HEIDENHAIN

User's Manual
Cycle Programming

TNC 640

NC Software

 340590-01 340591-01340594-01

About this Manual

The symbols used in this manual are described below.

This symbol indicates that important information about the function described must be considered.

This symbol indicates that there is one or more of the following risks when using the described function:

- Danger to workpiece
- Danger to fixtures
- Danger to tool
- Danger to machine

Danger to operator

This symbol indicates that the described function must be adapted by the machine tool builder. The function described may therefore vary depending on the machine.

This symbol indicates that you can find detailed information about a function in another manual.

Would you like any changes, or have you found any errors?

We are continuously striving to improve our documentation for you. Please help us by sending your requests to the following e-mail address: tnc-userdoc@heidenhain.de.

TNC Model, Software and Features

This manual describes functions and features provided by TNCs as of the following NC software numbers.

TNC model	NC software number
TNC 640	$340590-01$
TNC 640 E	$340591-01$
TNC 640 Programming Station	$340594-01$

The suffix E indicates the export version of the TNC. The export version of the TNC has the following limitations:

- Simultaneous linear movement in up to 4 axes

The machine tool builder adapts the usable features of the TNC to his machine by setting machine parameters. Some of the functions described in this manual may therefore not be among the features provided by the TNC on your machine tool.

TNC functions that may not be available on your machine include:

- Tool measurement with the TT

Please contact your machine tool builder to become familiar with the features of your machine.
Many machine manufacturers, as well as HEIDENHAIN, offer programming courses for the TNCs. We recommend these courses as an effective way of improving your programming skill and sharing information and ideas with other TNC users.

```
User's Manual:
All TNC functions that have no connection with cycles
are described in the User's Manual of the TNC 640.
Please contact HEIDENHAIN if you require a copy of
this User's Manual.
ID of Conversational Programming User's Manual:
892 903-xx.
ID of User's Manual for DIN/ISO programming:
892 909-xx.
```


Software options

The TNC 640 features various software options that can be enabled by your machine tool builder. Each option is to be enabled separately and contains the following respective functions:

Software option 1 (option number \#08)
Cylinder surface interpolation (Cycles 27, 28 and 29)
Feed rate in mm/min for rotary axes: M116
Tilting the machining plane (plane functions, Cycle 19 and 3D-ROT soft key in the Manual Operation mode)

Circle in 3 axes with tilted working plane

Software option 2 (option number \#09)

5-axis interpolation
3-D machining:
M128: Maintaining the position of the tool tip when positioning with tilted axes (TCPM)
FUNCTION TCPM: Maintaining the position of the tool tip when positioning with tilted axes (TCPM) in selectable modes
M144: Compensating the machine's kinematic configuration for ACTUAL/NOMINAL positions at end of block
LN blocks (3-D compensation)

HEIDENHAIN DNC (option number \#18)

Communication with external PC applications over COM component

Additional conversational language (option number \#41)
Function for enabling the conversational languages Slovenian, Slovak, Norwegian, Latvian, Estonian, Korean, Turkish, Romanian, Lithuanian.

Display step (option number \#23)
Input resolution and display step:

- For linear axes to $0.01 \mu \mathrm{~m}$
- Rotary axes to 0.00001°

Double speed (option number \#49)
Double-speed control loops are used primarily for high-speed spindles as well as for linear motors and torque motors

KinematicsOpt software option (option number \#48)
Touch-probe cycles for inspecting and optimizing the machine accuracy

Mill-Turning software option (option number \#50)
Functions for milling/turning mode:

- Switching between Milling/Turning mode of operation

Constant surface speed

- Tool-tip radius compensation
- Turning cycles

Extended Tool Management software option (option number \#93)

Tool management that can be changed by the machine manufacturer using Python scripts

Feature content level (upgrade functions)

Along with software options, significant further improvements of the TNC software are managed via the Feature Content Level (FCL) upgrade functions. Functions subject to the FCL are not available simply by updating the software on your TNC.

All upgrade functions are available to you without surcharge when you receive a new machine.

Upgrade functions are identified in the manual with FCL \mathbf{n}, where \mathbf{n} indicates the sequential number of the feature content level.

You can purchase a code number in order to permanently enable the FCL functions. For more information, contact your machine tool builder or HEIDENHAIN.

Intended place of operation

The TNC complies with the limits for a Class A device in accordance with the specifications in EN 55022, and is intended for use primarily in industrially-zoned areas.

Legal information

This product uses open source software. Further information is available on the control under
> Programming and Editing operating mode

- MOD function
- LICENSE INFO soft key

Contents

Fundamentals / Overviews

Using Fixed Cycles

Fixed Cycles: Drilling

Fixed Cycles: Tapping / Thread Milling
Fixed Cycles: Pocket Milling / Stud Milling / Slot Milling

Fixed Cycles: Pattern Definitions

Fixed Cycles: Contour Pocket

Fixed Cycles: Cylindrical Surface
Fixed Cycles: Contour Pocket with Contour Formula

Fixed Cycles: Multipass Milling

Cycles: Coordinate Transformations

Cycles: Special Functions

Cycles: Turning

Using Touch Probe Cycles
Touch Probe Cycles: Automatic Measurement of Workpiece Misalignment

Touch Probe Cycles: Automatic Datum Setting
Touch Probe Cycles: Automatic Workpiece Inspection

Touch Probe Cycles: Special Functions
Touch Probe Cycles: Automatic Kinematics Measurement

Touch Probe Cycles: Automatic Tool Measurement
1.1 Introduction 38
1.2 Available Cycle Groups 39
Overview of fixed cycles 39
Overview of touch probe cycles 40
2 Using Fixed Cycles 41
2.1 Working with Fixed Cycles 42
Machine-specific cycles 42
Defining a cycle using soft keys 43
Defining a cycle using the GOTO function 43
Calling cycles 44
2.2 Pattern Definition PATTERN DEF 46
Application 46
Entering PATTERN DEF 47
Using PATTERN DEF 47
Defining individual machining positions 48
Defining a single row 49
Defining a single pattern 50
Defining individual frames 51
Defining a full circle 52
Defining a pitch circle 53
2.3 Point Tables 54
Application 54
Creating a point table 54
Hiding single points from the machining process 55
Selecting a point table in the program 56
Calling a cycle in connection with point tables 57

3 Fixed Cycles: Drilling 59

3.1 Fundamentals 60

Overview 60
3.2 CENTERING (Cycle 240, DIN/ISO: G240) 61

Cycle run 61
Please note while programming: 61
Cycle parameters 62
3.3 DRILLING (Cycle 200) 63

Cycle run 63
Please note while programming: 63
Cycle parameters 64
3.4 REAMING (Cycle 201, DIN/ISO: G201) 65

Cycle run 65
Please note while programming: 65
Cycle parameters 66
3.5 BORING (Cycle 202, DIN/ISO: G202) 67

Cycle run 67
Please note while programming: 68
Cycle parameters 69
3.6 UNIVERSAL DRILLING (Cycle 203, DIN/ISO: G203) 71

Cycle run 71
Please note while programming: 72
Cycle parameters 73
3.7 BACK BORING (Cycle 204, DIN/ISO: G204) 75

Cycle run 75
Please note while programming: 76
Cycle parameters 77
3.8 UNIVERSAL PECKING (Cycle 205, DIN/ISO: G205) 79

Cycle run 79
Please note while programming: 80
Cycle parameters 81
3.9 BORE MILLING (Cycle 208) 83

Cycle run 83
Please note while programming: 84
Cycle parameters 85
3.10 SINGLE-LIP DEEP-HOLE DRILLING (Cycle 241, DIN/ISO: G241) 86

Cycle run 86
Please note while programming: 86
Cycle parameters 87
3.11 Programming Examples 89
4 Fixed Cycles: Tapping / Thread Milling 93
4.1 Fundamentals 94
Overview 94
4.2 TAPPING NEW with a Floating Tap Holder (Cycle 206, DIN/ISO: G206) 95
Cycle run 95
Please note while programming: 95
Cycle parameters 96
4.3 RIGID TAPPING without a Floating Tap Holder NEW (Cycle 207, DIN/ISO: G207) 97
Cycle run 97
Please note while programming 98
Cycle parameters 99
4.4 TAPPING WITH CHIP BREAKING (Cycle 209, DIN/ISO: G209) 100
Cycle run 100
Please note while programming: 101
Cycle parameters 102
4.5 Fundamentals of Thread Milling 103
Prerequisites 103
4.6 THREAD MILLING (Cycle 262, DIN/ISO: G262) 105
Cycle run 105
Please note while programming: 106
Cycle parameters 107
4.7 THREAD MILLING / COUNTERSINKING (Cycle 263, DIN/ISO: G263) 108
Cycle run 108
Please note while programming 109
Cycle parameters 110
4.8 THREAD DRILLING/MILLING (Cycle 264, DIN/ISO: G264) 112
Cycle run 112
Please note while programming: 113
Cycle parameters 114
4.9 HELICAL THREAD DRILLING/MILLING (Cycle 265, DIN/ISO: G265) 116
Cycle run 116
Please note while programming: 117
Cycle parameters 118
4.10 OUTSIDE THREAD MILLING (Cycle 267, DIN/ISO: G267) 120
Cycle run 120
Please note while programming: 121
Cycle parameters 122
4.11 Programming Examples 124
5 Fixed Cycles: Pocket Milling / Stud Milling / Slot Milling 127
5.1 Fundamentals 128
Overview 128
5.2 RECTANGULAR POCKET (Cycle 251, DIN/ISO: G251) 129
Cycle run 129
Please note while programming: 130
Cycle parameters 131
5.3 CIRCULAR POCKET (Cycle 252, DIN/ISO: G252) 134
Cycle run 134
Please note while programming: 135
Cycle parameters 136
5.4 SLOT MILLING (Cycle 253, DIN/ISO: G253) 138
Cycle run 138
Please note while programming: 139
Cycle parameters 140
5.5 CIRCULAR SLOT (Cycle 254, DIN/ISO: G254) 143
Cycle run 143
Please note while programming: 144
Cycle parameters 145
5.6 RECTANGULAR STUD (Cycle 256, DIN/ISO: G256) 148
Cycle run 148
Please note while programming: 149
Cycle parameters 150
5.7 CIRCULAR STUD (Cycle 257, DIN/ISO: G257) 152
Cycle run 152
Please note while programming: 153
Cycle parameters 154
5.8 Programming Examples 156
6 Fixed Cycles: Pattern Definitions 159
6.1 Fundamentals 160
Overview 160
6.2 POLAR PATTERN (Cycle 220, DIN/ISO: G220) 161
Cycle run 161
Please note while programming: 161
Cycle parameters 162
6.3 CARTESIAN PATTERN (Cycle 221, DIN/ISO: G221) 164
Cycle run 164
Please note while programming: 164
Cycle parameters 165
6.4 Programming Examples 166
7 Fixed Cycles: Contour Pocket 169
7.1 SL Cycles 170
Fundamentals 170
Overview 171
7.2 CONTOUR GEOMETRY (Cycle 14, DIN/ISO: G37) 172
Please note while programming: 172
Cycle parameters 172
7.3 Overlapping Contours 173
Fundamentals 173
Subprograms: overlapping pockets 174
Area of inclusion 175
Area of exclusion 176
Area of intersection 176
7.4 CONTOUR DATA (Cycle 20, DIN/ISO: G120) 177
Please note while programming: 177
Cycle parameters 178
7.5 PILOT DRILLING (Cycle 21, DIN/ISO: G121) 179
Cycle run 179
Please note while programming: 179
Cycle parameters 180
7.6 ROUGH-OUT (Cycle 22, DIN/ISO: G122) 181
Cycle run 181
Please note while programming: 182
Cycle parameters 183
7.7 FLOOR FINISHING (Cycle 23, DIN/ISO: G123) 184
Cycle run 184
Please note while programming: 184
Cycle parameters 185
7.8 SIDE FINISHING (Cycle 24, DIN/ISO: G124) 186
Cycle run 186
Please note while programming: 186
Cycle parameters 187
7.9 CONTOUR TRAIN (Cycle 25, DIN/ISO: G125) 188
Cycle run 188
Please note while programming: 188
Cycle parameters 189
7.10 Programming Examples 190
8 Fixed Cycles: Cylindrical Surface 197
8.1 Fundamentals 198
Overview of cylindrical surface cycles 198
8.2 CYLINDER SURFACE (Cycle 27, DIN/ISO: G127, Software Option 1) 199
Execution of cycle 199
Please note while programming: 200
Cycle parameters 201
8.3 CYLINDER SURFACE Slot Milling (Cycle 28, DIN/ISO: G128, Software-Option 1) 202
Cycle run 202
Please note while programming: 203
Cycle parameters 204
8.4 CYLINDER SURFACE Ridge Milling (Cycle 29, DIN/ISO: G129, Software-Option 1) 205
Cycle run 205
Please note while programming: 206
Cycle parameters 207
8.5 Programming Examples 208
9.1 SL Cycles with Complex Contour Formula 214

Fundamentals 214
Selecting a program with contour definitions 216
Defining contour descriptions 216
Entering a complex contour formula 217
Overlapping contours 218
Contour machining with SL Cycles 220
9.2 SL Cycles with Simple Contour Formula 224
Fundamentals 224
Entering a simple contour formula 225
Contour machining with SL Cycles 225
10 Fixed Cycles: Multipass Milling 227
10.1 Fundamentals 228
Overview 228
10.2 MULTIPASS MILLING (Cycle 230, DIN/ISO: G230) 229
Cycle run 229
Please note while programming: 229
Cycle parameters 230
10.3 RULED SURFACE (Cycle 231, DIN/ISO: G231) 231
Cycle run 231
Please note while programming 232
Cycle parameters 233
10.4 FACE MILLING (Cycle 232, DIN/ISO: G232) 235
Cycle run 235
Please note while programming 237
Cycle parameters 237
10.5 Programming Examples 240
11 Cycles: Coordinate Transformations 243
11.1 Fundamentals 244
Overview 244
Effect of coordinate transformations 244
11.2 DATUM SHIFT (Cycle 7, DIN/ISO: G54) 245
Effect 245
Cycle parameters 245
11.3 DATUM SHIFT with Datum Tables (Cycle 7, DIN/ISO: G53) 246
Effect 246
Please note while programming 247
Cycle parameters 248
Selecting a datum table in the part program 248
Editing the datum table in the Programming and Editing mode of operation 249
Configuring the datum table 250
To exit a datum table 250
Status displays 250
11.4 DATUM SETTING (Cycle 247, DIN/ISO: G247) 251
Effect 251
Please note before programming: 251
Cycle parameters 251
Status displays 251
11.5 MIRROR IMAGE (Cycle 8, DIN/ISO: G28) 252
Effect 252
Please note while programming 252
Cycle parameters 253
11.6 ROTATION (Cycle 10, DIN/ISO: G73) 254
Effect 254
Please note while programming: 254
Cycle parameters 255
11.7 SCALING (Cycle 11, DIN/ISO: G72) 256
Effect 256
Cycle parameters 257
11.8 AXIS-SPECIFIC SCALING (Cycle 26) 258
Effect 258
Please note while programming: 258
Cycle parameters 259
11.9 WORKING PLANE (Cycle 19, DIN/ISO: G80, Software Option 1) 260
Effect 260
Please note while programming: 261
Cycle parameters 261
Resetting 261
Positioning the axes of rotation 262
Position display in the tilted system 264
Workspace monitoring 264
Positioning in a tilted coordinate system 264
Combining coordinate transformation cycles 264
Procedure for working with Cycle 19 WORKING PLANE 265
11.10 Programming Examples 266
12 Cycles: Special Functions 269
12.1 Fundamentals 270
Overview 270
12.2 DWELL TIME (Cycle 9, DIN/ISO: G04) 271
Function 271
Cycle parameters 271
12.3 PROGRAM CALL (Cycle 12, DIN/ISO: G39) 272
Cycle function 272
Please note while programming 272
Cycle parameters 273
12.4 SPINDLE ORIENTATION (Cycle 13, DIN/ISO: G36) 274
Cycle function 274
Please note while programming: 274
Cycle parameters 274
12.5 TOLERANCE (Cycle 32, DIN/ISO: G62) 275
Cycle function 275
Influences of the geometry definition in the CAM system 276
Please note while programming: 277
Cycle parameters 278
13 Cycles: Turning 279
13.1 Turning Cycles (Software Option 50) 280
Overview 280
Working with turning cycles 282
13.2 ADAPT ROTARY COORDINATE SYSTEM (Cycle 800) 283
Application 283
Effect 284
Cycle parameters 284
13.3 RESET ROTARY COORDINATE SYSTEM (Cycle 801) 285
Application 285
Effect 285
Cycle parameters 285
13.4 Fundamentals of Turning Cycles 286
13.5 TURN SHOULDER, LONGITUDINAL (Cycle 811) 287
Application 287
Roughing cycle run 287
Finishing cycle run 288
Please note while programming: 288
Cycle parameters 289
13.6 TURN SHOULDER, LONGITUDINAL EXTENDED (Cycle 812) 290
Application 290
Roughing cycle run 290
Finishing cycle run 291
Please note while programming 291
Cycle parameters 292
13.7 TURN, LONGITUDINAL PLUNGE (Cycle 813) 294
Application 294
Roughing cycle run 294
Finishing cycle run 295
Please note while programming: 295
Cycle parameters 296
13.8 TURN, LONGITUDINAL PLUNGE EXTENDED (Cycle 814) 298
Application 298
Roughing cycle run 298
Finishing cycle run 299
Please note while programming 299
Cycle parameters 300
13.9 TURN CONTOUR, LONGITUDINAL (Cycle 810) 302
Application 302
Roughing cycle run 302
Finishing cycle run 303
Please note while programming 303
Cycle parameters 304
13.10 TURN CONTOUR-PARALLEL (Cycle 815) 306
Application 306
Roughing cycle run 306
Finishing cycle run 307
Please note while programming: 307
Cycle parameters 308
13.11 TURN SHOULDER FACE (Cycle 821) 310
Application 310
Roughing cycle run 310
Finishing cycle run 311
Please note while programming: 311
Cycle parameters 312
13.12 TURN SHOULDER FACE EXTENDED (Cycle 822) 313
Application 313
Roughing cycle run 313
Finishing cycle run 314
Please note while programming: 314
Cycle parameters 315
13.13 TURN, TRANSVERSE PLUNGE (Cycle 823) 317
Application 317
Roughing cycle run 317
Finishing cycle run 318
Please note while programming: 318
Cycle parameters 319
13.14 TURN, TRANSVERSE PLUNGE EXTENDED (Cycle 824) 321
Application 321
Roughing cycle run 321
Finishing cycle run 322
Please note while programming: 322
Cycle parameters 323
13.15 TURN CONTOUR, TRANSVERSE (Cycle 820) 325
Application 325
Roughing cycle run 325
Finishing cycle run 326
Please note while programming: 326
Cycle parameters 327
13.16 RADIAL RECESSING (Cycle 861) 329
Application 329
Roughing cycle run 329
Finishing cycle run 330
Please note while programming: 330
Cycle parameters 331
13.17 RADIAL RECESSING EXTENDED (Cycle 862) 332
Application 332
Roughing cycle run 332
Finishing cycle run 333
Please note while programming: 333
Cycle parameters 334
13.18 RECESSING CONTOUR, RADIAL (Cycle 860) 336
Application 336
Roughing cycle run 336
Finishing cycle run 337
Please note while programming: 337
Cycle parameters 338
13.19 AXIAL RECESSING (Cycle 871) 340
Application 340
Roughing cycle run 340
Finishing cycle run 341
Please note while programming: 341
Cycle parameters 342
13.20 AXIAL RECESSING EXTENDED (Cycle 872) 343
Application 343
Roughing cycle run 343
Finishing cycle run 344
Please note while programming: 344
Cycle parameters 345
13.21 RECESSING CONTOUR, AXIAL (Cycle 870) 347
Application 347
Roughing cycle run 347
Finishing cycle run 348
Please note while programming: 348
Cycle parameters 349
13.22 LONGITUDINAL THREAD (Cycle 831) 351
Application 351
Cycle run 351
Please note while programming: 352
Cycle parameters 353
13.23 THREAD EXTENDED (Cycle 832) 355
Application 355
Cycle parameters 357
13.24 CONTOUR-PARALLEL THREAD (Cycle 830) 359
Application 359
Please note while programming: 360
Cycle parameters 361
13.25 Example program 363
14 Using Touch Probe Cycles 367
14.1 General Information about Touch Probe Cycles 368
Method of function 368
Consideration of a basic rotation in the Manual Operation mode 368
Cycles in the Manual and El. Handwheel modes 368
Touch probe cycles for automatic operation 369
14.2 Before You Start Working with Touch Probe Cycles 371
Maximum traverse to touch point: DIST in touch probe table 371
Set-up clearance to touch point: SET_UP in touch probe table 371
Orient the infrared touch probe to the programmed probe direction: TRACK in touch probe table 371
Touch trigger probe, probing feed rate: F in touch probe table 372
Touch trigger probe, rapid traverse for positioning: FMAX 372
Touch trigger probe, rapid traverse for positioning: F_PREPOS in touch probe table 372
Multiple measurements 372
Confidence interval of multiple measurements 372
Executing touch probe cycles 373
14.3 Touch Probe Table 374
General information 374
Editing touch probe tables 374
Touch probe data 375
15 Touch Probe Cycles: Automatic Measurement of Workpiece Misalignment 377
15.1 Fundamentals 378
Overview 378
Characteristics common to all touch probe cycles for measuring workpiece misalignment 379
15.2 BASIC ROTATION (Cycle 400, DIN/ISO: G400) 380
Cycle run 380
Please note while programming: 380
Cycle parameters 381
15.3 BASIC ROTATION from Two Holes (Cycle 401, DIN/ISO: G401) 383
Cycle run 383
Please note while programming 383
Cycle parameters 384
15.4 BASIC ROTATION over Two Studs (Cycle 402, DIN/ISO: G402) 386
Cycle run 386
Please note while programming 386
Cycle parameters 387
15.5 BASIC ROTATION Compensation via Rotary Axis (Cycle 403, DIN/ISO: G403) 389
Cycle run 389
Please note while programming 389
Cycle parameters 390
15.6 SET BASIC ROTATION (Cycle 404, DIN/ISO: G404) 392
Cycle run 392
Cycle parameters 392
15.7 Compensating Workpiece Misalignment by Rotating the C Axis (Cycle 405, DIN/ISO: G405) 393
Cycle run 393
Please note while programming 394
Cycle parameters 395
16 Touch Probe Cycles: Automatic Datum Setting 399
16.1 Fundamentals 400
Overview 400
Characteristics common to all touch probe cycles for datum setting 401
16.2 SLOT CENTER REF PT (Cycle 408, DIN/ISO: G408) 403
Cycle run 403
Please note while programming: 404
Cycle parameters 404
16.3 DATUM RIDGE CENTER (Cycle 409, DIN/ISO: G409) 407
Cycle run 407
Please note while programming: 407
Cycle parameters 408
16.4 DATUM FROM INSIDE OF RECTANGLE (Cycle 410, DIN/ISO: G410) 410
Cycle run 410
Please note while programming: 411
Cycle parameters 411
16.5 DATUM FROM OUTSIDE OF RECTANGLE (Cycle 411, DIN/ISO: G411) 414
Cycle run 414
Please note while programming: 415
Cycle parameters 415
16.6 DATUM FROM INSIDE OF CIRCLE (Cycle 412, DIN/ISO: G412) 418
Cycle run 418
Please note while programming: 419
Cycle parameters 419
16.7 DATUM FROM OUTSIDE OF CIRCLE (Cycle 413, DIN/ISO: G413) 422
Cycle run 422
Please note while programming: 423
Cycle parameters 423
16.8 DATUM FROM OUTSIDE OF CORNER (Cycle 414, DIN/ISO: G414) 426
Cycle run 426
Please note while programming: 427
Cycle parameters 428
16.9 DATUM FROM INSIDE OF CORNER (Cycle 415, DIN/ISO: G415) 431
Cycle run 431
Please note while programming: 432
Cycle parameters 432
16.10 DATUM CIRCLE CENTER (Cycle 416, DIN/ISO: G416) 435
Cycle run 435
Please note while programming: 436
Cycle parameters 436
16.11 DATUM IN TOUCH PROBE AXIS (Cycle 417, DIN/ISO: G417) 439
Cycle run 439
Please note while programming 439
Cycle parameters 440
16.12 DATUM AT CENTER OF 4 HOLES (Cycle 418, DIN/ISO: G418) 441
Cycle run 441
Please note while programming: 442
Cycle parameters 442
16.13 DATUM IN ONE AXIS (Cycle 419, DIN/ISO: G419) 445
Cycle run 445
Please note while programming: 445
Cycle parameters 446
17 Touch Probe Cycles: Automatic Workpiece Inspection 453
17.1 Fundamentals 454
Overview 454
Recording the results of measurement 455
Measurement results in Q parameters 457
Classification of results 457
Tolerance monitoring 458
Tool monitoring 458
Reference system for measurement results 459
17.2 REF. PLANE (Cycle 0, DIN/ISO: G55) 460
Cycle run 460
Please note while programming: 460
Cycle parameters 460
17.3 POLAR REFERENCE PLANE (Cycle 1) 461
Cycle run 461
Please note while programming 461
Cycle parameters 462
17.4 MEASURE ANGLE (Cycle 420, DIN/ISO: G420) 463
Cycle run 463
Please note while programming: 463
Cycle parameters 464
17.5 MEASURE HOLE (Cycle 421, DIN/ISO: G421) 466
Cycle run 466
Please note while programming 466
Cycle parameters 467
17.6 MEAS. CIRCLE OUTSIDE (Cycle 422, DIN/ISO: G422) 470
Cycle run 470
Please note while programming: 470
Cycle parameters 471
17.7 MEAS. RECTAN. INSIDE (Cycle 423, DIN/ISO: G423) 474
Cycle run 474
Please note while programming: 475
Cycle parameters 475
17.8 MEASURE RECTANGLE OUTSIDE (Cycle 424, DIN/ISO: G424) 478
Cycle run 478
Please note while programming: 479
Cycle parameters 479
17.9 MEASURE INSIDE WIDTH (Cycle 425, DIN/ISO: G425) 482
Cycle run 482
Please note while programming: 482
Cycle parameters 483
17.10 MEASURE RIDGE WIDTH (Cycle 426, DIN/ISO: G426) 485
Cycle run 485
Please note while programming: 485
Cycle parameters 486
17.11 MEASURE COORDINATE (Cycle 427, DIN/ISO: G427) 488
Cycle run 488
Please note while programming: 488
Cycle parameters 489
17.12 MEASURE BOLT HOLE CIRCLE (Cycle 430, DIN/ISO: G430) 491
Cycle run 491
Please note while programming 491
Cycle parameters 492
17.13 MEASURE PLANE (Cycle 431, DIN/ISO: G431) 495
Cycle run 495
Please note while programming: 496
Cycle parameters 496
17.14 Programming Examples 498
18.1 Fundamentals 504
Overview 504
18.2 MEASURING (Cycle 3) 505
Cycle run 505
Please note while programming: 505
Cycle parameters 506
19 Touch Probe Cycles: Automatic Kinematics Measurement 507
19.1 Kinematics Measurement with TS Touch Probes (KinematicsOpt Option) 508
Fundamentals 508
Overview 508
19.2 Prerequisites 509
Please note while programming: 509
19.3 SAVE KINEMATICS (Cycle 450, DIN/ISO: G450; Option) 510
Cycle run 510
Please note while programming 510
Cycle parameters 511
Log function 511
Notes on data management 512
19.4 MEASURE KINEMATICS (Cycle 451, DIN/ISO: G451; Option) 513
Cycle run 513
Positioning direction 515
Machines with Hirth-coupled axes 516
Choice of number of measuring points 517
Choice of the calibration sphere position on the machine table 517
Notes on the accuracy 518
Backlash 519
Please note while programming: 520
Cycle parameters 521
Various modes (Q406) 524
Log function 525

i

20 Touch Probe Cycles: Automatic Tool Measurement 527
20.1 Fundamentals 528
Overview 528
Differences between Cycles 31 to 33 and Cycles 481 to 483 529
Setting the machine parameters 530
Entries in the tool table TOOL.T 531
20.2 Calibrating the TT (Cycle 30 or 480, DIN/ISO: G480) 533
Cycle run 533
Please note while programming: 533
Cycle parameters 533
20.3 Measuring the Tool Length (Cycle 31 or 481, DIN/ISO: G481) 534
Cycle run 534
Please note while programming: 535
Cycle parameters 535
20.4 Measuring the Tool Radius (Cycle 32 or 482, DIN/ISO: G482) 536
Cycle run 536
Please note while programming: 536
Cycle parameters 537
20.5 Measuring Tool Length and Radius (Cycle 33 or 483, DIN/ISO: G483) 538
Cycle run 538
Please note while programming: 538
Cycle parameters 539
i

Fundamentals / Overviews

1.1 Introduction

Frequently recurring machining cycles that comprise several working steps are stored in the TNC memory as standard cycles. Coordinate transformations and several special functions are also available as cycles.

Most cycles use Q parameters as transfer parameters. Parameters with specific functions that are required in several cycles always have the same number: For example, Q200 is always assigned the set-up clearance, Q202 the plunging depth, etc.

Danger of collision!

Cycles sometimes execute extensive operations. For safety reasons, you should run a graphical program test before machining.

If you use indirect parameter assignments in cycles with numbers greater than 200 (e.g. Q210 = Q1), any change in the assigned parameter (e.g. Q1) will have no effect after the cycle definition. Define the cycle parameter (e.g. Q210) directly in such cases.

If you define a feed-rate parameter for fixed cycles greater than 200, then instead of entering a numerical value you can use soft keys to assign the feed rate defined in the TOOL CALL block (FAUTO soft key). You can also use the feed-rate alternatives FMAX (rapid traverse), FZ (feed per tooth) and $\mathbf{F U}$ (feed per rev), depending on the respective cycle and the function of the feed-rate parameter.

Note that, after a cycle definition, a change of the FAUTO feed rate has no effect, because internally the TNC assigns the feed rate from the TOOL CALL block when processing the cycle definition.

If you want to delete a block that is part of a cycle, the TNC asks you whether you want to delete the whole cycle.

1.2 Available Cycle Groups

Overview of fixed cycles

Cycle group	Soft key	Page
Cycles for pecking, reaming, boring, and counterboring	$\begin{aligned} & \hline \text { DRILLING/ } \\ & \text { THREAD } \end{aligned}$	Page 60
Cycles for tapping, thread cutting and thread milling	$\begin{gathered} \text { DRILLING, } \\ \text { THREAD } \end{gathered}$	Page 94
Cycles for milling pockets, studs and slots	POCKETS, STUDS/ SLOTS	Page 128
Cycles for producing hole patterns, such as circular or linear point patterns	Patiten	Page 160
SL (Subcontour List) cycles which allow the contour-parallel machining of relatively complex contours consisting of several overlapping subcontours, cylinder surface interpolation	SL II	Page 171
Cycles for multipass milling of flat or twisted surfaces	$\begin{gathered} \text { MULTIPASS } \\ \text { MILLING } \end{gathered}$	Page 228
Coordinate transformation cycles which enable datum shift, rotation, mirror image, enlarging and reducing for various contours	COORD. TRANSF .	Page 244
Special cycles such as dwell time, program call, oriented spindle stop and tolerance	$\begin{aligned} & \text { SPECIAL } \\ & \text { CYCLES } \end{aligned}$	Page 270
Cycles for turning operations	turning	Page 280

\triangleright
If required, switch to machine-specific fixed cycles.
These fixed cycles can be integrated by your machine tool builder.

Overview of touch probe cycles

- The soft-key row shows the available groups of cycles

Cycle group	Soft key	Page
Cycles for automatic measurement and compensation of workpiece misalignment		Page 378
Cycles for automatic workpiece presetting		Page 400
Cycles for automatic workpiece inspection	$\square 1$	Page 454
Special cycles	special cYCLES	Page 504
Cycles for automatic kinematics measurement	KINEMATICS 留	Page 508
Cycles for automatic tool measurement (enabled by the machine tool builder)	E	Page 528

\triangleright
If required, switch to machine-specific touch probe cycles. These touch probe cycles can be integrated by your machine tool builder.

2.1 Working with Fixed Cycles

Machine-specific cycles

In addition to the HEIDENHAIN cycles, many machine tool builders offer their own cycles in the TNC. These cycles are available in a separate cycle-number range:
■ Cycles 300 to 399
Machine-specific cycles that are to be defined through the CYCLE DEF key
- Cycles 500 to 599
Machine-specific touch probe cycles that are to be defined through the TOUCH PROBE key

Refer to your machine manual for a description of the specific function.

Sometimes machine-specific cycles use transfer parameters that HEIDENHAIN already uses in standard cycles. The TNC executes DEFactive cycles as soon as they are defined (see also "Calling cycles" on page 44). It executes CALL-active cycles only after they have been called (see also "Calling cycles" on page 44). When DEF-active cycles and CALL-active cycles are used simultaneously, it is important to prevent overwriting of transfer parameters already in use. Use the following procedure:

- As a rule, always program DEF-active cycles before CALL-active cycles
- If you do want to program a DEF-active cycle between the definition and call of a CALL-active cycle, do it only if there is no common use of specific transfer parameters

Defining a cycle using soft keys

Example NC blocks

```
7 CYCL DEF 200 DRILLING
```

 Q200=2 ; SET-UP CLEARANCE
 Q201=3 ;DEPTH
 Q206=150 ; FEED RATE FOR PLNGNG
 Q202=5 ;PLUNGING DEPTH
 Q210=0 ;DWELL TIME AT TOP
 Q203=+0 ; SURFACE COORDINATE
 Q204=50 ;2ND SET-UP CLEARANCE
 Q211=0.25 ;DWELL TIME AT DEPTH

Calling cycles

Prerequisites
The following data must always be programmed before a
cycle call:
\square BLK FORM for graphic display (needed only for test
graphics)
Tool call
Direction of spindle rotation (M functions M3/M4)
Cycle definition (CYCL DEF)
For some cycles, additional prerequisites must be
observed. They are detailed in the descriptions for each
cycle.

The following cycles become effective automatically as soon as they are defined in the part program. These cycles cannot and must not be called:

- Cycle 220 for point patterns on circles and Cycle 221 for point patterns on lines
- SL Cycle 14 CONTOUR GEOMETRY
- SL Cycle 20 CONTOUR DATA
- Cycle 32 TOLERANCE
- Coordinate transformation cycles
- Cycle 9 DWELL TIME
- All touch probe cycles

You can call all other cycles with the functions described as follows.

Calling a cycle with CYCL CALL

The CYCL CALL function calls the most recently defined fixed cycle once. The starting point of the cycle is the position that was programmed last before the CYCL CALL block.

CyCL

- To program the cycle call, press the CYCL CALL key
- Press the CYCL CALL M soft key to enter a cycle call

If necessary, enter the miscellaneous function M (for example M3 to switch the spindle on), or end the dialog by pressing the END key

Calling a cycle with CYCL CALL PAT

The CYCL CALL PAT function calls the most recently defined fixed cycle at all positions that you defined in a PATTERN DEF pattern definition (see "Pattern Definition PATTERN DEF" on page 46) or in a point table (see "Point Tables" on page 54).

Calling a cycle with CYCL CALL POS

The CYCL CALL POS function calls the most recently defined fixed cycle once. The starting point of the cycle is the position that you defined in the CYCL CALL POS block.

Using positioning logic the TNC moves to the position defined in the CYCL CALL POS block.

If the tool's current position in the tool axis is greater than the top surface of the workpiece (Q203), the TNC moves the tool to the programmed position first in the machining plane and then in the tool axis.

- If the tool's current position in the tool axis is below the top surface of the workpiece (Q203), the TNC moves the tool to the programmed position first in the tool axis to the clearance height and then in the working plane to the programmed position.

> Three coordinate axes must always be programmed in the CYCL CALL POS block. With the coordinate in the tool axis you can easily change the starting position. It serves as an additional datum shift.
> The feed rate most recently defined in the CYCL CALL POS block applies only to traverse to the start position programmed in this block.
> As a rule, the TNC moves without radius compensation (RO) to the position defined in the CYCL CALL POS block.
> If you use CYCL CALL POS to call a cycle in which a start position is defined (for example Cycle 212), then the position defined in the cycle serves as an additional shift of the position defined in the CYCL CALL POS block. You should therefore always define the start position to be set in the cycle as 0 .

Calling a cycle with M99/89

The M99 function, which is active only in the block in which it is programmed, calls the last defined fixed cycle once. You can program M99 at the end of a positioning block. The TNC moves to this position and then calls the last defined fixed cycle.
If the TNC is to execute the cycle automatically after every positioning block, program the cycle call with M89.

To cancel the effect of M89, program:
\square M99 in the positioning block in which you move to the last starting point, or

- Use CYCL DEF to define a new fixed cycle.

4	2.2 Pattern Definition PATTERN DEF		
2	Application		
山	You use the PATTERN DEF function to easily define regular machining patterns, which you can call with the CYCL CALL PAT function. As with the cycle definitions, support graphics that illustrate the respective input parameter are also available for pattern definitions.		
0	PATTERN DEF is to be used only axis Z.	onnection	th the tool
	The following machining patterns are available:		
	Machining pattern	Soft key	Page
든	POINT Definition of up to any 9 machining positions	$\begin{array}{c\|} \hline \text { POINT } \\ \hline \end{array}$	Page 48
$\underset{\sim}{\mathbb{N}}$	ROW Definition of a single row, straight or rotated	$\begin{gathered} \mathrm{ROW} \\ \hline 0^{\circ 0^{\circ} \mathrm{O}} \\ \hline \end{gathered}$	Page 49
$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	PATTERN Definition of a single pattern, straight, rotated or distorted		Page 50
	FRAME Definition of a single frame, straight, rotated or distorted		Page 51
	CIRCLE Definition of a full circle		Page 52
	PITCH CIRCLE Definition of a pitch circle		Page 53

Defining individual machining positions

You can enter up to 9 machining positions. Confirm each entry with the ENT key.
If you have defined a workpiece surface in \mathbf{Z} not equal to 0 , then this value is effective in addition to the workpiece surface $\mathbf{Q 2 0 3}$ that you defined in the machining cycle.

```
X coord. of machining position (absolute): Enter X coordinate
Y coord. of machining position (absolute): Enter Y coordinate
Workpiece surface coordinate (absolute): Enter Z coordinate at which machining is to begin
```


Example: NC blocks

```
10 L Z+100 RO FMAX
11 PATTERN DEF
POS1 (X+25 Y+33.5 Z+0)
POS2 (X+50 Y+75 Z+0)
```


Defining a single row

If you have defined a workpiece surface in \mathbf{Z} not equal to 0 , then this value is effective in addition to the workpiece surface Q203 that you defined in the machining cycle.

Starting point in \mathbf{X} (absolute): Coordinate of the starting point of the row in the X axis

Starting point in Y (absolute): Coordinate of the starting point of the row in the Y axis

Spacing of machining positions (incremental): Distance between the machining positions. You can enter a positive or negative value
$>$ Number of repetitions: Total number of machining operations

- Rot. position of entire pattern (absolute): Angle of rotation around the entered starting point. Reference axis: Major axis of the active machining plane (e.g. X for tool axis Z). You can enter a positive or negative value
- Workpiece surface coordinate (absolute): Enter Z coordinate at which machining is to begin

Example: NC blocks

```
10 L Z+100 RO FMAX
11 PATTERN DEF
ROW1 (X+25 Y+33.5 D+8 NUM5 ROT+0 Z+0)
```


If you have defined a workpiece surface in \mathbf{Z} not equal to 0 , then this value is effective in addition to the workpiece surface Q203 that you defined in the machining cycle.
The Rotary pos. ref. ax. and Rotary pos. minor ax. parameters are added to a previously performed rotated position of the entire pattern.

Starting point in \mathbf{X} (absolute): Coordinate of the starting point of the pattern in the X axis

Starting point in \mathbf{Y} (absolute): Coordinate of the starting point of the pattern in the Y axis

Spacing of machining positions X (incremental): Distance between the machining positions in the X direction. You can enter a positive or negative value

Spacing of machining positions Y (incremental): Distance between the machining positions in the Y direction. You can enter a positive or negative value
$>$ Number of columns: Total number of columns in the pattern
Number of lines: Total number of rows in the pattern
Rot. position of entire pattern (absolute): Angle of rotation by which the entire pattern is rotated around the entered starting point. Reference axis: Major axis of the active machining plane (e.g. X for tool axis Z). You can enter a positive or negative value

Rotary pos. ref. ax.: Angle of rotation around which only the principal axis of the machining plane is distorted with respect to the entered starting point. You can enter a positive or negative value.

Rotary pos. minor ax.: Angle of rotation around which only the minor axis of the machining plane is distorted with respect to the entered starting point. You can enter a positive or negative value.
Workpiece surface coordinate (absolute): Enter Z coordinate at which machining is to begin

Example: NC blocks

```
10 L Z+100 RO FMAX
11 PATTERN DEF
PAT1 (X+25 Y+33.5 DX+8 DY+10 NUMX5
NUMY4 ROT+O ROTX+O ROTY+O Z+0)
```


Defining individual frames

If you have defined a workpiece surface in \mathbf{Z} not equal to 0 , then this value is effective in addition to the workpiece surface Q203 that you defined in the machining cycle.

The Rotary pos. ref. ax. and Rotary pos. minor ax. parameters are added to a previously performed rotated position of the entire pattern.

Starting point in \mathbf{X} (absolute): Coordinate of the starting point of the frame in the X axis

Starting point in Y (absolute): Coordinate of the starting point of the frame in the Y axis

Spacing of machining positions X (incremental): Distance between the machining positions in the X direction. You can enter a positive or negative value

Spacing of machining positions Y (incremental): Distance between the machining positions in the Y direction. You can enter a positive or negative value

Number of columns: Total number of columns in the pattern

Number of lines: Total number of rows in the pattern
Rot. position of entire pattern (absolute): Angle of rotation by which the entire pattern is rotated around the entered starting point. Reference axis: Major axis of the active machining plane (e.g. X for tool axis Z). You can enter a positive or negative value

Rotary pos. ref. ax. : Angle of rotation around which only the principal axis of the machining plane is distorted with respect to the entered starting point. You can enter a positive or negative value

Rotary pos. minor ax.: Angle of rotation around which only the minor axis of the machining plane is distorted with respect to the entered starting point. You can enter a positive or negative value

- Workpiece surface coordinate (absolute): Enter Z coordinate at which machining is to begin

Example: NC blocks

```
10 L Z+100 RO FMAX
```

11 PATTERN DEF
FRAME1 (X+25 Y+33.5 DX+8 DY+10 NUMX5
NUMY4 ROT+0 ROTX+O ROTY+O Z+0)

Defining a full circle

If you have defined a workpiece surface in \mathbf{Z} not equal to 0 , then this value is effective in addition to the workpiece surface Q203 that you defined in the machining cycle.

Bolt-hole circle center X (absolute): Coordinate of the circle center in the X axis.

Bolt-hole circle center Y (absolute): Coordinate of the circle center in the Y axis.

Bolt-hole circle diameter: Diameter of the bolt-hole circle.

Starting angle: Polar angle of the first machining position. Reference axis: Major axis of the active machining plane (e.g. X for tool axis Z). You can enter a positive or negative value

Number of repetitions: Total number of machining positions on the circle

Workpiece surface coordinate (absolute): Enter Z coordinate at which machining is to begin

2.3 Point Tables

Application

You should create a point table whenever you want to run a cycle, or several cycles in sequence, on an irregular point pattern.

If you are using drilling cycles, the coordinates of the working plane in the point table represent the hole centers. If you are using milling cycles, the coordinates of the working plane in the point table represent the starting-point coordinates of the respective cycle (e.g. center-point coordinates of a circular pocket). Coordinates in the spindle axis correspond to the coordinate of the workpiece surface.

Creating a point table

Select the Programming and Editing mode of operation.

Pcm
 Call the file manager: Press the PGM MGT key

FILE NAME?

Enter the name and file type of the point table and

ENT

 confirm your entry with the ENT key.Select the unit of measure: Press the MM or INCH soft key. The TNC switches to the program blocks window and displays an empty point table.

With the soft key INSERT LINE, insert new lines and enter the coordinates of the desired machining position.

Repeat the process until all desired coordinates have been entered.

The name of the point table must begin with a letter.
With the soft keys X OFF/ON, Y OFF/ON, Z OFF/ON (second soft-key row), you can specify which coordinates you want to enter in the point table.

Hiding single points from the machining process

In the FADE column of the point table you can specify if the defined point is to be hidden during the machining process.
$\downarrow \uparrow$ In the table, select the point to be hidden.

Selecting a point table in the program

In the Programming and Editing mode of operation, select the program for which you want to activate the point table:

$\substack{\text { PGM } \\ \text { CALL }}$	Press the PGM CALL key to call the function for selecting the point table.
pornt TRALE	Press the POINT TABLE soft key.

Enter the name of the point table and confirm your entry with the END key. If the point table is not stored in the same directory as the NC program, you must enter the complete path.

Example NC block

7 SEL PATTERN "TNC:\DIRKT5\NUST35.PNT"

Calling a cycle in connection with point tables

With CYCL CALL PAT the TNC runs the point table that you last defined (even if you defined the point table in a program that was nested with CALL PGM) .

If you want the TNC to call the last defined fixed cycle at the points defined in a point table, then program the cycle call with CYCLE CALL PAT:

- To program the cycle call, press the CYCL CALL key
cycL
- Press the CYCL CALL PAT soft key to call a point table
- Enter the feed rate at which the TNC is to move from point to point (if you make no entry the TNC will move at the last programmed feed rate; FMAX is not valid)
- If required, enter a miscellaneous function M, then confirm with the END key

The TNC retracts the tool to the safety clearance between the starting points. Depending on which is greater, the TNC uses either the spindle axis coordinate from the cycle call or the value from cycle parameter Q204 as the clearance height.
If you want to move at reduced feed rate when pre-positioning in the spindle axis, use the miscellaneous function M103.

Effect of the point tables with SL cycles and Cycle 12

The TNC interprets the points as an additional datum shift.
Effect of the point tables with Cycles $\mathbf{2 0 0}$ to $\mathbf{2 0 8}$ and $\mathbf{2 6 2}$ to $\mathbf{2 6 7}$
The TNC interprets the points of the working plane as coordinates of the hole centers. If you want to use the coordinate defined in the point table for the spindle axis as the starting point coordinate, you must define the workpiece surface coordinate $(\mathrm{Q} 203)$ as 0 .

Effect of the point tables with Cycles 210 to 215

The TNC interprets the points as an additional datum shift. If you want to use the points defined in the point table as starting-point coordinates, you must define the starting points and the workpiece surface coordinate (Q203) in the respective milling cycle as 0 .

Effect of the point tables with Cycles 251 to 254

The TNC interprets the points of the working plane as coordinates of the cycle starting point. If you want to use the coordinate defined in the point table for the spindle axis as the starting point coordinate, you must define the workpiece surface coordinate (O203) as 0 .

3.1 Fundamentals

Overview

The TNC offers 9 cycles for all types of drilling operations:

Cycle	Soft key	Page
240 CENTERING With automatic pre-positioning, 2nd set-up clearance, optional entry of the centering diameter or centering depth	240	Page 61
200 DRILLING With automatic pre-positioning, 2nd set-up clearance	200	Page 63
201 REAMING With automatic pre-positioning, 2nd set-up clearance	$\stackrel{201}{20}$	Page 65
202 BORING With automatic pre-positioning, 2nd set-up clearance	202	Page 67
203 UNIVERSAL DRILLING With automatic pre-positioning, 2nd set-up clearance, chip breaking, and decrementing	203	Page 71
204 BACK BORING With automatic pre-positioning, 2nd set-up clearance	204	Page 75
205 UNIVERSAL PECKING With automatic pre-positioning, 2nd set-up clearance, chip breaking, and advanced stop distance	205	Page 79
208 BORE MILLING With automatic pre-positioning, 2nd set-up clearance	$\begin{gathered} 208 \\ 0 \end{gathered}$	Page 83
241 SINGLE-LIP DEEP-HOLE DRILLING With automatic pre-positioning to deepened starting point, shaft speed and coolant definition	$\stackrel{291}{24}$	Page 86

3.2 CENTERING (Cycle 240, DIN/ISO: G240)

Cycle run

1 The TNC positions the tool in the spindle axis at rapid traverse FMAX to the set-up clearance above the workpiece surface.
2 The tool is centered at the programmed feed rate \mathbf{F} to the entered centering diameter or centering depth.
3 If defined, the tool remains at the centering depth.
4 Finally, the tool moves to set-up clearance or-if programmed-to the 2 nd set-up clearance at rapid traverse FMAX.

Please note while programming:

Program a positioning block for the starting point (hole center) in the working plane with radius compensation RO.

The algebraic sign for the cycle parameter Q344 (diameter) or Q201 (depth) determines the working direction. If you program the diameter or depth $=0$, the cycle will not be executed.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).
Keep in mind that the TNC reverses the calculation for perepositioning when a positive diameter or depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

Cycle parameters

Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface. Enter a positive value. Input range 0 to 99999.9999

- Select depth/diameter (0/1) Q343: Select whether centering is based on the entered diameter or depth. If the TNC is to center based on the entered diameter, the point angle of the tool must be defined in the
T-ANGLE column of the tool table TOOL.T.
$\mathbf{0}$: Centering based on the entered depth
1: Centering based on the entered diameter
- Depth Q201 (incremental): Distance between workpiece surface and centering bottom (tip of centering taper). Only effective if $\mathrm{Q} 343=0$ is defined. Input range -99999.9999 to 99999.9999
Diameter (algebraic sign) Q344: Centering diameter. Only effective if $\mathrm{Q} 343=1$ is defined. Input range -99999.9999 to 99999.9999
- Feed rate for plunging Q206: Traversing speed of the tool during centering in $\mathrm{mm} / \mathrm{min}$. Input range: 0 to 99999.999; alternatively FAUTO, FU
- Dwell time at depth Q211: Time in seconds that the tool remains at the hole bottom. Input range 0 to 3600.0000

Workpiece surface coordinate Q 203 (absolute): Coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999
2nd set-up clearance 0204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

Example: NC blocks

10 L Z+100 R0 FMAX
11 CYCL DEF 240 CENTERING
Q200=2 ;SET-UP CLEARANCE
Q343=1 ;SELECT DEPTH/DIA.
Q201=+0 ;DEPTH
Q344=-9 ; DIAMETER
Q206=250 ; FEED RATE FOR PLNGNG
Q211=0.1 ;DWELL TIME AT DEPTH
Q203=+20 ;SURFACE COORDINATE
Q204=100 ;2ND SET-UP CLEARANCE
$12 \mathrm{~L} \mathrm{X}+30 \quad \mathrm{Y}+20$ RO FMAX M3 M99
13 L X+80 Y+50 R0 FMAX M99

3.3 DRILLING (Cycle 200)

Cycle run

1 The TNC positions the tool in the spindle axis at rapid traverse FMAX to the set-up clearance above the workpiece surface.
2 The tool drills to the first plunging depth at the programmed feed rate \mathbf{F}.

3 The TNC returns the tool at FMAX to the set-up clearance, dwells there (if a dwell time was entered), and then moves at FMAX to the set-up clearance above the first plunging depth.
4 The tool then advances with another infeed at the programmed feed rate F.
5 The TNC repeats this process (2 to 4) until the programmed depth is reached.

6 The tool is retracted from the hole bottom to the set-up clearance or -if programmed -to the end set-up clearance at FMAX.

Please note while programming:

Program a positioning block for the starting point (hole center) in the working plane with radius compensation RO

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH =0, the cycle will not be executed.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for perepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface. Enter a positive value. Input range 0 to 99999.9999

- Depth Q 201 (incremental): Distance between workpiece surface and bottom of hole (tip of drill taper). Input range -99999.9999 to 99999.9999
- Feed rate for plunging Q206: Traversing speed of the tool during drilling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU
- Plunging depth O202 (incremental): Infeed per cut. Input range 0 to 99999.9999 . The depth does not have to be a multiple of the plunging depth. The TNC will go to depth in one movement if:
- the plunging depth is equal to the depth
- the plunging depth is greater than the depth
- Dwell time at top O210: Time in seconds that the tool remains at set-up clearance after having been retracted from the hole for chip removal. Input range 0 to 3600.0000
- Workpiece surface coordinate O 203 (absolute): Coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999
- 2nd set-up clearance O 204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999
- Dwell time at depth O211: Time in seconds that the tool remains at the hole bottom. Input range 0 to 3600.0000

Example: NC blocks

Q200=2 ;SET-UP CLEARANCE
Q201=-15 ; DEPTH
Q206=250 ; FEED RATE FOR PLNGNG
Q202=5 ;PLUNGING DEPTH
Q210 $=0$; DWELL TIME AT TOP
Q203 $=+20$; SURFACE COORDINATE
Q204=100 ;2ND SET-UP CLEARANCE
Q211=0.1 ; DWELL TIME AT DEPTH
12 L X+30 Y+20 FMAX M3
13 CYCL CALL
14 L X+80 Y+50 FMAX M99

3.4 REAMING (Cycle 201, DIN/ISO: G201)

Cycle run

1 The TNC positions the tool in the spindle axis at rapid traverse FMAX to the entered set-up clearance above the workpiece surface.
2 The tool reams to the entered depth at the programmed feed rate \mathbf{F}.
3 If programmed, the tool remains at the hole bottom for the entered dwell time.
4 The tool then retracts to the set-up clearance at the feed rate F, and from there-if programmed-to the 2 nd set-up clearance at FMAX.

Please note while programming:

> Program a positioning block for the starting point (hole center) in the working plane with radius compensation RO.

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH $=0$, the cycle will not be executed.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

- Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999
- Depth Q201 (incremental): Distance between workpiece surface and bottom of hole. Input range -99999.9999 to 99999.9999
- Feed rate for plunging Q206: Traversing speed of the tool during reaming in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU
- Dwell time at depth O211: Time in seconds that the tool remains at the hole bottom. Input range 0 to 3600.0000
- Retraction feed rate Q208: Traversing speed of the tool in $\mathrm{mm} / \mathrm{min}$ when retracting from the hole. If you enter $\mathrm{O} 208=0$, the tool retracts at the reaming feed rate. Input range 0 to 99999.999
- Workpiece surface coordinate O 203 (absolute): Coordinate of the workpiece surface. Input range 0 to 99999.9999
- 2nd set-up clearance O 204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

Example: NC blocks

11 CYCL DEF 201 REAMING
Q200=2 ;SET-UP CLEARANCE
Q201=-15 ; DEPTH
Q206=100 ; FEED RATE FOR PLNGNG
Q211=0.5 ; DWELL TIME AT DEPTH
Q208=250 ; RETRACTION FEED RATE
Q203=+20 ; SURFACE COORDINATE
Q204=100 ;2ND SET-UP CLEARANCE
12 L X+30 Y+20 FMAX M3
13 CYCL CALL
14 L X+80 Y+50 FMAX M9
15 L Z+100 FMAX M2

3.5 BORING (Cycle 202, DIN/ISO: G202)

Cycle run

1 The TNC positions the tool in the spindle axis at rapid traverse FMAX to the set-up clearance above the workpiece surface.
2 The tool bores to the programmed depth at the feed rate for plunging.
3 If programmed, the tool remains at the hole bottom for the entered dwell time with active spindle rotation for cutting free.
4 The TNC then orients the spindle to the position that is defined in parameter Q336.
5 If retraction is selected, the tool retracts in the programmed direction by 0.2 mm (fixed value).
6 The TNC moves the tool at the retraction feed rate to the set-up clearance and then, if entered, to the 2nd set-up clearance at FMAX. If $\mathrm{Q} 214=0$, the tool point remains on the wall of the hole.

Please note while programming:

Machine and TNC must be specially prepared by the machine tool builder for use of this cycle.

This cycle is effective only for machines with servocontrolled spindle.

Program a positioning block for the starting point (hole center) in the working plane with radius compensation R0
The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH=0, the cycle will not be executed.
After the cycle is completed, the TNC restores the coolant and spindle conditions that were active before the cycle call.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).
Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

Select a disengaging direction in which the tool moves away from the edge of the hole.

Check the position of the tool tip when you program a spindle orientation to the angle that you enter in O336 (for example, in the Positioning with Manual Data Input mode of operation). Set the angle so that the tool tip is parallel to a coordinate axis.

During retraction the TNC automatically takes an active rotation of the coordinate system into account.

Cycle parameters

- Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

Depth Q201 (incremental): Distance between workpiece surface and bottom of hole. Input range -99999.9999 to 99999.9999

- Feed rate for plunging Q206: Traversing speed of the tool during boring at $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU
- Dwell time at depth Q211: Time in seconds that the tool remains at the hole bottom. Input range 0 to 3600.0000

Retraction feed rate Q208: Traversing speed of the tool in $\mathrm{mm} / \mathrm{min}$ when retracting from the hole. If you

Disengaging direction (0/1/2/3/4) Q214: Determine the direction in which the TNC retracts the tool at the hole bottom (after spindle orientation).

0 Do not retract tool.
1 Retract tool in the negative ref. axis direction.
2 Retract tool in the negative minor axis direction.
3 Retract tool in the positive ref. axis direction.
4 Retract tool in the positive minor axis direction.
Angle for spindle orientation Q 336 (absolute): Angle at which the TNC positions the tool before retracting it. Input range -360.000 to 360.000

Example:

10 L Z+100 RO FMAX
11 CYCL DEF 202 BORING
Q200=2 ;SET-UP CLEARANCE
Q201=-15 ; DEPTH
Q206=100 ; FEED RATE FOR PLNGNG
Q211=0.5 ; DWELL TIME AT DEPTH
Q208=250 ; RETRACTION FEED RATE
Q203 $=+20$;SURFACE COORDINATE
Q204=100 ;2ND SET-UP CLEARANCE
Q214=1 ;DISENGAGING DIRECTN
Q336=0 ;ANGLE OF SPINDLE
$12 \mathrm{~L} \mathrm{X}+30 \mathrm{Y}+20$ FMAX M3
13 CYCL CALL
14 L X+80 Y+50 FMAX M99

11 CYCL DEF 202 BORING
Q200=2 ;SET-UP CLEARANCE
Q201=-15 ;DEPTH
Q206=100 ; FEED RATE FOR PLNGNG
Q211=0.5 ;DWELL TIME AT DEPTH
Q208=250 ; RETRACTION FEED RATE
Q203=+20 ; SURFACE COORDINATE
Q204=100 ;2ND SET-UP CLEARANCE
Q214=1 ;DISENGAGING DIRECTN
Q336=0 ;ANGLE OF SPINDLE
12 L X+30 Y+20 FMAX M3

14 L X+80 Y+50 FMAX M99

3.6 UNIVERSAL DRILLING (Cycle 203, DIN/ISO: G203)

Cycle run

1 The TNC positions the tool in the spindle axis at rapid traverse FMAX to the entered set-up clearance above the workpiece surface.

2 The tool drills to the first plunging depth at the programmed feed rate \mathbf{F}.
3 If you have programmed chip breaking, the tool then retracts by the entered retraction value. If you are working without chip breaking, the tool retracts at the retraction feed rate to the set-up clearance, remains there-if programmed-for the entered dwell time, and advances again at FMAX to the set-up clearance above the first PLUNGING DEPTH.

4 The tool then advances with another infeed at the programmed feed rate. If programmed, the plunging depth is decreased after each infeed by the decrement.
5 The TNC repeats this process (2 to 4) until the programmed total hole depth is reached.
6 The tool remains at the hole bottom—if programmed-for the entered dwell time to cut free, and then retracts to the set-up clearance at the retraction feed rate. If programmed, the tool moves to the 2nd set-up clearance at FMAX.

Please note while programming:

Program a positioning block for the starting point (hole center) in the working plane with radius compensation R0
The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH=0, the cycle will not be executed.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

Cycle parameters

Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

- Depth Q201 (incremental): Distance between workpiece surface and bottom of hole (tip of drill taper). Input range -99999.9999 to 99999.9999
- Feed rate for plunging Q206: Traversing speed of the tool during drilling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU
> Plunging depth O 202 (incremental): Infeed per cut. Input range 0 to 99999.9999. The depth does not have to be a multiple of the plunging depth. The TNC will go to depth in one movement if:
- the plunging depth is equal to the depth
- the plunging depth is greater than the depth and no chip breaking is defined

D Dwell time at top Q210: Time in seconds that the tool remains at set-up clearance after having been retracted from the hole for chip removal. Input range 0 to 3600.0000

Workpiece surface coordinate Q203 (absolute): Coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999

2nd set-up clearance Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

Decrement 0212 (incremental): Value by which the TNC decreases the plunging depth Q202 after each infeed. Input range 0 to 99999.9999

No. of breaks before retracting Q 213 : Number of chip breaks after which the TNC is to withdraw the tool from the hole for chip removal. For chip breaking, the TNC retracts the tool each time by the value in Q256. Input range 0 to 99999
Minimum plunging depth Q 205 (incremental): If you have entered a decrement, the TNC limits the plunging depth to the value entered with Q205. Input range 0 to 99999.9999

- Dwell time at depth Q211: Time in seconds that the tool remains at the hole bottom. Input range 0 to 3600.0000
- Retraction feed rate Q208: Traversing speed of the tool in $\mathrm{mm} / \mathrm{min}$ when retracting from the hole. If you enter Q208 = 0, the TNC retracts the tool at the feed rate in Q206. Input range 0 to 99999.999, alternatively FMAX, FAUTO
- Retraction rate for chip breaking Q256 (incremental): Value by which the TNC retracts the tool during chip breaking. Input range 0.1000 to 99999.9999

Example: NC blocks

11 CYCL DEF 203 UNIVERSAL DRILLING

Q200=2 ;SET-UP CLEARANCE
Q201 $=-20$;DEPTH
Q206=150 ; FEED RATE FOR PLNGNG
Q202=5 ;PLUNGING DEPTH
Q210 $=0$;DWELL TIME AT TOP
Q203=+20 ; SURFACE COORDINATE
Q204=50 ;2ND SET-UP CLEARANCE
Q212=0.2 ;DECREMENT
Q213=3 ; NR OF BREAKS
Q205=3 ;MIN. PLUNGING DEPTH
Q211=0.25 ; DWELL TIME AT DEPTH
Q208=500 ; RETRACTION FEED RATE
Q256=0.2 ;DIST FOR CHIP BRKNG

3.7 BACK BORING (Cycle 204, DIN/ISO: G204)

Cycle run

This cycle allows holes to be bored from the underside of the workpiece.
1 The TNC positions the tool in the spindle axis at rapid traverse FMAX to the set-up clearance above the workpiece surface.
2 The TNC then orients the spindle to the 0° position with an oriented spindle stop, and displaces the tool by the off-center distance.
3 The tool is then plunged into the already bored hole at the feed rate for pre-positioning until the tooth has reached the set-up clearance on the underside of the workpiece.
4 The TNC then centers the tool again over the bore hole, switches on the spindle and the coolant and moves at the feed rate for boring to the depth of bore.
5 If a dwell time is entered, the tool will pause at the top of the bore hole and will then be retracted from the hole again. Another
 oriented spindle stop is carried out and the tool is once again displaced by the off-center distance.
6 The TNC moves the tool at the pre-positioning feed rate to the setup clearance and then-if entered-to the 2nd set-up clearance at FMAX.

Please note while programming:

Machine and TNC must be specially prepared by the machine tool builder for use of this cycle.

This cycle is effective only for machines with servocontrolled spindle.

Special boring bars for upward cutting are required for this cycle.

Program a positioning block for the starting point (hole center) in the working plane with radius compensation RO.

The algebraic sign for the cycle parameter depth determines the working direction. Note: A positive sign bores in the direction of the positive spindle axis.

The entered tool length is the total length to the underside of the boring bar and not just to the tooth.

When calculating the starting point for boring, the TNC considers the tooth length of the boring bar and the thickness of the material.

Danger of collision!

Check the position of the tool tip when you program a spindle orientation to the angle that you enter in Q336 (for example, in the Positioning with Manual Data Input mode of operation). Set the angle so that the tool tip is parallel to a coordinate axis. Select a disengaging direction in which the tool moves away from the edge of the hole.

Cycle parameters

Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

Depth of counterbore Q249 (incremental): Distance between underside of workpiece and the top of the hole. A positive sign means the hole will be bored in the positive spindle axis direction. Input range -99999.9999 to 99999.9999

- Material thickness Q250 (incremental): Thickness of the workpiece. Input range 0.0001 to 99999.9999
Off-center distance Q251 (incremental): Off-center distance for the boring bar; value from tool data sheet. Input range 0.0001 to 99999.9999
> Tool edge height Q252 (incremental): Distance between the underside of the boring bar and the main cutting tooth; value from tool data sheet. Input range 0.0001 to 99999.9999
- Feed rate for pre-positioning O253: Traversing speed of the tool in $\mathrm{mm} / \mathrm{min}$ when plunging into the workpiece, or when retracting from the workpiece. Input range 0 to 99999.999; alternatively FMAX, FAUTO
- Feed rate for back boring Q254: Traversing speed of the tool during back boring in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU
Dwell time Q255: Dwell time in seconds at the top of the bore hole. Input range 0 to 3600.000

Workpiece surface coordinate Q203 (absolute): Coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999

- 2nd set-up clearance Q 204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

Disengaging direction (0/1/2/3/4) Q214: Determine the direction in which the TNC displaces the tool by the off-center distance (after spindle orientation). Input of 0 is not permitted.

