HEIDENHAIN

TNC7

User's Manual
Measuring Cycles for Workpieces and Tools

NC Software

81762x-17

Contents

1 About the User's Manual. 19
2 About the Product 25
3 Working with Touch Probe Cycles 43
4 Touch Probe Cycles: Automatic Measurement of Workpiece Misalignment. 57
5 Touch Probe Cycles: Automatic Preset Measurement. 133
6 Touch Probe Cycles: Automatic Workpiece Inspection 233
7 Touch Probe Cycles: Special Functions. 293
8 Touch Probe Cycles: Calibration. 311
9 Touch Probe Cycles: Automatic Kinematics Measurement 331
10 Touch Probe Cycles: Automatic Tool Measurement 373
11 Special Cycles 401
1 About the User's Manual 19
1.1 Target group: Users 20
1.2 Available user documentation 21
1.3 Types of notes used. 22
1.4 Notes on using NC programs. 23
1.5 Contacting to the editorial staff 23
2 About the Product. 25
2.1 The TNC7 26
2.2 Proper and intended use. 27
2.3 Intended place of operation. 27
2.4 Safety precautions 28
2.5 Software. 30
2.5.1 Software options 31
2.5.2 Feature Content Level 37
2.5.3 Information on licensing and use. 38
2.5.4 New and modified cycle functions of software $81762 x-17$. 39
2.6 Comparison of the TNC 640 and TNC7 41
3 Working with Touch Probe Cycles 43
3.1 General information about touch probe cycles 44
3.1.1 Method of function 44
3.1.2 Notes 45
3.1.3 Touch probe cycles in the Manual Operation and Electronic Handwheel modes 45
3.1.4 Touch probe cycles for automatic operation 45
3.1.5 Available cycle groups 49
3.2 Before you start working with touch probe cycles! 52
3.2.1 General information 52
3.2.2 Executing touch probe cycles 52
3.3 Program defaults for cycles 54
3.3.1 Entering GLOBAL DEF definitions 54
3.3.2 Using GLOBAL DEF information. 54
3.3.3 Global data valid everywhere. 55
3.3.4 Global data for probing functions. 56
4 Touch Probe Cycles: Automatic Measurement of Workpiece Misalignment 57
4.1 Overview 58
4.2 Fundamentals of touch probe cycles 14 xx 60
4.2.1 Characteristics common to touch probe cycles $14 x x$ for measuring rotations 60
4.2.2 Semi-automatic mode 61
4.2.3 Evaluation of tolerances. 67
4.2.4 Transferring the actual position 69
4.3 Cycle 1420 PROBING IN PLANE 70
4.3.1 Cycle parameters 73
4.4 Cycle 1410 PROBING ON EDGE 76
4.4.1 Cycle parameters 80
4.5 Cycle 1411 PROBING TWO CIRCLES 83
4.5.1 Cycle parameters 87
4.6 Cycle 1412 INCLINED EDGE PROBING 91
4.6.1 Cycle parameters 94
4.7 Cycle 1416 INTERSECTION PROBING 98
4.7.1 Cycle parameters 101
4.8 Touch probe cycles 4xx: fundamentals 106
4.8.1 Characteristics common to all touch probe cycles for measuring workpiece misalignment. 106
4.9 Cycle 400 BASIC ROTATION 107
4.9.1 Cycle parameters 108
4.10 Cycle 401 ROT OF 2 HOLES 110
4.10.1 Cycle parameters 112
4.11 Cycle 402 ROT OF 2 STUDS 115
4.11.1 Cycle parameters 117
4.12 Cycle 403 ROT IN ROTARY AXIS 120
4.12.1 Cycle parameters 122
4.13 Cycle 405 ROT IN C AXIS 125
4.13.1 Cycle parameters 128
4.14 Cycle 404 SET BASIC ROTATION 130
4.14.1 Cycle parameters 130
4.15 Example: Determining a basic rotation from two holes 131
5 Touch Probe Cycles: Automatic Preset Measurement. 133
5.1 Overview 134
5.2 Fundamentals of touch probe cycles 14 xx for setting presets 136
5.2.1 Characteristics common to all touch probe cycles $14 x x$ for preset setting 136
5.3 Cycle 1400 POSITION PROBING. 136
5.3.1 Cycle parameters 139
5.4 Cycle 1401 CIRCLE PROBING. 141
5.4.1 Cycle parameters 143
5.5 Cycle 1402 SPHERE PROBING 146
5.5.1 Cycle parameters 148
5.6 Cycle 1404 PROBE SLOT/RIDGE. 150
5.6.1 Cycle parameters 153
5.7 Cycle 1430 PROBE POSITION OF UNDERCUT. 155
5.7.1 Cycle parameters 158
5.8 Cycle 1434 PROBE SLOT/RIDGE UNDERCUT 160
5.8.1 Cycle parameters 163
5.9 Fundamentals of touch probe cycles $4 x x$ for preset setting 165
5.9.1 Characteristics common to all touch probe cycles 4 xx for preset setting 165
5.10 Cycle 410 PRESET INSIDE RECTAN 167
5.10.1 Cycle parameters 169
5.11 Cycle 411 PRESET OUTS. RECTAN 172
5.11.1 Cycle parameters 174
5.12 Cycle 412 PRESET INSIDE CIRCLE 178
5.12.1 Cycle parameters 180
5.13 Cycle 413 PRESET OUTS. CIRCLE. 184
5.13.1 Cycle parameters 186
5.14 Cycle 414 PRESET OUTS. CORNER. 190
5.14.1 Cycle parameters 192
5.15 Cycle 415 PRESET INSIDE CORNER 196
5.15.1 Cycle parameters 198
5.16 Cycle 416 PRESET CIRCLE CENTER 202
5.16.1 Cycle parameters 204
5.17 Cycle 417 PRESET IN TS AXIS. 208
5.17.1 Cycle parameters 210
5.18 Cycle 418 PRESET FROM 4 HOLES. 212
5.18.1 Cycle parameters 214
5.19 Cycle 419 PRESET IN ONE AXIS. 217
5.19.1 Cycle parameters 218
5.20 Cycle 408 SLOT CENTER PRESET. 220
5.20.1 Cycle parameters 222
5.21 Cycle 409 RIDGE CENTER PRESET 225
5.21.1 Cycle parameters 227
5.22 Example: Presetting at center of a circular segment and on top surface of workpiece. 230
5.23 Example: Presetting on top surface of workpiece and at center of a bolt hole circle. 231
6 Touch Probe Cycles: Automatic Workpiece Inspection 233
6.1 Fundamentals 234
6.1.1 Overview. 234
6.1.2 Recording the results of measurement 235
6.1.3 Measurement results in Q parameters 237
6.1.4 Classification of results 237
6.1.5 Tolerance monitoring. 237
6.1.6 Tool monitoring 237
6.1.7 Reference system for measurement results 238
6.2 Cycle 0 REF. PLANE. 239
6.2.1 Cycle parameters 240
6.3 Cycle 1 POLAR PRESET 241
6.3.1 Cycle parameters 242
6.4 Cycle 420 MEASURE ANGLE 243
6.4.1 Cycle parameters 244
6.5 Cycle 421 MEASURE HOLE 246
6.5.1 Cycle parameters 248
6.6 Cycle $\mathbf{4 2 2}$ MEAS. CIRCLE OUTSIDE. 252
6.6.1 Cycle parameters 254
6.7 Cycle 423 MEAS. RECTAN. INSIDE 258
6.7.1 Cycle parameters. 260
6.8 Cycle 424 MEAS. RECTAN. OUTS. 263
6.8.1 Cycle parameters 264
6.9 Cycle 425 MEASURE INSIDE WIDTH 267
6.9.1 Cycle parameters 268
6.10 Cycle 426 MEASURE RIDGE WIDTH 271
6.10.1 Cycle parameters 272
6.11 Cycle 427 MEASURE COORDINATE. 275
6.11.1 Cycle parameters 277
6.12 Cycle 430 MEAS. BOLT HOLE CIRC. 280
6.12.1 Cycle parameters 282
6.13 Cycle 431 MEASURE PLANE 285
6.13.1 Cycle parameters 287
6.14 Programming Examples 289
6.14.1 Example: Measuring and reworking a rectangular stud 289
6.14.2 Example: Measuring a rectangular pocket and recording the results 291
7 Touch Probe Cycles: Special Functions 293
7.1 Fundamentals 294
7.1.1 Overview. 294
7.2 Cycle 3 MEASURING 295
7.2.1 Cycle parameters 296
7.3 Cycle 4 MEASURING IN 3-D. 297
7.3.1 Cycle parameters 299
7.4 Cycle 444 PROBING IN 3-D 300
7.4.1 Cycle parameters 304
7.5 Cycle 441 FAST PROBING 306
7.5.1 Cycle parameters 307
7.6 Cycle 1493 EXTRUSION PROBING 308
7.6.1 Cycle parameters 310
8 Touch Probe Cycles: Calibration. 311
8.1 Fundamentals 312
8.1.1 Overview 312
8.1.2 Calibrating a touch trigger probe 313
8.1.3 Displaying calibration values. 313
8.2 Cycle 461 TS CALIBRATION OF TOOL LENGTH 314
8.2.1 Cycle parameters 315
8.3 Cycle 462 CALIBRATION OF A TS IN A RING 316
8.3.1 Cycle parameters 318
8.4 Cycle 463 TS CALIBRATION ON STUD 319
8.4.1 Cycle parameters 321
8.5 Cycle 460 CALIBRATION OF TS ON A SPHERE (option 17) 322
8.5.1 Cycle parameters 328
9 Touch Probe Cycles: Automatic Kinematics Measurement 331
9.1 Fundamentals (option 48) 332
9.1.1 Overview 332
9.1.2 Fundamentals 333
9.1.3 Requirements. 334
9.1.4 Notes 335
9.2 Cycle 450 SAVE KINEMATICS (option 48) 336
9.2.1 Cycle parameters 338
9.2.2 Log function 339
9.3 Cycle 451 MEASURE KINEMATICS (option 48) 339
9.3.1 Positioning direction 341
9.3.2 Machines with Hirth-coupled axes 342
9.3.3 Example calculation of measuring positions for an A axis: 342
9.3.4 Choice of number of measuring points 343
9.3.5 Choice of the calibration sphere position on the machine table. 343
9.3.6 Notes on various calibration methods 344
9.3.7 Notes on the accuracy. 345
9.3.8 Backlash 345
9.3.9 Notes 346
9.3.10 Cycle parameters 347
9.3.11 Various modes (Q406). 351
9.3.12 Log function 353
9.4 Cycle 452 PRESET COMPENSATION (option 48) 354
9.4.1 Cycle parameters 357
9.4.2 Adjustment of interchangeable heads 360
9.4.3 Drift compensation 362
9.4.4 Log function. 364
9.5 Cycle 453 KINEMATICS GRID 365
9.5.1 Various modes (Q406). 367
9.5.2 Choice of the calibration sphere position on the machine table. 367
9.5.3 Notes 367
9.5.4 Cycle parameters 369
9.5.5 Log function 371
10 Touch Probe Cycles: Automatic Tool Measurement. 373
10.1 Fundamentals 374
10.1.1 Overview 374
10.1.2 Differences between Cycles 30 to 33 and Cycles 480 to 483 375
10.1.3 Setting machine parameters 375
10.1.4 Entries in the tool table for milling and turning tools... 377
10.2 Cycle 30 or 480 CALIBRATE TT 378
10.2.1 Cycle parameters 380
10.3 Cycle 31 or 481 CAL. TOOL LENGTH 381
10.3.1 Cycle parameters 383
10.4 Cycle 32 or 482 CAL. TOOL RADIUS 385
10.4.1 Cycle parameters 386
10.5 Cycle 33 or 483 MEASURE TOOL 388
10.5.1 Cycle parameters 390
10.6 Cycle 484 CALIBRATE IR TT 392
10.6.1 Cycle parameters 395
10.7 Cycle 485 MEASURE LATHE TOOL (option 50) 396
10.7.1 Cycle parameters 400
11 Special Cycles 401
11.1 Fundamentals 402
11.1.1 Overview. 402
11.2 Cycle 13 ORIENTATION. 404
11.2.1 Cycle parameters 404

1.1 Target group: Users

A user is anyone who uses the control to perform at least one of the following tasks:

- Operating the machine
- Setting up tools
- Setting up workpieces
- Machining workpieces
- Eliminating possible errors during program run
- Creating and testing NC programs
- Creating NC programs at the control or externally using a CAM system
- Using the Simulation mode to test the NC programs
- Eliminating possible errors during program test

The depth of information in the User's Manual results in the following qualification requirements on the user:

- Basic technical understanding, e.g. ability to read technical drawings and spatial imagination
- Basic knowledge in the field of metal cutting, e.g. meaning of material-specific parameters
- Safety instructions, e.g. possible dangers and their avoidance
- Training on the machine, e.g. axis directions and machine configuration
(i)

HEIDENHAIN offers separate information products for other target groups:

- Leaflets and overview of the product portfolio for potential buyers
- Service Manual for service technicians
- Technical Manual for machine manufacturers

Additionally, HEIDENHAIN provides users and lateral entrants with a wide range of training opportunities in the field of NC programming
HEIDENHAIN training portal

In line with the target group, this User's Manual only contains information on the operation and use of the control. The information products for other target groups contain information on further product life phases.

1.2 Available user documentation

User's Manual

HEIDENHAIN refers to this information product as User's Manual, regardless of the output or transport medium. Well-known designations with the same meaning include operator's manual and operating instructions.
The User's Manual for the control is available in the variants below:

- As a printed version, sub-divided into the modules below:
- The Setup and Program Run User's Manual contains all information needed for setting up the machine and for running NC programs.
ID: 1358774-xx
- The Programming and Testing User's Manual contains all information needed for creating and testing NC programs. Touch probe and machining cycles are not included. ID for Klartext programming: 1358773-xx
- The Machining Cycles User's Manual contains all functions of the machining cycles.
ID: 1358775-xx
- The Measuring Cycles for Workpieces and Tools User's Manual contains all functions of the touch probe cycles.
ID: 1358777-xx
- As PDF files, sub-divided according to the printed versions or as a Complete edition User's Manual, containing all modules
ID: 1369999-xx
TNCguide
- As an HTML file used as the TNCguide product aid integrated directly into the control.
TNCguide
The User's Manual supports you in the safe handling of the control according to its intended use.
Further information: "Proper and intended use", Page 27

Further information products for users

The following information products are available to you as users:

- Overview of new and modified software functions informs you about the innovations of specific software versions.
TNCguide
- HEIDENHAIN brochures inform you about products and services by HEIDENHAIN, e.g. software options of the control.

HEIDENHAIN brochures

- The NC solutions database offers solutions for frequently occurring tasks. HEIDENHAIN NC solutions

1.3 Types of notes used

Safety precautions

Comply with all safety precautions indicated in this document and in your machine manufacturer's documentation!
Precautionary statements warn of hazards in handling software and devices and provide information on their prevention. They are classified by hazard severity and divided into the following groups:

DANGER

Danger indicates hazards for persons. If you do not follow the avoidance instructions, the hazard will result in death or severe injury.

A WARNING

Warning indicates hazards for persons. If you do not follow the avoidance instructions, the hazard could result in death or serious injury.

NOTICE

Notice indicates danger to material or data. If you do not follow the avoidance instructions, the hazard could result in property damage.

Sequence of information in precautionary statements

All precautionary statements contain the following four sections:

- Signal word indicating the hazard severity
- Type and source of hazard
- Consequences of ignoring the hazard, e.g.: "There is danger of collision during subsequent machining operations"
- Escape - hazard prevention measures

Informational notes

Observe the informational notes provided in these instructions to ensure reliable and efficient operation of the software.
In these instructions, you will find the following informational notes:
(i) The information symbol indicates a tip.

A tip provides additional or supplementary information.

This symbol prompts you to follow the safety precautions of your machine manufacturer. This symbol also indicates machine-dependent functions. Possible hazards for the operator and the machine are described in the machine manual.
(1)

The book symbol indicates a cross reference.
A cross reference leads to external documentation, e.g. the documentation of your machine manufacturer or other supplier.

1.4 Notes on using NC programs

NC programs contained in this User's Manual are suggestions for solutions. The NC programs or individual NC blocks must be adapted before being used on a machine.
Change the following contents as needed:

- Tools
- Cutting parameters
- Feed rates
- Clearance height or safe position
- Machine-specific positions, e.g. with M91
- Paths of program calls

Some NC programs depend on the machine kinematics. Adapt these NC programs to your machine kinematics before the first test run.
In addition, test the NC programs using the simulation before the actual program run.
i
With a program test you determine whether the NC program can be used with the available software options, the active machine kinematics and the current machine configuration.

1.5 Contacting to the editorial staff

Have you found any errors or would you like to suggest changes?
We continuously strive to improve our documentation for you. Please help us by sending your suggestions to the following e-mail address:

tnc-userdoc@heidenhain.de

About the Product

2.1 The TNC7

Every HEIDENHAIN control supports you with dialog-guided programming and finely detailed simulation. The TNC7 additionally offers you graphical or form-based programming so that you can attain the desired results with speed and reliability.
Software options and optional hardware extensions can be used for flexibly increasing the range of functions and ease of use.
Functionality enhancements make it possible to go beyond milling and drilling in order to perform turning and grinding operations, for example,
Further information: User's Manual for Programming and Testing
The ease of use increases e.g. when using touch probes, handwheels or a 3D mouse.
Further information: User's Manual for Setup and Program Run

Definitions

Abbreviation	Definition
TNC	TNC is derived from the acronym CNC (computerized numer- ical control). The \mathbf{T} (tip or touch) stands for the capability of entering NC programs directly at the control or to program them graphically using gestures.
7	The product number indicates the control generation. The range of functions depends on the enabled software options.

2.2 Proper and intended use

The information about proper and intended use supports you in safely handling a product such as a machine tool.

The control is a machine component but not a complete machine. This User's Manual describes the use of the control. Before using the machine and the control, read the OEM documentation in order to inform yourself about the safety-relevent factors, the necessary safety equipment and the requirements for qualified personnel.
i
HEIDENHAIN sells controls designed for milling and turning machines as well as for machining centers with up to 24 axes. If you as a user face a different constellation, then contact the owner immediately.

HEIDENHAIN contributes additionally to enhancing your safety and that of your products, notably by taking into consideration the customer feedback. This results e.g. in function adaptations of the controls and safety precautions in the information products.

1
Contribute actively to increasing the safety by reporting any missing or misleading information
Further information: "Contacting to the editorial staff", Page 23

2.3 Intended place of operation

In accordance with the DIN EN 50370-1 standard for electromagnetic compatibility (EMC), the control is approved for use in industrial environments.

Definitions

Guideline	Definition
DIN EN	This standard deals, among other things, with interference
$\mathbf{5 0 3 7 0 - 1 : 2 0 0 6 - 0 2}$	emissions and immunity to interference of machine tools.

2.4 Safety precautions

Comply with all safety precautions indicated in this document and in your machine manufacturer's documentation!
The following safety precautions refer exclusively to the control as an individual component but not to the specific complete product, i.e. the machine tool.

Refer to your machine manual.
Before using the machine and the control, read the OEM documentation in order to inform yourself about the safety-relevent factors, the necessary safety equipment and the requirements for qualified personnel.

The following overview contains only the generally valid safety precautions. Comply with the additional safey precautions provided in the following chapters. Some of this information depends on the specific configuraton.

For ensuring maximum safety, all safety precautions are repeated at the relevant places within the chapters.

DANGER

Caution: hazard to the user!

Unsecured connections, defective cables, and improper use are always sources of electrical dangers. The hazard starts when the machine is powered up!

- Devices should be connected or removed only by authorized service technicians
- Only switch on the machine via a connected handwheel or a secured connection

ADANGER

Caution: hazard to the user!

Machines and machine components always pose mechanical hazards. Electric, magnetic, or electromagnetic fields are particularly hazardous for persons with cardiac pacemakers or implants. The hazard starts when the machine is powered up!

- Read and follow the machine manual
- Read and follow the safety precautions and safety symbols
- Use the safety devices

| WARNING |
| :--- | :--- |
| Caution: hazard to the user! |
| Manipulated data records or software can lead to an unexpected behavior of the |
| machine. Malicious software (viruses, Trojans, malware, or worms) can cause |
| changes to data records and software. |
| Check any removable memory media for malicious software before using |
| them |
| Start the internal web browser only from within the sandbox |

NOTICE

Danger of collision!

The control does not automatically check whether collisions can occur between the tool and the workpiece. Incorrect pre-positioning or insufficient spacing between components can lead to a risk of collision when referencing the axes.

- Pay attention to the information on the screen
- If necessary, move to a safe position before referencing the axes
- Watch out for possible collisions

NOTICE

Danger of collision!

The control uses the defined tool length from the tool table for compensating for the tool length. Incorrect tool lengths will result in an incorrect tool length compensation. The control does not perform tool length compensation or a collision check for tools with a length of $\mathbf{0}$ and after a TOOL CALL $\mathbf{0}$. There is a risk of collision during subsequent tool positioning movements!

- Always define the actual tool length of a tool (not just the difference)
- Use TOOL CALL 0 only to empty the spindle

NOTICE

Danger of collision!

NC programs that were created on older controls can lead to unexpected axis movements or error messages on current control models. Danger of collision during machining!

- Check the NC program or program section using the graphic simulation
- Carefully test the NC program or program section in the Program run, single block operating mode

NOTICE

Caution: Data may be lost!

If you do not properly remove a connected USB device during a data transfer, then data may be damaged or deleted!

- Use the USB port only for transferring or backing up data do not use it for editing and executing NC programs
- Use the Eject soft key to remove a USB device when data the transfer is complete

NOTICE

Caution: Data may be lost!

The control must be shut down so that running processes can be concluded and data can be saved. Immediate switch-off of the control by turning off the main switch can lead to data loss regardless of the control's status!

- Always shut down the control
- Only operate the main switch after being prompted on the screen

NOTICE

Danger of collision!

If you select an NC block in program run using the GOTO function and then execute the NC program, the control ignores all previously programmed NC functions, e.g. transformations. This means that there is a risk of collision during subsequent traversing movements!

- Use GOTO only when programming and testing NC programs
- Only use Block scan when executing NC programs

2.5 Software

This User's Manual describes the functions for setting up the machine as well as for programming and and running your NC programs. These functions are available for a control featuring the full range of functions.
(i)

The actual range of functions depends, among other things, on the enabled software options.
Further information: "Software options", Page 31

The table shows the NC software numbers described in this User's Manual.
i
HEIDENHAIN has simplified the version schema, starting with NC software version 16 :

- The publication period determines the version number.
- All control models of a publication period have the same version number.
- The version number of the programming stations corresponds to the version number of the NC software.

NC software number	Product
$817620-17$	TNC7
$817621-17$	TNC7 E
$817625-17$	TNC7 programming station

Refer to your machine manual.
This User's Manual describes the basic functions of the control. The machine manufacturer can adapt, enhance or restrict the control functions for the machine.
Check, on the basis of the machine tool manual, whether the machine manufacturer has adapted the functions of the control.

Definition

Abbreviation	Definition
E	The suffix E indicates the export version of the control. In this version, the software option 9 Advanced Function Set 2 is restricted to 4-axis interpolation.

2.5.1 Software options

Software options define the range of functions of the control. The optional functions are either machine- or application-specific. The software options give you the possibility of adapting the control to your individual needs. You can check which software options are enabled on your machine.
Further information: User's Manual for Setup and Program Run
Overview and definitions
The TNC7 features various software options, each of which can be enabled separately and even subsequently by the machine manufacturer. The following overview includes only those software options that are relevant for you as user.

The option numbers indicated in the User's Manual show you that a function is not included in the standard range of available functions. The Technical Manual provides information about additional software options that are relevant for the machine manufacturer.

Keep in mind that particular software options also require hardware extensions.
Further information: User's Manual for Setup and Program Run

Software option	Definition and application
Additional Axis (options 0 to 7)	Additional control loop
	A control loop is required for each axis or spindle moved to a programmed nominal value by the control.
	Additional control loops are required e.g. for detachable and motor-driven tilting tables.
Advanced Function Set 1 (option 8)	Advanced functions (set 1)
	On machines with rotary axes this software option enables the machining of multiple workpiece sides in a single setup.
	The software option includes the following functions:
	- Tilting the working plane, e.g. with PLANE SPATIAL
	Further information: User's Manual for Programming and Testing
	- Programming of contours on the unrolled surface of a cylinder, e.g. by using Cycle $\mathbf{2 7}$ CYLINDER SURFACE
	Further information: User's Manual for Machining Cycles
	- Programming the rotary axis feed rate in mm/min with M116
	Further information: User's Manual for Programming and Testing
	- 3-axis circular interpolation with a tilted working plane
	The advanced functions (set 1) reduce the setup effort and increase the workpiece accuracy.

Software option	Definition and application
Advanced Function Set 2 (option 9)	Advanced functions (set 2)
	On machines with rotary axes this software option enables the simultaneous 5 axis machining of workpieces.
	This software option includes the following functions:
	- TCPM (tool center point management): Automatic tracking of linear axes during rotary axis positioning
	Further information: User's Manual for Programming and Testing
	- Running of NC programs with vectors, including optional 3D tool compensation
	Further information: User's Manual for Programming and Testing
	- Manual moving of axes in the active tool coordinate system T-CS
	- Linear interpolation in more than 4 axes (max. 4 axes for an export version)
	The advanced functions (set 2) can be used to produce free-form surfaces.
HEIDENHAIN DNC (option 18)	HEIDENHAIN DNC
	This software option enables external Windows applications to access data in the control via the TCP/IP protocol.
	Potential fields of application are e.g.:
	- Connection to higher-level ERP or MES systems
	- Capture of machine and operating data
	HEIDENHAIN DNC is required in conjunction with external Windows applications.
Dynamic Collision Monitoring (option 40)	Dynamic Collision Monitoring (DCM)
	The machine manufacturer can use this software option to define machine components as collision objects. The control monitors the defined collision objects during all machine movements.
	The software option includes the following functions:
	- Automatic interruption of the program run whenever a collision is imminent
	- Warnings in the event of manual axis movements
	- Collision monitoring in Test Run mode
	With DCM you can prevent collisions and thus avoid additional costs resulting from material damage or a machine downtime.
	Further information: User's Manual for Setup and Program Run
CAD Import (option 42)	CAD Import
	This software option is used to select positions and contours from CAD files and to transfer them into an NC program.
	With the CAD Import option you reduce the programming effort and prevent typical errors such as the incorrect entry of values. In addition, CAD Import contributes to paperless manufacturing.
	Further information: User's Manual for Setup and Program Run
Global PGM Settings (option 44)	Global Program Settings GPS
	This software option can be used for superimposed coordinate transformations and handwheel movements during program run without changing the NC program.
	With GPS you can adapt externally created NC programs to the machine and increase flexibility during program run.
	Further information: User's Manual for Setup and Program Run

Software option	Definition and application
Adaptive Feed	Adaptive Feed Control AFC
Control	This software option enables automatic feed control that depends on the
(option 45)	current spindle load. The control increases the feed rate as the load decreases,
	and reduces the feed rate as the load increases.
	With AFC you can shorten the machining time without adapting the
	NC program, while preventing machine damage from overload at the same
	time.
	Further information: User's Manual for Setup and Program Run

Software option	Definition and application
8 Additional Axes (option 78)	8 additional control loops
	Further information: "Additional Axis (options 0 to 7)", Page 31
3D-ToolComp (option 92)	3D-ToolComp only in conjunction with Advanced Function Set 2 (option 9)
	With this software option, shape deviations on ball cutters and workpiece probes can be automatically compensated for using a compensation value table.
	3D-ToolComp enables increasing the workpiece accuracy in conjunction with free-form surfaces, for example.
	Further information: User's Manual for Programming and Testing
Extended Tool Management (option 93)	Extended tool management
	This software option extends tool management by the two tables Tooling list and \mathbf{T} usage order.
	The tables show the following contents:
	- The Tooling list to be run shows the tool requirements of the NC program to be run or the pallet shows the tool requirements of the NC program
	- The \mathbf{T} usage order shows the tool order of the NC program to be run or the pallet.
	Further information: User's Manual for Setup and Program Run
	Extended Tool Management enables you to detect the tool requirements in time and thus prevent interruptions during program run.
Advanced Spindle Interpolation (option 96)	Interpolating Spindle
	This software option enables interpolation turning by causing the control to couple the tool spindle with the linear axes.
	This software option includes the following cycles:
	- Cycle 291 COUPLG.TURNG.INTERP. for simple turning operations without contour subprograms
	- Cycle 292 CONTOUR.TURNG.INTRP. for finishing rotationally symmetrical contours
	The interpolating spindle also allows you to perform a turning operation on machines without a rotary table.
	Further information: User's Manual for Machining Cycles
Spindle Synchronism (option 131)	Spindle synchronism
	This software option synchronizes two or more spindles and thus enables e.g. gear manufacturing via hobbing.
	This software option includes the following functions: - Spindle synchronism for special machining operations, e.g. polygonal turning
	- Cycle $\mathbf{8 8 0} \mathbf{\text { GEAR HOBBING only in conjunction with mill-turning (option 50) }}$
	Further information: User's Manual for Machining Cycles
Remote Desktop Manager (option 133)	Remote Desktop Manager
	This software option is used to display and operate externally linked computer units.
	With Remote Desktop Manager you reduce the distances covered between several workplaces and as a result increase efficiency.
	Further information: User's Manual for Setup and Program Run

Software option	Definition and application
Dynamic Collision Monitoring v2 (option 140)	Dynamic Collision Monitoring (DCM) version 2
	This software option includes the functions of software option 40 (Dynamic Collision Monitoring, DCM).
	In addition, this software option can be used for the collision monitoring of workpiece fixtures.
	Further information: User's Manual for Setup and Program Run
Cross Talk Compensation (option 141)	Compensation of axis couplings CTC
	Using this software option, the machine manufacturer can e.g. compensate for acceleration-induced deviations at the tool and thus increase accuracy and dynamic performance.
Position Adaptive Control (option 142)	Position adaptive control PAC
	Using this software option, the machine manufacturer can e.g. compensate for position-induced deviations at the tool and thus increase accuracy and dynamic performance.
Load Adaptive Control (option 143)	Load adaptive control LAC
	Using this software option, the machine manufacturer can e.g. compensate for load-induced deviations at the tool and thus increase accuracy and dynamic performance.
Motion Adaptive Control (option 144)	Motion adaptive control MAC
	Using this software option, the machine manufacturer can e.g. change speeddependent machine settings and thus increase the dynamic performance.
Active Chatter Control (option 145)	Active chatter control ACC
	With this software option the chatter tendency of a machine used for heavy machining can be reduced.
	The control can use ACC to improve the surface quality of the workpiece, increase the tool life and reduce the machine load. Depending on the type of machine, the material-removal rate can be increased by more than 25%.
	Further information: User's Manual for Setup and Program Run
Machine Vibration Control (option 146)	Vibration damping for machines MVC
	Damping of machine oscillations for improving the workpiece surface quality through the following functions:
	- AVD Active Vibration Damping
	- FSC Frequency Shaping Control
CAD Model Optimizer (option 152)	Optimization of CAD models
	This software option can be used, for example, to repair faulty files of fixtures and tool holders or to position STL files generated from the simulation for a different machining operation.
	Further information: User's Manual for Setup and Program Run

Software option	Definition and application
Batch Process Manager (option 154)	Batch Process Manager BPM This software option makes it easy to plan and execute multiple production jobs. If pallet management and extended tool management (option 93) are extended or combined, BPM offers the following additional data, for example: - Machining time - Availability of necessary tools - Manual interventions to be made - Program test results of assigned NC programs Further information: User's Manual for Programming and Testing
Component Monitoring (option 155)	Component monitoring This software option enables the automatic monitoring of machine components configured by the machine manufacturer. Component monitoring assists the control in preventing machine damage due to overload by way of hazard warnings and error messages.
Grinding (option 156)	Jig grinding This software option offers a comprehensive grinding-specific package of functions for milling machines. The software option includes the following functions: - Grinding-specific tools including dressing tools - Cycles for reciprocating stroke and dressing Jig-turning enables complete machining operations on just one machine, thus reducing e.g. the setup work considerably. Further information: User's Manual for Programming and Testing
Gear Cutting (option 157)	Gear manufacturing This software option enables the manufacturing of cylindrical gears or helical gears of any angle. The software option includes the following cycles: - Cycle 285 DEFINE GEAR to define the gear geometry - Cycle 286 GEAR HOBBING - Cycle 287 GEAR SKIVING Gear manufacturing expands the scope of functionality of milling machines with rotary tables even without mill-turning (option 50). Further information: User's Manual for Machining Cycles
Turning v2 (option 158)	Mill-turning version 2 This software option includes all functions of Mill-Turning (software option 50). In addition, this software option offers the following advanced turning functions: - Cycle $\mathbf{8 8 2}$ SIMULTANEOUS ROUGHING FOR TURNING - Cycle 883 TURNING SIMULTANEOUS FINISHING The advanced turning functions not only enable you to manufacture undercut workpieces but also to use a larger area of the indexable insert during the machining operation. Further information: User's Manual for Machining Cycles

Software option	Definition and application
Model Aided Setup (option 159)	Graphically supported setup
	This software option is used to determine the position and misalignment of a workpiece with only one touch-probe function. You can probe complex workpieces with, for example, free-form surfaces or undercuts, which is not possible with all of the other touch-probe functions.
	The control supports you additionally by showing the clamping situation and possible touch points in the Simulation workspace by means of a 3D model.
	Further information: User's Manual for Setup and Program Run
Optimized Contour Milling (option 167)	Optimized contour machining (OCM)
	This software option enables the trochoidal milling of closed or open pockets and islands of any shape. During trochoidal milling, the full cutting edge is used under constant cutting conditions.
	The software option includes the following cycles:
	- Cycle 271 OCM CONTOUR DATA
	- Cycle 272 OCM ROUGHING
	- Cycle $\mathbf{2 7 3}$ OCM FINISHING FLOOR and cycle $\mathbf{2 7 4}$ OCM FINISHING SIDE
	- Cycle 277 OCM CHAMFERING
	- In addition, the control offers OCM FIGURES for frequently needed contours
	With OCM you can shorten the machining time while reducing tool wear at the same time.
	Further information: User's Manual for Machining Cycles
Process Monitoring (option 168)	Process monitoring
	Reference-based monitoring of the machining process
	The control uses this software option to monitor defined machining sections during program run. The control compares changes with regard to the tool spindle or the tool with the values of a reference machining operation.
	Further information: User's Manual for Setup and Program Run

2.5.2 Feature Content Level

New functions or functional enhancements of the control software may be protected by software options or by means of the Feature Content Levels.
On purchasing a new control you will receive the highest level of the FCL possible with the installed software. A subsequent software update e.g. when servicing is needed does not automatically increase the FCL version.
(i)

As yet, no functions are protected by Feature Content Level. If functions are protected in the future, then this will be apparent in the User's Manual through the identifier FCL \mathbf{n}. The \mathbf{n} indicates the required number of the FCL version.

2.5.3 Information on licensing and use

Open-source software

The control software contains open-source software whose use is subject to explicit licensing terms. These special terms of use have priority.

To get to the licensing terms on the control:
囚

- Select the Home operating mode
- Select the Settings application
- Select the Operating system tab
© \quad Double-tap or double-click About HeROS
$>$ The control opens the HEROS Licence Viewer window.

OPC UA

The control software contains binary libraries, to which the terms of use agreed between HEIDENHAIN and Softing Industrial Automation GmbH additionally and preferentially apply.
OPC UA NC Server (options 56 to 61) and HEIDENHAIN DNC (option 18) can be used to influence the behavior of the control. Before using these interfaces for productive purposes, system tests must be performed to exclude the occurrence of any malfunctions or performance failures of the control. The manufacturer of the software product that uses these communication interfaces is responsible for performing these tests.
Further information: User's Manual for Setup and Program Run

2.5.4 New and modified cycle functions of software $81762 x-17$

(14) Overview of new and modified software functions

Further information about the previous software versions is presented in the Overview of New and Modified Software Functions documentation. Please contact HEIDENHAIN if you need this documentation. ID: 1373081-xx

New cycle functions with 81762x-17

- Cycle 1416 INTERSECTION PROBING (ISO: G1416)

This cycle allows you to determine the intersection of two edges. The cycle requires a total of four touch points and two positions per edge. You can use the cycle in the three object planes $\mathbf{X Y}, \mathbf{X Z}$ and $\mathbf{Y Z}$.
Further information: "Cycle 1416 INTERSECTION PROBING", Page 98

- Cycle 1404 PROBE SLOT/RIDGE (ISO: G1404)

This cycle determines the center and the width of a slot or ridge. The control probes two opposing touch points. You can also define a rotation for the slot or the ridge.
Further information: "Cycle 1404 PROBE SLOT/RIDGE ", Page 150

- Cycle 1430 PROBE POSITION OF UNDERCUT (ISO: G1430)

This cycle determines a single position with an L-shaped stylus. The control can probe undercuts due to the shape of the stylus.
Further information: "Cycle 1430 PROBE POSITION OF UNDERCUT ", Page 155

- Cycle 1434 PROBE SLOT/RIDGE UNDERCUT (ISO: G1434)

This cycle determines the center and the width of a slot or ridge with an L-shaped stylus. The control can probe undercuts due to the shape of the stylus. The control probes two opposing touch points.
Further information: "Cycle 1434 PROBE SLOT/RIDGE UNDERCUT ", Page 160

Modified cycle functions with 81762x-17

- You can edit and execute Cycle 19 WORKING PLANE (ISO: G80, option 8), but you cannot insert it into an NC program as a new element.
- Cycle $\mathbf{2 7 7}$ OCM CHAMFERING (ISO: G277, option 167) monitors contour damage on the floor caused by the tool tip. This tool tip results from the radius \mathbf{R}, the radius at the tool tip R_TIP, and the point angle T-ANGLE.
- The parameter Q592 TYPE OF DIMENSION has been added to Cycle 292 CONTOUR.TURNG.INTRP. (ISO: G292, option 96). This parameter is used to define whether the contour is programmed with radius dimensions or diameter dimensions.
- The following cycles consider the miscellaneous functions M109 and M110:
- Cycle 22 ROUGH-OUT (ISO: G122)
- Cycle 23 FLOOR FINISHING (ISO: G123)
- Cycle 24 SIDE FINISHING (ISO: G124)
- Cycle 25 CONTOUR TRAIN (ISO: G125)
- Cycle 275 TROCHOIDAL SLOT (ISO: G275)
- Cycle 276 THREE-D CONT. TRAIN (ISO: G276)
- Cycle 274 OCM FINISHING SIDE (ISO: G274, option 167)
- Cycle 277 OCM CHAMFERING (ISO: G277, option 167)
- Cycle 1025 GRINDING CONTOUR (ISO: G1025, option 156)

Further information: User's Manual for Machining Cycles

- If software option 52 KinematicsComp is active, the log of Cycle 451 MEASURE KINEMATICS (ISO: G451, option 48) shows the active compensations of the angular position errors (locErrA/locErrB/locErrC).
Further information: "Cycle 451 MEASURE KINEMATICS (option 48)", Page 339
- The log of Cycles 451 MEASURE KINEMATICS (ISO: G451) and 452 PRESET COMPENSATION (ISO: G452, option 48) contains diagrams with the measured and optimized errors of the individual measuring positions.
Further information: "Cycle 451 MEASURE KINEMATICS (option 48)", Page 339
Further information: "Cycle 452 PRESET COMPENSATION (option 48)",
Page 354
- Cycle 453 KINEMATICS GRID (ISO: G453, option 48) allows you to use the mode Q406=0 even without software option 52 KinematicsComp.
Further information: "Cycle 453 KINEMATICS GRID ", Page 365
- Cycle 460 CALIBRATION OF TS ON A SPHERE (ISO: G460) determines the radius and, if required, the length, the center offset and the spindle angle of an L-shaped stylus.
Further information: "Cycle 460 CALIBRATION OF TS ON A SPHERE (option 17)", Page 322
- Cycles 444 PROBING IN 3-D (ISO: G444) and 14xx support probing with an Lshaped stylus.
Further information: "Working with an L-shaped stylus", Page 45

2.6 Comparison of the TNC 640 and TNC7

The following tables contain the main differences between the TNC 640 and the TNC7.

Operating modes

Mode of operation	TNC 640	TNC7
Manual operation	- Separate Manual Operation operating mode	- Manual operation application in the Manual operating mode
	- Executing manual probing cycles - Opening preset table and tool table	- Executing manual probing cycles in the Setup application
	- Shutting down the control	- Opening tables in the Tables operating mode
		- Shutting down the control in the Home operating mode
		- Tool call in the Manual operation application is possible

Electronic handwheel	Separate Electronic handwheel operating mode	Handwheel switch in the Manual operation application
Positioning w/ Manual Data Input	Separate Positioning w/ Manual Data Input operating mode	MDI application in the Manual operating mode
Program run, single block	Separate Program run, single block operating mode	Single Block switch in the Program Run operating mode
Program run, full sequence	Separate Program run, full sequence operating mode	Program Run operating mode
Programming	- Programming operating mode - Programming graphics with split screen layout in PROGRAM GRAPHICS	Editor operating mode - Contour graphics workspace for the import, drawing and export of contours
Test Run	Test Run operating mode	Simulation workspace in the Editor, Manual and Program Run operating modes

i
On the TNC7 the operating modes of the control are allocated differently than on the TNC 640. For reasons of compatibility and to facilitate ease of operation, the keys on the keyboard unit remain the same. Keep in mind that particular keys no longer activate a change of operating modes but, for example, instead activate a switch.
Further information: User's Manual for Programming and Testing
Further information: User's Manual for Setup and Program Run

Functions

Function	TNC 640	TNC7
Programming and program run	- Programming and executing Klartext, ISO and FK - Inserting positioning blocks with the keyboard - Using soft keys to insert NC functions and cycles - Programming syntax in the text editor	- Programming and executing Klartext - Executing ISO and FK - Editing NC functions in the form - Importing and drawing contours, including FK - Exporting contours - Inserting positioning blocks using the keyboard, virtual keyboard or the Keyboard workspace - Inserting NC functions and cycles with the Insert NC function button - Programming syntax in the text editor
File management	Press the PGM MGT key to open it from the operating modes	Files operating mode and the Open File workspace
Tables	Opening the individual tables at specified places in the control	Separate Tables operating mode in which the tables of the control are opened and edited, if necessary
MOD functions	Adjusting settings in the MOD menu	Adjusting the settings in the Settings application of the Home operating mode
Calculator	- Loading the value from or into the dialog box via soft key - Applying axis values	- Copying the value to the clipboard or pasting it from the clipboard - Restoring calculations from the history
Status display	- General status display and position display are always visible in the machine operating modes - Additional status display with split screen layout STATUS	- General status display and position display in the Positions workspace - Additional status display in the Status workspace - Status overview and optional position display in the control bar

Working with Touch Probe Cycles

3.1 General information about touch probe cycles

3.1.1 Method of function

The control's full range of functions is available only if the \mathbf{Z} tool axis is used.
Restricted use of the tool axes \mathbf{X} and \mathbf{Y} is possible when prepared and configured by the machine manufacturer.

The touch probe functions allow you to set presets on the workpiece, measure the workpiece, and determine and compensate for workpiece misalignment.
Whenever the control runs a touch probe cycle, the 3D touch probe approaches the workpiece parallel to the axis. This is also true during an active basic rotation or with a tilted working plane. The machine manufacturer will determine the probing feed rate in a machine parameter.
Further information: "Before you start working with touch probe cycles!", Page 52
When the probe stylus contacts the workpiece,

- the 3D touch probe transmits a signal to the control: the coordinates of the probed position are stored,
- the touch probe stops moving, and
- returns to its starting position at rapid traverse.

If the stylus is not deflected within a defined distance, the control displays an error message (distance: DIST from touch probe table).

Related topics

- Manual touch probe cycles
- Preset table
- Datum table
- Reference systems
- Preassigned variables

Further information: User's Manual for Setup and Program Run

Requirements

- Calibrated workpiece touch probe

Further information: "Touch Probe Cycles: Calibration", Page 311
If you are using a HEIDENHAIN touch probe, the software option 17, Touch Probe Functions, is automatically enabled.

Working with an L-shaped stylus

In addition to a SIMPLE stylus, probing cycles 444 and 14 xx also support the L-TYPE stylus, which is L-shaped. The L-shaped stylus must be calibrated prior to use. HEIDENHAIN recommends calibrating the stylus with the following cycles:

- Radius calibration: Cycle 460 CALIBRATION OF TS ON A SPHERE (option 17)
- Length calibration: Cycle 461 TS CALIBRATION OF TOOL LENGTH

Stylus orientation must be permitted via TRACK ON in the touch probe table. During the probing process, the control orients the L-shaped stylus to the given probing direction. If the probing direction is identical to the tool axis, then the control orients the touch probe to the calibration angle.
(i)

- The control does not show the arm of the stylus in the simulation.
- DCM (option 40) does not monitor the L-shaped stylus.
- In order to achieve maximum accuracy, the feed rate during calibration must be identical to the feed rate during probing.

Further information: User's Manual for Setup and Program Run

3.1.2 Notes

The control must be specifically prepared by the machine manufacturer for the use of a touch probe.
While touch probe functions are being executed, the control temporarily disables the Global Program Settings.
(i)

HEIDENHAIN guarantees the proper operation of the touch probe cycles only in conjunction with HEIDENHAIN touch probes.

3.1.3 Touch probe cycles in the Manual Operation and Electronic Handwheel modes

In the Setup application under Manual mode, the control provides touch probe cycles that allow you to:

- Set presets
- Probe the angle
- Probe position
- Calibrate the touch probe
- Measure the tool

Further information: User's Manual for Setup and Program Run

3.1.4 Touch probe cycles for automatic operation

Besides the manual touch probe cycles, several cycles are available for a wide variety of applications in automatic operation:

- Automatic measurement of workpiece misalignment
- Automatic determination of the preset
- Automatic workpiece inspection
- Special functions
- Touch probe calibration
- Automatic kinematics measurement
- Automatic tool measurement

Defining touch probe cycles

Like the most recent machining cycles, touch probe cycles with numbers greater than $\mathbf{4 0 0}$ use Q parameters as transfer parameters. Parameters with the same functionality, which the control requires in various cycles, always have the same number: For example, Q260 is always the clearance height, Q261 the measuring height, etc.
There are various ways to define the touch probe cycles. Touch probe cycles are programmed in the Programming mode of operation.

Inserting via NC function:

$\substack{\text { Insent } \\ \text { ncturction }}$	$>$ Select Insert NC function
	$>$ The control opens the Insert NC function window.
	$>$ Select the desired cycle
	$>$ The control opens a dialog box and prompts you for all
	required input values.

Inserting via the TOUCH PROBE key:

$\substack{\text { TOUCH } \\ \text { PROBE }}$	Select the TOUCH PROBE soft key
$>$	The control opens the Insert NC function window.
	$>$ Select the desired cycle
$>$	The control opens a dialog box and prompts you for all
	required input values.

Navigation in the cycle

Key	Function Navigation within the cycle: Jump to next parameter
\mathbf{N}	Navigation within the cycle: Jump to previous parameter
$\mathbf{1}$	Jump to the same parameter in the next cycle via the action bar or the form.
$\mathbf{~ J u m p ~ t o ~ t h e ~ s a m e ~ p a r a m e t e r ~ i n ~ t h e ~ p r e v i o u s ~ c y c l e ~}$	

Cycle input form

The control provides a FORM for various functions and cycles. This FORM allows you to enter various syntax elements or cycle parameters.

The control allocates the cycle parameters in the FORM to groups based on their functions, e.g. geometry, standard, advanced, safety. The control provides selection possibilities for different cycle parameters via switches, for example. The control displays the currently edited cycle parameter in color.
After you have defined all required cycle parameters, you can confirm your input and conclude the cycle.
Opening the form:

- Open the Editor operating mode
- Open the Program workspace

回

- Select FORM via the title bar

1. If an input is invalid, the control displays an information symbol ahead of the syntax element. When you select the information symbol, the control displays information on the error.

Further information: User's Manual for Setup and Program Run

Help graphics

When you are editing a cycle, the control shows a help graphic for the current Q parameters. The size of the help graphic depends on the size of the Program workspace area.
The control shows the help graphic at the right edge of the workspace, or at the top or bottom edge. The help graphic is positioned in the half that does not contain the cursor.
When you tap or click on the help graphic, the control maximizes the help graphic.
If the Help workspace is active, then the control displays the help graphic in it rather than in the Program workspace.

Help workspace with a help graphic for a cycle parameter

3.1.5 Available cycle groups

Machining cycles

Cycle group Further information

Drilling/Thread

- Drilling, reaming Further information: User's
- Boring Manual for Machining Cycles
- Counterboring, centering
- Tapping or thread milling

Pockets/studs/slots

- Pocket milling

Further information: User's

- Stud milling

Manual for Machining Cycles

- Slot milling
- Face milling

Coordinate transformations

- Mirroring
- Rotating
- Magnifying / Reducing

Further information: User's
Manual for Machining Cycles

SL cycles

- SL (Subcontour List) cycles for the machining of contours

Further information: User's that possibly consist of several subcontours

Manual for Machining Cycles

- Cylinder surface machining
- OCM (Optimized Contour Milling) cycles for combining subcontours to form complex contours

Point patterns

- Bolt hole circle Further information: User's
- Linear hole pattern
- Data Matrix code

Turning cycles

- Area clearance cycles, longitudinal and transverse
- Recess turning cycles, radial and axial
- Recessing cycles, radial and axial
- Thread cutting cycles
- Simultaneous turning cycles
- Special cycles

Further information: User's
Manual for Machining Cycles

Cycle group

Further information

Special cycles

- Dwell time

Further information: User's

- Program call

Manual for Machining Cycles

- Tolerance
- Oriented spindle stop
- Engraving
- Gear cycles
- Interpolation turning

Grinding cycles

- Reciprocating stroke

Further information: User's

- Dressing

Manual for Machining Cycles

- Compensation cycles

Measuring cycles

Cycle group

Further information

Rotation

- Probing of plane, edge, two circles, beveled edge

Page 57

- Basic rotation
- Two holes or studs
- Via rotary axis
- Via C-axis

Preset/Position

- Rectangle, inside or outside

Page 133

- Circle, inside or outside
- Corner, inside or outside
- Center of bolt circle, slot or ridge
- Touch probe axis or single axis
- Four holes

Measuring

- Angle

Page 233

- Circle, inside or outside
- Rectangle, inside or outside
- Slot or ridge
- Bolt hole circle
- Plane or coordinate

Special cycles

- Measuring or measuring in 3D

Page 293

- Probing in 3D
- Fast probing

Calibrating the touch probe

- Calibrating the length

Page 311

- Calibration in a ring
- Calibration on a stud
- Calibration on a sphere

Measuring kinematics

- Saving the kinematics

Page 331

- Measure kinematics
- Preset compensation
- Kinematics grid

Measuring the tool (TT)

- Calibrating the TT
- Tool length, radius or measuring completely
- Calibrating the IR-TT
- Lathe tool measurement

3.2 Before you start working with touch probe cycles!

3.2.1 General information

In the touch probe table you define the set-up clearance, i.e., how far away from the defined touch point (or the one calculated by the cycle) the control will pre-position the touch probe. The smaller the value you enter, the more exactly you must define the touch point position. In many touch probe cycles, you can also define a set-up clearance that is added to the one from the touch probe table.
The following can be defined in the touch probe table:

- Type of tool
- Touch probe center offset
- Spindle angle during calibration
- Probing feed rate
- Rapid traverse in probing cycle
- Maximum measuring range
- Set-up clearance
- Feed rate for pre-positioning
- Touch probe orientation
- Serial number
- Reaction in case of collision

Further information: User's Manual for Setup and Program Run

3.2.2 Executing touch probe cycles

All touch probe cycles are DEF-active. The control runs the cycle automatically as soon as it reads the cycle definition in the program run.

Positioning logic

Touch probe cycles numbered 400 to 499 or 1400 to 1499 pre-position the touch probe according to the following positioning logic:

- If the current coordinate of the south pole of the stylus is less than the coordinate of the clearance height (as defined in the cycle), the control first retracts the touch probe in the touch probe axis to the clearance height and then positions it in the working plane to the first touch point.
- If the current coordinate of the stylus south pole is greater than the coordinate of the clearance height, then the control first positions the touch probe in the working plane to the first touch point, and then in the touch-probe axis directly to the set-up clearance.

Notes

NOTICE

Danger of collision!

When running touch probe cycles 400 to 499, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.

NOTICE

Danger of collision!

When touch probe cycles 444 and $14 x x$ are executed, the following coordinate transformation must not be active: Cycle $\mathbf{8}$ MIRRORING, Cycle $\mathbf{1 1}$ SCALING FACTOR, Cycle 26 AXIS-SPECIFIC SCALING and TRANS MIRROR. There is a risk of collision.

- Reset any coordinate transformations before the cycle call.
- Please note that the units of measure in the measuring log and the return parameters depend on the main program.
- The touch probe cycles $40 x$ to $43 x$ will reset an active basic rotation at the beginning of the cycle.
- The control interprets a basic transformation as a basic rotation, and an offset as a table rotation.
- You can apply the misalignment as a workpiece rotation only if a table rotary axis exists on the machine and if its orientation is perpendicular to the workpiece coordinate system W-CS.

Note regarding machine parameters

- Depending on how the optional machine parameter chkTiltingAxes (no. 204600) is set, the control will check during probing whether the position of the rotary axes matches the tilting angles (3D-ROT). If that is not the case, the control displays an error message.

3.3 Program defaults for cycles

3.3.1 Entering GLOBAL DEF definitions

- Select Insert NC function
> The control opens the Insert NC function window.
- Select GLOBAL DEF
- Select the desired GLOBAL DEF function, e.g. 100 GENERAL
- Enter the required definitions

3.3.2 Using GLOBAL DEF information

If you entered the corresponding GLOBAL DEF functions at program start, you can reference these globally valid values for the definition of any cycle.
Proceed as follows:

nctimetion	- Select Insert NC function > The control opens the Insert NC function window. - Select and define GLOBAL DEF - Select Insert NC function again - Select the desired cycle, e.g. 200 DRILLING > If the cycle includes global cycle parameters, the control superimposes the selection possibility PREDEF in the action bar or in the form as a selection menu.
PREDEF	- Select PREDEF > The control then enters the word PREDEF in the cycle definition. This creates a link to the corresponding GLOBAL DEF parameter that you defined at the beginning of the program.
	NOTICE
Danger of collision! If you later edit the program settings with GLOBAL DEF, these changes will affect the entire NC program. This may change the machining sequence significantly. There is a danger of collision!	

3.3.3 Global data valid everywhere

These parameters are valid for all $\mathbf{2 x x}$ machining cycles as well as for Cycles 880, 1017, 1018, 1021, 1022, 1025 and touch probe cycles 451, 452, 453

3.3.4 Global data for probing functions

These parameters are valid for all touch probe cycles $\mathbf{4 x x}$ and $\mathbf{1 4 x x}$ as well as for Cycles 271, 286, 287, 880, 1021, 1022, 1025, 1271, 1272, 1273, 1278

Touch Probe

Cycles: Automatic Measurement of Workpiece Misalignment

4.1 Overview

The control must be specifically prepared by the machine manufacturer for the use of a touch probe.
HEIDENHAIN guarantees the proper operation of the touch probe cycles only in conjunction with HEIDENHAIN touch probes.

Cycle	Call	Further information	
404	SET BASIC ROTATION	DEF-	Page 130
	- Setting any basic rotation	active	

4.2 Fundamentals of touch probe cycles 14xx

4.2.1 Characteristics common to touch probe cycles 14xx for measuring rotations

These cycles can determine rotations. They contain the following:

- Consideration of active machine kinematics
- Semi-automatic probing
- Monitoring of tolerances
- Consideration of 3D calibration
- Simultaneous measurement of rotation and position
i
Programming and operating notes:
- The probing positions are referenced to the programmed nominal coordinates in the I-CS.
- See the drawing for these nominal positions.
- Before a cycle definition you must program a tool call to define the touch-probe axis.
- The 14xx probing cycles support the SIMPLE and L-TYPE styli.
- In order to achieve optimal accuracy results with an L-TYPE stylus, HEIDENHAIN recommends that you perform probing and calibration at the same speed. Note the setting of the feed override if it is active during probing.

Explanation of terms

Designation	Short description
Nominal position	Position in the drawing (e.g., position of a hole)
Nominal dimen- sion	Dimension in the drawing (e.g., hole diameter)
Actual position	Measured position (e.g., position of a hole)
Actual dimension	Measured dimension (e.g., hole diameter)
I-CS	I-CS: Input Coordinate System
W-CS	W-CS: Workpiece Coordinate System
Object	Object to be probed: circle, stud, plane, edge

Evaluation - preset:

- If you want to probe objects in a consistent machining plane or probe objects while TCPM is active, you can program any required shifts as basic transformations in the preset table.
- Rotations can be written to the basic transformations of the preset table as basic rotations or as axial offsets from the first rotary table axis, seen from the workpiece.

