

TNC 410

Software NC 286 060-xx 286 080-xx

Modo de empleo Diálogo HEIDENHAIN en texto claro

> Español (es) 4/2001

Teclas de la pantalla

ogra	amaci	ón de trayectorias		
PPR DEP	Llegada/salida del contorno			
FK	Programación libre de contornos FK			
LAP	Recta	3		
¢cc	Pto. c	central círculo/polo coordenadas polares		
Ĵc]	Traye	ct. circ. alrededor del pto. central círculo		
R	Traye	ctoria circular con radio		
	Traye	ctoria circular tangente		
	Chafl	án		
ND.	Redo	ndeo de esquinas		
	de la TOOL CALL	herramienta Introducción y llamada de la longitud y el radio de la herramienta		
clos	, subp	programas y repeticiones parciales		
YCL	CYCL	Definición y llamada de ciclos		
.BL SET	LBL CALL	Introducción y llamada de subprogra- mas y repeticiones parciales del pgm		
ТОР	Introd	ducción de una parada dentro del pgm		
OUCH	Introc en ur	ducción de las funciones del palpador n programa		
trod	lucció	n de los ejes de coordendas y de		
X		Selección de los ejes de coordenadas o introducción de estos en el pgm		
0	9	Cifras		
•	Punto decimal			
/+	Invertir el signo			
P	Introducción en coordenadas polares			
I	Valor	es incrementales		
Q	Parár	netros Ω		

Aceptación de la posición real

Salto de frases del diálogo y borrar palabras

Finalizar la introducción y continuar con el diálogo

Anular introducciones de valores numéricos o borrado de los avisos de error del TNC

Interrupción del diálogo, borrar parte del programa

Modelo de TNC, software y funciones

Este modo de empleo describe las funciones disponibles en los TNC's con los siguientes números de software.

Modelo deTNC	N° de software NC
TNC 410	286 060-xx
TNC 410	286 080-xx

El fábricante de la máquina adapta las prestaciones útiles del TNC individualmente a cada máquina mediante parámetros de máquina. Por ello en este manual pueden estar descritas funciones que no estén disponibles en todos los TNC's.

Funciones del TNC no disponibles en todas las máquinas son, por ejemplo:

- Función de palpación para el sistema de palpación 3D
- Opción de digitalización
- Medición de htas. con el TT 120
- Roscado rígido

Para conocer las prestaciones individuales de su máquina, rogamos contacten con el fabricante de la misma.

Muchos fabricantes y también HEIDENHAIN ofrecen cursillos de programación del TNC. Es recomendable la participación en uno de estos cursillos a fin de familiarizarse de forma intensiva con las funciones del TNC.

Lugar de instalación previsto

El TNC pertenece a los sistemas de la clase A según la norma EN 55022 y está previsto principalmente para su funcionamiento en entornos industriales.

Indice

Introducción

Funcionamiento manual y ajuste

Posicionamiento manual

Programación: Nociones básicas, gestión de ficheros, ayudas de programación

Programación: Herramientas

Programación: Programación de contornos

Programación: Funciones auxiliares

Programación: Ciclos

Programación: Subprogramas y repeticiones parciales de un programa

Programación: Parámetros Q

Test y ejecución del programa

Palpadores 3D

Digitalización

Funciones MOD

Tablas y resúmenes

1 INTRODUCCION 1

- 1.1 TNC 410 2
- 1.2 Pantalla y teclado 3
- 1.3 Modos de funcionamiento 5
- 1.4 Visualizaciones de estados 9
- 1.5 Accesorios: Palpadores 3D y volantes electrónicos de HEIDENHAIN 12

2 FUNCIONAMIENTO MANUALY AJUSTE 13

- 2.1 Conexión 14
- 2.2 Desplazamiento de los ejes de la máquina 15
- 2.3 Revoluciones S del cabezal, avance F y función auxiliar M 18
- 2.4 Fijación del punto de referencia (sin palpador 3D) 19

3 POSICIONAMIENTO MANUAL 21

3.1 Programación y ejecución de frases de posicionamiento sencillas 22

4 PROGRAMACION: NOCIONES BASICAS, GESTION DE FICHEROS, AYUDAS DE PROGRAMACION 25

- 4.1 Principios básicos 26
- 4.2 Gestión de ficheros 31
- 4.3 Abrir e introducir programas 34
- 4.4 Gráfico de programación 39
- 4.5 Añadir comentarios 40
- 4.6 Función de ayuda 41

5 PROGRAMACION: HERRAMIENTAS 43

- 5.1 Introducciones referidas a la herramienta 44
- 5.2 Datos de la herramienta 45
- 5.3 Corrección de la herramienta 52
- 5.4 Medición de herramientas con el TT 120 56

Indice

6 PROGRAMACION: PROGRAMACION DE CONTORNOS 63

- 6.1 Resumen: Movimientos de la herramienta 64
- 6.2 Nociones básicas sobre las funciones de trayectoria 65
- 6.3 Aproximación y salida del contorno 68
 - Resumen: Tipos de trayectoria para la aproximación y salida del contorno 68
 - Posiciones importantes en la aproximación y la salida 68
 - Aproximación sobre una recta tangente: APPR LT 70
 - Aproximación sobre una recta perpendicular al primer punto del contorno: APPR LN 70
 - Aproximación sobre una trayectoria circular tangente: APPR CT 71
 - Aproximación sobre una trayectoria circular tangente al contorno y a una recta: APPR LCT 72
 - Salida sobre una recta tangente: DEP LT 73
 - Salida sobre una recta perpendicular al último punto del contorno: DEP LN 73
 - Salida sobre una trayectoria circular tangente: DEP CT 74
 - Salida sobre una trayectoria circular tangente al contorno y a una recta: DEP LCT 75
- 6.4 Tipos de trayectoria coordenadas cartesianas 76
 - Resumen de las funciones de trayectoria 76
 - Recta L 77
 - Añadir chaflán CHF entre dos rectas 77
 - Punto central del círculo CC 78
 - Trayectoria circular C alrededor del pto. central del círculo CC 79
 - Trayectoria circular CR con radio determinado 80
 - Trayectoria circular tangente CT 81
 - Redondeo de esquinas RND 82
 - Ejemplo: Movimiento lineal y chaflán en coordenadas cartesianas 83
 - Ejemplo: Círculo completo en coordenadas cartesianas 84
 - Ejemplo: Movimientos circulares en coordenadas cartesianas 85
- 6.5 Tipos de trayectoria coordenadas polares 86
 - Origen de coordenadas polares: Pol CC 86
 - Recta LP 87
 - Trayectoria circular CP alrededor del polo CC 87
 - Trayectoria circular tangente CTP 88
 - Interpolación helicoidal (hélice) 88
 - Ejemplo: Movimiento lineal en coordenadas polares 90
 - Ejemplo: Hélice 91

- 6.6 Tipos de trayectoria Programación libre de contornos FK 92
 - Nociones básicas 92 Gráfico para la programación FK 92 Abrir el diálogo FK 93 Programación libre de rectas 94 Programación libre de trayectorias circulares 94 Puntos auxiliares 96 Referencias relativas 97 Contornos cerrados 97 Ejemplo: Programación FK 1 98 Ejemplo: Programación FK 2 99 Ejemplo: Programación FK 3 100

7 PROGRAMACION: FUNCIONES AUXILIARES 103

- 7.1 Programación de las funciones auxiliares M y STOP 104
- 7.2 Funciones auxiliares para el control de la ejecución del programa, cabezal y refrigerante 105
- 7.3 Funciones auxiliares para la indicación de coordenadas 105
- 7.4 Funciones auxiliares para el comportamiento en trayectorias 107

Rectificado de esquinas: M90 107

Añadir transiciones al contorno entre cualquier tramo del mismo: M112 108

Filtro del contorno: M124 110

Mecanizado de pequeños escalones en el contorno: M97 112

Mecanizado completo de esquinas abiertas del contorno: M98 113

Factor de avance para los movimientos de profundización: M103 114

Velocidad de avance constante en el extremo de la hta.: M109/M110/M111 115

Cálculo previo del contorno con corrección de radio (LOOK AHEAD): M120 115

7.5 Funciones auxiliares para ejes giratorios 117

Desplazamiento de ejes giratorios en un recorrido optimizado: M126 117 Redondear la visualización del eje giratorio a un valor por debajo de 360°: M94 117

8 PROGRAMACION: CICLOS 119

8.1 Nociones básicas sobre los ciclos 120 8.2Tablas de puntos 122 Introducción de una tabla de puntos 122 Seleccionar las tablas de puntos en el programa 122 Llamada al ciclo junto con las tablas de puntos 123 8.3 Ciclos de taladrado 124 TALADRADO PROFUNDO (ciclo 1) 124 TALADRADO (ciclo 200) 126 ESCARIADO (ciclo 201) 127 MANDRINADO (ciclo 202) 128 TALADRO UNIVERSAL (ciclo 203) 129 REBAJE INVERSO (ciclo 204) 131 ROSCADO a cuchilla (ciclo 2) 133 ROSCADO rígido GS (ciclo 17) 134 Ejemplo: Ciclos de taladrado 135 Ejemplo: Ciclos de taladrado 136 Ejemplo: Ciclos de taladrado junto con tablas de puntos 137 8.4 Ciclos para el fresado de cajeras, islas y ranuras 139 FRESADO DE CAJERA (ciclo 4) 140 ACABADO DE CAJERA (ciclo 212) 141 ACABADO DE ISLA (ciclo 213) 143 CAJERA CIRCULAR (ciclo 5) 144 ACABADO DE CAJERA CIRCULAR (ciclo 214) 146 ACABADO DE ISLA CIRCULAR (ciclo 215) 147 FRESADO DE RANURAS (ciclo 3) 149 RANURA con profundización pendular (ciclo 210) 150 RANURA CIRCULAR con profundización pendular (ciclo 211) 152 Ejemplo: Fresado de cajera, isla y ranuras 154 Ejemplo: Desbaste y acabado de cajera rectangular junto con tablas de puntos 156 8.5 Ciclos para la programación de figuras de puntos 158 FIGURA DE PUNTOS SOBRE CIRCULO (ciclo 220) 159 FIGURA DE PUNTOS SOBRE LINEAS (ciclo 221) 160 Ejemplo: Círculo de taladros 162

Indice

8.6 Ciclos SL 164

CONTORNO (ciclo 14) 165 Contornos superpuestos 166 PRETALADRADO (ciclo 15) 168 DESBASTE (ciclo 6) 169 FRESADO DEL CONTORNO (ciclo 16) 171 Ejemplo: Desbaste de cajera 172 Ejemplo:Taladrado previo, desbaste y acabado de contornos superpuestos 174 8.7 Ciclos para el planeado 176 PLANEADO (ciclo 230) 176 SUPERFICIE REGULAR (ciclo 231) 178 Ejemplo: Planeado 180 8.8 Ciclos para la traslación de coordenadas 181 Desplazamiento del PUNTO CERO (ciclo 7) 182 Desplazamiento del PUNTO CERO con tablas de puntos (ciclo 7) 182 ESPEJO (ciclo 8) 184 GIRO (ciclo 10) 185 FACTOR DE ESCALA (ciclo 11) 186 FACTOR DE ESCALA ESPECIFICO PARA CADA EJE (ciclo 26) 187 Ejemplo: Ciclos para la traslación de coordenadas 188 8.9 Ciclos especiales 190 TIEMPO DE ESPERA (ciclo 9) 190 LLAMADA AL PROGRAMA (ciclo 12) 190

ORIENTACION DEL CABEZAL (ciclo 13) 191

9 PROGRAMACION: SUBPROGRAMASY REPETICIONES PARCIALES DE UN PROGRAMA 193

- 9.1 Caracterizar los subprogramas y las repeticiones parciales de un programa 194
- 9.2 Subprogramas 194
- 9.3 Repeticones parciales de un programa 195
- 9.4 Cualquier programa como subprograma 196
- 9.5 Imbricaciones 197
 - Un subprograma dentro de otro subprograma 197
 - Repetición de repeticiones parciales de un programa 198
 - Repetición de subprogramas 199
- 9.6 Ejemplos de programación 200
 - Ejemplo: Fresado del contorno en varias aproximaciones 200
 - Ejemplo: Grupos de taladros 201
 - Ejemplo: Grupos de taladros con varias herramientas 202

10 PROGRAMCION: PARAMETROS Q 205

- 10.1 Principio de funcionamiento y resumen de funciones 206
- 10.2 Familias de piezas Parámetros Q en vez de valores numéricos 207
- 10.3 Descripción de contornos mediante funciones matemáticas 208
- 10.4 Funciones angulares (trigonometría) 210
- 10.5 Condiciones si/entonces con parámetros Q 211
- 10.6 Comprobar y modificar parámetros Q 212
- 10.7 Funciones auxiliares 213
- 10.8 Introducir directamente una fórmula 219
- 10.9 Parámetros Q predeterminados 222
- 10.10 Ejemplos de programación 224
 - Ejemplo: Elipse 224
 - Ejemplo: Cilindro concavo con fresa esférica 226
 - Ejemplo: Esfera convexa con fresa cilíndrica 228

11 TESTY EJECUCION DEL PROGRAMA 231

- 11.1 Gráficos 232
- 11.2 Test del programa 236
- 11.3 Ejecución del programa 238
- 11.4 Transmisión por bloques: Ejecución de programas largos 245
- 11.5 Saltar frases 246
- 11.6 Parada programable de la ejecución del programa 246

12 PALPADORES 3D 247

- 12.1 Ciclos de palpación en los modos de funcionamiento Manual y Volante electrónico 248
- 12.2 Fijación del punto de referencia con palpadores 3D 251
- 12.3 Medición de piezas con palpadores 3D 254

13 DIGITALIZACION 259

- 13.1 Digitalización con palpador digital (opción) 260
- 13.2 Programación de los ciclos de digitalización 261
- 13.3 Digitalización en forma de meandro 262
- 13.4 Digitalización por líneas de nivel 263
- 13.5 Empleo de los datos de la digitalización en un programa de mecanizado 265

Indice

14 FUNCIONES MOD 267

- 14.1 Seleccionar, modificar y cancelar las funciones MOD 268
- 14.2 Informaciones del sistema 268
- 14.3 Introducción del código 269
- 14.4 Ajuste de la conexión de datos 269
- 14.5 Parámetros de usuario específicos de la máquina 271
- 14.6 Selección de la visualización de posiciones 272
- 14.7 Selección del sistema métrico 272
- 14.8 Selección del idioma de programación 273
- 14.9 Introducción de los limites de los margenes de desplazamiento 274
- 14.10 Ejecución de la función de AYUDA 275

15 TABLASY RESUMENES 277

- 15.1 Parámetros generales de usuario 278
 - Posibles introducciones en los parámetros de máquina 278
 - Selección de los parámetros de usuario generales 278
 - Transmisión de datos externa 279
 - Palpadores 3D y digitalización 280
 - Visualizaciones delTNC, editor delTNC 282
 - Mecanizado y ejecución del programa 287
 - Volantes electrónicos 289
- 15.2 Distribución de conectores y cable de conexión para la conexión de datos 290
- 15.3 Información técnica 292
 - Características delTNC 292
 - Funciones programables 293
 - Datos delTNC 294
- 15.4 Avisos de error delTNC 295
 - Avisos de error delTNC en la programación 295
 - Avisos de error delTNC en el test y la ejecución del programa 296
 - Avisos de error delTNC en la digitalización 299
- 15.5 Cambio de batería 300

Introducción

1.1 TNC 410

Los TNC de HEIDENHAIN son controles numéricos programables en el taller en los cuales se pueden introducir programas de fresado y mecanizado directamente en la máquina con un diálogo en texto claro fácilmente comprensible. Este control es apropiado para su empleo en fresadoras y mandrinadoras, así como en centros de mecanizado con un total de hasta 4 ejes. Además se puede programar la posición angular del cabezal.

Tanto el teclado como la representación en pantalla están estructurados de forma visible, de tal forma que se puede acceder de forma rápida y sencilla a todas las funciones.

Programación: Diálogo conversacional HEIDENHAIN en texto claro y DIN/ISO

La elaboración de programas es especialmente sencilla con el diálogo HEIDENHAIN en texto claro. Con el gráfico de programación se representan los diferentes pasos del mecanizado durante la introducción del programa. Incluso, cuando no existe un plano acotado, se dispone de la programación libre de contornos FK. Durante el test del programa se puede realizar la simulación gráfica del mecanizado de la pieza. Además el TNC también se puede programar según la norma DIN/ISO o en funcionamiento DNC.

También se puede introducir un programa, mientras se ejecuta el mecanizado de una pieza.

Compatibilidad

El TNC puede ejecutar cualquier programa de mecanizado, elaborado en un control numérico HEIDENHAIN a partir del TNC 150 B.

1.2 Pantalla y tec<mark>lado</mark>

HEIDENHAIN 2

1.2 Pantalla y teclado

Pantalla

El TNC puede suministrarse con la pantalla de tubo en color BC 120 (CRT) o con la pantalla plana en color BF 120 (TFT). En la figura de arriba a la derecha pueden verse las teclas de la BC 120, y en la figura del centro a la derecha las de la BF 120:

1 Línea superior

Cuando el TNC está conectado, en la línea superior de la pantalla se visualiza el modo de funcionamiento elegido

2 Softkeys

En la línea inferior, el TNC muestra otras funciones en una carátula de softkeys. Estas funciones se seleccionan con las teclas que hay debajo de las mismas 3. Como indicación de que existen más carátulas de sofkteys, aparecen unas líneas horizontales directamente sobre dicha carátula. Hav tantas lineas como carátulas y se conmutan con las teclas cursoras negras situadas a los lados. La carátula de softkeys activada se representa con una línea en color más claro.

- 3 Teclas para la selección de softkevs
- 4 Conmutación de las carátulas de softkeys
- 5 Determinación de la subdivisión de la pantalla
- 6 Tecla de conmutación para los modos de funcionamiento Máguina y Programación

Otras teclas adicionales en la BC 120

7 Desmagnetizar la pantalla; salirse del menú principal para ajustar la pantalla

8	Para el ajuste de la par En el menú principal: En el submenú:	talla seleccionar el menú principal; Desplazar el cursor hacia abajo Reducir el valor Desplazar la imagen hacia la izquierda c
0		hacia abajo
G	En al manu principal.	Lineplazar of cureor bacia arriba

- Desplazar el cursor hacia arriba En el menú principal: En el submenú: Aumentar el valor Desplazar la imagen hacia la derecha o hacia arriba
- 10 En el menú principal: Seleccionar el submenú En el submenú: Salir del submenú

Ajustes de la pantalla: Véase la página siguiente

Diálogo del menú principal	Función
BRIGHTNESS	Modificar el brillo
CONTRAST	Modificar el contraste
H-POSITION	Modificar la pos. horizontal
	de la imagen
H-SIZE	Modificar la anchura de la imagen
V-POSITION	Modificar la pos. vertical de la imagen
V-SIZE	Modificar la altura de la imagen
SIDE-PIN	Corregir la distorsión del efecto cojín
	vertical
TRAPEZOID	Corregir la distorsión del efecto cojín
	horizontal
ROTATION	Corregir la inclinación de la imagen
COLORTEMP	Modificar la intensidad del color
R-GAIN	Modificar el ajuste del color rojo
B-GAIN	Modificar el ajuste del color azul
RECALL	Sin función

La BC 120 es sensible a campos magnéticos y electromagnéticos. Debido a ello pueden variar la posición y la geometría de la imagen. Los campos de corriente alterna producen un desplazamiento periódico o una distorsión de la imagen.

Subdivisión de la pantalla

El usuario selecciona la subdivisión de la pantalla: De esta forma el TNC indica, p.ejemplo, en el modo de funcionamiento MEMORIZAR/EDITAR PROGRAMA el programa en la ventana izquierda, mientras que en la ventana derecha se representa, p.ej., simultáneamente un gráfico de programación. Existe la alternativa de visualizar en la ventana de la derecha un gráfico auxiliar en la definición del ciclo o exclusivamente el programa en una ventana grande. La ventana que el TNC visualiza depende del modo de funcionamiento seleccionado.

Modificar la subdivisión de la pantalla

Pulsar la tecla de conmutación de la pantalla: La carátula de softkeys indica las posibles subdivisiones de la pantalla

Selección de la subdivisión de la pantalla mediante softkey

Teclado

En la figura de la derecha se pueden ver las teclas del panel de mandos, agrupadas según su función:

- Teclado alfanumérico para introducir textos, nombres de ficheros y programar en DIN/ISO
- 2 Gestión de ficheros, función MOD, función HELP
- 3 Modos de funcionamiento de Programación
- 4 Modos de funcionamiento de Máquina
- 5 Apertura de los diálogos de programación
- 6 Teclas cursoras e indicación de salto GOTO
- 7 Introducción de cifras y selección del eje

Las funciones de las diferentes teclas están resumidas en la cara interior de la portada. Las teclas externas, como p.ej. NC-START, se describen en el manual de la máquina.

1.3 Modos de funcionamiento

Para las diferentes funciones y secuencias de trabajo que se precisan para elaborar piezas, el TNC dispone de los siguientes modos de funcionamiento:

Funcionamiento manual y volante Volante electrónico

El ajuste de la máquina se realiza en el modo de funcionamiento manual. En este modo de funcionamiento se pueden posicionar de forma manual o por incrementos los ejes de la máquina y fijar los puntos de referencia.

El modo de funcionamiento Volante electrónico es una ayuda para el desplazamiento manual de los ejes de la máquina mediante un volante electrónico HR.

Softkeys para la subdivisión de la pantalla

No existen posibilidades de elección. El TNC visualiza siempre las posiciones.

Handb	edier	ning					
NOM	X Y Z		+ ; + ; -	15. 13. -5.	36 98 00		
RCT X +15.365 Y +13.985 Z -5.000		5 5 10	T 10 F 0 S 10	1 Z 300	M3/	8	
м	s	TAST- FUNCTIE		INCRE- MENTEEL UIT/AAN	REF PUNT VASTL.		GEREED TABEL

Posicionamiento manual (MDI)

En este modo de funcionamiento se programan desplazamientos sencillos, p.ej. para el fresado de superficies o el posicionamiento previo.

Softkeys para la subdivisión de la pantalla

Ventana	Softkey
Programa	PROGRAMA
Izquierda: Programa, derecha: Información general sobre el programa	PROGRAMA+ ESTADO PGM
Izquierda: Programa, derecha: Posiciones y coordenadas	PROGRAMA+ ESTADO VISUAL.
Izquierda: Programa, derecha: Información sobre la herramienta	PROGRAMA+ ESTADO HERRAM.
Izquierda: Programa, derecha: Traslación de coordenadas	PROGRAMA+ ESTADO TRA.COOR.

Memorizar/Editar programa

Los programas de mecanizado se elaboran en este modo de funcionamiento. La programación libre del contorno, los diferentes ciclos y las funciones de parámetros Q ofrecen diversas posibilidades para la programación. El gráfico de programación puede mostrar los distintos pasos, si se desea.

Softkeys para la subdivisión de la pantalla

Ventana	Softkey
Programa	PROGRAMA
Izquierda: Programa, derecha: Figura auxiliar en la programación de un ciclo	PROGRAMA+ FIGURA
Izquierda: PGM, derecha: Gráfico de programación	PROGRAMA+ GRAFICOS
Gráfico de programación	GRAFICOS

Progr	rammer	ren er	n bewe	erken			
0 BE 1 BL 2 BL 3 TC 4 TC 5 TC 6 L 7 L 9 CC 10 LF 11 RN	GIN F K F O F DOL DE DOL 550 Z + 55 Z + 55 P R + ND R 1	PGM 35 RM 0.1 F 101 F 102 F 10	507 MN 2 X+2 2 L+0 2 L+0 3 1 Z S 5 MAX M 5 0 R0 1 AX M 3 A+45	1 20 Y + R + 6 R + 4 51000 13 F M A X L R R F 5	Y-20 20 2 M8 500	2-20 2+0)
	<pre>< -1 / - 2 +3</pre>	40.00	10 10 10	T F Ø S 50	000	M5/	9
BLK FORM	м						

Test del programa

El TNC simula programas y partes del programa en el modo de funcionamiento Test del programa, para p.ej. encontrar incompatibilidades geométricas, falta de indicaciones o errores en el programa y daños producidos en el espacio de trabajo. La simulación se realiza gráficamente con diferentes vistas.

Softkeys para la subdivisión de la pantalla

Ventana	Softkey
Programa	PROGRAMA
Test gráfico	GRAF ICOS
Izquierda: Programa, derecha: Test gráfico	GRAFICO + PROGRAMA
Izquierda: Programa, derecha: Información sobre el programa	PROGRAMA+ ESTADO PGM
Izquierda: Programa, derecha: Posiciones y coordenadas	PROGRAMA+ ESTADO VISUAL.
Izquierda: Programa, derecha: Información sobre la herramienta	PROGRAMA+ ESTADO HERRAM.
Izquierda: Programa, derecha: Traslación de coordenadas	PROGRAMA+ ESTADO TRA.COOR.

Programmatest			
0 BEGIN PGM 3507 MM 1 BLK FORM 0.1 Z X-20 Y-20 Z-20 2 BLK FORM 0.2 X+20 Y+20 Z+0 3 TOOL DEF 101 L+0 R+6 4 TOOL DEF 102 L+0 R+4 5 TOOL CALL 101 Z 51000 6 L Z+56 R0 FMAX M3 7 L X+50 Y+50 R0 FMAX M8 8 L Z-5 R0 FMAX M1 9 CC X+0 Y+0 10 LP PR+14 PA+45 RR F500			
II NO KI	0° 00:01:17		
NOM X -140.000 Y -46.000 Z +360.690	T F 0 S 5000 M5/9		
	STOP BIJ START AFZ.STAP + [N] □ START		

Ejecución continua del programa y ejecución del programa frase a frase

En la EJECUCION CONTINUA DEL PROGRAMA el TNC ejecuta un programa de mecanizado de forma continua hasta su final o hasta una interrupción manual o programada. Después de una interrupción se puede volver a continuar con la ejecución del programa.

En el desarrollo del programa frase a frase se inicia cada frase con el pulsador externo de arranque START.

Softkeys para la subdivisión de la pantalla

Ventana	Softkey
Programa	PROGRAMA
Izquierda: Programa, derecha: Información general s obre el programa	PROGRAMA+ ESTADO PGM
Izquierda: Programa, derecha: Posiciones y coordenadas	PROGRAMA+ ESTADO VISUAL.
Izquierda: Programa, derecha: Información sobre la herramienta	PROGRAMA+ ESTADO HERRAM.
Izquierda: Programa, derecha: Traslación de coordenadas	PROGRAMA+ ESTADO TRA.COOR.
Izquierda: Programa, derecha: Medición de htas.	PROGRAMA+ ESTADO MED.HERR.

Automatische programma-afloop

0 BEGIN PGM 3507 MM 1 BLK FORM 0.1 Z X-20 Y-20 Z-20 2 BLK FORM 0.2 X+20 Y+20 Z+0 3 TOOL DEF 101 L+0 R+6 4 TOOL CALL 101 Z S1000 6 L Z-50 R0 FMAX M3 7 L X-60 Y-50 R0 FMAX M8 8 L Z-5 R0 FMAX M1 9 CC X+0 Y+0 10 LP PR-14 PR+45 RR F500 11 RND R1	PGM-naam 3507 1 RCT X -140.000 Y -46.000 2 Z +360.650 360.650
^{NOM} X −140.000 Y −46.000 Z +360.690	T F 0 ROT S 5000 M5/9
BLOKSGEW. OVERDR.	BEREKEN TOT REGEL N UIT O HAN GEREED TABEL

1.4 Visualizaciones de estados

Visualización de estados "general"

La visualización de estados informa del estado actual de la máquina. Aparecen automáticamente en todos los modos de funcionamiento.

En los modos de funcionamiento Manual y Volante electrónico y Posicionamiento manual la visualización de posiciones aparece en la ventana mayor.

Información de la visualización de estados

Símbolo Significado

REAL	Coordenadas reales o nominales de la posición actual	
XYZ	Ejes de la máquina	
SFM	Revoluciones S, avance F y función auxiliar M activada	
*	Se ha iniciado la ejecución del programa	
- \/ -	El eje está bloqueado	
	Los ejes se desplazan teniendo en cuenta el giro inclinado	

Visualizaciones de estado adicionales

Las visualizaciones de estados adicionales proporcinan una información detallada sobre el desarrollo del programa. Dichas visualizaciones se pueden llamar en todos los modos de funcionamiento a excepción de Memorizar/Editar programa.

Activación de la visualización de estados adicional

Llamar a la carátula de softkeys para la subdivisión de la pantalla

PROGRAMA+ ESTADO VISUAL.	
--------------------------------	--

Seleccionar la representación en pantalla con visualización de estados adicional, p.ej. posiciones y coordenadas

Automatisc	he program:	ma-afloop
0 BEGIN F 1 BLK FOR 2 BLK FOR 3 TOOL CF 4 L Z+10 5 L Z-20 6 L Z-2 7 LBL 12 8 CYCL DE 9 CYCL DE 10 CYCL DE 11 CYCL DE	GM STATUS M 0.1 Z X M 0.2 X+1 JLL 1 Z S40 M R0 FMAX V+50 R0 R0 FMAX M3 F7.0 NULF F7.1 X+2 F7.2 Y+1 F7.3 Z+1	MM (40 Y+0 Z-40 00 Y+100 Z+0 000 DL+0.05 DR+0.04 FMAX 20NT 25.5 0 2
NOM X - Y Z +1	74.285 -5.430 45.000	T 1 Z F 0 RO1 S 1000 M3/8
BLOKSGEW. OVERDR.		BEREKEN TOT REGEL AAN UIT AAN GEREED. NIT UIT TABEL

A continuación se describen diferentes visualizaciones de estado adicionales, que se seleccionan tal como se ha descrito anteriormente:

PROGRAMMA-
ESTADD
PGMInformaciones generales del programa

- 1 Nombre del programa principal
- 2 Programas llamados
- 3 Ciclo de mecanizado activado
- 4 Punto central del círculo CC (polo)
- 5 Contador del tiempo de espera
- 6 Número del subprograma activo o bien repetición parcial del programa activada/ Contador para la repetición parcial actual del pgm (5/3: Programadas 5 repeticiones, faltan por ejecutarse 3)
- 7 Tiempo de mecanizado

Posiciones y coordenadas

- 1 Visualización de posiciones
- 2 Tipo de visualización de posiciones, p.ej. posiciones reales
- 3 Angulo del giro básico

Información sobre las herramientas

- Visualización T: Número y nombre de la herramienta Visualización RT: Número y nombre de la herramienta gemela
- 2 Eje de la herramienta
- 3 Longitud y radios de la herramienta
- 4 Sobremedidas (valores delta) del TOOL CALL (PGM) y de la tabla de herramientas (TAB)
- 5 Tiempo de vida, máximo tiempo de vida (TIME 1) y máximo tiempo de vida con TOOL CALL (TIME 2)
- 6 Visualización de la herramienta activada y de la (siguiente) herramienta gemela

Traslación de coordenadas

- 1 Nombre del programa principal
- 2 Desplazamiento del punto cero activado (ciclo 7)
- 3 Angulo de giro activado (ciclo 10)
- 4 Ejes reflejados (ciclo 8)
- 5 Factor de escala activado (ciclo 11 o ciclo 26)

Véase "8.8 Ciclos para la traslación de coordenadas"

PROGRAMA+ ESTADD Medición de herramientas

- 1 Número de la herramienta que se quiere medir
- 2 Visualización de la medición del radio o de la longitud de la hta.
- 3 Valores MIN y MAX, medición individual de cuchillas y resultado de la medición con herramienta girando (DYN)
- 4 Número de la cuchilla de la herramienta con su correspondiente valor de medida. El asterisco que aparece detrás del valor de medición indica que se ha sobrepasado la tolerancia de la tabla de herramientas.

1.5 Accesorios: Palpadores 3D y volantes electrónicos de HEIDENHAIN

Palpadores 3D

Con los diferentes palpadores 3D de HEIDENHAIN se puede:

- Ajustar piezas automáticamente
- Fijar de forma rápida y precisa puntos de referencia
- Realizar mediciones en la pieza durante la ejecución del programa
- Digitalizar piezas 3D (opción) así como
- Medir y comprobar herramientas

Palpadores digitales TS 220 y TS 630

Estos palpadores están especialmente diseñados para el ajuste automático de piezas, fijación del punto de referencia, mediciones en la pieza y para la digitalización. El TS 220 transmite las señales de palpación a través de un cable y es además una alternativa económica en caso de tener que digitalizar.

El TS 630 está especialmente diseñado para máquinas con cambiador de herramientas, que transmite las señales de palpación via infrarrojos, sin cable.

Principio de funcionamiento: En los palpadores digitales de HEIDENHAIN un sensor óptico sin contacto registra la desviación del palpador. La señal que se genera, produce la memorización del valor real de la posición actual del palpador.

En la digitalización el TNC elabora un programa con frases lineales en formato HEIDENHAIN a partir de una serie de valores de posiciones. Este programa se puede seguir procesando en un PC con el software de evaluación SUSA para poder corregirlo según determinadas formas y radios de herramienta o para calcular piezas positivas/negativas. Cuando la bola de palpación es igual al radio de la fresa estos programas se pueden ejecutar inmediatamente.

Palpador de herramientas TT 120 para la medición de htas.

El TT 120 es un palpador 3D digital para la medición y comprobación de herramientas. Para ello el TNC dispone de 3 ciclos con los cuales se puede calcular el radio y la longitud de la herramienta con cabezal parado o girando.

El tipo de construcción especialmente robusto y el elevado tipo de protección hacen que el TT 120 sea insensible al refrigerante y las virutas. La señal de conexión se genera con un sensor óptico sin contacto que se caracteriza por su elevada seguridad.

Volantes electrónicos HR

Los volantes electrónicos simplifican el desplazamiento manual preciso de los carros de los ejes. El recorrido por giro del volante se selecciona en un amplio campo. Además de los volantes empotrables HR 130 y HR 150, HEIDENHAIN ofrece el volante portátil HR 410.

Funcionamiento manual y ajuste

2.1 Conexión

La conexión y el sobrepaso de los puntos de referencia son funciones que dependen de la máquina. Rogamos consulten el manual de su máquina.

Conectar la tensión de alimentación del TNC y de la máquina.

A continuación el TNC indica el siguiente diálogo:

TEST DE MEMORIA

Se comprueba automáticamente la memoria del TNC

Interrupcion de tensión

Aviso del TNC, de que se ha presentado una interrupción de tensión. Borrar el aviso

TRADUCIR el programa de PLC

El programa de PLC se traduce automáticamente

Falta tensión externa de reles

I

Conectar la tensión del control El TNC comprueba el funcionamiento de la PARADA DE EMERGENCIA

Funcionamiento manual Sobrepasar los puntos de referencia

Sobrepasar los puntos de referencia en cualquier secuencia: Pulsar y mantener activado el pulsador externo de manual de cada eje, hasta que se haya sobrepasado el punto de referencia, o bien

z I

Sobrepasar los puntos de referencia simultáneamente con varios ejes: Seleccionar los ejes mediante la softkey (los ejes se representan en pantalla de forma invertida) y después activar el pulsador de arranque externo START

Ahora el TNC está preparado para funcionar y se encuentra en el modo de funcionamiento MANUAL

2.2 Desplazamiento de los ejes de la máquina

El desplazamiento con los pulsadores externos de manual es una función que depende de la máquina. ¡Rogamos consulten el manual de su máquina!

Desplazar el eje con los pulsadores de manual

...o desplazar el eje de forma contínua:

X ^y **I**

Accionar simultánemante el pulsador de manual y pulsar brevemente el pulsador externo de arranque START. El eje se desplaza hasta que se pare el mismo.

0

Parar: Accionar el pulsador externo de parada STOP

De las dos formas se pueden desplazar simultáneamente varios ejes.

Desplazamiento con el volante electrónico HR 410

El volante electrónico HR 410 está equipado con dos teclas de confirmación. Estas teclas se encuentran debajo de la rueda dentada. Los ejes de la máquina sólo se pueden desplazar cuando está pulsada una de las teclas de confirmación (esta función depende de la máquina).

El volante HR 410 dispone de los siguientes elementos de mando:

- 1 PARADA DE EMERGENCIA
- 2 Volante electrónico
- 3 Teclas de confirmación
- 4 Teclas para la selección de ejes
- 5 Tecla para aceptar la posición real
- 6 Teclas para determinar el avance (lento, medio, rápido; el constructor de la máquina determina los avances)
- 7 Sentido en el cual el TNC deplaza el eje seleccionado
- 8 Funciones de la máquina (determinadas por el constructor de la máquina)

Las visualizaciones en rojo determinan el eje y el avance seleccionados.

También se pueden realizar desplazamientos con el volante, durante la ejecución del programa

Desplazamiento

Seleccionar el funcionamiento Volante electrónico

Mantener pulsada la tecla de confirmación del volante

X	Seleccionar el eje	
••••	Seleccionar el avance	
	Desplazar el eje en sentido + o -	

Posicionamiento por incrementos

En el posicionamiento por incrementos se determina un desplazamiento de "aproximación", el cual se efectúa al accionar el pulsador externo de manual que se desee.

Seleccionar el funcionamiento Volante electrónico o Manual

Seleccionar el posicionamiento por incrementos, fijar la softkey en Conectado

APROXIMACION =

Introducir el paso de aproximación en mm, p.ej. 8 mm o bien

X

Seleccionar la aproximación mediante softkey (continuar conmutando la carátula de softkeys)

Accionar el pulsador externo de manual: Posicionar tantas veces como se desee

2.3 Revoluciones S, avance F y función auxiliar M

En los modos de funcionamiento Manual y Volante electrónico se introducen mediante softkeys las revoluciones S del cabezal y la función auxiliar M. Las funciones auxiliares se describen en el capítulo "7. Programación: Funciones auxiliares". El avance se determina mediante un parámetro de máquina y sólo se puede modificar con los potenciómetros de overide (véase abajo).

Introducción de valores

Ejemplo: Introducir las revoluciones S del cabezal

S	Seleccionar la introducción de las rpm: Softkey S
Revoluciones	S del cabezal=
1000 ent I	Introducir las revoluciones del cabezal y aceptar con el pulsador externo START

El giro del cabezal con las revoluciones S programadas se inicia con una función auxiliar M.

La función auxiliar M se introduce de la misma forma.

Modificar el nº de revoluciones y el avance

Con los potenciómetros de override para las revoluciones S del cabezal y el avance F, se puede modificar el valor ajustado entre 0% y 150%.

El potenciómetro de override para las revoluciones del cabezal sólo actua en máquinas con accionamiento del cabezal controlado.

El constructor de la máquina determina las funciones auxiliares M que se pueden utilizar y la función que realizan.

2.4 Fijación del punto de referencia (sin palpador 3D)

En la fijación del punto de referencia, la visualización del TNC se fija sobre las coordenadas conocidas de una posición de la pieza.

Preparación

Ajustar y centrar la pieza

- ▶ Introducir la herramienta cero con radio conocido
- ► Asegurar que el TNC visualiza las posiciones reales

Fijar el punto de referencia

Medida de protección: En el caso de que no se pueda rozar la superficie de la pieza, se coloca sobre la misma una cala con grosor d conocido. Después para fijar el punto de referencia se introduce un valor al cual se ha sumado d.

visualización sobre una posición conocida de la pieza (p.ej. 0) o introducir el grosor d de la cala. En el plano de mecanizado: Tener en cuenta el radio de la hta.

Los puntos de referencia para los ejes restantes se fijan de la misma forma.

Si se utiliza una herramienta preajustada en el eje de aproximación, se fija la visualización de dicho eje a la longitud L de la herramienta o bien a la suma Z=L+d.

Posicionamiento manual (MDI)

3.1 Programación y ejecución de frases de posicionamiento sencillas

Para los mecanizados sencillos o para el posicionamiento previo de la hta. se utiliza el modo de funcionamiento Posicionamiento manual (MDI). En este modo de funcionamiento se puede introducir y ejecutar directamente un programa corto en formato HEIDENHAIN en texto claro o DIN/ISO. También se puede llamar a ciclos delTNC. El programa se memoriza en el fichero \$MDI. En el Posicionamiento manual se puede activar la visualización de estados adicional.

Seleccionar el modo de funcionamiento Posicionamiento manual (MDI). Programar el fichero \$MDI tal como se desee

 $\left(\mathbf{I}\right)$

Iniciar la ejecución del pgm: Pulsador ext. START

Limitaciones:

No están disponibles las siguientes funciones:

- Corrección de radio de la hta.
- Programación libre de contornos FK
- Gráficos de programación y de la ejecución del pgm
- Funciones de palpación programables
- Subprogramas, repeticiones parciales de un programa
- Tipos de trayectoria CT, CR, RND y CHF
- PGM CALL

Ejemplo 1

En una pieza se quiere realizar un taladro de 20 mm. Después de sujetar la pieza, centrarla y fijar el punto de referencia, se puede programar y ejecutar el taladro con unas pocas lineas de programación.

Primero se posiciona la herramienta con frases L (rectas) sobre la pieza y a una distancia de seguridad de 5 mm sobre la posición del taladro. Después se realiza el taladro con el ciclo 1 TALADRADO EN PROFUNDIDAD.

0	BEGIN PGM \$MDI MM
1	TOOL DEF 1 L+0 R+5
2	TOOL CALL 1 Z S2000
3	L Z+200 RO FMAX
4	L X+50 Y+50 RO FMAX M3
5	L Z+5 F2000

Definir la hta.: Herramienta inicial, radio 5 Llamada a la hta.: Eje de la herramienta Z, Revoluciones del cabezal 2000 rpm Retirar la hta. (FMAX = marcha rápida) Posicion. hta. conFMAX sobre taladro, cabezal conectado Posicionar la hta. a 5 mm sobre el taladro

Hta.= herramienta

6 CYCL DEF 1.0 TALADRO PROFUNDO	Definición del ciclo TALADRADO EN PROFUNDIDAD:
7 CYCL DEF 1.1 DIST. 5	Distancia de seguridad de la hta. sobre el taladro
8 CYCL DEF 1.2 PROF20	Profundidad del taladro (signo=sentido mecaniz.)
9 CYCL DEF 1.3 APROX. 10	Profundidad de pasada antes de retirar la hta.
10 CYCL DEF 1.4 T.ESP. 0,5	Tiempo de espera en segundos en la base del taladro
11 CYCL DEF 1.5 F250	Avance
12 CYCL CALL	Llamada al ciclo TALADRADO EN PROFUNDIDAD
13 L Z+200 RO FMAX M2	Retirar la hta.
14 END PGM \$MDI MM	Final del programa

Los tipos de trayectoria se describen en el capítulo +6.4 Tipos de trayectoria - Coordenadas cartesianas+, el ciclo TALADRADO EN PROFUNDIDAD en el capítulo "8.3 Ciclos de taladrado".

Ejemplo 2

Eliminar la inclinación de la pieza en máquinas con mesa giratoria

Ejecutar un giro básico con un palpador 3D. Véase "12.1 Ciclos de palpación en los modos de funcionamiento Manual y Volante electrónico", apartado "Compensación de la inclinación de la pieza".

Anotar el ángulo de giro y anular el giro básico

ا (ا

Seleccionar el modo de funcionamiento: Posicionamiento manual

Seleccionar el eje de la mesa giratoria, anotar el ángulo de giro e introducir el avance p.ej. L C+2.561 F50

 (\mathbf{I})

Finalizar la introducción Accionar el pulsador externo de arranque

START: Se elimina la inclinación mediante el giro de la mesa giratoria, después de arrancar el NC el cursor se desplaza a la siguiente frase
El fichero \$MDI se utiliza normalmente para programas cortos y transitorios. Si a pesar de ello se quiere memorizar un programa, deberá procederse de la siguiente forma:

\Rightarrow	Seleccionar el modo de fun- cionamiento Memorizar/Editar pgm
PGM MGT	Llamada a la gestión de programas: Tecla PGM MGT (Program Management)
ł	Marcar el fichero \$MDI
COPIAR ABC ⇒ XYZ	Seleccionar "Copiar fichero": Softkey COPIAR
Fichero desti	ino =
TALADRO	Introducir el nombre bajo el cual se quiere memorizar el índice del fichero \$MDI
ENT	Ejecutar la copia
FIN	Salir de la gestión de ficheros: Softkey FIN

Para borrar el contenido del fichero \$MDI se procede de forma parecida: En vez de copiar se borra el contenido con la softkey BORRAR. En el siguiente cambio al modo de funcionamiento Posicionamiento manual el TNC indica un fichero \$MDI vacio.

continuación

Cuando se conmuta con la función MOD entre programación en texto claro y programación DIN/ISO, debe borrarse el fichero actual \$MDI.* y a continuació seleccionar de nuevo el modo de funcionamiento
Posicionamiento Manual.

Más información en el capítulo "4.2 Gestión de ficheros".

Programación:

Principios básicos, gestión de ficheros, ayudas de programación

4.1 Principios básicos

Sistemas de medida y marcas de referencia

En los ejes de la máquina se dispone de sistemas de medida, que registran las posiciones de la mesa de la máquina o de la herramienta. Cuando se mueve un eje de la máquina, el sistema de medida correspondiente genera una señal eléctrica, a partir de la cual el TNC calcula la posición real exacta del eje de dicha máquina.

En una interrupción de tensión se pierde la asignación entre la posición de los ejes de la máquina y la posición real calculada. Para restablecer esta asignación los sistemas de medida disponen de marcas de referencia. Al sobrepasar una marca de referencia el TNC recibe una señal que caracteriza un punto de referencia fijo de la máquina. De esta forma el TNC restablece la relación de la posición real asignada a la posición actual del carro de la máquina.

Normalmente en los ejes de la máquina están montados sistemas lineales de medida. En mesas giratorias y ejes basculantes existen sistemas de medida angulares. Para reproducir la asignación entre la posición real y la posición actual del carro de la máquina, cuando se emplean sistemas lineales de medida con marcas de referencia codificadas, los ejes de la máquina deberán desplazarse un máximo de 20 mm, y en los sistemas de medida angulares un máximo de 20°.

4.1 Principios básicos

Sistema de referencia

Con un sistema de referencia se determinan claramente posiciones en el plano o en el espacio. La indicación de una posición se refiere siempre a un punto fijo y se describe mediante coordenadas.

En el sistema cartesiano están determinadas tres direcciones como ejes X, Y y Z. Los ejes son perpendiculares entre si y se cortan en un punto llamado punto cero. Una coordenada indica la distancia al punto cero en una de estas direcciones. De esta forma una posición se describe en el plano mediante dos coordenadas y en el espacio mediante tres.

Las coordenadas que se refieren al punto cero se denominan coordenadas absolutas. Las coordenadas incrementales se refieren a cualquier otra posición (punto de referencia) en el sistema de coordenadas. Los valores de coordenadas relativos se denominan también coordenadas incrementales.

Sistemas de referencia en fresadoras

Para el mecanizado de una pieza en una fresadora, deberán referirse generalmente respecto al sistema de coordenadas cartesianas. El dibujo de la derecha indica como están asignados los ejes de la máquina en el sistema de coordenadas cartesianas. La regla de los tres dedos de la mano derecha sirve como orientación: Si el dedo del medio indica en la dirección del eje de la herramienta desde la pieza hacia la herramienta, está indicando la dirección Z+, el pulgar la dirección X+ y el índice la dirección Y+.

El TNC 410 puede controlar un máximo de 4 ejes. Además de los ejes principales X, Y y Z, existen también ejes auxiliares paralelos U, V y W. Los ejes giratorios se caracterizan mediante A, B y C. En la figura de abajo se muestra la asignación de los ejes auxiliares o ejes giratorios respecto a los ejes principales.

Coordenadas polares

Cuando el plano de la pieza está acotado en coordenadas cartesianas, el programa de mecanizado también se elabora en coordenadas cartesianas. En piezas con arcos de círculo o con indicaciones angulares, es a menudo más sencillo, determinar posiciones en coordenadas polares.

A diferencia de las coordenadas cartesianas X, Y y Z, las coordenadas polares sólo describen posiciones en un plano. Las coordenadas polares tienen su punto cero en el polo CC (CC = circle centre; ingl. punto central del círculo). De esta forma una posición en el plano se caracteriza por

- Radio en coordenadas polares: Distancia entre el polo CC y la posición
- Angulo de las coordenadas polares: Angulo entre el eje de referencia angular y la trayectoria que une el polo CC con la posición

Véase la figura abajo a la derecha.

Determinación del polo y del eje de referencia angular

El polo se determina mediante dos coordenadas en el sistema de coordenadas cartesianas en uno de los tres planos. Además estas dos coordenadas determinan claramente el eje de referencia angular para el ángulo en coordenadas polares PA.

XY +X	Coordenadas del polo (plano)	Eje de referencia angular
	XY	+X
YZ +Y	YZ	+Y
ZX +Z	ZX	+Z

4.1 P<mark>rinci</mark>pios básicos

Posiciones absolutas e incrementales de la pieza

Posiciones absolutas de la pieza

Cuando las coordenadas de una posición se refieren al punto cero de coordenadas (origen), dichas coordenadas se caracterizan como absolutas. Cada posición sobre la pieza está determinada claramente por sus coordenadas absolutas.

Ejemplo 1:Taladros en coordenadas absolutas

Taladro T	Taladro 2	Taladro 3
X=10 mm	X=30 mm	X=50 mm
Y=10 mm	Y=20 mm	Y=30 mm

Posiciones incrementales de la pieza

Las coordenadas relativas se refieren a la última posición programada de la herramienta, que sirve como punto cero (imaginario) relativo. De esta forma, en la elaboración del programa las coordenadas incrementales indican la cota entre la última y la siguiente posición nominal, según la cual se deberá desplazar la herramienta. Por ello se denomina también cota relativa.

Una cota incremental se caracteriza con una "l" delante de la denominación del eje.

Ejemplo 2: Taladros en coordenadas incrementales

Coordenadas absolutas del taladro 4:

X= 10 mm Y= 10 mm	
Taladro <mark>5</mark> referido a <mark>4</mark>	Taladro <mark>6</mark> referido a <mark>5</mark>
IX= 20 mm IY= 10 mm	IX= 20 mm IY= 10 mm

Coordenadas polares absolutas e incrementales

Las coordenadas absolutas se refieren siempre al polo y al eje de referencia angular.

Las coordenadas incrementales se refieren siempre a la última posición de la herramienta programada.

Selección del punto de referencia

En el plano de una pieza se indica un determinado elemento de la pieza como punto de referencia absoluto (punto cero), casi siempre una esquina de la pieza. Al fijar el punto de referencia primero hay que alinear la pieza según los ejes de la máquina y colocar la herramienta para cada eje, en una posición conocida de la pieza. Para esta posición se fija la visualización del TNC a cero o a un valor de posición predeterminado. De esta forma se le asigna a la pieza el sistema de referencia, válido para la visualización del TNC o para su programa de mecanizado.

Si en el plano de la pieza se indican puntos de referencia relativos, sencillamente se utilizaran los ciclos para la traslación de coordenadas. Véase el capítulo "8.8 Ciclos para la traslación de coordenadas".

Cuando el plano de la pieza no está acotado, se selecciona una posición o una esquina de la pieza como punto de referencia, desde la cual se pueden calcular de forma sencilla las cotas de las demás posiciones de la pieza.

Los puntos de referencia se pueden fijar de forma rápida y sencilla mediante un palpador 3D de HEIDENHAIN. Véase el capítulo "12.2 Fijación del punto de referencia con palpadores 3D".

Ejemplo

En el plano de la pieza a la derecha se indican los taladros (1 a 4), cuyas cotas se refieren a un punto de referencia absoluto con las coordeandas X=0 Y=0. Los taladros (5 a 7) se refieren a un punto de referencia relativo con las coordenadas absolutas X=450 Y=750. Con el ciclo DESPLAZAMIENTO DEL PUNTO CERO se puede desplazar de forma provisional el punto cero a la posición X=450, Y=750 para poder programar los taladros (5 a 7) sin más cálculos.

4.2 Gestión de ficheros

Ficheros y gestión de ficheros

Cuando se introduce un programa de mecanizado en el TNC, primero se le asigna un nombre. El TNC memoriza el programa como un fichero con el mismo nombre. También memoriza tablas como ficheros.

Nombres de ficheros

El nombre de un fichero puede tener como máximo 8 signos. Se permite utilizar los signos especiales @, \$, _, %, # y &. En los programas y tablas el TNC añade una extensión, separada del nombre del fichero por un punto. Dicha extensión caracteriza el tipo de fichero: Véase la tabla de la derecha.

Nombre del fichero Tipo de fichero

El TNC gestiona claramente el nombre del fichero, es decir, no se puede asignar un mismo nombre de fichero a diferentes tipos de ficheros.

Con el TNC se pueden memorizar hasta 64 ficheros, que no deben sobrepasar en total 256 Kbyte.

Trabajar con la gestión de ficheros

En este apartado se informa sobre el significado de las diferentes informaciones de la pantalla y como seleccionar ficheros e índices. Si aun no se conoce bien la gestión de ficheros del TNC 410, será mejor leer atentamente este apartado y verificar las diferentes funciones en el TNC.

Llamada a la gestión de ficheros

PGM MGT Pulsar la tecla PGM MGT : El TNC visualiza la ventana para la gestión de ficheros

La ventana 1 muestra todos los ficheros memorizados en el TNC. Para cada fichero se visualizan varias informaciones que están codificadas en la tabla de la derecha.

Ficheros en elTNC	Тіро
Programas en diálogo en texto claro HEIDENHAIN según DIN/ISO	.H .I
Tablas para herramientas Posiciones de herramientas Puntos cero Puntos	.T .TCH .D .PNT

Eleco Nombr	ión c e del	del pr fich	ogram ero=	а				
BC BRI CYC I.	AS1 DGE C21 210 FK3 HE3 HE3 KLT	D H H H H H H	226 318 572 528 726 214 588 304 226 324 226 324 226					
NOML. >	(2	-8.28 14.27 -5.00	5 '0 10	T F S	1 0 1(Z 300	M3/	8
PAGINA	PAGINA Ĵ	PROTEGER/ DESPROT.	RENOMBRAR ABC = XYZ	BOR S	RAR	COPIAR ABC⇔XYZ	EXT	FIN

Visualización	Significado
Nombre del fichero	Nombre con un máximo de 8 digitos y tipo de fichero
M	Características del fichero: El programa está seleccionado en un modo de funcionamiento de ejecución del programa
Р	Protección del fichero contra borrado y escritura (Protected)

Pasar página hacia atrás en el fichero

Pasar pág. hacia delante en el fichero

Visualización de ficheros largos

Softkey

PAGINA ∏

Seleccionar un fichero

Desplaza el cursor en la ventana arriba y abaio

Introducir una o varias letras del fichero a seleccionar y pulsar la tecla GOTO: El cursor salta sobre el primer fichero que coincida con las letras introducidas.

El fichero seleccionado se activa en el modo de funcionamiento desde el cual se ha llamado a la gestión de ficheros: Pulsar ENT

Copiar ficheros

Desplazar el cursor sobre el fichero a copiar

▶ Pulsar la softkev COPIAR: Seleccionar la función de copiar

Introducir el nombre del fichero de destino y aceptar con la tecla ENT: El TNC copia el fichero. Se mantiene el fichero original.

Renombrar fichero

▶ Desplazar el cursor sobre el fichero que se guiere renombrar

RENOMBRAR Seleccionar la función para renombrar

- Introducir un nuevo nombre de fichero: El tipo de fichero no se puede modificar
- ▶ Ejecutar la función de renombrar pulsando la tecla FNT

Borrar el fichero

Mover el cursor sobre el fichero que se desea borrar

- Seleccionar la función de borrado: Pulsar la softkey BORRAR. El TNC pregunta si realmente se desea borrar el fichero.
- ► Confirmar el borrado: Pulsar la softkev SI. Si no se desea borrar el fichero, cancelar pulsando la softkey NO

Protección de ficheros/ eliminar la protección de ficheros

▶ Mover el cursor sobre el fichero aue se aujere proteger

► Activar la protección del fichero: Pulsar la softkey PROTEGER/ELIMINAR El fichero recibe el estado P

La protección del fichero se elimina de la misma forma con la softkey PROTEGER/ELIMINAR. Para eliminar la protección del fichero se introduce el código 86357.

Conversión de un programa FK a formato en TEXTO CLARO HEIDENHAIN

Mover el cursor sobre el fichero que se auiere convertir

- ► Seleccionar la función de conversión: Pulsar la softkey CONMUTAR FK->H (2ª carátula de softkeys)
- ▶ Introducir el nombre del fichero de destino
- ▶ Ejecutar la conversión: Pulsar la tecla ENT

Introducir/emitir ficheros

▶ Introducir o emitir ficheros: Pulsar la softkey EXT. El TNC dispone de las siguientes funciones que describimos a continuación

Cuando en la memoria del TNC existe ya el fichero que se quiere leer, se muestra el aviso "ya existe el fichero xxx, leer fichero?". En este caso las preguntas del diálogo se contestan con las softkeys SI (el fichero se lee) o NO (el fichero no se lee).

Cuando ya existe en un soporte de datos externo el fichero que se quiere utilizar, el TNC pregunta si se quiere sobreescribir el fichero memorizado en dicho soporte de datos externo.

Introducir todos los ficheros (tipos de ficheros: .H, .I, .T, .TCH, .D, .PNT)

▶ Introducir todos los ficheros memorizados en el soporte de datos externo.

Introducir el fichero propuesto

TRANSFER.	
.н	

▶ Presentar todos los ficheros de un tipo determinado

▶ P.ei. visualizar todos los programas en diálogo en texto claro. Introducir el programa propuesto: Pulsar la softkey SI, no introducir el programa propuesto: Pulsar la softkey NO

Introducir un fichero determinado

▶ Introducir el nombre del fichero, y confirmar con la tecla ENT

Seleccionar el tipo de fichero, p.ei, programa con diálogo en texto claro

Si se guiere visualizar la tabla TOOL.T, se pulsa la softkey TABLA DE HERRAMIENTAS. Si se quiere visualizar la tabla de posiciones TOOLP.TCH, se pulsa la softkey TABLA DE POSICIONES.

Emitir un determinado fichero

Seleccionar la fucnión emitir ficheros individuales

- ▶ Desplazar el cursor sobre el fichero que se quiere ŧ emitir. con la tecla ENT o la softkev TRANSMITIR se inicia la transmisión
- ► Cancelar la función emitir ficheros individuales: Pulsar la tecla END

Emitir todos los ficheros (tipos de ficheros: .H, .I, .T, .TCH, .D, .PNT)

TRANSFER. Todos los ficheros memorizados en el TNC, se quardan en un soporte de datos externo

Visualizar el índice de ficheros de un aparato externo (tipos de ficheros: .H, .I, .T, .TCH, .D, .PNT)

Visualizar todos los ficheros memorizados en el soporte de datos externo. La visualización de ficheros se realiza por páginas. Visualizar la siguiente página: Pulsar la softkey SI, volver al menú principal: Pulsar la softkey NO

4.3 Abrir e introducir programas

Estructura de un programa NC con formato en texto claro de HEIDENHAIN

Un programa de mecanizado consta de una serie de frases de programa. En el dibujo de la derecha se indican los elementos de una frase.

El TNC enumera automáticamente las frases de un programa de mecanizado en secuencia ascendente.

La primera frase de un programa empieza con "BEGIN PGM", el nombre del programa y la unidad de medida utilizada.

Las frases siguientes contienen información sobre:

- La pieza en bloque:
- Definiciones y llamadas a la herramienta
- Avances y revoluciones, así como
- Tipos de trayectoria, ciclos y otras funciones.

La última frase de un programa lleva la indicación "END PGM", el nombre del programa y la unidad de medida utilizada.

Definición del bloque: BLK FORM

Inmediatamente después de abrir un nuevo programa se define el gráfico de una pieza en forma de paralelogramo sin mecanizar. El TNC precisa dicha definición para las simulaciones gráficas. Los lados del paralelogramo pueden tener una longitud máxima de 30 000 mm y deben ser paralelos a los ejes X, Y y Z. Este bloque está determinado por los puntos de dos esquinas:

- Punto MIN: Coordenada X, Y y Z mínimas del paralelogramo; introducir valores absolutos
- Punto MAX: Coordenada X, Y y Z máximas del paralelogramo; introducir valores absolutos o incrementales

El TNC sólo puede representar el gráfico, cuando la proporción entre el lado más corto y el lado más largo del BLK FORM es menor a 1:64.

Abrir un programa nuevo de mecanizado

Un programa de mecanizado se introduce siempre en el modo de funcionamiento Memorizar/editar programa.

