

HEIDENHAIN

TNC7

工件和刀具测量循环 用户手册

NC数控软件 817620-16 817621-16 817625-16

中文 (zh-CN) 01/2022

目录

1	关于用户手册	19
2	关于产品	25
3	使用探测循环	39
4	探测循环:工件不对正量的自动测量	53
5	探测循环:自动预设点测量	115
6	探测循环:工件自动检测	197
7	探测循环:特殊功能	255
8	探测循环:校准	273
9	探测循环:运动特性自动测量	287
10	探测循环:自动刀具测量	323
11	特殊循环	345

1	关于		19
	1.1	目标用户群:用户	20
	1.2	可用的用户文档	21
	1.3	所用的注意类型	22
	1.4	有关使用NC数控程序的类型	23
	1.5	联系编写人员	23

2	关于	^현 品 2	25
	2.1	TNC7	26
	2.2	正确和预期操作	26
	2.3	目的操作地	26
		安全注意事项	
	2.4	安全注意事项	27
	2.5	软件	20
	2.5		29
		F.1.1.— F. F.	30
			35
		2.5.3 关于许可证和使用	35
			_
	2.6	比较TNC 640与TNC7	36

3	使用	探测循环	,	39
	2.1	4克河水车	TA 机冷点	40
	3.1	探测值:	环的一般信息	40
		3.1.1	功能原理	40
		3.1.2	注意	40
		3.1.3	手动操作模式和电子手轮模式的探测循环	41
		3.1.4	自动操作的探测循环	41
		3.1.5	可用的循环组	45
	3.2	开始使用	用探测循环前!	48
		3.2.1	一般信息	48
		3.2.2	执行探测循环	48
	3.3	循环的	星序默认值	50
		3.3.1	输入GLOBAL DEF (全局定义)的定义	50
		3.3.2	使用GLOBAL DEF (全局定义)信息	50
		3.3.3	各处全部有效的全局数据	51
		3 3 4	探测功能全局数据	52

4	探测	循环:工件不对正量的自动测量	53
	4.1	概要	54
	4.2	探测循环14xx的基础知识	55
	4.2	4.2.1 测量旋转的探测循环14xx的共同功能	55
		4.2.1 测量旋转的探测值外14X的共同功能 4.2.2 半自动模式	56
		4.2.3 公差评估	61
		4.2.4 传输实际位置	63
	4.3	循环1420PROBING IN PLANE	64
		4.3.1 循环参数	67
			0,
	4.4	循环1410PROBING ON EDGE	70
		4.4.1 循环参数	74
	4.5	循环1411PROBING TWO CIRCLES	77
		4.5.1 循环参数	81
	4.6	循环1412INCLINED EDGE PROBING	85
		4.6.1 循环参数	88
	4.7	探测循环4xx:基础知识	91
		4.7.1 所有测量工件不对正量探测循环的共同特点	91
	4.8	循环400BASIC ROTATION	92
		4.8.1 循环参数	93
	4.9	循环401ROT OF 2 HOLES	95
		4.9.1 循环参数	96
	4.10	循环402ROT OF 2 STUDS	98
		4.10.1 循环参数	100
	4.11	循环403ROT IN ROTARY AXIS	103
		4.11.1 循环参数	105
	4.12	循环405ROT IN C-AXIS	108
		4.12.1 循环参数	110
	4.13	循环404SET BASIC ROTATION	112
		4.13.1 循环参数	112
	414	举例: 用两孔决定基本旋转	113
	T		

5	探测	循环:自动预设点测量	115
	5.1	概要	116
	5.2	设置预设点探测循环14xx的基础知识	117
		5.2.1 预设点设置的全部探测循环14xx的共同特点	117
	5.3	循环1400POSITION PROBING	117
	5.5	5.3.1 循环参数	119
	5.4	循环1401CIRCLE PROBING	121
	J. 4	5.4.1 循环参数	123
	5.5	循环1402SPHERE PROBING	125
	5.5	個外1402SPHERE PROBING 5.5.1 循环参数	128
	5.6	设置预设点探测循环4xx的基础知识	130 130
	5.7	循环410DATUM INSIDE RECTAN	132
		5.7.1 循环参数	134
	5.8	循环411DATUM OUTS. RECTAN	137
		5.8.1 循环参数	139
	5.9	循环412DATUM INSIDE CIRCLE	143
		5.9.1 循环参数	145
	5.10	循环413DATUM OUTSIDE CIRCLE	149
		5.10.1 循环参数	151
	5.11	循环414DATUM OUTSIDE CORNER	155
		5.11.1 循环参数	157
	5.12	循环415DATUM INSIDE CORNER	161
		5.12.1 循环参数	163
	5 1 3	循环416DATUM CIRCLE CENTER	166
	3.13	5.13.1 循环参数	168
	E 1/	循环417DATUM IN TS AXIS	172
	3.14	5.14.1 循环参数	173
	5.15	循环418DATUM FROM 4 HOLES 5.15.1 循环参数	175 177
	5.16	循环419DATUM IN ONE AXIS	180
		5.16.1 循环参数	181

5.17	循环408	SSLOT CENTER REF PT	183
	5.17.1	循环参数	185
5.18	循环409	PRIDGE CENTER REF PT	188
		循环参数	190
5.19	举例:料	将预设点设置在圆弧的中心和工件的顶面	193
5.20	举例:#	名称设点设置在工件的顶面和螺栓孔圆的圆心处	194

6	探测	循环:工	件自动检测	197
	6.1	基础知识	<u></u>	198
		6.1.1	概要	198
		6.1.2	记录测量结果	199
		6.1.3	测量结果保存在Q参数中	201
		6.1.4	结果分类	201
		6.1.5	公差监测	201
		6.1.6	刀具监测	201
		6.1.7	测量结果的参考系统	202
	6.2	循环0R	EF. PLANE	203
		6.2.1	循环参数	204
	6.3	循环1P	OLAR DATUM	204
		6.3.1	循环参数	205
	6.4	年IT 4つ (OMEASURE ANGLE	206
	0.4			
		6.4.1	循环参数	207
	6.5	循环42	1MEASURE HOLE	209
		6.5.1	循环参数	211
	6.6	循环422	2MEAS. CIRCLE OUTSIDE	215
		6.6.1	循环参数	217
	6.7		BMEAS. RECTAN. INSIDE	221
		6.7.1	循环参数	223
	6.8	循环424	4MEAS. RECTAN. OUTS	225
		6.8.1	循环参数	227
	6.9	循环42!	5MEASURE INSIDE WIDTH	230
	0.5	6.9.1	循环参数	231
		0.5.1	1日で100000000000000000000000000000000000	231
	6.10	循环420	6MEASURE RIDGE WIDTH	234
		6.10.1	循环参数	235
	6.11	循环427	7MEASURE COORDINATE	237
		6.11.1	循环参数	239
C 12 GITARONAFAC DOLT HOLE CON		紙IT/10/	OMEAS. BOLT HOLE CIRC	242
	0.12			
		6.12.1	循环参数	244
	6.13	循环43	1MEASURE PLANE	247
		6.13.1	循环参数	249

6	.14 绪	扁程举例	列		251
	6.	14.1	举例:	测量和修复加工矩形凸台	251
	6.	14.2	举例:	测量矩形型腔并记录结果	253

7	探测	循环:特	殊功能	255
	7.1	基础知识	Ŗ	256
		7.1.1	概要	256
	7.2	循环3№	IEASURING	257
		7.2.1	循环参数	258
	7.3	循环4M	EASURING IN 3-D	259
		7.3.1	循环参数	261
	7.4	循环44	1PROBING IN 3-D	262
		7.4.1	循环参数	265
	7.5	循环44	LFAST PROBING	267
		7.5.1	循环参数	268
	7.6	循环14	33EXTRUSION PROBING	269
		7.6.1	循环参数	271

8	探测	循环:校	准	273
	8.1	基础知识	Ţ	274
		8.1.1	概要	274
		8.1.2	校准触发式测头	275
		8.1.3	显示校准值	275
	8.2	循环46	1TS CALIBRATION OF TOOL LENGTH	276
		8.2.1	循环参数	277
	8.3	循环462	2CALIBRATION OF A TS IN A RING	278
		8.3.1	循环参数	279
	8.4	循环46	STS CALIBRATION ON STUD	280
		8.4.1	循环参数	281
	8.5	循环460	OCALIBRATION OF TS ON A SPHERE (选装项17)	282
		8.5.1	循环参数	285

9	探测循环:运动特性自动测量			287
	0.1	tt ruken)	T / / # # T 4 0)	200
	9.1		只(选装项48)	288
		9.1.1	概要	288
		9.1.2	基础知识	289
		9.1.3	要求	290
		9.1.4	注意	290
	9.2	循环450	DSAVE KINEMATICS (选装项48)	291
		9.2.1	循环参数	293
		9.2.2	日志功能	294
	9.3	ÆIT A E '	1MEASURE KINEMATICS (选装项48)	294
	9.5			
		9.3.1	定位方向	295
		9.3.2	带鼠牙盘连接轴的机床	296
		9.3.3	计算A轴测量位置举例:	296
		9.3.4	测量点数的选择	296
		9.3.5	基准球在机床工作台上位置的选择	297
		9.3.6	有关不同校准方式的说明	297
		9.3.7	精度说明	297
		9.3.8	有关不同校准方式的说明	298
		9.3.9	反向间隙	298
		9.3.10	注意	299
		9.3.11	循环参数	300
		9.3.12	其它模式(Q406)	304
		9.3.13	日志功能	306
	9.4	循环452	2PRESET COMPENSATION (选装项48)	306
		9.4.1	循环参数	309
		9.4.2		312
		9.4.3		314
		9.4.4	日志功能	316
	9.5	ÆIT A E :	3(运动特性网格)(选装项48),(选装项52)	317
	9.5			
		9.5.1	其它模式(Q406)	318
		9.5.2	基准球在机床工作台上位置的选择	318
		9.5.3	注意	319
		9.5.4	循环参数	320
		9.5.5	日志功能	321

10	探测	盾环:自	动刀具测量	323
	10.1	基础知识	<u></u>	324
		10.1.1	概要	324
		10.1.2	循环30至33和循环480至483的差异	324
		10.1.3	设置机床参数	325
		10.1.4	刀具表中的铣削和车削刀具表项	326
	10.2	循环30	或480CALIBRATE TT	327
		10.2.1	循环参数	328
	10.3	循环31	或481CAL. TOOL LENGTH	329
		10.3.1	循环参数	330
	10.4	循环32	或482CAL. TOOL RADIUS	331
		10.4.1	循环参数	333
	10.5	循环335	或483MEASURE TOOL	334
		10.5.1	循环参数	336
	10.6	循环484	1CALIBRATE IR TT	337
		10.6.1	循环参数	340
	10.7	循环48!	5MEASURE LATHE TOOL (选装项50)	340
		10.7.1	循环参数	344

11	特殊	循环		345
	11.1	基础知识	<u></u>	346
		11.1.1	概要	346
	11.2	循环13	(ORIENTATION	347
		11.2.1	循环参数	347

1

关于用户手册

1.1 目标用户群:用户

用户是指任何用数控系统执行以下任务之一的人员:

- 操作机床
 - 设置刀具
 - 设置工件
 - 加工工件
 - 程序运行期间排除可能的错误
- 编程和测试NC数控程序
 - 在数控系统上或用外部CAM系统编程NC数控程序
 - 用仿真模式测试NC数控程序
 - 程序测试期间排除可能的错误
- 本 "用户手册" 提供的信息深度需用户具有以下能力:
- 基础技术理解力,例如可读懂技术图纸和有空间想象力
- 金属加工基础知识,例如材质特有参数的含义
- 安全说明,例如可能的危险和危险避免方法
- 在机床上培训,例如轴向和机床配置

海德汉还为其它目标用户群提供单独的产品信息:

- 为潜在客户提供宣传册和产品线的概要介绍
- 为服务工程师提供服务手册
- 为机床制造商提供技术手册

此外,海德汉还为用户和换岗人员提供有关NC数控编程丰富的培训机会 HEIDENHAIN training portal

针对目标用户群,本"用户手册"仅提供有关数控系统操作和使用的信息。其它目标用户群的信息产品提供有关产品生产周期其它阶段的信息。

1.2 可用的用户文档

用户手册

海德汉将此信息产品称为"用户手册",与信息的输出版本或传输介质无关。相同含义的常用名还包括操作手册和操作说明。

数控系统的"用户手册"包括以下版本:

- 印刷版又被细分为以下多个模块:
 - **设置和运行** "用户手册" 提供有关设置机床和运行NC数控程序的全部信息。 ID: 1358774-xx
 - **编程和测试** "用户手册" 提供有关编程和测试NC数控程序的全部信息。不含探测和加工循环。

Klartext对话式编程的ID号: 1358773-xx

■ 加工循环 "用户手册" 提供有关加工循环的全部信息。

ID: 1358775-xx

- **工件和刀具测量循环** "用户手册" 提供有关探测循环的全部功能信息。 ID: 1358777-xx
- PDF格式文件的用户手册也被细分为与印刷版对应的文件,或整版PDF文件,其中包括全部内容模块

TNCguide

■ HTML文件格式的用户手册直接集成在数控系统的产品帮助功能TNCguide中 TNCguide

"用户手册"帮助用户根据数控系统的目标用途安全操作数控系统。

更多信息: "正确和预期操作", 26 页

用户的其它信息产品

为用户提供以下信息产品:

- **软件新功能和改进功能概要**提供有关特定软件版本的创新信息。 TNCguide
- 海德汉样本提供有关海德汉产品和服务信息,例如数控系统的软件选装项。 HEIDENHAIN brochures
- NC数控解决方案数据库提供常见任务的解决方案。 HEIDENHAIN NC solutions

1.3 所用的注意类型

安全注意事项

本手册和机床制造商的手册提供安全注意事项,请务必全面遵守! 注意事项是对操作本软件和设备危险情况的警告并提供避免危险的方法。根据危险的严重程度分为几类,其类型有:

▲危险

危险表示人员伤害的危险。 如果未遵守避免危险的说明要求,该危险将**导致人员死亡或严重伤害**。

▲警告

警告表示人员伤害的危险。如果未遵守避免危险的说明要求,该危险可能**导致人** 员死亡或严重伤害。

▲小心

小心表示人员伤害的危险。 如果未遵守避免危险的说明要求,该危险**可能导致人**员轻微或一定伤害。

注意

注意表示物体或数据危险。 如果未遵守避免危险的说明要求,该危险**可能导致人伤害之外的其它伤害,例如财产损失**。

注意事项内容的顺序

在所有注意事项中,含以下四个部分:

- 代表危险严重程度的表示词
- 危险类别和危险源
- 忽略危险的顺序,例如: "继续操作机床时存在碰撞危险"
- 躲避 预防危险的措施

提示信息

遵守这些说明中的提示信息,确保可靠和高效地使用本软件。 在这些说明中,提供以下提示信息:

信息符表示提示信息。

提示信息提供重要的补充或辅助信息。

该标志提示您需要遵守机床制造商的安全注意事项。该标志也表示特定机 床功能。机床手册提供有关危及操作人员和机床安全的可能危险。

书籍符代表交叉引用,引用外部文档,例如机床制造商或其它供应商的文 档。

是否发现任何错误或有任何修改建议?

我们致力于不断改进我们的文档手册。如果您有建议,请将您的建议发至以下电子 邮箱:

tnc-userdoc@heidenhain.de

1.4 有关使用NC数控程序的类型

本 "用户手册" 中的NC数控程序仅为解决方案的参考。在机床上使 用NC数控程序或个别NC数控程序块前,必须进行相应调整。

根据需要,修改以下内容:

- 刀具
- 切削参数
- 讲给谏率
- 第二安全高度或安全位置
- 机床特有位置,例如使用**M91**
- 程序调用的路径

部分NC数控程序取决于机床运动特性。首次测试运行前,根据机床运动特性,调整 这些NC数控程序。

此外,实际运行程序前,用仿真功能测试NC数控程序。

测试程序可确定NC数控程序是否可使用已有的软件选装项、当前机床运动 特性和当前机床配置。

1.5 联系编写人员

是否发现任何错误或有任何修改建议?

我们致力于不断改进我们的文档手册。如果您有建议,请将您的建议发至以下电子 邮箱:

tnc-userdoc@heidenhain.de

关于产品

2.1 TNC7

海德汉数控系统提供对话式编程功能和逼真的仿真功能。TNC7还提供图形化或表单式编程功能,因此,可快速和可靠达到期待的结果。

可用软件选装项和选配硬件扩展系统,灵活扩大功能范围和简化使用。

功能性改进是在铣削和钻削基础上提供更多功能,例如车削和磨削操作。

更多信息:编程和测试用户手册

提高易用性,例如使用测头、手轮或3D鼠标时。

更多信息:设置和程序运行用户手册

定义

缩写	定义
TNC	TNC 源自 CNC数控的缩写 (computerized numerical control)。 T (tip或touch)表示直接在数控系统上输入NC数控程序或用手势图形化编程。
7	产品号代表数控系统的代次。功能范围取决于激活的软件选装项。

2.2 正确和预期操作

有关正确和预期操作的信息可帮助用户安全使用产品,例如机床。 数控系统是机床上的一个部件,而不是完整机床。本"用户手册"介绍数控系统的 使用方法。使用机床前,包括数控系统前,阅读OEM厂商的文档,熟悉安全方面信息、必要的安全设备和人员资质的要求。

海德汉销售的数控系统设计用于配铣床和车床以及多达24轴的加工中心使用。如果用户的使用环境不同,立即联系机主。

海德汉还致力于另外增强用户安全性和产品安全性,主要是吸收客户的反馈意见。 例如,其结果是数控系统的功能调整和信息产品中的安全注意事项。

报告任何缺失或误导的信息,致力于积极提高安全性。

更多信息: "联系编写人员", 23页

2.3 目的操作地

依照DIN EN 50370-1标准有关电磁兼容性 (EMC)的要求,数控系统可在工业环境中使用。

定义

准则 定义			
住则	注 回(中ツ	
	/庄火リ	止 又	

DIN EN 此标准是有关机床干扰和抗干扰等方面的规定。

50370-1:2006-02

2.4 安全注意事项

本手册和机床制造商的手册提供安全注意事项,请务必全面遵守! 以下安全注意事项只适用于数控系统为单一的部件,而非特定的完整产品,例如机 床。

参见机床手册!

使用机床前,包括数控系统前,阅读OEM厂商的文档,熟悉安全方面信 息、必要的安全设备和人员资质的要求。

以下概要信息仅为一般性有效的安全注意事项。需注意其它安全注意事项,不同配 置的安全注意事项可能不同,并在后续章节中提供。

为确保达到最高安全性,本章内的相应处将重复全部安全注意事项。

▲ 危险

小心: 对用户有危险!

不安全的连接、故障电缆,不正确的使用都存在电气危险。一旦机床接通电源, 就有该危险!

- ▶ 只允许授权的服务工程师连接或断开本设备连接
- ▶ 只允许用相连的手轮或安全的连接开启机床

▲ 危险

小心:对用户有危险!

机床和机械部件始终存在机械危险。电场、磁场、电磁场对佩戴心脏起搏器或植 入体的人员特别危险。一旦机床接通电源,就有该危险!

- ▶ 阅读并遵守机床手册的要求
- ▶ 阅读并遵守安全注意事项和安全标志要求
- ▶ 使用安全装置

▲警告

小心:对用户有危险!

篡改数据记录或软件可导致机床发生意想不到的情况。恶意软件(病毒、木马、 恶意程序或蠕虫程序)可导致数据记录和软件的改变。

- ▶ 使用任何移动式存储设备前,必须检查其是否存在恶意软件
- 只能在沙箱内启动内部网页浏览器

注意

碰撞危险!

该数控系统不自动检查刀具与工件之间是否碰撞。不正确的预定位或工件之间不 充分间距都能在轴执行参考点会回零期间导致碰撞。

- ▶ 注意显示信息
- ▶ 根据需要,执行参考点回零前,移到安全位置
- ▶ 观察可能的碰撞

注意

碰撞危险!

数控系统用刀具表中所定义的刀具长度进行刀具长度补偿。不正确的刀具长度将导致不正确的刀具长度补偿。如果刀具长度为0和在TOOL CALL 0(刀具调用0)后,数控系统不执行刀具长度补偿或碰撞检查。后续刀具定位运动时,可能碰撞!

- ▶ 必须定义刀具的实际刀具长度(不能只定义差值)
- ▶ TOOL CALL 0 (刀具调用0)仅用于清空主轴

注意

碰撞危险!

在老型号数控系统上创建的NC数控程序在当前型号的数控系统上运行可导致意外轴运动或出错信息。加工期间碰撞危险!

- ▶ 用图形仿真功能检查NC程序或程序块
- ▶ 在**运行程序,单段方式**操作模式下,小心地测试NC程序或程序块
- ▶ 注意以下已知差异(下表可能不完整!)

注意

小心:数据可能消失!

删除功能永久删除该文件。删除前,数控系统不进行自动备份(例如,无回收站)。因此,文件被不可逆地删除。

▶ 定期将重要数据备份到外部驱动中

注意

小心:数据可能消失!

数据传输过程中,严禁断开USB设备的连接,否则数据将被损坏或删除!

- ▶ 仅将USB端口用于传输数据和备份数据;严禁用其编辑和执行NC程序
- ▶ 数据传输完成时,用软键断开USB设备的连接

注意

小心:数据可能消失!

必须关闭该数控系统,结束运行中进程并保存数据。关闭电源开关后,立即关闭该数控系统,无论该数控系统在何状态,都可导致数据丢失!

- ▶ 必须关闭数控系统
- ▶ 只能在显示屏提示关闭总开关时,才能将其关闭

注意

碰撞危险!

如果用**GOTO**功能在程序中选择NC数控程序段并执行NC数控程序,数控系统忽略全部以前编程的NC数控功能,例如变换。这就是说,后续进行行程运动中可能碰撞!

- ▶ 仅在编程和测试NC数控程序时使用GOTO功能
- ▶ 执行NC数控程序时,才使用**程序段扫描**

2.5 软件

本 "用户手册" 介绍的功能包括机床设置和编程以及NC数控程序运行的功能。这些功能是数控系统功能范围的一部分。

实际功能范围取决于激活的软件选装项等条件。

更多信息: "软件选装项", 30 页

表中信息为本 "用户手册" 介绍的NC数控软件版本号。

自NC数控软件16版开始,海德汉简化了版本模式:

- 发布时期决定版本号。
- 发布时期内的全部数控系统型号的版本号相同。
- 编程站的版本号对应于NC数控软件的版本号。

NC软件版本号	产品	
817620-16	TNC7	
817621-16	TNC7 E	
817625-16		

参见机床手册!

本 "用户手册"介绍数控系统的基本功能。机床制造商可调整、增强或限制机床上的数控系统功能。

请根据机床手册,检查机床制造商是否调整了数控系统的功能。

定义

出口版的数控系统。对于此版软件,软件选装项 能包2)被限制为4轴插补。

2.5.1 软件选装项

软件选装项决定数控系统的功能范围。选配功能可为机床特有或应用特有。软件选 装项可调整数控系统使其满足个性化需求。

可检查机床上数控系统激活的软件选装项。

更多信息:设置和程序运行用户手册

概要和定义

TNC7提供许多软件选装项,机床制造商可单独,甚至可后续激活其中的每一个选装项。以下概要信息仅提供适用于用户的软件选装项。

"用户手册"中所示的选装项编号表示标准功能范围中不提供的功能。 "技术手册"提供适用于机床制造商的其它软件选装项。

请注意,个别软件选装项还需要硬件扩展。

更多信息:设置和程序运行用户手册

 软件选装项	
附加轴 (选装项0至7)	附加控制环 每一个轴或主轴需要一个控制环,在数控系统控制下运动到编程的名义位置。
(220-20-1)	附加控制环用于其它目的,例如可分离和电动摆动工作台。
高级功能包1	高级功能(包1)
(选装项8)	对于配回转工作台的机床,此软件选装项允许在一次装夹中进行多个工件端面 的加工。
	此软件选装项含以下功能:
	■ 倾斜加工面,例如用 PLANE空间角 功能
	更多信息 :编程和测试用户手册
	■ 在圆柱体展开面上编程轮廓,例如用循环27 CYLINDER SURFACE
	更多信息: 加工循环用户手册
	■ 用M116功能和mm/min单位编程旋转轴进给速率
	更多信息: 编程和测试用户手册
	■ 倾斜的加工面3轴圆弧插补
	高级功能(包1)减轻设置操作和提高工件精度。
高级功能包2	高级功能(包2)
(选装项9)	在配旋转轴的机床上,此软件选装项支持5轴联动加工工件。
	此软件选装项含以下功能:
	■ TCPM (tool center point management):旋转轴定位期间,直线轴自动随动
	更多信息: 编程和测试用户手册
	■ 含矢量的NC数控程序的运行,包括选配的3D刀具补偿
	更多信息: 编程和测试用户手册
	■ 在当前刀具坐标系 T-CS 下手动运动轴
	■ 4轴以上直线插补(对于出口版,最多4轴)
	高级功能(包2)可加工自由曲面。

软件选装项	定义和应用
海德汉DNC	海德汉DNC
(选装项18)	此软件选装项支持外部Windows应用程序,通过TCP/IP协议访问数控系统的数据。
	可能的应用领域,例如:
	■ 连接上层ERP或MES系统
	■ 机床和工作数据采集
	使用外部Windows应用程序,需要海德汉DNC。
动态碰撞监测	动态碰撞监测(DCM)
(选装项40)	机床制造商可用此软件选装项将机床部件定义为碰撞对象。在全部机床运动 中,数控系统监测定义的碰撞对象
	此软件选装项含以下功能:
	■ 只要即将发生碰撞,自动中断程序运行。
	■ 手动轴运动情况下的报警
	■ "测试运行"模式下的碰撞监测
	使用动态碰撞监测(DCM)功能可避免碰撞,因此,可避免财产损失或机床停机造成的更多损失。
	更多信息: 设置和程序运行用户手册
CAD导入	CAD Import
(选装项42)	用此软件选装项可在CAD文件中选择位置和轮廓并将其导入 到NC数控程序中。
	使用CAD导入(CAD Import)选装项可减轻编程操作和避免常见失误,例如数据的不正确输入等。此外,CAD导入(CAD Import)功能支持无纸化生产。
	更多信息: 设置和程序运行用户手册
全局程序参数设置	全局程序参数设置GPS
(选装项44)	可用此软件选装项在程序运行期间叠加坐标变换和手轮运动,无需修 改NC数控程序。
	用GPS功能可调整机外编程的NC数控程序,使其适应机床情况和提高程序运行期间的灵活性。
	更多信息: 设置和程序运行用户手册
自适应进给控制	自适应进给控制AFC
(选装项45)	此软件选装项允许根据当前主轴负载自动调整进给。数控系统在负载减小时提 高进给速率,在负载提高时降低进给速率。
	使用AFC功能可缩短加工时间,无需调整NC数控程序,同时避免过载导致机床 损坏。
	更多信息: 设置和程序运行用户手册
KinematicsOpt	KinematicsOpt
(选装项48)	此软件选装项进行自动探测操作,检查和优化当前运动特性。
	数控系统使用KinematicsOpt功能可修正旋转轴位置误差,提高倾斜加工面情况下和联动加工情况下的加工精度。其中,数控系统频繁进行温度测量和修正,补偿温度相关的偏差。
	/

软件选装项	定义和应用
车削 (选装项50)	 铣车复合加工 此软件选装项为配回转工作台的铣床提供全面的铣削特有功能包。 此软件选装项含以下功能: 事削专用刀具 车削专用循环和轮廓元素,例如底切 自动刀具半径补偿
	铣车复合加工功能可在一台机床上执行铣削和车削操作,因此,可简化操作, 例如显著减少装夹操作。 更多信息: 编程和测试用户手册
KinematicsComp (选装项52)	KinematicsComp 此软件选装项进行自动探测操作,检查和优化当前运动特性。 数控系统用KinematicsComp功能可控制三维中的正确位置和工件误差。也就 是说可补偿旋转轴和直线轴在三维空间中的误差。相比KinematicsOpt(选装 项48),修正范围更全面。 更多信息: "循环453(运动特性网格)(选装项48),(选装项52)", 317页
DPC UA NC服务器 至6 (选装项56至61)	OPC UA NC服务器 此软件选装项提供OPC UA标准接口,允许外部访问数控系统的数据和功能。可能的应用领域,例如: ■ 连接上层ERP或MES系统 ■ 机床和工作数据采集 每个软件选装项分别激活一个客户端的连接。多路并行连接需要使用多个OPC UA NC服务器。 更多信息:设置和程序运行用户手册
 个附加轴 (选装项77)	增加4个控制环 参见 " 附加轴 (选装项0至7)"
3个附加轴 (选装项78)	增加8个控制环 参见 " 附加轴 (选装项0至7)"
BD-ToolComp (选装项92)	3D-ToolComp功能仅适用于与高级功能包2(选装项9)一起使用 此软件选装项允许用修正表自动补偿球头铣刀和工件测头的形状偏差。 3D-ToolComp功能可提高工件精度,例如自由曲面工件的精度。 更多信息:编程和测试用户手册
曾强型刀具管理 (选装项93)	增强型刀具管理 此软件选装项用两个表刀具列表和刀具使用顺序增强刀具管理功能。 此表显示以下内容: ■ 刀具列表显示待运行的NC数控程序或托盘的刀具要求 ■ 刀具使用顺序显示待运行的NC数控程序或托盘的刀具顺序 更多信息:设置和程序运行用户手册 增强型刀具管理功能可及时发现刀具要求,因此可避免程序运行期间中断运行。

软件选装项	定义和应用		
高级主轴插补 (选装项96)	主轴插补 此软件选装项关联刀具主轴与直线轴,支持插补车削。 此软件选装项含以下循环: ■ 循环291 COUPLG.TURNG.INTERP.可进行简单车削操作,无需轮廓子程序 ■ 循环292 CONTOUR.TURNG.INTRP.可精加工旋转对称轮廓 插补主轴也允许在无回转工作台的机床上执行车削操作。		
主轴同步 (选装项131)	更多信息:加工循环用户手册 主轴同步 此软件选装项可同步两个或多个主轴,因此,支持更多加工,例如滚齿加工齿轮。 此软件选装项含以下功能: ■ 主轴同步可进行特殊加工操作,例如多边形车削 ■ 循环880 GEAR HOBBING必须与铣车复合加工(选装项50)一起使用更多信息:加工循环用户手册		
远程桌面管理器 (选装项133)	远程桌面管理器 此软件选装项可显示和操作机外连接的计算机。 远程桌面管理器可缩短多个不同工作区间的距离,因此可提高工作效率。 更多信息:设置和程序运行用户手册		
动态碰撞监测v2 (选装项140)	动态碰撞监测(DCM)v2版 此软件选装项含软件选装项40(动态碰撞监测,DCM)的功能。 此外,此软件选装项可监测工件夹具的碰撞情况。 更多信息:设置和程序运行用户手册		
关联轴补偿 (选装项141)	关联轴补偿CTC 机床制造商用此软件选装项可改善加工,例如补偿加速度导致的刀具偏差,因 此,可提高精度和动态性能。		
位置自适应控制 位置自适应控制PAC 选装项142) 机床制造商用此软件选装项可改善加工,例如补偿位置导致的刀 此,可提高精度和动态性能。			
负载自适应控制 (选装项143)	负载自适应控制LAC 机床制造商用此软件选装项可改善加工,例如补偿负载导致的刀具偏差,因 此,可提高精度和动态性能。		
运动自适应控制 (选装项144)	运动自适应控制MAC 机床制造商用此软件选装项可改善加工,例如调整速度相关的机床设置,因 此,可提高动态性能。		
有效振颤控制 (选装项145)			
机床振动控制 (选装项146)	抑制机床振动MVC 用以下功能抑制机床振动,提高工件表面质量: ■ AVD 动态减振 ■ FSC 频率整形控制		

软件选装项	定义和应用
CAD模型优化(选装	CAD模型的优化
项152)	例如可用此软件选装项修复夹具和刀柄的不正确文件,或为不同加工操作将仿 真生成的STL文件移动位置。
	更多信息: 设置和程序运行用户手册
加工批次管理器 (选装项154)	加工批次管理器BPM 使用此软件选装项可轻松安排和执行多个生产任务的生产计划。
	如果扩展和组合使用托盘管理和增强型刀具管理(选装项93)功能,BPM还提供以下附加数据,例如:
	■ 加工时间 ■ 所需刀具的可用性
	■ 需要的手动操作
	■ 而安切于初深[F ■ 所分配NC数控程序的程序测试结果
	■ M力能NC数控性序的性序测点与来 更多信息: 编程和测试用户手册
4n til 1164nd	
部件监测 (选装项155)	部件监测
(远表项133)	此软件选装项可自动监测机床制造商配置的机床部件。
	部件监测功能在数控系统上显示危险报警和出错信息,帮助数控系统避免机床 因过载而损坏。
磨削	坐标磨削
(选装项156)	此软件选装项为铣床提供全面的磨削特有功能包。
	此软件选装项含以下功能:
	■ 磨削特有刀具,包括修整刀
	■ 往复运动和修整循环
	坐标车削加工功能可在一台机床上进行完整加工,因此,可简化操作,例如显 著减少装夹操作。
	更多信息: 编程和测试用户手册
齿轮切削	齿轮加工
(选装项157)	此软件选装项可生产圆柱齿轮或任何倾斜角的斜齿轮。
	此软件选装项含以下循环:
	■ 循环285 DEFINE GEAR, 定义齿轮几何
	■ 循环286 GEAR HOBBING
	■ 循环287 GEAR SKIVING
	齿轮加工可增加配回转工作台铣床的功能范围,甚至无需铣车复合加工功 能(选装项50)。
	更多信息: 加工循环用户手册
 车削v2	铣车复合加工v2
(选装项158)	此软件选装项含铣车复合加工(软件选装项50)的全部功能。
	此外,此软件选装项还提供以下高级车削功能:
	■ 循环882 SIMULTANEOUS ROUGHING FOR TURNING
	■ 循环883 TURNING SIMULTANEOUS FINISHING
	高级车削功能不仅可加工底切工件,还能在加工操作中使用可转位刀片的大部分切削区。
	更多信息: 加工循环用户手册

软件选装项	定义和应用
精优轮廓铣削 (选装项167)	精优轮廓加工(OCM) 此软件选装项可用摆线铣削方式加工任何形状的封闭式或开放式型腔和轮廓。 摆线铣削期间,全切削刃在不变的切削条件下加工。 此软件选装项含以下循环: ■ 循环271 OCM CONTOUR DATA ■ 循环272 OCM ROUGHING ■ 循环273 OCM FINISHING FLOOR和循环274 OCM FINISHING SIDE ■ 循环277 OCM CHAMFERING ■ 此外,数控系统为常用轮廓提供OCM 图形 使用OCM可缩短加工时间,同时减少刀具磨损。
过程监测 (选装项168)	更多信息:加工循环用户手册 过程监测 基于基准的加工过程监测 数控系统用此软件选装项在程序运行期间监测已定义的加工部分。数控系统比较有关刀具主轴或刀具与基准加工操作数据间的差异。 更多信息:设置和程序运行用户手册

2.5.2 特性内容等级

数控软件的新功能或功能提升可能受到软件选装项或特性内容等级的保护。 购买新数控系统时,收到的安装后软件为FCL的最高等级。后续的软件更新,例如需 要检修服务时,并不自动提高FCL版本。

在此时,尚无任何受特性内容等级保护的功能。如果未来将功能保 护,"用户手册"将被保护的功能用标识符FCL n表示。n表示所需 的FCL版本号。

2.5.3 关于许可证和使用

开源软件

数控系统含开源软件,其使用受明示的许可条件约束。这些特殊使用条件优先。

在数控系统上提供许可条件信息:

 \bigcirc

▶ 选择**主页**操作模式

▶ 选择Settings应用

▶ 选择操作系统选项卡

(OS)

▶ 双击或双点关于HeROS

> 数控系统打开HEROS许可证阅读器窗口。

OPC UA

数控软件含二进制库,也适用海德汉与Softing Industrial Automation GmbH商定 的使用条件且优先适用。

可用OPC UA NC服务器(选装项56至61)和海德汉DNC(选装项18)影响数控系 统的运行行为。将这些接口用于生产性目的前,必须进行系统测试,排除数控系统 任何可能的异常或功能失效。使用这些通信接口的软件生产商负责进行这些测试。

更多信息:设置和程序运行用户手册

2.6 比较TNC 640与TNC7

下表提供TNC 640与TNC7之间的主要差异。

操作模式

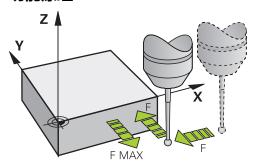
操作模式	TNC 640	TNC7
手动操作	独立的手动操作操作模式执行手动探测循环打开预设表和刀具表关闭数控系统	 手动操作模式下的手动操作模式 在设置应用中执行手动探测循环 在表操作模式下打开表 在主页操作模式下关闭数控系统 可在手动操作模式应用中进行刀具调用
电子手轮	独立的 电子手轮 操作模式	手动操作模式 应用中的 手轮 开关
手动数据输入定 位	独立的 手动数据输入定位 操作模式	手动 操作模式下的 MDI 应用
运行程序, 单段方 式	独立的 运行程序, 单段方式 操作模式	程序运行 操作模式下的 Single block 开 关
运行程序, 自动方 式	独立的 运行程序, 自动方式 操作模式	程序运行 操作模式
编程	■ 编程 操作模式	■ 程序编辑 操作模式
	■ 程序 图形 中分屏布局下的编程图形	乾廓图形工作区,进行轮廓的导入、 绘制和导出
试运行	试运行 操作模式	程序编辑、手动 和 程序运行 操作模式下 的 仿真 工作区

对于TNC7,数控系统的操作模式划分与TNC 640数控系统的不同。为保持兼容性和便于操作,键盘上的按键保持相同。请注意不同,例如,特定按键不再激活操作模式切换,而是激活开关。

更多信息:编程和测试用户手册 **更多信息**:设置和程序运行用户手册

功能

功能	TNC 640	TNC7
程序编辑和程序运行	 程序编辑和执行Klartext对话式、ISO和FK程序 用键盘插入定位程序段 用软键插入NC数控功能和循环 文本编辑器中编程指令 	 程序编辑和执行Klartext对话式程序 程序编辑和执行ISO和FK程序 表单中修改NC数控功能 导入和绘制轮廓,包括FK 导出轮廓 用键盘、软键盘或键盘工作区插入定位程序段 用插入 NC功能按钮插入NC数控功能和循环 文本编辑器中编程指令
文件管理	在操作模式下,按下 PGM MGT 按键, 将其打开	文件 操作模式和 打开文件 工作区
表	在数控系统中指定的位置打开各独立表	独立的 表 操作模式,可在此操作模式下 打开数控系统的表并根据需要修改
MOD功能	调整MOD菜单的设置	调整 主页 操作模式下 设置 应用中的设置


功能	TNC 640	TNC7
计算器	■ 用软键将数据从对话框中读取或将数据转到对话框中	■ 将数据复制到剪贴板中或从剪贴板中 粘贴
	■ 应用轴值	■ 还原历史计算值
状态显示	■ 在机床操作模式下,始终显示常规状态栏和位置显示区	■ 常规状态栏和位置显示区在 位置 工作 区
	■ 在分屏布局 状态 下的附加状态栏	■ 附加状态栏在状态工作区■ 状态概要和可选位置显示区在控制栏

3

使用探测循环

3.1 探测循环的一般信息

3.1.1 功能原理

探测功能可设置工件预设点、测量工件、确定和补偿工件不对正量。

数控系统运行探测循环时,3-D测头沿一个直线轴接近工件。这也适用于当前基本旋转或倾斜加工面有效时。机床制造商将用机床参数确定探测进给速率。

更多信息: "开始使用探测循环前!", 48 页

测针接触工件时,

- 3-D测头为数控系统传输信号:保存探测位置的坐标,
- 测头停止运动,并且
- 用快移速度返回起点位置。

如果在已定义的距离内测针未偏离自由位置,该数控系统显示出错信息(距离:探测表中的 ${f DIST}$ (距离)值)。

相关主题

- 手动探测循环
- 预设表
- 原点表
- 参考坐标系
- 预分配的变量

更多信息:设置和程序运行用户手册

要求

■ 校准工件测头

更多信息: "探测循环:校准", 273页 **更多信息:** "探测循环:校准", 273页

如果使用海德汉触发式测头,自动激活软件选装项17(探测功能)。

3.1.2 注意

要使用测头,机床制造商必须对数控系统进行特别准备。 正在执行探测功能时,数控系统暂时取消**高级机床设置**。

海德汉只保证使用海德汉测头时探测循环正常工作。

3.1.3 手动操作模式和电子手轮模式的探测循环

在手动操作模式下的设置应用中,数控系统的探测循环可:

- 设置预设点
- 探测角度
- 探测位置
- 校准测头
- 测量刀具

更多信息:设置和程序运行用户手册

3.1.4 自动操作的探测循环

数控系统不仅提供手动探测循环,还提供许多循环,可在自动操作下的大量不同应用中使用:

- 工件不对正量的自动测量
- 预设点的自动确定
- 自动检查工件
- 特殊功能
- 测头校准
- 自动运动特性测量
- 自动测量刀具

定义探测循环

类似于大多数最新的加工循环,探测循环用400以上编号的Q参数为传递参数。数控系统在多个循环中使用的相同功能的参数编号始终相同:例如Q260始终分配给第二安全高度,Q261始终为测量高度等。

可用不同的方法定义探测循环。可用程序编辑操作模式编程探测循环。

插入NC数控功能:

- ▶ 选择插入NC功能
- > 数控系统打开**插入NC功能**窗口。
- ▶ 选择所需循环
- > 数控系统启动对话并提示输入全部需要的输入值。

用TOUCH PROBE (测头)按键插入:

TOUCH PROBE

- ▶ 选择**测头**软键
- > 数控系统打开**插入NC功能**窗口。
- ▶ 选择所需循环
- > 数控系统启动对话并提示输入全部需要的输入值。

循环中浏览

按键	功能
•	循环内浏览:
	跳转到下个参数
•	循环内浏览:
	跳转到上个参数
v	跳转到下个循环的同一个参数
A .	跳转到上个循环的同一个参数

数控系统在操作栏或表单中提供选择可选项,用其选择不同的循环。

循环输入表单

数控系统提供**形状**功能,用其输入不同的功能和循环。可用**形状**输入不同的指令元素,也能在表单中输入循环参数。

数控系统在**形状**中根据参数功能,将循环参数分为多个参数组,例如几何、标准、高级、安全。数控系统为不同循环参数提供不同的选择方式,例如用开关选择。数控系统用彩色显示当前修改的循环参数。

定义全部要求的循环参数后,可确认输入和结束循环。

打开表单:

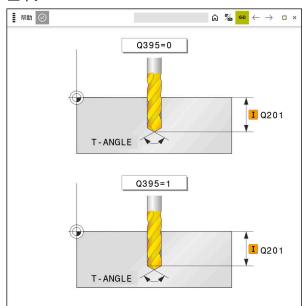
- ▶ 打开**程序编辑**操作模式
- ▶ 打开程序工作区

▶ 用标题栏选择形状

如果输入无效,数控系统在指令元素前显示信息符。选择信息符时,数控系统显示有关此错误的信息。

更多信息:设置和程序运行用户手册

HEIDENHAIN | TNC7 | 工件和刀具测量循环用户手册 | 01/2022


帮助图形

修改循环时,数控系统显示当前Q参数的帮助图形。帮助图形的尺寸取决于**程序**工作区的大小。

数控系统在工作区的右侧边显示帮助图形,或在顶部或底边显示。帮助图形位于一半的位置,无光标。

点击帮助图形时,数控系统将帮助图形最大化。

如果**Help**工作区已激活,数控系统将在此位置显示帮助图形,而不显示在**程序**工作区中。

Help工作区提供循环参数的帮助图形

3.1.5 可用的循环组

加工循环

循环组 更多信息

钻孔/螺纹

■ 钻孔,铰孔

■ 镗孔

■ 锪孔,定中心

■ 攻丝或螺纹铣削

型腔/凸台/槽

■ 型腔铣削

■ 凸台铣削

■ 槽铣削

■ 端面铣削

坐标变换

■ 镜像

■ 旋转

■ 放大 / 缩小

SL循环

■ SL(子轮廓列表)循环用于加工可由多个子轮 廓组成的轮廓

■ 圆柱面加工

■ OCM (精优轮廓铣削)循环用于将子轮廓合并为复杂轮廓

阵列点

■ 螺栓孔圆

■ 直线阵列孔

■ Data Matrix二维码

更多信息:加工循环用户

更多信息:加工循环用户

更多信息:加工循环用户

更多信息:加工循环用户

更多信息:加工循环用户

手册

手册

手册

手册

手册

车削循环

■ 局部切除循环,纵向和横向

■ 退刀槽车削循环,径向和轴向

■ 切槽循环,径向和轴向

■ 螺纹切削循环

■ 联动车削循环

■ 特殊循环

更多信息:加工循环用户

手册

循环组	更多信息
特殊循环	
■ 停顿时间	更多信息: 加工循环用户
■ 程序调用	手册
■ 公差	
■ 主轴定向	
■ 雕刻	
■ 齿轮循环	
■ 插补车削	

测量循环

循环组	更多信息
旋转	
■ 平面、边、两圆、斜边探测	53 页
■ 基本旋转	
■ 两孔或凸台	
■ 通过旋转轴	
■ 通过C轴	
预设/位置	
■ 矩形,内或外	115 页
■ 圆形,内或外	
■ 角点,内或外	
螺栓孔圆中心,槽或凸台探测轴或单轴	
■ 四孔	
测量	
■ 角度	197 页
■ 圆形 , 内或外	
■ 矩形,内或外	
■ 槽或凸台	
■ 螺栓孔圆	
■ 平面或坐标	
特殊循环	
■ 测量或3D测量	255 页
■ 3D探测	
■ 快速探测	
校准测头	
■ 校准长度	273 页
■ 环规校准	
■ 量杆校准	
■ 球体校准	
测量运动特性	
■ 保存运动特性	287 页
■ 测量运动特性	
■ 预设点补偿	
■ 运动特性网格	
测量刀具(TT)	
■ 校准TT	323 页
■ 刀具长度、半径或完整测量	

■ 校准IR-TT ■ 车削刀具测量

3.2 开始使用探测循环前!

3.2.1 一般信息

在探测表中,定义安全高度,例如,距定义的触点(或距循环计算的触点)的距离,数控系统预定位测头。输入的数据越小,定义触点位置的精度必须越高。在大多数探测循环中,还可定义安全高度,将其与探测表中的安全高度相加。

探测表中可定义以下信息:

- 刀具类型
- 测头中心偏移
- 校准期间主轴角度
- 探测进给速率
- 探测循环中的快移速率
- 最大测量范围
- 安全高度
- 预定位进给速率
- 测头定向
- 序列号
- 碰撞时的响应

更多信息:设置和程序运行用户手册

3.2.2 执行探测循环

所有探测循环全部为定义生效。数控系统一旦在程序运行中读取到循环定义,自动运行该循环。

定位规则

400至499或1400至1499编号的探测循环用以下定位规则预定位测头:

- 如果测针尖的当前坐标小于第二安全高度的坐标(如循环中的定义),数控系统 首先沿探测轴使测头退至第二安全高度处,然后再定位至加工面上的第一触点位 置。
- 如果测针头的当前坐标大于第二安全高度的坐标,数控系统首先将测头在加工面上移到第一触点位置,然后沿探测轴将测头直接移到安全高度位置。

注意

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。

- ▶ 在探测循环前,不允许激活以下循环:循环7 DATUM SHIFT、循环8 MIRROR IMAGE、循环10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。

注意

碰撞危险!

执行探测循环444和14xx时,不能激活任何坐标变换(例如,循环8 MIRROR IMAGE、11 SCALING、26 AXIS-SPEC. SCALING、(镜像变换)。

▶ 循环调用前,重置任何坐标变换。

- 请注意,测量日志和返回参数中的尺寸单位取决于主程序。
- 探测循环40x至43x将在循环开始时重置当前基本旋转。
- 数控系统将基本变换视为基本旋转,将偏移视为工作台旋转。
- 只要机床配回转工作台轴,其方向垂直于工件坐标系W-CS,可旋转工作台补偿工件不对正量。

关于机床参数的说明

■ 根据可选机床参数chkTiltingAxes (204600号)的设置,数控系统在探测期间检查旋转轴的位置与倾斜角(3-D旋转)的相符性。如果不符,数控系统显示出错信息。

3.3 循环的程序默认值

3.3.1 输入GLOBAL DEF(全局定义)的定义

插入 NC功能

- ▶ 选择插入NC功能
- > 数控系统打开**插入NC功能**窗口。
- ▶ 选择GLOBAL DEF(选择循环)
- ▶ 选择需要的GLOBAL DEF(全局定义)功能,例如100 GENERAL
- ▶ 输入需要的定义

3.3.2 使用GLOBAL DEF (全局定义)信息

如果在程序起点处输入相应的GLOBAL DEF(全局定义)功能,可在任何循环定义时引用这些全局有效值。

执行以下操作:

插入 NC功能

- ▶ 选择插入NC功能
- > 数控系统打开**插入NC功能**窗口。
- ▶ 选择和定义GLOBAL DEF
- ▶ 再次选择插入NC功能
- ▶ 选择需要的循环,例如200 DRILLING
- > 如果循环中含全局循环参数,数控系统在操作栏或表单的选择菜单中叠加显示可选项PREDEF。

PREDEF

- ▶ 选择PREDEF
- > 然后,数控系统在循环定义中输入字PREDEF(预定义)。创建与程序开始处定义的相应GLOBAL DEF(全局定义)参数的链接。

注意

碰撞危险!

如果使用GLOBAL DEF(全局定义)功能修改程序设置,其修改将影响整个NC数控程序。这可能导致加工顺序的重大变化。

- ▶ 必须谨慎地使用GLOBAL DEF(全局定义)功能。执行数控程序前,仿真数控程序
- ▶ 如果在循环中输入固定值,全局定义功能不能将其改变。

3.3.3 各处全部有效的全局数据

该参数适用于全部2xx加工循环以及循环880、 1017、1018、1021、1022、1025和探测循环451、452、453

帮助图形参数

Q200 安全高度?

刀尖与工件表面间的距离。 该值提供增量效果。

输入: 0...99999.9999

Q204 第二个调整间隙?

测头与工件(夹具)间在刀具轴上的距离,在此距离无碰撞

危险。 该值提供增量效果。 输入: **0...99999.9999**

Q253 预定位的进给率?

数控系统在循环内运动刀具的进给速率。 输入: 0...99999.999 或FMAX, FAUTO

Q208 退出的进给率?

数控系统退刀的退刀速率。

输入: 0...99999.999 或FMAX, FAUTO

举例

11 GLOBAL DEF 100 GENERAL ~		
Q200=+2	;SET-UP CLEARANCE ~	
Q204=+50	;2ND SET-UP CLEARANCE ~	
Q253=+750	;F PRE-POSITIONING ~	
Q208=+999	;RETRACTION FEED RATE	

3.3.4 探测功能全局数据

此参数适用于全部探测循环4xx和14xx以及循环271、286、287、880、1021、1022、1025、1271、1272、1273、1278

帮助图形参数

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动 1:在测量点之间,在第二安全高度处运动

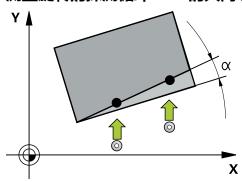
输入:0,1

举例

11 GLOBAL DEF 120 PROBING ~		
Q320=+0	;SET-UP CLEARANCE ~	
Q260=+100	;CLEARANCE HEIGHT ~	
Q301=+1	;MOVE TO CLEARANCE	

探测循环:工件不对 正量的自动测量

4.1 概要



要使用测头,机床制造商必须对数控系统进行特别准备。海德汉只保证使用海德汉测头时探测循环正常工作。

循环		调用	更多信息
1420	PROBING IN PLANE	DEF定义生效	64 页
	■ 用三点自动测量■ 用基本旋转或回转工作台旋转进行补偿		
1410	PROBING ON EDGE	 DEF定义生效	
	■ 用两点自动测量	,, ,,	
	■ 用基本旋转或回转工作台旋转进行补偿		
1411	PROBING TWO CIRCLES	DEF定义生效	77 页
	■ 用两个孔或凸台自动测量		
	■ 用基本旋转或回转工作台旋转进行补偿		
1412	INCLINED EDGE PROBING	DEF定义生效	85 页
	■ 用斜边上的两点自动测量		
	■ 用基本旋转或回转工作台旋转进行补偿		
400	BASIC ROTATION	DEF定义生效	92 页
	■ 用两点自动测量		
	■ 用基本旋转补偿		
401	ROT OF 2 HOLES	DEF定义生效	95 页
	■ 用两个孔自动测量 ■ 用基本旋转补偿		
402	ROT OF 2 STUDS	DEF定义生效	
402	■ 用两个凸台自动测量	DLIÆX±XX	30 <u>M</u>
	■ 用基本旋转补偿		
403	ROT IN ROTARY AXIS	DEF定义生效	 103 页
	■ 用两点自动测量		
	■ 用回转工作台旋转补偿		
405	ROT IN C-AXIS	DEF定义生效	108页
	■ 自动找正孔心与正Y轴间的角度偏移		
	■ 用回转工作台旋转补偿		
404	SET BASIC ROTATION	DEF定义生效	112页
	■ 设置任何基本旋转		

4.2 探测循环14xx的基础知识

4.2.1 测量旋转的探测循环14xx的共同功能

该循环可确定旋转并包括:

- 当前机床运动特性的考虑
- 半自动探测
- 公差的监测
- 3-D校准的考虑
- 同时测量旋转和位置

编程注意事项:

- 探测位置相对I-CS坐标系下编程的名义坐标。
- 有关这些名义位置,参见图纸。
- 循环定义前,必须编程一个刀具调用功能以定义测头轴。

术语说明

标识	简要说明
名义位置	图纸中位置(例如,孔位)
名义尺寸	图纸中尺寸(例如,孔径)
实际位置	被测位置(例如,孔位)
实际尺寸	被测尺寸(例如,孔径)
I-CS	I-CS: 输入坐标系
W-CS	
	W-CS: 工件坐标系
对象	被探测对象:圆、凸台、平面和棱边

表面法向矢量

评估 - 预设点:

- 如果要在连续的加工面中探测对象或在TCPM已激活情况下探测对象,可在预设表中将需要的任何平移操作编程为基本坐标变换。
- 可将旋转写入预设表的基本变换,也即基本旋转或从工件方向看相对回转工作台 轴的轴向偏移。

使用注意事项:

- 在探测时,将考虑现有的3-D校准数据。如果这些校准数据不存在,偏差可为结果。
- 如果要旋转测量值,在此之外还需要使用位置测量值,如果可能,必须确保垂直于表面进行探测。角度误差越大和球头半径越大,定位误差越大。如果初始倾斜位置的角度误差太大,可能导致相应的位置误差。

日志记录:

测量结果记录在TCHPRAUTO.html文件中和保存在循环编程的Q参数中。

测量偏差是实际测量值与平均公差值之间的差值。如果未指定公差,是指名义尺寸。

主程序尺寸单位位于日志的头部。

4.2.2 半自动模式

如果相对当前原点的探测位置未知,可用半自动模式执行该循环。在该模式下,进行探测操作前,手动预定位到起点位置。

为此,在需要的名义位置数据前输入"?"。可选择操作栏中的**名称**指令进行此操作。根据对象情况,需要定义名义位置,由其确定探测方向,参见"举例"。

根据对象情况,需要定义名义位置,由其确定探测方向,

举例:

- 参见 "用两孔对正", 58 页
- 参见 "用边找正", 59 页
- 参见 "用平面找正", 60 页

循环顺序

执行以下操作:

- ▶ 运行循环
- > 数控系统解释NC数控程序。
- > 窗口打开。
- 用轴向按键将测头定位在需要的触点位置 或者
- ▶ 用电子手轮将测头定位在需要的点位
- ▶ 根据需要,在窗口中调整探测方向
- ▶ 选择NC start (NC开始)按键
- > 数控系统关闭窗口并执行第一次探测操作。
- > 如果CLEAR. HEIGHT MODE Q1125 = 1或2,数控系统在FN 16选项卡上、状态工作区打开文字信息,说明无法在这里使用运动到第二安全高度模式。
- ▶ 将刀具移到安全位置

口

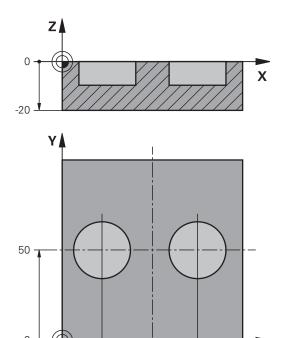
- ▶ 选择NC start (NC开始)按键
- 循环或程序恢复执行。然后,可能需要重复整个操作,探测其它触点。

注意

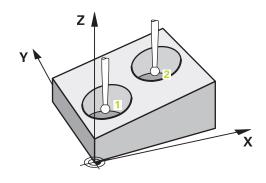
碰撞危险!