Operating notes:

- When probing, existing 3D calibration data are taken into account. If these calibration data do not exist, deviations might be the result.
- If you wish to use not only the rotation but also a measured position, then probe as perpendicularly to the surface as possible. The larger the angular error and the larger the ball-tip radius, the larger the positioning error. If the angular errors in the initial angular position are too large, corresponding position errors might be the result.

Logging:

The measured results are recorded in the TCHPRAUTO.html file and stored in the Q parameters programmed for this cycle.
The measured deviations are the differences between the measured actual values and the mean tolerance value. If no tolerance has been specified, they refer to the nominal dimension.
The unit of measurement of the main program can be seen in the header of the log.

4.2.2 Semi-automatic mode

If the probing positions relative to the current datum are unknown, you can execute the cycle in semi-automatic mode. In this mode, you can determine the starting position by manually pre-positioning before performing the probing operation.
For this purpose, precede the value for the required nominal position with "?". You can do this by selecting Name in the action bar. Depending on the object, you need to define the nominal positions that determine the probing direction, see "Examples."
i
Depending on the object, you need to define the nominal positions that determine the probing direction,
Examples:

- see "Alignment using two holes", Page 63
- see "Alignment through an edge", Page 64
- see "Alignment via the plane", Page 65

Cycle sequence
Proceed as follows:

$>$	Run the cycle
$>$	The control interrupts the NC program.
$>$	A window opens.
	Use the axis-direction keys to position the touch probe to the
	desired touch point
	or
$>$	Position the touch probe to the desired point using the
	electronic handwheel
	Change the probing direction in the window, if necessary

4.7 $>$ Select the NC start key

> The control closes the window and performs the first probing operation.
> If CLEAR. HEIGHT MODE Q1125 = $\mathbf{1}$ or $\mathbf{2}$, then the control opens a message in the FN 16 tab, Status workspace. This message indicates that the mode for traversing to the clearance height is not possible.

- Move the tool to a safe position
- Select the NC start key
> Cycle or program execution is resumed. You may then need to repeat the entire process for further touch points.

NOTICE

Danger of collision!

The control will ignore the programmed values 1 and 2 for Traverse to clearance height when running in semi-automatic mode. Depending on the position of the touch probe, there is danger of collision.

- In semi-automatic mode, manually traverse to a clearance height after every probing operation.
(i) Programming and operating notes:
- See the drawing for these nominal positions.
- Semi-automatic mode is only executed in the machine operating modes, not in the simulation.
- If you did not define a nominal position for a touch point in any direction, the control generates an error message.
- If you did not define a nominal position for a single direction, the control will capture the actual position after probing the object. This means that the measured actual position will subsequently be applied as the nominal position. Consequentially, there is no deviation for this position and thus no position compensation.

Examples

Important: Specify the nominal positions from the drawing!
In the following three examples, the nominal positions from this drawing will be used.

Alignment using two holes

In this example, you will align two holes. Probing is done in the X axis (main axis) and in the Y axis (secondary axis). This means that it is mandatory to define the nominal position from the drawing for these axes! A nominal position for the Z axis (tool axis) is not necessary as you will not measure in this direction.

- QS1100 = Nominal Position 1 of the main axis is provided, but the workpiece position is not known
- QS1101 = Nominal Position 1 of the secondary axis is provided, but the workpiece position is not known
- QS1102 $=$ nominal position 1 in tool axis is unknown
- QS1103 = Nominal Position 2 of the main axis is provided, but the workpiece position is not known
- QS1104 = Nominal Position 2 of the secondary axis is provided, but the workpiece position is not known
- QS1105 = nominal position 2 in tool axis is unknown

11 TCH PROBE 1411 PROBING TWO CIRCLES ~	
QS1100 = "?30"	;1ST POINT REF AXIS ~
QS1101 = "?50"	;1ST POINT MINOR AXIS ~
QS1102= "?"	;1ST POINT TOOL AXIS ~
Q1116=+10	;DIAMETER 1 ~
QS1103 = "?75"	;2ND POINT REF AXIS ~
QS1104 = "?50"	;2ND POINT MINOR AXIS ~
QS1105= "?"	;2ND POINT TOOL AXIS ~
Q1117=+10	;DIAMETER 2 ~
Q1115 $=+0$;GEOMETRY TYPE ~
Q423=+4	;NO. OF PROBE POINTS ~
Q325 $=+0$;STARTING ANGLE ~
Q1119 $=+360$;ANGULAR LENGTH ~
Q320 $=+2$;SET-UP CLEARANCE ~
Q260=+100	;CLEARANCE HEIGHT ~
Q1125 $=+2$;CLEAR. HEIGHT MODE ~
Q309 $=+0$;ERROR REACTION ~
Q1126 $=+0$;ALIGN ROTARY AXIS ~
Q1120 $=+0$;TRANSER POSITION ~
Q1121=+0	;CONFIRM ROTATION

Alignment through an edge

In this example, you will align an edge. Probing is done in the Y axis (secondary axis). This means that it is mandatory to define the nominal position from the drawing for these axes! Nominal positions for the X axis (main axis) and for the Z axis (tool axis) are not required because you will not measure in these directions.

- QS1100 = nominal position 1 in main axis is unknown
- QS1101 = Nominal Position 1 of the secondary axis is provided, but the workpiece position is not known
- QS1102 = nominal position 1 in tool axis is unknown
- QS1103 = nominal position 2 in main axis is unknown
- QS1104 = Nominal Position 2 of the secondary axis is provided, but the workpiece position is not known
- QS1105 = nominal position 2 in tool axis is unknown

11 TCH PROBE 1410 PROBING ON EDGE ~	
QS1100 = "?"	;1ST POINT REF AXIS ~
QS1101 = "?0"	;1ST POINT MINOR AXIS ~
QS1102 = "? "	;1ST POINT TOOL AXIS ~
QS1103 = ""	;2ND POINT REF AXIS ~
QS1104 = "?" "2ND POINT MINOR AXIS ~	
QS1105 = "?"	;2ND POINT TOOL AXIS ~
Q372=+2	;PROBING DIRECTION ~
Q320=+0	;SET-UP CLEARANCE ~
Q260=+100	;CLEARANCE HEIGHT ~
Q1125=+2	;CLEAR. HEIGHT MODE ~
Q309=+0	;ERROR REACTION ~
Q1126=+0	;ALIGN ROTARY AXIS ~
Q1120 $=+0$;TRANSER POSITION ~
Q1121 $=+0$;CONFIRM ROTATION

Alignment via the plane

In this example, you will align a plane. In this case, it is mandatory to define all three nominal positions from the drawing. For angle calculations, it is important that all three axes are taken into account when probing.

- QS1100 = Nominal Position 1 of the main axis is provided, but the workpiece position is not known
- QS1101 = Nominal Position 1 of the secondary axis is provided, but the workpiece position is not known
- QS1102 = Nominal Position 1 of the tool axis is provided, but the workpiece position is not known
- QS1103 = Nominal Position 2 of the main axis is provided, but the workpiece position is not known
- QS1104 = Nominal Position 2 of the secondary axis is provided, but the workpiece position is not known
- QS1105 = Nominal Position 2 of the tool axis is provided, but the workpiece position is not known
- QS1106 = Nominal Position 3 of the main axis is provided, but the workpiece position is not known
- QS1107 = Nominal Position 3 of the secondary axis is provided, but the workpiece position is not known
- QS1108 = Nominal Position 3 of the tool axis is provided, but the workpiece position is not known

11 TCH PROBE 1420 PROBING IN PLANE ~	
QS1100= "?50"	;1ST POINT REF AXIS ~
QS1101 = "?10"	;1ST POINT MINOR AXIS ~
QS1102= "?0"	;1ST POINT TOOL AXIS ~
QS1103 = "?80"	;2ND POINT REF AXIS ~
QS1104= "?50"	;2ND POINT MINOR AXIS ~
QS1105 = "?0"	;2ND POINT TOOL AXIS ~
QS1106= "?20"	;3RD POINT REF AXIS ~
QS1107= "?80"	;3RD POINT MINOR AXIS ~
QS1108= "?0"	;3RD POINT TOOL AXIS ~
Q372=-3	;PROBING DIRECTION ~
Q320=+2	;SET-UP CLEARANCE ~
Q260 $=+100$;CLEARANCE HEIGHT ~
Q1125 $=+2$;CLEAR. HEIGHT MODE ~
Q309=+0	;ERROR REACTION ~
Q1126=+0	;ALIGN ROTARY AXIS ~
Q1120 $=+0$;TRANSER POSITION ~
Q1121 $=+0$;CONFIRM ROTATION

4.2.3 Evaluation of tolerances

Cycles 14xx also allow you to check tolerance bands. This includes the checking of the position and size of an object.
The following input values with tolerances are possible:

Tolerance	Example
Dimensions	$10+0.01-0.015$
DIN EN ISO 286-2	$10 \mathrm{H7}$
ISO 2768-1	10 m

(i) Pay attention to capitalization when entering tolerances.

If you program a tolerance entry, the control will monitor the tolerance band. The control writes the following statuses to the return parameter Q183: Pass, rework, or scrap. If a compensation of the preset is programmed, the control corrects the active preset after probing
The following cycle parameters allow input values with tolerances:

- Q1100 1ST POINT REF AXIS
- Q1101 1ST POINT MINOR AXIS
- Q1102 1ST POINT TOOL AXIS
- Q1103 2ND POINT REF AXIS
- Q1104 2ND POINT MINOR AXIS
- Q1105 2ND POINT TOOL AXIS
- Q1106 3RD POINT REF AXIS
- Q1107 3RD POINT MINOR AXIS
- Q1108 3RD POINT TOOL AXIS
- Q1116 DIAMETER 1
- Q1117 DIAMETER 2

Program this as follows:

- Start the cycle definition
- Enable the Name selection option in the action bar
- Program nominal position/dimension incl. tolerance
$>$ In the cycle, $\mathbf{Q S} 1116="+8-2-1$ " is defined, for example.
If you program an incorrect tolerance, the control will interrupt machining with an error message.

Cycle sequence

If the actual position is outside the tolerance, the control behaves as follows:

- Q309 = $\mathbf{0}$: The control does not interrupt program run.
- Q309 = 1: In the case of scrap or rework, the control interrupts program run with a message.
- Q309 = 2: In the case of scrap, the control interrupts program run with a message.

If Q309 = 1 or 2, proceed as follows:

$>$ A window appears. The control displays all of the nominal and actual dimensions of the object.

- Press the CANCEL button to interrupt the NC program

417 or

- Press NC start to resume NC program run
(i)

Please note that the deviations returned by the touch probe cycles are based on the mean tolerance in Q98x and Q99x. If Q1120 and Q1121 are defined, then the values are equivalent to the values used for the compensation. If no automatic evaluation is active, then the control saves the values (based on the mean tolerance) in the intended Q parameter, allowing you to process these values.

Example

- QS1116 = diameter 1, tolerance specified
- QS1117 = diameter 2, tolerance specified

11 TCH PROBE 1411PROBING TWO CIRCLES ~	
Q1100 $=+30$;1ST POINT REF AXIS ~
Q1101 $=+50$;1ST POINT MINOR AXIS ~
Q1102=-5	;1ST POINT TOOL AXIS ~
QS1116="+8-2-1"	;DIAMETER 1 ~
Q1103 $=+75$;2ND POINT REF AXIS ~
Q1104 $=+50$;2ND POINT MINOR AXIS ~
QS1105=-5	;2ND POINT TOOL AXIS ~
QS1117="+8-2-1"	;DIAMETER 2 ~
Q1115=+0	;GEOMETRY TYPE ~
Q423 $=+4$;NO. OF PROBE POINTS ~
Q325=+0	;STARTING ANGLE ~
Q1119 $=+360$;ANGULAR LENGTH ~
Q320 $=+2$;SET-UP CLEARANCE ~
Q260 $=+100$;CLEARANCE HEIGHT ~
Q1125=+2	;CLEAR. HEIGHT MODE ~
Q309=2	;ERROR REACTION ~
Q1126=+0	;ALIGN ROTARY AXIS ~
Q1120 $=+0$;TRANSER POSITION ~
Q1121 $=+0$;CONFIRM ROTATION

4.2.4 Transferring the actual position

You can determine the actual position in advance and define it as the actual position for the touch probe cycle. Then, both the nominal position and the actual position will be transferred to the object. Based on the difference, the cycle calculates the required compensation values and applies tolerance monitoring.

Program this as follows:

- Define the cycle
- Enable the Name selection option in the action bar
- Program the nominal position with tolerance monitoring as needed
- Program "@"
- Program actual position
$>$ In the cycle, QS1100="10+0.02@10.0123" is defined, for example.

Programming and operating notes:

- If you program @, no probing will be carried out. The control only accounts for the actual and nominal positions.
- You must define the actual position for all three axes: main axis, secondary axis, and tool axis. If you define only one axis with its actual position, an error message will be generated.
- Actual positions can also be defined with Q Q1900-Q1999

Example

This feature allows you to do the following:

- Determine a circular pattern based on multiple different objects
- Align a gear based on its center and the position of a tooth

The nominal positions are defined here with tolerance monitoring and actual position.

5 TCH PROBE 1410 PROBING ON EDGE \sim	
QS1100 $=$ "10+0.02@10.0123"	;1ST POINT REF AXIS ~
QS1101 $=$ "50@50.0321"	;1ST POINT MINOR AXIS ~
QS1102="-10-0.2+0.2@Q1900"	;1ST POINT TOOL AXIS ~
QS1103="30+0.02@30.0134"	;2ND POINT REF AXIS ~
QS1104="50@50.534"	;2ND POINT MINOR AXIS ~
QS1105="-10-0.02@Q1901"	;2ND POINT TOOL AXIS ~
Q372 $=+2$;PROBING DIRECTION ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+100$;CLEARANCE HEIGHT ~
Q1125 $=+2$;CLEAR. HEIGHT MODE ~
Q309 $=+0$;ERROR REACTION ~
Q1126 $=+0$;ALIGN ROTARY AXIS ~
Q1120 $=+0$;TRANSER POSITION ~
Q1121 $=+0$;CONFIRM ROTATION

4.3 Cycle 1420 PROBING IN PLANE

ISO programming

 G1420
Application

Touch probe cycle 1420 finds the angles of a plane by measuring three points. It saves the measured values in the Q parameters.
If, prior to this cycle, you program Cycle 1493 EXTRUSION PROBING, then the control repeats the touch points in the selected direction and at the defined length along a straight line.
Further information: "Cycle 1493 EXTRUSION PROBING ", Page 308
The cycle also offers the following possibilities:

- If the coordinates of the touch points are not known, then you can execute the cycle in semi-automatic mode.
Further information: "Semi-automatic mode", Page 61
- Optionally, the cycle can monitor the tolerances. That way you can monitor the position and size of an object.
Further information: "Evaluation of tolerances", Page 67
- If you have already determined the exact position beforehand, then you can define the value in the cycle as the nominal position.
Further information: "Transferring the actual position", Page 69

Cycle sequence

1 The control positions the touch probe at FMAX_PROBE rapid traverse (from the touch probe table) and with positioning logic to the programmed touch point 1.
Further information: "Positioning logic", Page 52
2 The control positions the touch probe at FMAX_PROBE rapid traverse to the setup clearance. This clearance is the sum of Q320, SET_UP and the ball-tip radius. The set-up clearance is considered during probing in every probing direction.
3 The touch probe then moves to the entered measuring height Q1102 and performs the first probing procedure at probing speed \mathbf{F} from the touch probe table.
4 If you program CLEAR. HEIGHT MODE Q1125, then the control positions the touch probe at FMAX_PROBE back to the clearance height Q260.
5 It then moves in the working plane to touch point 2 to measure the actual value of the second touch point in the plane.

6 The touch probe returns to the clearance height (depending on Q1125), then moves in the working plane to touch point 3 and measures the actual position of the third point of the plane.
7 The control then positions the touch probe back to the clearance height (depending on Q1125) and stores the determined values in the following Q parameters:

Q parameter number	Meaning
Q950 to Q952	Measured position 1 in the main axis, secondary axis, and tool axis
Q953 to Q955	Measured position 2 in the main axis, secondary axis, and tool axis
Q956 to Q958	Measured position 3 in the main axis, secondary axis, and tool axis
Q961 to Q963	Measured spatial angle SPA, SPB, and SPC in the W-CS
Q980 to Q982	Measured deviation from the first touch point
Q983 to Q985	Measured deviation from the second touch point
Q986 to Q988	Third measured deviation of the positions
Q183	$\begin{aligned} & \text { Workpiece status } \\ & \text { - } \mathbf{- 1}=\text { Not defined } \\ & -\mathbf{0}=\text { Good } \\ & -\mathbf{1}=\text { Rework } \\ & -2=\text { Scrap } \end{aligned}$
Q970	If you have programmed Cycle 1493 EXTRUSION PROBING before: Maximum deviation starting from the first touch point
Q971	If you have programmed Cycle 1493 EXTRUSION PROBING before: Maximum deviation starting from the second touch point
Q972	If you have programmed Cycle 1493 EXTRUSION PROBING before: Maximum deviation starting from the third touch point

Notes

NOTICE

Danger of collision!

If, between the objects or touch points, you do not move to a clearance height, then there is a risk of collision.

Move to the clearance height between every object or touch point. Program Q1125 CLEAR. HEIGHT MODE so as not to be equal to -1.

NOTICE

Danger of collision!

When touch probe cycles 444 and $14 x x$ are executed, the following coordinate transformation must not be active: Cycle 8 MIRRORING, Cycle 11 SCALING FACTOR, Cycle 26 AXIS-SPECIFIC SCALING and TRANS MIRROR. There is a risk of collision.

- Reset any coordinate transformations before the cycle call.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control can calculate the angle values only if the three touch points are not positioned on a straight line.
- The nominal spatial angle results from the defined nominal positions. The cycle saves the measured spatial angle in parameters Q961 to Q963. For the transfer to the 3D basic rotaton, the control uses the difference between the measured spatial angle and the nominal spatial angle.

[^0]
Aligning the rotary table axes:

- Alignment with rotary table axes is possible only if two rotary table axes have been defined in the kinematic model.
- To align the rotary table axes (Q1126 not equal to 0), you must apply the rotation (Q1121 not equal to 0). Otherwise, the control will display an error message.

4.3.1 Cycle parameters

Q1104 2nd noml. position of minor axis?
Absolute nominal position of the second touch point in the secondary axis of the working plane
Input: -99999.9999...+9999.9999 or optional input (see Q1100)
Q1105 2nd nominal pos. of tool axis?
Absolute nominal position of the second touch point in the tool axis of the working plane
Input: -99999.9999...+9999.9999 or optional input (see Q1100)
Q1106 3rd noml. position of ref axis?
Absolute nominal position of the third touch point in the main axis of the working plane.
Input: -99999.9999...+9999.9999 or optional input (see Q1100)

Help graphic	Parameter Q1107 3rd noml. position minor axis? Absolute nominal position of the third touch point in the secondary axis of the working plane Input: -99999.9999...+9999.9999 or optional input (see Q1100)
Q1108 3rd nominal position tool axis?	
Absolute nominal position of the third touch point in the tool	
axis of the working plane	
Input: -99999.9999...+9999.9999 or optional input (see	
Q1100)	

Help graphic

Parameter

Q309 Reaction to tolerance error?
Reaction when tolerance is exceeded:
$\mathbf{0}$: Do not interrupt program run when tolerance is exceeded. The control does not open a window with the results.
1: Interrupt program run when tolerance is exceeded. The control opens a window with the results.
2: The control does not open a window if rework is necessary. The control opens a window with results and interrupts the program if the actual position is at scrap level.
Input: 0, 1, 2
Q1126 Align rotary axes?
Position the rotary axes for inclined machining:
$\mathbf{0}$: Retain the current position of the rotary axis.
1: Automatically position the rotary axis, and orient the tool
tip (MOVE). The relative position between the workpiece and touch probe remains unchanged. The control performs a compensating movement with the linear axes.
2: Automatically position the rotary axis without orienting the tool tip (TURN).
Input: 0, 1, 2
Q1120 Transfer position?
Define which touch point will be used to correct the active preset:
0: No correction
1: Correction based on the 1st touch point. The control corrects the active preset by the amount of deviation between the nominal and actual position of the 1st touch point.
2: Correction based on the second touch point. The control corrects the active preset by the amount of deviation between the nominal and actual position of the 2 nd touch point.
3: Correction based on 3rd touch point. The control corrects the active preset by the amount of deviation between the nominal and actual position of the 3rd touch point.
4: Correction based on the mean touch point. The control corrects the active preset by the amount of deviation between the nominal and actual position of the 2 nd touch point.
Input: 0, 1, 2, 3, 4

Q1121 Confirm basic rotation?

Define whether the control will use the determined misalignment as a basic rotation:
0 : No basic rotation
1: Set basic rotation: The control will save the basic rotation Input: 0, 1

Example

11 TCH PROBE 1420 PROBING IN PLANE ~	
Q1100=+0	;1ST POINT REF AXIS ~
Q1101=+0	;1ST POINT MINOR AXIS ~
Q1102=+0	;1ST POINT TOOL AXIS ~
Q1103 $=+0$;2ND POINT REF AXIS ~
Q1104=+0	;2ND POINT MINOR AXIS ~
Q1105 $=+0$;2ND POINT TOOL AXIS ~
Q1106=+0	;3RD POINT REF AXIS ~
Q1107=+0	;3RD POINT MINOR AXIS ~
Q1108 $=+0$;3RD POINT MINOR AXIS ~
Q372=+1	;PROBING DIRECTION ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+100$;CLEARANCE HEIGHT ~
Q1125=+2	;CLEAR. HEIGHT MODE ~
Q309 = +0	;ERROR REACTION ~
Q1126=+0	;ALIGN ROTARY AXIS ~
Q1120 $=+0$;TRANSER POSITION ~
Q1121 = +	;CONFIRM ROTATION

4.4 Cycle 1410 PROBING ON EDGE

ISO programming
G1410

Application

Touch probe cycle 1410 allows you to determine workpiece misalignment by probing two points on an edge. The cycle determines the rotation based on the difference between the measured angle and the nominal angle.
If, prior to this cycle, you program Cycle 1493 EXTRUSION PROBING, then the control repeats the touch points in the selected direction and at the defined length along a straight line.
Further information: "Cycle 1493 EXTRUSION PROBING ", Page 308
The cycle also offers the following possibilities:

- If the coordinates of the touch points are not known, then you can execute the cycle in semi-automatic mode.
Further information: "Semi-automatic mode", Page 61
- Optionally, the cycle can monitor the tolerances. That way you can monitor the position and size of an object.
Further information: "Evaluation of tolerances", Page 67
- If you have already determined the exact position beforehand, then you can define the value in the cycle as the nominal position.
Further information: "Transferring the actual position", Page 69

Cycle sequence

1 The control positions the touch probe at FMAX_PROBE rapid traverse (from the touch probe table) and with positioning logic to the programmed touch point 1.
Further information: "Positioning logic", Page 52
2 The control positions the touch probe at FMAX_PROBE rapid traverse to the setup clearance. This clearance is the sum of Q320, SET_UP and the ball-tip radius. The set-up clearance is considered during probing in every probing direction.
3 The touch probe then moves to the entered measuring height Q1102 and performs the first probing procedure at probing speed \mathbf{F} from the touch probe table.
4 The control offsets the touch probe by the amount of the set-up clearance in the direction opposite to the direction of probing.
5 If you program CLEAR. HEIGHT MODE Q1125, then the control positions the touch probe at FMAX_PROBE back to the clearance height Q260
6 The touch probe then moves to the next touch point 2 and probes again.
7 The control then positions the touch probe back to the clearance height (depending on Q1125) and stores the determined values in the following Q parameters:

Q parameter number	Meaning
Q950 to Q952	Measured position 1 in the main axis, secondary axis, and tool axis
Q953 to Q955	Measured position 2 in the main axis, secondary axis, and tool axis
Q964	Measured basic rotation
Q965	Measured table rotation
Q980 to Q982	Measured deviation from the first touch point
Q983 to Q985	Measured deviation from the second touch point
Q994	Measured angle deviation of basic rotation
Q995	Measured angle deviation of table rotation
Q183	Workpiece status $\begin{aligned} & -\mathbf{1}=\text { Not defined } \\ & \mathbf{0}=\text { Good } \\ & \mathbf{1}=\text { Rework } \\ & \mathbf{2}=\text { Scrap } \end{aligned}$
Q970	If you have programmed Cycle 1493 EXTRUSION PROBING before: Maximum deviation starting from the first touch point
Q971	If you have programmed Cycle 1493 EXTRUSION PROBING before: Maximum deviation starting from the second touch point

Notes

NOTICE

Danger of collision!

If, between the objects or touch points, you do not move to a clearance height, then there is a risk of collision.

Move to the clearance height between every object or touch point. Program Q1125 CLEAR. HEIGHT MODE so as not to be equal to -1.

NOTICE

Danger of collision!

When touch probe cycles 444 and 14xx are executed, the following coordinate transformation must not be active: Cycle $\mathbf{8}$ MIRRORING, Cycle $\mathbf{1 1}$ SCALING
FACTOR, Cycle 26 AXIS-SPECIFIC SCALING and TRANS MIRROR. There is a risk of collision.

- Reset any coordinate transformations before the cycle call.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.

Note about rotary axes:

- If you determine the basic rotation in a tilted machining plane, then note the following:
- If the current coordinates of the rotary axes and the defined tilting angle (3D-ROT menu) match, then the working plane is consistent. The control calculates the basic rotation in the input coordinate system I-CS.
- If the current coordinates of the rotary axes and the defined tilting angle (3DROT menu) do not match, then the machining plane is inconsistent. The control calculates the basic rotation in the workpiece coordinate system W-CS based on the tool axis.
- The optional machine parameter chkTiltingAxes (No. 204601) allows the machine manufacturer to define whether the control checks for a matching tilting situation. If no check is defined, then the control assumes a consistent machining plane. The basic rotation is then calculated in the I-CS.

Aligning the rotary table axes:

- The control can align the rotary table only if the measured rotation can be compensated for using a rotary table axis. This axis must be the first rotary table axis (as viewed from the workpiece).
- To align the rotary table axes (Q1126 not equal to 0), you must apply the rotation (Q1121 not equal to 0). Otherwise, the control will display an error message.

4.4.1 Cycle parameters

Parameter

Q1100 1st noml. position of ref. axis?
Absolute nominal position of the first touch point in the main axis of the working plane
Input: -99999.9999...+99999.9999 or ?, -, + or @

- ?: Semi-automatic mode, see Page 61
- -, +: Evaluation of the tolerance, see Page 67
- @: Transferring the actual position, see Page 69

Q1101 1st noml. position of minor axis?
Absolute nominal position of the first touch point in the secondary axis of the working plane

Input: -99999.9999...+9999.9999 or optional input (see Q1100)

Q1102 1st nominal position tool axis?
Absolute nominal position of the first touch point in the tool axis

Input: -99999.9999...+9999.9999 or optional input (see Q1100)

Q1103 2nd noml. position of ref axis?
Absolute nominal position of the second touch point in the main axis of the working plane

Input: -99999.9999...+9999.9999 or optional input (see Q1100)

Q1104 2nd noml. position of minor axis?
Absolute nominal position of the second touch point in the secondary axis of the working plane

Input: -99999.9999...+9999.9999 or optional input (see Q1100)

Q1105 2nd nominal pos. of tool axis?
Absolute nominal position of the second touch point in the tool axis of the working plane

Input: -99999.9999...+9999.9999 or optional input (see Q1100)
Q372 Probe direction (-3 to +3)?
Axis defining the direction of probing. The algebraic sign lets you define whether the control moves in the positive or negative direction.
Input: -3, -2, -1, +1, +2, +3

Parameter

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: O...99999.9999 or PREDEF
Q260 Clearance height?
Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Q1125 Traverse to clearance height?

Positioning behavior between the touch points:
-1: Do not move to the clearance height.
$\mathbf{0}$: Move to the clearance height before and after the cycle.
Pre-positioning occurs at FMAX_PROBE.
1: Move to the clearance height before and after each object.
Pre-positioning occurs at FMAX_PROBE.
2: Move to the clearance height before and after each touch point. Pre-positioning occurs at FMAX_PROBE
Input: -1, 0, +1, +2
Q309 Reaction to tolerance error?
Reaction when tolerance is exceeded:
$\mathbf{0}$: Do not interrupt program run when tolerance is exceeded. The control does not open a window with the results.
1: Interrupt program run when tolerance is exceeded. The control opens a window with the results.
2: The control does not open a window if rework is necessary. The control opens a window with results and interrupts the program if the actual position is at scrap level.
Input: 0, 1, 2

Help graphic

Parameter

Q1126 Align rotary axes?
Position the rotary axes for inclined machining:
0 : Retain the current position of the rotary axis.
1: Automatically position the rotary axis, and orient the tool tip (MOVE). The relative position between the workpiece and touch probe remains unchanged. The control performs a compensating movement with the linear axes.
2: Automatically position the rotary axis without orienting the tool tip (TURN).
Input: 0, 1, 2
Q1120 Transfer position?
Define which touch point will be used to correct the active preset:
0: No correction
1: Correction based on the 1st touch point. The control corrects the active preset by the amount of deviation between the nominal and actual position of the 1st touch point.
2: Correction based on the second touch point. The control corrects the active preset by the amount of deviation between the nominal and actual position of the 2nd touch point.
3: Correction based on the mean touch point. The control corrects the active preset by the amount of deviation between the nominal and actual position of the 2nd touch point.
Input: 0, 1, 2, 3

Q1121 CONFIRM ROTATION?

Define whether the control should use the determined misalignment:
0 : No basic rotation
1: Set the basic rotation: The control transfers the misalignment to the preset table as a basic transformation.
2: Rotate the rotary table: The control transfers the misalignment to the preset table as an offset.
Input: 0, 1, 2

Example

11 TCH PROBE 1410 PROBING ON EDGE ~	
Q1100=+0	;1ST POINT REF AXIS ~
Q1101 = + 0	;1ST POINT MINOR AXIS ~
Q1102=+0	;1ST POINT TOOL AXIS ~
Q1103=+0	;2ND POINT REF AXIS ~
Q1104=+0	;2ND POINT MINOR AXIS ~
Q1105=+0	;2ND POINT TOOL AXIS ~
Q372=+1	;PROBING DIRECTION ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+100$;CLEARANCE HEIGHT ~
Q1125=+2	;CLEAR. HEIGHT MODE ~
Q309 = + 0	;ERROR REACTION ~
Q1126=+0	;ALIGN ROTARY AXIS ~
Q1120=+0	;TRANSER POSITION ~
Q1121 =+0	;CONFIRM ROTATION

4.5 Cycle 1411 PROBING TWO CIRCLES

ISO programming
 G1411

Application

Touch probe cycle 1411 captures the centers of two holes or cylindrical studs and calculates a straight line connecting these centers. The cycle determines the rotation in the working plane based on the difference between the measured angle and the nominal angle.
If, prior to this cycle, you program Cycle 1493 EXTRUSION PROBING, then the control repeats the touch points in the selected direction and at the defined length along a straight line.
Further information: "Cycle 1493 EXTRUSION PROBING ", Page 308
The cycle also offers the following possibilities:

- If the coordinates of the touch points are not known, then you can execute the cycle in semi-automatic mode.
Further information: "Semi-automatic mode", Page 61
- Optionally, the cycle can monitor the tolerances. That way you can monitor the position and size of an object.
Further information: "Evaluation of tolerances", Page 67
- If you have already determined the exact position beforehand, then you can define the value in the cycle as the nominal position.
Further information: "Transferring the actual position", Page 69

Cycle sequence

1 The control positions the touch probe at FMAX_PROBE rapid traverse (from the touch probe table) and with positioning logic to the programmed center 1.
Further information: "Positioning logic", Page 52
2 The control positions the touch probe at FMAX_PROBE rapid traverse to the setup clearance. This clearance is the sum of Q320, SET_UP and the ball-tip radius. The set-up clearance is considered during probing in every probing direction.
3 Then the touch probe moves to the entered measuring height Q1102 at probing feed rate \mathbf{F} from the touch probe table and probes the first hole or stud center (depending on the number of probes Q423).
4 If you program CLEAR. HEIGHT MODE Q1125, then the control positions the touch probe at FMAX_PROBE back to the clearance height Q260.
5 The control positions the touch probe to the entered center or the second hole or the second stud 2.
6 The controls moves the touch probe to the entered clearance height Q1105 measures the two holes or stud centers via the probes (based on the number of probes Q423).
7 The control then positions the touch probe back to the clearance height (depending on Q1125) and stores the determined values in the following Q parameters:

Q parameter number	Meaning
Q950 to Q952	Measured circle center point 1 in the main axis, secondary axis, and tool axis
Q953 to Q955	Measured circle center point 2 in the main axis, secondary axis, and tool axis
Q964	Measured basic rotation
Q965	Measured table rotation
Q966 to Q967	Measured first and second diameters
Q980 to Q982	Measured deviation of the first circle center
Q983 to Q985	Measured deviation of the second center
Q994	Measured angle deviation of basic rotation
Q995	Measured angle deviation of table rotation
Q996 to Q997	Measured deviation of the diameters
Q183	Workpiece status - $-\mathbf{1}=$ Not defined - 0 = Good - 1 = Rework - 2 = Scrap
Q970	If you have programmed Cycle 1493 EXTRUSION PROBING: Maximum deviation starting from the first circle center
Q971	If you have programmed Cycle 1493 EXTRUSION PROBING: Maximum deviation starting from the second circle center
Q973	If you have programmed Cycle 1493 EXTRUSION PROBING: Maximum deviation starting from Diameter 1
Q974	If you have programmed Cycle 1493 EXTRUSION PROBING: Maximum deviation starting from Diameter 2

i
Operating note:

- If the hole is too small to achieve the programmed set-up clearance, a window opens. In the window, the control displays the nominal dimension of the hole, the calibrated ball-tip radius, and the achievable set-up clearance.
You have the following options:
- If there is no danger of collision, then you can press NC start to run the cycle with the values from the dialog. The active set-up clearance is reduced to the displayed value only for this object.
- You can cancel the cycle by pressing Cancel.

Notes

NOTICE

Danger of collision!

If, between the objects or touch points, you do not move to a clearance height, then there is a risk of collision.

Move to the clearance height between every object or touch point. Program Q1125 CLEAR. HEIGHT MODE so as not to be equal to -1.

NOTICE

Danger of collision!

When touch probe cycles 444 and $14 x x$ are executed, the following coordinate transformation must not be active: Cycle $\mathbf{8}$ MIRRORING, Cycle $\mathbf{1 1}$ SCALING
FACTOR, Cycle 26 AXIS-SPECIFIC SCALING and TRANS MIRROR. There is a risk of collision.

- Reset any coordinate transformations before the cycle call.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.

Note about rotary axes:

- If you determine the basic rotation in a tilted machining plane, then note the following:
- If the current coordinates of the rotary axes and the defined tilting angle (3D-ROT menu) match, then the machining plane is consistent. The control calculates the basic rotation in the input coordinate system I-CS.
- If the current coordinates of the rotary axes and the defined tilting angle (3DROT menu) do not match, then the machining plane is inconsistent. The control calculates the basic rotation in the workpiece coordinate system W-CS based on the tool axis.
- The optional machine parameter chkTiltingAxes (No. 204601) allows the machine manufacturer to define whether the control checks for a matching tilting situation. If no check is defined, then the control assumes a consistent machining plane. The basic rotation is then calculated in the I-CS.

Aligning the rotary table axes:

- The control can align the rotary table only if the measured rotation can be compensated for using a rotary table axis. This axis must be the first rotary table axis (as viewed from the workpiece).
- To align the rotary table axes (Q1126 not equal to 0), you must apply the rotation (Q1121 not equal to 0). Otherwise, the control will display an error message.

4.5.1 Cycle parameters

Parameter

Q1100 1st noml. position of ref. axis?
Absolute nominal position of the first touch point in the main axis of the working plane Input: -99999.9999...+99999.9999 or ?, -, + or @

- ?: Semi-automatic mode, see Page 61
- -, +: Evaluation of the tolerance, see Page 67
- @: Transferring the actual position, see Page 69

Q1101 1st noml. position of minor axis?
Absolute nominal position of the first touch point in the secondary axis of the working plane

Input: -99999.9999...+9999.9999 or optional input (see Q1100)

Q1102 1st nominal position tool axis?
Absolute nominal position of the first touch point in the tool axis

Input: -99999.9999...+9999.9999 or optional input (see Q1100)

Q1116 Diameter of 1st position?

Diameter of the first hole or the first stud
Input: 0...9999.9999 or optional input:

- "...-...+...": Evaluation of the tolerance, see Page 67

Q1103 2nd noml. position of ref axis?
Absolute nominal position of the second touch point in the main axis of the working plane

Input: -99999.9999...+9999.9999 or optional input (see Q1100)
Q1104 2nd noml. position of minor axis?
Absolute nominal position of the second touch point in the secondary axis of the working plane

Input: -99999.9999...+9999.9999 or optional input (see Q1100)

Q1105 2nd nominal pos. of tool axis?
Absolute nominal position of the second touch point in the tool axis of the working plane

Input: -99999.9999...+9999.9999 or optional input (see Q1100)

Help graphic

Parameter

Q1117 Diameter of 2nd position?

Diameter of the second hole or the second stud Input: 0...9999.9999 or optional input:
"...-...+...": Evaluation of the tolerance, see Page 67
Q1115 Geometry type (0-3)?
Type of object to be probed:
$\mathbf{0}$: Position 1 = hole, and position 2 = hole
1: Position 1 = stud, and position 2 = stud
2: Position 1 = hole, and position 2 = stud
3: Position $1=$ stud, and position 2 = hole
Input: 0, 1, 2, $\mathbf{3}$

Q423 Number of probes?

Number of touch points on the diameter
Input: 3, 4, 5, 6, 7, 8

Q325 Starting angle?

Angle between the main axis of the working plane and the first touch point. This value has an absolute effect.
Input: -360.000...+360.000

Q1119 Arc angular length?

Angular range in which the touch points are distributed. Input: -359.999...+360.000
Q320 Set-up clearance?
Additional distance between touch point and ball tip. Q320 is added to SET_UP (touch probe table), and is only active when the preset is probed in the touch probe axis. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Help graphic

Parameter

Q1125 Traverse to clearance height?
Positioning behavior between the touch points:
-1: Do not move to the clearance height.
0 : Move to the clearance height before and after the cycle.
Pre-positioning occurs at FMAX_PROBE.
1: Move to the clearance height before and after each object. Pre-positioning occurs at FMAX_PROBE.
2: Move to the clearance height before and after each touch point. Pre-positioning occurs at FMAX_PROBE
Input: -1, 0, +1, +2

Q309 Reaction to tolerance error?

Reaction when tolerance is exceeded:
$\mathbf{0}$: Do not interrupt program run when tolerance is exceeded. The control does not open a window with the results.
1: Interrupt program run when tolerance is exceeded. The control opens a window with the results.
2: The control does not open a window if rework is necessary. The control opens a window with results and interrupts the program if the actual position is at scrap level.
Input: 0, 1, 2

Q1126 Align rotary axes?

Position the rotary axes for inclined machining:
0 : Retain the current position of the rotary axis.
1: Automatically position the rotary axis, and orient the tool tip (MOVE). The relative position between the workpiece and touch probe remains unchanged. The control performs a compensating movement with the linear axes.
2: Automatically position the rotary axis without orienting the tool tip (TURN).
Input: 0, 1, 2

Q1120 Transfer position?

Define which touch point will be used to correct the active preset:

0: No correction

1: Correction based on the 1st touch point. The control corrects the active preset by the amount of deviation between the nominal and actual position of the 1st touch point.
2: Correction based on the second touch point. The control corrects the active preset by the amount of deviation between the nominal and actual position of the 2nd touch point.
3: Correction based on the mean touch point. The control corrects the active preset by the amount of deviation between the nominal and actual position of the 2nd touch point.
Input: 0, 1, 2, 3

Help graphic	Parameter
	Q1121 CONFIRM ROTATION?
	Define whether the control should use the determined
misalignment:	
0: No basic rotation	
	1: Set the basic rotation: The control transfers the misalign-
ment to the preset table as a basic transformation.	
2: Rotate the rotary table: The control transfers the misalign-	
ment to the preset table as an offset.	
Input: $\mathbf{0}, \mathbf{1 , 2}$	

Example

11 TCH PROBE 1411 PROBING TWO CIRCLES ~	
Q1100 $=+0$;1ST POINT REF AXIS ~
Q1101=+0	;1ST POINT MINOR AXIS ~
Q1102=+0	;1ST POINT TOOL AXIS ~
Q1116=+0	;DIAMETER 1 ~
Q1103=+0	;2ND POINT REF AXIS ~
Q1104=+0	;2ND POINT MINOR AXIS ~
Q1105=+0	;2ND POINT TOOL AXIS ~
Q1117=+0	;DIAMETER 2 ~
Q1115=+0	;GEOMETRY TYPE ~
Q423 $=+4$;NO. OF PROBE POINTS ~
Q325=+0	;STARTING ANGLE ~
Q1119 $=+360$;ANGULAR LENGTH ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+100$;CLEARANCE HEIGHT ~
Q1125=+2	;CLEAR. HEIGHT MODE ~
Q309 = +0	;ERROR REACTION ~
Q1126=+0	;ALIGN ROTARY AXIS ~
Q1120 $=+0$;TRANSER POSITION ~
Q1121 $=+0$;CONFIRM ROTATION

4.6 Cycle 1412 INCLINED EDGE PROBING

ISO programming

 G1412
Application

Touch probe cycle 1412 allows you to determine workpiece misalignment by probing two points on an inclined edge. The cycle determines the rotation based on the difference between the measured angle and the nominal angle.
If, prior to this cycle, you program Cycle 1493 EXTRUSION PROBING, then the control repeats the touch points in the selected direction and at the defined length along a straight line.
Further information: "Cycle 1493 EXTRUSION PROBING ", Page 308
The cycle also offers the following possibilities:

- If the coordinates of the touch points are not known, then you can execute the cycle in semi-automatic mode.
Further information: "Semi-automatic mode", Page 61
- If you have already determined the exact position beforehand, then you can define the value in the cycle as the nominal position.
Further information: "Transferring the actual position", Page 69
Cycle sequence

1 The control positions the touch probe at FMAX_PROBE rapid traverse (from the touch probe table) and with positioning logic to the programmed touch point 1.
Further information: "Positioning logic", Page 52
2 The control positions the touch probe at FMAX_PROBE rapid traverse to the setup clearance. This clearance is the sum of Q320, SET_UP and the ball-tip radius. The set-up clearance is considered during probing in every probing direction.
3 The control then moves the touch probe to the entered measuring height Q1102 and performs the first probing procedure at probing speed \mathbf{F} from the touch probe table.
4 The control retracts the touch probe by the amount of the set-up clearance in the direction opposite to the direction of probing.
5 If you program CLEAR. HEIGHT MODE Q1125, then the control positions the touch probe at FMAX_PROBE back to the clearance height Q260.
6 The touch probe then moves to the touch point 2 and probes again.
7 The control then positions the touch probe back to the clearance height (depending on Q1125) and stores the determined values in the following Q parameters:

Q parameter number	Meaning
Q950 to Q952	Measured position 1 in the main axis, secondary axis, and tool axis
Q953 to Q955	Measured position 2 in the main axis, secondary axis, and tool axis
Q964	Measured basic rotation
Q965	Measured table rotation
Q980 to Q982	Measured deviation from the first touch point
Q983 to Q985	Measured deviation from the second touch point
Q994	Measured angle deviation of basic rotation
Q995	Measured angle deviation of table rotation
Q183	$\begin{aligned} & \text { Workpiece status } \\ & \text { - } \begin{array}{l} \text { = }=\text { Not defined } \\ \text { - }=\text { Good } \\ -1=\text { Rework } \\ -1 \\ \mathbf{2}=\text { Scrap } \end{array} \end{aligned}$
Q970	If you have programmed Cycle 1493 EXTRUSION PROBING before: Maximum deviation starting from the first touch point
Q971	If you have programmed Cycle 1493 EXTRUSION PROBING before: Maximum deviation starting from the second touch point

Notes

NOTICE
Danger of collision!
If, between the objects or touch points, you do not move to a clearance height,
then there is a risk of collision.
Move to the clearance height between every object or touch point. Program
Q1125 CLEAR. HEIGHT MODE so as not to be equal to $\mathbf{- 1}$.

NOTICE

Danger of collision!

When touch probe cycles 444 and 14xx are executed, the following coordinate transformation must not be active: Cycle $\mathbf{8}$ MIRRORING, Cycle 11 SCALING
FACTOR, Cycle 26 AXIS-SPECIFIC SCALING and TRANS MIRROR. There is a risk of collision.

- Reset any coordinate transformations before the cycle call.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- If you program a tolerance in Q1100, Q1101, or Q1102, then this tolerance applies to the programmed nominal positions instead of to the touch points along the inclined edge. Use the TOLERANCE QS400 parameter to program a tolerance for the surface normal along the inclined edge.

Note about rotary axes:

- If you determine the basic rotation in a tilted machining plane, then note the following:
- If the current coordinates of the rotary axes and the defined tilting angle (3D-ROT menu) match, then the machining plane is consistent. The control calculates the basic rotation in the input coordinate system I-CS.
- If the current coordinates of the rotary axes and the defined tilting angle (3DROT menu) do not match, then the machining plane is inconsistent. The control calculates the basic rotation in the workpiece coordinate system W-CS based on the tool axis.
- The optional machine parameter chkTiltingAxes (No. 204601) allows the machine manufacturer to define whether the control checks for a matching tilting situation. If no check is defined, then the control assumes a consistent machining plane. The basic rotation is then calculated in the I-CS.

Aligning the rotary table axes:

- The control can align the rotary table only if the measured rotation can be compensated for using a rotary table axis. This axis must be the first rotary table axis (as viewed from the workpiece).
- To align the rotary table axes (Q1126 not equal to 0), you must apply the rotation (Q1121 not equal to 0). Otherwise, the control will display an error message.

4.6.1 Cycle parameters

Parameter

Q1100 1st noml. position of ref. axis?
Absolute nominal position at which the inclined edge begins in the main axis.

Input: -99999.9999...+99999.9999 or ?, +, - or @

- ?: Semi-automatic mode, see Page 61
- -, +: Evaluation of the tolerance, see Page 67
- @: Transferring the actual position, see Page 69

Q1101 1st noml. position of minor axis?
Absolute nominal position at which the inclined edge begins in the secondary axis.
Input: -99999.9999...+99999.9999 or optional input (see Q1100)

Q1102 1st nominal position tool axis?

Absolute nominal position of the first touch point in the tool axis
Input: -99999.9999...+9999.9999 or optional input (see Q1100)

QS400 Tolerance value?

Tolerance band monitored by the cycle. The tolerance defines the deviation permitted for the surface normals along the inclined edge. The control determines this deviation using the nominal coordinate and the actual coordinate of the workpiece.
Examples:

- QS400 ="0.4-0.1": Upper dimension = Nominal coordinate +0.4 ; Lower dimension = Nominal coordinate -0.1 . The following tolerance band thus results for the cycle: "nominal coordinate +0.4 " to "nominal coordinate $0.1^{\prime \prime}$
- QS400 =" ": No monitoring of the tolerance.
- QS400 ="0": No monitoring of the tolerance.
- QS400 ="0.1+0.1" : No monitoring of the tolerance.

Input: Max. $\mathbf{2 5 5}$ characters

Parameter

Q1130 Nominal angle for 1st line?
Nominal angle of the first straight line
Input: -180...+180
Q1131 Probing direction for 1st line?
Probing direction for the first edge:
+1 : Rotates the probing direction by $+90^{\circ}$ to the nominal angle Q1130 and probes at right angles to the nominal edge.
-1: Rotates the probing direction by -90° to the nominal angle Q1130 and probes at right angles to the nominal edge.
Input: -1, +1

Q1132 First distance on 1st line?

Distance between the beginning of the inclined edge and the first touch point. This value has an incremental effect.
Input: -999.999...+999.999
Q1133 Second distance on 1st line?
Distance between the beginning of the inclined edge and the second touch point. This value has an incremental effect.
Input: -999.999...+999.999
Q1139 Plane for object (1-3)?
Plane in which the control interprets the nominal angle Q1130 and the probing direction Q1131.
1: YZ plane
2: ZX plane
3: XY plane
Input: 1, 2, 3

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0... 99999.9999 or PREDEF

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Q1125 Traverse to clearance height?

Positioning behavior between the touch points:
-1: Do not move to the clearance height.
$\mathbf{0}$: Move to the clearance height before and after the cycle.
Pre-positioning occurs at FMAX_PROBE.
1: Move to the clearance height before and after each object.
Pre-positioning occurs at FMAX_PROBE.
2: Move to the clearance height before and after each touch point. Pre-positioning occurs at FMAX_PROBE
Input: -1, 0, +1, +2

Help graphic

Parameter

Q309 Reaction to tolerance error?

Reaction when tolerance is exceeded:
0 : Do not interrupt program run when tolerance is exceeded. The control does not open a window with the results.
1: Interrupt program run when tolerance is exceeded. The control opens a window with the results.
2: The control does not open a window if rework is necessary. The control opens a window with results and interrupts the program if the actual position is at scrap level.
Input: 0, 1, 2
Q1126 Align rotary axes?
Position the rotary axes for inclined machining:
0 : Retain the current position of the rotary axis.
1: Automatically position the rotary axis, and orient the tool tip (MOVE). The relative position between the workpiece and touch probe remains unchanged. The control performs a compensating movement with the linear axes.
1: Automatically position the rotary axis, and orient the tool tip (MOVE). The relative position between the workpiece and touch probe remains unchanged. The control performs a compensating movement with the linear axes.

Input: 0, 1, 2

Q1120 Transfer position?

Define which touch point will be used to correct the active preset:

0: No correction

1: Correction based on the 1st touch point. The control corrects the active preset by the amount of deviation between the nominal and actual position of the 1st touch point.
2: Correction based on the second touch point. The control corrects the active preset by the amount of deviation between the nominal and actual position of the 2nd touch point.
3: Correction based on the mean touch point. The control corrects the active preset by the amount of deviation between the nominal and actual position of the 2nd touch point.
Input: 0, 1, 2, $\mathbf{3}$

Help graphic	Parameter
	Q1121 CONFIRM ROTATION?
	Define whether the control should use the determined
misalignment:	
O: No basic rotation	
	1: Set the basic rotation: The control transfers the misalign-
ment to the preset table as a basic transformation.	
	2: Rotate the rotary table: The control transfers the misalign-
ment to the preset table as an offset.	
Input: $\mathbf{0 , 1 , 2}$	

Example

Q1100 $=+20$;1ST POINT REF AXIS ~
Q1101 $=+0$;1ST POINT MINOR AXIS ~
Q1102=-5	;1ST POINT TOOL AXIS ~
QS400="+0.1-0.1"	;TOLERANCE ~
Q1130 $=+30$;NOMINAL ANGLE, 1ST LINE ~
Q1131 $=+1$;PROBE DIRECTION, 1ST LINE ~
Q1132=+10	;FIRST DISTANCE, 1ST LINE ~
Q1133 $=+20$;SECOND DISTANCE, 1ST LINE ~
Q1139 = + 3	;OBJECT PLANE ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+100$;CLEARANCE HEIGHT ~
Q1125=+2	;CLEAR. HEIGHT MODE ~
Q309 = + 0	;ERROR REACTION ~
Q1126=+0	;ALIGN ROTARY AXIS ~
Q1120 $=+0$;TRANSER POSITION ~
Q1121 $=+0$;CONFIRM ROTATION

4.7 Cycle 1416 INTERSECTION PROBING

ISO programming

 G1416
Application

Touch probe cycle 1416 allows you to determine the intersection of two edges. You can execute the cycle in all three machining planes $X Y, X Z$ and $Y Z$. The cycle requires a total of four touch points and two positions per edge. You can select the sequence of the edges as desired.
If, prior to this cycle, you program Cycle 1493 EXTRUSION PROBING, then the control repeats the touch points in the selected direction and at the defined length along a straight line.
Further information: "Cycle 1493 EXTRUSION PROBING ", Page 308
The cycle also offers the following possibilities:

- If the coordinates of the touch points are not known, then you can execute the cycle in semi-automatic mode.
Further information: "Semi-automatic mode", Page 61
- If you have already determined the exact position beforehand, then you can define the value in the cycle as the nominal position.
Further information: "Transferring the actual position", Page 69
Cycle sequence

1 The control positions the touch probe at FMAX_PROBE rapid traverse (from the touch probe table) and with positioning logic to the programmed touch point 1.
Further information: "Positioning logic", Page 52
2 The control positions the touch probe at FMAX_PROBE rapid traverse to the setup clearance. This clearance is the sum of Q320, SET_UP and the ball-tip radius. The set-up clearance is considered during probing in every probing direction.
3 The control then moves the touch probe to the entered measuring height Q1102 and performs the first probing procedure at probing speed \mathbf{F} from the touch probe table.
4 If you program CLEAR. HEIGHT MODE Q1125, then the control positions the touch probe at FMAX_PROBE back to the clearance height Q260.
5 The control positions the touch probe to the next touch point.
6 The control positions the touch probe to the entered measuring height Q1102 and measures the next touch point.
7 The control repeats Steps 4 to 6 until all four touch points are measured.
8 The control saves the measured positions in the following Q parameters. If Q1120 TRANSER POSITION is defined with the value 1 , then the control writes the measured position to the active row of the preset table.

Q parameter number	Meaning
Q950 to Q952	Measured position 1 in the main axis, secondary axis and tool axis
Q953 to Q955	Measured position 2 in the main axis, secondary axis and tool axis
Q956 to Q958	Measured position 3 in the main axis, secondary axis and tool axis
Q959 to Q960	Measured intersection in the main axis and secondary axis
Q964	Measured basic rotation
Q965	Measured table rotation
Q980 to Q982	Measured deviation of the first touch point in the main axis, auxiliary axis and tool axis
Q983 to Q985	Measured deviation of the second touch point in the main axis, auxiliary axis and tool axis
Q986 to Q988	Measured deviation of the third touch point in the main axis, auxiliary axis and tool axis
Q989 to Q990	Measured deviations of the intersection in the main axis and secondary axis
Q994	Measured angle deviation of basic rotation
Q995	Measured angle deviation of table rotation
Q183	Workpiece status - $-1=$ Not defined - 0 = Good - 1 = Rework - 2 = Scrap
Q970	If you have previously programmed Cycle 1493 EXTRUSION PROBING:
	Maximum deviation from the 1st touch point
Q971	If you have previously programmed Cycle 1493 EXTRUSION PROBING:
	Maximum deviation from the 2nd touch point
Q972	If you have previously programmed Cycle 1493 EXTRUSION PROBING:
	Maximum deviation from the 3rd touch point

Notes

NOTICE

Danger of collision!

If, between the objects or touch points, you do not move to a clearance height, then there is a risk of collision.

Move to the clearance height between every object or touch point. Program Q1125 CLEAR. HEIGHT MODE so as not to be equal to -1.

NOTICE

Danger of collision!

When touch probe cycles 444 and $14 x x$ are executed, the following coordinate transformation must not be active: Cycle $\mathbf{8}$ MIRRORING, Cycle 11 SCALING
FACTOR, Cycle 26 AXIS-SPECIFIC SCALING and TRANS MIRROR. There is a risk of collision.

- Reset any coordinate transformations before the cycle call.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.

Note about rotary axes:

- If you determine the basic rotation in a tilted machining plane, then note the following:
- If the current coordinates of the rotary axes and the defined tilting angle (3D-ROT menu) match, then the machining plane is consistent. The control calculates the basic rotation in the input coordinate system I-CS.
- If the current coordinates of the rotary axes and the defined tilting angle (3DROT menu) do not match, then the machining plane is inconsistent. The control calculates the basic rotation in the workpiece coordinate system W-CS based on the tool axis.
- The optional machine parameter chkTiltingAxes (No. 204601) allows the machine manufacturer to define whether the control checks for a matching tilting situation. If no check is defined, then the control assumes a consistent machining plane. The basic rotation is then calculated in the I-CS.

Aligning the rotary table axes:

- The control can align the rotary table only if the measured rotation can be compensated for using a rotary table axis. This axis must be the first rotary table axis (as viewed from the workpiece).
- To align the rotary table axes (Q1126 not equal to 0), you must apply the rotation (Q1121 not equal to 0). Otherwise, the control will display an error message.

4.7.1 Cycle parameters

Parameter

Q1100 1st noml. position of ref. axis?
Absolute nominal position in the main axis at which the two edges intersect.
Input: -99999.9999...+99999.9999 or ? or @

- ?: Semi-automatic mode, see Page 61
- @: Transferring the actual position, see Page 69

Q1101 1st noml. position of minor axis?

