spindelvary: M136 182
Matningshastighet vid cirkelbågar: M109/M110/M111 183
Förberäkning av radiekompenserad kontur (LOOK AHEAD) [,] M120 183
Överlagra handrattsrörelser under programkörning: M118 185
Frånkörning från konturen i verktygsaxelns riktning: M140 186
Avstängning av avkännarsystemets övervakning: M141 187
Upphäv modala programinformationer: M142 188
Upphäv grundvridning: M143 188
7.5 Tilläggsfunktioner för rotationsaxlar 189
Matning i mm/min vid rotationsaxlar A, B, C: M116 189
Vägoptimerad förflyttning av rotationsaxlar: M126 189
Minskning av positionsvärde i rotationsaxel till ett värde under 360°: M94 190
Automatisk kompensering för maskingeometrin vid arbete med rotationsaxlar: M114 191
Bibehåll verktygsspetsens position vid positionering av rotationsaxlar (TCPM*): M128 192
Precisionsstopp vid hörn med icke tangentiella övergångar: M134 194
Val av rotationsaxlar: M138 194
Ta hänsyn till maskinens kinematik i ÄR/BÖR-positioner vid blockslutet: M144 195
7.6 Tilläggsfunktioner för laserskärmaskiner 196
Princip 196
Direkt utmatning av programmerad spänning: M200 196
Spänning som funktion av sträcka: M201 196
Spänning som funktion av hastigheten: M202 197
Spänning som funktion av tid (tidsberoende ramp): M203 197
Spänning som funktion av tid (tidsberoende puls): M204 197

8 Programmering: Cykler 199

8.1 Arbeta med cykler 200 Definiera cykel via softkey 200 Definiera cykel via GOTO-funktion 200 Anropa cykler 202 Arbeta med tilläggsaxlar U/V/W 204 8.2 Punkttabeller 205 Användningsområde 205 Ange punkttabell 205 Välja punkttabell i programmet 206 Anropa cykel i kombination med punkttabeller 207 8.3 Cykler för borrning, gängning och gängfräsning 209 Översikt 209 DJUPBORRNING (cykel 1) 211 BORRNING (cykel 200) 212 BROTSCHNING (cykel 201) 214 URSVARVNING (cykel 202) 216 UNIVERSAL-BORRNING (cvkel 203) 218 BAKPLANING (cykel 204) 220 UNIVERSAL-DJUPBORRNING (cykel 205) 222 BORRFRÄSNING (cvkel 208) 224 GÄNGNING med flytande gängtappshållare (cykel 2) 226 GÄNGNING NY med flytande gänghuvud (cykel 206) 227 SYNKRONISERAD GÄNGNING utan flytande gängtappshållare (cykel 17) 229 SYNKRONISERAD GÄNGNING NY utan flytande gänghuvud (cykel 207) 230 GÄNGSKÄRNING (cykel 18) 232 GÄNGNING SPÅNBRYTNING (cykel 209) 233 Grunder för gängfräsning 235 GÄNGFRÄSNING (cykel 262) 237 FÖRSÄNK-GÄNGFRÄSNING (cvkel 263) 239 BORR-GÄNGFRÄSNING (cykel 264) 243 HELIX-BORRGÄNGFRÄSNING (cykel 265) 247 UTVÄNDIG GRÄNGFRÄSNING (cvkel 267) 250 8.4 Cykler för att fräsa fickor, öar och spår 258 Översikt 258 URFRÄSNING (cykel 4) 259 FICKA FINSKÄR (cykel 212) 261 Ö FINSKÄR (cykel 213) 263 CIRKELURFRÄSNING (cykel 5) 265 CIRKELFICKA FINSKÄR (cykel 214) 267 CIRKEL Ö FINSKÄR (cykel 215) 269 SPÅRFRÄSNING (cvkel 3) 271 SPÅR med pendlande nedmatning (cykel 210) 273 CIRKULÄRT SPÅR med pendlande nedmatning (cykel 211) 275

8.5 Cykler för att skapa punktmönster 279 Översikt 279 PUNKTMÖNSTER PÅ CIRKEL (cvkel 220) 280 PUNKTMÖNSTER PÅ LINJER (cykel 221) 282 8.6 SL-cykler 286 Grunder 286 Översikt SL-cykler 287 KONTUR (cykel 14) 288 Överlagrade konturer 288 KONTURDATA (cykel 20) 291 FÖRBORRNING (cykel 21) 292 GROVSKÄR (cvkel 22) 293 FINSKÄR DJUP (cykel 23) 294 FINSKÄR SIDA (cykel 24) 295 KONTURLINJE (cykel 25) 296 CYLINDERMANTEL (cykel 27) 298 CYLINDERMANTEL spårfräsning (cykel 28) 300 8.7 SL-cvkler med konturformel 311 Grunder 311 Välj program med konturdefinitioner 312 Definiera konturbeskrivningar 312 Ange konturformel 313 Överlagrade konturer 313 Bearbetning av kontur med SL-cykler 315 8.8 Cykler för ytor 319 Översikt 319 BEARBETNING MED DIGITALISERADE DATA (cykel 30) 320 PLANING (cykel 230) 321 LINJALYTA (cykel 231) 323 8.9 Cykler för koordinatomräkning 328 Översikt 328 Koordinatomräkningarnas varaktighet 328 NOLLPUNKTS-förskjutning (cykel 7) 329 NOLLPUNKTS-förskjutning med nollpunktstabell (cykel 7) 330 INSTÄLLNING UTGÅNGSPUNKT (cykel 247) 333 SPEGLING (cykel 8) 334 VRIDNING (cykel 10) 336 SKALFAKTOR (cykel 11) 337 SKALFAKTOR AXELSP. (cykel 26) 338 BEARBETNINGSPLAN (cykel 19) 339 8.10 Specialcykler 346 VÄNTETID (cykel 9) 346 PROGRAMANROP (cykel 12) 346 SPINDELORIENTERING (cykel 13) 347 TOLERANS (cykel 32) 348

9 Programmering: Underprogram och programdelsupprepningar 349

9.1 Underprogram och programdelsupprepning 350
Label 350
9.2 Underprogram 351
Arbetssätt 351
Programmering - anmärkning 351
Programmering underprogram 351
Anropa underprogram 351
9.3 Programdelsupprepning 352
Label LBL 352
Arbetssätt 352
Programmering - anmärkning 352
Programmering programdelsupprepning 352
Anropa programdelsupprepning 352
9.4 Godtyckligt program som underprogram 353
Arbetssätt 353
Programmering - anmärkning 353
Anropa godtyckligt program som underprogram 353
9.5 Länkning av underprogram 354
Länkningstyper 354
Länkningsdjup 354
Underprogram i underprogram 354
Upprepning av programdelsupprepning 355
Upprepning av underprogram 356

10 Programmering: Q-parametrar 363

10.1 Princip och funktionsöversikt 364
Programmeringsanvisning 364
Kalla upp Q-parameterfunktioner 365
10.2 Detaljfamiljer – Q-parametrar istället för siffervärden 366
Exempel NC-block 366
Exempel 366
10.3 Beskrivning av konturer med hjälp av matematiska funktioner 367
Användningsområde 367
Översikt 367
Programmering av matematiska grundfunktioner 368
10.4 Vinkelfunktioner (Trigonometri) 369
Definitioner 369
Programmera vinkelfunktioner 370
10.5 Cirkelberäkningar 371
Användningsområde 371
10.6 lf/then-bedömning med Q-parametrar 372
Användningsområde 372
Ovillkorligt hopp 372
IF/THEN - bedömning programmering 372
Använda begrepp och förkortningar 373
10.7 Kontrollera och ändra Q-parametrar 374
Tillvägagångssätt 374
10.8 Specialfunktioner 375
Översikt 375
FN14: ERROR: Kalla upp ett felmeddelande 376
FN15: PRINT: Utmatning av text eller Q-parametervärde 378
FN16: F-PRINT: Formaterad utmatning av text och Q-parametervärde 379
FN18: SYS-DATUM READ: Läsa systemdata 381
FN19: PLC: Överför värde till PLC 387
FN20: WAIT FOR: NC och PLC synkronisering 387
FN25: PRESET: Inställning av ny utgångspunkt 388
FN26: TABOPEN: Öppna en fritt definierbar tabell 389
FN27: TABWRITE: Skriva till en fritt definierbar tabell 389
FN28: TABREAD: Läsa från en fritt definierbar tabell 390
10.9 Formel direkt programmerbar 391
Inmatning av formel 391
Räkneregler 392
Inmatningsexempel 393

10.10 Fasta Q-parametrar 394
Värden från PLC: Q100 till Q107 394
Aktiv verktygsradie: Q108 394
Verktygsaxel: Q109 394
Spindelstatus: Q110 394
Kylvätska till/från: Q111 395
Överlappningsfaktor: Q112 395
Måttenhet i program: Q113 395
Verktygslängd: Q114 395
Koordinater efter avkänning under programkörning 395
Avvikelse mellan är- och börvärde vid automatisk verktygsmätning med TT 130 396
3D-vridning av bearbetningsplanet med arbetsstyckets vinkel: av TNC:n beräknade koordinater för vridningsaxlar 396
Mätresultat från avkännarcykler (se även bruksanvisning Avkännarcykler) 397

11 Programtest och programkörning 407

11.1 Grafik 408 Användningsområde 408 Översikt: presentationssätt 408 Vy ovanifrån 409 Presentation i 3 plan 409 3D-framställning 410 Delförstoring 410 Upprepa grafisk simulering 412 Beräkning av bearbetningstid 412 11.2 Funktioner för presentation av program 413 Översikt 413 11.3 Programtest 414 Användningsområde 414 11.4 Programkörning 416 Användningsområde 416 Körning av bearbetningsprogram 416 Stoppa bearbetningen 417 Förflyttning av maskinaxlarna under ett avbrott 418 Fortsätt programkörning efter ett avbrott 419 Godtyckligt startblock i program (block scan) 420 Återkörning till konturen 421 11.5 Automatisk programstart 422 Användningsområde 422 11.6 Hoppa över block 423 Användningsområde 423 11.7 Valbart programkörningsstopp 424 Användningsområde 424

12 MOD-funktioner 425

12.1 Välia MOD-funktioner 426 Välja MOD-funktioner 426 Ändra inställningar 426 Lämna MOD-funktioner 426 Översikt MOD-funktioner 426 12.2 Software- och optionsnummer 428 Användningsområde 428 12.3 Ange kodnummer 429 Användningsområde 429 12.4 Inställning av datasnitt 430 Användningsområde 430 Inställning av RS-232-datasnitt 430 Inställning av RS-422-datasnitt 430 Välja DRIFTART för extern enhet 430 Inställning av BAUD-RATE 430 Tilldelning 431 Programvara för dataöverföring 431 12.5 Ethernet-datasnitt 435 Introduktion 435 Anslutninasmöiliaheter 435 Konfigurering av TNC:n 435 12.6 Konfiguration av PGM MGT 439 Användningsområde 439 Ändra inställning 439 12.7 Maskinspecifika användarparametrar 440 Användningsområde 440 12.8 Presentation av råämnet i bearbetningsrummet 441 Användningsområde 441 12.9 Välja typ av positionsindikering 443 Användningsområde 443 12.10 Välja måttenhet 444 Användningsområde 444 12.11 Välja programmeringsspråk för \$MDI 445 Användningsområde 445 12.12 Axelval för L-blocksgenerering 446

Användningsområde 446

- 12.13 Ange begränsning av rörelseområde, nollpunktspresentation 447 Användningsområde 447 Arbeta utan extra begränsning av rörelseområdet 447 Visa och ange det maximala rörelseområdet 447 Visa nollpunkt 447
 12.14 Visa HJÄLP-filer 448
 - Användningsområde 448 Välja HJÄLP-filer 448
- 12.15 Visa drifttid 449 Användningsområde 449 12.16 Extern åtkomst 450
 - Användningsområde 450

13 Tabeller och översikt 451

- 13.1 Allmänna användarparametrar 452
 Inmatningsmöjligheter för maskinparametrar 452
 Kalla upp allmänna användarparametrar 452
 13.2 Kontaktbeläggning och anslutningskabel för datasnitt 464
 Datasnitt V.24/RS-232-C HEIDENHAIN-utrustning 464
 Främmande utrustning 465
 Datasnitt V.11/RS-422 466
 Ethernet-datasnitt RJ45-kontakt 467
 13.3 Teknisk information 468
- 13.4 Byta buffertbatteri 473

Introduktion

1.1 iTNC 530

HEIDENHAIN TNC-system är verkstadsanpassade kurvlinjestyrsystem, med vilka man kan programmera fräs- och borrbearbetningar direkt i maskinen med hjälp av lättförståelig Klartext-Dialog. De är avsedda för fräsmaskiner, borrmaskiner och bearbetningscenter. iTNC 530 kan styra upp till 9 axlar. Dessutom kan spindelns vinkelposition programmeras.

På den integrerade hårddisken kan ett godtyckligt antal program lagras, även sådana som har genererats externt. För att utföra snabba beräkningar kan man, när som helst, kalla upp en kalkylator.

Knappsats och bildskärmspresentation är överskådligt utformade, så att alla funktioner kan nås snabbt och enkelt.

Programmering: HEIDENHAIN Klartext-Dialog och DIN/ISO

Skapandet av program är extra enkelt i den användarvänliga HEIDENHAIN-Klartext-Dialogen. En programmeringsgrafik presenterar de individuella bearbetningsstegen samtidigt som programmet matas in. Dessutom underlättar den Flexibla-Konturprogrammeringen FK när NC-anpassade ritningsunderlag saknas. Bearbetningen av arbetsstycket kan simuleras grafiskt både i programtest och under själva bearbetningen. Dessutom kan TNC-systemen programmeras enligt DIN/ISO eller i DNC-mode.

Program kan även matas in och testas samtidigt som ett annat program utför bearbetning av ett arbetsstycke.

Kompatibilitet

TNC:n kan hantera alla bearbetningsprogram som har skapats i HEIDENHAIN-kurvlinjestyrsystem från och med TNC 150 B.

1.2 Bildskärm och knappsats

Bildskärm

TNC:n kan levereras antingen med flatfärgskärmen BF 150 (TFT) eller med flatfärgskärmen BF 120 (TFT). Bilden uppe till höger visar kontrollerna på BF 150, bilden i mitten till höger visar kontrollerna på BF 120.

1 Övre raden

Vid påslagen TNC visar bildskärmen de valda driftarterna i den översta raden: Maskindriftarter till vänster och programmeringsdriftarter till höger. Den driftart som för tillfället presenteras i bildskärmen visas i ett större fält i den övre raden: där visas även dialogfrågor och meddelandetexter (Undantag: när TNC:n endast visar grafik).

2 Softkeys

I underkanten presenterar TNC:n ytterligare funktioner i form av en softkeyrad. Dessa funktioner väljer man med de därunder placerade knapparna. För orientering indikerar smala linjer precis över softkeyraden antalet tillgängliga softkeyrader. Dessa ytterligare softkeyrader väljs med de svarta pilknapparna som är placerade längst ut i knappraden. Den aktiva softkeyraden markeras med en upplyst linje.

- 3 Knappar för softkeyval
- 4 Växla softkeyrad
- 5 Val av bildskärmsuppdelning
- 6 Knapp för bildväxling mellan maskin- och programmeringsdriftart
- 7 Knappar för softkeyval avsedda för maskintillverkar-softkeys
- 8 Växla softkeyrad för maskintillverkar-softkeys

Välja bildskärmsuppdelning

Användaren väljer själv önskad uppdelning av bildskärmen: På detta sätt kan TNC:n exempelvis i driftart Programinmatning/editering presentera programmet i det vänstra fönstret, samtidigt som det högra fönstret exempelvis programmeringsgrafiken visas i det högra fönstret. Alternativt kan man välja att presentera programlänkning i det högra fönstret eller enbart programmet i ett stort fönster. Vilka fönster som TNC:n kan visa är beroende av vilken driftart som har valts.

Välja bildskärmsuppdelning:

\bigcirc

Tryck på knappen för bildskärmsuppdelning: Softkeyraden presenterar de möjliga bildskärmsuppdelningarna, se "Driftarter", sidan 6

PROGRAM + GRAFIK

Välj bildskärmsuppdelning med softkey

Knappsats

Bilden visar knappsatsens knappar. Dessa är uppdelade i följande funktionsgrupper:

- 1 Alfabetiskt tangentbord för textinmatning, filnamn och DIN/ISOprogrammering
- 2 Filhantering
 - Kalkylator
 - MOD-funktion
 - HELP-funktion
- 3 Programmeringsdriftarter
- 4 Maskindriftarter
- 5 Öppning av programmeringsdialogen
- 6 Pilknappar och hoppinstruktion GOTO
- 7 Inmatning av siffror och axelval

De enskilda knapparnas funktion har sammanfattats på det första utviksbladet. Externa knappar, såsom exempelvis NC-START, beskrivs i maskinhandboken.

1.3 Driftarter

Manuell drift och El. handratt

Inställning av maskinen utförs i Manuell drift. I denna driftart kan maskinaxlarna förflyttas manuellt eller stegvis, utgångspunkten kan ställas in och bearbetningsplanet kan vridas.

Driftarten El. Handratt stödjer manuell förflyttning av maskinaxlarna med hjälp av en elektronisk handratt HR.

Softkeys för bildskärmsuppdelning (välj enligt tidigare beskrivning)

Fönster	Softkey
Positioner	POSITION
vänster: Positioner, höger: Statuspresentation	POSITION * STATUS

Manuell positionering

l denna driftart kan enkla förflyttningar och funktioner programmeras, exempelvis för planfräsning eller förpositionering.

Softkeys för bildskärmsuppdelning

Fönster	Softkey
Program	PROGRAM
vänster: Program, höger: Statuspresentation	PROGRAM * STATUS

MANUE	ELL PO	SITI	DNERI	NG		F	PROGRAM INMATNING
 8 BEGIN 1 CYCL D 2 CYCL D 3 TCH PR 0263= 0264= 0326= 0296= 0292= 	PGM \$MDI M IEF 26.0 SK IEF 26.1 X0 IOBE 414 UT +0 \$11:A +0 \$11:A 10 \$AVST -20 \$3.P +22 \$3.P	M ALFAKTOR A .9 Y0.9 GPKT UTV. PUNKT 1:A PUNKT 2:A AAND 1. AX UNKT 1. AX	XELSP. HOERN AXEL AXEL EL EL EL	RESTV X Y Z C B	+0.001 +0.004 -0.015 +0.000 -0.003	A B C	+0.0000 +45.0000 +45.0000
	-169.	0% S-IS 1% S-MO	T 11:27 M LIMIT 1	<u>Б</u> вн	SPLANETS V	INKEL	+0.0000
Ċ	+114.	778 E ≩⊤	3 +2 s 98	207.87 5	72 S F 0	359	I.973 M 5∕9
STATUS PGM	STATUS POS.	STATUS VERKTYG	STATUS KOORD OMRÄKN.	STATUS VERKTYGS- MATNING	STATUS M-FUNKT.		

Programinmatning/Editering

I denna driftart skapar man sina bearbetningsprogram. Den flexibla konturprogrammeringen, de olika cyklerna och Q-parameterfunktionerna erbjuder ett stort stöd och funktionsomfång. Om så önskas visar programmeringsgrafiken de enskilda programstegen.

Softkeys för bildskärmsuppdelning

Fönster	Softkey
Program	PROGRAM
vänster: Program, höger: Programmeringsgrafik	PROGRAM * GRAFIK

Programtest

I driftart Programtest simulerar TNC:n program och programdelar, detta för att finna exempelvis geometriska motsägelser, saknade eller felaktiga uppgifter i programmet samt rörelser utanför arbetsområdet. Simulationen stöds med olika grafiska presentationsformer.

Softkeys för bildskärmsuppdelning: se "Program blockföljd och Program enkelblock", sidan 8.

MANUELL DRIFT PROGRAM INMAINING Ø BEGIN PGM 1S MM BEGIN PGM 1S 1 BLK FORM 0.1 Z X+0 Y+0 Z-40 - Borrbild LD-Nr 257943KL1 2 BLK FORM 0.2 X+100 Y+100 Z+0 - Definitio av Parametrar 3 * - Borrbild LD-Nr 257943KL1 - Bearbeta ficka 4 TOOL CALL 1 Z \$4500 - Grovbearbta ficka 5 | Z+100 R0 F M9X - Einhearheta ficka 6 CYCL DEF 200 BORRNING - skapa Borrbild Q200=2 \$SAEKERHETSAVSTAAND - Centrera 0201=-20 \$D TUP - Borrning Q206=150 \$MATNING DJUP - Gaengning 0202=5 \$SKAERDJUP END PGM 1S Q210=0 \$VAENTETID UPPE 0203=+0 \$KOORD. OEVERYTA Q204=50 \$2. SAEKERHETSAVST. UDENTETTO NEPE 0211=0 BÖRJAN SLUT SIDA STDA VÄXLA FÖNSTER SÖK Û îî Ű

Û

Program blockföljd och Program enkelblock

I Program blockföljd utför TNC:n ett bearbetningsprogram kontinuerligt till dess slut eller till ett manuellt respektive programmerat avbrott. Efter ett avbrott kan man återuppta programexekveringen.

I Program enkelblock startar man varje block separat genom att trycka på den externa START-knappen.

Softkeys för bildskärmsuppdelning

Fönster	Softkey
Program	PROGRAM
vänster: Program, höger: Status	PROGRAM * STRTUS
vänster: Program, höger: Grafik	PROGRAM * GRAFIK
Grafik	GRAFIK

PROGRAM BLOCKFÖLJD					PRO	GRAMTEST	
0 BEGIN F	GM 3DJOIN	T MM					
1 BLK FORM 0.1 Z X+0 Y+0 Z-52							
2 BLK FORM 0.2 X+100 Y+100 Z+0							
3 TOOL CALL 1 Z							
4 L Z+20 R0 F MAX M6							
5 CYCL DEF 7.0 NOLLPUNKT							
6 CYCL DEF 7.1 X-10							
7 CALL LBL 1							
8 CYCL DEF 7.0 NOLLPUNKT							
L		0% S-IS	T 10:54				
1% S-MOM LIMIT 1			0°			00:00:00	
X	-169.	514	(-	-66.00	57 Z	+19	7.427
С	+114.	778 E	3 + 2	207.87	72		
					S	359.	973
йR 😡 Т 5.98		5	FØ		M 5/9		
SIDA Û	SIDA ↓	BÖRJAN		RESTORE POS. AT		NOLLPUNKT TABELL	VERK TYG TABELL

Softkeys för bildskärmsuppdelning vid palettabeller

Fönster	Softkey
Palettabell	PALETT
vänster: Program, höger: Palett-tabell	PROGRAM * PALETT
vänster: Palett-tabell, höger: Status	PALETT * STATUS
vänster: Palett-tabell, höger: Grafik	PALETT + GRAFIK

1.4 Statuspresentation

"Allmän" statuspresentation

Den allmänna statuspresentationen 1 informerar dig om maskinens aktuella tillstånd. Den visas automatiskt i driftarterna

Program enkelblock och Program blockföljd, under förutsättning att inte presentation av enbart "Grafik" har valts, och vid

Manuell positionering.

I driftarterna Manuell drift och El. Handratt visas statuspresentationen i ett stort fönster.

Information i statuspresentationen

Symbol	Betydelse	
AR	Den aktuella positionens Är- eller Bör-koordinater	
XYZ	Maskinaxlar; TNC:n presenterar hjälpaxlar med små bokstäver. Ordningsföljden och antalet visade axlar bestäms av Er maskintillverkare. Beakta anvisningarna i Er maskinhandbok	
FSM	Presentationen av matning i tum motsvarar en tiondel av det verksamma värdet. Varvtal S, matning F och aktiv tilläggsfunktion M	
*	Programkörning har startats	
→	Axeln är låst	
\bigcirc	Axeln kan förflyttas med handratten	
	Axlarna förflyttas i ett tippat bearbetningsplan	
	Axlarna förflyttas i ett grundvridet bearbetningsplan	

Utökad statuspresentation

Den utökade statuspresentationen ger detaljerad information om programförloppet. Man kan kalla upp den i alla driftarter med undantag för Programinmatning/Editering.

Kalla upp den utökade statuspresentationen

Välja utökad statuspresentation

\triangleright	Växla softkeyrad, fortsätt tills STATUS-softkeys visas			
STATUS	Välj typ av utökad statuspresentation, exempelvis			
PGM	allmän programinformation			

Nedan beskrivs de olika typer av utökad statuspresentation som man kan välja via softkeys:

STATUS Allmän programinformation

- 1 Huvudprogramnamn
- 2 Anropat program
- 3 Aktiv bearbetningscykel
- Cirkelcentrum CC (Pol) 4
- Bearbetningstid 5
- 6 Räknare för väntetid

1	PGM-NAME STAT	
2	PGM STAT1 CALL	
3	CYCL DEF 17 FAST GAENGNING	
4	CC X +22.5000 ↓ +35.7500 V.TID	6
	5 00:00:00	

1 Introduktion

Positioner och koordinater

1.4 Statuspresentation

- 1 Positionsvisning
- 2 Typ av positionsvisning, t.ex. Är-position
- 3 Tippningsvinkel för bearbetningsplanet
- 4 Vinkel för grundvridning

Information om verktyg

- Presentation T: Verktygsnummer och -namn
 Presentation RT: Nummer och namn för ett systerverktyg
- 2 Verktygsaxel
- 3 Verktygslängd och -radie
- 4 Tilläggsmått (Deltavärde) från TOOL CALL (PGM) och verktygstabellen (TAB)
- 5 Livslängd, maximal livslängd (TIME 1) och maximal livslängd vid TOOL CALL (TIME 2)
- 6 Presentation av det aktiva verktyget och dess (nästa) systerverktyg

STATUS KO KOORD.

Koordinatomräkningar

- 1 Huvudprogramnamn
- 2 Aktiv nollpunktsförskjutning (cykel 7)
- 3 Aktiv vridningsvinkel (cykel 10)
- 4 Speglade axlar (cykel 8)
- 5 Aktiv skalfaktor / skalfaktorer (cykel 11 / 26)
- 6 Mittpunkt för skalfaktor
- Se "Cykler för koordinatomräkning" på sidan 328.

STATUS VERKTYGS-MRTNING

1.4 Statuspresentation

1 Verktygsnummer som mäts

- 2 Indikering, om verktygsradie eller -längd mäts
- 3 MIN- och MAX-värde vid mätning av individuella skär och resultat för mätning med roterande verktyg (DYN).
- 4 Verktygsskärets nummer med tillhörande mätvärde. Stjärnan efter mätvärdet indikerar att toleransen från verktygstabellen har överskridits.

STATUS Aktiva tilläggsfunktioner M

- 1 Lista med aktiva M-funktioner som har förutbestämd betydelse
- 2 Lista med aktiva M-funktioner som har anpassats av din maskintillverkare

1.5 Tillbehör: HEIDENHAIN 3Davkännarsystem och elektroniska handrattar

3D-avkännarsystem

Med de olika 3D-avkännarsystemen från HEIDENHAIN kan man:

- Rikta upp arbetsstycket automatiskt
- Snabbt och noggrant ställa in utgångspunkten
- Utföra mätning på arbetsstycket under programexekveringen
- Mäta och kontrollera verktyg

Alla avkännarfunktioner beskrivs i en separat bruksanvisning. Kontakta HEIDENHAIN om du behöver denna bruksanvisning. Id.-Nr.: 329 203-xx.

De brytande avkännarsystemen TS 220, TS 630 och TS 632

Dessa avkännarsystem lämpar sig väl för automatisk uppriktning av arbetsstycket, inställning av utgångspunkten och för mätning på arbetsstycket. TS 220 överför triggersignalen via en kabel och är ett kostnadseffektivt alternativ då man önskar digitalisera ibland.

TS 630 och TS 632 lämpar sig speciellt väl för maskiner med verktygsväxlare eftersom triggersignalen överförs via en infraröd sändare/mottagare utan kabel.

Funktionsprincip: I de brytande avkännarsystemen från HEIDENHAIN registrerar en förslitningsfri optisk sensor utböjningen av mätstiftet. Den erhållna signalen medför att den aktuella avkännarpositionens ärvärde lagras.

TT 130 är ett brytande 3D-avkännarsystem för mätning och kontroll av verktyg. För detta ändamål erbjuder TNC:n tre cykler, med vilka verktygsradie och -längd med stillastående eller roterande spindel kan mätas. Det mycket robusta utförandet och den höga skyddsklassen gör TT 130 okänslig mot kylvätska och spånor. Triggersignalen skapas med en förslitningsfri optisk sensor, vilken kännetecknas av en hög tillförlitlighet.

Elektroniska handrattar HR

De elektroniska handrattarna förenklar precisa manuella förflyttningar av axelsliderna. Förflyttningssträckan per handrattsvarv kan väljas inom ett brett område. Förutom inbyggnadshandrattarna HR 130 och HR 150 erbjuder HEIDENHAIN den portabla handratten HR 410 (se bilden i mitten).

Manuell drift och inställning

2.1 Uppstart, avstängning

Uppstart

. (Ÿ

Uppstartsproceduren och referenspunktssökningen är maskinavhängiga funktioner. Beakta anvisningarna i Er maskinhandbok.

Slå på matningsspänningen till TNC och maskin. Därefter inleder TNC:n automatiskt med följande dialog:

MI NNESTEST

TNC:ns minne testas automatiskt

TNC-meddelande, strömmen har varit bruten – radera meddelandet

ÖVERSÄTT PLC-PROGRAM

Υ

TNC:ns PLC-program översätts automatiskt

 STYRSPÄNNING TILL RELÄ SAKNAS

 I
 Slå på styrspänningen. TNC:n testar Nödstoppslingans funktion

 MANUELL DRIFT PASSERA REFERENSPUNKTER

 I
 Passera referenspunkterna i föreslagen o Testel så den se terme STADT bergeren för

Passera referenspunkterna i föreslagen ordningsföljd: Tryck på den externa START-knappen för varje axel, eller

Passera referenspunkterna i valfri ordningsföljd: Tryck och håll inne de externa riktningsknapparna för respektive axel tills referenspunkterna har passerats TNC:n är nu funktionsklar och befinner sig i driftart Manuell drift.

Referenspunkterna behöver bara passeras då maskinaxlarna skall förflyttas. Om man bara skall editera eller testa program kan driftart Programinmatning/ Editering eller Programtest väljas direkt efter påslag av styrspänningen.

Referenspunkterna kan då passeras vid ett senare tillfälle. För att göra detta trycker man på softkey SÖK REF.PUNKT i driftart Manuell drift.

Referenspunktssökning vid 3D-vridet koordinatsystem

Passering av referenspunkter kan utföras i 3D-vridet koordinatsystem via de externa riktningsknapparna. Därtill måste funktionen "Tippning av bearbetningsplan" vara aktiv i Manuell drift, se "Aktivering av manuell vridning", sidan 27. Vid tryckning på de externa axelriktningsknapparna interpolerar TNC:n de däri ingående maskinaxlarna.

NC-START-knappen har ingen funktion. Om den används kommer TNC:n att presentera ett felmeddelande.

Kontrollera så att vinkelvärdet som angivits i menyn överensstämmer med vridningsaxelns verkliga vinkel.

Avstängning

För att undvika dataförlust vid avstängning måste man ta ner TNC:ns operativsystem på ett kontrollerat sätt:

Välj driftart Manuell

- Välj funktionen för att stänga av, bekräfta med softkey JA igen
- När TNC:n presenterar texten Nu kan du stänga av i ett överlagrat fönster, får man stänga av matningsspänningen till TNC:n

Godtycklig avstängning av TNC:n kan leda till dataförlust.

2.2 Förflyttning av maskina<mark>xla</mark>rna

2.2 Förflyttning av maskinaxlarna

Hänvisning

, P

Förflyttning med de externa riktningsknapparna är en maskinavhängig funktion. Beakta anvisningarna i Er maskinhandbok!

Förflytta axel med de externa riktningsknapparna

()	Välj driftart Manuell drift
×	Tryck på den externa riktningsknappen och håll den inne så länge axeln skall förflyttas, eller
(X) och (I)	Kontinuerlig förflyttning av axel: Håll den externa riktningsknappen intryckt och tryck samtidigt kort på den externa START-knappen
0	Stoppa: Tryck på den externa STOPP-knappen

Med båda metoderna kan man förflytta flera axlar samtidigt. Man kan ändra matningen som axlarna förflyttar sig med via softkey F, se "Spindelvarvtal S, Matning F och Tilläggsfunktion M", sidan 21.

Förflyttning med den elektroniska handratten HR 410

Den portabla handratten HR 410 är utrustad med två stycken säkerhetsbrytare. Säkerhetsbrytarna är placerade nedanför veven.

Man kan bara förflytta maskinaxlarna då man trycker in en av säkerhetsbrytarna (maskinavhängig funktion).

Handratten HR 410 är bestyckad med följande manöverfunktioner:

- 1 NÖDSTOPP
- 2 Handratt
- 3 Säkerhetsbrytare
- 4 Knappar för axelval
- 5 Knapp för överföring av Är-positionen
- 6 Knappar för att välja matningshastigheten (långsam, medel, snabb; matningshastigheterna bestäms av maskintillverkaren)
- 7 Riktning, i vilken TNC:n skall förflytta den valda axeln
- 8 Maskinfunktioner (bestäms av maskintillverkaren)

De röda lysdioderna indikerar vilken axel och vilken matningshastighet man har valt.

Förflyttning med handratten kan även utföras under programexekveringen.

Förflyttning

Stegvis positionering

Vid stegvis positionering förflyttar TNC:n en maskinaxel med ett av dig angivet stegmått.

2.3 Spindelvarvtal S, Matning F och Tilläggsfunktion M

Användningsområde

I driftarterna Manuell drift och El. HANDRATT anger man spindelvarvtal S, matning F och tilläggsfunktion M via softkeys. Tilläggsfunktionerna beskrivs i "7. Programmering: Tilläggsfunktioner".

Maskintillverkaren definierar vilka tilläggsfunktioner M som kan användas och deras betydelse.

Ange värde

Spindelvarvtal S, Tilläggsfunktion M

Välj inmatning av spindelvarvtal: Softkey S

SPINDELVARVTAL S=

1000

T

Ange spindelvarvtal och överför med den externa START-knappen

Spindelrotationen med det angivna varvtalet S startas med en tilläggsfunktion M. Man anger en tilläggsfunktion M på samma sätt.

Matning F

Inmatningen av en matning F måste man bekräfta med knappen ENT istället för med den externa START-knappen.

För matningen F gäller:

- Om man anger F=0 så verkar den lägsta matningen från MP1020
- F kvarstår även efter ett strömavbrott

Ändra spindelvarvtal och matning

Med override-potentiometrarna för spindelvarvtal S och matning F kan det inställda värdet ändras från 0% till 150%.

Override-potentiometern för spindelvarvtal fungerar bara i maskiner med steglös spindeldrift.

2.4 Inställning av utgångspunkt (utan 3D-avkännarsystem)

Hänvisning

Inställning av utgångspunkt med 3D-avkännarsystem: Se bruksanvisning Avkännarcykler.

Vid inställning av utgångspunkten ändras TNC:ns positionsvärde så att det överensstämmer med en känd position på arbetsstycket.

Förberedelse

- Rikta och spänn fast arbetsstycket
- Växla in ett nollverktyg med känd radie
- Försäkra dig om att TNC:n visar Är-positioner

Inställning av utgångspunkt

känd arbetsstyckesposition (t.ex. 0) eller ange bleckets tjocklek d. I bearbetningsplanet: Ta hänsyn till verktygsradien

Inställning av utgångspunkten för de övriga axlarna utförs på samma sätt.

Om man använder ett förinställt verktyg i ansättningsaxeln skall positionen i ansättningsaxeln ändras till verktygets längd L alt. till summan Z=L+d.

æ

2.5 3D-vridning av bearbetningsplanet

Användning, arbetssätt

Funktionerna för 3D-vridning av bearbetningsplanet måste anpassas i maskinen och TNC:n av maskintillverkaren. För det specifika spindelhuvudet (tippningsbordet) bestämmer maskintillverkaren om TNC:n skall tolka vinklarna som programmeras i cykeln som rotationsaxlarnas koordinater eller som vinkelkomponenter för ett snett plan. Beakta anvisningarna i Er maskinhandbok.

TNC:n understöder 3D-vridning av bearbetningsplanet i verktygsmaskiner med vridbara spindelhuvuden och tippningsbord. Typiska användningsområden är t.ex sned borrning eller konturer placerade på sneda ytor. Bearbetningsplanet vrids alltid runt den aktiva nollpunkten. Bearbetningen programmeras på vanligt sätt i ett huvudbearbetningsplan (t.ex. X/Y-planet). Däremot kommer bearbetningen att utföras i ett plan som är tippat i förhållande till det normala huvudbearbetningsplanet.

Det finns två funktioner tillgängliga för vridning av bearbetningsplanet:

- Manuell vridning med softkey 3D ROT i driftarterna Manuell drift och El. Handratt, se "Aktivering av manuell vridning", sidan 27
- Styrd vridning, cykel 19 BEARBETNINGSPLAN i bearbetningsprogrammet (se "BEARBETNINGSPLAN (cykel 19)" på sidan 339)

TNC-funktionen för "3D-vridning av bearbetningsplanet" är av typen koordinattransformerande. Därvid förblir bearbetningsplanet alltid vinkelrätt mot den faktiska verktygsaxelns riktning.

Vid vridning av bearbetningsplanet skiljer TNC:n mellan två maskintyper:

Maskiner med tippbara rundbord

- Tippningsbordet måste först positioneras så att arbetsstycket hamnar i önskat bearbetningsläge. Detta kan utföras med t.ex. ett L-block.
- Den transformerade verktygsaxelns läge ändrar sig inte i förhållande till det maskinfasta koordinatsystemet. När rundbordet vrids – m.a.o även arbetsstycket – t.ex. till 90°, vrids inte koordinatsystemet med. När man trycker på axelriktningsknappen Z+, i driftart Manuell drift, kommer verktyget också att förflytta sig i Z+ riktningen.
- Vid beräkningen av det transformerade koordinatsystemet tar TNC:n bara hänsyn till mekaniskt betingade förskjutningar av rundbordet – så kallade "transformerings" komponenter.

Maskiner med vridbara spindelhuvuden

- Spindelhuvudet måste först positioneras så att verktyget hamnar i önskat bearbetningsläge. Detta kan utföras med t.ex. ett L-block.
- Den vridna (transformerade) verktygsaxelns läge ändrar sig i förhållande till det maskinfasta koordinatsystemet: När man vrider maskinens spindelhuvud – m.a.o. även verktyget – t.ex. till +90° i B-axeln, vrider sig koordinatsystemet med. När man trycker på axelriktningsknappen Z+, i driftart Manuell drift, förflyttar sig verktyget i det maskinfasta koordinatsystemets X+ riktning.
- Vid beräkning av det transformerade koordinatsystemet tar TNC:n hänsyn till mekaniskt betingade förskjutningar i spindelhuvudet ("transformerings" komponenter) samt förskjutningar som uppstår genom vridningen av verktyget (3D verktygslängdkompensering).

Referenspunktssökning vid vridna axlar

Vid 3D-vridet bearbetningsplan kan referenspunkten sökas med de externa riktningsknapparna. TNC:n interpolerar därvid de tillhörande axlarna. Kontrollera att funktionen "3D-vridning av bearbetningsplanet" är aktiverad i driftart Manuell drift samt att vridningsaxelns är-vinkel har angivits i menyfältet.

Inställning av utgångspunkt i vridet system

Efter att ha positionerat vridningsaxlarna till sina positioner kan utgångspunkten ställas in på samma sätt som vid ett icke vridet koordinatsystem. TNC:n räknar därvid om den angivna utgångspunkten till det vridna koordinatsystemet. Vid styrda rotationsaxlar hämtar TNC:n vinkelvärdet för denna beräkning från rotationsaxelns är-position.

> Man får inte ställa in utgångspunkten i det vridna systemet om bit 3 är satt i maskinparameter 7500. I sådana fall kommer TNC:n att beräkna en felaktig förskjutning.

Om din maskins tippningsaxlar inte är styrda måste rotationsaxlarnas Är-positioner anges i menyn för manuell vridning: Om rotationsaxelns(arnas) Är-position inte överensstämmer med det inmatade värdet kommer TNC:n att beräkna en felaktig utgångspunkt.

呣

Vid inställning av utgångspunkten tar TNC:n hänsyn till rotationsaxlarnas vridningsvinklar även om funktionen 3Dvridning av bearbetningsplanet är inaktiv. Beakta rotationsaxlarnas vinkellägen om du ställer in en ny utgångspunkt eller justerar utgångspunkten. Om du vill utföra bearbetningen i ett annat vinkelläge än det vid inställningen av utgångspunkten måste du aktivera funktionen 3D-vridning av bearbetningsplanet.

Inställning av utgångspunkt i maskiner med rundbord

TNC:ns beteende vid inställning av utgångspunkten är maskinberoende. Beakta anvisningarna i Er maskinhandbok.

TNC:n förskjuter automatiskt utgångspunkten när man roterar bordet och funktionen vridning av bearbetningsplan är aktiv:

MP 7500, Bit 3=0

För att beräkna förskjutningen av utgångspunkten använder TNC:n differensen mellan REF-koordinaten vid inställning av utgångspunkten och rotationsaxelns REF-koordinat efter vridningen. Denna beräkningsmetod skall användas när man spänner upp arbetsstycket uppriktat i rundbordets 0°-riktning (REF-värde).

MP 7500, Bit 3=1

Om man riktar upp ett snett placerat arbetsstycke med en rundbordsvridning, får TNC:n inte längre beräkna förskjutningen av utgångspunkten via differensen mellan REF-koordinaterna. TNC:n använder direkt rotationsaxelns REF-värde efter vridningen, utgår alltså alltid från att arbetsstycket var uppriktat före vridningen.

MP 7500 är verksam i maskinparameterlistan eller, om en sådan finns, i tabellen med beskrivning av rotationsaxlarnas geometri. Beakta anvisningarna i Er maskinhandbok.

Positionsindikering i vridet system

Positionerna som visas i statusfältet ($B\ddot{O}R$ och $\ddot{A}R$) hänför sig till det vridna koordinatsystemet.

Begränsningar vid 3D-vridning av bearbetningsplanet

- Avkännarfunktionen Grundvridning kan inte användas
- PLC-positioneringar (skapas av maskintillverkaren) är inte tillåtna

Aktivering av manuell vridning

Välj manuell vridning: Softkey 3D ROT. Menypunkten kan nu väljas med pil-knapparna

Ange vridningsvinkel

Sätt önskad driftart i menypunkten Vridning bearbetningsplan till Aktiv: Välj menypunkten, växla med knappen ENT

Avsluta inmatning: Knappen END

För att deaktivera funktionen sätter man önskad driftart i menyn Vridning bearbetningsplan till Inaktiv.

När funktionen Vridning bearbetningsplan har valts Aktiv och TNC:n förflyttar maskinaxlarna enligt de vridna axlarna visas symbolen 🖉 i statuspresentationen.

Om funktionen Vridning bearbetningsplan väljs Aktiv för driftart Programkörning, kommer den i menyn angivna vridningsvinkeln att gälla från och med det första blocket i bearbetningsprogrammet som utförs. Om cykel 19 **BEARBETNI NCSPLAN**, används i bearbetningsprogrammet kommer vinkelvärdet som har definierats i cykeln att bli verksamt (från och med cykeldefinitionen). Vinkelvärdet som har angivits i menyn kommer då att skrivas över.

VRID Proge Manue	BEARE Ramkör Ell Dr	BETNIN RNING RIFT	NGSPLA	AN AI II	<mark>KTIV</mark> NAKTIV	J	
A = -	+0		0				
C = -	⊦45 ⊦45		0				
				0%	S-IS1	r 10:	42
				1%	S-MON	1 LIM	IT 1
X	+76.	644 Y	(-	42.4	89 Z	+20	5.216
С	+114.	778 E	3 +2	207.8	72		
					S	359.	973
ÄR		Т	S 98	5	FØ		M 5/9

MANUELL DRIFT

PROGRAMTEST

Manuell positionering

3.1 Programmera och utföra enkla bearbetningar

Driftart Manuell positionering lämpar sig för enkla bearbetningar och förpositionering av verktyget. Här kan korta program i HEIDENHAIN-Klartext-format eller enligt DIN/ISO anges och utföras direkt. Även TNC:ns cykler kan anropas. Programmet lagras i filen \$MDI. Vid Manuell positionering kan den utökade statuspresentationen aktiveras.

Använda manuell positionering

Välj driftart Manuell positionering. Programmera filen \$MDI på önskat sätt

 \mathbf{I}

Starta programexekveringen: Extern START-knapp

Den Flexibla Konturprogrammeringen FK, programmeringsgrafiken och programkörningsgrafiken finns inte tillgängliga i denna driftart. Filen \$MDI får inte innehålla några programanrop (**PGM CALL**).

Exempel 1

Ett arbetsstycke skall förses med ett 20 mm djupt hål. Efter uppspänning av arbetsstycket, uppriktningen och inställningen av utgångspunkten kan borrningen programmeras och utföras med ett fåtal programrader.

Först förpositioneras verktyget över arbetsstycket, därefter till ett säkerhetsavstånd 5 mm över hålet. Dessa positioneringar utförs med L-block (rätlinje). Därefter utförs borrningen med cykel 1 **DJUPBORRNI NG**.

O BEGIN PGM SMDI MM	
1 TOOL DEF 1 L+0 R+5	Definiera verktyg: Nollverktyg, radie 5
2 TOOL CALL 1 Z S2000	Anropa verktyg: Verktygsaxel Z,
	Spindelvarvtal 2000 varv/min
3 L Z+200 R0 F MAX	Frikör verktyg (F MAX = snabbtransport)
4 L X+50 Y+50 R0 F MAX MB	Positionera verktyg med F MAX över hålet,
	spindel till
5 L Z+5 F2000	Positionera verktyg 5 mm över hålet
6 CYCL DEF 1.0 DJUPBORRNING	Definiera cykel DJUPBORRNING:
7 CYCL DEF 1.1 AVST 5	Verktygets säkerhetsavstånd över hålet

8 CYCL DEF 1.2 DJUP -20	Hålets djup (förtecken=arbetsriktning)
9 CYCL DEF 1.3 ARB DJ 10	Djup för varje ansättning innan återgång
10 CYCL DEF 1.4 V.TID 0,5	Väntetid vid hålets botten i sekunder
11 CYCL DEF 1.5 F250	Borrmatning
12 CYCL CALL	Anropa cykel DJUPBORRNING
13 L Z+200 R0 F MAX M2	Frikörning av verktyget
14 END PGM \$MDI MM	Programslut

Rätlinjefunktion L (se "Rätlinje L" på sidan 138), cykel DJUPBORRNING (se "DJUPBORRNING (cykel 1)" på sidan 211).

Exempel 2: Justera för snett placerat arbetsstycke i en maskin med rundbord

Utför funktionen grundvridning med 3D-avkännarsystem. Se bruksanvisning Avkännarcykler, "Avkännarcykler i driftart Manuell drift och El. Handratt", avsnitt "Kompensera för snett placerat arbetsstycke".

Notera Vridningsvinkel och upphäv Grundvridningen

	Välj driftart: Manuell positionering
<u>ل</u> ا	Välj rundbordsaxel, ange den noterade vridningsvinkeln och ange matning t.ex. L C+2.561 F50
	Avsluta inmatningen
I	Tryck på den externa START-knappen: Det snett placerade arbetsstycket justeras genom vridningen av arbetsstycket

Säkra eller radera program från \$MDI

Filen \$MDI används vanligen för korta program som inte behöver sparas. Skall ett program trots det sparas gör man på följande sätt:

Ŷ	Välj driftart: Program- inmatning/Editering
PGM MGT	Kalla upp filhanteringen: Knappen PGM MGT (Program Management)
1	Markera filen \$MDI
	Välj "Kopiera fil": Softkey KOPIERA
Malfil =	
HÅL	Ange ett namn, under vilket det aktuella innehållet i filen \$MDI skall sparas
UTFOR	Utför kopieringen
SLUT	Lämna filhanteringen: Softkey SLUT

För att radera innehållet i filen \$MDI gör man på ungefär samma sätt: Istället för att kopiera raderar man innehållet med softkey RADERA. Vid nästa växling till driftart Manuell positionering visar TNC:n en tom fil \$MDI.

När man vill radera \$MDI, så

- får inte driftart Manuell positionering vara vald (inte heller i bakgrunden)
- får man inte ha valt filen \$MDI i driftart Programinmatning/editering

Ytterligare information: se "Kopiera enstaka fil", sidan 53.

Programmering: Grunder, Filhantering, Programmeringshjälp, Paletthantering

4.1 Grunder

Positionsmätsystem och referensmärken

På maskinaxlarna finns positionsmätsystem placerade, vilka registrerar maskinbordets alt. verktygets position. På linjäraxlar är oftast längdmätsystem applicerad, på rundbord och tippningsaxlar används vinkelmätsystem.

Då en maskinaxel förflyttas genererar det därtill hörande positionsmätsystemet en elektrisk signal. Från denna signal kan TNC:n beräkna maskinaxelns exakta Är-position.

Vid ett strömavbrott förloras sambandet mellan maskinslidernas position och den beräknade Är-positionen. För att återskapa detta samband är inkrementella positionsmätsystem försedda med referensmärken. Vid förflyttning över ett referensmärke erhåller TNC:n en signal som används som en maskinfast utgångspunkt. På detta sätt kan TNC:n återskapa förhållandet mellan Är-positionen och maskinens aktuella position. Vid längdmätsystem med avståndskodade referensmärken behöver maskinaxeln bara förflyttas maximalt 20 mm, vid vinkelmätsystem maximalt 20°.

Vid absoluta mätsystem överförs ett absolut positionsvärde till styrsystemet direkt efter uppstart. Därigenom återställs förhållandet mellan är-position och maskinslidens position direkt efter uppstart utan att maskinaxeln behöver förflyttas.

Positionssystem

Med ett referenssystem kan man fastlägga positioner placerade i ett plan eller i rymden. Uppgifterna för en position utgår alltid från en fast definierad punkt och beskrivs från denna i form av koordinater.

I ett rätvinkligt koordinatsystem (kartesiskt system) är tre riktningar definierade som axlarna X, Y och Z. Axlarna är alltid vinkelräta mot varandra och skär varandra i en enda punkt, nollpunkten. En koordinat anger avståndet till nollpunkten i en av dessa riktningar. På detta sätt kan en position i planet beskrivas med hjälp av två koordinater och i rymden med tre koordinater.

Koordinater som utgår ifrån nollpunkten kallas för absoluta koordinater. Relativa koordinater utgår ifrån en annan godtycklig position (utgångspunkt) i koordinatsystemet. Relativa koordinatvärden kallas även för inkrementella koordinatvärden.

Positionssystem i fräsmaskiner

Vid bearbetning av ett arbetsstycke i en fräsmaskin utgår man oftast från det rätvinkliga koordinatsystemet. Bilden till höger visar hur koordinatsystemet är tillordnat maskinaxlarna. Tre-finger-regeln för höger hand hjälper till som minnesregel: Om man håller långfingret i verktygsaxeln (pekande mot verktyget och från arbetsstycket) så motsvarar detta positiv riktning i Z-axeln, tummen motsvarar positiv riktning i X-axeln och pekfingret positiv riktning i Y-axeln.

iTNC 530 kan styra upp till 9 axlar. Förutom huvudaxlarna X, Y och Z finns även parallellt löpande tilläggsaxlar U, V och W. Rotationsaxlarna betecknas med A, B och C. Bilden nere till höger visar hur tilläggsaxlarna respektive rotationsaxlarna tilldelas huvudaxlarna.

4.1 Grunder

Polära koordinater

Om ritningsunderlaget är måttsatt med rätvinkliga koordinater skapar man även bearbetningsprogrammet med rätvinkliga koordinater. Vid arbetsstycken med cirkelbågar eller vid vinkeluppgifter är det ofta enklare att definiera positionerna med hjälp av polära koordinater.

I motsats till de rätvinkliga koordinaterna X, Y och Z beskriver polära koordinater endast positioner i ett plan. Polära koordinater har sin nollpunkt i Pol CC (CC = circle centre; eng. cirkelcentrum). En position i ett plan bestäms då entydigt genom:

- Polär koordinatradie: avstånd från Pol CC till positionen
- Polär koordinatvinkel: vinkel mellan vinkelreferensaxeln och linjen som förbinder Pol CC med positionen

Se bilden uppe till höger

Bestämmande av Pol och vinkelreferensaxel

Pol bestämmes med två koordinater i rätvinkligt koordinatsystem i ett av de tre möjliga planen. Dessa båda koordinater bestämmer samtidigt vinkelreferensaxeln för den polära koordinatvinkeln PA.

Pol-koordinater (plan)	Vinkelreferensaxel
X/Y	+X
Y/Z	+Y
Z/X	+Z

4.1 Grunder

Absoluta och inkrementala arbetsstyckespositioner

Absoluta arbetsstyckespositioner

När en positions koordinat utgår från koordinatnollpunkten (ursprung) kallas dessa för absoluta koordinater. Varje koordinat på arbetsstycket är genom sina absoluta koordinater entydigt bestämda.

Exempel 1: Borrning med absoluta koordinater

Hål <mark>1</mark>	Hål <mark>2</mark>	Hål <mark>3</mark>
X = 10 mm	X = 30 mm	X = 50 mm
Y = 10 mm	Y = 20 mm	Y = 30 mm

Inkrementala arbetsstyckespositioner

Relativa koordinater utgår från den sist programmerade verktygspositionen. Denna verktygsposition fungerar som en relativ (tänkt) nollpunkt. Vid programframställningen motsvarar inkrementala koordinater följaktligen måttet mellan den sista och den därpå följande bör-positionen. Verktyget kommer att förflytta sig med detta mått. Därför kallas relativa koordinatangivelser även för kedjemått.

Ett inkrementalt mått kännetecknas av ett "I" före axelbeteckningen.

Exempel 2: Borrning med inkrementala koordinater

Absoluta koordinater för hål 4

X = 10 mmY = 10 mm

Hål 5, refererande till	4
X = 20 mm	
Y = 10 mm	

Hål <mark>6</mark>, refererande till 5 X = 20 mm Y = 10 mm

Absoluta och inkrementala polära koordinater

Absoluta koordinater hänför sig alltid till Pol och vinkelreferensaxeln.

Inkrementala koordinater utgår alltid från den sist programmerade verktygspositionen.

Inställning av utgångspunkt

Arbetsstyckets ritning specificerar ett särskilt konturelement som en absolut utgångspunkt (nollpunkt), ofta ett hörn på arbetsstycket. Vid inställning av utgångspunkten riktas först arbetsstycket upp i förhållande till maskinaxlarna, därefter förflyttas verktyget till en för alla axlar bekant position i förhållande till arbetsstycket. Vid denna position sätts TNC:ns positionsvärde till noll eller ett annat lämpligt värde. Därigenom relateras utgångspositionen, som gäller för TNC-presentationen liksom även bearbetningsprogrammet, till arbetsstycket.

Om det förekommer relativa utgångspunkter i arbetsstyckets ritning så använder man förslagsvis cyklerna för koordinatomräkningar (se "Cykler för koordinatomräkning" på sidan 328).

Om man har ett ritningsunderlag som inte är anpassat för NCprogrammering så bör man placera utgångspunkten vid en position eller ett hörn som det är lätt att beräkna måtten till övriga arbetsstyckespositioner ifrån.

Ett 3D-avkännarsystem från HEIDENHAIN underlättar mycket då man skall ställa in utgångspunkten. Se bruksanvisning Avkännarcykler "Inställning av utgångspunkt med 3D-avkännarsystem".

Exempel

Skissen till höger visar ett arbetsstycke med hål (1 till 4). Dessa håls måttsättning utgår ifrån en absolut utgångspunkt med koordinaterna X=0 Y=0. Hålen (5 till 7) refererar till en relativ utgångspunkt med de absoluta koordinaterna X=450 Y=750. Med cykel

NOLLPUNKTSFÖRSKJUTNING kan man förskjuta nollpunkten till positionen X=450, Y=750 så att hålen (5 till 7) kan programmeras utan ytterligare beräkningar.

4.2 Filhantering: Grunder

Via MOD-funktionen PGM MGT (se "Konfiguration av PGM MGT" på sidan 439) väljer man mellan standard filhantering och den utökade filhanteringen.

Om TNC:n är ansluten till ett nätverk så använder man sig av den utökade filhanteringen.

Filer

Filer i TNC:n	Тур
Program i HEIDENHAIN-format i DIN/ISO-format	.H .I
Tabeller för Verktyg Verktygsväxlare Paletter Nollpunkter Skärdata Skärmaterial, arbetsstyckesmaterial	.T .TCH .P .D .CDT .TAB
Text som ASCII-filer	.Α

När ett bearbetningsprogram skall matas in i TNC:n börjar man med att ange programmets namn. TNC:n lagrar programmet på hårddisken som en fil med samma namn. TNC:n lagrar även texter och tabeller som filer.

För att man snabbt skall kunna hitta och hantera sina filer är TNC:n utrustad med ett speciellt fönster för filhantering. Här kan de olika filerna kallas upp, kopieras, raderas och döpas om.

Med TNC:n kan man lagra och hantera ett närapå oändligt antal filer, dock minst **2.000 MByte**.

Filers namn

Bredvid programmen, tabellerna och texterna infogar TNC:n en filtypsindikering vilken är skild från filnamnet med en punkt. Denna utökning indikerar vilken filtyp det är.

PROG20	.H	
Filnamn	Filtyp	
Maximal längd	Se tabell "filer i TNC:n	

Datasäkerhet

HEIDENHAIN förordar att användaren regelbundet sparar säkerhetskopior av i TNC:n nyskapade program och filer på en PC.

För detta ändamål tillhandahåller HEIDENHAIN ett BACKUP-program (TNCBACK.EXE) utan kostnad. Kontakta i förekommande fall Er maskintillverkare.

Dessutom behöver man en diskett med säkerhetskopior på alla maskinspecifika data (PLC-program, maskinparametrar mm). Kontakta även här Er maskintillverkare.

Om alla filerna som finns på hårddisken (> 2 GByte) skall säkerhetskopieras, kan detta ta flera timmar i anspråk. Sådana säkerhetskopieringar utföres förslagsvis under natten eller så använder man funktionen UTFÖR PARALLELLT (kopiera i bakgrunden).

För hårddiskar kan man räkna med att det, beroende på driftvillkoren (t.ex. vibrationer), efter 3 till 5 år sker en ökning av antalet fel. HEIDENHAIN rekommenderar därför att man låter någon kontrollera hårddisken efter 3 till 5 år.

4.3 Standard filhantering

Hänvisning

Arbeta med standard filhantering när du vill lagra alla filerna i en och samma katalog eller när du är van vid filhanteringen i äldre TNC-system.

När detta önskas väljer man MOD-funktionen **PGM MT** (se "Konfiguration av PGM MGT" på sidan 439) till **Standard**.

Kalla upp filhanteringen

PGM MGT Tryck på knappen PGM MGT: TNC:n visar fönstret för filhantering (se bilden till höger)

Fönstret visar alla filer som finns lagrade i TNC:n. Bredvid varje fil visas mer information:

Presentation	Betydelse
FILNAM	Namn med maximalt 16 tecken och filtyp
BYTE	Filstorlek i Byte
STATUS	Filens egenskaper:
E	Programmet är valt i driftart Programinmatning/Editering
S	Programmet är valt i driftart Programtest
М	Programmet är valt i en avdriftarterna för programkörning
Ρ	Filen är skyddad mot radering och förändring (Protected)

PROGRAM BLOCKFÖLJE	, ED: FIL	TERA NAMN	PROGI = <mark>%</mark> TC	RAM HPR	I – T F N T I	ABE A	LL		
TNC:	*.* -NOM#				ρVI		c		2
		V	. A		DI	360		STHTUS	
ASDF	GHJ		.A		88	544			
CVRE	EPORT		.Α		132	269			
K J H G	3 F D		.Α			0			
LOGBOOK .A 114K									
BOHE	BOHRER .CDT 4522								
FRAES_2 .CDT 10382									
FRAE	ES_GB		. CI	DT	103	382			
VM1	VM1 .COM 13								
test	test .D 406								
\$MU]			.H		23	310	птс	· T	
75 F	·IL(E)	() 91	7440	КВҮ	IE	LE	DIG	a	
SIDA Û	SIDA J	VÄLJ - 2	RADERA	KOP ABC	IERA ⇒XYZ	EX	T)	SISTA FILERNA	SLUT

Välja fil

NEJ

Kopiera fil

PGM MGT

Kalla upp filhanteringen

Använd pilknapparna eller pil-softkeys för att förflytta markören till filen som du vill kopiera:

Förflytta markören upp och ner fil för fil i fönstret

Förflytta markören upp och ner sida för sida i fönstret

Kopiera fil: Tryck på softkey KOPIERA

Malfil=

Ange det nya filnamnet, godkänn med softkey UTFÖR eller med knappen ENT. TNC:n presenterar ett statusfönster som informerar om kopieringsförloppet. Man kan inte arbeta vidare så länge TNC:n kopierar, eller

om man vill kopiera mycket långa program: Ange nytt filnamn, godkänn med softkey UTFÖR PARALLELLT. Man kan fortsätta arbeta efter det att kopieringsförloppet har startas eftersom TNC:n kopierar filen i bakgrunden.

TNC:n visar ett överlagrat fönster med information om hur långt kopieringsförloppet har fortskridit om kopieringen startades med softkey UTFÖR.

Dataöverföring till/från en extern dataenhet

Ġ

Innan man kan överföra filer till en extern dataenhet måste datasnittet ställas in (se "Inställning av datasnitt" på sidan 430).

Kalla upp filhanteringen Aktivera dataöverföring: Tryck på softkey EXT. TNC:n visar i den vänstra bildskärmsdelen 1 alla filer som finns lagrade i TNC:n, i den högra bildskärmsdelen 2 alla filer som finns lagrade i den externa dataenheten.

Använd pilknapparna för att förflytta markören till filen som du vill överföra:

Förflytta markören upp och ner i ett fönster

Förflytta markören från höger till vänster fönster och tvärtom

Om man vill kopiera från TNC:n till den externa dataenheten förflyttar man markören i det vänstra fönstret till filen som skall överföras.

Om man vill kopiera från den externa dataenheten till TNC:n förflyttar man markören i det högra fältet till filen som skall överföras.

Markeringsfunktioner	Softkey
Markera enstaka fil	MARKERA FIL
Markera alla filer	MARKERA ALLA FILER
Upphäv markeringen för en enskild fil	UPPHÄV MARKERING
Upphäv markeringen för alla filer	UPPHAV RLL MARKERING
Kopiera alla markerade filer	KOP.MARK.

PROGRAM BLOCKFÖLJD	EDITERA PROGI FILNAMN = <mark>%TC</mark>	RAM-TABELL HPRNT.A	
TNC:*.*	1 Byte status	2 R\$232:*.* [NO DIR]	
%TCHPRNT	.A 360		
ASDFGHJ	.A 8644		
CVREPORT	.A 13269		
KJHGFD	.A Ø		
LOGBOOK	.A 114K		
BOHRER	.CDT 4522		
FRAES_2	.CDT 10382		
FRAES_GB	.CDT 10382		
VM1	.COM 13		
test	.D 406		
\$MDI	.H 2310		
75 FIL(ER) S	917440 KBYTE LEDIGT		
SIDA S	BIDA KOPIERA TNC EXT ↓ TNC ● EXT		Т

Godkänn med softkey UTFÖR eller med knappen ENT. TNC:n visar ett statusfönster som informerar om kopieringsförloppet, eller

om man vill överföra långa eller många program: Godkänn med softkey UTFÖR PARALLELLT. TNC:n kopierar då filen i bakgrunden

Avsluta dataöverföringen: Tryck på softkey TNC. TNC:n visar åter filhanteringens standardfönster

Kalla upp en av de 10 sist valda filerna

MANUELL DRIFT PROGE	RAM INMATNING	
TNC: ALBERT SCREENS CDT CUTTAB DEMO HE HERBERT NK 410 CONCEPT CONCEPT CYCUORK TNC410 DUMPS	0: INGENIKSDURPSS35071.H 1: TNC:SNKSDURPSS1S.H 2: TNC:SNKSDURPSS1S.H 3: TNC:NKSDURPSSBLU.H 4: TNC:SUTTRBSFRRES_2.CDT 5: TNC:SNKSDURPSSBLK.H 6: TNC:SNKSDURPSSBLK.H 8: TNC:SNKSDURPSS516.R 9: TNC:SNKSDURPSSS10LD.H	
VÄLJ		SLUT

Döp om fil

ENT

Kalla upp filhanteringen

Använd pilknapparna eller pil-softkeys för att förflytta markören till filen som du vill döpa om:

	Förflytta markören upp och ner fil för fil i fönstret
SIDA SIDA	Förflytta markören upp och ner sida för sida i fönstret
DOP DH REC - XYZ	Döp om fil: Tryck på softkey DÖP OM
Malfil=	
Ange det nya fi knappen ENT	lnamnet, godkänn med softkey UTFÖR eller med

Skydda filer/upphäv filskydd

PGM MGT Kalla upp filhanteringen

Använd pilknapparna eller pil-softkeys för att förflytta markören till filen som du vill skydda alt. som du vill upphäva filskyddet på:

	Förflytta markören upp och ner fil för fil i fönstret
SIDA SIDA	Förflytta markören upp och ner sida för sida i fönstret
SKYDDA	Skydda fil: Tryck på softkey SKYDDA. Filen får status P, eller
	Upphäv filskydd: Softkey OSKYDDA trycks in. Status P raderas

4.4 Utökad filhantering

Hänvisning

Arbeta med utökad filhantering när du vill lagra filer i olika kataloger.

När detta önskas väljer man MOD-funktionen PGM MGT (se "Konfiguration av PGM MGT" på sidan 439).

Se även "Filhantering: Grunder" på sidan 39.

Kataloger

Eftersom hårddisken kan lagra många program respektive filer lägger man dessa filer i kataloger (mappar). På detta sätt får man en god överblick över sina filer. I dessa kataloger kan ytterligare kataloger läggas in, så kallade underkataloger. Med knappen -/+ eller ENT kan man välja att visa eller inte visa underkataloger.

TNC:n kan hantera maximalt 6 katalognivåer!

Om man lagrar fler än 512 filer i en och samma katalog kommer TNC:n inte att sortera dessa filer i alfabetisk ordning!

Katalogers namn

En katalogs namn får vara maximalt 16 tecken långt och är inte försedda med någon extension. Om man anger fler än 16 tecken som katalognamn kommer TNC:n att presentera ett felmeddelande.

Sökväg

En sökväg anger en logisk enhet och samtliga kataloger resp. underkataloger i vilken en fil finns lagrad. De olika uppgifterna skiljs från varandra med ett "\".

Exempel

På hårddisken **TNC:** \ har katalogen AUFTR1 lagts in. Därefter har även underkatalogen NCPROG lagts in i **AUFTR1**. Till denna underkatalog har man kopierat bearbetningsprogrammet PROG1.H. Bearbetningsprogrammet har då sökvägen:

TNC:\AUFTR1\NCPROG\PROG1.H

Bilden till höger visar ett exempel på en katalogpresentation med olika kataloger i TNC:n.

Översikt: Den utökade filhanteringens funktioner

Funktion	Softkey
Kopiera enstaka filer (och konvertera)	
Visa endast viss filtyp	ALT ALT ALT
Visa de 10 sist valda filerna	SISTA FILERNA
Radera fil eller katalog	RADERA
Markera fil	MARKERA
Döp om fil	DOP OM RBC * XYZ
Skydda fil mot radering och förändring	
Upphäv filskydd	
Administrera nätverksenhet	NRT
Kopiera katalog	KOP, KATA,
Visa en enhets kataloger	
Radera en katalog med alla underkataloger	

PGM MGT Tryck på knappen PGM MGT: TNC:n visar fönstret för filhantering (Bilden uppe till höger visar grundinställningen. Om TNC:n visar en annan bildskärmsuppdelning trycker man på softkey FÖNSTER)

Det vänstra, smala fönstret 1 visar de tillgängliga enheterna och katalogerna. Enheterna markerar utrustningar med vilka data kan lagras eller överföras. En enhet är TNC:ns hårddisk, andra enheter är datasnitten (RS232, RS422, Ethernet), till dessa kan exempelvis en persondator anslutas. En katalog kännetecknas alltid av en katalogsymbol (vänster) och ett katalognamn (höger). Underkataloger är något förskjutna mot höger. Om en liten ruta med +-symbol befinner sig framför mapp-symbolen, finns det ytterligare underkataloger, vilka kan visas med hjälp av knappen -/+ eller ENT.

l det breda fönstret till höger visas alla filer 2 som finns lagrade i den valda katalogen. Bredvid varje fil visas mer information, denna information beskrivs nedanstående tabell.

PROGRAM	EDITE	ERA	PROGR	RAM-	TABEI	_L	
BLOCKFÖLJD	SOKVI	iG =	TNC:	NK \	CONCI	ΞΡΤ	
P RS232:∖					2		
🗏 RS422:\	1	TNC:V	NK\CONCEPT	*.*	-		
TNC:>		FIL	-NAMN		BYTE ST	ATUS DATUM	TID
		CPOCH	KET	.н	70	04-10-1999	09:21:00
TNC:>		CSTU	D	.н	70	04-10-1999	10:56:48
		RPOCH	K E T	.н	166	04-10-1999	09:17:36
	3	RSTU	D	.н	166	04-10-1999	09:18:34
🗀 СОТ							
🗅 CUTTAB							
🗀 DEMO							
🗅 HE							
HERBERT							
D NK							
410		4 F	IL(ER) 9174	440 KBY	TE LEDIGT		
CONCEPT							
SIDA S	IDA V	iALJ 2₽	кор.ката.		J FÖNS] ≡ ≡[TER SISTA	SLUT

Presentation	Betydelse
FILNAMN	Namn med maximalt 16 tecken och filtyp
BYTE	Filstorlek i Byte
STATUS	Filens egenskaper:
Е	Programmet är valt i driftart Programinmatning/Editering
S	Programmet är valt i driftart Programtest
Μ	Programmet är valt i en avdriftarterna för programkörning
Ρ	Filen är skyddad mot radering och förändring (Protected)
DATUM	Datum, vid vilket filen förändrades sista gången
TID	Klockslag, vid vilket filen förändrades sista gången

Välj enhet, katalog och fil

PGM MGT Kalla upp filhanteringen

Använd pilknapparna eller softkeys för att förflytta markören till önskat ställe på bildskärmen:

8 6	F tv	örflytta markören från höger till vänster fönster och ′ärtom
	F	örflytta markören upp och ner i ett fönster
SIDA SI	ря F fč	örflytta markören sida för sida upp och ner i ett inster

1. steg: Välj enhet

Markera önskad enhet i det vänstra fönstret:

eller	Välj enhet: Softkey VÄLJ eller knappen ENT trycks in
ENT	

2. steg: Välj katalog

Markera en katalog i det vänstra fönstret: Det högra fönstret visar automatiskt alla filer från katalogen som är markerad (presenteras med ljusare färg)

3. steg: Välj fil

Markera önskad fil i det högra fönstret:

ENT

Den valda filen aktiveras i den driftart som man befinner sig i då man kallar upp filhanteringen: Tryck på softkey VÄLJ eller på knappen ENT

Skapa en ny katalog (endast möjligt på enhet TNC:\)

Markera önskad katalog i det vänstra fönstret, i vilken en underkatalog skall skapas

Kopiera enstaka fil

Förflytta markören till filen som skall kopieras

- KOPIERA REC + XYZ
- Tryck på softkey KOPIERA: Välj kopieringsfunktionen
- Ange målfilens namn och bekräfta genom att trycka på knappen ENT eller softkey UTFÖR: TNC:n kopierar filen till den aktuella katalogen. Den ursprungliga filen förblir oförändrad, eller
- Tryck på softkey UTFÖR PARALLELLT för att kopiera filen i bakgrunden. Använd denna funktion för att kopiera stora filer eftersom du då kan fortsätta arbeta efter start av kopieringsförloppet. Samtidigt som TNC:n kopierar i bakgrunden kan man kontrollera kopieringsförloppets status via softkey INFO UTFÖR PARALLELLT (under FLER FUNKTIONER, 2:a softkeyraden).

TNC:n visar ett överlagrat fönster med information om hur långt kopieringsförloppet har fortskridit om kopieringen startades med softkey UTFÖR.

Kopiera tabell

När man kopierar tabeller kan man skriva över individuella rader eller kolumner i måltabellen med softkey ERSÄTT FÄLT. Förutsättning:

- måltabellen måste redan existera
- filen som kopieras får bara innehålla raderna eller kolumnerna som skall ersättas

Softkey **ERSÄTT FÄLT** visas inte om du vill skriva över tabellen i TNC:n utifrån med en överföringsprogramvara såsom exempelvis TNCremoNT. Kopiera den externt genererade filen till en annan katalog och utför sedan kopieringen med filhanteraren i TNC:n.

Exempel

I en förinställningsapparat har man mätt upp verktygslängden och verktygsradien för 10 nya verktyg. Förinställningsapparaten genererar verktygstabellen TOOL.T med 10 rader (motsvarar 10 verktyg) och kulumnerna

- Verktygsnummer (kolumn T)
- Verktygslängd (kolumn L)
- Verktygsradie (kolumn R)

Kopiera denna fil till en annan katalog än den katalog som den befintliga TOOL.T är placerad i. När man kopierar denna fil med TNC:ns filhanterare till den befintliga tabellen, frågar TNC:n om den befintliga verktygstabellen TOOL.T skall skrivas över:

- Om man trycker på softkey JA så kommer TNC:n att skriva över den aktuella filen TOOL.T fullständigt. Efter kopieringen består alltså TOOL.T av 10 rader. Alla kolumner – naturligtvis med undantag för kolumnerna nummer, längd och radie– återställs
- Om man istället trycker på softkey ERSÄTT FÄLT kommer TNC:n endast att skriva över de första 10 radernas kolumner nummer, längd och radie i filen TOOL.T. Data i övriga rader och kolumner förändras inte av TNC:n

Kopiera katalog

Förflytta markören i det vänstra fönstret till katalogen som du vill kopiera. Tryck på softkey KOP. KAT. istället för softkey KOPIERA. Även underkatalogerna kopieras av TNC:n.

Kalla upp en av de 10 sist valda filerna

Radera fil

Förflytta markören till filen som skall raderas

- Välj raderingsfunktionen: Tryck på softkey RADERA. TNC:n frågar om filen verkligen skall raderas
- ▶ Godkänn raderingen: Tryck på softkey JA eller
- Avbryt raderingen: Tryck på softkey NEJ

Radera katalog

- Radera alla filer och underkataloger från katalogen som skall raderas
- Förflytta markören till katalogen som du vill radera

- Välj raderingsfunktionen: Tryck på softkey RADERA. TNC:n frågar om katalogen verkligen skall raderas
- Godkänn raderingen: Tryck på softkey JA eller
- Avbryt raderingen: Tryck på softkey NEJ

Markera filer

Markeringsfunktioner	Softkey
Markera enstaka fil	MARKERA FIL
Markera alla filer i katalogen	MARKERA ALLA FILER
Upphäv markeringen för en enskild fil	UPPHRV MRRKERING
Upphäv markeringen för alla filer	UPPHAV ALL MARKERING
Kopiera alla markerade filer	KOP.MARK.

Funktioner såsom kopiering eller radering av filer kan utföras såväl för enskilda som för flera filer samtidigt. Flera filer markeras på följande sätt:

Förflytta markören till den första filen

MARKERA	Visa markeringsfunktioner: Tryck på softkey MARKERA
MARKERA FIL	Markera fil: Tryck på softkey MARKERA FIL
Förflytta markö	ren nästa fil
MARKERA FIL	Markera ytterligare filer: Tryck på softkey MARKERA FIL o.s.v.
KOP. MARK.	Kopiera markerade filer: Tryck på softkey KOP. MARK., eller
SLUT	Radera markerade filer: Tryck på softkey SLUT för att lämna markeringsfunktionen och tryck därefter på softkey RADERA för att radera de markerade filerna

Döp om fil

Förflytta markören till filen som skall döpas om

- Välj funktionen för att döpa om
- Ange det nya filnamnet; Filtypen kan inte ändras
- Utför omdöpningen: Tryck på knappen ENT

Specialfunktioner

Skydda filer/upphäv filskydd

Förflytta markören till filen som skall skyddas

- Välj ytterligare funktioner: Tryck på softkey FLER FUNKT.
- SKYDDA
- Aktivera filskydd: Tryck på softkey SKYDDA, filen får status P
- Man upphäver filskyddet på samma sätt med softkey OSKYDDA

Radera katalog inklusive alla underkataloger och filer

- Förflytta markören i det vänstra fönstret till katalogen som du vill radera.
- FLER FUNKTION.

RADERA ALLA

- Välj ytterligare funktioner: Tryck på softkey FLER FUNKT.
- Radera komplett katalog: Tryck på softkey RADERA ALLA
- Godkänn raderingen: Tryck på softkey JA. Avbryt raderingen: Tryck på softkey NEJ

Dataöverföring till/från en extern dataenhet

Innan man kan överföra filer till en extern dataenhet måste datasnittet ställas in (se "Inställning av datasnitt" på sidan 430).

PGM MGT]
FÖN	STER
≡⊨	

Kalla upp filhanteringen Välj bildskärmsuppdelning för dataöverföringen: Tryck på softkey FÖNSTER. TNC:n visar i den vänstra bildskärmsdelen 1 alla filer som finns lagrade i TNC:n, i den högra bildskärmsdelen 2 alla filer som finns

PROGRAM	EDITE	RA	PROGR	RAM-TA	BELL		
BLUCKFULJU	FILNA	MN	= <mark>%</mark> TCH	IPRNT.	A		
TNC:\NK\DUMP	•s∖*.* 1			TNC:*.*	2		
FIL-NAMN	Bĭ	TE S	TATUS	FIL-NAM	N	BYTE	STATUS
3516	. A	926		%TCHPRNT	.Α	360	
BSP	. A	336		ASDFGHJ	.A	8644	
NEU	. A	Ø		CVREPORT	.A	13269	
NEU	.CDT 4	424		KJHGFD	.A	Ø	
NULLTAB	. D	514 S		LOGBOOK	. A	114K	
1	.н	864		BOHRER	.CDT	4522	
1E	.н	436		FRAES_2	.CDT	10382	
1F	.н	422		FRAES_GB	.CDT	10382	
1GB	.н	446		VM1	. COM	13	
11	.н	382		test	. D	406	
1NL	.н	412		\$MDI	.н	2310	
29 FIL(ER)	917440 KBYTE	LEDIG	T	75 FIL(E	R) 917440 KB	YTE LEDI	GT
SIDA ÎÎ	SIDA VA	iLJ ₽	KOPIERA ABC ⇔XYZ	VALJ		ATH	SLUT

Använd pilknapparna för att förflytta markören till filen som du vill överföra:

lagrade i den externa dataenheten.

Förflytta markören upp och ner i ett fönster

Förflytta markören från höger till vänster fönster och tvärtom

Om man vill kopiera från TNC:n till den externa dataenheten förflyttar man markören i det vänstra fönstret till filen som skall överföras.

Om man vill kopiera från den externa dataenheten till TNC:n förflyttar man markören i det högra fältet till filen som skall överföras.

Överför alla filer: Tryck på softkey TNC => EXT

Godkänn med softkey UTFÖR eller med knappen ENT. TNC:n visar ett statusfönster som informerar om kopieringsförloppet, eller

om man vill överföra långa eller många program: Godkänn med softkey UTFÖR PARALLELLT. TNC:n kopierar då filen i bakgrunden

Avsluta dataöverföringen: Förflytta markören till det vänstra fönstret och tryck därefter på softkey FÖNSTER. TNC:n visar åter filhanteringens standardfönster

För att välja en annan katalog vid presentation av två filfönster trycker man på softkey PATH. Välj den önskade katalogen med pilknapparna och knappen ENT i det överlagrade fönstret!

Kopiera filer till en annan katalog

- Välj bildskärmsuppdelning med två lika stora fönster
- Visa kataloger i båda fönstren: Tryck på softkey PATH

Högra fönstret

Förflytta markören till katalogen till vilken du vill kopiera filerna och visa filerna i denna katalog med knappen ENT.

Vänstra fönstret

Välj katalogen med filerna som du vill kopiera och visa filerna med knappen ENT

FIL

- Visa funktionen för att markera filer
 - Förflytta markören till filen som skall kopieras och markera den. Om så önskas markeras ytterligare filer på motsvarande sätt

Kopiera de markerade filerna till målkatalogen

Ytterligare markeringsfunktioner: se "Markera filer", sidan 56.

Om man har markerat filer i både det vänstra och i det högra fönstret så kommer TNC:n att kopiera från katalogen som markören befinner sig i.

Skriv över filer

När man kopierar filer till en katalog som redan innehåller filer med samma filnamn, så frågar TNC:n om filerna i målkatalogen får skrivas över:

- Skriv över alla filer: Tryck på softkey JA eller
- Skriv inte över några filer: Tryck på softkey NEJ
- Bekräfta varje enskild fil som skall skrivas över: Tryck på softkey GODKÄNN

Om man vill skriva över en skyddad fil måste man godkänna detta separat alternativt avbryta.

TNC:n i nätverk

För att ansluta ethernet-kortet till Ert nätverk, (se "Ethernet-datasnitt" på sidan 435).

TNC:n loggar felmeddelanden som inträffar under nätverksdrift (se "Ethernet-datasnitt" på sidan 435).

Om TNC:n är ansluten till ett nätverk gör TNC:n dessutom upp till 7 ytterligare enheter tillgängliga i katalogfönstret 1 (se bilden till höger). Alla tidigare beskrivna funktioner (välja enhet, kopiera filer o.s.v.) gäller även för nätverksenheter, såvida Era åtkomsträttigheter tillåter detta.

Logga på och logga ur nätverk

NET

Välj filhantering: Tryck på knappen PGM MGT, i förekommande fall välj bildskärmsuppdelning som visas i bilden uppe till höger med softkey FÖNSTER.

Hantera nätverksenhet: Tryck på softkey NÄTVERK (andra softkeyraden). I det högra fönstret 2 visar TNC:n möjliga nätverksenheter som du har åtkomst till. Med nedan beskrivna softkeys definieras förbindelsen med respektive enhet

Funktion	Softkey
Upprätta nätverksförbindelse, TNC:n skriver ett M i kolumnen Mt när förbindelsen är aktiv.Man kan förbinda upp till 7 ytterligare enheter med TNC:n	RNSLUT ENHET
Avsluta nätverksförbindelse	TA BORT ENHET
Upprätta automatiskt nätverksförbindelse när TNC:n startas upp. TNC:n skriver ett A i kolumnen Auto när förbindelsen upprättas automatiskt.	AUTOMAT. ANSLUTN,
Upprätta inte automatiskt nätverksförbindelse när TNC:n startas upp	EJ RUTOMAT. RNSLUTN.

MANUELL DRIFT	PROG	RAM	INMA	TNIM	١G			
	SÖKVI	⊐iG =	TNC:	<u>\ N K `</u>	\410			
≆ WORLD:∖					2			
D RS232:\	1	TNC: \M	JK∖DUMPS∖*	.*	2			
县 RS422:\	- C.	FIL	-NAMN		BYTE	STATU	S DATUM	TID
E TNC:>		1GB		.н	446		26-08-1999	09:37:52
		11		.н	382		24-08-1999	09:26:58
CT INC		1NL		.н	412		07-10-1999	16:05:44
		15		.н	450		07-10-1999	11:46:32
		3507		.н	1220		27-09-1999	09:37:16
SCREEN	6	3507:		.н	596		11-10-1999	09:22:32
		3516		.н	1372		08-10-1999	12:30:36
CUTTAB		3DJO:	ENT	.н	708	SM	26-08-1999	08:57:22
DEMO		BLK		.н	74		28-09-1999	08:45:06
C HE		FK1		.н	666		08-09-1999	17:47:34
HERBERT		NEU		.н	262	Е	11-10-1999	10:59:04
D NK		29 F	(L(ER) 917	440 KB1	TE LED	IGT		
☐ 410								
SIDA S	IDA RI	IDERA	E ^{VISA} TRAD			NÄT	FLER FUNKTION.	SLUT

Det kan ta en ganska lång tid att upprätta nätverksförbindelsen. TNC:n presenterar då **[READ DIR]** uppe till höger i bildskärmen. Den maximala överföringshastigheten ligger mellan 2 och 5 MBit/s, beroende på vilken datatyp som överförs samt hur hög nätbelastningen är.

Skriva ut filer via nätverksskrivare

Om man har definierat en nätverksskrivare (se "Ethernet-datasnitt" på sidan 435), kan man skriva ut filer direkt:

- Kalla upp filhanteringen: Tryck på knappen PGM MGT
- Förflytta markören till filen som skall skrivas ut
- Tryck på softkey KOPIERA
- Tryck på softkey SKRIV UT: Om man bara har definierat en enda skrivare kommer TNC:n att skriva ut filer direkt. Om man har definierat flera skrivare, visar TNC:n ett fönster i vilket alla definierade skrivare listas. Välj ut skrivaren i det inväxlade fönstret med pilknapparna och tryck sedan på knappen ENT

4.5 Öppna och mata in program

Uppbyggnad av ett NC-program i HEIDENHAINklartext-format

Ett bearbetningsprogram består av en serie programblock. Bilden till höger visar elementen i ett block.

TNC:n numrerar ett bearbetningsprograms block i en stigande ordningsföljd.

Det första blocket i ett program innehåller texten **BEGIN PGM**, programnamnet och den använda måttenheten.

De därpå följande blocken innehåller information om:

- Råämnet
- Verktygsdefinitioner och -anrop
- Matningshastighet och varvtal
- Konturrörelser, cykler och andra funktioner

Det sista blocket i ett program innehåller texten **END PGM**, programnamnet och den använda måttenheten.

Definiera råämne: BLK FORM

Direkt när man har öppnat ett nytt program definierar man ett fyrkantigt obearbetat arbetsstycke. För att definiera råämnet i efterhand, trycker man på softkey BLK FORM. TNC:n behöver denna definition för grafiska simuleringar. Råämnets sidor får vara maximalt 100 000 mm långa och måste ligga parallellt med axlarna X, Y och Z. Råämnet definieras med hjälp av två av dess hörnpunkter:

- MIN-punkt: fyrkantens minsta X-, Y- och Z-koordinat; ange absoluta värden
- MAX-punkt: fyrkantens största X-, Y- och Z-koordinat; ange absoluta eller inkrementala värden

Råämnesdefinitionen behövs endast om man vill testa programmet grafiskt!

l	ос	k					
1()	L	X+10	Y +5	RO	F100	MB
Blo	K K	ion1 nur	turfunk mmer	ction		Ord	

Öppna ett nytt bearbetningsprogram

Ett bearbetningsprogram skapas alltid i driftart **Programinmatning/Editering**. Exempel på en programöppning:

MANU	JELL DRIFT	PR	OGRA	IM I	NMA	ΤNΙ	NG			
		DEF	F BL	K F	ORM	: M	A X - 1	VÄRDE	?	
0	BEG	IN F	PGM	BLK	. MM					
1	BLK	FO	RM Ø	.1	Z X·	+0	Y+0	Z-40	3	
2	BLK	FO	RM Ø	.2	X+1	00	Y+1	00		
	Z	+0								
3	END	PGI	M BL	KM	IM					
							_			

Def	BLK-FORM Min-Punkt ?
0 0 - 40	Ange i tur och ordning MIN-punktens X-, Y- och Z- koordinater
Def	BLK-FORM MAX-Punkt?
100	Ange i tur och ordning MAX-punktens X-, Y- och Z- koordinater
100	ENT

ENT

0

Exempel: Presentation av BLK-form i NC-programmet

O BEGIN PGM NEU MM	Programbörjan, namn, måttenhet
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Spindelaxel, MIN-punktskoordinater
2 BLK FORM 0. 2 X+100 Y+100 Z+0	MAX-punktskoordinater
3 END PGM NEU MM	Programslut, namn, måttenhet

TNC:n genererar automatiskt blocknummer, BEGIN- och END-block.

Om man inte vill programmera någon råämnes-definition avbryter man dialogen vid **Spindelaxel parallell X/Y/Z** med knappen DEL!

TNC:n kan bara presentera grafiken om den kortaste sidan är minst 50 μm och den längsta sidan är maximalt 99 999,999 mm lång.

Programmera verktygsrörelser i Klartext-dialog

För att programmera ett block börjar man med en dialogknapp. I bildskärmens övre rad frågar TNC:n efter alla erforderliga data.