在半自动模式下,数控系统将忽略运动到第二安全高度的编程值1和2。根据测头 的位置,可能发生碰撞。

▶ 在半自动模式下,每次探测操作后,运动到第二安全高度。


编程和操作说明:

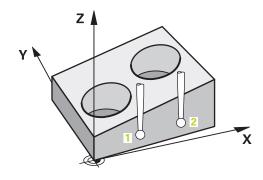
- 有关这些名义位置,参见图纸。
- 半自动模式仅在机床操作模式下运行,无法在仿真模式下执行。
- 如果在任何方向上都没有为测头定义名义位置,数控系统输出出错信 息。
- 如果未定义单方向的名义位置,在探测对象后,数控系统将采集实际位 置值。这就是说,其后的实际测量值将用作名义位置。结果是,该位置 无偏差,因此无位置补偿。


举例

重要提示:指定图纸中的名义位置!

在以下三个举例中,将用该图纸的名义位置。

用两孔对正

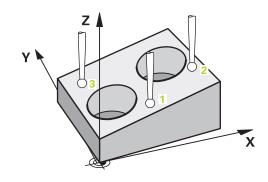

在该举例中,将找正两个孔。沿X轴(基本轴)探测和沿Y轴(辅助轴)探测。也就是说,必须定义这些轴在图纸上的名义位置!由于不测量Z轴,因此不需要定义Z轴的名义位置(刀具轴)。

Χ

- QS1100 = 定义了基本轴上的名义位置1,但工件位置未知
- QS1101 = 定义了辅助轴上的名义位置1,但工件位置未知
- **QS1102** = 刀具轴上的名义位置1未知
- QS1103 = 定义了基本轴上的名义位置2,但工件位置未知
- QS1104 = 定义了辅助轴上的名义位置2,但工件位置未知
- **QS1105** = 刀具轴上的名义位置2未知

11 TCH PROBE 1411 PROBING TWO CIRCLES ~		
QS1100= "?30"	;1ST POINT REF AXIS ~	
QS1101= "?50"	;1ST POINT MINOR AXIS ~	
QS1102= "?"	;1ST POINT TOOL AXIS ~	
Q1116=+10	;直径 1 ~	
QS1103= "?75"	;2ND POINT REF AXIS ~	
QS1104= "?50"	;2ND POINT MINOR AXIS ~	
QS1105= "?"	;2ND POINT TOOL AXIS ~	
Q1117=+10	;DIAMETER 2 ~	
Q1115=+0	;GEOMETRY TYPE ~	
Q423=+4	;NO. OF PROBE POINTS ~	
Q325=+0	;STARTING ANGLE ~	
Q1119=+360	;ANGULAR LENGTH ~	
Q320=+2	;SET-UP CLEARANCE ~	
Q260=+100	;CLEARANCE HEIGHT ~	
Q1125=+2	;CLEAR. HEIGHT MODE ~	
Q309=+0	;ERROR REACTION ~	
Q1126=+0	;ALIGN ROTARY AXIS ~	
Q1120=+0	;TRANSER POSITION ~	
Q1121=+0	;CONFIRM ROTATION	

用边找正



在该举例中,将找正棱边。沿Y轴探测(辅助轴)。也就是说,必须定义这些轴在 图纸上的名义位置!由于将不测量X轴(基本轴)和Z轴(刀具轴)方向上的名义位 置,因此,不需要这些数据。

- QS1100 = 基本轴上的名义位置1未知
- QS1101 = 定义了辅助轴上的名义位置1,但工件位置未知
- QS1102 = 刀具轴上的名义位置1未知
- QS1103 = 基本轴上的名义位置2未知
- QS1104 = 定义了辅助轴上的名义位置2,但工件位置未知
- **QS1105** = 刀具轴上的名义位置2未知

11 TCH PROBE 1410 PROBING ON EDGE ~		
QS1100= "?"	;1ST POINT REF AXIS ~	
QS1101= "?0"	;1ST POINT MINOR AXIS ~	
QS1102= "?"	;1ST POINT TOOL AXIS ~	
QS1103= "?"	;2ND POINT REF AXIS ~	
QS1104= "?0"	;2ND POINT MINOR AXIS ~	
QS1105= "?"	;2ND POINT TOOL AXIS ~	
Q372=+2	;PROBING DIRECTION ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q260=+100	;CLEARANCE HEIGHT ~	
Q1125=+2	;CLEAR. HEIGHT MODE ~	
Q309=+0	;ERROR REACTION ~	
Q1126=+0	;ALIGN ROTARY AXIS ~	
Q1120=+0	;TRANSER POSITION ~	
Q1121=+0	;CONFIRM ROTATION	

用平面找正

在该举例中,将找正平面。在此情况下,必须定义图纸上的全部三个名义位置。为计算角度,在探测时一定要考虑全部这三个轴。

- QS1100 = 定义了基本轴上的名义位置1,但工件位置未知
- QS1101 = 定义了辅助轴上的名义位置1,但工件位置未知
- QS1102 = 定义刀具轴上的名义位置1,但工件位置未知
- QS1103 = 定义了基本轴上的名义位置2,但工件位置未知
- QS1104 = 定义了辅助轴上的名义位置2,但工件位置未知
- QS1105 = 定义刀具轴上的名义位置2,但工件位置未知
- QS1106 = 定义了基本轴上的名义位置3,但工件位置未知
- QS1107 = 定义了辅助轴上的名义位置3,但工件位置未知
- QS1108 = 定义刀具轴上的名义位置3,但工件位置未知

11 TCH PROBE 1420 PROBING IN PLANE ~	; 定义循环
QS1100= "?50";1ST POINT REF AXIS ~	; 定义了基本轴上的名义位置1, 但工件位置未知
QS1101= "?10";1ST POINT MINOR AXIS ~	; 定义了辅助轴上的名义位置1, 但工件位置未知
QS1102= "?0" ;1ST POINT TOOL AXIS ~	; 定义了刀具轴上的名义位置1, 但工件位置未知
QS1103= "?80" ;2ND POINT REF AXIS ~	; 定义了基本轴上的名义位置2, 但工件位置未知
QS1104= "?50";2ND POINT MINOR AXIS ~	; 定义了辅助轴上的名义位置2, 但工件位置未知
QS1105= "?0" ;2ND POINT TOOL AXIS ~	; 定义了刀具轴上的名义位置2, 但工件位置未知

QS1106= "?20"	";3RD POINT REF AXIS ~	; 定义了基本轴上的名义位置3, 但工件位置未知
QS1107= "?80"	;3RD POINT MINOR AXIS ~	; 定义了辅助轴上的名义位置3, 但工件位置未知
QS1108= "?0"	;3RD POINT TOOL AXIS ~	; 定义了刀具轴上的名义位置3, 但工件位置未知
Q372=-3	;PROBING DIRECTION ~	;探测方向Z轴
Q320=+2	;SET-UP CLEARANCE ~	
Q260=+100	;CLEARANCE HEIGHT ~	
Q1125=+2	;CLEAR. HEIGHT MODE ~	
Q309=+0	;ERROR REACTION ~	
Q1126=+0	;ALIGN ROTARY AXIS ~	
Q1120=+0	;TRANSER POSITION ~	
Q1121=+0	;CONFIRM ROTATION	

4.2.3 公差评估

循环14xx也可检查公差带。包括检查对象的位置和尺寸。 支持以下带公差的输入值:

公差	举例
尺寸	10+0.01-0.015
DIN EN ISO 286-2	10H7
ISO 2768-1	10 m

输入公差时,注意大写。

如果在程序中输入了数据及其公差,数控系统监测公差带。数控系统将以下状态写入返回参数**Q183**中:合格,修复或废品。如果编程了预设点补偿,数控系统将在探测后修正当前预设点

以下循环参数支持输入数据及其公差:

- Q1100 1ST POINT REF AXIS
- Q1101 1ST POINT MINOR AXIS
- Q1102 1ST POINT TOOL AXIS
- Q1103 2ND POINT REF AXIS
- Q1104 2ND POINT MINOR AXIS
- Q1105 2ND POINT TOOL AXIS
- Q1106 3RD POINT REF AXIS
- Q1107 3RD POINT MINOR AXIS
- Q1108 3RD POINT TOOL AXIS
- Q1116 DIAMETER 1
- Q1117 DIAMETER 2

编程以下:

- ▶ 开始循环定义
- ▶ 激活操作栏中的"名称"可选项
- ▶ 编程名义位置/尺寸,含公差
- > 例如,在循环中定义QS1116="+8-2-1"。

如果编程的公差不正确,数控系统中断加工,显示出错信息。

循环顺序

如果实际位置超出公差范围,数控系统进行以下响应:

- Q309 = 0:数控系统不中断程序运行。
- Q309 = 1:如为废品或修复,数控系统中断程序运行,生成出错信息。
- Q309 = 2:如为废品,数控系统中断程序运行,生成出错信息。

如果Q309 = 1或2, 执行以下操作:

- > 窗口打开。数控系统显示对象的全部名义尺寸和实际尺寸。
- ▶ 按下**取消**按钮,中断NC数控程序运行 或者

▶ 按下NC start (NC启动)按键,恢复NC数控程序执行

请注意,测头返回的偏差值是相对**Q98x**和**Q99x**的平均公差值。如果编程了输入参数**Q1120**和**Q1121**,这些值与循环执行的修正值相同。如果未激活自动计算功能,数控系统将相对编程的Q参数的平均公差保存这些值。这些数据可进一步处理。

举例

- QS1116 = 直径1, 指定的公差
- QS1117 = 直径2, 指定的公差

Q110=+30 ;1ST POINT REF AXIS ~ Q1101=+50 ;1ST POINT MINOR AXIS ~ Q1102=-5 ;1ST POINT TOOL AXIS ~ QS1116="+8-2-1" ;DIAMETER 1 ~ Q1103=+75 ;2ND POINT REF AXIS ~ Q1104=+50 ;2ND POINT MINOR AXIS ~ QS1105=-5 ;2ND POINT TOOL AXIS ~ QS1117="+8-2-1" ;DIAMETER 2 ~ Q1115=+0 ;GEOMETRY TYPE ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q325=+0 ;STARTING ANGLE ~ Q1119=+360 ;ANGULAR LENGTH ~ Q320=+2 ;SET-UP CLEARANCE ~ Q260=+100 ;CLEARANCE HEIGHT MODE ~ Q1125=+2 ;CLEAR. HEIGHT MODE ~ Q309=2 ;ERROR REACTION ~ Q1126=+0 ;ALIGN ROTARY AXIS ~	11 TCH PROBE 1411PROBING TWO CIRCLES ~	
Q1102=-5 ;1ST POINT TOOL AXIS ~ QS1116="+8-2-1" ;DIAMETER 1 ~ Q1103=+75 ;2ND POINT REF AXIS ~ Q1104=+50 ;2ND POINT MINOR AXIS ~ QS1105=-5 ;2ND POINT TOOL AXIS ~ QS1117="+8-2-1" ;DIAMETER 2 ~ Q1115=+0 ;GEOMETRY TYPE ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q325=+0 ;STARTING ANGLE ~ Q1119=+360 ;ANGULAR LENGTH ~ Q320=+2 ;SET-UP CLEARANCE ~ Q260=+100 ;CLEARANCE HEIGHT ~ Q1125=+2 ;CLEAR. HEIGHT MODE ~ Q309=2 ;ERROR REACTION ~ Q1126=+0 ;ALIGN ROTARY AXIS ~	Q1100=+30	;1ST POINT REF AXIS ~
QS1116="+8-2-1" ;DIAMETER 1 ~ Q1103=+75 ;2ND POINT REF AXIS ~ Q1104=+50 ;2ND POINT MINOR AXIS ~ QS1105=-5 ;2ND POINT TOOL AXIS ~ QS1117="+8-2-1" ;DIAMETER 2 ~ Q1115=+0 ;GEOMETRY TYPE ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q325=+0 ;STARTING ANGLE ~ Q1119=+360 ;ANGULAR LENGTH ~ Q320=+2 ;SET-UP CLEARANCE ~ Q1260=+100 ;CLEARANCE HEIGHT ~ Q1125=+2 ;CLEAR. HEIGHT MODE ~ Q309=2 ;ERROR REACTION ~ Q1126=+0 ;ALIGN ROTARY AXIS ~	Q1101=+50	;1ST POINT MINOR AXIS ~
Q1103=+75 ;2ND POINT REF AXIS ~ Q1104=+50 ;2ND POINT MINOR AXIS ~ QS1105=-5 ;2ND POINT TOOL AXIS ~ QS1117="+8-2-1" ;DIAMETER 2 ~ Q1115=+0 ;GEOMETRY TYPE ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q325=+0 ;STARTING ANGLE ~ Q1119=+360 ;ANGULAR LENGTH ~ Q320=+2 ;SET-UP CLEARANCE ~ Q260=+100 ;CLEARANCE HEIGHT ~ Q1125=+2 ;CLEAR. HEIGHT MODE ~ Q309=2 ;ERROR REACTION ~ Q1126=+0 ;ALIGN ROTARY AXIS ~	Q1102=-5	;1ST POINT TOOL AXIS ~
Q1104=+50 ;2ND POINT MINOR AXIS ~ QS1105=-5 ;2ND POINT TOOL AXIS ~ QS1117="+8-2-1" ;DIAMETER 2 ~ Q1115=+0 ;GEOMETRY TYPE ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q325=+0 ;STARTING ANGLE ~ Q1119=+360 ;ANGULAR LENGTH ~ Q320=+2 ;SET-UP CLEARANCE ~ Q260=+100 ;CLEARANCE HEIGHT ~ Q1125=+2 ;CLEAR. HEIGHT MODE ~ Q309=2 ;ERROR REACTION ~ Q1126=+0 ;ALIGN ROTARY AXIS ~	QS1116="+8-2-1"	;DIAMETER 1 ~
QS1105=-5 ;2ND POINT TOOL AXIS ~ QS1117="+8-2-1" ;DIAMETER 2 ~ Q1115=+0 ;GEOMETRY TYPE ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q325=+0 ;STARTING ANGLE ~ Q1119=+360 ;ANGULAR LENGTH ~ Q320=+2 ;SET-UP CLEARANCE ~ Q260=+100 ;CLEARANCE HEIGHT ~ Q1125=+2 ;CLEAR. HEIGHT MODE ~ Q309=2 ;ERROR REACTION ~ Q1126=+0 ;ALIGN ROTARY AXIS ~	Q1103=+75	;2ND POINT REF AXIS ~
QS1117="+8-2-1" ;DIAMETER 2 ~ Q1115=+0 ;GEOMETRY TYPE ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q325=+0 ;STARTING ANGLE ~ Q1119=+360 ;ANGULAR LENGTH ~ Q320=+2 ;SET-UP CLEARANCE ~ Q260=+100 ;CLEARANCE HEIGHT ~ Q1125=+2 ;CLEAR. HEIGHT MODE ~ Q309=2 ;ERROR REACTION ~ Q1126=+0 ;ALIGN ROTARY AXIS ~	Q1104=+50	;2ND POINT MINOR AXIS ~
Q1115=+0 ;GEOMETRY TYPE ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q325=+0 ;STARTING ANGLE ~ Q1119=+360 ;ANGULAR LENGTH ~ Q320=+2 ;SET-UP CLEARANCE ~ Q260=+100 ;CLEARANCE HEIGHT ~ Q1125=+2 ;CLEAR. HEIGHT MODE ~ Q309=2 ;ERROR REACTION ~ Q1126=+0 ;ALIGN ROTARY AXIS ~	QS1105=-5	;2ND POINT TOOL AXIS ~
Q423=+4 ;NO. OF PROBE POINTS ~ Q325=+0 ;STARTING ANGLE ~ Q1119=+360 ;ANGULAR LENGTH ~ Q320=+2 ;SET-UP CLEARANCE ~ Q260=+100 ;CLEARANCE HEIGHT ~ Q1125=+2 ;CLEAR. HEIGHT MODE ~ Q309=2 ;ERROR REACTION ~ Q1126=+0 ;ALIGN ROTARY AXIS ~	QS1117="+8-2-1"	;DIAMETER 2 ~
Q325=+0 ;STARTING ANGLE ~ Q1119=+360 ;ANGULAR LENGTH ~ Q320=+2 ;SET-UP CLEARANCE ~ Q260=+100 ;CLEARANCE HEIGHT ~ Q1125=+2 ;CLEAR. HEIGHT MODE ~ Q309=2 ;ERROR REACTION ~ Q1126=+0 ;ALIGN ROTARY AXIS ~	Q1115=+0	;GEOMETRY TYPE ~
Q1119=+360 ;ANGULAR LENGTH ~ Q320=+2 ;SET-UP CLEARANCE ~ Q260=+100 ;CLEARANCE HEIGHT ~ Q1125=+2 ;CLEAR. HEIGHT MODE ~ Q309=2 ;ERROR REACTION ~ Q1126=+0 ;ALIGN ROTARY AXIS ~	Q423=+4	;NO. OF PROBE POINTS ~
Q320=+2 ;SET-UP CLEARANCE ~ Q260=+100 ;CLEARANCE HEIGHT ~ Q1125=+2 ;CLEAR. HEIGHT MODE ~ Q309=2 ;ERROR REACTION ~ Q1126=+0 ;ALIGN ROTARY AXIS ~	Q325=+0	;STARTING ANGLE ~
Q260=+100 ;CLEARANCE HEIGHT ~ Q1125=+2 ;CLEAR. HEIGHT MODE ~ Q309=2 ;ERROR REACTION ~ Q1126=+0 ;ALIGN ROTARY AXIS ~	Q1119=+360	;ANGULAR LENGTH ~
Q1125=+2 ;CLEAR. HEIGHT MODE ~ Q309=2 ;ERROR REACTION ~ Q1126=+0 ;ALIGN ROTARY AXIS ~	Q320=+2	;SET-UP CLEARANCE ~
Q309=2 ;ERROR REACTION ~ Q1126=+0 ;ALIGN ROTARY AXIS ~	Q260=+100	;CLEARANCE HEIGHT ~
Q1126=+0 ;ALIGN ROTARY AXIS ~	Q1125=+2	;CLEAR. HEIGHT MODE ~
•	Q309=2	;ERROR REACTION ~
Q1120=+0 ;TRANSER POSITION ~	Q1126=+0	;ALIGN ROTARY AXIS ~
	Q1120=+0	;TRANSER POSITION ~
Q1121=+0 ;CONFIRM ROTATION	Q1121=+0	;CONFIRM ROTATION

4.2.4 传输实际位置

先确定实际位置并将其确定为该探测循环的实际位置。然后,将名义位置和实际位置传输给该对象。基于其差值,该循环计算需要的补偿值并进行公差监测。

编程以下:

- ▶ 定义循环
- ▶ 激活操作栏中的"名称"可选项
- ▶ 根据需要,编程公差监测的名义位置
- ▶ 编程"@"
- ▶ 编程实际位置
- > 例如,在循环中定义QS1100="10+0.02@10.0123"。

编程和操作说明:

- 如果程序中编程了@,将不执行探测循环。数控系统只考虑实际和名义 位置。
- 必须定义全部三个轴的实际位置:基本轴、辅助轴和刀具轴。如果只定义一个轴的实际值,将生成出错信息。
- 也可用Q参数Q1900-Q1999定义实际位置

举例

该功能用于执行以下操作:

- 基于多个不同对象确定圆弧阵列
- 根据齿轮的中心与轮齿的位置找正齿轮

在这里定义公差监测的名义位置和实际位置。

5 TCH PROBE 1410 PROBING ON EDG	GE ~
QS1100="10+0.02@10.0123"	;1ST POINT REF AXIS ~
QS1101="50@50.0321"	;1ST POINT MINOR AXIS ~
QS1102="-10-0.2+0.2@Q1900"	;1ST POINT TOOL AXIS ~
QS1103="30+0.02@30.0134"	;2ND POINT REF AXIS ~
QS1104="50@50.534"	;2ND POINT MINOR AXIS ~
QS1105="-10-0.02@Q1901"	;2ND POINT TOOL AXIS ~
Q372=+2	;PROBING DIRECTION ~
Q320=+0	;SET-UP CLEARANCE ~
Q260=+100	;CLEARANCE HEIGHT ~
Q1125=+2	;CLEAR. HEIGHT MODE ~
Q309=+0	;ERROR REACTION ~
Q1126=+0	;ALIGN ROTARY AXIS ~
Q1120=+0	;TRANSER POSITION ~
Q1121=+0	;CONFIRM ROTATION

4.3 循环1420PROBING IN PLANE

应用

探测循环1420测量三点确定一个平面的角度。将测量值保存在Q参数中。

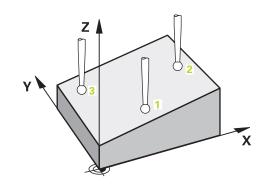
如果在此循环前,编程循环**1493 EXTRUSION PROBING**,可沿指定的方向和在指定的范围内重复探测点。

更多信息: "循环1493EXTRUSION PROBING", 269页

而且,循环1420可进行以下操作:

■ 如果相对当前原点的探测位置未知,可在半自动模式下执行该循环。

更多信息: "半自动模式", 56 页


■ 该循环也能监测公差。因此,可监测一个对象的位置和尺寸。

更多信息: "公差评估", 61 页

■ 如果事先确定了实际位置,可将其传输到循环中,作为实际位置。

更多信息: "传输实际位置", 63 页

循环顺序

1 根据定位规则,数控系统用FMAX_PROBE快移速度,将测头定位在编程的触点1位置。

更多信息: "定位规则", 48 页

- 2 然后,数控系统用FMAX_PROBE快移速度将测头移到安全高度位置。在任何探测方向探测时,考虑Q320与SET_UP和球头半径的合计值。
- 3 然后,测头运动到输入的测量高度位置并用探测表中的探测进给速率F探测第一触点。
- 4 数控系统沿探测的相反方向将测头偏移到安全高度。
- 5 如果编程了退刀到第二安全高度**Q1125**,测头返回第二安全高度。
- 6 然后,在加工面上移至触点位置2测量在该平面上第二触点的实际值。
- 7 测头返回第二安全高度(取决于**Q1125**),然后在加工面上运动到触点**3**位置并测量该平面上第三点的实际位置。
- 8 最后,数控系统将测头退至第二安全高度(取决于**Q1125**)并将测量值保存在以下Q参数中:

Q参数 编号	含义	
Q950至Q952	基本轴、辅助轴和刀具轴上被测位置1	
Q953至Q955	基本轴、辅助轴和刀具轴上被测位置2	
Q956至Q958	基本轴、辅助轴和刀具轴上被测位置3	
Q961至Q963	W-CS坐标系下测量的空间角SPA、SPB和SPC	
Q980至Q982	触点1的偏差测量值	
Q983至Q985	触点2的偏差测量值	
Q986至Q988	位置偏差3	
Q183	工件状态	
	■ -1 = 未定义	
	■ 0 = 合格	
	■ 1 = 修复	
	■ 2 = 废品	
Q970	如果编程了循环1493 EXTRUSION PROBING:	
	与第一触点理想值全部偏差的平均值	
Q971	如果编程了循环 1493 EXTRUSION PROBING :	
	与第二触点理想值全部偏差的平均值	
Q972	如果编程了循环1493 EXTRUSION PROBING:	
	与第三触点理想值全部偏差的平均值	

注意

注意

碰撞危险!

如果在两个对象或两个触点之间,未将测头退离到第二安全高度,有碰撞危险。

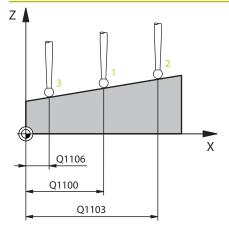
▶ 在两个对象或触点之间,必须移到第二安全高度

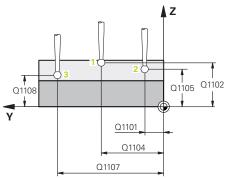
注意

碰撞危险!

执行探测循环444和14xx时,不能激活任何坐标变换(例如,循环8 MIRROR IMAGE、11 SCALING、26 AXIS-SPEC. SCALING、(镜像变换)。

- ▶ 循环调用前,重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 仅当三个触点未在一条直线上,数控系统才计算角度值。
- 名义空间角来自已定义的名义位置。数控系统将计算的空间角保存在参数**Q961**至**Q963**中。数控系统将空间角测量值和名义空间角之间的差值传入到预设表的3-D基本旋转中。


■ 海德汉建议在该循环中避免使用轴角功能!


找正回转工作台轴:

- 仅当运动特性中定义了两个回转工作台轴后,才能找正回转工作台轴。
- 要找正回转工作台轴 , (**Q1126**不等于0) , 必须进行旋转 (**Q1121**不等于0)。否则 , 将显示出错信息。

4.3.1 循环参数

帮助图形

参数

Q1100 参考轴的第1名义位置?

第一触点在加工面基本轴上的绝对名义位置

输入:-99999.9999...+99999.9999 或可选?,-,+,@

?: 半自动模式,参见56页-,+:公差计算,参见61页@:传输实际位置,参见63页

Q1101 辅助轴的第1名义位置?

第一触点在加工面辅助轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

Q1102 刀具轴的第1名义位置?

第一触点在刀具轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

Q1103 参考轴的第2名义位置?

第二触点在加工面基本轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参 见Q1100)

Q1104 辅助轴的第2名义位置?

第二触点在加工面辅助轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参 见Q1100)

Q1105 刀具轴的第2名义位置?

第二触点在加工面刀具轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

Q1106 参考轴的第3名义位置?

第三触点在加工面基本轴上的绝对名义位置。

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

帮助图形

参数

Q1107 辅助轴的第3名义位置?

第三触点在加工面辅助轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

Q1108 刀具轴的第3名义位置?

第三触点在加工面刀具轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参 见**Q1100**)

Q372 探测方向(-3至+3)?

轴决定探测方向。用代数符号定义探测轴正向或负向运动。

输入:-3,-2,-1,+1,+2,+3

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。该值有绝对式效果。

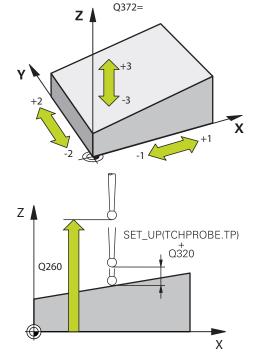
输入:-99999.9999...+99999.9999 或PREDEF

Q1125 将刀具移至第二安全高度?

触点间的定位操作特性:

-1:不移到第二安全高度。

0:循环前和循环后移到第二安全高度。用FMAX_PROBE快移速度预定位。


1:每个对象前和对象后移到第二安全高度。

用FMAX_PROBE快移速度预定位。

2:每个触点前和触点后移到第二安全高度。

用FMAX_PROBE快移速度预定位。

输入:-1,0,+1,+2

帮助图形参数

Q309 响应公差错误?

超出公差时的响应:

0:超出公差时,不中断程序运行。数控系统不打开含结果的窗口。

1:超出公差时,中断程序运行。数控系统打开含结果的窗口。

2:如果实际位置在废品范围内,数控系统打开含结果的窗口。程序运行中断。如果需要修复加工,数控系统打开含结果的窗口。

输入:0,1,2

Q1126 找正旋转轴?

为倾斜加工定位旋转轴:

0:保留旋转轴的当前位置。

1:自动定位旋转轴和定向刀尖(**运动**)。工件与测头间的相对位置保持不变。数控系统用直线轴执行补偿运动。

2:数控系统自动定位旋转轴,不定向刀尖(转动)。

输入:0,1,2

Q1120 变换位置?

定义触点,用其修正当前预设点:

0:不修正

1:基于第一触点修正

2:基于第二触点修正

3:基于第三触点修正

4:基于平均触点位置修正

输入:0,1,2,3,4

Q1121 确认基本旋转?

定义数控系统是否将确定的不对正量用作基本旋转:

0:无基本旋转

1:设置基本旋转:数控系统将保存基本旋转

输入:0,1

举例

11 TCH PROBE 1420 PROBIN	IG IN PLANE ~
Q1100=+0	;1ST POINT REF AXIS ~
Q1101=+0	;1ST POINT MINOR AXIS ~
Q1102=+0	;1ST POINT TOOL AXIS ~
Q1103=+0	;2ND POINT REF AXIS ~
Q1104=+0	;2ND POINT MINOR AXIS ~
Q1105=+0	;2ND POINT TOOL AXIS ~
Q1106=+0	;3RD POINT REF AXIS ~
Q1107=+0	;3RD POINT MINOR AXIS ~
Q1108=+0	;3RD POINT MINOR AXIS ~
Q372=+1	;PROBING DIRECTION ~
Q320=+0	;SET-UP CLEARANCE ~
Q260=+100	;CLEARANCE HEIGHT ~
Q1125=+2	;CLEAR. HEIGHT MODE ~
Q309=+0	;ERROR REACTION ~
Q1126=+0	;ALIGN ROTARY AXIS ~
Q1120=+0	;TRANSER POSITION ~
Q1121=+0	;CONFIRM ROTATION

4.4 循环1410PROBING ON EDGE

应用

探测循环**1410**可探测棱边上的两个点,确定工件不对正量。该循环根据角度测量值与名义角度值之间的差值确定旋转。

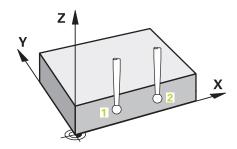
如果在此循环前,编程循环1493 EXTRUSION PROBING,可沿指定的方向和在指定的范围内重复探测点。

更多信息: "循环1493EXTRUSION PROBING ", 269 页

而且,循环1410可进行以下操作:

■ 如果相对当前原点的探测位置未知,可在半自动模式下执行该循环。

更多信息: "半自动模式", 56页


■ 该循环也能监测公差。因此,可监测一个对象的位置和尺寸。

更多信息: "公差评估", 61 页

■ 如果事先确定了实际位置,可将其传输到循环中,作为实际位置。

更多信息: "传输实际位置", 63 页

循环顺序

1 根据定位规则,数控系统用FMAX_PROBE快移速度,将测头定位在编程的触点1位置。

更多信息: "定位规则", 48 页

- 2 然后,数控系统用FMAX_PROBE快移速度将测头移到安全高度位置。在任何探测方向探测时,考虑Q320与SET_UP和球头半径的合计值。
- 3 然后,测头运动到输入的测量高度位置并用探测表中的探测进给速率F探测第一触点。
- 4 数控系统沿探测的相反方向将测头偏移到安全高度。
- 5 如果编程了退刀到第二安全高度**Q1125**,测头返回第二安全高度。
- 6 然后,测头移到下个触点2并再次探测。
- 7 最后,数控系统将测头退至第二安全高度(取决于**Q1125**)并将测量值保存在以下Q参数中:

Q参数 编号	含义	
Q950至Q952	基本轴、辅助轴和刀具轴上被测位置1	
Q953至Q955	基本轴、辅助轴和刀具轴上被测位置2	
Q964	测量的基本旋转	
Q965	测量的工作台旋转	
Q980至Q982	触点1的偏差测量值	
Q983至Q985	触点2的偏差测量值	
Q994	测量的基本旋转的角度偏差	
Q995	测量的工作台旋转的角度偏差	
Q183	工件状态	
	■ -1 = 未定义	
	■ 0 = 合格	
	■ 1 = 修复	
	■ 2 = 废品	
Q970	如果编程了循环1493 EXTRUSION PROBING:	
	与第一触点理想值全部偏差的平均值	
Q971	如果编程了循环1493 EXTRUSION PROBING:	
	与第二触点理想值全部偏差的平均值	

注意

注意

碰撞危险!

如果在两个对象或两个触点之间,未将测头退离到第二安全高度,有碰撞危险。

▶ 在两个对象或触点之间,必须移到第二安全高度

注意

碰撞危险!

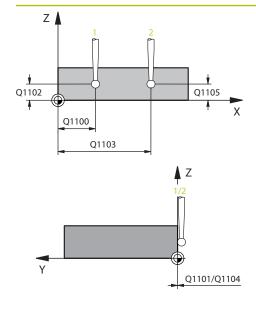
执行探测循环444和14xx时,不能激活任何坐标变换(例如,循环8 MIRROR IMAGE、11 SCALING、26 AXIS-SPEC. SCALING、(镜像变换)。

- ▶ 循环调用前,重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。

关于旋转轴的说明:

确定倾斜加工面的基本旋转时,注意以下各点:

- 如果旋转轴的当前坐标与定义的倾斜角(3-D旋转窗口)相符,加工面一致。 数控系统计算输入坐标系**I-CS**)下的基本旋转。
- 如果旋转轴的当前坐标与定义的倾斜角(3-D旋转窗口)不相符,加工面不一致。数控系统基于刀具轴,计算工件坐标系(W-CS)的基本旋转。


在可选机床参数chkTiltingAxes(204601号)中,机床制造商可定义检查,校验倾斜情况。如果未定义检查,该循环始终假定加工面一致。然后,计算I-CS坐标系下的基本旋转。

找正回转工作台轴:

- 仅当用回转工作台轴补偿旋转测量值时,数控系统才能找正回转工作台。该轴必须是第一回转工作台轴(从工件方向看)。
- 要找正回转工作台轴(**Q1126**不等于0),需要调整旋转(**Q1121**不等于0)。 否则,数控系统将显示出错信息。

4.4.1 循环参数

帮助图形

参数

Q1100 参考轴的第1名义位置?

第一触点在加工面基本轴上的绝对名义位置

输入:-99999.9999...+99999.9999 或可选?,-,+,@

?: 半自动模式,参见56页-,+:公差计算,参见61页@:传输实际位置,参见63页

Q1101 辅助轴的第1名义位置?

第一触点在加工面辅助轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

Q1102 刀具轴的第1名义位置?

第一触点在刀具轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

Q1103 参考轴的第2名义位置?

第二触点在加工面基本轴上的绝对名义位置

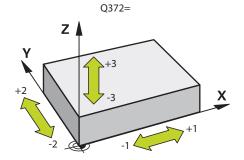
输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

Q1104 辅助轴的第2名义位置?

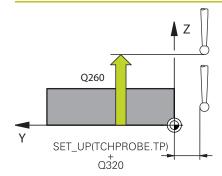
第二触点在加工面辅助轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

Q1105 刀具轴的第2名义位置?


第二触点在加工面刀具轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)


Q372 探测方向(-3至+3)?

轴决定探测方向。用代数符号定义探测轴正向或负向运动。

输入:-3,-2,-1,+1,+2,+3

帮助图形

参数

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。 该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

Q1125 将刀具移至第二安全高度?

触点间的定位操作特性:

-1:不移到第二安全高度。

0:循环前和循环后移到第二安全高度。用FMAX_PROBE快移速度预定位。

1:每个对象前和对象后移到第二安全高度。 用FMAX PROBE快移速度预定位。

2:每个触点前和触点后移到第二安全高度。用FMAX_PROBE快移速度预定位。

输入:-1,0,+1,+2

Q309 响应公差错误?

超出公差时的响应:

0:超出公差时,不中断程序运行。数控系统不打开含结果的窗口。

1:超出公差时,中断程序运行。数控系统打开含结果的窗口。

2:如果实际位置在废品范围内,数控系统打开含结果的窗口。程序运行中断。如果需要修复加工,数控系统打开含结果的窗口。

输入:0,1,2

帮助图形参数

Q1126 找正旋转轴?

为倾斜加工定位旋转轴:

0:保留旋转轴的当前位置。

1:自动定位旋转轴和定向刀尖(**运动**)。工件与测头间的相对位置保持不变。数控系统用直线轴执行补偿运动。

2:数控系统自动定位旋转轴,不定向刀尖(转动)。

输入:0,1,2

Q1120 变换位置?

定义触点,用其修正当前预设点:

0:不修正

1:基于第一触点修正

2:基于第二触点修正

3:基于平均触点位置修正

输入:0,1,2,3

Q1121 确认旋转

定义数控系统是否将确定的不对正量用作基本旋转:

0: 无基本旋转

1:设置基本旋转:数控系统将不对正量传输到预设表中,进行基本变换。

2:旋转回转工作台:数控系统将不对正量传输到预设表

中,进行偏移。

输入:0,1,2

举例

11 TCH PROBE 1410 PROBING ON EDGE ~		
Q1100=+0	;1ST POINT REF AXIS ~	
Q1101=+0	;1ST POINT MINOR AXIS ~	
Q1102=+0	;1ST POINT TOOL AXIS ~	
Q1103=+0	;2ND POINT REF AXIS ~	
Q1104=+0	;2ND POINT MINOR AXIS ~	
Q1105=+0	;2ND POINT TOOL AXIS ~	
Q372=+1	;PROBING DIRECTION ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q260=+100	;CLEARANCE HEIGHT ~	
Q1125=+2	;CLEAR. HEIGHT MODE ~	
Q309=+0	;ERROR REACTION ~	
Q1126=+0	;ALIGN ROTARY AXIS ~	
Q1120=+0	;TRANSER POSITION ~	
Q1121=+0	;CONFIRM ROTATION	

4.5 循环1411PROBING TWO CIRCLES

应用

探测循环1411采集两个孔或圆柱凸台的中心点数据并计算连接这些中心点间的直线。该循环根据角度测量值与名义角度值之间的差值确定加工面的旋转。

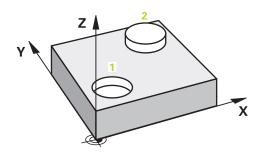
如果在此循环前,编程循环**1493 EXTRUSION PROBING**,可沿指定的方向和在指定的范围内重复探测点。

更多信息: "循环1493EXTRUSION PROBING ", 269 页

而且,循环1411可进行以下操作:

■ 如果相对当前原点的探测位置未知,可在半自动模式下执行该循环。

更多信息: "半自动模式", 56 页


■ 该循环也能监测公差。因此,可监测一个对象的位置和尺寸。

更多信息: "公差评估", 61 页

■ 如果事先确定了实际位置,可将其传输到循环中,作为实际位置。

更多信息: "传输实际位置", 63 页

循环顺序

1 根据定位规则,数控系统用进给速率将测头定位在编程的圆心1位置(取决于Q1125)。

更多信息: "定位规则", 48 页

- 2 然后,数控系统用FMAX_PROBE快移速度将测头移到安全高度位置。在任何探测方向探测时,考虑Q320与SET_UP和球头半径的合计值。
- 3 然后,测头用探测表中的探测进给速率F移到输入的测量高度位置并探测(探测的触点数量取决于Q423(探测数)第一孔或凸台圆心点。
- 4 数控系统沿探测的相反方向将测头偏移到安全高度。
- 5 测头返回第二安全高度,然后移到输入的位置,此位置为第二孔或第二凸台中心2。
- 6 然后,数控系统将测头移到输入的测量高度位置并探测(探测的触点数量取决Q423(探测次数)第二孔或第二凸台的圆心点。
- 7 最后,数控系统将测头退至第二安全高度(取决于**Q1125**)并将测量值保存在以下Q参数中:

Q参数 编号	含义
Q950至Q952	基本轴、辅助轴和刀具轴上的被测圆心点1
Q953至Q955	基本轴、辅助轴和刀具轴上的被测圆心点2
Q964	测量的基本旋转
Q965	测量的工作台旋转
Q966至Q967	测量的第一和第二直径
Q980至Q982	圆心点1的偏差测量值
Q983至Q985	圆心点2的偏差测量值
Q994	测量的基本旋转的角度偏差
Q995	测量的工作台旋转的角度偏差
Q996至Q997	直径的偏差测量值
Q183	工件状态
	■ -1 = 未定义
	■ 0 = 合格
	■ 1 = 修复
	■ 2 = 废品
Q970	如果编程了循环1493 EXTRUSION PROBING:
	与第一圆心点理想值全部偏差的平均值
Q971	如果编程了循环1493 EXTRUSION PROBING:
	与第二圆心点理想值全部偏差的平均值
Q973	如果编程了循环1493 EXTRUSION PROBING:
	圆1直径全部偏差的平均值
Q974	如果编程了循环1493 EXTRUSION PROBING:
	圆2直径全部偏差的平均值

操作注意事项:

- 如果孔很小,无法达到编程的安全高度,窗口打开。在窗口中,数控系统显示孔的名义尺寸、校准的球头半径和可达到的安全高度。
 - 提供以下选项:
 - 如果无碰撞危险,可按下NC启动(NC start)按键,用对话框中的数据运行循环。将有效安全高度减小到仅为该对象的显示值。
 - 可按下取消 (Cancel)按键,取消该循环。

注意

注意

碰撞危险!

如果在两个对象或两个触点之间,未将测头退离到第二安全高度,有碰撞危险。

在两个对象或触点之间,必须移到第二安全高度

注意

碰撞危险!

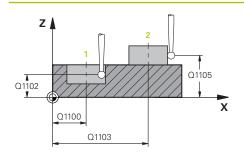
执行探测循环444和14xx时,不能激活任何坐标变换(例如,循环8 MIRROR IMAGE、11 SCALING、26 AXIS-SPEC. SCALING、(镜像变换)。

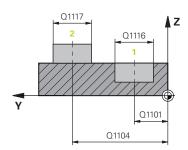
- ▶ 循环调用前,重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。

关于旋转轴的说明:

确定倾斜加工面的基本旋转时,注意以下各点:

- 如果旋转轴的当前坐标与定义的倾斜角(3-D旋转窗口)相符,加工面一致。 数控系统计算输入坐标系**I-CS**)下的基本旋转。
- 如果旋转轴的当前坐标与定义的倾斜角(3-D旋转窗口)不相符,加工面不一致。数控系统基于刀具轴,计算工件坐标系(W-CS)的基本旋转。


在可选机床参数chkTiltingAxes(204601号)中,机床制造商可定义检查,校验倾斜情况。如果未定义检查,该循环始终假定加工面一致。然后,计算I-CS坐标系下的基本旋转。


找正回转工作台轴:

- 仅当用回转工作台轴补偿旋转测量值时,数控系统才能找正回转工作台。该轴必须是第一回转工作台轴(从工件方向看)。
- 要找正回转工作台轴(**Q1126**不等于0),需要调整旋转(**Q1121**不等于0)。 否则,数控系统将显示出错信息。

4.5.1 循环参数

帮助图形

参数

Q1100 参考轴的第1名义位置?

第一触点在加工面基本轴上的绝对名义位置

输入:-99999.9999...+99999.9999 或可选?,-,+,@

?: 半自动模式,参见56页-,+:公差计算,参见61页@:传输实际位置,参见63页

Q1101 辅助轴的第1名义位置?

第一触点在加工面辅助轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

Q1102 刀具轴的第1名义位置?

第一触点在刀具轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

Q1116 第1位置的直径?

第一孔或第一凸台的直径

输入: **0...9999.9999** 或可选输入: "...-...+...": 公差计算,参见 61页

Q1103 参考轴的第2名义位置?

第二触点在加工面基本轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

Q1104 辅助轴的第2名义位置?

第二触点在加工面辅助轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参 见**Q1100**)

Q1105 刀具轴的第2名义位置?

第二触点在加工面刀具轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

帮助图形

参数

Q1117 第2位置的直径?

第二孔或第二凸台的直径

输入:**0...9999.9999** 或可选输入: "...-...+...":公差计算,参见 61 页

Q1115 几何类型(0-3)?

对象的几何:

0:位置1=孔,和位置2=孔

1: 位置1 = 凸台, 和位置2 = 凸台

2: 位置1 = 孔,和位置2 = 凸台

3:位置1=凸台,和位置2=孔

输入:0,1,2,3

Q423 探测次数?

直径上的触点数

输入:3 , 4 , 5 , 6 , 7 , 8

Q325 起始角度?

加工面基本轴与第一触点间的角度。该值有绝对式效果。

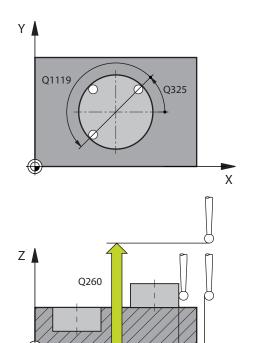
输入:-360.000...+360.000

Q1119 圆角长度?

分布触点的角度范围。

输入:-359.999...+360.000

Q320 安全高度?


触点与球头间的附加距离。Q320累加至SET_UP(探测表),且只适用于沿探测轴探测预设点时。该值提供增量效用。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。 该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

SET_UP(TCHPROBE.TP) + Q320 帮助图形参数

Q1125 将刀具移至第二安全高度?

触点间的定位操作特性:

-1:不移到第二安全高度。

0:循环前和循环后移到第二安全高度。用FMAX_PROBE快移速度预定位。

1:每个对象前和对象后移到第二安全高度。

用FMAX_PROBE快移速度预定位。

2:每个触点前和触点后移到第二安全高度。

用FMAX_PROBE快移速度预定位。

输入:-1,0,+1,+2

Q309 响应公差错误?

超出公差时的响应:

0:超出公差时,不中断程序运行。数控系统不打开含结果的窗口。

1:超出公差时,中断程序运行。数控系统打开含结果的窗口。

2:如果实际位置在废品范围内,数控系统打开含结果的窗口。程序运行中断。如果需要修复加工,数控系统打开含结果的窗口。

输入:0,1,2

Q1126 找正旋转轴?

为倾斜加工定位旋转轴:

0:保留旋转轴的当前位置。

1:自动定位旋转轴和定向刀尖(**运动**)。工件与测头间的相对位置保持不变。数控系统用直线轴执行补偿运动。

2:数控系统自动定位旋转轴,不定向刀尖(**转动**)。

输入:0,1,2

Q1120 变换位置?

定义触点,用其修正当前预设点:

0:不修正

1:基于第一触点修正

2:基于第二触点修正

3:基于平均触点位置修正

输入:0,1,2,3

帮助图形	参数
	Q1121 确认旋转
	定义数控系统是否将确定的不对正量用作基本旋转:
	0 :无基本旋转
	1 :设置基本旋转:数控系统将不对正量传输到预设表中, 进行基本变换。
	2 :旋转回转工作台:数控系统将不对正量传输到预设表中,进行偏移。
	输入: 0 , 1 , 2

举例

11 TCH PROBE 1411 PROBING	G TWO CIRCLES ~
Q1100=+0	;1ST POINT REF AXIS ~
Q1101=+0	;1ST POINT MINOR AXIS ~
Q1102=+0	;1ST POINT TOOL AXIS ~
Q1116=+0	;DIAMETER 1 ~
Q1103=+0	;2ND POINT REF AXIS ~
Q1104=+0	;2ND POINT MINOR AXIS ~
Q1105=+0	;2ND POINT TOOL AXIS ~
Q1117=+0	;DIAMETER 2 ~
Q1115=+0	;GEOMETRY TYPE ~
Q423=+4	;NO. OF PROBE POINTS ~
Q325=+0	;STARTING ANGLE ~
Q1119=+360	;ANGULAR LENGTH ~
Q320=+0	;SET-UP CLEARANCE ~
Q260=+100	;CLEARANCE HEIGHT ~
Q1125=+2	;CLEAR. HEIGHT MODE ~
Q309=+0	;ERROR REACTION ~
Q1126=+0	;ALIGN ROTARY AXIS ~
Q1120=+0	;TRANSER POSITION ~
Q1121=+0	;CONFIRM ROTATION

4.6 循环1412INCLINED EDGE PROBING

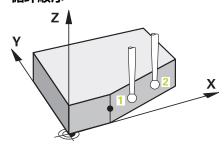
应用

探测循环**1412**可探测斜边上的两个点,确定工件不对正量。该循环根据角度测量值与名义角度值之间的差值确定旋转。

如果在此循环前,编程循环**1493 EXTRUSION PROBING**,可沿指定的方向和在指定的范围内重复探测点。

更多信息: "循环1493EXTRUSION PROBING ", 269 页

循环1412还提供以下功能:


■ 如果相对当前原点的探测位置未知,可用半自动模式运行该循环。

更多信息: "半自动模式", 56 页

■ 如果事先确定了实际位置,可将其传输到循环中,作为实际位置。

更多信息: "传输实际位置", 63 页

循环顺序

1 根据定位规则,数控系统用FMAX_PROBE快移速度,将测头定位在触点1位置

更多信息: "定位规则", 48 页

- 2 然后,数控系统用FMAX_PROBE快移速度将测头移到安全高度Q320位置。沿任何探测方向探测时,考虑Q320与SET_UP及球头半径的合计值。
- 3 然后,测头运动到输入的测量高度位置并用探测表中的探测进给速率**F**探测第一触点。
- 4 数控系统将测头沿与探测的相反方向偏移安全高度的距离。
- 5 如果编程了退刀到第二安全高度**Q1125**,测头返回第二安全高度。
- 6 然后,测头移到触点2并再次探测。
- 7 最后,数控系统将测头退至第二安全高度(取决于**Q1125**)并将测量值保存在以下Q参数中:

Q参数 编号	含义
Q950至Q952	基本轴、辅助轴和刀具轴上被测位置1
Q953至Q955	基本轴、辅助轴和刀具轴上被测位置2
Q964	测量的基本旋转
Q965	测量的工作台旋转
Q980至Q982	触点1的偏差测量值
Q983至Q985	触点2的偏差测量值
Q994	测量的基本旋转的角度偏差
Q995	测量的工作台旋转的角度偏差
Q183	工件状态 ■ -1 = 未定义 ■ 0 = 合格 ■ 1 = 修复 ■ 2 = 废品
Q970	如果编程了循环 1493 EXTRUSION PROBING : 与第一触点理想值全部偏差的平均值
Q971	如果编程了循环 1493 EXTRUSION PROBING : 与第二触点理想值全部偏差的平均值

注意

注意

碰撞危险!

如果在两个对象或两个触点之间,未将测头退离到第二安全高度,有碰撞危险。

▶ 在两个对象或触点之间,必须移到第二安全高度

注意

碰撞危险!

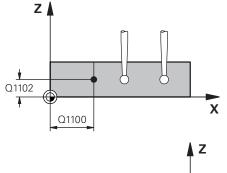
执行探测循环444和14xx时,不能激活任何坐标变换(例如,循环8 MIRROR IMAGE、11 SCALING、26 AXIS-SPEC. SCALING、(镜像变换)。

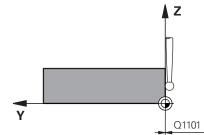
- ▶ 循环调用前,重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 如果在Q1100、Q1101或Q1102参数中编程了公差,将该公差用于编程的名义位置,而非沿斜边的触点。用参数TOLERANCE QS400编程斜边法向上的公差。

关于旋转轴的说明:

确定倾斜加工面的基本旋转时,注意以下各点:

- 如果旋转轴的当前坐标与定义的倾斜角(3-D旋转窗口)相符,加工面一致。数控系统计算输入坐标系I-CS)下的基本旋转。
- 如果旋转轴的当前坐标与定义的倾斜角(3-D旋转窗口)不相符,加工面不一致。数控系统基于刀具轴,计算工件坐标系(**W-CS**)的基本旋转。


在可选机床参数chkTiltingAxes(204601号)中,机床制造商可定义检查,校验倾斜情况。如果未定义检查,该循环始终假定加工面一致。然后,计算I-CS坐标系下的基本旋转。


找正回转工作台轴:

- 仅当用回转工作台轴补偿旋转测量值时,数控系统才能找正回转工作台。该轴必须是第一回转工作台轴(从工件方向看)。
- 要找正回转工作台轴(**Q1126**不等于0),需要调整旋转(**Q1121**不等于0)。 否则,数控系统将显示出错信息。

4.6.1 循环参数

帮助图形

参数

Q1100 参考轴的第1名义位置?

绝对名义位置,这是斜边在基本轴上的起点。

输入:-99999.9999...+99999.9999 或可选?,+,-,@

■ ?: 半自动模式,参见56页 ■ -,+:公差计算,参见61页

@:传输实际位置,参见63页Q1101辅助轴的第1名义位置?

绝对名义位置,这是斜边在辅助轴的起点。

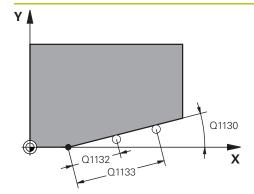
输入:-99999.9999...+99999.9999 或可选输入(参 见**Q1100**)

Q1102 刀具轴的第1名义位置?

第一触点在刀具轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

QS400 公差值?


该循环监测公差带。该公差定义沿斜边法向上的偏差。这个偏差由工件的名义坐标与实际坐标之差确定。

举例:

- **QS400 ="0.4-0.1"**:上限尺寸 = 名义坐标+0.4;下限尺寸 = 名义坐标-0.1。因此,可得到该循环的以下公差带:"名义坐标+0.4"至"名义坐标-0.1"
- QS400 ="": 无公差带。
- QS400 ="0":无公差带。
- QS400 ="0.1+0.1" : 无公差带。

输入:最多不超过255个字符

帮助图形

参数

Q1130 第一条线的名义角度?

第一条直线的名义角度

输入:-180...+180

Q1131 第一条线的探测方向?

第一条直线的探测方向:

+1:数控系统相对名义角度Q1130旋转探测方向+90°

-1: 数控系统相对名义角度**Q1130**旋转探测方向-90°

输入:-1,+1

Q1132 第一条线的第一个距离?

斜边起点与第一触点间的距离。 该值提供增量效果。

输入:-999.999...+999.999

Q1133 第一条线的第二个距离?

斜边起点与第二触点间的距离。 该值提供增量效果。

输入:-999.999...+999.999

Q1139 对象的平面(1-3)?

数控系统解释名义角Q1130和探测方向Q1131的平面。

1: 名义角在YZ平面上。

2: 名义角在ZX平面上。

3: 名义角在XY平面上。

输入:1,2,3

Q320 安全高度?

触点与球头间的附加距离。**Q320**是在探测表中**SET_UP**列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰

撞。该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

Q1125 将刀具移至第二安全高度?

触点间的定位操作特性:

-1:不移到第二安全高度。

0:循环前和循环后移到第二安全高度。用FMAX_PROBE快 移速度预定位。

1:每个对象前和对象后移到第二安全高度。

用FMAX_PROBE快移速度预定位。

2:每个触点前和触点后移到第二安全高度。

用FMAX_PROBE快移速度预定位。

输入:-1,0,+1,+2

帮助图形参数

Q309 响应公差错误?

超出公差时的响应:

0:超出公差时,不中断程序运行。数控系统不打开含结果的窗口。

1:超出公差时,中断程序运行。数控系统打开含结果的窗口。

2:如果实际位置在废品范围内,数控系统打开含结果的窗口。程序运行中断。如果需要修复加工,数控系统打开含结果的窗口。

输入:0,1,2

Q1126 找正旋转轴?

为倾斜加工定位旋转轴:

0:保留旋转轴的当前位置。

1:自动定位旋转轴和定向刀尖(**运动**)。工件与测头间的相对位置保持不变。数控系统用直线轴执行补偿运动。

1:自动定位旋转轴和定向刀尖(**运动**)。工件与测头间的相对位置保持不变。数控系统用直线轴执行补偿运动。

输入:0,1,2

Q1120 变换位置?

定义触点,用其修正当前预设点:

0:不修正

1:基于第一触点修正

2:基于第二触点修正

3:基于平均触点位置修正

输入:0,1,2,3

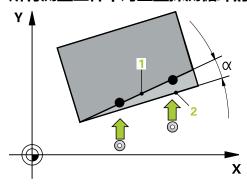
Q1121 确认旋转

定义数控系统是否将确定的不对正量用作基本旋转:

0: 无基本旋转

1:设置基本旋转:数控系统将不对正量传输到预设表中,进行基本变换。

2:旋转回转工作台:数控系统将不对正量传输到预设表中,进行偏移。


输入:0,1,2

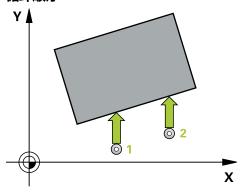
举例

11 TCH PROBE 1412 INCLINE	11 TCH PROBE 1412 INCLINED EDGE PROBING ~	
Q1100=+20	;1ST POINT REF AXIS ~	
Q1101=+0	;1ST POINT MINOR AXIS ~	
Q1102=-5	;1ST POINT TOOL AXIS ~	
QS400="+0.1-0.1"	;TOLERANCE ~	
Q1130=+30	;NOMINAL ANGLE, 1ST LINE ~	
Q1131=+1	;PROBE DIRECTION, 1ST LINE ~	
Q1132=+10	;FIRST DISTANCE, 1ST LINE ~	
Q1133=+20	;SECOND DISTANCE, 1ST LINE ~	
Q1139=+3	;OBJECT PLANE ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q260=+100	;CLEARANCE HEIGHT ~	
Q1125=+2	;CLEAR. HEIGHT MODE ~	
Q309=+0	;ERROR REACTION ~	
Q1126=+0	;ALIGN ROTARY AXIS ~	
Q1120=+0	;TRANSER POSITION ~	
Q1121=+0	;CONFIRM ROTATION	

4.7 探测循环4xx:基础知识

4.7.1 所有测量工件不对正量探测循环的共同特点

在循环400、401和402中,可用参数Q307 (旋转角预设值) 定义已知角 α 修正后的测量结果(参见图示)。因此,可以测量相对工件任意一条直线1的基本旋转并建立相对实际0度方向2的参考。


这些循环不适用于3-D旋转功能!如为该情况,用循环**14xx**,**更多信息:** "探测循环14xx的基础知识",55页

4.8 循环400BASIC ROTATION

应用

探测循环400测量直线上的两个点,确定工件的不对正量。数控系统用基本旋转功能补偿测量值。

循环顺序

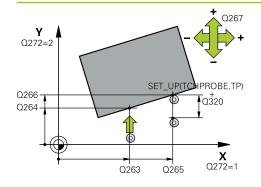
- 1 根据定位规则,数控系统用快移速度(FMAX列的数据)将测头移到编程的触点1处。数控系统沿定义运动方向的相反方向将测头偏移安全高度的尺寸**更多信息:** "定位规则",48 页
- 2 然后,测头运动到输入的测量高度位置并用探测进给速率(F列)探测第一触点。
- 3 然后,测头移到下个触点2并再次探测。
- 4 数控系统将测头移回第二安全高度处并执行已确定的基本旋转。

注意

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。


- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 该数控系统将在循环起点处重置当前的基本旋转。

编程说明

■ 定义循环前,必须编程一个刀具调用,以定义探测轴。

4.8.1 循环参数

帮助图形

参数

Q263 第一个测量点的第一轴坐标?