Absolute nominal position in the secondary axis at which the two edges intersect.
Input: -99999.9999...+99999.9999 or optional input (see Q1100)

Q1102 1st nominal position tool axis?
Absolute nominal position of the touch points in the tool axis
Input: -99999.9999...+9999.9999 Optional input (see Q1100)

QS400 Tolerance value?
Tolerance band monitored by the cycle. The tolerance defines the permissible deviation of the surface normal along the first edge. The control determines the deviation using the nominal coordinates and the actual coordinates of the part.

Examples:

- QS400 ="0.4-0.1": Upper dimension = nominal coordinate +0.4; lower dimension = nominal coordinate -0.1 . The following tolerance band thus results for the cycle: "nominal coordinate +0.4 " to "nominal coordinate 0.1"
- QS400 =" ": No monitoring of the tolerance.
- QS400 ="0": No monitoring of the tolerance.
- QS400 = "0.1+0.1" : No monitoring of the tolerance.

Input: Max. $\mathbf{2 5 5}$ characters

Parameter

Q1130 Nominal angle for 1st line?
Nominal angle of the first straight line
Input: -180...+180
Q1131 Probing direction for 1st line?
Probing direction for the first edge:
+1: Rotates the probing direction by $+90^{\circ}$ to the nominal angle Q1130 and probes at right angles to the nominal edge.
-1: Rotates the probing direction by -90° to the nominal angle Q1130 and probes at right angles to the nominal edge.
Input: -1, +1

Q1132 First distance on 1st line?

Distance between the intersection and the first touch point on the first edge. This value has an incremental effect.
Input: -999.999...+999.999
Q1133 Second distance on 1st line?
Distance between the intersection and the second touch point on the first edge. This value has an incremental effect.
Input: -999.999...+999.999

QS401 Tolerance value 2?

Tolerance band monitored by the cycle. The tolerance defines the permissible deviation of the surface normals along the second edge. The control determines this deviation using the nominal coordinate and the actual coordinate of the workpiece.
Input: Max. $\mathbf{2 5 5}$ characters

Q1134 Nominal angle for 2nd line?

Nominal angle of the first straight line
Input: -180...+180

Q1135 Probing direction for 2nd line?

Probing direction for the second edge:
+1: Rotates the probing direction by $+90^{\circ}$ relative to the nominal angle Q1134 and probes at right angles relative to the nominal edge.
-1: Rotates the probing direction by -90° relative to the nominal angle Q1134, and probes at right angles relative to the nominal edge.
Input: -1, +1

Q1136 First distance on 2nd line?

Distance between the intersection and the first touch point on the second edge. This value has an incremental effect.
Input: -999.999...+999.999

Q1137 Second distance on 2nd line?

Distance between the intersection and the second touch point on the second edge. This value has an incremental effect.
Input: -999.999...+999.999

Help graphic

Parameter

Q1139 Plane for object (1-3)?
Plane in which the control interprets the nominal angle
Q1130 and Q1134, as well as the probing direction Q1131 and Q1135.
1: YZ plane
2: ZX plane
3: XY plane
Input: 1, 2, 3

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Q1125 Traverse to clearance height?

Positioning behavior between the touch points:

-1: Do not move to the clearance height.
0 : Move to the clearance height before and after the cycle. Pre-positioning occurs at FMAX_PROBE.
1: Move to the clearance height before and after each object. Pre-positioning occurs at FMAX_PROBE.
2: Move to the clearance height before and after each touch point. Pre-positioning occurs at FMAX_PROBE
Input: -1, 0, +1, +2
Q309 Reaction to tolerance error?
Reaction when tolerance is exceeded:
0 : Do not interrupt program run when tolerance is exceeded. The control does not open a window with the results.
1: Interrupt program run when tolerance is exceeded. The control opens a window with the results.
2: The control does not open a window if rework is necessary. The control opens a window with results and interrupts the program if the actual position is at scrap level.
Input: 0, 1, 2

Help graphic

 ParameterQ1126 Align rotary axes?
Position the rotary axes for inclined machining:
0 : Retain the current position of the rotary axis.
1: Automatically position the rotary axis, and orient the tool tip (MOVE). The relative position between the workpiece and touch probe remains unchanged. The control performs a compensating movement with the linear axes.
2: Automatically position the rotary axis without orienting the tool tip (TURN).
Input: 0, 1, 2

Q1120 Transfer position?

Define which touch point will be used to correct the active preset:
0: No correction
1: Correction of the active preset based on the point of intersection. The control corrects the active preset by the amount of the deviation of the nominal and actual position of the intersection.
Input: 0, 1

Q1121 CONFIRM ROTATION?

Define whether the control should use the determined misalignment:
0 : No basic rotation
1: Set the basic rotation: The control transfers the misalignment of the first edge to the preset table as a basic transformation.
2: Execute rotary table rotation: The control transfers the misalignment of the first edge to the preset table as an offset.
3: Set the basic rotation: The control transfers the misalignment of the second edge to the preset table as a basic transformation.
4: Execute rotary table rotation: The control transfers the misalignment of the second edge to the preset table as an offset.
5: Set basic rotation: The control transfers the misalignment from the mean deviations of both edges to the preset table as a basic transformation.
6: Execute rotary table rotation: The control transfers the misalignment from the mean deviations of both edges to the preset table as an offset.
Input: 0, 1, 2, 3, 4, 5, 6

Example

11 TCH PROBE 1416 INTERSECTION PROBING ~	
Q1100=+50	;1ST POINT REF AXIS ~
Q1101 $=+10$;1ST POINT MINOR AXIS ~
Q1102=-5	;1ST POINT TOOL AXIS ~
QS400="0"	;TOLERANCE ~
Q1130 $=+45$;NOMINAL ANGLE, 1ST LINE ~
Q1131 $=+1$;PROBE DIRECTION, 1ST LINE ~
Q1132=+10	;FIRST DISTANCE, 1ST LINE ~
Q1133 $=+25$;SECOND DISTANCE, 1ST LINE ~
QS401="0"	;TOLERANZ 2 ~
Q1134=+135	;NOMINAL ANGLE, 2ND LINE ~
Q1135 $=-1$;PROBE DIRECTION, 2ND LINE ~
Q1136=+10	;FIRST DISTANCE, 2ND LINE ~
Q1137 $=+25$;SECOND DISTANCE, 2ND LINE ~
Q1139 $=+3$;OBJECT PLANE ~
Q320=+0	;SET-UP CLEARANCE ~
Q260 $=+100$;CLEARANCE HEIGHT ~
Q1125 $=+2$;CLEAR. HEIGHT MODE ~
Q309 $=+0$;ERROR REACTION ~
Q1126=+0	;ALIGN ROTARY AXIS ~
Q1120 $=+0$;TRANSER POSITION ~
Q1121 $=+0$;CONFIRM ROTATION

4.8 Touch probe cycles 4xx: fundamentals

4.8.1 Characteristics common to all touch probe cycles for measuring workpiece misalignment

In Cycles 400, 401, and 402, you can use parameter Q307 Preset value for rotation angle to define whether the measurement result will be corrected by a known angle a (see figure). This enables you to measure the basic rotation against any straight line 1 of the workpiece and to establish the reference to the actual 0° direction 2.
i These cycles do not work with 3-D ROT! In such a case, use Cycles 14xx. Further information: "Fundamentals of touch probe cycles 14xx", Page 60

4.9 Cycle 400 BASIC ROTATION

ISO programming

G400

Application

Touch probe cycle 400 determines a workpiece misalignment by measuring two points, which must lie on a straight line. With the basic rotation function, the control compensates the measured value.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from FMAX column) to the programmed touch point 1. The control offsets the touch probe by the set-up clearance in the direction opposite the defined traverse direction
Further information: "Positioning logic", Page 52
2 Next, the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (\mathbf{F} column).
3 The touch probe then moves to the next touch point 2 and probes again.
4 The control returns the touch probe to the clearance height and performs the basic rotation it determined.

Notes

NOTICE

Danger of collision!

When running touch probe cycles $\mathbf{4 0 0}$ to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!
The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle $\mathbf{8}$ MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.

- Reset any coordinate transformations beforehand.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control will reset an active basic rotation at the beginning of the cycle.

Note on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.

4.9.1 Cycle parameters

Parameter

Q263 1st measuring point in 1st axis?

Coordinate of the first touch point in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q264 1st measuring point in 2nd axis?
Coordinate of the first touch point in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q265 2nd measuring point in 1st axis?
Coordinate of the second touch point in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q266 2nd measuring point in 2nd axis?
Coordinate of the second touch point in the secondary axis of the working plane. This value has an absolute effect. Input: -99999.9999...+99999.9999
Q272 Measuring axis ($1=1$ st / 2=2nd)?
Axis in the working plane in which the measurement will be performed:
1: Main axis = measuring axis
2: Secondary axis = measuring axis
Input: 1, 2
Q267 Trav. direction 1 (+1=+/-1=-)?
Direction in which the touch probe will approach the workpiece:
-1: Negative traverse direction
+1: Positive traverse direction
Input: -1, +1

Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Help graphic	Parameter
Q301 Move to clearance height (0/1)?	
Specify how the touch probe moves between measuring	
points:	
0: Move at measuring height between measuring points	
1: Move at clearance height between measuring points	
Input: $\mathbf{0 , 1}$ Q307 Preset value for rotation angle If the misalignment is measured relative to any straight line other than the main axis, enter the angle of this reference line. For the basic rotation, the control will then calculate the difference between the value measured and the angle of the reference line. This value has an absolute effect. Input: $\mathbf{- 3 6 0 . 0 0 0 . . . + 3 6 0 . 0 0 0 ~}$	

Q305 Preset number in table?

Specify the number of the row in the preset table in which the control will save the calculated basic rotation. If you enter Q305 $=0$, the control automatically stores the calculated basic rotation in the ROT menu of the Manual Operation mode.
Input: 0... 99999

Example

11 TCH PROBE 400 BASIC ROTATION ~	
Q263 $=+10$;1ST POINT 1ST AXIS ~
Q264 $=+3.5$;1ST POINT 2ND AXIS ~
Q265 $=+25$;2ND POINT 1ST AXIS ~
Q266=+2	;2ND PNT IN 2ND AXIS ~
Q272=+2	;MEASURING AXIS ~
Q267=+1	;TRAVERSE DIRECTION ~
Q261 $=-5$;MEASURING HEIGHT ~
Q320 $=+0$;SET-UP CLEARANCE ~
$\mathrm{Q} 260=+20$;CLEARANCE HEIGHT ~
Q301 $=+0$;MOVE TO CLEARANCE ~
Q307=+0	;PRESET ROTATION ANG. ~
Q305 $=+0$;NUMBER IN TABLE

4.10 Cycle 401 ROT OF 2 HOLES

ISO programming

G401

Application

Touch probe cycle 401 measures the center points of two holes. The control then calculates the angle between the main axis of the working plane and the line connecting the hole center points. With the basic rotation function, the control compensates for the calculated value. As an alternative, you can also compensate for the determined misalignment by rotating the rotary table.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from FMAX column) to the programmed center of the first hole 1.
Further information: "Positioning logic", Page 52
2 Then the probe moves to the entered measuring height and probes four points to determine the first hole center point.
3 The touch probe returns to the clearance height and then to the position entered as center of the second hole 2 .
4 The control moves the touch probe to the entered measuring height and probes four points to determine the second hole center point.
5 Then the control returns the touch probe to the clearance height and performs the basic rotation it determined.

Notes

NOTICE

Danger of collision!

When running touch probe cycles $\mathbf{4 0 0}$ to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle $\mathbf{2 6}$ AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control will reset an active basic rotation at the beginning of the cycle.
- If you want to compensate the misalignment by rotating the rotary table, the control will automatically use the following rotary axes:
- C for tool axis Z
- B for tool axis Y
- A for tool axis X

Note on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.

4.10.1 Cycle parameters

Q269 1st hole: center in 2nd axis?

Center of the first hole in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q270 2nd hole: center in 1st axis?
Center of the second hole in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q271 2nd hole: center in 2nd axis?
Center of the second hole in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Q307 Preset value for rotation angle

If the misalignment is measured relative to any straight line other than the main axis, enter the angle of this reference line. For the basic rotation, the control will then calculate the difference between the value measured and the angle of the reference line. This value has an absolute effect.
Input: -360.000...+360.000

Help graphic	Parameter
	Q305 Number in table?
	Enter the number of a row in the preset table. The control will make the corresponding entry in the following row:
	Q305 = 0: The rotary axis will be zeroed in row 0 of the preset table. The control will make an entry in the OFFSET column. (Example: For tool axis Z, the entry is made in C_OFFS). In addition, all other values (X, Y, Z, etc.) of the currently active preset will be transferred to row 0 of the preset table. In addition, the control activates the preset from row 0 .
	Q305 > 0: The rotary axis will be zeroed in the preset table row specified here. The control will make an entry in the corresponding OFFSET column of the preset table. (Example: For tool axis Z, the entry is made in C_OFFS).
	Q305 depends on the following parameters:
	Q337 = 0 and, at the same time, Q402 = 0: A basic rotation will be set in the row specified in Q305. (Example: For tool axis Z , the basic rotation is entered in the SPC column).
	Q337 = 0 and, at the same time, $\mathbf{Q 4 0 2}=1$: The parameter Q305 is not effective.
	Q337 = 1: The parameter Q305 has the effect described above.
	Input: 0... 99999

Q402 Basic rotation/alignment (0/1)
Define whether the control will set the determined misalignment as a basic rotation or will compensate it by rotating the rotary table:
0: Set basic rotation: The control saves the basic rotation (example: for tool axis Z, the control uses column SPC)
1: Rotate the rotary table: An entry will be made in the corresponding Offset column of the preset table (example: for tool axis Z, the control uses the C_OFFS column); in addition, the corresponding axis will be rotated
Input: 0, 1

Q337 Set to zero after alignment?

Define whether the control will set the position display of the corresponding rotary axis to 0 after the alignment:
$\mathbf{0}$: The position display is not set to 0 after the alignment
1: After the alignment, the position display is set to 0 , provided you have defined $\mathbf{Q 4 0 2}=1$
Input: 0, 1

Example

11 TCH PROBE 401 ROT OF 2 HOLES ~	
Q268 $=-37$;1ST CENTER 1ST AXIS ~
Q269 $=+12$;1ST CENTER 2ND AXIS ~
Q270 $=+75$;2ND CENTER 1ST AXIS ~
Q271 $=+20$;MEASURING HEIGHT ~
Q261 $=-5$;CLEARANCE HEIGHT ~
Q260 $=+20$;PRESET ROTATION ANG. \sim
Q307 $=+0$;NUMBER IN TABLE \sim
Q305 $=+0$;COMPENSATION \sim
Q402 $=+0$;SET TO ZERO
Q337 $=+0$	

4.11 Cycle 402 ROT OF 2 STUDS

ISO programming

G402

Application

Touch probe cycle $\mathbf{4 0 2}$ measures the center points of two cylindrical studs. The control then calculates the angle between the main axis of the working plane and the line connecting the stud center points. With the basic rotation function, the control compensates the calculated value. As an alternative, you can also compensate the determined misalignment by rotating the rotary table.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from FMAX column) to touch point 1 of the first stud.
Further information: "Positioning logic", Page 52
2 Then the touch probe moves to the entered measuring height 1 and probes four points to find the center of the first stud. The touch probe moves along a circular arc between the touch points, each of which is offset by 90°.
3 The touch probe returns to the clearance height and then moves to the touch point 5 of the second stud.
4 The control moves the touch probe to the entered measuring height 2 and probes four points to determine the center of the second stud.
5 Then the control returns the touch probe to the clearance height and performs the calculated basic rotation.

Notes

NOTICE

Danger of collision!

When running touch probe cycles $\mathbf{4 0 0}$ to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control will reset an active basic rotation at the beginning of the cycle.
- If you want to compensate the misalignment by rotating the rotary table, the control will automatically use the following rotary axes:
- C for tool axis Z
- B for tool axis Y
- A for tool axis X

Note on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.

4.11.1 Cycle parameters

Parameter

Q268 1st stud: center in 1st axis?
Center of the first stud in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q269 1st stud: center in 2nd axis?
Center of the first stud in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q313 Diameter of stud 1?
Approximate diameter of the first stud. Enter a value that is more likely to be too large than too small.
Input: 0...99999.9999
Q261 Meas. height stud 1 in TS axis?
Coordinate of the ball tip center (= touch point) in the touch probe axis at which stud 1 will be measured. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q270 2nd stud: center in 1st axis?
Center of the second stud in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q271 2nd stud: center in 2nd axis?
Center of the second stud in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q314 Diameter of stud 2?

Approximate diameter of the second stud. Enter a value that is more likely to be too large than too small.
Input: 0... 99999.9999

Q315 Meas. height stud 2 in TS axis?

Coordinate of the ball tip center (= touch point) in the touch probe axis at which stud 2 will be measured. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Help graphic

Parameter

Q301 Move to clearance height (0/1)?
Specify how the touch probe moves between measuring points:
0 : Move at measuring height between measuring points
1: Move at clearance height between measuring points
Input: 0, 1

Q307 Preset value for rotation angle

If the misalignment is measured relative to any straight line other than the main axis, enter the angle of this reference line. For the basic rotation, the control will then calculate the difference between the value measured and the angle of the reference line. This value has an absolute effect.
Input: - $\mathbf{3 6 0 . 0 0 0} \ldots+360.000$

Q305 Number in table?

Enter the number of a row in the preset table. The control will make the corresponding entry in the following row:
Q305 = 0: The rotary axis will be zeroed in row 0 of the preset table. The control will make an entry in the OFFSET column. (Example: For tool axis Z, the entry is made in C_OFFS). In addition, all other values ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, etc.) of the currently active preset will be transferred to row 0 of the preset table. In addition, the control activates the preset from row 0 .
Q305 > 0: The rotary axis will be zeroed in the preset table row specified here. The control will make an entry in the corresponding OFFSET column of the preset table. (Example: For tool axis Z, the entry is made in C_OFFS).

Q305 depends on the following parameters:

- Q337 = 0 and, at the same time, $\mathbf{Q 4 0 2}=0$: A basic rotation will be set in the row specified in Q305.
(Example: For tool axis Z, the basic rotation is entered in the SPC column).
- Q337 = 0 and, at the same time, $\mathbf{Q 4 0 2}=1$: The parameter Q305 is not effective.
- Q337 = 1: The parameter Q305 has the effect described above.
Input: 0... 99999

Help graphic	Parameter
	Q402 Basic rotation/alignment (0/1)
	Define whether the control will set the determined misalign-
ment as a basic rotation or will compensate it by rotating the	
rotary table:	
	0: Set basic rotation: The control saves the basic rotation
	(example: for tool axis Z, the control uses column SPC)
	1: Rotate the rotary table: An entry will be made in the corre-
sponding Offset column of the preset table (example: for	
tool axis Z, the control uses the \mathbf{C} _OFFS column); in addition,	
	the corresponding axis will be rotated
	Input: $\mathbf{0 , 1}$

Q337 Set to zero after alignment?

Define whether the control will set the position display of the corresponding rotary axis to 0 after the alignment:
$\mathbf{0}$: The position display is not set to 0 after the alignment
1: After the alignment, the position display is set to 0 , provided you have defined Q402 = 1

Input: 0, 1

Example

11 TCH PROBE 402 ROT OF 2 STUDS ~	
Q268=-37	;1ST CENTER 1ST AXIS ~
Q269 = + 12	;1ST CENTER 2ND AXIS ~
Q313=+60	;DIAMETER OF STUD 1 ~
Q261 $=-5$;MEAS. HEIGHT STUD 1 ~
Q270 $=+75$;2ND CENTER 1ST AXIS ~
Q271 $=+20$;2ND CENTER 2ND AXIS ~
Q314=+60	;DIAMETER OF STUD 2 ~
Q315 =-5	;MEAS. HEIGHT STUD 2 ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+20$;CLEARANCE HEIGHT ~
Q301 $=+0$;MOVE TO CLEARANCE ~
Q307 $=+0$;PRESET ROTATION ANG. ~
Q305 $=+0$;NUMBER IN TABLE ~
Q402=+0	;COMPENSATION ~
Q337=+0	;SET TO ZERO

4.12 Cycle 403 ROT IN ROTARY AXIS

ISO programming

G403

Application

Touch probe cycle 403 determines a workpiece misalignment by measuring two points, which must lie on a straight line. The control compensates for the determined misalignment by rotating the A, B, or C axis. The workpiece can be clamped in any position on the rotary table.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) to the programmed touch point 1. The control offsets the touch probe by the set-up clearance in the direction opposite the defined traverse direction
Further information: "Positioning logic", Page 52
2 Next, the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (\mathbf{F} column).
3 The touch probe then moves to the next touch point 2 and probes again.
4 The control returns the touch probe to the clearance height and rotates the rotary axis, which was defined in the cycle, by the measured value. Optionally, you can specify whether the control is to set the determined rotation angle to 0 in the preset table or in the datum table.

Notes

NOTICE

Danger of collision!

If the control positions the rotary axis automatically, a collision might occur.

- Check for possible collisions between the tool and any elements positioned on the table
- Select the clearance height to prevent collisions

NOTICE

Danger of collision!

If you set parameter Q312 Axis for compensating movement? to 0, then the cycle will automatically determine the rotary axis to be aligned (recommended setting). When doing so, it determines an angle that depends on the sequence of the touch points. The measured angle goes from the first to the second touch point. If you select the A, B or C axis as compensation axis in parameter $Q 312$, the cycle determines the angle, regardless of the sequence of the touch points. The calculated angle is in the range of -90° to $+90^{\circ}$. There is a risk of collision!

- After alignment, check the position of the rotary axis.

NOTICE

Danger of collision!

When running touch probe cycles $\mathbf{4 0 0}$ to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control will reset an active basic rotation at the beginning of the cycle.

4.12.1 Cycle parameters

Parameter

Q263 1st measuring point in 1st axis?

Coordinate of the first touch point in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q264 1st measuring point in 2nd axis?
Coordinate of the first touch point in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q265 2nd measuring point in 1st axis?
Coordinate of the second touch point in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q266 2nd measuring point in 2nd axis?
Coordinate of the second touch point in the secondary axis of the working plane. This value has an absolute effect. Input: -99999.9999...+99999.9999
Q272 Meas. axis (1/2/3, 1=ref. axis)?
Axis in which the measurement will be made:
1: Main axis = measuring axis
2: Secondary axis = measuring axis
3: Touch probe axis = measuring axis
Input: 1, 2, 3
Q267 Trav. direction 1 (+1=+/-1=-)?
Direction in which the touch probe will approach the workpiece:
-1: Negative traverse direction
+1: Positive traverse direction
Input: -1, +1

Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.

Input: 0...99999.9999 or PREDEF

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Help graphic	Parameter
	Q301 Move to clearance height (0/1)?
Specify how the touch probe moves between measuring	
points:	
0: Move at measuring height between measuring points	
1: Move at clearance height between measuring points	
Input: $\mathbf{0 , 1}$	

Q312 Axis for compensating movement?

Define the rotary axis in which the control will compensate the measured misalignment:
$\mathbf{0}$: Automatic mode - the control uses the active kinematics to determine the rotary axis to be aligned. In Automatic mode the first rotary axis of the table (as viewed from the workpiece) is used as compensation axis. This is the recommended setting!
4: Compensate misalignment with rotary axis A
5: Compensate misalignment with rotary axis B
6: Compensate misalignment with rotary axis C
Input: 0, 4, 5, 6

Q337 Set to zero after alignment?

Define whether the control will set the angle of the aligned rotary axis to 0 in the preset table or in the datum table after the alignment.
$\mathbf{0}$: Do not set the angle of the rotary axis to 0 in the table after the alignment
1: Set the angle of the rotary axis to 0 in the table after the alignment
Input: 0, 1

Q305 Number in table?

Specify the number of the row in the preset table in which the control will enter the basic rotation.
Q305 = 0: The rotary axis is zeroed in row number 0 of the preset table. The control will make an entry in the OFFSET column. In addition, all other values (X, Y, Z, etc.) of the currently active preset will be transferred to row 0 of the preset table. In addition, the control activates the preset from row 0.
Q305 > 0: Specify the number of the row in the preset table in which the control will zero the rotary axis. The control will make an entry in the OFFSET column of the preset table.

Q305 depends on the following parameters:

- Q337 = 0: Parameter Q305 is not effective
- Q337 = 1: Parameter Q305 has the effect described above
- Q312 = 0: Parameter Q305 has the effect described above
- Q312 > 0: The entry in Q305 is ignored. The control will make an entry in the OFFSET column, in the row of the preset table that was active when the cycle was called.
Input: 0... 99999

Help graphic	Parameter
	Q303 Meas. value transfer $(0,1)$

Define whether the calculated preset will be saved in the datum table or in the preset table:
$\mathbf{0}$: Write the calculated preset to the active datum table as a datum shift. The reference system is the active workpiece coordinate system.
1: Write the calculated preset to the preset table.
Input: 0, 1

Q380 Ref. angle in ref. axis?

Angle to which the control will align the probed straight line. Only effective if the rotary axis is in automatic mode or if C is selected (Q312 = 0 or 6).
Input: 0... 360

Example

11 TCH PROBE 403 ROT IN ROTARY AXIS ~	
Q263=+0	;1ST POINT 1ST AXIS ~
Q264=+0	;1ST POINT 2ND AXIS ~
Q265=+20	;2ND PNT IN 1ST AXIS ~
Q266=+30	;2ND POINT 2ND AXIS ~
Q272=+1	;MEASURING AXIS ~
Q267=-1	;TRAVERSE DIRECTION ~
Q261 $=-5$;MEASURING HEIGHT ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+20$;CLEARANCE HEIGHT ~
Q301 $=+0$;MOVE TO CLEARANCE ~
Q312=+0	;COMPENSATION AXIS ~
Q337=+0	;SET TO ZERO ~
Q305=+1	;NUMBER IN TABLE ~
Q303=+1	;MEAS. VALUE TRANSFER ~
Q380 $=+90$;REFERENCE ANGLE

4.13 Cycle 405 ROT IN C AXIS

ISO programming

G405

Application

With touch probe cycle 405 , you can measure

- the angular offset between the positive Y axis of the active coordinate system and the center line of a hole
- the angular offset between the nominal position and the actual position of a hole center point
The control compensates for the determined angular offset by rotating the C axis. The workpiece can be clamped in any position on the rotary table, but the Y coordinate of the hole must be positive. If you measure the angular misalignment of the hole with touch probe axis Y (horizontal position of the hole), it may be necessary to execute the cycle more than once because the measuring strategy causes an inaccuracy of approx. 1\% of the misalignment.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) to the touch point 1. The control calculates the touch points from the data in the cycle and from the set-up clearance in the SET_UP column of the touch probe table.
Further information: "Positioning logic", Page 52
2 Next, the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (\mathbf{F} column). The control derives the probing direction automatically from the programmed starting angle.
3 Then, the touch probe moves along a circular arc, either at measuring height or at clearance height, to the next touch point 2 and probes again.
4 The control positions the touch probe to touch point 3 and then to touch point 4 to probe two more times and then positions the touch probe on the calculated hole center.
5 Finally, the control returns the touch probe to the clearance height and aligns the workpiece by rotating the rotary table. The control rotates the rotary table in such a way that the hole center, after compensation, lies in the direction of the positive Y axis or at the nominal position of the hole center point-both with a vertical and a horizontal touch probe axis. The measured angular offset is also available in the parameter Q150.

Notes

NOTICE

Danger of collision!

If the dimensions of the pocket and the set-up clearance do not permit prepositioning in the proximity of the touch points, the control always starts probing from the center of the pocket. In this case, the touch probe does not return to the clearance height between the four measuring points. There is a risk of collision!

The pocket/hole must be free of material on the inside

- To prevent a collision between the touch probe and the workpiece, enter a low estimate for the nominal diameter of the pocket (or hole).

NOTICE

Danger of collision!

When running touch probe cycles 400 to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control will reset an active basic rotation at the beginning of the cycle.

Notes on programming

- The smaller the stepping angle, the less accurately the control can calculate the circle center point. Minimum input value: 5°.

4.13.1 Cycle parameters

Parameter

Q321 Center in 1st axis?
Center of the hole in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q322 Center in 2nd axis?
Center of the hole in the secondary axis of the working plane. If you program Q322 = 0, the control aligns the hole center point with the positive Y axis. If you program $\mathbf{Q} 322$ not equal to 0 , then the control aligns the hole center point with the nominal position (angle resulting from the position of the hole center). This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q262 Nominal diameter?
Approximate diameter of the circular pocket (or hole). Enter a value that is more likely to be too small than too large.
Input: 0... 99999.9999

Q325 Starting angle?

Angle between the main axis of the working plane and the first touch point. This value has an absolute effect.
Input: -360.000...+360.000

Q247 Intermediate stepping angle?

Angle between two measuring points. The algebraic sign of the stepping angle determines the direction of rotation (negative = clockwise) in which the touch probe moves to the next measuring point. If you wish to probe a circular arc instead of a complete circle, then program the stepping angle to be less than 90°. This value has an incremental effect.
Input: -120...+120

Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.

Input: 0...99999.9999 or PREDEF

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.

Input: -99999.9999...+99999.9999 or PREDEF

Help graphic	Parameter
	Q301 Move to clearance height (0/1)?
Specify how the touch probe moves between measuring	
points:	
0: Move at measuring height between measuring points	
1: Move at clearance height between measuring points	
	Input: $\mathbf{0 , 1}$
Q337 Set to zero after alignment?	
$\mathbf{0}$ Set the display of the C axis to $\mathbf{0}$ and write to C_Offset of	
the active row of the datum table	
>0: Write the measured angular offset to the datum table.	
Row number = value in Q337. If a C-axis shift is entered in	
the datum table, the control adds the measured angular	
offset with the correct sign, positive or negative.	
Input: $\mathbf{0 . . . 2 9 9 9}$	

Example

11 TCH PROBE 405 ROT IN C AXIS ~	
Q321 $=+50$;CENTER IN 1ST AXIS ~
Q322=+50	;CENTER IN 2ND AXIS ~
Q262=+10	;NOMINAL DIAMETER ~
Q325 $=+0$;STARTING ANGLE ~
Q247 $=+90$;STEPPING ANGLE ~
Q261 $=-5$;MEASURING HEIGHT ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+20$;CLEARANCE HEIGHT ~
Q301 $=+0$;MOVE TO CLEARANCE ~
Q337 $=+0$;SET TO ZERO

4.14 Cycle 404 SET BASIC ROTATION

ISO programming

G404

Application

With touch probe cycle 404, you can set any basic rotation automatically during program run or save it to the preset table. You can also use Cycle 404 if you want to reset an active basic rotation.

Notes

NOT/CE
Danger of collision!
When running touch probe cycles $\mathbf{4 0 0}$ to 499, all cycles for coordinate
transformation must be inactive. There is a danger of collision!
The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$
DATUM SHIFT, Cycle $\mathbf{8}$ MIRRORING, Cycle $\mathbf{1 0}$ ROTATION, Cycle $\mathbf{1 1}$ SCALING
FACTOR, and Cycle $\mathbf{2 6}$ AXIS-SPECIFIC SCALING.
Reset any coordinate transformations beforehand.

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.

4.14.1 Cycle parameters

4.15 Example: Determining a basic rotation from two holes

- Q268 = Center of the 1st hole: X coordinate
- Q269 = Center of the 1st hole: Y coordinate
- Q270 = Center of the 2nd hole: X coordinate
- Q271 = Center of the 2nd hole: Y coordinate
- Q261 = Coordinate in the touch probe axis in which the measurement is performed
- Q307 = Angle of the reference line
- Q402 = Compensation of workpiece misalignment by rotating the table
- Q337 = Set the display to zero after the alignment

Touch Probe Cycles: Automatic Preset Measurement

5.1 Overview

The control offers cycles for automatic preset measurement.

The control must be specifically prepared by the machine manufacturer for the use of a touch probe.
HEIDENHAIN guarantees the proper operation of the touch probe cycles only in conjunction with HEIDENHAIN touch probes.

Cycle		Call	Further information
1400	POSITION PROBING - Measurement of single position - Definition of preset, if necessary	DEF- active	Page 136
1401	CIRCLE PROBING - Measurement of points on the inside or outside of a circle - Definition of circle center as preset, if necessary	DEF- active	Page 141
1402	SPHERE PROBING - Measurement of points on a sphere - Definition of sphere center as preset, if necessary	DEF- active	Page 146
1404	PROBE SLOT/RIDGE - Determine the center of a slot width or ridge width - Set the center as a preset if needed	DEFactive	Page 150
1430	PROBE POSITION OF UNDERCUT - Measure the undercut - Measure individual position with L-shaped stylus - Set the preset if needed	DEF- active	Page 155
1434	PROBE SLOT/RIDGE UNDERCUT - Measure the undercut - Measure the center of the slot width or ridge width with an L-shaped stylus - Set the center as a preset if needed	DEF- active	Page 160
410	PRESET INSIDE RECTAN - Measurement of inside length and width of a rectangle - Definition of rectangle center as preset	DEF- active	Page 167
411	PRESET OUTS. RECTAN - Measurement of outside length and width of a rectangle - Definition of rectangle center as preset	DEF- active	Page 172
412	PRESET INSIDE CIRCLE - Measurement of any four points on the inside of a circle - Definition of circle center as preset	DEF- active	Page 178

Cycle		Call	Further information
413	PRESET OUTS. CIRCLE - Measurement of any four points on the outside of a circle - Definition of circle center as preset	DEF- active	Page 184
414	PRESET OUTS. CORNER - Measurement of two straight lines on the outside - Definition of intersection of the lines as preset	DEFactive	Page 190
415	PRESET INSIDE CORNER - Measurement of two straight lines on the inside - Definition of intersection of the lines as preset	DEFactive	Page 196
416	PRESET CIRCLE CENTER - Measurement of any three holes on a circular hole pattern - and defining the circle center as preset	DEFactive	Page 202
417	PRESET IN TS AXIS - Measurement of any position in the tool axis - Definition of any position as preset	DEFactive	Page 208
418	PRESET FROM 4 HOLES - Measurement of two holes on each line crosswise - Definition of the intersection of the lines as preset	DEFactive	Page 212
419	PRESET IN ONE AXIS - Measurement of any position in a selectable axis - Definition of any position in a selectable axis as preset	DEFactive	Page 217
408	SLOT CENTER PRESET - Measurement of width of an inside slot - Definition of slot center as preset	DEFactive	Page 220
409	RIDGE CENTER PRESET - Measurement of width of an outside ridge - Definition of ridge center as preset	DEF- active	Page 225

5.2 Fundamentals of touch probe cycles 14xx for setting presets

5.2.1 Characteristics common to all touch probe cycles $14 x x$ for preset setting

Preset and tool axis

The control sets the preset in the working plane based on the touch probe axis that you defined in your measuring program.

Active touch probe axis	Preset setting in
Z	X and Y
Y	Z and X
X	Y and Z

Measurement results in Q parameters

The control saves the measurement results of the respective probing cycle in the globally effective Q parameters Q9xx. You can use the parameters in your NC program. Note the table of result parameters listed with every cycle description.

Programming and operating notes:

The probing positions are based on the programmed nominal coordinates in the I-CS.

- See your drawing for the nominal positions.
- Before defining a cycle, you must program a tool call in order to define the touch-probe axis.
- The 14 xx probing cycles support SIMPLE and L-TYPE styli.
- In order to achieve optimal accuracy results with an L-TYPE stylus, HEIDENHAIN recommends that you perform probing and calibration at the same speed. Note the setting of the feed override if it is active during probing.

5.3 Cycle 1400 POSITION PROBING

ISO programming
G1400

Application

Touch probe cycle $\mathbf{1 4 0 0}$ measures any position in a selectable axis. You can apply the result to the active row of the preset table.
If, prior to this cycle, you program Cycle 1493 EXTRUSION PROBING, then the control repeats the touch points in the selected direction and at the defined length along a straight line.
Further information: "Cycle 1493 EXTRUSION PROBING ", Page 308

Cycle sequence

1 The control positions the touch probe at FMAX_PROBE rapid traverse (from the touch probe table) and with positioning logic to the programming touch point 1. During pre-positioning, the control takes the set-up clearance Q320 into account.
Further information: "Positioning logic", Page 52
2 The control then positions the touch probe to the entered measuring height Q1102 and performs the first probing procedure with the probing feed rate \mathbf{F} from the touch probe table.
3 If you program CLEAR. HEIGHT MODE Q1125, then the control positions the touch probe at FMAX_PROBE back to the clearance height Q260.
4 The control saves the measured positions in the following Q parameters. If Q1120 TRANSER POSITION is defined with the value $\mathbf{1}$, then the control writes the measured position to the active row of the preset table.
Further information: "Fundamentals of touch probe cycles 14xx for setting presets", Page 136

Q parameter number	Meaning
Q950 to Q952	Measured position 1 in the main axis, secondary axis, and tool axis
Q980 to Q982	Measured deviation from the first touch point
Q183	$\begin{aligned} & \text { Workpiece status } \\ & \begin{array}{l} -\mathbf{1}=\text { Not defined } \\ -\mathbf{0}=\text { Good } \\ -1 \\ \text { = Rework } \\ \text { - }=\text { Scrap } \end{array} \end{aligned}$
Q970	If you have programmed Cycle 1493 EXTRUSION PROBING Maximum deviation starting from the first touch point

Notes

NOTICE

Danger of collision!

When touch probe cycles 444 and $14 x x$ are executed, the following coordinate transformation must not be active: Cycle $\mathbf{8}$ MIRRORING, Cycle $\mathbf{1 1}$ SCALING
FACTOR, Cycle 26 AXIS-SPECIFIC SCALING and TRANS MIRROR. There is a risk of collision.

- Reset any coordinate transformations before the cycle call.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.

5.3.1 Cycle parameters

Parameter

Q1100 1st noml. position of ref. axis?
Absolute nominal position of the first touch point in the main axis of the working plane Input: -99999.9999...+99999.9999 or ?, -, + or @

- ?: Semi-automatic mode, see Page 61
- -, +: Evaluation of the tolerance, see Page 67
- @: Transferring the actual position, see Page 69

Q1101 1st noml. position of minor axis?
Absolute nominal position of the first touch point in the secondary axis of the working plane
Input: -99999.9999...+9999.9999 or optional input (see Q1100)

Q1102 1st nominal position tool axis?

Absolute nominal position of the first touch point in the tool axis
Input: -99999.9999...+9999.9999 or optional input (see Q1100)
Q372 Probe direction (-3 to +3)?
Axis defining the direction of probing. The algebraic sign lets you define whether the control moves in the positive or negative direction.
Input: -3, -2, -1, +1, +2, +3
Q320 Set-up clearance?
Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF
Q260 Clearance height?
Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Help graphic

Parameter

Q1125 Traverse to clearance height?

Positioning behavior between the touch points:
-1: Do not move to the clearance height.
$\mathbf{0 , 1 , 2}$: Move to the clearance height before and after the touch point. Pre-positioning occurs at FMAX_PROBE.
Input: -1, 0, +1, +2

Q309 Reaction to tolerance error?

Reaction when tolerance is exceeded:
$\mathbf{0}$: Do not interrupt program run when tolerance is exceeded. The control does not open a window with the results.
1: Interrupt program run when tolerance is exceeded. The control opens a window with the results.
2: The control does not open a window if rework is necessary. The control opens a window with results and interrupts the program if the actual position is at scrap level.
Input: 0, 1, 2

Q1120 Transfer position?

Define which touch point will be used to correct the active preset:
0 : No correction
1: Correction based on the 1st touch point. The control corrects the active preset by the amount of deviation between the nominal and actual position of the 1st touch point.
Input: 0, 1

Example

11 TCH PROBE 1400 POSITION PROBING ~	
Q1100 $=+25$;1ST POINT REF AXIS ~
Q1101 $=+25$;1ST POINT MINOR AXIS ~
Q1102 $=-5$;PROBING TIREL AXIS ~
Q372 $=+0$;SET-UP CLEARANCE ~
Q320 $=+0$;CLEARANCE HEIGHT ~
Q260 $=+50$;CLEAR. HEIGHT MODE \sim
Q1125 $=+1$;ERROR REACTION \sim
Q309 $=+0$;TRANSER POSITIO
Q1120 $=+0$	

5.4 Cycle 1401 CIRCLE PROBING

ISO programming

 G1401
Application

Touch probe cycle 1401 determines the center point of a circular pocket or circular stud. You can transfer the result to the active row of the preset table.
If, prior to this cycle, you program Cycle 1493 EXTRUSION PROBING, then the control repeats the touch points in the selected direction and at the defined length along a straight line.
Further information: "Cycle 1493 EXTRUSION PROBING ", Page 308

Cycle sequence

1 The control positions the touch probe at FMAX_PROBE rapid traverse (from the touch probe table) and with positioning logic to the programming touch point 1. During pre-positioning, the control takes the set-up clearance Q320 into account.
Further information: "Positioning logic", Page 52
2 The control then positions the touch probe to the entered measuring height Q1102 and performs the first probing procedure with the probing feed rate \mathbf{F} from the touch probe table.
3 If you program CLEAR. HEIGHT MODE Q1125, then the control positions the touch probe at FMAX_PROBE back to the clearance height Q260.
4 The control positions the touch probe to the next touch point.
5 The control moves the touch probe to the entered measuring height Q1102 and measures the next touch point.
6 Depending on the definition of Q423 NO. OF PROBE POINTS, steps 3 to 5 repeat themselves.
7 The control returns the touch probe to the clearance height Q260.
8 The control saves the measured positions in the following Q parameters. If Q1120 TRANSER POSITION is defined with the value $\mathbf{1}$, then the control writes the measured position to the active row of the preset table.
Further information: "Fundamentals of touch probe cycles 14xx for setting presets", Page 136

Q parameter number	Meaning
Q950 to Q952	Measured circle center point in the main axis, secondary axis, and tool axis
Q966	Measured diameter
Q980 to Q982	Measured deviation of the circle center
Q996	Measured deviation of the diameter
Q183	Workpiece status
	$-\mathbf{- 1}=$ Not defined
	$\mathbf{0}=$ Good
	I $=$ Rework
	If you have programmed Cycle 1493 EXTRUSION PROBING:
Q970	Maximum deviation starting from the first circle center
Q973	If you have programmed Cycle 1493 EXTRUSION PROBING:
	Maximum deviation starting from Diameter 1

Notes

NOTICE

Danger of collision!

When touch probe cycles 444 and $\mathbf{1 4 x x}$ are executed, the following coordinate transformation must not be active: Cycle 8 MIRRORING, Cycle 11 SCALING
FACTOR, Cycle 26 AXIS-SPECIFIC SCALING and TRANS MIRROR. There is a risk of collision.

- Reset any coordinate transformations before the cycle call.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.

5.4.1 Cycle parameters

Parameter

Q1100 1st noml. position of ref. axis?
Absolute nominal position of the center in the main axis of the working plane.
Input: -99999.9999...+99999.9999 or enter ?, +, - or @:
■ "?...": Semi-automatic mode, see Page 61
■ "...-...+...": Evaluation of the tolerance, see Page 67

- "...@...": Transferring the actual position, see Page 69

Q1101 1st noml. position of minor axis?
Absolute nominal position of the center in the secondary axis of the working plane
Input: -99999.9999...+9999.9999 Optional input (see Q1100)

Q1102 1st nominal position tool axis?

Absolute nominal position of the first touch point in the tool axis
Input: -99999.9999...+9999.9999 or optional input (see Q1100)

Q1116 Diameter of 1st position?

Diameter of the first hole or the first stud
Input: 0...9999.9999 or optional input:
■ "...-...+...": Evaluation of the tolerance, see Page 67
Q1115 Geometry type (0/1)?
Type of object to be probed:
0: Hole
1: Stud
Input: 0, 1
Q423 Number of probes?
Number of touch points on the diameter
Input: 3, 4, 5, 6, 7, 8

Q325 Starting angle?

Angle between the main axis of the working plane and the first touch point. This value has an absolute effect.
Input: -360.000...+360.000
Q1119 Arc angular length?
Angular range in which the touch points are distributed.
Input: -359.999...+360.000

Parameter

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF
Q260 Clearance height?
Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Q1125 Traverse to clearance height?

Positioning behavior between the touch points
-1: Do not move to the clearance height.
$\mathbf{0}, \mathbf{1}$: Move to the clearance height before and after the cycle. Pre-positioning occurs at FMAX_PROBE.
2: Move to the clearance height before and after each touch point. Pre-positioning occurs at FMAX_PROBE.
Input: -1, 0, +1, +2
Q309 Reaction to tolerance error?
Reaction when tolerance is exceeded:
$\mathbf{0}$: Do not interrupt program run when tolerance is exceeded. The control does not open a window with the results.
1: Interrupt program run when tolerance is exceeded. The control opens a window with the results.
2: The control does not open a window if rework is necessary. The control opens a window with results and interrupts the program if the actual position is at scrap level.
Input: 0, 1, 2

Q1120 Transfer position?

Define which touch point will be used to correct the active preset:
0 : No correction
1: Correction based on the 1 st touch point. The control corrects the active preset by the amount of deviation between the nominal and actual position of the 1st touch point.
Input: 0, 1

Example

11 TCH PROBE 1401 CIRCLE PROBING ~	
Q1100=+25	;1ST POINT REF AXIS ~
Q1101 $=+25$;1ST POINT MINOR AXIS ~
Q1102=-5	;1ST POINT TOOL AXIS ~
QS1116=+10	;DIAMETER 1 ~
Q1115=+0	;GEOMETRY TYPE ~
Q423=+3	;NO. OF PROBE POINTS ~
Q325=+0	;STARTING ANGLE ~
Q1119=+360	;ANGULAR LENGTH ~
Q320=+0	;SET-UP CLEARANCE ~
Q260 $=+50$;CLEARANCE HEIGHT ~
Q1125=+1	;CLEAR. HEIGHT MODE ~
Q309=+0	;ERROR REACTION ~
Q1120 $=+0$;TRANSER POSITION

5.5 Cycle 1402 SPHERE PROBING

ISO programming

G1402

Application

Touch probe cycle 1402 determines the center point of a sphere. You can apply the result to the active row of the preset table.

Cycle sequence

1 The control positions the touch probe at FMAX_PROBE rapid traverse (from the touch probe table) and with positioning logic to the programming touch point 1. During pre-positioning, the control takes the set-up clearance Q320 into account.
Further information: "Positioning logic", Page 52
2 The control then positions the touch probe to the entered measurement height Q1102 and performs the first probing procedure at the probing feed rate \mathbf{F} from the touch probe table.
3 If you program CLEAR. HEIGHT MODE Q1125, then the control positions the touch probe at FMAX_PROBE back to the clearance height Q260.
4 The control positions the touch probe to the next touch point.
5 The control moves the touch probe to the entered measuring height Q1102 and measures the next touch point.
6 Depending on the definition of Q423 "Number of probe measurements", steps 3 to 5 repeat themselves.
7 The control moves the touch probe in the tool axis by the set-up clearance to a position above the sphere.
8 The touch probe moves to the center of the sphere and probes another touch point.
9 The touch probe returns to the clearance height Q260.
10 The control saves the measured positions in the following Q parameters. If Q1120 TRANSER POSITION is defined with the value 1 , then the control writes the measured position to the active row of the preset table.
Further information: "Fundamentals of touch probe cycles 14xx for setting presets", Page 136

Q parameter number	Meaning
Q950 to Q952	Measured circle center in the main axis, secondary axis, and tool axis
Q966	Measured diameter
Q980 to Q982	Measured deviation of the circle center
Q996	Measured deviation of the diameter
Q183	$\begin{aligned} & \text { Workpiece status } \\ & \text { - }-\mathbf{1}=\text { Not defined } \\ & -\mathbf{0}=\text { Good } \\ & -1=\text { Rework } \\ & -2=\text { Scrap } \end{aligned}$

Notes

NOTICE

Danger of collision!

When touch probe cycles 444 and $14 x x$ are executed, the following coordinate transformation must not be active: Cycle 8 MIRRORING, Cycle 11 SCALING
FACTOR, Cycle 26 AXIS-SPECIFIC SCALING and TRANS MIRROR. There is a risk of collision.

- Reset any coordinate transformations before the cycle call.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- If you have programmed Cycle 1493 EXTRUSION PROBING before, the control will ignore it during the execution of Cycle 1402 SPHERE PROBING.

5.5.1 Cycle parameters

Parameter

Q1100 1st noml. position of ref. axis?
Absolute nominal position of the center in the main axis of the working plane.
Input: -99999.9999...+99999.9999 or enter ?, +, - or @:

- "?...": Semi-automatic mode, see Page 61
- "...-...+...": Evaluation of the tolerance, see Page 67
- "...@...": Transferring the actual position, see Page 69

Q1101 1st noml. position of minor axis?
Absolute nominal position of the center in the secondary axis of the working plane
Input: -99999.9999...+9999.9999 Optional input (see Q1100)

Q1102 1st nominal position tool axis?

Absolute nominal position of the first touch point in the tool axis
Input: -99999.9999...+9999.9999 or optional input (see Q1100)

Q1116 Diameter of 1st position?
Diameter of the sphere
Input: 0...9999.9999 or optional input (see Q1100)
■ "...-...+...": Evaluation of the tolerance, see Page 67
Q423 Number of probes?
Number of touch points on the diameter
Input: 3, 4, 5, 6, 7, 8

Q325 Starting angle?

Angle between the main axis of the working plane and the first touch point. This value has an absolute effect.
Input: -360.000...+360.000
Q1119 Arc angular length?
Angular range in which the touch points are distributed.
Input: -359.999...+360.000

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: O...99999.9999 or PREDEF

Help graphic	Parameter
	Q260 Clearance height?
	Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
	Input: -99999.9999...+99999.9999 or PREDEF
	Q1125 Traverse to clearance height?
	Positioning behavior between the touch points
	-1: Do not move to the clearance height.
	$\mathbf{0}, \mathbf{1}$: Move to the clearance height before and after the cycle. Pre-positioning occurs at FMAX_PROBE.
	2: Move to the clearance height before and after each touch point. Pre-positioning occurs at FMAX_PROBE.
	Input: -1, 0, +1, +2
	Q309 Reaction to tolerance error?
	Reaction when tolerance is exceeded:
	0 : Do not interrupt program run when tolerance is exceeded. The control does not open a window with the results.
	1: Interrupt program run when tolerance is exceeded. The control opens a window with the results.
	2: The control does not open a window if rework is necessary. The control opens a window with results and interrupts the program if the actual position is at scrap level. Input: 0, 1, 2
	Q1120 Transfer position?
	Define which touch point will be used to correct the active preset:
	0: No correction
	1: Correction of the active preset based on the center of the sphere. The control corrects the active present by the amount of the deviation of the nominal and actual position of the center.
	Input: 0,1

Example

11 TCH PROBE 1402 SPHERE PROBING ~	
Q1100 $=+25$;1ST POINT REF AXIS ~
Q1101 $=+25$;1ST POINT MINOR AXIS ~
Q1102=-5	;1ST POINT TOOL AXIS ~
QS1116=+10	;DIAMETER 1 ~
Q423=+3	;NO. OF PROBE POINTS ~
Q325=+0	;STARTING ANGLE ~
Q1119 = +360	;ANGULAR LENGTH ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+50$;CLEARANCE HEIGHT ~
Q1125=+1	;CLEAR. HEIGHT MODE ~
Q309 $=+0$;ERROR REACTION ~
Q1120 $=+0$;TRANSER POSITION

5.6 Cycle 1404 PROBE SLOT/RIDGE

ISO programming
 G1404

Application

Touch probe cycle 1404 determines the center of the width of a slot or ridge. The control probes the two opposing touch points. The control probes perpendicularly to the angle of rotation of the object to be probed, even if the object to be probed is rotated. You can apply the result to the active row of the preset table.
If, prior to this cycle, you program Cycle 1493 EXTRUSION PROBING, then the control repeats the touch points in the selected direction and at the defined length along a straight line.
Further information: "Cycle 1493 EXTRUSION PROBING ", Page 308

Cycle sequence

1 At FMAX_PROBE rapid traverse from the touch probe table and using positioning logic, the control positions the touch probe to the programmed touch point 1. During prepositioning, the control takes into account the set-up clearance Q320.
Further information: "Positioning logic", Page 52
2 The control then positions the touch probe to the entered measuring height Q1102 and performs the first probing procedure with the probing feed rate \mathbf{F} from the touch probe table.
3 Depending on the selected type of geometry in the parameter Q1115, the control proceeds as follows:
Slot Q1115=0:

- If you program CLEAR. HEIGHT MODE Q1125 with the value 0, $\mathbf{1}$ or $\mathbf{2}$, the control positions the touch probe at FMAX_PROBE back to Q260 CLEARANCE HEIGHT.
Ridge Q1115=1:
- Independently of Q1125, the control positions the touch probe at

FMAX_PROBE after every touch point back to Q260 CLEARANCE HEIGHT.
4 The touch probe moves to the next touch point 2 and performs the second probing procedure at the probing rate \mathbf{F}.
5 The control saves the measured positions in the following Q parameters. If Q1120 TRANSER POSITION is defined with the value 1 , then the control writes the measured position to the active row of the preset table.
Further information: "Fundamentals of touch probe cycles 14xx for setting presets", Page 136

Q parameter number	Meaning
Q950 to Q952	Measured center of the slot or ridge in the main axis, auxiliary axis and tool axis
Q968	Measured slot or ridge width
Q980 to Q982	Measured deviation of the center of the slot and ridge
Q998	Measured deviation of the slot width or ridge width
Q183	Workpiece status - -1 = Not defined - 0 = Good - 1 = Rework - 2 = Scrap
Q970	If you have programmed Cycle 1493 EXTRUSION PROBING Measured deviation from the center of the slot or ridge
Q975	If you have programmed Cycle 1493 EXTRUSION PROBING Maximum deviation based on the slot width or ridge width

Notes

NOTICE
Danger of collision!
When touch probe cycles 444 and 14xx are executed, the following coordinate
transformation must not be active: Cycle 8 MIRRORING, Cycle 11 SCALING
FACTOR, Cycle 26 AXIS-SPECIFIC SCALING and TRANS MIRROR. There is a risk of
collision.
Reset any coordinate transformations before the cycle call.

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.

5.6.1 Cycle parameters

Parameter

Q1100 1st noml. position of ref. axis?
Absolute nominal position of the center in the main axis of the working plane.
Input: -99999.9999...+99999.9999 or enter ?, +, - or @:
■ "?...": Semi-automatic mode, see Page 61
■ "...-...+...": Evaluation of the tolerance, see Page 67

- "...@...": Transferring the actual position, see Page 69

Q1101 1st noml. position of minor axis?
Absolute nominal position of the center in the secondary axis of the working plane
Input: -99999.9999...+9999.9999 Optional input (see Q1100)

Q1102 1st nominal position tool axis?

Absolute nominal position of the touch points in the tool axis Input: -99999.9999...+9999.9999 Optional input (see Q1100)

Q1113 Width of slot/ridge?

Width of the slot or ridge parallel to the secondary axis of the machining plane. This value has an incremental effect.
Input: O...9999.9999 Or - or +:

- "...-...+...": Evaluation of the tolerance, see Page 67

Q1115 Geometry type (0/1)?
Type of object to be probed:
0: Slot
1: Ridge
Input: 0, 1
Q1114 Angle of rotation?
Angle about which the slot or the ridge is rotated. The center of rotation is in Q1100 and Q1101. This value has an absolute effect.
Input: 0... 359999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.

Input: 0...99999.9999 or PREDEF

Parameter

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Q1125 Traverse to clearance height?

Positioning behavior between the touch points with a slot:
-1: Do not move to the clearance height.
$\mathbf{0 , 1}$: Move to the clearance height before and after the cycle. Pre-positioning occurs at FMAX_PROBE.
2: Move to the clearance height before and after each touch point. Pre-positioning occurs at FMAX_PROBE.
The parameter takes effect only with Q1115=+1 (slot).
Input: -1, 0, +1, +2

Q309 Reaction to tolerance error?

Reaction when tolerance is exceeded:
$\mathbf{0}$: Do not interrupt program run when tolerance is exceeded. The control does not open a window with the results.
1: Interrupt program run when tolerance is exceeded. The control opens a window with the results.
$\mathbf{2}$: The control does not open a window if rework is necessary. The control opens a window with results and interrupts the program if the actual position is at scrap level.
Input: 0, 1, 2

Q1120 Transfer position?