Exempel på en dialog

L.A.	Öppna dialogen						
Koordinater	• ?						
X 10	Ange målkoordinaten för X-axeln						
Y 20 ENT	Ange målkoordinaten för Y-axeln, g med knappen ENT	gå till nästa fråga					
Radiekorr.:	RL/RR/Ingen korr.: ?						
ENT	Ange "Ingen radiekompensering", med knappen ENT	gå till nästa fråga					
Matning F=?	/ F MAX = ENT						
100 ENT	100 Matningshastighet för denna konturrörelse 100 mm/ min, gå till nästa fråga med knappen ENT						
Tilläggsfun	ktion M?						
3 ENT	3 Tilläggsfunktion M3 "Spindelstart", med knappen ENT avslutar TNC:n denna dialog						
l programföns	tret visas raden:						
3 L X+10 Y+	5 R0 F100 MB						
Funktioner	för matningsangivelse	Softkov					
Förflyttning r	med snabbtransport	FMRK					
Förflyttning r från TOOL CA	med automatiskt beräknad matning LL-blocket	F AUTO					

MANUELL DRIFT	PROGRAM	INMATN	ING	
	HJÄLP FU	UNKTION	Μ ?	
1 BLK	FORM 0.	1 Z X+0	Y+0 Z-4	3
2 BLK	FORM 0.2	2 X+100	Y+100 Z	+0
3 TOOL	_ CALL 1	Z S500	3	
4 L Z-	+100 R0 H	F MAX		
5 L X-	-20 Y+30	RØ F MI	ах МЗ	
6 END	PGM NEU	ММ		

Editering av program

När man skapar eller förändrar ett bearbetningsprogram kan man använda pilknapparna eller softkeys för att gå in på de olika programraderna och välja ett enskilt ord i ett block:

Funktion	Softkey/knappar
Bläddra en sida uppåt	SIDA
Bläddra en sida nedåt	
Hoppa till program-början	BORJEN
Hoppa till program-slut	SLUT
Förskjut aktuell rad nedåt	T
Förskjut aktuell rad uppåt	
Hoppa från block till block	
Välj enskilda ord i ett block	
Freedom -	Cofflixery/limena
Funktion	зопкеу/кпарр
Nollställ ett valt ords värde	CE
Radera ett felaktigt värde	CE
Radera ett felmeddelande (icke blinkande)	CE
Radera valt ord	

Funktion

Radera valt block

Softkey/knapp

INFOGA SENASTE NC-BLOCK

Radera cykler och programdelar: Välj det sista blocket i cykeln eller programdelen som skall raderas och radera med knappen DEL

Infoga block som sist valdes resp. raderades

Infoga block på godtyckligt ställe

Välj ett block, efter vilket det nya blocket skall infogas, och öppna dialogen

Ändra och infoga ord

- Välj ett ord i ett block och skriv över med ett nytt värde. När man har valt ordet står Klartext-Dialogen till förfogande.
- Avsluta ändringen: Knappen END trycks in

Om man vill infoga ett nytt ord trycker man på pilknapparna (till höger eller vänster), tills den önskade dialogen visas och anger då önskat värde.

Sök efter samma ord i andra block

Vid denna funktion skall softkey AUTOMAT. RITNING växlas till AV.

Välj ett ord i ett block: Tryck på pilknappen tills det önskade ordet markerats

Välj block med pilknapparna

Markören befinner sig nu i ett nytt block på samma ord som valdes i det första blocket.

Söka godtycklig text

- Välj sökfunktion: Softkey SÖK trycks in. TNC:n visar dialogen Sök text:
- Skriv in den sökta texten
- Sök text: Softkey UTFÖR trycks in

Markera, kopiera, radera och infoga programdel

För att kopiera programdelar inom ett NC-program alternativt till ett annat NC-program erbjuder TNC:n följande funktioner: Se tabellen nedan.

För att kopiera en programdel gör man på följande sätt:

- Välj softkeyraden med markeringsfunktioner
- Välj det första (sista) blocket i programdelen som skall kopieras
- Markera första (sista) blocket: Tryck på softkey MARKERA BLOCK. TNC:n framhäver blocknumrets första tecken med ett upplyst fält och presenterar softkey UPPHÄV MARKERING
- Förflytta markören till det sista (första) blocket i programdelen som du vill kopiera eller radera. TNC:n visar alla de markerade blocken med en annan färg. Man kan alltid avsluta markeringsfunktionen genom att softkey UPPHÄV MARKERING trycks in
- Kopiera markerad programdel: Softkey KOPIERA BLOCK trycks in, radera markerad programdel: Softkey RADERA BLOCK trycks in. TNC:n lagrar det markerade blocket
- Välj det block som den kopierade (raderade) programdelen skall infogas efter med pilknapparna

För att infoga den kopierade programdelen i ett annat program väljer man önskat program via filhanteringen och markerar där det block som man vill infoga programdelen efter.

▶ Infoga lagrad programdel: Softkey INFOGA BLOCK trycks in

Funktion	Softkey
Aktivera markeringsfunktion	MARKERA BLOCK
Stänga av markeringsfunktion	TAG BORT MARKERING
Radera markerade block	RADERA BLOCK
Infoga blocken som finns i minnet	INFOGA BLOCK
Kopiera markerade block	KOPIERA BLOCK

4.6 Programmeringsgrafik

Medritning / ej medritning av programmeringsgrafik

TNC:n kan presentera den programmerade konturen med en 2Dstreckgrafik samtidigt som ett program skapas.

- För att växla till bildskärmsuppdelning med program till vänster och grafik till höger: Tryck först på knappen SPLIT SCREEN och sedan på softkey PROGRAM + GRAFIK
- RUTOMAT. RITNING RV PA

Växla softkey AUTOMAT. RITNING till PÅ. Samtidigt som man matar in nya programrader kommer TNC:n automatiskt att visa alla programmerade konturrörelser i grafikfönstret till höger.

Om man inte vill att grafiken skall presenteras automatiskt ställer man in softkey AUTOMAT. RITNING på AV.

AUTOMAT. RITNING PÅ visar inga programdelsupprepningar.

Framställning av programmeringsgrafik för ett program

- Välj ett block med pilknapparna, fram till vilket grafiken skall framställas eller tryck på GOTO och ange önskat blocknummer direkt.
- RESET * START

Framställ grafik: Tryck på softkey RESET + START

Ytterligare funktioner:

Funktion	Softkey
Framställ fullständig programmeringsgrafik	RESET * START
Framställ programmeringsgrafik blockvis	START ENKELBL.
Framställ fullständig programmeringsgrafik eller komplettera efter RESET + START	START
Stoppa programmeringsgrafik. Denna softkey visas bara då TNC:n framställer en programmeringsgrafik	STOP

Visa eller ta bort radnummer

 \geq

- Växla softkeyrad: Se bilden uppe till höger
- Visa blocknummer: Växla softkey VISA / VISA INTE BLOCK-NR. till VISA
- Visa inte blocknummer: Växla softkey VISA / VISA INTE BLOCK-NR. till VISA INTE

Radera grafik

- Växla softkeyrad: Se bilden uppe till höger
- Radera grafik: Tryck på softkey RADERA GRAFIK

Delförstoring eller delförminskning

Man kan själv välja vilket område som skall visas i grafiken. Med en ram väljer man ett lämpligt område för delförstoring eller delförminskning.

 Välj softkeyrad för delförstoring/delförminskning (andra raden, se bilden i mitten till höger)

Därvid står följande funktioner till förfogande:

Funktion	Softkey
Växla in ram och förskjut. För att förskjuta, håll önskad softkey intryckt	$\begin{array}{c c} \leftarrow & \rightarrow \\ \hline \downarrow & \uparrow \end{array}$
Förminska ram – för att förminska håll softkey intryckt	<<
Förstora ram – för att förstora håll softkey intryckt	>>

 Överför det valda delområdet med softkey FÖRSTORA DETALJ

Med softkey RÅÄMNE SOM BLK FORM kan man återställa grafiken till det ursprungliga området.

4.7 Infoga kommentarer

Användningsområde

Varje block i ett bearbetningsprogram kan förses med kommentarer för att förklara eller ge anvisningar om programsteg. Det finns tre olika möjligheter att infoga kommentarer:

Kommentar under programinmatningen

- Ange data för ett programblock, tryck sedan på ";" (semikolon) på alfa-knappsatsen – TNC:n visar då frågan Kommentar?
- Skriv in kommentaren och avsluta blocket med knappen END

Infoga kommentar i efterhand

- Välj blocket som kommentaren skall skrivas in i
- Välj blockets sista ord med pilknappen pil-höger: Ett semikolon visas i slutet av blocket och TNC:n visar frågan Komentar?
- Skriv in kommentaren och avsluta blocket med knappen END

Kommentar i ett eget block

- Välj ett block, efter vilket en kommentar skall infogas
- Öppna programmeringsdialogen med knappen ";" (semikolon) på alfa-knappsatsen
- Skriv in kommentaren och avsluta blocket med knappen END

MANUELL DRIFT PROGRAM INMATNING
0 BEGIN PGM 35071 MM 1 BLK FORM 0.1 Z X-20 Y-20 Z-20 2 BLK FORM 0.2 X+20 Y+20 Z+0 3 TOOL CALL 1 Z S1000 3 Verktygsnummer 1 4 L Z+50 R0 F MAX M3 5 L X+50 Y+50 R0 F MAX M8
6 L 2-5 R0 F MHX 7 CC X+0 Y+0 8 LP PR+14 PA+45 RR F500 9 RND R1 10 FC DR+ R2.5 CLSD+ 11 FLT AN+180.925 12 FCT DR+ R10.5 CCX+0 CCY+0 13 FSELECT 1

4.8 Skapa textfiler

Användningsområde

l TNC:n kan man skapa och bearbeta texter med en text-editor. Typiska användningsområden:

- Spara erfarenhetsvärden
- Dokumentera bearbetningsprocedurer
- Skapa formelsamlingar

Textfiler är filer av typ .A (ASCII). Om man vill bearbeta andra filer konverterar man först dessa till typ .A.

Öppna och lämna textfiler

- ▶ Välj driftart Programinmatning/Editering
- Kalla upp filhanteringen: Tryck på knappen PGM MGT
- Visa filer av typ .A: Tryck först på softkey VÄLJ TYP och därefter på softkey VISA .A
- Välj fil och öppna den därefter med softkey VÄLJ eller med knappen ENT eller öppna en ny fil: Ange ett nytt namn, bekräfta med knappen ENT

När man vill lämna texteditorn kallar man upp filhanteringen och väljer en fil med en annan filtyp, såsom exempelvis ett bearbetningsprogram.

Förflyttning av markören	Softkey
Flytta markören ett ord till höger	NRSTR DRD >>
Flytta markören ett ord till vänster	SISTR ORDET <<
Flytta markören till nästa sida	SIDA
Flytta markören till föregående sida	SIDA
Flytta markören till filens början	BÖRJAN
Flytta markören till filens slut	
Editeringsfunktioner	Knapp
Påbörja en ny rad	RET
Radera tecken till vänster om markören	X

MANL	JELL DRIFT	PRO	GRAM	INMA	「NING			
FIL	: 3516.A			RAD:	3 SPF	ILT: 1	INSERT	
Ø	BEGIN PGM	3516 M	м					
1	BLK FORM 0	.1 Z X	-90 Y-90 Z	-40				
2	BLK FORM 0	.2 X+9	0 Y+90 Z+0					
3	TOOL DEF 5	0						
4	TOOL CALL	1 Z S1	400					
5	L Z+50 R0	F MAX						
4	L X+0 Y+10	0 R0 F	MAX M3					
7	L Z-20 R0	F MAX						
8	L X+0 Y+80	RL F2	50					
9	FPOL X+0 Y	+0						
10	FC DR- R8	0 CCX+	0 CCY+0					
IN		ISTA DRD	SISTA ORDET	SIDA ÎÎ	SIDA "Ĵ	BÖRJAN	SLUT "Ĵ	SÖK

Editeringsfunktioner	Кпарр
Infoga ett mellanslag	SPACE
Växla mellan stora och små bokstäver	SHIFT SPACE

Editera text

l texteditorns första rad befinner sig ett informationsfält som visar filnamnet, markörens position och cursorns (eng. insättningspunkt) skrivsätt:

Fil:	Textfilens namn
Rad:	Markörens aktuella radposition
Spalt:	Markörens aktuella kolumnposition
INSERT:	Nya tecken infogas
OVERWRITE:	Nya tecken skrivs över den befintliga texten vid insättningspunkten

Texten infogas på det ställe som markören befinner sig för tillfället. Med pilknapparna kan markören förflyttas till en godtycklig position i textfilen.

Raden som markören befinner sig i framhävs med en annan färg. En rad får innehålla maximalt 77 tecken och bryts med knappen RET (Return) eller med knappen ENT.

Radera tecken, ord och rader samt återinfoga

Med texteditorn kan man radera hela ord och rader för att sedan infoga dem på ett annat ställe.

- Förflytta markören till ordet eller raden som skall raderas och därefter infogas på ett annat ställe
- Tryck på softkey RADERA ORD alt. RADERA RAD: Texten tas bort och sparas temporärt
- Förflytta markören till den position där texten skall återinfogas och tryck på softkey INFOGA RAD/ORD

Funktion	Softkey
Radera rad och lagra temporärt	RADERA RAD
Radera ord och lagra temporärt	RADERA
Radera tecken och lagra temporärt	RADERA TEOKEN
Återinfoga rad eller ord efter radering	INFOOR RAD / ORD

Bearbeta textblock

Man kan kopiera, radera och återinfoga textblock av godtycklig storlek. För att göra detta markerar man alltid först det önskade textblocket:

 Markera textblock: Förflytta markören till tecknet som textmarkeringen skall börja vid

Softkey MARKERA BLOCK trycks in

Förflytta markören till tecknet där textmarkeringen skall sluta. Om man förflyttar markören med pilknapparna direkt nedåt eller uppåt så kommer hela textraderna som ligger däremellan att markeras fullständigt – den markerade texten framhävs med en annan färg

Efter det att man har markerat önskat textblock vidarebearbetar man texten med följande softkeys:

Funktion	Softkey
Radera markerat block och lagra temporärt	RADERA BLOCK
Lagra markerat block temporärt, utan att radera (kopiera)	INFOGA BLOCK

När det temporärt lagrade textblocket skall infogas på ett annat ställe utför man följande steg:

 Förflytta markören till en position där det temporärt lagrade textblocket skall infogas

Softkey INFOGA BLOCK trycks in: Texten infogas

Så länge texten är temporärt lagrad kan man infoga den ett godtyckligt antal gånger.

Överför markerat block till en annan fil

Markera textblocket på tidigare beskrivet sätt

 Softkey KOPIERA TILL FIL trycks in. TNC:n visar dialogen Målfil =

Ange målfilens sökväg och namn. TNC:n infogar det markerade textblocket i målfilen. När det inte existerar någon målfil med det angivna namnet så kommer TNC:n att skriva in den markerade texten i en ny fil

Infoga en annan fil vid markörpositionen

 Förflytta markören till positionen, vid vilken den andra filen skall infogas

Softkey INFOGA FRÅN FIL trycks in. TNC:n visar dialogen Filnamn =

Ange namn och sökväg för filen som skall infogas

Söka textdelar

Med texteditorns sökfunktion kan man finna ord eller teckenkedjor. TNC:n erbjuder två möjligheter.

Söka aktuell text

Med sökfunktionen skall man hitta ett ord, som motsvarar ordet som markören befinner sig i:

- Förflytta markören till önskat ord
- Välj sökfunktion: Tryck på softkey SÖK
- Tryck på softkey SÖK AKTUELLT ORD
- Lämna sökfunktionen: Tryck på softkey SLUT

Söka godtycklig text

- Välj sökfunktionen: Tryck på softkey SÖK. TNC:n visar dialogen Sök text:
- Skriv in den sökta texten
- Sök text: Tryck på softkey UTFÖR
- Lämna sökfunktionen: Tryck på softkey SLUT

MANUELL DRIFT	PROGRAM	INMATNING			
	SOK TEXT	F: <mark>L Z+50</mark>			
FIL: 3516.A		RAD: Ø SPA	LT: 1	INSERT	
BEGIN PGM	3516 MM				
1 BLK FORM Ø	.1 Z X-90 Y-90 Z	-40			
2 BLK FORM Ø	.2 X+90 Y+90 Z+0				
3 TOOL DEF 5	0				
4 TOOL CALL	1 Z S1400				
5 L Z+50 R0 F MAX					
4 L X+0 Y+10	ØRØF MAX M3				
7 L Z-20 R0 F MAX					
8 L X+0 Y+80	RL F250				
9 FPOL X+0 Y	+0				
10 FC DR- R80 CCX+0 CCY+0					
11 FCT DR- R7,5					
12 FCT DR+ R	90 CCX+69,282 CC	Y-40			
13 FSELECT 2					
SÖK AKTUELLT ORD				UTFÖR	SLUT

4.9 Kalkylatorn

Användning

TNC:n förfogar över en kalkylator som innehåller de viktigaste matematiska funktionerna.

Man öppnar och stänger kalkylatorn med knappen CALC. Med pilknapparna kan man förflytta den fritt på bildskärmen.

Räknefunktionerna väljer man med kortkommandon på alfa-knappsatsen. Kortkommandona framhävs i kalkylatorn med en annan färg:

Räknefunktion	Kortkommando (knapp)
Addition	+
Subtraktion	-
Multiplikation	*
Division	:
Sinus	S
Cosinus	С
Tangens	Т
Arcus-Sinus	AS
Arcus-Cosinus	AC
Arcus-Tangens	AT
Potens	٨
Kvadratroten ur	Q
Invers	/
Parentes	()
PI (3.14159265359)	Р
Visa resultat	=

Om man håller på att mata in ett program och befinner sig i dialogen kan man kopiera värdet från kalkylatorn direkt till det markerade fältet med knappen "Överför är-position".

MANUELL DRIFT	PROGRAM INMATNING HJÄLP FUNKTION M ?
1 BLK 2 BLK 3 TOOL 4 L Z 5 L X 6 END	FORM 0.1 Z X+0 Y+0 Z-40 FORM 0.2 X+100 Y+100 Z+0 CALL 1 Z S5000 100 R0 F MAX 20 Y+30 R0 F MAX M3 PGM NEU MM
	ARC SIN COS TAN 7 8 9 • - • : 4 5 6 X~Y SOR 1/X PI 1 2 3 () CE = 0 . ?

4.10 Direkt hjälp vid NCfelmeddelanden

Presentation av felmeddelanden

TNC:n presenterar automatiskt felmeddelanden vid

- felaktigt inmatade uppgifter
- logiska fel i programmet
- ej utförbara konturelement
- felaktig användning av avkännarsystemet

Orsaken till ett felmeddelande, som innehåller ett blocknummer,skall sökas i det blocket eller i blocken innan. Man raderar TNCfelmeddelanden med knappen CE efter det att felorsaken har åtgärdats.

För att erhålla mer information om ett felmeddelande som presenteras trycker man på knappen HELP. TNC:n visar då ett fönster i vilket felorsaken och felåtgärden finns beskriven.

Visa hjälp

- ▶ Visa hjälp: Tryck på knappen HELP
- Läs igenom felbeskrivningen och möjligheterna till att avhjälpa felet. Man stänger hjälp-fönstret med knappen CE och kvitterar samtidigt det presenterade felmeddelande.
- Avhjälp felet i enlighet med beskrivningen i hjälpfönstret

Vid blinkande felmeddelanden visar TNC:n automatiskt hjälptexten. Efter blinkande felmeddelanden måste man starta om TNC:n, exempelvis genom att trycka på END-knappen i 2 sekunder.

4.11 Paletthantering

Användningsområde

Ē

Paletthanteringen är en maskinavhängig funktion. Här beskrivs standard-funktionsomfånget. Beakta dessutom Er maskinhandbok.

Palettabeller används i bearbetningscenter med palettväxlare: Palettabellen anropar bearbetningsprogrammen som hör till respektive palett samt aktiverar nollpunktsförskjutningar och nollpunktstabeller.

Man kan även använda palettabeller för att exekvera olika program med skilda utgångspunkter i en följd.

Palettfilen innehåller följande uppgifter:

PAL/PGM(uppgift krävs alltid):

Markerar palett eller NC-program (välj med knappen ENT resp. NO ENT)

NAME (uppgift krävs alltid):

Palett-, alternativt programnamn. Palettnamnen bestäms av maskintillverkaren (beakta maskinhandboken). Programnamnen måste finnas lagrade i samma katalog som palettabellen annars krävs att man anger hela sökvägen till programmet

DATUM(uppgift om så önskas):

Nollpunktstabellens namn. Nollpunktstabellen måste finnas lagrad i samma katalog som palettabellen annars krävs det att man anger hela sökvägen till nollpunktstabellen. Man aktiverar nollpunkterna från nollpunktstabellen i NC-programmet med cykel 7

NOLLPUNKTSFÖRSKJUTNING

X, Y, Z (uppgift om så önskas, fler axlar möjliga): Vid palettnamn utgår de programmerade koordinaterna från maskinnollpunkten. Vid NC-program utgår de programmerade koordinaterna från palettnollpunkten. Dessa uppgifter skrivs över den utgångspunkt som man sist ställde in i driftart Manuell drift. Med tilläggsfunktion M104 kan man åter aktivera den sist inställda utgångspunkten. Med knappen "Överför är-position" växlar TNC:n in ett fönster i vilket man kan föra in olika typer av punkter i TNC:n som utgångspunkt (se tabell).

Position	Betydelse
Ärvärde	För in den aktuella verktygspositionens koordinater i förhållande till det aktiva koordinatsystemet
Referensvärde	För in den aktuella verktygspositionens koordinater i förhållande till maskinens nollpunkt
Mätvärde ÄR	För in den, i driftart Manuell drift, sist avkända utgångspunktens koordinater i förhållande till det aktiva koordinatsystemet

MANUELL	DRIFT	EDI	TERA	PROGR	RAM-TA	ABELL		
	_	PAL	.ETT=F	PAL /	PROGR	RAM=PO	G M 👘	
FIL:	PAL.P							\rightarrow
NR	PAL/PG	M NAM	Ε					
0	PAL	120						
1	PGM	FK1	.н					
2	PAL	130						
3	PGM	SLO	LD.H					
4	PGM	FK1	.н					
5	PAL	SLO	LD.H					
6	PGM	SLO	LD.H					
7	PAL	140						
8	PGM	FK1						
9	PGM	TNC	:\CYCLE\MI	LLING\C210	г.н			
10	PGM	TNC	:\DRILL\K1	7.H				
11								
12								
BÖRJAN	i sli	ut ļ	SIDA ÎÎ	SIDA J	INFOGA	RADERA	NÄSTA	LÄGG TILL N RADER

Position	Betydelse
Mätvärde REF	För in den, i driftart Manuell drift, sist avkända utgångspunktens koordinater i förhållande till maskinens nollpunkt

Med pilknapparna och knappen ENT väljer man den typ av position som man vill överföra. Därefter väljer man med softkey ALLA VÄRDEN att TNC:n skall lagra koordinaterna ifrån alla aktiva axlar i palett-tabellen. Med softkey AKTUELLT VÄRDE lagrar TNC:n koordinaten ifrån axeln som markören för tillfället befinner sig på i palett-tabellen.

Om man inte har definierat någon palett före ett NCprogram utgår de programmerade koordinaterna från maskinnollpunkten. Om man inte definierar någon uppgift förblir den manuellt inställda utgångspunkten aktiv.

Editeringsfunktioner	Softkey
Gå till tabellens början	BÜRJAN
Gå till tabellens slut	SLUT
Gå till föregående sida i tabellen	SIDA
Gå till nästa sida i tabellen	SIDA
Infoga rad i tabellens slut	INFOGA RAD
Radera rad i tabellens slut	RADERA RAD
Gå till början på nästa rad	NKSTA RAD
Infoga ett definierbart antal rader vid tabellens slut	LAGG TILL N RADER VID SLUT
Kopiera markerat fält (andra softkeyraden)	KOPIER9 FALT
Infoga kopierat fält (andra softkeyraden)	INFOGR FALT

Välj palettfil

- Välj filhantering i driftart Programinmatning/Editering eller Programkörning: Tryck på knappen PGM MGT
- ▶ Visa filer av typ .P: Tryck på softkey VÄLJ TYP och VISA .P
- Välj palettfil med pilknapparna eller ange namnet för en ny fil
- Godkänn valet med knappen ENT

Lämna palettfil

- Välj filhantering: Tryck på knappen PGM MGT
- Välj en annan filtyp: Tryck på softkey VÄLJ TYP och därefter softkey för den önskade filtypen, t.ex. VISA .H
- Välj önskad fil

Exekvera palettfil

l maskinparameter 7683 definierar man om palettabellen skall exekveras block för block eller kontinuerligt (se "Allmänna användarparametrar" på sidan 452).

- Välj filhantering i driftart Programkörning blockföljd eller Programkörning enkelblock: Tryck på knappen PGM MGT
- ▶ Visa filer av typ .P: Tryck på softkey VÄLJ TYP och VISA .P
- Välj palettabell med pilknapparna, bekräfta med knappen ENT
- Exekvera palettabell: Tryck på knappen NC-Start, TNC:n utför paletterna på det sätt som definierats i maskinparameter 7683

4.11 Paletthantering

Bildskärmsuppdelning vid exekvering av palettfil

Om man vill se både programmets innehåll och palettfilens innehåll samtidigt så väljer man bildskärmsuppdelning PROGRAM + PALETT. Under exekveringen visar då TNC:n programmet i den vänstra bildskärmssidan och paletten i den högra bildskärmssidan. För att kunna se programinnehållet innan exekveringen gör man på följande sätt:

- Välj palettfil
- Välj programmet som du vill kontrollera med pilknapparna
- Tryck på softkey ÖPPNA PROGRAM: TNC:n visar det valda programmet i bildskärmen. Nu kan man bläddra i programmet med hjälp av pilknapparna
- ▶ Tillbaka till palettabellen: Tryck på softkey END PGM

PROGRAM BLOCKFÖLJD	EDITERA PROGTABELL
0 BEGIN PGM FK1 MM	NR PAL/PGM NAME >>>
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	0 PAL 120
2 BLK FORM 0.2 X+100 Y+100 Z+0	1 PGM FK1.H
3 TOOL CALL 1 Z	2 PAL 130
4 L Z+250 R0 F MAX	3 PGM SLOLD.H
5 L X-20 Y+30 R0 F MAX	4 PGM FK1.H
6 L Z-10 R0 F1000 M3	5 PAL SLOLD.H
7 APPR CT X+2 Y+30 CCA90 R+5 RL	6 PGM SLOLD.H
F250	7 PAL 140
	0% S-IST 11:37
	1% S-MOM LIMIT 1
X -169.525 Y	-66.067 Z +197.437
C +114.778 B +;	207.872
	S 359.973
ŘR 😡 T S 98	85 F 0 M 5×9
F M9X	

4.12 Palettdrift med verktygsorienterad bearbetning

Användningsområde

Palettadministration i kombination med verktygsorienterad bearbetning är en maskinberoende funktion. Här beskrivs standard-funktionsomfånget. Beakta dessutom Er maskinhandbok.

Palettabeller används i bearbetningscenter med palettväxlare: Palettabellen anropar bearbetningsprogrammen som hör till respektive palett samt aktiverar nollpunktsförskjutningar och nollpunktstabeller.

Man kan även använda palettabeller för att exekvera olika program med skilda utgångspunkter i en följd.

Palettfilen innehåller följande uppgifter:

PAL/PGM(obligatorisk uppgift):

Uppgiften **PAL** anger indikeringen av en palett, med **FIX** markeras fixturnivån och med **PGM**anger man ett arbetsstycke.

■ W-STATE :

Aktuell bearbetningsstatus. Genom bearbetningsstatus fastläggs hur långt bearbetningen har utförts. För ett obearbetat arbetsstycke anger man **BLANK.** TNC:n ändrar denna uppgift till **INCOMPLETE** vid bearbetningen och till **ENDED** när bearbetningen har slutförts. Med uppgiften **EMPTY** markeras en plats där inget arbetsstycke finns uppspänt eller ingen bearbetning skall utföras.

METHOD (obligatorisk uppgift):

Anger enligt vilken metod programoptimeringen skall ske. Med **WO** sker bearbetningen arbetsstyckesorienterat. Med **TO** sker bearbetningen verktygsorienterat för den delen. För att hänsyn även skall tas till nästa arbetsstycke i den verktygsorienterade bearbetningen måste man använda uppgiften **CTO** (continued tool oriented). Verktygsorienterad bearbetning är möjlig över flera fixturer på en och samma palett, dock inte över flera paletter.

NAME (obligatorisk uppgift):

Palett-, alternativt programnamn. Palettnamnen bestäms av maskintillverkaren (beakta maskinhandboken). Programmen måste finnas lagrade i samma katalog som palettabellen, annars måste man ange hela sökvägen till programmen.

MANUEL	L DRIFT	EDITER	A PR		RAM-TA	ABELL		
ETI	: PAI 2048	3.P						>>
NR	PAL/PC	SM W-STATUS	ME THO) NAM	E			
ø	PAL			PAL	4-208-11			
1	FIX							
2	PGM	BLANK	TO	TNC	RKNTESTN	442AAU77.H		
3	PGM	BLANK	CTO	TNC	RKNTESTN	442AAU77.H		
4	PGM	BLANK	CTO	TNC	RKNTESTN	448AAU77.H		
5	FIX							
6	PGM	BLANK	TO	TNC	RKNTESTN	863FFV52.H		
7	PGM	BLANK	CTO	TNC	RKNTESTN	863FFV52.H		
В	PGM	BLANK	CTO	TNC	RKNTESTN	863FFV52.H		
Э	PGM	BLANK	CTO	TNC	RKNTESTN	863FFV52.H		
10	PGM	BLANK	WPO	TNC	RKNTESTN	862LLU77.H		
11	PG	BLANK	WPO	TNC	: NRKNTESTN	862LLU77.H		
12	FIX							
BÖR J	AN SI		A SI	DA ,	INFOGA RAD	RADERA	NASTA	LÄGG TI N RADE

DATUM(uppgift om så önskas):

Nollpunktstabellens namn. Nollpunktstabellen måste finnas lagrad i samma katalog som palettabellen annars krävs det att man anger hela sökvägen till nollpunktstabellen. Man aktiverar nollpunkterna från nollpunktstabellen i NC-programmet med cykel 7 **NOLLPUNKTSFÖRSKJUTNING**

X, Y, Z (uppgift om så önskas, fler axlar möjliga): Vid paletter och fixturer utgår de programmerade koordinaterna från maskinens nollpunkt. Vid NC-program utgår de programmerade koordinaterna från palettens resp. fixturens nollpunkt. Dessa uppgifter skrivs över den utgångspunkt som man sist ställde in i driftart Manuell drift. Med tilläggsfunktion M104 kan man åter aktivera den sist inställda utgångspunkten. Med knappen "Överför är-position" växlar TNC:n in ett fönster i vilket man kan föra in olika typer av punkter i TNC:n som utgångspunkt (se tabell).

Position	Betydelse
Ärvärde	För in den aktuella verktygspositionens koordinater i förhållande till det aktiva koordinatsystemet
Referensvärde	För in den aktuella verktygspositionens koordinater i förhållande till maskinens nollpunkt
Mätvärde ÄR	För in den, i driftart Manuell drift, sist avkända utgångspunktens koordinater i förhållande till det aktiva koordinatsystemet
Mätvärde REF	För in den, i driftart Manuell drift, sist avkända utgångspunktens koordinater i förhållande till maskinens nollpunkt

Med pilknapparna och knappen ENT väljer man den typ av position som man vill överföra. Därefter väljer man med softkey ALLA VÄRDEN att TNC:n skall lagra koordinaterna ifrån alla aktiva axlar i palett-tabellen. Med softkey AKTUELLT VÄRDE lagrar TNC:n koordinaten ifrån axeln som markören för tillfället befinner sig på i palett-tabellen.

Om man inte har definierat någon palett före ett NCprogram utgår de programmerade koordinaterna från maskinnollpunkten. Om man inte definierar någon uppgift förblir den manuellt inställda utgångspunkten aktiv.

SP-X, SP-Y, SP-Z (uppgift om så önskas, fler axlar möjliga): Säkerhetspositioner kan anges för axlarna. Dessa kan sedan läsas från NC-makron via SYSREAD FN18 ID510 NR 6. Med SYSREAD FN18 ID510 NR 5 kan man utvärdera huruvida ett värde har programmerats i kolumnen eller inte. Förflyttning till den angivna positionen sker endast om NC-makrot läser detta värde och har programmerats för att utföra förflyttningen. Kontext-identitetsnumret tilldelas av TNC:n och innehåller upplysningar om hur långt bearbetningen har utförts. Om uppgiften raderas, alt. ändras, är återstart i bearbetningen inte längre möjlig.

Editeringsfunktioner vid presentationssätt tabell	Softkey
Gå till tabellens början	BORJAN
Gå till tabellens slut	SLUT
Gå till föregående sida i tabellen	SIDA 1
Gå till nästa sida i tabellen	SIDA
Infoga rad i tabellens slut	INFOGA RAD
Radera rad i tabellens slut	RADERA RAD
Gå till början på nästa rad	NASTA RAD
Infoga ett definierbart antal rader vid tabellens slut	LAGG TILL N RADER VID SLUT
Kopiera markerat fält (andra softkeyraden)	KOPIERR FALT
Infoga kopierat fält (andra softkeyraden)	INFOGR FALT
Editoringofunktioner vid procentatione- "th fermula-	Coffliou
Euleringstunktioner via presentationssatt formular	Sonkey
Välj töregående palett	PALETT
Välj nästa palett	
Välj föregående fixtur	FIXTUR

Editeringsfunktioner vid presentationssätt formulär	Softkey
Välj föregående palett	PALETT
Välj nästa palett	PALETT
Välj föregående fixtur	FIXTUR
Välj nästa fixtur	FIXTUR
Välj föregående arbetsstycke	RRBSTYCKE
Välj nästa arbetsstycke	
Editeringsfunktioner vid presentationssätt formulär	Softkey
---	----------------------------------
Växla till palettnivån	VISNING PALETT- NIVA
Växla till fixturnivån	VISNING FIXTUR- NIVA
Växla till arbetsstyckesnivån	VISNING RRBSTYCK- NIVÅ
Välj standardpresentation palett	PALETT DETALJ PALETT
Välj detaljpresentation palett	PALETT DETALJ PALETT
Välj standardpresentation fixtur	FIXTUR DETFLJ FIXTUR
Välj detaljpresentation fixtur	FIXTUR DETRLJ FIXTUR
Välj standardpresentation arbetsstycke	ARBSTYCKE DETALJ ARBSTYCKE
Välj detaljpresentation arbetsstycke	ARBSTYCKE DETALJ ARBSTYCKE
Infoga palett	INFOGA PALETT
Infoga fixtur	INFOGA FIXTUR
Infoga arbetsstycke	INFOGA ARBSTYCKE
Radera palett	RADERA PALETT
Radera fixtur	RADERA FIXTUR
Radera arbetsstycke	RADERA ARBSTYCKE
Kopiera alla fält till buffertminne	KOPIERA ALLA FALT
Kopiera markerat fält till buffertminne	KOPIERA VRLT FRLT
Infoga kopierat fält	KLISTRA IN FALT
Radera buffertminne	RADERA BUFFERT- MINNE

Editeringsfunktioner vid presentationssätt formulär	Softkey
Verktygsoptimerad bearbetning	VERKTYG ORIENT.
Arbetsstyckesoptimerad bearbetning	ARBSTYCKE ORIENT,
Anslut respektive separera bearbetningarna	RNSLUTEN
Markera nivån som tom plats	TOM PLATS
Markera nivån som obearbetad	RARINE

Välja palettfil

- Välj filhantering i driftart Programinmatning/Editering eller Programkörning: Tryck på knappen PGM MGT
- ▶ Visa filer av typ .P: Tryck på softkey VÄLJ TYP och VISA .P
- > Välj palettfil med pilknapparna eller ange namnet för en ny fil
- Godkänn valet med knappen ENT

Visa palettfil med inmatningsformulär

Palettdrift med verktygs- resp. verktygsorienterad bearbetning är uppdelad i tre nivåer:

- Palettnivå PAL
- Fixturnivå FIX
- Arbetsstyckesnivå PGM

På varje nivå är det möjligt att växla till en detaljpresentation. I den normala presentationen kan man fastlägga bearbetningsmetod och status för palett, fixtur och arbetsstycke. Om man editerar en befintlig palett-fil så visas de aktuella uppgifterna. Man använder detaljpresentationen för inställning av palettfilen.

Med knappen för bildskärmsuppdelningen kan man växla mellan presentationssätt tabell och presentationssätt formulär.

Det grafiska stödet vid formulärinmatning är inte tillgängligt ännu.

De olika nivåerna i inmatningsformuläret kan nås med därför avsedda softkeys. I inmatningsformulärets statusrad markeras alltid den aktuella nivån med en ljusare färg. Om man växlar till tabellpresentationen, med knappen för bildskärmsuppdelning, kommer markören att befinna sig på samma nivå som vid formulärpresentationen.

Jiaius	•			
ARBSTYCKE ARBSTY	CKE VISNING FIXTUR- NIVÂ	ARBSTYCKE DETALJ ARBSTYCKE	INFOGA ARBSTYCKE	RADERA

Ställ in palettnivå

- Palett-Id: Palettens namn visas
- Metod: Man kan välja bearbetningsmetod WORKPIECE ORIENTED resp. TOOL ORIENTED. Valet som görs överförs till den därtill hörande arbetsstyckesnivån och skriver eventuellt över befintliga uppgifter. I tabellpresentationen visas metoden ARBETSSTYCKESORIENTERAD med WPO och VERKTYGSORIENTERAD med TO.
- G

Uppgiften TO-/WP-ORIENTED kan inte ställas in via softkey. Den visas bara om olika bearbetningsmetoder har ställts in för arbetsstycket i arbetsstyckes- resp. fixturnivån.

Om bearbetningsmetoden ställs in i fixturnivån, kommer uppgiften att överföras till arbetsstyckesnivån och eventuella befintliga uppgifter att skrivas över.

Status: Softkey RÅÄMNE markerar paletten med därtill hörande fixturer respektive arbetsstycken som ännu inte bearbetade, i fältet status skrivs BLANK in. Använd softkey TOM PLATS om du vill hoppa över paletten vid bearbetningen, i fältet status visas EMPTY

Inställning av detaljer i palettnivån

- Palett-ID: Ange palettens namn
- Nollpunkt: Ange palettens nollpunkt
- Nollp. tab. : Ange namnet och sökvägen till arbetsstyckets nollpunktstabell. Uppgiften överförs till fixtur- och arbetsstyckesnivån.
- Säker höjd: (om så önskas): Säker position för de olika axlarna i förhållande till paletten. Förflyttning till den angivna positionen sker endast om NC-makrot läser detta värde och har programmerats för att utföra förflyttningen.

MANUELL DRIFT EDITERA	PROGRAM-TABELL	
Machinir	ng method?	
Fil:TNC:\BLANK'	TABELLEN\PAL2048.P	
P f	T FIXPGM	
Palett-ID:	PAL4-208-11	
Metod:	WORKPIECE/TOOL-ORIEN	TED
Status:	RÅÄMNE	
Palett-ID:	PAL4-206-4	
Metod:	WORKPIECE/TOOL-ORIEN	TED
Status:	RÄÄMNE	
Palett-ID:	PAL3-208-6	
Metod:	WORKPIECE/IOOL-ORIEN	IIED
Status:	RAAMNE	
PALETT PALETT	VISNING PALETT INFOGA	RADERA
U U	NIVÂ PALETT PALETT	PALETT

MANUELL DRIFT EDITE	RA PROGRAM-TABELL T / NC-PROGRAM?	
Fil:TNC:\BLA	NK\TABELLEN\PAL2048.P	
Palett-ID:	PAL4-208-11	
X120,238	Y202,94 Z	
Nollp.tab.:	TNC:\RK\TEST\TABLE01.D	
Säker höjd:		
X	Y 2100	
PALETT PALETT	VISNING PALETT INFOGA FIXTUR- NIVÂ DETALJ PALETT PALETT	RADERA

Inställning av fixturnivån

- **Fixtur**: Fixturens nummer visas, efter snedstrecket visas antalet fixturer inom denna nivå.
- Metod: Man kan välja bearbetningsmetod WORKPIECE ORIENTED resp. TOOL ORIENTED. Valet som görs överförs till den därtill hörande arbetsstyckesnivån och skriver eventuellt över befintliga uppgifter. I tabellpresentationen indikeras uppgiften WORKPIECE ORIENTED med WPO och TOOL ORIENTED med TO. Med softkey ANSLUT/SEPARERA markerar man fixturer som skall ingå i beräkningen av arbetsförloppet vid verktygsorienterad bearbetning. Anslutna fixturer indikeras av en avbruten skiljelinje, separerade fixturer av en genomgående linje. I tabellpresentationen indikeras anslutna arbetsstycken med CTO i kolumnen METOD.
 - Uppgiften TO-/WP-ORIENTATE kan inte ställas in via softkey, den visas bara om olika bearbetningsmetoder har ställts in för arbetsstycket i arbetsstyckesnivån.

Om bearbetningsmetoden ställs in i fixturnivån, kommer uppgiften att överföras till arbetsstyckesnivån och eventuella befintliga uppgifter att skrivas över.

Status: Med softkey **RÅÄME** markeras fixturen med de därtill hörande arbetsstyckena som ännu inte bearbetade och i fältet status förs BLANK in. Använd softkey **TOM PLATS** om du vill hoppa över fixturen vid bearbetningen, i fältet STATUS visas **EMPTY**

Inställning av detaljer i fixturnivån

- **Fixtur**: Fixturens nummer visas, efter snedstrecket visas antalet fixturer inom denna nivå.
- Nollpunkt: Ange fixturens nollpunkt
- Nollp. tab. : Ange namnet och sökvägen till nollpunktstabellen som skall användas vid bearbetningen av arbetsstycket. Uppgiften överförs till arbetsstyckesnivån.
- NC-makro: Vid verktygsorienterad bearbetning utförs makrot TCTOOLMODE istället för det normala verktygsväxlingsmakrot.
- **Säker höjd**: (om så önskas): Säker position för de olika axlarna i förhållande till fixturen.

-							
MANUELL DRI	FT ED:	[TERA	PROG	RАМ-ТА	BELL		
	Mad	chini	ng me	thod?			
Palot	+ - T D -		-208-	1 1			
laret	C ID		200. Di F		≤м		
Eix	tur:		1/3				
Met	od:		TOOL		TED		
Sta	tus:		RÅÄMI	NF			
Fix	tur:		2/3				
Met	od:		WORK	PIECE	'TOOL-	ORIE	NTED
Sta	tus:		RÅÄMI	NF			
Fix	tur:		3/3				
Met	nd:		TUUL		ITED		
Sta	tus:		RÅÄMI	VF			
			N				
L							
FIXTUR	FIXTUR П	VISNING POLETT-	VISNING	FIXTUR DETOLI	INFOGA		RADERA
	ŵ	NIVÂ	NIVÂ	FIXTUR	FIXTUR		FIXTUR

Inställning av arbetsstyckesnivån

- **Arbetsstycke**: Arbetsstyckets nummer visas, efter snedstrecket visas antalet arbetsstycken inom denna fixturnivå.
- Metod: Man kan välja bearbetningsmetod WORKPIECE ORIENTET resp. TOOL ORIENTED. I tabellpresentationen indikeras uppgiften WORKPIECE ORIENTED med WPO och TOOL ORIENTED med TO. Med softkey ANSLUT/SEPARERA markerar man arbetsstycken som skall ingå i beräkningen av arbetsförloppet vid verktygsorienterad bearbetning. Anslutna arbetsstycken indikeras av en avbruten skiljelinje, separerade arbetsstycken av en genomgående linje. I tabellpresentationen indikeras anslutna arbetsstycken med CTO i kolumnen METOD.

Status: Med softkey RÅÄME markeras arbetsstycket som ännu inte bearbetat och i fältet status förs BLANK in. Använd softkey TOM PLATS om du vill hoppa över ett arbetsstycke vid bearbetningen, i fältet status visas EMPTY.

Ställ in metod och status i palett- resp. fixturnivån, uppgiften överförs för alla därtill hörande arbetsstycken.

Vid flera arbetsstyckesvarianter inom en och samma nivå skall arbetsstycken av samma variant anges efter varandra. Vid verktygsorienterad bearbetning kan arbetsstycken av respektive variant sedan markeras med softkey ANSLUT/ÅTSKILJ och bearbetas gruppvis.

Inställning av detaljer i arbetsstyckesnivån

- Arbetsstycke: Arbetsstyckets nummer visas, efter snedstrecket visas antalet arbetsstycken inom denna fixtur- resp. palettnivå.
- Nollpunkt: Ange arbetsstyckets nollpunkt
- Nollp. tab. : Ange namnet och sökvägen till nollpunktstabellen som skall användas vid bearbetningen av arbetsstycket. Om man använder samma nollpunktstabell till alla arbetsstycken, anger man namnet och sökvägen i palett- alt. fixturnivån. Uppgiften överförs automatiskt till arbetsstyckesnivån.
- **NC-program** Ange namnet och sökvägen till NC-programmet som behövs för bearbetningen av arbetsstycket.
- **Säker höjd**: (om så önskas): Säker position för de olika axlarna i förhållande till arbetsstycket. Förflyttning till den angivna positionen sker endast om NC-makrot läser detta värde och har programmerats för att utföra förflyttningen.

MANUELL DR	RIFTED	[T E R A	PROGI	RAM-TA	BELL		
	Mag	:hinir	ng me	thod?			
D 1			000		- i i		
Late.	t t - 1 D 3	PHL4-	-208-	11	_ +1>	(tur:	L
		P A	ALF	IXPG	M		
Art	n.stvr	ke:	1/3				
Mo	tod.		TOOL		TED		
0.1			DSON				
518	atusi		RAHM	NE			
Art	b.styd	cke:	2/3				
Me	tod:		TOOL	ORIEN	TED		
S + :	atuet		DåöM	NE			
	atus.		NUUUU				
			0.40				
Hrt).sty(ске:	3/3				
Metod:		TOOL-ORIENTED					
Sta	atus:		RÅAMI	NE			
					_		
ARBSTYCKE	ARBSTYCKE	VISNING		ARBSTYCKE		INFOGA	RADERA
l Ú	↓	FIXTUR-		DETALJ		ARBSTYCKE	ARBSTYCK
		102.01		TROOTTORE			

MANUELL DR	RIFT ED: REF	TERA E <mark>rens</mark>	PROGI SPUNK	2 A M - T f 7 ?	ABELL		
Pale	tt-ID:	:PAL4- PA	-208-: ALF	11 IXP(Fi>	<tur::< td=""><td>1</td></tur::<>	1
Arb.s Nollp	stycke punkt:	: 2/	/3				
X <mark>84,</mark>	502	Y	20,95	7	<mark>2</mark> 36	,831	
Nolls	.tab	: 1		< \ TES () TES		E01.0	
Säkei	rogran r höjd	n: 🛄	NU: \RI	(IES	\ 4 4 2	HUTT	. H
X		Y			<mark>2</mark> 100	3	
ARBSTYCKE	ARBSTYCKE	VISNING		ARBSTYCKE		TNEOGO	PONEPO
Û	Û	FIXTUR- NIVÂ		DE TALJ ARBSTYCKE		ARBSTYCKE	ARBSTYCKE

Förlopp vid verktygsorienterad bearbetning

TNC:n utför bara en verktygsorienterad bearbetning om metoden har valts till VERKTYGSORIENTERAD och genom att uppgiften TO alt. CTO står i tabellen.

- TNC:n identifierar genom uppgiften TO resp. CTO i fältet Metod, att den optimerade bearbetningen skall utföras vid dessa rader.
- Palettadministrationen startar det NC-program som står i raden med uppgiften TO.
- Det första arbetsstycket bearbetas tills det är dags för nästa TOOL CALL. I ett speciellt verktygsväxlingsmakro förflyttas verktyget bort från arbetsstycket.
- I kolumnen W-STATE ändras uppgiften BLANK till INCOMPLETE och i fältet CTID skriver TNC:n in ett hexadecimalt värde.

Värdet som har förts in i fält CTID representerar för TNC:n en entydig information om hur långt bearbetningen har utförts. Om detta värde raderas eller ändras är inte längre fortsatt bearbetning eller blockframläsning resp. återstart möjlig.

- Alla andra rader i palettfilen, som har indikeringen CTO i fältet METOD, exekveras på samma sätt som det första arbetsstycket. Bearbetningen av arbetsstycket kan ske över flera fixturer.
- TNC:n utför efterföljande bearbetningssteg med nästa verktyg och början från raden som innehåller uppgiften TO, vid följande situationer:
 - I nästa rad står uppgiften PAL i fältet PAL/PGM
 - I nästa rad står uppgiften TO eller WPO i fältet METOD
 - I den redan exekverade raden befinner sig ytterligare uppgifter under METOD som inte har status EMPTY eller ENDED.
- Tack vare värdet som har förts in i fältet CTID fortsätter NCprogrammet på det ställe som har lagrats. Som regel utförs en verktygsväxling vid den första detaljen, vid de efterföljande arbetsstyckena undertrycker TNC:n verktygsväxlingen.
- Uppgiften i fältet CTID uppdateras vid varje bearbetningssteg. Om ett END PGM eller M02 utförs i NC-programmet, kommer en eventuell kvarvarande uppgift att raderas och ENDED att föras in i fältet bearbetningsstatus.

Vid en återstart med blockframläsning är bara arbetsstyckesorienterad bearbetning möjlig. Efterföljande detalj bearbetas enligt den angivna metoden.

Värdet som har förts in i fältet CT-ID behålles maximalt i en vecka. Inom denna tid kan bearbetningen återupptas vid det lagrade stället. Därefter raderas värdet för att undvika stora datamängder på hårddisken.

Växling av driftart är tillåtet efter exekvering av en grupp uppgifter med TO resp. CTO.

Följande funktioner är inte tillåtna:

- Växling av rörelseområde
- PLC-nollpunktsförskjutning
- M118

Lämna palettfil

- Välj filhantering: Tryck på knappen PGM MGT
- Välj en annan filtyp: Tryck på softkey VÄLJ TYP och därefter softkey för den önskade filtypen, t.ex. VISA .H
- Välj önskad fil

Exekvera palettfil

G

l maskinparameter 7683 definierar man om palettabellen skall exekveras block för block eller kontinuerligt (se "Allmänna användarparametrar" på sidan 452).

- Välj filhantering i driftart Programkörning blockföljd eller Programkörning enkelblock: Tryck på knappen PGM MGT
- ▶ Visa filer av typ .P: Tryck på softkey VÄLJ TYP och VISA .P
- Välj palettabell med pilknapparna, bekräfta med knappen ENT
- Exekvera palettabell: Tryck på knappen NC-Start, TNC:n utför paletterna på det sätt som definierats i maskinparameter 7683

4.12 Palettdrift med verktygsorienterad bearbetning

Bildskärmsuppdelning vid exekvering av palettfil

Om man vill se både programmets innehåll och palettfilens innehåll samtidigt så väljer man bildskärmsuppdelning PROGRAM + PALETT. Under exekveringen visar då TNC:n programmet i den vänstra bildskärmssidan och paletten i den högra bildskärmssidan. För att kunna se programinnehållet innan exekveringen gör man på följande sätt:

- Välj palettfil
- Välj programmet som du vill kontrollera med pilknapparna
- Tryck på softkey ÖPPNA PROGRAM: TNC:n visar det valda programmet i bildskärmen. Nu kan man bläddra i programmet med hjälp av pilknapparna
- > Tillbaka till palettabellen: Tryck på softkey END PGM

PROGI	RAM BL	0CKF	ÖLJ	D					EDIT PROG	ERA TA	BELL
					NR	PAL/P	'GM NAME				\rightarrow
					Ø	PAL	120				
					1	PGM	FK1.H				
					2	PAL	130				
					3	PGM	SLOLD.H				
					4	PGM	FK1.H				
					5	PAL	SLOLD.H				
					6	PGM	SLOLD.H				
					7	PAL	140				
						0%	S-IS1	11	1:3	6	
				<u> </u>		î%	S-MOM	1 L]	ΙMΙ	Т	1
X	-169.	525	Y	-	66	5.00	67 Z	+	197		137
С	+114.	778	В	+2	07	. 81	72				
							S	35	9.9	973	3
ÄR	6	<u>۲</u>		S 985	5		F 0		M	1 5/9	3
F MAX					ÖF PRC	PPNA DGRAM	AUTOSTART	Ô	PÂ AV	7	

PROGRAM BLOCKFÖLJD	EDITERA PROGTABELL
0 BEGIN PGM FK1 MM	NR PAL/PGM NAME
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	0 PAL 120
2 BLK FORM 0.2 X+100 Y+100 Z+0	1 PGM FK1.H
3 TOOL CALL 1 Z	2 PAL 130
4 L Z+250 R0 F MAX	3 PGM SLOLD.H
5 L X-20 Y+30 R0 F MAX	4 PGM FK1.H
6 L Z-10 R0 F1000 M3	5 PAL SLOLD.H
7 APPR CT X+2 Y+30 CCA90 R+5 RL	6 PGM SLOLD.H
F250	7 PAL 140
	0% S-IST 11:37
	1% S-MOM LIMIT 1
🗙 -169.525 Y -	-66.067 Z +197.437
C +114.778 B +2	207.872
	S 359.973
й r 🖄 т 5.98	5 FØ M 5⁄9
F MAX	END PGM PAL AUTOSTART C) PÂ Ø PÂ AV

Programmering: Verktyg

5.1 Verktygsrelaterade uppgifter

Matning F

Matning **F** är den hastighet i mm/min (tum/min), med vilken verktygets centrum förflyttar sig på sin bana. Den maximala matningen är individuellt inställd för varje axel via maskinparametrar.

Inmatning

Man kan ange matningshastigheten i **TOOL CALL**-blocket (verktygsanrop) och i alla positioneringsblock (se "Skapa programblock med konturfunktionsknapparna" på sidan 129).

Snabbtransport

Om snabbtransport önskas anger man **F MX**. För att ange **F MX** trycker man vid dialogfrågan **Matning F**= **?** på knappen ENT eller på softkey FMAX.

Varaktighet

En med siffror programmerad matning gäller ända tills ett block med en ny matning programmeras. **F MX** gäller endast i de block den har programmerats i. Efter ett block med **F MX** gäller åter den med siffror sist programmerade matningen.

Ändring under programkörning

Matningshastigheten kan justeras med hjälp av potentiometern för matningsoverride F under programkörningen.

Spindelvarvtal S

Spindelvarvtalet S programmeras i varv per minut (varv/min) i ett **TOOL CALL**-block (verktygsanrop).

Programmerad ändring

Spindelvarvtalet kan ändras i ett TOOL CALL-block i bearbetningsprogrammet. I detta block programmerar man endast det nya spindelvarvtalet:

 Programmera verktygsanrop: Tryck på knappen TOOL CALL

- Hoppa över dialogen Verktygsnumer? med knappen NO ENT
- Hoppa över dialogen Spindelaxel parallell X/Y/Z ? med knappen NO ENT
- Ange det nya spindelvarvtalet i dialogen
 Spindelvarvtal S= ? samt bekräfta med knappen END

Ändring under programkörning

Spindelvarvtalet kan justeras med hjälp av potentiometern för spindeloverride S under programkörningen.

5.2 Verktygsdata

Förutsättning för verktygskompenseringen

Vanligen programmerar man koordinaterna för konturrörelserna som de är måttsatta i ritningsunderlaget. För att TNC:n då skall kunna beräkna verktygscentrumets bana, alltså utföra en verktygskompensering, måste man ange längd och radie för alla använda verktyg.

Verktygsdata kan programmeras antingen med funktionen TOOL DEF direkt i programmet eller separat i en verktygstabell. Om man använder sig av verktygsdata i en tabell finns det fler verktygsspecifika informationer. När bearbetningsprogrammet exekveras tar TNC:n hänsyn till alla de inmatade uppgifterna.

Verktygsnummer, verktygsnamn

Varje verktyg kännetecknas av ett nummer mellan 0 och 254. Om man arbetar med verktygstabell kan man använda högre nummer och dessutom namnge verktygen med ett verktygsnamn.

Verktyget med nummer 0 är förutbestämt som nollverktyg och har längden L=0 och radien R=0. Även i verktygstabellen bör man därför definiera verktyget T0 med L=0 och R=0.

Verktygslängd L

Verktygslängden L kan bestämmas på två olika sätt:

Differens mellan verktygets längd och längden på ett nollverktyg L0

Förtecken:

- L>L0: Verktyget är längre än nollverktyget
- L<L0: Verktyget är kortare än nollverktyget

Bestämma längd:

- Förflytta nollverktyget till en utgångsposition i verktygsaxeln (t.ex. arbetsstyckets yta med Z=0)
- Ställ in positionsvärdet i verktygsaxeln till noll (inställning av utgångspunkt)
- Växla in nästa verktyg
- Förflytta verktyget till samma utgångsposition som nollverktyget
- Det presenterade positionsvärdet visar längdskillnaden mellan verktyget och nollverktyget
- Överför värdet med knappen "Överför är-position" till TOOL DEFblocket alt. till verktygstabellen

Bestämma längden L med hjälp av en förinställningsapparat

Då anger man det uppmätta värdet direkt i verktygsdefinitionen TOOL DEF eller i verktygstabellen.

Verktygsradie R

Verktygsradien R anges direkt.

Delta-värde för längd och radie

Delta-värden används för att definiera avvikelser i verktygets längd och radie.

Ett positivt delta-värde motsvarar ett övermått (DL, DR, DR2>0). Vid bearbetning med övermått anger man värdet för övermåttet vid programmeringen av verktygsanropet med TOOL CALL.

Ett negativt delta-värde motsvarar ett undermått (DL, DR, DR2<0). Ett undermått anges i verktygstabellen för att kompensera för förslitning av ett verktyg.

Delta-värden anges som siffervärden, i TOOL CALL-block kan man dock även ange värdet med en Q-parameter.

Inmatningsområde: Delta-värdet måste ligga inom området ± 99,999 mm.

Inmatning av verktygsdata i program

Man definierar det specifika verktygets nummer, längd och radie en gång i bearbetningsprogrammet, i ett TOOL DEF-block:

▶ Välj verktygsdefinition: Tryck på knappen TOOL DEF

- TOOL DEF
- Verktygsnummer :Med verktygsnumret bestäms ett verktyg entydigt
- Verktygslängd :Kompenseringsvärde för längden
- Verktygsradie :Kompenseringsvärde för radien

Under dialogen kan man överföra värdet för verktygslängden direkt till dialogfältet med hjälp av knappen "Överför är-position". Kontrollera då att verktygsaxeln är markerad i statuspresentationen.

Exempel

4 TOOL DEF 5 L+10 R+5

Inmatning av verktygsdata i tabell

l en verktygstabell kan man definiera upp till 32767 verktyg samt lagra deras verktygsdata. Man definierar antalet verktyg som TNC:n lägger upp när man skapar en ny tabell via maskinparameter 7260. Beakta även editeringsfunktionerna som beskrivs senare i detta kapitel. För att kunna ange flera kompenseringsdata för ett verktyg (Indexera verktygsnummer ställer man in maskinparameter 7262 på värde som ej är 0.

Man måste använda verktygstabell då

- Man vill använda indexerade verktyg såsom exempelvis stegborr med flera längdkompenseringar (Sida 103)
- Din maskin är utrustad med en automatisk verktygsväxlare
- Man vill mäta verktyg automatiskt med TT 130, se bruksanvisning Avkännarcykler, kapitel 4
- Man vill efterutvidga med bearbetningscykel 22 (se "GROVSKÄR (cykel 22)" på sidan 293)
- Man vill arbeta med automatisk skärdataberäkning

Verktygstabell: standard verktygsdata

Förkortn.	Inmatning	Dialog
Т	Nummer, med vilket verktyget anropas från program (t.ex. 5, indexerat: 5.2)	_
NAME	Namn, med vilket verktyget anropas från program	Verktygsnam?
L	Kompenseringsvärde för verktygslängden L	Verktygslängd?
R	Kompenseringsvärde för verktygsradien R	Verktygsradie R?
R2	Verktygsradie R2 för hörnradiefräsar (endast för tre-dimensionell radiekompensering eller för grafisk simulering av bearbetning med radiefräsar)	Verktygsradie R2?
DL	Delta-värde för verktygsradie R2	Tilläggsmitt verktygslängd?
DR	Delta-värde för verktygsradie R	Tilläggsmått verktygsradie?
DR2	Delta-värde för verktygsradie R2	Tilläggsmitt verktygsradie R2?
LCUTS	Verktygsskärens längd för verktyget (för cykel 22)	Skärlängd i verktygsaxeln?
ANGLE	Verktygets maximala nedmatningsvinkel vid pendlande nedmatningsrörelse för cykel 22 och 208	Maximal nednatningsvinkel?
TL	Verktygsspärr (TL: för Tool Locked = eng. verktyg spärrat)	Verktyg spärrat? Ja = ENT / Nej = NO ENT
RT	Nummer på ett systerverktyg – om det finns något – tillgängligt systerverktyg (RT : för R eplacement T ool = eng. ersättningsverktyg); se även TIME2	Systerverktyg?
TIME1	Verktygets maximala livslängd i minuter. Denna funktion är maskinavhängig och finns beskriven i maskinhandboken	Max. livslängd?

ta	För
ygsda	TIM
Verkt	CUR.
5.2	DOC

Förkortn.	Inmatning	Dialog
TIME2	Verktygets maximala livslängd vid ett TOOL CALL i minuter: Uppnår eller överskrider den aktuella livslängden detta värde, kommer TNC:n att växla in systerverktyget vid nästa TOOL CALL (se även CUR.TIME)	Maximal livslängd vid TOOL CALL?
CUR. TIME	Verktygets aktuella livslängd i minuter: TNC:n räknar automatiskt upp verktygets aktuella livslängd (CUR.TIME: för CURrent TIME= eng. aktuell/löpande tid). För redan använda verktyg kan ett startvärde anges	Aktuell livslängd?
DOC	Kommentar till verktyget (maximalt 16 tecken)	Verktygskommentar?
PLC	Information om detta verktyg som skall överföras till PLC	PLC-status?
PLC-VAL	Värde för detta verktyg som skall överföras till PLC	PLC-värde?

Verktygstabell: verktygsdata för automatisk verktygsmätning

Beskrivning av cyklerna för automatisk verktygsmätning: Se Bruksanvisning Cykler för avkännarsystem, Kapitel 4.

Förkortn.	Inmatning	Dialog
CUT	Antal verktygsskär (max. 20 skär)	Antal skär?
LTOL	Tillåten avvikelse från verktygslängden L för att detektera förslitning. Om det inmatade värdet överskrids, spärrar TNC:n verktyget (status L). Inmatningsområde: 0 till 0,9999 mm	Förslitningstolerans: Längd?
RTOL	Tillåten avvikelse från verktygsradien R för att detektera förslitning. Om det inmatade värdet överskrids, spärrar TNC:n verktyget (status L). Inmatningsområde: 0 till 0,9999 mm	Förslitningstolerans: Radie?
DI RECT.	Verktygets skärriktning för mätning med roterande verktyg	Skärriktning (MB = -)?
TT: R- OFFS	Längdmätning: förskjutning av verktyget från avkännarens centrum till verktygets centrum. Förinställning: Verktygsradie R (knappen NO ENT ger R)	Verktygsförskjutning radie?
TT: L-OFFS	Radiemätning: tillägg till verktygsförskjutningen från MP6530 mellan avkännarens överkant och arbetsstyckets. Förinställning: 0	Verktygsförskjutning längd?
LBREAK	Tillåten avvikelse från verktygslängden L för att detektera brott. Om det inmatade värdet överskrids, spärrar TNC:n verktyget (status L). Inmatningsområde: 0 till 0,9999 mm	Brott-tolerans: Längd?
RBREAK	Tillåten avvikelse från verktygsradien R för att detektera brott. Om det inmatade värdet överskrids, spärrar TNC:n verktyget (Status L). Inmatningsområde: 0 till 0,9999 mm	Brott-tolerans: Radie?

5.2 Verktygsdata

Verktygstabell: verktygsdata för automatisk varvtals-/ matningsberäkning

Förkortn.	Inmatning	Dialog
ТҮР	Verktygstyp (MLL =fräs, DRILL =borr, TAP=gängtapp): softkey VÄLJ TYP (3:e softkeyraden); TNC:n presenterar ett fönster, i vilket man kan välja verktygstypen	Verktygstyp?
TMAT	Verktygets material: Softkey VÄLJ VERKTYGSMATERIAL (3:e softkeyraden); TNC:n presenterar ett fönster, i vilket man kan välja skärmaterial	Verktygs-skärmterial?
CDT	Skärdatatabell: Softkey VÄLJ CDT (3:e softkeyraden); TNC:n presenterar ett fönster, i vilket man kan välja skärdatatabellen	Nann skärdatatabell?

Verktygstabell: Verktygsdata för brytande 3D-avkännarsystem (endast när Bit1 i MP7411 = 1, se även bruksanvisning Avkännarcykler)

Förkortn.	Inmatning	Dialog
CAL-OF1	TNC:n lägger vid kalibreringen in 3D-avkännarens centrumförskjutning i huvudaxeln i denna kolumn, under förutsättning att ett verktygsnummer har angivits i kalibreringsmenyn	Avkännare centrunförskjutning huvudaxel?
CAL-OF2	TNC:n lägger vid kalibreringen in 3D-avkännarens centrumförskjutning i komplementaxeln i denna kolumn, under förutsättning att ett verktygsnummer har angivits i kalibreringsmenyn	Avkännare centrunförskjutning komplementaxel?
CAL-ANG	TNC:n lägger vid kalibreringen in spindelvinkeln, vid vilken 3D- avkännaren kalibrerades, under förutsättning att ett verktygsnummer har angivits i kalibreringsmenyn	Spindelvinkel vid kalibrering?

Editera verktygstabell

Det är alltid verktygstabellen med filnamnet TOOL.T som är aktiv vid programkörning. TOOL.T måste finnas lagrad i katalogen TNC:\ och kan bara editeras i någon av maskindriftarterna. Verktygstabeller som man vill arkivera eller använda för programtest ger man ett annat godtyckligt filnamn med avslutningen .T.

Öppna verktygstabell TOOL.T:

Välj någon av maskindriftarterna

 Kalla upp verktygstabell: Tryck på softkey VERKTYGSTABELL

► Växla softkey EDITERING till "PÅ"

EDI	TERA VI	ERKTYG	STAB	ELL		EDI	TERA
VER	KTYGSRI	ADIE 1	2			THB	ELL
FILE	TOOL.T		MM				\rightarrow
T	NAME	L	R		R2	DL	
0		+0	+0		+0	+0	
1	SCHR	+0	+5		+0	+0	
2	SCHL	+5	+2	.5	+0	+0	
3		+0	+3		+0	+0	
4		+0	+3		+0	+0	
5		+0	+1	.5	+0	+0	
6		+0	+2	.5	+0	+0	
1				0%	S-IS	T 12:	5
				1%	S-MO	M LIM	IT 1
X	+76.	644	(-	+42.4	89 Z	+20	5.231
С	+114.	778 E	3 +2	207.8	72		
					S	359.	973
ÄR		т	S 98	5	F 0		M 5∕9
BÖRJAN	J SLUT ∬	SIDA ÎÎ	SIDA "Ĵ		EDITERA	SÖK VERKTYGS-	PLATS

PGM MGT

Öppna någon annan verktygstabell:

- Välj driftart Programinmatning/Editering
 - Kalla upp filhanteringen
 - Välj vilken filtyp som skall presenteras: Tryck på softkey VÄLJ TYP
 - ▶ Visa filer av typ .T: Tryck på softkey VISA .T
 - Välj en av filerna eller skriv in ett nytt filnamn. Godkänn med knappen ENT eller med softkey VÄLJ

När man har öppnat en verktygstabell för editering kan man förflytta markören till en godtycklig position i tabellen med hjälp av pilknapparna eller med softkeys. Man kan skriva över tidigare sparade värden eller lägga in nya värden i tabellen. Ytterligare editeringsfunktioner finner du i den efterföljande tabellen.

Om TNC:n inte kan presentera alla tabellens positioner samtidigt visas ett fält högst upp i tabellen med symbolerna ">>" resp. "<<".

Lämna verktygstabell

Kalla upp filhanteringen och välj en fil av annan typ, t.ex. ett bearbetningsprogram.

Editeringsfunktioner för verktygstabeller	Softkey
Gå till tabellens början	BORJAN
Gå till tabellens slut	
Gå till föregående sida i tabellen	SIDA
Gå till nästa sida i tabellen	SIDA
Sök efter verktygsnamn i tabellen	SOK VERKTYGS- NRMN
Visa information om verktyg i kolumner eller visa all information om ett verktyg på en bildskärmssida	LISTA FORMULAR
Hoppa till radens början	RRD- BORJAN
Hoppa till radens slut	RRD- BORJAN
Kopiera markerat fält	KOPIERA FALT
Infoga kopierat fält	INFOGA FALT

Editeringsfunktioner för verktygstabeller	Softkey
Infoga ett definierbart antal rader (verktyg) vid tabellens slut	LAGG TILL N RADER VID SLUT
Infoga rad med indexerat verktygsnummer efter den aktuella raden. Funktionen är bara aktiv om man får definiera flera kompenseringsdata för ett verktyg (maskinparameter 7262 ej 0). TNC:n infogar en kopia av verktygsdata efter det sista tillgängliga indexet och ökar index med 1. Användning: t.ex. stegborr med flera längdkompenseringar	INFOGR RAD
Radera aktuell rad (verktyg)	RADERA RAD
Visa / visa inte platsnummer	PLATS-NR. VISA DOLJ
Vice alle verktyg / vice endest verktyg som finns	

Visa alla verktyg / visa endast verktyg som finns lagrade i platstabellen

Beakta vid verktygstabeller

Via maskinparameter 7266.x definierar man vilka informationsfält som skall kunna användas i verktygstabellen samt i vilken ordningsföljd de skall presenteras där.

Man kan skriva över enskilda kolumner eller rader i en verktygstabell med innehållet från en annan fil. Förutsättning:

- Målfilen måste redan existera
- Filen från vilken kopieringen skall ske får bara innehålla kolumnerna (raderna) som skall ersättas.

Individuella kolumner eller rader kopierar man med softkey ERSÄTT FÄLT (se "Kopiera enstaka fil" på sidan 53).

Platstabell för verktygsväxlare

Man behöver en platstabell TOOL_P.TCH vid automatisk verktygsväxlare. TNC:n hanterar flera platstabeller med godtyckliga filnamn. Den platstabell som man vill aktivera för programkörningen väljes i någon av programkörnings-driftarterna via filhanteringen (Status M). För att en platstabell skall kunna administrera flera magasin (indexerade platsnummer), ställer man in maskinparameter 7261.0 till 7261.3 på ett värde som ei är noll.

Editera platstabell i någon av programkörnings-driftarterna

- VERKTYG TABELL
- Kalla upp verktygstabell: Tryck på softkey VERKTYGSTABELL
- ► Kalla upp platstabell: Tryck på softkey PLATSTABELL
- TABELL EDITERA RV PÅ

PLATS

Växla softkey EDITERING till PÅ

Välja platstabell i driftart Programinmatning/editering

- Kalla upp filhanteringen
- Välj vilken filtyp som skall presenteras: Tryck på softkey VÄLJ TYP
- ▶ Visa filer typ .TCH: Tryck på softkey TCH FILER (andra softkevraden)
- Välj en av filerna eller skriv in ett nytt filnamn. Godkänn med knappen ENT eller med softkey VÄLJ

PL SF	_ATS Peci	STABEL (Alver	L ED: RKTYG	ITERII JA=I	NG ENT/NE	E J = N O E	ENT PRO	GRAM ATNING
	IL: TO	OL_P.TCH						
Ρ	ľ	TNAME		ST F L	PLC			
0	1	SCHR			%00000000			
1					%00000000			
2	2	SCHL		S	%00000000			
3	3				%00000000			
4	4				%00000000			
Б	5				%00000000			
6	6				%00000000			
F	0% S-IST 11:41					11		
					1%	S-MON	1 LIM:	LT 1
X	(+76.	644	γ.	+42.48	39 Z	+20	5.231
C		+114.	778	B +:	207.87	72		
						S	359.	973
ÄR			Т	S 98	15	F Ø		M 5⁄9
BÖ	RJAN		SIDA Û	SIDA J	ATERSTÄLL PLATS- TABELL	EDITERA AV / PÅ	NASTA RAD	VERKTYG TABELL

Förkortn.	Inmatning	Dialog
Р	Verktygets platsnummer i verktygsmagasinet	-
Т	Verktygsnummer	Verktygsnummer ?
ST	Verktyget är ett specialverktyg (ST : för S pecial T ool = eng. specialverktyg); om ditt specialverktyg blockerar flera verktygsplatser före och efter sin plats, så spärrar man ett lämpligt antal platser i kolumnen L (Status L)	Specialverktyg ?
F	Verktyget växlas alltid tillbaka till samma plats i magasinet (F : för F ixed = eng. fast)	Fast plats? Ja = ENT / Nej = NO ENT
L	Spärrad plats (L: för Locked = eng. spärrad, se även kolumn ST)	Plats spärrad Ja = ENT / Nej = NO ENT
PLC	Information om denna verktygsplats som skall överföras till PLC	PLC-status ?
TNAME	Presentation av verktygsnamn från TOOL.T	-
DOC	Presentation av kommentar för verktyget från TOOL.T	-

Editeringsfunktioner för platstabeller	Softkey
Gå till tabellens början	BORJEN
Gå till tabellens slut	SLUT
Gå till föregående sida i tabellen	SIDA
Gå till nästa sida i tabellen	SIDA
Återställ platstabell	ATERSTALL PLATS- TABELL
Gå till början på nästa rad	NASTR RAD
Återställ kolumn verktygsnummer T	ATERST. SPRLT T
Hoppa till radens slut	RAD- BORJAN

Anropa verktygsdata

Ett verktygsanrop TOOL CALL programmeras i bearbetningsprogrammet med följande uppgifter:

Välj verktygsanrop med knappen TOOL CALL

TOOL CALL Verktygsnumer: Ange verktygets nummer eller namn. Verktyget har man redan innan definierat i ett TOOL DEF-block eller i verktygstabellen. Om man vill anropa via namnet skriver man in det inom citationstecken. Namnet kopplas samman med ett namn som har skrivits in i den aktiva verktygstabellen TOOL .T. För att anropa ett verktyg med andra kompenseringsdata anger man också det i verktygstabellen definierade indexet efter en decimalpunkt.

Spindelaxel parallell X/Y/Z: Ange verktygsaxel

Spindelvarvtal S: Ange spindelvarvtalet direkt eller låt TNC:n beräkna det om du arbetar med skärdatatabeller. Tryck i så fall på softkey BERÄKNA S AUTOM.. TNC:n begränsar spindelvarvtalet till det maximala värdet som finns angivet i maskinparameter 3515.

- Matning F: Ange matningen direkt eller låt TNC:n beräkna den om du arbetar med skärdatatabeller. Tryck i så fall på softkey BERÄKNA F AUTOM.. TNC:n begränsar matningen till den maximala matningen i den "långsammaste axeln" (definierat i maskinparameter 1010). F är verksamt ända tills man programmerar en ny matning i ett positioneringsblock eller i ett TOOL CALL-block.
- Tilläggsmitt verktygslängd DL: Delta-värde för verktygslängden
- Tilläggsmitt verktygsradie DR: Delta-värde för verktygsradien
- Tilläggsmått verktygsradie DR2: Delta-värde för verktygsradie 2

Exempel: verktygsanrop

Verktyg nummer 5 anropas med verktygsaxel Z, med spindelvarvtal 2500 varv/min samt en matning 350 mm/min. Övermåttet för verktygslängden och verktygsradie 2 motsvarar 0,2 respektive 0,05 mm, undermåttet för verktygsradien 1 mm.

20 TOOL CALL 5.2 Z S2500 F350 DL+0, 2 DR-1 DR2+0, 05

Tecknet **D** framför **L** och **R** står för delta-värde.

Förval av verktyg vid verktygstabell

Om man arbetar med verktygstabell kan det nästkommande verktyget förväljas med ett **TOOL DEF**-block. I detta TOOL DEF-block anges bara verktygsnumret, alternativt en Q-parameter eller ett verktygsnamn inom citationstecken.

Verktygsväxling

Verktygsväxling är en maskinavhängig funktion. Beakta anvisningarna i Er maskinhandbok!

Verktygsväxlingsposition

Verktygsväxlingspositionen måste kunna nås utan risk för kollision. Med tilläggsfunktionerna **M1** och **M2** kan man förflytta till en maskinfast växlingsposition. Om **TOOL CALL 0** har programmerats före det första verktygsanropet kommer TNC:n att förflytta spindelaxeln till en position som är oberoende av verktygslängden.

Manuell verktygsväxling

Innan en manuell verktygsväxling utförs skall spindeln stoppas och verktyget förflyttas till verktygsväxlingspositionen:

- Programmerad körning till verktygsväxlingspositionen
- Avbrott i programkörningen, se "Stoppa bearbetningen", sidan 417
- Växla verktyget
- Återuppta programkörningen, se "Fortsätt programkörning efter ett avbrott", sidan 419

Automatisk verktygsväxling

Vid automatisk verktygsväxling avbryts inte programexekveringen. Vid ett verktygsanrop med **TOOL CALL** växlar TNC:n självständigt in det anropade verktyget från verktygsmagasinet.

Automatisk verktygsväxling då livslängden har överskridits: M101

	Q	
٦		Γ

M01 är en maskinavhängig funktion. Beakta anvisningarna i Er maskinhandbok!

Om ett verktygs aktuella livslängd uppnår **TIME2** växlar TNC:n automatiskt in ett systerverktyg. För att åstadkomma detta aktiveras funktionen i programmets början med tilläggsfunktionen **M01**. Funktionen **M01** kan upphävas med **M02**.

Den automatiska verktygsväxlingen utförs inte omedelbart efter det att den maximala livslängden har uppnåtts, utan ett antal programblock senare, beroende på styrningens arbetsbelastning.

Förutsättning för standard NC-blockmed radiekompensering R0, RR, RL

Systerverktygets radie måste vara densamma som det ursprungliga verktygets radie. Om radien inte är densamma så kommer TNC:n att visa ett felmeddelande och växlar inte in systerverktyget.

Förutsättning för NC-block med ytnormal-vektorer och 3Dkompensering

Se "Tredimensionell verktygskompensering", sidan 112. Systerverktygets radie får avvika från det ursprungliga verktygets radie. Den inkluderas inte i programblocken som överförs från CADsystem. Delta-värde (DR) anger man antingen i verktygstabellen eller i TOOL CALL-blocket.

Om **DR** är större än noll så kommer TNC:n att visa ett felmeddelande och växlar inte in verktyget. Med M-funktionen **M07** kan detta meddelande undertryckas, med **M08** kan det åter aktiveras.

5.3 Verktygskompensering

Introduktion

TNC:n korrigerar verktygsbanan med kompensationsvärdet för verktygslängden i spindelaxeln och för verktygsradien i bearbetningsplanet.

När man skapar bearbetningsprogrammet direkt i TNC:n, är kompenseringen för verktygsradien bara verksam i bearbetningsplanet. TNC:n tar då hänsyn till upp till fem axlar, inklusive rotationsaxlar.

Om programblock med ytnormal-vektorer har skapats i ett CAD-system, kan TNC:n utföra en tredimensionell verktygskompensering, se "Tredimensionell verktygskompensering", sidan 112.

Kompensering för verktygslängd

Kompenseringen för verktygslängden aktiveras automatiskt så fort ett verktyg anropas och förflyttas i spindelaxeln. Den upphävs direkt då ett verktyg med längden L=0 anropas.

När man upphäver en positiv längdkompensering med **TOOL CALL 0** minskar avståndet mellan verktyget och arbetsstycket.

Efter ett verktygsanrop **TOOL CALL** ändrar sig verktygets programmerade sträcka i spindelaxeln med längddifferensen mellan det gamla och det nya verktyget.

Vid längdkompenseringen tas hänsyn till delta-värdet både från **TOOL CALL**-blocket och det från verktygstabellen.

Kompenseringsvärde = $L + DL_{TOOL CALL} + DL_{TAB}$ med

L:	Verktygslängd L från TOOL DEF -block eller verktygstabell
DL _{TOOL CALL} :	Tilläggsmått DL för längd från TOOL CALL -block (inkluderas inte i det presenterade positionsvärdet)
DL _{TAB} :	Tilläggsmått DL för längd från verktygstabellen

Kompensering för verktygsradie

Programblock för verktygsrörelser innehåller

- RL eller RR för en radiekompensering
- R+ eller R- för en radiekompensering vid en axelparallell förflyttning
- **RO** då ingen radiekompensering skall utföras

Radiekompenseringen aktiveras så snart ett verktyg har anropats och förflyttas i bearbetningsplanet med RL eller RR.

Ο	h
٣	٠γ

- TNC:n upphäver radiekompenseringen när man:
- programmerar ett positioneringsblock med RO
- lämnar konturen med funktionen DEP
- programmerar ett PGM CALL
- kallar upp ett nytt program med PGM MGT

Vid radiekompensering tas hänsyn till både delta-värdet från **TOOL CALL**-blocket och det från verktygstabellen:

Kompenseringvärde = $\mathbf{R} + \mathbf{D}\mathbf{R}_{TOOL CALL} + \mathbf{D}\mathbf{R}_{TAB}$ med

R:	Verktygsradie R från TOOL DEF -block eller verktygstabell
DR _{TOOL CALL} :	Tilläggsmått DR för radie från TOOL CALL -block (inkluderas inte i det presenterade positionsvärdet)
DR _{TAB:}	Tilläggsmått DR för radie från verktygstabellen

Konturrörelser utan radiekompensering: R0

Verktyget förflyttar sig i bearbetningsplanet med sitt centrum på den programmerade konturen alt. till de programmerade koordinaterna.

Användning: borrning, förpositionering.

RR

RL

Konturrörelser med radiekompensering: RR och RL

- Verktyget förflyttas på höger sida om konturen
- Verktyget förflyttas på vänster sida om konturen

Verktygets centrum förflyttas därvid på ett avstånd motsvarande verktygsradien från den programmerade konturen. "Höger" och "vänster" hänför sig till verktygets läge, i förflyttningsriktningen, i förhållande till arbetsstyckets kontur. Se bilderna till höger.

Mellan två programblock med olika radiekompenseringar RR och RL måste det finnas minst ett förflyttningsblock i bearbetningsplanet utan radiekompensering (alltså med R0).

En radiekompensering är fullt aktiverad i slutet på det block som den programmeras i första gången.

Man kan även aktivera radiekompenseringen för bearbetningsplanets tilläggsaxlar. Programmera i sådana fall tilläggsaxlarna i varje efterföljande block eftersom TNC:n annars åter kommer att utföra radiekompenseringen i huvudaxlarna.

Vid det första blocket med radiekompensering **RR/RL** och vid upphävande med **R0** positionerar TNC:n alltid verktyget vinkelrätt mot den programmerade start- eller slutpunkten. Positionera därför verktyget i blocket innan den första konturpunkten, alt. efter den sista konturpunkten, så att inga skador på konturen uppstår.

Inmatning av radiekompensering

Programmera godtycklig konturfunktion, ange slutpunktens koordinater och bekräfta med knappen ENT.

Radiekorr.:	RL/RR/Ingen korr.?
RL	Verktygsrörelse till vänster om den programmerade konturen: Tryck på softkey RL eller
RR	Verktygsrörelse till höger om den programmerade konturen: Tryck på softkey RR eller
ENT	Verktygsrörelse utan radiekompensering alt. upphäv radiekompensering: Tryck på knappen ENT
END	Avsluta block: Tryck på knappen END

Radiekompensering: Bearbetning av hörn

Ytterhörn:

När man har programmerat en radiekompensering förflyttar TNC:n verktyget runt ytterhörn på en övergångscirkel eller på en spline (väljes via MP7680). Om det är nödvändigt kommer TNC:n att minska matningshastigheten vid ytterhörnet, exempelvis vid stora riktningsförändringar.

Innerhörn:

TNC:n beräknar skärningspunkten mellan de kompenserade banorna som verktygets centrum förflyttar sig på. Från denna punkt förflyttas sedan verktyget på nästa konturelement. På detta sätt skadas inte arbetsstycket vid bearbetning av innerhörn. Den tillåtna verktygsradien begränsas därför av den programmerade konturens geometri.

Vid bearbetning av innerhörn får start- eller slutpunkten inte läggas vid konturhörnpunkten, då kan konturen skadas.

Bearbeta hörn utan radiekompensering

Då radiekompensering inte används kan verktygsbanan och matningshastigheten vid hörn på arbetsstycket påverkas med tilläggsfunktionen **M90**, Se "Rundning av hörn: M90", sidan 179.

5.4 Tredimensionell verktygskompensering

Introduktion

TNC:n kan utföra en tredimensionell verktygskompensering (3Dkompensering) vid rätlinjeblock. Förutom den räta linjens slutpunktskoordinater X, Y och Z måste dessa block även innehålla ytnormalens komponenter NX, NY och NZ (se bilden uppe till höger samt förklaringen längre ner på denna sida).

Om man förutom detta vill utföra även en verktygsorientering eller en tredimensionell radiekompensering måste dessa block dessutom innehålla en normaliserad vektor med komponenterna TX, TY och TZ för att fastlägga verktygsorienteringen (se bilden i mitten till höger).

Den räta linjens slutpunkt, ytnormalens komponenter och komponenterna för verktygsorienteringen måste beräknas av ett CAD-system.

Användningsmöjligheter

- Användning av verktyg med dimensioner som inte överensstämmer med dimensionerna som CAD-systemet har beräknat (3Dkompensering utan definition av verktygsorienteringen)
- Face Milling: Kompensering för fräsgeometrin i ytnormalens riktning (3D-kompensering utan och med definition av verktygsorienteringen).
 Bearbetningen sker primärt med verktygets ändyta
- Peripheral Milling: Kompensering av fräsradien vinkelrät mot rörelseriktningen och vinkelrät mot verktygsriktningen (tredimensionell radiekompensering med definition av verktygsorienteringen). Bearbetningen sker primärt med verktygets mantelyta

5.4 Tredimensionell verktygskompensering

Definition av en normaliserad vektor

En normaliserad vektor är en matematisk storhet som har ett värde 1 och en godtycklig riktning. Vid LN-block behöver TNC:n upp till två normaliserade vektorer, en för att bestämma ytnormalens riktning och en ytterligare (om så önskas) för att bestämma verktygsorienteringens riktning. Ytnormalens riktning bestäms genom komponenterna NX, NY och NZ. Den pekar vid cylindriska fräsar och radiefräsar vinkelrät från arbetsstyckets yta mot verktygets utgångspunkt PT, vid hörnradiefräsar genom PT' resp. PT (se bilden uppe till höger). Verktygsorienteringens riktning bestäms genom komponenterna TX, TY och TZ.

Koordinaterna för positionen X,Y, Z och för ytnormalen NX, NY, NZ, resp. TX, TY, TZ, måste stå i samma ordningsföljd i NC-blocket.

Ange alltid alla koordinater och alla ytnormaler i LNblocket, även om värdet inte har ändrats i förhållande till det föregående blocket.

3D-kompensering med ytnormaler kan bara utföras i huvudaxlarna X, Y, Z.

Om man växlar in ett verktyg med övermått (positivt deltavärde), kommer TNC:n att presentera ett felmeddelande. Detta felmeddelande kan undertryckas med M-funktionen **M07** (se "Förutsättning för NC-block med ytnormalvektorer och 3D-kompensering", sidan 107).

TNC:n kommer inte att varna med ett felmeddelande om ett verktygsövermått kommer att skapa ett konturfel.

Via maskinparameter 7680 definierar man om CADsystemet har kompenserat verktygslängden utifrån kulans centrum P_T eller kulans sydpol P_{SP} (se bilden till höger).

Tillåtna verktygsformer

De tillåtna verktygsformerna (se bilden uppe till höger) fastlägger man i verktygstabellen via verktygsradie ${\bf R}$ och ${\bf R2}$:

- Verktygsradie R: Mått från verktygets centrum till verktygets ytterkant
- Verktygsradie 2 R2: Rundningsradie från verktygsspetsen till verktygets ytterkant

Förhållandet mellan R och R2 bestämmer verktygets form:

- **R2** = 0: Cylindrisk fräs
- **R2 = R**: Radiefräsar

■ 0 < **R**2 < **R**: Hörnradiefräs

Ur dessa uppgifter ges även koordinaterna för verktygets utgångspunkt PT.