Ejemplo de la apertura de un programa

Elecc	ción c re del	lel pr . fich	ogram ero=	ia EFGV.	н		
NOML.	(59.28	30				
	Z +150.000						
			S		M5/	9	
		.н	.I	. D	.PNT		
INCH							

Definición del bloque

BLK Abrir el diálogo para la definición del bloque: Pulsar la softkey BLK FORM Eje hta. paralelo a X/Y/Z ? Introducir el eje de la herramienta Def BLK FORM: Pto. mín.? Introducir sucesivamente las coordenadas X, Y y Z del punto MIN Image: State of the st				la
Eje hta. paralelo a X/Y/Z ? Introducir el eje de la herramienta Def BLK FORM: Pto. mín.? Introducir sucesivamente las coordenadas X, Y y Z del punto MIN Introducir sucesivamente las coordenadas X, Y y Z del punto MIN Finalizar el diálgo para la introducción del pto. MIN Finalizar el diálgo para la introducción del pto. MIN Introducir sucesivamente las coordenadas X, Y y Z del punto MAX Introducir sucesivamente las coordenadas X, Y y Z del punto MAX	BLK FOR	< M	Abrir el diálogo para la definición del bloque: Pulsar la softkey BLK FORM	1 2 3
▼ Introducir el eje de la herramienta Def BLK FORM: Pto.mín.? 0 ENT 1ntroducir sucesivamente las coordenadas X, Y y Z del punto MIN 0 ENT -40 ENT Finalizar el diálgo para la introducción del pto. MIN Def BLK FORM: Pto. máx.? 100 ENT Introducir sucesivamente las coordenadas X, Y y Z del punto MAX 0 ENT	Eje	hta. paral	elo a X/Y/Z ?	
Def BLK FORM: Pto. mín.? 0 ENT 1 Introducir sucesivamente las coordenadas X, Y y Z del punto MIN 0 ENT -40 ENT Finalizar el diálgo para la introducción del pto. MIN Def BLK FORM: Pto. máx.? 100 ENT Introducir sucesivamente las coordenadas X, Y y Z del punto MAX 100 ENT 0 ENT	Z	ENT	Introducir el eje de la herramienta	
0 ■ 0 ■ -40 ■ Finalizar el diálgo para la introducción del pto. MIN Def BLK FORM: Pto. máx.? 100 ■ Introducir sucesivamente las coordenadas X, Y y Z del punto MAX 0 ■	Def	BLK FORM:	Pto. mín.?	NUH
0ENT-40ENTFinalizar el diálgo para la introducción del pto. MINDef BLK FORM: Pto. máx.?100ENTIntroducir sucesivamente las coordenadas X, Y y Z del punto MAX0ENT	0	ENT	Introducir sucesivamente las coordenadas X, Y y Z del punto MIN	
Def BLK FORM: Pto. máx.? 100 ENT Introducir sucesivamente las coordenadas X, Y y Z del punto MAX 100 ENT 0 ENT	0 -40		Finalizar el diálgo para la introducción del pto. MIN	
100 ENT Introducir sucesivamente las coordenadas X, Y y Z del punto MAX 100 ENT 0 ENT	Def	BLK FORM:	Pto. máx.?	
100 ENT 0 END	100	ENT	Introducir sucesivamente las coordenadas X, Y y Z del punto MAX	
	100	ENT		
	0			

Memoriza Def BLK	r/editar pro FORM: ¿Punto	ograma o máx?				
0 BEGIN 1 BLK F 2 BLK F 2 2+0	PGM 2J2K MN ORM 0.1 Z > ORM 0.2 X+1	1 (+0 Y L00 Y	7+0 Z 7+100	-40		
S ENU P	an 232K MM					
NOML. X +0.595						
ż	+0.615	T FØ S		M5/	9	

La ventana del programa indica la definción del BLK-Form:

BEGIN PGM NUEVO MM	Principio del programa, tipo de unidad de medida
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Eje de la hta., coordenadas del punto MIN
2 BLK FORM 0.2 X+100 Y+100 Z+0	Coordenadas del punto MAX
END PGM NUEVO MM	Final del programa, nombre, unidad de medida

El TNC genera automáticamente los números de frase, así como las frases BEGIN y END.

4.3 Abrir e intro<mark>duci</mark>r programas

Memorizar/editar programa ¿Función auxiliar M?

 BEGIN PGM 2J2K MM

 BLK FORM 0.1 Z X+0

 BLK FORM 0.2 X+100

 Y+10

 TOOL CALL 1 Z S2500

 L X+10

 L X+10

 FIND PGM 2J2K MM

Y+0

Z-40

M5/9

Tecla

Y+100 Z+0

Programación de la trayectoria de la herramienta con diálogo HEIDENHAIN en texto claro

Para programar una frase se empieza con la tecla de apertura del diálogo. En la línea de la cabezera de la pantalla el TNC pregunta todos los datos precisos.

Ejemplo de un diálogo

Lap	Apertura del diálogo
Coordenadas ?	
X 10 ENT	Introducir la coordenada del pto. final para el
	eje X
Y 5 ENT 22	κ Introducir la coordenada del pto. final para el eje Y, y pasar con la tecla ENT a la siguiente pregunta
Corrección de	radio: RL/RR/Sin correcc. ?
ENT	Introducir "Sin corrección de radio" y pasar con ENT a la siguiente pregunta
Avance ? F=	
100 _{ENT}	Avance de este desplazamiento 100 mm/ min, y pasar con ENT a la siguiente pregunta
Función auxili	ar M ?
	Introducir directamente cualquier función auxiliar, p.ej M3 "cabezal conectado", o bien
M120	Introducir funciones auxiliares que precisan valores de introducción adicionales, p.ej. M120: Pulsar la softkey M120 e introducir los valores
END	Con la tecla END finaliza este diálogo y se memoriza la frase introducida

La ventana del programa indica la frase:

3 L X+10 Y+5 R0 F100 M3

Edición de frases del programa

Mientras se realiza o modifica el programa de mecanizado, con las teclas cursoras se pueden seleccionar frases del programa y palabras de una frase: Véase tabla a la derecha Cuando se programa una nueva frase, el TNC caracteriza dicha frase con el símbolo * siempre que la frase aun no haya sido memorizada.

Buscar palabras iguales en frases diferentes

Seleccionar la palabra de una frase: Pulsar las teclas cursoras hasta que esté marcada la palabra con un recuadro

+ +

Seleccionar la frase con las teclas cursoras

En la nueva frase seleccionada el recuadro se encuentra sobre la misma palabra seleccionada en la primera frase.

Búsqueda de cualquier texto

- Seleccionar la función de búsqueda: Pulsar la softkey BUSCAR El TNC indica el diálogo BUSCA TEXTO :
- ▶ Introducir el texto que se desea buscar
- Buscar texto: Pulsar la softkey EJECUTAR

Añadir frases en cualquier posición

Seleccionar la frase detrás de la cual se quiere añadir una frase nueva y abrir el diálogo

Añadir la última frase editada (borrada) en cualquier posición

Seleccionar la frase detrás de la cual se quiere añadir la última frase editada (borrada) y pulsar la softkey AÑADIR FRASE NC

Modificar y añadir palabras

- Se elige la palabra en una frase y se sobreescribe con el nuevo valor. Mientras se tenga seleccionada la palabra se dispone del diálogo en texto claro.
- Finalizar y memorizar la modificación: Pulsar la tecla END
- Cancelar la modificación: Pulsar la tecla DEL

Cuando se añade una palabra se pulsan las teclas cursoras (de dcha. a izq.) hasta que aparezca el diálogo deseado y se introduce el valor deseado.

Visualización de la frase

Cuando una frase es tan larga que el TNC no puede visualizarla en una línea del programa - p.ej. en ciclos de mecanizado -, la frase se marca con ">>" en el margen derecho de la pantalla.

Funciones	Softkeys/teclas
Pasar página hacia arriba	PAGINA Î
Pasar página hacia abajo	PAGINA I
Salto al final del pgm	INICIO
Salto al final del pgm	FIN <u> </u>
Saltar de frase a frase	
Seleccionar palabras sueltas en la frase	
Búsqueda de cualquier	BURGUEDO

Borrar frases y palabras	Tecla
Fijar el valor de la palabra deseada a cero	CE
Borrar un valor erróneo	CE
Borrar un aviso de error (no intermitente)	CE
Borrar la palabra seleccionada	NO ENT
En la frase: Reproducir el último estado memorizado	
Borrar la frase (ciclo) seleccionada(o)	
Borrar parte del programa: Seleccionar la última frase de la parte del programa que se desea eliminar y borrar con DEL	DEL

secuencia de signos

4.4 Gráfico <mark>de p</mark>rogramación

4.4 Gráfico de programación

Mientras se elabora un programa, el TNC puede visualizar el contorno programado en un gráfico. El TNC representa los movimientos en la dirección negativa al ejes de la hta. con un círculo (diámetro del círculo = diámetro de la hta.).

Desarrollo con y sin gráfico de programación

▶ Para la subdivisión de la pantalla seleccionar el programa a la izquierda y el gráfico a la derecha: Pulsar la tecla SPLIT SCREEN y la softkey PROGRAMA + GRAFICO

▶ Fijar la softkey DIBUJAR AUTOM. en ON. Mientras se van introduciendo las frases del programa, el TNC muestra cada movimiento programado en la ventana del aráfico.

Si no se desea visualizar el gráfico se fija la softkey DIBUJAR AUTOM, en OFF. DIBUJAR AUTOM, ON no puede visualizar repeticiones parciales de un programa.

Realizar el gráfico de programación para un programa ya existente

▶ Con las teclas cursoras seleccionar la frase hasta la cual se guiere realizar el gráfico o pulsar GOTO e introducir directamente el nº de frase deseado

▶ Realizar el gráfico: Pulsar softkey RESET + START RESET START

Para más funciones véase la tabla de la derecha.

Borrar el gráfico

▶ Conmutar la carátula de softkeys: Véase figura dcha.

▶ Borrar el gráfico: Pulsar la softkey BORRAR GRAFICO

Memorizar/editar programa BEGIN PGM 3507 MM BLK FORM 0.1 Z X-20 Y-20 Z-20 BLK FORM 0.2 X+20 Y+20 Z+0 TOOL DEF 1 L+0 R+6 TOOL DEF 2 L+0 R+4 4 TOOL CALL 1 Z S1000 L Z+50 R0 FMAX M3 1 X+50 Y+50 P0 FM0X M9 8 L Z-5 R0 FMAX M1 9 CC X+0 Y+0 10 LP PR+14 PA+45 RR F500 11 RND R1 NOML. Х +0.595 +0.595 Т 120 Z Ζ +0.615 F S 0 M5/9 RESET START START INDIVID. START

Funciones del gráfico de programación Softkey

Realizar el gráfico de programación por frases

Realizar el gráfico de programación	
por completo o completarlo después de RESET + START	START

Detener el gráfico de programación. Esta softkey sólo aparece mientras el TNC realiza un gráfico de programación

STOP

\triangleright

TNC 410 de HEIDENHAIN

Ampliación o reducción de una sección

Se puede determinar la vista de un gráfico. Con un margen se selecciona la sección para ampliarlo o reducirlo.

Seleccionar la carátula de softkeys para la ampliación o reducción de una sección (segunda carátula, véase figura derecha) De esta forma están disponibles las siguientes funciones:

Función	Softkey
Reducir margen - para desplazarlo mantener pulsada esta softkey	< <
Ampliar margen - para desplazarlo mantener pulsada esta softkey	>>
Desplazar el marco	+ + + +

							START	START	RESET	
	Y Z		+0.59 +0.61	.5	T F S	12 0	0 Z	M5/	9	
NO	ML. X		+0.59	5						
10 11	LP PR+ RND R1	14 PA+4	5 RR F500						\	
9	CC X+0	Y +0								
7 8	L X+50	Υ+50 R R0 FM6X	0 FMAX M8 M1							
6	L Z+50	RØ FMAX	МЗ				$\sim N$	/ / /	/	
4 5	TOOL DE	F 2 L+0 LL 1 Z S	R+4 1000							
3	TOOL DE	F 1 L+0	R+6					/		
2 BLK FORM 0.1 2 X-20 Y-20 2-20 2 BLK FORM 0.2 X+20 Y+20 Z+0							1		///	
1	BEGIN P	GM 3507	MM X-20 Y-20	7-20		-				

DETALLE PIEZA

Con la softkey SECCION DEL BLOQUE se acepta el campo seleccionado

Con la softkey BLOQUE IGUAL QUE BLK FORM se genera de nuevo la sección original.

4.5 Añadir comentarios

Se pueden añadir comentarios para aclarar los pasos del programa o dar indicaciones:

- Seleccionar la frase, detrás de la cual se quiere añadir el comentario
- Abrir el diálogo de programación con la tecla ";" (punto y coma) del teclado alfanumérico
- Introducir el comentario y finalizar la frase con la tecla END

Memor ¿Come	∙izar/ entari	′edita .o?	ar pi	гo	gra	ma	1			
0 BE 1 BL 2 BL 3 TC *4	GIN P K FOR K FOR IOL DE	GM 38 8M 0.2 8M 0.2 F 1 L	507 L Z 2 X· _+0	MM X + 2 R +	-20 0 6	۱ ۲+	Y- 20	20 Z	Z-20 :+0)
		MIEN F 2 I	1 1 + 0	P +	4					
5 10	IOL CF		zs	10	00					
6 L	Z+50	RØF	MAX,	M	3					
IS L	Z-5	RØ FN	18 X I	0 M 1	FMH	IX	118			
9 ČC	: _x+e) Y+6	3							
NOML.)		+0.59	95							
Y	, 1	+0.59	95		т	12	0 2	2		
4		-0.0.	10		É	0		-		
					S				M5/	9

4.6 Función de ayuda

En la función de ayuda del TNC hay agrupadas algunas funciones de programación. Mediante una softkey se elige un tema, del cual se obtienen más información.

Seleccionar la función de ayuda

HELP	

▶ Pulsar la tecla HELP

 Seleccionar un tema: Pulsar una de las softkeys propuestas

Tema de ayuda / función	Softkey	
Programación DIN/ISO: Funciones G	G	
Programación DIN/ISO: Funciones D	D	
Programación DIN/ISO: Funciones M	М	
Programación DIN/ISO: Letras de dirección	LETRAS DIRECCION	
Parámetros de ciclos	Q	_
Ayuda, que introduce el constructor de su máquina (opcional, no ejecutable)	PLC	
Seleccionar la página siguiente	PAGINA J	
Seleccionar la página anterior	PAGINA Û	
Seleccionar el principio del fichero	INICIO	
Seleccionar el final del fichero	FIN <u>I</u>	
Seleccionar la función de búsqueda; introducir el texto, iniciar con la tecla ENT	BUSQUEDA	

G	D	М	LETRAS DIRECCION	Q	PLC	FIN	

Memorizar/editar programa

Hemorizar/editar programa									
0 / 0									
100 - Parada del desarrollo del pq⊯∕parada del cabezal									
∕refrigerante desconectado									
M01 - Parada condicionada									
Maz - Stop del desarrorro del pginstop del cabezal/reirigerante desconentadosi e preciso horrado de visualización de									
estados (depende de MP), vuelta a la 1º frase									
M03 - Conexión del cabezal de la herramienta en sentido horario									
M04 - Conexión del cabezal de la herramienta en sentido									
antihorario									
muo - Marada del Capezal MAGE - Cambio de berramienta/parada de la ejecución del nom									
(depende de MP)/parada del cabezal									
M08 - Refrigerante conectado									
M09 - Refrigerante desconectado									
M13 - Cabezal conectado en sentido horario/refrigerante									
conectado									
M14 - Cabezal conectado en sentido antinorario/reirigerante									
M30 - Iqual que M02									
M89 - Función auxiliar libre o llamada al ciclo, forma modal									
activa (depende de MP)									
M90 – Velocidad constante en esquinas (actúa sólo en funcion.									
M91 - En frase nosicion : coordenadas referidas al punto cero									
de la máquina									
M92 - En frase posicion.: coordenadas referidas a una posición									
definida por el constructor de la máquina, p.ej. posición									
PAGINA PAGINA INTCIO FIN									

Cancelar la función de ayuda

Pulsar dos veces la softkey FIN.

Programación: Herramientas

5.1 Introducción de datos de la hta.

Avance F

El avance F es la velocidad en mm/min (pulg./min), con la cual se desplaza la herramienta en la trayectoria. El avance máximo puede ser diferente en cada máquina y está determinado por parámetros de máquina.

Introducción

El avance se puede indicar en cada frase de posicionamiento. Véase el capítulo "6.2 Nociones básicas sobre las funciones de trayectorias".

Marcha rápida

Para la marcha rápida se introduce F MAX . Para introducir F MAX se pulsa la tecla ENT o la softkey FMAX cuando aparece la pregunta del diálogo "AVANCE F = ?".

Funcionamiento

El avance programado con un valor numérico es válido hasta que se indique un nuevo avance en otra frase. F MAX sólo es válido para la frase en la que se programa. Después de la frase con F MAX vuelve a ser válido el último avance programado con un valor numérico.

Modificación durante la ejecución del programa

Durante la ejecución del programa se puede modificar el avance con el potenciómetro de override F para el mismo.

Revoluciones del cabezal S

Las revoluciones S del cabezal se indican en revoluciones por minuto (rpm) en la frase TOOL CALL (llamada a la hta.).

Programar una modificación

En el programa de mecanizado se pueden modificar las revoluciones del cabezal con una frase TOOL CALL en la cual se indica únicamente el nuevo número de revoluciones:

Programación de la llamada a la hta.: Pulsar la tecla TOOL CALL

- Pasar la pregunta del diálogo "¿Número de hta.?" con la tecla NO ENT
- Pasar la pregunta del diálogo "Eje hta. paralelo X/Y/Z ?" con la tecla NO ENT
- En el diálogo "¿Revoluciones S del cabezal = ?" introducir nuevas revoluciones del cabezal y confirmar con la tecla END

Modificación durante la ejecución del programa

Durante la ejecución del programa se pueden modificar las revoluciones con el potenciómetro de override S.

5.2 Dat<mark>os d</mark>e la herramienta

5.2 Datos de la herramienta

Normalmente las coordenadas de las trayectorias necesarias, se programan tal como está acotada la pieza en el plano. Para que el TNC puede calcular la trayectoria del punto central de la herramienta, es decir, que pueda realizar una corrección de la herramienta, deberá introducirse la longitud y el radio de cada herramienta empleada.

Los datos de la herramienta se pueden introducir directamente en el programa con la función TOOL DEF o/y por separado en las tablas de herramientas. Si se introducen los datos de la herramienta en la tabla, se dispone de otras informaciones específicas de la herramienta. Cuando se ejecuta el programa de mecanizado, el TNC tiene en cuenta todas las informaciones introducidas.

Número de la herramienta

Cada herramienta se caracteriza con un número del 0 al 254.

La herramienta con el número 0 se establece como herramienta cero y tiene la longitud L=0 y el radio R=0. En la tabla de herramientas tiene que definirse también la herramienta T0 con L=0 y R=0.

Longitud de la herramienta L

La longitud L de la herramienta se puede determinar de dos formas:

1 La longitud L es la diferencia entre la longitud de la herramienta deseada y la longitud de la herramienta cero L₀.

Signo:

- La herramienta es más larga que la herramienta cero L>L0
- La herramienta es mas corta que la herramienta cero: L<L₀

Determinar la longitud:

- Desplazar la herramienta cero a la posición de referencia según el eje de la herramienta (p.ej. superficie de la pieza con Z=0)
- Fijar la visualización del eje de la hta. a cero (fijar pto. de ref.)
- Cambiar por la siguiente herramienta
- Desplazar la nueva hta. a la misma posición de ref. que la hta. cero
- La visualización del eje de la herramienta indica la diferencia de longitud respecto a la herramienta cero
- Aceptar el valor con la softkey "aceptar posición real" en la frase TOOL DEF o bien aceptar en la tabla de herramientas
- **2** Cuando se determina la longitud L con un aparato de ajuste previo, el valor calculado se introduce directamente en la definición de la hta. TOOL DEF o en la tabla de htas.

Radio R de la herramienta

Introducir directamente el radio R de la herramienta.

Valores delta para longitudes y radios

Los valores delta indican desviaciones de la longitud y del radio de las herramientas .

Para las sobremedidas se indica un valor delta positivo (DR>0). En un mecanizado con sobremedida dicho valor se indica en la programación por medio de la llamada a la herramienta TOOL CALL.

Un valor delta negativo indica un decremento (DR<0). En las tablas de herramientas se introduce el decremento para el desgaste de la hta.

Los valores delta se indican como valores numéricos, en una frase TOOL CALL se admite también un parámetro Q como valor.

Campo de introducción: los valores delta se encuentran como máximo entre $\pm 99,999$ mm.

Introducción de los datos de la hta. en el pgm

El número, la longitud y el radio para una hta. se determina una sóla vez en el programa de mecanizado en una frase TOOL DEF:

- TOOL DEF
- Seleccionar la definición de hta: Pulsar la tecla TOOL DEF
- Introducir el Número de herramienta: Identificar claramente una hta. con su número
- Introducir la longitud de la herramienta: Valor de corrección para la longitud
- Introducir el radio de la hta.: Valor de corrección para el radio de la hta.

Durante el diálgo se pueden aceptar la longitud y el radio con las softkeys "ACT.POS X, ACT.POS Y o ACT.POS Z" directamente de la visualización de posiciones.

Si para aceptar la posición real se pulsa la tecla negra, el TNC acepta como longitud de la hta. el valor del eje activo de la hta. Si no está activado ningún eje de la hta. el TNC acepta el valor del eje determinado en el menú de calibración con las funciones de palpación, como eje de palpación.

Ejemplo frase NC

4 TOOL DEF 5 L+10 R+5

Introducir los datos de la herramienta en la tabla

En la tabla de herramientas se pueden definir hasta 254 htas y memorizar sus datos correspondientes. (El número de htas. se puede limitar con el parámetro de máquina 7260). Rogamos tengan en cuenta las funciones de edición que aparecen más adelante en este capítulo.

La tabla de htas. se utiliza, cuando

- Su máquina está equipada con un cambiador de herramientas automático
- Se quieren medir automáticamente htas. con el TT 120, véase el capítulo "5.4 Medición de htas."

Abrev.	Introducciones	Diálogo
Т	Número con el que se llama a la herramienta	-
	en el programa	
NOMBRE	Nombre con el que se llama a la herramienta	Nombre de la hta. ?
	en el programa	
L	Valor de corrección para la longitud de la herramienta	Longitud de la hta. ?
R	Valor de corrección para el radio R de la herramienta	Radio de la hta. ?
DL	Valor delta de la longitud de la herramienta	Sobremedida de longitud de la hta.?
DR	Valor delta del radio R de la herramienta	Sobremedida del radio de la hta. ?
TL	Fijar el bloqueo de la herramienta	HTA. bloqueada?
	(TL: de Tool Locked = en inglés hta. bloqueada)	
RT	Número de la hta. gemela, si existe, como hta. de	Hta. gemela?
	repuesto (RT : de R eplacement T ool = en inglés	
	herramienta de repuesto); véase también TIME2	
TIME1	Máximo tiempo de vida de la herramienta en minutos.	Máximo tiempo de vida ?
	Esta función depende de la máquina y se describe en el	
	manual de la misma	
TIME2	Máximo tiempo de vida de la hta. en un TOOL CALL en	Máximo tiempo de vida en TOOL CALL ?
	minutos: Si el tiempo de vida alcanza o sobrepasa	
	este valor, el TNC activa en el siguiente TOOL CALL la	
	hta. gemela (véase también CUR.TIME)	
CUR.TIME	Máximo tiempo de vida de la herramienta en minutos:	Tiempo de vida actual ?
	El TNC actualiza automáticamente el tiempo de vida	
	actual (CUR.TIME : de CUR rent TIME = en inglés tiempo	
	de funcionamiento actual).	
	Se puede introducir una observación para las	
	herramientas empleadas	
DOC	Comentario sobre la herramienta (máximo 16 signos)	Comentario sobre la hta. ?
PLC	Información sobre esta herramienta,	Estado del PLC ?
	que se quiere transmitir al PLC	

Tabla de herramientas: Posibilidades de introducción

Tabla de herramientas: Datos de la herramienta precisos para la medición automática de herramientas

Abrev.	Introducciones	Diálogo
CUT.	Número de cuchillas de la hta. (máx. 20 cuchillas)	Número de cuchillas ?
LTOL	Desvío admisible de la longitud L de la hta. para el reconocimiento de desgaste. Si se sobrepasa el valor introducido, el TNC bloquea la hta. (estado L). Campo de introducción: 0 a 0,9999 mm	Tolerancia de desgaste: Longitud ?
RTOL	Desvío admisible del radio R de la herramienta para el reconocimiento de desgaste. Si se sobrepasa el valor introducido, el TNC bloquea la hta. (estado L). Campo de introducción: 0 a 0,9999 mm	Tolerancia de desgaste: Radio ?
DIRECT.	Dirección de corte de la herramienta para la medición con la herramienta girando	Direción de corte (M3 = $-$) ?
TT:R-OFFS	Medición de longitudes: Desvíación de la herramienta entre el centro del vástago y el centro de la hta. Ajuste previo: \mathbf{R} = Radio R de la herramienta	Desvío de la hta.: Radio?
TT:LOFFS	Medición del radio: Desvío adicional de la hta. en relación al MP6530 (Véase "15.1 Parámetros de usuario generales") entre la arista superior del vástago y la arista inferior de la herramienta. Ajuste previo : 0	Desvío de la hta.: Longitud?
LBREAK	Desvío admisible de la longitud L de la hta. para el reco- nocimiento de rotura. Si se sobrepasa el valor introducido, el TNC bloquea la herramienta (estado L). Campo de introducción: 0 a 0,9999 mm	Tolerancia de rotura: Longitud ?
RBREAK	Desvío admisible del radio R de la herramienta para el reconocimiento de rotura. Si se sobrepasa el valor introducido, el TNC bloquea la herramienta (estado L). Campo de introducción: 0 a 0,9999 mm	Tolerancia de rotura: Radio ?

5.2 Dat<mark>os d</mark>e la herramienta

Edición de tablas de herramientas

La tabla de herramientas válida para la ejecución del programa lleva el nombre de fichero TOOL.T. TOOL.T se activa automáticamente en un modo de funcionamiento de Ejecución del pgm. En el funcionamiento Memorizar/Editar programa también se pueden gestionar tablas de htas. con otros nombres de fichero.

Abrir la tabla de herramientas TOOL.T:

▶ Seleccionar cualquier modo de funcionamiento de Máquina

Abrir cualquier otra tabla de herramientas:

Seleccionar el modo de funcionamiento Memorizar/ editar programa

- Llamada a la gestión de ficheros
- Seleccionar un fichero existente con la extensión .T y pulsar la softkey COPIAR. Introducir un nombre de fichero nuevo y confirmar con la tecla ENT

Cuando se ha abierto una tabla de herramientas para editarla, con las teclas cursoras se puede desplazar el cursor sobre cualquier posición de la tabla (véase figura arriba a la derecha). En cualquier posición se pueden sobreescribir los valores memorizados e introducir nuevos valores. Véase la siguiente tabla con más funciones de edición.

Cuando el TNC no puede visualizar simultáneamente todas las posiciones en la tabla de herramientas, en la parte superior de la columna se visualiza el símbolo ">>" o bien "<<".

Salir de la tabla de herramientas:

- Finalizar la edición de la tabla de htas.: Pulsar la softkey Fin o la tecla END
- Llamar a la gestión de ficheros y seleccionar un fichero de otro tipo, p.ej. un programa de mecanizado

El TNC no interrumpe la ejecución del programa, si se edita la tabla de htas. paralelamente a un cambio de hta. automático. El TNC acepta los datos modificados en la próxima llamada a la herramienta.

> A través del parámetro de usuario MP7266 se determina qué indicaciones se introducen en una tabla de herramientas y en que secuencia se ejecutan.

Memor ¿Radi	izar/ o de	'edita herra	nr pro Imient	ograma ta?				
TOOL	.т	мм						>
1 NAME 0 1 2 SCHRI 3 4 5 6 6 7 8 9 10 11 12 13	JPPER	L +0 -12.5 -12.5 +0 +0 -12 -25.35 +0 -17.356 +0 -17.2 -45	R +0 +3 +1_5 +2.5 +25 +5 +0 +2.5 +6 +3 +7.5	+0 +0.025 +0.025 +0 +0 +0 +0 +0.01 +0.5 +0 +0.01 +0.05 +0 +0	DR +0	TL RT 2 12	0 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 TIME2 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NOML. X Y Z	: – 1 + ! + 1	67.40 90.57 01.99	10 70 15	T F Ø S		MS	i/9)
PAGINA	PAGINA Ū	PALABRA	PALABRA	EDITAR				

Funciones edición para tablas de htas.	Softkey
Seleccionar la pág. anterior de la tabla	PAGINA Î
Seleccionar la pág. siguiente de la tabla	PAGINA J
Desplazar el cursor hacia la izquierda	Palabra
Desplazar el cursor hacia la derecha	PALABRA
Bloquear la hta. en la columna TL	SI
No bloquear la hta. en la columna TL	NO
Aceptar las posiciones reales, p.ej. para el eje Z	POS.ACT. Z

Confirmar el valor introducido, seleccionar la siguiente columna en la tabla. Si el cursor se encuentra al final de la línea, salto a la primera columna de la línea siguiente

Borrar el valor numérico erróneo, volver a introducir el valor preajustado

ENT

Reproducir el último valor memorizado

Tabla de posiciones para cambiador de herramientas

Para el cambio automático de herramientas, se programa la tabla TOOLPTCH (TOOL Pocket en inglés posición de la herramienta).

Seleccionar la tabla de posiciones

▶ En el modo de funcionamiento Memorizar/Editar programa

OFF/ ON

- Llamada a la gestión de ficheros
- ▶ Desplazar el cursor sobre TOOLP.TCH. Confirmar con la tecla ENT

de posiciones:

En un modo de funcionamiento de "Máquina"

TABLA HERRAM.	Seleccionar la tabla de htas.: Pulsar la softkey TABLA HTAS.
TABLA PUESTOS	Seleccionar la tabla de posicior Pulsar la softkey TABLA POSIC.
EDITAR	▶ Fijar la softkey EDITAR en ON

Cuando se ha abierto una tabla de herramientas para editarla, con las teclas cursoras se puede desplazar el cursor sobre cualquier posición de la tabla (véase figura arriba a la derecha). En cualquier posición se pueden sobreescribir los valores memorizados e introducir nuevos valores.

No se puede utilizar por duplicado un número de hta. en la tabla de posiciones. Si es preciso el TNC emite un aviso de error, al salir de la tabla de htas.

En la tabla de posiciones se pueden introducir las siguientes informaciones sobre la herramienta:

Memo さNúm	r i Ie I	izar/ code	'edita e herr	ır pro amier	ograma nta?	9		
TOOLI 0 1 2 1 3 4 2 5 3 6 4 2 5 3 6 4 7 7 8 6 9 9 9 10 5 11 12 10 13 12 1 13 13 15 15 15 15 15 15 15 15 15 15	s s s	.TCH F L PLC C C C C C C C C C C C C C	MM					
NOML.	X Y Z	+ 2 + 1	59.28 28.67 50.00	0 0 10	T F Ø S		M5/	9
PAGINF		PAGINA ∬	PALABRA	PALABRA	EDITAR OFF / ON	RESET TABLA PUESTOS		

Funciones edición p. tablas de pos.	Softkey
Seleccionar la pág. anterior de la tabla	PAGINA Û
Seleccionar la pág. sig. de la tabla	PAGINA Ţ
Desplazar el cursor una columna hacia la izquierda	PALABRA
Desplazar el cursor una columna hacia la derecha	PALABRA
Anular la tabla de posiciones	RESET TABLA PUESTOS

Abrev.	Introducciones	Diálogo
Ρ	Nº de posición de la hta. en el almacén de htas.	-
Т	Número de la herramienta	Número de hta.?
ST	La herramienta es especial (ST :de S pecial T ool = en inglés herramienta especial); si la hta. especial ocupa posiciones delante y detrás de su posición, dichas posiciones también deben bloquearse (estado L)	Herramienta especial ?
F	Devolver siempre la hta. a la misma posición en el almacér (F : de F ixed = en inglés determinada)	n Posición fija?
L	Bloquear la posición (L: de Locked = en inglés bloqueado	Posición bloqueada?
PLC	Información sobre esta posición de la herramienta que se quiere transmitir al PLC	Estado del PLC ?

Llamada a los datos de la herramienta

La llamada a la herramienta TOOL CALL se introduce de la siguiente forma en el programa de mecanizado:

- Seleccionar la llamada a la hta. con la tecla TOOL CALL
- Número de la hta.: Introducir el número de la herramienta. Antes se define la hta. en una frase TOOL DEF o en la tabla de htas.
- Eje de la hta. paralelo X/Y/Z: Introducir el eje de la hta. Se pueden utilizar los ejes paralelos U, V y W
- ▶ Revoluciones del cabezal S
- Sobremedida longitud de la hta.: Valor delta para la longitud de la hta.
- Sobremedida radio de la hta.: Valor delta para el radio de la hta.

Ejemplo de la llamada a una herramienta

Se llama a la herramienta número 5 según el eje Z con unas revoluciones de 2500rpm. La sobremedida para la longitud de la herramienta es de 0,2 mm y el decremento para el radio de la herramienta es 1 mm.

20 TOOL CALL 5 Z S2500 DL+0,2 DR-1

La "D" delante de la "L" y la "R" es para el valor delta (sobremedida).

Preselección en tablas de herramientas

Cuando se utilizan tablas de herramientas se hace una preselección con una frase TOOL DEF para la siguiente herramienta a utilizar. Para ello se introduce el nº de hta. o un parámetro Q y se finaliza el diálgo con la tecla END.

Cambio de herramienta

TOOL

El cambio de herramienta es una función que depende de la máquina. ¡Rogamos consulten el manual de su máquina!

Posición de cambio de herramienta

La posición de cambio de herramienta deberá alcanzarse sin riesgo de colisión. Con las funciones auxiliares M91 y M92 se puede introducir una posición de cambio fija de la máquina. Si antes de la primera llamada a la herramienta se programa TOOL CALL 0, el TNC desplaza la base del cabezal a una posición independiente de la longitud de la herramienta.

Cambio manual de la herramienta

Antes de un cambio manual de la herramienta se para el cabezal y se desplaza la herramienta sobre la posición de cambio:

- Ejecutar un pgm para llegar a la posición de cambio
- Interrumpir la ejecución del programa, véase el capítulo "11.3 Ejecución del programa"
- Cambiar la herramienta
- Continuar con la ejecución del programa, véase el capítulo "11.3 Ejecución del programa"

Cambio automático de la herramienta

En un cambio de herramienta automático no se interrumpe la ejecución del programa. En una llamada a la herramienta con TOOL CALL, el TNC cambia la herramienta en el almacén de herramientas.

Cambio automático de la herramienta al sobrepasar el tiempo de vida: M101

M101 es una función que depende de la máquina. ¡Rogamos consulten el manual de su máquina!

Cuando se alcanza el tiempo de vida de la hta. TIME2, el TNC cambia automáticamente a la hta. gemela. Para ello, se activa al principio del programa la función auxiliar M101. La activación de M101 se elimina con M102.

El cambio de herramienta automático no siempre tiene lugar inmediatamente después de transcurrido el tiempo de vida, sino algunas frases después, según la carga del control.

Condiciones para frases NC standard con corrección de radio R0, RR, RL

El radio de la herramienta gemela debe ser igual al radio de la herramienta original. Si no son iguales los radios, el TNC emite un aviso y no cambia la hta.

5.3 Corrección de la herramienta

El TNC corrige la trayectoria según el valor de corrección para la longitud de la herramienta en el eje del cabezal y según el radio de la herramienta en el plano de mecanizado.

Si se elabora el programa de mecanizado directamente en el TNC, la corrección del radio de la herramienta sólo actua en el plano de mecanizado. Para ello el TNC tiene en cuenta hasta un total de cuatro ejes, los ejes giratorios.

Corrección de la longitud de la herramienta

La corrección de la longitud de la herramienta actua en cuanto se llama a la herramienta y se desplaza en el eje del cabezal. Se elimina nada más llamar a una herramienta con longitud L=0.

 Si se elimina una corrección de longitud con valor positivo con TOOL CALL 0, disminuye la distancia entre la herramienta y la pieza.

Después de la llamada a una herramienta TOOL CALL se modifica la trayectoria programada de la hta. en el eje del cabezal según la diferencia de longitudes entre la hta. anterior y la nueva.

En la corrección de la longitud se tienen en cuenta los valores delta tanto de la frase TOOL CALL, como de la tabla de herramientas.

Valor de corrección = L + $DL_{TOOL CALL}$ + DL_{TAB} con

L	Longitud L de la hta. de frase TOOL DEF o tabla de
	htas.

- DL_{TOOL CALL} Sobremedida DL para la longitud de una frase TOOL CALL (no se tiene en cuenta en la visualización de posiciones)
- DL_{TAB} Sobremedida DL para la longitud de la tabla de htas.

Corrección del radio de la herramienta

La frase del programa para el movimiento de la hta. contiene

- RL o RR para una corrección de radio
- R+ o R-, para una corrección de radio en un movimiento paralelo a un eje
- R0, cuando no se quiere realizar ninguna corrección de radio

La corrección de radio actua en cuanto se llama a una herramienta y se desplaza en el plano de mecanizado con RL o RR. Se elimina dicha corrección cuando se programa una frase de posicionamiento con R0.

En la corrección de radio se tienen en cuenta valores delta tanto de una frase TOOL CALL como de una tabla de herramientas:

Valor de corrección = $R + DR_{TOOL CALL} + DR_{TAB}$ con

- R Radio de la hta. R de una frase TOOL DEF o de una tabla de herramientas
- DR_{TOOL CALL} Sobremedida DR del radio de una frase TOOL CALL (no se tiene en cuenta en la visualización de posiciones)
- DR_{TAB} Sobremedida DR para el radio de una tabla de htas.

Tipos de trayectoria sin corrección de radio: R0

El punto central de la herramienta se desplaza en el plano de mecanizado sobre la trayectoria programada, o bien sobre las coordenadas programadas.

Empleo: Taladros, posicionamientos previos Véase la figura en el centro a la derecha.

Tipos de trayectoria con corrección de radio: RR y RL

RR La herramienta se desplaza por la derecha del contorno

RL La herramienta se desplaza por la izquierda del contorno

En este caso el centro de la hta. queda separado del contorno a la distancia del radio de dicha hta. Derecha e izquierda indica la posición de la hta. respecto a la pieza según el sentido de desplazamiento. Véase las figuras de la página siguiente.

Entre dos frases de programa con diferente corrección de radio RR y RL, debe programarse por lo menos una frase con corrección de radio R0.

La corrección de radio está activada hasta la próxima frase en que se varíe dicha corrección y desde la frase en la cual se programa por primera vez.

También se puede activar la corrección del radio para los ejes auxiliares del plano de mecanizado. Los ejes auxiliares deben programarse también en las siguientes frases, ya que de lo contrario el TNC realiza de nuevo la corrección de radio en el eje principal.

En la primera corrección de radio RR/RL y con R0, el TNC posiciona la herramienta siempre perpendicularmente en el punto inicial o final. La herramienta se posiciona delante del primer punto del contorno o detrás del último punto del contorno para no dañar al mismo.

5.3 Corrección de la herramienta

Introducción de la corrección de radio

En la programación de trayectorias, después de introducir las coordenadas, aparece la siguiente pregunta:

Corrección de radio: Mecanizado de esquinas

Esquinas exteriores

Cuando se ha programado una corrección de radio, el TNC desplaza la herramienta en las esquinas exteriores según un círculo de transición y la herramienta se desplaza en el punto de la esquina. Si es preciso el TNC reduce el avance en las esquinas exteriores, por ejemplo, cuando se efectuan grandes cambios de dirección.

Esquinas interiores

En las esquinas interiores el TNC calcula el punto de intersección de las trayectorias realizadas según el punto central de la hta. desplazandose con corrección. Desde dicho punto la herramienta se desplaza a lo largo de la trayectoria del contorno. De esta forma no se daña la pieza en las esquinas interiores. De ahí que no se pueda seleccionar cualquier radio de la hta. para un contorno determinado.

Ê

No situar el punto inicial o final en un mecanizado interior sobre el punto de la esquina del contorno, ya que de lo contrario se daña dicho contorno.

Mecanizado de esquinas sin corrección de radio

Las funciones auxiliares M90 y M112 influyen en la trayectoria de la herramienta sin corrección de radio y en el avance en los puntos de intersección. Véase el capítulo "7.4 Funciones auxiliares para el tipo de trayectoria".

5.4 Medición de htas. con el TT 120

120

El constructor de la máquina prepara la máquina y el TNC para poder emplear el palpador TT 120.

Es probable que su máquina no disponga de todos los ciclos y funciones que se describen aquí. Rogamos consulten el manual de su máquina.

Con el TT 120 y los ciclos para la medición de herramientas del TNC, se pueden medir herramientas automáticamente: Los valores de corrección para la longitud y el radio se memorizan en el almacén central de herramientas TOOL.T del TNC y se emplean en la siguiente llamada a la herramienta. Se dispone de los siguientes tipos de mediciones:

- Medición de herramientas con la herramienta parada
- Medición de herramientas con la herramienta girando
- Medición individual de cuchillas

Los ciclos para la medición de herramientas se programan en el modo de funcionamiento MEMORIZAR/EDITAR PROGRAMA. Se dispone de los siguientes ciclos:

- TCH PROBE 30.0 CALIBRAR TT
- TCH PROBE 31.0 LONGITUD DE LA HERRAMIENTA
- TCH PROBE 32.0 RADIO DE LA HERRAMIENTA

Los ciclos de medición sólo funcionan cuando está activado el almacén central de htas. TOOL.T

Antes de trabajar con los ciclos de medición deberán introducirse todos los datos precisos para la medición en el almacén central de herramientas y haber llamado a la hta. que se quiere medir con TOOL CALL.

Ajuste de parámetros de máquina

El TNC emplea para la medición con la herramienta parada el avance de palpación de MP6520.

En la medición con herramienta girando, el TNC calcula automáticamente las revoluciones del cabezal y el avance de palpación.

Las revoluciones del cabezal se calculan de la siguiente forma:

$n = \frac{MP6570}{r \bullet 0,0063}$	3	
siendo: n MP6570 r	= nº de revol = máxima ve = radio de la	uciones [rpm] locidad de recorrido admisible [m/min] herramienta activo [mm]
El avance de	palpación se c	alcula de la siguiente forma:
v = tolerancia	e de medición	• n siendo
v tolerancia de	medición	 avance de palpación [mm/min] tolerancia de medición [mm],

depende de MP6507 = revoluciones [1/min]

Con MP6507 se calcula el avance de palpación:

MP6507=0:

n

La tolerancia de medición permanece constante, independientemente del radio de la hta. Cuando las htas. son demasiado grandes debe reducirse el avance de palpación a cero. Este efecto se observa tan pronto como se selecciona la máxima velocidad de recorrido admisible (MP6570) y la tolerancia admisible (MP6510).

MP6507=1:

La tolerancia de la medición se modifica a medida que aumenta el radio de la hta. De esta forma se asegura un avance de palpación suficiente para radios de hta. muy grandes. El TNC modifica la tolerancia de medición según la siguiente tabla:

Radio de la herramienta	Tolerancia de medición
hasta 30 mm	MP6510
30 hasta 60 mm	2 • MP6510
60 hasta 90 mm	3 • MP6510
90 hasta 120 mm	4 • MP6510

MP6507=2:

El avance de palpación permanece constante, sin embargo el error de medición aumenta de forma lineal a medida que aumenta el radio de la hta.:

Tolerancia de medición = $\frac{r \cdot MP6510}{5 \text{ mm}}$ siendo:

r = radio de la herramienta [mm] MP6510 = máximo error de medición admisible

Visualización de los resultados de la medición

Con la subdivisión de la pantalla PGM + T PROBE STATUS se pueden ver los resultados de la medición de herramientas en la visualización de estados adicional (en los modos de funcionamiento de Máquina). El TNC muestra a la izquierda el programa y a la derecha los resultados de la medición. Los valores que sobrepasan la tolerancia de desgaste admisible se caracterizan con un "*" y los valores que sobrepasan la tolerancia de rotura admisible con una "B".

Calibración del TT 120

Antes de calibrar deberá introducirse el radio y la longitud exactos de la herramienta de calibración en la tabla de herramientas TOOL.T.

En los parámetros de máquina 6580.0 a 6580.2 se determina la posición del TT 120 en el espacio de trabajo de la máquina.

Si se modifica uno de los parámetros de máquina 6580.0 a 6580.2 hay que calibrar de nuevo el palpador.

El TT 120 se calibra con el ciclo de palpación TCH PROBE 30. El proceso de calibración se desarrolla de forma automática. El TNC calcula también automáticamente la desviación media de la hta. de calibración. Para ello el TNC gira el cabezal 180°, en la mitad del ciclo de calibración.

Como herramienta de calibración se utiliza una pieza completamente cilíndrica, p.ej. un macho cilíndrico. El TNC memoriza los valores de calibración y los tiene en cuenta para mediciones de herramienta posteriores.

TOUCH PROBE Programación del ciclo de calibración: Pulsar la tecla TOUCH PROBE en el modo de funcionamiento Memorizar/Editar programa

- Seleccionar el ciclo de medición 30 CALIBRACIÓN TT: Pulsar la softkey CALIBRAR TT
- Altura de seguridad: Introducir la posición en el eje de la hta., en la cual queda excluida una colisión con alguna pieza o utillaje. La altura de seguridad se refiere al punto de ref. activo de la pieza. Si se introduce una distancia de seguridad tan pequeña, que el extremo de la herramienta se encuentra por debajo del plano de la superficie del palpador, el TNC posiciona automáticamente la hta. de calibración sobre el plano (zona de la distancia de seguridad programada en MP6540)

Ejecución continua

Ø	BEGIN PGM TT MM	Herramienta T
1 2 3 4 5 6 7 8 9	TCH PROBE 31.0 LONG. HERRAMIENTA TCH PROBE 31.1 VERIFICAR:1 TCH PROBE 31.2 ALTURA:+250 TCH PROBE 31.2 ALTURA:+250 TCH PROBE 32.0 RADIO HERRAMIENTA TCH PROBE 32.1 VERIFICAR:1 TCH PROBE 32.1 VERIFICAR:1 TCH PROBE 32.3 MEDICION CUCHILLAS:1 END PGM TT MM	L MIN 2 +1.9664 MRX 3 +2.8035 DVN 1 +1.9809 2 +1.9664 + 3 +2.8035 4 +1.9986
N	DML. X -167.400 Y +90.575 Z +101.995	T F Ø S M5/9

Ejemplos de frases NC

6	T00L	. CALL	1 Z	
7	TCH	PROBE	30.0	CALIBRACION TT
8	TCH	PROBE	30.1	ALTURA: +90

Medición de la longitud de la herramienta

Antes de medir herramientas por primera vez, se introducen en la tabla de herramientas TOOL.T el radio y la longitud aproximados, el número de cuhillas y la dirección de corte de la herramienta correspondiente.

Para la medición de la longitud de la herramienta se programa el ciclo TCH PROBE 31 LONGITUD DE LA HERRAMIENTA. A través de parámetros de máquina se puede determinar la longitud de la herramienta de tres formas diferentes:

- Cuando el diámetro de la herramienta es mayor al diámetro de la superficie de medición del TT 120, se mide con la herramienta girando (fijar TT:R-OFFS = R en TOOL.T)
- Cuando el diámetro de la herramienta es menor al diámetro de la superficie de medición del TT 120 o si Vd. determina la longitud de la broca o de la fresa esférica, se mide con la herramienta parada (fijar TT:R-OFFS = 1 en TOOL.T)
- Cuando el diámetro de la herramienta es mayor al diámetro de la superficie de medición del TT 120 se realiza una medición individual de cuchillas con la herramienta parada

Proceso de "Medición con la herramienta girando"

Para calcular la cuchilla más larga, la herramienta a medir se desvía respecto al punto central del palpador y se desplaza girando sobre la superficie de medición del TT 120. La desviación se programa en la tabla de htas. en Desvío hta.: Radio (TT: R-OFFS; valor preajustado: R = radio de hta.).

Proceso de "Medición con la herramienta parada" (p.ej. para taladro)

La herramienta a medir se desplaza al centro de la superficie de medida. A continuación se desplaza con el cabezal parado sobre la superficie de medición del TT 120. Para esta medición se introduce "0" en el desvío del radio de la hta. (TT: R-OFFS) en la tabla de htas.

Proceso de "Medición individual de cuchillas"

El TNC posiciona la herramienta a medir a un lado de la superficie del palpador. La superficie frontal de la herramienta se encuentra por debajo de la superficie del palpador tal como se determina en MP6530. En la tabla de herramientas, en Desvío de la longitud de la hta. (TT: L-OFFS) se puede determinar una desviación adicional. El TNC palpa de forma radial con la herramienta girando para determinar el ángulo inicial en la medición individual de cuchillas. A continuación el TNC mide la longitud de todas las cuchillas mediante la modificación de la orientación del cabezal. Para esta medición se programa la medición de cuchillas en el CICLO TCH PROBE 31 = 1.
TOUCH PROBE

- Programación del ciclo de calibración: Pulsar la tecla TOUCH PROBE en el modo de funcionamiento Memorizar/Editar programa
- Seleccionar EL CICLO DE MEDICIÓN 31 TT LONGITUD DE LA HTA.: Pulsar la softkey LONGITUD HTA.
- Medir hta.=0 / comprobar=1: Determinar si la hta. se mide por primera vez o si se desea comprobar una herramienta ya medida. En la primera medición el TNC sobreescribe la longitud L de la hta. en el almacén central de htas. TOOL.T y fija el valor delta DL = 0. Si se comprueba una herramienta, se compara la longitud medida con la longitud L de la herramienta del TOOL.T. El TNC calcula la desviación con el signo correcto y lo introduce como valor delta DL en TOOL.T. Además está también disponible la desviación en el parámetro Q115. Cuando el valor delta es mayor al de la tolerancia de desgaste o rotura admisible para la longitud de la herramienta, el TNC bloquea dicha hta. (estado L en TOOL.T)
- Nº de parámetro para resultado ?: Número de parámetro, en el cual el TNC memoriza el estado de la medición:
 - 0.0: Herramienta dentro de la tolerancia
 - 1.0: Herramienta desgastada (LTOL sobrepasado)
 - 2.0: La hta. está rota (LBREAK sobrepasado) Si no se desea seguir procesando el resultado de la medición dentro del programa, se contesta a la pregunta del diálogo con NO ENT
- Altura de seguridad: Introducir la posición en el eje de la hta., en la cual queda excluida una colisión con alguna pieza o utillaje. La altura de seguridad se refiere al punto de ref. activo de la pieza. Si se introduce una distancia de seguridad tan pequeña, que el extremo de la herramienta se encuentra por debajo del plano de la superficie del palpador, el TNC posiciona automáticamente la hta. de calibración sobre el plano (zona de la distancia de seguridad programada en MP6540)
- Medición de cuchillas ? 0=no / 1=si: Determinar si se ejecuta o no la medición individual de cuchillas

Ejemplo de frases NC "Primera medición con hta. girando, memorizar el estado en Q1+

6	TOOL CALL	12 Z	
7	TCH PROBE	31.0 L	ONG. HERRAMIENTA
8	TCH PROBE	31.1 V	ERIFICAR:0 Q1
9	TCH PROBE	31.2 A	LTURA: +120
10) TCH PROBI	31.3	MEDICION CUCHILLAS:0

Ejemplo de frases NC +Comprobación con la medición individual de cuchillas, no memorizar el estado+

6	TOOL CALL	12 Z	
7	TCH PROBE	31.0	LONG. HERRAMIENTA
8	TCH PROBE	31.1	VERIFICAR:1
9	TCH PROBE	31.2	ALTURA: +120
10	TCH PPOR	F 31 3	R MEDICION CUCHTLLAS.1

Medición del radio de la herramienta

Antes de medir herramientas por primera vez, se introducen en la tabla de herramientas TOOL.T el radio y la longitud aproximados, el número de cuhillas y la dirección de corte de la herramienta correspondiente.

Para medir el radio de la herramienta se programa el ciclo de medición TCH PROBE 32 RADIO DE LA HTA. Mediante parámetros de introducción se puede determinar el radio de la hta. de dos formas:

- Medición con la herramienta girando
- Medición con la herramienta girando y a continuación medición individual de cuchillas

Proceso de medición

El TNC posiciona la herramienta a medir a un lado de la superficie del palpador. La superficie frontal de la fresa se encuentra ahora debajo de la arista superior del cabezal de palpación, tal y como se determina en MP6530. El TNC palpa de forma radial con la hta. girando. Si además se quiere ejecutar la medición individual de cuchillas , se miden los radios de todas las cuchillas con la orientación del cabezal.

TOUCH PROBE Programación del ciclo de medición: Pulsar la tecla TOUCH PROBE en el modo de funcionamiento Memorizar/Editar programa

- Seleccionar EL CICLO DE MEDICIÓN 32 T RADIO DE LA HTA.: Pulsar la softkey RADIO DE LA HTA.
- Medir hta.=0 / comprobar=1: Determinar si la hta. se mide por primera vez o si se desea comprobar una herramienta ya medida. En la primera medición el TNC sobreescribe el radio R de la herramienta en el almacén central de herramientas TOOL.T y fija el valor delta DR = 0. Cuando se comprueba una herramienta, se compara el radio medido con el radio de la herramienta en TOOL.T. El TNC calcula la desviación con el signo correcto y lo introduce como valor delta DR en TOOL.T. Además está también disponible la desviación en el parámetro Q116. Cuando el valor delta es mayor al de la tolerancia de desgaste o rotura admisible para el radio de la herramienta, el TNC bloquea dicha hta. (estado L en TOOL.T)

Ejemplo de frases NC "Primera medición con hta. girando, memorizar el estado en Q1"

7	TOOL CALL	12 Z	
8	TCH PROBE	32.0 RADIO HERRAM	IENTA
9	TCH PROBE	32.1 VERIFICAR:0	Q1
10	O TCH PROB	E 32.2 ALTURA: +12	0
1	1 TCH PROB	E 32.3 MEDICION CU	CHILLAS:0

Ejemplo de frases NC "Comprobación con la medición individual de cuchillas, no memorizar el estado"

7	TOOL	CALL	12 Z	
8	TCH	PROBE	32.0	RADIO HERRAMIENTA
9	TCH	PROBE	32.1	VERIFICAR:1
10) TCH	PROBE	32.2	2 ALTURA: +120

11 TCH PROBE 32.3 MEDICION CUCHILLAS:1

- Nº de parámetro para resultado ?: Número de parámetro, en el cual el TNC memoriza el estado de la medición:
 - 0.0: Herramienta dentro de la tolerancia
 - 1.0: Herramienta desgastada (RTOL sobrepasado)
 - 2.0: La hta. está rota (RBREAK sobrepasado)

Si no se desea seguir procesando el resultado de la medición dentro del programa, se contesta a la pregunta del diálogo con NO ENT

- Altura de seguridad: Introducir la posición en el eje de la hta., en la cual queda excluida una colisión con alguna pieza o utillaje. La altura de seguridad se refiere al punto de ref. activo de la pieza. Si se introduce una distancia de seguridad tan pequeña, que el extremo de la herramienta se encuentra por debajo del plano de la superficie del palpador, el TNC posiciona automáticamente la hta. de calibración sobre el plano (zona de la distancia de seguridad programada en MP6540)
- Medición de cuchillas 0=No / 1=Si: Determinar si se debe realizar una medición individual de cuchillas o no

6

Programación: Programación de contornos

6.1 Resumen: Movimientos de la hta.

Tipos de trayectoria

El contorno de una pieza se compone normalmente de varias trayectorias como rectas y arcos de círculo. Con los tipos de trayectoria se programan los movimientos de la herramienta según **rectas** y **arcos de círculo.**

Programación libre de contornos FK

Cuando no existe un plano acotado y las indicaciones de las medidas en el programa NC están incompletas, el contorno de la pieza se programa con la programación libre de contornos. El TNC calcula las indicaciones que faltan.

Con la programación FK también se programan movimientos de la herramienta según **rectas** y **arcos de círculo**.

Funciones auxiliares M

Con las funciones auxiliares del TNC se controla

- la ejecución del programa, p.ej. una interrupción de la ejecución del pgm
- las funciones de la máquina como p.ej. la conexión y desconexión del giro del cabezal y del refrigerante
- el comportamiento de la herramienta en la trayectoria

Subprogramas y repeticiones parciales de un programa

Los pasos de mecanizado que se repiten, sólo se introducen una vez como subprogramas o repeticiones parciales de un programa. Si se quiere ejecutar una parte del programa sólo bajo determinadas condiciones, dichos pasos de mecanizado también se determinan en un subprograma. Además un programa de mecanizado puede llamar a otro programa y ejecutarlo.

La programación con subprogramas y repeticiones parciales de un programa se describe en el capítulo 9.

Programación con parámetros Q

En el programa de mecanizado se sustituyen los valores numéricos por parámetros Q. A un parámetro Q se le asigna un valor numérico en otra posición. Con parámetros Q se pueden programar funciones matemáticas, que controlen la ejecución del programa o describan un contorno.

Además con la ayuda de la programación de parámetros Q también se pueden realizar mediciones durante la ejecución del programa con un palpador 3D.

La programación con parámetros Q se describe en el capítulo 10.

6.2 Principios básicosde los tipos de trayectoria

Programación del movimiento de la hta. para un mecanizado

Cuando se elabora un programa de mecanizado, se programan sucesivamente las funciones para las diferentes trayectorias del contorno de la pieza. Para ello se introducen **las coordenadas de los puntos finales de las trayectorias del contorno** indicadas en el plano. Con la indicación de las coordenadas, los datos de la herramienta y la corrección de radio, el TNC calcula el recorrido real de la herramienta.

El TNC desplaza simultáneamente todos los ejes de la máquina programados en la frase del programa según un tipo de trayectoria.

Movimientos paralelos a los ejes de la máquina

La frase del programa contiene la indicación de las coordenadas: El TNC desplaza la hta. paralela a los ejes de la máquina programados.

Según el tipo de máquina, en la ejecución se desplaza o bien la herramienta o la mesa de la máquina con la pieza fijada. La programación de trayectorias se realiza como si fuese la herramienta la que se desplaza.

Ejemplo:

L X+100	
L	Tipo de trayectoria "Recta"
V . 100	Consider del conte final

X+100 Coordenadas del punto final

La herramienta mantiene las coordenadas de Y y Z y se desplaza a la posición X=100. Véase la figura arriba a la derecha.

Movimientos en los planos principales

La frase del programa contiene las indicaciones de las coordenadas: El TNC desplaza la herramienta en el plano programado.

Ejemplo:

L X+70 Y+50

La hta. mantiene la coordenada Z y se desplaza en el plano X/Y a la posición X=70, Y=50. Véase la figura en el centro a la dcha.

Movimiento tridimensional

La frase del programa contiene tres indicaciones de coordenadas: El TNC desplaza la herramienta en el espacio a la posición programada.

Ejemplo:

L X+80 Y+0 Z-10

Véase la figura abajo a la derecha.

Círculos y arcos de círculo

En los movimientos circulares, el TNC desplaza simultáneamente dos ejes de la máquina: La herramienta se desplaza respecto a la pieza según una trayectoria circular. Para los movimientos circulares se puede introducir el punto central del círculo CC.

Con las trayectorias de arcos de círculo se programan círculos en los planos principales: El plano principal se define en la llamada a la hta. TOOL CALL al determinar el eje de la herramienta:

Eje de la herramienta	Plano principal
Z	XY ,y también
	UV, XV, UY
Y	ZX, y también
	WU, ZU, WX
Х	YZ, y también
	VW, YW, VZ

Los círculos que no son paralelos al plano principal, se programan con parámetros Q (véase el capítulo 10).

Sentido de giro DR en movimientos circulares

Para los movimientos circulares no tangentes a otros elementos del contorno se introduce el sentido de giro DR:

Giro en sentido horario: DR-Giro en sentido antihorario: DR+

Corrección de radio

La corrección de radio debe estar en la frase en la cual se realiza la aproximación al primer tramo del contorno. La corrección de radio no puede empezar en una frase con una trayectoria circular. Dicha corrección se programa antes en una frase lineal o en una frase de aproximación (frase APPR).

Posicionamiento previo

Posicionar previamente la herramienta al principio del programa de mecanizado, de forma que no se dañe la herramienta o la pieza.

Elaboración de frases de pgm con las teclas de tipos de trayectoria

Con las teclas grises para los tipos de trayectoria se abre el diálogo en texto claro. El TNC pregunta sucesivamente por los datos necesarios y añade esta frase en el programa de mecanizado.

