

TNC 426 TNC 430

NC-Software 280 476-xx 280 477-xx

Benutzer-Handbuch HEIDENHAIN-Klartext-Dialog

Deutsch (de) 12/2001

Bedienelemente der Bildschirm-Einheit

Bildschirm-Aufteilung wählen

Bildschirm zwischen Maschinen- und Programmier-Betriebsart wählen

Softkey-Leisten umschalten

Alpha-Tastatur: Buchstaben und Zeichen eingeben

Datei-Namen Kommentare

DIN/ISO-Programme

S Maschinen-Betriebsarten wählen

MANUELLER BETRIEB

EL. HANDRAD

POSITIONIEREN MIT HANDEINGABE

PROGRAMMLAUF EINZELSATZ

PROGRAMMLAUF SATZFOLGE

Programmier-Betriebsarten wählen

PROGRAMM EINSPEICHERN/EDITIEREN

PROGRAMM-TEST

Programme/Dateien verwalten, TNC-Funktionen

Programme/Dateien wählen und löschen Externe Datenübertragung

Programmaufruf in ein Programm eingeben

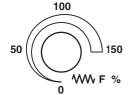
MOD-Funktion wählen

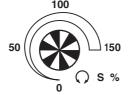
Hilfstexte anzeigen bei NC-Fehlermeldungen

CALC

Taschenrechner einblenden

Hellfeld verschieben und Sätze, Zyklen und Parameter-Funktionen direkt wählen





Hellfeld verschieben

Sätze, Zyklen und Parameter-Funktionen direkt wählen

Override Drehknöpfe für Vorschub/Spindeldrehzahl

Bahnbewegungen programmieren

Kontur anfahren/verlassen

Freie Konturprogrammierung FK

Gerade

Kreismittelpunkt/Pol für Polarkoordinaten

^{yc}

Kreisbahn um Kreismittelpunkt

Kreisbahn mit Radius

Kreisbahn mit tangentialem Anschluss

Fase

Ecken-Runden

Angaben zu Werkzeugen

Werkzeug-Länge und -Radius eingeben und aufrufen

Zyklen, Unterprogramme und Programmteil-Wiederholungen

LBL SET

Zyklen definieren und aufrufen

Unterprogramme und Programmteil-Wiederholungen eingeben und aufrufen

Programm-Halt in ein Programm eingeben

Tastsystem-Funktionen in ein Programm eingeben

Koordinatenachsen und Ziffern eingeben, Editieren

Koordinatenachsen wählen bzw. ins Programm eingeben

Ziffern

Dezimal-Punkt

Vorzeichen umkehren

Polarkoordinaten Eingabe

Inkremental-Werte

Q-Parameter

Ist-Position-übernehmen

Dialogfragen übergehen und Wörter löschen

Eingabe abschließen und Dialog fortsetzen

Satz abschließen

Zahlenwert-Eingaben rücksetzen oder TNC Fehlermeldung löschen

Dialog abbrechen, Programmteil löschen

TNC-Typ, Software und Funktionen

Dieses Handbuch beschreibt Funktionen, die in den TNCs ab den folgenden NC-Software-Nummern verfügbar sind.

ТИС-Тур	NC-Software-Nr.
TNC 426 CB, TNC 426 PB	280 476-xx
TNC 426 CF, TNC 426 PF	280 477-xx
TNC 426 M	280 476-xx
TNC 426 ME	280 477-xx
TNC 430 CA, TNC 430 PA	280 476-xx
TNC 430 CE, TNC 430 PE	280 477-xx
TNC 430 M	280 476-xx
TNC 430 ME	280 477-xx

Die Kennbuchstaben E und F kennzeichnen Exportversionen der TNC. Für die Exportversionen der TNC gilt folgende Einschränkung:

■ Geradenbewegungen simultan bis zu 4 Achsen

Der Maschinenhersteller passt den nutzbaren Leistungsumfang der TNC über Maschinen-Parameter an die jeweilige Maschine an. Daher sind in diesem Handbuch auch Funktionen beschrieben, die nicht an jeder TNC verfügbar sind.

TNC-Funktionen, die nicht an allen Maschinen zur Verfügung stehen, sind beispielsweise:

- Antastfunktion für das 3D-Tastsystem
- Digitalisieren-Option
- Werkzeug-Vermessung mit dem TT 130
- Gewindebohren ohne Ausgleichfutter
- Wiederanfahren an die Kontur nach Unterbrechungen

Setzen Sie sich bitte mit dem Maschinenhersteller in Verbindung, um den tatsächlichen Funktionsumfang Ihrer Maschine kennenzulernen.

Viele Maschinenhersteller und HEIDENHAIN bieten für die TNCs Programmier-Kurse an. Die Teilnahme an solchen Kursen ist empfehlenswert, um sich intensiv mit den TNC-Funktionen vertraut zu machen.

Benutzer-Handbuch Tastsystem-Zyklen:

Alle Tastsystem-Funktionen sind in einem separaten Benutzer-Handbuch beschrieben. Wenden Sie sich ggf. an HEIDENHAIN, wenn Sie dieses Benutzer-Handbuch benötigen. Ident-Nr.: 329 203-xx.

Vorgesehener Einsatzort

Die TNC entspricht der Klasse A nach EN 55022 und ist hauptsächlich für den Betrieb in Industriegebieten vorgesehen.

i

Neue Funktionen der NC-Software 280 476-xx

- Gewindefräszyklen 262 bis 267 (siehe "Grundlagen zum Gewindefräsen" auf Seite 236)
- Gewindebohrzyklus 209 mit Spanbruch (siehe "GEWINDEBOHREN SPANBRUCH (Zyklus 209)" auf Seite 234)
- Zyklus 247 (siehe "BEZUGSPUNKT SETZEN (Zyklus 247)" auf Seite 328)
- Zyklen über Punkte-Tabellen abarbeiten (siehe "Punkte-Tabellen" auf Seite 206)
- Eingabe von zwei Zusatz-Funktionen M (siehe "Zusatz-Funktionen M und STOP eingeben" auf Seite 176)
- Programmlauf-Halt mit M01 (siehe "Wahlweiser Programmlauf-Halt" auf Seite 420)
- NC-Programme automatisch starten (siehe "Automatischer Programmstart" auf Seite 418)
- Wählen von Nullpunkt-Tabellen im NC-Programm (siehe "Nullpunkt-Tabelle im NC-Programm wählen" auf Seite 326)
- Editieren der aktiven Nullpunkt-Tabelle in einer Programmlauf-Betriebsart (siehe "Nullpunkt-Tabelle in einer Programmlauf-Betriebsart editieren" auf Seite 327)
- Bildschirm-Aufteilung bei Paletten-Tabellen (siehe "Bildschirm-Aufteilung beim Abarbeiten der Paletten-Tabelle" auf Seite 83)
- Neue Spalten in der Werkzeug-Tabelle für die Verwaltung von TS-Kalibrierdaten (siehe "Werkzeug-Daten in die Tabelle eingeben" auf Seite 101)
- Verwalten beliebig vieler Kalibrierdaten beim schaltenden Tastsystem TS (siehe Benutzer-Handbuch Tastystem-Zyklen)
- Zyklen zur automatischen Werkzeug-Vermessung mit dem Tischtastsystem TT in DIN/ISO (siehe Benutzer-Handbuch Tastystem-Zyklen)
- Neuer Zyklus 440 zur Messung der Achsverschiebung einer Maschine mit dem Tischtastsystem TT (siehe Benutzer-Handbuch Tastystem-Zyklen)
- Unterstützung von Teleservice-Funktionen (siehe "Teleservice" auf Seite 448)
- Festlegung des Anzeigemodus für mehrzeilige Sätze, wie z.B. Zyklus-Definitionen (siehe "MP7281.0 Betriebsart Programm-Einspeichern/Editieren" auf Seite 461)
- Neue SYSREAD-Funktion 501 zum Lesen von REF-Werten aus Nullpunkt-Tabellen (siehe "FN18: SYS-DATUM READ: Systemdaten lesen" auf Seite 377)
- M140 (siehe "Rückzug von der Kontur in Werkzeugachsen-Richtung: M140" auf Seite 188)
- M141 (siehe "Tastsystem-Überwachung unterdrücken: M141" auf Seite 189)
- M142 (siehe "Modale Programminformationen löschen: M142" auf Seite 190)
- M143 (siehe "Grunddrehung löschen: M143" auf Seite 190)
- M144 (siehe "Berücksichtigung der Maschinen-Kinematik in IST/ SOLL-Positionen am Satzende: M144" auf Seite 197)

- ■Externer Zugriff über die LSV-2 Schnittstelle (siehe "Externen Zugriff erlauben/sperren" auf Seite 449)
- Werkzeugorintierte Bearbeitung (siehe "Palettenbetrieb mit werkzeugorientierter Bearbeitung" auf Seite 84)

Geänderte Funktionen der Software 280 476-xx

- PGM CALL programmieren (siehe "Beliebiges Programm als Unterprogramm" auf Seite 349)
- CYCL CALL programmieren (siehe "Zyklus aufrufen" auf Seite 204)
- Die Vorschub-Einheit bei M136 wurde von µm/U auf mm/U geändert (siehe "Vorschub in Millimeter/Spindel-Umdrehung: M136" auf Seite 184)
- Die Größe des Konturspeichers bei SL-Zyklen wurde verdoppelt (siehe "SL-Zyklen" auf Seite 287)
- M91 und M92 ist jetzt auch bei geschwenkter Bearbeitungseben möglich (siehe "Positionieren im geschwenkten System" auf Seite 336)
- Anzeige des NC-Programms beim Abarbeiten von Paletten-Tabellen (siehe "Programmlauf Satzfolge und Programmlauf Einzelsatz" auf Seite 8) und (siehe "Bildschirm-Aufteilung beim Abarbeiten der Paletten-Tabelle" auf Seite 83)

Neue/geänderte Beschreibungen in diesem Handbuch

- TNCremoNT (siehe "Datenübertragung zwischen TNC und TNCremoNT" auf Seite 429)
- Freie Kontur-Programmierung FK (siehe "Bahnbewegungen Freie Kontur-Programmierung FK" auf Seite 158)
- Zusammenfassung der Eingabeformate (siehe "Technische Information" auf Seite 469)
- Satzvorlauf bei Paletten-Tabellen (siehe "Beliebiger Einstieg ins Programm (Satzvorlauf)" auf Seite 416)
- Austausch der Puffer-Batterie (siehe "Puffer-Batterie wechseln" auf Seite 473)

i

Inhalt

Einführung	
Handbetrieb und Einrichten	
Positionieren mit Handeingabe	
Programmieren: Grundlagen Dateiverwaltung, Programmierhilfen	
Programmieren: Werkzeuge	
Programmieren: Konturen programmieren	
Programmieren: Zusatz-Funktionen	
Programmieren: Zyklen	
Programmieren: Unterprogramme und Programmteil-Wiederholungen	
Programmieren: Q-Parameter	1
Programmtest und Programm-lauf	
MOD-Funktionen	1
Tabellen und Übersichten	1

1 Einführung 1

	1.1 Die TNC 426, die TNC 430 2
	Programmierung: HEIDENHAIN Klartext-Dialog und DIN/ISO 2
	Kompatibilität 2
	1.2 Bildschirm und Bedienfeld 3
	Bildschirm 3
	Bildschirm-Aufteilung festlegen 4
	Bedienfeld 5
	1.3 Betriebsarten 6
	Manueller Betrieb und El. Handrad 6
	Positionieren mit Handeingabe 6
	Programm-Einspeichern/Editieren 7
	Programm-Test 7
	Programmlauf Satzfolge und Programmlauf Einzelsatz 8
	1.4 Status-Anzeigen 9
	"Allgemeine" Status-Anzeige 9
	Zusätzliche Status-Anzeigen 10
	1.5 Zubehör: 3D-Tastsysteme und elektronische Handräder von HEIDENHAIN 13
	3D-Tastsysteme 13
	Elektronische Handräder HR 14
На	andbetrieb und Einrichten 15
	2.1 Einschalten, Ausschalten 16 Einschalten 16
	Ausschalten 17
	2.2 Verfahren der Maschinenachsen 18
	Hinweis 18
	Achse mit den externen Richtungstasten verfahren 18
	Verfahren mit dem elektronischen Handrad HR 410 19
	Schrittweises Positionieren 20
	2.3 Spindeldrehzahl S, Vorschub F und Zusatzfunktion M 21
	Anwendung 21
	Werte eingeben 21
	Spindeldrehzahl und Vorschub ändern 21
	2.4 Bezugspunkt-Setzen (ohne 3D-Tastsystem) 22
	Hinweis 22
	Vorbereitung 22
	Bezugspunkt setzen 23
	

	Anwendung, Arbeitsweise 24 Anwendung, Arbeitsweise 24 Referenzpunkte-Anfahren bei geschwenkten Achsen 25 Bezugspunkt-Setzen im geschwenkten System 25 Bezugspunkt-Setzen bei Maschinen mit Rundtisch 26 Positionsanzeige im geschwenkten System 26 Einschränkungen beim Schwenken der Bearbeitungsebene 26 Manuelles Schwenken aktivieren 27
3 Position	ieren mit Handeingabe 29
	fache Bearbeitungen programmieren und abarbeiten 30 Positionieren mit Handeingabe anwenden 30 Programme aus \$MDI sichern oder löschen 32
_	mieren: Grundlagen, Datei-Verwaltung, mierhilfen, Paletten-Verwaltung 33
4.2 Dat 4.3 Sta	Wegmessgeräte und Referenzmarken 34 Bezugssystem 34 Bezugssystem an Fräsmaschinen 35 Polarkoordinaten 36 Absolute und inkrementale Werkstück-Positionen 37 Bezugspunkt wählen 38 ei-Verwaltung: Grundlagen 39 Dateien 39 Dateien 39 Datensicherung 40 ndard-Datei-Verwaltung 41 Hinweis 41 Datei Verwaltung aufrufen 41 Datei wählen 42 Datei löschen 42 Datei kopieren 43 Datenübertragung zu/von einem externen Datenträger 44 Eine der letzten 10 gewählten Dateien wählen 46 Datei umbenennen 46 FK-Programm in Klartext-Programm umwandeln 47 Datei schützen / Dateischutz aufheben 48

4.4 Erweiterte Datei-Verwaltung 49
Hinweis 49
Verzeichnisse 49
Pfade 49
Übersicht: Funktionen der erweiterten Datei-Verwaltung 50
Datei-Verwaltung aufrufen 51
Laufwerke, Verzeichnisse und Dateien wählen 52
Neues Verzeichnis erstellen (nur auf Laufwerk TNC:\ möglich) 53
Einzelne Datei kopieren 54
Verzeichnis kopieren 55
Eine der letzten 10 gewählten Dateien auswählen 55
Datei löschen 56
Verzeichnis löschen 56
Dateien markieren 57
Datei umbenennen 58
Zusätzliche Funktionen 58
Datenübertragung zu/von einem externen Datenträger 59
Datei in ein anderes Verzeichnis kopieren 60
Die TNC am Netzwerk (nur bei Option Ethernet-Schnittstelle) 61
4.5 Programme eröffnen und eingeben 63
Aufbau eines NC-Programms im HEIDENHAIN-Klartext-Format 63
Rohteil definieren: BLK FORM 63
Neues Bearbeitungs-Programm eröffnen 64
Werkzeug-Bewegungen im Klartext-Dialog programmieren 66
Programm editieren 67
4.6 Programmier-Grafik 70
Programmier-Grafik mitführen/nicht mitführen 70
Programmier-Grafik für bestehendes Programm erstellen 70
Satz-Nummern ein- und ausblenden 71
Grafik löschen 71
Ausschnittsvergrößerung oder -verkleinerung 71
4.7 Programme gliedern 72
Definition, Einsatzmöglichkeit 72
Gliederungs-Fenster anzeigen/Aktives Fenster wechseln 72
Gliederungs-Satz im Programm-Fenster (links) einfügen 72
Gliederungs-Satz im Gliederungs-Fenster (rechts) einfügen 72
Sätze im Gliederungs-Fenster wählen 72
4.8 Kommentare einfügen 73
Anwendung 73
Kommentar während der Programmeingabe 73
Kommentar nachträglich einfügen 73
Kommentar in eigenem Satz 73

4.9 Text-Dateien erstellen 74
Anwendung 74
Text-Datei öffnen und verlassen 74
Texte editieren 75
Zeichen, Wörter und Zeilen löschen und wieder einfügen 76
Textblöcke bearbeiten 76
Textteile finden 77
4.10 Der Taschenrechner 78
Bedienung 78
4.11 Direkte Hilfe bei NC-Fehlermeldungen 79
Fehlermeldungen anzeigen 79
Hilfe anzeigen 79
4.12 Paletten-Verwaltung 80
Anwendung 80
Paletten-Tabelle wählen 82
Paletten-Datei verlassen 82
Paletten-Datei abarbeiten 82
4.13 Palettenbetrieb mit werkzeugorientierter Bearbeitung 84
Anwendung 84
Paletten-Datei wählen 89
Paletten-Datei mit Eingabeformular einrichten 89
Ablauf der werkzeugorientierten Bearbeitung 93
Paletten-Datei verlassen 94
Paletten-Datei abarbeiten 94

5 Programmieren: Werkzeuge 97

5.1 Werkzeugbezogene Eingaben 98	
Vorschub F 98	
Spindeldrehzahl S 98	
5.2 Werkzeug-Daten 99	
Voraussetzung für die Werkzeug-Korrektur 99	
Werkzeug-Nummer, Werkzeug-Name 99	
Werkzeug-Länge L 99	
Werkzeug-Radius R 100	
Delta-Werte für Längen und Radien 100	
Werkzeug-Daten ins Programm eingeben 100	
Werkzeug-Daten in die Tabelle eingeben 101	
Platz-Tabelle für Werkzeug-Wechsler 106	
Werkzeug-Daten aufrufen 107	
Werkzeugwechsel 108	
5.3 Werkzeug-Korrektur 110	
Einführung 110	
Werkzeug-Längenkorrektur 110	
Werkzeug-Radiuskorrektur 111	
5.4 Dreidimensionale Werkzeug-Korrektur 114	
Einführung 114	
Definition eines normierten Vektors 115	
Erlaubte Werkzeug-Formen 115	
Andere Werkzeuge verwenden: Delta-Werte 116	
3D-Korrektur ohne Werkzeug-Orientierung 116	
Face Milling: 3D-Korrektur ohne und mit Werkzeug-Orientierung 116	
Peripheral Milling: 3D-Radiuskorrektur mit Werkzeug-Orientierung 118	
5.5 Arbeiten mit Schnittdaten-Tabellen 120	
Hinweis 120	
Einsatzmöglichkeiten 120	
Tabelle für Werkstück-Materialien 121	
Tabelle für Werkzeug-Schneidstoffe 122	
Tabelle für Schnittdaten 122	
Erforderliche Angaben in der Werkzeug-Tabelle 123	
Vorgehensweise beim Arbeiten mit automatischer Drehzahl-/Vorschub-Berechnung 1	2
Tabellen-Struktur verändern 124	
Datenübertragung von Schnittdaten-Tabellen 126	
Konfigurations-Datei TNC.SYS 126	

6 Programmieren: Konturen programmieren 127

6.1 Werkzeug-Bewegungen 128
Bahnfunktionen 128
Freie Kontur-Programmierung FK 128
Zusatzfunktionen M 128
Unterprogramme und Programmteil-Wiederholungen 128
Programmieren mit Q-Parametern 128
6.2 Grundlagen zu den Bahnfunktionen 129
Werkzeugbewegung für eine Bearbeitung programmieren 129
6.3 Kontur anfahren und verlassen 133
Übersicht: Bahnformen zum Anfahren und Verlassen der Kontur 133
Wichtige Positionen beim An- und Wegfahren 133
Anfahren auf einer Geraden mit tangentialem Anschluss: APPR LT 135
Anfahren auf einer Geraden senkrecht zum ersten Konturpunkt: APPR LN 135
Anfahren auf einer Kreisbahn mit tangentialem Anschluss: APPR CT 136
Anfahren auf einer Kreisbahn mit tangentialem Anschluss an die Kontur und Geradenstück: APPR LCT 136
Wegfahren auf einer Geraden mit tangentialem Anschluss: DEP LT 137
Wegfahren auf einer Geraden senkrecht zum letzten Konturpunkt: DEP LN 137
Wegfahren auf einer Kreisbahn mit tangentialem Anschluss: DEP CT 138
Wegfahren auf einer Kreisbahn
mit tangentialem Anschluss an Kontur
und Geradenstück: DEP LCT 138
6.4 Bahnbewegungen – rechtwinklige Koordinaten 139
Übersicht der Bahnfunktionen 139
Gerade L 140
Fase CHF zwischen zwei Geraden einfügen 141
Ecken-Runden RND 142
Kreismittelpunkt CC 143
Kreisbahn C um Kreismittelpunkt CC 144
Kreisbahn CR mit festgelegtem Radius 145
Kreisbahn CT mit tangentialem Anschluss 146

6.5 Bahnbewegungen – Polarkoordinaten 151 Übersicht 151 Polarkoordinaten-Ursprung: Pol CC 151 Gerade LP 152 Kreisbahn CP um Pol CC 152 Kreisbahn CTP mit tangentialem Anschluss 153 Schraubenlinie (Helix) 153 6.6 Bahnbewegungen – Freie Kontur-Programmierung FK 158 Grundlagen 158 Grafik der FK-Programmierung 159 FK-Dialog eröffnen 160 Geraden frei programmieren 160 Kreisbahnen frei programmieren 161 Eingabemöglichkeiten 162 Hilfspunkte 164 Relativ-Bezüge 165 FK-Programme konvertieren 167 6.7 Bahnbewegungen - Spline-Interpolation 173 Anwendung 173

7 Programmieren: Zusatz-Funktionen 175

7.1 Zusatz-Funktionen M und STOP eingeben 176
Grundlagen 176
7.2 Zusatz-Funktionen für Programmlauf-Kontrolle, Spindel und Kühlmittel 177
Übersicht 177
7.3 Zusatz-Funktionen für Koordinatenangaben 178
Maschinenbezogene Koordinaten programmieren: M91/M92 178
Zuletzt gesetzten Bezugspunkt aktivieren: M104 180
Positionen im ungeschwenkten Koordinaten-System
bei geschwenkter Bearbeitungsebene anfahren: M130 180
7.4 Zusatz-Funktionen für das Bahnverhalten 181
Ecken verschleifen: M90 181
Definierten Rundungskreis zwischen Geradenstücken einfügen: M112 182
Kleine Konturstufen bearbeiten: M97 182
Offene Konturecken vollständig bearbeiten: M98 183
Vorschubfaktor für Eintauchbewegungen: M103 183
Vorschub in Millimeter/Spindel-Umdrehung: M136 184
Vorschubgeschwindigkeit bei Kreisbögen: M109/M110/M111 185
Radiuskorrigierte Kontur vorausberechnen (LOOK AHEAD): M120 185
Handrad-Positionierung während des Programmlaufs überlagern: M118 187
Rückzug von der Kontur in Werkzeugachsen-Richtung: M140 188
Tastsystem-Überwachung unterdrücken: M141 189
Modale Programminformationen löschen: M142 190
Grunddrehung löschen: M143 190
7.5 Zusatz-Funktionen für Drehachsen 191
Vorschub in mm/min bei Drehachsen A, B, C: M116 191
Drehachsen wegoptimiert fahren: M126 191
Anzeige der Drehachse auf Wert unter 360° reduzieren: M94 192
Automatische Korrektur der Maschinengeometrie beim Arbeiten mit Schwenkachsen: M114 193
Position der Werkzeugspitze beim Positionieren von Schwenkachsen beibehalten (TCPM*): M128 194
Genauhalt an Ecken mit nicht tangentialen Übergängen: M134 196
Auswahl von Schwenkachsen: M138 196
Berücksichtigung der Maschinen-Kinematik in IST/SOLL-Positionen am Satzende: M144 197
7.6 Zusatz-Funktionen für Laser-Schneidmaschinen 198
Prinzip 198
Programmierte Spannung direkt ausgeben: M200 198
Spannung als Funktion der Strecke: M201 198
Spannung als Funktion der Geschwindigkeit: M202 199
Spannung als Funktion der Zeit ausgeben (zeitabhängige Rampe): M203 199
Spannung als Funktion der Zeit ausgeben (zeitabhängiger Puls): M204 199

8 Programmieren: Zyklen 201

8.1 Mit Zyklen arbeiten 202
Zyklus definieren über Softkeys 202
Zyklus definieren über GOTO-Funktion 202
Zyklus aufrufen 204
Arbeiten mit Zusatzachsen U/V/W 205
8.2 Punkte-Tabellen 206
Anwendung 206
Punkte-Tabelle eingeben 206
Punkte-Tabelle im Programm wählen 207
Zyklus in Verbindung mit Punkte-Tabellen aufrufen 208
8.3 Zyklen zum Bohren, Gewindebohren und Gewindefräsen 210
Übersicht 210
TIEFBOHREN (Zyklus 1) 212
BOHREN (Zyklus 200) 213
REIBEN (Zyklus 201) 215
AUSDREHEN (Zyklus 202) 217
UNIVERSAL-BOHREN (Zyklus 203) 219
RUECKWAERTS-SENKEN (Zyklus 204) 221
UNIVERSAL-TIEFBOHREN (Zyklus 205) 223
BOHRFRAESEN (Zyklus 208) 225
GEWINDEBOHREN mit Ausgleichsfutter (Zyklus 2) 227
GEWINDEBOHREN NEU mit Ausgleichsfutter (Zyklus 206) 228
GEWINDEBOHREN ohne Ausgleichsfutter GS (Zyklus 17) 230
GEWINDEBOHREN ohne Ausgleichsfutter GS NEU (Zyklus 207) 231
GEWINDESCHNEIDEN (Zyklus 18) 233
GEWINDEBOHREN SPANBRUCH (Zyklus 209) 234
Grundlagen zum Gewindefräsen 236
GEWINDEFRAESEN (Zyklus 262) 238
SENKGEWINDEFRAESEN (Zyklus 263) 240
BOHRGEWINDEFRAESEN (Zyklus 264) 244
HELIX- BOHRGEWINDEFRAESEN (Zyklus 265) 248 AUSSENGEWINDE-FRAESEN (Zyklus 267) 251
8.4 Zyklen zum Fräsen von Taschen, Zapfen und Nuten 259
Übersicht 259
TASCHENFRAESEN (Zyklus 4) 260
TASCHE SCHLICHTEN (Zyklus 212) 262
ZAPFEN SCHLICHTEN (Zyklus 213) 264
KREISTASCHE (Zyklus 5) 266
KREISTASCHE SCHLICHTEN (Zyklus 214) 268
KREISZAPFEN SCHLICHTEN (Zyklus 215) 270
NUTENFRAESEN (Zyklus 3) 272
NUT (Langloch) mit pendelndem Eintauchen (Zyklus 210) 274
RUNDE NUT (Langloch) mit pendelndem Eintauchen (7vklus 211) 27

8.5 Zyklen zum Herstellen von Punktemustern 280
Übersicht 280
PUNKTEMUSTER AUF KREIS (Zyklus 220) 281
PUNKTEMUSTER AUF LINIEN (Zyklus 221) 283
8.6 SL-Zyklen 287
Grundlagen 287
Übersicht SL-Zyklen 288
KONTUR (Zyklus 14) 289
Überlagerte Konturen 289
KONTUR-DATEN (Zyklus 20) 292
VORBOHREN (Zyklus 21) 293
RAEUMEN (Zyklus 22) 294
SCHLICHTEN TIEFE (Zyklus 23) 295
SCHLICHTEN SEITE (Zyklus 24) 296
KONTUR-ZUG (Zyklus 25) 297
ZYLINDER-MANTEL (Zyklus 27) 299
ZYLINDER-MANTEL Nutenfräsen (Zyklus 28) 301
8.7 Zyklen zum Abzeilen 314
Übersicht 314
DIGITALISIERDATEN ABARBEITEN (Zyklus 30) 315
ABZEILEN (Zyklus 230) 316
REGELFLAECHE (Zyklus 231) 318
8.8 Zyklen zur Koordinaten-Umrechnung 323
Übersicht 323
Wirksamkeit der Koordinaten-Umrechnungen 323
NULLPUNKT-Verschiebung (Zyklus 7) 324
NULLPUNKT-Verschiebung mit Nullpunkt-Tabellen (Zyklus 7) 325
BEZUGSPUNKT SETZEN (Zyklus 247) 328
SPIEGELN (Zyklus 8) 329
DREHUNG (Zyklus 10) 331
MASSFAKTOR (Zyklus 11) 332
MASSFAKTOR ACHSSP. (Zyklus 26) 333
BEARBEITUNGSEBENE (Zyklus 19) 334
8.9 Sonder-Zyklen 341
VERWEILZEIT (Zyklus 9) 341
PROGRAMM-AUFRUF (Zyklus 12) 342
SPINDEL-ORIENTIERUNG (Zyklus 13) 343
TOLERANZ (Zyklus 32) 344

9 Programmieren: Unterprogramme und Programmteil-Wiederholungen 345

9.1 Unterprogramme und Programmteil-Wiederholungen kennzeichnen 346 Label 346 9.2 Unterprogramme 347 Arbeitsweise 347 Programmier-Hinweise 347 Unterprogramm programmieren 347 Unterprogramm aufrufen 347 9.3 Programmteil-Wiederholungen 348 Label LBL 348 Arbeitsweise 348 Programmier-Hinweise 348 Programmteil-Wiederholung programmieren 348 Programmteil-Wiederholung aufrufen 348 9.4 Beliebiges Programm als Unterprogramm 349 Arbeitsweise 349 Programmier-Hinweise 349 Beliebiges Programm als Unterprogramm aufrufen 349 9.5 Verschachtelungen 350 Verschachtelungsarten 350 Verschachtelungstiefe 350 Unterprogramm im Unterprogramm 350 Programmteil-Wiederholungen wiederholen 351 Unterprogramm wiederholen 352

10 Programmieren: Q-Parameter 359

10.1 Prinzip und Funktionsübersicht 360
Programmierhinweise 360
Q-Parameter-Funktionen aufrufen 361
10.2 Teilefamilien – Q-Parameter statt Zahlenwerte 362
NC-Beispielsätze 362
Beispiel 362
10.3 Konturen durch mathematische Funktionen beschreiben 363
Anwendung 363
Übersicht 363
Grundrechenarten programmieren 364
10.4 Winkelfunktionen (Trigonometrie) 365
Definitionen 365
Winkelfunktionen programmieren 366
10.5 Kreisberechnungen 367
Anwendung 367
10.6 Wenn/dann-Entscheidungen mit Q-Parametern 368
Anwendung 368
Unbedingte Sprünge 368
Wenn/dann-Entscheidungen programmieren 368
Verwendete Abkürzungen und Begriffe 369
10.7 Q-Parameter kontrollieren und ändern 370
Vorgehensweise 370
10.8 Zusätzliche Funktionen 371
Ubersicht 371
FN14: ERROR: Fehlermeldungen ausgeben 372
FN15: PRINT: Texte oder Q-Parameter-Werte ausgeben 374
FN16: F-PRINT: Texte und Q-Parameter-Werte formatiert ausgeben 375
FN18: SYS-DATUM READ: Systemdaten lesen 377
FN19: PLC: Werte an PLC übergeben 383
FN20: WAIT FOR: NC und PLC synchronisieren 383
FN25: PRESET: Neuen Bezugspunkt setzen 384
FN26: TABOPEN: Frei definierbare Tabelle öffnen 385
FN27: TABWRITE: Frei definierbare Tabelle beschreiben 385
FN28\: TABREAD: Frei definierbare Tabelle lesen 386
10.9 Formel direkt eingeben 387
Formel eingeben 387
Rechenregeln 388
Eingabe-Beispiel 389

10.10 Vorbelegte Q-Parameter 390 Werte aus der PLC: Q100 bis Q107 390 Aktiver Werkzeug-Radius: Q108 390 Werkzeugachse: Q109 390 Spindelzustand: Q110 390 Kühlmittelversorgung: Q111 391 Überlappungsfaktor: Q112 391 Maßangaben im Programm: Q113 391 Werkzeug-Länge: Q114 391 Koordinaten nach Antasten während des Programmlaufs 391 Ist-Sollwert-Abweichung bei automatischer Werkzeug-Vermessung mit dem TT 130 392 Schwenken der Bearbeitungsebene mit Werkstück-Winkeln: von der TNC berechnete Koordinaten für Drehachsen 392 Messergebnisse von Tastsystem-Zyklen (siehe auch Benutzer-Handbuch Tastsystem-Zyklen) 393 11 Programm-Test und Programmlauf 403 11.1 Grafiken 404 Anwendung 404 Übersicht: Ansichten 404 Draufsicht 405 Darstellung in 3 Ebenen 405 3D-Darstellung 406 Ausschnitts-Vergrößerung 406 Grafische Simulation wiederholen 408 Bearbeitungszeit ermitteln 408 11.2 Funktionen zur Programmanzeige 409 Übersicht 409 11.3 Programm-Test 410 Anwendung 410 11.4 Programmlauf 412 Anwendung 412 Bearbeitungs-Programm ausführen 412 Bearbeitung unterbrechen 413 Maschinenachsen während einer Unterbrechung verfahren 414 Programmlauf nach einer Unterbrechung fortsetzen 415 Beliebiger Einstieg ins Programm (Satzvorlauf) 416 Wiederanfahren an die Kontur 417 11.5 Automatischer Programmstart 418 Anwendung 418 11.6 Sätze überspringen 419 Anwendung 419 11.7 Wahlweiser Programmlauf-Halt 420

i

Anwendung 420

12 MOD-Funktionen 421

12.1 MOD-Funktion wählen 422
MOD-Funktionen wählen 422
Einstellungen ändern 422
MOD-Funktionen verlassen 422
Übersicht MOD-Funktionen 422
12.2 Software- und Options-Nummern 424
Anwendung 424
12.3 Schlüssel-Zahl eingeben 425
Anwendung 425
12.4 Datenschnittstellen einrichten 426
Anwendung 426
RS-232-Schnittstelle einrichten 426
RS-422-Schnittstelle einrichten 426
BETRIEBSART des externen Geräts wählen 426
BAUD-RATE einstellen 426
Zuweisung 427
Software für Datenübertragung 428
12.5 Ethernet-Schnittstelle 431
Einführung 431
Ethernet-Karte einbauen 431
Anschluss-Möglichkeiten 431
TNC konfigurieren 432
12.6 PGM MGT konfigurieren 437
Anwendung 437
Einstellung ändern 437
12.7 Maschinenspezifische Anwenderparameter 438
Anwendung 438
12.8 Rohteil im Arbeitsraum darstellen 439
Anwendung 439
12.9 Positions-Anzeige wählen 441
Anwendung 441
12.10 Maßsystem wählen 442
Anwendung 442
12.11 Programmiersprache für \$MDI wählen 443
Anwendung 443
12.12 Achsauswahl für L-Satz-Generierung 444
Anwendung 444

12.13 Verfahrbereichs-Begrenzungen eingeben, Nullpunkt-Anzeige 445
Anwendung 445
Arbeiten ohne Verfahrbereichs-Begrenzung 445
Maximalen Verfahrbereich ermitteln und eingeben 445
Nullpunkt-Anzeige 445
12.14 HILFE-Dateien anzeigen 446
Anwendung 446
HILFE-DATEIEN wählen 446
12.15 Betriebszeiten anzeigen 447
Anwendung 447
12.16 Teleservice 448
Anwendung 448
Teleservice aufrufen/beenden 448
12.17 Externer Zugriff 449
Anwendung 449
abellen und Übersichten 451
13.1 Allgemeine Anwenderparameter 452
·
Eingabemöglichkeiten für Maschinen-Parameter 452
Allgemeine Anwenderparameter anwählen 452
13.2 Steckerbelegung und Anschlusskabel für Datenschnittstellen 465

13.3 Technische Information 469

13 T

13.4 Puffer-Batterie wechseln 473

Schnittstelle V.24/RS-232-C HEIDEHAIN-Geräte 465 Fremdgeräte 466

Schnittstelle V.11/RS-422 467

TNC 426 CB/PB, TNC 430 CA/PA 473

Ethernet-Schnittstelle RJ45-Buchse (Option) 468 Ethernet-Schnittstelle BNC-Buchse (Option) 468

TNC 426 M, TNC 430 M 473

Einführung

1.1 Die TNC 426, die TNC 430

HEIDENHAIN TNC's sind werkstattgerechte Bahnsteuerungen, mit denen Sie herkömmliche Fräs- und Bohrbearbeitungen direkt an der Maschine im leicht verständlichen Klartext-Dialog programmieren. Sie sind für den Einsatz an Fräs- und Bohrmaschinen sowie Bearbeitungszentren ausgelegt. Die TNC 426 kann bis zu 5 Achsen, die TNC 430 bis zu 9 Achsen steuern. Zusätzlich können Sie die Winkelposition der Spindel programmiert einstellen.

Auf der integrierten Festplatte können Sie beliebig viele Programme speichern, auch wenn diese extern erstellt oder beim Digitalisieren erfaßt wurden. Für schnelle Berechnungen läßt sich ein Taschenrechner jederzeit aufrufen.

Bedienfeld und Bildschirmdarstellung sind übersichtlich gestaltet, so daß Sie alle Funktionen schnell und einfach erreichen können.

Programmierung: HEIDENHAIN Klartext-Dialog und DIN/ISO

Besonders einfach ist die Programm-Erstellung im benutzerfreundlichen HEIDENHAIN-Klartext-Dialog. Eine Programmier-Grafik stellt die einzelnen Bearbeitungs-Schritte während der Programmeingabe dar. Zusätzlich hilft die Freie Kontur-Programmierung FK, wenn einmal keine NC-gerechte Zeichnung vorliegt. Die grafische Simulation der Werkstückbearbeitung ist sowohl während des Programm-Tests als auch während des Programmlaufs möglich. Zusätzlich können Sie die TNC's auch nach DIN/ISO oder im DNC-Betrieb programmieren.

Ein Programm läßt sich auch dann eingeben und testen, während ein anderes Programm gerade eine Werkstückbearbeitung ausführt.

Kompatibilität

Die TNC kann alle Bearbeitungs-Programme ausführen, die an HEIDENHAIN-Bahnsteuerungen ab der TNC 150 B erstellt wurden.

2 1 Einführung

1.2 Bildschirm und Bedienfeld

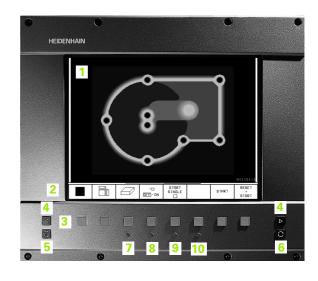
Bildschirm

Die TNC ist wahlweise lieferbar mit dem Farb-Bildschirm BC 120 (CRT) oder dem Farb-Flachbildschirm BF 120 (TFT). Die Abbildung rechts oben zeigt die Bedienelemente des BC 120, die Abbildung rechts Mitte zeigt die Bedienelemente des BF 120.

1 Kopfzeile

Bei eingeschalteter TNC zeigt der Bildschirm in der Kopfzeile die angewählten Betriebsarten an: Maschinen-Betriebsarten links und Programmier-Betriebsarten rechts. Im größeren Feld der Kopfzeile steht die Betriebsart, auf die der Bildschirm geschaltet ist: dort erscheinen Dialogfragen und Meldetexte (Ausnahme: Wenn die TNC nur Grafik anzeigt).

2 Softkeys


In der Fußzeile zeigt die TNC weitere Funktionen in einer Softkey-Leiste an. Diese Funktionen wählen Sie über die darunterliegenden Tasten. Zur Orientierung zeigen schmale Balken direkt über der Softkey-Leiste die Anzahl der Softkey-Leisten an, die sich mit den außen angeordneten schwarzen Pfeil-Tasten wählen lassen. Die aktive Softkey-Leiste wird als aufgehellter Balken dargestellt.

- 3 Softkey-Wahltasten
- 4 Softkey-Leisten umschalten
- 5 Festlegen der Bildschirm-Aufteilung
- Bildschirm-Umschalttaste für Maschinen- und Programmier-Betriebsarten

Zusätzliche Tasten für BC 120

- 7 Bildschirm entmagnetisieren; Hauptmenü zur Bildschirm-Einstellung verlassen
- 8 Hauptmenü zur Bildschirm-Einstellung wählen:
 - Im Hauptmenü: Hellfeld nach unten verschieben
 - Im Untermenü: Wert verkleinern; Bild nach links bzw. nach unten verschieben
- 9 Im Hauptmenü: Hellfeld nach oben verschieben
 - Im Untermenü: Wert vergrößern oder Bild nach rechts bzw. nach oben verschieben
- 10 Im Hauptmenü: Untermenü wählen
 - Im Untermenü: Untermenü verlassen

Hauptmenü-Dialog	Funktion
BRIGHTNESS	Helligkeit ändern
CONTRAST	Kontrast ändern
H-POSITION	Horizontale Bildposition ändern

Hauptmenü-Dialog	Funktion
V-POSITION	Vertikale Bildposition ändern
V-SIZE	Bildhöhe ändern
SIDE-PIN	Faßförmige Verzerrung korrigieren
TRAPEZOID	Trapezförmige Verzerrung korrigieren
ROTATION	Bildschieflage korrigieren
COLOR TEMP	Farbtemperatur ändern
R-GAIN	Farbeinstellung Rot ändern
B-GAIN	Farbeinstellung Blau ändern
RECALL	Keine Funktion

Der BC 120 ist gegen magnetische oder elektromagnetische Einstreuungen empfindlich. Lage und Geometrie des Bildes können dadurch beeinträchtigt werden. Wechselfelder führen zu einer periodischen Verlagerung des Bildes oder zu einer Bildverzerrung.

Bildschirm-Aufteilung festlegen

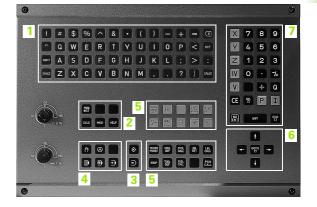
Der Benutzer wählt die Aufteilung des Bildschirms: So kann die TNC z.B. in der Betriebsart Programm-Einspeichern/Editieren das Programm im linken Fenster anzeigen, während das rechte Fenster gleichzeitig z.B. eine Programmier-Grafik darstellt. Alternativ läßt sich im rechten Fenster auch die Programm-Gliederung anzeigen oder ausschließlich das Programm in einem großen Fenster. Welche Fenster die TNC anzeigen kann, hängt von der gewählten Betriebsart ab.

Bildschirm-Aufteilung festlegen:

Bildschirm-Umschalttaste drücken: Die Softkey-Leiste zeigt die möglichen Bildschirm-Aufteilungen an, siehe "Betriebsarten", Seite 6

Bildschirm-Aufteilung mit Softkey wählen

4 1 Einführung



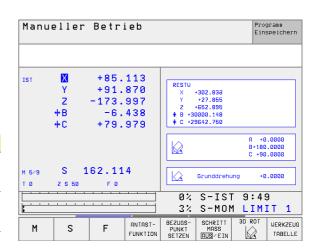
Bedienfeld

Die Abbildung zeigt die Tasten des Bedienfelds, die nach ihrer Funktion gruppiert sind:

- Alpha-Tastatur für Texteingaben, Dateinamen und DIN/ISO-Programmierungen
- 2 Datei-Verwaltung
 - Taschenrechner
 - MOD-Funktion
 - HELP-Funktion
- 3 Programmier-Betriebsarten
- 4 Maschinen-Betriebsarten
- 5 Eröffnen der Programmier-Dialoge
- 6 Pfeil-Tasten und Sprunganweisung GOTO
- 7 Zahleneingabe und Achswahl

Die Funktionen der einzelnen Tasten sind auf der ersten Umschlagsseite zusammengefaßt. Externe Tasten, wie z.B. NC-START, sind im Maschinenhandbuch beschrieben.

1.3 Betriebsarten

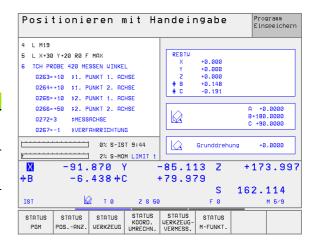

Manueller Betrieb und El. Handrad

Das Einrichten der Maschinen geschieht im Manuellen Betrieb. In dieser Betriebsart lassen sich die Maschinenachsen manuell oder schrittweise positionieren, die Bezugspunkte setzen und die Bearbeitungsebene schwenken.

Die Betriebsart El. Handrad unterstützt das manuelle Verfahren der Maschinenachsen mit einem elektronischen Handrad HR.

Softkeys zur Bildschirm-Aufteilung (wählen wie zuvor beschrieben)

Fenster	Softkey
Positionen	POSITION
Links: Positionen, rechts: Status-Anzeige	POSITION * STATUS



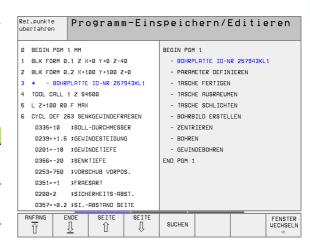
Positionieren mit Handeingabe

In dieser Betriebsart lassen sich einfache Verfahrbewegungen programmieren, z.B. um planzufräsen oder vorzupositionieren. Auch Punkte-Tabellen zum Festlegen des Digitalisierbereichs definieren Sie hier.

Softkeys zur Bildschirm-Aufteilung

Fenster	Softkey
Programm	PROGRAMM
Links: Programm, rechts: Status-Anzeige	PROGRAMM * STATUS

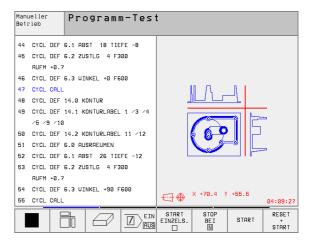
6 1 Einführung



Programm-Einspeichern/Editieren

Ihre Bearbeitungs-Programme erstellen Sie in dieser Betriebsart. Vielseitige Unterstützung und Ergänzung beim Programmieren bieten die Freie Kontur-Programmierung, die verschiedenen Zyklen und die Q-Parameter-Funktionen. Auf Wunsch zeigt die Programmier-Grafik die einzelnen Schritte an oder Sie benutzen ein anderes Fenster, um Ihre Programm-Gliederung zu erstellen.

Softkeys zur Bildschirm-Aufteilung


Fenster	Softkey
Programm	PROGRAMM
Links: Programm, rechts: Programm-Gliederung	PROGRAMM GLIEDER.
Links: Programm, rechts: Programmier-Grafik	PROGRAMM + GRAFIK

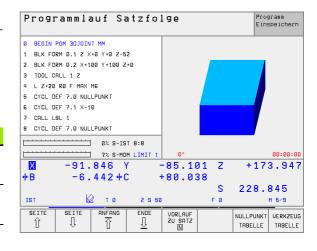
Programm-Test

Die TNC simuliert Programme und Programmteile in der Betriebsart Programm-Test, um z.B. geometrische Unverträglichkeiten, fehlende oder falsche Angaben im Programm und Verletzungen des Arbeitsraumes herauszufinden. Die Simulation wird grafisch mit verschiedenen Ansichten unterstützt.

Softkeys zur Bildschirm-Aufteilung: siehe "Programmlauf Satzfolge und Programmlauf Einzelsatz", Seite 8.

Programmlauf Satzfolge und Programmlauf Einzelsatz

In Programmlauf Satzfolge führt die TNC ein Programm bis zum Programm-Ende oder zu einer manuellen bzw. programmierten Unterbrechung aus. Nach einer Unterbrechung können Sie den Programmlauf wieder aufnehmen.


In Programmlauf Einzelsatz starten Sie jeden Satz mit der externen START-Taste einzeln

Softkeys zur Bildschirm-Aufteilung

Fenster	Softkey
Programm	PROGRAMM
Links: Programm, rechts: Programm-Gliederung	PROGRAMM GLIEDER.
Links: Programm, rechts: Status	PROGRAMM STATUS
Links: Programm, rechts: Grafik	PROGRAMM * GRAFIK
Grafik	GRAFIK

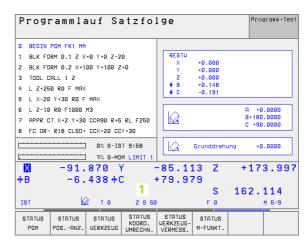
Softkeys zur Bildschirm-Aufteilung bei Paletten-Tabellen

Fenster	Softkey
Paletten-Tabelle	PALETTE
Links: Programm, rechts: Paletten-Tabelle	PROGRAMM + PALETTE
Links: Paletten-Tabelle, rechts: Status	PALETTE + STATUS
Links: Paletten-Tabelle, rechts: Grafik	PALETTE + GRAFIK

8 1 Einführung

1.4 Status-Anzeigen

"Allgemeine" Status-Anzeige


Die allgemeine Status-Anzeige 1 informiert Sie über den aktuellen Zustand der Maschine. Sie erscheint automatisch in den Betriebsarten

- Programmlauf Einzelsatz und Programmlauf Satzfolge, solange für die Anzeige nicht ausschließlich "Grafik" gewählt wurde, und beim
- Positionieren mit Handeingabe.

In den Betriebsarten Manueller Betrieb und El. Handrad erscheint die Status-Anzeige im großen Fenster.

Informationen der Status-Anzeige

Symbol	Bedeutung
IST	lst- oder Soll-Koordinaten der aktuellen Position
XYZ	Maschinenachsen; Hilfsachsen zeigt die TNC mit kleinen Buchstaben an. Die Reihenfolge und Anzahl der angezeigten Achsen legt Ihr Maschinenhersteller fest. Beachten Sie Ihr Maschinenhandbuch
ESM	Die Anzeige des Vorschubs in Zoll entspricht dem zehnten Teil des wirksamen Wertes. Drehzahl S, Vorschub F und wirksame Zusatzfunktion M
*	Programmlauf ist gestartet
→	Achse ist geklemmt
\bigcirc	Achse kann mit dem Handrad verfahren werden
	Achsen werden in geschwenkter Bearbeitungs- ebene verfahren
	Achsen werden unter Berücksichtigung der Grund- drehung verfahren

Zusätzliche Status-Anzeigen

Die zusätzlichen Status-Anzeigen geben detaillierte Informationen zum Programm-Ablauf. Sie lassen sich in allen Betriebsarten aufrufen, mit Ausnahme von Programm-Einspeichern/Editieren.

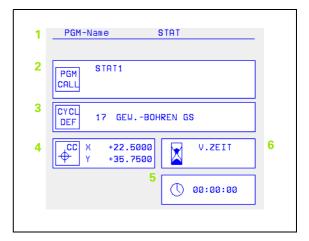
Zusätzliche Status-Anzeige einschalten

Softkey-Leiste für die Bildschirm-Aufteilung aufrufen

Bildschirmdarstellung mit zusätzlicher Status-Anzeige wählen

Zusätzliche Status-Anzeigen wählen

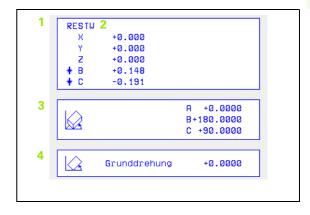
Softkey-Leiste umschalten, bis STATUS-Softkeys erscheinen



Zusätzliche Status-Anzeige wählen, z.B. allgemeine Programm-Informationen

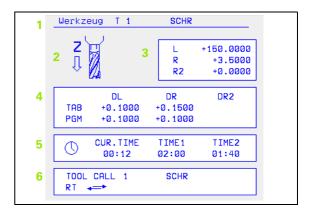
Nachfolgend sind verschiedene zusätzliche Status-Anzeigen beschrieben, die Sie über Softkeys wählen können:

STATUS Allgemeine Programm-Information


- 1 Hauptprogramm-Name
- 2 Aufgerufene Programme
- 3 Aktiver Bearbeitungs-Zyklus
- 4 Kreismittelpunkt CC (Pol)
- 5 Bearbeitungszeit
- 6 Zähler für Verweilzeit

1 Einführung

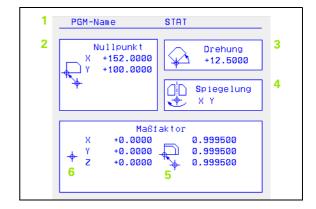
Positionen und Koordinaten


- 1 Positionsanzeige
- 2 Art der Positionsanzeige, z. B. Ist-Position
- 3 Schwenkwinkel für die Bearbeitungsebene
- 4 Winkel der Grunddrehung

STATUS WERKZEUG

Informationen zu den Werkzeugen

- Anzeige T: Werkzeug-Nummer und -Name
 Anzeige RT: Nummer und Name eines Schwester-Werkzeugs
- 2 Werkzeugachse
- 3 Werkzeug-Länge und -Radien
- 4 Aufmaße (Delta-Werte) aus dem TOOL CALL (PGM) und der Werkzeug-Tabelle (TAB)
- 5 Standzeit, maximale Standzeit (TIME 1) und maximale Standzeit bei TOOL CALL (TIME 2)
- 6 Anzeige des aktiven Werkzeugs und des (nächsten) Schwester-Werkzeugs

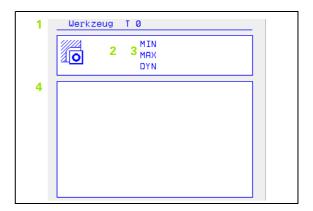


STATUS KOORD. UMRECHN.