第一触点在加工面基本轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q264 第一个测量点的第二轴坐标?

第一触点在加工面辅助轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q265 第二个测量点的第一轴坐标?

第二触点在加工面基本轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q266 第二个测量点的第二轴坐标?

第二触点在加工面辅助轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q272 测量轴(1= 第一个轴 / 2=第二个轴)?

加工面上轴,沿此轴测量:

1:基本轴 = 测量轴

2:辅助轴 = 测量轴

输入:1,2

Q267 移动方向 1 (+1=+ / -1=-)?

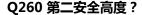
测头接近工件的方向:

-1:负运动方向

+1:正运动方向

输入:-1,+1

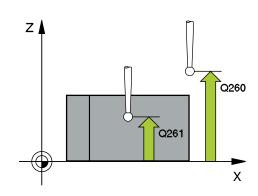
Q261 测量轴方向的测量高度?


球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。


输入: 0...99999.9999 或PREDEF

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰

撞。该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

帮助图形参数

Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动

1:在测量点之间,在第二安全高度处运动

输入:0,1

Q307 旋转角预设值?

如果相对直线而非基本轴,测量不对正量,输入该参考线的 角度。对于基本旋转,数控系统计算测量值与参考线角度间 的差值。 该值有绝对式效果。

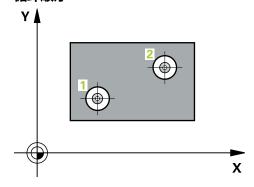
输入:-360.000...+360.000

Q305 表中的预设号?

指定预设表的行号,数控系统用该行号保存基本旋转计算值。如果输入**Q305** = 0,数控系统自动将基本旋转计算值保存在"手动操作"模式下的"ROT"(旋转)菜单中。

输入: 0...99999

举例


11 TCH PROBE 400 BASIC ROTATION ~	
Q263=+10	;1ST POINT 1ST AXIS ~
Q264=+3.5	;1ST POINT 2ND AXIS ~
Q265=+25	;2ND PNT IN 1ST AXIS ~
Q266=+2	;2ND PNT IN 2ND AXIS ~
Q272=+2	;MEASURING AXIS ~
Q267=+1	;TRAVERSE DIRECTION ~
Q261=-5	;MEASURING HEIGHT ~
Q320=+0	;SET-UP CLEARANCE ~
Q260=+20	;CLEARANCE HEIGHT ~
Q301=+0	;MOVE TO CLEARANCE ~
Q307=+0	;PRESET ROTATION ANG. ~
Q305=+0	;NUMBER IN TABLE

4.9 循环401ROT OF 2 HOLES

应用

探测循环**401**测量两个孔的中心点。然后,数控系统计算加工面基本轴与孔中心点连线间的角度。数控系统用基本旋转可补偿计算值。也可以转动回转工作台补偿不对正量测量值。

循环顺序

1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头定位在编程的第一孔1中心点处。

更多信息: "定位规则", 48 页

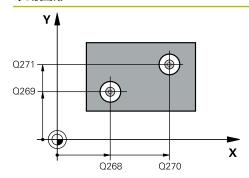
- 2 然后,测头移至输入的测量高度处并探测四个点,确定第一孔中心点。
- 3 测头返回第二安全高度,然后移至输入的第二孔2的圆心位置。
- 4 数控系统将测头移至所输入的测量高度处并探测四个点,确定第二孔中心点。
- 5 数控系统将测头移回第二安全高度处并执行已确定的基本旋转。

注意

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。


- ▶ 在探测循环前,不允许激活以下循环:循环7 DATUM SHIFT、循环8 MIRROR IMAGE、循环10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 该数控系统将在循环起点处重置当前的基本旋转。
- 如果要转动回转工作台补偿不对正量,数控系统自动使用以下旋转轴:
 - C轴,刀具轴为Z轴
 - B轴,刀具轴为Y轴
 - A轴,刀具轴为X轴

编程说明

■ 定义循环前,必须编程一个刀具调用,以定义探测轴。

4.9.1 循环参数

帮助图形

参数

Q268 第一个孔: 中点的第一轴坐标?

加工面基本轴上的第一孔中心。该值有绝对式效果。

输入:-99999.9999...+9999.9999

Q269 第一个孔: 中点的第二轴坐标?

第一孔沿加工面辅助轴的中心。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q270 第二个孔: 中点的第一轴坐标?

加工面基本轴上的第二孔中心。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q271 第二个孔: 中点的第二轴坐标?

第二孔沿加工面辅助轴的中心。 该值有绝对式效果。

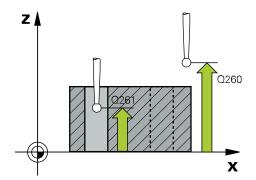
输入:-99999.9999...+99999.9999

Q261 测量轴方向的测量高度?

球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q260 第二安全高度?


刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。 该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

Q307 旋转角预设值?

如果相对直线而非基本轴,测量不对正量,输入该参考线的 角度。对于基本旋转,数控系统计算测量值与参考线角度间 的差值。该值有绝对式效果。

输入:-360.000...+360.000

帮助图形

参数

Q305 表中的号码?

输入预设点表中的行号。数控系统将在以下行中进行相应输入。

Q305 = 0:在预设点表第0行将旋转轴设置为0。数控系统将在**OFFSET**(偏移)列中进行输入。(举例:对于刀具轴 Z轴,在**C_OFFS**中输入)。另外,当前已激活的预设点的所有其它值(X、Y、Z等)都传到预设表的行0中。此外,数控系统激活自行0起的预设点。

Q305 > 0:在这里指定的预设表行中将旋转轴设置为零。数控系统将在预设表的相应**OFFSET**(偏移)列中输入(举例:对于刀具轴Z轴,在**C_OFFS**中输入)。

Q305取决于以下参数:

- **Q337** = 0,而且同时,**Q402** = 0:在**Q305**参数指定的行中设置基本旋转。(例如:对于Z轴刀具轴,在**SPC**列中输入基本旋转)。
- Q337 = 0,而且同时,Q402 = 1:参数Q305无作用。
- Q337 = 1:参数Q305的作用如上所述。

输入: 0...99999

Q402 基本旋转/对正 (0/1)

定义数控系统是否将已确定的不对正量设置为基本旋转或用 回转工作台旋转进行补偿:

0:设置基本旋转:数控系统保存基本旋转(例如:对于Z轴刀具轴,数控系统使用**SPC**列)

1:旋转回转工作台:在预设表的相应Offset列中输入(例如:对于Z轴刀具轴,数控系统使用C_OFFS列);此外,将旋转相应轴

输入:0,1

Q337 校准后设为零?

定义数控系统在找正后,是否将相应旋转轴的位置显示设置为0:

0:找正后,不将位置显示设置为0

1:找正后,将位置显示设置为0,如果定义了Q402 = 1

输入:0,1

举例

11 TCH PROBE 401 ROT OF 2 HOLES ~	
Q268=-37	;1ST CENTER 1ST AXIS ~
Q269=+12	;1ST CENTER 2ND AXIS ~
Q270=+75	;2ND CENTER 1ST AXIS ~
Q271=+20	;2ND CENTER 2ND AXIS ~
Q261=-5	;MEASURING HEIGHT ~
Q260=+20	;CLEARANCE HEIGHT ~
Q307=+0	;PRESET ROTATION ANG. ~
Q305=+0	;NUMBER IN TABLE ~
Q402=+0	;COMPENSATION ~
Q337=+0	;SET TO ZERO

4.10 循环402ROT OF 2 STUDS

应用

探测循环**402**测量两个圆柱凸台的中心点。然后,数控系统计算加工面基本轴与凸台中心点连线间的角度。数控系统用基本旋转可补偿计算值。也可以转动回转工作台补偿不对正量测量值。

循环顺序

1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移至第一凸台触点1位置。

更多信息: "定位规则", 48 页

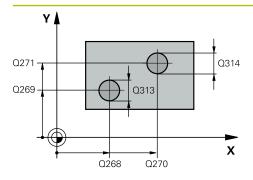
- 2 然后,测头移至输入的**测量高度1**位置并探测四个点,确定第一凸台的中心。测头沿圆弧路径在两个触点间运动,每次偏移90度。
- 3 测头返回第二安全高度,然后再移至第二凸台的触点5位置。
- 4 数控系统将测头移至输入的**测量高度2**位置并探测四个点,确定第二圆柱台的中心。
- 5 然后,数控系统将测头移回第二安全高度并执行基本旋转的计算结果。

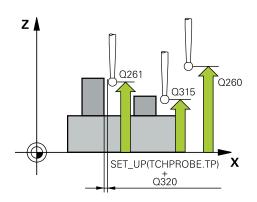
注意

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。


- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 该数控系统将在循环起点处重置当前的基本旋转。
- 如果要转动回转工作台补偿不对正量,数控系统自动使用以下旋转轴:
 - C轴,刀具轴为Z轴
 - B轴,刀具轴为Y轴
 - A轴,刀具轴为X轴


编程说明

■ 定义循环前,必须编程一个刀具调用,以定义探测轴。

4.10.1 循环参数

帮助图形

参数

Q268 凸台1:中心的第一轴坐标?

第一凸台中心在加工面基本轴上。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q269 凸台1:中心的第二轴坐标?

第一圆柱台中心在加工面辅助轴上。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q313 凸台1的直径?

第一圆柱台的大约直径。输入的值应略大,不要过小。

输入: 0...99999.9999

Q261 凸台1在TS 轴上的测量高度?

球头中心(=触点)在探测轴上的坐标,沿探测轴测量凸台

1。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q270 凸台2:中心的第一轴坐标?

第二圆柱凸台中心在加工面基本轴上。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q271 凸台2:中心的第二轴坐标?

第二圆柱凸台中心在加工面辅助轴上。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q314 凸台2的直径?

第二圆柱凸台的大约直径。输入的值应略大,不要过小。

输入: 0...99999.9999

Q315 凸台2在TS 轴上的测量高度?

球头中心(=触点)在探测轴上的坐标,沿探测轴测量凸台

2。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰

撞。该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

帮助图形 参数

Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动

1:在测量点之间,在第二安全高度处运动

输入:0,1

Q307 旋转角预设值?

如果相对直线而非基本轴,测量不对正量,输入该参考线的 角度。对于基本旋转,数控系统计算测量值与参考线角度间 的差值。该值有绝对式效果。

输入:-360.000...+360.000

Q305 表中的号码?

输入预设点表中的行号。数控系统将在以下行中进行相应输入。

Q305 = 0:在预设点表第0行将旋转轴设置为0。数控系统将在**OFFSET**(偏移)列中进行输入。(举例:对于刀具轴 Z轴,在**C_OFFS**中输入)。另外,当前已激活的预设点的所有其它值(X、Y、Z等)都传到预设表的行0中。此外,数控系统激活自行0起的预设点。

Q305 > 0:在这里指定的预设表行中将旋转轴设置为零。数控系统将在预设表的相应**OFFSET**(偏移)列中输入(举例:对于刀具轴Z轴,在**C_OFFS**中输入)。

Q305取决于以下参数:

- **Q337** = 0,而且同时,**Q402** = 0:在**Q305**参数指定的 行中设置基本旋转。(例如:对于Z轴刀具轴,在**SPC**列 中输入基本旋转)。
- Q337 = 0,而且同时,Q402 = 1:参数Q305无作用。
- Q337 = 1:参数Q305的作用如上所述。

输入: 0...99999

帮助图形	参数
中叫鸟沙	> ***

Q402 基本旋转/对正 (0/1)

定义数控系统是否将已确定的不对正量设置为基本旋转或用 回转工作台旋转进行补偿:

0:设置基本旋转:数控系统保存基本旋转(例如:对于Z轴刀具轴,数控系统使用**SPC**列)

1:旋转回转工作台:在预设表的相应Offset列中输入(例如:对于Z轴刀具轴,数控系统使用C_OFFS列);此外,将旋转相应轴

输入:0,1

Q337 校准后设为零?

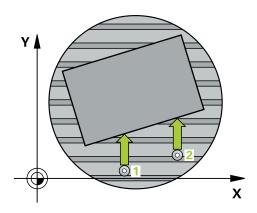
定义数控系统在找正后,是否将相应旋转轴的位置显示设置为0:

0:找正后,不将位置显示设置为0

1: 找正后,将位置显示设置为0,如果定义了Q402 = 1

输入:0,1

举例


• • •	
11 TCH PROBE 402 ROT OF 2 STUDS ~	
Q268=-37	;1ST CENTER 1ST AXIS ~
Q269=+12	;1ST CENTER 2ND AXIS ~
Q313=+60	;DIAMETER OF STUD 1 ~
Q261=-5	;MEAS. HEIGHT STUD 1 ~
Q270=+75	;2ND CENTER 1ST AXIS ~
Q271=+20	;2ND CENTER 2ND AXIS ~
Q314=+60	;DIAMETER OF STUD 2 ~
Q315=-5	;MEAS. HEIGHT STUD 2 ~
Q320=+0	;SET-UP CLEARANCE ~
Q260=+20	;CLEARANCE HEIGHT ~
Q301=+0	;MOVE TO CLEARANCE ~
Q307=+0	;PRESET ROTATION ANG. ~
Q305=+0	;NUMBER IN TABLE ~
Q402=+0	;COMPENSATION ~
Q337=+0	;SET TO ZERO

4.11 循环403ROT IN ROTARY AXIS

应用

探测循环**403**测量直线上的两个点,确定工件的不对正量。数控系统旋转A轴、B轴或C轴补偿所确定的不对正量。工件可以被夹持在回转工作台的任意位置处。

循环顺序

- 1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到编程的触点1位置。数控系统沿定义运动方向的相反方向将测头偏移安全高度的尺寸**更多信息:** "定位规则",48 页
- 2 然后,测头运动到输入的测量高度位置并用探测进给速率(F列)探测第一触点。
- 3 然后,测头移到下个触点2并再次探测。
- 4 数控系统将测头退至第二安全高度处并根据测量值转动循环中定义的旋转轴。或指定改善数控系统是否在预设表或原点表中将已确定的旋转角设置为0。

注意

注意

碰撞危险!

如果该数控系统自动定位旋转轴,可能发生碰撞。

- ▶ 检查刀具与固定在工作台上的任何部件之间可能发生的碰撞
- ▶ 选择第二安全高度,避免碰撞

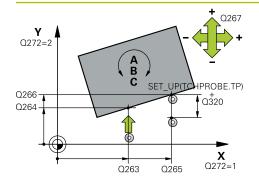
注意

碰撞危险!

如果将参数**Q312** (补偿移动的轴?)设置为0,该循环将自动确定需找正的旋转轴(推荐的设置)。为此,根据触点顺序确定角度。测量的角度为从第一触点到第二触点。如果在参数**Q312**中将选择A轴、B轴或C轴选择为补偿轴,该循环确定角度,而与探测点顺序无关。计算的角度在-90°至+90°范围内。

▶ 对正后,检查旋转轴位置。

注意


碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。

- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 数控系统将在循环起点处重置当前的基本旋转。

4.11.1 循环参数

帮助图形

参数

Q263 第一个测量点的第一轴坐标?

第一触点在加工面基本轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q264 第一个测量点的第二轴坐标?

第一触点在加工面辅助轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q265 第二个测量点的第一轴坐标?

第二触点在加工面基本轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q266 第二个测量点的第二轴坐标?

第二触点在加工面辅助轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q272 测量轴(1/2/3, 1= 参考轴)?

被测轴:

1:基本轴 = 测量轴

2:辅助轴 = 测量轴

3:探测轴 = 测量轴

输入:1,2,3

Q267 移动方向 1 (+1=+ / -1=-)?

测头接近工件的方向:

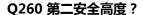
-1: 负运动方向

+1:正运动方向

输入:-1,+1

Q261 测量轴方向的测量高度?

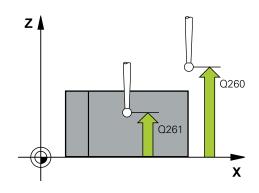
球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对 式效果


式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。


输入: 0...99999.9999 或PREDEF

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰接。这位有绝对大数型

撞。 该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

帮助图形参数

Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动

1:在测量点之间,在第二安全高度处运动

输入:0,1

Q312 补偿移动的轴?

定义旋转轴,数控系统用该旋转轴补偿不对正量的测量值:

0:自动模式 – 数控系统用当前运动特性确定旋转轴进行找正。自动模式中,工作台的第一旋转轴(从工件方向看)为补偿轴。这是推荐的设置!

4:用旋转轴A补偿不对正量

5:用旋转轴B补偿不对正量

6:用旋转轴C补偿不对正量

输入:0,4,5,6

Q337 校准后设为零?

定义数控系统找正后在预设表还是在原点表中将找正的旋转 轴角度设置为0。

0:找正后,在表中不将旋转轴的角度设置为0

1:找正后,在表中将旋转轴的角度设置为0

输入:0,1

Q305 表中的号码?

指定预设表中的行号,数控系统在此行号中输入基本旋转。

Q305 = 0:在预设点表行号0中将旋转轴设置为0。数控系统将在**OFFSET**(偏移)列中进行输入。另外,当前已激活的预设点的所有其它值(X、Y、Z等)都传到预设表的行0中。此外,数控系统激活自行0起的预设点。

Q305 > 0:指定预设表中的行号,数控系统在该行号中将旋转轴设置为零。数控系统将在预设表的**OFFSET**(偏移)列中进行输入

Q305取决于以下参数:

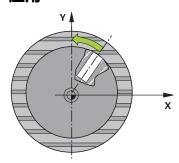
■ Q337 = 0:参数Q305无作用

■ Q337 = 1:参数Q305的作用如上所述

■ Q312 = 0:参数Q305的作用如上所述

Q305 表中的号码? Q312 > 0:忽略Q305中的输入信息。调用该循环时,数控系统在调用时有效的预设表行中的OFFSET(偏移)列进行输入。

输入: 0...99999

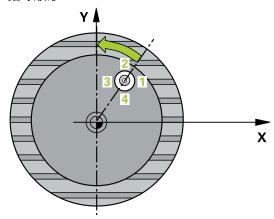

帮助图形 Q303 测量值转移 (0,1)? 定义将预设点计算结果保存在原点表中还是保存在预设表中: 0:将预设点计算结果写入当前原点表中,进行原点平移。参考系统为当前工件坐标系。 1:将预设点计算结果写入预设表中。输入:0,1 Q380 参考角度? (0=参考轴)数控系统找正被探测直线的角度。仅适用于旋转轴为自动模式或C轴已被选择(Q312 = 0或6)。 输入:0...360

举例

11 TCH PROBE 403 ROT IN ROTARY AXIS ~	
Q263=+0	;1ST POINT 1ST AXIS ~
Q264=+0	;1ST POINT 2ND AXIS ~
Q265=+20	;2ND PNT IN 1ST AXIS ~
Q266=+30	;2ND PNT IN 2ND AXIS ~
Q272=+1	;MEASURING AXIS ~
Q267=-1	;TRAVERSE DIRECTION ~
Q261=-5	;MEASURING HEIGHT ~
Q320=+0	;SET-UP CLEARANCE ~
Q260=+20	;CLEARANCE HEIGHT ~
Q301=+0	;MOVE TO CLEARANCE ~
Q312=+0	;COMPENSATION AXIS ~
Q337=+0	;SET TO ZERO ~
Q305=+1	;NUMBER IN TABLE ~
Q303=+1	;MEAS. VALUE TRANSFER ~
Q380=+90	;REFERENCE ANGLE

4.12 循环405ROT IN C-AXIS

应用



用探测循环405可以测量

- 当前坐标系的Y轴正方向与孔的中心线间的角度偏移量
- 孔中心点的名义位置与实际位置间的角度偏移量。

该数控系统用旋转C轴补偿已确定的角度偏移量。可以将工件夹持在回转工作台的任意位置处,但孔的Y坐标必须为正方向。如果测量孔与探测轴Y的角度偏移量(孔的水平位置),必要执行一次以上循环,因为测量方式会产生不对正量的大约1%的测量误差。

循环顺序

- 1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到触点1位置。数控系统用循环中数据和探测表SET_UP列中的安全高度计算触点。
 - **更多信息:** "定位规则", 48 页
- 2 然后,测头运动到输入的测量高度位置并用探测进给速率(F列)探测第一触点。数控系统用编程的起始角自动确定探测方向。
- 3 然后,测头沿圆弧路径在测量高度或第二安全高度移到下一个触点<mark>2</mark>位置并再次探测。
- 4 数控系统将测头定位在触点3处,再定位在触点4处,继续探测两次,然后将测头定位在被测孔中心的计算结果处。
- 5 最后,数控系统将测头移回第二安全高度并转动回转工作台找正工件。数控系统转动回转工作台,使孔中心在补偿后位于正Y轴方向,或孔中心在垂直和水平探测轴的名义位置处。参数**Q150**也提供被测角的偏移量。

注意

注意

碰撞危险!

如果型腔尺寸和安全高度不允许在触点附近预定位,该数控系统一定从型腔的中心开始探测。这时,测头在四个测量点间之间无法移回到第二安全高度处。

- ▶ 必须确保型腔/孔中无任何材料
- ▶ 为避免测头与工件间碰撞,输入型腔(或孔)名义直径的较小估计值。

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。

- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 数控系统将在循环起点处重置当前的基本旋转。

编程说明

■ 步距角越小,数控系统计算圆心点的精度越低。最小输入值:5度。

4.12.1 循环参数

帮助图形

Q322 Q325 Q321

参数

Q321 中心的第一轴坐标?

孔中心在加工面基本轴上。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q322 中心的第二轴坐标?

孔中心在加工面辅助轴上。如果编程**Q322** = 0,数控系统将孔的中心点找正正Y轴。如果编程**Q322**不等于0,数控系统用名义位置找正孔中心点(孔中心位置确定的角度)。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q262 名义直径?

圆弧型腔(或孔)的大约直径。输入的值应偏小,不要过大。

输入: 0...99999.9999

Q325 起始角度?

加工面基本轴与第一触点间的角度。该值有绝对式效果。

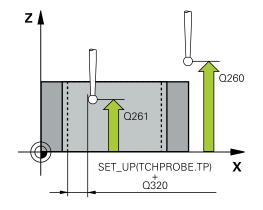
输入:-360.000...+360.000

Q247 中间步进角?

两个测量点间的角度。角度步长的代数符号决定测头移向下个测量点的旋转方向(负=顺时针)。如果要探测圆弧而不是整圆,编程的角度步长必须小于90度。该值提供增量效果。

输入:-120...+120

Q261 测量轴方向的测量高度?


球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。 该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。 该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

帮助图形参数

Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动

1:在测量点之间,在第二安全高度处运动

输入:0,1

Q337 校准后设为零?

0:将C轴显示设置为0并写入原点表当前行的C_Offset列中>0:将角度偏移测量值写入原点表中。行号 = Q337中数据。如果原点表中记录了C轴平移,数控系统增加角度偏移量测量值及正确的代数符号,或为正或为负。

输入: 0...2999

举例

11 TCH PROBE 405 ROT IN C-AXIS ~		
Q321=+50	;CENTER IN 1ST AXIS ~	
Q322=+50	;CENTER IN 2ND AXIS ~	
Q262=+10	;NOMINAL DIAMETER ~	
Q325=+0	;STARTING ANGLE ~	
Q247=+90	;STEPPING ANGLE ~	
Q261=-5	;MEASURING HEIGHT ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q260=+20	;CLEARANCE HEIGHT ~	
Q301=+0	;MOVE TO CLEARANCE ~	
Q337=+0	;SET TO ZERO	

4.13 循环404SET BASIC ROTATION

应用

用探测循环**404**可在程序运行期间自动设置任何基本旋转或将其保存在预设表中。如果需要重置当前基本旋转,也可用循环**404**。

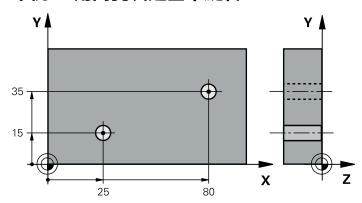
注意

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。

- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。


4.13.1 循环参数

帮助图形	参数
	Q307 旋转角预设值? 设置基本旋转的角度值。
	输入:-360.000+360.000
	Q305 表中的预设号?: 指定预设表的行号,数控系统用该行号保存基本旋转计算值。如果输入Q305 = 0或Q305 = -1,数控系统还将基本旋转计算结果保存在 手动操作 模式下的基本旋转菜单(探测旋转)中。
	-1:改写和激活当前预设点 0:将当前预设点复制到预设表的行号0中,将基本旋转写入 预设表的行号0中,并激活预设点0
	> 1 :将基本旋转保存至指定的预设点。预设点未被激活。 输入:- 199999

举例

11 TCH PROBE 404 SET BASIC ROTATION ~	
Q307=+0	;PRESET ROTATION ANG. ~
Q305=-1	;NUMBER IN TABLE

4.14 举例: 用两孔决定基本旋转

- **Q268** = 第一孔的中心:X轴坐标
- **Q269** = 第一孔的中心: Y轴坐标
- **Q270** = 第二孔的中心:X轴坐标
- **Q271** = 第二孔的中心:Y轴坐标
- Q261 = 探测轴坐标,在探测轴测量
- Q307 = 参考线的角度
- Q402 = 转动工作台补偿工件不对正量
- **Q337** = 找正后,将显示值设置为零

0 BEGIN PGM TO	OUCHPROBE MM	
1 TOOL CALL 600) Z	
2 TCH PROBE 40	1 ROT OF 2 HOLES ~	
Q268=+25	;1ST CENTER 1ST AXIS ~	
Q269=+15	;1ST CENTER 2ND AXIS ~	
Q270=+80	;2ND CENTER 1ST AXIS ~	
Q271=+35	;2ND CENTER 2ND AXIS ~	
Q261=-5	;MEASURING HEIGHT ~	
Q260=+20	;CLEARANCE HEIGHT ~	
Q307=+0	;PRESET ROTATION ANG. ~	
Q305=+0	;NUMBER IN TABLE	
Q402=+1	;COMPENSATION ~	
Q337=+1	;SET TO ZERO	
3 CALL PGM 35		; 调用工件程序
4 END PGM TOU	CHPROBE MM	

探测循环:自动预设 点测量

探测循环:自动预设点测量 | 概要

5.1 概要

数控系统提供可自动测量预设点的循环。

要使用测头,机床制造商必须对数控系统进行特别准备。海德汉只保证使用海德汉测头时探测循环正常工作。

循环		调用	更多信息
1400	POSITION PROBING	DEF定义生效	117 页
	■ 单个位置的测量		
	■ 根据需要,预设点的定义		
1401	CIRCLE PROBING	DEF定义生效	121 页
	■ 圆内或圆外点的测量		
	■ 根据需要,圆心为预设点的定义		
1402	SPHERE PROBING	DEF定义生效	125 页
	■ 球体上点的测量		
	■ 根据需要,球心为预设点的定义		
410	DATUM INSIDE RECTAN.	DEF定义生效	132 页
	■ 矩形内侧长度和宽度的测量		
	■ 矩形中心为预设点的定义		
411	DATUM OUTS. RECTAN.	DEF定义生效	137 页
	■ 矩形外侧长度和宽度的测量		
	■ 矩形中心为预设点的定义		
412	DATUM INSIDE CIRCLE	DEF定义生效	143 页
	■ 圆内任意四点的测量		
	■ 圆心为预设点的定义		
413	DATUM OUTSIDE CIRCLE	DEF定义生效	149 页
	■ 圆外任意四点的测量		
	■ 圆心为预设点的定义		
414	DATUM OUTSIDE CORNER	DEF定义生效	155 页
	■ 外侧两条直线的测量		
	■ 直线交点为预设点的定义		
415	DATUM INSIDE CORNER	DEF定义生效	161 页
	■ 内侧两条直线的测量		
	■ 直线交点为预设点的定义		
416	DATUM CIRCLE CENTER	DEF定义生效	166 页
	■ 圆弧阵列孔上任意三个孔的测量		
	■ 圆弧阵列孔的中心为预设点的定义		
417	DATUM IN TS AXIS	DEF定义生效	172 页
	■ 刀具轴上任意位置的测量		
	■ 任意位置为预设点的定义		
418	DATUM FROM 4 HOLES	DEF定义生效	175 页
	■ 每条十字交叉线上两个孔的测量		
	■ 直线交点为预设点的定义		

循环		调用	更多信息
419	DATUM IN ONE AXIS ■ 可选轴上任意位置的测量 ■ 可选轴上任意位置为预设点的定义	DEF定义生效	180 页
408	SLOT CENTER REF PT 内槽宽度的测量 槽中心为预设点的定义	DEF定义生效	183 页
409	RIDGE CENTER REF PT	DEF定义生效	188 页

- 外凸台宽度的测量
- 凸台中心为预设点的定义

5.2 设置预设点探测循环14xx的基础知识

5.2.1 预设点设置的全部探测循环14xx的共同特点

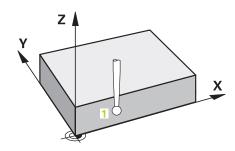
预设点和刀具轴

数控系统基于测量程序定义的探测轴设置加工面上的预设点。

当前探测轴	将预设点设置在
Z	X轴和Y轴
Y	Z轴和X轴
X	Y轴和Z轴

测量结果保存在Q参数中

数控系统将相应探测循环的测量结果保存在全局有效的Q参数**Q9xx**中。可用NC数控程序中的参数。注意测量结果参数表中提供每个循环的说明。


5.3 循环1400POSITION PROBING

应用

探测循环1400测量选定轴上的任意位置。可将结果用在预设表的当前行。 如果在此循环前,编程循环1493 EXTRUSION PROBING,可沿指定的方向和在 指定的范围内重复探测点。

更多信息: "循环1493EXTRUSION PROBING ", 269 页

循环顺序

1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到编程的触点1位置。数控系统在预定位期间考虑安全高度Q320

更多信息: "定位规则", 48 页

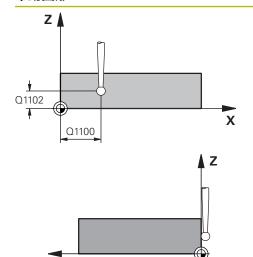
- 2 然后,测头移至输入的测量高度位置并用一次探测运动测量实际位置。
- 3 数控系统将测头返回第二安全高度。
- 4 数控系统将测量位置保存在以下Q参数中。如果**Q1120 = 1**,数控系统将测量位置写入预设表的当前行。

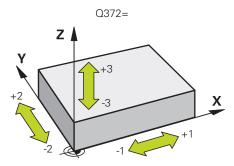
更多信息: "设置预设点探测循环14xx的基础知识", 117页

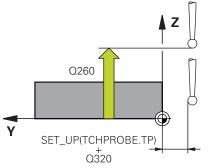
Q参数 编号	含义
Q950至Q952	基本轴、辅助轴和刀具轴上被测位置1
Q980至Q982	触点1的偏差测量值
Q183	工件状态 ■ -1 = 未定义 ■ 0 = 合格 ■ 1 = 修复 ■ 2 = 废品
Q970	如果编程了循环1493 EXTRUSION PROBING: 与第二触点理想值全部偏差的平均值

注意

注意


碰撞危险!


执行探测循环444和14xx时,不能激活任何坐标变换(例如,循环8 MIRROR IMAGE、11 SCALING、26 AXIS-SPEC. SCALING、(镜像变换)。


- ▶ 循环调用前,重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。

5.3.1 循环参数

帮助图形

参数

Q1100 参考轴的第1名义位置?

第一触点在加工面基本轴上的绝对名义位置

输入:-99999.9999...+99999.9999 或可选?,-,+,@

?: 半自动模式,参见56页 -,+: 公差计算,参见61页 @: 传输实际位置,参见63页

Q1101 辅助轴的第1名义位置?

第一触点在加工面辅助轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

Q1102 刀具轴的第1名义位置?

第一触点在刀具轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

Q372 探测方向(-3至+3)?

轴决定探测方向。用代数符号定义探测轴正向或负向运动。

输入:-3,-2,-1,+1,+2,+3

Q320 安全高度?

Q1101

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰接, 海停车绝对于效果

撞。 该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

帮助图形参数

Q1125 将刀具移至第二安全高度?

触点间的定位操作特性:

-1:不移到第二安全高度。

0,1,2:触点前和触点后,移到第二安全高度。

用FMAX_PROBE快移速度预定位。

输入:-1,0,+1,+2

Q309 响应公差错误?

超出公差时的响应:

0:超出公差时,不中断程序运行。数控系统不打开含结果的窗口。

1:超出公差时,中断程序运行。数控系统打开含结果的窗口。

2:如果实际位置在废品范围内,数控系统打开含结果的窗口。程序运行中断。如果需要修复加工,数控系统打开含结果的窗口。

输入:0,1,2

Q1120 变换位置?

定义触点,用其修正当前预设点:

0:不修正

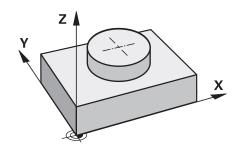
1:基于第一触点修正

输入:0,1

举例

11 TCH PROBE 1400 POSITION PROBING ~		
Q1100=+25	;1ST POINT REF AXIS ~	
Q1101=+25	;1ST POINT MINOR AXIS ~	
Q1102=-5	;1ST POINT TOOL AXIS ~	
Q372=+0	;PROBING DIRECTION ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q260=+50	;CLEARANCE HEIGHT ~	
Q1125=+1	;CLEAR. HEIGHT MODE ~	
Q309=+0	;ERROR REACTION ~	
Q1120=+0	;TRANSER POSITION	

5.4 循环1401CIRCLE PROBING


应用

探测循环1401确定圆弧型腔或圆弧凸台的中心点。可将结果传输到预设表的当前行中。

如果在此循环前,编程循环**1493 EXTRUSION PROBING**,可沿指定的方向和在指定的范围内重复探测点。

更多信息: "循环1493EXTRUSION PROBING ", 269 页

循环顺序

1 根据定位规则,数控系统用快移速度(FMAX列中的数据)将测头移到编程的触点位置。预定位期间,数控系统考虑安全距离Q320。

更多信息: "定位规则", 48 页

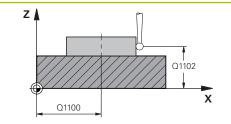
- 2 然后,将测头移到输入的测量高度Q1102位置并测量第一触点的实际位置。
- 3 数控系统用FMAX_PROBE快移速度将测头返回第二安全高度Q260,然后移到下一个触点位置。
- 4 数控系统将测头移到输入的测量高度Q1102处,测量下一个触点。
- 5 根据Q423 NO. OF PROBE POINTS的定义,数控系统重复步骤3至步骤4。
- 6 数控系统将测头返回第二安全高度**Q260**。
- 7 数控系统将测量位置保存在以下Q参数中。如果**Q1120 = 1**,数控系统将测量位置写入预设表的当前行。

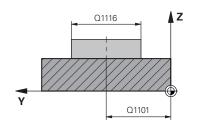
更多信息: "设置预设点探测循环14xx的基础知识", 117页

Q参数 编号	含义
Q950至Q952	在基本轴、辅助轴和刀具轴上的被测圆心点
Q966	被测直径
Q980至Q982	圆心点的偏差测量值
Q996	直径的偏差测量值
Q183	工件状态 -1 = 未定义 -0 = 合格 -1 = 修复 -2 = 废品
Q970	如果编程了循环 1493 EXTRUSION PROBING : 与第一圆心点理想值全部偏差的平均值
Q973	如果编程了循环 1493 EXTRUSION PROBING : 圆1直径全部偏差的平均值

注意

注意


碰撞危险!


执行探测循环444和14xx时,不能激活任何坐标变换(例如,循环8 MIRROR IMAGE、11 SCALING、26 AXIS-SPEC. SCALING、(镜像变换)。

- ▶ 循环调用前,重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。

5.4.1 循环参数

帮助图形

参数

Q1100 参考轴的第1名义位置?

圆心点在加工面基本轴上的绝对名义位置。

输入:-99999.9999...+99999.9999 或可选输入:

"**?...**":半自动模式,参见 56 页
"...-...+...":公差计算,参见 61 页
"...@...":传输实际位置,参见 63 页

Q1101 辅助轴的第1名义位置?

圆心点在加工面辅助轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

Q1102 刀具轴的第1名义位置?

第一触点在刀具轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

Q1116 第1位置的直径?

第一孔或第一凸台的直径

"...-...+...":公差计算,参见61页输入:0...9999.9999或可选输入:

Q1115 几何类型(0/1)?

对象的几何:

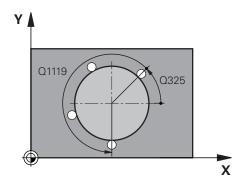
0:孔 **1**:凸台 输入:**0**,**1**

Q423 探测次数?

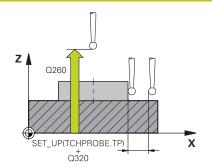
直径上的触点数

输入:3,4,5,6,7,8

Q325 起始角度?


加工面基本轴与第一触点间的角度。该值有绝对式效果。

输入:-360.000...+360.000


Q1119 圆角长度?

分布触点的角度范围。

输入:-359.999...+360.000

帮助图形

参数

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。 该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

Q1125 将刀具移至第二安全高度?

触点间的定位特性

-1:不移到第二安全高度。

0,1:循环前和循环后,移到第二安全高度。

用FMAX_PROBE快移速度预定位。

2:每个触点前和触点后移到第二安全高度。

用FMAX_PROBE快移速度预定位。

输入:-1,0,+1,+2

Q309 响应公差错误?

超出公差时的响应:

0:超出公差时,不中断程序运行。数控系统不打开含结果的窗口。

1:超出公差时,中断程序运行。数控系统打开含结果的窗口。

2:如果实际位置在废品范围内,数控系统打开含结果的窗口。程序运行中断。如果需要修复加工,数控系统打开含结果的窗口。

输入:0,1,2

Q1120 变换位置?

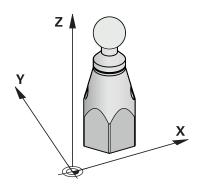
定义触点,用其修正当前预设点:

0:不修正

1:基于第一触点修正

输入:0,1

举例


11 TCH PROBE 1401 CIRCLE PROBING ~		
Q1100=+25	;1ST POINT REF AXIS ~	
Q1101=+25	;1ST POINT MINOR AXIS ~	
Q1102=-5	;1ST POINT TOOL AXIS ~	
QS1116=+10	;DIAMETER 1 ~	
Q1115=+0	;GEOMETRY TYPE ~	
Q423=+3	;NO. OF PROBE POINTS ~	
Q325=+0	;STARTING ANGLE ~	
Q1119=+360	;ANGULAR LENGTH ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q260=+50	;CLEARANCE HEIGHT ~	
Q1125=+1	;CLEAR. HEIGHT MODE ~	
Q309=+0	;ERROR REACTION ~	
Q1120=+0	;TRANSER POSITION	

5.5 循环1402SPHERE PROBING

应用

探测循环1402确定球的中心点。可将结果用在预设表的当前行。

循环顺序

1 根据定位规则,数控系统用快移速度(FMAX列中的数据)将测头移到编程的触点位置。预定位期间,数控系统考虑安全距离Q320。

更多信息: "定位规则", 48 页

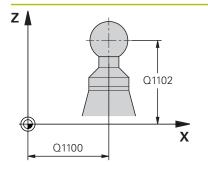
- 2 然后,将测头移到输入的测量高度**Q1102**位置并进行一次探测运动测量第一触点的实际位置。
- 3 数控系统用FMAX_PROBE快移速度将测头返回第二安全高度Q260,然后移到下一个触点位置。
- 4 数控系统将测头移到输入的测量高度Q1102处,测量下一个触点。
- 5 根据Q423 (探测点数)的定义,数控系统重复步骤3至步骤4。
- 6 数控系统沿刀具轴将测头运动到球体上方安全高度的位置。
- 7 测头移到球的中心点并探测另一个触点。
- 8 测头返回第二安全高度Q260。
- 9 数控系统将测量位置保存在以下Q参数中。如果**Q1120 = 1**,数控系统将测量位置写入预设表的当前行。

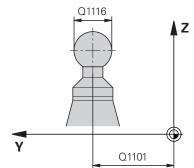
更多信息: "设置预设点探测循环14xx的基础知识", 117 页

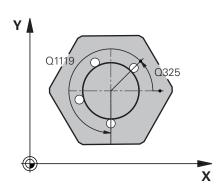
Q参数 编 号	含义
Q950至Q952	在基本轴、辅助轴和刀具轴上的被测圆心点
Q966	被测直径
Q980至Q982	圆心点的偏差测量值
Q996	直径的偏差测量值
Q183	工件状态 ■ -1 = 未定义 ■ 0 = 合格 ■ 1 = 修复 ■ 2 = 废品

注意

注意


碰撞危险!


执行探测循环444和14xx时,不能激活任何坐标变换(例如,循环8 MIRROR IMAGE、11 SCALING、26 AXIS-SPEC. SCALING、(镜像变换)。


- ▶ 循环调用前,重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 如果编程了循环1493 EXTRUSION PROBING,数控系统在执行循环1402 SPHERE PROBING期间,将忽略该功能。

5.5.1 循环参数

帮助图形

参数

Q1100 参考轴的第1名义位置?

圆心点在加工面基本轴上的绝对名义位置。

输入:-99999.9999...+99999.9999 或可选输入:

"**?...**":半自动模式,参见 56 页
"**...-...+...**":公差计算,参见 61 页
"**...@...**":传输实际位置,参见 63 页

Q1101 辅助轴的第1名义位置?

圆心点在加工面辅助轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

Q1102 刀具轴的第1名义位置?

第一触点在刀具轴上的绝对名义位置

输入:-99999.9999...+9999.9999 或可选输入(参见Q1100)

Q1116 第1位置的直径?

球的直径

"...-...+...": 公差计算,参见61页

输入: 0...9999.9999 或可选输入(参见Q1100)

Q423 探测次数?

直径上的触点数

输入:3,4,5,6,7,8

Q325 起始角度?

加工面基本轴与第一触点间的角度。该值有绝对式效果。

输入:-360.000...+360.000

Q1119 圆角长度?

分布触点的角度范围。

输入:-359.999...+360.000

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

帮助图形参数

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

Q1125 将刀具移至第二安全高度?

触点间的定位特性

-1:不移到第二安全高度。

0,1:循环前和循环后,移到第二安全高度。

用FMAX_PROBE快移速度预定位。

2:每个触点前和触点后移到第二安全高度。

用FMAX_PROBE快移速度预定位。

输入:-1,0,+1,+2

Q309 响应公差错误?

超出公差时的响应:

0:超出公差时,不中断程序运行。数控系统不打开含结果的窗口。

1:超出公差时,中断程序运行。数控系统打开含结果的窗口.

2:如果实际位置在废品范围内,数控系统打开含结果的窗口。程序运行中断。如果需要修复加工,数控系统打开含结果的窗口。

输入:0,1,2

Q1120 变换位置?

定义触点,用其修正当前预设点:

0:不修正

1:根据球的中心点修正

输入:0,1

举例

11 TCH PROBE 1402 SPHERE	PROBING ~
Q1100=+25	;1ST POINT REF AXIS ~
Q1101=+25	;1ST POINT MINOR AXIS ~
Q1102=-5	;1ST POINT TOOL AXIS ~
QS1116=+10	;DIAMETER 1 ~
Q423=+3	;NO. OF PROBE POINTS ~
Q325=+0	;STARTING ANGLE ~
Q1119=+360	;ANGULAR LENGTH ~
Q320=+0	;SET-UP CLEARANCE ~
Q260=+50	;CLEARANCE HEIGHT ~
Q1125=+1	;CLEAR. HEIGHT MODE ~
Q309=+0	;ERROR REACTION ~
Q1120=+0	;TRANSER POSITION

5.6 设置预设点探测循环4xx的基础知识

5.6.1 预设点设置的全部探测循环4xx的共同特点

根据可选的**CfgPresetSettings**机床参数设置(204600号),数控系统在探测期间检查旋转轴的位置是否与倾斜角**3-D 旋转**相符。如果不一致,数控系统显示出错信息。

数控系统提供可自动确定预设点的循环,用以下方式操作:

- 将计算值直接设置为显示值
- 将计算值写入预设表
- 将计算值写入原点表

预设点和探测轴

该数控系统基于测量程序中定义的探测轴确定加工面上的预设点。

当前测头轴	设置预设点
Z	X轴和Y轴
Y	Z轴和X轴
X	Y轴和Z轴

保存计算的预设点

在全部预设点设置循环中,可以用输入参数Q303和Q305定义数控系统如何保存计算的预设点:

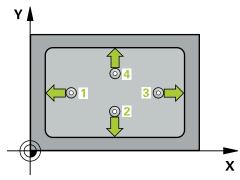
- Q305 = 0, Q303 = 1: 数控系统将当前预设点复制到行号0,修改数据并激活行号0,删除简单变换。
- Q305不等于0, Q303 = 0: 将结果写入原点表,行号Q305;在NC数控程序中用变换原点激活该原点 更多信息:编程和测试用户手册
- Q305不等于0, Q303 = 0: 将结果写入预设点表,行号Q305;在NC数控程序中用循环247激活该预设点
- Q305 不等于0, Q303 = -1

仅在以下情况下时允许该组合

- 读入在TNC 4xx系统上创建的NC数控程序(含循环410至418)
- 读入在iTNC 530系统老版本软件上创建的NC数控程序(含循环410至418)
- 定义循环时,未指定用参数Q303传送测量值

这时,数控系统输出出错信息,原因是基于REF的原点表的操作方式已完全不同。必须用参数**Q303**定义测量值传送功能。

测量结果保存在Q参数中


数控系统将相应探测循环的测量结果保存在全局有效的Q参数**Q150**至**Q160**中。这些参数可用在NC程序中。注意测量结果参数表中提供每个循环的说明。

5.7 循环410DATUM INSIDE RECTAN.

应用

探测循环**410**可确定矩形型腔的中心和将该位置定义为预设点。根据需要,数控系统也可将中心点坐标写入原点表或预设表中。

循环顺序

- 1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到触点1位置。数控系统用循环中数据和探测表SET_UP列中的安全高度计算触点。
 - **更多信息:** "定位规则", 48 页
- 2 然后,测头运动到输入的测量高度位置并用探测进给速率(F列)探测第一触点。
- 3 然后,测头在测量高度或第二安全高度沿平行轴方向移到下个触点<mark>2</mark>并再次探测。
- 4 数控系统将测头定位在触点3处,再定位在触点4处,再探测两次。
- 5 数控系统将测头返回第二安全高度。
- 6 根据循环参数**Q303**和**Q305**,数控系统执行计算的预设点,参见"设置预设点探测循环4xx的基础知识",130页
- 7 然后,数控系统将实际值保存在以下Q参数中。
- 8 根据需要,数控系统继续沿探测轴在单独的探测操作中确定预设点。

Q参数 编号	含义
Q151	沿参考轴中心的实际值
Q152	沿辅助轴中心的实际值
Q154	参考轴上侧边长度的实际值
Q155	辅助轴上侧边长度的实际值

注意

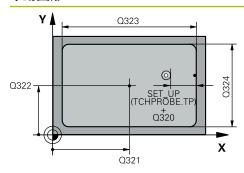
注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。

- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。

注意


碰撞危险!

为避免测头与工件碰撞,输入**较小**的第一和第二边长度估计值。如果型腔尺寸和安全高度不允许在触点附近预定位,数控系统一定从型腔的中心开始探测。这时,测头在四个测量点间无法移回到第二安全高度处。

- ▶ 循环定义前,必须编程一个刀具调用功能以定义探测轴。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 数控系统将在循环起点处重置当前的基本旋转。

5.7.1 循环参数

帮助图形

Z A Q260

Q261

参数

Q321 中心的第一轴坐标?

加工面基本轴上的型腔中心。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q322 中心的第二轴坐标?

型腔的中心在加工面辅助轴上。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q323 第一个边的长度?

型腔长度,平行于加工面基本轴。该值提供增量效果。

输入: 0...99999.9999

Q324 第二个边的长度?

型腔长度,平行于加工面辅助轴。 该值提供增量效果。

输入: 0...99999.9999

Q261 测量轴方向的测量高度?

球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。 该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动

1:在测量点之间,在第二安全高度处运动

输入:0,1

探测循环:自动预设点测量 | 循环410DATUM INSIDE RECTAN.

帮助图形参数

Q305 表中的号码?

代表预设点表 / 原点表中的行号, 数控系统用该行号保存中心点坐标。根据Q303, 数控系统将该信息输入到预设表或原点表中。

如果**Q303 = 1**,数控系统将数据写入预设表中。如果当前 预设点改变,其变化立即生效。否则,数控系统将该信息写 入预设表的相应行中,不自动激活。

如果Q303 = 0,数控系统将数据写入原点表中。不自动激活原点。

更多信息: "保存计算的预设点", 131 页

输入: 0...99999

Q331 参考轴的新原点?

基本轴上的坐标,数控系统在该位置设置型腔中心的计算结果。默认设置值 = 0。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q332 次要轴的新原点?

辅助轴上的坐标,数控系统在该位置设置型腔中心的计算结果。默认设置值 = 0。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q303 测量值转移 (0,1)?

定义将预设点计算结果保存在原点表中还是保存在预设表中:

-1:不允许使用。读入老版本NC数控程序时,由数控系统输入,参见"预设点设置的全部探测循环4xx的共同特点",130页

0:将预设点计算结果写入当前原点表中。参考系统为当前工件坐标系。

1:将预设点计算结果写入预设表中。

输入:-1,0,+1

Q381 测头在TS 轴? (0/1)

定义数控系统是否也将预设点设置在探测轴上:

0:不将预设点设置在探测轴上

1:将预设点设置在探测轴上

输入:0,1

帮助图形 参数

Q382 测头 TS 轴: 第一轴坐标?

加工面基本轴上的触点坐标;将预设点设置在探测轴上的此位置。仅当**Q381** = 1时有效。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q383 测头TS 轴: 第二轴坐标?

加工面辅助轴上的触点坐标,将预设点设置在探测轴上的此位置。仅当**Q381** = 1时有效。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q384 测头TS 轴: 第三轴坐标?

探测轴上的触点坐标,将预设点设置在探测轴上的此位置。 仅当**Q381** = 1时有效。 该值有绝对式效果。

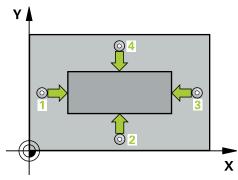
输入:-99999.9999...+99999.9999

Q333 TS 轴的新原点?

数控系统在探测轴上设置预设点的坐标。默认设置值 = 0。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

举例


11 CYCL DEF 410 DATUM INSIDE RECTAN. ~	
Q321=+50	;CENTER IN 1ST AXIS ~
Q322=+50	;CENTER IN 2ND AXIS ~
Q323=+60	;FIRST SIDE LENGTH ~
Q324=+20	;2ND SIDE LENGTH ~
Q261=-5	;MEASURING HEIGHT ~
Q320=+0	;SET-UP CLEARANCE ~
Q260=+20	;CLEARANCE HEIGHT ~
Q301=+0	;MOVE TO CLEARANCE ~
Q305=+10	;NUMBER IN TABLE ~
Q331=+0	;DATUM ~
Q332=+0	;DATUM ~
Q303=+1	;MEAS. VALUE TRANSFER ~
Q381=+1	;PROBE IN TS AXIS ~
Q382=+85	;1ST CO. FOR TS AXIS ~
Q383=+50	;2ND CO. FOR TS AXIS ~
Q384=+0	;3RD CO. FOR TS AXIS ~
Q333=+1	;DATUM

5.8 循环411DATUM OUTS. RECTAN.

应用

探测循环**411**可确定矩形凸台的中心并将该位置定义为原点。根据需要,数控系统也可将中心点坐标写入原点表或预设表中。

循环顺序

- 1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到触点1位置。数控系统用循环中数据和探测表SET_UP列中的安全高度计算触点。
 - **更多信息:** "定位规则", 48 页
- 2 然后,测头运动到输入的测量高度位置并用探测进给速率(F列)探测第一触点。
- 3 然后,测头在测量高度或第二安全高度沿平行轴方向移到下个触点<mark>2</mark>并再次探测。
- 4 数控系统将测头定位在触点3处,再定位在触点4处,再探测两次。
- 5 数控系统将测头返回第二安全高度。
- 6 根据循环参数**Q303**和**Q305**,数控系统执行计算的预设点,参见"设置预设点探测循环4xx的基础知识",130页
- 7 然后,数控系统将实际值保存在以下Q参数中。
- 8 根据需要,数控系统继续沿探测轴在单独的探测操作中确定预设点。

Q参数 编号	含义
Q151	沿参考轴中心的实际值
Q152	沿辅助轴中心的实际值
Q154	参考轴上侧边长度的实际值
Q155	辅助轴上侧边长度的实际值

注意

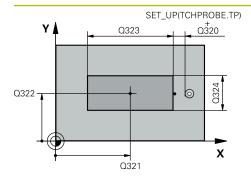
注意

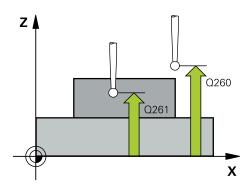
碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。

- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。

注意


碰撞危险!


为避免测头与工件碰撞,输入较小的第一和第二边长度估计值。

- ▶ 循环定义前,必须编程一个刀具调用功能以定义探测轴。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 数控系统将在循环起点处重置当前的基本旋转。

5.8.1 循环参数

帮助图形

参数

Q321 中心的第一轴坐标?

在加工面基本轴上的凸台中心。 该值有绝对式效果。

输入:-99999.9999...+9999.9999

Q322 中心的第二轴坐标?

在加工面辅助轴上的凸台中心。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q323 第一个边的长度?

平行于加工面基本轴的凸台长度。 该值提供增量效果。

输入: 0...99999.9999

Q324 第二个边的长度?

平行于加工面辅助轴的凸台长度。 该值提供增量效果。

输入: 0...99999.9999

Q261 测量轴方向的测量高度?

球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰

撞。该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动

1:在测量点之间,在第二安全高度处运动

输入:0,1

帮助图形 参数

Q305 表中的号码?

代表预设点表/原点表中的行号,数控系统用该行号保存中心点坐标。根据Q303,数控系统将该信息输入到预设表或原点表中。

如果Q303 = 1,数控系统将数据写入预设表中。如果当前预设点改变,其变化立即生效。否则,数控系统将该信息写入预设表的相应行中,不自动激活。

如果Q303 = 0,数控系统将数据写入原点表中。不自动激活原点。

更多信息: "保存计算的预设点", 131 页

输入: 0...99999

Q331 参考轴的新原点?

在基本轴上的坐标,数控系统在该位置设置凸台中心的计算结果。默认设置值 = 0。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q332 次要轴的新原点?

在辅助轴上的坐标,数控系统在该位置设置凸台中心的计算结果。默认设置值 = 0。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q303 测量值转移 (0,1)?

定义将预设点计算结果保存在原点表中还是保存在预设表中:

-1:不允许使用。读入老版本NC数控程序时,由数控系统输入,参见"预设点设置的全部探测循环4xx的共同特点",130页

0:将预设点计算结果写入当前原点表中。参考系统为当前工件坐标系。

1:将预设点计算结果写入预设表中。

输入:-1,0,+1

探测循环:自动预设点测量 | 循环411DATUM OUTS. RECTAN.