1 Retract tool in the negative ref. axis direction.
2 Retract tool in the negative minor axis direction.
3 Retract tool in the positive ref. axis direction.
4 Retract tool in the positive minor axis direction.
Angle for spindle orientation Q 336 (absolute): Angle at which the TNC positions the tool before it is plunged into or retracted from the bore hole. Input range -360.0000 to 360.0000

Example: NC blocks

11 CYCL DEF 204 BACK BORING

Q200=2 ;SET-UP CLEARANCE
Q249 $=+5$; DEPTH OF COUNTERBORE
Q250=20 ;MATERIAL THICKNESS
Q251=3.5 ; OFF-CENTER DISTANCE
Q252=15 ;TOOL EDGE HEIGHT
Q253=750 ;F PRE-POSITIONING
Q254=200 ; F COUNTERSINKING
Q255=0 ;DWELL TIME
Q203=+20 ;SURFACE COORDINATE
Q204=50 ;2ND SET-UP CLEARANCE
Q214=1 ;DISENGAGING DIRECTN
Q336=0 ;ANGLE OF SPINDLE

3.8 UNIVERSAL PECKING (Cycle 205, DIN/ISO: G205)

Cycle run

1 The TNC positions the tool in the spindle axis at rapid traverse FMAX to the entered set-up clearance above the workpiece surface.
2 If you enter a deepened starting point, the TNC moves at the defined positioning feed rate to the set-up clearance above the deepened starting point.
3 The tool drills to the first plunging depth at the programmed feed rate \mathbf{F}.
4 If you have programmed chip breaking, the tool then retracts by the entered retraction value. If you are working without chip breaking, the tool is moved at rapid traverse to the set-up clearance, and then at FMAX to the entered starting position above the first plunging depth.
5 The tool then advances with another infeed at the programmed feed rate. If programmed, the plunging depth is decreased after each infeed by the decrement.
6 The TNC repeats this process (2 to 4) until the programmed total hole depth is reached.
7 The tool remains at the hole bottom—if programmed-for the entered dwell time to cut free, and then retracts to the set-up clearance at the retraction feed rate. If programmed, the tool moves to the 2nd set-up clearance at FMAX.

Please note while programming:

Program a positioning block for the starting point (hole center) in the working plane with radius compensation R0
The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH=0, the cycle will not be executed.
If you enter different advance stop distances for $\mathbf{Q 2 5 8}$ and Q259, the TNC will change the advance stop distances between the first and last plunging depths at the same rate.

If you use Q379 to enter a deepened starting point, the TNC merely changes the starting point of the infeed movement. Retraction movements are not changed by the TNC, therefore they are calculated with respect to the coordinate of the workpiece surface.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).
Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

Cycle parameters

Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

- Depth Q201 (incremental): Distance between workpiece surface and bottom of hole (tip of drill taper). Input range -99999.9999 to 99999.9999
- Feed rate for plunging Q206: Traversing speed of the tool during drilling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU
> Plunging depth O 202 (incremental): Infeed per cut. Input range 0 to 99999.9999. The depth does not have to be a multiple of the plunging depth. The TNC will go to depth in one movement if:
- the plunging depth is equal to the depth
 Set-up clearance for rapid traverse positioning when the TNC moves the tool again to the current plunging depth after retraction from the hole; value for the first plunging depth. Input range 0 to 99999.9999

Lower advanced stop distance O 259 (incremental): Set-up clearance for rapid traverse positioning when the TNC moves the tool again to the current plunging depth after retraction from the hole; value for the last plunging depth. Input range 0 to 99999.9999

Infeed depth for chip breaking 0257 (incremental): Depth at which the TNC carries out chip breaking. No chip breaking if 0 is entered. Input range 0 to 99999.9999

- Retraction rate for chip breaking Q256
(incremental): Value by which the TNC retracts the tool during chip breaking. The TNC retracts the tool at a feed rate of $3000 \mathrm{~mm} / \mathrm{min}$. Input range 0.1000 to 99999.9999.

D Dwell time at depth Q211: Time in seconds that the tool remains at the hole bottom. Input range 0 to 3600.0000

Deepened starting point 0379 (incremental with respect to the workpiece surface): Starting position of drilling if a shorter tool has already pilot drilled to a certain depth. The TNC moves at the feed rate for pre-positioning from the set-up clearance to the deepened starting point. Input range 0 to 99999.9999

Feed rate for pre-positioning Q253: Traversing velocity of the tool during positioning from the set-up clearance to a deepened starting point in $\mathrm{mm} / \mathrm{min}$. Effective only if Q379 is entered not equal to 0 . Input range 0 to 99999.999, alternatively FMAX, FAUTO

Example: NC blocks

11 CYCL DEF 205 UNIVERSAL PECKING

Q200=2 ;SET-UP CLEARANCE
Q201 $=-80$;DEPTH
Q206=150 ; FEED RATE FOR PLNGNG
Q202=15 ;PLUNGING DEPTH
Q203=+100 ; SURFACE COORDINATE
Q204=50 ;2ND SET-UP CLEARANCE
Q212=0.5 ; DECREMENT
Q205=3 ;MIN. PLUNGING DEPTH
Q258=0.5 ;UPPER ADV. STOP DIST.
Q259 $=1$;LOWER ADV. STOP DIST.
Q257=5 ;DEPTH FOR CHIP BRKNG
Q256=0.2 ;DIST FOR CHIP BRKNG
Q211=0.25 ;DWELL TIME AT DEPTH
Q379 $=7.5$;STARTING POINT
Q253=750 ;F PRE-POSITIONING

3.9 BORE MILLING (Cycle 208)

Cycle run

1 The TNC positions the tool in the spindle axis at rapid traverse FMAX to the programmed set-up clearance above the workpiece surface and then moves the tool to the bore hole circumference on a rounded arc (if enough space is available).
2 The tool mills in a helix from the current position to the first plunging depth at the programmed feed rate \mathbf{F}.
3 When the drilling depth is reached, the TNC once again traverses a full circle to remove the material remaining after the initial plunge.
4 The TNC then positions the tool at the center of the hole again.
5 Finally the TNC returns to the set-up clearance at FMAX. If programmed, the tool moves to the 2nd set-up clearance at FMAX.

Please note while programming:

Program a positioning block for the starting point (hole center) in the working plane with radius compensation R0
The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH=0, the cycle will not be executed.

If you have entered the bore hole diameter to be the same as the tool diameter, the TNC will bore directly to the entered depth without any helical interpolation.
An active mirror function does not influence the type of milling defined in the cycle.

Note that if the infeed distance is too large, the tool or the workpiece may be damaged

To prevent the infeeds from being too large, enter the maximum plunge angle of the tool in the ANGLE column of the tool table. The TNC then automatically calculates the max. infeed permitted and changes your entered value accordingly.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

Cycle parameters

Set-up clearance Q200 (incremental): Distance between tool lower edge and workpiece surface. Input range 0 to 99999.9999

- Depth Q201 (incremental): Distance between workpiece surface and bottom of hole. Input range -99999.9999 to 99999.9999
- Feed rate for plunging Q206: Traversing speed of the tool during helical drilling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU, FZ
- Infeed per helix Q334 (incremental): Depth of the tool plunge with each helix $\left(=360^{\circ}\right)$. Input range 0 to 99999.9999
- Workpiece surface coordinate O203 (absolute): Coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999
- 2nd set-up clearance O 204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999
- Nominal diameter Q335 (absolute value): Bore-hole diameter. If you have entered the nominal diameter to be the same as the tool diameter, the TNC will bore directly to the entered depth without any helical interpolation. Input range 0 to 99999.9999
- Roughing diameter Q342 (absolute): As soon as you enter a value greater than 0 in Q342, the TNC no longer checks the ratio between the nominal diameter and the tool diameter. This allows you to rough-mill holes whose diameter is more than twice as large as the tool diameter. Input range 0 to 99999.9999
- Climb or up-cut Q351: Type of milling operation with M3
+1 = climb milling
-1 = up-cut milling

Example: NC blocks

3.10 SINGLE-LIP DEEP-HOLE DRILLING (Cycle 241, DIN/ISO: G241)

Cycle run

1 The TNC positions the tool in the spindle axis at rapid traverse FMAX to the entered set-up clearance above the workpiece surface.
2 Then the TNC moves the tool at the defined positioning feed rate to the set-up clearance above the deepened starting point and activates the drilling speed (M3) and the coolant. The TNC executes the approach motion with the direction of rotation defined in the cycle, with clockwise, counterclockwise or stationary spindle.
3 The tool drills to the entered drilling depth at the programmed feed rate \mathbf{F}.
4 If programmed, the tool remains at the hole bottom for chip breaking. Then the TNC switches off the coolant and resets the drilling speed to the value defined for retraction.
5 After the dwell time at the hole bottom, the tool is retracted to the set-up clearance at the retraction feed rate. If programmed, the tool moves to the 2nd set-up clearance at FMAX.

Please note while programming:

Program a positioning block for the starting point (hole center) in the working plane with radius compensation $\mathbf{R 0}$
The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH=0, the cycle will not be executed.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).
Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

Cycle parameters

- Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999
> Depth Q201 (incremental): Distance between workpiece surface and bottom of hole. Input range -99999.9999 to 99999.9999
- Feed rate for plunging Q206: Traversing speed of the tool during drilling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU
- Dwell time at depth Q211: Time in seconds that the tool remains at the hole bottom. Input range 0 to 3600.0000
- Workpiece surface coordinate Q 203 (absolute): Coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999
- 2nd set-up clearance O 204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999
- Deepened starting point 0379 (incremental with respect to the workpiece surface): Starting position for actual drilling operation. The TNC moves at the feed rate for pre-positioning from the set-up clearance to the deepened starting point. Input range 0 to 99999.9999
> Feed rate for pre-positioning Q253: Traversing velocity of the tool during positioning from the set-up clearance to the deepened starting point in $\mathrm{mm} / \mathrm{min}$. Effective only if O379 is entered not equal to 0 . Input range 0 to 99999.999, alternatively FMAX, FAUTO
- Retraction feed rate Q208: Traversing speed of the tool in $\mathrm{mm} / \mathrm{min}$ when retracting from the hole. If you enter O208 $=0$, the TNC retracts the tool at the feed rate in O206. Input range 0 to 99999.999, alternatively FMAX, FAUTO

Rotat. dir. of entry/exit (3/4/5) Q426: Desired direction of spindle rotation when tool moves into and retracts from the hole. Input:
3: Spindle rotation with M3
4: Spindle rotation with M4
5: Movement with stationary spindle

- Spindle speed of entry/exit Q427: Desired spindle speed when tool moves into and retracts from the hole. Input range 0 to 99999

Drilling speed Q428: Desired speed for drilling. Input range 0 to 99999
M function for coolant on? Q429: M function for switching on the coolant. The TNC switches the coolant on if the tool is in the hole at the deepened starting point. Input range 0 to 999

M function for coolant off? Q430: M function for switching off the coolant. The TNC switches the coolant off if the tool is at the hole depth. Input range 0 to 999

Example: NC blocks

11 CYCL DEF 241 SINGLE-LIP DEEP-HOLE DRILLING

Q200=2 ; SET-UP CLEARANCE
Q201=-80 ;DEPTH
Q206=150 ; FEED RATE FOR PLNGNG
Q211=0.25 ; DWELL TIME AT DEPTH
Q203=+100 ; SURFACE COORDINATE
Q204=50 ;2ND SET-UP CLEARANCE
Q379=7.5 ;STARTING POINT
Q253=750 ;F PRE-POSITIONING
Q208=1000 ; RETRACTION FEED RATE
Q426=3 ;DIR. OF SPINDLE ROT.
Q427=25 ;ROT. SPEED INFEED/OUT
Q428=500 ;DRILLING SPEED
Q429 $=8$;COOLANT ON
Q430=9 ;COOLANT OFF

3.11 Programming Examples

Example: Drilling cycles

Definition of workpiece blank

Tool call (tool radius 3)
Retract the tool
Cycle definition

| $\mathbf{6}$ L X+10 Y+10 R0 FMAX M3 | Approach hole 1, spindle ON |
| :--- | :--- | :--- |
| $\mathbf{7}$ CYCL CALL | Cycle call |
| $\mathbf{8}$ L Y+90 R0 FMAX M99 | Approach hole 2, call cycle |
| 9 L X+90 R0 FMAX M99 | Approach hole 3, call cycle |
| $\mathbf{1 0}$ L Y+10 R0 FMAX M99 | Approach hole 4, call cycle |
| $\mathbf{1 1}$ L Z+250 R0 FMAX M2 | Retract in the tool axis, end program |
| $\mathbf{1 2}$ END PGM C200 MM | |

Example: Using drilling cycles in connection with PATTERN DEF

The drill hole coordinates are stored in the pattern definition PATTERN DEF POS and are called by the TNC with CYCL CALL PAT:

The tool radii are selected so that all work steps can be seen in the test graphics.

Program sequence

- Centering (tool radius 4)
- Drilling (tool radius 2.4)
- Tapping (tool radius 3)

Definition of workpiece blank

Call the centering tool (tool radius 4)
Move tool to clearance height (enter a value for F): the TNC positions to the clearance height after every cycle
Define all drilling positions in the point pattern

6 CYCL DEF 240 CENTERING
Q200=2 ; SET-UP CLEARANCE
Q343=0 ;SELECT DEPTH/DIA.
Q201=-2 ;DEPTH
Q344=-10 ;DIAMETER
Q206=150 ; FEED RATE FOR PLNGN
Q211=0 ;DWELL TIME AT DEPTH
Q203=+0 ;SURFACE COORDINATE
Q204=50 ;2ND SET-UP CLEARANCE
7 CYCL CALL PAT F5000 M13
8 L Z+100 RO FMAX
9 TOOL CALL 2 Z S5000
10 L Z+10 RO F5000
Q200=2 ;SET-UP CLEARANCE
Q201=-25 ; DEPTH
Q206=150 ; FEED RATE FOR PECKING
Q202=5 ;PLUNGING DEPTH
Q210=0 ; DWELL TIME AT TOP
Q203=+0 ;SURFACE COORDINATE
,2ND SET-UP CLEARANCE
2 CYCL CALL PAT F5000 M13
13 L Z+100 RO FMAX
14 TOOL CALL 3 Z S200
16 CYCL DEF 206 TAPPING NEW
Q200=2 ;SET-UP CLEARANCE
Q201=-25 ;DEPTH OF THREAD
Q206=150 ; FEED RATE FOR PECKING
Q211=0 ;DWELL TIME AT DEPTH
Q203=+0 ;SURFACE COORDINATE
Q204=50 ;2ND SET-UP CLEARANCE
CVCL CALL PAT F5000 M13
19 END PGM 1 MM

4.1 Fundamentals

Overview

The TNC offers 8 cycles for all types of threading operations:

Cycle	Soft key	Page
206 TAPPING NEW With a floating tap holder, with automatic pre-positioning, 2nd set-up clearance	$\begin{aligned} & 205 \\ & 200 \\ & \hline \end{aligned}$	Page 95
207 RIGID TAPPING NEW Without a floating tap holder, with automatic pre-positioning, 2nd set-up clearance	c^{207}	Page 97
209 TAPPING W/ CHIP BREAKING Without a floating tap holder, with automatic pre-positioning, 2nd set-up clearance, chip breaking	${ }^{209}{ }^{\text {RT }}$	Page 100
262 THREAD MILLING Cycle for milling a thread in pre-drilled material		Page 105
263 THREAD MILLING/CNTSNKG Cycle for milling a thread in pre-drilled material and machining a countersunk chamfer	253	Page 108
264 THREAD DRILLING/MILLING Cycle for drilling into solid material with subsequent milling of the thread with a tool	${ }^{254}$	Page 112
265 HEL.THREAD DRILLING/MILLING Cycle for milling the thread into solid material	${ }^{255}$	Page 116
267 OUTSIDE THREAD MILLING Cycle for milling an external thread and machining a countersunk chamfer	287	Page 116

4.2 TAPPING NEW with a Floating Tap Holder (Cycle 206, DIN/ISO: G206)

Cycle run

1 The TNC positions the tool in the spindle axis at rapid traverse FMAX to the entered set-up clearance above the workpiece surface.
2 The tool taps to the total hole depth in one movement.
3 Once the tool has reached the total hole depth, the direction of spindle rotation is reversed and the tool is retracted to the set-up clearance at the end of the dwell time. If programmed, the tool moves to the ind setup clearance at FMAX.
4 At the set-up clearance, the direction of spindle rotation reverses once again.

Please note while programming:

Program a positioning block for the starting point (hole
center) in the working plane with radius compensation \mathbf{R}.
The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH =0, the cycle will not be executed.

A floating tap holder is required for tapping. It must compensate the tolerances between feed rate and spindle speed during the tapping process.

When a cycle is being run, the spindle speed override knob is disabled. The feed-rate override knob is active only within a limited range, which is defined by the machine tool builder (refer to your machine manual).
For tapping right-hand threads activate the spindle with M3, for left-hand threads use M4.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).
Keep in mind that the TNC reverses the calculation for perepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

Cycle parameters

Set-up clearance Q200 (incremental): Distance between tool tip (at starting position) and workpiece surface. Standard value: approx. 4 times the thread pitch. Input range 0 to 99999.9999

- Total hole depth O 201 (thread length, incremental): Distance between workpiece surface and end of thread. Input range -99999.9999 to 99999.9999
- Feed rate F Q206: Traversing speed of the tool during tapping. Input range 0 to 99999.999; alternatively FAUTO
- Dwell time at bottom Q211: Enter a value between 0 and 0.5 seconds to avoid wedging of the tool during retraction. Input range 0 to 3600.0000
- Workpiece surface coordinate O 203 (absolute): Coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999
- 2nd set-up clearance O 204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

The feed rate is calculated as follows: $F=S \times p$
F: Feed rate ($\mathrm{mm} / \mathrm{min}$)
S: Spindle speed (rpm)
p : Thread pitch (mm)

Retracting after a program interruption

If you interrupt program run during tapping with the machine stop button, the TNC will display a soft key with which you can retract the tool.

Example: NC blocks
25 CYCL DEF 206 TAPPING NEW

4.3 RIGID TAPPING without a Floating Tap Holder NEW (Cycle 207, DIN/ISO: G207)

Cycle run

The TNC cuts the thread without a floating tap holder in one or more passes.

1 The TNC positions the tool in the spindle axis at rapid traverse FMAX to the entered set-up clearance above the workpiece surface.
2 The tool taps to the total hole depth in one movement.
3 Once the tool has reached the total hole depth, the direction of spindle rotation is reversed and the tool is retracted to the set-up clearance at the end of the dwell time. If programmed, the tool moves to the 2nd set-up clearance at FMAX.

Machine and TNC must be specially prepared by the machine tool builder for use of this cycle.
This cycle is effective only for machines with servocontrolled spindle.

Program a positioning block for the starting point (hole center) in the working plane with radius compensation $\mathbf{R 0}$
The algebraic sign for the total hole depth parameter determines the working direction.

The TNC calculates the feed rate from the spindle speed. If the feed-rate override is used during tapping, the TNC automatically adjusts the feed rate.

The feed-rate override knob is disabled.
At the end of the cycle the spindle comes to a stop. Before the next operation, restart the spindle with M3 (or M4).

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

Cycle parameters

- Set-up clearance O200 (incremental): Distance between tool tip (at starting position) and workpiece surface. Input range 0 to 99999.9999
- Total hole depth Q201 (incremental): Distance between workpiece surface and end of thread. Input range -99999.9999 to 99999.9999
- Pitch 0239

Pitch of the thread. The algebraic sign differentiates between right-hand and left-hand threads:
+= right-hand thread
-= left-hand thread
Input range -99.9999 to 99.9999

- Workpiece surface coordinate Q 203 (absolute): Coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999
- 2nd set-up clearance O 204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

Retracting after a program interruption

If you interrupt program run during thread cutting with the machine stop button, the TNC will display the MANUAL OPERATION soft key. If you press MANUAL OPERATION, you can retract the tool under program control. Simply press the positive axis direction button of the active spindle axis.

Example: NC blocks

26 CYCL DEF 207	RIGID TAPPING NEW
Q200=2	;SET-UP CLEARANCE
Q201 $=-20$;DEPTH
Q239=+1	;PITCH
Q203 $=+25$;SURFACE COORDINATE
Q204=50	;2ND SET-UP CLEARANCE

4.4 TAPPING WITH CHIP BREAKING (Cycle 209, DIN/ISO: G209)

Cycle run

The TNC machines the thread in several passes until it reaches the programmed depth. You can define in a parameter whether the tool is to be retracted completely from the hole for chip breaking.

1 The TNC positions the tool in the tool axis at rapid traverse FMAX to the programmed set-up clearance above the workpiece surface. There it carries out an oriented spindle stop.
2 The tool moves to the programmed infeed depth, reverses the direction of spindle rotation and retracts by a specific distance or completely for chip breaking, depending on the definition. If you have defined a factor for increasing the spindle speed, the TNC retracts from the hole at the corresponding speed
3 It then reverses the direction of spindle rotation again and advances to the next infeed depth.
4 The TNC repeats this process (2 to 3) until the programmed thread depth is reached.
5 The tool is then retracted to the set-up clearance. If programmed, the tool moves to the 2nd set-up clearance at FMAX.
6 The TNC brings the spindle to a stop at the set-up clearance.

Please note while programming:

Machine and TNC must be specially prepared by the machine tool builder for use of this cycle.

This cycle is effective only for machines with servocontrolled spindle.

Program a positioning block for the starting point (hole center) in the working plane with radius compensation R0.

The algebraic sign for the parameter thread depth determines the working direction.

The TNC calculates the feed rate from the spindle speed. If the feed-rate override is used during tapping, the TNC automatically adjusts the feed rate.

The feed-rate override knob is disabled.
If you defined an rpm factor for fast retraction in cycle parameter Q403, the TNC limits the speed to the maximum speed of the active gear range.
At the end of the cycle the spindle comes to a stop. Before the next operation, restart the spindle with M3 (or M4).

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

Set-up clearance Q200 (incremental): Distance between tool tip (at starting position) and workpiece surface. Input range 0 to 99999.9999

- Thread depth 0201 (incremental): Distance between workpiece surface and end of thread. Input range -99999.9999 to 99999.9999
Pitch 0239
Pitch of the thread. The algebraic sign differentiates between right-hand and left-hand threads:
+= right-hand thread
-= left-hand thread
Input range -99.9999 to 99.9999
Workpiece surface coordinate Q 203 (absolute): Coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999
- 2nd set-up clearance O 204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999
- Infeed depth for chip breaking O 257 (incremental): Depth at which TNC carries out chip breaking. Input range 0 to 99999.9999
- Retraction rate for chip breaking O256: The TNC multiplies the pitch O239 by the programmed value and retracts the tool by the calculated value during chip breaking. If you enter $\mathrm{O} 256=0$, the TNC retracts the tool completely from the hole (to the set-up clearance) for chip breaking. Input range 0.1000 to 99999.9999

Angle for spindle orientation Q 336 (absolute): Angle at which the TNC positions the tool before machining the thread. This allows you to regroove the thread, if required. Input range - 360.0000 to 360.0000 .

- RPM factor for retraction Q403: Factor by which the TNC increases the spindle speed-and therefore also the retraction feed rate-when retracting from the drill hole. Input range 0.0001 to 10 ; the speed is increased at most to the maximum speed of the active gear range.

Retracting after a program interruption

If you interrupt program run during thread cutting with the machine stop button, the TNC will display the MANUAL OPERATION soft key. If you press the MANUAL OPERATION key, you can retract the tool under program control. Simply press the positive axis direction button of the active spindle axis.

Example: NC blocks

26 CYCL DEF 209 TAPPING W/ CHIP BRKG	
Q200 $=2$;SET-UP CLEARANCE
Q201 $=-20$;DEPTH
Q239 $=+1$;PITCH
Q203 $=+25$;SURFACE COORDINATE
Q204 $=50$; 2ND SET-UP CLEARANCE
Q257 $=5$;DEPTH FOR CHIP BRKNG
Q256 $=+25$;DIST. FOR CHIP BRKNG
Q336 $=50$;ANGLE OF SPINDLE
Q403 $=1.5$;RPM FACTOR

4.5 Fundamentals of Thread Milling

Prerequisites

- Your machine tool should feature internal spindle cooling (cooling lubricant at least 30 bars, compressed air supply at least 6 bars).
- Thread milling usually leads to distortions of the thread profile. To correct this effect, you need tool-specific compensation values which are given in the tool catalog or are available from the tool manufacturer. You program the compensation with the delta value for the tool radius DR in the TOOL CALL.
- The Cycles 262, 263, 264 and 267 can only be used with rightward rotating tools. For Cycle 265 you can use rightward and leftward rotating tools.
- The working direction is determined by the following input parameters: Algebraic sign Q 239 (+ = right-hand thread / - = lefthand thread) and milling method Q351 ($+1=$ climb $/-1=$ up-cut). The table below illustrates the interrelation between the individual input parameters for rightward rotating tools.

Internal thread	Pitch	Climb/Up-cut	Work direction
Right-handed	+	$+1(R L)$	Z+
Left-handed	-	$-1(R R)$	Z+
Right-handed	+	$-1(R R)$	Z-
Left-handed	-	$+1(R L)$	Z-

External thread	Pitch	Climb/Up-cut	Work direction
Right-handed	+	$+1(R L)$	Z-
Left-handed	-	$-1(R R)$	Z-
Right-handed	+	$-1(R R)$	Z+
Left-handed	-	$+1(R L)$	Z+

[^0]
Danger of collision!

Always program the same algebraic sign for the infeeds: Cycles comprise several sequences of operation that are independent of each other. The order of precedence according to which the work direction is determined is described with the individual cycles. For example, if you only want to repeat the countersinking process of a cycle, enter 0 for the thread depth. The work direction will then be determined from the countersinking depth.

Procedure in case of a tool break

If a tool break occurs during thread cutting, stop program run, change to the Positioning with MDI operating mode and move the tool on a linear path to the hole center. You can then retract the tool in the infeed axis and replace it.

4.6 THREAD MILLING (Cycle 262, DIN/ISO: G262)

Cycle run

1 The TNC positions the tool in the spindle axis at rapid traverse FMAX to the entered set-up clearance above the workpiece surface.
2 The tool moves at the programmed feed rate for pre-positioning to the starting plane. The starting plane is derived from the algebraic sign of the thread pitch, the milling method (climb or up-cut milling) and the number of threads per step.
3 The tool then approaches the thread diameter tangentially in a helical movement. Before the helical approach, a compensating motion of the tool axis is carried out in order to begin at the programmed starting plane for the thread path.
4 Depending on the setting of the parameter for the number of threads, the tool mills the thread in one helical movement, in several offset helical movements or in one continuous helical movement.
5 After this, the tool departs the contour tangentially and returns to the starting point in the working plane.
6 At the end of the cycle, the TNC retracts the tool at rapid traverse to the setup clearance, or-if programmed-to the 2nd setup clearance.

Please note while programming:

Program a positioning block for the starting point (hole center) in the working plane with radius compensation R0

The algebraic sign for the cycle parameter "thread depth" determines the working direction. If you program the thread DEPTH $=0$, the cycle will not be executed.

The nominal thread diameter is approached in a semi-circle from the center. A pre-positioning movement to the side is carried out if the pitch of the tool diameter is four times smaller than the nominal thread diameter.

Note that the TNC makes a compensation movement in the tool axis before the approach movement. The length of the compensation movement is at most half of the thread pitch. Ensure sufficient space in the hole!

If you change the thread depth, the TNC automatically changes the starting point for the helical movement.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

Cycle parameters

- Nominal diameter Q335: Nominal thread diameter. Input range 0 to 99999.9999
- Thread pitch Q239: Pitch of the thread. The algebraic sign differentiates between right-hand and left-hand threads:
+= right-hand thread
- = left-hand thread

Input range -99.9999 to 99.9999

- Thread depth O201 (incremental): Distance between workpiece surface and root of thread. Input range -99999.9999 to 99999.9999
- Threads per step Q355: Number of thread revolutions by which the tool is moved: $\mathbf{0}=$ one 360° helical line to the thread depth $\mathbf{1}=$ continuous helical path over the entire length of the thread
$\mathbf{> 1}=$ several helical paths with approach and departure; between them, the TNC offsets the tool by Q355, multiplied by the pitch. Input range 0 to 99999
- Feed rate for pre-positioning Q253: Traversing speed of the tool in $\mathrm{mm} / \mathrm{min}$ when plunging into the workpiece, or when retracting from the workpiece. Input range 0 to 99999.999; alternatively FMAX, FAUTO
- Climb or up-cut Q351: Type of milling operation with M3
+1 = climb milling
-1 = up-cut milling
- Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999
- Workpiece surface coordinate Q203 (absolute): Coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999
- 2nd set-up clearance Q 204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

Feed rate for milling Q207: Traversing speed of the tool during milling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO

Example: NC blocks

4.7 THREAD MILLING / COUNTERSINKING (Cycle 263, DIN/ISO: G263)

Cycle run

1 The TNC positions the tool in the spindle axis at rapid traverse FMAX to the entered set-up clearance above the workpiece surface.

Countersinking

2 The tool moves at the feed rate for pre-positioning to the countersinking depth minus the set-up clearance, and then at the feed rate for countersinking to the countersinking depth.
3 If a set-up clearance to the side has been entered, the TNC immediately positions the tool at the feed rate for pre-positioning to the countersinking depth.
4 Then, depending on the available space, the TNC makes a tangential approach to the core diameter, either tangentially from the center or with a pre-positioning move to the side, and follows a circular path.

Countersinking at front

5 The tool moves at the feed rate for pre-positioning to the countersinking depth at front.
6 The TNC positions the tool without compensation from the center on a semicircle to the offset at front, and then follows a circular path at the feed rate for countersinking.
7 The TNC then moves in a semicircle to the hole center.

Thread milling

8 The TNC moves the tool at the programmed feed rate for prepositioning to the starting plane for the thread. The starting plane is determined from the thread pitch and the type of milling (climb or up-cut).
9 Then the tool moves tangentially on a helical path to the thread diameter and mills the thread with a 360° helical motion.
10 After this, the tool departs the contour tangentially and returns to the starting point in the working plane.
11 At the end of the cycle, the TNC retracts the tool at rapid traverse to the set-up clearance, or-if programmed-to the 2nd set-up clearance.

Please note while programming:

Before programming, note the following:

Program a positioning block for the starting point (hole center) in the working plane with radius compensation RO

The algebraic sign of the cycle parameters depth of thread, countersinking depth or sinking depth at front determines the working direction. The working direction is defined in the following sequence:
1st: Depth of thread
2nd: Countersinking depth
3rd: Depth at front
If you program a depth parameter to be 0, the TNC does not execute that step.

If you want to countersink at front, define the countersinking depth as 0

Program the thread depth as a value smaller than the countersinking depth by at least one-third the thread pitch.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

Nominal diameter Q335: Nominal thread diameter. Input range 0 to 99999.9999

- Thread pitch Q239: Pitch of the thread. The algebraic sign differentiates between right-hand and left-hand threads:
+= right-hand thread
- = left-hand thread

Input range -99.9999 to 99.9999

- Thread depth Q201 (incremental): Distance between workpiece surface and root of thread. Input range -99999.9999 to 99999.9999
- Countersinking depth Q356 (incremental): Distance between tool tip and the top surface of the workpiece. Input range -99999.9999 to 99999.9999
- Feed rate for pre-positioning O 253 : Traversing speed of the tool in $\mathrm{mm} / \mathrm{min}$ when plunging into the workpiece, or when retracting from the workpiece. Input range 0 to 99999.999; alternatively FMAX, FAUTO
- Climb or up-cut Q351: Type of milling operation with M3
+1 = climb milling
-1 = up-cut milling
- Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

Set-up clearance to the side Q357 (incremental): Distance between tool tooth and the wall of the hole. Input range 0 to 99999.9999

Depth at front Q358 (incremental): Distance between tool tip and the top surface of the workpiece for countersinking at front. Input range -99999.9999 to 99999.9999

- Countersinking offset at front Q 359 (incremental): Distance by which the TNC moves the tool center away from the hole center. Input range 0 to 99999.9999

- Workpiece surface coordinate Q203 (absolute): Coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999

2nd set-up clearance Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

- Feed rate for countersinking Q254: Traversing speed of the tool during countersinking in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU
- Feed rate for milling Q207: Traversing speed of the tool during milling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.9999; alternatively FAUTO

Example: NC blocks

25 CYCL DEF 263 THREAD MLLNG/CNTSNKG
Q335=10 ; NOMINAL DIAMETER
Q239 $=+1.5$; PITCH
Q201=-16 ;DEPTH OF THREAD
Q356=-20 ;COUNTERSINKING DEPTH
Q253=750 ; F PRE-POSITIONING
Q351=+1 ;CLIMB OR UP-CUT
Q200=2 ;SET-UP CLEARANCE
Q357 $=0.2$; CLEARANCE TO SIDE
Q358=+0 ;DEPTH AT FRONT
Q359 $=+0$;OFFSET AT FRONT
Q203=+30 ; SURFACE COORDINATE
Q204=50 ;2ND SET-UP CLEARANCE
Q254=150 ; F COUNTERSINKING
Q207=500 ; FEED RATE FOR MILLING

4.8 THREAD DRILLING/MILLING (Cycle 264, DIN/ISO: G264)

Cycle run

1 The TNC positions the tool in the spindle axis at rapid traverse FMAX to the entered set-up clearance above the workpiece surface.

Drilling

2 The tool drills to the first plunging depth at the programmed feed rate for plunging.
3 If you have programmed chip breaking, the tool then retracts by the entered retraction value. If you are working without chip breaking, the tool is moved at rapid traverse to the set-up clearance, and then at FMAX to the entered starting position above the first plunging depth.
4 The tool then advances with another infeed at the programmed feed rate.
5 The TNC repeats this process (2 to 4) until the programmed total hole depth is reached.

Countersinking at front

6 The tool moves at the feed rate for pre-positioning to the countersinking depth at front.
7 The TNC positions the tool without compensation from the center on a semicircle to the offset at front, and then follows a circular path at the feed rate for countersinking.
8 The tool then moves in a semicircle to the hole center.

Thread milling

9 The TNC moves the tool at the programmed feed rate for prepositioning to the starting plane for the thread. The starting plane is determined from the thread pitch and the type of milling (climb or up-cut).
10 Then the tool moves tangentially on a helical path to the thread diameter and mills the thread with a 360° helical motion.
11 After this, the tool departs the contour tangentially and returns to the starting point in the working plane.
12 At the end of the cycle, the TNC retracts the tool at rapid traverse to the set-up clearance, or-if programmed-to the 2nd set-up clearance.

Please note while programming:

Program a positioning block for the starting point (hole center) in the working plane with radius compensation R0.

The algebraic sign of the cycle parameters depth of thread, countersinking depth or sinking depth at front determines the working direction. The working direction is defined in the following sequence:
1st: Depth of thread
2nd: Total hole depth
3rd: Depth at front
If you program a depth parameter to be 0, the TNC does not execute that step.

Program the thread depth as a value smaller than the total hole depth by at least one-third the thread pitch.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

Nominal diameter Q335: Nominal thread diameter. Input range 0 to 99999.9999

Thread pitch Q239: Pitch of the thread. The algebraic sign differentiates between right-hand and left-hand threads:
+= right-hand thread

- = left-hand thread

Input range -99.9999 to 99.9999

- Thread depth Q201 (incremental): Distance between workpiece surface and root of thread. Input range -99999.9999 to 99999.9999
- Total hole depth Q356 (incremental): Distance between workpiece surface and bottom of hole. Input range -99999.9999 to 99999.9999
- Feed rate for pre-positioning Q253: Traversing speed of the tool in $\mathrm{mm} / \mathrm{min}$ when plunging into the workpiece, or when retracting from the workpiece. Input range 0 to 99999.999; alternatively FMAX, FAUTO
Climb or up-cut Q351: Type of milling operation with M3
+1 = climb milling
-1 = up-cut milling
$>$ Plunging depth Q202 (incremental): Infeed per cut. The depth does not have to be a multiple of the plunging depth. Input range 0 to 99999.9999. The TNC will go to depth in one movement if:
- the plunging depth is equal to the depth - the plunging depth is greater than the depth
- Upper advanced stop distance Q258 (incremental): Set-up clearance for rapid traverse positioning when the TNC moves the tool again to the current plunging depth after retraction from the hole. Input range 0 to 99999.9999
- Infeed depth for chip breaking Q257 (incremental): Depth at which TNC carries out chip breaking. No chip breaking if 0 is entered. Input range 0 to 99999.9999
- Retraction rate for chip breaking Q256 (incremental): Value by which the TNC retracts the tool during chip breaking. Input range 0.1000 to 99999.9999

Depth at front Q358 (incremental): Distance between tool tip and the top surface of the workpiece for countersinking at front. Input range -99999.9999 to 99999.9999

Countersinking offset at front Q 359 (incremental): Distance by which the TNC moves the tool center away from the hole center. Input range 0 to 99999.9999

Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

Workpiece surface coordinate Q203 (absolute): Coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999

2nd set-up clearance Q 204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

- Feed rate for plunging Q206: Traversing speed of the tool during drilling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU

Feed rate for milling Q207: Traversing speed of the tool during milling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.9999; alternatively FAUTO

Example: NC blocks

4.9 HELICAL THREAD DRILLING/MILLING (Cycle 265, DIN/ISO: G265)

Cycle run

1 The TNC positions the tool in the spindle axis at rapid traverse FMAX to the entered set-up clearance above the workpiece surface.

Countersinking at front

2 If countersinking is before thread milling, the tool moves at the feed rate for countersinking to the sinking depth at front. If countersinking occurs after thread milling, the TNC moves the tool to the countersinking depth at the feed rate for pre-positioning.
3 The TNC positions the tool without compensation from the center on a semicircle to the offset at front, and then follows a circular path at the feed rate for countersinking.
4 The tool then moves in a semicircle to the hole center.

Thread milling

5 The TNC moves the tool at the programmed feed rate for prepositioning to the starting plane for the thread.
6 The tool then approaches the thread diameter tangentially in a helical movement.
7 The tool moves on a continuous helical downward path until it reaches the thread depth.
8 After this, the tool departs the contour tangentially and returns to the starting point in the working plane.
9 At the end of the cycle, the TNC retracts the tool at rapid traverse to set-up clearance, or-if programmed-to the 2 nd set-up clearance.

Please note while programming:

Program a positioning block for the starting point (hole center) in the working plane with radius compensation R0.

The algebraic sign of the cycle parameters depth of thread or sinking depth at front determines the working direction. The working direction is defined in the following sequence:
1st: Depth of thread
2nd: Depth at front
If you program a depth parameter to be 0 , the TNC does not execute that step.

If you change the thread depth, the TNC automatically changes the starting point for the helical movement.

The type of milling (up-cut/climb) is determined by the thread (right-hand/left-hand) and the direction of tool rotation, since it is only possible to work in the direction of the tool.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

Nominal diameter Q335: Nominal thread diameter. Input range 0 to 99999.9999

- Thread pitch Q239: Pitch of the thread. The algebraic sign differentiates between right-hand and left-hand threads:
+= right-hand thread
-= left-hand thread
Input range -99.9999 to 99.9999
- Thread depth Q201 (incremental): Distance between workpiece surface and root of thread. Input range -99999.9999 to 99999.9999
- Feed rate for pre-positioning Q253: Traversing speed of the tool in $\mathrm{mm} / \mathrm{min}$ when plunging into the workpiece, or when retracting from the workpiece. Input range 0 to 99999.999; alternatively FMAX, FAUTO
- Depth at front Q358 (incremental): Distance between tool tip and the top surface of the workpiece for countersinking at front. Input range -99999.9999 to 99999.9999
- Countersinking offset at front 0359 (incremental): Distance by which the TNC moves the tool center away from the hole center. Input range 0 to 99999.9999
- Countersink Q360: Execution of the chamfer $\mathbf{0}=$ before thread machining
1 = after thread machining
Set-up clearance O 200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

- Workpiece surface coordinate Q203 (absolute): Coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999

2nd set-up clearance Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

- Feed rate for countersinking Q254: Traversing speed of the tool during countersinking in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU
- Feed rate for milling Q207: Traversing speed of the tool during milling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO

Example: NC blocks

25 CYCL DEF 265 HEL. THREAD DRLG/MLG
Q335=10 ; NOMINAL DIAMETER
Q239 $=+1.5$; PITCH
Q201=-16 ;DEPTH OF THREAD
Q253=750 ; F PRE-POSITIONING
Q358=+0 ;DEPTH AT FRONT
Q359 $=+0$;OFFSET AT FRONT
Q360 $=0$; COUNTERSINK
Q200=2 ;SET-UP CLEARANCE
Q203=+30 ; SURFACE COORDINATE
Q204=50 ;2ND SET-UP CLEARANCE
Q254=150 ; F COUNTERSINKING
Q207=500 ; FEED RATE FOR MILLING

4.10 OUTSIDE THREAD MILLING (Cycle 267, DIN/ISO: G267)

Cycle run

1 The TNC positions the tool in the spindle axis at rapid traverse FMAX to the entered set-up clearance above the workpiece surface.

Countersinking at front

2 The TNC moves in the reference axis of the working plane from the center of the stud to the starting point for countersinking at front. The position of the starting point is determined by the thread radius, tool radius and pitch.
3 The tool moves at the feed rate for pre-positioning to the countersinking depth at front.
4 The TNC positions the tool without compensation from the center on a semicircle to the offset at front, and then follows a circular path at the feed rate for countersinking.
5 The tool then moves on a semicircle to the starting point.

Thread milling

6 The TNC positions the tool to the starting point if there has been no previous countersinking at front. Starting point for thread milling = starting point for countersinking at front.
7 The tool moves at the programmed feed rate for pre-positioning to the starting plane. The starting plane is derived from the algebraic sign of the thread pitch, the milling method (climb or up-cut milling) and the number of threads per step.
8 The tool then approaches the thread diameter tangentially in a helical movement.

9 Depending on the setting of the parameter for the number of threads, the tool mills the thread in one helical movement, in several offset helical movements or in one continuous helical movement.
10 After this, the tool departs the contour tangentially and returns to the starting point in the working plane.
11 At the end of the cycle, the TNC retracts the tool at rapid traverse to the setup clearance, or-if programmed-to the 2nd set-up clearance.

Please note while programming:

Program a positioning block for the starting point (stud center) in the working plane with radius compensation RO.

The offset required before countersinking at the front should be determined ahead of time. You must enter the value from the center of the stud to the center of the tool (uncorrected value).

The algebraic sign of the cycle parameters depth of thread or sinking depth at front determines the working direction. The working direction is defined in the following sequence:
1st: Depth of thread
2nd: Depth at front
If you program a depth parameter to be 0 , the TNC does not execute that step.

The algebraic sign for the cycle parameter thread depth determines the working direction.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

Nominal diameter Q335: Nominal thread diameter. Input range 0 to 99999.9999

- Thread pitch Q239: Pitch of the thread. The algebraic sign differentiates between right-hand and left-hand threads:
+= right-hand thread
- = left-hand thread

Input range -99.9999 to 99.9999

- Thread depth Q201 (incremental): Distance between workpiece surface and root of thread.
- Threads per step Q355: Number of thread revolutions by which the tool is moved: $\mathbf{0}=$ one helical line to the thread depth
$\mathbf{1}=$ continuous helical path over the entire length of the thread
>1 = several helical paths with approach and departure; between them, the TNC offsets the tool by Q355, multiplied by the pitch. Input range 0 to 99999
- Feed rate for pre-positioning O253: Traversing speed of the tool in $\mathrm{mm} / \mathrm{min}$ when plunging into the workpiece, or when retracting from the workpiece. Input range 0 to 99999.999; alternatively FMAX, FAUTO
- Climb or up-cut Q351: Type of milling operation with M3 +1 = climb milling -1 = up-cut milling

Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

- Depth at front Q358 (incremental): Distance between tool tip and the top surface of the workpiece for countersinking at front. Input range -99999.9999 to 99999.9999

Countersinking offset at front Q 359 (incremental): Distance by which the TNC moves the tool center away from the stud center. Input range 0 to 99999.9999

- Workpiece surface coordinate Q203 (absolute): Coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999

2nd set-up clearance Q 204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

- Feed rate for countersinking Q254: Traversing speed of the tool during countersinking in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU
- Feed rate for milling Q207: Traversing speed of the tool during milling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO

Example: NC blocks

25 CYCL DEF 267 OUTSIDE THREAD MLLNG
Q335=10 ; NOMINAL DIAMETER
Q239 =+1.5 ; PITCH
Q201 $=-20$; DEPTH OF THREAD
Q355=0 ; THREADS PER STEP
Q253=750 ; F PRE-POSITIONING
Q351=+1 ;CLIMB OR UP-CUT
Q200=2 ;SET-UP CLEARANCE
Q358 $=+0$;DEPTH AT FRONT
Q359 $=+0 \quad$;OFFSET AT FRONT
Q203 $=+30$;SURFACE COORDINATE
Q204=50 ;2ND SET-UP CLEARANCE
Q254=150 ; F COUNTERSINKING
Q207=500 ; FEED RATE FOR MILLING

4.11 Programming Examples

Example: Thread milling

The drill hole coordinates are stored in the point table TAB1.PNT and are called by the TNC with CYCL CALL PAT.

The tool radii are selected so that all work steps can be seen in the test graphics.

Program sequence

- Centering
- Drilling
- Tapping

Definition of workpiece blank

Call tool: centering drill
Move tool to clearance height (enter a value for F)
The TNC positions to the clearance height after every cycle
Definition of point table
Cycle definition: CENTERING

0 must be entered here, effective as defined in point table
0 must be entered here, effective as defined in point table

10 CYCL CALL PAT F5000 M3
11 L Z+100 R0 FMAX M6
12 TOOL CALL 2 Z S5000
13 L Z+10 R0 F5000
14 CYCL DEF 200 DRILLING
Q200=2 ;SET-UP CLEARANCE
Q201 $=-25$; DEPTH
Q206=150 ; FEED RATE FOR PECKING
Q202=5 ;PLUNGING DEPTH
Q210=0 ; DWELL TIME AT TOP
Q203 $=+0$; SURFACE COORDINATE
Q204 $=0$;2ND SET-UP CLEARANCE
Q211=0.2 ; DWELL TIME AT DEPTH
15 CYCL CALL PAT F5000 M3
16 L Z+100 R0 FMAX M6
17 TOOL CALL 3 Z S200
18 L Z +50 RO FMAX
19 CYCL DEF 206 TAPPING NEW
Q200=2 ;SET-UP CLEARANCE
Q201=-25 ; DEPTH OF THREAD
Q206=150 ; FEED RATE FOR PECKING
Q211=0 ; DWELL TIME AT DEPTH
Q203 $=+0$; SURFACE COORDINATE
Q204=0 ;2ND SET-UP CLEARANCE
20 CYCL CALL PAT F5000 M3
21 L Z+100 R0 FMAX M2
22 END PGM 1 MM

Cycle call in connection with point table TAB1.PNT
Feed rate between points: $5000 \mathrm{~mm} / \mathrm{min}$
Retract the tool, change the tool
Call tool: drill
Move tool to clearance height (enter a value for F)
Cycle definition: drilling

0 must be entered here, effective as defined in point table
0 must be entered here, effective as defined in point table

Cycle call in connection with point table TAB1.PNT

Retract the tool, change the tool
Call tool: tap
Move tool to clearance height
Cycle definition for tapping

0 must be entered here, effective as defined in point table 0 must be entered here, effective as defined in point table Cycle call in connection with point table TAB1.PNT Retract in the tool axis, end program

Point table TAB1.PNT
TAB1. PNTMM
NRXYZ
$0+10+10+0$
$1+40+30+0$
$2+90+10+0$
$3+80+30+0$
$4+80+65+0$
$5+90+90+0$
$6+10+90+0$
$7+20+55+0$
[END]

Fixed Cycles: Pocket Milling / Stud Milling / Slot Milling

5.1 Fundamentals

Overview

The TNC offers 6 cycles for machining pockets, studs and slots:

Cycle	Soft key	Page
251 RECTANGULAR POCKET Roughing/finishing cycle with selection of machining operation and helical plunging		Page 129
252 CIRCULAR POCKET Roughing/finishing cycle with selection of machining operation and helical plunging	$\begin{aligned} & 252 \\ & \hline 10 \end{aligned}$	Page 134
253 SLOT MILLING Roughing/finishing cycle with selection of machining operation and reciprocal plunging	$\begin{aligned} & 253 \\ & 0 \end{aligned}$	Page 138
254 CIRCULAR SLOT Roughing/finishing cycle with selection of machining operation and reciprocal plunging	${ }^{259}$	Page 143
256 RECTANGULAR STUD Roughing/finishing cycle with stepover, if multiple passes are required	$\frac{255}{\square / \square}$	Page 148
257 CIRCULAR STUD Roughing/finishing cycle with stepover, if multiple passes are required	$\begin{aligned} & 257 \\ & 8 \pi \end{aligned}$	Page 152

5.2 RECTANGULAR POCKET (Cycle 251, DIN/ISO: G251)

Cycle run

Use Cycle 251 RECTANGULAR POCKET to completely machine rectangular pockets. Depending on the cycle parameters, the following machining alternatives are available:

- Complete machining: Roughing, floor finishing, side finishing
- Only roughing
- Only floor finishing and side finishing
- Only floor finishing
- Only side finishing

Roughing

1 The tool plunges into the workpiece at the pocket center and advances to the first plunging depth. Specify the plunging strategy with parameter Q366.
2 The TNC roughs out the pocket from the inside out, taking the overlap factor (Parameter Q370) and the finishing allowances (parameters Q368 and Q369) into account.
3 At the end of the roughing operation, the TNC moves the tool tangentially away from the pocket wall, then moves by the set-up clearance above the current infeed depth and returns from there at rapid traverse to the pocket center.
4 This process is repeated until the programmed pocket depth is reached.

Finishing

5 Inasmuch as finishing allowances are defined, the TNC then finishes the pocket walls, in multiple infeeds if so specified. The pocket wall is approached tangentially.
6 Then the TNC finishes the floor of the pocket from the inside out. The pocket floor is approached tangentially.

Please note while programming:

With an inactive tool table you must always plunge vertically $(\mathrm{Q} 366=0)$ because you cannot define a plunging angle.

Pre-position the tool in the machining plane to the starting position with radius compensation R0. Note parameter Q367 (pocket position).

The TNC automatically pre-positions the tool in the tool axis. Note parameter Q204 (2nd set-up clearance).
The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH=0, the cycle will not be executed.

At the end of the cycle, the TNC returns the tool to the starting position.
At the end of a roughing operation, the TNC positions the tool back to the pocket center at rapid traverse. The tool is above the current pecking depth by the set-up clearance. Enter the set-up clearance so that the tool cannot jam because of chips.

The TNC outputs an error message during helical plunging if the internally calculated diameter of the helix is smaller than twice the tool diameter. If you are using a center-cut tool, you can switch off this monitoring function via the suppressPlungeErr machine parameter.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

If you call the cycle with machining operation 2 (only finishing), then the TNC positions the tool in the center of the pocket at rapid traverse to the first plunging depth.
> Machining operation (0/1/2) Q215: Define the machining operation:
0: Roughing and finishing
1: Only roughing
2: Only finishing
Side finishing and floor finishing are only executed if the finishing allowances ($\mathrm{O} 368, \mathrm{Q} 369$) have been defined.

- 1st side length Q218 (incremental): Pocket length, parallel to the reference axis of the working plane. Input range 0 to 99999.9999
- 2nd side length Q219 (incremental): Pocket length, parallel to the minor axis of the working plane. Input range 0 to 99999.9999

Corner radius Q220: Radius of the pocket corner. If you have entered 0 here, the TNC assumes that the corner radius is equal to the tool radius. Input range 0 to 99999.9999

- Finishing allowance for side Q368 (incremental): Finishing allowance in the working plane. Input range 0 to 99999.9999
- Angle of rotation Q 224 (absolute): Angle by which the entire pocket is rotated. The center of rotation is the position at which the tool is located when the cycle is called. Input range - 360.0000 to 360.0000
- Pocket position Q367: Position of the pocket in reference to the position of the tool when the cycle is called:
0: Tool position = Center of pocket
1: Tool position = Lower left corner
2: Tool position = Lower right corner
3: Tool position = Upper right corner
4: Tool position = Upper left corner
- Feed rate for milling Q207: Traversing speed of the tool during milling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUT0, FU, FZ

Climb or up-cut Q351: Type of milling operation with M3:
+1 = climb milling
-1 = up-cut milling

Depth Q201 (incremental): Distance between workpiece surface and bottom of pocket. Input range -99999.9999 to 99999.9999

- Plunging depth O202 (incremental): Infeed per cut. Enter a value greater than 0 . Input range 0 to 99999.9999
> Finishing allowance for floor Q369 (incremental value): Finishing allowance in the tool axis. Input range 0 to 99999.9999
- Feed rate for plunging Q206: Traversing speed of the tool while moving to depth in mm/min. Input range 0 to 99999.999; alternatively FAUTO, FU, FZ
- Infeed for finishing Q 338 (incremental): Infeed per cut. Q338=0: Finishing in one infeed. Input range 0 to 99999.9999
- Set-up clearance O200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

Workpiece surface coordinate Q203 (absolute): Absolute coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999

- 2nd set-up clearance O 204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

Path overlap factor Q370: Q370 \times tool radius $=$ stepover factor k. Input range 0.1 to 1.9999.
> Plunging strategy Q366: Type of plunging strategy:
$\square 0=$ vertical plunging. The TNC plunges perpendicularly, regardless of the plunging angle ANGLE defined in the tool table.

- 1 = helical plunging. In the tool table, the plunging angle ANGLE for the active tool must be defined as not equal to 0 . The TNC will otherwise display an error message.
- 2 = reciprocating plunge. In the tool table, the plunging angle ANGLE for the active tool must be defined as not equal to 0 . Otherwise, the TNC generates an error message. The reciprocation length depends on the plunging angle. As a minimum value the TNC uses twice the tool diameter.
- Feed rate for finishing Q385: Traversing speed of the tool during side and floor finishing in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.9999; alternatively FAUTO, FU, FZ

Example: NC blocks

5.3 CIRCULAR POCKET (Cycle 252, DIN/ISO: G252)

Cycle run

Use Cycle 252 CIRCULAR POCKET to completely machine circular pockets. Depending on the cycle parameters, the following machining alternatives are available:

- Complete machining: Roughing, floor finishing, side finishing
- Only roughing

Only floor finishing and side finishing
Only floor finishing

- Only side finishing

Roughing

1 The tool plunges into the workpiece at the pocket center and advances to the first plunging depth. Specify the plunging strategy with parameter Q366.
2 The TNC roughs out the pocket from the inside out, taking the overlap factor (parameter Q370) and the finishing allowances (parameters Q368 and Q369) into account.
3 At the end of the roughing operation, the TNC moves the tool tangentially away from the pocket wall, then moves by the set-up clearance above the current infeed depth and returns from there at rapid traverse to the pocket center.
4 This process is repeated until the programmed pocket depth is reached.

Finishing

5 Inasmuch as finishing allowances are defined, the TNC then finishes the pocket walls, in multiple infeeds if so specified. The pocket wall is approached tangentially.
6 Then the TNC finishes the floor of the pocket from the inside out. The pocket floor is approached tangentially.

Please note while programming:

With an inactive tool table you must always plunge vertically $(\mathrm{Q} 366=0)$ because you cannot define a plunging angle.

Pre-position the tool in the machining plane to the starting position (circle center) with radius compensation RO.

The TNC automatically pre-positions the tool in the tool axis. Note parameter Q204 (2nd set-up clearance).

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH=0, the cycle will not be executed.

At the end of the cycle, the TNC returns the tool to the starting position.

At the end of a roughing operation, the TNC positions the tool back to the pocket center at rapid traverse. The tool is above the current pecking depth by the set-up clearance. Enter the set-up clearance so that the tool cannot jam because of chips.

The TNC outputs an error message during helical plunging if the internally calculated diameter of the helix is smaller than twice the tool diameter. If you are using a center-cut tool, you can switch off this monitoring function via the suppressPlungeErr machine parameter.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).
Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

If you call the cycle with machining operation 2 (only finishing), then the TNC positions the tool in the center of the pocket at rapid traverse to the first plunging depth.
> Machining operation (0/1/2) Q215: Define the machining operation:
0: Roughing and finishing
1: Only roughing
2: Only finishing
Side finishing and floor finishing are only executed if the finishing allowances (O368, Q369) have been defined.

- Circle diameter Q223: Diameter of the finished pocket. Input range 0 to 99999.9999
- Finishing allowance for side Q368 (incremental): Finishing allowance in the working plane. Input range 0 to 99999.9999
- Feed rate for milling Q207: Traversing speed of the tool during milling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU, FZ

Climb or up-cut Q351: Type of milling operation with M3: +1 = climb milling -1 = up-cut milling

- Depth Q201 (incremental): Distance between workpiece surface and bottom of pocket. Input range -99999.9999 to 99999.9999
- Plunging depth Q202 (incremental): Infeed per cut. Enter a value greater than 0 . Input range 0 to 99999.9999
- Finishing allowance for floor Q369 (incremental value): Finishing allowance in the tool axis. Input range 0 to 99999.9999
- Feed rate for plunging Q206: Traversing speed of the tool while moving to depth in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU, FZ
- Infeed for finishing Q338 (incremental): Infeed per cut. Q338=0: Finishing in one infeed. Input range 0 to 99999.9999

Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

- Workpiece surface coordinate Q203 (absolute): Absolute coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999
- 2nd set-up clearance Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999
- Path overlap factor Q370: Q370 \times tool radius $=$ stepover factor k. Input range 0.1 to 1.9999 .
> Plunging strategy Q366: Type of plunging strategy:
$\square 0=$ vertical plunging. In the tool table, the plunging angle ANGLE for the active tool must be defined as 0 or 90. The TNC will otherwise display an error message.
- 1 = helical plunging. In the tool table, the plunging angle ANGLE for the active tool must be defined as not equal to 0 . The TNC will otherwise display an error message.
- Feed rate for finishing Q385: Traversing speed of the tool during side and floor finishing in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU, FZ

Example: NC blocks

8 CYCL DEF 252	CIRCULAR POCKET
Q215=0	;MACHINING OPERATION
Q223=60	; CIRCLE DIAMETER
Q $368=0.2$;ALLOWANCE FOR SIDE
Q207 $=500$; FEED RATE FOR MILLING
Q351 $=+1$; CLIMB OR UP-CUT
Q201 $=-20$;DEPTH
Q202=5	;PLUNGING DEPTH
Q369 $=0.1$;ALLOWANCE FOR FLOOR
Q206=150	;FEED RATE FOR PLNGNG
Q338=5	;INFEED FOR FINISHING
Q200=2	;SET-UP CLEARANCE
Q203 $=+0$; SURFACE COORDINATE
Q204=50	;2ND SET-UP CLEARANCE
Q370 $=1$;TOOL PATH OVERLAP
Q366=1	; PLUNGE
Q385 $=500$;FEED RATE FOR FINISHING
$9 \mathrm{~L} \mathrm{X}+50 \mathrm{Y}+50$	RO FMAX M3 M99

5.4 SLOT MILLING (Cycle 253, DIN/ISO: G253)

Cycle run

Use Cycle 253 to completely machine a slot. Depending on the cycle parameters, the following machining alternatives are available:
■ Complete machining: Roughing, floor finishing, side finishing

- Only roughing
- Only floor finishing and side finishing
- Only floor finishing
- Only side finishing

Roughing

1 Starting from the left slot arc center, the tool moves in a reciprocating motion at the plunging angle defined in the tool table to the first infeed depth. Specify the plunging strategy with parameter Q366.
2 The TNC roughs out the slot from the inside out, taking the finishing allowances (parameters Q368 and Q369) into account.
3 This process is repeated until the slot depth is reached.

Finishing

4 Inasmuch as finishing allowances are defined, the TNC then finishes the slot walls, in multiple infeeds if so specified. The slot side is approached tangentially in the right slot arc.
5 Then the TNC finishes the floor of the slot from the inside out. The slot floor is approached tangentially.

Please note while programming:

With an inactive tool table you must always plunge vertically $(\mathrm{Q} 366=0)$ because you cannot define a plunging angle.

Pre-position the tool in the machining plane to the starting position with radius compensation RO. Note parameter Q367 (slot position).

The TNC automatically pre-positions the tool in the tool axis. Note parameter Q204 (2nd set-up clearance).
At the end of the cycle the TNC returns the tool to the starting point (slot center) in the working plane. Exception: if you define a slot position not equal to 0 , then the TNC only positions the tool in the tool axis to the 2 nd set-up clearance. In these cases, always program absolute traverse movements after the cycle call.
The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH=0, the cycle will not be executed.

If the slot width is greater than twice the tool diameter, the TNC roughs the slot correspondingly from the inside out. You can therefore mill any slots with small tools, too.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).
Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

If you call the cycle with machining operation 2 (only finishing), then the TNC positions the tool to the first plunging depth at rapid traverse!

Machining operation (0/1/2) Q215: Define the machining operation:
$\mathbf{0}$: Roughing and finishing
1: Only roughing
2: Only finishing
Side finishing and floor finishing are only executed if the finishing allowances ($\mathrm{O} 368, \mathrm{Q} 369$) have been defined.

Slot length Q218 (value parallel to the reference axis of the working plane): Enter the length of the slot. Input range 0 to 99999.9999
Slot width Q219 (value parallel to the secondary axis of the working plane): Enter the slot width. If you enter a slot width that equals the tool diameter, the TNC will carry out the roughing process only (slot milling). Maximum slot width for roughing: Twice the tool diameter. Input range 0 to 99999.9999

Finishing allowance for side Q368 (incremental): Finishing allowance in the working plane.

- Angle of rotation Q 374 (absolute): Angle by which the entire slot is rotated. The center of rotation is the position at which the tool is located when the cycle is called. Input range -360.000 to 360.000
Slot position (0/1/2/3/4) Q367: Position of the slot in reference to the position of the tool when the cycle is called:
$\mathbf{0}$: Tool position $=$ Center of slot
1: Tool position = Left end of slot
2: Tool position = Center of left slot circle
3: Tool position = Center of right slot circle
4: Tool position = Right end of slot
- Feed rate for milling Q207: Traversing speed of the tool during milling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU, FZ

Cl imb or up-cut Q 351 : Type of milling operation with M3:
+1 = climb milling
-1 = up-cut milling
 th

Depth Q201 (incremental): Distance between workpiece surface and bottom of slot. Input range -99999.9999 to 99999.9999

- Plunging depth Q202 (incremental): Infeed per cut. Enter a value greater than 0 . Input range 0 to 99999.9999
- Finishing allowance for floor Q369 (incremental value): Finishing allowance in the tool axis. Input range 0 to 99999.9999
- Feed rate for plunging Q206: Traversing speed of the tool while moving to depth in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU, FZ
- Infeed for finishing Q338 (incremental): Infeed per cut. Q338=0: Finishing in one infeed. Input range 0 to 99999.9999

Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

Workpiece surface coordinate Q203 (absolute): Absolute coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999

- 2nd set-up clearance Q 204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

Plunging strategy Q366: Type of plunging strategy:
$0=$ Vertical plunging. In the tool table, the plunging angle ANGLE for the active tool must be defined as 0 or 90. The TNC will otherwise display an error message.
-1,2 = Reciprocating plunge. In the tool table, the plunging angle ANGLE for the active tool must be defined as not equal to 0 . The TNC will otherwise display an error message.