Använda andra verktyg: Delta-värde

När man använder verktyg med andra dimensioner än det verktyg som ursprungligen avsågs, för man in skillnaden i längd och radie som delta-värden i verktygstabellen eller i verktygsanropet **TOOL CALL**:

- Positiva delta-värden DL, DR, DR2: Verktygsmåtten är större än originalverktygets (övermått)
- Negativa delta-värden DL, DR, DR2: Verktygsmåtten är mindre än originalverktygets (undermått)

TNC:n kompenserar då verktygspositionen med summan av deltavärdet från verktygstabellen och från verktygsanropet.

3D-kompensering utan verktygsorientering

TNC:n förskjuter verktyget i ytnormalens riktning med summan av delta-värdena (verktygstabell och **TOOL CALL**).

Exempel: blockformat med ytnormaler

1	LN X+31.737	Y+21,954 Z+33,	165	
	NX+0, 2637581	NY+0, 0078922	NZ-0, 8764339	F1000 MB

LN: X, Y, Z:	Rätlinje med 3D-kompensering Kompenserade koordinater för den räta linjens slutpunkt
NX, NY, NZ:	Ytnormalens komponenter
F:	Matning
M	Tilläggsfunktion

Matningshastighet F och tilläggsfunktion M kan anges och ändras i driftart Programinmatning/Editering.

Koordinaterna för de räta linjernas slutpunkter och ytnormalernas komponenter måste genereras av ett CAD-system.

Face Milling: 3D-kompensering utan och med verktygsorientering

TNC:n förskjuter verktyget i ytnormalens riktning med summan av delta-värdena (verktygstabell och **TOOL CALL**).

Vid aktiv **M28** (se "Bibehåll verktygsspetsens position vid positionering av rotationsaxlar (TCPM*): M128", sidan 192) håller TNC:n verktyget vinkelrätt mot arbetsstyckets kontur om ingen verktygsorientering har bestämts i LN-blocket.

Om en verktygsorientering har definierats i LN-blocket positionerar TNC:n maskinens rotationsaxlar automatiskt så att verktyget uppnår den angivna verktygsorienteringen.

TNC:n kan inte positionera rotationsaxlarna automatiskt i alla maskiner. Beakta anvisningarna i Er maskinhandbok.

Kollisionsrisk!

ᇞ

Vid maskiner, vars rotationsaxlar endast tillåter ett begränsat rörelseområde, kan det uppträda rörelser vid den automatiska positioneringen som kräver exempelvis en 180°-vridning av bordet. Beakta även kollisionsrisken mellan huvudet och arbetsstycket eller spännanordningar.

Exempel: Blockformat med ytnormaler utan verktygsorientering

LN X+31, 737 Y+21, 954 Z+33, 165 NX+0, 2637581 NY+0, 0078922 NZ-0, 8764339 F1000 ML28

Exempel: Blockformat med ytnormaler och verktygsorientering

- LN X+31, 737 Y+21, 954 Z+33, 165 NX+0, 2637581 NY+0, 0078922 NZ-0, 8764339 TX+0, 0078922 TY-0, 8764339 TZ+0, 2590319 F1000 ML28
- **LN**: Rätlinje med 3D-kompensering
- **X, Y, Z**: Kompenserade koordinater för den räta linjens slutpunkt
- NX, NY, NZ: Ytnormalens komponenter
- TX, TY, TZ:
 Den normaliserade vektorns komponenter för verktygsorienteringen

 F:
 Matning
- M Tilläggsfunktion

Matning ${\bf F}$ och tilläggsfunktion ${\bf M}$ kan anges och ändras i driftart Programinmatning/Editering.

Koordinaterna för de räta linjernas slutpunkter och ytnormalernas komponenter måste genereras av ett CAD-system.

Peripheral Milling: 3D-radiekompensering med verktygsorientering

TNC:n förskjuter verktyget vinkelrätt mot rörelseriktningen och vinkelrätt mot verktygsriktningen med summan av delta-värdena **DR** (verktygstabell och **TOOL CALL**). Kompenseringriktningen bestämmer man med radiekompensering **RL/RR** (se bilden uppe till höger, rörelseriktning Y+). För att TNC:n skall kunna uppnå den angivna verktygsorienteringen måste man aktivera funktionen **M28** (se "Bibehåll verktygsspetsens position vid positionering av rotationsaxlar (TCPM*): M128" på sidan 192). TNC:n positionerar då maskinens rotationsaxlar automatiskt så att verktyget uppnår den angivna verktygsorienteringen med den aktiva kompenseringen.

ᇞ

TNC:n kan inte positionera rotationsaxlarna automatiskt i alla maskiner. Beakta anvisningarna i Er maskinhandbok.

Kollisionsrisk!

Vid maskiner, vars rotationsaxlar endast tillåter ett begränsat rörelseområde, kan det uppträda rörelser vid den automatiska positioneringen som kräver exempelvis en 180°-vridning av bordet. Beakta även kollisionsrisken mellan huvudet och arbetsstycket eller spännanordningar.

Man kan definiera verktygsorienteringen på två sätt:

- I LN-blocket genom uppgift om komponenterna TX, TY och TZ
- I ett L-block genom uppgift om rotationsaxlarnas koordinater

Exempel: blockformat med verktygsorientering

1 LN X+31, 737 Y+21, 954 Z+33, 165 TX+0, 0078922 TY-0, 8764339 TZ+0, 2590319 F1000 MI28

LN: Rätlinje med 3D-kompensering

X, Y, Z :	Kompenserade koordinater för den räta linjens slutpunkt
TX, TY, TZ:	Den normaliserade vektorns komponenter för verktygsorienteringen
F :	Matning

M Tilläggsfunktion

Exempel: blockformat med rotationsaxlar

1 L X+31, 737 Y+21, 954 Z+33, 165 B+12, 357 C+5, 896 F1000 M128

L:			Rätlinje
X,	Y,	Z :	Kompenserade koordinater för den räta linjens slutpunkt
B,	C :		Rotationsaxlarnas koordinater för verktygsorienteringen
F:			Matning
М			Tilläggsfunktion

5.5 Arbeta med skärdatatabeller

Anmärkning

Ē

TNC:n måste förberedas för arbete med skärdatatabeller av maskintillverkaren.

l vissa maskiner finns inte alla här beskrivna funktioner tillgängliga - alternativt fler funktioner tillgängliga. Beakta anvisningarna i Er maskinhandbok.

Användningsområde

Via skärdatatabeller, i vilka godtyckliga kombinationer av arbetsstyckes-/skärmaterial finns definierade, kan TNC:n beräkna spindelvarvtal S och banhastighet F med hjälp av skärhastighet V_C och matning per tand f_Z. Grundläggande för beräkningen är att man anger arbetsstyckets material i programmet samt olika verktygsspecifika egenskaper i verktygstabellen.

G

Innan man låter TNC:n beräkna skärdata automatiskt måste man ha aktiverat den verktygstabell, från vilken TNC:n skall hämta de verktygsspecifika uppgifterna, i driftart programtest (status S).

Editeringsfunktioner för skärdatatabeller	Softkey
Infoga rad	INFOGR RAD
Radera rad	RADERA RAD
Gå till början på nästa rad	NRSTR RAD
Sortera tabell	ORDER N
Kopiera markerat fält (andra softkeyraden)	KOP LERA FALT
Infoga kopierat fält (andra softkeyraden)	INFOGR FRLT
Editera tabellformat (andra softkeyraden)	FORMAT

5.5 Arbeta med <mark>sk</mark>ärdatatabeller

Tabeller för arbetsstyckets material

Man definierar arbetsstyckesmaterial i tabellen WMAT.TAB (se bilden uppe till höger). WMAT.TAB lagras standardmässigt i katalogen TNC:\ och kan innehålla ett godtyckligt antal materialnamn. Materialnamnen får vara maximalt 32 tecken långa (även mellanslag). TNC:n visar innehållet i kolumnen NAME när man bestämmer arbetsstyckets material i programmet (se efterföljande avsnitt).

> Om man vill förändra standardtabellen för arbetsstyckesmaterial, måste man kopiera denna till en annan katalog. Annars skrivs dina ändringar över med HEIDENHAIN-standarddata vid en mjukvaru-uppdatering. Definiera i sådana fall sökvägen i filen TNC.SYS med nyckelord WMAT= (se "Konfigurationsfil TNC.SYS", sidan 124).

För att förhindra dataförlust skall man ta en backup på filen WMAT.TAB med jämna intervaller.

Ange arbetsstyckets material i NC-programmet

I NC-programmet väljer man arbetsstyckets material ur tabellen WMAT.TAB med hjälp av softkey WMAT:

- Programmera arbetsstyckets material: Tryck på softkey WMAT i driftart Programinmatning/Editering.
- Visa tabell WMAT.TAB: Tryck på softkey URVAL FÖNSTER, TNC:n visar arbetsstyckesmaterialen som finns lagrade i WMAT.TAB i ett överlagrat fönster.
- Välj arbetsstyckets material: Förflytta markören med pilknapparna till det önskade materialet och bekräfta med knappen ENT. TNC:n överför arbetsstyckesmaterialet till WMAT-blocket. Tryck på knappen SHIFT och sedan pilknappen för att snabbt kunna bläddra genom tabellen med arbetsstyckesmaterial. TNC:n bläddrar då sida för sida
- Avsluta dialogen: Tryck på knappen END

Om man ändrar WMAT-blocket i ett program kommer TNC:n att visa ett varningsmeddelande. Kontrollera om skärdata som lagrats i TOOL CALL-blocket fortfarande är giltiga.

PROGRAM BLOCKFÖL	.JD EDI NAM	TERA N ?	TABEL	- L			
FIL:	ЫМАТ.ТАВ						
NR	NAME	DOC					
ø	110 WCrV 5	WerkzS	tahl 1.251	9			
1	14 NiCr 14	Einsatz-	Stahl 1.57	52			
2	142 WV 13	WerkzS	tahl 1.256	2			
3	15 CrNi 6	Einsatz-	Stahl 1.59	19			
4	16 CrMo 4 4	Baustahl	1.7337				
5	16 MnCr 5	Einsatz-	Stahl 1.71	31			
6 17 MoV 8 4 Baustahl 1.5406							
7 18 CrNi 8 Einsatz-Stahl 1.5920							
8 19 Mn 5 Baustahl 1.0482							
9	21 MnCr 5	WerkzS	tahl 1.216	2			
10	26 CrMo 4	Baustahl	1.7219				
11	28 NiCrMo 4	Baustahl	1.6513				
12	30 CrMoV 9	VergSt	ahl 1.7707				
BÖRJAN	SLUT <u>I</u>	SIDA Û	SIDA Į	INFOGA RAD	RADERA RAD	NASTA RAD	ORDER

Man definierar vertygsskärsmaterial i tabellen TMAT.TAB. TMAT.TAB lagras standardmässigt i katalogen TNC:\och kan innehålla ett godtyckligt antal skärmaterialnamn (se bilden uppe till höger). Skärmaterialnamnet får vara maximalt 16 tecken långt (även mellanslag). TNC:n visar innehållet i kolumnen NAME när man bestämmer verktygets skärmaterial i verktygstabellen TOOL.T.

> Om man vill förändra standardtabellen för verktygsmaterial, måste man kopiera denna till en annan katalog. Annars skrivs dina ändringar över med HEIDENHAIN-standarddata vid en mjukvaru-uppdatering. Definiera i sådana fall sökvägen i filen TNC.SYS med nyckelord TMAT= (se "Konfigurationsfil TNC.SYS", sidan 124).

För att förhindra dataförlust skall man ta en backup på filen TMAT.TAB med jämna intervaller.

Tabell för skärdata

Man definierar kombinationer av arbetsstyckes- och skärmaterial med tillhörande skärdata i en tabell med efternamnet .CDT (eng. cutting data file: skärdatatabell; se bilden i mitten till höger). Du kan själv fritt konfigurera uppgifterna i skärdatatabellen. Förutom kolumnerna NR, WMAT och TMAT, vilka alltid krävs, kan TNC:n hantera upp till fyra kombinationer av skärhastighet (V_C) och matning (F).

I katalogen TNC:\ finns standardtabellen för skärdata FRAES_2 .CDT lagrad. Man kan editera och utöka FRAES_2.CDT godtyckligt eller lägga till ett godtyckligt antal skärdatatabeller.

Om man vill förändra standardtabellen för skärdata, måste man kopiera denna till en annan katalog. Annars skrivs dina ändringar över med HEIDENHAIN-standarddata vid en mjukvaru-uppdatering (se "Konfigurationsfil TNC.SYS", sidan 124).

Alla skärdatatabeller måste finnas lagrade i samma katalog. Om katalogen inte är standardkatalogen TNC:\, måste man ange sökvägen till de egna skärdatatabellerna i filen TNC.SYS efter nyckelordet PCDT=.

För att förhindra dataförlust skall man ta en backup på sina skärdatatabeller med jämna intervaller.

PROGRAM BLOCKFÖL	. _{JD} EDI NAM	TERA 1N ?	TABEL	-L			
	ТМАТ.ТАВ						
NR	NAME	DOC					
0	HC-K15	HM besch	ichtet				
1	HC-P25	HM besch	ichtet				
2	HC-P35	HM besch	ichtet				
3	HSS						
4	HSSE-C05	HSS + Ko	balt				
5	HSSE-C08	HSS + Ko	balt				
6	HSSE-Co8-Til	N HSS + Ko	balt				
7	HSSE/TiCN	TiCN-bes	chichtet				
8	HSSE∕TiN	TiN-besc	hichtet				
9	HT-P15	Cermet					
10	HT-M15	Cermet					
11	HW-K15	HM unbes	chichtet				
12	HW-K25	HM unbes	chichtet				
BÖRJAN		SIDA Û	SIDA ↓	INFOGA RAD	RADERA RAD	NASTA RAD	ORDER

MANUEI	LL DRIFT ED 3	TERA TABE Erial, Ar	LL BETSS	ТҮСКЕ	?	
FIL	FRAES_2.CDT	тиот	llat	F1	lag 53	
a	St 33-1	HSSEZTIN	40	0.016	55 Ø.Ø	120
1	St 33-1	HSSE/TICN	40	0,016	55 0,0	20
2	St 33-1	HC-P25	100	0,200	130 0,2	50
3	St 37-2	HSS-Co5	20	0,025	45 0,0	30
4	St 37-2	HSSE/TiCN	40	0,016	55 0,0	20
5	St 37-2	HC-P25	100	0,200	130 0,2	50
6	St 50-2	HSSE/TiN	40	0,016	55 0,0	20
7	St 50-2	HSSE/TiCN	40	0,016	55 0,0	20
8	St 50-2	HC-P25	100	0,200	130 0,2	50
9	St 60-2	HSSE/TiN	40	0,016	55 0,0	20
10	St 60-2	HSSE/TiCN	40	0,016	55 0,0	20
11	St 60-2	HC-P25	100	0,200	130 0,2	50
12	C 15	HSS-Co5	20	0,040	45 0,0	150
BÖR.J		SIDA SIDA Î J	INFOGA RAD	RADERA RAD	NASTA RAD	ORDER
Lägga in nya skärdatatabeller

- Välj driftart Programinmatning/Editering
- Välj filhantering: Tryck på knappen PGM MGT
- Välj katalogen som skärdatatabellerna alltid skall lagras i (standard: TNC:\)
- Ange ett godtyckligt filnamn och filtypen .CDT, bekräfta med knappen ENT
- I den högra bildskärmshälften presenterar TNC:n olika tabellformat (maskinberoende, se exempel i bilden uppe till höger), vilka skiljer sig åt beträffande antal kombinationer av skärhastigheter/matningar. Förflytta markören med pilknapparna till det önskade tabellformatet och bekräfta med knappen ENT. TNC:n genererar en ny tom skärdatatabell

Erforderliga uppgifter i verktygstabellen

- Verktygsradie Kolumn R (DR)
- Antal skär (endast vid fräsverktyg) Kolumn CUT
- Verktygstyp Kolumn TYP
- Verktygstypen påverkar beräkningen av matningshastigheten:

Fräsverktyg: $F = S \cdot f_Z \cdot z$ Alla andra verktyg: $F = S \cdot f_U$ S: Spindelvarvtal f_Z : Matning per tand f_U : Matning per varv z: Antal skär

- Verktygets skärmaterial Kolumn TMAT
- Namn på skärdatatabellen som skall användas för detta verktyg Kolumn CDT
- Man väljer verktygstypen, verktygsskärmaterialet och namnet på skärdatatabellen via softkeys i verktygstabellen (se "Verktygstabell: verktygsdata för automatisk varvtals-/matningsberäkning", sidan 101).

Tillvägagångssätt vid arbete med automatisk beräkning av varvtal/matning

- 1 Om uppgift inte redan finns: Ange arbetsstyckets material i filen WMAT.TAB
- 2 Om uppgift inte redan finns: Ange skärmaterial i filen TMAT.TAB
- **3** Om uppgift inte redan finns: Ange alla, för skärdataberäkningen erforderliga, verktygsspecifika uppgifter i verktygstabellen:
 - Verktygsradie
 - Antal skär
 - Verktygstyp
 - Verktygs-skärmaterial
 - Till verktyget hörande skärdatatabell
- 4 Om uppgift inte redan finns: Ange skärdata i en godtycklig skärdatatabell (CDT-fil)
- 5 Driftart test: Aktivera verktygstabellen från vilken TNC:n skall hämta de verktygsspecifika uppgifterna (status S)
- 6 I NC-programmet: Ange arbetsstyckets material via softkey WMAT
- 7 I NC-programmet: Låt spindelvarvtal och matning beräknas automatiskt via softkey i TOOL CALL-blocket

Förändra tabellstruktur

För TNC:n är skärdatatabellerna så kallade "fritt definierbara tabeller". Man kan ändra de fritt definierbara tabellernas format med struktureditorn.

TNC:n kan hantera maximalt 200 tecken per rad och maximalt 30 kolumner.

Om man i efterhand infogar en kolumn i en befintlig tabell kommer TNC:n inte automatiskt att förskjuta redan inmatade värden.

Kalla upp struktur-editor

Tryck på softkey EDITERA FORMAT (andra softkeyraden). TNC:n öppnar editorfönstret (se bilden till höger), i vilket tabellstrukturen presenteras "vriden med 90°". En rad i editorfönstret definierar en kolumn i den tillhörande tabellen. Strukturkommandonas (uppgift i överskrift) betydelse kan utläsas i tabellen här bredvid.

PROGRAM BLOCKFOLJD Fältnamn?									
FIL	FIL: 1854E1D2\$\$\$,TDB								
NR	NAME	ΤY	P WIDI	H DE	C ENGLISH				
0	<mark></mark> MA T	С	16	0	WORKPIEC	E MATERIAL	?		
1	TMAT	С	16	Ø	TOOL MAT	ERIAL ?			
2	Vc1	Ν	9	Ø	CUTTING	SPEED ?			
3	F1	Ν	5	4	FEED RAT	EF?			
4	Vc2	Ν	9	Ø	CUTTING	CUTTING SPEED ?			
5	F2	Ν	5	4	FEED RATE F ?				
6	Vc3	Ν	9	Ø	CUTTING SPEED ?				
7	F3	Ν	5	4	FEED RATE F ?				
8	Vc4	Ν	9	Ø	CUTTING	CUTTING SPEED ?			
9	F4	Ν	Б	4	FEED RAT	FEED RATE F ?			
[END]	[END]								
BÖR J	AN SL	.uт]	sıı Û	A	SIDA J	INFOGA RAD	RADERA RAD	NASTA RAD	

Avsluta struktureditor

Tryck på knappen END. TNC omvandlar uppgifterna som redan fanns lagrade i tabellen till det nya formatet. Element som TNC:n inte kan omvandla till den nya strukturen markeras med # (t.ex. om man har förminskat kolumnbredden).

Strukturkomm ando	Betydelse
NR	Kolumnnummer
NAME	Kolumnöverskrift
TYP	N: Numerisk uppgift C: Alfanumerisk uppgift
WIDTH	Kolumnens bredd. Vid typ N endast heltal, komma och antaldecimaler
DEC	Antal decimaler (max. 4, endast verksam vid typ N)
ENGLISH till HUNGARIA	Språkberoende dialog (max. 32 tecken)

Dataöverföring av skärdatatabeller

Om man läser ut en fil av filtypen .TAB eller .CDT via ett externt datasnitt kommer TNC:n även att läsa ut tabellens strukturdefinition. Strukturdefinitionen börjar med raden #STRUCTBEGIN och slutar med raden #STRUCTEND. De enskilda kodordens betydelse kan utläsas i tabellen "Strukturkommando" (se "Förändra tabellstruktur", sidan 122). Efter #STRUCTEND lagrar TNC:n tabellens egentliga innehåll.

Konfigurationsfil TNC.SYS

Man måste använda konfigurationsfilen TNC.SYS när de egna skärdata-tabellerna inte finns lagrade i standard-katalogen TNC:\. Då fastlägger man sökvägen till de egna skärdata-tabellerna i TNC.SYS.

Filen TNC.SYS måste finnas lagrad i rot-katalogen TNC:\.

_	
Uppgifter i TNC.SYS	Betydelse
WMAT=	Sökväg till tabeller för arbetsstyckesmaterial
TMAT=	Sökväg till tabeller för skärmaterial
PCDT=	Sökväg till tabeller för skärdata

Exempel på TNC.SYS

WMAT=TNC: \CUTTAB\WMAT_GB. TAB
TMAT=TNC: \CUTTAB\TMAT_GB. TAB
PCDT=TNC: \CUTTAB\

Programmering: Programmering av konturer

6.1 Verktygsrörelser

Konturfunktioner

Ett arbetsstycke består oftast av flera sammanfogade konturelement, såsom exempelvis räta linjer och cirkelbågar. Med konturfunktionerna programmerar man verktygsrörelser för **rätlinjer** och **cirkelbågar**.

Flexibel konturprogrammering FK

Med FK-programmering kan man skapa bearbetningsprogram direkt i maskinen även då ritningsunderlaget saknar de uppgifter som behövs vid normal NC-programmering. TNC:n kommer då själv att beräkna de saknade uppgifterna.

Även vid flexibel konturprogrammering anges verktygsrörelserna som rätlinjer och cirkelbågar.

Tilläggsfunktioner M

Med TNC:ns tilläggsfunktioner styr man

- programförloppet, t.ex. ett avbrott i programexekveringen
- maskinfunktionerna, såsom påslag och avstängning av spindelrotationen och kylvätskan
- verktygets konturbeteende

Underprogram och programdelsupprepningar

Om en bearbetningssekvens skall utföras flera gånger i programmet anger man denna en gång i form av ett underprogram eller en programdelsupprepning. Om en del av programmet bara skall utföras under vissa förutsättningar lägger man även då denna bearbetningssekvens i ett underprogram. Dessutom kan ett bearbetningsprogram anropa och utföra ett annat bearbetningsprogram.

Programmering med underprogram och programdelsupprepningar beskrivs i kapitel 9.

Programmering med Q-parametrar

Istället för siffror kan variabler anges i bearbetningsprogram, så kallade Q-parametrar: En Q-parameter tilldelas ett siffervärde på ett annat ställe i programmet. Med Q-parametrar kan man programmera matematiska funktioner som påverkar programexekveringen eller beskriver en kontur.

Dessutom kan man utföra mätningar med 3D-avkännarsystem under programexekveringen med hjälp av Q-parameterprogrammering.

Programmeringen med Q-parametrar beskrivs i kapitel 10.

6.2 Allmänt o<mark>m</mark> konturfunktioner

6.2 Allmänt om konturfunktioner

Programmera verktygsrörelser för en bearbetning

När man skapar ett bearbetningsprogram programmerar man konturfunktionerna för arbetsstyckets individuella konturelement efter varandra. När detta utförs anges oftast **koordinaterna för konturelementens slutpunkter** från ritningsunderlaget. Från dessa koordinatangivelser, verktygsdata och radiekompenseringen beräknar TNC:n verktygets verkliga rörelsebana.

TNC:n förflyttar alla maskinaxlar, som har programmerats i programblockets konturfunktion, samtidigt.

Rörelser parallella med maskinaxlarna

Programblocket innehåller en koordinatangivelse: TNC:n förflyttar verktyget parallellt med den programmerade maskinaxeln.

Beroende på din maskins konstruktion rör sig antingen verktyget eller maskinbordet med det uppspända arbetsstycket vid bearbetningen. Programmering av konturrörelserna skall dock alltid utföras som om det vore verktyget som förflyttar sig.

Exempel:

	N+1	.00			
1					

L	Konturfunktion "Rätlinje"
X+100	Slutpunktens koordinater

Verktyget behåller Y- och Z-koordinaten oförändrade och förflyttar sig till positionen X=100. Se bilden uppe till höger.

Rörelser i huvudplanet

Programblocket innehåller två koordinatangivelser: TNC:n förflyttar verktyget i det programmerade planet.

Exempel:

L X+70 Y+50

Verktyget behåller Z-koordinaten oförändrad och förflyttas iXY-planet till positionen X=70, Y=50. Se bilden i mitten till höger

Tredimensionell rörelse

Programblocket innehåller tre koordinatangivelser: TNC:n förflyttar verktyget i rymden till den programmerade positionen.

Exempel:

Inmatning av fler än tre koordinater

TNC:n kan styra upp till fem axlar simultant. Vid femaxlig bearbetning förflyttas exempelvis tre linjära och två roterande axlar samtidigt.

Bearbetningsprogrammet för en sådan bearbetning genereras oftast i ett CAD-system eftersom det är för komplicerat för att kunna programmeras direkt i maskinen.

Exempel:

L X+20 Y+10 Z+2 A+15 C+6 R0 F100 MB

Rörelser med fler än 3 axlar kan inte simuleras grafiskt i TNC:n.

Cirklar och cirkelbågar

Vid cirkelrörelser förflyttar TNC:n två maskinaxlar simultant: Verktyget förflyttas på en cirkelbåge relativt arbetsstycket. Vid cirkelrörelser kan man ange ett cirkelcentrum CC.

Med konturfunktionerna för cirkelbågar programmerar man cirkelbågar i huvudplanet: Huvudplanet bestäms genom definitionen av spindelaxel vid verktygsanropet TOOL CALL:

Spindelaxel	Huvudplan
Ζ	XY , även UV, XV, UY
Y	ZX , även WU, ZU, WX
x	YZ , även VW, YW, VZ

Cirklar som inte ligger parallellt med ett huvudplan kan programmeras med funktioner "3D-vridning av bearbetningsplanet" (se "BEARBETNINGSPLAN (cykel 19)", sidan 339), eller med Q-parametrar (se "Princip och funktionsöversikt", sidan 364).

Rotationsriktning DR vid cirkelrörelser

När en cirkelrörelse inte ansluter tangentiellt till ett annat konturelement anger man rotationsriktningen DR:

Medurs vridning: DR-Moturs vridning: DR+

Radiekompensering

Radiekompenseringen måste stå i blocket som utför förflyttningen fram till det första konturelementet. Radiekompenseringen får inte börja i ett block med en cirkelbåge. Programmera den tidigare i ett rätlinjeblock (se "Konturrörelser – rätvinkliga koordinater", sidan 137) eller i ett framkörningsblock (APPR-block, se "Framkörning till och frånkörning från kontur", sidan 131).

Förpositionering

Förpositionera verktyget i början av ett bearbetningsprogram på ett sådant sätt att verktyg eller arbetsstycke inte kan skadas.

Skapa programblock med konturfunktionsknapparna

Man öppnar klartext-dialogen med de grå konturfunktionsknapparna. TNC:n frågar efter all nödvändig information och infogar därefter programblocket i bearbetningsprogrammet.

Exempel - Programmering av en rät linje.

LAP	Öppna programmeringsdialogen: t.ex. Rätlinje
Koordinater	?
X 10	Ange koordinaterna för den räta linjens slutpunkt
Y 5	
ENT	
Radiekorr.:	RL/RR/Ingen korr.?
RL	Välj radiekompensering: t.ex. tryck på softkey RL, verktyget förflyttas till vänster om konturen
Matning F=?	/ F MAX = ENT
100 ENT	Ange matningen och bekräfta med knappen ENT: t.ex. 100 mm/min. Vid INCH-programmering: Inmatning av 100 motsvarar en matning på 10 tum/min
F MRX	Förflytta med snabbtransport: Tryck på softkey FMAX, eller
F RUTO	Förflytta med automatiskt beräknad matning (skärdatatabeller): Tryck på softkey FAUTO

Tilläggsfunktion M?

ENT

Ange tilläggsfunktion, t.ex. M3, och avsluta dialogen med knappen ENT

Rad i bearbetningsprogrammet

L X+10 Y+5 RL F100 MB

6.3 Framkörning till och frånkörning från kontur

Översikt: Konturformer för framkörning till och frånkörning från konturen

Funktionen APPR (eng. approach = närma) och DEP (eng. departure = lämna) aktiveras med APPR/DEP-knappen. Därefter kan följande konturformer väljas via softkeys:

Funktion Softkey	Framkörn ing	Lämna
Rätlinje med tangentiell anslutning	APPR LT	
Rätlinje vinkelrät mot konturpunkten	APPR LN	
Cirkelbåge med tangentiell anslutning	APPR CT	
Cirkelbåge med tangentiell anslutning till konturen, framkörning till och frånkörning från en hjälppunkt utanför konturen med en tangentiellt anslutande rätlinje	APPR LCT	DEP LOT

MANUELL DRIFT	PROGRAM INMATNING
1 BLK 2 BLK 3 TOOI 4 L 2 5 L X 6 END	FORM 0.1 Z X+0 Y+0 Z-40 FORM 0.2 X+100 Y+100 Z+0 _ CALL 1 Z S5000 +100 R0 F MAX -20 Y+30 R0 F MAX M3 PGM NEU MM

APPR LT APPR IN APPR CT APPR LCT DEP LT DEP LN DEP CT DEP LCT

Framkörning till och frånkörning från en skruvlinje

Vid framkörning till och frånkörning från en skruvlinje (helix) förflyttas verktyget i skruvlinjens förlängning och ansluter till konturen på en tangentiell cirkelbåge. Använd funktionerna APPR CT respektive DEP CT för detta ändamål.

Viktiga positioner vid fram- och frånkörning

Startpunkt P_S

Denna position programmeras i blocket omedelbart innan APPRblocket. Ps ligger utanför konturen och programmeras utan radiekompensering (R0).

■ Hjälppunkt P_H

Verktygsbanan vid fram- och frånkörning går vid en del konturformer genom en hjälppunkt P_H . Hjälppunkten beräknas automatiskt av TNC:n med hjälp av uppgifterna i APPR- och DEP-blocket.

Första konturpunkten P_A och sista konturpunkten P_E Den första konturpunkten P_A programmeras i APPR-blocket. Den sista konturpunkten P_E programmeras med en godtycklig konturfunktion. Om APPR-blocket även innehåller Z-koordinaten, förflyttar TNC:n verktyget först i bearbetningsplanet till P_H och därifrån i verktygsaxeln till det angivna djupet.

Slutpunkt P_N Positionen P_N ligger utanför konturen och erhålles från uppgifterna som programmeras i DEP-blocket. Om DEP-blocket även innehåller Z-koordinaten, förflyttar TNC:n verktyget först i bearbetningsplanet till P_H och därifrån i verktygsaxeln till den angivna höjden.

Förkortning	Betydelse
APPR	eng. APPRoach = närma
DEP	eng. DEParture = lämna
L	eng. Line = linje
С	eng. Circle = cirkel
Т	Tangentiell (mjuk, kontinuerlig övergång)
Ν	Normal (vinkelrät)

Koordinaterna får anges både absolut och inkrementalt i rätvinkligt eller polärt koordinatsystem.

TNC:n kontrollerar inte om den programmerade konturen kan skadas vid positionering från Är-positionen till hjälppunkten P_H. Kontrollera detta med hjälp av testgrafiken!

Vid framkörning måste utrymmet mellan startpunkten PS och den första konturpunkten PA vara tillräckligt stort, för att den programmerade bearbetningsmatningen skall hinna uppnås.

TNC:n förflyttar verktyget från är-positionen till hjälppunkten P_H med den sist programmerade matningshastigheten.

Radiekompensering

Radiekompenseringen programmeras tillsammans med den första konturpunkten PA i APPR-blocket. DEP-blocket upphäver automatiskt radiekompenseringen!

Framkörning utan kompensering: Om R0 programmeras i APPRblocket, så förflyttar TNC:n verktyget som ett verktyg med radie R = 0 mm och radiekompensering RR! Därigenom är riktningen, i vilken TNC:n förflyttar verktyget till och från konturen, fastlagd vid funktionerna APPR/DEP LN och APPR/DEP CT.

Framkörning på en rät linje med tangentiell anslutning: APPR LT

TNC:n förflyttar verktyget på en rät linje från startpunkten P_S till en hjälppunkt P_H. Därifrån förflyttas det till den första konturpunkten P_A på en tangentiellt anslutande rätlinje. Hjälppunkten P_H befinner sig på avståndet LEN från den första konturpunkten P_A.

- Godtycklig konturfunktion: Framkörning till startpunkt P_S
- ▶ Öppna dialogen med knappen APPR/DEP och softkey APPR LT:

- \blacktriangleright Koordinater för den första konturpunkten P_A
- LEN: Avstånd från hjälppunkten P_H till den första konturpunkten P_A
- Radiekompensering RR/RL för bearbetningen

Exempel NC-block

7 L X+40 Y+10 RO FMAX MB	Framkörning till P _S utan radiekompensering
8 APPR LT X+20 Y+20 Z-10 LEN15 RR F100	P _A med radiekomp. RR, avstånd P _H till P _A : LEN=15
9 L Y+35 Y+35	Första konturelementets slutpunkt
10 L	Nästa konturelement

Framkörning på en rätlinje vinkelrät mot första konturpunkten: APPR LN

TNC:n förflyttar verktyget på en rät linje från startpunkten P_S till en hjälppunkt P_H . Därifrån förflyttas det till den första konturpunkten P_A på en vinkelrät anslutande rätlinje. Hjälppunkten P_H befinner sig på avståndet LEN + verktygsradien från den första konturpunkten P_A .

- Godtycklig konturfunktion: Framkörning till startpunkt P_S
- ▶ Öppna dialogen med knappen APPR/DEP och softkey APPR LN:

- ▶ Koordinater för den första konturpunkten P_A
- Längd: Avstånd till hjälppunkten P_H. LEN alltid positiv inmatning!
- Radiekompensering RR/RL för bearbetningen

Exempel NC-block

7 L X+40 Y+10 RO FMAX MB	Framkörning till P _S utan radiekompensering
8 APPR LN X+10 Y+20 Z-10 LEN15 RR F100	P _A med radiekomp. RR
9 L X+20 Y+35	Första konturelementets slutpunkt
10 L	Nästa konturelement

APPR CT

Framkörning på en cirkelbåge med tangentiell anslutning: APPR CT

TNC:n förflyttar verktyget på en rät linje från startpunkten P_S till en hjälppunkt P_H . Därifrån förflyttas verktyget på en cirkelbåge, som ansluter tangentiellt till det första konturelementet, till den första konturpunkten P_A .

Cirkelbågen från P_{H} till P_{A} bestäms med radien R och centrumvinkeln CCA. Cirkelbågens rotationsriktning fastställs med hjälp av information om det första konturelementet.

- Godtycklig konturfunktion: Framkörning till startpunkt P_S
- Öppna dialogen med knappen APPR/DEP och softkey APPR CT:
 - Koordinater för den första konturpunkten P_A
 - Radie R för cirkelbågen
 - Vid framkörning från den sida på arbetsstycket som har definierats via radiekompenseringen: Ange ett positivt R
 - Vid framkörning ut från arbetsstyckets sida: Ange ett negativt R
 - Centrumvinkel CCA för cirkelbågen
 - CCA anges bara med positiva värden
 - Maximalt inmatningsvärde 360°
 - Radiekompensering RR/RL för bearbetningen

Exempel NC-block

7 L X+40 Y+10 RO FMAX MB	Framkörning till P _S utan radiekompensering
8 APPR CT X+10 Y+20 Z-10 CCA180 R+10 RR F100	P _A med radiekomp. RR, radie R=10
9 L X+20 Y+35	Första konturelementets slutpunkt
10 L	Nästa konturelement

Framkörning på en cirkelbåge med tangentiell anslutning till kontur och rätlinje: APPR LCT

TNC:n förflyttar verktyget på en rät linje från startpunkten P_S till en hjälppunkt $\mathsf{P}_H.$ Därifrån förflyttas verktyget på en cirkelbåge till den första konturpunkten $\mathsf{P}_A.$

Cirkelbågen ansluter tangentiellt både till den räta linjen $P_S - P_H$ och till det första konturelementet. Därför behövs bara radien R för att entydigt fastställa verktygsbanan.

- Godtycklig konturfunktion: Framkörning till startpunkt P_S
- ▶ Öppna dialogen med knappen APPR/DEP och softkey APPR LCT:
- APPR LCT
- Koordinater för den första konturpunkten P_A
- Radie R för cirkelbågen. Ange ett positivt R
- Radiekompensering RR/RL för bearbetningen

onturelem	nent		
		12	
	1	P	
P₄			
RR .			
	H		
			Northerson .
	-R10 +		
	¥		P
			PO
	P _A RR	PA RR RR RR	P _A RR RR RR RR

PH

RR

20

10

Х

40

Exempel NC-block

7 L X+40 Y+10 RO FMAX MB

8 APPR LCT X+10 Y+20 Z-10 R10 RR F100

9 L X+20 Y+35

10 L ...

Framkörning till P_S utan radiekompensering P_A med radiekomp. RR, radie R=10 Första konturelementets slutpunkt

Nästa konturelement

Frånkörning på en rät linje med tangentiell anslutning: DEP LT

TNC:n förflyttar verktyget på en rät linje från den sista konturpunkten P_E till slutpunkten P_N. Den räta linjen ligger i det sista konturelementets förlängning. P_N befinner sig på avståndet LEN från P_F.

- Programmera sista konturelementet med slutpunkten P_E och radiekompensering
- ▶ Öppna dialogen med knappen APPR/DEP och softkey DEP LT:

LEN: Ange avståndet från det sista konturelementet
 P_E till slutpunkten P_N

Exempel NC-block

23 L Y+20 RR F100	Sista konturelementet: P _E med radiekompensering
24 DEP LT LEN12, 5 F100	Frånkörning med LEN=12,5 mm
25 L Z+100 FMAX M2	Frikörning Z, återhopp, programslut

Frånkörning på en rätlinje vinkelrät från den sista konturpunkten: DEP LN

TNC:n förflyttar verktyget på en rät linje från den sista konturpunkten P_E till slutpunkten P_N. Den räta linjen går vinkelrät från den sista konturpunkten P_E. P_N befinner sig på avståndet LEN + verktygsradien från P_E.

- Programmera sista konturelementet med slutpunkten P E och radiekompensering
- Öppna dialogen med knappen APPR/DEP och softkey DEP LN:

LEN: Ange avstånd till slutpunkt P_N Viktigt: Ange ett positivt LEN!

Exempel NC-block

23 L Y+20 RR F100	Sista konturelementet: P _E med radiekompensering	
24 DEP LN LEN+20 F100	Frånkörning med LEN = 20 mm vinkelrät mot kontur	
25 L Z+100 FMAX M2	Frikörning Z, återhopp, programslut	

Frånkörning på en cirkelbåge med tangentiell anslutning: DEP CT

TNC:n förflyttar verktyget på en cirkelbåge från den sista konturpunkten P_E till slutpunkten P_N. Cirkelbågen ansluter tangentiellt till det sista konturelementet.

- Programmera sista konturelementet med slutpunkten P _E och radiekompensering
- Öppna dialogen med knappen APPR/DEP och softkey DEP CT:
 Centrumvinkel CCA för cirkelbågen

- Radie R för cirkelbågen
 - Verktyget skall köra ifrån arbetsstycket åt det håll som definierats via radiekompenseringen: Ange ett positivt R
 - Verktyget skall köra ifrån arbetsstycket åt det motsatta hållet som definierats via radiekompenseringen: Ange ett negativt R

Exempel NC-block

23 L Y+20 RR F100	Sista konturelementet: P _E med radiekompensering
24 DEP CT CCA 180 R+8 F100	Centrumvinkel=180°,
	Cirkelradie=8 mm
25 L Z+100 FMAX M2	Frikörning Z, återhopp, programslut

Frånkörning på en cirkelbåge med tangentiell anslutning till kontur och rätlinje: DEP LCT

TNC:n förflyttar verktyget på en cirkelbåge från den sista konturpunkten P_E till en hjälppunkt P_H. Därifrån förflyttas verktyget på en rät linje till slutpunkten P_N. Det sista konturelementet och den räta linjen P_H – P_N ansluter tangentiellt till cirkelbågen. Därför behövs bara radien R för att entydigt fastlägga cirkelbågen.

- Programmera sista konturelementet med slutpunkten P _E och radiekompensering
- ▶ Öppna dialogen med knappen APPR/DEP och softkey DEP LCT:

▶ Koordinater för slutpunkten P_N anges

Radie R för cirkelbågen. Ange ett positivt R

Exempel NC-block

23 L Y+20 RR F100	Sista konturelementet: P _E med radiekompensering	
24 DEP LCT X+10 Y+12 R+8 F100	Koordinater P _N , cirkelradie=8 mm	
25 L Z+100 FMAX M2	Frikörning Z, återhopp, programslut	

6.4 Konturrörelser – rätvinkliga koordinater

Översikt konturfunktioner

Funktion	Konturfunktionsknapp	Verktygsrörelse	Erforderliga uppgifter
Rätlinje L eng.: Line	L	Rätlinje	Koordinater för den räta linjens slutpunkt
Fas: CHF eng.: CH am F er	CHF c:	Fas mellan två räta linjer	Fasens längd
Cirkelcentrum CC ; eng.: Circle Center	¢ CC	Ingen	Koordinater för cirkelcentrum alt. Pol
Cirkelbåge C eng.: C ircle	₹, C	Cirkelbåge runt cirkelcentrum CC till cirkelbågens slutpunkt	Koordinater för cirkelns slutpunkt, rotationsriktning
Cirkelbåge CR eng.: C ircle by R adius	CR	Cirkelbåge med bestämd radie	Koordinater för cirkelns slutpunkt, cirkelradie, rotationsriktning
Cirkelbåge CT eng.: C ircle T angential	CTJ	Cirkelbåge med tangentiell anslutning till föregående och efterföljande konturelement	Koordinater för cirkelns slutpunkt
Hörnrundning RND eng.: R ou ND ing of Corner		Cirkelbåge med tangentiell anslutning till föregående och efterföljande konturelement	Hörnradie R
Flexibel konturprogrammering FK	FK	Rätlinje eller cirkelbåge med godtycklig anslutning till föregående konturelement	se "Konturrörelser – Flexibel konturprogrammering FK", sidan 156

Rätlinje L

TNC:n förflyttar verktyget på en rät linje från sin aktuella position till den räta linjens slutpunkt. Startpunkten är det föregående blockets slutpunkt.

- **Koordinater** för den räta linjens slutpunkt
 - Om så önskas: **Radiekompensering RL/RR/RO**
 - ▶ Matning F
 - ► Tilläggsfunktion M

Exempel NC-block

7	L	X+10	Y+40	RL	F200	MB	
	_						

8 L IX+20 IY-15 9 L X+60 IY-10

Överför är-position

Man kan även generera ett rätlinjeblock (L-block) med knappen "ÖVERFÖR ÄR-POSITION":

- Förflytta verktyget, i driftart Manuell drift, till positionen som skall överföras
- Växla bildskärmspresentation till Programinmatning/Editering
- Välj ett programblock, efter vilket du önskar infoga L-blocket

Tryck på knappen "ÖVERFÖR ÄR-POSITION": TNC:n genererar ett L-block med är-positionens koordinater

Via MOD-funktionen fastlägger man hur många axlar som TNC:n skall lagra i L-blocket (se "Välja MOD-funktioner", sidan 426).

6.4 Konturrörelser – rät<mark>vin</mark>kliga koordinater

Infoga fas CHF mellan två räta linjer

Fasningsfunktionen gör det möjligt att fasa av hörn som ligger mellan två räta linjer.

- I rätlinjeblocket innan och efter CHF-blocket skall man alltid programmera båda koordinaterna i planet som fasen skall utföras i.
- Radiekompenseringen före och efter CHF-blocket måste vara lika.
- Fasen måste kunna utföras med det aktuella verktyget.

Fasens längd: Ange fasens längd

Om så önskas:

▶ Matning F (endast verksam i CHF-blocket)

Exempel NC-block

7 L X+0 Y+30 RL F300 MB	
8 L X+40 IY+5	
9 CHF 12 F250	
10 L IX+5 Y+0	

En kontur får inte börja med ett CHF-block.

En fas kan bara utföras i bearbetningsplanet.

Positionering till den av fasen avskurna hörnpunkten kommer inte att utföras.

En matningshastighet som anges i CHF-blocket är bara aktiv i detta CHF-block. Efter CHF-blocket blir den tidigare programmerade matningen åter aktiv.

Hörnrundning RND

Med funktionen RND kan konturhörn rundas av.

Verktyget förflyttas på en cirkelbåge som ansluter tangentiellt både till det föregående och till det efterföljande konturelementet.

Rundningsbågen måste kunna utföras med det aktuella verktyget.

Rundningsradie: Cirkelbågens radie

Om så önskas:

Matning F (endast verksam i RND-blocket)

Exempel NC-block

5	L X+10	Y+40 RL F300 MB
6	L X+40	Y+25
7	RND R5	F100
8	L X+10	Y+5

I det föregående och det efterföljande konturelementet anges båda koordinaterna i planet som hörnrundningen skall utföras i. Om man bearbetar konturen utan verktygsradiekompensering så måste man programmera bearbetningsplanets båda koordinater.

Positionering till själva hörnpunkten kommer inte att utföras.

En matningshastighet som anges i RND-blocket är bara aktiv i detta RND-block. Efter RND-blocket blir den tidigare programmerade matningen åter aktiv.

Ett RND-block kan även användas för tangentiell framkörning till en kontur, exempelvis då APPR-funktionen inte bör användas.

6.4 Konturrörelser – rät<mark>vin</mark>kliga koordinater

Cirkelcentrum CC

Med cirkelcentrum definierar man cirkelbågar som programmeras med C-knappen (cirkelbåge C). För detta:

- anger man cirkelcentrumets rätvinkliga koordinater eller
- överför den sist programmerade positionen eller
- överför koordinaterna med knappen "ÖVERFÖR ÄR-POSITION"
- ¢

 Koordinater CC: Ange koordinaterna för cirkelcentrum eller Överför den sist programmerade positionen: Ange inga koordinater

Exempel NC-block

5 CC X+25 Y+25

eller

10 L X+25 Y+25		
11 CC		

Programblocken 10 och 11 överensstämmer inte med bilden.

Varaktighet

Ett cirkelcentrum gäller ända tills man programmerar ett nytt cirkelcentrum. Ett cirkelcentrum kan även definieras för tilläggsaxlarna U, V och W.

Ange cirkelcentrum CC inkrementalt

Om ett cirkelcentrum anges med inkrementala koordinater så hänför sig cirkelcentrumets koordinater till den sist programmerade verktygspositionen.

Med CC markerar man en position som cirkelcentrum: Verktyget kommer inte att förflytta sig till denna position.

Cirkelcentrum CC används samtidigt som Pol för polära koordinater.

Cirkelbåge C runt cirkelcentrum CC

Definiera cirkelcentrum CC innan cirkelbåge C programmeras. Den sist programmerade verktygspositionen innan C-blocket är cirkelbågens startpunkt.

Förflytta verktyget till cirkelbågens startpunkt

- ¢cc °
- **Koordinater** för cirkelcentrum
 - **Koordinater** för cirkelbågens slutpunkt

▶ Rotationsriktning DR

Om så önskas:

- ▶ Matning F
- ► Tilläggsfunktion M

Exempel NC-block

- 5 CC X+25 Y+25 6 L X+45 Y+25 RR F200 MB
- 7 C X+45 Y+25 DR+

Fullcirkel

Programmera samma koordinater för slutpunkten som för startpunkten.

~	<u> </u>
	È
5	Ľ

Cirkelbågens start- och slutpunkt måste ligga på cirkelbågen.

Inmatningstol.: upp till 0,016 mm (valbar via MP7431)

6.4 Konturrörelser – rät<mark>vin</mark>kliga koordinater

Cirkelbåge CR med bestämd radie

Verktyget förflyttas på en cirkelbåge med radie R.

- Koordinater för cirkelbågens slutpunkt
- ▶ Radie R

Varning: Förtecknet definierar cirkelbågens storlek!

Rotationsriktning DR Varning: Förtecknet bestämmer konkav eller konvex cirkelbåge!

Om så önskas:

- ▶ Tilläggsfunktion M
- ▶ Matning F

Fullcirkel

För att åstadkomma en fullcirkel programmerar man två CR-block efter varandra:

Den första halvcirkelns slutpunkt är den andra halvcirkelns startpunkt. Den andra halvcirkelns slutpunkt är den förstas startpunkt.

Centrumvinkel CCA och cirkelbågens radie R

Konturens startpunkt och slutpunkt kan förbindas med fyra olika cirkelbågar, vilka alla har samma radie:

Mindre cirkelbåge: CCA<180° Radien har positivt förtecken R>0

Större cirkelbåge: CCA>180° Radien har negativt förtecken R<0

Med rotationsriktningen definierar man om cirkelbågens välvning skall vara utåt (konvex) eller inåt (konkav):

Konvex: Rotationsriktning DR- (med radiekompensering RL)

Konkav: Rotationsriktning DR+ (med radiekompensering RL)

Exempel NC-block

10	L	K+40 1	¥+40]	RL F20)0 M	3	
11	CR	X+70	Y+40	R+20	DR-	(Båge	e 1)
eller							
11	CR	X+70	Y+40	R+20	DR+	(Båge	e 2)
eller							
11	CR	X+70	Y+40	R-20	DR-	(Båge	e 3)
eller							

11 CR X+70 Y+40 R-20 DR+ (Bage 4)

Avståndet från cirkelbågens start- och slutpunkt får inte vara större än cirkelns diameter.

Den maximala radien är 99,9999 m.

Även vinkelaxlar A, B och C kan anges.

Cirkelbåge CT med tangentiell anslutning

Verktyget förflyttas på en cirkelbåge som ansluter tangentiellt till det föregående programmerade konturelementet.

En anslutning är "tangentiell" då skärningspunkten mellan två konturelement är mjuk och kontinuerlig. Det bildas alltså inget synligt hörn i skarven mellan konturelementen.

Konturelementet som cirkelbågen skall ansluta tangentiellt till skall programmeras i blocket direkt innan CT-blocket. För detta behövs minst två positioneringsblock

Koordinater för cirkelbågens slutpunkt

Om så önskas: ▶ Matning F

▶ Tilläggsfunktion M

Exempel NC-block

7 L X+0 Y+25 RL F300 MB
8 L X+25 Y+30
9 CT X+45 Y+20
10 L Y+0

CT-blocket och det föregående programmerade konturelementet skall innehålla båda koordinaterna i planet som cirkelbågen skall utföras i!

Exempel: Rätlinjerörelse och fas med rätvinkliga koordinater

0 BEGIN PGM LINEAR MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råämnesdefinition för grafisk simulering av bearbetningen
2 BLK FORM 0. 2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Verktygsdefinition i programmet
4 TOOL CALL 1 Z S4000	Verktygsanrop med spindelaxel och spindelvarvtal
5 L Z+250 R0 F MAX	Frikörning av verktyget i spindelaxeln med snabbtransport FMAX
6 L X-10 Y-10 R0 F MAX	Förpositionering av verktyget
7 L Z-5 R0 F1000 MB	Förflyttning till bearbetningsdjupet med matning F = 1000 mm/min
8 APPR LT X+5 Y+5 LEN10 RL F300	Förflyttning till konturen vid punkt 1 på en rät linje
	tangentiell anslutning
9 L Y+95	Förflyttning till punkt 2
10 L X+95	Punkt 3: första räta linjen för hörn 3
11 CHF 10	Programmering av fas med längd 10 mm
12 L Y+5	Punkt 4: andra räta linjen för hörn 3, första räta linjen för hörn 4
13 CHF 20	Programmering av fas med längd 20 mm
14 L X+5	Förflyttning till sista konturpunkten 1, andra räta linjen för hörn 4
15 DEP LT LEN10 F1000	Lämna konturen på en rät linje med tangentiell anslutning
16 L Z+250 R0 F MAX M2	Frikörning av verktyget, programslut
17 END PGM LINEAR MM	

Exempel: Cirkelrörelse med rätvinkliga koordinater

0 BEGIN PGM CIRCULAR MM	
1 BLK FORM 0. 1 Z X+0 Y+0 Z-20	Råämnesdefinition för grafisk simulering av bearbetningen
2 BLK FORM 0. 2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Verktygsdefinition i programmet
4 TOOL CALL 1 Z S4000	Verktygsanrop med spindelaxel och spindelvarvtal
5 L Z+250 RO F MAX	Frikörning av verktyget i spindelaxeln med snabbtransport FMAX
6 L X-10 Y-10 RO F MAX	Förpositionering av verktyget
7 L Z-5 R0 F1000 MB	Förflyttning till bearbetningsdjupet med matning F = 1000 mm/min
8 APPR LCT X+5 Y+5 R5 RL F300	Förflyttning till konturen vid punkt 1 på en cirkelbåge med
	tangentiell anslutning
9 L X+5 Y+85	Punkt 2: första räta linjen för hörn 2
10 RND R10 F150	Infoga radie med R = 10 mm, Matning: 150 mm/min
11 L X+30 Y+85	Förflyttning till punkt 3: Startpunkt för cirkelbågen med CR
12 CR X+70 Y+95 R+30 DR-	Förflyttning till punkt 4: Slutpunkt för cirkelbåge CR, Radie 30 mm
13 L X+95	Förflyttning till punkt 5
14 L X+95 Y+40	Förflyttning till punkt 6
15 CT X+40 Y+5	Förflyttning till punkt 7: Cirkelbågens slutpunkt, Cirkelbåge med
	tangentiell anslutning till punkt 6, TNC:n beräknar själv radien

16 L X+5	Förflyttning till sista konturpunkten 1
17 DEP LCT X-20 Y-20 R5 F1000	Lämna konturen på en cirkelbåge med tangentiell anslutning
18 L Z+250 R0 F MAX M2	Frikörning av verktyget, programslut
19 END PGM CIRCULAR MM	

Exempel: Fullcirkel med rätvinkliga koordinater

0 BEGIN PGM C-CC MM	
1 BLK FORM 0. 1 Z X+0 Y+0 Z-20	Råämnesdefinition
2 BLK FORM 0. 2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+12, 5	Verktygsdefinition
4 TOOL CALL 1 Z S3150	Verktygsanrop
5 CC X+50 Y+50	Definiera cirkelcentrum
6 L Z+250 R0 F MAX	Frikörning av verktyget
7 L X-40 Y+50 R0 F MAX	Förpositionering av verktyget
8 L Z-5 R0 F1000 MB	Förflyttning till bearbetningsdjupet
9 APPR LCT X+0 Y+50 R5 RL F300	Förflyttning till cirkelns startpunkt på en cirkelbåge med tangentiel
	Anslutning
10 C X+0 DR-	Förflyttning till cirkelns slutpunkt (=cirkelns startpunkt)
11 DEP LCT X-40 Y+50 R5 F1000	Lämna konturen på en cirkelbåge med tangentiell
	Anslutning
12 L Z+250 R0 F MAX M2	Frikörning av verktyget, programslut
13 END PGM C-CC MM	

6.5 Konturrörelser – polära koordinater

Översikt

Med polära koordinater definierar man en position via en vinkel PA och ett avstånd PR från en tidigare definierad Pol CC (se "Grunder", sidan 156).

Polära koordinater användes med fördel vid:

- Positioner på cirkelbågar
- Arbetsstyckesritningar med vinkeluppgifter, t.ex. vid hålcirklar

Översikt konturfunktioner med polära koordinater

Funktion	Konturfunktionsknapp	Verktygsrörelse	Erforderliga uppgifter
Rätlinje LP	۶۶ + P	Rätlinje	Polär radie, polär vinkel för rätlinjens slutpunkt
Cirkelbåge CP	𝒫c) + P	Cirkelbåge runt cirkelcentrum/Pol CC till cirkelbågens slutpunkt	Polär vinkel för cirkelbågens slutpunkt, rotationsriktning
Cirkelbåge CTP		Cirkelbåge med tangentiell anslutning till föregående konturelement	Polär radie, polär vinkel för cirkelbågens slutpunkt
Skruvlinje (Helix)	℃ + P	Överlagring av en cirkelbåge och en rätlinje	Polär radie, polär vinkel för cirkelbågens slutpunkt, koordina för slutpunkten i verktygsaxeln

Polära koordinater utgångspunkt: Pol CC

Pol CC kan definieras på ett godtyckligt ställe i bearbetningsprogrammet, innan positioner anges med polära koordinater. Definitionen av Pol programmeras på samma sätt som vid cirkelcentrum CC.

Koordinater CC: Ange rätvinkliga koordinater för Pol eller

För att överföra den sist programmerade positionen: Ange inte några koordinater. Definiera Pol CC innan du programmerar polära koordinater. Pol CC programmeras endast i rätvinkliga koordinater. Pol CC är aktiv ända tills du definierar en ny Pol CC.

Exempel NC-block

12 CC X+45 Y+25

Rätlinje LP

Verktyget förflyttas på en rät linje från sin aktuella position till den räta linjens slutpunkt. Startpunkten är det föregående blockets slutpunkt.

Polär koordinatradie PR: Ange avståndet från den räta linjens slutpunkt till Pol CC

Polär koordinatvinkel PA: Vinkelposition för den räta linjens slutpunkt mellan –360° och +360°

Förtecknet för PA är fastlagd genom vinkelreferensaxeln och relateras därtill:

För moturs vinkel från vinkelreferensaxeln till PR: PA>0

För medurs vinkel från vinkelreferensaxeln till PR: PA<0

Exempel NC-block

12 CC X+45 Y+25
13 LP PR+30 PA+0 RR F300 MB
14 LP PA+60
15 LP IPA+60
16 LP PA+180

Cirkelbåge CP runt Pol CC

Den polära koordinatradien PR är samtidigt cirkelbågens radie. PR är bestämd genom avståndet mellan startpunkten och Pol CC. Den sist programmerade verktygspositionen innan CP-blocket är cirkelbågens startpunkt.

Polär koordinatvinkel PA: Vinkelposition för cirkelbågens slutpunkt med ett värde mellan –5400° och +5400°

▶ Rotationsriktning DR

Exempel NC-block

18 CC X+25 Y	+25		
19 LP PR+20	PA+0 RR F25	0 MB	
20 CP PA+180	DR+		

Vid inkrementala koordinater skall samma förtecken anges för DR och PA.

6.5 Konturrörelser <mark>– p</mark>olära koordinater

Cirkelbåge CTP med tangentiell anslutning

Verktyget förflyttas på en cirkelbåge som ansluter tangentiellt till det föregående konturelementet.

Polär koordinatradie PR: Avstånd mellan cirkelbågens slutpunkt och Pol CC

Polär koordinatvinkel PA: Vinkelposition för cirkelbågens slutpunkt

Exempel NC-block

- 12 CC X+40 Y+35
- 13 L X+0 Y+35 RL F250 MB
- 14 LP PR+25 PA+120
- 15 CTP PR+30 PA+30
- 16 L Y+0

Pol CC är **inte** cirkelbågens centrumpunkt!

Skruvlinje (Helix)

En skruvlinje är en kombination av en cirkulär rörelse och en linjär rörelse vinkelrät mot den cirkulära rörelsen. Dessa rörelser överlagras och utförs samtidigt. Cirkelbågen programmeras i ett huvudplan.

Skruvlinjer kan bara programmeras med polära koordinater.

Användningsområde

- Inner- och yttergängor med stora diametrar
- Smörjspår

Beräkning av skruvlinjen

För programmeringen behöver man den inkrementala uppgiften om den totala vinkeln som verktyget skall förflyttas på skruvlinjen samt skruvlinjens totala höjd.

För beräkning vid fräsriktning nedifrån och upp gäller:

Antal gängor n	Gängor + gängöverlapp vid
	gängans början och slut
Total höjd h	Stigning P x antal gängor n
Inkrementaltotal vinkel IPA	Antal gängor x 360° + vinkel för gängans början + vinkel för gängöverlapp
Startkoordinat Z	Stigning P x (gängor + gängöverlapp vid gängans början)

Skruvlinjens form

Tabellen visar sambandet mellan arbetsriktningen, rotationsriktningen och radiekompenseringen för olika konturformer.

Innergänga	Arbetsriktning	Rotationsriktning	Radie- kompensering
högergänga	Z+	DR+	RL
vänstergänga	Z+	DR–	RR
högergänga	Z–	DR–	RR
vänstergänga	Z–	DR+	RL

Yttergänga			
högergänga	Z+	DR+	RR
vänstergänga	Z+	DR–	RL
högergänga	Z–	DR–	RL
vänstergänga	Z–	DR+	RR

Programmering av skruvlinje

Ange rotationsriktningen DR och den inkrementala totala vinkeln IPA med samma förtecken, annars kan verktyget beskriva en felaktig rörelse.

För den totala vinkeln IPA kan man ange ett värde från -5400° till +5400°. Om gängan som skall fräsas kommer att innehålla fler än 15 varv så programmerar man skruvlinjen i en programdelsupprepning (se "Programdelsupprepning", sidan 352)

Polär koordi natvi nkel: Ange den totala inkrementala vinkeln som verktyget skall förflyttas på skruvlinjen. Efter inmatning av vinkeln väljer man verktygsaxeln med en av axelvalsknapparna.

Koordinat för skruvlinjens höjd anges inkrementalt

- ▶ Rotationsriktning DR Medurs skruvlinie: DR-Moturs skruvlinje: DR+
- ▶ Radiekompensering RL/RR/RO Ange radiekompensering enligt tabellen

Exempel NC-block: Gänga M6 x 1 mm med 5 gängor

12 CC X+40 Y+25
13 L Z+0 F100 MB
14 LP PR+3 PA+270 RL F50
15 CP IPA-1800 IZ+5 DR-

°

Ρ

0 BEGIN PGM LINEARPO MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råämnesdefinition
2 BLK FORM 0. 2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+7,5	Verktygsdefinition
4 TOOL CALL 1 Z S4000	Verktygsanrop
5 CC X+50 Y+50	Definiera utgångspunkt för polära koordinater
6 L Z+250 RO F MAX	Frikörning av verktyget
7 LP PR+60 PA+180 R0 F MAX	Förpositionering av verktyget
8 L Z-5 R0 F1000 MB	Förflyttning till bearbetningsdjupet
9 APPR PLCT PR+45 PA+180 R5 RL F250	Förflyttning till konturen vid punkt 1 på en cirkelbåge med
	tangentiell anslutning
10 LP PA+120	Förflyttning till punkt 2
11 LP PA+60	Förflyttning till punkt 3
12 LP PA+0	Förflyttning till punkt 4
13 LP PA-60	Förflyttning till punkt 5
14 LP PA-120	Förflyttning till punkt 6
15 LP PA+180	Förflyttning till punkt 1
16 DEP PLCT PR+60 PA+180 R5 F1000	Lämna konturen på en cirkelbåge med tangentiell anslutning
17 L Z+250 R0 F MAX M2	Frikörning av verktyget, programslut
18 END PGM LINEARPO MM	

Exempel: Helix

0 BEGIN PGM HELIX MM	
1 BLK FORM 0. 1 Z X+0 Y+0 Z-20	Råämnesdefinition
2 BLK FORM 0. 2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+5	Verktygsdefinition
4 TOOL CALL 1 Z S1400	Verktygsanrop
5 L Z+250 R0 F MAX	Frikörning av verktyget
6 L X+50 Y+50 R0 F MAX	Förpositionering av verktyget
7 CC	Överför den sist programmerade positionen som Pol
8 L Z-12,75 R0 F1000 MB	Förflyttning till bearbetningsdjupet
9 APPR PCT PR+32 PA-180 CCA180 R+2	Förflyttning till konturen på en cirkelbåge med tangentiell
RL F100	Anslutning
10 CP IPA+3240 IZ+13, 5 DR+ F200	Förflyttning med Helix-interpolering
11 DEP CT CCA180 R+2	Lämna konturen på en cirkelbåge med tangentiell anslutning
12 L Z+250 R0 F MAX M2	Frikörning av verktyget, programslut
13 END PGM HELIX MM	

Om fler än 15 gängor skall fräsas:

8 L Z-12.75 RO F1000
9 APPR PCT PR+32 PA-180 CCA180 R+2 RL F100

10 LBL 1	Programdelsupprepningens början
11 CP IPA+360 IZ+1,5 DR+ F200	Ange stigning direkt som IZ-värde
12 CALL LBL 1 REP 24	Antal upprepningar (gängor)
13 DEP CT CCA180 R+2	

6.6 Konturrörelser – Flexibel konturprogrammering FK

Grunder

Arbetsstyckesritningar som inte är NC-anpassade innehåller ofta måttuppgifter som man inte kan programmera med de grå dialogknapparna. Då kan exempelvis

- bekanta koordinater ligga på konturelementet eller i dess närhet,
- koordinatuppgifter referera till ett annat konturelement eller
- riktningsuppgifter och uppgifter om konturförloppet vara bekanta.

Sådana uppgifter programmerar man direkt med hjälp av den flexibla konturprogrammeringen FK. TNC:n beräknar konturen utifrån de kända koordinatuppgifterna och stödjer programmeringsdialogen med en interaktiv FK-grafik. Bilden uppe till höger visar ett exempel på ritningsunderlag som enklast definieras med FK-programmering.

Beakta följande förutsättningar för FK-programmering

Konturelement som programmeras med flexibel konturprogrammering kan bara programmeras i bearbetningsplanet. Bearbetningsplanet definieras i bearbetningsprogrammets första BLK-FORM-block.

Ange alla tillgängliga uppgifter om varje konturelement. Programmera även uppgifter som inte förändras i varje block: Icke programmerade uppgifter tolkas som obekanta!

Q-parametrar är tillåtna i alla FK-element förutom element med relativa referenser (t.ex RX eller RAN), med andra ord element som refererar till andra NC-block.

Om man blandar både konventionell programmering och flexibel konturprogrammering i programmet så måste varje FK-avsnitt vara entydigt bestämt.

TNC:n behöver en fast punkt från vilken beräkningarna utgår. Programmera därför en position med de grå dialogknapparna, som innehåller bearbetningsplanets båda koordinater, innan FK-avsnittet. I detta block får inga Q-parametrar programmeras.

Om det första blocket i FK-avsnittet är ett FCT- eller FLTblock måste framkörningsriktningen vara entydigt definierad. Därför skall man programmera minst två NCblock med de grå dialogknapparna innan FK-avsnittet börjar.

Ett FK-avsnitt får inte börja direkt efter ett LBL-märke.

Grafik vid FK-programmering

För att kunna använda grafiken vid FK-programmering väljer man bildskärmsuppdelning PROGRAM + GRAFIK (se "Program blockföljd och Program enkelblock", sidan 8)

Med ofullständiga koordinatuppgifter kan oftast inte en arbetsstyckeskontur bestämmas entydigt. I dessa fall presenterar TNC:n de olika möjliga lösningarna i FK-grafiken och man får själv möjlighet att välja en av dessa lösningar. FK-grafiken presenterar arbetsstyckeskonturen med olika färger:

- vit Konturelementet är entydigt bestämt
- grön De inmatade uppgifterna ger ett antal möjliga lösningar; man väljer själv en av dessa
- röd De inmatade uppgifterna räcker ännu inte för att beräkna konturen; man anger ytterligare uppgifter

När de inmatade uppgifterna erbjuder flera lösningar och konturelementet presenteras med grön färg så väljer man den korrekta konturen på följande sätt:

- Tryck på softkey VISA LÖSNING upprepade gånger tills det korrekta konturelementet visas
- VALJ LOSNING
- Det presenterade konturelementet motsvarar ritningsunderlaget: Bestäm med softkey VÄLJ LÖSNING

Konturelement som presenteras med grön färg bör väljas med VÄLJ LÖSNING så snart som möjligt. Detta underlättar TNC:ns beräkningar av efterföljande konturelement.

Om man ännu inte vill välja en med grön färg presenterad kontur så trycker man på softkey AVSLUTA VAL för att fortsätta FK-dialogen.

Er maskintillverkare kan definiera andra färger för FKgrafiken.

NC-block, från ett program som anropas med PGM CALL, presenteras av TNC:n med en annan färg.

Öppna FK-dialog

Om man trycker på den grå konturfunktionsknappen FK kommer TNC:n att presentera softkeys med vilka FK-dialogen kan öppnas: Se efterföljande tabellen. För att sedan välja bort dessa softkeys trycker man på knappen FK på nytt.

När man öppnar FK-dialogen med en av dessa softkeys så visar TNC:n en utökad softkeyrad. Med denna softkeyrad kan man ange kända koordinater, ge riktningsangivelser och mata in uppgifter om konturförloppet.

FK-element	Softkey
Rätlinje med tangentiell anslutning	FLT
Rätlinje utan tangentiell anslutning	FL
Cirkelbåge med tangentiell anslutning	FCT
Cirkelbåge utan tangentiell anslutning	FC
Pol för FK-programmering	FPOL_+

Flexibel programmering av räta linjer

Rätlinje utan tangentiell anslutning

- Visa softkeys för Flexibel konturprogrammering: Tryck på knappen FK
- Öppna dialogen för flexibel rätlinje: Tryck på softkey FL. TNC:n visar ytterligare softkeys
- Ange alla kända uppgifter i blocket med hjälp av dessa softkeys. FK-grafiken presenterar den programmerade konturen med röd färg tills de inmatade uppgifterna är tillräckliga. Flera lösningar presenteras i grafiken med grön färg (se "Grafik vid FK-programmering", sidan 157)

Rätlinje med tangentiell anslutning

När en rätlinje skall ansluta tangentiellt till det föregående konturelementet öppnar man dialogen med softkey FLT:

- FK
- Visa softkeys för Flexibel konturprogrammering: Tryck på knappen FK
- FLT
- Öppna dialogen: Tryck på softkey FLT
- Ange alla kända uppgifter i blocket med hjälp av softkeys

Flexibel programmering av cirkelbågar

Cirkelbåge utan tangentiell anslutning

Visa softkeys för Flexibel konturprogrammering: Tryck på knappen FK

- Öppna dialogen för flexibel cirkelbåge: Tryck på softkey FC; TNC:n presenterar ytterligare softkeys för direkta uppgifter om cirkelbågen eller om cirkelns centrum
- Ange alla kända uppgifter i blocket med hjälp av dessa softkeys: FK-grafiken presenterar den programmerade konturen med röd färg tills de inmatade uppgifterna är tillräckliga. Flera lösningar presenteras i grafiken med grön färg (se "Grafik vid FK-programmering", sidan 157)

Cirkelbåge med tangentiell anslutning

När en cirkelbåge skall ansluta tangentiellt till det föregående konturelementet öppnar man dialogen med softkey FCT:

1		
	EK	
L		

Visa softkeys för Flexibel konturprogrammering: Tryck på knappen FK

- Öppna dialogen: Tryck på softkey FCT
- Ange alla kända uppgifter i blocket med hjälp av softkeys

Inmatningsmöjligheter

Koordinater för slutpunkt

Kända uppgifter	Softkeys	
Rätvinkliga koordinater X och Y	X	Y
Polära koordinater i förhållande till FPOL	PR +	PA
Exempel NC-block		
7 FPOL X+20 Y+30		
8 FL IX+10 Y+20 RR F100		
0 FCT DD:15 TDA:20 DD: D15		

Ett konturelements riktning och längd

Kända uppgifter	Softkeys
Linjens längd	LEN
Linjens stigningsvinkel	AN
Kordans längd LEN för cirkelbågen	LEN
Stigningsvinkel AN för ingångstangenten	AN
Vinkel från huvudaxeln till cirkelbågens slutpunkt	ADD -

Exempel NC-block

27 FLT X+25 LEN 12,5 AN+35 RL F200
28 FC DR+ R6 LEN 10 A-45
29 FCT DR- R15 LEN 15

6.6 Konturrörelser – Flexibel kont<mark>urp</mark>rogrammering FK

Cirkelcentrum CC, radie och rotationsriktning i FC-/FCT-block

TNC:n beräknar cirkelcentrumet för flexibelt programmerade cirkelbågar utifrån de inmatade uppgifterna. Därför är det även vid FKprogrammering möjligt att programmera fullcirklar med ett block.

Om man vill definiera cirkelcentrum med polära koordinater måste Pol programmeras med funktionen FPOL istället för med CC. FPOL är aktiv fram till nästa block med FPOL och anges med rätvinkliga koordinater.

> Ett konventionellt programmerat eller beräknat cirkelcentrum är inte längre aktivt som Pol eller cirkelcentrum i ett nytt FK-avsnitt: När konventionellt programmerade polära koordinater refererar till en Pol, som definierats tidigare i ett CC-block, så skall man definiera denna Pol på nytt med ett CC-block efter FKavsnittet.

Kända uppgifter	Softkeys
Cirkelcentrum i rätvinkliga koordinater	
Cirkelcentrum i polära koordinater	C PR
Cirkelbågens rotationsriktning	
Cirkelbågens radie	(+

Exempel NC-block

10 FC CCX+20 CCY+15 DR+ R15
11 FPOL X+20 Y+15
12 FL AN+40
13 FC DR+ R15 CCPR+35 CCPA+40

Slutna konturer

Med softkey CLSD kan man markera början och slut på en sluten kontur. Därigenom reduceras antalet möjliga lösningar för det sista konturelementet.

CLSD anger man som ett tillägg till en annan konturuppgift i ett FKavsnitts första och sista block.

. . .

Början på kontur: CLSD+ Slut på kontur: CLSD-

Exempel NC-block

12 L X+5 Y+35 RL F500 MB 13 FC DR- R15 CLSD CCX+20 CCY+35

17 FCT DR- R+15 CLSD-

Hjälppunkter

Både för flexibla rätlinjer och för flexibla cirkelbågar kan man ange hjälppunkter som ligger på eller i närheten av konturen.

Hjälppunkter på en kontur

Hjälppunkten befinner sig direkt på rätlinjen alt. i den räta linjens förlängning eller direkt på cirkelbågen.

Kända uppgifter	Softkeys		
X-koordinat för hjälppunkten P1 eller P2 på en rätlinje	PIX	PZX	
Y-koordinat för hjälppunkten P1 eller P2 på en rätlinje	PIY	PZY	
X-koordinat för hjälppunkten P1, P2 eller P3 på en cirkelbåge	P1X	P2X	P3X
Y-koordinat för hjälppunkten P1, P2 eller P3 på en cirkelbåge	PIY	P2Y	P3Y

Hjälppunkter bredvid en kontur

Kända uppgifter	Softkeys	
X- och Y-koordinat för hjälppunkten bredvid en rätlinje	PDX	PDY
Avstånd mellan hjälppunkten och rätlinjen	D	
X- och Y-koordinat för hjälppunktenbredvid en cirkelbåge	+ POX	+ PDY

Kända uppgifter	Softkeys
Avstånd mellan hjälppunkten och cirkelbågen	° t

Exempel NC-block

13 FC DR- R10 P1X+42.929 P1Y+60.071
14 FLT AN-70 PDX+50 PDY+53 D10

Relativ referens

Relativa referenser är uppgifter som refererar till andra konturelement. Softkeys och programord för **R**elativa referenser börjar med ett **"R"**. Bilden till höger visar måttuppgifter som man bör programmera med relativa referenser.

Koordinater med relativ referens anges alltid inkrementalt. Dessutom anges blocknumret på konturelementet som man refererar till.

Konturelementet, vars blocknummer man anger, får inte ligga mer än 64 positioneringsblock ifrån blocket som man programmerar referensen i.

Om man raderar ett block som ett annat block refererar till så kommer TNC:n att presentera ett felmeddelande. Korrigera programmet innan detta block raderas.

Relativ referens till block N: Slutpunktens koordinater

Kända uppgifter	Softkeys	
Rätvinkliga koordinater i förhållande till block N	RX N	RY N
Polära koordinater i förhållande till block N	RPR N	RPA N

Exempel NC-block

12 FPOL X+10 Y+10
13 FL PR+20 PA+20
14 FL AN+45
15 FCT IX+20 DR- R20 CCA+90 RX 13
16 FL IPR+35 PA+0 RPR 13

Relativ referens till block N: Konturelementets riktning och avstånd

Kända uppgifter	Softkey
Vinkel mellan rätlinjen och ett annat konturelement alt. mellan cirkelbågens ingångstangent och ett annat konturelement.	RAN N
Rätlinje parallell med ett annat konturelement	PAR
Avstånd mellan rätlinjen och det parallella konturelementet	1 DP
Exempel NC-block	
17 FL LEN 20 AN+15	
18 FL AN+105 LEN 12.5	
19 FL PAR 17 DP 12.5	
20 FSELECT 2	
21 FL LEN 20 IAN+95	
22 FL IAN+220 RAN 18	

Relativ referens till block N: Cirkelcentrum CC

Kända uppgifter	Softkey	
Rätvinkliga koordinater för cirkelcentrum i förhållande till block N	ROCX N	RCCY N
Polära koordinater för cirkelcentrum i förhållande till block N	RCCPR N	RCCPA
Exempel NC-block		
12 FL X+10 Y+10 RL		
13 FL		
14 FL X+18 Y+35		
15 FL		

17 FC DR- R10 CCA+0 ICCX+20 ICCY-15 RCCX12 RCCY14

16 FL ...

0 BEGIN PGM FK1 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råämnesdefinition
2 BLK FORM 0. 2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Verktygsdefinition
4 TOOL CALL 1 Z S500	Verktygsanrop
5 L Z+250 RO F MAX	Frikörning av verktyget
6 L X-20 Y+30 RO F MAX	Förpositionering av verktyget
7 L Z-10 RO F1000 MB	Förflyttning till bearbetningsdjupet
8 APPR CT X+2 Y+30 CCA90 R+5 RL F250	Förflyttning till konturen på en cirkelbåge med tangentiell anslutning
9 FC DR- R18 CLSD+ CCX+20 CCY+30	FK-avsnitt:
10 FLT	Programmering av kända uppgifter om varje konturelement
11 FCT DR- R15 CCX+50 CCY+75	
12 FLT	
13 FCT DR- R15 CCX+75 CCY+20	
14 FLT	
15 FCT DR- R18 CLSD- CCX+20 CCY+30	
16 DEP CT CCA90 R+5 F1000	Lämna konturen på en cirkelbåge med tangentiell anslutning
17 L X-30 Y+0 R0 F MAX	
18 L Z+250 RO F MAX M2	Frikörning av verktyget, programslut
19 END PGM FK1 MM	

Exempel: FK-programmering 2

0	BEGIN PGM FK2 MM	
1	BLK FORM 0.1 Z X+0 Y+0 Z-20	Råämnesdefinition
2	BLK FORM 0. 2 X+100 Y+100 Z+0	
3	TOOL DEF 1 L+0 R+2	Verktygsdefinition
4	TOOL CALL 1 Z S4000	Verktygsanrop
5	L Z+250 RO F MAX	Frikörning av verktyget
6	L X+30 Y+30 R0 F MAX	Förpositionering av verktyget
7	L Z+5 RO F MAX MB	Förpositionering i verktygsaxeln
8	L Z-5 R0 F100	Förflyttning till bearbetningsdjupet

9 APPR LCT X+0 Y+30 R5 RR F	350 Förflyttning till konturen på en cirkelbåge med tangentiell anslutning
10 FPOL X+30 Y+30	FK-avsnitt:
11 FC DR- R30 CCX+30 CCY+30	Programmering av kända uppgifter om varje konturelement
12 FL AN+60 PDX+30 PDY+30 D	10
13 FSELECT 3	
14 FC DR- R20 CCPR+55 CCPA+	60
15 FSELECT 2	
16 FL AN-120 PDX+30 PDY+30	D10
17 FSELECT 3	
18 FC X+0 DR- R30 CCX+30 CC	Y+30
19 FSELECT 2	
20 DEP LCT X+30 Y+30 R5	Lämna konturen på en cirkelbåge med tangentiell anslutning
21 L Z+250 R0 F MAX M2	Frikörning av verktyget, programslut
22 END PGM FK2 MM	

Exempel: FK-programmering 3

0	BEGIN PGM FK3 MM	
1	BLK FORM 0.1 Z X-45 Y-45 Z-20	Råämnesdefinition
2	BLK FORM 0. 2 X+120 Y+70 Z+0	
3	TOOL DEF 1 L+0 R+3	Verktygsdefinition
4	TOOL CALL 1 Z S4500	Verktygsanrop
5	L Z+250 RO F MAX	Frikörning av verktyget
6	L X-70 Y+0 R0 F MAX	Förpositionering av verktyget
7	L Z-5 RO F1000 MB	Förflyttning till bearbetningsdjupet

8 APPR CT X-40 Y+0 CCA90 R+5 RL F250	Förflyttning till konturen på en cirkelbåge med tangentiell anslutning
9 FC DR- R40 CCX+0 CCY+0	FK-avsnitt:
10 FLT	Programmering av kända uppgifter om varje konturelement
11 FCT DR- R10 CCX+0 CCY+50	
12 FLT	
13 FCT DR+ R6 CCX+0 CCY+0	
14 FCT DR+ R24	
15 FCT DR+ R6 CCX+12 CCY+0	
16 FSELECT 2	
17 FCT DR- R1, 5	
18 FCT DR- R36 CCX+44 CCY-10	
19 FSELECT 2	
20 FCT DR+ R5	
21 FLT X+110 Y+15 AN+0	
22 FL AN-90	
23 FL X+65 AN+180 PAR21 DP30	
24 RND R5	
25 FL X+65 Y-25 AN-90	
26 FC DR+ R50 CCX+65 CCY-75	
27 FCT DR- R65	
28 FSELECT	
29 FCT Y+0 DR- R40 CCX+0 CCY+0	
30 FSELECT 4	
31 DEP CT CCA90 R+5 F1000	Lämna konturen på en cirkelbåge med tangentiell anslutning
32 L X-70 R0 F MAX	
33 L Z+250 R0 F MAX M2	Frikörning av verktyget, programslut
34 END PGM FK3 MM	

6.7 Konturrörelser – Splineinterpolering

Användningsområde

Konturer, som beskrivs med splines i ett CAD-system, kan överföras och exekveras direkt i TNC:n. TNC:n förfogar över en splineinterpolator, med vilken ett polynom av tredje graden kan utföras i två, tre, fyra eller fem axlar.

Man kan inte editera spline-block i TNC:n. Undantag: Matning ${\bf F}$ och tilläggsfunktion ${\bf M}$ i spline-blocket.

Exempel: Blockformat för två axlar

7 L X+33, 909 Z+75, 107 F MAX	Spline-startpunkt
8 SPL X+39, 824 Z+77, 425	Spline-slutpunkt
K3X+0,0983 K2X-0,441 K1X-5,5724	Spline-parameter för X-axel
K3Z+0, 0015 K2Z-0, 9549 K1Z+3, 0875 F10000	Spline-parameter för Z-axel
9 SPL X+44, 862 Z+73, 44	Spline-slutpunkt
K3X+0, 0934 K2X-0, 7211 K1X-4, 4102	Spline-parameter för X-axel
K3Z-0, 0576 K2Z-0, 7822 K1Z+4, 8246	Spline-parameter för Z-axel
10	

10 . . .

TNC:n exekverar spline-blocket enligt följande polynom av tredje graden:

 $X(t) = K3X \cdot t^3 + K2X \cdot t^2 + K1X \cdot t + X$

 $Z(t) = K3Z \cdot t^3 + K2Z \cdot t^2 + K1Z \cdot t + Z$

Därvid löper variabel t från 1 till 0. Variabel t stegas med ett inkrement som är beroende av matningshastigheten och splinens längd.

Exempel: Blockformat för fem axlar

7 L X+33, 909 Y-25, 838 Z+75, 107 A+17 B-10, 103 F MAX	Spline-startpunkt
8 SPL X+39, 824 Y-28, 378 Z+77, 425 A+17, 32 B-12, 75	Spline-slutpunkt
K3X+0, 0983 K2X-0, 441 K1X-5, 5724	Spline-parameter för X-axel
K3Y-0, 0422 K2Y+0, 1893 K1Y+2, 3929	Spline-parameter för Y-axel
K3Z+0, 0015 K2Z-0, 9549 K1Z+3, 0875	Spline-parameter för Z-axel
K3A+0, 1283 K2A-0, 141 K1A-0, 5724	Spline-parameter för A-axel
K3B+0,0083 K2B-0,413 E+2 K1B-1,5724 E+1 F10000	Spline-parameter för B-axel med
	exponentiellt skrivsätt
9	

TNC:n exekverar spline-blocket enligt följande polynom av tredje graden:

 $\begin{aligned} X(t) &= K3X \cdot t^3 + K2X \cdot t^2 + K1X \cdot t + X \\ Y(t) &= K3Y \cdot t^3 + K2Y \cdot t^2 + K1Y \cdot t + Y \\ Z(t) &= K3Z \cdot t^3 + K2Z \cdot t^2 + K1Z \cdot t + Z \\ A(t) &= K3A \cdot t^3 + K2A \cdot t^2 + K1A \cdot t + A \\ B(t) &= K3B \cdot t^3 + K2B \cdot t^2 + K1B \cdot t + B \end{aligned}$

Därvid löper variabel t från 1 till 0. Variabel t stegas med ett inkrement som är beroende av matningshastigheten och splinens längd.

För varje slutpunktskoordinat i spline-blocket måste spline-parameter K3 till K1 vara programmerad. Slutpunktskoordinaternas ordningsföljd i spline-blocket är godtycklig.

TNC förväntar sig alltid spline-parameter K för varje axel i ordningsföljd K3, K2, K1.

Förutom huvudaxlarna X, Y och Z kan TNC:n behandla tilläggsaxlarna U, V och W, samt även rotationsaxlarna A, B och C i SPL-blocket. I spline-parameter K måste då alltid respektive axel finnas angivna (t.ex. K3A+0,0953 K2A-0,441 K1A+0,5724).

Om värdet i en spline-parameter K är större än 9,99999999, måste postprocessorn beskriva K i exponent-form (t.ex. K3X+1,2750 E2).

TNC:n kan även exekvera ett program med spline-block vid aktiv vridning av bearbetningsplanet.

Se till att övergången från en spline till nästa är så nära tangentiell som möjligt (riktningsändring mindre än 0,1°). Annars kommer TNC:n, vid inaktiva filterfunktioner, att utföra ett precisionsstopp och maskinen rycker. Vid aktiva filterfunktioner reducerar TNC:n matningshastigheten vid dessa ställen i motsvarande grad.

Inmatningsområde

- Spline-slutpunkt: -99 999,9999 till +99 999,9999
- Spline-parameter K: -9,99999999 till +9,99999999
- Exponent för spline-parameter K: -255 till +255 (jämnt heltalsvärde)

Programmering: Tilläggsfunktioner

7.1 Inmatning av tilläggsfunktioner M och STOPP

Grunder

Med TNC:ns tilläggsfunktioner – även kallade M-funktioner –kan man styra

- programförloppet, t.ex. ett avbrott i programexekveringen
- maskinfunktionerna, såsom påslag och avstängning av spindelrotationen och kylvätskan
- verktygets konturbeteende

Ţ.	

Maskintillverkaren kan frige tilläggsfunktioner som inte finns beskrivna i denna handbok. Beakta anvisningarna i Er maskinhandbok.

Man kan ange upp till två tilläggsfunktioner i slutet av ett positioneringsblock. TNC:n presenterar då följande dialog:

Tilläggsfunktion M?

l dialogen anger man oftast bara numret på den önskade tilläggsfunktionen. Vid en del tilläggsfunktioner fortsätter dock dialogen så att man kan mata in parametrar för denna funktion.

l driftarterna Manuell drift och El. handratt anger man tilläggsfunktionerna via softkey M.

Beakta att en del tilläggsfunktioner aktiveras i början av positioneringsblocket medan andra aktiveras i slutet.

Tilläggsfunktionerna blir verksamma från det block som de definierats i. Såvida en specifik tilläggsfunktion inte bara är verksam blockvis så upphävs den i ett senare block eller vid programslutet. Vissa tilläggsfunktioner är bara aktiverade i det block de har definierats i.