Abrir el diálogo de programación, p.ej, recta

Memorizar/editar programa ¿Función auxiliar M? BEGIN PGM 2J2K MM 0 BLK FORM 0.1 Z X+0 Y+0 BLK FORM 0.2 X+100 Y+10 TOOL CALL 1 Z S2500 L X+10 Y+5 R0 F100 M3 END PGM 2J2K MM 1 2 3 Y+0 Z-40 Y+100 Z+0 <mark>4</mark> 5 NOML. Х +0.595 +0.595+0.615 Т ż 0 F S M5/9

M124

M103 M112 M120

М

Ejemplo: Programación de una recta

Coordenadas ?	
X 10	Introducir las coordenadas del punto final de la recta
Y 5 ENT 2x	
Corrección de	radio: RL/RR/Sin correcc. ?
Corrección de RL	radio: RL/RR/Sin correcc. ? Seleccionar la corrección de radio: P.ej. pulsar la softkey RL, la hta. se desplaza por la izq. del contorno
Corrección de RL Avance ?	radio: RL/RR/Sin correcc. ? Seleccionar la corrección de radio: P.ej. pulsar la softkey RL, la hta. se desplaza por la izq. del contorno

LP

Introducir el avance y confirmar con la tecla ENT: P.ej. 100 mm/min

Función auxiliar M ?

Introducir la función auxiliar, p.ej. M3 y finalizar el diálogo con la tecla END

Introducir la función auxiliar con parámetros: Pej. pulsar la softkey M120 e introducir el parámetro solicitado

El programa de mecanizado indica la frase:

L X+10 Y+5 RL F100 M3

6.3 Aproximación y salida del contorno

Resumen: Tipos de trayectoria para la aproximación y salida del contorno

Las funciones APPR (en inglés. approach = aproximación) y DEP (en inglés departure = salida) se activan con la tecla APPR/DEP. Después mediante softkeys se pueden seleccionar los siguientes tipos de trayectoria:

Función Softkeys:	Aprox.	Salida
Recta tangente	APPR LT	DEP LT
Recta perpendicular al pto. del contorno	APPR LN	
Trayectoria circular tangente	APPR CT	DEP CT
Trayectoria circular tangente al contorno aproximación y salida desde un punto auxiliar fuera del contorno según	APPR LCT	

Memorizar/editar programa BLK FORM 0.1 Z BLK FORM 0.2 Y+0 Z-40 Y+100 Z+0 1 2 3 4 X+0 X+100 TOOL DEF 1 L+0 R+5 TOOL CALL 1 Z S2500 L X+10 Y+5 F500 M 5 F500 M3 END PGM 1568T MM 6 NOML. Х +0.595 Y +0.595 Т Ζ +0.615 F 0 S M5/9

DEP L1

DEP LN

DEP CT

DEP LCT

APPR CT

APPR LCT

APPR L1

APPR LN

Aproximación y salida a una trayectoria helicoidal

En la aproximación y la salida a una hélice, la herramienta se desplaza según una prolongación de la hélice y se une así con una trayectoria circular tangente al contorno. Para ello se emplea la función APPR CT o bien DEP CT.

Posiciones importantes en la aproximación y la salida

Punto de partida P_S

una recta tangente

Esta posición se programa siempre antes de la frase APPR. ${\sf P}_{\sf S}$ se encuentra siempre fuera del contorno y se alcanza sin corrección de radio (R0).

- Punto auxiliar P_H La aproximación y salida pasa en algunos tipos de trayectoria por un punto auxiliar P_H que el TNC calcula de la frase APPR y DEP.
- Primer punto del contorno P_A y último punto del contorno P_E El primer punto del contorno P_A se programa en la frase APPR y el último punto del contorno P_E con cualquier tipo de trayectoria.
- Si la frase APPR contiene también la coordenada Z, el TNC desplaza primero la hta. al punto P_Hsobre el plano de mecanizado y allí según el eje de la misma a la profundidad programada.
- Punto final P_N

La posición \dot{P}_{N} se encuentra fuera del contorno y se calcula de las indicaciones introducidas en la frase DEP. Si la frase DEP contiene también las coordenadas de Z, el TNC desplaza primero la hta. al punto P_{H} sobre el plano de mecanizado y desde allí según el eje de la hta. a la altura programada.

6.3 Aproximación y salida del contorno

Las coordenadas se pueden introducir de forma absoluta o incremental en coordenadas cartesianas.

El TNC comprueba en el desplazamiento a la posición real del punto auxiliar P_H si se ha dañado el contorno programado. ¡Comprobar con el test gráfico!

En la aproximación, el espacio entre el punto de partida P_S y el primer punto del contorno P_A deberá ser lo suficientemente grande, como para alcanzar el avance de mecanizado programado.

Desde la posición real al punto auxiliar P_{H} el TNC se desplaza con el último avance programado.

Corrección de radio

Para que el TNC pueda interpretar una frase APPR como frase de aproximación, se tiene que programar un cambio de corrección de R0 a RL/RR. En una frase DEP, el TNC cancela automáticamente la corrección de radio. Si se quiere programar un tramo del contorno con la frase DEP (ningún cambio de corrección), debe programarse de nuevo la corrección de radio activada (2ª carátula de softkeys, cuando el dato F destaca en un color más claro).

Si en la frase APPR o DEP no se ha programado ningún cambio de corrección, el TNC ejecuta la unión al contorno de la siguiente forma:

Función	Unión al contorno	Función	Unión al contorno
APPR LT	Unión tangencial al siguiente elemento del contorno	DEP LT	Unión tangencial al último elemento del contorno
APPR LN	Unión perpendicular al siguiente elemento del contorno	DEP LN	Unión perpendicular al último elemento del contorno
APPR CT	Sin ángulo de desplazam./sin radio: Círculo de unión tangente entre el último y el siguiente elemento del contorno Sin ángulo de desplazam./con radio: Cículo de unión tangente con indicación del radio al siguiente elemento del contorno Con ángulo de desplazam./sin radio: Círculo de unión tangente con ángulo de desplaza- miento al siguiente elemento del contorno Con ángulo de desplaz./con radio: Cículo de unión tangente con recta de unión y ángulo de desplazamiento al siguiente elemento del contorno Tangente con círculo de unión tangente	DEP CT	Sin ángulo de desplazam./sin radio: Círculo de unión tangente entre el último y el siguiente elemento del contorno Sin ángulo de desplazam./con radio: Círculo de unión tangente con indicación del radio al último elemento del contorno Con ángulo de desplazam./sin radio: Círculo de unión tangente con ángulo de desplazamiento al último elemento del contorno Con ángulo de desplazam./con radio: Círculo de unión tangente con radio:
	al siguiente elemento del contorno		de unión y ángulo de desplazamiento al último elemento del contorno
		DEP LCT	Tangente con círculo de unión tangente al

último elemento del contorno

Aproximación según una recta tangente: APPR LT

El TNC desplaza la herramienta según una recta desde el punto de partida P_S a un punto auxiliar P_H. Desde allí la hta. se desplaza al primer punto del contorno P_A sobre una recta tangente. El punto auxiliar P_H está a la distancia LEN del primer punto del contorno P_A.

Cualquier tipo de trayectoria: Aproximación al pto. de partida Ps

1	APPR LT
	<. ↓
	X

▼ Abrir el diálogo con la tecla APPR/DEP y la softkey APPR LT:

- ▶ Coordenadas del primer punto del contorno P_A
- \blacktriangleright LEN: Distancia del punto auxiliar P_{H} al primer punto del contorno P_{A}
- ▶ Corrección de radio para el mecanizado

Ejemplo de frases NC

7 L X+40 Y+10 RO FMAX M3	Aproximación a P _S sin corrección de radio
8 APPR LT X+20 Y+20 Z-10 LEN15 RR F100	P _A con correc. radio. RR
9 L X+35 Y+35	Punto final de la primera trayectoria del contorno
10 L	Siguiente trayectoria del contorno

Aproximación según una recta perpendicular al primer punto del contorno: APPR LN

El TNC desplaza la herramienta según una recta desde el punto de partida P_S a un punto auxiliar P_H. Desde allí al primer punto del contorno P_A según una recta perpendicular. El punto auxiliar P_H está a la distancia LEN + el radio de la hta. del primer punto del contorno P_A.

- ▶ Cualquier tipo de trayectoria: Aproximación al pto. de partida P_S
- ▶ Abrir el diálogo con la tecla APPR/DEP y la softkey APPR LN:
 - └N ► Coordenadas del primer punto del contorno P_A

└ Longitud: Distancia del pto. auxiliar P_H al primer pto. del contorno P_A ¡Introducir LEN siempre positivo!

▶ Corrección de radio RR/RL para el mecanizado

Ejemplo de frases NC

7	L	X+	40	Y+10	RO	FMA	X M3					
8	A	P P R	LN	I X+10	Y+	-20	Z-10	LEN+15	RR	F100		
9	L	χ+	20	Y+35								
1	0 1	L.										

Aproximación a P_S sin corrección de radio P_A con correc. radio. RR, distancia de P_H a P_A : LEN=15 Punto final de la primera trayectoria del contorno Siguiente trayectoria del contorno

Aproximación según una trayectoria circular tangente: APPR CT

El TNC desplaza la herramienta según una recta desde el punto de partida P_S a un punto auxiliar $\mathsf{P}_H.$ Desde allí se aproxima según una trayectoria circular tangente al primer tramo del contorno y al primer punto del contorno P_A .

La trayectoria circular de $P_{\rm H}$ a $P_{\rm A}$ está determinada por el radio R y el ángulo del punto central CCA. El sentido de giro de la trayectoria circular está indicado por el recorrido del primer tramo del contorno.

- ▶ Cualquier tipo de trayectoria: Aproximación al pto. de partida P_S
- ▶ Abrir el diálogo con la tecla APPR/DEP y la softkey APPR CT :
 - Coordenadas del primer punto del contorno PA
 - Angulo del punto central del círculo CCA de la trayectoria circular
 - CCA sólo se introduce positivo
 - Máximo valor de introducción 360°
 - ▶ Radio R de la trayectoria circular
 - Aproximación por el lado de la pieza definido mediante la corrección de radio: Introducir
 R con signo positivo
 - Aproximación desde un lateral de la pieza: Introducir R negativo
 - ► Corrección de radio RR/RL para el mecanizado

7 L X+40 Y+10 RO FMAX M3	Aproximación a P _S sin corrección de radio
8 APPR CT X+10 Y+20 Z-10 CCA180 R+10 RR F100	P _A con correc. radio. RR, radio R=10
9 L X+20 Y+35	Punto final de la primera trayectoria del contorno
10 L	Siguiente trayectoria del contorno

Aproximación según una trayectoria circular tangente al contorno y a una recta: APPR LCT

El TNC desplaza la herramienta según una recta desde el punto de partida P_{S} a un punto auxiliar $\mathsf{P}_{\mathsf{H}}.$ Desde allí se aproxima según una trayectoria circular al primer punto del contorno P_{A} .

La trayectoria circular se une tangencialmente tanto a la recta $\mathsf{P}_{\mathsf{S}}-\mathsf{P}_{\mathsf{H}}$ como al primer punto del contorno. De esta forma la trayectoria se determina claramente mediante el radio R.

- ► Cualquier tipo de trayectoria: Aproximación al pto. de partida P_S
- ▶ Abrir el diálogo con la tecla APPR/DEP y la softkey APPR LCT :
 - APPR LCT Coordenadas del primer punto del contorno PA
 - Radio R de la trayectoria circular Introducir R positivo
 - ▶ Corrección de radio para el mecanizado

7 L X+40 Y+10 RO FMAX M3	Aproximación a P _s sin corrección de radio
8 APPR LCT X+10 Y+20 Z-10 R10 RR F100	P _A con corrección de radio RR, radio R=10
9 L X+20 Y+35	Punto final de la primera trayectoria del contorno
10 L	Siguiente trayectoria del contorno

Salida según una recta tangente: DEP LT

El TNC desplaza la herramienta según una recta desde el último punto del contorno P_E al punto final P_N. La recta se encuentra en la prolongación del último tramo del contorno. P_N se encuentra a la distancia LEN de P_E.

- Programar el último tramo del contorno con el punto final P_E y la corrección de radio
- ▶ Abrir el diálogo con la tecla APPR/DEP y la softkey DEP LT :

 \blacktriangleright LEN: Introducir la distancia del punto final P_{N} al último tramo del contorno P_{E}

Ejemplo de frases NC

23 L Y+20 RR F100	Ultimo tramo del contorno: P _E con corrección de radio
24 DEP LT LEN12,5 RO F100	Desplazamiento según LEN = 12,5 mm
25 L Z+100 FMAX M2	Retirar Z, retroceso, final del programa

Salida según una recta perpendicular al último punto del contorno: DEP LN

El TNC desplaza la herramienta según una recta desde el último punto del contorno P_E al punto final P_N. La recta parte perpendicularmente desde el último punto del contorno P_E . P_N se encuentra de P_E a la distancia LEN + radio de la herramienta.

- Programar el último tramo del contorno con el punto final P_E y la corrección de radio
- ▶ Abrir el diálogo con la tecla APPR/DEP y la softkey DEP LN :

LEN: Introducir la distancia al punto final P_N Importante: ¡LEN siempre lleva signo positivo!

23 L Y+20 RR F100	Ultimo tramo del contorno: P _E con corrección de radio
24 DEP LN LEN+20 R0 F100	Salida según LEN = 20 mm perpendicular al contorno
25 L Z+100 FMAX M2	Retirar Z, retroceso, final del programa

Salida según una trayectoria circular tangente: DEP CT

El TNC desplaza la herramienta según una trayectoria circular desde el último punto del contorno P_E al punto final $\mathsf{P}_\mathsf{N}.$ La trayectoria circular se une tangencialmente al último tramo del contorno.

- Programar el último tramo del contorno con el punto final P_E y la corrección de radio
- ▶ Abrir el diálogo con la tecla APPR/DEP y la softkey DEP CT :

Angulo del punto central del círculo CCA de la trayectoria circular

- ▶ Radio R de la trayectoria circular
- La herramienta sale por el lado de la pieza determinado mediante la corrección de radio: Introducir R siempre positivo
- La herramienta debe salir por el lado opuesto de la pieza, determinado por la corrección de radio: Introducir R negativo

	-	-		fue	NIC
	em	DIO.	cie.	trases	INC.
_		P	~~		

23 L Y+20 RR F100	Ultimo tramo del contorno: P _E con corrección de radio
24 DEP CT CCA 180 R+8 R0 F100	Angulo pto. central =180°, radio tray. circular =10 mm
25 L Z+100 FMAX M2	Retirar Z, retroceso, final del programa

Salida según una trayectoria circular tangente al contorno y a una recta: DEP LCT

El TNC desplaza la herramienta según una trayectoria circular desde el último punto del contorno P_E a un punto auxiliar P_H . Desde allí se desplaza sobre una recta al punto final P_N. El último tramo del contorno y la recta de $P_H - P_N$ son tangentes a la trayectoria circular. De esta forma la trayectoria circular está determinada por el radio R.

- ▶ Programar el último tramo del contorno con el punto final P_E y la corrección de radio
- ▶ Abrir el diálogo con la tecla APPR/DEP y la softkey DEP LCT :

DEP LCT Introducir las coordenadas del punto final PN

▶ Introducir el radio R de la trayectoria circular siempre con signo positivo

Y RR 20 -PE RR 12 - P_H P_N R0 R0 Х 10

23 L Y+20 RR F100	Ultimo tramo del contorno: P _E con corrección de radio
24 DEP LCT X+10 Y+12 R8 R0 F100	Coordenadas P _N , radio tray. circular = 10 mm
25 L Z+100 FMAX M2	Retirar Z, retroceso, final del programa

6.4 Tipos de trayectoria - Coordenadas cartesianas

Resumen de las funciones de trayectoria

Función	Tecla de trayectoria	Movimiento de la hta.	Introducciones precisas
Recta L inglés: Line	الم الم	Recta	Coordenadas del punto final de la recta
Chaflán CHF inglés: CH am F er	CHF or Loo	Chaflán entre dos rectas	Longitud del chaflán
Punto central del círculo C inglés: C ircle C enter	C; (cc)	Ninguno	Coordenadas del punto central del círculo o polo
Arco de círculo C inglés: C ircle	Jc	Tray. circ. alrededor del pto. central de círculo CC, al pto. final del arco de círculo	l Coordenadas del punto final del o círculo, sentido de giro
Arco de círculo CR inglés: C ircle by R adius	CR_o	Trayectoria circular con radio determinado	Coord. del pto. final del círculo, radio del círculo, sentido de giro
Arco de círculo CT inglés: C ircle T angential	CTT	Trayectoria circular tangente al tramo anterior del contorno	Coordenadas del punto final del círculo
Redondeo de esquinas RN inglés: R ou ND ing of Corne	r RND	Trayectoria circular tangente al tramo anterior y posterior del contorno	Radio de la esquina R
Programación libre de contornos FK	FK	Recta o trayectoria circular unida libremente al elemento anterior del contorno	Véase el capítulo 6.6

6.4 Tipos de trayectoria - Coordenadas cartesianas

Х

60

Recta L

El TNC desplaza la herramienta sobre una recta desde su posición actual hasta el punto final de la misma. El punto de partida es el punto final de la frase anterior.

Introducir las coordenadas del pto. final de la recta Si es preciso:

- ► Corrección de radio RL/RR/R0
- ► Avance F
- ▶ Función auxiliar M

Ejemplo de frases NC

8 I TX+20 TV-15	
0 L IX 20 II-13	
9 L X+60 IY-10	

Aceptar la posición real

Las coordenadas de la posición real de la hta. se pueden aceptar dentro de una frase de posicionamiento:

- ▶ Seleccionar el modo de funcionamiento Memorizar/Editar pgm
- Abrir una nueva frase o desplazar el cursor sobre una coordenada dentro de una frase ya existente

Pulsar la tecla "aceptar la posición real": El TNC acepta la coordenada del eje sobre la cual se encuentra el cursor

Añadir un chaflán CHF entre dos rectas

Las esquinas del contorno generadas por la intersección de dos rectas, se pueden recortar con un chaflán

- En las frases lineales antes y después de la frase CHF, se programan las dos coordenadas del plano en el que se ejecuta el chaflán
- La corrección de radio debe ser la misma antes y después de la frase CHF
- El chaflán debe poder realizarse con la herramienta actual

▶ Sección del chaflán: Introducir la longitud del chaflán

Si es preciso:

▶ Avance F (actúa sólo en una frase CHF)

¡ Tengan en cuenta las indicaciones de la página siguiente!

20

10

Y

ß

0

40

Ejemplo de frases NC

7 L X+0 Y+30 RL F300 M3 8 L X+40 IY+5 9 CHF 12 10 L IX+5 Y+0 ¡El contorno no puede empezar con una frase CHF! (b) El chaflán sólo se ejecuta en el plano de mecanizado. El avance de fresado corresponde al avance

anteriormente programado.

El punto teórico de la esquina no se mecaniza.

Punto central del círculo CC

El punto central del círculo corresponde a las travectorias circulares programadas con la tecla C (trayectoria circular C). Para ello,

- se introducen las coordenadas cartesianas del punto central del círculo o
- se acepta la última posición programada o
- se aceptan las coordenadas con la tecla "Aceptar posiciones reales"
 - ¢cc

► Coordenadas CC: Introducir las coordenadas del punto central del círculo o

Para aceptar la última posición programada: No introducir ninguna coordenada

Ejemplo de frases NC

5 CC X+25 Y+25

0

10 L X+25 Y+25

11 CC

Las líneas 10 y 11 del programa no se refieren a la figura.

Validez

El punto central del círculo queda determinado hasta que se programa un nuevo punto central del círculo. También se puede determinar un punto central del círculo para los ejes auxiliares U, V y W.

Introducir el punto central del círculo CC en incremental

Una coordenada introducida en incremental en el punto central del círculo se refiere siempre a la última posición programada de la herramienta.

Con CC se indica una posición como centro del círculo: La herramienta no se desplaza a dicha posición.

> El centro del círculo es a la vez polo de las coordenadas polares.

Trayectoria circular C alrededor del centro del círculo CC

Antes de programar la trayectoria circular C hay que determinar el centro del círculo CC. La última posición de la herramienta programada antes de la frase C, es el punto de partida de la trayectoria circular.

- Desplazar la hta. sobre el pto. de partida de la trayectoria circular
 - _¢c¢
- ▶ Introducir las coordenadas del punto final del círculo
- ► Coordenadas del punto final del arco de círculo
- °
- ▶ Sentido de giro DR
- Si es preciso:
- ► Avance F
- ► Función auxiliar M

Ejemplo de frases NC

5 CC X+25 Y+25 6 L X+45 Y+25 RR F200 M3 7 C X+45 Y+25 DR+

Círculo completo

Para el punto final se programan las mismas coordenadas que para el punto de partida.

El punto de partida y el punto final deben estar en la misma trayectoria circular.

Tolerancia de introducción: hasta 0,016 mm.

Trayectoria circular CR con un radio determinado

La herramienta se desplaza según una trayectoria circular con radio R.

- Introducir las coordenadas del punto final del arco de círculo
- Radio R Atención: ¡El signo determina el tamaño del arco del círculo!
- Sentido de giro DR Atención: ¡EL signo determina si la curvatura es cóncava o convexa!
- Si es preciso:
- ▶ Avance F
- ▶ Función auxiliar M

Círculo completo

CR

Para un círculo completo se programan dos frases CR sucesivas:

El punto final de la primera mitad del círculo es el pto. de partida del segundo. El punto final de la segunda mitad del círculo es el punto de partida del primero. Véase la figura arriba a la derecha.

Angulo central CCA y radio del arco de círculo R

El punto de partida y el punto final del contorno se pueden unir entre sí mediante cuatro arcos de círculo diferentes con el mismo radio:

Arco de círculo pequeño: CCA<180° El radio tiene signo positivo R>0

Arco de círculo grande: CCA>180° El radio tiene signo negativo R<0

Mediante el sentido de giro se determina si el arco de círculo está curvado hacia fuera (convexo) o hacia dentro (cóncavo):

Convexo: Sentido de giro DR- (con corrección de radio RL)

Cóncavo: Sentido de giro DR+ (con corrección de radio RL)

Ejemplo de frases NC

Véase figura en el centro y figura abajo.

¡ Tengan en cuenta las indicaciones de la página siguiente!

 La distancia del punto de partida al punto final del círculo no puede ser mayor al diámetro del círculo.

El radio máximo puede ser de 9 999,999 mm.

Se pueden emplear ejes angulares A, B y C.

Trayectoria circular tangente CT

La herramienta se desplaza según un arco de círculo tangente a la trayectoria del contorno anteriormente programada.

La transición es "tangente" cuando en el punto de intersección de las trayectorias del contorno no se produce ningún punto de inflexión .

El tramo del contorno al que se une tangencialmente el arco de círculo, se programa directamente antes de la frase CT. Para ello se precisan como mínimo dos frases de posicionamiento

Introducir las coordenadas del punto final del arco de círculo

Si es preciso:

► Avance F

▶ Función auxiliar M

Ejemplo de frases NC

7	L X+0 Y+25 RL F300 M3
8	L X+25 Y+30
9	CT X+45 Y+20
10	L Y+0

iLa frase CT y la trayectoria del contorno anteriormente programada deben contener las dos coordenadas del plano, en el cual se realiza el arco de círculo!

Redondeo de esquinas RND

La función RND redondea esquinas del contorno.

La herramienta se desplaza según una trayectoria circular, que se une tangencialmente tanto a la trayectoria anterior del contorno como a la posterior.

El círculo de redondeo se podrá ejecutar con la herramienta llamada.

Radio de redondeo: Introducir el radio del arco de círculo

► Avance para el redondeo de esquinas

Ejemplo de frases NC

5	L	X	F10	Y+40	RL	F300	M3
6	L	X·	+40	Y+25			
7	R	ND	R5	F100			
8	L	X-	+10	Y+5			

Las trayectorias anterior y posterior del contorno deben contener las dos coordenadas del plano en el cual se ejecuta el redondeo de esquinas.

El punto de la esquina no se mecaniza.

El avance programado en una frase RND sólo actua en dicha frase. Después vuelve a ser válido el avance programado antes de dicha frase RND.

Una frase RND también se puede utilizar para la llegada suave al contorno, en el caso de que no se utilicen funciones APPR.

6.4 Tipos de trayectoria - Coordenadas cartesianas

Ejemplo: Movimiento lineal y chaflán en cartesianas

O BEGIN PGM LINEAL MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición del bloque para la simulación gráfica del mecanizado
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Definición de la herramienta en el programa
4 TOOL CALL 1 Z S4000	Llamada a la hta. con eje del cabezal y revoluciones del cabezal
5 L Z+250 RO FMAX	Retirar la hta. en el eje del cabezal en marcha rápida FMAX
6 L X-10 Y-10 R0 F MAX	Posicionamiento previo de la herramienta
7 L Z-5 RO F1000 M3	Alcanzar la profundidad de mecanizado con avance F = 1000 mm/min
8 APPR LT X+5 Y+5 LEN10 RL F300	Llegada al punto 1 del contorno según una recta tangente
9 L Y+95	Llegada al punto 2
10 L X+95	Punto 3: Primera recta de la esquina 3
11 CHF 10	Programar el chaflán de longitud 10 mm
12 L Y+5	Punto 4: Segunda recta de la esquina 3, 1ª recta de la esquina 4
13 CHF 20	Programar el chaflán de longitud 20 mm
14 L X+5	Llegada al último pto. 1 del contorno, segunda recta de la esquina 4
15 DEP LT LEN10 RO F1000	Salida del contorno según una recta tangente
16 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
17 END PGM LINEAL MM	

Ejemplo: Movimientos circulares en cartesianas

O BEGIN PGM CIRCULAR MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición del bloque para la simulación gráfica del mecanizado
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Definición de la herramienta en el programa
4 TOOL CALL 1 Z S4000	Llamada a la hta. con eje del cabezal y revoluciones del cabezal
5 L Z+250 RO FMAX	Retirar la hta. en el eje del cabezal en marcha rápida FMAX
6 L X-10 Y-10 R0 F MAX	Posicionamiento previo de la herramienta
7 L Z-5 RO F1000 M3	Alcanzar la profundidad de mecanizado con avance F = 1000 mm/min
8 APPR LCT X+5 Y+5 R5 RL F300	Alcanzar el punto 1 del contorno sobre una trayectoria circular
	tangente
9 L X+5 Y+85	Punto 2: Primera recta de la esquina 2
10 RND R10 F150	Añadir radio con R = 10 mm , avance: 150 mm/min
11 L X+30 Y+85	Llegada al punto 3: punto de partida sobre círculo con CR
12 CR X+70 Y+95 R+30 DR-	Llegada al punto 4: punto final del círculo con CR, radio 30 mm
13 L X+95	Llegada al punto 5
14 L X+95 Y+40	Llegada al punto 6
15 CT X+40 Y+5	Llegada al punto 7: punto final del círculo, arco de círculo tangente
	al punto 6, el TNC calcula el radio
16 L X+5	Llegada al último punto del contorno 1
17 DEP LCT X-20 Y-20 R5 R0 F1000	Salida según una trayectoria circular tangente
18 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
19 END PGM CIRCULAR MM	

O BEGIN PGM C-CC MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición del bloque
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+12,5	Definición de la herramienta
4 TOOL CALL 1 Z S3150	Llamada a la herramienta
5 CC X+50 Y+50	Definición del centro del círculo
6 L Z+250 RO FMAX	Retirar la herramienta
7 L X-40 Y+50 R0 F MAX	Posicionamiento previo de la herramienta
8 L Z-5 RO F1000 M3	Desplazamiento a la profundidad de mecanizado
9 APPR LCT X+0 Y+50 R5 RL F300	Llegada al punto inicial del círculo sobre una trayectoria circular
	tangente
10 C X+0 DR-	Llegada al punto final del círculo (= punto de partida del círculo)
11 DEP LCT X-40 Y+50 R5 R0 F1000	Salida del contorno según una trayectoria circular
	tangente
12 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
13 END PGM C-CC MM	

6.5 Tipos de trayectoria – Coordenadas polares

Con las coordenadas polares se determina una posición mediante un ángulo PA y una distancia PR al polo CC anteriormente definido. Véase el capítulo "4.1 Principios básicos".

Las coordenadas polares se utilizan preferentemente para:

- Posiciones sobre arcos de círculo
- Planos de la pieza con indicaciones angulares, p.ej. círculo de taladros

Resumen de los tipos de trayectoria con coordenadas polares

Función	Teclas del tipo de tray.	Movimiento de la hta.	Introducciones precisas
Recta LP	₽ + P	Recta	Radio polar, ángulo polar del pto. final de la recta
Arco de círculo CP	``` + ₽	Trayectoria circular alrededor del punto central del círculo/ Polo CC para el punto final del arco de círculo	Ángulo polar del punto final del círculo, sentido de giro
Arco de círculo CTP	(T) + P	Trayectoria circular tangente al tramo anterior del contorno	Radio polar, ángulo polar del punto final del círculo
Interpolación helicoidal	℃ + P	Superposición de una trayectoria circular con una recta	Radio polar, ángulo polar del punto final del círculo, coordenadas del pto. final en el eje de la hta.

Origen de coordenadas polares: Polo CC

El polo CC se puede determinar en cualquier posición del programa de mecanizado, antes de indicar las posiciones con coordenadas polares. Para determinar el polo se procede igual que para la programación del punto central del círculo CC.

 Coordenadas CC: Introducir las coordenadas cartesianas del polo o

Para aceptar la última posición programada: No introducir ninguna coordenada

6.5 Tipos de trayectori<mark>a -</mark> Coordenadas polares

Recta LP

La herramienta se desplaza según una recta desde su posición actual al punto final de la misma. El punto de partida es el punto final de la frase anterior.

Radio en coordenadas polares PR: Introducir la distancia del punto final de la recta al polo CC

Angulo PA en coordenadas polares: Posición angular del punto final de la recta entre -360° y +360°

El signo de PA se determina mediante el eje de referencia angular:

Angulo del eje de referencia angular a PR en sentido antihorario: PA>0

Angulo del eje de referencia angular a PR en sentido horario: PA < 0

Ejemplo de frases NC

12	00	X+45	Y+25			
13	LP	PR+30	PA+0	RR	F300	Μ3
14	LP	PA+60				
15	LP	IPA+6	0			
16	LP	PA+18	0			

Trayectoria circular CP alrededor del polo CC

El radio en coordenadas polares PR es a la vez el radio del arco de círculo. PR se determina mediante la distancia del punto de partida al polo CC. La última posición de la herramienta programada antes de la frase CP es el punto de partida de la trayectoria circular.

Angulo en coordenadas polares PA: Posición angular del punto final de la trayectoria circular entre –5400° y +5400°

▶ Sentido de giro DR

18	00	X+25 Y+25					
19	LP	PR+20 PA+0	RR	F250	M3		
20	CP	PA+180 DR+					

Trayectoria circular tangente CTP

La herramienta se desplaza según un círculo tangente a la trayectoria anterior del contorno.

Radio en coordenadas polares PR: Introducir la distancia del punto final de la trayectoria circular al polo CC

Angulo en coordenadas polares PA: Posición angular del punto final de la trayectoria circular

Ejemplo de frases NC

12	CC X+40 Y+35
13	L X+0 Y+35 RL F250 M3
14	LP PR+25 PA+120
15	CTP PR+30 PA+30
16	L Y+0

¡El polo CC **no** es el punto central del círculo del contorno!

Hélice (Interpolación helicoidal)

Una hélice se produce por la superposición de un movimiento circular y un movimiento lineal perpendiculares. La trayectoria circular se programa en un plano principal.

Los movimientos para la hélice sólo se pueden programar en coordenadas polares.

Aplicación

Roscados interiores y exteriores de grandes diámetros

Ranuras de lubrificación

Cálculo de la hélice

Para la programación se precisa la indicación en incremental del ángulo total, que recorre la herramienta sobre la hélice y la altura total de la misma.

Para el mecanizado en la direc. de fresado de abajo a arriba se tiene:

Nº de pasos n	Pasos de roscado + sobrepaso del re- corrido al principio y final de la rosca
Altura total h	Paso P x nº de pasos n
Angulo total IPA en incremental	Número de pasos x 360° + ángulo para el principio de la rosca + ángulo para el sobrepaso del recorrido
Coordenada Z inicial	Paso P x (pasos de roscado + sobrepaso del recorrido al principio de la rosca)

Forma de la hélice

La tabla indica la relación entre la dirección del mecanizado, el sentido de giro y la corrección de radio para determinadas formas:

Roscado inter.	Direcc. mecan.	Sent. giro	Correc. radio
a derechas	Z+	DR+	RL
a izquierdas	Z+	DR–	RR
a derechas	Z–	DR–	RR
a izquierdas	Z–	DR+	RL
Roscado exterior			
a derechas	Z+	DR+	RR
a izquierdas	Z+	DR–	RL
a derechas	Z–	DR–	RL
a izquierdas	Z–	DR+	RR

Programación de una hélice

Se introduce el sentido de giro DR y el ángulo total IPA en incremental con el mismo signo, ya que de lo contrario la hta. puede desplazarse en una trayectoria errónea.

El ángulo IPA puede tener un valor de -5400° a +5400°. Si la rosca tiene más de 15 pasos, se programa una interpolación helicoidal en una repetición parcial del pgm (Véase "9.3 Repeticiones parciales del pgm" y "Ejemplo: HELICE" mas adelante en este capítulo).

<mark>}° Р</mark>

Angulo en coordenadas polares: Introducir el ángulo total en incremental, según el cual se desplaza la hta. sobre la hélice. Después de introducir el ángulo se selecciona el eje de la hta. con las teclas de los ejes.

- Introducir las coordenadas para la altura de la hélice en incremental
- Sentido de giro DR Hélice en sentido horario: DR– Hélice en sentido antihorario: DR+
- Corrección de radio RL/RR/R0 Introducir la corrección de radio según la tabla

12	CC X+40 Y+25
13	Z+0 F100 M3
14	LP PR+3 PA+270 RL
15	CD TDA 1900 T7+5 DD DI 550

Ejemplo: Movimiento lineal en polares

O BEGIN PGM LINEARPO MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición del bloque
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+7,5	Definición de la herramienta
4 TOOL CALL 1 Z S4000	Llamada a la herramienta
5 CC X+50 Y+50	Definición del punto de referencia para las coordenadas polares
6 L Z+250 RO FMAX	Retirar la herramienta
7 LP PR+60 PA+180 RO FMAX	Posicionamiento previo de la herramienta
8 L Z-5 RO F1000 M3	Desplazamiento a la profundidad de mecanizado
9 APPR LCT X+5 Y+50 R5 RL F250	Llegada al punto 1 del contorno sobre un círculo
	tangente
10 LP PA+120	Llegada al punto 2
11 LP PA+60	Llegada al punto 3
12 LP PA+0	Llegada al punto 4
13 LP PA-60	Llegada al punto 5
14 LP PA-120	Llegada al punto 6
15 LP PA+180	Llegada al punto 1
16 DEP LCT X-15 Y+50 R5 R0 F1000	Salida del contorno según un círculo tangente
17 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
18 END PGM LINEARPO MM	

0	BEGIN PGM HELICE MM	
1	BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición del bloque
2	BLK FORM 0.2 X+100 Y+100 Z+0	
3	TOOL DEF 1 L+O R+5	Definición de la herramienta
4	TOOL CALL 1 Z S1400	Llamada a la herramienta
5	L Z+250 RO FMAX	Retirar la herramienta
6	L X+50 Y+50 R0 FMAX	Posicionamiento previo de la herramienta
7	CC	Aceptar la última posición programada como polo
8	L Z-12,75 RO F1000 M3	Desplazamiento a la profundidad de mecanizado
9	APPR CT X+18 Y+50 CCA180 R+2	Llegada al contorno según un círculo
	RL F100	tangente
10	CP IPA+3240 IZ+13,5 DR+ F200	Desplazamiento helicoidal
11	DEP CT CCA180 R+2 RO	Salida del contorno según un círculo tangente
12	L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
13	END PGM HELICE MM	

Si son más de 16 pasadas:

8 L Z-12.75 R0 F1000	
9 APPR CT X+18 Y+50 CCA180 R+2 RL F100	
10 LBL 1	Inicio de la repetición parcial del programa
11 CP IPA+360 IZ+1,5 DR+ F200	Introducir directamente el paso como valor IZ
12 CALL LBL 1 REP 24	Número de repeticiones (pasadas)
13 DEP CT CCA180 R+2 RO	

6.6 Tipos de trayectoria – Programación libre de contornos FK

Principios básicos

Los planos de piezas no acotados contienen a menudo indicaciones de coordenadas que no se pueden introducir mediante las teclas grises de díalogo. De esta forma

- puede haber coordenadas conocidas de la trayectoria del contorno o en su proximidad
- las indicaciones de coordenadas se pueden referir a otra trayectoria del contorno
- pueden conocerse las indicaciones de la dirección y del recorrido del contorno

Este tipo de indicaciones se programan directamente con la programación libre de contornos FK.El TNC calcula el contorno con las coordenadas conocidas y con el diálogo de programación del gráfico FK interactivo. La figura de arriba a la derecha muestra una acotación que se introduce sencillamente a través de la programación FK.

Para poder ejecutar programas FK en controles TNC antiguos se emplea la función de conversión (véase "4.2 Gestión de ficheros, Conversión de programas FK a programas en formato en TEXTO CLARO").

Gráfico de la programación FK

Si faltan las indicaciones de las coordenadas, es dificil determinar el contorno de una pieza. En estos casos el TNC muestra diferentes soluciones en el gráfico FK y Vd. selecciona la correcta. El gráfico FK representa el contorno de la pieza en diferentes colores:

- **blanco** La trayectoria del contorno está claramente determinada
- **verde** Los datos introducidos indican varias soluciones; Vd. selecciona la correcta
- **rojo** Los datos introducidos no son suficientes para determinar la trayectoria del contorno; hay que introducir más datos

Si los datos indican varias soluciones y la trayectoria del contorno se visualiza en color verde, se selecciona el contorno correcto de la siguiente forma:

MOSTRAR SOLUCION Pulsar la softkey MOSTRAR hasta que se visualice correctamente el elemento del contorno

- SELECCION SOLUCION
- ► La trayectoria del contorno visualizada corresponde al plano: Se pulsa la softkey SELECC. SOLUCION

Las trayectorias representadas en color verde deberán determinarse lo antes posible con SELECC. SOLUCION, para limitar la ambigüedad de las trayectorias siguientes del contorno.

¥ 6.6 Tipos de trayectoria – Programación libre de contornos

Si no se quiere determinar aun un contorno representado en color verde se pulsa la softkey FINALIZAR SELECCION, para continuar con el diálogo FK.

El constructor de su máquina puede determinar otros colores para el gráfico FK.

Las frases NC de un programa llamado con PGM CALL, se indican en otro color.

El TNC representa los movimientos en dirección negativa a los ejes de la máquina con un círculo blanco (diámetro del círculo = diámetro de la hta.).

Apertura del diálogo FK

Pulsando la tecla gris FK, el TNC muestra varias teclas de softkeys con las cuales se abre el diálogo FK: Véase la tabla de la derecha. Para desactivar de nuevo las softkeys, volver a pulsar la tecla FK.

Si se abre el diálogo FK con una de dichas softkeys el TNC muestra otras carátulas de softkeys con las cuales se introducen coordeandas conocidas, o se aceptan indicaciones de dirección y del recorrido del contorno.

Para la programación FK hay que tener en cuenta las siguientes condiciones

Las trayectorias del contorno se pueden programar con la Programación Libre de Contornos sólo en el plano de mecanizado. El plano de mecanizado se determina en la primera frase BLK-FORM del programa de mecanizado.

Para cada trayectoria del contorno se indican todos los datos disponibles. ¡Se programan también en cada frase las indicaciones que no se modifican: Los datos que no se programan no son válidos!

Los parámetros Q se admiten en todos los elementos FK, pero no pueden ser modificados durante la ejecución del programa.

Si en un programa se mezclan la programación libre de contornos con la programación convencional, deberá determinarse claramente cada sección FK.

El TNC precisa de un punto fijo a partir del cual se realizan los cálculos. Antes del apartado FK se programa una posición con las teclas grises del diálogo, que contenga las dos coordenadas del plano de mecanizado. En dicha frase no se programan parámetros Q.

Cuando en el primer apartado FK hay una frase FCT o FLT, hay que programar antes como mínimo dos frases NC mediante las teclas de diálogo grises, para determinar claramente la dirección de desplazamiento.

Un apartado FK no puede empezar directamente detrás de una marca LBL.

Trayectoria del contorno	Softkey
Recta tangente	FLT
Recta no tangente	FL
Arco de círculo tangente	FCT
Arco de círculo no tangente	FC

Programación libre de rectas

FΚ

- Visualizar las softkeys para la Programación libre de contornos: Pulsar la tecla FK
 - Abrir el diálogo para rectas flexibles: Pulsar la softkey FL. El TNC visualiza otras softkeys. Véase tabla a la dcha.
 - Mediante dichas softkeys se introducen en la frase todas las indicaciones conocidas. Hasta que las indicaciones sean suficientes el gráfico FK muestra el contorno programado en rojo. Si hay varias soluciones el gráfio se visualiza en color verde. Véase "Gráfico de la programación libre de contornos".

En la página siguiente hay ejemplos de frases NC.

Recta tangente

Cuando la recta se une tangencialmente a otra trayectoria del contorno, se abre el diálogo con la softkey FLT:

Visualizar las softkeys para la Programación libre de contornos: Pulsar la tecla FK

- ► Abrir el diálogo: Pulsar la softkey FLT
- Mediante las softkeys (véase tabla de la derecha) se introducen en la frase todas las indicaciones conocidas

Programación libre de trayectorias circulares

FC /

- Visualizar las softkeys para la Programación libre de contornos: Pulsar la tecla FK
- Abrir el diálogo para arcos de círculo flexibles: Pulsar la sofktey FC; el TNC muestra sofkteys para indicaciones directas sobre la trayectoria circular o indicaciones sobre el punto central del círculo; véase la tabla de la dcha.
 - Mediante dichas softkeys se introducen en la frase todos los datos conocidos: Hasta que son suficientes las indicaciones, el gráfico FK muestra el contorno programado en rojo; si hay varias soluciones estas aparecen en color verde; véase "Gráfico de libre programación de contornos"

Trayectoria circular tangente

Cuando la trayectoria circular se une tangencialmente a otra trayectoria del contorno, se abre el diálogo con la softkey FCT:

Visualizar las softkeys para la Programación libre de contornos: Pulsar la tecla FK

- ▶ Abrir el diálogo: Pulsar la softkey FCT
- Mediante las softkeys (tabla de la derecha) se introducen en la frase todas las indicaciones conocidas

Datos conocidos	Softkey
Coordenada X del pto. final de la recta	× *
Coordenada Y del pto. final de la recta	ţ.
Radio en coordenadas polares	PR •
Angulo en coordenadas polares	PA
Longitud de las rectas	LEN
Pendiente de la recta	AN
Principio/final del contorno cerrado	+ CLSD

Para referencias a otras frases véase el apartado "Referencias relativas"; para puntos auxliares el apartado "Puntos auxiliares"en este mismo capítulo.

Indicaciones directas de trayc. circular	Softkey
Coord. X del pto. final de la tray. circular	× *
Coord. Y del pto. final de la tray. circular	† ^v
Radio en coordenadas polares	PR +
Angulo en coordenadas polares	PA
Sentido de giro de la trayectoria circular	DR (- +)
Radio de la trayectoria circular	R
Angulo de referencia para el final del círculo	

Punto central de círculos de libre programación

Para las trayectorias de libre programación, con las indicaciones que se introducen, el TNC calcula un punto central del círculo. De esta forma también se puede programar en una frase un círculo completo en una frase con la programación FK.

Si se quiere definir el punto central del círculo en coordenadas polares, se define el polo con la función FPOL en vez de con CC. FPOL actua hasta la siguiente frase con FPOL y se determina en coordenadas cartesianas.

Un punto central del círculo programado de forma convencional o ya calculado no actua más en el apartado FK como polo o como punto central del círculo: Cuando se programan convencionalmente coordenadas polares que se refieren a un polo determinado anteriormente en una frase CC, hay que introducir de nuevo dicho polo con una frase CC.

Ejemplo de frases NC para FL, FPOL y FCT

7	FPOL X+20 Y+30	
8	FL IX+10 Y+20 RR	F100
9	FCT PR+15 IPA+30	DR+ R15

Véase la figura en el centro a la dcha.

ndicaciones del pto. central del círculo Softkey				
Coordenada X del pto. central del círculo 🛶				
Coordenada Y del pto. central del círculo 🖕				
Radio en coordenadas polares del pto. central del círculo (referido a FPOL)				

Angulo en coordenadas polares del punto central del círculo

Puntos auxiliares

Tanto para rectas como para trayectorias circulares libres se pueden introducir coordenadas de puntos auxiliares sobre o junto al contorno. Las softkeys están disponibles en cuanto se abre el diálogo FK con las softkeys FL, FLT, FC o FCT.

Puntos auxiliares para la recta

Los puntos auxiliares se encuentran sobre las rectas o sobre la prolongación de las mismas: Véase la tabla arriba a la derecha.

Los puntos auxiliares se encuentran a la distancia D de la recta: Véase tabla en el centro a la derecha.

Puntos auxiliares para la trayectoria circular

Para la trayectoria circular se puede indicar 1 punto auxiliar sobre el contorno: Véase la tabla abajo a la derecha.

Ejemplo de frases NC

13	FC [) R—	R10	P1X+42	.929	P1Y+60.071
14	FLT	AN-	70 F	PDX+50	PDY+5	3 D10

Véase la figura abajo a la derecha.

Puntos auxiliares sobre la recta	Softkey
Coordenada X del punto auxiliar P1	P1X
Coordenada Y del punto auxiliar P1	PIV

Puntos auxiliares fuera de la recta	Softkey
Coordenada X del punto auxiliar	PDX
Coordenada Y del punto auxiliar	PDV
Distancia del punto auxiliar a las rectas	□ ✓

Ptos. auxiliares sobre/junto tray. circ.	Softkey
Coordenada X del punto auxiliar P1	P1X
Coordenada Y del punto auxiliar P1	PIV
Coordenadas de un punto auxiliar	PDV,
Distancia del punto auxiliar a la trayectoria circular	D

Referencias relativas

Las referencias relativas son indicaciones que se refieren a otra trayectoria del contorno. Las softkeys están disponibles en cuanto se abre el diálogo FK con las softkey FL o FLT.

La trayectoria del contorno, cuyo nº de frase se indica, no puede estar a más de 64 frases de posicionamiento delante de la frase en la cual se programa la referencia.

Cuando se borra una frase a la cual se ha hecho referencia, el TNC emite un aviso de error. Deberá modificarse el programa antes de borrar dicha frase.

Referencias relativas para rectas flexibles

Recta paralela a otra trayectoria del contorno

PARALLEL

Distancia de las rectas a la trayectoria del contorno paralelo

Softkey

Ejemplo de frases NC

Dirección y distancia conocidas del tramo del contorno referidas a la frase N. Véase la figura de arriba a la derecha.

17	FL LEN20 AN+15
18	FL AN+105 LEN12.5
19	FL PAR17 DP12.5
20	FSELECT 2
21	FL LEN20 IAN+95

Contornos cerrados

Con la softkey CLSD se marca el principio y el final de un contorno cerrado. De esta forma se reducen las posibles soluciones de la última trayectoria del contorno.

CLSD se introduce adicionalmente para otra indicación del contorno en la primera y última frase de una programación FK.

O BEGIN PGM FK1 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición del bloque
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Definición de la herramienta
4 TOOL CALL 1 Z S500	Llamada a la herramienta
5 L Z+250 RO FMAX	Retirar la herramienta
6 L X-20 Y+30 R0 F MAX	Posicionamiento previo de la herramienta
7 L Z-10 R0 F1000 M3	Desplazamiento a la profundidad de mecanizado
8 APPR CT X+2 Y+30 CCA90 R+5 RL F250	Llegada al contorno según un círculo tangente
9 FC DR- R18 CLSD+ CCX+20 CCY+30	Apartado FK:
10 FLT	Programar los datos conocidos de cada trayectoria del contorno
11 FCT DR- R15 CCX+50 CCY+75	
12 FLT	
13 FCT DR- R15 CCX+75 CCY+20	
14 FLT	
15 FCT DR- R18 CLSD- CCX+20 CCY+30	
16 DEP CT CCA90 R+5 R0 F1000	Salida del contorno según un círculo tangente
17 L X-30 Y+0 R0 FMAX	
18 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
19 END PGM FK1 MM	

O BEGIN PGM FK2 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición del bloque
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+2	Definición de la herramienta
4 TOOL CALL 1 Z S4000	Llamada a la herramienta
5 L Z+250 RO FMAX	Retirar la herramienta
6 L X+30 Y+30 R0 FMAX	Posicionamiento previo de la herramienta
7 L Z+5 RO FMAX M3	Posicionamiento previo del eje de la herramienta
8 L Z-5 R0 F100	Desplazamiento a la profundidad de mecanizado
9 APPR LCT X+0 Y+30 R5 RR F350	Llegada al contorno según un círculo tangente
10 FPOL X+30 Y+30	Apartado FK:
11 FC DR- R30 CCX+30 CCY+30	Programar los datos conocidos de cada trayectoria del contorno
12 FL AN+60 PDX+30 PDY+30 D10	
13 FSELECT 3	
14 FC DR- R20 CCPR+55 CCPA+60	
15 FSELECT 2	
16 FL AN-120 PDX+30 PDY+30 D10	
17 FSELECT 3	
18 FC X+0 DR- R30 CCX+30 CCY+30	
19 FSELECT 2	
20 DEP LCT X+30 Y+30 R5 R0	Salida del contorno según un círculo tangente
21 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
22 END PGM FK2 MM	

Ejemplo: Programación FK 3

O BEGIN PGM FK3 MM	
1 BLK FORM 0.1 Z X-45 Y-45 Z-20	Definición del bloque
2 BLK FORM 0.2 X+120 Y+70 Z+0	
3 TOOL DEF 1 L+0 R+3	Definición de la herramienta
4 TOOL CALL 1 Z S4500	Llamada a la herramienta
5 L Z+250 RO FMAX	Retirar la herramienta
6 L X-70 Y+0 R0 FMAX	Posicionamiento previo de la herramienta
7 L Z-5 RO F1000 M3	Desplazamiento a la profundidad de mecanizado
8 APPR CT X-40 Y+0 CCA90 R+5 RL F250	Llegada al contorno según un círculo tangente
9 FC DR- R40 CCX+0 CCY+0	Apartado FK:
10 FLT	Programar los datos conocidos de cada trayectoria del contorno
11 FCT DR- R10 CCX+0 CCY+50	
12 FLT	
13 FCT DR+ R6 CCX+0 CCY+0	
14 FCT DR+ R24	
15 FCT DR+ R6 CCX+12 CCY+0	
16 FSELECT 2	
17 FCT DR- R1,5	
18 FCT DR- R36 CCX+44 CCY-10	
19 FSELECT 2	
20 FCT DR+ R5	
21 FLT X+110 Y+15 AN+0	
22 FL AN-90	

Ϋ́
contornos
de
libre
ón
Programaci
ן ה
trayectoria
de
Tipos
6.6

23	FL X+65 AN+180 PAR21 DP30	
24	RND R5	
25	FL X+65 Y-25 AN-90	
26	FC DR+ R50 CCX+65 CCY-75	
27	FCT DR- R65	
28	FSELECT 1	
29	FCT Y+O DR- R4O CCX+O CCY+O	
30	FSELECT 4	
31	DEP CT CCA90 R+5 RO F1000	Salida del contorno según un círculo tangente
32	L X-70 RO F MAX	
33	L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
34	END PGM FK3 MM	

Programación: Funciones auxiliares

7.1 Introducción de funciones auxiliares M y STOP

Con las funciones auxiliares del TNC, llamadas también funciones ${\sf M}$ se controla

- la ejecución del programa, p.ej. una interrupción de la ejecución
- las funciones de la máquina como p.ej. la conexión y desconexión del giro del cabezal y del refrigerante
- el comportamiento de la herramienta en la trayectoria

El constructor de la máquina puede validar ciertas funciones auxiliares que no se describen en este manual. Rogamos consulten el manual de su máquina.

Una función auxiliar M se introduce al final de una frase de posicionamiento o mediante la softkey M. El TNC indica el diálogo:

Función auxiliar M ?

Normalmente en el diálogo se indica el número de la función auxiliar. En las funciones auxiliares M, seleccionadas directamente mediante softkey el diálogo continúa para introducir los parámetros correspondientes a dicha función.

En los modos de funcionamiento Manual y Volante electrónico se indican las funciones auxiliares mediante la softkey M. Con la tecla de arranque del NC, el TNC ejecuta directamente la función M programada.

Rogamos tengan en cuenta que algunas funciones auxiliares actúan al principio y otras al final de la frase de posicionamiento.

Las funciones auxiliares se activan a partir de la frase en la cual son llamadas. Siempre que la función auxiliar no actue por frases, se eliminará en la frase siguiente o al final del programa. Algunas funciones auxiliares sólo actuan en la frase en la cual han sido llamadas.

Introducción de una función auxiliar en una frase STOP

Una frase de STOP programada interrumpe la ejecución del programa o el test del programa, p.ej. para comprobar una herramienta. En una frase de STOP se puede programar una función auxiliar M:

Programación de una interrupción en la ejecución del pgm: Pulsar la tecla STOP

▶ Introducir la función auxiliar M

Ejemplo de frase NC

87 STOP M5

Memorizar/editar programa ¿Función auxiliar M? Ø BEGIN PGM 2J2K MM 1 BLK FORM 0.1 Z X+0 Y+0 Z-40 2 BLK FORM 0.2 X+100 Y+100 Z+0 3 TOOL CALL 1 Z S2500 4 L X+10 Y+5 R0 F100 MS ■ 5 END PGM 2J2K MM							
NOML. X Y Z	NAML. X +0.595 Y +0.595 Z +0.615 F 0 S M5/9						9
м	M103	M112	M120	M124			

7.2 Funciones auxiliares para el control de la ejecución del pgm, cabezal y refrigerante

М	Activación	Actua al
M00	PARADA de la ejecución del pgm	final de la frase
	PARADA del cabezal	
	Refrigerante DESCONECTADO	
M01	PARADA de la ejecución del pgm	final de la frase
M02	PARADA de la ejecución del pgm	final de la frase
	PARADA del cabezal	
	Refrigerante desconectado	
	Salto a la frase 1	
	Borrado de la visualización de estados (d	epende del
	parámetro de máquina 7300)	
M03	Cabezal CONECTADO en sentido horario	inicio de la frase
M04	Cabezal CONECTADO en	
	sentido antihorario	inicio de la frase
M05	PARADA del cabezal	final de la frase
M06	Cambio de herramienta	final de la frase
	PARADA del cabezal	
	PARADA de la ejecución del pgm (depend	e del
	parámetro de máquina 7440)	
M08	Refrigerante CONECTADO	inicio de la frase
M09	Refrigerante DESCONECTADO	final de la frase
M13	Cabezal CONECTADO en sentido horario	inicio de la frase
	Refrigerante CONECTADO	
M14	Cabezal CONECTADO en	
	sentido antihorario	inicio de la frase
	Refrigerante conectado	
M30	iqual que M02	final de la frase

7.3 Funciones auxiliares para la indicación de coordenadas

Programación de coordenadas referidas a la máquina M91/M92

Punto cero de la regla de medición

En las reglas la marca de referencia indica la posición del punto cero de la misma.

Punto cero de la máquina

El punto cero de la máquina se precisa para:

- fijar los limites de desplazamiento (finales de carrera)
- Ilegar a posiciones fijas de la máquina (p.ej. posición para el cambio de herramienta)
- In fijar un punto de referencia en la pieza

de referencia").

El constructor de la máquina introduce para cada eje la distancia desde el punto cero de la máquina al punto cero de la regla en un parámetro de máquina.

Comportamiento standard

Las coordenadas se refieren al cero pieza (véase "Fijación del punto

Comportamiento con M91 - Punto cero de la máquina

Cuando en una frase de posicionamiento las coordenadas se refieren al punto cero de la máquina, se introduce en dicha frase M91.

El TNC indica los valores de coordenadas referidos al punto cero de la máquina. En la visualización de estados se conecta la visualización de coordenadas a REF (véase el capítulo "1.4 Visualización de estados").

Comportamiento con M92 - Punto de referencia de la máquina

Además del punto cero de la máquina el constructor de la máquina también puede determinar otra posición fija de la máquina (punto de ref. de la máquina).

El constructor de la máguina determina para cada eje la distancia del punto de ref. de la máguina al punto cero de la misma (véase el manual de la máquina).

Cuando en las frases de posicionamiento las coordenadas se deban referir al punto de referencia de la máquina ,deberá introducirse en dichas frases M92.

Con M91 o M92 el TNC también realiza correctamente la 四 corrección de radio. Sin embargo no se tiene en cuenta la longitud de la herramienta.

Activación

M91 y M92 sólo funcionan en las frases de posicionamiento en las cuales está programada M91 o M92.

M91 y M92 se activan al inicio de la frase.

Punto de referencia de la pieza

La figura de la derecha indica sistemas de coordenadas con puntos cero de la máguina y de la pieza.

7.4 Funciones auxiliares según el tipo de trayectoria

Mecanizado de esquinas: M90

En vez de la función M90 debería emplearse la función M112 (véase más adelante en este mismo capítulo). Sin embargo, los programas antiguos pueden ejecutarse también combinados con M112 y M90.

Comportamiento standard

En las frases de posicionamiento sin corrección de radio, el TNC detiene brevemente la herramienta en las esquinas (parada de precisión).

En las frases del programa con corrección de radio (RR/RL) el TNC añade automáticamente un círculo de transición en las esquinas exteriores.

Comportamiento con M90

La herramienta se desplaza en las transiciones angulares con velocidad constante: Las esquinas se mecanizan y se alisa la superficie de la pieza. Además se reduce el tiempo de mecanizado. Véase la figura en el centro a la dcha.

Ejemplos de utilización: Superficies de pequeñas rectas

Activación

M90 actua sólo en las frases del programa, en las cuales se ha programado M90.

M90 actua al principio de la frase. Debe estar seleccionado el funcionamiento con error de arrastre.

Independientemente de M90 se puede determinar un valor límite a través de MP7460, hasta el cual el TNC realiza el desplazamiento a velocidad constante (en funcionamiento con error de arrastre y control previo de la velocidad).

Añadir transiciones entre cualquier elemento del contorno: M112

Comportamiento standard

El TNC detiene brevemente la máquina en los cambios de dirección mayores al ángulo límite indicado (MP7460) (parada de precisión).

En las frases del programa con corrección de radio (RR/RL) el TNC añade automáticamente un círculo de transición en las esquinas exteriores.

Comportamiento con M112

Se puede ajustar el comportamiento de M112 mediante parámetros de máquina.

M112 actúa tanto en el funcionamiento con error de arrastre como en el funcionamiento con control previo de la velocidad.

EITNC añade entre **cualquier tramo del contorno (con o sin corrección)**, que se encuentre en el plano o en el espacio, la transición de contorno que se desee:

- Círculo tangente MP7415.0 = 0
 En las posiciones de unión se produce mediante la modificación de la curvatura, un salto en la aceleración
- Polinomio de 3er grado (Spline cúbico): MP7415.0 = 1 En las posiciones de unión no se produce ningún salto en la velocidad
- Polinomio de 5º grado: MP7415.0 = 2 En las posiciones de unión no se produce ningún salto en la aceleración
- Polinomio de 7º grado: MP7415.0 = 3 (ajuste standard) En las posiciones de unión no se produce ningún salto en el tirón

Desviación admisible del contorno E

Con el valor de tolerancia T se determina cuanto se puede desviar el contorno fresado del contorno programado. Si no se indica ningún valor de tolerancia, el TNC calcula la transición del contorno de forma que se desplace todavía con el avance programado para la trayectoria.

Angulo límite A

Cuando se introduce un ángulo límite A, el TNC sólo alisa las transiciones del contorno en las cuales el ángulo del cambio de dirección es mayor al ángulo límite programado. Si se introduce el ángulo límite = 0, el TNC también sobrepasa los tramos tangenciales con aceleración constante. Margen de introducción: 0° a 90°

Introducir M112 en una frase de posicionamiento

Cuando en una frase de posicionamiento (en los diálogos función auxiliar) se pulsa la softkey M112, el TNC continúa con el diálogo y pregunta por la desviación admisible T y el ángulo límite A.