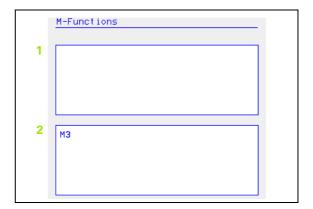
Koordinaten-Umrechnungen

- 1 Hauptprogramm-Name
- 2 Aktive Nullpunkt-Verschiebung (Zyklus 7)
- 3 Aktiver Drehwinkel (Zyklus 10)
- 4 Gespiegelte Achsen (Zyklus 8)
- 5 Aktiver Maßfaktor / Maßfaktoren (Zyklen 11 / 26)
- 6 Mittelpunkt der zentrischen Streckung

Siehe "Zyklen zur Koordinaten-Umrechnung" auf Seite 323.



STATUS WERKZEUG-Vermessung


- Nummer des Werkzeugs, das vermessen wird
- Anzeige, ob Werkzeug-Radius oder -Länge vermessen wird
- MIN- und MAX-Wert Einzelschneiden-Vermessung und Ergebnis der Messung mit rotierendem Werkzeug (DYN)
- Nummer der Werkzeug-Schneide mit zugehörigem Meßwert. Der Stern hinter dem Meßwert zeigt an, daß die Toleranz aus der Werkzeug-Tabelle überschritten wurde

M-FUNKT.

Aktive Zusatzfunktionen M

- 1 Liste der aktiven M-Funktionen mit festgelegter Bedeutung
- 2 Liste der aktiven M-Funktionen, die von Ihrem Maschinen-Hersteller angepaßt werden

1.5 Zubehör: 3D-Tastsysteme und elektronische Handräder von HEIDENHAIN

3D-Tastsysteme

Mit den verschiedenen 3D-Tastsystemen von HEIDENHAIN können Sie:

- Werkstücke automatisch ausrichten
- Schnell und genau Bezugspunkte setzen
- Messungen am Werkstück während des Programmlaufs ausführen
- 3D-Formen digitalisieren (Option) sowie
- Werkzeuge vermessen und prüfen

Alle Tastsystem-Funktionen sind in einem separaten Benutzer-Handbuch beschrieben. Wenden Sie sich ggf. an HEIDENHAIN, wenn Sie dieses Benutzer-Handbuch benötigen. Ident-Nr.: 329 203-xx.

Die schaltenden Tastsysteme TS 220, TS 630 und TS 632

Diese Tastsysteme eignen sich besonders gut zum automatischen Werkstück-Ausrichten, Bezugspunkt-Setzen, für Messungen am Werkstück und zum Digitalisieren. Das TS 220 überträgt die Schaltsignale über ein Kabel und ist zudem eine kostengünstige Alternative, wenn Sie gelegentlich digitalisieren müssen.

Speziell für Maschinen mit Werkzeugwechsler eignen sich die Tastsysteme TS 630 und TS 632, die die Schaltsignale via Infrarot-Strecke kabellos übertragen.

Das Funktionsprinzip: In den schaltenden Tastsystemen von HEIDENHAIN registriert ein verschleißfreier optischer Schalter die Auslenkung des Taststifts. Das erzeugte Signal veranlaßt, den Istwert der aktuellen Tastsystem-Position zu speichern.

Beim Digitalisieren erstellt die TNC aus einer Serie von so erzeugten Positionswerten ein Programm mit Linear-Sätzen im HEIDENHAIN-Format. Dieses Programm läßt sich dann auf einem PC mit der Auswerte-Software SUSA weiterverarbeiten, um es für bestimmte Werkzeug-Formen und -Radien zu korrigieren oder um Positiv-/Negativ-Formen zu errechnen. Wenn die Tastkugel gleich dem Fräserradius ist, sind diese Programme sofort ablauffähig.

Das Werkzeug-Tastsystem TT 130 zur Werkzeug-Vermessung

Das TT 130 ist ein schaltendes 3D-Tastsystem zum Vermessen und Prüfen von Werkzeugen. Die TNC stellt hierzu 3 Zyklen zur Verfügung, mit denen sich Werkzeug-Radius und -Länge bei stehender oder rotierender Spindel ermitteln lassen. Die besonders robuste Bauart und die hohe Schutzart machen das TT 130 gegenüber Kühlmittel und Spänen unempfindlich. Das Schaltsignal wird mit einem verschleißfreien optischen Schalter gebildet, der sich durch eine hohe Zuverlässigkeit auszeichnet.

Elektronische Handräder HR

Die elektronischen Handräder vereinfachen das präzise manuelle Verfahren der Achsschlitten. Der Verfahrweg pro Handrad-Umdrehung ist in einem weiten Bereich wählbar. Neben den Einbau-Handrädern HR 130 und HR 150 bietet HEIDENHAIN das portable Handrad HR 410 an (siehe Bild Mitte).

14 1 Einführung

2

Handbetrieb und Einrichten

2.1 Einschalten, Ausschalten

Einschalten

Das Einschalten und das Anfahren der Referenzpunkte sind maschinenabhängige Funktionen. Beachten Sie Ihr Maschinenhandbuch.

Die Versorgungsspannung von TNC und Maschine einschalten. Danach zeigt die TNC folgenden Dialog an:

SPEICHERTEST

Speicher der TNC wird automatisch überprüft

STROMUNTERBRECHUNG

TNC-Meldung, dass Stromunterbrechung vorlag – Meldung löschen

PLC-PROGRAMM ÜBERSETZEN

PLC-Programm der TNC wird automatisch übersetzt

STEUERSPANNUNG FÜR RELAIS FEHLT

Steuerspannung einschalten. Die TNC überprüft die Funktion der Not-Aus-Schaltung

MANUELLER BETRIEB REFERENZPUNKTE ÜBERFAHREN

Referenzpunkte in vorgegebener Reihenfolge überfahren: Für jede Achse externe START-Taste drücken, oder

Referenzpunkte in beliebiger Reihenfolge überfahren: Für jede Achse externe Richtungstaste drücken und halten, bis Referenzpunkt überfahren ist

Die TNC ist jetzt funktionsbereit und befindet sich in der Betriebsart Manueller Betrieb.

Die Referenzpunkte müssen Sie nur dann überfahren, wenn Sie die Maschinenachsen verfahren wollen. Wenn Sie nur Programme editieren oder testen wollen, dann wählen Sie nach dem Einschalten der Steuerspannung sofort die Betriebsart Programm-Einspeichern/Editieren oder Programm-Test.

Die Referenzpunkte können Sie dann nachträglich überfahren. Drücken Sie dazu in der Betriebsart Manueller Betrieb den Softkey REF.-PKT. ANFAHREN.

Referenzpunkt überfahren bei geschwenkter Bearbeitungsebene

Referenzpunkt-Überfahren im geschwenkten Koordinatensystem ist über die externen Achsrichtungs-Tasten möglich. Dazu mus die Funktion "Bearbeitungsebene schwenken" in Manueller Betrieb aktiv sein, siehe "Manuelles Schwenken aktivieren", Seite 27. Die TNC interpoliert dann beim Betätigen einer Achsrichtungs-Taste die entsprechenden Achsen.

Die NC-START-Taste hat keine Funktion. Die TNC gibt ggf. eine entsprechende Fehlermeldung aus.

Beachten Sie, dass die im Menü eingetragenen Winkelwerte mit den tatsächlichen Winkeln der Schwenkachse übereinstimmen.

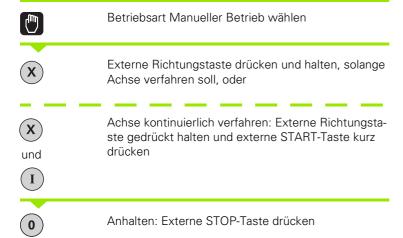
Ausschalten

Um Datenverluste beim Ausschalten zu vermeiden, müssen Sie das Betriebssystem der TNC gezielt herunterfahren:

▶ Betriebsart Manuell wählen

- Funktion zum Herunterfahren wählen, nochmal mit Softkey JA bestätigen
- Wenn die TNC in einem Überblendfenster den Text Jetzt können Sie ausschalten anzeigt, dürfen Sie die Versorgungsspannung zur TNC unterbrechen

Willkürliches Ausschalten der TNC kann zu Datenverlust führen


2.2 Verfahren der Maschinenachsen

Hinweis

Das Verfahren mit den externen Richtungstasten ist maschinenabhängig. Maschinenhandbuch beachten!

Achse mit den externen Richtungstasten verfahren

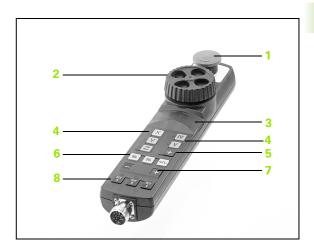
Mit beiden Methoden können Sie auch mehrere Achsen gleichzeitig verfahren. Der Vorschub, mit dem die Achsen verfahren, ändern Sie über den Softkey F, siehe "Spindeldrehzahl S, Vorschub F und Zusatzfunktion M", Seite 21.

Verfahren mit dem elektronischen Handrad HR 410

Das tragbare Handrad HR 410 ist mit zwei Zustimmtasten ausgerüstet. Die Zustimmtasten befinden sich unterhalb des Sterngriffs.

Sie können die Maschinenachsen nur verfahren, wenn eine der Zustimmtasten gedrückt ist (maschinenabhängige Funktion).

Das Handrad HR 410 verfügt über folgende Bedienelemente:


- 1 NOT-AUS
- 2 Handrad
- 3 Zustimmtasten
- 4 Tasten zur Achswahl
- 5 Taste zur Übernahme der Ist-Position
- 6 Tasten zum Festlegen des Vorschubs (langsam, mittel, schnell; Vorschübe werden vom Maschinenhersteller festgelegt)
- 7 Richtung, in die die TNC die gewählte Achse verfährt
- 8 Maschinen-Funktionen (werden vom Maschinenhersteller festgelegt)

Die roten Anzeigen signalisieren, welche Achse und welchen Vorschub Sie gewählt haben.

Verfahren mit dem Handrad ist auch während des Programmlaufs möglich.

Verfahren

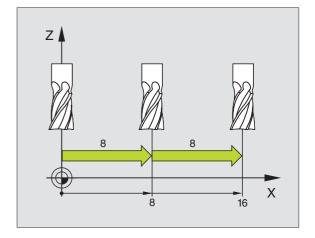
Schrittweises Positionieren

Beim schrittweisen Positionieren verfährt die TNC eine Maschinenachse um ein von Ihnen festgelegtes Schrittmaß.

Betriebsart Manuell oder El. Handrad wählen

Schrittweises Positionieren wählen: Softkey SCHRITTMASS auf EIN

ZUSTELLUNG =



Zustellung in mm eingeben, z.B. 8 mm

Externe Richtungstaste drücken: beliebig oft positionieren

2.3 Spindeldrehzahl S, Vorschub F und Zusatzfunktion M

Anwendung

In den Betriebsarten Manueller Betrieb und El. Handrad geben Sie Spindeldrehzahl S, Vorschub F und Zusatzfunktion M über Softkeys ein. Die Zusatzfunktionen sind in "7. Programmieren: Zusatzfunktionen" beschrieben.

Der Maschinenhersteller legt fest, welche Zusatzfunktionen M Sie nutzen können und welche Funktion sie haben.

Werte eingeben

Spindeldrehzahl S, Zusatzfunktion M

s

Eingabe für Spindeldrehzahl wählen: Softkey S

SPINDELDREHZAHL S=

1000

Spindeldrehzahl eingeben und mit der externen START-Taste übernehmen

Die Spindeldrehung mit der eingegebenen Drehzahl S starten Sie mit einer Zusatzfunktion M. Eine Zusatzfunktion M geben Sie auf die gleiche Weise ein.

Vorschub F

Die Eingabe eines Vorschub F müssen Sie anstelle mit der externen START-Taste mit der Taste ENT bestätigen.

Für den Vorschub F gilt:

- Wenn F=0 eingegeben, dann wirkt der kleinste Vorschub aus MP1020
- F bleibt auch nach einer Stromunterbrechung erhalten

Spindeldrehzahl und Vorschub ändern

Mit den Override-Drehknöpfen für Spindeldrehzahl S und Vorschub F lässt sich der eingestellte Wert von 0% bis 150% ändern.

Der Override-Drehknopf für die Spindeldrehzahl wirkt nur bei Maschinen mit stufenlosem Spindelantrieb.

2.4 Bezugspunkt-Setzen (ohne 3D-Tastsystem)

Hinweis

Bezugspunkt-Setzen mit 3D-Tastsystem: Siehe Benutzer-Handbuch Tastsystem-Zyklen.

Beim Bezugspunkt-Setzen wird die Anzeige der TNC auf die Koordinaten einer bekannten Werkstück-Position gesetzt.

Vorbereitung

- ► Werkstück aufspannen und ausrichten
- Nullwerkzeug mit bekanntem Radius einwechseln
- ▶ Sicherstellen, dass die TNC Ist-Positionen anzeigt

Bezugspunkt setzen

Schutzmaßnahme

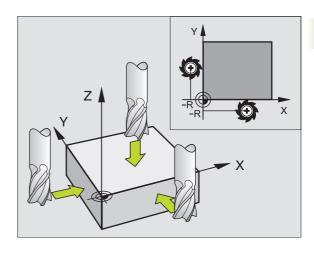
Falls die Werkstück-Oberfläche nicht angekratzt werden darf, wird auf das Werkstück ein Blech bekannter Dicke d gelegt. Für den Bezugspunkt geben Sie dann einen um d größeren Wert ein.

Betriebsart Manueller Betrieb wählen

Werkzeug vorsichtig verfahren, bis es das Werkstück berührt (ankratzt)

Achse wählen (alle Achsen sind auch über die ASCII-Tastatur wählbar)

BEZUGSPUNKT-SETZEN Z=



Nullwerkzeug, Spindelachse: Anzeige auf bekannte Werkstück-Position (z.B. 0) setzen oder Dicke d des Blechs eingeben. In der Bearbeitungsebene: Werkzeug-Radius berücksichtigen

Die Bezugspunkte für die verbleibenden Achsen setzen Sie auf die gleiche Weise.

Wenn Sie in der Zustellachse ein voreingestelltes Werkzeug verwenden, dann setzen Sie die Anzeige der Zustellachse auf die Länge L des Werkzeugs bzw. auf die Summe Z=L+d.

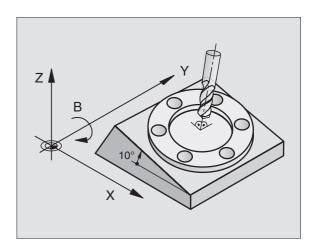
2.5 Bearbeitungsebene schwenken

Anwendung, Arbeitsweise

Die Funktionen zum Schwenken der Bearbeitungsebene werden vom Maschinenhersteller an TNC und Maschine angepasst. Bei bestimmten Schwenkköpfen (Schwenktischen) legt der Maschinenhersteller fest, ob die im Zyklus programmierten Winkel von der TNC als Koordinaten der Drehachsen oder als Winkelkomponenten einer schiefen Ebene interpretiert werden. Beachten Sie Ihr Maschinenhandbuch.

Die TNC unterstützt das Schwenken von Bearbeitungsebenen an Werkzeugmaschinen mit Schwenkköpfen sowie Schwenktischen. Typische Anwendungen sind z.B. schräge Bohrungen oder schräg im Raum liegende Konturen. Die Bearbeitungsebene wird dabei immer um den aktiven Nullpunkt geschwenkt. Wie gewohnt, wird die Bearbeitung in einer Hauptebene (z.B. X/Y-Ebene) programmiert, jedoch in der Ebene ausgeführt, die zur Hauptebene geschwenkt wurde.

Für das Schwenken der Bearbeitungsebene stehen zwei Funktionen zur Verfügung:


- Manuelles Schwenken mit dem Softkey 3D ROT in den Betriebsarten Manueller Betrieb und El. Handrad, siehe "Manuelles Schwenken aktivieren", Seite 27
- Gesteuertes Schwenken, Zyklus 19 BEARBEITUNGSEBENE im Bearbeitungs-Programm (siehe "BEARBEITUNGSEBENE (Zyklus 19)" auf Seite 334)

Die TNC-Funktionen zum "Schwenken der Bearbeitungsebene" sind Koordinaten-Transformationen. Dabei steht die Bearbeitungs-Ebene immer senkrecht zur Richtung der Werkzeugachse.

Grundsätzlich unterscheidet die TNC beim Schwenken der Bearbeitungsebene zwei Maschinen-Typen:

■ Maschine mit Schwenktisch

- Sie müssen das Werkstück durch entsprechende Positionierung des Schwenktisches, z.B. mit einem L-Satz, in die gewünschte Bearbeitungslage bringen
- Die Lage der transformierten Werkzeugachse ändert sich im Bezug auf das maschinenfeste Koordinatensystem **nicht**. Wenn Sie Ihren Tisch – also das Werkstück – z.B. um 90° drehen, dreht sich das Koordinatensystem **nicht** mit. Wenn Sie in der Betriebsart Manueller Betrieb die Achsrichtungs-Taste Z+ drücken, verfährt das Werkzeug in die Richtung Z+
- Die TNC berücksichtigt für die Berechnung des transformierten Koordinatensystems lediglich mechanisch bedingte Versätze des jeweiligen Schwenktisches – sogenannte "translatorische" Anteile

■ Maschine mit Schwenkkopf

- Sie müssen das Werkzeug durch entsprechende Positionierung des Schwenkkopfs, z.B. mit einem L-Satz, in die gewünschte Bearbeitungslage bringen
- Die Lage der geschwenkten (transformierten) Werkzeugachse ändert sich im Bezug auf das maschinenfeste Koordinatensystem: Drehen Sie den Schwenkkopf Ihrer Maschine also das Werkzeug z.B. in der B-Achse um +90°, dreht sich das Koordinatensystem mit. Wenn Sie in der Betriebsart Manueller Betrieb die Achsrichtungs-Taste Z+ drücken, verfährt das Werkzeug in die Richtung X+ des maschinenfesten Koordinatensystems
- Die TNC berücksichtigt für die Berechnung des transformierten Koordinatensystems mechanisch bedingte Versätze des Schwenkkopfs ("translatorische" Anteile) und Versätze, die durch das Schwenken des Werkzeugs entstehen (3D Werkzeug-Längenkorrektur)

Referenzpunkte-Anfahren bei geschwenkten Achsen

Bei geschwenkten Achsen fahren Sie die Referenzpunkte mit den externen Richtungstasten an. Die TNC interpoliert dabei die entsprechenden Achsen. Beachten Sie, dass die Funktion "Bearbeitungsebene schwenken" in der Betriebsart Manueller Betrieb aktiv ist und der Ist-Winkel der Drehachse im Menüfeld eingetragen wurde.

Bezugspunkt-Setzen im geschwenkten System

Nachdem Sie die Drehachsen positioniert haben, setzen Sie den Bezugspunkt wie im ungeschwenkten System. Die TNC rechnet den neuen Bezugspunkt ins geschwenkte Koordinatensystem um. Die Winkelwerte für diese Berechnung übernimmt die TNC bei geregelten Achsen aus der Ist-Position der Drehachse.

Sie dürfen im geschwenkten System den Bezugspunkt nicht setzen, wenn im Maschinen-Parameter 7500 das Bit 3 gesetzt ist. Die TNC berechnet sonst den Versatz falsch.

Falls die Drehachsen Ihrer Maschine nicht geregelt sind, müssen Sie die Ist-Position der Drehachse ins Menü zum manuellen Schwenken eintragen: Stimmt die Ist-Position der Drehachse(n) mit dem Eintrag nicht überein, berechnet die TNC den Bezugspunkt falsch.

Die TNC berücksichtigt beim Bezugspunkt-Setzen die Stellung der Schwenkachsen, auch wenn die Funktion Bearbeitungsebene-Schwenken inaktiv ist. Achten Sie auf die Winkelstellung der Drehachsen, wenn Sie den Bezugspunkt neu setzen oder eine Korrektur vornehmen. Falls Sie die Bearbeitung mit einer anderen Winkelstellung als beim Bezugspunkt-Setzen durchführen möchten, müssen Sie die Funktion Bearbeitungsebene-Schwenken aktivieren.

Bezugspunkt-Setzen bei Maschinen mit Rundtisch

Das Verhalten der TNC beim Bezugspunkt-Setzen ist maschinenabhängig. Beachten Sie Ihr Maschinenhandbuch.

Die TNC versetzt den Bezugspunkt automatisch, wenn Sie den Tisch drehen und die Funktion Bearbeitungsebene schwenken aktiv ist:

■ MP 7500, Bit 3=0

Um den Versatz des Bezugspunktes zu berechnen, verwendet die TNC die Differenz zwischen der REF-Koordinate beim Bezugspunkt-Setzen und der REF-Koordinate der Schwenkachse nach dem Schwenken. Diese Berechnungsmethode ist zu verwenden, wenn Sie in der 0°-Stellung (REF-Wert) des Rundtisches ihr Werkstück ausgerichtet aufgespannt haben.

■ MP 7500, Bit 3=1

Wenn Sie ein schräg aufgespanntes Werkstück über eine Rundtischdrehung ausrichten, dann darf die TNC den Versatz des Bezugspunktes nicht mehr über die Differenz der REF-Koordinaten berechnen. Die TNC verwendet direkt den REF-Wert der Schwenkachse nach dem Schwenken, geht also immer davon aus, dass das Werkstück vor dem Schwenken ausgerichtet war.

MP 7500 ist in der Maschinenparameterliste oder, falls vorhanden, in den Beschreibungs-Tabellen der Schwenkachs-Geometrie wirksam. Beachten Sie Ihr Maschinenhandbuch.

Positionsanzeige im geschwenkten System

Die im Status-Feld angezeigten Positionen (**SOLL** und **IST**) beziehen sich auf das geschwenkte Koordinatensystem.

Einschränkungen beim Schwenken der Bearbeitungsebene

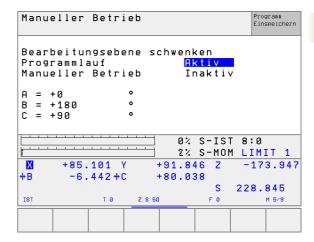
- Die Antastfunktion Grunddrehung steht nicht zur Verfügung
- PLC-Positionierungen (vom Maschinenhersteller festgelegt) sind nicht erlaubt

Manuelles Schwenken aktivieren

Manuelles Schwenken wählen: Softkey 3D ROT. Die Menüpunkte lassen sich nun mit den Pfeil-Tasten anwählen

Schwenkwinkel eingeben

Gewünschte Betriebsart im Menüpunkt Bearbeitungsebene schwenken auf Aktiv setzen: Menüpunkt wählen, mit Taste ENT umschalten



Eingabe beenden: Taste END

Zum Deaktivieren setzen Sie im Menü Bearbeitungsebene schwenken die gewünschten Betriebsarten auf Inaktiv.

Wenn die Funktion Bearbeitungsebene schwenken aktiv ist und die TNC die Maschinenachsen entsprechend der geschwenkten Achsen verfährt, blendet die Status-Anzeige das Symbol ⋈ ein.

Falls Sie die Funktion Bearbeitungsebene schwenken für die Betriebsart Programmlauf auf Aktiv setzen, gilt der im Menü eingetragene Schwenkwinkel ab dem ersten Satz des abzuarbeitenden Bearbeitungs-Programms. Verwenden Sie im Bearbeitungs-Programm Zyklus 19 **BEARBEITUNGSEBENE**, sind die im Zyklus definierten Winkelwerte (ab der Zyklus-Definition) wirksam. Im Menü eingetragene Winkelwerte werden mit den aufgerufenen Werten überschrieben.

3

Positionieren mit Handeingabe

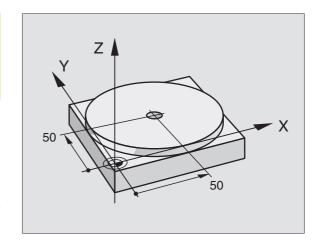
3.1 Einfache Bearbeitungen programmieren und abarbeiten

Für einfache Bearbeitungen oder zum Vorpositionieren des Werkzeugs eignet sich die Betriebsart Positionieren mit Handeingabe. Hier können Sie ein kurzes Programm im HEIDENHAIN-Klartext-Format oder nach DIN/ISO eingeben und direkt ausführen lassen. Auch die Zyklen der TNC lassen sich aufrufen. Das Programm wird in der Datei \$MDI gespeichert. Beim Positionieren mit Handeingabe lässt sich die zusätzliche Status-Anzeige aktivieren.

Positionieren mit Handeingabe anwenden

Betriebsart Positionieren mit Handeingabe wählen. Die Datei \$MDI beliebig programmieren

Programmlauf starten: Externe START-Taste


Einschränkung

Die Freie Kontur-Programmierung FK, die Programmier-Grafiken und Programmlauf-Grafiken stehen nicht zur Verfügung. Die Datei \$MDI darf keinen Programm-Aufruf enthalten (PGM CALL).

Beispiel 1

Ein einzelnes Werkstück soll mit einer 20 mm tiefen Bohrung versehen werden. Nach dem Aufspannen des Werkstücks, dem Ausrichten und Bezugspunkt-Setzen lässt sich die Bohrung mit wenigen Programmzeilen programmieren und ausführen.

Zuerst wird das Werkzeug mit L-Sätzen (Geraden) über dem Werkstück vorpositioniert und auf einen Sicherheitsabstand von 5 mm über dem Bohrloch positioniert. Danach wird die Bohrung mit dem Zyklus 1 **TIEFBOHREN** ausgeführt.

O BEGIN PGM \$MDI MM	
1 TOOL DEF 1 L+0 R+5	Werkzeug definieren: Nullwerkzeug, Radius 5
2 TOOL CALL 1 Z S2000	Werkzeug aufrufen: Werkzeugachse Z,
	Spindeldrehzahl 2000 U/min
3 L Z+200 RO F MAX	Werkzeug freifahren (F MAX = Eilgang)
4 L X+50 Y+50 R0 F MAX M3	Werkzeug mit F MAX über Bohrloch positionieren,
	Spindel ein
5 L Z+5 F2000	Werkzeug 5 mm über Bohrloch positionieren
6 CYCL DEF 1.0 TIEFBOHREN	Zyklus TIEFBOHREN definieren:

7 CYCL DEF 1.1 ABST 5	Sicherheitsabstand des Wkz über Bohrloch
8 CYCL DEF 1.2 TIEFE -20	Tiefe des Bohrlochs (Vorzeichen=Arbeitsrichtung)
9 CYCL DEF 1.3 ZUSTLG 10	Tiefe der jeweiligen Zustellung vor dem Rückzug
10 CYCL DEF 1.4 V.ZEIT 0,5	Verweilzeit am Bohrungsgrund in Sekunden
11 CYCL DEF 1.5 F250	Bohrvorschub
12 CYCL CALL	Zyklus TIEFBOHREN aufrufen
13 L Z+200 RO F MAX M2	Werkzeug freifahren
14 END PGM \$MDI MM	Programm-Ende

Geraden-Funktion L (siehe "Gerade L" auf Seite 140), Zyklus TIEF-BOHREN (siehe "TIEFBOHREN (Zyklus 1)" auf Seite 212).

Beispiel 2: Werkstück-Schieflage bei Maschinen mit Rundtisch beseitigen

Grunddrehung mit 3D-Tastsystem durchführen. Siehe Benutzer-Handbuch Tastsystem-Zyklen, "Tastsystem-Zyklen in den Betriebsarten Manueller Betrieb und El. Handrad", Abschnitt "Werkstück-Schieflage kompensieren".

Drehwinkel notieren und Grunddrehung wieder aufheben

Betriebsart wählen: Positionieren mit Handeingabe

Rundtischachse wählen, notierten Drehwinkel und Vorschub eingeben z.B. L C+2.561 F50

Eingabe abschließen

Externe START-Taste drücken: Schieflage wird durch Drehung des Rundtischs beseitigt

i

Programme aus \$MDI sichern oder löschen

Die Datei \$MDI wird gewöhnlich für kurze und vorübergehend benötigte Programme verwendet. Soll ein Programm trotzdem gespeichert werden, gehen Sie wie folgt vor:

Betriebsart wählen: Programm- Einspeichern/Editie-

Datei-Verwaltung aufrufen: Taste PGM MGT (Program Management)

Datei \$MDI markieren

"Datei kopieren" wählen: Softkey KOPIEREN

Ziel-Datei =

BOHRUNG

Geben Sie einen Namen ein, unter dem der aktuelle Inhalt der Datei \$MDI gespeichert werden soll

Kopieren ausführen

ENDE

Datei-Verwaltung verlassen: Softkey ENDE

Zum Löschen des Inhalts der Datei \$MDI gehen Sie ähnlich vor: Anstatt sie zu kopieren, löschen Sie den Inhalt mit dem Softkey LÖSCHEN. Beim nächsten Wechsel in die Betriebsart Positionieren mit Handeingabe zeigt die TNC eine leere Datei \$MDI an.

Wenn Sie \$MDI löschen wollen, dann

- dürfen Sie die Betriebsart Positionieren mit Handeingabe nicht angewählt haben (auch nicht im Hintergrund)
- dürfen Sie die Datei \$MDI in der Betriebsart Programm Einspeichern/Editieren nicht angewählt haben

Weitere Informationen: siehe "Einzelne Datei kopieren", Seite 54.

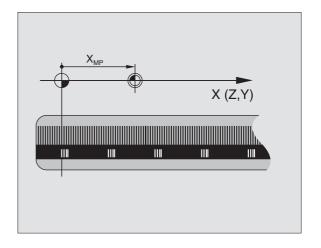
Programmieren: Grundlagen, Datei-Verwaltung, Programmierhilfen, Paletten-Verwaltung

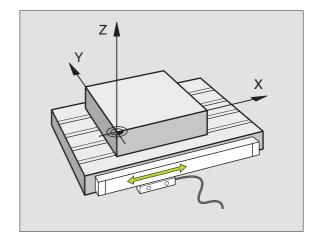
4.1 Grundlagen

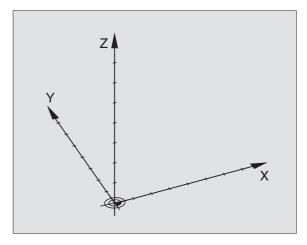
Wegmessgeräte und Referenzmarken

An den Maschinenachsen befinden sich Wegmessgeräte, die die Positionen des Maschinentisches bzw. des Werkzeugs erfassen. Wenn sich eine Maschinenachse bewegt, erzeugt das dazugehörige Wegmessgerät ein elektrisches Signal, aus dem die TNC die genaue Ist-Position der Maschinenachse errechnet.

Bei einer Stromunterbrechung geht die Zuordnung zwischen der Maschinenschlitten-Position und der berechneten Ist-Position verloren. Damit diese Zuordnung wieder hergestellt werden kann, verfügen die Maßstäbe der Wegmessgeräte über Referenzmarken. Beim Überfahren einer Referenzmarke erhält die TNC ein Signal, das einen maschinenfesten Bezugspunkt kennzeichnet. Damit kann die TNC die Zuordnung der Ist-Position zur aktuellen Maschinenschlitten-Position wieder herstellen.

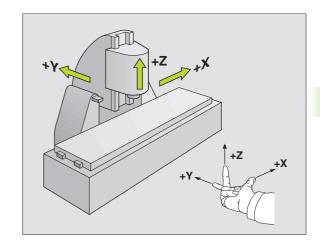

Üblicherweise sind an Linearachsen Längenmessgeräte angebaut. An Rundtischen und Schwenkachsen befinden sich Winkelmessgeräte. Um die Zuordnung zwischen Ist-Position und aktueller Maschinenschlitten-Position wieder herzustellen, müssen Sie bei Längenmessgeräten mit abstandscodierten Referenzmarken die Maschinenachsen maximal 20 mm verfahren, bei Winkelmessgeräten um maximal 20°.

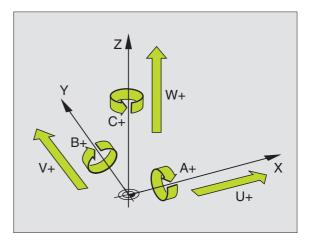

Bezugssystem


Mit einem Bezugssystem legen Sie Positionen in einer Ebene oder im Raum eindeutig fest. Die Angabe einer Position bezieht sich immer auf einen festgelegten Punkt und wird durch Koordinaten beschrieben.

Im rechtwinkligen System (kartesisches System) sind drei Richtungen als Achsen X, Y und Z festgelegt. Die Achsen stehen jeweils senkrecht zueinander und schneiden sich in einem Punkt, dem Nullpunkt. Eine Koordinate gibt den Abstand zum Nullpunkt in einer dieser Richtungen an. So lässt sich eine Position in der Ebene durch zwei Koordinaten und im Raum durch drei Koordinaten beschreiben.

Koordinaten, die sich auf den Nullpunkt beziehen, werden als absolute Koordinaten bezeichnet. Relative Koordinaten beziehen sich auf eine beliebige andere Position (Bezugspunkt) im Koordinatensystem. Relative Koordinaten-Werte werden auch als inkrementale Koordinaten-Werte bezeichnet.





Bezugssystem an Fräsmaschinen

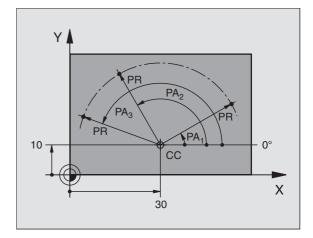
Bei der Bearbeitung eines Werkstücks an einer Fräsmaschine beziehen Sie sich generell auf das rechtwinklige Koordinatensystem. Das Bild rechts zeigt, wie das rechtwinklige Koordinatensystem den Maschinenachsen zugeordnet ist. Die Drei-Finger-Regel der rechten Hand dient als Gedächtnisstütze: Wenn der Mittelfinger in Richtung der Werkzeugachse vom Werkstück zum Werkzeug zeigt, so weist er in die Richtung Z+, der Daumen in die Richtung X+ und der Zeigefinger in Richtung Y+.

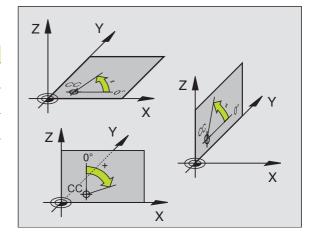
Die TNC 426 kann insgesamt maximal 5 Achsen steuern, die TNC 430 maximal 9 Achsen. Neben den Hauptachsen X, Y und Z gibt es parallel laufende Zusatzachsen U, V und W. Drehachsen werden mit A, B und C bezeichnet. Das Bild rechts unten zeigt die Zuordnung der Zusatzachsen bzw. Drehachsen zu den Hauptachsen.

Polarkoordinaten

Wenn die Fertigungszeichnung rechtwinklig bemaßt ist, erstellen Sie das Bearbeitungs-Programm auch mit rechtwinkligen Koordinaten. Bei Werkstücken mit Kreisbögen oder bei Winkelangaben ist es oft einfacher, die Positionen mit Polarkoordinaten festzulegen.

Im Gegensatz zu den rechtwinkligen Koordinaten X, Y und Z beschreiben Polarkoordinaten nur Positionen in einer Ebene. Polarkoordinaten haben ihren Nullpunkt im Pol CC (CC = circle centre; engl. Kreismittelpunkt). Eine Position in einer Ebene ist so eindeutig festgelegt durch:


- Polarkoordinaten-Radius: der Abstand vom Pol CC zur Position
- Polarkoordinaten-Winkel: Winkel zwischen der Winkel-Bezugsachse und der Strecke, die den Pol CC mit der Position verbindet


Siehe Bild rechts oben

Festlegen von Pol und Winkel-Bezugsachse

Den Pol legen Sie durch zwei Koordinaten im rechtwinkligen Koordinatensystem in einer der drei Ebenen fest. Damit ist auch die Winkel-Bezugsachse für den Polarkoordinaten-Winkel PA eindeutig zugeordnet.

Pol-Koordinaten (Ebene)	Winkel-Bezugsachse
X/Y	+X
Y/Z	+Y
Z/X	+Z

Absolute und inkrementale Werkstück-Positionen

Absolute Werkstück-Positionen

Wenn sich die Koordinaten einer Position auf den Koordinaten-Nullpunkt (Ursprung) beziehen, werden diese als absolute Koordinaten bezeichnet. Jede Position auf einem Werkstück ist durch ihre absoluten Koordinaten eindeutig festgelegt.

Beispiel 1: Bohrungen mit absoluten Koordinaten

Bohrung 1	Bohrung 2	Bohrung 3
X = 10 mm	X = 30 mm	X = 50 mm
Y = 10 mm	Y = 20 mm	Y = 30 mm

Inkrementale Werkstück-Positionen

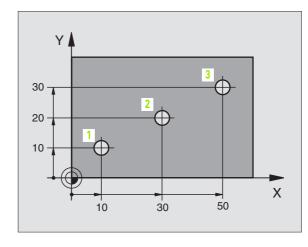
Inkrementale Koordinaten beziehen sich auf die zuletzt programmierte Position des Werkzeugs, die als relativer (gedachter) Nullpunkt dient. Inkrementale Koordinaten geben bei der Programmerstellung somit das Maß zwischen der letzten und der darauf folgenden Soll-Position an, um die das Werkzeug verfahren soll. Deshalb wird es auch als Kettenmaß bezeichnet.

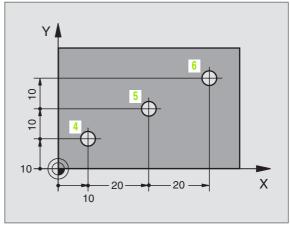
Ein Inkremental-Maß kennzeichnen Sie durch ein "I" vor der Achsbezeichnung.

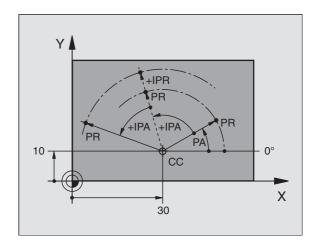
Beispiel 2: Bohrungen mit inkrementalen Koordinaten

Absolute Koordinaten der Bohrung 4

X = 10 mmY = 10 mm


Bohrung 5, bezogen auf 4 Bohrung 6, bezogen auf 5


X = 20 mm X = 20 mm Y = 10 mm Y = 10 mm


Absolute und inkrementale Polarkoordinaten

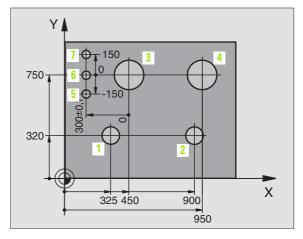
Absolute Koordinaten beziehen sich immer auf den Pol und die Winkel-Bezugsachse.

Inkrementale Koordinaten beziehen sich immer auf die zuletzt programmierte Position des Werkzeugs..

Bezugspunkt wählen

Eine Werkstück-Zeichnung gibt ein bestimmtes Formelement des Werkstücks als absoluten Bezugspunkt (Nullpunkt) vor, meist eine Werkstück-Ecke. Beim Bezugspunkt-Setzen richten Sie das Werkstück zuerst zu den Maschinenachsen aus und bringen das Werkzeug für jede Achse in eine bekannte Position zum Werkstück. Für diese Position setzen Sie die Anzeige der TNC entweder auf Null oder einen vorgegebenen Positionswert. Dadurch ordnen Sie das Werkstück dem Bezugssystem zu, das für die TNC-Anzeige bzw. Ihr Bearbeitungs-Programm gilt.


Gibt die Werkstück-Zeichnung relative Bezugspunkte vor, so nutzen Sie einfach die Zyklen zur Koordinaten-Umrechnung (siehe "Zyklen zur Koordinaten-Umrechnung" auf Seite 323).


Wenn die Werkstück-Zeichnung nicht NC-gerecht bemaßt ist, dann wählen Sie eine Position oder eine Werkstück-Ecke als Bezugspunkt, von dem aus sich die Maße der übrigen Werkstückpositionen möglichst einfach ermitteln lassen.

Besonders komfortabel setzen Sie Bezugspunkte mit einem 3D-Tastsystem von HEIDENHAIN. Siehe Benutzer-Handbuch Tastsystem-Zyklen "Bezugspunkt-Setzen mit 3D-Tastsystemen".

Beispiel

Die Werkstück-Skizze rechts zeigt Bohrungen (1 bis 4). deren Bemaßungen sich auf einen absoluten Bezugspunkt mit den Koordinaten X=0 Y=0 beziehen. Die Bohrungen (5 bis 7) beziehen sich auf einen relativen Bezugspunkt mit den absoluten Koordinaten X=450 Y=750. Mit dem Zyklus **NULLPUNKT-VERSCHIEBUNG** können Sie den Nullpunkt vorübergehend auf die Position X=450, Y=750 verschieben, um die Bohrungen (5 bis 7) ohne weitere Berechnungen zu programmieren.

4.2 Datei-Verwaltung: Grundlagen

Über die MOD-Funktion PGM MGT (siehe "PGM MGT konfigurieren" auf Seite 437) wählen Sie zwischen der Standard Datei-Verwaltung und der erweiterten Datei-Verwaltung.

Wenn die TNC an ein Netzwerk angeschlossen ist (Option), dann verwenden Sie die erweiterte Datei-Verwaltung.

Dateien

Dateien in der TNC	Тур
Programme im HEIDENHAIN-Format im DIN/ISO-Format	.H .l
Tabellen für Werkzeuge Werkzeug-Wechsler Paletten Nullpunkte Punkte (Digitalisierbereich beim messenden Tastsystem) Schnittdaten Schneidstoffe, Werkstoffe	.T .TCH .P .D .PNT .CDT .TAB
Texte als ASCII-Dateien	.A

Wenn Sie ein Bearbeitungs-Programm in die TNC eingeben, geben Sie diesem Programm zuerst einen Namen. Die TNC speichert das Programm auf der Festplatte als eine Datei mit dem gleichen Namen ab. Auch Texte und Tabellen speichert die TNC als Dateien.

Damit Sie die Dateien schnell auffinden und verwalten können, verfügt die TNC über ein spezielles Fenster zur Datei-Verwaltung. Hier können Sie die verschiedenen Dateien aufrufen, kopieren, umbenennen und löschen.

Sie können mit der TNC beliebig viele Dateien verwalten, die Gesamtgröße aller Dateien darf jedoch **1.500 MByte** nicht überschreiten.

Namen von Dateien

Bei Programmen, Tabellen und Texten hängt die TNC noch eine Erweiterung an, die vom Datei-Namen durch einen Punkt getrennt ist. Diese Erweiterung kennzeichnet den Datei-Typ.

PROG20	.H
Datei-Name	Datei-Typ
Maximale Länge	Siehe Tabelle "Dateien in der TNC

Datensicherung

HEIDENHAIN empfiehlt, die auf der TNC neu erstellten Programme und Dateien in regelmäßigen Abständen auf einem PC zu sichern.

Hierfür stellt HEIDENHAIN ein kostenloses Backup-Programm (TNCBACK.EXE) zur Verfügung. Wenden Sie sich ggf. an Ihren Maschinenhersteller.

Weiterhin benötigen Sie eine Diskette, auf der alle maschinenspezifischen Daten (PLC-Programm, Maschinen-Parameter usw.) gesichert sind. Wenden Sie sich auch hierzu bitte an Ihren Maschinenhersteller.

Falls Sie alle auf der Festplatte befindlichen Dateien (max. 1.500 MByte) sichern wollen, nimmt dies mehrere Stunden in Anspruch. Verlagern Sie den Sicherungsvorgang ggf. in die Nachtstunden oder benutzen Sie die Funktion PARALLEL AUSFÜHREN (kopieren im Hintergrund).

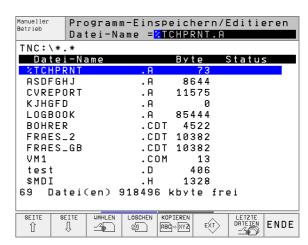
Bei Festplatten ist, abhängig von den Betriebsbedingungen (z.B. Vibrationsbelastung), nach einer Dauer von 3 bis 5 Jahren mit einer erhöhten Ausfallrate zu rechnen. HEI-DENHAIN empfiehlt daher die Festplatte nach 3 bis 5 Jahren prüfen zu lassen.

4.3 Standard-Datei-Verwaltung

Hinweis

Arbeiten Sie mit der Standard Datei-Verwaltung, wenn Sie alle Dateien in einem Verzeichnis speichern wollen, oder wenn Sie mit der Datei-Verwaltung älterer TNC-Steuerungen vertraut sind.

Setzen Sie dazu die MOD-Funktion **PGM MGT** (siehe "PGM MGT konfigurieren" auf Seite 437) auf **Standard**.


Datei-Verwaltung aufrufen

Taste PGM MGT drücken: Die TNC zeigt das Fenster zur Datei-Verwaltung (siehe Bild rechts)

Das Fenster zeigt alle Dateien an, die in der TNC gespeichert sind. Zu jeder Datei werden mehrere Informationen gezeigt:

Anzeige	Bedeutung
DATEI-NAME	Name mit maximal 16 Zeichen und Datei- Typ
ВҮТЕ	Dateigröße in Byte
STATUS	Eigenschaft der Datei:
Е	Programm ist in der Betriebsart Programm- Einspeichern/Editieren angewählt
S	Programm ist in der Betriebsart Programm- Test angewählt
М	Programm ist in einer Programmlauf- Betriebsart angewählt
Р	Datei gegen Löschen und Ändern geschützt (Protected)

Datei wählen

Datei-Verwaltung aufrufen

Benutzen Sie die Pfeil-Tasten oder die Pfeil-Softkeys, um das Hellfeld auf die Datei zu bewegen, die Sie anwählen wollen:

Bewegt das Hellfeld **dateiweise** im Fenster auf und ah

Bewegt das Hellfeld **seitenweise** im Fenster auf und ab

Datei wählen: Softkey WÄHLEN oder Taste ENT drücken

oder

Datei löschen

Datei-Verwaltung aufrufen

Benutzen Sie die Pfeil-Tasten oder die Pfeil-Softkeys, um das Hellfeld auf die Datei zu bewegen, die Sie löschen wollen:

Bewegt das Hellfeld **dateiweise** im Fenster auf und ah

l Be

Bewegt das Hellfeld **seitenweise** im Fenster auf und

Datei löschen: Softkey LÖSCHEN drücken

Datei löschen?

mit Softkey JA bestätigen

NEIN

mit Softkey NEIN abbrechen

Datei kopieren

Datei-Verwaltung aufrufen

Benutzen Sie die Pfeil-Tasten oder die Pfeil-Softkeys, um das Hellfeld auf die Datei zu bewegen, die Sie kopieren wollen:

Bewegt das Hellfeld **dateiweise** im Fenster auf und ab

Bewegt das Hellfeld **seitenweise** im Fenster auf und ab

Datei kopieren: Softkey KOPIEREN drücken

Ziel-Datei=

Neuen Dateinamen eingeben, mit Softkey AUSFÜHREN oder mit der Taste ENT bestätigen. Die TNC blendet ein Status-Fenster ein, das Sie über den Kopierfortschritt informiert. Solange die TNC kopiert, können Sie nicht weiterarbeiten, oder

wenn Sie sehr lange Programme kopieren wollen: Neuen Dateinamen eingeben, mit Softkey PARALLEL AUSFÜHREN bestätigen. Sie können nach Start des Kopiervorgangs weiterarbeiten, da die TNC die Datei im Hintergrund kopiert

Datenübertragung zu/von einem externen Datenträger

Bevor Sie Daten zu einem externen Datenträger übertragen können, müssen Sie die Datenschnittstelle einrichten (siehe "Datenschnittstellen einrichten" auf Seite 426).

Datei-Verwaltung aufrufen

Datenübertragung aktivieren: Softkey EXT drücken. Die TNC zeigt in der linken Bildschirmhälfte 1 alle Dateien, die in der TNC gespeichert sind, in der rechten Bildschirmhälfte 2 alle Dateien, die auf dem externen Datenträger gespeichert sind

TNC: *.* RS232:*.* [NO DIR] Datei-ASDFGHJ .A 8644 11575 KJHGFD LOGBOOK 85444 BOHRER .CDT 4522 FRAES_2 .CDT 10382 FRAFS GR .CDT 10382 .COM 13 test п 406 \$MDI 1328 69 Datei(en) 918496 kbyte frei SETTE SEITE KOPIEREN TNC EXT ENDE Û Û

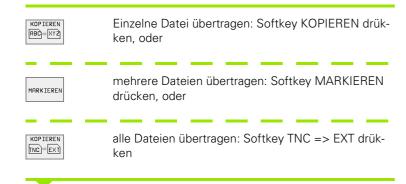
Programm-Tabelle editieren

Datei-Name = ZTCHPRNT.A

Manueller Betrieb

Benutzen Sie die Pfeil-Tasten, um das Hellfeld auf die Datei zu bewegen, die Sie übertragen wollen:

Bewegt das Hellfeld in einem Fenster auf und ab



Bewegt das Hellfeld vom rechten Fenster ins linke und umgekehrt

Wenn Sie von der TNC zum externen Datenträger kopieren wollen, schieben Sie das Hellfeld im linken Fenster auf die zu übertragende Datei.

Wenn Sie vom externen Datenträger in die TNC kopieren wollen, schieben Sie das Hellfeld im rechten Fenster auf die zu übertragende Datei.

Markierungs-Funktion	Softkey
Einzelne Datei markieren	DATEI MARKIEREN
Alle Dateien markieren	ALLE DATEIEN MARKIEREN
Markierung für einzelne Datei aufheben	MARK. AUFHEBEN
Markierung für alle Dateien aufheben	ALLE MARK. AUFHEBEN
Alle markierten Dateien kopieren	KOP.MARK.

Mit Softkey AUSFÜHREN oder mit der Taste ENT bestätigen. Die TNC blendet ein Status-Fenster ein, das Sie über den Kopierfortschritt informiert, oder

wenn Sie lange oder mehrere Programme übertragen wollen: Mit Softkey PARALLEL AUSFÜHREN bestätigen. Die TNC kopiert die Datei dann im Hintergrund

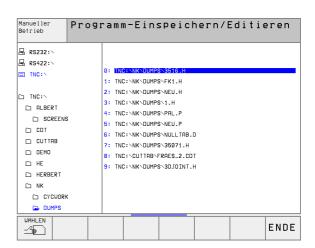
Datenübertragung beenden: Softkey TNC drücken. Die TNC zeigt wieder das Standardfenster für die Datei-Verwaltung

Eine der letzten 10 gewählten Dateien wählen

Datei-Verwaltung aufrufen

Die letzten 10 angewählten Dateien anzeigen: Softkey LETZTE DATEIEN drücken

Benutzen Sie die Pfeil-Tasten, um das Hellfeld auf die Datei zu bewegen, die Sie anwählen wollen:



Bewegt das Hellfeld im Fenster auf und ab

Datei wählen: Softkey WÄHLEN oder Taste ENT drücken

Datei umbenennen

Datei-Verwaltung aufrufen

Benutzen Sie die Pfeil-Tasten oder die Pfeil-Softkeys, um das Hellfeld auf die Datei zu bewegen, die Sie umbenennen wollen:

Bewegt das Hellfeld **dateiweise** im Fenster auf und

Bewegt das Hellfeld **seitenweise** im Fenster auf und

Datei umbenennen: Softkey UMBENNEN. drücken

Ziel-Datei=

Neuen Dateinamen eingeben, mit Softkey AUSFÜHREN oder mit der Taste ENT bestätigen

FK-Programm in Klartext-Programm umwandeln

Datei-Verwaltung aufrufen

Benutzen Sie die Pfeil-Tasten oder die Pfeil-Softkeys, um das Hellfeld auf die Datei zu bewegen, die Sie umwandeln wollen:

Bewegt das Hellfeld **dateiweise** im Fenster auf und

Bewegt das Hellfeld **seitenweise** im Fenster auf und ab

Datei umwandeln: Softkey UMWANDELN FK -> H drücken

Ziel-Datei=

Neuen Dateinamen eingeben, mit Softkey AUSFÜHREN oder mit der Taste ENT bestätigen

Datei schützen / Dateischutz aufheben

Datei-Verwaltung aufrufen

Benutzen Sie die Pfeil-Tasten oder die Pfeil-Softkeys, um das Hellfeld auf die Datei zu bewegen, die Sie schützen wollen, bzw. deren Dateischutz Sie aufheben wollen:

Bewegt das Hellfeld **dateiweise** im Fenster auf und ah

Bewegt das Hellfeld **seitenweise** im Fenster auf und ab

Datei schützen: Softkey SCHÜTZEN drücken. Die Datei erhält den Status P, oder

Dateischutz aufheben: Softkey UNGESCH. drücken. Der Status P wird gelöscht

4.4 Erweiterte Datei-Verwaltung

Hinweis

Arbeiten Sie mit der erweiterten Datei-Verwaltung, wenn Sie Dateien in unterschiedlichen Verzeichnissen speichern wollen.