Feed rate for finishing Q385: Traversing speed of the tool during side and floor finishing in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.9999; alternatively FAUTO, FU, FZ

Example: NC blocks

8 CYCL DEF 253	SLOT MILLING
Q215 $=0$;MACHINING OPERATION
Q218 $=80$;SLOT LENGTH
Q219 $=12$;SLOT WIDTH
Q368=0.2	;ALLOWANCE FOR SIDE
Q374 $=+0$;ANGLE OF ROTATION
Q367 $=0$;SLOT POSITION
Q207 $=500$; FEED RATE FOR MILLING
Q351 $=+1$;CLIMB OR UP-CUT
Q201 $=-20$; DEPTH
Q202 $=5$;PLUNGING DEPTH
Q369 $=0.1$;ALLOWANCE FOR FLOOR
Q206=150	;FEED RATE FOR PLNGNG
Q $338=5$;INFEED FOR FINISHING
Q200 $=2$;SET-UP CLEARANCE
Q203 $=+0$;SURFACE COORDINATE
Q204=50	;2ND SET-UP CLEARANCE
Q366=1	; PLUNGE
Q385 $=500$; FEED RATE FOR FINISHING
$9 \mathrm{~L} \mathrm{X}+50 \mathrm{Y}+50$	RO FMAX M3 M99

5.5 CIRCULAR SLOT (Cycle 254, DIN/ISO: G254)

Cycle run

Use Cycle 254 to completely machine a circular slot. Depending on the cycle parameters, the following machining alternatives are available:

- Complete machining: Roughing, floor finishing, side finishing
- Only roughing
- Only floor finishing and side finishing
- Only floor finishing

■ Only side finishing

Roughing

1 The tool moves in a reciprocating motion in the slot center at the plunging angle defined in the tool table to the first infeed depth. Specify the plunging strategy with parameter Q366.
2 The TNC roughs out the slot from the inside out, taking the finishing allowances (parameters Q368 and Q369) into account.
3 This process is repeated until the slot depth is reached.
Finishing
4 Inasmuch as finishing allowances are defined, the TNC then finishes the slot walls, in multiple infeeds if so specified. The slot side is approached tangentially.
5 Then the TNC finishes the floor of the slot from the inside out. The slot floor is approached tangentially.

Please note while programming:

With an inactive tool table you must always plunge vertically $(\mathrm{Q} 366=0)$ because you cannot define a plunging angle.

Pre-position the tool in the machining plane with radius compensation RO. Define parameter Q367 (reference for slot position) appropriately.

The TNC automatically pre-positions the tool in the tool axis. Note parameter Q204 (2nd set-up clearance).
At the end of the cycle the TNC returns the tool to the starting point (center of the pitch circle) in the working plane. Exception: if you define a slot position not equal to 0 , then the TNC only positions the tool in the tool axis to the 2nd set-up clearance. In these cases, always program absolute traverse movements after the cycle call.

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH $=0$, the cycle will not be executed.

If the slot width is greater than twice the tool diameter, the TNC roughs the slot correspondingly from the inside out. You can therefore mill any slots with small tools, too.

The slot position 0 is not allowed if you use Cycle 254 Circular Slot in combination with Cycle 221.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

If you call the cycle with machining operation 2 (only finishing), then the TNC positions the tool to the first plunging depth at rapid traverse!

Machining operation (0/1/2) Q215: Define the Machining operation
0: Roughing and finishing
1: Only roughing
2: Only finishing
Side finishing and floor finishing are only executed if the finishing allowances $(\mathrm{O} 368, \mathrm{Q} 369)$ have been defined.

- Slot width Q219 (value parallel to the secondary axis of the working plane): Enter the slot width. If you enter a slot width that equals the tool diameter, the TNC will carry out the roughing process only (slot milling). Maximum slot width for roughing: Twice the tool diameter. Input range 0 to 99999.9999
> Finishing allowance for side Q368 (incremental): Finishing allowance in the working plane. Input range 0 to 99999.9999
> Pitch circle diameter Q375: Enter the diameter of the pitch circle. Input range 0 to 99999.9999
$>$ Reference for slot position ($0 / 1 / 2 / 3$) Q367: Position of the slot in reference to the position of the tool when the cycle is called:
$\mathbf{0}$: The tool position is not taken into account. The slot position is determined from the entered pitch circle center and the starting angle.
1: Tool position = Center of left slot circle. Starting angle Q376 refers to this position. The entered pitch circle center is not taken into account.
2: Tool position = Center of center line. Starting angle Q376 refers to this position. The entered pitch circle center is not taken into account.
3: Tool position = Center of right slot circle. Starting angle Q376 refers to this position. The entered pitch circle center is not taken into account.
Center in 1st axis Q216 (absolute): Center of the pitch circle in the reference axis of the working plane. Only effective if $\mathbf{Q 3 6 7}=\mathbf{0}$. Input range -99999.9999 to 99999.9999
Center in 2nd axis Q217 (absolute): Center of the pitch circle in the minor axis of the working plane. Only effective if $\mathbf{Q 3 6 7}=\mathbf{0}$. Input range -99999.9999 to 99999.9999
- Starting angle Q376 (absolute): Enter the polar angle of the starting point. Input range -360.000 to 360.000
Angular length Q248 (incremental): Enter the angular length of the slot. Input range 0 to 360.000

Stepping angle Q378 (incremental): Angle by which the entire slot is rotated. The center of rotation is at the center of the pitch circle. Input range - 360.000 to 360.000
> Number of repetitions Q377: Number of machining operations on a pitch circle. Input range 1 to 99999

- Feed rate for milling Q207: Traversing speed of the tool during milling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU, FZ

Climb or up-cut Q351: Type of milling operation with M3:
+1 = climb milling
-1 = up-cut milling
Depth Q201 (incremental): Distance between workpiece surface and bottom of slot. Input range -99999.9999 to 99999.9999

- Plunging depth Q202 (incremental): Infeed per cut. Enter a value greater than 0 . Input range 0 to 99999.9999
- Finishing allowance for floor Q369 (incremental value): Finishing allowance in the tool axis. Input range 0 to 99999.9999
F Feed rate for plunging Q206: Traversing speed of the tool while moving to depth in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU, FZ
- Infeed for finishing Q338 (incremental): Infeed per cut. $\mathrm{Q} 338=0$: Finishing in one infeed. Input range 0 to 99999.9999

Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

- Workpiece surface coordinate Q203 (absolute): Absolute coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999
- 2nd set-up clearance Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999
- Plunging strategy 0366 : Type of plunging strategy:
$\square 0=$ Vertical plunging. In the tool table, the plunging angle ANGLE for the active tool must be defined as 0 or 90. The TNC will otherwise display an error message.
-1, 2 = Reciprocating plunge. In the tool table, the plunging angle ANGLE for the active tool must be defined as not equal to 0 . The TNC will otherwise display an error message.

F Feed rate for finishing Q385: Traversing speed of the tool during side and floor finishing in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU, FZ

Example: NC blocks

8 CYCL DEF 254	CIRCULAR SLOT
Q215=0	;MACHINING OPERATION
Q219 $=12$;SLOT WIDTH
Q368=0.2	;ALLOWANCE FOR SIDE
Q375 $=80$;PITCH CIRCLE DIA.
Q367 $=0$;REF. SLOT POSITION
Q216 $=+50$; CENTER IN 1ST AXIS
Q217 $=+50$;CENTER IN 2ND AXIS
Q $376=+45$;STARTING ANGLE
Q248=90	;ANGULAR LENGTH
Q378=0	;STEPPING ANGLE
Q377 $=1$; NUMBER OF OPERATIONS
Q207 $=500$; FEED RATE FOR MILLING
Q351 $=+1$; CLIMB OR UP-CUT
Q201 $=-20$; DEPTH
Q202 $=5$;PLUNGING DEPTH
Q369 $=0.1$;ALLOWANCE FOR FLOOR
Q206=150	;FEED RATE FOR PLNGNG
Q338=5	;INFEED FOR FINISHING
Q200 $=2$;SET-UP CLEARANCE
Q203 $=+0$;SURFACE COORDINATE
Q204=50	;2ND SET-UP CLEARANCE
Q366=1	; PLUNGE
Q385 $=500$;FEED RATE FOR FINISHING
$9 \mathrm{~L} X+50 \mathrm{Y}+50$	RO FMAX M3 M99

5.6 RECTANGULAR STUD (Cycle 256, DIN/ISO: G256)

Cycle run

Use Cycle 256 to machine a rectangular stud. If a dimension of the workpiece blank is greater than the maximum possible stepover, then the TNC performs multiple stepovers until the finished dimension has been machined.

1 The tool moves from the cycle starting position (stud center) in the positive X direction to the starting position for stud machining. The starting position is 2 mm to the right of the unmachined stud.
2 If the tool is at the 2nd set-up clearance, it moves at rapid traverse FMAX to the set-up clearance, and from there it advances to the first plunging depth at the feed rate for plunging.
3 The tool then moves tangentially on a semicircle to the stud contour and machines one revolution.
4 If the finished dimension cannot be machined with one revolution, the TNC performs a stepover with the current factor, and machines another revolution. The TNC takes the dimensions of the workpiece blank, the finished dimension, and the permitted stepover into account. This process is repeated until the defined finished dimension has been reached.
5 The tool then tangentially departs the contour on a semicircle and returns to the starting point for the stud machining.
6 The TNC then plunges the tool to the next plunging depth, and machines the stud at this depth.
7 This process is repeated until the programmed stud depth is reached.

Please note while programming:

Pre-position the tool in the machining plane to the starting position with radius compensation RO. Note parameter Q367 (stud position).

The TNC automatically pre-positions the tool in the too axis. Note parameter Q204 (2nd set-up clearance).

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH=0, the cycle will not be executed

At the end, the TNC positions the tool back to the set-up clearance, or to the 2 nd set-up clearance if one was programmed.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).
Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

Leave enough room next to the stud for the approach motion. Minimum: tool diameter +2 mm

- 1st side length Q218: Stud length, parallel to the reference axis of the working plane. Input range 0 to 99999.9999
- Workpiece blank side length 1 Q424: Length of the stud blank, parallel to the reference axis of the working plane. Enter Workpiece blank side length 1 greater than 1st side length. The TNC performs multiple stepovers if the difference between blank dimension 1 and finished dimension 1 is greater than the permitted stepover (tool radius multiplied by path overlap Q370). The TNC always calculates a constant stepover. Input range 0 to 99999.9999
- 2nd side length Q219: Stud length, parallel to the minor axis of the working plane. Enter Workpiece blank side length 2 greater than 2 nd side length. The TNC performs multiple stepovers if the difference between blank dimension 2 and finished dimension 2 is greater than the permitted stepover (tool radius multiplied by path overlap Q370). The TNC always calculates a constant stepover. Input range 0 to 99999.9999
- Workpiece blank side length 2 Q425: Length of the stud blank, parallel to the minor axis of the working plane. Input range 0 to 99999.9999
- Corner radius Q220: Radius of the stud corner. Input range 0 to 99999.9999
- Finishing allowance for side Q 368 (incremental): Finishing allowance in the working plane, is left over after machining. Input range 0 to 99999.9999
- Angle of rotation Q 224 (absolute): Angle by which the entire stud is rotated. The center of rotation is the position at which the tool is located when the cycle is called. Input range - 360.000 to 360.000
- Stud position Q367: Position of the stud in reference to the position of the tool when the cycle is called:
$\mathbf{0}$: Tool position = Center of stud
1: Tool position = Lower left corner
2: Tool position = Lower right corner
3: Tool position = Upper right corner
4: Tool position = Upper left corner

Feed rate for milling Q207: Traversing speed of the tool during milling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUT0, FU, FZ

Climb or up-cut Q351: Type of milling operation with M3:
+1 = climb milling
-1 = up-cut milling

- Depth O201 (incremental): Distance between workpiece surface and bottom of stud. Input range -99999.9999 to 99999.9999
> Plunging depth Q202 (incremental): Infeed per cut. Enter a value greater than 0 . Input range 0 to 99999.9999
- Feed rate for plunging Q206: Traversing speed of the tool while moving to depth in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FMAX, FAUTO, FU, FZ
- Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999
- Workpiece surface coordinate Q203 (absolute): Absolute coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999
- 2nd set-up clearance Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

Path overlap factor Q370: Q370 \times tool radius $=$ stepover factor k. Input range 0.1 to 1.9999 .

Example: NC blocks

5.7 CIRCULAR STUD (Cycle 257, DIN/ISO: G257)

Cycle run

Use Cycle 257 to machine a circular stud. If the diameter of the workpiece blank is greater than the maximum possible stepover, then the TNC performs multiple stepovers until the finished diameter has been machined.
1 The tool moves from the cycle starting position (stud center) in the positive X direction to the starting position for stud machining. The starting position is 2 mm to the right of the unmachined stud.
2 If the tool is at the 2nd set-up clearance, it moves at rapid traverse FMAX to the set-up clearance, and from there advances to the first plunging depth at the feed rate for plunging.
3 The tool then moves tangentially on a semicircle to the stud contour and machines one revolution.
4 If the finished diameter cannot be machined with one revolution, the TNC performs a stepover with the current factor, and machines another revolution. The TNC takes the dimensions of the workpiece blank diameter, the finished diameter, and the permitted stepover into account. This process is repeated until the defined finished diameter has been reached.
5 The tool then tangentially departs the contour on a semicircle and returns to the starting point for the stud machining.
6 The TNC then plunges the tool to the next plunging depth, and machines the stud at this depth.
7 This process is repeated until the programmed stud depth is reached.

Please note while programming:

Pre-position the tool in the machining plane to the starting position (stud center) with radius compensation RO.

The TNC automatically pre-positions the tool in the tool axis. Note parameter Q204 (2nd set-up clearance).

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH=0, the cycle will not be executed.

At the end of the cycle, the TNC returns the tool to the starting position.

At the end, the TNC positions the tool back to the set-up clearance, or to the 2nd set-up clearance if one was programmed.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for prepositioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to set-up clearance below the workpiece surface!

Leave enough room next to the stud for the approach motion. Minimum: tool diameter +2 mm

- Finished part diameter Q223: Diameter of the completely machined stud. Input range 0 to 99999.9999

Workpiece blank diameter Q222: Diameter of the workpiece blank. Enter the workpiece blank diameter greater than the finished diameter. The TNC performs multiple stepovers if the difference between the workpiece blank diameter and finished diameter is greater than the permitted stepover (tool radius multiplied by path overlap Q370). The TNC always calculates a constant stepover. Input range 0 to 99999.9999

- Finishing allowance for side Q368 (incremental): Finishing allowance in the working plane. Input range 0 to 99999.9999
- Feed rate for milling Q207: Traversing speed of the tool during milling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FAUTO, FU, FZ

Climb or up-cut Q351: Type of milling operation with M3:
+1 = climb milling
-1 = up-cut milling

Depth Q201 (incremental): Distance between workpiece surface and bottom of stud. Input range -99999.9999 to 99999.9999
> Plunging depth Q202 (incremental): Infeed per cut. Enter a value greater than 0 . Input range 0 to 99999.9999

- Feed rate for plunging Q206: Traversing speed of the tool while moving to depth in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.999; alternatively FMAX, FAUTO, FU, FZ

Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

Workpiece surface coordinate Q203 (absolute): Absolute coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999

- 2nd set-up clearance Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

P Path overlap factor Q370: Q370 \times tool radius $=$ stepover factor k. Input range 0.1 to 1.9999.

Example: NC blocks

8 CYCL DEF 257	CIRCULAR STUD
Q223 $=60$;FINISHED PART DIA.
Q222 $=60$;WORKPIECE BLANK DIA.
Q $368=0.2$;ALLOWANCE FOR SIDE
Q207 $=500$;fEED RATE FOR MILLING
Q351 $=+1$; CLIMB OR UP-CUT
Q201 $=-20$; DEPTH
Q202 $=5$;PLUNGING DEPTH
Q206=150	;FEED RATE FOR PLNGNG
Q200 $=2$;SET-UP CLEARANCE
Q203 $=+0$;SURFACE COORDINATE
Q204=50	;2ND SET-UP CLEARANCE
Q370=1	;TOOL PATH OVERLAP
$9 \mathrm{~L} X+50 \mathrm{Y}+50$	RO FMAX M3 M99

5.8 Programming Examples

Example: Milling pockets, studs and slots

| 0 BEGIN PGM C210 MM | |
| :--- | :--- | :--- |
| 1 BLK FORM 0.1 Z X+0 Y+0 Z-40 | Definition of workpiece blank |
| 2 BLK FORM $0.2 \mathrm{X}+100 \mathrm{Y}+100 \mathrm{Z}+0$ | |
| 3 TOOL CALL 1 Z S3500 | Call the tool for roughing/finishing |
| $4 \mathrm{~L} \mathrm{Z}+250$ RO FMAX | Retract the tool |

Define cycle for machining the contour outside

Call cycle for machining the contour outside
Define CIRCULAR POCKET MILLING cycle

Call CIRCULAR POCKET MILLING cycle
Tool change

10 TOLL CALL 2 Z S5000
11 CYCL DEF 254 CIRCULAR SLOT
Q215=0 ;MACHINING OPERATION
Q219 8 \% ;SLOT WIDTH
Q368=0.2 ;ALLOWANCE FOR SIDE
Q375=70 ; PITCH CIRCLE DIA.
Q367 = 0 ; REF. SLOT POSITION
Q216=+50 ; CENTER IN 1ST AXIS
Q217 $=+50$; CENTER IN 2ND AXIS
Q376=+45 ; STARTING ANGLE
Q248=90 ;ANGULAR LENGTH
Q378=180 ; STEPPING ANGLE
Q377=2 ;NUMBER OF OPERATIONS
Q207=500 ; FEED RATE FOR MILLING
Q351=+1 ; CLIMB OR UP-CUT
Q201 $=-20$; DEPTH
Q202=5 ;PLUNGING DEPTH
Q369 =0.1 ; ALLOWANCE FOR FLOOR
Q206=150 ; FEED RATE FOR PLNGNG
Q338=5 ;INFEED FOR FINISHING
Q200=2 ;SET-UP CLEARANCE
Q203 $=+0$; SURFACE COORDINATE
Q204=50 ;2ND SET-UP CLEARANCE
Q366=1 ; PLUNGE
12 CYCL CALL FMAX M3
13 L Z+250 R0 FMAX M2
14 END PGM C210 MM

Call tool: slotting mill
Define SLOT cycle

No pre-positioning in X / Y required

Starting point for second slot

Call SLOT cycle
Retract in the tool axis, end program

Fixed Cycles:
Pattern Definitions

6.1 Fundamentals

Overview

The TNC provides two cycles for machining point patterns directly:

Cycle	Soft key	Page
220 POLAR PATTERN	\%	Page 161
221 CARTESIAN PATTERN	\%	Page 164

You can combine Cycle 220 and Cycle 221 with the following fixed cycles:

If you have to machine irregular point patterns, use CYCL
CALL PAT (see "Point Tables" on page 54) to develop point tables.

More regular point patterns are available with the PATTERN DEF function (see "Pattern Definition PATTERN DEF" on page 46).

Cycle 200 DRILLING

Cycle 201 REAMING
Cycle 202 BORING
Cycle 203 UNIVERSAL DRILLING
Cycle 204 BACK BORING
Cycle 205 UNIVERSAL PECKING
Cycle 206 TAPPING NEW with a floating tap holder
Cycle 207 RIGID TAPPING without a floating tap holder NEW
Cycle 208 BORE MILLING
Cycle 209 TAPPING WITH CHIP BREAKING
Cycle 240 CENTERING
Cycle 251 RECTANGULAR POCKET
Cycle 252 CIRCULAR POCKET MILLING
Cycle 253 SLOT MILLING
Cycle 254 CIRCULAR SLOT (can only be combined with Cycle 221)
Cycle 256 RECTANGULAR STUD
Cycle 257 CIRCULAR STUD
Cycle 262 THREAD MILLING
Cycle 263 THREAD MILLING/COUNTERSINKING
Cycle 264 THREAD DRILLING/MILLING
Cycle 265 HELICAL THREAD DRILLING/MILLING
Cycle 267 OUTSIDE THREAD MILLING

6.2 POLAR PATTERN (Cycle 220, DIN/ISO: G220)

Cycle run

1 The TNC moves the tool at rapid traverse from its current position to the starting point for the first machining operation.
Sequence:

- 2. Move to the 2 nd set-up clearance (spindle axis)
\square Approach the starting point in the spindle axis.
- Move to the set-up clearance above the workpiece surface (spindle axis).

2 From this position the TNC executes the last defined fixed cycle.
3 The tool then approaches on a straight line or circular arc the starting point for the next machining operation. The tool stops at the set-up clearance (or the 2nd set-up clearance).
4 This process (1 to 3) is repeated until all machining operations have been executed.

Please note while programming:

Cycle 220 is DEF active, which means that Cycle 220 automatically calls the last defined fixed cycle.
If you combine Cycle 220 with one of the fixed cycles 200 to 209 and 251 to 267 , the set-up clearance, workpiece surface and 2nd set-up clearance that you defined in Cycle 220 will be effective for the selected fixed cycle.

- Center in 1st axis Q216 (absolute): Center of the pitch circle in the reference axis of the working plane. Input range -99999.9999 to 99999.9999
- Center in 2nd axis Q217 (absolute): Center of the pitch circle in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- Pitch circle diameter Q244: Diameter of the pitch circle. Input range 0 to 99999.9999
- Starting angle Q245 (absolute): Angle between the reference axis of the working plane and the starting point for the first machining operation on the pitch circle. Input range - 360.000 to 360.000
- Stopping angle 0246 (absolute): Angle between the reference axis of the working plane and the starting point for the last machining operation on the pitch circle (does not apply to full circles). Do not enter the same value for the stopping angle and starting angle. If you enter the stopping angle greater than the starting angle, machining will be carried out counterclockwise; otherwise, machining will be clockwise. Input range - 360.000 to 360.000
- Stepping angle 0247 (incremental): Angle between two machining operations on a pitch circle. If you enter an angle step of 0 , the TNC will calculate the angle step from the starting and stopping angles and the number of pattern repetitions. If you enter a value other than 0 , the TNC will not take the stopping angle into account. The sign for the angle step determines the working direction (negative = clockwise). Input range -360.000 to 360.000
- Number of repetitions Q241: Number of machining operations on a pitch circle. Input range 1 to 99999

Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

- Workpiece surface coordinate Q203 (absolute): Coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999
- 2nd set-up clearance Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999
- Moving to clearance height Q301: Definition of how the tool is to move between machining processes. $\mathbf{0}$: Move to the set-up clearance between operations. 1: Move to the 2nd set-up clearance between machining operations.
- Type of traverse? Line=0/Arc=1 Q365: Definition of the path function with which the tool is to move between machining operations.
0: Move between operations on a straight line
1: Move between operations on the pitch circle

Example: NC blocks

6.3 CARTESIAN PATTERN (Cycle 221, DIN/ISO: G221)

Cycle run

1 The TNC automatically moves the tool from its current position to the point of the first machining operation.
Sequence:

- 2. Move to the 2 nd set-up clearance (spindle axis)
- Approach the starting point in the spindle axis.
- Move to the set-up clearance above the workpiece surface (spindle axis).

2 From this position the TNC executes the last defined fixed cycle.
3 The tool then approaches the point of the next machining operation in the positive reference axis direction at the set-up clearance (or the 2nd set-up clearance).
4 This process (1 to 3) is repeated until all machining operations on the first line have been executed. The tool is located above the last point on the first line.
5 The tool subsequently moves to the last point on the second line where it carries out the machining operation.
6 From this position the tool approaches the point of the next machining operation in the negative reference axis direction.
7 This process (6) is repeated until all machining operations in the second line have been executed.
8 The tool then moves to the starting point of the next line.
9 All subsequent lines are processed in a reciprocating movement.

Please note while programming:

Cycle 221 is DEF active, which means that Cycle 221 automatically calls the last defined fixed cycle.

If you combine Cycle 221 with one of the fixed cycles 200 to 209 and 251 to 267 , the set-up clearance, workpiece surface, 2 nd set-up clearance and the rotational position that you defined in Cycle 221 will be effective for the selected fixed cycle.
The slot position 0 is not allowed if you use Cycle 254 Circular Slot in combination with Cycle 221.

Cycle parameters

Starting point 1st axis Q225 (absolute): Coordinate of the starting point in the reference axis of the working plane.

- Starting point 2nd axis Q226 (absolute): Coordinate of the starting point in the minor axis of the working plane.

Spacing in 1st axis Q237 (incremental): Spacing between each point on a line.

Spacing in 2nd axis Q238 (incremental): Spacing between each line.

- Number of columns Q242: Number of machining operations on a line.
- Number of lines Q243: Number of passes.
- Rotational position Q224 (absolute): Angle by which the entire pattern is rotated. The center of rotation lies in the starting point.

Set-up clearance Q200 (incremental): Distance between tool tip and workpiece surface

- Workpiece surface coordinate Q203 (absolute): Coordinate of the workpiece surface.
- 2nd set-up clearance Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur
> Moving to clearance height Q301: Definition of how the tool is to move between machining processes. 0: Move to the set-up clearance between operations. 1: Move to the 2nd set-up clearance between machining operations.

Example: NC blocks

Q225 $=+15$;STARTING POINT 1ST AXIS
Q226 $=+15$;STARTING POINT 2ND AXIS
Q237 $=+10$;SPACING IN 1ST AXIS
Q238 $=+8$;SPACING IN 2ND AXIS
Q242=6	;NUMBER OF COLUMNS
Q243 $=4$;NUMBER OF LINES
Q224 $=+15$; ROTATIONAL POSITION
Q200 $=2$; SET-UP CLEARANCE
Q203 $=+30$;SURFACE COORDINATE
Q204=50	;2ND SET-UP CLEARANCE
Q301=1	;MOVE TO CLEARANCE

6.4 Programming Examples

Example: Polar hole patterns


```
O BEGIN PGM PATTERN MM
1 BLK FORM 0.1 Z X+0 Y+O Z-40
Definition of workpiece blank
2 BLK FORM 0.2 Y+100 Y+100 Z+0
3 TOOL CALL 1 Z S3500
4 L Z+250 RO FMAX M3
5 \text { CYCL DEF 200 DRILLING}
        Q200=2 ;SET-UP CLEARANCE
        Q201=-15 ;DEPTH
        Q206=250 ; FEED RATE FOR PLNGNG
        Q202=4 ;PLUNGING DEPTH
        Q210=0 ;DWELL TIME
        Q203=+0 ;SURFACE COORDINATE
        Q204=0 ;2ND SET-UP CLEARANCE
        Q211=0.25 ;DWELL TIME AT DEPTH
```

6 CYCLE DEF 220 POLAR PATTERN
Q216=+30 ; CENTER IN 1ST AXIS
Q217 $=+70$; CENTER IN 2ND AXIS
Q244=50 ;PITCH CIRCLE DIA.
Q245 = + ; STARTING ANGLE
Q246=+360 ; STOPPING ANGLE
Q247 $=+0$; STEPPING ANGLE
Q241=10 ; NUMBER OF REPETITIONS
Q200=2 ; SET-UP CLEARANCE
Q203 $=+0$; SURFACE COORDINATE
Q204=100 ;2ND SET-UP CLEARANCE
Q301=1 ; MOVE TO CLEARANCE
Q365=0 ; TYPE OF TRAVERSE
7 CYCLE DEF 220 POLAR PATTERN
Q216=+90 ; CENTER IN 1ST AXIS
Q217 $=+25$; CENTER IN 2ND AXIS
Q244=70 ;PITCH CIRCLE DIA.
Q245=+90 ; STARTING ANGLE
Q246=+360 ; STOPPING ANGLE
Q247=30 ; STEPPING ANGLE
Q241-5 ; NUMBER OF REPETITIONS
Q200=2 ; SET-UP CLEARANCE
Q203 $=+0$; SURFACE COORDINATE
Q204=100 ;2ND SET-UP CLEARANCE
Q301=1 ; MOVE TO CLEARANCE
Q365=0 ; TYPE OF TRAVERSE
8 L Z+250 R0 FMAX M2
9 END PGM PATTERN MM

Define cycle for polar pattern 1, CYCL 200 is called automatically. Q200, Q203 and Q204 are effective as defined in Cycle 220.

Define cycle for polar pattern 2, CYCL 200 is called automatically Q200, Q203 and Q204 are effective as defined in Cycle 220.

Retract in the tool axis, end program

7.1 SL Cycles

Fundamentals

SL cycles enable you to form complex contours by combining up to 12 subcontours (pockets or islands). You define the individual subcontours in subprograms. The TNC calculates the total contour from the subcontours (subprogram numbers) that you enter in Cycle 14 CONTOUR GEOMETRY.

The memory capacity for programming the cycle is limited. You can program up to 16384 contour elements in one cycle.
SL cycles conduct comprehensive and complex internal calculations as well as the resulting machining operations. For safety reasons, always run a graphical program test before machining! This is a simple way of finding out whether the TNC-calculated program will provide the desired results.

Characteristics of the subprograms

- Coordinate transformations are allowed. If they are programmed within the subcontour they are also effective in the following subprograms, but they need not be reset after the cycle call.
- The TNC recognizes a pocket if the tool path lies inside the contour, for example if you machine the contour clockwise with radius compensation RR.
- The TNC recognizes an island if the tool path lies outside the contour, for example if you machine the contour clockwise with radius compensation RL.
- The subprograms must not contain spindle axis coordinates.
- Always program both axes in the first block of the subprogram
- If you use Q parameters, then only perform the calculations and assignments within the affected contour subprograms.

Characteristics of the fixed cycles

- The TNC automatically positions the tool to the set-up clearance before a cycle.
\square Each level of infeed depth is milled without interruptions since the cutter traverses around islands instead of over them.
- The radius of "inside corners" can be programmed-the tool keeps moving to prevent surface blemishes at inside corners (this applies to the outermost pass in the Rough-out and Side Finishing cycles).
\square The contour is approached on a tangential arc for side finishing.
- For floor finishing, the tool again approaches the workpiece on a tangential arc (for spindle axis Z, for example, the arc may be in the Z/X plane).
- The contour is machined throughout in either climb or up-cut milling.

The machining data (such as milling depth, finishing allowance and set-up clearance) are entered as CONTOUR DATA in Cycle 20.

Example: Program structure: Machining with SL cycles

Overview

Cycle	Soft key	Page
14 CONTOUR GEOMETRY (essential)		Page 172
20 CONTOUR DATA (essential)		Page 177
21 PILOT DRILLING (optional)		Page 179
22 ROUGH-OUT (essential)		Page 181
23 FLOOR FINISHING (optional)		Page 184
24 SIDE FINISHING (optional)		Page 186
Enhanced cycles:		
Cycle	Soft key	Page
25 CONTOUR TRAIN	$\sqrt[25]{\square}$	Page 188

7.2 CONTOUR GEOMETRY (Cycle 14, DIN/ISO: G37)

Please note while programming:

All subprograms that are superimposed to define the contour are listed in Cycle 14 CONTOUR GEOMETRY.

Before programming, note the following:

Cycle 14 is DEF active which means that it becomes effective as soon as it is defined in the part program.

You can list up to 12 subprograms (subcontours) in Cycle 14.

Cycle parameters

- Label numbers for the contour: Enter all label numbers for the individual subprograms that are to be superimposed to define the contour. Confirm every label number with the ENT key. When you have entered all numbers, conclude entry with the END key. Entry of up to 12 subprogram numbers 1 to 254.

7.3 Overlapping Contours

Fundamentals

Pockets and islands can be overlapped to form a new contour. You can thus enlarge the area of a pocket by another pocket or reduce it by an island.

Example: NC blocks

12 CYCL DEF 14.0 CONTOUR GEOMETRY
13 CYCL DEF 14.1 CONTOUR LABEL1/2/3/4

Subprograms: overlapping pockets

The subsequent programming examples are contour subprograms that are called by Cycle 14 CONTOUR GEOMETRY in a main program.

Pockets A and B overlap.
The TNC calculates the points of intersection S_{1} and S_{2}. They do not have to be programmed.
The pockets are programmed as full circles.

Subprogram 1: Pocket A

51 LBL 1
52 L X+10 Y+50 RR
53 CC X+35 Y+50
54 C X+10 Y+50 DR-
55 LBL 0

Subprogram 2: Pocket B

56 LBL 2
57 L X+90 Y+50 RR
58 CC X+65 Y+50
59 C X+90 Y+50 DR-
60 LBL 0

Area of inclusion

Both surfaces A and B are to be machined, including the overlapping area:

- The surfaces A and B must be pockets.
\square The first pocket (in Cycle 14) must start outside the second pocket.

Surface A:

Surface B:

56 LBL 2
57 L X+90 Y+50 RR
58 CC X+65 Y+50
59 C X+90 Y+50 DR-
60 LBL 0

Area of exclusion

Surface A is to be machined without the portion overlapped by B:
\square Surface A must be a pocket and B an island.

- A must start outside of B.
- B must start inside of A.

Surface A:

51 LBL 1

$52 \mathrm{~L} X+10 \quad \mathrm{Y}+50$ RR
53 CC $X+35 \quad Y+50$
54 C $X+10 \quad Y+50$ DR-
55 LBL 0

Surface B:

56 LBL 2
57 L X+40 Y+50 RL
58 CC X+65 Y+50
59 C X+40 Y+50 DR-
60 LBL 0

Area of intersection

Only the area where A and B overlap is to be machined. (The areas covered by A or B alone are to be left unmachined.)
$\square A$ and B must be pockets.

- A must start inside of B.

Surface A:

51 LBL 1
52 L X $+60 \quad \mathrm{Y}+50$ RR
53 CC X+35 Y+50
54 C X+60 Y+50 DR-
55 LBL 0

Surface B:

56 LBL 2
57 L X+90 Y+50 RR
58 CC X+65 Y+50
59 C X+90 Y+50 DR-
60 LBL 0

7.4 CONTOUR DATA (Cycle 20, DIN/ISO: G120)

Please note while programming:

Machining data for the subprograms describing the subcontours are entered in Cycle 20.

Cycle 20 is DEF active, which means that it becomes effective as soon as it is defined in the part program.
The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH $=0$, the TNC performs the cycle at the depth 0 .
The machining data entered in Cycle 20 are valid for Cycles 21 to 24.
If you are using the SL cycles in Q parameter programs, the cycle parameters Q 1 to Q 20 cannot be used as program parameters.

Milling depth Q1 (incremental): Distance between workpiece surface and bottom of pocket. Input range -99999.9999 to 99999.9999

- Path overlap factor Q2: Q2 x tool radius = stepover factor k. Input range -0.0001 to 1.9999 .
- Finishing allowance for side Q 3 (incremental): Finishing allowance in the working plane. Input range -99999.9999 to 99999.9999
- Finishing allowance for floor O 4 (incremental): Finishing allowance in the tool axis. Input range -99999.9999 to 99999.9999
- Workpiece surface coordinate Q 5 (absolute): Absolute coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999

Set-up clearance Q6 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

Clearance height Q (absolute): Absolute height at which the tool cannot collide with the workpiece (for intermediate positioning and retraction at the end of the cycle). Input range -99999.9999 to 99999.9999

- Inside corner radius Q8: Inside "corner" rounding radius; entered value is referenced to the path of the tool center and is used to calculate smoother traverse motions between the contour elements. $\mathbf{0 8}$ is not a radius that is inserted as a separate contour element between programmed elements! Input range 0 to 99999.9999

Direction of rotation? Q9: Machining direction for pockets.
$\square \mathrm{Q9}=-1$ up-cut milling for pocket and island

- $99=+1$ climb milling for pocket and island

You can check the machining parameters during a program interruption and overwrite them if required.

Example: NC blocks

57 CYCL DEF 20	CONTOUR DATA
$Q 1=-20$;MILLING DEPTH
$Q 2=1$;TOOL PATH OVERLAP
$Q 3=+0.2$;ALLOWANCE FOR SIDE
$Q 4=+0.1$;ALLOWANCE FOR FLOOR
$Q 5=+30$;SURFACE COORDINATE
$\mathbf{Q 6 = 2}$;SET-UP CLEARANCE
$\mathbf{Q 7}=+80$;CLEARANCE HEIGHT
$\mathbf{Q 8 = 0 . 5}$;ROUNDING RADIUS
$\mathbf{Q 9}=+1$;DIRECTION OF ROTATION

7.5 PILOT DRILLING (Cycle 21, DIN/ISO: G121)

Cycle run

1 The tool drills from the current position to the first plunging depth at the programmed feed rate \mathbf{F}.
2 Then the tool retracts at rapid traverse FMAX to the starting position and advances again to the first plunging depth minus the advanced stop distance t .
3 The advanced stop distance is automatically calculated by the control:

- At a total hole depth up to $30 \mathrm{~mm}: \mathrm{t}=0.6 \mathrm{~mm}$
- At a total hole depth exceeding 30 mm : $\mathrm{t}=$ hole depth $/ 50$
- Maximum advanced stop distance: 7 mm

4 The tool then advances with another infeed at the programmed feed rate F.
5 The TNC repeats this process (1 to 4) until the programmed depth is reached.
6 After a dwell time at the hole bottom, the tool is returned to the starting position at rapid traverse FMAX for chip breaking.

Application

Cycle 21 is for PILOT DRILLING of the cutter infeed points. It accounts for the allowance for side and the allowance for floor as well as the radius of the rough-out tool. The cutter infeed points also serve as starting points for roughing.

Please note while programming:

Before programming, note the following:

When calculating the infeed points, the TNC does not account for the delta value DR programmed in a TOOL CALL block.

In narrow areas, the TNC may not be able to carry out pilot drilling with a tool that is larger than the rough-out tool.

Cycle parameters

- Plunging depth Q10 (incremental): Dimension by which the tool drills in each infeed (negative sign for negative working direction). Input range -99999.9999 to 99999.9999
- Feed rate for plunging Q11: Drilling feed rate in mm/min. Input range 0 to 99999.9999; alternatively FAUTO, FU, FZ
- Rough-out tool number/name Q13 or QS13: Number or name of rough-out tool. Input range 0 to 32767.9 if a number is entered; maximum 16 characters if a name is entered.

Example: NC blocks

58 CYCL DEF 21 PILOT DRILLING

Q10=+5 ;PLUNGING DEPTH
Q11=100 ; FEED RATE FOR PLNGNG
Q13=1 ;ROUGH-OUT TOOL

7.6 ROUGH-OUT (Cycle 22, DIN/ISO: G122)

Cycle run

1 The TNC positions the tool over the cutter infeed point, taking the allowance for side into account.
2 In the first plunging depth, the tool mills the contour from the inside outward at the milling feed rate Q12.
3 The island contours (here: C/D) are cleared out with an approach toward the pocket contour (here: A / B).
4 In the next step the TNC moves the tool to the next plunging depth and repeats the roughing procedure until the program depth is reached.
5 Finally the TNC retracts the tool to the clearance height.

Please note while programming:

This cycle requires a center-cut end mill (ISO 1641) or pilot drilling with Cycle 21

You define the plunging behavior of Cycle 22 with parameter Q19 and with the tool table in the ANGLE and LCUTS columns:

- If $\mathrm{Q} 19=0$ is defined, the TNC always plunges perpendicularly, even if a plunge angle (ANGLE) is defined for the active tool.
- If you define the ANGLE $=90^{\circ}$, the TNC plunges perpendicularly. The reciprocation feed rate Q 19 is used as plunging feed rate.
- If the reciprocation feed rate Q 19 is defined in Cycle 22 and ANGLE is defined between 0.1 and 89.999 in the tool table, the TNC plunges helically at the defined ANGLE
- If the reciprocation feed is defined in Cycle 22 and no ANGLE is in the tool table, the TNC displays an error message
- If geometrical conditions do not allow helical plunging (slot geometry), the TNC tries a reciprocating plunge. The reciprocation length is calculated from LCUTS and ANGLE (reciprocation length = LCUTS / tan ANGLE).

If you clear out an acute inside corner and use an overlap factor greater than 1, some material might be left over. Check especially the innermost path in the test run graphic and, if necessary, change the overlap factor slightly. This allows another distribution of cuts, which often provides the desired results.

During fine roughing the TNC does not take a defined wear value DR of the coarse roughing tool into account.

Danger of collision!

After executing an SL cycle you must program the first traverse motion in the working plane with both coordinate data, e.g. L X+80 Y+0 RO FMAX

Cycle parameters

Plunging depth Q10 (incremental): Infeed per cut. Input range -99999.9999 to 99999.9999

Feed rate for plunging Q11: Plunging feed rate in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.9999; alternatively FAUTO, FU, FZ

F Feed rate for roughing Q12: Milling feed rate in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.9999; alternatively FAUTO, FU, FZ

Coarse roughing tool Q18 or QS18: Number or name of the tool with which the TNC has already coarseroughed the contour. Press the TOOL NAME soft key to switch to name input. The TNC automatically inserts the closing quotation mark when you exit the input field. If there was no coarse roughing, enter " 0 "; if you enter a number or a name, the TNC will only rough-out the portion that could not be machined with the coarse roughing tool. If the portion that is to be roughed cannot be approached from the side, the TNC will mill in a reciprocating plunge-cut; for this purpose you must enter the tool length LCUTS in the tool table TOOL.T and define the maximum plunging ANGLE of the tool. The TNC will otherwise generate an error message. Input range 0 to 32767.9 if a number is entered; maximum 16 characters if a name is entered.

- Reciprocation feed rate Q19: Traversing speed of the tool in $\mathrm{mm} / \mathrm{min}$ during reciprocating plunge cut. Input range 0 to 99999.9999; alternatively FAUTO, FU, FZ
Retraction feed rate Q208: Traversing speed of the tool in $\mathrm{mm} / \mathrm{min}$ when retracting after machining. If you enter $\mathrm{O} 208=0$, the TNC retracts the tool at the feed rate in Q12. Input range 0 to 99999.9999, alternatively FMAX, FAUTO

Example: NC blocks
59 CYCL DEF 22 ROUGH-OUT
Q10=+5 ;PLUNGING DEPTH
Q11=100 ;FEED RATE FOR PLNGNG
Q12=750 ; FEED RATE FOR ROUGHING Q18=1 ;COARSE ROUGHING TOOL

Q19=150 ;RECIPROCATION FEED RATE Q208=99999; RETRACTION FEED RATE

7.7 FLOOR FINISHING (Cycle 23, DIN/ISO: G123)

Cycle run

The tool approaches the machining plane smoothly (on a vertically tangential arc) if there is sufficient room. If there is not enough room, the TNC moves the tool to depth vertically. The tool then clears the finishing allowance remaining from rough-out.

Please note while programming:

The TNC automatically calculates the starting point for finishing. The starting point depends on the available space in the pocket.

The approaching radius for pre-positioning to the final depth is permanently defined and independent of the plunging angle of the tool.

Danger of collision!

After executing an SL cycle you must program the first traverse motion in the working plane with both coordinate data, e.g. L X+80 Y+0 RO FMAX.

Cycle parameters

- Feed rate for plunging Q11: Traversing speed of the tool during plunging. Input range 0 to 99999.9999; alternatively FAUTO, FU, FZ
- Feed rate for roughing Q12: Milling feed rate. Input range 0 to 99999.9999; alternatively FAUTO, FU, FZ

Retraction feed rate Q208: Traversing speed of the tool in $\mathrm{mm} / \mathrm{min}$ when retracting after machining. If you enter $\mathrm{Q} 208=0$, the TNC retracts the tool at the feed rate in Q12. Input range 0 to 99999.9999, alternatively FMAX, FAUTO

Example: NC blocks
60 CYCL DEF 23 FLOOR FINISHING
Q11=100 ; FEED RATE FOR PLNGNG
Q12=350 ; FEED RATE FOR ROUGHING
Q208=99999;RETRACTION FEED RATE

7.8 SIDE FINISHING (Cycle 24, DIN/ISO: G124)

Cycle run

The subcontours are approached and departed on a tangential arc.
Each subcontour is finished separately.

Please note while programming:

The sum of allowance for side (Q 14) and the radius of the finish mill must be smaller than the sum of allowance for side (Q 3, Cycle 20) and the radius of the rough mill.
This calculation also holds if you run Cycle 24 without having roughed out with Cycle 22; in this case, enter " 0 " for the radius of the rough mill.
You can use Cycle 24 also for contour milling. Then you must:
\square define the contour to be milled as a single island (without pocket limit), and
\square enter the finishing allowance (Q3) in Cycle 20 to be greater than the sum of the finishing allowance Q14 + radius of the tool being used.
The TNC automatically calculates the starting point for finishing. The starting point depends on the available space in the pocket and the allowance programmed in Cycle 20.
The starting point calculated by the TNC also depends on the machining sequence. If you select the finishing cycle with the GOTO key and then start the program, the starting point can be at a different location from where it would be if you execute the program in the defined sequence.

Danger of collision!

After executing an SL cycle you must program the first traverse motion in the working plane with both coordinate data, egg. L X+80 Y+0 R0 FMAX.

Cycle parameters

Direction of rotation? Clockwise = -1 Q9:
Machining direction:
+1:Counterclockwise
-1:Clockwise
> Plunging depth Q10 (incremental): Infeed per cut. Input range -99999.9999 to 99999.9999

- Feed rate for plunging Q11: Traversing speed of the tool during plunging. Input range 0 to 99999.9999; alternatively FAUTO, FU, FZ
- Feed rate for roughing Q12: Milling feed rate. Input range 0 to 99999.9999; alternatively FAUTO, FU, FZ
- Finishing allowance for side Q14 (incremental): Enter the allowed material for several finish-milling operations. If you enter $\mathrm{Q} 14=0$, the remaining finishing allowance will be cleared. Input range -99999.9999 to 99999.9999

Example: NC blocks

61 CYCLE DEF 24 SIDE FINISHING

7.9 CONTOUR TRAIN (Cycle 25, DIN/ISO: G125)

Cycle run

In conjunction with Cycle 14 CONTOUR GEOMETRY, this cycle facilitates the machining of open and closed contours.
Cycle 25 CONTOUR TRAIN offers considerable advantages over machining a contour using positioning blocks:

- The TNC monitors the operation to prevent undercuts and surface blemishes. It is recommended that you run a graphic simulation of the contour before execution.
- If the radius of the selected tool is too large, the corners of the contour may have to be reworked.
- The contour can be machined throughout by up-cut or by climb milling. The type of milling even remains effective when the contours are mirrored.
- The tool can traverse back and forth for milling in several infeeds: This results in faster machining.

- Allowance values can be entered in order to perform repeated rough-milling and finish-milling operations.

Please note while programming:

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH $=0$, the cycle will not be executed.
The TNC takes only the first label of Cycle 14 CONTOUR GEOMETRY into account.

The memory capacity for programming an SL cycle is limited. You can program up to 16384 contour elements in one SL cycle.

Cycle 20 CONTOUR DATA is not required.
The miscellaneous functions M109 and M110 are not effective when machining a contour with Cycle 25.

Danger of collision!

To avoid collisions,

- Do not program positions in incremental dimensions immediately after Cycle 25 since they are referenced to the position of the tool at the end of the cycle.
- Move the tool to defined (absolute) positions in all main axes, since the position of the tool at the end of the cycle is not identical to the position of the tool at the start of the cycle.

Cycle parameters

Milling depth Q 1 (incremental): Distance between workpiece surface and contour floor. Input range -99999.9999 to 99999.9999

- Finishing allowance for side Q3 (incremental): Finishing allowance in the working plane. Input range -99999.9999 to 99999.9999
- Workpiece surface coordinate O 5 (absolute): Absolute coordinate of the workpiece surface referenced to the workpiece datum. Input range -99999.9999 to 99999.9999
-Clearance height 07 (absolute): Absolute height at which the tool cannot collide with the workpiece. Position for tool retraction at the end of the cycle. Input range -99999.9999 to 99999.9999
> Plunging depth Q10 (incremental): Infeed per cut. Input range -99999.9999 to 99999.9999
- Feed rate for plunging Q11: Traversing speed of the tool in the spindle axis. Input range 0 to 99999.9999; alternatively $\mathbf{F A U T O}, \mathbf{F U}, \mathbf{F Z}$
- Feed rate for milling Q12: Traversing speed of the tool in the working plane. Input range 0 to 99999.9999; alternatively FAUTO, FU, FZ

Climb or up-cut? Up-cut $=\mathbf{- 1}$ Q15:
Climb milling: Input value $=+1$
Up-cut milling: Input value $=-1$
To enable climb milling and up-cut milling alternately in several infeeds:Input value $=0$

Example: NC blocks

62 CYCL DEF 25 CONTOUR TRAIN

Q1=-20 ;MILLING DEPTH
Q3=+0 ;ALLOWANCE FOR SIDE
Q5 $=+0$;SURFACE COORDINATE
Q7 $=+50$; CLEARANCE HEIGHT
Q10=+5 ;PLUNGING DEPTH
Q11=100 ; FEED RATE FOR PLNGNG
Q12=350 ; FEED RATE FOR MILLING
Q15=-1 ;CLIMB OR UP-CUT
7.10 Programming Examples

Example: Roughing-out and fine-roughing a pocket

0 BEGIN PGM C20 MM	
1 BLK FORM $0.1 \mathrm{Z} \mathrm{X}-10 \mathrm{Y}-10 \mathrm{Z}-40$	
2 BLK FORM $0.2 \mathrm{X}+100 \mathrm{Y}+100 \mathrm{Z}+0$	Definition of workpiece blank
3 TOOL CALL 1 Z S2500	Tool call: coarse roughing tool, diameter 30
4 L Z+250 RO FMAX	Retract the tool
5 CYCL DEF 14.0 CONTOUR GEOMETRY	Define contour subprogram
6 CYCL DEF 14.1 CONTOUR LABEL 1	
7 CYCL DEF 20 CONTOUR DATA	Define general machining parameters
Q1=-20 ;MILLING DEPTH	
Q2=1 ; TOOL PATH OVERLAP	
Q3=+0 ; ALLOWANCE FOR SIDE	
Q4=+0 ;ALLOWANCE FOR FLOOR	
Q5=+0 ;SURFACE COORDINATE	
Q6=2 ;SET-UP CLEARANCE	
Q7=+100 ; CLEARANCE HEIGHT	
Q8=0.1 ;ROUNDING RADIUS	
Q9 9 - $1 \quad$; DIRECTION	

8 CYCL DEF 22 ROUGH-OUT
Q10=5 ;PLUNGING DEPTH
Q11=100 ;FEED RATE FOR PLNGNG
Q12=350 ;FEED RATE FOR ROUGHING
Q18=0 ; COARSE ROUGHING TOOL
Q19=150 ; RECIPROCATION FEED RATE
Q208=30000; RETRACTION FEED RATE
9 CYCL CALL M3
10 L Z+250 R0 FMAX M6
11 TOOL CALL $2 \mathrm{Z} \mathrm{S3000}$
12 CYCL DEF 22 ROUGH-OUT
Q10=5 ;PLUNGING DEPTH
Q11=100 ; FEED RATE FOR PLNGNG
Q12=350 ; FEED RATE FOR ROUGHING
Q18=1 ; COARSE ROUGHING TOOL
Q19 150 ; RECIPROCATION FEED RATE
Q208=30000; RETRACTION FEED RATE
13 CYCL CALL M3
14 L Z+250 R0 FMAX M2
15 LBL 1
16 L X+0 Y+30 RR
17 FC DR- R30 CCX +30 CCY +30
18 FL AN+60 PDX+30 PDY+30 D10
19 FSELECT 3
20 FPOL X+30 Y+30
21 FC DR- R20 CCPR+55 CCPA 60
22 FSELECT 2
23 FL AN-120 PDX+30 PDY+30 D10
24 FSELECT 3
25 FC X+0 DR- R30 CCX+30 CCY+30
26 FSELECT 2
27 LBL 0
28 END PGM C20 MM

Cycle definition: Coarse roughing

Cycle call: Coarse roughing
Tool change
Tool call: fine roughing tool, diameter 15
Define the fine roughing cycle

Cycle call: Fine roughing
Retract in the tool axis, end program

Contour subprogram

Example: Pilot drilling, roughing-out and finishing overlapping contours

0 BEGIN PGM C21 MM

1 BLK FORM $0.1 \mathrm{Z} \mathrm{X}+0 \mathrm{Y}+0 \mathrm{Z}-40$
Definition of workpiece blank
2 BLK FORM $0.2 \quad X+100 \quad Y+100 \quad Z+0$
3 TOOL CALL 1 Z S2500
4 L Z+250 RO FMAX
5 CYCL DEF 14.0 CONTOUR GEOMETRY
6 CYCL DEF 14.1 CONTOUR LABEL1/2/3/4
7 CYCL DEF 20 CONTOUR DATA
Q1=-20 ;MILLING DEPTH Q2=1 ;TOOL PATH OVERLAP
Q3 $=+0.5$;ALLOWANCE FOR SIDE
Q4=+0.5 ;ALLOWANCE FOR FLOOR
Q5 = + 0 ;SURFACE COORDINATE
Q6=2 ;SET-UP CLEARANCE
Q7 $=+100$; CLEARANCE HEIGHT
Q8=0.1 ;ROUNDING RADIUS
Q9=-1 ;DIRECTION

8 CYCL DEF 21 PILOT DRILLING
Q10=5 ;PLUNGING DEPTH
Q11=250 ; FEED RATE FOR PLNGNG
Q13=2 ;ROUGH-OUT TOOL
9 CYCL CALL M3
$10 \mathrm{~L}+250$ RO FMAX M6
11 TOOL CALL 2 Z S3000
12 CYCL DEF 22 ROUGH-OUT
Q10=5 ; PLUNGING DEPTH
Q11=100 ; FEED RATE FOR PLNGNG
Q12=350 ; FEED RATE FOR ROUGHING
Q18=0 ; COARSE ROUGHING TOOL
Q19 $=150$; RECIPROCATION FEED RATE
Q208=30000;RETRACTION FEED RATE
13 CYCL CALL M3
14 CYCL DEF 23 FLOOR FINISHING
Q11=100 ; FEED RATE FOR PLNGNG
Q12=200 ; FEED RATE FOR ROUGHING
Q208=30000;RETRACTION FEED RATE
15 CYCL CALL
16 CYCLE DEF 24 SIDE FINISHING
Q9 = +1 ;DIRECTION OF ROTATION
Q10=5 ;PLUNGING DEPTH
Q11=100 ; FEED RATE FOR PLNGNG
Q12=400 ; FEED RATE FOR ROUGHING
Q14=+0 ;ALLOWANCE FOR SIDE
17 CYCL CALL
18 L Z +250 R0 FMAX M2

Cycle definition: Pilot drilling

Cycle call: Pilot drilling
Tool change
Call the tool for roughing/finishing, diameter 12
Cycle definition: Rough-out

Cycle call: Rough-out
Cycle definition: Floor finishing

Cycle call: Floor finishing
Cycle definition: Side finishing

Cycle call: Side finishing

Retract in the tool axis, end program

19 LBL 1	Contour subprogram 1: left pocket
20 CC X $+35 \quad Y+50$	
$21 \mathrm{~L} X+10 \quad \mathrm{Y}+50$ RR	
22 C X+10 DR-	
23 LBL 0	
24 LBL 2	Contour subprogram 2: right pocket
25 CC X $\mathrm{C} 65 \mathrm{Y}+50$	
$26 \mathrm{~L} X+90 \quad \mathrm{Y}+50$ RR	
27 C X+90 DR-	
28 LBL 0	
29 LBL 3	Contour subprogram 3: square left island
$30 \mathrm{~L} X+27 \mathrm{Y}+50 \mathrm{RL}$	
$31 \mathrm{~L} \mathrm{Y}+58$	
$32 \mathrm{~L} \mathrm{X}+43$	
$33 \mathrm{~L} \mathrm{Y}+42$	
34 L X+27	
35 LBL 0	
36 LBL 4	Contour subprogram 4: triangular right island
$39 \mathrm{~L} \mathrm{X}+65 \mathrm{Y}+42 \mathrm{RL}$	
37 L X +57	
38 L X+65 Y+58	
$39 \mathrm{~L} \mathrm{X}+73 \mathrm{Y}+42$	
40 LBL 0	
41 END PGM C21 MM	

Example: Contour train

0 BEGIN PGM C25 MM
1 BLK FORM $0.1 \mathrm{Z} \mathrm{X}+0 \mathrm{Y}+0 \mathrm{Z}-40$
2 BLK FORM $0.2 \mathrm{X}+100 \quad \mathrm{Y}+100 \mathrm{Z}+0$
3 TOOL CALL 1 Z S2000
4 L Z +250 RO FMAX
5 CYCL DEF 14.0 CONTOUR GEOMETRY
6 CYCL DEF 14.1 CONTOUR LABEL 1
7 CYCL DEF 25 CONTOUR TRAIN
Q1=-20 ;MILLING DEPTH
Q3=+0 ; ALLOWANCE FOR SIDE
Q5=+0 ;SURFACE COORDINATE
Q7 $=+250$; CLEARANCE HEIGHT
Q10=5 ;PLUNGING DEPTH
Q11=100 ; FEED RATE FOR PLNGNG
Q12=200 ; FEED RATE FOR MILLING
Q15=+1 ; CLIMB OR UP-CUT
8 CYCL CALL M3
9 L Z+250 RO FMAX M2

0 BEGIN PGM C25 MM
1 BLK FORM $0.1 \mathrm{Z} \mathrm{X}+0 \mathrm{Y}+0 \mathrm{Z}-40$
2 BLK FORM $0.2 \mathrm{X}+100 \quad \mathrm{Y}+100 \mathrm{Z}+0$
3 TOOL CALL 1 Z S2000
4 L Z+250 RO FMAX
5 CYCL DEF 14.0 CONTOUR GEOMETRY
CYCL DEF 14.1 CONTOUR LABEL 1
7 CYCL DEF 25 CONTOUR TRAIN
Q1=-20 ;MILLING DEPTH
Q3=+0 ;ALLOWANCE FOR SIDE
Q5 $=+0$;SURFACE COORDINATE
Q7 $=+250$; CLEARANCE HEIGHT
Q10=5 ;PLUNGING DEPTH
Q11=100 ; FEED RATE FOR PLNGNG
Q12=200 ;FEED RATE FOR MILLING
Q15=+1 ;CLIMB OR UP-CUT
9 L Z+250 RO FMAX M2

Definition of workpiece blank

Tool call: Diameter 20
Retract the tool
Define contour subprogram

Define machining parameters

Cycle call

Retract in the tool axis, end program

Fixed Cycles:
Cylindrical Surface

8.1 Fundamentals

Overview of cylindrical surface cycles

Cycle	Soft key	Page
27 CYLINDER SURFACE	27	Page 199
	28 CYLINDER SURFACE slot milling	20
29 CYLINDER SURFACE ridge milling	Page 202	

8.2 CYLINDER SURFACE (Cycle 27, DIN/ISO: G127, Software Option 1)

Execution of cycle

This cycle enables you to program a contour in two dimensions and then roll it onto a cylindrical surface for 3-D machining. Use Cycle 28 if you want to mill guideways on the cylinder.

The contour is described in a subprogram identified in Cycle 14 CONTOUR GEOMETRY.

In the subprogram you always describe the contour with the coordinates X and Y, regardless of which rotary axes exist on your machine. This means that the contour description is independent of your machine configuration. The path functions L, CHF, CR, RND and CT are available.

The dimensions for the rotary axis (X coordinates) can be entered as desired either in degrees or in mm (or inches). Specify this with Q17 in the cycle definition.
1 The TNC positions the tool over the cutter infeed point, taking the allowance for side into account.
2 At the first plunging depth, the tool mills along the programmed contour at the milling feed rate Q12.
3 At the end of the contour, the TNC returns the tool to the set-up clearance and returns to the point of penetration.
4 Steps 1 to 3 are repeated until the programmed milling depth O1 is reached.
5 Then the tool moves to the set-up clearance.

Please note while programming:

The machine and TNC must be prepared for cylinder
surface interpolation by the machine tool builder. Refer to
your machine manual.

In the first NC block of the contour program, always program both cylinder surface coordinates

The memory capacity for programming an SL cycle is limited. You can program up to 16384 contour elements in one SL cycle.

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH=0, the cycle will not be executed.

This cycle requires a center-cut end mill (ISO 1641).
The cylinder must be set up centered on the rotary table. Set the reference point to the center of the rotary table.

The spindle axis must be perpendicular to the rotary table axis when the cycle is called; switching of the kinematics may be required. If this is not the case, the TNC will generate an error message.

This cycle can also be used in a tilted working plane.
The set-up clearance must be greater than the tool radius.
The machining time can increase if the contour consists of many non-tangential contour elements.

Cycle parameters

- Milling depth Q 1 (incremental): Distance between the cylindrical surface and the floor of the contour. Input range -99999.9999 to 99999.9999
- Finishing allowance for side Q3 (incremental): Finishing allowance in the plane of the unrolled cylindrical surface. This allowance is effective in the direction of the radius compensation. Input range -99999.9999 to 99999.9999

Set-up clearance Q6 (incremental): Distance between the tool tip and the cylinder surface. Input range 0 to 99999.9999
> Plunging depth Q 10 (incremental): Infeed per cut. Input range -99999.9999 to 99999.9999

- Feed rate for plunging 011 : Traversing speed of the tool in the spindle axis. Input range 0 to 99999.9999, alternatively FAUTO, $\mathbf{F U}, \mathrm{FZ}$
- Feed rate for milling Q12: Traversing speed of the tool in the working plane. Input range 0 to 99999.9999, alternatively FAUTO, FU, FZ
- Cyl inder radius Q16: Radius of the cylinder on which the contour is to be machined. Input range 0 to 99999.9999
- Dimension type? deg=0 MM/INCH=1 Q17: The coordinates for the rotary axis of the subprogram are given either in degrees (0) or in mm/inches (1).

Example: NC blocks
63 CYCL DEF 27 CYLINDER SURFACE
Q1=-8 ;MILLING DEPTH
Q3 $=+0$;ALLOWANCE FOR SIDE
Q6=+0 ;SET-UP CLEARANCE
Q10=+3 ;PLUNGING DEPTH
Q11=100 ; FEED RATE FOR PLNGNG
Q12=350 ; FEED RATE FOR MILLING

Q16=25 ;RADIUS
Q17 $=0$;TYPE OF DIMENSION

8.3 CYLINDER SURFACE Slot Milling (Cycle 28, DIN/ISO: G128, Software-Option 1)

Cycle run

This cycle enables you to program a guide notch in two dimensions and then transfer it onto a cylindrical surface. Unlike Cycle 27, with this cycle the TNC adjusts the tool so that, with radius compensation active, the walls of the slot are nearly parallel. You can machine exactly parallel walls by using a tool that is exactly as wide as the slot.

The smaller the tool is with respect to the slot width, the larger the distortion in circular arcs and oblique line segments. To minimize this process-related distortion, you can define in parameter Q21 a tolerance with which the TNC machines a slot as similar as possible to a slot machined with a tool of the same width as the slot.

Program the midpoint path of the contour together with the tool radius compensation. With the radius compensation you specify whether the TNC cuts the slot with climb milling or up-cut milling.

1 The TNC positions the tool over the cutter infeed point.
2 At the first plunging depth, the tool mills along the programmed slot wall at the milling feed rate Q12 while respecting the finishing allowance for the side.
3 At the end of the contour, the TNC moves the tool to the opposite wall and returns to the infeed point.
4 Steps 2 and 3 are repeated until the programmed milling depth Q1 is reached.
5 If you have defined the tolerance in Q21, the TNC then remachines the slot walls to be as parallel as possible.
6 Finally, the tool retracts in the tool axis to the clearance height or to the position last programmed before the cycle.

Please note while programming:

The machine and TNC must be prepared for cylinder surface interpolation by the machine tool builder. Refer to your machine manual

In the first NC block of the contour program, always program both cylinder surface coordinates.

The memory capacity for programming an SL cycle is limited. You can program up to 16384 contour elements in one SL cycle.

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH=0, the cycle will not be executed.

This cycle requires a center-cut end mill (DIN 844).
The cylinder must be set up centered on the rotary table. Set the reference point to the center of the rotary table.

The spindle axis must be perpendicular to the rotary table axis when the cycle is called; switching of the kinematics may be required. If this is not the case, the TNC will generate an error message.

This cycle can also be used in a tilted working plane
The set-up clearance must be greater than the tool radius.
The machining time can increase if the contour consists of many non-tangential contour elements.