帮助图形参数

Q381 测头在TS 轴? (0/1)

定义数控系统是否也将预设点设置在探测轴上:

0:不将预设点设置在探测轴上 1:将预设点设置在探测轴上

输入:0,1

Q382 测头 TS 轴: 第一轴坐标?

加工面基本轴上的触点坐标;将预设点设置在探测轴上的此位置。仅当**Q381** = 1时有效。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q383 测头TS 轴: 第二轴坐标?

加工面辅助轴上的触点坐标,将预设点设置在探测轴上的此位置。仅当**Q381** = 1时有效。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q384 测头TS 轴: 第三轴坐标?

探测轴上的触点坐标,将预设点设置在探测轴上的此位置。 仅当**Q381** = 1时有效。 该值有绝对式效果。

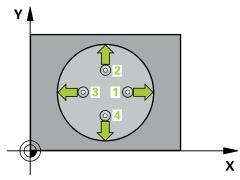
输入:-99999.9999...+99999.9999

Q333 TS 轴的新原点?

数控系统在探测轴上设置预设点的坐标。默认设置值 = 0。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

举例


11 TCH PROBE 411 DATUM OUTS. RECTAN. ~	
Q321=+50	;CENTER IN 1ST AXIS ~
Q322=+50	;CENTER IN 2ND AXIS ~
Q323=+60	;FIRST SIDE LENGTH ~
Q324=+20	;2ND SIDE LENGTH ~
Q261=-5	;MEASURING HEIGHT ~
Q320=+0	;SET-UP CLEARANCE ~
Q260=+20	;CLEARANCE HEIGHT ~
Q301=+0	;MOVE TO CLEARANCE ~
Q305=+0	;NUMBER IN TABLE ~
Q331=+0	;DATUM ~
Q332=+0	;DATUM ~
Q303=+1	;MEAS. VALUE TRANSFER ~
Q381=+1	;PROBE IN TS AXIS ~
Q382=+85	;1ST CO. FOR TS AXIS ~
Q383=+50	;2ND CO. FOR TS AXIS ~
Q384=+0	;3RD CO. FOR TS AXIS ~
Q333=+1	;DATUM

5.9 循环412DATUM INSIDE CIRCLE

应用

探测循环**412**可确定圆弧型腔(孔)的中心和将该位置定义为预设点。根据需要,数控系统也可将中心点坐标写入原点表或预设表中。

循环顺序

1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到触点1位置。数控系统用循环中数据和探测表SET_UP列中的安全高度计算触点。

更多信息: "定位规则", 48 页

- 2 然后,测头运动到输入的测量高度位置并用探测进给速率(F列)探测第一触点。数控系统用编程的起始角自动确定探测方向。
- 3 然后,测头在测量高度或直线地在第二安全高度位置沿圆弧路径移至下一个触点²位置并再次探测。
- 4 数控系统将测头定位在触点3处,再定位在触点4处,再探测两次。
- 5 数控系统将测头返回第二安全高度。
- 6 根据循环参数**Q303**和**Q305**,数控系统执行计算的预设点,参见"设置预设点探测循环4xx的基础知识",130页
- 7 然后,数控系统将实际值保存在以下Q参数中。
- 8 根据需要,数控系统继续沿探测轴在单独的探测操作中测量预设点。

Q参数 编号	含义
Q151	沿参考轴中心的实际值
Q152	沿辅助轴中心的实际值
Q153	直径实际值

注意

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。

- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。

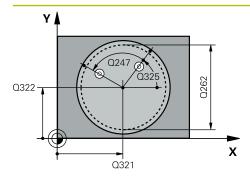
注意

碰撞危险!

为避免测头与工件间碰撞,输入型腔(或孔)名义直径的较小估计值。如果型腔尺寸和安全高度不允许在触点附近预定位,该数控系统一定从型腔的中心开始探测。这时,测头在四个测量点间之间无法移回到第二安全高度处。

- ▶ 预定位到型腔中心
- ▶ 循环定义前,必须编程一个刀具调用功能以定义探测轴。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 数控系统将在循环起点处重置当前的基本旋转。

编程说明


■ 角度步距**Q247**越小,数控系统计算预设点的精度越低。最小输入值:5度

编程的角度步长需小于90°

5.9.1 循环参数

帮助图形

参数

Q321 中心的第一轴坐标?

加工面基本轴上的型腔中心。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q322 中心的第二轴坐标?

型腔的中心在加工面辅助轴上。如果编程**Q322** = 0,数控系统将孔的中心点找正正Y轴。如果编程**Q322**不等于0,数控系统则将孔中心点找正名义位置。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q262 名义直径?

圆弧型腔(或孔)的大约直径。输入的值应偏小,不要过大。

输入: 0...99999.9999

Q325 起始角度?

加工面基本轴与第一触点间的角度。该值有绝对式效果。

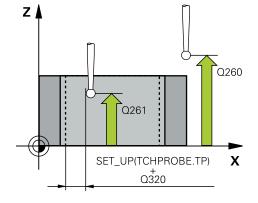
输入:-360.000...+360.000

Q247 中间步进角?

两个测量点间的角度。角度步长的代数符号决定测头移向下个测量点的旋转方向(负 = 顺时针)。如果要探测圆弧而不是整圆,编程的角度步长必须小于90度。 该值提供增量效果。

输入:-120...+120

Q261 测量轴方向的测量高度?


球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

帮助图形 参数

Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动

1:在测量点之间,在第二安全高度处运动

输入:0,1

Q305 表中的号码?

代表预设点表 / 原点表中的行号,数控系统用该行号保存中心点坐标。根据Q303,数控系统将该信息输入到预设表或原点表中。

如果Q303 = 1,数控系统将数据写入预设表中。如果当前预设点改变,其变化立即生效。否则,数控系统将该信息写入预设表的相应行中,不自动激活。

如果Q303 = 0,数控系统将数据写入原点表中。不自动激活原点。

更多信息: "保存计算的预设点", 131 页

输入: 0...99999

Q331 参考轴的新原点?

基本轴上的坐标,数控系统在该位置设置型腔中心的计算结果。默认设置值 = 0。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q332 次要轴的新原点?

辅助轴上的坐标,数控系统在该位置设置型腔中心的计算结果。默认设置值 = 0。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q303 测量值转移 (0,1)?

定义将预设点计算结果保存在原点表中还是保存在预设表中:

-1:不允许使用。读入老版本NC数控程序时,由数控系统输入,参见"预设点设置的全部探测循环4xx的共同特点",130页

0:将预设点计算结果写入当前原点表中。参考系统为当前工件坐标系。

1:将预设点计算结果写入预设表中。

输入:-1,0,+1

帮助图形参数

Q381 测头在TS 轴? (0/1)

定义数控系统是否也将预设点设置在探测轴上:

0:不将预设点设置在探测轴上 1:将预设点设置在探测轴上

输入:0,1

Q382 测头 TS 轴: 第一轴坐标?

加工面基本轴上的触点坐标;将预设点设置在探测轴上的此位置。仅当**Q381** = 1时有效。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q383 测头TS 轴: 第二轴坐标?

加工面辅助轴上的触点坐标,将预设点设置在探测轴上的此位置。仅当**Q381** = 1时有效。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q384 测头TS 轴: 第三轴坐标?

探测轴上的触点坐标,将预设点设置在探测轴上的此位置。 仅当**Q381** = 1时有效。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q333 TS 轴的新原点?

数控系统在探测轴上设置预设点的坐标。默认设置值 = 0。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q423 平面中无探测点(4/3)?

定义数控系统用三个还是四个触点测量圆:

3:用三个测量点

4:用四个测量点(默认设置)

输入:3,4

Q365 移动类型? 直线=0/圆弧=1

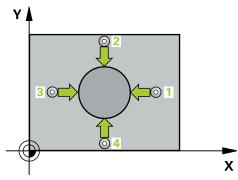
如果"运动到第二安全高度"($\mathbf{Q301} = 1$)已激活,指定测量点间刀具运动需要使用的路径功能。

0:在加工操作间沿直线运动

1:在加工操作间沿节圆直径的圆弧运动

输入:0,1

举例


Q321=+50 ;CENTER IN 1ST AXIS ~ Q322=+50 ;CENTER IN 2ND AXIS ~ Q262=+75 ;NOMINAL DIAMETER ~ Q325=+0 ;STARTING ANGLE ~ Q247=+60 ;STEPPING ANGLE ~ Q261=-5 ;MEASURING HEIGHT ~ Q320=+0 ;SET-UP CLEARANCE ~ Q260=+20 ;CLEARANCE HEIGHT ~ Q301=+0 ;MOVE TO CLEARANCE ~ Q305=+12 ;NUMBER IN TABLE ~ Q331=+0 ;DATUM ~ Q332=+0 ;DATUM ~ Q332=+0 ;DATUM ~ Q303=+1 ;MEAS. VALUE TRANSFER ~ Q381=+1 ;PROBE IN TS AXIS ~ Q382=+85 ;1ST CO. FOR TS AXIS ~ Q384=+0 ;3RD CO. FOR TS AXIS ~	11 TCH PROBE 412 DATUM INSIDE CIRCLE ~		
Q262=+75 ;NOMINAL DIAMETER ~ Q325=+0 ;STARTING ANGLE ~ Q247=+60 ;STEPPING ANGLE ~ Q261=-5 ;MEASURING HEIGHT ~ Q320=+0 ;SET-UP CLEARANCE ~ Q260=+20 ;CLEARANCE HEIGHT ~ Q301=+0 ;MOVE TO CLEARANCE ~ Q305=+12 ;NUMBER IN TABLE ~ Q331=+0 ;DATUM ~ Q332=+0 ;DATUM ~ Q303=+1 ;MEAS. VALUE TRANSFER ~ Q381=+1 ;PROBE IN TS AXIS ~ Q382=+85 ;1ST CO. FOR TS AXIS ~	Q321=+50	;CENTER IN 1ST AXIS ~	
Q325=+0 ;STARTING ANGLE ~ Q247=+60 ;STEPPING ANGLE ~ Q261=-5 ;MEASURING HEIGHT ~ Q320=+0 ;SET-UP CLEARANCE ~ Q260=+20 ;CLEARANCE HEIGHT ~ Q301=+0 ;MOVE TO CLEARANCE ~ Q305=+12 ;NUMBER IN TABLE ~ Q331=+0 ;DATUM ~ Q332=+0 ;DATUM ~ Q332=+0 ;DATUM ~ Q303=+1 ;MEAS. VALUE TRANSFER ~ Q381=+1 ;PROBE IN TS AXIS ~ Q382=+85 ;1ST CO. FOR TS AXIS ~	Q322=+50	;CENTER IN 2ND AXIS ~	
Q247=+60 ;STEPPING ANGLE ~ Q261=-5 ;MEASURING HEIGHT ~ Q320=+0 ;SET-UP CLEARANCE ~ Q260=+20 ;CLEARANCE HEIGHT ~ Q301=+0 ;MOVE TO CLEARANCE ~ Q305=+12 ;NUMBER IN TABLE ~ Q331=+0 ;DATUM ~ Q332=+0 ;DATUM ~ Q303=+1 ;MEAS. VALUE TRANSFER ~ Q381=+1 ;PROBE IN TS AXIS ~ Q382=+85 ;1ST CO. FOR TS AXIS ~	Q262=+75	;NOMINAL DIAMETER ~	
Q261=-5 ;MEASURING HEIGHT ~ Q320=+0 ;SET-UP CLEARANCE ~ Q260=+20 ;CLEARANCE HEIGHT ~ Q301=+0 ;MOVE TO CLEARANCE ~ Q305=+12 ;NUMBER IN TABLE ~ Q331=+0 ;DATUM ~ Q332=+0 ;DATUM ~ Q332=+1 ;MEAS. VALUE TRANSFER ~ Q381=+1 ;PROBE IN TS AXIS ~ Q382=+85 ;1ST CO. FOR TS AXIS ~	Q325=+0	;STARTING ANGLE ~	
Q320=+0 ;SET-UP CLEARANCE ~ Q260=+20 ;CLEARANCE HEIGHT ~ Q301=+0 ;MOVE TO CLEARANCE ~ Q305=+12 ;NUMBER IN TABLE ~ Q331=+0 ;DATUM ~ Q332=+0 ;DATUM ~ Q303=+1 ;MEAS. VALUE TRANSFER ~ Q381=+1 ;PROBE IN TS AXIS ~ Q382=+85 ;1ST CO. FOR TS AXIS ~	Q247=+60	;STEPPING ANGLE ~	
Q260=+20 ;CLEARANCE HEIGHT ~ Q301=+0 ;MOVE TO CLEARANCE ~ Q305=+12 ;NUMBER IN TABLE ~ Q331=+0 ;DATUM ~ Q332=+0 ;DATUM ~ Q303=+1 ;MEAS. VALUE TRANSFER ~ Q381=+1 ;PROBE IN TS AXIS ~ Q382=+85 ;1ST CO. FOR TS AXIS ~ Q383=+50 ;2ND CO. FOR TS AXIS ~	Q261=-5	;MEASURING HEIGHT ~	
Q301=+0 ;MOVE TO CLEARANCE ~ Q305=+12 ;NUMBER IN TABLE ~ Q331=+0 ;DATUM ~ Q332=+0 ;DATUM ~ Q303=+1 ;MEAS. VALUE TRANSFER ~ Q381=+1 ;PROBE IN TS AXIS ~ Q382=+85 ;1ST CO. FOR TS AXIS ~ Q383=+50 ;2ND CO. FOR TS AXIS ~	Q320=+0	;SET-UP CLEARANCE ~	
Q305=+12 ;NUMBER IN TABLE ~ Q331=+0 ;DATUM ~ Q332=+0 ;DATUM ~ Q303=+1 ;MEAS. VALUE TRANSFER ~ Q381=+1 ;PROBE IN TS AXIS ~ Q382=+85 ;1ST CO. FOR TS AXIS ~ Q383=+50 ;2ND CO. FOR TS AXIS ~	Q260=+20	;CLEARANCE HEIGHT ~	
Q331=+0 ;DATUM ~ Q332=+0 ;DATUM ~ Q303=+1 ;MEAS. VALUE TRANSFER ~ Q381=+1 ;PROBE IN TS AXIS ~ Q382=+85 ;1ST CO. FOR TS AXIS ~ Q383=+50 ;2ND CO. FOR TS AXIS ~	Q301=+0	;MOVE TO CLEARANCE ~	
Q332=+0 ;DATUM ~ Q303=+1 ;MEAS. VALUE TRANSFER ~ Q381=+1 ;PROBE IN TS AXIS ~ Q382=+85 ;1ST CO. FOR TS AXIS ~ Q383=+50 ;2ND CO. FOR TS AXIS ~	Q305=+12	;NUMBER IN TABLE ~	
Q303=+1 ;MEAS. VALUE TRANSFER ~ Q381=+1 ;PROBE IN TS AXIS ~ Q382=+85 ;1ST CO. FOR TS AXIS ~ Q383=+50 ;2ND CO. FOR TS AXIS ~	Q331=+0	;DATUM ~	
Q381=+1 ;PROBE IN TS AXIS ~ Q382=+85 ;1ST CO. FOR TS AXIS ~ Q383=+50 ;2ND CO. FOR TS AXIS ~	Q332=+0	;DATUM ~	
Q382=+85 ;1ST CO. FOR TS AXIS ~ Q383=+50 ;2ND CO. FOR TS AXIS ~	Q303=+1	;MEAS. VALUE TRANSFER ~	
Q383=+50 ;2ND CO. FOR TS AXIS ~	Q381=+1	;PROBE IN TS AXIS ~	
•	Q382=+85	;1ST CO. FOR TS AXIS ~	
Q384=+0 ;3RD CO. FOR TS AXIS ~	Q383=+50	;2ND CO. FOR TS AXIS ~	
•	Q384=+0	;3RD CO. FOR TS AXIS ~	
Q333=+1 ;DATUM ~	Q333=+1	;DATUM ~	
Q423=+4 ;NO. OF PROBE POINTS ~	Q423=+4	;NO. OF PROBE POINTS ~	
Q365=+1 ;TYPE OF TRAVERSE	Q365=+1	;TYPE OF TRAVERSE	

5.10 循环413DATUM OUTSIDE CIRCLE

应用

探测循环413可确定圆弧凸台的中心并将该位置定义为预设点。根据需要,数控系统也可将中心点坐标写入原点表或预设表中。

循环顺序

1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到触点1位置。数控系统用循环中数据和探测表SET_UP列中的安全高度计算触点。

更多信息: "定位规则", 48 页

- 2 然后,测头运动到输入的测量高度位置并用探测进给速率(F列)探测第一触点。数控系统用编程的起始角自动确定探测方向。
- 3 然后,测头在测量高度或第二安全高度位置沿圆弧移至下触点2并再次探测。
- 4 数控系统将测头定位在触点3处,再定位在触点4处,再探测两次。
- 5 数控系统将测头返回第二安全高度。
- 6 根据循环参数**Q303**和**Q305**,数控系统执行计算的预设点,参见"设置预设点探测循环4xx的基础知识",130页
- 7 然后,数控系统将实际值保存在以下Q参数中。
- 8 根据需要,数控系统继续沿探测轴在单独的探测操作中测量预设点。

Q参数 编号	含义
Q151	沿参考轴中心的实际值
Q152	沿辅助轴中心的实际值
Q153	

注意

注意

碰撞危险!

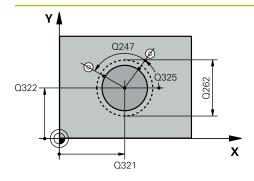
运行探测循环400至499时,不允许激活任何坐标变换循环。

- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。

注意

碰撞危险!

为避免测头与工件的碰撞,为凸台的名义直径输入较大的估计值。


- ▶ 循环定义前,必须编程一个刀具调用功能以定义测头轴。
- 数控系统将在循环起点处重置当前的基本旋转。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 角度步距Q247越小,数控系统计算预设点的精度越低。最小输入值:5度

编程的角度步长需小于90°

5.10.1 循环参数

帮助图形

参数

Q321 中心的第一轴坐标?

在加工面基本轴上的凸台中心。 该值有绝对式效果。

输入:-99999.9999...+9999.9999

Q322 中心的第二轴坐标?

在加工面辅助轴上的凸台中心。如果编程**Q322** = 0,数控系统将孔的中心点找正正Y轴。如果编程**Q322**不等于0,数控系统则将孔中心点找正名义位置。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q262 名义直径?

凸台的大约直径。输入的值应略大,不要过小。

输入: 0...99999.9999

Q325 起始角度?

加工面基本轴与第一触点间的角度。 该值有绝对式效果。

输入:-360.000...+360.000

Q247 中间步进角?

两个测量点间的角度。角度步长的代数符号决定测头移向下个测量点的旋转方向(负=顺时针)。如果要探测圆弧而不是整圆,编程的角度步长必须小于90度。该值提供增量效果。

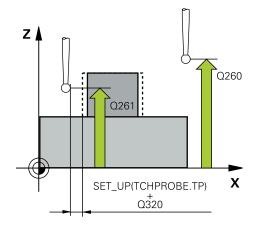
输入:-120...+120

Q261 测量轴方向的测量高度?

球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?


触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。 该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

帮助图形参数

Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动

1:在测量点之间,在第二安全高度处运动

输入:0,1

Q305 表中的号码?

代表预设点表 / 原点表中的行号,数控系统用该行号保存中心点坐标。根据Q303,数控系统将该信息输入到预设表或原点表中。

如果Q303 = 1,数控系统将数据写入预设表中。如果当前预设点改变,其变化立即生效。否则,数控系统将该信息写入预设表的相应行中,不自动激活。

如果Q303 = 0,数控系统将数据写入原点表中。不自动激活原点。

更多信息: "保存计算的预设点", 131 页

输入: 0...99999

Q331 参考轴的新原点?

在基本轴上的坐标,数控系统在该位置设置凸台中心的计算结果。默认设置值 = 0。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q332 次要轴的新原点?

在辅助轴上的坐标,数控系统在该位置设置凸台中心的计算结果。默认设置值 = 0。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q303 测量值转移 (0,1)?

定义将预设点计算结果保存在原点表中还是保存在预设表中:

-1:不允许使用。读入老版本NC数控程序时,由数控系统输入,参见"预设点设置的全部探测循环4xx的共同特点",130页

0:将预设点计算结果写入当前原点表中。参考系统为当前工件坐标系。

1:将预设点计算结果写入预设表中。

输入:-1,0,+1

探测循环:自动预设点测量 | 循环413DATUM OUTSIDE CIRCLE

帮助图形参数

Q381 测头在TS 轴? (0/1)

定义数控系统是否也将预设点设置在探测轴上:

0:不将预设点设置在探测轴上 1:将预设点设置在探测轴上

输入:0,1

Q382 测头 TS 轴: 第一轴坐标?

加工面基本轴上的触点坐标;将预设点设置在探测轴上的此位置。仅当**Q381** = 1时有效。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q383 测头TS 轴: 第二轴坐标?

加工面辅助轴上的触点坐标,将预设点设置在探测轴上的此位置。仅当**Q381** = 1时有效。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q384 测头TS 轴: 第三轴坐标?

探测轴上的触点坐标,将预设点设置在探测轴上的此位置。 仅当**Q381** = 1时有效。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q333 TS 轴的新原点?

数控系统在探测轴上设置预设点的坐标。默认设置值 = 0。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q423 平面中无探测点(4/3)?

定义数控系统用三个还是四个触点测量圆:

3:用三个测量点

4:用四个测量点(默认设置)

输入:3,4

Q365 移动类型? 直线=0/圆弧=1

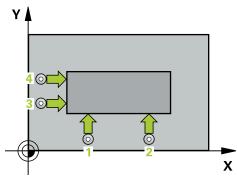
如果"运动到第二安全高度"(**Q301** = 1)已激活,指定测量点间刀具运动需要使用的路径功能。

0:在加工操作间沿直线运动

1:在加工操作间沿节圆直径的圆弧运动

输入:0,1

举例


11 TCH PROBE 413 DATUM OUTSIDE CIRCLE ~		
Q321=+50	;CENTER IN 1ST AXIS ~	
Q322=+50	;CENTER IN 2ND AXIS ~	
Q262=+75	;NOMINAL DIAMETER ~	
Q325=+0	;STARTING ANGLE ~	
Q247=+60	;STEPPING ANGLE ~	
Q261=-5	;MEASURING HEIGHT ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q260=+20	;CLEARANCE HEIGHT ~	
Q301=+0	;MOVE TO CLEARANCE ~	
Q305=+15	;NUMBER IN TABLE ~	
Q331=+0	;DATUM ~	
Q332=+0	;DATUM ~	
Q303=+1	;MEAS. VALUE TRANSFER ~	
Q381=+1	;PROBE IN TS AXIS ~	
Q382=+85	;1ST CO. FOR TS AXIS ~	
Q383=+50	;2ND CO. FOR TS AXIS ~	
Q384=+0	;3RD CO. FOR TS AXIS ~	
Q333=+1	;DATUM ~	
Q423=+4	;NO. OF PROBE POINTS ~	
Q365=+1	;TYPE OF TRAVERSE	

5.11 循环414DATUM OUTSIDE CORNER

应用

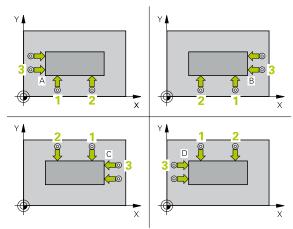
探测循环414可确定两条直线的交点并将其定义为预设点。根据需要,数控系统也可将交点坐标写入原点表或预设表中。

循环顺序

1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移至触点1位置(如图示)。数控系统将测头沿相应运动的相反方向偏移安全高度的距离。

更多信息: "定位规则", 48 页

- 2 然后,测头运动到输入的测量高度位置并用探测进给速率(F列)探测第一触点。数控系统由第三测量点自动确定探测方向。
- 3 然后,测头移到下个触点2并再次探测。
- 4 数控系统将测头定位在触点3处,再定位在触点4处,再探测两次。
- 5 数控系统将测头返回第二安全高度。
- 6 根据循环参数Q303和Q305,数控系统执行计算的预设点,参见"设置预设点探测循环4xx的基础知识",130 页
- 7 然后,数控系统将角点坐标的计算结果保存在以下Q参数中。
- 8 根据需要,数控系统继续沿探测轴在单独的探测操作中测量预设点。



该数控系统总是沿加工面辅助轴方向测量第一条直线。

Q参数 编号	含义	
Q151	沿参考轴的角点实际值	
Q152		

角点的定义

定义测量点1和3的位置,还可以确定数控系统设置预设点的角点位置(如下图和下表所示)。

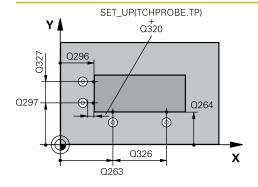
角点	X轴坐标	Y轴坐标
A	点 1 大于点 <mark>3</mark>	点1小于点3
В	点 <mark>1</mark> 小于点 <mark>3</mark>	点1小于点3
С	点 <mark>1</mark> 小于点 <mark>3</mark>	点1大于点3
D		

注意

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。


- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 数控系统将在循环起点处重置当前的基本旋转。

编程说明

■ 定义循环前,必须编程一个刀具调用,以定义探测轴。

5.11.1 循环参数

帮助图形

参数

Q263 第一个测量点的第一轴坐标?

第一触点在加工面基本轴的坐标。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q264 第一个测量点的第二轴坐标?

第一触点在加工面辅助轴的坐标。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q326 在第一个轴上的间距?

加工面基本轴上的第一和第二测量点间的距离。 该值提供增量效果。

输入: 0...99999.9999

Q296 第三个测量点的第一轴坐标?

加工面基本轴上的第三触点坐标。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q297 第三个测量点的第二轴坐标?

加工面辅助轴上的第三触点坐标。该值有绝对式效果。

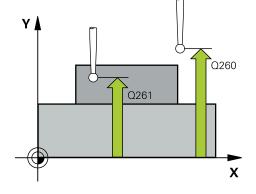
输入:-99999.9999...+99999.9999

Q327 在第二个轴上的间距?

加工面辅助轴上的第三和四测量点间的距离。 该值提供增量效果。

输入: 0...99999.9999

Q261 测量轴方向的测量高度?


球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

帮助图形参数

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动 1:在测量点之间,在第二安全高度处运动

输入:0,1

Q304 执行基本旋转(0/1)?

定义数控系统是否用基本旋转补偿工件的不对正量:

0:无基本旋转 1:基本旋转 输入:0,1

Q305 表中的号码?

表示预设点表或原点表的行号,数控系统用该行号保存角点坐标。根据**Q303**,数控系统将该信息输入到预设表或原点表中:

如果**Q303 = 1**,数控系统将数据写入预设表中。如果当前预设点改变,其变化立即生效。否则,数控系统将该信息写入预设表的相应行中,不自动激活。

如果Q303 = 0,数控系统将数据写入原点表中。不自动激活原点。

更多信息: "保存计算的预设点", 131页

输入: 0...99999

Q331 参考轴的新原点?

基本轴上的坐标,数控系统在该位置设置计算的角点。默认设置值 = 0。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q332 次要轴的新原点?

辅助轴上的坐标,数控系统在该位置设置计算的角点。默认设置值 = 0。该值有绝对式效果。

输入:-99999.9999...+99999.9999

帮助图形 参数

Q303 测量值转移 (0,1)?

定义将预设点计算结果保存在原点表中还是保存在预设表中:

-1:不允许使用。读入老版本NC数控程序时,由数控系统输入,参见"预设点设置的全部探测循环4xx的共同特点",130页

0:将预设点计算结果写入当前原点表中。参考系统为当前工件坐标系。

1:将预设点计算结果写入预设表中。

输入:-1,0,+1

Q381 测头在TS 轴? (0/1)

定义数控系统是否也将预设点设置在探测轴上:

0:不将预设点设置在探测轴上 **1**:将预设点设置在探测轴上

输入:0,1

Q382 测头 TS 轴: 第一轴坐标?

加工面基本轴上的触点坐标;将预设点设置在探测轴上的此位置。仅当**Q381** = 1时有效。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q383 测头TS 轴: 第二轴坐标?

加工面辅助轴上的触点坐标,将预设点设置在探测轴上的此位置。仅当**Q381** = 1时有效。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q384 测头TS 轴: 第三轴坐标?

探测轴上的触点坐标,将预设点设置在探测轴上的此位置。 仅当**Q381** = 1时有效。 该值有绝对式效果。

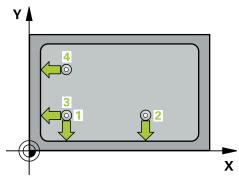
输入:-99999.9999...+99999.9999

Q333 TS 轴的新原点?

数控系统在探测轴上设置预设点的坐标。默认设置值 = 0。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

举例


11 TCH PROBE 414 DATUM OUTSIDE CORNER ~		
Q263=+37	;1ST POINT 1ST AXIS ~	
Q264=+7	;1ST POINT 2ND AXIS ~	
Q326=+50	;SPACING IN 1ST AXIS ~	
Q296=+95	;3RD PNT IN 1ST AXIS ~	
Q297=+25	;3RD PNT IN 2ND AXIS ~	
Q327=+45	;SPACING IN 2ND AXIS ~	
Q261=-5	;MEASURING HEIGHT ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q260=+20	;CLEARANCE HEIGHT ~	
Q301=+0	;MOVE TO CLEARANCE ~	
Q304=+0	;BASIC ROTATION ~	
Q305=+7	;NUMBER IN TABLE ~	
Q331=+0	;DATUM ~	
Q332=+0	;DATUM ~	
Q303=+1	;MEAS. VALUE TRANSFER ~	
Q381=+1	;PROBE IN TS AXIS ~	
Q382=+85	;1ST CO. FOR TS AXIS ~	
Q383=+50	;2ND CO. FOR TS AXIS ~	
Q384=+0	;3RD CO. FOR TS AXIS ~	
Q333=+1	;DATUM	

5.12 循环415DATUM INSIDE CORNER

应用

探测循环**415**可确定两条直线的交点并将其定义为预设点。根据需要,数控系统也可将交点坐标写入原点表或预设表中。

循环顺序

1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移至触点1位置(如图示)。数控系统沿基本轴和辅助轴将测头偏移安全高度Q320 + SET_UP+球头半径的尺寸(在相应运动方向的相反方向)

更多信息: "定位规则", 48 页

- 2 然后,测头运动到输入的测量高度位置并用探测进给速率(F列)探测第一触点。探测方向取决于标识角点的编号。
- 3 测头移到下个触点2;数控系统沿辅助轴将测头偏移安全高度Q320 + SET_UP + 球头半径的尺寸,然后执行第二次探测操作
- 4 数控系统将测头定位在触点3位置(使用与第一触点相同的定位规则)并在该位置执行探测
- 5 然后,测头移到触点4位置;数控系统沿基本轴将测头偏移安全高度Q320 + SET_UP + 球头半径的尺寸,然后执行第四次探测操作
- 6 数控系统将测头返回第二安全高度。
- 7 根据循环参数**Q303**和**Q305**,数控系统执行计算的预设点,参见"设置预设点探测循环4xx的基础知识",130页
- 8 然后,数控系统将角点坐标的计算结果保存在以下Q参数中。
- 9 根据需要,数控系统继续沿探测轴在单独的探测操作中测量预设点。

该数控系统总是沿加工面辅助轴方向测量第一条直线。

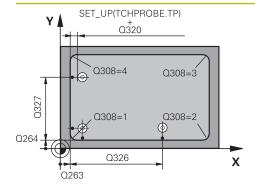
Q参数 编号	含义	
Q151	沿参考轴的角点实际值	
Q152	 沿辅助轴的角点实际值	

注意

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。


- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 数控系统将在循环起点处重置当前的基本旋转。

编程说明

■ 定义循环前,必须编程一个刀具调用,以定义探测轴。

5.12.1 循环参数

帮助图形

参数

Q263 第一个测量点的第一轴坐标?

加工面基本轴上的角点坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q264 第一个测量点的第二轴坐标?

加工面辅助轴上的角点坐标。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q326 在第一个轴上的间距?

加工面基本轴上的第一角点和第二测量点间的距离。 该值提供增量效果。

输入: 0...99999.9999

Q327 在第二个轴上的间距?

角点与第四测量点间在加工面辅助轴上的距离。 该值提供增量效果。

输入: 0...99999.9999

Q308 转角? (1/2/3/4)

代表角点的编号,数控系统用其设置预设点。

输入:1,2,3,4

Q261 测量轴方向的测量高度?

球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

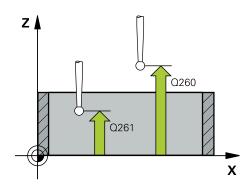
触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。 该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF


Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动

1:在测量点之间,在第二安全高度处运动

输入:0,1

帮助图形参数

Q304 执行基本旋转(0/1)?

定义数控系统是否用基本旋转补偿工件的不对正量:

0:无基本旋转 1:基本旋转 输入:0,1

Q305 表中的号码?

表示预设点表或原点表的行号,数控系统用该行号保存角点坐标。根据**Q303**,数控系统将该信息输入到预设表或原点表中:

如果**Q303 = 1**,数控系统将数据写入预设表中。如果当前 预设点改变,其变化立即生效。否则,数控系统将该信息写 入预设表的相应行中,不自动激活。

如果Q303 = 0,数控系统将数据写入原点表中。不自动激活原点。

更多信息: "保存计算的预设点", 131 页

输入: 0...99999

Q331 参考轴的新原点?

基本轴上的坐标,数控系统在该位置设置计算的角点。默认设置值 = 0。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q332 次要轴的新原点?

辅助轴上的坐标,数控系统在该位置设置计算的角点。默认设置值 = 0。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q303 测量值转移 (0,1)?

定义将预设点计算结果保存在原点表中还是保存在预设表中:

-1:不允许使用。读入老版本NC数控程序时,由数控系统输入,参见"预设点设置的全部探测循环4xx的共同特点",130页

0:将预设点计算结果写入当前原点表中。参考系统为当前工件坐标系。

1:将预设点计算结果写入预设表中。

输入:-1,0,+1

帮助图形参数

Q381 测头在TS 轴? (0/1)

定义数控系统是否也将预设点设置在探测轴上:

0:不将预设点设置在探测轴上 1:将预设点设置在探测轴上

输入:0,1

Q382 测头 TS 轴: 第一轴坐标?

加工面基本轴上的触点坐标;将预设点设置在探测轴上的此位置。仅当**Q381** = 1时有效。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q383 测头TS 轴: 第二轴坐标?

加工面辅助轴上的触点坐标,将预设点设置在探测轴上的此位置。仅当**Q381** = 1时有效。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q384 测头TS 轴: 第三轴坐标?

探测轴上的触点坐标,将预设点设置在探测轴上的此位置。 仅当**Q381** = 1时有效。 该值有绝对式效果。

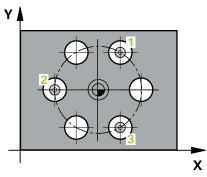
输入:-99999.9999...+99999.9999

Q333 TS 轴的新原点?

数控系统在探测轴上设置预设点的坐标。默认设置值 = 0。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

举例


11 TCH PROBE 415 DATUM INSIDE CORNER ~		
Q263=+37	;1ST POINT 1ST AXIS ~	
Q264=+7	;1ST POINT 2ND AXIS ~	
Q326=+50	;SPACING IN 1ST AXIS ~	
Q327=+45	;SPACING IN 2ND AXIS ~	
Q308=+1	;CORNER ~	
Q261=-5	;MEASURING HEIGHT ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q260=+20	;CLEARANCE HEIGHT ~	
Q301=+0	;MOVE TO CLEARANCE ~	
Q304=+0	;BASIC ROTATION ~	
Q305=+7	;NUMBER IN TABLE ~	
Q331=+0	;DATUM ~	
Q332=+0	;DATUM ~	
Q303=+1	;MEAS. VALUE TRANSFER ~	
Q381=+1	;PROBE IN TS AXIS ~	
Q382=+85	;1ST CO. FOR TS AXIS ~	
Q383=+50	;2ND CO. FOR TS AXIS ~	
Q384=+0	;3RD CO. FOR TS AXIS ~	
Q333=+1	;DATUM	

5.13 循环416DATUM CIRCLE CENTER

应用

探测循环**416**可测量三个孔确定螺栓孔圆的圆心,并将所确定的圆心定义为预设点。根据需要,数控系统也可将中心点坐标写入原点表或预设表中。

循环顺序

1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头定位在编程的第一孔1中心点处。

更多信息: "定位规则", 48 页

- 2 然后,测头移至输入的测量高度处并探测四个点,确定第一孔中心点。
- 3 测头返回第二安全高度,然后移至输入的第二孔2的圆心位置。
- 4 数控系统将测头移至所输入的测量高度处并探测四个点,确定第二孔中心点。
- 5 测头返回第二安全高度,然后移至输入的第三孔3的圆心位置。
- 6 数控系统将测头移至所输入的测量高度处并探测四个点,以确定第三孔中心点。
- 7 数控系统将测头返回第二安全高度。
- 8 根据循环参数**Q303**和**Q305**,数控系统执行计算的预设点,参见"设置预设点探测循环4xx的基础知识",130页
- 9 然后,数控系统将实际值保存在以下Q参数中。
- 10 根据需要,数控系统继续沿探测轴在单独的探测操作中测量预设点。

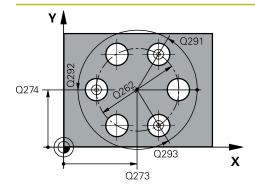
Q参数 编号	含义
Q151	沿参考轴中心的实际值
Q152	沿辅助轴中心的实际值
Q153	

注意

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。


- ▶ 在探测循环前,不允许激活以下循环:循环7 DATUM SHIFT、循环8 MIRROR IMAGE、循环10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 数控系统将在循环起点处重置当前的基本旋转。

编程说明

■ 定义循环前,必须编程一个刀具调用,以定义探测轴。

5.13.1 循环参数

帮助图形

参数

Q273 中点的第一轴坐标 (名义值)?

加工面基本轴上的螺栓孔圆的圆心(名义值)。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q274 中点的第二轴坐标 (名义值)?

加工面辅助轴上的螺栓孔圆的圆心(名义值)。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q262 名义直径?

输入螺栓孔圆的近似直径。孔径越小,名义直径越精确。

输入: 0...99999.9999

Q291 第一个孔的极坐标角度?

加工面上第一孔中心的极坐标角度。 该值有绝对式效果。

输入:-360.000...+360.000

Q292 第二个孔的极坐标角度?

加工面上第二孔中心的极坐标角度。该值有绝对式效果。

输入:-360.000...+360.000

Q293 第三个孔的极坐标角度?

加工面上第三孔中心的极坐标角度。该值有绝对式效果。

输入:-360.000...+360.000

Q261 测量轴方向的测量高度?

球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰

撞。该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

探测循环:自动预设点测量 | 循环416DATUM CIRCLE CENTER

帮助图形参数

Q305 表中的号码?

代表预设点表/原点表中的行号,数控系统用该行号保存中心点坐标。根据Q303,数控系统将该信息输入到预设表或原点表中。

如果**Q303 = 1**,数控系统将数据写入预设表中。如果当前 预设点改变,其变化立即生效。否则,数控系统将该信息写 入预设表的相应行中,不自动激活。

如果Q303 = 0,数控系统将数据写入原点表中。不自动激活原点。

更多信息: "保存计算的预设点", 131 页

输入: 0...99999

Q331 参考轴的新原点?

基本轴上的坐标,数控系统在该位置设置计算的螺栓孔圆的圆心。默认设置值 = 0。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q332 次要轴的新原点?

辅助轴上的坐标,数控系统在该位置设置计算的螺栓孔圆的 圆心。默认设置值 = 0。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q303 测量值转移 (0,1)?

定义将预设点计算结果保存在原点表中还是保存在预设表中:

-1:不允许使用。读入老版本NC数控程序时,由数控系统输入,参见"预设点设置的全部探测循环4xx的共同特点",130页

0:将预设点计算结果写入当前原点表中。参考系统为当前工件坐标系。

1:将预设点计算结果写入预设表中。

输入:-1,0,+1

Q381 测头在TS 轴? (0/1)

定义数控系统是否也将预设点设置在探测轴上:

0:不将预设点设置在探测轴上

1:将预设点设置在探测轴上

输入:0,1

帮助图形

参数

Q382 测头 TS 轴: 第一轴坐标?

加工面基本轴上的触点坐标;将预设点设置在探测轴上的此位置。仅当**Q381** = 1时有效。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q383 测头TS 轴: 第二轴坐标?

加工面辅助轴上的触点坐标,将预设点设置在探测轴上的此位置。仅当**Q381** = 1时有效。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q384 测头TS 轴: 第三轴坐标?

探测轴上的触点坐标,将预设点设置在探测轴上的此位置。 仅当**Q381** = 1时有效。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q333 TS 轴的新原点?

数控系统在探测轴上设置预设点的坐标。默认设置值 = 0。 该值有绝对式效果。

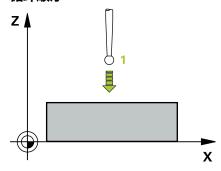
输入:-99999.9999...+99999.9999

Q320 安全高度?

触点与球头间的附加距离。Q320累加至SET_UP(探测表),且只适用于沿探测轴探测预设点时。 该值提供增量效果。

输入: 0...99999.9999 或PREDEF

举例


11 TCH PROBE 416 DATUM CIRCLE CENTER ~		
Q273=+50	;CENTER IN 1ST AXIS ~	
Q274=+50	;CENTER IN 2ND AXIS ~	
Q262=+90	;NOMINAL DIAMETER ~	
Q291=+34	;ANGLE OF 1ST HOLE ~	
Q292=+70	;ANGLE OF 2ND HOLE ~	
Q293=+210	;ANGLE OF 3RD HOLE ~	
Q261=-5	;MEASURING HEIGHT ~	
Q260=+20	;CLEARANCE HEIGHT ~	
Q305=+12	;NUMBER IN TABLE ~	
Q331=+0	;DATUM ~	
Q332=+0	;DATUM ~	
Q303=+1	;MEAS. VALUE TRANSFER ~	
Q381=+1	;PROBE IN TS AXIS ~	
Q382=+85	;1ST CO. FOR TS AXIS ~	
Q383=+50	;2ND CO. FOR TS AXIS ~	
Q384=+0	;3RD CO. FOR TS AXIS ~	
Q333=+1	;DATUM ~	
Q320=+0	;SET-UP CLEARANCE	

5.14 循环417DATUM IN TS AXIS

应用

探测循环417可测量探测轴上的任意坐标并将其定义为预设点。根据需要,数控系统也可将坐标测量值写入原点表或预设表中。

循环顺序

1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到编程的触点1位置。数控系统沿正探测轴方向将测头偏移安全高度的尺寸。

更多信息: "定位规则", 48 页

- 2 然后,测头沿其自身轴移至输入为触点1的坐标位置并通过简单探测运动测量实际位置
- 3 数控系统将测头返回第二安全高度。
- 4 根据循环参数**Q303**和**Q305**,数控系统执行计算的预设点,参见"设置预设点探测循环4xx的基础知识",130页
- 5 然后,数控系统将实际值保存在以下Q参数中。

Q参数 编号	含义
Q160	测量点的实际值

注意

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。

- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 数控系统在该轴设置预设点。
- 数控系统将在循环起点处重置当前的基本旋转。


编程说明

■ 定义循环前,必须编程一个刀具调用,以定义探测轴。

5.14.1 循环参数

帮助图形

Q264 Q263 X

参数

Q263 第一个测量点的第一轴坐标?

第一触点在加工面基本轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q264 第一个测量点的第二轴坐标?

第一触点在加工面辅助轴的坐标。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q294 第一个测量点的第三轴坐标?

探测轴上的第一触点坐标。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。 该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。 该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

Q305 表中的号码?

表示预设点表或原点表的行号,数控系统用该行号保存坐标。根据**Q303**,数控系统将该信息输入到预设表或原点表中。

如果**Q303 = 1**,数控系统将数据写入预设表中。如果当前 预设点改变,其变化立即生效。否则,数控系统将该信息写 入预设表的相应行中,不自动激活。

如果**Q303 = 0**,数控系统将数据写入原点表中。不自动激活原点。

更多信息: "保存计算的预设点", 131 页

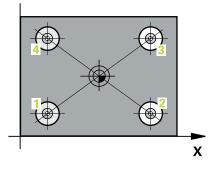
帮助图形 参数 Q333 TS 轴的新原点? 数控系统在探测轴上设置预设点的坐标。默认设置值 = 0。该值有绝对式效果。 输入: -99999.9999...+99999.9999 Q303 测量值转移 (0,1)? 定义将预设点计算结果保存在原点表中还是保存在预设表中: -1: 不允许使用。读入老版本NC数控程序时,由数控系统输入,参见"预设点设置的全部探测循环4xx的共同特点",130页 0:将预设点计算结果写入当前原点表中。参考系统为当前工件坐标系。

输入:-1,0,+1

1:将预设点计算结果写入预设表中。

举例

11 TCH PROBE 417 DAT	UM IN TS AXIS ~	
Q263=+25	;1ST POINT 1ST AXIS ~	
Q264=+25	;1ST POINT 2ND AXIS ~	
Q294=+25	;1ST POINT 3RD AXIS ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q260=+50	;CLEARANCE HEIGHT ~	
Q305=+0	;NUMBER IN TABLE ~	
Q333=+0	;DATUM ~	
Q303=+1	;MEAS. VALUE TRANSFER	


5.15 循环418DATUM FROM 4 HOLES

应用

探测循环418可计算两个对角孔圆心间连线的交点并将预设点设置在该交点位置。根据需要,数控系统也可将交点坐标写入原点表或预设表中。

循环顺序

YÅ

1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头定位在第一 孔1的中心点处。

更多信息: "定位规则", 48 页

- 2 然后,测头移至输入的测量高度处并探测四个点,确定第一孔中心点。
- 3 测头返回第二安全高度,然后移至输入的第二孔2的圆心位置。
- 4 数控系统将测头移至所输入的测量高度处并探测四个点,确定第二孔中心点。
- 5 对于孔3和孔4,数控系统重复执行该操作步骤。
- 6 数控系统将测头返回第二安全高度。
- 7 根据循环参数**Q303**和**Q305**,数控系统执行计算的预设点,参见"设置预设点探测循环4xx的基础知识",130页
- 8 数控系统计算预设点,预设点位于孔1/3和2/4圆心间连线的交点并将实际值保存在以下Q参数中。
- 9 根据需要,数控系统继续沿探测轴在单独的探测操作中测量预设点。

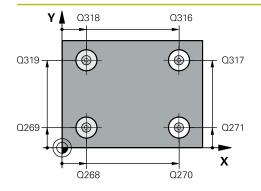
Q参数 编号	含义	
Q151	沿参考轴的交点实际值	
Q152	 沿辅助轴的交点实际值	

注意

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。


- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 数控系统将在循环起点处重置当前的基本旋转。

编程说明

■ 定义循环前,必须编程一个刀具调用,以定义探测轴。

5.15.1 循环参数

帮助图形

参数

Q268 第一个孔: 中点的第一轴坐标?

加工面基本轴上的第一孔中心。 该值有绝对式效果。

输入:-99999.9999...+9999.9999

Q269 第一个孔: 中点的第二轴坐标?

第一孔沿加工面辅助轴的中心。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q270 第二个孔: 中点的第一轴坐标?

加工面基本轴上的第二孔中心。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q271 第二个孔: 中点的第二轴坐标?

第二孔沿加工面辅助轴的中心。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q316 第三个孔: 中点的第一轴坐标?

加工面基本轴上的第三孔圆心。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q317 第三个孔: 中点的第二轴坐标?

加工面辅助轴上的第三孔圆心。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q318 第四个孔: 中点的第一轴坐标?

加工面基本轴上的第四孔圆心。该值有绝对式效果。

输入:-99999.9999...+99999.9999

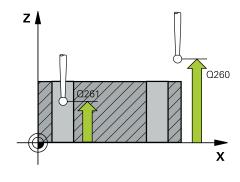
Q319 第四个孔: 中点的第二轴坐标?

加工面辅助轴上的第四孔圆心。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q261 测量轴方向的测量高度?

球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。


输入:-99999.9999...+99999.9999

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰

撞。该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

帮助图形参数

Q305 表中的号码?

表示预设点表或原点表中的行号,数控系统用该行号保存连线交点的坐标。根据Q303,数控系统将该信息输入到预设表或原点表中。

如果**Q303 = 1**,数控系统将数据写入预设表中。如果当前 预设点改变,其变化立即生效。否则,数控系统将该信息写 入预设表的相应行中,不自动激活。

如果Q303 = 0,数控系统将数据写入原点表中。不自动激活原点。

更多信息: "保存计算的预设点", 131 页

输入: 0...99999

Q331 参考轴的新原点?

基本轴上的坐标,数控系统在该位置设置计算的连线交点。默认设置值 = 0。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q332 次要轴的新原点?

辅助轴上的坐标,数控系统在该位置设置计算的连线交点。 默认设置值 = 0。该值有绝对式效果。

输入:-99999.9999...+9999.9999

Q303 测量值转移 (0,1)?

定义将预设点计算结果保存在原点表中还是保存在预设表中:

-1:不允许使用。读入老版本NC数控程序时,由数控系统输入,参见"预设点设置的全部探测循环4xx的共同特点",130页

0:将预设点计算结果写入当前原点表中。参考系统为当前工件坐标系。

1:将预设点计算结果写入预设表中。

输入:-1,0,+1

Q381 测头在TS 轴? (0/1)

定义数控系统是否也将预设点设置在探测轴上:

0:不将预设点设置在探测轴上

1:将预设点设置在探测轴上

输入:0,1

帮助图形参数

Q382 测头 TS 轴: 第一轴坐标?

加工面基本轴上的触点坐标;将预设点设置在探测轴上的此位置。仅当**Q381** = 1时有效。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q383 测头TS 轴: 第二轴坐标?

加工面辅助轴上的触点坐标,将预设点设置在探测轴上的此位置。仅当**Q381** = 1时有效。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q384 测头TS 轴: 第三轴坐标?

探测轴上的触点坐标,将预设点设置在探测轴上的此位置。 仅当**Q381** = 1时有效。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q333 TS 轴的新原点?

数控系统在探测轴上设置预设点的坐标。默认设置值 = 0。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

举例

11 TCH PROBE 418 DATUM FROM 4 HOLES ~			
Q268=+20	;1ST CENTER 1ST AXIS ~		
Q269=+25	;1ST CENTER 2ND AXIS ~		
Q270=+150	;2ND CENTER 1ST AXIS ~		
Q271=+25	;2ND CENTER 2ND AXIS ~		
Q316=+150	;3RD CENTER 1ST AXIS ~		
Q317=+85	;3RD CENTER 2ND AXIS ~		
Q318=+22	;4TH CENTER 1ST AXIS ~		
Q319=+80	;4TH CENTER 2ND AXIS ~		
Q261=-5	;MEASURING HEIGHT ~		
Q260=+10	;CLEARANCE HEIGHT ~		
Q305=+12	;NUMBER IN TABLE ~		
Q331=+0	;DATUM ~		
Q332=+0	;DATUM ~		
Q303=+1	;MEAS. VALUE TRANSFER ~		
Q381=+1	;PROBE IN TS AXIS ~		
Q382=+85	;1ST CO. FOR TS AXIS ~		
Q383=+50	;2ND CO. FOR TS AXIS ~		
Q384=+0	;3RD CO. FOR TS AXIS ~		
Q333=+0	;DATUM		

5.16 循环419DATUM IN ONE AXIS

应用

探测循环419可测量可选轴上的任意坐标并将其定义为预设点。根据需要,数控系统也可将坐标测量值写入原点表或预设表中。

循环顺序

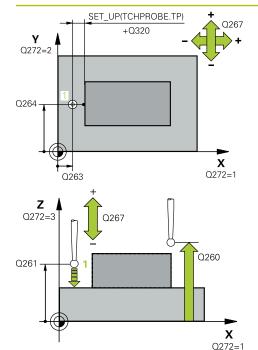
- 1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到编程的触点1位置。数控系统沿编程探测方向的相反方向将测头偏移安全高度的尺寸。 更多信息: "定位规则",48 页
- 2 然后,测头移至编程测量高度处并通过简单探测运动测量实际位置。
- 3 数控系统将测头返回第二安全高度。
- 4 根据循环参数**Q303**和**Q305**,数控系统执行计算的预设点,参见"设置预设点探测循环4xx的基础知识",130页

注意

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。


- ▶ 在探测循环前,不允许激活以下循环:循环7 DATUM SHIFT、循环8 MIRROR IMAGE、循环10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 如果要将多轴的预设点保存在预设表中,可多次在一行中使用循环419。然而,每次运行循环419后必须重新激活预设点号。如果将预设点0用作当前预设点,不需要该操作。
- 数控系统将在循环起点处重置当前的基本旋转。

编程说明

■ 定义循环前,必须编程一个刀具调用,以定义探测轴。

5.16.1 循环参数

帮助图形

参数

Q263 第一个测量点的第一轴坐标?

第一触点在加工面基本轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q264 第一个测量点的第二轴坐标?

第一触点在加工面辅助轴的坐标。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q261 测量轴方向的测量高度?

球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。 该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

Q272 测量轴(1/2/3, 1= 参考轴)?

被测轴:

1:基本轴 = 测量轴

2:辅助轴 = 测量轴

3:探测轴 = 测量轴

轴配置

当前 探测轴:Q272 = 3	对应的基本轴: Q272 = 1	对应的辅助轴: Q272 = 2
Z	Х	Υ
Υ	Z	Х
X	Υ	Z

输入:1,2,3

Q267 移动方向 1 (+1=+ / -1=-)?

测头接近工件的方向:

-1:负运动方向 +1:正运动方向 输入:-1,+1

帮助图形 参数

Q305 表中的号码?

表示预设点表或原点表的行号,数控系统用该行号保存坐标。根据Q303,数控系统将该信息输入到预设表或原点表中。

如果Q303 = 1,数控系统将数据写入预设表中。如果当前预设点改变,其变化立即生效。否则,数控系统将该信息写入预设表的相应行中,不自动激活。

如果Q303 = 0,数控系统将数据写入原点表中。不自动激活原点。

更多信息: "保存计算的预设点", 131 页

Q333 新原点?

数控系统设置预设点的坐标。默认设置值 = 0。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q303 测量值转移 (0,1)?

定义将预设点计算结果保存在原点表中还是保存在预设表中:

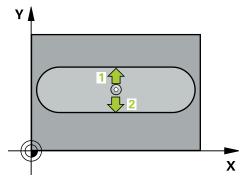
-1:不允许使用。读入老版本NC数控程序时,由数控系统输入,参见"预设点设置的全部探测循环4xx的共同特点",130页

0:将预设点计算结果写入当前原点表中。参考系统为当前工件坐标系。

1:将预设点计算结果写入预设表中。

输入:-1,0,+1

举例


11 TCH PROBE 419 DATUM IN ONE AXIS ~		
Q263=+25	;1ST POINT 1ST AXIS ~	
Q264=+25	;1ST POINT 2ND AXIS ~	
Q261=+25	;MEASURING HEIGHT ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q260=+50	;CLEARANCE HEIGHT ~	
Q272=+1	;MEASURING AXIS ~	
Q267=+1	;TRAVERSE DIRECTION ~	
Q305=+0	;NUMBER IN TABLE ~	
Q333=+0	;DATUM ~	
Q303=+1	;MEAS. VALUE TRANSFER	

5.17 循环408SLOT CENTER REF PT

应用

探测循环408可确定槽的中心并将该位置定义为预设点。根据需要,数控系统也可将中心点坐标写入原点表或预设表中。

循环顺序

- 1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到触点1位置。数控系统用循环中数据和探测表SET_UP列中的安全高度计算触点。
 - **更多信息:** "定位规则", 48 页
- 2 然后,测头运动到输入的测量高度位置并用探测进给速率(F列)探测第一触点。
- 3 然后,测头在测量高度或第二安全高度沿平行轴方向移到下个触点<mark>2</mark>并再次探测。
- 4 数控系统将测头返回第二安全高度。
- 5 根据循环参数**Q303**和**Q305**,数控系统执行计算的预设点,参见"设置预设点探测循环4xx的基础知识",130页
- 6 然后,数控系统将实际值保存在以下Q参数中。
- 7 根据需要,数控系统继续沿探测轴在单独的探测操作中测量预设点。

Q参数 编号	含义	
Q166	被测槽宽实际值	
Q157	中心线的实际值	

注意

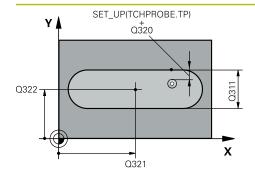
注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。

- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。

注意


碰撞危险!

为避免测头与工件碰撞,输入**较小**槽宽的估计值。 如果槽宽和安全高度不允许在触点附近预定位,数控系统一定从槽的中心开始探测。这时,测头在两个测量点间不返回第二安全高度。

- ▶ 循环定义前,必须编程一个刀具调用功能以定义探测轴。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 数控系统将在循环起点处重置当前的基本旋转。

5.17.1 循环参数

帮助图形

参数

Q321 中心的第一轴坐标?