Setzen Sie dazu die MOD-Funktion PGM MGT (siehe "PGM MGT konfigurieren" auf Seite 437).

Siehe auch "Datei-Verwaltung: Grundlagen" auf Seite 39.

Verzeichnisse

Da Sie auf der Festplatte sehr viele Programme bzw. Dateien speichern können, legen Sie die einzelnen Dateien in Verzeichnissen (Ordnern) ab, um den Überblick zu wahren. In diesen Verzeichnissen können Sie weitere Verzeichnisse einrichten, sogenannte Unterverzeichnisse.

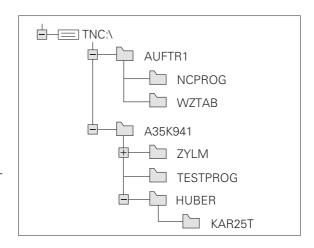
Die TNC verwaltet maximal 6 Verzeichnis-Ebenen!

Wenn Sie mehr als 512 Dateien in einem Verzeichnis speichern, dann sortiert die TNC die Dateien nicht mehr alphabetisch!

Namen von Verzeichnissen

Der Name eines Verzeichnisses darf maximal 8 Zeichen lang sein und verfügt über keine Erweiterung. Wenn Sie mehr als 8 Zeichen für den Verzeichnisnamen eingeben, dann gibt die TNC eine Fehlermeldung aus.

Pfade


Ein Pfad gibt das Laufwerk und sämtliche Verzeichnisse bzw. Unterverzeichnisse an, in denen eine Datei gespeichert ist. Die einzelnen Angaben werden mit "\" getrennt.

Beispiel

Auf dem Laufwerk TNC:\ wurde das Verzeichnis AUFTR1 angelegt. Danach wurde im Verzeichnis AUFTR1 noch das Unterverzeichnis NCPROG angelegt und dort das Bearbeitungs-Programm PROG1.H hineinkopiert. Das Bearbeitungs-Programm hat damit den Pfad:

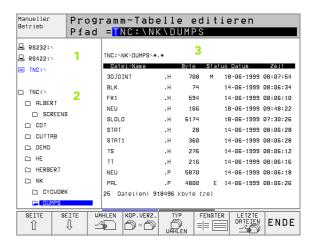
TNC:\AUFTR1WCPROG\PROG1.H

Die Grafik rechts zeigt ein Beispiel für eine Verzeichnisanzeige mit verschiedenen Pfaden.

Übersicht: Funktionen der erweiterten Datei-Verwaltung

Funktion	Softkey
Einzelne Datei kopieren (und konvertieren)	KOPIEREN ABÒ + XYZ
Bestimmten Datei-Typ anzeigen	TYP WAHLEN
Die letzten 10 gewählten Dateien anzeigen	LETZTE DATE IEN
Datei oder Verzeichnis löschen	LÖSCHEN
Datei markieren	MARKIEREN
Datei umbenennen	UMBENEN. [ABC] = [XYZ]
FK-Programm in Klartext-Programm konvertieren	UMUANDELN FK->H
Datei gegen Löschen und Ändern schützen	SCHÜTZEN
Datei-Schutz aufheben	UNGESCH.
Netzlaufwerke verwalten (nur bei Option Ethernet-Schnittstelle)	NETZUERK
Verzeichnis kopieren	KOP.VERZ.
Verzeichnisse eines Laufwerks anzeigen	ZEIGE
Verzeichnis mit allen Unterverzeichnissen löschen	LÖSCHE

Datei-Verwaltung aufrufen


Taste PGM MGT drücken: Die TNC zeigt das Fenster zur Datei-Verwaltung (Bild rechts oben zeigt die Grundeinstellung. Wenn die TNC eine andere Bildschirm-Aufteilung anzeigt, drücken Sie den Softkey FENSTER)

Das linke, schmale Fenster zeigt oben drei Laufwerke 1 an. Wenn die TNC an ein Netzwerk angeschlossen ist, zeigt die TNC dort zusätzliche Laufwerke an. Laufwerke bezeichnen Geräte, mit denen Daten gespeichert oder übertragen werden. Ein Laufwerk ist die Festplatte der TNC, weitere Laufwerke sind die Schnittstellen (RS232, RS422, Ethernet), an die Sie beispielsweise einen Personal-Computer anschließen können. Ein gewähltes (aktives) Laufwerk ist farblich hervorgehoben.

Im unteren Teil des schmalen Fensters zeigt die TNC alle Verzeichnisse 2 des gewählten Laufwerks an. Ein Verzeichnis ist immer durch ein Ordner-Symbol (links) und den Verzeichnis-Namen (rechts) gekennzeichnet. Unterverzeichnisse sind nach rechts eingerückt. Ein gewähltes (aktives) Verzeichnis ist farblich hervorgehoben.

Das rechte, breite Fenster zeigt alle Dateien 3 an, die in dem gewählten Verzeichnis gespeichert sind. Zu jeder Datei werden mehrere Informationen gezeigt, die in der Tabelle rechts aufgeschlüsselt sind.

Anzeige	Bedeutung
DATEI-NAME	Name mit maximal 16 Zeichen und Datei- Typ
ВҮТЕ	Dateigröße in Byte
STATUS	Eigenschaft der Datei:
Е	Programm ist in der Betriebsart Programm- Einspeichern/Editieren angewählt
S	Programm ist in der Betriebsart Programm- Test angewählt
М	Programm ist in einer Programmlauf- Betriebsart angewählt
Р	Datei gegen Löschen und Ändern geschützt (Protected)
DATUM	Datum, an dem die Datei zuletzt geändert wurde
ZEIT	Uhrzeit, zu der die Datei zuletzt geändert wurde

Laufwerke, Verzeichnisse und Dateien wählen

Datei-Verwaltung aufrufen

Benutzen Sie die Pfeil-Tasten oder die Softkeys, um das Hellfeld an die gewünschte Stelle auf dem Bildschirm zu bewegen:

Bewegt das Hellfeld vom rechten ins linke Fenster und umgekehrt

Bewegt das Hellfeld in einem Fenster auf und ab

Bewegt das Hellfeld in einem Fenster seitenweise auf und ab

1. Schritt: Laufwerk wählen

Laufwerk im linken Fenster markieren:

Laufwerk wählen: Softkey WÄHLEN oder Taste ENT drücken

oder

2. Schritt: Verzeichnis wählen

Verzeichnis im linken Fenster markieren: Das rechte Fenster zeigt automatisch alle Dateien aus dem Verzeichnis an, das markiert (hell hinterlegt) ist

3. Schritt: Datei wählen

Softkey TYP WÄHLEN drücken

Softkey des gewünschten Datei-Typs drücken, oder

alle Dateien anzeigen: Softkey ALLE ANZ. drücken, oder

Wildcards benutzen, z.B. alle Dateien vom Dateityp .H anzeigen, die mit 4 beginnen

Datei im rechten Fenster markieren:

Die gewählte Datei wird in der Betriebsart aktiviert, aus der Sie die Datei-Verwaltung aufgerufen haben: Softkey WÄHLEN oder Taste ENT drücken

Neues Verzeichnis erstellen (nur auf Laufwerk TNC:\möglich)

Verzeichnis im linken Fenster markieren, in dem Sie ein Unterverzeichnis erstellen wollen

Den neuen Verzeichnisnamen eingeben, Taste ENT drücken

Verzeichnis \NEU erzeugen?

Mit Softkey JA bestätigen, oder

mit Softkey NEIN abbrechen

Einzelne Datei kopieren

▶ Bewegen Sie das Hellfeld auf die Datei, die kopiert werden soll

- ▶ Softkey KOPIEREN drücken: Kopierfunktion wählen
- Namen der Ziel-Datei eingeben und mit Taste ENT oder Softkey AUSFÜHREN übernehmen: Die TNC kopiert die Datei ins aktuelle Verzeichnis. Die ursprüngliche Datei bleibt erhalten, oder
- ▶ Drücken Sie den Softkey PARALLEL AUSFÜHREN, um die Datei im Hintergrund zu kopieren. Benutzen Sie diese Funktion beim Kopieren großer Dateien, da Sie nach Start des Kopiervorgangs weiterarbeiten können. Während die TNC im Hintergrund kopiert, können Sie über den Softkey INFO PARALLEL AUS-FÜHREN (unter ZUSÄTZL. FUNKT., 2. Softkey-Leiste) den Status des Kopiervorgangs betrachten

Tabelle kopieren

Wenn Sie Tabellen kopieren, können Sie mit dem Softkey FELDER ERSETZEN einzelne Zeilen oder Spalten in der Ziel-Tabelle überschreiben. Voraussetzungen:

- die Ziel-Tabelle muss bereits existieren
- die zu kopierende Datei darf nur die zu ersetzenden Spalten oder Zeilen enthalten

Der Softkey **FELDER ERSETZEN** erscheint nicht, wenn Sie von extern mit einer Datenübertragungssoftware z. B. TNCremoNT die Tabelle in der TNC überschreiben wollen. Kopieren Sie die extern erstellte Datei in ein anderes Verzeichnis und führen Sie anschließend den Kopiervorgang mit der Dateiverwaltung der TNC aus.

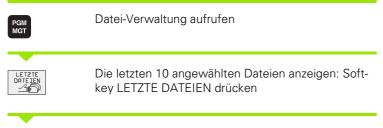
Beispiel

Sie haben auf einem Voreinstellgerät die Werkzeug-Länge und den Werkzeug-Radius von 10 neuen Werkzeugen vermessen. Anschließend erzeugt das Voreinstellgerät die Werkzeug-Tabelle TOOL.T mit 10 Zeilen (sprich 10 Werkzeugen) und den Spalten

- Werkzeug-Nummer (Spalte T)
- Werkzeug-Länge (Spalte L)
- Werkzeug-Radius (Spalte R)

Kopieren Sie diese Datei in ein anderes Verzeichnis, als die vorhandene TOOL.T steht. Wenn Sie diese Datei mit der Dateiverwaltung der TNC über die bestehende Tabelle kopieren, fragt die TNC, ob die bestehende Werkzeug-Tabelle TOOL.T überschrieben werden soll:

Drücken Sie den Softkey JA, dann überschreibt die TNC die aktuelle Datei TOOL.T vollständig. Nach dem Kopiervorgang besteht TOOL.T also aus 10 Zeilen. Alle Spalten – natürlich außer den Spalten Nummer, Länge und Radius- werden zurückgesetzt



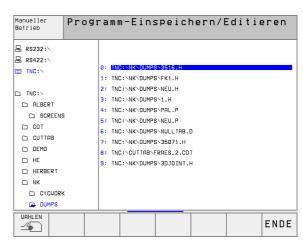
Oder drücken Sie den Softkey FELDER ERSETZEN, dann überschreibt die TNC in der Datei TOOL.T nur die Spalten Nummer, Länge und Radius der ersten 10 Zeilen. Die Daten der restlichen Zeilen und Spalten werden von der TNC nicht verändert

Verzeichnis kopieren

Bewegen Sie das Hellfeld im linken Fenster auf das Verzeichnis das Sie kopieren wollen. Drücken Sie dann den Softkey KOP. VERZ. anstelle des Softkeys KOPIEREN. Unterverzeichnisse werden von der TNC mitkopiert.

Eine der letzten 10 gewählten Dateien auswählen

Benutzen Sie die Pfeil-Tasten, um das Hellfeld auf die Datei zu bewegen, die Sie anwählen wollen:


Bewegt das Hellfeld in einem Fenster auf und ab

Laufwerk wählen: Softkey WÄHLEN oder Taste ENT drücken

oder

Datei löschen

▶ Bewegen Sie das Hellfeld auf die Datei, die löschen möchten

- Löschfunktion wählen: Softkey LÖSCHEN drücken. Die TNC fragt, ob die Datei tatsächlich gelöscht werden soll
- Löschen bestätigen: Softkey JA drücken oder
- Löschen abbrechen: Softkey NEIN drücken

Verzeichnis löschen

- Löschen Sie alle Dateien und Unterverzeichnisse aus dem Verzeichnis, das Sie löschen möchten
- Bewegen Sie das Hellfeld auf das Verzeichnis, das Sie löschen möchten I

- ▶ Löschfunktion wählen: Softkey LÖSCHEN drücken. Die TNC fragt, ob das Verzeichnis tatsächlich gelöscht werden soll
- Löschen bestätigen: Softkey JA drücken oder
- Löschen abbrechen: Softkey NEIN drücken

Dateien markieren

Markierungs-	-Funktion	Softkey
Einzelne Date	i markieren	DATEI MARKIEREN
Alle Dateien i	m Verzeichnis markieren	ALLE DATEIEN MARKIEREN
Markierung fü	ir einzelne Datei aufheben	MARK. AUFHEBEN
Markierung fü	ir alle Dateien aufheben	ALLE MARK. AUFHEBEN
Alle markierte	n Dateien kopieren	KOP.MARK.
sowohl auf einz	e das Kopieren oder Löschen von zelne als auch auf mehrere Dateier Dateien markieren Sie wie folgt:	
Hellfeld auf ers	te Datei bewegen	
MARKIEREN	Markierungs-Funktionen anzeige REN drücken	en: Softkey MARKIE-
DATEI MARKIEREN	Datei markieren: Softkey DATEI drücken	MARKIEREN
Hellfeld auf we	itere Datei bewegen	
DATEI MARKIEREN	Weitere Datei markieren: Softke REN drücken usw.	y DATEI MARKIE-
KOP.MARK.	Markierte Dateien kopieren: Soft drücken, oder	tkey KOP. MARK.
ENDE LÖSCHEN	Markierte Dateien löschen: Softk um Markierungs-Funktionen zu v anschließend Softkey LÖSCHEN kierte Dateien zu löschen	verlassen und

Datei umbenennen

▶ Bewegen Sie das Hellfeld auf die Datei, die umbenennen möchten

- Funktion zum Umbenennen wählen
- Neuen Datei-Namen eingeben; der Datei-Typ kann nicht geändert werden
- ▶ Umbenennen ausführen: Taste ENT drücken

Zusätzliche Funktionen

Datei schützen/Dateischutz aufheben

▶ Bewegen Sie das Hellfeld auf die Datei, die Sie schützen möchten

Zusätzliche Funktionen wählen: Softkey ZUSÄTZL. FUNKT. drücken

- Datei-Schutz aktivieren: Softkey SCHÜTZEN drücken, die Datei erhält Status P
- Den Dateischutz heben Sie auf die gleiche Weise mit dem Softkey UNGESCH. auf

FK-Programm in KLARTEXT-Format konvertieren

Bewegen Sie das Hellfeld auf die Datei, die Sie konvertieren m\u00f6chten

Zusätzliche Funktionen wählen: Softkey ZUSÄTZL. FUNKT. drücken

- Konvertierungsfunktion wählen: Softkey UMWAN-DELN FK->H drücken
- Namen der Zieldatei eingeben
- ▶ Konvertieren ausführen: Taste ENT drücken

Verzeichnis inklusive aller Unterverzeichnisse und Dateien löschen

Bewegen Sie das Hellfeld im linken Fenster auf das Verzeichnis, das Sie löschen möchten

➤ Zusätzliche Funktionen wählen: Softkey ZUSÄTZL. FUNKT. drücken

- Verzeichnis komplett löschen: Softkey LÖSCHE ALLE drücken
- ▶ Löschen bestätigen: Softkey JA drücken. Löschen abbrechen: Softkey NEIN drücken

Datenübertragung zu/von einem externen Datenträger

Bevor Sie Daten zu einem externen Datenträger übertragen können, müssen Sie die Datenschnittstelle einrichten (siehe "Datenschnittstellen einrichten" auf Seite 426).

Datei-Verwaltung aufrufen

Bildschirm-Aufteilung für die Datenübertragung wählen: Softkey FENSTER drücken. Die TNC zeigt in der linken Bildschirmhälfte 1 alle Dateien, die in der TNC gespeichert sind, in der rechten Bildschirmhälfte 2 alle Dateien, die auf dem externen Datenträger gespeichert sind

Benutzen Sie die Pfeil-Tasten, um das Hellfeld auf die Datei zu bewegen, die Sie übertragen wollen:

Bewegt das Hellfeld in einem Fenster auf und ab

Bewegt das Hellfeld vom rechten Fenster ins linke und umgekehrt

Wenn Sie von der TNC zum externen Datenträger kopieren wollen, schieben Sie das Hellfeld im linken Fenster auf die zu übertragende Datei.

Wenn Sie vom externen Datenträger in die TNC kopieren wollen, schieben Sie das Hellfeld im rechten Fenster auf die zu übertragende Datei.

mehrere Dateien übertragen: Softkey MARKIEREN drücken (auf der zweiten Softkey-Leiste, siehe "Dateien markieren", Seite 57), oder

MARKIEREN

alle Dateien übertragen: Softkey TNC => EXT drükken

Manueller Programm-Tabelle editieren Batei-Name = SMDI.H							
TNC:\NK\DUMPS	*.*	1		TNC:*.*	2		
Datei-Name 3DJOINT	.н	Byte 708	Status SM	Datei-Name \$MDI			Status
BLK	.н	708	511	1	.Н .Н	1328 232	
FK1	.н	594		301	.н	232 56	
NEU	.н	162		420	.п	4366	
SLOLD	.н	6174		79247	.н	2316	
STAT	.н	28		79247	.н	1734	
STAT1	.н	360		BRADFORD	.н	644	
TS	.н	276		CYC	.н	224	
TT	.н	216		DAUER	.н	352	
NEU	.Р	5870		EXTRUDER	.н	1438	
PAL	.Р	4800	E	FKDEMO	.н	404	
25 Datei(en)	918496	kbyte f	rei	69 Datei(en)	918496	kbyte fr	ei
	Û.	WÄHLEN	KOPIEREN ABÒ⇔XYŽ		ISTER	PFAD	ENDE

Mit Softkey AUSFÜHREN oder mit der Taste ENT bestätigen. Die TNC blendet ein Status-Fenster ein, das Sie über den Kopierfortschritt informiert, oder

wenn Sie lange oder mehrere Programme übertragen wollen: Mit Softkey PARALLEL AUSFÜHREN bestätigen. Die TNC kopiert die Datei dann im Hintergrund

Datenübertragung beenden: Hellfeld ins linke Fenster schieben und danach Softkey FENSTER drücken. Die TNC zeigt wieder das Standardfenster für die Datei-Verwaltung

Um bei der doppelten Dateifenster-Darstellung ein anderes Verzeichnis zu wählen, drücken Sie den Softkey PFAD und wählen mit den Pfeiltasten und der Taste ENT das gewünschte Verzeichnis!

Datei in ein anderes Verzeichnis kopieren

- ▶ Bildschirm-Aufteilung mit gleich großen Fenstern wählen
- ▶ In beiden Fenstern Verzeichnisse anzeigen: Softkey PFAD drücken

Rechtes Fenster

Hellfeld auf das Verzeichnis bewegen, in das Sie die Dateien kopieren möchten und mit Taste ENT Dateien in diesem Verzeichnis anzeigen

Linkes Fenster

Verzeichnis mit den Dateien wählen, die Sie kopieren möchten und mit Taste ENT Dateien anzeigen

Funktionen zum Markieren der Dateien anzeigen

Hellfeld auf Datei bewegen, die Sie kopieren möchten und markieren. Falls gewünscht, markieren Sie weitere Dateien auf die gleiche Weise

Die markierten Dateien in das Zielverzeichnis kopieren

Weitere Markierungs-Funktionen: siehe "Dateien markieren", Seite 57

Wenn Sie sowohl im linken als auch im rechten Fenster Dateien markiert haben, dann kopiert die TNC von dem Verzeichnis aus in dem das Hellfeld steht.

Dateien überschreiben

Wenn Sie Dateien in ein Verzeichnis kopieren, in dem sich Dateien mit gleichem Namen befinden, dann fragt die TNC, ob die Dateien im Zielverzeichnis überschrieben werden dürfen:

- ▶ Alle Dateien überschreiben: Softkey JA drücken oder
- ▶ Keine Datei überschreiben: Softkey NEIN drücken oder
- Überschreiben jeder einzelnen Datei bestätigen: Softkey BESTÄ-TIG. drücken

Wenn Sie eine geschütze Datei überschreiben wollen, müssen Sie dies separat bestätigen bzw. abbrechen.

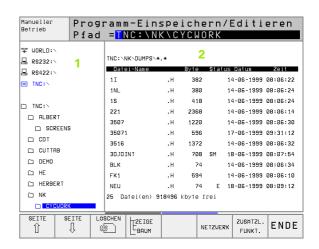
Die TNC am Netzwerk (nur bei Option Ethernet-Schnittstelle)

Um die Ethernet-Karte an Ihr Netzwerk anzuschließen, (siehe "Ethernet-Schnittstelle" auf Seite 431).

Fehlermeldungen während des Netzwerk-Betriebs protokolliert die TNC (siehe "Ethernet-Schnittstelle" auf Seite 431).

Wenn die TNC an ein Netzwerk angeschlossen ist, stehen Ihnen bis zu 7 zusätzliche Laufwerke im Verzeichnis-Fenster 1 zur Verfügung (siehe Bild rechts). Alle zuvor beschriebenen Funktionen (Laufwerk wählen, Dateien kopieren usw.) gelten auch für Netzlaufwerke, sofern Ihre Zugriffsberechtigung dies erlaubt.

Netzlaufwerk verbinden und lösen



▶ Datei-Verwaltung wählen: Taste PGM MGT drücken, ggf. mit Softkey FENSTER die Bildschirm-Aufteilung so wählen, wie im Bild rechts oben dargestellt

Netzlaufwerke verwalten: Softkey NETZWERK (zweite Softkey-Leiste) drücken. Die TNC zeigt im rechten Fenster 2 mögliche Netzlaufwerke an, auf die Sie Zugriff haben. Mit den nachfolgend beschriebenen Softkeys legen Sie für jedes Laufwerk die Verbindungen fest

Funktion	Softkey
Netzwerk-Verbindung herstellen, die TNC schreibt in die Spalte Mnt ein M , wenn die Verbindung aktiv ist. Sie können bis zu 7 zusätzliche Laufwerke mit der TNC verbinden	LAUFWERK VERBINDEN
Netzwerk-Verbindung beenden	LAUFWERK LÖSEN
Netzwerk-Verbindung beim Einschalten der TNC automatisch herstellen. Die TNC schreibt in die Spalte Auto ein A , wenn die Verbindung automatisch hergestellt wird	AUTOM. VERBINDEN

Funktion Softkey

Netzwerk-Verbindung beim Einschalten der TNC nicht automatisch herstellen

Der Aufbau der Netzwerk-Verbindung kann einige Zeit in Anspruch nehmen. Die TNC zeigt dann rechts oben am Bildschirm **[READ DIR]** an. Die maximale Übertragungs-Geschwindigkeit liegt zwischen 200 Kbaud und 1 Mbaud, je nachdem welchen Datei-Typ Sie übertragen.

Datei über Netzwerkdrucker ausdrucken

Wenn Sie einen Netzwerk-Drucker definiert haben (siehe "Ethernet-Schnittstelle" auf Seite 431), können Sie Dateien direkt ausdrucken:

- ▶ Datei-Verwaltung aufrufen: Taste PGM MGT drücken
- ▶ Bewegen Sie das Hellfeld auf die auszudruckende Datei
- ► Softkey KOPIEREN drücken
- ▶ Softkey DRUCKEN drücken: Wenn Sie nur einen einzigen Drucker definiert haben, gibt die TNC die Datei direkt aus. Wenn Sie mehrere Drucker definiert haben, blendet die TNC ein Fenster ein, in dem alle definierten Drucker aufgelistet sind. Wählen Sie im Überblend-Fenster den Drucker mit den Pfeiltasten aus und drücken Sie die Taste ENT

4.5 Programme eröffnen und eingeben

Aufbau eines NC-Programms im HEIDENHAIN-Klartext-Format

Ein Bearbeitungs-Programm besteht aus einer Reihe von Programm-Sätzen. Das Bild rechts zeigt die Elemente eines Satzes.

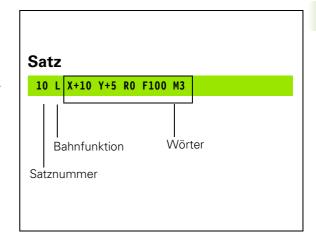
Die TNC numeriert die Sätze eines Bearbeitungs-Programms in aufsteigender Reihenfolge.

Der erste Satz eines Programms ist mit **BEGIN PGM**, dem Programm-Namen und der gültigen Maßeinheit gekennzeichnet.

Die darauffolgenden Sätze enthalten Informationen über:

- das Rohteil
- Werkzeug-Definitionen und -Aufrufe
- Vorschübe und Drehzahlen
- Bahnbewegungen, Zyklen und weitere Funktionen

Der letzte Satz eines Programms ist mit **END PGM**, dem Programm-Namen und der gültigen Maßeinheit gekennzeichnet.


Rohteil definieren: BLK FORM

Direkt nach dem Eröffnen eines neuen Programms definieren Sie ein quaderförmiges, unbearbeitetes Werkstück. Um das Rohteil nachträglich zu definieren, drücken Sie den Softkey BLK FORM. Diese Definition benötigt die TNC für die grafischen Simulationen. Die Seiten des Quaders dürfen maximal 100 000 mm lang sein und liegen parallel zu den Achsen X,Y und Z. Dieses Rohteil ist durch zwei seiner Eckpunkte festgelegt:

- MIN-Punkt: kleinste X-,Y- und Z-Koordinate des Quaders; Absolut-Werte eingeben
- MAX-Punkt: größte X-,Y- und Z-Koordinate des Quaders; Absolutoder Inkremental-Werte eingeben

Die Rohteil-Definition ist nur erforderlich, wenn Sie das Programm grafisch testen wollen!

i

Neues Bearbeitungs-Programm eröffnen

Ein Bearbeitungs-Programm geben Sie immer in der Betriebsart **Programm-Einspeichern/Editieren** ein. Beispiel für eine Programm-Eröffnung:

Betriebsart **Programm-Einspeichern/Editieren** wählen

Datei-Verwaltung aufrufen: Taste PGM MGT drücken

Wählen Sie das Verzeichnis, in dem Sie das neue Programm speichern wollen:

Datei-Name = ALT.H

Neuen Programm-Namen eingeben, mit Taste ENT bestätigen

Maßeinheit wählen: Softkey MM oder INCH drücken. Die TNC wechselt ins Programm-Fenster und eröffnet den Dialog zur Definition der **BLK-FORM** (Rohteil)

Spindelachse parallel X/Y/Z?

Spindelachse eingeben

Def BLK-FORM: Min-Punkt?

0 ENT

Nacheinander X-, Y- und Z-Koordinaten des MIN-Punkts eingeben

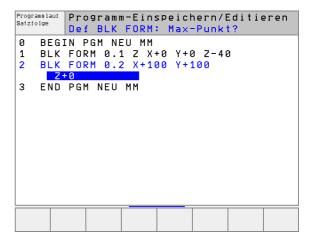
0

ENT

ENT

-40

Def BLK-FORM: MAX-Punkt?


100 ENT

Nacheinander X-, Y- und Z-Koordinaten des MAX-Punkts eingeben

100

ENT

0 ENT

Beispiel: Anzeige der BLK-Form im NC-Programm

O BEGIN PGM NEU MM	Programm-Anfang, Name, Maßeinheit
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Spindelachse, MIN-Punkt-Koordinaten
2 BLK FORM 0.2 X+100 Y+100 Z+0	MAX-Punkt-Koordinaten
3 END PGM NEU MM	Programm-Ende, Name, Maßeinheit

Die TNC erzeugt die Satz-Nummern, sowie den **BEGIN**- und **END**-Satz automatisch.

Wenn Sie keine Rohteil-Definition programmieren wollen, brechen Sie den Dialog bei **Spindelachse parallel X/Y/Z** ab mit der Taste DEL ab!

Die TNC kann die Grafik nur dann darstellen, wenn das Verhältnis kürzeste: längste Seite der **BLK FORM** kleiner als 1:64 ist.

Werkzeug-Bewegungen im Klartext-Dialog programmieren

Um einen Satz zu programmieren, beginnen Sie mit einer Dialogtaste. In der Kopfzeile des Bildschirms erfragt die TNC alle erforderlichen Daten.

Beispiel für einen Dialog

Dialog eröffnen

Koordinaten?

Zielkoordinate für X-Achse eingeben

Zielkoordinate für Y-Achse eingeben, mit Taste ENT zur nächste Frage

Radiuskorr.: RL/RR/Keine Korr.:?

"Keine Radiuskorrektur" eingeben, mit Taste ENT zur nächsten Frage

Vorschub F=? / F MAX = ENT

100

Vorschub für diese Bahnbewegung 100 mm/min, mit Taste ENT zur nächsten Frage

Zusatz-Funktion M?

3

Zusatzfunktion **M3** "Spindel ein", mit Taste ENT beendet die TNC diesen Dialog

Das Programmfenster zeigt die Zeile:

3 L X+10 Y+5 R0 F100 M3

Funktionen zur Vorschubfestlegung	Softkey
Im Eilgang verfahren	F MAX
Mit automatisch berechnetem Vorschub aus dem TOOL CALL-Satz verfahren	F AUTO

Funktion	Taste
Dialogfrage übergehen	NO
Dialog vorzeitig beenden	END
Dialog abbrechen und löschen	DEL.

Programm editieren

Während Sie ein Bearbeitungs-Programm erstellen oder verändern, können Sie mit den Pfeil-Tasten oder mit den Softkeys jede Zeile im Programm und einzelne Wörter eines Satzes wählen:

Funktion	Softkey/Tasten
Seite nach oben blättern	SEITE
Seite nach unten blättern	SEITE
Sprung zum Programm-Anfang	ANFANG
Sprung zum Programm-Ende	ENDE
Von Satz zu Satz springen	+ +
Einzelne Wörter im Satz wählen	
Funktion	Taste
Wert eines gewählten Wortes auf Null setzen	CE
Falschen Wert löschen	CE
Fehlermeldung (nicht blinkend) löschen	CE
Gewähltes Wort löschen	NO ENT
Gewählten Satz löschen	DEL _

Zyklen und Programmteile löschen: Letzten Satz des zu löschenden Zyklus oder Programmteils wählen und mit Taste DEL löschen

Sätze an beliebiger Stelle einfügen

Wählen Sie den Satz, hinter dem Sie einen neuen Satz einfügen wollen und eröffnen Sie den Dialog

Wörter ändern und einfügen

- Wählen Sie in einem Satz ein Wort und überschreiben Sie es mit dem neuen Wert. Während Sie das Wort gewählt haben, steht der Klartext-Dialog zur Verfügung
- ▶ Änderung abschließen: Taste END drücken

Wenn Sie ein Wort einfügen wollen, betätigen Sie die Pfeil-Tasten (nach rechts oder links), bis der gewünschte Dialog erscheint und geben den gewünschten Wert ein.

Gleiche Wörter in verschiedenen Sätzen suchen

Für diese Funktion Softkey AUTOM. ZEICHNEN auf AUS setzen.

Ein Wort in einem Satz wählen: Pfeil-Tasten so oft drücken, bis gewünschtes Wort markiert ist

Satz mit Pfeiltasten wählen

Die Markierung befindet sich im neu gewählten Satz auf dem gleichen Wort, wie im zuerst gewählten Satz.

Beliebigen Text finden

- Suchfunktion wählen: Softkey SUCHEN drücken. Die TNC zeigt den Dialog Suche Text:
- ► Gesuchten Text eingeben
- ► Text suchen: Softkey AUSFÜHREN drücken

Programmteile markieren, kopieren, löschen und einfügen

Um Programmteile innerhalb eines NC-Programms, bzw. in ein anderes NC-Programm zu kopieren, stellt die TNC folgende Funktionen zur Verfügung: Siehe Tabelle unten.

Um Programmteile zu kopieren gehen Sie wie folgt vor:

- ► Softkeyleiste mit Markierungsfunktionen wählen
- ▶ Ersten (letzten) Satz des zu kopierenden Programmteils wählen
- ▶ Ersten (letzten) Satz markieren: Softkey BLOCK MARKIEREN drükken. Die TNC hinterlegt die erste Stelle der Satznummer mit einem Hellfeld und blendet den Softkey MARKIEREN ABBrechen ein
- ▶ Bewegen Sie das Hellfeld auf den letzten (ersten) Satz des Programmteils den Sie kopieren oder löschen wollen. Die TNC stellt alle markierten Sätze in einer anderen Farbe dar. Sie können die Markierungsfunktion jederzeit beenden, indem Sie den Softkey MARKIE-REN ABBRECHEN drücken
- Markiertes Programmteil kopieren: Softkey BLOCK KOPIEREN drücken, markiertes Programmteil löschen: Softkey BLOCK LÖSCHEN drücken. Die TNC speichert den markierten Block
- Wählen Sie mit den Pfeiltasten den Satz, hinter dem Sie das kopierte (gelöschte) Programmteil einfügen wollen

Um das kopierte Programmteil in einem anderen Programm einzufügen, wählen Sie das entsprechende Programm über die Datei-Verwaltung und markieren dort den Satz, hinter dem Sie einfügen wollen.

Gespeichertes Programmteil einfügen: Softkey BLOCK EINFÜGEN drücken

Funktion	Softkey
Markierungsfunktion einschalten	BLOCK MARKIEREN
Markierungsfunktion ausschalten	MARKIEREN ABBRECHEN
Markierten Block löschen	BLOCK LÖSCHEN
Im Speicher befindlichen Block einfügen	BLOCK EINFÜGEN
Markierten Block kopieren	BLOCK KOPIEREN

i

4.6 Programmier-Grafik

Programmier-Grafik mitführen/nicht mitführen

Während Sie ein Programm erstellen, kann die TNC die programmierte Kontur mit einer 2D-Strichgrafik anzeigen.

Zur Bildschirm-Aufteilung Programm links und Grafik rechts wechseln: Taste SPLIT SCREEN und Softkey PROGRAMM + GRAFIK drücken

▶ Softkey AUTOM. ZEICHNEN auf EIN setzen. Während Sie die Programmzeilen eingeben, zeigt die TNC jede programmierte Bahnbewegung im Grafik-Fenster rechts an

Wenn die TNC die Grafik nicht mitführen soll, setzen Sie den Softkey AUTOM. ZEICHNEN auf AUS.

AUTOM. ZEICHNEN EIN zeichnet keine Programmteil-Wiederholungen mit.

Programmier-Grafik für bestehendes Programm erstellen

Wählen Sie mit den Pfeil-Tasten den Satz, bis zu dem die Grafik erstellt werden soll oder drücken Sie GOTO und geben die gewünschte Satz-Nummer direkt ein

▶ Grafik erstellen: Softkey RESET + START drücken

Weitere Funktionen:

Funktion	Softkey
Programmier-Grafik vollständig erstellen	RESET + START
Programmier-Grafik satzweise erstellen	START EINZELS.
Programmier-Grafik komplett erstellen oder nach RESET + START vervollständigen	START
Programmier-Grafik anhalten. Dieser Softkey erscheint nur, während die TNC eine Program- mier-Grafik erstellt	STOP

Manueller Betrieb	Pro	gramn	n-Eins	speich	nern/E	Editie	eren
13 FSELECT 2	1.1 Z X 1.2 X+9 1 Z S1 F MAX F MAX RL F2 +0 0 CCX+ 7.5	-90 Y-90 Z 0 Y+90 Z+0 400 M2	Y-40				
ANFANG E	NDE []	SEITE Î	SEITE	SUCHEN	START	START EINZELS.	RESET + etopt

Satz-Nummern ein- und ausblenden

- ▶ Softkey-Leiste umschalten: Siehe Bild rechts oben
- Satz-Nummern einblenden: Softkey ANZEIGEN AUS-BLEND. SATZ-NR. auf ANZEIGEN setzen
- Satz-Nummern ausblenden: Softkey ANZEIGEN AUS-BLEND. SATZ-NR. auf AUSBLEND. setzen

Grafik löschen

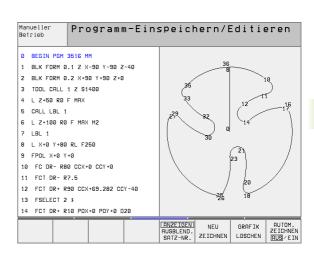
▶ Softkey-Leiste umschalten: Siehe Bild rechts oben

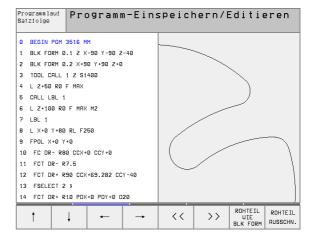
▶ Grafik löschen: Softkey GRAFIK LÖSCHEN drücken

Ausschnittsvergrößerung oder -verkleinerung

Sie können die Ansicht für eine Grafik selbst festlegen. Mit einem Rahmen wählen Sie den Ausschnitt für die Vergrößerung oder Verkleinerung.

Softkey-Leiste für Ausschnitts-Vergrößerung/Verkleinerung wählen (zweite Leiste, siehe Bild rechts Mitte)


Damit stehen folgende Funktionen zur Verfügung:


Funktion	Softkey
Rahmen einblenden und verschieben. Zum Verschieben jeweiligen Softkey gedrückt halten	← → ↑
Rahmen verkleinern – zum Verkleinern Softkey gedrückt halten	<<
Rahmen vergrößern – zum Vergrößern Softkey gedrückt halten	>>

Mit Softkey ROHTEIL AUSSCHN. ausgewählten Bereich übernehmen

Mit dem Softkey ROHTEIL WIE BLK FORM stellen Sie den ursprünglichen Ausschnitt wieder her.

4.7 Programme gliedern

Definition, Einsatzmöglichkeit

Die TNC gibt Ihnen die Möglichkeit, die Bearbeitungs-Programme mit Gliederungs-Sätzen zu kommentieren. Gliederungs-Sätze sind kurze Texte (max. 244 Zeichen), die als Kommentare oder Überschriften für die nachfolgenden Programmzeilen zu verstehen sind.

Lange und komplexe Programme lassen sich durch sinnvolle Gliederungs-Sätze übersichtlicher und verständlicher gestalten.

Das erleichtert besonders spätere Änderungen im Programm. Gliederungs-Sätze fügen Sie an beliebiger Stelle in das Bearbeitungs-Programm ein. Sie lassen sich zusätzlich in einem eigenen Fenster darstellen und auch bearbeiten bzw. ergänzen. Für eine Feingliederung steht eine zweite Ebene zur Verfügung: Texte der zweiten Ebene rückt die TNC nach rechts ein.

Gliederungs-Fenster anzeigen/Aktives Fenster wechseln

PROGRAMM + GLIEDER. Gliederungs-Fenster anzeigen: Bildschirm-Aufteilung PROGRAMM + GLIEDER. wählen

Das aktive Fenster wechseln: Softkey FENSTER WECHSELN drücken

Gliederungs-Satz im Programm-Fenster (links) einfügen

Gewünschten Satz wählen, hinter dem Sie den Gliederungs-Satz einfügen wollen

- ► Softkey GLIEDERUNG EINFÜGEN drücken
- ► Gliederungs-Text über Alpha-Tastatur eingeben
- ▶ Ebene ändern: Softkey EBENE WECHSELN drücken

Gliederungs-Satz im Gliederungs-Fenster (rechts) einfügen

- Gewünschten Gliederungs-Satz wählen, hinter dem Sie den neuen Satz einfügen wollen
- ▶ Text über die Alpha-Tastatur eingeben die TNC fügt den neuen Satz automatisch ein

Sätze im Gliederungs-Fenster wählen

Wenn Sie im Gliederungs-Fenster von Satz zu Satz springen, führt die TNC die Satz-Anzeige im Programm-Fenster mit. So können Sie mit wenigen Schritten große Programmteile überspringen.

	.punkte rfahren		gramı	n-Ein:	speich	nern/E	Editie	eren
0 BEGIN PGM 1 MM					BEGIN PGM	1		
1 BLK FORM 0.1 Z X+0 Y+0 Z-40			- BOHRP	LATTE ID-N	R 257943KL	1		
2	BLK FOR	RM 0.2 X+1	00 Y+100 Z	+0	- PARAMETER DEFINIEREN			
3 * - BOHRPLATTE ID-NR 257943KL1			- TASCHE FERTIGEN					
4	TOOL C	ALL 1 Z S4	500		- TASCHE AUSRAEUMEN			
5	L Z+100	RØ F MAX			- TASCHE SCHLICHTEN			
6 CYCL DEF 263 SENKGEWINDEFRAESEN				- BOHRBILD ERSTELLEN				
Q335=10 \$SOLL-DURCHMESSER				- ZENTR	IEREN			
	Q239=·	1.5 ;GEWI	NDESTEIGUN	G	- BOHREN			
	0201=	-18 \$GEWI	NDETIEFE		- GEWINDEBOHREN			
	0356=	-20 \$SENK	TIEFE		END PGM 1			
	0253=7	750 ;VORS	CHUB VORPO	S.				
	0351=	+1 FRAE	SART					
Q200=2 \$SICHERHEITS-ABST.								
Q357=+0.2 \$SIABSTAND SEITE								
AI	NFANG	ENDE	SEITE	SEITE []	SUCHEN			FENSTER WECHSEL

4.8 Kommentare einfügen

Anwendung

Jeden Satz in einem Bearbeitungs-Programm können Sie mit einem Kommentar versehen, um Programmschritte zu erläutern oder Hinweise zu geben. Sie haben drei Möglichkeiten, einen Kommentar einzugeben:

Kommentar während der Programmeingabe

- ▶ Daten für einen Programm-Satz eingeben, dann ";" (Semikolon) auf der Alpha-Tastatur drücken – die TNC zeigt die Frage Kommentar?
- ▶ Kommentar eingeben und den Satz mit der Taste END abschließen

Kommentar nachträglich einfügen

- Den Satz wählen, an den Sie den Kommentar anfügen wollen
- Mit der Pfeil-nach-rechts-Taste das letzte Wort im Satz wählen: Ein Semikolon erscheint am Satzende und die TNC zeigt die Frage Kommentar?
- ► Kommentar eingeben und den Satz mit der Taste END abschließen

Kommentar in eigenem Satz

- ▶ Satz wählen, hinter dem Sie den Kommentar einfügen wollen
- Programmier-Dialog mit der Taste ";" (Semikolon) auf der Alpha-Tastatur eröffnen
- ▶ Kommentar eingeben und den Satz mit der Taste END abschließen

```
Programm-Einspeichern/Editieren
   FPOL X+0 Y+0
   FC DR- R80 CCX+0 CCY+0
   FCT DR- R7.5
   FCT DR+ R90 CCX+69.282 CCY-40
    ; Loesung 2 ist OK
    FSELECT 2
    FCT DR+ R10 PDX+0 PDY+0 D20
14
15
   FSELECT 2
   FCT DR- R70 CCX+69.282 CCY-40
17
   FCT DR- R7.5
18
   FCT DR- R80 CCX+0 CCY+0
19
    FSELECT
   FCT DR- R7.5
20
21
   FCT DR+ R90 CCX-69.282 CCY-40
   FSELECT 2
```

4.9 Text-Dateien erstellen

Anwendung

An der TNC können Sie Texte mit einem Text-Editor erstellen und überarbeiten. Typische Anwendungen:

- Erfahrungswerte festhalten
- Arbeitsabläufe dokumentieren
- Formelsammlungen erstellen

Text-Dateien sind Dateien vom Typ .A (ASCII). Wenn Sie andere Dateien bearbeiten möchten, dann konvertieren Sie diese zuerst in den Typ .A.

Text-Datei öffnen und verlassen

- ▶ Betriebsart Programm-Einspeichern/Editieren wählen
- ▶ Datei-Verwaltung aufrufen: Taste PGM MGT drücken
- Dateien vom Typ .A anzeigen: Nacheinander Softkey TYP WÄHLEN und Softkey ANZEIGEN .A drücken
- Datei wählen und mit Softkey WÄHLEN oder Taste ENT öffnen oder eine neue Datei öffnen: Neuen Namen eingeben, mit Taste ENT bestätigen

Wenn Sie den Text-Editor verlassen wollen, dann rufen Sie die Datei-Verwaltung auf und wählen eine Datei eines anderen Typs, wie z.B. ein Bearbeitungs-Programm.

Cursor-Bewegungen	Softkey
Cursor ein Wort nach rechts	NACHSTES UDRT >>
Cursor ein Wort nach links	LETZTES UDRT <<
Cursor auf die nächste Bildschirmseite	SEITE
Cursor auf die vorherige Bildschirmseite	SEITE Î
Cursor zum Datei-Anfang	ANFANG
Cursor zum Datei-Ende	ENDE
Editier-Funktionen	Taste
Neue Zeile beginnen	RET

Datei: BSP.A Zeile: 0 Spalte: 1 INSERT							
DIES IST EINE TEXT-DATEI							
IN EINE TEXT-DATEI KOENNEN SIE BELIEBIGE INFORMATIONEN EINTRAGEN.							
TABELLEN KOENNEN SIE DIREKT IN DER TNC SCHREIBEN. SIE SIND DANN SOFORT PARAT, WENN SIE BENOETIGT WERDEN.							
ABER AUCH INFORMATIONEN FUER KOLLEGEN LASSEN SICH IN TEXT-DATEIEN SCHREIBEN, ZUM BEISPIEL HINWEISE AUF GEAENDERTE MASCHINEN-PARAMETER.							
TEXT-DATE							

Editier-Funktionen	Taste
Zeichen links vom Cursor löschen	X
Leerzeichen einfügen	SPACE
Groß-/Kleinschreibung umschalten	SHIFT SPACE

Texte editieren

In der ersten Zeile des Text-Editors befindet sich ein Informations-Balken, der den Datei-Namen, den Aufenthaltsort und den Schreibmodus des Cursors (Engl. Einfügemarke) anzeigt:

Datei: Name der Text-Datei

Zeile: Aktuelle Zeilenposition des Cursors
Spalte: Aktuelle Spaltenposition des Cursors

INSERT: Neu eingegebene Zeichen werden eingefügt

OVERWRITE: Neu eingegebene Zeichen überschreiben vorhande-

nen Text an der Cursor-Position

Der Text wird an der Stelle eingefügt, an der sich der Cursor gerade befindet. Mit den Pfeil-Tasten bewegen Sie den Cursor an jede beliebige Stelle der Text-Datei.

Die Zeile, in der sich der Cursor befindet, wird farblich hervorgehoben. Eine Zeile kann maximal 77 Zeichen enthalten und wird mit der Taste RET (Return) oder ENT umbrochen.

Zeichen, Wörter und Zeilen löschen und wieder einfügen

Mit dem Text-Editor können Sie ganze Worte oder Zeilen löschen und an anderer Stelle wieder einfügen.

- Cursor auf Wort oder Zeile bewegen, die gelöscht und an anderer Stelle eingefügt werden soll
- ► Softkey WORT LÖSCHEN bzw. ZEILE LÖSCHEN drücken: Der Text wird entfernt und zwischengespeichert
- Cursor auf Position bewegen, an der der Text eingefügt werden soll und Softkey ZEILE/WORT EINFÜGEN drücken

Funktion	Softkey
Zeile löschen und zwischenspeichern	ZEILE LÖSCHEN
Wort löschen und zwischenspeichern	WORT LÖSCHEN
Zeichen löschen und zwischenspeichern	ZEICHEN LÖSCHEN
Zeile oder Wort nach Löschen wieder einfügen	ZEILE / WORT EINFÜGEN

Textblöcke bearbeiten

Sie können Textblöcke beliebiger Größe kopieren, löschen und an anderer Stelle wieder einfügen. In jedem Fall markieren Sie zuerst den gewünschten Textblock:

Textblock markieren: Cursor auf das Zeichen bewegen, an dem die Textmarkierung beginnen soll

- ► Softkey BLOCK MARKIEREN drücken
- Cursor auf das Zeichen bewegen, an dem die Textmarkierung enden soll. Wenn Sie den Cursor mit den Pfeil-Tasten direkt nach oben und unten bewegen, werden die dazwischenliegenden Textzeilen vollständig markiert – der markierte Text wird farblich hervorgehoben

Nachdem Sie den gewünschten Textblock markiert haben, bearbeiten Sie den Text mit folgenden Softkeys weiter:

Funktion	Softkey
Markierten Block löschen und zwischenspei- chern	BLOCK LÖSCHEN
Markierten Block zwischenspeichern, ohne zu löschen (kopieren)	BLOCK EINFÜGEN

Wenn Sie den zwischengespeicherten Block an anderer Stelle einfügen wollen, führen Sie noch folgende Schritte aus:

Cursor auf die Position bewegen, an der Sie den zwischengespeicherten Textblock einfügen wollen

Softkey BLOCK EINFÜGEN drücken: Text wird eingefügt

Solange sich der Text im Zwischenspeicher befindet, können Sie ihn beliebig oft einfügen.

Markierten Block in andere Datei übertragen

▶ Den Textblock wie bereits beschrieben markieren

- ► Softkey ANHÄNGEN AN DATEI drücken. Die TNC zeigt den Dialog **Ziel-Datei** =
- Pfad und Namen der Zieldatei eingeben. Die TNC hängt den markierten Textblock an die Zieldatei an. Wenn keine Zieldatei mit dem eingegebenen Namen existiert, dann schreibt die TNC markierten Text in eine neue Datei

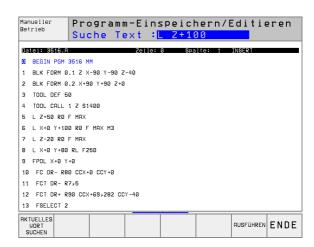
Andere Datei an Cursor-Position einfügen

Den Cursor an die Stelle im Text bewegen, an der Sie eine andere Textdatei einfügen möchten

- Softkey EINFÜGEN VON DATEI drücken. Die TNC zeigt den Dialog Datei-Name =
- Pfad und Namen der Datei eingeben, die Sie einfügen wollen

Textteile finden

Die Suchfunktion des Text-Editors findet Worte oder Zeichenketten im Text. Die TNC stellt zwei Möglichkeiten zur Verfügung.


Aktuellen Text finden

Die Suchfunktion soll ein Wort finden, das dem Wort entspricht, in dem sich der Cursor gerade befindet:

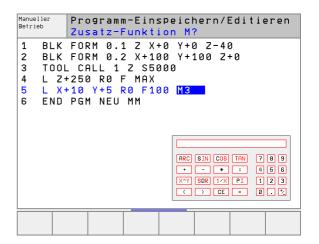
- Cursor auf das gewünschte Wort bewegen
- ▶ Suchfunktion wählen: Softkey SUCHEN drücken
- ► Softkey AKTUELLES WORT SUCHEN drücken
- ► Suchfunktion verlassen: Softkey ENDE drücken

Beliebigen Text finden

- Suchfunktion wählen: Softkey SUCHEN drücken. Die TNC zeigt den Dialog Suche Text:
- ► Gesuchten Text eingeben
- ► Text suchen: Softkey AUSFÜHREN drücken
- ▶ Suchfunktion verlassen Softkey ENDE drücken

4.10 Der Taschenrechner

Bedienung


Die TNC verfügt über einen Taschenrechner mit den wichtigsten mathematischen Funktionen.