Define which touch point will be used to correct the active preset:
0: No correction
1: Correction of the active preset based on the center of the slot or the ridge. The control corrects the active preset by the amount of the deviation of the nominal and actual position of the center.
Input: 0, 1

Example

11 TCH PROBE 1404 PROBE SLOT/RIDGE ~	
Q1100 $=+25$;1ST POINT REF AXIS ~
Q1101 $=+25$;1ST POINT MINOR AXIS ~
Q1102=-5	;1ST POINT TOOL AXIS ~
Q1113 $=+20$;WIDTH OF SLOT/RIDGE ~
Q1115 $=+0$;GEOMETRY TYPE ~
Q1114 $=+0$;ANGLE OF ROTATION ~
$\mathrm{Q} 320=+2$;SET-UP CLEARANCE ~
Q260 $=+50$;CLEARANCE HEIGHT ~
Q1125=+1	;CLEAR. HEIGHT MODE ~
Q309 = +0	;ERROR REACTION ~
Q1120 $=+0$;TRANSER POSITION

5.7 Cycle 1430 PROBE POSITION OF UNDERCUT

ISO programming
G1430

Application

Touch probe cycle 1430 allows a position to be probed with an L-shaped stylus. The control can probe undercuts due to the shape of the stylus. You can apply the result of the probing procedure to the active rows of the preset table.
In the main axis and secondary axis, the touch probe is oriented in accordance with the calibration angle. In the tool axis, the touch probe is oriented in accordance with the programmed spindle angle and the calibration angle.
If, prior to this cycle, you program Cycle 1493 EXTRUSION PROBING, then the control repeats the touch points in the selected direction and at the defined length along a straight line.
Further information: "Cycle 1493 EXTRUSION PROBING ", Page 308

Cycle sequence

1 At FMAX_PROBE rapid traverse and using positioning logic, the control positions the touch probe to the programmed touch point 1.
Pre-position in the machining plane based on the probing direction:

- Q372=+/-1: The pre-position in the main axis is at a distance of Q1118 RADIAL APPROACH PATH from the nominal position Q1100. The radial approach length takes effect in the direction opposite to the probing direction.
- Q372=+/-2: The pre-position in the secondary axis is at a distance of Q1118 RADIAL APPROACH PATH from the Q1101. The radial approach length takes effect in the direction opposite to the probing direction.
- Q372=+/-3: The pre-position of the main axis and secondary axis depends on the direction in which the stylus is oriented. The pre-position is at a distance of Q1118 RADIAL APPROACH PATH from the nominal position. The radial approach length takes effect in the direction opposite to the spindle angle Q336.
Further information: "Positioning logic", Page 52
2 The control then positions the touch probe to the entered measuring height Q1102 and performs the first probing procedure with the probing feed rate F from the touch probe table. The probing feed rate must be identical to the calibration feed rate.
3 The control retracts the touch probe in the machining plane at FMAX_PROBE by the amount Q1118 RADIAL APPROACH PATH.
4 If you program CLEAR. HEIGHT MODE Q1125 with the value $\mathbf{0}, \mathbf{1}$ or $\mathbf{2}$, the control positions the touch probe at FMAX_PROBE back to the clearance height Q260.
5 The control saves the measured positions in the following Q parameters. If Q1120 TRANSER POSITION is defined with the value $\mathbf{1}$, then the control writes the measured position to the active row of the preset table.
Further information: "Fundamentals of touch probe cycles 14xx for setting presets", Page 136

Q parameter number	Meaning
Q950 to Q952	Measured position in the main axis, auxiliary axis and tool axis
Q980 to Q982	Measured deviation of the position in the main axis, auxiliary axis and tool axis
Q183	Workpiece status - -1 = Not defined - 0 = Good - 1 = Rework - 2 = Scrap
Q970	If you have programmed Cycle 1493 EXTRUSION PROBING: Maximum deviation based on the nominal position of the first touch point

Notes

NOTICE

Danger of collision!

When touch probe cycles 444 and $14 x x$ are executed, the following coordinate transformation must not be active: Cycle $\mathbf{8}$ MIRRORING, Cycle $\mathbf{1 1}$ SCALING FACTOR, Cycle 26 AXIS-SPECIFIC SCALING and TRANS MIRROR. There is a risk of collision.

- Reset any coordinate transformations before the cycle call.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- This cycle is not intended for L-shaped styli. For simple styli, HEIDENHAIN recommends Cycle 1400 POSITION PROBING.
Further information: "Cycle 1400 POSITION PROBING ", Page 136

5.7.1 Cycle parameters

Parameter
Q1100 1st noml. position of ref. axis?
Absolute nominal position of the first touch point in the main
axis of the working plane
Input: $-99999.9999 . .+99999.9999$ or ?,, , + or @

Help graphic	Parameter Q320 Set-up clearance? Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect. Input: $\mathbf{0 . . . 9 9 9 9 9 . 9 9 9 9 ~ o r ~ P R E D E F ~}$
Q260 Clearance height?	
Coordinate in the tool axis at which no collision between	
touch probe and workpiece (fixtures) can occur. This value	
has an absolute effect.	
Input: -99999.9999...+99999.9999 or PREDEF	

Q309 Reaction to tolerance error?

Reaction when tolerance is exceeded:
$\mathbf{0}$: Do not interrupt program run when tolerance is exceeded. The control does not open a window with the results.
1: Interrupt program run when tolerance is exceeded. The control opens a window with the results.
2: The control does not open a window if rework is necessary. The control opens a window with results and interrupts the program if the actual position is at scrap level.
Input: 0, 1, 2

Q1120 Transfer position?

Define which touch point will be used to correct the active preset:
0: No correction
1: Correction based on the 1 st touch point. The control corrects the active preset by the amount of deviation between the nominal and actual position of the 1st touch point.
Input: 0, 1

Example

11 TCH PROBE 1430 PROBE POSITION OF UNDERCUT ~	
Q1100 $=+10$;1ST POINT REF AXIS ~
Q1101 $=+25$;1ST POINT MINOR AXIS ~
Q1102=-15	;1ST POINT TOOL AXIS ~
Q372=+1	;PROBING DIRECTION ~
Q336=+0	;ANGLE OF SPINDLE ~
Q1118=+20	;RADIAL APPROACH PATH ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+50$;CLEARANCE HEIGHT ~
Q1125 $=+1$;CLEAR. HEIGHT MODE ~
Q309 = + 0	;ERROR REACTION ~
Q1120 $=+0$;TRANSER POSITION

5.8 Cycle 1434 PROBE SLOT/RIDGE UNDERCUT

ISO programming
G1434

Application

Touch probe cycle 1434 determines the center and width of a slot or a ridge using an L-shaped stylus. The control can probe undercuts due to the shape of the stylus. The control probes the two opposing touch points. You can apply the result to the active row of the preset table.
The control orients the touch probe to the calibration angle from the touch probe table.
If, prior to this cycle, you program Cycle 1493 EXTRUSION PROBING, then the control repeats the touch points in the selected direction and at the defined length along a straight line.
Further information: "Cycle 1493 EXTRUSION PROBING ", Page 308

Cycle sequence

1 At FMAX_PROBE rapid traverse from the touch probe table, the control positions the touch probe to the pre-position using positioning logic.
The pre-position in the machining plane depends on the object plane:

- Q1139=+1: The pre-position in the main axis is at a distance of Q1118

RADIAL APPROACH PATH from the nominal position in Q1100. The direction of the radial approach length Q1118 depends on the algebraic sign. The preposition of the secondary axis is equivalent to the nominal position.

- Q1139=+2: The pre-position in the secondary axis is at a distance of Q1118 RADIAL APPROACH PATH from the nominal position in Q1101. The direction of the radial approach length Q1118 depends on the algebraic sign. The preposition of the main axis is equivalent to the nominal position.
Further information: "Positioning logic", Page 52
2 The control then positions the touch probe at the entered measuring height Q1102 and performs the first probing procedure 1 at probing feed rate \mathbf{F} from the touch probe table. The probing feed rate must be identical to the calibration feed rate.
3 The control retracts the touch probe in the machining plane at FMAX_PROBE by the amount Q1118 RADIAL APPROACH PATH.
4 The control positions the touch probe to the next touch point 2 and performs the second probing procedure at probing feed rate \mathbf{F}.
5 The control retracts the touch probe in the machining plane at FMAX_PROBE by the amount Q1118 RADIAL APPROACH PATH.
6 If you program the parameter CLEAR. HEIGHT MODE Q1125 with the value $\mathbf{0}$ or 1, the control positions the touch probe at FMAX_PROBE back to the clearance height Q260.
7 The control saves the measured positions in the following Q parameters. If Q1120 TRANSER POSITION is defined with the value $\mathbf{1}$, then the control writes the measured position to the active row of the preset table.
Further information: "Fundamentals of touch probe cycles 14xx for setting presets", Page 136

Q parameter number	Meaning
Q950 to Q952	Measured center of the slot or ridge in the main axis, auxiliary axis and tool axis
Q968	Measured slot or ridge width
Q980 to Q982	Measured deviation of the center of the slot or ridge
Q998	Measured deviation of the slot width or ridge width
Q183	Workpiece status
Q970	If you have programmed Cycle 1493 EXTRUSION PROBING: Maximum deviation based on the center of the slot or the ridge
Q975	If you have programmed Cycle 1493 EXTRUSION PROBING: Maximum deviation based on the slot width or ridge width

Notes

NOTICE

Danger of collision!

When touch probe cycles 444 and $14 x x$ are executed, the following coordinate transformation must not be active: Cycle $\mathbf{8}$ MIRRORING, Cycle $\mathbf{1 1}$ SCALING FACTOR, Cycle 26 AXIS-SPECIFIC SCALING and TRANS MIRROR. There is a risk of collision.

- Reset any coordinate transformations before the cycle call.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- If you program in the radial approach length $\mathbf{Q 1 1 1 8 = - 0}$, then the algebraic sign has no effect. The behavior is identical to +0 .
- This cycle is intended for an L-shaped stylus. For simple styli, HEIDENHAIN recommends Cycle 1404 PROBE SLOT/RIDGE.
Further information: "Cycle 1404 PROBE SLOT/RIDGE ", Page 150

5.8.1 Cycle parameters

Parameter

Q1139 Object plane (1-2)?

Plane in which the control interprets the probing direction.
1: YZ plane
2: ZX plane
Input: 1, 2

Q1118 Distance of radial approach?

Distance to the nominal position at which the touch probe is pre-positioned in the machining plane and to which it retracts after probing. The direction of Q1118 is equivalent to the probing direction and is in the direction opposite to the algebraic sign. This value has an incremental effect.
Input: -99999.9999...+9999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF
Q260 Clearance height?
Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Q1125 Traverse to clearance height?

Positioning behavior before and after the cycle:
-1: Do not move to the clearance height.
$\mathbf{0 , 1}$: Move to the clearance height before and after the cycle.
Pre-positioning occurs at FMAX_PROBE.
Input: -1, 0, +1

Q309 Reaction to tolerance error?

Reaction when tolerance is exceeded:
$\mathbf{0}$: Do not interrupt program run when tolerance is exceeded.
The control does not open a window with the results.
1: Interrupt program run when tolerance is exceeded. The control opens a window with the results.
2: The control does not open a window if rework is necessary. The control opens a window with results and interrupts the program if the actual position is at scrap level.
Input: 0, 1, 2

Q1120 Transfer position?

Define which touch point will be used to correct the active preset:
0: No correction
1: Correction of the active preset based on the center of the slot or the ridge. The control corrects the active preset by the amount of the deviation of the nominal and actual position of the center.
Input: 0, 1

Example

11 TCH PROBE 1434 PROBE SLOT/RIDGE UNDERCUT ~	
Q1100=+25	;1ST POINT REF AXIS ~
Q1101 $=+25$;1ST POINT MINOR AXIS ~
Q1102=-5	;1ST POINT TOOL AXIS ~
Q1113=+20	;WIDTH OF SLOT/RIDGE ~
Q1115=+0	;GEOMETRY TYPE ~
Q1139=+1	;OBJECT PLANE ~
Q1118=-15	;RADIAL APPROACH PATH ~
Q320 $=+2$;SET-UP CLEARANCE ~
Q260=+50	;CLEARANCE HEIGHT ~
Q1125=+1	;CLEAR. HEIGHT MODE ~
Q309 $=+0$;ERROR REACTION ~
Q1120 $=+0$;TRANSER POSITION

5.9 Fundamentals of touch probe cycles 4xx for preset setting

5.9.1 Characteristics common to all touch probe cycles $4 x x$ for preset setting

Depending on the setting of the optional CfgPresetSettings machine parameter (no. 204600), the control will check during probing whether the position of the rotary axis matches the tilting angles 3-D ROTATION. If that is not the case, the control displays an error message.

The control offers cycles for automatically determining presets and handling them as follows:

- Setting the calculated values directly as display values
- Writing the calculated values to the preset table
- Writing the calculated values to a datum table

Preset and touch probe axis

The control determines the preset in the working plane based on the touch probe axis that you defined in your measuring program.

Active touch probe axis	Set preset in
Z	X and Y
Y	Z and X
X	Y and Z

Saving the calculated preset

In all cycles for presetting, you can use input parameters Q303 and Q305 to define how the control is to save the calculated preset:

- $\mathrm{Q} 305=0, \mathrm{Q} 303=1$:

The control copies the active preset to row 0 , changes it and activates row 0 , deleting simple transformations.

- Q305 not equal to $0, Q 303=\mathbf{0}$:

The result is written to the datum table, row Q305; activate the datum with TRANS DATUM in the NC program
Further information: User's Manual for Programming and Testing

- Q305 not equal to $0, Q 303=1$:

The result is written to the preset table, row Q305; use Cycle 247 to activate the preset in the NC program

- Q305 not equal to 0, Q303 = - 1
(1) This combination can only occur if you
- read in NC programs (containing Cycles 410 to 418) that were created on a TNC 4xx
- read in NC programs (containing Cycles 410 to 418) that were created with an older software version of an iTNC 530
- did not specifically define the measured-value transfer with parameter Q303 when defining the cycle
In these cases, the control outputs an error message, since the complete handling of REF-referenced datum tables has changed. You must define a measured-value transfer yourself with parameter Q303.

Measurement results in \mathbf{Q} parameters

The control saves the measurement results of the respective probing cycle in the globally effective Q parameters Q150 to Q160. You can use these parameters in your NC program. Note the table of result parameters listed with every cycle description.

5.10 Cycle 410 PRESET INSIDE RECTAN

ISO programming

 G410
Application

Touch probe cycle 410 finds the center of a rectangular pocket and defines this position as the preset. If desired, the control can also write the center point coordinates to a datum table or the preset table.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) to the touch point 1. The control calculates the touch points from the data in the cycle and from the set-up clearance in the SET_UP column of the touch probe table.
Further information: "Positioning logic", Page 52
2 Next, the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (\mathbf{F} column).
3 Then the touch probe moves either paraxially at measuring height or at clearance height to the next touch point 2 and probes again.
4 The control positions the touch probe to touch point 3 and then to touch point 4 to probe two more times.
5 The control returns the touch probe to the clearance height.
6 Depending on the cycle parameters Q303 and Q305, the control processes the calculated preset, see "Fundamentals of touch probe cycles $4 x x$ for preset setting", Page 165
7 Then the control saves the actual values in the Q parameters listed below.
8 If desired, the control subsequently determines the preset in the touch probe axis in a separate probing operation.

Q parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q154	Actual value of side length in the reference axis
Q155	Actual value of side length in the minor axis

Notes

NOTICE

Danger of collision!

When running touch probe cycles $\mathbf{4 0 0}$ to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.

NOTICE
Danger of collision!
If the dimensions of the pocket and the set-up clearance do not permit pre-
positioning in the proximity of the touch points, the control always starts probing
from the center of the pocket. In this case, the touch probe does not return to the
clearance height between the four measuring points. There is a risk of collision!
To prevent a collision between touch probe and workpiece, enter low
estimates for the lengths of the first and second sides.
Before the cycle definition, you must have programmed a tool call to define the
touch probe axis.

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control will reset an active basic rotation at the beginning of the cycle.

5.10.1 Cycle parameters

Pocket length, parallel to the main axis of the working plane. This value has an incremental effect.
Input: 0... 99999.9999

Q324 Second side length?

Pocket length, parallel to the secondary axis of the working plane. This value has an incremental effect.
Input: 0...99999.9999

Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF
Q301 Move to clearance height (0/1)?
Specify how the touch probe moves between measuring points:
0: Move at measuring height between measuring points
1: Move at clearance height between measuring points Input: 0, 1

Parameter

Q305 Number in table?

Enter the row number from the preset table / datum table in which the control saves the center coordinates. Depending on Q303, the control writes the entry to the preset table or datum table.
If Q303 $=\mathbf{1}$, the control will write the data to the preset table.
Further information: "Saving the calculated preset",
Page 166
Input: 0... 99999

Q331 New preset in reference axis?

Coordinate in the main axis at which the control will set the calculated pocket center. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q332 New preset in minor axis?
Coordinate in the secondary axis at which the control will set the calculated pocket center. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q303 Meas. value transfer ($\mathbf{0}, \mathbf{1}$)?

Define whether the calculated preset will be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the control when old
NC programs are uploaded; see "Characteristics common to all touch probe cycles 4xx for preset setting", Page 165
0 : Write the calculated preset to the active datum table. The reference system is the active workpiece coordinate system.
1: Write the calculated preset to the preset table.
Input:-1, 0, +1
Q381 Probe in TS axis? (0/1)
Define whether the control will also set the preset in the touch probe axis:
$\mathbf{0}$: Do not set the preset in the touch probe axis
1: Set the preset in the touch probe axis
Input: 0, 1

Help graphic	Parameter
	Q382 Probe TS axis: Coord. 1st axis? Coordinate of the touch point in the main axis of the working plane; the preset will be set tat this point in the touch probe axis. Only effective if Q381 $=1$. This value has an absolute effect. Input: -99999.9999....99999.9999

Q383 Probe TS axis: Coord. 2nd axis?
Coordinate of the touch point in the secondary axis of the working plane; the preset will be set at this point in the touch probe axis. Only effective if $\mathbf{Q} 381=1$. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q384 Probe TS axis: Coord. 3rd axis?
Coordinate of the touch point in the touch probe axis; the preset will be set at this point in the touch probe axis. Only effective if Q381 = 1. This value has an absolute effect. Input: -99999.9999...+99999.9999

Q333 New preset in TS axis?

Coordinate in the touch probe axis at which the control will set the preset. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Example

Q321 $=+50$;CENTER IN 1ST AXIS ~
Q322=+50	;CENTER IN 2ND AXIS ~
Q323 $=+60$;FIRST SIDE LENGTH ~
Q324 $=+20$;2ND SIDE LENGTH ~
Q261 $=-5$;MEASURING HEIGHT ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+20$;CLEARANCE HEIGHT ~
Q301 $=+0$;MOVE TO CLEARANCE ~
Q305=+10	;NUMBER IN TABLE ~
Q331 $=+0$;PRESET ~
Q332 $=+0$;PRESET ~
Q303 $=+1$;MEAS. VALUE TRANSFER ~
Q381 $=+1$;PROBE IN TS AXIS ~
Q382=+85	;1ST CO. FOR TS AXIS ~
Q383 $=+50$;2ND CO. FOR TS AXIS ~
Q384 $=+0$;3RD CO. FOR TS AXIS ~
Q333=+1	;PRESET

5.11 Cycle 411 PRESET OUTS. RECTAN

ISO programming

G411

Application

Touch probe cycle 411 finds the center of a rectangular stud and defines this position as the datum. If desired, the control can also write the center point coordinates to a datum table or the preset table.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) to the touch point 1. The control calculates the touch points from the data in the cycle and from the set-up clearance in the SET_UP column of the touch probe table.
Further information: "Positioning logic", Page 52
2 Next, the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (\mathbf{F} column).
3 Then the touch probe moves either paraxially at measuring height or at clearance height to the next touch point 2 and probes again.
4 The control positions the touch probe to touch point 3 and then to touch point 4 to probe two more times.
5 The control returns the touch probe to the clearance height.
6 Depending on the cycle parameters Q303 and Q305, the control processes the calculated preset, see "Fundamentals of touch probe cycles $4 x x$ for preset setting", Page 165
7 Then the control saves the actual values in the Q parameters listed below.
8 If desired, the control subsequently determines the preset in the touch probe axis in a separate probing operation.

Q parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q154	Actual value of side length in the reference axis
Q155	Actual value of side length in the minor axis

Notes

NOTICE

Danger of collision!

When running touch probe cycles $\mathbf{4 0 0}$ to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.

NOTICE

Danger of collision!

To prevent a collision between touch probe and workpiece, enter high estimates for the lengths of the 1st and 2 nd sides.

- Before the cycle definition, you must have programmed a tool call to define the touch probe axis.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control will reset an active basic rotation at the beginning of the cycle.

5.11.1 Cycle parameters

Help graphic \quad| Parameter |
| :--- |
| Q321 Center in 1st axis? |
| Center of the stud in the main axis of the working plane. This |
| value has an absolute effect. |
| Input: -99999.9999...+9999.9999 |

Q324 Second side length?

Length of stud parallel to the secondary axis of the working plane. This value has an incremental effect.
Input: 0...99999.9999

Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF
Q301 Move to clearance height (0/1)?
Specify how the touch probe moves between measuring points:
0: Move at measuring height between measuring points
1: Move at clearance height between measuring points Input: 0, 1

Help graphic
 Parameter
 Q305 Number in table?

Enter the row number from the preset table / datum table in which the control saves the center coordinates. Depending on Q303, the control writes the entry to the preset table or datum table.
If Q303 = 1, the control will write the data to the preset table.
Further information: "Saving the calculated preset",
Page 166
Input: 0... 99999

Q331 New preset in reference axis?

Coordinate in the main axis at which the control will set the calculated stud center. Default setting $=0$. This value has an absolute effect.

Input: -99999.9999...+99999.9999
Q332 New preset in minor axis?
Coordinate in the secondary axis at which the control will set the calculated stud center. Default setting $=0$. This value has an absolute effect.

Input: -99999.9999...+99999.9999
Q303 Meas. value transfer $(0,1)$?
Define whether the calculated preset will be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the control when old
NC programs are uploaded; see "Characteristics common to all touch probe cycles $4 x x$ for preset setting", Page 165
$\mathbf{0}$: Write the calculated preset to the active datum table. The reference system is the active workpiece coordinate system.

1: Write the calculated preset to the preset table.
Input: -1, 0, +1

Parameter

Q381 Probe in TS axis? (0/1)

Define whether the control will also set the preset in the touch probe axis:
$\mathbf{0}$: Do not set the preset in the touch probe axis
1: Set the preset in the touch probe axis
Input: 0, 1
Q382 Probe TS axis: Coord. 1st axis?
Coordinate of the touch point in the main axis of the working plane; the preset will be set at this point in the touch probe axis. Only effective if Q381 $=1$. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q383 Probe TS axis: Coord. 2nd axis?
Coordinate of the touch point in the secondary axis of the working plane; the preset will be set at this point in the touch probe axis. Only effective if $\mathbf{Q} \mathbf{3 8 1}=1$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q384 Probe TS axis: Coord. 3rd axis?

Coordinate of the touch point in the touch probe axis; the preset will be set at this point in the touch probe axis. Only effective if Q381 $=1$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q333 New preset in TS axis?

Coordinate in the touch probe axis at which the control will set the preset. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Example

11 TCH PROBE 411 PRESET OUTS. RECTAN ~	
Q321 $=+50$;CENTER IN 1ST AXIS ~
Q322=+50	;CENTER IN 2ND AXIS ~
Q323 $=+60$;FIRST SIDE LENGTH ~
Q324=+20	;2ND SIDE LENGTH ~
Q261 =-5	;MEASURING HEIGHT ~
Q320=+0	;SET-UP CLEARANCE ~
Q260 $=+20$;CLEARANCE HEIGHT ~
Q301 $=+0$;MOVE TO CLEARANCE ~
Q305=+0	; NUMBER IN TABLE ~
Q331 $=+0$;PRESET ~
Q332=+0	;PRESET ~
Q303=+1	;MEAS. VALUE TRANSFER ~
Q381=+1	;PROBE IN TS AXIS ~
Q382=+85	;1ST CO. FOR TS AXIS ~
Q383 $=+50$;2ND CO. FOR TS AXIS ~
Q384=+0	;3RD CO. FOR TS AXIS ~
Q333=+1	;PRESET

5.12 Cycle 412 PRESET INSIDE CIRCLE

ISO programming

 G412
Application

Touch probe cycle 412 finds the center of a circular pocket (hole) and defines this position as the preset. If desired, the control can also write the center point coordinates to a datum table or the preset table.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) to the touch point 1. The control calculates the touch points from the data in the cycle and from the set-up clearance in the SET_UP column of the touch probe table.
Further information: "Positioning logic", Page 52
2 Next, the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (\mathbf{F} column). The control derives the probing direction automatically from the programmed starting angle.
3 Then, the touch probe moves in a circular arc either at measuring height or linearly at clearance height to the next touch point 2 and probes again.
4 The control positions the touch probe to touch point 3 and then to touch point 4 to probe two more times.
5 The control returns the touch probe to the clearance height.
6 Depending on the cycle parameters Q303 and Q305, the control processes the calculated preset, see "Fundamentals of touch probe cycles $4 x x$ for preset setting", Page 165
7 Then the control saves the actual values in the Q parameters listed below.
8 If desired, the control subsequently measures the preset in the touch probe axis in a separate probing operation.

Q parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q153	Actual value of diameter

Notes

NOTICE

Danger of collision!

When running touch probe cycles $\mathbf{4 0 0}$ to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.

| NOTICE |
| :--- | :--- |
| Danger of collision! |
| If the dimensions of the pocket and the set-up clearance do not permit pre- |
| positioning in the proximity of the touch points, the control always starts probing |
| from the center of the pocket. In this case, the touch probe does not return to the |
| clearance height between the four measuring points. There is a risk of collision! |
| The pocket/hole must be free of material on the inside |
| To prevent a collision between the touch probe and the workpiece, enter a low |
| estimate for the nominal diameter of the pocket (or hole). |

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control will reset an active basic rotation at the beginning of the cycle.

Notes on programming

- The smaller the stepping angle Q247, the less accurately the control can calculate the preset. Minimum input value: 5°
(i) Program the stepping angle to be less than 90°

5.12.1 Cycle parameters

Parameter

Q321 Center in 1st axis?
Center of the pocket in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q322 Center in 2nd axis?

Center of the pocket in the secondary axis of the working plane. If you program Q322 = 0, the control aligns the hole center point to the positive Y axis. If you program Q322 not equal to 0 , then the control aligns the hole center point to the nominal position. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q262 Nominal diameter?

Approximate diameter of the circular pocket (or hole). Enter a value that is more likely to be too small than too large.
Input: 0...99999.9999

Q325 Starting angle?

Angle between the main axis of the working plane and the first touch point. This value has an absolute effect.
Input: -360.000...+360.000

Q247 Intermediate stepping angle?

Angle between two measuring points. The algebraic sign of the stepping angle determines the direction of rotation (negative = clockwise) in which the touch probe moves to the next measuring point. If you wish to probe a circular arc instead of a complete circle, then program the stepping angle to be less than 90°. This value has an incremental effect.
Input: -120...+120

Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: O...99999.9999 or PREDEF

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.

Input: -99999.9999...+99999.9999 or PREDEF

Help graphic	Parameter
	Q301 Move to clearance height (0/1)?
Specify how the touch probe moves between measuring	
points:	
0: Move at measuring height between measuring points	
1: Move at clearance height between measuring points	
Input: 0, 1	
Q305 Number in table?	
Enter the row number from the preset table / datum table in	
which the control saves the center coordinates. Depending	
on Q303, the control writes the entry to the preset table or	
datum table.	
If Q303 = 1, the control will write the data to the preset table.	
Further information: "Saving the calculated preset",	
Page 166	
Input: $\mathbf{0 . . . 9 9 9 9 9}$	

Q331 New preset in reference axis?
Coordinate in the main axis at which the control will set the calculated pocket center. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q332 New preset in minor axis?

Coordinate in the secondary axis at which the control will set the calculated pocket center. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q303 Meas. value transfer $(0,1)$?
Define whether the calculated preset will be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the control when old NC programs are uploaded; see "Characteristics common to all touch probe cycles 4xx for preset setting", Page 165
$\mathbf{0}$: Write the calculated preset to the active datum table. The reference system is the active workpiece coordinate system.
1: Write the calculated preset to the preset table.
Input: -1, 0, +1

Parameter

Q381 Probe in TS axis? (0/1)

Define whether the control will also set the preset in the touch probe axis:
$\mathbf{0}$: Do not set the preset in the touch probe axis
1: Set the preset in the touch probe axis
Input: 0, 1

Q382 Probe TS axis: Coord. 1st axis?

Coordinate of the touch point in the main axis of the working plane; the preset will be set at this point in the touch probe axis. Only effective if Q381 = 1. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q383 Probe TS axis: Coord. 2nd axis?
Coordinate of the touch point in the secondary axis of the working plane; the preset will be set at this point in the touch probe axis. Only effective if $\mathbf{Q} \mathbf{3 8 1}=1$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q384 Probe TS axis: Coord. 3rd axis?

Coordinate of the touch point in the touch probe axis; the preset will be set at this point in the touch probe axis. Only effective if Q381 = 1. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q333 New preset in TS axis?

Coordinate in the touch probe axis at which the control will set the preset. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q423 No. probe points in plane (4/3)?
Define whether the control will use three or four touch points to measure the circle:
3: Use three measuring points
4: Use four measuring points (default setting)
Input: 3, 4

Q365 Type of traverse? Line=0/arc=1

Specify the path function to be used by the tool for moving between the measuring points if "traverse to clearance height" (Q301 = 1) is active.
$\mathbf{0}$: Move in a straight line between machining operations
1: Move along a circular arc on the pitch circle diameter between machining operations
Input: 0, 1

Example

11 TCH PROBE 412 PRESET INSIDE CIRCLE ~	
Q321 $=+50$;CENTER IN 1ST AXIS ~
Q322=+50	;CENTER IN 2ND AXIS ~
Q262=+75	;NOMINAL DIAMETER ~
Q325=+0	;STARTING ANGLE ~
Q247 $=+60$;STEPPING ANGLE ~
Q261 $=-5$;MEASURING HEIGHT ~
Q320=+0	;SET-UP CLEARANCE ~
Q260 $=+20$;CLEARANCE HEIGHT ~
Q301 $=+0$;MOVE TO CLEARANCE ~
Q305=+12	; NUMBER IN TABLE ~
Q331 $=+0$;PRESET ~
Q332=+0	;PRESET ~
Q303=+1	;MEAS. VALUE TRANSFER ~
Q381 $=+1$;PROBE IN TS AXIS ~
Q382=+85	;1ST CO. FOR TS AXIS ~
Q383 $=+50$;2ND CO. FOR TS AXIS ~
Q384=+0	;3RD CO. FOR TS AXIS ~
Q333=+1	;PRESET ~
Q423=+4	;NO. OF PROBE POINTS ~
Q365 =+1	;TYPE OF TRAVERSE

5.13 Cycle 413 PRESET OUTS. CIRCLE

ISO programming

G413

Application

Touch probe cycle 413 finds the center of a circular stud and defines this position as the preset. If desired, the control can also write the center point coordinates to a datum table or the preset table.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) to the touch point 1. The control calculates the touch points from the data in the cycle and from the set-up clearance in the SET_UP column of the touch probe table.
Further information: "Positioning logic", Page 52
2 Next, the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (\mathbf{F} column). The control derives the probing direction automatically from the programmed starting angle.
3 Then, the touch probe moves in a circular arc either at measuring height or at clearance height to the next touch point 2 and probes again.
4 The control positions the touch probe to touch point 3 and then to touch point 4 to probe two more times.
5 The control returns the touch probe to the clearance height.
6 Depending on the cycle parameters Q303 and Q305, the control processes the calculated preset, see "Fundamentals of touch probe cycles $4 x x$ for preset setting", Page 165
7 Then the control saves the actual values in the Q parameters listed below.
8 If desired, the control subsequently measures the preset in the touch probe axis in a separate probing operation.

Q parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q153	Actual value of diameter

Notes

| NOTICE |
| :--- | :--- |
| Danger of collision! |
| When running touch probe cycles 400 to 499, all cycles for coordinate |
| transformation must be inactive. There is a danger of collision! |
| The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ |
| DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING |
| FACTOR, and Cycle 26 AXIS-SPEIFIC SCALING. |
| Reset any coordinate transformations beforehand. |

NOTICE

Danger of collision!

To prevent a collision between touch probe and workpiece, enter a high estimate for the nominal diameter of the stud.

- Before a cycle definition you must have programmed a tool call to define the touch probe axis.
- The control will reset an active basic rotation at the beginning of the cycle.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The smaller the stepping angle Q247, the less accurately the control can calculate the preset. Minimum input value: 5°
(i) Program the stepping angle to be less than 90°

5.13.1 Cycle parameters

Parameter

Q321 Center in 1st axis?
Center of the stud in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+9999.9999

Q322 Center in 2nd axis?

Center of the stud in the secondary axis of the working plane. If you program Q322 $=0$, the control aligns the hole center point to the positive Y axis. If you program Q322 not equal to 0 , then the control aligns the hole center point to the nominal position. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q262 Nominal diameter?

Approximate diameter of the stud. Enter a value that is more likely to be too large than too small.
Input: 0...99999.9999

Q325 Starting angle?

Angle between the main axis of the working plane and the first touch point. This value has an absolute effect.
Input: -360.000...+360.000

Q247 Intermediate stepping angle?

Angle between two measuring points. The algebraic sign of the stepping angle determines the direction of rotation (negative = clockwise) in which the touch probe moves to the next measuring point. If you wish to probe a circular arc instead of a complete circle, then program the stepping angle to be less than 90°. This value has an incremental effect.
Input: -120...+120

Q261 Measuring height in probe axis?

Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: O...99999.9999 or PREDEF
Q260 Clearance height?
Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Help graphic	Parameter
	Q301 Move to clearance height (0/1)?
Specify how the touch probe moves between measuring	
points:	
$\mathbf{0 :}$ Move at measuring height between measuring points	
1: Move at clearance height between measuring points	
Input: $\mathbf{0}, \mathbf{1}$	

Q305 Number in table?

Enter the row number from the preset table / datum table in which the control saves the center coordinates. Depending on Q303, the control writes the entry to the preset table or datum table.
If $\mathbf{Q 3 0 3}=\mathbf{1}$, the control will write the data to the preset table.
Further information: "Saving the calculated preset", Page 166
Input: 0... 99999

Q331 New preset in reference axis?

Coordinate in the main axis at which the control will set the calculated stud center. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q332 New preset in minor axis?

Coordinate in the secondary axis at which the control will set the calculated stud center. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q303 Meas. value transfer $(0,1)$?
Define whether the calculated preset will be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the control when old NC programs are uploaded; see "Characteristics common to all touch probe cycles 4xx for preset setting", Page 165
$\mathbf{0}$: Write the calculated preset to the active datum table. The reference system is the active workpiece coordinate system.
1: Write the calculated preset to the preset table.
Input: -1, 0, +1

Parameter

Q381 Probe in TS axis? (0/1)

Define whether the control will also set the preset in the touch probe axis:
$\mathbf{0}$: Do not set the preset in the touch probe axis
1: Set the preset in the touch probe axis
Input: 0, 1

Q382 Probe TS axis: Coord. 1st axis?

Coordinate of the touch point in the main axis of the working plane; the preset will be set at this point in the touch probe axis. Only effective if Q381 = 1. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q383 Probe TS axis: Coord. 2nd axis?
Coordinate of the touch point in the secondary axis of the working plane; the preset will be set at this point in the touch probe axis. Only effective if $\mathbf{Q} \mathbf{3 8 1}=1$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q384 Probe TS axis: Coord. 3rd axis?

Coordinate of the touch point in the touch probe axis; the preset will be set at this point in the touch probe axis. Only effective if Q381 = 1. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q333 New preset in TS axis?

Coordinate in the touch probe axis at which the control will set the preset. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q423 No. probe points in plane (4/3)?
Define whether the control will use three or four touch points to measure the circle:
3: Use three measuring points
4: Use four measuring points (default setting)
Input: 3, 4

Q365 Type of traverse? Line=0/arc=1

Specify the path function to be used by the tool for moving between the measuring points if "traverse to clearance height" (Q301 = 1) is active.
$\mathbf{0}$: Move in a straight line between machining operations
1: Move along a circular arc on the pitch circle diameter between machining operations
Input: 0, 1

Example

11 TCH PROBE 413 PRESET OUTS. CIRCLE ~	
Q321 $=+50$;CENTER IN 1ST AXIS ~
Q322=+50	;CENTER IN 2ND AXIS ~
Q262=+75	;NOMINAL DIAMETER ~
Q325 $=+0$;STARTING ANGLE ~
Q247 $=+60$;STEPPING ANGLE ~
Q261 $=-5$;MEASURING HEIGHT ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+20$;CLEARANCE HEIGHT ~
Q301 $=+0$;MOVE TO CLEARANCE ~
Q305=+15	;NUMBER IN TABLE ~
Q331 $=+0$;PRESET ~
Q332=+0	;PRESET ~
Q303=+1	;MEAS. VALUE TRANSFER ~
Q381 $=+1$;PROBE IN TS AXIS ~
Q382=+85	;1ST CO. FOR TS AXIS ~
Q383 $=+50$;2ND CO. FOR TS AXIS ~
Q384=+0	;3RD CO. FOR TS AXIS ~
Q333=+1	;PRESET ~
Q423=+4	;NO. OF PROBE POINTS ~
Q365 $=+1$;TYPE OF TRAVERSE

5.14 Cycle 414 PRESET OUTS. CORNER

ISO programming

G414

Application

Touch probe cycle 414 finds the intersection of two lines and defines it as the preset. If desired, the control can also write the point of intersection coordinates to a datum table or the preset table.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from FMAX column) at touch point 1 (see figure). The control offsets the touch probe by the set-up clearance in the direction opposite the respective traverse direction.
Further information: "Positioning logic", Page 52
2 Next, the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (\mathbf{F} column). The control derives the probing direction automatically from the 3rd measuring point.
3 The touch probe then moves to the next touch point 2 and probes again.
4 The control positions the touch probe to touch point 3 and then to touch point 4 to probe two more times.
5 The control returns the touch probe to the clearance height.
6 Depending on the cycle parameters Q303 and Q305, the control processes the calculated preset, see "Fundamentals of touch probe cycles $4 x x$ for preset setting", Page 165
7 Then the control saves the coordinates of the calculated corner in the Q parameters listed below.
8 If desired, the control subsequently measures the preset in the touch probe axis in a separate probing operation.
(1)

The control always measures the first line in the direction of the minor axis of the working plane.

Q parameter number	Meaning
Q151	Actual value of corner in reference axis
Q152	Actual value of corner in minor axis

Definition of the corner

By defining the positions of the measuring points 1 and 3 , you also determine the corner at which the control sets the preset (see the following figure and table below).

Corner	X coordinate	Y coordinate
A	Point 1 greater than point 3	Point 1 less than point 3
B	Point 1 less than point 3	Point 1 less than point 3
C	Point 1 less than point 3	Point 1 greater than point 3
D	Point 1 greater than point 3	Point 1 greater than point 3

Notes

NOTICE

Danger of collision!

When running touch probe cycles 400 to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control will reset an active basic rotation at the beginning of the cycle.

Note on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.

5.14.1 Cycle parameters

Parameter

Q263 1st measuring point in 1st axis?
Coordinate of the first touch point in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q264 1st measuring point in 2nd axis?
Coordinate of the first touch point in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q326 Spacing in 1st axis?

Distance between the first and second measuring points in the main axis of the working plane. This value has an incremental effect.

Input: 0... 99999.9999
Q296 3rd measuring point in 1st axis?
Coordinate of the third touch point in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q297 3rd measuring point in 2nd axis?
Coordinate of the third touch point in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q327 Spacing in 2nd axis?

Distance between third and fourth measuring points in the secondary axis of the working plane. This value has an incremental effect.
Input: 0...99999.9999
Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF

Help graphic	Parameter
	Q260 Clearance height?
	Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
	Input: -99999.9999...+99999.9999 or PREDEF
	Q301 Move to clearance height (0/1)?
	Specify how the touch probe moves between measuring points:
	0 : Move at measuring height between measuring points
	1: Move at clearance height between measuring points
	Input: 0, 1
	Q304 Execute basic rotation (0/1)?
	Define whether the control will compensate workpiece misalignment with a basic rotation:
	0 0: No basic rotation
	1: Basic rotation
	Input: 0,1
	Q305 Number in table?
	Indicate the number of the row of the preset table or datum table, in which the control saves the corner coordinates. Depending on Q303, the control writes the entry to the preset table or datum table:
	If Q303 $=\mathbf{1}$, the control will write the data to the preset table.
	If Q303 $=\mathbf{0}$, the control will write the data to the datum table. The datum is not automatically activated.
	Further information: "Saving the calculated preset", Page 166
	Input: 0... 99999
	Q331 New preset in reference axis?
	Coordinate in the main axis at which the control will set the calculated corner. Default setting $=0$. This value has an absolute effect.
	Input: -99999.9999...+99999.9999
	Q332 New preset in minor axis?
	Coordinate in the secondary axis at which the control will set the calculated corner. Default setting $=0$. This value has an absolute effect.
	Input: -99999.9999...+99999.9999

Q303 Meas. value transfer $(0,1)$?
Define whether the calculated preset will be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the control when old
NC programs are uploaded; see "Characteristics common to all touch probe cycles 4xx for preset setting", Page 165
$\mathbf{0}$: Write the calculated preset to the active datum table. The reference system is the active workpiece coordinate system.
1: Write the calculated preset to the preset table.
Input: -1, 0, +1
Q381 Probe in TS axis? (0/1)
Define whether the control will also set the preset in the touch probe axis:
$\mathbf{0}$: Do not set the preset in the touch probe axis
1: Set the preset in the touch probe axis
Input: 0, 1
Q382 Probe TS axis: Coord. 1st axis?
Coordinate of the touch point in the main axis of the working plane; the preset will be set at this point in the touch probe axis. Only effective if $\mathbf{Q 3 8 1}=1$. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q383 Probe TS axis: Coord. 2nd axis?
Coordinate of the touch point in the secondary axis of the working plane; the preset will be set at this point in the touch probe axis. Only effective if $\mathbf{Q 3 8 1}=1$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q384 Probe TS axis: Coord. 3rd axis?

Coordinate of the touch point in the touch probe axis; the preset will be set at this point in the touch probe axis. Only effective if Q381 = 1. This value has an absolute effect. Input: -99999.9999...+99999.9999

Q333 New preset in TS axis?

Coordinate in the touch probe axis at which the control will set the preset. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Example

11 TCH PROBE 414 PRESET OUTS. CORNER ~	
Q263 $=+37$;1ST POINT 1ST AXIS ~
Q264=+7	;1ST POINT 2ND AXIS ~
Q326=+50	;SPACING IN 1ST AXIS ~
Q296=+95	;3RD PNT IN 1ST AXIS ~
Q297 $=+25$;3RD PNT IN 2ND AXIS ~
Q327 $=+45$;SPACING IN 2ND AXIS ~
Q261 $=-5$;MEASURING HEIGHT ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+20$;CLEARANCE HEIGHT ~
Q301 $=+0$;MOVE TO CLEARANCE ~
Q304=+0	;BASIC ROTATION ~
Q305=+7	;NUMBER IN TABLE ~
Q331 $=+0$;PRESET ~
Q332=+0	;PRESET ~
Q303=+1	;MEAS. VALUE TRANSFER ~
Q381=+1	;PROBE IN TS AXIS ~
Q382=+85	;1ST CO. FOR TS AXIS ~
Q383=+50	;2ND CO. FOR TS AXIS ~
Q384=+0	;3RD CO. FOR TS AXIS ~
Q333=+1	;PRESET

5.15 Cycle 415 PRESET INSIDE CORNER

ISO programming

 G415
Application

Touch probe cycle $\mathbf{4 1 5}$ finds the intersection of two lines and defines it as the preset. If desired, the control can also write the point of intersection coordinates to a datum table or the preset table.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from FMAX column) at touch point 1 (see figure). The control offsets the touch probe in the main axis and the secondary axis by the setup clearance Q320 + SET_UP + ball-tip radius (in the direction opposite the respective traverse direction)
Further information: "Positioning logic", Page 52
2 Next, the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (\mathbf{F} column). The probing direction is derived from the number by which you identify the corner.
3 The touch probe moves to the next touch point 2; the control offsets the touch probe in the secondary axis by the amount of the set-up clearance Q320 + SET_UP + ball-tip radius and then performs the second probing operation
4 The control positions the touch probe at touch point 3 (same positioning logic as for the first touch point) and performs the probing operation there
5 The touch probe then moves to touch point 4. The control offsets the touch probe in the main axis by the amount of the set-up clearance Q320 + SET_UP + ball-tip radius and then performs the fourth probing operation
6 The control returns the touch probe to the clearance height.
7 Depending on the cycle parameters Q303 and Q305, the control processes the calculated preset, see "Fundamentals of touch probe cycles 4xx for preset setting", Page 165
8 Then the control saves the coordinates of the calculated corner in the Q parameters listed below.
9 If desired, the control subsequently measures the preset in the touch probe axis in a separate probing operation.

The control always measures the first line in the direction of the minor axis of the working plane.

Q parameter number	Meaning
Q151	Actual value of corner in reference axis
Q152	Actual value of corner in minor axis

Notes

NOTICE

Danger of collision!

When running touch probe cycles 400 to 499, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control will reset an active basic rotation at the beginning of the cycle.

Note on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.

5.15.1 Cycle parameters

Parameter

Q263 1st measuring point in 1st axis?
Coordinate of the corner in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q264 1st measuring point in 2nd axis?
Coordinate of the corner in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q326 Spacing in 1st axis?

Distance between the first corner and the second measuring point in the main axis of the working plane. This value has an incremental effect.
Input: 0... 99999.9999
Q327 Spacing in 2nd axis?
Distance between the corner and the fourth measuring point in the secondary axis of the working plane. This value has an incremental effect.
Input: 0... 99999.9999

Q308 Corner? (1/2/3/4)

Number identifying the corner at which the control will set the preset.
Input: 1, 2, 3, 4

Q261 Measuring height in probe axis?

Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF
Q301 Move to clearance height ($0 / 1$)?
Specify how the touch probe moves between measuring points:

0: Move at measuring height between measuring points
1: Move at clearance height between measuring points Input: 0, 1
Help graphic

Parameter

Q304 Execute basic rotation (0/1)?
Define whether the control will compensate workpiece misalignment with a basic rotation:
0: No basic rotation
1: Basic rotation
Input: 0, 1

Q305 Number in table?

Indicate the number of the row of the preset table or datum table, in which the control saves the corner coordinates. Depending on Q303, the control writes the entry to the preset table or datum table:
If Q303 $=\mathbf{1}$, the control will write the data to the preset table.
If Q303 $\mathbf{= 0}$, the control will write the data to the datum table. The datum is not automatically activated.
Further information: "Saving the calculated preset", Page 166
Input: 0... 99999

Q331 New preset in reference axis?

Coordinate in the main axis at which the control will set the calculated corner. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q332 New preset in minor axis?
Coordinate in the secondary axis at which the control will set the calculated corner. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q303 Meas. value transfer $(0,1)$?
Define whether the calculated preset will be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the control when old
NC programs are uploaded; see "Characteristics common to all touch probe cycles $4 x x$ for preset setting", Page 165
0 : Write the calculated preset to the active datum table. The reference system is the active workpiece coordinate system.
1: Write the calculated preset to the preset table.
Input: -1, 0, +1

Parameter

Q381 Probe in TS axis? (0/1)

Define whether the control will also set the preset in the touch probe axis:
$\mathbf{0}$: Do not set the preset in the touch probe axis
1: Set the preset in the touch probe axis
Input: 0, 1
Q382 Probe TS axis: Coord. 1st axis?
Coordinate of the touch point in the main axis of the working plane; the preset will be set at this point in the touch probe axis. Only effective if Q381 = 1. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q383 Probe TS axis: Coord. 2nd axis?
Coordinate of the touch point in the secondary axis of the working plane; the preset will be set at this point in the touch probe axis. Only effective if $\mathbf{Q} \mathbf{3 8 1}=1$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q384 Probe TS axis: Coord. 3rd axis?

Coordinate of the touch point in the touch probe axis; the preset will be set at this point in the touch probe axis. Only effective if Q381 = 1. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q333 New preset in TS axis?

Coordinate in the touch probe axis at which the control will set the preset. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Example

11 TCH PROBE 415 PRESET INSIDE CORNER ~	
Q263 $=+37$;1ST POINT 1ST AXIS ~
Q264=+7	;1ST POINT 2ND AXIS ~
Q326=+50	;SPACING IN 1ST AXIS ~
Q327=+45	;SPACING IN 2ND AXIS ~
Q308=+1	;CORNER ~
Q261 $=-5$;MEASURING HEIGHT ~
Q320=+0	;SET-UP CLEARANCE ~
Q260=+20	;CLEARANCE HEIGHT ~
Q301 $=+0$;MOVE TO CLEARANCE ~
Q304=+0	;BASIC ROTATION ~
Q305=+7	;NUMBER IN TABLE ~
Q331 $=+0$;PRESET ~
Q332 $=+0$;PRESET ~
Q303=+1	;MEAS. VALUE TRANSFER ~
Q381 $=+1$;PROBE IN TS AXIS ~
Q382=+85	;1ST CO. FOR TS AXIS ~
Q383 $=+50$;2ND CO. FOR TS AXIS ~
Q384=+0	;3RD CO. FOR TS AXIS ~
Q333 $=+1$;PRESET

5.16 Cycle 416 PRESET CIRCLE CENTER

ISO programming

 G416
Application

Touch probe cycle 416 finds the center of a bolt hole circle by measuring three holes, and defines the determined center as the preset. If desired, the control can also write the center point coordinates to a datum table or the preset table.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from FMAX column) to the programmed center point of the first hole 1.
Further information: "Positioning logic", Page 52
2 Then the probe moves to the entered measuring height and probes four points to determine the first hole center point.
3 The touch probe returns to the clearance height and then to the position entered as center of the second hole 2 .
4 The control moves the touch probe to the entered measuring height and probes four points to determine the second hole center point.
5 The touch probe returns to the clearance height and then to the position entered as center of the third hole 3 .
6 The control moves the touch probe to the entered measuring height and probes four points to determine the third hole center point.
7 The control returns the touch probe to the clearance height.
8 Depending on the cycle parameters Q303 and Q305, the control processes the calculated preset, see "Fundamentals of touch probe cycles $4 \times x$ for preset setting", Page 165
9 Then the control saves the actual values in the Q parameters listed below.
10 If desired, the control subsequently measures the preset in the touch probe axis in a separate probing operation.

Q parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q153	Actual value of bolt hole circle diameter

Notes

NOTICE

Danger of collision!

When running touch probe cycles $\mathbf{4 0 0}$ to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle $\mathbf{2 6}$ AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control will reset an active basic rotation at the beginning of the cycle.

Note on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.

5.16.1 Cycle parameters

Help graphic | Q273 Center in 1st axis (nom. value)? |
| :--- |
| Bolt hole circle center (nominal value) in the main axis of the |
| working plane. This value has an absolute effect. |
| Input: -99999.9999...+99999.9999 |

Q291 Polar coord. angle of 1st hole?
Polar coordinate angle of the first hole center in the working plane. This value has an absolute effect.
Input: -360.000...+360.000
Q292 Polar coord. angle of 2nd hole?
Polar coordinate angle of the second hole center in the working plane. This value has an absolute effect.
Input: -360.000...+360.000
Q293 Polar coord. angle of 3rd hole?
Polar coordinate angle of the third hole center in the working plane. This value has an absolute effect.
Input: -360.000...+360.000

Q261 Measuring height in probe axis?

Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Help graphic
 Parameter
 Q305 Number in table?

Enter the row number from the preset table / datum table in which the control saves the center coordinates. Depending on Q303, the control writes the entry to the preset table or datum table.
If Q303 = 1, the control will write the data to the preset table.
Further information: "Saving the calculated preset",
Page 166
Input: 0... 99999

Q331 New preset in reference axis?

Coordinate in the main axis at which the control will set the calculated bolt-hole center. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q332 New preset in minor axis?
Coordinate in the secondary axis at which the control will set the calculated bolt-hole circle center. Default setting $=0$. This value has an absolute effect.

Input: -99999.9999...+99999.9999

Q303 Meas. value transfer $(0,1)$?

Define whether the calculated preset will be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the control when old
NC programs are uploaded; see "Characteristics common to all touch probe cycles $4 \times x$ for preset setting", Page 165
$\mathbf{0}$: Write the calculated preset to the active datum table. The reference system is the active workpiece coordinate system.
1: Write the calculated preset to the preset table.
Input: -1, 0, +1
Q381 Probe in TS axis? (0/1)
Define whether the control will also set the preset in the touch probe axis:
$\mathbf{0}$: Do not set the preset in the touch probe axis
1: Set the preset in the touch probe axis
Input: 0, 1

Parameter

Q382 Probe TS axis: Coord. 1st axis?

Coordinate of the touch point in the main axis of the working plane; the preset will be set at this point in the touch probe axis. Only effective if Q381 = 1. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q383 Probe TS axis: Coord. 2nd axis?
Coordinate of the touch point in the secondary axis of the working plane; the preset will be set at this point in the touch probe axis. Only effective if $\mathbf{Q} 381=1$. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q384 Probe TS axis: Coord. 3rd axis?
Coordinate of the touch point in the touch probe axis; the preset will be set at this point in the touch probe axis. Only effective if Q381 = 1. This value has an absolute effect. Input: -99999.9999...+99999.9999

Q333 New preset in TS axis?

Coordinate in the touch probe axis at which the control will set the preset. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q320 Set-up clearance?
Additional distance between touch point and ball tip. Q320 is added to SET_UP (touch probe table), and is only active when the preset is probed in the touch probe axis. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF

Example

11 TCH PROBE 416 PRESET CIRCLE CENTER ~	
Q273 $=+50$;CENTER IN 1ST AXIS ~
Q274 $=+50$;CENTER IN 2ND AXIS ~
Q262=+90	;NOMINAL DIAMETER ~
Q291 $=+34$;ANGLE OF 1ST HOLE ~
Q292=+70	;ANGLE OF 2ND HOLE ~
Q293 $=+210$;ANGLE OF 3RD HOLE ~
Q261 $=-5$;MEASURING HEIGHT ~
Q260 $=+20$;CLEARANCE HEIGHT ~
Q305=+12	;NUMBER IN TABLE ~
Q331 $=+0$;PRESET ~
Q332=+0	;PRESET ~
Q303=+1	;MEAS. VALUE TRANSFER ~
Q381 $=+1$;PROBE IN TS AXIS ~
Q382=+85	;1ST CO. FOR TS AXIS ~
Q383 $=+50$;2ND CO. FOR TS AXIS ~
Q384=+0	;3RD CO. FOR TS AXIS ~
Q333=+1	;PRESET ~
Q320=+0	;SET-UP CLEARANCE

5.17 Cycle 417 PRESET IN TS AXIS

ISO programming

G417

Application

Touch probe cycle 417 measures any coordinate in the touch probe axis and defines it as the preset. If desired, the control can also write the measured coordinates to a datum table or preset table.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) to the programmed touch point 1. The control offsets the touch probe by the set-up clearance in the direction of the positive touch probe axis.
Further information: "Positioning logic", Page 52
2 Then the touch probe moves in its own axis to the coordinate entered as touch point 1 and measures the actual position with a simple probing movement
3 The control returns the touch probe to the clearance height.
4 Depending on the cycle parameters Q303 and Q305, the control processes the calculated preset, see "Fundamentals of touch probe cycles $4 x x$ for preset setting", Page 165
5 Then the control saves the actual values in the Q parameters listed below.

Q parameter
 Meaning

number
Q160
Actual value of measured point

Notes

NOTICE

Danger of collision!

When running touch probe cycles $\mathbf{4 0 0}$ to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control sets the preset in this axis.
- The control will reset an active basic rotation at the beginning of the cycle.

Note on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.

5.17.1 Cycle parameters

Help graphic	Parameter Q263 1st measuring point in 1st axis? Coordinate of the first touch point in the main axis of the working plane. This value has an absolute effect. Input: -99999.9999...+99999.9999
Q264 1st measuring point in 2nd axis?	
Coordinate of the first touch point in the secondary axis of	
the working plane. This value has an absolute effect.	
Input: -99999.9999...+99999.9999	

Q305 Number in table?

Indicate the number of the row of the preset table or datum table, in which the control saves the coordinates. Depending on Q303, the control writes the entry to the preset table or datum table.
If $\mathbf{Q 3 0 3}=\mathbf{1}$, the control will write the data to the preset table.
If $\mathbf{Q 3 0 3}=\mathbf{0}$, the control will write the data to the datum table. The datum is not automatically activated.
Further information: "Saving the calculated preset",
Page 166

Q333 New preset in TS axis?