Milling depth Q 1 (incremental): Distance between the cylindrical surface and the floor of the contour. Input range -99999.9999 to 99999.9999

Finishing allowance for side Q3 (incremental): Finishing allowance on the slot wall. The finishing allowance reduces the slot width by twice the entered value. Input range -99999.9999 to 99999.9999

- Set-up clearance Q6 (incremental): Distance between the tool tip and the cylinder surface. Input range 0 to 99999.9999
- Plunging depth Q 10 (incremental): Infeed per cut. Input range -99999.9999 to 99999.9999
- Feed rate for plunging 011 : Traversing speed of the tool in the spindle axis. Input range 0 to 99999.9999, alternatively FAUTO, $\mathbf{F U}$, FZ
- Feed rate for milling Q12: Traversing speed of the tool in the working plane. Input range 0 to 99999.9999, alternatively FAUTO, FU, FZ
- Cylinder radius Q16: Radius of the cylinder on which the contour is to be machined. Input range 0 to 99999.9999
- Dimension type? deg=0 MM/INCH=1 Q17: The coordinates for the rotary axis of the subprogram are given either in degrees (0) or in mm/inches (1).
- Slot width O20: Width of the slot to be machined. Input range -99999.9999 to 99999.9999
- Tolerance? O21: If you use a tool smaller than the programmed slot width O20, process-related distortion occurs on the slot wall wherever the slot follows the path of an arc or oblique line. If you define the tolerance Q21, the TNC adds a subsequent milling operation to ensure that the slot dimensions are as close as possible to those of a slot that has been milled with a tool exactly as wide as the slot. With O21 you define the permitted deviation from this ideal slot. The number of subsequent milling operations depends on the cylinder radius, the tool used, and the slot depth. The smaller the tolerance is defined, the more exact the slot is and the longer the remachining takes. Recommendation: Use a tolerance of 0.02 mm . Function inactive: Enter 0 (default setting) Input range 0 to 9.9999

Example: NC blocks

63 CYCL DEF 28	CYLINDER SURFACE
Q1 $=-8$;MILLING DEPTH
Q $3=+0$;ALLOWANCE FOR SIDE
Q6=+0	;SET-UP CLEARANCE
Q10 $=+3$;PLUNGING DEPTH
Q11 $=100$; FEED RATE FOR PLNGNG
Q12=350	; FEED RATE FOR MILLING
Q16=25	;RADIUS
Q17 $=0$;TYPE OF DIMENSION
Q20 $=12$;SLOT WIDTH
Q21 $=0$; TOLERANCE

8.4 CYLINDER SURFACE Ridge Milling (Cycle 29, DIN/ISO: G129, Software-Option 1)

Cycle run

This cycle enables you to program a ridge in two dimensions and then transfer it onto a cylindrical surface. With this cycle the TNC adjusts the tool so that, with radius compensation active, the walls of the slot are always parallel. Program the midpoint path of the ridge together with the tool radius compensation. With the radius compensation you specify whether the TNC cuts the ridge with climb milling or up-cut milling.
At the ends of the ridge the TNC always adds a semicircle whose radius is half the ridge width.

1 The TNC positions the tool over the starting point of machining. The TNC calculates the starting point from the ridge width and the tool diameter. It is located next to the first point defined in the contour subprogram, offset by half the ridge width and the tool diameter. The radius compensation determines whether machining begins from the left (1, RL = climb milling) or the right of the ridge ($2, R R=$ up-cut milling).
2 After the TNC has positioned to the first plunging depth, the tool moves on a circular arc at the milling feed rate Q12 tangentially to the ridge wall. If so programmed, it will leave material for the finishing allowance.
3 At the first plunging depth, the tool mills along the programmed ridge wall at the milling feed rate Q 12 until the stud is completed.
4 The tool then departs the ridge wall on a tangential path and returns to the starting point of machining.
5 Steps 2 to 4 are repeated until the programmed milling depth Q1 is reached.
6 Finally, the tool retracts in the tool axis to the clearance height or to the position last programmed before the cycle.

The machine and TNC must be prepared for cylinder surface interpolation by the machine tool builder. Refer to your machine manual.

In the first NC block of the contour program, always program both cylinder surface coordinates.

The memory capacity for programming an SL cycle is limited. You can program up to 16384 contour elements in one SL cycle.
The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH=0, the cycle will not be executed.
This cycle requires a center-cut end mill (ISO 1641).
The cylinder must be set up centered on the rotary table. Set the reference point to the center of the rotary table.
The spindle axis must be perpendicular to the rotary table axis when the cycle is called; switching of the kinematics may be required. If this is not the case, the TNC will generate an error message.
This cycle can also be used in a tilted working plane.
The set-up clearance must be greater than the tool radius.
The machining time can increase if the contour consists of many non-tangential contour elements.

Cycle parameters

- Milling depth Q1 (incremental): Distance between the cylindrical surface and the floor of the contour. Input range -99999.9999 to 99999.9999
- Finishing allowance for side Q3 (incremental): Finishing allowance on the ridge wall. The finishing allowance increases the ridge width by twice the entered value. Input range -99999.9999 to 99999.9999

Set-up clearance Q6 (incremental): Distance between the tool tip and the cylinder surface. Input range 0 to 99999.9999

- Plunging depth Q 10 (incremental): Infeed per cut. Input range -99999.9999 to 99999.9999
- Feed rate for plunging 011 : Traversing speed of the tool in the spindle axis. Input range 0 to 99999.9999, alternatively $\operatorname{FAUTO}, \mathbf{F U}, \mathrm{FZ}$
- Feed rate for milling Q12: Traversing speed of the tool in the working plane. Input range 0 to 99999.9999, alternatively FAUTO, FU, FZ
- Cyl inder radius Q16: Radius of the cylinder on which the contour is to be machined. Input range 0 to 99999.9999
- Dimension type? deg=0 MM/INCH=1 Q17: The coordinates for the rotary axis of the subprogram are given either in degrees (0) or in mm /inches (1).
- Ridge width Q20: Width of the ridge to be machined. Input range -99999.9999 to 99999.9999

Example: NC blocks

63 CYCL DEF 29 CYLINDER SURFACE RIDGE

Q1=-8 ;MILLING DEPTH
Q3 $=+0$;ALLOWANCE FOR SIDE

Q6=+0 ;SET-UP CLEARANCE
Q10=+3 ; PLUNGING DEPTH
Q11=100 ; FEED RATE FOR PLNGNG
Q12=350 ; FEED RATE FOR MILLING

Q16=25 ;RADIUS
Q17 $=0$;TYPE OF DIMENSION Q20=12 ; RIDGE WIDTH

8.5 Programming Examples

Example: Cylinder surface with Cycle 27

Note:

- Machine with B head and C table
- Cylinder centered on rotary table
- Datum is on the underside, in the center of the rotary table

0 BEGIN PGM C27 MM	
1 TOOL CALL 1 Z S2000	Tool call: Diameter 7
2 L Z+250 RO FMAX	Retract the tool
3 L X 500 YO RO FMAX	Pre-position tool at rotary table center
4 PLANE SPATIAL SPA+0 SPB+90 SPC+0 TURN MBMAX FMAX	Positioning
5 CYCL DEF 14.0 CONTOUR GEOMETRY	Define contour subprogram
6 CYCL DEF 14.1 CONTOUR LABEL 1	
7 CYCL DEF 27 CYLINDER SURFACE	Define machining parameters
Q1=-7 ;MILLING DEPTH	
Q3=+0 ; ALLOWANCE FOR SIDE	
Q6=2 ;SET-UP CLEARANCE	
Q10=4 ;PLUNGING DEPTH	
Q11=100 ; FEED RATE FOR PLNGNG	
Q12=250 ; FEED RATE FOR MILLING	
Q16=25 ; RADIUS	
Q17=1 ;TYPE OF DIMENSION	

8 L C+0 R0 FMAX M13 M99	Pre-position rotary table, spindle ON, call the cycle
9 L Z 250 RO FMAX	Retract the tool
10 PLANE RESET TURN FMAX	Tilt back, cancel the PLANE function
11 M2	End of program
12 LBL 1	Contour subprogram
$13 \mathrm{~L} \mathrm{X}+40 \mathrm{Y}+20 \mathrm{RL}$	Data for the rotary axis are entered in $\mathrm{mm}(\mathrm{Q} 17=1)$
$14 \mathrm{~L} \mathrm{X}+50$	
15 RND R7.5	
$16 \mathrm{~L} \mathrm{Y}+60$	
17 RND R7.5	
18 L IX-20	
19 RND R7. 5	
20 L Y+20	
21 RND R7.5	
$22 \mathrm{~L} \mathrm{X}+50$	
23 LBL 0	
24 END PGM C27 MM	

Example: Cylinder surface with Cycle 28

Notes:

- Cylinder centered on rotary table
\square Machine with B head and C table
- Datum at center of rotary table
- Description of the midpoint path in the contour subprogram

0 BEGIN PGM C28 MM	
1 TOOL CALL 1 Z S2000	Tool call, tool axis Z, diameter 7
2 L Z 250 RO FMAX	Retract the tool
3 I X+50 Y+0 RO FMAX	Position tool at rotary table center
4 PLANE SPATIAL SPA+0 SPB+90 SPC+0 TURN FMAX	Positioning
5 CYCL DEF 14.0 CONTOUR GEOMETRY	Define contour subprogram
6 CYCL DEF 14.1 CONTOUR LABEL 1	
7 CYCL DEF 28 CYLINDER SURFACE	Define machining parameters
Q1=-7 ;MILLING DEPTH	
Q3=+0 ; ALLOWANCE FOR SIDE	
Q6=2 ;SET-UP CLEARANCE	
Q10=-4 ;PLUNGING DEPTH	
Q11=100 ; FEED RATE FOR PLNGNG	
Q12=250 ; FEED RATE FOR MILLING	
Q16=25 ; RADIUS	
Q17=1 ; TYPE OF DIMENSION	
Q20=10 ; SLOT WIDTH	
Q21=0.02 ; TOLERANCE	Remachining active

8 L C+0 RO FMAX M3 M99	Pre-position rotary table, spindle ON, call the cycle
9 L Z 250 RO FMAX	Retract the tool
10 PLANE RESET TURN FMAX	Tilt back, cancel the PLANE function
11 M2	End of program
12 LBL 1	Contour subprogram, description of the midpoint path
$13 \mathrm{~L} \mathrm{X}+60 \mathrm{X}+0 \mathrm{RL}$	Data for the rotary axis are entered in $\mathrm{mm}(\mathrm{Q} 17=1)$
$14 \mathrm{~L} \mathrm{Y}-35$	
15 L X $+40 \mathrm{Y}-52.5$	
$16 \mathrm{~L} \mathrm{Y}-70$	
17 LBL 0	
18 END PGM C28 MM	

Fixed Cycles: Contour Pocket with Contour Formula

9.1 SL Cycles with Complex Contour Formula

Fundamentals

SL cycles and the complex contour formula enable you to form complex contours by combining subcontours (pockets or islands). You define the individual subcontours (geometry data) as separate programs. In this way, any subcontour can be used any number of times. The TNC calculates the complete contour from the selected subcontours, which you link together through a contour formula.

The memory capacity for programming an SL cycle (all contour description programs) is limited to $\mathbf{1 2 8}$ contours. The number of possible contour elements depends on the type of contour (inside or outside contour) and the number of contour descriptions. You can program up to 16384 elements.
The SL cycles with contour formula presuppose a structured program layout and enable you to save frequently used contours in individual programs. Using the contour formula, you can connect the subcontours to a complete contour and define whether it applies to a pocket or island.
In its present form, the "SL cycles with contour formula" function requires input from several areas in the TNC's user interface. This function is to serve as a basis for further development.

Example: Program structure: Machining with SL cycles and complex contour formula

0 BEGIN PGM CONTOUR MM
...
5 SEL CONTOUR "MODEL"
6 CYCL DEF 20 CONTOUR DATA...
8 CYCL DEF 22 ROUGH-OUT...
9 CYCL CALL
\ldots
12 CYCL DEF 23 FLOOR FINISHING...
13 CYCL CALL
\ldots
16 CYCL DEF 24 SIDE FINISHING...
17 CYCL CALL
63 L Z+250 RO FMAX M2
64 END PGM CONTOUR MM

Properties of the subcontours

By default, the TNC assumes that the contour is a pocket. Do not program a radius compensation.

- The TNC ignores feed rates F and miscellaneous functions M .

Coordinate transformations are allowed. If they are programmed within the subcontour they are also effective in the following subprograms, but they need not be reset after the cycle call.

- Although the subprograms can contain coordinates in the spindle axis, such coordinates are ignored.
- The working plane is defined in the first coordinate block of the subprogram.
- You can define subcontours with various depths as needed

Characteristics of the fixed cycles

- The TNC automatically positions the tool to the set-up clearance before a cycle.
Each level of infeed depth is milled without interruptions since the cutter traverses around islands instead of over them.
- The radius of "inside corners" can be programmed-the tool keeps moving to prevent surface blemishes at inside corners (this applies to the outermost pass in the Rough-out and Side Finishing cycles).
\square The contour is approached on a tangential arc for side finishing.
- For floor finishing, the tool again approaches the workpiece on a tangential arc (for spindle axis Z, for example, the arc may be in the Z/X plane).
\square The contour is machined throughout in either climb or up-cut milling.
The machining data (such as milling depth, finishing allowance and set-up clearance) are entered as CONTOUR DATA in Cycle 20.

Example: Program structure: Calculation of the subcontours with contour formula

0 BEGIN PGM MODEL MM		
1	DECLARE CONTOUR QC1 = "CIRCLE1"	
2	DECLARE CONTOUR QC2 = "CIRCLEXY" DEPTH15	
3	DECLARE CONTOUR QC3 = "TRIANGLE" DEPTH10	
4	DECLARE CONTOUR QC4 = "SQUARE" DEPTH5	
5	QC10 = (QC1 \| QC3	QC4) \ QC2
6	END PGM MODEL MM	
0	BEGIN PGM CIRCLE1 MM	
	CC X $+75 \quad \mathrm{Y}+50$	
2	LP PR+45 PA+0	
3	CP IPA +360 DR +	
4	END PGM CIRCLE1 MM	
	BEGIN PGM CIRCLE31XY MM	
.	. .	
	.	

Selecting a program with contour definitions

With the SEL CONTOUR function you select a program with contour definitions, from which the TNC takes the contour descriptions:

SPEC

- Show the soft-key row with special functions
- Select the menu for functions for contour and point machining
- Press the SEL CONTOUR soft key.
- Enter the full name of the program with the contour definition and confirm with the END key.

Program a SEL CONTOUR block before the SL cycles. Cycle 14 CONTOUR GEOMETRY is no longer necessary if you use SEL CONTOUR.

Defining contour descriptions

With the DECLARE CONTOUR function you enter in a program the path for programs from which the TNC draws the contour descriptions. In addition, you can select a separate depth for this contour description (FCL 2 function):

- Show the soft-key row with special functions
- Select the menu for functions for contour and point machining
- Press the DECLARE CONTOUR soft key.
- Enter the number for the contour designator $\mathbf{Q C}$, and confirm with the ENT key.
- Enter the full name of the program with the contour description and confirm with the END key, or if desired,
- Define a separate depth for the selected contour.

With the entered contour designators QC you can include the various contours in the contour formula.

If you program separate depths for contours, then you must assign a depth to all subcontours (assign the depth 0 if necessary).

Overlapping contours

By default, the TNC considers a programmed contour to be a pocket. With the functions of the contour formula, you can convert a contour from a pocket to an island.

Pockets and islands can be overlapped to form a new contour. You can thus enlarge the area of a pocket by another pocket or reduce it by an island.

Subprograms: overlapping pockets

The following programming examples are contour description programs that are defined in a contour definition program. The contour definition program is called through the SEL CONTOUR function in the actual main program.

Pockets A and B overlap.

The TNC calculates the points of intersection S1 and S2 (they do not have to be programmed).

The pockets are programmed as full circles.

Contour description program 1: pocket A

0 BEGIN PGM POCKET_A MM
1 L X+10 Y+50 RO
2 CC $X+35 \quad Y+50$
3 C $X+10$ Y+50 DR-
4 END PGM POCKET_A MM

Contour description program 2: pocket B

0 BEGIN PGM POCKET_B MM
1 L X+90 Y+50 RO
2 CC X+65 Y+50
3 C X+90 Y+50 DR-
4 END PGM POCKET_B MM

Area of inclusion

Both areas A and B are to be machined, including the overlapping area:

- The areas A and B must be programmed in separate programs without radius compensation.
- In the contour formula, the areas A and B are processed with the "joined with" function.

Contour definition program:

$50 \ldots$
$51 \ldots$
52 DECLARE CONTOUR QC1 = "POCKET_A.H"
53 DECLARE CONTOUR QC2 = "POCKET_B.H"
54 QC10 $=$ QC1 \| QC2
$55 \ldots$
$56 \ldots$

Area of exclusion

Area A is to be machined without the portion overlapped by B :

- The areas A and B must be entered in separate programs without radius compensation.
- In the contour formula, the area B is subtracted from the area A with the without function.

Contour definition program:
$50 \ldots$
$51 \ldots$
52 DECLARE CONTOUR QC1 $=$ "POCKET_A.H"
53 DECLARE CONTOUR QC2 $=$ "POCKET_B.H"
54 QC10 $=$ QC1 \backslash QC2
$55 \ldots$
$56 \ldots$

Area of intersection

Only the area where A and B overlap is to be machined. (The areas covered by A or B alone are to be left unmachined.)
\square The areas A and B must be entered in separate programs without radius compensation.
\square In the contour formula, the areas A and B are processed with the "intersection with" function.
Contour definition program:
$50 \ldots$
51 ...
52 DECLARE CONTOUR QC1 = "POCKET_A.H"
53 DECLARE CONTOUR QC2 = "POCKET_B.H"
54 QC10 $=$ QC1 \& QC2
$55 \ldots$
$56 \ldots$

Contour machining with SL Cycles

The complete contour is machined with the SL Cycles 20 to 24 (see "Overview" on page 171).

Example: Roughing and finishing superimposed contours with the contour formula

0 BEGIN PGM CONTOUR MM	
1	BLK FORM $0.1 \mathrm{Z} \mathrm{X}+0 \mathrm{Y}+0 \mathrm{Z}-40$
2	BLK FORM $0.2 \mathrm{X}+100 \mathrm{Y}+100 \mathrm{Z}+0$
3	TOOL DEF 1 L+0 R+2.5
4	TOOL DEF $2 \mathrm{~L}+0 \mathrm{R+3}$
5	TOOL CALL 1 Z S2500
6	L Z+250 RO FMAX
7	SEL CONTOUR "MODEL"
8	CYCL DEF 20 CONTOUR DATA
	Q1=-20 ;MILLING DEPTH
	Q2=1 ; TOOL PATH OVERLAP
	Q3=+0.5 ; ALLOWANCE FOR SIDE
	Q4=+0.5 ; ALLOWANCE FOR FLOOR
	Q5=+0 ; SURFACE COORDINATE
	Q6=2 ;SET-UP CLEARANCE
	Q7=+100 ; CLEARANCE HEIGHT
	Q8=0.1 ;ROUNDING RADIUS
	Q9 9 - 1 ; DIRECTION

Definition of workpiece blank

Tool definition of roughing cutter
Tool definition of finishing cutter
Tool call of roughing cutter
Retract the tool
Specify contour definition program
Define general machining parameters

Cycle definition: Rough-out

Cycle call: Rough-out
Tool call of finishing cutter
Cycle definition: Floor finishing

Cycle call: Floor finishing
Cycle definition: Side finishing

Cycle call: Side finishing
Retract in the tool axis, end program

Contour definition program

Definition of the contour designator for the program "CIRCLE1" Assignment of values for parameters used in PGM "CIRCLE31XY"

Definition of the contour designator for the program "CIRCLE31XY" Definition of the contour designator for the program "TRIANGLE"
Definition of the contour designator for the program "SQUARE" Contour formula

Contour description programs:

| 0 BEGIN PGM CIRCLE1 MM | Contour description program: circle at right |
| :--- | :--- | :--- |
| 1 CC X+65 Y+50 | |
| 2 L PR+25 PA+0 RO | |
| 3 CP IPA+360 DR+ | |
| 4 END PGM CIRCLE1 MM | |

0 BEGIN PGM CIRCLE31XY MM	Contour description program: circle at left
1 CC X+Q1 Y+Q2	
2 LP PR+Q3 PA+0 RO	
3 CP IPA+360 DR+	
4 END PGM CIRCLE31XY MM	

| 0 BEGIN PGM TRIANGLE MM | Contour description program: triangle at right |
| :--- | :--- | :--- |
| 1 L X+73 Y+42 RO | |
| 2 L X+65 Y+58 | |
| 3 L X+58 Y+42 | |
| 4 L X+73 | |
| 5 END PGM TRIANGLE MM | |

| 0 BEGIN PGM SQUARE MM | Contour description program: square at left |
| :--- | :--- | :--- |
| 1 L X+27 Y+58 RO | |
| 2 L X+43 | |
| 3 L Y+42 | |
| 4 L X+27 | |
| 5 L Y+58 | |
| 6 END PGM SQUARE MM | |

9.2 SL Cycles with Simple Contour Formula

Fundamentals

SL cycles and the simple contour formula enable you to form contours by combining up to 9 subcontours (pockets or islands) in a simple manner. You define the individual subcontours (geometry data) as separate programs. In this way, any subcontour can be used any number of times. The TNC calculates the contour from the selected subcontours.

> The memory capacity for programming an SL cycle (all contour description programs) is limited to $\mathbf{1 2 8}$ contours. The number of possible contour elements depends on the type of contour (inside or outside contour) and the number of contour descriptions. You can program up to $\mathbf{1 6 3 8 4}$ elements.

Properties of the subcontours

- Do not program a radius compensation.
\square The TNC ignores feed rates F and miscellaneous functions M.
- Coordinate transformations are allowed. If they are programmed within the subcontour they are also effective in the following subprograms, but they need not be reset after the cycle call.
- Although the subprograms can contain coordinates in the spindle axis, such coordinates are ignored.
- The working plane is defined in the first coordinate block of the subprogram.

Characteristics of the fixed cycles

- The TNC automatically positions the tool to the set-up clearance before a cycle.
- Each level of infeed depth is milled without interruptions since the cutter traverses around islands instead of over them.
- The radius of "inside corners" can be programmed-the tool keeps moving to prevent surface blemishes at inside corners (this applies to the outermost pass in the Rough-out and Side Finishing cycles).
\square The contour is approached on a tangential arc for side finishing.
- For floor finishing, the tool again approaches the workpiece on a tangential arc (for spindle axis Z, for example, the arc may be in the Z/X plane).
- The contour is machined throughout in either climb or up-cut milling.

The machining data (such as milling depth, finishing allowance and set-up clearance) are entered as CONTOUR DATA in Cycle 20.

Example: Program structure: Machining with SL cycles and complex contour formula

```
O BEGIN PGM CONTDEF MM
...
5 CONTOUR DEF
P1= "POCK1.H"
I2 = "ISLE2.H" DEPTH5
I3 "ISLE3.H" DEPTH7.5
6 CYCL DEF 20 CONTOUR DATA...
8 CYCL DEF 22 ROUGH-OUT...
9 CYCL CALL
...
12 CYCL DEF 23 FLOOR FINISHING...
13 CYCL CALL
...
16 CYCL DEF 24 SIDE FINISHING...
17 CYCL CALL
63 L Z+250 RO FMAX M2
6 4 ~ E N D ~ P G M ~ C O N T D E F ~ M M ~
```


Entering a simple contour formula

You can use soft keys to interlink various contours in a mathematical formula.

Show the soft-key row with special functions
$\underset{\substack{\text { conroure } \\+ \text { pount }}}{\text { Select the menu for functions for contour and point }}$ machining

- Press the CONTOUR DEF soft key. The TNC opens the dialog for entering the contour formula.
- Enter the name of the first subcontour. The first subcontour must always be the deepest pocket. Confirm with the ENT key.
- Specify via soft key whether the next subcontour is a pocket or an island. Confirm with the ENT key.
- Enter the name of the second subcontour. Confirm with the ENT key.
- If needed, enter the depth of the second subcontour. Confirm with the ENT key.
- Carry on with the dialog as described above until you have entered all subcontours.

```
Always start the list of subcontours with the deepest pocket!
```

1 If the contour is defined as an island, the TNC interprets the entered depth as the island height. The entered value (without an algebraic sign) then refers to the workpiece top surface!
1 If the depth is entered as 0 , then for pockets the depth defined in the Cycle 20 is effective. Islands then rise up to the workpiece top surface!

Contour machining with SL Cycles

The complete contour is machined with the SL Cycles 20 to 24 (see "Overview" on page 171).

Fixed Cycles:
Multipass Milling

10.1 Fundamentals

Overview

The TNC offers three cycles for machining surfaces with the following characteristics:

- Flat, rectangular surfaces
- Flat, oblique-angled surfaces
- Surfaces that are inclined in any way
- Twisted surfaces

Cycle	Soft key	Page
230 MULTIPASS MILLING For flat rectangular surfaces	230	Page 229
231 RULED SURFACE For oblique, inclined or twisted surfaces		Page 231
232 FACE MILLING For level rectangular surfaces, with indicated oversizes and multiple infeeds		Page 235

10.2 MULTIPASS MILLING (Cycle 230, DIN/ISO: G230)

Cycle run

1 From the current position in the working plane, the TNC positions the tool at rapid traverse FMAX to the starting point 1; the TNC moves the tool by its radius to the left and upward.
2 The tool then moves at FMAX in the tool axis to the set-up clearance. From there it approaches the programmed starting position in the tool axis at the feed rate for plunging.
3 The tool then moves at the programmed feed rate for milling to the end point 2. The TNC calculates the end point from the programmed starting point, the programmed length, and the tool radius.
4 The TNC offsets the tool to the starting point in the next pass at the stepover feed rate. The offset is calculated from the programmed width and the number of cuts.
5 The tool then returns in the negative direction of the first axis.
6 Multipass milling is repeated until the programmed surface has been completed.
7 At the end of the cycle, the tool is retracted at FMAX to the set-up clearance.

Please note while programming:

From the current position, the TNC positions the tool at the starting point, first in the working plane and then in the spindle axis.

Pre-position the tool in such a way that no collision between tool and clamping devices can occur.

- Starting point in 1st axis Q225 (absolute): Minimum point coordinate of the surface to be multipass-milled in the reference axis of the working plane. Input range -99999.9999 to 99999.9999
- Starting point in 2nd axis Q226 (absolute): Minimum-point coordinate of the surface to be multipass-milled in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- Starting point in 3rd axis O227 (absolute): Height in the spindle axis at which multipass-milling is carried out. Input range -99999.9999 to 99999.9999
- First side length Q 218 (incremental): Length of the surface to be multipass-milled in the reference axis of the working plane, referenced to the starting point in the 1 st axis. Input range 0 to 99999.9999
- Second side length O 219 (incremental): Length of the surface to be multipass-milled in the minor axis of the working plane, referenced to the starting point in the 2nd axis. Input range 0 to 99999.9999
- Number of cuts O 240 : Number of passes to be made over the width. Input range 0 to 99999
- Feed rate for plunging Q206: Traversing speed of the tool while moving from set-up clearance to the milling depth in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.9999; alternatively FAUTO, FU, FZ
- Feed rate for milling O207: Traversing speed of the tool during milling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.9999; alternatively FAUTO, FU, FZ
- Stepover feed rate O209: Traversing speed of the tool in $\mathrm{mm} / \mathrm{min}$ when moving to the next pass. If you are moving the tool transversely in the material, enter Q209 to be smaller than O207. If you are moving it transversely in the open, O209 may be greater than Q207. Input range 0 to 99999.9999, alternatively FAUTO, FU, FZ
- Set-up clearance Q200 (incremental): Distance between tool tip and milling depth for positioning at the start and end of the cycle. Input range 0 to 99999.9999

Example: NC blocks

71 CYCL DEF 230 MULTIPASS MILLING

Q225=+10 ;STARTING POINT 1ST AXIS
Q226=+12 ;STARTING POINT 2ND AXIS
Q227=+2.5 ; STARTING POINT 3RD AXIS
Q218=150 ;1ST SIDE LENGTH
Q219=75 ;2ND SIDE LENGTH
Q240 $=25$;NUMBER OF CUTS
Q206=150 ; FEED RATE FOR PLNGNG
Q207=500 ;FEED RATE FOR MILLING
Q209=200 ; STEPOVER FEED RATE
Q200=2 ; SET-UP CLEARANCE

10.3 RULED SURFACE (Cycle 231, DIN/ISO: G231)

Cycle run

1 From the current position, the TNC positions the tool in a linear 3-D movement to the starting point 1.
2 The tool subsequently advances to the stopping point 2 at the feed rate for milling.
3 From this point, the tool moves at rapid traverse FMAX by the tool diameter in the positive tool axis direction, and then back to starting point 1.
4 At the starting point 1 the TNC moves the tool back to the last traversed Z value.
5 Then the TNC moves the tool in all three axes from point 1 in the direction of point 4 to the next line.
6 From this point, the tool moves to the stopping point on this pass. The TNC calculates the end point from point 2 and a movement in the direction of point 3.
7 Multipass milling is repeated until the programmed surface has been completed.
8 At the end of the cycle, the tool is positioned above the highest programmed point in the spindle axis, offset by the tool diameter.

Cutting motion

The starting point, and therefore the milling direction, is selectable because the TNC always moves from point 1 to point 2 and in the total movement from point $1 / 2$ to point $3 / 4$. You can program point 1 at any corner of the surface to be machined.

If you are using an end mill for the machining operation, you can optimize the surface finish in the following ways:

- A shaping cut (spindle axis coordinate of point 1 greater than spindle-axis coordinate of point 2) for slightly inclined surfaces.
- A drawing cut (spindle axis coordinate of point 1 smaller than spindle-axis coordinate of point 2) for steep surfaces.
\square When milling twisted surfaces, program the main cutting direction (from point 1 to point 2) parallel to the direction of the steeper inclination.

If you are using a spherical cutter for the machining operation, you can optimize the surface finish in the following way:
\square When milling twisted surfaces, program the main cutting direction (from point 1 to point 2) perpendicular to the direction of the steepest inclination.

Please note while programming:

From the current position, the TNC positions the tool in a linear 3-D movement to the starting point 1. Pre-position the tool in such a way that no collision between tool and fixtures can occur.

The TNC moves the tool with radius compensation R0 to the programmed positions.
If required, use a center-cut end mill (ISO 1641).

Cycle parameters

Starting point in 1st axis Q225 (absolute): Starting point coordinate of the surface to be multipass-milled in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

Starting point in 2nd axis Q226 (absolute): Starting point coordinate of the surface to be multipass-milled in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

Starting point in 3rd axis Q227 (absolute): Starting point coordinate of the surface to be multipass-milled in the tool axis. Input range -99999.9999 to 99999.9999

2nd point in 1st axis Q228 (absolute): End point coordinate of the surface to be multipass milled in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

- 2nd point in 2nd axis Q229 (absolute): End point coordinate of the surface to be multipass milled in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- 2nd point in 3rd axis Q230 (absolute): End point coordinate of the surface to be multipass milled in the spindle axis. Input range -99999.9999 to 99999.9999
- 3rd point in 1st axis Q231 (absolute): Coordinate of point 3 in the reference axis of the working plane. Input range -99999.9999 to 99999.9999
- 3rd point in 2nd axis Q232 (absolute): Coordinate of point 3 in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
> 3rd point in 3rd axis Q233 (absolute): Coordinate of point 3 in the spindle axis. Input range -99999.9999 to 99999.9999

4th point in 1st axis Q234 (absolute): Coordinate of point 4 in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

- 4th point in 2nd axis Q235 (absolute): Coordinate of point 4 in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- 4th point in 3rd axis Q236 (absolute): Coordinate of point 4 in the spindle axis. Input range -99999.9999 to 99999.9999
- Number of cuts Q240: Number of passes to be made between points 1 and 4,2 and 3. Input range 0 to 99999

Feed rate for milling Q207: Traversing speed of the tool in $\mathrm{mm} / \mathrm{min}$ while milling. The TNC performs the first step at half the programmed feed rate. Input range 0 to 99999.999, alternatively FAUT0, FU, FZ

Example: NC blocks

72 CYCL DEF 231 RULED SURFACE

Q225 $=+0$;STARTING POINT 1ST AXIS
Q226 $=+5$;STARTING POINT 2ND AXIS
Q227 $=-2$;STARTING POINT 3RD AXIS
Q228 $=+100$;2ND POINT 1ST AXIS	
Q229 $=+15$;2ND POINT 2ND AXIS
Q230 $=+5$;2ND POINT 3RD AXIS
Q231 $=+15$;3RD POINT 1ST AXIS
Q232 $=+125$;3RD POINT 2ND AXIS	
Q233 $=+25$;3RD POINT 3RD AXIS
Q234 $=+15$;4TH POINT 1ST AXIS
Q235 $=+125$;4TH POINT 2ND AXIS	
Q236 $=+25$;4TH POINT 3RD AXIS
Q240 $=40$; NUMBER OF CUTS
Q207 $=500$; FEED RATE FOR MILLING

10.4 FACE MILLING (Cycle 232, DIN/ISO: G232)

Cycle run

Cycle 232 is used to face mill a level surface in multiple infeeds while taking the finishing allowance into account. Three machining strategies are available:
-Strategy 0389=0: Meander machining, stepover outside the surface being machined

- Strategy 0389=1: Meander machining, stepover within the surface being machined
- Strategy 0389=2: Line-by-line machining, retraction and stepover at the positioning feed rate

1 From the current position, the TNC positions the tool at rapid traverse FMAX to the starting position 1 using positioning logic: If the current position in the spindle axis is greater than the 2 nd setup clearance, the TNC positions the tool first in the machining plane and then in the spindle axis. Otherwise it first moves to the 2nd set-up clearance and then in the machining plane. The starting point in the machining plane is offset from the edge of the workpiece by the tool radius and the safety clearance to the side.
2 The tool then moves in the spindle axis at the positioning feed rate to the first plunging depth calculated by the control.

Strategy 0389=0

3 The tool then advances to the stopping point 2 at the feed rate for milling. The end point lies outside the surface. The control calculates the end point from the programmed starting point, the programmed length, the programmed safety clearance to the side and the tool radius.
4 The TNC offsets the tool to the starting point in the next pass at the pre-positioning feed rate. The offset is calculated from the programmed width, the tool radius and the maximum path overlap factor.
5 The tool then moves back in the direction of the starting point 1.
6 The process is repeated until the programmed surface has been completed. At the end of the last pass, the tool plunges to the next machining depth.
7 In order to avoid non-productive motions, the surface is then machined in reverse direction.
8 The process is repeated until all infeeds have been machined. In the last infeed, simply the finishing allowance entered is milled at the finishing feed rate.
9 At the end of the cycle, the TNC retracts the tool at FMAX to the 2nd set-up clearance.

Strategy 0389=1

3 The tool then advances to the stopping point 2 at the feed rate for milling. The end point lies within the surface. The TNC calculates the end point from the programmed starting point, the programmed length and the tool radius.
4 The TNC offsets the tool to the starting point in the next pass at the pre-positioning feed rate. The offset is calculated from the programmed width, the tool radius and the maximum path overlap factor.
5 The tool then moves back in the direction of the starting point 1. The motion to the next line occurs within the workpiece borders.
6 The process is repeated until the programmed surface has been completed. At the end of the last pass, the tool plunges to the next machining depth.
7 In order to avoid non-productive motions, the surface is then machined in reverse direction.
8 The process is repeated until all infeeds have been machined. In the last infeed, simply the finishing allowance entered is milled at the finishing feed rate.
9 At the end of the cycle, the TNC retracts the tool at FMAX to the 2nd set-up clearance.

Strategy 0389=2

3 The tool then advances to the stopping point 2 at the feed rate for milling. The end point lies outside the surface. The control calculates the end point from the programmed starting point, the programmed length, the programmed safety clearance to the side and the tool radius.
4 The TNC positions the tool in the spindle axis to the set-up clearance over the current infeed depth, and then moves at the pre-positioning feed rate directly back to the starting point in the next line. The TNC calculates the offset from the programmed width, the tool radius and the maximum path overlap factor.
5 The tool then returns to the current infeed depth and moves in the direction of the next stopping point 2.
6 The milling process is repeated until the programmed surface has been completed. At the end of the last pass, the tool plunges to the next machining depth.
7 In order to avoid non-productive motions, the surface is then machined in reverse direction.
8 The process is repeated until all infeeds have been machined. In the last infeed, simply the finishing allowance entered is milled at the finishing feed rate.
9 At the end of the cycle, the TNC retracts the tool at FMAX to the 2nd set-up clearance.

Please note while programming:

Enter the 2nd set-up clearance in Q204 such that no collision with the workpiece or the fixtures can occur.

If the starting point in the 3rd axis Q227 and the end point in the 3rd axis Q386 are entered as equal values, the TNC does not run the cycle (depth $=0$ has been programmed).

Cycle parameters

Machining strategy (0/1/2) Q389: Specify how the TNC is to machine the surface: $\mathbf{0}$: Meander machining, stepover at positioning feed rate outside the surface to be machined 1: Meander machining, stepover at feed rate for milling within the surface to be machined 2: Line-by-line machining, retraction and stepover at the positioning feed rate

Starting point in 1st axis Q225 (absolute): Starting point coordinate of the surface to be machined in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

- Starting point in 2nd axis Q226 (absolute): Starting point coordinate of the surface to be multipass-milled in the minor axis of the working plane. Input range
 -99999.9999 to 99999.9999

Starting point in 3rd axis Q227 (absolute): Coordinate of the workpiece surface used to calculate the infeeds. Input range -99999.9999 to 99999.9999

- End point in 3rd axis Q386 (absolute): Coordinate in the spindle axis to which the surface is to be face milled. Input range -99999.9999 to 99999.9999
> 1st side length Q218 (incremental value): Length of the surface to be machined in the reference axis of the working plane. Use the algebraic sign to specify the direction of the first milling path in reference to the starting point in the 1st axis. Input range -99999.9999 to 99999.9999
- 2nd side length O 219 (incremental value): Length of the surface to be machined in the minor axis of the working plane. Use the algebraic sign to specify the

Maximum plunging depth Q202 (incremental value): Maximum amount that the tool is advanced each time. The TNC calculates the actual plunging depth from the difference between the end point and starting point of the tool axis (taking the finishing allowance into account), so that uniform plunging depths are used each time. Input range 0 to 99999.9999

- Allowance for floor Q369 (incremental): Distance used for the last infeed. Input range 0 to 99999.9999

Max. path overlap factor Q370: Maximum stepover factor k. The TNC calculates the actual stepover from the second side length (O219) and the tool radius so that a constant stepover is used for machining. If you have entered a radius R 2 in the tool table (e.g. tooth radius when using a face-milling cutter), the TNC reduces the stepover accordingly. Input range 0.1 to 1.9999

Feed rate for milling Q207: Traversing speed of the tool during milling in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 99999.9999; alternatively FAUTO, FU, FZ

- Feed rate for finishing Q385: Traversing speed of the tool in $\mathrm{mm} / \mathrm{min}$, while milling the last infeed. Input range 0 to 99999.9999; alternatively FAUTO, FU, FZ
- Feed rate for pre-positioning Q253: Traversing speed of the tool in $\mathrm{mm} / \mathrm{min}$ when approaching the starting position and when moving to the next pass. If you are moving the tool transversely to the material ($\mathrm{O} 389=1$), the TNC moves the tool at the feed rate for milling Q207. Input range 0 to 99999.9999, alternatively FMAX, FAUTO

Set-up clearance Q200 (incremental): Distance between tool tip and the starting position in the tool axis. If you are milling with machining strategy Q389=2, the TNC moves the tool at the set-up clearance over the current plunging depth to the starting point of the next pass. Input range 0 to 99999.9999

- Clearance to side Q357 (incremental): Safety clearance to the side of the workpiece when the tool approaches the first plunging depth, and distance at which the stepover occurs if the machining strategy $\mathrm{Q} 389=0$ or $\mathrm{Q} 389=2$ is used. Input range 0 to 99999.9999
- 2nd set-up clearance O204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

Example: NC blocks

71 CYCL DEF 232 FACE MILLING

Q389=2 ;STRATEGY
Q225=+10 ;STARTING POINT 1ST AXIS
Q226=+12 ;STARTING POINT 2ND AXIS
Q227=+2.5 ; STARTING POINT 3RD AXIS
Q386=-3 ;END POINT IN 3RD AXIS
Q218=150 ; 1ST SIDE LENGTH
Q219=75 ;2ND SIDE LENGTH
Q202=2 ;MAX. PLUNGING DEPTH
Q369=0.5 ; ALLOWANCE FOR FLOOR
Q370 $=1$; MAX. OVERLAP
Q207=500 ; FEED RATE FOR MILLING
Q385=800 ;FEED RATE FOR FINISHING
Q253=2000 ; F PRE-POSITIONING
Q200=2 ;SET-UP CLEARANCE
Q357=2 ;CLEARANCE TO SIDE
Q204=2 ;2ND SET-UP CLEARANCE
10.5 Programming Examples

Example: Multipass milling

| 6 L X+-25 Y+0 RO FMAX M3 | Pre-position near the starting point |
| :--- | :--- | :--- |
| 7 CYCL CALL | Cycle call |
| 8 L Z+250 R0 FMAX M2 | Retract in the tool axis, end program |
| 9 END PGM C230 MM | |

11.1 Fundamentals

Overview

Once a contour has been programmed, you can position it on the workpiece at various locations and in different sizes through the use of coordinate transformations. The TNC provides the following coordinate transformation cycles:

Cycle	Soft key	Page	
7 DATUM SHIFT For shifting contours directly within the program or from datum tables	Page 245		
247 DATUM SETTING Datum setting during program run	Page 251		
8 MIRROR IMAGE Mirroring contours	Page 252		
10 ROTATION For rotating contours in the working plane		Page 254	
11 SCALING For increasing or reducing the size of contours			
26 AXIS-SPECIFIC SCALING FACTOR For increasing or reducing the size of contours with scaling factors for each axis			Page 258
19 WORKING PLANE Machining in tilted coordinate system on machines with swivel heads and/or rotary tables			

Effect of coordinate transformations

Beginning of effect: A coordinate transformation becomes effective as soon as it is defined-it is not called separately. It remains in effect until it is changed or canceled.

To cancel coordinate transformations:

- Define cycles for basic behavior with a new value, such as scaling factor 1.0
- Execute a miscellaneous function M2, M30, or an END PGM block (depending on machine parameter clearMode).
- Select a new program

11.2 DATUM SHIFT (Cycle 7, DIN/ISO: G54)

Effect

A DATUM SHIFT allows machining operations to be repeated at various locations on the workpiece.

When the DATUM SHIFT cycle is defined, all coordinate data is based on the new datum. The TNC displays the datum shift in each axis in the additional status display. Input of rotary axes is also permitted.

Resetting

Program a datum shift to the coordinates $\mathrm{X}=0, \mathrm{Y}=0$ etc. directly with a cycle definition.

- Call a datum shift to the coordinates
$X=0 ; Y=0$ etc. from the datum table.

Example: NC blocks

13 CYCL DEF 7.0 DATUM SHIFT
14 CYCL DEF 7.1 X+60
16 CYCL DEF 7.3 Z-5
15 CYCL DEF $7.2 \mathrm{Y}+40$

Cycle parameters

Datum shift: Enter the coordinates of the new datum Absolute values are referenced to the manually set workpiece datum. Incremental values are always referenced to the datum which was last valid-this can be a datum which has already been shifted. Input range: Up to six NC axes, each from -99999.9999 to 99999.9999

11.3 DATUM SHIFT with Datum Tables (Cycle 7, DIN/ISO: G53)

Effect

Datum tables are used for:
■ Frequently recurring machining sequences at various locations on the workpiece
Frequent use of the same datum shift
Within a program, you can either program datum points directly in the cycle definition or call them from a datum table.

Resetting

- Call a datum shift to the coordinates $X=0 ; Y=0$ etc. from the datum table.
- Execute a datum shift to the coordinates $\mathrm{X}=0, \mathrm{Y}=0$ etc. directly with a cycle definition

Status displays

In the additional status display, the following data from the datum table are shown:

- Name and path of the active datum table
- Active datum number
- Comment from the DOC column of the active datum number

Please note while programming:

Danger of collision!

Datums from a datum table are always and exclusively referenced to the current datum (preset).

If you are using datum shifts with datum tables, then use the SEL TABLE function to activate the desired datum table from the NC program.

If you work without SEL TABLE, then you must activate the desired datum table before the test run or the program run. (This applies also to the programming graphics).

- Use the file management to select the desired table for a test run in the Test Run operating mode: The table receives the status S.

Use the file management in a program run mode to select the desired table for program run: The table receives the status M.

The coordinate values from datum tables are only effective with absolute coordinate values

New lines can only be inserted at the end of the table.
If you create datum tables, the file name has to start with a letter.

Cycle parameters

Datum shift: Enter the number of the datum from the datum table or a Q parameter. If you enter a Q parameter, the TNC activates the datum number entered in the Q parameter. Input range: 0 to 9999

Example: NC blocks

77 CYCL DEF 7.0 DATUM SHIFT

78 CYCL DEF 7.1 \#5

Selecting a datum table in the part program

With the SEL TABLE function you select the table from which the TNC takes the datums:
you select another datum table with SEL TABLE or through PGM MGT.

PCM

- Select the complete path name of the datum table or the file with the SELECT soft key and confirm your entry with the END key.

Program a SEL TABLE block before Cycle 7 Datum Shift.
A datum table selected with SEL TABLE remains active until

- To select the functions for program call, press the PGM CALL key.
- Press the DATUM TABLE soft key

Editing the datum table in the Programming and Editing mode of operation

After you have changed a value in a datum table, you must save the change with the ENT key. Otherwise the change might not be included during program run.

Select the datum table in the Programming and Editing mode of operation.

Press the PGM MGT key to call the fil Display the datum tables: Press the SE SHOW .D soft keys Select the desired table or enter a new Edit the file. The soft-key row comprise functions for editing:	manager. ECT TYPE and file name. the following
Function	Soft key
Go to beginning of table	$\stackrel{\text { ®egrv }}{\text { it }}$
Select end of table	EN0
Go to previous page	$\stackrel{\text { Page }}{1}$
Go to next page	$\stackrel{\text { Page }}{ }$
Insert line (only possible at end of table)	$\underset{\substack{\text { Insert } \\ \text { LINE }}}{\text { cen }}$
Delete line	DELETE LINE
Find	${ }_{\text {fino }}$
Go to beginning of line	$\begin{aligned} & \text { BEITVIN } \\ & \text { LINE } \\ & \leftarrow \end{aligned}$
Go to end of line	$\begin{aligned} & \text { ENO } \\ & \text { EINE } \\ & \Rightarrow \end{aligned}$
Copy the current value	$\begin{aligned} & \text { COPY } \\ & \text { FIELD } \end{aligned}$
Insert the copied value	$\begin{aligned} & \text { PASTE } \\ & \text { FIELD } \end{aligned}$
Add the entered number of lines (datums) to the end of the table	$\begin{gathered} \hline \text { APPEND } \\ \text { N LINES } \\ \hline \end{gathered}$

Configuring the datum table

If you do not wish to define a datum for an active axis, press the DEL key. Then the TNC clears the numerical value from the corresponding input field.

You can change the properties of tables. Enter the code number 555343 in the MOD menu. The TNC then offers the EDIT FORMAT soft key if a table is selected. When you press this soft key, the TNC opens a pop-up window where the properties are shown for each column of the selected table. Any changes made only affect the open table.

To exit a datum table

Select a different type of file in file management and choose the desired file.

After you have changed a value in a datum table, you must save the change with the ENT key. Otherwise the change may not be included during program run.

Status displays

In the additional status display, the TNC shows the values of the active datum shift.

11.4 DATUM SETTING (Cycle 247, DIN/ISO: G247)

Effect

With the DATUM SETTING cycle you can activate as the new datum a preset defined in a preset table.
After a DATUM SETTING cycle definition, all of the coordinate inputs and datum shifts (absolute and incremental) are referenced to the new preset.

Status display

In the status display the TNC shows the active preset number behind the datum symbol.

Please note before programming:

When activating a datum from the preset table, the TNC resets the datum shift, mirroring, rotation, scaling factor and axis-specific scaling factor.

If you activate preset number 0 (line 0), then you activate the datum that you last set in a manual operating mode.
Cycle 247 is not functional in Test Run mode.

Cycle parameters

207,

Number for datum?: Enter the number of the datum to be activated from the preset table. Input range: 0 to 65535

Example: NC blocks

$$
13 \text { CYCL DEF } 247 \text { DATUM SETTING }
$$

Status displays

In the additional status display (POS. DISP. STATUS) the TNC shows the active preset number behind the datum dialog.

11.5 MIRROR IMAGE (Cycle 8, DIN/ISO: G28)

Effect

The TNC can machine the mirror image of a contour in the working plane.
The mirroring cycle becomes effective as soon as it is defined in the program. It is also effective in the Positioning with MDI mode of operation. The active mirrored axes are shown in the additional status display.

- If you mirror only one axis, the machining direction of the tool is reversed (except in SL cycles).
- If you mirror two axes, the machining direction remains the same.

The result of the mirroring depends on the location of the datum:

- If the datum lies on the contour to be mirrored, the element simply flips over.
- If the datum lies outside the contour to be mirrored, the element also "jumps" to another location.

Resetting

Program the MIRROR IMAGE cycle once again with NO ENT.

Please note while programming:

If you mirror only one axis, the machining direction is reversed for the milling cycles (Cycles 2xx). Exception: Cycle 208, in which the direction defined in the cycle applies.

Cycle parameters

Mirrored axis?: Enter the axis to be mirrored. You can mirror all axes-including rotary axes-with the exception of the spindle axis and its associated auxiliary axis. You can enter up to three axes. Input range: Up to three NC axes $\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{U}, \mathbf{V}, \mathbf{W}, \mathbf{A}, \mathbf{B}, \mathbf{C}$

Example: NC blocks
79 CYCL DEF 8.0 MIRROR IMAGE
80 CYCL DEF 8.1 X Y Z

11.6 ROTATION (Cycle 10, DIN/ISO: G73)

Effect

The TNC can rotate the coordinate system about the active datum in the working plane within a program.
The ROTATION cycle becomes effective as soon as it is defined in the program. It is also effective in the Positioning with MDI mode of operation. The active rotation angle is shown in the additional status display.

Reference axis for the rotation angle:

- X/Y plane: X axis
- Y/Z plane: Y axis
- Z/X plane: Z axis

Resetting

Program the ROTATION cycle once again with a rotation angle of 0°.

Please note while programming:

An active radius compensation is canceled by defining Cycle 10 and must therefore be reprogrammed, if necessary.
After defining Cycle 10, you must move both axes of the working plane to activate rotation for all axes.

Cycle parameters

[^1]Example: NC blocks

11.7 SCALING (Cycle 11, DIN/ISO: G72)

Effect

The TNC can increase or reduce the size of contours within a program, enabling you to program shrinkage and oversize allowances.
SCALING becomes effective as soon as it is defined in the program. It is also effective in the Positioning with MDI mode of operation. The active scaling factor is shown in the additional status display

The scaling factor has an effect on

- All three coordinate axes at the same time
- Dimensions in cycles

Prerequisite

It is advisable to set the datum to an edge or a corner of the contour before enlarging or reducing the contour.

Enlargement: SCL greater than 1 (up to 99.999 999)
Reduction: SCL less than 1 (down to 0.000 001)

Resetting

Program the SCALING cycle once again with a scaling factor of 1.

Cycle parameters

${ }^{11}$

Scaling factor?: Enter the scaling factor SCL. The TNC multiplies the coordinates and radii by the SCL factor (as described under "Effect" above). Input range: 0.000000 to 99.999999

Example: NC blocks

11.8 AXIS-SPECIFIC SCALING (Cycle 26)

Effect

With Cycle 26 you can account for shrinkage and oversize factors for each axis.

SCALING becomes effective as soon as it is defined in the program. It is also effective in the Positioning with MDI mode of operation. The active scaling factor is shown in the additional status display

Resetting

Program the SCALING cycle once again with a scaling factor of 1 for the same axis.

Please note while programming:

Coordinate axes sharing coordinates for arcs must be enlarged or reduced by the same factor.

You can program each coordinate axis with its own axisspecific scaling factor.
In addition, you can enter the coordinates of a center for all scaling factors.
The size of the contour is enlarged or reduced with reference to the center, and not necessarily (as in Cycle 11 SCALING) with reference to the active datum.

Cycle parameters

11.9 WORKING PLANE (Cycle 19, DIN/ISO: G80, Software Option 1)

Effect

In Cycle 19 you define the position of the working plane-i.e. the position of the tool axis referenced to the machine coordinate system—by entering tilt angles. There are two ways to determine the position of the working plane:

- Enter the position of the rotary axes directly.
- Describe the position of the working plane using up to 3 rotations (spatial angle) of the fixed machine coordinate system. The required spatial angle can be calculated by cutting a perpendicular line through the tilted working plane and considering it from the axis around which you wish to tilt. With two spatial angles, every tool position in space can be defined exactly.

Note that the position of the tilted coordinate system, and therefore also all movements in the tilted system, are dependent on your description of the tilted plane.

If you program the position of the working plane via spatial angles, the TNC will calculate the required angle positions of the tilted axes automatically and will store these in the parameters Q120 (A axis) to Q122 (C axis). If two solutions are possible, the TNC will choose the shorter path from the zero position of the rotary axes.

The axes are always rotated in the same sequence for calculating the tilt of the plane: The TNC first rotates the A axis, then the B axis, and finally the C axis.

Cycle 19 becomes effective as soon as it is defined in the program. As soon as you move an axis in the tilted system, the compensation for this specific axis is activated. You must move all axes to activate compensation for all axes.
If you set the function Tilting program run to Active in the Manual Operation mode, the angular value entered in this menu is overwritten by Cycle 19 WORKING PLANE.

Please note while programming:

The functions for tilting the working plane are interfaced to the TNC and the machine tool by the machine tool builder. For certain swivel heads and tilting tables the machine tool builder specifies whether the entered angles are interpreted as coordinates of the rotary axes or as mathematical angles of a tilted plane. Refer to your machine manual.

Because nonprogrammed rotary axis values are interpreted as unchanged, you should always define all three spatial angles, even if one or more angles are at zero.

The working plane is always tilted around the active datum.

If you use Cycle 19 when M120 is active, the TNC automatically rescinds the radius compensation, which also rescinds the M120 function.

Cycle parameters

Rotary axis and tilt angle?: Enter the axes of rotation together with the associated tilt angles. The rotary axes A, B and C are programmed using soft keys. Input range: -360.000 to 360.000

If the TNC automatically positions the rotary axes, you can enter the following parameters:
$>$ Feed rate? $\mathrm{F}=$: Traverse speed of the rotary axis during automatic positioning. Input range: 0 to 99999.999

Set-up clearance? (incremental value): The TNC positions the tilting head so that the position that results from the extension of the tool by the set-up clearance does not change relative to the workpiece. Input range: 0 to 99999.9999

Resetting

To cancel the tilt angle, redefine the WORKING PLANE cycle and enter an angular value of 0° for all axes of rotation. You must then program the WORKING PLANE cycle once again and respond to the dialog question with the NO ENT key to disable the function.

Positioning the axes of rotation

The machine tool builder determines whether Cycle 19 positions the axes of rotation automatically or whether they must be positioned manually in the program. Refer to your machine manual.

Manual positioning of rotary axes

If the rotary axes are not positioned automatically in Cycle 19, you must position them in a separate L block after the cycle definition.
If you use axis angles, you can define the axis values right in the L block. If you use spatial angles, then use the Q parameters Q120 (Aaxis value), Q121 (B-axis value) and Q122 (C-axis value), which are described by Cycle 19.

Example NC blocks:

10 L Z+100 RO FMAX	
11 L X+25 Y+10 RO FMAX	Define the spatial angle for calculation of the compensation
12 CYCL DEF 19.0 WORKING PLANE	
13 CYCL DEF 19.1 A+0 B+45 C+0	Position the rotary axes by using values calculated by Cycle 19
14 L A+Q120 C+Q122 RO F1000	Activate compensation for the spindle axis
15 L Z+80 RO FMAX	Activate compensation for the working plane
16 L X-8.5 Y-10 RO FMAX	

Define the spatial angle for calculation of the compensation

Position the rotary axes by using values calculated by Cycle 19

Activate compensation for the working plane

For manual positioning, always use the rotary axis positions stored in Q parameters Q120 to Q122.

Avoid using functions, such as M94 (modulo rotary axes), in order to avoid discrepancies between the actual and nominal positions of rotary axes in multiple definitions.

Automatic positioning of rotary axes

If the rotary axes are positioned automatically in Cycle 19:

- The TNC can position only controlled axes
- In order for the tilted axes to be positioned, you must enter a feed rate and a set-up clearance in addition to the tilting angles, during cycle definition.
- Use only preset tools (the full tool length must be defined).
- The position of the tool tip as referenced to the workpiece surface remains nearly unchanged after tilting.
\square The TNC performs the tilt at the last programmed feed rate. The maximum feed rate that can be reached depends on the complexity of the swivel head or tilting table.
Example NC blocks:

| 10 L Z+100 RO FMAX | |
| :--- | :--- | :--- |
| 11 L X+25 Y+10 R0 FMAX | |
| 12 CYCL DEF 19.0 WORKING PLANE | Define the angle for calculation of the compensation |
| 13 CYCL DEF 19.1 A+0 B+45 C+0 F5000 SETUP50 | Also define the feed rate and the clearance |
| 14 L Z+80 R0 FMAX | Activate compensation for the spindle axis |
| 15 L X-8.5 Y-10 R0 FMAX | Activate compensation for the working plane |

Position display in the tilted system

On activation of Cycle 19, the displayed positions (ACTL and NOML) and the datum indicated in the additional status display are referenced to the tilted coordinate system. The positions displayed immediately after cycle definition might not be the same as the coordinates of the last programmed position before Cycle 19.

Workspace monitoring

The TNC monitors only those axes in the tilted coordinate system that are moved. If necessary, the TNC outputs an error message.

Positioning in a tilted coordinate system

With the miscellaneous function M130 you can move the tool, while the coordinate system is tilted, to positions that are referenced to the non-tilted coordinate system.

Positioning movements with straight lines that are referenced to the machine coordinate system (blocks with M91 or M92) can also be executed in a tilted working plane. Constraints:

- Positioning is without length compensation.
- Positioning is without machine geometry compensation.
- Tool radius compensation is not permitted.

Combining coordinate transformation cycles

When combining coordinate transformation cycles, always make sure the working plane is swiveled around the active datum. You can program a datum shift before activating Cycle 19. In this case, you are shifting the machine-based coordinate system.

If you program a datum shift after having activated Cycle 19, you are shifting the tilted coordinate system.
Important: When resetting the cycles, use the reverse sequence used for defining them:

1st: Activate the datum shift
2nd: Activate tilting function
3rd: Activate rotation
...
Machining

1st: Reset the rotation
2nd: Reset the tilting function
3rd: Reset the datum shift

Procedure for working with Cycle 19 WORKING PLANE

1 Write the program

D Define the tool (not required if TOOL.T is active), and enter the full tool length.

- Call the tool.

Retract the tool in the tool axis to a position where there is no danger of collision with the workpiece or clamping devices during tilting.

- If required, position the rotary axis or axes with an L block to the appropriate angular value(s) (depending on a machine parameter).
- Activate datum shift if required.
- Define Cycle 19 WORKING PLANE; enter the angular values for the rotary axes.
- Traverse all principal axes (X, Y, Z) to activate compensation.
$>$ Write the program as if the machining process were to be executed in a non-tilted plane.
- If required, define Cycle 19 WORKING PLANE with other angular values to execute machining in a different axis position. In this case, it is not necessary to reset Cycle 19. You can define the new angular values directly.
- Reset Cycle 19 WORKING PLANE; program 0° for all rotary axes.
- Disable the WORKING PLANE function; redefine Cycle 19 and answer the dialog question with NO ENT.
Reset datum shift if required.
P Position the rotary axes to the 0° position, if required.

2 Clamp the workpiece

3 Datum setting

- Manually by touch-off
- Controlled with a HEIDENHAIN 3-D touch probe (see the Touch Probe Cycles User's Manual, chapter 2).
- Automatically with a HEIDENHAIN 3-D touch probe (see the Touch Probe Cycles User's Manual, chapter 3).

4 Start the part program in the operating mode Program Run, Full Sequence

5 Manual Operation mode

Use the 3-D ROT soft key to set the TILT WORKING PLANE function to INACTIVE. Enter an angular value of 0° for each rotary axis in the menu.
11.10 Programming Examples

Example: Coordinate transformation cycles

Program sequence

- Program the coordinate transformations in the main program
- Machining within a subprogram

Definition of workpiece blank

Tool call

Retract the tool
Shift datum to center

Call milling operation
Set label for program section repeat
Rotate by 45° (incremental)

Call milling operation
Return jump to LBL 10; repeat the milling operation six times
Reset the rotation

Reset the datum shift

18 CYCL DEF $7.2 \mathrm{Y}+0$	
19 L Z +250 RO FMAX M2	Retract in the tool axis, end program
20 LBL 1	Subprogram 1
21 L X+0 Y+0 RO FMAX	Define milling operation
$22 \mathrm{~L} \mathrm{Z} \mathrm{+2} \mathrm{RO} \mathrm{FMAX} \mathrm{M3}$	
23 L Z-5 RO F200	
$24 \mathrm{~L} \mathrm{X}+30 \mathrm{RL}$	
25 L IY+10	
26 RND R5	
27 L IX +20	
28 L IX+10 IY-10	
29 RND R5	
30 L IX-10 IY-10	
31 L IX-20	
32 L IY+10	
$33 \mathrm{~L} \mathrm{X}+0 \mathrm{Y}+0$ R0 F5000	
34 L Z+20 RO FMAX	
35 LBL 0	
36 END PGM COTRANS MM	

Cycles:
Special Functions

12.2 DWELL TIME (Cycle 9, DIN/ISO: G04)

Function

This causes the execution of the next block within a running program to be delayed by the programmed DWELL TIME. A dwell time can be used for such purposes as chip breaking.

The cycle becomes effective as soon as it is defined in the program. Modal conditions such as spindle rotation are not affected.

Example: NC blocks

```
89 CYCL DEF 9.0 DWELL TIME
90 CYCL DEF 9.1 DWELL 1.5
```


Cycle parameters

\square Dwell time in seconds: Enter the dwell time in seconds. Input range: 0 to 3600 s (1 hour) in steps of 0.001 seconds

12.3 PROGRAM CALL (Cycle 12, DIN/ISO: G39)

Cycle function

Routines that you have programmed (such as special drilling cycles or geometrical modules) can be written as main programs and then called like fixed cycles.

Please note while programming:

The program you are calling must be stored on the hard disk of your TNC.
If the program you are defining to be a cycle is located in the same directory as the program you are calling it from, you need only enter the program name.
If the program you are defining to be a cycle is not located in the same directory as the program you are calling it from, you must enter the complete path, for example TNC: \KLAR35\FK1\50.H.

If you want to define a DIN/ISO program to be a cycle, enter the file type .I behind the program name.

As a rule, Q parameters are globally effective when called with Cycle 12. So please note that changes to Q parameters in the called program can also influence the calling program.

Cycle parameters

${ }_{\substack{\text { PEM } \\ \text { CaLL }}}$	Program name: Enter the name of the program you want to call and, if necessary, the directory it is located in or
	activate the file select dialog with the SELECT soft key and select the program to be called.

Call the program with

Example: Designate program 50 as a cycle and call it with M99

```
55 CYCL DEF 12.0 PGM CALL
56 CYCL DEF 12.1 PGM TNC:\KLAR35\FK1\50.H
```

57 L X+20 Y+50 FMAX M99

- CYCL CALL (separate block) or
- M99 (blockwise) or
- M89 (executed after every positioning block)

12.4 SPINDLE ORIENTATION (Cycle 13, DIN/ISO: G36)

Cycle function

Machine and TNC must be specially prepared by the machine tool builder for use of this cycle

The TNC can control the machine tool spindle and rotate it to a given angular position.
Oriented spindle stops are required for

- Tool changing systems with a defined tool change position
- Orientation of the transmitter/receiver window of HEIDENHAIN 3-D touch probes with infrared transmission

The angle of orientation defined in the cycle is positioned to by entering M19 or M20 (depending on the machine).

If you program M19 or M20 without having defined Cycle 13, the TNC positions the machine tool spindle to an angle that has been set by the machine manufacturer (see your machine manual).

Please note while programming:

Cycle 13 is used internally for Cycles 202, 204 and 209. Please note that, if required, you must program Cycle 13 again in your NC program after one of the machining cycles mentioned above.

Cycle parameters

$>$ Angle of orientation: Enter the angle referenced to the reference axis of the working plane. Input range: 0.0000° to 360.0000°

Example: NC blocks
93 CYCL DEF 13.0 ORIENTATION
94 CYCL DEF 13.1 ANGLE 180

12.5 TOLERANCE (Cycle 32, DIN/ISO: G62)

Cycle function

Machine and TNC must be specially prepared by the machine tool builder for use of this cycle.

With the entries in Cycle 32 you can influence the result of HSC machining with respect to accuracy, surface definition and speed, inasmuch as the TNC has been adapted to the machine's characteristics.

The TNC automatically smoothens the contour between two path elements (whether compensated or not). The tool has constant contact with the workpiece surface and therefore reduces wear on the machine tool. The tolerance defined in the cycle also affects the traverse paths on circular arcs.

If necessary, the TNC automatically reduces the programmed feed
 rate so that the program can be machined at the fastest possible speed without short pauses for computing time. Even if the TNC does not move with reduced speed, it will always comply with the tolerance that you have defined. The larger you define the tolerance, the faster the TNC can move the axes.

Smoothing the contour results in a certain amount of deviation from the contour. The size of this contour error (tolerance value) is set in a machine parameter by the machine manufacturer. With CYCLE 32 you can change the pre-set tolerance value and select different filter settings, provided that your machine tool builder has implemented these features.