Den Taschenrechner öffnen und schließen Sie mit der Taste CALC. Mit den Pfeil-Tasten können Sie ihn auf dem Bildschirm frei verschieben.

Die Rechen-Funktionen wählen Sie durch einen Kurzbefehl auf der Alpha-Tastatur. Die Kurzbefehle sind im Taschenrechner farblich gekennzeichnet:

Rechen-Funktion	Kurzbefehl (Taste)
Addieren	+
Subtrahieren	-
Multiplizieren	*
Dividieren	:
Sinus	S
Cosinus	С
Tangens	Т
Arcus-Sinus	AS
Arcus-Cosinus	AC
Arcus-Tangens	AT
Potenzieren	٨
Quadratwurzel ziehen	Q
Umkehrfunktion	/
Klammer-Rechnung	()
PI (3.14159265359)	Р
Ergebnis anzeigen	=

Wenn Sie ein Programm eingeben und sich im Dialog befinden, können Sie die Anzeige des Taschenrechners mit der Taste "Ist-Positionen übernehmen" direkt in das markierte Feld kopieren.

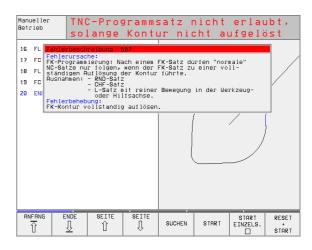
4.11 Direkte Hilfe bei NC-Fehlermeldungen

Fehlermeldungen anzeigen

Fehlermeldungen zeigt die TNC automatisch unter anderem bei

- falschen Eingaben
- logischen Fehlern im Programm
- nicht ausführbaren Konturelementen
- unvorschriftsmäßigen Tastsystem-Einsätzen

Eine Fehlermeldung, die die Nummer eines Programmsatzes enthält, wurde durch diesen Satz oder einen vorhergegangenen verursacht. TNC-Meldetexte löschen Sie mit der Taste CE, nachdem Sie die Fehlerursache beseitigt haben.


Um nähere Informationen zu einer anstehenden Fehlermeldung zu erhalten, drücken Sie die Taste HELP. Die TNC blendet dann ein Fenster ein, in dem die Fehlerursache und die Fehlerbehebung beschrieben sind.

Hilfe anzeigen

- ▶ Hilfe anzeigen: Taste HELP drücken
- ▶ Fehlerbeschreibung und die Möglichkeiten zur Fehlerbeseitigung durchlesen. Mit der Taste CE schließen Sie das Hilfe-Fenster und quittieren gleichzeitig die anstehende Fehlermeldung
- ▶ Fehler gemäß der Beschreibung im Hilfe-Fenster beseitigen

Bei blinkenden Fehlermeldungen zeigt die TNC den Hilfetext automatisch an. Nach blinkenden Fehlermeldungen müssen Sie die TNC neu starten, indem Sie die END-Taste 2 Sekunden gedrückt halten.

4.12 Paletten-Verwaltung

Anwendung

Die Paletten-Verwaltung ist eine maschinenabhängige Funktion. Im folgenden wird der Standard-Funktionsumfang beschrieben. Beachten Sie zusätzlich Ihr Maschinenhandbuch.

Paletten-Tabellen werden in Bearbeitungs-Zentren mit Paletten-Wechslern eingesetzt: Die Paletten-Tabelle ruft für die verschiedenen Paletten die zugehörigen Bearbeitungs-Programme auf und aktiviert Nullpunkt-Verschiebungen bzw. Nullpunkt-Tabellen.

Sie können Paletten-Tabellen auch verwenden, um verschiedene Programme mit unterschiedlichen Bezugspunkten hintereinander abzuarbeiten.

Paletten-Tabellen enthalten folgende Angaben:

- PAL/PGM (Eintrag zwingend erforderlich): Kennung Palette oder NC-Programm (mit Taste ENT bzw. NO ENT wählen)
- NAME (Eintrag zwingend erforderlich):
 Paletten-, bzw. Programm-Name. Die Paletten-Namen legt der
 Maschinenhersteller fest (Maschinenhandbuch beachten). Programm-Namen müssen im selben Verzeichnis gespeichert sein wie
 die Paletten-Tabelle, ansonsten müssen Sie den vollständigen Pfadnamen des Programms eingeben
- DATUM (Eintrag wahlweise):

 Name der Nullpunkt-Tabelle. Nullpunkt-Tabellen müssen im selben Verzeichnis gespeichert sein wie die Paletten-Tabelle, ansonsten müssen Sie den vollständigen Pfadnamen der Nullpunkt-Tabelle eingeben. Nullpunkte aus der Nullpunkt-Tabelle aktivieren Sie im NC-Programm mit dem Zyklus 7 NULLPUNKT-VERSCHIEBUNG
- X, Y, Z (Eintrag wahlweise, weitere Achsen möglich):
 Bei Paletten-Namen beziehen sich die programmierten Koordinaten auf den Maschinen-Nullpunkt. Bei NC-Programmen beziehen sich die programmierten Koordinaten auf den Paletten-Nullpunkt. Diese Einträge überschreiben den Bezugspunkt, den Sie zuletzt in der Betriebsart Manuell gesetzt haben. Mit der Zusatz-Funktion M104 können Sie den letzten gesetzten Bezugspunkt wieder aktivieren. Mit der Taste "Ist-Position übernehmen", blendet die TNC ein Fenster ein, mit dem Sie verschiedene Punkte von der TNC als Bezugspunkt eintragen lassen können (siehe folgende Tabelle)

Position	Bedeutung
Istwerte	Koordinaten der aktuellen Werkzeug-Position bezogen auf das aktive Koordinaten-System ein- tragen
Referenzwerte	Koordinaten der aktuellen Werkzeug-Position bezogen auf den Maschinen-Nullpunkt eintragen

Manue Betri					elle e / PROC			
Dat	ei: PAL	P						>
NR	PAL/	PGM NAM	E					
0	PAL	123	59					
1	PGM	TNC	:\DRILL\PA	135.H				
2	PGM	TNC	:\DRILL\PF	136.H				
3	PGM	TNC	:\MILL\SL]	I35.I				
4	PGM	TNC	TNC:\MILL\FK36.H					
5	PAL	123	123510					
6	PGM	TNC	TNC:\DRILL\QST35.H					
7	PGM	TNC	TNC:\DRILL\K15.I					
8	PAL	123	123511					
9	PGM	TNC	:\CYCLE\M3	LLING\C210	э.н			
10	PGM	TNC	TNC:\DRILL\K17.H					
11								
12								
ANF F		ENDE []	SEITE Î	SEITE	ZEILE EINFÜGEN	ZEILE LÖSCHEN	NÄCHSTE ZEILE	N ZEIL AM ENI ANFÜGI

Position	Bedeutung
Messwerte IST	Koordinaten bezogen auf das aktive Koordinaten- System des zuletzt in der Betriebsart Manuell angetasteten Bezugspunkts eintragen
Messwerte REF	Koordinaten bezogen auf den Maschinen-Null- punkt des zuletzt in der Betriebsart Manuell angetasteten Bezugspunkts eintragen

Mit den Pfeiltasten und der Taste ENT wählen Sie die Position die Sie übernehmen wollen. Anschließend wählen Sie mit dem Softkey ALLE WERTE, dass die TNC die jeweiligen Koordinaten aller aktiven Achsen in die Paletten-Tabelle speichert. Mit dem Softkey AKTUELLEN WERT speichert die TNC die Koordinate der Achse, auf der das Hellfeld in der Paletten-Tabelle gerade steht.

Wenn Sie vor einem NC-Programm keine Palette definiert haben, beziehen sich die programmierten Koordinaten auf den Maschinen-Nullpunkt. Wenn Sie keinen Eintrag definieren, bleibt der manuell gesetzte Bezugspunkt aktiv.

Editier-Funktion	Softkey
Tabellen-Anfang wählen	ANFANG
Tabellen-Ende wählen	ENDE
Vorherige Tabellen-Seite wählen	SEITE Î
Nächste Tabellen-Seite wählen	SEITE
Zeile am Tabellen-Ende einfügen	ZEILE EINFÜGEN
Zeile am Tabellen-Ende löschen	ZEILE LÖSCHEN
Anfang der nächsten Zeile wählen	NÄCHSTE ZEILE
Eingebbare Anzahl von Zeilen am Tabellenende anfügen	N ZEILEN AM ENDE ANFÜGEN
Hell hinterlegtes Feld kopieren (2. Softkey-Leiste)	AKTUELLEN WERT KOPIEREN
Kopiertes Feld einfügen (2. Softkey-Leiste)	KOPIERTEN WERT EINFÜGEN

Paletten-Tabelle wählen

- In der Betriebsart Programm-Einspeichern/Editieren oder Programmlauf Datei-Verwaltung wählen: Taste PGM MGT drücken
- ▶ Dateien vom Typ .P anzeigen: Softkeys TYP WÄHLEN und ANZEI-GEN .P drücken
- ▶ Paletten-Tabelle mit Pfeil-Tasten wählen oder Namen für eine neue Tabelle eingeben
- ► Auswahl mit Taste ENT bestätigen

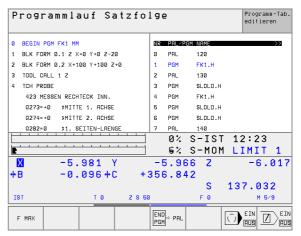
Paletten-Datei verlassen

- Datei-Verwaltung wählen: Taste PGM MGT drücken
- Anderen Datei-Typ wählen: Softkey TYP WÄHLEN und Softkey für den gewünschten Datei-Typ drücken, z.B. ANZEIGEN .H
- ▶ Gewünschte Datei wählen

Paletten-Datei abarbeiten

Im Maschinen-Parameter 7683 legen Sie fest, ob die Paletten-Tabelle satzweise oder kontinuierlich abgearbeitet wird (siehe "Allgemeine Anwenderparameter" auf Seite 452).


- ▶ In der Betriebsart Programmlauf Satzfolge oder Programmlauf Einzelsatz Datei-Verwaltung wählen: Taste PGM MGT drücken
- ▶ Dateien vom Typ .P anzeigen: Softkeys TYP WÄHLEN und ANZEI-GEN .P drücken
- ▶ Paletten-Tabelle mit Pfeil-Tasten wählen, mit Taste ENT bestätigen
- ▶ Paletten-Tabelle abarbeiten: Taste NC-Start drücken, die TNC arbeitet die Paletten ab wie im Maschinen-Parameter 7683 festgelegt



Bildschirm-Aufteilung beim Abarbeiten der Paletten-Tabelle

Wenn Sie den Programm-Inhalt und den Inhalt der Paletten-Tabelle gleichzeitig sehen wollen, dann wählen Sie die Bildschirm-Aufteilung PROGRAMM + PALETTE. Während des Abarbeitens stellt die TNC dann auf der linken Bildschirmseite das Programm und auf der rechten Bildschirmseite die Palette dar. Um den Programm-Inhalt vor dem Abarbeiten ansehen zu können gehen Sie wie folgt vor:

- ▶ Paletten-Tabelle wählen
- Mit Pfeiltasten Programm wählen, das Sie kontrollieren wollen
- ➤ Softkey PROGRAMM ÖFFNEN drücken: Die TNC zeigt das gewählte Programm am Bildschirm an. Mit den Pfeiltasten können Sie jetzt im Programm blättern
- ▶ Zurück zur Paletten-Tabelle: Drücken Sie den Softkey END PGM

4.13 Palettenbetrieb mit werkzeugorientierter Bearbeitung

Anwendung

Die Paletten-Verwaltung in Verbindung mit der werkzeugorientierten Bearbeitung ist eine maschinenabhängige Funktion. Im folgenden wird der Standard-Funktionsumfang beschrieben. Beachten Sie zusätzlich Ihr Maschinenhandbuch.

Paletten-Tabellen werden in Bearbeitungs-Zentren mit Paletten-Wechslern eingesetzt: Die Paletten-Tabelle ruft für die verschiedenen Paletten die zugehörigen Bearbeitungs-Programme auf und aktiviert Nullpunkt-Verschiebungen bzw. Nullpunkt-Tabellen.

Sie können Paletten-Tabellen auch verwenden, um verschiedene Programme mit unterschiedlichen Bezugspunkten hintereinander abzuarbeiten.

Paletten-Tabellen enthalten folgende Angaben:

■ PAL/PGM (Eintrag zwingend erforderlich):

Der Eintrag PAL legt die Kennung für eine Palette fest, mit FIX wird eine Aufspannungsebene gekennzeichnet und mit PGM geben Sie ein Werkstück an

■ W-STATE:

Aktueller Bearbeitungs-Status. Durch den Bearbeitungs-Status wird der Fortschritt der Bearbeitung festgelegt. Geben Sie für das unbearbeitete Werkstück **BLANK** an. Die TNC ändert diesen Eintrag bei der Bearbeitung auf **INCOMPLETE** und nach der vollständigen Bearbeitung auf **ENDED**. Mit dem Eintrag **EMPTY** wird ein Platz gekennzeichnet, an dem kein Werkstück aufgespannt ist oder keine Bearbeitung stattfinden soll

■ **METHOD** (Eintrag zwingend erforderlich):

Angabe, nach welcher Methode die Programm-Optimierung erfolgt. Mit WPO erfolgt die Bearbeitung werkstückorientiert. Mit TO erfolgt die Bearbeitung für das Teil werkzeugorientiert. Um nachfolgende Werkstücke in die werkzeugorientierte Bearbeitung miteinzubeziehen müssen Sie den Eintrag CTO (continued tool oriented) verwenden. Die werkzeugorientierte Bearbeitung ist auch über Aufspannungen einer Palette hinweg möglich, nicht jedoch über mehrere Paletten

■ NAME (Eintrag zwingend erforderlich):

Paletten-, bzw. Programm-Name. Die Paletten-Namen legt der Maschinenhersteller fest (Maschinenhandbuch beachten). Programme müssen im selben Verzeichnis gespeichert sein wie die Paletten-Tabelle, ansonsten müssen Sie den vollständigen Pfadnamen des Programms eingeben

Hande ingabe							editie	eren	
		BEF	RBEI	TUNG	is-	-STATU	JS ?		
Dat	ei: PAL2	048.P							>>
٧R	PAL/P	GM W-S	TATE	METHOD	NAM	E			
3	PAL				PAL	4-208-11			
	FIX								
2	PGM	BLAI	ΝK	СТО	TNC	: RK TEST	442AAU77.H		
3	PGM	BLA	ΝK	СТО	TNC	:\RK\TEST\	442AAU77.H		
ŀ	PGM	BLAI	ΝK	CTO	TNC	:\RK\TEST\	448AAU77.H		
ō	FIX								
6	PGM	BLA	NK	TO	TNC	:\RK\TEST\	863FFV52.H		
,	PGM	BLA	ΝK	CTO	TNC	:\RK\TEST\	863FFV52.H		
3	PGM	BLA	٧K	CTO	TNC	:\RK\TEST\	863FFV52.H		
3	PGM	BLA	ΝK	CTO	TNC	:\RK\TEST\	863FFV52.H		
0	PGM	BLAI	ΝK	WP0	TNC	:\RK\TEST\	862LLU77.H		
1	PGM	BLA	ΝK	WP0	TNC	:: \RK\TEST\	862LLU77.H		
12	FIX								
ANFE	NG E	NDE ∏	SEITE Î	SEI.	TE	ZEILE FINFÜGEN	ZEILE	NÄCHSTE ZETLE	N ZEILE AM END ANFÜGE

- **DATUM** (Eintrag wahlweise):
 - Name der Nullpunkt-Tabelle. Nullpunkt-Tabellen müssen im selben Verzeichnis gespeichert sein wie die Paletten-Tabelle, ansonsten müssen Sie den vollständigen Pfadnamen der Nullpunkt-Tabelle eingeben. Nullpunkte aus der Nullpunkt-Tabelle aktivieren Sie im NC-Programm mit dem Zyklus 7 NULLPUNKT-VERSCHIEBUNG
- X, Y, Z (Eintrag wahlweise, weitere Achsen möglich):
 Bei Paletten und Aufspannungen beziehen sich die programmierten Koordinaten auf den Maschinen-Nullpunkt. Bei NC-Programmen beziehen sich die programmierten Koordinaten auf den Palettenbzw. Aufspannungs-Nullpunkt. Diese Einträge überschreiben den Bezugspunkt, den Sie zuletzt in der Betriebsart Manuell gesetzt haben. Mit der Zusatz-Funktion M104 können Sie den letzten gesetzten Bezugspunkt wieder aktivieren. Mit der Taste "Ist-Position übernehmen", blendet die TNC ein Fenster ein, mit dem Sie verschiedene Punkte von der TNC als Bezugspunkt eintragen lassen können (siehe folgende Tabelle)

Position	Bedeutung
Istwerte	Koordinaten der aktuellen Werkzeug-Position bezogen auf das aktive Koordinaten-System ein- tragen
Referenzwerte	Koordinaten der aktuellen Werkzeug-Position bezogen auf den Maschinen-Nullpunkt eintragen
Messwerte IST	Koordinaten bezogen auf das aktive Koordinaten- System des zuletzt in der Betriebsart Manuell angetasteten Bezugspunkts eintragen
Messwerte REF	Koordinaten bezogen auf den Maschinen-Null- punkt des zuletzt in der Betriebsart Manuell angetasteten Bezugspunkts eintragen

Mit den Pfeiltasten und der Taste ENT wählen Sie die Position die Sie übernehmen wollen. Anschließend wählen Sie mit dem Softkey ALLE WERTE, dass die TNC die jeweiligen Koordinaten aller aktiven Achsen in die Paletten-Tabelle speichert. Mit dem Softkey AKTUELLEN WERT speichert die TNC die Koordinate der Achse, auf der das Hellfeld in der Paletten-Tabelle gerade steht.

Wenn Sie vor einem NC-Programm keine Palette definiert haben, beziehen sich die programmierten Koordinaten auf den Maschinen-Nullpunkt. Wenn Sie keinen Eintrag definieren, bleibt der manuell gesetzte Bezugspunkt aktiv.

■ SP-X, SP-Y, SP-Z (Eintrag wahlweise, weitere Achsen möglich): Für die Achsen können Sicherheitspositionen angegeben werden, welche mit SYSREAD FN18 ID510 NR 6 von NC-Makros aus gelesen werden können. Mit SYSREAD FN18 ID510 NR 5 kann ermittelt werden, ob in der Spalte ein Wert programmiert wurde. Die angegebenen Positionen werden nur angefahren, wenn in den NC-Makros diese Werte gelesen und entsprechend programmiert werden.

■ CTID (Eintrag erfolgt durch TNC):

Die Kontext-Identnummer wird von der TNC vergeben und enthält Hinweise über den Bearbeitungs-Fortschritt. Wird der Eintrag gelöscht, bzw. geändert, ist ein Wiedereinstieg in die Bearbeitung nicht möglich

nicht möglich	
Editier-Funktion im Tabellenmodus	Softkey
Tabellen-Anfang wählen	ANFANG
Tabellen-Ende wählen	ENDE
Vorherige Tabellen-Seite wählen	SEITE Î
Nächste Tabellen-Seite wählen	SEITE
Zeile am Tabellen-Ende einfügen	ZEILE EINFÜGEN
Zeile am Tabellen-Ende löschen	ZEILE LÖSCHEN
Anfang der nächsten Zeile wählen	NÄCHSTE ZEILE
Eingebbare Anzahl von Zeilen am Tabellenende anfügen	N ZEILEN AM ENDE ANFÜGEN
Hell hinterlegtes Feld kopieren (2. Softkey-Leiste)	AKTUELLEN UERT KOPIEREN
Kopiertes Feld einfügen (2. Softkey-Leiste)	KOPIERTEN UERT EINFÜGEN
	0.51
Editier-Funktion im Formularmodus	Softkey
Vorherige Palette wählen	PALETTE
Nächste Palette wählen	PALETTE
Vorherige Aufspannung wählen	AUFSP.
Nächste Aufspannung wählen	AUFSP.
Vorheriges Werkstück wählen	WERKSTÜCK
Nächstes Werkstück wählen	PALETTE

Editier-Funktion im Formularmodus	Softkey
Auf Palettenebene wechseln	ANSICHT PALETTEN- EBENE
Auf Aufspannungsebene wechseln	ANSICHT AUFSPANN- EBENE
Auf Werkstückebene wechseln	ANSICHT UERKST EBENE
Standardansicht Palette wählen	PALETTE DETAIL PALETTE
Detailansicht Palette wählen	PALETTE DETAIL PALETTE
Standardansicht Aufspannung wählen	AUFSP. DETAIL AUFSP.
Detailansicht Aufspannung wählen	AUFSP. DETAIL AUFSP.
Standardansicht Werkstück wählen	DETAIL DETAIL UERKSTÜCK
Detailansicht Werkstück wählen	UERKSTÜCK DETAIL UERKSTÜCK
Palette einfügen	PALETTE EINFÜGEN
Aufspannung einfügen	AUFSP. EINFÜGEN
Werkstück einfügen	WERKSTÜCK EINFÜGEN
Palette löschen	PALETTE LÖSCHEN
Aufspannung löschen	AUFSP. LÖSCHEN
Werkstück löschen	UERKSTÜCK LÖSCHEN
Alle Felder in Zwischenspeicher kopieren	ALLE FELDER KOPIEREN
Hell hinterlegtes Feld in Zwischenspeicher kopieren	AKTUELLES FELD KOPIEREN
Kopiertes Feld einfügen	FELDER EINFÜGEN
Zwischenspeicher löschen	ZWISCHEN- SPEICHER LÖSCHEN

Editier-Funktion im Formularmodus	Softkey
Werkzeugoptimierte Bearbeitung	WERKZEUG ORIENT.
Werkstückoptimierte Bearbeitung	WERKSTÜCK ORIENT.
Verbinden bzw. Trennen der Bearbeitungen	[VERBINDEN] TRENNEN
Ebene als leer kennzeichnen	FREIER PLATZ
Ebene als unbearbeitet kennzeichnen	ROHTEIL

Paletten-Datei wählen

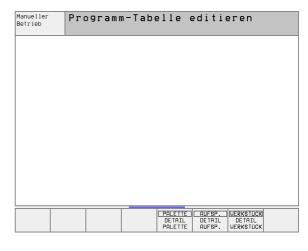
- ▶ In der Betriebsart Programm-Einspeichern/Editieren oder Programmlauf Datei-Verwaltung wählen: Taste PGM MGT drücken
- Dateien vom Typ .P anzeigen: Softkeys TYP WÄHLEN und ANZEI-GEN .P drücken
- ▶ Paletten-Tabelle mit Pfeil-Tasten wählen oder Namen für eine neue Tabelle eingeben
- ► Auswahl mit Taste ENT bestätigen

Paletten-Datei mit Eingabeformular einrichten

Der Palettenbetrieb mit werkzeug- bzw. werkstückorientierter Bearbeitung gliedert sich in die drei Ebenen:

- Palettenebene PAL
- Aufspannungsebene FIX
- Werkstückebene **PGM**

Auf jeder Ebene ist ein Wechsel in die Detailansicht möglich. In der normalen Ansicht können Sie die Bearbeitungsmethode und den Status für die Palette, Aufspannung und Werkstück festlegen. Falls Sie eine vorhandene Paletten-Datei editieren, werden die aktuellen Einträge angezeigt. Verwenden Sie die Detailansicht zum Einrichten der Paletten-Datei.



Richten Sie die Paletten-Datei entsprechend der Maschinenkonfiguration ein. Falls Sie nur eine Aufspannvorrichtung mit mehreren Werkstücken haben, ist es ausreichend eine Aufspannung FIX mit Werkstücken PGM zu definieren. Enthält eine Palette mehrere Aufspannvorrichtungen oder wird eine Aufspannung mehrseitig bearbeitet, müssen Sie eine Palette PAL mit entsprechenden Aufspannungsebenen FIX definieren.

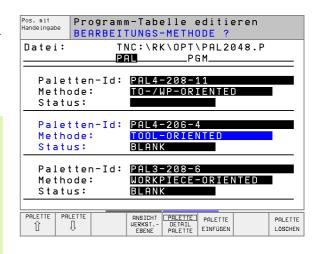
Sie können zwischen der Tabellenansicht und der Formularansicht mit der Taste für die Bildschirm-Aufteilung wechseln.

Die grafische Unterstützung der Formulareingabe ist noch nicht verfügbar.

Die verschiedenen Ebenen im Eingabeformular sind mit den jeweiligen Softkeys erreichbar. In der Statuszeile wird im Eingabeformular immer die aktuelle Ebene hell hinterlegt. Wenn Sie mit der Taste für die Bildschirm-Aufteilung in die Tabellendarstellung wechseln, steht der Cursor auf der gleichen Ebene wie in der Formulardarstellung.

Palettenebene einstellen

- Paletten-Id: Der Name der Palette wird angezeigt
- Methode: Sie können die Bearbeitungsmethoden WORKPIECE ORI-ENTED bzw. TOOL ORIENTED auswählen. Die getroffene Auswahl wird in die dazugehörige Werkstückebene mit übernommen und überschreibt eventuell vorhandene Einträge. In der Tabellenansicht erscheint die Methode WERKSTÜCK ORIENTIERT mit WPO und WERKZEUG ORIENTIERT mit TO.


Der Eintrag TO-/WP-ORIENTED kann nicht über Softkey eingestellt werden. Dieser erscheint nur, wenn in der Werkstück- bzw. Aufspannungsebene unterschiedliche Bearbeitungsmethoden für die Werkstücke eingestellt wurden.

Wird die Bearbeitungsmethode in der Aufspannungsebene eingestellt, werden die Einträge in die Werkstückebene übernommen und eventuell vorhandene überschrieben.

■ Status: Der Sofkey ROHTEIL kennzeichnet die Palette mit den dazugehörigen Aufspannungen bzw. Werkstücken als noch nicht bearbeitet, im Feld Status wird BLANK eingetragen. Verwenden Sie den Softkey FREIER PLATZ, falls Sie die Palette bei der Bearbeitung überspringen möchten, im Feld Status erscheint EMPTY

Details in der Palettenebene einrichten

- Paletten-Id: Geben Sie den Namen der Palette ein
- Nullpunkt: Nullpunkt für Palette eingeben
- NP-Tabelle: Tragen Sie Namen und Pfad der Nullpunkt-Tabelle für das Werkstück ein. Die Eingabe wird in die Aufspannungs- und Werkstückebene übernommen.
- Sich. Höhe: (optional): Sichere Position für die einzelnen Achsen bezogen auf die Palette. Die angegebenen Positionen werden nur angefahren, wenn in den NC-Makros diese Werte gelesen und entsprechend programmiert wurden.

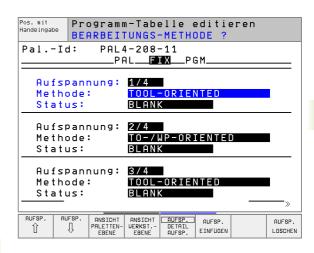
Aufspannungsebene einstellen

- Aufspannung: Die Nummer der Aufspannung wird angezeigt, nach dem Schrägstrich wird die Anzahl der Aufspannungen innerhalb dieser Ebene angezeigt
- Methode: Sie können die Bearbeitungsmethoden WORKPIECE ORI-ENTED bzw. TOOL ORIENTED auswählen. Die getroffene Auswahl wird in die dazugehörige Werkstückebene mit übernommen und überschreibt eventuell vorhandene Einträge. In der Tabellenansicht erscheint der Eintrag WORKPIECE ORIENTED mit WPO und TOOL ORIENTED mit TO.

Mit dem Softkey **VERBINDEN/TRENNEN** kennzeichnen Sie Aufspannungen, welche bei werkzeugorientierter Bearbeitung in die Berechnung für den Arbeitsablauf mit eingehen. Verbundene Aufspannungen werden durch einen unterbrochenen Trennungsstrich gekennzeichnet, getrennte Aufspannungen durch eine durchgehende Linie. In der Tabellenansicht werden verbundene Werkstücke in der Spalte METHOD mit **CTO** gekennzeichnet.

Der Eintrag TO-/WP-ORIENTATE kann nicht über Softkey eingestellt werden, der erscheint nur, wenn in der Werkstückebene unterschiedliche Bearbeitungsmethoden für die Werkstücke eingestellt wurden.

Wird die Bearbeitungsmethode in der Aufspannungsebene eingestellt, werden die Einträge in die Werkstückebene übernommen und eventuell vorhandene überschrieben.


■ Status: Mit dem Softkey ROHTEIL wird die Aufspannung mit den dazugehörigen Werkstücken als noch nicht bearbeitet gekennzeichnet und im Feld Status wird BLANK eingetragen. Verwenden Sie den Softkey FREIER PLATZ, falls Sie die Aufspannung bei der Bearbeitung überspringen möchten, im Feld STATUS erscheint EMPTY

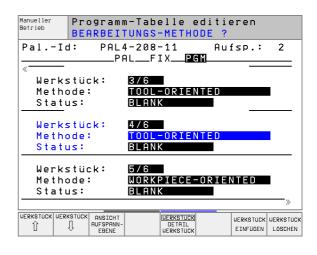
Details in der Aufspannungsebene einrichten

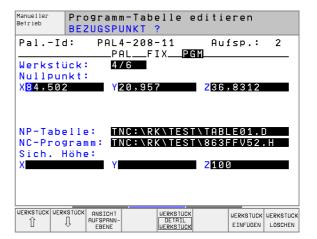
- Aufspannung: Die Nummer der Aufspannung wird angezeigt, nach dem Schrägstrich wird die Anzahl der Aufspannungen innerhalb dieser Ebene angezeigt
- Nullpunkt: Nullpunkt für Aufspannung eingeben
- NP-Tabelle: Tragen Sie Namen und Pfad der Nullpunkt-Tabelle ein, welche für die Bearbeitung des Werkstückes gültig ist. Die Eingabe wird in die Werkstückebene übernommen.
- NC-Makro: Bei werkzeugorientierter Bearbeitung wird das Makro TCTOOLMODE anstelle des normalen Werkzeugwechsel-Makro ausgeführt.
- Sich. Höhe: (optional): Sichere Position für die einzelnen Achsen bezogen auf die Aufspannung

Für die Achsen können Sicherheitspositionen angegeben werden, welche mit SYSREAD FN18 ID510 NR 6 von NC-Makros aus gelesen werden können. Mit SYSREAD FN18 ID510 NR 5 kann ermittelt werden, ob in der Spalte ein Wert programmiert wurde. Die angegebenen Positionen werden nur angefahren, wenn in den NC-Makros diese Werte gelesen und entsprechend programmiert werden

Werkstückebene einstellen

- Werkstück: Die Nummer des Werkstückes wird angezeigt, nach dem Schrägstrich wird die Anzahl der Werkstücke innerhalb dieser Aufspannungsebene angezeigt
- **Methode**: Sie können die Bearbeitungsmethoden WORKPIECE ORI-ENTET bzw. TOOL ORIENTED auswählen. In der Tabellenansicht erscheint der Eintrag WORKPIECE ORIENTED mit **WP0** und TOOL ORIENTED mit **T0**.
 - Mit dem Softkey **VERBINDEN/TRENNEN** kennzeichnen Sie Werkstücke, welche bei werkzeugorientierter Bearbeitung in die Berechnung für den Arbeitsablauf miteingehen. Verbundene Werkstücke werden durch einen unterbrochenen Trennungsstrich gekennzeichnet, getrennte Werkstücke durch eine durchgehende Linie. In der Tabellenansicht werden verbundene Werkstücke in der Spalte METHOD mit **CTO** gekennzeichnet.
- Status: Mit dem Sofkey ROHTEIL wird das Werkstück als noch nicht bearbeitet gekennzeichnet und im Feld Status wird BLANK eingetragen. Verwenden Sie den Softkey FREIER PLATZ, falls Sie ein Werkstück bei der Bearbeitung überspringen möchten, im Feld Status erscheint EMPTY




Stellen Sie Methode und Status in der Paletten- bzw. Aufspannungsebene ein, die Eingabe wird für alle dazugehörigen Werkstücke übernommen.

Bei mehreren Werkstückvarianten innerhalb einer Ebene sollten Werkstücke einer Variante nacheinander angegeben werden. Bei werkzeugorientierter Bearbeitung können die Werkstücke der jeweiligen Variante dann mit dem Softkey VERBINDEN/TRENNEN gekennzeichnet und gruppenweise bearbeitet werden.

Details in der Werkstückebene einrichten

- Werkstück: Die Nummer des Werkstückes wird angezeigt, nach dem Schrägstrich wird die Anzahl der Werkstücke innerhalb dieser Aufspannungs- bzw. Palettenebene angezeigt
- Nullpunkt: Nullpunkt für Werkstück eingeben
- NP-Tabe11e: Tragen Sie Namen und Pfad der Nullpunkt-Tabelle ein, welche für die Bearbeitung des Werkstückes gültig ist. Falls Sie für alle Werkstücke die gleiche Nullpunkttabelle verwenden, tragen Sie den Namen mit der Pfadangabe in die Paletten- bzw. Aufspannungsebenen ein. Die Angaben werden automatisch in die Werkstückebene übernommen.
- NC-Programm: Geben Sie den Pfad des NC-Programmes an, welches für die Bearbeitung des Werkstücks notwendig ist
- Sich. Höhe: (optional): Sichere Position für die einzelnen Achsen bezogen auf das Werkstück. Die angegebenen Positionen werden nur angefahren, wenn in den NC-Makros diese Werte gelesen und entsprechend programmiert wurden.

Ablauf der werkzeugorientierten Bearbeitung

Die TNC führt eine werkzeugorientierte Bearbeitung nur dann durch, wenn bei der Methode WERKZEUG ORIENTIERT gewählt wurde und dadurch der Eintrag TO bzw. CTO in der Tabelle steht.

- Die TNC erkennt durch den Eintrag TO bzw. CTO im Feld Methode, das über diese Zeilen hinweg die optimierte Bearbeitung erfolgen muss.
- Die Palettenverwaltung startet das NC-Programm, welches in der Zeile mit dem Eintrag TO steht
- Das erste Werkstück wird bearbeitet, bis der nächste TOOL CALL ansteht. In einem speziellen Werkzeugwechselmakro wird vom Werkstück weggefahren
- In der Spalte W-STATE wird der Eintrag BLANK auf INCOMPLETE geändert und im Feld CTID wird von der TNC ein Wert in hexadezimaler Schreibweise eingetragen

Der im Feld CTID eingetragene Wert stellt für die TNC eine eindeutige Information für den Bearbeitungsfortschritt dar. Wird dieser Wert gelöscht oder geändert, ist eine weitergehende Bearbeitung oder ein Vorauslauf bzw. Wiedereintritt nicht mehr möglich.

- Alle weiteren Zeilen der Paletten-Datei, die im Feld METHODE die Kennung CTO haben, werden in gleicher Weise abgearbeitet, wie das erste Werkstück. Die Bearbeitung der Werkstücke kann über mehrere Aufspannungen hinweg erfolgen.
- Die TNC führt mit dem nächsten Werkzeug die weiteren Bearbeitungsschritte wieder beginnend ab der Zeile mit dem Eintrag TO aus, wenn sich folgende Situation ergibt:
 - im Feld PAL/PGM der nächsten Zeile würde der Eintrag PAL stehen
 - im Feld METHOD der nächsten Zeile würde der Eintrag TO oder WPO stehen
 - in den bereits abgearbeiteten Zeilen befinden sich unter METHODE noch Einträge, welche nicht den Status EMPTY oder ENDED haben
- Aufgrund des im Feld CTID eingetragenen Wertes wird das NC-Programm an der gespeicherten Stelle fortgesetzt. In der Regel wird bei dem ersten Teil ein Werkzeugwechsel ausgeführt, bei den nachfolgenden Werkstücken unterdrückt die TNC den Werkzeugwechsel
- Der Eintrag im Feld CTID wird bei jedem Bearbeitungsschritt aktualisiert. Wird im NC-Programm ein END PGM oder M02 abgearbeitet, wird ein eventuell vorhandener Eintrag gelöscht und im Feld Bearbeitungs-Status ENDED eingetragen.

i

Wenn alle Werkstücke innerhalb einer Gruppe von Einträgen mit TO bzw. CTO den Status ENDED haben, werden in der Paletten-Datei die nächsten Zeilen abgearbeitet

Bei einem Satzvorlauf ist nur eine werkstückorientierte Bearbeitung möglich. Nachfolgende Teile werden nach der eingetragenen Methode bearbeitet.

Der im Feld CT-ID eingetragene Wert bleibt maximal 1 Woche lang erhalten. Innerhalb dieser Zeit kann die Bearbeitung an der gespeicherten Stelle fortgesetzt werden. Danach wird der Wert gelöscht, um zu große Datenmengen auf der Festplatte zu vermeiden.

Der Wechsel der Betriebsart ist nach dem Abarbeiten einer Gruppe von Einträgen mit TO bzw. CTO erlaubt

Folgende Funktionen sind nicht erlaubt:

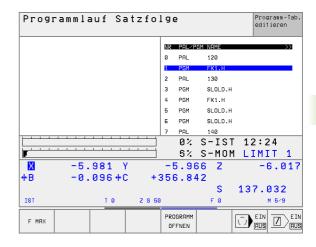
- Verfahrbereichsumschaltung
- PLC-Nullpunktverschieben
- M118

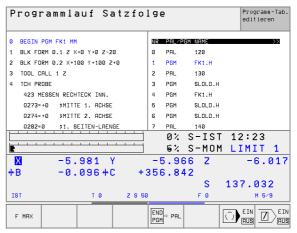
Paletten-Datei verlassen

- ▶ Datei-Verwaltung wählen: Taste PGM MGT drücken
- Anderen Datei-Typ wählen: Softkey TYP WÄHLEN und Softkey für den gewünschten Datei-Typ drücken, z.B. ANZEIGEN .H
- ▶ Gewünschte Datei wählen

Paletten-Datei abarbeiten

Im Maschinen-Parameter 7683 legen Sie fest, ob die Paletten-Tabelle satzweise oder kontinuierlich abgearbeitet wird (siehe "Allgemeine Anwenderparameter" auf Seite 452).


- In der Betriebsart Programmlauf Satzfolge oder Programmlauf Einzelsatz Datei-Verwaltung wählen: Taste PGM MGT drücken
- Dateien vom Typ .P anzeigen: Softkeys TYP WÄHLEN und ANZEl-GEN .P drücken
- ▶ Paletten-Tabelle mit Pfeil-Tasten wählen, mit Taste ENT bestätigen
- ▶ Paletten-Tabelle abarbeiten: Taste NC-Start drücken, die TNC arbeitet die Paletten ab wie im Maschinen-Parameter 7683 festgelegt



Bildschirm-Aufteilung beim Abarbeiten der Paletten-Tabelle

Wenn Sie den Programm-Inhalt und den Inhalt der Paletten-Tabelle gleichzeitig sehen wollen, dann wählen Sie die Bildschirm-Aufteilung PROGRAMM + PALETTE. Während des Abarbeitens stellt die TNC dann auf der linken Bildschirmseite das Programm und auf der rechten Bildschirmseite die Palette dar. Um den Programm-Inhalt vor dem Abarbeiten ansehen zu können gehen Sie wie folgt vor:

- Paletten-Tabelle wählen
- Mit Pfeiltasten Programm wählen, das Sie kontrollieren wollen
- Softkey PROGRAMM ÖFFNEN drücken: Die TNC zeigt das gewählte Programm am Bildschirm an. Mit den Pfeiltasten können Sie jetzt im Programm blättern
- ▶ Zurück zur Paletten-Tabelle: Drücken Sie den Softkey END PGM

Programmieren: Werkzeuge

5.1 Werkzeugbezogene Eingaben

Vorschub F

Der Vorschub **F** ist die Geschwindigkeit in mm/min (inch/min), mit der sich der Werkzeugmittelpunkt auf seiner Bahn bewegt. Der maximale Vorschub kann für jede Maschinenachse unterschiedlich sein und ist durch Maschinen-Parameter festgelegt.

Eingabe

Den Vorschub können Sie im **T00L CALL**-Satz (Werkzeug-Aufruf) und in jedem Positioniersatz eingeben (siehe "Erstellen der Programm-Sätze mit den Bahnfunktionstasten" auf Seite 131).

Eilgang

Für den Eilgang geben Sie **F MAX** ein. Zur Eingabe von **F MAX** drücken Sie auf die Dialogfrage **Vorschub F=?** die Taste ENT oder den Softkey FMAX.

Wirkungsdauer

Der mit einem Zahlenwert programmierte Vorschub gilt bis zu dem Satz, in dem ein neuer Vorschub programmiert wird. **F MAX** gilt nur für den Satz, in dem er programmiert wurde. Nach dem Satz mit **F MAX** gilt wieder der letzte mit Zahlenwert programmierte Vorschub.

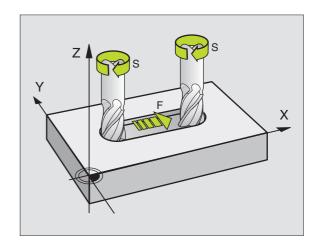
Änderung während des Programmlaufs

Während des Programmlaufs ändern Sie den Vorschub mit dem Override-Drehknopf F für den Vorschub.

Spindeldrehzahl S

Die Spindeldrehzahl S geben Sie in Umdrehungen pro Minute (U/min) in einem **T00L CALL**-Satz ein (Werkzeug-Aufruf).

Programmierte Änderung


Im Bearbeitungs-Programm können Sie die Spindeldrehzahl mit einem TOOL CALL-Satz ändern, indem Sie ausschließlich die neue Spindeldrehzahl eingeben:

- Werkzeug-Aufruf programmieren: Taste TOOL CALL drücken
- Dialog Werkzeug-Nummer? mit Taste NO ENT übergehen
- ▶ Dialog Spindelachse parallel X/Y/Z ? mit Taste NO ENT übergehen
- ► Im Dialog Spindeldrehzahl S= ? neue Spindeldrehzahl eingeben, mit Taste END bestätigen

Änderung während des Programmlaufs

Während des Programmlaufs ändern Sie die Spindeldrehzahl mit dem Override-Drehknopf S für die Spindeldrehzahl.

5.2 Werkzeug-Daten

Voraussetzung für die Werkzeug-Korrektur

Üblicherweise programmieren Sie die Koordinaten der Bahnbewegungen so, wie das Werkstück in der Zeichnung bemaßt ist. Damit die TNC die Bahn des Werkzeug-Mittelpunkts berechnen, also eine Werkzeug-Korrektur durchführen kann, müssen Sie Länge und Radius zu jedem eingesetzten Werkzeug eingeben.

Werkzeug-Daten können Sie entweder mit der Funktion TOOL DEF direkt im Programm oder separat in Werkzeug-Tabellen eingeben. Wenn Sie die Werkzeug-Daten in Tabellen eingeben, stehen weitere werkzeugspezifische Informationen zur Verfügung. Die TNC berücksichtigt alle eingegebenen Informationen, wenn das Bearbeitungs-Programm läuft.

Werkzeug-Nummer, Werkzeug-Name

Jedes Werkzeug ist durch eine Nummer zwischen 0 und 254 gekennzeichnet. Wenn Sie mit Werkzeug-Tabellen arbeiten, können Sie höhere Nummern verwenden und zusätzlich Werkzeug-Namen vergeben.

Das Werkzeug mit der Nummer 0 ist als Null-Werkzeug festgelegt und hat die Länge L=0 und den Radius R=0. In Werkzeug-Tabellen sollten Sie das Werkzeug T0 ebenfalls mit L=0 und R=0 definieren.

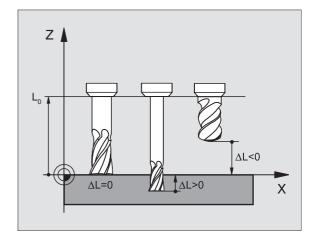
1 8 12 13 18 Z

Werkzeug-Länge L

Die Werkzeug-Länge L können Sie auf zwei Arten bestimmen:

Differenz aus der Länge des Werkzeugs und der Länge eines Null-Werkzeugs L0

Vorzeichen:


L>L0: Werkzeug ist länger als das Null-Werkzeug L<L0: Werkzeug ist kürzer als das Null-Werkzeug

Länge bestimmen:

- ▶ Null-Werkzeug auf Bezugsposition in der Werkzeugachse fahren (z.B. Werkstück-Oberfläche mit Z=0)
- ► Anzeige der Werkzeugachse auf Null setzen (Bezugspunkt setzen)
- Nächstes Werkzeug einwechseln
- ▶ Werkzeug auf gleiche Bezugs-Position wie Null-Werkzeug fahren
- Anzeige der Werkzeugachse zeigt den Längenunterschied des Werkzeugs zum Null-Werkzeug
- Wert mit der Taste "Ist-Position übernehmen" in den TOOL DEF-Satz bzw. in die Werkzeug-Tabelle übernehmen

Ermitteln der Länge L mit einem Voreinstellgerät

Geben Sie den ermittelten Wert direkt in die Werkzeug-Definition TOOL DEF oder in die Werkzeug-Tabelle ein.

Werkzeug-Radius R

Den Werkzeug-Radius R geben Sie direkt ein.

Delta-Werte für Längen und Radien

Delta-Werte bezeichnen Abweichungen für die Länge und den Radius von Werkzeugen.

Ein positiver Delta-Wert steht für ein Aufmaß (DL, DR, DR2>0). Bei einer Bearbeitung mit Aufmaß geben Sie den Wert für das Aufmaß beim Programmieren des Werkzeug-Aufrufs mit TOOL CALL ein.

Ein negativer Delta-Wert bedeutet ein Untermaß (DL, DR, DR2<0). Ein Untermaß wird in der Werkzeug-Tabelle für den Verschleiß eines Werkzeugs eingetragen.

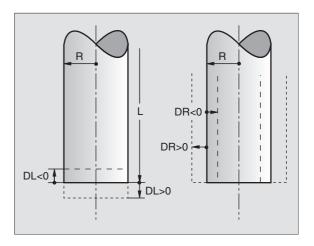
Delta-Werte geben Sie als Zahlenwerte ein, in einem TOOL CALL-Satz können Sie den Wert auch mit einem Q-Parameter übergeben.

Eingabebereich: Delta-Werte dürfen maximal ± 99,999 mm betragen.

Werkzeug-Daten ins Programm eingeben

Nummer, Länge und Radius für ein bestimmtes Werkzeug legen Sie im Bearbeitungs-Programm einmal in einem TOOL DEF-Satz fest:

▶ Werkzeug-Definition wählen: Taste TOOL DEF drücken


- ► Werkzeug-Nummer :Mit der Werkzeug-Nummer ein Werkzeug eindeutig kennzeichnen
- ▶ Werkzeug-Länge :Korrekturwert für die Länge
- ▶ Werkzeug-Radius :Korrekturwert für den Radius

Während des Dialogs können Sie den Wert für die Länge mit der Taste "Ist-Position-übernehmen" direkt in das Dialogfeld einfügen. Achten Sie darauf, dass dabei die Werzeugachse in der Status-Anzeige markiert ist.

Beispiel

4 TOOL DEF 5 L+10 R+5

Werkzeug-Daten in die Tabelle eingeben

In einer Werkzeug-Tabelle können Sie bis zu 32767 Werkzeuge definieren und deren Werkzeug-Daten speichern. Die Anzahl der Werkzeuge, die die TNC beim Öffnen einer neuen Tabelle anlegt, definieren Sie mit dem Maschinen-Parameter 7260. Beachten Sie auch die Editier-Funktionen weiter unten in diesem Kapitel. Um zu einem Werkzeug mehrere Korrekturdaten eingeben zu können (Werkzeug-Nummer indizieren), setzen Sie den Maschinen-Parameter 7262 ungleich 0.

Sie müssen die Werkzeug-Tabellen verwenden, wenn

- Sie indizierte Werkzeuge, wie z.B. Stufenbohrer mit mehreren Längenkorrekturen, einsetzen wollen (siehe Seite 104)
- Ihre Maschine mit einem automatischen Werkzeug-Wechsler ausgerüstet ist
- Sie mit dem TT 130 Werkzeuge automatisch vermessen wollen, siehe Benutzer-Handbuch Tastsystem-Zyklen, Kapitel 4
- Sie mit dem Bearbeitungs-Zyklus 22 nachräumen wollen (siehe "RAEUMEN (Zyklus 22)" auf Seite 294)
- Sie mit automatischer Schnittdaten-Berechnung arbeiten wollen

Werkzeug-Tabelle: Standard Werkzeug-Daten

Abk.	Eingaben	Dialog
T	Nummer, mit der das Werkzeug im Programm aufgerufen wird (z.B. 5, indiziert: 5.2)	-
NAME	Name, mit dem das Werkzeug im Programm aufgerufen wird	Werkzeug-Name?
L	Korrekturwert für die Werkzeug-Länge L	Werkzeug-Länge?
R	Korrekturwert für den Werkzeug-Radius R	Werkzeug-Radius R?
R2	Werkzeug-Radius R2 für Ecken-Radiusfräser (nur für dreidimensionale Radiuskorrektur oder grafische Darstellung der Bearbeitung mit Radiusfräser)	Werkzeug-Radius R2?
DL	Delta-Wert Werkzeug-Radius R2	Aufmaß Werkzeug-Länge?
DR	Delta-Wert Werkzeug-Radius R	Aufmaß Werkzeug-Radius?
DR2	Delta-Wert Werkzeug-Radius R2	Aufmaß Werkzeug-Radius R2?
LCUTS	Schneidenlänge des Werkzeugs für Zyklus 22	Schneidenlänge in der Wkz-Achse?
ANGLE	Maximaler Eintauchwinkel des Werkzeug bei pendelnder Eintauchbewegung für Zyklen 22 und 208	Maximaler Eintauchwinkel?
TL	Werkzeug-Sperre setzen (TL : für T ool L ocked = engl. Werkzeug gesperrt)	Wkz gesperrt? Ja = ENT / Nein = NO ENT
RT	Nummer eines Schwester-Werkzeugs – falls vorhanden – als Ersatz-Werkzeug (RT : für R eplacement T ool = engl. Ersatz-Werk- zeug); siehe auch TIME2	Schwester-Werkzeug?

i

Abk.	Eingaben	Dialog
TIME1	Maximale Standzeit des Werkzeugs in Minuten. Diese Funktion ist maschinenabhängig und ist im Maschinenhandbuch beschrieben	Max. Standzeit?
TIME2	Maximale Standzeit des Werkzeugs bei einem TOOL CALL in Minuten: Erreicht oder überschreitet die aktuelle Standzeit diesen Wert, so setzt die TNC beim nächsten TOOL CALL das Schwe- ster-Werkzeug ein (siehe auch CUR.TIME)	Maximale Standzeit bei TOOL CALL?
CUR.TIME	Aktuelle Standzeit des Werkzeugs in Minuten: Die TNC zählt die aktuelle Standzeit (CUR.TIME: für CURrent TIME = engl. aktuelle/laufende Zeit) selbsttätig hoch. Für benutzte Werkzeuge können Sie eine Vorgabe eingeben	Aktuelle Standzeit?
DOC	Kommentar zum Werkzeug (maximal 16 Zeichen)	Werkzeug-Kommentar?
PLC	Information zu diesem Werkzeug, die an die PLC übertragen werden soll	PLC-Status?
PLC-VAL	Wert zu diesem Werkzeug, der an die PLC übertragen werden soll	PLC-Wert?

Werkzeug-Tabelle: Werkzeug-Daten für die automatische Werkzeug-Vermessung

Beschreibung der Zyklen zur automatischen Werkzeug-Vermessung: Siehe Benutzer-Handbuch Tastsystem-Zyklen, Kapitel 4.