Coordinate in the touch probe axis at which the control will set the preset. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Help graphic	Parameter
	Q303 Meas. value transfer $\mathbf{(0 , 1)}$?
Define whether the calculated preset will be saved in the	
datum table or in the preset table:	
- $\mathbf{- 1}$: Do not use. Is entered by the control when old	
NC programs are uploaded; see "Characteristics common to	
all touch probe cycles 4xx for preset setting", Page 165	
$\mathbf{0}$: Write the calculated preset to the active datum table. The	
reference system is the active workpiece coordinate system.	
1: Write the calculated preset to the preset table.	
Input: $\mathbf{- 1 , 0 , + 1}$	

Example

11 TCH PROBE 417 PRESET IN TS AXIS ~	
Q263 $=+25$;1ST POINT 1ST AXIS ~
Q264 $=+25$;1ST POINT 2ND AXIS ~
Q294 $=+25$;ST POINT 3RD AXIS ~
Q320 $=+0$;CLEAR CLEARANCE \sim
Q260 $=+50$;NUMBER IN TABLE \sim
Q305 $=+0$;PRESET ~
Q333 $=+0$;MEAS. VALUE TRANSFER
Q303 $=+1$	

5.18 Cycle 418 PRESET FROM 4 HOLES

ISO programming

 G418
Application

Touch probe cycle 418 calculates the intersection of the lines connecting two opposite hole center points and sets the preset at the point of intersection. If desired, the control can also write the point of intersection coordinates to a datum table or the preset table.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from FMAX column) to the center point of the first hole 1.
Further information: "Positioning logic", Page 52
2 Then the probe moves to the entered measuring height and probes four points to determine the first hole center point.
3 The touch probe returns to the clearance height and then to the position entered as center of the second hole 2 .
4 The control moves the touch probe to the entered measuring height and probes four points to determine the second hole center point.
5 The control repeats this step for holes 3 and 4.
6 The control returns the touch probe to the clearance height.
7 Depending on the cycle parameters Q303 and Q305, the control processes the calculated preset, see "Fundamentals of touch probe cycles $4 x x$ for preset setting", Page 165
8 The control calculates the preset as the intersection of the lines connecting the centers of holes $1 / 3$ and $2 / 4$ and saves the actual values in the Q parameters listed below.
9 If desired, the control subsequently measures the preset in the touch probe axis in a separate probing operation.

Q parameter number	Meaning
Q151	Actual value of intersection point in reference axis
Q152	Actual value of intersection point in minor axis

Notes

NOTICE

Danger of collision!

When running touch probe cycles 400 to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle $\mathbf{2 6}$ AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control will reset an active basic rotation at the beginning of the cycle.

Note on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.

5.18.1 Cycle parameters

Parameter

Q268 1st hole: center in 1st axis?
Center of the first hole in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+9999.9999
Q269 1st hole: center in 2nd axis?
Center of the first hole in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q270 2nd hole: center in 1st axis?
Center of the second hole in the main axis of the working plane. This value has an absolute effect
Input: -99999.9999...+99999.9999
Q271 2nd hole: center in 2nd axis?
Center of the second hole in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q316 3rd hole: Center in 1st axis?

Center of the third hole in the main axis of the working plane.
This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q317 3rd hole: Center in 2nd axis?

Center of the third hole in the secondary axis of the working plane. This value has an absolute effect.

Input: -99999.9999...+99999.9999

Q318 4th hole: Center in 1st axis?

Center of the fourth hole in the main axis of the working plane. This value has an absolute effect.

Input: -99999.9999...+99999.9999

Q319 4th hole: Center in 2nd axis?

Center of the fourth hole in the secondary axis of the working plane. This value has an absolute effect.

Input: -99999.9999...+99999.9999

Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Help graphic	Parameter
	Q305 Number in table?
	Indicate the number of the row in the preset table or datum
table in which the control saves the coordinates of the point	
of intersection of the connecting lines. Depending on Q303,	
the control writes the entry to the preset table or datum	
table.	

If Q303 $=\mathbf{1}$, the control will write the data to the preset table.
If Q303 $\mathbf{= 0}$, the control will write the data to the datum table. The datum is not automatically activated.
Further information: "Saving the calculated preset", Page 166
Input: 0... 99999

Q331 New preset in reference axis?

Coordinate in the main axis at which the control will set the calculated intersection of the connecting lines. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q332 New preset in minor axis?

Coordinate in the secondary axis at which the control will set the calculated intersection of the connecting lines. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+9999.9999

Q303 Meas. value transfer $(0,1)$?

Define whether the calculated preset will be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the control when old NC programs are uploaded; see "Characteristics common to all touch probe cycles 4xx for preset setting", Page 165
$\mathbf{0}$: Write the calculated preset to the active datum table. The reference system is the active workpiece coordinate system.
1: Write the calculated preset to the preset table.
Input: -1, 0, +1

Q381 Probe in TS axis? (0/1)

Define whether the control will also set the preset in the touch probe axis:
$\mathbf{0}$: Do not set the preset in the touch probe axis
1: Set the preset in the touch probe axis
Input: 0, 1

Help graphic	Parameter
	Q382 Probe TS axis: Coord. 1st axis?
Coordinate of the touch point in the main axis of the working	
plane; the preset will be set at this point in the touch probe	
axis. Only effective if Q381 $=1$. This value has an absolute	
effect.	
Input: -99999.9999...+99999.9999	

Q383 Probe TS axis: Coord. 2nd axis?
Coordinate of the touch point in the secondary axis of the working plane; the preset will be set at this point in the touch probe axis. Only effective if $\mathbf{Q} 381=1$. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q384 Probe TS axis: Coord. 3rd axis?
Coordinate of the touch point in the touch probe axis; the preset will be set at this point in the touch probe axis. Only effective if Q381 = 1. This value has an absolute effect. Input: -99999.9999...+99999.9999

Q333 New preset in TS axis?

Coordinate in the touch probe axis at which the control will set the preset. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Example

Q268=+20	;1ST CENTER 1ST AXIS ~
Q269 $=+25$;1ST CENTER 2ND AXIS ~
Q270=+150	;2ND CENTER 1ST AXIS ~
Q271 $=+25$;2ND CENTER 2ND AXIS ~
Q316=+150	;3RD CENTER 1ST AXIS ~
Q317 $=+85$;3RD CENTER 2ND AXIS ~
Q318 $=+22$;4TH CENTER 1ST AXIS ~
Q319 $=+80$;4TH CENTER 2ND AXIS ~
Q261 $=-5$;MEASURING HEIGHT ~
Q260 $=+10$;CLEARANCE HEIGHT ~
Q305 $=+12$;NUMBER IN TABLE ~
Q331 $=+0$;PRESET ~
Q332=+0	;PRESET ~
Q303=+1	;MEAS. VALUE TRANSFER ~
Q381 $=+1$;PROBE IN TS AXIS ~
Q382=+85	;1ST CO. FOR TS AXIS ~
Q383=+50	;2ND CO. FOR TS AXIS ~
Q384 $=+0$;3RD CO. FOR TS AXIS ~
Q333 $=+0$;PRESET

5.19 Cycle 419 PRESET IN ONE AXIS

ISO programming

 G419
Application

Touch probe cycle 419 measures any coordinate in the a selectable axis and defines it as the preset. If desired, the control can also write the measured coordinates to a datum table or preset table.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) to the programmed touch point 1. The control offsets the touch probe by the set-up clearance in the direction opposite the programmed probing direction.
Further information: "Positioning logic", Page 52
2 Then the touch probe moves to the programmed measuring height and measures the actual position with a simple probing movement.
3 The control returns the touch probe to the clearance height.
4 Depending on the cycle parameters Q303 and Q305, the control processes the calculated preset, see "Fundamentals of touch probe cycles $4 \times x$ for preset setting", Page 165

Notes

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- If you want to save the preset in several axes in the preset table, you can use Cycle 419 several times in a row. However, you also have to reactivate the preset number after every run of Cycle 419. If you work with preset 0 as active preset, this process is not required.
- The control will reset an active basic rotation at the beginning of the cycle.

Note on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.

5.19.1 Cycle parameters

Parameter

Q263 1st measuring point in 1st axis?
Coordinate of the first touch point in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q264 1st measuring point in 2nd axis?
Coordinate of the first touch point in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0... 99999.9999 or PREDEF

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF
Q272 Meas. axis (1/2/3, 1=ref. axis)?
Axis in which the measurement will be made:
1: Main axis = measuring axis
2: Secondary axis = measuring axis
3: Touch probe axis = measuring axis

Axis assignment

Active touch probe axis: Q272 $\mathbf{= 3}$	Correspond- ing main axis: Q272 $=\mathbf{1}$	Corresponding secondary axis: Q272 $=\mathbf{2}$
Z	X	Y
Y	Z	X
X	Y	Z

Input: 1, 2, 3

Q267 Trav. direction 1 (+1=+ / -1=-)?

Direction in which the touch probe will approach the workpiece:
-1: Negative traverse direction
+1: Positive traverse direction
Input: -1, +1

Help graphic	Parameter
	Q305 Number in table?
	Indicate the number of the row of the preset table or datum table, in which the control saves the coordinates. Depending on Q303, the control writes the entry to the preset table or datum table.
	If $\mathbf{Q 3 0 3}=\mathbf{1}$, the control will write the data to the preset table.
	If $\mathbf{Q 3 0 3}=\mathbf{0}$, the control will write the data to the datum table. The datum is not automatically activated.
	Further information: "Saving the calculated preset", Page 166
	Q333 New preset?
	Coordinate at which the control will set the preset. Default setting $=0$. This value has an absolute effect.
	Input: -99999.9999...+99999.9999
	Q303 Meas. value transfer (0,1)?
	Define whether the calculated preset will be saved in the datum table or in the preset table:
	-1: Do not use. Is entered by the control when old NC programs are uploaded; see "Characteristics common to all touch probe cycles 4xx for preset setting", Page 165
	$\mathbf{0}$: Write the calculated preset to the active datum table. The reference system is the active workpiece coordinate system.
	1: Write the calculated preset to the preset table. Input: - $\mathbf{1 , 0 , 1}$

Example

11 TCH PROBE 419 PRESET IN ONE AXIS ~	
Q263 $=+25$;1ST POINT 1ST AXIS ~
Q264 $=+25$;1ST POINT 2ND AXIS ~
Q261 $=+25$;MEASURING HEIGHT ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+50$;CLEARANCE HEIGHT ~
Q272=+1	;MEASURING AXIS ~
Q267=+1	;TRAVERSE DIRECTION ~
Q305 $=+0$;NUMBER IN TABLE ~
Q333 $=+0$;PRESET ~
Q303=+1	;MEAS. VALUE TRANSFER

5.20 Cycle 408 SLOT CENTER PRESET

ISO programming

G408

Application

Touch probe cycle 408 finds the center of a slot and defines this position as the preset. If desired, the control can also write the center point coordinates to a datum table or the preset table.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) to the touch point 1. The control calculates the touch points from the data in the cycle and from the set-up clearance in the SET_UP column of the touch probe table.
Further information: "Positioning logic", Page 52
2 Next, the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (\mathbf{F} column).
3 Then the touch probe moves either paraxially at measuring height or at clearance height to the next touch point 2 and probes again.
4 The control returns the touch probe to the clearance height.
5 Depending on the cycle parameters Q303 and Q305, the control processes the calculated preset, see "Fundamentals of touch probe cycles $4 x x$ for preset setting", Page 165
6 Then the control saves the actual values in the Q parameters listed below.
7 If desired, the control subsequently measures the preset in the touch probe axis in a separate probing operation.

Q parameter number	Meaning
Q166	Actual value of measured slot width
Q157	Actual value of the centerline

Notes

NOTICE

Danger of collision!

When running touch probe cycles $\mathbf{4 0 0}$ to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.

NOTICE
 Danger of collision!
 If the slot width and the set-up clearance do not permit pre-positioning in the proximity of the touch points, the control always starts probing from the center of the slot. In this case, the touch probe does not return to the clearance height between the two measuring points. There is a risk of collision!
 - To prevent a collision between touch probe and workpiece, enter a low estimate for the slot width.
 - Before the cycle definition, you must have programmed a tool call to define the touch probe axis.

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control will reset an active basic rotation at the beginning of the cycle.

5.20.1 Cycle parameters

Parameter

Q321 Center in 1st axis?

Center of the slot in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q322 Center in 2nd axis?
Center of the slot in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q311 Width of slot?
Width of the slot, regardless of its position in the working plane. This value has an incremental effect.
Input: O... 99999.9999
Q272 Measuring axis (1=1st/2=2nd)?
Axis in the working plane in which the measurement will be performed:
1: Main axis = measuring axis
2: Secondary axis = measuring axis
Input: 1, 2

Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.

Input: O...99999.9999 or PREDEF

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.

Input: -99999.9999...+99999.9999 or PREDEF
Q301 Move to clearance height (0/1)?
Specify how the touch probe moves between measuring points:
0: Move at measuring height between measuring points
1: Move at clearance height between measuring points Input: 0, 1

Help graphic
 Parameter
 Q305 Number in table?

Enter the row number from the preset table / datum table in which the control saves the center coordinates. Depending on Q303, the control writes the entry to the preset table or datum table.
If Q303 = $\mathbf{1}$, the control will write the data to the preset table.
Further information: "Saving the calculated preset",
Page 166
Input: 0... 99999

Q405 New preset?

Coordinate in the measuring axis at which the control will set the calculated slot center. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+9999.9999
Q303 Meas. value transfer $(0,1)$?
Define whether the calculated preset will be saved in the datum table or in the preset table:
0 : Write the calculated preset to the active datum table as a datum shift. The reference system is the active workpiece coordinate system.
1: Write the calculated preset to the preset table.
Input: 0, 1

Q381 Probe in TS axis? (0/1)

Define whether the control will also set the preset in the touch probe axis:
$\mathbf{0}$: Do not set the preset in the touch probe axis
1: Set the preset in the touch probe axis
Input: 0, 1
Q382 Probe TS axis: Coord. 1st axis?
Coordinate of the touch point in the main axis of the working plane; the preset will be set at this point in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Help graphic

Parameter

Q383 Probe TS axis: Coord. 2nd axis?
Coordinate of the touch point in the secondary axis of the working plane; the preset will be set at this point in the touch probe axis. Only effective if $\mathbf{Q} 381=1$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q384 Probe TS axis: Coord. 3rd axis?

Coordinate of the touch point in the touch probe axis; the preset will be set at this point in the touch probe axis. Only effective if Q381 = 1. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q333 New preset in TS axis?

Coordinate in the touch probe axis at which the control will set the preset. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Example

11 TCH PROBE 408 SLOT CENTER PRESET ~	
Q321=+50	;CENTER IN 1ST AXIS ~
Q322=+50	;CENTER IN 2ND AXIS ~
Q311 $=+25$;SLOT WIDTH ~
Q272=+1	;MEASURING AXIS ~
Q261 =-5	;MEASURING HEIGHT ~
Q320=+0	;SET-UP CLEARANCE ~
Q260 $=+20$;CLEARANCE HEIGHT ~
Q301 $=+0$;MOVE TO CLEARANCE ~
Q305=+10	;NUMBER IN TABLE ~
Q405=+0	;PRESET ~
Q303=+1	;MEAS. VALUE TRANSFER ~
Q381=+1	;PROBE IN TS AXIS ~
Q382=+85	;1ST CO. FOR TS AXIS ~
Q383 $=+50$;2ND CO. FOR TS AXIS ~
Q384=+0	;3RD CO. FOR TS AXIS ~
Q333=+1	;PRESET

5.21 Cycle 409 RIDGE CENTER PRESET

ISO programming

G409

Application

Touch probe cycle 409 finds the center of a ridge and defines this position as the preset. If desired, the control can also write the center point coordinates to a datum table or the preset table.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) to the touch point 1. The control calculates the touch points from the data in the cycle and from the set-up clearance in the SET_UP column of the touch probe table.
Further information: "Positioning logic", Page 52
2 Next, the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (\mathbf{F} column).
3 Then the touch probe moves at clearance height to the next touch point 2 and probes it.
4 The control returns the touch probe to the clearance height.
5 Depending on the cycle parameters Q303 and Q305, the control processes the calculated preset, see "Fundamentals of touch probe cycles $4 x x$ for preset setting", Page 165
6 Then the control saves the actual values in the Q parameters listed below.
7 If desired, the control subsequently measures the preset in the touch probe axis in a separate probing operation.

Q parameter number	Meaning
Q166	Actual value of measured ridge width
Q157	Actual value of the centerline

Notes

NOTICE

Danger of collision!

When running touch probe cycles $\mathbf{4 0 0}$ to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.

NOTICE

Danger of collision!

To prevent a collision between touch probe and workpiece, enter a high estimate for the ridge width.

- Before the cycle definition, you must have programmed a tool call to define the touch probe axis.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control will reset an active basic rotation at the beginning of the cycle.

5.21.1 Cycle parameters

Parameter
Q321 Center in 1st axis?
Center of the ridge in the main axis of the working plane.
This value has an absolute effect.
Input: -99999.9999...+99999.9999

Help graphic

Parameter

Q305 Number in table?

Enter the row number from the preset table / datum table in which the control saves the center coordinates. Depending on Q303, the control writes the entry to the preset table or datum table.
If Q303 $=\mathbf{1}$, the control will write the data to the preset table.
Further information: "Saving the calculated preset",
Page 166
Input: 0... 99999

Q405 New preset?

Coordinate in the measuring axis at which the control will set the calculated ridge center. Default setting $=0$. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q303 Meas. value transfer (0,1)?
Define whether the calculated preset will be saved in the datum table or in the preset table:
0 : Write the calculated preset to the active datum table as a datum shift. The reference system is the active workpiece coordinate system.
1: Write the calculated preset to the preset table.
Input: 0, 1
Q381 Probe in TS axis? (0/1)
Define whether the control will also set the preset in the touch probe axis:
$\mathbf{0}$: Do not set the preset in the touch probe axis
1: Set the preset in the touch probe axis
Input: 0, 1
Q382 Probe TS axis: Coord. 1st axis?
Coordinate of the touch point in the main axis of the working plane; the preset will be set at this point in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Help graphic	Parameter
	Q383 Probe TS axis: Coord. 2nd axis?
	Coordinate of the touch point in the secondary axis of the working plane; the preset will be set at this point in the touch probe axis. Only effective if $\mathbf{Q} 381=1$. This value has an absolute effect.
	Input: -99999.9999...+99999.9999
	Q384 Probe TS axis: Coord. 3rd axis?
	Coordinate of the touch point in the touch probe axis; the preset will be set at this point in the touch probe axis. Only effective if Q381 $=1$. This value has an absolute effect.
	Input: -99999.9999...+99999.9999
	Q333 New preset in TS axis?
	Coordinate in the touch probe axis at which the control will set the preset. Default setting $=0$. This value has an absolute effect.
	Input: -99999.9999...+99999.9999

Example

11 TCH PROBE 409 RIDGE CENTER PRESET ~	
Q321 $=+50$;CENTER IN 1ST AXIS ~
Q322=+50	;CENTER IN 2ND AXIS ~
Q311 $=+25$;RIDGE WIDTH ~
Q272=+1	;MEASURING AXIS ~
Q261 $=-5$;MEASURING HEIGHT ~
Q320=+0	;SET-UP CLEARANCE ~
Q260 $=+20$;CLEARANCE HEIGHT ~
Q305=+10	;NUMBER IN TABLE ~
Q405 $=+0$;PRESET ~
Q303=+1	;MEAS. VALUE TRANSFER ~
Q381 $=+1$;PROBE IN TS AXIS ~
Q382=+85	;1ST CO. FOR TS AXIS ~
Q383=+50	;2ND CO. FOR TS AXIS ~
Q384=+0	;3RD CO. FOR TS AXIS ~
Q333=+1	;PRESET

5.22 Example: Presetting at center of a circular segment and on top surface of workpiece

- Q325 = Polar coordinate angle for touch point 1
- Q247 = Stepping angle for calculating the touch points 2 to 4
- Q305 = Write to row number 5 of the preset table
- Q303 = Write the calculated preset to the preset table
- Q381 = Also set the preset in the touch probe axis
- Q365 = Move on circular path between measuring points

5.23 Example: Presetting on top surface of workpiece and at center of a bolt hole circle

The control will write the measured bolt-hole circle center to the preset table so that it may be used at a later time.

- Q291 = Polar coordinate angle for first hole center 1
- Q292 = Polar coordinate angle for second hole center 2
- Q293 = Polar coordinate angle for third hole center 3
- Q305 = Write center of bolt hole circle (X and Y) to row 1
- Q303 = In the preset table PRESET.PR, save the calculated preset referenced to the machine-based coordinate system (REF system)

Touch Probe
Cycles: Automatic
Workpiece Inspection

6.1 Fundamentals

6.1.1 Overview

The control must be specifically prepared by the machine manufacturer for the use of a touch probe.
HEIDENHAIN guarantees the proper operation of the touch probe cycles only in conjunction with HEIDENHAIN touch probes.

NOTICE

Danger of collision!

When running touch probe cycles $\mathbf{4 0 0}$ to $\mathbf{4 9 9}$, all cycles for coordinate
transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle $\mathbf{8}$ MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.

The control offers cycles for measuring workpieces automatically:

Cycle		Call	Further information
0	REF. PLANE - Measuring a coordinate in a selectable axis	DEF- active	Page 239
1	POLAR PRESET - Measuring a point - Probing direction via angle	DEFactive	Page 241
420	MEASURE ANGLE - Measuring an angle in the working plane	DEF- active	Page 243
421	MEASURE HOLE - Measuring the position of a hole - Measuring the diameter of a hole - Nominal-to-actual value comparison, if applicable	DEFactive	Page 246
422	MEAS. CIRCLE OUTSIDE - Measuring the position of a circular stud - Measuring the diameter of a circular stud - Nominal-to-actual value comparison, if applicable	DEFactive	Page 252
423	MEAS. RECTAN. INSIDE - Measuring the position of a rectangular pocket - Measuring the length and width of a rectangular pocket - Nominal-to-actual value comparison, if applicable	DEFactive	Page 258

Cycle		Call	Further information
424	MEAS. RECTAN. OUTS. - Measuring the position of a rectangular stud - Measuring the length and width of a rectangular stud - Nominal-to-actual value comparison, if applicable	DEF- active	Page 263
425	MEASURE INSIDE WIDTH - Measuring the position of a slot - Measuring the width of a slot - Nominal-to-actual value comparison, if applicable	DEF- active	Page 267
426	MEASURE RIDGE WIDTH - Measuring the position of a ridge - Measuring the width of a ridge - Nominal-to-actual value comparison, if applicable	DEF- active	Page 271
427	MEASURE COORDINATE - Measuring any coordinate in a selectable axis - Nominal-to-actual value comparison, if applicable	DEF- active	Page 275
430	MEAS. BOLT HOLE CIRC - Measuring the center point of a bolt hole circle - Measuring the diameter of a bolt hole circle - Nominal-to-actual value comparison, if applicable	DEF- active	Page 280
431	MEASURE PLANE - Finding the angle of a plane by measuring three points	DEF- active	Page 285

6.1.2 Recording the results of measurement

For all cycles in which you automatically measure workpieces (with the exception of Cycles $\mathbf{0}$ and $\mathbf{1}$), you can have the control record the measurement results in a log. In the respective probing cycle you can define if the control is to

- Save the measuring log to a file
- Interrupt program run and display the measuring log on the screen
- Create no measuring log

If you want to save the measuring log to a file, the control by default saves the data as an ASCII file. The control will save the file in the directory that also contains the associated NC program.
The unit of measurement of the main program can be seen in the header of the log file.
i
Use the HEIDENHAIN data transfer software TNCremo if you wish to output the measuring log over the data interface.

Example: Measuring log for touch probe cycle 421

Measuring log for Probing Cycle 421 Hole Measuring

Date: 30-06-2005
Time: 6:55:04
Measuring program: TNC:\GEH35712\CHECK1.H
Type of dimension ($0=\mathrm{MM} / 1=\mathrm{INCH}$): 0

Nominal values:
Center in reference axis: 50.0000
Center in minor axis: 65.0000
Diameter: 12.0000

Given limit values:
Maximum limit for center in reference axis: 50.1000
Minimum limit for center in reference axis: 49.9000
Maximum limit for center in minor axis: 65.1000

Minimum limit for center in minor axis: 64.9000
Maximum dimension for hole: 12.0450
Minimum dimension for hole: 12.0000

Actual values:
Center in reference axis: 50.0810
Center in minor axis: 64.9530
Diameter: 12.0259

Deviations:
Center in reference axis: 0.0810
Center in minor axis: $\quad-0.0470$
Diameter: 0.0259

Further measuring results: Measuring height: -5.0000

End of measuring log

6.1.3 Measurement results in Q parameters

The control saves the measurement results of the respective probing cycle in the globally effective Q parameters Q150 to Q160. Deviations from the nominal values are saved in parameters Q161 to Q166. Note the table of result parameters listed with every cycle description.
During cycle definition, the control also shows the result parameters for the respective cycle in a help graphic. The highlighted result parameter belongs to that input parameter.

6.1.4 Classification of results

For some cycles you can inquire the status of measuring results through the globally effective Q parameters Q180 to Q182.

Parameter value	Measuring status
Q180 $=1$	Measurement results are within tolerance
Q181 $=1$	Rework is required
Q182 $=1$	Scrap

The control sets the rework or scrap marker as soon as one of the measuring values is out of tolerance. To determine which of the measuring results is out of tolerance, check the measuring log, or compare the respective measuring results (Q150 to Q160) with their limit values.
In Cycle $\mathbf{4 2 7}$ the control assumes by default that you are measuring an outside dimension (stud). However, you can correct the status of the measurement by entering the correct maximum and minimum dimension together with the probing direction.
(i)

The control also sets the status markers if you have not defined any tolerance values or maximum/minimum dimensions.

6.1.5 Tolerance monitoring

With most cycles for workpiece inspection, you can have the control perform tolerance monitoring. This requires that you define the necessary limit values during cycle definition. If you do not wish to monitor for tolerances, simply leave the default value 0 for this parameter set this parameter unchanged.

6.1.6 Tool monitoring

With some cycles for workpiece inspection, you can have the control perform tool monitoring. The control then monitors whether

- the tool radius should be compensated due to the deviations from the nominal value (values in Q16x)
- the deviations from the nominal value (values in $\mathbf{Q 1 6 x}$) are greater than the tool breakage tolerance.

Tool compensation

Requirements:

- Active tool table
- Tool monitoring must be switched on in the cycle: Set Q330 unequal to 0 or enter a tool name. Select the tool name input via Name in the action bar.
i
- HEIDENHAIN recommends using this function only if the tool to be compensated for is the one that was used to machine the contour as well as if any necessary reworking will also be done with this tool.
- If you perform several compensation measurements, the control adds the respective measured deviation to the value stored in the tool table.

Milling cutter

If you reference a milling cutter in parameter Q330, the appropriate values will be compensates for as follows:
The control always compensates for the tool radius in the DR column of the tool table, even if the measured deviation lies within the given tolerance.
You can inquire whether re-working is necessary via parameter Q181 in the NC program (Q181=1: rework required).

Turning tool

Only applies to Cycles 421, 422, 427.
If you reference a turning tool in parameter Q330, the appropriate values in row DZL and DXL, respectively, will be compensated. The control also monitors the breakage tolerance, which is defined in column LBREAK.
You can poll whether re-working is necessary via parameter Q181 in the NC program (Q181=1: rework required).

Compensating for an indexed tool

If you want to automatically compensate the values for an indexed tool with a tool name, program the following:

- QSO = "TOOL NAME"
- FN18: SYSREAD Q0 = ID990 NR10 IDXO; specify the number of the QS parameter in IDX
- $\mathbf{Q 0}=\mathbf{Q 0}+0.2$; add the index of the basic tool number
- In the cycle: Q330 = Q0; use the indexed tool number

Tool breakage monitoring

Requirements:

- Active tool table
- Tool monitoring must be switched on in the cycle (set Q330 unequal to 0)
- RBREAK must be greater than 0 (in the entered tool number in the table)

Further information: User's Manual for Setup and Program Run
The control will output an error message and stop the program run if the measured deviation is greater than the breakage tolerance of the tool. At the same time, the tool will be deactivated in the tool table (column TL = L).

6.1.7 Reference system for measurement results

The control transfers all measurement results, which reference the active coordinate system, or as the case may be, the shifted or/and rotated/tilted coordinate system, to the result parameters and the log file.

6.2 Cycle 0 REF. PLANE

ISO programming

G55

Application

The touch probe cycle measures any position on the workpiece in a selectable axis direction.

Cycle sequence

1 In a 3D movement, the touch probe moves at rapid traverse (value from the FMAX column) to the pre-position 1 programmed in the cycle.
2 Next, the touch probe performs probing at the probing feed rate (\mathbf{F} column). The probing direction must be defined in the cycle.
3 After the control has saved the position, the probe retracts to the starting point and saves the measured coordinate in a Q parameter. In addition, the control stores the coordinates of the position of the touch probe at the time of the triggering signal in parameters Q115 to Q119. For the values in these parameters the control does not account for the stylus length and radius.

Notes

NOTICE

Danger of collision!

The control moves the touch probe in a 3D movement at rapid traverse to the preposition programmed in the cycle. Depending on the previous position of the tool, there is danger of collision!

- Pre-position to a position where there is no danger of collision when the programmed pre-positioning point is approached
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.

6.2.1 Cycle parameters

Help graphic

Parameter

Parameter number for result?
Enter the number of the Q parameter to which you want to assign the coordinate..
Input: O... 1999
Probing axis/probing direction?
Select the probing axis with the axis key or the alphabetic keyboard, entering the algebraic sign for the probing direction.

Input: -, +
Position value?
Use the axis keys or the alphabetic keyboard to enter all coordinates for pre-positioning of the touch probe.
Input: -999999999...+999999999

Example

11 TCH PROBE 0.0 REF. PLANE Q9 Z +
12 TCH PROBE $0.1 \quad X+99 \quad Y+22 \quad Z+2$

6.3 Cycle 1 POLAR PRESET

ISO programming

NC syntax is available only in Klartext programming.

Application

Touch probe cycle $\mathbf{1}$ measures any position on the workpiece in any probing direction.

Cycle sequence

1 In a 3D movement, the touch probe moves at rapid traverse (value from the FMAX column) to the pre-position 1 programmed in the cycle.
2 Next, the touch probe performs probing at the probing feed rate (\mathbf{F} column). During probing, the control moves the touch probe simultaneously in two axes (depending on the probing angle). Use polar angles to define the probing direction in the cycle.
3 After the control has saved the position, the touch probe returns to the starting point. The control stores the coordinates of the position of the touch probe at the time of the triggering signal in parameters Q115 to Q119

Notes

NOTICE

Danger of collision!

The control moves the touch probe in a 3D movement at rapid traverse to the preposition programmed in the cycle. Depending on the previous position of the tool, there is danger of collision!

- Pre-position to a position where there is no danger of collision when the programmed pre-positioning point is approached
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The probing axis defined in the cycle specifies the probing plane:

Probing axis $X: X / Y$ plane
Probing axis $Y: Y / Z$ plane
Probing axis Z: Z/X plane

6.3.1 Cycle parameters

Help graphic

Parameter

Probing axis?
Enter the probing axis with the axis key or the alphabetic keyboard. Confirm with the ENT key.
Input: X, Y, or Z
Probing angle?
Angle measured from the probing axis in which the touch probe will move.
Input: -180...+180
Position value?
Use the axis keys or the alphabetic keyboard to enter all coordinates for pre-positioning of the touch probe.
Input: -999999999...+999999999

Example

$$
\begin{aligned}
& 11 \text { TCH PROBE 1.0 POLAR PRESET } \\
& 12 \text { TCH PROBE 1.1 X WINKEL:+30 } \\
& 13 \text { TCH PROBE 1.2 X+0 Y+10 Z+3 }
\end{aligned}
$$

6.4 Cycle 420 MEASURE ANGLE

ISO programming

 G420
Application

Touch probe cycle 420 measures the angle that any straight line on the workpiece forms with the main axis of the working plane.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) to the programmed touch point 1. The sum of Q320, SET_UP and the ball-tip radius is taken into account for probe movements in any probing direction. When the probe movement starts, the center of the ball tip will be offset by this sum in the direction opposite the probing direction.
Further information: "Positioning logic", Page 52
2 Next, the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (\mathbf{F} column).
3 The touch probe then moves to the next touch point 2 and probes again.
4 The control returns the touch probe to the clearance height and saves the measured angle in the following Q parameter:
Q parameter Meaning
number

Q150 The measured angle is referenced to the reference axis of the working plane.

Notes

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- If touch probe axis = measuring axis, you can measure the angle in the direction of the A axis or B axis:
- If you want to measure the angle in the direction of the A axis, set $\mathbf{Q} 263$ equal to Q265 and Q264 unequal to Q266.
- If you want to measure the angle in the direction of the B axis, set Q263 not equal to Q265 and Q264 equal to Q266.
- The control will reset an active basic rotation at the beginning of the cycle.

Note on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.

6.4.1 Cycle parameters

Parameter

Q263 1st measuring point in 1st axis?
Coordinate of the first touch point in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q264 1st measuring point in 2nd axis?
Coordinate of the first touch point in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q265 2nd measuring point in 1st axis?
Coordinate of the second touch point in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q266 2nd measuring point in 2nd axis?
Coordinate of the second touch point in the secondary axis of the working plane. This value has an absolute effect. Input: -99999.9999...+99999.9999
Q272 Meas. axis (1/2/3, 1=ref. axis)?
Axis in which the measurement will be made:
1: Main axis = measuring axis
2: Secondary axis = measuring axis
3: Touch probe axis = measuring axis
Input: 1, 2, 3
Q267 Trav. direction 1 (+1=+/-1=-)?
Direction in which the touch probe will approach the workpiece:
-1: Negative traverse direction
+1: Positive traverse direction
Input: -1, +1

Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between measuring point and ball tip. The touch probe movement will start with an offset of the sum of Q320, SET_UP, and the ball-tip radius, even when probing in the tool axis direction. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF

Help graphic	Parameter
	Q260 Clearance height?
	Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
	Input: -99999.9999...+99999.9999 or PREDEF
	Q301 Move to clearance height (0/1)?
	Specify how the touch probe moves between measuring points:
	0 : Move at measuring height between measuring points
	1: Move at clearance height between measuring points
	Input: 0, 1
	Q281 Measuring $\log (0 / 1 / 2)$?
	Define whether the control will create a measuring log:
	Define whether the control will create a measuring log:
	1: Create a measuring log: The control will save the log file named TCHPR420.TXT in the folder that also contains the associated NC program.
	2: Interrupt program run and display the measuring log on the control screen (you can later resume the NC program run with NC Start)
	Input: 0, 1, 2

Example

11 TCH PROBE 420 MEASURE ANGLE ~	
Q263=+10	;1ST POINT 1ST AXIS ~
Q264=+10	;1ST POINT 2ND AXIS ~
Q265=+15	;2ND PNT IN 1ST AXIS ~
Q266=+95	;2ND POINT 2ND AXIS ~
Q272=+1	;MEASURING AXIS ~
Q267=-1	;TRAVERSE DIRECTION ~
Q261 $=-5$;MEASURING HEIGHT ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+10$;CLEARANCE HEIGHT ~
Q301 $=+1$;MOVE TO CLEARANCE ~
Q281 $=+1$;MEASURING LOG

6.5 Cycle 421 MEASURE HOLE

ISO programming

G421

Application

Touch probe cycle 421 measures the center point and diameter of a hole (or circular pocket). If you define the corresponding tolerance values in the cycle, the control makes a nominal-to-actual value comparison and saves the deviation values in Q parameters.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) to the touch point 1. The control calculates the touch points from the data in the cycle and from the set-up clearance in the SET_UP column of the touch probe table.
Further information: "Positioning logic", Page 52
2 Next, the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (\mathbf{F} column). The control derives the probing direction automatically from the programmed starting angle.
3 Then, the touch probe moves in a circular arc either at measuring height or at clearance height to the next touch point 2 and probes again.
4 The control positions the touch probe to touch point 3 and then to touch point 4 to probe two more times.
5 Finally, the control returns the touch probe to the clearance height and saves the actual values and deviations in the following Q parameters:

Q parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q153	Actual value of diameter
Q161	Deviation at center of reference axis
Q162	Deviation at center of minor axis
$\mathbf{Q 1 6 3}$	Deviation from diameter

Notes

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The smaller the stepping angle, the less accurately the control can calculate the hole dimensions. Minimum input value: 5°.
- The control will reset an active basic rotation at the beginning of the cycle.

Notes on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.
- The nominal diameter Q262 must be between the minimum and maximum dimension (Q276/Q275).
- If parameter Q330 references a milling tool, the information in parameters Q498 and Q531 has no effect
- If parameter Q330 references a turning tool, the following applies:
- Parameters Q498 and Q531 have to be defined
- The information in parameters Q498, Q531, for example from Cycle 800, has to match this information
- If the control compensates the position of the turning tool, the corresponding values in rows DZL and DXL, respectively, will be compensated.
- The control also monitors the breakage tolerance, which is defined in column LBREAK.

6.5.1 Cycle parameters

Help graphic

Parameter

Q273 Center in 1st axis (nom. value)?

Center of the hole in the main axis of the working plane. This value has an absolute effect. Input: -99999.9999...+99999.9999
Q274 Center in 2nd axis (nom. value)?
Center of the hole in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q262 Nominal diameter?
Enter the diameter of the hole.
Input: 0... 99999.9999

Q325 Starting angle?

Angle between the main axis of the working plane and the first touch point. This value has an absolute effect.
Input: -360.000...+360.000

Q247 Intermediate stepping angle?

Angle between two measuring points. The algebraic sign of the stepping angle determines the direction of rotation (negative = clockwise) in which the touch probe moves to the next measuring point. If you wish to probe a circular arc instead of a complete circle, then program the stepping angle to be less than 90°. This value has an incremental effect.
Input: -120...+120

Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.

Input: 0... 99999.9999 or PREDEF

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Q301 Move to clearance height (0/1)?

Specify how the touch probe moves between measuring points:
0: Move at measuring height between measuring points
1: Move at clearance height between measuring points Input: 0, 1

Help graphic	Parameter
	Q275 Maximum limit of size for hole?
	Maximum permissible diameter for the hole (circular pocket)
	Input: 0...99999.9999
	Q276 Minimum limit of size?
	Minimum permissible diameter for the hole (circular pocket)
	Input: 0...99999.9999
	Q279 Tolerance for center 1st axis?
	Permissible position deviation in the main axis of the working plane.
	Input: 0...99999.9999
	Q280 Tolerance for center 2nd axis?
	Permissible position deviation in the secondary axis of the working plane.
	Input: 0...99999.9999
	Q281 Measuring $\log (0 / 1 / 2)$?
	Define whether the control will create a measuring log:
	0: Do not create a measuring log
	1: Create a measuring log: The control will save the log file named TCHPR421.TXT by default in the directory that also contains the associated NC program.
	2: Interrupt program run and display the measuring log on the control screen. Resume the NC program run with NC Start.
	Input: 0, 1, 2
	Q309 PGM stop if tolerance exceeded?
	Define whether in the event of a violation of tolerance limits the control will interrupt program run and output an error message:
	0: Do not interrupt program run; no error message
	1: Interrupt program run and output an error message
	Input: 0,1
	Q330 Tool for monitoring?
	Define whether the control should perform tool monitoring
	$\mathbf{0}$: Monitoring not active
	>0: Number or name of the tool used for machining. Via selection in the action bar, you have the option of applying a tool directly from the tool table.
	Input: 0...99999.9 or max. $\mathbf{2 5 5}$ characters
	Further information: "Tool monitoring", Page 237

Parameter

Q423 No. probe points in plane (4/3)?
Define whether the control will use three or four touch points to measure the circle:
3: Use three measuring points
4: Use four measuring points (default setting)
Input: 3, 4

Q365 Type of traverse? Line=0/arc=1

Specify the path function to be used by the tool for moving between the measuring points if "traverse to clearance height" (Q301 = 1) is active.
0 : Move in a straight line between machining operations
1: Move along a circular arc on the pitch circle diameter between machining operations
Input: 0, 1
Q498 Reverse tool ($0=$ no/ $1=$ yes)?
Only relevant if you have entered a turning tool in parameter Q330 before. For proper monitoring of the turning tool, the control requires the exact machining situation. Therefore, enter the following:
1: Turning tool is mirrored (rotated by 180°) by, for example, Cycle $\mathbf{8 0 0}$ and parameter Reverse the tool Q498 = 1
$\mathbf{0}$: Turning tool corresponds to the description in the turning tool table (toolturn.trn); no modification by, for example, Cycle $\mathbf{8 0 0}$ and parameter Reverse the tool Q498 = 0 Input: 0, 1
Q531 Angle of incidence?
Only relevant if you have entered a turning tool in parameter Q330 before. Enter the angle of incidence (inclination angle) between turning tool and workpiece during machining (e.g., from Cycle 800, Angle of incidence? Q531).
Input: -180...+180

Example

11 TCH PROBE 421 MEASURE HOLE ~	
Q273=+50	;CENTER IN 1ST AXIS ~
Q274=+50	;CENTER IN 2ND AXIS ~
Q262 $=+15.25$;NOMINAL DIAMETER ~
Q325 $=+0$;STARTING ANGLE ~
Q247 $=+60$;STEPPING ANGLE ~
Q261 $=-5$;MEASURING HEIGHT ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+20$;CLEARANCE HEIGHT ~
Q301 $=+1$;MOVE TO CLEARANCE ~
Q275 $=+15.34$;MAXIMUM LIMIT ~
Q276 $=+15.16$;MINIMUM LIMIT ~
Q279 $=+0.1$;TOLERANCE 1ST CENTER ~
Q280 $=+0.1$;TOLERANCE 2ND CENTER ~
Q281 $=+1$;MEASURING LOG ~
Q309 = + 0	;PGM STOP TOLERANCE ~
Q330 $=+0$;TOOL ~
Q423 $=+4$;NO. OF PROBE POINTS ~
Q365=+1	;TYPE OF TRAVERSE ~
Q498=+0	;REVERSE TOOL ~
Q531 $=+0$;ANGLE OF INCIDENCE

6.6 Cycle 422 MEAS. CIRCLE OUTSIDE

ISO programming

G422

Application

Touch probe cycle 422 measures the center point and diameter of a circular stud. If you define the corresponding tolerance values in the cycle, the control makes a nominal-to-actual value comparison and saves the deviation values in Q parameters.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) to the touch point 1. The control calculates the touch points from the data in the cycle and from the set-up clearance in the SET_UP column of the touch probe table.
Further information: "Positioning logic", Page 52
2 Next, the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (\mathbf{F} column). The control derives the probing direction automatically from the programmed starting angle.
3 Then, the touch probe moves in a circular arc either at measuring height or at clearance height to the next touch point 2 and probes again.
4 The control positions the touch probe to touch point 3 and then to touch point 4 to probe two more times.
5 Finally, the control returns the touch probe to the clearance height and saves the actual values and deviations in the following Q parameters:

Q parameter number	Meaning
Q151	Actual value of center in reference axis
$\mathbf{Q 1 5 2}$	Actual value of center in minor axis
Q153	Actual value of diameter
$\mathbf{Q 1 6 1}$	Deviation at center of reference axis
$\mathbf{Q 1 6 2}$	Deviation at center of minor axis
$\mathbf{Q 1 6 3}$	Deviation from diameter

Notes

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The smaller the stepping angle, the less accurately the control can calculate the hole dimensions. Minimum input value: 5°.
- The control will reset an active basic rotation at the beginning of the cycle.

Notes on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.
- If parameter Q330 references a milling tool, the information in parameters Q498 and Q531 has no effect
- If parameter Q330 references a turning tool, the following applies:
- Parameters Q498 and Q531 have to be defined
- The information in parameters Q498, Q531, for example from Cycle 800, has to match this information
- If the control compensates the position of the turning tool, the corresponding values in rows DZL and DXL, respectively, will be compensated.
- The control also monitors the breakage tolerance, which is defined in column LBREAK.

6.6.1 Cycle parameters

Help graphic

Parameter

Q273 Center in 1st axis (nom. value)?
Center of the stud in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q274 Center in 2nd axis (nom. value)?
Center of the stud in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q262 Nominal diameter?
Enter the diameter of the stud.
Input: 0... 99999.9999

Q325 Starting angle?

Angle between the main axis of the working plane and the first touch point. This value has an absolute effect.
Input: -360.000...+360.000

Q247 Intermediate stepping angle?

Angle between two measuring points. The algebraic sign of the stepping angle determines the machining direction (negative = clockwise). If you wish to probe a circular arc instead of a complete circle, then program the stepping angle to be less than 90°. This value has an incremental effect.
Input: -120...+120
Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF
Q260 Clearance height?
Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF
Q301 Move to clearance height (0/1)?
Specify how the touch probe moves between measuring points:
0: Move at measuring height between measuring points
1: Move at clearance height between measuring points Input: 0, 1

Help graphic	Parameter
	Q277 Maximum limit of size for stud?
	Maximum permissible diameter for the stud.
	Input: 0...99999.9999
	Q278 Minimum limit of size for stud?
	Minimum permissible diameter for the stud.
	Input: 0...99999.9999
	Q279 Tolerance for center 1st axis?
	Permissible position deviation in the main axis of the working plane.
	Input: 0...99999.9999
	Q280 Tolerance for center 2nd axis?
	Permissible position deviation in the secondary axis of the working plane.
	Input: 0...99999.9999
	Q281 Measuring $\log (0 / 1 / 2)$?
	Define whether the control will create a measuring log:
	0: Do not create a measuring log
	1: Create a measuring log: The control will save the log file named TCHPR422.TXT in the folder that also contains the associated NC program.
	2: Interrupt program run and display the measuring log on the control screen. Resume the NC program run with NC Start.
	Input: 0, 1, 2
	Q309 PGM stop if tolerance exceeded?
	Define whether in the event of a violation of tolerance limits the control will interrupt program run and output an error message:
	$\mathbf{0}$: Do not interrupt program run; no error message
	1: Interrupt program run and output an error message
	Input: 0,1
	Q330 Tool for monitoring?
	Define whether the control should perform tool monitoring:
	0: Monitoring not active
	> $\mathbf{0}$: Tool number in tool table TOOL.T
	Input: 0...99999.9 or max. 255 characters
	Further information: "Tool monitoring", Page 237
	Q423 No. probe points in plane (4/3)?
	Define whether the control will use three or four touch points to measure the circle:
	3: Use three measuring points
	4: Use four measuring points (default setting)
	Input: 3, 4

Parameter

Q365 Type of traverse? Line=0/arc=1
Specify the path function to be used by the tool for moving between the measuring points if "traverse to clearance height" $(\mathbf{Q} 301=1)$ is active.
$\mathbf{0}$: Move in a straight line between machining operations
1: Move along a circular arc on the pitch circle diameter between machining operations
Input: 0, 1
Q498 Reverse tool ($0=$ no/ $1=$ yes)?
Only relevant if you have entered a turning tool in parameter Q330 before. For proper monitoring of the turning tool, the control requires the exact machining situation. Therefore, enter the following:
1: Turning tool is mirrored (rotated by 180°) by, for example, Cycle $\mathbf{8 0 0}$ and parameter Reverse the tool Q498 = 1
$\mathbf{0}$: Turning tool corresponds to the description in the turning tool table (toolturn.trn); no modification by, for example , Cycle $\mathbf{8 0 0}$ and parameter Reverse the tool Q498 $=0$
Input: 0, 1

Q531 Angle of incidence?

Only relevant if you have entered a turning tool in parameter Q330 before. Enter the angle of incidence (inclination angle) between turning tool and workpiece during machining (e.g., from Cycle 800, Angle of incidence? Q531).
Input: -180...+180

Example

11 TCH PROBE 422 MEAS. CIRCLE OUTSIDE ~	
Q273=+50	;CENTER IN 1ST AXIS ~
Q274 $=+50$;CENTER IN 2ND AXIS ~
Q262=+75	;NOMINAL DIAMETER ~
Q325=+90	;STARTING ANGLE ~
Q247=+30	;STEPPING ANGLE ~
Q261 $=-5$;MEASURING HEIGHT ~
Q320=+0	;SET-UP CLEARANCE ~
Q260=+10	;CLEARANCE HEIGHT ~
Q301 $=+0$;MOVE TO CLEARANCE ~
Q277 $=+35.15$;MAXIMUM LIMIT ~
Q278=+34.9	;MINIMUM LIMIT ~
Q279 $=+0.05$;TOLERANCE 1ST CENTER ~
Q280 $=+0.05$;TOLERANCE 2ND CENTER ~
Q281 $=+1$;MEASURING LOG ~
Q309 $=+0$;PGM STOP TOLERANCE ~
Q330 $=+0$;TOOL ~
Q423 $=+4$;NO. OF PROBE POINTS ~
Q365 $=+1$;TYPE OF TRAVERSE ~
Q498=+0	;REVERSE TOOL ~
Q531 $=+0$;ANGLE OF INCIDENCE

6.7 Cycle 423 MEAS. RECTAN. INSIDE

ISO programming

 G423
Application

Touch probe cycle 423 finds the center, length, and width of a rectangular pocket. If you define the corresponding tolerance values in the cycle, the control makes a nominal-to-actual value comparison and saves the deviation values in Q parameters.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) to the touch point 1. The control calculates the touch points from the data in the cycle and from the set-up clearance in the SET_UP column of the touch probe table.
Further information: "Positioning logic", Page 52
2 Next, the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (\mathbf{F} column).
3 Then the touch probe moves either paraxially at measuring height or at clearance height to the next touch point 2 and probes again.
4 The control positions the touch probe to touch point 3 and then to touch point 4 to probe two more times.
5 Finally, the control returns the touch probe to the clearance height and saves the actual values and deviations in the following Q parameters:

Q parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q154	Actual value of side length in the reference axis
Q155	Actual value of side length in the minor axis
Q161	Deviation at center of reference axis
Q162	Deviation at center of minor axis
Q164	Deviation of side length in the reference axis
Q165	Deviation of side length in minor axis

Notes

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- If the dimensions of the pocket and the set-up clearance do not permit prepositioning in the proximity of the touch points, the control always starts probing from the center of the pocket. In this case, the touch probe does not return to the clearance height between the four measuring points.
- Tool monitoring is dependent on the deviation of the first side length.
- The control will reset an active basic rotation at the beginning of the cycle.

Note on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.

6.7.1 Cycle parameters

Parameter

Q273 Center in 1st axis (nom. value)?
Center of the pocket in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q274 Center in 2nd axis (nom. value)?
Center of the pocket in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q282 1st side length (nominal value)?
Pocket length, parallel to the main axis of the working plane Input: O... 99999.9999
Q283 2nd side length (nominal value)?
Pocket length, parallel to the secondary axis of the working plane
Input: 0... 99999.9999
Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Q301 Move to clearance height (0/1)?

Specify how the touch probe moves between measuring points:
$\mathbf{0}$: Move at measuring height between measuring points
1: Move at clearance height between measuring points Input: 0, 1
Q284 Max. size limit 1st side length?
Maximum permissible length for the pocket Input: 0...99999.9999
Q285 Min. size limit 1st side length?
Minimum permissible length for the pocket Input: O...99999.9999

Help graphic	Parameter
	Q286 Max. size limit 2nd side length?
	Maximum permissible width for the pocket
	Input: 0...99999.9999
	Q287 Min. size limit 2nd side length?
	Minimum permissible width for the pocket
	Input: 0...99999.9999
	Q279 Tolerance for center 1st axis?
	Permissible position deviation in the main axis of the working plane.
	Input: 0...99999.9999
	Q280 Tolerance for center 2nd axis?
	Permissible position deviation in the secondary axis of the working plane.
	Input: 0...99999.9999
	Q281 Measuring log (0/1/2)?
	Define whether the control will create a measuring log:
	$\mathbf{0}$: Do not create a measuring log.
	1: Create a measuring log: The control will save the log file named TCHPR423.TXT in the folder that also contains the associated NC program.
	2: Interrupt program run and display the measuring log on the control screen.Resume the NC program run with NC Start.
	Input: 0, 1, 2
	Q309 PGM stop if tolerance exceeded?
	Define whether in the event of a violation of tolerance limits the control will interrupt program run and output an error message:
	0: Do not interrupt program run; no error message
	1: Interrupt program run and output an error message
	Input: 0,1
	Q330 Tool for monitoring?
	Define whether the control should perform tool monitoring:
	$\mathbf{0}$: Monitoring not active
	> 0: Tool number in tool table TOOL.T
	Input: 0...99999.9 or max. 255 characters
	Further information: "Tool monitoring", Page 237

Example

11 TCH PROBE 423 MEAS. RECTAN. INSIDE ~	
Q273=+50	;CENTER IN 1ST AXIS ~
Q274 $=+50$;CENTER IN 2ND AXIS ~
Q282 $=+80$;FIRST SIDE LENGTH ~
Q283 $=+60$;2ND SIDE LENGTH ~
Q261 $=-5$;MEASURING HEIGHT ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+10$;CLEARANCE HEIGHT ~
Q301 $=+1$;MOVE TO CLEARANCE ~
Q284=+0	;MAX. LIMIT 1ST SIDE ~
Q285 $=+0$;MIN. LIMIT 1ST SIDE ~
Q286 $=+0$;MAX. LIMIT 2ND SIDE ~
Q287=+0	;MIN. LIMIT 2ND SIDE ~
Q279 $=+0$;TOLERANCE 1ST CENTER ~
Q280=+0	;TOLERANCE 2ND CENTER ~
Q281 $=+1$;MEASURING LOG ~
Q309 $=+0$;PGM STOP TOLERANCE ~
Q330 $=+0$;TOOL

6.8 Cycle 424 MEAS. RECTAN. OUTS.

ISO programming

G424

Application

Touch probe cycle 424 finds the center, length, and width of a rectangular stud. If you define the corresponding tolerance values in the cycle, the control makes a nominal-to-actual value comparison and saves the deviation values in Q parameters.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) to the touch point 1. The control calculates the touch points from the data in the cycle and from the set-up clearance in the SET_UP column of the touch probe table.
Further information: "Positioning logic", Page 52
2 Next, the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (\mathbf{F} column).
3 Then the touch probe moves either paraxially at measuring height or at clearance height to the next touch point 2 and probes again.
4 The control positions the touch probe to touch point 3 and then to touch point 4 to probe two more times.
5 Finally, the control returns the touch probe to the clearance height and saves the actual values and deviations in the following Q parameters:

Q parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q154	Actual value of side length in the reference axis
Q155	Actual value of side length in the minor axis
Q161	Deviation at center of reference axis
Q162	Deviation at center of minor axis
Q164	Deviation of side length in the reference axis
Q165	Deviation of side length in minor axis

Notes

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- Tool monitoring is dependent on the deviation of the first side length.
- The control will reset an active basic rotation at the beginning of the cycle.

Note on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.

6.8.1 Cycle parameters

Parameter

Q273 Center in 1st axis (nom. value)?

Center of the stud in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q274 Center in 2nd axis (nom. value)?
Center of the stud in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q282 1st side length (nominal value)?
Length of stud parallel to the main axis of the working plane Input: 0... 99999.9999

Q283 2nd side length (nominal value)?

Length of stud parallel to the secondary axis of the working plane
Input: 0...99999.9999

Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0... 99999.9999 or PREDEF

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Q301 Move to clearance height ($0 / 1$)?