T y A también se pueden determinar mediante parámetros Q. Véase el capítulo "10 Programción: Parámetros Q"

Activación

M112 actua en el modo de funcionamiento con control previo de la velocidad y en el funcionamiento con error de arrastre.

M112 actua al principio de la frase

Desactivación: Introduciendo M113

Ejemplo de frase NC

L X+123.723 Y+25.491 R0 F800 M112 T0.01 A10

Filtro del contorno: M124

Comportamiento standard

El TNC tiene en cuenta todos los puntos existentes para calcular una transición del contorno entre dos tramos cualesquiera.

Comportamiento con M124

Mediante parámetros de máquina se puede ajustar el comportamiento de M124.

El TNC filtra tramos del contorno con pequeñas distancias entre puntos y añade una transición de contorno.

Forma de la transición del cotnorno

- Círculo tangente MP7415.0 = 0
- En las posiciones de unión se produce mediante la modificación de la curvatura, un salto en la aceleración
- Polinomio de 3er grado (Spline cúbico): MP7415.0 = 1 En las posiciones de unión no se produce ningún salto en la velocidad
- Polinomio de 5º grado: MP7415.0 = 2
 En las posiciones de unión no se produce ningún salto en la aceleración
- Polinomio de 7º grado: MP7415.0 = 3 (ajuste standard) En las posiciones de unión no se produce ningún salto en el tirón

Transición uniforme del contorno

- Sin transición uniforme del contorno: MP7415.1 = 0 Ejecutar la transición del contorno tal como se describe con MP7415.0 (transición del contorno standard: Polinomio de 7ª grado)
- Con transición uniforme del contorno: MP7415.1 = 1 Ejecutar la transición del contorno de tal forma que se redondeen también las rectas que quedan entre las transiciones del contorno.

Longitud mínimaT de un tramo del contorno

Con el parámetro T se determina hasta que longitud puede filtrar el TNC, tramos del contorno. Cuando se ha determinado con M112 una desviación admisible para el contorno, el TNC la tiene en cuenta. Cuando no se ha programado ninguna desviación máxima del contorno, el TNC calcula la transición del contorno de forma que el desplazamiento se realiza con el avance programado.

Introducción de M124

Cuando en una frase de posicionamiento (en los diálogos función auxiliar) se pulsa la softkey M124, el TNC continúa con el diálogo para dicha frase y pregunta por la distancia mínima entre puntos E.

También se puede determinar T mediante parámetros Q. Véase el capítulo "10 Programción: Parámetros Q".

Activación

M124 actua al principio de la frase. M124 se cancela igual que M112 con M113.

Ejemplo de frase NC

L X+123.723 Y+25.491 R0 F800 M124 T0.01

Mecanizado de pequeños escalones de un contorno: M97

Comportamiento standard

El TNC añade en las esquinas exteriores un círculo de transición. En escalones pequeños del contorno, la herramienta dañaría el contorno. Véase la figura arriba a la derecha.

El TNC interrumpe en dichas posiciones la ejecución del programa y emite el aviso de error "Radio de hta. muy grande".

Comportamiento con M97

El TNC calcula un punto de intersección en la trayectoria del contorno, como en esquinas interiores, y desplaza la herramienta a dicho punto. Véase la figura en el centro a la dcha.

M97 se programa en la frase en la cual está determinado el punto exterior de la esquina.

Activación

M97 sólo funcióna en la frase del programa en la que está programada.

Con M97 la esquina del contorno no se mecaniza completamente. Si es preciso habrá que mecanizarla posteriormente con una herramienta más pequeña.

Ejemplo de frases NC

5	TOOL DEF L R+20	Radio de herramienta grande
13	L X Y R F M97	Llegada al punto 13 del contorno
14	L IY-0,5 R F	Mecanizado de pequeños escalones 13 y 14
15	L IX+100	Llegada al punto del contorno 15
16	L IY+0,5 R F M97	Mecanizado de pequeños escalos 15 y 16
17	L X Y	Llegada al punto 17 del contorno

Mecanizado completo de esquinas abiertas del contorno: M98

Comportamiento standard

El TNC calcula en las esquinas interiores el punto de intersección de las trayectorias de fresado y desplaza la hta. a partir de dicho punto en una nueva dirección.

Cuando el contorno está abierto en las esquinas, el mecanizado no es completo: Véase la figura arriba a la derecha.

Comportamiento con M98

Con la función auxiliar M98 el TNC desplaza la hta. hasta que esté realmente mecanizado cada pto. del contorno: Véase fig. abajo a la dcha.

Activación

M98 sólo funciona en las frases del programa en las que ha sido programada.

M98 actua al final de la frase.

Ejemplo de frases NC

Sobrepasar sucesivamente los puntos 10, 11 y 12 del contorno:

10	L	Х	•	. Y			RL	F
11	L	Χ.	•	IY	•	•	M98	3

12 L IX+ ...

Factor de avance para movimientos de profundización: M103

Comportamiento standard

El TNC desplaza la herramienta con el último avance programado independientemente de la dirección de desplazamiento.

Comportamiento con M103

El TNC reduce el avance de la trayectoria cuando la herramienta se desplaza en dirección negativa en el eje de la herramienta (dependiente del parámetro de máquina 7440) El avance al profundizar FZMAX se calcula del último avance programado FPROG y el factor F%:

 $FZMAX = FPROG \times F\%$

Introducción de M103

Cuando en una frase de posicionamiento (en los diálogos función auxiliar) se pulsa la softkey M103, el TNC continúa con el diálogo y pregunta por el factor F.

Activación

M103 actua al principio de la frase M103 se elimina: Programando de nuevo M103 **sin factor**

Ejemplo de frases NC

El avance al profundizar es el 20% del avance en el plano.

····	Avance real (mm/min):
17 L X+20 Y+20 RL F500 M103 F20	500
18 L Y+50	500
19 L IZ-2,5	100
20 L IY+5 IZ-5	141
21 L IX+50	500
22 L Z+5	500

Velocidad de avance constante en la cuchilla de la herramienta: M109/M110/M111

Comportamiento standard

El TNC relaciona la velocidad de avance programada respecto a la trayectoria del centro de la herramienta,

Comportamiento en arcos de círculo con M109

El TNC mantiene constante el avance de la cuchilla de la hta. en los mecanizados interiores y exteriores.

Comportamiento en arcos de círculo con M110

El TNC sólo mantiene el avance constante en los mecanizados interiores. En los mecanizados exteriores no se efectúa ningún ajuste del avance.

Activación

M109 y M110 actuan al principio de la frase. M109 y M110 se anulan con M111.

Cálculo previo del contorno con corrección de radio (LOOK AHEAD): M120

Comportamiento standard

Cuando el radio de la herramienta es mayor a un escalón del contorno con corrección de radio, el TNC interrumpe la ejecución del programa e indica un aviso de error. M97 (véase "Mecanizado de pequeños escalones: M97") impide el aviso de error, pero causa una marca en la pieza y además desplaza la esquina.

En los rebajes pueden producirse daños en el contorno. Véase la figura de la derecha.

Comportamiento con M120

El TNC comprueba los rebajes y salientes de un contorno con corrección de radio y hace un cálculo previo de la trayectoria de la herramienta a partir de la frase actual. No se mecanizan las zonas en las cuales la hta. puede perjudicar el contorno (representadas en la figura de la derecha en color oscuro). M120 también se puede emplear para realizar la corrección de radio de la hta. en los datos de la digitalización o en los datos elaborados en un sitema de programación externo. De esta forma se pueden compensar desviaciones del radio teórico de la herramienta.

El número de frases (máximo 99) que el TNC calcula previamente se determina con LA (en inglés Look Ahead: preveer) detrás de M120. Cuanto mayor sea el número de frases preseleccionadas que el TNC debe calcular previamente, más lento será el proceso de las frases.

Introducción

Cuando en una frase de posicionamiento (en los diálogos función auxiliar) se pulsa la softkey M120, el TNC continúa con el diálogo y pregunta por el número de las frases que hay que calcular previamente (LA).

Activación

M120 deberá estar en una frase NC que tenga corrección de radio RL o RR. M120 actua a partir de dicha frase hasta que

- se elimina la corrección de radio con R0
- Programar M120 LA0
- se programa M120 sin LA
- Ilamar con PGM CALL a otro programa

M120 actua al principio de la frase.

7.5 Funciones auxiliares para ejes giratorios

Desplazamiento optimizado de ejes giratorios: M126

Comportamiento standard

El TNC desplaza un eje giratorio cuya visualización está reducida a valores por debajo de 360°, según la diferencia entre la posición absoluta y la posición real. Véase los ejemplos en la tabla arriba a la dcha.

Comportamiento con M126

Con M126 el TNC desplaza un eje giratorio cuya visualización está reducida a valores por debajo de 360°, por el camino más corto. Véase la tabla de abajo a la derecha.

Activación

M126 actua al principio de la frase. M126 se anula con M127; al final del programa deja de actuar M126.

Redondear la visualización del eje giratorio a un valor por debajo de 360°: M94

Comportamiento standard

El TNC desplaza la herramienta desde el valor angular actual al valor angular programado.

Ejemplo:

Valor angular actual:	538°
Valor angular programado:	180°
Recorrido real:	–358°

Comportamiento con M94

Al principio de la frase el TNC reduce el valor angular actual a un valor por debajo de 360° y se desplaza a continuación sobre el valor programado. Cuando están activados varios ejes giratorios, M94 reduce la visualización de todos los ejes.

Ejemplo de frases NC

Redondear los valores de visualización de todos los ejes giratorios activados:

L M94

Redondear la visualización de todos los ejes giratorios activados y a continuación desplazar el eje C al valor programado:

L C+180 FMAX M94

Activación

M94 sólo actua en la frase en la que se programa.

M94 actua al principio de la frase.

Comportamiento standard deITNC

Posición real	Posición absoluta	Recorrido
350°	10°	-340°
10°	340°	+330°

Comportamiento con M126

Posi	ción real	Posición absoluta	Recorrido
350°	5	10°	+20°
10°		340°	-30°

Programación: Ciclos

8.1	Gen	eralidades sobre los ciclos	Grupo de ciclos	Softkey		
Los mecanizados que se repiten y que comprenden varios pasos de mecanizado, se memorizan en el TNC como ciclos. También las traslaciones de coordenadas y algunas funciones especiales están			Ciclos para el taladrado profundo, escariado, mandrinado y roscado	TALADRADO		
disponi diferen	bles cor tes grup	no ciclos. En la tabla de la derecha se muestran los pos de ciclos.	Ciclos para el fresado de cajeras, islas y ranuras	CAJERAS/ ISLAS/ RANURAS		
Los cic paráme son con número Q202 e	los de n etros Q d munes e o de Q: j es siemp	necanizado con números a partir de 200 emplean como parámetros de transmisión. Las funciones que en los diferentes ciclos, tienen asignado un mismo p.ej. Q200 es siempre la distancia de seguridad, ore la profundidad de pasada, etc.	Ciclos para el trazado de figuras de puntos regulares, p.ej. círculo de taladros o superficies de taladros y figuras de puntos irregulares mediante			
Defin	ición c	tel ciclo				
CYCL DEF	► La de	a carátula de softkeys muestra los diferentes grupos e ciclos	Ciclos SL (Subcontour-List), con los	CYCLOS SL		
TALADRAD	⊳ S	eleccionar el grupo de ciclos, p.ej. ciclos de taladrado	cuales se mecanizan contornos			
 Seleccionar el ciclo, p.ej. TALADRADO PROFUNDO TNC abre un diálogo y pregunta por todos los valor de introducción; simultáneamente aparece en la m derecha de la pantalla un gráfico en el cual aparece 		eleccionar el ciclo, p.ej. TALADRADO PROFUNDO. El NC abre un diálogo y pregunta por todos los valores e introducción; simultáneamente aparece en la mitad erecha de la pantalla un gráfico en el cual aparecen is parámetros a introducir en color más claro. Para	Ciclos para el planeado de superficies planas o unidas entre si	PLANCADO		
	ello se selecciona la subdivisión de la pantalla PROGRAMA + FIGURA AUXILIAR		Ciclos para la traslación de coordenadas con los cuales se puede desplazar, girar, Mara			
	► In y	troducir todos los parámetros solicitados por el TNC finalizar la introducción con la tecla ENT	reflejar, aumentar o reducir cualquier contorno			
	► El in	l TNC finaliza el diálogo después de haber troducido todos los datos precisos	Ciclos especiales: Tiempo de espera,	CICLOS ESPECIA-		
Ejempl	o de fra	ses NC		LLU		
CYCL	DEF 1.0) TALADRADO PROFUNDO				
CYCL	DEF 1.1	L DIST2	Memorizar/editar programa			
CYCL	DEF 1.2	2 PROF30				
CYCL	DEF 1.3	B PASO APROX.5	4 TOOL CALL 1 Z \$4000	s+		
CYCL	DEF 1.4	T.ESP.1	6 L X+0 Y+0 Z-20 R0 FMAX M8	- - - -		
CYCL	DEF 1.5	5 F 150	DIST.+2	1		
			РКИ:15 ВВ5072 В 11 END PGM CYC210 MM	¥		
			NOML. X +0.595 Y +0.595 Z +0.615 T -0.615			
			S	M5/9		
				•		

8 Programación: Ciclos

120

8.1 Generalidades sobre los ciclos

Llamada al ciclo

Condiciones

En cualquier caso se programan antes de la llamada al ciclo:

BLK FORM para la representación gráfica (sólo se precisa para el test gráfico)

- Llamada a la herramienta
- Sentido de giro del cabezal (funciones auxiliares M3/M4)
- Definición del ciclo (CYCL DEF).

Deberán tenerse en cuenta otras condiciones que se especifican en las siguientes descripciones de los ciclos.

Los siguientes ciclos actuan a partir de su definición en el programa de mecanizado. Estos ciclos no se pueden ni deben llamar:

- los ciclos de figura de puntos sobre un círculo y fig. de puntos sobre lineas
- el ciclo SL CONTORNO
- los ciclos para la traslación de coordenadas
- cicloTIEMPO DE ESPERA

Todos los demás ciclos se llaman de la siguiente forma:

Si el TNC debe ejecuta una vez el ciclo después de la última frase programada, se programa la llamada al ciclo con la función auxiliar M99 o con CYCL CALL:

- Programación de la llamada al ciclo: Pulsar la tecla CYCL CALL
- Programación de la llamada al ciclo: Pulsar la softkey CYCL CALL M
- Introducir la función auxiliar M o finalizar el diálogo con la tecla END

Si el TNC debe ejecutar el ciclo después de cada frase de posicionamiento, se programa la llamada al ciclo con M89 (depende del parámetro de máquina 7440).

Para anular M89 se programa

🔳 M99 o

- CYCL CALL o
- CYCL DEF

Trabajar con ejes auxiliares U/V/W

El TNC realiza aproximaciones en el eje que se haya definido en la frase TOOL CALL como eje del cabezal. El TNC realiza los movimientos en el plano de mecanizado básicamente sólo en los ejes principales X, Y o Z. Excepciones:

- Cuando se programa directamente ejes auxiliares para las longitudes laterales en los ciclos 3 FRESADO DE RANURAS y en el ciclo 4 FRESADO DE CAJERAS
- Cuando en los ciclos SL están programados ejes auxiliares en el subprograma del contorno

8.2 Tablas de puntos

Cuando se quiere ejecutar un ciclo, o bien varios ciclos sucesivamente, sobre una figura de puntos irregular, entonces se elaboran tablas de puntos.

Cuando se utilizan ciclos de taladrado, las coordenadas del plano de mecanizado en la tabla de puntos corresponden a las coordenadas del punto central del taladro. Cuando se utilizan ciclos de fresado, las coordenadas del plano de mecanizado en la tabla de puntos corresponden a las coordenadas del punto inicial del ciclo correspondiente (p.ej. coordenadas del punto central de una cajera circular). Las coordenadas en el eje de la hta. corresponden a la coordenada de la superficie de la pieza.

Introducción de una tabla de puntos

Seleccionar el modo de funcionamiento Memorizar/editar programa

Llamada a la gestión de ficheros: Pulsar la tecla PGM MGT

Nombre del fichero =

Introducir el nombre de la tabla de puntos, confirmar con ENT

Si es preciso conmutar a la unidad métrica de pulgadas: Pulsar la softkey MM/PULG.

Seleccionar el tipo de fichero tabla de puntos: Pulsar la softkey .PNT

Seleccionar tablas de puntos en el programa

Seleccionar el modo de funcionamiento Memorizar/editar programa

Introducir el nombre de la tabla de puntos, confirmar con END

Memorizar/editar programa

Llamada a un ciclo mediante las tablas de puntos

Antes de la programación deberá tenerse en cuenta

El TNC ejecuta con CYCL CALL PAT la tabla de puntos definida por última vez (incluso si se ha definido en un programa imbricado con CALL PGM).

El TNC emplea la coordenada en el eje de la hta. en la llamada al ciclo como altura de seguridad.

Si el TNC debe realizar la llamada al último ciclo de mecanizado definido en los puntos definidos en una tabla de puntos, se programa la llamada al ciclo con CYCL CALL PAT:

Programación de la llamada al ciclo: Pulsar la tecla CYCL CALL

- Llamada a la tabla de puntos: Pulsar la softkey CYCL CALL PAT
- Introducir el avance para el desplazamiento entre los puntos (sin introducción: desplazamiento con el último avance programado)
- En caso necesario introducir la función M, confirmar con la tecla END

El TNC retira la hta. entre los puntos iniciales a la altura de seguridad (altura de seguridad = coordenada de los ejes de la hta. en la llamada al ciclo). Para poder emplear también este funcionamiento en los ciclos con números 200 y superiores, hay que definir la 2ª distancia de seguridad (Q204) con 0.

Si en el posicionamiento previo en el eje de la hta. se quiere realizar el desplazamiento con avance reducido, se utiliza la función auxiliar M103 (véase "7.4 Funciones auxiliares para el comportamiento en la trayectoria").

Funcionamiento de las tablas de puntos con los ciclos 1 a 5 y 17.

El TNC interpreta los puntos del plano de mecanizado como coordenadas del punto central del taladro. La coordenada del eje de la hta. determina la arista superior de la pieza, de forma que el TNC puede realizar el posicionamiento previo automáticamente (secuencia: Plano de mecanizado, después eje de la hta.).

Funcionamiento de las tablas de puntos con los ciclos SL y ciclo 12

El TNC interpreta los puntos como un desplazamiento adicional del cero pieza.

Funcionamiento de las tablas de puntos con los ciclos 200 a 204

El TNC interpreta los puntos del plano de mecanizado como coordenadas del punto central del taladro. Cuando se quieren utilizar en las tablas de puntos coordenadas definidas en el eje de la hta. como coordenadas del punto inicial, se define la arista superior de la pieza (Q203) con 0 (véase "8.3 Ciclos de taladrado", ejemplo).

Funcionamiento de las tablas de puntos con los ciclos 210 a 215

El TNC interpreta los puntos como un desplazamiento adicional del cero pieza. Cuando se quieren utilizar los puntos definidos en la tabla de puntos como coordenadas del del punto inicial, hay que programar 0 para los puntos iniciales y la arista superior de la pieza (Q203) en el correspondiente ciclo de fresado (véase "8.4 Ciclos para el fresado de cajeras, islas y ranuras", ejemplo).

8.3 Ciclos de taladrado

El TNC dispone de un total de 8 ciclos para los diferentes taladrados:

Ciclo	Softkey
1 TALADRADO PROFUNDO Sin posicionamiento previo automático	
200 TALADRO Con posicionamiento previo automático, 2ª distancia de seguridad	200 Ø
201 ESCARIADO Con posicionamiento previo automático, 2ª distancia de seguridad	201
202 MANDRINADO Con posicionamiento previo automático, 2ª distancia de seguridad	202 [] 2-2
203 TALADRO UNIVERSAL Con posicionamiento previo automático, 2ª distancia de seguridad, rotura de viruta, reducción de cota	203 0
204 REBAJE INVERSO con preposicionamiento automático, 2ª distancia de seguridad	204] 22-23
2 ROSCADO CON MACHO	2 {}
17 ROSCADO GS RIGIDO	17 () RT

8.3 Ciclos de taladrado

TALADRADO PROFUNDO (ciclo 1)

- 1 La hta. taladra con el avance F programado desde la posición actual hasta la primera profundidad de pasada
- 2 Después el TNC retira la herramienta en marcha rápida FMAX y vuelve a desplazarse hasta la primera profundidad de pasada, reduciendo esta según la distancia de parada previa t.
- 3 El control calcula automáticamente la distancia de parada previa:
 Profundidad de taladrado hasta 30 mm: t = 0,6 mm
 Profundidad de taladrado más de 30 mm: t = profundidad /50 máxima distancia de parada previa: 7 mm
- **4** A continuación la hta. taladra con el avance F programado hasta la siguiente profundidad de pasada
- 5 El TNC repite este proceso (1 a 4) hasta alcanzar la profundidad del taladro programada
- 6 En la base del taladro, una vez transcurrido el tiempo de espera para el desahogo de la viruta, el TNC retira la herramienta a la posición inicial con FMAX.

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

Programar la frase de posicionamiento sobre el punto de partida en el eje de la hta. (distancia de seguridad sobre la superficie de la pieza).

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado.

- Distancia de seguridad 1 (valor incremental): Distancia entre el extremo de la hta. (posición inicial) y la superficie de la pieza
- Profundidad de taladrado 2 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro (extremo del cono del taladro)
- Profundidad de pasada 3 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza. El TNC se desplaza en un sólo paso de mecanizado a la profundidad total cuando:

La profundidad de pasada y la profundiad de taladrado son iguales

La profundidad de pasada es mayor a la prof. de taladrado

La profundidad de taladrado no tiene porque ser múltiplo de la prof. de pasada

- Tiempo de espera en segundos: Tiempo que la herramienta espera en la base del taladro para desahogar la viruta
- Avance F: Velocidad de desplazamiento de la hta. al taladrar en mm/min

Ejemplo de frases NC:

1	CYCL DEF 1	0	TALADRADO PROFUNDO
2	CYCL DEF 1	1.1	DIST. 2
3	CYCL DEF 1	2	PROF20
4	CYCL DEF 1	3	PASO APROX. 5
5	CYCL DEF 1	1.4	T.ESP. 0
6	CYCL DEF 1	5	F500

TALADRAR (ciclo 200)

- 1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad sobre la superficie de la pieza
- 2 La hta. taladra con el avance F programado hasta la primera profundidad de pasada
- **3** El TNC retira la herramienta con FMAX a la distancia de seguridad, espera allí si se ha programado, y a continuación se desplaza de nuevo con FMAX a la distancia de seguridad sobre la primera profundidad de pasada
- 4 A continuación la hta. taladra con el avance F programado hasta la siguiente profundidad de pasada
- **5** El TNC repite este proceso (2 a 4) hasta que se ha alcanzado la profundidad de taladrado programada
- 6 En la base del taladro la hta. se desplaza con FMAX a la distancia de seguridad, y si se ha programado hasta la 2ª distancia de seguridad

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

El signo del parámetro profundidad determina la dirección del mecanizado.

Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza

- Profundidad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro (extremo del cono del taladro)
- Avance al profundizar Q206: Velocidad de desplazamiento de la hta. en el taladrado en mm/min
- Profundidad de pasada Q202 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza El TNC se desplaza en un sólo paso de mecanizado a la profundidad total cuando:
 La profundidad de pasada es igual a la prof. total
 La prof. de pasada es mayor a la prof. total

La profundidad no tiene porque ser múltiplo de la profundidad de pasada

- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada en el eje de la hta., en la cual no se puede producir ninguna colisión entre la hta. y la pieza

Ejemplo de frases NC:

7 CYCL DEF	200 TALADRAR	
Q200=2	;DISTANCIA DE SEGURID	AD
Q201=-2	20 ; PROFUNDIDAD	
Q206 =15	50 ; AVANCE AL PROFUNDIZA	R
Q2O2=5	; PROFUNDIDAD DE PASAD	A
Q210=0	;TIEMPO DE ESPERA ARR	I BA
Q203=+0);COORD. SUPERFICIE PI	EZA
Q204=50) ;2ª DISTANCIA SEGURID	AD

8.3 Ciclos de taladrado

ESCARIADO (ciclo 201)

201

- 1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad programada sobre la superficie de la pieza
- **2** La herramienta penetra con el avance F introducido hasta la profundidad programada.
- 3 Si se ha programado, la hta. espera en la base del taladro
- 4 A continuación, el TNC retira la hta. con el avance F a la distancia de seguridad, y desde allí, si se ha programado, con FMAX a la 2ª distancia de seguridad

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

El signo del parámetro profundidad determina la dirección del mecanizado.

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
 - Profundidad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro
 - Avance al profundizar Q206: Velocidad de desplazamiento de la hta. en el escariado en mm/min
 - Tiempo de espera abajo Q211: Tiempo en segundos que espera la hta. en la base del taladro
 - Avance de retroceso Q208: Velocidad de desplazamiento de la hta. al retirarse del taladro en mm/min. Cuando se introduce Q208 = 0 es válido el avance de escariado
 - ► Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
 - ▶ 2ª distancia de seguridad Q204 (valor incremental): Coordenada en el eje de la hta., en la cual no se puede producir ninguna colisión entre la hta. y la pieza

Ejemplo de frases NC:

8 CYCL DEF 201	ESCARIADO
Q200=2	;DISTANCIA DE SEGURIDAD
Q201=-20	; PROFUNDIDAD
Q206=150	;AVANCE AL PROFUNDIZAR
Q211=0.25	;TIEMPO DE ESPERA ABAJO
Q208=500	;AVANCE RETROCESO
Q203=+0	;COORD. SUPERFICIE PIEZA
Q204=50	;2ª DISTANCIA SEGURIDAD

MANDRINADO (ciclo 202)

El constructor de la máquina prepara la máquina y el TNC
 para el ciclo 202.

- 1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad sobre la superficie de la pieza
- **2** La hta. taladra con el avance de taladrado hasta la profundidad programada
- **3** La hta. espera en la base del taladro, si se ha programado un tiempo para girar libremente.
- 4 El TNC realiza a continuación una orientación del cabezal con M19 sobre la posición 0° $\,$
- **5** Si se ha seleccionado el desplazamiento libre, el TNC se desplaza 0,2 mm hacia atrás en la dirección programada (valor fijo)
- **6** A continuación, el TNC retira la hta. con el avance de retroceso a la distancia de seguridad, y desde allí, si se ha programado, con FMAX a la 2ª distancia de seguridad

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado.

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- Profundidad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro
- Avance al profundizar Q206: Velocidad de desplazamiento de la hta. en el mandrinado en mm/min
- ► Tiempo de espera abajo Q211: Tiempo en segundos que espera la hta. en la base del taladro
- Avance de retroceso Q208: Velocidad de desplazamiento de la herramienta al retirarse del taladro en mm/min. Cuando se programa Q208=0 es válido el avance al profundizar
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada en el eje de la hta., en la cual no se puede producir ninguna colisión entre la hta. y la pieza
- Dirección de libre desplazamiento (0/1/2/3/4) Q214: Determinar la dirección en la cual el TNC retira la hta. de la base del taladro (después de la orientación del cabezal)

Ejemplo de frases NC:

9	CYCL DEF 202	MANDRINADO
	Q200=2	;DISTANCIA DE SEGURIDAD
	Q201=-20	; PROFUNDIDAD
	Q206=150	;AVANCE AL PROFUNDIZAR
	Q211=0.5	;TIEMPO DE ESPERA ABAJO
	Q208=500	;AVANCE RETROCESO
	Q2O3=+0	;COORD. SUPERFICIE PIEZA
	Q204=50	;2ª DISTANCIA SEGURIDAD
	Q214=1	;DIRECCION RETROCESO

O

202 <u>|</u>

- 0: no retirar la herramienta
- 1: retirar la hta. en la dirección negativa del eje principal
- 2: retirar la hta. en la dirección negativa del eje transversal
- 3: retirar la hta. en la dirección positiva del eje principal
- 4: retirar la hta. en la dirección positiva del eje transversal

¡Peligro de colisión!

Cuando se programa una orientación del cabezal con M19, deberá comprobarse donde se encuentra el extremo de la hta. (p.ej. en el modo de funcionamiento Posicionamiento manual). Deberá orientarse el extremo de la hta. de forma que esté paralela a un eje de coordenadas. Seleccionar la dirección de libre desplazamiento de forma que la herramienta se retire del borde del taladro.

TALADRO UNIVERSAL (ciclo 203)

- 1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad programada sobre la superficie de la pieza
- 2 La hta. taladra con el avance F programado hasta la primera profundidad de pasada
- 3 En caso de haber programado el arranque de viruta, la herramienta se retira según la distancia de seguridad. Si se trabaja sin arranque de viruta, el TNC retira la hta. con el avance de retroceso a la distancia de seguridad, espera allí según el tiempo programado y a continuación se desplaza de nuevo con FMAX a la

distancia de seguridad sobre la primera profundidad de pasada

- **4** A continuación la hta. taladra con el avance programado hasta la siguiente profundidad de pasada La profundidad de pasada se reduce con cada aproximación según el valor de reducción, en caso de que este se haya programado
- **5** El TNC repite este proceso (2-4) hasta alcanzar la profundidad de taladrado
- 6 En la base del taladro la hta. espera, si se ha programado, un tiempo de corte libre y se retira después de transcurrido el tiempo de espera con el avance de retroceso a la distancia de seguridad. Si se ha programado una 2ª DISTANCIA DE SEGURIDAD, la hta. se desplaza a esta con FMAX

203 @	 Antes de la programación deberá tenerse en cuenta Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0. En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. ▶ Distancia de seguridad Q200 (valor incremental): 	Z Q206 Q208 Q210 Q200 Q200 Q204 Q202 Q204
	 Distancia entre el extremo de la hta. y la superficie de la pieza Profundidad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro (extremo del cono del taladro) Avance al profundizar Q206: Velocidad de desplazamiento de la hta. en el taladrado en mm/min 	Q211
	 Profundidad de pasada Q202 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza El TNC se desplaza en un sólo paso de mecanizado a la profundidad total cuando: La profundidad de pasada es igual a la prof. total La profundidad no tiene porque ser múltiplo de la profundidad de pasada Tiempo de espera arriba Q210: Tiempo en segundos que espera la hta. a la distancia de seguridad, después de que el TNC la ha retirado del taladro para desahogar la viruta Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza 2ª distancia de seguridad Q204 (valor incremental): Coordenada en el eje de la hta., en la cual no se puede producir ninguna colisión entre la hta. y la pieza Valor de reducción Q212 (valor incremental): Valor según el cual el TNC reduce la profundidad de pasada en cada aproximación N^g de roturas de viruta hasta el retroceso Q213: Número de roturas de viruta, después de las cuales el TNC retira la hta. del taladro para soltarla. Para el arranque de viruta, el TNC retira la herramienta a la distancia de seguridad Q200 Mínima profundidad de pasada Q205 (valor incremental): Si se ha introducido un valor de reducción, el TNC límita la aproximación al valor programado en Q205 Tiempo de espera abajo Q211: Tiempo en segundos que espera la hta. en la base del taladro Avance de retroceso Q208: Velocidad de 	Ejemplo de frases NC: 10 CYCL DEF 203 TALADRO UNIVERSAL Q200=2 ; DISTANCIA DE SEGURIDAD Q201=-20 ; PROFUNDIDAD Q206=150 ; AVANCE AL PROFUNDIZAR Q202=5 ; PROFUNDIDAD DE PASADA Q210=0 ; TIEMPO DE ESPERA ARRIBA Q203=+0 ; COORD. SUPERFICIE PIEZA Q204=50 ; 2ª DISTANCIA SEGURIDAD Q212=0.2 ; VALOR DE REDUCCION Q213=3 ; N° ROTURAS DE VIRUTA Q205=3 ; PROFUNDIDAD DE PASADA MINIMA Q211=0.25 ; TIEMPO DE ESPERA ABAJO Q208=500 ; AVANCE RETROCESO
	desplazamiento de la hta. al retirarse del taladro en mm/min. Cuando se introduce 0208=0 el TNC retira la hta. con el avance 0206	

REBAJE INVERSO (ciclo 204)

El constructor de la máquina tiene que preparar la máquina y el TNC para poder utilizar el ciclo de rebaje inverso.

El ciclo sólo puede trabajar con las llamadas barras de taladrado para corte inverso.

Con este ciclo se realizan profundizaciones que se encuentran en la parte inferior de la pieza.

- 1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad sobre la superficie de la pieza
- 2 El TNC realiza una orientación del cabezal con M19 sobre la posición 0° y desplaza la hta. según la cota de excentricidad
- **3** A continuación la hta. profundiza con el avance de posicionamiento previo a través del taladro ya realizado anteriormente, hasta que la cuchilla se encuentra a la distancia de seguridad por debajo de la pieza
- 4 Ahora el TNC centra la hta. de nuevo al centro del taladro, conecta el cabezal y si es preciso el refrigerante y se desplaza con el avance de rebaje a la profundidad de rebaje programada
- 5 Si se ha programado un tiempo de espera, la hta. espera en la base de la profundización y se sale de nuevo del taladro, ejecuta una orientación del cabezal y se desplaza de nuevo según la cota de excentricidad
- 6 A continuación, el TNC retira la hta. con el avance de posicionamiento previo a la distancia de seguridad, y desde allí, si se ha programado, con FMAX a la 2ª distancia de seguridad.

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

El signo del parámetro Profundidad determina la dirección del mecanizado en la profundización. Atención: El signo positivo profundiza en dirección del eje de la hta. positivo.

Introducir la longitud de la hta. de forma que se mida la arista inferior de la barra de taladrado y no la cuchilla.

Para el cálculo de los puntos de partida de la profundización, el TNC tiene en cuenta la longitud de las cuchillas de la barra de taladrado y el espesor del material.

.3 Ciclos de taladrado
8.3 Ciclos de taladrado

²⁰⁴]

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
 - Profundidad de rebaje Q249 (valor incremental): Distancia entre la cara inferior de la pieza y la cara superior del rebaje. El signo positivo realiza la profundización en la dirección positiva del eje de la hta.
 - ▶ Grosor del material Q250 (valor incremental): Espesor de la pieza
 - Medida excentrica Q251 (valor incremental): Medida de excentricidad de la barra de taladrado; sacar de la hoja de datos de la hta.
 - Longitud de las cuchillas Q252 (valor incremental): Distancia entre la cara inferior de la barra y la cuchilla principal; sacar de la hoja de datos de la hta.
 - Avance de preposicionamiento Q253: Velocidad de desplazamiento de la hta. al profundizar en la pieza o bien al salir de la pieza en mm/min
 - ► Avance de rebaje Q254: Velocidad de desplazamiento de la hta. al realizar el rebaje en mm/min
 - ► Tiempo de espera Q255: Tiempo de espera en segundos en la base de la profundización
 - Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
 - 2ª distancia de seguridad Q204 (valor incremental): Coordenada en el eje de la hta., en la cual no se puede producir ninguna colisión entre la hta. y la pieza
 - Dirección de retroceso (0/1/2/3/4) Q214: Determinar la dirección en la cual el TNC debe desplazar la hta. según la cota de excentricidad (después de la orientación del cabezal)
- 0: No se permite la introducción
- 1: Desplazar la hta. en la dirección negativa del eje principal
- 2: Desplazar la hta. en la dirección negativa del eje transversal
- 3: Desplazar la hta. en la dirección positiva del eje principal
- 4: Desplazar la hta. en la dirección positiva del eje transversal

iPeligro de colisión!

Cuando se programa una orientación del cabezal a 0° con M19 (p.ej. en el funcionamiento Posicionamiento manual), deberá comprobarse donde se encuentra el extremo de la hta. Deberá orientarse el extremo de la hta. de forma que esté paralela a un eje de coordenadas. Seleccionar la dirección de retroceso de tal forma que la hta. profundice en el taladro sin colisionar.

	•	
11	CYCL DEF 204	REBAJE INVERSO
	Q200=2	;DISTANCIA DE SEGURIDAD
	Q249=+5	;PROFUNDIDAD DE REBAJE
	Q250=20	;GROSOR DEL MATERIAL
	Q251=3.5	;MEDIDA EXCENTRICA
	Q252=15	;LONGITUD CUCHILLA
	Q253=750	;AVANCE POSIC. PREVIO
	Q254=200	;AVANCE DE REBAJE
	Q255=0	;TIEMPO DE ESPERA
	Q203=+0	;COORD. SUPERFICIE PIEZA
	Q204=50	;2ª DISTANCIA SEGURIDAD
	Q214=1	;DIRECCION RETROCESO

8.3 Ciclos de taladrado

ROSCADO CON MACHO (ciclo 2)

- 1 La hta. se desplaza hasta la profundidad del taladro en una sóla pasada.
- 2 Después se invierte la dirección de giro del cabezal y la hta. retrocede a la posición inicial una vez transcurrido el tiempo de espera
- **3** En la posición inicial se invierte de nuevo la dirección de giro del cabezal

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

Programar la frase de posicionamiento sobre el punto de partida en el eje de la hta. (distancia de seguridad sobre la superficie de la pieza).

El signo del parámetro profundidad determina la dirección del mecanizado.

La hta. debe estar sujeta con un sistema de compensación de longitud. La compensación de longitud tiene en cuenta la tolerancia del avance y de las revoluciones durante el mecanizado.

Mientras se ejecuta el ciclo no está activado el potenciómetro de override de las revoluciones. El potenciómetro para el override del avance está limitado (determinado por el constructor de la máquina, consultar en el manual de la máquina).

Para el roscado a derechas activar el cabezal con M3, para el roscado a izquierdas con M4.

- Distancia de seguridad 1 (valor incremental): Distancia entre el extremo de la hta. (posición inicial) y la superficie de la pieza; Valor orientativo: 4 veces el paso de roscado
 - Profundidad de taladrado 2 (longitud del roscado, valor incremental): Distancia entre la superficie de la pieza y el final de la rosca
 - Tiempo de espera en segundos: Se introduce un valor entre 0 y 0,5 segundos, para evitar un acuñamiento de la hta. al retroceder esta
 - Avance F: Velocidad de desplazamiento de la hta. durante el roscado

Cálculo del avance: F = S x p

- F: Avance mm/min)
- S: Revoluciones del cabezal (rpm)
- p: Paso del roscado (mm)

13	CYCL DEF	2.0	ROSCADO
14	CYCL DEF	2.1	DIST. 2
15	CYCL DEF	2.2	PROF20
16	CYCL DEF	2.3	T.ESP. 0
17	CYCL DEF	2.4	F100

ROSCADO RIGIDO GS (ciclo 17)

P

El constructor de la máquina tiene que preparar la
 máquina y el TNC para poder utilizar el roscado rígido.

El TNC realiza el roscado en varios pasos sin compensación de la longitud.

Las ventajas en relación al ciclo de roscado con macho son las siguientes:

- Velocidad de mecanizado más elevada
- Se puede repetir el mismo roscado ya que en la llamada al ciclo el cabezal se orienta sobre la posición 0° (depende del parámetro de máquina 7160)
- Campo de desplazamiento del eje del cabezal más amplio ya que se suprime la compensación

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto de partida (centro del taladro) en el plano de mecanizado con corrección de radio R0.

Programar la frase de posicionamiento sobre el punto de partida en el eje de la hta. (distancia de seguridad sobre la superficie de la pieza).

El signo del parámetro Profundidad de taladrado determina la dirección del mecanizado.

El TNC calcula el avance dependiendo del número de revoluciones. Si se gira el potenciómetro de override para las revoluciones durante el roscado, el TNC regula automáticamente el avance.

El potenciómetro para el override del avance está inactivo.

El cabezal se para al final del ciclo. Antes del siguiente mecanizado conectar de nuevo el cabezal con M3 (o bien M4).

Distancia de seguridad 1 (valor incremental): Distancia entre el extremo de la hta. (posición inicial) y la superficie de la pieza

- Profundidad de taladrado 2 (valor incremental): Distancia entre la superficie de la pieza (principio de la rosca) y el final de la rosca
- PASO DE LA ROSCA 3: Paso de la rosca. El signo determina si el roscado es a derechas o a izquierdas:
 - + = rosca a derechas
 - = rosca a izquierdas

18	CYCL DEF	17.0	ROSCADO RIGIDO
19	CYCL DEF	17.1	DIST. 2
20	CYCL DEF	17.2	PROF20
0.1		17 0	

O BEGIN PGM C200 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición del bloque
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+3	Definición de la herramienta
4 TOOL CALL 1 Z S4500	Llamada a la herramienta
5 L Z+250 RO FMAX	Retirar la herramienta
6 CYCL DEF 200 TALADRADO	Definición del ciclo
Q200=2 ;DISTANCIA DE SEGURIDAD	
Q201=-15 ;PROFUNDIDAD	
Q206=250 ;AVANCE AL PROFUNDIZAR	
Q2O2=5 ;PROFUNDIDAD DE PASADA	
Q210=0 ;TIEMPO DE ESPERA ARRIBA	
Q2O3=-10 ;COORD. SUPERFICIE PIEZA	
Q2O4=2O ;2ª DISTANCIA SEGURIDAD	
7 L X+10 Y+10 RO FMAX M3	Llegada al primer taladro, conexión del cabezal
8 CYCL CALL	Llamada al ciclo
9 L Y+90 RO FMAX M99	Llegada al 2º taladro, llamada al ciclo
10 L X+90 RO FMAX M99	Llegada al 3er taladro, llamada al ciclo
11 L Y+10 RO FMAX M99	Llegada al 4º taladro, llamada al ciclo
12 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
13 END PGM C200 MM	

Ejemplo: Ciclos de taladrado

Desarrollo del programa

- Placa pretaladrada para M12, profundidad de la placa: 20 mm
- Programación del ciclo Roscado
- Por motivos de seguridad se realiza el posicionamiento previo primero en el plano y a continuación en el eje de la herramienta

O BEGIN PGM C2 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición del bloque
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+4.5	Definición de la herramienta
4 TOOL CALL 1 Z S100	Llamada a la herramienta
5 L Z+250 RO FMAX	Retirar la herramienta
6 CYCL DEF 2 .0 ROSCADO	Definición del ciclo Roscado
7 CYCL DEF 2 .1 DIST. 2	
8 CYCL DEF 2 .2 PROF25	
9 CYCL DEF 2 .3 T.ESP. 0	
10 CYCL DEF 2 .4 F175	
11 L X+20 Y+20 RO FMAX M3	Aproximación al taladro 1 en el plano de mecanizado
12 L Z+2 RO FMAX M99	Posicionamiento previo en el eje de la hta.
13 L X+70 Y+70 RO FMAX M99	Aproximación al taladro 2 en el plano de mecanizado
14 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
15 END PGM C2 MM	

Ejemplo: Ciclos de taladrado junto con tablas de puntos

Desarrollo del programa

Centraje

- Taladrado
- Roscado M6

Las coordenadas del taladro están memorizadas en la tabla de puntos TAB1.PNT (véase pág. siguiente) y el TNC las llama con CYCL CALL PAT.

Los radios de la hta. se han seleccionado de tal forma que se puedan ver todos los pasos del mecanizado en el test gráfico.

0	BEGIN PGM 1 MM	
1	BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición del bloque
2	BLK FORM 0.2 X+100 Y+100 Z+0	
3	T00L DEF 1 L+0 R+4	Definición de la hta. de centraje
4	TOOL DEF 2 L+0 R+2.4	Definición de la hta. Taladro
5	TOOL DEF 3 L+0 R+3	Definición de la herramienta Macho de roscar
6	TOOL CALL 1 Z S5000	Llamada a la hta. de centraje
7	L Z+10 R0 F5000	Desplazar la hta. a la altura de seguridad (programar un valor para F,
		el TNC posiciona después de cada ciclo a la altura de seguridad)
8	SEL PATTERN "TAB1"	Determinar la tabla de puntos
9	CYCL DEF 200 TALADRADO	Definición del ciclo
	Q200=2 ;DISTANCIA SEGURIDAD	
	Q201=-2 ; PROFUNDIDAD	
	Q206=150 ;AVANCE AL PROFUNDIZAR	
	Q2O2=2 ; PROFUNDIDAD DE PASADA	
	Q210=0 ;TIEMPO DE ESPERA ARRIBA	
	Q203=+0 ;COORD. SUPERFICIE PIEZA	Coordenada de la superficie (introducir obligatoriamente 0)
	Q204=0 ;2ª DISTANCIA SEGURIDAD	2ª distancia de seguridad (introducir obligatoriamente 0)
10	CYCL CALL PAT F5000 M3	Llamada al ciclo junto con la tabla de puntos TAB1.PNT.
		Avance entre los puntos: 5000 mm/min
11	L Z+100 RO FMAX M6	Retirar la herramienta, cambio de herramienta

12	TOOL CALL 2 Z S5000	Llamada a la hta. para el taladrado
13	L Z+10 R0 F5000	Desplazar la hta. a la altura de seguridad (programar un valor para F)
14	CYCL DEF 200 TALADRADO	Definición del ciclo Taladrado
	Q200=2 ;DISTANCIA DE SEG	URIDAD Distancia de seguridad
	Q201=-25 ;PROFUNDIDAD	Profundidad
	Q206=150 ;AVANCE AL PROFUN	DIZAR Avance al profundizar
	Q2O2=5 ;PROFUNDIDAD DE P	ASADA Profundidad de pasada
	Q210=0 ;TIEMPO DE ESPERA	ARRIBA Tiempo de espera
	Q203=+0 ;COORD. SUPERFICI	E PIEZA Coordenada de la superficie (introducir obligatoriamente 0)
	Q204=0 ;2ª DISTANCIA SEG	URIDAD 2 ^a distancia de seguridad (introducir obligatoriamente 0)
15	CYCL CALL PAT F5000 M3	Llamada al ciclo junto con la tabla de puntos cero TAB1.PNT.
16	L Z+100 RO FMAX M6	Retirar la herramienta, cambio de herramienta
17	TOOL CALL 3 Z S200	Llamada a la herramienta Macho de roscar
18	L Z+50 RO FMAX	Desplazar la hta. a la altura de seguridad
19	CYCL DEF 2.0 ROSCADO	
20	CYCL DEF 2.1 DIST. 2	
21	CYCL DEF 2.2 PROF25	
22	CYCL DEF 2.3 T.ESP. O	
23	CYCL DEF 2.4 F175	
24	CYCL CALL PAT F5000 M3	Llamada al ciclo junto con la tabla de puntos cero TAB1.PNT.
25	L Z+100 R0 FMAX M2	Retirar la herramienta, final del programa
26	END PGM 1 MM	

Tabla de puntosTAB1.PNT

	TAB1	.PNT		MM			
Na	Х		γ		Z		
0	+10		+10		+0		
1	+40		+30		+0		
2	+90		+10		+0		
3	+80		+30		+0		
4	+80		+65		+0		
5	+90		+90		+0		
6	+10		+90		+0		
7	+20		+55		+0		
[E N	D]						

8.4 Ciclos para el fresado de cajeras, islas y ranuras

Ciclo	Softkey
4 FRESADO DE CAJERA (rectangular) Ciclo de desbaste, sin posicionamiento previo automático	4
212 ACABADO DE CAJERA (rectangular) Ciclo de acabado, con posicionamiento previo automático, 2ª distancia de seguridad	212
213 ACABADO DE ISLA (rectangular) Ciclo de acabado, con posicionamiento previo automático, 2ª distancia de seguridad	213
5 CAJERA CIRCULAR Ciclo de desbaste, sin posicionamiento previo automático	5
214 ACABADO DE CAJERA CIRCULAR Ciclo de acabado, con posicionamiento previo automático, 2ª distancia de seguridad	214
215 ACABADO DE ISLA CIRCULAR Ciclo de acabado, con posicionamiento previo automático, 2ª distancia de seguridad	215
3 FRESADO DE RANURAS Ciclo de acabado, sin posicionamiento automático, profundidad de pasada vertical	3
210 RANURA CON INTRODUCCIÓN PENDULAR Ciclo de desbaste/acabado con posicionamiento previo automático, movimiento de introducción pendular	210 💿
211 RANURA CIRCULAR Ciclo de desbaste/acabado con posicionamiento previo automático, movimiento de introducción pendular	211

FRESADO DE CAJERA (ciclo 4)

- 1 La hta. penetra en la pieza desde la posición inicial (centro de la cajera) y se desplaza a la primera profundidad de pasada
- 2 A continuación la herramienta se desplaza primero en la dirección positiva del lado más largo y en cajeras cuadradas en la dirección positiva de Y, y desbasta la cajera de dentro hacia fuera.
- **3** Este proceso (1 a 3) se repite hasta alcanzar la profundidad programada
- 4 Al final del ciclo el TNC retira la hta. a la posición inicial

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial (centro de la cajera) del plano de mecanizado con corrección de radio R0.

Programar la frase de posicionamiento sobre el punto de partida en el eje de la hta. (distancia de seguridad sobre la superficie de la pieza).

El signo del parámetro profundidad determina la dirección del mecanizado.

Utilizar una fresa con dentado frontal cortante en el centro (DIN 844) o pretaladrado en el centro de la cajera.

La longitud y el ancho tienen que ser mayores que el doble del radio de redondeo.

- Distancia de seguridad 1 (valor incremental): Distancia entre el extremo de la hta. (posición inicial) y la superficie de la pieza
- Profundidad de fresado 2 (valor incremental): Distancia entre la superficie de la pieza y la base de la cajera
- Profundidad de pasada 3 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza. El TNC se desplaza a la profundidad en un sólo paso de mecanizado cuando:
 - La prof. de pasada es igual a la prof. total
 - La prof. de pasada es mayor a la prof. total
- Avance al profundizar: Velocidad de desplazamiento de la hta. en la profundización
- Longitud lado 1 4: Longitud de la cajera, paralela al eje principal del plano de mecanizado
- ▶ Longitud lado 2 5: Anchura de la cajera
- Avance F: Velocidad de desplazamiento de la hta. en el plano de mecanizado

Ejemplo de frases NC:

27	CYCL DEF 4.0	FRESADO DE CAJERA
28	CYCL DEF 4.1	DIST. 2
29	CYCL DEF 4.2	PROF20
30	CYCL DEF 4.3	APROX. 5 F100
31	CYCL DEF 4.4	X80
32	CYCL DEF 4.5	Y60
33	CYCL DEF 4.6	F275 DR+ RADIO 5

•

- Giro en sentido horario
 DR + : Fresado sincronizado con M3
 DR : Fresado a contramarcha con M3
- Radio de redondeo: Radio para las esquinas de la cajera.
 Si el radio = 0 el radio de redondeo es igual al radio de la hta.

Cálculos:

Aproximación lateral k = K x R

- K: Factor de solapamiento, determinado en el parámetro de máquina 7430
- R: Radio de la fresa

ACABADO DE CAJERA (ciclo 212)

- 1 El TNC desplaza automáticamente la hta. en el eje de la misma a la distancia de seguridad, o, si se ha programado, a la 2ª distancia de seguridad y a continuación al centro de la cajera.
- 2 Desde el centro de la cajera la hta. se desplaza en el plano de mecanizado al punto inicial del mecanizado. Para el cálculo del pto. inicial, el TNC tiene en cuenta la sobremedida y el radio de la hta. Si es preciso el TNC penetra en el centro de la cajera
- 3 En el caso de que la hta. esté sobre la 2ª distancia de seguridad, el TNC desplaza la hta. en marcha rápida FMAX a la distancia de segurida y desde allí, con avance de profundización a la primera profundidad de pasada
- **4** A continuación la hta. se desplaza tangencialmente hacia el contorno parcialmente terminado y fresa una vuelta en sentido sincronizado al avance
- **5** Después la hta. sale tangencialmente del contorno al punto de partida en el plano de mecanizado
- **6** Este proceso (3 a 5) se repite hasta que se ha alcanzado la profundidad programada
- 7 Al final del ciclo el TNC desplaza la hta. en marcha rápida a la DISTANCIA DE SEGURIDAD, o si se ha programado, a la 2ª distancia de seguridad y a continuación al centro de la cajera (posición final = posición de partida)

El signo del parámetro profundidad determina la dirección del mecanizado.

Si se quiere realizar un acabado de la cajera, deberá utilizarse una fresa con dentado frontal cortante en el centro (DIN 844) e introducir un avance pequeño para la profundización.

Tamaño de la cajera: El triple del radio de la hta.

212

- Distancia de seguridad Q200 (valor incremental):
 Distancia entre el extremo de la hta. y la superficie de la pieza
 - Profundidad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de la cajera
 - Avance al profundizar Ω206: Velocidad de desplazamiento de la herramienta al profundizar en mm/min. Cuando se profundiza en la pieza se define un valor inferior al indicado en Ω207.
 - Profundidad de pasada Q202 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza; introducir un valor mayor que 0
 - Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min
 - Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
 - 2ª distancia de seguridad Q204 (valor incremental): Coordenada en el eje de la hta., en la cual no se puede producir ninguna colisión entre la hta. y la pieza
 - Centro 1er eje Q216 (valor absoluto): Centro de la cajera en el eje principal del plano de mecanizado
 - ▶ Centro 2º eje Q217 (valor absoluto): Centro de la cajera en el eje transversal del plano de mecanizado
 - Longitud lado 1 Q218 (valor incremental): Longitud de la cajera, paralela al eje principal del plano de mecanizado
 - Longitud lado 2 Q219 (valor incremental): Longitud de la cajera, paralela al eje transversal del plano de mecanizado
 - Radio de la esquina Q220: Radio de la esquina de la cajera. Si no se indica nada, el TNC programa el radio de la esquina igual al radio de la hta.
 - Sobremedida 1er eje Q221 (valor incremental): Sobremedida en el eje principal del plano de mecanizado, referido a la longitud de la cajera. EL TNC sólo lo necesita para el cálculo de la posición previa

	•	
34	CYCL DEF 212	ACABADO DE CAJERA
	Q200=2	;DISTANCIA DE SEGURIDAD
	Q201=-20	; PROFUNDIDAD
	Q206=150	;AVANCE AL PROFUNDIZAR
	Q202=5	;PROFUNDIDAD DE PASADA
	Q207=500	;AVANCE DE FRESADO
	Q203=+0	;COORD. SUPERFICIE PIEZA
	Q204=50	;2ª DISTANCIA SEGURIDAD
	Q216=+50	;CENTRO EN EJE 1
	Q217=+50	;CENTRO EN EJE 2
	Q218=80	;LONGITUD LADO 1
	Q219=60	;LONGITUD LADO 2
	Q220=5	;RADIO ESQUINA
	Q221=0	; SOBREMEDIDA

ACABADO DE ISLAS (ciclo 213)

- 1 El TNC desplaza la hta. en el eje de la misma a la distancia de seguridad, o, si se ha programado a la 2ª distancia de seguridad y a continuación al centro de la isla
- 2 Desde el centro de la isla la hta. se desplaza en el plano de mecanizado hacia el punto inicial del mecanizado. El punto inicial se encuentra aprox. a 3,5 veces del radio de la hta. a la derecha de la isla
- 3 En el caso de que la hta. esté sobre la 2ª distancia de seguridad, el TNC desplaza la hta. en marcha rápida FMAX a la distancia de seguridad y desde allí con el avance de profundización a la primera profundidad de pasada
- **4** A continuación la hta. se desplaza tangencialmente hacia el contorno parcialmente terminado y fresa una vuelta en sentido sincronizado al avance
- **5** Después la hta. sale tangencialmente del contorno al punto de partida en el plano de mecanizado
- **6** Este proceso (3 a 5) se repite hasta que se ha alcanzado la profundidad programada
- 7 Al final del ciclo, el TNC desplaza la hta. con FMAX a la distancia de seguridad, o, si se ha programado, a la 2ª distancia de seguridad y a continuación al centro de la isla (posición final = posición inicial)

Antes de la programación deberá tenerse en cuenta

El signo del parámetro profundidad determina la dirección del mecanizado.

Si se quiere realizar un acabado de la isla, deberá utilizarse una fresa con dentado frontal cortante en el centro (DIN 844). Para ello deberá introducirse un valor pequeño para el avance al profundizar.

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- Profundidad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de la isla
- Avance al profundizar Q206: Velocidad de desplazamiento de la hta. al profundizar en mm/min. Cuando se penetra en la pieza, introducir un valor pequeño, para una profundización en vacio introducir un valor mayor
- Profundidad de pasada Q202 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza Introducir un valor mayor de 0.
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min

Ejemplo de frases NC:

35	CYCL DEF 213	ACABADO DE ISLA
	Q200=2	;DISTANCIA DE SEGURIDAD
	Q201=-20	; PROFUNDIDAD
	Q206=150	;AVANCE AL PROFUNDIZAR
	Q202=5	;PROFUNDIDAD DE PASADA
	Q207=500	;AVANCE DE FRESADO
	Q2O3=+0	;COORD. SUPERFICIE PIEZA
	Q204=50	;2ª DISTANCIA SEGURIDAD
	Q216=+50	;CENTRO EN EJE 1
	Q217=+50	;CENTRO EN EJE 2
	Q218=80	;LONGITUD LADO 1
	Q219=60	;LONGITUD LADO 2
	Q220=5	;RADIO ESQUINA
	Q221=0	;SOBREMEDIDA

R

- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada en el eje de la hta., en la cual no se puede producir ninguna colisión entre la hta. y la pieza
- ► Centro 1er eje O216 (valor absoluto): Centro de la isla en el eje principal del plano de mecanizado
- ▶ Centro 2º eje Q217 (valor absoluto): Centro de la isla en el eje transversal del plano de mecanizado
- Longitud lado 1 Q218 (valor incremental): Longitud de la isla, paralela al eje principal del plano de mecanizado
- Longitud lado 2 Q219 (valor incremental): Longitud de la isla, paralela al eje transversal del plano de mecanizado
- ▶ Radio de la esquina Q220: Radio de la esquina de la isla
- Sobremedida 1er eje Q221 (valor incremental): Sobremedida en el eje principal del plano de mecanizado, referida a la longitud de la isla. EL TNC sólo lo necesita para el cálculo de la posición previa

CAJERA CIRCULAR (ciclo 5)

- 1 La hta. penetra en la pieza desde la posición inicial (centro de la cajera) y se desplaza a la primera profundidad de pasada
- 2 A continuación la hta. recorre la trayectoria en forma de espiral representada en la figura de la derecha con el AVANCE F programado; para la aproximación lateral k véase el ciclo 4 FRESADO DE CAJERAS
- 3 Este proceso se repite hasta alcanzar la profundidad programada
- 4 Al final el TNC retira la hta. a la posición inicial.

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial (centro de la cajera) del plano de mecanizado con corrección de radio R0.

Programar la frase de posicionamiento sobre el punto de partida en el eje de la hta. (distancia de seguridad sobre la superficie de la pieza).

El signo del parámetro profundidad determina la dirección del mecanizado.

Utilizar una fresa con dentado frontal cortante en el centro (DIN 844) o pretaladrado en el centro de la cajera.

Distancia de seguridad 1 (valor incremental): Distancia entre el extremo de la hta. (posición inicial) y la superficie de la pieza

 \bigcirc

- Profundidad de fresado 2 (valor incremental): Distancia entre la superficie de la pieza y la base de la cajera
- Profundidad de pasada 3 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza. El TNC se desplaza a la profundidad en un sólo paso de mecanizado cuando:
 - La prof. de pasada es igual a la prof. total
 - La prof. de pasada es mayor a la prof. total
- Avance al profundizar: Velocidad de desplazamiento de la hta. en la profundización
- ▶ RADIO DEL CIRCULO: Radio de la cajaera circular
- Avance F: Velocidad de desplazamiento de la hta. en el plano de mecanizado
- Giro en sentido horario
 DR + : Fresado sincronizado con M3
 DR : Fresado a contramarcha con M3

Ejen	nplo de frases NC:	
36	CYCL DEF 5.0 CAJERA CIRCULAR	
37	CYCL DEF 5.1 DIST. 2	
38	CYCL DEF 5.2 PROF20	
39	CYCL DEF 5.3 APROX. 5 F100	
40	CYCL DEF 5.4 RADIO 40	
41	CYCL DEF 5.5 F250 DR+	

ACABADO DE CAJERA CIRCULAR (ciclo 214)

- 1 El TNC desplaza automáticamente la hta. en el eje de la misma a la distancia de seguridad, o, si se ha programado, a la 2ª distancia de seguridad y a continuación al centro de la cajera.
- 2 Desde el centro de la cajera la hta. se desplaza en el plano de mecanizado al punto inicial del mecanizado. Para el cálculo del punto inicial, el TNC tiene en cuenta el diámetro de la pieza y el radio de la hta. Si se introduce 0 para el diámetro de la pieza, la hta. penetra en el centro de la cajera
- 3 En el caso de que la hta. esté sobre la 2ª distancia de seguridad, el TNC desplaza la hta. en marcha rápida FMAX a la distancia de seguridad y desde allí con el avance de profundización a la primera profundidad de pasada
- **4** A continuación la hta. se desplaza tangencialmente hacia el contorno parcialmente terminado y fresa una vuelta en sentido sincronizado al avance
- **5** Después la hta. sale tangencialmente desde el contorno al punto de partida en el plano de mecanizado
- **6** Este proceso (4 a 5) se repite hasta que se ha alcanzado la profundidad programada
- 7 Al final del ciclo el TNC desplaza la hta. en marcha rápida a la distancia de seguridad, o si se ha programado, a la 2ª distancia de seguridad y a continuación al centro de la cajera (posición final = posición inicial)

Antes de la programación deberá tenerse en cuenta

El signo del parámetro profundidad determina la dirección del mecanizado.