Influences of the geometry definition in the CAM system

The most important factor of influence in offline NC program creation is the chord error S defined in the CAM system. The maximum point spacing of NC programs generated in a postprocessor (PP) is defined through the chord error. If the chord error is less than or equal to the tolerance value \mathbf{T} defined in Cycle 32, then the TNC can smooth the contour points unless any special machine settings limit the programmed feed rate.

You will achieve optimal smoothing if in Cycle 32 you choose a tolerance value between 110% and 200% of the CAM chord error.

Please note while programming:

With very small tolerance values the machine cannot cut the contour without jerking. These jerking movements are not caused by poor processing power in the TNC, but by the fact that, in order to machine the contour element transitions very exactly, the TNC might have to drastically reduce the speed.

Cycle 32 is DEF active which means that it becomes effective as soon as it is defined in the part program.
The TNC resets Cycle 32 if you

- Redefine it and confirm the dialog question for the tolerance value with NO ENT.
- Select a new program with the PGM MGT key.

After you have reset Cycle 32, the TNC reactivates the tolerance that was predefined by machine parameter.

In a program with millimeters set as unit of measure, the TNC interprets the entered tolerance value in millimeters. In an inch program it interprets it as inches.

If you load a program with Cycle 32 that contains only the cycle parameter Tolerance value T, the control inserts the two remaining parameters with the value 0 if required.

As the tolerance value increases, the diameter of circular movements usually decreases. If the HSC filter is active on your machine (ask your machine tool builder, if necessary), the circle can also become larger.

If Cycle 32 is active, the TNC shows the parameters defined for Cycle 32 on the CYC tab of the additional status display.

Cycle parameters

Tolerance value T : Permissible contour deviation in mm (or inches with inch programming). Input range 0 to 99999.9999

HSC MODE, Finishing=0, Roughing=1: Activate filter: - Input value 0:

Milling with increased contour accuracy. The
TNC uses internally defined finishing filter settings

- Input value 1:

Milling at an increased feed rate. The TNC uses internally defined roughing filter settings

- Tolerance for rotary axes TA: Permissible position error of rotary axes in degrees when M128 is active (FUNCTION TCPM). The TNC always reduces the feed rate in such a way that-if more than one axis is traversed-the slowest axis moves at its maximum feed rate. Rotary axes are usually much slower than linear axes. You can significantly reduce the machining time for programs for more than one axis by entering a large tolerance value (e.g. 10°), since the TNC does not always have to move the rotary axis to the given nominal position. The contour will not be damaged by entering a rotary axis tolerance value. Only the position of the rotary axis with respect to the workpiece surface will change. Input range 0 to 179.9999

Example: NC blocks

95 CYCL DEF 32.0 TOLERANCE

96 CYCL DEF 32.1 TO. 05
97 CYCL DEF 32.2 HSC MODE:1 TA5

Cycles: Turning

13.1 Turning Cycles (Software Option 50)

Overview

Defining turning cycles:

	The soft-key row shows the available groups of cycles
tuevins	- Select the menu for cycle group TURNING
Select cycle group, e.g. cycles for longitudinal turning > Select cycle, e.g. TURN SHOULDER, LONGITUDINAL	

The TNC offers the following cycles for turning operations

Cycle group	Cycle	Soft key	Page
Special cycles		$\begin{gathered} \text { special } \\ \text { cycless } \end{gathered}$	
	ADAPT ROTARY COORDINATE SYSTEM (Cycle 800)		Page 283
	RESET ROTARY COORDINATE SYSTEM (Cycle 801)		Page 285
Cycles for longitudinal turning		$\square{ }^{\text {里 }}$	Page 286
	TURN SHOULDER, LONGITUDINAL (Cycle 811)		Page 287
	TURN SHOULDER, LONGITUDINAL EXTENDED (Cycle 812)		Page 290
	TURN, LONGITUDINAL PLUNGE (Cycle 813)		Page 294
	TURN, LONGITUDINAL PLUNGE EXTENDED (Cycle 814)		Page 298
	TURN CONTOUR, LONGITUDINAL (Cycle 810)		Page 302
	TURN CONTOUR-PARALLEL (Cycle 815)		Page 306

Cycle group	Cycle	Soft key	Page
Cycles for transverse turning		$\square \square_{\text {[\|II }}$	Page 286
	TURN SHOULDER FACE (Cycle 821)	${ }^{321}$	Page 310
	TURN SHOULDER FACE EXTENDED (Cycle 822)		Page 313
	TURN, TRANSVERSE PLUNGE (Cycle 823)	$\begin{array}{\|cc\|} \hline 823 \\ & \boxed{1 / n} \\ \hline \end{array}$	Page 317
	TURN, TRANSVERSE PLUNGE EXTENDED (Cycle 824)	824	Page 321
	TURN CONTOUR, TRANSVERSE (Cycle 820)	${ }^{820}$	Page 325
	TURN CONTOUR-PARALLEL (Cycle 815)		Page 306
Cycles for recessing			
	RADIAL RECESSING (Cycle 861)		Page 329
	RADIAL RECESSING EXTENDED (Cycle 862)	852 \square	Page 332
	RECESSING CONTOUR, RADIAL (Cycle 860)		Page 336
	AXIAL RECESSING (Cycle 871)		Page 340
	AXIAL RECESSING EXTENDED (Cycle 872)		Page 343
	RECESSING CONTOUR, AXIAL (Cycle 870)	\square	Page 347
Cycles for thread turning		$\square{ }^{\text {a }}$	
	LONGITUDINAL THREAD (Cycle 831)	${ }^{231}$	Page 351
	THREAD EXTENDED (Cycle 832)		Page 355
	CONTOUR-PARALLEL THREAD (Cycle 830)	${ }^{230} \quad 18$	Page 359

You can only use turning cycles in Turning mode FUNCTION MODE TURN.

In turning cycles the TNC takes into account the cutting geometry (TO, RS, \mathbf{P}-ANGLE, T-ANGLE) of the tool so that damage to the defined contour elements is prevented. The TNC outputs a warning if complete machining of the contour with the active tool is not possible.
You can use the turning cycles both for inside and outside machining. Depending upon the specific cycle, the TNC detects the machining position (inside/outside machining) via the starting position or tool position when the cycle is called. In some cycles you can also enter the machining position directly in the cycle. After modifying the machining position, check the tool position and rotation direction.
If you program M136 before a cycle, the TNC interprets feed rate values in the cycle in $\mathrm{mm} / \mathrm{rev}$., and without M136 in $\mathrm{mm} / \mathrm{min}$.
If turning cycles are executed during inclined machining (M144), the angles of the tool to the contour change. The TNC automatically takes these modifications into account and thus also monitors the machining in inclined state to prevent contour damage.
Some cycles machine contours that you have written in a subprogram. You program these contours with plain-language path functions or FK functions. Before calling the cycle you must program the cycle 14 CONTOUR to define the subprogram number.
You must call turning cycles $81 \mathrm{x}-87 \mathrm{x}$ with CYCL CALL or M99. Before calling a cycle, be sure to program:

- Turning mode FUNCTION MODE TURN
- Tool call TOOL CALL
- Direction of rotation of turning spindle, e.g. M303
- Selection of speed/cutting speed FUNCTION TURNDATA SPIN
- If you use feed rate per revolution mm/rev., M136
- Tool positioning to suitable starting point e.g. L X+130 Y+0 RO FMAX
- Adaptation of coordinate system and align tool CYCL DEF 800 ADAPT ROTARY COORDINATE SYSTEM

13.2 ADAPT ROTARY COORDINATE SYSTEM (Cycle 800)

Effect

With Cycle 800 ADAPT ROTARY COORDINATE SYSTEM, the TNC aligns the workpiece coordinate system and orients the tool correspondingly. The cycle is effective from the time of definition until the next tool call.

The tool must be clamped and measured in the correct position.
You can only use Cycle 800 when a turning tool is selected.

Check the orientation of the tool before machining.

The Cycle 800 ADAPT ROTARY COORDINATE SYSTEM is machine-dependent. Refer to your machine manual.

Cycle parameters

300 - \quad PRECESSION ANGLE Q497: Angle to which the TNC aligns the tool. Input range 0 to 359.9999

REVERSE TOOL Q498: mirror tool for inside/outside machining. Input range 0 and 1 .

13.3 RESET ROTARY COORDINATE SYSTEM (Cycle 801)

13.4 Fundamentals of Turning Cycles

The pre-positioning of the tool decisively affects the workspace of the cycle and thus the machining time. During roughing, the starting point for cycles corresponds to the tool position when a cycle is called. When calculating the area to be machined, the TNC takes into account the starting point and the end point defined in the cycle or contour defined in the cycle. If the starting point lies in the area to be machined the TNC positions the tool beforehand in some cycles to set-up clearance.

The turning direction with $81 \times$ cycles is longitudinal to the rotary axis and lateral to the rotary axis with $82 \times$ cycles. The motions are contourparallel in cycle 815.
The cycles can be used for inside and outside machining. The TNC takes the information for this from the position of the tool or the definition in the cycle (see also "Working with turning cycles" on page 282).

In cycles with freely defined contours (Cycles 810, 820 and 815), the programming direction of the contour determines the direction of machining.

In cycles for turning you can specify the machining strategies of roughing, finishing or complete machining.

Caution: Danger to the workpiece and tool!

The turning cycles position the tool automatically to the starting point during finishing. The approach strategy is influenced by the position of the tool when the cycle is called. The decisive factor is whether the tool is located inside or outside an envelope contour when the cycle is called. The envelope contour is the programmed contour, enlarged by the set-up clearance.

If the tool is within the envelope contour, the cycle positions the tool at the defined feed rate directly to the starting position. This can cause contour damage. Position the tool at a sufficient distance from the starting point to prevent the possibility of contour damage.
If the tool is outside the envelope contour, positioning to the envelope contour is performed at rapid traverse, and at the programmed feed rate within the envelope contour.

13.5 TURN SHOULDER, LONGITUDINAL (Cycle 811)

Roughing cycle run

The cycle processes the area from the tool position to the end point defined in the cycle.
1 The TNC runs a paraxial infeed motion at rapid traverse. The infeed value is calculated by the TNC with Q463 MAX. CUTTING DEPTH.
2 The TNC cuts the area between the starting position and the end point in longitudinal direction at the defined feed rate Q478.
3 The TNC returns the tool at the defined feed rate by one infeed value.

4 The TNC positions the tool back at rapid traverse to the beginning of cut.

Application

This cycle enables you to carry out longitudinal turning of right-angled shoulders.

You can use the cycle either for roughing, finishing or complete machining. Turning is run paraxially with roughing.
The cycle can be used for inside and outside machining. If the tool is outside the contour to be machined when the cycle is called, the cycle runs outside machining. If the tool is inside the contour to be machined, the cycle runs inside machining.

5 The TNC repeats this process (1 to 4) until the final contour is completed.
6 The TNC positions the tool back at rapid traverse to the cycle starting point.

Finishing cycle run

1 The TNC traverses the tool in the Z coordinate by the set-up clearance Q460. The movement is performed at rapid traverse.
2 The TNC runs the paraxial infeed motion at rapid traverse.
3 The TNC finishes the finished part contour at the defined feed rate Q505.
4 The TNC returns the tool to set-up clearance at the defined feed rate.
5 The TNC positions the tool back at rapid traverse to the cycle starting point.

Please note while programming:

Program a positioning block to the starting position with radius compensation $\mathbf{R O}$ before the cycle call.
The tool position at cycle call defines the size of the area to be machined (cycle starting point).

Also refer to the fundamentals of turning cycles (see page 286).

Cycle parameters

> Machining operation Q215: Define the machining operation:
$\mathbf{0}$: Roughing and finishing
1: Only roughing
2: Only finishing to finished dimension
3: Only finishing to oversize
Set-up clearance Q460 (incremental): Distance for retraction and pre-positioning

Diameter at end of contour Q493: X coordinate of the contour end point (diameter value)

- Contour end in Z Q494: Z coordinate of the contour end point
- Maximum cutting depth Q463: Maximum infeed (radius value) in radial direction. The infeed is divided evenly to avoid abrasive cuts.
- Roughing feed rate Q 478 : Feed rate during roughing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

D Oversize in diameter Q483: Diameter oversize for the defined contour

Oversize in Z Q484: Oversize for the defined contour in axial direction

- Finishing feed rate Q505: Feed rate during finishing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Example: NC blocks

13.6 TURN SHOULDER, LONGITUDINAL EXTENDED (Cycle 812)

Application

This cycle enables you to run longitudinal turning of shoulders. Expanded scope of function:

- You can insert a chamfer or curve at the contour start and contour end.
- In the cycle you can define angles for the face and circumferential surface
- You can insert a radius in the contour edge

You can use the cycle either for roughing, finishing or complete machining. Turning is run paraxially with roughing.

The cycle can be used for inside and outside machining. If the start diameter Q491 is larger than the end diameter Q493, the cycle runs outside machining. If the start diameter Q491 is less than the end diameter Q493, the cycle runs inside machining.

Roughing cycle run

The TNC uses the tool position as cycle starting point when a cycle is called. If the starting point is within the area to be machined, the TNC positions the tool in the X coordinate and then in the Z coordinate to set-up clearance and begins the cycle there.
1 The TNC runs a paraxial infeed motion at rapid traverse. The infeed value is calculated by the TNC with Q463 MAX. CUTTING DEPTH.
2 The TNC machines the area between the starting position and the end point in longitudinal direction at the defined feed rate Q478.
3 The TNC returns the tool at the defined feed rate by one infeed value.
4 The TNC positions the tool back at rapid traverse to the beginning of cut.
5 The TNC repeats this process (1 to 4) until the final contour is completed.
6 The TNC positions the tool back at rapid traverse to the cycle starting point.

Finishing cycle run

If the starting point lies in the area to be machined, the TNC positions

Machining operation Q215: Define the machining operation:
$\mathbf{0}$: Roughing and finishing
1: Only roughing
2: Only finishing to finished dimension
3: Only finishing to oversize
Set-up clearance Q460 (incremental): Distance for retraction and pre-positioning

- Diameter at contour start Q 491 : X coordinate of the contour starting point (diameter value)
- Contour start in Z Q492: Z coordinate of the contour starting point (diameter value)
$>$ Diameter at end of contour Q493: X coordinate of the contour end point (diameter value)
- Contour end in Z Q494: Z coordinate of the contour end point
- Angle of circumferential surface Q495: Angle between the circumferential surface and the rotary axis
- Starting element type Q501: Define the type of the element at the contour start (circumferential surface): $\mathbf{0}$: No additional element
1: Element is a chamfer
2: Element is a radius
- Size of starting element Q502: Size of the starting element (chamfer section)
$>$ Radius of contour edge 0500: Radius of the inside contour edge. If no radius is specified, the radius of the cutting insert is generated.

- Angle of face Q496: Angle between the face and the rotary axis
- Type of end element Q503: Define the type of the element at the contour end (face):
$\mathbf{0}$: No additional element
1: Element is a chamfer
2: Element is a radius
Size of end element 0504: Size of the end element (chamfer section)
- Maximum cutting depth Q463: Maximum infeed (radius value) in radial direction. The infeed is divided evenly to avoid abrasive cuts.

Roughing feed rate Q478: Feed rate during roughing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.
Oversize in diameter Q483: Diameter oversize for the defined contour

Oversize in Z Q484: Oversize for the defined contour in axial direction
> Finishing feed rate Q505: Feed rate during finishing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Example: NC blocks

11 CYCL DEF 812 TURN SHOULDER LONG. EXTENDED.

Q215 = + 0 ; MACHINING OPERATION
Q460 $=+2$;SET-UP CLEARANCE
Q491=+75 ; DIAMETER AT CONTOUR START
Q492=+0 ; CONTOUR START IN Z
Q493=+50 ;DIAMETER AT END OF CONTOUR
Q494=-55 ; CONTOUR END IN Z
Q495=+5 ;ANGLE OF CIRCUM. SURFACE
Q501=+1 ;TYPE OF STARTING ELEMENT
Q502=+0.5 ;SIZE OF STARTING ELEMENT
Q500=+1.5 ; RADIUS OF CONTOUR EDGE
Q496=+0 ;ANGLE OF FACE
Q503=+1 ;TYPE OF END ELEMENT
Q504=+0.5 ;SIZE OF END ELEMENT
Q463=+3 ;MAX. CUTTING DEPTH
Q478=+0.3 ; ROUGHING FEED RATE
Q483=+0.4 ;OVERSIZE IN DIAMETER
Q484=+0.2 ;OVERSIZE IN Z
Q505=+0.2 ; FEED RATE FOR FINISHING
12 L X+75 Y+0 Z+2 FMAX M303
13 CYCL CALL

13.7 TURN, LONGITUDINAL PLUNGE (Cycle 813)

Application

This cycle enables you to run longitudinal turning of shoulders with plunge elements (undercuts).

You can use the cycle either for roughing, finishing or complete machining. Turning is run paraxially with roughing.

The cycle can be used for inside and outside machining. If the start diameter Q491 is larger than the end diameter Q493, the cycle runs outside machining. If the start diameter Q491 is less than the end diameter Q493, the cycle runs inside machining.

Roughing cycle run

The TNC uses the tool position as cycle starting point when a cycle is called. If the Z coordinate of the starting point is less than Q492 CONTOUR START IN Z, the TNC positions the tool in the Z coordinate to set-up clearance and begins the cycle there.

In undercutting the TNC runs the infeed with feed rate Q478. The return movements are then each at set-up clearance.

1 The TNC runs a paraxial infeed motion at rapid traverse. The infeed value is calculated by the TNC with $\mathbf{Q 4 6 3}$ MAX. CUTTING DEPTH.

2 The TNC cuts the area between the starting position and the end point in longitudinal direction at the defined feed rate Q478
3 The TNC returns the tool at the defined feed rate by one infeed value.
4 The TNC positions the tool back at rapid traverse to the beginning of cut.
5 The TNC repeats this process (1 to 4) until the final contour is completed.
6 The TNC positions the tool back at rapid traverse to the cycle starting point.

Finishing cycle run

1 The TNC runs the infeed motion at rapid traverse.

Program a positioning block to a safe position with radius compensation RO before the cycle call.

The tool position at cycle call (cycle starting point) affects the area to be machined.

The TNC takes the cutting geometry of the tool into account to prevent damage to contour elements. If complete machining with the active tool is not possible, a warning is output by the TNC.
Also refer to the fundamentals of turning cycles (see page 286).

Cycle parameters

Machining operation Q215: Define the machining operation:
$\mathbf{0}$: Roughing and finishing
1: Only roughing
2: Only finishing to finished dimension
3: Only finishing to oversize
Set-up clearance Q460 (incremental): Distance for retraction and pre-positioning

- Diameter at contour start Q 491 : X coordinate of the starting point for the plunging path (diameter value)
- Contour start in Z Q492: Z coordinate of the starting point for the plunging path
- Diameter at end of contour Q493: X coordinate of the contour end point (diameter value)
- Contour end in Z Q494: Z coordinate of the contour end point
- Angle of side Q495: Angle of the plunging side. The reference angle is formed by the perpendicular to the rotary axis.
- Maximum cutting depth Q463: Maximum infeed (radius value) in radial direction. The infeed is divided evenly to avoid abrasive cuts.

Roughing feed rate Q478: Feed rate during roughing If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Oversize in diameter Q483: Diameter oversize for the defined contour

- Oversize in Z Q484: Oversize for the defined contour in axial direction
>Finishing feed rate Q505: Feed rate during finishing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

13.8 TURN, LONGITUDINAL PLUNGE EXTENDED (Cycle 814)

Application

This cycle enables you to run longitudinal turning of shoulders with plunge elements (undercuts). Expanded scope of function:

- You can insert a chamfer or curve at the contour start and contour end.
- In the cycle you can define an angle for the face and a radius for the contour edge

You can use the cycle either for roughing, finishing or complete machining. Turning is run paraxially with roughing.

The cycle can be used for inside and outside machining. If the start diameter Q491 is larger than the end diameter Q493, the cycle runs outside machining. If the start diameter Q491 is less than the end diameter Q493, the cycle runs inside machining.

Roughing cycle run

The TNC uses the tool position as cycle starting point when a cycle is called. If the Z coordinate of the starting point is less than $\mathbf{Q 4 9 2}$
CONTOUR START IN \mathbf{Z}, the TNC positions the tool in the \mathbf{Z} coordinate to set-up clearance and begins the cycle there.
In undercutting the TNC runs the infeed with feed rate Q478. The return movements are then each at set-up clearance.

1 The TNC runs a paraxial infeed motion at rapid traverse. The infeed value is calculated by the TNC with $\mathbf{Q 4 6 3}$ MAX. CUTTING DEPTH.
2 The TNC cuts the area between the starting position and the end point in longitudinal direction at the defined feed rate Q478.
3 The TNC returns the tool at the defined feed rate by one infeed value.
4 The TNC positions the tool back at rapid traverse to the beginning of cut.
5 The TNC repeats this process (1 to 4) until the final contour is completed.
6 The TNC positions the tool back at rapid traverse to the cycle starting point.

Finishing cycle run

1 The TNC runs the infeed motion at rapid traverse.
2 The TNC finishes the finished part contour (contour starting point to contour end point) at the defined feed rate Q505.
3 The TNC returns the tool to set-up clearance at the defined feed rate.
4 The TNC positions the tool back at rapid traverse to the cycle starting point.

Please note while programming:

Program a positioning block to a safe position with radius compensation RO before the cycle call.
The tool position at cycle call (cycle starting point) affects the area to be machined.
The TNC takes the cutting geometry of the tool into account to prevent damage to contour elements. If complete machining with the active tool is not possible, a warning is output by the TNC.
Also refer to the fundamentals of turning cycles (see page 286).

Machining operation Q215: Define the machining operation:
$\mathbf{0}$: Roughing and finishing
1: Only roughing
2: Only finishing to finished dimension
3: Only finishing to oversize
Set-up clearance Q460 (incremental): Distance for retraction and pre-positioning

- Diameter at contour start Q 491 : X coordinate of the starting point for the plunging path (diameter value)
- Contour start in Z Q492: Z coordinate of the starting point for the plunging path
Diameter at end of contour Q493: X coordinate of the contour end point (diameter value)

Contour end in Z Q494: Z coordinate of the contour end point

- Angle of side Q495: Angle of the plunging side. The reference angle is formed by the perpendicular to the rotary axis.
- Starting element type Q501: Define the type of the element at the contour start (circumferential surface): 0: No additional element
1: Element is a chamfer
2: Element is a radius
- Size of starting element Q502: Size of the starting element (chamfer section)
- Radius of contour edge Q500: Radius of the inside contour edge. If no radius is specified, the radius of the cutting insert is generated.
- Angle of face Q 496 : Angle between the face and the rotary axis
- Type of end element Q503: Define the type of the element at the contour end (face):
$\mathbf{0}$: No additional element
1: Element is a chamfer
2: Element is a radius
- Size of end element Q504: Size of the end element (chamfer section)

Maximum cutting depth Q463: Maximum infeed (radius value) in radial direction. The infeed is divided evenly to avoid abrasive cuts.

Roughing feed rate Q 478 : Feed rate during roughing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution without M136 in millimeters per minute.

Oversize in diameter Q483: Diameter oversize for the defined contour

Oversize in Z Q484: Oversize for the defined contour in axial direction

- Finishing feed rate Q505: Feed rate during finishing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

ample: NC blocks

11 CYCL DEF 814 TURN, LONGITUDINAL PLUNGE

Q215=+0 ;MACHINING OPERATION
Q460 $=+2$;SET-UP CLEARANCE
Q491=+75 ;DIAMETER AT CONTOUR START
Q492=-10 ;CONTOUR START IN Z
Q493=+50 ;DIAMETER AT END OF CONTOUR
Q494=-55 ;CONTOUR END IN Z
Q495=+70 ;ANGLE OF SIDE
Q501=+1 ;TYPE OF STARTING ELEMENT
Q502=+0.5 ;SIZE OF STARTING ELEMENT
Q500=+1.5 ;RADIUS OF CONTOUR EDGE
Q496=+0 ;ANGLE OF FACE
Q503=+1 ;TYPE OF END ELEMENT
Q504=+0.5 ;SIZE OF END ELEMENT
-MAX CUTING DEPTH
Q478=+0.3 ; ROUGHING FEED RATE
OUSERSIZE IN DIAMETER
Q484=+0.2 ;OVERSIZE IN Z
Q505=+0.2 ; FEED RATE FOR FINISHING
12 L X+75 Y+0 Z+2 FMAX M303
13 CYCL CALL

13.9 TURN CONTOUR, LONGITUDINAL (Cycle 810)

Application

This cycle enables you to run longitudinal turning of workpieces with any turning contours. The contour description is in a subprogram.
You can use the cycle either for roughing, finishing or complete machining. Turning is run paraxially with roughing.
The cycle can be used for inside and outside machining. If the starting point of the contour is larger than the end point of the contour, the cycle runs outside machining. If the starting point of the contour is less than the end point of the contour, the cycle runs inside machining.

Roughing cycle run

The TNC uses the tool position as cycle starting point when a cycle is called. If the Z coordinate of the starting point is less than the contour starting point, the TNC positions the tool in the Z coordinate to set-up clearance and begins the cycle there.
1 The TNC runs a paraxial infeed motion at rapid traverse. The infeed value is calculated by the TNC with Q463 MAX. CUTTING DEPTH.
2 The TNC machines the area between the starting position and the end point in longitudinal direction. The longitudinal cut is run paraxially with the defined feed rate Q478.
3 The TNC returns the tool at the defined feed rate by one infeed value.
4 The TNC positions the tool back at rapid traverse to the beginning of cut.
5 The TNC repeats this process (1 to 4) until the final contour is completed.
6 The TNC positions the tool back at rapid traverse to the cycle starting point.

Finishing cycle run

If the Z coordinate of the starting point is less than the contour starting

The cutting limit defines the contour range to be machined. The approach and departure paths can exceed the cutting limits.
The tool position before the cycle call influences the execution of the cutting limit. The TNC 640 machines the area to the right or to the left of the cutting limit, depending on which side the tool has been positioned before the cycle is called.

Program a positioning block to a safe position with radius compensation RO before the cycle call.
The tool position at cycle call (cycle starting point) affects the area to be machined.
The TNC takes the cutting geometry of the tool into account to prevent damage to contour elements. If complete machining with the active tool is not possible, a warning is output by the TNC.
Before calling the cycle you must program the cycle 14 CONTOUR to define the subprogram number.
Also refer to the fundamentals of turning cycles (see page 286).

Cycle parameters

Machining operation Q215: Define the machining operation:
0: Roughing and finishing
1: Only roughing
2: Only finishing to finished dimension
3: Only finishing to oversize
Set-up clearance Q460 (incremental): Distance for retraction and pre-positioning

- Reverse contour Q499: Define the machining direction of the contour:
$\mathbf{0}$: The contour is machined in the programmed direction
1: The contour is machined inversely to the programmed direction
- Maximum cutting depth Q463: Maximum infeed (radius value) in radial direction. The infeed is divided evenly to avoid abrasive cuts.
- Roughing feed rate Q478: Feed rate during roughing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.
Oversize in diameter Q483: Diameter oversize for the defined contour

Oversize in Z Q484: Oversize for the defined contour in axial direction

- Finishing feed rate 0505 : Feed rate during finishing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.
- Plunging Q487: Permit machining of plunging elements
$\mathbf{0}$: Do not machine plunging elements
1: Machine plunging elements
- Feed rate for plunging Q488: Feed rate for machining of plunging elements

Cutting limit Q479: Activate the cutting limit $\mathbf{0}$: No cutting limit active
1: Cutting limit (Q480/Q482)
Limit value for diameter Q 480 : X value for contour limitation (diameter value)

- Limit value Z Q482: Z value for contour limitation

13.10 TURN CONTOUR-PARALLEL (Cycle 815)

Application

This cycle enables you to machine workpieces with any turning contours. The contour description is in a subprogram.

You can use the cycle either for roughing, finishing or complete machining. Turning with roughing is contour-parallel.

The cycle can be used for inside and outside machining. If the starting point of the contour is larger than the end point of the contour, the cycle runs outside machining. If the starting point of the contour is less than the end point of the contour, the cycle runs inside machining.

Roughing cycle run

The TNC uses the tool position as cycle starting point when a cycle is called. If the Z coordinate of the starting point is less than the contour starting point, the TNC positions the tool in the Z coordinate to set-up clearance and begins the cycle there.

1 The TNC runs a paraxial infeed motion at rapid traverse. The infeed value is calculated by the TNC with Q463 MAX. CUTTING DEPTH.
2 The TNC machines the area between the starting position and end point. The cut is run contour-parallel with the defined feed rate Q478.
3 The TNC returns the tool at the defined feed rate back to the starting position in the X coordinate.
4 The TNC positions the tool back at rapid traverse to the beginning of cut.

5 The TNC repeats this process (1 to 4) until the final contour is completed.
6 The TNC positions the tool back at rapid traverse to the cycle starting point.

Finishing cycle run

If the Z coordinate of the starting point is less than the contour starting point, the TNC positions the tool in the Z coordinate to set-up clearance and begins the cycle there.

1 The TNC runs the infeed motion at rapid traverse.
2 The TNC finishes the finished part contour (contour starting point to contour end point) at the defined feed rate Q505.
3 The TNC returns the tool to set-up clearance at the defined feed rate.
4 The TNC positions the tool back at rapid traverse to the cycle starting point.

Please note while programming:

Program a positioning block to a safe position with radius compensation RO before the cycle call.
The tool position at cycle call (cycle starting point) affects the area to be machined.

The TNC takes the cutting geometry of the tool into account to prevent damage to contour elements. If complete machining with the active tool is not possible, a warning is output by the TNC.
Before calling the cycle you must program the cycle 14 CONTOUR to define the subprogram number.

Also refer to the fundamentals of turning cycles (see page 286).

Cycle parameters

- Machining operation Q215: Define the machining operation:
$\mathbf{0}$: Roughing and finishing
1: Only roughing
2: Only finishing to finished dimension
3: Only finishing to oversize
Set-up clearance Q460 (incremental): Distance for retraction and pre-positioning
- Oversize for blank Q485: Contour-parallel oversize for the defined contour

Cut lines Q486: Define the type of cut lines:
0: Cuts with constant chip cross section
1: Equidistant proportioning of cuts

- Reverse contour Q499: Define the machining direction of the contour:
$\mathbf{0}$: The contour is machined in the programmed direction
1: The contour is machined inversely to the programmed direction

Maximum cutting depth Q463: Maximum infeed (radius value) in radial direction. The infeed is divided evenly to avoid abrasive cuts.

Roughing feed rate Q 478 : Feed rate during roughing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Oversize in diameter Q483: Diameter oversize for the defined contour

- Oversize in Z Q484: Oversize for the defined contour in axial direction
> Finishing feed rate Q505: Feed rate during finishing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

13.11 TURN SHOULDER FACE (Cycle 821)

Application

This cycle enables you to face turn right-angled shoulders.
You can use the cycle either for roughing, finishing or complete machining. Turning is run paraxially with roughing.

The cycle can be used for inside and outside machining. If the tool is outside the contour to be machined when the cycle is called, the cycle runs outside machining. If the tool is inside the contour to be machined, the cycle runs inside machining.

Roughing cycle run

The cycle processes the area from the cycle starting point to the end point defined in the cycle.
1 The TNC runs a paraxial infeed motion at rapid traverse. The infeed value is calculated by the TNC with Q463 MAX. CUTTING DEPTH.
2 The TNC machines the area between the starting position and the end point in the plane direction at the defined feed rate Q478.
3 The TNC returns the tool at the defined feed rate by one infeed value.
4 The TNC positions the tool back at rapid traverse to the beginning of cut.
5 The TNC repeats this process (1 to 4) until the final contour is completed.
6 The TNC positions the tool back at rapid traverse to the cycle starting point.

Finishing cycle run

1 The TNC traverses the tool in the Z coordinate by the set-up clearance Q460. The movement is performed at rapid traverse.
2 The TNC runs the paraxial infeed motion at rapid traverse.
3 The TNC finishes the finished part contour at the defined feed rate Q505.
4 The TNC returns the tool to set-up clearance at the defined feed rate.
5 The TNC positions the tool back at rapid traverse to the cycle starting point.

Please note while programming:

Program a positioning block to the starting position with radius compensation $\mathbf{R O}$ before the cycle call.
The tool position at cycle call defines the size of the area to be machined (cycle starting point).
Also refer to the fundamentals of turning cycles (see page 286).

Machining operation Q215: Define the machining operation:
$\mathbf{0}$: Roughing and finishing
1: Only roughing
2: Only finishing to finished dimension
3: Only finishing to oversize
Set-up clearance Q460 (incremental): Distance for retraction and pre-positioning

Diameter at end of contour Q493: X coordinate of the contour end point (diameter value)

- Contour end in Z Q494: Z coordinate of the contour end point
- Maximum cutting depth Q463: Maximum infeed in axial direction. The infeed is divided evenly to avoid abrasive cuts.
- Roughing feed rate Q478: Feed rate during roughing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.
Oversize in diameter Q483: Diameter oversize for the defined contour
- Oversize in Z Q484: Oversize for the defined contour in axial direction
- Finishing feed rate O505: Feed rate during finishing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Example: NC blocks

13.12 TURN SHOULDER FACE EXTENDED (Cycle 822)

The TNC uses the tool position as cycle starting point when a cycle is called. If the starting point is within the area to be machined, the TNC positions the tool in the Z coordinate and then in the X coordinate to set-up clearance and begins the cycle there.

1 The TNC runs a paraxial infeed motion at rapid traverse. The infeed value is calculated by the TNC with Q463 MAX. CUTTING DEPTH.
2 The TNC machines the area between the starting position and the end point in the plane direction at the defined feed rate Q478.
3 The TNC returns the tool at the defined feed rate by one infeed value.
4 The TNC positions the tool back at rapid traverse to the beginning of cut.
5 The TNC repeats this process (1 to 4) until the final contour is completed.
6 The TNC positions the tool back at rapid traverse to the cycle starting point.

Finishing cycle run

1 The TNC runs the paraxial infeed motion at rapid traverse.
2 The TNC finishes the finished part contour (contour starting point to contour end point) at the defined feed rate Q505.
3 The TNC returns the tool to set-up clearance at the defined feed rate.
4 The TNC positions the tool back at rapid traverse to the cycle starting point.

Please note while programming:

Program a positioning block to the starting position with
radius compensation $\mathbf{R O}$ before the cycle call.
The tool position at cycle call defines the size of the area to be machined (cycle starting point).

Also refer to the fundamentals of turning cycles (see page 286).

Cycle parameters

Machining operation Q215: Define the machining operation:
$\mathbf{0}$: Roughing and finishing
1: Only roughing
2: Only finishing to finished dimension
3: Only finishing to oversize
Set-up clearance Q460 (incremental): Distance for retraction and pre-positioning

- Diameter at contour start Q491: X coordinate of the contour starting point (diameter value)
Contour start in Z Q492: Z coordinate of the contour starting point (diameter value)
Diameter at end of contour Q493: X coordinate of the contour end point (diameter value)

- Contour end in Z Q494: Z coordinate of the contour end point
- Angle of face Q495: Angle between the face and the rotary axis
- Starting element type Q501: Define the type of the element at the contour start (circumferential surface):
$\mathbf{0}$: No additional element
1: Element is a chamfer
2: Element is a radius
Size of starting element Q502: Size of the starting element (chamfer section)
- Radius of contour edge Q500: Radius of the inside contour edge. If no radius is specified, the radius of the cutting insert is generated.
- Angle of circumferential surface Q496: Angle between the circumferential surface and the rotary axis

- Type of end element Q503: Define the type of the element at the contour end (face):
0: No additional element
1: Element is a chamfer
2: Element is a radius
Size of end element 0504: Size of the end element (chamfer section)
> Maximum cutting depth Q463: Maximum infeed in axial direction. The infeed is divided evenly to avoid abrasive cuts.
- Roughing feed rate Q478: Feed rate during roughing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.
- Oversize in diameter Q483: Diameter oversize for the defined contour

Oversize in Z Q484: Oversize for the defined contour in axial direction

- Finishing feed rate 0505 : Feed rate during finishing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Example: NC blocks

11 CYCL DEF 822 TURN SHOULDER FACE
EXTENDED
Q215 $=+0$; MACHINING OPERATION
Q460 $=+2$; SET-UP CLEARANCE
Q491=+75 ;DIAMETER AT CONTOUR START
Q492 $=+0$; CONTOUR START IN Z
Q493=+30 ;DIAMETER AT END OF CONTOUR
Q494=-15 ; CONTOUR END IN Z
Q495=+0 ;ANGLE OF FACE
Q501=+1 ; TYPE OF STARTING ELEMENT
Q502=+0.5 ; SIZE OF STARTING ELEMENT
Q500 $=+1.5$; RADIUS OF CONTOUR EDGE
Q496=+5 ;ANGLE OF CIRCUM. SURFACE
Q503 $=+1$; TYPE OF END ELEMENT
Q504=+0.5 ;SIZE OF END ELEMENT
Q463=+3 ; MAX. CUTTING DEPTH
Q478=+0.3 ;ROUGHING FEED RATE
Q483=+0.4 ;OVERSIZE IN DIAMETER
Q484=+0.2 ;OVERSIZE IN Z
Q505=+0.2 ; FEED RATE FOR FINISHING
12 L X+75 Y+0 Z+2 FMAX M303
13 CYCL CALL

13.13 TURN, TRANSVERSE PLUNGE (Cycle 823)

Application

This cycle enables you to face turn plunge elements (undercuts).
You can use the cycle either for roughing, finishing or complete machining. Turning is run paraxially with roughing.

The cycle can be used for inside and outside machining. If the start diameter Q491 is larger than the end diameter Q493, the cycle runs outside machining. If the start diameter Q491 is less than the end diameter Q493, the cycle runs inside machining.

Roughing cycle run

In undercutting the TNC runs the infeed with feed rate Q478. The return movements are then each at set-up clearance.

1 The TNC runs a paraxial infeed motion at rapid traverse. The infeed value is calculated by the TNC with Q463 MAX. CUTTING DEPTH.
2 The TNC machines the area between the starting position and end point in the plane direction at the defined feed rate.
3 The TNC returns the tool at the defined feed rate Q478 by the infeed value.

4 The TNC positions the tool back at rapid traverse to the beginning of cut.
5 The TNC repeats this process (1 to 4) until the final contour is completed.
6 The TNC positions the tool back at rapid traverse to the cycle starting point.

Finishing cycle run

The TNC uses the tool position as cycle starting point when a cycle is called. If the Z coordinate of the starting point is less than the contour starting point, the TNC positions the tool in the Z coordinate to set-up clearance and begins the cycle there.
1 The TNC runs the infeed motion at rapid traverse.
2 The TNC finishes the finished part contour (contour starting point to contour end point) at the defined feed rate Q505.
3 The TNC returns the tool to set-up clearance at the defined feed rate.
4 The TNC positions the tool back at rapid traverse to the cycle starting point.

Please note while programming:

Program a positioning block to a safe position with radius compensation RO before the cycle call.
The tool position at cycle call (cycle starting point) affects the area to be machined.
The TNC takes the cutting geometry of the tool into account to prevent damage to contour elements. If complete machining with the active tool is not possible, a warning is output by the TNC.

Also refer to the fundamentals of turning cycles (see page 286).

Cycle parameters

> Machining operation Q215: Define the machining operation:
$\mathbf{0}$: Roughing and finishing
1: Only roughing
2: Only finishing to finished dimension
3: Only finishing to oversize
Set-up clearance Q460 (incremental): Distance for retraction and pre-positioning

- Diameter at contour start Q491: X coordinate of the starting point for the plunging path (diameter value)
- Contour start in Z Q492: Z coordinate of the starting point for the plunging path

Diameter at end of contour Q493: X coordinate of the contour end point (diameter value)

- Contour end in Z Q494: Z coordinate of the contour end point
- Angle of side Q495: Angle of the plunging side. The reference angle is formed by the parallel line to the rotary axis.
$>$ Maximum cutting depth Q463: Maximum infeed in axial direction. The infeed is divided evenly to avoid abrasive cuts.
- Roughing feed rate Q478: Feed rate during roughing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Oversize in diameter Q483: Diameter oversize for the defined contour

- Oversize in Z Q484: Oversize for the defined contour in axial direction
- Finishing feed rate O505: Feed rate during finishing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Example: NC blocks

13.14 TURN, TRANSVERSE PLUNGE EXTENDED (Cycle 824)

Finishing cycle run

The TNC uses the tool position as cycle starting point when a cycle is called. If the Z coordinate of the starting point is less than the contour starting point, the TNC positions the tool in the Z coordinate to set-up clearance and begins the cycle there.
1 The TNC runs the infeed motion at rapid traverse.
2 The TNC finishes the finished part contour (contour starting point to contour end point) at the defined feed rate Q505.
3 The TNC returns the tool to set-up clearance at the defined feed rate.
4 The TNC positions the tool back at rapid traverse to the cycle starting point.

Please note while programming:

Program a positioning block to a safe position with radius compensation RO before the cycle call.
The tool position at cycle call (cycle starting point) affects the area to be machined.
The TNC takes the cutting geometry of the tool into account to prevent damage to contour elements. If complete machining with the active tool is not possible, a warning is output by the TNC.

Also refer to the fundamentals of turning cycles (see page 286).

Cycle parameters

> Machining operation Q215: Define the machining operation:
$\mathbf{0}$: Roughing and finishing
1: Only roughing
2: Only finishing to finished dimension
3: Only finishing to oversize
Set-up clearance Q460 (incremental): Distance for retraction and pre-positioning

Diameter at contour start Q491: X coordinate of the starting point for the plunging path (diameter value)

- Contour start in Z Q492: Z coordinate of the starting point for the plunging path

Diameter at end of contour Q493: X coordinate of the contour end point (diameter value)

- Contour end in Z Q494: Z coordinate of the contour end point
- Angle of side Q495: Angle of the plunging side. The reference angle is formed by the parallel line to the rotary axis

Starting element type Q501: Define the type of the element at the contour start (circumferential surface): 0: No additional element
1: Element is a chamfer
2: Element is a radius
Size of starting element Q502: Size of the starting element (chamfer section)
Radius of contour edge Q500: Radius of the inside contour edge. If no radius is specified, the radius of the cutting insert is generated.

- Type of end element Q503: Define the type of the element at the contour end (face):
0: No additional element
1: Element is a chamfer
2: Element is a radius
Size of end element Q504: Size of the end element (chamfer section)

Roughing feed rate Q 478 : Feed rate during roughing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

- Oversize in diameter Q483: Diameter oversize for the defined contour

Oversize in Z Q484: Oversize for the defined contour in axial direction

- Finishing feed rate 0505 : Feed rate during finishing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Example: NC blocks

```
11 CYCL DEF 824 TURN, TRANSVERSE PLUNGE
EXT.
```

Q215 $=+0$; MACHINING OPERATION Q460 $=+2$; SET-UP CLEARANCE Q491=+75 ;DIAMETER AT CONTOUR START Q492=+0 ; CONTOUR START IN Z Q493 $=+20$; DIAMETER AT END OF CONTOUR Q494=-10 ; CONTOUR END IN Z
Q495=+70 ; ANGLE OF SIDE
Q501=+1 ;TYPE OF STARTING ELEMENT
Q502=+0.5 ; SIZE OF STARTING ELEMENT
Q500=+1.5 ; RADIUS OF CONTOUR EDGE
Q496=+0 ;ANGLE OF FACE
Q503 $=+1$;TYPE OF END ELEMENT
Q504=+0.5 ;SIZE OF END ELEMENT
Q463=+3 ; MAX. CUTTING DEPTH
Q478=+0.3 ; ROUGHING FEED RATE
Q483=+0.4 ;OVERSIZE IN DIAMETER
Q484=+0.2 ; OVERSIZE IN Z
Q505=+0.2 ; FEED RATE FOR FINISHING
12 L X+75 Y+0 Z+2 FMAX M303
13 CYCL CALL

13.15 TURN CONTOUR, TRANSVERSE (Cycle 820)

Roughing cycle run

The TNC uses the tool position as cycle starting point when a cycle is called. If the Z coordinate of the starting point is less than the contour starting point, the TNC positions the tool in the Z coordinate to the contour starting point and begins the cycle there.
1 The TNC runs a paraxial infeed motion at rapid traverse. The infeed value is calculated by the TNC with Q463 MAX. CUTTING DEPTH.
2 The TNC machines the area between the starting position and the end point in the transverse direction. The transverse cut is run paraxially with the defined feed rate Q478.
3 The TNC returns the tool at the defined feed rate by one infeed value.
4 The TNC positions the tool back at rapid traverse to the beginning of cut.
5 The TNC repeats this process (1 to 4) until the final contour is completed.
6 The TNC positions the tool back at rapid traverse to the cycle starting point.

Finishing cycle run

If the Z coordinate of the starting point is less than the contour starting point, the TNC positions the tool in the Z coordinate to set-up clearance and begins the cycle there.

1 The TNC runs the infeed motion at rapid traverse.
2 The TNC finishes the finished part contour (contour starting point to contour end point) at the defined feed rate Q505.
3 The TNC returns the tool to set-up clearance at the defined feed rate.
4 The TNC positions the tool back at rapid traverse to the cycle starting point.

Please note while programming:

The cutting limit defines the contour range to be machined. The approach and departure paths can exceed the cutting limits.
The tool position before the cycle call influences the execution of the cutting limit. The TNC 640 machines the area to the right or to the left of the cutting limit, depending on which side the tool has been positioned before the cycle is called.

Program a positioning block to a safe position with radius compensation RO before the cycle call.
The tool position at cycle call (cycle starting point) affects the area to be machined.
The TNC takes the cutting geometry of the tool into account to prevent damage to contour elements. If complete machining with the active tool is not possible, a warning is output by the TNC.
Before calling the cycle you must program the cycle 14 CONTOUR GEOMETRY to define the subprogram number.
Also refer to the fundamentals of turning cycles (see page 286).

Cycle parameters

> Machining operation Q215: Define the machining operation:
$\mathbf{0}$: Roughing and finishing
1: Only roughing
2: Only finishing to finished dimension
3: Only finishing to oversize
Set-up clearance Q460 (incremental): Distance for retraction and pre-positioning
> Reverse contour Q499: Define the machining direction of the contour:
$\mathbf{0}$: The contour is machined in the programmed direction
1: The contour is machined inversely to the programmed direction

- Maximum cutting depth Q463: Maximum infeed in axial direction. The infeed is divided evenly to avoid abrasive cuts.
- Roughing feed rate Q478: Feed rate during roughing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.
D Oversize in diameter Q483: Diameter oversize for the defined contour

Oversize in Z Q484: Oversize for the defined contour in axial direction

- Finishing feed rate Q505: Feed rate during finishing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.
> Plunging Q487: Permit machining of plunging elements
$\mathbf{0}$: Do not machine plunging elements
1: Machine plunging elements
- Feed rate for plunging Q488: Feed rate for machining of plunging elements

Cutting limit Q479: Activate the cutting limit $\mathbf{0}$: No cutting limit active
1: Cutting limit (Q480/Q482)

- Limit value for diameter Q 480 : X value for contour limitation (diameter value)

Limit value Z Q482: Z value for contour limitation

Example: NC blocks

9 CYCL DEF 14.0 CONTOUR GEOMETRY
10 CYCL DEF 14.1 CONTOUR LABEL2
11 CYCL DEF 820 TURN CONTOUR TRANSV.
Q215 $=+0$; MACHINING OPERATION
Q460 $=+2$; SET-UP CLEARANCE
Q499 $=+0$; REVERSE CONTOUR
Q463=+3 ; MAX. CUTTING DEPTH
Q478=+0.3 ; ROUGHING FEED RATE
Q483=+0.4 ; OVERSIZE IN DIAMETER
Q484=+0.2 ; OVERSIZE IN Z
Q505=+0.2 ; FEED RATE FOR FINISHING
Q487=+1 ; PLUNGE
Q488=+0 ;PLUNGING FEED RATE
Q479=+0 ; CUTTING LIMIT
Q480=+0 ; LIMIT VALUE FOR DIAMETER
Q482=+0 ;LIMIT VALUE IN Z
$12 \mathrm{~L} \mathrm{X}+75$ Y+0 Z+2 FMAX M303
13 CYCL CALL
14 M30
15 LBL 2
16 L X+75 Z-20
17 L X +50
18 RND R2
19 L X+20 Z-25
20 RND R2
21 L Z+0
22 LBL 0

13.16 RADIAL RECESSING (Cycle 861)

The cycle processes only the area from the cycle starting point to the

Roughing cycle run

 end point defined in the cycle.1 The TNC runs a paraxial infeed motion at rapid traverse (lateral infeed $=0.8$ tool edge width).
2 The TNC machines the area between the starting position and end point in axial direction at the defined feed rate Q478.
3 The TNC positions the tool back at rapid traverse to the beginning of cut.
4 The TNC repeats this process (1 to 3) until the slot width is reached.
5 The TNC positions the tool back at rapid traverse to the cycle starting point.

Finishing cycle run

1 The TNC positions the tool at rapid traverse to the first slot side.
2 The TNC finishes the side wall of the slot at the defined feed rate Q505.
3 The TNC finishes half the slot width at the defined feed rate.
4 The TNC returns the tool at rapid traverse.
5 The TNC positions the tool at rapid traverse to the second slot side.
6 The TNC finishes the side wall of the slot at the defined feed rate Q505.
7 The TNC finishes half the slot width at the defined feed rate.
8 The TNC positions the tool at rapid traverse back to the cycle starting point.

Please note while programming:

Program a positioning block to the starting position with radius compensation $\mathbf{R O}$ before the cycle call.
The tool position at cycle call defines the size of the area to be machined (cycle starting point).

Cycle parameters

> Machining operation Q215: Define the machining operation:
$\mathbf{0}$: Roughing and finishing
1: Only roughing
2: Only finishing to finished dimension
3: Only finishing to oversize
Set-up clearance Q460: Reserved, currently without function

Diameter at end of contour Q493: X coordinate of the contour end point (diameter value)
Contour end in Z Q494: Z coordinate of the contour end point

- Roughing feed rate Q478: Feed rate during roughing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Oversize in diameter Q483: Diameter oversize for the defined contour
$>$ Oversize in Z Q484: Oversize for the defined contour in axial direction

- Finishing feed rate Q505: Feed rate during finishing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Example: NC blocks

13.17 RADIAL RECESSING EXTENDED (Cycle 862)

Application

This cycle enables you to radially cut in slots. Expanded scope of function:

- You can insert a chamfer or curve at the contour start and contour end.
- In the cycle you can define angles for the side walls of the slot
- You can insert radii in the contour edges

You can use the cycle either for roughing, finishing or complete machining. Turning is run paraxially with roughing

The cycle can be used for inside and outside machining. If the start diameter Q491 is larger than the end diameter Q493, the cycle runs outside machining. If the start diameter Q491 is less than the end diameter Q493, the cycle runs inside machining.

Roughing cycle run

1 The TNC runs a paraxial infeed motion at rapid traverse (lateral infeed $=0.8$ tool edge width).

2 The TNC machines the area between the starting position and end point in axial direction at the defined feed rate $\mathbf{0 4 7 8}$.
3 The TNC positions the tool back at rapid traverse to the beginning of cut.
4 The TNC repeats this process (1 to 3) until the slot width is reached.
5 The TNC positions the tool back at rapid traverse to the cycle starting point.

Finishing cycle run

1 The TNC positions the tool at rapid traverse to the first slot side.

Machining operation Q215: Define the machining operation:
$\mathbf{0}$: Roughing and finishing
1: Only roughing
2: Only finishing to finished dimension
3: Only finishing to oversize
Set-up clearance Q460: Reserved, currently without function

- Diameter at contour start Q 491 : X coordinate of the contour starting point (diameter value)
- Contour start in Z Q492: Z coordinate of the contour starting point
$>$ Diameter at end of contour Q493: X coordinate of the contour end point (diameter value)

Contour end in Z Q494: Z coordinate of the contour end point

- Angle of side Q495: Angle between the side at the contour starting point and the perpendicular to the rotary axis
Starting element type Q501: Define the type of the element at the contour start (circumferential surface): 0: No additional element
1: Element is a chamfer
2: Element is a radius
- Size of starting element Q502: Size of the starting element (chamfer section)
$>$ Radius of contour edge 0500: Radius of the inside contour edge. If no radius is specified, the radius of the cutting insert is generated.
- Angle of second side Q496: Angle between the side at the contour end point and the perpendicular to the rotary axis
- Type of end element 0503: Define the type of the element at the contour end:
0: No additional element
1: Element is a chamfer
2: Element is a radius
- Size of end element Q504: Size of the end element (chamfer section)

Roughing feed rate Q 478 : Feed rate during roughing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Oversize in diameter Q483: Diameter oversize for the defined contour

- Oversize in Z Q484: Oversize for the defined contour in axial direction
> Finishing feed rate Q505: Feed rate during finishing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Example: NC blocks

13.18 RECESSING CONTOUR, RADIAL (Cycle 860)

Application

This cycle enables you to radially cut in slots of any form.
You can use the cycle either for roughing, finishing or complete machining. Turning is run paraxially with roughing

The cycle can be used for inside and outside machining. If the starting point of the contour is larger than the end point of the contour, the cycle runs outside machining. If the contour starting point is less than the end point, the cycle runs inside machining.

Roughing cycle run

1 The TNC positions the tool at rapid traverse in the Z coordinate (first cut-in position).

2 The TNC runs a paraxial infeed motion at rapid traverse (lateral infeed $=0.8$ tool edge width).
3 The TNC machines the area between the starting position and end point in a radial direction at the defined feed rate Q478
4 The TNC positions the tool back at rapid traverse to the beginning of cut.
5 The TNC repeats this process (2 to 4) until the slot form is completed.
6 The TNC positions the tool back at rapid traverse to the cycle starting point.

Finishing cycle run

1 The TNC positions the tool at rapid traverse to the first slot side.

Program a positioning block to the starting position with radius compensation RO before the cycle call.

The tool position at cycle call defines the size of the area to be machined (cycle starting point).
Before calling the cycle you must program the cycle 14 CONTOUR GEOMETRY to define the subprogram number.

Cycle parameters

358

- Machining operation Q215: Define the machining operation:
0: Roughing and finishing
1: Only roughing
2: Only finishing to finished dimension
3: Only finishing to oversize
- Set-up clearance Q460: Reserved, currently without function
- Roughing feed rate Q478: Feed rate during roughing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Oversize in diameter Q483: Diameter oversize for the defined contour

Oversize in Z Q484: Oversize for the defined contour in axial direction

- Finishing feed rate 0505 : Feed rate during finishing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Cutting limit Q479: Activate the cutting limit
0: No cutting limit active
1: Cutting limit (Q480/Q482)
Limit value for diameter Q 480 : X value for contour limitation (diameter value)

Limit value Z Q482: Z value for contour limitation

Example: NC blocks
9 CYCL DEF 14.0 CONTOUR GEOMETRY
10 CYCL DEF 14.1 CONTOUR LABEL2
11 CYCL DEF 860 RECESSING CONTOUR RADIAL
Q215=+0 ;MACHINING OPERATION
Q460 $=+2$;SET-UP CLEARANCE
Q478=+0.3 ; ROUGHING FEED RATE
Q483=+0.4 ;OVERSIZE IN DIAMETER
Q484=+0.2 ;OVERSIZE IN Z
Q505=+0.2 ; FEED RATE FOR FINISHING
Q479 $=+0$; CUTTING LIMIT
Q480=+0 ;LIMIT VALUE FOR DIAMETER
Q482=+0 ;LIMIT VALUE IN Z
12 L X+75 Y+0 Z+2 FMAX M303
13 CYCL CALL
14 M30
15 LBL 2
16 L X+60 Z-20
17 L X+45
18 RND R2
19 L X+40 Z-25
20 L Z+0
21 LBL 0

13.19 AXIAL RECESSING (Cycle 871)

Application

This cycle enables you to axially cut in right-angled slots (face recessing).

You can use the cycle either for roughing, finishing or complete machining. Turning is run paraxially with roughing.

Roughing cycle run

The TNC uses the tool position as cycle starting point when a cycle is called. The cycle processes only the area from the cycle starting point to the end point defined in the cycle.

1 The TNC runs a paraxial infeed motion at rapid traverse (lateral infeed $=0.8$ tool edge width).
2 The TNC machines the area between the starting position and end point in radial direction at the defined feed rate Q478.
3 The TNC positions the tool back at rapid traverse to the beginning of cut.
4 The TNC repeats this process (1 to 3) until the slot width is reached.
5 The TNC positions the tool back at rapid traverse to the cycle starting point.

Finishing cycle run

1 The TNC positions the tool at rapid traverse to the first slot side.

Machining operation Q215: Define the machining operation:
$\mathbf{0}$: Roughing and finishing
1: Only roughing
2: Only finishing to finished dimension
3: Only finishing to oversize

- Set-up clearance Q460: Reserved, currently without function

Diameter at end of contour Q493: X coordinate of the contour end point (diameter value)
Contour end in Z Q494: Z coordinate of the contour end point
$>$ Roughing feed rate Q478: Feed rate during roughing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

- Oversize in diameter Q483: Diameter oversize for the defined contour
Oversize in Z Q484: Oversize for the defined contour in axial direction

Finishing feed rate Q505: Feed rate during finishing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Example: NC blocks

13.20 AXIAL RECESSING EXTENDED (Cycle 872)

 called. If the Z coordinate of the starting point is less than Q492 CONTOUR START IN \mathbf{Z}, the TNC positions the tool in the \mathbf{Z} coordinate to Q492 and begins the cycle there.1 The TNC runs a paraxial infeed motion at rapid traverse (lateral infeed $=0.8$ tool edge width).
2 The TNC machines the area between the starting position and end point in radial direction at the defined feed rate Q478.

Roughing cycle run

The TNC uses the tool position as cycle starting point when a cycle is

3 The TNC positions the tool back at rapid traverse to the beginning of cut.
4 The TNC repeats this process (1 to 3) until the slot width is reached.

5 The TNC positions the tool back at rapid traverse to the cycle starting point.

Finishing cycle run

The TNC uses the tool position as cycle starting point when a cycle is called. If the Z coordinate of the starting point is less than Q492
CONTOUR START IN \mathbf{Z}, the TNC positions the tool in the \mathbf{Z} coordinate to Q492 and begins the cycle there.

1 The TNC positions the tool at rapid traverse to the first slot side.
2 The TNC finishes the side wall of the slot at the defined feed rate Q505.
3 The TNC returns the tool at rapid traverse.
4 The TNC positions the tool at rapid traverse to the second slot side.
5 The TNC finishes the side wall of the slot at the defined feed rate Q505.
6 The TNC finishes one half of the slot at the defined feed rate.
17 The TNC positions the tool at rapid traverse to the first side.
8 The TNC finishes the other half of the slot at the defined feed rate.
9 The TNC positions the tool at rapid traverse back to the cycle starting point.

Please note while programming:

Program a positioning block to the starting position with radius compensation $\mathbf{R O}$ before the cycle call.

The tool position at cycle call defines the size of the area to be machined (cycle starting point).

Cycle parameters

> Machining operation Q215: Define the machining operation:
$\mathbf{0}$: Roughing and finishing
1: Only roughing
2: Only finishing to finished dimension
3: Only finishing to oversize
Set-up clearance Q460: Reserved, currently without function

Diameter at contour start Q491: X coordinate of the contour starting point (diameter value)
Contour start in Z Q492: Z coordinate of the contour starting point

Diameter at end of contour Q493: X coordinate of the contour end point (diameter value)

- Contour end in Z Q494: Z coordinate of the contour end point
Angle of side Q495: Angle between the side at the contour starting point and the parallel line to the rotary axis
- Starting element type Q501: Define the type of the element at the contour start (circumferential surface):
0: No additional element
1: Element is a chamfer
2: Element is a radius
Size of starting element Q502: Size of the starting element (chamfer section)
PRadius of contour edge Q500: Radius of the inside contour edge. If no radius is specified, the radius of the cutting insert is generated.

- Angle of second side Q496: Angle between the side at the contour end point and the parallel line to the rotary axis
- Type of end element Q503: Define the type of the element at the contour end:
0: No additional element
1: Element is a chamfer
2: Element is a radius
Size of end element Q504: Size of the end element (chamfer section)

Roughing feed rate Q 478 : Feed rate during roughing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Oversize in diameter Q483: Diameter oversize for the defined contour

- Oversize in Z Q484: Oversize for the defined contour in axial direction

Finishing feed rate Q505: Feed rate during finishing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Example: NC blocks

Q215 $=+0$;MACHINING OPERATION
Q460 $=+2$; SET-UP CLEARANCE
Q491 $=+75$; DIAMETER AT CONTOUR START
Q492 $=-20$; CONTOUR START IN Z
Q493 $=+50$;DIAMETER AT END OF CONTOUR
Q494 $=-50$; CONTOUR END IN Z
Q495 = + 5	;ANGLE OF SIDE
Q501=+1	; TYPE OF STARTING ELEMENT
Q502=+0.5	;SIZE OF STARTING ELEMENT
Q $500=+1.5$;RADIUS OF CONTOUR EDGE
Q496 $=+5$;ANGLE OF SECOND SIDE
Q503 $=+1$;TYPE OF END ELEMENT
Q504 $=+0.5$;SIZE OF END ELEMENT
Q478 $=+0.3$;ROUGHING FEED RATE
Q483 $=+0.4$;OVERSIZE IN DIAMETER
Q484 $=+0.2$;OVERSIZE IN Z
Q $005=+0.2$; FEED RATE FOR FINISHING
X+75 Y+0	Z+2 FMAX M303
CYCL CALL	

13.21 RECESSING CONTOUR, AXIAL (Cycle 870)

Roughing cycle run

The TNC uses the tool position as cycle starting point when a cycle is called. If the Z coordinate of the starting point is less than the contour starting point, the TNC positions the tool in the Z coordinate to the contour starting point and begins the cycle there.

1 The TNC positions the tool at rapid traverse in the X coordinate (first cut-in position).
2 The TNC runs a paraxial infeed motion at rapid traverse (lateral infeed $=0.8$ tool edge width).
3 The TNC machines the area between the starting position and end point in an axial direction at the defined feed rate Q478.
4 The TNC positions the tool back at rapid traverse to the beginning of cut.
5 The TNC repeats this process (2 to 4) until the slot form is completed.
6 The TNC positions the tool back at rapid traverse to the cycle starting point.

Finishing cycle run

The TNC uses the tool position as cycle starting point when a cycle is called.

1 The TNC positions the tool at rapid traverse to the first slot side.
2 The TNC finishes the side wall of the slot at the defined feed rate Q505.
3 The TNC finishes one half of the slot at the defined feed rate.
4 The TNC returns the tool at rapid traverse.
5 The TNC positions the tool at rapid traverse to the second slot side.
6 The TNC finishes the side wall of the slot at the defined feed rate Q505.
7 The TNC finishes the other half of the slot at the defined feed rate.
8 The TNC positions the tool at rapid traverse back to the cycle starting point.

Please note while programming:

The cutting limit defines the contour range to be machined. The approach and departure paths can exceed the cutting limits.
The tool position before the cycle call influences the execution of the cutting limit. The TNC 640 machines the area to the right or to the left of the cutting limit, depending on which side the tool has been positioned before the cycle is called.

Program a positioning block to the starting position with radius compensation $\mathbf{R O}$ before the cycle call.

The tool position at cycle call defines the size of the area to be machined (cycle starting point).
Before calling the cycle you must program the cycle 14 CONTOUR GEOMETRY to define the subprogram number.

Cycle parameters

> Machining operation Q215: Define the machining operation:
$\mathbf{0}$: Roughing and finishing
1: Only roughing
2: Only finishing to finished dimension
3: Only finishing to oversize
Set-up clearance Q460: Reserved, currently without function

- Roughing feed rate Q 478 : Feed rate during roughing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Oversize in diameter Q483: Diameter oversize for the defined contour

- Oversize in Z Q484: Oversize for the defined contour in axial direction

- Finishing feed rate Q505: Feed rate during finishing. If M136 has been programmed, the value is interpreted by the TNC in millimeters per revolution, without M136 in millimeters per minute.

Cutting limit Q479: Activate the cutting limit
0: No cutting limit active
1: Cutting limit (Q480/Q482)

- Limit value for diameter Q 480 : X value for contour limitation (diameter value)
- Limit value Z Q482: Z value for contour limitation

Example: NC blocks

13.22 LONGITUDINAL THREAD (Cycle 831)

Application

This cycle enables you to run longitudinal turning of threads.
You can process single threads or multi-threads with the cycle.
If you do not enter a thread depth, the cycle uses thread depth in accordance with the ISO1502 standard

The cycle can be used for inside and outside machining.

Cycle run

The TNC uses the tool position as cycle starting point when a cycle is called.