Abk.	Eingaben	Dialog
CUT	Anzahl der Werkzeug-Schneiden (max. 20 Schneiden)	Anzahl der Schneiden?
LT0L	Zulässige Abweichung von der Werkzeug-Länge L für Verschleiß- Erkennung. Wird der eingegebene Wert überschritten, sperrt die TNC das Werkzeug (Status L). Eingabebereich: 0 bis 0,9999 mm	Verschleiß-Toleranz: Länge?
RTOL	Zulässige Abweichung vom Werkzeug-Radius R für Verschleiß- Erkennung. Wird der eingegebene Wert überschritten, sperrt die TNC das Werkzeug (Status L). Eingabebereich: 0 bis 0,9999 mm	Verschleiß-Toleranz: Radius?
DIRECT.	Schneid-Richtung des Werkzeugs für Vermessung mit drehendem Werkzeug	Schneid-Richtung (M3 = -)?
TT:R-OFFS	Längenvermessung: Versatz des Werkzeugs zwischen Stylus- Mitte und Werkzeug-Mitte. Voreinstellung: Werkzeug-Radius R (Taste NO ENT erzeugt R)	Werkzeug-Versatz Radius?
TT:L-OFFS	Radiusvermessung: zusätzlicher Versatz des Werkzeugs zu MP6530 zwischen Stylus-Oberkante und Werkzeug-Unterkante. Voreinstellung: 0	Werkzeug-Versatz Länge?
LBREAK	Zulässige Abweichung von der Werkzeug-Länge L für Bruch- Erkennung. Wird der eingegebene Wert überschritten, sperrt die TNC das Werkzeug (Status L). Eingabebereich: 0 bis 0,9999 mm	Bruch-Toleranz: Länge?

Abk.	Eingaben	Dialog
RBREAK	Zulässige Abweichung vom Werkzeug-Radius R für Bruch-Erken- nung. Wird der eingegebene Wert überschritten, sperrt die TNC das Werkzeug (Status L). Eingabebereich: 0 bis 0,9999 mm	Bruch-Toleranz: Radius?

Werkzeug-Tabelle: Werkzeug-Daten für automatische Drehzahl-/ Vorschub-Berechnung

Abk.	Eingaben	Dialog
TYP	Werkzeugtyp (MILL=Fräser, DRILL=Bohrer, TAP=Gewindebohrer): Softkey TYP WÄHLEN (3. Softkey-Leiste); Die TNC blendet ein Fenster ein, in dem Sie den Werkzeugtyp wählen können	Werkzeugtyp?
TMAT	Werkzeug-Schneidstoff: Softkey SCHNEIDSTOFF WÄHLEN (3. Softkey-Leiste); Die TNC blendet ein Fenster ein, in dem Sie den Schneidstoff wählen können	Werkzeug-Schneidstoff?
CDT	Schnittdaten-Tabelle: Softkey CDT WÄHLEN (3. Softkey-Leiste); Die TNC blendet ein Fenster ein, in dem Sie die Schnittdaten- Tabelle wählen können	Name Schnittdaten-Tabelle?

Werkzeug-Tabelle: Werkzeug-Daten für schaltende 3D-Tastsysteme (nur wenn Bit1 in MP7411 = 1 gesetzt ist, siehe auch Benutzer-Handbuch Tastsystem-Zyklen)

Abk.	Eingaben	Dialog
CAL-OF1	Die TNC legt beim Kalibrieren den Mittenversatz in der Haupt- achse eines 3D-Tasters in dieser Spalte ab, wenn im Kalibrier- menü eine Werkzeugnummer angegeben ist	Taster-Mittenversatz Hauptachse?
CAL-0F2	Die TNC legt beim Kalibrieren den Mittenversatz in der Neben- achse eines 3D-Tasters in dieser Spalte ab, wenn im Kalibrier- menü eine Werkzeugnummer angegeben ist	Taster-Mittenversatz Nebenachse?
CAL-ANG	Die TNC legt beim Kalibrieren den Spindelwinkel ab, bei dem ein 3D-Tasters kalibriert wurde, wenn im Kalibriermenü eine Werkzeugnummer angegeben ist	Spindelwinkel beim Kalibrieren?

Werkzeug-Tabellen editieren

Die für den Programmlauf gültige Werkzeug-Tabelle hat den Datei-Namen TOOL.T. TOOL T muss im Verzeichnis TNC:\ gespeichert sein und kann nur in einer Maschinen-Betriebsart editiert werden. Werkzeug-Tabellen, die Sie archivieren oder für den Programm-Test einsetzen wollen, geben Sie einen beliebigen anderen Datei-Namen mit der Endung .T .

Werkzeug-Tabelle TOOL.T öffnen:

▶ Beliebige Maschinen-Betriebsart wählen

Werkzeug-Tabelle wählen: Softkey WERKZEUG TABELLE drücken

▶ Softkey EDITIEREN auf "EIN" setzen

Werkzeug-Tabelle editieren Program Einspeich Werkzeug-Länge?							ogramm nspeichern
Datei:	TOOL.T		MM				>>
T N	IAME	L	R		R2	DL	
0		+0	+0		+0	+0	
1 8	CHR	+150	+3	.5	+0	+0.1	
2 9	CHL	+5	+2	.5	+0	+0	
3		+0	+3		+0	+0	
4		+0	+3		+0	+0	
5		+0	+1	.5	+0	+0	
6		+0	+2	.5	+0	+0	
				0%	S-IS	r 10:	26
				3%	S-MON	1 LIM	IT 1
X	+85.	116 Y	' +	91.7	76 Z	-17	4.025
+ B	-6.	450 +0	. 4	80.0	57		
					S	248.	490
IST		ΤØ	Z S 50		F Ø		M 5/9
ANFANG	ENDE	SEITE Î	SEITE		EDITIEREN AUS/EIN	WERKZEUG NAMEN SUCHEN	PLATZ TABELLE

Beliebige andere Werkzeug-Tabelle öffnen:

▶ Betriebsart Programm-Einspeichern/Editieren wählen

- ▶ Datei-Verwaltung aufrufen
- Wahl der Datei-Typen anzeigen: Softkey TYPE WÄH-LEN drücken
- Dateien vom Typ .T anzeigen: Softkey ZEIGE .T drücken
- Wählen Sie eine Datei oder geben einen neuen Dateinamen ein. Bestätigen Sie mit der Taste ENT oder mit dem Softkey WÄHLEN

Wenn Sie eine Werkzeug-Tabelle zum Editieren geöffnet haben, dann können Sie das Hellfeld in der Tabelle mit den Pfeiltasten oder mit den Softkeys auf jede beliebige Position bewegen. An einer beliebigen Position können Sie die gespeicherten Werte überschreiben oder neue Werte eingeben. Zusätzliche Editierfunktionen entnehmen Sie bitte aus nachfolgender Tabelle.

Wenn die TNC nicht alle Positionen in der Werkzeug-Tabelle gleichzeitig anzeigen kann, zeigt der Balken oben in der Tabelle das Symbol ">" bzw. "<<".

Werkzeug-Tabelle verlassen

▶ Datei-Verwaltung aufrufen und eine Datei eines anderen Typs wählen, z.B. ein Bearbeitungs-Programm

Editierfunktionen für Werkzeug-Tabellen	Softkey
Tabellen-Anfang wählen	ANFANG
Tabellen-Ende wählen	ENDE
Vorherige Tabellen-Seite wählen	SEITE
Nächste Tabellen-Seite wählen	SEITE
Werkzeug-Namen in der Tabelle suchen	WERKZEUG- NAMEN SUCHEN
Informationen zum Werkzeug spaltenweise dar- stellen oder alle Informationen zu einem Werk- zeug auf einer Bildschirmseite darstellen	LISTE FORMULAR
Sprung zum Zeilenanfang	ZEILEN- ANFANG
Sprung zum Zeilenende	ZEILEN- ENDE
Hell hinterlegtes Feld kopieren	AKTUELLEN WERT KOPIEREN

Editierfunktionen für Werkzeug-Tabellen	Softkey	
Kopiertes Feld einfügen	KOPIERTEN WERT EINFÜGEN	
Eingebbare Anzahl von Zeilen (Werkzeugen) am Tabellenende anfügen	N ZEILEN AM ENDE ANFÜGEN	
Zeile mit indizierter Werkzeug-Nummer hinter der aktuellen Zeile einfügen. Funktion ist nur aktiv, wenn Sie für ein Werkzeug mehrere Korrekturdaten ablegen dürfen (Maschinen-Parameter 7262 ungleich 0). Die TNC fügt hinter dem letzten vorhandenen Index eine Kopie der Werkzeug-Daten ein und erhöht den Index um 1. Anwendung: z.B. Stufenbohrer mit mehreren Längenkorrekturen	ZEILE EINFÜGEN	
Aktuelle Zeile (Werkzeug) löschen	ZEILE LÖSCHEN	
Platznummern anzeigen / nicht anzeigen	ANZEIGEN AUSBLEND. PLATZ-NR.	
Alle Werkzeuge anzeigen / nur die Werkzeuge anzeigen, die in der Platz-Tabelle gespeichert sind	UERKZEUGE AUSBLEND. AUSPZEIN	

Hinweise zu Werkzeug-Tabellen

Über den Maschinen-Parameter 7266.x legen Sie fest, welche Angaben in einer Werkzeug-Tabelle eingetragen werden können und in welcher Reihenfolge sie aufgeführt werden.

Sie können einzelne Spalten oder Zeilen einer Werkzeug-Tabelle mit dem Inhalt einer anderen Datei überschreiben. Voraussetzungen:

- Die Ziel-Datei muss bereits existieren
- Die zu kopierende Datei darf nur die zu ersetzenden Spalten (Zeilen) enthalten

Einzelne Spalten oder Zeilen kopieren Sie mit dem Softkey FELDER ERSETZEN (siehe "Einzelne Datei kopieren" auf Seite 54).

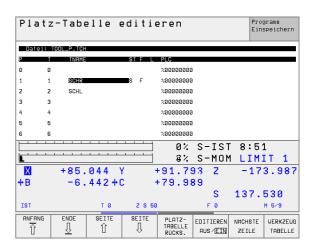
Platz-Tabelle für Werkzeug-Wechsler

Für den automatischen Werkzeugwechsel benötigen Sie die Platz-Tabelle TOOL_P.TCH. Die TNC verwaltet mehrere Platz-Tabellen mit beliebigen Dateinamen. Die Platz-Tabelle, die Sie für den Programmlauf aktivieren wollen, wählen Sie in einer Programmlauf-Betriebsart über die Datei-Verwaltung aus (Status M). Um in einer Platztabelle mehrere Magazine verwalten zu können (Platz-Nummer indizieren), setzen Sie die Maschinen-Parameter 7261.0 bis 7261.3 ungleich 0.

Platz-Tabelle in einer Programmlauf-Betriebsart editieren

▶ Werkzeug-Tabelle wählen: Softkey WERKZEUG TABELLE drücken

▶ Platz-Tabelle wählen: Softkey PLATZ TABELLE wäh-



► Softkey EDITIEREN auf EIN setzen

Platz-Tabelle in der Betriebsart Programm-Einspeichern/ Editieren wählen

- ▶ Datei-Verwaltung aufrufen
- ▶ Wahl der Datei-Typen anzeigen: Softkey TYPE WÄH-LEN drücken
- ▶ Dateien vom Typ .TCH anzeigen: Softkey TCH FILES drücken (zweite Softkey-Leiste)
- Wählen Sie eine Datei oder geben einen neuen Dateinamen ein. Bestätigen Sie mit der Taste ENT oder mit dem Softkey WÄHLEN

Abk.	Eingaben	Dialog
P	Platz-Nummer des Werkzeugs im Werkzeug-Magazin	_
T	Werkzeug-Nummer	Werkzeug-Nummer?
ST	Werkzeug ist Sonderwerkzeug (ST : für S pecial T ool = engl. Sonderwerkzeug); wenn Ihr Sonderwerkzeug Plätze vor und hinter seinem Platz blockiert, dann sperren Sie den entsprechenden Platz in der Spalte L (Status L)	
F	Werkzeug immer auf gleichen Platz im Magazin zurückwechseln (F : für F ixed = engl. festgelegt)	Festplatz? Ja = ENT / Nein = NO ENT
L	Platz sperren (L : für L ocked = engl. gesperrt, siehe auch Spalte ST)	Platz gesperrt Ja = ENT / Nein = NO ENT
PLC	Information, die zu diesem Werkzeug-Platz an die PLC übertragen werden soll	PLC-Status?
TNAME	Anzeige des Werkzeugnamen aus TOOL.T –	
DOC	Anzeige des Kommentar zum Werkzeug aus TOOL.T	_

Editierfunktionen für Platz-Tabellen	Softkey
Tabellen-Anfang wählen	ANFANG
Tabellen-Ende wählen	ENDE
Vorherige Tabellen-Seite wählen	SEITE Û
Nächste Tabellen-Seite wählen	SEITE
Platz-Tabelle rücksetzen	PLATZ- TABELLE RÜCKS.
Sprung zum Anfang der nächsten Zeile	NACHSTE ZEILE
Spalte Werkzeug-Nummer T rücksetzen	RÜCKS. SPALTE T
Sprung zum Zeilenende	ZEILEN- ENDE

Werkzeug-Daten aufrufen

Einen Werkzeug-Aufruf TOOL CALL im Bearbeitungs-Programm programmieren Sie mit folgenden Angaben:

► Werkzeug-Aufruf mit Taste TOOL CALL wählen

- ▶ Werkzeug-Nummer: Nummer oder Name des Werkzeugs eingeben. Das Werkzeug haben Sie zuvor in einem TOLL DEF-Satz oder in der Werkzeug-Tabelle festgelegt. Einen Werkzeug-Namen setzen Sie in Anführungszeichen. Namen beziehen sich auf einen Eintrag in der aktiven Werkzeug-Tabelle TOOL .T. Um ein Werkzeug mit anderen Korrekturwerten aufzurufen, geben Sie den in der Werkzeug-Tabelle definierten Index nach einem Dezimalpunkt mit ein
- ► Spindelachse parallel X/Y/Z: Werkzeugachse eingeben
- ▶ Spindeldrehzahl S: Spindeldrehzahl direkt eingeben, oder von der TNC berechnen lassen, wenn Sie mit Schnittdaten-Tabellen arbeiten. Drücken Sie dazu den Softkey S AUTOM. BERECHNEN. Die TNC begrenzt die Spindeldrehzahl auf den maximalen Wert, der in Maschinen-Parameter 3515 festgelegt ist

- ▶ Vorschub F: Vorschub direkt eingeben, oder von der TNC berechnen lassen, wenn Sie mit Schnittdaten-Tabellen arbeiten. Drücken Sie dazu den Softkey F AUTOM. BERECHNEN. Die TNC begrenzt den Vorschub auf den maximalen Vorschub der "langsamsten Achse" (in Maschinen-Parameter 1010 festgelegt). F wirkt solange, bis Sie in einem Positioniersatz oder in einem TOOL CALL-Satz einen neuen Vorschub programmieren
- ▶ Aufmaß Werkzeug-Länge DL: Delta-Wert für die Werkzeug-Länge
- Aufmaß Werkzeug-Radius DR: Delta-Wert für den Werkzeug-Radius
- Aufmaß Werkzeug-Radius DR2: Delta-Wert für den Werkzeug-Radius 2

Beispiel: Werkzeug-Aufruf

Aufgerufen wird Werkzeug Nummer 5 in der Werkzeugachse Z mit der Spindeldrehzahl 2500 U/min und einem Vorschub von 350 mm/min. Das Aufmaß für die Werkzeug-Länge und den Werkzeug-Radius 2 betragen 0,2 bzw. 0,05 mm, das Untermaß für den Werkzeug-Radius 1 mm.

20 TOOL CALL 5.2 Z S2500 F350 DL+0,2 DR-1 DR2+0,05

Das D vor L und R steht für Delta-Wert.

Vorauswahl bei Werkzeug-Tabellen

Wenn Sie Werkzeug-Tabellen einsetzen, dann treffen Sie mit einem **T00L DEF**-Satz eine Vorauswahl für das nächste einzusetzende Werkzeug. Dazu geben Sie die Werkzeug-Nummer bzw. einen Q-Parameter ein, oder einen Werkzeug-Namen in Anführungszeichen.

Werkzeugwechsel

Der Werkzeugwechsel ist eine maschinenabhängige Funktion. Maschinenhandbuch beachten!

Werkzeugwechsel-Position

Die Werkzeugwechsel-Position muss kollisionsfrei anfahrbar sein. Mit den Zusatzfunktionen M91 und M92 können Sie eine maschinenfeste Wechselposition anfahren. Wenn Sie vor dem ersten Werkzeug-Aufruf T00L CALL 0 programmieren, dann verfährt die TNC den Einspannschaft in der Spindelachse auf eine Position, die von der Werkzeug-Länge unabhängig ist.

Manueller Werkzeugwechsel

Vor einem manuellen Werkzeugwechsel wird die Spindel gestoppt und das Werkzeug auf die Werkzeugwechsel-Position gefahren:

- ▶ Werkzeugwechsel-Position programmiert anfahren
- Programmlauf unterbrechen, siehe "Bearbeitung unterbrechen", Seite 413
- ► Werkzeug wechseln
- Programmlauf fortsetzen, siehe "Programmlauf nach einer Unterbrechung fortsetzen", Seite 415

Automatischer Werkzeugwechsel

Beim automatischen Werkzeugwechsel wird der Programmlauf nicht unterbrochen. Bei einem Werkzeug-Aufruf mit **T00L CALL** wechselt die TNC das Werkzeug aus dem Werkzeug-Magazin ein.

Automatischer Werkzeugwechsel beim Überschreiten der Standzeit: M101

M101 ist eine maschinenabhängige Funktion. Maschinenhandbuch beachten!

Wenn die Standzeit eines Werkzeugs **TIME2** erreicht, wechselt die TNC automatisch ein Schwester-Werkzeug ein. Dazu aktivieren Sie am Programm-Anfang die Zusatzfunktion **M101**. Die Wirkung von **M101** können Sie mit **M102** aufheben.

Der automatische Werkzeugwechsel erfolgt nicht immer unmittelbar nach Ablauf der Standzeit, sondern einige Programm-Sätze später, je nach Steuerungsauslastung.

Voraussetzungen für Standard-NC-Sätze mit Radiuskorrektur R0, RR, RL

Der Radius des Schwester-Werkzeugs muss gleich dem Radius des ursprünglich eingesetzten Werkzeugs sein. Sind die Radien nicht gleich, zeigt die TNC einen Meldetext an und wechselt das Werkzeug nicht ein.

Voraussetzungen für NC-Sätze mit Flächennormalen-Vektoren und 3D-Korrektur

Siehe "Dreidimensionale Werkzeug-Korrektur", Seite 114. Der Radius des Schwester-Werkzeugs darf vom Radius des Original-Werkzeugs abweichen. Er wird in den vom CAD-System übertragenen Programmsätzen nicht berücksichtigt. Delta-Wert (**DR**) geben Sie entweder in der Werkzeug-Tabelle oder im **T00L CALL-**Satz ein.

Ist **DR** größer als Null, zeigt die TNC einen Meldetext an und wechselt das Werkzeug nicht ein. Mit der M-Funktion **M107** unterdrücken Sie diesen Meldetext, mit **M108** aktivieren Sie ihn wieder.

5.3 Werkzeug-Korrektur

Einführung

Die TNC korrigiert die Werkzeugbahn um den Korrekturwert für Werkzeug-Länge in der Spindelachse und um den Werkzeug-Radius in der Bearbeitungsebene.

Wenn Sie das Bearbeitungs-Programm direkt an der TNC erstellen, ist die Werkzeug-Radiuskorrektur nur in der Bearbeitungsebene wirksam. Die TNC berücksichtigt dabei bis zu fünf Achsen incl. der Drehachsen.

Wenn ein CAD-System Programm-Sätze mit Flächennormalen-Vektoren erstellt, kann die TNC eine dreidimensionale Werkzeug-Korrektur durchführen, siehe "Dreidimensionale Werkzeug-Korrektur", Seite 114.

Werkzeug-Längenkorrektur

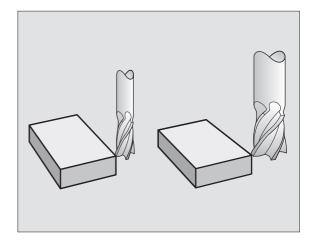
Die Werkzeug-Korrektur für die Länge wirkt, sobald Sie ein Werkzeug aufrufen und in der Spindelachse verfahren. Sie wird aufgehoben, sobald ein Werkzeug mit der Länge L=0 aufgerufen wird.

Wenn Sie eine Längenkorrektur mit positivem Wert mit **T00L CALL 0** aufheben, verringert sich der Abstand vom Werkzeug zu Werkstück.

Nach einem Werkzeug-Aufruf **T00L CALL** ändert sich der programmierte Weg des Werkzeugs in der Spindelachse um die Längendifferenz zwischen altem und neuem Werkzeug.

Bei der Längenkorrektur werden Delta-Werte sowohl aus dem T00L CALL-Satz als auch aus der Werkzeug-Tabelle berücksichtigt.

Korrekturwert = $\mathbf{L} + \mathbf{DL}_{TOOL CALL} + \mathbf{DL}_{TAB}$ mit


L: Werkzeug-Länge L aus TOOL DEF-Satz oder Werk-

zeug-Tabelle

DL TOOL CALL: Aufmaß **DL** für Länge aus **TOOL CALL**-Satz (von der

Positionsanzeige nicht berücksichtigt)

DL TAB: Aufmaß **DL** für Länge aus der Werkzeug-Tabelle

Werkzeug-Radiuskorrektur

Der Programm-Satz für eine Werkzeug-Bewegung enthält

- RL oder RR für eine Radiuskorrektur
- R+ oder R-, für eine Radiuskorrektur bei einer achsparallelen Verfahrbewegung
- RO, wenn keine Radiuskorrektur ausgeführt werden soll

Die Radiuskorrektur wirkt, sobald ein Werkzeug aufgerufen und in der Bearbeitungsebene mit RL oder RR verfahren wird.

Die TNC hebt die Radiuskorrektur auf, wenn Sie:

- einen Positioniersatz mit RO programmieren
- die Kontur mit der Funktion **DEP** verlassen
- einen **PGM CALL** programmieren
- ein neues Programm mit PGM MGT anwählen

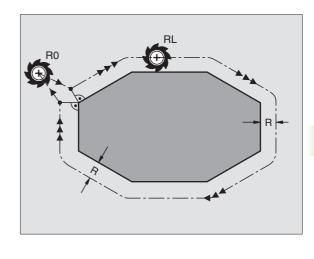
Bei der Radiuskorrektur werden Delta-Werte sowohl aus dem **T00L CALL**-Satz als auch aus der Werkzeug-Tabelle berücksichtigt:

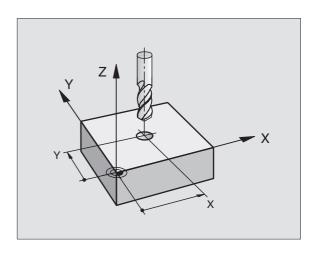
Korrekturwert = $\mathbf{R} + \mathbf{DR}_{TOOL CALL} + \mathbf{DR}_{TAB}$ mit

R: Werkzeug-Radius R aus TOOL DEF-Satz oder Werk-

zeug-Tabelle

DR TOOL CALL: Aufmaß **DR** für Radius aus **TOOL CALL**-Satz (von der


Positionsanzeige nicht berücksichtigt)


DR TAB: Aufmaß **DR** für Radius aus der Werkzeug-Tabelle

Das Werkzeug verfährt in der Bearbeitungsebene mit seinem Mittelpunkt auf der programmierten Bahn, bzw. auf die programmierten Koordinaten.

Anwendung: Bohren, Vorpositionieren.

Bahnbewegungen mit Radiuskorrektur: RR und RL

RR Das Werkzeug verfährt rechts von der Kontur

RL Das Werkzeug verfährt links von der Kontur

Der Werkzeug-Mittelpunkt hat dabei den Abstand des Werkzeug-Radius von der programmierten Kontur. "Rechts" und "links" bezeichnet die Lage des Werkzeugs in Verfahrrichtung entlang der Werkstück-Kontur. Siehe Bilder rechts.

Zwischen zwei Programm-Sätzen mit unterschiedlicher Radiuskorrektur RR und RL muss mindestens ein Verfahrsatz in der Bearbeitungsebene ohne Radiuskorrektur (also mit RO) stehen.

Eine Radiuskorrektur wird zum Ende des Satzes aktiv, in dem sie das erste Mal programmiert wurde.

Sie können die Radiuskorrektur auch für Zusatzachsen der Bearbeitungsebene aktivieren. Programmieren Sie die Zusatzachsen auch in jedem nachfolgenden Satz, da die TNC ansonsten die Radiuskorrektur wieder in der Hauptachse durchführt.

Beim ersten Satz mit Radiuskorrektur **RR/RL** und beim Aufheben mit **R0** positioniert die TNC das Werkzeug immer senkrecht auf den programmierten Start- oder Endpunkt. Positionieren Sie das Werkzeug so vor dem ersten Konturpunkt bzw. hinter dem letzten Konturpunkt, dass die Kontur nicht beschädigt wird.

Eingabe der Radiuskorrektur

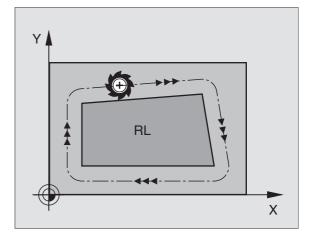
Beliebige Bahnfunktion programmieren, Koordinaten des Zielpunktes eingeben und mit Taste ENT bestätigen

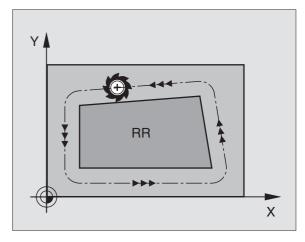
Radiuskorr.: RL/RR/Keine Korr.?

RL

Werkzeugbewegung links von der programmierten Kontur: Softkev RL drücken oder

RR


Werkzeugbewegung rechts von der programmierten Kontur: Softkey RR drücken oder



Werkzeugbewegung ohne Radiuskorrektur bzw. Radiuskorrektur aufheben: Taste ENT drücken

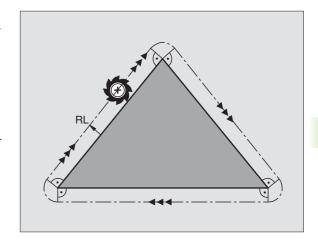
Satz beenden: Taste END drücken

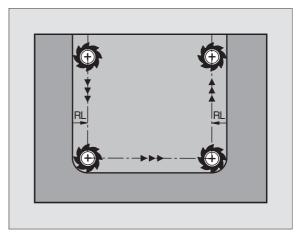
Radiuskorrektur: Ecken bearbeiten

■ Außenecken:

Wenn Sie eine Radiuskorrektur programmiert haben, dann führt die TNC das Werkzeug an den Außenecken entweder auf einem Übergangskreis oder auf einem Spline (Auswahl über MP7680). Falls nötig, reduziert die TNC den Vorschub an den Außenecken, zum Beispiel bei großen Richtungswechseln.

■ Innenecken:


An Innenecken errechnet die TNC den Schnittpunkt der Bahnen, auf denen der Werkzeug-Mittelpunkt korrigiert verfährt. Von diesem Punkt an verfährt das Werkzeug am nächsten Konturelement entlang. Dadurch wird das Werkstück an den Innenecken nicht beschädigt. Daraus ergibt sich, dass der Werkzeug-Radius für eine bestimmte Kontur nicht beliebig groß gewählt werden darf.



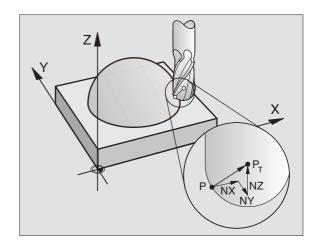
Legen Sie den Start- oder Endpunkt bei einer Innenbearbeitung nicht auf einen Kontur-Eckpunkt, da sonst die Kontur beschädigt werden kann.

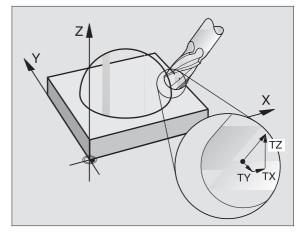
Ohne Radiuskorrektur können Sie Werkzeugbahn und Vorschub an Werkstück-Ecken mit der Zusatzfunktion M90 beeinflussen, Siehe "Ecken verschleifen: M90", Seite 181.

i

5.4 Dreidimensionale Werkzeug-Korrektur

Einführung


Die TNC kann eine dreidimensionale Werkzeug-Korrektur (3D-Korrektur) für Geraden-Sätze ausführen. Neben den Koordinaten X,Y und Z des Geraden-Endpunkts, müssen diese Sätze auch die Komponenten NX, NY und NZ des Flächennormalen-Vektors (siehe Bild rechts oben und Erklärung weiter unten auf dieser Seite) enthalten.


Wenn Sie darüber hinaus noch eine Werkzeug-Orientierung oder eine dreidimensionale Radiuskorrektur durchführen wollen, müssen diese Sätze zusätzlich noch einen normierten Vektor mit den Komponenten TX, TY und TZ enthalten, der die Werkzeug-Orientierung festlegt (siehe Bild rechts Mitte).

Der Geraden-Endpunkt, die Komponenten der Flächennormalen und die Komponenten für die Werkzeug-Orientierung müssen Sie von einem CAD-System berechnen lassen.

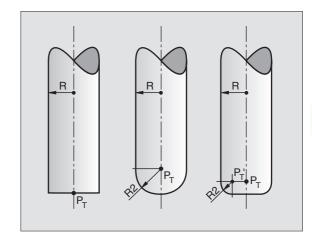
Einsatz-Möglichkeiten

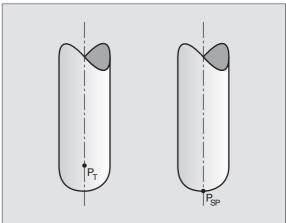
- Einsatz von Werkzeugen mit Abmessungen, die nicht mit den vom CAD-System berechneten Abmessungen übereinstimmen (3D-Korrektur ohne Definition der Werkzeug-Orientierung)
- Face Milling: Korrektur der Fräsergeometrie in Richtung der Flächennormalen (3D-Korrektur ohne und mit Definition der Werkzeug-Orientierung). Zerspanung erfolgt primär mit der Stirnseite des Werkzeugs
- Peripheral Milling: Korrektur des Fräserradius senkrecht zur Bewegungsrichtung und senkrecht zur Werkzeugrichtung (dreidimensionale Radiuskorrektur mit Definition der Werkzeug-Orientierung). Zerspanung erfolgt primär mit der Mantelfläche des Werkzeugs

Definition eines normierten Vektors

Ein normierter Vektor ist eine mathematische Größe, die einen Betrag von 1 und eine beliebige Richtung hat. Bei LN-Sätzen benötigte die TNC bis zu zwei normierte Vektoren, einen um die Richtung der Flächennormalen und einen weiteren (optionalen), um die Richtung der Werkzeug-Orientierung zu bestimmen. Die Richtung der Flächennormalen ist durch die Komponenten NX, NY und NZ festgelegt. Sie weist beim Schaft- und Radiusfräser senkrecht von der Werkstück-Oberfläche weg hin zum Werkzeug-Bezugspunkt PT, beim Eckenradiusfräser durch PT' bzw. PT (Siehe Bild rechts oben). Die Richtung der Werkzeug-Orientierung ist durch die Komponenten TX, TY und TZ festgelegt

Die Koordinaten für die Position X,Y,Z und für die Flächennormalen NX, NY, NZ, bzw. TX, TY, TZ, müssen im NC-Satz die gleiche Reihenfolge haben.


Im LN-Satz immer alle Koordinaten und alle Flächennormalen angeben, auch wenn sich die Werte im Vergleich zum vorherigen Satz nicht geändert haben.


Die 3D-Korrektur mit Flächennormalen ist für Koordinatenangaben in den Hauptachsen X, Y, Z gültig.

Wenn Sie ein Werkzeug mit Übermaß (positive Deltawerte) einwechseln, gibt die TNC eine Fehlermeldung aus. Die Fehlermeldung können Sie mit der M-Funktion M107 unterdrücken (siehe "Voraussetzungen für NC-Sätze mit Flächennormalen-Vektoren und 3D-Korrektur", Seite 109).

Die TNC warnt nicht mit einer Fehlermeldung, wenn Werkzeug-Übermaße die Kontur verletzen würden.

Über den Maschinen-Parameter 7680 legen Sie fest, ob das CAD-System die Werkzeug-Länge über Kugelzentrum P_T oder Kugelsüdpol P_{SP} korrigiert hat (siehe Bild rechts).

Erlaubte Werkzeug-Formen

Die erlaubten Werkzeug-Formen (siehe Bild rechts oben) legen Sie in der Werkzeug-Tabelle über die Werkzeug-Radien $\bf R$ und $\bf R2$ fest:

- Werkzeug-Radius **R**: Maß vom Werkzeugmittelpunkt zur Werkzeug-Außenseite
- Werkzeug-Radius 2 R2: Rundungsradius von der Werkzeug-Spitze zur Werkzeug-Außenseite

Das Verhältnis von R zu R2 bestimmt die Form des Werkzeugs:

- R2 = 0: Schaftfräser
- R2 = R: Radiusfräser
- 0 < **R2** < **R**: Eckenradiusfräser

Aus diesen Angaben ergeben sich auch die Koordinaten für den Werkzeug-Bezugspunkt PT.

Andere Werkzeuge verwenden: Delta-Werte

Wenn Sie Werkzeuge einsetzen, die andere Abmessungen haben als die ursprünglich vorgesehenen Werkzeuge, dann tragen Sie den Unterschied der Längen und Radien als Delta-Werte in die Werkzeug-Tabelle oder in den Werkzeug-Aufruf **T00L CALL** ein:

- Positiver Delta-Wert DL, DR, DR2: Die Werkzeugmaße sind größer als die des Original-Werkzeugs (Aufmaß)
- Negativer Delta-Wert **DL**, **DR**, **DR2**: Die Werkzeugmaße sind kleiner als die des Original-Werkzeugs (Untermaß)

Die TNC korrigiert dann die Werkzeug-Position um die Summe der Delta-Werte aus der Werkzeug-Tabelle und dem Werkzeug-Aufruf.

3D-Korrektur ohne Werkzeug-Orientierung

Die TNC versetzt das Werkzeug in Richtung der Flächennormalen um die Summe der Delta-Werte (Werkzeug-Tabelle und **T00L CALL**).

Beispiel: Satz-Format mit Flächennormalen

1 LN X+31.737 Y+21,954 Z+33,165 NX+0,2637581 NY+0,0078922 NZ-0,8764339 F1000 M3

LN: Gerade mit 3D-Korrektur

X, Y, Z: Korrigierte Koordinaten des Geraden-Endpunkts

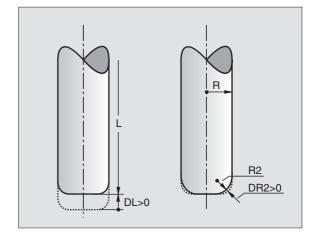
NX, NY, NZ: Komponenten der Flächennormalen

F: VorschubM: Zusatzfunktion

Vorschub F und Zusatzfunktion M können Sie in der Betriebsart Programm-Einspeichern/Editieren eingeben und ändern.

Die Koordinaten des Geraden-Endpunkts und die Komponenten der Flächennormalen sind vom CAD-System vorzugeben.

Face Milling: 3D-Korrektur ohne und mit Werkzeug-Orientierung


Die TNC versetzt das Werkzeug in Richtung der Flächennormalen um die Summe der Delta-Werte (Werkzeug-Tabelle und **T00L CALL**).

Bei aktivem M128 (siehe "Position der Werkzeugspitze beim Positionieren von Schwenkachsen beibehalten (TCPM*): M128", Seite 194) hält die TNC das Werkzeug senkrecht zur Werkstück-Kontur, wenn im LN-Satz keine Werkzeug-Orientierung festgelegt ist.

Ist im LN-Satz eine Werkzeug-Orientierung definiert, dann positioniert die TNC die Drehachsen der Maschine automatisch so, dass das Werkzeug die vorgegebene Werkzeug-Orientierung erreicht.

Die TNC kann nicht bei allen Maschinen die Drehachsen automatisch positionieren. Beachten Sie Ihr Maschinenhandbuch.

Kollisionsgefahr!

Bei Maschinen, deren Drehachsen nur einen eingeschränkten Verfahrbereich erlauben, können beim automatischen Positionieren Bewegungen auftreten, die beispielsweise eine 180°-Drehung des Tisches erfordern. Achten Sie auf Kollisionsgefahr des Kopfes mit dem Werkstück oder mit Spannmitteln.

Beispiel: Satz-Format mit Flächennormalen ohne Werkzeug-Orientierung

LN X+31,737 Y+21,954 Z+33,165 NX+0,2637581 NY+0,0078922 NZ-0,8764339 F1000 M128

Beispiel: Satz-Format mit Flächennormalen und Werkzeug-Orientierung

LN X+31,737 Y+21,954 Z+33,165 NX+0,2637581 NY+0,0078922 NZ-0,8764339 TX+0,0078922 TY-0,8764339 TZ+0,2590319 F1000 M128

LN: Gerade mit 3D-Korrektur

X, Y, Z: Korrigierte Koordinaten des Geraden-Endpunkts

NX, NY, NZ: Komponenten der Flächennormalen

TX, TY, TZ: Komponenten des normierten Vektors für die Werk-

zeug-Orientierung

F: VorschubM: Zusatzfunktion

Vorschub **F** und Zusatzfunktion **M** können Sie in der Betriebsart Programm-Einspeichern/Editieren eingeben und ändern.

Die Koordinaten des Geraden-Endpunkts und die Komponenten der Flächennormalen sind vom CAD-System vorzugeben.

Peripheral Milling: 3D-Radiuskorrektur mit Werkzeug-Orientierung

Die TNC versetzt das Werkzeug senkrecht zur Bewegungsrichtung und senkrecht zur Werkzeugrichtung um die Summe der Delta-Werte **DR** (Werkzeug-Tabelle und **TOOL CALL**). Die Korrekturrichtung legen Sie mit der Radiuskorrektur **RL/RR** fest (siehe Bild rechts oben, Bewegungsrichtung Y+). Damit die TNC die vorgegebene Werkzeug-Orientierung erreichen kann, müssen Sie die Funktion **M128** aktivieren (siehe "Position der Werkzeugspitze beim Positionieren von Schwenkachsen beibehalten (TCPM*): M128" auf Seite 194). Die TNC positioniert dann die Drehachsen der Maschine automatisch so, dass das Werkzeug die vorgegebene Werkzeug-Orientierung mit der aktiven Korrektur erreicht.

Die TNC kann nicht bei allen Maschinen die Drehachsen automatisch positionieren. Beachten Sie Ihr Maschinenhandbuch.

Kollisionsgefahr!

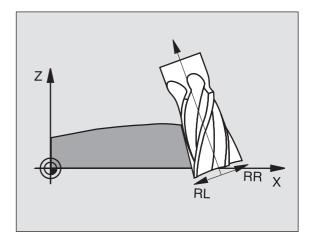
Bei Maschinen, deren Drehachsen nur einen eingeschränkten Verfahrbereich erlauben, können beim automatischen Positionieren Bewegungen auftreten, die beispielsweise eine 180°-Drehung des Tisches erfordern. Achten Sie auf Kollisionsgefahr des Kopfes mit dem Werkstück oder mit Spannmitteln.

Die Werkzeug-Orientierung können Sie auf zwei Arten definieren:

- Im LN-Satz durch Angabe der Komponenten TX, TY und TZ
- In einem L-Satz durch Angabe der Koordinaten der Drehachsen

Beispiel: Satz-Format mit Werkzeug-Orientierung

1 LN X+31,737 Y+21,954 Z+33,165 TX+0,0078922 TY-0,8764339 TZ+0,2590319 F1000 M128


LN: Gerade mit 3D-Korrektur

X, Y, Z: Korrigierte Koordinaten des Geraden-Endpunkts

TX, TY, TZ: Komponenten des normierten Vektors für die Werk-

zeug-Orientierung

F: Vorschub
M: Zusatzfunktion

Beispiel: Satz-Format mit Drehachsen

1 L X+31,737 Y+21,954 Z+33,165 B+12,357 C+5,896 F1000 M128

L: Gerade

X, Y, Z: Korrigierte Koordinaten des Geraden-EndpunktsB, C: Koordinaten der Drehachsen für die Werkzeug-Orien-

tierung

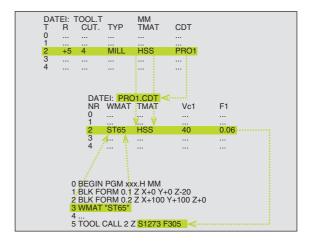
F: VorschubM: Zusatzfunktion

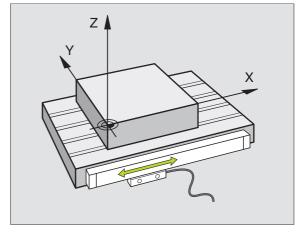
5.5 Arbeiten mit Schnittdaten-Tabellen

Hinweis

Die TNC muss vom Maschinenhersteller für das Arbeiten mit Schnittdaten-Tabellen vorbereitet sein.

Ggf. stehen an Ihrer Maschine nicht alle hier beschriebenen oder zusätzliche Funktionen zur Verfügung. Beachten Sie Ihr Maschinenhandbuch.


Einsatzmöglichkeiten


Über Schnittdaten-Tabellen, in denen beliebige Werkstoff/ Schneidstoff-Kombinationen festgelegt sind, kann die TNC aus der Schnittgeschwindigkeit $V_{\rm C}$ und dem Zahnvorschub f_Z die Spindeldrehzahl S und den Bahnvorschub F berechnen. Grundlage für die Berechnung ist, dass Sie im Programm das Werkstück-Material und in einer Werkzeug-Tabelle verschiedene werkzeugspezifische Eigenschaften festgelegt haben.

Bevor Sie Schnittdaten automatisch von der TNC berechnen lassen, müssen Sie in der Betriebsart Programm-Test die Werkzeug-Tabelle aktiviert haben (Status S), aus der die TNC die werkzeugspezifischen Daten entnehmen soll.

Editierfunktionen für Schnittdaten-Tabellen	Softkey
Zeile einfügen	ZEILE EINFÜGEN
Zeile löschen	ZEILE LÖSCHEN
Anfang der nächsten Zeile wählen	NÄCHSTE ZEILE
Tabelle sortieren	ORDER N
Hell hinterlegtes Feld kopieren (2. Softkey-Leiste)	AKTUELLEN WERT KOPIEREN
Kopiertes Feld einfügen (2. Softkey-Leiste)	KOPIERTEN WERT EINFÜGEN
Tabellenformat editieren (2. Softkey-Leiste)	FORMAT EDITIEREN

Tabelle für Werkstück-Materialien

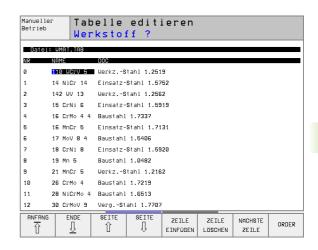
Werkstück-Materialien definieren Sie in der Tabelle WMAT.TAB (siehe Bild rechts oben). WMAT.TAB ist standardmäßig im Verzeichnis TNC:\ gespeichert und kann beliebig viele Materialnamen enthalten. Der Materialnamen darf maximal 32 Zeichen (auch Leerzeichen) lang sein. Die TNC zeigt den Inhalt der Spalte NAME an, wenn Sie im Programm das Werkstück-Material festlegen (siehe nachfolgenden Abschnitt).

Wenn Sie die Standard Werkstoff-Tabelle verändern, müssen Sie diese in ein anderes Verzeichnis kopieren. Ansonsten werden Ihre Änderungen bei einem Software-Update mit den HEIDENHAIN-Standarddaten überschrieben. Definieren Sie dann den Pfad in der Datei TNC.SYS mit dem Schlüsselwort WMAT= (siehe "Konfigurations-Datei TNC.SYS", Seite 126).

Um Datenverlust zu vermeiden, sichern Sie die Datei WMAT. TAB in regelmäßigen Abständen.

Werkstück-Material im NC-Programm festlegen

Im NC-Programm wählen Sie den Werkstoff über den Softkey WMAT aus der Tabelle WMAT.TAB aus:


Werkstück-Material programmieren: In der Betriebsart Programm-Einspeichern/Editieren Softkey WMAT drücken.

- ▶ Tabelle WMAT.TAB einblenden: Softkey WERK-STOFF WÄHLEN drücken, die TNC blendet in einem überlagerten Fenster die Werkstoffe ein, die in WMAT.TAB gespeichert sind
- Werkstück-Material wählen: Bewegen Sie das Hellfeld mit den Pfeiltasten auf das gewünschte Material und bestätigen Sie mit der Taste ENT. Die TNC übernimmt den Werkstoff in den WMAT-Satz. Um schneller in der Werkstoff-Tabelle zu blättern, drücken Sie die Taste SHIFT und danach die Pfeiltaste. Die TNC blättert dann seitenweise
- ▶ Dialog beenden: Taste END drücken

Wenn Sie in einem Programm den WMAT-Satz ändern, gibt die TNC eine Warnmeldung aus. Überprüfen Sie, ob die im TOOL CALL-Satz gespeicherten Schnittdaten noch gültig sind.

Tabelle für Werkzeug-Schneidstoffe

Werkzeug-Schneidstoffe definieren Sie in der Tabelle TMAT.TAB. TMAT.TAB ist standardmäßig im Verzeichnis TNC:\ gespeichert und kann beliebig viele Schneidstoffnamen enthalten (siehe Bild rechts oben). Der Schneidstoffname darf maximal 16 Zeichen (auch Leerzeichen) lang sein. Die TNC zeigt den Inhalt der Spalte NAME an, wenn Sie in der Werkzeug-Tabelle TOOL.T den Werkzeug-Schneidstoff festlegen.

Wenn Sie die Standard Schneidstoff-Tabelle verändern, müssen Sie diese in ein anderes Verzeichnis kopieren. Ansonsten werden Ihre Änderungen bei einem Software-Update mit den HEIDENHAIN-Standarddaten überschrieben. Definieren Sie dann den Pfad in der Datei TNC.SYS mit dem Schlüsselwort TMAT= (siehe "Konfigurations-Datei TNC.SYS", Seite 126).

Um Datenverlust zu vermeiden, sichern Sie die Datei TMAT.TAB in regelmäßigen Abständen.

Manueller Tabelle editieren Betrieb Schneidstoff?							
Datei	Datei: TMAT.TAB						
NR	NAME	DOC					
0	HC-K15	HM besch	ichtet				
1	HC-P25	HM besch	ichtet				
2	HC-P35	HM besch	ichtet				
3	HSS						
4	HSSE-C⊙5	HSS + Ko	HSS + Kobalt				
5	HSSE-C≎8	HSS + Kobalt					
6	HSSE-C≎8-TiN	E-Co8-TiN HSS + Kobalt					
7	HSSE/TiCN	TiCN-beschichtet					
8	HSSE/TiN	TiN-besc	hichtet				
9	HT-P15	Cermet					
10	HT-M15	Cermet					
11	HW-K15	HM unbeschichtet					
12	12 HW-K25 HM unbeschichtet						
ANFANG	ENDE <u>↓</u>	SEITE Î	SEITE []	ZEILE EINFÜGEN	ZEILE LÖSCHEN	NACHSTE ZEILE	ORDER

Tabelle für Schnittdaten

Die Werkstoff/Schneidstoff-Kombinationen mit den zugehörigen Schnittdaten definieren Sie in einer Tabelle mit dem Nachnamen .CDT (engl. cutting data file: Schnittdaten-Tabelle; siehe Bild rechts Mitte). Die Einträge in der Schnittdaten-Tabelle können von Ihnen frei konfiguriert werden. Neben den zwingend erforderlichen Spalten NR, WMAT und TMAT kann die TNC bis zu vier Schnittgeschwindigkeit (V_C)/Vorschub (F)-Kombinationen verwalten.

Im Verzeichnis TNC:\ ist die Standard Schnittdaten-Tabelle FRAES_2.CDT gespeichert. Sie können FRAES_2.CDT beliebig editieren und ergänzen oder beliebig viele neu Schnittdaten-Tabellen hinzufügen.

Wenn Sie die Standard Schnittdaten-Tabelle verändern, müssen Sie diese in ein anderes Verzeichnis kopieren. Ansonsten werden Ihre Änderungen bei einem Software-Update mit den HEIDENHAIN-Standarddaten überschrieben (siehe "Konfigurations-Datei TNC.SYS", Seite 126).

Alle Schnittdaten-Tabellen müssen im selben Verzeichnis gespeichert sein. Ist das Verzeichnis nicht das Standardverzeichnis TNC:\, müssen Sie in der Datei TNC.SYS nach dem Schlüsselwort PCDT= den Pfad eingeben, in dem Ihre Schnittdaten-Tabellen gespeichert sind.

Um Datenverlust zu vermeiden, sichern Sie Ihre Schnittdaten-Tabellen in regelmäßigen Abständen.

Progra Satzi	olge	pelle edit nnittgesch		gkeit	Vc1?	
Dat	ei: FRAES_2.CD	T				
NR	WMAT	TMAT	Vc1	F1 \	/c2 F2	
0	St 33-1	HSSE/TiN	40	0,016	55 0,0	120
1	St 33-1	HSSE/TiCN	40	0,016	55 0,0	120
2	St 33-1	HC-P25	100	0,200	130 0,2	50
3	St 37-2	HSS-Co5	20	0,025	15 0,0	130
4	St 37-2	HSSE/TiCN	40	0,016	55 0,0	120
5	St 37-2	HC-P25	100	0,200	130 0,2	50
6	St 50-2	HSSE/TiN	40	0,016	55 0,0	120
7	St 50-2	HSSE/TiCN	40	0,016	55 0,0	120
8	St 50-2	HC-P25	100	0,200	130 0,2	50
9	St 60-2	HSSE/TiN	40	0,016	55 0,0	120
10	St 60-2	HSSE/TiCN	40	0,016	55 0,0	120
11	St 60-2	HC-P25	100	0,200	130 0,2	50
12	C 15	HSS-Co5	20	0,040	15 0,0	150
ANFA	ING ENDE	SEITE SEITE	ZEILE EINFÜGEN	ZEILE LÖSCHEN	NÄCHSTE ZEILE	ORDER

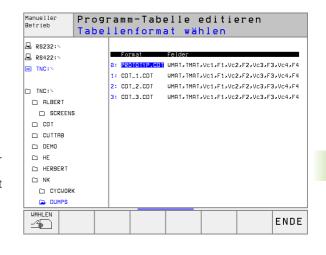
Neue Schnittdaten-Tabelle anlegen

- ▶ Betriebsart Programm-Einspeichern/Editieren wählen
- ▶ Datei-Verwaltung wählen: Taste PGM MGT drücken
- Verzeichnis wählen, in dem die Schnittdaten-Tabellen gespeichert sein müssen (Standard: TNC:\)
- Beliebigen Dateinamen und Datei-Typ .CDT eingeben, mit Taste ENT bestätigen
- ▶ Die TNC zeigt in der rechten Bildschirmhälfte verschiedene Tabellenformate an (maschinenabhängig, Beispiel siehe Bild rechts oben), die sich in der Anzahl der Schnittgeschwindigkeit/Vorschub-Kombinationen unterscheiden. Schieben Sie das Hellfeld mit den Pfeiltasten auf das gewünschte Tabellenformat und bestätigen mit der Taste ENT. Die TNC erzeugt eine neue leere Schnittdaten-Tabelle

Erforderliche Angaben in der Werkzeug-Tabelle

- Werkzeug-Radius Spalte R (DR)
- Anzahl der Zähne (nur bei Fräswerkzeugen) Spalte CUT
- Werkzeugtyp Spalte TYP
- Der Werkzeugtyp beeinflusst die Berechnung des Bahnvorschubs: Fräswerkzeuge: $F = S \cdot f_7 \cdot z$

Alle anderen Werkzeuge: $F = S \cdot f_U$


S: Spindeldrehzahl

f₇: Vorschub pro Zahn

fu: Vorschub pro Umdrehung

z: Anzahl der Zähne

- Werkzeug-Schneidstoff Spalte TMAT
- Name der Schnittdaten-Tabelle, die für dieses Werkzeug verwendet werden soll – Spalte CDT
- Den Werkzeugtyp, den Werkzeug-Schneidstoff und den Namen der Schnittdaten-Tabelle wählen Sie in der Werkzeug-Tabelle über Softkey (siehe "Werkzeug-Tabelle: Werkzeug-Daten für automatische Drehzahl-/Vorschub-Berechnung", Seite 103).