加工面基本轴上的槽中心。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q322 中心的第二轴坐标?

加工面辅助轴上的槽中心。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q311 槽宽度?

槽宽,与在加工面上的位置无关。 该值提供增量效果。

输入: 0...99999.9999

Q272 测量轴(1= 第一个轴 / 2=第二个轴)?

加工面上轴,沿此轴测量:

1:基本轴 = 测量轴

2:辅助轴 = 测量轴

输入:1,2

Q261 测量轴方向的测量高度?

球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对 式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的 基础上的补充。该值提供增量效果。

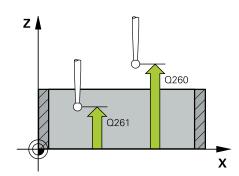
输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰

撞。该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF


Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动

1:在测量点之间,在第二安全高度处运动

输入:0,1

帮助图形 参数

Q305 表中的号码?

代表预设点表 / 原点表中的行号, 数控系统用该行号保存中心点坐标。根据Q303, 数控系统将该信息输入到预设表或原点表中。

如果**Q303 = 1**,数控系统将数据写入预设表中。如果当前 预设点改变,其变化立即生效。否则,数控系统将该信息写 入预设表的相应行中,不自动激活。

如果Q303 = 0,数控系统将数据写入原点表中。不自动激活原点。

更多信息: "保存计算的预设点", 131 页

输入: 0...99999

Q405 新原点?

测量轴上的坐标,数控系统在该位置设置计算的槽中心。默认设置值 = 0。该值有绝对式效果。

输入:-99999.9999...+9999.9999

Q303 测量值转移 (0,1)?

定义将预设点计算结果保存在原点表中还是保存在预设表中:

0:将预设点计算结果写入当前原点表中,进行原点平移。 参考系统为当前工件坐标系。

1:将预设点计算结果写入预设表中。

输入:0,1

Q381 测头在TS 轴? (0/1)

定义数控系统是否也将预设点设置在探测轴上:

0:不将预设点设置在探测轴上

1:将预设点设置在探测轴上

输入:0,1

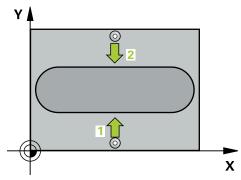
Q382 测头 TS 轴: 第一轴坐标?

加工面基本轴上的触点坐标;将预设点设置在探测轴上的此位置。仅当**Q381** = 1时有效。该值有绝对式效果。

输入:-99999.9999...+99999.9999

帮助图形	参数
	Q383 测头TS 轴: 第二轴坐标?
	加工面辅助轴上的触点坐标,将预设点设置在探测轴上的此 位置。仅当 Q381 = 1时有效。 该值有绝对式效果。
	输入:- 99999.9999+99999.9999
	Q384 测头TS 轴: 第三轴坐标?
	探测轴上的触点坐标,将预设点设置在探测轴上的此位置。 仅当 Q381 = 1时有效。 该值有绝对式效果。
	输入:- 99999.9999+99999.9999
	Q333 TS 轴的新原点?
	数控系统在探测轴上设置预设点的坐标。默认设置值 = 0。 该值有绝对式效果。
	输入:-99999.9999+99999.9999

举例


11 TCH PROBE 408 SLOT CENTER REF PT ~		
Q321=+50	;CENTER IN 1ST AXIS ~	
Q322=+50	;CENTER IN 2ND AXIS ~	
Q311=+25	;SLOT WIDTH ~	
Q272=+1	;MEASURING AXIS ~	
Q261=-5	;MEASURING HEIGHT ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q260=+20	;CLEARANCE HEIGHT ~	
Q301=+0	;MOVE TO CLEARANCE ~	
Q305=+10	;NUMBER IN TABLE ~	
Q405=+0	;DATUM ~	
Q303=+1	;MEAS. VALUE TRANSFER ~	
Q381=+1	;PROBE IN TS AXIS ~	
Q382=+85	;1ST CO. FOR TS AXIS ~	
Q383=+50	;2ND CO. FOR TS AXIS ~	
Q384=+0	;3RD CO. FOR TS AXIS ~	
Q333=+1	;DATUM	

5.18 循环409RIDGE CENTER REF PT

应用

探测循环409可确定凸台的中心并将该位置定义为预设点。根据需要,数控系统也可将中心点坐标写入原点表或预设表中。

循环顺序

- 1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到触点1位置。数控系统用循环中数据和探测表SET_UP列中的安全高度计算触点。
 - **更多信息:** "定位规则", 48 页
- 2 然后,测头运动到输入的测量高度位置并用探测进给速率(F列)探测第一触点。
- 3 然后,测头在第二安全高度移到下个触点2并再次探测。
- 4 数控系统将测头返回第二安全高度。
- 5 根据循环参数**Q303**和**Q305**,数控系统执行计算的预设点,参见"设置预设点探测循环4xx的基础知识",130页
- 6 然后,数控系统将实际值保存在以下Q参数中。
- 7 根据需要,数控系统继续沿探测轴在单独的探测操作中测量预设点。

Q参数 编号	含义	
Q166	被测凸台宽度实际值	
Q157	—————————————————————————————————————	

注意

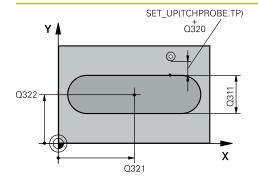
注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。

- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。

注意


碰撞危险!

为避免测头与工件碰撞,输入较大的凸台宽度估计值。

- ▶ 循环定义前,必须编程一个刀具调用功能以定义探测轴。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 数控系统将在循环起点处重置当前的基本旋转。

5.18.1 循环参数

帮助图形

参数

Q321 中心的第一轴坐标?

加工面基本轴上的凸台中心。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q322 中心的第二轴坐标?

加工面辅助轴上的凸台中心。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q311 螺脊宽度?

凸台宽度,与在加工面上的位置无关。 该值提供增量效果。

输入: 0...99999.9999

Q272 测量轴(1= 第一个轴 / 2=第二个轴)?

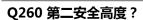
加工面上轴,沿此轴测量:

1:基本轴 = 测量轴

2:辅助轴 = 测量轴

输入:1,2

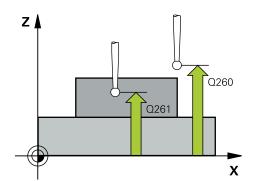
Q261 测量轴方向的测量高度?


球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。


输入: 0...99999.9999 或PREDEF

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰

撞。该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

探测循环:自动预设点测量 | 循环409RIDGE CENTER REF PT

帮助图形参数

Q305 表中的号码?

代表预设点表 / 原点表中的行号, 数控系统用该行号保存中心点坐标。根据Q303, 数控系统将该信息输入到预设表或原点表中。

如果Q303 = 1,数控系统将数据写入预设表中。如果当前预设点改变,其变化立即生效。否则,数控系统将该信息写入预设表的相应行中,不自动激活。

如果Q303 = 0,数控系统将数据写入原点表中。不自动激活原点。

更多信息: "保存计算的预设点", 131 页

输入: 0...99999

Q405 新原点?

测量轴上的坐标,数控系统在该位置设置计算的凸台中心。 默认设置值 = 0。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q303 测量值转移 (0,1)?

定义将预设点计算结果保存在原点表中还是保存在预设表中:

0:将预设点计算结果写入当前原点表中,进行原点平移。 参考系统为当前工件坐标系。

1:将预设点计算结果写入预设表中。

输入:0,1

Q381 测头在TS 轴? (0/1)

定义数控系统是否也将预设点设置在探测轴上:

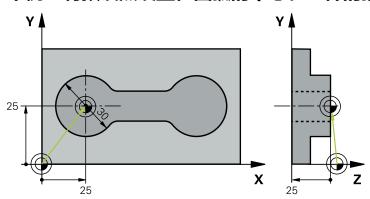
0:不将预设点设置在探测轴上

1:将预设点设置在探测轴上

输入:0,1

Q382 测头 TS 轴: 第一轴坐标?

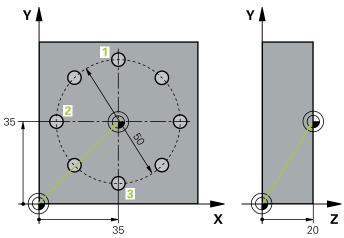
加工面基本轴上的触点坐标;将预设点设置在探测轴上的此位置。仅当**Q381** = 1时有效。该值有绝对式效果。


输入:-99999.9999...+99999.9999

举例

11 TCH PROBE 409 RIDGE CENTER REF PT ~		
Q321=+50	;CENTER IN 1ST AXIS ~	
Q322=+50	;CENTER IN 2ND AXIS ~	
Q311=+25	;RIDGE WIDTH ~	
Q272=+1	;MEASURING AXIS ~	
Q261=-5	;MEASURING HEIGHT ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q260=+20	;CLEARANCE HEIGHT ~	
Q305=+10	;NUMBER IN TABLE ~	
Q405=+0	;DATUM ~	
Q303=+1	;MEAS. VALUE TRANSFER ~	
Q381=+1	;PROBE IN TS AXIS ~	
Q382=+85	;1ST CO. FOR TS AXIS ~	
Q383=+50	;2ND CO. FOR TS AXIS ~	
Q384=+0	;3RD CO. FOR TS AXIS ~	
Q333=+1	;DATUM	

5.19 举例:将预设点设置在圆弧的中心和工件的顶面



- Q325 = 触点1的极坐标角
- **Q247** = 计算触点2至触点4的步距角
- **Q305** = 写入预设表的行号5
- Q303 = 将计算的预设点写入预设表
- Q381 = 并将预设点设置在探测轴上
- Q365 = 沿测量点间的圆弧路径运动

0 BEGIN PGM 413 MM		
1 TOOL CALL "TOUCH_PROBE" Z		
2 TCH PROBE 413 DATUM	OUTSIDE CIRCLE ~	
Q321=+25	;CENTER IN 1ST AXIS ~	
Q322=+25	;CENTER IN 2ND AXIS ~	
Q262=+30	;NOMINAL DIAMETER ~	
Q325=+90	;STARTING ANGLE ~	
Q247=+45	;STEPPING ANGLE ~	
Q261=-5	;MEASURING HEIGHT ~	
Q320=+2	;SET-UP CLEARANCE ~	
Q260=+50	;CLEARANCE HEIGHT ~	
Q301=+0	;MOVE TO CLEARANCE ~	
Q305=+5	;NUMBER IN TABLE ~	
Q331=+0	;DATUM ~	
Q332=+10	;DATUM ~	
Q303=+1	;MEAS. VALUE TRANSFER ~	
Q381=+1	;PROBE IN TS AXIS ~	
Q382=+25	;1ST CO. FOR TS AXIS ~	
Q383=+25	;2ND CO. FOR TS AXIS ~	
Q384=+0	;3RD CO. FOR TS AXIS ~	
Q333=+0	;DATUM ~	
Q423=+4	;NO. OF PROBE POINTS ~	
Q365=+0	;TYPE OF TRAVERSE	
3 END PGM 413 MM		

5.20 举例:将预设点设置在工件的顶面和螺栓孔圆的圆心处

数控系统将计算的螺栓孔圆圆心写入预设表中,供以后使用。

- **Q291** = 第一孔中心1的极坐标角
- **Q292** = 第二孔中心2的极坐标角
- **Q293** = 第三孔中心3的极坐标角
- **Q305** = 将螺栓孔圆的圆心(X轴和Y轴)写入行号1
- Q303 = 在预设表PRESET.PR中,相对机床坐标系(REF坐标系)保存预设点

探测循环:自动预设点测量 | 举例:将预设点设置在工件的顶面和螺栓孔圆的圆心处

0 BEGIN PGM 416 MM		
1 TOOL CALL "TOUCH_PROBE" Z		
2 TCH PROBE 416 DATUM CI	RCLE CENTER ~	
Q273=+35	;CENTER IN 1ST AXIS ~	
Q274=+35	;CENTER IN 2ND AXIS ~	
Q262=+50	;NOMINAL DIAMETER ~	
Q291=+90	;ANGLE OF 1ST HOLE ~	
Q292=+180	;ANGLE OF 2ND HOLE ~	
Q293=+270	;ANGLE OF 3RD HOLE ~	
Q261=+15	;MEASURING HEIGHT ~	
Q260=+10	;CLEARANCE HEIGHT ~	
Q305=+1	;NUMBER IN TABLE ~	
Q331=+0	;DATUM ~	
Q332=+0	;DATUM ~	
Q303=+1	;MEAS. VALUE TRANSFER ~	
Q381=+1	;PROBE IN TS AXIS ~	
Q382=+7.5	;1ST CO. FOR TS AXIS ~	
Q383=+7.5	;2ND CO. FOR TS AXIS ~	
Q384=+20	;3RD CO. FOR TS AXIS ~	
Q333=+0	;DATUM ~	
Q320=+0	;SET-UP CLEARANCE.	
3 CYCL DEF 247 DATUM SETTING ~		
Q339=+1	;DATUM NUMBER	
4 END PGM 416 MM		

探测循环:工件自动 检测

6.1 基础知识

6.1.1 概要

要使用测头,机床制造商必须对数控系统进行特别准备。海德汉只保证使用海德汉测头时探测循环正常工作。

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。

- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。

数控系统提供自动测量工件的循环:

XXJ.	R30位内内40份基工厂10倍分。		
循环		调用	更多信息
0	REF. PLANE	DEF定义生效	203 页
	■ 测量可选轴上的坐标		
1	POLAR DATUM	DEF定义生效	204 页
	■ 测量点		
	■ 探测角度倾斜方向		
420	MEASURE ANGLE	DEF定义生效	206 页
	■ 测量加工面的角度		
421	MEASURE HOLE	DEF定义生效	209 页
	■ 测量孔位		
	■ 测量孔径		
	■ 根据需要,比较名义值与实际值		
422	MEAS. CIRCLE OUTSIDE	DEF定义生效	215 页
	■ 测量圆弧凸台的位置		
	■ 测量圆弧凸台的直径		
	■ 根据需要,比较名义值与实际值		
423	MEAS. RECTAN. INSIDE	DEF定义生效	221 页
	■ 测量矩形型腔的位置		
	■ 测量矩形型腔的长度和宽度 - 胡椒栗栗 NASON (A.L.) (A.L.)		
40.4	■ 根据需要,比较名义值与实际值		225 -
424	MEAS. RECTAN. OUTS.	DEF定义生效	225 页
	■ 测量矩形凸台的位置 - 测量矩形几分的长度和密度		
	测量矩形凸台的长度和宽度根据需要,比较名义值与实际值		
425		DEED VI 4+ àb	220 至
425	MEASURE INSIDE WIDTH ■ 测量槽位	DEF定义生效	230 页
	■ 测量情况 ■ 测量槽宽度		
	一		

循环		调用	更多信息
426	MEASURE RIDGE WIDTH Nill 测量凸台的位置	DEF定义生效	234 页
	测量口台的宽度		
	■ 根据需要 , 比较名义值与实际值		
427	MEASURE COORDINATE	DEF定义生效	237 页
	■ 测量可选轴上的任意坐标		
	■ 根据需要,比较名义值与实际值		
430	MEAS. BOLT HOLE CIRC	DEF定义生效	242 页
	■ 测量螺栓孔圆的圆心点		
	■ 测量螺栓孔圆的直径		
	■ 根据需要,比较名义值与实际值		
431	MEASURE PLANE	DEF定义生效	247 页
	■ 测量三个点确定平面的角度		

6.1.2 记录测量结果

自动测量工件的全部循环 (不含循环0和1)都可使数控系统在日志中记录测量结果。在相应探测循环中,定义数控系统是否

- 将测量日志保存在文件中
- 中断程序运行并在屏幕上显示测量日志
- 不创建测量日志

如果需要将测量日志保存为文件,默认情况下该数控系统将数据保存为文本文件。 改善数控系统将把文件保存在含相关NC程序的目录下。

主程序的尺寸单位在日志文件的头部中。

如需通过数据接口输出测量日志,用海德汉公司的数据传输软件—TNCremo。

举例:探测循环421的测量日志:

探测循环421(孔测量)的测量日志

日期:30-06-2005时间:6:55:04

测量程序: TNC:\GEH35712\CHECK1.H 尺寸类型 (0 = MM / 1 = INCH) : 0

名义值:

参考轴中心:50.0000辅助轴中心:65.0000直径:12.0000

给定的极限值:

中心沿参考轴的最大极限值:50.1000中心沿参考轴的最小极限值:49.9000中心沿辅助轴的最大极限值:65.1000

中心沿辅助轴的最小极限值: 64.9000 孔的最大尺寸: 12.0450 孔的最小尺寸: 12.0000

实际值:

参考轴中心:50.0810辅助轴中心:64.9530直径:12.0259

偏差:

参考轴中心:0.0810辅助轴中心:-0.0470直径:0.0259

其它测量结果:测量高度: -5.0000

测量日志结束

6.1.3 测量结果保存在Q参数中

数控系统将相应探测循环的测量结果保存在全局有效的Q参数**Q150**至**Q160**中。与名义值的偏差保存在参数**Q161**至**Q166**中。注意测量结果参数表中提供每个循环的说明。

循环定义期间,数控系统还在帮助图形上为相应循环显示结果参数)。高亮的结果参数属于输入类参数。

6.1.4 结果分类

有些循环需要通过全局有效的Q参数Q180至Q182查询测量结果状态。

参数值	测量状态
Q180 = 1	测量结果在公差范围内
Q181 = 1	需要修复
Q182 = 1	

只要测量值超出公差范围,数控系统将设置修复或不合格标志。为确定测量结果是否超出公差范围,检查测量日志或比较相应测量结果(**Q150**至**Q160**)与其极限值。

默认情况下,数控系统假定循环**427**测量外尺寸(凸台)。但是,如果输入正确最大和最小尺寸和探测方向,可以修正测量状态。

如果未定义任何公差值或最大/最小尺寸,数控系统也设置状态标志。

6.1.5 公差监测

大多数的工件检验循环都允许该数控系统进行公差监测。为此需要在循环定义期间 定义必要的极限值。如果不需要公差监测,只需将该参数保持默认值0,将该参数设 置为无变化。

6.1.6 刀具监测

部分工件检验循环允许该数控系统进行刀具监测。该数控系统监测

- 由于偏离名义值(Q16x中的数据),需要补偿刀具半径
- 与名义值(Q16x中的值)的偏差大于刀具破损公差。

刀具补偿

系统要求:

- 当前刀具表
- 在循环中必须开启刀具监测功能:设置**Q330**,使其不等于0或输入刀具名。用操作栏中的**名称**指令选择刀具名输入

- 仅当需补偿的刀具是加工轮廓的刀具和在修复加工中需要使用该刀时, 海德汉才建议使用该功能。
- 如果执行多次补偿测量,该数控系统将相应偏差测量值添加给刀具表中保存的数据。

铣刀

如果在参数Q330中引用铣刀,将补偿相应值如下:

数控系统只用刀具表**DR**列的数据补偿刀具半径,包括测量偏差值在给定公差范围内时。

在NC数控程序中,可用参数**Q181**查询是否需要执行修复加工(**Q181**=1:需要修复加工)。

车刀

只适用于循环421、422、427。

如果将**Q330**参数定义为车刀,将分别补偿DZL和DXL行中的相应数据。数控系统监测刀具破损公差,LBREAK列为刀具破损定义。

在NC数控程序中,可用参数**Q181**查询是否需要执行修复加工(**Q181**=1:需要修 复加工)。

可转位刀具的补偿

如果要自动补偿有刀具名的可转位刀具的数据,进行以下编程:

- QS0 = "TOOL NAME"
- FN18: SYSREAD Q0 = ID990 NR10 IDX0;指定IDX中QS参数的编号
- **Q0** = **Q0** +0.2; 累加刀具号的索引值
- 在循环中: Q330 = Q0; 使用可转位刀具号

刀具破损监测

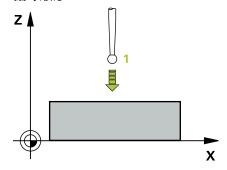
系统要求:

- 当前刀具表
- 在循环中必须开启刀具监测功能(设置Q330,使其不等于0)
- RBREAK必须大于0(表中输入的刀具号)

更多信息:设置和程序运行用户手册

如果偏差测量值大于刀具破损公差,数控系统将输出出错信息并停止程序运行。同时,在刀具表中使该刀具不可用(列TL=L)。

6.1.7 测量结果的参考系统


该数控系统将当前坐标系下或可能的平移后及/或旋转/倾斜坐标系后的全部测量结果传输给结果参数和日志文件。

6.2 循环OREF. PLANE

应用

该探测循环沿可选轴方向测量工件上的任意位置。

循环顺序

- 1 在3-D测量中,测头用快移速度(FMAX列的数据)移到循环中编程的预定位位置1。
- 2 然后,测头用探测进给速率执行探测(F列)。必须在循环中定义探测方向。
- 3 数控系统保存位置后,测头退到起点位置并将测量的坐标值保存在Q参数中。此外,数控系统将测头发出触发信号时的位置坐标值保存在参数**Q115**至**Q119**中。对于这些参数值,数控系统不考虑测针长度和半径。

注意

注意

碰撞危险!

该数控系统用快移速度使测头进行3-D运动,运动到该循环中编程的预定位位置。根据以前的刀具位置,可能发生碰撞!

- ▶ 接近编程的预定位点时,必须进行预定位,避免碰撞。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。

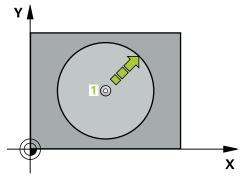
6.2.1 循环参数

帮助图形	参数
	存储计算结果的参数号?
	输入指定坐标值的Q参数编号。
	输入: 01999
	用轴向键或字母键盘选择探测轴 , 输入探测方向的代数符号。
	输入: -,+
	位置值?
	用轴向键或字母键盘输入测头预定位的全部坐标。

输入:-999999999...+999999999

举例

11 TCH PROBE 0.0 REF. PLANE Q9 Z+


12 TCH PROBE 0.1 X+99 Y+22 Z+2

6.3 循环1POLAR DATUM

应用

探测循环1沿任何探测方向测量工件上的任何位置。

循环顺序

- 1 在3-D测量中,测头用快移速度(**FMAX**列的数据)移到循环中编程的预定位位置1。
- 2 然后,测头用探测进给速率执行探测(F列)。探测期间,数控系统沿两个坐标轴(取决于探测角度)同时运动测头。在循环中,用极角定义探测方向。
- 3 数控系统保存该位置后,测头回到起点。数控系统将测头发出触发信号时的位置坐标值保存在参数**Q115**至**Q119**中

注意

注意

碰撞危险!

该数控系统用快移速度使测头进行3-D运动,运动到该循环中编程的预定位位置。根据以前的刀具位置,可能发生碰撞!

- ▶ 接近编程的预定位点时,必须进行预定位,避免碰撞。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。

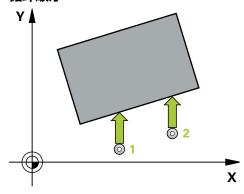
■ 循环中定义的探测轴决定探测平面:

探测轴X轴:X/Y平面 探测轴Y轴:Y/Z平面 探测轴Z轴:Z/X平面

6.3.1 循环参数

帮助图形	参数
	测量坐标轴?
	用轴键或字符键盘输入探测轴。用ENT按键确认。
	输入:X、Y或Z
	测量角度?
	自探测轴测量的角度,测头在沿此轴运动。
	输入: -180+180
	位置值?
	用轴向键或字母键盘输入测头预定位的全部坐标。
	输入:-999999999+999999999

举例


11 TCH PROBE 1.0 POLAR DATUM
12 TCH PROBE 1.1 X WINKEL:+30
13 TCH PROBE 1.2 X+0 Y+10 Z+3

6.4 循环420MEASURE ANGLE

应用

探测循环420测量角度,这是工件上的任何直线与加工面基本轴间的角度。

循环顺序

- 1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头定位在编程的触点1位置。沿任何探测方向进行探测运动时,考虑Q320、SET_UP和球头半径的合计值。测头开始运动时,球头球心将在探测方向的相反方向上偏离该合计值。更多信息: "定位规则",48页
- 2 然后,测头运动到输入的测量高度位置并用探测进给速率(**F**列)探测第一触点。
- 3 然后,测头移到下个触点2并再次探测。
- 4 数控系统将测头移回第二安全高度处并将角度测量值保存在以下Q参数中:

Q参数 编号	含义
Q150	角度测量值为相对加工面参考轴的角度。

注意

- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 如果探测轴 = 测量轴,在A轴或B轴方向上测量该角度:
 - 如果要测量A轴方向的角度,将Q263设置为等于Q265和将Q264设置为不等于Q266。
 - 如果要测量B轴方向的角度,将Q263设置为不等于Q265和将Q264设置为等于Q266。
- 数控系统将在循环起点处重置当前的基本旋转。

编程说明

■ 定义循环前,必须编程一个刀具调用,以定义探测轴。

6.4.1 循环参数

帮助图形

参数

Q263 第一个测量点的第一轴坐标?

第一触点在加工面基本轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q264 第一个测量点的第二轴坐标?

第一触点在加工面辅助轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q265 第二个测量点的第一轴坐标?

第二触点在加工面基本轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q266 第二个测量点的第二轴坐标?

第二触点在加工面辅助轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q272 测量轴(1/2/3, 1= 参考轴)?

被测轴:

1:基本轴 = 测量轴

2:辅助轴 = 测量轴

3:探测轴 = 测量轴

输入:1,2,3

Q267 移动方向 1 (+1=+ / -1=-)?

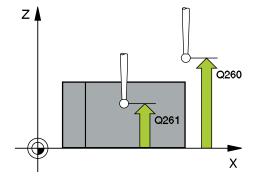
测头接近工件的方向:

-1: 负运动方向

+1:正运动方向

输入:-1,+1

Q261 测量轴方向的测量高度?


球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

测量点与球头间的附加距离。测头开始运动时,即使沿刀具轴方向探测,也偏离Q320、SET_UP与球头半径的合计值。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

帮助图形参数

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动

1:在测量点之间,在第二安全高度处运动

输入:0,1

Q281 测量日志 (0/1/2)?

定义数控系统是否创建测量日志:

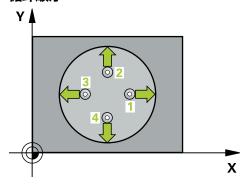
定义数控系统是否创建测量日志:

1:创建测量日志:数控系统在含相应NC数控程序的文件夹中保存**日志文件,文件名为TCHPR420.TXT**。

2:中断程序运行并在数控系统显示屏上显示测量日志(可在以后用NC Start(NC启动)恢复NC数控程序运行)

输入:0,1,2

举例


11 TCH PROBE 420 MEA	ASURE ANGLE ~
Q263=+10	;1ST POINT 1ST AXIS ~
Q264=+10	;1ST POINT 2ND AXIS ~
Q265=+15	;2ND PNT IN 1ST AXIS ~
Q266=+95	;2ND PNT IN 2ND AXIS ~
Q272=+1	;MEASURING AXIS ~
Q267=-1	;TRAVERSE DIRECTION ~
Q261=-5	;MEASURING HEIGHT ~
Q320=+0	;SET-UP CLEARANCE ~
Q260=+10	;CLEARANCE HEIGHT ~
Q301=+1	;MOVE TO CLEARANCE ~
Q281=+1	;MEASURING LOG

6.5 循环421MEASURE HOLE

应用

探测循环**421**测量中心点和孔(或圆弧型腔)的直径。如果在循环中定义了相应公差值,数控系统比较名义值与实际值并将差值保存在Q参数中。

循环顺序

- 1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到触点1位置。数控系统用循环中数据和探测表SET_UP列中的安全高度计算触点。
 - **更多信息:** "定位规则", 48 页
- 2 然后,测头运动到输入的测量高度位置并用探测进给速率(F列)探测第一触点。数控系统用编程的起始角自动确定探测方向。
- 3 然后,测头在测量高度或第二安全高度位置沿圆弧移至下触点2并再次探测。
- 4 数控系统将测头定位在触点3处,再定位在触点4处,再探测两次。
- 5 最后,数控系统将测头移回第二安全高度并将实际值和偏差值保存在以下Q参数中:

Q参数 编号	含义
Q151	沿参考轴中心的实际值
Q152	沿辅助轴中心的实际值
Q153	直径实际值
Q161	参考轴中心位置的偏差
Q162	辅助轴中心位置的偏差
Q163	与直径的偏差

注意

- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 角度步距越小,数控系统计算孔尺寸的精度越低。最小输入值:5度。
- 数控系统将在循环起点处重置当前的基本旋转。

编程说明

- 定义循环前,必须编程一个刀具调用,以定义探测轴。
- 如果参数Q330是指铣刀,参数Q498和Q531的信息无作用
- 如果参数Q330是指车刀,以下适用:
 - 必须定义参数Q498和Q531
 - 参数Q498、Q531中的信息,例如循环800的这些参数必须与该信息相符
 - 如果数控系统补偿车刀位置,将相应补偿DZL和DXL行的相应值。
 - 数控系统监测刀具破损公差,LBREAK列为刀具破损定义。

6.5.1 循环参数

帮助图形

Q274+Q280 Q273+Q279

参数

Q273 中点的第一轴坐标 (名义值)?

孔中心在加工面基本轴上。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q274 中点的第二轴坐标 (名义值)?

孔中心在加工面辅助轴上。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q262 名义直径?

输入孔的直径。

输入: 0...99999.9999

Q325 起始角度?

加工面基本轴与第一触点间的角度。该值有绝对式效果。

输入:-360.000...+360.000

Q247 中间步进角?

两个测量点间的角度。角度步长的代数符号决定测头移向下个测量点的旋转方向(负=顺时针)。如果要探测圆弧而不是整圆,编程的角度步长必须小于90度。该值提供增量效果。

输入:-120...+120

Q261 测量轴方向的测量高度?

球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

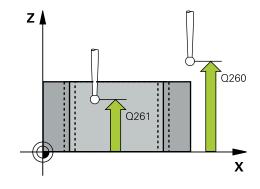
触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。 该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF


Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动

1:在测量点之间,在第二安全高度处运动

输入:0,1

帮助图形

参数

Q275 孔的最大限定尺寸?

孔(圆弧型腔)的最大允许直径

输入: 0...99999.9999

Q276 孔的最小限定尺寸?

孔(圆弧型腔)的最小允许直径

输入: 0...99999.9999

Q279 中点的第一轴坐标公差?

加工面基本轴上的允许位置偏差。

输入: 0...99999.9999

Q280 中点的第二轴坐标公差?

加工面辅助轴上的允许位置偏差。

输入: 0...99999.9999

Q281 测量日志 (0/1/2)?

定义数控系统是否创建测量日志:

0:不创建测量日志

1:创建测量日志:默认情况下,数控系统在含相应NC数控程序的目录中保存**日志文件,文件名为TCHPR421.TXT**。

2:中断程序运行并在数控系统显示屏上显示测量日志。 用**NC Start**(NC启动)按键恢复NC数控程序运行。

输入:0,1,2

Q309 如果超差 PGM 停止?

定义超出公差极限时,数控系统是否中断程序运行和显示出错信息:

0:不中断程序运行;无出错信息 **1**:中断程序运行和生成出错信息

输入:0,1

Q330 监控刀具?

定义数控系统是否监测刀具 (参见 "刀具监测", 201 页):

0: 监测未激活

> **0**:加工中使用的刀具名或刀具号。用操作栏选项直接使用刀具表的刀具。

输入:0...99999.9 或者最多不超过255个字符

Q423 平面中无探测点(4/3)?

定义数控系统用三个还是四个触点测量圆:

3:用三个测量点

4:用四个测量点(默认设置)

输入:3,4

Q365 移动类型? 直线=0/圆弧=1

如果"运动到第二安全高度"(**Q301** = 1)已激活,指定测量点间刀具运动需要使用的路径功能。

0:在加工操作间沿直线运动

1:在加工操作间沿节圆直径的圆弧运动

输入:0,1

帮助图形

参数

Q498 镜像刀 (0=否/1=是)?

仅当在参数**Q330**中已输入了车刀,才适用。为正确监测车刀,数控系统需要准确的加工情况。为此,输入以下信息:

1:镜像车刀(旋转180°),例如循环**800**和参数**反向刀具** Q498 = 1

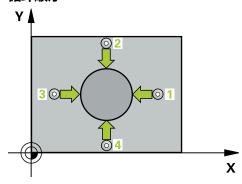
0:车刀对应于车刀表(toolturn.trn)中的描述;未被修改,例如,未被循环800和参数**反向刀具 Q498** = 0修改输入:**0**,**1**

Q531入射角?

仅当在参数Q330中已输入了车刀,才适用。输入加工期间车刀与工件间的入射角(倾斜角)(例如,循环800的角度,入射角?Q531)。

输入:-180...+180

举例


11 TCH PROBE 421 MEASURE HOLE ~	
Q273=+50	;CENTER IN 1ST AXIS ~
Q274=+50	;CENTER IN 2ND AXIS ~
Q262=+75	;NOMINAL DIAMETER ~
Q325=+0	;STARTING ANGLE ~
Q247=+60	;STEPPING ANGLE ~
Q261=-5	;MEASURING HEIGHT ~
Q320=+0	;SET-UP CLEARANCE ~
Q260=+20	;CLEARANCE HEIGHT ~
Q301=+1	;MOVE TO CLEARANCE ~
Q275=+75.12	;MAXIMUM LIMIT ~
Q276=+74.95	;MINIMUM LIMIT ~
Q279=+0.1	;TOLERANCE 1ST CENTER ~
Q280=+0.1	;TOLERANCE 2ND CENTER ~
Q281=+1	;MEASURING LOG ~
Q309=+0	;PGM STOP TOLERANCE ~
Q330=+0	;TOOL ~
Q423=+4	;NO. OF PROBE POINTS ~
Q365=+1	;TYPE OF TRAVERSE ~
Q498=+0	;REVERSE TOOL ~
Q531=+0	;ANGLE OF INCIDENCE

6.6 循环422MEAS. CIRCLE OUTSIDE

应用

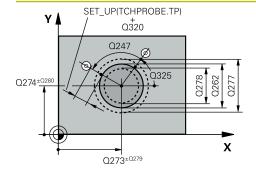
探测循环**422**测量圆弧凸台的中心点和直径。如果在循环中定义了相应公差值,数控系统比较名义值与实际值并将差值保存在Q参数中。

循环顺序

- 1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到触点1位置。数控系统用循环中数据和探测表SET_UP列中的安全高度计算触点。
 - **更多信息:** "定位规则", 48 页
- 2 然后,测头运动到输入的测量高度位置并用探测进给速率(F列)探测第一触点。数控系统用编程的起始角自动确定探测方向。
- 3 然后,测头在测量高度或第二安全高度位置沿圆弧移至下触点2并再次探测。
- 4 数控系统将测头定位在触点3处,再定位在触点4处,再探测两次。
- 5 最后,数控系统将测头移回第二安全高度并将实际值和偏差值保存在以下Q参数中:

Q参数 编号	含义
Q151	沿参考轴中心的实际值
Q152	沿辅助轴中心的实际值
Q153	直径实际值
Q161	参考轴中心位置的偏差
Q162	辅助轴中心位置的偏差
Q163	与直径的偏差

注意


- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 角度步距越小,数控系统计算孔尺寸的精度越低。最小输入值:5度。
- 数控系统将在循环起点处重置当前的基本旋转。

编程说明

- 定义循环前,必须编程一个刀具调用,以定义探测轴。
- 如果参数Q330是指铣刀,参数Q498和Q531的信息无作用
- 如果参数Q330是指车刀,以下适用:
 - 必须定义参数Q498和Q531
 - 参数Q498、Q531中的信息,例如循环800的这些参数必须与该信息相符
 - 如果数控系统补偿车刀位置,将相应补偿DZL和DXL行的相应值。
 - 数控系统监测刀具破损公差,LBREAK列为刀具破损定义。

6.6.1 循环参数

帮助图形

参数

Q273 中点的第一轴坐标 (名义值)?

在加工面基本轴上的凸台中心。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q274 中点的第二轴坐标 (名义值)?

在加工面辅助轴上的凸台中心。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q262 名义直径?

输入凸台的直径。

输入: 0...99999.9999

Q325 起始角度?

加工面基本轴与第一触点间的角度。该值有绝对式效果。

输入:-360.000...+360.000

Q247 中间步进角?

两个测量点间的角度。角度步距的代数符号决定旋转方向 (负值 = 顺时针)。如果要探测圆弧而不是整圆,编程的角度步长必须小于90度。 该值提供增量效果。

输入:-120...+120

Q261 测量轴方向的测量高度?

球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

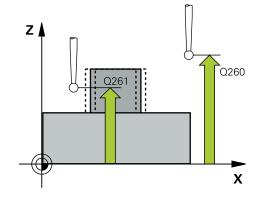
触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。 该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF


Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动

1:在测量点之间,在第二安全高度处运动

输入:0,1

帮助图形

参数

Q277 凸台的最大限定尺寸?

凸台的最大允许直径。 输入: **0...99999.9999**

Q278 凸台的最小限定尺寸?

凸台的最小允许直径。 输入: **0...99999.9999**

Q279 中点的第一轴坐标公差?

加工面基本轴上的允许位置偏差。

输入: 0...99999.9999

Q280 中点的第二轴坐标公差?

加工面辅助轴上的允许位置偏差。

输入: 0...99999.9999

Q281 测量日志 (0/1/2)?

定义数控系统是否创建测量日志:

0:不创建测量日志

1:创建测量日志:数控系统在含相应NC数控程序的文件夹中保存**日志文件,文件名为TCHPR422.TXT**。

2:中断程序运行并在数控系统显示屏上显示测量日志。 用**NC Start**(NC启动)按键恢复NC数控程序运行。

输入:0,1,2

Q309 如果超差 PGM 停止?

定义超出公差极限时,数控系统是否中断程序运行和显示出错信息:

0:不中断程序运行;无出错信息 **1**:中断程序运行和生成出错信息

输入:0,1

Q330 监控刀具?

定义数控系统是否监测刀具201页。

0:监测未激活

> 0: 刀具表TOOL.T中的刀具号

输入:0...99999.9 或者最多不超过255个字符

Q423 平面中无探测点(4/3)?

定义数控系统用三个还是四个触点测量圆:

3:用三个测量点

4:用四个测量点(默认设置)

输入:3,4

Q365 移动类型? 直线=0/圆弧=1

如果"运动到第二安全高度"($\mathbf{Q301} = 1$)已激活,指定测量点间刀具运动需要使用的路径功能。

0:在加工操作间沿直线运动

1:在加工操作间沿节圆直径的圆弧运动

输入:0,1

帮助图形

参数

Q498 镜像刀 (0=否/1=是)?

仅当在参数**Q330**中已输入了车刀,才适用。为正确监测车刀,数控系统需要准确的加工情况。为此,输入以下信息:

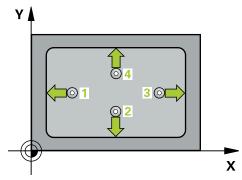
1:镜像车刀(旋转180°),例如循环**800**和参数**反向刀具** Q498 = 1

0:车刀对应于车刀表(toolturn.trn)中的描述;未被修改,例如,未被循环800和参数**反向刀具 Q498** = 0修改输入:**0**,**1**

Q531入射角?

仅当在参数Q330中已输入了车刀,才适用。输入加工期间车刀与工件间的入射角(倾斜角)(例如,循环800的角度,入射角?Q531)。

输入:-180...+180


Q273=+50 ;CENTER IN 1ST AXIS ~ Q274=+50 ;CENTER IN 2ND AXIS ~ Q262=+75 ;NOMINAL DIAMETER ~ Q325=+90 ;STARTING ANGLE ~ Q247=+30 ;STEPPING ANGLE ~ Q261=-5 ;MEASURING HEIGHT ~ Q320=+0 ;SET-UP CLEARANCE ~ Q260=+10 ;CLEARANCE HEIGHT ~ Q301=+0 ;MOVE TO CLEARANCE ~ Q277=+35.15 ;MAXIMUM LIMIT ~ Q278=+34.9 ;MINIMUM LIMIT ~ Q279=+0.05 ;TOLERANCE 1ST CENTER ~ Q280=+0.05 ;TOLERANCE 2ND CENTER ~ Q281=+1 ;MEASURING LOG ~ Q309=+0 ;PGM STOP TOLERANCE ~ Q330=+0 ;TOOL ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q365=+1 ;TYPE OF TRAVERSE ~ Q498=+0 ;REVERSE TOOL ~ Q531=+0 ;ANGLE OF INCIDENCE	11 TCH PROBE 422 MEAS. CIRCLE OUTSIDE ~		
Q262=+75 ;NOMINAL DIAMETER ~ Q325=+90 ;STARTING ANGLE ~ Q247=+30 ;STEPPING ANGLE ~ Q261=-5 ;MEASURING HEIGHT ~ Q320=+0 ;SET-UP CLEARANCE ~ Q260=+10 ;CLEARANCE HEIGHT ~ Q301=+0 ;MOVE TO CLEARANCE ~ Q277=+35.15 ;MAXIMUM LIMIT ~ Q278=+34.9 ;MINIMUM LIMIT ~ Q279=+0.05 ;TOLERANCE 1ST CENTER ~ Q280=+0.05 ;TOLERANCE 2ND CENTER ~ Q281=+1 ;MEASURING LOG ~ Q309=+0 ;PGM STOP TOLERANCE ~ Q309=+0 ;TOOL ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q365=+1 ;TYPE OF TRAVERSE ~ Q498=+0 ;REVERSE TOOL ~	Q273=+50	;CENTER IN 1ST AXIS ~	
Q325=+90 ;STARTING ANGLE ~ Q247=+30 ;STEPPING ANGLE ~ Q261=-5 ;MEASURING HEIGHT ~ Q320=+0 ;SET-UP CLEARANCE ~ Q260=+10 ;CLEARANCE HEIGHT ~ Q301=+0 ;MOVE TO CLEARANCE ~ Q277=+35.15 ;MAXIMUM LIMIT ~ Q278=+34.9 ;MINIMUM LIMIT ~ Q279=+0.05 ;TOLERANCE 1ST CENTER ~ Q280=+0.05 ;TOLERANCE 2ND CENTER ~ Q281=+1 ;MEASURING LOG ~ Q309=+0 ;PGM STOP TOLERANCE ~ Q330=+0 ;TOOL ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q365=+1 ;TYPE OF TRAVERSE ~ Q498=+0 ;REVERSE TOOL ~	Q274=+50	;CENTER IN 2ND AXIS ~	
Q247=+30 ;STEPPING ANGLE ~ Q261=-5 ;MEASURING HEIGHT ~ Q320=+0 ;SET-UP CLEARANCE ~ Q260=+10 ;CLEARANCE HEIGHT ~ Q301=+0 ;MOVE TO CLEARANCE ~ Q277=+35.15 ;MAXIMUM LIMIT ~ Q278=+34.9 ;MINIMUM LIMIT ~ Q279=+0.05 ;TOLERANCE 1ST CENTER ~ Q280=+0.05 ;TOLERANCE 2ND CENTER ~ Q281=+1 ;MEASURING LOG ~ Q309=+0 ;PGM STOP TOLERANCE ~ Q309=+0 ;TOOL ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q365=+1 ;TYPE OF TRAVERSE ~ Q498=+0 ;REVERSE TOOL ~	Q262=+75	;NOMINAL DIAMETER ~	
Q261=-5 ;MEASURING HEIGHT ~ Q320=+0 ;SET-UP CLEARANCE ~ Q260=+10 ;CLEARANCE HEIGHT ~ Q301=+0 ;MOVE TO CLEARANCE ~ Q277=+35.15 ;MAXIMUM LIMIT ~ Q278=+34.9 ;MINIMUM LIMIT ~ Q279=+0.05 ;TOLERANCE 1ST CENTER ~ Q280=+0.05 ;TOLERANCE 2ND CENTER ~ Q281=+1 ;MEASURING LOG ~ Q309=+0 ;PGM STOP TOLERANCE ~ Q309=+0 ;TOOL ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q365=+1 ;TYPE OF TRAVERSE ~ Q498=+0 ;REVERSE TOOL ~	Q325=+90	;STARTING ANGLE ~	
Q320=+0 ;SET-UP CLEARANCE ~ Q260=+10 ;CLEARANCE HEIGHT ~ Q301=+0 ;MOVE TO CLEARANCE ~ Q277=+35.15 ;MAXIMUM LIMIT ~ Q278=+34.9 ;MINIMUM LIMIT ~ Q279=+0.05 ;TOLERANCE 1ST CENTER ~ Q280=+0.05 ;TOLERANCE 2ND CENTER ~ Q281=+1 ;MEASURING LOG ~ Q309=+0 ;PGM STOP TOLERANCE ~ Q330=+0 ;TOOL ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q365=+1 ;TYPE OF TRAVERSE ~ Q498=+0 ;REVERSE TOOL ~	Q247=+30	;STEPPING ANGLE ~	
Q260=+10 ;CLEARANCE HEIGHT ~ Q301=+0 ;MOVE TO CLEARANCE ~ Q277=+35.15 ;MAXIMUM LIMIT ~ Q278=+34.9 ;MINIMUM LIMIT ~ Q279=+0.05 ;TOLERANCE 1ST CENTER ~ Q280=+0.05 ;TOLERANCE 2ND CENTER ~ Q281=+1 ;MEASURING LOG ~ Q309=+0 ;PGM STOP TOLERANCE ~ Q330=+0 ;TOOL ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q365=+1 ;TYPE OF TRAVERSE ~ Q498=+0 ;REVERSE TOOL ~	Q261=-5	;MEASURING HEIGHT ~	
Q301=+0 ;MOVE TO CLEARANCE ~ Q277=+35.15 ;MAXIMUM LIMIT ~ Q278=+34.9 ;MINIMUM LIMIT ~ Q279=+0.05 ;TOLERANCE 1ST CENTER ~ Q280=+0.05 ;TOLERANCE 2ND CENTER ~ Q281=+1 ;MEASURING LOG ~ Q309=+0 ;PGM STOP TOLERANCE ~ Q330=+0 ;TOOL ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q365=+1 ;TYPE OF TRAVERSE ~ Q498=+0 ;REVERSE TOOL ~	Q320=+0	;SET-UP CLEARANCE ~	
Q277=+35.15 ;MAXIMUM LIMIT ~ Q278=+34.9 ;MINIMUM LIMIT ~ Q279=+0.05 ;TOLERANCE 1ST CENTER ~ Q280=+0.05 ;TOLERANCE 2ND CENTER ~ Q281=+1 ;MEASURING LOG ~ Q309=+0 ;PGM STOP TOLERANCE ~ Q330=+0 ;TOOL ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q365=+1 ;TYPE OF TRAVERSE ~ Q498=+0 ;REVERSE TOOL ~	Q260=+10	;CLEARANCE HEIGHT ~	
Q278=+34.9 ;MINIMUM LIMIT ~ Q279=+0.05 ;TOLERANCE 1ST CENTER ~ Q280=+0.05 ;TOLERANCE 2ND CENTER ~ Q281=+1 ;MEASURING LOG ~ Q309=+0 ;PGM STOP TOLERANCE ~ Q330=+0 ;TOOL ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q365=+1 ;TYPE OF TRAVERSE ~ Q498=+0 ;REVERSE TOOL ~	Q301=+0	;MOVE TO CLEARANCE ~	
Q279=+0.05 ;TOLERANCE 1ST CENTER ~ Q280=+0.05 ;TOLERANCE 2ND CENTER ~ Q281=+1 ;MEASURING LOG ~ Q309=+0 ;PGM STOP TOLERANCE ~ Q330=+0 ;TOOL ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q365=+1 ;TYPE OF TRAVERSE ~ Q498=+0 ;REVERSE TOOL ~	Q277=+35.15	;MAXIMUM LIMIT ~	
Q280=+0.05 ;TOLERANCE 2ND CENTER ~ Q281=+1 ;MEASURING LOG ~ Q309=+0 ;PGM STOP TOLERANCE ~ Q330=+0 ;TOOL ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q365=+1 ;TYPE OF TRAVERSE ~ Q498=+0 ;REVERSE TOOL ~	Q278=+34.9	;MINIMUM LIMIT ~	
Q281=+1 ;MEASURING LOG ~ Q309=+0 ;PGM STOP TOLERANCE ~ Q330=+0 ;TOOL ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q365=+1 ;TYPE OF TRAVERSE ~ Q498=+0 ;REVERSE TOOL ~	Q279=+0.05	;TOLERANCE 1ST CENTER ~	
Q309=+0 ;PGM STOP TOLERANCE ~ Q330=+0 ;TOOL ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q365=+1 ;TYPE OF TRAVERSE ~ Q498=+0 ;REVERSE TOOL ~	Q280=+0.05	;TOLERANCE 2ND CENTER ~	
Q330=+0 ;TOOL ~ Q423=+4 ;NO. OF PROBE POINTS ~ Q365=+1 ;TYPE OF TRAVERSE ~ Q498=+0 ;REVERSE TOOL ~	Q281=+1	;MEASURING LOG ~	
Q423=+4 ;NO. OF PROBE POINTS ~ Q365=+1 ;TYPE OF TRAVERSE ~ Q498=+0 ;REVERSE TOOL ~	Q309=+0	;PGM STOP TOLERANCE ~	
Q365=+1 ;TYPE OF TRAVERSE ~ Q498=+0 ;REVERSE TOOL ~	Q330=+0	;TOOL ~	
Q498=+0 ;REVERSE TOOL ~	Q423=+4	;NO. OF PROBE POINTS ~	
	Q365=+1	;TYPE OF TRAVERSE ~	
Q531=+0 ;ANGLE OF INCIDENCE	Q498=+0	;REVERSE TOOL ~	
	Q531=+0	;ANGLE OF INCIDENCE	

6.7 循环423MEAS. RECTAN. INSIDE

应用

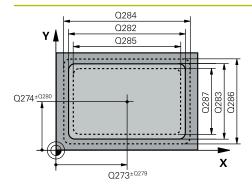
探测循环**423**确定矩形型腔的中心、长度和宽度。如果在循环中定义了相应公差值,数控系统比较名义值与实际值并将差值保存在Q参数中。

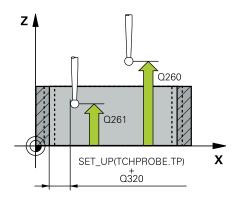
循环顺序

- 1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到触点1位置。数控系统用循环中数据和探测表SET_UP列中的安全高度计算触点。
 - **更多信息:** "定位规则", 48 页
- 2 然后,测头运动到输入的测量高度位置并用探测进给速率(F列)探测第一触点。
- 3 然后,测头在测量高度或第二安全高度沿平行轴方向移到下个触点<mark>2</mark>并再次探测。
- 4 数控系统将测头定位在触点3处,再定位在触点4处,再探测两次。
- 5 最后,数控系统将测头移回第二安全高度并将实际值和偏差值保存在以下Q参数中:

Q参数 编号	含义
Q151	沿参考轴中心的实际值
Q152	沿辅助轴中心的实际值
Q154	参考轴上侧边长度的实际值
Q155	辅助轴上侧边长度的实际值
Q161	参考轴中心位置的偏差
Q162	辅助轴中心位置的偏差
Q164	参考轴的侧边长偏差
Q165	

注意


- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 如果型腔尺寸和安全高度不允许在触点附近预定位,数控系统一定从型腔的中心 开始探测。这时,测头在四个测量点间之间无法移回到第二安全高度处。
- 刀具监测取决于第一侧边长度的偏差。
- 数控系统将在循环起点处重置当前的基本旋转。


编程说明

■ 定义循环前,必须编程一个刀具调用,以定义探测轴。

6.7.1 循环参数

帮助图形

参数

Q273 中点的第一轴坐标 (名义值)?

加工面基本轴上的型腔中心。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q274 中点的第二轴坐标 (名义值)?

型腔的中心在加工面辅助轴上。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q282 第一个边的长度 (命令值)?

型腔长度,平行于加工面的基本轴

输入: 0...99999.9999

Q283 第二个边的长度 (命令值)?

型腔长度,平行于加工面的辅助轴

输入: 0...99999.9999

Q261 测量轴方向的测量高度?

球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰

撞。 该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动

1:在测量点之间,在第二安全高度处运动

输入:0,1

Q284 第一个边长度的最大限定尺寸?

型腔的最大允许长度

输入: 0...99999.9999

Q285 第一个边长度的最小限定尺寸?

型腔的最小允许长度 输入: **0...99999.9999**

Q286 第二个边长度的最大限定尺寸?

型腔的最大允许宽度 输入: **0...99999.9999**

Q287 第二个边长度的最小限定尺寸?

型腔的最小允许宽度 输入: **0...99999.9999**

Q279 中点的第一轴坐标公差?

加工面基本轴上的允许位置偏差。

输入: 0...99999.9999

Q280 中点的第二轴坐标公差?

加工面辅助轴上的允许位置偏差。

输入: 0...99999.9999

Q281 测量日志 (0/1/2)?

定义数控系统是否创建测量日志:

0:不创建测量日志。

1:创建测量日志:数控系统在含相应NC数控程序的文件夹中保存**日志文件,文件名为TCHPR423.TXT**。

2:中断程序运行并在数控系统显示屏上显示测量日志。用NC Start(NC启动)恢复NC数控程序运行。

输入:0,1,2

Q309 如果超差 PGM 停止?

定义超出公差极限时,数控系统是否中断程序运行和显示出错信息:

0:不中断程序运行;无出错信息 **1**:中断程序运行和生成出错信息

输入:0,1

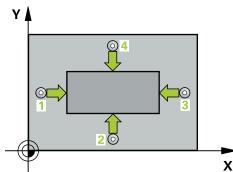
Q330 监控刀具?

定义数控系统是否监测刀具201页。

0:监测未激活

> 0: 刀具表TOOL.T中的刀具号

输入: 0...99999.9 或者最多不超过255个字符


11 TCH PROBE 423 MEAS. RECTAN. INSIDE ~		
Q273=+50	;CENTER IN 1ST AXIS ~	
Q274=+50	;CENTER IN 2ND AXIS ~	
Q282=+80	;FIRST SIDE LENGTH ~	
Q283=+60	;2ND SIDE LENGTH ~	
Q261=-5	;MEASURING HEIGHT ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q260=+10	;CLEARANCE HEIGHT ~	
Q301=+1	;MOVE TO CLEARANCE ~	
Q284=+0	;MAX. LIMIT 1ST SIDE ~	
Q285=+0	;MIN. LIMIT 1ST SIDE ~	
Q286=+0	;MAX. LIMIT 2ND SIDE ~	
Q287=+0	;MIN. LIMIT 2ND SIDE ~	
Q279=+0	;TOLERANCE 1ST CENTER ~	
Q280=+0	;TOLERANCE 2ND CENTER ~	
Q281=+1	;MEASURING LOG ~	
Q309=+0	;PGM STOP TOLERANCE ~	
Q330=+0	;TOOL	

6.8 循环424MEAS. RECTAN. OUTS.

应用

探测循环**424**确定矩形凸台的中心、长度和宽度。如果在循环中定义了相应公差值,数控系统比较名义值与实际值并将差值保存在Q参数中。

循环顺序

- 1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到触点1位置。数控系统用循环中数据和探测表SET_UP列中的安全高度计算触点。
 - **更多信息:** "定位规则", 48 页
- 2 然后,测头运动到输入的测量高度位置并用探测进给速率(**F**列)探测第一触点。
- 3 然后,测头在测量高度或第二安全高度沿平行轴方向移到下个触点2并再次探测。
- 4 数控系统将测头定位在触点3处,再定位在触点4处,再探测两次。
- 5 最后,数控系统将测头移回第二安全高度并将实际值和偏差值保存在以下Q参数中:

Q参数 编号	含义
Q151	沿参考轴中心的实际值
Q152	沿辅助轴中心的实际值
Q154	参考轴上侧边长度的实际值
Q155	辅助轴上侧边长度的实际值
Q161	参考轴中心位置的偏差
Q162	辅助轴中心位置的偏差
Q164	参考轴的侧边长偏差
Q165	

注意

- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 刀具监测取决于第一侧边长度的偏差。
- 数控系统将在循环起点处重置当前的基本旋转。

编程说明

■ 定义循环前,必须编程一个刀具调用,以定义探测轴。

6.8.1 循环参数

帮助图形

Z Q260 Q261 Q260 SET_UP(TCHPROBE.TP) Q320

参数

Q273 中点的第一轴坐标 (名义值)?

在加工面基本轴上的凸台中心。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q274 中点的第二轴坐标 (名义值)?

在加工面辅助轴上的凸台中心。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q282 第一个边的长度 (命令值)?

凸台长度平行于加工面的基本轴

输入: 0...99999.9999

Q283 第二个边的长度 (命令值)?