1 The TNC positions the tool in rapid traverse at set-up clearance in front of the thread and runs an infeed motion.

2 The TNC runs a paraxial longitudinal cut. Here the TNC synchronizes feed rate and speed so that the defined pitch is machined.
3 The TNC retracts the tool at rapid traverse by the set-up clearance.
4 The TNC positions the tool back at rapid traverse to the beginning of cut.
5 The TNC runs an infeed motion. The infeeds are run according to the angle of infeed Q467.
6 The TNC repeats the process (2 to 5) until the thread depth is completed.
7 The TNC runs the number of air cuts as defined in Q476.
8 The TNC repeats the process (2 to 7) according to the number of traverses Q475.
9 The TNC positions the tool at rapid traverse back to the cycle starting point.

Please note while programming:

[^2]
Cycle parameters

Thread position Q471: Define the position of the thread:
0: External thread
1: Internal thread
Set-up clearance Q460: Set-up clearance in radial and axial direction. In axial direction, the set-up clearance is used for acceleration (approach path) to the synchronized feed rate.

- Thread diameter Q460: Define the diameter of the thread. For external threads ($\mathbf{Q 4 7 1 =}=\mathbf{0}$), state the nominal diameter. For internal threads ($\mathbf{Q} 471==1$), state the core diameter.
- Thread pitch Q472: Pitch of the thread.
- Thread depth Q473: Depth of the thread relative to the radius. If you enter 0 , the depth is assumed for a metric thread based on the pitch.
- Contour start in Z Q492: Z coordinate of the starting point
- Contour end in Z Q494: Z coordinate of the end point including the runout of the thread Q474.
- Runout of thread Q474: Length of the path on which, at the end of the thread, the tool is lifted from the current plunging depth to the thread diameter Q460.
> Maximum cutting depth Q453: Maximum plunging depth in radial direction relative to the radius.
$>$ Angle of infeed Q467: Angle for the infeed Q453. The reference angle is formed by the perpendicular to the rotary axis.

- Type of infeed Q468: Define the type of infeed: 0: Constant chip cross section (the infeed decreases with the depth)
1: Constant plunging depth
- Starting angle Q470: Angle of the turning spindle at which the thread start is to be made.
- Number of starts Q475: Number of thread starts
- Number of air cuts Q476: Number of air cuts without infeed at finished thread depth

Example: NC blocks

13.23 THREAD EXTENDED (Cycle 832)

Application

This cycle enables you to run both face turning and longitudinal turning of threads or tapered threads. Expanded scope of function:

- Selection of longitudinal thread or face thread.
- The parameters for dimension type of taper, taper angle and contour starting point X enable the definition of various tapered threads.
- The parameters for approach path and overrun path define a path in which feed axes can be accelerated or decelerated.

You can process single threads or multi-threads with the cycle.
If you do not enter a thread depth in the cycle, the cycle uses a standardized thread depth.
The cycle can be used for inside and outside machining.

Cycle run

The TNC uses the tool position as cycle starting point when a cycle is called.

1 The TNC positions the tool in rapid traverse at set-up clearance in front of the thread and runs an infeed motion.
2 The TNC runs a longitudinal cut. Here the TNC synchronizes feed rate and speed so that the defined pitch is machined.
3 The TNC retracts the tool at rapid traverse by the set-up clearance.
4 The TNC positions the tool back at rapid traverse to the beginning of cut.
5 The TNC runs an infeed motion. The infeeds are run according to the angle of infeed Q467.
6 The TNC repeats the process (2 to 5) until the thread depth is completed.
7 The TNC runs the number of air cuts as defined in Q476.
8 The TNC repeats the process (2 to 7) according to the number of traverses Q475.
9 The TNC positions the tool at rapid traverse back to the cycle starting point.

Program a positioning block to the starting position with radius compensation $\mathbf{R O}$ before the cycle call.

The approach path (Q465) must be long enough for the feed axes to be accelerated to the required velocity.

The overrun path (Q466) must be long enough to decelerate the feed axes.

When the TNC runs a thread cut, the feed-rate override knob is disabled. The spindle speed override knob is active only within a limited range, which is defined by the machine tool builder (refer to your machine manual).

Cycle parameters

Thread position Q471: Define the position of the thread:
0: External thread
1: Internal thread

- Thread orientation Q461: Define direction of the thread pitch:
0: Longitudinal (parallel to rotary axis)
1: Transverse (perpendicular to rotary axis)
Set-up clearance Q460: Set-up clearance perpendicular to thread pitch.
Thread pitch Q472: Pitch of the thread.
Depth of thread Q473: Depth of the thread. If you enter 0 , the depth is assumed for a metric thread based on the pitch.
- Dimension type of taper Q464: Define the dimension type for the taper contour: $\mathbf{0}$: Via starting and end point
1: Via end point, start X and taper angle
2: Via end point, start Z and taper angle
3: Via start point, end X and taper angle
4: Via start point, end Z and taper angle
Diameter at contour start Q491: X coordinate of the starting point (diameter value)

- Contour start in Z Q492: Z coordinate of the starting point
Diameter at end of contour Q493: X coordinate of the end point (diameter value)
Contour end in Z Q494: Z coordinate of the end point
- Taper angle Q469: Taper angle of contour
- Runout of thread Q474: Length of the path on which, at the end of the thread, the tool is lifted from the current plunging depth to the thread diameter $\mathbf{Q 4 6 0}$.
- Approach path Q465: Length of the path in pitch direction on which the feed axes are accelerated to the required velocity. The approach path is outside of the defined thread contour.
- Overrun path Q466: Length of the path in pitch direction on which the feed axes are decelerated. The overrun path is within the defined thread contour.
- Maximum cutting depth Q453: Maximum plunging depth perpendicular to the thread pitch
- Angle of infeed Q467: Angle for the infeed Q453. The reference angle is formed by the parallel line to the thread pitch.
- Type of infeed Q468: Define the type of infeed: $\mathbf{0}$: Constant chip cross section (the infeed decreases with the depth)
1: Constant plunging depth
- Starting angle Q470: Angle of the turning spindle at which the thread start is to be made.
$>$ Number of starts Q475: Number of thread starts
- Number of air cuts Q476: Number of air cuts without infeed at finished thread depth

Example: NC blocks

13.24 CONTOUR-PARALLEL THREAD (Cycle 830)

Application

This cycle enables you to run both face turning and longitudinal turning of threads with any form.

You can process single threads or multi-threads with the cycle.
If you do not enter a thread depth in the cycle, the cycle uses a standardized thread depth.

The cycle can be used for inside and outside machining.
The cycle 830 runs the overrun $\mathbf{Q 4 6 6}$ following the programmed contour. Note the spatial conditions.

Cycle run

The TNC uses the tool position as cycle starting point when a cycle is called.

1 The TNC positions the tool in rapid traverse at set-up clearance in front of the thread and runs an infeed motion.
2 The TNC runs a thread cut parallel to the defined thread contour. Here the TNC synchronizes feed rate and speed so that the defined pitch is machined.
3 The TNC retracts the tool at rapid traverse by the set-up clearance.
4 The TNC positions the tool back at rapid traverse to the beginning of cut.
5 The TNC runs an infeed motion. The infeeds are run according to the angle of infeed Q467.
6 The TNC repeats the process (2 to 5) until the thread depth is completed.
7 The TNC runs the number of air cuts as defined in Q476.
8 The TNC repeats the process (2 to 7) according to the number of traverses Q475.
9 The TNC positions the tool at rapid traverse back to the cycle starting point.
Program a positioning block to the starting position with
radius compensation R0 before the cycle call.
The approach path (Q465) must be long enough for the
feed axes to be accelerated to the required velocity.
The overrun path (Q466) must be long enough to
decelerate the feed axes.
Both the approach and overrun take place outside the
defined contour.
When the TNC runs a thread cut, the feed-rate override
knob is disabled. The spindle speed override knob is active
only within a limited range, which is defined by the
machine tool builder (refer to your machine manual).
Before calling the cycle you must program the cycle 14
CONTOUR GEOMETRY to define the subprogram number.

Thread position Q471: Define the position of the thread:
0: External thread
1: Internal thread
> Thread orientation Q461: Define direction of the thread pitch:
0: Longitudinal (parallel to rotary axis)
1: Transverse (perpendicular to rotary axis)
Set-up clearance Q460: Set-up clearance perpendicular to thread pitch.

- Thread pitch Q472: Pitch of the thread.

Depth of thread Q473: Depth of the thread. If you enter 0 , the depth is assumed for a metric thread based on the pitch.

- Runout of thread Q474: Length of the path on which, at the end of the thread, the tool is lifted from the current plunging depth to the thread diameter $\mathbf{Q 4 6 0}$.
- Approach path Q465: Length of the path in pitch direction on which the feed axes are accelerated to the required velocity. The approach path is outside of the defined thread contour.
Overrun path Q466: Length of the path in pitch direction on which the feed axes are decelerated. The overrun path is outside the defined thread contour.
> Maximum cutting depth Q453: Maximum plunging depth perpendicular to the thread pitch
$>$ Angle of infeed Q467: Angle for the infeed Q453. The reference angle is formed by the parallel line to the thread pitch.

- Type of infeed Q468: Define the type of infeed: 0: Constant chip cross section (the infeed decreases with the depth)
1: Constant plunging depth
- Starting angle Q470: Angle of the turning spindle at which the thread start is to be made.
- Number of starts Q475: Number of thread starts
- Number of air cuts Q476: Number of air cuts without infeed at finished thread depth

Example: NC blocks

13.25 Example program

Example: Shoulder with recess

O BEGIN PGM SHOULDER MM	
1 BLK FORM 0.1 Y X $+0 \quad \mathrm{Y}-10 \mathrm{Z}-35$	Definition of workpiece blank
2 BLK FORM $0.2 \begin{array}{llllll} & X+87 & Y+10 & Z+2\end{array}$	
3 TOOL CALL 12	Tool call
4 M140 MB MAX	Retract the tool
5 FUNCTION MODE TURN	Activate Turning mode
6 FUNCTION TURNDATA SPIN VCONST:ON VC:150	Constant surface speed
7 CYCL DEF 800 ADAPT ROTARY COORDINATE SYSTEM	Cycle definition adapt rotary coordinate system
Q497 $=+0$; PRECESSION ANGLE	
Q498=+0 ;REVERSE TOOL	
8 M136	Feed rate in mm per revolution
9 L X+165 Y+0 RO FMAX	Move to starting point in the plane
10 L Z+2 RO FMAX M304	Set-up clearance, turning spindle on

Cycle definition shoulder longitudinal

Cycle call
Turning spindle off
Tool call
Retract the tool
Constant surface speed
Cycle definition adapt rotary coordinate system

Move to starting point in the plane
Set-up clearance, turning spindle on

Cycle definition recess

Cycle call
Turning spindle off
Feed rate in mm per minute
Retract the tool
Activate Milling mode
End of program
13.25 Example program

Using Touch Probe Cycles

\mathbf{i}

14.1 General Information about Touch Probe Cycles

HEIDENHAIN only gives warranty for the function of the probing cycles if HEIDENHAIN touch probes are used.

The TNC must be specially prepared by the machine tool builder for the use of a 3-D touch probe. Refer to your machine tool manual.

Method of function

Whenever the TNC runs a touch probe cycle, the 3-D touch probe approaches the workpiece in one linear axis. This is also true during an active basic rotation or with a tilted working plane. The machine tool builder determines the probing feed rate in a machine parameter (see "Before You Start Working with Touch Probe Cycles" later in this chapter).
When the probe stylus contacts the workpiece,
\square the 3-D touch probe transmits a signal to the TNC: the coordinates of the probed position are stored,

- the touch probe stops moving, and
- returns to its starting position at rapid traverse.

If the stylus is not deflected within a defined distance, the TNC displays an error message (distance: DIST from touch probe table).

Consideration of a basic rotation in the Manual Operation mode

During probing the TNC considers an active basic rotation and approaches the workpiece at an angle.

Cycles in the Manual and El. Handwheel modes

In the Manual Operation and El. Handwheel modes, the TNC provides touch probe cycles that allow you to:

- Calibrate the touch probe
- Compensate workpiece misalignment
- Set datums

Touch probe cycles for automatic operation

Besides the touch probe cycles, which you can use in the Manual and El. Handwheel modes, the TNC provides numerous cycles for a wide variety of applications in automatic mode:

- Calibrating a touch trigger probe
- Compensating workpiece misalignment
- Setting datums
- Automatic workpiece inspection
- Automatic tool measurement

You can program the touch probe cycles in the Programming and Editing operating mode via the TOUCH PROBE key. Like the most recent fixed cycles, touch probe cycles with numbers greater than 400 use Q parameters as transfer parameters. Parameters with specific functions that are required in several cycles always have the same number: For example, O260 is always assigned the clearance height, Q261 the measuring height, etc.

To simplify programming, the TNC shows a graphic during cycle definition. The graphic shows the parameter that needs to be entered (see figure at right).

Defining the touch probe cycle in the Programming and Editing mode of operation

- The soft-key row shows all available touch probe functions divided into groups.
- Select the desired probe cycle group, for example datum setting. Cycles for automatic tool measurement are available only if your machine has been prepared for them.
- Select a cycle, e.g. datum setting at pocket center. The TNC initiates the programming dialog and asks for all required input values. At the same time a graphic of the input parameters is displayed in the right screen window. The parameter that is asked for in the dialog prompt is highlighted.
- Enter all parameters requested by the TNC and conclude each entry with the ENT key.
- The TNC ends the dialog when all required data has been entered

Group of measuring cycles	Soft key	Page
Cycles for automatic measurement and compensation of workpiece misalignment	\square	Page 378

Cycles for automatic workpiece presetting		Page 400
Cycles for automatic workpiece inspection		
Special cycles	Page 454	
Special CyCLEs	Page 504	
(enabled by the machine tool builder)	$\boxed{8}$	Page 528

Example: NC blocks

14.2 Before You Start Working with Touch Probe Cycles

To make it possible to cover the widest possible range of applications, machine parameters enable you to determine the behavior common to all touch probe cycles.

Maximum traverse to touch point: DIST in touch probe table

If the stylus is not deflected within the path defined in DIST, the TNC outputs an error message.

Set-up clearance to touch point: SET_UP in touch probe table

In SET_UP you define how far from the defined (or calculated) touch point the TNC is to pre-position the touch probe. The smaller the value you enter, the more exactly you must define the touch point position. In many touch probe cycles you can also define a set-up clearance that is added to SET_UP.

Orient the infrared touch probe to the programmed probe direction: TRACK in touch probe table

Touch trigger probe, probing feed rate: F in touch probe table

In \mathbf{F} you define the feed rate at which the TNC is to probe the workpiece.

Touch trigger probe, rapid traverse for positioning: FMAX

In FMAX you define the feed rate at which the TNC pre-positions the touch probe, or positions it between measuring points.

Touch trigger probe, rapid traverse for positioning: F_PREPOS in touch probe table

In F_PREPOS you define whether the TNC is to position the touch probe at the feed rate defined in FMAX or at rapid traverse.

- Input value $=$ FMAX PROBE: Position at feed rate from FMAX
- Input value = FMAX_MACHINE: Pre-position at rapid traverse

Multiple measurements

To increase measuring certainty, the TNC can run each probing process up to three times in sequence. Define the number of measurements in machine parameter Probe Settings > Configuration of probe behavior > Automatic mode: Multiple measurements with probe function. If the measured position values differ too greatly, the TNC outputs an error message (the limit value is defined in Confidence interval of multiple measurements). With multiple measurement it is possible to detect random errors, e.g. from contamination.

If the measured values lie within the confidence interval, the TNC saves the mean value of the measured positions.

Confidence interval of multiple measurements

When you perform a multiple measurement, you store the value that the measured values may vary in Probe Settings $>$ Configuration of probe behavior > Automatic mode: Confidence interval of multiple measurements. If the difference in the measured values exceeds the value defined by you, the TNC outputs an error message.

Executing touch probe cycles

All touch probe cycles are DEF active. This means that the TNC runs the cycle automatically as soon as the TNC executes the cycle definition in the program run.

Danger of collision!

When running touch probe cycles, no cycles must be active for coordinate transformation (Cycle 7 DATUM, Cycle 8 MIRROR IMAGE, Cycle 10 ROTATION, and Cycles 11 and 26 SCALING).

> You can also run the Touch Probe Cycles 408 to 419 during an active basic rotation. Make sure, however, that the basic rotation angle does not change when you use Cycle 7 DATUM SHIFT with datum tables after the measuring cycle.

Touch probe cycles with a number greater than 400 position the touch probe according to a positioning logic:

- If the current coordinate of the south pole of the stylus is less than the coordinate of the clearance height (defined in the cycle), the TNC retracts the touch probe in the probe axis to the clearance height and then positions it in the working plane to the first starting position.
- If the current coordinate of the south pole of the stylus is greater than the coordinate of the clearance height, the TNC first positions the probe in the working plane to the first starting position and then moves it immediately to the measuring height in the touch probe axis.

14.3 Touch Probe Table

General information

Various data is stored in the touch probe table that defines the probe behavior during the probing process. If you run several touch probes on your machine tool, you can save separate data for each touch probe.

Editing touch probe tables

To edit the touch probe table, proceed as follows:

- Select the Manual Operation mode.
- Select the touch probe functions by pressing the TOUCH PROBE soft key. The TNC displays additional soft keys: see table above
- Select the touch probe table: Press the TCH PROBE TABLE soft key.
\Rightarrow Set the EDIT soft key to ON.
- Using the arrow keys, select the desired setting.
- Perform desired changes.
- Exit the touch probe table: Press the END soft key.

Abbr.	Inputs	Dialog
N0	Number of the touch probe: Enter this number in the tool table (column: TP_NO) under the appropriate tool number	-
TYPE	Selection of the touch probe used	Selection of touch probe?
CAL_0F1	Offset of the touch probe axis to the spindle axis for the reference axis	TS center misalignmt. ref. axis? [mm]
CAL_OF2	Offset of the touch probe axis to the spindle axis for the minor axis	TS center misalignmt. aux. axis? [mm]
CAL_ANG	The TNC orients the touch probe to the orientation angle before calibration or probing (if orientation is possible)	Spindle angle for calibration?
F	Feed rate at which the TNC is to probe the workpiece	Probing feed rate? [mm/min]
FMAX	Feed rate at which the touch probe pre-positions, or is positioned between the measuring points	Rapid traverse in probing cycle? [mm/min]
DIST	If the stylus is not deflected within the defined path, the TNC outputs an error message	Maximum measuring path? [mm]
SET_UP	In SET_UP you define how far from the defined (or calculated) touch point the TNC is to pre-position the touch probe. The smaller the value you enter, the more exactly you must define the touch point position. In many touch probe cycles you can also define a set-up clearance that is added to the SET_UP machine parameter.	Set-up clearance? [mm]
F_PREPOS	Defining speed with pre-positioning: - Pre-positioning with speed from FMAX: FMAX_PROBE - Pre-positioning with machine rapid traverse: FMAX_MACHINE	Pre-positioning at rap. traverse? ENT/NO ENT
TRACK	To increase measuring accuracy, you can use TRACK = ON to have an infrared touch probe oriented in the programmed probe direction before every probe process. In this way the stylus is always deflected in the same direction: $\mathbf{O N}$: Perform spindle tracking OFF: Do not perform spindle tracking	Orient touch probe cycles? Yes=ENT, No=NOENT

\mathbf{i}

Touch Probe Cycles:
Automatic Measurement of Workpiece Misalignment

15.1 Fundamentals

Overview

> When running touch probe cycles, Cycle 8 MIRROR IMAGE, Cycle 11 SCALING and Cycle 26 AXIS-SPECIFIC SCALING must not be active.

HEIDENHAIN only gives warranty for the function of the probing cycles if HEIDENHAIN touch probes are used.

The TNC must be specially prepared by the machine tool builder for the use of a 3-D touch probe.

The TNC provides five cycles that enable you to measure and compensate workpiece misalignment. In addition, you can reset a basic rotation with Cycle 404:

Cycle	Soft key	Page
400 BASIC ROTATION Automatic measurement using two points. Compensation via basic rotation.		Page 380
401 ROT OF 2 HOLES Automatic measurement using two holes. Compensation via basic rotation.		Page 383
402 ROT OF 2 STUDS Automatic measurement using two studs. Compensation via basic rotation.	aen	Page 386
403 ROT IN ROTARY AXIS Automatic measurement using two points. Compensation by turning the table.	4	Page 389
405 ROT IN C AXIS Automatic alignment of an angular offset between a hole center and the positive Y axis. Compensation via table rotation.	ans	Page 393
404 SET BASIC ROTATION Setting any basic rotation.		Page 392

Characteristics common to all touch probe cycles for measuring workpiece misalignment

For Cycles 400, 401 and 402 you can define through parameter Q307 Default setting for basic rotation whether the measurement result is to be corrected by a known angle α (see figure at right). This enables you to measure the basic rotation against any straight line 1 of the workpiece and to establish the reference to the actual 0° direction 2.

15.2 BASIC ROTATION (Cycle 400, DIN/ISO: G400)

Cycle run

Touch probe cycle 400 determines a workpiece misalignment by measuring two points, which must lie on a straight surface. With the basic rotation function the TNC compensates the measured value.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the programmed starting point 1. The TNC offsets the touch probe by the safety clearance in the direction opposite the defined traverse direction.
2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \mathbf{F}).
3 Then the touch probe moves to the next starting position 2 and probes the second position.
4 The TNC returns the touch probe to the clearance height and performs the basic rotation.

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.
The TNC will reset an active basic rotation at the beginning of the cycle.

1st meas. point 1st axis Q263 (absolute):
Coordinate of the first touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

1st meas. point 2nd axis Q264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

2nd meas. point 1st axis Q265 (absolute): Coordinate of the second touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

2nd meas. point 2nd axis Q266 (absolute): Coordinate of the second touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

- Measuring axis Q272: Axis in the working plane in which the measurement is to be made:
1: Reference axis = measuring axis
2: Minor axis = measuring axis
> Traverse direction 1 Q267: Direction in which the probe is to approach the workpiece:
-1: Negative traverse direction
+1: Positive traverse direction
Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999
Set-up clearance Q 320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to $99999.999{ }^{-}$
- Clearance height O 260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999

- Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
$\mathbf{0}$: Move at measuring height between measuring points
1: Move at clearance height between measuring points
Preset value for rotation angle O 307 (absolute): If the misalignment is to be measured against a straight line other than the reference axis, enter the angle of this reference line. The TNC will then calculate the difference between the value measured and the angle of the reference line for the basic rotation. Input range -360.000 to 360.000
- Preset number in table Q305: Enter the preset number in the table in which the TNC is to save the determined basic rotation. If you enter $\mathrm{Q} 305=0$, the TNC automatically places the determined basic rotation in the ROT menu of the Manual Operation mode. Input range 0 to 2999

Example: NC blocks

5 TCH PROBE 400 BASIC ROTATION

Q263 $=+10$;1ST POINT 1ST AXIS
Q264=+3.5 ; 1ST POINT 2ND AXIS
Q265 = + 25 ; 2ND POINT 1ST AXIS
Q266=+2 ;2ND POINT 2ND AXIS
Q272=2 ;MEASURING AXIS
Q267=+1 ;TRAVERSE DIRECTION
Q261=-5 ;MEASURING HEIGHT
Q320=0 ;SET-UP CLEARANCE
Q260 $=+20$; CLEARANCE HEIGHT
Q301=0 ;MOVE TO CLEARANCE
Q307=0 ;PRESET ROTATION ANG.
Q305=0 ; NO. IN TABLE

15.3 BASIC ROTATION from Two Holes (Cycle 401, DIN/ISO: G401)

Cycle run

The Touch Probe Cycle 401 measures the centers of two holes. Then the TNC calculates the angle between the reference axis in the working plane and the line connecting the hole centers. With the basic rotation function, the TNC compensates the calculated value. As an alternative, you can also compensate the determined misalignment by rotating the rotary table.

1 The TNC positions the touch probe at rapid traverse (value from column FMAX) following the positioning logic (see "Executing touch probe cycles" on page 373) to the center of the first hole 1.
2 Then the probe moves to the entered measuring height and probes four points to find the first hole center.
3 The touch probe returns to the clearance height and then to the position entered as center of the second hole 2.
4 The TNC moves the touch probe to the entered measuring height and probes four points to find the second hole center.
5 Then the TNC returns the touch probe to the clearance height and performs the basic rotation.

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

The TNC will reset an active basic rotation at the beginning of the cycle.

If you want to compensate the misalignment by rotating the rotary table, the TNC will automatically use the following rotary axes:

- C for tool axis Z
- B for tool axis Y
- A for tool axis X

Cycle parameters

1st hole: Center in 1st axis Q268 (absolute): Center of the first hole in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

1st hole: Center in 2nd axis Q269 (absolute): Center of the first hole in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

- 2nd hole: Center in 1st axis Q270 (absolute): Center of the second hole in the reference axis of the working plane. Input range -99999.9999 to 99999.9999
- 2nd hole: Center in 2nd axis Q271 (absolute): Center of the second hole in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- Measuring height in the touch probe axis Q 261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999
- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999

Preset value for rotation angle O 307 (absolute): If the misalignment is to be measured against a straight line other than the reference axis, enter the angle of this reference line. The TNC will then calculate the difference between the value measured and the angle of the reference line for the basic rotation. Input range - 360.000 to 360.000

Preset number in table Q305: Enter the preset number in the table in which the TNC is to save the determined basic rotation. If you enter $\mathrm{Q} 305=0$, the TNC automatically places the determined basic rotation in the ROT menu of the Manual Operation mode. The parameter has no effect if the misalignment is to be compensated by a rotation of the rotary table (Q402=1). In this case the misalignment is not saved as an angular value. Input range 0 to 2999

- Compensation Q402: Specify whether the TNC should compensate the measured misalignment with a basic rotation, or by rotating the rotary table:
0: Set basic rotation
1: Rotate the rotary table
When you select rotary table, the TNC does not save the measured misalignment, not even when you have defined a table line in parameter Q305.

Example: NC blocks
5 TCH PROBE 401 ROT OF 2 HOLES
Q268=-37 ;1ST CENTER IN 1ST AXIS
Q269 =+12 ; 1ST CENTER IN 2ND AXIS
Q270=+75 ;2ND CENTER IN 1ST AXIS
Q271=+20 ;2ND CENTER IN 2ND AXIS
Q261=-5 ;MEASURING HEIGHT
Q260 $=+20$; CLEARANCE HEIGHT
Q307=0 ;PRESET ROTATION ANG.
Q305=0 ;NO. IN TABLE
Q402=0 ;COMPENSATION
Q337=0 ;SET TO ZERO

15.4 BASIC ROTATION over Two Studs (Cycle 402, DIN/ISO: G402)

Cycle run

The Touch Probe Cycle 402 measures the centers of two studs. Then the TNC calculates the angle between the reference axis in the working plane and the line connecting the two stud centers. With the basic rotation function, the TNC compensates the calculated value. As an alternative, you can also compensate the determined misalignment by rotating the rotary table.

1 Following the positioning logic (see "Executing touch probe cycles" on page 373), the TNC positions the touch probe at rapid traverse (value from column FMAX) to the starting point 1 of the first stud.
2 Then the probe moves to the entered measuring height 1 and probes four points to find the center of the first stud. The touch probe moves on a circular arc between the touch points, each of which is offset by 90°.
3 The touch probe returns to the clearance height and then positions the probe to starting point 5 of the second stud.
4 The TNC moves the touch probe to the entered measuring height 2 and probes four points to find the center of the second stud.
5 Then the TNC returns the touch probe to the clearance height and performs the basic rotation.

Please note while programming:

Before a cycle definition you must have programmed a
tool call to define the touch probe axis.
The TNC will reset an active basic rotation at the beginning of the cycle.

If you want to compensate the misalignment by rotating the rotary table, the TNC will automatically use the following rotary axes:

- C for tool axis Z

B for tool axis Y

- A for tool axis X

Cycle parameters

1st stud: Center in 1st axis (absolute): Center of the first stud in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

1st stud: Center in 2nd axis Q269 (absolute): Center of the first stud in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

Diameter of stud 1 Q313: Approximate diameter of the 1 st stud. Enter a value that is more likely to be too large than too small. Input range 0 to 99999.9999
$>$ Measuring height 1 in the probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point in the touch probe axis) at which stud 1 is to be measured. Input range -99999.9999 to 99999.9999

2nd stud: Center in 1st axis Q 270 (absolute): Center of the second stud in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

- 2nd stud: Center in 2nd axis Q271 (absolute): Center of the second stud in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

Diameter of stud 2 Q314: Approximate diameter of the 2 nd stud. Enter a value that is more likely to be too large than too small. Input range 0 to 99999.9999

- Measuring height of stud 2 in the probe axis 0315 (absolute): Coordinate of the ball tip center (= touch point in the touch probe axis) at which stud 2 is to be measured. Input range -99999.9999 to 99999.9999
Set-up clearance 0320 (incremental): Additional distance between measuring point and ball tip. O320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999
- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999

- Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
$\mathbf{0}$: Move at measuring height between measuring points
1: Move at clearance height between measuring points

Preset value for rotation angle Q 307 (absolute): If the misalignment is to be measured against a straight line other than the reference axis, enter the angle of this reference line. The TNC will then calculate the difference between the value measured and the angle of the reference line for the basic rotation. Input range -360.000 to 360.000

Preset number in table Q305: Enter the preset number in the table in which the TNC is to save the determined basic rotation. If you enter $\mathrm{Q} 305=0$, the TNC automatically places the determined basic rotation in the ROT menu of the Manual Operation mode. The parameter has no effect if the misalignment is to be compensated by a rotation of the rotary table $(\mathbf{Q 4 0 2}=\mathbf{1})$. In this case the misalignment is not saved as an angular value. Input range 0 to 2999

- Compensation Q402: Specify whether the TNC should compensate the measured misalignment with a basic rotation, or by rotating the rotary table:
$\mathbf{0}$: Set basic rotation
1: Rotate the rotary table
When you select rotary table, the TNC does not save the measured misalignment, not even when you have defined a table line in parameter Q305.

Set to zero after alignment Q337: Definition of whether the TNC should set the display of the aligned rotary axis to zero:
0: Do not reset the display of the rotary axis to 0 after alignment
1: Reset the display of the rotary axis to 0 after alignment The TNC sets the display to 0 only if you have defined Q402=1.

Example: NC blocks
5 TCH PROBE 402 ROT OF 2 STUDS
Q268=-37 ;1ST CENTER IN 1ST AXIS
Q269=+12 ; 1ST CENTER IN 2ND AXIS
Q313=60 ;DIAMETER OF STUD 1
Q261=-5 ;MEASURING HEIGHT 1
Q270 $=+75$;2ND CENTER IN 1ST AXIS
Q271=+20 ;2ND CENTER IN 2ND AXIS
Q314=60 ;DIAMETER OF STUD 2
Q315=-5 ;MEASURING HEIGHT 2
Q320 $=0 \quad$; SET-UP CLEARANCE
Q260 $=+20$; CLEARANCE HEIGHT
Q301=0 ;MOVE TO CLEARANCE
Q307 $=0$;PRESET ROTATION ANG.
Q305=0 ;NO. IN TABLE
Q402=0 ;COMPENSATION
Q337=0 ;SET TO ZERO

15.5 BASIC ROTATION Compensation via Rotary Axis (Cycle 403, DIN/ISO: G403)

Cycle run

Touch Probe Cycle 403 determines a workpiece misalignment by measuring two points, which must lie on a straight surface. The TNC compensates the determined misalignment by rotating the A, B or C axis. The workpiece can be clamped in any position on the rotary table.
1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the programmed starting point 1. The TNC offsets the touch probe by the safety clearance in the direction opposite the defined traverse direction.
2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \mathbf{F}).
3 Then the touch probe moves to the next starting position 2 and probes the second position.
4 The TNC returns the touch probe to the clearance height and moves the rotary axis, which was defined in the cycle, by the measured value. Optionally you can have the display set to 0 after alignment.

Please note while programming:

Danger of collision!

The TNC does not check whether touch points and compensation axis match. This can result in compensation movements offset by 180°.

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

The TNC stores the measured angle in parameter Q150.

1st meas. point 1st axis Q263 (absolute): Coordinate of the first touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

1st meas. point 2nd axis Q264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

- 2nd meas. point 1st axis Q265 (absolute): Coordinate of the second touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

2nd meas. point 2nd axis O266 (absolute): Coordinate of the second touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

- Measuring axis Q272: Axis in which the measurement is to be made:
1: Reference axis = measuring axis
2: Minor axis $=$ measuring axis
3: Touch probe axis = measuring axis
Traverse direction 1 Q267: Direction in which the probe is to approach the workpiece:
-1: Negative traverse direction
+1: Positive traverse direction
$>$ Measuring height in the touch probe axis 0261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999
- Set-up clearance Q320 (incremental): Additional
 distance between measuring point and ball tip. Q320 is added to SET UP (touch probe table). Input range 0 to $99999.999 \overline{9}$
- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999
- Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
$\mathbf{0}$: Move at measuring height between measuring points
1: Move at clearance height between measuring points
- Axis for compensation motion Q312: Assignment of the rotary axis in which the TNC is to compensate the measured misalignment:
4: Compensate misalignment with rotary axis A
5: Compensate misalignment with rotary axis B
6: Compensate misalignment with rotary axis C
Set to zero after alignment Q337: Definition of whether the TNC should set the display of the aligned rotary axis to zero:
0: Do not reset the display of the rotary axis to 0 after alignment
1:Reset the display of the rotary axis to 0 after alignment
\Rightarrow Number in table Q305: Enter the number in the preset table/datum table in which the TNC is to set the rotary axis to zero. Only effective if O 337 is set to 1. Input range 0 to 2999
$>$ Measured value transfer $(\mathbf{0}, \mathbf{1})$ Q303: Specify if the determined basic rotation is to be saved in the datum table or in the preset table:
$\mathbf{0}$: Write the measured basic rotation as a datum shift in the active datum table. The reference system is the active workpiece coordinate system.
1: Write the measured basic rotation into the preset table. The reference system is the machine coordinate system (REF system).

Reference angle? (0=ref. axis) Q380: Angle with which the TNC is to align the probed straight line. Only effective if the rotary axis C is selected (Q312=6). Input range -360.000 to 360.000

Example: NC blocks

15.6 SET BASIC ROTATION (Cycle 404, DIN/ISO: G404)

Cycle run

With Touch Probe Cycle 404, you can set any basic rotation automatically during program run. This cycle is intended primarily for resetting a previous basic rotation.

Cycle parameters

Preset value for rotation angle: Angular value at which the basic rotation is to be set. Input range -360.000 to 360.000

Example: NC blocks

5 TCH PROBE 404 BASIC ROTATION
Q307=+0 ;PRESET ROTATION ANG.

15.7 Compensating Workpiece Misalignment by Rotating the C Axis (Cycle 405, DIN/ISO: G405)

Cycle run

With Touch Probe Cycle 405, you can measure

- the angular offset between the positive Y axis of the active coordinate system and the center of a hole, or
- the angular offset between the nominal position and the actual position of a hole center.

The TNC compensates the determined angular offset by rotating the C axis. The workpiece can be clamped in any position on the rotary table, but the Y coordinate of the hole must be positive. If you measure the angular misalignment of the hole with touch probe axis Y (horizontal position of the hole), it may be necessary to execute the cycle more than once because the measuring strategy causes an inaccuracy of approx. 1% of the misalignment.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the starting point 1 . The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table.
2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column F). The TNC derives the probing direction automatically from the programmed starting angle.
3 Then the touch probe moves in a circular arc either at measuring height or at clearance height to the next starting point 2 and probes the second touch point.
4 The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points, and then positions the touch probe to the center of the measured hole.
5 Finally the TNC returns the touch probe to the clearance height and aligns the workpiece by rotating the table. The TNC rotates the rotary table so that the hole center after compensation lies in the direction of the positive Y axis, or on the nominal position of the hole center-both with a vertical and horizontal touch probe axis. The measured angular misalignment is also available in parameter Q150.

Please note while programming:

Danger of collision!

To prevent a collision between the touch probe and the workpiece, enter a low estimate for the nominal diameter of the pocket (or hole).

If the dimensions of the pocket and the safety clearance do not permit pre-positioning in the proximity of the touch points, the TNC always starts probing from the center of the pocket. In this case the touch probe does not return to the clearance height between the four measuring points.

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

The smaller the angle, the less accurately the TNC can calculate the circle center. Minimum input value: 5°.

Cycle parameters

Center in 1st axis Q321 (absolute): Center of the hole in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

- Center in 2nd axis Q322 (absolute value): Center of the hole in the minor axis of the working plane. If you program $\mathrm{Q} 322=0$, the TNC aligns the hole center to the positive Y axis. If you program Q 322 not equal to 0 , then the TNC aligns the hole center to the nominal position (angle of the hole center). Input range -99999.9999 to 99999.9999
- Nominal diameter Q262: Approximate diameter of the circular pocket (or hole). Enter a value that is more likely to be too small than too large. Input range 0 to 99999.9999
- Starting angle Q325 (absolute): Angle between the reference axis of the working plane and the first touch point. Input range -360.000 to 360.000

Stepping angle Q247 (incremental): Angle between two measuring points. The algebraic sign of the stepping angle determines the direction of rotation (negative = clockwise) in which the touch probe moves to the next measuring point. If you wish to probe a circular arc instead of a complete circle, then program the stepping angle to be less than 90°. Input range -120.000 to 120.000

Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999

- Set-up clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to $99999.999 \overline{9}$
- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999
> Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
$\mathbf{0}$: Move at measuring height between measuring points
1: Move at clearance height between measuring points
Set to zero after alignment Q337: Definition of whether the TNC should set the display of the C axis to zero, or write the angular offset in column C of the datum table:
$\mathbf{0}$: Set display of C to 0
$>\mathbf{0}$:Write the angular misalignment, including algebraic sign, in the datum table. Line number = value of Q337. If a C-axis shift is registered in the datum table, the TNC adds the measured angular misalignment.

Example: NC blocks

Example: Determining a basic rotation from two holes

Touch Probe Cycles:
Automatic Datum
Setting

16.1 Fundamentals

Overview

When running touch probe cycles, Cycle 8 MIRROR
IMAGE, Cycle 11 SCALING and Cycle 26 AXIS-SPECIFIC SCALING must not be active.
HEIDENHAIN only gives warranty for the function of the probing cycles if HEIDENHAIN touch probes are used.

The TNC must be specially prepared by the machine tool builder for the use of a 3-D touch probe.

The TNC offers twelve cycles for automatically finding reference points and handling them as follows:
\square Setting the determined values directly as display values

- Entering the determined values in the preset table
- Entering the determined values in a datum table

Cycle	Soft key	Page
408 SLOT CENTER REF PT. Measuring the inside width of a slot, and defining the slot center as datum	Page 403	
409 RIDGE CENTER REF PT. Measuring the outside width of a ridge, and defining the ridge center as datum		
410 DATUM INSIDE RECTANGLE	Page 407	
Measuring the inside length and width of		
a rectangle, and defining the center as		
datum		

Cycle	Soft key	Page
415 DATUM INSIDE CORNER Measuring two lines from the inside of a corner, and defining the intersection as datum	$\stackrel{415}{4}$	Page 431
416 DATUM CIRCLE CENTER (2nd softkey row) Measuring any three holes on a bolt hole circle, and defining the bolthole center as datum		Page 435
417 DATUM IN TS AXIS (2nd soft-key row) Measuring any position in the touch probe axis and defining it as datum		Page 439
418 DATUM FROM 4 HOLES (2nd softkey row) Measuring 4 holes crosswise and defining the intersection of the lines between them as datum	$\left[\begin{array}{l} 418 \\ {\left[\begin{array}{l} 0 \\ 0 \end{array}\right]} \end{array}\right.$	Page 441
419 DATUM IN ONE AXIS (2nd soft-key row) Measuring any position in any axis and defining it as datum	4	Page 445

Characteristics common to all touch probe cycles for datum setting

You can also run the Touch Probe Cycles 408 to 419 during an active basic rotation.

The tilting the working plane function is not permitted in combination with Cycles 408 to 419.

Datum point and touch probe axis

From the touch probe axis that you have defined in the measuring program the TNC determines the working plane for the datum:

Active touch probe axis	Datum setting in
Z	X and Y
Y	Z and X
X	Y and Z

Saving the calculated datum

In all cycles for datum setting you can use the input parameters Q303 and Q 305 to define how the TNC is to save the calculated datum:

$\square \mathbf{0 3 0 5}=\mathbf{0}, \mathbf{0 3 0 3}=\mathbf{a n y}$ value

The TNC sets the calculated datum in the display. The new datum is active immediately. At the same time, the TNC saves the datum set in the display by the cycle in line 0 of the preset table.

- O305 not equal to $0,0303=\mathbf{- 1}$

This combination can only occur if you

- read in programs containing Cycles 410 to 418 created on a TNC $4 x x$
- read in programs containing Cycles 410 to 418 created with an older software version on an iTNC 530
did not specifically define the measured-value transfer with parameter Q303 when defining the cycle.

In these cases the TNC outputs an error message, since the complete handling of REF-referenced datum tables has changed. You must define a measured-value transfer yourself with parameter Q303.

Q305 not equal to $0,0303=0$
The TNC writes the calculated datum in the active datum table. The reference system is the active workpiece coordinate system. The value of parameter Q305 determines the datum number. Activate the datum with Cycle 7 in the part program. Q305 not equal to $0,0303=1$
The TNC writes the calculated datum in the preset table. The reference system is the machine coordinate system (REF coordinates). The value of parameter Q305 determines the preset number. Activate the preset with Cycle 247 in the part program.

Measurement results in $\mathbf{0}$ parameters

The TNC saves the measurement results of the respective touch probe cycle in the globally effective Q parameters Q 150 to Q160. You can use these parameters in your program. Note the table of result parameters listed with every cycle description.

16.2 SLOT CENTER REF PT (Cycle 408, DIN/ISO: G408)

Cycle run

Touch Probe Cycle 408 finds the center of a slot and defines its center as datum. If desired, the TNC can also enter the coordinates into a datum table or the preset table.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the starting point 1 . The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table.
2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \mathbf{F}).
3 Then the touch probe moves either paraxially at the measuring height or linearly at the clearance height to the next starting point 2 and probes the second touch point.
4 Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see "Saving the calculated datum" on page 402) and saves the actual values in the Q parameters listed below.
5 If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing.

Parameter number	Meaning
Q166	Actual value of measured slot width
Q157	Actual value of the centerline

Please note while programming:

Danger of collision!

To prevent a collision between touch probe and workpiece, enter a low estimate for the slot width.

If the slot width and the safety clearance do not permit pre-positioning in the proximity of the touch points, the TNC always starts probing from the center of the slot. In this case the touch probe does not return to the clearance height between the two measuring points.
Before a cycle definition you must have programmed a tool call to define the touch probe axis.

Cycle parameters

Center in 1st axis Q321 (absolute): Center of the slot in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

- Center in 2nd axis Q322 (absolute): Center of the slot in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- Width of slot Q311 (incremental): Width of the slot, regardless of its position in the working plane. Input range 0 to 99999.9999
- Measuring axis (1=1st axis / 2=2nd axis) Q272: Axis in which the measurement is to be made:
1: Reference axis = measuring axis
2: Minor axis = measuring axis
- Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999
- Set-up clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999

Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
$\mathbf{0}$: Move at measuring height between measuring points
1: Move at clearance height between measuring points
\Rightarrow Number in table Q305: Enter the number in the datum/preset table in which the TNC is to save the coordinates of the slot center. If you enter $\mathrm{Q} 305=0$, the TNC automatically sets the display so that the new datum is on the slot center. Input range 0 to 2999

- New datum Q405 (absolute): Coordinate in the measuring axis at which the TNC should set the calculated slot center. Default setting $=0$. Input range: -99999.9999 to 99999.9999
$>$ Measured-value transfer $(\mathbf{0}, 1)$ Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
$\mathbf{0}$: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).

Probe in TS axis Q381: Specify whether the TNC should also set the datum in the touch probe axis: 0: Do not set datum in the touch probe axis 1: Set datum in the touch probe axis

Probe TS axis: Coord. 1st axis Q382 (absolute): Coordinate of the probe point in the reference axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=$ 1. Input range -99999.9999 to 99999.9999

Probe TS axis: Coord. 2nd axis Q383 (absolute): Coordinate of the probe point in the minor axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999

- Probe TS axis: Coord. 3rd axis Q384 (absolute): Coordinate of the probe point in the touch probe axis, at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999
New datum in TS axis Q 333 (absolute): Coordinate in the touch probe axis at which the TNC should set the datum. Default setting $=0$. Input range: -99999.9999 to 99999.9999

Example: NC blocks

16.3 DATUM RIDGE CENTER (Cycle 409, DIN/ISO: G409)

Cycle run

Touch Probe Cycle 409 finds the center of a ridge and defines its center as datum. If desired, the TNC can also enter the coordinates into a datum table or the preset table.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table.
2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \mathbf{F}).
3 Then the touch probe moves at clearance height to the next touch point 2 and probes the second touch point.
4 Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see "Saving the calculated datum" on page 402) and saves the actual values in the Q parameters listed below.
5 If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing.

Parameter number	Meaning
Q166	Actual value of measured ridge width
Q157	Actual value of the centerline

- Center in 1st axis Q321 (absolute): Center of the ridge in the reference axis of the working plane. Input range -99999.9999 to 99999.9999
- Center in 2nd axis O 322 (absolute): Center of the ridge in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- Width of ridge 0311 (incremental): Width of the ridge, regardless of its position in the working plane. Input range 0 to 99999.9999
- Measuring axis (1=1st axis / 2=2nd axis) Q272: Axis in which the measurement is to be made:
1: Reference axis = measuring axis
2: Minor axis = measuring axis
- Measuring height in the touch probe axis 0261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999

Set-up clearance Q 320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999
- Number in table Q305: Enter the number in the datum/preset table in which the TNC is to save the coordinates of the ridge center. If you enter $\mathrm{Q} 305=0$, the TNC automatically sets the display so that the new datum is on the slot center. Input range 0 to 2999
$>$ New datum Q405 (absolute): Coordinate in the measuring axis at which the TNC should set the calculated ridge center. Default setting $=0$. Input range: -99999.9999 to 99999.9999

Measured-value transfer $(\mathbf{0}, 1)$ Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
$\mathbf{0}$: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).

- Probe in TS axis Q381: Specify whether the TNC should also set the datum in the touch probe axis: $\mathbf{0}$: Do not set datum in the touch probe axis 1: Set datum in the touch probe axis
- Probe TS axis: Coord. 1st axis Q382 (absolute): Coordinate of the probe point in the reference axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=$ 1. Input range -99999.9999 to 99999.9999

Probe TS axis: Coord. 2nd axis Q383 (absolute): Coordinate of the probe point in the minor axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999

- Probe TS axis: Coord. 3rd axis Q384 (absolute): Coordinate of the probe point in the touch probe axis, at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999
$>$ New datum in TS axis Q333 (absolute): Coordinate in the touch probe axis at which the TNC should set the datum. Default setting $=0$. Input range: -99999.9999 to 99999.9999

Example: NC blocks

16.4 DATUM FROM INSIDE OF RECTANGLE (Cycle 410, DIN/ISO: G410)

Cycle run

Touch Probe Cycle 410 finds the center of a rectangular pocket and defines its center as datum. If desired, the TNC can also enter the coordinates into a datum table or the preset table.
1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table.
2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \mathbf{F}).
3 Then the touch probe moves either paraxially at the measuring height or linearly at the clearance height to the next starting point 2 and probes the second touch point.
4 The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points.
5 Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see "Saving the calculated datum" on page 402)
6 If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing and saves the actual values in the following Q parameters.

Parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q154	Actual value of length in the reference axis
Q155	Actual value of length in the minor axis

Please note while programming:

Danger of collision!

To prevent a collision between touch probe and workpiece, enter low estimates for the lengths of the first and second sides.

If the dimensions of the pocket and the safety clearance do not permit pre-positioning in the proximity of the touch points, the TNC always starts probing from the center of the pocket. In this case the touch probe does not return to the clearance height between the four measuring points.

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

Cycle parameters

Center in 1st axis Q321 (absolute): Center of the pocket in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

Center in 2nd axis Q322 (absolute): Center of the pocket in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

1st side length Q323 (incremental): Pocket length, parallel to the reference axis of the working plane. Input range 0 to 99999.9999

- 2nd side length Q324 (incremental): Pocket length, parallel to the minor axis of the working plane. Input range 0 to 99999.9999

Measuring height in the touch probe axis Q 261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999

Set-up clearance Q 320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999

Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
$\mathbf{0}$: Move at measuring height between measuring points
1: Move at clearance height between measuring points

Datum number in table Q305: Enter the number in the datum/preset table in which the TNC is to save the coordinates of the pocket center. If you enter Q305=0, the TNC automatically sets the display so that the new datum is at the center of the pocket. Input range 0 to 2999

New datum for reference axis Q331 (absolute): Coordinate in the reference axis at which the TNC should set the pocket center. Default setting $=0$. Input range: -99999.9999 to 99999.9999

New datum for minor axis Q332 (absolute): Coordinate in the minor axis at which the TNC should set the pocket center. Default setting $=0$. Input range: -99999.9999 to 99999.9999

- Measured-value transfer (0, 1) Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the TNC when old programs are read in (see "Saving the calculated datum" on page 402).
$\mathbf{0}$: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system. 1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).

Probe in TS axis Q381: Specify whether the TNC should also set the datum in the touch probe axis: $\mathbf{0}$: Do not set datum in the touch probe axis
1: Set datum in the touch probe axis

- Probe TS axis: Coord. 1st axis Q382 (absolute): Coordinate of the probe point in the reference axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if Q381 = 1. Input range -99999.9999 to 99999.9999
- Probe TS axis: Coord. 2nd axis Q383 (absolute): Coordinate of the probe point in the minor axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999
- Probe TS axis: Coord. 3rd axis Q384 (absolute): Coordinate of the probe point in the touch probe axis, at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999
- New datum in TS axis Q333 (absolute): Coordinate in the touch probe axis at which the TNC should set the datum. Default setting = 0. Input range: -99999.9999 to 99999.9999

Example: NC blocks

16.5 DATUM FROM OUTSIDE OF RECTANGLE (Cycle 411, DIN/ISO: G411)

Cycle run

Touch Probe Cycle 411 finds the center of a rectangular stud and defines its center as datum. If desired, the TNC can also enter the coordinates into a datum table or the preset table.
1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table.
2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \mathbf{F}).
3 Then the touch probe moves either paraxially at the measuring height or linearly at the clearance height to the next starting point 2 and probes the second touch point.
4 The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points.
5 Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see "Saving the calculated datum" on page 402)
6 If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing and saves the actual values in the following Q parameters.

Parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q154	Actual value of length in the reference axis
Q155	Actual value of length in the minor axis

Please note while programming:

Danger of collision!

To prevent a collision between the touch probe and workpiece, enter high estimates for the lengths of the first and second sides.

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

Cycle parameters

Center in 1st axis Q321 (absolute): Center of the stud in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

Center in End axis Q322 (absolute): Center of the stud in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

Dst side length Q323 (incremental): Stud length, parallel to the reference axis of the working plane Input range 0 to 99999.9999
end side length Q324 (incremental): Stud length, parallel to the minor axis of the working plane. Input range 0 to 99999.9999

Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999

Set-up clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999

Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
$\mathbf{0}$: Move at measuring height between measuring points
1: Move at clearance height between measuring points

Datum number in table Q305: Enter the number in the datum/preset table in which the TNC is to save the coordinates of the stud center. If you enter $\mathrm{Q} 305=0$, the TNC automatically sets the display so that the new datum is on the stud center. Input range 0 to 2999

New datum for reference axis Q331 (absolute): Coordinate in the reference axis at which the TNC should set the stud center. Default setting $=0$. Input range: -99999.9999 to 99999.9999

New datum for minor axis Q332 (absolute):
Coordinate in the minor axis at which the TNC should set the stud center. Default setting $=0$. Input range: -99999.9999 to 99999.9999

Measured-value transfer $(0,1)$ Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the TNC when old programs are read in (see "Saving the calculated datum" on page 402).
$\mathbf{0}$: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system. 1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).

- Probe in TS axis Q381: Specify whether the TNC should also set the datum in the touch probe axis: $\mathbf{0}$: Do not set datum in the touch probe axis
1: Set datum in the touch probe axis
- Probe TS axis: Coord. 1st axis Q382 (absolute): Coordinate of the probe point in the reference axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=$ 1. Input range -99999.9999 to 99999.9999

Probe TS axis: Coord. 2nd axis Q383 (absolute): Coordinate of the probe point in the minor axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999

- Probe TS axis: Coord. 3rd axis Q384 (absolute): Coordinate of the probe point in the touch probe axis, at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999
- New datum in TS axis Q333 (absolute): Coordinate in the touch probe axis at which the TNC should set the datum. Default setting = 0. Input range: -99999.9999 to 99999.9999

Example: NC blocks

16.6 DATUM FROM INSIDE OF CIRCLE (Cycle 412, DIN/ISO: G412)

Cycle run

Touch Probe Cycle 412 finds the center of a circular pocket (or of a hole) and defines its center as datum. If desired, the TNC can also enter the coordinates into a datum table or the preset table.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table.
2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column F). The TNC derives the probing direction automatically from the programmed starting angle.
3 Then the touch probe moves in a circular arc either at measuring height or at clearance height to the next starting point 2 and probes the second touch point.
4 The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points.
5 Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see "Saving the calculated datum" on page 402) and saves the actual values in the Q parameters listed below.
6 If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing.

Parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q153	Actual value of diameter

Please note while programming:

Danger of collision!

To prevent a collision between the touch probe and the workpiece, enter a low estimate for the nominal diameter of the pocket (or hole).

If the dimensions of the pocket and the safety clearance do not permit pre-positioning in the proximity of the touch points, the TNC always starts probing from the center of the pocket. In this case the touch probe does not return to the clearance height between the four measuring points.

The smaller the angle increment Q247, the less accurately the TNC can calculate the datum. Minimum input value: 5°

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

Cycle parameters

Center in 1st axis Q321 (absolute): Center of the pocket in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

Center in 2nd axis Q322 (absolute): Center of the pocket in the minor axis of the working plane. If you program $\mathrm{Q} 322=0$, the TNC aligns the hole center to the positive Y axis. If you program Q 322 not equal to 0 , then the TNC aligns the hole center to the nominal position. Input range -99999.9999 to 99999.9999

- Nominal diameter Q262: Approximate diameter of the circular pocket (or hole). Enter a value that is more likely to be too small than too large. Input range 0 to 99999.9999

Starting angle Q325 (absolute): Angle between the reference axis of the working plane and the first touch
 point. Input range -360.0000 to 360.0000

- Stepping angle Q 247 (incremental): Angle between two measuring points. The algebraic sign of the stepping angle determines the direction of rotation (negative = clockwise) in which the touch probe moves to the next measuring point. If you wish to probe a circular arc instead of a complete circle, then program the stepping angle to be less than 90°. Input range -120.0000 to 120.0000

Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999

- Set-up clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999
- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999
> Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
$\mathbf{0}$: Move at measuring height between measuring points
1: Move at clearance height between measuring points
Datum number in table Q305: Enter the number in the datum/preset table in which the TNC is to save the coordinates of the pocket center. If you enter Q305=0, the TNC automatically sets the display so that the new datum is at the center of the pocket. Input range 0 to 2999

New datum for reference axis Q331 (absolute): Coordinate in the reference axis at which the TNC should set the pocket center. Default setting $=0$. Input range: -99999.9999 to 99999.9999

New datum for minor axis Q332 (absolute): Coordinate in the minor axis at which the TNC should set the pocket center. Default setting $=0$. Input range: -99999.9999 to 99999.9999

- Measured-value transfer $(\mathbf{0}, \mathbf{1)}$ Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the TNC when old programs are read in (see "Saving the calculated datum" on page 402).
$\mathbf{0}$: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).

- Probe in TS axis Q381: Specify whether the TNC should also set the datum in the touch probe axis: $\mathbf{0}$: Do not set datum in the touch probe axis
1: Set datum in the touch probe axis
- Probe TS axis: Coord. 1st axis Q382 (absolute): Coordinate of the probe point in the reference axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=$ 1. Input range -99999.9999 to 99999.9999

Probe TS axis: Coord. 2nd axis Q383 (absolute): Coordinate of the probe point in the minor axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999

- Probe TS axis: Coord. 3rd axis Q384 (absolute): Coordinate of the probe point in the touch probe axis, at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999
- New datum in TS axis Q333 (absolute): Coordinate in the touch probe axis at which the TNC should set the datum. Default setting = 0. Input range: -99999.9999 to 99999.9999
$>$ No. of measuring points (4/3) Q423: Specify whether the TNC should measure the hole with 4 or 3 probing points:
4: Use 4 measuring points (standard setting)
3: Use 3 measuring points
- Type of traverse? Line=0/Arc=1 Q365: Definition of the path function with which the tool is to move between the measuring points if "traverse to clearance height" $(\mathrm{Q} 301=1)$ is active.
$\mathbf{0}$: Move between operations on a straight line
1: Move between operations on the pitch circle

Example: NC blocks

Q $321=+50$; CENTER IN 1ST AXIS
Q322 $=+50$; CENTER IN 2ND AXIS
Q262=75	;NOMINAL DIAMETER
Q $325=+0$;STARTING ANGLE
Q247 $=+60$;STEPPING ANGLE
Q261 $=-5$;MEASURING HEIGHT
Q320 $=0$; SET-UP CLEARANCE
Q260 $=+20$; CLEARANCE HEIGHT
Q301 $=0$;MOVE TO CLEARANCE
Q $305=12$; NO. IN TABLE
Q $331=+0$; DATUM
Q $332=+0$; DATUM
Q303 $=+1$;MEAS. VALUE TRANSFER
Q381 $=1$;PROBE IN TS AXIS
Q382 $=+85$;1ST CO. FOR TS AXIS
Q383 $=+50$;2ND CO. FOR TS AXIS
Q $384=+0$;3RD CO. FOR TS AXIS
Q $333=+1$; DATUM
Q423 $=4$;NO. OF MEAS. POINTS
Q365=1	;TYPE OF TRAVERSE

16.7 DATUM FROM OUTSIDE OF CIRCLE (Cycle 413, DIN/ISO: G413)

Cycle run

Touch Probe Cycle 413 finds the center of a circular stud and defines it as datum. If desired, the TNC can also enter the coordinates into a datum table or the preset table.
1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table.
2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \mathbf{F}). The TNC derives the probing direction automatically from the programmed starting angle.
3 Then the touch probe moves in a circular arc either at measuring height or at clearance height to the next starting point 2 and probes the second touch point.
4 The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points.
5 Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see "Saving the calculated datum" on page 402) and saves the actual values in the Q parameters listed below.
6 If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing.

Parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q153	Actual value of diameter

Please note while programming:

Danger of collision!

To prevent a collision between touch probe and workpiece, enter a high estimate for the nominal diameter of the stud.

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

The smaller the angle increment Q247, the less accurately the TNC can calculate the datum. Minimum input value: 5°.

Cycle parameters

Center in 1st axis Q321 (absolute): Center of the stud in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

Center in 2nd axis Q322 (absolute): Center of the stud in the minor axis of the working plane. If you program $\mathrm{Q} 322=0$, the TNC aligns the hole center to the positive Y axis. If you program Q 322 not equal to 0 , then the TNC aligns the hole center to the nominal position. Input range -99999.9999 to 99999.9999

- Nominal diameter Q262: Approximate diameter of the stud. Enter a value that is more likely to be too large than too small. Input range 0 to 99999.9999
> Starting angle Q325 (absolute): Angle between the reference axis of the working plane and the first touch point. Input range -360.0000 to 360.0000
- Stepping angle Q247 (incremental): Angle between two measuring points. The algebraic sign of the stepping angle determines the direction of rotation (negative = clockwise) in which the touch probe moves to the next measuring point. If you wish to probe a circular arc instead of a complete circle, then program the stepping angle to be less than 90°. Input range -120.0000 to 120.0000

Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999

- Set-up clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999
- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999
> Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
$\mathbf{0}$: Move at measuring height between measuring points
1: Move at clearance height between measuring points
Datum number in table Q305: Enter the number in the datum/preset table in which the TNC is to save the coordinates of the stud center. If you enter $\mathrm{Q} 305=0$, the TNC automatically sets the display so that the new datum is on the stud center. Input range 0 to 2999
- New datum for reference axis Q331 (absolute): Coordinate in the reference axis at which the TNC should set the stud center. Default setting $=0$. Input range: -99999.9999 to 99999.9999

New datum for minor axis Q332 (absolute): Coordinate in the minor axis at which the TNC should set the stud center. Default setting $=0$. Input range: -99999.9999 to 99999.9999

Measured-value transfer $(0,1)$ Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the TNC when old programs are read in (see "Saving the calculated datum" on page 402).
$\mathbf{0}$: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).

都

\qquad

Abstract

- Probe in TS axis Q381: Specify whether the TNC should also set the datum in the touch probe axis: $\mathbf{0}$: Do not set datum in the touch probe axis
1: Set datum in the touch probe axis
- Probe TS axis: Coord. 1st axis Q382 (absolute): Coordinate of the probe point in the reference axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=$ 1. Input range -99999.9999 to 99999.9999
- Probe TS axis: Coord. 2nd axis Q383 (absolute): Coordinate of the probe point in the minor axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999
- Probe TS axis: Coord. 3rd axis Q384 (absolute): Coordinate of the probe point in the touch probe axis, at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999
- New datum in TS axis Q333 (absolute): Coordinate in the touch probe axis at which the TNC should set the datum. Basic setting $=0$
No. of measuring points (4/3) Q423: Specify whether the TNC should measure the stud with 4 or 3 probing points:
4: Use 4 measuring points (standard setting)
3: Use 3 measuring points
Type of traverse? Line=0/Arc=1 Q365: Definition of the path function with which the tool is to move between the measuring points if "traverse to clearance height" $(\mathrm{Q} 301=1)$ is active.
$\mathbf{0}$: Move between operations on a straight line 1: Move between operations on the pitch circle

Example: NC blocks

Q321=+50	; CENTER IN 1ST AXIS
Q $322=+50$; CENTER IN 2ND AXIS
Q262=75	;NOMINAL DIAMETER
Q $325=+0$;STARTING ANGLE
Q247 $=+60$;STEPPING ANGLE
Q261 $=-5$;MEASURING HEIGHT
Q320=0	;SET-UP CLEARANCE
Q260 $=+20$; CLEARANCE HEIGHT
Q301 $=0$;MOVE TO CLEARANCE
Q $305=15$; NO. IN TABLE
Q $331=+0$; DATUM
Q $332=+0$; DATUM
Q $303=+1$;MEAS. VALUE TRANSFER
Q381=1	;PROBE IN TS AXIS
Q382 $=+85$;1ST CO. FOR TS AXIS
Q383 $=+50$;2ND CO. FOR TS AXIS
Q384 $=+0$;3RD CO. FOR TS AXIS
Q $333=+1$; DATUM
Q423 $=4$;NO. OF MEAS. POINTS
Q365=1	;TYPE OF TRAVERSE

16.8 DATUM FROM OUTSIDE OF CORNER (Cycle 414, DIN/ISO: G414)

Cycle run

Touch Probe Cycle 414 finds the intersection of two lines and defines it as the datum. If desired, the TNC can also enter the intersection into a datum table or preset table.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the first touch point 1 (see figure at upper right). The TNC offsets the touch probe by the safety clearance in the direction opposite the respective traverse direction.
2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \mathbf{F}). The TNC derives the probing direction automatically from the programmed third measuring point.
3 Then the touch probe moves to the next starting position 2 and probes the second position.
4 The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points.
5 Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see "Saving the calculated datum" on page 402) and saves the coordinates of the determined corner in the Q parameters listed below.
6 If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing.

Parameter number	Meaning
Q151	Actual value of corner in reference axis
Q152	Actual value of corner in minor axis

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.
The TNC always measures the first line (parallel to the reference axis) in the direction of the minor axis of the working plane.
By defining the positions of the measuring points 1 and 3 you also determine the corner at which the TNC sets the datum (see figure at right and table below).