Si se quiere realizar un acabado de la cajera, deberá utilizarse una fresa con dentado frontal cortante en el centro (DIN 844) e introducir un avance pequeño para la profundización.

214

Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza

- Profundidad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de la cajera
- Avance al profundizar Ω206: Velocidad de desplazamiento de la herramienta al profundizar en mm/min. Cuando se profundiza en la pieza se define un valor inferior al indicado en Ω207.
- Profundidad de pasada Q202 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min

-		
42	CYCL DEF 214	ACABADO CAJERA
	Q200=2	;DISTANCIA DE SEGURIDAD
	Q201=-20	; PROFUNDIDAD
	Q206=150	;AVANCE AL PROFUNDIZAR
	Q202=5	;PROFUNDIDAD DE PASADA
	Q207=500	;AVANCE DE FRESADO
	Q203=+0	;COORD. SUPERFICIE PIEZA
	Q204=50	;2ª DISTANCIA SEGURIDAD
	Q216=+50	;CENTRO EN EJE 1
	Q217=+50	;CENTRO EN EJE 2
	Q222=79	;DIAMETRO DEL BLOQUE
	Q223=80	;DIAMETRO PIEZA ACABADA

- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada en el eje de la hta., en la cual no se puede producir ninguna colisión entre la hta. y la pieza
- Centro 1er eje Q216 (valor absoluto): Centro de la cajera en el eje principal del plano de mecanizado
- ▶ Centro 2º eje Q217 (valor absoluto): Centro de la cajera en el eje transversal del plano de mecanizado
- Diámetro del bloque Q222: Diámetro de la cajera premecanizada; introducir el diámetro del bloque menor al diámetro de la pieza terminada. La hta. penetra en el centro de la cajera, cuando se introduce Q222 = 0
- Diámetro de la pieza terminada Q223: Diámetro de la cajera acabada; introducir el diámetro de la pieza acabada mayor al del bloque de la pieza y mayor al diámetro de la herramienta.

ACABADO DE ISLAS CIRCULARES (ciclo 215)

- 1 El TNC desplaza automáticamente la hta. en el eje de la misma a la distancia de seguridad, o, si se ha programado, a la 2ª distancia de seguridad y a continuación al centro de la isla
- 2 Desde el centro de la isla la hta. se desplaza en el plano de mecanizado hacia el punto inicial del mecanizado. El punto inicial se encuentra aprox. a 3,5 veces del radio de la hta. a la derecha de la isla
- 3 En el caso de que la hta. esté sobre la 2ª distancia de seguridad, el TNC desplaza la hta. en marcha rápida FMAX a la distancia de seguridad y desde allí con el avance de profundización a la primera profundidad de pasada
- **4** A continuación la hta. se desplaza tangencialmente hacia el contorno parcialmente terminado y fresa una vuelta en sentido sincronizado al avance
- **5** Después la hta. sale tangencialmente del contorno al punto de partida en el plano de mecanizado
- **6** Este proceso (4 a 5) se repite hasta que se ha alcanzado la profundidad programada
- 7 Al final del ciclo el TNC desplaza la hta. en marcha rápida FMAX a la distancia de seguridad, o si se ha programado, a la 2ª distancia de seguridad y a continuación al centro de la cajera (posición final = posición inicial)

215

Antes de la programación deberá tenerse en cuenta

El signo del parámetro profundidad determina la dirección del mecanizado.

Si se quiere realizar un acabado de la isla, deberá utilizarse una fresa con dentado frontal cortante en el centro (DIN 844). Para ello deberá introducirse un valor pequeño para el avance al profundizar.

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
 - Profundidad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de la isla
 - Avance al profundizar Q206: Velocidad de desplazamiento de la hta. al profundizar en mm/min. Cuando se penetra en la pieza, introducir un valor pequeño; para una profundización en vacio introducir un valor mayor
 - Profundidad de pasada Q202 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza; introducir un valor mayor que 0
 - ► Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min
 - Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
 - 2ª distancia de seguridad Q204 (valor incremental): Coordenada en el eje de la hta., en la cual no se puede producir ninguna colisión entre la hta. y la pieza
 - ▶ Centro 1er eje Q216 (valor absoluto): Centro de la isla en el eje principal del plano de mecanizado
 - Centro 2º eje Q217 (valor absoluto): Centro de la isla en el eje transversal del plano de mecanizado
 - Diámetro del bloque de la pieza Q222: Diámetro de la isla premecanizada; introducir el diámetro del bloque de la pieza mayor al diámetro de la pieza terminada
 - Diámetro de la pieza terminada Q223: Diámetro de la isla acabada; introducir un diámetro de la pieza acabada menor al del bloque de la pieza.

-		
43	CYCL DEF 215	ACABADO ISLA
	Q200=2	;DISTANCIA DE SEGURIDAD
	Q201=-20	; PROFUNDIDAD
	Q206=150	;AVANCE AL PROFUNDIZAR
	Q202=5	;PROFUNDIDAD DE PASADA
	Q207=500	;AVANCE DE FRESADO
	Q203=+0	;COORD. SUPERFICIE PIEZA
	Q204=50	;2ª DISTANCIA SEGURIDAD
	Q216=+50	;CENTRO EN EJE 1
	Q217=+50	;CENTRO EN EJE 2
	Q222=81	;DIAMETRO DEL BLOQUE
	Q223=80	;DIAMETRO PIEZA ACABADA

FRESADO DE RANURAS (ciclo 3)

Desbaste

- 1 El TNC desplaza la hta. según la sobremedida de acabado (la mitad de la diferencia entre la anchura de la ranura y el diámetro de la herramienta) hacia dentro. Desde allí, la herramienta penetra en la pieza y fresa en dirección longitudinal a la ranura
- **2** Al final de la ranura se realiza una profundización y la hta. fresa en sentido opuesto.

Este proceso se repite hasta alcanzar la profundidad de fresado programada

Acabado

- **3** La hta. se desplaza en la base de la fresa según una trayectoria circular tangente al contorno exterior; después se recorre el contorno en sentido sincronizado al avance (con M3)
- 4 A continuación la hta. se retira en marcha rápida FMAX a la distancia de seguridad

Cuando el número de pasadas es impar la hta. se desplaza de la distancia de seguridad hasta la posición inicial.

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial en el plano de mecanizado, centro de la ranura, (longitud lado 2) y desplazado en la ranura según el radio de la hta. con corrección de radio R0.

Programar la frase de posicionamiento sobre el punto de partida en el eje de la hta. (distancia de seguridad sobre la superficie de la pieza).

El signo del parámetro profundidad determina la dirección del mecanizado.

Emplear una fresa con dentado frontal cortante en el centro (DIN 844) o pretaladrado en el punto inicial.

Seleccionar el diámetro de la fresa que no sea mayor a la anchura de la ranura y que no sea menor a la mitad de la anchura de la misma.

- Distancia de seguridad 1 (valor incremental): Distancia entre el extremo de la hta. (posición inicial) y la superficie de la pieza
- Profundidad de fresado 2 (valor incremental): Distancia entre la superficie de la pieza y la base de la cajera
- Profundidad de pasada 3 (valor incremental): Medida según la cual la hta. se aproxima cada vez a la pieza; la hta. se desplaza en un sólo paso de mecanizado a la profundidad programada, cuando:

La profundidad de pasada es igual a la prof. total programada.

La prof. de pasada es mayor a la prof. total

©

- Avance al profundizar: Velocidad de desplazamiento de la hta. en la profundización
- Longitud lado 4: Longitud de la ranura; determina la dirección del corte mediante el signo
- ▶ Longitud lado 5: Anchura de la ranura
- Avance F: Velocidad de desplazamiento de la hta. en el plano de mecanizado

RANURA CON INTRODUCCION PENDULAR (ciclo 210)

Antes de la programación deberá tenerse en cuenta

El signo del parámetro profundidad determina la dirección del mecanizado.

Seleccionar el diámetro de la fresa que no sea mayor a la anchura de la ranura y que no sea menor a un tercio de la misma.

Seleccionar el diámetro de la fresa menor a la mitad de la longitud de la ranura: De lo contrario el TNC no puede realizar la introducción pendular.

Desbaste

- 1 El TNC posiciona la hta. en el eje de la misma a la 2ª distancia de seguridad y a continuación al centro del círculo izquierdo; desde allí el TNC posiciona la hta. a la distancia de seguridad sobre la superficie de la pieza
- 2 La hta. se desplaza con avance reducido sobre la superficie de la pieza; desde allí con avance de fresado en la dirección longitudinal de la ranura, y profundiza en diagonal hasta el centro del círculo de la derecha
- 3 A continuación la hta. profundiza según una línea inclinada hasta el centro del círculo izquierdo; estos pasos se repiten hasta alcanzar la profundidad de fresado programada
- **4** En la profundidad de fresado programada, el TNC desplaza la hta. para realizar el fresado horizontal, hasta el otro extremo de la ranura y después al centro de la misma

Acabado

- 5 Desde el centro de la ranura el TNC desplaza la hta. tangencialmente hacia el contorno acabado; después se mecaniza el contorno en sentido sincronizado al avance (con M3)
- 6 Al final del contorno, la hta. se retira tangencialmente hasta el centro de la ranura
- 7 Para finalizar la hta. retrocede en marcha rápida FMAX a la distancia de seguridad, γ si se ha programado, a la 2ª distancia de seguridad

-,-,-		
44	CYCL DEF 3.0	FRESADO DE RANURA
45	CYCL DEF 3.1	DIST. 2
46	CYCL DEF 3.2	PROF20
47	CYCL DEF 3.3	APROX. 5 F100
48	CYCL DEF 3.4	X+80
49	CYCL DEF 3.5	5 Y12
50	CYCL DEF 3.6	F275

- Distancia de seguridad Q200 (valor incremental):
 Distancia entre el extremo de la hta. y la superficie de la pieza
 - Profundidad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de la ranura
 - Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min
 - Profundidad de pasada Q202 (valor incremental): Medida, según la cual se aproxima la hta. en total en un movimiento pendular en el eje de la misma.
 - Tipo de mecanizado (0/1/2) Q215: Determinar el tipo de mecanizado:
 - 0: Desbaste y acabado
 - 1: Sólo desbaste
 - 2: Sólo acabado
 - Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
 - 2ª distancia de seguridad Q204 (valor incremental): Coordenada Z en la cual no se puede producir ninguna colisión entre la hta. y la pieza
 - Centro 1er eje Q216 (valor absoluto): Centro de la ranura en el eje principal del plano de mecanizado
 - Centro 2º eje Q217 (valor absoluto): Centro de la ranura en el eje transversal del plano de mecanizado
 - Longitud lado 1 Q218 (valor paralelo al eje principal del plano de mecanizado): Introducir el lado más largo de la ranura
 - Longitud del lado 2 Q219 (valor paralelo al eje transversal del plano de mecanizado): Introducir la anchura de la ranura, si se introduce la anchura de la ranura igual al diámetro de la hta, el TNC sólo realiza el desbaste (fresado de la ranura)
 - ANGULO DE GIRO Q224 (valor absoluto): Angulo, según el cual se gira toda la ranura; el centro de giro está en el centro de la ranura

_,		
51	CYCL DEF 210	RANURA PROF. PENDULAR
	Q200=2	;DISTANCIA DE SEGURIDAD
	Q201=-20	; PROFUNDIDAD
	Q207=500	;AVANCE DE FRESADO
	Q202=5	;PROFUNDIDAD DE PASADA
	Q215=0	;TIPO DE MECANIZADO
	Q203=+0	;COORD. SUPERFICIE PIEZA
	Q204=50	;2ª DISTANCIA SEGURIDAD
	Q216=+50	;CENTRO EN EJE 1
	Q217=+50	;CENTRO EN EJE 2
	Q218=80	;LONGITUD LADO 1
	Q219=12	;LONGITUD LADO 2
	0224=+15	ANGULO DE GIRO

RANURA CIRCULAR con introducción pendular (ciclo 211)

Desbaste

- 1 El TNC posiciona la herramienta en marcha rápida en el eje de la hta. sobre la 2ª distancia de seguridad y a continuación en el centro del círculo derecho. Desde allí el TNC posiciona la herramienta a la distancia de seguridad programada sobre la superficie de la pieza
- **2** La hta. se desplaza con avance reducido sobre las superficie de la pieza; desde allí con avance de fresado profundiza en diagonal hasta el otro extremo de la ranura
- **3** A continuación la hta. se introduce de nuevo inclinada hasta el punto inicial; este proceso (2 a 3) se repite hasta alcanzar la profundidad de fresado programada
- **4** En la profundidad de fresado programada, el TNC desplaza la hta. para realizar el fresado horizontal, hasta el otro extremo de la ranura

Acabado

- 5 Para el acabado de la ranura el TNC desplaza la hta. tangencialmente hasta el contorno de acabado. Después se recorre el contorno en sentido sincronizado al avance (con M3). El punto inicial para el proceso de acabado se encuentra en el centro del círculo derecho.
- 6 Al final del contorno la hta. se retira tangencialmente del mismo
- 7 Para finalizar la hta. retrocede en marcha rápida FMAX a la distancia de seguridad, y si se ha programado, a la 2ª distancia de seguridad

Antes de la programación deberá tenerse en cuenta

El signo del parámetro profundidad determina la dirección del mecanizado.

Seleccionar el diámetro de la fresa que no sea mayor a la anchura de la ranura y que no sea menor a un tercio de la misma.

Seleccionar el diámetro de la fresa menor a la mitad de la longitud de la ranura. De lo contrario el TNC no puede realizar la introducción pendular.

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- Profundidad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de la ranura
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min
- Profundidad de pasada Q202 (valor incremental): Medida, según la cual se aproxima la hta. en total en un movimiento pendular en el eje de la misma.
- Tipo de mecanizado (0/1/2) Q215: Determinar el tipo de mecanizado:
 - 0: Desbaste y acabado
 - 1: Sólo desbaste
 - 2: Sólo acabado

٩

- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada Z en la cual no se puede producir ninguna colisión entre la hta. y la pieza
- Centro 1er eje Q216 (valor absoluto): Centro de la ranura en el eje principal del plano de mecanizado
- Centro 2º eje Q217 (valor absoluto): Centro de la ranura en el eje transversal del plano de mecanizado
- Diámetro del círculo teórico Q244: Introducir el diámetro del círculo teórico
- Longitud lado 2 Q219: Introducir la anchura de la ranura; cuando la anchura de la ranura es igual al diámetro de la hta., el TNC sólo realiza el desbaste (fresado de la ranura)
- Angulo inicial Q245 (valor absoluto): Introducir el angulo del punto inicial en coordenadas polares
- Angulo de abertura de la ranura Q248 (valor incremental): Introducir el ángulo de abertura de la ranura

52	CYCL DEF 211	RANURA CIRCULAR
	Q200=2	;DISTANCIA DE SEGURIDAD
	Q201=-20	; PROFUNDIDAD
	Q207=500	;AVANCE DE FRESADO
	Q202=5	;PROFUNDIDAD DE PASADA
	Q215=0	;TIPO DE MECANIZADO
	Q203=+0	;COORD. SUPERFICIE PIEZA
	Q204=50	;2ª DISTANCIA SEGURIDAD
	Q216=+50	;CENTRO EN EJE 1
	Q217=+50	;CENTRO EN EJE 2
	Q244=80	;DIAMETRO CIRCULO TEORICO
	Q219=12	;LONGITUD LADO 2
	Q245=+45	;ANGULO INICIAL
	Q248=90	;ANGULO DE ABERTURA

Ejemplo: Fresado de cajera, isla y ranura

O BEGIN PGM C210 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Definición del bloque
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+O R+6	Definición de la hta. para el desbaste/acabado
4 TOOL DEF 2 L+0 R+3	Definición de la hta. para el fresado de la ranura
5 TOOL CALL 1 Z S3500	Llamada a la hta. para Desbaste/Acabado
6 L Z+250 R0 FMAX	Retirar la herramienta
7 CYCL DEF 213 ACABADO DE ISLA	Definición del ciclo de mecanizado exterior
Q200=2 ;DISTANCIA DE SEGURIDAD	
Q201=-30 ;PROFUNDIDAD	
Q206=250 ;AVANCE AL PROFUNDIZAR	
Q2O2=5 ;PROFUNDIDAD DE PASADA	
Q207=250 ;AVANCE FRESADO	
Q2O3=+O ;COORD. SUPERFICIE PIEZA	
Q2O4=2O ;2ª DISTANCIA SEGURIDAD	
Q216=+50 ;CENTRO 1ER EJE	
Q217=+50 ;CENTRO SEGUNDO EJE	
Q218=90 ;LONGITUD LADO 1	
Q219=80 ;LONGITUD LADO 2	
Q220=0 ;RADIO ESQUINA	
Q221=5 ;SOBREMEDIDA 1er EJE	
8 CYCL CALL M3	Definición del ciclo cajera circular

9	CYCL DEF 5.0 CAJERA CIRCULAR	
10	CYCL DEF 5.1 DIST. 2	
11	CYCL DEF 5.2 PROF30	
12	CYCL DEF 5.3 PASO 5 F250	
13	CYCL DEF 5.4 RADIO 25	
14	CYCL DEF 5.5 F400 DR+	Llamada al ciclo cajera circular
15	L Z+2 RO FMAX M99	Cambio de herramienta
16	L Z+250 RO FMAX M6	Llamada a la herramienta para el fresado de la ranura
17	TOOL CALL 2 Z S5000	Definición del ciclo ranura 1
18	CYCL DEF 211 RANURA CIRCULAR	
	Q200=2 ;DISTANCIA DE SEGURIDAD	
	Q201=-20 ;PROFUNDIDAD	
	Q207=250 ;AVANCE FRESADO	
	Q2O2=5 ; PROFUNDIDAD DE PASADA	
	Q215=0 ;TIPO DE MECANIZADO	
	Q2O3=+O ;COORD. SUPERFICIE PIEZA	
	Q2O4=100 ;2ª DISTANCIA SEGURIDAD	
	Q216=+50 ;CENTRO 1ER EJE	
	Q217=+50 ;CENTRO SEGUNDO EJE	
	Q244=70 ;DIAMETRO CIRCULO TEORICO	
	Q219=8 ;LONGITUD LADO 2	
	Q245=+45 ;ANGULO INICIAL	
	Q248=90 ;ANGULO ABERTURA	
19	CYCL CALL M3	Llamada al ciclo ranura 1
20	FN 0: Q245 = +225	Nuevo ángulo de partida para la ranura 2
21	CYCL CALL	Llamada al ciclo de la ranura 2
22	L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
23	END PGM C210 MM	

Ejemplo: Desbaste y acabado de cajera rectangular junto con tablas de puntos

Desarrollo del programa

Desbaste de la cajera rectangular con el ciclo 4

Acabado de la cajera rectangular con el ciclo 212

Las coordenadas del punto central están memorizadas en la tabla de puntos MUSTPKT.PNT (véase pág. siguiente) y el TNC las llama con CYCL CALL PAT.

Rogamos tengan en cuenta que en la definición del ciclo 212 se programa 0 tanto para las coordenadas del centro de la cajera (Q212 y Q213), así como para las coordenadas de la superficie de la pieza.

Para fresar la cajera a diferentes niveles de profundidad, se modifica la coordenada Z en la tabla de puntos MUSTPKT.PNT

0	BEGIN PGM TAKOM MM	
1	BLK FORM 0.1 Z X+0 Y+0 Z-40	Definición del bloque
2	BLK FORM 0.2 X+100 Y+100 Z+0	
3	TOOL DEF 1 L+0 R+3	Definición de la hta. para el desbaste
4	TOOL DEF 2 L+0 R+3	Definición de la hta. para el acabado
5	T00L CALL 1 Z S5000	Llamada a la hta. de desbaste
6	L Z+10 R0 F5000	Desplazar la hta. a la altura de seguridad (programar un valor para F)
		(El TNC posiciona después de cada ciclo a la altura de seguridad)
7	SEL PATTERN "MUSTPKT"	Determinar la tabla de puntos
8	CYCL DEF 4 .0 FRESADO DE CAJERA	Definición del ciclo para el desbaste de la cajera
9	CYCL DEF 4 .1 DIST+2	
10	CYCL DEF 4 .2 PROF10	
11	CYCL DEF 4 .3 ARPOX.+3 F150	
12	CYCL DEF 4 .4 X+25	
13	CYCL DEF 4 .5 Y+15	
14	CYCL DEF 4 .6 F350 DR+ RADIO 4	
15	CYCL CALL PAT F5000 M3	Llamada al ciclo junto con la tabla de puntos cero MUSTPKT.PNT.

16	L Z+100 RO FMAX M6	Retirar la herramienta, cambio de herramienta
17	TOOL CALL 2 Z S5000	
18	L Z+10 R0 F5000	Desplazar la hta. a la altura de seguridad (programar un valor para F)
19	CYCL DEF 212 ACABADO DE CAJERA	Definición del ciclo para el acabado de la cajera
	Q200=2 ;DISTANCIA DE SEGURIDAD	
	Q201=-10 ; PROFUNDIDAD	
	Q206=150 ;AVANCE AL PROFUNDIZAR	
	Q2O2=5 ; PROFUNDIDAD DE PASADA	
	Q207=500 ;AVANCE DE FRESADO	
	Q203=+0 ;COORD. SUPERFICIE PIEZA	Coordenada de la superficie (introducir obligatoriamente 0)
	Q2O4=O ;2ª DISTANCIA SEGURIDAD	2ª distancia de seguridad (introducir obligatoriamente 0)
	Q216=+0 ;CENTRO EN EJE 1	Centro eje X (introducir obligatoriamente 0)
	Q217=+0 ;CENTRO EN EJE 2	Centro eje Y (introducir obligatoriamente 0)
	Q218=25 ;LONGITUD LADO 1	
	Q219=16 ;LONGITUD LADO 2	
	Q220=4 ;RADIO ESQUINA	
	Q221=0.5 ;SOBREMEDIDA EN EJE 1	
20	CYCL CALL PAT F5000 M3	Llamada al ciclo junto con la tabla de puntos cero MUSTPKT.PNT.
21	L Z+100 RO FMAX M2	Retirar la herramienta, final del programa
22	END PGM TAKOM MM	

Tabla de puntos MUSTPKT.PNT

	MUSTPKT	.PNT	MM	
Na	Х	Y	Z	
0	+35	+30	+0	
1	+65	+30	+0	
2	+80	+50	+0	
3	+50	+50	+0	
4	+20	+50	+0	
5	+35	+70	+0	
6	+65	+70	+0	
FEN	D]			

8.5 Ciclos para la programación de figuras de puntos

El TNC dispone de 2 ciclos para poder elaborar directamente figuras de puntos regulares:

Ciclo		Softkey
220 FIGUR	A DE PUNTOS SOBRE UN CIRCULO	220 at a
221 FIGUR	A DE PUNTOS SOBRE LINEAS	221 [†]
Pa tab	ra elaborar figuras de puntos irregulares, se las de puntos (véase "8.2 Tablas de puntos	e utilizan las s").
Con los cicle de mecaniza	os 220 y 221 se pueden combinar los sigu ado:	ientes ciclos
Ciclo 1	TALADRADO PROFUNDO	
Ciclo 2	ROSCADO CON MACHO	
Ciclo 3	FRESADO DE RANURAS	
Ciclo 4	FRESADO DE CAJERAS	
Ciclo 5	CAJERA CIRCULAR	
Ciclo 17	ROSCADO RIGIDO	
Ciclo 200	TALADRADO	
Ciclo 201	ESCARIADO	
Ciclo 202	MANDRINADO	
Ciclo 203	TALADRO UNIVERSAL	
Ciclo 204	REBAJE INVERSO	
Ciclo 212	ACABADO DE CAJERAS	
Ciclo 213	ACABADO DE ISLAS	
Ciclo 214	ACABADO DE CAJERAS CIRCULARES	
Ciclo 215	ACABADO DE ISLAS CIRCULARES	

FIGURA DE PUNTOS SOBRE UN CIRCULO (ciclo 220)

1 El TNC posiciona la hta. en marcha rápida desde la posición actual al punto de partida del primer mecanizado.

Secuencia:

- Alcanzar la 2ª distancia de seguridad (eje hta.)
- Alcanzar el punto inicial en el plano de mecanizado
- Desplazamiento sobre la superficie de la pieza a la distancia de seguridad (eje del cabezal)
- 2 A partir de esta posición el TNC ejecuta el último ciclo de mecanizado definido
- 3 A continuación el TNC posiciona la hta. según un movimiento lineal sobre el punto de partida del siguiente mecanizado; para ello la hta. se encuentra a la distancia de seguridad (o 2ª distancia de seguridad)
- **4** Este proceso (1 a 3) se repite hasta que se han realizado todos los mecanizados

Antes de la programación deberá tenerse en cuenta

El ciclo 220 se activa a partir de su definición DEF, es decir el ciclo 220 llama automáticamente al último ciclo de mecanizado definido.

Cuando se combina uno de los ciclos de mecanizado 200 a 204 y 212 a 215 con el ciclo 220, se activan la distancia de seguridad, la superficie de la pieza y la 2ª distancia de seguridad del ciclo 220.

- ²²⁰ ***
- Centro 1er eje Q216 (valor absoluto): Centro del círculo teórico en el eje principal del plano de mecanizado
- Centro 2º eje Q217 (valor absoluto): Centro del círculo teórico en el eje transversal del plano de mecanizado
- Diámetro del círculo teórico Q244: Introducir el diámetro del círculo teórico
- ► Angulo inicial Q245 (valor absoluto): Angulo entre el eje principal del plano de mecanizado y el punto inicial del primer mecanizado sobre el círculo teórico
- Angulo final Q246 (valor absoluto): Angulo entre el eje principal del plano de mecanizado y el punto inicial del último mecanizado sobre el círculo teórico (no sirve para círculos completos); introducir el ángulo final diferente al ángulo inicial; si el ángulo final es mayor al ángulo inicial, la dirección del mecanizado es en sentido antihorario, de lo contrario el mecanizado es en sentido horario
- Incremento angular Q247 (valor incremental): Angulo entre dos puntos a mecanizar sobre el círculo teórico; cuando el incremento angular es igual a cero, el TNC calcula el mismo en relación al ángulo inicial, ángulo final y número de mecanizados; cuando el incremento angular está ya indicado, el TNC no tiene en cuenta el ángulo final; el signo del incremento angular determina la dirección del mecanizado (- = sentido horario)

-		
53	CYCL DEF 220	FIGURA CIRCULO
	Q216=+50	;CENTRO EN EJE 1
	Q217=+50	;CENTRO EN EJE 2
	Q244=80	;DIAMETRO CIRCULO TEORICO
	Q245=+0	;ANGULO INICIAL
	Q246=+360	;ANGULO FINAL
	Q247=+0	;INCREMENTO ANGULAR
	Q241=8	;NUMERO DE MECANIZADOS
	Q200=2	;DISTANCIA DE SEGURIDAD
	Q2O3=+0	;COORD. SUPERFICIE PIEZA
	Q204=50	;2ª DISTANCIA SEGURIDAD

- Número de mecanizados Q241: Número de mecanizados sobre el círculo teórico
- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza; introducir siempre valor positivo
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada en el eje de la hta., en la cual no se puede producir ninguna colisión entre la hta. y la pieza; introducir siempre valor positivo

FIGURA DE PUNTOS SOBRE LINEAS (ciclo 221)

Antes de la programación deberá tenerse en cuenta

El ciclo 221 se activa a partir de su definición DEF, es decir el ciclo 221 llama automáticamente al último ciclo de mecanizado definido.

Cuando se combina uno de los ciclos de mecanizado 200 a 204 y 212 a 215 con el ciclo 221, se activan la distancia de seguridad, la superficie de la pieza y la 2ª distancia de seguridad del ciclo 221.

1 El TNC posiciona la hta. automáticamente desde la posición actual al punto de partida del primer mecanizado

Secuencia:

- Llegada a la 2ª distancia de seguridad (eje de la hta.)
- Llegada al punto inicial en el plano de mecanizado
- Llegada a la distancia de seguridad sobre la superficie de la pieza (eje de la hta.)
- **2** A partir de esta posición el TNC ejecuta el último ciclo de mecanizado definido
- 3 A continuación el TNC posiciona la hta. en dirección positiva al eje principal sobre el punto inicial del siguiente mecanizado; la hta. se encuentra a la distancia de seguridad (o a la 2ª distancia de seguridad)
- 4 Este proceso (1 a 3) se repite hasta que se han realizado todos los mecanizados sobre la primera línea; la hta. se encuentra en el último punto de la primera línea
- 5 Después el TNC desplaza la hta. al último punto de la segunda línea y realiza allí el mecanizado
- 6 Desde allí el TNC posiciona la hta. en la dirección negativa al eje principal sobre el punto de partida del siguiente taladro y ejecuta el mismo

- 7 Este proceso (6) se repite hasta que se han ejecutado todos los mecanizados de la segunda línea
- 8 A continuación el TNC desplaza la hta. sobre el punto de partida de la siguiente línea
- 9 Todas las demás líneas se mecanizan con movimiento oscilante

Punto inicial 1er eje Q225 (valor absoluto): Coordenadas del punto inicial en el eje principal del plano de mecanizado

- Punto inicial 2º eje Q226 (valor absoluto): Coordenadas del punto inicial en el eje transversal del plano de mecanizado
- ▶ Distancia 1er eje Q237 (valor incremental): Distancia entre los diferentes puntos de la línea
- Distancia 2º eje Q238 (valor incremental): Distancia entre las diferentes líneas
- Número de columnas Q242: Número de mecanizados sobre una línea
- Número de líneas Q243: Número de líneas
- Angulo de giro Ω224 (valor absoluto): Angulo, según el cual se gira toda la disposición de la figura; el centro de giro se encuentra en el punto de partida
- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza

	•	
54	CYCL DEF 221	FIGURA LINEAS
	Q225=+15	;PTO. INICIAL 1ER EJE
	Q226=+15	;PTO. INICIAL 2º EJE
	Q237=+10	;DISTANCIA 1ER EJE
	Q238=+8	;DISTANCIA 2º EJE
	Q242=6	;NUMERO DE COLUMNAS
	Q243=4	;NUMERO DE LINEAS
	Q224=+15	;ANGULO DE GIRO
	Q200=2	;DISTANCIA DE SEGURIDAD
	Q2O3=+0	;COORD. SUPERFICIE PIEZA
	Q204=50	;2ª DISTANCIA SEGURIDAD

Ejemplo: Círculos de puntos

0	BEGIN PGM CIR	CEN MM	
1	BLK FORM 0.1	Z X+0 Y+0 Z-40	Definición del bloque
2	BLK FORM 0.2	X+100 Y+100 Z+0	
3	TOOL DEF 1 L+	•0 R+3	Definición de la herramienta
4	TOOL CALL 1 Z	\$3500	Llamada a la herramienta
5	L Z+250 R0 FM	IAX M3	Retirar la herramienta
6	CYCL DEF 200	TALADRADO	Definición del ciclo Taladrado
	Q200=2	;DISTANCIA DE SEGURIDAD	
	Q201=-15	; PROFUNDIDAD	
	Q206=250	;AVANCE AL PROFUNDIZAR	
	Q202=4	; PROFUNDIDAD DE PASADA	
	Q210=0	;TIEMPO DE ESPERA	
	Q2O3=+0	;COORD. SUPERFICIE PIEZA	
	Q204=0	;2ª DISTANCIA SEGURIDAD	

7 CYCL DEF 220 FIGURA CIRCULAR	Definición del ciclo circulo de puntos 1, CYCL 220 se llama automát.
	Actuan Q200, Q203 y Q204 del ciclo 220
Q216=+30 ;CENTRO 1ER EJE	
Q217=+70 ;CENTRO SEGUNDO EJE	
Q244=50 ;DIAMETRO CIRCULO TEORICO	
Q245=+0 ;ANGULO INICIAL	
Q246=+360 ;ANGULO FINAL	
Q247=+0 ;PASO ANGULAR	
Q241=10 ;NUMERO MECANIZADOS	
Q200=2 ; DISTANCIA DE SEGURIDAD	
Q203=+0 ;COORD. SUPERFICIE PIEZA	
Q204=100 ;2ª DISTANCIA SEGURIDAD	
8 CYCL DEF 220 FIGURA CIRCULAR	Definición del ciclo círculo de puntos 2, CYCL 220 se llama autom.
	Actuan Q200, Q203 y Q204 del ciclo 220
Q216=+90 ;CENTRO 1ER EJE	
Q217=+25 ;CENTRO SEGUNDO EJE	
Q244=70 ;DIAMETRO CIRCULO TEORICO	
Q245=+90 ;ANGULO INICIAL	
Q246=+360 ;ANGULO FINAL	
Q247=30 ;PASO ANGULAR	
Q241=5 ;NUMERO MECANIZADOS	
Q200=2 ;DISTANCIA DE SEGURIDAD	
Q203=+0 ;COORD. SUPERFICIE PIEZA	
Q204=100 ;2ª DISTANCIA SEGURIDAD	
9 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
10 END PGM CIRCEN MM	

8.6 Ciclos SL

Con los ciclos SL se pueden mecanizar contornos complicados.

Características del contorno

- Un contorno total puede estar compuesto por varios subcontornos superpuestos (hasta 12). Para ello cualquier cajera e isla forman los contornos parciales
- La lista de los subcontornos (números de subprogramas) se introducen en el ciclo 14 CONTORNO. El TNC calcula el contorno total que forman los subcontornos
- Los subcontornos se introducen como subprogramas.
- La memoria de un ciclo SL es limitada. Todos los subprogramas no pueden superar en total p.ej. 128 frases lineales

Características de los subprogramas

- Son posibles las traslaciones de coordenadas. Si se programan dentro de un subcontorno, también actúan en los subprogramas siguientes, pero no deben ser cancelados después de la llamada al ciclo
- El TNC ignora los avances F y las funciones auxiliares M
- El TNC reconoce una cajera cuando el contorno se recorre por el interior, p.ej. descripción del contorno en sentido horario con correccion de radio RR
- El TNC reconoce una isla cuando el cotorno se recorre por el exterior p.ej. descripción del contorno en sentido horario con corrección de radio RL
- Los subprogramas no pueden contener ninguna coordenada en el eje de la hta.
- En la primera frase de coordenadas del subprograma se determina el plano de mecanizado. Se permiten ejes paralelos

Características de los ciclos de mecanizado

Con MP7420.0 y MP7420.1 se determina el comportamiento de la herramienta en el desbaste (véase el capítulo "15.1 Parámetros de usuario generales").

- El TNC posiciona automáticamente la hta. antes de cada ciclo sobre el punto inicial en el plano de mecanizado. Se debe posicionar la herramienta en el eje de la misma a la distancia de seguridad
- Cada nivel de profundización se desbasta de forma paralela al eje o bajo un ángulo cualquiera (definir el ángulo en el ciclo 6); las islas se sobrepasan a la distancia de seguridad. En MP7420.1 se puede determinar que el TNC desbaste el contorno de forma que se mecanicen sucesivamente las distintas capas sin movimiento de subida.
- El TNC tiene en cuenta la sobremedida programada (ciclo 6) en el plano de mecanizado

Resumen: Ciclos SL

Ciclo	Softkey
14 CONTORNO (totalmente necesario)	14 LBL 1N
15 PRETALADRADO (se utiliza a elección)	15
6 DESBASTE (totalmente necesario)	6 C
16 FRESADO DEL CONTORNO (se utiliza a elección)	16

CONTORNO (ciclo 14)

En el ciclo 14 CONTORNO están todos los subprogramas que se superponen en un contorno (véase la figura abajo a la derecha).

Antes de la programación deberá tenerse en cuenta

El ciclo 14 se activa a partir de su definición, es decir actua a partir de su definición en el programa.

En el ciclo 14 se enumeran un máximo de 12 subprogramas (subcontornos).

Números label para el contorno: Se introducen todos LBL 1...N los números label de los diferentes subcontornos. que se superponen en un contorno. Cada número se confirma con la tecla ENT y la introducción finaliza con la tecla END.

Esquema: Trabajar con ciclos SL

O BEGIN PGM SL MM
12 CYCL DEF 14.0 CONTORNO
16 CYCL DEF 15.0 PRETALADRADO
17 CYCL CALL
18 CYCL DEF 6.0 DESBASTE
19 CYCL CALL
26 CYCL DEF 16.0 FRESADO DEL CONTORNO
27 CYCL CALL
50 L Z+250 RO FMAX M2
51 LBL 1
55 LBL 0
56 LBL 2
60 LBL 0
99 END PGM SL MM

I	Ejeı	mplo o	de fra	ases N	IC:						
	3	CYCL	DEF	14.0	CONTO) RN O					
	4	CYCL	DEF	14.1	LABEL	DEL	CONTORNO	1	/2	/3	

Contornos superpuestos

Las cajeras e islas se pueden superponer a un nuevo contorno. De esta forma una superficie de cajera se puede ampliar mediante una cajera superpuesta o reducir mediante una isla.

Subprogramas: Cajeras superpuestas

8.6 Ciclos SL

Los siguientes ejemplos de programación son subprogramas de contornos, llamados en un programa principal del ciclo 14 CONTORNO.

Se superponen las cajeras A y B.

El TNC calcula los puntos de intersección S₁ y S₂, de forma que no hay que programarlos.

Las cajeras se han programado como círculos completos.

Subprograma 1: Cajera izquierda

51	LBL 1
52	L X+10 Y+50 RR
53	CC X+35 Y+50
54	C X+10 Y+50 DR-
55	

Subprograma 2: Cajera derecha

56 LBL	L 2
57 L X	X+90 Y+50 RR
58 CC	X+65 Y+50
59 C X	X+90 Y+50 DR-
60 LBL	L 0

Superficie resultante de la "unión"

Se mecanizan las dos superficies parciales A y B incluida la superficie común:

Las superficies A y B tienen que ser cajeras

La primera cajera (en el ciclo 14) deberá comenzar fuera de la segunda

Superficie A:

51	LBL 1
52	L X+10 Y+50 RR
53	CC X+35 Y+50
54	C X+10 Y+50 DR-
55	

Superficie B:

56	LBL 2
57	L X+90 Y+50 RR
58	CC X+65 Y+50
59	C X+90 Y+50 DR-
60	LBL O

Superficie de la "diferencia"

Se mecanizan la superficie A sin la parte que es común a B:

La superficie A tiene que ser una cajera y la B una isla.

A tiene que comenzar fuera de B.

Superficie A:

51 LBL 1
52 L X+10 Y+50 RR
53 CC X+35 Y+50
54 C X+10 Y+50 DR-
55 LBL 0

Superficie B:

56 LBL 2
57 L X+90 Y+50 RL
58 CC X+65 Y+50
59 C X+90 Y+50 DR-
60 LBL 0

Superficie de la "intersección"

Se mecaniza la parte común de A y B. (Las superficies no comunes permanecen sin mecanizar.)

A y B tienen que ser cajeras.

A debe comenzar dentro de B.

Superficie A:

51	LBL 1
52	L X+60 Y+50 RR
53	CC X+35 Y+50
54	C X+60 Y+50 DR-
55	LBL 0

Superficie B:

56	LBL 2
57	L X+90 Y+50 RR
58	CC X+65 Y+50
59	C X+90 Y+50 DR-
60	LBL 0

PRETALADRADO (ciclo 15)

Desarrollo del ciclo

Igual que el ciclo 1 Taladrado profundo (véase "8.3 Ciclos de taladrado").

Aplicación

El ciclo 15 PRETALADRADO tiene en cuenta la sobremedida de acabado en los puntos de profundización. Los puntos de penetración son además también puntos de partida para el desbaste.

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto de partida en el eje de la hta. (distancia de seguridad sobre la superficie de la pieza).

Distancia de seguridad 1 (valor incremental): Distancia entre el extremo de la hta. (posición inicial) y la superficie de la pieza

- ▶ Profundidad de taladrado 2 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro (extremo del cono del taladro)
- ▶ Profundidad de pasada 3 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza. El TNC se desplaza en un sólo paso de mecanizado a la profundidad total cuando:
 - La profundidad de pasada y la profundiad de taladrado son iguales
 - La profundidad de pasada es mayor a la prof. de taladrado

La profundidad de taladrado no tiene porque ser múltiplo de la prof. de pasada

- ► Avance al profundidad: Avance al profundizar en mm/ min
- ▶ Sobremedida de acabado: Sobremedida en el plano de mecanizado

Fi	iem	nlo	de	frases	NC
	em	μιυ	ue	110363	NUC.

5	CYCL	DEF	15.0	PRETALADRADO
6	CYCL	DEF	15.1	DIST+2 PROF25
7	CYCL	DEF	15.2	APROX.+3 F250 SOBREM.+0.1

8.6 Ciclos SL

DESBASTE (ciclo 6)

Desarrollo del ciclo

- 1 El TNC posiciona la herramienta en el plano de mecanizado sobre el primer punto de profundización; para ello el TNC tiene en cuenta la sobremedida de acabado
- 2 Con el avance a profundizar el TNC desplaza la herramienta a la primera profundidad de pasada
- Fresado del contorno (véase la figura arriba a la dcha.):
- 1 La herramienta fresa el primer contorno parcial con el avance programado; se tiene en cuenta la sobremedida de acabado en el plano de mecanizado
- 2 El TNC fresa de igual forma en las siguientes profundidades de pasada y contornos parciales
- **3** El TNC desplaza la herramienta en el eje de la misma a la distancia de seguridad y después sobre el primer punto a taladrar en el plano de mecanizado.
- Desbaste de la cajera (véase la figura del centro a la derecha)
- 1 En la primera profundidad de pasada la herramienta fresa el contorno con el avance de fresado, de forma paralela al eje o bien bajo el angulo de desbaste programado
- 2 Para ello se sobrepasan los contornos de la isla (aquí: C/D) a la distancia de seguridad
- **3** Este proceso se repite hasta alcanzar la profundidad de fresado programada

Antes de la programación deberá tenerse en cuenta

Con MP7420.0 y MP7420.1 se determina como mecaniza el TNC el contorno (véase el capítulo +15.1 Parámetros generales de usuario+).

Programar la frase de posicionamiento sobre el punto de partida en el eje de la hta. (distancia de seguridad sobre la superficie de la pieza).

Si es preciso utilizar una fresa con dentado frontal cortante en el centro (DIN 844) o pretaladrado con el ciclo 15.

- Distancia de seguridad 1 (valor incremental): Distancia entre el extremo de la hta. (posición inicial) y la superficie de la pieza
 - Profundidad de fresado 2 (valor incremental): Distancia entre la superficie de la pieza y la base de la cajera
 - Profundidad de pasada 3 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza. El TNC se desplaza en un sólo paso de mecanizado a la profundidad total cuando:
 - La profundidad de pasada y la profundidad total son iguales
 - La profundidad de pasada es mayor a la prof. de fresado
 - La profundidad de fresado no tiene porque ser múltiplo de la profundidad de pasada
 - Avance al profundizar: Avance al profundizar en mm/min
 - Sobremedida de acabado: Sobremedida en el plano de mecanizado
 - Angulo de desbaste: Dirección del desbaste. El ángulo de desbaste se refiere al eje principal del plano de mecanizado. Programar un ángulo de forma que los pasos sean lo más largos posibles.
 - ▶ Avance: Avance de fresado en mm/min

Ejemplo de frases NC:

8	CYCL	DEF	6.0	DESBASTE	
9	CYCL	DEF	6.1	DIST+2 PROF	25
10	CYCL	DEF	6.2	APROX.+3 F1	50 SOBREM.+0.1
11	CYCL	DEF	6.3	ANGULO+0 F3	50

FRESADO DEL CONTORNO (ciclo 16)

Aplicación

El ciclo 16 FRESADO DEL CONTORNO sirve para el acabado del contorno de la cajera.

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto de partida en el eje de la hta. (distancia de seguridad sobre la superficie de la pieza).

El TNC realiza el acabado por separado para cada contorno parcial, incluso con varias profundidades de pasada si éstas se han programado.

Distancia de seguridad 1 (valor incremental): Distancia entre el extremo de la hta. (posición inicial) y la superficie de la pieza

- Profundidad de fresado 2 (valor incremental): Distancia entre la superficie de la pieza y la base de la cajera
- Profundidad de pasada 3 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza. El TNC se desplaza en un sólo paso de mecanizado a la profundidad total cuando:
 - La profundidad de pasada y la profundidad total son iguales
 - La profundidad de pasada es mayor a la prof. de fresado

La profundidad de fresado no tiene porque ser múltiplo de la profundidad de pasada

- Avance al profundizar: Avance al profundizar en mm/ min
- ▶ Giro en sentido horario:

DR + : Fresado sincronizado con M3

- DR : Fresado a contramarcha con M3
- ▶ Avance: Avance de fresado en mm/min

Ejemplo de frases NC:				
12	CYCL	DEF	16.0	FRESADO DEL CONTORNO
13	CYCL	DEF	16.1	DIST+2 PROF25
14	CYCL	DFF	16 2	APR0X.+5 E150 DR+ E500

Ejemplo: Desbaste de cajera

Definición del bloque
Definición de la herramienta
Llamada a la herramienta
Retirar la herramienta
Determinar el subprograma del contorno
Definición del ciclo Desbaste
Posicionamiento previo en el plano de mecanizado
Posicionamiento previo en el eje de la hta., llamada al ciclo
Retirar la herramienta, final del programa

15 LBL 1	Subprograma del contorno
16 L X+0 Y+30 RR	(véase FK 2º ejemplo en la página 99)
17 FC DR- R30 CCX+30 CCY+30	
18 FL AN+60 PDX+30 PDY+30 D+10	
19 FSELECT 03	
20 FPOL X+30 Y+30	
21 FC DR- R20 CCPR+55 CCPA+60	
22 FSELECT 02	
23 FL AN-120 PDX+30 PDY+30 D+10	
24 FSELECT 03	
25 FC X+0 DR- R30 CCX+30 CCY+30	
26 FSELECT 02	
27 LBL 0	
28 END PGM C20 MM	

Ejemplo: Pretaladrado, desbaste y acabado de contornos superpuestos

O BEGIN PGM C21 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Definición del bloque
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+3	Definición de la hta. Taladro
4 TOOL DEF 2 L-12,53 R+3	Definición de la hta. para el desbaste/acabado
5 TOOL CALL 1 Z S4500	Llamada a la hta. para el taladrado
6 L Z+250 R0 FMAX	Retirar la herramienta
7 CYCL DEF 14.0 CONTORNO	Determinar el subprograma del contorno
8 CYCL DEF 14.1 LABEL CONTORNO 1 /2 /3 /4	
9 CYCL DEF 15.0 PRETALADRADO	Definición del ciclo Pretaladrado
10 CYCL DEF 15.1 DIST. 2 PROF20	
11 CYCL DEF 15.2 APROX. 5 F200 SOBREM. +1	
12 L X+50 Y+50 RO FMAX M3	Posicionamiento previo en el plano de mecanizado
13 L Z+2 RO FMAX M99	Posicionamiento previo en el eje de la hta., llamada al ciclo Pretaladrado
14 L Z+250 RO FMAX M6	Cambio de herramienta
15 TOOL CALL 2 Z S4000	Llamada a la hta. para Desbaste/Acabado
16 CYCL DEF 6.0 DESBASTE	Definición del ciclo Desbaste
17 CYCL DEF 6.1 DIST. 2 PROF20	
18 CYCL DEF 6.2 APROX. 5 F150 SOBREM. +1	
19 CYCL DEF 6.3 ANGULO +0 F250	
20 L Z+2 RO F1000 M3	Posicionamiento previo en el eje de la hta.
21 CYCL CALL	Llamada al ciclo Desbaste

22	CYCL DEF 16.0 FRESADO DEL CONTORNO	Definición del ciclo Acabado
23	CYCL DEF 16.1 DIST. 2 PROF20	
24	CYCL DEF 16.2 APROX.5 F100 DR+ F300	
25	L Z+2 RO FMAX M99	Llamada al ciclo Acabado
26	L Z+250 R0 FMAX M2	Retirar la herramienta, final del programa
27	LBL 1	Subprograma 1 del contorno: Cajera izquierda
28	CC X+35 Y+50	
29	L X+10 Y+50 RR	
30	C X+10 DR-	
31	LBL O	
32	LBL 2	Subprograma 2 del contorno: Cajera derecha
33	CC X+65 Y+50	
34	L X+90 Y+50 RR	
35	C X+90 DR-	
36	LBL O	
37	LBL 3	Subprograma 3 del contorno: Isla rectangular izquierda
38	L X+27 Y+50 RL	
39	L Y+58	
40	L X+43	
41	L Y+42	
42	L X+27	
43	LBL O	
44	LBL 4	Subprograma 4 del contorno: Isla triangular derecha
45	L X+65 Y+42 RL	
46	L X+57	
47	L X+65 Y+58	
48	L X+73 Y+42	
49	LBL O	
50	END PGM C21 MM	

8.7 Ciclos para el planeado

El TNC dispone de dos ciclos con los cuales se pueden mecanizar superficies con las siguientes características:

- Ser planas y rectangulares
- Ser planas según un ángulo oblícuo
- Estar inclinadas de cualquier forma
- Estar unidas entre sí

Ciclo	Softkey
230 PLANEADO Para superficies rectangulares planas	230
231 SUPERFICIE REGULAR	231 ~ +

231 SUPERFICIE REGULAR Para superficies inclinadas

6	

PLANEADO (ciclo 230)

- El TNC posiciona la hta. en marcha rápida FMAX desde la posición actual en el plano de mecanizado sobre el punto de partida 1; el TNC desplaza la hta. según el radio de la misma hacia la izquierda y hacia arriba
- 2 A continuación la hta. se desplaza en el eje de la misma con FMAX a la distancia de seguridad y posteriormente con el avance de profundización sobre la posición inicial programada en el eje de la herramienta.
- 3 A continuación la hta. se desplaza con el avance de fresado programado sobre el punto final 2; el TNC calcula el punto final con los datos del punto inicial, de la longitud y del radio de la herramienta programados.
- 4 El TNC desplaza la herramienta con avance de fresado transversal sobre el punto de partida de la siguiente línea; el TNC calcula este desplazamiento con la anchura y el número de cortes programados.
- 5 Después la herramienta se retira en la dirección negativa del eje X
- **6** El planeado se repite hasta mecanizar completamente la superficie programada
- 7 Al final el TNC retira la hta. con FMAX a la distancia de seguridad

Antes de la programación deberá tenerse en cuenta

El TNC posiciona la herramienta desde la posición actual primero en el plano de mecanizado y a continuación en el eje de la herramienta sobre el punto inicial 1.

Posicionar previamente la herramienta, de forma que no se produzca ninguna colisión con la pieza.

Punto de partida del 1er eje Q225 (valor absoluto): Coordenadas del punto de partida de la superficie a planear en el eje principal del plano de mecanizado

- Punto de partida del 2º eje Q226 (valor absoluto): Coordenadas del punto de partida de la superficie a planear en el eje transversal del plano de mecanizado
- Punto de partida del 3er eje Q227 (valor absoluto): Altura en el eje de la hta. a la cual se realiza el planeado
- ► Longitud lado 1 Q218 (valor incremental): Longitud de la superficie para el planeado en el eje principal del plano de mecanizado, referida al punto de partida del 1er eje
- Longitud lago 2 Q219 (valor incremental): Longitud de la superficie para el planeado en el eje transversal del plano de mecanizado, referida al punto de partida del 2º eje
- Número de cortes Q240: Número de líneas sobre las cuales el TNC desplaza la hta. a lo ancho de la pieza
- Avance al profundizar Q206: Velocidad de la hta. en el desplazamiento a la distancia de seguridad hasta la profundidad de fresado en mm/min
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min
- Avance transversal Q209: Velocidad de desplazamiento de la hta. para la llegada a la línea siguiente en mm/min; cuando la hta. se aproxima a la pieza transversalmente, se introduce Q209 menor a Q207; cuando se desplaza transversalmente en vacío, Q209 puede ser mayor a Q207
- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la profundidad de fresado para el posicionamiento al principio y al final del ciclo

Ejemplo de frases NC:

71	CYCL DEF 230	PLANEADO
	Q225=+10	;PTO. INICIAL 1ER EJE
	Q226=+12	;PTO. INICIAL 2º EJE
	Q227=+2.5	;PTO. INICIAL 3ER EJE
	Q218=150	;LONGITUD LADO 1
	Q219=75	;LONGITUD LADO 2
	Q240=25	;NUMERO DE CORTES
	Q206=150	;AVANCE AL PROFUNDIZAR
	Q207=500	;AVANCE DE FRESADO
	Q209=200	;AVANCE TRANSVERSAL
	Q200=2	;DISTANCIA DE SEGURIDAD

8.7 Ciclos para el planeado

SUPERFICIE REGULAR (ciclo 231)

- 1 El TNC posiciona la hta. desde la posición actual con un movimiento lineal 3D sobre el punto de partida 1
- 2 A continuación la hta. se desplaza con el avance de fresado programado sobre el punto final 2
- 3 Desde allí el TNC desplaza la hta. en marcha rápida FMAX según el diámetro de la hta. en la dirección positiva del eje de la hta. y de nuevo al punto de partida 1
- **4** En el punto de partida **1** el TNC desplaza la hta. de nuevo al último valor Z alcanzado
- 5 A continuación el TNC desplaza la hta. en los tres ejes desde el punto 1 según la dirección del punto 4 hasta la siguiente línea
- 6 Después el TNC desplaza la hta. hasta el punto final de esta línea. El TNC calcula el punto final 2 en la línea que une el punto y 3
- **7** El planeado se repite hasta mecanizar completamente la superficie programada
- 8 Al final el TNC posiciona la hta. según el diámetro de la misma sobre el punto más elevado programado en el eje de la hta.

Dirección de corte

El punto de partida y de esta forma la dirección de fresado se pueden elegir libremente, ya que el TNC realiza los cortes por líneas en el mismo sentido del punto 1 al punto 2 y el desarrollo completo transcurre del punto 1 / 2 al punto 3 / 4. El punto 1 se puede colocar en cualquier esquina de la superficie a mecanizar

La calidad de la superficie al utilizar una fresa cilíndrica se puede optimizar:

- Mediante un corte de empuje (coordenada en el eje de la hta. del punto 1 mayor a la coordenada del eje de la hta. del punto 2) en superficies de poca inclinación.
- Mediante un corte de arrastre (coordenada en el eje de la hta. del punto 1 menor a la coordenada en el eje de la hta. del punto 2) en superficies muy inclinadas
- En las superficies inclinadas, se situa la dirección del movimiento principal (del punto 1 al punto 2) según la dirección de la mayor pendiente. Véase la figura en el centro a la dcha.

La calidad de la superficie al utilizar una fresa esférica se puede optimizar:

En las supeficies inclinadas se situa el movimiento principal (del punto 1 al punto 2) perpendicularmente a la dirección de la pendiente mayor. Véase la figura abajo a la derecha.

8.7 Ciclos para el planeado

Antes de la programación deberá tenerse en cuenta

El TNC posiciona la hta. desde la posición actual con un movimiento lineal 3D sobre el punto de partida **1**. Posicionar previamente la herramienta, de forma que no se produzca ninguna colisión con la pieza.

El TNC desplaza la hta. con corrección de radio R0 entre las posiciones programadas.

Si es preciso se emplea una fresa con dentado frontal cortante en el centro (DIN 844).

- Punto de partida 1er eje Q225 (valor absoluto): Coordenadas del punto de partida de la superficie a planear en el eje principal del plano de mecanizado
- Punto de partida 2º eje Q226 (valor absoluto): Coordenadas del punto de partida de la superficie a planear en el eje transversal del plano de mecanizado
- ▶ Punto de partida 3er eje Q227 (valor absoluto): Coordenada del punto de partida de la superficie a planear en el eje de la hta.
- 2º punto 1er eje Q228 (valor absoluto): Coordenada del pto. final de la superficie a planear en el eje principal del plano de mecanizado
- 2º punto del 2º eje Q229 (valor absoluto): Coordenada del pto. final de la superficie a planear en el eje transversal del plano de mecanizado
- ▶ 2º punto 3er eje Q230 (valor absoluto): Coordenada del pto. final de la superficie a planear en el eje de la hta.
- Ser punto 1er eje Q231 (valor absoluto): Coordenada del punto 3 en el eje principal del plano de mecanizado
- Ser punto 2º eje Q232 (valor absoluto): Coordenada del punto 3 en el eje transversal del plano de mecanizado
- Ser punto 3er eje Q233 (valor absoluto): Coordenada del punto 3 en el eje de la hta.
- 4º punto 1er eje Q234 (valor absoluto): Coordenada del punto 4 en el eje principal del plano de mecanizado
- 4º punto 2º eje Q235 (valor absoluto): Coordenada del punto 4 en el eje transversal del plano de mecanizado
- 4º punto 3er eje Q236 (valor absoluto): Coordenada del punto 4 en el eje de la hta.
- Número de cortes Q240: Número de líneas por las cuales se debe desplazar la hta. entre el punto 1 y 4, o bien entre el punto 2 y 3
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. durante el fresado en mm/min. El TNC realiza el primer corte con la mitad del valor programado.

Ejemplo de frases NC:

-	-	
72	CYCL DEF 231	SUPERFICIE REGULAR
	Q225=+0	; PTO. INICIAL 1ER EJE
	Q226=+5	;PTO. INICIAL 2º EJE
	Q227=-2	;PTO. INICIAL 3ER EJE
	Q228=+100	;2º PTO. EN EJE 1
	Q229=+15	;2º PTO. EN EJE 2
	Q230=+5	;2° PTO. 3ER EJE
	Q231=+15	;3° PTO. EN EJE 1
	Q232=+125	;3ER PTO. EN EJE 2
	Q233=+25	;3° PTO. EN EJE 3
	Q234=+85	;4° PTO. EN EJE 1
	Q235=+95	;4° PTO. EN EJE 2
	Q236=+35	;4° PTO. EN EJE 3
	Q240=40	;NUMERO DE CORTES
	Q207=500	;AVANCE DE FRESADO

O BEGIN PGM	C230 MM	
1 BLK FORM O	0.1 Z X+0 Y+0 Z+0	Definición del bloque
2 BLK FORM 0	.2 X+100 Y+100 Z+40	
3 TOOL DEF 1	L+0 R+5	Definición de la herramienta
4 TOOL CALL	1 Z S3500	Llamada a la herramienta
5 L Z+250 R0	FMAX	Retirar la herramienta
6 CYCL DEF 2	30 PLANEADO	Definición del ciclo Planeado
Q225=+0	;PTO. INICIAL 1ER EJE	
Q226=+0	;PUNTO INICIAL 2º EJE	
Q227=+35	;PUNTO INICIAL 3ER EJE	
Q218=100	;LONGITUD LADO 1	
Q219=100	;LONGITUD LADO 2	
Q240=25	;NUMERO CORTES	
Q206=250	;AVANCE AL PROFUNDIZAR	
Q207=400	;AVANCE FRESADO	
Q2O9=15O	;AVANCE TRANSVERSAL	
Q200=2	;DISTANCIA DE SEGURIDAD	
7 L X-25 Y+0	RO FMAX M3	Posicionamiento previo cerca del punto de partida
8 CYCL CALL		Llamada al ciclo
9 L Z+250 R0	FMAX M2	Retirar la herramienta, final del programa
10 END PGM C	230 MM	

8.8 Ciclos para la traslación de coord.

Con la traslación de coordenadas se puede realizar un contorno programado una sóla vez, en diferentes posiciones de la pieza con posición y medidas modificadas. El TNC dispone de los siguientes ciclos para la traslación de coordenadas:

Ciclo	Softkey
7 PUNTO CERO Desplazar contornos directamente en el programa o con una tabla de puntos cero	°∳ ∲≯
8 ESPEJO Reflejar contornos	8
10 GIRO Girar contornos en el plano de mecanizado	
11 FACTOR DE ESCALA Reducir o ampliar contornos	
26 FACTOR DE ESCALA ESPECIFICO DE CADA EJE Reducir o ampliar contornos con factores de escala específicos para cada eje	26 <u>CC</u>

Activación de la traslación de coordenadas

Principio de activación: Una traslación de coordenadas se activa a partir de su definición, es decir, no es preciso llamarla. La traslación actua hasta que se anula o se define una nueva.