平行于加工面辅助轴的凸台长度

输入: 0...99999.9999

Q261 测量轴方向的测量高度?

球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰

撞。该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动

1:在测量点之间,在第二安全高度处运动

输入:0,1

Q284 第一个边长度的最大限定尺寸?

凸台的最大允许长度

输入: 0...99999.9999

Q285 第一个边长度的最小限定尺寸?

凸台的最小允许长度 输入: **0...99999.9999**

Q286 第二个边长度的最大限定尺寸?

凸台的最大允许宽度 输入: **0...99999.9999**

Q287 第二个边长度的最小限定尺寸?

凸台的最小允许宽度 输入: **0...99999.9999**

Q279 中点的第一轴坐标公差?

加工面基本轴上的允许位置偏差。

输入: 0...99999.9999

Q280 中点的第二轴坐标公差?

加工面辅助轴上的允许位置偏差。

输入: 0...99999.9999

Q281 测量日志 (0/1/2)?

定义数控系统是否创建测量日志:

0:不创建测量日志

1:创建测量日志:数控系统在含.H文件的文件夹中保存**日**

志文件,文件名为TCHPR424.TXT

2:中断程序运行并在数控系统显示屏上显示测量日志。 用NC Start (NC启动)按键恢复NC数控程序运行。

输入:0,1,2

Q309 如果超差 PGM 停止?

定义超出公差极限时,数控系统是否中断程序运行和显示出错信息:

0:不中断程序运行;无出错信息 **1**:中断程序运行和生成出错信息

输入:0,1 Q330 监控刀具?

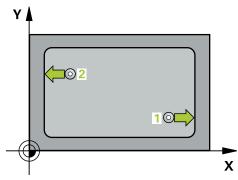
定义数控系统是否监测刀具 (参见 "刀具监测", 201 页):

0:监测未激活

> 0:加工中使用的刀具名或刀具号。用操作栏选项直接使

用刀具表的刀具。

输入: 0...99999.9 或者最多不超过255个字符


11 TCH PROBE 424 MEAS. RECTAN. OUTS. ~		
Q273=+50	;CENTER IN 1ST AXIS ~	
Q274=+50	;2ND CENTER 2ND AXIS ~	
Q282=+75	;FIRST SIDE LENGTH ~	
Q283=+35	;2ND SIDE LENGTH ~	
Q261=-5	;MEASURING HEIGHT ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q260=+20	;CLEARANCE HEIGHT ~	
Q301=+0	;MOVE TO CLEARANCE ~	
Q284=+75.1	;MAX. LIMIT 1ST SIDE ~	
Q285=+74.9	;MIN. LIMIT 1ST SIDE ~	
Q286=+35	;MAX. LIMIT 2ND SIDE ~	
Q287=+34.95	;MIN. LIMIT 2ND SIDE ~	
Q279=+0.1	;TOLERANCE 1ST CENTER ~	
Q280=+0.1	;TOLERANCE 2ND CENTER ~	
Q281=+1	;MEASURING LOG ~	
Q309=+0	;PGM STOP TOLERANCE ~	
Q330=+0	;TOOL	

6.9 循环425MEASURE INSIDE WIDTH

应用

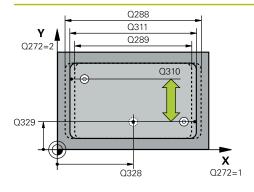
探测循环**425**测量槽(或型腔)的位置和宽度。如果在循环中定义相应公差值,数控系统比较名义值与实际值并将差值保存在Q参数中。

循环顺序

- 1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到触点1位置。数控系统用循环中数据和探测表SET_UP列中的安全高度计算触点。
 - **更多信息:** "定位规则", 48 页
- 2 然后,测头运动到输入的测量高度位置并用探测进给速率(F列)探测第一触点。第一次总是沿编程轴正方向探测。
- 3 如果输入第二测量点的偏移量,数控系统则将测头(根据需要,在第二安全高度位置)移至下一个触点位置2并探测该点。如果名义长度较大,数控系统用快移速度将测头移至第二触点。如果未输入偏移量,数控系统在完全相反方向测量宽度。
- 4 最后,数控系统将测头移回第二安全高度并将实际值和偏差值保存在以下Q参数中:

Q参数 编号	含义	
Q156	测量长度的实际值	
Q157	中心线的实际值	
0166	—————————————————————————————————————	

注意


- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 数控系统将在循环起点处重置当前的基本旋转。

编程说明

■ 定义循环前,必须编程一个刀具调用,以定义探测轴。

6.9.1 循环参数

帮助图形

参数

Q328 起始点的第一轴坐标?

加工面基本轴上的探测起点。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q329 起始点的第二轴坐标?

沿加工面辅助轴的探测起点。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q310 用于第二次测量的偏置(+/-)?

第二次测量前,偏移测头的距离。如果输入0,数控系统不偏

移测头。 该值提供增量效果。

输入:-99999.9999...+99999.9999

Q272 测量轴(1= 第一个轴 / 2=第二个轴)?

加工面上轴,沿此轴测量:

1:基本轴 = 测量轴

2:辅助轴 = 测量轴

输入:**1**,2

Q261 测量轴方向的测量高度?

球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰

撞。该值有绝对式效果。

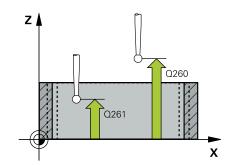
输入:-99999.9999...+99999.9999 或PREDEF

Q311 名义长度?

被测长度的名义值

输入: 0...99999.9999

Q288 最大限定尺寸?


最大允许长度

输入: 0...99999.9999

Q289 最小限定尺寸?

最小允许长度

输入: 0...99999.9999

Q281 测量日志 (0/1/2)?

定义数控系统是否创建测量日志:

0:不创建测量日志

1:创建测量日志:数控系统在含.H文件的文件夹中保存**日**

志文件,文件名为TCHPR425.TXT

2:中断程序运行并在数控系统显示屏上显示测量日志。 用NC Start (NC启动)按键恢复NC数控程序运行。

输入:0,1,2

Q309 如果超差 PGM 停止?

定义超出公差极限时,数控系统是否中断程序运行和显示出 错信息:

0:不中断程序运行;无出错信息 1:中断程序运行和生成出错信息

输入:0,1

Q330 监控刀具?

定义数控系统是否监测刀具 (参见 "刀具监测", 201 页):

0: 监测未激活

> **0**:加工中使用的刀具名或刀具号。用操作栏选项直接使用刀具表的刀具。

输入: 0...99999.9 或者最多不超过255个字符

Q320 安全高度?

触点与球头间的附加距离。**Q320**累加至**SET_UP**(探测表),且只适用于沿探测轴探测预设点时。 该值提供增量效 即

输入: 0...99999.9999 或PREDEF

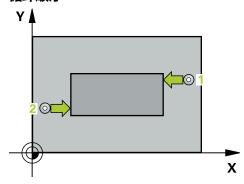
Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动

1:在测量点之间,在第二安全高度处运动

输入:0,1


11 TCH PROBE 425 MEASURE INSIDE WIDTH ~		
Q328=+75	;STARTNG PNT 1ST AXIS ~	
Q329=-12.5	;STARTNG PNT 2ND AXIS ~	
Q310=+0	;OFFS. 2ND MEASUREMNT ~	
Q272=+1	;MEASURING AXIS ~	
Q261=-5	;MEASURING HEIGHT ~	
Q260=+10	;CLEARANCE HEIGHT ~	
Q311=+25	;NOMINAL LENGTH ~	
Q288=+25.05	;MAXIMUM LIMIT ~	
Q289=+25	;MINIMUM LIMIT ~	
Q281=+1	;MEASURING LOG ~	
Q309=+0	;PGM STOP TOLERANCE ~	
Q330=+0	;TOOL ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q301=+0	;MOVE TO CLEARANCE	

6.10 循环426MEASURE RIDGE WIDTH

应用

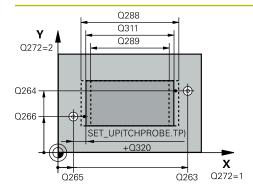
探测循环**426**可测量凸台的位置和宽度。如果在循环中定义了相应公差值,数控系统比较名义值与实际值并将差值保存在Q参数中。

循环顺序

- 1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到触点1位置。数控系统用循环中数据和探测表SET_UP列中的安全高度计算触点。
 - **更多信息:** "定位规则", 48 页
- 2 然后,测头运动到输入的测量高度位置并用探测进给速率(F列)探测第一触点。第一次总是沿编程轴负方向探测。
- 3 然后,测头在第二安全高度移到下个触点并再次探测。
- 4 最后,数控系统将测头移回第二安全高度并将实际值和偏差值保存在以下Q参数中:

Q参数 编号	含义
Q156	测量长度的实际值
Q157	中心线的实际值
Q166	被测长度偏差

注意


- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 数控系统将在循环起点处重置当前的基本旋转。

编程说明

■ 定义循环前,必须编程一个刀具调用,以定义探测轴。

6.10.1 循环参数

帮助图形

参数

Q263 第一个测量点的第一轴坐标?

第一触点在加工面基本轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q264 第一个测量点的第二轴坐标?

第一触点在加工面辅助轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q265 第二个测量点的第一轴坐标?

第二触点在加工面基本轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q266 第二个测量点的第二轴坐标?

第二触点在加工面辅助轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q272 测量轴(1= 第一个轴 / 2=第二个轴)?

加工面上轴,沿此轴测量:

1:基本轴 = 测量轴

2:辅助轴 = 测量轴

输入:1,2

Q261 测量轴方向的测量高度?

球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

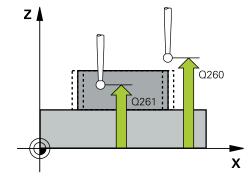
Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰

撞。该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

Q311 名义长度?


被测长度的名义值

输入: 0...99999.9999

Q288 最大限定尺寸?

最大允许长度

输入: 0...99999.9999

Q289 最小限定尺寸?

最小允许长度

输入: 0...99999.9999

Q281 测量日志 (0/1/2)?

定义数控系统是否创建测量日志:

0:不创建测量日志

1:创建测量日志:数控系统在含相应NC数控程序的文件夹中保存**日志文件,文件名为TCHPR426.TXT**。

2:中断程序运行并在数控系统显示屏上显示测量日志。 用NC Start (NC启动)按键恢复NC数控程序运行。

输入:0,1,2

Q309 如果超差 PGM 停止?

定义超出公差极限时,数控系统是否中断程序运行和显示出错信息:

0:不中断程序运行;无出错信息 1:中断程序运行和生成出错信息

输入:0,1

Q330 监控刀具?

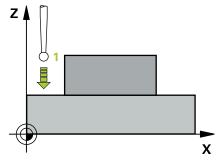
定义数控系统是否监测刀具 (参见 "刀具监测", 201 页):

0: 监测未激活

> 0:加工中使用的刀具名或刀具号。用操作栏选项直接使

用刀具表的刀具。

输入:0...99999.9 或者最多不超过255个字符


11 TCH PROBE 426 MEASURE RIDGE WIDTH ~		
Q263=+50	;1ST POINT 1ST AXIS ~	
Q264=+25	;1ST POINT 2ND AXIS ~	
Q265=+50	;2ND PNT IN 1ST AXIS ~	
Q266=+85	;2ND PNT IN 2ND AXIS ~	
Q272=+2	;测量轴 ~	
Q261=-5	;MEASURING HEIGHT ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q260=+20	;CLEARANCE HEIGHT ~	
Q311=+45	;NOMINAL LENGTH ~	
Q288=+45	;MAXIMUM LIMIT ~	
Q289=+44.95	;MINIMUM LIMIT ~	
Q281=+1	;MEASURING LOG ~	
Q309=+0	;PGM STOP TOLERANCE ~	
Q330=+0	;TOOL	

6.11 循环427MEASURE COORDINATE

应用

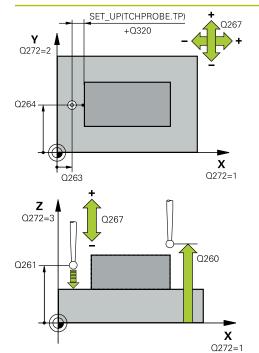
探测循环**427**可测量可选轴的坐标并将其值保存在Q参数中。如果在循环中定义了相应公差值,数控系统比较名义值与实际值并将差值保存在Q参数中。

循环顺序

- 1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到触点1位置。数控系统沿定义的运动方向的相反方向将测头偏移安全高度的尺寸**更多信息:** "定位规则", 48 页
- 2 然后,数控系统将测头移到加工面上的指定触点1位置并沿选定轴的方向测量实际值
- 3 最后,数控系统将测头移回第二安全高度并将坐标测量值保存在以下Q参数中:

Q参数 编号	含义	
Q160	坐标测量值	

注意


- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 如果将当前加工面的轴定义为测量轴(**Q272** = 1或2),数控系统进行刀具半径补偿。数控系统由定义的运动方向(**Q267**)确定补偿方向。
- 如果将探测轴定义为测量轴(Q272 = 3),数控系统补偿刀具长度。
- 数控系统将在循环起点处重置当前的基本旋转。

编程说明

- 定义循环前,必须编程一个刀具调用,以定义探测轴。
- 如果参数Q330是指铣刀,参数Q498和Q531的信息无作用
- 如果参数Q330是指车刀,以下适用:
 - 必须定义参数Q498和Q531
 - 参数Q498、Q531中的信息,例如循环800的这些参数必须与该信息相符
 - 如果数控系统补偿车刀位置,将相应补偿DZL和DXL行的相应值。
 - 数控系统监测刀具破损公差,LBREAK列为刀具破损定义。

6.11.1 循环参数

帮助图形

参数

Q263 第一个测量点的第一轴坐标?

第一触点在加工面基本轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q264 第一个测量点的第二轴坐标?

第一触点在加工面辅助轴的坐标。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q261 测量轴方向的测量高度?

球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q272 测量轴(1/2/3, 1= 参考轴)?

被测轴:

1:基本轴 = 测量轴

2:辅助轴 = 测量轴

3:探测轴 = 测量轴

输入:1,2,3

Q267 移动方向 1 (+1=+ / -1=-)?

测头接近工件的方向:

-1: 负运动方向

+1:正运动方向

输入:-1,+1

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰

撞。该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

Q281 测量日志 (0/1/2)?

定义数控系统是否创建测量日志:

0:不创建测量日志

1: 创建测量日志: 数控系统在含相应NC数控程序的文件夹

中保存**日志文件,文件名为TCHPR427.TXT**。

2:中断程序运行并在数控系统显示屏上显示测量日

志。用NC Start (NC启动)恢复NC数控程序运行。

输入:0,1,2

Q288 最大限定尺寸?

最大允许值

输入:-99999.9999...+99999.9999

Q289 最小限定尺寸?

最小允许值

输入:-99999.9999...+99999.9999

Q309 如果超差 PGM 停止?

定义超出公差极限时,数控系统是否中断程序运行和显示出错信息:

0:不中断程序运行;无出错信息 **1**:中断程序运行和生成出错信息

输入:0,1

Q330 监控刀具?

定义数控系统是否监测刀具 (参见 "刀具监测", 201 页):

0: 监测未激活

> 0:加工中使用的刀具名或刀具号。用操作栏选项直接使

用刀具表的刀具。

输入: 0...99999.9 或者最多不超过255个字符

Q498 镜像刀 (0=否/1=是)?

仅当在参数Q330中已输入了车刀,才适用。为正确监测车刀,数控系统需要准确的加工情况。为此,输入以下信息:

 ${f 1}$: 镜像车刀(旋转 ${f 180}^{\circ}$),例如循环 ${f 800}$ 和参数 ${f C向刀具}$ ${f Q498}$ = ${f 1}$

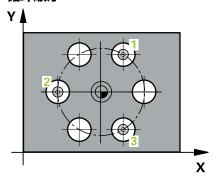
0:车刀对应于车刀表(toolturn.trn)中的描述;未被修改,例如,未被循环800和参数**反向刀具 Q498** = 0修改输入:**0**,**1**

Q531入射角?

仅当在参数Q330中已输入了车刀,才适用。输入加工期间车刀与工件间的入射角(倾斜角)(例如,循环800的角度,入射角?Q531)。

输入:-180...+180

举例


11 TCH PROBE 427 MEASURE COORDINATE ~		
Q263=+35	;1ST POINT 1ST AXIS ~	
Q264=+45	;1ST POINT 2ND AXIS ~	
Q261=+5	;MEASURING HEIGHT ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q272=+3	;MEASURING AXIS ~	
Q267=-1	;TRAVERSE DIRECTION ~	
Q260=+20	;CLEARANCE HEIGHT ~	
Q281=+1	;MEASURING LOG ~	
Q288=+5.1	;MAXIMUM LIMIT ~	
Q289=+4.95	;MINIMUM LIMIT ~	
Q309=+0	;PGM STOP TOLERANCE ~	
Q330=+0	;TOOL ~	
Q498=+0	;REVERSE TOOL ~	
Q531=+0	;ANGLE OF INCIDENCE	

6.12 循环430MEAS. BOLT HOLE CIRC

应用

探测循环**430**可探测三个孔,确定螺栓孔圆的圆心和直径。如果在循环中定义了相应公差值,数控系统比较名义值与实际值并将差值保存在Q参数中。

循环顺序

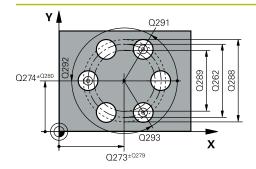
1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头定位在编程的第一孔1中心点处。

更多信息: "定位规则", 48 页

- 2 然后,测头移至输入的测量高度处并探测四个点,确定第一孔中心点。
- 3 测头返回第二安全高度,然后移至输入的第二孔2的圆心位置。
- 4 数控系统将测头移至所输入的测量高度处并探测四个点,确定第二孔中心点。
- 5 测头返回第二安全高度,然后移至输入的第三孔3的圆心位置。
- 6 数控系统将测头移至所输入的测量高度处并探测四个点,以确定第三孔中心点。
- 7 最后,数控系统将测头移回第二安全高度并将实际值和偏差值保存在以下Q参数中:

Q参数 编号	含义
Q151	沿参考轴中心的实际值
Q152	沿辅助轴中心的实际值
Q153	螺栓孔圆直径实际值
Q161	参考轴中心位置的偏差
Q162	辅助轴中心位置的偏差
Q163	螺栓孔圆直径的偏差

注意


- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 循环430只监测刀具破损,无自动补偿刀具功能。
- 数控系统将在循环起点处重置当前的基本旋转。

编程说明

■ 定义循环前,必须编程一个刀具调用,以定义探测轴。

6.12.1 循环参数

帮助图形

参数

Q273 中点的第一轴坐标 (名义值)?

加工面基本轴上的螺栓孔圆的圆心(名义值)。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q274 中点的第二轴坐标 (名义值)?

加工面辅助轴上的螺栓孔圆的圆心(名义值)。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q262 名义直径?

输入孔的直径。

输入: 0...99999.9999

Q291 第一个孔的极坐标角度?

加工面上第一孔中心的极坐标角度。 该值有绝对式效果。

输入:-360.000...+360.000

Q292 第二个孔的极坐标角度?

加工面上第二孔中心的极坐标角度。该值有绝对式效果。

输入:-360.000...+360.000

Q293 第三个孔的极坐标角度?

加工面上第三孔中心的极坐标角度。该值有绝对式效果。

输入:-360.000...+360.000

Q261 测量轴方向的测量高度?

球头中心的探测轴坐标,沿此探测轴进行测量。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰

撞。该值有绝对式效果。

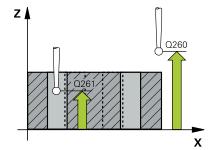
输入:-99999.9999...+99999.9999 或PREDEF

Q288 最大限定尺寸?

螺栓孔圆的最大允许直径

输入: 0...99999.9999

Q289 最小限定尺寸?


螺栓孔圆的最小允许直径

输入: 0...99999.9999

Q279 中点的第一轴坐标公差?

加工面基本轴上的允许位置偏差。

输入: 0...99999.9999

Q280 中点的第二轴坐标公差?

加工面辅助轴上的允许位置偏差。

输入: 0...99999.9999

Q281 测量日志 (0/1/2)?

定义数控系统是否创建测量日志:

0:不创建测量日志

1:创建测量日志:数控系统在含相应NC数控程序的文件夹中保存**日志文件,文件名为TCHPR430.TXT**

2:中断程序运行并在数控系统显示屏上显示测量日志。 用NC Start (NC启动)按键恢复NC数控程序运行。

输入:0,1,2

Q309 如果超差 PGM 停止?

定义超出公差极限时,数控系统是否中断程序运行和显示出错信息:

0:不中断程序运行;无出错信息 1:中断程序运行和生成出错信息

输入:0,1

Q330 监控刀具?

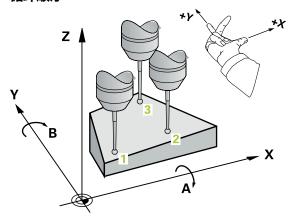
定义数控系统是否监测刀具 (参见 "刀具监测", 201 页):

0: 监测未激活

> 0:加工中使用的刀具名或刀具号。用操作栏选项直接使用刀具事的刀具

用刀具表的刀具。

输入: 0...99999.9 或者最多不超过255个字符


11 TCH PROBE 430 MEAS. BOLT HOLE CIRC ~		
Q273=+50	;CENTER IN 1ST AXIS ~	
Q274=+50	;CENTER IN 2ND AXIS ~	
Q262=+80	;NOMINAL DIAMETER ~	
Q291=+0	;ANGLE OF 1ST HOLE ~	
Q292=+90	;ANGLE OF 2ND HOLE ~	
Q293=+180	;ANGLE OF 3RD HOLE ~	
Q261=-5	;MEASURING HEIGHT ~	
Q260=+10	;CLEARANCE HEIGHT ~	
Q288=+80.1	;MAXIMUM LIMIT ~	
Q289=+79.9	;MINIMUM LIMIT ~	
Q279=+0.15	;TOLERANCE 1ST CENTER ~	
Q280=+0.15	;TOLERANCE 2ND CENTER ~	
Q281=+1	;MEASURING LOG ~	
Q309=+0	;PGM STOP TOLERANCE ~	
Q330=+0	;TOOL	

6.13 循环431MEASURE PLANE

应用

探测循环431测量三点确定一个平面的角度。将测量值保存在Q参数中。

循环顺序

1 根据定位规则,数控系统用快移速度(FMAX列中数据)将测头移到编程的触点1位置并测量平面上的第一点。数控系统将测头沿与探测方向相反的方向偏移安全高度的距离。

更多信息: "定位规则", 48 页

- 2 测头移回第二安全高度,然后在加工面上移至触点位置2并在该平面上测量第二触点的实际值。
- 3 测头移回第二安全高度,然后在加工面上移至触点位置3并在该平面上测量第三触点的实际值。
- 4 最后,数控系统将测头移回第二安全高度并将角度测量值保存在以下Q参数中:

Q参数 编号	含义
Q158	A轴投影角
Q159	B轴投影角
Q170	空间角A
Q171	空间角B
Q172	空间角C
Q173至Q175	

注意

注意

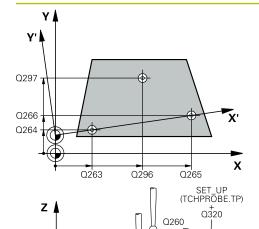
碰撞危险!

如果将角度值保存在预设表中,然后倾斜刀具编程的PLANE空间角,其中SPA=0; SPB=0; SPC=0, 有多个解可使倾斜轴位于0位置。

- ▶ 必须确保编程SYM(SEQ) + 或者SYM(SEQ) -
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 仅当三个测量点未在一条直线上,数控系统才计算角度值。
- 数控系统将在循环起点处重置当前的基本旋转。

编程说明

- 定义循环前,必须编程一个刀具调用,以定义探测轴。
- **倾斜工件平面**功能中需要的空间角保存在参数**Q170**至**Q172**中。倾斜加工面时,也可以用前两个测量点指定基本轴的方向。
- 第三个测量点确定刀具轴方向。将第三个测量点定义在正Y轴方向上,以确保顺时针坐标系统中的刀具轴位置正确。


6.13.1 循环参数

帮助图形

Q295

Q298

0294

参数

X

Q263 第一个测量点的第一轴坐标?

第一触点在加工面基本轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q264 第一个测量点的第二轴坐标?

第一触点在加工面辅助轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q294 第一个测量点的第三轴坐标?

探测轴上的第一触点坐标。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q265 第二个测量点的第一轴坐标?

第二触点在加工面基本轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q266 第二个测量点的第二轴坐标?

第二触点在加工面辅助轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q295 第二个测量点的第三轴坐标?

探测轴上的第二触点坐标。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q296 第三个测量点的第一轴坐标?

加工面基本轴上的第三触点坐标。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q297 第三个测量点的第二轴坐标?

加工面辅助轴上的第三触点坐标。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q298 第三个测量点的第三轴坐标?

探测轴上的第三触点坐标。该值有绝对式效果。

输入:-99999.9999...+99999.9999

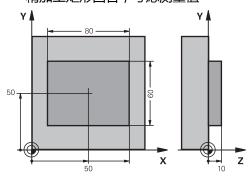
Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的

基础上的补充。 该值提供增量效果。 输入: 0...99999.9999 或PREDEF

249

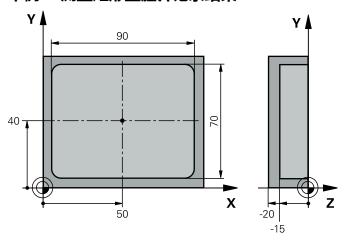
帮助图形	参数
	Q260 第二安全高度?
	刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰 撞。 该值有绝对式效果。
	输入:-99999.9999+99999.9999 或PREDEF
	Q281 测量日志 (0/1/2)?
	定义数控系统是否创建测量日志:
	0:不创建测量日志
	1:创建测量日志:数控系统在含相应NC数控程序的文件夹中保存 日志文件,文件名为TCHPR431.TXT
	2:中断程序运行并在数控系统显示屏上显示测量日志。 用 NC Start (NC启动)按键恢复NC数控程序运行。
	输入: 0 , 1 , 2


11 TCH PROBE 431 MEASURE PLANE ~		
Q263=+20	;1ST POINT 1ST AXIS ~	
Q264=+20	;1ST POINT 2ND AXIS ~	
Q294=-10	;1ST POINT 3RD AXIS ~	
Q265=+50	;2ND PNT IN 1ST AXIS ~	
Q266=+80	;2ND PNT IN 2ND AXIS ~	
Q295=+0	;2ND PNT IN 3RD AXIS ~	
Q296=+90	;3RD PNT IN 1ST AXIS ~	
Q297=+35	;3RD PNT IN 2ND AXIS ~	
Q298=+12	;3RD PNT IN 3RD AXIS ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q260=+5	;CLEARANCE HEIGHT ~	
Q281=+1	;MEASURING LOG	

6.14 编程举例

6.14.1 举例: 测量和修复加工矩形凸台

程序执行顺序


- 粗加工矩形凸台,精加工余量为0.5 mm
- 测量矩形凸台
- 精加工矩形凸台,考虑测量值

1 TOOL CALL 5 Z S6000	; 刀具调用: 粗加工
2 Q1 = 81	;X轴方向上的矩形长度(粗加工尺寸)
3 Q2 = 61	;Y轴方向上的矩形长度(粗加工尺寸)
4 L Z+100 R0 FMAX M3	; 退刀
5 CALL LBL 1	;调用加工的子程序
6 L Z+100 R0 FMAX	; 退刀
7 TOOL CALL 600 Z	;调用测头
8 TCH PROBE 424 MEAS. RECTAN. OUTS. ~	
Q273=+50 ;CENTER IN 1ST AXIS ~	
Q274=+50 ;CENTER IN 2ND AXIS ~	
Q282=+80 ;FIRST SIDE LENGTH ~	
Q283=+60 ;2ND SIDE LENGTH ~	
Q261=-5 ;MEASURING HEIGHT ~	
Q320=+0 ;SET-UP CLEARANCE ~	
Q260=+30 ;CLEARANCE HEIGHT ~	
Q301=+0 ;MOVE TO CLEARANCE ~	
Q284=+0 ;MAX. LIMIT 1ST SIDE ~	
Q285=+0 ;MIN. LIMIT 1ST SIDE ~	
Q286=+0 ;MAX. LIMIT 2ND SIDE ~	
Q287=+0 ;MIN. LIMIT 2ND SIDE ~	
Q279=+0 ;TOLERANCE 1ST CENTER ~	
Q280=+0 ;TOLERANCE 2ND CENTER ~	
Q281=+0 ;MEASURING LOG ~	
Q309=+0 ;PGM STOP TOLERANCE ~	
Q330=+0 ;TOOL	

9 Q1 = Q1 - Q164	4	;根据测量的偏差计算X轴的长度
10 Q2 = Q2 - Q165		;根据测量的偏差计算Y轴的长度
11 L Z+100 R0 FMAX		;退离测头
12 TOOL CALL 25 Z S8000		; 刀具调用:精加工
13 L Z+100 R0 FI	MAX M3	; 退刀, 程序结束
14 CALL LBL 1		;调用加工的子程序
15 L Z+100 R0 FMAX		
16 M30		
17 LBL 1		;矩形凸台加工循环子程序
18 CYCL DEF 256	RECTANGULAR STUD ~	
Q218=+Q1	;FIRST SIDE LENGTH ~	
Q424=+82	;WORKPC. BLANK SIDE 1 ~	
Q219=+Q2	;2ND SIDE LENGTH ~	
Q425=+62	;WORKPC. BLANK SIDE 2 ~	
Q220=+0	;RADIUS / CHAMFER ~	
Q368=+0.1	;ALLOWANCE FOR SIDE ~	
Q224=+0	;ANGLE OF ROTATION ~	
Q367=+0	;STUD POSITION ~	
Q207=+500	;FEED RATE MILLING ~	
Q351=+1	;CLIMB OR UP-CUT ~	
Q201=-10	;DEPTH ~	
Q202=+5	;PLUNGING DEPTH ~	
Q206=+3000	;FEED RATE FOR PLNGNG ~	
Q200=+2	;SET-UP CLEARANCE ~	
Q203=+10	;SURFACE COORDINATE ~	
Q204=+20	;2ND SET-UP CLEARANCE ~	
Q370=+1	;TOOL PATH OVERLAP ~	
Q437=+0	;APPROACH POSITION ~	
Q215=+0	;MACHINING OPERATION ~	
Q369=+0	;ALLOWANCE FOR FLOOR ~	
Q338=+20	;INFEED FOR FINISHING ~	
Q385=+500	;FINISHING FEED RATE	
19 L X+50 Y+50 R0 FMAX M99		;循环调用
20 LBL 0		; 子程序结束
21 END PGM TOU	JCHPROBE MM	

6.14.2 举例: 测量矩形型腔并记录结果

0 BEGIN PGM TOUCHPROBE_2 MM	
1 TOOL CALL 600 Z	; 刀具调用 ; 测头
2 L Z+100 R0 FMAX	; 退离测头
3 TCH PROBE 423 MEAS. RECTAN. INSIDE ~	
Q273=+50 ;CENTER IN 1ST AXIS ~	
Q274=+40 ;CENTER IN 2ND AXIS ~	
Q282=+90 ;FIRST SIDE LENGTH ~	
Q283=+70 ;2ND SIDE LENGTH ~	
Q261=-5 ;MEASURING HEIGHT ~	
Q320=+2 ;SET-UP CLEARANCE ~	
Q260=+20 ;CLEARANCE HEIGHT ~	
Q301=+0 ;MOVE TO CLEARANCE ~	
Q284=+90.15 ;MAX. LIMIT 1ST SIDE ~	
Q285=+89.95 ;MIN. LIMIT 1ST SIDE ~	
Q286=+70.1 ;MAX. LIMIT 2ND SIDE ~	
Q287=+69.9 ;MIN. LIMIT 2ND SIDE ~	
Q279=+0.15 ;TOLERANCE 1ST CENTER ~	
Q280=+0.1 ;TOLERANCE 2ND CENTER ~	
Q281=+1 ;MEASURING LOG ~	
Q309=+0 ;PGM STOP TOLERANCE ~	
Q330=+0 ;TOOL	
4 L Z+100 R0 FMAX	; 退刀,程序结束
5 M30	
6 END PGM TOUCHPROBE_2 MM	

探测循环:特殊功能

探测循环:特殊功能 | 基础知识

7.1 基础知识

7.1.1 概要

要使用测头,机床制造商必须对数控系统进行特别准备。海德汉只保证使用海德汉测头时探测循环正常工作。

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。

- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。

数控系统提供以下特殊用途的循环:

循环		调用	更多信息
3	MEASURING	DEF定义生效	257 页
	■ 定义OEM循环的探测循环		
4	MEASURING IN 3-D	DEF定义生效	259 页
	■ 测量任意位置		
444	PROBING IN 3-D	DEF定义生效	262 页
	■ 测量任意位置		
	■ 确定与名义坐标的偏差		
441	FAST PROBING	DEF定义生效	267 页
	■ 定义不同探测参数的探测循环		
1493	EXTRUSION PROBING	DEF定义生效	269 页

- 定义延伸的探测循环
- 可编程延伸方向、长度和延伸点数

7.2 循环3MEASURING

应用

探测循环3可测量工件在可选探测方向上的任何位置。与其它探测循环不同,循环3允许直接输入测量范围SET UP和进给速率F。确定测量值后,测头还推离可定义值MB。

循环顺序

- 1 测头用指定的进给速率沿定义的探测方向离开当前位置。在循环中,用极角定义探测方向。
- 2 数控系统保存位置后,探测停止。数控系统将测头触头中心的X轴、Y轴、Z轴坐标值保存在三个连续的Q参数中。数控系统不执行任何长度或半径补偿。定义循环中第一结果参数的编号。
- 3 最后,数控系统在探测方向的相反方向将测头退离**MB**参数中定义的距离值。

注意

探测循环3的实际特性由机床制造商或特定探测循环内使用该循环的软件开发商决定。

- 只能在**铣削模式功能**和**车削模式功能**加工模式下执行该循环。
- 在其它探测循环中有效的**DIST**(到触点的最大行程)和**F**(探测进给速率)探测数据不适用于探测循环**3**。
- 注意,数控系统总是始终写入四个连续Q参数。
- 如果数控系统无法确定有效触点,NC数控程序运行但无出错信息。这时,数控系统将-1值赋值给第四个结果参数,使用户可以自己处理错误。
- 数控系统将测头退离最大退离距离**MB**,但不超过测量的起点。因此可以保证退离期间没有碰撞。

可用系统功能**FN17**: **SYSWRITE ID 990 NR 6**设置循环操作使用X12或X13测头输入。

7.2.1 循环参数

帮助图形

参数

存储计算结果的参数号?

输入Q参数号,数控系统将第一个坐标测量值(X)赋值给该参数。Y轴和Z轴坐标轴值将写入其后相邻的Q参数中。

输入: 0...1999

测量坐标轴?

输入轴,测头沿该轴运动并用ENT按键确认。

输入:X、Y或Z

测量角度?

自定义的探测轴测量的角度,测头在沿此轴运动。用ENT确设

输入:-180...+180

最大测量范围?

输入测头自起点移动的最大距离。用ENT确认。

输入:-999999999...+999999999

测量时的进给率

输入测量进给速率(mm/min)。

输入: 0...3000

最大退出距离?

测针偏离自由位置后,沿探测方向的相反方向运动的路径。 数控系统将测头退至不超过起点的位置,确保无碰撞。

输入: 0...999999999

参考系? (0=启用/1=回参考)

定义探测方向和测量结果相对当前坐标系(ACT,可平移或可旋转)或相对机床坐标系(REF):

0:在当前坐标系下执行探测操作,并在**ACT**坐标系下保存测量结果

1:在REF机床坐标系下执行探测操作。在REF坐标系下保存测量结果。

输入:0,1

帮助图形参数

错误模式?(0=OFF/1=ON)

定义在循环开始时,如果测针偏离自由位置,数控系统是否输出出错信息。如果选择了模式1,数控系统将-1值保存在第4个结果参数中并继续执行循环:

0:輸出出错信息1:不輸出出错信息輸入:0,1

举例

11 TCH PROBE 3.0 MEASURING

12 TCH PROBE 3.1 Q1

13 TCH PROBE 3.2 X ANGLE:+15

14 TCH PROBE 3.3 ABST+10 F100 MB1 REFERENCE SYSTEM:0

15 TCH PROBE 3.4 ERRORMODE1

7.3 循环4MEASURING IN 3-D

应用

探测循环**4**沿矢量定义的探测方向测量工件上的任意一个位置。与其它测量循环不同,循环**4**允许直接输入探测距离和探测进给速率。还可定义距离,采集测量值后,测头退离该距离。

循环4是一个辅助循环,可用任何测头(TS或TT)进行探测。数控系统不提供在任何探测方向上校准TS测头的循环。

循环顺序

- 1 数控系统用输入的进给速率沿定义的探测方向将测头离开当前位置。用矢量定义循环中的探测方向(X,Y和Z轴方向的差值)。
- 2 数控系统保存位置后,数控系统停止探测运动。数控系统将探测位置的X轴、Y轴、Z轴坐标分别保存在三个连续的Q参数中。定义循环中第一参数的编号。如果是使用TS测头,探测结果用校准的中心偏移值修正。
- 3 最后,数控系统沿与探测方向相反的方向退离测头。在**MB**参数中定义运动距离,测头运动到该点,不超过起点。

在预定位期间,必须确保数控系统使测头触头中心无补偿地移到定义的位置。

注意

注意

碰撞危险!

如果数控系统无法确定有效触点,第四个结果参数值将为-1。数控系统**不**中断程序运行!

- ▶ 必须确保达到全部触点。
- 只能在**铣削模式功能**和**车削模式功能**加工模式下执行该循环。
- 数控系统将测头退离最大退离距离MB,但不超过测量的起点。因此可以保证退离期间没有碰撞。
- 注意,数控系统总是始终写入四个连续Q参数。

7.3.1 循环参数

帮助图形参数

存储计算结果的参数号?

输入Q参数号,数控系统将第一个坐标测量值(X)赋值给该参数。Y轴和Z轴坐标轴值将写入其后相邻的Q参数中。

输入: 0...1999

X 轴相对测量路径?

方向矢量的X轴分量决定测头的运动方向。 输入:-999999999...+999999999

Y 轴相对测量路径?

方向矢量的Y轴分量决定测头的运动方向。 输入:-999999999...+999999999

Z 轴相对测量路径?

方向矢量的Z轴分量决定测头的运动方向。 输入:-999999999...+999999999

最大测量范围?

输入自起点的最大距离,测头将沿该方向矢量运动该距离。

输入:-999999999...+999999999

测量时的进给率

输入测量进给速率(mm/min)。

输入: 0...3000

最大退出距离?

测针偏离自由位置后,沿探测方向的相反方向运动的路径。

输入: 0...999999999

参考系? (0=启用/1=回参考)

定义在输入坐标系统下(ACT)还是在机床坐标系统(REF)下保存测量结果:

0:在ACT坐标系下保存测量结果 1:在REF坐标系下保存测量结果

输入:0,1

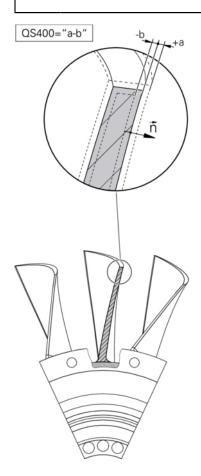
举例

11 TCH PROBE 4.0 MEASURING IN 3-D

12 TCH PROBE 4.1 Q1

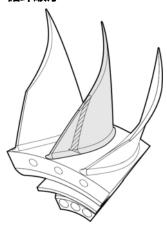
13 TCH PROBE 4.2 IX-0.5 IY-1 IZ-1

14 TCH PROBE 4.3 ABST+45 F100 MB50 REFERENCE SYSTEM:0


7.4 循环444PROBING IN 3-D

应用

参见机床手册!


这个功能必须由机床制造商实施和调试。

循环**444**可检查工件表面上一个特定点。例如用该循环测量模型零件的自由曲面。可确定工件表面上的点与名义坐标相比是尺寸不足或过大。然后,操作人员可以执行进一步的加工步骤,例如修复加工。

循环444探测空间中的任何一个点,并确定与名义坐标的偏差。为此,使用Q581、Q582和Q583参数中定义的法向矢量。法向矢量垂直于名义坐标的假想表面。法向矢量指向远离该表面的方向,且不确定探测路径。建议用CAD或CAM系统确定法向矢量。公差范围QS400定义沿法向矢量方向,实际坐标与名义坐标间允许的偏差。例如,如果发现尺寸不足,这样可以定义程序是否中断运行。而且,数控系统输出日志记录,并在以下Q参数中保存偏差。

循环顺序

- 1 从当前位置开始,测头沿法向矢量方向运动到一个点位置,该点与名义坐标间的 距离为:距离 = 球头半径 + tchprobe.tp探测表中的**SET_UP**数据(TNC:\table \tchprobe.tp) + **Q320**。预定位考虑第二安全高度。**更多信息:** "执行探测循 环", 48 页
- 2 然后,测头接近名义坐标。探测距离由DIST定义,不由法向矢量定义!法向矢量 只适用于正确计算坐标。
- 3 数控系统保存位置后,测头退离并停止。数控系统在Q参数中保存触点的坐标测量值。
- 4 最后,数控系统在探测方向的相反方向将测头退离MB参数中定义的距离值。

结果参数

该数控系统在以下参数中保存探测结果:

Q参数 编号	含义
Q151	基本轴上的被测位置
Q152	辅助轴的位置测量值
Q153	刀具坐标轴的位置测量值
Q161	基本轴上的偏差测量值
Q162	辅助轴的偏差测量值
Q163	刀具轴的偏差测量值
Q164	3-D偏差测量值 ■ 小于0: 尺寸不足 ■ 大于0: 尺寸过大
Q183	工件状态: ■ -1 = 未定义 ■ 0 = 合格 ■ 1 = 修复加工 ■ 2 = 报废

日志功能

探测完成时,数控系统立即生成HTML格式的日志。日志中含基本轴、辅助轴和刀具轴的测量结果和3-D偏差。数控系统将该日志保存在*.h文件所在的相同文件夹下(只要FN16未设置路径)。

日志中含有关基本轴、辅助轴和刀具轴的以下数据:

- 实际探测方向(输入坐标系的矢量)。 矢量值对应于设置的探测路径
- 定义的名义坐标
- 如果定义了公差**QS400**:输出上限和下限尺寸以及在法向矢量方向上确定的偏差
- 确定的实际坐标
- 彩色显示的值(绿色为"合格",橙色为"修复加工",红色为"报废")。

注意

- 只能在铣削模式功能的加工操作模式下执行该循环。
- 为使正在使用的测头达到准确的结果,执行循环**444**前,需要执行3-D校准。3-D校准需要软件选装项92,**3D-ToolComp**。
- 循环444生成HTML格式的测量日志。
- 如果循环8 MIRROR IMAGE、循环11 SCALING或循环26 AXIS-SPEC. SCALING在循环444运行前激活,将显示出错信息。
- 对于探测,将考虑激活TCPM。在TCPM已激活期间,即使**倾斜工件平面**功能的位置结果与旋转轴的当前位置不符,也可探测位置。
- 如果机床配受控主轴,需要在探测表中激活角度跟踪功能(TRACK(跟踪) 栏)。 通常这样能提高使用3-D测头的测量精度。
- 循环444可引用输入坐标系的全部坐标。
- 数控系统将测量值写入返回参数,参见"应用",262页。
- 要设置工件状态(合格/修复/废品),使用Q参数**Q183**,独立于参数**Q309**(参见"应用",262页)。

关于机床参数的说明

■ 根据可选机床参数**chkTiltingAxes**(204600号)的设置,数控系统在探测期间 检查旋转轴的位置与倾斜角(3-D旋转)的相符性。如果不符,数控系统显示出 错信息。

7.4.1 循环参数

帮助图形 参数

Q263 第一个测量点的第一轴坐标?

第一触点在加工面基本轴的坐标。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q264 第一个测量点的第二轴坐标?

第一触点在加工面辅助轴的坐标。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q294 第一个测量点的第三轴坐标?

探测轴上的第一触点坐标。该值有绝对式效果。

输入:-99999.9999...+99999.9999

Q581 参考轴的表面法向?

在这里输入基本轴的表面法向矢量。一个点的表面法向矢量通常由CAD/CAM系统输出。

输入:-10...+10

Q582 辅助轴的表面法向?

在这里输入辅助轴的表面法向矢量。一个点的表面法向矢量 通常由CAD/CAM系统输出。

输入:-10...+10

Q583 刀具轴的表面法向?

在这里输入刀具轴的表面法向矢量。一个点的表面法向矢量通常由CAD/CAM系统输出。

输入:-10...+10

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入:0...99999.9999 或PREDEF

Q260 第二安全高度?

刀具轴上的坐标,在此位置测头与工件(卡具)不发生碰撞。 该值有绝对式效果。

输入:-99999.9999...+99999.9999 或PREDEF

帮助图形 参数

QS400 公差值?

指定该循环监测的公差带。公差定义沿表面法向上允许的偏差。这个偏差由工件的名义坐标与实际坐标之差确定。(表面法向由Q581至Q583定义,名义坐标由Q263、Q264和Q294定义。)根据法向矢量,公差值在整个轴上分布(参见举例)。

举例

- **QS400 = "0.4-0.1"** 表示:上限尺寸 = 名义坐标 +0.4;下限尺寸 = 名义坐标-0.1。因此,可得到该循环 的以下公差带: "名义坐标+0.4"至"名义坐标-0.1"
- **QS400 = "0.4"** 表示:上限尺寸 = 名义坐标+0.4; 下限尺寸 = 名义坐标。因此,循环的以下公差带结 果: "名义坐标 +0.4"至"名义坐标"。
- **QS400 = "-0.1"** 表示:上限尺寸 = 名义坐标;下限尺寸 = 名义坐标-0.1。因此,循环的以下公差带结果: "名义坐标"至"名义坐标-0.1"。
- QS400 = "" 表示:无公差带。
- QS400 = "0" 表示:无公差带。
- QS400 = "0.1+0.1" 表示:无公差带。

输入:最多不超过255个字符

Q309 响应公差错误?

定义超出公差极限时,数控系统是否中断程序运行和显示出错信息:

- 0:超出公差时不中断程序运行;不输出出错信息
- 1:超出公差时中断程序运行和输出出错信息
- 2:如果沿表面法向矢量的实际坐标测量值小于名义坐标值,数控系统显示出错信息并中断数控程序运行。然而,如果实际坐标测量值大于名义坐标值,不显示出错信息。

输入:0,1,2

举例

11 TCH PROBE 444 PROBING IN 3-D ~	
Q263=+0	;1ST POINT 1ST AXIS ~
Q264=+0	;1ST POINT 2ND AXIS ~
Q294=+0	;1ST POINT 3RD AXIS ~
Q581=+1	;NORMAL IN REF. AXIS ~
Q582=+0	;NORMAL IN MINOR AXIS ~
Q583=+0	;NORMAL IN TOOL AXIS ~
Q320=+0	;安全距离 ~
Q260=+100	;CLEARANCE HEIGHT ~
QS400="1-1"	;TOLERANCE ~
Q309=+0	;ERROR REACTION

7.5 循环441FAST PROBING

应用

可用探测循环**441**为后续使用的全部探测循环全局地指定不同的探测参数(例如定位进给速率)。

循环441可设置探测循环的参数。在该循环中,不进行任何机床运动。

注意

- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- END PGM、M2、M30重置循环441的全局设置。
- 循环参数**Q399**取决于机床配置。机床制造商负责设置NC数控程序中是否需要定向测头。
- 即使机床分别提供快移速度和进给速率倍率调节旋钮,也能只用进给速度调节旋钮控制进给速率,包括**Q397**=1时。

关于机床参数的说明

■ 机床制造商用机床参数maxTouchFeed(122602号)可限制进给速率。在该机床参数中定义最大的绝对进给速率。

7.5.1 循环参数

帮助图形	参数
11241611	2**

Q396 定位进给速率?

定义测头运动到指定位置处的进给速率。

输入: 0...99999.999

Q397 用机床快移速度进行预定位?

定义测头预定位时,数控系统是否用FMAX进给速率(机床的快移速度)运动:

0:用Q396的进给速率预定位

1:用机床的快移速度FMAX预定位

输入:0,1

Q399 跟踪角 (0/1)?

定义每次探测操作前,数控系统是否定向测头:

0:不定向主轴

1:每次探测操作前定向主轴(高精度)?

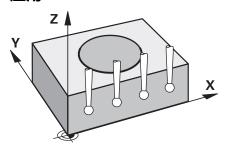
输入:0,1

Q400 自动中断?

定义在工件自动测量的探测循环后,数控系统是否中断程序 运行并在显示屏上输出测量结果:

0:不中断程序运行,即使在特定探测循环中,选择了在显示屏上输出测量结果

1:中断程序运行并在显示屏上输出测量结果。然后,用NC Start(NC启动)恢复NC数控程序运行。


输入:0,1

举例

11 TCH PROBE 441 FAST PROBING ~	
Q396=+3000	;POSITIONING FEEDRATE ~
Q397=+0	;SELECT FEED RATE ~
Q399=+1	;ANGLE TRACKING ~
Q400=+1	;INTERRUPTION

7.6 循环1493EXTRUSION PROBING

应用

循环**1493**可沿直线重复特定探测循环的探测点。在该循环中定义延伸方向和延伸点数量。

重复操作是指多次操作,例如在不同高度处的多次测量,并可根据刀具的偏离程度确定偏差。在探测期间,也可用延伸功能提高精度。用多个测量点可确定工件或粗加工面上的污物。

要激活特定探测点的重复,需要在探测循环前定义循环**1493**。根据定义,该循环仅对下个循环或整个NC数控程序保持激活。数控系统将延伸功能的坐标系视为输入坐标系**I-CS**。

以下循环可执行延伸功能:

- PROBING IN PLANE (循环1420,选装项17)。 参见 64 页
- PROBING ON EDGE (循环1410)。参见 70 页
- PROBING TWO CIRCLES (循环1411)。参见 77 页
- INCLINED EDGE PROBING (循环1412)。 参见 85 页
- POSITION PROBING (循环1400)。参见 117 页
- CIRCLE PROBING (循环1401)。 参见 121 页

结果参数

数控系统在以下Q参数中保存探测循环的结果:

Q参数 编号	含义
Q970	与触点1理想线的最大偏差
Q971	与触点2理想线的最大偏差
Q972	与触点3理想线的最大偏差
Q973	直径1的最大偏差
Q974	直径2的最大偏差

QS参数

除将探测结果保存在返回参数Q97x之外,数控系统将各个探测结果保存在QS参数QS97x中。数控系统在相应QS参数中保存一条延伸线上的全部测量点。每个测量结果为十个字符长,各测量结果之间用空格相互分隔。因此,数控系统易于在NC数控程序中用字符串处理功能转换各个测量值并将其用于特殊的自动化数据处理操作。

QS参数中的测量结果:

QS970 = "0.12345678 -1.1234567 -2.1234567 -3.12345678"

更多信息:编程和测试用户手册

日志功能

探测完成时,数控系统立即生成HTML格式的日志文件。日志文件含图形格式和表格式的3-D偏差结果。数控系统将日志文件保存在与NC数控程序相同的文件夹下。根据选定的循环,日志文件含基本轴、辅助轴和刀具轴的以下数据(例如,圆心点和直径):

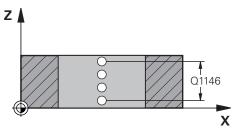
- 实际探测方向(输入坐标系的矢量)。矢量值对应于设置的探测路径
- 定义的名义坐标
- 上限和下限尺寸及在法向矢量方向上确定的偏差
- 测量的实际坐标
- 数据的颜色编码:

绿色:合格橙色:修复红色:废品

■ 延伸点

延伸点:

水平轴代表延伸方向。蓝色点是各个测量点。红色线代表尺寸的下限和上限。如果数据超出指定的公差范围,数控系统将在图形中显示红色区


注意

- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 如果Q1145 > 0且Q1146 = 0,数控系统在相同位置使用延伸点的数量。
- 如果用循环1401 CIRCLE PROBING或1411 PROBING TWO CIRCLES执行延伸,延伸方向必须为Q1140 = +3:否则,数控系统将输出出错信息。

7.6.1 循环参数

帮助图形

Q1140= Y 2 X

参数

Q1140 伸出方向(1-3)?

1:在基本轴方向上延伸

2:在辅助轴方向上延伸

3:在刀具轴方向上延伸

输入:1,2,3

Q1145 伸出点数?

在延伸全长Q1146上循环重复使用的测量点数量。

输入:1...99

Q1146 伸出长度?

测量点进行重复的长度。

输入:-99...+99

Q1149 伸出:模态持续时间?

循环的有效范围:

0:延伸功能仅对下一个循环有效。

1:延伸功能保持有效直到NC数控程序结束。

输入:-99...+99

举例

11 TCH PROBE 1493 EXTRUSION PROBING ~		
Q1140=+3	;EXTRUSION DIRECTION ~	
Q1145=+1	;EXTRUSION POINTS ~	
Q1146=+0	;EXTRUSION LENGTH ~	
Q1149=+0	;EXTRUSION MODAL	

8

探测循环:校准

8.1 基础知识

8.1.1 概要

要使用测头,机床制造商必须对数控系统进行特别准备。 海德汉只保证使用海德汉测头时探测循环正常工作。

为精确指定3-D测头的实际触发点,必须校准测头;否则数控系统无法提供精确的测量结果。

以下情况时必须校准测头:

- 初始配置
- 测针故障
- 测针更换
- 改变探测进给速率
- 不稳定,例如机床预热时
- 当前刀具轴的改变

校准完成后,数控系统立即用当前探测系统的校准值。更新的刀具数据立即生效。不需要重复刀具调用指令。

校准期间,数控系统确定测针的有效长度和触头的有效半径。要校准3D测头,将一个已知高度和已知半径的环规或量杆夹持在机床工作台上。

数控系统提供校准长度和半径的校准循环:

循环		调用	更多信息
461	TS CALIBRATION OF TOOL LENGTH ■ 校准长度	DEF定义生效	276 页
462	CALIBRATION OF A TS IN A RING ■ 用环规测量半径 ■ 用环规测量中心偏移	DEF定义生效	278 页
463	TS CALIBRATION ON STUD 使用量杆或校准杆测量半径 用量杆或校准杆测量中心偏移	DEF定义生效	280 页
460	CALIBRATION OF TS ON A SPHERE	DEF定义生效	282 页

- 用校准球测量半径
- 使用校准球测量中心偏移

探测循环:校准 | 基础知识

8.1.2 校准触发式测头

为精确指定3D测头的实际触发点,必须校准测头;否则数控系统无法提供精确的测量结果。

以下情况时必须校准测头:

- 初始配置
- 测针故障
- 测针更换
- 改变探测进给速率
- 不稳定,例如机床预热时
- 当前刀具轴的改变

校准期间,数控系统确定测针的有效长度和球头的有效半径。要校准3D测头,将一个已知高度和已知半径的环规或量杆夹持在机床工作台上。

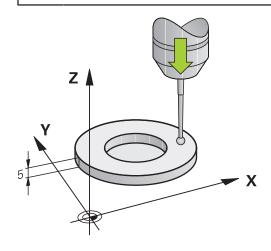
数控系统提供的校准循环可校准长度和半径。

- 校准操作后,数控系统立即将校准值应用于当前探测系统。更新的刀具数据立即生效。不需要重复刀具调用指令。
- 必须确保刀具表中的测头号与探测表的测头号号相同。

更多信息:设置和程序运行用户手册

8.1.3 显示校准值

数控系统在刀具表中保存测头有效长度和有效半径。数控系统将测头中心的偏心值保存在探测表的CAL_OF1列(基本轴)和CAL_OF2列(辅助轴)中。


校准期间自动创建测量日志。日志文件名为TCHPRAUTO.html。该文件保存在与原文件相同的目录下。测量日志可用数控系统的浏览器显示。如果NC数控程序使用一个以上循环校准测头,TCHPRAUTO.html将含全部测量日志。

8.2 循环461TS CALIBRATION OF TOOL LENGTH

应用

参见机床手册!