Specify how the touch probe moves between measuring points:

0: Move at measuring height between measuring points
1: Move at clearance height between measuring points Input: 0, 1

Help graphic	Parameter
	Q284 Max. size limit 1st side length?
	Maximum permissible length for the stud
	Input: 0...99999.9999
	Q285 Min. size limit 1st side length?
	Minimum permissible length for the stud
	Input: 0...99999.9999
	Q286 Max. size limit 2nd side length?
	Maximum permissible width for the stud
	Input: 0...99999.9999
	Q287 Min. size limit 2nd side length?
	Minimum permissible width for the stud
	Input: 0...99999.9999
	Q279 Tolerance for center 1st axis?
	Permissible position deviation in the main axis of the working plane.
	Input: 0...99999.9999
	Q280 Tolerance for center 2nd axis?
	Permissible position deviation in the secondary axis of the working plane.
	Input: 0...99999.9999
	Q281 Measuring log (0/1/2)?
	Define whether the control will create a measuring log:
	0: Do not create a measuring log
	1: Create a measuring log: The control will save the log file named TCHPR424.TXT in the folder that also contains the . h file
	2: Interrupt program run and display the measuring log on the control screen. Resume the NC program run with NC Start.
	Input: 0, 1, 2
	Q309 PGM stop if tolerance exceeded?
	Define whether in the event of a violation of tolerance limits the control will interrupt program run and output an error message:
	$\mathbf{0}$: Do not interrupt program run; no error message
	1: Interrupt program run and output an error message
	Input: 0, 1
	Q330 Tool for monitoring?
	Define whether the control should perform tool monitoring
	0: Monitoring not active
	> $\mathbf{0}$: Number or name of the tool used for machining. Via selection in the action bar, you have the option of applying a tool directly from the tool table.
	Input: 0...99999.9 or max. $\mathbf{2 5 5}$ characters
	Further information: "Tool monitoring", Page 237

Example

11 TCH PROBE 424 MEAS. RECTAN. OUTS. ~	
Q273=+50	;CENTER IN 1ST AXIS ~
Q274 $=+50$;2ND CENTER 2ND AXIS ~
Q282=+75	;FIRST SIDE LENGTH ~
Q283 $=+35$;2ND SIDE LENGTH ~
Q261 $=-5$;MEASURING HEIGHT ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+20$;CLEARANCE HEIGHT ~
Q301 $=+0$;MOVE TO CLEARANCE ~
Q284 $=+75.1$;MAX. LIMIT 1ST SIDE ~
Q285=+74.9	;MIN. LIMIT 1ST SIDE ~
Q286 $=+35$;MAX. LIMIT 2ND SIDE ~
Q287 $=+34.95$;MIN. LIMIT 2ND SIDE ~
Q279 $=+0.1$;TOLERANCE 1ST CENTER ~
Q280 $=+0.1$;TOLERANCE 2ND CENTER ~
Q281 $=+1$;MEASURING LOG ~
Q309 $=+0$;PGM STOP TOLERANCE ~
Q330 $=+0$;TOOL

6.9 Cycle 425 MEASURE INSIDE WIDTH

ISO programming

 G425
Application

Touch probe cycle 425 measures the position and width of a slot (or pocket). If you define the corresponding tolerance values in the cycle, the control makes a nominal-to-actual value comparison and saves the deviation value in a Q parameter.
Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) to the touch point 1. The control calculates the touch points from the data in the cycle and from the set-up clearance in the SET_UP column of the touch probe table.
Further information: "Positioning logic", Page 52
2 Next, the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (\mathbf{F} column). The first probing is always in the positive direction of the programmed axis.
3 If you enter an offset for the second measurement, the control then moves the touch probe (if required, at clearance height) to the next touch point 2 and probes that point. If the nominal length is large, the control moves the touch probe to the second touch point at rapid traverse. If you do not enter an offset, the control measures the width in the exact opposite direction.
4 Finally, the control returns the touch probe to the clearance height and saves the actual values and deviations in the following Q parameters:

Q parameter number	Meaning
Q156	Actual value of measured length
Q157	Actual value of the centerline
Q166	Deviation of the measured length

Notes

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control will reset an active basic rotation at the beginning of the cycle.

Notes on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.
- The nominal length Q311 must be between the minimum and maximum dimension (Q276/Q275).

6.9.1 Cycle parameters

Help graphic

Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q260 Clearance height?
Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Q311 Nominal length?

Nominal value of the length to be measured Input: 0...99999.9999
Q288 Maximum limit of size?
Maximum permissible length
Input: 0...99999.9999
Q289 Minimum limit of size?
Minimum permissible length
Input: 0...99999.9999

Help graphic	Parameter
	Q281 Measuring $\log (0 / 1 / 2)$?
	Define whether the control will create a measuring log:
	0: Do not create a measuring log
	1: Create a measuring log: The control will save the log file named TCHPR425.TXT in the folder that also contains the .h file
	2: Interrupt program run and display the measuring log on the control screen. Resume the NC program run with NC Start.
	Input: 0, 1, 2
	Q309 PGM stop if tolerance exceeded?
	Define whether in the event of a violation of tolerance limits the control will interrupt program run and output an error message:
	$\mathbf{0}$: Do not interrupt program run; no error message
	1: Interrupt program run and output an error message
	Input: 0,1
	Q330 Tool for monitoring?
	Define whether the control should perform tool monitoring
	0: Monitoring not active
	>0: Number or name of the tool used for machining. Via selection in the action bar, you have the option of applying a tool directly from the tool table.
	Input: 0...99999.9 or max. $\mathbf{2 5 5}$ characters
	Further information: "Tool monitoring", Page 237
	Q320 Set-up clearance?
	Additional distance between touch point and ball tip. Q320 is added to SET_UP (touch probe table), and is only active when the preset is probed in the touch probe axis. This value has an incremental effect.
	Input: 0... 99999.9999 or PREDEF

Q301 Move to clearance height (0/1)?
Specify how the touch probe moves between measuring points:
0 : Move at measuring height between measuring points
1: Move at clearance height between measuring points Input: 0, 1

Example

11 TCH PROBE 425 MEASURE INSIDE WIDTH ~	
Q328=+75	;STARTNG PNT 1ST AXIS ~
Q329 $=-12.5$;STARTNG PNT 2ND AXIS ~
Q310 $=+0$;OFFS. 2ND MEASUREMNT ~
Q272 $=+1$;MEASURING AXIS ~
Q261 $=-5$;MEASURING HEIGHT ~
Q260 $=+10$;CLEARANCE HEIGHT ~
Q311 $=+25$;NOMINAL LENGTH ~
Q288=+25.05	;MAXIMUM LIMIT ~
Q289 $=+25$;MINIMUM LIMIT ~
Q281 $=+1$;MEASURING LOG ~
Q309 $=+0$;PGM STOP TOLERANCE ~
Q330 $=+0$;TOOL ~
Q320=+0	;SET-UP CLEARANCE ~
Q301 $=+0$;MOVE TO CLEARANCE

6.10 Cycle 426 MEASURE RIDGE WIDTH

ISO programming

 G426
Application

Touch probe cycle 426 measures the position and width of a ridge. If you define the corresponding tolerance values in the cycle, the control makes a nominal-to-actual value comparison and saves the deviation values in Q parameters.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) to the touch point 1. The control calculates the touch points from the data in the cycle and from the set-up clearance in the SET_UP column of the touch probe table.
Further information: "Positioning logic", Page 52
2 Next, the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (\mathbf{F} column). The first probing is always in the negative direction of the programmed axis.
3 Then the touch probe moves at clearance height to the next touch point and probes it.
4 Finally, the control returns the touch probe to the clearance height and saves the actual values and deviations in the following Q parameters:

Q parameter number	Meaning
Q156	Actual value of measured length
Q157	Actual value of the centerline
Q166	Deviation of the measured length

Notes

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control will reset an active basic rotation at the beginning of the cycle.

Note on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.

6.10.1 Cycle parameters

Q266 2nd measuring point in 2nd axis?
Coordinate of the second touch point in the secondary axis of the working plane. This value has an absolute effect. Input: -99999.9999...+99999.9999
Q272 Measuring axis (1=1st/2=2nd)?
Axis in the working plane in which the measurement will be performed:
1: Main axis = measuring axis
2: Secondary axis = measuring axis
Input: 1, 2
Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Q311 Nominal length?

Nominal value of the length to be measured
Input: 0... 99999.9999
Q288 Maximum limit of size?
Maximum permissible length
Input: 0...99999.9999

Help graphic	Parameter
	Q289 Minimum limit of size?
	Minimum permissible length
	Input: 0...99999.9999
	Q281 Measuring $\log (0 / 1 / 2)$?
	Define whether the control will create a measuring log:
	0: Do not create a measuring log
	1: Create a measuring log: The control will save the log file named TCHPR426.TXT in the folder that also contains the associated NC program.
	2: Interrupt program run and display the measuring log on the control screen. Resume the NC program run with NC Start.
	Input: 0, 1, 2
	Q309 PGM stop if tolerance exceeded?
	Define whether in the event of a violation of tolerance limits the control will interrupt program run and output an error message:
	0: Do not interrupt program run; no error message
	1: Interrupt program run and output an error message
	Input: 0, 1
	Q330 Tool for monitoring?
	Q330 Define whether the control should perform tool monitoring :
	0: Monitoring not active
	>0: Number or name of the tool used for machining. Via selection in the action bar, you have the option of applying a tool directly from the tool table.
	Input: 0...99999.9 or max. $\mathbf{2 5 5}$ characters
	Further information: "Tool monitoring", Page 237

Example

11 TCH PROBE 426 MEASURE RIDGE WIDTH ~	
Q263 $=+50$;1ST POINT 1ST AXIS ~
Q264 $=+25$;1ST POINT 2ND AXIS ~
Q265=+50	;2ND PNT IN 1ST AXIS ~
Q266=+85	;2ND PNT IN 2ND AXIS ~
Q272=+2	;MEASURING AXIS ~
Q261 =-5	;MEASURING HEIGHT ~
Q320=+0	;SET-UP CLEARANCE ~
Q260 $=+20$;CLEARANCE HEIGHT ~
Q311 $=+45$;NOMINAL LENGTH ~
Q288=+45	;MAXIMUM LIMIT ~
Q289 $=+44.95$;MINIMUM LIMIT ~
Q281 $=+1$;MEASURING LOG ~
Q309 $=+0$;PGM STOP TOLERANCE ~
Q330=+0	;TOOL

6.11 Cycle 427 MEASURE COORDINATE

ISO programming

G427

Application

Touch probe cycle 427 measures a coordinate in a selectable axis and saves the value in a Q parameter. If you define the corresponding tolerance values in the cycle, the control makes a nominal-to-actual value comparison and saves the deviation values in Q parameters.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) to the touch point 1. The control offsets the touch probe by the set-up clearance in the direction opposite the defined traverse direction
Further information: "Positioning logic", Page 52
2 Then the control positions the touch probe to the specified touch point 1 in the working plane and measures the actual value in the selected axis.
3 Finally, the control returns the touch probe to the clearance height and saves the measured coordinate in the following Q parameter:
Q parameter Meaning
number
Q160 Measured coordinate

Notes

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- If an axis of the active working plane is defined as the measuring axis (Q272 = 1 or 2), the control will perform a tool radius compensation. The control determines the direction of compensation from the defined traversing direction (Q267).
- If the touch probe axis is defined as the measuring axis $(\mathbf{Q 2 7 2}=3)$, the control will perform a tool length compensation.
- The control will reset an active basic rotation at the beginning of the cycle.

Notes on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.
- The measuring height Q261 must be between the minimum and maximum dimension (Q276/Q275).
- If parameter Q330 references a milling tool, the information in parameters Q498 and Q531 has no effect
- If parameter Q330 references a turning tool, the following applies:
- Parameters Q498 and Q531 have to be defined
- The information in parameters Q498, Q531, for example from Cycle 800, has to match this information
- If the control compensates the position of the turning tool, the corresponding values in rows DZL and DXL, respectively, will be compensated.
- The control also monitors the breakage tolerance, which is defined in column LBREAK

6.11.1 Cycle parameters

Parameter

Q281 Measuring $\log (0 / 1 / 2)$?
Define whether the control will create a measuring log:
0: Do not create a measuring log
1: Create a measuring log: The control will save the log file named TCHPR427.TXT in the folder that also contains the associated NC program.
2: Interrupt the program run and display the measuring log on the control screen.Resume the NC program run with NC Start.
Input: 0, 1, 2
Q288 Maximum limit of size?
Maximum permissible value
Input: -99999.9999...+99999.9999
Q289 Minimum limit of size?
Minimum permissible value
Input: -99999.9999...+99999.9999

Q309 PGM stop if tolerance exceeded?

Define whether in the event of a violation of tolerance limits the control will interrupt program run and output an error message:
0: Do not interrupt program run; no error message
1: Interrupt program run and output an error message Input: 0, 1

Q330 Tool for monitoring?

Define whether the control should perform tool monitoring:
$\mathbf{0}$: Monitoring not active
>0: Number or name of the tool used for machining. Via selection in the action bar, you have the option of applying a tool directly from the tool table.
Input: 0... 99999.9 or max. $\mathbf{2 5 5}$ characters
Further information: "Tool monitoring", Page 237

Help graphic	Parameter
	Q498 Reverse tool ($\mathbf{0}=$ no $/ \mathbf{1}=$ yes $)$?
	Only relevant if you have entered a turning tool in parame-
ter Q330 before. For proper monitoring of the turning tool,	
	the control requires the exact machining situation. Therefore,
enter the following:	
	1: Turning tool is mirrored (rotated by 180°) by, for example,
Cycle $\mathbf{8 0 0}$ and parameter Reverse the tool Q498 $=1$	
0: Turning tool corresponds to the description in the turning	
tool table (toolturn.trn); no modification by, for example,	
Cycle $\mathbf{8 0 0}$ and parameter Reverse the tool Q498 = $=0$	
Input: $\mathbf{0 , 1}$	

Q531 Angle of incidence?

Only relevant if you have entered a turning tool in parameter Q330 before. Enter the angle of incidence (inclination angle) between turning tool and workpiece during machining (e.g., from Cycle 800, Angle of incidence? Q531).
Input: -180...+180

Example

11 TCH PROBE 427 MEASURE COORDINATE ~	
Q263 $=+35$;1ST POINT 1ST AXIS ~
Q264 $=+45$;1ST POINT 2ND AXIS ~
Q261 $=+5$;MEASURING HEIGHT ~
Q320=+0	;SET-UP CLEARANCE ~
Q272 $=+3$;MEASURING AXIS ~
Q267 $=-1$;TRAVERSE DIRECTION ~
Q260 $=+20$;CLEARANCE HEIGHT ~
Q281 $=+1$;MEASURING LOG ~
Q288 $=+5.1$;MAXIMUM LIMIT ~
Q289 $=+4.95$;MINIMUM LIMIT ~
Q309 $=+0$;PGM STOP TOLERANCE ~
$\mathrm{Q} 330=+0$;TOOL ~
Q498=+0	;REVERSE TOOL ~
Q531 $=+0$;ANGLE OF INCIDENCE

6.12 Cycle 430 MEAS. BOLT HOLE CIRC

ISO programming

G430

Application

Touch probe cycle 430 finds the center and diameter of a bolt hole circle by probing three holes. If you define the corresponding tolerance values in the cycle, the control makes a nominal-to-actual value comparison and saves the deviation values in Q parameters.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from FMAX column) to the programmed center point of the first hole 1.
Further information: "Positioning logic", Page 52
2 Then the probe moves to the entered measuring height and probes four points to determine the first hole center point.
3 The touch probe returns to the clearance height and then to the position entered as center of the second hole 2 .
4 The control moves the touch probe to the entered measuring height and probes four points to determine the second hole center point.
5 The touch probe returns to the clearance height and then to the position entered as center of the third hole 3 .
6 The control moves the touch probe to the entered measuring height and probes four points to determine the third hole center point.
7 Finally, the control returns the touch probe to the clearance height and saves the actual values and deviations in the following Q parameters:

Q parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q153	Actual value of bolt hole circle diameter
Q161	Deviation at center of reference axis
Q162	Deviation at center of minor axis
Q163	Deviation of bolt circle diameter

Notes

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- Cycle $\mathbf{4 3 0}$ only monitors for tool breakage; there is no automatic tool compensation.
- The control will reset an active basic rotation at the beginning of the cycle.

Note on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.

6.12.1 Cycle parameters

Parameter

Q273 Center in 1st axis (nom. value)?
Bolt hole circle center (nominal value) in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q274 Center in 2nd axis (nom. value)?
Bolt hole circle center (nominal value) in the secondary axis of the working plane. This value has an absolute effect. Input: -99999.9999...+99999.9999
Q262 Nominal diameter?
Enter the diameter of the hole.
Input: 0...99999.9999
Q291 Polar coord. angle of 1st hole?
Polar coordinate angle of the first hole center in the working plane. This value has an absolute effect.
Input: -360.000...+360.000
Q292 Polar coord. angle of 2nd hole?
Polar coordinate angle of the second hole center in the working plane. This value has an absolute effect.
Input: -360.000...+360.000
Q293 Polar coord. angle of 3rd hole?
Polar coordinate angle of the third hole center in the working plane. This value has an absolute effect.
Input: -360.000...+360.000

Q261 Measuring height in probe axis?
Coordinate of the ball tip center in the touch probe axis in which the measurement will be performed. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q260 Clearance height?
Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Q288 Maximum limit of size?

Maximum permissible diameter of bolt hole circle Input: 0...99999.9999

Q289 Minimum limit of size?

Minimum permissible diameter of bolt hole circle Input: 0... 99999.9999
Q279 Tolerance for center 1st axis?
Permissible position deviation in the main axis of the working plane.
Input: 0...99999.9999

Help graphic

Parameter

Q280 Tolerance for center 2nd axis?

Permissible position deviation in the secondary axis of the working plane.
Input: O...99999.9999
Q281 Measuring $\log (0 / 1 / 2)$?
Define whether the control will create a measuring log:
0: Do not create a measuring log
1: Create a measuring log: The control will save the log file named TCHPR430.TXT in the folder that also contains the associated NC program
2: Interrupt program run and display the measuring log on the control screen. Resume the NC program run with NC Start.
Input: 0, 1, 2
Q309 PGM stop if tolerance exceeded?
Define whether in the event of a violation of tolerance limits the control will interrupt program run and output an error message:
0: Do not interrupt program run; no error message
1: Interrupt program run and output an error message
Input: 0, 1

Q330 Tool for monitoring?

Define whether the control should perform tool monitoring :
$\mathbf{0}$: Monitoring not active
>0: Number or name of the tool used for machining. Via selection in the action bar, you have the option of applying a tool directly from the tool table.
Input: 0...99999.9 or max. $\mathbf{2 5 5}$ characters
Further information: "Tool monitoring", Page 237

Example

11 TCH PROBE 430 MEAS. BOLT HOLE CIRC ~	
Q273 $=+50$;CENTER IN 1ST AXIS ~
Q274 $=+50$;CENTER IN 2ND AXIS ~
Q262=+80	;NOMINAL DIAMETER ~
Q291 $=+0$;ANGLE OF 1ST HOLE ~
Q292 $=+90$;ANGLE OF 2ND HOLE ~
Q293 $=+180$;ANGLE OF 3RD HOLE ~
Q261 =-5	;MEASURING HEIGHT ~
Q260 $=+10$;CLEARANCE HEIGHT ~
Q288 $=+80.1$;MAXIMUM LIMIT ~
Q289 $=+79.9$;MINIMUM LIMIT ~
Q279 $=+0.15$;TOLERANCE 1ST CENTER ~
Q280 $=+0.15$;TOLERANCE 2ND CENTER ~
Q281 $=+1$;MEASURING LOG ~
Q309 $=+0$;PGM STOP TOLERANCE ~
Q330 $=+0$;TOOL

6.13 Cycle 431 MEASURE PLANE

ISO programming

G431

Application

Touch probe cycle 431 finds the angles of a plane by measuring three points. It saves the measured values in the Q parameters.

Cycle sequence

1 Following the positioning logic, the control positions the touch probe at rapid traverse (value from the FMAX column) at the programmed touch point 1 and measures the first point of the plane. The control offsets the touch probe by the set-up clearance in the direction opposite to the direction of probing.
Further information: "Positioning logic", Page 52
2 The touch probe returns to the clearance height and then moves in the working plane to touch point 2 and measures the actual value of the second touch point in the plane.
3 The touch probe returns to the clearance height and then moves in the working plane to touch point 3 and measures the actual value of the third touch point in the plane.
4 Finally the control returns the touch probe to the clearance height and saves the measured angle values in the following Q parameters:

Q parameter number	Meaning
Q158	Projection angle of the A axis
Q159	Projection angle of the B axis
Q170	Spatial angle A
Q171	Spatial angle B
Q172	Spatial angle C
Q173 to Q175	Measured values in the touch probe axis (first to third measurement)

Notes

NOTICE

Risk of collision!

If you save the angle values in the preset table and then tilt the tool by programming PLANE SPATIAL with $\mathbf{S P A}=0 ; \mathbf{S P B}=0 ; \mathbf{S P C}=0$, there are multiple solutions in which the tilting axes are at 0 . There is a risk of collision!

- Make sure to program SYM (SEQ) + or SYM (SEQ) -
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The control can calculate the angle values only if the three measuring points are not positioned on a straight line.
- The control will reset an active basic rotation at the beginning of the cycle.

Notes on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.
- The spatial angles that are needed for the Tilt working planefunction are saved in parameters Q170 to Q172. With the first two measuring points, you also specify the direction of the main axis when tilting the working plane.
- The third measuring point determines the direction of the tool axis. Define the third measuring point in the direction of the positive Y axis to ensure that the position of the tool axis in a clockwise coordinate system is correct.

6.13.1 Cycle parameters

Help graphic | Q263 1st measuring point in 1st axis? |
| :--- |
| Coordinate of the first touch point in the main axis of the |
| working plane. This value has an absolute effect. |
| Input: -99999.9999...+99999.9999 |

Q266 2nd measuring point in 2nd axis?
Coordinate of the second touch point in the secondary axis of the working plane. This value has an absolute effect. Input: -99999.9999...+99999.9999
Q295 2nd measuring point in 3rd axis?
Coordinate of the second touch point in the touch probe axis.
This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q296 3rd measuring point in 1st axis?
Coordinate of the third touch point in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q297 3rd measuring point in 2nd axis?
Coordinate of the third touch point in the secondary axis of the working plane. This value has an absolute effect.

Input: -99999.9999...+99999.9999
Q298 3rd measuring point in 3rd axis?
Coordinate of the third touch point in the touch probe axis.
This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF

6.14 Programming Examples

6.14.1 Example: Measuring and reworking a rectangular stud Program sequence

- Rough the rectangular stud with 0.5 mm finishing allowance
- Measure the rectangular stud
- Finish the rectangular stud, taking the measured values into account

0 BEGIN PGM TOUCHPROBE MM	
1 TOOL CALL 5 Z S6000	
$2 \mathrm{Q} 1=81$	
$3 \mathrm{Q} 2=61$	
4 L Z+100 R0 FMAX M3	
5 CALL LBL 1	
6 L Z+100 R0 FMAX	
7 TOOL CALL 600 Z	
8 TCH PROBE 424 MEAS. RECTAN. OUTS. ~	
Q273 $=+50$;CENTER IN 1ST AXIS ~
Q274 $=+50$;CENTER IN 2ND AXIS ~
Q282 $=+80$;FIRST SIDE LENGTH ~
Q283 $=+60$;2ND SIDE LENGTH ~
Q261 $=-5$;MEASURING HEIGHT ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q260 $=+30$;CLEARANCE HEIGHT ~
Q301 $=+0$;MOVE TO CLEARANCE ~
Q284=+0	;MAX. LIMIT 1ST SIDE ~
Q285 $=+0$;MIN. LIMIT 1ST SIDE ~
Q286=+0	;MAX. LIMIT 2ND SIDE ~
Q287=+0	;MIN. LIMIT 2ND SIDE ~
Q279 $=+0$;TOLERANCE 1ST CENTER ~
Q280=+0	;TOLERANCE 2ND CENTER ~
Q281 $=+0$;MEASURING LOG ~
Q309 $=+0$;PGM STOP TOLERANCE ~
Q330=+0	;TOOL

; Tool call: roughing
; Rectangle length in X (roughing dimension)
; Rectangle length in Y (roughing dimension)
; Retract the tool
; Call the subprogram for machining
; Retract the tool
; Call the touch probe

9 Q1 = Q1- Q164		; Calculate the length in X based on the measured deviation
10 Q2 = Q2-Q165		; Calculate the length in Y based on the measured deviation
11 L Z+100 R0 FMAX		; Retract the touch probe
12 TOOL CALL 25 Z S8000		; Tool call: finishing
13 L Z+100 R0 FMAX M3		; Retract the tool, end of program
14 CALL LBL 1		; Call the subprogram for machining
15 L Z +100 R0 FMAX		
16 M30		
17 LBL 1		; Subprogram with rectangular stud machining cycle
18 CYCL DEF 256 RECTANGULAR STUD ~		
Q218=+Q1 ;FIRST SIDE LENGTH ~		
$\mathrm{Q} 424=+82$;WORKPC. BLANK SIDE 1 ~	
Q219 = + Q2	;2ND SIDE LENGTH ~	
Q425 $=+62$;WORKPC. BLANK SIDE 2 ~	
Q220 $=+0$;RADIUS / CHAMFER ~	
Q368=+0.1	;ALLOWANCE FOR SIDE ~	
Q224 $=+0$;ANGLE OF ROTATION ~	
Q367=+0	;STUD POSITION ~	
Q207 $=+500$;FEED RATE MILLING ~	
Q351 $=+1$;CLIMB OR UP-CUT ~	
Q201 $=-10$;DEPTH ~	
Q202=+5	;PLUNGING DEPTH ~	
Q206 $=+3000$;FEED RATE FOR PLNGNG ~	
Q200 $=+2$;SET-UP CLEARANCE ~	
Q203 $=+10$;SURFACE COORDINATE ~	
Q204 $=+20$;2ND SET-UP CLEARANCE ~	
Q370=+1	;TOOL PATH OVERLAP ~	
Q437=+0	;APPROACH POSITION ~	
Q215 $=+0$;MACHINING OPERATION ~	
Q369 $=+0$;ALLOWANCE FOR FLOOR ~	
Q338 $=+20$;INFEED FOR FINISHING ~	
Q385 $=+500$;FINISHING FEED RATE	
19 L X+50 Y+50 R0 FMAX M99		; Cycle call
20 LBL 0		; End of subprogram
21 END PGM TOUC	HPROBE MM	

6.14.2 Example: Measuring a rectangular pocket and recording the results

Touch Probe Cycles: Special Functions

7.1 Fundamentals

7.1.1 Overview

The control must be specifically prepared by the machine manufacturer for the use of a touch probe.
HEIDENHAIN guarantees the proper operation of the touch probe cycles only in conjunction with HEIDENHAIN touch probes.

NOTICE

Danger of collision!

When running touch probe cycles 400 to $\mathbf{4 9 9}$, all cycles for coordinate
transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.

The control provides cycles for the following special purposes:

Cycle	Call	Further information
3 MEASURING - Touch probe cycle for defining OEM cycles	DEFactive	Page 295
4 MEASURING IN 3-D - Measuring any position	DEF- active	Page 297
444 PROBING IN 3-D - Measuring any position - Determining the deviation from the nominal coordinates	DEF- active	Page 300
441 FAST PROBING - Touch probe cycle for defining various touch probe parameters	DEF- active	Page 306
1493 EXTRUSION PROBING - Touch probe cycle for defining an extrusion - Extrusion direction, length, and number of extrusion points can be programmed	DEFactive	Page 308

7.2 Cycle 3 MEASURING

ISO programming

NC syntax is available only in Klartext programming.

Application

Touch probe cycle $\mathbf{3}$ measures any position on the workpiece in a selectable probing direction. Unlike other touch probe cycles, Cycle $\mathbf{3}$ enables you to enter the measuring range SET UP and feed rate \mathbf{F} directly. Also, the touch probe retracts by a definable value MB after determining the measured value.

Cycle sequence

1 The touch probe moves from the current position at the specified feed rate in the defined probing direction. Use polar angles to define the probing direction in the cycle.
2 After the control has saved the position, the touch probe stops. The control saves the X, Y, Z coordinates of the probe-tip center in three successive Q parameters. The control does not conduct any length or radius compensations. You define the number of the first result parameter in the cycle.
3 Finally, the control retracts the touch probe by the value that you defined in parameter MB in the direction opposite to the probing direction.

Notes

The exact behavior of touch probe cycle $\mathbf{3}$ is defined by your machine manufacturer or a software manufacturer who uses it within specific touch probe cycles.

- This cycle can only be executed in the FUNCTION MODE MILL and FUNCTION MODE TURN machining modes.
- The DIST (maximum traverse to touch point) and \mathbf{F} (probing feed rate) touchprobe data, which are effective in other touch probe cycles, do not apply in touch probe cycle 3.
- Remember that the control always writes to four successive Q parameters.
- If the control was not able to determine a valid touch point, the NC program is run without an error message. In this case the control assigns the value -1 to the fourth result parameter so that you can deal with the error yourself.
- The control retracts the touch probe by at most the retraction distance MB, but not beyond the starting point of the measurement. This rules out any collision during retraction.

1
With function FN17: SYSWRITE ID 990 NR 6 you can set whether the cycle sequences through the probe input X12 or X13.

7.2.1 Cycle parameters

Parameter

Parameter number for result?
Enter the number of the Q parameter to which you want the control to assign the first measured coordinate (X). The Y and Z values will be written to the immediately following Q parameters.
Input: 0... 1999
Probing axis?
Enter the axis in whose direction the touch probe will move and confirm with the ENT key.
Input: X, Y, or Z
Probing angle?
This angle defines the probing direction. The angle refers to the probe axis. Confirm with the ENT key.
Input: -180...+180

Maximum measuring range?

Enter the maximum distance from the starting point by which the touch probe will move. Confirm with ENT.
Input: O... 999999999

Feed rate measurement

Enter the measuring feed rate in $\mathrm{mm} / \mathrm{min}$.
Input: 0... 3000

Maximum retraction distance?

Traverse path in the direction opposite to the probing direction, after the stylus was deflected. The control returns the touch probe to a point no farther than the starting point, so that there can be no collision.
Input: 0... 999999999

Reference system? ($0=A C T / 1=$ REF $)$

Define whether the probing direction and measurement result will be referenced to the current coordinate system (ACT, can be shifted or rotated) or the machine coordinate system (REF):
$\mathbf{0}$: Perform the probing operation in the current system and save the measurement result in the ACT system
1: Perform the probing operation in the machine-based REF system. Save the measurement result in the REF system. Input: 0, 1

Help graphic	Parameter
	Error mode? (0=OFF/1=ON) Define whether the control will issue an error message if the stylus is deflected at cycle start. If mode $\mathbf{1}$ is selected, the control saves the value - $\mathbf{1}$ in the 4th result parameter and continues the cycle: 0: Issue error message 1: Do not issue error message Input: 0, 1
Example	
11 TCH PROBE 3.0 MEASURING	
12 TCH PROBE 3.1 Q1	
13 TCH PROBE 3.2 X ANGLE:+15	
14 TCH PROBE 3.3 ABST+10 F100 MB1 REFERENCE SYSTEM:0	
15 TCH PROBE 3.4 ERRORMODE1	

7.3 Cycle 4 MEASURING IN 3-D

ISO programming

NC syntax is available only in Klartext programming.

Application

Touch probe cycle 4 measures any position on the workpiece in the probing direction defined by a vector. Unlike other touch probe cycles, Cycle 4 enables you to enter the probing distance and probing feed rate directly. You can also define the distance by which the touch probe retracts after acquiring the probed value.
Cycle $\mathbf{4}$ is an auxiliary cycle that can be used for probing with any touch probe (TS or TT). The control does not provide a cycle for calibrating the TS touch probe in any probing direction.

Cycle sequence

1 The control moves the touch probe from the current position at the entered feed rate in the defined probing direction. Define the probing direction in the cycle by using a vector (delta values in X, Y and Z).
2 After the control has saved the position, the control stops the probe movement. The control saves the X, Y, Z coordinates of the probing position in three successive Q parameters. You define the number of the first parameter in the cycle. If you are using a TS touch probe, the probe result is corrected by the calibrated center offset.

3 Finally, the control retracts the touch probe in the direction opposite to the direction of probing. You define the traverse distance in parameter MB-the touch probe is moved to a point no farther than the starting point.
i
Ensure during pre-positioning that the control moves the probe-tip center without compensation to the defined position.

Notes

NOTICE

Danger of collision!

If the control was not able to determine a valid touch point, the 4th result parameter will have the value -1 . The control does not interrupt the program run! There is a danger of collision!

Make sure that all touch points can be reached.

- This cycle can only be executed in the FUNCTION MODE MILL and FUNCTION MODE TURN machining modes.
- The control retracts the touch probe by at most the retraction distance MB, but not beyond the starting point of the measurement. This rules out any collision during retraction.
- Remember that the control always writes to four successive Q parameters.

7.3.1 Cycle parameters

Help graphic	Parameter
	Parameter number for result?
	Enter the number of the Q parameter to which you want the control to assign the first measured coordinate (X). The Y and Z values will be written to the immediately following Q parameters.
	Input: 0... 1999
	Relative measuring path in X ?
	X component of the direction vector defining the direction in which the touch probe will move.
	Input: -999999999...+999999999
	Relative measuring path in Y ?
	Y component of the direction vector defining the direction in which the touch probe will move.
	Input: -999999999...+999999999
	Relative measuring path in Z ?
	Z component of the direction vector defining the direction in which the touch probe will move.
	Input: -999999999...+999999999
	Maximum measuring range?
	Enter the maximum distance from the starting point by which the touch probe will move along the direction vector. Input: -999999999...+999999999
	Feed rate measurement
	Enter the measuring feed rate in mm/min.
	Input: 0... 3000
	Maximum retraction distance?
	Traverse path in the direction opposite the probing direction, after the stylus was deflected.
	Input: 0... 999999999
	Reference system? (0=ACT/1=REF)
	Define whether the result of probing will be saved in the input coordinate system (ACT), or with respect to the machine coordinate system (REF):
	$\mathbf{0}$: Save the measurement result in the ACT system
	1: Save the measurement result in the REF system
	Input: 0,1
Example	
11 TCH PROBE 4.0 MEASURING IN 3-D	
12 TCH PROBE 4.1 Q1	
13 TCH PROBE 4.2 IX-0.5 IY-1 IZ-1	
14 TCH PRO	FERENCE SYSTEM:0

7.4 Cycle 444 PROBING IN 3-D

ISO programming

G444

Application

Refer to your machine manual.
This function must be enabled and adapted by the machine manufacturer.

Cycle 444 checks one specific point on the surface of a part. This cycle is used, for example, to measure free-form surfaces of moldmaking parts. It can be determined whether a point on the surface of the part lies in an undersize or oversize range compared to a nominal coordinate. The operator can subsequently perform further machining steps, such as reworking.
Cycle 444 probes any point in three dimensions and determines the deviation from a nominal coordinate. A normal vector, defined in parameters Q581, Q582, and Q583, is used for this purpose. The normal vector is perpendicular to an imagined surface in which the nominal coordinate is located. The normal vector points away from the surface and does not determine the probing path. It is advisable to determine the normal vector with the help of a CAD or CAM system. A tolerance range QS400 defines the permissible deviation between the actual and nominal coordinate along the normal vector. This way you define, for example, that the program is to be interrupted if an undersize is detected. Additionally, the control outputs a log and the deviations are stored in the Q parameters listed below.

Cycle sequence

1 Starting from the current position, the touch probe traverses to a point on the normal vector that is at the following distance from the nominal coordinate: Distance = ball-tip radius + SET_UP value from the tchprobe.tp table (TNC:Itable \tchprobe.tp) + Q320. Pre-positioning takes a clearance height into account.
Further information: "Executing touch probe cycles", Page 52
2 The touch probe then approaches the nominal coordinate. The probing distance is defined by DIST, not by the normal vector! The normal vector is only used for the correct calculation of the coordinates.
3 After the control has saved the position, the touch probe is retracted and stopped. The control saves the measured coordinates of the contact point in Q parameters.
4 Finally, the control retracts the touch probe by the value that you defined in parameter $\mathbf{M B}$ in the direction opposite to the probing direction.

Result parameters

The control stores the probing results in the following parameters:

Q parameter number	Meaning
Q151	Measured position in main axis
Q152	Measured position in secondary axis
Q153	Measured position in tool axis
Q161	Measured deviation in main axis
Q162	Measured deviation in secondary axis
Q163	Measured deviation in tool axis
Q164	Measured 3D deviation - Less than 0: Undersize - Greater than 0: Oversize
Q183	Workpiece status: - - 1 = undefined - 0 = good - 1 = Rework - 2 = Scrap

Log function

Once probing has finished, the control generates a log in HTML format. The log includes the results from the main, secondary, and tool axes as well as the 3D deviation. The control saves the log in the same folder in which the *.h file is located (as long as no path has been configured for FN16).
The log contains the following data on the main, secondary, and tool axes:

- Actual probing direction (as a vector in the input system). The value of the vector corresponds to the configured probing path
- Defined nominal coordinate
- If a tolerance QS400 was defined: Upper and lower dimensions are output, as well as the determined deviation along the normal vector
- Ascertained actual coordinate
- Colored display of the values (green for "good," orange for "rework," red for "scrap")

Notes

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- In order to obtain exact results from the touch probe being used, you need to perform 3D calibration before executing Cycle 444. Software option 92, 3D-ToolComp, is required for 3D calibration.
- Cycle $\mathbf{4 4 4}$ generates a measuring log in HTML format.
- An error message is output if Cycle $\mathbf{8}$ MIRRORING, Cycle 11 SCALING FACTOR, or Cycle 26 AXIS-SPECIFIC SCALING is active before Cycle 444 is run.
- For probing, an active TCPM will be taken into account. While the TCPM is active, probing of positions is possible even if the position resulting from the Tilt working plane function is inconsistent with the current position of the rotary axes.
- If your machine is equipped with a feedback-controlled spindle, you should activate angle tracking in the touch probe table (TRACK column). This generally increases the accuracy of measurements with a 3D touch probe.
- Cycle $\mathbf{4 4 4}$ references all coordinates to the input system.
- The control writes the measured values to return parameters.

Further information: "Application", Page 300

- The workpiece status good/rework/scrap is set via Q parameter Q183, independent of parameter Q309.
Further information: "Application", Page 300

Note regarding machine parameters

- Depending on the setting of the optional machine parameter chkTiltingAxes (no. 204600), the control will check during probing whether the position of the rotary axes matches the tilting angles (3D-ROT). If that is not the case, the control displays an error message.

7.4.1 Cycle parameters

Parameter

Q263 1st measuring point in 1st axis?
Coordinate of the first touch point in the main axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999
Q264 1st measuring point in 2nd axis?
Coordinate of the first touch point in the secondary axis of the working plane. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Q294 1st measuring point in 3rd axis?

Coordinate of the first touch point in the touch probe axis. This value has an absolute effect.

Input: -99999.9999...+99999.9999
Q581 Surface-normal in ref. axis?
Enter here the surface normal in the direction of the main axis. The surface normal of a point is normally output by a CAD/CAM system.
Input: -10...+10
Q582 Surface-normal in minor axis?
Enter here the surface normal in the direction of the secondary axis. The surface normal of a point is normally output by a CAD/CAM system.
Input: -10...+10
Q583 Surface-normal in tool axis?
Enter here the surface normal in the direction of the tool axis. The surface normal of a point is normally output by a CAD/ CAM system.
Input: -10...+10
Q320 Set-up clearance?
Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF

Q260 Clearance height?

Coordinate in the tool axis at which no collision between touch probe and workpiece (fixtures) can occur. This value has an absolute effect.
Input: -99999.9999...+99999.9999 or PREDEF

Help graphic
 Parameter
 QS400 Tolerance value?
 Specify a tolerance band that will be monitored by the cycle. The tolerance defines the deviation permitted along the surface normal. This deviation is determined between the nominal coordinate and the actual coordinate of the workpiece. (The surface normal is defined by Q581 to Q583, and the nominal coordinate is defined by Q263, Q264, and
 Q294.) The tolerance value is distributed over the axes, depending on the normal vector (see examples).
 Examples
 - QS400 ="0.4-0.1" means: Upper dimension = nominal coordinate +0.4 ; lower dimension = nominal coordinate -0.1 . The following tolerance band thus results for the cycle: "nominal coordinate +0.4 " to "nominal coordinate $0.1^{\prime \prime}$
 - QS400 ="0.4" means: Upper dimension = nominal coordinate +0.4 ; lower dimension $=$ nominal coordinate . The following tolerance band thus results for the cycle: "nominal coordinate +0.4 " to "nominal coordinate".
 - QS400 ="-0.1" means: Upper dimension = nominal coordinate; lower dimension = nominal coordinate -0.1 . The following tolerance band thus results for the cycle: "nominal coordinate" to "nominal coordinate -0.1".
 - QS400 =" " means: No tolerance band.
 - QS400 ="0" means: No tolerance band.
 - QS400 ="0.1+0.1" means: No tolerance band.
 Input: Max. $\mathbf{2 5 5}$ characters

Q309 Reaction to tolerance error?

Define whether in the event of a violation of tolerance limits the control will interrupt program run and output an error message:
$\mathbf{0}$: Do not interrupt program run when tolerance is exceeded; do not output an error message
1: Interrupt program run when tolerance is exceeded and output an error message
2: If the value of the measured actual coordinate along the surface normal vector is less than the nominal coordinate, the control displays a message and interrupts the NC program run. However, there will be no error message if the value of the measured actual coordinate is greater than the nominal coordinate.
Input: 0, 1, 2

Example

11 TCH PROBE 444 PROBING IN 3-D ~	
Q263 $=+0$;1ST POINT 1ST AXIS ~
Q264 $=+0$;1ST POINT 2ND AXIS ~
Q294 $=+0$;1ST POINT 3RD AXIS ~
Q581 $=+1$;NORMAL IN REF. AXIS ~
Q582 $=+0$;NORMAL IN MINOR AXIS ~
Q583 $=+0$;SAFETY CLEARANCE \sim
Q320 $=+0$;CLEARANCE HEIGHT ~
Q260 $=+100$;TOLERANCE \sim
QS400 $==1-1 "$;ERROR REACTION
$\mathbf{Q 3 0 9 = + 0}$	

7.5 Cycle 441 FAST PROBING

ISO programming

G441

Application

You can use touch probe cycle 441 to globally specify various touch probe parameters (e.g. the positioning feed rate) for all subsequently used touch probe cycles.

The purpose of Cycle 441 is to set parameters for probing cycles. In this cycle, no machine movements will be performed.

Notes

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- END PGM, M2, M30 reset the global settings of Cycle 441.
- Cycle parameter Q399 depends on your machine configuration. Your machine manufacturer is responsible for the setting of whether the touch probe can be oriented through an NC program.
- Even if your machine has separate potentiometers for rapid traverse and feed rate, you can control the feed rate with the feed rate potentiometer only, even with Q397=1.

Note regarding machine parameters

- The machine parameter maxTouchFeed (no. 122602) allows the machine manufacturer to limit the feed rate. You define the maximum absolute feed rate in this machine parameter.

7.5.1 Cycle parameters

Help graphic

Parameter

Q396 Positioning feed rate?
Define the feed rate at which the touch probe will be moved to the specified positions.
Input: 0...99999.999

Q397 Pre-pos. at machine's rapid?

Define whether the control, when prepositioning the touch probe, traverses at FMAX feed rate (machine's rapid traverse):
0: Pre-position at the feed rate from Q396
1: Pre-position at the machine's rapid traverse FMAX
Input: 0, 1

Q399 Angle tracking (0/1)?

Define whether the control will orient the touch probe before every probing operation:
$\mathbf{0}$: Do not orient the spindle
1: Orient the spindle before every probing operation (increased accuracy)?
Input: 0, 1

Q400 Automatic interruption?

Define whether the control will interrupt program run and output the measurement results on the screen following a touch probe cycle for automatic workpiece measurement:
$\mathbf{0}$: Do not interrupt program run even if, in the specific touch probe cycle, the output of measurement results on the screen is selected
1: Interrupt program run and output measurement results on the screen. You can then resume the NC program run with NC Start.
Input: 0, 1

Example

11 TCH PROBE 441 FAST PROBING ~	
Q396 $=+3000$;POSITIONING FEEDRATE \sim
Q397 $=+0$;SELECT FEED RATE \sim
Q399 $=+1$;ANGLE TRACKING \sim
Q400 $=+1$;INTERRUPTION

7.6 Cycle 1493 EXTRUSION PROBING

ISO programming

 G1493
Application

Cycle 1493 allows you to repeat the touch points of specific touch probe cycles along a straight line. In the cycle, you define the direction and the length of the extrusion, as well as the number of extrusion points.
The repetitions allow you, for example, to perform multiple measurements at different heights and to determine deviations based on the deflection of the tool. You can also use the extrusion to increase the accuracy during probing. Multiple measuring points help you ascertain contamination on the workpiece or rough surfaces.
In order to activate the repetition of specific touch points, you need to define Cycle 1493 before the probing cycle. Depending on the definition, this cycle will remain active for only the next cycle or for the entire NC program. The control interprets the extrusion in the input coordinate system I-CS.
The following cycles are capable of performing extrusions:

- PROBING IN PLANE (Cycle 1420, ISO: G1420, option 17), see Page 70
- PROBING ON EDGE (Cycle 1410, ISO: G1410), see Page 76
- PROBING TWO CIRCLES (Cycle 1411, ISO: G1411), see Page 83
- INCLINED EDGE PROBING (Cycle 1412, ISO: G1412), see Page 91
- INTERSECTION PROBING (Cycle 1416, ISO: G1416), see Page 98
- POSITION PROBING (Cycle 1400, ISO: G1400), see Page 136
- CIRCLE PROBING (Cycle 1401, ISO: G1401), see Page 141
- PROBE SLOT/RIDGE (Cycle 1404, ISO: G1404), see Page 150
- PROBE POSITION OF UNDERCUT (Cycle 1430, ISO: G1430), see Page 155
- PROBE SLOT/RIDGE UNDERCUT (Cycle 1434, DIN/ISO: G1434), see Page 160

Result parameters

The control stores the results of the probing cycle in the following Q parameters:

Q parameter number	Meaning
Q970	Maximum deviation from the ideal line of touch point 1
Q971	Maximum deviation from the ideal line of touch point 2
Q972	Maximum deviation from the ideal line of touch point 3
Q973	Maximum deviation of diameter 1
Q974	Maximum deviation of diameter 2

QS parameter

In addition to saving the results of the probing cycle in the return parameters $\mathbf{Q 9 7 x}$, the control saves individual results to the QS parameters QS97x. The control saves the results of all measuring points from one extrusion in the corresponding QS parameters. Each result is ten characters long and the results are separated from each other by a blank space. This makes it easy for the control to convert the individual values in the NC program via string processing and use them for special automated evaluations.
Result in a QS parameter:
QS970 = "0.12345678-1.1234567-2.1234567-3.12345678"
Further information: User's Manual for Programming and Testing

Log function

Once probing has finished, the control generates a log file in HTML format. The log file contains the results of the 3D deviation in graphical and tabular form. The control saves the log file in the same folder in which the NC program is located.
The log file contains the following data in the main axis, secondary axis and tool axis depending on the selected cycle (e.g., circle center point and diameter):

- Actual probing direction (as a vector in the input system). The value of the vector corresponds to the configured probing path
- Defined nominal coordinate
- Upper and lower dimensions, as well as the determined deviation along the normal vector
- Measured actual coordinate
- Color coding of the values:
- Green: Good
- Orange: Rework
- Red: Scrap
- Extrusion points

Extrusion points:

The horizontal axis represents the direction for the extrusion. The blue points are the individual measuring points. The red lines indicate the lower limit and the upper limit of the dimensions. If a value violates a specified tolerance, the control will show the area in red color in the graphic.

Notes

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- If Q1145 > $\mathbf{0}$ and $\mathbf{Q 1 1 4 6}=\mathbf{0}$, then the control will perform the number of extrusion points at the same position.
- If you use Cycle 1401 CIRCLE PROBING or 1411 PROBING TWO CIRCLES to perform an extrusion, the direction for the extrusion must be Q1140 = +3; otherwise, the control will output an error message.

7.6.1 Cycle parameters

Parameter

Q1140 Direction for extrusion (1-3)?
1: Extrusion in the direction of the main axis
2: Extrusion in the direction of the secondary axis
3: Extrusion in the direction of the tool axis
Input: 1, 2, 3
Q1145 Number of extrusion points?
Number of measuring points that the cycle repeats over the length of the extrusion Q1146.
Input: 1... 99

Q1146 Length of extrusion?
Length over which the measuring points are repeated.
Input: -99...+99
Q1149 Extrusion: Modal duration?
Effect of the cycle:
$\mathbf{0}$: The extrusion is effective for only the next cycle.
1: The extrusion is effective until the end of the NC program.
Input: -99...+99

Example

11 TCH PROBE 1493 EXTRUSION PROBING ~	
Q1140 $=+3$;EXTRUSION DIRECTION ~
Q1145 $=+1$;EXTRUSION POINTS ~
Q1146 $=+0$;EXTRUSION LENGTH \sim
Q1149 $=+0$;EXTRUSION MODAL

Touch Probe Cycles:
 Calibration

8.1 Fundamentals

8.1.1 Overview

The control must be specifically prepared by the machine manufacturer for the use of a touch probe.
HEIDENHAIN guarantees the proper operation of the touch probe cycles only in conjunction with HEIDENHAIN touch probes.

In order to precisely specify the actual trigger point of a 3D touch probe, you must calibrate the touch probe; otherwise the control cannot provide precise measuring results.
(i)

Always calibrate a touch probe in the following cases:

- Initial configuration
- Broken stylus
- Stylus replacement
- Change in the probe feed rate
- Irregularities caused, for example, when the machine heats up
- Change of active tool axis

The control assumes the calibration values for the active touch probe directly after the calibration process. The updated tool data are immediately effective. It is not necessary to repeat the tool call.

During calibration, the control determines the effective length of the stylus and the effective radius of the stylus tip. To calibrate the 3D touch probe, clamp a ring gauge or a stud of known height and known radius to the machine table.
The control provides calibration cycles for calibrating the length and the radius:

Cycle		Call	Further information
461	TS CALIBRATION OF TOOL LENGTH - Calibrating the length	DEFactive	Page 314
462	CALIBRATION OF A TS IN A RING - Measuring the radius using a ring gauge - Measuring the center offset using a ring gauge	DEF- active	Page 316
463	TS CALIBRATION ON STUD - Measuring the radius using a stud or a calibration pin - Measuring the center offset using a stud or a calibration pin	DEFactive	Page 319
460	CALIBRATION OF TS ON A SPHERE - Measuring the radius using a calibration sphere - Measuring the center offset using a calibration sphere	DEFactive	Page 322

8.1.2 Calibrating a touch trigger probe

In order to precisely specify the actual trigger point of a 3D touch probe, you must calibrate the touch probe; otherwise the control cannot provide precise measuring results.
Always calibrate a touch probe in the following cases:

- Initial configuration
- Broken stylus
- Stylus replacement
- Change in the probe feed rate
- Irregularities caused, for example, when the machine heats up
- Change of active tool axis

During calibration, the control finds the effective length of the stylus and the effective radius of the ball tip. To calibrate the 3D touch probe, clamp a ring gauge or a stud of known height and known radius to the machine table.
The control provides calibration cycles for calibrating the length and the radius.
i

- The control applies the calibration values for the active probe system directly after the calibration process. The updated tool data are immediately effective. It is not necessary to repeat the tool call.
- Ensure that the touch probe number in the tool table and the touchprobe number in the touch-probe table are identical.
Further information: User's Manual for Setup and Program Run

8.1.3 Displaying calibration values

The control saves the effective length and effective radius of the touch probe in the tool table. The control saves the touch probe center offset to the touch probe table in the columns CAL_OF1 (main axis) and CAL_OF2 (secondary axis).
A measuring log is created automatically during calibration. The log file is named TCHPRAUTO.html. This file is stored in the same location as the original file. The measuring log can be displayed in the browser on the control. If an NC program uses more than one cycle to calibrate the touch probe, TCHPRAUTO.html will contain all the measuring logs.

8.2 Cycle 461 TS CALIBRATION OF TOOL LENGTH

ISO programming

G461

Application

Before starting the calibration cycle, you must set the preset in the spindle axis so that $Z=0$ on the machine table; you must also pre-position the touch probe above the calibration ring.
A measuring log is created automatically during calibration. The log file is named TCHPRAUTO.html. This file is stored in the same location as the original file. The measuring log can be displayed in the browser on the control. If an NC program uses more than one cycle to calibrate the touch probe, TCHPRAUTO.html will contain all the measuring logs.

Cycle sequence

1 The control orients the touch probe to the angle CAL_ANG specified in the touch probe table (only if your touch probe can be oriented).
2 The control probes from the current position in the negative spindle axis direction at the probing feed rate (column \mathbf{F} from the touch probe table).
3 The control then retracts the touch probe at rapid traverse (column FMAX from the touch probe table) to the starting position.

Notes

HEIDENHAIN guarantees the proper operation of the touch probe cycles only in conjunction with HEIDENHAIN touch probes.

NOTICE

Danger of collision!

When running touch probe cycles 400 to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.
- This cycle can only be executed in the FUNCTION MODE MILL and FUNCTION MODE TURN machining modes.
- The effective length of the touch probe is always referenced to the tool reference point. The tool reference point is often on the spindle nose, the face of the spindle. The machine manufacturer may also place the tool reference point at a different point.
- A measuring log is created automatically during calibration. The log file is named TCHPRAUTO.html.

Note on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.

8.2.1 Cycle parameters

Cycle parameters

Example

8.3 Cycle 462 CALIBRATION OF A TS IN A RING

ISO programming

G462

Application

Refer to your machine manual.

Before starting the calibration cycle, you need to pre-position the touch probe in the center of the calibration ring and at the required measuring height.
When calibrating the ball-tip radius, the control executes an automatic probing routine. In the first run, the control finds the center point of the calibration ring or pin (approximate measurement) and positions the touch probe in the center. Then, in the actual calibration process (fine measurement), the radius of the ball tip is determined. If the touch probe allows a reversal measurement, the center offset is determined during another run.
A measuring log is created automatically during calibration. The log file is named TCHPRAUTO.html. This file is stored in the same location as the original file. The measuring log can be displayed in the browser on the control. If an NC program uses more than one cycle to calibrate the touch probe, TCHPRAUTO.html will contain all the measuring logs.
The orientation of the touch probe determines the calibration routine:

- No orientation possible, or orientation in only one direction: The control executes one approximate and one fine measurement, and then ascertains the effective ball-tip radius (column R in tool.t).
- Orientation possible in two directions (e.g. HEIDENHAIN touch probes with cable): The control executes one approximate and one fine measurement, rotates the touch probe by 180°, and then executes four more probing routines. The reversal measurement determines not only the radius but ralso the center offset (CAL_OF in the touch-probe table).
- Any orientation possible (e.g. HEIDENHAIN infrared touch probes): Probing operation: see "Orientation possible in two directions").

Notes

In order to be able to determine the ball-tip center offset, the control needs to be specially prepared by the machine manufacturer.
The property of whether or how your touch probe can be oriented is predefined for HEIDENHAIN touch probes. Other touch probes are configured by the machine manufacturer.
HEIDENHAIN guarantees the proper operation of the touch probe cycles only in conjunction with HEIDENHAIN touch probes.

NOTICE

Danger of collision!

When running touch probe cycles $\mathbf{4 0 0}$ to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.
- This cycle can only be executed in the FUNCTION MODE MILL and FUNCTION MODE TURN machining modes.
- The center offset can be determined only with a suitable touch probe.
- A measuring log is created automatically during calibration. The log file is named TCHPRAUTO.html.

Note on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.

8.3.1 Cycle parameters

Parameter

Q407 Radius of ring gauge?
Enter the radius of the ring gauge.
Input: 0.0001...99.9999
Q320 Set-up clearance?
Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: O...99999.9999 or PREDEF

Q423 Number of probes?

Number of measuring points on the diameter. This value has an absolute effect.

Input: 3... 8
Q380 Ref. angle in ref. axis?
Angle between the main axis of the working plane and the first touch point. This value has an absolute effect.
Input: 0... 360

Example

11 TCH PROBE 462 CALIBRATION OF A TS IN A RING ~	
Q407 $=+5$;RING RADIUS \sim
Q320 $=+0$;SET-UP CLEARANCE \sim
Q423 $=+8$;NO. OF PROBE POINTS \sim
Q380 $=+0$;REFERENCE ANGLE

8.4 Cycle 463 TS CALIBRATION ON STUD

ISO programming

G463

Application

Refer to your machine manual.

Before starting the calibration cycle, you need to pre-position the touch probe above the center of the calibration pin. Position the touch probe in the touch probe axis by approximately the set-up clearance (value from touch probe table + value from cycle) above the calibration pin.
When calibrating the ball-tip radius, the control executes an automatic probing routine. In the first run the control finds the midpoint of the calibration ring or stud (approximate measurement) and positions the touch probe in the center. Then, during the actual calibration process (fine measurement), the radius of the ball tip is determined. If the touch probe permits a reversal measurement, the center offset is determined during another run.
A measuring log is created automatically during calibration. The log file is named TCHPRAUTO.html. This file is stored in the same location as the original file. The measuring log can be displayed in the browser on the control. If an NC program uses more than one cycle to calibrate the touch probe, TCHPRAUTO.html will contain all the measuring logs.
The orientation of the touch probe determines the calibration routine:

- No orientation possible, or orientation in only one direction: The control executes one approximate and one fine measurement, and then ascertains the effective ball-tip radius (column \mathbf{R} in tool.t).
- Orientation possible in two directions (e.g. HEIDENHAIN touch probes with cable): The control executes one approximate and one fine measurement, rotates the touch probe by 180°, and then executes four more probing routines. The reversal measurement determines now only the radius but also the center offset (CAL_OF in the touch-probe table).
- Any orientation possible (e.g. HEIDENHAIN infrared touch probes): Probing operation: see "Orientation possible in two directions"

Note:

In order to be able to determine the ball-tip center offset, the control needs to be specially prepared by the machine manufacturer.
Whether or how your touch probe can be oriented is predefined for HEIDENHAIN touch probes. Other touch probes are configured by the machine manufacturer.
HEIDENHAIN guarantees the proper operation of the touch probe cycles only in conjunction with HEIDENHAIN touch probes.