Anulación de la traslación de coordenadas:

- Definición del ciclo con los valores para el comportamiento básico, p.ej. factor de escala 1,0
- Ejecución de las funciones auxiliares M02, M30 o la frase END PGM (depende del parámetro de máquina 7300)
- Selección de un nuevo programa

Desplazamiento del PUNTO CERO (ciclo 7)

Con el DESPLAZAMIENTO DEL PUNTO CERO se pueden repetir mecanizados en cualquier otra posición de la pieza.

Activación

Después de la definición del ciclo DESPLAZAMIENTO DEL PUNTO CERO, las coordenadas se refieren al nuevo punto del cero pieza. El desplazamiento en cada eje se visualiza en la visualización de estados adicional.

Desplazamiento: Introducir las coordenadas del nuevo punto cero, confirmar cada eje con la tecla ENT, finalizar la introducción pulsando la tecla END; Los valores absolutos se refieren al cero pieza determinado mediante la fijación del punto de referencia; los valores incrementales se refieren siempre al último punto cero válido, el cual puede estar ya desplazado

REF

REF: Al pulsar la softkey REF, el punto cero programado se refiere al punto cero de la máquina. En este caso el TNC caracteriza la primera frase del ciclo con REF

Ejemplo de frases NC:

			-	
73	CYCL DEF	7.0	PUNTO	CERO
74	CYCL DEF	7.1	X+10	
75	CYCL DEF	7.2	Y+10	
76	CYCL DEF	7.3	Z - 5	

Anulación

El desplazamiento del punto cero con las coordenadas X=0, Y=0 y Z=0 elimina el desplazamiento del punto cero anterior.

Visualizaciones de estados

- La visualización de estados se refiere al punto cero activo (desplazado)
- El punto cero indicado en la visualización de estados adicional se refiere al punto de referencia fijado manualmente

Desplazamiento del PUNTO CERO con tablas de cero piezas (ciclo 7)

Los puntos cero de la tabla de cero piezas se pueden referir al punto de referencia actual o al punto cero de la máquina (depende del parámetro de máquina 7475)

Los valores de las coordenadas de las tablas de cero piezas son exclusivamente absolutas.

Rogamos tengan en cuenta que los números de los puntos cero se desplazan cuando se añaden líneas en la tablas de puntos cero existentes (si es preciso modificar el programa NC).

Empleo

Las tablas de puntos cero se utilizan

- en los pasos de mecanizado que se repiten con frecuencia en diferentes posiciones de la pieza o
- cuando se utiliza a menudo el mismo desplazamiento de punto cero

Dentro de un programa los puntos cero se pueden programar directamente en la definición del ciclo o bien se pueden llamar de una tabla de puntos cero.

Definición del ciclo 7

Pulsar la softkey para la introducción del número de punto cero, introducir el nº del punto cero y confirmar con la tecla END

Ejemplo de frases NC:

77 CYCL DEF 7.0 PUNTO CER	RC
---------------------------	----

78 CYCL DEF 7.1 #12

Anulación

- Desde la tabla de puntos cero se llama a un desplazamiento con las coordenadas X=0; Y=0 etc.
- El desplazamiento a las coordenadas X=0; Y=0 etc. se llama directamente con una definición del ciclo

Seleccionar la tabla de puntos cero en el programa NC

Con la función SEL TABLE se selecciona la tabla de puntos cero, de la cual el TNC obtiene los puntos cero:

Seleccionar las funciones para la llamada al programa: Pulsar la tecla PGM CALL

- ▶ Pulsar la softkey TABLA PTOS. CERO
- Introducir el nombre de la tabla de puntos cero, confirmar con END

Edición de una tabla de puntos cero

La tabla de puntos cero se selecciona en el modo de funcionamiento Memorizar/Editar programa

- Llamar a la gestión de ficheros: Pulsar la tecla PGM MGT; véase también el capítulo "4.2 Gestión de ficheros"
- Desplazar el cursor sobre la tabla de puntos cero deseada. Confirmar con la tecla ENT
- Editar fichero: Véase la tabla con las funciones de edición

Salida de la tabla de puntos cero

Llamar a la gestión de ficheros y seleccionar un fichero de otro tipo, p.ej. un programa de mecanizado

Funciones edición	Tecla / Softkey
Seleccionar el eje	/ >
Pasar página hacia abajo	
Pasar página hacia arriba	t
Pasar página hacia arriba	PAGINA Î
Pasar página hacia abajo	PAGINA J
Saltar una palabra a la dcha.	PALABRA ➡
Saltar una palabra a la izq.	
Aceptar posición actual, p.ej. para el eje Z	POS.ACT.
Añadir el nº de líneas programadas	AÑADIR LINEAS N AL FINAL
Borrar la línea actual y memorización intermedia	BORRAR LINEA
Añadir una línea nueva, o bien añadir la última línea borrada	INSERTAR LINER
Saltar al principio de la tabla	
Saltar al final de la tabla	FIN <u> </u>

ESPEJO (ciclo 8)

El TNC puede realizar un mecanizado espejo en el plano de mecanizado. Véase la figura arriba a la derecha.

Activación

El ciclo espejo se activa a partir de su definición en el programa. Un GIRO también actua en el modo de funcionamiento POSICIONAMIENTO MANUAL. El TNC muestra los ejes espejo activados en la visualización de estados adicional.

- Si sólo se refleja un eje, se modifica el sentido de desplazamiento de la hta. Esto no es válido en los ciclos de mecanizado.
- Cuando se reflejan dos ejes, no se modifica el sentido de desplazamiento.
- El resultado del espejo depende de la posición del punto cero:
- El punto cero está sobre el contorno a reflejar: La trayectoria se refleja directamente en el punto cero; véase figura dcha. en el centro
- El punto cero está fuera del contorno a reflejar: La trayectoria se desplaza; véase figura abajo a la derecha

¿Eje reflejado?: Introducir el eje, que se quiere reflejar; se pueden reflejar todos los ejes, incluidos los ejes giratorios a excepción del eje de la hta. y de su correspondiente eje transversal

Ejemplo de frases NC:

79	CYCL	DEF	8.0	ESPEJO
80	CYCL	DEF	8.1	ХҮ

Anulación

Programar de nuevo el ciclo ESPEJO con la introducción NO ENT.

8.8 Ciclos para la traslación de coordenadas

GIRO (ciclo 10)

Dentro de un programa el TNC puede girar el sistema de coordenadas en el plano de mecanizado según el punto cero activado.

Activación

El GIRO se activa a partir de su definición en el programa. También actúa en el modo de funcionamiento Posicionamiento manual. El TNC visualiza los ángulos de giro activados en la visualización de estados adicional.

Eje de referencia para el ángulo de giro:

- Plano X/Y Eje X
- Plano Y/Z Eje Y
- Plano Z/X Eje de la herramienta

Antes de la programación deberá tenerse en cuenta

El TNC elimina una corrección de radio activada mediante la definición del ciclo 10. Si es preciso se programa de nuevo la corrección de radio.

Después de definir el ciclo 10, hay que desplazar los dos ejes del plano de mecanizado para poder activar el giro.

GIRO: Introducir el ángulo de giro en grados (°). Campo de introducción: -360° a +360° (valores absolutos o incrementales)

Ejemplo de frases NC:

81	CYCL DEF	10.0	GIRO
82	CYCL DEF	10.1	R0T+12.357

Anulación

Se programa de nuevo el ciclo GIRO indicando el ángulo de giro 0°.

FACTOR DE ESCALA (ciclo 11)

El TNC puede ampliar o reducir contornos dentro de un programa. De esta forma se pueden tener en cuenta, por ejemplo, factores de reducción o ampliación.

Activación

El FACTOR DE ESCALA se activa a partir de su definición en el programa. También se activa en el modo de funcionamiento POSICIONAMIENTO MANUAL. ELTNC muestra el factor de escala activado en la visualización de estados adicional.

El factor de escala actua

- en el plano de mecanizado o simultáneamente en los tres ejes de coordenadas (depende del parámetro de máquina 7410)
- en las cotas indicadas en el ciclo
- también sobre ejes paralelos U,V,W

Condiciones

Antes de la ampliación o reducción deberá desplazase el punto cero a un lado o a la esquina del contorno.

Factor de escala?: Introducir el factor SCL (en inglés.: scaling); el TNC multiplica las coordenadas y radios por el factor SCL (tal como se describe en "Activación")

Ampliación: SCL mayor que 1 a 99,999 999

Reducción: SCL menor que 1 a 0,000 001

Ejemplo de frases NC:

84 CYCL DEF 11.1 SCI0.99537

Anulación

Programar de nuevo el factor de escala indicando el factor 1.

FACTOR DE ESCALA ESPECIFICO DE CADA EJE (ciclo 26)

Antes de la programación deberá tenerse en cuenta

Se puede introducir para cada eje un factor de escala específico de cada eje

Además se pueden programar las coordenadas del centro para todos los factores de escala.

El contorno se prolonga desde el centro o se reduce hacia el mismo, es decir, no es necesario realizarlo con el punto cero actual, como en el ciclo 11 F. DE ESCALA.

Activación

El FACTOR DE ESCALA se activa a partir de su definición en el programa. Si el contorno a variar contiene arcos de círculo, el TNC calcula un arco de elipse según el factor de escala.

El FACTOR DE ESCALA actúa también en el modo de funcionamiento Posicionamiento manual. El TNC muestra el factor de escala activado en la visualización de estados adicional.

▶ Eje y factor: Eje(s) de coordenadas y factor(es) de escala de la prolongación o reducción específicas de cada eje. Introducir el valor positivo, máximo 99,999 999.

▶ Coordenadas del centro: Centro de la prolongación o reducción específica de cada eje

Los ejes de coordenadas se seleccionan con softkeys.

Anulación

Se programa de nuevo el ciclo FACTOR DE ESCALA con el factor 1 para el eje correspondiente.

Eiemplo

Factores de escala específicos de cada eje en el plano de mecanizado.

Se indica: Rombo, véase el gráfico de abajo a la derecha

Esquina 1:X =	20,0 mm	Y =	2,5 mm
Esquina 2:X =	32,5 mm	Y =	15,0 mm
Esquina 3:X =	20,0 mm	Y =	27,5 mm
Esquina 4:X =	7,5 mm	Y =	15,0 mm

Prolongar el eje X según el factor 1,4

Reducir el eje Y según el factor 0,6

Centro en CCX = 15 mm CCY = 20 mm

Ejemplo de frases NC

CYCL DEF 26.0 FAC. ESC. CYCL DEF 26.1 X1,4 Y0,6 CCX+15 CCY+20

Desarrollo del programa

- Traslación de coordenadas en el pgm principal
- Mecanizado en el subprograma 1 (véase el capítulo "9 Programación: Subprogramas y repeticiones parciales de un programa")

O BEGIN PGM KOUMR MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición del bloque
2 BLK FORM 0.2 X+130 Y+130 Z+0	
3 TOOL DEF 1 L+0 R+1	Definición de la herramienta
4 TOOL CALL 1 Z S4500	Llamada a la herramienta
5 L Z+250 RO FMAX	Retirar la herramienta
6 CYCL DEF 7.0 PUNTO CERO	Desplazamiento del punto cero al centro
7 CYCL DEF 7.1 X+65	
8 CYCL DEF 7.2 Y+65	
9 CALL LBL 1	Llamada al fresado
10 LBL 10	Fijar una marca para la repetición parcial del programa
11 CYCL DEF 10.0 GIRO	Giro a 45° en incremental
12 CYCL DEF 10.1 IROT+45	
13 CALL LBL 1	Llamada al fresado
14 CALL LBL 10 REP 6	Retroceso al LBL 10; en total seis veces
15 CYCL DEF 10.0 GIRO	Anular el giro
16 CYCL DEF 10.1 ROT+0	
17 CYCL DEF 7.0 PUNTO CERO	Anular el desplazamiento del punto cero
18 CYCL DEF 7.1 X+0	
19 CYCL DEF 7.2 Y+0	
20 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa

8.8 Ciclos para la traslación de coordenadas

21	LBL 1	Subprograma 1:
22	L X+O Y+O RO FMAX	Determinación del fresado
23	L Z+2 RO FMAX M3	
24	L Z-5 R0 F200	
25	L X+30 RL	
26	L IY+10	
27	RND R5	
28	L IX+20	
29	L IX+10 IY-10	
30	RND R5	
31	L IX-10 IY-10	
32	L IX-20	
33	L IY+10	
34	L X+0 Y+0 R0 F500	
35	L Z+20 RO FMAX	
36	LBL O	
37	END PGM KOUMR MM	

8.9 Ciclos especiales

TIEMPO DE ESPERA (ciclo 9)

En un programa en funcionamiento, la frase siguiente se ejecuta después de haber transcurrido el tiempo de espera programado. El tiempo de espera sirve, por ejemplo para la rotura de viruta.

Activación

El ciclo se activa a partir de su definición en el programa. No tiene influencia sobre los estados que actuan de forma modal, como p.ej. el giro del cabezal.

Tiempo de espera en segundos: Introducir el tiempo de espera en segundos

Campo de introducción 0 a 30 000 s (aprox. 8,3 horas) en pasos de 0,001 s

Ejemplo de frases NC

89	CYCL	DEF	9.0	TIEMPO	DE ESPERA
90	CYCL	DEF	9.1	T.ESP.	1.5

LLAMADA DEL PROGRAMA (ciclo 12)

Los programas de mecanizado, como p.ej. ciclos de taladrado especiales o módulos geométricos, se pueden asignar como ciclos de mecanizado. En este caso el programa se llama como si fuese un ciclo.

Nombre del programa: Nombre del programa que se quiere llamar

- El programa se llama con
- CYCL CALL (frase separada) o
- M99 (actua por frases) o
- M89 (se ejecuta después de cada frase de posicionamiento)

Ejemplo: Llamada al programa

Se desea llamar al programa 50 a través de la llamada de ciclo

Ejemplo de frases NC

55 CYCL DEF 12.0 PGM CALL	Determinación:
56 CYCL DEF 12.1 PGM 50.H	"El programa 50 es un ciclo"
57 L X+20 Y+50 FMAX M99	Llamada al programa 50

8.9 Ciclos especiales

Orientación del cabezal (ciclo 13)

El constructor de la máquina prepara la máquina y el TNC para poder emplear el ciclo 13.

El TNC puede controlar el cabezal principal de una máquina herramienta como un 6º eje y girarlo en una posición determinada según un ángulo.

La orientación del cabezal se utiliza p.ej.

- en sistemas de cambio de herramienta con una determinada posición para el cambio de la misma
- para ajustar la ventana de emisión y recepción del palpador 3D con transmisión por infrarrojos

Activación

La posición angular definida en el ciclo se posiciona con la programación de M19.

Si se programa M19 sin antes haber definido el ciclo 13, el TNC posiciona el cabezal principal sobre el valor angular determinado en un parámetro de máguina (véase el manual de la máguina).

Angulo de orientación: Introducir el ángulo referido al eje de referencia angular del plano de mecanizado

Campo de introducción: 0 a 360°

Resolución de la introducción: 0,001°

Ejemplo de frases NC

- 93 CYCL DEF 13.0 ORIENTACION
- 94 CYCL DEF 13.1 ANGULO 180

Programación:

Subprogramas y repeticiones parciales de un programa

9.1 Introducción de subprogramas y repeticiones parciales de un pgm

Las partes de un programa que se deseen se pueden ejecutar repetidas veces con subprogramas o repeticiones parciales de un programa.

Label

Los subprogramas y repeticiones parciales de un programa comienzan en un programa de mecanizado con la marca LBL, que es la abreviación de LABEL (en inglés marca).

Los LABEL se enumeran entre 1 y 254 . Cada número LABEL sólo se puede asignar una vez en el programa al pulsar la tecla LABEL SET.

LABEL 0 (LBL 0) caracteriza el final de un subprograma y se puede emplear tantas veces como se desee.

9.2 Subprogramas

Funcionamiento

- 1 El TNC ejecuta el programa de mecanizado hasta la llamada a un subprograma CALL LBL.
- **2** A partir de aquí el TNC ejecuta el subprograma llamado hasta el final del subprograma LBL 0.
- **3** Después el TNC prosigue el programa de mecanizado con la frase que sigue a la llamada al subprograma CALL LBL.

Indicaciones sobre la programación

- Un programa principal puede contener hasta 254 subprogramas
- Los subprogramas se pueden llamar en cualquier secuencia tantas veces como se desee.
- Un subprograma no puede llamarse a si mismo.
- Los subprogramas se programan al final de un programa principal (detrás de la frase con M2 o M30)
- Si existen subprogramas dentro del programa de mecanizado antes de la frase con M02 o M30, estos se ejecutan sin llamada, por lo menos una vez.

Programación de un subprograma

- Señalar el comienzo: Pulsar la tecla LBL SET e introducir un número LABEL
- Introducir el subprograma
- Señalar el final: Pulsar la tecla LBL SET e introducir el número de LBL "0"

Llamada a un subprograma

- Llamada al subprograma: Pulsar la tecla LBL CALL
- Número de label: Introducir el número de label del subprograma que se desea llamar, confirmar con la tecla END

LBL

No está permitido CALL LBL 0 ya que corresponde a la llamada al final de un subprograma.

9.3 Repeticiones parciales de un pgm

Las repeticiones parciales de un programa comienzan con la marca LBL (LABEL). Una repetición parcial del pgm finaliza con CALL LBL REP.

Funcionamiento

- 1 El TNC ejecuta el programa de mecanizado hasta el final de la parte parcial del programa (CALL LBL REP)
- **2** A continuación el TNC repite la parte del programa entre el label llamado y la llamada al label CALL LBL REP tantas veces como se haya programado en REP
- 3 Después el TNC continua con el programa de mecanizado

Indicaciones sobre la programación

- Se puede repetir una parte del programa hasta 65 534 veces sucesivamente
- El TNC muestra en la visualización de estados adicional, las repeticiones que quedan por ejecutar (véase "1.4 Visualizaciones de estados")
- El TNC repite las partes parciales de un programa una vez más de las veces programadas

Programación de repeticiones parciales del programa

- Marcar el comienzo: Pulsar la tecla LBL SET e introducir el número de label para la parte del programa que se quiere repetir
 - ▶ Introducir la parte del programa

Llamada a una repetición parcial del programa

LBL CALL

LBL SET

> Pulsar la tecla LBL CALL, introducir el NUMERO DE LABEL de la parte del programar a repetir y el número

de repeticiones REP

9.4 Cualquier programa como subprograma

- 1 El TNC ejecuta el programa de mecanizado, hasta que se llama a otro programa con CALL PGM
- 2 A continuación el TNC ejecuta el programa llamado hasta su final
- **3** Después el TNC continúa con la ejecución del programa de mecanizado que sigue a la llamada del programa

Indicaciones sobre la programación

- El TNC no precisa de ningún LABEL para poder emplear un programa cualquiera como subprograma
- El programa llamado no puede contener la función auxiliar M2 o M30
- El programa llamado no deberá contener ningún CALL PGM al programa original

Llamada a cualquier programa como subprograma

- PGM CALL
- Seleccionar las funciones para la llamada al programa: Pulsar la tecla PGM CALL
- ▶ Pulsar la softkey PROGRAMA
- Introducir el nombre del programa que se quiere llamar. Además, mediante softkeys se determina que tipo de programa se quiere llamar y donde está memorizado (véase tabla a la dcha.)

Un programa cualquiera también puede ser llamado con el ciclo 12 PGM CALL.

Función	Softkey
Llamada al programa memorizado externamente	EXT
Llamada al pgm en texto claro	.н
Llamada al programa DIN/ISO	. I
Conversión de frase CALL PGM EXT a CALL PGM INT (llamadaa pgm memorizado externamente)	INT
Llamada al tipo de programa, determinado en la función "introduc. pgm"	DESCONOC.

9.5 Imbricaciones

Los subprogramas y repeticiones parciales del programa se pueden imbricar de la siguiente forma:

- Subprogramas dentro de un subprograma
- Repeticiones parciales en una repetición parcial del programa
- Repetición de subprogramas
- Repeticiones parciales de un programa en un subprograma

Profundidad de imbricación

La profundidad de imbricación determina las veces que se pueden introducir partes de un programa o subprogramas en otros subprogramas o repeticiones parciales de un programa.

- Máxima profundidad de imbricación para subprogramas: 8
- Máxima profundidad de imbricación para llamadas a un pgm principal: 4
- Las repeticiones parciales se pueden imbricar tantas veces como se desee

Subprograma dentro de otro subprograma

Ejemplo de frases NC

U BEGIN PGM UPGMS MM	
17 CALL LBL 1	Llamada al subprograma en LBL 1
35 L Z+100 RO FMAX M2	Ultima frase del
	programa principal (con M2)
36 LBL 1	Principio del subprograma 1
39 CALL LBL 2	Llamada al subprograma en LBL 2
45 LBL 0	Final del subprograma 1
46 LBL 2	Principio del subprograma 2
62 LBL 0	Final del subprograma 2
63 END PGM UPGMS MM	

Ejecución del programa

ne	1er pa
	2º pas
rica	3er pa
lmb	4º pas
9.5	-0

S

ler paso: Se ejecuta el pgm principal UPGMS hasta la frase 17.

- 2º paso: Llamada al subprograma 1 y ejecución hasta la frase 39.
 3er paso: Llamada al subprograma 2 y ejecución hasta la frase 62. Final del subprograma 2 y vuelta al subprgrama desde donde se ha realizado la llamada
- 4º paso: Ejecución del subprograma 1 desde la frase 40 hasta la frase 45. Final del subprograma 1 y regreso al programa principal UPGMS.
- 5º paso: Ejecución del programa principal UPGMS desde la frase 18 hasta la frase 35. Regreso a la primera frase y final del programa.

Repetición de repeticiones parciales de un programa

Ejemplo de frases NC

O BEGIN PGM REPS MM	
15 LBL 1	Principio de la repetición parcial del programa 1
20 LBL 2	Principio de la repetición parcial del programa 2
27 CALL LBL 2 REP 2	La parte del programa entre esta frase y LBL 2
	(frase 20) se repite dos veces
35 CALL LBL 1 REP 1	La parte del programa entre esta frase y LBL 1
	(frase 15) se repite una vez
48 END PGM REPS MM	

Ejecución del programa

1er paso: Ejecutar el programa principal REPS hasta la frase 27

- 2º paso: Se repite dos veces la parte del programa entre la frase 20 y la frase 27
- 3er paso: Ejecución del programa principal REPS desde la frase 28 hasta la 35
- 4º paso: Se repite una vez la parte del programa entre la frase 15 y la frase 35 (contiene la repetición de la parte del programa entre la frase 20 y la frase 27)
- 5º paso: Ejecución del programa principal REPS desde la frase 36 a la frase 50 (final del programa)

9.5 Imbricaciones

Repetición de un subprograma

Ejemplo de frases NC

O BEGIN PGM UPGREP MM	
10 LBL 1	Principio de la repetición parcial del programa
11 CALL LBL 2	Llamada al subprograma
12 CALL LBL 1 REP 2	La parte del programa entre esta frase y LBL1
	(frase 10) se repite dos veces
19 L Z+100 RO FMAX M2	Ultima frase del programa principal con M2
20 LBL 2	Principio del subprograma
28 LBL 0	Final del subprograma
29 END PGM UPGREP MM	

Ejecución del programa

- 1er paso: Ejecución del programa principal UPGREP hasta la frase 11
- 2º paso: Llamada y ejecución del subprograma 2
- 3er paso: Se repite dos veces la parte del programa entre la frase 10 y la frase 12: El subprograma 2 se repite 2 veces
- 4º paso: Ejecución del programa principal UPGREP desde la frase 13 a la 19; final del programa

Ejemplo: Fresado de un contorno en varias aproximaciones

Desarrollo del programa

- Posicionamiento previo de la hta. sobre la arista superior de la pieza
- Introducir la profundización en incremental
- Fresado del contorno
- Repetición de la profundización y del fresado del contorno

O BEGIN PGM PGMWDH MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Definición de la herramienta
4 TOOL CALL 1 Z S500	Llamada a la herramienta
5 L Z+250 RO FMAX	Retirar la herramienta
6 L X-20 Y+30 RO F MAX	Posicionamiento previo en el plano de mecanizado
7 L Z+O RO FMAX M3	Posicionamiento previo sobre la arista superior de la pieza
8 LBL 1	Marca para la repetición parcial del programa
9 L IZ-4 RO F MAX	Profundización en incremental (en vacío)
10 APPR CT X+2 Y+30 CCA90 R+5 RL F250	Llegada al contorno
11 FC DR- R18 CLSD+ CCX+20 CCY+30	Contorno
12 FLT	
13 FCT DR- R15 CCX+50 CCY+75	
14 FLT	
15 FCT DR- R15 CCX+75 CCY+20	
16 FLT	
17 FCT DR- R18 CLSD- CCX+20 CCY+30	
18 DEP CT CCA90 R+5 F1000	Salida del contorno
19 L X-20 Y+0 R0 FMAX	Retirar
20 CALL LBL 1 REP 4	Retroceso al LBL 1; en total cuatro veces
21 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
22 END PGM PGMWDH MM	

Ejemplo: Grupos de taladros

Desarrollo del programa

- Llegada al grupo de taladros en el programa principal
- Llamada al grupo de taladros (subprograma 1)
- Programar una sola vez el grupo de taladros en el subprograma 1

O BEGIN PGM UP1 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+2,5	Definición de la herramienta
4 TOOL CALL 1 Z S5000	Llamada a la herramienta
5 L Z+250 RO FMAX	Retirar la herramienta
6 CYCL DEF 200 TALADRADO	
Q200=2 ;DISTANCIA DE SEGURIDAD	
Q201=-10 ;PROFUNDIDAD	
Q206=250 ;AVANCE AL PROFUNDIZAR	
Q2O2=5 ; PROFUNDIDAD DE PASADA	
Q210=0 ;TIEMPO DE ESPERA ARRIBA	
Q2O3=+O ;COORD. SUPERFICIE PIEZA	
Q2O4=10 ;2ª DISTANCIA DE SEGURIDAD	
7 L X+15 Y+10 RO FMAX M3	Llegada al punto de partida del grupo de taladros 1
8 CALL LBL 1	Llamada al subprograma para el grupo de taladros
9 L X+45 Y+60 R0 FMAX	Llegada al punto de partida del grupo de taladros 2
10 CALL LBL 1	Llamada al subprograma para el grupo de taladros
11 L X+75 Y+10 RO FMAX	Llegada al punto de partida del grupo de taladros 3
12 CALL LBL 1	Llamada al subprograma para el grupo de taladros
13 L Z+250 RO FMAX M2	Final del programa principal

14	LBL 1	Principio del subprograma 1: Grupo de taladros
15	CYCL CALL	1er taladro
16	L IX+20 RO FMAX M99	Llegada al 2º taladro, llamada al ciclo
17	L IY+20 RO FMAX M99	Llegada al 3er taladro, llamada al ciclo
18	L IX-20 RO FMAX M99	Llegada al 4º taladro, llamada al ciclo
19	LBL O	Final del subprograma 1
20	END PGM UP1 MM	

Ejemplo: Grupos de taladros con varias herramientas

Desarrollo del programa

- Programación de los ciclos de mecanizado en el programa principal
- Llamada a la figura de taladros completa (subprograma 1)
- Llegada al grupo de taladros del subprograma 1, llamada al grupo de taladros (subprograma 2)
- Programar una sóla vez el grupo de taladros en el subprograma 2

0	BEGIN PGM UP2 MM	
1	BLK FORM 0.1 Z X+0 Y+0 Z-20	
2	BLK FORM 0.2 X+100 Y+100 Z+0	
3	TOOL DEF 1 L+O R+4	Definición de la hta. Broca de centraje
4	TOOL DEF 2 L+0 R+3	Definición de la hta. Taladro
5	TOOL DEF 3 L+0 R+3,5	Definición de la hta. Escariador
6	T00L CALL 1 Z S5000	Llamada a la hta. Broca de centraje
7	L Z+250 RO FMAX	Retirar la herramienta

-
, 5
.ŭ
2
Ø
a
F
o O
5
ā
_
•
σ
ŝ
ö
Ē
Ξ
Ð
i T
9
.

8 CYCL DEF 200 TALADRADO	Definición del ciclo Centraje
Q200=2 ;DISTANCIA DE SEGURIDAD	
Q201=-3 ; PROFUNDIDAD	
Q206=250 ;AVANCE AL PROFUNDIZAR	
Q2O2=3 ; PROFUNDIDAD DE PASADA	
Q210=0 ;TIEMPO DE ESPERA ARRIBA	
Q2O3=+O ;COORD. SUPERFICIE PIEZA	
Q2O4=10 ;2ª DISTANCIA DE SEGURIDAD	
9 CALL LBL 1	Llamada al subprograma 1 para la figura completa de taladros
10 L Z+250 RO FMAX M6	Cambio de herramienta
11 TOOL CALL 2 Z S4000	Llamada a la hta. para el taladrado
12 FN 0: Q201 = -25	Nueva profundidad para Taladro
13 FN 0: Q202 = +5	Nueva aproximación para Taladro
14 CALL LBL 1	Llamada al subprograma 1 para la figura completa de taladros
15 L Z+250 RO FMAX M6	Cambio de herramienta
16 TOOL CALL 3 Z S500	Llamada a la hta. Escariador
17 CYCL DEF 201 ESCARIADO	Definición del ciclo Escariado
Q200=2 ;DISTANCIA DE SEGURIDAD	
Q201=-15 ; PROFUNDIDAD	
Q206=250 ;AVANCE AL PROFUNDIZAR	
Q211=0,5 ;TIEMPO DE ESPERA ABAJO	
Q208=400 ;AVANCE DE RETROCESO	
Q2O3=+O ;COORD. SUPERFICIE PIEZA	
Q2O4=10 ;2ª DISTANCIA DE SEGURIDAD	
18 CALL LBL 1	Llamada al subprograma 1 para la figura completa de taladros
19 L Z+250 RO FMAX M2	Final del programa principal
20 LBL 1	Principio del subprograma 1: Figura completa de taladros
21 L X+15 Y+10 RO FMAX M3	Llegada al punto de partida del grupo de taladros 1
22 CALL LBL 2	Llamada al subprograma 2 para el grupo de taladros
23 L X+45 Y+60 R0 FMAX	Llegada al punto de partida del grupo de taladros 2
24 CALL LBL 2	Llamada al subprograma 2 para el grupo de taladros
25 L X+75 Y+10 R0 FMAX	Llegada al punto de partida del grupo de taladros 3
26 CALL LBL 2	Llamada al subprograma 2 para el grupo de taladros
27 LBL 0	Final del subprograma 1
28 LBL 2	Principio del subprograma 2: Grupo de taladros
29 CYCL CALL	1er taladro con ciclo de mecanizado activado
30 L IX+20 R0 FMAX M99	Llegada al 2º taladro, llamada al ciclo
31 L IY+20 R0 FMAX M99	Llegada al 3er taladro, llamada al ciclo
32 L IX-20 R0 FMAX M99	Llegada al 4º taladro, llamada al ciclo
33 LBL 0	Final del subprograma 2
34 END PGM UP2 MM	

Programación:

Parámetros Q

10.1 Principio de funcionamiento y resumen de funciones

Con los parámetros Q se puede definir en un programa de mecanizado una familia de piezas. Para ello en vez de valores numéricos se introducen parámetros Q.

Los parámetros Q se utilizan por ejemplo para

- Valores de coordenadas
- Avances
- Revoluciones
- Datos del ciclo

Además con los parámetros Q se pueden programar contornos determinados mediante funciones matemáticas o ejecutar los pasos del mecanizado que dependen de condiciones lógicas.

Un parámetro Ω se caracteriza por la letra Ω y un número del 0 al 299. Los parámetros Ω se dividen en tres campos:

Significado Grupo	
Parámetros de libre empleo, que actuan de Q0 a Q99 forma global en todos los programas que se encuentran en la memoria del TNC. Cuando se llama a los ciclos de constructor estos parámetros sólo actúan de forma local (depende de MP7251)	

Parámetros para funciones especiales del TNC

Q100 a Q199

Parámetros que se emplean preferentemente en los ciclos y que actúan de forma global para todos los programas que se encuentran en la memoria del TNC y en ciclos de constructor

Instrucciones de programación

No se pueden mezclar en un programa parámetros $\ensuremath{\mathbb{Q}}$ y valores numéricos.

A los parámetros Q se les puede asignar valores entre –99 999,9999 y +99 999,9999.

El TNC asigna a ciertos parámetros Q siempre el mismo dato, p.ej. al parámetro Q108 se le asigna el radio actual de la hta. Véase el capítulo "10.9 Parámetros Q predeterminados".

Llamada a las funciones de parámetros Q

Mientras se introduce un programa de mecanizado se pulsa la tecla Q (en el campo de introducción numérica y selección de ejes debajo de la tecla –/+). Entonces el TNC muestra las siguientes softkeys:

Grupo de funciones	Softkey
Funciones matemáticas básicas	FUNCIONES BASICAS
Funciones angulares	FUNCIONES TRIGONOM.
Condición si/entonces, salto	SAL TO
Otras funciones	FUNCIONES DIVERSAS
Introducción directa de una fórmula	FORMULA

10.2 Tipos de funciones - Parámetros Q en vez de valores numéricos

Con la función paramétrica FN0: ASIGNACIÓN se asignan valores numéricos a los parámetros Q. Entonces en el programa de mecanizado se fija un parámetro Q en vez de un valor numérico.

Ejemplo de frases NC

15 FN0: Q10 = 25	Asignación:
	Q10 tiene el valor 25
25 L X +Q10	corresponde a L X +25

Con los tipos de funciones se programan p.ej. como parámetros Q las dimensiones de una pieza.

Para el mecanizado de los distintos tipos de piezas, se le asigna a cada uno de estos parámetros un valor numérico correspondiente.

Ejemplo

Cilindro con parámetros Q

Radio del cilindro	R	=	Q1
Altura del cilindro	Н	=	Q2
Cilindro Z1	Q1	= +	-30
	Q2	= +	-10
Cilindro Z2	Q1	= +	-10
	Q2	= +	-50

10.3 Descripción de contornos mediante funciones matemáticas

Con parámetros Q se pueden programar en el programa de mecanizado, funciones matemáticas básicas.

- Selección de parámetros Q: Pulsar la tecla Q (situada en el campo para la introducción de valores numéricos, a la derecha). La carátula de softkeys indica las funciones de los parámetros Q.
- Seleccionar las funciones matemáticas básicas: Pulsar la softkey FUNCIONES BASICAS. El TNC muestra las siguientes softkeys:

Función	Softkey
FN0: ASIGNACION p.ej. FN0: Q5 = +60 Asignación directa de un valor	FNO X = Y
FN1: ADICION p.ej. FN1: $Q1 = -Q2 + -5$ Determinar y asignar la suma de dos valores	FN1 X + Y
FN2: SUSTRACCION p.ej. FN2: $Q1 = +10 - +5$ Determinar y asignar la diferencia de dos valores	FN2 X - Y
FN3: MULTIPLICACION p.ej. FN3: Q2 = +3 * +3 Determinar y asignar la multiplicación de dos valores	FN3 X * Y
FN4: DIVISION p.ej. FN4: Q4 = +8 DIV +Q2 Determinar y asignar el cociente de dos valores Prohibido: ¡Dividir por 0!	FN4 X × Y
FN5: RAIZ p.ej. FN5: Q20 = SQRT 4 Determinar y asignar la raíz de un número Prohibido: ¡Sacar la raíz de un valor negativo!	FN5 RAIZ
A la derecha del signo "=", se pueden introducir:	

dos números

dos parámetros Q

un número y un parámetro Q

Los parámetros Q y los valores numéricos en las comparaciones pueden ser con o sin signo.

Ejemplo: Programación de cálculos básicos

Q	Selección de las funciones parámetricas: Pulsar la tecla Q
FUNCIONES BASICAS	Seleccionar las funciones matemáticas básicas: Pulsar la softkey FUNCIONES BASICAS
FNØ X = V	Selección de la función paramétrica ASIGNACION: Pulsar la softkey FN0 X = Y
Nº de paráme	tro para el resultado?
5 емт	Introducir el número del parámetro Q: 5
ler valor o	parámetro ?
	Asignar a Q5 el valor numérico 10
Q	Selección de las funciones parámetricas: Pulsar la tecla Q
FUNCIONES BRSICRS	Seleccionar las funciones matemáticas básicas: Pulsar la softkey FUNCIONES BASICAS
FN3 X * V	Seleccionar la función parámetrica MULTIPLICACIÓN: Pulsar la softkey FN3 X * Y
N ^o de paráme	tro para el resultado?
12 _{ent}	Introducir el número de parámetro Q: 12
ler valor o	parámetro ?
Q5 _{ent}	Introducir Q5 como primer valor
Multiplicado	r?
	Introducir 7 como segundo valor

El TNC muestra las siguientes frases de programa:

16 FNO: Q5 = +10 17 FN3: Q12 = +Q5 * +7

10.4 Funciones angulares (Trigonometría)

El seno, el coseno y la tangente corresponden a las proporciones de cada lado de un triángulo rectángulo. Siendo:

Seno:	sen α =	a/c
Coseno:	$\cos \alpha =$	b/c
Tangente:	tan α =	a / b = sen α / cos α

Siendo

c la hipotenusa o lado opuesto al ángulo recto

- a el lado opuesto al ángulo a
- b el tercer lado

El TNC calcula el ángulo mediante la tangente:

 α = arctan α = arctan (a / b) = arctan (sen α / cos α)

Ejemplo:

- a = 10 mm
- b = 10 mm
- α = arctan (a / b) = arctan 1 = 45°

Además se tiene:

$$a^{2} + b^{2} = c^{2}$$
 (donde $a^{2} = a \times a$)

 $c = \sqrt{(a^2 + b^2)}$

Programación de funciones trigonométricas

Las funciones angulares aparecen cuando se pulsa la softkey FUNCIONES ANGULARES. El TNC muestra las softkeys que aparecen en la tabla de la derecha.

Programación: Véase "Ejemplo: Programación de los tipos de cálculo básicos".

Función	Softkey
FN6: SENO p.ej. FN6: Q20 = SEN–Q5 Determinar y asignar el seno de un ángulo en grados (°)	FNG SIN(X)
FN7: COSENO p.ej. FN7: Q21 = COS–Q5 Determinar y asignar el coseno de un ángulo en grados (°)	FN7 COS(X)

FN8: SACAR LA RAIZ DE LA SUMA DE LOS CUADRADOS p.ej. FN8: Q10 = +5 LEN +4 Determinar y asignar la longitud de dos valores

FN13: ANGULO

p.ej. FN13: Q20 = +10 ANG-Q1 Determinar y asignar el ángulo con arcotangente de dos lados o seno y coseno de un ángulo (0 < ángulo < 360°)

10.5 Condiciones si/entonces con parámetros Ω

Al determinar la función si/entonces, el TNC compara un parámetro Q con otro parámetro Q o con un valor numérico. Cuando se ha cumplido la condición, el TNC continua con el programa de mecanizado en el LABEI programado detrás de la condición (LABEL véase el capítulo "9. Subprogramas y repeticiones parciales de un pgm"). Si no se cumple la condición el TNC ejecuta la siguiente frase.

Cuando se quiere llamar a otro programa como subprograma, se programa un PGM CALL detrás del LABEL.

Saltos incondicionales

Los saltos incondicionales son aquellos que cumplen siempre la condición (=incondicionalmente), p.ej.

FN9: IF+10 EQU+10 GOTO LBL1

Programación de condiciones si/entonces

Las condiciones si/entonces aparecen al pulsar la softkey SALTOS. El TNC muestra las siguientes softkeys:

Función

FN9: SI ES IGUAL, SALTO

p.ej. FN9: IF +Q1 EQU +Q3 GOTO LBL 5 Si son iguales dos valores o parámetros, salto al label indicado

FN10: SI ES DISTINTO, SALTO

p.ej. FN10: IF +10 NE –Q5 GOTO LBL 10 Si son distintos dos valores o parámetros, salto al label indicado

FN11: SI ES MAYOR, SALTO

p.ej. FN11: IF+Q1 GT+10 GOTO LBL 5 Si es mayor el primer valor o parámetro que el segundo valor o parámetro, salto al label indicado

FN12: SI ES MENOR, SALTO

p.ej. FN12: IF+Q5 LT+0 GOTO LBL 1 Si es menor el primer valor o parámetro que el segundo valor o parámetro, salto al label indicado

FN11 IF X GT SOTO

FN10 IF X NE GOTO

Softkey

Abrevi IF	aciones y conceptos emple (en inglés):	eados Cuando
equ	(en inglés equal):	Igual
NE	(en inglés not equal):	Distinto
GT	(en inglés greater than):	Mayor que
LT	(en inglés less than):	Menor que
GOTO	(en inglés go to):	lr a

10.6 Comprobación y modificación de parámetros Q

Se pueden comprobar y también modificar los parámetros Q durante la ejecución o el test del programa

Interrupción de la ejecución del programa (p.ej. tecla externa STOP y softkey STOP) o bien parar el test del pgm

▶ Llamada a la tabla de parámetros Q: Pulsar la tecla Q

- Con los pulsadores de manual se selecciona un parámetro Q en la página actual de la pantalla. Con la softkey PAGINA se selecciona la página anterior o posterior de la pantalla
- Si se quiere modificar el valor de un parámetro se introduce un nuevo valor, se confirma con la tecla ENT y se finaliza la introducción con la tecla END

Si no se quiere modificar el valor se finaliza el diálogo pulsando la tecla END

10.7 Otras funciones

Pulsando la softkey FUNCIONES ESPECIALES, aparecen otras funciones. El TNC muestra las siguientes softkeys:

Función	Softkey
FN14:ERROR	FN14
Emisión de avisos de error	ERROR=
FN15:PRINT	FN15
Emisión de textos o valores paramétricos sin formatear	IMPRIMIR
FN18:SYS-DATUM READ Lectura de los datos del sistema	FN18 LEER DATOS SIS
FN19:PLC	FN19
Transmisión de los valores al PLC	PLC=

FN14: ERROR Emisión de avisos de error

Con la función FN14: ERROR se pueden emitir de forma controlada en el programa, avisos de error previamente programados por el constructor de la máquina o por HEIDENHAIN: Si durante la ejecución o el test de un programa se llega a una frase que contenga FN 14, el TNC interrumpe dicha ejecución o test y emite un aviso. A continuación se deberá iniciar de nuevo con el programa. Véase los numéros de error en la tabla de la derecha.

Ejemplo de frase NC

El TNC debe emitir un aviso memorizado en el número de error 254

180 FN14: ERROR = 254

Números de error	Diálogo standard
0 299	FN 14: AVISO DE ERROR 0 299
300 999	Ningun diálogo standard registrado
1000 1099	Avisos de error internos (véase la tabla de la derecha)

Numero	y texto del error
1000	Cabezal ?
1001	Falta el eje de la hta.
1002	Anchura de la ranura demasiado grande
1003	Radio de la hta. demasiado grande
1004	Campo sobrepasado
1005	Posición inicial errónea
1006	Giro no permitido
1007	Factor de escala no permitido
1008	Espejo no permitido
1009	Desplazamiento no permitido
1010	Falta avance
1011	Valor de introducción erróneo
1012	Signo erróneo
1013	Angulo no permitido
1014	Punto de palpación inalcanzable
1015	Demasiados puntos
1016	Introducción contradictoria
1017	CYCL incompleto
1018	Plano mal definido
1019	Programado eje erróneo
1020	Revoluciones erróneas
1021	Corrección de radio no definida
1022	Redondeo no definido
1023	Radio de redondeo demasiado grande
1024	Arranque del programa no definido
1025	Imbricaciones demasiado elevadas
1026	Falta referencia angular
1027	No se ha definido ningún ciclo de
	mecanizado
1028	Anchura de la ranura demasiado grande
1029	Cajera demasiado pequeña
1030	Q202 sin definir
1031	Q205 sin definir
1032	Introducir Q218 mayor a Q219
1033	CYCL 210 no permitido
1034	CYCL 211 no permitido
1035	Q220 demasiado grande
1036	Introducir Q222 mayor a Q223
1037	Introducir Q244 mayor a 0
1038	Introducir Q245 diferente a Q246
1039	Introducir el campo angular < 360°
1040	Introducir Q223 mayor a Q222
1041	Q214: 0 no permitido

FN15: PRINT Emisión de textos o valores de parámetros Q

Ajuste de la conexión de datos: En el punto del menú CONEXION RS232, se determina donde memoriza el TNC los textos o valores de los parámetros O. Véase "14.4 Funciones MOD, Ajuste de la conexión de datos".

Con la función FN15: PRINT se emiten valores de parámetros Q y avisos de error a través de la conexión de datos, por ejemplo, a una impresora. Si se emiten los valores a un ordenador, el TNC memoriza los datos en el fichero %FN15RUN.A (emisión durante la ejecución del programa) o en el fichero %FN15SIM.A (emisión durante el test del programa).

Emisión de diálogos y avisos de error con FN15: PRINT "Valor numérico".

Valor numérico 0 a 99: Diálogos para ciclos de constructor

a partir de 100: Avisos de error de PLC

Ejemplo: Emisión del número de diálogo 20

67 FN15: PRINT 20

Emisión de diálogos y parámetros Q con FN15: PRINT "Parámetro Q"

Ejemplo de empleo: Protocolo de la medición de una pieza

Se pueden emitir hasta seis parámetros Q y valores numéricos simultáneamente. El TNC los separa con una barra.

Ejemplo: Emisión del diálogo 1 y del valor numérico Q1

70 FN15: PRINT 1/Q1

FN18: SYS-DATUM READ Lectura de los datos del sistema

Con la función FN18: LEER DATOS SIS. se pueden leer los datos del sistema y memorizarlos en parámetros Q. La elección del dato del sistema se realiza a través de un número de grupo (nº id.), un número y si es preciso una extensión.

Nombre del grupo, nº id.	Número	Indice	Dato del sistema
Información sobre el programa, 10	1	_	Estado mm/pulg.
	2	-	Factor de solapamiento en el fresado de cajeras
	3	_	Número del ciclo de mecanizado activado
Estado de la máquina, 20	1	-	Número de la herramienta activada
	2	-	Número de la herramienta dispuesta
	3	-	Eje de la herramienta activado
			0=X, 1=Y, 2=Z
	4	-	№ de revoluciones programado
	5	_	Estado del cabezal conectado: 0= descon.,
			1= conectado
	6	-	Angulo de orientación activado del cabezal
	7	-	Cambio de gama activado
	8	-	Estado del refrigerante: 0=descon., 1=conectado
	9	_	Avance activado
	10	_	Avance activado en el círculo de transición
	4		
Datos de la tabla de htas., 50	1	-	Longitud de la herramienta
	2	-	Radio de la herramienta
	4	-	Sobremedida de la longitud de la herramienta DL
	5	-	Sobremedida del radio de la herramienta DR
	/	-	Bloqueo de la herramienta (0 ó 1)
	8	_	Número de la herramienta gemela
	9	_	Máximo tiempo de vida IIME1
	10	_	Máximo tiempo de vida TIME2
	11	-	Tiempo de vida actual CUR. TIME
	12	-	Estado del PLC
	13	-	Máxima longitud de la cuchilla LCUTS
	14	-	Máximo ángulo de profundización ANGLE
	15	_	TT: № de cuchillas CUT
	16	_	TT: Tolerancia de desgaste de la longitud LTOL
	17	-	TT: Tolerancia de desgaste del radio RTOL
	18	_	TT: Sentido de giro DIRECT (3 ó 4)
	19	_	TT: Desvío del plano R-OFFS
	20	-	TT: Desvío de la longitud L-OFFS
	21	_	TT: Tolerancia de rotura de la longitud LBREAK
	22	_	TT: Tolerancia de rotura del radio RBREAK

Nombre del grupo, nº id.	Número	Indice	Dato del sistema
Datos de la tabla de posiciones, 51	1	_	Número de herramienta en el almacén
	2	_	Posición fija: 0=no, 1=si
	3	_	Posición bloqueada: 0=no, 1=si
	4	_	La herramienta es una hta. especial: 0=no, 1=si
	5	-	Estado del PLC
Número de posición de la hta. activa, 52	1	_	Número de posición en el almacén
Datos de corrección, 200	1	_	Radio de la herramienta programado
	2	_	Longitud de la herramienta programada
	3	_	Sobremedida del radio DR de la hta. en TOOL CALL
	4	-	Sobremedida de la longitud DL de la hta. enTOOL CALL
Transformaciones activas, 210	1	_	Giro básico en funcionamiento manual
	2	_	Giro básico programado con el ciclo 10
	3	_	Eje espejo activado
			0: Espejo no activado
			+1: Eje X reflejado
			+2: Eje Y reflejado
			+4: Eje Z reflejado
			+8: IV. eje reflejado
			Combinaciones = suma de los diferentes ejes
	4	1	Factor de escala eje X activado
	4	2	Factor de escala eje Y activado
	4	3	Factor de escala eje Z activado
	4	4	Factor de escala eje IV activado IV
Sistema de coordenadas activado, 211	1	_	Sistema de introducción
	2	-	Sistema con M91 (véase +7.3 Funciones auxiliares para la indicación de coordenadas+)
	3	-	Sistema con M92 (véase +7.3 Funciones auxiliares para la indicación de coordenadas+)
Puntos cero pieza, 220	1	1 a 4	Punto cero fijado manualmente con el sistema M91 Indice 1 a 4: Eie X a IV IV
	2	1 a 4	Punto cero programado Indice 1 a 4: Eie X a IV IV
	3	1 a 4	Punto cero activado con el sistema M91 Indice 1 a 4: Eje X a IV IV
	4	1 a 4	Desplazamiento del punto cero del PLC

Nombre del grupo, nº id.	Número	Indice	Dato del sistema
Finales de carrera, 230	1	_	Número del margen de finales de carrera activado
	2	1 a 4	Coordenada negativa de los finales de carrera con el
			sistema M91
			Indice 1 a 4: Eje X a IV IV
	3	1 a 4	Coordenada positiva de los finales de carrera con el
			sistema M91
			Indice 1 a 4: Eje X a IV IV
Posiciones en el sistema M91, 240	1	1 a 4	Poisición nominal; Indice 1 a 4: Eje X a IV IV
	2	1 a 4	Ultimo punto de palpación
			Indice 1 a 4: Eje X a IV IV
	3	1 a 4	Polo activado; Indice 1 a 4: Eje X a IV IV
	4	1 a 4	Punto central del círculo ; Indice 1 a 4: Eje X a IV IV
	5	1 a 4	Punto central del círculo de la última frase RND
			Indice 1 a 4: Eje X a IV IV
Posiciones en el sist. de introducción, 270	1	1 a 4	Poisición nominal; Indice 1 a 4: Eje X a IV IV
	2	1 a 4	Ultimo punto de palpación
			Indice 1 a 4: Eje X a IV IV
	3	1 a 4	Polo activado; Indice 1 a 4: Eje X a IV IV
	4	1 a 4	Punto central del círculo ; Indice 1 a 4: Eje X a IV IV
	5	1 a 4	Punto central del círculo de la última frase RND
			Indice 1 a 4: Eje X a IV IV
Datos de calibración TT 120, 350	20	1	Punto central del palpador eje X
		2	Punto central del palpador eje Y
		3	Punto central del palpador eje Z
	21	_	Radio de disco

Ejemplo: Asignar el valor del factor de escala activado del eje $\rm Z~a~Q25$

55 FN18: LEER DATOS SIS. Q25 = ID210 NR4 IDX3

FN19: PLC Transmisión de valores al PLC

Con la función FN19: PLC, se pueden transmitir hasta dos valores numéricos o parámetros Q al PLC.

Amplitud de pasos y unidades: 1 µm o bien 0,001° ó 0,1 µm o bien 0,0001°

 La amplitud del paso depende del parámetro de máquina 4020 (ajuste por defecto = 1 µm o bien 0,001°).

Ejemplo: Transmisión del valor numérico 10 al PLC (coresponde a 10 μm o bien a 0,01°)

56 FN19:PLC=+10/+Q3

10.8 Introducción directa de una fórmula

Mediante softkeys se pueden introducir directamente en el programa de mecanizado, fórmulas matemáticas con varias operaciones de cálculo:

Introducción de la fórmula

Las fórmulas aparecen pulsando la softkey FORMULA. El TNC muestra las siguientes softkeys en varias carátulas:

Relación de la función	Softkey
Adición p.ej. Q10 = Q1 + Q5	+
Sustracción p.ej. Q25 = Q7 – Q108	-
Multiplicación p.ej. Q12 = 5 * Q5	*
División p.ej. Q25 = Q1 / Q2	/
Abrir paréntesis p.ej. Q12 = Q1 * (Q2 + Q3)	(
Cerrar paréntesis p.ej. Q12 = Q1 * (Q2 + Q3)	
Valor al cuadrado (en inglés square) p.ej. Q15 = SQ 5	SQ
Raíz cuadrada (en inglés square root) p.ej. Q22 = SQRT 25	SORT
Seno de un ángulo p.ej. Q44 = SEN 45	SIN
Coseno de un ángulo p.ej. Q45 = COS 45	COS
Tangente de un ángulo p.ej. Q46 = TAN 45	TAN

Relación de la función	Softkey	Relación de la función Softkey
Arcoseno Función inversa al seno; determinar el ángulo de la relación entre el cateto opuesto/hipotenusa p.ej. Q10 = ASEN 0,75	ASIN	Comprobar el signo de un n°p.ej. Q12 = SGN Q50Cuando el valor Q12 = 1: Q50 >= 0Cuando el valor Q12 = -1: Q50 < 0
Arcocoseno Función inversa al coseno; determinar el ángulo de la relación entre el cateto contiguo/hipotenusa p.ej. Q11 = ACOS Q40	ACOS	Reglas de cálculo Para la programación de fórmulas matemáticas son válidas las siguientes reglas:
Arcotangente Función inversa a la tangente; determinar el ángulo de la relación entre el cateto opuesto/cateto contiguo p.ej. Q12 = ATAN Q50	ATAN	 Los cálculos de multiplicación y división se realizan antes que los de suma y resta 12 Q1 = 5 * 3 + 2 * 10 = 35 1er cálculo 5 * 3 = 15
Valores a una potencia p.ej. Q15 = 3^3	^	2°cálculo 2 * 10 = 20 3er cálculo 15 + 20 = 35 13 Q2 = SQ 10 - 3^3 = 73
Constante PI (3.14159) p.ej. Q15 = PI	PI	1er cálculo: elevar 10 al cuadrado = 100 2ºcálculo 3 elevado a 3 = 27 3er cálculo 100 - 27 = 73
Determinar el logaritmo natural (LN) de un número Número base 2,7183 p.ej. Q15 = LN Q11	LN	Propiedad distributiva (propiedad de distribución) en los cálculos entre paréntesis
Determinar el logaritmo de un número en base 10 p.ej. Q33 = LOG Q22	LOG	a * (b + c) = a * b + a * c
Función exponencial, 2,7183 elevado a la n p.ej. Q1 = EXP Q12	EXP	
Negación de valores (multiplicar por -1) p.ej. Q2 = NEG Q1	NEG	
Redondear posiciones detrás de la coma Determinar el número integro p.ej. Q3 = INT Q42	INT	
Determinar el valor absoluto de un número p.ej. Q4 = ABS Q22	ABS	
Redondear las posiciones delante de la coma Fraccionar p.ej. Q5 = FRAC Q23	FRAC	

10 Programación: Parámetros Q

10.8 Introducción directa de una fórmula

Ejemplo

Calcular el ángulo con el arctan del cateto opuesto (Q12) y el cateto contiguo (Q13); el resultado se asigna a Q25:

1 14 1 0

Seleccionar la función Introducir fórmula: Pulsar la softkey FORMULA

N° ue parameri	o para er resultado:
25 ENT	Introducir el número del parámetro
ATAN	Conmutar la carátula de softkeys y seleccionar la función arcotangente
	Conmutar la carátula de softkeys y abrir paréntesis
Q 12	Introducir el parámetro Q número 12
/	Seleccionar la división
Q 13	Introducir el parámetro Q número 13
	Cerrar paréntesis y finalizar la introducción de la fórmula

Ejemplo de frase NC

37 Q25 = ATAN (Q12/Q13)

10.9 Parámetros Q previamente asignados

El TNC memoriza valores en los parámetros Q100 a Q122. A los parámetros Q se les asignan:

- Valores del PLC
- Indicaciones sobre la herramienta y el cabezal
- Indicaciones sobre el estado de funcionamiento etc.

Valores del PLC: Q100 a Q107

El TNC emplea los parámetros Q100 a Q107, para poder aceptar valores del PLC en un programa NC.

Radio de la herramienta: Q108

El valor actual del radio de la herramienta se asigna a Q108.

Eje de la herramienta: Q109

El valor del parámetro Q109 depende del eje actual de la hta .:

Eje de la herramienta	Valor del parámetro
Sin definición del eje de la hta.	Q109 = -1
Eje Z	Q109 = 2
Eje Y	Q109 = 1
Eje X	Q109 = 0

Estado del cabezal: Q110

El valor del parámetro Q110 depende de la última función auxiliar M programada para el cabezal:

Función M	Valor del parámetro
Estado del cabezal no definido	Q110 = -1
M03: cabezal conectado, sentido horario	Q110 = 0
M04: cabezal conectado, sentido antihorario	Q110 = 1
M05 después de M03	Q110 = 2
M05 después de M04	Q110 = 3

Estado del refrigerante: Q111

Función M	Valor del parámetro
M08: refrigerante conectado	Q111 = 1
M09: refrigerante desconectado	Q111 = 0

Factor de solapamiento: Q112

El TNC asigna a Q112 el factor de solapamiento en el fresado de cajeras (MP7430).

Indicación de cotas en el programa: Q113

Durante las imbricaciones con PGM CALL, el valor del parámetro Q113 depende de las indicaciones de cotas del programa principal que llama a otros programas.

Indicación de cotas del pgm principal	Valor del parámetro
Sistema métrico (mm)	Q113 = 0
Sistema en pulgadas (pulg.)	Q113 = 1

Longitud de la herramienta: Q114

A Q114 se le asigna el valor actual de la longitud de la herramienta.

Coordenadas después de la palpación durante la ejecución del pgm

Después de realizar una medición con un palpador 3D, los parámetros Q115 a Q118 contienen las coordenadas de la posición del cabezal en el momento de la palpación.

Para estas coordenadas no se tienen en cuenta la longitud del vástago y el radio de la bola de palpación.

Eje de coordenadas	Parámetro
Eje X	Q115
Eje Y	Q116
Eje Z	Q117
Eje IV	Q118

Desviación del valor real/nominal en la medición automática de la hta. con el TT 120

Desviación real/nominal	Parámetro
Longitud de la herramienta	Q115
Radio de la herramienta	Q116

Corrección del radio de la hta. activada

Corrección de radio activada	Valor del parámetro
RO	Q123 = 0
RL	Q123 = 1
RR	Q123 = 2
R+	Q123 = 3
R–	Q123 = 4

Ejemplo: Elipse

Desarrollo del programa

- El contorno de la elipse se compone de pequeñas rectas (se define mediante Q7) Cuantos más puntos se calculen más cortas serán las rectas y más suave la curva.
- El sentido del mecanizado se determina mediante el ángulo inicial y el ángulo final en el plano:

Mecanizado en sentido horario: Angulo inicial > ángulo final Mecanizado en sentido antihorario: Angulo inicial < ángulo final

No se tiene en cuenta el radio de la hta.