Ange tilläggsfunktion i STOP-block

Ett programmerat STOP-block stoppar programexekveringen alt. programtestet, t.ex. för kontroll av verktyget. I ett STOP-block kan man programmera en tilläggsfunktion M:

Programmering av programkörningsstopp: Tryck på knappen STOP

► Ange tilläggsfunktion M

Exempel NC-block

87 STOP M6

7.2 Tilläggsfunktioner för kontroll av programkörning, spindel och kylvätska

Översikt

М	Verkan	Aktiveras vid block -	början	slut
M00	Programexekvering STOPP Spindel STOPP Kylvätska AV			
M01	Valbart Stopp av programkörningen			-
M02	Programexekvering STOPP Spindel STOPP Kylvätska från Återhopp till block 1 Radera statuspresentationen (avhängigt maskinparameter 7300)			
M03	Spindel TILL	medurs		
M04	Spindel TILL	moturs	-	
M05	Spindel STO	PP		-
M06	Verktygsväxl Spindel STOI Programexek (avhängigt m	ing PP «vering STOPP askinparameter 7440)		
M08	Kylvätska TIL	L		
M09	Kylvätska AV			-
M13	Spindel TILL Kylvätska TIL	medurs L	-	
M14	Spindel TILL Kylvätska på	moturs	-	
M30	som M02			

7.3 Tilläggsfunktioner för koordinatuppgifter

Programmering av maskinfasta koordinater: M91/M92

Mätskalans nollpunkt

På mätskalan finns ett referensmärke som indikerar mätskalans nollpunkt.

Maskinens nollpunkt

Maskinens nollpunkt behöver man för följande ändamål:

- Ställa in begränsning av rörelseområdet (mjukvarubegränsning)
- Förflytta till maskinfasta positioner (t.ex. position för verktygsväxling)
- Inställning av arbetsstyckets utgångspunkt

l en maskinparameter definierar maskintillverkaren avståndet från mätskalornas nollpunkter till maskinens nollpunkt för varje enskild axel.

Standardbeteende

TNC:n refererar koordinater till arbetsstyckets utgångspunkt, se "Inställning av utgångspunkt (utan 3D-avkännarsystem)", sidan 22.

Beteende med M91 – maskinens nollpunkt

Om koordinaterna i positioneringsblock skall utgå från maskinens nollpunkt, istället för arbetsstyckets utgångspunkt, så anger man M91 i dessa block.

TNC:n presenterar koordinatvärdena utifrån maskinens nollpunkt. I statuspresentationen väljer man koordinatvisning REF, se "Statuspresentation", sidan 9.

Beteende med M92 – maskinens utgångspunkt

Förutom maskinens nollpunkt kan maskintillverkaren definiera ytterligare en maskinfast position (Maskinens utgångspunkt).

Maskintillverkaren definierar, för varje axel, avståndet från maskinens nollpunkt till maskinens utgångspunkt (se maskinhandboken).

Om koordinaterna i positioneringsblock skall utgå från maskinens utgångspunkt, istället för arbetsstyckets utgångspunkt, så anger man M92 i dessa block.

Även vid M91 och M92 kommer TNC:n att utföra korrekt radiekompensering. Däremot sker **inte** kompensering för verktygslängden.

7.3 Tilläggsfunktioner för koordinatuppgifter

Verkan

M91 och M92 är bara aktiva i programblocken, i vilka M91 eller M92 har programmerats.

M91 och M92 aktiveras i blockets början.

Arbetsstyckets utgångspunkt

Om koordinaterna alltid skall utgå från maskinens nollpunkt så kan funktionen för inställning av arbetsstyckets utgångspunkt spärras i en eller flera axlar.

Om funktionen för inställning av arbetsstyckets utgångspunkt har spärrats för alla axlar så kommer TNC:n inte att visa softkey INSTÄLLN. UTGÅNGSPUNKT i driftart Manuell drift.

Bilden till höger visar ett koordinatsystem med maskinens och arbetsstyckets nollpunkt.

M91/M92 i driftart programtest

För att även kunna simulera M91/M92-förflyttningar grafiskt måste man aktivera övervakningen av bearbetningsutrymmet och låta råämnet presenteras i förhållande till den inställda utgångspunkten, se "Presentation av råämnet i bearbetningsrummet", sidan 441.

7.3 Tilläggsfunktione<mark>r fö</mark>r koordinatuppgifter

Aktivera den sist inställda utgångspunkten: M104

Funktion

Vid exekvering av palett-tabeller skriver i vissa fall TNC:n över den sist, av dig, inställda utgångspunkten med värden från palett-tabellen. Med funktionen M104 aktiverar du åter den av dig sist inställda utgångspunkten.

Verkan

M104 är bara verksam i de programblock som den har programmerats i.

M104 aktiveras i blockets slut.

Förflyttning till positioner i icke vridet koordinatsystem vid 3D-vridet bearbetningsplan: M130

Standardbeteende vid 3D-vridet bearbetningsplan

TNC:n hänför koordinaterna i positioneringsblocken till det vridna koordinatsystemet.

Beteende med M130

TNC:n hänför koordinater i rätlinjeblock till det icke vridna koordinatsystemet, även när vridning av bearbetningsplanet är aktiv.

TNC:n positionerar då det vinklade verktyget till de programmerade koordinaterna i det icke vridna systemet.

Efterföljande positioneringsblock resp. bearbetningscykler utförs åter i det tippade koordinatsystemet, vilket kan leda till problem vid bearbetningscykler med absolut förpositionering.

Funktionen M130 är endast tillåten vid tippat bearbetningsplan.

Verkan

M130 är inte modal och bara verksam i rätlinjeblock utan verktygskompensering.

7.4 Tilläggsfunktioner för konturbeteende

Rundning av hörn: M90

Standardbeteende

Vid positioneringsblock utan radiekompensering stoppar TNC:n verktyget under en kort tid vid hörn (precisions-stopp).

Vid programblock med radiekompensering (RR/RL) infogar TNC:n automatiskt en övergångsbåge vid ytterhörn.

Beteende med M90

Vid hörnövergångar kommer verktyget att förflyttas med konstant banhastighet: Hörnen rundas av och arbetsstyckets yta blir jämnare. Dessutom minskar detta bearbetningstiden. Se bilden i mitten till höger.

Användningsexempel: Ytor med korta linjära inkrement.

Verkan

M90 är bara aktiv i de programblock, i vilka M90 har programmerats.

M90 aktiveras i blockets början. Släpfelsreglering måste vara valt.

Infoga definierad rundningsbåge mellan räta linjer: M112

Kompatibilitet

Av kompatibilitetsskäl är funktionen M112 fortfarande tillgänglig. För att fastlägga toleransen vid snabb konturfräsning förordar dock HEIDENHAIN användning av cykeln TOLERANS, se "Specialcykler", sidan 346

Bearbeta små kontursteg: M97

Standardbeteende

Vid ytterhörn infogar TNC:n en övergångsbåge. Vid mycket små kontursteg kan detta medföra att verktyget skadar konturen.

Vid sådana tillfällen avbryter TNC:n programkörningen och presenterar ett felmeddelande "Verktygsradie för stor".

Beteende med M97

TNC:n beräknar konturskärningspunkten för konturelementen – på samma sätt som vid innerhörn – och förflyttar verktyget via denna punkt.

Programmera M97 i samma block som punkten för ytterhörnet.

Verkan

M97 är bara verksam i det programblock som den har programmerats i.

Konturhörn som bearbetas med M97 blir inte fullständigt bearbetade. Eventuellt måste konturhörnet efterbearbetas med ett mindre verktyg.

Exempel NC-block

5 TOOL DEF L R+20
13 L X Y R F M97
14 L IY-0, 5 R F
15 L IX+100
16 L IY+0,5 R F M97
17 L X Y

Stor verktygsradie

Förflyttning till konturpunkt 13 Bearbetning av små kontursteg 13 och 14 Förflyttning till konturpunkt 15 Bearbetning av små kontursteg 15 och 16 Förflyttning till konturpunkt 17

Fullständig bearbetning av öppna konturhörn: M98

Standardbeteende

Vid innerhörn beräknar TNC:n skärningspunkten för fräsbanorna och ändrar verktygets rörelseriktning i denna punkt.

När konturen är öppen vid hörnet ger detta upphov till en ofullständig bearbetning:

Beteende med M98

Med tilläggsfunktionen M98 förflyttar TNC:n verktyget så långt att varje konturpunkt blir fullständigt bearbetad:

Verkan

M98 är bara verksam i de programblock som den har programmerats i.

M98 aktiveras i blockets slut.

Exempel NC-block

Förflyttning i tur och ordning till konturpunkterna 10, 11 och 12:

10 L X Y	RL F
11 L X IY	MÐ 8
12 L IX+	

Matningsfaktor vid nedmatningsrörelse: M103

Standardbeteende

TNC:n förflyttar verktyget, oberoende av rörelseriktningen, med den sist programmerade matningshastigheten.

Beteende med M103

TNC:n reducerar matningshastigheten vid rörelser i negativ riktning i verktygsaxeln. Hastighetsvektorn i negativ verktygsaxel FZMAX begränsas till en faktor F% av den sist programmerade matningshastigheten FPROG:

FZMAX = FPROG x F%

Inmatning av M103

När man anger M103 i ett positioneringsblock så fortsätter TNC:n dialogen och frågar efter faktor F.

Verkan

M103 aktiveras i blockets början. Upphäv M103: Förnyad programmering av M103 utan faktor

Exempel NC-block

Matning vid nedmatning motsvarar 20% av matningen i planet.

····	Verklig banhastighet (mm/min):
17 L X+20 Y+20 RL F500 ML03 F20	500
18 L Y+50	500
19 L IZ-2, 5	100
20 L IY+5 IZ-5	141
21 L IX+50	500
22 L Z+5	500

Matning i millimeter/spindelvarv: M136

Standardbeteende

TNC:n förflyttar verktyget med den i programmet definierade matningen F i mm/min.

Beteende med M136

Med M136 förflyttar TNC:n inte verktyget i mm/min utan istället med den i programmet definierade matningen F i millimeter/spindelvarv. Om man förändrar varvtalet med potentiometern för spindel-override kommer TNC:n automatiskt att anpassa matningen.

l och med introduktionen av mjukvara 280 476-xx har enheten för funktionen M136 ändrats från µm/varv till mm/ varv. Om man skall använda program med M136 som man har skapat i äldre TNC-mjukvaror måste den programmerade matningen minskas med en faktor 1000.

Verkan

M136 aktiveras i blockets början.

Man upphäver M136 genom att programmera M137.

Matningshastighet vid cirkelbågar: M109/M110/M111

Standardbeteende

TNC:n hänför den programmerade matningshastigheten till verktygsbanans centrum.

Beteende vid cirkelbågar med M109

TNC:n anpassar hastigheten vid inner- och ytterbearbetning av cirkelbågar så att matningen i verktygsskäret förblir konstant.

Beteende vid cirkelbågar med M110

TNC:n anpassar hastigheten endast vid innerbearbetning av cirkelbågar så att matningen i verktygsskäret förblir konstant. Vid ytterbearbetning av cirkelbågar sker ingen matningsanpassning.

\sim	

M110 är även verksam vid invändig bearbetning av cirkelbågar med konturcykler. Om man definierar M109 resp. M110 före anropet av en bearbetningscykel, fungerar matningsanpassningen även vid cirkelbågar inom bearbetningscykeln. Vid slutet eller efter avbrott av en bearbetningscykel återställs normaltillståndet.

Verkan

M109 och M110 aktiveras i blockets början. M109 och M110 upphävs med M111.

Förberäkning av radiekompenserad kontur (LOOK AHEAD): M120

Standardbeteende

Om verktygsradien är större än ett kontursteg som skall utföras med radiekompensering så avbryter TNC:n programexekveringen och presenterar ett felmeddelande. M97 (se "Bearbeta små kontursteg: M97" på sidan 180): M97" förhindrar felmeddelandet men ger upphov till ett fräsmärke och förskjuter dessutom hörnet.

Om konturen innehåller sekvenser där verktyget överlappar efterkommande konturelement, förstör TNC:n i förekommande fall konturen.

Beteende med M120

TNC:n övervakar en radiekompenserad kontur så att efter- och överskärningar inte uppstår samt beräknar i förväg verktygsbanan fram till det aktuella blocket. Ställen som verktyget skulle ha skadat konturen vid förblir obearbetade (visas i bilden till höger med mörkare färg). Man kan även använda M120 för att förse digitaliserade data eller data som genererats av ett externt programmeringssystem med verktygsradiekompensering. Därigenom kan avvikelser från den teoretiska verktygsradien kompenseras.

Antalet block (maximalt 99), som TNC:n förberäknar, definierar man med LA (eng. Look Ahead: titta framåt) efter M120. Ju större antal block som väljs, desto längre blir blockcykeltiden.

Inmatning

När man anger M120 i ett positioneringsblock så fortsätter TNC:n dialogen och frågar efter antalet block LA som skall förberäknas.

Verkan

M120 måste anges i ett NC-block som även innehåller radiekompensering RL eller RR. M120 är verksam från detta block tills man

- upphäver radiekompenseringen med R0
- programmerar M120 LA0
- programmerar M120 utan LA
- anropar ett annat program med PGM CALL

M120 aktiveras i blockets början.

Begränsningar

- Återkörning till en kontur efter externt/internt stopp får bara utföras med funktionen FRAMKÖRNING TILL BLOCK N.
- Om man använder konturfunktionerna RND och CHF, får blocket innan och efter RND respektive CHF endast innehålla koordinater i bearbetningsplanet.
- Om man vill köra fram till konturen tangentiellt, måste man använda funktionen APPR LCT; Blocket med APPR LCT får bara innehålla koordinater i bearbetningsplanet
- Om man vill köra ifrån konturen tangentiellt, måste man använda funktionen DEP LCT; Blocket med DEP LCT får bara innehålla koordinater i bearbetningsplanet

Överlagra handrattsrörelser under programkörning: M118

Standardbeteende

I driftarterna för programkörning förflyttar TNC:n verktyget på det sätt som definierats i bearbetningsprogrammet.

Beteende med M118

Funktionen M118 möjliggör manuella korrigeringar med handratten parallellt med programexekveringen. Rörelseområdet för dessa överlagrade förflyttningar definieras med axelspecifika värden X, Y och Z i mm.

Inmatning

När man anger M118 i ett positioneringsblock så fortsätter TNC:n dialogen och frågar efter de axelspecifika värdena. Använd de orangefärgade axelknapparna eller ASCII-knappsatsen för koordinatinmatning.

Verkan

Handrattspositionering upphävs med en förnyad programmering av M118 utan X, Y och Z.

M118 aktiveras i blockets början.

Exempel NC-block

Under programkörningen önskas möjlighet till handrattsrörelser i bearbetningsplanet X/Y med ±1 mm från de programmerade värdena:

L X+0 Y+38, 5 RL F125 MI18 X1 Y1

M118 verkar alltid i original-koordinatsystemet, även om funktionen 3D-vridning av bearbetningsplan är aktiv!

M118 är även verksam i driftart Manuell positionering!

När M118 är aktiv erbjuds inte funktionen MANUELL FÖRFLYTTNING i samband med avbrott i programexekveringen!

Frånkörning från konturen i verktygsaxelns riktning: M140

Standardbeteende

l driftarterna för programkörning förflyttar TNC:n verktyget på det sätt som definierats i bearbetningsprogrammet.

Beteende med M140

Med M140 MB (move back) kan man köra ifrån konturen i verktygsaxelns riktning med en definierbar sträcka.

Inmatning

När man anger M140 i ett positioneringsblock så fortsätter TNC:n dialogen och frågar efter hur lång sträcka som verktyget skall köras ifrån konturen. Ange den önskade sträckan som verktyget skall förflyttas från konturen eller tryck på softkey MAX för att köra till rörelseområdets slut.

Verkan

M140 är bara verksam i de programblock som M140 har programmerats i.

M140 aktiveras i blockets början.

Exempel NC-block

Block 250: Förflytta verktyget 50 mm bort från konturen

Block 251: Förflytta verktyget till rörelseområdets slut

250 L X+0 Y+38, 5 F125 ML40 MB 50

251 L X+0 Y+38, 5 F125 MI40 MB MAX

M140 är även verksam när funktionerna 3D-vridning av bearbetningsplanet, M114 eller M128 är aktiva. Vid maskiner med vridbara spindelhuvuden förflyttar TNC:n då verktyget i det vridna systemet.

Med funktionen **FN18: SYSREAD ID230 NR6** kan man ta reda på avståndet från den aktuella positionen till gränsen för rörelseområdet i den positiva verktygsaxeln.

Med M40 MB MAX kan man bara friköra i positiv riktning.

Avstängning av avkännarsystemets övervakning: M141

Standardbeteende

När mätstiftet är påverkat visar TNC:n ett felmeddelande så snart man försöker förflytta en maskinaxel.

Beteende med M141

TNC:n förflyttar maskinaxlarna även när avkännarsystemets mätstift är påverkat. Denna funktion är nödvändig när man vill skriva en egen mätcykel i kombination med mätcykel 3. Detta för att kunna friköra avkännarsystemet med ett positioneringsblock efter utböjningen.

Om man använder funktionen M141 måste man säkerställa att avkännarsystemet frikörs i korrekt riktning.

M141 fungerar endast i förflyttningsrörelser med rätlinjeblock.

Verkan

M141 är bara verksam i de programblock som M141 har programmerats i.

M141 aktiveras i blockets början.

Upphäv modala programinformationer: M142

Standardbeteende

TNC:n återställer modala programinformationer i följande situationer:

- Välj ett nytt program
- Utför tilläggsfunktionerna M02, M30 eller blocket END PGM (avhängigt maskinparameter 7300)
- Förnyad definition av cykeln med dess grundvärde

Beteende med M142

Alla modala programinformationer förutom grundvridning, 3D-rotation och Q-parametrar upphävs.

Verkan

M142 är bara aktiv i det programblock som M142 har programmerats i.

M142 aktiveras i blockets början.

Upphäv grundvridning: M143

Standardbeteende

Grundvridningen förblir verksam ända tills man återställer den eller skriver över den med ett nytt värde.

Beteende med M143

TNC:n upphäver en programmerad grundvridning i NC-programmet.

Verkan

M143 är bara verksam i det programblock som M143 har programmerats i.

M143 aktiveras i blockets början.

7.5 Tilläggsfunktioner för rotationsaxlar

Matning i mm/min vid rotationsaxlar A, B, C: M116

Standardbeteende

I rotationsaxlar tolkar TNC:n den programmerade matningshastigheten som grad/min. Banhastigheten är därför avhängig avståndet mellan verktygscentrum och rotationsaxelns centrum.

Ju större avståndet är desto högre blir banhastigheten.

Matning i mm/min vid rotationsaxlar med M116

Maskintillverkaren måste definiera maskinens geometri i maskinparameter 7510 och framåt.

I rotationsaxlar tolkar TNC:n den programmerade matningshastigheten som mm/min. För detta beräknar TNC:n, vid varje blockbörjan, matningshastigheten för det specifika blocket. Matningen i en rotationsaxel ändrar sig inte inom ett block, även om verktyget förflyttas mot rotationsaxelns centrum.

Verkan

M116 verkar i bearbetningsplanet Med M117 upphäver man M116; Likaså upphävs M116 vid programmets slut.

M116 aktiveras i blockets början.

Vägoptimerad förflyttning av rotationsaxlar: M126

Standardbeteende

TNC:ns standardbeteende vid positionering av rotationsaxlar, vilkas positionsvärde har reducerats till ett värde mindre än 360°, är beroende av maskinparameter 7682. Där definieras om TNC:n skall förflytta till den programmerade positionen med differensen mellan bör-position – är-position eller om TNC:n standardmässigt (även utan M126) skall förflytta den kortaste vägen till den programmerade positionen. Exempel:

Är-position	Bör-position	Faktisk väg
350°	10°	–340°
10°	340°	+330°

Beteende med M126

Med M126 förflyttar TNC:n en rotationsaxel, vars positionsvärde har reducerats till ett värde under 360°, den kortaste vägen. Exempel:

Är-position	Bör-position	Faktisk väg
350°	10°	+20°
10°	340°	–30°

Verkan

M126 aktiveras i blockets början. M126 upphäver man med M127; Likaså upphävs M126 vid programmets slut.

Minskning av positionsvärde i rotationsaxel till ett värde under 360°: M94

Standardbeteende

TNC:n förflyttar verktyget från det aktuella vinkelvärdet till det programmerade vinkelvärdet.

Exempel:

Aktuellt vinkelvärde:	538°
Programmerat vinkelvärde:	180°
Faktisk väg:	–358°

Beteende med M94

Vid blockets början reducerar TNC:n det aktuella vinkelvärdet till ett värde mindre än 360°. Därefter sker förflyttningen till det programmerade värdet. Om det finns flera aktiva rotationsaxlar, minskar M94 positionsvärdet i alla rotationsaxlar. Alternativt kan en specifik rotationsaxel anges efter M94. TNC:n reducerar då bara positions-värdet i denna axel.

Exempel NC-block

Reducera positionsvärde i alla aktiva rotationsaxlar:

L M94

Reducera endast positionsvärdet i C-axeln:

L M94 C

Reducera alla aktiva rotationsaxlar och förflytta därefter C-axeln till det programmerade värdet:

L C+180 FMAX M94

Verkan

M94 är bara verksam i de positioneringsblock som den programmeras i.

M94 aktiveras i blockets början.

7.5 Tilläggsfunktioner för rotationsaxlar

Automatisk kompensering för maskingeometrin vid arbete med rotationsaxlar: M114

Standardbeteende

TNC:n förflyttar verktyget till de i bearbetningsprogrammet definierade positionerna. Om en rotationsaxels position ändrar sig i programmet så måste postprocessorn beräkna den därigenom uppkomna förskjutningen i linjäraxlarna och kompensera detta i ett positioneringsblock. Eftersom även maskingeometrin kommer att påverka detta måste NC-programmet beräknas individuellt för olika maskiner.

Beteende med M114

Om en styrd rotationsaxels position ändrar sig i programmet kommer TNC:n automatiskt att kompensera för förskjutningen av verktyget med en 3D-längdkompensering. Eftersom maskinens geometri har angivits i maskinparametrar kommer TNC:n även att kompensera för den maskinspecifika förskjutningen. Postprocessorn behöver endast beräkna programmet en gång, även då det skall exekveras i olika maskiner som är utrustade med TNC-styrsystem.

Om din maskin inte är utrustad med styrda rotationsaxlar (huvudet kan endast vridas manuellt eller huvudet positioneras av PLC), kan man ange spindelhuvudets aktuella position efter M114 (t.ex. M114 B+45, Q-parametrar är tillåtna).

CAD-systemet resp. postprocessorn måste ta hänsyn till verktygsradiekompenseringen. En programmerad radiekompensering RL/RR ger upphov till ett felmeddelande.

Om verktygets längdkompensering beräknas av TNC:n, kommer den programmerade matningshastigheten att gälla verktygsspetsen annars gäller den verktygets utgångspunkt.

Om man har en maskin som är utrustad med ett styrt vridbart spindelhuvud går det att avbryta programexekveringen och ändra vridningsaxelns inställning (t.ex. med handratten).

> Med funktionen FRAMKÖRNING TILL BLOCK N kan man sedan återuppta bearbetningsprogrammet vid stället där avbrottet utfördes. Vid aktiv M114 tar TNC:n automatiskt hänsyn till rotationsaxlarnas nya inställning.

För att ändra rotationsaxlarnas inställning under programexekveringen med handratten använder man sig av M118 i kombination med M128.

Verkan

M114 aktiveras i blockets början, M115 vid blockets slut. M114 är inte verksam vid aktiv verktygsradiekompensering.

Man upphäver M114 med M115. Vid programslutet upphävs alltid M114.

. (Ÿ

Maskintillverkaren måste definiera maskinens geometri i maskinparameter 7510 och framåt.

Bibehåll verktygsspetsens position vid positionering av rotationsaxlar (TCPM*): M128

Standardbeteende

TNC:n förflyttar verktyget till de i bearbetningsprogrammet definierade positionerna. Om en rotationsaxels position ändrar sig i programmet så måste den därigenom uppkomna förskjutningen i linjäraxlarna beräknas och kompenseras i ett positioneringsblock (se bilden vid M114).

Beteende med M128

Om en styrd rotationsaxels position ändrar sig i programmet så förblir verktygsspetsens position oförändrad i förhållande till arbetsstycket under vridningsrörelsen.

Använd M128 i kombination med M118 om du vill förändra rotationsaxlarnas inställning under programexekveringen med handratten. Överlagringen av en handrattspositionering sker vid aktiv M128 i det maskinfasta koordinatsystemet.

Vid rotationsaxlar med Hirth-koppling: Ändra bara rotationsaxelns läge efter det att verktyget har frikörts. Annars kan konturen skadas på grund av rörelsen ur kuggdelningen.

Efter M128 kan man även ange en matning som TNC:n skall utföra utjämningsrörelsen i de linjära axlarna med. Om man inte anger någon matning, eller om den är större än värdet som har definierats i maskinparameter 7471, gäller matningen från maskinparameter 7471.

Före positioneringar med M91 eller M92 och före ett TOOL CALL: Återställ M128.

För att undvika konturavvikelser får man endast använda radiefräsar vid M128.

Verktygslängden måste utgå från radiefräsens kulcentrum.

TNC:n vrider inte med den aktiva verktygsradiekompenseringen. Därigenom uppstår ett fel som beror på rotationsaxelns vinkelläge.

När M128 är aktiv presenterar TNC:n symbolen 🔯 i statuspresentationen.

M128 vid tippningsbord

När man programmerar en förflyttning av tippningsbord vid aktiv M128, vrider TNC:n med koordinatsystemet i motsvarande grad. Vrider man t.ex. C-axeln med 90° (genom positionering eller genom nollpunktsförskjutning) och därefter programmerar en rörelse i X-axeln kommer TNC:n att utföra förflyttningen i maskinaxel Y.

TNC:n transformerar även den inställda utgångspunkten eftersom denna har förflyttats genom rundbords-rörelsen.

M128 vid tredimensionell verktygskompensering

När man utför en tredimensionell verktygskompensering vid aktiv M128 och aktiv radiekompensering RL/RR, positionerar TNC:n rotationsaxlarna automatiskt vid vissa maskingeometrier (Peripheral-Milling, se "Tredimensionell verktygskompensering", sidan 112).

Verkan

M128 aktiveras i blockets början, M129 vid blockets slut. M128 är även verksam i de manuella driftarterna och förblir aktiv efter en växling av driftart. Matningen för utjämningsrörelsen är verksam ända tills en ny programmeras eller M128 upphävs med M129.

Man upphäver M128 med M129. TNC:n återställer själv M128 när man väljer ett nytt program i en programkörningsdriftart.

Maskintillverkaren måste definiera maskinens geometri i maskinparameter 7510 och framåt.

Exempel NC-block

Utför utjämningsrörelser med matning 1000 mm/min:

L X+0 Y+38, 5 RL F125 ML28 F1000

Precisionsstopp vid hörn med icke tangentiella övergångar: M134

Standardbeteende

TNC:n förflyttar verktyget, vid positioneringar med rotationsaxlar, så att ett övergångselement infogas vid icke tangentiella övergångar. Konturövergången är avhängig accelerationen, rycket och den fastlagda toleransen för konturavvikelsen.

\sim	L
1 6	ਤਿ
~	⊃

Man kan ändra TNC:ns standardbeteende via maskinparameter 7440 så att M134 aktiveras automatiskt när ett program kallas upp, se "Allmänna användarparametrar", sidan 452.

Beteende med M134

TNC förflyttar verktyget, vid positioneringar med rotationsaxlar, så att ett precisionsstopp utförs vid icke tangentiella övergångar.

Verkan

M134 aktiveras i blockets början, M135 vid blockets slut.

Man upphäver M134 med M135. TNC:n återställer själv M134 när man väljer ett nytt program i en programkörningsdriftart.

Val av rotationsaxlar: M138

Standardbeteende

TNC:n tar vid funktionerna M114, M128 och tippning av bearbetningsplanet hänsyn till rotationsaxlarna som Er maskintillverkare har definierat i maskinparametrarna.

Beteende med M138

TNC:n tar vid de ovan angivna funktionerna hänsyn till endast de rotationsaxlar som man har definierat med M138.

Verkan

M138 aktiveras i blockets början.

Man återställer M138 genom att programmera M138 igen utan uppgift om rotationsaxlar.

Exempel NC-block

Ta endast hänsyn till rotationsaxel C vid de ovan angivna funktionerna:

L Z+100 R0 FMAX M138 C

Ta hänsyn till maskinens kinematik i ÄR/BÖRpositioner vid blockslutet: M144

Standardbeteende

TNC:n förflyttar verktyget till de i bearbetningsprogrammet definierade positionerna. Om en rotationsaxels position ändrar sig i programmet så måste den därigenom uppkomna förskjutningen i linjäraxlarna beräknas och kompenseras i ett positioneringsblock.

Beteende med M144

TNC:n tar hänsyn till en ändring av maskinens kinematik, som uppstår genom exempelvis inväxling av en tillsats-spindel, i det presenterade positionsvärdet. Om en styrd rotationsaxels position ändrar sig så ändrar sig också verktygsspetsens position i förhållande till arbetsstycket under vridningsrörelsen. Den uppkomna förskjutningen avräknas i det presenterade positionsvärdet.

Positioneringar med M91/M92 är tillåtna vid aktiv M144.

Visningen av positionsvärdet i driftart BLOCKFÖLJD och ENKELBLOCK ändrar sig först efter att rotationsaxlarna har nått sina slutpositioner.

Verkan

M144 aktiveras i blockets början. M144 fungerar inte i kombination med M114, M128 eller 3D-vridning av bearbetningsplanet.

Man upphäver M144 genom att programmera M145.

Maskintillverkaren måste definiera maskinens geometri i maskinparameter 7502 och framåt. Maskintillverkaren fastställer funktionssättet i automatik-driftarterna och i de manuella driftarterna. Beakta anvisningarna i Er maskinhandbok.

7.6 Tilläggsfunktioner för laserskärmaskiner

Princip

TNC:n kan styra laserns effekt via S-analogutgångens spänningsvärde. Med M-funktionerna M200 till M204 ges möjlighet till reglering av lasereffekten under programexekveringen.

Inmatning av tilläggsfunktioner för laserskärmaskiner

När man anger en M-funktion för laserskärmaskiner i ett positioneringsblock så fortsätter TNC:n dialogen och frågar efter tilläggsfunktionens aktuella parametrar.

Alla tilläggsfunktioner för laserskärmaskiner aktiveras i blockets början.

Direkt utmatning av programmerad spänning: M200

Beteende med M200

TNC:n matar ut värdet, vilket programmerats efter M200, som spänning V.

Inmatningsområde: 0 till 9.999 V

Verkan

M200 är aktiv tills ett nytt spänningsvärde matas ut via M200, M201, M202, M203 eller M204.

Spänning som funktion av sträcka: M201

Beteende med M201

M201 matar ut spänning beroende av den tillryggalagda sträckan. TNC:n ökar eller minskar den aktuella spänningen linjärt till det programmerade värdet V.

Inmatningsområde: 0 till 9.999 V

Verkan

M201 är aktiv tills ett nytt spänningsvärde matas ut via M200, M201, M202, M203 eller M204.

Spänning som funktion av hastigheten: M202

Beteende med M202

TNC:n matar ut spänningen som en funktion av hastigheten. Maskintillverkaren definierar, via maskinparametrar, upp till tre karaktäristik-kurvor FNR. i vilka specifika matningshastigheter tilldelas bestämda spänningar. Med M202 väljs vilken karaktäristik-kurva FNR. som TNC:n skall använda vid beräkningen av spänningen.

Inmatningsområde: 1 till 3

Verkan

M202 är aktiv tills ett nytt spänningsvärde matas ut via M200, M201, M202, M203 eller M204.

Spänning som funktion av tid (tidsberoende ramp): M203

Beteende med M203

TNC:n matar ut spänningen V som en funktion av tiden TIME. TNC:n ökar eller minskar den aktuella spänningen linjärt under den programmerade tiden TIME till det programmerade spänningsvärdet V.

Inmatningsområde

Spänning V: 0 till 9.999 Volt Tid TIME: 0 till 1.999 Sekunder

Verkan

M203 är aktiv tills ett nytt spänningsvärde matas ut via M200, M201, M202, M203 eller M204.

Spänning som funktion av tid (tidsberoende puls): M204

Beteende med M204

TNC:n matar ut en programmerad spänning som en puls under den programmerade tiden TIME.

Inmatningsområde

Spänning V: 0 till 9.999 Volt Tid TIME: 0 till 1.999 Sekunder

Verkan

M204 är aktiv tills ett nytt spänningsvärde matas ut via M200, M201, M202, M203 eller M204.

Programmering: Cykler

8.1 Arbeta med cykler

Ofta återkommande bearbetningssekvenser, som omfattar flera bearbetningssteg, finns lagrade i TNC:n i form av cykler. Även koordinatomräkningar och andra specialfunktioner finns tillgängliga som cykler (se tabellen på nästa sida).

Bearbetningscykler med nummer från 200 använder Q-parametrar som inmatningsparametrar. Parametrar som TNC:n behöver för de olika cyklerna använder sig av samma parameternummer då de har samma funktion: exempelvis är Q200 alltid säkerhetsavståndet, Q202 är alltid skärdjupet osv.

Definiera cykel via softkey

- CYCL DEF BORRNING/ GANGNING 262
- Softkeyraden presenterar de olika cykelgrupperna
- Välj cykelgrupp, t.ex. Borrcykler
- Välj cykel, t.ex. GÄNGFRÄSNING. TNC:n öppnar en dialog och frågar efter alla inmatningsvärden; samtidigt presenterar TNC:n en hjälpbild i den högra bildskärmsdelen. I denna hjälpbild visas parametern som skall anges med en ljusare färg.
- Ange alla parametrar som TNC:n frågar efter och avsluta varje inmatning med knappen ENT.
- TNC:n avslutar dialogen då alla erforderliga data har matats in

Definiera cykel via GOTO-funktion

- Softkeyraden presenterar de olika cykelgrupperna
- TNC presenterar cykelöversikten i ett fönster. Välj den önskade cykeln med pilknapparna eller ange cykelns nummer och godkänn sedan med knappen ENT. TNC öppnar då cykeldialogen på tidigare beskrivna sätt

Exempel NC-block

7	CYCL DEF 200) BORRNING
	Q200=2	; SAEKERHETSAVST.
	Q201=-20	; DJUP
	Q206=150	; NEDMATNI NGSHASTI GHET
	Q202=5	; SKAERDJUP
	Q210=0	; VAENTETID UPPE
	Q203=+0	; KOORD. OEVERYTA
	Q204=50	; 2: A SAEKERHETSAVST.
	Q211=0.25	; VAENTETID NERE

Cykelgrupp	Softkey
Cykler för djupborrning, brotschning, ursvarvning, försänkning, gängning, gängskärning och gängfräsning	BORRNING/ GÄNGNING
Cykler för att fräsa fickor, öar och spår	FICKOR/ ORR/ SPAR
Cykler för att skapa punktmönster, t.ex. hålcirkel eller hålrader	PUNKT- MÖNSTER
SL-cykler (Subcontur-List), med vilka konturer som byggs upp med flera överlagrade delkonturer kan bearbetas konturparallellt, cylindermantel- interpolering	SL II
Cykler för uppdelning av plana och vridna ytor	YTOR
Cykler för koordinatomräkning, med vilka godtyckliga konturer kan förskjutas, vridas, speglas, förstoras och förminskas	KOORDINRT OMRÄKNING
Specialcykler för väntetid, programanrop, spindelorientering, tolerans	SPECIAL CYKLER

Om man använder indirekt parameter-tilldelning vid bearbetningscykler med nummer högre än 200 (t.ex. Q210 =Q1), kommer en ändring av den tilldelade parametern (t.ex. Q1) efter cykeldefinitionen inte att vara verksam. Definiera i sådana fall cykelparametern (t.ex. Q210) direkt.

För att även kunna exekvera bearbetningscyklerna 1 till 17 på äldre TNC-kurvlinjestyrsystem behöver man programmera ett negativt förtecken vid säkerhetsavståndet och skärdjupet.

Om man vill radera en cykel som består av flera delblock, upplyser TNC:n om huruvida hela den kompletta cykeln borde raderas.

Anropa cykler

Förutsättningar

Före ett cykelanrop programmerar man alltid:

- BLK FORMför grafisk presentation (behövs endast för testgrafik)
- Verktygsanrop
- Spindelns rotationsriktning (tilläggsfunktion M3/M4)
- Cykeldefinition (CYCL DEF).

Beakta även de ytterligare förutsättningarna som finns införda vid de efterföljande cykelbeskrivningarna.

Följande cykler aktiveras direkt efter deras definition i bearbetningsprogrammet. Dessa cykler kan och får inte anropas:

- Cyklerna 220 Punktmönster på cirkel och 221 Punktmönster på linjer
- SL-cykel 14 KONTUR
- SL-cykel 20 KONTURDATA
- Cykel 32 TOLERANS
- Cykler för koordinatomräkning
- Cykel 9 VÄNTETID

Alla andra cykler anropas på nedan beskrivna sätt:

1 Om TNC:n skall utföra cykeln en gång efter det sist programmerade blocket, programmerar man cykelanropet med tilläggsfunktionen M99 eller med CYCL CALL:

Programmera cykelanrop: Tryck på knappen CYCL CALL

- ▶ Ange cykelanrop: Tryck på softkey CYCL CALL M
- Ange tilläggsfunktion M eller avsluta dialogen med knappen END
- 2 Om TNC:n automatiskt skall utföra cykeln efter varje positioneringsblock, programmerar man cykelanropet med M89 (beroende av maskinparameter 7440).

3 Om TNC:n skall utföra cykeln på alla positioner som finns definierade i en punkttabell så använder man funktionen **CYCL CALL PAT** (se "Punkttabeller" på sidan 205)

Inverkan av M89 upphäver man genom att programmera

M99 eller

- CYCL CALL eller
- CYCL DEF

Arbeta med tilläggsaxlar U/V/W

TNC:n utför ansättningsrörelserna i den axel som man har definierat som spindelaxel i TOOL CALL-blocket. Rörelser i bearbetningsplanet utför TNC:n standardmässigt i huvudaxlarna X, Y eller Z. Undantag:

- När man programmerar tilläggsaxlar direkt för sidornas längder i cykel 3 SPÅRFRÄSNING och i cykel 4 FICKFRÄSNING
- Om man har programmerat tilläggsaxlar i konturunderprogrammet vid SL-cykler

8.2 Punkttabeller

Användningsområde

Om man vill utföra en cykel, alt. flera cykler efter varandra, på ett oregelbundet punktmönster så skapar man en punkttabell.

Om man använder borrcykler motsvarar bearbetningsplanets koordinater i punkttabellen koordinaterna för verktygets centrum. Om man använder fräscykler motsvarar bearbetningsplanets koordinater i punkttabellen startpunktens koordinater för respektive cykel (t.ex. centrum-koordinaterna för en cirkulär ficka). Koordinaten i spindelaxeln motsvarar koordinaten för arbetsstyckets yta.

Ange punkttabell

Välj driftart Programinnatning/Editering:

PGM MGT	Kalla upp filhanteringen: Tryck på knappen PGM MGT
Filnamn?	
	Ange punkttabellens namn och filtyp, bekräfta med knappen ENT
мм	Välj måttenhet: Tryck på softkey MM eller INCH. TNC:n växlar till programfönstret och visar en tom punkttabell.
INFOGA RRD	Infoga en ny rad med softkey INFOGA RAD och ange den önskade bearbetningspositionens koordinater.
Linnrong förfar	ndet tille elle änskade koordineter her engivite

Upprepa förfarandet tills alla önskade koordinater har angivits.

Med softkey X AV/PÅ, Y AV/PÅ, Z AV/PÅ (andra softkeyraden) fastlägger man vilka koordinater som skall kunna anges i nollpunktstabellen.

Välja punkttabell i programmet

Välj, i driftart Programinmatning/Editering, det program som punkttabellen skall aktiveras för:

Kalla upp funktionen för val av punkttabell: Tryck på knappen PGM CALL

Tryck på softkey PUNKTTABELL

Ange namnet på punkttabellen, bekräfta med knappen END. Om punkttabellen inte finns lagrad i samma katalog som NC-programmet, måste man ange den kompletta sökvägen.

Exempel NC-block

7 SEL PATTERN "TNC:\DIRKT5\MUST35.PNT"

Anropa cykel i kombination med punkttabeller

Med **CYCL CALL PAT** exekverar TNC:n den punkttabell som man sist definierade (även när man har definierat punkttabellen i ett program som har länkats med **CALL PCM**.

TNC:n använder koordinaten i spindelaxeln som verktyget befinner sig på vid cykelanropet som säkerhetshöjd. En i en cykel separat definierad Säkerhetshöjd resp. 2. Säkerhetsavstånd får inte vara större än den globala Pattern-säkerhetshöjden.

Om TNC:n skall anropa den sist definierade bearbetningscykeln vid punkterna som är definierade i en punkttabell, programmerar man cykelanropet med **CYCL CALL PAT**:

Programmera cykelanrop: Tryck på knappen CYCL CALL

- Anropa punkttabell: Tryck på softkey CYCL CALL PAT
- Ange med vilken matning TNC:n skall förflytta mellan punkterna (ingen uppgift: Förflyttning med den sist programmerade matningen, FMAX gäller inte)
- Vid behov anges tilläggsfunktion M, bekräfta med knappen END.

TNC:n lyfter verktyget från startpunkten tillbaka till säkerhetshöjd (Säkerhetshöjd = Spindelaxelkoordinat vid cykelanrop). För att även kunna använda detta arbetssätt vid cykler med nummer 200 och högre måste man definiera det andra säkerhetsavståndet (Q204) med 0.

Om man vill förflytta med reducerad matning i spindelaxeln vid förpositionering använder man sig av tilläggsfunktionen M103 (se "Matningsfaktor vid nedmatningsrörelse: M103" på sidan 181).

Punkttabellens beteende med cykler 1 till 5, 17 och 18

TNC:n tolkar punkterna i bearbetningsplanet som koordinaterna för verktygets centrum. Koordinaten i spindelaxeln fastlägger arbetsstyckets överkant så att TNC:n kan förpositionera automatiskt (Ordningsföljd: Bearbetningsplan, sedan spindelaxel).

Punkttabellens beteende med SL-cykler och cykel 12

TNC:n tolkar punkterna som en extra nollpunktsförskjutning.

CYCL CALL

Punkttabellens beteende med cykler 200 till 208 och 262 till 267

TNC:n tolkar punkterna i bearbetningsplanet som koordinaterna för verktygets centrum. Om man vill använda de i punkttabellen definierade koordinaterna i spindelaxeln som startpunkts-koordinater måste man definiera arbetsstyckets yta (Q203) med 0.

Punkttabellens beteende med cykler 210 till 215

TNC:n tolkar punkterna som en extra nollpunktsförskjutning. Om man vill använda de i punkttabellen definierade punkterna som startpunktskoordinater måste man programmera startpunkten och arbetsstyckets yta (Q203) i respektive fräscykel med 0.

8.3 Cykler för borrning, gängning och gängfräsning

Översikt

TNC:n erbjuder totalt 19 cykler för olika typer av borrningsbearbetning:

Cykel	Softkey
1 DJUPBORRNING Utan automatisk förpositionering	1 ()
200 BORRNING Med automatisk förpositionering, 2. säkerhetsavstånd	200 1/
201 BROTSCHNING Med automatisk förpositionering, 2. säkerhetsavstånd	201
202 URSVARVNING Med automatisk förpositionering, 2. säkerhetsavstånd	202
203 UNIVERSAL-BORRNING Med automatisk förpositionering, 2. säkerhetsavstånd, spånbrytning, minskning av skärdjup	203 1
204 BAKPLANING Med automatisk förpositionering, 2. säkerhetsavstånd	204
205 UNIVERSAL-DJUPBORRNING Med automatisk förpositionering, 2. säkerhetsavstånd, spånbrytning, stoppavstånd	205 (/ 444
208 BORRFRÄSNING Med automatisk förpositionering, 2. säkerhetsavstånd	208

Cykel	Softkey
2 GÄNGNING Med flytande gänghuvud	2
17 SYNKRONISERAD GÄNGNING Utan flytande gänghuvud	17 🛔 RT
18 GÄNGSKÄRNING	18
206 GÄNGNING NY Med flytande gänghuvud, med automatisk förpositionering, 2. säkerhetsavstånd	206
207 SYNKRONISERAD GÄNGNING NY Utan flytande gänghuvud, med automatisk förpositionering, 2. säkerhetsavstånd	207 🔐 RT
209 GÄNGNING SPÅNBRYTNING Utan flytande gänghuvud, med automatisk förpositionering, 2. säkerhetsavstånd; spånbrytning	209 🔐 RT
262 GÄNGFRÄSNING Cykel för fräsning av en gänga i förborrat material	262
263 FÖRSÄNK-GÄNGFRÄSNING Cykel för fräsning av en gänga i förborrat material samt skapande av en försänkningsfas	263
264 BORR-GÄNGFRÄSNING Cykel för borrning direkt i materialet och därefter fräsning av gängan med ett och samma verktyg	264
265 HELIX-BORRGÄNGFRÄSNING Cykel för fräsning av gängan direkt i materialet	265
267 UTVÄNDIG GÄNGFRÄSNING Cykel för fräsning av en utvändig gänga samt skapande av en försänkningsfas	267

8 Programmering: Cykler

8.3 Cykler för borrning, <mark>gän</mark>gning och gängfräsning

DJUPBORRNING (cykel 1)

- Verktyget borrar från den aktuella positionen till det första Skärdjupet med den angivna Matningen F.
- 2 Därefter lyfter TNC:n verktyget till startpositionen med snabbtransport FMAX och återför det sedan till det första Skärdjupet minus stoppavståndet t.
- 3 Styrningen beräknar själv stoppavståndet:
 - Borrdjup upp till 30 mm: t = 0,6 mm
 - Borrdjup över 30 mm: t = borrdjup/50
 - maximalt stoppavstånd: 7 mm
- 4 Därefter borrar verktyget ner till nästa skärdjup med den angivna Matningen F.
- 5 TNC:n upprepar detta förlopp (1 till 4) tills det angivna Borrdjupet uppnås.
- **6** Vid hålets botten stannar TNC:n verktyget under Väntetiden för spånbrytning, för att slutligen lyfta verktyget till startpositionen med FMAX.

Ľ.

Att beakta före programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Programmera positioneringsblocket till startpunkten i spindelaxeln (Säkerhetsavståndet över arbetsstyckets yta).

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

- Säkerhetsavstånd 1 (inkrementalt): Avstånd verktygsspetsen (startposition) – arbetsstyckets yta
- Dj up 2 (inkrementalt): Avstånd arbetsstyckets yta hålets yta (verktygets spets)
- Skärdj up 3 (inkrementalt): Mått med vilket verktyget stegas nedåt. Borrdjup behöver inte vara en jämn multipel av Skärdjup. TNC:n förflyttar verktyget i en sekvens direkt till Borrdjup om:
 - Skärdjup och Djup är lika
 - Skärdjup är större än Borrdjup
- Väntetid i sekunder: Tid under vilken verktyget stannar vid hålets botten för att bryta spånor
- Matning F: Verktygets förflyttningshastighet under borrningen i mm/min

Exempel: NC-block

5 L Z+100 RO FMAX
6 CYCL DEF 1.0 DJUPBORRNING
7 CYCL DEF 1.1 AVST 2
8 CYCL DEF 1.2 DJUP -15
9 CYCL DEF 1.3 ARB DJ 7.5
10 CYCL DEF 1.4 V.TID 1
11 CYCL DEF 1.5 F80
12 L X+30 Y+20 FMAX MB
13 L Z+2 FMAX M99
14 L X+80 Y+50 FMAX M99
15 L Z+100 FMAX M2

BORRNING (cykel 200)

- 1 TNC:n positionerar verktyget i spindelaxeln till Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX.
- 2 Verktyget borrar ner till det första Skärdjupet med den programmerade Matningen F.
- 3 TNC:n förflyttar verktyget tillbaka till säkerhetsavståndet med FMAX, väntar där om så har angivits och förflyttar det slutligen tillbaka med FMAX till säkerhetsavståndet över det första skärdjupet.
- 4 Därefter borrar verktyget ner till nästa Skärdjup med den angivna Matningen F.
- 5 TNC:n upprepar detta förlopp (2 till 4) tills det angivna Borrdjupet uppnås.
- 6 Från hålets botten förflyttas verktyget till säkerhetsavståndet med FMAX eller om så har angivits till det andra säkerhetsavståndet.

Att beakta före programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd verktygsspetsen – arbetsstyckets yta; ange ett positivt värde
- Dj up Q201 (inkrementalt): Avstånd arbetsstyckets yta – hålets botten (verktygets spets)
- Nedmatni ngshasti ghet Q206: Verktygets förflyttningshastighet vid borrning i mm/min
- Skärdj up Q202 (inkrementalt): Mått med vilket verktyget stegas nedåt. Djup behöver inte vara en jämn multipel av Skärdjup. TNC:n förflyttar verktyget i en sekvens direkt till Djup om:
 - Skärdjup och Djup är lika
 - Skärdjup är större än Djup
- Väntetid uppe Q210: Tid i sekunder, under vilken verktyget väntar vid säkerhetsavståndet, efter det att TNC:n har lyft det ur hålet för urspåning
- **Koord. arbetsstyckets yta** Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Väntetid nere Q211: Tid i sekunder, under vilken verktyget väntar vid hålets botten

Exempel: NC-block

10 L Z+100 RO FMAX
11 CYCL DEF 200 BORRNING
Q200 = 2 ;SAEKERHETSAVST.
Q201 = -15 ; DJUP
Q206 = 250 ; NEDMATNINGSHASTIGHET
Q202 = 5 ; SKAERDJUP
Q210 = 0 ;VAENTETID UPPE
Q203 = +20 ; KOORD. OEVERYTA
Q204 = 100 ;2. SAEKERHETSAVST.
Q211 = 0.1 ; VAENTETID NERE
12 L X+30 Y+20 FMAX MB
13 CYCL CALL
14 L X+80 Y+50 FMAX M99
15 L Z+100 FMAX M2

HEIDENHAIN iTNC 530

BROTSCHNING (cykel 201)

- 1 TNC:n positionerar verktyget i spindelaxeln till det angivna Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX.
- 2 Verktyget brotschar ner till det angivna Djupet med den programmerade Matningen F.
- **3** Vid hålets botten väntar verktyget, om så har angivits.
- 4 Slutligen förflyttar TNC:n verktyget tillbaka till Säkerhetsavståndet med Matning F och därifrån om så har angivits med FMAX till det andra säkerhetsavståndet.

Att beakta före programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd verktygsspetsen – arbetsstyckets yta
- Dj up Q201 (inkrementalt): Avstånd arbetsstyckets yta – hålets botten
- Nedmatni ngshasti ghet Q206: Verktygets förflyttningshastighet vid brotschning i mm/min
- Väntetid nere Q211: Tid i sekunder, under vilken verktyget väntar vid hålets botten
- Matning tillbaka Q208: Verktygets förflyttningshastighet vid återgång upp ur hålet i mm/ min. Om man anger Q208 = 0 så gäller matning brotschning
- **Koord. arbetsstyckets yta** Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske

Exempel: NC-block

10 L Z+100 RO FMAX
11 CYCL DEF 201 BROTSCHNING
Q200 = 2 ; SAEKERHETSAVST.
Q201 = -15 ; DJUP
Q206 = 100 ; NEDMATNINGSHASTIGHET
Q211 = 0,5 ; VAENTETID NERE
Q208 = 250 ;MATNING TILLBAKA
Q203 = +20 ; KOORD. OEVERYTA
Q204 = 100 ;2. SAEKERHETSAVST.
12 L X+30 Y+20 FMAX MB
13 CYCL CALL
14 L X+80 Y+50 FMAX M9
15 L Z+100 FMAX M2

URSVARVNING (cykel 202)

Maskinen och TNC:n måste vara förberedd av maskintillverkaren.

- 1 TNC:n positionerar verktyget i spindelaxeln till Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX.
- 2 Verktyget borrar ner till Djup med borrmatningen.
- **3** Vid hålets botten väntar verktyget om så har angivits med roterande spindel för friskärning.
- 4 Därefter utför TNC:n en spindelorientering till 0°-positionen.
- **5** Om frikörning har valts kommer TNC:n att förflytta verktyget 0,2 mm (fast värde) i den angivna riktningen.
- 6 Slutligen förflyttar TNC:n verktyget tillbaka till Säkerhetsavståndet med Matning tillbaka och därifrån – om så har angivits – med FMAX till det andra säkerhetsavståndet. Om Q214=0 sker returen på hålets vägg.

Att beakta före programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

Vid cykelslutet återställer TNC:n kylvätske- och spindeltillståndet som var aktivt före cykelanropet.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd verktygsspetsen – arbetsstyckets yta
- Dj up Q201 (inkrementalt): Avstånd arbetsstyckets yta – hålets botten
- Nedmatni ngshasti ghet Q206: Verktygets förflyttningshastighet vid ursvarvning i mm/min
- Väntetid nere Q211: Tid i sekunder, under vilken verktyget väntar vid hålets botten
- Matning tillbaka Q208: Hastighet med vilken verktyget förflyttas upp ur hålet i mm/min. Om man anger Q208=0 så gäller Nedmatningshastighet
- **Koord. arbetsstyckets yta** Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Frikörningsriktning (0/1/2/3/4) Q214: Fastlägger i vilken riktning TNC:n skall friköra verktyget vid hålets botten (efter spindelorienteringen)
 - 0 Ingen frikörning av verktyget
 - 1 Frikörning av verktyget i huvudaxelns minusriktning
 - 2 Frikörning av verktyget i komplementaxelns minusriktning
 - **3** Frikörning av verktyget i huvudaxelns plusriktning
 - 4 Frikörning av verktyget i komplementaxelns plusriktning

Kollisionsrisk!

ф

Välj frikörningsriktningen så att verktyget förflyttar sig från hålets innervägg.

Kontrollera i vilken riktning verktygsspetsen befinner sig efter att en spindelorientering till vinkeln som anges i Q336 har programmerats (t.ex. i driftart Manuell positionering). Välj vinkeln så att verktygsspetsen står parallellt med en koordinataxel.

Vinkel för spindelorientering Q336 (absolut): Vinkel som TNC:n skall positionera verktyget till före frikörningen

Exempel:

10 L Z+100 R0 FMAX
11 CYCL DEF 202 URSVARVNING
Q200 = 2 ; SAEKERHETSAVST.
Q201 = -15 ; DJUP
Q206 = 100 ; NEDMATNINGSHASTIGHET
Q211 = 0,5 ;VAENTETID NERE
Q208 = 250 ; MATNING TILLBAKA
Q2O3 = +20 ; KOORD. OEVERYTA
Q204 = 100 ;2. SAEKERHETSAVST.
Q214 = 1 ; FRIKOERN RIKTNING
Q336 = 0 ;VINKEL SPINDEL
12 L X+30 Y+20 FMAX MB
13 CYCL CALL
14 T X+80 V+50 FMAX M99

UNIVERSAL-BORRNING (cykel 203)

- 1 TNC:n positionerar verktyget i spindelaxeln till det angivna Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX.
- 2 Verktyget borrar ner till det första Skärdjupet med den programmerade Matningen F.
- 3 Om spånbrytning har valts förflyttar TNC:n verktyget tillbaka med det angivna värdet för tillbakagång. Om man arbetar utan spånbrytning förflyttar TNC:n verktyget tillbaka till Säkerhetsavståndet med Matning tillbaka, väntar där – om så har angivits – och förflyttar det slutligen tillbaka med FMAX till en position motsvarande säkerhetsavståndet över det första Skärdjupet.
- 4 Därefter borrar verktyget ner till nästa Skärdjup med den angivna Matningen. Skärdjupet minskas för varje ny ansättning med Förminskningsvärdet – om så har angivits.
- **5** TNC:n upprepar detta förlopp (2-4) tills det angivna borrdjupet uppnås.
- 6 Vid hålets botten väntar verktyget om så har angivits för spånbrytning och förflyttas efter Väntetiden tillbaka till Säkerhetsavståndet med Matning tillbaka. Om ett andra Säkerhetsavstånd har angivits, förflyttar därefter TNC:n verktyget dit med FMAX.

Att beakta före programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd verktygsspetsen – arbetsstyckets yta
- Dj up Q201 (inkrementalt): Avstånd arbetsstyckets yta – hålets botten (verktygets spets)
- Nedmatni ngshast i ghet Q206: Verktygets förflyttningshastighet vid borrning i mm/min
- Skärdj up Q202 (inkrementalt): Mått med vilket verktyget stegas nedåt. Djup behöver inte vara en jämn multipel av Skärdjup. TNC:n förflyttar verktyget i en sekvens direkt till Djup om:
 - Skärdjup och Djup är lika
 - Skärdjup är större än Djup
- Väntetid uppe Q210: Tid i sekunder, under vilken verktyget väntar vid säkerhetsavståndet, efter det att TNC:n har lyft det ur hålet för urspåning
- **Koord. arbetsstyckets yta** Q203 (absolut): Koordinat för arbetsstyckets yta

Exempel: NC-block

11 CYCL DEF 203	3 UNIVERSAL-BORRNING
Q200=2	; SAEKERHETSAVST.
Q201=-20	; DJ UP
Q206=150	; NEDMATNI NGSHASTI GHET
Q202=5	; SKAERDJUP
Q210=0	; VAENTETID UPPE
Q203=+20	; KOORD. OEVERYTA
Q204=50	; 2. SAEKERHETSAVST.
Q212=0.2	; MI NSKNI NGSVAERDE
Q213=3	; SPAANBRYTNING
Q205=3	; MIN. SKÄRDJUP
Q211=0.25	; VAENTETID NERE
Q208=500	; MATNING TILLBAKA
Q256=0.2	; AVST VID SPAANBRYT

203 1/

- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Förni nskni ngsvärde Q212 (inkrementalt): Värde med vilket TNC:n minskar skärdjupet Q202 vid varje ny ansättning
- Ant. spånbrytningar innan återgång Q213: Antal spånbrytningar innan TNC:n skall lyfta verktyget ur hålet för urspåning. För att bryta spånor lyfter TNC:n verktyget tillbaka med avstånd för spånbrytning Q256
- Mnsta skärdj up Q205 (inkrementalt): Om man har valt ett förminskningsvärde begränsar TNC:n minskningen av Skärdjupet till det med Q205 angivna värdet
- Väntetid nere Q211: Tid i sekunder, under vilken verktyget väntar vid hålets botten
- Matning tillbaka Q208: Verktygets förflyttningshastighet vid lyftning upp ur hålet i mm/ min. Om man anger Q208=0 så utför TNC:n förflyttningen tillbaka med matning Q206
- Tillbakagång vid spånbrytning Q256 (inkrementalt): Värde med vilket TNC:n lyfter verktyget vid spånbrytning

BAKPLANING (cykel 204)

Maskinen och TNC:n måste vara förberedd av maskintillverkaren.

Cykeln fungerar endast med så kallade bakplaningsverktyg.

Med denna cykel skapar man försänkningar som är placerade på arbetsstyckets undersida.

- 1 TNC:n positionerar verktyget i spindelaxeln till Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX.
- 2 Där utför TNC:n en spindelorientering till 0°-positionen och förskjuter verktyget med excentermåttet.
- **3** Därefter förs verktyget ner i det förborrade hålet med Matning förpositionering, tills skäret befinner sig på Säkerhetsavståndet under arbetsstyckets underkant.
- 4 TNC:n förflyttar då verktyget tillbaka till hålets centrum, startar spindeln och i förekommande fall även kylvätskan för att därefter utföra förflyttningen till angivet Djup försänkning med Matning försänkning.
- **5** Om så har angivits väntar verktyget vid försänkningens botten och förflyttas sedan ut ur hålet, där genomförs en spindelorientering och en förskjutning på nytt med excentermåttet.
- 6 Slutligen förflyttar TNC:n verktyget tillbaka till Säkerhetsavståndet med Matning förpositionering och därifrån – om så har angivits – med FMAX till det andra säkerhetsavståndet.

Att beakta före programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Cykelparametern Djups förtecken bestämmer arbetsriktningen vid försänkningen. Varning: Positivt förtecken försänker i spindelaxelns positiva riktning.

Ange verktygslängden så att måttet inte avser skären utan istället borrstångens underkant.

Vid beräkningen av försänkningens startpunkt tar TNC:n hänsyn till borrstångens skärlängd och materialets tjocklek.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd verktygsspetsen – arbetsstyckets yta
- Djup försänkning Q249 (inkrementalt): Avstånd arbetsstyckets underkant – försänkningens botten. Positivt förtecken ger försänkning i spindelaxelns positiva riktning.
- Materialtjocklek Q250 (inkrementalt): Arbetsstyckets tjocklek
- Excentermitt Q251 (inkrementalt): Borrstångens excentermått; hämtas från verktygets datablad
- Skärhöjd Q252 (inkrementalt): Avstånd borrstångens underkant – huvudskäret; värdet hämtas från verktygets datablad
- Matning förpositionering Q253: Verktygets förflyttningshastighet vid nedmatning i arbetsstycket respektive vid lyftning upp ur arbetsstycket i mm/min
- Matning försänkning Q254: Verktygets förflyttningshastighet vid försänkning i mm/min
- Väntetid Q255: Väntetid i sekunder vid försänkningens botten
- Koord. arbetsstyckets yta Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Frikörningsriktning (0/1/2/3/4) Q214: Riktning i vilken TNC:n skall friköra verktyget med excentermåttet (efter spindelorienteringen); Inmatning av 0 är inte tillåtet
 - 1 Frikörning av verktyget i huvudaxelns minusriktning
 - 2 Frikörning av verktyget i komplementaxelns minusriktning
 - **3** Frikörning av verktyget i huvudaxelns plusriktning
 - 4 Frikörning av verktyget i komplementaxelns plusriktning

Kollisionsrisk!

Kontrollera i vilken riktning verktygsspetsen befinner sig efter att en spindelorientering till vinkeln som anges i Q336 har programmerats (t.ex. i driftart Manuell positionering). Välj vinkeln så att verktygsspetsen står parallellt med en koordinataxel. Välj frikörningsriktningen så att verktyget förflyttar sig från hålets innervägg.

Exempel: NC-block

11	CYCL DEF 2	D4 BAKPLANING
	Q200=2	; SAEKERHETSAVST.
	Q249=+5	; DJUP FOERSAENKNING
	Q250=20	; MATERIALTJOCKLEK
	Q251=3.5	; EXCENTERMAAT
	Q252=15	; SKAERHOEJD
	Q253=750	; MATNING FOERPOS.
	Q254=200	; MATNING FORSAENKNING
	Q255=0	; VAENTETID
	Q203=+20	; KOORD. OEVERYTA
	Q204=50	; 2: A SAEKERHETSAVST.
	Q214=1	; FRI KOERN RI KTNI NG
	0336=0	: VINKEL SPINDEL

ф

Vinkel för spindelorientering Q336 (absolut): Vinkel som TNC:n skall positionera verktyget till före nedmatning och före lyftning ur hålet

UNIVERSAL-DJUPBORRNING (cykel 205)

- 1 TNC:n positionerar verktyget i spindelaxeln till det angivna Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX.
- 2 Verktyget borrar ner till det första Skärdjupet med den programmerade Matningen F.
- 3 Om spånbrytning har valts förflyttar TNC:n verktyget tillbaka med det angivna värdet för tillbakagång. Om man arbetar utan spånbrytning förflyttar TNC:n verktyget tillbaka till Säkerhetsavståndet med snabbtransport och därefter åter med FMAX till det angivna Säkerhetsavståndet för urspåning över det första skärdjupet.
- 4 Därefter borrar verktyget ner till nästa Skärdjup med den angivna Matningen. Skärdjupet minskas för varje ny ansättning med Förminskningsvärdet – om så har angivits.
- 5 TNC:n upprepar detta förlopp (2-4) tills det angivna borrdjupet uppnås.
- 6 Vid hålets botten väntar verktyget om så har angivits för spånbrytning och förflyttas efter Väntetiden tillbaka till Säkerhetsavståndet med Matning tillbaka. Om ett andra Säkerhetsavstånd har angivits, förflyttar därefter TNC:n verktyget dit med FMAX.

Att beakta före programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

- Dj up O201 (inkrementalt): Avstånd arbetsstyckets yta – hålets botten (verktygets spets)
- Nedmatni ngshast i ghet Q206: Verktygets förflyttningshastighet vid borrning i mm/min
- Skärdj up Q202 (inkrementalt): Mått med vilket verktyget stegas nedåt. Djup behöver inte vara en jämn multipel av Skärdjup. TNC:n förflyttar verktyget i en sekvens direkt till Djup om:
 - Skärdjup och Djup är lika
 - Skärdjup är större än Djup
- **Koord. arbetsstyckets yta** Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- ► Förni nskni ngsvärde Q212 (inkrementalt): Värde med vilket TNC:n minskar skärdjupet Q202
- Mnsta skärdjup Q205 (inkrementalt): Om man har valt ett förminskningsvärde begränsar TNC:n minskningen av Skärdjupet till det med Q205 angivna värdet
- Säkerhetsavst. uppe vid urspåning Q258 (inkrementalt): Säkerhetsavstånd för positionering med snabbtransport när TNC:n förflyttar verktyget tillbaka till det aktuella skärdjupet efter en lyftning upp ur hålet; Värde för det första skärdjupet
- Säkerhetsavst. nere vid urspåning Q259 (inkrementalt): Säkerhetsavstånd för positionering med snabbtransport när TNC:n förflyttar verktyget tillbaka till det aktuella skärdjupet efter en lyftning upp ur hålet; Värde för det sista skärdjupet

Om man anger ett annat värde för Q258 än för Q259 så kommer TNC:n att förändra förstopp-avståndet mellan det första skärdjupet och det sista skärdjupet linjärt.

- Matningssträcka till spånbryt. Q257 (inkrementalt): Skärdjup efter vilket TNC:n skall utföra en spånbrytning. Ingen spånbrytning om 0 anges
- Tillbakagång för spånbrytning Q256 (inkrementalt): Värde med vilket TNC:n lyfter verktyget vid spånbrytning
- Väntetid nere Q211: Tid i sekunder, under vilken verktyget väntar vid hålets botten

Exempel: NC-block

11	CYCL DEF 205	UNI VERSAL - DJ UPBORRNI NG
	Q200=2	; SAEKERHETSAVST.
	Q201=-80	; DJUP
	Q206=150	; NEDMATNI NGSHASTI GHET
	Q202=15	; SKAERDJUP
	Q203=+100	; KOORD. OEVERYTA
	Q204=50	; 2. SAEKERHETSAVST.
	Q212=0.5	; MINSKNINGSVAERDE
	Q205=3	; MIN. SKÄRDJUP
	Q258=0.5	; FOERSTOPP AVST UPPE
	Q259=1	; FOERSTOPP AVST NERE
	Q257=5	; BORRDJUP SPAANBRYT
	Q256=0.2	; AVST VID SPAANBRYT
	Q211=0.25	; VAENTETID NERE

BORRFRÄSNING (cykel 208)

- 8.3 Cykler för borrning, g<mark>än</mark>gning och gängfräsning
 - 1 TNC:n positionerar verktyget i spindelaxeln med snabbtransport FMAX till det angivna säkerhetsavståndet över arbetsstyckets yta och förflyttar till den angivna diametern på en rundningsbåge (om det finns utrymme).
 - 2 Verktyget fräser med den angivna matningen F på en skruvlinje ner till det angivna borrdjupet.
 - **3** När borrdjupet har uppnåtts utför TNC:n åter en förflyttning på en fullcirkel för att ta bort materialet som har blivit kvar efter nedmatningen.
 - 4 Därefter positionerar TNC:n verktyget tillbaka till hålets centrum.
 - 5 Slutligen utför TNC:n en förflyttning tillbaka till säkerhetsavståndet med FMAX. Om ett andra Säkerhetsavstånd har angivits, förflyttar därefter TNC:n verktyget dit med FMAX.

Att beakta före programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

Om man har angivit en håldiameter som är samma som verktygsdiametern kommer TNC:n att borra direkt till det angivna djupet utan skruvlinjeinterpolering.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd verktygets underkant – arbetsstyckets yta
- Dj up Q201 (inkrementalt): Avstånd arbetsstyckets yta – hålets botten
- Nedmatni ngshasti ghet Q206: Verktygets förflyttningshastighet vid borrning på skruvlinjen mm/ min
- Nedmatning per skruvlinje Q334 (inkrementalt): Mått med vilket verktyget stegas nedåt på en skruvlinje (=360°)

Beakta att ditt verktyg och även arbetsstycket skadas vid för stort skärdjup.

För att undvika inmatning av ett för stort skärdjup anger man verktygets största möjliga nedmatningsvinkel i verktygstabellens kolumn ANGLE, se "Verktygsdata", sidan 97. TNC:n beräknar då automatiskt det maximalt tillåtna skärdjupet och ändra i förekommande fall ditt inmatade värde.

- ▶ Koord. arbetsstyckets yta Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Noninell diameter Q335 (absolut): Hålets diameter. Om man har angivit en bör-diameter som är samma som verktygsdiametern kommer TNC:n att borra direkt till det angivna djupet utan skruvlinjeinterpolering.
- Förborrad diameter Q342 (absolut): Om man anger ett värde i Q342 som är större än 0, utför TNC:n inte någon kontroll beträffande förhållandet mellan bördiameter och verktygets diameter. Därigenom kan man fräsa hål som har mer än dubbelt så stor diameter som verktygets diameter.

Exempel: NC-block

12	CYCL DEF 20	BORRFRAESNING
	Q200=2	; SAEKERHETSAVST.
	Q201=-80	; DJUP
	Q206=150	; NEDMATNI NGS HASTI GHET
	Q334=1.5	; SKAERDJUP
	Q203=+100	; KOORD. OEVERYTA
	Q204=50	; 2: A SAEKERHETSAVST.
	Q335=25	; NOMINELL DIAMETER
	Q342=0	; FOERBORRAD DIAMETER

GÄNGNING med flytande gängtappshållare (cykel 2)

- 1 Verktyget förflyttas i en sekvens direkt till borrdjupet.
- 2 Därefter växlas spindelns rotationsriktning och verktyget förflyttas, efter Väntetiden, tillbaka till startpositionen.
- **3** Vid startpositionen växlas spindelns rotationsriktning tillbaka på nytt.

Att beakta före programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Programmera positioneringsblocket till startpunkten i spindelaxeln (Säkerhetsavståndet över arbetsstyckets yta).

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

Verktyget måste spännas upp i en verktygshållare med längdutjämningsmöjlighet. Den flytande gängtappshållaren kompenserar eventuella skillnader mellan matningshastigheten och spindelvarvtalet under gängningen.

Under det att cykeln exekveras är potentiometern för spindelvarvtals-override inte verksam. Potentiometern för matnings-override är verksam men inom ett begränsat område (definierat av maskintillverkaren, beakta maskinhandboken).

För högergänga skall spindeln startas med M3, för vänstergänga med M4.

Säkerhetsavstånd 1 (inkrementalt): Avstånd verktygsspetsen (startposition) – arbetsstyckets yta; Riktvärde: 4x gängans stigning

- Borrdj up 2 (gängans längd, inkrementalt): Avstånd arbetsstyckets yta – gängans slut
- Väntetid i sekunder: Ange ett värde mellan 0 och 0,5 sekunder, för att förhindra att verktyget fastnar vid förflyttning tillbaka
- Matning F: Verktygets förflyttningshastighet vid gängning

Beräkning av matning: F = S x p

- F: Matning mm/min)
- S: Spindelvarvtal (varv/min)
- p: Gängstigning (mm)

Exempel: NC-block

24 L Z+100 R0 FMAX
25 CYCL DEF 2.0 GAENGNING
26 CYCL DEF 2.1 AVST 3
27 CYCL DEF 2.2 DJUP -20
28 CYCL DEF 2.3 V.TID 0.4
29 CYCL DEF 2.4 F100
30 L X+50 Y+20 FMAX MB
31 L Z+3 FMAX M99

Frikörning vid avbrott i programexekveringen

Om man trycker på den externa Stopp-knappen i samband med gängning, kommer TNC:n att presentera en softkey med vilken verktyget kan friköras.

GÄNGNING NY med flytande gänghuvud (cykel 206)

- 1 TNC:n positionerar verktyget i spindelaxeln till det angivna Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX.
- 2 Verktyget förflyttas i en sekvens direkt till borrdjupet.
- 3 Därefter växlas spindelns rotationsriktning och verktyget förflyttas, efter väntetiden, tillbaka till säkerhetsavståndet. Om ett andra Säkerhetsavstånd har angivits, förflyttar därefter TNC:n verktyget dit med FMAX.
- 4 Vid säkerhetsavståndet växlas spindelns rotationsriktning tillbaka på nytt.

Att beakta före programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

Verktyget måste spännas upp i en verktygshållare med längdutjämningsmöjlighet. Den flytande gängtappshållaren kompenserar eventuella skillnader mellan matningshastigheten och spindelvarvtalet under gängningen.

Under det att cykeln exekveras är potentiometern för spindelvarvtals-override inte verksam. Potentiometern för matnings-override är verksam men inom ett begränsat område (definierat av maskintillverkaren, beakta maskinhandboken).

För högergänga skall spindeln startas med M3, för vänstergänga med M4.

206

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd verktygsspetsen (startposition) – arbetsstyckets yta; Riktvärde: 4x gängans stigning
- Borrdjup Q201 (gängans längd, inkrementalt): Avstånd arbetsstyckets yta – gängans slut
- Matning F Q206: Verktygets förflyttningshastighet vid gängningen
- Väntetid nere Q211: Ange ett värde mellan 0 och 0,5 sekunder för att förhindra att verktyget fastnar vid förflyttningen tillbaka
- ▶ Koord. arbetsstyckets yta Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske

Beräkning av matning: F = S x p

- F: Matning mm/min)
- S: Spindelvarvtal (varv/min)
- p: Gängstigning (mm)

Frikörning vid avbrott i programexekveringen

Om man trycker på den externa Stopp-knappen i samband med gängning, kommer TNC:n att presentera en softkey med vilken verktyget kan friköras.

Exempel: NC-block

25	CYCL DEF 206	GAENGNING NY
	Q200=2	; SAEKERHETSAVST.
	Q201=-20	; DJUP
	Q206=150	; NEDMATNINGSHASTIGHET
	Q211=0.25	; VAENTETID NERE
	Q203=+25	; KOORD. OEVERYTA
	Q204=50	; 2. SAEKERHETSAVST.
8.3 Cykler för borrning, <mark>gän</mark>gning och gängfräsning

SYNKRONISERAD GÄNGNING utan flytande gängtappshållare (cykel 17)

Maskinen och TNC:n måste vara förberedd av maskintillverkaren.

TNC:n utför gängningen, i ett eller i flera arbetssteg, utan att flytande gängtappshållare behöver användas.

Fördelar gentemot cykeln Gängning med flytande gängtappshållare:

- Högre bearbetningshastighet
- Upprepad gängning i samma hål då spindeln orienteras till 0°positionen vid cykelanropet (denna orientering är beroende av maskinparameter 7160)
- Större rörelseområde i spindelaxeln då flytande gängtappshållare inte behöver användas

Att beakta före programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Programmera positioneringsblocket till startpunkten i spindelaxeln (Säkerhetsavståndet över arbetsstyckets yta).

Cykelparametern Borrdjups förtecken bestämmer arbetsriktningen.

TNC:n beräknar matningshastigheten beroende av spindelvarvtalet. Om man använder potentiometern för spindel-override under gängningen, kommer TNC:n automatiskt att anpassa matningshastigheten.

Potentiometern för matnings-override är inte aktiv.

Vid cykelslutet stannar spindeln. Starta åter spindeln med M3 (alt. M4) före nästa bearbetning.

- Säkerhetsavstånd 1 (inkrementalt): Avstånd verktygsspetsen (startposition) – arbetsstyckets yta
- Borrdj up 2 (inkrementalt): Avstånd arbetsstyckets yta (gängans början) – gängans slut
- Gängstigning 3: Gängans stigning. Förtecknet anger höger- eller
 - vänstergänga:
 - += Högergänga
 - -= Vänstergänga

18	CYCL DEF	17.0	SYNKRONI SERAD GAENGNI NG
19	CYCL DEF	17.1	AVST 2
20	CYCL DEF	17.2	DJUP - 20
21	CYCL DEF	17.3	STIGNING +1

Frikörning vid avbrott i programexekveringen

Om man trycker på den externa Stopp-knappen i samband med gängningen, kommer TNC:n att visa softkey MANUELL FÖRFLYTTNING. Om man trycker på MANUELL FÖRFLYTTNING, kan verktyget friköras kontrollerat. För att göra detta trycker man på positiv axelriktningsknapp för den aktiva spindelaxeln.

SYNKRONISERAD GÄNGNING NY utan flytande gänghuvud (cykel 207)

Maskinen och TNC:n måste vara förberedd av maskintillverkaren.

TNC:n utför gängningen, i ett eller i flera arbetssteg, utan att flytande gängtappshållare behöver användas.

Fördelar gentemot cykeln Gängning med flytande gängtappshållare: Se "SYNKRONISERAD GÄNGNING utan flytande gängtappshållare (cykel 17)", sidan 229

- 1 TNC:n positionerar verktyget i spindelaxeln till det angivna Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX.
- 2 Verktyget förflyttas i en sekvens direkt till borrdjupet.
- 3 Därefter växlas spindelns rotationsriktning och verktyget förflyttas, efter väntetiden, tillbaka till säkerhetsavståndet. Om ett andra Säkerhetsavstånd har angivits, förflyttar därefter TNC:n verktyget dit med FMAX.
- 4 På säkerhetsavståndet stoppar TNC:n spindeln.

Att beakta före programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Cykelparametern Borrdjups förtecken bestämmer arbetsriktningen.

TNC:n beräknar matningshastigheten beroende av spindelvarvtalet. Om man använder potentiometern för spindel-override under gängningen, kommer TNC:n automatiskt att anpassa matningshastigheten.

Potentiometern för matnings-override är inte aktiv.

Vid cykelslutet stannar spindeln. Starta åter spindeln med M3 (alt. M4) före nästa bearbetning.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd verktygsspetsen (startposition) – arbetsstyckets yta
- Borrdj up Q201 (inkrementalt): Avstånd arbetsstyckets yta – gängans slut
- Gängstigning Q239 Gängans stigning. Förtecknet anger höger- eller vänstergänga:
 - += Högergänga
 - -= Vänstergänga
- **Koord. arbetsstyckets yta** Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske

Frikörning vid avbrott i programexekveringen

Om man trycker på den externa Stopp-knappen i samband med gängningen, kommer TNC:n att visa softkey MANUELL FRIKÖRNING. Om man trycker på MANUELL FRIKÖRNING, kan verktyget friköras kontrollerat. För att göra detta trycker man på positiv axelriktningsknapp för den aktiva spindelaxeln.

26	CYCL DEF 2	07 SYNKR. GAENGNING NY
	Q200=2	; SAEKERHETSAVST.
	Q201=-20	; DJUP
	Q239=+1	; GAENGSTI GNING
	Q203=+25	; KOORD. OEVERYTA
	Q204=50	; 2. SAEKERHETSAVST.

GÄNGSKÄRNING (cykel 18)

ק
Ξ
ISL
- G
Jf
Ĕ
a
σ
Ë
ŏ
Ĕ
Ð
2
Jä
Q
<u>_</u> .
Ε
ğ
<u> </u>
<u>9</u>
Ţ
e
ž
3
3
\mathbf{n}

Maskinen och TNC:n måste vara förberedd av Ē maskintillverkaren.

Cykel 18 GÄNGSKÄRNING förflyttar verktyget, med reglerad spindel och det aktiva varvtalet, från den aktuella positionen till det angivna Djupet. Spindeln stoppas vid hålets botten. Fram- och frånkörningsrörelserna måste programmeras separat – förslagsvis i en maskintillverkarcykel. Mer information om detta erhålles från Er maskintillverkare.

Att beakta före programmering

TNC:n beräknar matningshastigheten beroende av spindelvarvtalet. Om man använder potentiometern för spindel-override under gängskärningen, kommer TNC:n automatiskt att anpassa matningshastigheten.

Potentiometern för matnings-override är inte aktiv.

TNC:n startar och stoppar automatiskt spindeln. Programmera inte M3 eller M4 innan cykelanropet.

18 É.

Borrdjup 1: Avstånd aktuell verktygsposition – gängans slut

Borrdjupets förtecken bestämmer arbetsriktningen ("–" motsvarar negativ riktning i spindelaxeln)

► Gängstigning 2

Gängans stigning. Förtecknet anger höger- eller vänstergänga:

- + = Högergänga (M3 vid negativt Borrdjup)
- = Vänstergänga (M4 vid negativt Borrdjup)

22	CYCL DEF 1	8.0	GAENGS KAERNI NG
23	CYCL DEF 1	8.1	DJUP -20
24	CYCL DEF 1	8.2	STIGNING +1

GÄNGNING SPÅNBRYTNING (cykel 209)

Maskinen och TNC:n måste vara förberedd av maskintillverkaren.

TNC:n skär gängan i flera ansättningar ner till det angivna djupet. Via en parameter kan man fastlägga huruvida verktyget skall köras ur hålet helt och hållet vid spånbrytning eller inte.

- 1 TNC:n positionerar verktyget i spindelaxeln till det angivna Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX och utför där en spindelorientering.
- 2 Verktyget förflyttas till det angivna skärdjupet, växlar spindelns rotationsriktning och förflyttas – beroende på definitionen – ett bestämt värde tillbaka eller upp ur hålet för urspåning.
- **3** Därefter växlas spindelns rotationsriktning på nytt och verktyget förflyttas till nästa skärdjup.
- 4 TNC:n upprepar detta förlopp (2 till 3) tills det angivna gängdjupet uppnås.
- 5 Därefter lyfts verktyget tillbaka till säkerhetsavståndet. Om ett andra Säkerhetsavstånd har angivits, förflyttar därefter TNC:n verktyget dit med FMAX.
- 6 På säkerhetsavståndet stoppar TNC:n spindeln.

Att beakta före programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Cykelparametern Gängdjups förtecken bestämmer arbetsriktningen.

TNC:n beräknar matningshastigheten beroende av spindelvarvtalet. Om man använder potentiometern för spindel-override under gängningen, kommer TNC:n automatiskt att anpassa matningshastigheten.

Potentiometern för matnings-override är inte aktiv.

Vid cykelslutet stannar spindeln. Starta åter spindeln med M3 (alt. M4) före nästa bearbetning.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd verktygsspetsen (startposition) – arbetsstyckets yta
 - Gängdj up Q201 (inkrementalt): Avstånd arbetsstyckets yta – gängans slut
 - Gängstigning Q239
 Gängans stigning. Förtecknet anger höger- eller vänstergänga:
 += Högergänga
 –= Vänstergänga
 - Koord. arbetsstyckets yta Q203 (absolut): Koordinat för arbetsstyckets yta
 - 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
 - Matningssträcka till spånbryt. Q257 (inkrementalt): Skärdjup efter vilket TNC:n skall utföra en spånbrytning
 - Tillbakagång för spånbrytning Q256: TNC:n multiplicerar stigningen Q239 med det angivna värdet och lyfter tillbaka verktyget med detta framräknade värde vid spånbrytning. Om man anger Q256 = 0 kommer TNC:n att lyfta verktyget helt ur hålet för urspåning (till säkerhetsavståndet).
 - Vinkel för spindelorientering Q336 (absolut): Vinkel som TNC:n positionerar verktyget till före gängningsförloppet. Därigenom kan man efterbearbeta gängan om så önskas.

Frikörning vid avbrott i programexekveringen

Om man trycker på den externa Stopp-knappen i samband med gängningen, kommer TNC:n att visa softkey MANUELL FRIKÖRNING. Om man trycker på MANUELL FRIKÖRNING, kan verktyget friköras kontrollerat. För att göra detta trycker man på positiv axelriktningsknapp för den aktiva spindelaxeln.

Exempel: NC-block

26	CYCL DEF 2	09 GAENGNING SPAANBRYT.
	Q200=2	; SAEKERHETSAVST.
	Q201=-20	; DJUP
	Q239=+1	; GAENGSTIGNING
	Q203=+25	; KOORD. OEVERYTA
	Q204=50	; 2. SAEKERHETSAVST.
	Q257=5	; BORRDJUP SPAANBRYT
	Q256=+25	; AVST VID SPAANRBRYT
	Q336=50	;VINKEL SPINDEL

209 🛔 RT

Ш 44

Grunder för gängfräsning

Förutsättning

- Maskinen bör vara utrustad med invändig kylvätsketillförsel genom spindeln (kylvätska min. 30 bar, tryckluft min. 6 bar).
- Eftersom det vid gängfräsning är vanligt att det uppstår deformationer av gängprofilen krävs ofta verktygsspecifika kompenseringar. Dessa kan man utläsa i verktygskatalogen eller fråga efter hos verktygstillverkaren. Kompenseringen sker i samband med TOOL CALL via delta-radien DR.
- Cyklerna 262, 263, 264 och 267 kan bara användas med medurs roterande verktyg. I cykel 265 kan man använda både medurs och moturs roterande verktyg.
- Arbetsriktningen framgår av följande inmatningsparametrar: Förtecken för gängans Stigning Q239 (+ = högergänga /- = vänstergänga) och Fräsmetod Q351 (+1 = medfräsning /-1 = motfräsning). Med ledning av följande tabell kan man utläsa förhållandet mellan inmatningsparametrarna vid medurs roterande verktyg.

Innergänga	Stigning	Fräsmetod	Arbetsriktning
högergänga	+	+1(RL)	Z+
vänstergänga	-	–1(RR)	Z+
högergänga	+	–1(RR)	Z–
vänstergänga	_	+1(RL)	Z–

Yttergänga	Stigning	Fräsmetod	Arbetsriktning
högergänga	+	+1(RL)	Z–
vänstergänga	_	–1(RR)	Z–
högergänga	+	–1(RR)	Z+
vänstergänga	_	+1(RL)	Z+

Kollisionsrisk!

ᇞ

Programmera alltid samma förtecken i de olika nedmatningsdjupen eftersom cyklerna innehåller flera sekvenser som är oberoende av varandra. Rangordningen som avgör arbetsriktningen finns beskriven i respektive cykel. Om man vill upprepa t.ex. ett försänkningsförlopp så anger man 0 i gängdjup, arbetsriktningen bestäms då via försänkningsdjupet.

Beteende vid verktygsbrott!

Om det sker ett verktygsbrott under gängskärningen så stoppar man programexekveringen, växlar till driftart Manuell positionering (MDI) och förflyttar där verktyget till hålets centrum med en linjär förflyttning. Därefter kan man friköra verktyget i verktygsaxeln och växla ut det.

Vid gängfräsning hänför TNC:n den programmerade matningshastigheten till verktygsskäret. Eftersom TNC:n presenterar centrumbanans matningshastighet stämmer dock det presenterade värdet inte med det programmerade värdet.

> Gängans rotationsriktning ändrar sig om man exekverar en gängfräsningscykel i kombination med cykel 8 SPEGLING där speglingen bara har definierats i en axel.

8.3 Cykler för borrning, <mark>gän</mark>gning och gängfräsning

GÄNGFRÄSNING (cykel 262)

- 1 TNC:n positionerar verktyget i spindelaxeln till det angivna Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX.
- 2 Verktyget förflyttas med programmerad Matning förpositionering till startnivån, vilken framgår av förtecknet i gängans Stigning, Fräsmetoden och Antal gängor per steg.
- Därefter förflyttas verktyget tangentiellt med en helix-rörelse till 3 Gängans nominella diameter. Därvid utförs ytterligare en utjämningsförflyttning i verktygsaxeln före helixframkörningsrörelsen, för att börja gängbanan på den angivna startnivån.
- 4 Beroende på parameter Antal gängor per steg fräser verktyget gängan i en, i flera förskjutna eller i en kontinuerlig skruvlinjerörelse.
- 5 Därefter förflyttas verktyget tangentiellt från konturen tillbaka startpunkten i bearbetningsplanet.
- Vid cykelns slut förflyttar TNC:n verktyget med snabbtransport till 6 säkerhetsavståndet eller - om så har angivits - till det andra säkerhetsavståndet.

Att beakta före programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Cykelparametern Gängdjups förtecken bestämmer arbetsriktningen. Om man programmerar Gängdiup = 0 så utför TNC:n inte cykeln.

Framkörningsrörelsen till gängans diameter sker på en halvcirkel ut från centrum. Om verktvosdiametern är mindre än gängans diameter med 4 gånger stigningen kommer en förpositionering isidled att utföras.