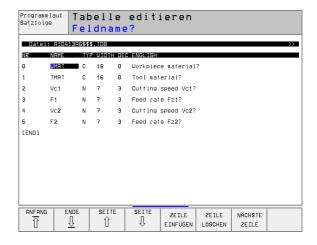
i

Vorgehensweise beim Arbeiten mit automatischer Drehzahl-/Vorschub-Berechnung

- 1 Wenn noch nicht eingetragen: Werkstück-Material in Datei WMAT.TAB eintragen
- Wenn noch nicht eingetragen: Schneidstoff-Material in Datei TMAT.TAB eintragen
- Wenn noch nicht eingetragen: Alle für die Schnittdaten-Berechnung erforderlichen werkzeugspezifischen Daten in der Werkzeug-Tabelle eintragen:
 - Werkzeug-Radius
 - Anzahl der Zähne
 - Werkzeug-Typ
 - Werkzeug-Schneidstoff
 - Zum Werkzeug gehörende Schnittdaten-Tabelle
- 4 Wenn noch nicht eingetragen: Schnittdaten in einer beliebigen Schnittdaten-Tabelle (CDT-Datei) eintragen
- 5 Betriebsart Test: Werkzeug-Tabelle aktivieren, aus der die TNC die werkzeugspezifischen Daten entnehmen soll (Status S)
- 6 Im NC-Programm: Über Softkey WMAT Werkstück-Material festlegen
- 7 Im NC-Programm: Im TOOL CALL-Satz Spindeldrehzahl und Vorschub über Softkey automatisch berechnen lassen

Tabellen-Struktur verändern

Schnittdaten-Tabellen sind für die TNC sogenannte "frei definierbare Tabellen". Das Format frei definierbarer Tabellen können Sie mit dem Struktur-Editor ändern.



Die TNC kann maximal 200 Zeichen pro Zeile und maximal 30 Spalten verarbeiten.

Wenn Sie in eine bestehende Tabelle nachträglich eine Spalte einfügen, dann verschiebt die TNC bereits eingetragene Werte nicht automatisch.

Struktur-Editor aufrufen

Drücken Sie den Softkey FORMAT EDITIEREN (2. Softkey-Ebene). Die TNC öffnet das Editor-Fenster (siehe Bild rechts), in dem die Tabellenstruktur "um 90° gedreht" dargestellt ist. Eine Zeile im Editor-Fenster definiert eine Spalte in der zugehörigen Tabelle. Entnehmen Sie die Bedeutung des Strukturbefehls (Kopfzeileneintrag) aus nebenstehender Tabelle.

Struktur-Editor beenden

Drücken Sie die Taste END. Die TNC wandelt Daten, die bereits in der Tabelle gespeichert waren, ins neue Format um. Elemente, die die TNC nicht in die neue Struktur wandeln konnte, sind mit # gekennzeichnet (z.B. wenn Sie die Spaltenbreite verkleinert haben).

Strukturbefehl	Bedeutung
NR	Spaltennummer
NAME	Spaltenüberschrift
TYP	N: Numerische Eingabe C: Alphanumerische Eingabe
WIDTH	Breite der Spalte. Bei Typ N einschließlich Vorzeichen, Komma und Nachkommastellen
DEC	Anzahl der Nachkommastellen (max. 4, nur bei Typ N wirksam)
ENGLISH bis HUNGARIA	Sprachabhängige Dialoge bis (max. 32 Zeichen)

Datenübertragung von Schnittdaten-Tabellen

Wenn Sie eine Datei vom Datei-Typ .TAB oder .CDT über eine externe Datenschnittstelle ausgeben, speichert die TNC die Strukturdefinition der Tabelle mit ab. Die Strukturdefinition beginnt mit der Zeile #STRUCTBEGIN und endet mit der Zeile #STRUCTEND. Entnehmen Sie die Bedeutung der einzelnen Schlüsselwörter aus der Tabelle "Strukturbefehl" (siehe "Tabellen-Struktur verändern", Seite 124). Hinter #STRUCTEND speichert die TNC den eigentlichen Inhalt der Tabelle ab.

Konfigurations-Datei TNC.SYS

Die Konfigurations-Datei TNC.SYS müssen Sie verwenden, wenn Ihre Schnittdaten-Tabellen nicht im Standard-Verzeichnis TNC:\ gespeichert sind. Dann legen Sie in der TNC.SYS die Pfade fest, in denen Ihre Schnittdaten-Tabellen gespeichert sind.

Die Datei TNC.SYS muss im Root-Verzeichnis TNC:\ aespeichert sein.

Einträge in TNC.SYS	Bedeutung
WMAT=	Pfad für Werkstoff-Tabelle
TMAT=	Pfad für Schneidstoff-Tabelle
PCDT=	Pfad für Schnittdaten-Tabellen

Beispiel für TNC.SYS

WMAT=TNC:\CUTTAB\WMAT_GB.TAB

TMAT=TNC:\CUTTAB\TMAT_GB.TAB

PCDT=TNC:\CUTTAB\

6

Programmieren: Konturen programmieren

6.1 Werkzeug-Bewegungen

Bahnfunktionen

Eine Werkstück-Kontur setzt sich gewöhnlich aus mehreren Konturelementen wie Geraden und Kreisbögen zusammen. Mit den Bahnfunktionen programmieren Sie die Werkzeugbewegungen für **Geraden** und **Kreisbögen**.

Freie Kontur-Programmierung FK

Wenn keine NC-gerecht bemaßte Zeichnung vorliegt und die Maßangaben für das NC-Programm unvollständig sind, dann programmieren Sie die Werkstück-Kontur mit der Freien Kontur-Programmierung. Die TNC errechnet die fehlenden Angaben.

Auch mit der FK-Programmierung programmieren Sie Werkzeugbewegungen für **Geraden** und **Kreisbögen**.

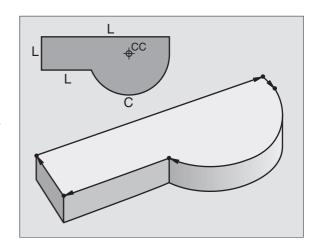
Zusatzfunktionen M

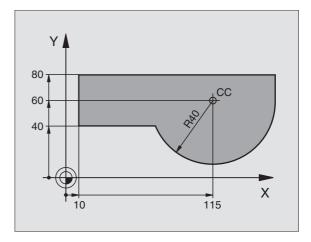
Mit den Zusatzfunktionen der TNC steuern Sie

- den Programmlauf, z.B. eine Unterbrechung des Programmlaufs
- die Maschinenfunktionen, wie das Ein- und Ausschalten der Spindeldrehung und des Kühlmittels
- das Bahnverhalten des Werkzeugs

Unterprogramme und Programmteil-Wiederholungen

Bearbeitungs-Schritte, die sich wiederholen, geben Sie nur einmal als Unterprogramm oder Programmteil-Wiederholung ein. Wenn Sie einen Teil des Programms nur unter bestimmten Bedingungen ausführen lassen möchten, dann legen Sie diese Programmschritte ebenfalls in einem Unterprogramm fest. Zusätzlich kann ein Bearbeitungs-Programm ein weiteres Programm aufrufen und ausführen lassen.

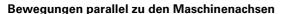

Das Programmieren mit Unterprogrammen und Programmteil-Wiederholungen ist in Kapitel 9 beschrieben.


Programmieren mit Q-Parametern

Im Bearbeitungs-Programm stehen Q-Parameter stellvertretend für Zahlenwerte: Einem Q-Parameter wird an anderer Stelle ein Zahlenwert zugeordnet. Mit Q-Parametern können Sie mathematische Funktionen programmieren, die den Programmlauf steuern oder die eine Kontur beschreiben.

Zusätzlich können Sie mit Hilfe der Q-Parameter-Programmierung Messungen mit dem 3D-Tastsystem während des Programmlaufs ausführen.

Das Programmieren mit Q-Parametern ist in Kapitel 10 beschrieben.



6.2 Grundlagen zu den Bahnfunktionen

Werkzeugbewegung für eine Bearbeitung programmieren

Wenn Sie ein Bearbeitungs-Programm erstellen, programmieren Sie nacheinander die Bahnfunktionen für die einzelnen Elemente der Werkstück-Kontur. Dazu geben Sie gewöhnlich **die Koordinaten für die Endpunkte der Konturelemente** aus der Maßzeichnung ein. Aus diesen Koordinaten-Angaben, den Werkzeug-Daten und der Radiuskorrektur ermittelt die TNC den tatsächlichen Verfahrweg des Werkzeugs.

Die TNC fährt gleichzeitig alle Maschinenachsen, die Sie in dem Programm-Satz einer Bahnfunktion programmiert haben.

Der Programm-Satz enthält eine Koordinaten-Angabe: Die TNC fährt das Werkzeug parallel zur programmierten Maschinenachse.

Je nach Konstruktion Ihrer Maschine bewegt sich beim Abarbeiten entweder das Werkzeug oder der Maschinentisch mit dem aufgespannten Werkstück. Beim Programmieren der Bahnbewegung tun Sie grundsätzlich so, als ob sich das Werkzeug bewegt.

Beispiel:

L X+100

L Bahnfunktion "Gerade"
X+100 Koordinaten des Endpunkts

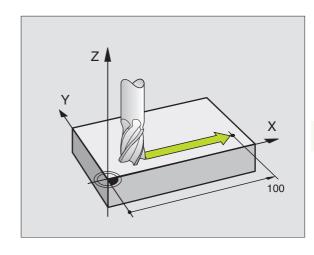
Das Werkzeug behält die Y- und Z-Koordinaten bei und fährt auf die Position X=100. Siehe Bild rechts oben

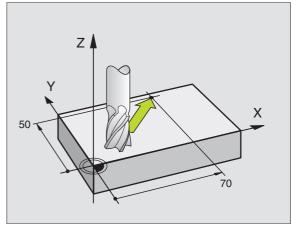
Bewegungen in den Hauptebenen

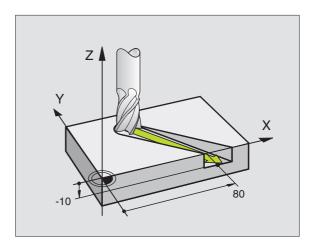
Der Programm-Satz enthält zwei Koordinaten-Angaben: Die TNC fährt das Werkzeug in der programmierten Ebene.

Beispiel:

L X+70 Y+50


Das Werkzeug behält die Z-Koordinate bei und fährt in der XY-Ebene auf die Position X=70, Y=50. Siehe Bild rechts Mitte


Dreidimensionale Bewegung


Der Programm-Satz enthält drei Koordinaten-Angaben: Die TNC fährt das Werkzeug räumlich auf die programmierte Position.

Beispiel:

L X+80 Y+0 Z-10

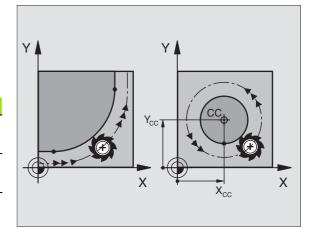
Eingabe von mehr als drei Koordinaten

Die TNC kann bis zu 5 Achsen gleichzeitig steuern. Bei einer Bearbeitung mit 5 Achsen bewegen sich beispielsweise 3 Linear- und 2 Drehachsen gleichzeitig.

Das Bearbeitungs-Programm für eine solche Bearbeitung liefert gewöhnlich ein CAD-System und kann nicht an der Maschine erstellt werden.

Beispiel:

L X+20 Y+10 Z+2 A+15 C+6 R0 F100 M3

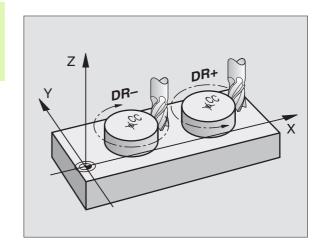

Eine Bewegung von mehr als 3 Achsen wird von der TNC grafisch nicht unterstützt.

Kreise und Kreisbögen

Bei Kreisbewegungen fährt die TNC zwei Maschinenachsen gleichzeitig: Das Werkzeug bewegt sich relativ zum Werkstück auf einer Kreisbahn. Für Kreisbewegungen können Sie einen Kreismittelpunkt CC eingeben.

Mit den Bahnfunktionen für Kreisbögen programmieren Sie Kreise in den Hauptebenen: Die Hauptebene ist beim Werkzeug-Aufruf TOOL CALL mit dem Festlegen der Spindelachse zu definieren:

Spindelachse	Hauptebene
Z	XY, auch UV, XV, UY
Υ	ZX , auch WU, ZU, WX
Х	YZ , auch VW, YW, VZ


Kreise, die nicht parallel zur Hauptebene liegen, programmieren Sie auch mit der Funktion "Bearbeitungsebene schwenken" (siehe "BEARBEITUNGSEBENE (Zyklus 19)", Seite 334), oder mit Q-Parametern (siehe "Prinzip und Funktionsübersicht", Seite 360).

Drehsinn DR bei Kreisbewegungen

Für Kreisbewegungen ohne tangentialen Übergang zu anderen Konturelementen geben Sie den Drehsinn DR ein:

Drehung im Uhrzeigersinn: DR-

Drehung gegen den Uhrzeigersinn: DR+

Radiuskorrektur

Die Radiuskorrektur muss in dem Satz stehen, mit dem Sie das erste Konturelement anfahren. Die Radiuskorrektur darf nicht in einem Satz für eine Kreisbahn begonnen werden. Programmieren Sie diese zuvor in einem Geraden-Satz (siehe "Bahnbewegungen – rechtwinklige Koordinaten", Seite 139) oder im Anfahr-Satz (APPR-Satz, siehe "Kontur anfahren und verlassen", Seite 133).

Vorpositionieren

Positionieren Sie das Werkzeug zu Beginn eines Bearbeitungs-Programms so vor, dass eine Beschädigung von Werkzeug und Werkstück ausgeschlossen ist.

Erstellen der Programm-Sätze mit den Bahnfunktionstasten

Mit den grauen Bahnfunktionstasten eröffnen Sie den Klartext-Dialog. Die TNC erfragt nacheinander alle Informationen und fügt den Programm-Satz ins Bearbeitungs-Programm ein.

Beispiel – Programmieren einer Geraden.

Programmier-Dialog eröffnen: z.B. Gerade

Koordinaten?

10

Koordinaten des Geraden-Endpunkts eingeben

5

ENT

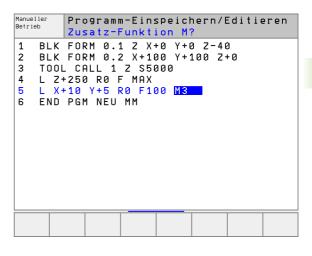
Radiuskorr.: RL/RR/Keine Korr.?

RL

Radiuskorrektur wählen: z.B. Softkey RL drücken, das Werkzeug fährt links von der Kontur

Vorschub F=? / F MAX = ENT

100


Vorschub eingeben und mit Taste ENT bestätigen: z.B. 100 mm/min. Bei INCH-Programmierung: Eingabe von 100 entspricht Vorschub von 10 inch/min

F MAX

Im Eilgang verfahren: Softkey FMAX drücken, oder

F AUTO

Mit automatisch berechnetem Vorschub verfahren (Schnittdaten-Tabellen): Softkey FAUTO drücken

Zusatz-Funktion M?

3

Zusatzfunktion z.B. M3 eingeben und den Dialog mit der Taste ENT abschließen

Zeile im Bearbeitungsprogramm

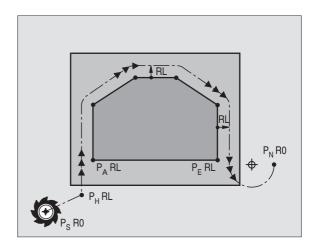
L X+10 Y+5 RL F100 M3

6.3 Kontur anfahren und verlassen

Übersicht: Bahnformen zum Anfahren und Verlassen der Kontur

Die Funktionen APPR (engl. approach = Anfahrt) und DEP (engl. departure = Verlassen) werden mit der APPR/DEP-Taste aktiviert. Danach lassen sich folgende Bahnformen über Softkeys wählen:

Funktion Softkey	Anfahren	Verlassen
Gerade mit tangentialem Anschluss	APPR LT	DEP LT
Gerade senkrecht zum Konturpunkt	APPR LN	DEP LN
Kreisbahn mit tangentialem Anschluss	APPR CT	DEP CT
Kreisbahn mit tangentialem Anschluss an die Kontur, An- und Wegfahren zu einem Hilfspunkt außerhalb der Kontur auf tangential anschließendem Gera- denstück	APPR LCT	DEP LCT


Manueller Betrieb	Programm	n-Einspei	chern/E	ditieren
0 BEGI	N PGM NE	U MM		
1 BLK	FORM 0.3	L Z X+0 Y	+0 Z-40	
		2 X+100 Y	+100 Z+	0
	. CALL 1	Z S5000		
	·20 Y+50		M3	
5 END	PGM NEU	мм		
9. 6	PR LN APPR CT	APPR LCT DEP	LT DEP LN	DEP CT DEP LC

Schraubenlinie anfahren und verlassen

Beim Anfahren und Verlassen einer Schraubenlinie (Helix) fährt das Werkzeug in der Verlängerung der Schraubenlinie und schließt so auf einer tangentialen Kreisbahn an die Kontur an. Verwenden Sie dazu die Funktion APPR CT bzw. DEP CT.

Wichtige Positionen beim An- und Wegfahren

- Startpunkt P_S
 Diese Position programmieren Sie unmittelbar vor dem APPR-Satz.
 Ps liegt außerhalb der Kontur und wird ohne Radiuskorrektur (R0) angefahren.
- Hilfspunkt P_H Das An- und Wegfahren führt bei einigen Bahnformen über einen Hilfspunkt P_H, den die TNC aus Angaben im APPR- und DEP-Satz errechnet.
- Erster Konturpunkt P_A und letzter Konturpunkt P_E
 Den ersten Konturpunkt P_A programmieren Sie im APPR-Satz, den letzten Konturpunkt P_E mit einer beliebigen Bahnfunktion. Enthält der APPR-Satz auch die Z-Koordinate, fährt die TNC das Werkzeug erst in der Bearbeitungsebene auf P_H und dort in der Werkzeug-Achse auf die eingegebene Tiefe.

i

Endpunkt P_N
Die Position P_N liegt außerhalb der Kontur und ergibt sich aus Ihren Angaben im DEP-Satz. Enthält der DEP-Satz auch die Z-Koordinate, fährt die TNC das Werkzeug erst in der Bearbeitungsebene auf P_H und dort in der Werkzeug-Achse auf die eingegebene Höhe.

Kurzbezeichnung	Bedeutung
APPR	engl. APPRoach = Anfahrt
DEP	engl. DEParture = Abfahrt
L	engl. Line = Gerade
С	engl. Circle = Kreis
Т	Tangential (stetiger, glatter Übergang
N	Normale (senkrecht)

Beim Positionieren von der Ist-Position zum Hilfspunkt P_H überprüft die TNC nicht, ob die programmierte Kontur beschädigt wird. Überprüfen Sie das mit der Test-Grafik!

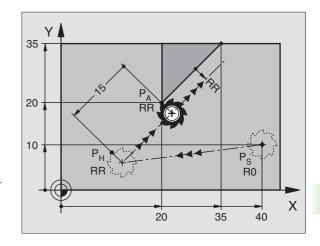
Bei den Funktionen APPR LT, APPR LN und APPR CT fährt die TNC von der Ist-Position zum Hilfspunkt P_H mit dem zuletzt programmierten Vorschub/Eilgang. Bei der Funktion APPR LCT fährt die TNC den Hilfspunkt P_H mit dem im APPR-Satz programmierten Vorschub an.

Die Koordinaten lassen sich absolut oder inkremental in rechtwinkligen oder Polarkoordinaten eingeben.

Radiuskorrektur

Die Radiuskorrektur programmieren Sie zusammen mit dem ersten Konturpunkt P_A im APPR-Satz. Die DEP-Sätze heben die Radiuskorrektur automatisch auf!

Anfahren ohne Radiuskorrektur: Wird im APPR-Satz R0 programmiert, so fährt die TNC das Werkzeug wie ein Werkzeug mit R = 0 mm und Radiuskorrektur RR! Dadurch ist bei den Funktionen APPR/DEP LN und APPR/DEP CT die Richtung festgelegt, in der die TNC das Werkzeug zur Kontur hin und von ihr fort fährt.


Anfahren auf einer Geraden mit tangentialem Anschluss: APPR LT

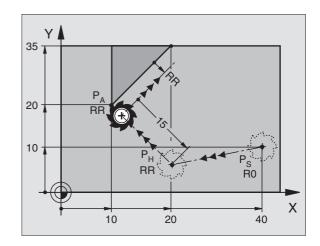
Die TNC fährt das Werkzeug auf einer Geraden vom Startpunkt P_S auf einen Hilfspunkt $P_H.$ Von dort aus fährt es den ersten Konturpunkt P_A auf einer Geraden tangential an. Der Hilfspunkt P_H hat den Abstand LEN zum ersten Konturpunkt $P_\Delta.$

- ▶ Beliebige Bahnfunktion: Startpunkt P_S anfahren
- ▶ Dialog mit Taste APPR/DEP und Softkey APPR LT eröffnen:

- ► Koordinaten des ersten Konturpunkts P_A
- LEN: Abstand des Hilfspunkts P_H zum ersten Konturpunkt P_A
- ▶ Radiuskorrektur RR/RL für die Bearbeitung

NC-Beispielsätze

7 L X+40 Y+10 RO FMAX M3	P _S ohne Radiuskorrektur anfahren
8 APPR LT X+20 Y+20 Z-10 LEN15 RR F100	P _A mit Radiuskorr. RR, Abstand P _H zu P _A : LEN=15
9 L Y+35 Y+35	Endpunkt erstes Konturelement
10 L	Nächstes Konturelement


Anfahren auf einer Geraden senkrecht zum ersten Konturpunkt: APPR LN

Die TNC fährt das Werkzeug auf einer Geraden vom Startpunkt P_S auf einen Hilfspunkt P_H . Von dort aus fährt es den ersten Konturpunkt P_A auf einer Geraden senkrecht an. Der Hilfspunkt P_H hat den Abstand LEN + Werkzeug-Radius zum ersten Konturpunkt P_A .

- ▶ Beliebige Bahnfunktion: Startpunkt P_S anfahren
- ▶ Dialog mit Taste APPR/DEP und Softkey APPR LN eröffnen:

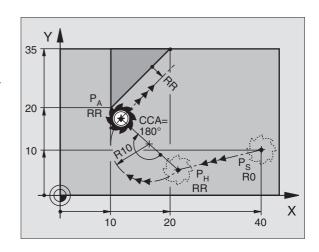
- ► Koordinaten des ersten Konturpunkts P_Δ
- Länge: Abstand des Hilfspunkts P_H. LEN immer positiv eingeben!
- ▶ Radiuskorrektur RR/RL für die Bearbeitung

NC-Beispielsätze

7 L X+40 Y+10 RO FMAX M3	P _S ohne Radiuskorrektur anfahren
8 APPR LN X+10 Y+20 Z-10 LEN15 RR F100	P _A mit Radiuskorr. RR
9 L X+20 Y+35	Endpunkt erstes Konturelement
10 L	Nächstes Konturelement

i

Anfahren auf einer Kreisbahn mit tangentialem Anschluss: APPR CT


Die TNC fährt das Werkzeug auf einer Geraden vom Startpunkt P_S auf einen Hilfspunkt P_H . Von dort fährt es auf einer Kreisbahn, die tangential in das erste Konturelement übergeht, den ersten Konturpunkt P_A an.

Die Kreisbahn von P_H nach P_A ist festgelegt durch den Radius R und den Mittelpunktswinkel CCA. Der Drehsinn der Kreisbahn ist durch den Verlauf des ersten Konturelements gegeben.

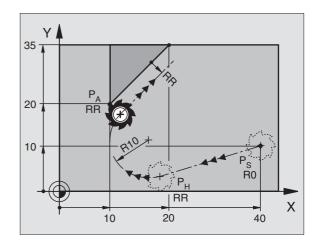
- ▶ Beliebige Bahnfunktion: Startpunkt P_S anfahren
- ▶ Dialog mit Taste APPR/DEP und Softkey APPR CT eröffnen:

- ► Koordinaten des ersten Konturpunkts P_A
- ▶ Radius R der Kreisbahn
 - Anfahren auf der Seite des Werkstücks, die durch die Radiuskorrektur definiert ist: R positiv eingeben
 - Von der Werkstück-Seite aus anfahren: R negativ eingeben
- Mittelpunktswinkel CCA der Kreisbahn
 - CCA nur positiv eingeben
 - Maximaler Eingabewert 360°
- ▶ Radiuskorrektur RR/RL für die Bearbeitung

NC-Beispielsätze

7 L X+40 Y+10 RO FMAX M3	P _S ohne Radiuskorrektur anfahren
8 APPR CT X+10 Y+20 Z-10 CCA180 R+10 RR F100	P _A mit Radiuskorr. RR, Radius R=10
9 L X+20 Y+35	Endpunkt erstes Konturelement
10 L	Nächstes Konturelement

Anfahren auf einer Kreisbahn mit tangentialem Anschluss an die Kontur und Geradenstück: APPR LCT


Die TNC fährt das Werkzeug auf einer Geraden vom Startpunkt P_S auf einen Hilfspunkt P_H . Von dort aus fährt es auf einer Kreisbahn den ersten Konturpunkt P_A an. Der im APPR-Satz programmierte Vorschub ist wirksam.

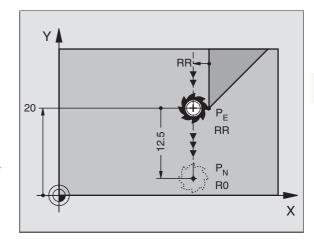
Die Kreisbahn schließt sowohl an die Gerade P_S-P_H als auch an das erste Konturelement tangential an. Damit ist sie durch den Radius R eindeutig festgelegt.

- ▶ Beliebige Bahnfunktion: Startpunkt P_S anfahren
- ▶ Dialog mit Taste APPR/DEP und Softkey APPR LCT eröffnen:

- ► Koordinaten des ersten Konturpunkts P_A
- ▶ Radius R der Kreisbahn. R positiv angeben
- ▶ Radiuskorrektur RR/RL für die Bearbeitung

NC-Beispielsätze

7 L X+40 Y+10 RO FMAX M3	P _S ohne Radiuskorrektur anfahren
8 APPR LCT X+10 Y+20 Z-10 R10 RR F100	P _A mit Radiuskorr. RR, Radius R=10
9 L X+20 Y+35	Endpunkt erstes Konturelement
10 L	Nächstes Konturelement


Wegfahren auf einer Geraden mit tangentialem Anschluss: DEP LT

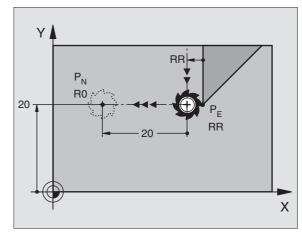
Die TNC fährt das Werkzeug auf einer Geraden vom letzten Konturpunkt P_{E} zum Endpunkt $P_{N}.$ Die Gerade liegt in der Verlängerung des letzten Konturelements. P_{N} befindet sich im Abstand LEN von $P_{E}.$

- ▶ Letztes Konturelement mit Endpunkt P_E und Radiuskorrektur programmieren
- ▶ Dialog mit Taste APPR/DEP und Softkey DEP LT eröffnen:

► LEN: Abstand des Endpunkts P_N vom letzten Konturelement P_E eingeben

NC-Beispielsätze

23 L Y+20 RR F100	Letztes Konturelement: P _E mit Radiuskorrektur		
24 DEP LT LEN12,5 F100	Um LEN=12,5 mm wegfahren		
25 L Z+100 FMAX M2	Z freifahren, Rücksprung, Programm-Ende		


Wegfahren auf einer Geraden senkrecht zum letzten Konturpunkt: DEP LN

Die TNC fährt das Werkzeug auf einer Geraden vom letzten Konturpunkt P_E zum Endpunkt P_N . Die Gerade führt senkrecht vom letzten Konturpunkt P_E weg. P_N befindet sich von P_E im Abstand LEN + Werkzeug-Radius.

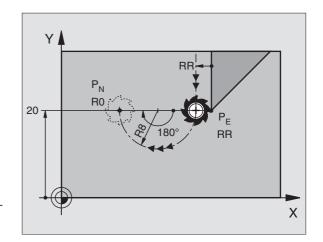
- ▶ Letztes Konturelement mit Endpunkt P_E und Radiuskorrektur programmieren
- ▶ Dialog mit Taste APPR/DEP und Softkey DEP LN eröffnen:

► LEN: Abstand des Endpunkts P_N eingeben Wichtig: LEN positiv eingeben!

NC-Beispielsätze

23 L Y+20 RR F100	Letztes Konturelement: P _E mit Radiuskorrektur
24 DEP LN LEN+20 F100	Um LEN=20 mm senkrecht von Kontur wegfahren
25 L Z+100 FMAX M2	Z freifahren, Rücksprung, Programm-Ende

i


Wegfahren auf einer Kreisbahn mit tangentialem Anschluss: DEP CT

Die TNC fährt das Werkzeug auf einer Kreisbahn vom letzten Konturpunkt $P_{\rm E}$ zum Endpunkt $P_{\rm N}$. Die Kreisbahn schließt tangential an das letzte Konturelement an.

- Letztes Konturelement mit Endpunkt P_E und Radiuskorrektur programmieren
- ▶ Dialog mit Taste APPR/DEP und Softkey DEP CT eröffnen:

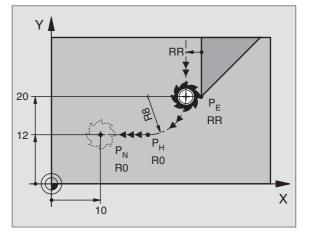
- Mittelpunktswinkel CCA der Kreisbahn
- ▶ Radius R der Kreisbahn
 - Das Werkzeug soll zu der Seite das Werkstück verlassen, die durch die Radiuskorrektur festgelegt ist: R positiv eingeben
 - Das Werkzeug soll zu der entgegengesetzten Seite das Werkstück verlassen, die durch die Radiuskorrektur festgelegt ist: R negativ eingeben

NC-Beispielsätze

23 L Y+20 RR F100	Letztes Konturelement: P _E mit Radiuskorrektur	
24 DEP CT CCA 180 R+8 F100	Mittelpunktswinkel=180°,	
	Kreisbahn-Radius=8 mm	
25 L Z+100 FMAX M2	Z freifahren, Rücksprung, Programm-Ende	

Wegfahren auf einer Kreisbahn mit tangentialem Anschluss an Kontur und Geradenstück: DEP LCT

Die TNC fährt das Werkzeug auf einer Kreisbahn vom letzten Konturpunkt $P_{\rm E}$ auf einen Hilfspunkt $P_{\rm H}.$ Von dort fährt es auf einer Geraden zum Endpunkt $P_{\rm N}.$ Das letzte Konturelement und die Gerade von $P_{\rm H}-P_{\rm N}$ haben mit der Kreisbahn tangentiale Übergänge. Damit ist die Kreisbahn durch den Radius R eindeutig festgelegt.


- Letztes Konturelement mit Endpunkt P_E und Radiuskorrektur programmieren
- ▶ Dialog mit Taste APPR/DEP und Softkey DEP LCT eröffnen:

- ► Koordinaten des Endpunkts P_N eingeben
- ▶ Radius R der Kreisbahn. R positiv eingeben

NC-Beispielsätze

23 L Y+20 RR F100	Letztes Konturelement: P _E mit Radiuskorrektur
24 DEP LCT X+10 Y+12 R+8 F100	Koordinaten P _N , Kreisbahn-Radius=8 mm
25 L Z+100 FMAX M2	Z freifahren, Rücksprung, Programm-Ende

6.4 Bahnbewegungen – rechtwinklige Koordinaten

Übersicht der Bahnfunktionen

Funktion	Bahnfunktionstaste	Werkzeug-Bewegung	Erforderliche Eingaben
Gerade L engl.: Line	L _p p	Gerade	Koordinaten des Geraden-End- punkts
Fase: CHF engl.: CH am F er	CHE O CHEO	Fase zwischen zwei Geraden	Fasenlänge
Kreismittelpunkt CC ; engl.: Circle Center	©CC	Keine	Koordinaten des Kreismittel- punkts bzw. Pols
Kreisbogen C engl.: C ircle	Jc)	Kreisbahn um Kreismittelpunkt CC zum Kreisbogen-Endpunkt	Koordinaten des Kreis-End- punkts, Drehrichtung
Kreisbogen CR engl.: C ircle by R adius	CR	Kreisbahn mit bestimmten Radius	Koordinaten des Kreis-End- punkts, Kreisradius, Drehrichtung
Kreisbogen CT engl.: C ircle T angential	СТЯ	Kreisbahn mit tangentialem Anschluss an vorheriges und nachfolgendes Konturelement	Koordinaten des Kreis-Endpunkts
Ecken-Runden RND engl.: R ou ND ing of Corner	RND _o o:Co	Kreisbahn mit tangentialem Anschluss an vorheriges und nachfolgendes Konturelement	Eckenradius R
Freie Kontur-Program- mierung FK	FK	Gerade oder Kreisbahn mit belie- bigem Anschluss an vorheriges Konturelement	siehe "Bahnbewegungen – Freie Kontur-Programmierung FK", Seite 158

Gerade L

Die TNC fährt das Werkzeug auf einer Geraden von seiner aktuellen Position zum Endpunkt der Geraden. Der Startpunkt ist der Endpunkt des vorangegangenen Satzes.

▶ Koordinaten des Endpunkts der Geraden

Falls nötig:

- ▶ Radiuskorrektur RL/RR/R0
- ▶ Vorschub F
- ► Zusatz-Funktion M

NC-Beispielsätze

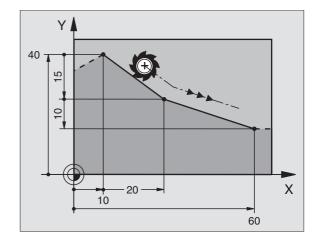
7 L X+10 Y+40 RL F200 M3

8 L IX+20 IY-15

9 L X+60 IY-10

Ist-Position übernehmen

Einen Geraden-Satz (L-Satz) können Sie auch mit der Taste "IST-POSI-TION-ÜBERNEHMEN" generieren:


- ▶ Fahren Sie das Werkzeug in der Betriebsart Manueller Betrieb auf die Position, die übernommen werden soll
- ▶ Bildschirm-Anzeige auf Programm-Einspeichern/Editieren wechseln
- Programm-Satz wählen, hinter dem der L-Satz eingefügt werden soll

▶ Taste "IST-POSITION-ÜBERNEHMEN" drücken: Die TNC generiert einen L-Satz mit den Koordinaten der Ist-Position

Die Anzahl der Achsen, die die TNC im L-Satz speichert, legen Sie über die MOD-Funktion fest (siehe "MOD-Funktion wählen", Seite 422).

Fase CHF zwischen zwei Geraden einfügen

Konturecken, die durch den Schnitt zweier Geraden entstehen, können Sie mit einer Fase versehen.

- In den Geradensätzen vor und nach dem CHF-Satz programmieren Sie jeweils beide Koordinaten der Ebene, in der die Fase ausgeführt wird
- Die Radiuskorrektur vor und nach CHF-Satz muss gleich sein
- Die Fase muss mit dem aktuellen Werkzeug ausführbar sein

▶ Fasen-Abschnitt: Länge der Fase

Falls nötig:

▶ Vorschub F (wirkt nur im CHF-Satz)

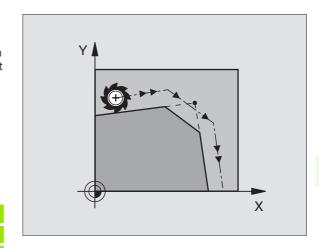
NC-Beispielsätze

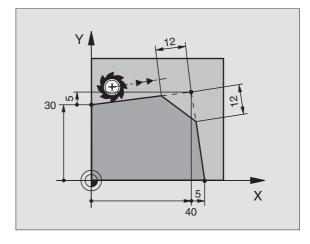
7 L X+0 Y+30 RL F300 M3

8 L X+40 IY+5

9 CHF 12 F250

10 L IX+5 Y+0




Eine Kontur nicht mit einem CHF-Satz beginnen.

Eine Fase wird nur in der Bearbeitungsebene ausgeführt.

Der von der Fase abgeschnittene Eckpunkt wird nicht angefahren.

Ein im CHF-Satz programmierter Vorschub wirkt nur in diesem CHF-Satz. Danach ist wieder der vor dem CHF-Satz programmierte Vorschub gültig.

Ecken-Runden RND

Die Funktion RND rundet Kontur-Ecken ab.

Das Werkzeug fährt auf einer Kreisbahn, die sowohl an das vorhergegangene als auch an das nachfolgende Konturelement tangential anschließt.

Der Rundungskreis muss mit dem aufgerufenen Werkzeug ausführbar sein.

▶ Rundungs-Radius: Radius des Kreisbogens

Falls nötig:

▶ **Vorschub F** (wirkt nur im RND-Satz)

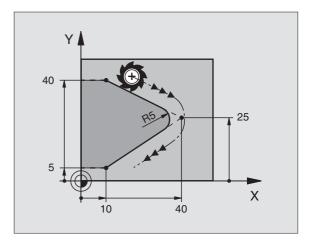
NC-Beispielsätze

5 L X+10 Y+40 RL F300 M3

6 L X+40 Y+25

7 RND R5 F100

8 L X+10 Y+5



Das vorhergehende und nachfolgende Konturelement sollte beide Koordinaten der Ebene enthalten, in der das Ecken-Runden ausgeführt wird. Wenn Sie die Kontur ohne Werkzeug-Radiuskorrektur bearbeiten, dann müssen Sie beide Koordinaten der Bearbeitungsebene programmieren.

Der Eckpunkt wird nicht angefahren.

Ein im RND-Satz programmierter Vorschub wirkt nur in diesem RND-Satz. Danach ist wieder der vor dem RND-Satz programmierte Vorschub gültig.

Ein RND-Satz lässt sich auch zum weichen Anfahren an die Kontur nutzen, falls die APPR-Funktionen nicht eingesetzt werden sollen.

Kreismittelpunkt CC

Den Kreismittelpunkt legen Sie für Kreisbahnen fest, die Sie mit der C-Taste (Kreisbahn C) programmieren. Dazu

- geben Sie die rechtwinkligen Koordinaten des Kreismittelpunkts ein oder
- übernehmen die zuletzt programmierte Position oder
- übernehmen die Koordinaten mit der Taste "IST-POSITIONEN-ÜBERNEHMEN"

▶ Koordinaten CC: Koordinaten für den Kreismittelpunkt eingeben oder Um die zuletzt programmierte Position zu übernehmen: Keine Koordinaten eingeben

NC-Beispielsätze

5 CC X+25 Y+25

oder

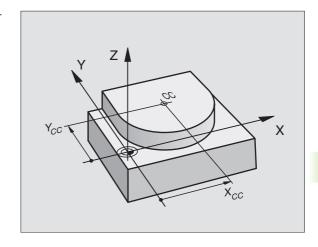
10 L X+25 Y+25

11 CC

Die Programmzeilen 10 und 11 beziehen sich nicht auf das Bild.

Gültigkeit

Der Kreismittelpunkt bleibt solange festgelegt, bis Sie einen neuen Kreismittelpunkt programmieren. Einen Kreismittelpunkt können Sie auch für die Zusatzachsen U, V und W festlegen.


Kreismittelpunkt CC inkremental eingeben

Eine inkremental eingegebene Koordinate für den Kreismittelpunkt bezieht sich immer auf die zuletzt programmierte Werkzeug-Position.

Mit CC kennzeichnen Sie eine Position als Kreismittelpunkt: Das Werkzeug fährt nicht auf diese Position.

Der Kreismittelpunkt ist gleichzeitig Pol für Polarkoordinaten.

Kreisbahn C um Kreismittelpunkt CC

Legen Sie den Kreismittelpunkt CC fest, bevor Sie die Kreisbahn C programmieren. Die zuletzt programmierte Werkzeug-Position vor dem C-Satz ist der Startpunkt der Kreisbahn.

▶ Werkzeug auf den Startpunkt der Kreisbahn fahren

- ► Koordinaten des Kreismittelpunkts
- ▶ Koordinaten des Kreisbogen-Endpunkts
- ▶ Drehsinn DR

Falls nötig:

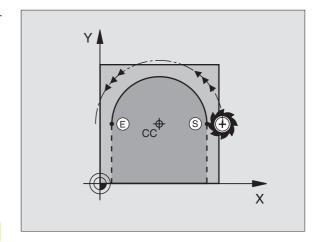
- ▶ Vorschub F
- ► Zusatz-Funktion M

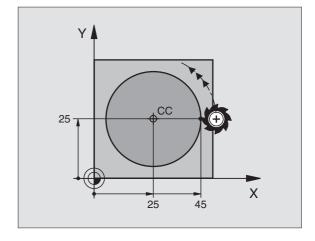
NC-Beispielsätze

5 CC X+25 Y+25

6 L X+45 Y+25 RR F200 M3

7 C X+45 Y+25 DR+


Vollkreis


Programmieren Sie für den Endpunkt die gleichen Koordinaten wie für den Startpunkt.

Start- und Endpunkt der Kreisbewegung müssen auf der Kreisbahn liegen.

Eingabe-Toleranz: bis 0,016 mm (über MP7431 wählbar)

Kreisbahn CR mit festgelegtem Radius

Das Werkzeug fährt auf einer Kreisbahn mit dem Radius R.

- ▶ Koordinaten des Kreisbogen-Endpunkts
- ▶ Radius R

Achtung: Das Vorzeichen legt die Größe des Kreisbogens fest!

▶ Drehsinn DR

Achtung: Das Vorzeichen legt konkave oder konvexe Wölbung fest!

Falls nötig:

- ► Zusatz-Funktion M
- ▶ Vorschub F

Vollkreis

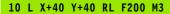
Für einen Vollkreis programmieren Sie zwei CR-Sätze hintereinander:

Der Endpunkt des ersten Halbkreises ist Startpunkt des zweiten. Endpunkt des zweiten Halbkreises ist Startpunkt des ersten.

Zentriwinkel CCA und Kreisbogen-Radius R

Startpunkt und Endpunkt auf der Kontur lassen sich durch vier verschiedene Kreisbögen mit gleichem Radius miteinander verbinden:

Kleinerer Kreisbogen: CCA<180° Radius hat positives Vorzeichen R>0


Größerer Kreisbogen: CCA>180° Radius hat negatives Vorzeichen R<0

Über den Drehsinn legen Sie fest, ob der Kreisbogen außen (konvex) oder nach innen (konkav) gewölbt ist:

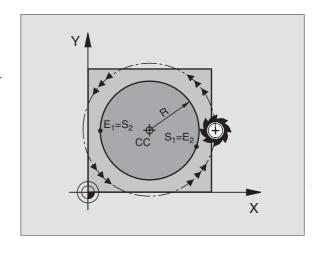
Konvex: Drehsinn DR- (mit Radiuskorrektur RL)

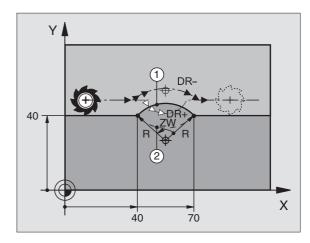
Konkav: Drehsinn DR+ (mit Radiuskorrektur RL)

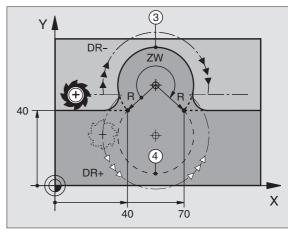
NC-Beispielsätze

11 CR X+70 Y+40 R+20 DR- (Bogen 1)

oder


11 CR X+70 Y+40 R+20 DR+ (Bogen 2)


oder


11 CR X+70 Y+40 R-20 DR- (Bogen 3)

oder

11 CR X+70 Y+40 R-20 DR+ (Bogen 4)

Der Abstand von Start- und Endpunkt des Kreisdurchmessers darf nicht größer als der Kreisdurchmesser sein.

Der maximale Radius beträgt 99,9999 m.

Winkelachsen A, B und C werden unterstützt.

Kreisbahn CT mit tangentialem Anschluss

Das Werkzeug fährt auf einem Kreisbogen, der tangential an das zuvor programmierte Konturelement anschließt.

Ein Übergang ist "tangential", wenn am Schnittpunkt der Konturelemente kein Knick- oder Eckpunkt entsteht, die Konturelemente also stetig ineinander übergehen.

Das Konturelement, an das der Kreisbogen tangential anschließt, programmieren Sie direkt vor dem CT-Satz. Dazu sind mindestens zwei Positionier-Sätze erforderlich

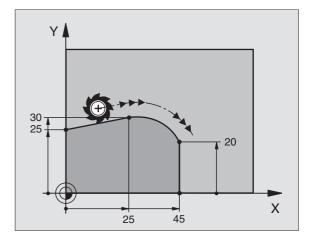
► Koordinaten des Kreisbogen-Endpunkts

Falls nötig:

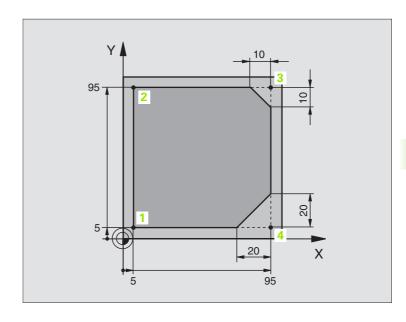
- ▶ Vorschub F
- ► Zusatz-Funktion M

NC-Beispielsätze

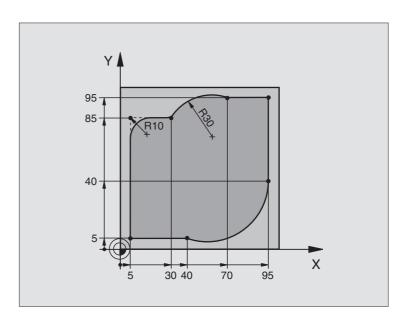
7 L X+0 Y+25 RL F300 M3


8 L X+25 Y+30

9 CT X+45 Y+20


10 L Y+0

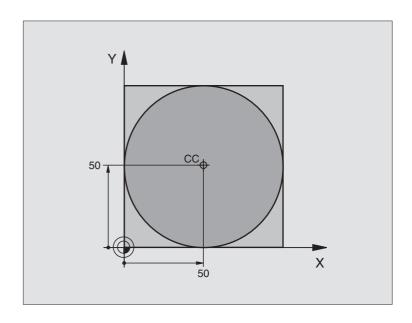
Der CT-Satz und das zuvor programmierte Konturelement sollten beide Koordinaten der Ebene enthalten, in der der Kreisbogen ausgeführt wird!


Beispiel: Geradenbewegung und Fasen kartesisch

O BEGIN PGM LINEAR MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Rohteil-Definition für grafische Simulation der Bearbeitung
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Werkzeug-Definition im Programm
4 TOOL CALL 1 Z S4000	Werkzeug-Aufruf mit Spindelachse und Spindeldrehzahl
5 L Z+250 RO F MAX	Werkzeug freifahren in der Spindelachse mit Eilgang FMAX
6 L X-10 Y-10 RO F MAX	Werkzeug vorpositionieren
7 L Z-5 R0 F1000 M3	Auf Bearbeitungstiefe fahren mit Vorschub F = 1000 mm/min
8 APPR LT X+5 Y+5 LEN10 RL F300	Kontur an Punkt 1 anfahren auf einer Geraden mit
	tangentialem Anschluss
9 L Y+95	Punkt 2 anfahren
10 L X+95	Punkt 3: erste Gerade für Ecke 3
11 CHF 10	Fase mit Länge 10 mm programmieren
12 L Y+5	Punkt 4: zweite Gerade für Ecke 3, erste Gerade für Ecke 4
13 CHF 20	Fase mit Länge 20 mm programmieren
14 L X+5	Letzten Konturpunkt 1 anfahren, zweite Gerade für Ecke 4
15 DEP LT LEN10 F1000	Kontur verlassen auf einer Geraden mit tangentialem Anschluss
16 L Z+250 RO F MAX M2	Werkzeug freifahren, Programm-Ende
17 END PGM LINEAR MM	

i

Beispiel: Kreisbewegung kartesisch



O BEGIN PGM CIRCULAR MM		
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Rohteil-Definition für grafische Simulation der Bearbeitung	
2 BLK FORM 0.2 X+100 Y+100 Z+0		
3 TOOL DEF 1 L+0 R+10	Werkzeug-Definition im Programm	
4 TOOL CALL 1 Z S4000	Werkzeug-Aufruf mit Spindelachse und Spindeldrehzahl	
5 L Z+250 R0 F MAX	Werkzeug freifahren in der Spindelachse mit Eilgang FMAX	
6 L X-10 Y-10 RO F MAX	Werkzeug vorpositionieren	
7 L Z-5 RO F1000 M3	Auf Bearbeitungstiefe fahren mit Vorschub F = 1000 mm/min	
8 APPR LCT X+5 Y+5 R5 RL F300	Kontur an Punkt 1 anfahren auf einer Kreisbahn mit	
	tangentialem Anschluss	
9 L X+5 Y+85	Punkt 2: erste Gerade für Ecke 2	
10 RND R10 F150	Radius mit R = 10 mm einfügen, Vorschub: 150 mm/min	
11 L X+30 Y+85	Punkt 3 anfahren: Startpunkt des Kreises mit CR	
12 CR X+70 Y+95 R+30 DR-	Punkt 4 anfahren: Endpunkt des Kreises mit CR, Radius 30 mm	
13 L X+95	Punkt 5 anfahren	
14 L X+95 Y+40	Punkt 6 anfahren	
15 CT X+40 Y+5	Punkt 7 anfahren: Endpunkt des Kreises, Kreisbogen mit tangentia-	
	lem Anschluss an Punkt 6, TNC berechnet den Radius selbst	

16 L X+5	Letzten Konturpunkt 1 anfahren
17 DEP LCT X-20 Y-20 R5 F1000	Kontur verlassen auf einer Kreisbahn mit tangentialem Anschluss
18 L Z+250 RO F MAX M2	Werkzeug freifahren, Programm-Ende
19 END PGM CIRCULAR MM	

6.4 Bahnbewegungen – rechtwinklige Koordinaten

Beispiel: Vollkreis kartesisch

O BEGIN PGM C-CC MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Rohteil-Definition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+12,5	Werkzeug-Definition
4 TOOL CALL 1 Z S3150	Werkzeug-Aufruf
5 CC X+50 Y+50	Kreismittelpunkt definieren
6 L Z+250 RO F MAX	Werkzeug freifahren
7 L X-40 Y+50 R0 F MAX	Werkzeug vorpositionieren
8 L Z-5 RO F1000 M3	Auf Bearbeitungstiefe fahren
9 APPR LCT X+0 Y+50 R5 RL F300	Kreisstartpunkt anfahren auf einer Kreisbahn mit tangentialem
	Anschluss
10 C X+0 DR-	Kreisendpunkt (=Kreisstartpunkt) anfahren
11 DEP LCT X-40 Y+50 R5 F1000	Kontur verlassen auf einer Kreisbahn mit tangentialem
	Anschluss
12 L Z+250 RO F MAX M2	Werkzeug freifahren, Programm-Ende
13 END PGM C-CC MM	

6.5 Bahnbewegungen – Polarkoordinaten

Übersicht

Mit Polarkoordinaten legen Sie eine Position über einen Winkel PA und einen Abstand PR zu einem zuvor definierten Pol CC fest (siehe "Grundlagen", Seite 158).

Polarkoordinaten setzen Sie vorteilhaft ein bei:

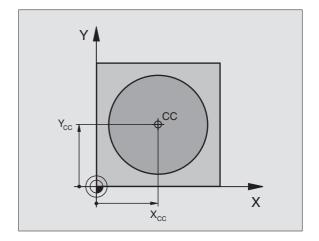
- Positionen auf Kreisbögen
- Werkstück-Zeichnungen mit Winkelangaben, z.B. bei Lochkreisen

Übersicht der Bahnfunktion mit Polarkoordinaten

Funktion	Bahnfunktionstaste	Werkzeug-Bewegung	Erforderliche Eingaben
Gerade LP	+ P	Gerade	Polarradius, Polarwinkel des Geraden-Endpunkts
Kreisbogen CP	\(\frac{1}{2} \)	Kreisbahn um Kreismittelpunkt/ Pol CC zum Kreisbogen-Endpunkt	Polarwinkel des Kreisendpunkts, Drehrichtung
Kreisbogen CTP	(T) + (P)	Kreisbahn mit tangentialem Anschluss an vorheriges Kontur- element	Polarradius, Polarwinkel des Kreisendpunkts
Schraubenlinie (Helix)	(3c) + (P)	Überlagerung einer Kreisbahn mit einer Geraden	Polarradius, Polarwinkel des Kreisendpunkts, Koordinate des Endpunkts in der Werkzeugachse

Polarkoordinaten-Ursprung: Pol CC

Den Pol CC können Sie an beliebigen Stellen im Bearbeitungs-Programm festlegen, bevor Sie Positionen durch Polarkoordinaten angeben. Gehen Sie beim Festlegen des Pols vor, wie beim Programmieren des Kreismittelpunkts CC.