O BEGIN PGM ELIPSE MM	
1 FN 0: Q1 = +50	Centro eje X
2 FN 0: Q2 = +50	Centro eje Y
3 FN 0: Q3 = +50	Semieje X
4 FN 0: Q4 = +30	Semieje Y
5 FN 0: Q5 = +0	Angulo inicial en el plano
6 FN 0: Q6 = +360	Angulo final en el plano
7 FN 0: Q7 = +40	Número de pasos de cálculo
8 FN 0: Q8 = +0	Posición angular de la elipse
9 FN 0: Q9 = +5	Profundidad de fresado
10 FN 0: Q10 = +100	Avance al profundizar
11 FN 0: Q11 = +350	Avance de fresado
12 FN 0: Q12 = +2	Distancia de seguridad para posicionamiento previo
13 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición del bloque
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+2,5	Definición de la herramienta
16 TOOL CALL 1 Z S4000	Llamada a la herramienta
17 L Z+250 RO FMAX	Retirar la herramienta
18 CALL LBL 10	Llamada al mecanizado
19 L Z+100 RO FMAX M2	Retirar la herramienta, final del programa

programación
de
Ejemplos
10.10

20	LBL 10	Subprograma 10: Mecanizado
21	CYCL DEF 7.0 PUNTO CERO	Desplazar el punto cero al centro de la elipse
22	CYCL DEF 7.1 X+Q1	
23	CYCL DEF 7.2 Y+Q2	
24	CYCL DEF 10.0 GIRO	Calcular la posición angular en el plano
25	CYCL DEF 10.1 ROT+Q8	
26	Q35 = (Q6 - Q5) / Q7	Calcular el paso angular
27	Q36 = Q5	Copiar el ángulo inicial
28	Q37 = 0	Fijar el contador de tramos
29	Q21 = Q3 * COS Q36	Calcular la coordenada X del punto inicial
30	Q22 = Q4 * SEN Q36	Calcular la coordenada Y del punto inicial
31	L X+Q21 Y+Q22 R0 FMAX M3	Llegada al punto inicial en el plano
32	L Z+Q12 RO FMAX	Posicionamiento previo a la distancia de seguridad en el eje de hta.
33	L Z-Q9 R0 FQ10	Desplazamiento a la profundidad de mecanizado
34	LBL 1	
35	Q36 = Q36 + Q35	Actualización del ángulo
36	Q37 = Q37 + 1	Actualizar el contador de tramos
37	Q21 = Q3 * COS Q36	Calcular la coordenada X actual
38	Q22 = Q4 * SEN Q36	Calcular la coordenada Y actual
39	L X+Q21 Y+Q22 R0 FQ11	Llegada al siguiente punto
40	FN 12: IF +Q37 LT +Q7 GOTO LBL 1	Pregunta si no está terminado, en caso afirmativo salto al LBL 1
41	CYCL DEF 10.0 GIRO	Anular el giro
42	CYCL DEF 10.1 ROT+0	
43	CYCL DEF 7.0 PUNTO CERO	Anular el desplazamiento del punto cero
44	CYCL DEF 7.1 X+0	
45	CYCL DEF 7.2 Y+0	
46	L Z+Q12 RO FMAX	Llegada a la distancia de seguridad
47	LBL O	Final del subprograma
48	END PGM ELIPSE MM	

Desarrollo del programa

- El programa sólo funciona con una fresa esférica
- El contorno del cilindro se compone de pequeñas rectas (se define mediante Q13) Cuantos más puntos se definan, mejor será el contorno.
- El cilindro se fresa en cortes longitudinales (aquí: paralelos al eje Y)
- El sentido del fresado se determina mediante el ángulo inicial y el ángulo final en el espacio:

Mecanizado en sentido horario: Angulo inicial > ángulo final Mecanizado en sentido antihorario: Angulo inicial < ángulo final

- El radio de la herramienta se corrige automáticamente
- La longitud de la hta. se refiere al centro de la bola

O BEGIN PGM CILIN MM	
1 FN 0: Q1 = +50	Centro eje X
2 FN 0: Q2 = +0	Centro eje Y
3 FN 0: Q3 = +0	Centro eje Z
4 FN 0: Q4 = +90	Angulo inicial en el espacio (plano Z/X)
5 FN 0: Q5 = +270	Angulo final en el espacio (plano Z/X)
6 FN 0: Q6 = +40	Radio del cilindro
7 FN 0: Q7 = +100	Longitud del cilindro
8 FN 0: Q8 = +0	Posición angular en el plano X/Y
9 FN 0: Q10 = +5	Sobremedida del radio del cilindro
10 FN 0: Q11 = +250	Avance al profundizar
11 FN 0: Q12 = +400	Avance de fresado
12 FN 0: Q13 = +90	Número de cortes
13 BLK FORM 0.1 Z X+0 Y+0 Z-50	Definición del bloque
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+3	Definición de la herramienta
16 TOOL CALL 1 Z S4000	Llamada a la herramienta
17 L Z+250 RO FMAX	Retirar la herramienta
18 CALL LBL 10	Llamada al mecanizado
19 FN 0: Q10 = +0	Anular la sobremedida
20 CALL LBL 10	Llamada al mecanizado
21 L Z+100 R0 FMAX M2	Retirar la herramienta, final del programa

22	LBL 10	Subprograma 10: Mecanizado
23	Q16 = Q6 - Q10 - Q108	Calcular la sobremedida y la hta. en relación al radio del cílindro
24	FN 0: Q20 = +1	Iniciar el contador de tramos de fresado (cortes)
25	FN 0: Q24 = +Q4	Copiar el ángulo inicial en el espacio (plano Z/X)
26	Q25 = (Q5 - Q4) / Q13	Calcular el paso angular
27	CYCL DEF 7.0 PUNTO CERO	Desplazar el punto cero al centro del cilindro (eje X)
28	CYCL DEF 7.1 X+Q1	
29	CYCL DEF 7.2 Y+Q2	
30	CYCL DEF 7.3 Z-Q3	
31	CYCL DEF 10.0 GIRO	Calcular la posición angular en el plano
32	CYCL DEF 10.1 ROT+Q8	
33	L X+O Y+O RO FMAX	Posicionamiento previo en el plano en el centro del cilindro
34	L Z+5 RO F1000 M3	Posicionamiento previo en el eje de la hta.
35	CC Z+0 X+0	Fijar el polo en el plano Z/X
36	LP PR+Q16 PA+Q24 FQ11	Llegada a pos. inicial sobre el cilindro, profundiz. inclinada en la pieza
37	LBL 1	
38	L Y+Q7 R0 FQ11	Corte longitudinal en la dirección Y+
39	FN 1: $Q20 = +Q20 + +1$	Actualización del contador de tramos de fresado (cortes)
40	FN 1: Q24 = +Q24 + +Q25	Actualización del ángulo en el espacio
41	FN 11: IF +Q20 GT +Q13 GOTO LBL 99	Pregunta si esta terminado, en caso afirmativo salto al final
42	LP PR+Q16 PA+Q24 FQ12	Aproximación al "arco" para el siguiente corte longitudinal
43	L Y+0 R0 FQ11	Corte longitudinal en la dirección Y-
44	FN 1: Q20 = +Q20 + +1	Actualización del contador de tramos de fresado (cortes)
45	FN 1: Q24 = +Q24 + +Q25	Actualización del ángulo en el espacio
46	FN 12: IF +Q20 LT +Q13 GOTO LBL 1	Pregunta si no está terminado, en caso afirmativo salto al LBL 1
47	LBL 99	
48	CYCL DEF 10.0 GIRO	Anular el giro
49	CYCL DEF 10.1 ROT+0	
50	CYCL DEF 7.0 PUNTO CERO	Anular el desplazamiento del punto cero
51	CYCL DEF 7.1 X+0	
52	CYCL DEF 7.2 Y+0	
53	CYCL DEF 7.3 Z+0	
54	LBL O	Final del subprograma
55	END PGM CILIN MM	

Ejemplo: Esfera convexa con fresa cónica

Desarrollo del programa

- El programa sólo funciona con una fresa cilíndrica
- El contorno de la esfera se compone de pequeñas rectas (el plano Z/X, se define mediante Q14). Cuanto más pequeño sea el paso angular mejor es el acabado del contorno
- El número de pasos se determina mediante el paso angular en el plano (mediante Q18)
- La esfera se fresa en pasos 3D de abajo hacia arriba
- El radio de la herramienta se corrige automáticamente

O BEGIN PGM ESFERA MM	
1 FN 0: Q1 = +50	Centro eje X
2 FN 0: Q2 = +50	Centro eje Y
3 FN 0: Q4 = +90	Angulo inicial en el espacio (plano Z/X)
4 FN 0: Q5 = +0	Angulo final en el espacio (plano Z/X)
5 FN 0: Q14 = +5	Paso angular en el espacio
6 FN 0: Q6 = +45	Radio de la esfera
7 FN 0: Q8 = +0	Angulo inicial en la posición de giro en el plano X/Y
8 FN 0: Q9 = +360	Angulo final en la posición de giro en el plano X/Y
9 FN 0: Q18 = +10	Paso angular en el plano X/Y para desbaste
10 FN 0: Q10 = +5	Sobremedida del radio de la esfera para el desbaste
11 FN 0: Q11 = +2	Distancia de seguridad para posicionamiento previo en el eje de hta.
12 FN 0: Q12 = +350	Avance de fresado
13 BLK FORM 0.1 Z X+0 Y+0 Z-50	Definición del bloque
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+7,5	Definición de la herramienta
16 TOOL CALL 1 Z S4000	Llamada a la herramienta
17 L Z+250 RO FMAX	Retirar la herramienta
18 CALL LBL 10	Llamada al mecanizado
19 FN 0: Q10 = +0	Anular la sobremedida
20 FN 0: Q18 = +5	Paso angular en el plano X/Y para el acabado
21 CALL LBL 10	Llamada al mecanizado
22 L Z+100 R0 FMAX M2	Retirar la herramienta, final del programa

23	LBL 10	Subprograma 10: Mecanizado	
24	FN 1: Q23 = +Q11 + +Q6	Cálculo de la coordenada Z para el posicionamiento previo	
25	FN 0: $Q24 = +Q4$	Copiar el ángulo inicial en el espacio (plano Z/X)	
26	FN 1: Q26 = +Q6 + +Q108	Corregir el radio de la esfera para el posicionamiento previo	
27	FN 0: Q28 = +Q8	Copiar la posición de giro en el plano	
28	FN 1: Q16 = +Q6 + -Q10	Tener en cuenta la sobremedida en el radio de la esfera	
29	CYCL DEF 7.0 PUNTO CERO	Desplazamiento del punto cero al centro de la esfera	
30	CYCL DEF 7.1 X+Q1		
31	CYCL DEF 7.2 Y+Q2		
32	CYCL DEF 7.3 Z-Q16		
33	CYCL DEF 10.0 GIRO	Cálculo del ángulo inicial de la posición de giro en el plano	
34	CYCL DEF 10.1 ROT+Q8		
35	CC X+0 Y+0	Fijar el polo en el plano X/Y para el posicionamiento previo	
36	LP PR+Q26 PA+Q8 RO FQ12	Posicionamiento previo en el plano	
37	LBL 1	Posicionamiento previo en el eje de la hta.	
38	CC Z+0 X+Q108	Fijar el polo en el plano Z/X para desplazar el radio de la hta.	
39	L Y+0 Z+0 FQ12	Desplazamiento a la profundidad deseada	
40	LBL 2		
41	LP PR+Q6 PA+Q24 RO FQ12	Desplazar el "arco" hacia arriba	
42	FN 2: $Q24 = +Q24 - +Q14$	Actualización del ángulo en el espacio	
43	FN 11: IF +Q24 GT +Q5 GOTO LBL 2	Pregunta si el arco está terminado, si no retroceso a LBL 2	
44	LP PR+Q6 PA+Q5	Llegada al ángulo final en el espacio	
45	L Z+Q23 R0 F1000	Retroceso según el eje de la hta.	
46	L X+Q26 RO FMAX	Posicionamiento previo para el siguiente arco	
47	FN 1: Q28 = +Q28 + +Q18	Actualización de la posición de giro en el plano	
48	FN 0: Q24 = +Q4	Anular el ángulo en el espacio	
49	CYCL DEF 10.0 GIRO	Activar la nueva posición de giro	
50	CYCL DEF 10.1 ROT+Q28		
51	FN 12: IF +Q28 LT +Q9 GOTO LBL 1		
52	FN 9: IF +Q28 EQU +Q9 GOTO LBL 1	Pregunta si no está terminado, en caso afirmativo salto al LBL 1	
53	CYCL DEF 10.0 GIRO	Anular el giro	
54	CYCL DEF 10.1 ROT+0		
55	CYCL DEF 7.0 PUNTO CERO	Anular el desplazamiento del punto cero	
56	CYCL DEF 7.1 X+0		
57	CYCL DEF 7.2 Y+0		
58	CYCL DEF 7.3 Z+0		
59	LBL O	Final del subprograma	
60	END PGM ESFERA MM		

Test y ejecución del programa

11.1 Gráficos

En el modo de funcionamiento Test del programa, el TNC simula gráficamente un mecanizado. Mediante softkeys se selecciona:

- Vista en planta
- Representación en tres planos
- Representación 3D

El gráfico del TNC corresponde a la representación de una pieza mecanizada con una herramienta cilíndrica.

- El TNC no muestra el gráfico cuando
- el programa actual no contiene una definición válida del bloque

no está seleccionado ningun programa

Resumen: Vistas

Después de seleccionar en el funcionamiento Test del programa la subdivisión de la pantalla GRAFICO o PROGRAMA + GRAFICO, el TNC muestra las siguientes softkeys:

Vista	Softkey
Vista en planta	
Representación en tres planos	
Representación 3D	

Vista en planta

Seleccionar con la softkey la vista en planta

Representación en tres planos

La representación se realiza en vista en planta con dos secciones, similar a un plano técnico. Un símbolo en la parte inferior izquierda indica si la representación corresponde al método de proyección 1 o al método de proyección 2 según la norma DIN 6, 1ª parte (seleccionable a través del parámetro MP 7310).

Además se puede desplazar el plano de la sección mediante softkeys:

Seleccionar la representación en 3 planos con la softkey

Conmutar la carátula de softkeys hasta que se visualicen las siguientes softkeys:

Función	Softkeys	
Desplazar el plano de la sección verti- cal hacia la dcha. o hacia la izq.		
Desplazar el plano de la sección horizontal hacia arriba o hacia abajo	Ŧ	<u>+</u>

Durante el desplazamiento se puede observar en la pantalla la posición del plano de la sección.

Representación 3D

El TNC muestra la pieza en el espacio.

La representación 3D puede girarse alrededor del eje vertical.

En el modo de funcionamiento test del pgm existen funciones para la ampliación de una sección

(véase +Ampliación de una sección).

Función

Seleccionar la representación 3D con esta softkey

Girar la representación 3D

Conmutar la carátula de softkeys hasta que aparezca la siguiente softkey:

Girar el gráfico en pasos de 27° alrededor del eje vertical

	_	
Ð		Ð)

Softkeys

Ampliación de una sección

Para la representación en 3D, se puede modificar la sección en el funcionamiento Test del programa

Para ello debe estar parada la simulación gráfica. La ampliación de una sección actua siempre en todos los modos de representación.

Conmutar la carátula de softkeys en el modo de funcionamiento Test del programa hasta que aparezcan las siguientes softkeys:

Función	Softkeys
Seleccionar el lado de la pieza que se desea cortar: Pulsar la softkey varias veces	Ø
Desplazar la superficie de la sección para ampliar o reducir la pieza	- +
Aceptar la sección	TRANSFER. DETALLE

Modificar la ampliación de la sección

Veáse las softkeys en la tabla

- ▶ Si es preciso se para la simulación gráfica
- Seleccionar con la softkey el lado de la pieza
- Ampliar o reducir el bloque: Mantener pulsada la softkey "-" o bien "+"
- Aceptar la sección deseada: Pulsar SECCION) BLOQUES
- Iniciar de nuevo el test del programa con la softkey START (RESET + START reproducen el bloque original)

Repetición de la simulación gráfica

emplear ACEPTAR

Un programa de mecanizado se puede simular gráficamente cuantas veces se desee. Para ello se puede anular el bloque del gráfico o una sección ampliada del mismo.

Función	Softkey								
Visualizar el bloque sin mecanizar con la última ampliación de sección seleccionada									
Anular la ampliación de la sección de forma que el TNC visualice la pieza mecanizada o sin mecanizar Visualizar la pieza según el BLK-FORM programado	BLOQUE Como Blk form								
Con la softkey BLOQUE COMO BLK FORM, el T muestra (incluso después de tener una sección	NC sin								

SECCION) el bloque en el tamaño programado.

Cálculo del tiempo de mecanizado

Modos de funcionamiento de ejecución del programa

Visualización del tiempo desde el inicio del programa hasta el final del mismo. Si se interrumpe el programa se para el tiempo.

Test del programa

Visualización del tiempo aproximado que el TNC calcula para la duración de los movimientos de la herramienta que se realizan con avance. El tiempo calculado por el TNC no se ajusta a los calculos del tiempo de acabado, ya que el TNC no tiene en cuenta los tiempos que dependen de la máquina (p.ej. para el cambio de herramienta).

Selección de la función del cronómetro

Conmutar la carátula de softkeys hasta que el TNC muestra las siguientes softkeys con las funciones del cronómetro:

Funciones del cronómetro	Softkey
Memorizar el tiempo visualizado	
Visualizar la suma de los tiempos memorizados o visualizados	
Borrar el tiempo visualizado	RESET 00:00:00 0

11.2 Test del programa

En el modo de funcionamiento Test del programa se simula el desarrollo de programas y partes del programa para excluir errores en la ejecución de los mismos. El TNC le ayuda a buscar

- Incompatibilidades geométricas
- indicaciones que faltan
- saltos no ejecutables
- daños en el espacio de trabajo

Además se pueden emplear las siguientes funciones:

- test del programa por frases
- interrupción del test en cualquier frase
- saltar frases
- Inciones para la representación gráfica
- visualización de estados adicional

Desarrollo test

8 L Z-5 R0 FMAX M1 9 CC X+0 Y+0 10 LP PR+14 PA+45 RR F500 11 RND R1	LBL CALL	00:	01:17
NOML. X - 167.400 Y +90.575 Z +101.995	T F 0 S	 M5/	9

Ejecución del test del programa

- ▶ Seleccionar el funcionamiento Test del programa
- ▶ Visualizar la gestión de ficheros con la tecla PGM MGT y seleccionar el fichero que se quiere verificar o
- ▶ Seleccionar el principio del programa: Seleccionar con la tecla GOTO "0" y confirmar la introducción con la tecla ENT

El TNC muestra las siguientes softkeys:

Funciones	Softkey
Verificar todo el programa	START
Verificar cada frase del programa por separado	START INDIVID.
Representar el bloque y verificar el programa completo	RESET + START
Parar el test del programa	STOP

Desarrol	lo test	t					
0 BEGIN PGM 356 1 BLK FORM 0.1 2 BLK FORM 0.2 3 TOOL DEF 1 L- 4 TOOL DEF 1 L- 5 TOOL CALL 1 2 6 L Z+50 R0 FM 7 L X+50 Y+56 8 L Z-5 R0 FM 9 CC X+0 Y+0 10 LP PR+14 PF	37 MM 2 X-20 Y-20 X+20 Y+20 ∞ R+6 ∞ R+6 ∞ R+4 2 S1000 4AX M3 3 R0 FMAX M8 3 R0 FMAX M8 3 R0 FMAX M8 3 R1 445 RR F500	Z-20 Z+0					
11 RND R1			٥°				00:01:17
NOML. X Y Z	+0.59 +0.59 +0.61	95 95 15	T F S	0		M5/	9
		BORRAR BLK FORM	STI	DP N T	START	START INDIVID.	RESET

Ejecución del test del programa hasta una frase determinada

Con STOP EN N el TNC ejecuta el test del programa sólo hasta una frase con el número N. Cuando se ha seleccionado la subdivisión de la pantalla de tal forma que el TNC visualiza un gráfico, entonces también se actualiza el gráfico hasta la frase N.

- ▶ Seleccionar el principio del programa en el modo de funcionamiento Test del programa
- Seleccionar el test del programa hasta una frase determinada: Pulsar la softkey STOP EN N

- ▶ Hasta frase nº: Introducir el número de frase en la cual debe detenerse el test del programa
- ▶ Programa: Si se quiere entrar en un programa llamado con CALL PGM: Introducir el nombre del programa en el cual se encuentra la frase con el número de frase elegido
- ▶ REPETICIONES: Introducir el nº de repeticiones que deben realizarse, en el caso de que la frase N se encuentre dentro de una repetición parcial del programa
- Comprobar la parte del programa: Pulsar la softkey START; el TNC comprueba el programa hasta la frase introducida

Par	ada	de	emerg	iencia	exte	erna				
0 1 2 3 4 5 6 7 8 9 10 11	BEG BLK BLK TOO TOO L L L C C C R ND	IN P FOR FOE L DE L CA Z +550 Z -560 P R + R 1	GM 35 M 0.1 F 1 L F 2 L L 1 R 0 F R 0 F R 0 F Hasta 0 Program Repetio	07 MM 2 X+2 +0 R+ +0 R+ Z S16 MAX M 0 R0 IAX M 1 Gute frase	(-20 20 Y+ 6 4 100 13 FMAX - 2507 = 0	Y-20 -20 Z M8	Z-20 2+0			
NOML.	NOML.+X -167.400 +Y +90.575 +Z +101.995 T ■ 0 ROT S M5/9									
						START		FIN		

11.3 Ejecución del programa

En la ejecución contínua del programa el TNC ejecuta un programa de mecanizado de forma continua hasta su final o hasta una interrupción.

En el modo de funcionamiento ejecución del programa frase a frase el TNC ejecuta cada frase por separado después de activar el pulsador externo de arranque START.

Se pueden emplear las siguientes funciones del TNC en los modos de funcionamiento de ejecución del programa:

- interrupción de la ejecución del programa
- ejecución del programa a partir de una frase determinada
- Saltar frases
- comprobar y modificar parámetros Q
- visualización de estados adicional

Ejecución del programa de mecanizado

Preparación

- 1 fijar la pieza a la mesa de la máquina
- 2 fijar el punto de referencia
- 3 seleccionar el programa de mecanizado (estado M)

Con el potenciómetro de override se pueden modificar el avance y las revoluciones.

Ejecución contínua del programa

Iniciar el programa de mecanizado con el pulsador externo de arranque START

Ejecución del programa frase a frase

Iniciar cada frase del programa de mecanizado con el pulsador externo de arranque START

Ejecución continua

						0507			
0	BEGIN PGM 350	7 MM		Nomb	re PGM	3507	/	1	
1	BLK FORM 0.1	Z X-20 Y-20	Z-20	REAL	. х	+0.595	5		
2	BLK FORM 0.2	X+20 Y+20	Z+0		Y	+0.595	5		
3	TOOL DEF 1 L+	0 R+6			2	+0.61)		
4	TOOL DEF 2 L+	0 R+4							
5	TOOL CALL 1 Z	S1000							
6	L Z+50 R0 FM	АХ МЗ		Giro básico					
7	L X+50 Y+50	RØ FMAX M8							
8	L Z-5 RØ FMA	X M1							
9	CC X+0 Y+0								
10	LP PR+14 PA	+45 RR F500							
11	RND R1								
NO	IML. X	+0.59	95						
	7	+0.53	30 1 E	Т					
	2	TU.D.	10	F	0				
				S	-		M5/	9	
TRI	ANSFER.			RESTAUR		I N	٥N	TABLA	

Ejecutar el programa de mecanizado que contiene coordenadas de ejes no controlados

El TNC también puede ejecutar programas en los cuales se han programado ejes no controlados.

El TNC detiene la ejecución del programa, cuando llega a una frase que contiene ejes no controlados. Asimismo el TNC visualiza una ventana en la cual se muestra el recorrido restante hasta la posición de destino (véase fig. arriba a la dcha.). En este caso debe procederse de la siguiente forma:

- Desplazar manualmente el eje a la posición de destino. El TNC actualiza continuamente la ventana del recorrido restante y visualiza siempre el valor que queda para alcanzar la posición de destino
- Una vez alcanzada la posición de destino, se pulsa la tecla de arranque NC para poder continuar con la ejecución del programa. Si se activa el pulsador de arranque NC antes de alcanzar la posición de destino, el TNC emite un aviso de error.

La exactitud con la que debe alcanzarse la posición final está determinada en el parámetro de máquina 1030.x (posibles valores de introducción: 0.001 a 2 mm).

Los ejes no controlados deben estar en una frase de posicionamiento a parte, de lo contrario el TNC emite un aviso de error.

Eje	ecι	ció	n	сo	nti	nua							
2 3 4 5 6 7 8 9 0 1 1 2 1 1 2 3	BTTTLLCPNCL RFF	K F IOL ++- X P R ID D R	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MFFLR RØ 1 R1 I H1	0.2 101 102 0 F Y+5 Y+6 Y+6 Z 80,	2 X+ L+1 2 L+1 1 Z MAX 50 R 1 AX 1 AX 1 9 -9 925	+2 0 0 0 15 15	0 R+6 R+7 100 FM6 ,82	Y+ 5 20 7 X 3	M8 M8	Ζ+	-0	
NOML. *	× Y +Z		+ 1 + 1	50 19 45	,00 ,99 ,82	15 15 25		T F S	10 0 10	1 Z 300		M3/	9
													STOP INTERNO
Interrupción del mecanizado

Se puede interrumpir la ejecución del programa de diferentes modos:

- Interrupciones programadas
- Pulsador externo STOP
- Conmutación a ejecución del programa frase a frase

Si durante la ejecución del programa el TNC regista un error, se interrumpe automáticamente el mecanizado.

Interrupciones programadas

Se pueden determinar interrupciones directamente en el programa de mecanizado. El TNC interrumpe la ejecución del programa tan pronto como el programa de mecanizado se haya ejecutado hasta una frase que contenga una de las siguientes introducciones:

- STOP (con y sin función auxiliar)
- Función auxiliar M0, M1 (véase "11.6 Parada programable en la ejecución del programa"), M2 o M30
- Función auxiliar M6 (determinada por el constructor de la máquina)

Interrupción mediante el pulsador externo de parada STOP

- Accionar el pulsador externo STOP: La frase que se está ejecutando en el momento de accionar el pulsador no se termina de realizar; en la visualización de estados aparece un asterisco "*" parpadeando.
- Si no se quiere continuar con la ejecución del mecanizado, se puede anular con la softkey STOP INTERNO: En la visualización de estados desaparece el asterisco "*". En este caso iniciar el programa desde el principio.

Interrupción del mecanizado mediante la conmutación al modo de funcionamiento Ejecución del programa frase a frase

Mientras se ejecuta un programa de mecanizado en el modo de funcionamiento Ejecución contínua del programa, seleccionar Ejecución del programa frase a frase. El TNC interrumpe el mecanizado después de ejecutar la frase de mecanizado actual.

Desplazamiento de los ejes de la máquina durante una interrupción

Durante una interrupción se pueden desplazar los ejes de la máquina como en el modo de funcionamiento Manual.

Ejemplo de utilización:

Retirar la herramienta del cabezal después de romperse la misma.

- ▶ Interrumpir el mecanizado
- Activación de los pulsadores de dirección externos: Pulsar la softkey DESPLAZ. MANUAL.
- Desplazar los ejes de la máquina con los pulsadores externos de manual

Para alcanzar de nuevo la posición donde se estaba en el momento de la interrupción se utiliza la función "Reentrada al contorno" (léase este apartado más abajo).

Continuar con la ejecución del pgm después de una interrupción

- En la interrupción de la ejecución de un programa el TNC memoriza
- los datos de la última herramienta llamada
- las traslaciones de coordenadas activadas
- las coordenadas del último centro del círculo definido
- el estado del contador de las repeticiones parciales del programa
- el número de frase con el que se ha llamado por última vez a un subprograma o a una repetición parcial del programa

Ejec	cuc	ión	con	tin	ua					
10 L 112 F 134 F 15 F 157 F 157 F 157 F 157 F 159 F 199 F 201 F	P C C C C C C C C C C C C C C C C C C C	PR+ R1 DR + DR + R2 · AN + DR + DR + DR + DR + LECT	14 R2.! +180 +269 0.910 +89 - R2 2	PA 5.93.50 75.00 75.52 .5	+45 LSD+ 25 N 25 25 CLSI	RR 11 2X+0 2X+0	F 5	600 ССҮ+0 ССҮ+0	1	
NOML.	X Y Z	+	-8.2 14.2 -5.0	285 270 300		T F S	1 0 10	Z 300	M3/	8
OPERACI MANUAL	0N -									STOP INTERNO

Continuar la ejecución del pgm con el pulsador externo START

Después de una interrupción se puede continuar con la ejecución del programa con el pulsador externo START, siempre que el programa se haya detenido de una de las siguientes maneras:

- Accionando el pulsador externo STOP
- Interrupción programada

Accionar el pulsador de PARADA DE EMERGENCIA (está función depende de la máquina)

Si se ha interrumpido la ejecución del programa con la softkey INTERNAL STOP, se puede seleccionar otra frase con la tecla GOTO y continuar con el mecanizado.

Si se selecciona la frase BEGIN PGM (frase 0), el TNC anula todas las informaciones memorizadas (datos de la hta., etc.).

Si se ha interrumpido la ejecución del programa dentro de una repetición parcial del mismo, sólo se pueden seleccionar otras frases con GOTO dentro de dicha repetición parcial del programa.

Continuar con la ejecución del pgm después de un error

Cuando el error no es intermitente:

- Eliminar la causa del error
- ▶ Borrar el aviso de error de la pantalla: Pulsar la tecla CE
- Arrancar de nuevo o continuar con la ejecución del pgm en el mismo lugar donde fue interrumpido
- Cuando el aviso de error es intermitente:
- Mantener pulsada dos segundos la tecla END, el TNC realiza un arranque rápido
- Eliminar la causa del error
- Arrancar de nuevo
- Si el error se repite anote el error y avise al servicio técnico.

Reentrada libre al programa (restaurar posición en frase)

La función Restaurar posición depende de la configuración de la máquina. ¡Rogamos consulten el manual de su máquina!

Con la función RESTAURAR POSICIÓN EN FRASE N se puede eiecutar un programa de mecanizado a partir de una frase N libremente elegida. El TNC tiene en cuenta el cálculo del mecanizado de la pieza hasta dicha frase.

La función Restaurar posición comienza siempre al principio del programa.

> Si el programa contiene una interrupción programada antes de la frase N solicitada, el TNC interrumpe el proceso en dicha posición. Para continuar se pulsa la softkey RESTAURAR POSICIÓN EN FRASE N y START.

Después la herramienta se desplaza con la función Reentrada al contorno, a la posición calculada (véase pág. siguiente).

La corrección de longitud de la herramienta se activa a través de la llamada de la herramienta y el posicionamiento subsiguiente en el eje de la herramienta, Esto también es válido para una longitud de herramienta modificada.

- ▶ Seleccionar la primera frase del programa actual como inicio para la ejecución de restaurar posición en frase: Introducir GOTO "0".
- Seleccionar la función: pulsar softkev RESTAURAR POSICIÓN EN FRASE N, el TNC visualiza una ventana de introducción:

Avance hasta N: Introducir el número N de la frase en la cual debe finalizar el proceso

- ▶ Programa: introducir el nombre del programa en el cual se encuentra la frase N
- ▶ Repeticiones: Introducir el nº de repeticiones que deben tenerse en cuenta en la función Restaurar posición en una frase, en el caso de que la frase N se encuentre dentro de una repetición parcial del programa

▶ PLC CONECTADO/DESCONECTADO: para tener en cuenta todas las llamadas de herramienta y las funciones auxiliares M: ajustar PLC en CONECTADO

(conmutar con la tecla ENT entre CONECTADO y DESCONECTADO) Con el PLC DESCONECTADO se contempla solamente la geometría del programa NC. La herramienta en el cabezal debe corresponderse con la herramienta llamada en el programa.

Ejecu	ıción	conti	nua					
0 BE 1 BL 2 BL 3 TC 4 TC 6 L 7 L 9 CC 10 LF 11 R	EGIN F K FOR DOL DE DOL 455 X X - 54 X PR ND R1	PGM 35 M 0.1 F 0.2 F 1 L F 2 L ILL 1 R Avance Program PLC	507 MM 2 X + 2 + 0 R + + 0 R + Z S 10 MAX M hasta: N hasta: N ma	1 2 0 4 5 6 4 5 0 0 5 5 7 13 FMAX - 4 5 5 7 - 0 0 0 - - - - - - - - - - - - -	Y-20 20 Z	2-20 2+0		
NOML. >	NOML. X -142.195 Y -149.030 Z +163.000 F 0 S 1000 M3/8							
					START		FIN	

- ▶ Iniciar la función Restaurar posición en frase: Pulsar la softkey START
- ▶ Llegada al contorno: Véase el siguiente apartado "Reentrada al contorno".

La ventana de introducción de datos de restaurar posición se puede mover sobre la pantalla. Para ello se pulsa la tecla de división de pantalla y se emplean las softkeys que se visualizan allí.

Reentrada al contorno

Con la función ALCANZAR POSICION, el TNC aproxima la hta. al contorno de la pieza, después de haber desplazado durante una interrupción los ejes de la máquina con la softkey DESPLAZ. MANUAL o cuando se quiere entrar en el programa con la función avance hasta una frase.

- Seleccionar la reentrada al contorno: Pulsar la softkey ALCANZAR POSICIÓN (no activada en el avance hasta una frase). El TNC muestra en la ventana visualizada 1 la posición a la que el TNC desplaza la hta.
- Desplazar los ejes en la secuencia que propone el TNC en la ventana: 1 Pulsar la tecla de arranque START
- Desplazar los ejes en cualquier secuencia: Pulsar la softkey ALCANZAR X, ALCANZAR Z, etc. y accionar el pulsador externo START
- ▶ Proseguir con el mecanizado: Accionar el pulsador externo START

Ejecución continua	
10 LP PR+14 PA+45 11 RND R1 12 FC DR+ R2.5 CLSD+ 13 FLT AN+180.925 M 14 FCT DR+ R10.5 CC 15 FLT AN+269.025 M M M 16 RND R2.5 REENTROPA: SECUEN N+180.925 M 17 FL AN+0 M </td <td>RR F500 11 </td>	RR F500 11
NOML. X -142.195 * Y -149.030 Z +163.000	T 1 Z F 0 S 1000 M3/8
RESTAURAR RESTAURAR	OPERACION STOP MANUAL INTERNO

11.4 Transmisión por bloques: Ejecución de programas largos

Los programas de mecanizado que precisan más espacio en la memoria que la disponible en el TNC, se pueden transmitir "por bloques" desde una memoria externa.

Para ello el TNC introduce las frases del programa mediante la conexión de datos y una vez ejecutadas se vuelven a borrar. De esta forma se puede ejecutar cualquier programa por largo que sea.

El programa puede contener un máximo de 20 frases TOOL DEF. Si se precisan varias herramientas se emplea la tabla de herramientas.

Cuando un programa contiene una frase PGM CALL, el programa llamado tiene que estar en la memoria del TNC.

El programa no puede contener:

- Subprogramas
- Repeticiones parciales de un programa
- Función FN15:PRINT

Transmisión de un programa por bloques

Configurar la conexión de datos con la función MOD, determinar la memoria de frases (véase "14.4 Ajuste de la conexión de datos externa").

Seleccionar el modo de funcionamiento ejecución continua del pgm o ejecución frase a frase

- ► Ejecutar la transmisión por bloques: Pulsar la softkey TRANSMISION POR BLOQUES
- Introducir el nombre del programa, si es necesario modificar el tipo de programa mediante softkeys, confirmar con la tecla ENT. A través de la conexión de datos, el TNC introduce el programa seleccionado. Si no se indica ningún tipo de programa, el TNC introduce el tipo definido en la función MOD "Introduc. pgm"
- Iniciar el programa de mecanizado con el pulsador de arranque START. Si se determina una memoria de frases mayor a 0, el TNC espera a iniciar el programa hasta que se ha leido el número de frases NC definidas.

11.5 Saltar frases

Las frases que se caracterizan en la programación con el signo "/" se pueden saltar en el test o la ejecución del programa:

Ejecutar o verificar las frases de programa con el signo "/": Colocar la softkey en OFF

No ejecutar o verificar las frases del programa con el signo "/": Pulsar la softkey en ON

Esta función no actua en las frases TOOL DEF.

11.6 Parada programable en la ejecución del programa

EL TNC puede interrumpir la ejecución del programa o el test del programa en las frases que se haya programado M01. Si se utiliza M01 en el modo de funcionamiento ejecución del programa, el TNC no desconecta el cabezal y el refrigerante.

No interrumpir la ejecución o el test del programa en frases con M01: Colocar la softkey en OFF

Interrupción de la ejecución o el test del programa en frases con M01: Colocar la softkey en ON

Palpadores 3D

12.1 Ciclos de palpación en los modos de funcionamiento Manual y Volante electrónico

El constructor de la máquina prepara el TNC para utilizar un palpador 3D.

Si se realizan mediciones durante la ejecución del programa, deberá prestarse atención de que los datos de la hta. (longitud, radio, eje) se pueden tomar de los datos calibrados o de la última frase TOOL CALL empleada (selección a través de MP7411).

Durante los ciclos de palpación después de accionar el pulsador externo de arranque START, el palpador 3D se desplaza hacia la pieza paralelo al eje. El constructor de la máquina determina el avance de palpación: Véase la figura de la derecha. Cuando el palpador 3D roza la pieza,

- el palpador 3D emite una señal al TNC: Se memorizan las coordenadas de la posición palpada
- se para el palpador 3D y
- retrocede en marcha rápida a la posición inicial del proceso de palpación

Cuando dentro de un recorrido determinado no se desvía el vástago, el TNC emite el aviso de error correspondiente (recorrido: MP6130).

Selección de la función de palpación

Seleccionar el modo de funcionamiento Manual o Volante electrónico

Seleccionar las funciones de palpación: Pulsar la softkey FUNCIONES DE PALPACIÓN. EITNC

muestra otras softkeys: Véase la tabla de la derecha

Función	Softkey
Calibrar la longitud activa	CAL L
Calibrar el radio activo	CAL R
Giro básico	
Fijar el punto de referencia	PALPAR POS
Fijación de la esquina como pto. de ref.	PALPAR P
Fijar pto. central círculo como pto. de ref	PALPAR × CC

de funcionamiento electrónico Volante Ciclos de palpación en los modos > MANUAL 12.1

Calibración del palpador digital

Hay que calibrar el palpador en los siguientes casos:

- puesta en marcha
- Rotura del vástago
- Cambio del vástago
- Modificación del avance de palpación
- Irregularidades, como p.ej.por calentamientode la máquina

En la calibración, el TNC calcula la longitud "activa" del vástago y el radio "activo" de la bola de palpación. Para la calibración del palpador 3D, se coloca un anillo de ajuste con altura y radio interior conocidos, sobre la mesa de la máquina.

Calibración de la longitud activa

- Fijar el punto de referencia en el eje de aproximación de tal forma que la mesa de la máquina tenga el valor: Z=0.
 - CAL L

Seleccionar la función de la calibración de la longitud del palpador: Pulsar la softkey FUNCIONES PALPACION y CAL L. EITNC muestra una ventana del menú con cuatro casillas de introducción.

- ▶ Seleccionar el eje de la hta. mediante softkey
- Punto de ref.: Introducir la altura del anillo de ajuste
- Los puntos del menú radio de la esfera y longitud activa no precisan ser introducidos
- Desplazar el palpador sobre la superficie del anillo de ajuste
- Si es preciso se modifica la dirección de desplazamiento visualizada: Pulsar las teclas cursoras
- ▶ Palpación de la superficie: Pulsar el arranque START

Calibración del radio activo y compensación de la desviación del palpador

Normalmente el eje del palpador no coincide exactamente con el eje del cabezal. La desviación entre el eje del palpador y el eje del cabezal se ajusta automáticamente mediante esta función de calibración.

Con esta función el palpador 3D gira 180°.

El giro lo ejecuta una función auxiliar que determina el constructor de la máquina en el parámetro MP6160.

La medición de la desviación del palpador se realiza después de calibrar el radio de la bola de palpación.

 Posicionar la bola de palpación en funcionamiento manual en el interior del anillo de ajuste

180

- Selección de la función de calibración del radio de la bola de palpación y de la desviación del palpador: Pulsar la softkey CAL R
- Seleccionar el eje de la hta. e introducir el radio del anillo de ajuste
- Palpación: Accionar 4 veces el pulsador externo de arranque START. El palpador 3D palpa en cada dirección de los ejes una posición del interior del anillo y calcula el radio activo de la bola de palpación.
- Si se quiere finalizar ahora la función de calibración, pulsar la softkey END
- Determinar la desviación de la bola de palpación: Pulsar la softkey "180°" El TNC gira el palpador 180°
 - Palpación: Accionar 4 veces el pulsador externo de arranque START. El palpador 3D palpa en cada dirección de los ejes una posición del interior del anillo y calcula la desviación del palpador

Visualización de los valores calibrados

La longitud activa, el radio activo y el valor de la desviación del palpador se memorizan en el TNC y después se tienen en cuenta al utilizar el palpador 3D. Los valores memorizados se visualizan pulsando CAL. L y CAL. R.

Compensación de la inclinación de la pieza

EITNC compensa una inclinación de la pieza mediante el "Giro básico".

Para ello el TNC fija el ángulo de giro sobre el ángulo que forma una superficie de la pieza con el eje de referencia angular del plano de mecanizado. Véase la figura abajo a la derecha.

Para medir la inclinación de la pieza, seleccionar siempre la dirección de palpación perpendicular al eje de ref. angular.

Para calcular correctamente el giro básico en la ejecución del programa, deberán programarse ambas coordenadas del plano de mecanizado en la 1ª frase de desplazamiento.

- PALPAR
- Seleccionar la función de palpación: Pulsar la softkey PALPAR ROT
- Posicionar el palpador cerca del primer punto de palpación
- Seleccionar la dirección de palpación perpendicular al eje de referencia angular: Seleccionar el eje con las teclas cursoras
- Palpación: Accionar el pulsador externo de arranque START
- ▶ Posicionar el palpador cerca del 2º pto. de palpación
- Palpación: Accionar el pulsador externo de arranque START

Parac	la de	emerç	iencia	e×te	rna		
X+ X	(- Y+	- Y-					
<mark>Eje c</mark> Radic Radic Longi Desví Desví	le her anil esfe tud a o cer o cer	ramie lo aj ra ac activa atro b atro b	nta = uste tivo = +0 ola p ola p	Z = 25. = 1.9 alp. alp.	003 96 X+0.1 Y-0.0	27 153	
NOML . + X + Y + Z	- 1 + + + 1	67.40 90.57 01.99	10 75 15	T ∎Ø S		M5/	9
х	Y	z					FIN

El TNC memoriza el giro básico contra fallos de red. El giro básico actua en todas las ejecuciones y tests de programas siguientes.

Visualización del giro básico

El ángulo del giro básico se visualiza después de una nueva selección de PALPAR ROT en la zona de visualización del angulo de giro. El TNC también indica el ángulo de giro en la visualización de estados adicional (subdivisión de la pantalla PROGRAMA + ESTADO POSIC. NUM.).

Siempre que el TNC desplace los ejes de la máguina según el giro básico, en la visualización de estados se ilumina un símbolo para dicho giro básico.

Anulación del giro básico

- Seleccionar la función de palpación: Pulsar la softkev PALPAR ROT
- ▶ Introducir el ángulo de giro "0" y aceptar con la tecla ENT
- ▶ Finalizar la función de palpación: Pulsar la tecla END

12.2 Fijar un punto de referencia con palpadores 3D

Las funciones para la fijación del punto de referencia en la pieza, se seleccionan con las siguientes softkeys:

- Fijar el punto de ref. en el eje deseado con PALPAR POS
- Fijar la esquina como punto de ref. con PALPAR P
- Fijar un punto central del círculo como punto de ref. con PALPAR CC

Fijar el punto de ref. en cualquier eje (véase fig. abajo a la dcha.) PALPAR POS

- ▶ Seleccionar la función de palpación: Pulsar la softkey PALPAR POS
- ▶ Posicionar el palpador cerca del punto de palpación
- ▶ Seleccionar simultáneamente la dirección de palpación y el eje para los cuales se ha fijado el punto de ref. p.ej. palpar Z en dirección Z: Seleccionar con las teclas cursoras
- ▶ Palpación: Accionar el pulsador externo de arranque START
- ▶ Punto de ref.: Introducir la coordenada nominal y aceptar con ENT

Giro básico

X – Y + Y -

Angulo de giro = +12.357

NOML. X +0.595									
	Ž	+0.595 +0.615			12 0	0 Z	R	0T 5/	9
									FIN

P

Esquina como punto de ref. - Aceptar los puntos palpados para el giro básico (véase la figura de arriba a la derecha)

- Seleccionar la función de palpación: Pulsar la softkey PALPAR P
- ¿Puntos de palpación del giro básico?: Pulsar la tecla ENT para aceptar las coordenadas de los puntos de palpación
- Posicionar el palpador cerca del primer punto de palpación sobre la arista de la pieza palpada para el giro básico
- Seleccionar la dirección de palpación: Seleccionar el eje con las teclas cursoras
- Palpación: Accionar el pulsador externo de arranque START
- Posicionar el palpador cerca del 2º punto de palpación sobre la misma arista
- Palpación: Accionar el pulsador externo de arranque START
- Punto de ref.: Introducir las dos coordenadas del punto de ref. en la ventana del menú y aceptar con ENT
- Finalizar la función de palpación: Pulsar la tecla END

Esquina como punto de ref. - No aceptar los puntos palpados para el giro básico

- Seleccionar la función de palpación: Pulsar la softkey PALPAR P
- ¿PUNTOS DE PALPACION DEL GIRO BASICO?: Negarlo con la tecla NO ENT (la pregunta del diálogo sólo aparece cuando se ha ejecutado antes un giro básico)
- Palpar las dos aristas cada una dos veces
- Introducir las coordenadas del punto de referencia y aceptar con la tecla ENT
- Finalizar la función de palpación: Pulsar la tecla END

Punto central del círculo como punto de referencia

Como punto de referencia se pueden fijar puntos centrales de taladros, cajeras circulares, cilindros, islas, islas circulares, etc,

Círculo interior:

El TNC palpa la pared interior del círculo en las cuatro direcciones de los ejes de coordenadas.

En los arcos de círculo, la dirección de palpación puede ser cualquiera.

▶ Posicionar la bola de palpación aprox. en el centro del círculo

Seleccionar la función de palpación: Pulsar la softkey PALPAR CC

- Palpación: Accionar 4 veces el pulsador START. El palpador palpa sucesivamente 4 puntos de la pared interior del círculo
- Cuando se quiere trabajar con una medición compensada (sólo en máquinas con orientación del cabezal, depende de MP6160). se pulsa la softkey 180° y se palpan de nuevo 4 puntos de la pared interior del círculo
- Si no se trabaja con una medición compensada se pulsa la tecla END
- Punto de ref.: Introducir en la ventana del menú las dos coordenadas del punto central del círculo y aceptar con la tecla ENT
- ▶ Finalizar la función de palpación: Pulsar la tecla END

Círculo exterior:

- Posicionar la bola de palpación cerca del primer punto de palpación fuera del círculo
- Seleccionar la dirección de palpación: Seleccionar la softkey correspondiente
- ▶ Palpación: Accionar el pulsador externo de arrangue START
- Repetir el proceso de palpación para los 3 puntos restantes. Veáse la fig. de abajo a la dcha.
- Introducir las coordenadas del punto de referencia y aceptar con la tecla ENT

Después de la palpación, el TNC visualiza en pantalla las coordenadas actuales del punto central del círculo y el radio del mismo PR.

12.3 Medición de piezas con palpadores 3D

Con el palpador 3D se pueden determinar:

- Coordenadas de la posición y con dichas coordenadas
- Dimensiones y ángulos de la pieza

Determinar las coordenadas de la posición de una pieza centrada

- PALPAR POS
- Seleccionar la función de palpación: Pulsar la softkey PALPAR POS
 - > Posicionar el palpador cerca del punto de palpación
 - Seleccionar la dirección de palpación y simultáneamente el eje al que se refiere la coordenada: Seleccionar con las teclas cursoras.
 - Iniciar el proceso de palpación: Pulsar el arranque externo START

El TNC visualiza la coordenada del punto de palpación como punto de referencia.

Determinar las coordenadas del punto de la esquina en el plano de mecanizado

Determinar las coordenadas del punto de la esquina, tal como se describe en "Esquina como punto de referencia". El TNC indica las coordenadas de la esquina palpada como punto de referencia.

Determinar las dimensiones de la pieza

- Seleccionar la función de palpación: Pulsar la softkey PALPAR POS
- Posicionar el palpador cerca del primer punto de palpación A
- Seleccionar la dirección de palpación con las teclas cursoras
- Palpación: Accionar el pulsador externo de arranque START
- Anotar como punto de referencia el valor visualizado(sólo cuando se mantiene activado el punto de ref. anteriormente fijado)
- ▶ Punto de referencia: Introducir "0"
- ▶ Interrumpir el diálogo: Pulsar la tecla END
- Seleccionar de nuevo la función de palpación: Pulsar la softkey PALPAR POS

12.3 Medición de piezas con palpadores 3D

- Posicionar el palpador cerca del segundo punto de palpación B
- Seleccionar la dirección de palpación con las teclas cursoras: El mismo eje pero dirección opuesta a la primera palpación.
- Palpación: Accionar el pulsador externo de arranque START

En la visualización PUNTO DE REFERENCIA se tiene la distancia entre los dos puntos sobre el eje de coordenadas.

Fijar de nuevo la visualización de la posición al valor que se tenía antes de la medición lineal

- ▶ Seleccionar la función de palpación: Pulsar la softkey PALPAR POS
- ▶ Palpar de nuevo el primer punto de palpación
- Fijar el punto de referencia al valor anotado
- ▶ Interrupción del diálogo: Pulsar la tecla END.

Medición de un ángulo

Con un palpador 3D se puede determinar un ángulo en el plano de mecanizado. Se puede medir

- el ángulo entre el eje de referencia angular y una arista de la pieza o
- el ángulo entre dos aristas

El ángulo medido se visualiza hasta un valor máximo de 90°.

Determinar el ángulo entre el angulo de referencia angular y una arista de la pieza

Seleccionar la función de palpación: Pulsar la softkey PALPAR ROT.

- Angulo de giro: Anotar el ángulo de giro visualizado, en el caso de que se quiera volver a reproducir posteriormente el giro básico realizado anteriormente.
- Realizar el giro básico a partir del lado a comparar (véase "Compensar posición inclinada de la pieza")
- Con la softkey PALPAR ROT visualizar como ángulo de giro, el ángulo entre el eje de referencia angular y la arista de la pieza.
- Eliminar el giro básico o reproducir de nuevo el giro básico original:
- ▶ Fijar el punto de referencia al valor anotado

Determinar el ángulo entre dos aristas de la pieza

- ▶ Seleccionar la función de palpación: Pulsar la softkey PALPAR ROT
- Angulo de giro: Anotar el ángulo de giro visualizado, en el caso de que se quiera volver a reproducir posteriormente
- Realizar el giro básico para el primer lado (véase "Compensar la posición inclinada de la pieza")
- Asimismo se palpa el segundo lado igual que en un giro básico, ino fijar el ángulo de giro a 0!
- Con la softkey PROBING ROT visualizar el ángulo PA entre las aristas de la pieza como ángulo de giro
- Eliminar el giro básico o volver a reproducir el giro básico original: Fijar el ángulo de giro al valor anotado

Medición con el palpador 3D durante la ejecución del programa

Con el palpador 3D también se pueden registrar posiciones en la pieza durante la ejecución del programa: Incluso en el plano inclinado de mecanizado. Aplicaciones:

- Calcular diferencias de altura en superficies de fundición
- Cálculos de tolerancia durante el mecanizado

El empleo del palpador se programa en el modo de funcionamiento Memorizar/Editar programa con la tecla TOUCH PROBE y la softkey REF PLANE. El TNC posiciona previamente el palpador y palpa automáticamente la posición indicada. Para ello se desplaza el palpador paralelo al eje de la máquina determinado en el ciclo de palpación. El TNC sólo tiene en cuenta un giro básico activo o una rotación para el cálculo del punto de palpación. Las coordeandas del punto de palpación se memorizan en un parámetro Q. El TNC interrumpe el proceso de palpación cuando no esta desviado el palpador en un determinado margen (se selecciona mediante MP 6130). Las coordenadas de la posición en la que se encuentra el polo sur del palpador durante la palpación, se memorizan después del proceso de palpación en los parámetros Q115 a Q118. Para los valores de estos parámetros se tienen en cuenta la longitud y el radio del vástago.

 El posicionamiento previo se realiza manualmente, de tal forma que se evite una posible colisión al alcanzar la posición previa programada.

Deberá tenerse en cuenta que los datos de la herramienta como longitud, radio y eje se pueden obtener de los datos calibrados o de la última frase TOOL CALL: Se selecciona mediante MP7411.

Pulsar la tecla TOUCH PROBE en el modo de funcionamiento Memorizar/Editar programa.

- Seleccionar la función de palpación: Pulsar la softkey PLANO DE REFERENCIA
- Nº de parámetro para el resultado: Introducir el número de parámetro Q al que se le ha asignado el valor de la coordenada
- Eje/dirección de palpación: Introducir el eje de palpación con la tecla de selección de ejes y el signo para la dirección de palpación. Confirmar con ENT.
- Coordenadas: Mediante las teclas de selección de ejes introducir todas las coordenadas para el posicionamiento previo del palpador.
- Finalizar la introducción: Pulsar la tecla ENT

Ejemplo de frases NC

67 TCH PROBE 0.0 SUPERF. REF. Q5 X-68 TCH PROBE 0.1 X+5 Y+0 Z-5

Ejemplo: Determinar la altura de una isla sobre la pieza

- Desarrollo del programa Asignar el parámetro del programa
- Medir la altura con la función PLANO DE REFERENCIA
- Calcular la altura

BEGIN PGM PALPAR3D MM	
1 FN 0: Q11 = +20	1er punto de palpación: Coordenada X
2 FN 0: Q12 = +50	1er punto de palpación: Coordenada Y
3 FN 0: Q13 = +10	1er punto de palpación: Coordenada Z
4 FN 0: Q21 = +50	2º punto de palpación: Coordenada X
5 FN 0: Q22 = +10	2º punto de palpación: Coordenada Y
6 FN 0: Q23 = +0	2º punto de palpación: Coordenada Z
7 TOOL CALL O Z	Llamada al palpador
8 L Z+250 RO FMAX	Retirar el palpador
9 L X+Q11 Y+Q12 RO FMAX	Posicionamiento previo para la primera medición
10 TCH PROBE 0.0 SUPERFICIE REF. Q10 Z-	Medición de la arista superior de la pieza
11 TCH PROBE 0.1 Z+Q13	
12 L X+Q21 Y+Q22 RO FMAX	Posicionamiento previo para la segunda medición
13 TCH PROBE 0.0 SUPERFICIE REF. Q20 Z-	Medir la profundidad
14 TCH PROBE 0.1 Z+Q23	
15 FN 2: Q1 = +Q20 - +Q10	Calcular la altura absoluta de la isla
16 STOP	Parada en la ejecución del programa: Verificar Q1
17 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
END PGM PALPAR3D MM	

Digitalización

13.1 Digitalización con el palpador digital (opción)

Con la opción digitalización el TNC registra piezas 3D con un palpador digital.

Para la digitalización se precisan los siguientes componentes:

- Palpador
- Módulo de software "Opción Digitalización"
- Si es preciso, software de evaluación de los datos digitalizados SUSA de HEIDENHAIN para la elaboración posterior de los datos digitalizados, registrados con el ciclo MEANDRO

Para la digitalización están disponibles los siguientes ciclos:

- CAMPO
- MEANDRO
- LINEAS DE NIVEL

El constructor de la máquina deberá preparar el TNC y la máquina para la aplicación de un palpador.

Antes de empezar a digitalizar hay que calibrar el palpador.

Función

Por medio del palpador, se palpa una pieza 3D punto por punto en la trama que se seleccione. La velocidad de la digitalización es de 200 a 800 mm/min en una distancia entre puntos (DIST.P.) de 1 mm (éste valor depende de la máquina).

El TNC emite las posiciones registradas mediante la conexión de datos, normalmente a un PC. Para ello se configura la conexión de datos (véase "14.4 Ajuste de la conexión externa de datos").

Si se utiliza una herramienta para el fresado de los datos rgistrados en la digitalización, cuyo radio corresponde al radio del vástago, se pueden ejecutar directamente los datos digitalizados sin realizar más procesos

Los ciclos de digitalización se programan con los ejes principales X, Y y Z.

Durante la digitalización no pueden estar activados la traslación de coordenadas y el giro básico.

El TNC incluye el BLK FORM en el fichero de los datos digitalizados.

13.2 Programación de los ciclos de digitalización

- ▶ Pulsar la tecla TOUCH PROBE
- > El ciclo de digitalización deseado se selecciona mediante softkey
- Contestar a las preguntas del diálogo del TNC: Introducir los valores correspondientes a través del teclado y confirmar con ENT. Cuando el TNC tiene toda la información necesaria finaliza automáticamente la definición del ciclo. Encontrará más información sobre los distintos parámetros de introducción en la descripción del ciclo correspondiente en este capítulo.

Determinar el campo de digitalización

El ciclo CAMPO 5 está disponible para la definición del campo de digitalización. Se puede definir un campo rectangular, palpando la pieza.

El campo de digitalización se determina como un paralelepípedo mediante la introducción de coordenadas mínimas y máximas en los tres ejes principales X, Y y Z, igual que en la definición del bloque BLK FORM. Véase la figura de la derecha.

- ▶ Nombre pgm de los datos de la digitalización: Nombre del fichero en el que se quieren memorizar los datos digitalizados
- ▶ Eje TCH PROBE: Introducir el eje del palpador
- Campo punto MIN. Punto mínimo del campo en el que se digitaliza
- Campo punto MAX: Punto máximo del campo en el que se digitaliza
- Altura de seguridad: Posición en el eje del palpador para evitar colisiones entre el vástago y la pieza a palpar.

Ejemplo de frases NC

50	TCH	PROBE	5.0	CAMPO
51	TCH	PROBE	5.1	NOMBRE PGM: DATOS
52	TCH	PROBE	5.2	Z X+0 Y+0 Z+0
53	TCH	PROBE	5.3	X+10 Y+10 Z+20
54	TCH	PROBE	5.4	ALTURA: + 100

13.3 Digitalización en forma de meandro

Ciclo de digitalización 6 MEANDRO

Con el ciclo de digitalización MEANDRO se digitaliza en forma de meandro una pieza 3D. Este proceso es especialmente apropiado para piezas relativamente planas. En el caso de que se quieran seguir procesando los datos digitalizados con el software de evaluación SUSA de HEIDENHAIN, deberá digitalizarse en forma de meandro.

En el proceso de digitalización se selecciona un eje del plano de mecanizado en el cual el palpador se desplaza en dirección positiva hasta el límite del campo, partiendo del punto MIN en el plano de mecanizado. Desde allí el palpador se desplaza según la distancia entre líneas y a continuación vuelve sobre dicha línea. En el otro lado de la línea el palpador vuelve a desplazarse según la distancia entre líneas. Este proceso se repite hasta que se ha palpado todo el campo.

Al final del proceso de digitalización el palpador retrocede a la altura de seguridad.

Punto de partida

- Coordenadas del punto MIN en el plano de mecanizado del ciclo 5 CAMPO, coordenada del eje de la hta. = altura de seguridad
- El TNC alcanza automáticamente el punto de partida: Primero en el eje del cabezal a la altura de seguridad, después en el plano de mecanizado

Llegada a la pieza

El palpador se desplaza hacia la pieza en la dirección negativa del eje del cabezal. Se memorizan las coordenadas de la posición en la que el palpador roza la pieza.

En el programa de mecanizado deberá definirse el ciclo de digitalización CAMPO antes que el ciclo de digitalización MEANDRO.

Parámetros de digitalización

- Dirección de líneas: Eje de coordenadas en el plano de mecanizado, en cuya dirección positiva se desplaza el palpador desde el primer punto programado del contorno.
- Limitación en la dirección de las normales: Recorrido según el cual se retira el palpador después de una desviación. Campo de introducción: 0 a 5 mm Recomendación: Introducir valores entre 0.5 x distancia de puntos y la distancia de puntos Cuanto menor sea la bola de palpación mayor debe seleccionarse la limitación en la dirección de las normales
- Distancia entre líneas: Desvío del palpador al final de la línea; distancia entre líneas. Campo de introducción: 0 a 5 mm
- Distancia punto MAX: Distancia máxima entre los puntos memorizados por el TNC. Además el TNC tiene en cuenta los puntos importantes y críticos de la forma del modelo, p.ej. en esquinas interiores. Campo de introducción: 0.02 a 5 mm

Ejemplo de frases NC

60	TCH	PROBE	6.0	MEANDRO	
61	TCH	PROBE	6.1	DIRECC.: X	
62	TCH	PROBE	6.2	RECORR:0.5 DIST.L: 0.2	
DIST.P.: 0.5					

13.4 Digitalización por líneas de nivel

Ciclo de digitalización 7 LINEAS DE NIVEL

Con el ciclo de digitalización 17 LINEAS DE NIVEL se digitaliza gradualmente una pieza 3D. La digitalización en líneas de nivel es especialmente apropiada para piezas irregulares (p.ej. fundición por inyección) o cuando sólo se quiere registrar una única línea de nivel (p.ej. línea del contorno de una placa curvada).