- Nominell diameter Q335: Gängans bör-diameter
- Gängstigning Q239: Gängans stigning. Förtecknet anger höger- eller vänstergänga:
 - + = Högergänga
 - = Vänstergänga
- **Gängdjup** Q201 (inkrementalt): Avstånd mellan arbetsstyckets yta och gängans botten
- Gängor per steg Q355: Antal gängor som verktyget skall förskjutas med, se bilden nere till höger **0** = en 360° skruvlinje ner till gängdjupet 1 = kontinuerlig skruvlinje längs hela gängans längd >1 = flera helixbanor med fram- och frånkörning, däremellan förskjuter TNC:n verktyget med Q355 gånger stigningen

262

- Matning förpositionering Q253: Verktygets förflyttningshastighet vid nedmatning i arbetsstycket respektive vid lyftning upp ur arbetsstycket i mm/min
- Fräsmetod Q351: Typ av fräsbearbetning vid M03
 +1 = medfräsning
 - -1 = motfräsning
- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta
- **Koord. arbetsstyckets yta** Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Matning fräsning Q207: Verktygets förflyttningshastighet vid fräsning i mm/min

25 CYCL DEF 262	2 GAENGFRAESNING
Q335=10	; NOMINELL DIAMETER
Q239=+1,5	; STIGNING
Q201=-20	; GAENGDJ UP
Q355=0	; GAENGOR PER STEG
Q253=750	; MATNING FOERPOS.
Q351=+1	; FRAESMETOD
Q200=2	; SAEKERHETSAVST.
Q203=+30	; KOORD. OEVERYTA
Q204=50	; 2. SAEKERHETSAVST.
Q207=500	; MATNING FRAESNING

FÖRSÄNK-GÄNGFRÄSNING (cykel 263)

1 TNC:n positionerar verktyget i spindelaxeln till det angivna Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX.

Försänkning

- 2 Verktyget förflyttas med Matning förpositionering till Försänkningsdjupet minus säkerhetsavståndet och därifrån med Matning försänkning till Försänkningsdjupet.
- **3** Om ett Säkerhetsavstånd sida har angivits, positionerar TNC:n verktyget på samma sätt med Matning förpositionering till Försänkningsdjupet.
- 4 Beroende på platsförhållandet förflyttar därefter TNC:n verktyget från mitten och tangentiellt ut mot kärndiametern eller via en förpositionering i sidled och utför sedan en cirkelrörelse.

Försänkning framsida

- 5 Verktyget förflyttas med Matning förpositionering till Försänkningsdjup framsida.
- 6 TNC:n positionerar verktyget okompenserat ut från mitten via en halvcirkel till Offset framsida och utför en cirkelrörelse med Matning försänkning.
- 7 Därefter förflyttar TNC:n verktyget tillbaka till hålets centrum på en halvcirkel.

Gängfräsning

- 8 TNC:n förflyttar verktyget med programmerad Matning förpositionering till gängans startnivå, vilken framgår av förtecknet i gängans Stigning och Fräsmetoden.
- 9 Efter detta förflyttas verktyget tangentiellt med en helix-rörelse till Gängans nominella diameter och fräser gängan med en 360°skruvlinjerörelse.
- **10** Därefter förflyttas verktyget tangentiellt från konturen tillbaka till startpunkten i bearbetningsplanet.

11 Vid cykelns slut förflyttar TNC:n verktyget med snabbtransport till säkerhetsavståndet eller – om så har angivits – till det andra säkerhetsavståndet

Att beakta före programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Förtecknet i cykelparameter Gängdjup, Försänkning djup resp. Djup framsida bestämmer arbetsriktningen. Arbetsriktningen bestäms enligt nedanstående ordningsföljd:

- 1. Gängdjup
- 2. Försänkning djup
- 3. Djup framsida

Om man anger 0 i en av djup-parametrarna kommer TNC:n inte att utföra detta arbetssteg.

Om man vill försänka med verktygets framsida så definierar man 0 i parameter Försänkningsdjup.

Programmera gängans djup minst en tredjedel av gängans stigning mindre än försänkningsdjupet.

- Nominell diameter Q335: Gängans bör-diameter
- Gängstigning Q239: Gängans stigning. Förtecknet anger höger- eller vänstergänga:
 - + = Högergänga
 - = Vänstergänga
- Gängdj up Q201 (inkrementalt): Avstånd mellan arbetsstyckets yta och gängans botten
- Försänkning djup Q356: (inkrementalt): Avstånd mellan arbetsstyckets yta och verktygsspetsen
- Matning förpositionering Q253: Verktygets förflyttningshastighet vid nedmatning i arbetsstycket respektive vid lyftning upp ur arbetsstycket i mm/min
- Fräsnetod Q351: Typ av fräsbearbetning vid M03
 +1 = medfräsning
 metfräsning
 - -1 = motfräsning
- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta
- Säkerhetsavstånd si da Q357 (inkrementalt): Avstånd mellan verktygsskäret och hålets vägg
- Djup framsida Q358 (inkrementalt): Avstånd mellan arbetsstyckets yta och verktygsspetsen vid försänkningsförlopp med verktygets framsida
- Försänkning offset fransida Q359 (inkrementalt): Avstånd som TNC:n förskjuter verktygets centrum från hålets mitt

- Koord. arbetsstyckets yta Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Matning försänkning Q254: Verktygets förflyttningshastighet vid försänkning i mm/min
- Matning fräsning Q207: Verktygets förflyttningshastighet vid fräsning i mm/min

25 CYCL DEF 263	FOERSAENK-GAENGFRAES
Q335=10	; NOMINELL DIAMETER
Q239=+1,5	;STIGNING
Q201=-16	; GAENGDJ UP
Q356=-20	; FOERSAENKNING DJUP
Q253=750	; MATNING FOERPOS.
Q351=+1	; FRAESMETOD
Q200=2	; SAEKERHETSAVST.
Q357=0, 2	; SAEK. AVSTAAND SIDA
Q358=+0	; DJUP FRAMSIDA
Q359=+0	; OFFSET FRAMSIDA
Q203=+30	; KOORD. OEVERYTA
Q204=50	; 2. SAEKERHETSAVST.
Q254=150	; MATNING FOERSAENKNING
Q207=500	; MATNING FRAESNING

BORR-GÄNGFRÄSNING (cykel 264)

1 TNC:n positionerar verktyget i spindelaxeln till det angivna Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX.

Borrning

- 2 Verktyget borrar ner till det första skärdjupet med den programmerade Nedmatningshastigheten.
- 3 Om spånbrytning har valts förflyttar TNC:n verktyget tillbaka med det angivna värdet för tillbakagång. Om man arbetar utan spånbrytning förflyttar TNC:n verktyget tillbaka till Säkerhetsavståndet med snabbtransport och därefter åter med FMAX till det angivna Säkerhetsavståndet för urspåning över det första skärdjupet.
- 4 Därefter borrar verktyget ner till nästa skärdjup med matning.
- 5 TNC:n upprepar detta förlopp (2-4) tills det angivna borrdjupet uppnås.

Försänkning framsida

- **6** Verktyget förflyttas med Matning förpositionering till Försänkningsdjup framsida.
- 7 TNC:n positionerar verktyget okompenserat ut från mitten via en halvcirkel till Offset framsida och utför en cirkelrörelse med Matning försänkning.
- 8 Därefter förflyttar TNC:n verktyget tillbaka till hålets centrum på en halvcirkel.

Gängfräsning

- **9** TNC:n förflyttar verktyget med programmerad Matning förpositionering till gängans startnivå, vilken framgår av förtecknet i gängans Stigning och Fräsmetoden.
- 10 Efter detta förflyttas verktyget tangentiellt med en helix-rörelse till Gängans nominella diameter och fräser gängan med en 360°skruvlinjerörelse.
- **11** Därefter förflyttas verktyget tangentiellt från konturen tillbaka till startpunkten i bearbetningsplanet.

12 Vid cykelns slut förflyttar TNC:n verktyget med snabbtransport till säkerhetsavståndet eller – om så har angivits – till det andra säkerhetsavståndet.

Att beakta före programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Förtecknet i cykelparameter Gängdjup, Försänkning djup resp. Djup framsida bestämmer arbetsriktningen. Arbetsriktningen bestäms enligt nedanstående ordningsföljd:

- 1. Gängdjup
- 2. Borrdjup
- 3. Djup framsida

Om man anger 0 i en av djup-parametrarna kommer TNC:n inte att utföra detta arbetssteg.

Programmera gängans djup minst en tredjedel av gängans stigning mindre än borrdjupet.

- Nominell diameter Q335: Gängans bör-diameter
- Gängstigning Q239: Gängans stigning. Förtecknet anger höger- eller vänstergänga:
 - + = Högergänga
 - = Vänstergänga
- Gängdj up Q201 (inkrementalt): Avstånd mellan arbetsstyckets yta och gängans botten
- **Borrdjup** Q356: (inkrementalt): Avstånd mellan arbetsstyckets yta och hålets botten
- Matning förpositionering Q253: Verktygets förflyttningshastighet vid nedmatning i arbetsstycket respektive vid lyftning upp ur arbetsstycket i mm/min
- Fräsnetod Q351: Typ av fräsbearbetning vid M03
 +1 = medfräsning
 -1 = motfräsning
 - -1 = mourasning
- Skärdj up Q202 (inkrementalt): Mått med vilket verktyget stegas nedåt. Djup behöver inte vara en jämn multipel av Skärdjup. TNC:n förflyttar verktyget i en sekvens direkt till Djup om:
 - Skärdjup och Djup är lika
 - Skärdjup är större än Djup
- Säkerhetsavst. uppe vid urspåning Q258 (inkrementalt): Säkerhetsavstånd för positionering med snabbtransport när TNC:n förflyttar verktyget tillbaka till det aktuella skärdjupet efter en lyftning upp ur hålet
- Matningssträcka till spånbryt. Q257 (inkrementalt): Skärdjup efter vilket TNC:n skall utföra en spånbrytning. Ingen spånbrytning om 0 anges
- Tillbakagång vid spånbrytning Q256 (inkrementalt): Värde med vilket TNC:n lyfter verktyget vid spånbrytning
- Djup framsida Q358 (inkrementalt): Avstånd mellan arbetsstyckets yta och verktygsspetsen vid försänkningsförlopp med verktygets framsida
- Försänkning offset fransida Q359 (inkrementalt): Avstånd som TNC:n förskjuter verktygets centrum från hålets mitt

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta
- **Koord. arbetsstyckets yta** Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Nedmatni ngshast i ghet Q206: Verktygets förflyttningshastighet vid borrning i mm/min
- Matning fräsning Q207: Verktygets förflyttningshastighet vid fräsning i mm/min

25 CYCL DEF 26	4 BORR-GAENGFRAESNING
Q335=10	; NOMINELL DIAMETER
Q239=+1,5	; STIGNING
Q201=-16	; GAENGDJ UP
Q356=-20	; HAALDJUP
Q253=750	; MATNING FOERPOS.
Q 351=+1	; FRAESMETOD
Q202=5	; SKAERDJ UP
Q258=0, 2	; FOERSTOPPAVST.
Q257=5	; BORRDJUP SPAANBRYT
Q256=0, 2	; AVST VID SPAANBRYT
Q358=+0	; DJUP FRAMSIDA
Q359=+0	; OFFSET FRAMSIDA
Q200=2	; SAEKERHETSAVST.
Q203=+30	; KOORD. OEVERYTA
Q204=50	; 2. SAEKERHETSAVST.
Q206=150	; NEDMATNINGSHASTIGHET
Q207=500	; MATNING FRAESNING

HELIX-BORRGÄNGFRÄSNING (cykel 265)

1 TNC:n positionerar verktyget i spindelaxeln till det angivna Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX.

Försänkning framsida

- 2 Vid försänkning före gängningen förflyttas verktyget till Försänkningsdjup framsida med Matning försänkning. Vid försänkning efter gängningen förflyttar TNC:n verktyget till Försänkning djup med Matning förpositionering.
- 3 TNC:n positionerar verktyget okompenserat ut från mitten via en halvcirkel till Offset framsida och utför en cirkelrörelse med Matning försänkning.
- 4 Därefter förflyttar TNC:n verktyget tillbaka till hålets centrum på en halvcirkel.

Gängfräsning

- 5 TNC:n förflyttar verktyget med programmerad Matning förpositionering till gängans startnivå.
- **6** Därefter förflyttas verktyget tangentiellt med en helix-rörelse till Gängans nominella diameter.
- 7 TNC:n förflyttar verktyget nedåt på en kontinuerlig skruvlinje tills gängdjupet uppnås.
- 8 Därefter förflyttas verktyget tangentiellt från konturen tillbaka startpunkten i bearbetningsplanet.
- 9 Vid cykelns slut förflyttar TNC:n verktyget med snabbtransport till säkerhetsavståndet eller – om så har angivits – till det andra säkerhetsavståndet.

Att beakta före programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Förtecknet i cykelparameter Gängdjup och Djup framsida bestämmer arbetsriktningen. Arbetsriktningen bestäms enligt nedanstående ordningsföljd:

- 1. Gängdjup
- 2. Djup framsida

Om man anger 0 i en av djup-parametrarna kommer TNC:n inte att utföra detta arbetssteg.

Fräsmetoden (mot-/medfräsning) bestäms av gängan (höger-/vänstergänga) och verktygets rotationsriktning eftersom endast arbetsriktning från arbetsstyckets yta och in i detaljen är möjlig.

- **Nominell diameter** Q335: Gängans bör-diameter
- Gängstigning Q239: Gängans stigning. Förtecknet anger höger- eller vänstergänga:
 - + = Högergänga
 - = Vänstergänga
- Gängdj up Q201 (inkrementalt): Avstånd mellan arbetsstyckets yta och gängans botten
- Matning förpositionering Q253: Verktygets förflyttningshastighet vid nedmatning i arbetsstycket respektive vid lyftning upp ur arbetsstycket i mm/min
- Djup fransida Q358 (inkrementalt): Avstånd mellan arbetsstyckets yta och verktygsspetsen vid försänkningsförlopp med verktygets framsida
- Försänkning offset fransida Q359 (inkrementalt): Avstånd som TNC:n förskjuter verktygets centrum från hålets mitt
- Försänkning Q360: Utförande av fasen
 - **0** = före gängningen
 - **1** = efter gängningen
- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta

265

249

- **Koord. arbetsstyckets yta** Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Matning försänkning Q254: Verktygets förflyttningshastighet vid försänkning i mm/min
- Matning fräsning Q207: Verktygets förflyttningshastighet vid fräsning i mm/min

25 CYCL DEF 265 HELIX-BORRGAENGFRAE.
Q335=10 ; NOMINELL DIAMETER
Q239=+1,5 ;STIGNING
Q201=-16 ; GAENGDJUP
Q253=750 ; MATNING FOERPOS.
Q358=+0 ; DJUP FRAMSIDA
Q359=+0 ; OFFSET FRAMSIDA
Q360=0 ; FOERSAENKNING
Q200=2 ; SAEKERHETSAVST.
Q203=+30 ; KOORD. OEVERYTA
Q204=50 ; 2. SAEKERHETSAVST.
Q254=150 ; MATNING FOERSAENKNING
Q207=500 ; MATNING FRAESNING

UTVÄNDIG GRÄNGFRÄSNING (cykel 267)

1 TNC:n positionerar verktyget i spindelaxeln till det angivna Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX.

Försänkning framsida

- 2 TNC:n förflyttar verktyget i bearbetningsplanets huvudaxel från tappens centrum till startpunkten för försänkningen som skall utföras med verktygets framsida. Startpunktens läge erhålles från gängans radie, verktygsradien och stigningen.
- **3** Verktyget förflyttas med Matning förpositionering till Försänkningsdjup framsida.
- 4 TNC:n positionerar verktyget okompenserat ut från mitten via en halvcirkel till Offset framsida och utför en cirkelrörelse med Matning försänkning.
- 5 Därefter förflyttar TNC:n verktyget tillbaka till startpunkten på en halvcirkel.

Gängfräsning

- **6** TNC:n positionerar verktyget till startpunkten om inte försänkning på framsidan utfördes först. Startpunkt gängfräsning = startpunkt försänkning framsida.
- 7 Verktyget förflyttas med programmerad Matning förpositionering till startnivån, vilken framgår av förtecknet i gängans Stigning, Fräsmetoden och Antal gängor per steg.
- 8 Därefter förflyttas verktyget tangentiellt med en helix-rörelse till Gängans nominella diameter.
- **9** Beroende på parameter Antal gängor per steg fräser verktyget gängan i en, i flera förskjutna eller i en kontinuerlig skruvlinjerörelse.
- **10** Därefter förflyttas verktyget tangentiellt från konturen tillbaka startpunkten i bearbetningsplanet.

11 Vid cykelns slut förflyttar TNC:n verktyget med snabbtransport till säkerhetsavståndet eller – om så har angivits – till det andra säkerhetsavståndet.

Att beakta före programmering

Programmera positioneringsblocket till startpunkten (tappens centrum) i bearbetningsplanet med radiekompensering R0.

Den nödvändiga förskjutningen för försänkning framsida måste fastställas i förväg. Man måste ange värdet från tappens centrum till verktygets centrum (okompenserat värde).

Förtecknet i cykelparameter Gängdjup resp. Djup framsida bestämmer arbetsriktningen. Arbetsriktningen bestäms enligt nedanstående ordningsföljd:

- 1. Gängdjup
- 2. Djup framsida

Om man anger 0 i en av djup-parametrarna kommer TNC:n inte att utföra detta arbetssteg.

Cykelparametern Gängdjups förtecken bestämmer arbetsriktningen.

- Nominell diameter Q335: Gängans bör-diameter
- Gängstigning Q239: Gängans stigning. Förtecknet anger höger- eller vänstergänga:
 - += Högergänga
 - = Vänstergänga
- ► **Gängdj up** Q201 (inkrementalt): Avstånd mellan arbetsstyckets yta och gängans botten
- Gängor per steg Q355: Antal gängor som verktyget skall förskjutas med, se bilden nere till höger
 - **0** = en skruvlinje ner till gängdjupet
 - 1 = kontinuerlig skruvlinje längs hela gängans längd >1 = flera helixbanor med fram- och frånkörning, däremellan förskjuter TNC:n verktyget med Q355 gånger stigningen
- Matning förpositionering Q253: Verktygets förflyttningshastighet vid nedmatning i arbetsstycket respektive vid lyftning upp ur arbetsstycket i mm/min
- Fräsnetod Q351: Typ av fräsbearbetning vid M03
 - +1 = medfräsning
 - -1 = motfräsning

267

8.3 Cykler för borrning, <mark>gän</mark>gning och gängfräsning

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta
- Djup framsida Q358 (inkrementalt): Avstånd mellan arbetsstyckets yta och verktygsspetsen vid försänkningsförlopp med verktygets framsida
- ▶ Försänkning offset fransida Q359 (inkrementalt): Avstånd som TNC:n förskjuter verktygets centrum från tappens mitt
- **Koord. arbetsstyckets yta** Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- ▶ Matning försänkning Q254: Verktygets förflyttningshastighet vid försänkning i mm/min
- Matning fräsning Q207: Verktygets förflyttningshastighet vid fräsning i mm/min

25 CYCL DEF 267 UTVAENDIG GAENGFRAES
Q335=10 ; NOMINELL DIAMETER
Q239=+1,5 ;STIGNING
Q201=-20 ; GAENGDJUP
Q355=0 ; GAENGOR PER STEG
Q253=750 ; MATNING FOERPOS.
Q351=+1 ; FRAESMETOD
Q200=2; SAEKERHETSAVST.
Q358=+0 ; DJUP FRAMSIDA
Q359=+0 ; OFFSET FRAMSIDA
Q203=+30 ; KOORD. OEVERYTA
Q204=50 ; 2. SAEKERHETSAVST.
Q254=150 ; MATNING FOERSAENKNING
Q207=500 ; MATNING FRAESNING

Exempel: Borrcykler

0	BEGIN PGM C200 MM	
1	BLK FORM 0.1 Z X+0 Y+0 Z-20	Råämnesdefinition
2	BLK FORM 0. 2 X+100 Y+100 Z+0	
3	TOOL DEF 1 L+0 R+3	Verktygsdefinition
4	TOOL CALL 1 Z S4500	Verktygsanrop
5	L Z+250 RO F MAX	Frikörning av verktyget
6	CYCL DEF 200 BORRNING	Cykeldefinition
	Q200=2 ; SAEKERHETSAVST.	
	Q201=-15 ; DJUP	
	Q206=250 ; MATNING DJUP	
	Q202=5 ; SKAERDJ UP	
	Q210=0 ; VAENTETID UPPE	
	Q203=-10 ; KOORD. OEVERYTA	
	Q204=20 ; 2: A SAEKERHETSAVST.	
	Q211=0.2 ; VAENTETID NERE	

7 L X+10 Y+10 R0 F MAX MB	Förflyttning till första hålet, Spindelstart
8 CYCL CALL	Cykelanrop
9 L Y+90 R0 F MAX M99	Förflyttning till andra hålet, Cykelanrop
10 L X+90 R0 F MAX M99	Förflyttning till tredje hålet, Cykelanrop
11 L Y+10 R0 F MAX M99	Förflyttning till fjärde hålet, Cykelanrop
12 L Z+250 R0 F MAX M2	Frikörning av verktyget, programslut
13 END PGM C200 MM	

Exempel: Borrcykler

Programförlopp

- Gängskärningscykel är programmerad i huvudprogrammet
- Programmera bearbetningen i underprogrammet, se "Underprogram", sidan 351

0 BEGIN PGM C18 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råämnesdefinition
2 BLK FORM 0. 2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+6	Verktygsdefinition
4 TOOL CALL 1 Z S100	Verktygsanrop
5 L Z+250 RO F MAX	Frikörning av verktyget
6 CYCL DEF 18.0 GAENGSKAERNING	Cykeldefinition Gängskärning
7 CYCL DEF 18.1 DJUP +30	
8 CYCL DEF 18.2 STIGN1,75	
9 L X+20 Y+20 R0 F MAX	Förflyttning till första hålet
10 CALL LBL 1	Anropa underprogram 1
11 L X+70 Y+70 R0 F MAX	Förflyttning till andra hålet
12 CALL LBL 1	Anropa underprogram 1
13 L Z+250 R0 F MAX M2	Frikörning av verktyget, Slut på huvudprogrammet

14 LBL 1	Underprogram 1: Gängskärning
15 CYCL DEF 13.0 ORIENTERING	Definiera spindelvinkel (möjliggör upprepad gängskärning)
16 CYCL DEF 13.1 VINKEL 0	
17 LM19	Spindelorientering (maskinberoende M-funktion)
18 L IX-2 RO F1000	Förskjutning av verktyget för kollisionsfri nedmatning (beroende av
	kärndiametern och verktyget)
19 L Z+5 R0 F MAX	Förpositionering med snabbtransport
20 L Z-30 R0 F1000	Förflyttning till startdjupet
21 L IX+2	Förflyttning av verktyget tillbaka till hålets mitt
22 CYCL CALL	Anropa cykel 18
23 L Z+5 RO F MAX	Frikörning
24 LBL 0	Slut på underprogram 1
25 END PGM C18 MM	

8.4 Cykler för att fräsa fickor, öar och spår

Översikt

Cykel	Softkey
4 URFRÄSNING (rektangulär) Grovbearbetningscykel utan automatisk förpositionering	4
212 FICKA FINSKÄR (rektangulär) Finbearbetningscykel med automatisk förpositionering, 2. säkerhetsavstånd	212
213 Ö FINSKÄR (rektangulär) Finbearbetningscykel med automatisk förpositionering, 2. säkerhetsavstånd	213
5 CIRKELURFRÄSNING Grovbearbetningscykel utan automatisk förpositionering	5
214 CIRKULÄR FICKA FINSKÄR Finbearbetningscykel med automatisk förpositionering, 2. säkerhetsavstånd	214
215 CIRKULÄR Ö FINSKÄR Finbearbetningscykel med automatisk förpositionering, 2. säkerhetsavstånd	215
3 SPÅRFRÄSNING Grov-/finbearbetningscykel utan automatisk förpositionering, lodrät ansättningsrörelse	3
210 SPÅR PENDLING Grov-/finbearbetningscykel med automatisk förpositionering, pendlande ansättningsrörelse	210
211 CIRKULÄRT SPÅR Grov-/finbearbetningscykel med automatisk förpositionering, pendlande ansättningsrörelse	211

8.4 Cykler för att fräsa fickor, öar och spår

URFRÄSNING (cykel 4)

- 1 Verktyget matas ned i arbetsstycket vid startpositionen (fickans centrum) och förflyttas ner till det första Skärdjupet.
- 2 Därefter förflyttas verktyget i den längre sidans positiva riktning vid kvadratiska fickor i Y-axelns positiva riktning och utökar sedan fickan inifrån och ut.
- 3 Detta förlopp upprepas (1 till 2) tills det angivna Djupet uppnås.
- 4 Vid cykelns slut förflyttar TNC:n verktyget tillbaka till startpositionen.

Att beakta före programmering

Använd en borrande fräs med ett skär över centrum (DIN 844), eller förborra i fickans centrum.

Förpositionera över fickans centrum med radiekompensering R0.

Programmera positioneringsblocket till startpunkten i spindelaxeln (Säkerhetsavståndet över arbetsstyckets yta).

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

För den 2:a Sidans längd gäller följande villkor: 2:a Sidans längd större än [(2 x Rundningsradien) + ansättningen i sida k].

- Säkerhetsavstånd 1 (inkrementalt): Avstånd verktygsspetsen (startposition) – arbetsstyckets yta
- Dj up 2 (inkrementalt): Avstånd arbetsstyckets yta fickans botten
- Skärdj up 3 (inkrementalt): Mått med vilket verktyget stegas nedåt. TNC:n förflyttar verktyget i en sekvens direkt till Djup om:
 - Skärdjup och Djup är lika
 - Skärdjup är större än Djup
- Nedmatningshastighet: Verktygets förflyttningshastighet vid nedmatning
- 1:a sidans längd 4: Fickans längd parallellt med bearbetningsplanets huvudaxel
- 2: a sidans längd 5: Fickans bredd
- Matning F: Verktygets förflyttningshastighet i bearbetningsplanet
- Vridning medurs DR +: Medfräsning vid M3 DR -: Motfräsning vid M3

11 L Z+100 R0 FMAX	
12 CYCL DEF 4.0 URFRAESNING	
13 CYCL DEF 4.1 AVST 2	
14 CYCL DEF 4.2 DJUP -10	
15 CYCL DEF 4.3 ARB DJ 4 F80	
16 CYCL DEF 4.4 X80	
17 CYCL DEF 4.5 Y40	
18 CYCL DEF 4.6 F100 DR+ RADIE 10	
19 L X+60 Y+35 FMAX MB	
20 L Z+2 FMAX M99	

Rundni ngsradi e: Radie för fickans hörn. Vid Radie = 0 är rundningsradien samma som verktygsradien

Beräkningar:

Ansättning i sida $k = K \times R$

- K: Överlappningsfaktor, definierad i maskinparameter 7430
- R: Fräsens radie

8.4 Cykler för att fräsa fickor, öar och spår

FICKA FINSKÄR (cykel 212)

- 1 TNC:n förflyttar automatiskt verktyget i spindelaxeln till Säkerhetsavståndet, eller – om så har angivits – till det andra säkerhetsavståndet och sedan till fickans centrum.
- 2 Från fickans centrum förflyttas verktyget i bearbetningsplanet till startpunkten för bearbetningen. Vid beräkningen av startpunkten tar TNC:n hänsyn till Tilläggsmåttet och verktygets radie. I vissa fall utför TNC:n ansättningen i fickans mitt.
- **3** Om verktyget befinner sig på det andra Säkerhetsavståndet, förflyttar TNC:n verktyget till Säkerhetsavståndet med snabbtransport FMAX och därifrån med Nedmatningshastigheten till det första Skärdjupet.
- 4 Därefter förflyttas verktyget tangentiellt till den slutgiltiga konturen och följer denna ett varv med medfräsning.
- 5 Därefter förflyttas verktyget tangentiellt från konturen tillbaka till startpunkten i bearbetningsplanet.
- 6 Detta förlopp (3 till 5) upprepas tills det programmerade Djupet uppnås.
- 7 Vid cykelns slut förflyttar TNC:n verktyget med snabbtransport till säkerhetsavståndet eller om så har angivits till det andra säkerhetsavståndet och sedan till fickans centrum (slutposition = startposition).

Att beakta före programmering

TNC:n förpositionerar automatiskt verktyget i verktygsaxeln och i bearbetningsplanet.

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

Om man vill använda finbearbetningscykeln för att skapa hela fickan, krävs en borrande fräs med ett skär över centrum (DIN 844) och att en liten Nedmatningshastighet anges.

Fickans minsta storlek: tre gånger verktygsradien.

- 212
- Säkerhetsavstånd Q200 (inkrementalt): Avstånd verktygsspetsen – arbetsstyckets yta
- Dj up Q201 (inkrementalt): Avstånd arbetsstyckets yta – fickans botten
- Nedmatni ngshast i ghet Q206: Verktygets förflyttningshastighet vid förflyttning mot Djup i mm/min. Om nedmatningen sker i materialet skall man ange ett mindre värde än det som har definierats i Q207
- Skärdj up Q202 (inkrementalt): Mått med vilket verktyget stegas nedåt; Ange ett värde som är större än 0
- Matning fräsning Q207: Verktygets förflyttningshastighet vid fräsning i mm/min
- **Koord. arbetsstyckets yta** Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Mtt 1:a axel Q216 (absolut): Fickans mitt i bearbetningsplanets huvudaxel
- ▶ Mtt 2:a axel Q217 (absolut): Fickans mitt i bearbetningsplanets komplementaxel
- ▶ 1. sidans längd Q218 (inkrementalt): Fickans längd parallellt med bearbetningsplanets huvudaxel
- 2. sidans längd Q219 (inkrementalt): Fickans längd parallellt med bearbetningsplanets komplementaxel
- Hörnradi e Q220: Radie för fickans hörn. Om inget anges sätter TNC:n hörnradien lika med verktygsradien.
- Tilläggsmått 1. axel Q221 (inkrementalt): Tilläggsmått i bearbetningsplanets huvudaxel, utgående från fickans längd

34	CYCL DEF 21	12 FICKA FINSKAER
	Q200=2	; SAEKERHETSAVST.
	Q201=-20	; DJUP
	Q206=150	; NEDMATNI NGSHASTI GHET
	Q202=5	; SKAERDJUP
	Q207=500	; MATNING FRAESNING
	Q203=+30	; KOORD. OEVERYTA
	Q204=50	; 2: A SAEKERHETSAVST.
	Q216=+50	; MITT 1: A AXEL
	Q217=+50	; MITT 2: A AXEL
	Q218=80	;1. SIDANS LEANGD
	Q219=60	;2:A SIDANS LEANGD
	Q220=5	; HOERNRADI E
	Q221=0	; TILLAEGGSMAAT

8.4 Cykler för att fräsa fickor, öar och spår

Ö FINSKÄR (cykel 213)

- 1 TNC:n förflyttar automatiskt verktyget i spindelaxeln till Säkerhetsavståndet, eller – om så har angivits – till det andra säkerhetsavståndet och sedan till öns mitt.
- **2** Från öns centrum förflyttas verktyget i bearbetningsplanet till startpunkten för bearbetningen. Startpunkten befinner sig ca 3,5-gånger verktygsradien till höger om ön.
- **3** Om verktyget befinner sig på det andra Säkerhetsavståndet, förflyttar TNC:n verktyget till Säkerhetsavståndet med snabbtransport FMAX och därifrån med Nedmatningshastigheten till det första Skärdjupet.
- 4 Därefter förflyttas verktyget tangentiellt till den slutgiltiga konturen och följer denna ett varv med medfräsning.
- 5 Därefter förflyttas verktyget tangentiellt från konturen tillbaka till startpunkten i bearbetningsplanet.
- 6 Detta förlopp (3 till 5) upprepas tills det programmerade Djupet uppnås.
- 7 Vid cykelns slut förflyttar TNC:n verktyget med FMAX till säkerhetsavståndet eller om så har angivits till det andra säkerhetsavståndet och sedan till öns mitt (slutposition = startposition).

Att beakta före programmering

TNC:n förpositionerar automatiskt verktyget i verktygsaxeln och i bearbetningsplanet.

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

Om man vill använda finbearbetningscykeln för att skapa hela ön, krävs en borrande fräs med ett skär över centrum (DIN 844). Ange i sådana fall en liten Nedmatningshastighet.

8.4 Cykler för a<mark>tt f</mark>räsa fickor, öar och spå

213

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd verktygsspetsen – arbetsstyckets yta
- Dj up Q201 (inkrementalt): Avstånd arbetsstyckets yta – öns botten
- Nedmatni ngshast i ghet Q206: Verktygets förflyttningshastighet vid förflyttning mot Djup i mm/ min. Om nedmatningen sker i materialet skall ett litet värde anges, om nedmatningen sker i luften kan ett högre värde anges
- Skärdj up Q202 (inkrementalt): Mått med vilket verktyget stegas nedåt. Ange ett värde som är större än 0
- Matning fräsning Q207: Verktygets förflyttningshastighet vid fräsning i mm/min
- **Koord. arbetsstyckets yta** Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Mtt 1:a axel Q216 (absolut): Öns mitt i bearbetningsplanets huvudaxel
- Mtt 2:a axel Q217 (absolut): Öns mitt i bearbetningsplanets komplementaxel
- ▶ 1. sidans längd 0218 (inkrementalt): Öns längd, parallellt med bearbetningsplanets huvudaxel
- ▶ 2. sidan längd Q219 (inkrementalt): Öns längd, parallellt med bearbetningsplanets komplementaxel
- Hörnradie Q220: Radie för öns hörn
- Tilläggsmått 1. axel Q221 (inkrementalt): Tilläggsmått för beräkning av förpositionen i bearbetningsplanets huvudaxel, utgående från öns längd

35	CYCL DEF 21	3 FINSKAER OE
	Q200=2	; SAEKERHETSAVST.
	Q201=-20	; DJ UP
	Q206=150	; NEDMATNI NGSHASTI GHET
	Q202=5	; SKAERDJUP
	Q207=500	; MATNING FRAESNING
	Q203=+30	; KOORD. OEVERYTA
	Q204=50	; 2: A SAEKERHETSAVST.
	Q216=+50	; MITT 1: A AXEL
	Q217=+50	; MITT 2: A AXEL
	Q218=80	;1. SIDANS LEANGD
	Q219=60	;2:A SIDANS LEANGD
	Q220=5	; HOERNRADI E
	Q221=0	; TILLAEGGSMAAT
CIRKELURFRÄSNING (cykel 5)

- 1 Verktyget matas ned i arbetsstycket vid startpositionen (fickans centrum) och förflyttas ner till det första Skärdjupet.
- 2 Därefter följer verktyget den i bilden till höger beskrivna spiralformiga verktygsbanan med Matning F; för ansättning i sida k, se "URFRÄSNING (cykel 4)", sidan 259
- **3** Detta förlopp upprepas tills det angivna Djupet uppnås.
- 4 Slutligen förflyttar TNC:n verktyget tillbaka till startpositionen.

Att beakta före programmering

Använd en borrande fräs med ett skär över centrum (DIN 844), eller förborra i fickans centrum.

Förpositionering över fickans centrum med radiekompensering R0.

Programmera positioneringsblocket till startpunkten i spindelaxeln (Säkerhetsavståndet över arbetsstyckets yta).

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

- Säkerhetsavstånd 1 (inkrementalt): Avstånd verktygsspetsen (startposition) – arbetsstyckets yta
- Fräsdjup 2: Avstånd arbetsstyckets yta fickans botten
- Skärdj up 3 (inkrementalt): Mått med vilket verktyget stegas nedåt. TNC:n förflyttar verktyget i en sekvens direkt till Djup om:
 - Skärdjup och Djup är lika
 - Skärdjup är större än Djup

- 8.4 Cykler för att fräsa fickor, öar och spår
- Nedmatni ngshast i ghet: Verktygets förflyttningshastighet vid nedmatning
- Cirkelradie: Cirkelfickans radie
- Matning F: Verktygets förflyttningshastighet i bearbetningsplanet
- ▶ Vridning medurs
 - DR +: Medfräsning vid M3
 - DR -: Motfräsning vid M3

16 L Z+100 RO FMAX
17 CYCL DEF 5.0 CIRKELURFRAESN
18 CYCL DEF 5.1 AVST 2
19 CYCL DEF 5.2 DJUP -12
20 CYCL DEF 5.3 ARB DJ 6 F80
21 CYCL DEF 5.4 RADIE 35
22 CYCL DEF 5.5 F100 DR+
23 L X+60 Y+50 FMAX MB
24 L Z+2 FMAX M99

8.4 Cykler för att fräsa fickor, öar och spår

CIRKELFICKA FINSKÄR (cykel 214)

- 1 TNC:n förflyttar automatiskt verktyget i spindelaxeln till Säkerhetsavståndet, eller – om så har angivits – till det andra säkerhetsavståndet och sedan till fickans mitt.
- 2 Från fickans centrum förflyttas verktyget i bearbetningsplanet till startpunkten för bearbetningen. Vid beräkningen av startpunkten tar TNC:n hänsyn till råämnets diameter och verktygets radie. Om råämnets diameter anges med 0 kommer TNC:n att utföra ansättningen i fickans mitt.
- **3** Om verktyget befinner sig på det andra Säkerhetsavståndet, förflyttar TNC:n verktyget till Säkerhetsavståndet med snabbtransport FMAX och därifrån med Nedmatningshastigheten till det första Skärdjupet.
- 4 Därefter förflyttas verktyget tangentiellt till den slutgiltiga konturen och följer denna ett varv med medfräsning.
- 5 Därefter förflyttas verktyget tangentiellt från konturen tillbaka till startpunkten i bearbetningsplanet.
- 6 Detta förlopp (3 till 5) upprepas tills det programmerade Djupet uppnås.
- 7 Vid cykelns slut förflyttar TNC:n verktyget med FMAX till säkerhetsavståndet eller – om så har angivits – till det 2. säkerhetsavståndet och sedan till fickans mitt (slutposition = startposition).

Att beakta före programmering

TNC:n förpositionerar automatiskt verktyget i verktygsaxeln och i bearbetningsplanet.

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

Om man vill använda finbearbetningscykeln för att skapa hela fickan, krävs en borrande fräs med ett skär över centrum (DIN 844) och att en liten Nedmatningshastighet anges.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd verktygsspetsen – arbetsstyckets yta
 - Dj up Q201 (inkrementalt): Avstånd arbetsstyckets yta – fickans botten
 - Nedmatni ngshast i ghet Q206: Verktygets förflyttningshastighet vid förflyttning mot Djup i mm/ min. Om nedmatningen sker i materialet skall man ange ett mindre värde än det som har definierats i Q207
 - Skärdj up Q202 (inkrementalt): Mått med vilket verktyget stegas nedåt
 - Matning fräsning Q207: Verktygets förflyttningshastighet vid fräsning i mm/min
 - **Koord. arbetsstyckets yta** Q203 (absolut): Koordinat för arbetsstyckets yta
 - 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
 - Mtt 1:a axel Q216 (absolut): Fickans mitt i bearbetningsplanets huvudaxel
 - ▶ Mtt 2:a axel Q217 (absolut): Fickans mitt i bearbetningsplanets komplementaxel
 - Räämnets diameter Q222: Den förbearbetade fickans diameter för beräkning av förpositionen; Ange ett mindre värde för råämnets diameter än för diameter färdig detalj
 - Diameter färdig detalj Q223: Den färdigbearbetade fickans diameter; Ange ett större värde för diameter färdig detalj än för råämnets diameter och större än verktygets diameter

42	CYCL DEF 21	14 CIRKELFICKA FINSKAER
	Q200=2	; SAEKERHETSAVST.
	Q201=-20	; DJ UP
	Q206=150	; NEDMATNI NGSHASTI GHET
	Q202=5	; SKAERDJUP
	Q207=500	; MATNING FRAESNING
	Q203=+30	; KOORD. OEVERYTA
	Q204=50	; 2: A SAEKERHETSAVST.
	Q216=+50	; MITT 1: A AXEL
	Q217=+50	; MITT 2: A AXEL
	Q222=79	; RAAMNE DIAMETER
	Q223=80	;FAERDIG DIAMETER

8.4 Cykler för att fräsa fickor, öar och spår

CIRKEL Ö FINSKÄR (cykel 215)

- 1 TNC:n förflyttar automatiskt verktyget i spindelaxeln till Säkerhetsavståndet, eller – om så har angivits – till det andra säkerhetsavståndet och sedan till öns centrum.
- 2 Från öns centrum förflyttas verktyget i bearbetningsplanet till startpunkten för bearbetningen. Startpunkten befinner sig ca 3,5gånger verktygsradien till höger om ön.
- **3** Om verktyget befinner sig på det andra Säkerhetsavståndet, förflyttar TNC:n verktyget till Säkerhetsavståndet med snabbtransport FMAX och därifrån med Nedmatningshastigheten till det första Skärdjupet.
- 4 Därefter förflyttas verktyget tangentiellt till den slutgiltiga konturen och följer denna ett varv med medfräsning.
- **5** Därefter förflyttas verktyget tangentiellt från konturen tillbaka till startpunkten i bearbetningsplanet.
- 6 Detta förlopp (3 till 5) upprepas tills det programmerade Djupet uppnås.
- 7 Vid cykelns slut förflyttar TNC:n verktyget med FMAX till säkerhetsavståndet eller om så har angivits till det andra säkerhetsavståndet och sedan till fickans mitt (slutposition = startposition).

Att beakta före programmering

TNC:n förpositionerar automatiskt verktyget i verktygsaxeln och i bearbetningsplanet.

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

Om man vill använda finbearbetningscykeln för att skapa hela ön, krävs en borrande fräs med ett skär över centrum (DIN 844). Ange i sådana fall en liten Nedmatningshastighet.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd verktygsspetsen – arbetsstyckets yta
 - Dj up Q201 (inkrementalt): Avstånd arbetsstyckets yta – öns botten
 - Nedmatni ngshast i ghet Q206: Verktygets förflyttningshastighet vid förflyttning mot Djup i mm/min. Om nedmatningen sker i materialet skall ett litet värde anges; om nedmatningen sker i luften kan ett högre värde anges.
 - Skärdj up Q202 (inkrementalt): Mått med vilket verktyget stegas nedåt; Ange ett värde som är större än 0
 - Matning fräsning Q207: Verktygets förflyttningshastighet vid fräsning i mm/min
 - **Koord. arbetsstyckets yta** Q203 (absolut): Koordinat för arbetsstyckets yta
 - 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
 - Mtt 1:a axel Q216 (absolut): Öns mitt i bearbetningsplanets huvudaxel
 - Mtt 2:a axel Q217 (absolut): Öns mitt i bearbetningsplanets komplementaxel
 - Räämets diameter Q222: Den förbearbetade öns diameter för beräkning av förpositionen; Ange ett större värde för råämnets diameter än för diameter färdig detalj
 - Diameter färdig detalj Q223: Den färdigbearbetade öns diameter; Ange ett mindre värde för diameter färdig detalj än för råämnets diameter

43	CYCL DEF 21	15 CIRKEL OE FINSKAER
	Q200=2	; SAEKERHETSAVST.
	Q201=-20	; DJ UP
	Q206=150	; NEDMATNI NGSHASTI GHET
	Q202=5	; SKAERDJUP
	Q207=500	; MATNING FRAESNING
	Q203=+30	; KOORD. OEVERYTA
	Q204=50	; 2: A SAEKERHETSAVST.
	Q216=+50	; MITT 1: A AXEL
	Q217=+50	; MITT 2: A AXEL
	Q222=81	; RAAMNE DIAMETER
	Q223=80	;FAERDIG DIAMETER

215

8.4 Cykler för a<mark>tt f</mark>räsa fickor, öar och spår

SPÅRFRÄSNING (cykel 3)

Grovbearbetning

- 1 TNC:n förskjuter verktyget inåt med finskärsmåttet (halva differensen mellan spårets bredd och verktygets diameter). Därifrån matas verktyget ned i arbetsstycket och fräser i spårets längdriktning.
- 2 Vid spårets slut följer en nedmatning till nästa Skärdjup och verktyget fräser tillbaka i motsatt riktning. Detta förlopp upprepas tills det programmerade fräsdjupet uppnås.

Finbearbetning

- **3** Vid spårets botten förflyttar TNC:n verktyget, på en tangentiellt anslutande cirkelbåge, ut mot ytterkonturen. Därefter finbearbetas konturen med medfräsning (vid M3).
- 4 Avslutningsvis förflyttas verktyget tillbaka till Säkerhetsavståndet med snabbtransport FMAX. Om antalet nedmatningar är ojämnt sker förflyttningen av verktyget till Säkerhetsavståndet vid startpositionen.

Att beakta före programmering

Använd en borrande fräs med ett skär över centrum (DIN 844), eller förborra i startpunkten.

Förpositionera till spårets mitt, förskjutet i spårets längdriktning med verktygsradien samt med radiekompensering R0.

Välj en fräsdiameter som är mindre än Spårets bredd och större än halva Spårets bredd.

Programmera positioneringsblocket till startpunkten i spindelaxeln (Säkerhetsavståndet över arbetsstyckets yta).

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

- 8.4 Cykler för att fräsa fickor, öar och spår
- Säkerhetsavstånd 1 (inkrementalt): Avstånd verktygsspetsen (startposition) – arbetsstyckets yta
- Fräsdjup 2 (inkrementalt): Avstånd arbetsstyckets yta – fickans botten
- Skärdjup 3 (inkrementalt): Mått med vilket verktyget stegas nedåt; TNC:n förflyttar verktyget i en sekvens direkt till djup om:
 - Skärdjup och Djup är lika
 - Skärdjup är större än Djup
- Nedmatni ngshasti ghet: Förflyttningshastighet vid nedmatning
- ▶ 1. sidans längd 4: Spårets längd; första skärriktningen bestäms av förtecknet
- 2. sidans längd 5: Spårets bredd
- ▶ Matning F: Verktygets förflyttningshastighet i bearbetningsplanet

9 L Z+100 RO FMAX
10 TOOL DEF 1 L+0 R+6
11 TOOL CALL 1 Z S1500
12 CYCL DEF 3.0 SPAARFRAESNING
13 CYCL DEF 3.1 AVST 2
14 CYCL DEF 3.2 DJUP -15
15 CYCL DEF 3.3 ARB DJ 5 F80
16 CYCL DEF 3.4 X50
17 CYCL DEF 3.5 Y15
18 CYCL DEF 3.6 F120
19 L X+16 Y+25 R0 FMAX MB
20 L Z+2 M99

SPÅR med pendlande nedmatning (cykel 210)

Att beakta före programmering

TNC:n förpositionerar automatiskt verktyget i verktygsaxeln och i bearbetningsplanet.

Vid grovbearbetning matas verktyget ner snett i materialet samtidigt som det pendlar från ena änden till den andra änden på spåret. Förborrning är därför inte nödvändig.

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

Välj en fräsdiameter som är mindre än SPÅRETS BREDD och större än en tredjedel av SPÅRETS BREDD.

Välj fräsdiameter som är mindre än halva spårets längd: Annars kan TNC:n inte utföra pendlande nedmatning.

Grovbearbetning

- 1 TNC:n positionerar verktyget med snabbtransport i spindelaxeln till det andra säkerhetsavståndet och därefter över den vänstra cirkelns centrum; därifrån positionerar TNC:n verktyget till Säkerhetsavståndet över arbetsstyckets yta.
- 2 Verktyget förflyttas till arbetsstyckets yta med Matning fräsning; därifrån förflyttas fräsen i spårets längdriktning – samtidigt som det matas ner snett i materialet – till den högra cirkelns centrum.
- **3** Därefter förflyttas verktyget tillbaka till den vänstra cirkelns centrum, fortfarande under sned nedmatning; detta förlopp upprepas tills det programmerade fräsdjupet uppnås.
- 4 Vid fräsdjupet förflyttar TNC:n verktyget, för planfräsning, till spårets andra ände och sedan tillbaka till spårets mitt.

Finbearbetning

- 5 Från spårets mitt förflyttar TNC:n verktyget tangentiellt till den slutliga konturen; därefter finbearbetar TNC:n konturen med medfräsning (vid M3) och om så har angivits även med flera ansättningar.
- 6 Vid konturens slut förflyttas verktyget tangentiellt från konturen till spårets mitt.
- 7 Slutligen förflyttas verktyget tillbaka till Säkerhetsavståndet med snabbtransport FMAX eller – om så har angivits – till det andra säkerhetsavståndet.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd verktygsspetsen – arbetsstyckets yta
- Dj up Q201 (inkrementalt): Avstånd arbetsstyckets yta – spårets botten
- Mtning fräsning Q207: Verktygets förflyttningshastighet vid fräsning i mm/min
- Skärdj up Q202 (inkrementalt): Totalt mått med vilket verktyget matas nedåt i spindelaxeln under en hel pendlingsrörelse
- Bearbetningssätt (0/1/2) Q215: Definition av bearbetningsomfång:
 - **0**: Grov- och finbearbetning
 - 1: Endast grovbearbetning
 - 2: Endast finbearbetning
- **Koord. arbetsstyckets yta** Q203 (absolut): Koordinat för arbetsstyckets yta
- Säkerhetsavstånd Q204 (inkrementalt): Z-koordinat vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Mtt 1:a axel Q216 (absolut): Spårets mitt i bearbetningsplanets huvudaxel
- Mtt 2: a axel Q217 (absolut): Spårets mitt i bearbetningsplanets komplementaxel
- 1. Sidans längd Q218 (värde parallellt med bearbetningsplanets huvudaxel): Ange spårets längre sida
- 2. Sidans längd Q219 (värde parallellt med bearbetningsplanets komplementaxel): Ange spårets bredd; om spårets bredd är densamma som verktygets diameter kommer TNC:n bara att utföra grovbearbetningen (långhåls fräsning)
- Vridningsvinkel Q224 (absolut): Vinkel till vilken hela spåret skall vridas; vridningscentrum ligger i spårets centrum
- Skärdjup finskär Q338 (inkrementalt): Mått med vilket verktyget stegas nedåt i spindelaxeln vid finbearbetning. Q338=0: Finbearbetning i en ansättning

51	CYCL DEF 21	IO SPAAR PENDLING
	Q200=2	; SAEKERHETSAVST.
	Q201=-20	; DJ UP
	Q207=500	; MATNING FRAESNING
	Q202=5	; SKAERDJUP
	Q215=0	; BEARBETNINGSTYP
	Q203=+30	; KOORD. OEVERYTA
	Q204=50	; 2: A SAEKERHETSAVST.
	Q216=+50	; MITT 1: A AXEL
	Q217=+50	; MITT 2: A AXEL
	Q218=80	;1. SIDANS LEANGD
	Q219=12	;2:A SIDANS LEANGD
	Q224=+15	; VRIDNINGSLAAGE
	Q338=5	; SKAERDJUP FINSKAER

8 Programmering: Cykler

CIRKULÄRT SPÅR med pendlande nedmatning (cykel 211)

Grovbearbetning

- 1 TNC:n positionerar verktyget med snabbtransport i spindelaxeln till det andra säkerhetsavståndet och därefter över den högra cirkelns centrum. Därifrån positionerar TNC:n verktyget till det angivna Säkerhetsavståndet över arbetsstyckets yta.
- 2 Verktyget förflyttas med Matning fräsning till arbetsstyckets yta; därifrån förflyttas fräsen – samtidigt som den matas ner snett i materialet – till spårets andra ände.
- **3** Därefter förflyttas verktyget tillbaka till startpunkten, fortfarande under sned nedmatning; detta förlopp (2 till 3) upprepas tills det programmerade fräsdjupet uppnås.
- 4 Vid fräsdjupet förflyttar TNC:n verktyget, för planfräsning, till spårets andra ände.

Finbearbetning

- 5 Från spårets mitt förflyttar TNC:n verktyget tangentiellt till den slutliga konturen; därefter finbearbetar TNC:n konturen med medfräsning (vid M3) och om så har angivits även med flera ansättningar. Finbearbetningens startpunkt ligger i den högra cirkelns centrum.
- 6 Vid konturens slut förflyttas verktyget tangentiellt från konturen.
- 7 Slutligen förflyttas verktyget tillbaka till Säkerhetsavståndet med snabbtransport FMAX eller – om så har angivits – till det andra säkerhetsavståndet.

Att beakta före programmering

TNC:n förpositionerar automatiskt verktyget i verktygsaxeln och i bearbetningsplanet.

Vid grovbearbetning matas verktyget ner i materialet med en HELIX-rörelse samtidigt som det pendlar från ena änden till andra änden på spåret. Förborrning är därför inte nödvändig.

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

Välj en fräsdiameter som är mindre än SPÅRETS BREDD och större än en tredjedel av SPÅRETS BREDD.

Välj fräsdiameter som är mindre än halva spårets längd. Annars kan TNC:n inte utföra pendlande nedmatning.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd verktygsspetsen – arbetsstyckets yta
- Dj up Q201 (inkrementalt): Avstånd arbetsstyckets yta – spårets botten
- Mtning fräsning Q207: Verktygets förflyttningshastighet vid fräsning i mm/min
- Skärdj up Q202 (inkrementalt): Totalt mått med vilket verktyget matas nedåt i spindelaxeln under en hel pendlingsrörelse
- Bearbetningssätt (0/1/2) Q215: Definition av bearbetningsomfång:
 - 0: Grov- och finbearbetning
 - 1: Endast grovbearbetning
 - 2: Endast finbearbetning
- **Koord. arbetsstyckets yta** Q203 (absolut): Koordinat för arbetsstyckets yta
- Säkerhetsavstånd Q204 (inkrementalt): Z-koordinat vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Mtt 1:a axel Q216 (absolut): Spårets mitt i bearbetningsplanets huvudaxel
- Mtt 2:a axel Q217 (absolut): Spårets mitt i bearbetningsplanets komplementaxel
- Cirkelsegment-diameter Q244: Ange diameter för cirkelsegmentet
- Sidans längd Q219: Ange spårets bredd; om spårets bredd är densamma som verktygets diameter kommer TNC:n bara att utföra grovbearbetningen (långhåls fräsning)
- Startvinkel Q245 (absolut): Ange polär vinkel till startpunkten
- Öppningsvinkel Q248 (inkrementalt): Ange spårets öppningsvinkel (vinkellängd)
- Skärdjup finskär Q338 (inkrementalt): Mått med vilket verktyget stegas nedåt i spindelaxeln vid finbearbetning. Q338=0: Finbearbetning i en ansättning

52	CYCL DEF 21	1 RUNT SPAAR
	Q200=2	; SAEKERHETSAVST.
	Q201=-20	; DJ UP
	Q207=500	; MATNING FRAESNING
	Q202=5	; SKAERDJUP
	Q215=0	; BEARBETNINGSSAETT
	Q203=+30	; KOORD. OEVERYTA
	Q204=50	; 2: A SAEKERHETSAVST.
	Q216=+50	; MITT 1: A AXEL
	Q217=+50	; MITT 2: A AXEL
	Q244=80	; CIRKELSEGMENT DIAMETER
	Q219=12	;2. SIDANS LEANGD
	Q245=+45	; STARTVINKEL
	Q248=90	; OEPPNINGSVINKEL
	Q338=5	; SKAERDJUP FINSKAER

Exempel: Fräsning av fickor, öar och spår

0 BEGIN PGM C210 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Råämnesdefinition
2 BLK FORM 0. 2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+6	Verktygsdefinition grov/fin
4 TOOL DEF 2 L+0 R+3	Verktygsdefinition spårfräs
5 TOOL CALL 1 Z S3500	Verktygsanrop grov/fin
6 L Z+250 RO F MAX	Frikörning av verktyget
7 CYCL DEF 213 OE FINSKAER	Cykeldefinition utvändig bearbetning
Q200=2 ; SAEKERHETSAVSTAAND	
Q201=-30 ; DJUP	
Q206=250 ; MATNING DJUP	
Q202=5 ; SKAERDJUP	
Q207=250 ; MATNING FRAESNING	
Q203=+0 ; KOORD. OEVERYTA	
Q204=20 ; 2. SAEKERHETSAVST.	
Q216=+50 ; MITT 1: A AXEL	
Q217=+50 ; MITT 2: A AXEL	
Q218=90 ;1. SIDANS LEANGD	
Q219=80 ; 2. SIDANS LEANGD	

Q220=0 ; HOERNRADIE	
Q221=5 ; FINSKAER	
8 CYCL CALL MB	Cykelanrop utvändig bearbetning
9 CYCL DEF 5.0 CIRKELURFRAESN	Cykeldefinition cirkelurfräsning
10 CYCL DEF 5.1 AVST 2	
11 CYCL DEF 5.2 DJUP -30	
12 CYCL DEF 5.3 ARB DJ 5 F250	
13 CYCL DEF 5.4 RADIE 25	
14 CYCL DEF 5.5 F400 DR+	
15 L Z+2 R0 F MAX M99	Cykelanrop cirkelurfräsning
16 L Z+250 R0 F MAX M6	Verktygsväxling
17 TOOL CALL 2 Z S5000	Verktygsanrop spårfräs
18 CYCL DEF 211 CIRKEL SPAAR	Cykeldefinition spår 1
Q200=2 ; SAEKERHETSAVSTAAND	
Q201=-20 ; DJ UP	
Q207=250 ; MATNING FRAESNING	
Q202=5 ; SKAERDJUP	
Q215=0; BEARBETNINGSSAETT	
Q203=+0 ; KOORD. OEVERYTA	
Q204=100 ; 2. SAEKERHETSAVST.	
Q216=+50 ; MITT 1: A AXEL	
Q217=+50 ; MITT 2: A AXEL	
Q244=70 ; CIRK. SEG DIAMETER	
Q219=8 ; 2. SIDANS LEANGD	
Q245=+45 ; STARTVINKEL	
Q248=90 ; OEPPNINGSVINKEL	
Q338=5 ; SKAERDJUP FINSKAER	
19 CYCL CALL MB	Cykelanrop spår 1
20 FN 0: $Q245 = +225$	Ny startvinkel för spår 2
21 CYCL CALL	Cykelanrop spår 2
22 L Z+250 R0 F MAX M2	Frikörning av verktyget, programslut
23 END PGM C210 MM	

8.5 Cykler för att skapa punktmönster

Översikt

TNC:n erbjuder två cykler med vilka man kan färdigställa punktmönster direkt:

Cykel	Softkey
220 PUNKTMÖNSTER PÅ CIRKEL	220
221 PUNKTMÖNSTER PÅ LINJER	221

Följande bearbetningscykler kan kombineras med cykel 220 och 221:

När man vill färdigställa oregelbundna punktmönster använder man sig av punkttabeller med **CYCL CALL PAT** (se "Punkttabeller" på sidan 205).

- Cykel 1 DJUPBORRNING
- Cykel 2 GÄNGNING med flytande gängtappshållare
- Cykel 3 SPÅRFRÄSNING
- Cykel 4 FICKURFRÄSNING
- Cykel 5 CIRKELURFRÄSNING
- Cykel 17 SYNKRONISERAD GÄNGNING utan flytande gängtappshållare
- Cykel 18 GÄNGSKÄRNING
- Cykel 200 BORRNING
- Cykel 201 BROTSCHNING
- Cykel 202 URSVARVNING
- Cykel 203 UNIVERSAL-BORRNING
- Cykel 204 BAKPLANING
- Cykel 205 UNIVERSAL-DJUPBORRNING
- Cykel 206 GÄNGNING NY med flytande gängtappshållare
- Cykel 207 SYNKRONISERAD GÄNGNING NY utan flytande gängtappshållare
- Cykel 208 BORRFRÄSNING
- Cykel 209 GÄNGNING SPÅNBRYTNING
- Cykel 212 FICKA FINSKÄR
- Cykel 213 Ö FINSKÄR
- Cykel 214 CIRKULÄR FICKA FINSKÄR
- Cykel 215 CIRKULÄR Ö FINSKÄR
- Cykel 262 GÄNGFRÄSNING
- Cykel 263 FÖRSÄNK-GÄNGFRÄSNING
- Cykel 264 BORR-GÄNGFRÄSNING
- Cykel 265 HELIX-BORRGÄNGFRÄSNING
- Cykel 267 UTVÄNDIG GÄNGFRÄSNING

8.5 Cykler f<mark>ör</mark>att skapa punktmönster

PUNKTMÖNSTER PÅ CIRKEL (cykel 220)

- TNC:n positionerar verktyget från den aktuella positionen till startpunkten för den första bearbetningen med snabbtransport.
 Ordningsfölid:
 - Förflyttning till det andra Säkerhetsavståndet (spindelaxel)
 - Förflyttning till startpunkten i bearbetningsplanet
 - Förflyttning till säkerhetsavståndet över arbetsstyckets yta (spindelaxel)
- 2 Från denna position utför TNC:n den sist definierade bearbetningscykeln.
- 3 Därefter positionerar TNC:n verktyget, med rätlinjeförflyttning, till startpunkten för nästa bearbetning; Verktyget befinner sig då på Säkerhetsavståndet (eller det andra säkerhetsavståndet).
- 4 Detta förlopp (1 till 3) upprepas tills alla bearbetningarna har utförts.

Att beakta före programmering

Cykel 220 är DEF-aktiv, detta betyder att cykel 220 automatiskt anropar den sist definierade bearbetningscykeln.

Om man kombinerar en av bearbetningscyklerna 200 till 208, 212 till 215, 262 till 265 och 267 med cykel 220 så kommer Säkerhetsavståndet, Arbetsstyckets yta och det andra Säkerhetsavståndet att hämtas från cykel 220.

- ▶ Mtt 1:a axel Q216 (absolut): Cirkelsegmentets mittpunkt i bearbetningsplanets huvudaxel
- Mtt 2:a axel Q217 (absolut): Cirkelsegmentets mittpunkt i bearbetningsplanets komplementaxel
- Cirkelsegment-diameter Q244: Cirkelsegmentets diameter
- Startvinkel Q245 (absolut): Vinkel mellan bearbetningsplanets huvudaxel och startpunkten för den första bearbetningen på cirkelsegmentet
- Slutvinkel Q246 (absolut): Vinkel mellan bearbetningsplanets huvudaxel och startpunkten för den sista bearbetningen på cirkelsegmentet (gäller inte vid fullcirkel); ange en Slutvinkel som skiljer sig från Startvinkel; om man anger en Slutvinkel som är större än Startvinkel så utförs bearbetningen moturs, annars medurs
- Vinkel steg Q247 (inkrementalt): Vinkel mellan två bearbetningar på cirkelsegmentet; om Vinkelsteg är lika med noll så beräkna TNC:n själv Vinkelsteget ur Startvinkel, Slutvinkel och Antal bearbetningar; om ett Vinkelsteg anges så tar TNC:n inte hänsyn till Slutvinkel; förtecknet för Vinkelsteg bestämmer bearbetningsriktningen (– = Medurs)

53	CYCL DEF 22	0 MDENSTER CIRKEL
	Q216=+50	; MITT 1: A AXEL
	Q217=+50	; MITT 2: A AXEL
	Q244=80	; CIRKELSEGMENT DIAMETER
	Q245=+0	; STARTVINKEL
	Q246=+360	; SLUTVINKEL
	Q247=+0	; VINKELSTEG
	Q241=8	; ANTAL BEARBETNINGAR
	Q200=2	; SAEKERHETSAVST.
	Q203=+30	; KOORD. OEVERYTA
	Q204=50	; 2: A SAEKERHETSAVST.
	Q301=1	;FOERFLYTTNING TILL S. HOEJD

- Antal bearbetningar Q241: Antal bearbetningar på cirkelsegmentet
- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta; ange ett positivt värde
- **Koord. arbetsstyckets yta** Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske; ange ett positivt värde
- Förflyttning till säkerhetshöjd Q301: Definition av hur verktyget skall förflyttas mellan bearbetningarna:
 0: Förflyttning till säkerhetsavståndet mellan bearbetningarna
 1: Förflyttning till det andra säkerhetsavståndet mellan bearbetningarna

PUNKTMÖNSTER PÅ LINJER (cykel 221)

Att beakta före programmering

Cykel 221 är DEF-aktiv, detta betyder att cykel 221 automatiskt anropar den sist definierade bearbetningscykeln.

Om man kombinerar en av bearbetningscyklerna 200 till 208, 212 till 215, 262 till 265 och 267 med cykel 221 så kommer Säkerhetsavståndet, Arbetsstyckets yta och det andra Säkerhetsavståndet att hämtas från 221.

1 TNC:n positionerar automatiskt verktyget från den aktuella positionen till startpunkten för den första bearbetningen.

Ordningsföljd:

- Förflyttning till det andra Säkerhetsavståndet (spindelaxel)
- Förflyttning till startpunkten i bearbetningsplanet
- Förflyttning till säkerhetsavståndet över arbetsstyckets yta (spindelaxel)
- 2 Från denna position utför TNC:n den sist definierade bearbetningscykeln.
- 3 Därefter positionerar TNC:n verktyget i huvudaxelns positiva riktning till startpunkten för nästa bearbetning; verktyget befinner sig då på Säkerhetsavståndet (eller på det andra säkerhetsavståndet).
- 4 Detta förlopp (1 till 3) upprepas tills alla bearbetningarna på den första raden har utförts; verktyget befinner sig vid den sista punkten i den första raden.
- 5 Därefter förflyttar TNC:n verktyget till den andra radens sista punkt och utför där bearbetningen.
- **6** Därifrån positionerar TNC:n verktyget i huvudaxelns negativa riktning till startpunkten för nästa bearbetning.
- 7 Detta förlopp (6) upprepas tills alla bearbetningarna på den andra raden har utförts.
- 8 Efter detta förflyttar TNC:n verktyget till startpunkten på nästa rad.
- 9 Med den beskrivna pendlande rörelsen kommer alla andra rader att utföras.

- Startpunkt 2: a axel Q226 (absolut): Koordinat för startpunkten i bearbetningsplanets komplementaxel
- Avstånd 1: a axel Q237 (inkrementalt): Avstånd mellan de enskilda punkterna inom raden
- Avstånd 2: a axel Q238 (inkrementalt): Avstånd mellan de enskilda raderna
- Antal kolumer Q242: Antal bearbetningar per rad
- Antal rader 0243: Antal rader
- Vridningsvinkel Q224 (absolut): Vinkel med vilken hela hålbilden skall vridas; vridningscentrum ligger i startpunkten
- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta
- **Koord. arbetsstyckets yta** Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Förflyttning till säkerhetshöjd Q301: Definition av hur verktyget skall förflyttas mellan bearbetningarna:
 0: Förflyttning till säkerhetsavståndet mellan bearbetningarna

1: Förflyttning till det andra säkerhetsavståndet mellan bearbetningarna

54	CYCL DEF 22	21 MDENSTER LINJER
	Q225=+15	; STARTPUNKT 1: A AXEL
	Q226=+15	; STARTPUNKT 2: A AXEL
	Q237=+10	; AVSTAAND 1: A AXEL
	Q238=+8	; AVSTAAND 2: A AXEL
	Q242=6	; ANTAL KOLUMNER
	Q243=4	; ANTAL RADER
	Q224=+15	; VRI DNI NGSLAAGE
	Q200=2	; SAEKERHETSAVST.
	Q203=+30	; KOORD. OEVERYTA
	Q204=50	; 2: A SAEKERHETSAVST.
	Q301=1	; FOERFLYTTNING TILL S. HOEJD

Exempel: Hålcirkel

O BEGIN PGM BOHRB MM	
1 BLK FORM 0. 1 Z X+0 Y+0 Z-40	Råämnesdefinition
2 BLK FORM 0. 2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+3	Verktygsdefinition
4 TOOL CALL 1 Z S3500	Verktygsanrop
5 L Z+250 RO F MAX MB	Frikörning av verktyget
6 CYCL DEF 200 BORRNING	Cykeldefinition borrning
Q200=2 ; SAEKERHETSAVSTAAND	
Q201=-15 ; DJUP	
Q206=250 ; MATNING DJUP	
Q2O2=4 ; SKAERDJUP	
Q210=0 ; VAENTETID UPPE	
Q203=+0 ; KOORD. OEVERYTA	
Q204=0 ; 2. SAEKERHETSAVST.	
Q211=0.25 ; VAENTETID NERE	

7 CYCL DEF 220 MDENSTER CIRKEL	Cykeldefinition hålcirkel 1, CYCL 200 anropas automatiskt,
Q216=+30 ; MITT 1: A AXEL	Q200, Q203 och Q204 hämtas från cykel 220
Q217=+70 ; MITT 2: A AXEL	
Q244=50 ; CIRK. SEG DIAMETER	
Q245=+0 ; STARTVINKEL	
Q246=+360 ; SLUTVINKEL	
Q247=+0 ; VINKELSTEG	
Q241=10 ; ANTAL BEARBETNINGAR	
Q200=2 ; SAEKERHETSAVSTAAND	
Q203=+0 ; KOORD. OEVERYTA	
Q204=100 ; 2. SAEKERHETSAVST.	
Q301=1 ; FOERFLYTTNING TILL S. HOEJD	
8 CYCL DEF 220 MDENSTER CIRKEL	Cykeldefinition hålcirkel 2, CYCL 200 anropas automatiskt,
Q216=+90 ; MITT 1: A AXEL	Q200, Q203 och Q204 hämtas från cykel 220
Q217=+25 ; MITT 2: A AXEL	
Q244=70 ; CIRK. SEG DIAMETER	
Q245=+90 ; STARTVINKEL	
Q246=+360 ; SLUTVINKEL	
Q247=+30 ; VINKELSTEG	
Q241=5 ; ANTAL BEARBETNINGAR	
Q200=2 ; SAEKERHETSAVSTAAND	
Q203=+0 ; KOORD. OEVERYTA	
Q204=100 ; 2. SAEKERHETSAVST.	
Q301=1 ; FOERFLYTTNING TILL S. HOEJD	
9 L Z+250 RO F MAX M2	Frikörning av verktyget, programslut
10 END PGM BOHRB MM	

8.6 SL-cykler

8.6 SL-cykler

Grunder

Med SL-cyklerna kan man sammansätta komplexa konturer som består av upp till 12 delkonturer (fickor eller öar). De individuella delkonturerna definierar man i form av underprogram. Från listan med delkonturer (underprogramnummer), som man anger i cykel 14 KONTUR, beräknar TNC:n den sammansatta konturen.

Minnet för en SL-cykel (alla kontur-underprogram) är begränsat till 48 Kbyte. Antalet möjliga konturelement beror på konturtypen (invändig/utvändig kontur) och antalet delkonturer, exempelvis motsvarar detta ca. 256 rätlinjeblock.

Underprogrammens egenskaper

- Koordinatomräkningar är tillåtna. Om de programmeras inom delkonturerna, är de även verksamma i efterföljande underprogram, men behöver inte återställas efter cykelanropet.
- TNC:n ignorerar matning F och tilläggsfunktioner M
- TNC:n identifierar en ficka om man programmerar förflyttning på insidan av konturen, t.ex. om konturen beskrivs medurs med radiekompensering RR.
- TNC:n identifierar en ö om man programmerar förflyttning på utsidan av konturen, t.ex. om konturen beskrivs medurs med radiekompensering RL.
- Underprogrammen får inte innehålla några koordinater i spindelaxeln.
- I underprogrammets första koordinatblock fastlägger man bearbetningsplanet. Tilläggsaxlar U,V,W är tillåtna

Bearbetningscyklernas egenskaper

- TNC:n positionerar automatiskt verktyget till S\u00e4kerhetsavst\u00e4nd f\u00f6re varje cykel.
- Varje djupnivå fräses utan lyftning av verktyget eftersom fräsningen sker runt öar.
- Radien på "Innerhörn" kan programmeras verktyget stannar inte, fräsmärken undviks (gäller för den yttersta verktygsbanan vid urfräsning och finskär sida).
- Vid finskär sida förflyttar TNC:n verktyget till konturen på en tangentiellt anslutande cirkelbåge.
- Även vid finskär botten förflyttar TNC:n verktyget till arbetsstycket på en tangentiellt anslutande cirkelbåge (t.ex: spindelaxel Z: cirkelbåge i planet Z/X).
- TNC:n bearbetar konturen genomgående med medfräsning alternativt med motfräsning.

Med MP7420 definierar man vart TNC:n skall positionera verktyget efter att cyklerna 21 till 24 har slutförts.

Exempel: Schema: Arbeta med SL-cykler

0 BEGIN PGM SL2 MM ... 12 CYCL DEF 14.0 KONTUR ... 13 CYCL DEF 20.0 KONTURDATA 16 CYCL DEF 21.0 FOERBORRNING ... **17 CYCL CALL** . . . 18 CYCL DEF 22.0 GROVSKAER ... **19 CYCL CALL** . . . 22 CYCL DEF 23.0 FINSKAER DJUP ... 23 CYCL CALL . . . 26 CYCL DEF 24.0 FINSKAER SIDA ... 27 CYCL CALL . . . 50 L Z+250 R0 FMAX M2 51 LBL 1 . . . 55 LBL 0 56 LBL 2 . . . 60 LBL 0 . . . 99 END PGM SL2 MM

Måttuppgifterna för bearbetningen såsom fräsdjup, tilläggsmått och säkerhetsavstånd anges centralt i cykel 20 som KONTURDATA.

Översikt SL-cykler

Cykel	Softkey
14 KONTUR (krävs alltid)	14 LBL 1N
20 KONTURDATA (krävs alltid)	20 KONTUR- DRTR
21 FÖRBORRNING (valbar)	21 //
22 GROVSKÄR (krävs alltid)	22
23 FINSKÄR DJUP (valbar)	23
24 FINSKÄR SIDA (valbar)	24

Ytterligare cykler:

Cykel	Softkey
25 KONTURLINJE	25
27 CYLINDERMANTEL	27
28 CYLINDERMANTEL spårfräsning	28

KONTUR (cykel 14)

l cykel 14 KONTUR listar man underprogrammen som skall överlagras för att skapa den slutgiltiga sammansatta konturen.

Att beakta före programmering

Cykel 14 är DEF-aktiv, detta innebär att den aktiveras direkt efter sin definition i programmet.

l cykel 14 kan man lista maximalt 12 underprogram (delkonturer).

14 LBL 1...N Label nummer för kontur: Ange alla labelnummer för de olika underprogrammen som skall överlagras för att skapa en kontur. Bekräfta varje nummer med knappen ENT och avsluta sedan inmatningen med knappen END.

Exempel: NC-block

12	CYCL DEF 14	4.0 KONTUR	
13	CYCL DEF 14	4.1 KONTURLABEL 1	/2 /3 /4

Överlagrade konturer

Man kan överlagra fickor och öar för att skapa en ny kontur. Därigenom kan en fickas yta ökas med en överlagrad ficka eller minskas med en överlagrad ö.

Underprogram: Överlappande fickor

G

De efterföljande programexemplen är konturunderprogram som anropas i ett huvudprogram från cykel 14 KONTUR.

Fickan A och B överlappar varandra.

TNC:n beräknar skärningspunkterna S1 och S2, man behöver inte programmera dessa själv.

Fickorna har programmerats som fullcirklar.

Underprogram 1: Ficka A

51 LBL 1
52 L X+10 Y+50 RR
53 CC X+35 Y+50
54 C X+10 Y+50 DR-
55 LBL 0

Underprogram 2: Ficka B

56 LBL 2
57 L X+90 Y+50 RR
58 CC X+65 Y+50
59 C X+90 Y+50 DR-
60 LBL 0

"Summa"-yta

Båda delytorna A och B inklusive den gemensamt överlappade ytan skall bearbetas:

■ Ytorna A och B måste vara fickor.

Den första fickan (i cykel 14) måste börja utanför den andra. Yta A:

51 LBL 1
52 L X+10 Y+50 RR
53 CC X+35 Y+50
54 C X+10 Y+50 DR-
55 LBL 0

Yta B:

6 LBL 2	
7 L X+90 Y+50 RR	
58 CC X+65 Y+50	
9 C X+90 Y+50 DR-	
O LBL O	

"Differens"-yta

Ytan A skall bearbetas förutom den av B överlappade delen:

■ Ytan A måste vara en ficka och B måste vara en ö.

A måste börja utanför B.

Yta A:

8.6 SL-cykler

51 LBL 1
52 L X+10 Y+50 RR
53 CC X+35 Y+50
54 C X+10 Y+50 DR-
55 LBL 0

Yta B:

56 LBL 2	
57 L X+90 Y+50 RL	
58 CC X+65 Y+50	
59 C X+90 Y+50 DR-	
60 LBL 0	

"Snitt"-yta

Den av A och B överlappade ytan skall bearbetas. (Ytor som bara täcks av en ficka skall lämnas obearbetade.)

A och B måste vara fickor.

■ A måste börja inuti B.

Yta A:

51 LBL 1	
52 L X+60 Y+50 RR	
53 CC X+35 Y+50	
54 C X+60 Y+50 DR-	
55 LBL 0	

Yta B:

56 LBL 2	
57 L X+90 Y+50 RR	
58 CC X+65 Y+50	
59 C X+90 Y+50 DR-	
60 LBL 0	

KONTURDATA (cykel 20)

l cykel 20 anger man bearbetningsinformation för underprogrammen som innehåller delkonturerna.

KONTUR-DATA

Att beakta före programmering

Cykel 20 är DEF-aktiv, detta innebär att cykel 20 aktiveras direkt efter sin definition i bearbetningsprogrammet.

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte den aktuella cykeln.

Den i cykel 20 angivna bearbetningsinformationen gäller för cykel 21 till 24.

Om man använder SL-cykler i Q-parameterprogram, får inte parameter Q1 till Q19 användas som programparametrar.

- Fräsdj up Q1 (inkrementalt): Avstånd arbetsstyckets yta – fickans botten.
- Banöverl app Faktor Q2: Q2 x verktygsradien ger ansättningen i sida k.
- ► **Tillägg för finskär sida** Q3 (inkrementalt): Arbetsmån för finskär i bearbetningsplanet.
- Tillägg för finskär djup Q4 (inkrementalt): Arbetsmån för finskär i botten.
- Koordinat arbetsstyckets yta Q5 (absolut): Absolut koordinat för arbetsstyckets yta
- Säkerhetsavstånd Q6 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta
- Säkerhetshöj d Q7 (absolut): Absolut höjd, på vilken kollision mellan verktyg och arbetsstycke inte kan ske (för mellanpositioneringar och återgång vid cykelslut)
- Radie innerhörn Q8: Rundningsradie för inner-"hörn"; Det angivna värdet avser verktygscentrumets bana
- Rotationsriktning? Medurs = -1 Q9: Bearbetningsriktning för fickor
 - medurs (Q9 = -1 motfräsning för fickor och öar)
 - moturs (Q9 = +1 medfräsning för fickor och öar)

Vid ett programstopp kan bearbetningsparametrarna kontrolleras och, om så önskas, skrivas över.

Exempel: NC-block

57	CYCL DEF	20.0 KONTURDATA
	Q1=-20	; FRAESDJUP
	Q2=1	; BANOEVERLAPP
	Q3=+0.2	;TILLAEGG SIDA
	Q4=+0.1	;TILLAEGG DJUP
	Q5=+30	; KOORD. OEVERYTA
	Q6=2	; SAEKERHETSAVST.
	Q7=+80	; SAEKERHETSHOEJD
	Q8=0.5	; RUNDNI NGS RADI E
	Q9=+1	; ROTATI ONSRIKTNI NG

8.6 SL-cykler

FÖRBORRNING (cykel 21)

TNC:n tar inte hänsyn till ett eventuellt deltavärde DR som har programmerats i TOOL CALL-blocket vid beräkningen av instickspunkten.

Vid avsmalnande ställen kan TNC:n i vissa lägen inte förborra med ett verktyg som är större än grovbearbetningsverktyget.

Cykelförlopp

Som cykel 1 Djupborrning, se "Cykler för borrning, gängning och gängfräsning", sidan 209.

Användningsområde

Cykel 21 FÖRBORRNING tar hänsyn till Tilläggsmått finskär sida och Tilläggsmått finskär djup samt urfräsningsverktygets radie då nedmatningspunkten beräknas. Nedmatningspunkten är samtidigt startpunkt för urfräsningen.

- Skärdj up Q10 (inkrementalt): Mått med vilket verktyget stegas nedåt (förtecken vid negativ arbetsriktning "–")
- ▶ Nednatningshastighet Q11: Borrmatning i mm/min
- Grovskär verktygsnumer Q13: Numret på verktyget som skall användas vid grovbearbetningen

58	CYCL DEF	21.0 FOERBORRNING	
	Q10=+5	; SKAERDJUP	
	Q11=100	; NEDMATNI NGSHASTI GHET	
	Q13=1	; URFRAESNINGSVERKTYG	

GROVSKÄR (cykel 22)

- 1 TNC:n förflyttar verktyget till en position ovanför nedmatningspunkten; hänsyn tas till Tilläggsmått finskär sida.
- 2 På det första Skärdjupet fräser verktyget, med Fräsmatning Q12, konturen inifrån och ut.
- **3** Först frifräses öarnas konturer (här: C/D) för att därefter utvidga fickan utåt mot fickornas konturer (här: A/B).
- 4 Slutligen färdigställer TNC:n fickans kontur och verktyget återförs till Säkerhetshöjden.

Att beakta före programmering

l förekommande fall, Använd en borrande fräs med ett skär över centrum (DIN 844), eller förborra med cykel 21.

- Skärdj up Q10 (inkrementalt): Mått med vilket verktyget stegas nedåt
- Nedmatni ngshasti ghet Q11: Matningshastighet nedåt i mm/min
- Matning fräsning Q12: Fräsmatning i mm/min
- Förbearbetningsverktyg numer Q18: Nummer på verktyget som TNC:n redan har använt för förurfräsning. Om ingen tidigare urfräsning har utförts anges "0"; om man anger ett nummer här, utför TNC:n endast urfräsning vid de delar som inte kunde bearbetas med förbearbetningsverktyget. Om det inte går att förflytta verktyget i sidled till det område som skall efterbearbetas kommer TNC:n att utföra pendlande nedmatning; på grund av detta måste man ange skärlängden LCUTS och den maximala nedmatningsvinkeln ANGLE för verktyget i verktygstabellen TOOL.T, se "Verktygsdata", sidan 97. Om detta inte har definierats kommer TNC:n att presentera ett felmeddelande.
- Matning pendling Q19: Pendlingsmatning i mm/min

59	CYCL DEF	22.0 GROVSKAER
	Q10=+5	; SKAERDJUP
	Q11=100	; NEDMATNI NGSHASTI GHET
	Q12=350	; MATNING FRAESNING
	Q18=1	; FOERBEARBETNINGSVERKTYG
	Q19=150	; MATNING PENDLING

FINSKÄR DJUP (cykel 23)

TNC:n beräknar själv startpunkten för finbearbetningen. Startpunkten påverkas av utrymmesförhållandena i fickan.

TNC:n förflyttar verktyget på en vertikal tangentiellt anslutande cirkelbåge ner till ytan som skall bearbetas. Därefter fräses det vid grovbearbetningen kvarlämnade finskärsmåttet bort.

Nedmatni ngshasti ghet Q11: Verktygets förflyttningshastighet vid nedmatning

Matning fräsning Q12: Fräsmatning

60	CYCL DEF 2	3.0 FINSKAEI	R DJUP
	Q11=100	; NEDMATNING	SHASTI GHET
	Q12=350	; MATNING FR	AESNING

FINSKÄR SIDA (cykel 24)

TNC:n förflyttar verktyget på en tangentiellt anslutande cirkelbåge fram till delkonturerna. Varje delkontur finbearbetas separat.

Att beakta före programmering

Summan av Tillägg för finskär sida (Q14) och finbearbetningsverktygets radie måste vara mindre än summan av Tillägg för finskär sida (Q3, cykel 20) och grovbearbetningsverktygets radie.

Om cykel 24 används utan att urfräsning med cykel 22 har utförts först, gäller ändå ovanstående beräkning; i formeln skall då värdet "0" användas för radien på grovbearbetningsverktyget.

TNC:n beräknar själv startpunkten för finbearbetningen. Startpunkten påverkas av utrymmesförhållandena i fickan.

- Rotationsriktning? Medurs = -1 Q9: Bearbetningsriktning: +1:Rotation moturs
 -1:Rotation medurs
- Skärdj up Q10 (inkrementalt): Mått med vilket verktyget stegas nedåt
- Nedmatningshastighet Q11: Matningshastighet nedåt
- Matning fräsning Q12: Fräsmatning
- Tillägg för finskär sida Q14 (inkrementalt): Arbetsmån för upprepade finskär; den sista arbetsmånen kommer att fräsas bort om man anger Q14 = 0

61	CYCL DEF 2	4.0 FINSKAER SIDA
	Q9 =+1	; ROTATIONS RIKTNING
	Q10=+5	; SKAERDJUP
	Q11=100	; MATNING DJUPBORRNING
	Q12=350	; MATNING FRAESNING
	Q14=+0	;TILLAEGG SIDA

KONTURLINJE (cykel 25)

Med denna cykel kan "öppna" konturer bearbetas i kombination med cykel 14 KONTUR: konturens början och slut sammanfaller inte.

Cykeln 25 KONTURLINJE erbjuder betydande fördelar gentemot vanliga positioneringsblock vid bearbetning av en öppen kontur:

- TNC:n övervakar bearbetningen för att undvika underskärning och konturskador. Kontrollera konturen med testgrafiken innan programkörning.
- Om verktygsradien är för stor så måste eventuellt konturens innerhörn efterbearbetas.
- Bearbetningen kan genomgående utföras med medfräsning eller motfräsning. Fräsmetoden bibehålles även om konturen speglas.
- Vid flera ansättningar kan TNC:n förflytta verktyget fram och tillbaka längs med konturen: därigenom reduceras bearbetningstiden.
- Man kan ange en arbetsmån vilket möjliggör flera arbetssteg för grov- respektive finbearbetning.

Att beakta före programmering

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

TNC:n tar bara hänsyn till den första Labeln i cykel 14 KONTUR.

Minnesutrymmet för en SL-cykel är begränsat. Exempelvis kan man programmera maximalt 256 rätlinjeblock i en SL-cykel.

Cykel 20 KONTURDATA behövs inte.

Positioner som programmeras inkrementalt direkt efter cykel 25 utgår ifrån verktygets position efter cykelns slut.

25

Fräsdjup Q1 (inkrementalt): Avstånd mellan arbetsstyckets yta och konturens botten

- Tillägg för finskär sida Q3 (inkrementalt): Arbetsmån för finskär i bearbetningsplanet
- Koord. arbetsstyckets yta Q5 (absolut): Absolut koordinat för arbetsstyckets yta i förhållande till arbetsstyckets nollpunkt
- Säkerhetshöjd Q7 (absolut): Absolut höjd, på vilken kollision mellan verktyg och arbetsstycke inte kan ske; verktygets återgångsposition vid cykelns slut
- Skärdj up Q10 (inkrementalt): Mått med vilket verktyget stegas nedåt
- Nedmatni ngshast i ghet Q11: Matningshastighet vid förflyttningar i spindelaxeln

62	CYCL DEF	25.0 KONTURLINJE
	Q1=-20	; FRAES DJUP
	Q3=+0	;TILLAEGG SIDA
	Q5=+0	; KOORD. OEVERYTA
	Q7=+50	; SAEKERHETSHOEJD
	Q10=+5	; SKAERDJUP
	Q11=100	; MATNING DJUPBORRNING
	Q12=350	; MATNING FRAESNING
	Q15=-1	; FRAESMETOD

- Matning fräsning Q12: Matningshastighet vid förflyttningar i bearbetningsplanet
- Fräsmetod? Mtfräsning = -1 Q15: Medfräsning: Inmatning = +1 Motfräsning: Inmatning = -1 Växling mellan med- och motfräsning vid flera ansättningar:Inmatning = 0

CYLINDERMANTEL (cykel 27)

Maskinen och TNC:n måste vara förberedd av maskintillverkaren.

Med denna cykel kan en normalt definierad kontur projiceras på en cylindermantel. Använd cykel 28 om du vill fräsa styrspår på cylindern.

Konturen beskriver man i ett underprogram som anges i cykel 14 (KONTUR).

Underprogrammet innehåller koordinater i en vinkelaxel (t.ex. C-axeln) och den därtill parallellt löpande axeln (t.ex. spindelaxeln). Som konturfunktioner står L, CHF, CR, RND, APPR (förutom APPR LCT) och DEP till förfogande.

Måttuppgifterna i vinkelaxeln kan anges antingen i grader eller i mm (tum) (väljes vid cykeldefinitionen).

- 1 TNC:n förflyttar verktyget till en position ovanför nedmatningspunkten; hänsyn tas till Tilläggsmått finskär sida.
- 2 På det första Skärdjupet fräser verktyget, med Fräsmatning Q12, längs den programmerade konturen.
- **3** Vid konturens slut förflyttar TNC:n verktyget till säkerhetsavståndet och tillbaka till nedmatningspunkten;
- 4 Steg 1 till 3 upprepas tills det programmerade fräsdjupet Q1 uppnås.
- 5 Därefter förflyttas verktyget till säkerhetsavståndet.

Att beakta före programmering

Minnesutrymmet för en SL-cykel är begränsat. Exempelvis kan man programmera maximalt 256 rätlinjeblock i en SL-cykel.

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

Använd en borrande fräs med ett skär över centrum (DIN 844).

Cylindern måste spännas upp i rundbordets centrum.

Spindelaxelns rörelse måste vara vinkelrät mot rundbordsaxeln. Om så inte är fallet kommer TNC:n att presentera ett felmeddelande.

Denna cykel kan man även utföra vid 3D-vridet bearbetningsplan.