开始校准循环前,必须将预设点设置在主轴坐标轴上,使机床工作台的Z=0;也必须将测头预定位在环规的上方。

校准期间自动创建测量日志。日志文件名为TCHPRAUTO.html。该文件保存在与原文件相同的目录下。测量日志可用数控系统的浏览器显示。如果NC数控程序使用一个以上循环校准测头,TCHPRAUTO.html将含全部测量日志。

循环顺序

- 1 数控系统将测头定向到探测表CAL_ANG指定的角度位置(仅当定向测头时)。
- 2 数控系统由当前位置沿负主轴坐标轴方向并用探测进给速率(探测表的F列)进行探测。
- 3 然后,数控系统用快移速度(探测表FMAX列的数据)退到起点位置。

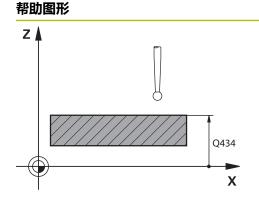
注意

海德汉只保证使用海德汉测头时,探测循环正常工作。

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。


- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。
- 只能在**铣削模式功能**和**车削模式功能**加工模式下执行该循环。
- 测头有效长度总是相对刀具参考点。刀具参考点通常在主轴鼻端,主轴的端面位置。机床制造商也可能将刀具参考点定义在不同的位置处。
- 校准期间自动创建测量日志。 日志文件名为TCHPRAUTO.html。

编程说明

■ 定义循环前,必须编程一个刀具调用,定义探测轴。

8.2.1 循环参数

循环参数

参数

Q434 长度的原点?

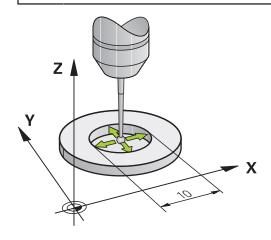
长度的预设点(例如,环规的高度)。该值有绝对式效果。

输入:-99999.9999...+99999.9999

举例

11 TCH PROBE 461 TS CALIBRATION OF TOOL LENGTH \sim

Q434 = +5


;PRESET

8.3 循环462CALIBRATION OF A TS IN A RING

应用

参见机床手册!

开始校准循环前,需要将测头预定位在环规的圆心和要求的测量高度位置。 校准球头半径时,数控系统执行自动探测程序。第一次运行时,数控系统查找环规或校准杆的中点(近似测量)并将测头定位中心位置。然后,开始实际校准操作 (精确测量),确定球头半径。如果探测允许反向测量,在另一次中确定中心偏移。

校准期间自动创建测量日志。日志文件名为TCHPRAUTO.html。该文件保存在与原文件相同的目录下。测量日志可用数控系统的浏览器显示。如果NC数控程序使用一个以上循环校准测头,TCHPRAUTO.html将含全部测量日志。

测头方向决定校准程序:

- 无法定向,或只能在一个方向上:数控系统执行一次近似测量和一次精确测量, 然后确定有效球头半径(tool.t的R列)。
- 可双方向定向(例如用海德汉电缆测头):数控系统执行一次近似测量和一次精确测量,转动测头180°,然后再执行四次探测程序。反向测量不仅确定半径,还确定中心偏移(探测表的CAL_OF)。
- 任何方向都可能(例如海德汉红外线测头):探测操作:参见"可双方向定向")。

注意

为能确定球头中心偏移量,数控系统需要机床制造商进行特别准备。 海德汉测头已预定义了测头是否可定向以及如何定向的工作特性。对其它 测头,由机床制造商设置。

海德汉只保证使用海德汉测头时,探测循环正常工作。

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。

- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。
- 只能在**铣削模式功能**和**车削模式功能**加工模式下执行该循环。
- 偏心量只能由适当测头确定。
- 校准期间自动创建测量日志。 日志文件名为TCHPRAUTO.html。

编程说明

■ 定义循环前,必须编程一个刀具调用,定义探测轴。

8.3.1 循环参数

帮助图形

SET_UP(TCHPROBE.TP) Q320 X

参数

Q407 环规半径?

输入环规半径。

输入: 0.0001...99.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q423 探测次数?

直径上测量点数。该值有绝对式效果。

输入: 3...8

Q380 参考角度? (0=参考轴)

加工面基本轴与第一触点间的角度。该值有绝对式效果。

输入: 0...360

举例

11 TCH PROBE 462 CALIBRATION OF A TS IN A RING ~	
Q407=+5	;RING RADIUS ~
Q320=+0	;SET-UP CLEARANCE ~
Q423=+8	;NO. OF PROBE POINTS ~
Q380=+0	;REFERENCE ANGLE

8.4 循环463TS CALIBRATION ON STUD

应用

参见机床手册!

开始校准循环前,需要将测头预定位在量杆中心的上方位置。将测头定位在量杆上方大约安全高度(探测表中值+循环中值)的位置。

校准球头半径时,数控系统执行自动探测程序。第一次执行时,数控系统查找环规或量杆的中点(近似测量)并将测头定位中心位置。然后,在实际校准操作(精确测量)中,确定球形触头半径。如果探测允许反向测量,在另一次中确定中心偏移

校准期间自动创建测量日志。日志文件名为TCHPRAUTO.html。该文件保存在与原文件相同的目录下。测量日志可用数控系统的浏览器显示。如果NC数控程序使用一个以上循环校准测头,TCHPRAUTO.html将含全部测量日志。

测头方向决定校准程序:

- 无法定向,或只能在一个方向上:数控系统执行一次近似测量和一次精确测量,然后确定有效球头半径(tool.t的**R**列)。
- 可双方向定向(例如用海德汉电缆测头):数控系统执行一次近似测量和一次精确测量,转动测头180°,然后再执行四次探测程序。现在,反向测量不仅确定半径,还确定中心偏移(探测表的CAL_OF)。
- 任何方向都可能(例如海德汉红外线测头):探测操作:参见"可双方向定向"

注意:

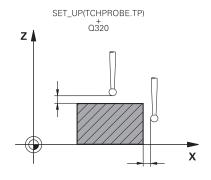
为能确定球头中心偏移量,数控系统需要机床制造商进行特别准备。海德汉测头已预定义了测头是否可定向以及如何定向的工作特性。对其它测头,由机床制造商设置。

海德汉只保证使用海德汉测头时,探测循环正常工作。

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。


- ▶ 在探测循环前,不允许激活以下循环:循环7 DATUM SHIFT、循环8 MIRROR IMAGE、循环10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。
- 只能在**铣削模式功能**和**车削模式功能**加工模式下执行该循环。
- 偏心量只能由适当测头确定。
- 校准期间自动创建测量日志。 日志文件名为TCHPRAUTO.html。

编程说明

■ 定义循环前,必须编程一个刀具调用,定义探测轴。

8.4.1 循环参数

帮助图形

参数

Q407 塞规半径?

环规的直径

输入: 0.0001...99.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动

1:在测量点之间,在第二安全高度处运动

输入:0,1

Q423 探测次数?

直径上测量点数。该值有绝对式效果。

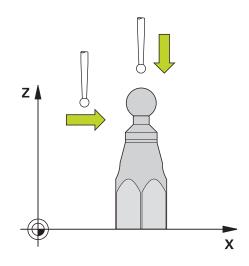
输入:3...8

Q380 参考角度? (0=参考轴)

加工面基本轴与第一触点间的角度。该值有绝对式效果。

输入: 0...360

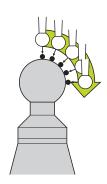
举例


11 TCH PROBE 463 TS CALIBRATION ON STUD ~		
Q407=+5	;STUD RADIUS ~	
Q320=+0	;SET-UP CLEARANCE ~	
Q301=+1	;MOVE TO CLEARANCE ~	
Q423=+8	;NO. OF PROBE POINTS ~	
Q380=+0	;REFERENCE ANGLE	

8.5 循环460CALIBRATION OF TS ON A SPHERE (选装项 17)

应用

参见机床手册!



开始校准循环前,需要将测头预定位在校准球球心的上方位置。将测头定位在校准球上方大约安全高度(探测表中值+循环中值)的位置。

用循环460和准确的校准球自动校准触发式3-D测头。

也可以采集3-D校准数据。为此,需要软件选装项92,3D-ToolComp。3-D校准数据能描述任意探测方向上测头的弯曲情况。3-D校准数据保存在TNC:\system\3D-ToolComp*目录下。刀具表的**DR2TABLE**列是指3DTC表。然后,探测时,考虑3-D校准数据。如果需要循环**444**(3#D探测)达到极高精度,需要3#D校准(参见"循环444PROBING IN 3-D", 262页)。

循环顺序

参数Q433的设置决定执行半径和长度校准,还是只执行半径校准。

半径校准Q433=0

- 1 夹紧基准球。确保无碰撞
- 2 沿探测轴,将测头定位在基准球上方和在加工面上,大致球心的上方位置。
- 3 根据参考角(Q380),首先在平面中运动
- 4 然后,数控系统沿探测轴定位测头。
- 5 探测操作开始,数控系统开始搜索校准球的最大直径水平面。
- 6 确定球体最大直径水平面后,开始校准半径
- 7 最后,数控系统沿探测轴将测头返回到预定位的高度位置。

半径和长度校准Q433=1

- 1 夹紧基准球。确保无碰撞
- 2 沿探测轴,将测头定位在基准球上方和在加工面上,大致球心的上方位置。
- 3 根据参考角(**Q380**),首先在平面中运动
- 4 然后,数控系统沿探测轴定位测头。
- 5 探测操作开始,数控系统开始搜索校准球的最大直径水平面。
- 6 确定球体最大直径水平面后,开始校准半径
- 7 然后,数控系统沿探测轴将测头返回到预定位的高度位置
- 8 数控系统在校准球的顶点位置确定测头长度
- 9 循环结束时,数控系统沿探测轴将测头返回到预定位的高度位置
- 参数**Q455**的设置决定是否另外执行3-D校准

3-D校准Q455= 1...30

- 1 夹紧基准球。确保无碰撞
- 2 半径和长度校准后,数控系统沿探测轴退离测头。然后,数控系统将测头定位在顶点上方
- 3 探测中,用多步从顶点到球体最大直径水平面。与名义值的偏差,因此能确定特定等曲特性
- 4 可以指定顶点与球体最大直径水平面之间的探测点数。该数字取决于输入参数**Q455**。可编程值为1至30。如果编程**Q455**=0,将不执行3-D校准
- 5 校准期间,确定的偏差保存在3DTC表中
- 6 循环结束时,数控系统沿探测轴将测头返回到预定位的高度位置

为校准长度,必须知道校准球的球心(**Q434**)相对当前原点的位置。否则,海德汉建议避免使用循环**460**校准长度!

用循环460校准长度的应用之一是比较两个测头

注意

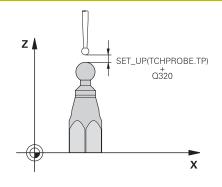
海德汉只保证使用海德汉测头时,探测循环正常工作。

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。

- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。
- 只能在**铣削模式功能**和**车削模式功能**加工模式下执行该循环。
- 校准期间自动创建测量日志。日志文件名为TCHPRAUTO.html。该文件保存在与原文件相同的目录下。测量日志可用数控系统的浏览器显示。如果NC数控程序使用一个以上循环校准测头,TCHPRAUTO.html将含全部测量日志。
- 测头有效长度总是相对刀具参考点。刀具参考点通常位于主轴鼻处(和主轴端面处)。机床制造商也可能将刀具参考点定义在不同的位置处。
- 预定位测头,使其大致在基准球中心的上方位置。
- 根据预定位的精度,确定校准球最大直径水平面将需要不同数量的触点。
- 如果编程**Q455**=0,数控系统不执行3-D校准。
- 如果编程**Q455**=1至30,数控系统进行测头的3-D校准。因此,可以确定不同角度下弯曲特性的偏差。如果用循环**444**,应首先执行3-D校准。
- 如果编程**Q455**=1至30,将在TNC:\system\3D-ToolComp*目录下保存表。
- 如果已引用了校准表(DR2TABLE项),该表将被改写。
- 如果未引用校准表(DR2TABLE项),那么根据刀具号,将创建引用和相应的表。


编程说明

■ 循环定义前,必须编程刀具调用功能,定义探测轴。

8.5.1 循环参数

循环参数

帮助图形

参数

Q407 准确校准球半径?

输入使用的校准球的准确半径。

输入: 0.0001...99.9999

Q320 安全高度?

触点与球头间的附加距离。Q320累加至SET_UP(探测表),且只适用于沿探测轴探测预设点时。 该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q301 移动到接近高度 (0/1)?

指定测头在测量点间如何运动:

0:在测量点之间,在测量高度处运动 1:在测量点之间,在第二安全高度处运动

输入:0,1

Q423 探测次数?

直径上测量点数。该值有绝对式效果。

输入:3...8

Q380 参考角度? (0=参考轴)

输入参考角(基本旋转),用于在当前工件坐标系下采集测量点。定义参考角可以大幅放大轴的测量范围。 该值有绝对式效果。

输入: 0...360

Q433 校准长度(0/1)?

定义在半径校准后数控系统是否校准测头长度:

0:不校准测头长度 1:校准测头长度 输入:0,1

Q434 长度的原点?

校准球球心的坐标。仅当执行长度校准时才需要该值。 该值有绝对式效果。

输入:-99999.9999...+99999.9999

帮助图形	参数
	Q455 3-D校准点数?
	输入3D校准的触点数量。大约15个触点较合适。如果输入0,数控系统不执行3D校准。3D校准期间,确定不同角度下的测头弯曲特性,并将测量值保存在表中。3D校准需要3D-ToolComp。
	输入: 030

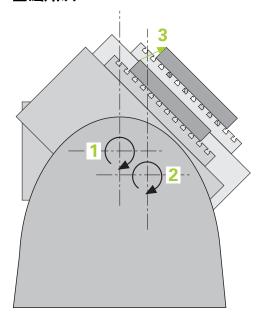
举例

11 TCH PROBE 460 TS CALIBRATION OF TS ON A SPHERE ~			
Q407=+12.5	;SPHERE RADIUS ~		
Q320=+0	;SET-UP CLEARANCE ~		
Q301=+1	;MOVE TO CLEARANCE ~		
Q423=+4	;NO. OF PROBE POINTS ~		
Q380=+0	;REFERENCE ANGLE ~		
Q433=+0	;CALIBRATE LENGTH ~		
Q434=-2.5	;PRESET ~		
Q455=+15	;NO. POINTS 3-D CAL.		

探测循环:运动特性 自动测量

9.1 基础知识(选装项48)

9.1.1 概要


要使用测头,机床制造商必须对数控系统进行特别准备。海德汉只保证使用海德汉测头时探测循环正常工作。

数控系统提供以下循环,可自动保存、还原、检查和优化机床运动特性:

循环		调用	更多信息
450	SAVE KINEMATICS (选装项48) ■ 保存当前机床运动特性配置 ■ 还原原保存的运动特性配置	DEF定义生效	291 页
451	MEASURE KINEMATICS (选装项48) ■ 自动检查机床运动特性配置 ■ 优化机床运动特性配置	DEF定义生效	294 页
452	PRESET COMPENSATION (选装项48) ■ 自动检查机床运动特性配置 ■ 优化机床运动特性变换链	DEF定义生效	306 页
453	KINEMATICS GRID(选装项48,选装项52) ■ 根据机床运动特性配置的旋转轴位置自动检	DEF定义生效	317 页

- 根据机床运动特性配置的旋转轴位置自动检查
- 优化机床运动特性配置

9.1.2 基础知识

精度要求越来越严格,特别是5轴加工领域。即使加工时间较长,加工复杂工件时也必须达到高精度和高重复精度。

多轴加工中,部分精度不理想的原因是数控系统内保存的运动特性模型(参见图中1)与机床的实际运动特性状况(参见图中2)不同。定位旋转轴时,这些偏差造成工件精度不足(参见图中3)。因此,运动特性模型需要尽可能接近真实情况。

该数控系统的KinematicsOpt功能是实际满足这些复杂要求的重要组件:3-D测头探测循环在机床上全自动地测量旋转轴,旋转轴可以是工作台的也可以是主轴头的旋转轴。为此,将校准球固定在机床工作台上的任何位置处和用用户定义的分辨率进行测量。循环定义期间,只需定义每一个旋转轴需测量的部位。

该数控系统用这些测量值计算静态倾斜精度。本软件将倾斜运动导致的定位误差最小化,测量过程结束时,自动将机床几何数据保存在机床运动特性表的相应常数中。

9.1.3 要求

参见机床手册!

必须激活高级功能包1(选装项8)。

必须激活选装项48。

要使用这个循环,必须由机床制造商对机床和数控系统进行专门设置。

使用KinematicsOpt的要求:

机床制造商必须在配置数据中定义了**CfgKinematicsOpt** (204800号)机床参数。

- maxModification (204801号) 定义公差极限,如果运动特性数据的变化超出该范围,数控系统将显示文字信息。
- maxDevCalBall (204802号)用于定义校准球的半径测量值与循环参数中输入值间的偏差情况
- mStrobeRotAxPos (204803号)定义M功能,机床制造商特别配置 此功能并用于其定位旋转轴
- 必须校准测量所用的3D测头
- 只有刀具轴为Z轴才能执行此循环。
- 校准球的半径必须准确确定,且必须具有足够高的刚性,可将其固定在机床工作台的适当位置处
- 机床运动特性的描述必须完整和正确,输入的变换尺寸精度必须精确到大约1 mm
- 必须测量了完整机床几何(机床制造商在调试期间测量)。

海德汉推荐使用校准球KKH 250 (订购号:655475-01)或KKH 80 (订购号:655475-03),这些校准球刚性高,特别适用于机床校准。如有任何疑问,请联系海德汉公司。

9.1.4 注意

海德汉只保证使用海德汉测头时,探测循环正常工作。

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。

- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- 首先重置任何坐标变换。

注意

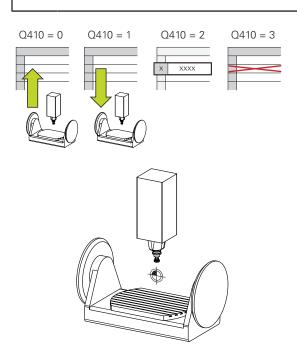
碰撞危险!

运动特性的变化必然也使预设点变化。基本旋转将被自动重置为0。有碰撞危险!

▶ 优化后,重置预设点

关于机床参数的说明

- 机床制造商用机床参数mStrobeRotAxPos(204803号)定义旋转轴的位置。如果机床参数中定义了M功能,开始执行KinematicsOpt循环之一(不含450)前,必须将旋转轴定位在0°位置("实际(ACTUAL)"坐标系)。
- 如果KinematicsOpt循环将机床参数修改,数控系统必须重新启动。否则,部分情况下可能造成所作修改的丢失。


9.2 循环450SAVE KINEMATICS (选装项48)

应用

参见机床手册!

这个功能必须由机床制造商实施和调试。

探测循环450可保存当前机床运动特性配置或还原原保存的运动特性配置。显示和删除保存的数据共有16个存储空间。

注意

只能用循环**450**保存和还原数据,同时无任何刀座运动特性配置中含变换。

- 只能在**铣削模式功能**和**车削模式功能**加工模式下执行该循环。
- 必须在执行运动特性优化前保存当前运动特性模型。

优点:

- 如果对结果不满意或如果优化期间出错(例如电源失效),可以恢复原有数据。
- 对于**还原**模式,注意:
 - 数控系统只还原与运动特性配置相符的已保存数据
 - 运动特性的变化必然也使预设点变化。因此,根据需要重新定义预设点。
- 该循环不还原相同的数据。仅还原与当前值不同的数据。只有已保存补偿值,才能将其还原。

有关数据管理的说明

数控系统将已保存的数据保存在TNC:\table\DATA450.KD文件中。可将该文件备份到外部计算机中,例如用TNCremo。如果删除该文件,也将删除保存的数据。如果手动修改文件中的数据,数据记录可能损坏,造成其数据不可用。

使用注意事项:

- 如果文件TNC:\table\DATA450.KD不存在,运行循环450时,自动生成该文件。
- 开始循环450前,必须确保删除TNC:\table\DATA450.KD文件名的任何空文件。如果有空存储表(TNC:\table\DATA450.KD)无任何表行,运行循环450时将显示出错信息。如为该情况,删除空存储表并再次调用循环。
- 严禁手动修改保存的数据。
- 备份TNC:\table\DATA450.KD文件,以便在需要时还原该文件(例如数据介质损坏时)。

9.2.1 循环参数

帮助图形参数

Q410 模式 (0/1/2/3)?

定义运动特性模型进行保存还是还原:

0:保存当前运动特性1:还原保存的运动特性2:显示当前存储状态

3:删除数据记录 输入:0,1,2,3

Q409/QS409 Name of data record?

数据记录标识符的名称或编号。 如果选择模式2,**Q409**无作用。在模式1和模式3中可用通配符进行搜索(还原和删除)。如果因使用通配符,数控系统找到了多个可能的数据记录,数控系统还原数据的平均值(模式1)或在确认后删除全部选定的数据记录(模式3)。搜索时可用以下通配符:

?: 一个未定义的字符

\$:一个字母字符(字母)

#:一个未定义的数字

*:未定义的任何长度的字符串

输入:**0...99999** 或者最多不超过**255**个字符。共提供16个可用的存储位置。

保存当前运动特性

11 TCH PROBE 450 SAVE KINEMATICS ~

Q410=+0 ;MODE ~

Q409=+947 ;MEMORY DESIGNATION

还原数据记录

11 TCH PROBE 450 SAVE KINEMATICS ~

Q410=+1 ;MODE ~

Q409=+948 ;MEMORY DESIGNATION

显示全部保存的数据记录

11 TCH PROBE 450 SAVE KINEMATICS ~

Q410=+2 ;MODE ~

Q409=+949 ;MEMORY DESIGNATION

删除数据记录

11 TCH PROBE 450 SAVE KINEMATICS ~

Q410=+3 ;MODE ~

Q409=+950 ;MEMORY DESIGNATION

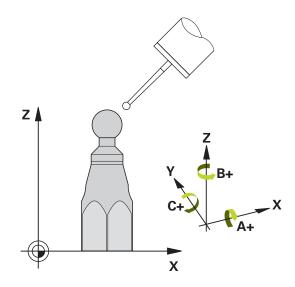
9.2.2 日志功能

运行循环450后,数控系统创建日志文件(tchpr450.txt),其中含以下信息:

- 日志创建日期和时间
- 循环运行的NC程序名
- 当前运动特性标识
- 当前刀具

与所选模式有关的日志文件中的其它数据:

- 模式0:记录该数控系统已保存的全部轴数据和运动特性链的变换信息。
- 模式1: 记录恢复运动特性前和恢复后的全部变换信息
- 模式2:已保存的数据记录列表模式3:已删除的数据记录列表


9.3 循环451MEASURE KINEMATICS (选装项48)

应用

参见机床手册!

这个功能必须由机床制造商实施和调试。

探测循环**451**可检查并可根据需要优化机床的运动特性。用3-D TS系列测头测量海德汉校准球,该球已安装在机床工作台上。

该数控系统将确定静态倾斜精度。软件使倾斜运动导致的空间误差最小化,测量过程结束时,机床几何尺寸将自动保存在机床相应运动特性描述中。

循环顺序

- 1 夹持校准球和检查是否存在可能的碰撞。
- 2 在**手动操作模式**模式下,将预设点设置在球心位置,或如果定义了**Q431** = 1 或**Q431** = 3: 手动定位测头,将测头定位在探测轴上校准球的上方和加工面上球心的位置。
- 3 选择"程序运行"操作模式并开始校准程序。
- 4 数控系统用定义的分辨率连续地自动测量全部旋转轴。

编程和操作说明:

- 如果优化模式下确定的运动特性数据超出允许的极限 (maxModification 204801号),数控系统显示警告信息。然后,必 须按下NC start(NC启动)按键确认接受确定的数据。
- 预设置期间,只为第二次测量,监测校准球的编程半径。原因是:如果相对校准球的预定位不精确并开始预设置,将探测校准球两次。

数控系统将测量值保存在以下Q参数中:

Q参数 编号	含义		
Q141	A轴的标准方差测量值(如果未测量该轴,为-1)		
Q142	B轴的标准方差测量值(如果未测量该轴 , 为-1)		
Q143	C轴的标准方差测量值(如果未测量该轴,为-1)		
Q144	优化的A轴标准方差(如果未优化该轴,为-1)		
Q145	优化的B轴标准方差(如果未优化该轴 , 为-1)		
Q146	优化的C轴标准方差(如果未优化该轴,为-1)		
Q147	X轴方向偏移误差,手动传送相应机床参数		
Q148	Y轴方向偏移误差,手动传送相应机床参数		
Q149	Z轴方向偏移误差,手动传送相应机床参数		

9.3.1 定位方向

被测旋转轴的定位方向由循环中定义的起始角和终止角确定。 基准测量自动在0°位置执行。

指定起始角和终止角,确保同一个位置不测量两次。不推荐重复测量同一点(例如测量位置+90°和-270°),但并不生成出错信息。

- 举例: 起始角 = +90°, 终止角 = -90°
 - 起始角 = +90°
 - 终止角 = -90°
 - 测量点数 = 4
 - 计算的角度步距 = (-90° +90°) / (4 1) = -60°
 - 测量点1 = +90°
 - 测量点2 = +30°
 - 测量点3 = -30°
 - 测量点4 = -90°
- 举例:起始角 = +90°, 终止角 = +270°
 - 起始角 = +90°
 - 终止角 = +270°
 - 测量点数 = 4
 - 计算的角度步距 = (270° 90°) / (4 1) = +60°
 - 测量点1 = +90°
 - 测量点2 = +150°
 - 测量点3 = +210°
 - 测量点4 = +270°

9.3.2 带鼠牙盘连接轴的机床

注意

碰撞危险!

为使轴定位,必须将轴移出鼠牙盘连接部位。根据需要,该数控系统圆整计算的测量位置使其适用于鼠牙盘分度(取决于与起始角、终止角和测量点数)。

- ▶ 因此,要注意留出较大的安全距离,避免测头与校准球之间发生任何碰撞。
- ▶ 也必须确保有足够的空间,以达到安全高度(软限位开关)

注意

碰撞危险!

根据机床配置,数控系统不能自动定位旋转轴。如为该情况,需要使用机床制造商的特殊M功能使数控系统运动旋转轴。为此,机床制造商必须在机床参数mStrobeRotAxPos(204803号)中输入此M功能的编号。

▶ 参见机床制造商的文档

- 如果无选装项2,定义大于0的退离高度。
- 由起始角、终止角和测量点数计算相应轴和鼠牙盘分度的测量位置。

9.3.3 计算A轴测量位置举例:

起始角**Q411** = -30

终止角**Q412** = +90

测量点数**Q414** = 4

鼠牙盘分度 = 3°

计算的角度步距 = (Q412 - Q411) / (Q414 - 1)

计算的角度步长 = (90° - (-30°)) / (4 - 1) = 120 / 3 = 40°

测量位置1 = **Q411** + 0 * 角度步距 = -30° --> -30°

测量位置2 = **Q411** + 1 * 角度步距 = +10° --> 9°

测量位置3 = Q411 + 2 * 角度步距 = +50° --> 51°

测量位置4 = **Q411** + 3 * 角度步距 = +90° --> 90°

9.3.4 测量点数的选择

为节省时间,例如调试机床期间,可用较少的测量点数(1个或2个)进行大致优化。

然后再用一定测量点数(推荐值 = 4左右)进行精细优化。 测量点数越多,通常结果越好。 最好将测量点均匀分布在轴的整个倾斜范围上。

这是为什么需要在三个测量位置处测量0°-360°倾斜范围的原因,就是在90°, 180°和270°位置。 这样定义起始角为90°和终止角为270°。

如要检查相应精度,在**检查**模式中输入较多测量点。

如果测量点定义在0°位置,可以忽略,因为基准测量位置只能是0°。

9.3.5 基准球在机床工作台上位置的选择

原则上,可将基准球固定在工作台的任何可接近位置,也固定在夹具或工件处。 以下因素影响测量结果:

- 在配有回转摆动工作台的机床上,将校准球固定在尽可能远离旋转中心的位置。
- 超大行程的机床: 将基准球固定在尽可能靠近后续加工位置处。

将校准球放在机床工作台上,其位置需保证测量过程中无碰撞。

9.3.6 有关不同校准方式的说明

- 输入大致尺寸后,在调试期间进行大致优化。
 - 测量点数在1至2之间
 - 旋转轴的角增量:约90°

■ 精细优化整个运动范围

- 测量点数在3至6之间
- 起始角和终止角覆盖旋转轴最大可能行程范围。
- 校准球在带回转工作台轴的机床工作台上的位置应使测量圆较大,或对于摆动 铣头轴,可在典型位置进行测量(例如运动行程的中间位置)。

■ 优化特定旋转轴位置

- 测量点数在2至3之间
- 旋转轴位于后续工件加工的角度位置,在进给轴围绕该角度倾斜情况下进行测量(Q413/Q417/Q421)。
- 将基准球固定在机床工作台的后续加工位置处。

■ 检查机床精度

- 测量点数在4至8之间
- 起始角和终止角覆盖旋转轴最大可能行程范围。

■ 确定旋转轴反向间隙

- 测量点数在8至12之间
- 起始角和终止角覆盖旋转轴最大可能行程范围。

9.3.7 精度说明

根据需要,校准期间取消旋转轴锁定。否则,可能导致测量结果失真。更多信息,请见机床手册。

机床的几何和定位误差影响测量值,因此也影响旋转轴优化结果。 为此,必然存在一定误差。

如果没有几何误差和定位误差,循环对机床的任何测量位置在特定时间的测量值都可准确重现。几何和定位误差越大,在不同位置进行测量的测量结果离散性也越大。

该数控系统在测量日志中记录的测量结果离散性是机床静态倾斜精度的指标。但是,在精度评估中也必须考虑测量圆半径和测量点数和测量位置因素。一个测量点不足以计算离散性。只有一点测量点时,计算结果是该测量点的空间误差。

如果同时运动多个旋转轴,其误差值将被合并。最坏情况是这些误差相互叠加。

如果机床配受控主轴,需要在探测表中激活角度跟踪功能(TRACK(跟踪)栏)。 通常这样能提高使用3-D测头的测量精度。

9.3.8 有关不同校准方式的说明

- 输入大致尺寸后,在调试期间进行大致优化。
 - 测量点数在1至2之间
 - 旋转轴的角增量:约90°

■ 精细优化整个运动范围

- 测量点数在3至6之间
- 起始角和终止角覆盖旋转轴最大可能行程范围。
- 校准球在带回转工作台轴的机床工作台上的位置应使测量圆较大,或对于摆动 铣头轴,可在典型位置进行测量(例如运动行程的中间位置)。

■ 优化特定旋转轴位置

- 测量点数在2至3之间
- 旋转轴位于后续工件加工的角度位置,在进给轴围绕该角度倾斜情况下进行测量(Q413/Q417/Q421)。
- 将基准球固定在机床工作台的后续加工位置处。

■ 检查机床精度

- 测量点数在4至8之间
- 起始角和终止角覆盖旋转轴最大可能行程范围。

■ 确定旋转轴反向间隙

- 测量点数在8至12之间
- 起始角和终止角覆盖旋转轴最大可能行程范围。

9.3.9 反向间隙

反向间隙是指旋转编码器或角度编码器和工作台反向运动时的微小间隙量。如果旋转轴的反向间隙超出控制环的控制范围,例如用电机编码器测量角度,倾斜时将导致严重误差。

用输入参数**Q432**能激活反向间隙测量。输入角度,该数控系统用其作为运动角。然后,循环将对每个旋转轴执行两次测量。如果使角度值为0,该数控系统不测量任何反向间隙。

如果可选的mStrobeRotAxPos (204803号)机床参数中设置了旋转轴定位的M功能,或如果该轴为鼠牙盘轴,无法测量反向间隙。

编程和操作说明:

- 数控系统不自动进行反向间隙补偿。
- 如果测量的圆半径<1 mm,数控系统不计算反向间隙。测量圆的半径越大,数控系统确定旋转轴反向间隙的精度越高(参见"日志功能",306页)。

9.3.10 注意

角度补偿只适用于选装项52 KinematicsComp。

注意

碰撞危险!

如果运行该循环,基本旋转或3-D基本旋转不工作。数控系统将根据需要删除预设表中SPA、SPB和SPC列中数据。循环后,需要再次设置基本旋转或3-D基本旋转;否则,可能碰撞。

- ▶ 运行该循环前,取消基本旋转。
- ▶ 优化后,再次设置预设点和基本旋转。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 循环开始前,必须关闭M128或TCPM功能。
- 对于循环**451**和**452**,循环**453**结束于自动模式下的当前3D#ROT功能,与旋转轴位置相符。
- 定义循环前,必须将预设点设置在校准球的球心位置并将其激活,或相应地将输入参数**Q431**设置为1或3。
- 对于沿探测轴将测头移至探测高度时的定位进给速率,数控系统用循环参数Q253或探测表中的FMAX进给速率值,取其中的较小值。在测头监测未被激活期间,数控系统只用定位进给速率Q253运动旋转轴。
- 数控系统忽略不可用轴的循环定义数据。
- 只有测量主轴头端或工作台端相互叠加的旋转轴才能修正机床原点 (**Q406**=3)。
- 如果校准前已激活预设置(**Q431** = 1/3),则循环开始前,将测头运动至校准 球球心上方的大约安全高度(**Q320** + SET_UP)的位置。
- 英制编程:数控系统只用毫米记录日志数据和测量结果。

关于机床参数的说明

- 如果可选机床参数mStrobeRotAxPos(204803号)不等于-1(用M功能定位 旋转轴),那么仅当全部旋转轴位于0°位置时,才开始测量。
- 每次探测中,数控系统首先测量校准球的半径。如果球半径测量值与输入的球半径值相差超过可选机床参数maxDevCalBall(204802号)的定义值,数控系统显示出错信息并结束测量。
- 对于角度优化,机床制造商必须相应地调整配置。

9.3.11 循环参数

帮助图形

参数

Q406 模式 (0/1/2/3)?

定义数控系统检查或优化当前运动特性:

- **0**:检查当前机床运动特性。数控系统测量已定义的旋转轴运动特性,但不修改当前运动特性。数控系统在测量日志中显示测量结果。
- 1:优化当前机床运动特性:数控系统测量已定义的旋转轴运动特性。然后优化当前运动特性中的**旋转轴位置**。
- 2:优化当前机床运动特性:数控系统测量已定义的旋转轴运动特性。然后,优化**角度和位置误差**。需要用软件选装项52(KinematicsComp)补偿角度误差。
- 3:优化当前机床运动特性:数控系统测量已定义的旋转轴运动特性。然后,自动补偿机床原点。然后,优化**角度和位置误差**。需要软件选装项52,KinematicsComp。

输入:0,1,2,3

Q407 准确校准球半径?

输入使用的校准球的准确半径。

输入: 0.0001...99.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的 基础上的补充。 该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q408 退刀高度?

- 0:不允许运动到任何退刀高度;数控系统沿被测轴运动到下个测量位置。不适用于鼠牙盘连接的轴!数控系统用A轴,B轴再C轴的顺序运动到第一测量位置。
- > 0: 非倾斜工件坐标系的退刀高度, 数控系统定位旋转轴前将主轴坐标轴定位在该位置。此外, 数控系统也将测头在加工面上运动到原点位置。在该模式下测头监测不可用。在参数Q253中定义定位进给速率。 该值有绝对式效果。

输入: 0...99999.9999

帮助图形参数

Q253 预定位的进给率?

定义预定位时的刀具运动速度,单位mm/min。

输入:0...99999.9999 或FMAX , FAUTO , PREDEF

Q380 参考角度? (0=参考轴)

输入参考角(基本旋转),用于在当前工件坐标系下采集测量点。定义参考角可以大幅放大轴的测量范围。 该值有绝对式效果。

输入: 0...360

Q411 A 轴起始角?

A轴起始角,在该角度进行第一次测量。 该值有绝对式效

输入:-359.9999...+359.9999

Q412 A 轴终止角?

A轴终止角,在该角度进行最后一次测量。 该值有绝对式效 用

输入:-359.9999...+359.9999

Q413 A 轴仰角?

A轴入射角,在该角度测量其他旋转轴。

输入:-359.9999...+359.9999

Q414 A 轴测量点数 (0...12)?

数控系统测量A轴的测量点数量。

如果输入值 = 0,数控系统不测量相应轴。

输入: 0...12

Q415 B 轴起始角?

B轴起始角,在该角度进行第一次测量。 该值有绝对式效

里

输入:-359.9999...+359.9999

Q416 B 轴终止角?

B轴终止角,在该角度进行最后一次测量。 该值有绝对式效

果。

输入:-359.9999...+359.9999

Q417 B 轴仰角?

B轴入射角,在该角度测量其他旋转轴。

输入:-359.999...+360.000

帮助图形

参数

Q418 B 轴测量点数 (0...12)?

数控系统测量B轴的测量点数量。如果输入值 = 0,数控系统不测量相应轴。

输入: 0...12

Q419 C 轴起始角?

C轴起始角,在该角度进行第一次测量。 该值有绝对式效果。

输入:-359.9999...+359.9999

Q420 C 轴终止角?

C轴终止角,在该角度进行最后一次测量。 该值有绝对式效 卑

输入:-359.9999...+359.9999

Q421 C 轴仰角?

C轴入射角,在该角度测量其他旋转轴。

输入:-359.9999...+359.9999

Q422 C 轴测量点数 (0...12)?

数控系统测量C轴的测量点数量。如果输入值 = 0, 数控系统不测量相应轴。

输入: 0...12

Q423 探测次数?

定义数控系统在平面上测量校准球的测量点数量。如果测量 点数较少,测量速度较快,如果测量点数较多,测量精度较 喜

输入:3...8

Q431 预设点(0/1/2/3)?

定义数控系统是否将当前预设点自动设置在球心位置:

- **0**:不将预设点自动设置在球心位置:循环开始前,手动设置预设点
- 1:测量前将预设点设置在球心位置(当前预设点将被改写):循环开始前,手动预定位测头,将其定位在校准球上方
- 2:测量后,将预设点自动设置在球心位置(当前预设点将被改写):循环开始前,手动设置预设点
- 3:测量前和测量后,将预设点设置在球心位置(当前预设点将被改写):循环开始前,手动预定位测头,将其定位在校准球上方

输入:0,1,2,3

帮助图形参数

Q432 反向间隙补偿的角度范围?

定义运动角度,数控系统用该角度测量旋转轴的反向间隙。运动角度必须远远大于旋转轴的实际反向间隙。如果输入值=0,数控系统不测量反向间隙。

输入:-3...+3

保存和检查运动特性

11 TOOL CALL "TOUCH_PRO	11 TOOL CALL "TOUCH_PROBE" Z			
12 TCH PROBE 450 SAVE KINEMATICS ~				
Q410=+0	;MODE ~			
Q409=+5	;MEMORY DESIGNATION			
13 TCH PROBE 451 MEASURE	KINEMATICS ~			
Q406=+0	;MODE ~			
Q407=+12.5	;SPHERE RADIUS ~			
Q320=+0	;SET-UP CLEARANCE ~			
Q408=+0	;RETR. HEIGHT ~			
Q253=+750	;F PRE-POSITIONING ~			
Q380=+0	;REFERENCE ANGLE ~			
Q411=-90	;START ANGLE A AXIS ~			
Q412=+90	;ENDWINKEL A-ACHSE ~			
Q413=+0	;INCID. ANGLE A AXIS ~			
Q414=+0	;MEAS. POINTS A AXIS ~			
Q415=-90	;START ANGLE B AXIS ~			
Q416=+90	;END ANGLE B AXIS ~			
Q417=+0	;INCID. ANGLE B AXIS ~			
Q418=+2	;MEAS. POINTS B AXIS ~			
Q419=-90	;START ANGLE C AXIS ~			
Q420=+90	;END ANGLE C AXIS ~			
Q421=+0	;INCID. ANGLE C AXIS ~			
Q422=+2	;MEAS. POINTS C AXIS ~			
Q423=+4	;NO. OF PROBE POINTS ~			
Q431=+0	;PRESET ~			
Q432=+0	;BACKLASH, ANG. RANGE			

9.3.12 其它模式 (Q406)

测试模式Q406 = 0

- 该数控系统在定义的位置处测量旋转轴和计算倾斜变换的静态精度。
- 该数控系统记录位置优化的可能结果但不进行任何调整。

"优化旋转轴位置"模式Q406 = 1

- 该数控系统在定义的位置处测量旋转轴和计算倾斜变换的静态精度。
- 这期间,该数控系统尽可能修改运动特性模型中的旋转轴位置使其达到更高精度。
- 自动调整机床数据。

位置和角度优化模式Q406 = 2

- 该数控系统在定义的位置处测量旋转轴和计算倾斜变换的静态精度。
- 首先,该数控系统尽可能用补偿的方式优化旋转轴的角度方向(选装项52,KinematicsComp)。
- 角度优化后,该数控系统执行位置优化。不需要执行其它附加测量;该数控系统自动计算优化的位置。

根据机床运动特性,为正确确定角度,海德汉建议在倾斜角为0°时立即测量。

"优化机床原点、位置和角度"模式(Q406 = 3)

- 数控系统在定义的位置处测量旋转轴和计算倾斜变换的静态精度。
- 数控系统自动尽可能地优化原点(选装项52, KinematicsComp)。为用机床原点补偿旋转轴的角度位置,需补偿的旋转轴必须相对被测旋转轴更加接近床身。
- 然后,数控系统尽可能地用补偿方式优化旋转轴的角度方向(选装项52,KinematicsComp)
- 角度优化后,数控系统执行位置优化。不需要执行其它附加测量;数控系统自动 计算优化的位置。

为正确确定角度,海德汉建议在倾斜角为0°时立即进行一次测量。

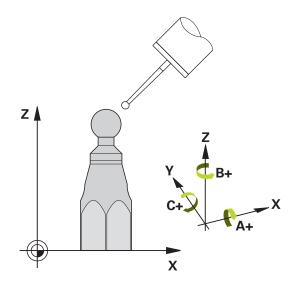
用前面的自动预设置和旋转轴反向间隙的测量,优化旋转轴位置

11 TOOL CALL "TOUCH_PR	11 TOOL CALL "TOUCH_PROBE" Z			
12 TCH PROBE 451 MEASURE KINEMATICS ~				
Q406=+1	;MODE ~			
Q407=+12.5	;SPHERE RADIUS ~			
Q320=+0	;SET-UP CLEARANCE ~			
Q408=+0	;RETR. HEIGHT ~			
Q253=+750	;F PRE-POSITIONING ~			
Q380=+0	;REFERENCE ANGLE ~			
Q411=-90	;START ANGLE A AXIS ~			
Q412=+90	;END ANGLE A AXIS ~			
Q413=+0	;INCID. ANGLE A AXIS ~			
Q414=+0	;MEAS. POINTS A AXIS ~			
Q415=-90	;START ANGLE B AXIS ~			
Q416=+90	;END ANGLE B AXIS ~			
Q417=+0	;INCID. ANGLE B AXIS ~			
Q418=+4	;MEAS. POINTS B AXIS ~			
Q419=+90	;START ANGLE C AXIS ~			
Q420=+270	;END ANGLE C AXIS ~			
Q421=+0	;INCID. ANGLE C AXIS ~			
Q422=+3	;MEAS. POINTS C AXIS ~			
Q423=+3	;NO. OF PROBE POINTS ~			
Q431=+1	;PRESET ~			
Q432=+0.5	;BACKLASH, ANG. RANGE			

9.3.13 日志功能

运行循环451后,该数控系统创建日志 (TCHPR451.html)并将其保存在也含相关 NC程序的文件夹下。本日志提供以下数据:

- 日志创建日期和时间
- 运行循环的NC程序路径
- 使用的模式(0=检查/1=优化位置/2=优化角度)
- 当前运动特性号
- 输入的基准球半径
- 每个被测旋转轴:
 - 起始角
 - 终止角
 - 仰角
 - 测量点数
 - 离散性(标准方差)
 - 最大误差
 - 角度误差
 - 平均反向间隙
 - 平均定位误差
 - 测量圆半径
 - 所有轴的补偿值(预设点平移)
 - 需检查的旋转轴优化前的位置(相对运动特性变换链的起点,通常是主轴尖)
 - 需检查的旋转轴优化后的位置(相对运动特性变换链的起点,通常是主轴尖)


9.4 循环452PRESET COMPENSATION (选装项48)

应用

参见机床手册!

这个功能必须由机床制造商实施和调试。

探测循环**452**优化机床的运动特性变换链(参见 "循环451MEASURE KINEMATICS (选装项48)", 294页)。然后,数控系统修正运动特性模型中的工件坐标系,使当前预设点在优化后位于校准球的球心位置。

循环顺序

将校准球放在机床工作台上,其位置需保证测量过程中无碰撞。

例如,这个循环可调整不同可换铣头使工件预设点适用于所有铣头。

- 1 夹紧校准球
- 2 用循环451测量整个基准铣头和用循环451将预设点设置在球心位置。
- 3 插入第二个铣头
- 4 用循环452测量到可换铣头的换头点。
- 5 用循环452调整其它可换铣头至基准铣头

如果可以,加工期间使基准球夹紧在工作台上保持不动,这样可以补偿机床漂移。 这同样适用于无旋转轴的机床。

- 1 夹持校准球和检查是否存在可能的碰撞。
- 2 将预设点设置在基准球位置。
- 3 将预设点设置在工件上,和开始工件加工。
- 4 定期用循环**452**补偿预设点。数控系统测量相应轴的漂移和在运动特性描述中进行补偿。

Q参数 编号	含义
Q141	A轴的标准方差测量值 (如果未测量该轴,为-1)
Q142	B轴的标准方差测量值 (如果未测量该轴,为-1)
Q143	C轴的标准方差测量值 (如果未测量该轴,为-1)
Q144	优化的A轴标准方差 (如果未测量该轴,为−1)
Q145	优化的B轴标准方差 (如果未测量该轴,为−1)
Q146	优化的C轴标准方差 (如果未测量该轴,为−1)
Q147	X轴方向偏移误差,手动传送相应机床参数
Q148	Y轴方向偏移误差,手动传送相应机床参数
Q149	Z轴方向偏移误差,手动传送相应机床参数

注意

为进行预设点补偿,必须特别准备运动特性。更多信息,请见机床手册。

注意

碰撞危险!

如果运行该循环,基本旋转或3-D基本旋转不工作。数控系统将根据需要删除预设表中SPA、SPB和SPC列中数据。循环后,需要再次设置基本旋转或3-D基本旋转;否则,可能碰撞。

- ▶ 运行该循环前,取消基本旋转。
- ▶ 优化后,再次设置预设点和基本旋转。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 循环开始前,必须关闭M128或TCPM功能。
- 对于循环**451**和**452**,循环**453**结束于自动模式下的当前3D#ROT功能,与旋转轴位置相符。
- 确保加工面倾斜的全部功能都被重置。
- 定义循环前,必须将预设点设置在校准球的球心位置并将其激活。
- 对于无独立位置编码器的旋转轴,选择的测量点应使旋转轴到限位开关的运动距离达到1°的角度。数控系统用此行程尺寸进行内部反向间隙补偿。
- 对于沿探测轴将测头移至探测高度时的定位进给速率,数控系统用循环参数Q253或探测表中的FMAX进给速率值,取其中的较小值。测头监测未被激活期间,数控系统只用定位进给速率Q253运动旋转轴。
- 英制编程:数控系统只用毫米记录日志数据和测量结果。

如果测量期间中断循环运行,运动特性数据将不能保持原有状态。用循环450优化前,保存当前运动特性配置,以便在故障时,可还原最近保存的当前运动特性配置。

关于机床参数的说明

- 机床制造商用机床参数maxModification (204801号)定义变换变化的允许极限值。如果确定的运动特性数据超出允许的极限值,数控系统显示警告信息。然后,必须按下NC Start (NC启动)按键确认接受确定的数据。
- 机床制造商用机床参数maxDevCalBall (204802号) 定义校准球半径的最大偏差。每次探测中,数控系统首先测量校准球的半径。如果球半径测量值与输入的球半径值相差超过机床参数maxDevCalBall (204802号)的定义值,数控系统显示出错信息并结束测量。

9.4.1 循环参数

帮助图形 参数

Q407 准确校准球半径?

输入使用的校准球的准确半径。

输入: 0.0001...99.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q408 退刀高度?

0:不允许运动到任何退刀高度;数控系统沿被测轴运动到下个测量位置。不适用于鼠牙盘连接的轴!数控系统用A轴,B轴再C轴的顺序运动到第一测量位置。

> 0: 非倾斜工件坐标系的退刀高度,数控系统定位旋转轴前将主轴坐标轴定位在该位置。此外,数控系统也将测头在加工面上运动到原点位置。在该模式下测头监测不可用。在参数Q253中定义定位进给速率。该值有绝对式效果。

输入: 0...99999.9999

Q253 预定位的进给率?

定义预定位时的刀具运动速度,单位mm/min。

输入: 0...99999.9999 或FMAX, FAUTO, PREDEF

Q380 参考角度? (0=参考轴)

输入参考角(基本旋转),用于在当前工件坐标系下采集测量点。定义参考角可以大幅放大轴的测量范围。 该值有绝对式效果。

输入: 0...360

Q411 A 轴起始角?

A轴起始角,在该角度进行第一次测量。 该值有绝对式效

果。

输入:-359.9999...+359.9999

Q412 A 轴终止角?

A轴终止角,在该角度进行最后一次测量。 该值有绝对式效 里

输入:-359.9999...+359.9999

Q413 A 轴仰角?

A轴入射角,在该角度测量其他旋转轴。

输入:-359.9999...+359.9999

帮助图形 参数

Q414 A 轴测量点数 (0...12)?

数控系统测量A轴的测量点数量。

如果输入值 = 0, 数控系统不测量相应轴。

输入: 0...12

Q415 B 轴起始角?

B轴起始角,在该角度进行第一次测量。 该值有绝对式效 里

输入:-359.9999...+359.9999

Q416 B 轴终止角?

B轴终止角,在该角度进行最后一次测量。 该值有绝对式效 里

输入:-359.9999...+359.9999

Q417 B 轴仰角?

B轴入射角,在该角度测量其他旋转轴。

输入:-359.999...+360.000

Q418 B 轴测量点数 (0...12)?

数控系统测量B轴的测量点数量。如果输入值 = 0, 数控系统不测量相应轴。

输入: 0...12

Q419 C 轴起始角?

C轴起始角,在该角度进行第一次测量。 该值有绝对式效

输入:-359.9999...+359.9999

Q420 C 轴终止角?

C轴终止角,在该角度进行最后一次测量。 该值有绝对式效 E

输入:-359.9999...+359.9999

Q421 C 轴仰角?

C轴入射角,在该角度测量其他旋转轴。

输入:-359.9999...+359.9999

Q422 C 轴测量点数 (0...12)?

数控系统测量C轴的测量点数量。如果输入值 = 0, 数控系统不测量相应轴。

输入: 0...12

Q423 探测次数?

定义数控系统在平面上测量校准球的测量点数量。如果测量 点数较少,测量速度较快,如果测量点数较多,测量精度较 高。

输入:3...8

帮助图形参数

Q432 反向间隙补偿的角度范围?

定义运动角度,数控系统用该角度测量旋转轴的反向间隙。 运动角度必须远远大于旋转轴的实际反向间隙。如果输入值 = 0,数控系统不测量反向间隙。

输入:-3...+3

校准程序

11 TOOL CALL "TOUCH_PRO	11 TOOL CALL "TOUCH_PROBE" Z			
12 TCH PROBE 450 SAVE KINEMATICS ~				
Q410=+0	;MODE ~			
Q409=+5	;MEMORY DESIGNATION			
13 TCH PROBE 452 PRESET	COMPENSATION ~			
Q407=+12.5	;SPHERE RADIUS ~			
Q320=+0	;SET-UP CLEARANCE ~			
Q408=+0	;RETR. HEIGHT ~			
Q253=+750	;F PRE-POSITIONING ~			
Q380=+0	;REFERENCE ANGLE ~			
Q411=-90	;START ANGLE A AXIS ~			
Q412=+90	;END ANGLE A AXIS ~			
Q413=+0	;INCID. ANGLE A AXIS ~			
Q414=+0	;MEAS. POINTS A AXIS ~			
Q415=-90	;START ANGLE B AXIS ~			
Q416=+90	;END ANGLE B AXIS ~			
Q417=+0	;INCID. ANGLE B AXIS ~			
Q418=+2	;MEAS. POINTS B AXIS ~			
Q419=-90	;START ANGLE C AXIS ~			
Q420=+90	;END ANGLE C AXIS ~			
Q421=+0	;INCID. ANGLE C AXIS ~			
Q422=+2	;MEAS. POINTS C AXIS ~			
Q423=+4	;NO. OF PROBE POINTS ~			
Q432=+0	;BACKLASH, ANG. RANGE			

9.4.2 可换铣头的调整

换铣头功能与各个机床的具体情况有关。参见机床手册。

- ▶ 加载第二个可换铣头。
- ▶ 插入测头
- ▶ 用循环452测量可换铣头
- ▶ 只测量实际有变化的轴(本例中:只测量A轴;用Q422隐藏C轴)
- ▶ 整个操作过程中,预设点和校准球的位置不能改变。
- ▶ 用同样方法调整所有其它可换铣头

调整可换铣头

11 TOOL CALL "TOUCH_PROBE" Z			
12 TCH PROBE 452 PRESET COMPENSATION ~			
Q407=+12.5	;SPHERE RADIUS ~		
Q320=+0	;SET-UP CLEARANCE ~		
Q408=+0	;RETR. HEIGHT ~		
Q253=+2000	;F PRE-POSITIONING ~		
Q380=+45	;REFERENCE ANGLE ~		
Q411=-90	;START ANGLE A AXIS ~		
Q412=+90	;END ANGLE A AXIS ~		
Q413=+45	;INCID. ANGLE A AXIS ~		
Q414=+4	;MEAS. POINTS A AXIS ~		
Q415=-90	;START ANGLE B AXIS ~		
Q416=+90	;END ANGLE B AXIS ~		
Q417=+0	;INCID. ANGLE B AXIS ~		
Q418=+2	;MEAS. POINTS B AXIS ~		
Q419=+90	;START ANGLE C AXIS ~		
Q420=+270	;END ANGLE C AXIS ~		
Q421=+0	;INCID. ANGLE C AXIS ~		
Q422=+0	;MEAS. POINTS C AXIS ~		
Q423=+4	;NO. OF PROBE POINTS ~		
Q432=+0	;BACKLASH, ANG. RANGE		

该操作的目标是在旋转轴(铣头更换)改变后,保持工件预设点不变。 在下例中,介绍带A轴和C轴的叉式铣头的调整、A轴改变,而C轴继续是基本配置的 一部分。

- ▶ 插入用作基准铣头的可换铣头。
- ▶ 夹紧基准球。
- ▶ 插入测头
- ▶ 用循环451测量完整运动特性,包括参考铣头
- ▶ 测量基准铣头后,设置预设点(用循环**451**中的**Q431** = 2或3)

测量基准铣头

11 TOOL CALL "TOUCH_PRO	OBE" Z		
12 TCH PROBE 451 MEASURE KINEMATICS ~			
Q406=+1	;MODE ~		
Q407=+12.5	;SPHERE RADIUS ~		
Q320=+0	;SET-UP CLEARANCE ~		
Q408=+0	;RETR. HEIGHT ~		
Q253=+2000	;F PRE-POSITIONING ~		
Q380=+45	;REFERENCE ANGLE ~		
Q411=-90	;START ANGLE A AXIS ~		
Q412=+90	;END ANGLE A AXIS ~		
Q413=+45	;INCID. ANGLE A AXIS ~		
Q414=+4	;MEAS. POINTS A AXIS ~		
Q415=-90	;START ANGLE B AXIS ~		
Q416=+90	;END ANGLE B AXIS ~		
Q417=+0	;INCID. ANGLE B AXIS ~		
Q418=+2	;MEAS. POINTS B AXIS ~		
Q419=+90	;START ANGLE C AXIS ~		
Q420=+270	;END ANGLE C AXIS ~		
Q421=+0	;INCID. ANGLE C AXIS ~		
Q422=+3	;MEAS. POINTS C AXIS ~		
Q423=+4	;NO. OF PROBE POINTS ~		
Q431=+3	;PRESET ~		
Q432=+0	;BACKLASH, ANG. RANGE		

9.4.3 漂移补偿

这个过程也适用于无旋转轴的机床。

加工期间,多个机床部件可能由于环境条件变化产生漂移。如果漂移在整个行程范围内保持足够稳定和如果加工期间校准球可在机床工作台上,循环**452**可以测量和补偿漂移。

- ▶ 夹紧基准球。
- 插入测头
- ▶ 开始加工前,用循环451测量整个运动特性
- ▶ 测量运动特性后,设置预设点(用循环451中的Q432 = 2或3)
- ▶ 然后,将预设点设置在工件上并开始加工。

漂移补偿的基准测量

11 TOOL CALL "TOUCH_PROBE" Z			
12 CYCL DEF 247 DATUM SETTING ~			
Q339=+1	;DATUM NUMBER		
13 TCH PROBE 451 MEASURE	KINEMATICS ~		
Q406=+1	;MODE ~		
Q407=+12.5	;SPHERE RADIUS ~		
Q320=+0	;SET-UP CLEARANCE ~		
Q408=+0	;RETR. HEIGHT ~		
Q253=+750	;F PRE-POSITIONING ~		
Q380=+45	;REFERENCE ANGLE ~		
Q411=+90	;START ANGLE A AXIS ~		
Q412=+270	;END ANGLE A AXIS ~		
Q413=+45	;INCID. ANGLE A AXIS ~		
Q414=+4	;MEAS. POINTS A AXIS ~		
Q415=-90	;START ANGLE B AXIS ~		
Q416=+90	;END ANGLE B AXIS ~		
Q417=+0	;INCID. ANGLE B AXIS ~		
Q418=+2	;MEAS. POINTS B AXIS ~		
Q419=+90	;START ANGLE C AXIS ~		
Q420=+270	;END ANGLE C AXIS ~		
Q421=+0	;INCID. ANGLE C AXIS ~		
Q422=+3	;MEAS. POINTS C AXIS ~		
Q423=+4	;NO. OF PROBE POINTS ~		
Q431=+3	;PRESET ~		
Q432=+0	;BACKLASH, ANG. RANGE		

- ▶ 定期测量轴的漂移。
- ▶ 插入测头
- ▶ 将预设点设置在基准球位置。
- ▶ 用循环452测量运动特性。
- ▶ 整个操作过程中,预设点和校准球的位置不能改变。

漂移补偿

11 TOOL CALL "TOUCH_PROBE" Z			
13 TCH PROBE 452 PRESET COMPENSATION ~			
Q407=+12.5	;SPHERE RADIUS ~		
Q320=+0	;SET-UP CLEARANCE ~		
Q408=+0	;RETR. HEIGHT ~		
Q253=+9999	;F PRE-POSITIONING ~		
Q380=+45	;REFERENCE ANGLE ~		
Q411=-90	;START ANGLE A AXIS ~		
Q412=+90	;END ANGLE A AXIS ~		
Q413=+45	;INCID. ANGLE A AXIS ~		
Q414=+4	;MEAS. POINTS A AXIS ~		
Q415=-90	;START ANGLE B AXIS ~		
Q416=+90	;END ANGLE B AXIS ~		
Q417=+0	;INCID. ANGLE B AXIS ~		
Q418=+2	;MEAS. POINTS B AXIS ~		
Q419=+90	;START ANGLE C AXIS ~		
Q420=+270	;END ANGLE C AXIS ~		
Q421=+0	;INCID. ANGLE C AXIS ~		
Q422=+3	;MEAS. POINTS C AXIS ~		
Q423=+3	;NO. OF PROBE POINTS ~		
Q432=+0	;BACKLASH, ANG. RANGE		

9.4.4 日志功能

运行循环452后,数控系统创建日志文件(TCHPR452.html),其中含以下信息:

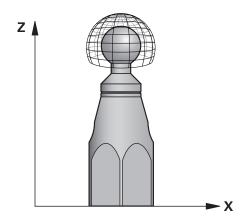
- 日志创建日期和时间
- 运行循环的NC程序路径
- 当前运动特性号
- 输入的基准球半径
- 每个被测旋转轴:
 - 起始角
 - 终止角
 - 仰角
 - 测量点数
 - 离散性(标准方差)
 - 最大误差
 - 角度误差
 - 平均反向间隙
 - 平均定位误差
 - 测量圆半径
 - 所有轴的补偿值(预设点平移)
 - 旋转轴的测量不确定性
 - 检查旋转轴预设点补偿前的位置(相对运动特性变换链的起点,通常是主轴 尖)
 - 检查旋转轴预设点补偿后的位置(相对运动特性变换链的起点,通常是主轴 尖)

日志数据说明

(参见 "日志功能", 306 页)

9.5 循环453(运动特性网格)(选装项48),(选装项52)

应用


参见机床手册!