Corner	X coordinate	Y coordinate
A	Point 1 greater than point 3	Point 1 less than point 3
B	Point 1 less than point 3	Point 1 less than point 3
C	Point 1 less than point 3	Point 1 greater than point 3
D	Point 1 greater than point 3	Point 1 greater than point 3

1st meas. point 1st axis Q263 (absolute): Coordinate of the first touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

1st meas. point 2nd axis Q264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

Spacing in 1st axis Q326 (incremental): Distance between the first and second measuring points in the reference axis of the working plane. Input range 0 to 99999.9999

- 3rd meas. point 1st axis Q296 (absolute): Coordinate of the third touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999
- 3rd meas. point 2nd axis Q 297 (absolute): Coordinate of the third touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- Spacing in 2nd axis Q327 (incremental): Distance between third and fourth measuring points in the minor axis of the working plane. Input range 0 to 99999.9999
- Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999
- Set-up clearance Q 320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999^{-}
- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999

Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
$\mathbf{0}$: Move at measuring height between measuring points
1: Move at clearance height between measuring points

- Execute basic rotation Q304: Definition of whether the TNC should compensate workpiece misalignment with a basic rotation:
0: No basic rotation
1: Basic rotation
Datum number in table Q305: Enter the datum number in the datum or preset table in which the TNC is to save the coordinates of the corner. If you enter Q305=0, the TNC automatically sets the display so that the new datum is on the corner. Input range 0 to 2999

New datum for reference axis 0331 (absolute): Coordinate in the reference axis at which the TNC should set the corner. Default setting $=0$. Input range: -99999.9999 to 99999.9999

- New datum for minor axis Q 332 (absolute): Coordinate in the minor axis at which the TNC should set the calculated corner. Default setting $=0$. Input range: -99999.9999 to 99999.9999
$>$ Measured-value transfer $(\mathbf{0}, 1)$ Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the TNC when old programs are read in (see "Saving the calculated datum" on page 402).
$\mathbf{0}$: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).

Probe in TS axis Q381: Specify whether the TNC should also set the datum in the touch probe axis: 0: Do not set datum in the touch probe axis
1: Set datum in the touch probe axis
Probe TS axis: Coord. 1st axis Q382 (absolute): Coordinate of the probe point in the reference axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=$ 1. Input range -99999.9999 to 99999.9999

- Probe TS axis: Coord. 2nd axis Q383 (absolute): Coordinate of the probe point in the minor axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999
- Probe TS axis: Coord. 3rd axis Q384 (absolute): Coordinate of the probe point in the touch probe axis, at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999
- New datum in TS axis Q333 (absolute): Coordinate in the touch probe axis at which the TNC should set the datum. Default setting $=0$. Input range: -99999.9999 to 99999.9999

Example: NC blocks

Q263 $=+37$;1ST POINT 1ST AXIS
Q264 $=+7$;1ST POINT 2ND AXIS
Q326=50	;SPACING IN 1ST AXIS
Q296 $=+95$;3RD POINT 1ST AXIS
Q297 $=+25$;3RD POINT 2ND AXIS
Q327 $=45$;SPACING IN 2ND AXIS
Q261 $=-5$;MEASURING HEIGHT
Q $320=0$; SET-UP CLEARANCE
Q260 $=+20$; CLEARANCE HEIGHT
Q301 $=0$;MOVE TO CLEARANCE
Q304 $=0$;BASIC ROTATION
Q305=7	; NO. IN TABLE
Q331 $=+0$; DATUM
Q $332=+0$; DATUM
Q303=+1	;MEAS. VALUE TRANSFER
Q381 $=1$;PROBE IN TS AXIS
Q382 $=+85$;1ST CO. FOR TS AXIS
Q $383=+50$;2ND CO. FOR TS AXIS
Q $384=+0$;3RD CO. FOR TS AXIS
Q $333=+1$; DATUM

16.9 DATUM FROM INSIDE OF CORNER (Cycle 415, DIN/ISO: G415)

Cycle run

Touch Probe Cycle 415 finds the intersection of two lines and defines it as the datum. If desired, the TNC can also enter the intersection into a datum table or preset table.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the first touch point 1 (see figure at upper right) that you have defined in the cycle. The TNC offsets the touch probe by the safety clearance in the direction opposite the respective traverse direction.
2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \mathbf{F}). The probing direction is derived from the number by which you identify the corner.

3 Then the touch probe moves to the next starting position 2 and probes the second position.
4 The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points.
5 Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see "Saving the calculated datum" on page 402) and saves the coordinates of the determined corner in the Q parameters listed below.
6 If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing.

Parameter number	Meaning
Q151	Actual value of corner in reference axis
Q152	Actual value of corner in minor axis

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.
The TNC always measures the first line in the direction of the minor axis of the working plane.

Cycle parameters

1st meas. point 1st axis 0263 (absolute): Coordinate of the first touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

- 1st meas. point 2nd axis Q264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- Spacing in 1st axis 0326 (incremental): Distance between the first and second measuring points in the reference axis of the working plane. Input range 0 to 99999.9999
- Spacing in 2nd axis Q327 (incremental): Distance between third and fourth measuring points in the minor axis of the working plane. Input range 0 to 99999.9999
- Corner Q308: Number identifying the corner which the TNC is to set as datum. Input range 1 to 4
$>$ Measuring height in the touch probe axis O 261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999
Set-up clearance Q320 (incremental): Additional distance between measuring point and ball tip. O320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999
- Clearance height O 260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999

Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
$\mathbf{0}$: Move at measuring height between measuring points
1: Move at clearance height between measuring points

- Execute basic rotation Q304: Definition of whether the TNC should compensate workpiece misalignment with a basic rotation:
0: No basic rotation
1: Basic rotation
Datum number in table Q305: Enter the datum number in the datum or preset table in which the TNC is to save the coordinates of the corner. If you enter Q305=0, the TNC automatically sets the display so that the new datum is on the corner. Input range 0 to 2999

New datum for reference axis Q 331 (absolute): Coordinate in the reference axis at which the TNC should set the corner. Default setting $=0$. Input range: -99999.9999 to 99999.9999

- New datum for minor axis Q 332 (absolute): Coordinate in the minor axis at which the TNC should set the calculated corner. Default setting $=0$. Input range: -99999.9999 to 99999.9999
- Measured-value transfer $(0,1)$ Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the TNC when old programs are read in (see "Saving the calculated datum" on page 402).
$\mathbf{0}$: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).

Probe in TS axis Q381: Specify whether the TNC should also set the datum in the touch probe axis: 0: Do not set datum in the touch probe axis 1: Set datum in the touch probe axis

Probe TS axis: Coord. 1st axis Q382 (absolute): Coordinate of the probe point in the reference axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=$ 1. Input range -99999.9999 to 99999.9999

- Probe TS axis: Coord. 2nd axis Q383 (absolute): Coordinate of the probe point in the minor axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999
- Probe TS axis: Coord. 3rd axis Q384 (absolute): Coordinate of the probe point in the touch probe axis, at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999

New datum in TS axis Q 333 (absolute): Coordinate in the touch probe axis at which the TNC should set the datum. Default setting $=0$. Input range: -99999.9999 to 99999.9999

Example: NC blocks

Cycle run

Touch Probe Cycle 416 finds the center of a bolt hole circle and defines its center as datum. If desired, the TNC can also enter the coordinates into a datum table or the preset table.

1 The TNC positions the touch probe at rapid traverse (value from column FMAX) following the positioning logic (see "Executing touch probe cycles" on page 373) to the center of the first hole 1.
2 Then the probe moves to the entered measuring height and probes four points to find the first hole center.
3 The touch probe returns to the clearance height and then to the position entered as center of the second hole 2.
4 The TNC moves the touch probe to the entered measuring height and probes four points to find the second hole center.
5 The touch probe returns to the clearance height and then to the position entered as center of the third hole 3.
6 The TNC moves the touch probe to the entered measuring height and probes four points to find the third hole center.
7 Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see "Saving the calculated datum" on page 402) and saves the actual values in the Q parameters listed below.
8 If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing.

Parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q153	Actual value of bolt hole circle diameter

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

Cycle parameters

Center in 1st axis Q273 (absolute): Bolt hole circle center (nominal value) in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

- Center in 2nd axis O274 (absolute): Bolt hole circle center (nominal value) in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- Nominal diameter Q262: Enter the approximate bolt hole circle diameter. The smaller the hole diameter, the more exact the nominal diameter must be. Input range -0 to 99999.9999
- Angle of 1st hole Q291 (absolute): Polar coordinate angle of the first hole center in the working plane. Input range - 360.0000 to 360.0000
- Angle of 2nd hole O 292 (absolute): Polar coordinate angle of the second hole center in the working plane. Input range - 360.0000 to 360.0000
- Angle of 3rd hole Q293 (absolute): Polar coordinate angle of the third hole center in the working plane. Input range - 360.0000 to 360.0000
- Measuring height in the touch probe axis 0261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999
- Clearance height O260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999

Datum number in table Q305: Enter the number in the datum or preset table in which the TNC is to save the coordinates of the bolt-hole circle center. If you enter Q305=0, the TNC automatically sets the display so that the new datum is on the bolt hole center. Input range 0 to 2999

New datum for reference axis Q331 (absolute): Coordinate in the reference axis at which the TNC should set the bolt-hole center. Default setting $=0$. Input range: -99999.9999 to 99999.9999

- New datum for minor axis Q332 (absolute):

Coordinate in the minor axis at which the TNC should set the bolt-hole center. Default setting $=0$. Input range: -99999.9999 to 99999.9999

Measured-value transfer $(\mathbf{0}, 1)$ Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the TNC when old programs are read in (see "Saving the calculated datum" on page 402).
0: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).

Probe in TS axis Q381: Specify whether the TNC should also set the datum in the touch probe axis: 0: Do not set datum in the touch probe axis
1: Set datum in the touch probe axis
Probe TS axis: Coord. 1st axis Q382 (absolute): Coordinate of the probe point in the reference axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=$ 1. Input range -99999.9999 to 99999.9999

Probe TS axis: Coord. 2nd axis Q383 (absolute): Coordinate of the probe point in the minor axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999

- Probe TS axis: Coord. 3rd axis Q384 (absolute): Coordinate of the probe point in the touch probe axis, at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999
- New datum in TS axis Q333 (absolute): Coordinate in the touch probe axis at which the TNC should set the datum. Default setting $=0$. Input range: -99999.9999 to 99999.9999
- Set-up clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table), and is only effective when the datum is probed in the touch probe axis. Input range 0 to 99999.9999

Example: NC blocks

16.11 DATUM IN TOUCH PROBE AXIS (Cycle 417, DIN/ISO: G417)

Cycle run

Touch Probe Cycle 417 measures any coordinate in the touch probe axis and defines it as datum. If desired, the TNC can also enter the measured coordinate in a datum table or preset table.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the programmed starting point 1. The TNC offsets the touch probe by the safety clearance in the positive direction of the touch probe axis.
2 Then the touch probe moves in its own axis to the coordinate entered as touch point 1 and measures the actual position with a simple probing movement.
3 Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see "Saving the calculated datum" on page 402) and saves the actual values in the Q parameters listed below.

Parameter number Meaning

Q160
Actual value of measured point

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis. The TNC then sets the datum in this axis.

- 1st meas. point 1st axis Q263 (absolute): Coordinate of the first touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999
- 1st meas. point 2nd axis O 264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- 1st meas. point 3rd axis O294 (absolute): Coordinate of the first touch point in the touch probe axis. Input range -99999.9999 to 99999.9999
- Set-up clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999
Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999
- Datum number in table 0305: Enter the number in the datum or preset table in which the TNC is to save the coordinate. If you enter $\mathrm{Q} 305=0$, the TNC automatically sets the display so that the new datum is on the probed surface. Input range 0 to 2999
- New datum in TS axis Q333 (absolute): Coordinate in the touch probe axis at which the TNC should set the datum. Default setting $=0$. Input range: -99999.9999 to 99999.9999

Measured-value transfer $(0,1)$ Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the TNC when old programs are read in (see "Saving the calculated datum" on page 402).
0: Write determined datum in the active datum table.
The reference system is the active workpiece coordinate system.
1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).

Example: NC blocks

Q263 $=+25$;1ST POINT 1ST AXIS
Q264 $=+25$;1ST POINT 2ND AXIS
Q294 $=+25$;1ST POINT 3RD AXIS
Q320 $=0$;SET-UP CLEARANCE
Q260 $=+50$; CLEARANCE HEIGHT
Q305 $=0$;NO. IN TABLE
Q $333=+0$; DATUM
Q303 $=+1$;MEAS. VALUE TRANSFER

Cycle run

Touch Probe Cycle 418 calculates the intersection of the lines connecting opposite holes and sets the datum at the intersection. If desired, the TNC can also enter the intersection into a datum table or preset table.
1 The TNC positions the touch probe at rapid traverse (value from column FMAX) following the positioning logic (see "Executing touch probe cycles" on page 373) to the center of the first hole 1.
2 Then the probe moves to the entered measuring height and probes four points to find the first hole center.
3 The touch probe returns to the clearance height and then to the position entered as center of the second hole 2 .
4 The TNC moves the touch probe to the entered measuring height and probes four points to find the second hole center.
5 The TNC repeats steps 3 and 4 for the holes 3 and 4 .
6 Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see "Saving the calculated datum" on page 402). The TNC calculates the datum as the intersection of the lines connecting the centers of holes $1 / 3$ and $2 / 4$ and saves the actual values in the Q parameters listed below.

7 If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing.

Parameter number	Meaning
Q151	Actual value of intersection point in reference axis
Q152	Actual value of intersection point in minor axis

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

Cycle parameters

1st center in 1st axis O 268 (absolute): center of the 1st hole in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

- 1st center in 2nd axis O 269 (absolute): center of the 1st hole in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- 2nd center in 1st axis 0270 (absolute): center of the $2 n d$ hole in the reference axis of the working plane. Input range -99999.9999 to 99999.9999
- 2nd center in 2nd axis Q271 (absolute): center of the 2nd hole in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- 3rd center in 1st axis 0316 (absolute): center of the 3rd hole in the reference axis of the working plane. Input range -99999.9999 to 99999.9999
- 3rd center in 2nd axis 0317 (absolute): center of the 3rd hole in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- 4th center in 1st axis 0318 (absolute): center of the 4th hole in the reference axis of the working plane. Input range -99999.9999 to 99999.9999
- 4th center in 2nd axis Q319 (absolute): center of the 4th hole in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999
- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999

Datum number in table Q305: Enter the number in the datum or preset table in which the TNC is to save the coordinates of the line intersection. If you enter Q305=0, the TNC automatically sets the display so that the new datum is at the intersection of the connecting lines. Input range 0 to 2999

New datum for reference axis Q 331 (absolute): Coordinate in the reference axis at which the TNC should set the calculated intersection of the connecting lines. Default setting $=0$. Input range: -99999.9999 to 99999.9999

- New datum for minor axis Q332 (absolute):

Coordinate in the minor axis at which the TNC should set the calculated intersection of the connecting lines. Default setting $=0$. Input range: -99999.9999 to 99999.9999

Measured-value transfer $(\mathbf{0 , 1)} \mathrm{Q} 303$: Specify whether the determined datum is to be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the TNC when old programs are read in (see "Saving the calculated datum" on page 402).
0: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).

Probe in TS axis Q381: Specify whether the TNC should also set the datum in the touch probe axis: 0: Do not set datum in the touch probe axis 1: Set datum in the touch probe axis

Probe TS axis: Coord. 1st axis Q382 (absolute): Coordinate of the probe point in the reference axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if Q381 $=1$.

Probe TS axis: Coord. 2nd axis Q383 (absolute): Coordinate of the probe point in the minor axis of the working plane at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999

- Probe TS axis: Coord. 3rd axis Q384 (absolute): Coordinate of the probe point in the touch probe axis, at which point the datum is to be set in the touch probe axis. Only effective if $\mathrm{Q} 381=1$. Input range -99999.9999 to 99999.9999
- New datum in TS axis Q333 (absolute): Coordinate in the touch probe axis at which the TNC should set the datum. Default setting $=0$. Input range: -99999.9999 to 99999.9999

Example: NC blocks

16.13 DATUM IN ONE AXIS (Cycle 419, DIN/ISO: G419)

Cycle run

Touch Probe Cycle 419 measures any coordinate in any axis and defines it as datum. If desired, the TNC can also enter the measured coordinate in a datum table or preset table.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the programmed starting point 1. The TNC offsets the touch probe by the safety clearance in the direction opposite the programmed probing direction.
2 Then the touch probe moves to the programmed measuring height and measures the actual position with a simple probing movement.
3 Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see "Saving the calculated datum" on page 402).

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.
If you use Cycle 419 several times in succession to save the datum in more than one axis in the preset table, you must activate the preset number last written to by Cycle 419 after every execution of Cycle 419 (this is not required if you overwrite the active preset).

Cycle parameters

- 1st meas. point 1st axis Q263 (absolute): Coordinate of the first touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

1st meas. point 2nd axis Q264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

- Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999
- Set-up clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999
- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999

Measuring axis (1...3: 1=reference axis) Q272: Axis in which the measurement is to be made:
1: Reference axis = measuring axis
2: Minor axis = measuring axis
3: Touch probe axis = measuring axis

Axis assignment		
Active touch probe axis: 0272=3	Corresponding reference axis: $0272=1$	Corresponding minor axis: $0272=2$
Z	X	Y
Y	Z	X
X	Y	Z

Traverse direction Q267: Direction in which the probe is to approach the workpiece:
-1: Negative traverse direction
+1: Positive traverse direction
Datum number in table Q305: Enter the number in the datum or preset table in which the TNC is to save the coordinate. If you enter $\mathrm{Q} 305=0$, the TNC automatically sets the display so that the new datum is on the probed surface. Input range 0 to 2999

New datum Q333 (absolute): Coordinate at which the TNC should set the datum. Default setting $=0$. Input range: -99999.9999 to 99999.9999

- Measured-value transfer (0,1) Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
-1: Do not use. See "Saving the calculated datum" on page 402
0: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).

Example: NC blocks
5 TCH PROBE 419 DATUM IN ONE AXIS
Q263=+25 ;1ST POINT 1ST AXIS
Q264=+25 ;1ST POINT 2ND AXIS
Q261=+25 ;MEASURING HEIGHT
Q320=0 ;SET-UP CLEARANCE
Q260=+50 ; CLEARANCE HEIGHT
Q272=+1 ;MEASURING AXIS
Q267=+1 ; TRAVERSE DIRECTION
Q305=0 ; NO. IN TABLE
Q333=+0 ; DATUM
Q303=+1 ;MEAS. VALUE TRANSFER

Example: Datum setting in center of a circular segment and on top surface of workpiece

0 BEGIN PGM CYC413 MM
1 TOOL CALL 69 Z
Call tool 0 to define the touch probe axis

2 TCH PROBE 413 DATUM OUTSIDE CIRCLE	
Q321=+25 ; CENTER IN 1ST AXIS	Center of circle: X coordinate
Q322=+25 ; CENTER IN 2ND AXIS	Center of circle: Y coordinate
Q262=30 ; NOMINAL DIAMETER	Circle diameter
Q325 $=+90$; STARTING ANGLE	Polar coordinate angle for 1st touch point
Q247 $=+45$; STEPPING ANGLE	Stepping angle for calculating the starting points 2 to 4
Q261=-5 ;MEASURING HEIGHT	Coordinate in the touch probe axis in which the measurement is made
Q320=2 ;SET-UP CLEARANCE	Safety clearance in addition to SET_UP column
Q260 $=+10$; CLEARANCE HEIGHT	Height in the touch probe axis at which the probe can traverse without collision
Q301=0 ;MOVE TO CLEARANCE	Do not move to clearance height between measuring points
Q305=0 ; NO. IN TABLE	Set display
Q331=+0 ; DATUM	Set the display in X to 0
Q332=+10 ; DATUM	Set the display in Y to 10
Q303 $=+0$; MEAS. VALUE TRANSFER	Without function, since display is to be set
Q381=1 ; PROBE IN TS AXIS	Also set datum in the touch probe axis
Q382 $=+25$;1ST CO. FOR TS AXIS	X coordinate of touch point
Q383 $=+25$;2ND CO. FOR TS AXIS	Y coordinate of touch point
Q384=+25 ; 3RD CO. FOR TS AXIS	Z coordinate of touch point
Q333 $=+0$; DATUM	Set the display in Z to 0
Q423=4 ;NO. OF MEAS. POINTS	Measure circle with 4 probes
Q365=0 ; TYPE OF TRAVERSE	Move on circular path between measuring points
3 CALL PGM 35K47	Call part program
4 END PGM CYC413 MM	

The measured bolt hole center shall be written in the preset table so that it may be used at a later time.

0 BEGIN PGM CYC416 MM
1 TOOL CALL 69 Z
2 TCH PROBE 417 DATUM IN TS AXIS
Q263 $=+7.5$;1ST POINT 1ST AXIS
Q264=+7.5 ; 1ST POINT 2ND AXIS
Q294 $=+25$;1ST POINT 3RD AXIS
Q320=0 ;SET-UP CLEARANCE
Q260 $=+50$; CLEARANCE HEIGHT
Q305=1 ; NO. IN TABLE
Q333=+0 ; DATUM
Q303=+1 ; MEAS. VALUE TRANSFER

[^3]| 3 TCH PROBE 416 DATUM CIRCLE CENTER | |
| :---: | :---: |
| Q273 $=+35$; CENTER IN 1ST AXIS | Center of the bolt hole circle: X coordinate |
| Q274 $=+35$; CENTER IN 2ND AXIS | Center of the bolt hole circle: Y coordinate |
| Q262=50 ; NOMINAL DIAMETER | Diameter of the bolt hole circle |
| Q291=+90 ; ANGLE OF 1ST HOLE | Polar coordinate angle for 1 st hole center 1 |
| Q292=+180 ; ANGLE OF 2ND HOLE | Polar coordinate angle for 2 nd hole center 2 |
| Q293 $=+270$; ANGLE OF 3RD HOLE | Polar coordinate angle for 3rd hole center 3 |
| Q261=+15 ; MEASURING HEIGHT | Coordinate in the touch probe axis in which the measurement is made |
| Q260 $=+10$; CLEARANCE HEIGHT | Height in the touch probe axis at which the probe can traverse without collision |
| Q305=1 ; NO. IN TABLE | Enter center of bolt hole circle (X and Y) in line 1 |
| Q331 $=+0$; DATUM | |
| Q332=+0 ; DATUM | |
| Q303=+1 ; MEAS. VALUE TRANSFER | In the preset table PRESET.PR, save the calculated datum referenced to the machine-based coordinate system (REF system) |
| Q381=0 ; PROBE IN TS AXIS | Do not set a datum in the touch probe axis |
| Q382=+0 ;1ST CO. FOR TS AXIS | No function |
| Q383 $=+0$;2ND CO. FOR TS AXIS | No function |
| Q384 $=+0$;3RD CO. FOR TS AXIS | No function |
| Q333 $=+0$; DATUM | No function |
| Q320=0 ; SET-UP CLEARANCE | Safety clearance in addition to SET_UP column |
| 4 CYCL DEF 247 DATUM SETTING | Activate new preset with Cycle 247 |
| Q339=1 ; DATUM NUMBER | |
| 6 CALL PGM 35KLZ | Call part program |
| 7 END PGM CYC416 MM | |

Touch Probe Cycles: Automatic Workpiece Inspection

17.1 Fundamentals

Overview

When running touch probe cycles, Cycle 8 MIRROR IMAGE, Cycle 11 SCALING and Cycle 26 AXIS-SPECIFIC SCALING must not be active.

HEIDENHAIN only gives warranty for the function of the probing cycles if HEIDENHAIN touch probes are used.

The TNC must be specially prepared by the machine tool builder for the use of a 3-D touch probe.

The TNC offers twelve cycles for measuring workpieces automatically.

Cycle	Soft key	Page
0 REFERENCE PLANE Measuring a coordinate in a selectable axis	\square	Page 460
1 POLAR DATUM PLANE Measuring a point in a probing direction		Page 461
420 MEASURE ANGLE Measuring an angle in the working plane		Page 463
421 MEASURE HOLE Measuring the position and diameter of a hole		Page 466
422 MEASURE CIRCLE OUTSIDE Measuring the position and diameter of a circular stud		Page 470
423 MEASURE RECTANGLE INSIDE Measuring the position, length and width of a rectangular pocket		Page 474
424 MEASURE RECTANGLE OUTSIDE Measuring the position, length and width of a rectangular stud		Page 478
425 MEASURE INSIDE WIDTH (2nd soft-key row) Measuring slot width	${ }^{425}$	Page 482
426 MEASURE RIDGE WIDTH (2nd softkey row) Measuring the width of a ridge	426	Page 485
427 MEASURE COORDINATE (2nd softkey row) Measuring any coordinate in a selectable axis		Page 488

Cycle	Soft key	Page
430 MEASURE BOLT HOLE CIRCLE (2nd soft-key row) Measuring position and diameter of a bolt hole circle		Page 491
439 MEASURE PLANE (2nd soft-key row) Measuring the A and B axis angles of a plane		

Recording the results of measurement

For all cycles in which you automatically measure workpieces (with the exception of Cycles 0 and 1), you can have the TNC record the measurement results. In the respective probing cycle you can define if the TNC is to

- Save the measuring log to a file
- Interrupt program run and display the measuring log on the screen
- Create no measuring log

If you want to save the measuring log to a file, the TNC, by default, saves the data as an ASCII file in the directory TNC:\..

Use the HEIDENHAIN data transfer software TNCremo if you wish to output the measuring log via the data interface.

Example: Measuring log for touch probe cycle 421:

Measuring log for Probing Cycle 421 Hole Measuring

Date: 30-06-2005
Time: 6:55:04
Measuring program: TNC:\GEH35712\CHECK1.H
Nominal values:
Center in reference axis: 50.0000
Center in minor axis: 65.0000
Diameter: 12.0000
Given limit values:
Max. limit for center in reference axis: $\quad 50.1000$
Min. limit for center in reference axis: 49.9000
Max. limit for center in minor axis: 65.1000
Min. limit for center in minor axis: 64.9000
Maximum dimension for hole: 12.0450
Minimum dimension for hole: 12.0000
Actual values:
Center in reference axis: 50.0810
Center in minor axis: 64.9530
Diameter: 12.0259
Deviations:
Center in reference axis: 0.0810
Center in minor axis: -0.0470
Diameter: 0.0259
Further measuring results: Measuring height: -5.0000
End of measuring log

Measurement results in \mathbf{Q} parameters

The TNC saves the measurement results of the respective touch probe cycle in the globally effective Q parameters Q150 to Q160. Deviations from the nominal value are saved in the parameters Q161 to Q166. Note the table of result parameters listed with every cycle description.

During cycle definition the TNC also shows the result parameters for the respective cycle in a help graphic (see figure at upper right). The highlighted result parameter belongs to that input parameter.

Classification of results

For some cycles you can inquire the status of measuring results through the globally effective Q parameters Q180 to Q182:

Class of results	Parameter value
Measurement results are within tolerance	$\mathrm{Q} 180=1$
Rework is required	$\mathrm{Q} 181=1$
Scrap	$\mathrm{Q} 182=1$

The TNC sets the rework or scrap marker as soon as one of the measuring values falls outside of tolerance. To determine which of the measuring results lies outside of tolerance, check the measuring log, or compare the respective measuring results (Q150 to Q160) with their limit values.

In Cycle 427 the TNC assumes that you are measuring an outside dimension (stud). However, you can correct the status of the measurement by entering the correct maximum and minimum dimension together with the probing direction.

[^4]
Tolerance monitoring

For most of the cycles for workpiece inspection you can have the TNC perform tolerance monitoring. This requires that you define the necessary limit values during cycle definition. If you do not wish to monitor for tolerances, simply leave the 0 (the default value) in the monitoring parameters.

Tool monitoring

For some cycles for workpiece inspection you can have the TNC perform tool monitoring. The TNC then monitors whether

- The tool radius should be compensated because of the deviations from the nominal value (values in Q16x).
- The deviations from the nominal value (values in Q16x) are greater than the tool breakage tolerance.

Tool compensation

This function works only:

- If the tool table is active.

If tool monitoring is switched on in the cycle (enter a tool name or Q330 unequal to 0). Select the tool name input by soft key. The TNC no longer displays the right single quotation mark.

If you perform several compensation measurements, the TNC adds the respective measured deviation to the value stored in the tool table.

The TNC always compensates the tool radius in the DR column of the tool table, even if the measured deviation lies within the given tolerance. You can inquire whether re-working is necessary via parameter Q181 in the NC program (Q181=1: must be reworked).

For Cycle 427:

- If an axis of the active working plane is defined as measuring axis ($\mathrm{Q} 272=1$ or 2), the TNC compensates the tool radius as described above. From the defined traversing direction (Q267) the TNC determines the direction of compensation.
- If the touch probe axis is defined as measuring axis ($\mathrm{O} 272=3$), the TNC compensates the tool length.

Tool breakage monitoring

The TNC will output an error message and stop program run if the measured deviation is greater than the breakage tolerance of the tool. At the same time the tool will be deactivated in the tool table (column $\mathrm{TL}=\mathrm{L})$.

Reference system for measurement results

The TNC transfers all the measurement results to the result parameters and the log file in the active coordinate system, or as the case may be, the shifted and/or rotated/tilted coordinate system.

17.2 REF. PLANE (Cycle 0, DIN/ISO: G55)

Cycle run

1 The touch probe moves in a 3-D movement at rapid traverse (value from FMAX column) to the starting position 1 programmed in the cycle.
2 Then the touch probe runs the probing process at the probing feed rate (column \mathbf{F}). The probing direction is to be defined in the cycle.
3 After the TNC has saved the position, the probe retracts to the starting point and saves the measured coordinate in a Q parameter. The TNC also stores the coordinates of the touch probe position at the time of the triggering signal in the parameters Q115 to Q119. For the values in these parameters the TNC does not account for the stylus length and radius.

Please note while programming:

Danger of collision!

Pre-position the touch probe in order to avoid a collision when the programmed pre-positioning point is approached.

Cycle parameters

Parameter number for result: Enter the number of the Q parameter to which you want to assign the coordinate. Input range 0 to 1999

- Probing axis/Probing direction: Enter the probing axis with the axis selection keys or ASCII keyboard and the algebraic sign for the probing direction. Confirm your entry with the ENT key. Input range: All NC axes
- Nominal position value: Use the axis selection keys or the ASCII keyboard to enter all coordinates of the nominal pre-positioning point values for the touch probe. Input range -99999.9999 to 99999.9999
- To conclude the input, press the ENT key.

Example: NC blocks

67 TCH PROBE 0.0 REF. PLANE Q5 X-
68 TCH PROBE $0.1 \mathrm{X}+5 \mathrm{Y}+0 \mathrm{Z}-5$

17.3 POLAR REFERENCE PLANE (Cycle 1)

Cycle run

Touch Probe Cycle 1 measures any position on the workpiece in any direction.

1 The touch probe moves at rapid traverse (value from FMAX column) to the starting position 1 programmed in the cycle.
2 Then the touch probe runs the probing process at the probing feed rate (column F). During probing the TNC moves simultaneously in two axes (depending on the probing angle). The probing direction is defined by the polar angle entered in the cycle.
3 After the TNC has saved the position, the probe returns to the starting point. The TNC also stores the coordinates of the touch probe position at the time of the triggering signal in parameters Q115 to Q119.

Please note while programming:

Danger of collision!

Pre-position the touch probe in order to avoid a collision when the programmed pre-positioning point is approached.

The probing axis defined in the cycle specifies the probing plane:
Probing axis X : X / Y plane
Probing axis Y : Y / Z plane
Probing axis Z : Z / X plane

Cycle parameters

- Probing axis: Enter the probing axis with the axis selection keys or ASCII keyboard. Confirm your entry with the ENT key. Input range: \mathbf{X}, \mathbf{Y} or \mathbf{Z}
- Probing angle: Angle, measured from the probing axis, at which the touch probe is to move. Input range -180.0000 to 180.0000

Nominal position value: Use the axis selection keys or the ASCII keyboard to enter all coordinates of the nominal pre-positioning point values for the touch probe. Input range -99999.9999 to 99999.9999

- To conclude the input, press the ENT key.

Example: NC blocks

67 TCH PROBE 1.0 POLAR REFERENCE PLANE
68 TCH PROBE $1.1 \times$ ANGLE: +30
69 TCH PROBE $1.2 X+5 \mathrm{Y}+\mathrm{O} \mathrm{Z}-5$

17.4 MEASURE ANGLE (Cycle 420, DIN/ISO: G420)

Cycle run

Touch Probe Cycle 420 measures the angle that any straight surface on the workpiece describes with respect to the reference axis of the working plane.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the programmed starting point 1. The TNC offsets the touch probe by the safety clearance in the direction opposite the defined traverse direction.
2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \mathbf{F}).
3 Then the touch probe moves to the next starting position 2 and probes the second position.
4 The TNC returns the touch probe to the clearance height and saves the measured angle in the following Q parameter:

Parameter number	Meaning
Q150	The measured angle is referenced to the reference axis of the machining plane.

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.
If touch probe axis = measuring axis, set Q263 equal to Q265 if the angle about the A axis is to be measured; set Q263 not equal to Q265 if the angle is to be measured about the B axis.

Cycle parameters

- 1st meas. point 1st axis Q263 (absolute): Coordinate of the first touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

1st meas. point 2nd axis Q264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

2nd meas. point 1st axis O265 (absolute): Coordinate of the second touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

2nd meas. point 2nd axis Q266 (absolute): Coordinate of the second touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

- Measuring axis Q272: Axis in which the measurement is to be made:
1: Reference axis $=$ measuring axis
2: Minor axis = measuring axis
3: Touch probe axis = measuring axis

Traverse direction 1 Q267: Direction in which the probe is to approach the workpiece:
-1: Negative traverse direction
+1: Positive traverse direction
Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999

Set-up clearance Q 320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999
- Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
$\mathbf{0}$: Move at measuring height between measuring points
1: Move at clearance height between measuring points
- Measuring \log Q281: Definition of whether the TNC is to create a measuring log:
0: No measuring log
1: Generate measuring log: the TNC saves the log file TCHPR420.TXT by default in the directory TNC: 1 2: Interrupt program run and display the measuring \log on the screen. Resume program run with NC Start.

Example: NC blocks

Q263 $=+10$;1ST POINT 1ST AXIS
Q264 $=+10$;1ST POINT 2ND AXIS
Q265 $=+15$;2ND POINT 1ST AXIS
Q266=+95	;2ND POINT 2ND AXIS
Q272=1	;MEASURING AXIS
Q267 $=-1$;TRAVERSE DIRECTION
Q261 $=-5$;MEASURING HEIGHT
Q $320=0$; SET-UP CLEARANCE
Q260 $=+10$; CLEARANCE HEIGHT
Q301=1	;MOVE TO CLEARANCE
Q281 $=1$;MEASURING LOG

17.5 MEASURE HOLE (Cycle 421, DIN/ISO: G421)

Cycle run

Touch Probe Cycle 421 measures the center and diameter of a hole (or circular pocket). If you define the corresponding tolerance values in the cycle, the TNC makes a nominal-to-actual value comparison and saves the deviation value in system parameters.
1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table
2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \mathbf{F}). The TNC derives the probing direction automatically from the programmed starting angle.
3 Then the touch probe moves in a circular arc either at measuring height or at clearance height to the next starting point 2 and probes the second touch point.
4 The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points.
5 Finally the TNC returns the touch probe to the clearance height and saves the actual values and the deviations in the following Q parameters:

Parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q153	Actual value of diameter
Q161	Deviation at center of reference axis
Q162	Deviation at center of minor axis
Q163	Deviation from diameter

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.
The smaller the angle, the less accurately the TNC can calculate the hole dimensions. Minimum input value: 5°.

Cycle parameters

Center in 1st axis Q273 (absolute): Center of the hole in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

- Center in 2nd axis Q274 (absolute value): Center of the hole in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- Nominal diameter Q262: Enter the diameter of the hole. Input range 0 to 99999.9999
- Starting angle Q325 (absolute): Angle between the reference axis of the working plane and the first touch point. Input range -360.0000 to 360.0000
- Stepping angle Q247 (incremental): Angle between two measuring points. The algebraic sign of the stepping angle determines the direction of rotation (negative = clockwise). If you wish to probe a circular arc instead of a complete circle, then program the stepping angle to be less than 90°. Input range -120.0000 to 120.0000

Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999

- Set-up clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999
- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999
> Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
$\mathbf{0}$: Move at measuring height between measuring points
1: Move at clearance height between measuring points
Maximum limit of size for hole Q275: Maximum permissible diameter for the hole (circular pocket). Input range 0 to 99999.9999
- Minimum limit of size for hole Q276: Minimum permissible diameter for the hole (circular pocket). Input range 0 to 99999.9999
- Tolerance for center 1st axis Q279: Permissible position deviation in the reference axis of the working plane. Input range 0 to 99999.9999
- Tolerance for center 2nd axis Q280: Permissible position deviation in the minor axis of the working plane. Input range 0 to 99999.9999

Measuring \log Q281: Definition of whether the TNC is to create a measuring log:
0: No measuring log
1: Generate measuring log: the TNC saves the log file TCHPR421.TXT by default in the directory TNC: $\$.
2: Interrupt program run and display the measuring log on the screen. Resume program run with NC Start.
-PGM stop if tolerance error Q309: Definition of whether in the event of a violation of tolerance limits the TNC is to interrupt program run and output an error message:
0: Do not interrupt program run, no error message
1: Interrupt program run, output an error message
Tool for monitoring Q330: Definition of whether the TNC is to monitor the tool (see "Tool monitoring" on page 458). Input range 0 to 32767.9; alternatively, tool name with max. 16 characters
$\mathbf{0}$: Monitoring not active
$\mathbf{> 0}$: Tool number in the tool table TOOL.T
No. of measuring points (4/3) Q423: Specify whether the TNC should measure the stud with 4 or 3 probing points:
4: Use 4 measuring points (standard setting)
3: Use 3 measuring points
> Type of traverse? Line=0/Arc=1 Q365: Definition of the path function with which the tool is to move between the measuring points if "traverse to clearance height" ($\mathrm{Q} 301=1$) is active.
$\mathbf{0}$: Move between operations on a straight line
1: Move between operations on the pitch circle

Example: NC blocks

17.6 MEAS. CIRCLE OUTSIDE (Cycle 422, DIN/ISO: G422)

Cycle run

Touch Probe Cycle 422 measures the center and diameter of a circular stud. If you define the corresponding tolerance values in the cycle, the TNC makes a nominal-to-actual value comparison and saves the deviation value in system parameters.
1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the starting point 1 . The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table.
2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \mathbf{F}). The TNC derives the probing direction automatically from the programmed starting angle.
3 Then the touch probe moves in a circular arc either at measuring height or at clearance height to the next starting point 2 and probes the second touch point.
4 The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points.
5 Finally the TNC returns the touch probe to the clearance height and saves the actual values and the deviations in the following Q parameters:

Parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q153	Actual value of diameter
Q161	Deviation at center of reference axis
Q162	Deviation at center of minor axis
Q163	Deviation from diameter

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.
The smaller the angle, the less accurately the TNC can calculate the dimensions of the stud. Minimum input value: 5°

Cycle parameters

Center in 1st axis Q273 (absolute): Center of the stud in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

Center in 2nd axis Q274 (absolute): Center of the stud in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

- Nominal diameter Q262: Enter the diameter of the stud. Input range 0 to 99999.9999
- Starting angle Q325 (absolute): Angle between the reference axis of the working plane and the first touch point. Input range -360.0000 to 360.0000
- Stepping angle Q247 (incremental): Angle between two measuring points. The algebraic sign of the stepping angle determines the direction of rotation (negative = clockwise). If you wish to probe a circular arc instead of a complete circle, then program the stepping angle to be less than 90°. Input range -120.0000 to 120.0000

Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999

- Set-up clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999
- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999
> Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
$\mathbf{0}$: Move at measuring height between measuring points
1: Move at clearance height between measuring points
- Maximum limit of size for stud Q277: Maximum permissible diameter for the stud. Input range 0 to 99999.9999
- Minimum limit of size for the stud Q278: Minimum permissible diameter for the stud. Input range 0 to 99999.9999
- Tolerance for center 1st axis Q279: Permissible position deviation in the reference axis of the working plane. Input range 0 to 99999.9999
$>$ Tolerance for center 2nd axis Q280: Permissible position deviation in the minor axis of the working plane. Input range 0 to 99999.9999

Measuring \log Q281: Definition of whether the TNC is to create a measuring log:
0: No measuring log
1: Generate measuring log: the TNC saves the log file TCHPR422.TXT by default in the directory TNC: $\$.
2: Interrupt program run and display the measuring log on the screen. Resume program run with NC Start.
-PGM stop if tolerance error Q309: Definition of whether in the event of a violation of tolerance limits the TNC is to interrupt program run and output an error message:
0: Do not interrupt program run, no error message
1: Interrupt program run, output an error message
Tool for monitoring Q330: Definition of whether the TNC is to monitor the tool (see "Tool monitoring" on page 458). Input range 0 to 32767.9; alternatively, tool name with max. 16 characters
$\mathbf{0}$: Monitoring not active
$\mathbf{> 0}$: Tool number in the tool table TOOL.T
$>$ No. of measuring points (4/3) Q423: Specify whether the TNC should measure the stud with 4 or 3 probing points:
4: Use 4 measuring points (standard setting)
3: Use 3 measuring points

- Type of traverse? Line=0/Arc=1 Q365: Definition of the path function with which the tool is to move between the measuring points if "traverse to clearance height" ($\mathrm{Q} 301=1$) is active.
$\mathbf{0}$: Move between operations on a straight line
1: Move between operations on the pitch circle

Example: NC blocks

Q273 $=+50$;CENTER IN 1ST AXIS
Q274 $=+50$;CENTER IN 2ND AXIS
Q262=75	;NOMINAL DIAMETER
Q $325=+90$; Starting Angle
Q247 $=+30$;STEPPING ANGLE
Q261 $=-5$;MEASURING HEIGHT
Q320 $=0$;SET-UP CLEARANCE
Q260 $=+10$; CLEARANCE HEIGHT
Q301 $=0$;MOVE TO CLEARANCE
Q275=35.15	;MAX. LIMIT
Q276=34.9	;MIN. LIMIT
Q279 $=0.05$;TOLERANCE 1ST CENTER
Q280=0.05	;TOLERANCE 2ND CENTER
Q281=1	;MEASURING LOG
Q309 = 0	;PGM STOP IF ERROR
Q330 $=0$; T00L
Q423 4	;NO. OF MEAS. POINTS
Q365 $=1$;TYPE OF TRAVERSE

17.7 MEAS. RECTAN. INSIDE (Cycle 423, DIN/ISO: G423)

Cycle run

Touch Probe Cycle 423 finds the center, length and width of a rectangular pocket. If you define the corresponding tolerance values in the cycle, the TNC makes a nominal-to-actual value comparison and saves the deviation value in system parameters.
1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table.
2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \mathbf{F}).
3 Then the touch probe moves either paraxially at the measuring height or linearly at the clearance height to the next starting point 2 and probes the second touch point.
4 The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points.
5 Finally the TNC returns the touch probe to the clearance height and saves the actual values and the deviations in the following Q parameters:

Parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q154	Actual value of length in the reference axis
Q155	Actual value of length in the minor axis
Q161	Deviation at center of reference axis
Q162	Deviation at center of minor axis
Q164	Deviation of side length in reference axis
Q165	Deviation of side length in minor axis

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

If the dimensions of the pocket and the safety clearance do not permit pre-positioning in the proximity of the touch points, the TNC always starts probing from the center of the pocket. In this case the touch probe does not return to the clearance height between the four measuring points.

Cycle parameters

Center in 1st axis Q273 (absolute): Center of the pocket in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

Center in 2nd axis Q274 (absolute): Center of the pocket in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

1st side length Q282: Pocket length, parallel to the reference axis of the working plane. Input range 0 to 99999.9999

2nd side length Q283: Pocket length, parallel to the minor axis of the working plane. Input range 0 to 99999.9999
$>$ Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the
 measurement is to be made. Input range -99999.9999 to 99999.9999

Set-up clearance Q 320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

- Clearance height O260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999

Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
0: Move at measuring height between measuring points
1: Move at clearance height between measuring points

Max. size limit 1st side length Q284: Maximum permissible length of the pocket. Input range 0 to 99999.9999

Min. size limit 1st side length Q285: Minimum permissible length of the pocket. Input range 0 to 99999.9999

- Max. size limit 2nd side length Q286: Maximum permissible width of the pocket. Input range 0 to 99999.9999
- Min. size limit 2nd side length Q287: Minimum permissible width of the pocket. Input range 0 to 99999.9999
- Tolerance for center 1st axis Q279: Permissible position deviation in the reference axis of the working plane. Input range 0 to 99999.9999
- Tolerance for center 2nd axis Q280: Permissible position deviation in the minor axis of the working plane. Input range 0 to 99999.9999

Measuring \log Q281: Definition of whether the TNC is to create a measuring log:
0: No measuring log
1: Generate measuring log: the TNC saves the log file TCHPR423.TXT by default in the directory TNC: 1 .
2: Interrupt program run and display the measuring log on the screen. Resume program run with NC Start.

PGM stop if tolerance error Q309: Definition of whether in the event of a violation of tolerance limits the TNC is to interrupt program run and output an error message:
0: Do not interrupt program run, no error message
1: Interrupt program run, output an error message
Tool for monitoring Q330: Definition of whether the TNC is to monitor the tool (see "Tool monitoring" on page 458). Input range 0 to 32767.9; alternatively, tool name with max. 16 characters
$\mathbf{0}$: Monitoring not active
>0: Tool number in the tool table TOOL.T

Example: NC blocks

5 TCH PROBE 423 MEAS. RECTAN. INSIDE
Q273=+50 ; CENTER IN 1ST AXIS
Q274=+50 ;CENTER IN 2ND AXIS
Q282=80 ;1ST SIDE LENGTH
Q283=60 ;2ND SIDE LENGTH
Q261=-5 ;MEASURING HEIGHT
Q320=0 ;SET-UP CLEARANCE
Q260=+10 ; CLEARANCE HEIGHT
Q301=1 ;MOVE TO CLEARANCE
Q284=0 ;MAX. LIMIT 1ST SIDE
Q285=0 ;MIN. LIMIT 1ST SIDE
Q286=0 ;MAX. LIMIT 2ND SIDE
Q287=0 ;MIN. LIMIT 2ND SIDE
Q279=0 ;TOLERANCE 1ST CENTER
Q280=0 ;TOLERANCE 2ND CENTER
Q281=1 ;MEASURING LOG
Q309=0 ;PGM STOP IF ERROR
Q $330=0 \quad$;TOOL

17.8 MEASURE RECTANGLE OUTSIDE (Cycle 424, DIN/ISO: G424)

Cycle run

Touch Probe Cycle 424 finds the center, length and width of a rectangular stud. If you define the corresponding tolerance values in the cycle, the TNC makes a nominal-to-actual value comparison and saves the deviation value in system parameters.
1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table.
2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \mathbf{F}).
3 Then the touch probe moves either paraxially at the measuring height or linearly at the clearance height to the next starting point 2 and probes the second touch point.
4 The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points.
5 Finally the TNC returns the touch probe to the clearance height and saves the actual values and the deviations in the following Q parameters:

Parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q154	Actual value of length in the reference axis
Q155	Actual value of length in the minor axis
Q161	Deviation at center of reference axis
Q162	Deviation at center of minor axis
Q164	Deviation of side length in reference axis
Q165	Deviation of side length in minor axis

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

Cycle parameters

Center in 1st axis Q273 (absolute): Center of the stud in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

- Center in 2nd axis Q274 (absolute): Center of the stud in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- 1st side length Q282: Stud length, parallel to the reference axis of the working plane. Input range 0 to 99999.9999
- 2nd side length O283: Stud length, parallel to the minor axis of the working plane. Input range 0 to 99999.9999
- Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999

Set-up clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999

Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
0: Move at measuring height between measuring points 1: Move at clearance height between measuring points

Max. size limit 1st side length Q284: Maximum permissible length of the stud. Input range 0 to 99999.9999

Min. size limit 1st side length Q285: Minimum permissible length of the stud. Input range 0 to 99999.9999

- Max. size limit 2nd side length Q286: Maximum permissible width of the stud. Input range 0 to 99999.9999

Min. size limit 2nd side length Q287: Minimum permissible width of the stud. Input range 0 to 99999.9999

- Tolerance for center 1st axis Q279: Permissible position deviation in the reference axis of the working plane. Input range 0 to 99999.9999
- Tolerance for center 2nd axis Q280: Permissible position deviation in the minor axis of the working plane. Input range 0 to 99999.9999

Measuring \log Q281: Definition of whether the TNC is to create a measuring log:
0: No measuring log
1: Generate measuring log: the TNC saves the log file TCHPR424.TXT by default in the directory TNC: $\$.
2: Interrupt program run and display the measuring log on the screen. Resume program run with NC Start.
-PGM stop if tolerance error Q309: Definition of whether in the event of a violation of tolerance limits the TNC is to interrupt program run and output an error message:
0: Do not interrupt program run, no error message
1: Interrupt program run, output an error message
Tool for monitoring Q330: Definition of whether the TNC is to monitor the tool (see "Tool monitoring" on page 458). Input range: 0 to 32767.9, alternatively tool name with max. 16 characters:
$\mathbf{0}$: Monitoring not active
$\mathbf{> 0}$: Tool number in the tool table TOOL.T

Example: NC blocks

5 TCH PROBE 424 MEAS. RECTAN. OUTS.
Q273=+50 ; CENTER IN 1ST AXIS
Q274=+50 ;CENTER IN 2ND AXIS
Q282=75 ;1ST SIDE LENGTH
Q283=35 ;2ND SIDE LENGTH
Q261=-5 ;MEASURING HEIGHT
Q320 $=0$;SET-UP CLEARANCE
Q260=+20 ; CLEARANCE HEIGHT
Q301=0 ;MOVE TO CLEARANCE
Q284=75.1 ;MAX. LIMIT 1ST SIDE
Q285=74.9 ;MIN. LIMIT 1ST SIDE
Q286=35 ;MAX. LIMIT 2ND SIDE
Q287=34.95;MIN. LIMIT 2ND SIDE
Q279=0.1 ; TOLERANCE 1ST CENTER
Q280=0.1 ; TOLERANCE 2ND CENTER
Q281=1 ;MEASURING LOG
Q309 $=0$;PGM STOP IF ERROR
Q $330=0 \quad$;TOOL

17.9 MEASURE INSIDE WIDTH (Cycle 425, DIN/ISO: G425)

Cycle run

Touch Probe Cycle 425 measures the position and width of a slot (or pocket). If you define the corresponding tolerance values in the cycle, the TNC makes a nominal-to-actual value comparison and saves the deviation value in a system parameter.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table.
2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column F). The first probing is always in the positive direction of the programmed axis.
3 If you enter an offset for the second measurement, the TNC then moves the touch probe (if required, at clearance height) to the next starting point 2 and probes the second touch point. If the nominal length is large, the TNC moves the touch probe to the second touch point at rapid traverse. If you do not enter an offset, the TNC measures the width in the exact opposite direction.
4 Finally the TNC returns the touch probe to the clearance height and saves the actual values and the deviation in the following Q parameters:

Parameter number	Meaning
Q156	Actual value of measured length
Q157	Actual value of the centerline
Q166	Deviation of the measured length

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

Starting point in 1st axis 0328 (absolute): Starting point for probing in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

Starting point in 2nd axis Q329 (absolute): Starting point for probing in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

Offset for 2nd measurement Q310 (incremental): Distance by which the touch probe is displaced before the second measurement. If you enter 0 , the TNC does not offset the touch probe. Input range -99999.9999 to 99999.9999

- Measuring axis Q272: Axis in the working plane in which the measurement is to be made:
1: Reference axis = measuring axis
2: Minor axis = measuring axis
$>$ Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999
- Clearance height O260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999
- Nominal length Q311: Nominal value of the length to be measured. Input range 0 to 99999.9999
> Maximum dimension Q288: Maximum permissible length. Input range 0 to 99999.9999
- Minimum dimension Q289: Minimum permissible length. Input range 0 to 99999.9999

Measuring \log Q281: Definition of whether the TNC is to create a measuring log:
0: No measuring log
1: Generate measuring log: the TNC saves the log file TCHPR425.TXT by default in the directory TNC: 1 . 2: Interrupt program run and display the measuring log on the screen. Resume program run with NC Start.
PPGM stop if tolerance error Q309: Definition of whether in the event of a violation of tolerance limits the TNC is to interrupt program run and output an error message:
0: Do not interrupt program run, no error message
1: Interrupt program run, output an error message

- Tool for monitoring Q330: Definition of whether the TNC is to monitor the tool (see "Tool monitoring" on page 458). Input range 0 to 32767.9; alternatively, tool name with max. 16 characters 0: Monitoring not active
$\mathbf{> 0}$: Tool number in the tool table TOOL. T
- Set-up clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET UP (touch probe table). Input range 0 to 99999.9999
- Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points: $\mathbf{0}$: Move at measuring height between measuring points
1: Move at clearance height between measuring points

Example: NC blocks

5 TCH PROBE 425 MEASURE INSIDE WIDTH

Q328=+75 ; STARTNG PNT 1ST AXIS
Q329 = -12.5;STARTNG PNT 2ND AXIS
Q310 $=+0$;0FFS. 2ND MEASUREMENT
Q272=1 ;MEASURING AXIS
Q261=-5 ;MEASURING HEIGHT
Q260=+10 ;CLEARANCE HEIGHT
Q311=25 ; NOMINAL LENGTH
Q288=25.05; MAX. LIMIT
Q289=25 ;MIN. LIMIT
Q281=1 ;MEASURING LOG
Q309 $=0 \quad$;PGM STOP IF ERROR
Q330 $=0 \quad$;TOOL
Q320=0 ;SET-UP CLEARANCE
Q301=0 ;MOVE TO CLEARANCE

17.10 MEASURE RIDGE WIDTH (Cycle 426, DIN/ISO: G426)

Cycle run

Touch Probe Cycle 426 measures the position and width of a ridge. If you define the corresponding tolerance values in the cycle, the TNC makes a nominal-to-actual value comparison and saves the deviation value in system parameters.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the starting point 1 . The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table.
2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \mathbf{F}). The first probing is always in the negative direction of the programmed axis.
3 Then the touch probe moves at clearance height to the next starting position and probes the second touch point.
4 Finally the TNC returns the touch probe to the clearance height and saves the actual values and the deviation in the following Q parameters:

Parameter number	Meaning
Q156	Actual value of measured length
Q157	Actual value of the centerline
Q166	Deviation of the measured length

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

1st meas. point 1st axis Q263 (absolute): Coordinate of the first touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

1st meas. point 2nd axis O 264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

2nd meas. point 1st axis O265 (absolute): Coordinate of the second touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

2nd meas. point 2nd axis Q266 (absolute): Coordinate of the second touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

- Measuring axis Q272: Axis in the working plane in which the measurement is to be made:
1: Reference axis = measuring axis
2: Minor axis = measuring axis
\Rightarrow Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999

Set-up clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999
- Nominal length Q311: Nominal value of the length to be measured. Input range 0 to 99999.9999
- Maximum dimension Q288: Maximum permissible length. Input range 0 to 99999.9999
- Minimum dimension Q289: Minimum permissible length. Input range 0 to 99999.9999

Measuring \log Q281: Definition of whether the TNC is to create a measuring log:
0: No measuring log
1: Generate measuring log: The TNC saves the log file TCHPR426.TXT by default in the directory TNC: \backslash. 2: Interrupt program run and display the measuring log on the screen. Resume program run with NC Start.
-PGM stop if tolerance error Q309: Definition of whether in the event of a violation of tolerance limits the TNC is to interrupt program run and output an error message:
0: Do not interrupt program run, no error message 1: Interrupt program run, output an error message

Tool for monitoring Q330: Definition of whether the TNC is to monitor the tool (see "Tool monitoring" on page 458). Input range: 0 to 32767.9, alternatively tool name with max. 16 characters
0: Monitoring not active
$\mathbf{> 0}$: Tool number in the tool table TOOL.T

Example: NC blocks

5 TCH PROBE 426 MEASURE RIDGE WIDTH
Q263=+50 ;1ST POINT 1ST AXIS
Q264 $=+25$;1ST POINT 2ND AXIS
Q265=+50 ;2ND POINT 1ST AXIS
Q266=+85 ;2ND POINT 2ND AXIS
Q272=2 ;MEASURING AXIS
Q261=-5 ;MEASURING HEIGHT
Q320=0 ;SET-UP CLEARANCE
Q260 $=+20$; CLEARANCE HEIGHT
Q311=45 ; NOMINAL LENGTH
Q288=45 ;MAX. LIMIT
Q289 = 44.95;MIN. LIMIT
Q281=1 ;MEASURING LOG
Q309=0 ;PGM STOP IF ERROR
Q330 $=0 \quad ; T 00 L$

17.11 MEASURE COORDINATE (Cycle 427, DIN/ISO: G427)

Cycle run

Touch Probe Cycle 427 finds a coordinate in a selectable axis and saves the value in a system parameter. If you define the corresponding tolerance values in the cycle, the TNC makes a nominal-to-actual value comparison and saves the deviation value in system parameters.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the starting point 1. The TNC offsets the touch probe by the safety clearance in the direction opposite the defined traverse direction.
2 Then the TNC positions the touch probe to the entered touch point 1 in the working plane and measures the actual value in the selected axis.
3 Finally the TNC returns the touch probe to the clearance height and saves the measured coordinate in the following Q parameter:

Parameter number	Meaning
Q160	Measured coordinate

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

Cycle parameters

1st meas. point 1st axis Q263 (absolute):
Coordinate of the first touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

1st meas. point 2nd axis Q264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

- Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999

Set-up clearance Q 320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

- Measuring axis (1 to 3: 1=reference axis) Q272: Axis in which the measurement is to be made:
1: Reference axis = measuring axis
2: Minor axis = measuring axis
3: Touch probe axis = measuring axis
- Traverse direction 1 Q267: Direction in which the probe is to approach the workpiece:
-1: Negative traverse direction
+1: Positive traverse direction
Clearance height O 260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999

Measuring \log Q281: Definition of whether the TNC is to create a measuring log:
0: No measuring log
1: Generate measuring log: the TNC saves the log file TCHPR427.TXT by default in the directory TNC: 1. 2: Interrupt program run and display the measuring log on the screen. Resume program run with NC Start.

- Maximum limit of size Q288: Maximum permissible measured value. Input range 0 to 99999.9999
- Minimum limit of size Q289: Minimum permissible measured value. Input range 0 to 99999.9999

PGM stop if tolerance error Q309: Definition of whether in the event of a violation of tolerance limits the TNC is to interrupt program run and output an error message:
0: Do not interrupt program run, no error message
1: Interrupt program run, output an error message
Tool for monitoring Q330: Definition of whether the TNC is to monitor the tool (see "Tool monitoring" on page 458). Input range 0 to 32767.9; alternatively, tool name with max. 16 characters:
$\mathbf{0}$: Monitoring not active
$\mathbf{> 0}$: Tool number in the tool table TOOL.T

Example: NC blocks

5 TCH PROBE 427 MEASURE COORDINATE

Q263 $=+35$;1ST POINT 1ST AXES
Q264 $=+45$;1ST POINT 2ND AXIS
Q261=+5 ;MEASURING HEIGHT
Q320 $=0$;SET-UP CLEARANCE
Q272=3 ;MEASURING AXIS
Q267=-1 ;TRAVERSE DIRECTION
Q260 $=+20$; CLEARANCE HEIGHT
Q281=1 ;MEASURING LOG
Q288=5.1 ;MAX. LIMIT
Q289 $=4.95$;MIN. LIMIT
Q309 $=0 \quad$;PGM STOP IF ERROR
Q330 $=0 \quad$;TOOL

17.12 MEASURE BOLT HOLE CIRCLE (Cycle 430, DIN/ISO: G430)

Cycle run

Touch Probe Cycle 430 finds the center and diameter of a bolt hole circle by probing three holes. If you define the corresponding tolerance values in the cycle, the TNC makes a nominal-to-actual value comparison and saves the deviation value in system parameters.
1 The TNC positions the touch probe at rapid traverse (value from column FMAX) following the positioning logic (see "Executing touch probe cycles" on page 373) to the center of the first hole 1.
2 Then the probe moves to the entered measuring height and probes four points to find the first hole center.
3 The touch probe returns to the clearance height and then to the position entered as center of the second hole 2.
4 The TNC moves the touch probe to the entered measuring height and probes four points to find the second hole center.
5 The touch probe returns to the clearance height and then to the position entered as center of the third hole 3.

6 The TNC moves the touch probe to the entered measuring height and probes four points to find the third hole center.
7 Finally the TNC returns the touch probe to the clearance height and saves the actual values and the deviations in the following Q parameters:

Parameter number	Meaning
Q151	Actual value of center in reference axis
Q152	Actual value of center in minor axis
Q153	Actual value of bolt hole circle diameter
Q161	Deviation at center of reference axis
Q162	Deviation at center of minor axis
Q163	Deviation of bolt hole circle diameter

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

Cycle 430 only monitors for tool breakage; there is no automatic tool compensation.

Cycle parameters

- Center in 1st axis Q273 (absolute): Bolt hole circle center (nominal value) in the reference axis of the working plane. Input range -99999.9999 to 99999.9999
- Center in 2nd axis Q274 (absolute): Bolt hole circle center (nominal value) in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- Nominal diameter Q262: Enter the bolt hole circle diameter. Input range 0 to 99999.9999
- Angle of 1st hole Q291 (absolute): Polar coordinate angle of the first hole center in the working plane. Input range - 360.0000 to 360.0000
- Angle of 2nd hole Q292 (absolute): Polar coordinate angle of the second hole center in the working plane. Input range - 360.0000 to 360.0000
- Angle of 3rd hole Q293 (absolute): Polar coordinate angle of the third hole center in the working plane. Input range - 360.0000 to 360.0000

Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999

- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999
- Maximum limit of size Q288: Maximum permissible diameter of bolt hole circle. Input range 0 to 99999.9999
- Minimum limit of size Q289: Minimum permissible diameter of bolt hole circle. Input range 0 to 99999.9999
- Tolerance for center 1st axis Q279: Permissible position deviation in the reference axis of the working plane. Input range 0 to 99999.9999
- Tolerance for center 2nd axis Q280: Permissible position deviation in the minor axis of the working plane. Input range 0 to 99999.9999

Measuring $\boldsymbol{\operatorname { l o g }}$ Q281: Definition of whether the TNC is to create a measuring log:
0: No measuring log
1: Generate measuring log: the TNC saves the log file TCHPR430.TXT by default in the directory TNC: 1 . 2: Interrupt program run and display the measuring log on the screen. Resume program run with NC Start.
PGM stop if tolerance error Q309: Definition of whether in the event of a violation of tolerance limits the TNC is to interrupt program run and output an error message:
$\mathbf{0}$: Do not interrupt program run, no error message
1: Interrupt program run, output an error message

- Tool number for monitoring Q330: Definition of whether the TNC is to monitor for tool breakage (see "Tool monitoring" on page 458): Input range 0 to 32767.9; alternatively tool name with max.

16 characters
$\mathbf{0}$: Monitoring not active
$\mathbf{> 0}$: Tool number in the tool table TOOL.T

Example: NC blocks

17.13 MEASURE PLANE (Cycle 431, DIN/ISO: G431)

Cycle run

Touch Probe Cycle 431 finds the angle of a plane by measuring three points. It saves the measured values in system parameters.
1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see "Executing touch probe cycles" on page 373) to the programmed starting point 1 and measures the first touch point of the plane. The TNC offsets the touch probe by the safety clearance in the direction opposite to the direction of probing.
2 The touch probe returns to the clearance height and then moves in the working plane to starting point 2 and measures the actual value of the second touch point of the plane.
3 The touch probe returns to the clearance height and then moves in the working plane to starting point 3 and measures the actual value of the third touch point.
4 Finally the TNC returns the touch probe to the clearance height and
 saves the measured angle values in the following Q parameters:

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.
For the TNC to be able to calculate the angular values, the three measuring points must not be positioned on one straight line.

The spatial angles that are needed for tilting the working plane are saved in parameters $\mathrm{Q} 170-\mathrm{Q} 172$. With the first two measuring points you also specify the direction of the reference axis when tilting the working plane.

The third measuring point determines the direction of the tool axis. Define the third measuring point in the direction of the positive Y axis to ensure that the position of the tool axis in a clockwise coordinate system is correct.

Cycle parameters

1st meas. point 1st axis Q263 (absolute): Coordinate of the first touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

1st meas. point 2nd axis Q264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

1st meas. point 3rd axis Q294 (absolute): Coordinate of the first touch point in the touch probe axis. Input range -99999.9999 to 99999.9999
2nd meas. point 1st axis O265 (absolute): Coordinate of the second touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

2nd meas. point 2nd axis Q266 (absolute): Coordinate of the second touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

2nd meas. point 3rd axis Q295 (absolute): Coordinate of the second touch point in the touch probe axis. Input range -99999.9999 to 99999.9999
> 3rd meas. point 1st axis O296 (absolute): Coordinate of the third touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999
> 3rd meas. point 2nd axis Q297 (absolute): Coordinate of the third touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

3rd meas. point 3rd axis Q298 (absolute):
Coordinate of the third touch point in the touch probe axis. Input range -99999.9999 to 99999.9999

Set-up clearance Q 320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999
- Measuring \log Q281: Definition of whether the TNC is to create a measuring log:
0: No measuring log
1: Generate measuring log: the TNC saves the log file TCHPR431.TXT by default in the directory TNC: . 2: Interrupt program run and display the measuring log on the screen. Resume program run with NC Start.