TNC:n kontrollerar om verktygets kompenserade och icke kompenserade bana ligger innanför rotationsaxelns positionsområde (är definierat i maskinparameter 810.x). Vid felmeddelande "Konturprogrammeringsfel" sätter man i förekommande fall MP 810.x = 0.

- Fräsdjup Q1 (inkrementalt): Avstånd mellan cylindermantel och konturens botten
- Tillägg för finskär sida Q3 (inkrementalt): Arbetsmån för finskär i det utrullade mantelplanet; tilläggsmåttet verkar i radiekompenseringens riktning
- Säkerhetsavstånd Q6 (inkrementalt): Avstånd mellan verktygets spets och cylindermantelns yta
- Skärdj up Q10 (inkrementalt): Mått med vilket verktyget stegas nedåt
- Nedmatni ngshasti ghet Q11: Matningshastighet vid förflyttningar i spindelaxeln
- Mtning fräsning Q12: Matningshastighet vid förflyttningar i bearbetningsplanet
- Cylinderradie Q16: Cylinderns radie, på vilken konturen skall bearbetas
- Mattenhet? Grad =0 MY/TUM=1 Q17: RotationsaxeIns koordinater i underprogrammet programmeras i grader eller mm (tum)

Q1 = -8

Q3=+0

Q6=+0

010 = +3

Q11=100

Q12=350

Q16=25

Q17=0

63 CYCL DEF 27.0 CYLINDERMANTEL

; FRAESDJUP

: SKAERDJUP

; RADIE

; MAATTYP

; TILLAEGG SIDA

; SAEKERHETSAVST.

; MATNING DJUPBORRNING

; MATNING FRAESNING

8.6 SL-cykler

CYLINDERMANTEL spårfräsning (cykel 28)

Maskinen och TNC:n måste vara förberedd av maskintillverkaren.

Med denna cykel kan ett normalt definierat spår projiceras på en cylinders mantel. I motsats till 27 ansätter TNC:n verktyget vid denna cykel på ett sådant sätt att väggarna, vid aktiv radiekompensering, alltid är parallella i förhållande till varandra. Programmera konturens centrumpunktsbana.

- 1 TNC:n positionerar verktyget till en position över nedmatningspunkten.
- 2 På det första skärdjupet fräser verktyget, med Fräsmatning Q12, längs spårets vägg; därvid tas hänsyn till Tilläggsmått finskär sida.
- **3** Vid konturens slut förskjuter TNC:n verktyget till den motsatta spårväggen och förflyttar tillbaka till nedmatningspunkten.
- 4 Steg 2 och 3 upprepas tills det programmerade fräsdjupet Q1 uppnås.
- 5 Därefter förflyttas verktyget till säkerhetsavståndet.

Att beakta före programmering

Minnesutrymmet för en SL-cykel är begränsat. Exempelvis kan man programmera maximalt 256 rätlinjeblock i en SL-cykel.

Cykelparametern Djups förtecken bestämmer arbetsriktningen. Om man programmerar Djup = 0 så utför TNC:n inte cykeln.

Använd en borrande fräs med ett skär över centrum (DIN 844).

Cylindern måste spännas upp i rundbordets centrum.

Spindelaxelns rörelse måste vara vinkelrät mot rundbordsaxeln. Om så inte är fallet kommer TNC:n att presentera ett felmeddelande.

Denna cykel kan man även utföra vid 3D-vridet bearbetningsplan.

TNC:n kontrollerar om verktygets kompenserade och icke kompenserade bana ligger innanför rotationsaxelns positionsområde (är definierat i maskinparameter 810.x). Vid felmeddelande "Konturprogrammeringsfel" sätter man i förekommande fall MP 810.x = 0.

- ► **Fräsdjup** Q1 (inkrementalt): Avstånd mellan cylindermantel och konturens botten
- Tillägg för finskär sida Q3 (inkrementalt): Arbetsmån för finskär i det utrullade mantelplanet; tilläggsmåttet verkar i radiekompenseringens riktning
- Säkerhetsavstånd Q6 (inkrementalt): Avstånd mellan verktygets spets och cylindermantelns yta
- Skärdj up Q10 (inkrementalt): Mått med vilket verktyget stegas nedåt
- Nedmatni ngshasti ghet Q11: Matningshastighet vid förflyttningar i spindelaxeln
- Matning fräsning Q12: Matningshastighet vid förflyttningar i bearbetningsplanet
- Cylinderradie Q16: Cylinderns radie, på vilken konturen skall bearbetas
- Mattenhet? Grad =0 MYTUM=1 Q17: RotationsaxeIns koordinater i underprogrammet programmeras i grader eller mm (tum)
- Spårbredd Q20: Bredd för spårets som skall skapas

Exempel: NC-block

63	CYCL DEF	28.0 CYLINDERMANTEL	
	Q1=-8	; FRAESDJUP	
	Q3=+0	;TILLAEGG SIDA	
	Q6=+0	; SAEKERHETSAVST.	
	Q10=+3	; SKAERDJ UP	
	Q11=100	; MATNING DJUPBORRNING	
	Q12=350	; MATNING FRAESNING	
	Q16=25	; RADI E	
	Q17=0	; MAATTYP	
	Q20=12	; SPAARBREDD	l

Exempel: Urfräsning och efterfräsning av ficka

O BEGIN PGM C20 MM	
1 BLK FORM 0.1 Z X-10 Y-10 Z-40	
2 BLK FORM 0. 2 X+100 Y+100 Z+0	Råämnesdefinition
3 TOOL DEF 1 L+0 R+15	Verktygsdefinition förbearbetning
4 TOOL DEF 2 L+0 R+7, 5	Verktygsdefinition efterbearbetning
5 TOOL CALL 1 Z S2500	Verktygsanrop förbearbetning
6 L Z+250 RO F MAX	Frikörning av verktyget
7 CYCL DEF 14.0 KONTUR	Definiera underprogram för kontur
8 CYCL DEF 14.1 KONTURLABEL 1	
9 CYCL DEF 20.0 KONTURDATA	Definiera allmänna bearbetningsparametrar
Q1=-20 ; FRAES DJUP	
Q2=1 ; BANOEVERLAPP	
Q3=+0 ; TILLAEGG SIDA	
Q4=+0 ; TILLAEGG DJUP	
Q5=+0 ; KOORD. OEVERYTA	
Q6=2 ; SAEKERHETSAVST.	
Q7=+100 ; SAEKERHETSHOEJD	
Q8=0, 1 ; RUNDNINGSRADIE	
Q9=-1 ; ROTATIONSRIKTNING	

-cykl	e
ပ်	X
	S
	<u>_</u>
S	S
.6	.6

10	CYCL DEF 22.0 GROVSKAER	Cykeldefinition förbearbetning
	Q10=5 ; SKAERDJ UP	
	Q11=100 ; MATNING DJUPBORRNING	
	Q12=350 ; MATNING FRAESNING	
	Q18=0 ; FOERBEARBETNI NGS VERKTYG	
	Q19=150 ; MATNING PENDLING	
11	CYCL CALL MB	Cykelanrop förbearbetning
12	L Z+250 R0 F MAX M6	Verktygsväxling
13	TOOL CALL 2 Z S3000	Verktygsanrop efterbearbetning
14	CYCL DEF 22.0 GROVSKAER	Cykeldefinition efterbearbetning
	Q10=5 ; SKAERDJUP	
	Q11=100 ; MATNING DJUPBORRNING	
	Q12=350 ; MATNING FRAESNING	
	Q18=1; FOERBEARBETNINGSVERKTYG	
	Q19=150 ; MATNING PENDLING	
15	CYCL CALL MB	Cykelanrop efterbearbetning
16	L Z+250 RO F MAX M2	Frikörning av verktyget, programslut
17	LBL 1	Underprogram för kontur
18	L X+0 Y+30 RR	se "Exempel: FK-programmering 2", sidan 166
19	FC DR- R30 CCX+30 CCY+30	
20	FL AN+60 PDX+30 PDY+30 D10	
21	FSELECT 3	
22	FPOL X+30 Y+30	
23	FC DR- R20 CCPR+55 CCPA+60	
24	FSELECT 2	
25	FL AN-120 PDX+30 PDY+30 D10	
26	FSELECT 3	
27	FC X+0 DR- R30 CCX+30 CCY+30	
28	FSELECT 2	
29	LBL 0	
30	END PGM C20 MM	

Exempel: Förborra, grovbearbeta och finbearbeta överlagrade konturer

0 BEGIN PGM C21 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Råämnesdefinition
2 BLK FORM 0. 2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+6	Verktygsdefinition borr
4 TOOL DEF 2 L+0 R+6	Verktygsdefinition grov/fin
5 TOOL CALL 1 Z S2500	Verktygsanrop borr
6 L Z+250 R0 F MAX	Frikörning av verktyget
7 CYCL DEF 14.0 KONTUR	Lista underprogram för kontur
8 CYCL DEF 14.1 KONTURLABEL 1 /2 /3 /4	
9 CYCL DEF 20.0 KONTURDATA	Definiera allmänna bearbetningsparametrar
Q1=-20 ; FRAES DJUP	
Q2=1 ; BANOEVERLAPP	
Q3=+0, 5 ;TILLAEGG SIDA	
Q4=+0, 5 ; TILLAEGG DJUP	
Q5=+0 ; KOORD. OEVERYTA	
Q6=2 ; SAEKERHETSAVST.	
Q7=+100 ; SAEKERHETSHOEJD	
Q8=0, 1 ; RUNDNI NGS RADI E	
Q9=-1 ; ROTATIONSRIKTNING	

10 CYCL DEF 21.0 FOERBORRNING	Cykeldefinition förborrning
Q10=5 ; SKAERDJUP	
Q11=250 ; MATNING DJUPBORRNING	
Q13=2 ; GROVSKAERSVERKTYG	
11 CYCL CALL MB	Cykelanrop förborrning
12 L Z+250 R0 F MAX M6	Verktygsväxling
13 TOOL CALL 2 Z S3000	Verktygsanrop grov/fin
14 CYCL DEF 22.0 GROVSKAER	Cykeldefinition urfräsning
Q10=5 ; SKAERDJUP	
Q11=100 ; MATNING DJUPBORRNING	
Q12=350 ; MATNING FRAESNING	
Q18=0 ; FOERBEARBETNINGSVERKTYG	
Q19=150 ; MATNING PENDLING	
15 CYCL CALL MB	Cykelanrop urfräsning
16 CYCL DEF 23.0 FINSKAER DJUP	Cykeldefinition finskär djup
Q11=100 ; MATNING DJUPBORRNING	
Q12=200 ; MATNING FRAESNING	
17 CYCL CALL	Cykelanrop finskär djup
18 CYCL DEF 24.0 FINSKAER SIDA	Cykeldefinition finskär sida
Q9=+1 ; ROTATIONSRIKTNING	
Q10=5 ; SKAERDJUP	
Q11=100 ; MATNING DJUPBORRNING	
Q12=400 ; MATNING FRAESNING	
Q14=+0 ; TILLAEGG SIDA	
19 CYCL CALL	Cykelanrop finskär sida
20 L Z+250 R0 F MAX M2	Frikörning av verktyget, programslut

21	LBL 1	Underprogram för kontur 1: vänster ficka
22	CC X+35 Y+50	
23	L X+10 Y+50 RR	
24	C X+10 DR-	
25	LBL 0	
26	LBL 2	Underprogram för kontur 2: höger ficka
27	CC X+65 Y+50	
28	L X+90 Y+50 RR	
29	C X+90 DR-	
30	LBL 0	
31	LBL 3	Underprogram för kontur 3: vänster fyrkantig ö
32	L X+27 Y+50 RL	
33	L Y+58	
34	L X+43	
35	L Y+42	
36	L X+27	
37	LBL 0	
38	LBL 4	Underprogram för kontur 4: höger trekantig ö
39	L X+65 Y+42 RL	
40	L X+57	
41	L X+65 Y+58	
42	L X+73 Y+42	
43	LBL 0	
44	END PGM C21 MM	

0 BEGIN PGM C25 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Råämnesdefinition
2 BLK FORM 0. 2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Verktygsdefinition
4 TOOL CALL 1 Z S2000	Verktygsanrop
5 L Z+250 RO F MAX	Frikörning av verktyget
6 CYCL DEF 14.0 KONTUR	Definiera underprogram för kontur
7 CYCL DEF 14.1 KONTURLABEL 1	
8 CYCL DEF 25.0 KONTURLINJE	Definiera bearbetningsparametrar
Q1=-20 ; FRAES DJUP	
Q3=+0 ; TILLAEGG SIDA	
Q5=+0 ; KOORD. OEVERYTA	
Q7=+250 ; SAEKERHETSHOEJD	
Q10=5 ; SKAERDJUP	
Q11=100 ; MATNING DJUPBORRNING	
Q12=200 ; MATNING FRAESNING	
Q15=+1 ; FRAESMETOD	
9 CYCL CALL MB	Cykelanrop
10 L Z+250 R0 F MAX M2	Frikörning av verktyget, programslut

11 LBL 1	Underprogram för kontur
12 L X+0 Y+15 RL	
13 L X+5 Y+20	
14 CT X+5 Y+75	
15 L Y+95	
16 RND R7, 5	
17 L X+50	
18 RND R7, 5	
19 L X+100 Y+80	
20 LBL 0	
21 END PGM C25 MM	

Exempel: Cylindermantel

Anmärkning:

- Cylindern är uppspänd i rundbordets centrum.
- Utgångspunkten ligger i rundbordets centrum.

0 BEGIN PGM C27 MM		
1 TOOL DEF 1 L+0 R+3, 5	Verktygsdefinition	
2 TOOL CALL 1 Y S2000	Verktygsanrop, verktygsaxel Y	
3 L Y+250 RO FMAX	Frikörning av verktyget	
4 L X+O RO FMAX	Positionera verktyget till rundbordets centrum	
5 CYCL DEF 14.0 KONTUR	Definiera underprogram för kontur	
6 CYCL DEF 14.1 KONTURLABEL 1		
7 CYCL DEF 27.0 CYLINDERMANTEL	Definiera bearbetningsparametrar	
Q1=-7 ; FRAES DJUP		
Q3=+0 ; TILLAEGG SIDA		
Q6=2 ; SAEKERHETSAVST.		
Q10=4 ; SKAERDJUP		
Q11=100 ; MATNING DJUPBORRNING		
Q12=250 ; MATNING FRAESNING		
Q16=25 ; RADIE		
Q17=1 ; MATTENHET		
8 L C+O RO F MAX MB	Förpositionera rundbord	
9 CYCL CALL	Cykelanrop	
10 L Y+250 R0 F MAX M2	Frikörning av verktyget, programslut	

11 LBL 1	Underprogram för kontur
12 L C+40 Z+20 RL	Måttuppgifter för rotationsaxel i mm (Q17=1)
13 L C+50	
14 RND R7, 5	
15 L Z+60	
16 RND R7, 5	
17 L IC-20	
18 RND R7, 5	
19 L Z+20	
20 RND R7, 5	
21 L C+40	
22 LBL 0	
23 END PGM C27 MM	

8.7 SL-cykler med konturformel

Grunder

Med SL-cyklerna och konturformel kan man sätta samman komplexa konturer av delkonturer (fickor och öar). De individuella delkonturerna (geometridata) anger i form av separata program. Därigenom kan alla delkonturer återanvändas godtycklig. TNC:n beräknar den sammansatta konturen utifrån de utvalda delkonturerna, vilka man kopplar ihop via en konturformel.

Minnet för en SL-cykel (alla konturbeskrivningsprogram) är begränsat till maximalt 32 konturer. Antalet möjliga konturelement beror på konturtypen (invändig/utvändig kontur) och antalet konturbeskrivningar, exempelvis motsvarar detta ca. 2048 rätlinjeblock.

> SL-cykler med konturformel förutsätter en strukturerad programuppbyggnad och erbjuder möjlighet att placera återkommande konturer i individuella program. Via konturformeln kopplar man ihop delkonturerna till en samlad kontur och bestämmer om det handlar om en ficka eller en ö.

> Funktionen SL-cykler med konturformel är uppdelad i flera områden av TNC:ns operatörsinterface och tjänar som grund för vidareutveckling.

Delkonturernas egenskaper

- TNC:n tolkar principiellt alla konturer som fickor. Man skall inte programmera någon radiekompensering. I konturformeln kan man omvandla en ficka till en ö genom negering.
- TNC:n ignorerar matning F och tilläggsfunktioner M
- Koordinatomräkningar är tillåtna. Om de programmeras inom delkonturerna, är de även verksamma i efterföljande underprogram, men behöver inte återställas efter cykelanropet.
- Underprogrammen får även innehålla koordinater i spindelaxeln, dessa ignoreras dock.
- I underprogrammets första koordinatblock fastlägger man bearbetningsplanet. Tilläggsaxlar U,V,W är tillåtna

Bearbetningscyklernas egenskaper

- TNC:n positionerar automatiskt verktyget till S\u00e4kerhetsavst\u00e4nd f\u00f6re varje cykel.
- Varje djupnivå fräses utan lyftning av verktyget eftersom fräsningen sker runt öar.
- Radien på "Innerhörn" kan programmeras verktyget stannar inte, fräsmärken undviks (gäller för den yttersta verktygsbanan vid urfräsning och finskär sida).
- Vid finskär sida förflyttar TNC:n verktyget till konturen på en tangentiellt anslutande cirkelbåge.

Exempel: Schema: Arbeta med SL-cykler och konturformel

0	BEGIN	PGM	KONTUR	MM
---	-------	-----	---------------	----

... 5 SEL CONTOUR "MDDEL'

6 CYCL DEF 20.0 KONTURDATA ...

8 CYCL DEF 22.0 GROVSKAER ...

9 CYCL CALL

. . .

12 CYCL DEF 23.0 FINSKAER DJUP ...

13 CYCL CALL

··· 16 CYCL DEF 24.0 FINSKAER SIDA ...

17 CYCL CALL

63 L Z+250 R0 FMAX M2

64 END PGM KONTUR MM

Exempel: Schema: Beräkning av delkonturer med konturformel

O BEGIN PGM MDDEL MM
1 DECLARE CONTOUR QC1 = "KREIS1"
2 DECLARE CONTOUR QC2 = "KREIS31XY"
3 DECLARE CONTOUR QC1 = "DREIECK"
4 DECLARE CONTOUR QC1 = "QUADRAT"
5 QC10 = (QC1 QC3 QC4) \ QC2
6 END PGM MDDEL MM
0 BEGIN PGM KREIS1 MM
1 CC X+75 Y+50
2 LP PR+45 PA+0 R0
3 CP 1PA+360 DR++
4 END PGM KREIS1 MM
O BEGIN PGM KREIS31XY MM

- Även vid finskär botten förflyttar TNC:n verktyget till arbetsstycket på en tangentiellt anslutande cirkelbåge (t.ex: spindelaxel Z: cirkelbåge i planet Z/X).
- TNC:n bearbetar konturen genomgående med medfräsning alternativt med motfräsning.

Med MP7420 definierar man vart TNC:n skall positionera verktyget efter att cyklerna 21 till 24 har slutförts.

Måttuppgifterna för bearbetningen såsom fräsdjup, tilläggsmått och säkerhetsavstånd anges centralt i cykel 20 som KONTURDATA.

Välj program med konturdefinitioner

Med funktionen **SEL CONTOUR** väljer man ett program med konturdefinitioner som TNC:n hämtar konturbeskrivningarna från:

- Välj funktionen för programanrop: Tryck på knappen PGM CALL
- .J
- ▶ Tryck på softkey VÄLJ KONTUR
- Ange det fullständiga programnamnet för programmet med konturdefinitionerna, bekräfta med knappen END

,
,

Programmera SEL CONTOUR-blocket före SL-cykeln. Cykel 14 KONTUR behövs inte längre vid användning av SEL CONTUR.

Definiera konturbeskrivningar

Med funktionen **DECLARE CONTOUR** anger man i ett program sökvägen till andra program som TNC:n skall hämta konturbeskrivningarna från:

- DECLARE
- Tryck på softkey DECLARE
- CONTOUR
- Tryck på softkey CONTOUR
- Ange numret på konturbeteckningen QC, bekräfta med knappen ENT
- Ange det fullständiga programnamnet för programmet med konturbeskrivningen, bekräfta med knappen END

Med de angivna konturbeteckningarna QC kan man kombinerar olika konturer med varandra i konturformeln.

Med funktionen **DECLARE STRING** definierar man en text. Denna funktion utvärderas ännu inte.

Ange konturformel

Via softkeys kan man koppla ihop olika konturer i en matematisk formel:

- Välj Q-parameterfunktioner: Tryck på knappen Q (till höger i fältet för sifferinmatning). Softkeyraden visar de olika Q-parameterfunktionerna.
- Välj funktionen för inmatning av konturformel: Tryck på softkey KONTURFORMEL. TNC:n visar följande softkeys:

Matematisk funktion	Softkey
Avskuren med t.ex. QC10 = QC1 & QC5	
Förenad med t.ex. QC25 = QC7 QC18	
Förenad med, men utan snitt t.ex. QC12 = QC5 ^ QC25	
Avskuren med komplement av t.ex. QC25 = QC1 \ QC2	
Komplement för konturområdet t.ex. Q12 = #Q11	
Vänster parentes t.ex. QC12 = QC1 * (QC2 + QC3)	¢
Höger parentes t.ex. QC12 = QC1 * (QC2 + QC3)	>

Överlagrade konturer

TNC:n betraktar principiellt en programmerad kontur som en ficka. Med funktionerna i konturformeln har man möjlighet att omvandla en kontur till en ö.

Man kan överlagra fickor och öar för att skapa en ny kontur. Därigenom kan en fickas yta ökas med en överlagrad ficka eller minskas med en överlagrad ö.

Underprogram: Överlappande fickor

Följande programmeringsexempel är konturbeskrivningsprogram, vilka definieras i ett konturdefinitionsprogram. Konturdefinitionsprogrammet kallas i sin tur upp via funktionen **SEL CONTOUR** i det egentliga huvudprogrammet.

Fickan A och B överlappar varandra.

TNC:n beräknar skärningspunkterna S1 och S2, man behöver inte programmera dessa själv.

Fickorna har programmerats som fullcirklar.

Konturbeskrivningsprogram 1: Ficka A

0 BEGIN PGM TASCHE_A MM
1 L X+10 Y+50 R0
2 CC X+35 Y+50
3 C X+10 Y+50 DR-
4 END PGM TASCHE_A MM

Konturbeskrivningsprogram 2: Ficka B

0 BEGIN PGM TASCHE_B MM	
1 L X+90 Y+50 R0	
2 CC X+65 Y+50	
3 C X+90 Y+50 DR-	
4 END PGM TASCHE B MM	

"Summa"-yta

Båda delytorna A och B inklusive den gemensamt överlappade ytan skall bearbetas:

- Ytorna A och B måste vara programmerade i separata program utan radiekompensering.
- I konturformeln beräknas ytorna A och B med funktionen "förenad med".

Konturdefinitionsprogram:

50
51
52 DECLARE CONTOUR QC1 = "TASCHE_A.H"
53 DECLARE CONTOUR QC2 = "TASCHE_B.H"
54 QC10 = QC1 QC2
55
56

8.7 SL-cykler med konturformel

"Differens"-yta

Ytan A skall bearbetas förutom den av B överlappade delen:

- Ytorna A och B måste vara programmerade i separata program utan radiekompensering.
- I konturformeln subtraheras yta B från yta A med funktionen "avskuren med komplement av".

Konturdefinitionsprogram:

50	
51	
52 DECLARE CONTOUR QC1 = "TASCHE_A.H"	
53 DECLARE CONTOUR QC2 = "TASCHE_B. H"	
54 QC10 = QC1 \setminus QC2	
55	
56	

Den av A och B överlappade ytan skall bearbetas. (Ytor som bara täcks av en ficka skall lämnas obearbetade.)

- Ytorna A och B måste vara programmerade i separata program utan radiekompensering.
- I konturformeln beräknas ytorna A och B med funktionen "Avskuren med".

Konturdefinitionsprogram:

50
51
52 DECLARE CONTOUR QC1 = "TASCHE_A.H"
53 DECLARE CONTOUR QC2 = "TASCHE_B.H"
54 QC10 = QC1 & QC2
55
56

Bearbetning av kontur med SL-cykler

Bearbetning av den samlade konturen sker med SLcyklerna 20 - 24 (se "SL-cykler" på sidan 286)

Exempel: Grov- och finbearbetning av överlagrade konturer med konturformel

0 BEGIN PGM KONTUR MM	
1 BLK FORM 0. 1 Z X+0 Y+0 Z-40	Råämnesdefinition
2 BLK FORM 0. 2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+2, 5	Verktygsdefinition grovbearbetningsfräs
4 TOOL DEF 2 L+0 R+3	Verktygsdefinition finbearbetningsfräs
5 TOOL CALL 1 Z S2500	Verktygsanrop grovbearbetningsfräs
6 L Z+250 R0 F MAX	Frikörning av verktyget
7 SEL CONTOUR "MDDEL"	Fastläggande av konturdefinitionsprogram
8 CYCL DEF 20.0 KONTURDATA	Definiera allmänna bearbetningsparametrar
Q1=-20 ; FRAES DJUP	
Q2=1 ; BANOEVERLAPP	
Q3=+0,5 ;TILLAEGG SIDA	
Q4=+0,5 ;TILLAEGG DJUP	
Q5=+0 ; KOORD. OEVERYTA	
Q6=2; SAEKERHETSAVST.	
Q7=+100 ; SAEKERHETSHOEJD	
Q8=0, 1 ; RUNDNINGSRADIE	
Q9=-1 ; ROTATIONSRIKTNING	
9 CYCL DEF 22.0 GROVSKAER	Cykeldefinition urfräsning
Q10=5 ; SKAERDJUP	

Q11=100 ; MATNING DJUPBORRNING	
Q12=350 ; MATNING FRAESNING	
Q18=0 ; FOERBEARBETNI NGS VERKTYG	
Q19=150 ; MATNING PENDLING	
10 CYCL CALL MB	Cykelanrop urfräsning
11 TOOL CALL 2 Z S5000	Verktygsanrop finbearbetningsfräs
12 CYCL DEF 23.0 FINSKAER DJUP	Cykeldefinition finskär djup
Q11=100 ; MATNING DJUPBORRNING	
Q12=200 ; MATNING FRAESNING	
13 CYCL CALL MB	Cykelanrop finskär djup
14 CYCL DEF 24.0 FINSKAER SIDA	Cykeldefinition finskär sida
Q9=+1 ; ROTATIONSRIKTNING	
Q10=5 ; SKAERDJUP	
Q11=100 ; MATNING DJUPBORRNING	
Q12=400 ; MATNING FRAESNING	
Q14=+0 ; TILLAEGG SIDA	
15 CYCL CALL MB	Cykelanrop finskär sida
16 L Z+250 R0 F MAX M2	Frikörning av verktyget, programslut
17 END PGM KONTUR MM	

Konturdefinitionsprogram med konturformel:

0	BEGIN PGM MDDEL MM	Konturdefinitionsprogram
1	DECLARE CONTOUR QC1 = "KREIS1"	Definition av konturbeteckningen för programmet "KREIS1"
2	FN 0: Q1 =+35	Tilldelning av värde för använd parameter i PGM "KREIS31XY"
3	FN 0: Q2 =+50	
4	FN 0: Q3 =+25	
5	DECLARE CONTOUR QC2 = "KREIS31XY"	Definition av konturbeteckningen för programmet "KREIS31XY"
6	DECLARE CONTOUR QC3 = "DREIECK"	Definition av konturbeteckningen för programmet "DREIECK"
7	DECLARE CONTOUR QC4 = "QUADRAT"	Definition av konturbeteckningen för programmet "QUADRAT"
8	QC10 = (QC 1 QC 2) \setminus QC 3 \setminus QC 4	Konturformel
9	END PGM MDDEL MM	

Konturbeskrivningsprogram:

0	BEGIN PGM KREIS1 MM	Konturbeskrivningsprogram: Cirkel höger
1	CC X+65 Y+50	
2	L PR+25 PA+0 R0	
3	CP IPA+360 DR+	
4	END PGM KREIS1 MM	

0	BEGIN PGM KREIS31XY MM	Konturbeskrivningsprogram: Cirkel vänster
1	CC X+Q1 Y+Q2	
2	LP PR+Q3 PA+0 R0	
3	CP IPA+360 DR+	
4	END PGM KREIS31XY MM	
0	BEGIN PGM DREIECK MM	Konturbeskrivningsprogram: Triangel höger
1	L X+73 Y+42 R0	
2	L X+65 Y+58	
3	L X+42 Y+42	
4	L X+73	
5	END PGM DREIECK MM	
0	BEGIN PGM QUADRAT MM	Konturbeskrivningsprogram: Kvadrat vänster
1	L X+27 Y+58 R0	
2	L X+43	
3	L Y+42	
4	L X+27	
5	L Y+58	
6	FND PCM OHADRAT MM	

8.8 Cykler för ytor

Översikt

TNC:n erbjuder tre cykler med vilka ytor med följande egenskaper kan bearbetas:

- Genererade genom digitalisering eller av ett CAD-/CAM-system
- Plana rektangulära ytor
- Ytor placerade i snett plan
- Godtyckligt tippade
- Vridna

Cykel	Softkey
30 BEARBETNING MED DIGITALISERADE DATA För uppdelning av digitaliserade data i flera ansättningar	30 FRASNING PNT-FIL
230 PLANING För plana rektangulära ytor	230
231 LINJALYTA För icke rektangulära, tippade eller vridna ytor	231

8.8 Cykler för ytor

BEARBETNING MED DIGITALISERADE DATA (cykel 30)

- 1 TNC:n positionerar verktyget, med snabbtransport FMAX, från den aktuella positionen i spindelaxeln till Säkerhetsavståndet över den i cykeln programmerade MAX-punkten.
- 2 Därefter förflyttar TNC:n verktyget, med FMAX, i bearbetningsplanet till den i cykeln programmerade MIN-punkten.
- **3** Därifrån förflyttas verktyget, med Nedmatningshastighet, till den första konturpunkten.
- 4 Därefter utför TNC:n alla i filen med digitaliseringsdata lagrade punkterna med Matning fräsning; om det behövs utför TNC:n emellanåt förflyttning till Säkerhetsavstånd för att hoppa över områden som inte skall bearbetas.
- 5 Slutligen förflyttar TNC:n verktyget tillbaka till Säkerhetsavstånd med FMAX.

Att beakta före programmering

Med cykel 30 kan man bearbeta med digitaliserade data och PNT-filer.

Om man bearbetar med en PNT-fil, i vilken inga koordinater i spindelaxeln finns, erhålles fräsdjupet av den programmerade MIN-punkten i spindelaxeln.

Filnam digitaliseringsdata: Ange namnet på filen, i vilken digitaliseringsdata finns lagrad; om filen inte finns i den aktuella katalogen måste den kompletta sökvägen anges. Om man vill exekvera en punkttabell anges dessutom filtypen .PNT

- MN-punkt område: Min-punkt (X-, Y- och Z-koordinat) för området inom vilket fräsningen skall utföras
- MX-punkt område: Max-punkt (X-, Y- och Z-koordinat) för området inom vilket fräsningen skall utföras
- Säkerhetsavstånd 1 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta vid rörelser med snabbtransport
- Skärdj up 2 (inkrementalt): Mått med vilket verktyget skall stegas nedåt
- Nedmatningshastighet 3: Verktygets förflyttningshastighet vid nedmatning i mm/min
- Matning fräsning 4: Verktygets förflyttningshastighet vid fräsning i mm/min
- Tilläggsfunktion M Möjlighet att ange en tilläggsfunktion, t.ex. M13

Exempel: NC-block

64	CYCL DEF 30.0 EXEKVERA DIGIDATA
65	CYCL DEF 30.1 PGM DIGIT.: BSP.H
66	CYCL DEF 30.2 X+0 Y+0 Z-20
67	CYCL DEF 30.3 X+100 Y+100 Z+0
68	CYCL DEF 30.4 AVST 2
69	CYCL DEF 30.5 ARB DJ +5 F100
70	CYCL DEF 30.6 F350 MB

PLANING (cykel 230)

- 1 TNC:n positionerar verktyget, med snabbtransport FMAX, från den aktuella positionen i bearbetningsplanet till startpunkten 1; TNC:n förskjuter då verktyget med verktygsradien åt vänster och uppåt.
- 2 Därefter förflyttas verktyget med FMAX i spindelaxeln till Säkerhetsavstånd och förflyttas därifrån med Nedmatningshastighet till den programmerade startpositionen i spindelaxeln.
- 3 Därefter förflyttas verktyget med den programmerade Matning fräsning till slutpunkten 2; slutpunkten beräknas av TNC:n med hjälp av den programmerade startpunkten, den programmerade längden och verktygsradien.
- 4 TNC:n förskjuter verktyget med Matning sidled till nästa rads startpunkt; TNC:n beräknar förskjutningen med hjälp av den programmerade bredden och antalet fräsbanor.
- 5 Därefter förflyttas verktyget tillbaka i den 1:a axelns negativa riktning.
- **6** Uppdelningen upprepas tills hela den angivna ytan har bearbetats fullständigt.
- 7 Slutligen förflyttar TNC:n verktyget tillbaka till Säkerhetsavstånd med FMAX.

Att beakta före programmering

TNC:n positionerar verktyget från den aktuella positionen först i bearbetningsplanet och därefter i spindelaxeln till startpunkten.

Verktyget skall förpositioneras så att kollision med arbetsstycke och spännanordningar inte kan ske.

230 📕 🚍

- Startpunkt 1: a axel Q225 (absolut): Min-punktkoordinat i bearbetningsplanets huvudaxel för ytan som skall planas
- Startpunkt 2: a axel Q226 (absolut): Min-punktkoordinat i bearbetningsplanets komplementaxel för ytan som skall planas
- Startpunkt 3:e axel Q227 (absolut): Höjd i spindelaxeln vid vilken planingen skall ske
- 1. Sidans längd O218 (inkrementalt): Längd i bearbetningsplanets huvudaxel för ytan som skall planas, utgående från Startpunkt 1:a axel
- 2. Sidans längd Q219 (inkrementalt): Längd i bearbetningsplanets komplementaxel för ytan som skall planas, utgående från Startpunkt 2:a axel
- Antal skär Q240: Antal rader, på bredden, som TNC:n skall förflytta verktyget på
- Nedmatni ngshast i ghet 206: Verktygets förflyttningshastighet vid förflyttning från Säkerhetsavstånd till fräsdjupet i mm/min
- Matning fräsning Q207: Verktygets förflyttningshastighet vid fräsning i mm/min
- Matning tvär Q209: Verktygets förflyttningshastighet vid förflyttning till nästa rad i mm/min; om förflyttningen i sidled sker i materialet anges ett mindre Q209 än Q207; om förflyttningen sker utanför materialet kan Q209 vara större än Q207
- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och fräsdjupet för positionering vid cykelns början och cykelns slut

Exempel: NC-block

71	CYCL DEF 23	0 PLANING
	Q225=+10	; STARTPUNKT 1: A AXEL
	Q226=+12	; STARTPUNKT 2: A AXEL
	Q227=+2.5	; STARTPUNKT 3: E AXEL
	Q218=150	;1. SIDANS LEANGD
	Q219=75	;2:A SIDANS LEANGD
	Q240=25	; ANTAL SKAER
	Q206=150	; NEDMATNI NGSHASTI GHET
	Q207=500	; MATNING FRAESNING
	Q209=200	; MATNING TVAER
	Q200=2	; SAEKERHETSAVST.

8.8 Cykler för ytor

LINJALYTA (cykel 231)

- 1 TNC:n positionerar verktyget från den aktuella positionen med en 3D-rätlinjerörelse till startpunkten 1
- 2 Därefter förflyttas verktyget med den programmerade Matning fräsning till slutpunkten 2
- 3 Därifrån förflyttar TNC:n verktyget, med snabbtransport FMAX, motsvarande verktygsdiametern i positiv spindelaxelriktning och sedan åter tillbaka till startpunkten 1
- 4 Vid startpunkten 1 förflyttar TNC:n verktyget åter till det sist utförda Z-värdet.
- 5 Därefter förskjuter TNC:n verktyget i alla tre axlarna från punkt 1, i riktning mot punkt 4, till nästa rad.
- 6 Efter detta förflyttar TNC:n verktyget till slutpunkten på denna rad. Slutpunkten beräknas av TNC:n med hjälp av punkt 2 och en förskjutning i riktning mot punkt 3
- 7 Uppdelningen upprepas tills hela den angivna ytan har bearbetats fullständigt.
- 8 Slutligen positionerar TNC:n verktyget till en position motsvarande verktygsdiametern över den högsta angivna punkten i spindelaxeln.

Fräsbanor

Startpunkten och därmed även fräsriktningen är fritt valbar då TNC:n lägger den första fräsbanan från punkt 1 mot punkt 2 och hela ytan från punkt 1 / 2 mot punkt 3 / 4. Man kan placera punkt 1 i det hörn på ytan som man önskar.

Ytfinheten vid användande av ett cylindriskt verktyg kan optimeras enligt följande:

- Genom dykande verktygsbanor (koordinat i spindelaxeln punkt 1 större än koordinat i spindelaxeln punkt 2) vid ytor med liten lutning.
- Genom klättrande verktygsbanor (koordinat i spindelaxeln punkt 1 mindre än koordinat i spindelaxeln punkt 2) vid ytor med stor lutning.
- Vid vridna ytor, huvudrörelseriktning (från punkt 1 mot punkt 2) i riktningen där den största lutningen ligger.

Ytfinheten vid användande av en radiefräs kan optimeras enligt följande:

Vid vridna ytor, huvudrörelseriktning (från punkt 1 mot punkt 2) vinkelrätt mot riktningen där den största lutningen ligger.

Att beakta före programmering

TNC:n positionerar verktyget från den aktuella positionen med en 3D-rätlinjerörelse till startpunkten 1. Verktyget skall förpositioneras så att kollision med arbetsstycke och spännanordningar inte kan ske.

TNC:n förflyttar verktyget mellan de angivna positionerna med radiekompensering R0.

l förekommande fall, Använd en borrande fräs med ett skär över centrum (DIN 844).

- Startpunkt 1:a axel Q225 (absolut): Koordinat i bearbetningsplanets huvudaxel för startpunkten på ytan som skall delas upp
- Startpunkt 2:a axel Q226 (absolut): Koordinat i bearbetningsplanets komplementaxel för startpunkten på ytan som skall delas upp
- Startpunkt 3:e axel Q227 (absolut): Koordinat i spindelaxeln för startpunkten på ytan som skall delas upp
- 2. Punkt 1. axel Q228 (absolut): Koordinat i bearbetningsplanets huvudaxel för slutpunkten på ytan som skall delas upp
- 2. Punkt 2. axel Q229 (absolut): Koordinat i bearbetningsplanets komplementaxel för slutpunkten på ytan som skall delas upp
- 2. Punkt 3. axel Q230 (absolut): Koordinat i spindelaxeln för slutpunkten på ytan som skall delas upp
- 3. Punkt 1. axel Q231 (absolut): Koordinat för punkt 3 i bearbetningsplanets huvudaxel
- ▶ 3. Punkt 2. axel Q232 (absolut): Koordinat för punkt 3 i bearbetningsplanets komplementaxel
- 3. Punkt 3. axel Q233 (absolut): Koordinat för punkt 3 i spindelaxeln

- 4. Punkt 1. axel Q234 (absolut): Koordinat för punkt
 4 i bearbetningsplanets huvudaxel
- ▶ 4. Punkt 2. axel Q235 (absolut): Koordinat för punkt 4 i bearbetningsplanets komplementaxel
- 4. Punkt 3. axel Q236 (absolut): Koordinat för punkt 4 i spindelaxeln
- Antal skär Q240: Antal fräsbanor som TNC:n skall förflytta verktyget på mellan punkt 1 och 4, resp. mellan punkt 2 och 3
- Matning fräsning Q207: Verktygets förflyttningshastighet vid fräsning i mm/min. TNC:n utför den första fräsbanan med halva det programmerade värdet.

Exempel: NC-block

72	CYCL DEF 231	I LINJALYTA
	Q225=+0	; STARTPUNKT 1: A AXEL
	Q226=+5	; STARTPUNKT 2: A AXEL
	Q227=-2	; STARTPUNKT 3: E AXEL
	Q228=+100	;2:A PUNKT 1:A AXEL
	Q229=+15	; 2: A PUNKT 2: A AXEL
	Q230=+5	;2:A PUNKT 3:E AXEL
	Q231=+15	; 3: E PUNKT 1: A AXEL
	Q232=+125	; 3: E PUNKT 2: A AXEL
	Q233=+25	; 3: E PUNKT 3: E AXEL
	Q234=+15	;4:E PUNKT 1:A AXEL
	Q235=+125	;4:E PUNKT 2:A AXEL
	Q236=+25	;4:E PUNKT 3:E AXEL
	Q240=40	; ANTAL SKAER
	Q207=500	; MATNING FRAESNING

Exempel: Planing

0 BEGIN PGM C230 MM	
1 BLK FORM 0. 1 Z X+0 Y+0 Z+0	Råämnesdefinition
2 BLK FORM 0. 2 X+100 Y+100 Z+40	
3 TOOL DEF 1 L+0 R+5	Verktygsdefinition
4 TOOL CALL 1 Z S3500	Verktygsanrop
5 L Z+250 RO F MAX	Frikörning av verktyget
6 CYCL DEF 230 PLANING	Cykeldefinition planing
Q225=+0 ; STARTPUNKT 1: A AXEL	
Q226=+0 ; STARTPUNKT 2: A AXEL	
Q227=+35 ; STARTPUNKT 3: E AXEL	
Q218=100 ;1. SIDANS LEANGD	
Q219=100 ;2. SIDANS LEANGD	
Q240=25 ; ANTAL SKAER	
Q206=250 ; MATNING DJUP	
Q207=400 ; MATNING FRAESNING	
Q209=150 ; MATNING TVAER	
Q200=2 ; SAEKERHETSAVSTAAND	

7 L X+-25 Y+0 R0 F MAX MB	Förpositionering i närheten av startpunkten
8 CYCL CALL	Cykelanrop
9 L Z+250 R0 F MAX M2	Frikörning av verktyget, programslut
10 END PGM C230 MM	

8.9 Cykler för koordinatomräkning

Översikt

När en kontur har programmerats kan TNC:n förändra dess position på arbetsstycket, dess storlek och läge med hjälp av koordinatomräkningar. TNC:n erbjuder följande cykler för omräkning av koordinater:

Cykel	Softkey
7 NOLLPUNKT Konturer förskjuts direkt i programmet eller från Nollpunktstabeller	7
247 UTGÅNGSPUNKT INSTÄLLNING Inställning av utgångspunkt under programexekveringen	247
8 SPEGLING Konturer speglas	⁸ ↓ ↓
10 VRIDNING Konturer vrids i bearbetningsplanet	10
11 SKALFAKTOR Konturer förminskas eller förstoras	
26 AXELSPECIFIK SKALFAKTOR Konturer förminskas eller förstoras med axelspecifika skalfaktorer	26
19 BEARBETNINGSPLAN Bearbetningar utförs i ett tippat koordinatsystem för maskiner med vridbara spindelhuvuden och/eller rundbord	19

Koordinatomräkningarnas varaktighet

Aktivering: En koordinatomräkning aktiveras vid dess definition – den behöver och skall inte anropas. Den är verksam tills den återställs eller definieras på nytt.

Återställning av koordinatomräkningar:

- Definiera cykeln på nytt med dess grundvärde, t.ex. Skalfaktor 1,0
- Utför tilläggsfunktionerna M02, M30 eller blocket END PGM (avhängigt maskinparameter 7300)
- Välj ett nytt program
- Programmera tilläggsfunktionen M142 Radera modal programinformation

8.9 Cykler för koordinatomräkning

NOLLPUNKTS-förskjutning (cykel 7)

Med hjälp av NOLLPUNKTSFÖRSKJUTNING kan man upprepa bearbetningssekvenser på godtyckliga ställen på arbetsstycket.

Verkan

Efter en cykeldefinition NOLLPUNKTSFÖRSKJUTNING hänförs alla koordinatuppgifter till den nya nollpunkten. Varje axels förskjutning presenteras av TNC:n i den utökade statuspresentationen. Det är även tillåtet att ange rotationsaxlar.

Förskj utning: Den nya nollpunktens koordinater anges; absoluta värden anges i förhållande till arbetsstyckets utgångspunkt, arbetsstyckets utgångspunkt har definierats genom inställning av origos läge; inkrementala värden anges i förhållande till den sist aktiverade nollpunkten – denna kan i sin tur ha varit förskjuten.

Återställning

En nollpunktsförskjutning upphävs genom att en ny nollpunktsförskjutning med koordinatvärdena X=0, Y=0 och Z=0 anges.

Grafik

Om en ny BLK FORM programmeras efter en nollpunktsförskjutning, så kan man via maskinparameter 7310 välja om BLK FORM skall hänföras till den nya eller den gamla nollpunkten. Vid bearbetning av flera detaljer kan TNC:n på detta sätt simulera varje enskild detalj grafiskt.

Statuspresentation

- Den stora positionspresentationen utgår ifrån den aktiva (förskjutna) nollpunkten
- Alla koordinater som presenteras i den utökade statuspresentationen (positioner, nollpunkter) utgår ifrån den manuellt inställda utgångspunkten

Exempel: NC-block

13 CYCL DEF 7.0	NOLLPUNKT
14 CYCL DEF 7.1	X+60
16 CYCL DEF 7.3	Z-5
15 CYCL DEF 7.2	Y+40

NOLLPUNKTS-förskjutning med nollpunktstabell (cykel 7)

Om man nyttjar nollpunktsförskjutningar med nollpunktstabeller så använder man funktionen SEL TABLE för att aktivera den önskade nollpunktstabellen från NC-programmet.

Om man arbetar utan SEL-TABLE så måste man själv aktivera den önskade nollpunktstabellen före programtestet eller programexekveringen (gäller även för programmeringsgrafiken):

- Välj önskad tabell för programtest i driftart **Programtest** via filhanteringen: Tabellen får status S
- Välj önskad tabell för programkörning i någon av driftarterna för programkörning via filhanteringen: Tabellen får status M

Nollpunkter från nollpunktstabellen kan utgå från den aktuella utgångspunkten för arbetsstycket eller från maskinens nollpunkt (avhängigt maskinparameter 7475).

Koordinatvärdena från nollpunktstabellen är uteslutande absoluta.

Nya rader kan bara infogas i tabellens slut.

Användningsområde

Nollpunktstabeller använder man exempelvis vid

- Ofta förekommande bearbetningssekvenser på olika positioner på arbetsstycket eller
- Ofta förekommande förskjutning till samma nollpunkter

l ett och samma program kan nollpunktsförskjutningen programmeras både direkt i cykeldefinitionen och anropas från en nollpunktstabell.

Förskj utning: Antingen anges nollpunktens nummer från nollpunktstabellen eller en Q-parameter; Om man anger en Q-parameter så aktiverar TNC:n det nollpunktsnummer som står i Q-parametern

Återställning

- En förskjutning till koordinaterna
 - X=0; Y=0 etc. anropas från nollpunktstabellen.
- En förskjutning till koordinaterna X=0; Y=0 etc. anges direkt i cykeldefinitionen.

Exempel: NC-block

77	CYCL	DEF	7.0	NOLLPUNKT
----	------	-----	------------	-----------

78 CYCL DEF 7.1 #5

Välja nollpunktstabell i NC-programmet

Med funktionen **SEL TABLE** väljer man den nollpunktstabell som TNC:n skall hämta nollpunkten ifrån:

 Välj funktionen för programanrop: Tryck på knappen PGM CALL

- ▶ Tryck på softkey NOLLPUNKTSTABELL
- Ange hela sökvägen och nollpunktstabellens namn, bekräfta med knappen END

PGM MGT Programmera SEL TABLE-block före cykel 7 Nollpunktsförskjutning.

En med SEL TABLE vald nollpunktstabell är aktiv ända tills man väljer en annan nollpunktstabell med SEL TABLE eller via PGM MGT.

Editera nollpunktstabell

Nollpunktstabellen väljer man i driftart Programinmatning/Editering

- Kalla upp filhanteringen: Tryck på knappen PGM MGT, se "Filhantering: Grunder", sidan 39
- Visa nollpunktstabeller: Tryck på softkey VÄLJ TYP och VISA .D
- Välj önskad tabell eller ange ett nytt filnamn
- Editera fil. Softkeyraden visar då följande funktioner:

Funktion	Softkey
Gå till tabellens början	BÖRJAN
Gå till tabellens slut	
Bläddra en sida uppåt	SIDA
Bläddra en sida nedåt	SIDA
Infoga rad (endast möjligt i tabellens slut)	INFOGR RAD
Radera rad	RADERA RAD
Spara inmatad rad och hoppa till nästa rad	NASTA RAD
Infoga ett definierbart antal rader (nollpunkter) vid tabellens slut	LAGG TILL N RADER VID SLUT

Editera nollpunktstabell i någon av programkörnings-driftarterna

l programkörnings-driftarterna kan man välja den för tillfället aktiva nollpunktstabellen. För att göra detta trycker man på softkey NOLLPUNKTSTABELL. Sedan står samma editeringsfunktioner till förfogande som i driftart **Program nnatni ng/Editering**

Konfigurera nollpunktstabell

I den andra och tredje softkeyraden kan man, för varje nollpunktstabell, välja vilka axlar som man skall kunna definiera nollpunkter i. Som standard är alla axlar aktiva. Om man vill spärra bort en axel så ändrar man dess axelsoftkey till AV. TNC:n kommer då att radera den därtill hörande kolumnen i nollpunktstabellen.

Om man inte vill definiera en nollpunkt för en aktiv axel så trycker man på knappen NO ENT. TNC:n kommer då att skriva in ett bindestreck i den aktuella kolumnen.

Lämna nollpunktstabell

Visa en annan filtyp i filhanteringen och välj önskad fil.

Statuspresentation

När nollpunkterna från tabellen utgår ifrån maskinens nollpunkt gäller följande:

- den stora positionspresentationen utgår ifrån den aktiva (förskjutna) nollpunkten
- koordinater som visas i den utökade statuspresentationen (positioner, nollpunkter) utgår ifrån maskinnollpunkten, varvid TNC:n medräknar den manuellt inställda utgångspunkten

MANUEL	L DRIFT EC	ITERA	NOLLE	PUNKTS	STABEL	. L	
	N C	ILLPUN	KTSFÖF	SKJUI	INING	?	
FIL	: NULLTAB.D		ММ				$\rangle\rangle$
D	Х	Y	Z	В	U		
0	+0	+0	+0	+0	+0		
1	+25	+0	+0	+25	+0		
2	+0	+0	+0	+0	+0		
3	+0	+0	+0	+0	+0		
4	+27.25	+0	-10	+0	+0		
5	+250	+0	+0	+0	+0		
6	+350	+0	+0	+0	+0		
7	+1200	+0	+0	+0	+0		
8	+1700	+0	+0	+0	+0		
9	-1700	+0	+0	+0	+0		
10	+0	+0	+0	+0	+0		
11	+0	+0	+0	+0	+0		
12	+0	+0	+0	+0	+0		
BÖR J	AN SLUT	SIDA Û	SIDA J	INFOGA RAD	RADERA RAD	NÄSTA RAD	LÄGG TI N RADE VID SL

8.9 Cykler för koordinatomräkning

INSTÄLLNING UTGÅNGSPUNKT (cykel 247)

Med cykel INSTÄLLNING UTGÅNGSPUNKT kan man aktivera en nollpunkt, vilken är definierad i en nollpunktstabell, som ny utgångspunkt.

Verkan

Efter en cykeldefinition INSTÄLLNING UTGÅNGSPUNKT utgår alla koordinat-uppgifter och nollpunktsförskjutningar (absoluta och inkrementala) från den nya utgångspunkten. Det är även tillåtet att ställa in utgångspunkten i rotationsaxlar.

Nummer för utgångspunkt?: Ange numret på utgångspunkten i nollpunktstabellen

Återställning

Man aktiverar den i driftart Manuell sist inställda utgångspunkten igen genom inmatning av tilläggsfunktionen M104.

TNC:n ställer endast in utgångspunkten i de axlar som är aktiva i nollpunktstabellen. Om en axel aktiveras som kolumn i nollpunktstabellen men inte finns tillgänglig i TNC:n kommer ett felmeddelande att genereras.

Cykel 247 tolkar alltid värden som finns lagrade i nollpunktstabellen som koordinater, vilka utgår från maskinens nollpunkt. Maskinparameter 7475 har inget inflytande över detta.

När man använder sig av cykel 247 kan man inte gå in mitt i ett program med funktionen blockframläsning.

Cykel 247 är inte verksam i driftart PGM-test.

Exempel: NC-block

3	CYCL	DEF	247	UTGAANGSPKT.	INSTAELLNING

Q339=4 ; UTGAANGSPUNKT-NUMMER

SPEGLING (cykel 8)

TNC:n kan utföra en bearbetnings spegelbild i bearbetningsplanet.

Verkan

Speglingen aktiveras direkt efter dess definition i programmet. Den är även verksam i driftart Manuell Positionering. TNC:n visar de speglade axlarna i den utökade statuspresentationen.

- Om endast en axel speglas kommer verktygets bearbetningsriktning att ändras. Detta gäller inte för bearbetningscykler.
- Om två axlar speglas bibehålles bearbetningsriktningen.

Resultatet av speglingen påverkas av nollpunktens position:

- Nollpunkten ligger på konturen som skall speglas: detaljen speglas direkt vid nollpunkten;
- Nollpunkten ligger utanför konturen som skall speglas: detaljen förskjuts även till en annan position;

Om man endast speglar en axel kommer verktygets bearbetningsriktning att ändra sig i de nya bearbetningscyklerna med 200-nummer . Vid äldre bearbetningscykler såsom exempelvis cykel 4 FICKURFRÄSNING, bibehålles bearbetningsriktningen.

Speglad axel?: Ange axlarna som skall speglas; man kan spegla alla axlar – inkl. rotationsaxlar – med undantag för spindelaxeln och den därtill hörande parallella komplementaxeln. Det är tillåtet att ange maximalt tre axlar.

Återställning

Programmera cykel SPEGLING på nytt och besvara dialogfrågan med NO ENT.

Exempel: NC-block

79	CYCL	DEF	8.0	SPEGLING

80 CYCL DEF 8.1 X Y U

VRIDNING (cykel 10)

I ett program kan TNC:n vrida koordinatsystemet runt den aktuella nollpunkten i bearbetningsplanet.

Verkan

Vridningen aktiveras direkt efter dess definition i programmet. Den är även verksam i driftart Manuell Positionering. TNC:n presenterar den aktiva vridningsvinkeln i den utökade statuspresentationen.

Referensaxel för vridningsvinkel:

- X/Y-plan X-axel
- Y/Z-plan Y-axel
- Z/X-plan Z-axel

Att beakta före programmering

TNC:n upphäver en aktiverad radiekompensering genom definitionen av cykel 10. I förekommande fall, programmera radiekompenseringen på nytt.

Efter det att man har definierat cykel 10 måste bearbetningsplanets båda axlar förflyttas för att aktivera vridningen.

 Vri dni ng: Ange vridningsvinkel i grader (°). Inmatningsområde: -360° till +360° (absolut eller inkrementalt)

Återställning

Programmera cykel VRIDNING på nytt med vridningsvinkel 0°.

Exempel: NC-block

12 CALL LBL1	
13 CYCL DEF 7.0 NOLLPUNKT	
14 CYCL DEF 7.1 X+60	
15 CYCL DEF 7.2 Y+40	
16 CYCL DEF 10.0 VRIDNING	
17 CYCL DEF 10.1 ROT+35	
18 CALL LBL1	
8.9 Cykler för koordinatomräkning

SKALFAKTOR (cykel 11)

l ett program kan TNC:n förstora eller förminska konturer. På detta sätt kan man exempelvis ta hänsyn till krymp- eller arbetsmån.

Verkan

Skalfaktorn aktiveras direkt efter dess definition i programmet. Den är även verksam i driftart Manuell Positionering. TNC:n visar den aktiva skalfaktorn i den utökade statuspresentationen.

Skalfaktorn verkar

- i bearbetningsplanet eller i alla tre koordinataxlarna samtidigt (avhängigt maskinparameter 7410)
- i cyklers måttuppgifter
- även i parallellaxlarna U, V och W

Förutsättning

Innan förstoringen alternativt förminskningen bör nollpunkten förskjutas till en kant eller ett hörn på konturen.

Faktor?: Ange faktor SCL (eng.: scaling); TNC:n multiplicerar koordinater och radier med SCL (som beskrivits i "Verkan")

Förstoring: SCL större än 1 till 99,999 999

Förminskning: SCL mindre än 1 till 0,000 001

Återställning

Programmera cykel SKALFAKTOR på nytt med faktor 1.

Exempel: NC-block

11 CALL LBL1
12 CYCL DEF 7.0 NOLLPUNKT
13 CYCL DEF 7.1 X+60
14 CYCL DEF 7.2 Y+40
15 CYCL DEF 11.0 SKALFAKTOR
16 CYCL DEF 11.1 SCL 0.75
17 CALL LBL1

SKALFAKTOR AXELSP. (cykel 26)

Att beakta före programmering

Koordinataxlar med positioner för cirkelbågar får inte förstoras eller förminskas med olika faktorer.

Man kan ange en egen axelspecifik skalfaktor för varje koordinataxel.

Dessutom kan koordinaterna för skalfaktorernas centrum programmeras.

Konturen dras ut från eller trycks ihop mot det programmerade centrumet, alltså inte nödvändigtvis – som i cykel 11 SKALFAKTOR – från den aktuella nollpunkten.

Verkan

Skalfaktorn aktiveras direkt efter dess definition i programmet. Den är även verksam i driftart Manuell Positionering. TNC:n visar den aktiva skalfaktorn i den utökade statuspresentationen.

Axel och faktor: Koordinataxel(axlar) och faktor(er) för den axelspecifika förstoringen eller förminskningen. Ange ett positivt värde – maximalt 99,999 999 –

Medel punktskoordi nater: Centrum för den axelspecifika förstoringen eller förminskningen

Koordinataxlarna väljs med softkeys.

Återställning

Programmera cykel SKALFAKTOR på nytt med faktor 1 för respektive axel.

Exempel: NC-block

25 CALL I	LBL1
26 CYCL I	DEF 26.0 SKALFAKTOR AXELSP.
27 CYCL I	DEF 26.1 X 1.4 Y 0.6 CCX+15 CCY+20
28 CALL I	LBL1

8.9 Cykler för koordinatomräkning

BEARBETNINGSPLAN (cykel 19)

Funktionerna för 3D-vridning av bearbetningsplanet måste anpassas i maskinen och TNC:n av maskintillverkaren. För det specifika spindelhuvudet (tippningsbordet) bestämmer maskintillverkaren om TNC:n skall tolka vinklarna som programmeras i cykeln som rotationsaxlarnas koordinater eller som matematisk vinkel för ett snett plan. Beakta anvisningarna i Er maskinhandbok.

3D-vridningen av bearbetningsplanet sker alltid runt den aktiva nollpunkten.

Grunder se "3D-vridning av bearbetningsplanet", sidan 24: Läs först igenom hela detta avsnitt.

Verkan

l cykel 19 definierar man bearbetningsplanets läge – motsvarar verktygsaxelns läge i förhållande till det maskinfasta koordinatsystemet – genom att ange vridningsvinklar. Man kan definiera bearbetningsplanets läge på två olika sätt:

- Ange rotationsaxlarnas läge direkt
- Beskriva bearbetningsplanets läge med hjälp av upp till tre vridningar (rymdvinkel) av det maskinfasta koordinatsystemet. Rymdvinkeln som skall anges får man genom att placera ett snitt vinkelrätt genom det tippade bearbetningsplanet och sedan betrakta snittet från den axel som vridningen skall ske runt. Redan med två rymdvinklar kan alla godtyckliga verktygslägen definieras entydigt i rymden.

Om man programmerar bearbetningsplanets läge via rymdvinkel beräknar TNC:n automatiskt de därför erforderliga vinkelinställningarna för rotationsaxlarna och lägger in dessa i parametrarna Q120 (A-axel) till Q122 (C-axel). Om det finns två möjliga lösningar väljer TNC:n – utgående från rotationsaxlarnas nollägen – den kortaste vägen.

Vridningarnas ordningsföljd vid beräkning av planets läge är fast: Först vrider TNC:n A-axeln, därefter B-axeln och slutligen C-axeln.

Cykel 19 aktiveras direkt efter dess definition i programmet. Så fort man förflyttar en axel i det vridna koordinatsystemet kommer kompenseringen för denna axel att aktiveras. Man måste alltså förflytta alla axlarna om kompenseringen för alla axlarna skall aktiveras.

Om man har ställt in funktionen VRIDNING PROGRAMKÖRNING i driftart Manuell drift på AKTIV (se "3D-vridning av bearbetningsplanet", sidan 24) så kommer vinkelvärdet som har angivits i menyn att skrivas över med vinkelvärdet från cykel 19 BEARBETNINGSPLAN.

Vridningsaxel och -vinkel?: Ange rotationsaxel med tillhörande vridningsvinkel; rotationsaxlarna A, B och C programmeras via softkeys

Om TNC:n positionerar rotationsaxlarna automatiskt så kan man även ange följande parametrar

- Matning? F=: Vridningsaxlarnas förflyttningshastighet vid automatisk positionering
- Säkerhetsavstånd? (inkrementalt): TNC:n positionerar spindelhuvudet så att positionen, som är en förlängning av verktyget med säkerhetsavståndet, inte ändrar sig relativt arbetsstycket

Återställning

För att återställa vridningsvinkeln definierar man cykeln BEARBETNINGSPLAN på nytt och anger 0° för alla vridningsaxlarna. Därefter definierar man återigen cykel BEARBETNINGSPLAN och besvarar dialogfrågan med knappen NO ENT. På detta sätt återställes funktion (först vridning tillbaka till noll och sedan avstängning).

Positionera rotationsaxel

Maskintillverkaren bestämmer om cykel 19 även positionerar rotationsaxeln(arna) automatiskt eller om man själv måste förpositionera rotationsaxlarna i programmet. Beakta anvisningarna i Er maskinhandbok.

Om cykel 19 positionerar rotationsaxlarna automatiskt gäller:

- TNC:n kan bara positionera styrda axlar automatiskt.
- I cykeldefinitionen måste man förutom vridningsvinkel även ange ett säkerhetsavstånd och en matning med vilken vridningsaxlarna positioneras.
- Endast förinställda verktyg kan användas (hela verktygslängden måste anges i TOOL DEF-blocket alt. i verktygstabellen).
- Under vridningsförloppet förblir verktygsspetsens position i princip oförändrad i förhållande till arbetsstycket.
- TNC:n utför vridningssekvensen med den sist programmerade matningen. Den maximala matningshastigheten som kan uppnås beror på spindelhuvudets (tippningsbordets) komplexitet.

Om cykel 19 inte positionerar vridningsaxlarna automatiskt, måste man själv programmera positioneringen av vridningsaxlarna, exempelvis med ett L-block före cykeldefinitionen.

Exempel NC-block:

10 L Z+100 R0 FMAX	
11 L X+25 Y+10 RO FMAX	
12 L B+15 R0 F1000	Positionera rotationsaxel

13 CYCL DEF 19.0 BEARBETNINGSPLAN	Definiera vinkel för kompenseringsberäkning
14 CYCL DEF 19.1 B+15	
15 L Z+80 R0 FMAX	Aktivera kompensering för spindelaxel
16 L X-7.5 Y-10 RO FMAX	Aktivera kompensering för bearbetningsplanet

Positionspresentation i vridet system

De presenterade positionerna (**BÖR** och **ÄR**) samt nollpunktspresentationen i den utökade statuspresentationen hänförs, efter aktivering av cykel 19, till det vridna koordinatsystemet. Positionerna som presenteras direkt efter cykeldefinitionen kommer alltså inte att överensstämma med positionerna som presenterades precis innan cykel 19.

Övervakning av bearbetningsområdet

l vridet koordinatsystem övervakar TNC:n ändlägena bara för axlar som förflyttas. I förekommande fall kommer TNC:n att presentera ett felmeddelande.

Positionering i vridet system

Med tilläggsfunktionen M130 kan man, även vid vridet system, utföra förflyttning till positioner som utgår från det icke vridna koordinatsystemet, se "Tilläggsfunktioner för koordinatuppgifter", sidan 176.

Även positioneringar med rätlinjeblock som refererar till maskinens koordinatsystem (block med M91 eller M92) kan utföras vid vridet bearbetningsplan. Begränsningar:

- Positioneringen sker utan längdkompensering
- Positioneringen sker utan kompensering för maskingeometrin
- Verktygsradiekompensering är inte tillåten

Kombination med andra cykler för koordinatomräkning

Vid kombination av flera cykler för koordinatomräkning, måste man beakta att tippningen av bearbetningsplanet alltid sker runt den aktiva nollpunkten. Man kan utföra en nollpunktsförskjutning innan aktiveringen av cykel 19 utförs: då förskjuts det "maskinfasta koordinatsystemet".

Om man förskjuter nollpunkten efter att cykel 19 har aktiverats så förskjuts det "vridna koordinatsystemet".

Viktigt: Då cyklerna skall återställas skall de upphävas i omvänd ordningsföljd i förhållande till hur de aktiverades:

- 1. aktivera nollpunktsförskjutning.
- 2. Aktivera tippning av bearbetningsplanet
- 3. Aktivera vridning

Bearbetning

. . .

- 1. Återställ vridning
- 2. Återställ tippning av bearbetningsplanet
- 3. återställ nollpunktsförskjutning.

Automatisk mätning i vridet system

Med TNC:ns mätcykler kan man även mäta arbetsstycket i vridet koordinatsystem. TNC:n lagrar mätresultaten i Q-parametrar, vilka sedan kan behandlas ytterligare (t.ex. skriva ut mätresultatet på en skrivare).

Arbeta med cykel 19 BEARBETNINGSPLAN, steg för steg

1 Skapa programmet

- Definiera verktyget (om inte TOOL.T är aktiv), ange hela verktygslängden.
- Anropa verktyget
- Frikörning av spindelaxeln så att verktyget inte kolliderar med arbetsstycket (spännanordningar) vid vridningen.
- I förekommande fall, positionera vridningsaxel(ar) med ett L-block till respektive vinkelvärde (avhängigt en maskinparameter).
- I förekommande fall, aktivera nollpunktsförskjutning.
- Definiera cykel 19 BEARBETNINGSPLAN; ange vridningsaxlarnas vinkelvärden.
- Förflytta alla huvudaxlar (X, Y, Z) för att aktivera kompenseringen.
- Programmera bearbetningen som om den skulle utföras i ett icke vridet plan.
- I förekommande fall, Definiera cykel 19 BEARBETNINGSPLAN med en annan vinkel om bearbetningen skall fortsätta i en annan axelriktning. I detta fall är det inte nödvändigt att återställa cykel 19, man kan definiera det nya vinkelläget direkt.
- Återställ vinkel i cykel 19 BEARBETNINGSPLAN; ange 0° för alla vridningsaxlar
- Upphäv funktionen BEARBETNINGSPLAN; definiera återigen cykel 19, besvara dialogfrågan med NO ENT.

- I förekommande fall, återställ nollpunktsförskjutning.
- ▶ I förekommande fall, positionera vridningsaxlarna till 0°-positionen.

2 Spänn upp arbetsstycket

3 Förberedelse i driftart Manuell positionering

Positionera vridningsaxel(ar) till lämpligt vinkelvärde för att ställa in arbetsstyckets utgångspunkt. Vinkelvärdet anges i förhållande till den valda utgångsytan på arbetsstycket.

4 Förberedelse i driftart Manuell Drift

Funktion vridning av bearbetningsplan väljs till AKTIV med softkey 3D-ROT för driftart Manuell drift; vid icke styrda axlar anges vridningsaxlarnas vinkelvärde i menyn.

Vid icke styrda axlar måste de inmatade värdet överensstämma med vridningsaxelns(axlarnas) är-position, annars kommer TNC:n att beräkna en felaktig utgångspunkt.

5 Ställ in utgångspunkten

- Manuellt genom att tangera arbetsstycket på samma sätt som i icke vridet system se "Inställning av utgångspunkt (utan 3Davkännarsystem)", sidan 22
- Styrt med ett HEIDENHAIN 3D-avkännarsystem (se bruksanvisning Avkännarcykler, kapitel 2)
- Automatiskt med ett HEIDENHAIN 3D-avkännarsystem (se Bruksanvisning Avkännarcykler, kapitel 3)

6 Starta bearbetningsprogrammet i driftart Program blockföljd

7 Driftart Manuell drift

Funktionen vridning av bearbetningsplan väljs till INAKTIV med softkey 3D-ROT. Ange vinkelvärdet 0° i menyn för alla vridningsaxlarna, se "Aktivering av manuell vridning", sidan 27.

Exempel: Cykler för koordinatomräkning

- Koordinatomräkning i huvudprogram
- Bearbetning i underprogram, se
- "Underprogram", sidan 351

O BEGIN PGM KOUMR MM	
1 BLK FORM 0. 1 Z X+0 Y+0 Z-20	Råämnesdefinition
2 BLK FORM 0. 2 X+130 Y+130 Z+0	
3 TOOL DEF 1 L+0 R+1	Verktygsdefinition
4 TOOL CALL 1 Z S4500	Verktygsanrop
5 L Z+250 R0 F MAX	Frikörning av verktyget
6 CYCL DEF 7.0 NOLLPUNKT	Nollpunktsförskjutning till centrum
7 CYCL DEF 7.1 X+65	
8 CYCL DEF 7.2 Y+65	
9 CALL LBL 1	Anropa fräsbearbetning
10 LBL 10	Sätt märke för programdelsupprepning
11 CYCL DEF 10.0 VRIDNING	Vridning med 45° inkrementalt
12 CYCL DEF 10.1 IROT+45	
13 CALL LBL 1	Anropa fräsbearbetning
14 CALL LBL 10 REP 6/6	Återhopp till LBL 10; totalt sex gånger
15 CYCL DEF 10.0 VRIDNING	Återställ vridning
16 CYCL DEF 10.1 ROT+0	
17 CYCL DEF 7.0 NOLLPUNKT	återställ nollpunktsförskjutning.
18 CYCL DEF 7.1 X+0	
19 CYCL DEF 7.2 Y+0	

20 L Z+250 R0 F MAX M2	Frikörning av verktyget, programslut
21 LBL 1	Underprogram 1:
22 L X+0 Y+0 R0 F MAX	Definition av fräsbearbetningen
23 L Z+2 RO F MAX MB	
24 L Z-5 R0 F200	
25 L X+30 RL	
26 L IY+10	
27 RND R5	
28 L IX+20	
29 L IX+10 IY-10	
30 RND R5	
31 L IX-10 IY-10	
32 L IX-20	
33 L IY+10	
34 L X+0 Y+0 R0 F500	
35 L Z+20 R0 F MAX	
36 LBL 0	
37 END PGM KOUMR MM	

8.10 Specialcykler

VÄNTETID (cykel 9)

Programexekveringen stoppas under VÄNTETIDENS längd. En väntetid kan exempelvis användas för att spånbrytning.

Verkan

Cykeln aktiveras direkt efter dess definition i programmet. Modala tillstånd (varaktiga) såsom exempelvis spindelrotation påverkas inte av väntetiden.

Väntetid i sekunder: Ange en väntetid i sekunder

Inmatningsområde 0 till 3 600 s (1 timme) i 0,001 s-steg

Exempel: NC-block

- 89 CYCL DEF 9.0 VAENTETID
- 90 CYCL DEF 9.1 V.TID 1.5

PROGRAMANROP (cykel 12)

Man kan likställa godtyckliga bearbetningsprogram, såsom exempelvis speciella borrcykler eller geometrimoduler, med bearbetningscykler. Man anropar dessa program på ungefär samma sätt som cyklerna.

Att beakta före programmering

Det anropade programmet måste finnas på TNC:ns hårddisk.

Om man bara anger programnamnet, måste det i cykeln angivna programmet finnas i samma katalog som det anropande programmet.

Om det i cykeln angivna programmet inte finns i samma katalog som det anropande programmet, måste man ange hela sökvägen, t.ex. TNC:\KLAR35\FK1\50.H.

Om man vill ange ett DIN/ISO-program i cykeln så skall filtypen .I skrivas in efter programnamnet.

12 PGM CRLL

Programam: Ange namnet på programmet som skall anropas och i förekommande fall även med sökvägen till den katalog som programmet befinner sig i

Exempel: NC-block

55	CYCL DEF	12.0 PG	M CALL
56	CYCL DEF	12.1 PG	M TNC: \KLAR35\FK1\50. H
57	L X+20 Y	+50 FMAX	M99

Programmet anropar man sedan med

- CYCL CALL (separat block) eller
- M99 (blockvis) eller
- M89 (utförs efter varje positioneringsblock)

Exempel: Programanrop

Ett anropbart program 50 skall anropas från ett annat program med hjälp av cykelanrop.

SPINDELORIENTERING (cykel 13)

Maskinen och TNC:n måste vara förberedd av maskintillverkaren.

I bearbetningscyklerna 202, 204 och 209 används cykel 13 internt. I sitt NC-program behöver man ta hänsyn till att man i förekommande fall måste programmera cykel 13 på nytt efter de ovan nämnda bearbetningscyklerna.

TNC:n kan styra en verktygsmaskins huvudspindel och positionera den till bestämda vinklar.

Spindelorienteringen behövs exempelvis

- vid verktygsväxlarsystem med fast växlarposition för verktyget
- för att rikta in sändar- och mottagarfönstret i 3D-avkännarsystem med infraröd överföring

Verkan

TNC:n positionerar spindeln till den i cykeln definierade vinkeln genom att M19 eller M20 programmeras (maskinberoende).

Om man programmerar M19 alt. M20 utan att först ha definierat cykel 13 så positionerar TNC:n huvudspindeln till ett vinkelvärde som har definierats av maskintillverkaren (se maskinhandboken).

Orienteringsvinkel: Ange vinkel i förhållande till bearbetningsplanets vinkelreferensaxel

Inmatningsområde: 0 till 360°

Inmatningssteg: 0,1°

Exempel: NC-block

93	CYCL	DEF	13.0	ORI ENTERING
04	CVCI	DEE	12 1	VINKEI 190

TOLERANS (cykel 32)

P Maskinen och TNC:n måste vara förberedd av maskintillverkaren.

TNC glättar automatiskt konturen mellan godtyckliga (okompenserade eller kompenserade) konturelement. Därigenom förflyttas verktyget kontinuerligt på arbetsstyckets yta. Om det behövs reducerar TNC:n automatiskt den programmerade matningen så att programmet alltid utförs "ryckfritt" med högsta möjliga matningshastighet. Ytan blir jämnare och maskinmekaniken skonas.

Genom glättningen uppstår en konturavvikelse. Konturavvikelsens storlek (Toleransvärde) är fastlagd av Er maskintillverkare i en maskinparameter. Med cykel 32 förändrar man det förinställda toleransvärdet.

Att beakta före programmering

återställningen:

direkt efter sin definition i programmet.

Cykel 32 är DEF-aktiv, detta innebär att den aktiveras **Exempel: NC-block**

95	CYCL	DEF	32.0	TOLERANS

CYCL DEF 32.1 TO.05 96

32			
02			
~	٠	T.	

Toleransvärde: Tillåten konturavvikelse i mm

Man återställer cykel 32 genom att definiera cykel 32 på

nytt och besvara dialogfrågan efter Toleransvärde med NO ENT. Den förinställda toleransen aktiveras åter genom

348

Programmering: Underprogram och programdelsupprepningar

9.1 Underprogram och programdelsupprepning

Underprogram och programdelsupprepning gör det möjligt att programmera en bearbetningssekvens en gång för att därefter utföra den flera gånger.

Label

Underprogram och programdelsupprepningar påbörjas i bearbetningsprogrammet med ett märke LBL, en förkortning för LABEL (eng. för märke, markering).

LABEL tilldelas ett nummer mellan 1 och 254. Varje individuellt LABEL-nummer får bara anges en gång i programmet med LABEL SET.

Om ett och samma LABEL-nummer anges flera gånger kommer TNC:n att presentera ett felmeddelande när man avslutar LBL SET-blocket. Vid mycket långa program kan man via MP7229 begränsa kontrollen till ett definierbart antal block.

LABEL 0 (LBL 0) markerar slutet på ett underprogram och får därför anges ett godtyckligt antal gånger.

9.2 Underprogram

Arbetssätt

- 1 TNC:n utför ett bearbetningsprogram fram till ett anrop av underprogram CALL LBL.
- 2 Från detta ställe utför TNC:n det anropade underprogrammet fram till underprogrammets slut LBL 0.
- **3** Därefter återupptar TNC:n exekveringen av bearbetningsprogrammet vid blocket efter anropet av underprogrammet CALL LBL.

Programmering - anmärkning

- Ett huvudprogram kan innehålla upp till 254 underprogram.
- Man kan anropa underprogram i en godtycklig ordningsföljd och så ofta som önskas.
- Ett underprogram får inte anropa sig själv.
- Programmera underprogram i slutet av huvudprogrammet (efter blocket med M2 alt. M30).
- Om ett underprogram placeras innan blocket med M02 eller M30 i bearbetningsprogrammet så kommer det att utföras minst en gång även om det inte anropas.

Programmering underprogram

LBL

- Markera början: Tryck på knappen LBL SET och ange ett Label-nummer
- Ange underprogramnummer
- Markera slutet: Tryck på knappen LBL SET och ange Label-nummer "0"

Anropa underprogram

- Anropa underprogram: Tryck på knappen LBL CALL
- ► Label nummer: Ange det anropade underprogrammets label-nummer
- Upprepning REP: Hoppa över dialogfrågan med knappen NO ENT. Upprepning REP skall endast användas vid programdelsupprepningar

CALL LBL 0 är inte tillåtet då det skulle innebära ett anrop av underprogrammets slut.

9.3 Programdelsupprepning

Label LBL

Programdelsupprepningar börjar med ett märke LBL (LABEL). En programdelsupprepning avslutas med CALL LBL /REP.

Arbetssätt

- 1 TNC:n utför bearbetningsprogrammet fram till slutet på programdelen (CALL LBL /REP).
- 2 Därefter upprepar TNC:n programdelen mellan anropad LABEL och label-anropet CALL LBL /REP så många gånger som man har angivit i REP.
- **3** Därefter fortsätter TNC:n vidare i exekveringen av bearbetningsprogrammet.

Programmering - anmärkning

- Man kan upprepa en programdel upp till 65 534 gånger efter varandra.
- Till höger om snedstrecket, efter REP, visar TNC:n hur många programdelsupprepningar som är kvar att utföra.
- TNC:n kommer alltid att utföra programdelar en gång mer än antalet programmerade upprepningar.

Programmering programdelsupprepning

- LBL SET
- Markera början: Tryck på knappen LBL SET och ange sedan LABEL-nummer för programdelen som skall upprepas
- Mata in programdelen

Anropa programdelsupprepning

Tryck på knappen LBL CALL, ange Label-nummer för programdelen som skall upprepas samt ange antalet upprepningar REP.

9.4 Godtyckligt program som underprogram

Arbetssätt

- 1 TNC:n utför bearbetningsprogrammet fram till dess att ett annat program anropas med CALL PGM.
- 2 Efter detta utför TNC:n det anropade programmet fram till dess slut.
- **3** Därefter återupptar TNC:n exekveringen av det anropande bearbetningsprogrammet från blocket som befinner sig efter programanropet.

Programmering - anmärkning

- TNC:n behöver inga LABELs för att använda ett annat godtyckligt program som underprogram.
- Det anropade programmet får inte innehålla tilläggsfunktionerna M2 eller M30.
- Det anropade programmet får inte innehålla några anrop CALL PGM tillbaka till det anropande programmet (kedja utan slut).

Anropa godtyckligt program som underprogram

- PGM
- Välj funktionen för programanrop: Tryck på knappen PGM CALL

Tryck på softkey PROGRAM

Ange fullständig sökväg till det anropade programmet, bekräfta med knappen END.

Det anropade programmet måste finnas på TNC:ns hårddisk.

Om man bara anger programnamnet, måste det anropade programmet finnas i samma katalog som det anropande programmet.

Om det anropade programmet inte finns i samma katalog som det anropande programmet, måste man ange hela sökvägen, t.ex. TNC:\ZW35\SCHRUPP\PGM1.H

Om ett DIN/ISO-program skall anropas så anger man filtypen .I efter programnamnet.

Man kan också anropa ett godtyckligt program med cykel 12 PGM CALL.

9.5 Länkning av underprogram

Länkningstyper

- Underprogram i underprogram
- Programdelsupprepning i programdelsupprepning
- Upprepa underprogram
- Programdelsupprepning i underprogram

Länkningsdjup

Länkningsdjupet är det antal nivåer som programdelar eller programdelsupprepningar kan anropa ytterligare underprogram eller programdelsupprepningar.

- Maximalt länkningsdjup för underprogram: 8
- Maximalt länkningsdjup för huvudprogramanrop: 4
- Man kan länka programdelsupprepningar ett godtyckligt antal gånger

Underprogram i underprogram

Exempel NC-block

O BEGIN PGM UPGMS MM	
····	
17 CALL LBL 1	Anropa underprogram vid LBL 1
····	
35 L Z+100 RO FMAX M2	Sista programblocket i
	huvudprogrammet (med M2)
36 LBL 1	Början på underprogram 1
····	
39 CALL LBL 2	Underprogram vid LBL2 anropas
····	
45 LBL 0	Slut på underprogram 1
46 LBL 2	Början på underprogram 2
62 LBL 0	Slut på underprogram 2
63 END PGM UPGMS MM	

Programexekvering

- 1 Huvudprogrammet UPGMS utförs fram till block 17.
- 2 Underprogram 1 anropas och utförs sedan fram till block 39.
- **3** Underprogram 2 anropas och utförs sedan fram till block 62. Slut på underprogram 2 och återhopp till underprogrammet som underprogram 2 anropades ifrån.
- **4** Underprogram 1 utförs från block 40 fram till block 45. Slut på underprogram 1 och återhopp till huvudprogram UPGMS.
- **5** Huvudprogram UPGMS utförs sedan från block 18 fram till block 35. Återhopp till block 1 och programslut.

Upprepning av programdelsupprepning

Exempel NC-block

O BEGIN PGM REPS MM	
15 LBL 1	Början på programdelsupprepning 1
····	
20 LBL 2	Början på programdelsupprepning 2
27 CALL LBL 2 REP 2/2	Programdel mellan detta block och LBL 2
····	(block 20) upprepas 2 gånger
35 CALL LBL 1 REP 1/1	Programdel mellan detta block och LBL 1
····	(block 15) upprepas 1 gång
50 END PGM REPS MM	

Programexekvering

- 1 Huvudprogram REPS utförs fram till block 27.
- 2 Programdelen mellan block 27 och block 20 upprepas 2 gånger.
- **3** Huvudprogram REPS utförs från block 28 fram till block 35.
- 4 Programdelen mellan block 35 och block 15 upprepas 1 gång (innehåller även programdelsupprepningen mellan block 20 och block 27).
- 5 Huvudprogram REPS utförs från block 36 till block 50 (programslut)

9.5 Länkning av underprogram

Upprepning av underprogram

Exempel NC-block

O BEGIN PGM UPGREP MM	
····	
10 LBL 1	Början på programdelsupprepning 1
11 CALL LBL 2	Anropa underprogram
12 CALL LBL 1 REP 2/2	Programdel mellan detta block och LBL1
····	(block 10) upprepas 2 gånger
19 L Z+100 RO FMAX M2	Huvudprogrammets sista block med M2
20 LBL 2	Början på underprogrammet
····	
28 LBL 0	Slut på underprogrammet
29 END PGM UPGREP MM	

Programexekvering

- **1** Huvudprogram UPGREP utförs fram till block 11.
- 2 Underprogram 2 anropas och utförs.
- 3 Programdelen mellan block 12 och block 10 upprepas 2 gånger: Underprogram 2 upprepas 2 gånger.
- 4 Huvudprogram UPGREP utförs från block 13 till block 19; Programslut

9.6 Programmeringsexempel

Exempel: Konturfräsning med flera ansättningar

- Verktyget förpositioneras till arbetsstyckets överkant
- Ansättningen anges inkrementalt
- Konturfräsning
- Upprepa ansättning och konturfräsning

0 BEGIN PGM PGMNDH MM	
1 BLK FORM 0. 1 Z X+0 Y+0 Z-40	
2 BLK FORM 0. 2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Verktygsdefinition
4 TOOL CALL 1 Z S500	Verktygsanrop
5 L Z+250 R0 F MAX	Frikörning av verktyget
6 L X-20 Y+30 R0 F MAX	Förpositionering i bearbetningsplanet
7 L Z+O RO F MAX MB	Förpositionering till arbetsstyckets överkant

8 LBL 1	Märke för programdelsupprepning
9 L IZ-4 RO F MAX	Inkrementalt skärdjup (ansättning i luften)
10 APPR CT X+2 Y+30 CCA90 R+5 RL F250	Förflyttning till konturen
11 FC DR- R18 CLSD+ CCX+20 CCY+30	Kontur
12 FLT	
13 FCT DR- R15 CCX+50 CCY+75	
14 FLT	
15 FCT DR- R15 CCX+75 CCY+20	
16 FLT	
17 FCT DR- R18 CLSD- CCX+20 CCY+30	
18 DEP CT CCA90 R+5 F1000	Förflyttning från konturen
19 L X-20 Y+0 R0 F MAX	Frikörning
20 CALL LBL 1 REP 4/4	Återhopp till LBL 1; totalt fyra gånger
21 L Z+250 R0 F MAX M2	Frikörning av verktyget, programslut
22 END PGM PGMMDH MM	

Exempel: Hålbilder

- Förflyttning till hålbild i huvudprogram
- Anropa hålbild (underprogram 1)
- Hålbilden programmeras bara en gång i underprogram 1

0 BEGIN PGM UP1 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	
2 BLK FORM 0. 2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+2, 5	Verktygsdefinition
4 TOOL CALL 1 Z S5000	Verktygsanrop
5 L Z+250 R0 F MAX	Frikörning av verktyget
6 CYCL DEF 200 BORRNING	Cykeldefinition borrning
Q200=2; SAEKERHETSAVST.	
Q201=-10 ; DJUP	
Q206=250 ; MATNING DJUP	
Q2O2=5 ; SKAERDJUP	
Q210=0 ; VAENTETID UPPE	
Q2O3=+O ; KOORD. OEVERYTA	
Q204=10 ; 2. SAEKERHETSAVST.	
Q211=0.25 : VAENTETID NERE	

7 L X+15 Y+10 R0 F MAX MB	Förflyttning till startpunkt hålbild 1
8 CALL LBL 1	Anropa underprogram för hålbild
9 L X+45 Y+60 R0 F MAX	Förflyttning till startpunkt hålbild 2
10 CALL LBL 1	Anropa underprogram för hålbild
11 L X+75 Y+10 R0 F MAX	Förflyttning till startpunkt hålbild 3
12 CALL LBL 1	Anropa underprogram för hålbild
13 L Z+250 R0 F MAX M2	Slut på huvudprogrammet
14 LBL 1	Början på underprogram 1: Hålbild
15 CYCL CALL	Hål 1
16 L IX+20 RO F MAX M99	Förflyttning till andra hålet, anropa cykel
17 L IY+20 RO F MAX M99	Förflyttning till tredje hålet, anropa cykel
18 L IX-20 RO F MAX M99	Förflyttning till fjärde hålet, anropa cykel
19 LBL 0	Slut på underprogram 1
20 END PGM UP1 MM	

Exempel: Hålbild med flera verktyg

- Bearbetningscykler programmeras i huvudprogrammet
- Anropa komplett hålbild (underprogram 1)
- Förflyttning till hålbild i underprogram 1, anropa hålbild (underprogram 2)
- Hålbilden programmeras bara en gång i underprogram 2

0 BEGIN PGM UP2 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	
2 BLK FORM 0. 2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+4	Verktygsdefinition centrumborr
4 TOOL DEF 2 L+0 R+3	Verktygsdefinition borr
5 TOOL DEF 3 L+0 R+3, 5	Verktygsdefinition brotsch
6 TOOL CALL 1 Z S5000	Verktygsanrop centrumborr
7 L Z+250 RO F MAX	Frikörning av verktyget
8 CYCL DEF 200 BORRNING	Cykeldefinition centrumborrning
Q200=2; SAEKERHETSAVST.	
Q201=-3; DJUP	
Q206=250; MATNING DJUP	
Q202=3; SKAERDJUP	
Q210=0; VAENTETID UPPE	
Q2O3=+O; KOORD. OEVERYTA	
Q204=10; 2. SAEKERHETSAVST.	
Q211=0.25; VAENTETID NERE	
9 CALL LBL 1	Anropa underprogram 1 för komplett hålbild

10 L Z+250 RO F MAX M6	Verktygsväxling
11 TOOL CALL 2 Z S4000	Verktygsanrop borr
12 FN 0: Q201 = -25	Nytt djup för borr
13 FN 0: $Q202 = +5$	Nytt skärdjup för borr
14 CALL LBL 1	Anropa underprogram 1 för komplett hålbild
15 L Z+250 RO F MAX M6	Verktygsväxling
16 TOOL CALL 3 Z S500	Verktygsanrop brotsch
17 CYCL DEF 201 BROTSCHNING	Cykeldefinition brotschning
Q200=2; SAEKERHETSAVST.	
Q201=-15; DJUP	
Q206=250; MATNING DJUP	
Q211=0,5; VAENTETID NERE	
Q208=400; MATNING TILLBAKA	
Q2O3=+0; KOORD. OEVERYTA	
Q204=10; 2. SAEKERHETSAVST.	
18 CALL LBL 1	Anropa underprogram 1 för komplett hålbild
19 L Z+250 RO F MAX M2	Slut på huvudprogrammet
20 LBL 1	Början på underprogram 1: Komplett hålbild
21 L X+15 Y+10 R0 F MAX MB	Förflyttning till startpunkt hålbild 1
22 CALL LBL 2	Anropa underprogram 2 för hålbild
23 L X+45 Y+60 R0 F MAX	Förflyttning till startpunkt hålbild 2
24 CALL LBL 2	Anropa underprogram 2 för hålbild
25 L X+75 Y+10 R0 F MAX	Förflyttning till startpunkt hålbild 3
26 CALL LBL 2	Anropa underprogram 2 för hålbild
27 LBL 0	Slut på underprogram 1
28 LBL 2	Början på underprogram 2: Hålbild
29 CYCL CALL	Hål ett med aktiv bearbetningscykel
30 L IX+20 RO F MAX M99	Förflyttning till andra hålet, anropa cykel
31 L IY+20 R0 F MAX M99	Förflyttning till tredje hålet, anropa cykel
32 L IX-20 R0 F MAX M99	Förflyttning till fjärde hålet, anropa cykel
33 LBL 0	Slut på underprogram 2
34 END PGM UP2 MM	

Programmering: Q-parametrar

10.1 Princip och funktionsöversikt

Med Q-parametrar kan man definiera en hel detaljfamilj i ett enda gemensamt bearbetningsprogram. Detta görs genom att man programmerar variabler istället för siffervärden: Q-parametrar.