▶ Koordinaten CC: Rechtwinklige Koordinaten für den Pol eingeben oder

Um die zuletzt programmierte Position zu übernehmen: Keine Koordinaten eingeben. Den Pol CC festlegen, bevor Sie Polarkoordinaten programmieren. Pol CC nur in rechtwinkligen Koordinaten programmieren. Der Pol CC ist solange wirksam, bis Sie einen neuen Pol CC festlegen.

NC-Beispielsätze

12 CC X+45 Y+25

Gerade LP

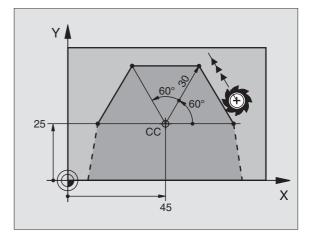
Das Werkzeug fährt auf einer Geraden von seiner aktuellen Position zum Endpunkt der Geraden. Der Startpunkt ist der Endpunkt des vorangegangenen Satzes.

- ▶ Polarkoordinaten-Radius PR: Abstand des Geraden-Endpunkts zum Pol CC eingeben
- ▶ Polarkoordinaten-Winkel PA: Winkelposition des Geraden-Endpunkts zwischen –360° und +360°

Das Vorzeichen von PA ist durch die Winkel-Bezugsachse festgelegt:

- Winkel von der Winkel-Bezugsachse zu PR gegen den Uhrzeigersinn: PA>0
- Winkel von der Winkel-Bezugsachse zu PR im Uhrzeigersinn: PA<0

NC-Beispielsätze



13 LP PR+30 PA+0 RR F300 M3

14 LP PA+60

15 LP IPA+60

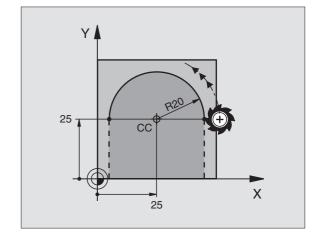
16 LP PA+180

Kreisbahn CP um Pol CC

Der Polarkoordinaten-Radius PR ist gleichzeitig Radius des Kreisbogens. PR ist durch den Abstand des Startpunkts zum Pol CC festgelegt. Die zuletzt programmierte Werkzeug-Position vor dem CP-Satz ist der Startpunkt der Kreisbahn.

- ▶ Polarkoordinaten-Winkel PA: Winkelposition des Kreisbahn-Endpunkts zwischen –5400° und +5400°
- ▶ Drehsinn DR

NC-Beispielsätze


18 CC X+25 Y+25

19 LP PR+20 PA+0 RR F250 M3

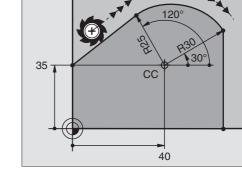
20 CP PA+180 DR+

Bei inkrementalen Koordinaten gleiches Vorzeichen für DR und PA eingeben.

Χ

Kreisbahn CTP mit tangentialem Anschluss

Das Werkzeug fährt auf einer Kreisbahn, die tangential an ein vorangegangenes Konturelement anschließt.



- ▶ Polarkoordinaten-Radius PR: Abstand des Kreisbahn-Endpunkts zum Pol CC
- ▶ Polarkoordinaten-Winkel PA: Winkelposition des Kreisbahn-Endpunkts

NC-Beispielsätze

12 CC X+40 Y+35 13 L X+0 Y+35 RL F250 M3 14 LP PR+25 PA+120 15 CTP PR+30 PA+30 16 L Y+0

Y

Der Pol CC ist nicht Mittelpunkt des Konturkreises!

Schraubenlinie (Helix)

Eine Schraubenlinie entsteht aus der Überlagerung einer Kreisbewegung und einer Geradenbewegung senkrecht dazu. Die Kreisbahn programmieren Sie in einer Hauptebene.

Die Bahnbewegungen für die Schraubenlinie können Sie nur in Polarkoordinaten programmieren.

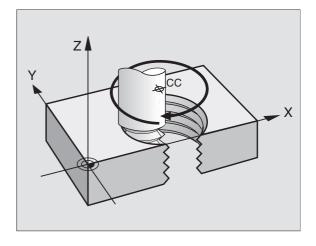
Einsatz

- Innen- und Außengewinde mit größeren Durchmessern
- Schmiernuten

Berechnung der Schraubenlinie

Zum Programmieren benötigen Sie die inkrementale Angabe des Gesamtwinkels, den das Werkzeug auf der Schraubenlinie fährt und die Gesamthöhe der Schraubenlinie.

Für die Berechnung in Fräsrichtung von unten nach oben gilt:


Anzahl Gänge n Gewindegänge + Gangüberlauf am

Gewindeanfang und -ende

Gesamthöhe h Steigung P x Anzahl der Gänge n Anzahl der Gänge x 360° + Winkel für Inkrementaler Gewinde-Anfang + Winkel für Gangüberlauf Gesamtwinkel IPA Anfangskoordinate Z

Steigung Px (Gewindegänge + Gangüberlauf

am Gewinde-Anfang)

Form der Schraubenlinie

Die Tabelle zeigt die Beziehung zwischen Arbeitsrichtung, Drehsinn und Radiuskorrektur für bestimmte Bahnformen.

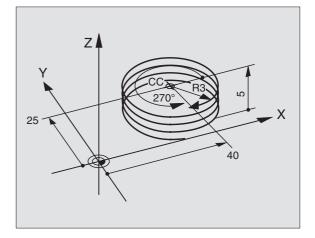
Innengewinde	Arbeits- richtung	Drehsinn	Radius- korrektur
rechtsgängig	Z+	DR+	RL
linksgängig	Z+	DR-	RR
rechtsgängig	Z–	DR-	RR
linksgängig	Z–	DR+	RL

Außengewinde			
rechtsgängig	Z+	DR+	RR
linksgängig	Z+	DR-	RL
rechtsgängig	Z–	DR-	RL
linksgängig	Z–	DR+	RR

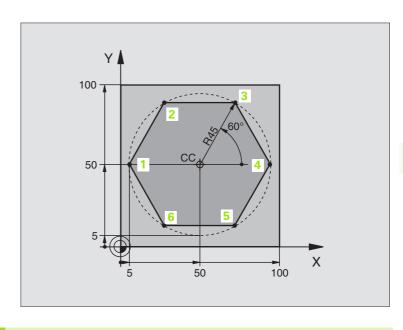
Schraubenlinie programmieren

Geben Sie Drehsinn DR und den inkrementalen Gesamtwinkel IPA mit gleichem Vorzeichen ein, sonst kann das Werkzeug in einer falschen Bahn fahren.

Für den Gesamtwinkel IPA können Sie einen Wert von -5400° bis +5400° eingeben. Wenn das Gewinde mehr als 15 Gänge hat, dann programmieren Sie die Schraubenlinie in einer Programmteil-Wiederholung (siehe "Programmteil-Wiederholungen", Seite 348)

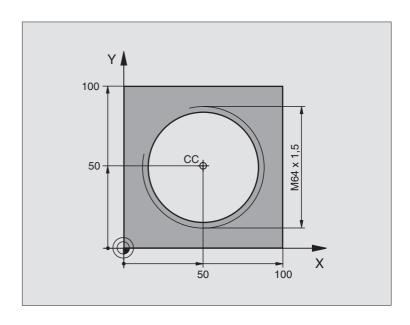

- ▶ Polarkoordinaten-Winkel: Gesamtwinkel inkremental eingeben, den das Werkzeug auf der Schraubenlinie fährt. Nach der Eingabe des Winkels wählen Sie die Werkzeug-Achse mit einer Achswahltaste.
- ▶ Koordinate für die Höhe der Schraubenlinie inkremental eingeben
- ▶ Drehsinn DR Schraubenlinie im Uhrzeigersinn: DR-Schraubenlinie gegen den Uhrzeigersinn: DR+
- ▶ Radiuskorrektur RL/RR/R0 Radiuskorrektur nach Tabelle eingeben

NC-Beispielsätze: Gewinde M6 x 1 mm mit 5 Gängen


12 CC X+40 Y+25 13 L Z+0 F100 M3

14 LP PR+3 PA+270 RL F50

15 CP IPA-1800 IZ+5 DR-


Beispiel: Geradenbewegung polar

O BEGIN PGM LINEARPO MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Rohteil-Definition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+7,5	Werkzeug-Definition
4 TOOL CALL 1 Z S4000	Werkzeug-Aufruf
5 CC X+50 Y+50	Bezugspunkt für Polarkoordinaten definieren
6 L Z+250 RO F MAX	Werkzeug freifahren
7 LP PR+60 PA+180 RO F MAX	Werkzeug vorpositionieren
8 L Z-5 RO F1000 M3	Auf Bearbeitungstiefe fahren
9 APPR PLCT PR+45 PA+180 R5 RL F250	Kontur an Punkt 1 anfahren auf einem Kreis mit
	tangentialem Anschluss
10 LP PA+120	Punkt 2 anfahren
11 LP PA+60	Punkt 3 anfahren
12 LP PA+0	Punkt 4 anfahren
13 LP PA-60	Punkt 5 anfahren
14 LP PA-120	Punkt 6 anfahren
15 LP PA+180	Punkt 1 anfahren
16 DEP PLCT PR+60 PA+180 R5 F1000	Kontur verlassen auf einem Kreis mit tangentialem Anschluss
17 L Z+250 RO F MAX M2	Werkzeug freifahren, Programm-Ende
18 END PGM LINEARPO MM	

i

Beispiel: Helix

O BEGIN PGM HELIX MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Rohteil-Definition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+5	Werkzeug-Definition
4 TOOL CALL 1 Z S1400	Werkzeug-Aufruf
5 L Z+250 RO F MAX	Werkzeug freifahren
6 L X+50 Y+50 RO F MAX	Werkzeug vorpositionieren
7 CC	Letzte programmierte Position als Pol übernehmen
8 L Z-12,75 RO F1000 M3	Auf Bearbeitungstiefe fahren
9 APPR PCT PR+32 PA-180 CCA180 R+2	Kontur anfahren auf einem Kreis mit tangentialem
RL F100	Anschluss
10 CP IPA+3240 IZ+13,5 DR+ F200	Helix fahren
11 DEP CT CCA180 R+2	Kontur verlassen auf einem Kreis mit tangentialem Anschluss
12 L Z+250 RO F MAX M2	Werkzeug freifahren, Programm-Ende
13 END PGM HELIX MM	

Wenn Sie mehr als 16 Gänge fertigen müssen:

	8 L Z-12.75 RO F1000
Č	8 L Z-12./5 KU F1000
č	9 APPR PCT PR+32 PA-180 CCA180 R+2 RL F100

10 LBL 1	Beginn der Programmteil-Wiederholung
11 CP IPA+360 IZ+1,5 DR+ F200	Steigung direkt als IZ-Wert eingeben
12 CALL LBL 1 REP 24	Anzahl der Wiederholungen (Gänge)
13 DEP CT CCA180 R+2	

6.6 Bahnbewegungen – Freie Kontur-Programmierung FK

Grundlagen

Werkstückzeichnungen, die nicht NC-gerecht bemaßt sind, enthalten oft Koordinaten-Angaben, die Sie nicht über die grauen Dialog-Tasten eingeben können. So können z.B.

- bekannte Koordinaten auf dem Konturelement oder in der Nähe liegen,
- Koordinaten-Angaben sich auf ein anderes Konturelement beziehen oder
- Richtungsangaben und Angaben zum Konturverlauf bekannt sein.

Solche Angaben programmieren Sie direkt mit der Freien Kontur-Programmierung FK. Die TNC errechnet die Kontur aus den bekannten Koordinaten-Angaben und unterstützt den Programmier-Dialog mit der interaktiven FK-Grafik. Das Bild rechts oben zeigt eine Bemaßung, die Sie am einfachsten über die FK-Programmierung eingeben.

Um FK-Programme auf älteren TNC-Steuerungen abzuarbeiten, nutzen Sie die Konvertierungsfunktion (siehe "FK-Programm in Klartext-Programm umwandeln", Seite 47).

Beachten Sie folgende Voraussetzungen für die FK-Programmierung

Konturelemente können Sie mit der Freien Kontur-Programmierung nur in der Bearbeitungsebene programmieren. Die Bearbeitungsebene legen Sie im ersten BLK-FORM-Satz des Bearbeitungs-Programms fest.

Geben Sie für jedes Konturelement alle verfügbaren Daten ein. Programmieren Sie auch Angaben in jedem Satz, die sich nicht ändern: Nicht programmierte Daten gelten als nicht bekannt!

Q-Parameter sind in allen FK-Elementen zulässig, außer in Elementen mit Relativ-Bezügen (z.B RX oder RAN), also Elementen, die sich auf andere NC-Sätze beziehen.

Wenn Sie im Programm konventionelle und Freie Kontur-Programmierung mischen, dann muss jeder FK-Abschnitt eindeutig bestimmt sein.

Die TNC benötigt einen festen Punkt, von dem aus die Berechnungen durchgeführt werden. Programmieren Sie direkt vor dem FK-Abschnitt mit den grauen Dialogtasten eine Position, die beide Koordinaten der Bearbeitungsebene enthält. In diesem Satz keine Q-Parameter programmieren.

Wenn der erste Satz im FK-Abschnitt ein FCT- oder FLT-Satz ist, müssen Sie davor mindestens zwei NC-Sätze über die grauen Dialog-Tasten programmieren, damit die Anfahrrichtung eindeutig bestimmt ist.

Ein FK-Abschnitt darf nicht direkt hinter einer Marke LBL beginnen.

Grafik der FK-Programmierung

Um die Grafik bei der FK-Programmierung nutzen zu können, wählen Sie die Bildschirm-Aufteilung PROGRAMM + GRAFIK (siehe "Programmlauf Satzfolge und Programmlauf Einzelsatz", Seite 8)

Mit unvollständigen Koordinaten-Angaben lässt sich eine Werkstück-Kontur oft nicht eindeutig festlegen. In diesem Fall zeigt die TNC die verschiedenen Lösungen in der FK-Grafik an und Sie wählen die richtige aus. Die FK-Grafik stellt die Werkstück-Kontur mit verschiedenen Farben dar:

weiß Das Konturelement ist eindeutig bestimmt

grün Die eingegebenen Daten lassen mehrere Lösungen zu;

Sie wählen die richtige aus

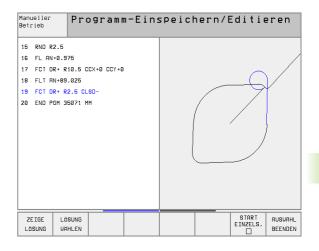
rot Die eingegebenen Daten legen das Konturelement noch

nicht ausreichend fest; Sie geben weitere Angaben ein

Wenn die Daten auf mehrere Lösungen führen und das Konturelement grün angezeigt wird, dann wählen Sie die richtige Kontur wie folgt:

ZE IGE LÖSUNG Softkey ZEIGE LÖSUNG so oft drücken, bis das Konturelement richtig angezeigt wird

Das angezeigte Konturelement entspricht der Zeichnung: Mit Softkey LÖSUNG WÄHLEN festlegen


Die grün dargestellten Konturelemente sollten Sie so früh wie möglich mit LÖSUNG WÄHLEN festlegen, um die Mehrdeutigkeit für die nachfolgenden Konturelemente einzuschränken.

Wenn Sie eine grün dargestellte Kontur noch nicht festlegen wollen, dann drücken Sie den Softkey AUSWAHL BEENDEN, um den FK-Dialog fortzuführen.

Ihr Maschinenhersteller kann für die FK-Grafik andere Farben festlegen.

NC-Sätze aus einem Programm, das mit PGM CALL aufgerufen wird, zeigt die TNC mit einer weiteren Farbe.

FK-Dialog eröffnen

Wenn Sie die graue Bahnfunktionstaste FK drücken, zeigt die TNC Softkeys an, mit denen Sie den FK-Dialog eröffnen: Siehe nachfolgende Tabelle. Um die Softkeys wieder abzuwählen, drücken Sie die Taste FK erneut.

Wenn Sie den FK-Dialog mit einem dieser Softkeys eröffnen, dann zeigt die TNC weitere Softkey-Leisten, mit denen Sie bekannte Koordinaten eingeben, Richtungsangaben und Angaben zum Konturverlauf machen können.

FK-Element	Softkey
Gerade mit tangentialem Anschluss	FLT
Gerade ohne tangentialen Anschluss	FL
Kreisbogen mit tangentialem Anschluss	FCT
Kreisbogen ohne tangentialen Anschluss	FC
Pol für FK-Programmierung	FPOL

Geraden frei programmieren

Gerade ohne tangentialem Anschluss

Softkeys zur Freien Kontur-Programmierung anzeigen: Taste FK drücken

- Dialog für freie Gerade eröffnen: Softkey FL drücken. Die TNC zeigt weitere Softkeys
- Über diese Softkeys alle bekannten Angaben in den Satz eingeben. Die FK-Grafik zeigt die programmierte Kontur rot, bis die Angaben ausreichen. Mehrere Lösungen zeigt die Grafik grün (siehe "Grafik der FK-Programmierung", Seite 159)

Gerade mit tangentialem Anschluss

Wenn die Gerade tangential an ein anderes Konturelement anschließt, eröffnen Sie den Dialog mit dem Softkey FLT:

Softkeys zur Freien Kontur-Programmierung anzeigen: Taste FK drücken

- Dialog eröffnen: Softkey FLT drücken
- ▶ Über die Softkeys alle bekannten Angaben in den Satz eingeben

Kreisbahnen frei programmieren

Kreisbahn ohne tangentialem Anschluss

Softkeys zur Freien Kontur-Programmierung anzeigen: Taste FK drücken

- Dialog für freien Kreisbogen eröffnen: Softkey FC drücken; die TNC zeigt Softkeys für direkte Angaben zur Kreisbahn oder Angaben zum Kreismittelpunkt
- DÜber diese Softkeys alle bekannten Angaben in den Satz eingeben: Die FK-Grafik zeigt die programmierte Kontur rot, bis die Angaben ausreichen. Mehrere Lösungen zeigt die Grafik grün (siehe "Grafik der FK-Programmierung", Seite 159)

Kreisbahn mit tangentialem Anschluss

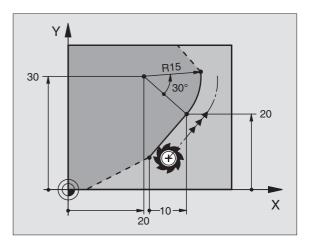
Wenn die Kreisbahn tangential an ein anderes Konturelement anschließt, eröffnen Sie den Dialog mit dem Softkey FCT:

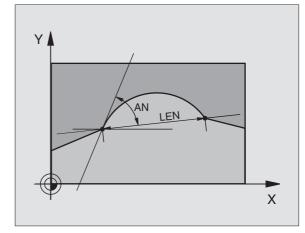
Softkeys zur Freien Kontur-Programmierung anzeigen: Taste FK drücken

- ▶ Dialog eröffnen: Softkey FCT drücken
- ▶ Über die Softkeys alle bekannten Angaben in den Satz eingeben

Eingabemöglichkeiten

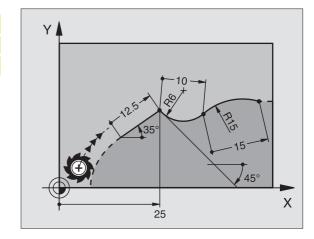
Endpunkt-Koordinaten


Bekannte Angaben	Softkeys	
Rechtwinklige Koordinaten X und Y	X	† Y
Polarkoordinaten bezogen auf FPOL	PR *	PA


NC-Beispielsätze

- 7 FPOL X+20 Y+30
- 8 FL IX+10 Y+20 RR F100
- 9 FCT PR+15 IPA+30 DR+ R15

Richtung und Länge von Konturelementen


Bekannte Angaben	Softkeys
Länge der Geraden	LEN
Anstiegswinkel der Geraden	AN
Sehnenlänge LEN des Kreisbogenabschnitts	LEN
Anstiegswinkel AN der Eintrittstangente	AN
Winkel von führender Achse zum Kreis-Endpunkt	CCA

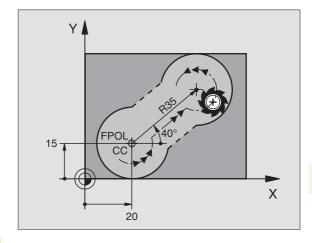
NC-Beispielsätze

- 27 FLT X+25 LEN 12,5 AN+35 RL F200
- 28 FC DR+ R6 LEN 10 A-45
- 29 FCT DR- R15 LEN 15

Kreismittelpunkt CC, Radius und Drehsinn im FC-/FCT-Satz

Für frei programmierte Kreisbahnen berechnet die TNC aus Ihren Angaben einen Kreismittelpunkt. Damit können Sie auch mit der FK-Programmierung einen Vollkreis in einem Satz programmieren.

Wenn Sie den Kreismittelpunkt in Polarkoordinaten definieren wollen, müssen Sie den Pol anstelle mit CC mit der Funktion FPOL definieren. FPOL bleibt bis zum nächsten Satz mit FPOL wirksam und wird in rechtwinkligen Koordinaten festgelegt.



Ein konventionell programmierter oder ein errechneter Kreismittelpunkt ist in einem neuen FK-Abschnitt nicht mehr als Pol oder Kreismittelpunkt wirksam: Wenn sich konventionell programmierte Polarkoordinaten auf einen Pol beziehen, den Sie zuvor in einem CC-Satz festgelegt haben, dann legen Sie diesen Pol nach dem FK-Abschnitt erneut mit einem CC-Satz fest.

Bekannte Angaben	Softkeys	
Mittelpunkt in rechtwinkligen Koordinaten	ссх	ccy -
Mittelpunkt in Polarkoordinaten	CC PR	CC PA
Drehsinn der Kreisbahn	DR (- +)	
Radius der Kreisbahn	(R)	

NC-Beispielsätze

10 FC CCX+20 CCY+15 DR+ R15
11 FPOL X+20 Y+15
12 FL AN+40
13 FC DR+ R15 CCPR+35 CCPA+40

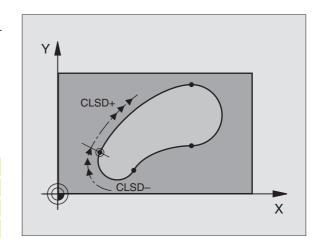
Geschlossene Konturen

Mit dem Softkey CLSD kennzeichnen Sie Beginn und Ende einer geschlossenen Kontur. Dadurch reduziert sich für das letzte Konturelement die Anzahl der möglichen Lösungen.

CLSD geben Sie zusätzlich zu einer anderen Konturangabe im ersten und letzten Satz eines FK-Abschnitts ein.

+ CLSD

Konturanfang: CLSD+ Konturende: CLSD-

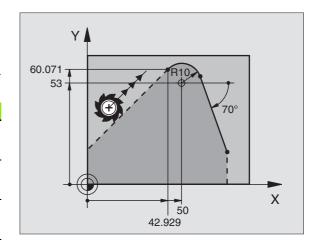

NC-Beispielsätze

12 L X+5 Y+35 RL F500 M3

13 FC DR- R15 CLSD CCX+20 CCY+35

• • •

17 FCT DR- R+15 CLSD-


Hilfspunkte

Sowohl für freie Geraden als auch für freie Kreisbahnen können Sie Koordinaten für Hilfspunkte auf oder neben der Kontur eingeben.

Hilfspunkte auf einer Kontur

Die Hilfspunkte befinden sich direkt auf der Geraden bzw. auf der Verlängerung der Geraden oder direkt auf der Kreisbahn.

Bekannte Angaben	Softkeys		
X-Koordinate eines Hilfspunkt P1 oder P2 einer Geraden	P1X	P2X v	
Y-Koordinate eines Hilfspunkt P1 oder P2 einer Geraden	P1Y	P2Y	
X-Koordinate eines Hilfspunkts P1, P2 oder P3 einer Kreisbahn	P1X	PZX	РЗХ
Y-Koordinate eines Hilfspunkts P1, P2 oder P3 einer Kreisbahn	P1 Y	P2Y	РЗҮ

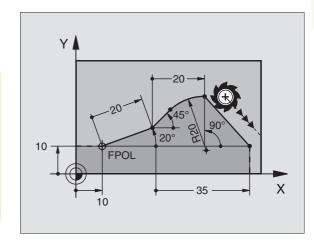
Hilfspunkte neben einer Kontur

Bekannte Angaben	Softkeys	
X- und Y- Koordinate des Hilfspunkts neben einer Geraden	PDX	PDY
Abstand des Hilfspunkts zur Geraden	The state of the s	
X- und Y-Koordinate eines Hilfspunktsneben einer Kreisbahn	PDX	PDY

NC-Beispielsätze

13 FC DR- R10 P1X+42.929 P1Y+60.071
14 FLT AN-70 PDX+50 PDY+53 D10

Relativ-Bezüge


Relativ-Bezüge sind Angaben, die sich auf ein anderes Konturelement beziehen. Softkeys und Programm-Wörter für **R**elativ-Bezüge beginnen mit einem "R". Das Bild rechts zeigt Maßangaben, die Sie als Relativ-Bezüge programmieren sollten.

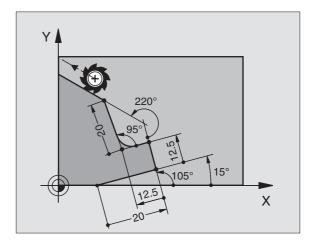
Koordinaten mit Relativbezug immer inkremental eingeben. Zusätzlich Satz-Nummer des Konturelements eingeben, auf das Sie sich beziehen.

Das Konturelement, dessen Satz-Nummer Sie angeben, darf nicht mehr als 64 Positionier-Sätze vor dem Satz stehen, in dem Sie den Bezug programmieren.

Wenn Sie einen Satz löschen, auf den Sie sich bezogen haben, dann gibt die TNC eine Fehlermeldung aus. Ändern Sie das Programm, bevor Sie diesen Satz löschen.

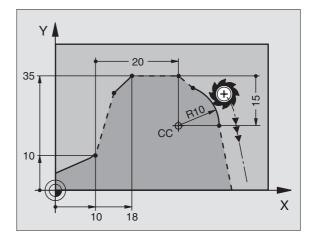
Relativbezug auf Satz N: Endpunkt-Koordinaten

Bekannte Angaben	Softkeys
Rechtwinklige Koordinaten bezogen auf Satz N	RY N
Polarkoordinaten bezogen auf Satz N	RPR


NC-Beispielsätze

12 FPOL X+10 Y+10
13 FL PR+20 PA+20
14 FL AN+45
15 FCT IX+20 DR- R20 CCA+90 RX 13
16 FL IPR+35 PA+0 RPR 13

Relativbezug auf Satz N: Richtung und Abstand des Konturelements


Bekannte Angaben	Softkey
Winkel zwischen Gerade und anderem Konturelement bzw. zwischen Kreisbogen-Eintrittstangente und anderem Konturelement	RANN
Gerade parallel zu anderem Konturelement	PARN
Abstand der Geraden zu parallelem Konturelement	\DP\
NC-Beispielsätze	
17 FL LEN 20 AN+15	
18 FL AN+105 LEN 12.5	
19 FL PAR 17 DP 12.5	
20 FSELECT 2	
21 FL LEN 20 IAN+95	
22 FL TAN+220 RAN 18	

Relativbezug auf Satz N: Kreismittelpunkt CC

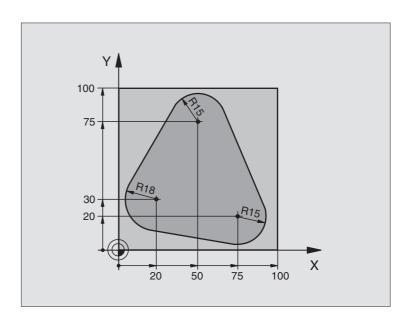
Bekannte Angaben

	•
Rechtwinklige Koordinaten des Kreismittelpunktes bezogen auf Satz N	RCCYN
Polarkoordinaten des Kreismittelpunktes bezogen auf Satz N	RCCPAIN
NC-Beispielsätze	
12 FL X+10 Y+10 RL	
13 FL	
14 FL X+18 Y+35	
15 FL	
16 FL	
17 FC DR- R10 CCA+0 TCCX+20 TCCY-1	15 RCCX12 RCCY14

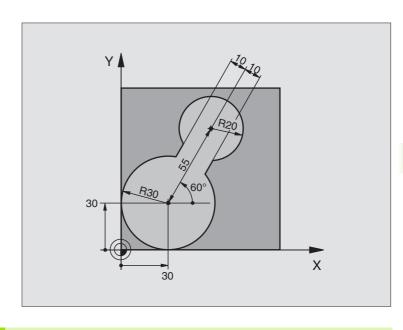
FK-Programme konvertieren

Ein FK-Programm wandeln Sie in der Datei-Verwaltung in ein Klartext-Programm wie folgt um:

- ▶ Datei-Verwaltung aufrufen und Dateien anzeigen lassen.
- ▶ Hellfeld auf die Datei bewegen, die Sie umwandeln möchten.


Softkeys ZUSÄTZL. FUNKT. und dann UMWANDELN FK->H drücken. Die TNC wandelt alle FK-Sätze in Klartext-Sätze.

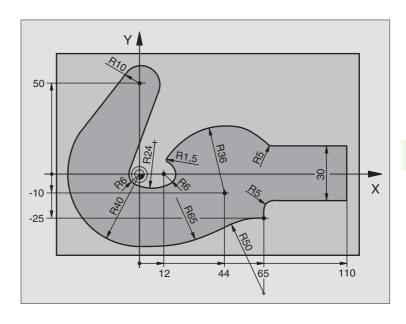
Kreismittelpunkte, die Sie vor einem FK-Abschnitt eingegeben haben, müssen Sie ggf. im umgewandelten Programm erneut festlegen. Testen Sie Ihr Bearbeitungs-Programm nach dem Konvertieren, bevor Sie es ausführen.


FK-Programme mit Q-Parameter können nicht konvertiert werden.

Beispiel: FK-Programmierung 1

O BEGIN PGM FK1 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Rohteil-Definition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Werkzeug-Definition
4 TOOL CALL 1 Z S500	Werkzeug-Aufruf
5 L Z+250 RO F MAX	Werkzeug freifahren
6 L X-20 Y+30 RO F MAX	Werkzeug vorpositionieren
7 L Z-10 R0 F1000 M3	Auf Bearbeitungstiefe fahren
8 APPR CT X+2 Y+30 CCA90 R+5 RL F250	Kontur anfahren auf einem Kreis mit tangentialem Anschluss
9 FC DR- R18 CLSD+ CCX+20 CCY+30	FK- Abschnitt:
10 FLT	Zu jedem Konturelement bekannte Angaben programmieren
11 FCT DR- R15 CCX+50 CCY+75	
12 FLT	
13 FCT DR- R15 CCX+75 CCY+20	
14 FLT	
15 FCT DR- R18 CLSD- CCX+20 CCY+30	
16 DEP CT CCA90 R+5 F1000	Kontur verlassen auf einem Kreis mit tangentialem Anschluss
17 L X-30 Y+0 R0 F MAX	
18 L Z+250 RO F MAX M2	Werkzeug freifahren, Programm-Ende
19 END PGM FK1 MM	

Beispiel: FK-Programmierung 2



O BEGIN PGM FK2 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Rohteil-Definition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+2	Werkzeug-Definition
4 TOOL CALL 1 Z S4000	Werkzeug-Aufruf
5 L Z+250 RO F MAX	Werkzeug freifahren
6 L X+30 Y+30 R0 F MAX	Werkzeug vorpositionieren
7 L Z+5 RO F MAX M3	Werkzeug-Achse vorpositionieren
8 L Z-5 R0 F100	Auf Bearbeitungstiefe fahren

i

9 APPR LCT X+0 Y+30 R5 RR F350	Kontur anfahren auf einem Kreis mit tangentialem Anschluss
10 FPOL X+30 Y+30	FK- Abschnitt:
11 FC DR- R30 CCX+30 CCY+30	Zu jedem Konturelement bekannte Angaben programmieren
12 FL AN+60 PDX+30 PDY+30 D10	
13 FSELECT 3	
14 FC DR- R20 CCPR+55 CCPA+60	
15 FSELECT 2	
16 FL AN-120 PDX+30 PDY+30 D10	
17 FSELECT 3	
18 FC X+0 DR- R30 CCX+30 CCY+30	
19 FSELECT 2	
20 DEP LCT X+30 Y+30 R5	Kontur verlassen auf einem Kreis mit tangentialem Anschluss
21 L Z+250 R0 F MAX M2	Werkzeug freifahren, Programm-Ende
22 END PGM FK2 MM	

Beispiel: FK-Programmierung 3

O BEGIN PGM FK3 MM	
1 BLK FORM 0.1 Z X-45 Y-45 Z-20	Rohteil-Definition
2 BLK FORM 0.2 X+120 Y+70 Z+0	
3 TOOL DEF 1 L+0 R+3	Werkzeug-Definition
4 TOOL CALL 1 Z S4500	Werkzeug-Aufruf
5 L Z+250 R0 F MAX	Werkzeug freifahren
6 L X-70 Y+0 R0 F MAX	Werkzeug vorpositionieren
7 L Z-5 R0 F1000 M3	Auf Bearbeitungstiefe fahren

8 APPR CT X-40 Y+0 CCA90 R+5 RL F250	Kontur anfahren auf einem Kreis mit tangentialem Anschluss
9 FC DR- R40 CCX+0 CCY+0	FK- Abschnitt:
10 FLT	Zu jedem Konturelement bekannte Angaben programmieren
11 FCT DR- R10 CCX+0 CCY+50	
12 FLT	
13 FCT DR+ R6 CCX+0 CCY+0	
14 FCT DR+ R24	
15 FCT DR+ R6 CCX+12 CCY+0	
16 FSELECT 2	
17 FCT DR- R1,5	
18 FCT DR- R36 CCX+44 CCY-10	
19 FSELECT 2	
20 FCT DR+ R5	
21 FLT X+110 Y+15 AN+0	
22 FL AN-90	
23 FL X+65 AN+180 PAR21 DP30	
24 RND R5	
25 FL X+65 Y-25 AN-90	
26 FC DR+ R50 CCX+65 CCY-75	
27 FCT DR- R65	
28 FSELECT	
29 FCT Y+0 DR- R40 CCX+0 CCY+0	
30 FSELECT 4	
31 DEP CT CCA90 R+5 F1000	Kontur verlassen auf einem Kreis mit tangentialem Anschluss
32 L X-70 R0 F MAX	
33 L Z+250 RO F MAX M2	Werkzeug freifahren, Programm-Ende
34 FND PGM FK3 MM	

6.7 Bahnbewegungen – Spline-Interpolation

Anwendung

Konturen, die in einem CAD-System als Splines beschrieben sind, können Sie direkt zur TNC übertragen und abarbeiten. Die TNC verfügt über einen Spline-Interpolator, mit dem Polynome dritten Grades in zwei, drei, vier oder fünf Achsen abgearbeitet werden können.

Spline-Sätze können Sie in der TNC nicht editieren. Ausnahme: Vorschub **F** und Zusatz-Funktion **M** im Spline-Satz.

Beispiel: Satzformat für zwei Achsen

7 L X+33,909 Z+75,107 F MAX	Spline-Anfangspunkt
8 SPL X+39,824 Z+77,425	Spline-Endpunkt
K3X+0,0983 K2X-0,441 K1X-5,5724	Spline-Parameter für X-Achse
K3Z+0,0015 K2Z-0,9549 K1Z+3,0875 F10000	Spline-Parameter für Z-Achse
9 SPL X+44,862 Z+73,44	Spline-Endpunkt
K3X+0,0934 K2X-0,7211 K1X-4,4102	Spline-Parameter für X-Achse
K3Z-0,0576 K2Z-0,7822 K1Z+4,8246	Spline-Parameter für Z-Achse
10	

Die TNC arbeitet den Spline-Satz nach folgenden Polynomen dritten Grades ab:

$$X(t) = K3X \cdot t^3 + K2X \cdot t^2 + K1X \cdot t + X$$

 $Z(t) = K3Z \cdot t^3 + K2Z \cdot t^2 + K1Z \cdot t + Z$

Dabei läuft die Variable t von 1 bis 0. Die Schrittweite von t ist abhängig vom Vorschub und von der Länge des Splines.

Beispiel: Satzformat für fünf Achsen

7 L X+33,909 Y-25,838 Z+75,107 A+17 B-10,103 F MAX	Spline-Anfangspunkt
8 SPL X+39,824 Y-28,378 Z+77,425 A+17,32 B-12,75	Spline-Endpunkt
K3X+0,0983 K2X-0,441 K1X-5,5724	Spline-Parameter für X-Achse
K3Y-0,0422 K2Y+0,1893 K1Y+2,3929	Spline-Parameter für Y-Achse
K3Z+0,0015 K2Z-0,9549 K1Z+3,0875	Spline-Parameter für Z-Achse
K3A+0,1283 K2A-0,141 K1A-0,5724	Spline-Parameter für A-Achse
K3B+0,0083 K2B-0,413 E+2 K1B-1,5724 E+1 F10000	Spline-Parameter für B-Achse mit
	Exponential-Schreibweise
9	

i

Die TNC arbeitet den Spline-Satz nach folgenden Polynomen dritten Grades ab:

$$X(t) = K3X \cdot t^3 + K2X \cdot t^2 + K1X \cdot t + X$$

$$Y(t) = K3Y \cdot t^3 + K2Y \cdot t^2 + K1Y \cdot t + Y$$

$$Z(t) = K3Z \cdot t^3 + K2Z \cdot t^2 + K1Z \cdot t + Z$$

$$A(t) = K3A \cdot t^3 + K2A \cdot t^2 + K1A \cdot t + A$$

$$B(t) = K3B \cdot t^3 + K2B \cdot t^2 + K1B \cdot t + B$$

Dabei läuft die Variable t von 1 bis 0. Die Schrittweite von t ist abhängig vom Vorschub und von der Länge des Splines.

Zu jeder Endpunkt-Koordinate im Spline-Satz müssen die Spline-Parameter K3 bis K1 programmiert sein. Die Reihenfolge der Endpunkt-Koordinaten im Spline-Satz ist beliebig.

Die TNC erwartet die Spline-Parameter K für jede Achse immer in der Reihenfolge K3, K2, K1.

Neben den Hauptachsen X, Y und Z kann die TNC im SPL-Satz auch Nebenachsen U, V und W, sowie Drehachsen A, B und C verarbeiten. Im Spline-Parameter K muss dann jeweils die entsprechenden Achse angegeben sein (z.B. K3A+0,0953 K2A-0,441 K1A+0,5724).

Wird der Betrag eines Spline-Parameters K größer als 9,9999999, dann muss der Postprozessor K in der Exponenten-Schreibweise ausgeben (z.B. K3X+1,2750 E2).

Ein Programm mit Spline-Sätzen kann die TNC auch bei aktiver geschwenkter Bearbeitungsebene abarbeiten.

Darauf achten, dass die Übergänge von einem Spline zum nächsten möglichst tangential sind (Richtungsänderung kleiner 0,1°). Ansonsten führt die TNC bei inaktiven Filterfunktionen einen Genauhalt aus und die Maschine ruckelt. Bei aktiven Filterfunktionen reduziert die TNC den Vorschub an diesen Stellen entsprechend.

Eingabebereiche

- Spline-Endpunkt: -99 999,9999 bis +99 999,9999
- Spline-Parameter K: -9,99999999 bis +9,99999999
- Exponent für Spline-Parameter K: -255 bis +255 (ganzzahliger Wert)

Programmieren: Zusatz-Funktionen

7.1 Zusatz-Funktionen M und STOP eingeben

Grundlagen

Mit den Zusatz-Funktionen der TNC – auch M-Funktionen genannt – steuern Sie

- den Programmlauf, z.B. eine Unterbrechung des Programmlaufs
- die Maschinenfunktionen, wie das Ein- und Ausschalten der Spindeldrehung und des Kühlmittels
- das Bahnverhalten des Werkzeugs

Der Maschinenhersteller kann Zusatz-Funktionen freigeben, die nicht in diesem Handbuch beschrieben sind. Beachten Sie Ihr Maschinenhandbuch.

Sie können bis zu zwei Zusatz-Funktion M am Ende eines Positionier-Satzes eingeben. Die TNC zeigt dann den Dialog:

Zusatz-Funktion M ?

Gewöhnlich geben Sie im Dialog nur die Nummer der Zusatz-Funktion an. Bei einigen Zusatz-Funktionen wird der Dialog fortgeführt, damit Sie Parameter zu dieser Funktion eingeben können.

In den Betriebsarten Manueller Betrieb und El. Handrad geben Sie die Zusatz-Funktionen über den Softkey M ein.

Beachten Sie, dass einige Zusatz-Funktionen zu Beginn eines Positionier-Satzes wirksam werden, andere am Ende.

Die Zusatz-Funktionen wirken ab dem Satz, in dem sie aufgerufen werden. Sofern die Zusatz-Funktion nicht nur satzweise wirksam ist, wird sie in einem nachfolgenden Satz oder am Programm-Ende wieder aufgehoben. Einige Zusatz-Funktionen gelten nur in dem Satz, in dem sie aufgerufen werden.

Zusatz-Funktion im STOP-Satz eingeben

Ein programmierter STOP-Satz unterbricht den Programmlauf bzw. den Programm-Test, z.B. für eine Werkzeug-Überprüfung. In einem STOP-Satz können Sie eine Zusatz-Funktion M programmieren:

- Programmlauf-Unterbrechung programmieren: Taste STOP drücken
- ► Zusatz-Funktion M eingeben

NC-Beispielsätze

87 STOP M6

7.2 Zusatz-Funktionen für Programmlauf-Kontrolle, Spindel und Kühlmittel

Übersicht

M	Wirkung Wirkung am Satz -	Anfang	Ende
M00	Programmlauf HALT Spindel HALT Kühlmittel AUS		-
M01	Wahlweiser Programmlauf HALT		-
M02	Programmlauf HALT Spindel HALT Kühlmittel aus Rücksprung zu Satz 1 Löschen der Status-Anzeige (abhängig von Maschinen-Parameter 7300)		•
M03	Spindel EIN im Uhrzeigersinn	-	
M04	Spindel EIN gegen den Uhrzeigersinn	-	
M05	Spindel HALT		-
M06	Werkzeugwechsel Spindel HALT Programmlauf HALT (abhängig von Maschinen-Parameter 7440)		•
M08	Kühlmittel EIN	-	
M09	Kühlmittel AUS		
M13	Spindel EIN im Uhrzeigersinn Kühlmittel EIN	-	
M14	Spindel EIN gegen den Uhrzeigersinn Kühlmittel ein	-	
M30	wie M02		

7.3 Zusatz-Funktionen für Koordinatenangaben

Maschinenbezogene Koordinaten programmieren: M91/M92

Maßstab-Nullpunkt

Auf dem Maßstab legt eine Referenzmarke die Position des Maßstab-Nullpunkts fest.

Maschinen-Nullpunkt

Den Maschinen-Nullpunkt benötigen Sie, um

- Verfahrbereichs-Begrenzungen (Software-Endschalter) zu setzen
- maschinenfeste Positionen (z.B. Werkzeugwechsel-Position) anzufahren
- einen Werkstück-Bezugspunkt zu setzen

Der Maschinenhersteller gibt für jede Achse den Abstand des Maschinen-Nullpunkts vom Maßstab-Nullpunkt in einen Maschinen-Parameter ein.

Standardverhalten

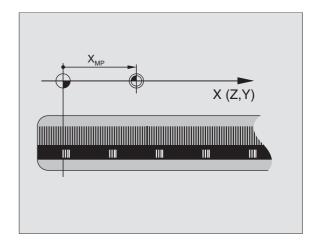
Koordinaten bezieht die TNC auf den Werkstück-Nullpunkt, siehe "Bezugspunkt-Setzen (ohne 3D-Tastsystem)", Seite 22.

Verhalten mit M91 – Maschinen-Nullpunkt

Wenn sich Koordinaten in Positionier-Sätzen auf den Maschinen-Nullpunkt beziehen sollen, dann geben Sie in diesen Sätzen M91 ein.

Die TNC zeigt die Koordinatenwerte bezogen auf den Maschinen-Nullpunkt an. In der Status-Anzeige schalten Sie die Koordinaten-Anzeige auf REF, siehe "Status-Anzeigen", Seite 9.

Verhalten mit M92 - Maschinen-Bezugspunkt


Neben dem Maschinen-Nullpunkt kann der Maschinenhersteller noch eine weitere maschinenfeste Position (Maschinen-Bezugspunkt) festlegen.

Der Maschinenhersteller legt für jede Achse den Abstand des Maschinen-Bezugspunkts vom Maschinen-Nullpunkt fest (siehe Maschinenhandbuch).

Wenn sich die Koordinaten in Positionier-Sätzen auf den Maschinen-Bezugspunkt beziehen sollen, dann geben Sie in diesen Sätzen M92 ein.

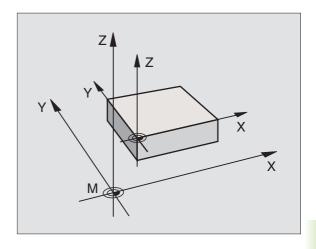
Auch mit M91 oder M92 führt die TNC die Radiuskorrektur korrekt aus. Die Werkzeug-Länge wird jedoch **nicht** berücksichtigt.

Wirkung

M91 und M92 wirken nur in den Programmsätzen, in denen M91 oder M92 programmiert ist.

M91 und M92 werden wirksam am Satz-Anfang.

Werkstück-Bezugspunkt


Wenn sich Koordinaten immer auf den Maschinen-Nullpunkt beziehen sollen, dann kann das Bezugspunkt-Setzen für eine oder mehrere Achsen gesperrt werden.

Wenn das Bezugspunkt-Setzen für alle Achsen gesperrt ist, dann zeigt die TNC den Softkey BEZUGSPUNKT SETZEN in der Betriebsart Manueller Betrieb nicht mehr an.

Das Bild rechts zeigt Koordinatensysteme mit Maschinen- und Werkstück-Nullpunkt.

M91/M92 in der Betriebsart Programm-Test

Um M91/M92-Bewegungen auch grafisch simulieren zu können, müssen Sie die Arbeitsraum-Überwachung aktivieren und das Rohteil bezogen auf den gesetzten Bezugspunkt anzeigen lassen, siehe "Rohteil im Arbeitsraum darstellen", Seite 439.

Zuletzt gesetzten Bezugspunkt aktivieren: M104

Funktion

Beim Abarbeiten von Paletten-Tabellen überschreibt die TNC ggf. den zuletzt von Ihnen gesetzten Bezugspunkt mit Werten aus der Paletten-Tabelle. Mit der Funktion M104 aktivieren Sie wieder den zuletzt von Ihnen gesetzten Bezugspunkt.

Wirkung

M104 wirkt nur in den Programm-Sätzen, in denen M104 programmiert ist.

M104 wird wirksam am Satz-Ende.

Positionen im ungeschwenkten Koordinaten-System bei geschwenkter Bearbeitungsebene anfahren: M130

Standardverhalten bei geschwenkter Bearbeitungsebene

Koordinaten in Positionier-Sätzen bezieht die TNC auf das geschwenkte Koordinatensystem.

Verhalten mit M130

Koordinaten in Geraden-Sätzen bezieht die TNC bei aktiver, geschwenkter Bearbeitungsebene auf das ungeschwenkte Koordinatensystem

Die TNC positioniert dann das (geschwenkte) Werkzeug auf die programmierte Koordinate des ungeschwenkten Systems.

Nachfolgende Positionensätze bzw. Bearbeitungszyklen werden wieder im geschwenkten Koordinaten-System ausgeführt, dies kann bei Bearbeitungszyklen mit absoluter Vorpositionierung zu Problemen führen.

Die Funktion M130 ist nur erlaubt, wenn die Funktion Bearbeitungsebene Schwenken aktiv ist.

Wirkung

M130 ist satzweise wirksam in Geraden-Sätzen ohne Werkzeug-Radiuskorrektur.

7.4 Zusatz-Funktionen für das Bahnverhalten

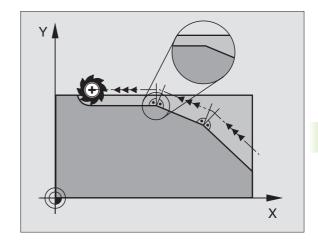
Ecken verschleifen: M90

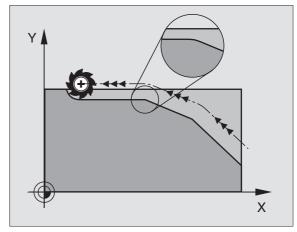
Standardverhalten

Die TNC hält bei Positionier-Sätzen ohne Werkzeug-Radiuskorrektur das Werkzeug an den Ecken kurz an (Genau-Halt).

Bei Programmsätzen mit Radiuskorrektur (RR/RL) fügt die TNC an Außenecken automatisch einen Übergangskreis ein.

Verhalten mit M90


Das Werkzeug wird an eckigen Übergängen mit konstanter Bahngeschwindigkeit geführt: Die Ecken verschleifen und die Werkstück-Oberfläche wird glatter. Zusätzlich verringert sich die Bearbeitungszeit. Siehe Bild rechts Mitte.


Anwendungsbeispiel: Flächen aus kurzen Geradenstücken.

Wirkung

M90 wirkt nur in dem Programmsatz, in dem M90 programmiert ist.

M90 wird wirksam am Satz-Anfang. Betrieb mit Schleppabstand muss angewählt sein.

Definierten Rundungskreis zwischen Geradenstücken einfügen: M112

Kompatibilität

Aus Kompatibilitätsgründen ist die Funktion M112 weiterhin verfügbar. Um die Toleranz beim schnellen Konturfräsen festzulegen, empfiehlt HEIDENHAIN jedoch die Verwendung des Zyklus TOLERANZ, siehe "Sonder-Zyklen", Seite 341

Kleine Konturstufen bearbeiten: M97

Standardverhalten

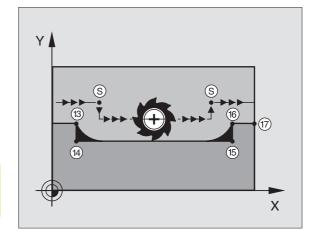
Die TNC fügt an der Außenecke einen Übergangskreis ein. Bei sehr kleinen Konturstufen würde das Werkzeug dadurch die Kontur beschädigen.

Die TNC unterbricht an solchen Stellen den Programmlauf und gibt die Fehlermeldung "Werkzeug-Radius zu groß" aus.

Verhalten mit M97

Die TNC ermittelt einen Bahnschnittpunkt für die Konturelemente – wie bei Innenecken – und fährt das Werkzeug über diesen Punkt.

Programmieren Sie M97 in dem Satz, in dem der Außeneckpunkt festgelegt ist.


Wirkung

M97 wirkt nur in dem Programmsatz, in dem M97 programmiert ist.

Die Konturecke wird mit M97 nur unvollständig bearbeitet. Eventuell müssen Sie die Konturecke mit einem kleineren Werkzeug nachbearbeiten.

Y

NC-Beispielsätze

5 TOOL DEF L R+20	Großer Werkzeug-Radius
•••	
13 L X Y R F M97	Konturpunkt 13 anfahren
14 L IY-0,5 R F	Kleine Konturstufe 13 und 14 bearbeiten
15 L IX+100	Konturpunkt 15 anfahren
16 L IY+0,5 R F M97	Kleine Konturstufe 15 und 16 bearbeiten
17 L X Y	Konturpunkt 17 anfahren

Offene Konturecken vollständig bearbeiten: M98

Standardverhalten

Die TNC ermittelt an Innenecken den Schnittpunkt der Fräserbahnen und fährt das Werkzeug ab diesem Punkt in die neue Richtung.