NOTICE

Danger of collision!

When running touch probe cycles $\mathbf{4 0 0}$ to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.
- This cycle can only be executed in the FUNCTION MODE MILL and FUNCTION MODE TURN machining modes.
- The center offset can be determined only with a suitable touch probe.
- A measuring log is created automatically during calibration. The log file is named TCHPRAUTO.html.

Note on programming

- Before defining this cycle, you must have programmed a tool call to define the touch probe axis.

8.4.1 Cycle parameters

Parameter

Q407 Radius of calibr. stud?
Diameter of the calibration stud
Input: 0.0001...99.9999
Q320 Set-up clearance?
Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.

Input: O...99999.9999 or PREDEF
Q301 Move to clearance height (0/1)?
Specify how the touch probe moves between measuring points:
0: Move at measuring height between measuring points
1: Move at clearance height between measuring points
Input: 0, 1

Q423 Number of probes?

Number of measuring points on the diameter. This value has an absolute effect.
Input: 3... 8
Q380 Ref. angle in ref. axis?
Angle between the main axis of the working plane and the first touch point. This value has an absolute effect.
Input: 0... 360

Example

11 TCH PROBE 463 TS CALIBRATION ON STUD ~	
Q407 $=+5$;STUD RADIUS ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q301 $=+1$;MOVE TO CLEARANCE ~
Q423 $=+8$;NO. OF PROBE POINTS ~
Q380 $=+0$;REFERENCE ANGLE

8.5 Cycle 460 CALIBRATION OF TS ON A SPHERE (option 17)

ISO programming

G460

Application

(0
Refer to your machine manual.

Before starting the calibration cycle, you need to pre-position the touch probe above the center of the calibration sphere. Position the touch probe in the touch probe axis by approximately the amount of the set-up clearance (value from touch probe table + value from cycle) above the calibration sphere.
With Cycle $\mathbf{4 6 0}$ you can calibrate a triggering 3D touch probe automatically using an exact calibration sphere.
It is also possible to capture 3D calibration data. Option 92, 3D-ToolComp, is required for this purpose. 3D calibration data describe the deflection behavior of the touch probe in any probing direction. The 3D calibration data are stored under TNC: \system\3D-ToolComp*. The DR2TABLE column of the tool table references the 3DTC table. The 3D calibration data are then taken into account when probing. This 3D calibration is necessary if you want to achieve very high accuracy, for example with Cycle $\mathbf{4 4 4}$ or if you want to graphically align the workpiece (option 159).

Before calibrating with a normal stylus:

Before starting the calibration cycle, you need to pre-position the touch probe:

- Define the approximate value of the radius R and length L of the touch probe
- In the working plane, center the touch probe above the calibration sphere
- Position the touch probe in the touch probe axis by approximately the amount of the set-up clearance above the calibration sphere. The set-up clearance consists of the value from the touch probe table plus the value from the cycle.

Pre-positioning with a normal stylus

Before calibrating with an L-shaped stylus:

- Clamp the calibration sphere

It must be possible to probe the north pole and south pole during calibration. If this is not possible, the control cannot determine the sphere radius. Ensure that no collision can occur.

- Define the approximate value of the radius \mathbf{R} and length \mathbf{L} of the touch probe. You can determine these with a tool presetter.
- Enter the approximate center offset in the touch probe table:
- CAL_OF1: length of the extension
- CAL_OF2: 0
- Insert the touch probe and orient it parallel to the main axis, for example with Cycle 13 ORIENTATION
- Enter the calibration angle in the CAL_ANG column of the tool table.
- Position the center of the touch probe over the center of the calibration sphere
$>$ Since the stylus is angled, the touch probe sphere is not centered over the calibration sphere.
- Position the touch probe in the tool axis by approximately the amount of the set-up clearance (value from touch probe table + value from cycle) above the calibration sphere

Pre-positioning with an L-shaped stylus

Calibration process with an L-shaped stylus

Cycle sequence

The setting in parameter Q433 specifies whether you can perform radius and length calibration, or just radius calibration.

Radius calibration Q433=0

1 Clamp the calibration sphere. Ensure the prevention of collisions
2 In the touch probe axis, position the touch probe over the calibration sphere, and in the working plane, approximately over the sphere center
3 The first movement is in the plane, depending on the reference angle (Q380)
4 The controls positions the touch probe in the touch probe axis
5 The probing process starts, and the control begins by searching for the equator of the calibration sphere
6 Once the equator has been determined, the determination of the spindle angle for calibration CAL_ANG begins (for L-shaped stylus)
7 Once CAL_ANG has been determined, the radius calibration begins
8 Finally, the control retracts the touch probe in the touch-probe axis to the height at which it had been pre-positioned

Radius and length calibration Q433=1

1 Clamp the calibration sphere. Ensure the prevention of collisions
2 In the touch probe axis, position the touch probe over the calibration sphere, and in the working plane, approximately over the sphere center
3 The first movement is in the plane, depending on the reference angle (Q380)
4 The control then positions the touch probe in touch-probe axis
5 The probing process starts, and the control begins by searching for the equator of the calibration sphere
6 Once the equator has been determined, the determination of the spindle angle for calibration CAL_ANG begins (for L-shaped stylus)
7 Once CAL_ANG has been determined, the radius calibration begins
8 The control then retracts the touch probe in the touch-probe axis to the height at which it had been pre-positioned
9 The control determines the length of the touch probe at the north pole of the calibration sphere
10 At the end of the cycle the control retracts the touch probe in the touch-probe axis to the height at which it had been pre-positioned

The setting in parameter Q455 specifies whether you can perform an additional 3D calibration

3D calibration Q455=1... 30

1 Clamp the calibration sphere. Ensure the prevention of collisions
2 After calibration of the radius and length, the control retracts the touch probe in touch-probe axis. Then the control positions the touch probe above the north pole
3 The probing process goes from the north pole to the equator in several steps. Deviations from the nominal value, and therefore the specific deflection behavior, are determined
4 You can specify the number of touch points between the north pole and the equator. This number depends on input parameter Q455. A value between 1 and 30 can be programmed. If you program $\mathbf{Q 4 5 5 = 0}$, no 3D calibration will be performed
5 The deviations determined during the calibration are stored in a 3DTC table
6 At the end of the cycle the control retracts the touch probe in the touch-probe axis to the height at which it had been pre-positioned
(1)

- For an L-shaped stylus, the calibration takes place between the north and south pole.
- In order to calibrate the length, the position of the center point (Q434) of the calibration sphere relative to the active datum must be known If this is not the case, then performing length calibration with Cycle 460 is not recommended!
- One application example for calibrating the length with Cycle 460 is the comparison of two touch probes

Notes

HEIDENHAIN guarantees the proper operation of the touch probe cycles only in conjunction with HEIDENHAIN touch probes.

NOTICE

Danger of collision!

When running touch probe cycles $\mathbf{4 0 0}$ to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$

DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle $\mathbf{2 6}$ AXIS-SPECIFIC SCALING.

- Reset any coordinate transformations beforehand.
- This cycle can only be executed in the FUNCTION MODE MILL and FUNCTION MODE TURN machining modes.
- A measuring log is created automatically during calibration. The log file is named TCHPRAUTO.html. This file is stored in the same location as the original file. The measuring log can be displayed in the browser on the control. If an NC program uses more than one cycle to calibrate the touch probe, TCHPRAUTO.html will contain all the measuring logs.
- The effective length of the touch probe is always referenced to the tool reference point. The tool reference point is often on the spindle nose, the face of the spindle. The machine manufacturer may also place the tool reference point at a different point.
- Depending on the accuracy of the pre-positioning, finding the equator of the calibration sphere will require a different number of touch points.
- In order to achieve optimum accuracy results with an L-shaped stylus, HEIDENHAIN recommends calibrating and probing at identical speeds. Note the setting of the feed override if it is active for probing.
- If you program $\mathbf{Q 4 5 5 = 0}$, the control will not perform a 3D calibration.
- If you program $\mathbf{Q 4 5 5 = 1}$ to $\mathbf{3 0}$, the control will perform a 3D calibration of the touch probe. Deviations of the deflection behavior will thus be determined under various angles. If you use Cycle 444, you should first perform a 3D calibration.
- If you program $\mathbf{Q 4 5 5 = 1}$ to 30, a table will be stored under TNC:\system\3DToolComp*.
- If there is already a reference to a calibration table (entry in DR2TABLE), this table will be overwritten.
- If there is no reference to a calibration table (entry in DR2TABLE), then, in dependence of the tool number, a reference and the associated table will be created.

Note on programming

- Before a cycle definition you must program a tool call to define the touch-probe axis.

8.5.1 Cycle parameters

Cycle parameters

Parameter

Q407 Radius of calib. sphere?

Enter the exact radius of the calibration sphere being used. Input: 0.0001...99.9999

Q320 Set-up clearance?
Additional distance between touch point and ball tip. Q320 is added to SET_UP (touch probe table), and is only active when the preset is probed in the touch probe axis. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF
Q301 Move to clearance height (0/1)?
Specify how the touch probe moves between measuring points:
0: Move at measuring height between measuring points
1: Move at clearance height between measuring points Input: 0, 1
Q423 Number of probes?
Number of measuring points on the diameter. This value has an absolute effect.

Input: 3... 8
Q380 Ref. angle in ref. axis?
Enter the reference angle (basic rotation) for acquiring the measuring points in the active workpiece coordinate system. Defining a reference angle can considerably enlarge the measuring range of an axis. This value has an absolute effect.
Input: 0... 360
Q433 Calibrate length (0/1)?
Define whether the control will calibrate the touch probe length after radius calibration:
$\mathbf{0}$: Do not calibrate touch probe length
1: Calibrate touch probe length
Input: 0, 1

Q434 Preset for length?

Coordinate of the calibration sphere center. This value must be defined only if length calibration will be carried out. This value has an absolute effect.
Input: -99999.9999...+99999.9999

Touch Probe
Cycles: Automatic
Kinematics
Measurement

9.1 Fundamentals (option 48)

9.1.1 Overview

The control must be specifically prepared by the machine manufacturer for the use of a touch probe.
HEIDENHAIN guarantees the proper operation of the touch probe cycles only in conjunction with HEIDENHAIN touch probes.

The control offers the following cycles that enable you to automatically save, restore, check, and optimize the machine kinematics:

Cycle		Call	Further information
450	SAVE KINEMATICS (option 48) - Storing the active machine kinematic configuration - Restoring previously saved kinematic configuration	DEF- active	Page 336
451	MEASURE KINEMATICS (option 48) - Automatic checking of the machine kinematic configuration - Optimizing the machine kinematic configuration	DEF- active	Page 339
452	PRESET COMPENSATION (option 48) - Automatic checking of the machine kinematic configuration - Optimizing the kinematic transformation chain of the machine	DEFactive	Page 354
453	KINEMATICS GRID (option 48, option 52) - Automatic checking depending on the rotary axis position of the machine kinematic configuration - Optimizing the machine kinematic configuration	DEFactive	Page 365

9.1.2 Fundamentals

Accuracy requirements are becoming increasingly stringent, particularly in the area of 5 -axis machining. Complex parts must be manufactured with both precision and reproducible accuracy, including over extended periods of time.
Some of the reasons for inaccuracy in multi-axis machining are deviations between the kinematic model saved in the control (see 1 in the figure) and the kinematic conditions actually existing on the machine (see 2 in the figure). When the rotary axes are positioned, these deviations cause inaccuracy of the workpiece (see 3 in the figure). It is therefore necessary for the model to approach reality as closely as possible.
The KinematicsOpt function of the control is an important component that helps you meet these complex requirements in real life: a 3D touch probe cycle measures the rotary axes on your machine fully automatically, regardless of whether they are realized as tables or spindle heads. For this purpose, a calibration sphere is attached at any position on the machine table, and measured with a resolution that you define. During cycle definition, you simply define for each rotary axis the area that you want to measure.
From the measured values, the control calculates the static tilting accuracy. The software minimizes the positioning error arising from the tilting movements and, at the end of the measurement process, automatically saves the machine geometry in the respective machine constants of the kinematics table.

9.1.3 Requirements

Refer to your machine manual.
Advanced Function Set 1 (option 8) must be enabled.
Option 48 must be enabled.
Machine and control must be specially prepared by the machine manufacturer for use of this cycle.

Requirements for using KinematicsOpt:
The machine manufacturer must have defined the machine parameters for CfgKinematicsOpt (no. 204800) in the configuration data.

- maxModification (no. 204801) specifies the tolerance limit starting from which the control is to display a message if the changes made to the kinematic data exceed this limit value
- maxDevCalBall (no. 204802) defines how much the measured radius of the calibration sphere may deviate from the entered cycle parameter
- mStrobeRotAxPos (no. 204803) defines an M function that is specifically configured by the machine manufacturer and is used to position the rotary axes
- The 3D touch probe used for the measurement must be calibrated
- The cycles can only be carried out with the tool axis Z
- A calibration sphere with an exactly known radius and sufficient rigidity must be attached to any position on the machine table
- The kinematics description of the machine must be complete and correct, and the transformation dimensions must have been entered with an accuracy of approx. 1 mm
- The complete machine geometry must have been measured (by the machine manufacturer during commissioning)
(i) HEIDENHAIN recommends using the calibration spheres KKH 250
(ordering number: 655475-01) or KKH 80 (ordering number:
655475-03), which are particularly rigid and are designed especially for machine calibration. Please contact HEIDENHAIN if you have any questions in this regard.

9.1.4 Notes

HEIDENHAIN only guarantees the proper operation of the probing cycles if HEIDENHAIN touch probes are used.

NOTICE

Danger of collision!

When running touch probe cycles $\mathbf{4 0 0}$ to $\mathbf{4 9 9}$, all cycles for coordinate transformation must be inactive. There is a danger of collision!

- The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle $\mathbf{2 6}$ AXIS-SPECIFIC SCALING.
- Reset any coordinate transformations beforehand.

| NOT/CE |
| :--- | :--- |
| Danger of collision! |
| A change in the kinematics always changes the preset as well. Basic rotations will |
| automatically be reset to 0 . There is a danger of collision! |
| After an optimization, reset the preset |

Notes about machine parameters

- In the machine parameter mStrobeRotAxPos (no. 204803), the machine manufacturer defines the position of the rotary axes. If an M function has been defined in the machine parameter, you have to position the rotary axes to 0° (ACTUAL system) before starting one of the KinematicsOpt cycles (except for 450).
- If machine parameters were changed through the KinematicsOpt cycles, the control must be restarted. Otherwise the changes could be lost in certain circumstances.

9.2 Cycle 450 SAVE KINEMATICS (option 48)

ISO programming

G450

Application

Refer to your machine manual.
This function must be enabled and adapted by the machine manufacturer.

With touch probe cycle $\mathbf{4 5 0}$ you can save the active machine kinematic configuration or restore a previously saved one. The saved data can be displayed and deleted. 16 memory spaces in total are available.

Notes

Only save and restore data with Cycle $\mathbf{4 5 0}$ while no tool carrier kinematics configuration that includes transformations is active.

- This cycle can only be executed in the FUNCTION MODE MILL and FUNCTION MODE TURN machining modes.
- Always save the active kinematic model before running a kinematics optimization.
Advantage:
- You can restore the old data if you are not satisfied with the results or if errors occur during optimization (e.g. power failure).
- With the Restore mode, note the following:
- The control can restore saved data only to a matching kinematic configuration
- A change in the kinematics always changes the preset as well. So redefine the preset, if required.
- The cycle does not restore identical values. It only restores values that differ from the present values. Compensations can only be restored if they had been saved before.

Notes on data management

The control stores the saved data in the file TNC: \table\DATA450.KD. This file can be backed up to an external PC with TNCremo, for example. If you delete the file, the stored data are removed, too. If the data in the file are changed manually, the data records may become corrupted so that they are unusable.
(1) Operating notes:

- If the file TNC: \table\DATA450.KD does not exist, it is generated automatically when Cycle 450 is run.
- Make sure that you delete any empty files with the name TNC: \table IDATA450.KD before starting Cycle 450. If there is an empty memory table (TNC:\table\DATA450.KD) without any rows in it, an error message will be issued when running Cycle 450. In this case, delete the empty memory table and call the cycle again.
- Do not change stored data manually.
- Make a backup of the TNC: \table\DATA450.KD file so that you can restore the file, if necessary (e.g. if the data medium is damaged).

9.2.1 Cycle parameters

Help graphic	Parameter
Q410 Mode (0/1/2/3)?	
Define whether a kinematic model will be saved or restored:	
0: Save active kinematics	
1: Restore saved kinematics	
2: Display the current memory status	
3: Delete a data record	
Input: 0, 1, 2, 3	
Q409/QS409 Name of data record?	
Number or name of data record identifier. Q409 does not	
function if mode 2 has been selected. Wildcards can be used	
for searches in modes 1 and 3 (Restore and Delete). If the	
control finds several possible data records because of the	
wildcards, the control restores the mean values of the data	
(mode 1) or deletes all selected data records after confirma-	
tion (mode 3). You can use the following wildcards in search-	
es:	
?: A single, undefined character	
\$: A single alphabetic character (letter)	
\#: A single, undefined number	
*: An undefined string of any length	
Input: $\mathbf{0 . . . 9 9 9 9 9}$ or max. $\mathbf{2 5 5}$ characters. A total of 16	
memory locations are available.	

Saving the current kinematics

11 TCH PROBE 450 SAVE KINEMATICS \sim	
Q410 $=+0$;MODE \sim
Q409 $=+947$;MEMORY DESIGNATION

Restoring data records

11 TCH PROBE 450 SAVE KINEMATICS ~	
Q410 $=+1$;MODE \sim
Q409 $=+948$;MEMORY DESIGNATION

Displaying all saved data records

11 TCH PROBE 450 SAVE KINEMATICS ~	
Q410 $=+2$;MODE ~
Q409 $=+949$;MEMORY DESIGNATION

Deleting data records

```
11 TCH PROBE }450\mathrm{ SAVE KINEMATICS ~
```

$\mathrm{Q} 410=+3$;MODE \sim
$\mathrm{Q} 409=+950$;MEMORY DESIGNATION

9.2.2 Log function

After running Cycle 450, the control creates a log (TCHPRAUTO.html) containing the following information:

- Creation date and time of the log
- Name of the NC program from which the cycle was run
- Designator of the current kinematics
- Active tool

The other data in the log vary depending on the selected mode:

- Mode 0: Logging of all axis entries and transformation entries of the kinematics chain that the control has saved.
- Mode 1: Logging of all transformation entries before and after restoring the kinematics configuration.
- Mode 2: List of the saved data records
- Mode 3: List of the deleted data records

9.3 Cycle 451 MEASURE KINEMATICS (option 48)

ISO programming
G451

Application

Refer to your machine manual.
This function must be enabled and adapted by the machine manufacturer.

Touch probe cycle 451 enables you to check and, if required, optimize the kinematics of your machine. Use the 3D TS touch probe to measure a HEIDENHAIN calibration sphere that you have attached to the machine table.
The control will determine the static tilting accuracy. The software minimizes the spatial error arising from the tilting movements and, at the end of the measurement process, automatically saves the machine geometry in the respective machine constants of the kinematics description.

Cycle sequence

1 Clamp the calibration sphere and check for potential collisions.
2 In Manual operation mode, set the preset to the center of the sphere or, if you defined Q431 = 1 or $\mathbf{Q 4 3 1}$ = 3: Manually position the touch probe above the calibration sphere in the touch probe axis and at the center of the sphere in the working plane.
3 Select the Program Run operating mode and start the calibration program.
4 The control automatically measures all rotary axes successively in the resolution you defined.
i
Programming and operating notes:

- If the kinematics data determined in Optimize mode exceed the permissible limit (maxModification no. 204801), the control displays a warning. Then you have to confirm acceptance of the determined values by pressing NC start.
- During presetting, the programmed radius of the calibration sphere will only be monitored for the second measurement. The reason is that if pre-positioning with respect to the calibration sphere is inaccurate and you then start presetting, the calibration sphere will be probed twice.

The control saves the measured values in the following Q parameters:

Q parameter number	Meaning
Q141	Standard deviation measured in the A axis (-1 if axis was not measured)
Q142	Standard deviation measured in the B axis (-1 if axis was not measured)
$\mathbf{Q 1 4 3}$	Standard deviation measured in the C axis (-1 if axis was not measured)
$\mathbf{Q 1 4 4}$	Optimized standard deviation in the A axis (-1 if axis was not optimized)
$\mathbf{Q 1 4 5}$	Optimized standard deviation in the B axis (-1 if axis was not optimized)
$\mathbf{Q 1 4 6}$	Optimized standard deviation in the C axis (-1 if axis was not optimized)
$\mathbf{Q 1 4 7}$	Offset error in X direction, for manual transfer to the corre- sponding machine parameter
$\mathbf{Q 1 4 8}$	Offset error in Y direction, for manual transfer to the corre- sponding machine parameter
$\mathbf{Q 1 4 9}$	Offset error in Z direction, for manual transfer to the corre- sponding machine parameter

9.3.1 Positioning direction

The positioning direction of the rotary axis to be measured is determined from the start angle and the end angle that you define in the cycle. A reference measurement is automatically performed at 0°.
Specify the start and end angles in such a way that the same position is not measured twice. A duplicated point measurement (e.g. measuring positions $+90^{\circ}$ and -270°) is not advisable, but it will not generate an error message.

- Example: Start angle $=+90^{\circ}$, end angle $=-90^{\circ}$
- Start angle $=+90^{\circ}$
- End angle $=-90^{\circ}$
- No. of measuring points $=4$
- Stepping angle resulting from the calculation $=\left(-90^{\circ}-+90^{\circ}\right) /(4-1)=-60^{\circ}$
- Measuring point $1=+90^{\circ}$
- Measuring point $2=+30^{\circ}$
- Measuring point $3=-30^{\circ}$
- Measuring point $4=-90^{\circ}$
- Example: start angle $=+90^{\circ}$, end angle $=+270^{\circ}$
- Start angle $=+90^{\circ}$
- End angle $=+270^{\circ}$
- No. of measuring points = 4
- Stepping angle resulting from the calculation $=\left(270^{\circ}-90^{\circ}\right) /(4-1)=+60^{\circ}$
- Measuring point $1=+90^{\circ}$
- Measuring point $2=+150^{\circ}$
- Measuring point $3=+210^{\circ}$
- Measuring point $4=+270^{\circ}$

9.3.2 Machines with Hirth-coupled axes

NOTICE

Danger of collision!

In order to be positioned, the axis must move out of the Hirth grid. If necessary, the control rounds the calculated measuring positions so that they fit into the Hirth grid (depending on the start angle, end angle and number of measuring points). There is a danger of collision!

So remember to leave a large enough set-up clearance to prevent any risk of collision between the touch probe and calibration sphere
Also ensure that there is enough space to reach the set-up clearance (software limit switch)

NOTICE

Danger of collision!

Depending on the machine configuration, the control cannot position the rotary axes automatically. If this is the case, you need a special M function from the machine manufacturer, enabling the control to move the rotary axes. The machine manufacturer must have entered the number of the M function in the machine parameter mStrobeRotAxPos (no. 204803) for this purpose. There is a danger of collision!

- Note the documentation of the machine manufacturer
- The measured positions are calculated from the start angle, end angle, and number of measurements for the respective axis and from the Hirth grid.

9.3.3 Example calculation of measuring positions for an A axis:

Start angle Q411 = -30
End angle Q412 = +90
Number of measuring points Q414 = 4
Hirth grid $=3^{\circ}$
Calculated stepping angle $=(\mathbf{Q} 412-\mathbf{Q 4 1 1}) /(\mathbf{Q 4 1 4} \mathbf{- 1})$
Calculated stepping angle $=\left(90^{\circ}-\left(-30^{\circ}\right)\right) /(4-1)=120 / 3=40^{\circ}$
Measuring position $1=\mathbf{Q 4 1 1}+0$ * stepping angle $=-30^{\circ}-->-30^{\circ}$
Measuring position $2=\mathbf{Q 4 1 1}+1^{*}$ stepping angle $=+10^{\circ}-->9^{\circ}$
Measuring position $3=\mathbf{Q 4 1 1}+2$ * stepping angle $=+50^{\circ}-->51^{\circ}$
Measuring position $4=\mathbf{Q 4 1 1}+3$ * stepping angle $=+90^{\circ}-->90^{\circ}$

9.3.4 Choice of number of measuring points

To save time, you can make a rough optimization with a small number of measuring points (1 or 2), e.g. when commissioning the machine.
You then make a fine optimization with a medium number of measuring points (recommended value = approx. 4). Higher numbers of measuring points do not usually improve the results. Ideally, you should distribute the measuring points evenly over the tilting range of the axis.
This is why you should measure an axis with a tilting range of 0° to 360° at three measuring points, namely at $90^{\circ}, 180^{\circ}$ and 270°. Thus, define a starting angle of 90° and an end angle of 270°.
If you want to check the accuracy accordingly, you can also enter a higher number of measuring points in the Check mode.
i
If a measuring point has been defined at 0°, it will be ignored because the reference measurement is always done at 0°.

9.3.5 Choice of the calibration sphere position on the machine table

In principle, you can fix the calibration sphere to any accessible position on the machine table and also on fixtures or workpieces. The following factors should positively influence the result of measurement:

- On machines with rotary tables/tilting tables: Clamp the calibration sphere as far as possible away from the center of rotation.
- On machines with very large traverse paths: Clamp the calibration sphere as closely as possible to the position intended for subsequent machining.
i
Position the calibration sphere on the machine table so that there can be no collisions during the measuring process.

9.3.6 Notes on various calibration methods

- Rough optimization during commissioning after entering approximate dimensions.
- Number of measuring points between 1 and 2
- Angular step of the rotary axes: Approx. 90°
- Fine optimization over the entire range of traverse
- Number of measuring points between 3 and 6
- The start and end angles should cover the largest possible traverse range of the rotary axes.
- Position the calibration sphere in such a way on the machine table that, with rotary table axes, there is a large measuring circle or that, on swivel head axes, measurement can be made at a representative position (e.g. in the center of the traverse range).
- Optimization of a specific rotary axis position
- Number of measuring points between 2 and 3
- The measurements are made with the aid of the inclination angle of an axis (Q413/Q417/Q421) around the rotary axis angle at which the workpiece is to be machined later.
- Position the calibration sphere on the machine table for calibration at the position subsequently intended for machining.
- Inspecting the machine accuracy
- Number of measuring points between 4 and 8
- The start and end angles should cover the largest possible traverse range of the rotary axes.
- Determination of the rotary axis backlash
- Number of measuring points between 8 and 12
- The start and end angles should cover the largest possible traverse range of the rotary axes.

9.3.7 Notes on the accuracy

If required, deactivate the lock on the rotary axes for the duration of the calibration. Otherwise it may falsify the results of measurement. The machine manual provides further information.

The geometrical and positioning errors of the machine influence the measured values and therefore also the optimization of a rotary axis. For this reason there will always be a certain amount of error.
If there were no geometrical and positioning errors, any values measured by the cycle at any point on the machine at a certain time would be exactly reproducible. The greater the geometrical and positioning errors are, the greater is the dispersion of measured results when you perform measurements at different positions.
The dispersion output by the control in the measurement log is a measure of the machine's static tilting accuracy. However, the measuring circle radius and the number and position of measuring points have to be included in the evaluation of accuracy. One measuring point alone is not enough to calculate dispersion. For only one point, the result of the calculation is the spatial error of that measuring point. If several rotary axes are moved simultaneously, their error values are combined. In the worst case they are added together.
(i)

If your machine is equipped with a feedback-controlled spindle, you should activate angle tracking in the touch probe table (TRACK column). This generally increases the accuracy of measurements with a 3D touch probe.

9.3.8 Backlash

Backlash is a small amount of play between the rotary or angle encoder and the table that occurs when the traverse direction is reversed. If the rotary axes have backlash outside of the control loop, for example because the angle measurement is performed with the motor encoder, this can result in significant error during tilting. With input parameter Q432, you can activate backlash measurement. Enter an angle that the control uses as the traversing angle. The cycle will then carry out two measurements per rotary axis. If you take over the angle value 0 , the control will not measure any backlash.

Backlash measurement is not possible if an M function for positioning the rotary axes is set in the optional mStrobeRotAxPos machine parameter (no. 204803) or if the axis is a Hirth axis.

Programming and operating notes:

- The control does not perform an automatic backlash compensation.
- If the measuring circle radius is $<1 \mathrm{~mm}$, the control does not calculate the backlash. The larger the measuring circle radius, the more accurately the control can ascertain the rotary axis backlash.
Further information: "Log function", Page 353

9.3.9 Notes

Angle compensation is only possible with option 52 KinematicsComp.

NOT/CE
Danger of collision!
If you run this cycle, a basic rotation or 3D basic rotation must not be active. The
control will delete the values from the columns SPA, SPB and SPC of the preset
table as needed. After the cycle, you need to set a basic rotation or 3D basic
rotation again; otherwise, there is a danger of collision.
Deactivate the basic rotation before running the cycle.
Set the preset and the basic rotation again after optimization.

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- Before the beginning of the cycle, M128 or FUNCTION TCPM must be switched off.
- As with Cycles $\mathbf{4 5 1}$ and $\mathbf{4 5 2}$, Cycle $\mathbf{4 5 3}$ ends with active 3D-ROT in automatic mode, matching the position of the rotary axes.
- Before defining the cycle, you must set the preset to the center of the calibration sphere and activate it, or set input parameter Q431 to 1 or 3, respectively.
- For the positioning feed rate when moving to the probing height in the touch probe axis, the control uses the value from cycle parameter Q253 or the FMAX value from the touch probe table, whichever is smaller. The control always moves the rotary axes at positioning feed rate $\mathbf{Q 2 5 3}$, while probe monitoring is inactive.
- The control ignores cycle definition data that applies to inactive axes.
- A correction in the machine datum $(\mathbf{Q 4 0 6}=3)$ is only possible if superimposed rotary axes on the spindle head side or table side are measured.
- If you have activated presetting before the calibration (Q431 = 1/3), then move the touch probe to the set-up clearance ($\mathbf{Q} 320$ + SET_UP) to a position approximately above the center of the calibration sphere before the start of the cycle.
- Programming in inches: The control always records the log data and results of measurement in millimeters.
- After measuring the kinematics, you must re-determine the preset.

Notes about machine parameters

- If the optional machine parameter mStrobeRotAxPos (no. 204803) is not equal to -1 (M function positions the rotary axis), then start a measurement only if all rotary axes are at 0°.
- In every probing process the control first measures the radius of the calibration sphere. If the measured sphere radius differs from the entered sphere radius by more than the value you have defined in the optional machine parameter maxDevCalBall (no. 204802), the control displays an error message and ends the measurement.
- For angle optimization, the machine manufacturer must adapt the configuration correspondingly.

9.3.10 Cycle parameters

Help graphic	Parameter
Q406 Mode (0/1/2/3)?	
Define whether the control will check or optimize the active	
kinematics:	
O: Check the active machine kinematics. The control	
measures the kinematics in the rotary axes you have defined,	
but it does not make any changes to the active kinematics.	
The control displays the measurement results in a measur-	
ing log.	
1: Optimize the active machine kinematics: The control	
measures the kinematics in the rotary axes you have	
defined. It then optimizes the rotary axes positions of the	
active kinematics.	
2: Optimize the active machine kinematics: The control	
measures the kinematics in the rotary axes you have	
defined. It then optimizes angle and position errors.	
Software option 52, KinematicsComp, is required for	
compensation of angle errors.	
3: Optimize the active machine kinematics: The control	
measures the kinematics in the rotary axes you have	
defined. It then automatically compensates the machine	
datum. It then optimizes angle and position errors. Software	
option 52 , KinematicsComp, is required.	

Input: 0, 1, 2, 3
Q407 Radius of calib. sphere?
Enter the exact radius of the calibration sphere being used. Input: 0.0001... 99.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0... 99999.9999 or PREDEF

Q408 Retraction height?

$\mathbf{0}$: Do not move to any retraction height; the control moves to the next measuring position in the axis to be measured. Not allowed for Hirth axes! The control moves to the first measuring position in the sequence A , then B , then C .
$\mathbf{> 0}$: Retraction height in the untilted workpiece coordinate system to which the control positions the spindle axis before positioning a rotary axis. In addition, the control moves the touch probe in the working plane to the datum. Touch probe monitoring is not active in this mode. Define the positioning feed rate in parameter Q253. This value has an absolute effect.
Input: 0...99999.9999

Parameter

Q253 Feed rate for pre-positioning?

Define the traversing speed of the tool during pre-positioning in $\mathrm{mm} / \mathrm{min}$.
Input: 0...99999.9999 or FMAX, FAUTO, PREDEF
Q380 Ref. angle in ref. axis?
Enter the reference angle (basic rotation) for acquiring the measuring points in the active workpiece coordinate system. Defining a reference angle can considerably enlarge the measuring range of an axis. This value has an absolute effect.
Input: 0... 360

Q411 Starting angle in A axis?

Starting angle in the A axis at which the first measurement will be made. This value has an absolute effect.
Input: -359.9999...+359.9999
Q412 End angle in A axis?
End angle in the A axis at which the last measurement will be made. This value has an absolute effect.
Input: -359.9999...+359.9999
Q413 Angle of incidence in A axis?
Angle of incidence in the A axis at which the other rotary axes will be measured.
Input:-359.9999...+359.9999
Q414 No. of meas. points in A (0...12)?
Number of measuring points the control will use to measure the A axis.
If the input value $=0$, the control does not measure the respective axis.
Input: 0... 12
Q415 Starting angle in B axis?
Starting angle in the B axis at which the first measurement will be made. This value has an absolute effect.
Input: -359.9999...+359.9999

Q416 End angle in B axis?

End angle in the B axis at which the last measurement will be made. This value has an absolute effect.
Input: -359.9999...+359.9999
Q417 Angle of incidence in B axis?
Angle of incidence in the B axis at which the other rotary axes will be measured.
Input: -359.999...+360.000

Help graphic	Parameter
	Q418 No. of meas. points in B (0...12)?

Number of measuring points the control will use to measure the B axis. If the input value $=0$, the control does not measure the respective axis.
Input: 0... 12

Q419 Starting angle in C axis?

Starting angle in the C axis at which the first measurement will be made. This value has an absolute effect.
Input: -359.9999...+359.9999

Q420 End angle in C axis?

End angle in the C axis at which the last measurement will be made. This value has an absolute effect.
Input: -359.9999...+359.9999

Q421 Angle of incidence in C axis?

Angle of incidence in the C axis at which the other rotary axes will be measured.
Input: -359.9999...+359.9999

Q422 No. of meas. points in C ($0 . . .12$)?

Number of measuring points the control will use to measure the C axis. If the input value $=0$, the control does not measure the respective axis.
Input: $0 . . .12$

Q423 Number of probes?

Define the number of measuring points the control will use to measure the calibration sphere in the plane. Fewer measuring points increase speed, and more measuring points increase measurement precision.
Input: 3... 8

Q431 Preset ($0 / 1 / 2 / 3$)?

Define whether the control will automatically set the active preset at the center of the sphere:
$\mathbf{0}$: Do not set the preset automatically at the center of the sphere: Set the preset manually before the start of the cycle
1: Set the preset automatically at the center of the sphere before measurement (the active preset will be overwritten): Pre-position the touch probe manually above the calibration sphere before the start of the cycle
2: Set the preset automatically at the center of the sphere after measurement (the active preset will be overwritten): Set the preset manually before the start of the cycle
3: Set the preset at the center of the sphere before and after measurement (the active preset will be overwritten): Preposition the touch probe manually above the calibration sphere before the start of the cycle
Input: 0, 1, 2, 3

Help graphic	Parameter
	Q432 Angular range of backlash comp.?
	Define the traversing angle the control will use to measure
the rotary yais backlash. The traversing angle must be signif-	
icantly larget than the actual backlash of the rotary axes. If	
input value $=0$, the control does not measure the backlash.	
Input: $-\mathbf{- 3 . . . + 3}$	

Saving and checking the kinematics

11 TOOL CALL "TOUCH_PROBE" Z	
12 TCH PROBE 450 SAVE KINEMATICS ~	
Q410=+0	;MODE ~
Q409=+5	;MEMORY DESIGNATION
13 TCH PROBE 451 MEASURE KINEMATICS ~	
Q406 $=+0$;MODE ~
Q407 $=+12.5$;SPHERE RADIUS ~
$\mathrm{Q} 320=+0$;SET-UP CLEARANCE ~
Q408=+0	;RETR. HEIGHT ~
Q253 $=+750$;F PRE-POSITIONING ~
Q380=+0	;REFERENCE ANGLE ~
Q411 $=-90$;START ANGLE A AXIS ~
Q412=+90	;ENDWINKEL A-ACHSE ~
Q413 $=+0$;INCID. ANGLE A AXIS ~
Q414=+0	;MEAS. POINTS A AXIS ~
Q415 $=-90$;START ANGLE B AXIS ~
Q416=+90	;END ANGLE B AXIS ~
Q417 $=+0$;INCID. ANGLE B AXIS ~
Q418=+2	;MEAS. POINTS B AXIS ~
Q419 $=-90$;START ANGLE C AXIS ~
$\mathrm{Q} 420=+90$;END ANGLE C AXIS ~
Q421 $=+0$;INCID. ANGLE C AXIS ~
Q422=+2	;MEAS. POINTS C AXIS ~
Q423=+4	;NO. OF PROBE POINTS ~
Q431 $=+0$;PRESET ~
Q432=+0	;BACKLASH, ANG. RANGE

9.3.11 Various modes (Q406)

Test mode Q406 $=0$

- The control measures the rotary axes in the positions defined and calculates the static accuracy of the tilting transformation.
- The control records the results of a possible position optimization but does not make any adjustments.
"Optimize position of rotary axes" mode Q406 = 1
- The control measures the rotary axes in the positions defined and calculates the static accuracy of the tilting transformation.
- During this, the control tries to change the position of the rotary axis in the kinematics model in order to achieve higher accuracy.
- The machine data are adjusted automatically.

Position and Angle Optimization mode Q406 = 2

- The control measures the rotary axes in the positions defined and calculates the static accuracy of the tilting transformation.
- First the control tries to optimize the angular orientation of the rotary axis by means of compensation (option 52, KinematicsComp)
- After angle optimization, the control will perform a position optimization. No additional measurements are necessary for this; the control calculates the optimization of the position automatically.

Depending on the machine kinematics for correctly determining the angles, HEIDENHAIN recommends performing the measurement once with an inclination angle of 0°.

"Optimize machine datum, position, and angle" mode (Q406 = 3)

- The control measures the rotary axes in the positions defined and calculates the static accuracy of the tilting transformation.
- The control automatically tries to optimize the datum (KinematicsComp, option 52). In order to use a machine datum to compensate for the angular position of a rotary axis, the rotary axis to be compensated must be nearer to the machine base in the machine kinematics than the measured rotary axis.
- The control then tries to optimize the angular orientation of the rotary axis by means of compensation (option 52, KinematicsComp)
- After angle optimization, the control will perform a position optimization. No additional measurements are necessary for this; the control calculates the optimization of the position automatically.
(1)
- For correct determination of the angular position errors, HEIDENHAIN recommends setting the affected rotary axis to an inclination angle of 0° for this measurement.
- After correcting a machine datum, the control tries to reduce the compensation of the associated angular position error (locErrA/locErrB/locErrC) of the measured rotary axis.

Position optimization of the rotary axes with preceding, automatic presetting and measurement of the rotary axis backlash

11 TOOL CALL "TOUCH_PROBE" Z	
12 TCH PROBE 451 MEASURE KINEMATICS ~	
Q406=+1	;MODE ~
Q407=+12.5	;SPHERE RADIUS ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q408=+0	;RETR. HEIGHT ~
Q253 $=+750$;F PRE-POSITIONING ~
Q380 $=+0$;REFERENCE ANGLE ~
Q411 $=-90$;START ANGLE A AXIS ~
Q412 $=+90$;END ANGLE A AXIS ~
Q413 $=+0$;INCID. ANGLE A AXIS ~
Q414=+0	;MEAS. POINTS A AXIS ~
Q415 $=-90$;START ANGLE B AXIS ~
Q416=+90	;END ANGLE B AXIS ~
Q417=+0	;INCID. ANGLE B AXIS ~
Q418=+4	;MEAS. POINTS B AXIS ~
Q419 $=+90$;START ANGLE C AXIS ~
$\mathrm{Q} 420=+270$;END ANGLE C AXIS ~
Q421 $=+0$;INCID. ANGLE C AXIS ~
Q422=+3	;MEAS. POINTS C AXIS ~
Q423=+3	;NO. OF PROBE POINTS ~
Q431 $=+1$;PRESET ~
Q432 $=+0.5$;BACKLASH, ANG. RANGE

9.3.12 Log function

After running Cycle 451, the control creates a \log (TCHPRAUTO.html) and saves it in the folder that also contains the associated NC program. This log contains the following data:

- Creation date and time of the log
- Path of the NC program from which the cycle was run
- Tool name
- Active kinematics
- Mode used (0=Check/1=Optimize position/2=Optimize pose/3=Optimize machine datum and pose)
- Inclination angles
- For each measured rotary axis:
- Starting angle
- End angle
- Number of measuring points
- Measuring circle radius
- Averaged backlash, if $\mathbf{Q 4 2 3 > 0}$
- Positions of the axes
- Angular position errors (only with KinematicsComp, option 52)
- Standard deviation (scatter)
- Maximum deviation
- Angular error
- Compensation values in all axes (preset shift)
- Position before optimization of the rotary axes checked (relative to the beginning of the kinematic transformation chain, usually the spindle nose)
- Position after optimization of the rotary axes checked (relative to the beginning of the kinematic transformation chain, usually the spindle nose)
- Averaged positioning error and standard deviation of the positioning errors to 0
- SVG files with graphs: measured and optimized errors of individual measurement positions.
- Red curve: measured positions
- Green curve: optimized values after cycle has run
- Designation of the graph: axis designation depends on the rotary axis, e.g.: EYC = component error in Y of axis C.
- X axis of the graph: rotary axis position in degrees
- Y axis of the graph: position deviations in mm

Sample measurement: EYC component error in Y of axis C

9.4 Cycle 452 PRESET COMPENSATION (option 48)

ISO programming

G452

Application

Refer to your machine manual.
This function must be enabled and adapted by the machine manufacturer.

Touch probe cycle 452 optimizes the kinematic transformation chain of your machine (see "Cycle 451 MEASURE KINEMATICS (option 48)", Page 339). Then the control corrects the workpiece coordinate system in the kinematics model in such a way that the current preset is at the center of the calibration sphere after optimization.

Cycle sequence

i
Position the calibration sphere on the machine table so that there can be no collisions during the measuring process.

This cycle enables you, for example, to adjust different interchangeable heads so that the workpiece preset applies for all heads.
1 Clamp the calibration sphere
2 Measure the complete reference head with Cycle 451, and then use Cycle 451 to set the preset in the center of the sphere.
3 Insert the second head
4 Use Cycle 452 to measure the interchangeable head up to the point where the head is changed.
5 Use Cycle 452 to adjust other interchangeable heads to the reference head If it is possible to leave the calibration sphere clamped to the machine table during machining, you can compensate for machine drift, for example. This procedure is also possible on a machine without rotary axes.
1 Clamp the calibration sphere and check for potential collisions.
2 Set the preset in the calibration sphere.
3 Set the preset on the workpiece, and start machining the workpiece.
4 Use Cycle 452 for preset compensation at regular intervals. The control measures the drift of the axes involved and compensates it in the kinematics description.

Q parameter number	Meaning
Q141	Standard deviation measured in the A axis $(-1$ if axis was not measured)
Q142	Standard deviation measured in the B axis $(-1$ if axis was not measured $)$
Q143	Standard deviation measured in the C axis $(-1$ if axis was not measured $)$
Q144	Optimized standard deviation in the A axis $(-1$ if axis was not measured $)$
Q145	Optimized standard deviation in the B axis $(-1$ if axis was not measured $)$
Q146	Optimized standard deviation in the C axis $(-1$ if axis was not measured $)$
Q147	Offset error in X direction, for manual transfer to the corre- sponding machine parameter
Q148	Offset error in Y direction, for manual transfer to the corre- sponding machine parameter
Q149	Offset error in Z direction, for manual transfer to the corre- sponding machine parameter

Notes

In order to be able to perform a preset compensation, the kinematics must be specially prepared. The machine manual provides further information.

NOTICE

Danger of collision!

If you run this cycle, a basic rotation or 3D basic rotation must not be active. The control will delete the values from the columns SPA, SPB and SPC of the preset table as needed. After the cycle, you need to set a basic rotation or 3D basic rotation again; otherwise, there is a danger of collision.

- Deactivate the basic rotation before running the cycle.
- Set the preset and the basic rotation again after optimization.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- Before the beginning of the cycle, M128 or FUNCTION TCPM must be switched off.
- As with Cycles $\mathbf{4 5 1}$ and $\mathbf{4 5 2}$, Cycle $\mathbf{4 5 3}$ ends with active 3D-ROT in automatic mode, matching the position of the rotary axes.
- Ensure that all functions for tilting the working plane are reset.
- Before defining the cycle, you must set the preset at the center of the calibration sphere and activate it.
- For rotary axes without separate position encoders, select the measuring points in such a way that you have to traverse an angle of 1° to the limit switch. The control needs this traverse for internal backlash compensation.
- For the positioning feed rate when moving to the probing height in the touch probe axis, the control uses the value from cycle parameter Q253 or the FMAX value from the touch probe table, whichever is smaller. The control always moves the rotary axes at positioning feed rate Q253, while touch probe monitoring is inactive.
- Programming in inches: The control always records the log data and results of measurement in millimeters.
(i)
- If you interrupt the cycle during the measurement, the kinematic data might no longer be in the original condition. Save the active kinematic configuration before an optimization with Cycle 450, so that in case of a failure the most recently active kinematic configuration can be restored.

Notes about machine parameters

- In the machine parameter maxModification (no. 204801), the machine manufacturer defines the permissible limit value for modifications of a transformation. If the kinematics data determined exceed the permissible limit value, the control displays a warning. Then you have to confirm acceptance of the determined values by pressing NC Start.
- In the machine parameter maxDevCalBall (no. 204802), the machine manufacturer defines the maximum deviation of the calibration sphere radius. In every probing process the control first measures the radius of the calibration sphere. If the measured sphere radius differs from the entered sphere radius by more than the value you have defined in the machine parameter maxDevCalBall (no. 204802), the control displays an error message and ends the measurement.

9.4.1 Cycle parameters

Help graphic	Parameter
	Q407 Radius of calib. sphere?
	Enter the exact radius of the calibration sphere being used.
	Input: 0.0001...99.9999
	Q320 Set-up clearance?
	Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
	Input: 0...99999.9999 or PREDEF
	Q408 Retraction height?
	0: Do not move to any retraction height; the control moves to the next measuring position in the axis to be measured. Not allowed for Hirth axes! The control moves to the first measuring position in the sequence A , then B , then C .
	$>\mathbf{0}$: Retraction height in the untilted workpiece coordinate system to which the control positions the spindle axis before positioning a rotary axis. In addition, the control moves the touch probe in the working plane to the datum. Touch probe monitoring is not active in this mode. Define the positioning feed rate in parameter Q253. This value has an absolute effect.
	Input: 0...99999.9999

Q253 Feed rate for pre-positioning?
Define the traversing speed of the tool during pre-positioning in $\mathrm{mm} / \mathrm{min}$.
Input: 0...99999.9999 or FMAX, FAUTO, PREDEF

Q380 Ref. angle in ref. axis?

Enter the reference angle (basic rotation) for acquiring the measuring points in the active workpiece coordinate system. Defining a reference angle can considerably enlarge the measuring range of an axis. This value has an absolute effect.
Input: 0... 360

Q411 Starting angle in A axis?

Starting angle in the A axis at which the first measurement will be made. This value has an absolute effect.
Input: -359.9999...+359.9999

Q412 End angle in A axis?

End angle in the A axis at which the last measurement will be made. This value has an absolute effect.
Input: -359.9999...+359.9999

Q413 Angle of incidence in A axis?

Angle of incidence in the A axis at which the other rotary axes will be measured.
Input: -359.9999...+359.9999

Parameter

Q414 No. of meas. points in A (0...12)?
Number of measuring points the control will use to measure the A axis.
If the input value $=0$, the control does not measure the respective axis.
Input: 0... 12
Q415 Starting angle in B axis?
Starting angle in the B axis at which the first measurement will be made. This value has an absolute effect.
Input:-359.9999...+359.9999
Q416 End angle in B axis?
End angle in the B axis at which the last measurement will be made. This value has an absolute effect.
Input: - $359.9999 \ldots+359.9999$
Q417 Angle of incidence in B axis?
Angle of incidence in the B axis at which the other rotary axes will be measured.
Input: -359.999...+360.000
Q418 No. of meas. points in B (0...12)?
Number of measuring points the control will use to measure the B axis. If the input value $=0$, the control does not measure the respective axis.
Input: 0... 12

Q419 Starting angle in C axis?

Starting angle in the C axis at which the first measurement will be made. This value has an absolute effect.
Input: -359.9999...+359.9999

Q420 End angle in C axis?

End angle in the C axis at which the last measurement will be made. This value has an absolute effect.
Input: -359.9999...+359.9999

Q421 Angle of incidence in C axis?

Angle of incidence in the C axis at which the other rotary axes will be measured.
Input: -359.9999...+359.9999
Q422 No. of meas. points in C (0...12)?
Number of measuring points the control will use to measure the C axis. If the input value $=0$, the control does not measure the respective axis.
Input: $0 . . .12$

Q423 Number of probes?

Define the number of measuring points the control will use to measure the calibration sphere in the plane. Fewer measuring points increase speed, and more measuring points increase measurement precision.
Input: 3... 8

Help graphic	Parameter
	Q432 Angular range of backlash comp.?

Define the traversing angle the control will use to measure the rotary axis backlash. The traversing angle must be significantly larger than the actual backlash of the rotary axes. If input value $=0$, the control does not measure the backlash. Input: -3...+3

Calibration program

11 TOOL CALL "TOUCH_PROBE" Z	
12 TCH PROBE 450 SAVE KINEMATICS ~	
Q410=+0	;MODE ~
Q409=+5	;MEMORY DESIGNATION
13 TCH PROBE 452 PRESET COMPENSATION ~	
Q407=+12.5	;SPHERE RADIUS ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q408=+0	;RETR. HEIGHT ~
Q253=+750	;F PRE-POSITIONING ~
Q380=+0	;REFERENCE ANGLE ~
Q411 $=-90$;START ANGLE A AXIS ~
Q412=+90	;END ANGLE A AXIS ~
Q413 $=+0$;INCID. ANGLE A AXIS ~
Q414 $=+0$;MEAS. POINTS A AXIS ~
Q415=-90	;START ANGLE B AXIS ~
Q416=+90	;END ANGLE B AXIS ~
Q417 $=+0$;INCID. ANGLE B AXIS ~
Q418=+2	;MEAS. POINTS B AXIS ~
Q419 $=-90$;START ANGLE C AXIS ~
$\mathrm{Q} 420=+90$;END ANGLE C AXIS ~
Q421 $=+0$;INCID. ANGLE C AXIS ~
Q422=+2	;MEAS. POINTS C AXIS ~
Q423=+4	;NO. OF PROBE POINTS ~
Q432=+0	;BACKLASH, ANG. RANGE

9.4.2 Adjustment of interchangeable heads

The head change function can vary depending on the individual machine tool. Refer to your machine manual.

- Load the second interchangeable head.
- Insert the touch probe
- Measure the interchangeable head with Cycle 452
- Measure only the axes that have actually been changed (in this example: only the A axis; the C axis is hidden with $\mathbf{Q 4 2 2}$)
- The preset and the position of the calibration sphere must not be changed during the entire process.
- All other interchangeable heads can be adjusted in the same way

Adjusting an interchangeable head

11 TOOL CALL "TOUCH_PROBE" Z	
12 TCH PROBE 452 PRESET COMPENSATION ~	
Q407=+12.5	;SPHERE RADIUS ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q408 $=+0$;RETR. HEIGHT ~
Q253 $=+2000$;F PRE-POSITIONING ~
Q380 $=+45$;REFERENCE ANGLE ~
Q411 $=-90$;START ANGLE A AXIS ~
Q412 $=+90$;END ANGLE A AXIS ~
Q413=+45	;INCID. ANGLE A AXIS ~
Q414=+4	;MEAS. POINTS A AXIS ~
Q415 $=-90$;START ANGLE B AXIS ~
Q416=+90	;END ANGLE B AXIS ~
Q417 $=+0$;INCID. ANGLE B AXIS ~
Q418=+2	;MEAS. POINTS B AXIS ~
Q419 $=+90$;START ANGLE C AXIS ~
Q420 $=+270$;END ANGLE C AXIS ~
Q421 $=+0$;INCID. ANGLE C AXIS ~
Q422=+0	;MEAS. POINTS C AXIS ~
Q423=+4	;NO. OF PROBE POINTS ~
Q432=+0	;BACKLASH, ANG. RANGE

The goal of this procedure is that the workpiece preset remains unchanged after changing rotary axes (head change).
In the following example, the adjustment of a fork head with A and C axes is described. The A axis is changed, whereas the C axis continues being a part of the basic configuration.

- Insert the interchangeable head that will be used as a reference head.
- Clamp the calibration sphere
- Insert the touch probe
- Use Cycle 451 to measure the complete kinematics, including the reference head
- Define the preset (using Q431 = 2 or 3 in Cycle 451) after measuring the reference head

Measuring a reference head

11 TOOL CALL "TOUCH_PROBE" Z	
12 TCH PROBE 451 MEASURE KINEMATICS ~	
Q406=+1	;MODE ~
Q407=+12.5	;SPHERE RADIUS ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q408=+0	;RETR. HEIGHT ~
Q253 $=+2000$;F PRE-POSITIONING ~
Q380 $=+45$;REFERENCE ANGLE ~
Q411 $=-90$;START ANGLE A AXIS ~
Q412=+90	;END ANGLE A AXIS ~
Q413=+45	;INCID. ANGLE A AXIS ~
Q414=+4	;MEAS. POINTS A AXIS ~
Q415=-90	;START ANGLE B AXIS ~
Q416=+90	;END ANGLE B AXIS ~
Q417 $=+0$;INCID. ANGLE B AXIS ~
Q418=+2	;MEAS. POINTS B AXIS ~
Q419 $=+90$;START ANGLE C AXIS ~
Q420 $=+270$;END ANGLE C AXIS ~
Q421 $=+0$;INCID. ANGLE C AXIS ~
Q422=+3	;MEAS. POINTS C AXIS ~
Q423=+4	;NO. OF PROBE POINTS ~
Q431 $=+3$;PRESET ~
Q432=+0	;BACKLASH, ANG. RANGE

9.4.3 Drift compensation

This procedure can also be performed on machines without rotary axes.

During machining, various machine components are subject to drift due to varying ambient conditions. If the drift remains sufficiently constant over the range of traverse, and if the calibration sphere can be left on the machine table during machining, the drift can be measured and compensated with Cycle 452.

- Clamp the calibration sphere
- Insert the touch probe
- Measure the complete kinematics with Cycle 451 before starting the machining process
- Define the preset (using Q432 = 2 or 3 in Cycle 451) after measuring the kinematics
- Then set the presets on your workpiece and start the machining process.

Reference measurement for drift compensation

- Measure the drift of the axes at regular intervals.
- Insert the touch probe
- Activate the preset in the calibration sphere.
- Use Cycle 452 to measure the kinematics.
- The preset and the position of the calibration sphere must not be changed during the entire process.