Q-parametrar kan representera exempelvis:

- Koordinatvärden
- Matningshastigheter
- Spindelvarvtal
- Cykeldata

Förutom detta kan man med Q-parametrar exempelvis programmera konturer som definieras med hjälp av matematiska funktioner eller ställa logiska villkor för att bearbetningssekvenser skall utföras eller inte. I kombination med FK-programmeringen kan man även använda Q-parametrar vid konturer som inte är NC-anpassade vad beträffar sin måttsättning.

En Q-parameter kännetecknas av bokstaven Q och ett parameternummer mellan 0 och 299. Q-parametrarna är uppdelade i tre huvudgrupper:

Betydelse	Område
Fritt användbara parametrar, globalt verksamma för alla program som finns lagrade i TNC:n	Q0 till Q99
Parametrar för specialfunktioner i TNC:n	Q100 till Q199
Parametrar som uteslutande används för cykler, globalt verksamma för alla program som finns lagrade i TNC:n	Q200 till Q399

Programmeringsanvisning

Q-parametrar och siffervärden får blandas vid inmatningen av ett bearbetningsprogram.

Man kan tilldela Q-parametrar siffervärden mellan –99 999,9999 och +99 999,9999. Internt kan TNC:n beräkna siffervärden med en heltalsdel motsvarande 57 Bit och en decimaldel motsvarande 7 Bit (32 bit sifferbredd motsvarar det decimala talet 4 294 967 296).

Vissa Q-parametrar tilldelas automatiskt alltid samma data av TNC:n, exempelvis tilldelar TNC:n Q-parameter Q108 den aktuella verktygsradien, se "Fasta Q-parametrar", sidan 394. Om man använder parameter Q60 till Q99 i maskintillverkarcykler bestämmer man via maskinparameter MP7251 huruvida dessa parametrar endast skall vara lokalt verksamma i maskintillverkarcykeln eller globalt verksamma för alla program.

Kalla upp Q-parameterfunktioner

När ett bearbetningsprogram matas in trycker man på knappen "Q" (i fältet för sifferinmatning och axelval under –/+ -knappen). Då presenterar TNC:n följande softkeys:

Funktionsgrupp	Softkey
Matematiska grundfunktioner	GRUND- FUNKTION.
Vinkelfunktioner	TRIGO- NOMETRI
Funktion för cirkelberäkning	CIRKEL- BERFIK- NING
lf/then-bedömningar, hopp	HOPP
Specialfunktioner	DIVERSE FUNKTION.
Formel direkt programmerbar	FORMEL
Funktion för bearbetning av komplexa konturer	KONTUR- FORMEL

10.2 Detaljfamiljer – Q-parametrar istället för siffervärden

Med Q-parameterfunktionen FN0: TILLDELNING kan man tilldela Qparametrar siffervärden. Detta gör det möjligt att mata in variabla Qparametrar istället för siffervärden i bearbetningsprogrammet.

Exempel NC-block

15 FNO: Q10=25	Tilldelning
	Q10 får värdet 25
25 L X +Q10	motsvarar L X +25

För en detaljfamilj kan man exempelvis programmera karaktäristiska dimensioner som Q-parametrar.

För bearbetning av en specifik detalj behöver man då bara tilldela dessa parametrar lämpliga värden.

Exempel

Cylinder med Q-parametrar

Cylinderradie	R = Q1
Cylinderhöjd	H = Q2
Cylinder Z1	Q1 = +30
	Q2 = +10
Cylinder Z2	Q1 = +10
	Q2 = +50

10.3 Beskrivning av konturer med hjälp av matematiska funktioner

Användningsområde

Med Q-parametrar kan man programmera matematiska grundfunktioner i bearbetningsprogrammet:

- Välj Q-parameterfunktioner: Tryck på knappen Q (till höger i fältet för sifferinmatning). Softkeyraden visar de olika Q-parameterfunktionerna.
- Välj matematiska grundfunktioner: Tryck på softkey GRUNDFUNKT. TNC:n visar följande softkeys:

Översikt

Funktion	Softkey
FNO: TILLDELNING t.ex. FNO: Q5 = +60 Tilldela ett värde direkt	FN0 X - Y
FN1: ADDITION t.ex. FN1: Q1 = -Q2 + -5 Summera två värden och tilldela resultatet	FN1 X + Y
FN2: SUBTRAKTION t.ex. FN2: Q1 = +10 - +5 Subtrahera två värden och tilldela resultatet	FN2 × - Y
FN3: MULTIPLIKATION t.ex. FN3: Q2 = +3 * +3 Multiplicera två värden och tilldela resultatet	FN3 X * Y
FN4: DIVISION t.ex. FN4: Q4 = +8 DIV +Q2 Dividera två värden och tilldela resultatet Förbjudet: Division med 0!	FN4 X × Y
FN5: ROTEN UR t.ex. FN5: Q20 = SQRT 4 Beräkna roten ur ett värde och tilldela resultatet Förbjudet: Roten ur negativa tal!	FN5 ROTEN UR

Till höger om "="-tecknet får man ange:

■ två tal

■ två Q-parametrar

ett tal och en Q-parameter

Q-parametrarna och siffervärdena i beräkningarna kan anges med både positivt och negativt förtecken.

Programmering av matematiska grundfunktioner

Exempel:		Exempel:	Programblock i TNC:n
Q	Välj Q-parameterfunktioner: Tryck på knappen Q	16 FNO: 17 FN3:	Q5 = +10 Q12 = +Q5 * +7
GRUND- FUNKTION.	Välj matematiska grundfunktioner: Tryck på softkey GRUNDFUNKT.		
FN0 X - Y	Välj Q-parameterfunktion TECKEN: Tryck på softkey FN0 X = Y		
Parameter-N	r. för resultat ?		
5 ENT	Ange Q-parameterns nummer: 5		
1:a Värde e	ller parameter?		
10 ENT	Tilldela Q5 siffervärdet 10		
Q	Välj Q-parameterfunktioner: Tryck på knappen Q		
GRUND- FUNKTION.	Välj matematiska grundfunktioner: Tryck på softkey GRUNDFUNKT.		
FN3 X * Y	Välj Q-parameterfunktion MULTIPLIKATION: Tryck på softkey FN3 X * Y		
Parameter-N	ír. för resultat ?		
12 ENT	Ange Q-parameterns nummer: 12		
1:a Värde e	ller parameter?		
	Ange Q5 som första värde		
2:a Värde e	ller parameter?		
7 ENT	Ange 7 som andra värde		

10.4 Vinkelfunktioner (Trigonometri)

Definitioner

Sinus, cosinus och tangens beskriver förhållandet mellan sidorna i en rätvinklig triangel. Där motsvarar:

Där:

c är sidan mitt emot den räta vinkeln

a är sidan mitt emot vinkeln a

b är den tredje sidan

Med tangens kan TNC:n beräkna vinkeln:

 α = arctan (a / b) = arctan (sin α / cos α)

Exempel:

a = 25 mm

b = 50 mm

 α = arctan (a / b) = arctan 0,5 = 26,57°

Dessutom gäller:

 $a^{2} + b^{2} = c^{2} \pmod{a^{2}} = a \times a$

 $\mathsf{C} \;=\; \sqrt{(a^2+b^2)}$

Programmera vinkelfunktioner

Vinkelfunktionerna presenteras när man har tryckt på softkey VINKELFUNKT. TNC:n presenterar då softkeys enligt nedanstående tabell.

Programmering: Jämförelse "Exempel: Programmering av matematiska grundfunktioner"

Funktion	Softkey
FN6: SINUS t.ex. FN6: Q20 = SIN-Q5 Beräkna sinus för en vinkel i grader (°) och tilldela resultatet	FN6 SIN(X)
FN7: COSINUS t.ex. FN7: Q21 = COS-Q5 Beräkna cosinus för en vinkel i grader (°) och tilldela resultatet	EN7 COS(X)
FN8: ROTEN UR KVADRATSUMMA t.ex. FN8: Q10 = +5 LEN +4 Beräkna längden med hjälp av två värden och tilldela resultatet	FN8 X LEN Y
FN13: VINKEL t.ex. FN13: Q20 = +25 ANG-Q1 Beräkna vinkel med arctan för två sidor eller sin och cos för vinkeln (0 < vinkel < 360°) och tilldela resultatet	FN13 X RNG Y

10.5 Cirkelberäkningar

Användningsområde

Med funktionerna för cirkelberäkning kan man låta TNC:n beräkna cirkelcentrum och cirkelradie via tre eller fyra punkter på cirkeln. Beräkning av en cirkel med hjälp av fyra punkter är noggrannare.

Användning: Exempelvis kan dessa funktioner användas när man vill bestämma ett håls eller ett cirkelsegments läge och storlek med hjälp av de programmerbara avkännarfunktionerna.

Funktion	Softkey
FN23: CIRKELDATA beräknas med tre cirkelpunkter t.ex. FN23: Q20 = CDATA Q30	FN23 3 PUNKTER PÅ CIRKEL

Koordinatparen från tre cirkelpunkter måste finnas lagrade i parameter Q30 och de följande fem parametrarna – i detta fall alltså till och med Q35–.

TNC:n lagrar sedan cirkelcentrum i huvudaxeln (X vid spindelaxel Z) i parameter Q20, cirkelcentrum i komplementaxeln (Y vid spindelaxel Z) i parameter Q21 och cirkelradien i parameter Q22.

Funktion	Softkey
FN24: CIRKELDATA beräknas med fyra cirkelpunkter	FN24 CIRKEL UR 4 PUNKTER
t.ex. FN24: Q20 = CDATA Q30	

Koordinatparen från fyra cirkelpunkter måste finnas lagrade i parameter Q30 och de följande sju parametrarna – i detta fall alltså till och med Q37–.

TNC:n lagrar sedan cirkelcentrum i huvudaxeln (X vid spindelaxel Z) i parameter Q20, cirkelcentrum i komplementaxeln (Y vid spindelaxel Z) i parameter Q21 och cirkelradien i parameter Q22.

Beakta att FN23 och FN24 även automatiskt skriver över de två efterföljande parametrarna utöver resultatparametrarna.

10.6 If/then-bedömning med Qparametrar

Användningsområde

Vid IF/THEN - bedömning jämför TNC:n en Q-parameter med en annan Q-parameter eller ett siffervärde. Om det programmerade villkoret är uppfyllt så fortsätter TNC:n bearbetningsprogrammet vid den efter villkoret programmerade LABELn (LABEL se "Underprogram och programdelsupprepning", sidan 350). Om villkoret inte är uppfyllt så fortsätter TNC:n programexekveringen vid nästa block.

Om man vill anropa ett annat program som underprogram så programmerar man ett PGM CALL efter LABELn.

Ovillkorligt hopp

Ovillkorliga hopp programmeras som villkorliga hopp men med ett villkor som alltid är uppfyllt (=ovillkorligt), t.ex.

FN9: IF+10 EQU+10 GOTO LBL1

IF/THEN - bedömning programmering

IF/THEN - villkoren presenteras genom att trycka på softkey HOPP. TNC:n visar följande softkeys:

Funktion	Softkey
FN9: OM LIKA, HOPP t.ex. FN9: IF +Q1 EQU +Q3 GOTO LBL 5 Om båda värdena eller parametrarna är lika, hoppa till angiven label	FN9 IF × E0 Y GOTO
FN10: OM OLIKA, HOPP t.ex. FN10: IF +10 NE -Q5 GOTO LBL 10 Om båda värdena eller parametrarna är olika, hoppa till angiven label	FNIØ IF X NE Y GOTO
FN11: OM STÖRRE ÄN, HOPP t.ex. FN11: IF+Q1 GT+10 GOTO LBL 5 Om första värdet eller parametern är större än det andra värdet eller parametern, hoppa till angiven label	FNI1 IF × GT Y GOTO
FN12: OM MINDRE ÄN, HOPP t.ex. FN12: IF+Q5 LT+0 GOTO LBL 1 Om första värdet eller parametern är mindre än det andra värdet eller parametern, hoppa till angiven label	FN12 IF × LT Y GOTO
Använda begrepp och förkortningar

IF	(eng.):	Om
EQU	(eng. equal):	Lika
NE	(eng. not equal):	Inte lika
GT	(eng. greater than):	Större än
LT	(eng. less than):	Mindre än
GOTO	(eng. go to):	Gå till

10.7 Kontrollera och ändra Qparametrar

Tillvägagångssätt

Man kan kontrollera och även ändra Q-parametrar vid skapande, test och exekvering i driftarterna Programinmatning/editering, Programtest, Programkörning enkelblock och Programkörning blockföljd.

- I förekommande fall. Stoppa programkörningen (t.ex. tryck på den externa STOPP-knappen och softkey INTERNT STOPP) alt. stoppa programtestet
- Q

 Kalla upp Q-parameterfunktioner: Tryck på knappen Q alt. softkey Q INFO i driftart Programinmatning/ editering

- TNC:n listar alla parametrar och de tillhörande aktuella värdena. Man väljer ut den önskade parametern med pilknapparna eller med softkeys för bläddring sida för sida.
- Om man önskar ändra värdet, anger man ett nytt värde och bekräftar med knappen ENT
- Om man inte vill ändra värdet så trycker man på softkey AKTUELLT VÄRDE eller avslutar dialogen med knappen END

MANUELL	DRIFT PROGRAM	1TEST - 25		
20	TOOL DEF	2 L+0 R+3		
22	TOOL DEF	L+0 R+1.5		
23 24	TOOL DEF STOP M6	5 L+0 R+3		
25 26	TOOL CALL FN Ø: Q40	1 Z S1600 = +Q7		
27	FN Ø: Q41	= +Q5 = +012		
29	FN 0: Q43	= +Q12		
30	L Z+20 R0	= +Q16 F9999 M3		
32 33	CYCL DEF : CYCL DEF :	L4.0 KONTUR L4.1 KONTURLABE	_ 1 /2	/4
	/5 /6 /7			
				SLUT

10.8 Specialfunktioner

Översikt

Specialfunktionerna visas efter det att man har tryckt på softkey SPECIAL-FUNKTION. TNC:n visar följande softkeys:

Funktion	Softkey
FN14:ERROR Kalla upp felmeddelanden	FN14 ERROR-
FN15:PRINT Oformaterad utmatning av text eller Q-parametervärde	FN15 PRINT
FN16:F-PRINT Formaterad utmatning av text eller Q-parametervärde	FN16 F-PRINT
FN18:SYS-DATUM READ Läsa systemdata	FN18 SYS-DATA LAS
FN19:PLC Överför värde till PLC	FN19 PLC-
FN20:WAIT FOR NC och PLC synkronisering	FN20 VANTA PÅ
FN25:PRESET Inställning av utgångspunkt under programexekvering	FN25 SATT UTGANGSP.
FN26:TABOPEN Öppna fritt definierbar tabell	FN26 OPPNR TABELL
FN27:TABWRITE Skriv till en fritt definierbar tabell	FN27 SKRIV I TABELL
FN28:TABREAD Läs från en fritt definierbar tabell	FN28 LAS FRAN TABELL

FN14: ERROR: Kalla upp ett felmeddelande

Med funktionen FN14: ERROR kan programstyrda meddelanden som har förprogrammerats av maskintillverkaren alt. av HEIDENHAIN kallas upp: Om TNC:n kommer till ett block med FN 14 under programkörning eller programtest stoppas programexekveringen och ett meddelande visas. Därefter måste programmet startas på nytt. Felnummer: se tabellen nedan.

Område felnummer	Standard-dialog
0 299	FN 14: Felnummer 0 299
300 999	Maskinberoende dialog
1000 1099	Interna felmeddelanden (se tabellen till höger)

Exempel NC-block

TNC:n skall presentera ett meddelande som finns lagrat under felnummer 254

180 FN14: ERROR = 254

Felnummer	Text	
1000	Spindel ?	
1001	Verktygsaxel saknas	
1002	Spårbredd för stor	
1003	Verktygsradie för stor	
1004	Område överskridet	
1005	Startposition ej korrekt	
1006	VRIDNING ej tillåten	
1007	SKALFAKTOR ej tillåten	
1008	SPEGLING ej tillåten	
1009	Förskjutning ej tillåten	
1010	Matning saknas	
1011	Inmatat värde fel	
1012	Fel förtecken	
1013	Vinkel ej tillåten	
1014	Kan ej köra till beröringspunkt	
1015	För många punkter	
1016	Inmatning motsägelsefull	
1017	CYKEL ofullständig	
1018	Yta fel definierad	
1019	Fel axel programmerad	
1020	Fel varvtal	
1021	Radiekorrektur odefinierad	
1022	Rundning odefinierad	
1023	Rundningsradie för stor	
1024	Programstart odefinierad	
1025	För stor sammanfogning	
1026	Vinkelreferens saknas	
1027	Ingen bearbcykel definierad	
1028	Spårbredd för liten	
1029	Ficka för liten	
1030	Q202 ej definierad	
1031	Q205 ej definierad	
1032	Ange Q218 större än Q219	
1033	CYKEL 210 ej tillåten	
1034	CYKEL 211 ej tillåten	
1035	Q220 för stor	
1036	Ange Q222 större än Q223	
1037	Ange Q244 större än 0	
1038	Ange Q245 skild från Q246	
1039	Ange vinkelområde < 360°	
1040	Ange Q223 större än Q222	
1041	Q214: 0 ej tillåtet	

Felnummer	Text
1042	Rörelseriktning ej definierad
1043	Ingen nollpunktstabell aktiv
1044	Lägesfel: Centrum 1:a axel
1045	Lägesfel: Centrum 2:a axel
1046	Håldiameter för liten
1047	Håldiameter för stor
1048	Ons diameter för liten
1049	Ons diameter för stor
1050	Ficka för liten: Efterarb. ax 1
1051	Ficka för liten: Efterarb. ax 2
1052	Ficka för stor: Defekt i axel 1
1053	Ficka för stor: Defekt i axel 2
1054	Tappen för liten: Defekt i axel 1
1055	Tappen för liten: Defekt i axel 2
1056	O för stor: Efterarbeta axel 1
1057	Ö för stor: Efterarbeta axel 2
1058	TCHPROBE 425: Längd över max
1059	TCHPROBE 425: Längd under min
1060	TCHPROBE 426: Längd över max
1061	TCHPROBE 426: Längd under min
1062	TCHPROBE 430: Diameter för stor
1063	TCHPROBE 430: Diameter för liten
1064	Ingen mätaxel definierad
1065	Tol. verktygsbrott överskriden
1066	Q247 får ej vara 0
1067	Q247 måste vara större än 5
1068	Nollpunktstabell?
1069	Ange ej fräsmetod Q351 = 0
1070	Minska gängans djup
1071	Utför kalibrering
1072	Tolerans överskriden
1073	Blockläsning aktiv
1074	ORIENTERING ej tillåten
1075	3DROT ej tillåten
1076	Aktivera 3DROT
1077	Ange negativt djup

FN15: PRINT: Utmatning av text eller Qparametervärde

Ställ in datasnittet: Under menypunkt PRINT resp. PRINT-TEST anger man sökvägen till katalogen i vilken TNC:n skall spara texten eller Q-parametervärdet. Se "Tilldelning", sidan 431.

Med funktionen FN15: PRINT kan man mata ut Q-parametrars värden och felmeddelanden via datasnittet, exempelvis till en skrivare. Om man lagrar värdena internt eller skickar ut dem till en dator, kommer TNC:n att göra detta i filen %FN15RUN.A (utmatning under programkörning) eller i filen %FN15SIM.A (utmatning under programtest).

Utmatning av dialoger och felmeddelanden med FN 15: PRINT "siffervärde"

Siffervärde 0 till 99: från 100:

Dialoger för maskintillverkarcykler PLC-felmeddelanden

Exempel: Mata ut dialognummer 20

67 FN15: PRINT 20

Utmatning av Q-parametrar med FN15: PRINT "Q-parameter"

Användningsexempel: Mätprotokoll för ett arbetsstycke.

Upp till sex Q-parametrar och siffervärden kan matas ut samtidigt. TNC:n skiljer dem åt med ett snedstreck.

Exempel: Mata ut dialog 1 och siffervärde Q1

70 FN15: PRINT1/Q1

MANUELL DRIFT PROGRAM INMA	TNING			
GRÄNSSNITT RS232	GRÄNSSNITT RS422			
DRIFTART: EXT2 BAUD-RATE FE : 115200 EXT1 : 19200 EXT2 : 9600 LSV-2: 115200	DRIFTART: LSV-2 BAUD-RATE FE : 38400 EXT1 : 9600 EXT2 : 9600 LSV-2: 115200			
TILLDELNING				
PRINT : PRINT-TEST : PGM MGT: UTÖKAD				
O- RS232 RS422 INSTALLN, PARAMETER HJÄLP	SLUT			

FN16: F-PRINT: Formaterad utmatning av text och Q-parametervärde

Ställ in datasnittet: Under menypunkt PRINT resp. PRINT-TEST anger man sökvägen till katalogen i vilken TNC:n skall spara textfilen.Se "Tilldelning", sidan 431.

Med funktionen FN16: F-PRINT kan man mata ut Q-parametrars värden och felmeddelanden formaterat via datasnittet, exempelvis till en skrivare. Om man lagrar värdena internt eller skickar ut dem till en dator, kommer TNC:n spara informationen i den fil som man definierar i FN 16-blocket.

För att mata ut formaterade texter och Q-parametrars värden skapar man först en textfil med TNC:ns texteditor i vilken man definierar utskriftens format och vilka Q-parametrar som skall matas ut.

Exempel på en textfil som definierar utskriftsformatet:

"MAETPROTOKOLL SKOVELHJUL-TYNGDPUNKT";

"X1 = %5.3LF", Q31;

"Y1 = %5.3LF", Q32;

"Z1 = %5.3LF", Q33;

För att skapa textfilen använder man sig av följande formateringsfunktioner:

Specialtecken	Funktion
""	Definiera utmatningsformat för texter och variabler mellan citationstecken
%5.3LF	Definiera format för Q-parameter: 5 heltal, 4 decimaler, long, floating (decimaltal)
%S	Format för textvariabel
,	Skiljetecken mellan utmatningsformat och parameter
•	Tecken för blockslut, avslutar raden

Följande funktioner finns tillgängliga för att kunna medsända olika information i protokollfilen:

Nyckelord	Funktion
CALL_PATH	Skickar med sökvägen till NC-programmet i vilken FN16-funktionen finns. Exempel: "Mätprogram: %S",CALL_PATH;
M_CLOSE	Stänger filen som man skriver till med FN16. Exempel: M_CLOSE;
L_ENGLISCH	Endast utmatning av text vid dialogspråk engelska
L_GERMAN	Endast utmatning av text vid dialogspråk tyska
L_CZECH	Endast utmatning av text vid dialogspråk tjeckiska
L_FRENCH	Endast utmatning av text vid dialogspråk franska
L_ITALIAN	Endast utmatning av text vid dialogspråk italienska
L_SPANISH	Endast utmatning av text vid dialogspråk spanska
L_SWEDISH	Endast utmatning av text vid dialogspråk svenska
L_DANISH	Endast utmatning av text vid dialogspråk danska
L_FINNISH	Endast utmatning av text vid dialogspråk finska
L_DUTCH	Endast utmatning av text vid dialogspråk nederländska
L_POLISH	Endast utmatning av text vid dialogspråk polska
L_HUNGARIA	Endast utmatning av text vid dialogspråk ungerska
L_ALL	Utmatning av text oberoende av dialogspråk
HOUR	Antal timmar från realtidsklockan
MIN	Antal minuter från realtidsklockan
SEC	Antal sekunder från realtidsklockan
DAY	Dag från realtidsklockan
MONTH	Månad som siffror från realtidsklockan
STR_MONTH	Månad som sträng-förkortning från realtidsklockan
YEAR2	Årtal tvåställigt från realtidsklockan
YEAR4	Årtal fyrställigt från realtidsklockan

I ett bearbetningsprogram programmerar man FN16: F-PRINT för att aktivera utskriften:

96 FN16: F-PRINT TNC:\MASKE\MASKE1.A/RS232:\PROT1.TXT

TNC:n kommer då att skicka ut filen PROT1.TXT via det seriella datasnittet:

MAETPROTOKOLL SKOVELHJUL-TYNGDPUNKT

ANTAL MAETVAERDEN : = 1

- X1 = 149,360
- Y1 = 25,509
- Z1 = 37,000

Om man använder FN 16 flera gånger i programmet, lagrar TNC:n alla texterna i filen som man angav i den första FN 16-funktionen. Utmatningen av filen sker först när TNC:n läser blocket END PGM, när man trycker på knappen NC-Stopp eller när man stänger filen med M_CLOSE

FN18: SYS-DATUM READ: Läsa systemdata

Med funktionen FN 18: SYS-DATUM READ kan man läsa systemdata och lägga in dem i Q-parametrar. Valet av systemdata sker med ett gruppnummer (ID-Nr.), ett nummer och i vissa fall även via ett index.

Gruppnamn, ID-Nr.	Nummer	Index	Betydelse
Programinfo, 10	1	-	mm/inch-inställning
	2	-	Överlappningsfaktor vid fickfräsning
	3	-	Nummer på aktiv bearbetningscykel
Maskinstatus, 20	1	-	Aktivt verktygsnummer
	2	-	Förberett verktygsnummer
	3	-	Aktiv verktygsaxel 0=X, 1=Y, 2=Z, 6=U, 7=V, 8=W
	4	-	Programmerat spindelvarvtal
	5	-	Aktivt spindeltillstånd: -1=odefinierat, 0=M3 aktiv, 1=M4 aktiv, 2=M5 efter M3, 3=M5 efter M4
	8	-	Kylvätsketillstånd: 0=från, 1=till
	9	-	Aktiv matning
	10	-	Det förberedda verktygets index

Gruppnamn, ID-Nr.	Nummer	Index	Betydelse
	11	-	Det aktiva verktygets index
Cykelparameter, 30	1	-	Säkerhetsavstånd aktiv bearbetningscykel
	2	-	Borrdjup/fräsdjup aktiv bearbetningscykel
	3	-	Skärdjup aktiv bearbetningscykel
	4	-	Nedmatningshastighet aktiv bearbetningscykel
	5	-	1:a Sidans längd cykel Urfräsning
	6	-	2:a Sidans längd cykel Urfräsning
	7	-	1:a Sidans längd cykel Spår
	8	-	2:a Sidans längd cykel Spår
	9	-	Radie cykel Cirkelurfräsning
	10	-	Matning fräsning aktiv bearbetningscykel
	11	-	Rotationsriktning aktiv bearbetningscykel
	12	-	Väntetid aktiv bearbetningscykel
	13	-	Gängans stigning cykel 17, 18
	14	-	Finskärsmått aktiv bearbetningscykel
	15	-	Urfräsningsvinkel aktiv bearbetningscykel
Data från verktygstabellen, 50	1	VKT-Nr.	Verktygslängd
	2	VKT-Nr.	Verktygsradie
	3	VKT-Nr.	Verktygsradie R2
	4	VKT-Nr.	Tilläggsmått verktygslängd DL
	5	VKT-Nr.	Tilläggsmått verktygsradie DR
	6	VKT-Nr.	Tilläggsmått verktygsradie DR2
	7	VKT-Nr.	Verktyg spärrat (0 eller 1)
	8	VKT-Nr.	Nummer på systerverktyg
	9	VKT-Nr.	Maximal livslängd TIME1
	10	VKT-Nr.	Maximal livslängd TIME2
	11	VKT-Nr.	Aktuell livslängd CUR. TIME
	12	VKT-Nr.	PLC-status
	13	VKT-Nr.	Maximal skärlängd LCUTS

Gruppnamn, ID-Nr.	Nummer	Index	Betydelse
	14	VKT-Nr.	Maximal nedmatningsvinkel ANGLE
	15	VKT-Nr.	TT: Antal skär CUT
	16	VKT-Nr.	TT: Förslitningstolerans längd LTOL
	17	VKT-Nr.	TT: Förslitningstolerans radie RTOL
	18	VKT-Nr.	TT: Rotationsriktning DIRECT (0=positiv/-1=negativ)
	19	VKT-Nr.	TT: Förskjutning i planet R-OFFS
	20	VKT-Nr.	TT: Förskjutning längd L-OFFS
	21	VKT-Nr.	TT: Brott-tolerans längd LBREAK
	22	VKT-Nr.	TT: Brott-tolerans radie RBREAK
	Utan index	: Det aktiva ve	erktygets data
Data från verktygstabellen, 51	1	Plats-nr.	Verktygsnummer
	2	Plats-nr.	Specialverktyg: 0=nej, 1=ja
	3	Plats-nr.	Fast plats: 0=nej, 1=ja
	4	Plats-nr.	Spärrad plats: 0=nej, 1=ja
	5	Plats-nr.	PLC-status
Ett verktygs platsnummer i platstabellen, 52	1	VKT-Nr.	Platsnummer
Programmerad position direkt efter TOOL CALL, 70	1	-	Position giltig/ej giltig (1/0)
	2	1	X-axel
	2	2	Y-axel
	2	3	Z-axel
	3	-	Programmerad matning (-1: Ingen matning progr.)
Aktiv verktygskompensering, 200	1	-	Verktygsradie (inkl. delta-värde)
	2	-	Verktygslängd (inkl. delta-värde)
Aktiva omräkningar, 210	1	-	Grundvridning i driftart MANUELL
	2	-	Programmerad vridning med cykel 10
	3	-	Aktiv speglingsaxel
			0: Spegling ej aktiv
			+1: X-axel speglad

Gruppnamn, ID-Nr.	Nummer	Index	Betydelse
			+2: Y-axel speglad
			+4: Z-axel speglad
			+64: U-axel speglad
			+128: V-axel speglad
			+256: W-axel speglad
			Kombinationer = summan av de enskilda axlarna
	4	1	Aktiv skalfaktor X-axel
	4	2	Aktiv skalfaktor Y-axel
	4	3	Aktiv skalfaktor Z-axel
	4	7	Aktiv skalfaktor U-axel
	4	8	Aktiv skalfaktor V-axel
	4	9	Aktiv skalfaktor W-axel
	5	1	3D-ROT A-axel
	5	2	3D-ROT B-axel
	5	3	3D-ROT C-axel
	6	-	3D-vridning bearbetningsplan aktiv/inaktiv (-1/0)
Aktiv nollpunktsförskjutning, 220	2	1	X-axel
		2	Y-axel
		3	Z-axel
		4	A-axel
		5	B-axel
		6	C-axel
		7	U-axel
		8	V-axel
		9	W-axel
Förflyttningsområde, 230	2	1 till 9	Negativt mjukvarugränsläge axel 1 till 9
	3	1 till 9	Positivt mjukvarugränsläge axel 1 till 9
Bör-position i REF-system, 240	1	1	X-axel
		2	Y-axel

Gruppnamn, ID-Nr.	Nummer	Index	Betydelse
		3	Z-axel
		4	A-axel
		5	B-axel
		6	C-axel
		7	U-axel
		8	V-axel
		9	W-axel
Bör-position i inmatnings-system, 270	1	1	X-axel
		2	Y-axel
		3	Z-axel
		4	A-axel
		5	B-axel
		6	C-axel
		7	U-axel
		8	V-axel
		9	W-axel
Status för M128, 280	1	-	0: M128 inaktiv, -1: M128 aktiv
	2	-	Matning som har programmerats med M128
Brytande avkännarsystem, 350	10	-	Avkänningsaxel
	11	-	Effektiv kulradie
	12	-	Effektiv längd
	13	-	Kalibreringsringens radie
	14	1	Centrumförskjutning huvudaxel
		2	Centrumförskjutning komplementaxel
	15	-	Centrumförskjutningens riktning i förhållande till 0°
Verktygsavkännare TT 130	20	1	Centrum X-axel (REF-system)
		2	Centrum Y-axel (REF-system)
		3	Centrum Z-axel (REF-system)
	21	-	Plattans radie

10.8 Specialfunktioner

Gruppnamn, ID-Nr.	Nummer	Index	Betydelse
Mätande avkännarsystem, 350	30	-	Kalibrerad avkännarlängd
	31	-	Avkännarradie 1
	32	-	Avkännarradie 2
	33	-	Diameter kalibreringsring
	34	1	Centrumförskjutning huvudaxel
		2	Centrumförskjutning komplementaxel
	35	1	Kompenseringsfaktor 1. axel
		2	Kompenseringsfaktor 2. axel
		3	Kompenseringsfaktor 3. axel
	36	1	Kraftförhållande 1. axel
		2	Kraftförhållande 2. axel
		3	Kraftförhållande 3. axel
Sista avkänningspunkten TCH PROBE-cykel 0 eller sista avkänningspunkt från driftart Manuell, 360	1	1 till 9	Position i aktivt koordinatsystem axel 1 till 9
	2	1 till 9	Position i REF-system axel 1 till 9
Värde från den aktiva nollpunktstabellen i aktivt koordinatsystem, 500	NP- nummer	1 till 9	X-axel till W-axel
REF-värde från den aktiva nollpunktstabellen, 500	NP- nummer	1 till 9	X-axel till W-axel
Nollpunktstabell vald, 505	1	-	Returvärde = 0: Ingen aktiv nollpunktstabell Returvärde = 1: Aktiv nollpunktstabell
Data från den aktiva palett-tabellen, 510	1	-	Aktiv rad
	2	-	Palettnummer från fält PAL/PGM
Maskinparameter finns, 1010	MP- nummer	MP-index	Returvärde = 0: MP finns inte Returvärde = 1: MP finns

Exempel: Spara Z-axelns aktiva skalfaktor i Q25

55 FN18: SYSREAD Q25 = ID210 NR4 IDX3

FN19: PLC: Överför värde till PLC

Med funktionen FN 19: PLC kan man överföra upp till två siffervärden eller Q-parametrar till PLC.

Inkrement och enheter: 0,1 µm alt. 0,0001°

Exempel: Siffervärde 10 (motsvarar 1µm resp. 0,001°) överförs till PLC

56 FN19: PLC=+10/+Q3

FN20: WAIT FOR: NC och PLC synkronisering

Denna funktion får endast användas efter överenskommelse med Er maskintillverkare!

Med funktionen FN20: WAIT FOR kan man under programexekveringen utföra en synkronisering mellan NC och PLC. NC:n stoppar exekveringen tills villkoret, som man har programmerat i FN20-blocket, har uppfyllts. I samband med detta kan TNC:n kontrollera följande PLC-operander:

PLC-operand	Förkortning	Adressområde
Merker	Μ	0 till 4999
Ingång	I	0 till 31, 128 till 152 64 till 126 (första PL 401 B) 192 till 254 (andra PL 401 B)
Utgång	0	0 till 30 32 till 62 (första PL 401 B) 64 till 94 (andra PL 401 B)
Räknare	С	48 till 79
Timer	Т	0 till 95
Byte	В	0 till 4095
Ord	W	0 till 2047
Dubbelord	D	2048 till 4095

I FN 20-blocket är följande villkor tillåtna:

Villkor	Förkortning
Lika	==
Mindre än	<
Större än	>
Mindre/lika	<=
Större/lika	>=

Exempel: Stoppa programexekveringen tills PLC:n sätter merker 4095 till 1

32 FN20: WAIT FOR M4095==1

FN25: PRESET: Inställning av ny utgångspunkt

Man kan bara programmera denna funktion om man har angivit kodnummer 555343, se "Ange kodnummer", sidan 429.

Med funktionen FN 25: PRESET kan man ställa in en ny utgångspunkt i en valbar axel under programexekveringen.

- Välj Q-parameterfunktioner: Tryck på knappen Q (till höger i fältet för sifferinmatning). Softkeyraden visar de olika Qparameterfunktionerna.
- ▶ Välj ytterligare funktioner: Tryck på softkey SPECIALFUNKT.
- Välj FN25: Växla softkeyraden till den andra nivån, tryck på softkey FN25 SÄTT UTGPKT.
- Axel?: Ange axel som du vill ställa in den nya utgångspunkten i, bekräfta med knappen ENT
- Omräknat värde?: Ange koordinat i det aktiva koordinatsystemet som den nya utgångspunkten skall sättas vid
- Ny utgangspunkt?: Ange koordinat som det omräknade värdet skall ha i det nya koordinatsystemet

Exempel: Ställ in en ny utgångspunkt vid den aktuella koordinaten X+100

56 FN25: PRESET = X/+100/+0

Exempel: Den aktuella koordinaten Z+50 skall ha värdet -20 i det nya koordinatsystemet

56 FN25: PRESET = Z/+50/-20

FN26: TABOPEN: Öppna en fritt definierbar tabell

Med funktionen FN 26: TABOPEN öppnar man en godtycklig fritt definierbar tabell för att sedan kunna skriva till denna tabell med FN27, resp. kunna läsa från denna tabell med FN28.

I ett NC-program kan alltid endast en tabell vara öppnad. Ett nytt block med TABOPEN stänger automatiskt den senast öppnade tabellen.

Tabellen som skall öppnas måste ha extension .TAB.

Exempel: Öppna tabell TAB1.TAB som finns lagrad i katalog TNC:\DIR1

56 FN26: TABOPEN TNC:\SIR1\TAB1.TAB

FN27: TABWRITE: Skriva till en fritt definierbar tabell

Med funktionen FN 27: TABWRITE skriver man till tabellen som man dessförinnan har öppnat med FN 26 TABOPEN.

Man kan definiera upp till 8 kolumnnamn i ett TABWRITE-block, dvs. skriva till. Kolumnnamnen måste stå inom citationstecken och vara åtskilda av kommatecken. Värdet som TNC:n skall skriva till respektive rad, definierar man i Q-parametrar.

Man kan endast skriva till numeriska tabellfält.

Om man vill skriva till flera kolumner i ett block måste man lagra värdena som skall skrivas i Q-parameternummer som följer på varandra.

Exempel:

Skriv till kolumnerna Radie, Djup och D på rad 5 i den för tillfället öppnade tabellen. Värdena som skall skrivas till tabellen måste finnas lagrade i Q-parametrarna Q5, Q6 och Q7.

53 FNO: Q5 = 3,75
54 FNO: $Q6 = -5$
55 FNO: Q7 = 7,5
56 FN27: TABWRITE 5/"Radie, Djup, D" = Q5

FN28: TABREAD: Läsa från en fritt definierbar tabell

Med funktionen FN 28: TABREAD läser man från tabellen som man dessförinnan har öppnat med FN 26 TABOPEN.

Man kan definiera upp till 8 kolumnnamn i ett TABREAD-block, dvs. läsa från. Kolumnnamnen måste stå inom citationstecken och vara åtskilda av ett kommatecken. I FN 28-blocket definierar man det Oparameternummer som TNC:n skall lagra det första lästa värdet i.

Man kan endast läsa från numeriska tabellfält.

Om man läser flera kolumner i ett block kommer TNC:n att lagra de lästa värdena i Q-parameternummer som följer på varandra.

Exempel:

Läs värden i kolumnerna Radie, Djup och D på rad 6 i den för tillfället öppnade tabellen. Det första värdet skall lagras i Q-parameter Q10 (det andra värdet i Q11, de tredje värdet i Q12).

56 FN28: TABREAD Q10 = 6/"Radie, Djup, D"

10.9 Formel direkt programmerbar

Inmatning av formel

Via softkeys kan man mata in matematiska formler, som innehåller flera räkneoperationer, direkt i bearbetningsprogrammet.

Formlerna visas då man trycker på softkey FORMEL. TNC:n visar följande softkeys i flera softkeyrader:

Matematisk funktion	Softkey
Addition t.ex. Q10 = Q1 + Q5	•
Subtraktion t.ex. Q25 = Q7 - Q108	-
Multiplikation t.ex. Q12 = 5 * Q5	•
Division t.ex. Q25 = Q1 / Q2	/
Vänster parentes t.ex. Q12 = Q1 * (Q2 + Q3)	C
Höger parentes t.ex. Q12 = Q1 * (Q2 + Q3)	>
Kvadrat (eng. square) t.ex. Q15 = SQ 5	sa
Kvadratroten ur (eng. square root) t.ex. Q22 = SQRT 25	SORT
Sinus för en vinkel t.ex. Q44 = SIN 45	SIN
Cosinus för en vinkel t.ex. Q45 = COS 45	cos
Tangens för en vinkel t.ex. Q46 = TAN 45	TRN
Arcus-Sinus Omvänd funktion till sinus; Vinkeln beräknas ur förhållandet mellan motstående katet/hypotenusa t.ex. Q10 = ASIN 0, 75	RSIN
Arcus-Cosinus Omvänd funktion till cosinus; Vinkeln beräknas ur förhållandet mellan närliggande katet/hypotenusa t.ex. Q11 = ACOS Q40	ACOS

Matematisk funktion	Softkey
Arcus-Tangens Omvänd funktion till tangens; Vinkeln beräknas ur förhållandet mellan motstående/närliggande katet t.ex. Q12 = ATAN Q50	ATRN
Potens för ett värde t.ex. Q15 = 3^3	^
Konstant PI (3,14159) t.ex. Q15 = PI	PI
Naturlig logaritm (LN) för ett tal Bastal 2,7183 t.ex. Q15 = LN Q11	LN
Logaritm för ett tal, bastal 10 t.ex. Q33 = LOG Q22	LOG
Exponentialfunktion, 2,7183 upphöjt till n t.ex. Q1 = EXP Q12	EXP
Negering av ett tal (multiplikation med -1) t.ex. Q2 = NEG Q1	NEG
Ta bort decimaler Skapa integer t.ex. Q3 = INT Q42	INT
Absolutvärde för ett tal t.ex. Q4 = ABS Q22	RES
Ta bort siffror före decimalkomma Fraktion t.ex. Q5 = FRAC Q23	FRAC

Räkneregler

För programmering av matematiska funktioner gäller följande regler:

Punkt- innan streckräkning

 $12 \quad Q1 = 5 * 3 + 2 * 10 = 35$

1:a Räknesteg 5 * 3 = 15 **2:a** Räknesteg 2 * 10 = 20 **3:e** Räknesteg 15 + 20 = 35 13 Q2 = SQ 10 - 3^3 = 73

1:a Räknesteg 10 i kvadrat = 100
2:a Räknesteg 3 med potens 3 = 27
3:e Räknesteg 100 - 27 = 73

Distributionsregler

Regel vid fördelning i samband med parentesberäkningar

a * (b + c) = a * b + a * c

Inmatningsexempel

Vinkel beräknas med arctan där motstående katet är (Q12) och närliggande katet är (Q13); resultatet tilldelas Q25:

Exempel NC-block

37 Q25 = ATAN (Q12/Q13)

10.10 Fasta Q-parametrar

Q-parametrarna Q100 till Q122 tilldelas automatiskt värden av TNC:n. Dessa Q-parametrar innehåller:

- Värden från PLC
- Uppgifter om verktyg och spindel
- Uppgifter om driftstatus o.s.v.

Värden från PLC: Q100 till Q107

TNC:n använder parametrarna Q100 till Q107 för att överföra värden från PLC till ett NC-program.

Aktiv verktygsradie: Q108

Q108 tilldelas det aktuella värdet för verktygsradien. Q108 är sammansatt av:

- Verktygsradie R (verktygstabell eller TOOL DEF-block)
- Delta-värde DR från verktygstabellen
- Delta-värde DR från TOOL CALL-blocket

Verktygsaxel: Q109

Värdet i parameter Q109 påverkas av den aktuella verktygsaxeln:

Verktygsaxel	Parametervärde
Ingen verktygsaxel definierad	Q109 = -1
X-axel	Q109 = 0
Y-axel	Q109 = 1
Z-axel	Q109 = 2
U-axel	Q109 = 6
V-axel	Q109 = 7
W-axel	Q109 = 8

Spindelstatus: Q110

Värdet i parameter Q110 påverkas av den sist programmerade M-funktionen för spindeln:

M-funktion	Parametervärde
Ingen spindelstatus definierad	Q110 = -1
M03: Spindel TILL, medurs	Q110 = 0

M-funktion	Parametervärde
M04: Spindel TILL, moturs	Q110 = 1
M05 efter M03	Q110 = 2
M05 efter M04	Q110 = 3

Kylvätska till/från: Q111

M-funktion	Parametervärde
M08: Kylvätska TILL	Q111 = 1
M09: Kylvätska FRÅN	Q111 = 0

Överlappningsfaktor: Q112

TNC:n tilldelar Q112 överlappningsfaktorn för fickurfräsning (MP7430).

Måttenhet i program: Q113

Värdet i parameter Q113 påverkas, vid länkning av program med PGM CALL, av måttenheten i det programmet som utför det första anropet av ett annat program (huvudprogrammet).

Måttenhet i huvudprogrammet	Parametervärde
Metriskt system (mm)	Q113 = 0
Tum (inch)	Q113 = 1

Verktygslängd: Q114

Q114 tilldelas det aktuella värdet för verktygslängden.

Koordinater efter avkänning under programkörning

Parametrarna Q115 till Q119 innehåller spindelpositionens uppmätta koordinater efter en programmerad mätning med ett 3Davkännarsystem. Koordinaterna utgår från den utgångspunkt som är aktiv i driftart Manuell drift.

Mätstiftets längd och radie är inte inräknade i dessa koordinater.

Koordinataxel	Parametervärde
X-axel	Q115
Y-axel	Q116
Z-axel	Q117

Koordinataxel	Parametervärde
IV. axel beroende av MP100	Q118
V. axel beroende av MP100	Q119

Avvikelse mellan är- och börvärde vid automatisk verktygsmätning med TT 130

Avvikelse mellan är- och börvärde	Parametervärde
Verktygslängd	Q115
Verktygsradie	Q116

3D-vridning av bearbetningsplanet med arbetsstyckets vinkel: av TNC:n beräknade koordinater för vridningsaxlar

Koordinat	Parametervärde
A-axel	Q120
B-axel	Q121
C-axel	Q122

Mätresultat från avkännarcykler

(se även bruksanvisning Avkännarcykler)

Uppmätt ärvärde	Parametervärde
Vinkel för en rätlinje	Q150
Centrum i huvudaxel	Q151
Centrum i komplementaxel	Q152
Diameter	Q153
Fickans längd	Q154
Fickans bredd	Q155
Längd i den i cykeln valda axeln	Q156
Centrumaxelns läge	Q157
Vinkel i A-axeln	Q158
Vinkel i B-axeln	Q159
Koordinat i den i cykeln valda axeln	Q160

Beräknad avvikelse	Parametervärde
Centrum i huvudaxel	Q161
Centrum i komplementaxel	Q162
Diameter	Q163
Fickans längd	Q164
Fickans bredd	Q165
Uppmätt längd	Q166
Centrumaxelns läge	Q167

Beräknad rymdvinkel	Parametervärde
Vridning runt A-axeln	Q170
Vridning runt B-axeln	Q171
Vridning runt C-axeln	Q172

Arbetstyckets status	Parametervärde
Bra	Q180
Efterbearbetning	Q181
Skrot	Q182
Uppmätt avvikelse med 440	Parametervärde
X-axel	Q185
Y-axel	Q186
Z-axel	Q187
Reserverad för intern användning	Parametervärde
Merker för cykler (bearbetningsbilder)	Q197
Status verktygsmätning med TT	Parametervärde
Verktyg inom tolerans	Q199 = 0,0
Verktyget är förslitet (LTOL/RTOL överskriden)	Q199 = 1,0
Verktyget är avbrutet (LBREAK/RBREAK överskriden)	Q199 = 2,0

10.11 Programmeringsexempel

Exempel: Ellips

Programförlopp

- Ellipskonturen approximeras med många korta räta linjer (definierbart via Q7). Ju fler beräkningssteg som väljs desto jämnare blir konturen
- Fräsriktningen bestämmer man med start- och slutvinkeln i planet: Medurs bearbetningsriktning: Startvinkel > Slutvinkel Bearbetningsriktning moturs: Startvinkel < Slutvinkel
- Ingen kompensering sker för verktygsradien

0 BEGIN PGM ELLIPSE MM	
1 FN 0: $Q1 = +50$	Centrum X-axel
2 FN 0: $Q2 = +50$	Centrum Y-axel
3 FN 0: Q3 = +50	Halvaxel X
4 FN 0: Q4 = +30	Halvaxel Y
5 FN 0: Q5 = +0	Startvinkel i planet
6 FN 0: Q6 = +360	Slutvinkel i planet
7 FN 0: $Q7 = +40$	Antal beräkningssteg
8 FN 0: Q8 = +0	Vridningsposition för ellipsen
9 FN 0: Q9 = +5	Fräsdjup
10 FN 0: Q10 = $+100$	Nedmatningshastighet
11 FN 0: Q11 = +350	Fräsmatning
12 FN 0: Q12 = $+2$	Säkerhetsavstånd för förpositionering
13 BLK FORM 0. 1 Z X+0 Y+0 Z-20	Råämnesdefinition
14 BLK FORM 0. 2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+2, 5	Verktygsdefinition
16 TOOL CALL 1 Z S4000	Verktygsanrop
17 L Z+250 R0 F MAX	Frikörning av verktyget
18 CALL LBL 10	Anropa bearbetningen
19 L Z+100 R0 F MAX M2	Frikörning av verktyget, programslut

20	LBL 10	Underprogram 10: Bearbetning
21	CYCL DEF 7.0 NOLLPUNKT	Förskjut nollpunkten till ellipsens centrum
22	CYCL DEF 7.1 X+Q1	
23	CYCL DEF 7.2 Y+Q2	
24	CYCL DEF 10.0 VRIDNING	Vridning till vridningsposition i planet
25	CYCL DEF 10.1 ROT+Q8	
26	Q35 = (Q6 - Q5) / Q7	Beräkna vinkelsteg
27	Q36 = Q5	Kopiera startvinkel
28	Q37 = 0	Ställ in stegräknare
29	Q21 = Q3 * COS Q36	Beräkna X-koordinat för startpunkt
30	Q22 = Q4 * SIN Q36	Beräkna Y-koordinat för startpunkt
31	L X+Q21 Y+Q22 RO F MAX MB	Förflyttning till startpunkt i planet
32	L Z+Q12 RO F MAX	Förpositionering till säkerhetsavstånd i spindelaxeln
33	L Z-Q9 R0 FQ10	Förflyttning till bearbetningsdjupet
34	LBL 1	
35	Q36 = Q36 + Q35	Uppdatera vinkel
36	Q37 = Q37 + 1	Uppdatera stegräknare
37	Q21 = Q3 * COS Q36	Beräkna aktuell X-koordinat
38	Q22 = Q4 * SIN Q36	Beräkna aktuell Y-koordinat
39	L X+Q21 Y+Q22 R0 FQ11	Förflyttning till nästa punkt
40	FN 12: IF +Q37 LT +Q7 GOTO LBL 1	Kontroll om ej färdig, om ej färdig återhopp till LBL 1
41	CYCL DEF 10.0 VRIDNING	Återställ vridning
42	CYCL DEF 10.1 ROT+0	
43	CYCL DEF 7.0 NOLLPUNKT	Återställ nollpunktsförskjutning
44	CYCL DEF 7.1 X+0	
45	CYCL DEF 7.2 Y+0	
46	L Z+Q12 RO F MAX	Förflyttning till säkerhetshöjd
47	LBL 0	Slut på underprogram
48	END PGM ELLIPSE MM	

Exempel: Konkav cylinder med radiefräs

Programförlopp

- Programmet fungerar endast med radiefräs, verktygslängden avser kulans centrum
- Cylinderkonturen approximeras med många kortaräta linjer (definierbart via Q13). Ju fler beräkningssteg som väljs desto jämnare blir konturen
- Cylindern fräses med längsgående fräsbanor (här: parallellt med Y-axeln)
- Fräsriktningen bestämmer man med start- och slutvinkeln i rymden: Medurs bearbetningsriktning: Startvinkel > Slutvinkel Bearbetningsriktning moturs: Startvinkel < Slutvinkel
- Kompensering för verktygsradien sker automatiskt

0 BEGIN PGM ZYLIN MM	
1 FN 0: $Q1 = +50$	Centrum X-axel
2 FN 0: Q2 = $+0$	Centrum Y-axel
3 FN 0: Q3 = +0	Centrum Z-axel
4 FN 0: Q4 = +90	Startvinkel i rymden (plan Z/X)
5 FN 0: Q5 = +270	Slutvinkel i rymden (plan Z/X)
6 FN 0: Q6 = $+40$	Cylinderradie
7 FN 0: Q7 = +100	Cylinderns längd
8 FN 0: Q8 = +0	Vridningsposition i planet X/Y
9 FN 0: Q10 = +5	Arbetsmån cylinderradie
10 FN 0: Q11 = +250	Nedmatningshastighet
11 FN 0: Q12 = $+400$	Matning fräsning
12 FN 0: Q13 = +90	Antal beräkningssteg
13 BLK FORM 0. 1 Z X+0 Y+0 Z-50	Råämnesdefinition
14 BLK FORM 0. 2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+3	Verktygsdefinition
16 TOOL CALL 1 Z S4000	Verktygsanrop
17 L Z+250 RO F MAX	Frikörning av verktyget
18 CALL LBL 10	Anropa bearbetningen
19 FN 0: $Q10 = +0$	Återställ tilläggsmåttet

20	CALL LBL 10	Anropa bearbetningen	
21	L Z+100 R0 F MAX M2	Frikörning av verktyget, programslut	
22	LBL 10	Underprogram 10: Bearbetning	
23	Q16 = Q6 - Q10 - Q108	Beräkna tilläggsmått och verktyg i förhållande till cylinderradie	
24	FN 0: $Q20 = +1$	Ställ in stegräknare	
25	FN 0: Q24 = +Q4	Kopiera startvinkel i rymden (plan Z/X)	
26	Q25 = (Q5 - Q4) / Q13	Beräkna vinkelsteg	
27	CYCL DEF 7.0 NOLLPUNKT	Förskjut nollpunkten till cylinderns centrum (X-axel)	
28	CYCL DEF 7.1 X+Q1		
29	CYCL DEF 7.2 Y+Q2		
30	CYCL DEF 7.3 Z+Q3		
31	CYCL DEF 10.0 VRIDNING	Vridning till vridningsposition i planet	
32	CYCL DEF 10.1 ROT+Q8		
33	L X+O Y+O RO F MAX	Förpositionering i planet till cylinderns centrum	
34	L Z+5 R0 F1000 MB	Förpositionering i spindelaxeln	
35	LBL 1		
36	CC Z+0 X+0	Sätt Pol i Z/X-planet	
37	LP PR+Q16 PA+Q24 FQ11	Förflyttning till cylinderns startposition, sned nedmatning i materialet	
38	L Y+Q7 R0 FQ12	Längsgående fräsning i riktning Y+	
39	FN 1: $Q20 = +Q20 + +1$	Uppdatera stegräknare	
40	FN 1: $Q24 = +Q24 + +Q25$	Uppdatera rymdvinkel	
41	FN 11: IF +Q20 GT +Q13 GOTO LBL 99	Kontrollera om redan färdigt, om ja hoppa till slutet	
42	LP PR+Q16 PA+Q24 FQ11	Förflyttning till approximerad "Båge" för nästa längsgående bana	
43	L Y+0 R0 FQ12	Längsgående fräsning i riktning Y–	
44	FN 1: $Q20 = +Q20 + +1$	Uppdatera stegräknare	
45	FN 1: $Q24 = +Q24 + +Q25$	Uppdatera rymdvinkel	
46	FN 12: IF +Q20 LT +Q13 GOTO LBL 1	Kontroll om ej färdig, om ej färdig återhopp till LBL 1	
47	LBL 99		
48	CYCL DEF 10.0 VRIDNING	Återställ vridning	
49	CYCL DEF 10.1 ROT+0		
50	CYCL DEF 7.0 NOLLPUNKT	Återställ nollpunktsförskjutning	
51	CYCL DEF 7.1 X+0		
52	CYCL DEF 7.2 Y+0		
53	CYCL DEF 7.3 Z+0		
54	LBL 0	Slut på underprogram	
55	END PGM ZYLIN		

Exempel: Konvex kula med cylindrisk fräs

Programförlopp

- Programmet fungerar endast med en cylindrisk fräs
- Kulans kontur approximeras med många korta räta linjer (Z/X-planet, definierbart via Q14). Ju mindre vinkelsteg som väljs desto jämnare blir konturen
- Antalet kontursteg bestämmer man via vinkelsteget i planet (via Q18)
- Kulan fräses nedifrån och upp med 3D-rörelser
- Kompensering för verktygsradien sker automatiskt

0 BEGIN PGM KUGEL MM	
1 FN 0: Q1 = +50	Centrum X-axel
2 FN 0: Q2 = $+50$	Centrum Y-axel
3 FN 0: Q4 = +90	Startvinkel i rymden (plan Z/X)
4 FN 0: Q5 = +0	Slutvinkel i rymden (plan Z/X)
5 FN 0: Q14 = $+5$	Vinkelsteg i rymden
6 FN 0: Q6 = $+45$	Kulradie
7 FN 0: Q8 = +0	Startvinkel för vridningsläge i planet X/Y
8 FN 0: Q9 = +360	Slutvinkel för vridningsläge i planet X/Y
9 FN 0: Q18 = +10	Vinkelsteg i planet X/Y för grovbearbetning
10 FN 0: Q10 = +5	Tilläggsmått för kulradien för grovbearbetning
11 FN 0: Q11 = +2	Säkerhetsavstånd för förpositionering i spindelaxeln
12 FN 0: Q12 = +350	Matning fräsning
13 BLK FORM 0. 1 Z X+0 Y+0 Z-50	Råämnesdefinition
14 BLK FORM 0. 2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+7, 5	Verktygsdefinition
16 TOOL CALL 1 Z S4000	Verktygsanrop
17 L Z+250 RO F MAX	Frikörning av verktyget

10		A h
18	UALL LBL IU	Anropa bearbetningen
19	FN 0: $Q10 = +0$	Återställ tilläggsmåttet
20	FN 0: $Q18 = +5$	Vinkelsteg i planet X/Y för finbearbetning
21	CALL LBL 10	Anropa bearbetningen
22	L Z+100 R0 F MAX M2	Frikörning av verktyget, programslut
23	LBL 10	Underprogram 10: Bearbetning
24	FN 1: $Q23 = +Q11 + +Q6$	Beräkna Z-koordinat för förpositionering
25	FN 0: $Q24 = +Q4$	Kopiera startvinkel i rymden (plan Z/X)
26	FN 1: $Q26 = +Q6 + +Q108$	Korrigera kulradie för förpositionering
27	FN 0: $Q28 = +Q8$	Kopiera vridningsläge i planet
28	FN 1: Q16 = $+Q6 + -Q10$	Ta hänsyn till tilläggsmåttet vid kulradie
29	CYCL DEF 7.0 NOLLPUNKT	Förskjut nollpunkten till kulans centrum
30	CYCL DEF 7.1 X+Q1	
31	CYCL DEF 7.2 Y+Q2	
32	CYCL DEF 7.3 Z-Q16	
33	CYCL DEF 10.0 VRIDNING	Beräkna startvinkel för vridningsläge i planet
34	CYCL DEF 10.1 ROT+Q8	
35	CC X+0 Y+0	Sätt Pol i X/Y-planet för förpositionering
36	LP PR+Q26 PA+Q8 R0 FQ12	Förpositionering i planet
37	LBL 1	Förpositionering i spindelaxeln
38	CC Z+0 X+Q108	Sätt Pol i Z/X-planet, förskjuten med verktygsradien
39	L Y+0 Z+0 FQ12	Förflyttning till djupet

40	LBL 2		
41	LP PR+Q6 PA+Q24 R0 FQ12	Förflyttning uppåt på approximerad "Båge"	
42	FN 2: $Q24 = +Q24 - +Q14$	Uppdatera rymdvinkel	
43	FN 11: IF +Q24 GT +Q5 GOTO LBL 2	Kontrollera om en båge är färdig, om inte hoppa tillbaka till LBL 2	
44	LP PR+Q6 PA+Q5	Förflyttning till slutvinkel i rymden	
45	L Z+Q23 R0 F1000	Frikörning i spindelaxeln	
46	L X+Q26 RO F MAX	Förpositionering för nästa båge	
47	FN 1: $Q28 = +Q28 + +Q18$	Uppdatera vridningsläge i planet	
48	FN 0: $Q24 = +Q4$	Återställ rymdvinkel	
49	CYCL DEF 10.0 VRIDNING	Aktivera nytt vridningsläge	
50	CYCL DEF 10.1 ROT+Q28		
51	FN 12: IF +Q28 LT +Q9 GOTO LBL 1		
52	FN 9: IF +Q28 EQU +Q9 GOTO LBL 1	Kontrollera om ej färdig, om ej färdig hoppa tillbaka till LBL 1	
53	CYCL DEF 10.0 VRIDNING	Återställ vridning	
54	CYCL DEF 10.1 ROT+0		
55	CYCL DEF 7.0 NOLLPUNKT	Återställ nollpunktsförskjutning	
56	CYCL DEF 7.1 X+0		
57	CYCL DEF 7.2 Y+0		
58	CYCL DEF 7.3 Z+0		
59	LBL 0	Slut på underprogram	
60	END PGM KUGEL MM		

Programtest och programkörning

11.1 Grafik

Användningsområde

l driftarterna för programkörning och i driftarten programtest kan TNC:n simulera en bearbetning grafiskt. Via softkeys väljer man:

- Vy ovanifrån
- Presentation i 3 plan
- 3D-framställning

TNC-grafiken motsvarar ett arbetsstycke som bearbetats med ett cylinderformigt verktyg. Vid aktiv verktygstabell kan man även simulera bearbetning med en radiefräs. För att göra detta anger man R2 = R i verktygstabellen.

TNC:n presenterar inte någon grafik:

om det aktuella programmet inte har någon giltig råämnesdefinition

om inte något program har valts

Via maskinparameter 7315 till 7317 kan man välja att TNC:n skall skapa grafik även då man inte har definierat spindelaxeln eller förflyttar spindelaxeln.

Man kan inte använda den grafiska simuleringen vid programsekvenser resp. program som innehåller rörelser i rotationsaxlar eller vid 3D-vridet bearbetningsplan: I dessa fall kommer TNC:n att visa ett felmeddelande.

TNC:n presenterar inte ett radie-tilläggsmått DR som har programmerats i TOOL CALL-blocket i grafiken.

Översikt: presentationssätt

l driftarterna för programkörning och i driftarten programtest visar TNC:n följande softkeys:

Presentationssätt	Softkey
Vy ovanifrån	
Presentation i 3 plan	
3D-framställning	
Begränsningar under programkörning

Bearbetningen kan inte presenteras grafiskt samtidigt som TNC:ns processor redan är belastad med komplicerade bearbetningsuppgifter eller bearbetning av stora ytor. Exempel: Planing över hela råämnet med ett stort verktyg. TNC:n fortsätter inte grafikpresentationen och presenterar istället texten **ERROR** i grafikfönstret. Däremot fortlöper bearbetningen.

Vy ovanifrån

Välj vy ovanifrån med softkey

För presentationen av djupet i denna grafik gäller:

"Ju djupare desto mörkare"

Vy ovanifrån är den grafiska simulering som utförs snabbast.

Presentation i 3 plan

Presentationen visas i vy ovanifrån med två snitt, motsvarande en teknisk ritning. En symbol till vänster under grafiken indikerar om presentationen motsvarar projektionsmetod 1 eller projektionsmetod 2 enligt DIN 6, del 1 (valbart via MP7310).

Vid presentation i tre plan finns funktioner för delförstoring tillgängliga, se "Delförstoring", sidan 410.

Dessutom kan man förskjuta snittytorna med hjälp av softkeys:

 Välj softkeyn för Presentation av arbetsstycket i tre plan

▶ Växla softkeyraden och välj softkey för snittytorna

► TNC:n visar följande softkeys:

Funktion	Softkeys	
Förskjut den vertikala snittytan åt höger eller vänster	-	
Förskjut den vertikala snittytan framåt eller bakåt	- *	
Förskjut den horisontala snittytan uppåt eller nedåt	•	

Snittytans position visas i bildskärmen i samband med förskjutningen.

Snittytans koordinater

TNC:n presenterar snittytans koordinater, i förhållande till arbetsstyckets utgångspunkt, i grafikfönstrets underkant. Endast koordinaterna i bearbetningsplanet visas. Denna funktion aktiveras med maskinparameter 7310.

3D-framställning

TNC:n avbildar arbetsstycket tredimensionellt.

3D-framställningen kan vridas runt den vertikala axeln och tippas runt den horisontala axeln. Råämnets ytterkanter, som de såg ut innan den grafiska simuleringen, kan presenteras i form av en ram.

l driftart Programtest finns funktioner för delförstoring tillgängliga, se "Delförstoring", sidan 410.

Välj 3D-framställning med softkey

Vridning av 3D-framställning

Växla softkeyraden, tills softkey för 3D-framställning visas. TNC:n visar följande softkeys:

Funktion	Softkeys	
Vertikal vridning av grafiken i 5°-steg		
Horisontell tippning av grafiken i 5°-steg	1	t 🌒

Visa och ta bort ram för råämnets ytterkant

VISR

- Visa ram för BLK-FORM: Placera markeringsfältet i softkeyn på VISA
- Ta bort ram för BLK-FORM: Placera markeringsfältet i softkeyn på VISA INTE

Delförstoring

Man kan ändra delförstoringen i driftart Programtest vid:

- Presentation i 3 plan och vid
- 3D-framställning

För att kunna göra detta måste den grafiska simuleringen vara stoppad. En delförstoring är alltid aktiv i alla presentationssätten.

Växla softkeyrad i driftart Programtest, tills softkey för delförstoring visas. TNC:n visar följande softkeys:

Funktion	Softkeys
Välj vänster/höger sida på arbetsstycket	
Välj främre/bakre sida på arbetsstycket	
Välj övre/undre sida på arbetsstycket	
Snittytan för förminskning eller förstoring av råämnet förskjuts	- +
Godkänn delförstoring/förminskning	ÖVERFÖR DETALJ

Ändra delförstoring

Softkeys se tabell

- > Om det behövs, stoppa den grafiska simuleringen
- Välj sida på arbetsstycket med softkey (tabell)
- ▶ Förminska eller förstora råämne: Håll softkey "–" alt. "+" intryckt
- Starta programtest eller programkörning på nytt med softkey START (RESET + START återställer det ursprungliga råämnet)

Markörposition vid delförstoring

Vid en delförstoring visar TNC:n koordinaterna för axeln som för tillfället beskärs. Koordinaterna motsvarar området som valts för delförstoringen. Till vänster om snedstrecket visar TNC:n områdets minsta koordinat (MIN-punkt), till höger den största (MAX-punkt).

Vid en förstorad avbildning visar TNC:n **MGN** nere till höger i bildskärmen.

Om TNC:n inte kan förminska alternativt förstora råämnet mer, kommer styrsystemet att visa ett felmeddelande i grafikfönstret. För att bli av med felmeddelandet måste råämnet förstoras eller förminskas tillbaka lite.

Upprepa grafisk simulering

En grafisk simulering av ett bearbetningsprogram kan upprepas ett godtyckligt antal gånger. Därför kan grafiken eller en förstorad del återställas till råämnet.

Funktion	Softkey
Återskapa det obearbetade råämnet som det presenterades i den sista delförstoringen	RAAMNE SOM BLK FORM
Återställ delförstoring, så att TNC:n visar det bearbetade eller obearbetade arbetsstycket enligt programmerad BLK-Form	RAPITNE SCM BLK FORM

ſ

Med softkey RÅÄMNE SOM BLK FORM visar TNC:n – även efter en avgränsning utan ÖVERFÖR DETALJ. – åter råämnet med den programmerade storleken.

Beräkning av bearbetningstid

Driftarter för programkörning

Tiden från programstart till programslut visas. Vid avbrott i programexekveringen stoppas tidräkningen.

Programtest

Den ungefärliga tiden som visas beräknas från tidsåtgången som TNC:n behöver för att utföra verktygsrörelserna med den programmerade matningen. Den av TNC:n beräknade tiden är inte avsedd för kalkylering av bearbetningstiden eftersom TNC:n inte tar hänsyn till maskinberoende tider (såsom exempelvis för verktygsväxling).

Kalla upp stoppur-funktion

Växla softkeyrad, tills TNC:n visar följande softkeys med stoppurfunktioner:

Stoppur-funktioner	Softkey
Lagring av visad tid	SPARA
Summan av lagrad och visad tid presenteras	
Återställning av visad tid	ATERSTALL 00:00:00

Vilka softkeys som visas till vänster om stoppurfunktionerna är beroende av vald bildskärmsuppdelning.

Tiden återställs vid inmatning av en ny BLK-form.

11.2 Funktioner för presentation av program

Översikt

l driftarterna för programkörning och i driftarten visar TNC:n softkeys, med vilka man kan bläddra sida för sida i bearbetningsprogrammet:

Funktion	Softkey
Bläddra en bildskärmssida tillbaka i programmet	SIDA
Bläddra en bildskärmssida framåt i programmet	
Gå till programbörjan	BORJAN
Gå till programslut	

PROGRAM BLOCKFÖLJD	PROGRAM
0 BEGIN PGM 3DJOINT	MM
1 BLK FORM 0.1 Z X+	0 Y+0 Z-52
2 BLK FORM 0.2 X+10	0 Y+100 Z+0
3 TOOL CALL 1 Z	
4 L Z+20 R0 F MAX M	6
5 CYCL DEF 7.0 NOLL	PUNKT
6 CYCL DEF 7.1 X-10	
7 CALL LBL 1	
8 CYCL DEF 7.0 NOLL	PUNKT
	0% S-IST 11:49
	1% S-MOM LIMIT 1
🗙 -169.525 Y -	66.067 Z +197.437
C +114.778 B +2	07.872
	S 359.973
HR 🔽 T S 985	FØ M 5/9
SIDA SIDA BORJAN SLUT	RESTORE NOLLPUNKT VERKTYG
	N TABELL TABELL

11.3 Programtest

Användningsområde

I driftart Programtest simulerar man programs och programdelars förlopp, för att undvika fel vid programkörningen. TNC:n hjälper dig att finna följande feltyper:

- geometriska motsägelser
- saknade uppgifter
- ej utförbara hopp
- Förflyttning utanför bearbetningsområdet

Dessutom kan man använda följande funktioner:

- Programtest blockvis
- Testavbrott vid ett godtyckligt block
- Hoppa över block
- Funktioner för grafisk simulering
- Beräkning av bearbetningstid
- Utökad statuspresentation

Utföra programtest

Vid aktivt centralt verktygsregister måste man välja en verktygstabell som skall användas för programtestet (status S). För att göra detta väljer man en verktygstabell i driftart Programtest med filhanteringen (PGM MGT).

Med MOD-funktionen RÅÄMNE I ARB.-RUM kan man aktivera en övervakning av bearbetningsområdet för programtestet, se "Presentation av råämnet i bearbetningsrummet", sidan 441.

- Välj driftart Programtest
- Välj filhantering med knappen PGM MGT och välj sedan filen som skall testas eller
- Välj programbörjan: Välj rad "0" med knappen GOTO och bekräfta inmatningen med knappen ENT

TNC:n visar följande softkeys:

Funktion	Softkey
Testa hela programmet	START
Testa varje block individuellt	START ENKELBL.
Visa råämnet och testa hela programmet	RESET + START
Stoppa programtestet	STOP

Utföra programtest fram till ett bestämt block

Med STOPP VID N utför TNC:n programtestet fram till ett valbart block med blocknummer N.

- Välj programbörjan i driftart Programtest
- Välj programtest fram till ett bestämt block: Tryck på softkey STOPP VID N

- Stopp vid N: Ange blocknumret som programtestet skall stoppas vid
- Program Ange namnet på programmet som innehåller blocket med det valda blocknumret; TNC:n visar automatiskt det valda programmets namn; om programstoppet skall ske i ett med PGM CALL anropat program så anger man detta programs namn
- Upprepning: Ange antal upprepningar som skall utföras om N befinner sig inom en programdelsupprepning
- Testa programsekvens: Tryck på softkey START; TNC:n testar programmet fram till det angivna blocket

PROGRF BLOCKF	IM TÖLJD	PROGRAMTEST						
0	BEG	EN F	GM FI	K1 MM				
1	BLK	FOF	N 0.	1 Z X·	+0 Y+	0 Z-20	3	
2	BLK	FOF	RM 0.3	2 X+10	30 Y+	100 Z·	۴0	
3	тоог	L CF	ALL 1	Z				
4	L Z·	-250	3 RØ I	F MAX				
5	L X-	-20	Y+30	RØ F	MAX			
6	L Z-	-10	RØ F	1000	13			
7	APPF	R C1	Г X+2	Y+30	CCA9	0 R+5	RL F2	250
8	FC [DR-	R18 (CLSD+	CCX+	20 CC'	(+30	
9	FLT							
10	FC	r dr	R- R1	5 ссх.	⊦50 C	CY+75		
11	FL.	Г						
12	FC	In	atn. prog	ramställe	för avbr	ott		
13	FL		LL SATS NU	JMMER= <mark>25</mark> = FK1	н			
14	FC		PREPNING	= 1			C Y + 30	3
					START ENKELBL.	STOPP VID	START	RESET
						I INI		I CTODT

11.4 Programkörning

Användningsområde

I driftarten Program blockföljd utför TNC:n ett bearbetningsprogram kontinuerligt fram till programslutet eller tills bearbetningen avbryts.

I driftarten Program enkelblock utför TNC:n ett block i taget då man trycker på den externa START-knappen.

Följande TNC-funktioner kan användas i driftarterna för programkörning:

- Avbrott i programkörningen
- Programkörning från ett bestämt block
- Hoppa över block
- Editera verktygstabell TOOL.T
- Kontrollera och ändra Q-parametrar
- Överlagra handrattsrörelser
- Funktioner för grafisk simulering
- Utökad statuspresentation

Körning av bearbetningsprogram

Förberedelse

- 1 Spänn fast arbetsstycket på maskinbordet
- 2 Ställ in utgångspunkten
- 3 Välj nödvändiga tabeller och palett-filer (status M)
- 4 Välj bearbetningsprogram (status M)

Matning och spindelvarvtal kan ändras med overridepotentiometrarna.

Via softkey FMAX kan man reducera hastigheten vid snabbtransport när NC-programmet skall köras in. Det angivna värdet är även aktivt efter en avstängning/påslag av maskinen. För att återställa den ursprungliga snabbtransporthastigheten måste man knappa in detta siffervärde igen.

Program blockföljd

Starta bearbetningsprogrammet med den externa START-knappen

Program enkelblock

Starta varje enskilt block i bearbetningsprogrammet individuellt med den externa START-knappen

Stoppa bearbetningen

Det finns olika möjligheter att stoppa en programkörning:

- Programmerat stopp
- Extern STOPP-knapp
- Växla till Program enkelblock

Om TNC:n registrerar ett fel under programkörningen så stoppas bearbetningen automatiskt.

Programmerat stopp

Stopp kan programmeras direkt i bearbetningsprogrammet. TNC:n avbryter programexekveringen när bearbetningsprogrammet har utförts fram till ett block som innehåller någon av följande uppgifter:

- STOP (med och utan tilläggsfunktion)
- Tilläggsfunktioner M0, M2 eller M30
- Tilläggsfunktion M6 (bestäms av maskintillverkaren)

Stoppa med extern STOPP-knapp

- Tryck på extern STOPP-knapp: Blocket som TNC:n utför vid tidpunkten då knappen trycks in, kommer inte att slutföras; i statuspresentationen blinkar "*"-symbolen
- Om bearbetningen inte skall återupptas, återställer man TNC:n med softkey INTERNT STOPP: "*"-symbolen i statuspresentationen släcks. I detta läge kan programmet startas om från början.

Stoppa bearbetningen genom att växla till driftart Program enkelblock

När ett bearbetningsprogram exekveras i driftart Program blockföljd väljs driftart Program enkelblock. TNC:n stoppar bearbetningen efter att det aktuella bearbetningssteget har slutförts.

Förflyttning av maskinaxlarna under ett avbrott

Vid ett avbrott i bearbetningen kan maskinaxlarna förflyttas på samma sätt som i driftart Manuell drift.

Kollisionsrisk!

Om en programkörning stoppas i samband med 3D-vridet bearbetningsplan, kan man med softkey 3D PÅ/AV växla mellan vridet och icke vridet koordinatsystem.

Axelriktningsknapparnas, handrattens och återkörningslogikens funktion utvärderas av TNC:n med hänsyn tagen till softkey-inställningen. Kontrollera, innan frikörning, att rätt koordinatsystem är aktiverat och att rotationsaxlarnas vinkelvärden har förts in i 3D-ROTmenyn.

Användningsexempel: Frikörning av spindeln efter verktygsbrott

- Stoppa bearbetningen
- Frige externa riktningsknappar: Tryck på softkey MANUELL FÖRFLYTTNING.
- Förflytta maskinaxlarna med de externa riktningsknapparna

I vissa maskiner måste man även trycka på den externa START-knappen, efter softkey MANUELL FÖRFLYTTNING, för att frige de externa riktningsknapparna. Beakta anvisningarna i Er maskinhandbok.

Fortsätt programkörning efter ett avbrott

Om man stoppar programkörningen under en bearbetningscykel måste återstarten ske i cykelns början. TNC:n måste då återupprepa redan utförda bearbetningssteg.

Om programkörningen stoppas inom en programdelsupprepning eller inom ett underprogram, måste återstarten till avbrottsstället utföras med funktionen FRAMKÖRNING TILL BLOCK N.

Om bearbetningen avbryts lagrar TNC:n:

- information om det sist anropade verktyget
- aktiva koordinatomräkningar (t.ex. nollpunktsförskjutning, vridning, spegling)
- det sist definierade cirkelcentrumets koordinater

Beakta att lagrade data förblir aktiva ända tills man återställer dem (t.ex. genom att välja ett nytt program).

Den lagrade informationen används för återkörning till konturen efter manuell förflyttning av maskinaxlarna i samband med ett avbrott (softkey ÅTERSKAPA POSITION).

Fortsätt programkörningen med START-knappen

Efter ett avbrott kan programkörningen återupptas genom att man trycker på START-knappen, om den stoppades på något av följande sätt:

- Tryck på den externa STOPP-knappen
- Programmerat stopp

Fortsätt programkörning efter ett fel

Vid icke blinkande felmeddelanden:

- Åtgärda felorsaken
- Radera felmeddelandet i bildskärmen: Tryck på knappen CE
- Starta om programmet eller fortsätt bearbetningen från stället där avbrottet inträffade

Vid blinkande felmeddelanden:

- Håll knappen END intryckt i två sekunder, TNC:n utför en varmstart
- Åtgärda felorsaken
- Starta igen

Vid återkommande fel, notera felmeddelandet och kontakta er service-representant.

Godtyckligt startblock i program (block scan)

Funktionen FRAMKÖRNING TILL BLOCK N måste anpassas och friges av maskintillverkaren. Beakta anvisningarna i Er maskinhandbok.

Med funktionen FRAMKÖRNING TILL BLOCK N (block scan) kan man starta ett bearbetningsprogram från ett fritt valbart block N. TNC:n läser internt igenom programmets bearbetningssekvenser fram till det valda blocket. TNC:n kan simulera bearbetningen av arbetsstycket grafiskt.

När ett program har avbrutits med ett INTERNT STOPP, föreslår TNC:n automatiskt det avbrutna blocket N som återstartsblock.

Blockläsningen får inte påbörjas i ett underprogram.

Alla nödvändiga program, tabeller och palettfiler måste väljas i någon av driftarterna för programkörning (status M).

Om programmet innehåller ett programmerat stopp innan återstartsblocket kommer blockläsningen att stoppas där. Tryck på den externa START-knappen för att fortsätta blockläsningen.

Efter en blockläsning förflyttas verktyget till den beräknade positionen med funktionen ÅTERSKAPA POSITION.

Via maskinparameter 7680 bestämmer man om blockläsningen, vid länkade program, skall påbörjas i huvudprogrammets block 0 eller i block 0 på programmet som programkörningen sist avbröts i.

Med softkey 3D PÅ/AV bestämmer man om TNC:n, vid 3D-vridet bearbetningsplan, skall köra fram i vridet eller i icke vridet system.

Funktionen M128 är inte tillåten vid en blockläsning (block scan).

Om man vill använda blockläsningen inom en palett-tabell så väljer man till att börja med programmet i palett-tabellen som man vill starta i med pilknapparna och sedan direkt FRAMKÖRNING TILL BLOCK N.

TNC:n hoppar över alla avkännarcykler och cykel 247 vid en blockläsning. Resultatparametrar som dessa cykler skriver till får i förekommande fall inte några värden.

PROGRE	M BLOC	KFÖLJD			PRO	GRAM ATNING
0 BEC 1 BLK 2 BLK 3 TOC 4 L 2 5 CYC 6 CYC 7 CAL	SIN PGM FORM CFORM L CALL 2+20 R0 L DEF L DEF L LBL	3DJOIN 0.1 Z X 0.2 X+1 7 MAX 7.0 NOL 7.1 X-1	T MM +0 Y+0 00 Y+1 M6 LPUNK ⁻ 0	0 Z-52 100 Z+ T	2 - 0	
		r.e NUL	0%	S-IST	11:	50
			1%	S-MOM	1 LIM	IT 1
× − C +	16 FRAMKÖF 114 PROGRAM	Programställ RN. TILL N= 23 1 = 30	e för bloc JOINT.H	k läsning	+19	7.437
	DITKET	- 1		<u> </u>	359.	973
ÄR	🖉 т	S 9	85	F 0		M 5∕9
SIDA Û	SIDA BÖR	JAN SLUT	RESTORE POS. AT		NOLLPUNK1 TABELL	VERK TYG TABELL

Välj det aktuella programmets första block som början för blockläsning: Ange GOTO "0".

- Välj blockläsning: Tryck på softkey FRAMKÖRNING TILL BLOCK N
- ▶ Frankörning till № Ange numret på blocket N som blockläsningen skall utföras till
- Program Ange namnet på programmet som innehåller blocket N
- Upprepningar: Ange antal upprepningar som skall utföras i blockläsningen om N befinner sig inom en programdelsupprepning
- Starta blockläsning: Tryck på extern START-knapp
- Förflyttning till konturen: se "Återkörning till konturen", sidan 421

Återkörning till konturen

Med funktionen ÅTERSKAPA POSITION återför TNC:n verktyget till arbetsstyckets kontur i följande situationer:

- Återkörning till konturen efter att maskinaxlarna har förflyttats under ett avbrott, som har utförts utan ett INTERNT STOPP
- Återkörning till konturen efter en blockläsning med FRAMKÖRNING TILL BLOCK N, exempelvis efter ett avbrott med INTERNT STOPP
- När en axels position har förändrats efter öppning av reglerkretsen i samband med ett programavbrott (maskinberoende)
- Välj återkörning till konturen: Tryck på softkey ÅTERSKAPA POSITION
- Förflytta axlarna i den ordningsföljd som TNC:n föreslår i bildskärmen: Tryck på den externa START-knappen eller
- Förflytta axlarna i en godtycklig ordningsföljd: Softkey FRAMKÖRNING X, FRAMKÖRNING Z osv. trycks in samt att respektive förflyttning aktiveras med den externa START-knappen
- Återuppta bearbetningen: Tryck på extern START-knapp

11.5 Automatisk programstart

11.5 Automatisk programstart

Användningsområde

För att kunna utföra en automatisk programstart måste TNC:n vara förberedd för detta av Er maskintillverkare, beakta maskinhandboken.

Via softkey AUTOSTART (se bilden uppe till höger) kan man, i en av driftarterna för Programkörning, starta det program som är aktivt i den aktuella driftarten vid en valbar tidpunkt:

 Växla in fönstret för definition av starttidpunkten (se bilden i mitten till höger)

- Tid (Tim Mn: Sek): Klockslag när programmet skall startas
- Datum (DD. MM ÅÅÅÅ): Datum när programmet skall startas
- För att aktivera starten: Växla softkey AUTOSTART till PÅ

PROGI	ан в	LOCKI	FÖLJD					PROGRAM INMATNI	VG
0 BI 1 BI	<mark>Egin</mark> Lk fo	PGM I IRM Ø	-K1 MI .1 Z >	1 (+0 '	Y+0	Z-2	0		
2 BI 3 T	_K FO DOL C	RM Ø	.2 X+: 1 Z	100	Y+1(30 Z	+0		
4 L 5 L	Z+25 X-20	50 R0 1 Y+31	F MA) 3 RØ F	(= Ma:	ĸ				
6 L 7 AI	Z-10 PPR C	1 RØ 1 :T X+:	=1000 2 Y+30	M3 3 CCI	90	R+5	RL	F250	3
8 F	C DR-	• R18	CLSD	+ CC: 1	४+२। ३%ः	0 CC 8-IS	Y+30 T 10)):52	
				j ·	1% :	S-MO	M LI	[M I T	1
X	-169	.514	Y	-66	.06	ZZ	+	197.	427
L	+114	. ((8	в -	-207	. 87.	2 S	35	9.97	3
ÄR		и	S	985		FØ		M 5/	9
F MAX					A	JTOSTART	$\overline{\mathbb{O}}$	PÂ Z	

Automatisk programstart
Tid: 11.10.1999 10:51:35
Starta programmet vid: Tid (hrs:min:sec): 22:00:00 Datum (DD.MM.YYYY): 11.10.1999
INAKTIV

11.6 Hoppa över block

Användningsområde

l programtest eller programkörning kan block, som vid programmeringen har markerats med ett "/"-tecken, hoppas över:

Utför inte respektive testa inte programblock med "/"tecken: Ändra softkey till PÅ

Utför respektive testa programblock med "/"-tecken: Ändra softkey till AV

Denna funktion fungerar inte på TOOL DEF-block.

Den sista valda inställningen kvarstår även efter ett strömavbrott.

11.7 Valbart programkörningsstopp

Användningsområde

softkey till AV

Man kan välja om TNC:n skall stoppa programexekveringen respektive programtestet vid block som ett M01 har programmerats i. Om man använder M01 i driftart Programkörning kommer TNC:n inte att stänga av spindeln och kylvätskan.

Stoppa inte programkörningen respektive programtestet vid block som innehåller M01: Ändra

Stoppa programkörningen respektive programtestet vid block som innehåller M01: Ändra softkey till PÅ

MOD-funktioner

12.1 Välja MOD-funktioner

Med MOD-funktionerna kan man välja ytterligare presentations- och inmatningsmöjligheter. Vilka MOD-funktioner som erbjuds beror på vilken driftart som är aktiv.

Välja MOD-funktioner

Välj driftart, i vilken MOD-funktionerna önskas ändras.

MOD

12.1 Välja MOD-funktioner

Välj MOD-funktioner: Tryck på knappen MOD. Bilderna till höger visar typiska bildskärmsmenyer för Programinmatning/Editering (bilden uppe till höger), Programtest (bilden nere till höger) och i en maskindriftart (bilden på nästa sida).