Example: NC blocks

5 TCH PROBE 431 MEASURE PLANE

Q263=+20 ;1ST POINT 1ST AXIS
Q264=+20 ;1ST POINT 2ND AXIS
Q294=-10 ;1ST POINT 3RD AXIS
Q265=+50 ;2ND POINT 1ST AXIS
Q266=+80 ;2ND POINT 2ND AXIS
Q295=+0 ;2ND POINT 3RD AXIS
Q296=+90 ;3RD POINT 1ST AXIS
Q297=+35 ;3RD POINT 2ND AXIS
Q298=+12 ;3RD POINT 3RD AXIS
Q320=0 ;SET-UP CLEARANCE
Q260=+5 ;CLEARANCE HEIGHT
Q281=1 ;MEASURING LOG

17.14 Programming Examples

Example: Measuring and reworking a rectangular stud

Program sequence:

- Roughing with 0.5 mm finishing allowance
- Measuring
- Rectangular stud finishing in accordance with the measured values

Q285=0 ;MIN. LIMIT 1ST SIDE	
Q286=0 ; MAX. LIMIT 2ND SIDE	
Q287 $=0$;MIN. LIMIT 2ND SIDE	
Q279=0 ; TOLERANCE 1ST CENTER	
Q280=0 ; TOLERANCE 2ND CENTER	
Q281=0 ;MEASURING LOG	No measuring log transmission
Q309 $=0$; PGM STOP IF ERROR	Do not output an error message
Q330 $=0$; TOOL NUMBER	No tool monitoring
$9 \mathrm{FN} 2: \mathrm{Q1}=+\mathrm{Q1}-+\mathrm{Q} 164$	Calculate length in X including the measured deviation
$10 \mathrm{FN} 2: \mathrm{Q} 2=+$ 2 -+ + 165	Calculate length in Y including the measured deviation
11 L Z+100 R0 FMAX	Retract the touch probe, change the tool
12 TOOL CALL 1 Z S5000	Tool call for finishing
13 CALL LBL 1	Call subprogram for machining
14 L Z+100 R0 FMAX M2	Retract in the tool axis, end program
15 LBL 1	Subprogram with fixed cycle for rectangular stud
16 CYCL DEF 213 STUD FINISHING	
Q200=20 ;SET-UP CLEARANCE	
Q201 $=-10$; DEPTH	
Q206=150 ; FEED RATE FOR PLUNGING	
Q202=5 ;PLUNGING DEPTH	
Q207=500 ; FEED RATE FOR MILLING	
Q203 $=+10$; SURFACE COORDINATE	
Q204=20 ;2ND SET-UP CLEARANCE	
Q216=+50 ; CENTER IN 1ST AXIS	
Q217 $=+50$; CENTER IN 2ND AXIS	
Q218=Q1 ; 1ST SIDE LENGTH	Length in X variable for roughing and finishing
Q219 = Q2 ; 2ND SIDE LENGTH	Length in Y variable for roughing and finishing
Q220 $=0$; CORNER RADIUS	
Q221=0 ; ALLOWANCE IN 1ST AXS	
17 CYCL CALL M3	Cycle call
18 LBL 0	End of subprogram
19 END PGM BEAMS MM	

Example: Measuring a rectangular pocket and recording the results

0 BEGIN PGM BSMEAS MM	
1 TOOL CALL 1 Z	Tool call for touch probe
2 L Z+100 RO FMAX	Retract the touch probe
3 TCH PROBE 423 MEAS. RECTAN. INSIDE	
Q273 $=+50$; CENTER IN 1ST AXIS	
Q274 $=+40$; CENTER IN 2ND AXIS	
Q282=90 ; 1ST SIDE LENGTH	Nominal length in X
Q283=70 ;2ND SIDE LENGTH	Nominal length in Y
Q261=-5 ;MEASURING HEIGHT	
Q320 $=0$;SET-UP CLEARANCE	
Q260 $=+20$; CLEARANCE HEIGHT	
Q301=0 ;MOVE TO CLEARANCE	

Q284=90.15;MAX. LIMIT 1ST SIDE	Maximum limit in X
Q285=89.95;MIN. LIMIT 1ST SIDE	Minimum limit in X
Q286=70.1 ; MAX. LIMIT 2ND SIDE	Maximum limit in Y
Q287 $=69.9$;MIN. LIMIT 2ND SIDE	Minimum limit in Y
Q279=0.15 ; TOLERANCE 1ST CENTER	Permissible position deviation in X
Q280=0.1 ; TOLERANCE 2ND CENTER	Permissible position deviation in Y
Q281=1 ;MEASURING LOG	Save measuring log to a file
Q309 =0 ; PGM STOP IF ERROR	Do not display an error message in case of a tolerance violation
Q330=0 ; TOOL NUMBER	No tool monitoring
4 L Z+100 RO FMAX M2	Retract in the tool axis, end program
5 END PGM BSMEAS MM	

Touch Probe Cycles:
Special Functions

18.1 Fundamentals

Overview

When running touch probe cycles, Cycle 8 MIRROR IMAGE, Cycle 11 SCALING and Cycle 26 AXIS-SPECIFIC SCALING must not be active.

HEIDENHAIN only gives warranty for the function of the probing cycles if HEIDENHAIN touch probes are used.

The TNC must be specially prepared by the machine tool builder for the use of a 3-D touch probe.

The TNC provides a cycle for the following special purpose:

Cycle	Soft key	Page
3 MEASURING Cycle for defining OEM cycles	${ }^{3} \stackrel{\mathrm{PA}}{\square}$	Page 505

18.2 MEASURING (Cycle 3)

Cycle run

Touch Probe Cycle 3 measures any position on the workpiece in a selectable direction. Unlike other measuring cycles, Cycle 3 enables you to enter the measuring range SET UP and feed rate \mathbf{F} directly. Also, the touch probe retracts by a definable value after determining the measured value MB.
1 The touch probe moves from the current position at the entered feed rate in the defined probing direction. The probing direction must be defined in the cycle as a polar angle.
2 After the TNC has saved the position, the touch probe stops. The TNC saves the X, Y, Z coordinates of the probe-tip center in three successive Q parameters. The TNC does not conduct any length or radius compensations. You define the number of the first result parameter in the cycle.
3 Finally, the TNC moves the touch probe back by that value against the probing direction that you defined in the parameter MB.

Please note while programming:

The exact behavior of Touch Probe Cycle 3 is defined by your machine tool builder or a software manufacturer who uses it within specific touch probe cycles.

The DIST (maximum traverse to touch point) and \mathbf{F} (probing feed rate) data from the touch-probe table, which are effective in other measuring cycles, do not apply in Touch Probe Cycle 3.
Remember that the TNC always writes to four successive Q parameters.

If the TNC was not able to determine a valid touch point, the program is run without error message. In this case the TNC assigns the value -1 to the 4th result parameter so that you can deal with the error yourself.

The TNC retracts the touch probe by no more than the retraction distance $\mathbf{M B}$ and does not pass the starting point of the measurement. This rules out any collision during retraction.

With function FN17: SYSWRITE ID 990 NR 6 you can set whether the cycle runs through the probe input X12 or X13.

Parameter number for result: Enter the number of the Q parameter to which you want the TNC to assign the first measured coordinate (X). The values Y and Z are in the immediately following Q parameters. Input range 0 to 1999

- Probing axis: Enter the axis in whose direction the probe is to move and confirm with the ENT key. Input range: X, Y or Z
- Probing angle: Angle, measured from the defined probing axis in which the touch probe is to move. Confirm with ENT. Input range -180.0000 to 180.0000
- Maximum measuring range: Enter the maximum distance from the starting point by which the touch probe is to move. Confirm with ENT. Input range -99999.9999 to 99999.9999

Feed rate for measurement: Enter the measuring feed rate in $\mathrm{mm} / \mathrm{min}$. Input range 0 to 3000.000

- Maximum retraction distance: Traverse path in the direction opposite the probing direction, after the stylus was deflected. The TNC returns the touch probe to a point no farther than the starting point, so that there can be no collision. Input range 0 to 99999.9999
\rightarrow Reference system? ($0=A C T / 1=$ REF): Specify whether the probing direction and the result of measurement are to be referenced to the actual coordinate system (ACT, can be shifted or rotated), or to the machine coordinate system (REF):
$\mathbf{0}$: Probe in the current system and save measurement result in the ACT system 1: Probe in the machine-based REF system and save measurement result in the REF system
Error mode ($\mathbf{0}=\mathbf{0 F F} / \mathbf{1}=\mathbf{0 N}$): Specify whether the TNC is to issue an error message if the stylus is deflected at cycle start. If you select mode $\mathbf{1}$, the TNC saves the value $\mathbf{- 1}$ in the fourth result parameter and continues the cycle.
0: Issue error message
1: Do not issue error message

19.1 Kinematics Measurement with TS Touch Probes (KinematicsOpt Option)

Fundamentals

Accuracy requirements are becoming increasingly stringent, particularly in the area of 5-axis machining. Complex parts need to be manufactured with precision and reproducible accuracy even over long periods.
Some of the reasons for inaccuracy in multi-axis machining are deviations between the kinematic model saved in the control (see 1 in the figure at right), and the kinematic conditions actually existing on the machine (see 2 in the figure at right). When the rotary axes are positioned, these deviations cause inaccuracy of the workpiece (see 3 in the figure at right). It is therefore necessary for the model to approach reality as closely as possible.

The TNC function KinematicsOpt is an important component that helps you to really fulfill these complex requirements: a 3-D touch probe cycle measures the rotary axes on your machine fully automatically, regardless of whether they are in the form of tables or spindle heads. A calibration sphere is fixed at any position on the
 machine table, and measured with a resolution that you define. During cycle definition you simply define for each rotary axis the area that you want to measure.

From the measured values, the TNC calculates the static tilting accuracy. The software minimizes the positioning error arising from the tilting movements and, at the end of the measurement process, automatically saves the machine geometry in the respective machine constants of the kinematic table.

Overview

The TNC offers cycles that enable you to automatically save, check and optimize the machine kinematics:

Cycle	Soft key	Page
450 SAVE KINEMATICS: Automatically saving and restoring kinematic configurations	P5s	Page 510
451 MEASURE KINEMATICS:		
Automatically checking or optimizing the machine kinematics	a51	Page 513

19.2 Prerequisites

The following are prerequisites for using the KinematicsOpt option:

- The software options 48 (KinematicsOpt), 8 (Software option 1) and 17 (Touch Probe function) must be enabled.
- The 3-D touch probe used for the measurement must be calibrated.
- The cycles can only be carried out with the tool axis Z.
- A calibration sphere with an exactly known radius and sufficient rigidity must be attached to any position on the machine table. HEIDENHAIN recommends using the calibration spheres KKH 250 (ID number 655475-01) or KKH 100 (ID number 655475-02), which have particularly high rigidity and are designed especially for machine calibration. Please contact HEIDENHAIN if you have any questions in this regard.
\square The kinematics description of the machine must be complete and correct. The transformation values must be entered with an accuracy of approx. 1 mm .
- The complete machine geometry must have been measured (by the machine tool builder during commissioning).
- The machine tool builder must have defined the machine parameters for CfgKinematicsOpt in the configuration data. maxModification specifies the tolerance limit starting from which the TNC is to display a message if the changes to the kinematic data exceed this limit value. maxDevCalBall defines how much the measured radius of the calibration sphere may deviate from the entered cycle parameter. mStrobeRotAxPos defines an M function that is specifically configured by the machine manufacturer and is used to position the rotary axes.

Please note while programming:

HEIDENHAIN only gives warranty for the function of the probing cycles if HEIDENHAIN touch probes are used.

[^5]
19.3 SAVE KINEMATICS (Cycle 450, DIN/ISO: G450; Option)

Cycle run

With the touch probe cycle 450 you can save the active machine kinematic configuration or restore a previously saved one. The saved data can be displayed and deleted. 16 memory spaces in total are available.

Please note while programming:

Always save the active kinematics configuration before running a kinematics optimization. Advantage:

- You can restore the old data if you are not satisfied with the results or if errors occur during optimization (e.g. power failure).

With the Restore mode, note that
the TNC can restore saved data only to a matching kinematic configuration.

- a change in the kinematics always changes the preset as well. Set the preset again if necessary.

Cycle parameters

- Mode (0/1/2/3) Q410: Specify whether to save or restore a kinematics configuration:
0: Save active kinematics
1: Restore previously saved kinematics configuration
2: Display the saving status
3: Delete a data block
- Memory designation Q409/QS409: Number or name of the data block designator. The character length must not exceed 16 characters. 16 memory spaces in total are available. Without function if Mode 2 has been selected. Wildcards can be used in Modes 1 and 3 (Restore and Delete). If several possible data blocks are found because of the wildcards, the mean values of the data are restored (Mode 1) or all data blocks are deleted after confirmation (Mode 3). The following wildcards exist:
?: A single, undefined character
\$: A single, alphabetic character (letter)
\#: A single, undefined number
*: An undefined string of any length

Log function

After running Cycle 450, the TNC creates a measuring log (TCHPR450.TXT) containing the following information:

- Creation date and time of the log
- Path of the NC program from which the cycle was run
- Mode used ($0=$ Save $/ 1=$ Restore $/ 2=$ Saving status/3=Delete)
- Designator of the current kinematics
- Entered data record identifier

The other data in the log vary depending on the selected mode:

- Mode 0:

Logging of all axis entries and transformation entries of the kinematics chain that the TNC has saved.

- Mode 1:

Logging of all transformation entries before and after restoring the kinematics configuration

- Mode 2:

List of the saved data records.

- Mode 3:

List of the deleted data records.

Notes on data management

The TNC stores the saved data in the file TNC: \table\DATA450.KD. This file can be backed up on an external PC with TNCREMO, for example. If the file is deleted, the stored data are removed, too. If the data in the file are changed manually, the data records can become corrupted so that they cannot be used anymore.

If the TNC: \table\DATA450.KD file does not exist, it is generated automatically when Cycle 450 is executed.

Do not change stored data manually.
Make a backup of the TNC: \table\DATA450.KD file so that you can restore the file, if necessary (e.g. if the data medium is damaged).

19.4 MEASURE KINEMATICS (Cycle 451, DIN/ISO: G451; Option)

Cycle run

The touch probe cycle 451 enables you to check and, if required, optimize the kinematics of your machine. Use the 3-D TS touch probe to measure a HEIDENHAIN calibration sphere that you have attached to the machine table.

HEIDENHAIN recommends using the calibration spheres KKH 250 (ID number 655475-01) or KKH 100 (ID number 655475-02), which have particularly high rigidity and are designed especially for machine calibration. Please contact HEIDENHAIN if you have any questions in this regard.

The TNC evaluates the static tilting accuracy. The software minimizes the spatial error arising from the tilting movements and, at the end of the measurement process, automatically saves the machine geometry in the respective machine constants of the kinematics description.
1 Clamp the calibration sphere and check for potential collisions.
2 In the Manual Operation mode, set the datum in the center of the sphere, or if $\mathbf{Q 4 3 1 = 1}$ or $\mathbf{Q 4 3 1 = 3}$ is defined: In the touch probe axis, manually position the touch probe over the calibration sphere, and in the working plane, over the sphere center.
3 Select the Program Run mode and start the calibration program.
4 The TNC automatically measures all three axes successively in the resolution you defined.
5 The TNC saves the measured values in the following Q parameters:

Parameter number	Meaning
Q141	Standard deviation measured in the A axis $(-1$ if axis was not measured)
Q142	Standard deviation measured in the B axis $(-1$ if axis was not measured)
Q143	Standard deviation measured in the C axis $(-1$ if axis was not measured)
Q144	Optimized standard deviation in the A axis $(-1$ if axis was not optimized)
Q145	Optimized standard deviation in the B axis $(-1$ if axis was not optimized)
Q146	Optimized standard deviation in the C axis $(-1$ if axis was not optimized)

Parameter number	Meaning
Q147	Offset error in X direction, for manual transfer to the corresponding machine parameter
Q148	Offset error in Y direction, for manual transfer to the corresponding machine parameter
Q149	Offset error in Z direction, for manual transfer to the corresponding machine parameter

Positioning direction

The positioning direction of the rotary axis to be measured is determined from the start angle and the end angle that you define in the cycle. A reference measurement is automatically performed at 0°.

Specify the start and end angles to ensure that the same position is not measured twice. A duplicated point measurement (e.g. measuring positions $+90^{\circ}$ and -270°) is not advisable, but it does not cause an error message.
\square Example: Start angle $=+90^{\circ}$, end angle $=-90^{\circ}$

- Start angle $=+90^{\circ}$
- End angle $=-90^{\circ}$
\square No. of measuring points $=4$
- Stepping angle resulting from the calculation $=(-90-+90) /$ $(4-1)=-60^{\circ}$
- Measuring point $1=+90^{\circ}$
- Measuring point $2=+30^{\circ}$
- Measuring point $3=-30^{\circ}$
\square Measuring point $4=-90^{\circ}$
Example: start angle $=+90^{\circ}$, end angle $=+270^{\circ}$
- Start angle $=+90^{\circ}$
- End angle $=+270^{\circ}$
- No. of measuring points $=4$
\square Stepping angle resulting from the calculation $=(270-90) /(4-1)$ $=+60^{\circ}$
- Measuring point $1=+90^{\circ}$
\square Measuring point $2=+150^{\circ}$
- Measuring point $3=+210^{\circ}$
- Measuring point $4=+270^{\circ}$

Machines with Hirth-coupled axes

Danger of collision!

In order to be positioned, the axis must move out of the Hirth grid. So remember to leave a large enough safety clearance to prevent any risk of collision between the touch probe and calibration sphere. Also ensure that there is enough space to reach the safety clearance (software limit switch).

Define a retraction height Q408 greater than 0 if software option 2 (M128, FUNCTION TCPM) is not available.

If necessary, the TNC rounds the calculated measuring positions so that they fit into the Hirth grid (depending on the start angle, end angle and number of measuring points).

Depending on the machine configuration, the TNC cannot position the rotary axes automatically. If this is the case, you need a special M function from the machine tool builder enabling the TNC to move the rotary axes. The machine tool builder must have entered the number of the M function in machine parameter $\mathbf{m S t r o b e R o t A x P o s}$ for this purpose.

The measuring positions are calculated from the start angle, end angle and number of measurements for the respective axis and from the Hirth grid.

Example calculation of measuring positions for an \mathbf{A} axis:

Start angle Q411 = -30
End angle $\mathbf{Q 4 1 2}=+90$
Number of measuring points Q414=4
Hirth grid $=3^{\circ}$
Calculated stepping angle $=(\mathrm{Q} 412-\mathrm{Q} 411) /(\mathrm{Q} 414-1)$
Calculated stepping angle $==(90--30) /(4-1)=120 / 3=40$
Measuring position $1=\mathrm{Q} 411+0{ }^{*}$ stepping angle $=-30^{\circ}->-30^{\circ}$
Measuring position $2=\mathrm{Q} 411+1^{*}$ stepping angle $=+10^{\circ}-->9^{\circ}$
Measuring position $3=\mathrm{Q} 411+2{ }^{*}$ stepping angle $=+50^{\circ}-->51^{\circ}$
Measuring position $4=\mathrm{Q} 411+3{ }^{*}$ stepping angle $=+90^{\circ}-->90^{\circ}$

Choice of number of measuring points

To save time you can make a rough optimization with a small number of measuring points (1 or 2), for example during commissioning.

You then make a fine optimization with a medium number of measuring points (recommended value = approx. 4). Higher numbers of measuring points do not usually improve the results. Ideally, you should distribute the measuring points evenly over the tilting range of the axis.

This is why you should measure an axis with a tilting range of 0° to 360° at three measuring points, namely at $90^{\circ}, 180^{\circ}$ and 270°. Thus, define a starting angle of 90° and an end angle of 270°.
If you want to check the accuracy accordingly, you can also enter a higher number of measuring points in the Check mode.

If a measuring point has been defined at 0°, it will be ignored because the reference measurement is always done at 0°.

Choice of the calibration sphere position on the machine table

In principle, you can fix the calibration sphere to any accessible position on the machine table and also on fixtures or workpieces. The following factors should positively influence the result of measurement:

- On machines with rotary tables/tilting tables: Clamp the calibration sphere as far as possible away from the center of rotation.
- Machines with large traverse:

Clamp the calibration sphere as closely as possible to the position intended for subsequent machining.

Notes on the accuracy

The geometrical and positioning errors of the machine influence the measured values and therefore also the optimization of a rotary axis. For this reason there will always be a certain amount of error.

If there were no geometrical and positioning errors, any values measured by the cycle at any point on the machine at a certain time would be exactly reproducible. The greater the geometrical and positioning errors are, the greater is the dispersion of measured results when you perform measurements at different positions.

The dispersion of results recorded by the TNC in the measuring log is a measure of the machine's static tilting accuracy. However, the measuring circle radius and the number and position of measuring points have to be included in the evaluation of accuracy. One measuring point alone is not enough to calculate dispersion. For only one point, the result of the calculation is the spatial error of that measuring point.
If several rotary axes are moved simultaneously, their error values are combined. In the worst case they are added together.

If your machine is equipped with a controlled spindle, you should activate the angle tracking in the touch probe table (TRACK column). This generally increases the accuracy of measurements with a 3-D touch probe.

If required, deactivate the lock on the rotary axes for the duration of the calibration. Otherwise it may falsify the results of measurement. The machine tool manual provides further information.

Backlash

Backlash is a small amount of play between the rotary or angle encoder and the table that occurs when the traverse direction is reversed. If the rotary axes have backlash outside of the control loop, for example because the angle measurement is made with the motor encoder, this can result in significant error during tilting.

With input parameter Q432 you can activate backlash measurement. Enter an angle that the TNC uses as traversing angle. The cycle will then carry out two measurements per rotary axis. If you take over the angle value 0 , the TNC will not measure any backlash.

The TNC does not perform an automatic backlash compensation.

If the measuring circle radius is $<1 \mathrm{~mm}$, the TNC does not calculate the backlash. The larger the measuring circle radius, the more accurately the TNC can determine the rotary axis backlash (see also "Log function" on page 525).

Backlash measurement is not possible if an M function for

Please note while programming:

Note that all functions for tilting in the working plane are reset. M128 and FUNCTION TCPM are deactivated.

Position the calibration sphere on the machine table so that there can be no collisions during the measuring process.

Before defining the cycle you must set the datum in the center of the calibration sphere and activate it, or you define the input parameter Q431 correspondingly to 1 or 3 .

If machine parameter $\mathbf{m S t r o b e R o t A x P o s}$ is defined as not equal -1 (M function positions the rotary axis), then only start a measurement when all rotary axes are at 0°.

For the positioning feed rate when moving to the probing height in the touch probe axis, the TNC uses the value from cycle parameter Q253 or the FMAX value, whichever is smaller. The TNC always moves the rotary axes at positioning feed rate Q253, while the probe monitoring is inactive.

If the kinematic data attained in the Optimize mode are greater than the permissible limit (maxModification), the TNC shows a warning. Then you have to confirm acceptance of the attained value by pressing NC start.
Note that a change in the kinematics always changes the preset as well. After an optimization, reset the preset.

In every probing process the TNC first measures the radius of the calibration sphere. If the measured sphere radius differs from the entered sphere radius by more than you have defined in machine parameter maxDevCalBall the TNC shows an error message and ends the measurement.
Save the active kinematic configuration before an optimization with Cycle 450, so that in case of an emergency the most recently active kinematic configuration can be restored.

Programming in inches: The TNC always records the log data and results of measurement in millimeters.
> Mode ($0=$ Check/1=Measure) Q406: Specify whether the TNC should check or optimize the active kinematics:
0: Check the active machine kinematics. The TNC measures the kinematics in the rotary axes you have defined, but it does not make any changes to it. The TNC displays the results of measurement in a measurement log
1: Optimize the active machine kinematics. The TNC measures the kinematics in the rotary axes you have defined and optimizes the position of the rotary axes of the active kinematics.

- Exact calibration sphere radius Q407: Enter the exact radius of the calibration sphere used. Input range 0.0001 to 99.9999
Set-up clearance 0320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP in the touch probe table. Input range 0 to 99999.9999, alternatively PREDEF

Retraction height Q408 (absolute): Input range 0.0001 to 99999.9999

- Input 0:

Do not move to any retraction height. The TNC moves to the next measuring position in the axis to be measured. Not allowed for Hirth axes! The TNC moves to the first measuring position in the sequence A, then B, then C.

- Input >0:

Retraction height in the untilted workpiece coordinate system to which the TNC positions before a rotary axis positioning in the spindle axis. Also, the TNC moves the touch probe in the working plane to the datum. Probe monitoring is not active in this mode. Define the positioning velocity in parameter Q253.

Example: Saving and checking the kinematics
 speed of the tool during positioning in $\mathrm{mm} / \mathrm{min}$. Input range 0.0001 to 99999.9999; alternatively FMAX, FAUTO, PREDEF

Reference angle Q380 (absolute): Reference angle (basic rotation) for measuring the measuring points in the active workpiece coordinate system. Defining a reference angle can considerably enlarge the measuring range of an axis. Input range 0 to 360.0000

- Start angle A axis Q411 (absolute): Starting angle in the A axis at which the first measurement is to be made. Input range - 359.999 to 359.999
- End angle A axis Q412 (absolute): Ending angle in the A axis at which the last measurement is to be made. Input range -359.999 to 359.999

Angle of incid. A axis Q413: Angle of incidence in the A axis at which the other rotary axes are to be measured. Input range - 359.999 to 359.999

- Number meas. points A axis Q414: Number of probe measurements with which the TNC is to measure the A axis. If the input value $=0$, the TNC does not measure the respective axis. Input range 0 to 12
- Start angle B axis Q415 (absolute): Starting angle in the B axis at which the first measurement is to be made. Input range -359.999 to 359.999
- End angle B axis Q416 (absolute): Ending angle in the B axis at which the last measurement is to be made. Input range -359.999 to 359.999
- Angle of incid. in B axis Q417: Angle of incidence in the B axis at which the other rotary axes are to be measured. Input range - 359.999 to 359.999
> Number meas. points B axis Q418: Number of probe measurements with which the TNC is to measure the B axis. If the input value $=0$, the TNC does not measure the respective axis. Input range 0 to 12

Start angle C axis Q419 (absolute): Starting angle in the C axis at which the first measurement is to be made. Input range -359.999 to 359.999

End angle C axis Q420 (absolute): Ending angle in the C axis at which the last measurement is to be made. Input range - 359.999 to 359.999

Angle of incid. in C axis Q421: Angle of incidence in the C axis at which the other rotary axes are to be measured. Input range -359.999 to 359.999

- Number meas. points C axis Q422: Number of probe measurements with which the TNC is to measure the C axis. Input range 0 to 12 . If input value $=0$, the TNC does not measure the respective axis.
$>$ No. of measuring points (4/3) Q423: Specify whether the TNC should measure the calibration sphere in the plane with 4 or 3 probing points. 3 probing points increase the measuring speed: 4: Use 4 measuring points (standard setting) 3: Use 3 measuring points
Preset ($0 / \mathbf{1 / 2 / 3 \text {) Q431: Specify whether the TNC is }}$ to set the active preset (datum) automatically in the center of the sphere:
$\mathbf{0}$: Do not set the preset automatically in the center of the sphere: Set the preset manually before the start of the cycle
1: Set the preset automatically in the center of the sphere before measurement: Pre-position the touch probe manually over the calibration sphere before the start of the cycle
2: Set the preset automatically in the center of the sphere after measurement: Set the preset manually before the start of the cycle
3: Set the preset in the center of the sphere before and after measurement: Pre-position the touch probe manually over the calibration sphere before the start of the cycle
Backlash, angle range Q432: Here you define the angle value to be used as traverse for the measurement of the rotary axis. The traversing angle must be significantly larger than the actual backlash of the rotary axes. If input value $=0$, the TNC does not measure the backlash. Input range: -3.0000 to $+3.0000$

If you have activated "Preset" before the calibration (Q431 $=1 / 3)$, then move the touch probe by the safety clearance (Q 320 + SET_UP) to a position approximately above the center of the calibration sphere before the start of the cycle.

Various modes (0406)

- Test mode $0406=0$

- The TNC measures the rotary axes in the positions defined and calculates the static accuracy of the tilting transformation.
- The TNC records the results of a possible position optimization but does not make any adjustments.

- Position Optimization mode $\mathbf{0 4 0 6 = 1}$

- The TNC measures the rotary axes in the positions defined and calculates the static accuracy of the tilting transformation.
- During this, the TNC tries to change the position of the rotary axis in the kinematics model in order to achieve higher accuracy.
- The machine data is adjusted automatically.

Example: Position optimization of the rotary axes with preceding, automatic datum setting and measurement of the rotary axis backlash

1 TOOL CALL "TASTER" Z	
2 TCH PROBE 45	1 MEASURE KINEMATICS
Q406=1	;MODE
Q407=12.5	;SPHERE RADIUS
Q320 $=0$;SET-UP CLEARANCE
Q408=0	; RETR. HEIGHT
Q253=750	;F PRE-POSITIONING
Q380 $=0$;REFERENCE ANGLE
Q411 $=-90$;START ANGLE A AXIS
Q412 $=+90$; END ANGLE A AXIS
Q413 $=0$;INCID. ANGLE A AXIS
Q414=0	;MEAS. POINTS A AXIS
Q415 $=-90$;START ANGLE B AXIS
Q416 $=+90$; END ANGLE B AXIS
Q417 $=0$;INCID. ANGLE B AXIS
Q418=4	;MEAS. POINTS B AXIS
Q419 $=+90$;START ANGLE C AXIS
Q420 $=+270$; END ANGLE C AXIS
Q421 $=0$;INCID. ANGLE C AXIS
Q422=3	;MEAS. POINTS C AXIS
Q423=3	;NO. OF MEAS. POINTS
Q431=1	; PRESET
Q432=0.5	;BACKLASH, ANG. RANGE

Log function

After running Cycle 451, the TNC creates a measuring log (TCHPR451.TXT) containing the following information:

- Creation date and time of the log
- Path of the NC program from which the cycle was run
\square Mode used ($0=$ Check/1=Optimize position/2=Optimize pose)
- Active kinematic number
- Entered calibration sphere radius
- For each measured rotary axis:
- Starting angle
- End angle
- Angle of incidence
- Number of measuring points
- Dispersion (standard deviation)
- Maximum error
- Angular error
- Averaged backlash
- Averaged positioning error
- Measuring circle radius
- Compensation values in all axes (preset shift)
- Evaluation of measuring points

Notes on log data

Error outputs

In the Test mode (Q406=0) the TNC outputs the accuracy that can be attained by optimization and/or the accuracies attained through optimization (Mode 1).
If the angular position of a rotary axis was calculated, the measured data is also shown in the log.

- Dispersion (standard deviation)

In the log, 'dispersion', a term from statistics, is used as a measure of accuracy. Measured dispersion (measured standard deviation) means that 68.3\% of the actually measured spatial errors are within the specified range ($+/-$). Optimized dispersion (optimized standard deviation) means that 68.3\% of the spatial errors to be expected after the correction of the kinematics are within the specified range (+/-).
Evaluation of measuring points
The valuation number is a measure of the quality of the selected measuring positions. The higher the valuation number, the greater the benefit from optimization by the TNC. The valuation of any rotary axis should not fall below a value of $\mathbf{2}$. Values greater than or equal to 4 are desirable.
The valuation numbers are independent of the measured deviations. They are determined by the kinematics model, the position and the number of measuring points per rotary axis.

If the valuation number is too small, increase the measurement range of the rotary axis, or also the number of measuring points.

Touch Probe Cycles: Automatic Tool Measurement

20．1 Fundamentals

Overview

> When running touch probe cycles, Cycle 8 MIRROR IMAGE, Cycle 11 SCALING and Cycle 26 AXIS-SPECIFIC SCALING must not be active.
> HEIDENHAIN only gives warranty for the function of the probing cycles if HEIDENHAIN touch probes are used.

The TNC and the machine tool must be set up by the machine tool builder for use of the TT touch probe．

Some cycles and functions may not be provided on your machine tool．Refer to your machine manual．

In conjunction with the TNC＇s tool measurement cycles，the tool touch probe enables you to measure tools automatically．The compensation values for tool length and radius can be stored in the central tool file TOOL．T and are accounted for at the end of the touch probe cycle．The following types of tool measurement are provided：
\square Tool measurement while the tool is at standstill
－Tool measurement while the tool is rotating
－Measurement of individual teeth
You can program the cycles for tool measurement in the Programming and Editing mode of operation via the TOUCH PROBE key．The following cycles are available：

Cycle	New format	Old format	Page
Calibrating the TT，Cycles 30 and 480			Page 533
Measuring the tool length，Cycles 31 and 481			Page 534
Measuring the tool radius，Cycles 32 and 482	${ }^{482}{ }^{\text {a }}$ 迷		Page 536
Measuring the tool length and radius，Cycles 33 and 483	${ }^{433}{ }^{\text {品票 }}$		Page 538

The measuring cycles can be used only when the central tool file TOOL．T is active．

Before working with the measuring cycles，you must first enter all the required data into the central tool file and call the tool to be measured with TOOL CALL．

Differences between Cycles 31 to 33 and Cycles 481 to 483

The features and the operating sequences are absolutely identical.
There are only two differences between Cycles 31 to 33 and Cycles 481 to 483:

■ Cycles 481 to 483 are also available in controls for ISO programming under G481 to G483.

- Instead of a selectable parameter for the status of the measurement, the new cycles use the fixed parameter $\mathbf{Q 1 9 9}$.

Setting the machine parameters

```
Before you start work with the TT cycles, inspect all
machine parameters defined in ProbeSettings >
CfgToolMeasurement and CfgTTRoundStylus.
The TNC uses the feed rate for probing defined in
probingFeed when measuring a tool at standstill.
```

When measuring a rotating tool, the TNC automatically calculates the spindle speed and feed rate for probing.

The spindle speed is calculated as follows:
$\mathrm{n}=$ maxPeriphSpeedMeas $/(\mathrm{r} \bullet 0.0063)$ where

n	Spindle speed [rpm]
maxPeriphSpeedMeas	Maximum permissible cutting speed in $\mathrm{m} / \mathrm{min}$
r	Active tool radius in mm

The feed rate for probing is calculated from:
$\mathrm{v}=$ meas. tolerance $\bullet \mathrm{n}$ where
$v \quad$ Feed rate for probing in $\mathrm{mm} / \mathrm{min}$
Measuring tolerance Measuring tolerance [mm], depending on maxPeriphSpeedMeas
n
Spindle speed [rpm]
probingFeedCalc determines the calculation of the probing feed rate:
probingFeedCalc = ConstantTolerance:
The measuring tolerance remains constant regardless of the tool radius. With very large tools, however, the feed rate for probing is reduced to zero. The smaller you set the maximum permissible rotational speed (maxPeriphSpeedMeas) and the permissible tolerance (measureTolerance1), the sooner you will encounter this effect.
probingFeedCalc = VariableTolerance:
The measuring tolerance is adjusted relative to the size of the tool radius. This ensures a sufficient feed rate for probing even with large tool radii. The TNC adjusts the measuring tolerance according to the following table:

Tool radius	Measuring tolerance
Up to 30 mm	measureTolerance1
30 to 60 mm	$2 \bullet$ measureTolerance1
60 to 90 mm	$3 \bullet$ measureTolerance1
90 to 120 mm	$4 \bullet$ measureTolerance1

probingFeedCalc $=$ ConstantFeed:

The feed rate for probing remains constant; the error of measurement, however, rises linearly with the increase in tool radius:

Measuring tolerance $=r \bullet$ measureTolerance1/5 mm, where
$r \quad$ Active tool radius in mm
measureTolerance1 Maximum permissible error of measurement
Entries in the tool table TOOL.T

Abbr.	Inputs	Dialog
CUT	Number of teeth (20 teeth maximum)	Number of teeth?
LTOL	Permissible deviation from tool length L for wear detection. If the entered value is exceeded, the TNC locks the tool (status L). Input range: 0 to 0.9999 mm	Wear tolerance: length?
RTOL	Permissible deviation from tool radius R for wear detection. If the entered value is exceeded, the TNC locks the tool (status L). Input range: 0 to 0.9999 mm	Wear tolerance: radius?
DIRECT.	Cutting direction of the tool for measuring the tool during rotation	Cutting direction (M3 = -) ?
R_OFFS	Tool length measurement: Tool offset between stylus center and tool center. Default setting: No value entered (offset = tool radius)	Tool offset: radius?
L_OFFS	Tool radius measurement: tool offset in addition to offsetToolAxis between upper surface of stylus and lower surface of tool. Default: 0	Tool offset: length?
LBREAK	Permissible deviation from tool length L for breakage detection. If the entered value is exceeded, the TNC locks the tool (status L). Input range: 0 to 0.9999 mm	Breakage tolerance: length?
RBREAK	Permissible deviation from tool radius R for breakage detection. If the entered value is exceeded, the TNC locks the tool (status L). Input range: 0 to 0.9999 mm	Breakage tolerance: radius?

Input examples for common tool types

Tool type	CUT	TT:R_OFFS	TT:L_OFFS
Drill	- (no function)	0 (no offset required because tool tip is to be measured)	
End mill with diameter < 19 mm	4 (4 teeth)	0 (no offset required because tool diameter is smaller than the contact plate diameter of the TT)	0 (no additional offset required during radius measurement. Offset from offsetToolAxis is used.)
End mill with diameter > 19 mm	4 (4 teeth)	R (offset required because tool diameter is larger than the contact plate diameter of the TT)	0 (no additional offset required during radius measurement. Offset from offsetToolAxis is used.)
Radius cutter	4 (4 teeth)	0 (no offset required because the south pole of the ball is to be measured)	5 (always define the tool radius as the offset so that the diameter is not measured in the radius)

20.2 Calibrating the TT (Cycle 30 or 480, DIN/ISO: G480)

Cycle run

The TT is calibrated with the measuring cycle TCH PROBE 30 or TCH PROBE 480 (see also "Differences between Cycles 31 to 33 and Cycles 481 to 483 " on page 529). The calibration process is automatic. The TNC also measures the center misalignment of the calibrating tool automatically by rotating the spindle by 180° after the first half of the calibration cycle.

The calibrating tool must be a precisely cylindrical part, for example a cylinder pin. The resulting calibration values are stored in the TNC memory and are accounted for during subsequent tool measurement.

Please note while programming:

The functioning of the calibration cycle is dependent on machine parameter CfgToolMeasurement. Refer to your machine manual.

Before calibrating the touch probe, you must enter the exact length and radius of the calibrating tool into the tool table TOOL.T.

The position of the TT within the machine working space must be defined by setting the Machine Parameters centerPos > [0] to [2]

If you change the setting of any of the Machine Parameters centerPos > [0] to [2], you must recalibrate.

Cycle parameters

Clearance height: Enter the position in the spindle axis at which there is no danger of collision with the workpiece or fixtures. The clearance height is referenced to the active workpiece datum. If you enter such a small clearance height that the tool tip would lie below the level of the probe contact, the TNC automatically positions the tool above the level of the probe contact (safety zone from safetyDistStylus). Input range -99999.9999 to 99999.9999

Example: NC blocks in old format

6 TOOL CALL 1 Z

7 TCH PROBE 30.0 CALIBRATE TT
8 TCH PROBE 30.1 HEIGHT: +90

Example: NC blocks in new format

6 TOOL CALL 1 Z

7 TCH PROBE 480 CALIBRATE TT
Q260=+100 ; CLEARANCE HEIGHT

20.3 Measuring the Tool Length (Cycle 31 or 481, DIN/ISO: G481)

Cycle run

To measure the tool length, program the measuring cycle TCH PROBE 31 or TCH PROBE 480 (see also "Differences between Cycles 31 to 33 and Cycles 481 to 483 " on page 529). Via input parameters you can measure the length of a tool by three methods:

- If the tool diameter is larger than the diameter of the measuring surface of the TT, you measure the tool while it is rotating.
- If the tool diameter is smaller than the diameter of the measuring surface of the TT, or if you are measuring the length of a drill or spherical cutter, you measure the tool while it is at standstill.
- If the tool diameter is larger than the diameter of the measuring surface of the TT, you measure the individual teeth of the tool while it is at standstill.

Cycle for measuring a tool during rotation

The control determines the longest tooth of a rotating tool by positioning the tool to be measured at an offset to the center of the touch probe and then moving it toward the measuring surface of the TT until it contacts the surface. The offset is programmed in the tool table under Tool offset: Radius (TT: R_OFFS).

Cycle for measuring a tool during standstill (e.g. for drills)

The control positions the tool to be measured over the center of the measuring surface. It then moves the non-rotating tool toward the measuring surface of the TT until it touches the surface. To activate this function, enter zero for the tool offset: Radius (TT: R_OFFS) in the tool table.

Cycle for measuring individual teeth

The TNC pre-positions the tool to be measured to a position at the side of the touch probe head. The distance from the tip of the tool to the upper edge of the touch probe head is defined in offsetToolAxis. You can enter an additional offset with tool offset: Length (TT: L_OFFS) in the tool table. The TNC probes the tool radially during rotation to determine the starting angle for measuring the individual teeth. It then measures the length of each tooth by changing the corresponding angle of spindle orientation. To activate this function, program TCH PROBE 31 = 1 for CUTTER MEASUREMENT.

Please note while programming:

Before measuring a tool for the first time, enter the following data on the tool into the tool table TOOL.T: the approximate radius, the approximate length, the number of teeth, and the cutting direction.

You can run an individual tooth measurement of tools with up to 20 teeth.

Cycle parameters

- Measure tool=0 / Check tool=1: Select whether the tool is to be measured for the first time or whether a tool that has already been measured is to be inspected. If the tool is being measured for the first time, the TNC overwrites the tool length L in the central tool file TOOL.T by the delta value $D L=0$. If you wish to inspect a tool, the TNC compares the measured length with the tool length L that is stored in TOOL.T. It then calculates the positive or negative deviation from the stored value and enters it into TOOL.T as the delta value DL. The deviation can also be used for Q parameter Q115. If the delta value is greater than the permissible tool length tolerance for wear or break detection, the TNC will lock the tool (status L in TOOL.T).

Parameter number for result?: Parameter number in which the TNC stores the status of the measurement:
0.0: Tool is within the tolerance
1.0: Tool is worn (LTOL exceeded)
2.0: Tool is broken (LBREAK exceeded). If you do not wish to use the result of measurement within the program, answer the dialog prompt with NO ENT.
Clearance height: Enter the position in the spindle axis at which there is no danger of collision with the workpiece or fixtures. The clearance height is referenced to the active workpiece datum. If you enter such a small clearance height that the tool tip would lie below the level of the probe contact, the TNC automatically positions the tool above the level of the probe contact (safety zone from
safetyDistStylus). Input range -99999.9999 to 99999.9999

Cutter measurement? 0=No / 1=Yes: Choose whether the control is to measure the individual teeth (maximum of 20 teeth)

Example: Measuring a rotating tool for the first time; old format

6 TOOL CALL 12 z
7 TCH PROBE 31.0 TOOL LENGTH
8 TCH PROBE 31.1 CHECK: 0
9 TCH PROBE 31.2 HEIGHT: +120
10 TCH PROBE 31.3 PROBING THE TEETH: 0

Example: Inspecting a tool and measuring the individual teeth and saving the status in Q5; old format

6 TOOL CALL 12 z
7 TCH PROBE 31.0 TOOL LENGTH
8 TCH PROBE 31.1 CHECK: 1 Q5
9 TCH PROBE 31.2 HEIGHT: +120
10 TCH PROBE 31.3 PROBING THE TEETH: 1

Example: NC blocks in new format

6 TOOL CALL 12	Z
7 TCH PROBE 481 TOOL LENGTH	
Q340 $=1 \quad$;CHECK	
Q260 $=+100$;CLEARANCE HEIGHT	
Q341 $=1 \quad$;PROBING THE TEETH	

20.4 Measuring the Tool Radius (Cycle 32 or 482, DIN/ISO: G482)

Cycle run

To measure the tool radius, program the cycle TCH PROBE 32 or TCH PROBE 482 (see also "Differences between Cycles 31 to 33 and Cycles 481 to 483 " on page 529). Select via input parameters by which of two methods the radius of a tool is to be measured:
\square Measuring the tool while it is rotating
\square Measuring the tool while it is rotating and subsequently measuring the individual teeth.
The TNC pre-positions the tool to be measured to a position at the side of the touch probe head. The distance from the tip of the milling tool to the upper edge of the touch probe head is defined in
offsetTool Axis. The TNC probes the tool radially while it is rotating. If you have programmed a subsequent measurement of individual teeth, the control measures the radius of each tooth with the aid of oriented spindle stops.

Please note while programming:

Before measuring a tool for the first time, enter the following data on the tool into the tool table TOOL.T: the approximate radius, the approximate length, the number of teeth, and the cutting direction.
Cylindrical tools with diamond surfaces can be measured with stationary spindle. To do so, define in the tool table the number of teeth CUT as 0 and adjust machine parameter $\mathbf{C f g T o o l}$ Measurement. Refer to your machine tool manual.

Cycle parameters

- Measure tool=0 / Check tool=1: Select whether the tool is to be measured for the first time or whether a tool that has already been measured is to be inspected. If the tool is being measured for the first time, the TNC overwrites the tool radius R in the central tool file TOOL.T by the delta value $D R=0$. If you wish to inspect a tool, the TNC compares the measured radius with the tool radius R that is stored in TOOL.T. It then calculates the positive or negative deviation from the stored value and enters it into TOOL.T as the delta value DR. The deviation can also be used for Q parameter Q116. If the delta value is greater than the permissible tool radius tolerance for wear or break detection, the TNC will lock the tool (status L in TOOL.T).
> Parameter number for result?: Parameter number in which the TNC stores the status of the measurement:
0.0: Tool is within the tolerance
1.0: Tool is worn (RTOL exceeded)
2.0: Tool is broken (RBREAK exceeded). If you do not wish to use the result of measurement within the program, answer the dialog prompt with NO ENT.

Clearance height: Enter the position in the spindle axis at which there is no danger of collision with the workpiece or fixtures. The clearance height is referenced to the active workpiece datum. If you enter such a small clearance height that the tool tip would lie below the level of the probe contact, the TNC automatically positions the tool above the level of the probe contact (safety zone from safetyDistStylus). Input range -99999.9999 to 99999.9999

Cutter measurement? 0=No / 1=Yes: Choose whether the control is also to measure the individual teeth (maximum of 20 teeth)

Example: Measuring a rotating tool for the first time; old format

6 TOOL CALL 12 Z
7 TCH PROBE 32.0 TOOL RADIUS
8 TCH PROBE 32.1 CHECK: 0
9 TCH PROBE 32.2 HEIGHT: +120
10 TCH PROBE 32.3 PROBING THE TEETH: 0
Example: Inspecting a tool and measuring the individual teeth and saving the status in 05; old format

6 TOOL CALL 12 Z

7 TCH PROBE 32.0 TOOL RADIUS
8 TCH PROBE 32.1 CHECK: 1 Q5
9 TCH PROBE 32.2 HEIGHT: +120
10 TCH PROBE 32.3 PROBING THE TEETH: 1

Example: NC blocks in new format

```
6 TOOL CALL 12 Z
7TCH PROBE 482 TOOL RADIUS
    Q340=1 ;CHECK
    Q260=+100 ;CLEARANCE HEIGHT
    Q341=1 ;PROBING THE TEETH
```


20.5 Measuring Tool Length and Radius (Cycle 33 or 483, DIN/ISO: G483)

Cycle run

To measure both the length and radius of a tool, program the measuring cycle TCH PROBE 33 or TCH PROBE 482 (see also "Differences between Cycles 31 to 33 and Cycles 481 to 483" on page 529). This cycle is particularly suitable for the first measurement of tools, as it saves time when compared with individual measurement of length and radius. Via input parameters you can select the desired type of measurement:
\square Measuring the tool while it is rotating
\square Measuring the tool while it is rotating and subsequently measuring the individual teeth.

The TNC measures the tool in a fixed programmed sequence. First it measures the tool radius, then the tool length. The sequence of measurement is the same as for measuring cycles 31 and 32 .

Please note while programming:

Before measuring a tool for the first time, enter the following data on the tool into the tool table TOOL.T: the approximate radius, the approximate length, the number of teeth, and the cutting direction.

Cylindrical tools with diamond surfaces can be measured with stationary spindle. To do so, define in the tool table the number of teeth CUT as 0 and adjust machine parameter CfgToolMeasurement. Refer to your machine tool manual.

Cycle parameters

- Measure tool=0 / Check tool=1: Select whether the tool is to be measured for the first time or whether a tool that has already been measured is to be inspected. If the tool is being measured for the first time, the TNC overwrites the tool radius R and the tool length L in the central tool file TOOL. T by the delta values $D R=0$ and $D L=0$. If you wish to inspect a tool, the TNC compares the measured data with the tool data stored in TOOL.T. The TNC calculates the deviations and enters them as positive or negative delta values DR and DL in TOOL.T. The deviations are also available in the Q parameters Q 115 and Q116. If the delta values are greater than the permissible tool tolerances for wear or break detection, the TNC will lock the tool (status L in TOOL.T).
> Parameter number for result?: Parameter number in which the TNC stores the status of the measurement:
$\mathbf{0 . 0}$: Tool is within the tolerance
1.0: Tool is worn (LTOL or/and RTOL exceeded)
2.0: Tool is broken (LBREAK or/and RBREAK exceeded). If you do not wish to use the result of measurement within the program, answer the dialog prompt with NO ENT.

Clearance height: Enter the position in the spindle axis at which there is no danger of collision with the workpiece or fixtures. The clearance height is referenced to the active workpiece datum. If you enter such a small clearance height that the tool tip would lie below the level of the probe contact, the TNC automatically positions the tool above the level of the probe contact (safety zone from safetyDistStylus). Input range -99999.9999 to 99999.9999

- Cutter measurement? 0=No / 1=Yes: Choose whether the control is also to measure the individual teeth (maximum of 20 teeth)

Example: Measuring a rotating tool for the first time; old format

6 TOOL CALL 12 Z
7 TCH PROBE 33.0 MEASURE TOOL
8 TCH PROBE 33.1 CHECK: 0
9 TCH PROBE 33.2 HEIGHT: +120
10 TCH PROBE 33.3 PROBING THE TEETH: 0

Example: Inspecting a tool and measuring the individual teeth and saving the status in 05; old format

6 TOOL CALL 12 Z
7 TCH PROBE 33.0 MEASURE TOOL
8 TCH PROBE 33.1 CHECK: 1 Q5
9 TCH PROBE 33.2 HEIGHT: +120
10 TCH PROBE 33.3 PROBING THE TEETH: 1

Example: NC blocks in new format

```
6 TOOL CALL 12 Z
7 TCH PROBE 483 MEASURE TOOL
    Q340=1 ;CHECK
    Q260=+100 ;CLEARANCE HEIGHT
    Q341=1 ;PROBING THE TEETH
```


Overview

Fixed cycles

Cycle number	Cycle designation	DEF active	CALL active	Page
7	Datum shift	-		Page 245
8	Mirror image	\square		Page 252
9	Dwell time	\square		Page 271
10	Rotation	\square		Page 254
11	Scaling	\square		Page 256
12	Program call	■		Page 272
13	Oriented spindle stop	\square		Page 274
14	Contour geometry	-		Page 172
19	Tilting the working plane	\square		Page 260
20	Contour data SL II	\square		Page 177
21	Pilot drilling SL II		\square	Page 179
22	Rough out SL II		\square	Page 181
23	Floor finishing SL II		\square	Page 184
24	Side finishing SL II		\square	Page 186
25	Contour train		\square	Page 188
26	Axis-specific scaling	\square		Page 258
27	Cylinder surface		\square	Page 199
28	Cylindrical surface slot		-	Page 202
29	Cylinder surface ridge		\square	Page 205
32	Tolerance	■		Page 275
200	Drilling		\square	Page 63
201	Reaming		\square	Page 65
202	Boring		\square	Page 67
203	Universal drilling		\square	Page 71
204	Back boring		\square	Page 75
205	Universal pecking		■	Page 79

Cycle number	Cycle designation	DEF active	CALL active	Page
206	Tapping with a floating tap holder, new		-	Page 95
207	Rigid tapping, new		\square	Page 97
208	Bore milling		\square	Page 83
209	Tapping with chip breaking		\square	Page 100
220	Polar pattern	-		Page 161
221	Cartesian pattern	\square		Page 164
230	Multipass milling		-	Page 229
231	Ruled surface		-	Page 231
232	Face milling		■	Page 235
240	Centering		-	Page 61
241	Single-lip deep-hole drilling		■	Page 86
247	Datum setting	-		Page 251
251	Rectangular pocket (complete machining)		-	Page 129
252	Circular pocket (complete machining)		-	Page 134
253	Slot milling		\square	Page 138
254	Circular slot		-	Page 143
256	Rectangular stud (complete machining)		-	Page 148
257	Circular stud (complete machining)		-	Page 152
262	Thread milling		\square	Page 105
263	Thread milling/countersinking		-	Page 108
264	Thread drilling/milling		■	Page 112
265	Helical thread drilling/milling		■	Page 116
267	Outside thread milling		\square	Page 120

Turning cycles

Cycle number	Cycle designation	DEF active	CALL active	Page
800	Adapt rotary coordinate system	\square		Page 283
801	Reset rotary coordinate system	\square		Page 285
810	Turn contour, longitudinal		\square	Page 302
811	Turn shoulder, longitudinal		\square	Page 287
812	Turn shoulder, longitudinal extended		\square	Page 290
813	Turn, longitudinal plunge		\square	Page 294
814	Turn, longitudinal plunge extended		\square	Page 298
815	Turn contour-parallel		\square	Page 306
820	Turn contour, transverse		\square	Page 325
821	Turn shoulder face		\square	Page 310
822	Turn shoulder face extended		\square	Page 313
823	Turn, transverse plunge		\square	Page 317
824	Turn, transverse plunge extended		\square	Page 321
830	Thread, contour-parallel		\square	Page 359
831	Thread, longitudinal		\square	Page 351
832	Thread, extended		\square	Page 355
860	Recessing contour, radial		\square	Page 336
861	Recessing, radial		\square	Page 329
862	Recessing, radial extended		\square	Page 332
870	Recessing contour, axial		\square	Page 347
871	Recessing, axial		\square	Page 340
872	Recessing, axial extended		\square	Page 343

Touch probe cycles

Cycle number	Cycle designation	DEF active	CALL active	Page
0	Reference plane	-		Page 460
1	Polar datum	■		Page 461
3	Measuring	\square		Page 505
30	Calibrate TT	\square		Page 533
31	Measure/Inspect the tool length	■		Page 534
32	Measure/Inspect the tool radius	■		Page 536
33	Measure/Inspect the tool length and the tool radius	■		Page 538
400	Basic rotation using two points	\square		Page 380
401	Basic rotation over two holes	■		Page 383
402	Basic rotation over two studs	\square		Page 386
403	Compensate misalignment with rotary axis	\square		Page 389
404	Set basic rotation	■		Page 392
405	Compensate misalignment with the C axis	\square		Page 393
408	Reference point at slot center (FCL 3 function)	\square		Page 403
409	Reference point at ridge center (FCL 3 function)	\square		Page 407
410	Datum from inside of rectangle	■		Page 410
411	Datum from outside of rectangle	\square		Page 414
412	Datum from inside of circle (hole)	■		Page 418
413	Datum from outside of circle (stud)	■		Page 422
414	Datum from outside of corner	■		Page 426
415	Datum from inside of corner	\square		Page 431
416	Datum from circle center	\square		Page 435
417	Datum in touch probe axis	\square		Page 439
418	Datum at center between four holes	■		Page 441
419	Datum in any one axis	\square		Page 445
420	Workpiece-measure angle	\square		Page 463
421	Workpiece-measure hole (center and diameter of hole)	■		Page 466
422	Workpiece-measure circle from outside (diameter of circular stud)	\square		Page 470

Cycle number	Cycle designation	DEF active		
423	Workpiece—measure rectangle from inside	CALL		
active			Page	Page 474
:---				
424				
425				

\mathbf{i}

Symbole

3-D touch probes ... 38, 368

A

Angle of a plane, measuring ... 495
Angle, measuring in a plane ... 495
Automatic tool measurement ... 531
Axis-specific scaling ... 258

B

Back boring ... 75
Basic rotation
Measuring during program run ... 378
Setting directly ... 392
Basic rotation, considering... ... 368
Bolt hole circle ... 161
Bolt hole circle, measuring ... 491
Bore milling ... 83
Boring ... 67

C

Centering ... 61
Circle, measuring from inside ... 466
Circle, measuring from outside ... 470
Circular pocket
Roughing+finishing ... 134
Circular slot
Roughing+finishing ... 143
Circular stud ... 152
Classification of results ... 457
Compensating workpiece misalignment
By measuring two points of a line ... 380
Over two holes ... 383
Over two studs ... 386
Via rotary axis ... 389, 393
Confidence interval ... 372
Contour cycles ... 170
Contour train ... 188
Coordinate transformation ... 244
Coordinate, measuring a single ... 488
Cycle
Calling ... 44
Defining ... 43
Cycles and point tables ... 57
Cylinder surface
Contour machining ... 199
Ridge machining ... 205
Slot machining ... 202

D

Datum
Save in a datum table ... 402
Save in the preset table ... 402
Datum shift
With datum tables ... 246
Within the program ... 245
Deepened starting point for drilling ... 82, 87
Drilling ... 63, 71, 79
Deepened starting point ... 82, 87
Drilling cycles ... 60
Dwell time ... 271

E

External thread milling ... 120

F

Face milling ... 235
FCL function ... 6
Feature content level ... 6
Floor finishing ... 184

H

Helical thread drilling/milling ... 116
Hole, measuring ... 466

K

Kinematic measurement ... 508, 513
Accuracy ... 518
Backlash ... 519
Hirth coupling ... 516
Kinematic measurement ... 513
Kinematics, save ... 510
Log function ... 511, 525
Measuring points, choice of ... 512, 517
Measuring positions, choice of ... 517
Prerequisites ... 509
KinematicsOpt ... 508

M

Machine parameters for 3-D touch probes ... 371
Machining patterns ... 46
Measurement results in Q
parameters ... 402, 457
Measuring angles ... 463
Mirror image ... 252
Multiple measurements ... 372

0

Oriented spindle stop ... 274

P

Pattern definition ... 46
Pecking ... 79, 86
Deepened starting point ... 82, 87
Point pattern
Cartesian ... 164
Polar ... 161
Point patterns
Overview ... 160
Point tables ... 54
Positioning logic ... 373
Preset table ... 402
Presetting automatically ... 400
Center of 4 holes ... 441
Center of bolt hole circle ... 435
Center of circular pocket (or hole) ... 418
Center of circular stud ... 422
Center of rectangular pocket ... 410
Center of rectangular stud ... 414
In any axis ... 445
In inside corner ... 431
In the touch probe axis ... 439
Outside corner ... 426
Ridge center ... 407
Slot center ... 403
Probing feed rate ... 372
Program call
Via cycle ... 272

R

Reaming ... 65
Recording the results of measurement ... 455
Rectangular pocket Roughing+finishing ... 129
Rectangular pocket measurement ... 478
Rectangular stud ... 148
Rectangular stud, measuring ... 474
Result parameters ... 402, 457
Ridge, measuring from outside ... 485
Rotary coordinate system, adapting ... 283
Rotary coordinate system, resetting ... 285
Rotation ... 254
Rough out: See SL Cycles: Rough-out Ruled surface ... 231

S
Scaling factor ... 256
Side finishing ... 186
Single-lip deep-hole drilling ... 86
SL Cycles
SL cycles
Contour data ... 177
Contour geometry cycle ... 172
Contour train ... 188
Floor finishing ... 184
Fundamentals ... 170, 224
Overlapping contours ... 173, 218
Pilot drilling ... 179
Rough-out ... 181
Side finishing ... 186
SL Cycles with Complex Contour Formula
SL cycles with simple contour formula ... 224
Slot milling
Roughing+finishing ... 138
Slot width, measuring ... 482

T

Tapping
With a floating tap holder ... 95
With chip breaking ... 100
Without floating tap holder ... 97, 100
Thread drilling/milling ... 112
Thread milling, fundamentals ... 103
Thread milling, internal ... 105
Thread milling/countersinking ... 108
Tilting the working plane ... 260
Tolerance monitoring ... 458
Tool compensation ... 458
Tool measurement ... 531
Calibrate the TT ... 533
Machine parameters ... 530
Measuring tool length and
radius ... 538
Tool length ... 534
Tool radius ... 536

T

Tool monitoring ... 458
Touch probe cycles
Touch probe cycles for automatic operation ... 370
Touch probe data ... 375
Touch probe table ... 374
Turning cycles ... 280, 286
Contour, longitudinal ... 302
Contour, transverse ... 325
Contour-parallel ... 306
Longitudinal plunge extended ... 298
Plunge longitudinal ... 294
Plunge transverse ... 317
Recessing contour, axial ... 347
Recessing contour, radial ... 336
Recessing, axial ... 340
Recessing, axial extended ... 343
Recessing, radial ... 329
Recessing, radial extended ... 332
Shoulder face ... 310
Shoulder, face extended ... 313
Shoulder, longitudinal ... 287
Shoulder, longitudinal
extended ... 290
Thread, contour-parallel ... 359
Thread, extended ... 355
Thread, longitudinal ... 351
Transverse plunge, extended ... 321

U

Universal drilling ... 71, 79

W

Width, measuring from inside ... 482
Width, measuring from outside ... 485
Working plane, tilting the 260
Cycle ... 260
Guide ... 265
Workpiece measurement ... 454

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH
Dr.-Johannes-Heidenhain-Straße 5
83301 Traunreut, Germany
家 +49 8669 31-0
EFAX +49 86695061
E-mail: info@heidenhain.de
Technical support FAXX +49 8669 32-1000
Measuring systems : E-mail: service.ms-support@heidenhain.de TNC support $\sigma_{0}+498669$ 31-3101 E-mail: service.nc-support@heidenhain.de NC programming ${ }^{\circ}+498669$ 31-3103 E-mail: service.nc-pgm@heidenhain.de PLC programming $\mathscr{O}^{\circ}+498669$ 31-3102 E-mail: service.plc@heidenhain.de
Lathe controls \quad D +498669 31-3105

E-mail: service.lathe-support@heidenhain.de
www.heidenhain.de

Touch probes from HEIDENHAIN

help you reduce non-productive time and
improve the dimensional accuracy of the finished workpieces.

Workpiece touch probes

TS 220
Signal transmission by cable
TS 440,TS 444
Infrared transmission
TS 640,TS 740
Infrared transmission

- Workpiece alignment
- Setting datums
- Workpiece measurement

Tool touch probes

TT 140
Signal transmission by cable
TT 449
Infrared transmission
TL
Contact-free laser systems

- Tool measurement
- Wear monitoring
- Tool breakage detection

[^0]: The TNC references the programmed feed rate during thread milling to the tool cutting edge. Since the TNC, however, always displays the feed rate relative to the path of the tool tip, the displayed value does not match the programmed value.

 The machining direction of the thread changes if you execute a thread milling cycle in connection with Cycle 8 MIRROR IMAGE in only one axis.

[^1]: Rotation: Enter the rotation angle in degrees (${ }^{\circ}$). Input range -360.000° to $+360.000^{\circ}$ (absolute or incremental)

[^2]: Program a positioning block to the starting position with radius compensation RO before the cycle call.

 The TNC uses the set-up clearance $\mathbf{Q 4 6 0}$ as approach path. The approach path must be long enough for the feed axes to be accelerated to the required velocity.
 The TNC uses the thread pitch as overrun path. The overrun path must be long enough to decelerate the feed axes.

 Parameters are available for approach and overrun in Cycle 832 THREAD LONGITUDINAL EXTENDED.
 When the TNC runs a thread cut, the feed-rate override knob is disabled. The spindle speed override knob is active only within a limited range, which is defined by the machine tool builder (refer to your machine manual).

[^3]: Call tool 0 to define the touch probe axis
 Cycle definition for datum setting in the touch probe axis
 Touch point: X coordinate
 Touch point: Y coordinate
 Touch point: Z coordinate
 Safety clearance in addition to SET_UP column
 Height in the touch probe axis at which the probe can traverse without collision
 Write Z coordinate in line 1
 Set touch-probe axis to 0
 In the preset table PRESET.PR, save the calculated datum referenced to the machine-based coordinate system (REF system)

[^4]: The TNC also sets the status markers if you have not defined any tolerance values or maximum/minimum dimensions.

[^5]: If an M function has been defined in machine parameter $\mathbf{m S t r o b e R o t A x P o s}$, you have to position the rotary axes to 0° (ACTUAL system) before starting one of the KinematicsOpt cycles (except for 450).

 If machine parameters were changed through the KinematicsOpt cycles, the control must be restarted. Otherwise the changes could be lost in certain circumstances.