Drift compensation

11 TOOL CALL "TOUCH_PROBE" Z	
13 TCH PROBE 452 PRESET COMPENSATION ~	
Q407=+12.5	;SPHERE RADIUS ~
Q320 $=+0$;SET-UP CLEARANCE ~
Q408=+0	;RETR. HEIGHT ~
Q253 $=+9999$;F PRE-POSITIONING ~
Q380 $=+45$;REFERENCE ANGLE ~
Q411 $=-90$;START ANGLE A AXIS ~
Q412 $=+90$;END ANGLE A AXIS ~
Q413 $=+45$;INCID. ANGLE A AXIS ~
Q414=+4	;MEAS. POINTS A AXIS ~
Q415=-90	;START ANGLE B AXIS ~
Q416=+90	;END ANGLE B AXIS ~
Q417=+0	;INCID. ANGLE B AXIS ~
Q418=+2	;MEAS. POINTS B AXIS ~
Q419 $=+90$;START ANGLE C AXIS ~
Q420 $=+270$;END ANGLE C AXIS ~
Q421 $=+0$;INCID. ANGLE C AXIS ~
Q422=+3	;MEAS. POINTS C AXIS ~
Q423=+3	;NO. OF PROBE POINTS ~
Q432=+0	;BACKLASH, ANG. RANGE

9.4.4 Log function

After running Cycle 452, the control creates a log (TCHPRAUTO.htmI) and saves it in the folder that also contains the associated NC program. This log contains the following data:

- Creation date and time of the log
- Path of the NC program from which the cycle was run
- Tool name
- Active kinematics
- Mode used
- Inclination angles
- For each measured rotary axis:
- Starting angle
- End angle
- Number of measuring points
- Measuring circle radius
- Averaged backlash, if Q423>0
- Positions of the axes
- Standard deviation (scatter)
- Maximum deviation
- Angular error
- Compensation values in all axes (preset shift)
- Position before preset compensation of the rotary axes checked (relative to the beginning of the kinematic transformation chain, usually the spindle nose)
- Position after preset compensation of the rotary axes checked (relative to the beginning of the kinematic transformation chain, usually the spindle nose)
- Averaged positioning error
- SVG files with graphs: measured and optimized errors of individual measurement positions.
- Red curve: measured positions
- Green curve: optimized values
- Designation of the graph: axis designation depends on the rotary axis, e.g.: EYC = deviations of the Y axis in dependency of the C axis.
- X axis of the graph: rotary axis position in degrees
- Y axis of the graph: position deviations in mm

[^1]
9.5 Cycle 453 KINEMATICS GRID

ISO programming G453

Application

Refer to your machine manual.
KinematicsOpt (software option 48) is required.
This function must be enabled and adapted by the machine manufacturer.
To use this cycle, your machine manufacturer needs to create and configure a compensation table (*.kco) first and enter some more settings.

Even if your machine was already optimized regarding positioning errors (e.g. via Cycle 451), residual errors at the Tool Center Point (TCP) during tilting of the rotary axes may remain. These can result, for example, from component errors (e.g. a bearing error) with head rotation axes.
Cycle 453 KINEMATICS GRID enables errors in swivel heads to be detected and compensated for in accordance with the rotary axis positions. If you want to write compensation values with this cycle, then you need KinematicsComp (option 52). With this cycle and using a 3D TS touch probe, you measure a HEIDENHAIN calibration sphere that you have attached to the machine table. The cycle then moves the touch probe automatically to positions in a grid-line arrangement around the calibration sphere. The machine manufacturer defines these swivel axis positions. You can arrange the positions in up to three dimensions. (Each dimension is a rotary axis.) After the probing operation on the sphere, compensation of the errors can be performed using a multi-dimensional table. The machine manufacturer defines this compensation table (*.kco) and specifies its storage location.
When using Cycle 453, run it at different positions in the workspace. This allows you to check immediately if compensation with Cycle 453 has the desired positive effect on the machine's accuracy. Only when the desired improvements are achieved with the same compensation values at several positions is such a type of compensation suitable for the respective machine. If this is not the case, then the errors are to be sought outside the rotary axes.
Perform the measurement with Cycle 453 in an optimized condition regarding the rotary axis positioning errors. For this purpose, use e.g. Cycle 451 beforehand.
(i) HEIDENHAIN recommends using the calibration spheres KKH 250 (ID number 655475-01) or KKH $\mathbf{1 0 0}$ (ID number 655475-02), which are particularly rigid and are designed especially for machine calibration. Please contact HEIDENHAIN if you have any questions in this regard.

The control then optimizes the accuracy of your machine. For this purpose, it automatically saves the compensation values resulting from a measurement in a compensation table (${ }^{*}$.kco). (This applies to mode Q406=1.)

Cycle sequence

1 Clamp the calibration sphere and check for potential collisions.
2 In Manual mode of operation, set the preset to the center of the sphere or, if you defined Q431=1 or Q431=3: Manually position the touch probe above the calibration sphere in the touch probe axis and at the center of the sphere in the working plane.
3 Select one of the Program Run operating modes and start the NC program
4 The cycle is executed in accordance with the setting in Q406 (-1=Delete mode / $0=$ Test mode / 1=Compensate mode)

During presetting, the programmed radius of the calibration sphere will only be monitored for the second measurement. The reason is that if prepositioning with respect to the calibration sphere is inaccurate and you then start presetting, the calibration sphere will be probed twice.

9.5.1 Various modes (Q406)
 Deletion mode Q406 = -1 (KinematicsComp, option 52)

- The axes are not moved
- The control writes all values to the compensation table (*.kco), setting them to " 0 ". The result is that no further compensations will be effective for the currently selected kinematics.

Test mode Q406 = 0

- The control probes the calibration sphere.
- The results are saved to a log in html format that is stored in the directory as the current NC program
Compensation mode Q406 = 1 (KinematicsComp, option 52)
- The control probes the calibration sphere.
- The control writes the deviations to the compensation table (*.kco). The table is updated and the compensation settings are immediately effective.
- The results are saved to a log in html format that is stored in the directory as the current NC program

9.5.2 Choice of the calibration sphere position on the machine table

In principle, you can fix the calibration sphere to any accessible position on the machine table and also on fixtures or workpieces. It is recommended to clamp the calibration sphere as closely as possible to the position intended for subsequent machining.

Position the calibration sphere on the machine table so that there can be no collisions during the measuring process.

9.5.3 Notes

> KinematicsOpt (software option 48) is required. KinematicsComp (software option 52) is required.
> This function must be enabled and adapted by the machine manufacturer.
> Your machine manufacturer defines the storage location of the compensation table (*.kco).

NOTICE

Danger of collision!

If you run this cycle, a basic rotation or 3D basic rotation must not be active. The control will delete the values from the columns SPA, SPB and SPC of the preset table as needed. After the cycle, you need to set a basic rotation or 3D basic rotation again; otherwise, there is a danger of collision.

- Deactivate the basic rotation before running the cycle.
- Set the preset and the basic rotation again after optimization.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- Before the beginning of the cycle, M128 or FUNCTION TCPM must be switched off.
- As with Cycles $\mathbf{4 5 1}$ and 452, Cycle 453 ends with active 3D-ROT in automatic mode, matching the position of the rotary axes.
- Before defining the cycle, you must set the preset to the center of the calibration sphere and activate it, or you set input parameter Q431 to 1 or 3 , respectively.
- For the positioning feed rate when moving to the probing height in the touch probe axis, the control uses the value from cycle parameter Q253 or the FMAX value from the touch probe table, whichever is smaller. The control always moves the rotary axes at positioning feed rate Q253, while probe monitoring is inactive.
- Programming in inches: The control always records the log data and results of measurement in millimeters.
- If you have activated preset setting before the calibration ($\mathbf{Q 4 3 1}=1 / 3)$, then move the touch probe by the amount of the set-up clearance (Q320 + SET_UP) to a position approximately above the center of the calibration sphere before the start of the cycle.

> If your machine is equipped with a feedback-controlled spindle, you should activate angle tracking in the touch probe table (TRACK column). This generally increases the accuracy of measurements with a 3D touch probe.

Notes about machine parameters

- In the machine parameter mStrobeRotAxPos (no. 204803), the machine manufacturer defines the maximum permissible modification of a transformation. If the value is not equal to -1 (M function positions the rotary axis), then start a measurement only if all rotary axes are at 0°.
- In the machine parameter maxDevCalBall (no. 204802), the machine manufacturer defines the maximum deviation of the calibration sphere radius. In every probing process the control first measures the radius of the calibration sphere. If the measured sphere radius differs from the entered sphere radius by more than the value you have defined in the machine parameter maxDevCalBall (no. 204802), the control displays an error message and ends the measurement.

9.5.4 Cycle parameters

Help graphic	Parameter
	Q406 Mode (-1/0/+1)
	Define whether the control will write a value of 0 to the values of the compensation table (*.kco), will check the currently existing deviations, or will perform a compensation. A log file (*.html) is created.
	-1: Delete values in the compensation table (*.kco). The compensation values for TCP positioning errors are set to 0 in the compensation table (*.kco). The control will not perform any probing. No results will be output to the log (*.html). (requires KinematicsComp, option 52)
	$\mathbf{0}$: Check TCP positioning errors. The control measures the TCP positioning errors based on the rotary axis positions but does not write values to the compensation table (*.kco). The control displays the standard and maximum deviation in a $\log (* . h t m l)$.
	1: Compensate for TCP positioning errors. The control measures the TCP positioning errors based on the rotary axis positions and writes the deviations to the compensation table (*.kco). The compensations are then immediately effective. The control displays the standard and maximum deviation in a \log (*.html). (requires KinematicsComp, option 52)
	Input: -1, 0, +1

Q407 Radius of calib. sphere?
Enter the exact radius of the calibration sphere being used. Input: 0.0001...99.9999

Q320 Set-up clearance?

Additional distance between touch point and ball tip. Q320 is active in addition to the SET_UP column in the touch probe table. This value has an incremental effect.
Input: 0...99999.9999 or PREDEF

Q408 Retraction height?

$\mathbf{0}$: Do not move to any retraction height; the control moves to the next measuring position in the axis to be measured. Not allowed for Hirth axes! The control moves to the first measuring position in the sequence A, then B, then C.
> 0: Retraction height in the untilted workpiece coordinate system to which the control positions the spindle axis before positioning a rotary axis. In addition, the control moves the touch probe in the working plane to the datum. Touch probe monitoring is not active in this mode. Define the positioning feed rate in parameter Q253. This value has an absolute effect.
Input: 0... 99999.9999

Q253 Feed rate for pre-positioning?

Define the traversing speed of the tool during pre-positioning in mm/min.
Input: 0...99999.9999 or FMAX, FAUTO, PREDEF

Help graphic

Parameter

Q380 Ref. angle in ref. axis?
Enter the reference angle (basic rotation) for acquiring the measuring points in the active workpiece coordinate system. Defining a reference angle can considerably enlarge the measuring range of an axis. This value has an absolute effect.
Input: 0... 360

Q423 Number of probes?

Define the number of measuring points the control will use to measure the calibration sphere in the plane. Fewer measuring points increase speed, and more measuring points increase measurement precision.
Input: 3... 8

Q431 Preset ($0 / 1 / 2 / 3$)?

Define whether the control will automatically set the active preset at the center of the sphere:
$\mathbf{0}$: Do not set the preset automatically at the center of the sphere: Set the preset manually before the start of the cycle
1: Set the preset automatically at the center of the sphere before measurement (the active preset will be overwritten): Pre-position the touch probe manually above the calibration sphere before the start of the cycle
2: Set the preset automatically at the center of the sphere after measurement (the active preset will be overwritten): Set the preset manually before the start of the cycle
3: Set the preset at the center of the sphere before and after measurement (the active preset will be overwritten): Preposition the touch probe manually above the calibration sphere before the start of the cycle
Input: 0, 1, 2, 3

Probing with Cycle 453

11 TCH PROBE 453 KINEMATICS GRID \sim	
Q406 $=+0$;MODE \sim
Q407 $=+\mathbf{1 2 . 5}$;SPHERE RADIUS \sim
Q320 $=+0$;SET-UP CLEARANCE \sim
Q408 $=+0$;RETR. HEIGHT \sim
Q253 $=+750$;FPRE-POSITIONING \sim
Q380 $=+0$;REFERENCE ANGLE \sim
Q423 $=+4$;NO. OF PROBE POINTS \sim
Q431 $=+0$;PRESET

9.5.5 Log function

After running Cycle 453, the control creates a log (TCHPRAUTO.htmI) and saves it in the folder where the current NC program resides. It contains the following data:

- Date and time of protocol creation
- Path of the NC program from which the cycle was run
- Number and name of the currently active tool
- Mode
- Measured data: Standard deviation and maximum deviation
- Information at which position in degrees $\left({ }^{\circ}\right)$ the maximum deviation occurred
- Number of measuring positions

Touch Probe Cycles: Automatic Tool Measurement

10.1 Fundamentals

10.1.1 Overview

> Refer to your machine manual.
> Some cycles and functions may not be provided on your machine.
> Option 17 is required.
> The control must be specifically prepared by the machine manufacturer for the use of a touch probe.
> HEIDENHAIN guarantees the proper operation of the touch probe cycles only in conjunction with HEIDENHAIN touch probes.

NOTICE
 Danger of collision!
 When running touch probe cycles 400 to 499, all cycles for coordinate transformation must be inactive. There is a danger of collision!
 The following cycles must not be activated before a touch probe cycle: Cycle $\mathbf{7}$ DATUM SHIFT, Cycle 8 MIRRORING, Cycle 10 ROTATION, Cycle 11 SCALING FACTOR, and Cycle 26 AXIS-SPECIFIC SCALING.

- Reset any coordinate transformations beforehand.

In conjunction with the control's tool measurement cycles, the tool touch probe enables you to measure tools automatically: the compensation values for tool length and radius are stored in the tool table and are accounted for at the end of the touch probe cycle. The following types of tool measurement are provided:

- Measurement of a stationary tool
- Measurement of a rotating tool
- Measurement of individual teeth

Cycle		Call	Further information
480	CALIBRATE TT	DEF-active	Page 378
30	- Calibrating the tool touch probe		
481	CAL. TOOL LENGTH	DEF-active	Page 381
31	- Measuring the tool length		
482	CAL. TOOL RADIUS	DEF-active	Page 385
32	- Measuring the tool radius		
483	MEASURE TOOL	DEF-active	Page 388
33	- Measuring the tool length and radius		
484	CALIBRATE IR TT	DEF-active	Page 392
	- Calibrating the tool touch probe (e.g., infrared tool touch probe)		
485	MEASURE LATHE TOOL (option 50)	DEF-active	Page 396
	- Measurement of turning tools		

10.1.2 Differences between Cycles $\mathbf{3 0}$ to $\mathbf{3 3}$ and Cycles $\mathbf{4 8 0}$ to $\mathbf{4 8 3}$

The features and the operating sequences are absolutely identical. There are only the following differences between Cycles $\mathbf{3 0}$ to 33 and Cycles 480 to 483:

- Cycles $\mathbf{4 8 0}$ to $\mathbf{4 8 3}$ are also available as $\mathbf{G 4 8 0}$ to $\mathbf{G 4 8 3}$ for ISO programming
- Instead of a selectable parameter for the status of the measurement, Cycles $\mathbf{4 8 1}$ to 483 use the fixed parameter Q199.

10.1.3 Setting machine parameters

The touch probe cycles $\mathbf{4 8 0}, \mathbf{4 8 1}, 482,483,484$ can be hidden with the optional hideMeasureTT machine parameter (no. 128901).

Programming and operating notes:

- Before you start working with the touch probe cycles, check all machine parameters defined in ProbeSettings > CfgTT (no. 122700) and CfgTTRoundStylus (no. 114200) or CfgTTRectStylus (no. 114300).
- When measuring a stationary tool, the control will use the feed rate for probing defined in the probingFeed machine parameter (no. 122709).

When measuring a rotating tool, the control automatically calculates the spindle speed and feed rate for probing.
The spindle speed is calculated as follows:
$\mathrm{n}=$ maxPeriphSpeedMeas $/(\mathrm{r} \cdot 0.0063)$ where

$\mathbf{n}:$	Spindle speed [rpm]
maxPeriphSpeedMeas:	Maximum permissible cutting speed in $\mathrm{m} / \mathrm{min}$
$\mathbf{r}:$	Active tool radius $[\mathrm{mm}]$

The probing feed rate is calculated as follows:
$v=$ measuring tolerance $\cdot n$ with
v :
Measuring tolerance
n:
Probing feed rate [mm/min]
Measuring tolerance [mm], depending on maxPeriphSpeedMeas
Shaft speed [rpm]
probingFeedCalc (no. 122710) determines the calculation of the probing feed rate: probingFeedCalc (no. 122710) = ConstantTolerance:
The measuring tolerance remains constant-regardless of the tool radius. With very large tools, however, the feed rate for probing is reduced to zero. The lower you set the maximum permissible rotational speed maxPeriphSpeedMeas (no. 122712) and the permissible tolerance measureTolerance1 (no. 122715), the sooner you will encounter this effect.
probingFeedCalc (no. 122710) = VariableTolerance
The measuring tolerance is adjusted relative to the size of the tool radius. This ensures a sufficient feed rate for probing even with large tool radii. The control adjusts the measuring tolerance according to the following table:

Tool radius	Measuring tolerance
Up to 30 mm	measureTolerance1
30 to 60 mm	$2 \cdot$ measureTolerance1
60 to 90 mm	$3 \cdot$ measureTolerance1
90 to 120 mm	$4 \cdot$ measureTolerance1
probingFeedCalc (No. 122710) = ConstantFeed:	
The measuring feed rate remains constant; the measuring error, however, rises	
linearly with the increase in tool radius:	
Measuring tolerance = $(r \cdot$ measureTolerance1 $) / 5$ mm) where	
r:	Active tool radius [mm]
measureTolerance1:	Maximum permissible error of measure-

10.1.4 Entries in the tool table for milling and turning tools

Abbr.	Inputs	Dialog
CUT	Number of teeth (20 teeth maximum)	Number of teeth?
LTOL	Permissible deviation from tool length L for wear detection. If the entered value is exceeded, the control locks the tool (status L). Input range: 0.0000 to 5.0000 mm	Wear tolerance: length?
RTOL	Permissible deviation from tool radius R for wear detection. If the entered value is exceeded, the control locks the tool (status L). Input range: 0.0000 to 5.0000 mm	Wear tolerance: radius?
DIRECT.	Cutting direction of the tool for measuring a rotating tool	Cutting direction (M3 = -)?
R-OFFS	Tool length measurement: Tool offset between stylus center and tool center. Default setting: No value entered (offset = tool radius)	Tool offset: radius?
L-OFFS	Radius measurement: Tool offset between upper edge of stylus and lower edge of tool in addition to offsetToolAxis. Default: 0	Tool offset: length?
LBREAK	Permissible deviation from tool length L for break- age detection. If the entered value is exceeded, the control locks the tool (status L). Input range: 0.0000 to 9.0000 mm	Breakage tolerance: length?
RBREAK	Permissible deviation from tool radius R for break- age detection. If the entered value is exceeded, the control locks the tool (status L). Input range: 0.0000 to 9.0000 mm	Breakage tolerance: radius?
Input examples for common tool types		

Tool type	CUT	R-OFFS	L-OFFS
Drill	No function	0: No offset required because tool tip is to be measured	
End mill	4: four cutting edges	R: Offset required because the tool diameter is greater than the contact plate diameter of the TT	0: No additional offset required during radius measurement. Offset from offsetToolAxis (no. 122707) used.
Spherical cutter with a diameter of 10 mm	4: four cutting edges	0: No offset required because the south pole of the ball is to be measured.	5: At a diameter of 10 mm , the tool radius will be defined as offset. If this is not the case, the diameter of the spherical cutter will be measured too far down. So the tool diameter will not be correct.

10.2 Cycle $\mathbf{3 0}$ or 480 CALIBRATE TT

ISO programming

 G480
Application

Refer to your machine manual!

You calibrate the TT with touch probe cycle $\mathbf{3 0}$ or $\mathbf{4 8 0}$ (see "Differences between Cycles 30 to 33 and Cycles 480 to 483", Page 375). The calibration process runs automatically. The control also measures the center misalignment of the calibration tool automatically by rotating the spindle by 180° after the first half of the calibration cycle.
You calibrate the TT with touch probe cycle $\mathbf{3 0}$ or $\mathbf{4 8 0}$

Touch probe

For the touch probe you use a spherical or cuboid probe contact

Cuboid probe contact

For a cuboid probe contact, the machine manufacturer can store in the optional machine parameters detectStylusRot (no. 114315) and tippingTolerance (no. 114319) whether the angle of misalignment and tilt angle are determined. Determining the angle of misalignment enables compensation for it when measuring tools. The control displays a warning if the tilt angle is exceeded. The values determined can be seen in the status display of the TT.
Further information: User's Manual for Setup and Program Run
i
When clamping the tool touch probe, make sure that the edges of the cuboid probe contact are aligned as parallel to the machine axes as possible. The angle of misalignment should be less than 1° and the tilt angle should be less than 0.3°.

Calibration tool

The calibration tool must be a precisely cylindrical part, for example a cylindrical pin. The resulting calibration values are stored in the control memory and are accounted for during subsequent tool measurement.

Cycle sequence

1 Clamp the calibration tool. The calibration tool must be a precisely cylindrical part, for example a cylindrical pin
2 Manually position the calibration tool in the working plane over the center of the TT
3 Position the calibration tool in the tool axis at approximately 15 mm plus set-up clearance over the TT
4 The first movement of the tool is along the tool axis. The tool is first moved to clearance height, i.e. set-up clearance +15 mm .
5 The calibration process along the tool axis starts
6 This is followed by calibration in the working plane
7 The control positions the calibration tool in the working plane at a position of $T T$ radius + set-up clearance +11 mm
8 Then the control moves the tool downwards along the tool axis and the calibration process starts
9 During probing, the control moves in a square pattern
10 The control saves the calibration values and considers them during subsequent tool measurement
11 The control then retracts the stylus along the tool axis to set-up clearance and moves it to the center of the TT

Notes

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- Before calibrating the touch probe, you must enter the exact length and radius of the calibration tool into the TOOL.T tool table.

Notes about machine parameters

- Use the machine parameter CfgTTRoundStylus (no. 114200) or CfgTTRectStylus (no. 114300) to define the functionality of the calibration cycle. Refer to your machine manual.
- Use the machine parameter centerPos to define the position of the TT within the machine's working space.
- The TT needs to be recalibrated if you change the position of the TT on the table and/or a centerPos machine parameter.
- In the machine parameter probingCapability (no. 122723), the machine manufacturer defines the functionality of the cycle. This parameter allows you to permit tool length measurement with a stationary spindle and at the same time to inhibit tool radius and individual tooth measurements.

10.2.1 Cycle parameters

Help graphic	Parameter
	Q260 Clearance height?
	Enter the position in the spindle axis at which there is no
danger of collision with the workpiece or fixtures. The clear-	
ance height is referenced to the active workpiece preset. If	
you enter such a small clearance height value that the tool	
tip would lie below the top of the probe contact, the control	
automatically positions the calibration tool above the top of	
the probe contact (safety zone from safetyDistToolAx (no.	
114203)).	
Input: -99999.9999...+99999.9999	

Example of new format

11 TOOL CALL 12 Z

12 TCH PROBE 480 CALIBRATE TT
Q260 $=+100$;CLEARANCE HEIGHT

Example of old format

```
11 TOOL CALL 12 Z
12 TCH PROBE 30.0 CALIBRATE TT
```

13 TCH PROBE 30.1 HEIGHT:+90

10.3 Cycle 31 or 481 CAL. TOOL LENGTH

ISO programming

 G481
Application

Refer to your machine manual!

If you want to measure the tool length, program the touch probe cycle $\mathbf{3 1}$ or $\mathbf{4 8 2}$ (see "Differences between Cycles 30 to 33 and Cycles 480 to 483", Page 375). Input parameters allow you to select which of the three following methods will be used to measure the tool length:

- If the tool diameter is larger than the diameter of the measuring surface of the TT, you measure the tool while it is rotating.
- If the tool diameter is smaller than the diameter of the measuring surface of the TT, or if you are measuring the length of a drill or spherical cutter, you measure the tool while it is stationary.
- If the tool diameter is larger than the diameter of the measuring surface of the TT , you measure the individual teeth of the tool while it is stationary.

Cycle for measuring a tool during rotation

The control determines the longest tooth of a rotating tool by positioning the tool to be measured at an offset to the center of the touch probe and then moving it toward the measuring surface of the TT until it contacts the surface. The offset is programmed in the tool table under Tool offset: Radius (R-OFFS).

Cycle for measuring a stationary tool (e.g. for drills)

The control positions the tool to be measured above the center of the measuring surface. It then moves the non-rotating tool toward the measuring surface of the TT until contact is made. For this measurement, enter 0 in the tool table under Tool offset: radius (R-OFFS).

Cycle for measuring individual teeth

The control pre-positions the tool to be measured to a position at the side of the touch probe head. The distance from the tip of the tool to the upper edge of the touch probe head is defined in offsetToolAxis (no. 122707). You can enter an additional offset in Tool offset: Length (L-OFFS) in the tool table. The control probes the tool radially while it is rotating to determine the starting angle for measuring the individual teeth. It then measures the length of each tooth by changing the corresponding angle of spindle orientation. To activate this function, set the parameter PROBING THE TEETH = 1 in Cycle 31.

Notes

NOTICE

Danger of collision!

If you set stopOnCheck (no. 122717) to FALSE, the control does not evaluate the result parameter Q199 and the NC program is not stopped if the breakage tolerance is exceeded. There is a danger of collision!

- Set stopOnCheck (no. 122717) to TRUE
- You must then take steps to ensure that the NC program stops if the breakage tolerance is exceeded
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- Before measuring a tool for the first time, enter the following data on the tool into the TOOL.T tool table: the approximate radius, the approximate length, the number of teeth, and the cutting direction.
- You can run an individual tooth measurement for tools with up to 20 teeth.
- Cycles $\mathbf{3 1}$ and $\mathbf{4 8 1}$ do not support touch probes, turning or dressing tools.

Measuring grinding tools

- The cycle takes into account the basic and compensation data from the TOOLGRIND.GRD table, as well as the wear and compensation data (LBREAK and LTOL) from the TOOL. \mathbf{T} table.

Q340: 0 and 1

- This cycle will modify compensation or basic data, depending on whether or not an initial dressing operation (INIT_D) is defined. This cycle will enter the values automatically at the correct locations in the TOOLGRIND.GRD table.
Note the following sequence for setting up grinding tools. Further information: User's Manual for Setup and Program Run

10.3.1 Cycle parameters

Example of new format

11 TOOL CALL 12 Z	
12 TCH PROBE 481 CAL. TOOL LENGTH ~	
Q340 $=+1$;CHECK ~
Q260 $=+100$;CLEARANCE HEIGHT ~
Q341 $=+1$;PROBING THE TEETH

Cycle $\mathbf{3 1}$ includes an additional parameter:

Help graphic	Parameter
	Parameter number for result?
	Parameter number in which the control stores the status of
the measurement:	
	$\mathbf{0 . 0}$: Tool is within the tolerance
	$\mathbf{1 . 0}$: Tool is worn (LTOL exceeded)
2.0: Tool is broken (LBREAK exceeded). If you do not wish	
to use the result of measurement within the NC program,	
answer the dialog prompt with NO ENT	
Input: $\mathbf{0 . . . 1 9 9 9}$	

Measuring a rotating tool for the first time; old format

```
11 TOOL CALL 12 Z
12 TCH PROBE 31.0 CAL. TOOL LENGTH
13 TCH PROBE 31.1 CHECK:0
14 TCH PROBE 31.2 HEIGHT::+120
15 TCH PROBE 31.3 PROBING THE TEETH:O
```

Inspecting a tool and measuring the individual teeth and saving the status in Q5; old format

```
11 TOOL CALL 12 Z
12 TCH PROBE 31.0 CAL. TOOL LENGTH
```

13 TCH PROBE 31.1 CHECK:1 Q5
14 TCH PROBE 31.2 HEIGHT:+120
15 TCH PROBE 31.3 PROBING THE TEETH: 1

10.4 Cycle 32 or 482 CAL. TOOL RADIUS

ISO programming

 G482
Application

Refer to your machine manual!

If you want to measure the tool radius, program the touch probe cycle $\mathbf{3 2}$ or $\mathbf{4 8 2}$ (see "Differences between Cycles 30 to 33 and Cycles 480 to 483", Page 375). Input parameters allow you to select which of the two following methods will be used to measure the tool radius:

- Measuring the tool while it is rotating
- Measuring the tool while it is rotating and subsequently measuring the individual teeth

The control pre-positions the tool to be measured to a position at the side of the touch probe head. The distance from the face of the milling tool to the upper edge of the touch probe head is defined in offsetToolAxis (no. 122707). The control probes the tool radially while it is rotating. If you have programmed a subsequent measurement of individual teeth, the control will measure the radius of each tooth with the aid of oriented spindle stops.

Notes

NOTICE

Danger of collision!

If you set stopOnCheck (no. 122717) to FALSE, the control does not evaluate the result parameter Q199 and the NC program is not stopped if the breakage tolerance is exceeded. There is a danger of collision!

- Set stopOnCheck (no. 122717) to TRUE
- You must then take steps to ensure that the NC program stops if the breakage tolerance is exceeded
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- Before measuring a tool for the first time, enter the following data on the tool into the TOOL. T tool table: the approximate radius, the approximate length, the number of teeth, and the cutting direction.
- Cycles $\mathbf{3 2}$ and $\mathbf{4 8 2}$ do not support touch probes, turning or dressing tools.

Measuring grinding tools

- The cycle takes into account the basic and compensation data from the TOOLGRIND.GRD table, as well as the wear and compensation data (RBREAK and RTOL) from the TOOL.T table.

Q340: 0 and 1

- This cycle will modify compensation or basic data, depending on whether or not an initial dressing operation (INIT_D) is defined. This cycle will enter the values automatically at the correct locations in the TOOLGRIND.GRD table.
Note the following sequence for setting up grinding tools. Further information:
User's Manual for Setup and Program Run

Notes about machine parameters

- In the machine parameter probingCapability (no. 122723), the machine manufacturer defines the functionality of the cycle. This parameter allows you to permit tool length measurement with a stationary spindle and at the same time to inhibit tool radius and individual tooth measurements.
- Cylindrical tools with diamond surfaces can be measured while the spindle is stationary. To do so, in the tool table define the number of teeth CUT as 0 and adjust the machine parameter $\mathbf{C f g T T}$. Refer to your machine manual.

10.4.1 Cycle parameters

Help graphic	Parameter
	Q340 Tool measurement mode (0-2)?
	Define whether and how the measured data will be entered in the tool table.
	$\mathbf{0}$: The measured tool radius is written to column R of the TOOL.T tool table, and the tool compensation is set to $D R=0$. If there is already a value in TOOL.T, it will be overwritten.
	1: The measured tool radius is compared to the tool radius R from TOOL.T. The control calculates the deviation from the stored value and enters it into TOOL.T as the delta value DR. The deviation is also available in the Q parameter Q116 If the delta value is greater than the permissible tool radius tolerance for wear or break detection, the control will lock the tool (status L in TOOL.T).
	2: The measured tool radius is compared to the tool radius from TOOL.T. The control calculates the deviation from the stored value and writes it to Q parameter Q116. Nothing is entered under R or DR in the tool table. Input: 0,1,2

Q260 Clearance height?

Enter the position in the spindle axis at which there is no danger of collision with the workpiece or fixtures. The clearance height is referenced to the active workpiece preset. If you enter such a small clearance height that the tool tip would lie below the top of the probe contact, the control automatically positions the tool above the top of the probe contact (safety zone from safetyDistStylus).
Input: -99999.9999...+99999.9999
Q341 Probe the teeth? 0=no/1=yes
Define whether the control will measure the individual teeth (maximum of 20 teeth)
Input: 0, 1
Example of new format

11 TOOL CALL 12 Z	
12 TCH PROBE 482 CAL. TOOL RADIUS \sim	
Q340 $=+1$;CHECK \sim
Q260 $=+100$;CLEARANCE HEIGHT \sim
Q341 $=+1$;PROBING THE TEETH

Cycle $\mathbf{3 2}$ includes an additional parameter:

Help graphic	Parameter
	Parameter number for result?
	Parameter number in which the control stores the status of
the measurement:	
	$\mathbf{0 . 0}$: Tool is within the tolerance
1.0: Tool is worn (RTOL exceeded)	
2.0: Tool is broken (RBREAK exceeded). If you do not wish	
to use the result of measurement within the NC program,	
answer the dialog prompt with NO ENT	
Input: $\mathbf{0 . . . 1 9 9 9}$	

Measuring a rotating tool for the first time; old format

11 TOOL CALL 12 Z
12 TCH PROBE 32.0 CAL. TOOL RADIUS
13 TCH PROBE 32.1 CHECK:0
14 TCH PROBE 32.2 HEIGHT:+120
15 TCH PROBE 32.3 PROBING THE TEETH:0

Inspecting a tool and measuring the individual teeth and saving the status in Q5; old format

```
11 TOOL CALL 12 Z
12 TCH PROBE 32.0 CAL. TOOL RADIUS
```

13 TCH PROBE 32.1 CHECK:1 Q5
14 TCH PROBE 32.2 HEIGHT:+120
15 TCH PROBE 32.3 PROBING THE TEETH: 1

10.5 Cycle 33 or 483 MEASURE TOOL

ISO programming

 G483
Application

Refer to your machine manual!

To measure both the length and radius of a tool, program the touch probe cycle 33 or 483 (see "Differences between Cycles 30 to 33 and Cycles 480 to 483", Page 375). This cycle is particularly suitable for the first measurement of tools, as it saves time when compared with individual measurement of length and radius. Input parameters allow you to select which of the two following methods will be used to measure the tool:

- Measuring the tool while it is rotating
- Measuring the tool while it is rotating and subsequently measuring the individual teeth

Measuring the tool while it is rotating:

The control measures the tool in a fixed programmed sequence. First, if possible, it measures the tool length, and then the tool radius.

Measuring the individual teeth:

The control measures the tool in a fixed programmed sequence. First it measures the tool radius, then the tool length. The sequence of measurement is the same as for touch probe cycles 31 and 32 as well as 481 and 482 .

Notes

NOTICE

Danger of collision!

If you set stopOnCheck (no. 122717) to FALSE, the control does not evaluate the result parameter Q199 and the NC program is not stopped if the breakage tolerance is exceeded. There is a danger of collision!

- Set stopOnCheck (no. 122717) to TRUE
- You must then take steps to ensure that the NC program stops if the breakage tolerance is exceeded
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- Before measuring a tool for the first time, enter the following data on the tool into the TOOL.T tool table: the approximate radius, the approximate length, the number of teeth, and the cutting direction.
- Cycles $\mathbf{3 3}$ and $\mathbf{4 8 3}$ do not support touch probes, turning or dressing tools.

Measuring grinding tools

- The cycle takes into account the basic and compensation data from the TOOLGRIND.GRD table, as well as the wear and compensation data (LBREAK, RBREAK, LTOL, and RTOL) from the TOOL.T table.

Q340: 0 and 1

- This cycle will modify compensation or basic data, depending on whether or not an initial dressing operation (INIT_D) is defined. This cycle will enter the values automatically at the correct locations in the TOOLGRIND.GRD table.
Note the following sequence for setting up grinding tools. Further information:
User's Manual for Setup and Program Run

Notes about machine parameters

- In the machine parameter probingCapability (no. 122723), the machine manufacturer defines the functionality of the cycle. This parameter allows you to permit tool length measurement with a stationary spindle and at the same time to inhibit tool radius and individual tooth measurements.
- Cylindrical tools with diamond surfaces can be measured while the spindle is stationary. To do so, in the tool table define the number of teeth CUT as 0 and adjust the machine parameter $\mathbf{C f g T T}$. Refer to your machine manual.

10.5.1 Cycle parameters

Help graphic	Parameter
	Q340 Tool measurement mode (0-2)?
	Define whether and how the measured data will be entered in the tool table.
	$\mathbf{0}$: The measured tool length and the measured tool radius are written to columns L and R of the TOOL. T tool table, and the tool compensation is set to $\mathrm{DL}=0$ and $\mathrm{DR}=0$. If there is already a value in TOOL.T, it will be overwritten.
	1: The measured tool length and the measured tool radius are compared to the tool length L and tool radius R in TOOL.T. The control calculates the deviation from the stored value and enters them into TOOL.T as the delta values DL and DR. The deviation is also available in the Q parameters Q115 and Q116. If the delta value is greater than the permissible tool length or tool radius tolerance for wear or break detection, the control will lock the tool (status L in TOOL.T).
	2: The measured tool length and the measured tool radius are compared to the tool length L and tool radius R in TOOL.T. The control calculates the deviation from the stored values and writes it to the Q parameter Q115 or Q116. Nothing is entered under L, R, or DL, DR in the tool table. Input: 0, 1, 2

Q260 Clearance height?

Enter the position in the spindle axis at which there is no danger of collision with the workpiece or fixtures. The clearance height is referenced to the active workpiece preset. If you enter such a small clearance height that the tool tip would lie below the top of the probe contact, the control automatically positions the tool above the top of the probe contact (safety zone from safetyDistStylus).
Input: -99999.9999...+99999.9999
Q341 Probe the teeth? 0=no/1=yes
Define whether the control will measure the individual teeth (maximum of 20 teeth)
Input: 0, 1

Example of new format

11 TOOL CALL 12 Z	
12 TCH PROBE 483 MEASURE TOOL ~	
Q340=+1	;CHECK ~
Q260 $=+100$;CLEARANCE HEIGHT \sim
Q341 $=+1$;PROBING THE TEETH

Cycle $\mathbf{3 3}$ includes an additional parameter:

Help graphic	Parameter
	Parameter number for result?
	Parameter number in which the control stores the status of
the measurement:	
	$\mathbf{0 . 0}$: Tool is within the tolerance
	$\mathbf{1 . 0}$: Tool is worn (LTOL or/and RTOL exceeded)
2.0: Tool is broken (LBREAK or/and RBREAK exceeded). If	
you do not wish to use the result of measurement within the	
NC program, answer the dialog prompt with NO ENT.	
Input: $\mathbf{0 . . . 1 9 9 9}$	

Measuring a rotating tool for the first time; old format

11 TOOL CALL 12 Z
12 TCH PROBE 33.0 MEASURE TOOL
13 TCH PROBE 33.1 CHECK:0
14 TCH PROBE 33.2 HEIGHT:+120
15 TCH PROBE 33.3 PROBING THE TEETH:0

Inspecting a tool and measuring the individual teeth and saving the status in Q5; old format

11 TOOL CALL 12 Z
12 TCH PROBE 33.0 MEASURE TOOL
13 TCH PROBE 33.1 CHECK:1 Q5
14 TCH PROBE 33.2 HEIGHT:+120
15 TCH PROBE 33.3 PROBING THE TEETH:1

10.6 Cycle 484 CALIBRATE IR TT

ISO programming

G484

Application

Cycle 484 allows you to calibrate your tool touch probe (e.g., the wireless infrared TT 460 tool touch probe). You can perform the calibration process with or without manual intervention.

- With manual intervention: If you define Q536 = 0, then the control will stop before the calibration process. You then need to position the calibration tool manually above the center of the tool touch probe.
- Without manual intervention: If you define Q536 = 1, then the control will automatically execute the cycle. You may have to program a prepositioning movement before. This depends on the value of the parameter Q523 POSITION TT.

Cycle sequence

Refer to your machine manual.
The machine manufacturer defines the functionality of the cycle.

To calibrate the tool touch probe, program the touch probe cycle 484. In input parameter Q536, you can specify whether you want to run the cycle with or without manual intervention.

Touch probe

For the touch probe you use a spherical or cuboid probe contact

Cuboid probe contact:

For a cuboid probe contact, the machine manufacturer can store in the optional machine parameters detectStylusRot (no. 114315) and tippingTolerance (no. 114319) whether the angle of misalignment and tilt angle are determined. Determining the angle of misalignment enables compensation for it when measuring tools. The control displays a warning if the tilt angle is exceeded. The values determined can be seen in the status display of the TT.
Further information: User's Manual for Setup and Program Run
i
When clamping the tool touch probe, make sure that the edges of the cuboid probe contact are aligned as parallel to the machine axes as possible. The angle of misalignment should be less than 1° and the tilt angle should be less than 0.3°.

Calibration tool:

The calibration tool must be a precisely cylindrical part, for example a cylindrical pin. Enter the exact length and radius of the calibration tool into the TOOL.T tool table. After the calibration, the control stores the calibration values and takes them into account during subsequent tool measurements. The calibration tool should have a diameter of more than 15 mm and protrude approx. 50 mm from the chuck.

Q536 = 0: With manual intervention before calibration

Proceed as follows:

- Insert the calibration tool
- Start the calibration cycle
> The control interrupts the calibration cycle and displays a dialog.
- Manually position the calibration tool above the center of the tool touch probe.

Ensure that the calibration tool is located above the measuring surface of the probe contact.

- Press NC start to resume cycle sequence
> If you have programmed Q523 = 2, then the control writes the calibrated position to the machine parameter centerPos (no. 114200)

Q536 = 1: Without manual intervention before calibration

Proceed as follows:

- Insert the calibrating tool
- Position the calibration tool above the center of the tool touch probe before the start of the cycle.
- Ensure that the calibration tool is located above the measuring surface of the probe contact.
- For a calibration process without manual intervention, you do not need to position the calibration tool above the center of the tool touch probe. The cycle adopts the position from the machine parameters and automatically moves the tool to this position.
- Start the calibration cycle
> The calibration cycle is executed without stopping.
> If you have programmed $\mathbf{Q 5 2 3}=\mathbf{2}$, then the control writes the calibrated position to the machine parameter centerPos (no. 114200).

Notes

NOTICE

Danger of collision!

If you program Q536=1, the tool must be pre-positioned before calling the cycle. The control also measures the center misalignment of the calibrating tool by rotating the spindle by 180° after the first half of the calibration cycle. There is a danger of collision!

- Specify whether to stop before cycle start or run the cycle automatically without stopping.
- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- The calibration tool should have a diameter of more than 15 mm and protrude approx. 50 mm from the chuck. If you use a cylinder pin of these dimensions, the resulting deformation will only be $0.1 \mu \mathrm{~m}$ per 1 N of probing force. Major inaccuracies may occur if you use a calibration tool whose diameter is too small and/ or that protrudes too far from the chuck.
- Before calibrating the touch probe, you must enter the exact length and radius of the calibration tool into the TOOL.T tool table.
- The TT needs to be recalibrated if you change its position on the table.

Note regarding machine parameters

- In the machine parameter probingCapability (no. 122723), the machine manufacturer defines the functionality of the cycle. This parameter allows you to permit tool length measurement with a stationary spindle and at the same time to inhibit tool radius and individual tooth measurements.

10.6.1 Cycle parameters

Help graphic	Parameter
	Q536 Stop before running ($0=$ Stop) ?
	Define whether the control will stop before the calibration process or whether the cycle will automatically be executed without a stop:
	$\mathbf{0}$: Stop before the calibration process. The control prompts you to position the calibration tool manually above the tool touch probe. After moving the tool to the approximate position above the tool touch probe, press NC Start to continue the calibration process or press the the CANCEL button to cancel the calibration process.
	1: Without stopping before the calibration process. The control starts the calibration process depending on Q523. Before running Cycle 484, you may have to position the tool above the tool touch probe.
	Input: 0, 1
	Q523 Position of tool probe (0-2)?
	Position of the tool touch probe:
	0 : Current position of the calibration tool. The tool touch probe is below the current position of the calibration tool. If Q536 = 0, position the calibration tool manually above the center of the tool touch probe during the cycle. If $\mathbf{Q} 536=\mathbf{1}$, you need to position the calibration tool above the center of the tool touch probe before the start of the cycle.
	1: Configured position of the tool touch probe. The control adopts the position from the machine parameter centerPos (no. 114201). You do not need to pre-position the tool. The calibration tool approaches the position automatically.
	2: Current position of the calibration tool. See Q523 $=0$. $\mathbf{0}$. The control additionally writes the determined position (where applicable) to the machine parameter centerPos (no. 114201) after calibration.
	Input: 0, 1, 2

Example
11 TOOL CALL 12 Z

12 TCH PROBE 484 CALIBRATE IR TT ~	
Q536 $=+0$;STOP BEFORE RUNNING ~
Q523 $=+0$;TT POSITION

10.7 Cycle 485 MEASURE LATHE TOOL (option 50)

ISO programming

G485

Application

Refer to your machine manual!
Machine and control must be specially prepared by the machine manufacturer for use of this cycle.

Cycle $\mathbf{4 8 5}$ MEASURE LATHE TOOL is available for the measurement of lathe tools using the tool touch probe from HEIDENHAIN. The control measures the tool in a fixed programmed sequence.

Cycle sequence

1 The control positions the lathe tool to the clearance height
2 The lathe tool is oriented based on the entries in TO and ORI
3 The control moves the tool to the measuring position in the main axis; traverse movement is interpolated in the main and secondary axes
4 Then the lathe tool moves to the measuring position in the tool axis
5 The tool is measured. Depending on the definition of Q340, either tool dimensions are changed or the tool is locked
6 The measuring result is transferred to the result parameter Q199
7 After the measurement has been performed, the control positions the tool in the tool axis to the clearance height

Result parameter Q199:

Result	Meaning
$\mathbf{0}$	Tool dimensions within the tolerance LTOL / RTOL
	Tool is not locked
$\mathbf{1}$	Tool dimensions outside the tolerance LTOL / RTOL
	Tool is locked
$\mathbf{2}$	Tool dimensions outside the tolerance LBREAK / RBREAK
	Tool is locked

The cycle uses the following entries from toolturn.trn:

Abbr.	Entries	Dialog
ZL	Tool length 1 (Z direction)	Tool length 1?
XL	Tool length 2 (\mathbf{X} direction)	Tool length 2?
DZL	Delta value of tool length 1 (\mathbf{Z} direction), is added to ZL	Oversize in tool length 1?
DXL	Delta value of tool length 2 (\mathbf{X} direction), is added to XL	Oversize in tool length 2?
RS	Cutting edge radius: if contours were programmed with radius compensation RL or RR, the control takes the cutting edge radius into account in turning cycles, and performs cutting radius compensation	Cutting edge radius?
TO	Tool orientation: from the tool orientation, the control determines the position of the tool tip and, depending on the selected tool type, additional information such as the tool angle direction, position of the tool reference point, etc. This information is necessary, for example, for calculating the cutting radius compensation, milling cutter radius compensation, plunge angle, etc.	Tool orientation?
ORI	Spindle orientation angle: angle of the indexable insert to the main axis	Angle of spindle orientation?
TYPE	Type of turning tool: Roughing tool ROUGH, finishing tool FINISH, thread tool THREAD, recessing tool RECESS, button tool BUTTON, groove turning tool RECTURN	Type of turning tool

Further information: "Tool orientation (TO) that is supported for the following types
of turning tools (TYPE)", Page 398

Tool orientation (TO) that is supported for the following types of turning tools (TYPE)

TYPE	Supported TO with possible limitations	Non-supported TO	
ROUGH,	- 1	- 4	${ }^{2+}$
FINISH	- 7	- 9	0
	- 2, only XL		$0{ }^{0}$
	- 3, only XL		$\mathrm{V}_{7} 81$
	- 5, only XL		$\cdots-\cdots-10=-2 \cdots<-\cdots$
	- 6, only XL		$\square^{5} 4^{3}$
	- 8, only ZL		
	- 18		

THREAD	- 1	- 4		${ }^{2+}$
	- 7	- 6	(6)	Q
	- 8	- 9	.	2
	- 2		C0, 7	1 @
	$\begin{array}{ll} = & 3, \text { only XL } \\ & 5, \text { only XL } \end{array}$		$\sqrt{8}^{5}$	3 §
			(0)	10)

Notes

NOTICE

Danger of collision!

If you set stopOnCheck (no. 122717) to FALSE, the control does not evaluate the result parameter Q199 and the NC program is not stopped if the breakage tolerance is exceeded. There is a danger of collision!

- Set stopOnCheck (no. 122717) to TRUE
- You must then take steps to ensure that the NC program stops if the breakage tolerance is exceeded

| NOT/CE |
| :--- | :--- |
| Danger of collision! |
| If the tool data ZL / DZL and XL / DXL deviate by more than $\pm 2 \mathrm{~mm}$ from the real |
| tool data, then there is a danger of collision. |
| - Enter the approximate tool data closer than $\pm 2 \mathrm{~mm}$ |
| Run the cycle carefully |

- This cycle can only be executed in the FUNCTION MODE MILL machining mode.
- Before you begin the cycle, you must run a TOOL CALL with the tool axis \mathbf{Z}.
- If you define YL and DYL with a value outside of $\pm 5 \mathrm{~mm}$, the tool won't reach tool touch probe.
- The cycle does not support SPB-INSERT (angular offset). You must enter the value 0 in SPB-INSERT, otherwise the control will generate an error message.

Note regarding machine parameters

- The cycle depends on the optional machine parameter CfgTTRectStylus (no. 114300). Refer to your machine manual.

10.7.1 Cycle parameters

Help graphic	Parameter
Q340 Tool measurement mode (0-2)?	
Use of the measured values:	
0: The measured values are entered in ZL and XL. If values	
are already entered in the tool table, they will be overwritten.	
DZL and DXL will be reset to $\mathbf{0}$. TL will not be changed	
1: The measured values ZL and XL are compared with the	
values from the tool table. These values will not be changed.	
The control then calculates the deviations of ZL and XL, and	
enters these in DZL and DXL. If the delta values are larger	
than the permissible wear or breakage tolerance, the control	
locks the tool (TL = Tool Locked). In addition, the deviation is	
also entered in the Q parameters Q115 and Q116	

Example

12 TCH PROBE 485 MEASURE LATHE TOOL ~	
Q340=+1	;CHECK ~
Q260 $=+100$;CLEARANC

Special Cycles

11.1 Fundamentals

11.1.1 Overview

The control provides the following cycles for special purposes:

Cycle		Sequence	Further information
9	DWELL TIME - Delay execution by the programmed dwell time	DEF-active	Further information: User's Manual for Machining Cycles
12	PGM CALL - Call any NC program	DEF-active	Further information: User's Manual for Machining Cycles
13	ORIENTATION - Rotate spindle to a specific angle	DEF-active	"Cycle 13 ORIENTATION "
32	TOLERANCE - Program the permissible contour deviation for jerk-free machining operations	DEF-active	Further information: User's Manual for Machining Cycles
291	COUPLG.TURNG.INTERP. (option 96) - Coupling of the tool spindle with the positions of the linear axes - Or, rescind the spindle coupling	CALL-active	Further information: User's Manual for Machining Cycles
292	CONTOUR.TURNG.INTRP. (option 96) - Coupling of the tool spindle with the positions of the linear axes - Create certain rotationally symmetric contours in the active working plane - Possible with tilted working plane	CALL-active	Further information: User's Manual for Machining Cycles
225	ENGRAVING - Engrave texts on a plane surface - Arranged in a straight line or along a circular arc	CALL-active	Further information: User's Manual for Machining Cycles
232	FACE MILLING - Face mill a level surface in multiple infeeds - Selection of the milling plan	CALL-active	Further information: User's Manual for Machining Cycles
285	DEFINE GEAR (option 157) - Define the geometry of the gear	DEF-active	Further information: User's Manual for Machining Cycles
286	GEAR HOBBING (option 157) - Definition of the tool data - Selection of the machining strategy and side - Possibility of using the entire cutting edge	CALL-active	Further information: User's Manual for Machining Cycles
287	GEAR SKIVING (option 157) - Definition of the tool data - Selection of the machining side - Definition of the first and last infeed - Definition of the number of cuts	CALL-active	Further information: User's Manual for Machining Cycles

Cycle	Sequence	Further information
238 MEASURE MACHINE STATUS (option 155) - Determine the current machine status or test the measuring sequence	DEF-active	Further information: User's Manual for Machining Cycles
239 ASCERTAIN THE LOAD (option 143) - Selection for a weighing run - Reset the load-dependent feedforward and controller parameters	DEF-active	Further information: User's Manual for Machining Cycles
18 THREAD CUTTING - With controlled spindle - Spindle stops at the bottom of the hole	CALL-active	Further information: User's Manual for Machining Cycles

11.2 Cycle 13 ORIENTATION

ISO programming

G36

Application

Refer to your machine manual.
Machine and control must be specially prepared by the machine manufacturer for use of this cycle.

The control can control the main machine tool spindle and rotate it to a given angular position.

Oriented spindle stops are required for purposes such as:

- Tool changing systems with a defined tool change position
- Orientation of the transceiver window of HEIDENHAIN 3D touch probes with infrared transmission
With M19 or M20, the control positions the spindle at the angle of orientation defined in the cycle (depending on the machine).
If you program M19 or M20 without having defined Cycle 13 beforehand, the control positions the main spindle at an angle that has been set by the machine manufacturer.

Notes

- This cycle can be executed in the FUNCTION MODE MILL, FUNCTION MODE TURN, and FUNCTION DRESS machining modes.

11.2.1 Cycle parameters

Parameter

Orientation angle
Enter the angle relative to the angle reference axis of the working plane
Input: 0... 360

Example

Index

A

Additional documentation............. 21
Automatically check the workpiece Polar preset.241
Automatically setting the preset
Probing, position of undercut 155
Probing a ridge 150, 160
Probing a slot undercut 160
Automatic preset setting
Bolt hole circle 202
Center of 4 holes 212
Circle probing. 141
Circular pocket (hole) 178
Circular stud 184
Fundamentals of $4 x x$. 165
Inside corner 196
Outside corner 190
Rectangular pocket 167
Rectangular stud 172
Ridge center 225
Single axis. 217
Single position probing 136
Slot center 220
Sphere probing 146
Touch probe axis 208
Automatic workpiece inspectionFundamentals234
Measuring a circular hole pattern 280
Measuring angles 243
Measuring a plane 285
Measuring circles. 252
Measuring coordinates. 275
Measuring holes 246
Measuring rectangular pockets..258
Measuring rectangular studs 263
Measuring ridges, outside. 271
Measuring the slot width 267
B
Basic rotation 107
Setting directly 130
Using two holes 110
Using two studs 115
Via rotary axis 120
cCalibration
L probe. 322
Normal probe. 322
Calibration cycles 312
Calibrating TS 322
Calibrating TS in a ring 316
Calibrating TS length 314
Calibrating TS on a stud 319
Classification of results 237
Comparison of controls 41
Contact 23
DDetermine inclined workpieceposition
Touch probe cycles 4xx fundamentals 106
Determining workpiece misalignment
Basic rotation 107
Basic rotation using two holes. 110
Basic rotation using two studs 115
Basic rotation via rotary axis. 120
Fundamentals of touch probecycles 14xx.60
Inclined edge probing 91
Probing an intersection 98
Probing in plane 70
Probing on edge 76
Probing two circles 83
Rotation via C axis. 125
Setting basic rotation 130
Differences in controls 41
E
Extrusion probing 308
F
Fast probing 306
FCL 37
Feature Content Level 37
KKinematic measurement
Accuracy 345
Backlash 345
Kinematics measurement Fundamentals 332
Hirth coupling 342
Kinematics grid 365
Preset compensation 354
Saving kinematics 336
KinematicsOpt 332
L
Licensing terms 38
M
Measuring
Angles 243
Circles on the outside. 252
Circular hole pattern. 280
Coordinates 275
Hole 246
Inside rectangles 258
Inside width 267
Outside rectangles 263
Plane. 285
Ridges, outside 271
Measuring circles on the inside 246
Measuring circles on the outside 252
Measuring in 3-D 297
Measuring rectangular pockets. 258
Measuring rectangular studs. 263
Measuring ridges on theoutside.271
Measuring slot width 267
Measuring the inside width 267
Measuring with Cycle 3 295
N
Notes, types of 22
Place of operation. 27
Positioning logic 52
Probing in 3-D 300
Proper and intended operation 27
R
Recording measurement results. 235
S
Safety precaution 28
Content. 22
Setting the preset automatically Probing a slot 150
Software number 30
Software option 31
Spindle orientation 404
Split screen layout of User's Manual 21
T
Target group 20
Tolerance monitoring 237
Tool compensation 238
Tool measurement
Fundamentals. 374
IR TT calibration 392
Machine parameters 375
Measuring tool length and radius. 388
Measuring turning tools 396
Probing in plane 70
Probing on edge 76
Probing two circles 83

W
Workpiece, checking automatically
Reference plane
239

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH
www.klartext-portal.com

Dr.-Johannes-Heidenhain-Straße 5
83301 Traunreut, Germany
0 +49 8669 31-0
EAX] +49 8669 32-5061
E-mail: info@heidenhain.de
Technical support EAXX +49 8669 32-1000
Measuring systems ${ }^{\text {B }}+498669$ 31-3104
E-mail: service.ms-support@heidenhain.de
NC support 20
E-mail: service.nc-support@heidenhain.de
NC programming © +498669 31-3103
E-mail: service.nc-pgm@heidenhain.de
PLC programming +49 8669 31-3102
E-mail: service.plc@heidenhain.de
APP programming + +498669 31-3106
E-mail: service.app@heidenhain.de
www.heidenhain.com

Touch probes from HEIDENHAIN

help you reduce non-productive time and improve the dimensional accuracy of the finished workpieces.

Workpiece touch probes

TS 150, TS 260
Signal transmission by cable

The Information Site for
HEIDENHAIN Controls

Klartext App

Klartext on your mobile device

Google Apple

 Play Store App Store

TS 460, TS 760 Radio or infrared transmission
TS 642, TS 740
Infrared transmission

- Workpiece alignment
- Preset setting
- Workpiece measurement

TS 750

- Workiece measurement

Tool touch probes

TT 160	Signal transmission by cable
TT 460	Infrared transmission

- Tool measurement
- Wear monitoring
- Tool breakage detection

[^0]: - HEIDENHAIN recommends avoiding the use of axis angles in this cycle!

[^1]: Sample measurement: EYC deviations of the Y axis in dependency of the C axis