Ändra inställningar

▶ Välj MOD-funktion i den presenterade menyn med pilknapparna.

För att ändra en inställning står – beroende på den valda funktionen – tre möjligheter till förfogande:

- Ange siffervärde direkt, t.ex. vid begränsning av rörelseområde
- Ändra inställning genom att trycka på knappen ENT, t.ex. vid bestämmande av programmeringsspråk
- Ändra inställning via ett fönster med alternativ. När flera inställningsmöjligheter finns tillgängliga, kan man genom att trycka på knappen GOTO växla in ett fönster, i vilket alla inställningsmöjligheterna visas samtidigt. Välj den önskade inställningen direkt genom att trycka på motsvarande sifferknapp (till vänster om kolon), alternativt med pilknapparna och godkänn sedan med knappen ENT. Om man inte vill ändra inställningen stänger man fönstret med knappen END.

Lämna MOD-funktioner

Avsluta MOD-funktioner: Tryck på softkey SLUT eller på knappen END

Översikt MOD-funktioner

Beroende av den valda driftarten kan följande ändringar utföras:

Programinmatning/Editering:

- Visa olika software-nummer
- Ange kodnummer
- Inställning av datasnitt
- I förekommande fall, Maskinspecifika användarparametrar
- I förekommande fall, Visa HJÄLP-filer

MANUELL DR		GRAM	INMA	NING			
коры	JMMER						
NC :	SOFTI	JARE-N	UMMER	2	80476	04	
PLC:	SOFTI	JARE-N	IUMMER	R B	ASIS-·	-32	
SETUF	·:			2	86197	04	
OPT :	2000	30011					
DSP1:	24624	49 15					
DSP2:	2462:	30 13					
0	RS232 RS422 INSTALLN.	ANVÄNDAR – PARAMETER	HJÄLP				SLUT

MANUELL DRIFT	PROGRAM	ITEST				
	4 E D					
			20	0470	0.4	
PLC: SO)FTWARE-	NUMMER	BF	SIS	-32	
OPT :%	0000011		28	86197	04	
DSP1:24	16249 15 16230 13					
0-r R	S232 RÂĂMNE S422 I ARBETS TALLN. OMRÂDET	- ANVÄNDAR - PARAMETER	HJÄLP			SLUT

Programtest:	MANUELL DRIFT PROGRAM INMATNING
Visa olika software-nummer	
Ange kodnummer	POSITIONSVAERDE 1 AR
Inställning av datasnitt	POSITIONSVAERDE 2 RESTV
Presentation av råämnet i bearbetningsrummet	PROGRAMINMATNING HEIDENHAIN
I förekommande fall, Maskinspecifika användarparametrar	AXELVAL %11111
I förekommande fall, Visa HJÄLP-filer	
Alla andra driftarter:	NC : SOFTWARE-NUMMER 280476 04 PLC: SOFTWARE-NUMMER BASIS32 SETUR: 286187 04
Visa olika software-nummer	OPT :X00000011
Visa sifferbeteckningar för tillgängliga optioner	DSP1:246249 15 DSP2:246230 13
Välja positionspresentation	56127240200 10
Välj måttenhet (mm/tum)	POSITION RÖRELSE- RÖRELSE- RÖRELSE- RÖRELSE- HIBLP MRSKIN SERVICE SLUT
Välja programmeringsspråk för MDI	PGM-INMAT (1) (2) (3) TID () AV PA

Välja axlar för överföring av är-position
Ställa in begränsning av rörelseområde

■ I förekommande fall, Visa HJÄLP-filer

Visa nollpunktVisa drifttid

12.2 Software- och optionsnummer

Användningsområde

Mjukvarunummer för NC, PLC och SETUP-disketterna visas i TNCbildskärmen efter att MOD-funktionerna har valts. Direkt under dem visas nummer på de installerade optionerna (OPT:):

Inga optioner OPT	00000000
Option digitalisering med brytande avkännareOPT	00000001
Option digitalisering med mätande avkännare OPT	00000011

12.3 Ange kodnummer

Användningsområde

TNC:n kräver ett kodnummer för följande funktioner:

Funktion	Kodnummer
Kalla upp användarparametrar	123
Konfigurering av ethernet-kort	NET123
Frige specialfunktioner vid programmering av Q-parametrar	555343

12.4 Inställning av datasnitt

Användningsområde

För att ställa in datasnitten trycker man på softkey RS 232- / RS 422 - INSTÄLLN. TNC:n visar en bildskärmsmeny i vilken följande inställningar kan ändras:

Inställning av RS-232-datasnitt

För RS-232-datasnittet väljs driftart och baudrate i bildskärmens vänstra del

Inställning av RS-422-datasnitt

För RS-422-datasnittet väljs driftart och baudrate i bildskärmens högra del.

Välja DRIFTART för extern enhet

I driftarterna FE2 och EXT kan man inte använda funktionerna "inläsning av alla program", "inläsning av erbjudet program" och "inläsning av filförteckning"

Inställning av BAUD-RATE

BAUD-RATE (dataöverföringshastighet) kan väljas mellan 110 och 115.200 Baud.

Extern enhet	Driftart	Symbol
PC med HEIDENHAIN-programvara TNCremo för fjärrstyrning av TNC:n	LSV2	
PC med HEIDENHAIN överföringsprogramvara TNCremo	FE1	
HEIDENHAIN diskettenhet FE 401 B FE 401 från progNr. 230 626 03	FE1 FE1	
HEIDENHAIN diskettenhet FE 401 till och med prog. nr. 230 626 02	FE2	
Främmande enhet såsom skrivare, remsläsare/stans, PC utan TNCremo	EXT1, EXT2	Ð

MANUELL DRIFT PROGRAM INMA	TNING
GRÄNSSNITT RS232	GRÄNSSNITT RS422
DRIFTART: EXT2 BAUD-RATE	DRIFTART: LSV-2 BAUD-RATE
FE : 115200	FE : 38400
EXT2 : 9600	EXT2 : 9600
LSV-2: 115200	LSV-2: 115200
TILLDELNING	
PRINT :	
PRINT-TEST :	r
	,
C-RS232 RS422 INSTÄLLN. PARAME TER HJÄLP	SLUT

Tilldelning

Med denna funktion definierar man var TNC:n skall överföra olika typer av data.

Användning:

Utmatning av värde med Q-parameterfunktion FN15

Utmatning av värde med Q-parameterfunktion FN16

Beroende på vilken TNC-driftart som används kommer antingen funktionen PRINT eller PRINT-TEST att användas:

TNC-driftart	Överföringsfunktion
Program enkelblock	PRINT
Program blockföljd	PRINT
Programtest	PRINT-TEST

PRINT och PRINT-TEST kan ställas in på följande sätt:

Funktion	Sökväg
Utmatning av data via RS-232	RS232:\
Utmatning av data via RS-422	RS422:\
Lagring av data på TNC:ns hårddisk	TNC:\
Lagring av data i samma katalog som programmet med FN15/FN16 finns i	tom

Filnamn:

Data	Driftart	Filnamn
Värde med FN15	Programkörning	%FN15RUN.A
Värde med FN15	Programtest	%FN15SIM.A
Värde med FN16	Programkörning	%FN16RUN.A
Värde med FN16	Programtest	%FN16SIM.A

Programvara för dataöverföring

Man bör använda HEIDENHAIN programvara TNCremo eller TNCremoNT för överföring av filer från och till TNC:n. Med TNCremo/ TNCremoNT kan man kommunicera med alla HEIDENHAINstyrsystem via det seriella datasnittet.

Kontakta HEIDENHAIN för att erhålla dataöverföringsprogramvaran TNCremo eller TNCremoNT. Systemförutsättningar för TNCremo:

- Persondator AT eller kompatibelt system
- Operativsystem MS-DOS/PC-DOS 3.00 eller högre, Windows 3.1, Windows for Workgroups 3.11, Windows NT 3.51, OS/2
- 640 kB arbetsminne
- 1 MByte ledigt på hårddisken
- Ett ledigt seriellt datasnitt
- En Microsoft (TM) kompatibel mus för att förenkla arbetet (ej krav)
- Systemförutsättningar för TNCremoNT:
- PC med 486 processor eller bättre
- Operativsystem Windows 95, Windows 98, Windows NT 4.0, Windows 2000
- 16 MByte arbetsminne
- 5 MByte ledigt på hårddisken
- Ett ledigt seriellt datasnitt eller uppkoppling via TCP/IP-nätverk

Installation under Windows

- Starta installationsprogrammet SETUP.EXE från filhanteraren (utförskaren)
- Följ anvisningarna i setup-programmet

Starta TNCremo under Windows 3.1, 3.11 och NT 3.51

Windows 3.1, 3.11, NT 3.51:

Dubbelklicka på ikonen i programgrupp HEIDENHAIN applikationer

När man startar TNCremo för första gången frågar programmet dig om ansluten styrning, datasnitt (COM1 eller COM2) och efter dataöverföringshastigheten. Ange den önskade informationen.

Starta TNCremoNT under Windows 95, Windows 98 och NT 4.0

Klicka på <Start>, <Program>, <HEIDENHAIN applikationer>, <TNCremoNT>

När man startar TNCremoNT för första gången försöker TNCremoNT att upprätta förbindelse till TNC:n.

Dataöverföring mellan TNC och TNCremo

Kontrollera om:

- TNC:n är ansluten till rätt seriella datasnitt på din dator
- Driftarten för datasnittet står på LSV-2 i TNC:n
- Dataöverföringshastigheten för LSV2-drift i TNC:n och den i TNCremo överensstämmer

🔀 TNCREMO.EXE						_ 🗆 ×
Filer Katalog	Uppkoppling	Verktyg	Inställning	Fönster	r.	Hjälp
Namn	Storl	Attr Datu	n Tid	LOCAL	TNC 4	30PA
202.H	3021	22.0	3.99 8.38	Fria	940,228,608	byte
203.H 204.H	3155 5110	25.0	5.98 14.38 6.99 7.08	*.*:		
205.H 206.H	1 1395	18.0	2.99 11.44	33,31	2 byte	3
208.H	2795	24.1	1.98 14.27	Valda		
210.n 211.H	5498	18.0	5.99 7.12	Ö	byte	r.
3507.H	1220	12.0	7.99 11.22	Kopp1	ing: Jakalt	
3516.H	2 1372	12.0	7.99 11.22	Proto	iokait	
BLK.H	- 700 74 700	12.0	7.99 11.22	LSU-2	KU11.	
NEU.H	166	12.0	7.99 11.22	Parit	et: N	
STAT.H	28	12.0	7.99 11.22	Guine	olt. l	
T412.H	562	22.0	7.99 13.30	COM2	IRQ3 A Baud	
LSU-2-anslutnin	g för TNC filö	verföring	Alt, F10	Meny, F1	Hjälp	

När man har startat TNCremo ser man, i huvudfönstrets vänstra del 1, alla filer som finns lagrade i den aktiva katalogen. Via <Katalog>, <Växla> kan man välja en godtycklig enhet alternativt en annan katalog i datorn.

Om man vill styra dataöverföringen från PC:n så aktiverar man förbindelsen på PC:n enligt följande:

- Välj <Anslut>, <Anslut>. TNCremo tar nu emot fil- och katalogstrukturen från TNC:n och presenterar denna i huvudfönstrets undre del 2.
- För att överföra en fil från TNC:n till PC:n väljer man filen i TNCfönstret (genom musklick markeras den med ljusare färg) och aktiverar funktionen <Fil> <Överför>
- För att överföra en fil från PC:n till TNC:n väljer man filen i PCfönstret (genom musklick markeras den med ljusare färg) och aktiverar sedan funktionen <Fil> <Överför>

Om man vill styra dataöverföringen från TNC:n så aktiverar man förbindelsen på PC:n enligt följande:

- Välj <Anslut>, <Filserver (LSV-2)>. TNCremo befinner sig nu i serverdrift och kan mottaga filer från TNC:n resp. skicka filer till TNC:n
- Välj funktion för filhantering i TNC:n via knappen PGM MGT (se "Dataöverföring till/från en extern dataenhet" på sidan 58) och överför de önskade filerna.

Avsluta TNCremo

Välj menypunkten <Fil>, <Avsluta>, eller tryck på knappkombinationen ALT+X

Beakta även hjälpfunktionen i TNCremo, i denna förklaras alla funktionerna.

Dataöverföring mellan TNC och TNCremoNT

Kontrollera om:

- TNC:n är ansluten till rätt seriella datasnitt på din dator, alt. är ansluten till nätverket
- Driftarten för datasnittet står på LSV-2 i TNC:n

När man har startat TNCremoNT ser man i, huvudfönstrets övre del 1, alla filer som finns lagrade i den aktiva katalogen. Via <Fil>, <Byt katalog> kan man välja en godtycklig enhet alternativt en annan katalog i datorn.

Om man vill styra dataöverföringen från PC:n så aktiverar man förbindelsen på PC:n enligt följande:

- Välj <Fil>, <Skapa förbindelse>. TNCremoNT tar nu emot fil- och katalogstrukturen från TNC:n och presenterar denna i huvudfönstrets undre del 2.
- För att överföra en fil från TNC:n till PC:n väljer man filen i TNCfönstret genom musklick och drar den markerade filen med nedtryckt musknapp till PC-fönstret 1

	z:\CYCLE\	280474XX\NC[NI		Control
Name	Size	Attribute	Date		TNC 430PA
					File status
200.CYC	1858	А	24.08.99 08:00:58		Free: 3367 MByte
.H) 200.H	2278	А	24.08.99 07:41:58		
🗋 201.CYC 🖌	1150	А	24.08.99 08:00:58		Total: 39
	1410	А	24.08.99 07:41:58		Masked: 29
202.CYC	2532	А	24.08.99 13:18:58		100
H 202.H	3148	A	24.08.99 13:14:58	-	
	TNC:\N	<\TSWORK[*.*]		Connection
Name	Size	Attribute	Date		Protocol:
🚞					LSV-2
B 3DTASTDEM.H	372		24.08.99 09:27:30		Serial port:
H) 419.H	5772		24.08.99 09:27:24		Icowa
H 440.H	4662		24.08.99 09:27:26		JCOM2
🖃 HRUEDI.I 🔰 🎽	92		24.08.99 09:27:34		Baud rate (autodetect):
🗔 LI 🗧	12		24.08.99 09:27:32		115200
T419.H	308		24.08.99 09:27:32		
.H) T 440.H	154		24.08.99 09:27:28	=	
	0000		00.00.00.00.00.00	-	

För att överföra en fil från PC:n till TNC:n väljer man filen i PCfönstret genom musklick och drar den markerade filen med nedtryckt musknapp till TNC-fönstret 2

Om man vill styra dataöverföringen från TNC:n så aktiverar man förbindelsen på PC:n enligt följande:

- Välj <Extras>, <TNCserver>. TNCremoNT startar då serverdrift och kan mottaga filer från TNC:n resp. skicka filer till TNC:n
- Välj funktionen för filhantering i TNC:n via knappen PGM MGT (se "Dataöverföring till/från en extern dataenhet" på sidan 58) och överför de önskade filerna.

Avsluta TNCremoNT

Välj menypunkten <Fil>, <Avsluta>

Beakta även hjälpfunktionen i TNCremo, i denna förklaras alla funktionerna.

12.5 Ethernet-datasnitt

Introduktion

TNC:n är standardmässigt utrustad med ett ethernet-kort för att man därigenom skall kunna ansluta styrsystemet som Client i sitt eget nätverk. TNC:n överför data via ethernet-kortet enligt familjen TCP/IPprotokoll (Transmission Control Protocol/Internet Protocol) samt med hjälp av NFS (Network File System). TCP/IP och NFS är vanligen implementerade i UNIX-system vilket medför att TNC:n kan anslutas till UNIX-världen utan ytterligare programvara.

PC-världen med Microsoft operativsystem arbetar också med TCP/IP vid nätverksuppkoppling men däremot inte med NFS. Därför behöver man en extra programvara för att kunna ansluta TNC:n till ett PCnätverk. HEIDENHAIN rekommenderar för operativsystem Windows 95, Windows 98 och Windows NT 4.0 nätverksprogramvaran **CimcoNFS för HEIDENHAIN**. Denna kan man beställa separat eller tillsammans med Ethernet-kortet för TNC:n:

Anslutningsmöjligheter

Man kan ansluta TNC:ns ethernet-kort till nätverket via RJ45-anslutningen (X26,100BaseTX resp. 10BaseT). Anslutningen är galvaniskt frånskild styrningselektroniken.

RJ45-anslutning X26 (100BaseTX resp. 10BaseT)

Vid 100BaseTX resp. 10BaseT-anslutning använder man twisted pairkabel för att ansluta TNC:n till sitt nätverk.

Den maximala längden mellan TNC:n och knutpunkten beror på kabelns kvalitet, mantlingen och på typen av nätverk (100BaseTX eller 10BaseT).

Om man kopplar upp TNC:n direkt mot en PC måste en korsad kabel användas.

Konfigurering av TNC:n

Låt en nätverksspecialist konfigurera TNC:n.

I driftart programinmatning/editering trycker man på knappen MOD. Ange kodnummer NET123, TNC:n presenterar huvudbildskärmen för nätverkskonfigurering.

Allmänna nätverks-inställningar

 Tryck på softkey DEFINE NET för inmatning av allmänna nätverksinställningar och ange följande information:

Inställning	Betydelse
ADDRESS	Adress som Er nätverksspecialist måste tilldela TNC:n. Inmatning: Fyra siffervärden åtskilda av punkter, t.ex. 160.1.180.20
MASK	SUBNET MASK används för att separera nätverkets nät- och Host-ID. Inmatning: Fyra siffervärden åtskilda av punkter, fråga nätverksspecialisten om värdet, t.ex. 255.255.0.0
BROADCAST	Styrsystemets broadcastadress behövs bara om den avviker från standardinställningen. Standardinställningen skapas av Nät-ID och Host- ID, där alla bitar är satta till 1, t.ex. 160.1.255.255
ROUTER	Internet-adress för Er default-router. Användes endast om Ert nätverk består av flera sammankopplade delnätverk. Inmatning: Fyra siffervärden åtskilda av punkter, fråga nätverksspecialisten om värdet, t.ex. 160.1.0.2
HOST	Namn som TNC:n meddelar sig med i nätverket
DOMAIN	Styrsystemets domännamn (utvärderas ännu inte)
NAMESERVER	Domänserverns nätverksadress (utvärderas ännu inte)

Uppgiften om protokollet utgår vid iTNC 530, den använder överföringsprotokoll enligt RFC 894.

Enhetsspecifika nätverksinställningar

Tryck på softkey DEFINE MOUNT för inmatning av enhetsspecifika nätverksinställningar. Man kan definiera ett godtyckligt antal nätverksinställningar, dock kan maximalt 7 stycken hanteras samtidigt.

Inställning	Betydelse
MOUNTDEVICE	Namn på katalogen som skall anmälas. Denna skapas av serverns nätverksadress, ett kolon och namnet på katalogen som skall kopplas. Inmatning: Fyra siffervärden åtskilda av punkter, fråga nätverksspecialisten om värdet, t.ex. 160.1.13.4. NFS-serverns katalog som man vill ansluta till TNC:n. Beakta stora och små bokstäver vid inmatning av sökvägen
MOUNTPOINT	Namn som TNC:n visar i filhanteringen när TNC:n är ansluten till enheten. Beakta att namnet måste sluta med ett kolon
FILESYSTEMTYP	Filsystemstyp, för närvarande är bara typen "nfs" tillgänglig
OPTIONS	Optioner som beror på filsystemstypen. Skriv in uppgifterna efter varandra utan mellanslag och separerade med komma. Beakta stora och små bokstäver. rsize : Paketstorlek för datamottagande i byte. Inmatningsområde: 512 till 8 192 wsize : Paketstorlek för datasändning i byte. Inmatningsområde: 512 till 8 192 timeo : Tid i tiondels sekunder, efter vilken TNC:n upprepar en av servern icke besvarad Remote Procedure Call. Inmatningsområde: 0 till 100 000. Om inget värde anges används istället standardvärdet 7. Använd endast högre värde när TNC:n måste kommunicera med servern via flera routers. Fråga nätverksspecialisten om värdet soft : Definierar huruvida TNC:n skall upprepa Remote Procedure Call ända tills NFS-servern svarar. Soft inmatad: Remote Procedure Call upprepas inte Soft icke inmatad: Remote Procedure Call upprepas alltid
AM	Definierar huruvida TNC:n, vid uppstart, automatisk skall anslutas till nätverket. 0: Logga inte på automatisk 1: Logga på automatiskt

MANUELL DRIFT NÄTVERKSINSTÄLLNING SERVERNS INTERNETADRESS FIL: IP4.M00 ADDRESS TIMEOUT HM DEVICENOM MS 0 160.1.11.56 0 0 0 1 PC1331 0 PC1128 1 160.1.7.68 Ø ø Ø 160.1.7.68 0 PC0815 2 Ø ø Ø 3 160.1.13.4 0 0 Ø Ø WORLD [END] SLUT BÖRJAN SIDA SIDA ∬ INFOGA RADERA NASTA Û Û RAD RAD RAD

Definiera nätverksidentifikation

Statuspresentation	Betydelse
TNC USER ID	Definierar med vilken användaridentifikation slutanvändaren skall få åtkomst till filer i nätverket. Fråga nätverksspecialisten om värdet
OEM USER ID	Definierar med vilken användaridentifikation maskintillverkaren skall få åtkomst till filer i nätverket. Fråga nätverksspecialisten om värdet
TNC GROUP ID	Definierar med vilken gruppidentifikation man vill få åtkomst till filer i nätverket. Fråga nätverksspecialisten om värdet. Gruppidentifikationen är samma för slutanvändare och för maskintillverkare.
UID for mount	Definierar med vilken användaridentifikation inloggningen utförs. USER: Inloggningen sker med användaridentifikation ROOT: Inloggningen sker med identifikation av ROOT-användaren, värde = 0

12.6 Konfiguration av PGM MGT

Användningsområde

Med denna funktion bestämmer man filhanteringens funktionsomfång

- Standard: Förenklad filhantering utan katalogpresentation
- Utökad: Filhantering med utökade funktioner och katalogpresentation

Beakta: se "Standard filhantering", sidan 41, och se "Utökad filhantering", sidan 48.

Ändra inställning

- Välj filhantering i driftart Programinmatning/Editering: Tryck på knappen PGM MGT
- Välj MOD-funktion: Tryck på knappen MOD
- Välj inställning PGM MGT: Förflytta markören med pilknapparna till inställning PGM MGT, växla mellan STANDARD och UTÖKAD med knappen ENT

12.7 Maskinspecifika användarparametrar

Användningsområde

För att möjliggöra inställning av maskinspecifika funktioner för användaren kan Er maskintillverkare definiera upp till 16 maskinparametrar som användarparametrar.

Denna funktion finns inte tillgänglig i alla TNC's. Beakta anvisningarna i Er maskinhandbok.

12.8 Presentation av råämnet i bearbetningsrummet

Användningsområde

I driftart Programtest kan man grafiskt kontrollera råämnets position i maskinens bearbetningsrum. Med denna funktion kan även övervakning av maskinens arbetsområde aktiveras för driftart Programtest: För dessa funktioner trycker man på softkey RÅÄMNE I ARB.-RUM.

TNC:n visar en kub som representerar bearbetningsutrymmet. Kubens dimensioner visas i fönstret "Förflyttningsområde". TNC:n hämtar arbetsområdets dimensioner från maskinparametrarna för det aktiva förflyttningsområdet. Eftersom förflyttningsområdet har definierats i maskinens referenssystem så motsvarar kubens nollpunkt även maskinens nollpunkt. Man kan visa maskinens nollpunkt i kuben genom att trycka på softkey M91 (andra softkeyraden).

Ytterligare en kub () representerar råämnet, vars dimensioner () har hämtats av TNC:n från definitionen av råämnet i det valda programmet. Råämneskuben definierar inmatningskoordinatsystemet, vars nollpunkt ligger innanför kuben. Man kan visa nollpunktens läge i kuben genom att trycka på softkey "Visa arbetsstyckets nollpunkt" (andra softkeyraden).

Var råämnet befinner sig inom arbetsområdet är i normalfallet utan betydelse för programtestet. När man testar program, som innehåller förflyttningsrörelser med M91 eller M92, måste man emellertid förskjuta råämnet "grafiskt" så att inte några konturskador uppstår. Använd de i tabellen till höger listade softkeys för att göra detta.

Därutöver kan man även aktivera övervakningen av bearbetningsutrymmet för driftart Programtest. Detta för att testa programmet med den aktuella utgångspunkten och det aktiva förflyttningsområdet (se tabellen på nästa sida, raden längst ner).

Funktion	Softkey
Flytta råämnet åt vänster	← ⊕
Flytta råämnet åt höger	→ (
Flytta råämnet framåt	* 🗇
Flytta råämnet bakåt	≯⊕
Flytta råämnet uppåt	† \oplus
Flytta råämnet nedåt	↓ ⊕

Funktion	Softkey
Visa råämnet i förhållande till den inställda utgångspunkten	
Visa det totala rörelseområdet i förhållande till det presenterade råämnet	\longleftrightarrow
Visa maskinnollpunkten i bearbetningsrummet	M91 💮
Visa en av maskintillverkaren definierad position (t.ex. verktygsväxlingsposition) i bearbetningsrummet	M92 💮
Visa arbetsstyckets nollpunkt i bearbetningsrummet	Ţ
Aktivera (PÅ)/ deaktivera (AV) övervakning av arbetsområdet vid programtest	RV PA

12.9 Välja typ av positionsindikering

Användningsområde

Man kan påverka presentationen av koordinater som sker i driftarterna Manuell drift och Programkörning:

Bilden till höger visar olika positioner för verktyget

- Utgångsposition
- Verktygets målposition
- Arbetsstyckets nollpunkt
- Maskinens nollpunkt

Följande typer av koordinater kan väljas för TNC:ns positionspresentation:

Funktion	Presentation
Bör-position; värdet som TNC:n för tillfället arbetar mot	BÖR
Är-position; momentan verktygsposition	ÄR
Referens-position; är-position i förhållande till maskinens nollpunkt	REF
Restväg till den programmerade positionen; differens mellan är- och mål-position	RESTV
Släpfel; differens mellan bör- och är-position	SLÄP
Utböjning av det mätande avkännarsystemet	UTBJN
Förflyttningssträcka som har utförts med funktionen handrattsöverlagring (M118) (endast positionspresentation 2)	M118

Med MOD-funktionen Positionsvärde 1 kan man välja olika typer av positionsvärden för den vanliga statuspresentationen.

Med MOD-funktionen Positionsvärde 2 kan man välja olika typer av positionsvärden för den utökade statuspresentationen.

12.10 Välja måttenhet

Användningsområde

Med denna MOD-funktion definierar man om TNC:n skall presentera koordinater i mm eller tum.

- Metriskt måttsystem: t.ex. X = 15,789 (mm) MOD-funktionen Växla mm/tum = mm. Presentation med tre decimaler
- Tum måttsystem: t.ex. X = 0,6216 (tum) MOD-funktionen Växla mm/tum = tum. Värdet visas med fyra decimaler.

Om man har tum-presentation aktiv visar TNC:n även matningen i tum/min. I ett tum-program måste man ange en högre matning med faktor 10.
12.11 Välja programmeringsspråk för \$MDI

Användningsområde

Med MOD-funktionen Programinmatning växlar man mellan programmering av filen \$MDI enligt:

- Programmering av \$MDI.H i klartext-dialog: Programinmatning: HEIDENHAIN
- Programmering av \$MDI.I enligt DIN/ISO: Programinmatning: ISO

12.12 Axelval för L-blocksgenerering

Användningsområde

l inmatningsfältet Axelval definieras vilka axlars aktuella verktygspositioner som skall överföras till ett L-block. För att skapa ett separat L-block trycker man på knappen "överför är-position". Axlarna väljs med en bit-kod på samma sätt som maskinparametrarna:

Axelval %11111X, Y, Z, IV., V. axel överförs

Axelval %01111X, Y, Z, IV. axel överförs

Axelval %00111X, Y, Z axel överförs

Axelval %00011X, Y axel överförs

Axelval %00001X axel överförs

12.13 Ange begränsning av rörelseområde, nollpunktspresentation

Användningsområde

Inom maskinens maximala rörelseområde kan ytterligare begränsning av det användbara rörelseområdet i koordinataxlarna göras.

Användningsexempel: Skydda en delningsapparat mot kollision.

Det maximala rörelseområdet är begränsat av mjukvarugränslägen. Det för tillfället användbara rörelseområdet kan minskas med MODfunktionen RÖRELSEOMRÅDE: Detta görs genom att ange axlarnas maximala positionsvärden i positiv och negativ riktning i förhållande till maskinens nollpunkt. Om Er maskin förfogar över flera förflyttningsområden kan begränsningen ställas in separat för respektive förflyttningsområde (softkey RÖRELSEOMRÅDE (1) till RÖRELSEOMRÅDE (3)).

Arbeta utan extra begränsning av rörelseområdet

För koordinataxlar som inte skall förses med någon extra rörelsebegränsning anges TNC:ns maximala rörelseområde (+/- 9 9999 mm) som ÄNDLÄGE.

Visa och ange det maximala rörelseområdet

- Välj Positionsvärde REF
- Förflytta maskinen till önskade positiva och negativa begränsningspositioner i X-, Y- och Z-axeln
- Notera värdena med förtecken
- Välj MOD-funktioner: Tryck på knappen MOD

Ange begränsning av förflyttningsområde: Tryck på softkey ÄNDLÄGE. Knappa in de noterade värdena för axlarna i Begränsningar.

Lämna MOD-funktionen: Tryck på softkey SLUT

Kompensering för verktygsradie inkluderas inte i begränsningen av rörelseområdet.

Begränsningen av rörelseområdet och mjukvarugränslägena aktiveras först när referenspunkterna har passerats.

Visa nollpunkt

Värdena som visas i bildskärmens nedre vänstra del är de manuellt inställda utgångspunkterna i förhållande till maskinens nollpunkt. Dessa kan inte ändras i denna bildskärmsmeny.

MHNUELL DRIFT			INMATNING
FÖRFLYTTN.OMR	Ι:		
X = -500	X +	+300	
Y500	Y+	+25	
71000	7+	+650	
C30000	 C+	+30000	
NOLLPUNKTER:			
X +45.7729	+20.1073	Z +174	.3582
C +90.2116 E	+171.0519	5 +0.00	005
6 +0.0005 7	+0.0001	8 +0	
POSITION RÖRELSE- RÖRELSE OMRÅDE OMRÅDE	- RÖRELSE- OMRÅDE HJÄLP	MASKIN SERV	ICE SLUT

12.14 Visa HJÄLP-filer

Användningsområde

HJÄLP-filer är till för att hjälpa användaren i situationer som kräver ett förutbestämt handlingssätt, såsom exempelvis frikörning av maskinen efter ett strömavbrott. Även tilläggsfunktioner (M-funktioner) kan dokumenteras i en HJÄLP-fil. Bilden till höger visar ett exempel på innehåll i en HJÄLP-fil.

HJÄLP-filer finns inte tillgängliga i alla maskiner. Ytterligare information får du av din maskintillverkare.

Välja HJÄLP-filer

Välj MOD-funktion: Tryck på knappen MOD

- Välj den sist aktiverade HJÄLP-filen: Tryck på softkey HJÄLP
- Om det behövs, kalla upp filhanteringen (knappen PGM MGT) och välj en annan Hjälp-fil.

PROGRAM II	NMATNI	[N G			PRO	GRAM ATNING
FIL: HELP.HLP		RAD:	12 SPA	LT: 1	INSERT	
102 Z to #103 Y to #104 Y to #105 S to #106 Tool #107 Tool	TC pc TC pc TC pc TC pc uncla	ositio ositio ositio ositio amping ping	on put on put on put on g	tin tout tin		
#108 Maga:	zine †	turn d	clockw	vise		
			0% 1%	S-IST S-MOM	11:2 LIM:	29 [T 1
X +76. C +114.	644) 778 E	(+ 3 +2	42.48	39 Z 72	+20	5.231
ÄR	т	S 98	5	S F0	359.	973 м 5⁄9
INFOGA NÄSTA SKRIV ÖVR >>	SISTA ORDET <<	SIDA Û	SIDA J	BÖRJAN	SLUT J	SÖK

12.15 Visa drifttid

Användningsområde

Maskintillverkaren kan även presentera andra tider. Beakta anvisningarna i Er maskinhandbok!

Via softkey MASKINTID kan man presentera av olika drifttider:

Drifttid	Betydelse
Styrning till	Styrsystemets drifttid sedan installation
Maskin till	Maskinens drifttid sedan installation
Programkörning	Drifttid för styrd drift sedan installation

MANUELL DRIFT		PROGRAM INMAINING
STYRSYSTEM TILL Maskin på Programexekvering PlC-dialog 16	= 1445:49:09 = 1008:34:37 = 33:15:45 5:50:34	
KODNUMMER		
		SLUT

12.16 Extern åtkomst

Användningsområde

Maskintillverkaren kan konfigurera de externa åtkomstmöjligheterna via LSV-2 datasnittet. Beakta anvisningarna i Er maskinhandbok!

Med softkey EXTERN ÅTKOMST kan man frige eller spärra åtkomst via LSV-2 datasnittet.

Genom en uppgift i konfigurationsfilen TNC.SYS kan man skydda en katalog inklusive underkataloger med ett lösenord. Vid åtkomst via LSV-2 protokollet till data från denna katalog efterfrågas lösenordet. Man fastlägger sökvägen och lösenordet för extern åtkomst i konfigurationsfilen TNC.SYS.

Filen TNC.SYS måste finnas lagrad i rot-katalogen TNC:\.

Om man bara anger en uppgift för lösenordet skyddas hela enheten TNC:\.

För dataöverföringen använder man den senaste versionen av HEIDENHAIN-programvaran TNCremo eller TNCremoNT.

Uppgifter i TNC.SYS	Betydelse
REMOTE.TNCPASSWORD=	Lösenord för LSV-2 åtkomst
REMOTE.TNCPRIVATEPATH=	Sökväg som skall skyddas

Exempel på TNC.SYS

REMOTE. TNCPASSWORD=KR1402

REMOTE. TNCPRIVATEPATH=TNC: \RK

Tillåt/spärra extern åtkomst

- Välj godtycklig maskindriftart
- Välj MOD-funktioner: Tryck på knappen MOD

- Tillåt förbindelse till TNC:n: Växla softkey EXTERN ÅTKOMST till PÅ. TNC:n tillåter åtkomst till data via LSV-2 protokollet. Vid åtkomst till en katalog som har angivits i konfigurationsfilen TNC.SYS kommer lösenordet att efterfrågas.
- Spärra förbindelse till TNC:n: Växla softkey EXTERN ÅTKOMST till AV. TNC:n spärrar åtkomst via LSV-2 protokollet

EKONTUR.

FNC:\BHB530*.*

Jate	-N-mm
	Ivame

140	me	(5)
DOKU_BOHR	PL 0	Byte S
10VE	.н	0
25852	.0	1276
RETERV	.н	22
	.н	90
JIVIUR		
	. 11	472 5
REIS1		
	.н	76
EIS31XY	ы	
חבי	• • •	76
	.н	416
ADRAT		410
	.н	90
10	-	
	. I	22
WAHL	-	
	.PNT	16
Datei(en)	3716000 4	vbyte frei

Tabeller och översikt

2

13.1 Allmänna användarparametrar

Allmänna användarparametrar är maskinparametrar som användaren kan ändra för att påverka TNC:ns beteende.

Typiska användarparametrar är exempelvis:

- Dialogspråk
- Inställning av datasnitt
- Matningshastigheter
- Bearbetningsförlopp
- Override-potentiometrarnas funktion

Inmatningsmöjligheter för maskinparametrar

Maskinparametrar kan programmeras med:

- Decimala tal
- Ange siffervärdet direkt
- Dual/binära tal Ange procenttecken "%" före siffervärdet
- Hexadecimala tal Ange dollartecken "\$" före siffervärdet

Exempel:

Istället för det decimala talet 27 kan även det binära talet %11011 eller det hexadecimala talet \$1B anges.

De olika maskinparametrarna får definieras med skilda tal-system.

En del maskinparametrar innehåller mer än en funktion. Inmatningsvärdena i sådana maskinparametrar är summan av de med ett + tecken markerade delvärdena.

Kalla upp allmänna användarparametrar

Allmänna användarparametrar väljs med kodnummer 123 i MOD-funktionen.

I MOD-funktionen finns också de maskinspecifika ANVÄNDARPARAMETRARNA tillgängliga.

Extern dataoverforing	
Anpassning av TNC-datasnitt EXT1 (5020.0) och EXT2 (5020.1) till extern enhet	MP5020.x 7 databitar (ASCII-code, 8.bit = paritet): +0 8 databitar (ASCII-code, 9.bit = paritet): +1
	Block-Check-Charakter (BCC) godtycklig: +0 Block-Check-Charakter (BCC) styrtecken ej tillåtna: +2
	Överföringsstopp med RTS aktiv: +4 Överföringsstopp med RTS ej aktiv: +0
	Överföringsstopp med DC3 aktiv: +8 Överföringsstopp med DC3 ej aktiv: +0
	Teckenparitet jämn: +0 Teckenparitet ojämn: +16
	Teckenparitet ej önskad: +0 Teckenparitet önskad: +32
	11/2 stoppbit: +0 2 stoppbitar: +64
	1 stoppbit: +128 1 stoppbit: +192
	Exempel:
	Anpassa TNC-datasnitt EXT2 (MP 5020.1) till en extern enhet med följande inställning:
	8 databitar, BCC godtycklig, överföringsstopp med DC3, jämn teckenparitet, teckenparitet önskad, 2 stoppbitar
	Inmatning i MP 5020.1 : 1+0+8+0+32+64 = 105
Typ av datasnitt för EXT1 (5030.0) och EXT2 (5030.1)	MP5030.x Standardöverföring: 0 Datasnitt för blockvis överföring: 1
3D-avkännarsystem	
Välj typ av överföring	MP6010 Avkännarsystem med kabelöverföring: 0 Avkännarsystem med infraröd överföring: 1
Avkänningshastighet för brytande avkännarsystem	MP6120 1 till 3 000 [mm/min]
Maximal förflyttningssträcka till avkänningspunkt	MP6130 0,001 till 99 999,9999 [mm]
Säkerhetsavstånd till avkänningspunkt vid automatisk mätning	MP6140 0,001 till 99 999,9999 [mm]
Snabbtransport vid avkänning med brytande avkännarsystem	MP6150 1 till 300 000 [mm/min]

3D-avkännarsystem	
Mätning av avkännarens centrumförskjutning vid kalibrering av brytande avkännarsystem	MP6160 Ingen 180°-vridning av 3D-avkännarsystemet vid kalibrering: 0 M-funktion för 180°-vridning av avkännarsystemet vid kalibrering: 1 till 999
M-funktion för orientering av infraröd avkännare före varje mätning	MP6161 Funktion inaktiv: 0 Orientering direkt via NC: -1 M-funktion för orientering av avkännarsystemet: 1 till 999
Orienteringsvinkel för den infraröda avkännaren	MP6162 0 till 359,9999 [°]
En spindelorientering skall utföras när skillnad mellan aktuell orienteringsvinkel och orienteringsvinkel från MP 6162 är	MP6163 0 till 3,0000 [°]
Automatisk orientering av infraröd avkännare till den programmerade avkänningsriktningen	MP6165 Funktion inaktiv: 0 Orientering av infraröd avkännare: 1
Upprepad mätning vid programmerbar avkännarfunktion	MP6170 1 till 3
Toleransområde för upprepad mätning	MP6171 0,001 till 0,999 [mm]
Automatisk kalibreringscykel: Kalibreringsringens centrum i X-axeln i förhållande till maskinens nollpunkt	MP6180.0 (förflyttningsområde 1) till MP6180.2 (förflyttningsområde 3) 0 till 99 999,9999 [mm]
Automatisk kalibreringscykel: Kalibreringsringens centrum i Y-axeln i förhållande till maskinens nollpunkt för	MP6181.x (förflyttningsområde 1) till MP6181.2 (förflyttningsområde 3) 0 till 99 999,9999 [mm]
Automatisk kalibreringscykel: Kalibreringsringens överkant i Z-axeln i förhållande till maskinens nollpunkt för	MP6182.x (förflyttningsområde 1) till MP6182.2 (förflyttningsområde 3) 0 till 99 999,9999 [mm]
Automatisk kalibreringscykel: Avstånd under ringens överkant som TNC:n skall utföra kalibreringen på	MP6185.x (förflyttningsområde 1) till MP6185.2 (förflyttningsområde 3) 0,1 till 99 999,9999 [mm]
Radiemätning med TT 130: Avkänningsriktning	MP6505.0 (förflyttningsområde 1) till 6505.2 (förflyttningsområde 3) Positiv avkänningsriktning i vinkelreferensaxeln (0°-axeln): 0 Positiv avkänningsriktning i +90°-axeln: 1 Negativ avkänningsriktning i vinkelreferensaxeln (0°-axeln): 2 Negativ avkänningsriktning i +90°-axeln: 3
Avkänningshastighet för andra mätningen med TT 120, mätplattans form, kompensering i TOOL.T	 MP6507 Avkänningshastigheten för andra mätningen med TT 130 beräknas med konstant tolerans: +0 Avkänningshastigheten för andra mätningen med TT 130 beräknas med variabel tolerans: +1 Konstant avkänningshastighet för andra mätningen med TT 130: +2

3D-avkännarsystem	
Maximalt tillåtet mätfel med TT 130 vid mätning med roterande verktyg	MP6510 0,001 till 0,999 [mm] (riktvärde: 0,005 mm)
Nödvändig för beräkningen av avkänningshastigheten tillsammans med MP6570	
Avkänningshastighet för TT 130 vid stillastående verktyg	MP6520 1 till 3 000 [mm/min]
Radiemätning med TT 130: avstånd från verktygets underkant till avkännarens överkant	MP6530.0 (förflyttningsområde 1) till MP6530.2 (förflyttningsområde 3) 0,001 till 99,9999 [mm]
Säkerhetsavstånd i spindelaxeln över beröringsplattan på TT 130 vid förpositionering	MP6540.0 0,001 till 30 000,000 [mm]
Säkerhetszon i bearbetningsplanet runt beröringsplattan på TT 130 vid förpositionering	MP6540.1 0,001 till 30 000,000 [mm]
Snabbtransport i avkännarcyklerna för TT 130	MP6550 10 till 10 000 [mm/min]
M-funktion för spindelorientering vid mätning av individuella skär	MP6560 0 till 999
Mätning med roterande verktyg: Verktygets tillåtna periferihastighet	MP6570 1,000 till 120,000 [m/min]
Nödvändig för beräkning av spindelvarvtal och för beräkning av avkänningshastigheten	
Mätning med roterande verktyg: Maximalt tillåtet varvtal	MP6572 0,000 till 1 000,000 [varv/min] Vid inmatning 0 begränsas varvtalet till 1000 varv/min

13.1 Allmänna användarparametrar

3D-avkännarsystem	
Koordinater för TT-120-mätplattans mittpunkt i förhållande till	MP6580.0 (förflyttningsområde 1) X-axel
maskinnonpunkten	MP6580.1 (förflyttningsområde 1) Y-axel
	MP6580.2 (förflyttningsområde 1) Z-axel
	MP6581.0 (förflyttningsområde 2) X-axel
	MP6581.1 (förflyttningsområde 2) Y-axel
	MP6581.2 (förflyttningsområde 2) Z-axel
	MP6582.0 (förflyttningsområde 3) X-axel
	MP6582.1 (förflyttningsområde 3) Y-axel
	MP6582.2 (förflyttningsområde 3) Z-axel

TNC-presentation, TNC-editor		
Programplats	MP7210 TNC med maskin: 0 TNC som programmeringsplats med aktivt PLC: 1 TNC som programmeringsplats utan aktivt PLC: 2	
Kvittering av meddelandet Strömavbrott efter uppstart	MP7212 Kvittering med knapp: 0 Automatisk kvittering: 1	
DIN/ISO- programmering: Förvalt blocknummersteg	MP7220 0 till 150	
Spärra val av vissa filtyper	MP7224.0 Alla filtyper kan väljas via softkey: +0 Spärra val av HEIDENHAIN-program (softkey VISA .H): +1 Spärra val av DIN/ISO-program (softkey VISA .I): +2 Spärra val av verktygstabeller (softkey VISA .T): +4 Spärra val av nollpunktstabeller (softkey VISA .D): +8 Spärra val av palettabeller (softkey VISA .P): +16 Spärra val av textfiler (softkey VISA .A): +32 Spärra val av punkttabeller (softkey VISA .PNT): +64	

TNC-presentation, TNC-e	TNC-presentation, TNC-editor		
Spärra editering av vissa filtyper Anmärkning: Om en filtyp spärras kommer TNC:n att radera alla filer av denna typ.	MP7224.1 Spärra inte editor: +0 Spärra editering av HEIDENHAIN-program: +1 DIN/ISO-program: +2 Verktygstabeller: +4 Nollpunktstabeller: +8 Palettabeller: +16 Textfiler: +32 Punkttabeller: +64 		
Konfiguration av palettfiler	MP7226.0 Palettfiler ej aktiva: 0 Antal paletter per palettfil: 1 till 255		
Konfiguration av nollpunktsfiler	MP7226.1 Nollpunktstabeller ej aktiva: 0 Antal nollpunkter per nollpunktstabell: 1 till 255		
Programlängd för programkontroll	MP7229.0 Block 100 till 9 999		
Programlängd som FK- block är tillåtna till	MP7229.1 Block 100 till 9 999		
Dialogspråk	MP7230 Engelska: 0 Tyska: 1 Tjeckiska: 2 Franska: 3 Italienska: 4 Spanska: 5 Portugisiska: 6 Svenska: 7 Danska: 8 Finska: 9 Nederländska: 10 Polska: 11 Ungerska: 12 reserverad: 13 Ryska: 14		
Inställning av TNC:ns interna klocka	MP7235 Världstid (Greenwich time): 0 Centraleuropeisk tid (CET): 1 Centraleuropeisk sommartid: 2 Tidsskillnad till världstid: -23 till +23 [timmar]		
Konfiguration av verktygstabeller	 MP7260 Ej aktiv: 0 Antal verktyg som TNC:n genererar när en ny verktygstabell öppnas: 1 till 254 Om man behöver fler än 254 verktyg kan verktygstabellen utökas med funktionen INFOGA N RADER VID SLUTET, se "Verktygsdata", sidan 97 		

13.1 Allmänna användarparametrar

TNC-presentation, TNC-e	TNC-presentation, TNC-editor	
Konfiguration av platstabeller	MP7261.0 (magasin 1) MP7261.1 (magasin 2) MP7261.2 (magasin 3) MP7261.3 (magasin 4) Ej aktiv: 0 Antal platser i verktygsmagasinet: 1 till 254 Om värdet 0 skrivs in i MP 7261.1 till MP7261.3 kommer endast ett verktygsmagasin att användas.	
Indexerade verktyg för att kunna lägga in flera kompenseringsdata för ett verktygsnummer	MP7262 Inte indexerade: 0 Antal tillåtna index: 1 till 9	
Softkey platstabell	MP7263 Visa softkey PLATSTABELL i verktygstabellen: 0 Visa inte softkey PLATSTABELL i verktygstabellen: 1	
Konfiguration av verktygstabeller; Kolumner i verktygstabellen (ej använd: 0) för	MP7266.0 Verktygsnamn – NAME: 0 till 31; Kolumnbredd: 16 tecken MP7266.1 Verktygslängd – L: 0 till 31; Kolumnbredd: 11 tecken MP7266.2 Verktygsradie – R: 0 till 31; Kolumnbredd: 11 tecken MP7266.3 Verktygsradie 2 – R2: 0 till 31; Kolumnbredd: 11 tecken MP7266.4 Övermått längd – DL: 0 till 31; Kolumnbredd: 8 tecken MP7266.5 Övermått radie 2 – DR2: 0 till 31; Kolumnbredd: 8 tecken MP7266.6 Övermått radie 2 – DR2: 0 till 31; Kolumnbredd: 8 tecken MP7266.7 Verktyg spärrat – TL: 0 till 31; Kolumnbredd: 2 tecken MP7266.8 Systerverktyg – RT: 0 till 31; Kolumnbredd: 3 tecken MP7266.9 Max. livslängd – TIME1: 0 till 31; Kolumnbredd: 5 tecken MP7266.10 Max. livslängd vid TOOL CALL – TIME2: 0 till 31; Kolumnbredd: 5 tecken MP7266.11 Aktuell livslängd – CUR. TIME: 0 till 31; Kolumnbredd: 8 tecken	

TNC-presentation, TNC-editor

Konfiguration av	MP7266.12
verktygstabeller;	Verktygskommentar – DOC: 0 till 31; Kolumnbredd: 16 tecken
verktygstabellen (ej	Antal skär – CUT.: 0 till 31 ; Kolumnbredd: 4 tecken
använd: 0) för	
	I olerans for detektering av forslitning verktygslangd – LTOL: U till 31; Kolumnbredd: 6 tecken MP7266.15
	Tolerans för detektering av förslitning verktygsradie – RTOL: 0 till 31 ; Kolumnbredd: 6 tecken MP7266.16
	Skärriktning – DIRECT.: 0 till 31; Kolumnbredd: 7 tecken MP7266.17
	PLC-status – PLC: 0 till 31; Kolumnbredd: 9 tecken MP7266 18
	Tillägg till verktygsförskjutningen i verktygsaxeln från MP6530 – TT:L-OFFS: 0 till 31; Kolumbredd: 11 tecken
	Förskjutning av verktyget från avkännarens centrum till verktygets centrum – TT:R-OFFS: 0 till 31; Kolumnbredd: 11 tecken
	MP7266.20 Tolerans för detektering av brott verktygslängd – LBREAK.: 0 till 31; Kolumnbredd: 6 tecken MP7266.21
	Tolerans för detektering av brott verktygsradie – RBREAK: 0 till 31; Kolumnbredd: 6 tecken MP7266 22
	Skärlängd (cykel 22) – LCUTS: 0 till 31; Kolumnbredd: 11 tecken MP7266.23
	Maximal nedmatningsvinkel (cykel 22) – ANGLE.: 0 till 31 ; Kolumnbredd: 7 tecken MP7266.24
	Verktygstyp –TYP: 0 till 31 ; Kolumnbredd: 5 tecken MP7266.25
	Verktygets skärmaterial – TMAT: 0 till 31 ; Kolumnbredd: 16 tecken MP7266.26
	Skärdatatabell – CDT: 0 till 31 ; Kolumnbredd: 16 tecken MP7266.27
	PLC-värde – PLC-VAL: 0 till 31; Kolumnbredd: 11 tecken MP7266.28
	Avkännarens centrumförskjutning huvudaxel – CAL-OFF1: 0 till 31; Kolumnbredd: 11 tecken MP7266.29
	Avkännarens centrumförskjutning komplementaxel – CALL-OFF2: 0 till 31 ; Kolumnbredd: 11 tecken MP7266.30
	Spindelvinkel vid kalibrering – CALL-ANG: 0 till 31; Kolumnbredd: 11 tecken
Konfiguration av verktygsplatstabell;	MP7267.0 Verktygsnummer – T: 0 till 7
Kolumnnummer i	MP7267.1
(ei använd: 0)	Special verktyg – ST: 0 till 7 MP7267.2
(0) 0	Fast verktygsplats – F: 0 till 7
	Plats spärrad – L: 0 till 7
	MP7267.4
	PLC – status – PLC: U till / MP7267 5
	Verktygsnamn från verktygstabellen – TNAME: 0 till 7 MP7267.6
	Kommentar från verktygstabellen – DOC: 0 till 7

TNC-presentation, TNC-e	editor
Driftart Manuell drift: Presentation av matning	MP7270 Matning F visas bara då en axelriktningsknapp trycks in: 0 Matning F visas även då inte en axelriktningsknapp trycks in (matning som har definierats via softkey F eller matning i den "långsammaste" axeln): 1
Decimaltecken	MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1
Definition av presentationssätt	MP7281.0 Driftart Programinmatning/Editering
	Presentera alltid flerradiga block fullständigt: 0 Visa flerradiga block fullständigt när det flerradiga blocket = aktivt block: 1 Visa flerradiga block fullständigt när det flerradiga blocket editeras: 2
Positionsvisning i verktygsaxeln	MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxeln i förhållande till verktygsspetsen: 1
Positionsvisning för spindelpositionen	MP7289 0,1 °: 0 0,05 °: 1 0,01 °: 2 0,005 °: 3 0,001 °: 4 0,0005 °: 5 0,0001 °: 6
Positionsvisning	MP7290.0 (X-axel) till MP7290.8 (9:e axel) 0,1 mm: 0 0,05 mm: 1 0,01 mm: 2 0,005 mm: 3 0,001 mm: 4 0,0005 mm: 5 0,0001 mm: 6
Spärra ändring av utgångspunkten	MP7295 Ändring av utgångspunkten ej spärrad: +0 Ändring av utgångspunkten i X-axeln spärrad: +1 Ändring av utgångspunkten i Y-axeln spärrad: +2 Ändring av utgångspunkten i Z-axeln spärrad: +4 Ändring av utgångspunkten i IV:e axeln spärrad: +16 Ändring av utgångspunkten i 6:e axeln spärrad: +32 Ändring av utgångspunkten i 7:e axeln spärrad: +32 Ändring av utgångspunkten i 8:e axeln spärrad: +128 Ändring av utgångspunkten i 9:e axeln spärrad: +26
Spärra ändring av utgångspunkten med de orangefärgade axelknapparna	MP7296 Ändring av utgångspunkten ej spärrad: 0 Ändring av utgångspunkten med de orangefärgade axelknapparna spärrad: 1

statuspresentation, Q- parametrar och verktygsdata	Återställ alla då ett program väljs: 0 Återställ alla då ett program väljs och vid M02, M30, END PGM: 1 Återställ bara statuspresentation och verktygsdata då ett program väljs: 2 Återställ bara statuspresentation och verktygsdata då ett program väljs och vid M02, M30, END PGM: 3 Återställ statuspresentation och Q-parametrar då ett program väljs: 4 Återställ statuspresentation och Q-parametrar då ett program väljs och vid M02, M30, END PGM: 5 Återställ statuspresentation då ett program väljs: 6 Återställ statuspresentation då ett program väljs och vid M02, M30, END PGM: 7
Presentationssätt för grafik	MP7310 Grafisk presentation i tre plan enligt DIN 6, del 1, projektionsmetod 1: +0 Grafisk presentation i tre plan enligt DIN 6, del 1, projektionsmetod 2: +1 Vrid inte koordinatsystemet för grafisk presentation :+0 Vrid koordinatsystemet för grafisk presentation med 90°: +2 Ny BLK FORM vid cykel 7 NOLLPUNKT visas i förhållande till den gamla nollpunkten: +0 Ny BLK FORM vid cykel 7 NOLLPUNKT visas i förhållande till den nya nollpunkten: +4 Visa inte markörens position vid presentation i tre plan: +0 Visa markörens position vid presentation i tre plan: +8
Grafisk simulering utan programmerad spindelaxel: Verktygsradie	MP7315 0 till 99 999,9999 [mm]
Grafisk simulering utan programmerad spindelaxel: Arbetsdjup	MP7316 0 till 99 999,9999 [mm]
Grafisk simulering utan programmerad spindelaxel: M- funktion för start	MP7317.0 0 till 88 (0: funktion inaktiv)
Grafisk simulering utan programmerad spindelaxel: M- funktion för slut	MP7317.1 0 till 88 (0: funktion inaktiv)
Inställning av skärmsläckare	MP7392 0 till 99 [min] (0: funktion inaktiv)
Ange efter vilken tid	

TNC:n skall aktivera skärmsläckaren

TNC-presentation, TNC-editor

MP7300

Återställ

Bearbetning och programkörning	
Cykel 17: Spindelorientering vid cykelns början	MP7160 Utför spindelorientering: 0 Utför inte spindelorientering: 1
Effekt av cykel 11 SKALFAKTOR	MP7410 SKALFAKTOR aktiv i 3 axlar: 0 SKALFAKTOR är bara aktiv i bearbetningsplanet: 1
Administration av verktygsdata/ kalibreringsdata	MP7411 Aktuella verktygsdata skrivs över med 3D-avkännarsystemets kalibreringsdata: +0 Aktuella verktygsdata bibehålles: +1 Kalibreringsdata administreras i kalibreringsmenyn: +0 Kalibreringsdata administreras i verktygstabellen: +2
SL-cykler	 MP7420 Fräs kanal runt konturen i medurs riktning för öar och i moturs riktning för fickor: +0 Fräs kanal runt konturen i medurs riktning för fickor och i moturs riktning för öar: +1 Fräs konturkanal före urfräsning: +0 Fräs konturkanal efter urfräsning: +2 Sammanfoga kompenserade konturer: +0 Sammanfoga okompenserade konturer: +4 Urfräsning på samtliga djup ner till fickans botten: +0 Fräs både kanal och urfräsning på varje skärdjup innan växling till nästa skärdjup: +8 För cyklerna 6, 15, 16, 21, 22, 23, 24 gäller: Förflytta verktyget vid cykelslutet tillbaka till den sist programmerade positionen innan cykelanropet: +0 Endast frikörning av verktyget i spindelaxeln vid cykelslutet: +16
Cykel 4 FICKURFRÄSNING och cykel 5 CIRKELURFRÄSNING: Överlappningsfaktor	MP7430 0,1 till 1,414
Cirkelradiens tillåtna avvikelse vid cirkelslutpunkten jämfört med cirkelstartpunkten	MP7431 0,0001 till 0,016 [mm]
Funktion för ett antal tilläggs- funktioner M	MP7440 Stoppa programkörningen vid M06: +0
Anmärkning:	Stoppa inte programkörningen vid M06: +1
k _V -faktorerna definieras av maskintillverkaren. Beakta anvisningarna i Er maskinhandbok.	Cykelanrop med M89: +2 Stoppa programkörningen vid M-funktioner: +0 Stoppa inte programkörningen vid M-funktioner: +4 k _V -faktorer ej växlingsbara via M105 och M106: +0 k _V -faktorer växlingsbara via M105 och M106: +8 Matningshastighet i verktygsaxeln med M103 F reducering ej aktiv: +0 Matningshastighet i verktygsaxeln med M103 F reducering aktiv: +16 Precisionsstopp vid positioneringar med rotationsaxlar ej aktiv: +0 Precisionsstopp vid positioneringar med rotationsaxlar ej aktiv: +32

Bearbetning och programkörning	
Felmeddelande vid cykelanrop	MP7441 Visa felmeddelande om inte M3/M4 är aktiv: 0 Visa inte felmeddelande om inte M3/M4 är aktiv: +1 Reserverad: +2 Visa inte felmeddelande om djup har programmerats positivt: +0 Visa felmeddelande om djup har programmerats positivt: +4
M-funktion för spindelorientering i bearbetningscyklerna	MP7442 Funktion inaktiv: 0 Orientering direkt via NC: -1 M-funktion för spindelorienteringen: 1 till 999
Maximal banhastighet vid matningsoverride 100% i driftarterna för programkörning	MP7470 0 till 99 999 [mm/min]
Matningshastighet för utjämningsrörelse av rotationsaxlar	MP7471 0 till 99 999 [mm/min]
Nollpunkter från nollpunktstabellen i förhållande till	MP7475 Arbetsstyckets nollpunkt: 0 Maskinens nollpunkt: 1
Exekvering av palettabeller	MP7683 Program enkelblock: En rad i det aktiva NC-programmet exekveras för varje NC-start, Program blockföljd: Hela NC-programmet exekveras för varje NC-start: +0 Program enkelblock: Hela NC-programmet exekveras för varje NC-start: +1 Program blockföljd: Alla NC-program fram till nästa palett exekveras för varje NC-start: +2 Program blockföljd: Hela palettfilen exekveras för varje NC-start: +4 Program blockföljd: Om exekvering av komplett palettfil har valts (+4) så exekveras palettfilen utan slut, d.v.s. tills man trycker på NC-stopp: +8 Palettabellen kan editeras med softkey EDIT PALETT: +16 Visa softkey AUTOSTART: +32 Palettabell eller NC-program visas: +64

13.2 Kontaktbeläggning och anslutningskabel för datasnitt

Datasnitt V.24/RS-232-C HEIDENHAIN-utrustning

G

Kontaktbeläggningen på TNC-logikenheten (X21) skiljer sig från den på adapterblocket.

Främmande utrustning

Kontaktbeläggningen på en icke-HEIDENHAIN-enhet kan skilja sig markant från den på en HEIDENHAIN-enhet.

Detta är beroende av enheten och typen av överföring. Nedanstående figur visar adapterblockets kontaktbeläggning.

Datasnitt V.11/RS-422

13.2 Kontaktbe<mark>läg</mark>gning och anslutningskabel för datasnitt

På datasnitt V.11 anslutes endast icke-HEIDENHAIN utrustning.

Kontaktbeläggningen på TNC-logikenheten (X22) och den på adapterblocket är identisk.

Ethernet-datasnitt RJ45-kontakt

Maximal kabellängd:oskärmad: 100 m skärmad: 400 m

Pin	Signal	Beskrivning
1	TX+	Transmit Data
2	TX-	Transmit Data
3	REC+	Receive Data
4	fri	
5	fri	
6	REC-	Receive Data
7	fri	
8	fri	

13.3 Teknisk information

Användarfunktioner	
Kortbeskrivning	 Grundutförande: 3 axlar plus spindel 6 ytterligare axlar eller 5 ytterligare axlar plus 2:a spindel Digital ström- och varvtalsreglering
Programinmatning	I HEIDENHAIN-klartext och enligt DIN/ISO
Positionsuppgifter	 Bör-positioner för rätlinje och cirkelbåge i rätvinkliga koordinater eller polära koordinater Absoluta eller inkrementala måttuppgifter Presentation och inmatning i mm eller tum Presentation av handrattsrörelse vid bearbetning med handrattsöverlagring
Verktygskompensering	 Verktygsradie i bearbetningsplanet och verktygslängd Förberäkning av radiekompenserad kontur upp till 99 block (M120) Tredimensionell verktygsradiekompensering för ändring av verktygsdata i efterhand utan att programmet behöver beredas på nytt
Verktygstabeller	Flera verktygstabeller med godtyckligt antal verktyg
Skärdatatabeller	Skärdatatabeller för automatisk beräkning av spindelvarvtal och matning utifrån verktygsspecifika data (skärhastighet, matning per tand)
Konstant banhastighet	 I förhållande till verktygscentrumets bana I förhållande till verktygsskäret
Parallelldrift	Skapa program med grafiskt stöd samtidigt som ett annat program exekveras
3D-bearbetning	 Reducering av hastighet vid nedmatning (M103) Särskilt ryckfri rörelsereglering 3D-verktygskompensering via ytnormal-vektor Automatisk kompensering för maskingeometrin vid arbete med rotationsaxlar Förändring av spindelhuvudets inställning med elektronisk handratt samtidigt som programmet exekveras; Verktygspetsens position förblir oförändrad (TCPM = Tool Center Point Management) Håll verktyget vinkelrätt till konturen Verktygsradiekompensering vinkelrätt till rörelse- och verktygsriktningen
Rundbordsbearbetning	 Programmering av konturer på en cylinders utrullade mantelyta Matning i mm/min

Användarfunktioner	
Konturelement	 Rätlinje Fas Cirkelbåge Cirkelcentrum Cirkelradie Tangentiellt anslutande cirkelbåge Hörnrundning
Framkörning till och frånkörning från konturen	 Via rätlinje: Tangentiell eller vinkelrät Via cirkel
Flexibel konturprogrammering FK	Flexibel konturprogrammering FK i HEIDENHAIN-klartext med grafiskt stöd för arbetsstycken som inte har NC-anpassad måttsättning
Programhopp	 Underprogram Programdelsupprepning Godtyckligt program som underprogram
Bearbetningscykler	 Borrcykler för borrning, djuphålsborrning, brotschning, ursvarvning, försänkning, gängning med och utan flytande gänghuvud Cykler för fräsning av invändiga och utvändiga gängor Grov- och finbearbetning av fyrkants- och cirkelficka Cykler för uppdelning av plana och vinklade ytor Cykler för fräsning av raka och cirkelformade spår Punktmönster på cirkel och linjer Konturficka – även konturparallell Konturtåg Dessutom kan maskintillverkarcykler – speciella bearbetningscykler som har skapats av maskintillverkaren – integreras
Koordinatomräkning	 Förskjutning, vridning, spegling skalfaktor (axelspecifik) 3D-vridning av bearbetningsplanet
O-parametrar Programmering med variabler	 Matematiska funktioner =, +, -, *, /, sin α, cos α, vinkel α från sin α och cos α, √a, √a² + b² Logiska villkor (=, =/, <, >) Parentesberäkning tan α, arcus sin, arcus cos, arcus tan, aⁿ, eⁿ, ln, log, absolutvärde för ett tal, konstant π, negering, ta bort heltal eller decimaler Funktioner för cirkelberäkning
Programmeringshjälp	 Kalkylator Hjälpfunktion som är anpassad till situationen vid felmeddelanden Grafiskt stöd vid programmering av cykler Kommentarblock i NC-programmet
Teach-In	Är-positioner överförs direkt till NC-programmet

Användarfunktioner	
Testgrafik Presentationssätt	Grafisk simulering av bearbetningsförloppet även samtidigt som ett annat program exekveras
	 Vy ovanifrån / Presentation i tre plan / 3D-presentation Delförstoring
Programmeringsgrafik	l driftart "Programinmatning" kan de inmatade NC-blocken ritas automatiskt (2D- streckgrafik) även samtidigt som ett annat program exekveras
Bearbetningsgrafik Presentationssätt	Grafisk presentation av programmet som exekveras i vy ovanifrån / presentation i tre plan / 3D-presentation
Bearbetningstid	 Beräkning av bearbetningstid i driftart "Programtest" Presentation av aktuell bearbetningstid i Programkörnings-driftarterna
Återkörning till konturen	 Blockläsning fram till ett godtyckligt block i programmet och framkörning till den beräknade bör-positionen för att återuppta bearbetningen Avbryta programmet, lämna konturen och sedan köra tillbaka till konturen
Nollpunktstabeller	Flera nollpunktstabeller
Palettabeller	Palettabeller med godtyckligt antal inmatningar för val av paletter, ,NC-program och nollpunkter samt kan exekveras arbetsstyckes- eller verktygsorienterat
Avkännarcykler	 Kalibrera avkännarsystemet Manuell och automatisk kompensering för snett placerat arbetsstycket Manuell och automatisk inställning av utgångspunkt Automatisk mätning av arbetsstycke Cykler för automatisk verktygsmätning
Tekniska data	
Komponenter	 Huvuddator MC 422 Reglerenhet CC 422 Knappsats TFT-färgbildskärm med softkeys, 10,4 tum eller 15,1 tum
Programminne	Hårddisk med minst 2 GByte för NC-program
Inmatnings- och presentationsupplösning	■ ner till 0,1 µm vid linjäraxlar ■ ner till 0,000 1° vid vinkelaxlar
Inmatningsområde	Maximum 99 999,999 mm (3.937 tum) resp. 99 999,999°

Tekniska data	
Interpolation	 Rätlinje: i 5 axlar (exportversion: i 4 axlar) Cirkel: i 2 axlar
	i 3 axlar vid tippat bearbetningsplan
	 Skruvlinje: Överlagring av cirkelbåge och rätlinje Spline:
	Exekvering av spline (polynom av 3:e graden)
Blockcykeltid 3D-rätlinje utan radiekompensering	0,5 ms
Axelreglering	Upplösning positionsreglering: Positionsmätsystemets signalperiod/1024
	Cykeltid positionsreglering:1,8 ms
	Cykeltid varvtalsreglering: 600 µs
Rörelsesträcka	Maximalt 100 m (3 937 tum)
Spindelvarvtal	Maximalt 40 000 varv/min (vid 2 polpar)
Felkompensering	 Linjärt och icke linjärt axelfel, vändglapp, vändspikar vid cirkelrörelser, värmeutvidgning friktion
Datasnitt	ett V.24 / RS-232-C och ett V.11 / RS-422 max. 115 kBaud
	Utökat datasnitt med LSV-2-protokoll för externfjärrstyrning av TNC:n via datasnittet med HEIDENHAIN programvara TNCremo
	 Ethernet-datasnitt 100 Base I ca. 2 till 5 MBaud (beroende på filtyp och nätbelastning)
Omgivningstemperatur	■ Drift: 0°C till +45°C
	■ Lagring:–30°C till +70°C
T 200, al. 2.	
Elektroniska handrattar	en HR 410: portabel handratt eller
	upp till tre HR 150 : inbyggnadshandratt eller
Aukännerovetere	
Avkannarsystem	 IS 220: prytande 3D-avkannarsystem med kabelanslutning eller TS 632: hpytande 3D-avkännarsystem med infraröd överföring
	TT 130: brytande 3D-avkännarsystem för verktvasmätning
Inmatningsformat och enheter	för TNC-funktioner

Inmatningsformat och enheter för TNC-funktioner						
Verktygsnamn	16 tecken, vid TOOL CALL skrivet mellan "" . Tillåtna specialtecken: #, \$, %, &, -					
Delta-värde för verktygskompensering	-99,9999 till +99,9999 (2,4) [mm]					
Spindelvarvtal	0 till 99 999,999 (5,3) [varv/min]					
Matning	0 till 99 999,999 (5,3) [mm/min] eller [mm/varv]					
Väntetid i cykel 9	0 till 3 600,000 (4,3) [s]					
Gängstigning i diverse cykler	-99,9999 till +99,9999 (2,4) [mm]					
Vinkel för spindelorientering	0 till 360,0000 (3,4) [°]					
Vinkel för polära koordinater, rotation, tippning av bearbetningsplan	-360,0000 till 360,0000 (3,4) [°]					
Polär koordinatvinkel för skruvlinjeinterpolering (CP)	-5 400,0000 till 5 400,0000 (4,4) [°]					
Nollpunktsnummer i cykel 7	0 till 2 999 (4,0)					
Skalfaktor i cykel 11 och 26	0,000001 till 99,999999 (2,6)					
Tilläggsfunktion M	0 till 999 (1,0)					
Q-parameternummer	0 till 399 (1,0)					
Q-parametervärde	-99 999,9999 till +99 999,9999 (5,4)					
Märke (LBL) för programhopp	0 till 254 (3,0)					
Antal programdelsupprepningar REP	1 till 65 534 (5,0)					
Felnummer vid Q-parameterfunktion FN14	0 till 1 099 (4,0)					
Spline-parameter K	-9,99999999 till +9,99999999 (1,8)					
Exponent för spline-parameter	-255 till 255 (3,0)					
Normalvektorer N och T vid 3D- kompensering	-9,99999999 till +9,99999999 (1,8)					

13.4 Byta buffertbatteri

När styrsystemet är avstängt försörjer ett buffertbatteri TNC:n med ström för att data i RAM-minnet inte skall förloras.

Om TNC:n presenterar felmeddelandet **Byt buffertbatteri** måste man byta batterierna:

Stäng av maskinen och TNC:n före växling av buffertbatteri!

Buffertbatteri får endast bytas av personal med utbildning för detta!

Batterityp:1 Lithium-batteri, typ CR 2450N (renata) Id.-nr. 315 878-01

- 1 Buffertbatteriet är placerade i den bakre delen av MC 422
- 2 Byt batteriet; det nya batteriet kan bara monteras åt rätt håll

Symbole

3D-framställning ... 410
3D-kompensering ... 112 delta-värde ... 114 Face Milling ... 114 normaliserad vektor ... 113 Peripheral Milling ... 116 verktygsformer ... 113 verktygsorientering ... 114
3D-vridning av bearbetningsplanet ... 24, 339 cykel ... 339 steg för steg ... 342

A

Ange spindelvarvtal ... 105 Användarparametrar ... 452 allmänna för 3D-avkännarsystem och digitalisering ... 453 för bearbetning och programkörning ... 462 för extern dataöverföring ... 453 för TNC-presentation. TNC-editor ... 456 maskinspecifika ... 440 Arbetsstyckespositioner absoluta ... 37 inkrementala ... 37 ASCII-filer ... 72 Återkörning till konturen ... 421 Automatisk programstart ... 422 Automatisk skärdataberäkning ... 101, 118 Automatisk verktygsmätning ... 100 Avkännarcvkler: Se bruksanvisning Avkännarcykler Avkännarsystemsövervakning ... 187 Avstängning ... 17

В

Bakplaning ... 220 BAUD-Rate, inställning ... 430 Bearbetning med digitaliserade data ... 320 Bearbetningsplan, tippa manuellt ... 24

В

Beräkning av bearbetningstid ... 412 Bildskärm ... 3 Bildskärmsuppdelning ... 4 Block infoga, ändra ... 67 radera ... 66 Blockframläsning ... 420 Borrcykler ... 209 Borrfräsning ... 224 Borr-gängfräsning ... 243 Borrning ... 212, 218, 222 Brotschning ... 214 Byta buffertbatteri ... 473

С

Cirkelbåge ... 142, 143, 144, 150, 151 Cirkelberäkningar ... 371 Cirkelcentrum ... 141 Cirkelficka Finbearbetning ... 267 Grovbearbetning ... 265 Cirkulär ö finskär ... 269 Cirkulärt spår, fräsning ... 275 Cykel anropa ... 202 definiera ... 200 grupper ... 201 Cykler och punkttabeller ... 207 Cylinder ... 401 Cylindermantel ... 298, 300

D

Dataöverföringshastighet ... 430 Dataöverföringsprogramvara ... 431 Datasäkerhet ... 40 Datasnitt inställning ... 430 kontaktbeläggning ... 464 tilldelning ... 431 Definiera arbetsstyckesmaterial ... 119 Definiera råämne ... 63 Detaljfamiljer ... 366 Dialog ... 65 Djupborrning ... 211, 222 Driftarter ... 6 Drifttid ... 449

Ε

Ellips ... 399 Ethernet-datasnitt Anslutningsmöjligheter ... 435 introduktion ... 435 konfigurering ... 435 logga på och logga ur nätverk ... 60 nätverksskrivare ... 61 Extern åtkomst ... 450

F

Fas ... 139 Felmeddelanden ... 77 hjälp vid ... 77 Filhantering döp om fil ... 46, 57 extern dataöverföring ... 44, 58 filnamn ... 39 filtyp ... 39 kalla upp ... 41, 50 kataloger ... 48 kopiera ... 54 skapa ... 52 konfiguration via MOD ... 439 kopiera fil ... 43, 53 kopiera tabeller ... 53 markera filer ... 56 radera fil ... 42, 55 skriva över filer ... 60 skydda fil ... 47, 57 standard ... 41 utökad ... 48 översikt ... 49 välja fil ... 42, 51

ndex

F Filstatus ... 41, 50 Finskär djup ... 294 Finskär sida ... 295 FK-programmering ... 156 cirkelbågar ... 159 grafik ... 157 arunder ... 156 inmatningsmöjligheter cirkeldata ... 161 ett konturelements riktning och längd ... 160 hjälppunkter ... 162 relativ referens ... 163 slutna konturer ... 162 slutpunkt ... 160 öppna dialog ... 158 rätlinie ... 158 FN 26: TABOPEN: Öppna en fritt definierbar tabell ... 389 FN 27: TABWRITE: Skriv till en fritt definierbar tabell ... 389 FN 28: TABREAD: Läsa från en fritt definierbar tabell ... 390 FN xx: Se Q-parameterprogrammering FN14: ERROR: Utmatning av felmeddelanden ... 376 FN18: SYSREAD: Läsa systemdata ... 381 FN20: WAIT FOR: NC och PLC synkronisering ... 387 FN25: PRESET: Inställning av ny utaånaspunkt ... 388 Förflyttning från konturen ... 131 Förflyttning till konturen ... 131 Formatinformation ... 471 Försänk-gängfräsning ... 239 Fullcirkel ... 142

G

Gängfräsning grunder ... 235 Gängfräsning utvändig ... 250 Gängfräsning, invändig ... 237 Gänanina med flytande gängtappshållare ... 226, 227 utan flvtande gängtappshållare ... 229, 230, 233 Gängskärning ... 232 Grafik delförstoring ... 410 vid programmering ... 69 delförstoring ... 70 vver ... 408 Grafisk simulering ... 412 Grunder ... 34

Н

Hålcirkel ... 280 Handrattspositionering, överlagra: M118 ... 185 Hårddisk ... 39 Helix-borrgängfräsning ... 247 Helix-interpolering ... 151 Hjälp vid felmeddelanden ... 77 Hörnrundning ... 140 Huvudaxlar ... 35

I

Indexerade verktyg ... 103 Infoga kommentarer ... 71 Inställning av utgångspunkt ... 22, 38

К

Kalkylator ... 76 Katalog kopiera ... 54 radera ... 55 skapa ... 52 kataloger ... 48. 52 Klartext-dialog ... 65 Knappsats ... 5 Kodnummer ... 429 Konstant banhastighet: M90 ... 179 Kontaktbeläggning, datasnitt ... 464 Konturfunktioner arunder ... 126 cirklar och cirkelbågar ... 128 förpositionering ... 129 Konturlinje ... 296 Konturrörelser flexibel konturprogrammering FK: Se FK-programmering polära koordinater cirkelbåge med tangentiell anslutning ... 151 cirkelbåge runt Pol CC ... 150 översikt ... 149 rätlinie ... 150 rätvinkliga koordinater cirkelbåge med bestämd radie ... 143 cirkelbåge med tangentiell anslutning ... 144 cirkelbåge runt cirkelcentrum CC ... 142 översikt ... 137 rätlinje ... 138 Koordinatomräkning ... 328 Kopiering av programdelar ... 68 Kula ... 403

L

Långhål, fräsning ... 273 Länkning av underprogram ... 354 Laserskärning, tilläggsfunktioner ... 196 L-blocksgenerering ... 446 Linjalyta ... 323 Look ahead ... 183

Μ

Maskinaxlar, förflytta ... 18 med elektronisk handratt ... 19 med externa riktningsknappar ... 18 steavis ... 20 Maskinfasta koordinater: M91. M92 ... 176 Maskinparametrar för 3D-avkännarsvstem ... 453 för bearbetning och programkörning ... 462 för extern dataöverföring ... 453 för TNC-presentation och TNC-editor ... 456 Matning ... 21 ändra ... 21 vid rotationsaxlar, M116 ... 189 Matning i millimeter/spindelvarv: M136 ... 182 Matningsfaktor vid nedmatningsrörelse: M103 ... 181 Måttenhet, välja ... 63 M-funktioner: se Tilläggsfunktioner Miukvarunummer ... 428 MOD-funktion lämna ... 426 översikt ... 426 välja ... 426 MOD-funktioner

Ν

Nätverksanslutning ... 60 Nätverksinställningar ... 435 Nätverksskrivare ... 61 NC och PLC synkronisering ... 387 NC-felmeddelanden ... 77 Nollpunktsförskjutning i programmet ... 329 med nollpunktstabeller ... 330

0

Öppna konturhörn: M98 ... 181 Optionsnummer ... 428 Övervakning av bearbetningsområdet ... 414, 441

Ρ

Palettabell användning ... 78, 82 exekvera ... 80, 92 överföring av koordinater ... 78, 83 välja och lämna ... 80, 87 Paletten-Tabelle Parameterprogrammering: Se Qparameterprogrammering Parentesberäkning ... 391 Passera referenspunkter ... 16 Platstabell ... 104 PLC och NC synkronisering ... 387 Polära koordinater grunder ... 36 programmering ... 149 Positionerina med manuell inmatning ... 30 vid 3D-vridet bearbetningsplan ... 178, 195 Positionssystem ... 35 Presentation i 3 plan ... 409 Program editering ... 66 öppna nvtt ... 63 -uppbyggnad ... 62 Programanrop godtyckligt program som underprogram ... 353 via cykel ... 346 Programdel, kopiera ... 68 Programdelsupprepning ... 352 Programhantering: se filhantering Programkörning återuppta efter avbrott ... 419 blockframläsning ... 420 hoppa över block ... 423 översikt ... 416 stoppa ... 417 utföra ... 416

Ρ

Programmera verktygsrörelser ... 65 Programmeringsgrafik ... 157 Programnamn: se filhantering, filnamn Programtest fram till ett bestämt block ... 415 översikt ... 413 utföra ... 414 Punktmönster Översikt ... 279 på cirkel ... 280 på linjer ... 282 Punkttabeller ... 205

Q

Q-parameter
Q-parameterprogrammering ... 364
Cirkelberäkningar ... 371
If/then-bedömning ... 372
matematiska grundfunktioner ... 367
programmeringsanvisning ... 364
specialfunktioner ... 375
vinkelfunktioner ... 369
Q-parametrar
fasta ... 394
formaterad utmatning ... 379
kontrollera ... 374
oformaterad utmatning ... 378
överför värde till PLC ... 387

R

Radiekompensering ... 109 inmatning ... 110 ytterhörn, innerhörn ... 111 Rätlinje ... 138, 150 Rektangulär ficka Finbearbetning ... 261 grovbearbetning ... 259 Rektangulär ö finskär ... 263 Retur från konturen ... 186 Rotationsaxlar förflyttning närmaste väg: M126 ... 189 minskning av positionsvärde: M94 ... 190

Index

S Skalfaktor ... 337 Skalfaktor axelspecifik ... 338 Skärdataberäkning ... 118 Skärdatatabell ... 118 Skruvlinje ... 151 SL-cykler cvkel kontur ... 288 finskär djup ... 294 finskär sida ... 295 förborrning ... 292 grovskär ... 293 grunder ... 286, 311 konturdata ... 291 konturlinje ... 296 överlagrade konturer ... 288, 313 SL-cykler med konturformel Snabbtransport ... 96 Sökväg ... 48 Spårfräsning ... 271 pendlande ... 273 Spegling ... 334 Spindelorientering ... 347 Spindelvarvtal, ändra ... 21 Spline-interpolering ... 170 blockformat ... 170 inmatningsområde ... 171 Statuspresentation ... 9 allmän ... 9 utökad ... 10 Stoppa bearbetningen ... 417

Т

Teach In ... 138 Textfil öppna och lämna ... 72 raderingsfunktioner ... 74 söka textdelar ... 75 Textfiler editeringsfunktioner ... 72 Tilläggsaxlar ... 35 Tilläggsfunktioner för kontroll av programexekveringen ... 175 för konturbeteende ... 179 för koordinatuppgifter ... 176 för laserskärmaskiner ... 196 för rotationsaxlar ... 189 för spindel och kylvätska ... 175 inmatning ... 174 Tillbehör ... 13 iTNC 530 ... 2 TNCremo ... 431, 432 TNCremoNT ... 431, 432 Trigonometri ... 369

U

Underprogram ... 351 Universal-borrning ... 218, 222 Uppstart ... 16 Urfräsning: Se SL-cykler, grovskär Ursvarvning ... 216 Utgångspunkt, inställning i programkörning ... 388 utan 3D-avkännarsystem ... 22

v

Väntetid ... 346 Växla mellan stora och små bokstäver ... 73 Verktygsdata ange i programmet ... 98 anropa ... 105 delta-värde ... 98 indexerade ... 103 inmatning i tabell ... 99 Verktygskompensering längd ... 108 radie ... 109 tredimensionell ... 112 Verktygslängd ... 97 Verktygsmätning ... 100 Verktygsnamn ... 97 Verktygsnummer ... 97 Verktygsradie ... 98 Verktygs-skärmaterial ... 101, 120 Verktvastabell editera, lämna ... 101 editeringsfunktioner ... 102 Inmatningsmöjligheter ... 99 Verktygstyp, välj ... 101 Verktygsväxling ... 106 Vinkelfunktioner ... 369 Visa Hjälp-filer ... 448 Vridning ... 336 Vridningsaxlar ... 191, 192 Vy ovanifrån ... 409

W

WMAT.TAB ... 119

Översikt-Tabeller: Tilläggsfunktioner

Μ	Verkan Aktiveras vid block-	början	slut	Sida
M00	Programexekvering STOPP/Spindel STOPP/Kylvätska FRÅN			Sida 175
M01	Valbart Stopp av programkörningen			Sida 424
M02	Programexekvering STOPP/Spindel STOPP/Kylvätska FRÅN/i vissa fall Radera statuspresentationen (avhängigt maskinparameter)/Återhopp till block 1			Sida 175
M03 M04 M05	Spindel TILL medurs Spindel TILL moturs Spindel STOPP	-		Sida 175
M06	Verktygsväxling/Programstopp (avhängigt maskinparameter)/Spindelstopp			Sida 175
M08 M09	Kylvätska TILL Kylvätska AV			Sida 175
M13 M14	Spindel TILL medurs/Kylvätska TILL Spindel TILL moturs/Kylvätska TILL			Sida 175
M30	Samma funktion som M02			Sida 175
M89	Fri tilläggsfunktion eller cykelanrop, modalt verksamt (avhängigt maskinparameter)	-		Sida 202
M90	Endast i släpfelsberäkning: Konstant banhastighet vid hörn			Sida 179
M91	l positioneringsblock: Koordinater i förhållande till maskinens nollpunkt			Sida 176
M92	l positioneringsblock: Koordinater i förhållande till en av maskintillverkaren definierad position, t.ex. till verktygsväxlingspositionen	-		Sida 176
M94	Presentation av rotationsaxel reduceras till ett värde mindre än 360°			Sida 190
M97	Bearbetning av små kontursteg			Sida 180
M98	Fullständig bearbetning av öppna konturer			Sida 181
M99	Blockvis cykelanrop			Sida 202
M101 M102	Automatisk verktygsväxling till systerverktyg när livslängd har uppnåtts Återställ M101	-		Sida 107
M103	Reducering av hastighet med faktor F vid nedmatning (procentuellt värde)			Sida 181
M104	Återställ den sist inställda utgångspunkten			Sida 178
M105 M106	Genomför bearbetning med den andra kv-faktorn Genomför bearbetning med den första kv-faktorn			Sida 462
M107 M108	Ignorera felmeddelande vid systerverktyg med övermått Återställ M107	-		Sida 106

М	Verkan Aktiveras vid block-	början	slut	Sida
M109	Konstant banhastighet i verktygsskäret (höjning och sänkning av matningshastigheten)			Sida 183
M110	Konstant banhastighet i verktygsskäret (endast sänkning av matningshastigheten)			
M111	Återställ M109/M110		•	
M114 M115	Automatisk kompensering för maskingeometrin vid arbete med rotationsaxlar Återställ M114			Sida 191
M116 M117	Matning för vinkelaxlar i mm/min Återställ M116	-		Sida 189
M118	Överlagra handrattsrörelser under programkörningn			Sida 185
M120	Förberäkning av radiekompenserad kontur (LOOK AHEAD)			Sida 183
M126 M127	Förflytta rotationsaxel närmaste väg Återställ M126	-		Sida 189
M128 M129	Bibehåll verktygsspetsens position vid positionering av rotationsaxlar (TCPM) Återställ M128			Sida 192
M130	l positioneringsblock: Punkt refererar till icke vridet koordinatsystem			Sida 178
M134 M135	Precisionsstopp vid icke tangentiella konturövergångar vid positioneringar med rotationsaxlar Återställ M134	-		Sida 194
M136 M137	Matning F i millimeter per spindelvarv Återställ M136	-		Sida 182
M138	Val av rotationsaxlar			Sida 194
M140	Frånkörning från konturen i verktygsaxelns riktning			Sida 186
M141	Avstängning av avkännarsystemets övervakning			Sida 187
M142	Radera modala programinformationer			Sida 188
M143	Upphäv grundvridning			Sida 188
M144 M145	Ta hänsyn till maskinens kinematik i ÄR/BÖR-positioner vid blockslutet Återställ M144			Sida 195
M200 M201 M202 M203 M204	Laserskärning: Direkt utmatning av programmerad spänning Laserskärning: Utmatning av spänning som funktion av sträckan Laserskärning: Utmatning av spänning som funktion av hastigheten Laserskärning: Utmatning av spänning som funktion av tiden (ramp) Laserskärning: Utmatning av spänning som funktion av tiden (puls)			Sida 196
HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH Dr.-Johannes-Heidenhain-Straße 5 83301 Traunreut, Germany 2 +49 (86 69) 31-0 FAX +49 (8669) 5061 E-Mail: info@heidenhain.de **Technical support FAX** +49 (8669) 31-1000 E-Mail: service@heidenhain.de Measuring systems 2 +49 (8669) 31-3104 E-Mail: service.ms-support@heidenhain.de TNC support 窗[:]+49 (8669) 31-31 01 E-Mail: service.nc-support@heidenhain.de **NC programming** 22 +49 (8669) 31-3103 E-Mail: service.nc-pgm@heidenhain.de **PLC programming** (2) +49 (8669) 31-31 02 E-Mail: service.plc@heidenhain.de

www.heidenhain.de