需要KinematicsOpt (软件选装项48)。

需要KinematicsComp (软件选装项52)。

这个功能必须由机床制造商实施和调试。

要使用该循环,机床制造商需要首先创建和配置补偿表(*kco)并输入其它设置。

即使机床优化了定位误差(例如用循环**451**),旋转轴倾斜期间,刀具中心点 (**TCP**)仍可能存在残余误差。对于摆动铣头的机床,这类误差特别明显。例如, 铣头旋转轴的部件误差(例如轴承误差)导致该误差。

循环453 KINEMATICS GRID可检测这些误差并根据倾斜轴位置补偿。需要选装项48(KinematicsOpt)和选装项52(KinematicsComp)。用该循环和3-D TS系列触发式测头测量海德汉校准球,校准球安装在机床工作台上。然后,该循环将该测头自动运动到校准球周围的网格线的位置处。机床制造商定义这些倾斜轴位置。安排的位置可多达三维。(每一维是一个旋转轴)。探测该球后,可用多维表补偿该误差。机床制造商定义该补偿表(*.kco)并指定其保存位置。

使用循环**453**时,在加工区内的不同位置执行该循环。用于立即检查循环**453**的补偿效果是否对机床精度产生有利影响。只有在多个位置以相同的补偿值达到理想的改善情况时,这样的补偿才适用于相应的机床。如果不是该情况,需要寻找旋转轴外的误差源。

在旋转轴定位误差优化的情况下,用循环**453**执行测量。为此,可先用循环**451**等方法。

海德汉推荐使用校准球**KKH 250**(ID号655475-01)或**KKH 100**(ID号655475-02),这些校准球刚性较高,特别适用于机床校准。如有任何疑问,请联系海德汉公司。

然后,数控系统优化机床精度。为此,在补偿表(*kco)中自动保存测量确定的补偿值。(适用于模式**Q406**=1。)

循环顺序

- 1 夹持校准球和检查是否存在可能的碰撞。
- 2 在手动操作模式下,如果定义了**Q431**=1或**Q431**=3,将预设点设置在球心位置:手动定位测头,使其沿探测轴位于校准球的上方位置并位于加工面的球心位置。
- 3 选择 "程序运行"操作模式之一并开始NC数控程序。
- 4 按照**Q406**中的设置执行该循环(-1=删除模式/0=测试模式/1=补偿模式)

预设置期间,只为第二次测量,监测校准球的编程半径。原因是:如果相对校准球的预定位不精确并开始预设置,将探测校准球两次。

9.5.1 其它模式(Q406)

删除模式Q406 = -1

- 该轴未动
- 数控系统将全部数据写入补偿表(*kco),并将其设置为 "0"。结果是当前所 选的运动特性无任何其它有效补偿。

测试模式Q406 = 0

- 数控系统探测基准球。
- 结果保存在html格式的日志中,日志文件保存在当前NC数控程序所在的目录下

补偿模式Q406 = 1

- 数控系统探测基准球。
- 数控系统将偏差值写入补偿表(*.kco)。更新该表,补偿设置值立即生效。
- 结果保存在html格式的日志中,日志文件保存在当前NC数控程序所在的目录下

9.5.2 基准球在机床工作台上位置的选择

原则上,可将校准球固定在工作台的任何可接近位置,也可固定在夹具或工件处。 建议将校准球尽可能夹持在靠近后续加工所在的位置。

将校准球放在机床工作台上,其位置需保证测量过程中无碰撞。

9.5.3 注意

需要KinematicsOpt(软件选装项48)。 需要KinematicsComp(软件选装项52)。

这个功能必须由机床制造商实施和调试。 机床制造商定义补偿表(*.kco)的保存位置。

注意

碰撞危险!

如果运行该循环,基本旋转或3-D基本旋转不工作。数控系统将根据需要删除预设表中SPA、SPB和SPC列中数据。循环后,需要再次设置基本旋转或3-D基本旋转;否则,可能碰撞。

- ▶ 运行该循环前,取消基本旋转。
- ▶ 优化后,再次设置预设点和基本旋转。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 循环开始前,必须关闭M128或TCPM功能。
- 对于循环**451**和**452**,循环**453**结束于自动模式下的当前3D#ROT功能,与旋转轴位置相符。
- 定义循环前,必须将预设点设置在校准球的球心位置并将其激活,或相应地将输入参数**Q431**设置为1或3。
- 对于沿探测轴将测头移至探测高度时的定位进给速率,数控系统用循环参数Q253或探测表中的FMAX进给速率值,取其中的较小值。在测头监测未被激活期间,数控系统只用定位进给速率Q253运动旋转轴。
- 英制编程:数控系统只用毫米记录日志数据和测量结果。
- 如果校准前激活了预设点设置(**Q431** = 1/3),循环开始前,将测头运动安全高度(**Q320** + **SET_UP**),大约达到校准球球心上方。

如果机床配受控主轴,需要在探测表中激活角度跟踪功能 (TRACK(跟踪)栏)。 通常这样能提高使用3-D测头的测量精度。

关于机床参数的说明

- 机床制造商用机床参数mStrobeRotAxPos (204803号)定义变换的最大允许变化。如果此值不等于-1 (用M功能定位旋转轴),仅当旋转轴位于0°位置时,才开始测量。
- 机床制造商用机床参数maxDevCalBall (204802号) 定义校准球半径的最大偏差。每次探测中,数控系统首先测量校准球的半径。如果球半径测量值与输入的球半径值相差超过机床参数maxDevCalBall (204802号)的定义值,数控系统显示出错信息并结束测量。

9.5.4 循环参数

帮助图形

参数

Q406 模式 (-1/0/+1)

定义数控系统是否将0值写入补偿表(*.kco)数据中,检查当前现有偏差或执行补偿。创建日志文件(*.html)。

- -1:删除补偿表(*.kco)中数据。在补偿表(*.kco)中,将TCP定位误差的补偿值设置为0。数控系统不进行任何探测。无任何结果输出到日志(*.html)文件中。
- **0**:检查TCP定位误差。数控系统根据旋转轴位置测量TCP定位误差,但不将测量值写入补偿表(*.kco)。数控系统在日志(*.html)文件中显示标准偏差和最大偏差。
- 1:补偿TCP定位误差。数控系统根据旋转轴位置测量TCP定位误差和将偏差值写入补偿表(*.kco)。然后,该补偿立即生效。数控系统在日志(*.html)文件中显示标准偏差和最大偏差。

输入:-1,0,+1

Q407 准确校准球半径?

输入使用的校准球的准确半径。

输入: 0.0001...99.9999

Q320 安全高度?

触点与球头间的附加距离。Q320是在探测表中SET_UP列的基础上的补充。该值提供增量效果。

输入: 0...99999.9999 或PREDEF

Q408 退刀高度?

0:不允许运动到任何退刀高度;数控系统沿被测轴运动到下个测量位置。不适用于鼠牙盘连接的轴!数控系统用A轴,B轴再C轴的顺序运动到第一测量位置。

> 0:非倾斜工件坐标系的退刀高度,数控系统定位旋转轴前将主轴坐标轴定位在该位置。此外,数控系统也将测头在加工面上运动到原点位置。在该模式下测头监测不可用。在参数Q253中定义定位进给速率。该值有绝对式效果。

输入: 0...99999.9999

Q253 预定位的进给率?

定义预定位时的刀具运动速度,单位mm/min。

输入: 0...99999.9999 或FMAX, FAUTO, PREDEF

帮助图形 参数

Q380 参考角度? (0=参考轴)

输入参考角(基本旋转),用于在当前工件坐标系下采集测量点。定义参考角可以大幅放大轴的测量范围。 该值有绝对式效果。

输入: 0...360

Q423 探测次数?

定义数控系统在平面上测量校准球的测量点数量。如果测量 点数较少,测量速度较快,如果测量点数较多,测量精度较 高。

输入:3...8

Q431 预设点(0/1/2/3)?

定义数控系统是否将当前预设点自动设置在球心位置:

0:不将预设点自动设置在球心位置:循环开始前,手动设置预设点

1:测量前将预设点设置在球心位置(当前预设点将被改写):循环开始前,手动预定位测头,将其定位在校准球上方

2:测量后,将预设点自动设置在球心位置(当前预设点将被改写):循环开始前,手动设置预设点

3:测量前和测量后,将预设点设置在球心位置(当前预设点将被改写):循环开始前,手动预定位测头,将其定位在校准球上方

输入:0,1,2,3

用循环453探测

11 TCH PROBE 453 KINEMATICS GRID ~			
Q406=+0	;MODE ~		
Q407=+12.5	;SPHERE RADIUS ~		
Q320=+0	;SET-UP CLEARANCE ~		
Q408=+0	;RETR. HEIGHT ~		
Q253=+750	;F PRE-POSITIONING ~		
Q380=+0	;REFERENCE ANGLE ~		
Q423=+4	;NO. OF PROBE POINTS ~		
Q431=+0	;PRESET		

9.5.5 日志功能

运行循环453后,数控系统创建日志 (TCHPR453.html)并将其保存在当前NC数控程序所在的文件夹下。它提供以下信息:

- 该表格的创建日期和时间
- 运行循环的NC程序路径
- 当前已激活刀具的编号和名称
- 模式
- 测量数据: 标准偏差和最大偏差
- 偏差最大位置处有关位置的信息,单位度(°)
- 测量点数

探测循环:自动刀具 测量

探测循环:自动刀具测量 | 基础知识

10.1 基础知识

10.1.1 概要

参见机床手册!

机床可能不提供部分循环和功能。

需要选装项17。

要使用测头,机床制造商必须对数控系统进行特别准备。

海德汉只保证使用海德汉测头时探测循环正常工作。

注意

碰撞危险!

运行探测循环400至499时,不允许激活任何坐标变换循环。

- ▶ 在探测循环前,不允许激活以下循环:**循环7 DATUM SHIFT**、循环8 MIRROR IMAGE、**循环**10ROTATION、循环11 SCALING和循环26 AXIS-SPEC. SCALING。
- ▶ 首先重置任何坐标变换。

结合数控系统的刀具测量循环,刀具测头可自动测量刀具:刀具长度和半径补偿值保存在刀具表中,并在探测循环结束时可考虑这些补偿值。提供以下刀具测量类型:

- 静止刀具的测量
- 旋转刀具的测量
- 测量各刀刃

循环		调用	更多信息
480	CALIBRATE TT	DEF定义生效	327 页
30	■ 校准刀具测头		
481	CAL. TOOL LENGTH	DEF定义生效	329 页
31	■ 测量刀具长度		
482	CAL. TOOL RADIUS	DEF定义生效	331 页
32	■ 测量刀具半径		
483	MEASURE TOOL	DEF定义生效	
33	■ 测量刀具长度和半径		
484	CALIBRATE IR TT	DEF定义生效	
	■ 校准刀具测头(例如,红外线测头)		
485	MEASURE LATHE TOOL (选装项50)	DEF定义生效	
	■ 车刀的测量		

10.1.2 循环30至33和循环480至483的差异

特性和操作顺序必须绝对相同。循环30至33与循环480至483只有以下不同之处:

■ 除测量状态的可选参数外,循环481至483使用固定参数Q199。

10.1.3 设置机床参数

()

用可选的hideMeasureTT(128901号)机床参数可隐藏探测循 环480、481、482、483、484。

编程和操作说明:

- 开始使用探测循环前,检查ProbeSettings > CfgTT (122700号) 和CfgTTRoundStylus (114200号)或CfgTTRectStylus (114300 号)中定义的全部机床参数。
- 测量静止刀具时,数控系统用probingFeed机床参数(122709号)中 定义的探测进给速率。

测量旋转刀具时,该数控系统自动计算主轴转速和探测进给速率。

主轴转速计算公式为:

n = maxPeriphSpeedMeas / (r • 0.0063), 其中

主轴转速 [rpm] n:

maxPeriphSpeedMeas: 最大允许切削速度,单位为m/min

当前刀具半径[mm]

探测进给速率的计算公式为: v = 测量公差 • n , 其中

v : 探测进给速率[mm/min] 测量公差 测量公差[mm], 取决

于maxPeriphSpeedMeas

轴速 [rpm] n:

probingFeedCalc (122710号)确定探测进给速率的计算:probingFeedCalc (122710号) = ConstantTolerance:

测量公差保持不变,与刀具半径无关。如果刀具较大,探测进给速率被降为零。设置的最高允许旋转速度maxPeriphSpeedMeas(122712号)和允许公差measureTolerance1(122715号)越小,生效的时间越短。

probingFeedCalc (122710号) = VariableTolerance:

测量公差按刀具半径大小调整。以确保探测半径较大的刀具时,有足够的进给速率。该数控系统根据下表调整测量公差:

刀具半径	测量公差
至30 mm	measureTolerance1
30至60 mm	2 • measureTolerance1
60至90 mm	3 • measureTolerance1
90至120 mm	4 • measureTolerance1

probingFeedCalc (122710号) = ConstantFeed:

测量进给速率保持不变;但是测量误差与刀具半径的增加线性地增大:

测量公差 = (r • measureTolerance1)/5 mm), 其中

r: 当前刀具半径[mm] measureTolerance1: 最大允许测量误差

10.1.4 刀具表中的铣削和车削刀具表项

	,	
缩写	输入	对话
CUT	刀刃数(最多20个)	刀齿数?
LTOL	检测刀具磨损量的刀具长度L的允许偏差。如果超出输入值,数控系统锁定刀具(状态L)。输入范围:0至0.9999 mm	磨损允差: 长度?
RTOL	检测磨损量的刀具半径R的允许偏差。如果超出输入值,数控系统锁定刀具(状态L)。输入范围:0至0.9999 mm	磨损允差: 半径?
DIRECT.	测量旋转刀具的刀具切削方向	切削方向(M3 = -)?
R-OFFS	刀具长度测量: 测针中心与刀具中心间的刀具偏移 量。 默认设置: 无输入值 (偏移量 = 刀具半径)	刀具偏置: 半径?
L-OFFS	半径测量:除offsetToolAxis外,测针上沿与刀具底沿间的刀具偏移。默认值:0	刀具偏置: 长度?
LBREAK	刀具破损检查的刀具长度L的允许偏差。如果超出输入值,数控系统锁定刀具(状态L)。输入范围:0至0.9999 mm	折断允差: 长度?
RBREAK	检测刀具破损的刀具半径R的允许偏差。如果超出输入值,数控系统锁定刀具(状态L)。输入范围:0至0.9999 mm	折段允差: 半径?

常见刀具类型输入举例

刀具类型	CUT	R-OFFS	L-OFFS
钻头	无作用	0:无需偏移,因为测 量刀尖	
端铣刀	4:4个切削刃	R:需要偏移,因为刀 具直径大于TT的触盘直 径	0: 半径测量期间不 需要附加偏移。使 用 offsetToolAxis (12270号)的偏移。
球头铣刀 ,直径为10mm	4:4个切削刃	0:不需要偏移,因为 要测量球头极点。	5:在10 mm直径处, 将刀具半径定义为偏 移。如果不是该情况, 将测量更低位置的球头 铣刀直径。因此,将不 修正刀具直径。

10.2 循环30或480CALIBRATE TT

应用

参见机床手册!

可用探测循环**30**或**480**(参见 "循环30至33和循环480至483的差异", 324 页)校准 TT测头。校准过程自动运行。数控系统在完成校准循环的前半程后,旋转主轴180度,数控系统自动测量校准刀的中心偏移量。

可用探测循环30或480 校准TT测头。

测头

用球头或方形触盘的测头

方形触盘

对于方形触盘,机床制造商可在可选机床参数detectStylusRot(114315号)和tippingTolerance(114319号)中保存是否确定了偏移角和倾斜角。确定偏移角,以便在刀具测量时进行补偿。如果超出该倾斜角,数控系统显示报警信息。TT的状态栏显示确定的数据。

更多信息:设置和程序运行用户手册

夹持刀具测头时,必须确保方形触盘的各边尽可能平形于机床轴。偏移角应小于1°和倾斜角应小于0.3°。

校准刀具

校准刀必须是精密的圆柱体,例如圆柱销。校准值结果保存在数控系统存储器中并用于后续刀具测量。

循环顺序

- 1 夹持校准刀。校准刀必须是精密的圆柱体,例如圆柱销
- 2 手动将校准刀定位在加工面上TT中心的上方。
- 3 在刀具轴上将校准刀定位在TT上方约15 mm与安全高度的合计值处
- 4 刀具首先沿刀具轴运动。刀具首先运动到第二安全高度位置,即安全高度+ 15 mm。
- 5 沿刀具坐标轴的校准操作开始
- 6 然后在加工面上校准
- 7 数控系统将校准刀定位在TT半径 + 安全高度 + 11 mm位置处的加工面上
- 8 然后,数控系统沿刀具轴向下运动刀具,开始校准操作
- 9 探测中,数控系统沿正方形路径运动
- 10 数控系统保存校准值并在后续刀具测量中考虑校准值
- 11 然后,数控系统沿刀具坐标轴将测针退到安全高度位置并将测针移到TT的中心位置。

注意

- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 校准测头前,必须将校准刀的准确长度和半径输入在刀具表 "TOOL.T"中。

关于机床参数的说明

- 用机床参数**CfgTTRoundStylus**(114200号)或**CfgTTRectStylus**(114300号)定义校准循环的功能。参见机床手册。
 - 用机床参数centerPos定义TT测头在机床加工区内的位置。
- 如果改变TT测头在工作台上的位置及/或centerPos机床参数,需要重新校准TT 测头。
- 机床制造商用机床参数**probingCapability** (122723号) 定义循环的功能。该参数允许在主轴静止时测量刀具长度,同时不测量刀具半径和各刀齿。

10.2.1 循环参数

帮助图形	参数
441川冬川	₹\$V

Q260 第二安全高度?

输入主轴坐标轴位置,在此位置无与工件或夹具碰撞的危险。第二安全高度为相对当前工件预设点。如果输入较小的第二安全高度值,刀尖低于触盘的顶面,数控系统自动定位校准刀使其高于触盘顶面(safetyDistToolAx(114203号)的安全区)。

输入:-99999.9999...+99999.9999

新版格式举例

11 TOOL CALL 12 Z 12 TCH PROBE 480 CALIBRATE TT ~

;CLEARANCE HEIGHT

老版格式举例

11 TOOL CALL 12 Z

Q260 = +100

12 TCH PROBE 30.0 CALIBRATE TT

13 TCH PROBE 30.1 HEIGHT:+90

10.3 循环31或481CAL. TOOL LENGTH

应用

参见机床手册!

如果需要测量刀具长度,编程探测循环**31**或**482**(参见 "循环30至33和循环480至483的差异",324页)。输入参数允许选择以下三种方法之一测量刀具长度:

- 如果刀具直径大于TT测量面的直径,可以在旋转时测量刀具。
- 如果刀具直径小于TT测量面的直径或如果测量钻头或球头铣刀的长度,刀具静止时可以测量刀具。
- 如果刀具直径大于TT测量面直径,刀具静止时可测量刀具的各刀刃。

刀具旋转过程中测量刀具的循环

数控系统通过将被测刀具定位在相对测头中心的偏心位置,以确定旋转刀的最长刀齿,然后向TT测量面运动直到接触该测量面。偏移值编程在刀具表的"刀具偏移"下:半径(R-OFFS)。

测量静止刀具的循环 (例如钻头)

该数控系统将被测刀具定位在测量面中心的上方位置。然后再将非旋转刀移向TT的测量面直到接触到。对于该测量,在刀具表中的刀具偏移下输入0:半径(R-OFFS)。

测量各刀刃的循环

数控系预定位刀具,使其定位在测头顶端的一侧。在offsetToolAxis(122707号)中定义刀尖到测头上沿间的距离。将附加偏移输入在"刀具"偏移中:刀具表中的长度(L-OFFS)。刀具旋转中,数控系统在径向方向探测刀具,确定各刀齿测量的起始角。然后可改变相应主轴定向角,测量各刀齿长度。要激活该功能,在循环31中设置参数PROBING THE TEETH = 1。

注意

注意

碰撞危险!

如果将stopOnCheck(122717号)设置为FALSE,数控系统不评估结果参数Q199和如果超出破损公差,NC数控程序不停止运行。有碰撞危险!

- ▶ 将stopOnCheck (122717号)设置为TRUE
- ▶ 然后,必须采取措施确保在超出破损公差时,停止NC数控程序运行
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 第一次测量刀具前,在刀具表 "TOOL.T"中输入以下刀具数据:近似半径、近似长度、刀齿数和切削方向。
- 可以分别测量刀具的各刀齿,可达20个刀齿。
- 循环31和481不支持测头、车刀或修整刀。

测量砂轮

■ 该循环考虑TOOLGRIND.GRD表中的基本数据和补偿数据,以及TOOL.T刀具表中的磨损数据和补偿数据(LBREAK和LTOL)。

Q340:0和1

■ 该循环将根据是否定义了初始修整操作(INIT_D),修改补偿数据或基本数据。 该循环将在TOOLGRIND.GRD表的正确位置自动输入数据。

注意砂轮设置的以下顺序。 更多信息:设置和程序运行用户手册

10.3.1 循环参数

帮助图形

参数

Q340 刀具测量模式(0-2)?

定义是否在刀具表中输入测量数据和如何输入。

- 0:将刀具长度测量值写入刀具表TOOL.T的L列和将刀具补偿设置为DL=0。如果TOOL.T已有数据,表中数据将被改写。
- 1:将刀具长度测量值与TOOL.T刀具表中的刀具长度进行比较。数控系统用保存的数据计算偏差值并输入在TOOL.T刀具表的差值DL列中。Q参数Q115也提供偏差值。如果差值大于被刀具磨损或破损允许的刀具长度公差,数控系统将锁定刀具(TOOL.T刀具表中的状态为L)。
- 2:将刀具长度测量值与TOOL.T刀具表中的刀具长度进行比较。数控系统计算与保存的数据间的偏差并将其写入Q参数**Q115**中。刀具表的L列或DL列内无数据。

输入:0,1,2

注意砂轮的工作特性 , 参见 "测量砂轮", 330 页

Q260 第二安全高度?

输入主轴坐标轴位置,在此位置无与工件或夹具碰撞的危险。第二安全高度为相对当前工件预设点。如果输入较小的第二安全高度,刀尖低于触盘的顶面,数控系统自动将刀具定位在高于触盘顶面(safetyDistStylus的安全区)的位置

输入:-99999.9999...+99999.9999

Q341 测量刀齿? 0=no 否/1=yes 是

定义数控系统是否测量各刀齿(最多20个刀齿)

输入:0,1

新版格式举例

11 TOOL CALL 12 Z		
12 TCH PROBE 481 CAL. TOOL LENGTH ~		
Q340=+1	;CHECK ~	
Q260=+100	;CLEARANCE HEIGHT ~	
Q341=+1	;PROBING THE TEETH	

循环31含其它参数:

帮助图形参数

存储计算结果的参数号?

数控系统保存测量状态的参数号:

0.0: 刀具在公差内

1.0:刀具磨损(超出LTOL)

2.0: 刀具破损 (超出LBREAK)。如果不想

在NC数控程序中使用测量结果,用NO ENT按键回答对话提

示

输入: 0...1999

第一次测量旋转刀:老版格式

11 TOOL CALL 12 Z

12 TCH PROBE 31.0 CAL. TOOL LENGTH

13 TCH PROBE 31.1 CHECK:0

14 TCH PROBE 31.2 HEIGHT::+120

15 TCH PROBE 31.3 PROBING THE TEETH:0

检查刀具和测量各刀刃并将状态保存在Q5中;老版格式

11 TOOL CALL 12 Z

12 TCH PROBE 31.0 CAL. TOOL LENGTH

13 TCH PROBE 31.1 CHECK:1 Q5

14 TCH PROBE 31.2 HEIGHT:+120

15 TCH PROBE 31.3 PROBING THE TEETH:1

10.4 循环32或482CAL. TOOL RADIUS

应用

参见机床手册!

如果需要测量刀具半径,编程探测循环32或482(参见"循环30至33和循环480至483的差异",324页)。输入参数允许选择以下两种方法之一,用其测量刀具半径:

- 刀具旋转时,测量刀具
- 刀具旋转时,测量刀具并测量各刀刃

数控系统将被测刀具预定位在测头顶端一侧。在offsetToolAxis(122707号)中定 义铣刀面到测头顶沿间的距离。刀具旋转时,数控系统在径向方向上探测刀具。如 果编程后续测量各刀刃的程序,数控系统将借助主轴定向测量各刀刃的半径。

注意

注意

碰撞危险!

如果将stopOnCheck(122717号)设置为FALSE,数控系统不评估结果参数Q199和如果超出破损公差,NC数控程序不停止运行。有碰撞危险!

- ▶ 将stopOnCheck (122717号)设置为TRUE
- ▶ 然后,必须采取措施确保在超出破损公差时,停止NC数控程序运行
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 第一次测量刀具前,在刀具表 "TOOL.T"中输入以下刀具数据:近似半径、近似长度、刀齿数和切削方向。
- 循环32和482不支持测头、车刀或修整刀。

测量砂轮

■ 该循环考虑TOOLGRIND.GRD表中的基本数据和补偿数据,以及TOOL.T刀具表中的磨损数据和补偿数据(RBREAK和RTOL)。

Q340:0和1

■ 该循环将根据是否定义了初始修整操作(INIT_D),修改补偿数据或基本数据。 该循环将在TOOLGRIND.GRD表的正确位置自动输入数据。

注意砂轮设置的以下顺序。 更多信息:设置和程序运行用户手册

关于机床参数的说明

- 机床制造商用机床参数**probingCapability** (122723号) 定义循环的功能。该参数允许在主轴静止时测量刀具长度,同时不测量刀具半径和各刀齿。
- 主轴静止时,测量金刚石表面的圆柱形刀具。为此,在刀具表中将刀齿(CUT)数定义为0并调整机床参数CfgTT。参见机床手册。

10.4.1 循环参数

帮助图形参数

Q340 刀具测量模式 (0-2)?

定义是否在刀具表中输入测量数据和如何输入。

0:将刀具半径测量值写入刀具表TOOL.T的R列并将刀具补偿设置为DR = 0。如果TOOL.T已有数据,表中数据将被改写。

1:刀具半径测量值与TOOL.T刀具表中的刀具半径R进行比较。然后,数控系统计算与保存的数据间的偏差并在TOOL.T刀具表中将其输入为差值DR。参数Q116也提供该偏差值。如果差值大于刀具磨损或破损检测允许的刀具半径公差,数控系统将锁定刀具(TOOL.T刀具表中状态为L)。

2:刀具半径测量值与TOOL.T刀具表中的刀具半径进行比较。数控系统计算与保存值的偏差并将其输入在Q参数**Q116**中。刀具表的R列或DR列内无数据。

输入:0,1,2

Q260 第二安全高度?

输入主轴坐标轴位置,在此位置无与工件或夹具碰撞的危险。第二安全高度为相对当前工件预设点。如果输入较小的第二安全高度,刀尖低于触盘的顶面,数控系统自动将刀具定位在高于触盘顶面(safetyDistStylus的安全区)的位置。

输入:-99999.9999...+99999.9999

Q341 测量刀齿? 0=no 否/1=yes 是

定义数控系统是否测量各刀齿(最多20个刀齿)

输入:0,1

新版格式举例

11 TOOL CALL 12 Z	
12 TCH PROBE 482 CAL.	TOOL RADIUS ~
Q340=+1	;CHECK ~
Q260=+100	;CLEARANCE HEIGHT ~
Q341=+1	;PROBING THE TEETH

循环32含其它参数:

帮助图形参数

存储计算结果的参数号?

数控系统保存测量状态的参数号:

0.0: 刀具在公差内

1.0: 刀具磨损 (超出RTOL)

2.0:刀具破损(超出RBREAK)。如果不想

在NC数控程序中使用测量结果,用NO ENT按键回答对话提

示

输入: 0...1999

第一次测量旋转刀:老版格式

11 TOOL CALL 12 Z

12 TCH PROBE 32.0 CAL. TOOL RADIUS

13 TCH PROBE 32.1 CHECK:0

14 TCH PROBE 32.2 HEIGHT:+120

15 TCH PROBE 32.3 PROBING THE TEETH:0

检查刀具和测量各刀刃并将状态保存在Q5中;老版格式

11 TOOL CALL 12 Z

12 TCH PROBE 32.0 CAL. TOOL RADIUS

13 TCH PROBE 32.1 CHECK:1 Q5

14 TCH PROBE 32.2 HEIGHT:+120

15 TCH PROBE 32.3 PROBING THE TEETH:1

10.5 循环33或483MEASURE TOOL

应用

参见机床手册!

要测量刀具长度和半径,编程探测循环**33**或 **483** (参见 "循环30至33和循环480至483的差异",324页)。该循环特别适用于第一次测量刀具,相比长度和半径分别测量,该循环可节省时间。输入参数允许选择以下两种方法之一进行刀具测量:

- 刀具旋转时,测量刀具
- 刀具旋转时,测量刀具并测量各刀刃

在刀具旋转时测量刀具:

数控系统以固定编程顺序测量刀具。如果可能,首先测量刀具长度,然后测量刀具 半径。

测量刀具的各刀齿:

数控系统以固定编程顺序测量刀具。先测量刀具半径,再测量长度。测量顺序与探测循环31和32以及481和482的顺序相同。

注意

注意

碰撞危险!

如果将stopOnCheck(122717号)设置为FALSE,数控系统不评估结果参数Q199和如果超出破损公差,NC数控程序不停止运行。有碰撞危险!

- ▶ 将stopOnCheck (122717号)设置为TRUE
- ▶ 然后,必须采取措施确保在超出破损公差时,停止NC数控程序运行
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 第一次测量刀具前,在刀具表 "TOOL.T"中输入以下刀具数据:近似半径、近似长度、刀齿数和切削方向。
- 循环33和483不支持测头、车刀或修整刀。

测量砂轮

■ 该循环考虑TOOLGRIND.GRD表的基本数据和补偿数据,以及刀具表TOOL.T中的磨损数据和补偿数据(LBREAK,RBREAK,LTOL和RTOL)。

Q340:0和1

■ 该循环将根据是否定义了初始修整操作(INIT_D),修改补偿数据或基本数据。 该循环将在TOOLGRIND.GRD表的正确位置自动输入数据。

注意砂轮设置的以下顺序。 更多信息:设置和程序运行用户手册

关于机床参数的说明

- 机床制造商用机床参数**probingCapability** (122723号) 定义循环的功能。该参数允许在主轴静止时测量刀具长度,同时不测量刀具半径和各刀齿。
- 主轴静止时,测量金刚石表面的圆柱形刀具。为此,在刀具表中将刀齿(CUT)数定义为0并调整机床参数CfgTT。参见机床手册。

10.5.1 循环参数

帮助图形

参数

Q340 刀具测量模式 (0-2)?

定义是否在刀具表中输入测量数据和如何输入。

0:将刀具长度测量值和刀具半径测量值写入刀具表TOOL.T的L列和R列中,将刀具补偿值设置为DL=0和DR=0。如果TOOL.T已有数据,表中数据将被改写。

1:刀具长度测量值和刀具半径测量值与TOOL.T的刀具长度L和刀具半径R进行比较。数控系统计算与保存的数据间偏差并在TOOL.T刀具表中将其输入为差值DL和DR。Q参数Q115和Q116也提供该偏差值。如果差值大于刀具磨损或破损检测允许的刀具长度或刀具半径公差,数控系统将锁定刀具(TOOL.T刀具表中的状态为L)。

2:刀具长度测量值和刀具半径测量值与TOOL.T的刀具长度L和刀具半径R进行比较。数控系统计算保存的数据间的偏差并将其写入Q参数**Q115**或**Q116**。刀具表的L、R列或DL、DR列内无数据。

输入:0,1,2

Q260 第二安全高度?

输入主轴坐标轴位置,在此位置无与工件或夹具碰撞的危险。第二安全高度为相对当前工件预设点。如果输入较小的第二安全高度,刀尖低于触盘的顶面,数控系统自动将刀具定位在高于触盘顶面(safetyDistStylus的安全区)的位置。

输入:-99999.9999...+99999.9999

Q341 测量刀齿? 0=no 否/1=yes 是

定义数控系统是否测量各刀齿(最多20个刀齿)

输入:0,1

新版格式举例

11 TOOL CALL 12 Z	
12 TCH PROBE 483 ME	ASURE TOOL ~
Q340=+1	;CHECK ~
Q260=+100	;CLEARANCE HEIGHT ~
Q341=+1	;PROBING THE TEETH

循环33含其它参数:

帮助图形参数

存储计算结果的参数号?

数控系统保存测量状态的参数号:

0.0: 刀具在公差内

1.0: 刀具磨损 (超出LTOL及/或RTOL)

2.0:刀具破损(超出LBREAK及/或RBREAK)。如果不想在NC数控程序中使用测量结果,用NO ENT按键回答对话提

示。

输入: 0...1999

第一次测量旋转刀:老版格式

11 TOOL CALL 12 Z

12 TCH PROBE 33.0 MEASURE TOOL

13 TCH PROBE 33.1 CHECK:0

14 TCH PROBE 33.2 HEIGHT:+120

15 TCH PROBE 33.3 PROBING THE TEETH:0

检查刀具和测量各刀刃并将状态保存在Q5中;老版格式

11 TOOL CALL 12 Z

12 TCH PROBE 33.0 MEASURE TOOL

13 TCH PROBE 33.1 CHECK:1 Q5

14 TCH PROBE 33.2 HEIGHT:+120

15 TCH PROBE 33.3 PROBING THE TEETH:1

10.6 循环484CALIBRATE IR TT

应用

循环**484**可校准刀具测头(例如,红外无线TT 460刀具测头)。可在手动或非手动操作下执行校准。

- **手动操作**:如果定义**Q536** = 0,校准开始前,数控系统将停止操作。然后,需要手动定位校准刀,使其位于刀具测头中心的上方。
- **非手动操作**:如果定义**Q536** = 1,数控系统自动执行循环。可能需要先编程定位运动。这取决于参数**Q523** (**定位TT**)值。

循环顺序

参见机床手册!

机床制造商定义该循环的功能。

要校准刀具测头,编程探测循环484。在输入参数Q536中,指定用手动或非手动操作运行该循环。

测头

用球头或方形触盘的测头

方形触盘:

对于方形触盘,机床制造商可在可选机床参数detectStylusRot(114315号)和tippingTolerance(114319号)中保存是否确定了偏移角和倾斜角。确定偏移角,以便在刀具测量时进行补偿。如果超出该倾斜角,数控系统显示报警信息。TT的状态栏显示确定的数据。

更多信息:设置和程序运行用户手册

夹持刀具测头时,必须确保方形触盘的各边尽可能平形于机床轴。偏移角应小于1°和倾斜角应小于0.3°。

校准刀具:

校准刀必须是精密的圆柱体,例如圆柱销。在"TOOL.T"刀具表中,输入准确的校准刀长度和半径。校准后,数控系统保存校准值并用于后续刀具测量。校准刀直径应大于15 mm和应伸出夹头约50 mm。

Q536 = 0:校准前手动操作

操作步骤为:

- ▶ 插入校准刀
- ▶ 启动校准循环
- > 数控系统中断校准循环并在中显示对话。
- ▶ 手动定位校准刀,使其位于刀具测头中心的上方。

必须确保校准刀位于触盘测量面的上方。

- ▶ 按下NC start (NC启动)按键,恢复循环顺序
- 如果编程了Q523 = 2,数控系统将校准的位置写入机床参数centerPos(114200号)中

Q536 = 1:校准前非手动操作

操作步骤为:

- ▶ 插入校准刀
- ▶ 循环开始前,将校准刀定位在刀具测头中心的上方。

- 必须确保校准刀位于触盘测量面的上方。
- 为进行非手动校准操作,不需要将校准刀定位在刀具测头中心的上方。该循环用机床参数调整位置并自动将刀具移到该位置。
- ▶ 启动校准循环
- > 校准循环连续运行。
- > 如果编程了**Q523 = 2**,数控系统将校准的位置写入机床参数**centerPos**(114200号)中。

注意

注意

碰撞危险!

为避免碰撞,用**Q536**=1调用该循环前,必须预定位刀具!完成校准循环的前半程后,旋转主轴180度,该数控系统测量校准刀的中心偏移量。

- ▶ 指定循环开始前停止还是不停止自动运行该循环。
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 校准刀直径应大于15 mm和应伸出夹头约50 mm。使用这些尺寸的圆柱销时,每1 N的探测力将导致的变形只有0.1 μm。如果使用直径过小的校准刀及/或伸出夹头的距离不足,误差可能较大。
- 校准测头前,必须将校准刀的准确长度和半径输入在刀具表 "TOOL.T"中。
- 如果TT在工作台上的位置有变化,需要重新校准。

关于机床参数的说明

■ 机床制造商用机床参数**probingCapability** (122723号) 定义循环的功能。该参数允许在主轴静止时测量刀具长度,同时不测量刀具半径和各刀齿。

10.6.1 循环参数

帮助图形

参数

Q536 执行前停止(0=停止)?

定义数控系统在校准前是否停止操作,或是否不停止自动执行循环。

0:校准操作前停止操作。数控系统提示手动将校准刀定位在刀具测头的上方。将刀具移到刀具测头上方的大致位置,按下**NC Start**(NC启动)按键继续校准操作或按下**取消**按钮取消校准操作。

1:校准操作前不停止操作。数控系统根据**Q523**参数值开始校准操作。运行循环**484**前,必须将刀具定位在刀具测头上方。

输入:0,1

Q523 刀具测头位置(0-2)?

刀具测头的位置:

0:校准刀的当前位置。刀具测头的位置低于校准刀的当前位置。如果Q536 = 0,循环执行期间,手动将校准刀定位在刀具测头中心的上方。如果Q536 = 1,需要在循环开始前,将校准刀具定位在刀具测头中心的上方。

1:设置的刀具测头位置。数控系统调整机床参数centerPos(114201号)确定的位置。不需要预定位刀具。校准刀自动接近位置。

2:校准刀的当前位置。参见**Q523 = 0。0**。校准后,数控系统另外将确定的位置(如适用)写入机床参数centerPos(114201号)中。

输入:0,1,2

举例

• • •	
11 TOOL CALL 12 Z	
12 TCH PROBE 484 CAL	IBRATE IR TT ~
Q536=+0	;STOP BEFORE RUNNING ~
Q523=+0	;TT POSITION

10.7 循环485MEASURE LATHE TOOL (选装项50)

应用

参见机床手册!

要使用这个循环,必须由机床制造商对机床和数控系统进行专门设置。

循环485 MEASURE LATHE TOOL用海德汉刀具测头测量车刀。数控系统以固定编程顺序测量刀具。

循环顺序

- 1 数控系统将车刀定位在第二安全高度
- 2 根据**TO**和**ORI**的设置进行车刀定向
- 3 数控系统沿基本轴将刀具移到测量位置;在基本轴和辅助轴上进行插补行程运动
- 4 然后,将车刀移到刀具轴的测量位置
- 5 测量刀具。根据**Q340**的定义,可修改刀具尺寸或将刀具锁定
- 6 将测量结果传输给结果参数Q199
- 7 执行测量后,数控系统沿刀具轴将刀具定位在第二安全高度

结果参数Q199:

结果	含义
0	刀具尺寸在公差 LTOL / RTOL 内 刀具未被锁定
1	刀具尺寸在公差LTOL / RTOL外 刀具被锁定
2	刀具尺寸在公差LBREAK / RBREAK外 刀具被锁定

该循环用toolturn.trn表的以下表项:

缩写	表项	对话
ZL	刀具长度1(Z 轴方向)	刀具长度 1?
XL	刀具长度2(X 轴方向)	刀具长度 2?
DZL	刀具长度1的差值(Z轴方向)累加到ZL上	刀具长度正差值 1?
DXL	刀具长度2的差值(X轴方向)累加到XL上	刀具长度正差值 2?
RS	切削刃半径:如果用半径补偿RL或RR编程轮廓,数 控系统在车削循环中考虑切削刃半径,并执行半径补 偿	切削刃半径?
то	刀具方向:数控系统用刀具方向确定刀尖位置,根据选定的刀具类型,确定其它信息,例如刀具角度方向、刀具参考点位置等。部分情况下,需要此信息,例如计算刀具半径补偿、铣刀半径补偿和切入角等	刀具定向?
ORI	主轴定向角:可转位刀片到基本轴的角度	主轴定向角?
TYPE	车刀类型:粗加工刀ROUGH,精加工刀FINISH, 螺纹加工刀THREAD,槽加工刀RECESS,圆钮 刀BUTTON,车槽刀RECTURN	车刀类型

更多信息: "刀具方向(TO)特性支持以下车刀类型(TYPE)", 342页

刀具方向(TO)特性支持以下车刀类型(TYPE)

ТҮРЕ	支持的TO 可能有限制	不支持的TO	
粗加工 (ROUGH), 精加工(FINISH)	■ 1 ■ 7 ■ 2,仅XL ■ 3,仅XL ■ 5,仅XL ■ 6,仅XL ■ 8,仅ZL	■ 4 ■ 9	7 8 1 X+ 5 4 3 5 6
圆钮(BUTTON)	■ 1 ■ 7 ■ 2 , 仅XL ■ 3 , 仅XL ■ 5 , 仅XL ■ 6 , 仅XL ■ 8 , 仅ZL	■ 4 ■ 9	TO=
开槽 (RECESS), 开槽车刀 (RECTURN)	■ 1 ■ 7 ■ 8 ■ 2 ■ 3,仅XL ■ 5,仅XL	■ 4 ■ 6 ■ 9	7 CUTWIDTH RS 8 2 7 1
螺纹(THREAD)	■ 1 ■ 7 ■ 8 ■ 2 ■ 3,仅XL ■ 5,仅XL	■ 4 ■ 6 ■ 9	7 TO X+ 6 4

注意

注意

碰撞危险!

如果将stopOnCheck(122717号)设置为FALSE,数控系统不评估结果参数Q199和如果超出破损公差,NC数控程序不停止运行。有碰撞危险!

- ▶ 将stopOnCheck (122717号)设置为TRUE
- ▶ 然后,必须采取措施确保在超出破损公差时,停止NC数控程序运行

注意

碰撞危险!

如果刀具数据**ZL** / DZL和**XL** / DXL与实际刀具数据偏差超过 $\pm 2~mm$, 有碰撞危险。

- ▶ 输入更接近±2 mm的近似刀具数据
- ▶ 谨慎地运行该循环
- 只能在**铣削模式功能**的加工操作模式下执行该循环。
- 启动循环前,必须在刀具轴**Z**轴运行**刀具调用**指令。
- 如果定义的YL和DYL值超出±5 mm,刀具将无法达到刀具测头。
- 该循环不支持SPB-INSERT(角度偏移)。在SPB-INSERT中必须输入0值,否则数控系统将生成出错信息。

关于机床参数的说明

■ 该循环取决于可选机床参数**CfgTTRectStylus**(114300号)。参见机床手册。

10.7.1 循环参数

帮助图形

参数

Q340 刀具测量模式 (0-2)?

测量值的使用:

0:将测量值输入到ZL和XL中。如果刀具表中已有输入值,将被覆盖。DZL和DXL将被重置为0。将不改变TL

1:测量值ZL和XL与刀具表中数据进行比较。这些值将不改变。然后,数控系统计算ZL和XL偏差值,并将这些值输入到DZL和DXL中。如果差值大于允许的磨损或破损公差,数控系统锁定刀具(TL=刀具锁定)。此外,可将偏差值输入在Q参数Q115和Q116中

2:测量值ZL和XL及DZL和DXL与刀具表中数据进行比较,但不修改表中数据。如果数据大于允许的磨损或破损公差,数控系统锁定刀具(TL=刀具锁定)。

输入:0,1,2

Q260 第二安全高度?

输入主轴坐标轴位置,在此位置无与工件或夹具碰撞的危险。第二安全高度为相对当前工件预设点。如果输入较小的第二安全高度,刀尖低于触盘的顶面,数控系统自动将刀具定位在高于触盘顶面(safetyDistStylus的安全区)的位置。

输入:-99999.9999...+99999.9999

举例

11 TOOL CALL 12 Z	
12 TCH PROBE 485 ME	ASURE LATHE TOOL ~
Q340=+1	;CHECK ~
Q260=+100	;CLEARANCE HEIGHT

特殊循环

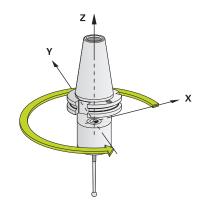
11.1 基础知识

11.1.1 概要

数控系统提供以下特殊用途循环:

循环			
9	DWELL TIME	DEF定义	更多信息 :加工循环用户
	■ 延迟执行编程的停顿时间	生效	手册
12	PGM CALL	DEF定义	更多信息 :加工循环用户
	■ 调用任何NC数控程序	生效 ————————————————————————————————————	手册 ————————————————————————————————————
13	ORIENTATION	DEF定义 生效	"循环13(ORIENTATION "
22	■ 将主轴转到特定角度位置 TOLERANCE		五名信息 ,加工纸环田克
32	TOLERANCE ■ 为无加加速的加工操作编程允许的轮廓偏差	DEF定义 生效	更多信息: 加工循环用户 手册
291	COUPLG.TURNG.INTERP. (选装项96)	CALL定义	
	● 关联刀具轴与直线轴位置	生效	手册
	■ 或,解除主轴关联		
292	CONTOUR.TURNG.INTRP. (选装项96)	CALL定义	更多信息: 加工循环用户
	■ 关联刀具轴与直线轴位置	生效	手册
	在当前加工面中创建部分旋转对称轮廓支持倾斜加工面		
225	ENGRAVING	CALL定义	
	■ 在平面上雕刻文字	生效	手册
	■ 直线排列或沿圆弧排列		
232	FACE MILLING	CALL定义	更多信息 :加工循环用户
	■ 多次进刀在端面铣削平面	生效	手册
205	■ 选择铣削平面 PETALE CEAR () **********************************	DEF:	=4:
285	DEFINE GEAR (选装项157) ■ 定义齿轮的几何	DEF定义 生效	更多信息: 加工循环用户 手册
286	GEAR HOBBING(选装项157)	CALL定义	更多信息 :加工循环用户
	■ 刀具数据的定义	生效	手册
	■ 加工方式和加工侧的选择		
	■ 使用整个切削刃的可能性		
287	GEAR SKIVING (选装项157)	CALL定义 生效	更多信息: 加工循环用户 手册
	■ 刀具数据的定义 ■ 加工侧的选择	土双	רונו ב
	第一次和最后一次进刀的定义		
	■ 切削次数的定义		
238	MEASURE MACHINE STATUS (选装项155)	DEF定义	更多信息 :加工循环用户
	■ 确定当前机床状态或测试测量顺序	生效	手册 ————————————————————————————————————
239	ASCERTAIN THE LOAD (选装项143)	DEF定义	更多信息 :加工循环用户
	■ 重量测量的选择 ■ 重要免费权关的前续和控制的完全数	生效	手册
	■ 重置负载相关的前馈和控制单元参数		

循环		顺序	更多信息
18	THREAD CUTTING 用受控主轴主轴停在孔底	CALL 定义 生效	更多信息 :加工循环用户 手册


11.2 循环13 (ORIENTATION

应用

参见机床手册!

要使用这个循环,必须由机床制造商对机床和数控系统进行专门设置。

该数控系统可以控制机床刀具主轴并能将其旋转到指定角度位置处。

■ 有确定换刀位置的换刀系统

以下情况需要定向主轴:

■ 定向用红外线传输信号的海德汉公司的3-D测头发射器/接收器窗口数控系统用M19或M20将主轴定位在循环中定义的角度位置(取决于机床)。如果用M19或M20编写的程序事先无定义的循环13,数控系统将主轴定位在机床制造商设置的角度位置。

注意

■ 只能在**铣削模式功能、车削模式功能**和**修整功能**加工模式下执行该循环。

11.2.1 循环参数

帮助图形	参数	
	定向角 输入相对加工面角度参考轴的角度。 输入: 0360	

举例

11 CYCL DEF 13.0 ORIENTATION
12 CYCL DEF 13.1 ANGLE180

索引	公	本旋转
	公差监测 201	本旋转103
3	基	确定工件的不对正量:平面上探测
3-D测量	基本旋转 92	64
3-D探测 262	基本旋转:用两个凸台	确定工件的不对正量:探测棱边.70
F	基本旋转:用两孔95	确定工件的不对正量:探测两个圆
FCL 35	基本旋转:用旋转轴103	77
W	基本旋转:直接设置112	确定工件的不对正量:斜边探测. 85
K	记	确定倾斜的工件位置:探测循环 4xx:基础知识
KinematicsOpt 288	记录测量结果 199	
Kinematics测量:保存运动特性 291	<u> </u>	软
Z31 Kinematics测量:基础知识 288	检	软件版本号29
	检查工件不对正量:测量槽宽 230	软件选装项 30
安	检查工件不对正量:测量角度 206	数
安全注意事项27	检查工件不对正量:测量矩形凸台	数控系统比较
安全注意事项:内容22		数控系统记载
操	检查工件不对正量:测量矩形型腔 221	
操作地	221 检查工件不对正量:测量螺栓孔圆	探
	242	探测循环14xx:基础知识 55
测	检查工件不对正量:测量平面 247	探测循环14xx:平面上探测 64
测量:角度 206	检查工件不对正量:测量凸台宽度	探测循环14xx:探测棱边
测量: 孔 209	234	探测循环14xx:探测两个圆 77 探测循环14xx:斜边探测 85
测量:螺栓孔圆	检查工件不对正量:测量坐标 237	1木,则(la 1小 14xx . 新足1木,则
测量:内侧宽度	检查工件的不对正量:参考面 203	特
测量:十回247 测量:凸台宽度	检查工件的不对正量:测量孔 209 检查工件的不对正量:测量圆 215	特性内容等级 35
测量:因口见反	检查工件的不对正量:测量图 213 检查工件的不对正量:极坐标预设	校
测量:在矩形内测量矩形 221	点 204	***
测量:在矩形外测量矩形 225		校准循环 274 校准循环:环规内探测校准 278
测量:坐标 237	结	校准循环:环观内探测仪准 278 校准循环:量规上的校准探测… 280
测量槽宽 230	结果分类 201	校准循环:校准探测 282
测量矩形凸台225 测量矩形型腔221	决	校准循环:校准探测长度 276
测量内侧宽度221 测量内侧宽度	决定工件的不对正量:探测循环	在
测量凸台宽度234	14xx的基础知识55	许 许可条件 35
		计可条件 35
Д	快	延
刀具表	快速探测 267	延伸探测 269
刀具补偿 201	联	
刀具测量:IR TT校准 337 刀具测量:TT校准 327	联系	用
刀兵测量:11校准327 刀具测量:测量车刀340		用户手册的分屏布局
刀具测量:测量刀具长度和半径	目	用循环3测量 257
334	目标用户群 20	预
刀具测量:刀具半径	其	预设点自动设置:矩形凸台 137
刀具测量:刀具长度	其它文档 21	预设点自动设置:矩形型腔 132
刀具测量:基础知识		预设点自动设置:螺栓孔圆 166
刀具测量:机床参数	确	预设点自动设置:球探测 125
定	确定工件不对正量:基本旋转 92	预设点自动设置:外角点 155
 定位规则 48	确定工件不对正量:设置基本旋转	预设点自动设置:循环4xx的基础知识
	112 确实工作不动工具,用C纳烷株 109	预设点自动设置:一个位置探测
	确定工件不对正量:用C轴旋转 108 确定工件不对正量:用两孔的基本	117
工件自动检测:基础知识 198	旋转	预设点自动设置:圆弧凸台149
	确定工件不对正量:用两凸台的基	预设点自动设置:圆弧型腔(孔)

143 预设点自动设置:圆探测 12	21
圆 圆内测量圆20)9
运	
运动特性测量: 反向间隙	97 96 96
在	
在圆外测量圆21	L 5
正	
正 正确和预期操作	26
主	
主轴定向34	17
注	
	22
自	
自动设置预设点:4孔的圆心 17 自动设置预设点:槽中心 18 自动设置预设点:单轴	33 30

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH

Dr.-Johannes-Heidenhain-Straße 5

83301 Traunreut, Germany

2 +49 8669 31-0 FAX +49 8669 32-5061 info@heidenhain.de

service.ms-support@heidenhain.de

NC support service.nc-support@heidenhain.de

NC programming \$\infty\$ +49 8669 31-3103 service.nc-pgm@heidenhain.de

PLC programming \$\alpha\$ +49 8669 31-3102 service.plc@heidenhain.de

APP programming +49 8669 31-3106 service.app@heidenhain.de

www.heidenhain.com

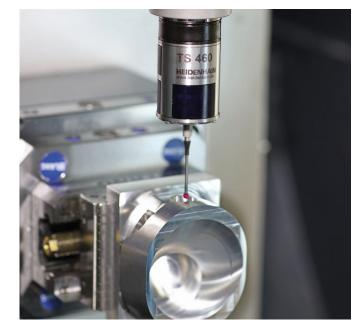
海德汉测头

缩短非生产时间和提高成品工件的尺寸精度。

工件测头

TS 150, TS 电缆传输信号

260, TS 750


TS 460, TS 760 无线电或红外线信号传输

TS 642, TS 740 红外线传输

工件找正

预设点设置

工件测量

刀具测头

TT 160 电缆传输信号 TT 460 红外线传输

刀具测量

磨损监测

刀具破损检测