En el proceso de digitalización el palpador se desplaza, después de registrar el primer punto, sobre una altura constante alrededor de la pieza. Cuando se alcanza de nuevo el primer punto registrado, se efectúa una aproximación según la distancia entre líneas introducida en dirección positiva o negativa al eje del cabezal. El palpador se desplaza de nuevo a una altura constante alrededor de la pieza hasta el primer punto registrado a dicha altura. El proceso se repite hasta que se ha digitalizado todo el campo.

Al final del proceso de digitalización el palpador retrocede a la distancia de seguridad y vuelve al punto de partida programado.

Limitaciones para el campo de palpación

- En el eje del palpador: El CAMPO definido debe estar como mínimo, según el radio de la bola de palpación, por debajo del punto más alto de la pieza 3D
- En el plano de mecanizado: El campo definido debe estar como mínimo a una distancia de la pieza 3D mayor al radio de la bola de palpación

Punto de partida

- Coordenada del eje del cabezal del punto MIN en el ciclo 5 CAMPO cuando la distancia entre líneas se ha introducido positiva
- Coordenada del eje del cabezal del punto MAX en el ciclo 5 CAMPO cuando la distancia entre lineas es negativa
- Definir las coordenadas del plano de mecanizado en el ciclo LINEAS DE NIVEL
- El TNC alcanza automáticamente el punto de partida: Primero en el eje del cabezal a la altura de seguridad, después en el plano de mecanizado

Llegada a la pieza

El palpador se desplaza en la dirección programada en el ciclo LINEAS DE NIVEL hacia la pieza. Se memorizan las coordenadas de la posición en la que el palpador roza la pieza.

En el programa de mecanizado se debe definir el ciclo de digitalización CAMPO antes del ciclo de digitalización LINEAS DE NIVEL.

Parámetros de digitalización

- Limitación de tiempo: Tiempo dentro del cual el palpador debe alcanzar el primer punto de palpación de una línea de nivel después de una vuelta. En caso de que se sobrepase el tiempo programado, el TNC interrumpe el ciclo de digitalización. Campo de introducción: 0 a 7200 segundos. En caso de introducir 0 el tiempo no tiene limitación.
- Punto de partida: Coordenadas del punto de partida en el plano de mecanizado
- Eje de partida y dirección: Eje de coordenadas y dirección en la cual el palpador se desplaza hacia la pieza
- Eje inicial y dirección: Eje de coordenadas y dirección en la cual el palpador recorre la pieza durante la digitalización. Con la dirección de la digitalización se determina si el fresado debe ser sincronizado o a contramarcha.
- Limitación en la dirección de las normales: Recorrido según el cual se retira el palpador después de una desviación. Campo de introducción: 0 a 5 mm Recomendación: Introducir valores entre 0.5 x distancia de puntos y la distancia de puntos Cuanto menor sea la bola de palpación mayor debe seleccionarse la limitación en la dirección de las normales
- Distancia entre líneas y dirección: Desvío del palpador, cuando éste alcanza de nuevo el punto inicial de una línea de nivel; el signo determina la dirección en la cual se desvía el palpador. Campo de introducción: -5 a +5 mm

Si sólo se desea digitalizar una única línea de nivel, se introduce 0 para la distancia entre líneas.

Distancia entre puntos MAX: Distancia máxima entre los puntos memorizados por el TNC. Además el TNC tiene en cuenta los puntos importantes y críticos de la forma del modelo, p.ej. en esquinas interiores. Campo de introducción: 0.02 a 5 mm

Ejemplo de frases NC

60	TCH	PROBE	7.0	LINEAS NIVEL		
61	TCH	PROBE	7.1	TIEMPO: 0 X+0 Y+0		
62	TCH	PROBE	7.2	SECUENCIA: Y- / X-		
63	TCH	PROBE	7.2	RECOR.: 0.5 DIST.L.: +0.2		
	DIST.P.: 0.5					

13.5 Empleo de los datos digitalizados en un programa de mecanizado

Ejemplo de frases NC de un fichero de datos digitalizados registrados con el ciclo LINEAS DE NIVEL

BEGIN PGM DATOS MM	Nombre del programa DATOS: Determinado en el ciclo CAMPO
1 BLK FORM 0.1 Z X-40 Y-20 Z+0	Definición del bloque: El TNC determina el tamaño
2 BLK FORM 0.2 X+40 Y+40 Z+25	
3 L Z+250 FMAX	Altura seguridad en el eje del cabezal: Determinado en el ciclo CAMPO
4 L X+0 Y-25 FMAX	Punto de partida en X/Y: Determinado en el ciclo LINEAS DE NIVEL
5 L Z+25	Altura inicial en Z: Determinada en LINEAS DE NIVEL, depende
	del signo de la DISTANCIA ENTRE LINEAS
6 L X+0,002 Y-12,358	Primera posición registrada
7 L X+0,359 Y-12,021	Segunda posición registrada
253 L X+0,003 Y-12,390	Primera línea de nivel digitalizada: Se alcanza de nuevo la 1ª
254 L Z+24,5	aproximación a la siguiente línea de nivel
····	
2597 L X+0,093 Y-16,390	Ultima posición registrada en el campo
2598 L X+0 Y-25 FMAX	Retroceso al punto de partida en X/Y
2599 L Z+250 FMAX	Retroceso a la altura de seguridad en el eje del cabezal.
END PGM DATOS MM	Final del programa

Para ejecutar los datos de la digitalización se elabora el siguiente programa:

BEGIN PGM FRESADO MM	Definición de la hta.: Radio de la hta. = radio del vástago
1 TOOL DEF 1 L+0 R+4	Llamada a la herramienta
2 TOOL CALL 1 Z S4000	Determinar el avance de fresado, cabezal y refrigerante CONECTADOS
3 L RO F1500 M13	Llamada a los datos de la digitalización memorizados externamente
4 CALL PGM EXT:DATOS	
END PGM FRESADO MM	

Funciones MOD

14.1 Seleccionar, modificar y anular las funciones MOD

A través de las funciones MOD se pueden seleccionar las visualizaciones adicionales y las posibilidades de introducción.

Seleccionar las funciones MOD

Seleccionar el modo de funcionamiento en el cual se quieren modificar las funciones MOD.

Seleccionar las funciones MOD: Pulsar la tecla MOD. La figura de arriba a la derecha muestra la "pantalla MOD".

Se pueden realizar las siguientes modificaciones:

- Selección de la visualización de posiciones
- Determinación de la unidad métrica (mm/pulg.)
- Determinación del lenguaje de programación para MDI
- Introducción del código
- Ajuste de la conexión externa de datos
- Parámetros de usuario específicos de la máquina
- Fijación de los finales de carrera
- Visualización del número de software NC
- Visualización del número de software de PLC

Modificación de funciones MOD

- Seleccionar con los pulsadores de manual la función MOD en el menú visualizado
- Pulsar repetidas veces la tecla ENT hasta que la función se encuentre en la casilla más clara o introducir el número y confirmar con la tecla ENT

Salida de las funciones MOD

Finalizar la función MOD: Pulsar la softkey ENDE o la tecla END

14.2 Informaciones del sistema

Con la softkey INFO. DEL SISTEMA, el TNC muestra la siguiente información:

- Memoria libre del programa
- Número de software NC
- Número de software de PLC
- Número de software DSP
- Opciones existentes, p.ej. Digitalización

disponibles después de seleccionar las funciones en la pantalla del TNC

Memorizar/editar programa Visualiz. cotas 1 NOML. Visualiz. cotas 2 REAL Conmutación MM/INCH MM Introd. progr. HEIDENHAIN NOML. Х -8.285 +14.270 Т 1 Z Ζ F S 0 1000 M3/8 FINALES CARRERA AJUSTAR FINALES CARRERA INFORMAC 0 AYUDA FIN RS 232 SISTEMA MÁQUINA TEST

14.3 Introducción del código

Para introducir el código se pulsa la softkey de código. El TNC precisa de un código para las siguientes funciones:

Función	Código
Selección de los parámetros de usuario	123
Cancelar la protección de un programa	86357
Contador de horas de funcionamiento Control conectado Ejecución del pgm Cabezal conectado	857282

Pulsando la tecla ENT se resetean los diferentes tiempos (debe estar activado mediante parámetros de máquina)

14.4 Ajuste de la conexión de datos

Para ajustar la conexión de datos se pulsa la softkey AJUSTAR RS 232.. El TNC muestra un menú en la pantalla, en el cual se introducen los siguientes ajustes:

Seleccionar el MODO DE FUNCIONAMIENTO en un aparato externo

Aparato externo	CONEXION RS232
Unidad de disquetes de HEIDENHAIN FE 401 y FE 401B	FE
Aparatos externos, como impresora, lector punzonadora, PC sin TNCremo.	EXT1, EXT2
PC con software HEIDENHAIN TNCremo	FE
Sin transmisión de datos; p.ej. datos de digitalización sin registro del valor de medida o trabajar sin aparato conectado	NINGUNA

Ajuste de la VELOCIDAD DE BAUDIOS

La VELOCIDAD EN BAUDIOS (velocidad de transmisión de los datos) es de 110 a 115.220 baudios. El TNC memoriza para cada modo de funcinamiento (FE, EXT1 etc.) una velocidad en baudios.

Memorizar/editar programa			
Interface RS232	FE		
Veloc. transm. baud	57600		
Memoria para transm. Disponible [kbyte] Reservado [kbyte] Memoria de frases	por bloques 28 5 1000		
NOML. X -142.195 Y -149.030 Z +163.000	T 1 Z F 0 S 1000 M3/8		
	FIN		

Determinar la memoria para la transmisión por bloques

Se determina la memoria para la transmisión por bloques para poder editar otros programas de forma simultánea.

El TNC visualiza la memoria disponible. Seleccionar la memoria reservada de forma que sea menor a la memoria libre.

Ajustar la memoria de frases

Para garantizar una ejecución continua en la transmisión por bloques, el TNC precisa de una determinada cantidad de frases en la memoria del programa.

En la memoria de frases se determina cuantas frases NC se pueden introducir a través de la conexión de datos, antes de que el TNC empiece con la ejecución. El valor de introducción para la memoria de frases depende de la distancia entre puntos del programa NC. Cuando las distancias entre los puntos son pequeñas, se introduce una memoria de frases grande, y cuando las distancias entre los puntos son grandes se introduce una memoria de frases pequeña. Valor orientativo: 1000

Software para la transmisión de datos

Para la transmisión de ficheros de TNC a TNC, debería utilizarse el software de HEIDENHAIN TNCremo para la transmisión de datos. Con el TNCremo se pueden controlar todos los controles HEIDENHAIN mediante la conexión de datos en serie.

Para obtener una versión del software para la transmisión de datos TNCremo a cambio de un impuesto o cuota de protección, rogamos se pongan en contancto con HEIDENHAIN.

Condiciones del sistema para elTNCremo

- Ordenador personal AT o compatible
- 640 kB de memoria de funcionamiento
- 1 MByte libre en su disco duro
- Una conexión de datos en serie libre
- Sistema operativo MS-DOS/PC-DOS 3.00 o superior, Windows 3.1 o superior, OS/2
- Para trabajar más comodamente un ratón compatible Microsoft (TM) (no es imprescindible)

Instalación bajoWindows

- Iniciar el programa de instalación SETUPEXE con el manager de ficheros (explorador)
- ▶ Siga las instrucciones del programa de Setup

Arrancar el TNCremo bajo Windows

Windows 3.1, 3.11, NT:

Doble clic en el icono del grupo de programas HEIDENHAIN, aplicaciones

Windows95:

Haga clic en <Start>, <programas>, <aplicaciones HEIDEN-HAIN>, <TNCremo>

Cuando se arranca el TNCremo por primera vez, se pregunta por el control conectado, la conexión de datos (COM1 o COM2) y por la velocidad de transmisión de los datos. Introducir la información deseada.

Transmisión de datos entre TNC 410 y TNCremo

Rogamos comprueben si:

- el TNC 410 está conectado a la conexión de datos en serie correcta de su ordenador
- que coincidan la velocidad de transmisión de datos del TNC y del TNCremo

Una vez arrancado el TNCremo se pueden ver en la parte izquierda de la ventana principal todos los ficheros memorizados en el directorio activado. A través de <directorio>, <cambiar> se puede elegir otra disquetera o bien otro directorio. Para poder arrancar la transmisión de datos desde el TNC (véase "4.2 Gestión de ficheros"), se selecciona <conexión>, <servidor del fichero>. Ahora el TNCremo está preparado para recibir los datos.

Cancelar el TNCremo

Seleccionar el punto del menú <fichero>, <finalizar>, o pulsar la combinación de teclas ALT+X

También debe tenerse en cuenta la función de ayuda del TNCremo, en la cual se explican todas las funciones.

14.5 Parámetros de usuario específicos de la máquina

El constructor de la máquina puede asignar funciones a un total de 16 parámetros de usuario. Rogamos consulten el manual de su máquina.

14.6 Selección de la visualización de posiciones

Para el funcionamiento Manual y los modos de funcionamiento de ejecución del programa se puede influir en la visualización de coordenadas:

En la figura de la derecha se pueden observar diferentes posiciones de la hta.

- 1 Posición de salida
- 2 Posición de destino de la herramienta
- <mark>3</mark> Cero pieza
- 4 Punto cero de la máquina

Para la visualización de las posiciones del TNC se pueden seleccionar las siguientes coordenadas:

Función V	/isualización
Posición nominal; valor actual indicado por el TNC	NOML.
Posición real; posición actual de la hta.	REAL
Posición de referencia; posición real referida al	REF
punto cero de la máquina	
Recorrido restante hasta la posición programada;	R. REST.
diferencia entre la posición real y la posición de destin	10
Error de arrastre; diferencia entre la posición nominal	E. ARR
y real	

Con la función MOD Visualización 1 de posiciones se selecciona la visualización de posiciones en la visualización de estados. Con la función MOD Visualización 2 de posiciones se selecciona la visualización de posiciones en la visualización de estados adicional.

14.7 Selección del sistema métrico

Con la función MOD cambiar MM/PULG. se determina si el TNC visualiza las coordenadas en mm o en pulgadas.

- Sistema métrico: P.ej. X = 15,789 (mm) Función MOD conmutación MM/PULG. : MM. Visualización con 3 posiciones detrás de la coma
- Sistema en pulgadas: P.ej. X = 0,6216 (pulg.) Conmutar la función MOD MM/PULG. Visualización con 4 posiciones detrás de la coma

Esta función MOD también determina el sistema métrico cuando se abre un programa nuevo.

14.8 Elección del idioma de programación

Con la función MOD INTRODUCIR PGM, se determina si en el modo de funcionamiento Posicionamiento manual se programa la frase con diálogo en texto claro o en DIN/ISO.

Introducción de una frase con diálogo en texto claro: HEIDEN-HAIN

■ Introducción de una frase DIN/ISO: ISO

Esta función MOD también determina el idioma de programación cuando se abre un programa nuevo.

Cuando se conmuta entre el diálogo en texto claro o la programación DIN/ISO (y viceversa), debe borrarse el último fichero \$MDI activado en el modo de funcionamiento Memorizar programa.

14.9 Introducción de los límites de finales de carrera

Dentro del margen de los finales de carrera máximos se puede delimitar el recorrido útil para los ejes de coordenadas.

Ejemplo de empleo: Asegurar el divisor óptico contra colisiones

Límites de los finales de carrera para la ejecución del pgm

El máximo margen de desplazamiento se delimita con los finales de carrera. El verdadero recorrido útil se delimita con la función MOD FINALES CARRERA: Para ello los valores máximos de los ejes en dirección positiva y negativa se refieren al punto cero de la máquina.

Mecanizado sin limitación del margen de desplazamiento

Para los ejes de coordenadas que se desplazan sin límite de los finales de carrera, se programa el recorrido de desplazamiento máximo del TNC (+/- 30 000 mm).

Cálculo e introducción del margen de desplazamiento máximo

- ▶ Selección de la visualización de posiciones REF
- Llegada a la posición final positiva y negativa deseada de los ejes X, Y y Z
- Anotar los valores con su signo
- Seleccionar las funciones MOD: Pulsar la tecla MOD
 - Introducir el límite del margen de desplazamiento: Pulsar la softkey LIMITACIONES MAQUINA. Introducir los valores anotados para los ejes como limitaciones y confirmar cada uno con la tecla ENT
 - Anular la función MOD: Pulsar la tecla END
 - La corrección de radios de la hta. no se tiene en cuenta en la limitación del margen de desplazamiento.

Después de sobrepasar los puntos de referencia, se tienen en cuenta las limitaciones del margen de desplazamiento y los finales de carrera de software.

Límites de los finales de carrera para la ejecución del pgm

Para el test del programa y el gráfico de programación se pueden definir los "finales de carrera" por separado. Para ello se pulsa la softkey TEST LIMITACIONES, después de haber activado la función MOD se introducen los valores deseados y se confirma cada uno con la tecla ENT.

Además de las limitaciones se puede definir la posición del punto de ref. de la pieza en relación al punto cero de la máquina.

14.10 Ejecución de la función de AYUDA

AYUDA

La función de AYUDA no está disponibles en todas las máquinas. El constructor de la máquina le puede informar más ampliamente.

La función de ayuda le informa al usuario de situaciones en las cuales se precisan determinados funcionamientos de manejo, p.ej. activar la máquina después de una interrupción de tensión. También las funciones auxiliares se pueden documentar y ejecutar en un fichero de AYUDA.

Seleccionar y ejecutar la función de AYUDA

Seleccionar la función MOD: Pulsar la tecla MOD

- Seleccionar la función de AYUDA:Pulsar la softkey AYUDA
 - Con las teclas cursoras "arriba/abajo" se selecciona la línea en el fichero de ayuda caracterizada con un #
 - Ejecutar la función de AYUDA seleccionada: Pulsar el arranque NC

Tablas y resúmenes

15.1 Parámetros de usuario generales

Los parámetros de usuario generales son parámetros de máquina, que influyen en el comportamiento del TNC.

Los parámetros de usuario típicos son:

- idioma del diálogo
- comportamiento de conexiones
- velocidades de desplazamiento
- desarrollo de operaciones de mecanizado
- activación de los potenciómetros

Posibles introducciónes de parámetros de máquina

Los parámetros de máquina se pueden programar como

números decimales Se introduce directamente el valor numérico

Números duales/binarios (en parámetros de máquina codificados en bits Introducir el signo de porcentaje "%" antes del valor numérico

Números hexadecimales (en parámetros de máquina codificados en bits Introducir el signo de porcentaje "\$" antes del valor numérico

Ejemplo:

En vez del número decimal 27 se puede introducir también el número binario %11011 o el número hexadecimal \$1B.

Se pueden indicar los diferentes parámetros de máquina simultáneamente en los diferentes sistemas numéricos.

Algunos parámetros de máquina tienen funciones múltiples. El valor de introducción de dichos parámetros se produce de la suma de los diferentes valores de introducción individuales caracterizados con el signo +.

Selección de los parámetros de usuario generales

Los parámetros de usuario generales se seleccionan con el código 123 en las funciones MOD.

En las funciones MOD se dispone también de parámetros de usuario específicos de la máquina.

Transmisión de datos externa

Determinar el signo del comando para la transmisión por bloques

Ajuste de las conexiones delTNC, EXT1 (5020.0) y EXT2 (5020.1) a un aparato externo

MP5020.x
7 bits de datos (código ASCII, 8ª bit=paridad): +0
8 bits de datos (código ASCII, 9º bit=paridad): +1
Cualquier Block-Check-Charakter (BCC):+0
Block-Check-Charakter (BCC) no permitido: +2
Activada la parada de la transmisión con RTS : +4
Parada de la transmisión con RTS inactiva: +0
Activada la parada de la transmisión con DC3: +8
Parada de la transmisión con DC3 inactiva: +0
Paridad de signos par: +0
Paridad de signos impar: +16
Paridad de signos no deseada: +0
Solicitada la paridad de signos: +32
11/2 bits de stop: +0
2 bits de stop: +64
1 bit de stop: +128
1 bit de stop: +192

Ejemplo:

Ajustar la conexión EXT2 del TNC (MP 5020.1) a un aparato externo de la siguiente forma:

8 bits de datos, cualquier signo BCC, stop de la transmisión con DC3, paridad de signos par, paridad de signos deseada, 2 bits de stop Valor de introducción para **MP 5020.1**: 1+0+8+0+32+64 = **105**

Determinación del tipo de conexión para EXT1 (5030.0) y EXT2 (5030.1)

MP5030.x

Transmisión standard: **0** Conexión para la transmisión por bloques: **1**

Palpadores 3D y digitalización

Selección del tipo de transmisión	
-	MP6010
	Palpador con transmisión por cable: 0
	Palpador con transmisión por infrarrojos: 1
Avance de palpación para palpador digital	
	MP6120
	80 a 3 000 [mm/min]
Recorrido máximo hasta el punto de palpación	
	MP6130
	0,001 a 30 000 [mm]
Distancia de seguridad hasta el punto de palpaci	ón en medición automática
	MP6140
	0,001 a 30 000 [mm]
Marcha rápida para la palpación con un palpador	digital
	MP6150
	1 a 300 000 [mm/min]
Medición de la desviación del palpador en la calib	pración del palpador digital
••	MP6160
	Sin giro de 180° del palpador en la calibración: 0
	Función M para realizar el giro de 180° con el palpador en la
	calibración: 1 a 88
Medición del radio, conTT 120: Dirección de palpa	ación
	MP6505
	Dirección de palpación positiva en el eje de ref. angular (eje 0°): 0
	Dirección de palpación positiva en el eje +90°: 1
	Dirección de palpación negativa en el eje de ref. angular (eje 0°): 2
	Dirección de palpación negativa en el eje +90°: 3
Avance de palpación para la segunda medición c	on TT 120, forma del vástago, correcciones en TOOL.T
	MP6507
	Calcular el avance de palpación para la 2ª medición con el TT 120,
	con loierancia constante: +u Calcular el avance de nalnación para la 2ª modición con el TT 120
	calcular el avance de palpación para la 2-medición con el 11.120, con tolerancia variable: ±1
	Avance de palpación constante para la 2ª medición con el TT 120: +2
Iviaximo error de medición admisible con el 12	u en la medicion con la herramienta girando
en relación con MP6570	
	MP6510
	0,002 a 0,999 [mm] (se recomienda: 0,005 mm)
Avance de palpación con alTT 120 con la btal par	rada
Avance de parpación con en ri 120 con la fita. par	MP6520
	80 a 3 000 [mm/min]

•	usuario
	de
	generales
	Parámetros
ļ	15.1

Medición del radio con el TT 120: Distancia entre	e el extremo de la hta. y la arista superior del vástago
	MP6530
	0,001 a 30 000,000 [mm]
Distancia de seguridad en el eje de la hta. sobre	el vástago delTT 120 en el posicionamiento previo
	MP6540.0
	0,001 a 30 000,000 [mm]
Zona de distancia de seguridad en el plano de m previo	ecanizado alrededor del vástago del TT 120 para el posicionamiento
-	MP6540.1
	0,001 a 30 000,000 [mm]
Marcha rápida en el ciclo de palpación para elT	120
	MP6550
	10 a 20 000 [mm/min]
Función M para la orientación del cabezal en la n	nedición individual de cuchillas
	MP6560
	-1 a 88
Medición con hta. girando: Velocidad de giro adr	nisible en el fresado del contorno
Se precisa para el cálculo de las revoluciones y del avance de palpación	
	MP6570
	40,000 a 120,000 [m/min]
Coordenadas REF del punto central del vástago	delTT 120
	MP6580.0
	Eje X: -30 000,000 a 30 000,000
	MP6580.1
	Eje Y: -30 000,000 a 30 000,000
	MP6580.2
	Eje Z: -30 000,000 a 30 000,000

Ajuste del puesto de programación	
	MP7210
	TNC con máquina: 0
	TNC como puesto de programación con PLC activo: 1
	TNC como puesto de programación con PLC inactivo: 2
Eliminar el diálogo de interrupción de tensiór	n después de la conexión
	MP7212
	Eliminar pulsando una tecla: 0
	Eliminar automáticamente: 1
Programación DIN/ISO: Determinar el paso e	entre los números de frases
	MP7220
	0 a 250
Determinar el idioma de diálogo	
	MP7230
	Alemán: 0
	Inglés: 1
Configuración de la tabla de herramientas	
	MP7260
	Inactivo: 0
	Número de htas. en la tabla de htas.: 1 a 254
Configuración de la tabla de posiciones	
	MP7261
	Inactivo: 0
	Número de posiciones en la tabla de posiciones: 1 a 254

usuario
de
generales
Parámetros
15.1

Configuración de la tabla de htas. (no ejecutar: 0);	
número de columnas en la tabla de htas. para	

MP7266.0	Nombre de la hta. – NOMBRE: 0 a 22
MP7266.1	Longitud de la hta. – L: 0 a 22
MP7266.2	Radio de la hta. – R: 0 a 22
MP7266.3	Reservado
MP7266.4	Sobremedida de longitud – DL: 0 a 22
MP7266.5	Sobremedida de radio – DR: 0 a 22
MP7266.6	Reservado
MP7266.7	Herramienta bloqueada – TL: 0 a 22
MP7266.8	Herramienta gemela – RT: 0 a 22
MP7266.9	Máximo tiempo de vida – TIME1: 0 a 22
MP7266.10	Máximo tiempo de vida con TOOL CALL – TIME2: 0 a 22
MP7266.11	Tiempo de vida actual – CUR. TIME: 0 a 22
MP7266.12	Comentario sobre la hta. – DOC: 0 a 22
MP7266.13	Número de cuchillas- CUT.: 0 a 22
MP7266.14	Tolerancia para el desgaste de la longitud de la hta. – LTOL: 0 a 22
MP7266.15	Tolerancia para el desgaste del radio de la hta. – RTOL: 0 a 22
MP7266.16	Dirección de corte – DIRECT.: 0 a 22
MP7266.17	Estado del PLC – PLC: 0 a 22
MP7266.18	Desviación adicional de la hta. en el eje de la misma en relación a MP6530 – TT:LOFFS: 0 a 22
MP7266.19	Desviación de la hta. entre el centro del vástago y el centro de la hta. – TT:R-OFFS: 0 a 22
MP7266.20	Tolerancia de rotura en la longitud de la hta. – LBREAK.: 0 a 22
MP7266.21	Tolerancia de rotura en el radio de la hta. – RBREAK: 0 a 22

Configuración de la tabla de posiciones de herramientas; número de columna en la tabla de htas. para (no ejecutar:	
	MP7267.0
	Número de hta. – T: 0 a 5
	MP7267.1
	Hta. especial – ST: 0 a 5
	MP7267.2
	Posición fija – F: 0 a 5
	MP7267.3
	Posición bloqueada – L: 0 a 5
	MP7267.4
	Estado del PLC – PLC: 0 a 5
Funcionamiento Manual: Visualización del avanc	e
	MP7270
	Visualizar el avance E solo cuando se activa un pulsador de manual: +0
	Visualizar el avance F incluso cuando no se ha activado un pulsador de
	Inanual (avance para el eje mas lento). +1
	dospués do un STOP: 10
	Las revoluciones S del cabezal y la función auxiliar M están
	desactivadas después de un STOP: +2
Visualización de los cambios de gama	
visualización de los cambios de gand	MP7274
	No visualizar el cambio de gama actual: 0
	Visualizar cambio de gama actual: 1
Determinar el signo decimal	
	MP7280
	Visualizar la coma como signo decimal: 0
	Visualizar el punto como signo decimal: 1
Visualización de la posición en el eje de la hta.	
	MP7285
	La visualización se refiere al punto de ref. de la hta.: 0
	La visualización en el eje de la nta. se retiere a la superficie frontal de
	la III.a I

MP7290.0

0,1 mm o bien 0,1°: 0 0,05 mm o bien 0,05°: 1 0,01 mm o bien 0,01°: 2 0,005 mm o bien 0,005°: 3 0,001 mm o bien 0,001°: 4

Paso de visualización para el ejeY

MP7290.1

0,1 mm o bien 0,1°: 0,05 mm o bien 0,05°: 0,01 mm o bien 0,01°: 0,005 mm o bien 0,005°: 0,001 mm o bien 0,001°:

Paso de visualización para el eje Z

MP7290.2

0,1 mm o bien 0,1°: 0 0,05 mm o bien 0,05°: 1 0,01 mm o bien 0,01°: 2 0,005 mm o bien 0,005°: 3 0,001 mm o bien 0,001°: 4

Paso de visualización para el IV eje

MP7290.3

0,1 mm o bien 0,1°: 0 0,05 mm o bien 0,05°: 1 0,01 mm o bien 0,01°: 2 0,005 mm o bien 0,005°: 3 0,001 mm o bien 0,001°: 4

Bloqueo general de la fijación del pto. de ref.

MP7295

No bloquear la fijación del punto de referencia: **+0** Bloquear la fijación del punto de referencia en el eje X: **+1** Bloquear la fijación del punto de referencia en el eje Y: **+2** Bloquear la fijación del punto de referencia en el eje Z: **+4** Bloquear la fijación del punto de referencia en el IV eje: **+8**

Bloquear la fijación del punto de referencia con las teclas de los ejes naranjas

MP7296

No bloquear la fijación del punto de referencia: **0** Bloquear la fijación del pto. de referencia a través de teclas naranjas: **1**

nular al final del programa la visualización de estados, los parámetros Q y los datos de la hta.	
	MP7300
	No borrar la visualización de estados: +0
	Borrar la visualización de estados: +1
	Borrar los parámetros Q: +0
	No borrar los parámetros Q: +2
	Borrar el nº, el eje y los datos de la hta.: +0
	No borrar el nº, el eje y los datos de la hta.: +4
Determinar la representación gráfica	
	MP7310
	Representación gráfica en tres planos segun DIN 6, 1ª parte, método de projección 1: +0
	Representación gráfica en tres planos segun DIN 6, 1ª parte, método de projección 2: +1
	No girar el sistema de coordenadas para la representación gráfica: +0 Girar el sistema de coordenadas 90° para la representación gráfica: +2 Simulación en los ciclos de mecanizado, dibujar sólo la última aproximación: +0
	Simulación en ciclos de mecanizado, dibujar todas las
	aproximaciones: +16
Determinaciones para el gráfico de prog	ramación
	MP7311
	No representar los puntos de profundización como círculo: +0
	Representar los puntos de profundización como círculo: +1
	No representar las trayectorias en forma de meandro en los ciclos: +0 Representar las trayectorias en forma de meandro en los ciclos: +2
	No representar las trayectorias corregidas: +0

Representar las trayectorias corregidas: +3

Mecanizado y ejecución del programa

Ciclo 17: Orientación del cabezal al principio del c	clo
	MP7160
	Realizar la orientación del cabezal: 0
	No realizar la orientación del cabezal: 1
Funcionamiento del ciclo 11 FACTOR DE ESCALA	
	MP7410
	FACTOR DE ESCALA activo en 3 ejes: 0
	FACTOR DE ESCALA activo sólo en el plano de mecanizado: 1
Datos de la herramienta en el ciclo de palpación p	programableTOUCH-PROBE 0
	MP7411
	Sobreescribir los datos actuales de la hta. con los datos de calibración del palpador: 0
	Mantener los datos actuales de la hta.: 1
Modo de transición en el fresado del contorno	
	MP7415.0
	Añadir círculo de redondeo: 0
	Añadir polinomio de 3er grado (Spline cúbico, curva con variación de saltos en la velocidad): 1
	Añadir polinomio de 5º grado (curva sin variación de saltos en la aceleración): 2
	Añadir polinomino de 7º grado (curva sin variación de saltos del tirón): 3
Ajustes para el fresado del contorno	
	MP7415.1
	No rectificar el contorno: +0
	Rectificar el contorno: +1
	No igualar el perfil de velocidad, cuando entre las transiciones del
	conotorno exista una recta pequeña: +0
	Igualar el perfil de velocidad, cuando entre las transiciones del contorno exista una recta pequeña: +2

Ciclos SL, funcionamiento	
	MP7420.0
	Fresado del canal alrededor del contorno en sentido horario para las islas y en sentido antihorario para las cajeras: +0 Fresado del canal alrededor del contorno en sentido horario para las cajeras y en sentido antihorario para las islas: +1 Fresado del canal del contorno antes del desbaste: +0 Fresado del canal del contorno después del desbaste: +2 Unir los contornos corregidos: +0 Unir los contornos sin corregir: +4 Desbaste hasta la profundidad de la cajera: +0 Fresado y desbaste completos de la cajera antes de cualquier otra
	aproximación: +8 Para los ciclos 6, 15, 16 se tiene: Desplazar la hta. al final del ciclo sobre la última posición programada antes de la llamada al ciclo: +0 Desplazar la hta. al final del ciclo sólo en el eje de la hta.: +16

MP7420.1

Desvastar los margenes separados en forma de meandro elevando la hta.: +0

Desvastar sucesivamente los margenes separados sin levantar la hta.:

+1

Bit 1 a Bit 7: reservado

MP7420.1 = 0 (ningún círculo = movimientos de profundización)

MP7420.1 = 1

Ciclo 4 FRESADO DE CAJERA y ciclo 5 CAJERA CIRCULAR: Factor de solapamiento MP7430 0,1 a 1,414

Comportamiento de las diferentes funciones auxiliares M

MP7440

IVIP7440
Parada de la ejecución del pgm con M06: +0
Sin parada de la ejecución del pgm con M06: +1
Sin Ilamada al ciclo con M89: +0
Llamada al ciclo con M89: +2
Parada de la ejecución del pgm con las funciones M: +0
Sin parada en la ejecución del pgm con las funciones M: +4
Avance en el eje de herramienta con M103 F.
Reducción no activada: +0
Avance en el eje de herramienta con M103 F.
Reducción activada: +16
No fijar la marca "eje en posición" en el tiempo de espera entre dos
frases NC: +0
Fijar la marca "eje en posición" en el tiempo de espera entre dos
frases NC: +32

Angulo del cambio de dirección, para recorridos a velocidad constante (Esquina con R0, "Esquina interior" también con corrección de radio)

Válido para el funcionamiento con control de arrastre y control previo de la velocidad

MP7460

0,000 a 179,999 [°]

Máxima velocidad de una trayectoria con el override del avance al 100% en los modos de funcionamiento de ejecución del programa

MP7470 0 a **99.999** [mm/min]

Los puntos de la tabla de puntos cero se refieren al

MP7475

Cero pieza: **+0** Pto. cero de la máquina: **+1**

Volante electrónico

Determinar el tipo de volante

MP7640

Máquina sin volante: Volante empotrable HR 130: Volante múltiple con ejes adicionales: Volante portátil HR 410 con funciones auxilireas:

Funciones del volante

MP7641

Factor de subdivisión introducido a través del teclado: **+0** Factor de subdivisión determinado mediante módulo de PLC: **+1** Volante inactivo en el funcionamiento Memorización: **+0** Volante activado en el funcionamiento Memorización: **+2**

15.2 Distribución de conectores y cableado en la conexión de datos

Conexión de datos V.24/RS-232-C Aparatos HEIDENHAIN

La distribución de conexionado en la unidad lógica del TNC (X21) y en el bloque adaptador son diferentes.

Aparatos que no son de la marca HEIDENHAIN

La distribución de conectores en un aparato que no sea HEIDENHAIN puede ser completamente diferente a la distribución de conectores en un aparato HEIDENHAIN.

Depende del aparato y del tipo de transmisión. Para la distribución de pines del bloque adaptador véase el dibujo de abajo.

15.3 Información técnica

Características del TNC

Breve descripción	
	Control numérico para máquinas con un total de hasta 4 ejes, además de la orientación del cabezal
Componentes	
	Unidad lógica
	Pantalla de color con softkeys
Conexión de datos	
	■ V.24 / RS-232-C
Ejes con desplazamiento simultáneo en los tramo	os del contorno
	Rectas hasta 3 ejes
	Círculos hasta 2 ejes
	■ Hélice 3 ejes
"Look Ahead"	
	Redondeo definido de transiciones irregulares del contorno (p.ej. en piezas 3D)
	Para posiciones con corrección de radio con M120 cálculo previo de
	la geometría de la máquina para el ajuste del avance
Funcionamiento en paralelo	
	Edición mientras el TNC ejecuta un programa de mecanizado
Representaciones gráficas	
	Gráfico de programación
	Test gráfico
Tipos de ficheros	
	Programas con diálogo en texto claro HEIDENHAIN
	Programas DIN/ISO
	Tablas de ptos. cero
	Iablas de htas.
Memoria del programa	
	Memoria para aprox. 10 000 frases NC (depende de la
	longitud de la frase, 256 Kbyte
	Se pueden gestionar hasta 64 ficheros
Definiciones de la herramienta	
	Hasta 254 herramientas en el programa o en tablas de htas.
Ayudas de programación	
	Funciones para la aproximación y salida del contorno

Elementos del contoro	
	Recta
	Chaflán
	Travectoria circular
	Centro del círculo
	Badio del círculo
	Travectoria circular tangente
	 Rectas y travasterias circularos para la llogada y salida del conterno.
Programación libre de contornos	
-	Para todos los elementos del contorno con planos no acotados por el NC
Saltos en el programa	
	Subprograma
	Repetición parcial del programa
	Programa principal como subprograma
Ciclos de mecanizado	
	Ciclos para el taladrado, el taladrado profundo, escariado,
	mandrinado, roscado a cuchilla y roscado rígido
	Desbaste y acabado de cajeras rectangulares y circulares
	Ciclos para el fresado de ranuras lineales y circulares
	Figura de puntos regular sobre círculo o líneas
	Figura de puntos irregular de una tabla de puntos
	Ciclos para el planeado de superficies lisas e inclinadas
	Mecanizado de cualquier cajerea e isla
Traslación de coordenadas	
	Desplazamiento del punto cero
	Espejo
	Giro
	Factor de escala
Aplicación de un palpador 3D	
	Funciones de palpación para fijar el pto. de ref. y para la medición
	automática de htas.
	Digitalización de piezas 3D con palpador digital (option)
	Medición automática de htas. con el TT 120

15.3 Información técnica

Funciones matemáticas	
	■ Tipos de cálculo básico +, –, x y :
	Cálculos trigonométricos sen, cos, tan, arcsen, arccos, arctan
	Raíz cuadrada (\sqrt{a}) y raíz de la suma de los cuadrados ($\sqrt{a^2 + b^2}$)
	Valores al cuadrado (SQ)
	Valores a una potencia (^)
	Constante PI (3,14)
	Funciones logarítmicas
	Función exponencial
	Formar un valor negativo (NEG)
	Formar un valor entero (INT)
	Formar un valor absoluto (ABS)
	Redondear posiciones delante de la coma (FRAC)
	Comparaciones mayor, menor, igual, distinto

Datos del TNC

Tiempo de mecanizado de una frase	
	6 ms/frase 20 ms/frase en el funcionamiento por bloques a través de la conexión de datos
Tiempo del ciclo de regulación	Interpolación: 6 ms
Velocidad de transmisión de datos	Máxima 115 200 baudios
Temperatura ambiente	 ■ Funcionamiento: 0°C a +45°C ■ Almacenamiento: -30°C a +70°C
Recorrido	Máximo 300 m (11 811 pulgadas)
Velocidad de desplazamiento	Máxima 300 m/min (11 811 pulg./min)
Revoluciones del cabezal	Máximo 99 999 rpm
Campo de introducción	 Mínimo 1µm (0,0001 pulg.) o bien 0,001° Máximo 30 000,000 mm (1.181 pulg.) o bien 30 000,000°

15.4 Avisos de error del TNC

El TNC emite automáticamente avisos de error en los siguientes casos:

- Si las introducciones son erróneas
- Si existen errores lógicos en el programa
- Si no se han ejecutado elementos del contorno
- Si se aplica un palpador no reglamentario

En el siguiente resumen aparecen algunos avisos de error que se visualizan con frecuencia.

Un aviso de error que contiene el número de una frase del programa, se ha generado en dicha frase o en las anteriores. Los avisos de error se borran con la tecla CE después de eliminar la causa de los mismos.

Avisos de error del TNC en la programación

No se pueden introducir más ficheros			
	Borrar ficheros antiguos para introducir otros ficheros		
Valor de introducción erróneo			
	Introducir correctamente el número LBL		
	Tener en cuenta los límites de introducción		
Introducción/emisión ext. no preparada			
	No está conectado el cable de transmisión		
	El cable de transmisión está defectuoso o mal soldado		
	El aparato conectado (PC, impresora) está desconectado		
	No coincide la velocidad de transmisión (velocidad en baudios)		
¡Fichero protegido!			
	Eliminar la protección del programa, si se quiere editar el mismo		
Número de label ocupado			
	Asignar los numeros label sólo una vez		
Salto al label 0 no permitido			
	No programar CALL LBL 0		

Avisos de error del TNC durante el test y la ejecución de un programa

Eje programado repetido	Para los posicionamientos introducir sólo una vez las coorden. del eje
Frase actual no seleccionada	Antes del test o de la ejecución del programa seleccionar el principio del programa con GOTO 0
Punto de palpación inalcanzable	 Posicionar previamente el palpador 3D más cerca del pto. de palpación Los parámetros de máquina en los cuales se memoriza la posición del TT no coinciden con la posición real del TT
Error aritmético	Cálculo con valores inadmisibles Definir los valores dentro de los margenes establecidos Seleccionar las posiciones de palpación claramente separadas En la medición individual de cuchillas con el TT introducir en la tabla de htas. un número de cuchillas con un valor distinto de 0 Ejecutar TCH PROBE 30 (calibrar TT) antes de medir la longitud o el radio de la hta. Los cálculos deben ser matemáticamente realizables
Corrección de trayectoria mal acabada	No eliminar la corrección de radio en una frase con trayectoria circular
Corrección de trayectoria mal empezada	 Introducir la misma corrección de radio antes y después de una frase RND y CHF No comenzar la corrección de radio en una frase con trayectoria circular
CYCL DEF incompleto	 Definición de ciclos con todas las indicaciones en la secuencia determinada No llamar a los ciclos de traslación Definir el ciclo antes de una llamada Introducir la profundidad distinta de 0
Plano mal definido	 No modificar el eje de la hta. cuando está activado el giro básico Definir correctamente los ejes principales para las trayectorias circulares Definir ambos ejes principales para CC
Programado eje erróneo	 No programar los ejes bloqueados Ejecutar la cajera rectangular y la ranura en el plano de mecanizado No reflejar los ejes giratorios Introducir la longitud del chaflán positiva

Revoluciones erroneas	Programar las revoluciones dentro de los límites permitidos
Chafán no permitido	Añadir un chaflán entre dos frases lineales con la misma corrección de radio
Datos del programa erróneos	El programa memorizado a través de la conexión de datos contiene formatos de frase erróneos
Ninguna modificación en el pgm en ejecución	No editar el programa mientras éste se está transmitiendo o ejecutando
Punto final del círculo erróneo	 Introducir completamente el círculo de unión Programar el punto final de la trayectoria circular
Falta el punto central del círculo	 Definir el punto central del círculo con CC Definir el polo con CC
No existe el número de label	Sólo se pueden llamar los números de label programados
Factor de escala no permitido	Introducir factores de escala idénticos para los ejes de coordenadas en el plano de la trayectoria circular
No se puede representar la sección del pgm	 Seleccionar el radio de la fresa más pequeño Los movimientos 4D no se simulan gráficamente Introducir el mismo eje de hta. en la simulación y en el BLK FORM
Corrección de radio no definida	En el primer subprograma del ciclo 14 CONTORNO introducir la corrección de radio RR o RL
Redondeo no definido	Introducir correctamente el círculo tangente y el círculo de redondeo
Radio de redondeo demasiado grande	Los círculos de redondeo se deben poder ajustar entre los elementos del contorno
Tecla sin función	Este aviso aparece cuando se pulsa una tecla que no se precisa para el diálogo actual
Vástago desviado	Posicionar previamente el vástago antes de la 1ª palpación sin rozar la pieza

Calibración del palpador	
	Calibrar de nuevo el TT, se ha modificado el parámetro de máquina para el TT
Palpador no preparado	
	Ajustar la ventana de emisión y recepción (TS 630) a la unidad
	receptora
Falta TOOL CALL	
	Llamar a htas. que estén definidas
	Realizar el avance hasta una trase con PLC = CONECTADO
Arranque del programa no definido	
	Empezar en el programa sólo con la frase TOOL DEF
	No iniciar un programa después de una interrupción con una
	trayectoria circular o la aceptación del polo
Falta avance	
	Introducir el avance para una frase de posicionamiento
	Programar de nuevo FMAX en cada frase. Cuando se trabaja con
	tablas de puntos: Programar el avance con valor numerico
Signo erróneo	
	Introducir los signos para los parámetros del ciclo según
	prescripciones
Radio de la hta. demasiado grande	
	Seleccionar el radio de la hta. de tal forma que
	éste se encuentre dentro de los límites indicados
	Que se puedan calcular y ejecutar los elementos del contorno
Sobrepasado el tiempo de vida de la hta.	
	Se ha sobrepasado TIME1 o TIME2 de TOOL.T , en la tabla de htas. no
	estaba definida ninguna herramienta gemela
Falta referencia angular	
-	Definir claramente las trayectorias circulares y los puntos finales
	Indicación en coordenadas polares: Definir correctamente el ángulo
Imbricación demasiado elevada	
	Finalizar los subprogramas con LBL 0
	Fijar CALL LBL para subprogramas sin REP
	Fijar CALL LBL para repeticiones parciales del programa (REP)
	Los subprogramas no pueden llamarse a si mismos
	 Un programa se puede impricar un maximo de o veces Impricación máx, de nom principales como subprograma basta y 4

Avisos de error del TNC durante la digitalización

Eje programado repetido	Programar das aias diferentas para las coordonadas del punto de
	partida (ciclo LINEAS DE NIVEL)
Posición inicial errónea	
	Programar las coordenadas del punto inicial para el ciclo LINEAS DE
	NIVEL, de forma que se encuentren dentro del CAMPO
Punto de palpación inalcanzable	
	El vástago no debe estar desviado antes de llegar al CAMPO
	El vástago debe desviarse en el CAMPO
Campo sobrepasado	
	Introducir el CAMPO para la pieza 3D completa
Datos para el campo erróneos	
	Introducir las coordenadas MIN menores que las coordenadas MAX
	correspondientes Definir al CAMPO dentre de las limitas de final de carrera de
	software
	Definir el CAMPO para los ciclos MEANDRO y LINEAS DE NIVEL
Giro no permitido	
-	Anular la traslación de coordenadas antes de la digitalización
Eje de columnas no permitido aquí	
	Definir las coordenadas del punto inicial (ciclo LINEAS DE NIVEL)
	diferentes a las del eje del vastago
Programación de eje erróneo	
	Introducir el eje del palpador calibrado en el ciclo CAMPO
	En el ciclo CAMPO no programar los ejes por duplicado
Factor de escala no permitido	
	Anular la traslación de coordenadas antes de la digitalización
Espejo no permitido	
	Anular la traslación de coordenadas antes de la digitalización
Vástago desviado	
	Posicionar previamente el vástago, de forma que éste no se desvíe

Palpador no preparado	 Ajustar la ventana de emisión y recepción (TS 630) a la unidad receptora Comprobar la disposición de funcionamiento del palpador El palpador no se puede retirar
Cambiar batería del palpador	 Cambiar la bateria del palpador (TS 630) El aviso se emite al final de la línea
Límite de tiempo sobrepasado	Ajustar la limitación del tiempo y de la pieza 3D (ciclo LINEAS DE NIVEL)

15.5 Cambio de la batería

Cuando el control está desconectado, la batería se encarga de alimentar el TNC, para no perder la memoria RAM.

Cuando el TNC emite el aviso de cambiar batería, ésta debe cambiarse. Las baterías se encuentran en la unidad lógica junto a la fuente de alimentación (carcasa redonda de color negro) Además en el TNC también existe un acumulador, que alimenta al control mientras se cambia la batería (tiempo máximo 24 horas).

iPara cambiar la batería desconectar antes la máquina y el TNC!

¡La batería sólo puede cambiarla personal cualificado!

Tipo de batería: 3 pilas alcalinas, leak-proof, denominación IEC "LR6"

A

Acabado de isla circular ... 147 Acabado de isla rectangular ... 143 Accesorios ... 12 Aceptar posición real ... 77 Ajuste VELOCIDAD EN BAUDIOS ... 269 Añadir comentarios ... 40 Aproximación al contorno ... 68 Avance constante en el extremo de la hta. ... 115 Avance hasta una frase ... 243 Avisos de error emitir ... 213 en la digitalización ... 299 en el test y la ejecución del pgm ... 296 en la programación ... 295

С

Cajera circular acabado ... 146 desbaste ... 144 Cajera rectangular acabado ... 141 desbaste ... 140 Cálculo entre paréntesis ... 219 Cambio de batería ... 300 Cambio de hta. ... 51 automático ... 51 Chaflán ... 77 Ciclo grupos de ciclos ... 120 llamada ... 121, 123 definición ... 120 con tabla de puntos cero ... 122 Ciclos de contorno. Véase Ciclos SL Ciclos de palpación ... 248 Ciclos de taladrado ... 124

С

Ciclos SL funcionamiento ... 288 desbaste ... 169 contornos superpuestos ... 166 resumen ... 164 pretaladrado ... 168 ciclo Contorno ... 165 Cilindro ... 228 Círculo completo ... 79 Círculo de redondeo entre rectas: M112 ... 108 Círculo de taladros ... 159 Compensar la inclinación de la pieza ... 250 Conexión ... 14 Conexión de datos ajuste ... 269 distribución de conectores ... 290 Coordenadas fijas de la máguina: M91/M92 ... 105 Coordenadas polares nociones básicas ... 28 determinar el polo ... 28 Corrección de la herramienta longitud ... 52 radio ... 52 Corrección de radio ... 52 esquinas exteriores ... 55 mecanizado de esquinas ... 55 introducir ... 54 esquinas interiores ... 55

D

Datos de la digitalización ejecución ... 265 Datos de la herramienta llamada ... 51 valores delta ... 46 introducir en la tabla ... 47 introducir en el pgm ... 46

D

Definición del bloque ... 34 Desbaste. Véase Ciclos SL: Desbaste Desplazamiento de los ejes de la máquina con volante electrónico ... 16 con los pulsadores de manual ... 15 por incrementos ... 17 Desplazamiento del punto cero ... 182 con tablas de puntos cero ... 182 Diálogo ... 37 Diálogo en texto claro ... 37 Digitalización determinar el campo ... 261 programación de los ciclos de digitalización ... 261 en líneas de nivel ... 263 en forma de meandro ... 262

E

Ejecución del programa ejecutar ... 238 entrada en cualquier punto del pgm ... 243 continuar después de una interrupción ... 241 saltar frases ... 246 resmunen ... 238 interrumpir ... 240 Eje giratorio redondear la visualización ... 117 desplazamiento en un recorrido optimizado ... 117 Eies auxiliares ... 27 Eies no controlados en el programa NC ... 239 Ejes principales ... 27

ndice

Elipse ... 224 Escariado ... 127 Esfera ... 228 Espejo ... 184 Esquinas del contorno abiertas: M98 ... 113

F

Е

Factor de escala ... 186 Factor de escala específico para cada eje ... 187 Familia de piezas ... 207 Ficheros de ayuda ejecutar ... 275 Figura de puntos sobre círculo ... 159 sobre líneas ... 160 resumen ... 158 Fijar el punto de referencia con palpador 3D ... 251 esquina como pto. de ref. ... 252 en cualquier eje ... 251 centro círculo como pto. de ref. ... 253 sin palpador 3D ... 19 Filtro del contorno: M124 ... 110 Frase modificar ... 38 añadir ... 38 borrar ... 38 Fresado de ranuras ... 150 Fresado de ranuras profundización pendular ... 150 Fresado de ranura circular ... 152

F

Funcionamiento del POSITIP ... 239 Función MOD modificar ... 268 cancelar ... 268 seleccionar ... 268 Función de ayuda visualizar ... 41 Funciones angulares ... 210 Funciones auxiliares introducir ... 104 para el comportamiento en trayectoria ... 107 para el cabezal ... 105 para ejes giratorios ... 117 para la indicación de coordenadas ... 105 para el control de la ejecución del pgm ... 105

G

Gestión de ficheros llamada ... 31 introducir fichero ... 33 copiar fichero ... 32 borrar fichero ... 32 proteger fichero ... 32 renombrar fichero ... 32 nombre del fichero ... 31 tipo de fichero ... 31 Gestión de programas. Véase Gestión de ficheros Giro ... 185 Gráfico vistas ... 232 ampliación de una sección ... 234 en la programación ... 39 Gráfico de programación ... 39

I.

Imbricaciones ... 197 Informaciones técnicas ... 292 Interpolación helicoidal ... 88 Interrupción del mecanizado ... 240

L

Lectura de los datos del sistema ... 215 Longitud de la hta. ... 45 Look ahead ... 115

LL

Llamada del programa cualquier programa como subprograma ... 196 mediante ciclo ... 190

М

Mandrinado ... 128 Marcha rápida ... 44 Medición de herramientas automática ... 56 longitud de la hta. ... 59 radio de la hta. ... 61 calibración del TT 120 ... 58 Medición de piezas ... 254 Memoria de frases ... 270 Modificar avance ... 18 Modos de funcionamiento ... 5 Movimientos de la herramienta programación ... 37 resumen ... 64

Ν

Nombre del programa. *Véase* Gestión de ficheros: Nombre del fichero Número de la hta. ... 45

0

Orientación del cabezal ... 191

Ρ

Palpador 3D calibración digital ... 249 medición durante la ejecución del pgm 256 compensar el desvío ... 249 Parámetros de máquina para palpadores 3D ... 280 para la transmisión de datos externa ... 279 para visualizaciones del TNC y editor del TNC ... 281 Parámetros de usuario generales ... 278 para palpadores 3D y digitalización ... 280 para el mecanizado y la ejecución del pgm ... 287 para la transmisión de datos externa ... 279 para visualizaciones del TNC, editor del TNC 282 Parámetros Q comprobar ... 212 predeterminados ... 222, 223 transmitir valores al PLC ... 218

Ρ

Pequeños escalones en el contorno: M97 ... 112 Planeado ... 176 Posicionamiento manual ... 22 Posiciones de la pieza absolutas ... 29 incrementales 29 relativas 29 Programa estructura ... 34 edición ... 38 abrir ... 35 Programación de parámetros. Véase Programación de parámetros Q Programación de parámetros Q introducir fórmula ... 219 funciones matemáticas básicas ... 208 indicaciones de programación ... 206 condiciones si/entonces ... 211 funciones angulares ... 210 otras funciones ... 213 Programación FK abrir el diálogo ... 93 conversión de programa FK ... 32 rectas ... 94 contornos cerrados ... 97 gráficos ... 92 nociones básicas ... 92 puntos auxiliares ... 96 travectorias circulares ... 94 referencias relativas ... 97

R

Radio de la hta. ... 46

14 na

Indice

Rebaje inverso ... 131 Recta ... 77, 87 Redondeo de esquinas ... 82 Reentrada en el contorno ... 244 Repetición parcial del programa funcionamiento ... 195 llamada ... 196 indicaciones de programación ... 195 programación ... 196 Representación 3D ... 234 Representación en 3 planos ... 233 Revoluciones del cabezal modificar 18 introducir ... 18, 44 Roscado a cuchilla 133 ríaido ... 134

S

Salida del contorno ... 68 Selección del pto. de ref. ... 30 Simulación gráfica ... 235 Sistema de ref. ... 27 Sobrepasar puntos de ref. ... 14 Software para la transmisión de datos ... 270 Subdivisión de la pantalla ... 4 Subprograma funcionamiento ... 194 llamada ... 195 indicaciones de programación ... 194 programación ... 195 Superficie regular ... 178 Supervisión del espacio de trabajo en el test del pgm ... 274

Indice

Tabla de herramientas edición ... 49

posibles introducciones ... 47 canceler ... 49 seleccionar ... 49 Tabla de posiciones ... 50 Tablas de puntos ... 122 Taladro ... 126, 129 Taladro profundo ... 125 Taladro universal ... 129

Teach-in ... 77 Teclado ... 5 Test del programa ejecutar ... 237 hasta una frase determinada ... 237 resumen ... 236 Tiempo de espera ... 190 ejemplos de programación ... 136, 157 Tipos de trayectoria programación libre de contornos FK. Véase Programación FK coordenadas polares ... 86 recta ... 87 trayectoria circular tangente ... 88 trayectoria circular alrededor del polo CC 87 resumen ... 86 coordenadas cartesianas ... 76 recta ... 77 travectoria circular con radio determinado 80 trayectoria circular tangente ... 81 trayectoria circular alrededor centro círculo ... 79

resumen ... 76

T.

Tipos de trayectoria nociones básicas ... 65 círculos y arcos de círculo ... 66 posicionamiento previo ... 66 TNC 410 ... 2 TNCremo ... 270 Transición de contorno M112 ... 108 M124 ... 110 Traslación de coordenadas resumen ... 181 Trayectoria circular ... 79, 80, 81, 87, 88 Trigonometría ... 210

V

Velocidad constante en la trayectoria: M90 ... 107 Velocidad de transmisión de datos ... 269 Vista en planta ... 233 Visualización de estados generales ... 9 adicionales ... 9

Μ	Empleo de la función M Actúa en la frase - a	al inicio	al final	pág.
M00	PARADA de la ejecución del programa/ PARADA del cabezal/ refrigerante DESCONECTADO			105
M01	Parada programable en la ejecución del programa			240
M02	PARADA de la ejecución del pgm/ PARADA del cabezal/ refrigerante DESCONECTADO/			
	si es preciso borrar la visualización de estados (depende de MP)/ salto a la frase 1			105
M03	Cabezal CONECTADO en sentido horario			
M04	Cabezal CONECTADO en sentido antihorario			
M05	PARADA del cabezal			105
M06	Cambio de hta./ PARADA de la ejecución del pgm (depende de MP)/ cabezal PARADO			105
M08	Refrigerante CONECTADO			
M09	Refrigerante DESCONECTADO			105
M13	Cabezal CONECTADO en sentido horario/ refrigerante CONECTADO			
M14	Cabezal CONECTADO en sentido antihorario/ refrigerante CONECTADO			105
M30	La misma función que M02			105
IVI89	Funcion auxiliar libre o bien		_	121
N400	Séle en funcionamiente con error de errortre: Velocidad constante en les esquines	_		107
N/01	Solo en funcionamiento con enor de anastre, velocidad constante en las esquinas			107
10191	En la trase de posicionamiento. Las coordenadas se refieren a una posición definida par el			105
10192	En la nase de posicionalmiento. Las coordenadas se reneren a una posición deninida por en			105
1/03	En la frasa da nasicionamiento: Las coordonadas so refieren a la nosición actual de la hta			105
10100	Válida en frases con $B0_{R+}$ R–			
M94	Beducir la visualización del eje giratorio a un valor por debajo de 360°			117
M97	Mecanizado de pequeños escalones en el contorno			112
M98	Mecanizado completo de contornos abiertos			113
M99	Llamada al ciclo por frases			121
M101	Cambio de hta, automático con hta, gemela, cuando se ha sobrepasado el tiempo de vida má	áx.		
M102	Anula M101			51
M103	Reducir el avance en la profundización según el factor F (valor porcentual)			114
M109	Velocidad de avance constante en el extremo de la hta. (cuchilla)			
	(aumento y reducción del avance)			
M110	Velocidad de avance constante en el extremo de la hta.			
	(sólo reducción del avance)			
M111	Anula M109/M110			115
M112	Añadir transiciones del contorno en cualquier tramo del mismo;			
1110	Introducir la tolerancia de la desviación del contorno a través de l			100
IVI 113				108
IVI120	Calculo previo del contorno con corrección de radio (LUUK AHEAD)			115
IVI 124	Filtro dei contorno			110
IVI 126	Despiazamiento de ejes giratorios para el recorrido más corto			117
IVI 127				117

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH Dr.-Johannes-Heidenhain-Straße 5 83301 Traunreut, Germany 2 +49 (86 69) 31-0 FAX +49 (8669) 5061 E-Mail: info@heidenhain.de **Technical support FAX** +49 (8669) 31-1000 E-Mail: service@heidenhain.de Measuring systems 2 +49 (8669) 31-3104 E-Mail: service.ms-support@heidenhain.de TNC support 窗 +49 (8669) 31-31 01 E-Mail: service.nc-support@heidenhain.de **NC programming** 22 +49 (8669) 31-3103 E-Mail: service.nc-pgm@heidenhain.de **PLC programming** (2) +49 (8669) 31-31 02 E-Mail: service.plc@heidenhain.de

Lathe controls
2 +49 (711) 952803-0
E-Mail: service.hsf@heidenhain.de

www.heidenhain.de