Wenn die Kontur an den Ecken offen ist, dann führt das zu einer unvollständigen Bearbeitung:

Verhalten mit M98

Mit der Zusatz-Funktion M98 fährt die TNC das Werkzeug so weit, dass jeder Konturpunkt tatsächlich bearbeitet wird:

Wirkung

M98 wirkt nur in den Programmsätzen, in denen M98 programmiert ist.

M98 wird wirksam am Satz-Ende.

NC-Beispielsätze

Nacheinander Konturpunkte 10, 11 und 12 anfahren:

10 L X ... Y... RL F 11 L X... IY... M98 12 L IX+ ...

Vorschubfaktor für Eintauchbewegungen: M103

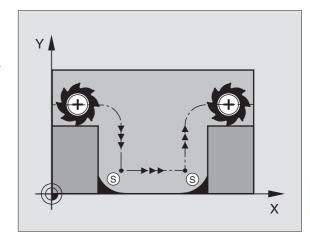
Standardverhalten

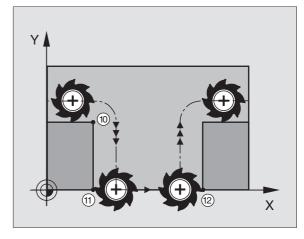
Die TNC fährt das Werkzeug unabhängig von der Bewegungsrichtung mit dem zuletzt programmierten Vorschub.

Verhalten mit M103

Die TNC reduziert den Bahnvorschub, wenn das Werkzeug in negativer Richtung der Werkzeugachse fährt. Der Vorschub beim Eintauchen FZMAX wird errechnet aus dem zuletzt programmierten Vorschub FPROG und einem Faktor F%:

FZMAX = FPROG x F%


M103 eingeben


Wenn Sie in einem Positionier-Satz M103 eingeben, dann führt die TNC den Dialog fort und erfragt den Faktor F.

Wirkung

M103 wird wirksam am Satz-Anfang.

M103 aufheben: M103 ohne Faktor erneut programmieren

NC-Beispielsätze

Vorschub beim Eintauchen beträgt 20% des Ebenenvorschubs.

	Tatsächlicher Bahnvorschub (mm/min):
17 L X+20 Y+20 RL F500 M103 F20	500
18 L Y+50	500
19 L IZ-2,5	100
20 L IY+5 IZ-5	141
21 L IX+50	500
22 L Z+5	500

Vorschub in Millimeter/Spindel-Umdrehung: M136

Standardverhalten

Die TNC verfährt das Werkzeug mit dem im Programm festgelegten Vorschub F in mm/min.

Verhalten mit M136

Mit M136 verfährt die TNC das Werkzeug nicht in mm/min sondern mit dem im Programm festgelegten Vorschub F in Millimeter/Spindel-Umdrehung. Wenn Sie die Drehzahl über den Spindel-Override verändern, passt die TNC den Vorschub automatisch an.

Mit Einführung der Software 280 476-xx hat sich die Einheit der Funktion M136 von μ m/U auf mm/U geändert. Sollten Sie Programme mit M136 verwenden, die Sie auf einer älteren TNC-Software erstellt haben, müssen Sie den programmierten Vorschub um den Faktor 1000 kleiner eingeben.

Wirkung

M136 wird wirksam am Satz-Anfang.

M136 heben Sie auf, indem Sie M137 programmieren.

Vorschubgeschwindigkeit bei Kreisbögen: M109/M110/M111

Standardverhalten

Die TNC bezieht die programmierte Vorschubgeschwindigkeit auf die Werkzeug-Mittelpunktsbahn.

Verhalten bei Kreisbögen mit M109

Die TNC hält bei Innen- und Außenbearbeitungen den Vorschub von Kreisbögen an der Werkzeug-Schneide konstant.

Verhalten bei Kreisbögen mit M110

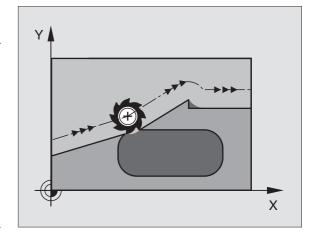
Die TNC hält den Vorschub bei Kreisbögen ausschließlich bei einer Innenbearbeitung konstant. Bei einer Außenbearbeitung von Kreisbögen wirkt keine Vorschub-Anpassung.

M110 wirkt auch bei der Innenbearbeitung von Kreisbögen mit Konturzyklen. Wenn Sie M109 bzw. M110 vor dem Aufruf eines Bearbeitungszyklus definieren, wirkt die Vorschub-Anpassung auch bei Kreisbögen innerhalb von Bearbeitungszyklen. Am Ende oder nach Abbruch eines Bearbeitungszyklus wird der Ausgangszustand wieder hergestellt.

Wirkung

M109 und M110 werden wirksam am Satz-Anfang. M109 und M110 setzen Sie mit M111 zurück.

Radiuskorrigierte Kontur vorausberechnen (LOOK AHEAD): M120


Standardverhalten

Wenn der Werkzeug-Radius größer ist, als eine Konturstufe, die radiuskorrigiert zu fahren ist, dann unterbricht die TNC den Programmlauf und zeigt eine Fehlermeldung. M97 (siehe "Kleine Konturstufen bearbeiten: M97" auf Seite 182): M97" verhindert die Fehlermeldung, führt aber zu einer Freischneidemarkierung und verschiebt zusätzlich die Ecke.

Bei Hinterschneidungen verletzt die TNC u.U. die Kontur.

Verhalten mit M120

Die TNC überprüft eine radiuskorrigierte Kontur auf Hinterschneidungen und Überschneidungen und berechnet die Werkzeugbahn ab dem aktuellen Satz voraus. Stellen, an denen das Werkzeug die Kontur beschädigen würde, bleiben unbearbeitet (im Bild rechts dunkel dargestellt). Sie können M120 auch verwenden, um Digitalisierdaten oder Daten, die von einem externen Programmier-System erstellt wurden, mit Werkzeug-Radiuskorrektur zu versehen. Dadurch sind Abweichungen vom theoretischen Werkzeug-Radius kompensierbar.

i

Die Anzahl der Sätze (maximal 99), die die TNC vorausrechnet, legen Sie mit LA (engl. Look Ahead: schaue voraus) hinter M120 fest. Je größer Sie die Anzahl der Sätze wählen, die die TNC vorausrechnen soll, desto langsamer wird die Satzverarbeitung.

Eingabe

Wenn Sie in einem Positionier-Satz M120 eingeben, dann führt die TNC den Dialog für diesen Satz fort und erfragt die Anzahl der vorauszuberechnenden Sätze LA.

Wirkung

M120 muss in einem NC-Satz stehen, der auch die Radiuskorrektur RL oder RR enthält. M120 wirkt ab diesem Satz bis Sie

- die Radiuskorrektur mit R0 aufheben
- M120 LA0 programmieren
- M120 ohne LA programmieren
- mit PGM CALL ein anderes Programm aufrufen

M120 wird wirksam am Satz-Anfang.

Einschränkungen

- Den Wiedereintritt in eine Kontur nach Extern/Intern Stop dürfen Sie nur mit der Funktion VORLAUF ZU SATZ N durchführen
- Wenn Sie die Bahnfunktionen RND und CHF verwenden, dürfen die Sätze vor und hinter RND bzw. CHF nur Koordinaten der Bearbeitungsebene enthalten
- Wenn Sie die Kontur tangential anfahren, müssen Sie die Funktion APPR LCT verwenden; der Satz mit APPR LCT darf nur Koordinaten der Bearbeitungsebene enthalten
- Wenn Sie die Kontur tangential verlassen, müssen Sie die Funktion DEP LCT verwenden; der Satz mit DEP LCT darf nur Koordinaten der Bearbeitungsebene enthalten

Handrad-Positionierung während des Programmlaufs überlagern: M118

Standardverhalten

Die TNC fährt das Werkzeug in den Programmlauf-Betriebsarten wie im Bearbeitungs-Programm festgelegt.

Verhalten mit M118

Mit M118 können Sie während des Programmlaufs manuelle Korrekturen mit dem Handrad durchführen. Dazu programmieren Sie M118 und geben einen achsspezifischen Wert X, Y und Z in mm ein.

Eingabe

Wenn Sie in einem Positionier-Satz M118 eingeben, dann führt die TNC den Dialog fort und erfragt die achsspezifischen Werte. Benutzen Sie die orangefarbenen Achstasten oder die ASCII-Tastatur zur Koordinaten-Eingabe.

Wirkung

Die Handrad-Positionierung heben Sie auf, indem Sie M118 ohne X, Y und Z erneut programmieren.

M118 wird wirksam am Satz-Anfang.

NC-Beispielsätze

Während des Programmlaufs soll mit dem Handrad in der Bearbeitungsebene X/Y um ±1 mm vom programmierten Wert verfahren werden können:

L X+0 Y+38,5 RL F125 M118 X1 Y1

M118 wirkt immer im Original-Koordinatensystem, auch wenn die Funktion Bearbeitungsebene schwenken aktiv ist!

M118 wirkt auch in der Betriebsart Positionieren mit Handeingabe!

Wenn M118 aktiv ist, steht bei einer Programm-Unterbrechung die Funktion MANUELL VERFAHREN nicht zur Verfügung!

Rückzug von der Kontur in Werkzeugachsen-Richtung: M140

Standardverhalten

Die TNC fährt das Werkzeug in den Programmlauf-Betriebsarten wie im Bearbeitungs-Programm festgelegt.

Verhalten mit M140

Mit M140 MB (move back) können Sie einen eingebbaren Weg in Richtung der Werkzeugachse von der Kontur wegfahren.

Eingabe

Wenn Sie in einem Positionier-Satz M140 eingeben, dann führt die TNC den Dialog fort und erfragt den Weg, den das Werkzeug von der Kontur wegfahren soll. Geben Sie den gewünschten Weg ein, den das Werkzeug von der Kontur wegfahren soll oder drücken Sie den Softkey MAX, um bis an den Rand des Verfahrbereichs zu fahren.

Wirkung

M140 wirkt nur in dem Programmsatz, in dem M140 programmiert ist. M140 wird wirksam am Satz-Anfang.

NC-Beispielsätze

Satz 250: Werkzeug 50 mm von der Kontur wegfahren

Satz 251: Werkzeug bis an den Rand des Verfahrbereichs fahren

250 L X+0 Y+38,5 F125 M140 MB 50

251 L X+0 Y+38,5 F125 M140 MB MAX

M140 wirkt auch wenn die Funktion Bearbeitungsebene schwenken, M114 oder M128 aktiv ist. Bei Maschinen mit Schwenkköpfen verfährt die TNC das Werkzeug dann im geschwenkten System.

Mit der Funktion FN18: SYSREAD ID230 NR6 können Sie den Abstand von der aktuellen Position zur Verfahrbereichsgrenze der positiven Werkzeugachse ermitteln.

Mit M140 MB MAX können Sie nur in positiver Richtung freifahren.

Tastsystem-Überwachung unterdrücken: M141

Standardverhalten

Die TNC gibt bei ausgelenktem Taststift eine Fehlermeldung aus, sobald Sie eine Maschinenachse verfahren wollen.

Verhalten mit M141

Die TNC verfährt die Maschinenachsen auch dann, wenn das Tastsystem ausgelenkt ist. Diese Funktion ist erforderlich, wenn Sie einen eigenen Messzyklus in Verbindung mit dem Messzyklus 3 schreiben, um das Tastsystem nach dem Auslenken mit einem Positioniersatz wieder freizufahren.

Wenn Sie die Funktion M141 einsetzen, dann darauf achten, dass Sie das Tastsystem in die richtige Richtung freifahren

M141 wirkt nur in Verfahrbewegungen mit Geraden-Sätzen.

Wirkung

M141 wirkt nur in dem Programmsatz, in dem M141 programmiert ist. M141 wird wirksam am Satz-Anfang.

Modale Programminformationen löschen: M142

Standardverhalten

Die TNC setzt modale Programminformationen in folgenden Situationen zurück:

- Neues Programm wählen
- Zusatzfunktionen M02, M30 oder den Satz END PGM ausführen (abhängig von Maschinen-Parameter 7300)
- Zyklus mit Werten für das Grundverhalten erneut definieren

Verhalten mit M142

Alle modalen Programminformationen bis auf die Grunddrehung, 3D-Rotation und Q-Parameter werden zurückgesetzt.

Wirkung

M142 wirkt nur in dem Programmsatz, in dem M142 programmiert ist. M142 wird wirksam am Satz-Anfang.

Grunddrehung löschen: M143

Standardverhalten

Die Grunddrehung bleibt solange wirksam, bis sie zurückgesetzt oder mit einen neuen Wert überschrieben wird.

Verhalten mit M143

Die TNC löscht eine programmierte Grunddrehung im NC-Programm.

Wirkung

M143 wirkt nur in dem Programmsatz, in dem M143 programmiert ist. M143 wird wirksam am Satz-Anfang.

7.5 Zusatz-Funktionen für Drehachsen

Vorschub in mm/min bei Drehachsen A, B, C: M116

Standardverhalten

Die TNC interpretiert den programmierten Vorschub bei einer Drehachse in Grad/min. Der Bahnvorschub ist also abhängig von der Entfernung des Werkzeug-Mittelpunktes zum Drehachsen-Zentrum.

Je größer diese Entfernung wird, desto größer wird der Bahnvorschub.

Vorschub in mm/min bei Drehachsen mit M116

Die Maschinengeometrie muss vom Maschinenhersteller in den Maschinen-Parametern 7510 und folgenden festgelegt sein.

Die TNC interpretiert den programmierten Vorschub bei einer Drehachse in mm/min. Dabei berechnet die TNC jeweils am Satz-Anfang den Vorschub für diesen Satz. Der Vorschub bei einer Drehachse ändert sich nicht, während der Satz abgearbeitet wird, auch wenn sich das Werkzeug auf das Drehachsen-Zentrum zubewegt.

Wirkung

M116 wirkt in der Bearbeitungsebene Mit M117 setzen Sie M116 zurück; am Programm-Ende wird M116 ebenfalls unwirksam.

M116 wird wirksam am Satz-Anfang.

Drehachsen wegoptimiert fahren: M126

Standardverhalten

Das Standardverhalten der TNC beim Positionieren von Drehachsen, deren Anzeige auf Werte unter 360° reduziert ist, ist abhängig vom Maschinen-Parameter 7682. Dort ist festgelegt, ob die TNC die Differenz Soll-Position – Ist-Position, oder ob die TNC grundsätzlich immer (auch ohne M126) auf kürzestem Weg die programmierte Position anfahren soll. Beispiele:

Ist-Position	Soll-Position	Fahrweg
350°	10°	–340°
10°	340°	+330°

Verhalten mit M126

Mit M126 fährt die TNC eine Drehachse, deren Anzeige auf Werte unter 360° reduziert ist, auf kurzem Weg. Beispiele:

Ist-Position	Soll-Position	Fahrweg
350°	10°	+20°
10°	340°	-30°

Wirkung

M126 wird wirksam am Satzanfang. M126 setzen Sie mit M127 zurück; am Programm-Ende wird M126 ebenfalls unwirksam.

Anzeige der Drehachse auf Wert unter 360° reduzieren: M94

Standardverhalten

Die TNC fährt das Werkzeug vom aktuellen Winkelwert auf den programmierten Winkelwert.

Beispiel:

Aktueller Winkelwert: 538°
Programmierter Winkelwert: 180°
Tatsächlicher Fahrweg: -358°

Verhalten mit M94

Die TNC reduziert am Satzanfang den aktuellen Winkelwert auf einen Wert unter 360° und fährt anschließend auf den programmierten Wert. Sind mehrere Drehachsen aktiv, reduziert M94 die Anzeige aller Drehachsen. Alternativ können Sie hinter M94 eine Drehachse eingeben. Die TNC reduziert dann nur die Anzeige dieser Achse.

NC-Beispielsätze

Anzeigewerte aller aktiven Drehachsen reduzieren:

L M94

Nur Anzeigewert der C-Achse reduzieren:

I MQA (

Anzeige aller aktiven Drehachsen reduzieren und anschließend mit der C-Achse auf den programmierten Wert fahren:

L C+180 FMAX M94

Wirkung

M94 wirkt nur in dem Programmsatz, in dem M94 programmiert ist. M94 wird wirksam am Satz-Anfang.

Automatische Korrektur der Maschinengeometrie beim Arbeiten mit Schwenkachsen: M114

Standardverhalten

Die TNC fährt das Werkzeug auf die im Bearbeitungs-Programm festgelegten Positionen. Ändert sich im Programm die Position einer Schwenkachse, so muss der Postprozessor den daraus entstehenden Versatz in den Linearachsen berechnen und in einem Positioniersatz verfahren. Da hier auch die Maschinen-Geometrie eine Rolle spielt, muss für jede Maschine das NC-Programm separat berechnet werden.

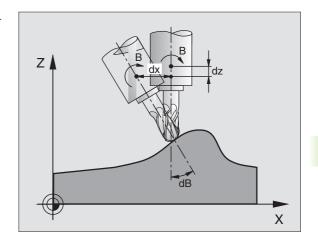
Verhalten mit M114

Andert sich im Programm die Position einer gesteuerten Schwenkachse, so kompensiert die TNC den Versatz des Werkzeugs mit einer 3D-Längenkorrektur automatisch. Da die Geometrie der Maschine in Maschinen-Parametern abgelegt ist, kompensiert die TNC auch maschinenspezifische Versätze automatisch. Programme müssen vom Postprozessor nur einmal berechnet werden, auch wenn sie auf unterschiedlichen Maschinen mit TNC-Steuerung abgearbeitet werden.

Wenn Ihre Maschine keine gesteuerten Schwenkachsen besitzt (Kopf manuell zu schwenken, Kopf wird von der PLC positioniert), können Sie hinter M114 die jeweils gültige Schwenkkopf-Position eingeben (z.B. M114 B+45, Q-Parameter erlaubt).

Die Werkzeug-Radiuskorrektur muss vom CAD-System bzw. vom Postprozessor berücksichtigt werden. Eine programmierte Radiuskorrektur RL/RR führt zu einer Fehlermeldung.

Wenn die TNC die Werkzeug-Längenkorrektur vornimmt, dann bezieht sich der programmierte Vorschub auf die Werkzeugspitze, sonst auf den Werkzeug-Bezugspunkt.


Wenn Ihre Maschine einen gesteuerten Schwenkkopf hat, können Sie den Programmlauf unterbrechen und die Stellung der Schwenkachse verändern (z.B. mit dem Handrad).

Mit der Funktion VORLAUF ZU SATZ N können Sie das Bearbeitungs-Programm danach an der Unterbrechungsstelle fortführen. Die TNC berücksichtigt bei aktivem M114 automatisch die neue Stellung der Schwenkachse.

Um die Stellung der Schwenkachse mit dem Handrad während des Programmlaufs zu ändern, benutzen Sie M118 in Verbindung mit M128.

Wirkung

M114 wird wirksam am Satz-Anfang, M115 am Satz-Ende. M114 wirkt nicht bei aktiver Werkzeug-Radiuskorrektur.

M114 setzen Sie mit M115 zurück. Am Programm-Ende wird M114 ebenfalls unwirksam.

Die Maschinengeometrie muss vom Maschinenhersteller in den Maschinen-Parametern 7510 und folgenden festgelegt sein.

Position der Werkzeugspitze beim Positionieren von Schwenkachsen beibehalten (TCPM*): M128

Standardverhalten

Die TNC fährt das Werkzeug auf die im Bearbeitungs-Programm festgelegten Positionen. Ändert sich im Programm die Position einer Schwenkachse, so muss der daraus entstehende Versatz in den Linearachsen berechnet und in einem Positioniersatz verfahren werden (siehe Bild bei M114).

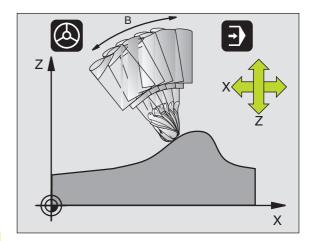
Verhalten mit M128

Ändert sich im Programm die Position einer gesteuerten Schwenkachse, dann bleibt während des Schwenkvorganges die Position der Werkzeugspitze gegenüber dem Werkstück unverändert.

Verwenden Sie M128 in Verbindung mit M118, wenn Sie während des Programmlaufs die Stellung der Schwenkachse mit dem Handrad verändern wollen. Die Überlagerung einer Handrad-Positionierung erfolgt bei aktivem M128 im maschinenfesten Koordinatensystem.

Bei Schwenkachsen mit Hirth-Verzahnung: Stellung der Schwenkachse nur verändern, nachdem Sie das Werkzeug freigefahren haben. Ansonsten können durch das Herausfahren aus der Verzahnung Konturverletzungen entstehen.

Hinter M128 können Sie noch einen Vorschub eingeben, mit dem die TNC die Ausgleichsbewegungen in den Linearachsen ausführt. Wenn Sie keinen Vorschub eingeben, oder einen der größer ist als im Maschinen-Parameter 7471 festgelegt ist, wirkt der Vorschub aus Maschinen-Parameter 7471.


Vor Positionierungen mit M91 oder M92 und vor einem TOOL CALL: M128 rücksetzen.

Um Kontur-Verletzungen zu vermeiden dürfen Sie mit M128 nur Radiusfräser verwenden.

Die Werkzeug-Länge muss sich auf das Kugelzentrum des Radiusfräsers beziehen.

Die TNC schwenkt die aktive Werkzeug-Radiuskorrektur nicht mit. Dadurch entsteht ein Fehler, der von der Winkelstellung der Drehachse abhängt.

Wenn M128 aktiv ist, zeigt die TNC in der Status-Anzeige das Symbol an.

M128 bei Schwenktischen

Wenn Sie bei aktivem M128 eine Schwenktisch-Bewegung programmieren, dann dreht die TNC das Koordinaten-System entsprechend mit. Drehen Sie z.B. die C-Achse um 90° (durch positionieren oder durch Nullpunkt-Verschiebung) und programmieren anschließend eine Bewegung in der X-Achse, dann führt die TNC die Bewegung in der Maschinenachse Y aus.

Auch den gesetzten Bezugspunkt, der sich durch die Rundtisch-Bewegung verlagert, transformiert die TNC.

M128 bei dreidimensionaler Werkzeug-Korrektur

Wenn Sie bei aktivem M128 und aktiver Radiuskorrektur RL/RR eine dreidimensionale Werkzeug-Korrektur durchführen, positioniert die TNC bei bestimmten Maschinengeometrien die Drehachsen automatisch (Peripheral-Milling, siehe "Dreidimensionale Werkzeug-Korrektur", Seite 114).

Wirkung

M128 wird wirksam am Satz-Anfang, M129 am Satz-Ende. M128 wirkt auch in den manuellen Betriebsarten und bleibt nach einem Betriebsartenwechsel aktiv. Der Vorschub für die Ausgleichsbewegung bleibt so lange wirksam, bis Sie einen neuen programmieren oder M128 mit M129 rücksetzen.

M128 setzen Sie mit M129 zurück. Wenn Sie in einer Programmlauf-Betriebsart ein neues Programm wählen, setzt die TNC M128 ebenfalls zurück.

Die Maschinengeometrie muss vom Maschinenhersteller in den Maschinen-Parametern 7510 und folgenden festgelegt sein.

NC-Beispielsätze

Ausgleichsbewegungen mit einem Vorschub von 1000 mm/min durchführen:

L X+0 Y+38,5 RL F125 M128 F1000

Genauhalt an Ecken mit nicht tangentialen Übergängen: M134

Standardverhalten

Die TNC verfährt das Werkzeug bei Positionierungen mit Drehachsen so, dass an nicht tangentialen Konturübergängen ein Übergangselement eingefügt wird. Der Konturübergang ist abhängig von der Beschleunigung, dem Ruck und der festgelegten Toleranz der Konturabweichung.

Das Standardverhalten der TNC können Sie mit dem Maschinen-Parametern 7440 so ändern, das mit Anwahl eines Programmes M134 automatisch aktiv wird, siehe "Allgemeine Anwenderparameter", Seite 452.

Verhalten mit M134

Die TNC verfährt das Werkzeug bei Positionierungen mit Drehachsen so, dass an nicht tangentialen Konturübergängen ein Genauhalt ausgeführt wird.

Wirkung

M134 wird wirksam am Satz-Anfang, M135 am Satz-Ende.

M134 setzen Sie mit M135 zurück. Wenn Sie in einer Programmlauf-Betriebsart ein neues Programm wählen, setzt die TNC M134 ebenfalls zurück.

Auswahl von Schwenkachsen: M138

Standardverhalten

Die TNC berücksichtigt bei den Funktionen M114, M128 und Bearbeitungsebene schwenken die Drehachsen, die von Ihrem Maschinen-Hersteller in Maschinen-Parametern festgelegt sind.

Verhalten mit M138

Die TNC berücksichtigt bei den oben aufgeführten Funktionen nur die Schwenkachsen, die Sie mit M138 definiert haben.

Wirkung

M138 wird wirksam am Satz-Anfang.

M138 setzen Sie zurück, indem Sie M138 ohne Angabe von Schwenkachsen erneut programmieren.

NC-Beispielsätze

Für die oben aufgeführten Funktionen nur die Schwenkachse C berücksichtigen:

L Z+100 RO FMAX M138 C

Berücksichtigung der Maschinen-Kinematik in IST/SOLL-Positionen am Satzende: M144

Standardverhalten

Die TNC fährt das Werkzeug auf die im Bearbeitungs-Programm festgelegten Positionen. Ändert sich im Programm die Position einer Schwenkachse, so muss der daraus entstehende Versatz in den Linearachsen berechnet und in einem Positioniersatz verfahren werden.

Verhalten mit M144

Die TNC berücksichtigt eine Änderung der Maschinen-Kinematik in der Positionsanzeige, wie sie z.B. durch Einwechseln einer Vorsatzspindel entsteht. Ändert sich die Position einer gesteuerten Schwenkachse, dann wird während des Schwenkvorganges auch die Position der Werkzeugspitze gegenüber dem Werkstück verändert. Der entstandene Versatz wird in der Positionsanzeige verrechnet.

Positionierungen mit M91/M92 sind bei aktivem M144 erlaubt.

Die Positionsanzeige in den Betriebsarten SATZFOLGE und EINZELSATZ ändert sich erst, nachdem die Schwenkachsen ihre Endposition erreicht haben.

Wirkung

M144 wird wirksam am Satz-Anfang. M144 wirkt nicht in Verbindung mit M114, M128 oder Bearbeitungsebene Schwenken.

M144 heben Sie auf, indem Sie M145 programmieren.

Die Maschinengeometrie muss vom Maschinenhersteller in den Maschinen-Parametern 7502 und folgenden festgelegt sein. Der Maschinenhersteller legt die Wirkungsweise in den Automatik-Betriebsarten und manuellen Betriebsarten fest. Beachten Sie Ihr Maschinenhandbuch

7.6 Zusatz-Funktionen für Laser-Schneidmaschinen

Prinzip

Zum Steuern der Laserleistung gibt die TNC über den S-Analog-Ausgang Spannungswerte aus. Mit den M-Funktionen M200 bis M204 können Sie während des Programmlaufs die Laserleistung beeinflussen.

Zusatz-Funktionen für Laser-Schneidmaschinen eingeben

Wenn Sie in einem Positionier-Satz eine M-Funktion für Laser-Schneidmaschinen eingeben, dann führt die TNC den Dialog fort und erfragt die jeweiligen Parameter der Zusatz-Funktion.

Alle Zusatz-Funktionen für Laser-Schneidmaschinen werden wirksam am Satz-Anfang.

Programmierte Spannung direkt ausgeben: M200

Verhalten mit M200

Die TNC gibt den hinter M200 programmierten Wert als Spannung V aus.

Eingabebereich: 0 bis 9.999 V

Wirkung

M200 wirkt solange, bis über M200, M201, M202, M203 oder M204 eine neue Spannung ausgegeben wird.

Spannung als Funktion der Strecke: M201

Verhalten mit M201

M201 gibt die Spannung abhängig vom zurückgelegten Weg aus. Die TNC erhöht oder verringert die aktuelle Spannung linear auf den programmierten Wert V.

Eingabebereich: 0 bis 9.999 V

Wirkung

M201 wirkt solange, bis über M200, M201, M202, M203 oder M204 eine neue Spannung ausgegeben wird.

Spannung als Funktion der Geschwindigkeit: M202

Verhalten mit M202

Die TNC gibt die Spannung als Funktion der Geschwindigkeit aus. Der Maschinenhersteller legt in Maschinen-Parametern bis zu drei Kennlinien FNR. fest, in denen Vorschub-Geschwindigkeiten Spannungen zugeordnet werden. Mit M202 wählen Sie die Kennlinie FNR., aus der die TNC die auszugebende Spannung ermittelt.

Eingabebereich: 1 bis 3

Wirkung

M202 wirkt solange, bis über M200, M201, M202, M203 oder M204 eine neue Spannung ausgegeben wird.

Spannung als Funktion der Zeit ausgeben (zeitabhängige Rampe): M203

Verhalten mit M203

Die TNC gibt die Spannung V als Funktion der Zeit TIME aus. Die TNC erhöht oder verringert die aktuelle Spannung linear in einer programmierten Zeit TIME auf den programmierten Spannungs-Wert V.

Eingabebereich

Spannung V: 0 bis 9.999 Volt Zeit TIME: 0 bis 1.999 Sekunden

Wirkung

M203 wirkt solange, bis über M200, M201, M202, M203 oder M204 eine neue Spannung ausgegeben wird.

Spannung als Funktion der Zeit ausgeben (zeitabhängiger Puls): M204

Verhalten mit M204

Die TNC gibt eine programmierte Spannung als Puls mit einer programmierten Dauer TIME aus.

Eingabebereich

Spannung V: 0 bis 9.999 Volt Zeit TIME: 0 bis 1.999 Sekunden

Wirkung

M204 wirkt solange bis über M200, M201, M202, M203 oder M204 eine neue Spannung ausgegeben wird.

707

8

Programmieren: Zyklen

8.1 Mit Zyklen arbeiten

Häufig wiederkehrende Bearbeitungen, die mehrere Bearbeitungsschritte umfassen, sind in der TNC als Zyklen gespeichert. Auch Koordinaten-Umrechnungen und einige Sonderfunktionen stehen als Zyklen zur Verfügung (siehe Tabelle nächste Seite).

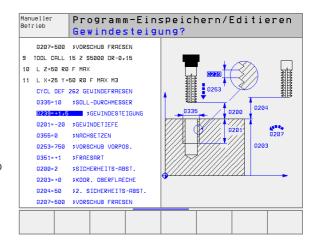
Bearbeitungs-Zyklen mit Nummern ab 200 verwenden Q-Parameter als Übergabeparameter. Parameter mit gleicher Funktion, die die TNC in verschiedenen Zyklen benötigt, haben immer dieselbe Nummer: z.B. Q200 ist immer der Sicherheits-Abstand, Q202 immer die Zustell-Tiefe usw.

Zyklus definieren über Softkeys

Die Softkey-Leiste zeigt die verschiedenen Zyklus-Gruppen

► Zyklus-Gruppe wählen, z.B. Bohrzyklen

- Zyklus wählen, z.B. GEWINDEFRÄSEN. Die TNC eröffnet einen Dialog und erfragt alle Eingabewerte; gleichzeitig blendet die TNC in der rechten Bildschirmhälfte eine Grafik ein, in der der einzugebende Parameter hell hinterlegt ist
- Geben Sie alle von der TNC geforderten Parameter ein und schließen Sie jede Eingabe mit der Taste ENT ab
- Die TNC beendet den Dialog, nachdem Sie alle erforderlichen Daten eingegeben haben


Zyklus definieren über GOTO-Funktion

▶ Die Softkey-Leiste zeigt die verschiedenen Zyklus-Gruppen

▶ Die TNC zeigt in einem Fenster die Zyklen-Übersicht an. Wählen Sie mit den Pfeiltasten den gewünschten Zyklus oder geben Sie die Zyklus-Nummer ein und bestätigen jeweils mit der Taste ENT. Die TNC eröffnet dann den Zyklus-Dialog wie zuvor beschrieben

NC-Beispielsätze

7	CYCL DEF 200	BOHREN
	Q200=2	;SICHERHEITS-ABST.
	Q201=-20	;TIEFE
	Q206=150	; VORSCHUB TIEFENZ.
	Q202=5	;ZUSTELL-TIEFE
	Q210=0	;VERWEILZEIT OBEN
	Q203=+0	;KOOR. OBERFLAECHE
	Q204=50	;2. SICHERHEITS-ABST.
	Q211=0.25	;VERWEILZEIT UNTEN

Zyklus-Gruppe	Softkey
Zyklen zum Tiefbohren, Reiben, Ausdrehen, Senken, Gewindebohren, Gewindeschneiden und Gewindefrä- sen	BOHREN/ GEWINDE
Zyklen zum Fräsen von Taschen, Zapfen und Nuten	TASCHEN/ ZAPFEN/ NUTEN
Zyklen zur Herstellung von Punktemustern, z.B. Lochkreis od. Lochfläche	PUNKTE- MUSTER
SL-Zyklen (Subcontur-List), mit denen aufwendigere Konturen konturparallel bearbeitet werden, die sich aus mehreren überlagerten Teilkonturen zusammen- setzen, Zylindermantel-Interpolation	SLII
Zyklen zum Abzeilen ebener oder in sich verwundener Flächen	ABZE ILEN
Zyklen zur Koordinaten-Umrechnung, mit denen beliebige Konturen verschoben, gedreht, gespiegelt, vergrößert und verkleinert werden	KOORD UMRECHN.
Sonder-Zyklen Verweilzeit, Programm-Aufruf, Spindel-	SONDER-

Orientierung, Toleranz

Wenn Sie bei Bearbeitungszyklen mit Nummern größer 200 indirekte Parameter-Zuweisungen (z.B. Q210 = Q1) verwenden, wird eine Änderung des zugewiesenen Parameters (z.B. Q1) nach der Zyklus-Definition nicht wirksam. Definieren Sie in solchen Fällen den Zyklusparameter (z.B. Q210) direkt.

Um die Bearbeitungszyklen 1 bis 17 auch auf älteren TNC-Bahnsteuerungen abarbeiten zu können, müssen Sie beim Sicherheits-Abstand und bei der Zustell-Tiefe zusätzlich ein negatives Vorzeichen programmieren.

i

Zyklus aufrufen

Voraussetzungen

Vor einem Zyklus-Aufruf programmieren Sie in jedem Fall:

- **BLK FORM** zur grafischen Darstellung (nur für Testgrafik erforderlich)
- Werkzeug-Aufruf
- Drehsinn der Spindel (Zusatz-Funktion M3/M4)
- Zyklus-Definition (CYCL DEF).

Beachten Sie weitere Voraussetzungen, die bei den nachfolgenden Zyklusbeschreibungen aufgeführt sind.

Folgende Zyklen wirken ab ihrer Definition im Bearbeitungs-Programm. Diese Zyklen können und dürfen Sie nicht aufrufen:

- die Zyklen 220 Punktemuster auf Kreis und 221 Punktemuster auf Linien
- den SL-Zyklus 14 KONTUR
- den SL-Zyklus 20 KONTUR-DATEN
- Zyklus 32 TOLERANZ
- Zyklen zur Koordinaten-Umrechnung
- den Zyklus 9 VERWEILZEIT

Alle übrigen Zyklen rufen Sie auf, wie nachfolgend beschrieben:

Soll die TNC den Zyklus nach dem zuletzt programmierten Satz einmal ausführen, programmieren Sie den Zyklus-Aufruf mit der Zusatz-Funktion M99 oder mit CYCL CALL:

- Zyklus-Aufruf programmieren: Taste CYCL CALL drücken
- Zyklus-Aufruf eingeben: Softkey CYCL CALL M drücken
- Zusatz-Funktion M eingeben, oder mit der Taste END den Dialog beenden
- **2** Soll die TNC den Zyklus nach jedem Positionier-Satz automatisch ausführen, programmieren Sie den Zyklus-Aufruf mit M89 (abhängig von Maschinen-Parameter 7440).
- 3 Soll die TNC den Zyklus auf allen Positionen abarbeiten, die in einer Punkte-Tabelle definiert sind, dann verwenden Sie die Funktion CYCL CALL PAT (siehe "Punkte-Tabellen" auf Seite 206)

Um die Wirkung von M89 aufzuheben, programmieren Sie

- **M99** oder
- CYCL CALL oder
- CYCL DEF

8 Programmieren: Zyklen

Arbeiten mit Zusatzachsen U/V/W

Die TNC führt Zustellbewegungen in der Achse aus, die Sie im TOOL CALL-Satz als Spindelachse definiert haben. Bewegungen in der Bearbeitungsebene führt die TNC grundsätzlich nur in den Hauptachsen X, Y oder Z aus. Ausnahmen:

- Wenn Sie im Zyklus 3 NUTENFRAESEN und im Zyklus 4 TASCHEN-FRAESEN für die Seitenlängen direkt Zusatzachsen programmieren
- Wenn Sie bei SL-Zyklen Zusatzachsen im Kontur-Unterprogramm programmieren

i

8.2 Punkte-Tabellen

Anwendung

Wenn Sie einen Zyklus, bzw. mehrere Zyklen hintereinander, auf einem unregelmäßigen Punktemuster abarbeiten wollen, dann erstellen Sie Punkte-Tabellen.

Wenn Sie Bohrzyklen verwenden, entsprechen die Koordinaten der Bearbeitungsebene in der Punkte-Tabelle den Koordinaten der Bohrungs-Mittelpunkte. Setzen Sie Fräszyklen ein, entsprechen die Koordinaten der Bearbeitungsebene in der Punkte-Tabelle den Startpunkt-Koordinaten des jeweiligen Zyklus (z.B. Mittelpunkts-Koordinaten einer Kreistasche). Koordinaten in der Spindelachse entsprechen der Koordinate der Werkstück-Oberfläche.

Punkte-Tabelle eingeben

Betriebsart Programm-Einspeichern/Editieren wählen:

Datei-Verwaltung aufrufen: Taste PGM MGT drücken

Datei-Name?

NEU.PNT

Name und Datei-Typ der Punkte-Tabelle eingeben, mit Taste ENT bestätigen

ММ

Maßeinheit wählen: Softkey MM oder INCH drücken. Die TNC wechselt ins Programm-Fenster und stellt eine leere Punkte-Tabelle dar

Mit Softkey ZEILE EINFÜGEN neue Zeile einfügen und die Koordinaten desgewünschten Bearbeitungsortes eingeben

Vorgang wiederholen, bis alle gewünschten Koordinaten eingegeben sind

Mit den Softkeys X AUS/EIN, Y AUS/EIN, Z AUS/EIN (zweite Softkey-Leiste) legen Sie fest, welche Koordinaten Sie in die Punkte-Tabelle eingeben können.

i

Punkte-Tabelle im Programm wählen

In der Betriebsart Programm-Einspeichern/Editieren das Programm wählen, für das die Punkte-Tabelle aktiviert werden soll:

Funktion zur Auswahl der Punkte-Tabelle aufrufen: Taste PGM CALL drücken

Softkey PUNKTE-TABELLE drücken

Name der Punkte-Tabelle eingeben, mit Taste END bestätigen. Wenn die Punkte-Tabelle nicht im selben Verzeichnis gespeichert ist wie das NC-Programm, dann müssen Sie den kompletten Pfadnamen eingeben

NC-Beispielsatz

7 SEL PATTERN "TNC:\DIRKT5\MUST35.PNT"

Zyklus in Verbindung mit Punkte-Tabellen aufrufen

Die TNC arbeitet mit **CYCL CALL PAT** die Punkte-Tabelle ab, die Sie zuletzt definiert haben (auch wenn Sie die Punkte-Tabelle in einem mit **CALL PGM** verschachtelten Programm definiert haben).

Die TNC verwendet die Koordinate in der Spindelachse als sichere Höhe, an der das Werkzeug beim Zyklus-Aufruf steht. In einem Zyklus separat definierte Sichere Höhen bzw. 2. Sicherheits-Abstände dürfen nicht größer als die globale Pattern-Sicherheitshöhe sein.

Soll die TNC den zuletzt definierten Bearbeitungszyklus an den Punkten aufrufen, die in einer Punkte-Tabelle definiert sind, programmieren Sie den Zyklus-Aufruf mit CYCL CALL PAT:

- Zyklus-Aufruf programmieren: Taste CYCL CALL drükken
- ▶ Punkte-Tabelle rufen: Softkey CYCL CALL PAT drükken
- Vorschub eingeben, mit dem die TNC zwischen den Punkten verfahren soll (keine Eingabe: Verfahren mit zuletzt programmiertem Vorschub, FMAX nicht gültig)
- Bei Bedarf Zusatz-Funktion M eingeben, mit Taste END bestätigen

Die TNC zieht das Werkzeug zwischen den Startpunkten zurück auf die sichere Höhe (sichere Höhe = Spindelachsen-Koordinate beim Zyklus-Aufruf). Um diese Arbeitsweise auch bei den Zyklen mit Nummern 200 und größer einsetzen zu können, müssen Sie den 2. Sicherheits-Abstand (Q204) mit 0 definieren.

Wenn Sie beim Vorpositionieren in der Spindelachse mit reduziertem Vorschub fahren wollen, verwenden Sie die Zusatz-Funktion M103 (siehe "Vorschubfaktor für Eintauchbewegungen: M103" auf Seite 183).

Wirkungsweise der Punkte-Tabellen mit Zyklen 1 bis 5, 17 und 18

Die TNC interpretiert die Punkte der Bearbeitungsebene als Koordinaten des Bohrungs-Mittelpunktes. Die Koordinate der Spindel-Achse legt die Oberkante des Werkstücks fest, so dass die TNC automatisch vorpositionieren kann (Reihenfolge: Bearbeitungsebene, dann Spindelachse).

Wirkungsweise der Punkte-Tabellen mit SL-Zyklen und Zyklus 12

Die TNC interpretiert die Punkte als zusätzliche Nullpunkt-Verschiebung.

8 Programmieren: Zyklen

Wirkungsweise der Punkte-Tabellen mit Zyklen 200 bis 208 und 262 bis 267

Die TNC interpretiert die Punkte der Bearbeitungsebene als Koordinaten des Bohrungs-Mittelpunktes. Wenn Sie die in der Punkte-Tabelle definierte Koordinate in der Spindel-Achse als Startpunkt-Koordinate nutzen wollen, müssen Sie die Werkstück-Oberkante (Q203) mit 0 definieren.

Wirkungsweise der Punkte-Tabellen mit Zyklen 210 bis 215

Die TNC interpretiert die Punkte als zusätzliche Nullpunkt-Verschiebung. Wenn Sie die in der Punkte-Tabelle definierten Punkte als Startpunkt-Koordinaten nutzen wollen, müssen Sie die Startpunkte und die Werkstück-Oberkante (Q203) im jeweiligen Fräszyklus mit 0 programmieren.

i

8.3 Zyklen zum Bohren, Gewindebohren und Gewindefräsen

Übersicht

Die TNC stellt insgesamt 19 Zyklen für die verschiedensten Bohrbearbeitungen zur Verfügung:

boltungen zur Verrugung.			
Zyklus	Softkey		
1 TIEFBOHREN Ohne automatische Vorpositionierung	1 🔯		
200 BOHREN Mit automatischer Vorpositionierung, 2. Sicherheits- Abstand	200 🖟		
201 REIBEN Mit automatischer Vorpositionierung, 2. Sicherheits- Abstand	201		
202 AUSDREHEN Mit automatischer Vorpositionierung, 2. Sicherheits- Abstand	202		
203 UNIVERSAL-BOHREN Mit automatischer Vorpositionierung, 2. Sicherheits- Abstand, Spanbruch, Degression	203 🖟		
204 RUECKWAERTS-SENKEN Mit automatischer Vorpositionierung, 2. Sicherheits- Abstand	204		
205 UNIVERSAL-TIEFBOHREN Mit automatischer Vorpositionierung, 2. Sicherheits- Abstand, Spanbruch, Vorhalteabstand	205 🕅 "11		
208 BOHRFRAESEN Mit automatischer Vorpositionierung, 2. Sicherheits- Abstand	208 []		

i

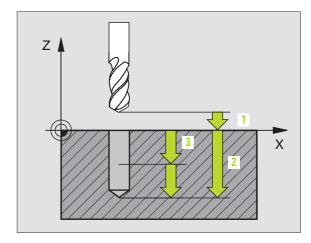
Zyklus	Softkey
2 GEWINDEBOHREN Mit Ausgleichsfutter	2 🕃
17 GEWINDEBOHREN GS Ohne Ausgleichsfutter	17 RT
18 GEWINDESCHNEIDEN	18
206 GEWINDEBOHREN NEU Mit Ausgleichsfutter, mit automatischer Vorpositionie- rung, 2. Sicherheits-Abstand	206 🕃
207 GEWINDEBOHREN GS NEU Ohne Ausgleichsfutter, mit automatischer Vorpositio- nierung, 2. Sicherheits-Abstand	207 🔝 RT
209 GEWINDEBOHREN SPANBRUCH Ohne Ausgleichsfutter, mit automatischer Vorpositio- nierung, 2. Sicherheits-Abstand; Spanbruch	209 RT
262 GEWINDEFRAESEN Zyklus zum Fräsen eines Gewindes ins vorgebohrte Material	262
263 SENKGEWINDEFRAESEN Zyklus zum Fräsen eines Gewindes ins vorgebohrte Material mit Herstellung einer Senkfase	263
264 BOHRGEWINDEFRAESEN Zyklus zum Bohren ins volle Material und anschließen- dem Fräsen des Gewindes mit einem Werkzeug	264
265 HELIX-BOHRGEWINDEFRAESEN Zyklus zum Fräsen des Gewindes ins volle Material	265
267 AUSSENGEWINDE FRAESEN Zyklus zum Fräsen eines Aussengewindes mit Her- stellung einer Senkfase	267

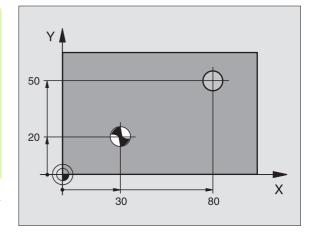
TIEFBOHREN (Zyklus 1)

- 1 Das Werkzeug bohrt mit dem eingegebenen Vorschub F von der aktuellen Position bis zur ersten Zustell-Tiefe
- 2 Danach f\u00e4hrt die TNC das Werkzeug im Eilgang FMAX zur\u00fcck und wieder bis zur ersten Zustell-Tiefe, verringert um den Vorhalte-Abstand t.
- 3 Die Steuerung ermittelt den Vorhalte-Abstand selbsttätig:
 - Bohrtiefe bis 30 mm: t = 0,6 mm
 - Bohrtiefe über 30 mm: t = Bohrtiefe/50
 - maximaler Vorhalte-Abstand: 7 mm
- 4 Anschließend bohrt das Werkzeug mit dem eingegebenen Vorschub F um eine weitere Zustell-Tiefe
- 5 Die TNC wiederholt diesen Ablauf (1 bis 4), bis die eingegebene Bohrtiefe erreicht ist
- 6 Am Bohrungsgrund zieht die TNC das Werkzeug, nach der Verweilzeit zum Freischneiden, mit FMAX zur Startposition zurück

Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur R0 programmieren.


Positionier-Satz auf den Startpunkt in der Spindelachse (Sicherheits-Abstand über Werkstück-Oberfläche) programmieren.


Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

212

- ➤ Sicherheits-Abstand 1 (inkremental): Abstand Werkzeugspitze (Startposition) Werkstück-Oberfläche
- ▶ Tiefe 2 (inkremental): Abstand Werkstück-Oberfläche – Bohrungsgrund (Spitze des Bohrkegels)
- Zustell-Tiefe 3 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird. Die Bohrtiefe muss kein Vielfaches der Zustell-Tiefe sein. Die TNC fährt in einem Arbeitsgang auf die Bohrtiefe wenn:
 - Zustell-Tiefe und Tiefe aleich sind
 - die Zustell-Tiefe größer als die Bohrtiefe ist
- ▶ Verweilzeit in Sekunden: Zeit, in der das Werkzeug am Bohrungsgrund verweilt, um freizuschneiden
- ▶ Vorschub F: Verfahrgeschwindigkeit des Werkzeugs beim Bohren in mm/min

Beispiel: NC-Sätze

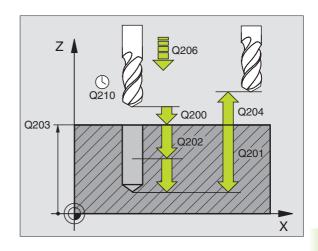
5 L Z+100 R0 FMAX

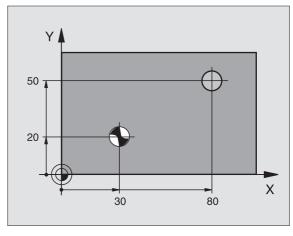
15 L Z+100 FMAX M2

6 CYCL DEF 1.0 TIEFBOHREN.	
7 CYCL DEF 1.1 ABST 2	
8 CYCL DEF 1.2 TIEFE -15	
9 CYCL DEF 1.3 ZUSTLG 7.5	
10 CYCL DEF 1.4 V.ZEIT 1	
11 CYCL DEF 1.5 F80	
12 L X+30 Y+20 FMAX M3	
13 L Z+2 FMAX M99	
14 L X+80 Y+50 FMAX M99	

8 Programmieren: Zyklen

BOHREN (Zyklus 200)


- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang FMAX auf den Sicherheits-Abstand über der Werkstück-Oberfläche
- 2 Das Werkzeug bohrt mit dem programmierten Vorschub F bis zur ersten Zustell-Tiefe
- 3 Die TNC fährt das Werkzeug mit FMAX auf den Sicherheits-Abstand zurück, verweilt dort - falls eingegeben - und fährt anschließend wieder mit FMAX bis auf Sicherheits-Abstand über die erste Zustell-Tiefe
- **4** Anschließend bohrt das Werkzeug mit eingegebenem Vorschub F um eine weitere Zustell-Tiefe
- 5 Die TNC wiederholt diesen Ablauf (2 bis 4), bis die eingegebene Bohrtiefe erreicht ist
- 6 Vom Bohrungsgrund f\u00e4hrt das Werkzeug mit FMAX auf Sicherheits-Abstand oder falls eingegeben auf den 2. Sicherheits-Abstand



Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur R0 programmieren

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

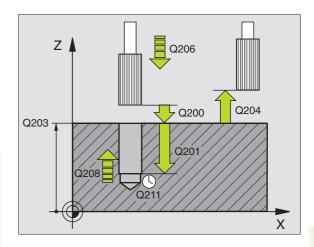
- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze – Werkstück-Oberfläche; Wert positiv eingeben
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Bohrungsgrund (Spitze des Bohrkegels)
- ▶ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Bohren in mm/min
- ➤ Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird. Die Tiefe muss kein Vielfaches der Zustell-Tiefe sein. Die TNC fährt in einem Arbeitsgang auf die Tiefe wenn:
 - Zustell-Tiefe und Tiefe gleich sind
 - die Zustell-Tiefe größer als die Tiefe ist
- Verweilzeit oben Q210: Zeit in Sekunden, die das Werkzeug auf dem Sicherheits-Abstand verweilt, nachdem es die TNC zum Entspanen aus der Bohrung herausgefahren hat
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Verweilzeit unten Q211: Zeit in Sekunden, die das Werkzeug am Bohrungsgrund verweilt

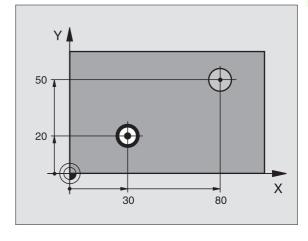
Beispiel: NC-Sätze

10 L Z+100 RO FMAX
11 CYCL DEF 200 BOHREN
Q200 = 2 ;SICHERHEITS-ABST
Q201 = -15 ;TIEFE
Q206 = 250 ; VORSCHUB TIEFENZ
Q2O2 = 5 ;ZUSTELL-TIEF
Q210 = 0 ;VERWEILZEIT OBEN
Q203 = +20 ;KOOR. OBERFLAECHE
Q204 = 100 ;2. SICHERHEITS-ABST.
Q211 = 0.1 ;VERWEILZEIT UNTEN
12 L X+30 Y+20 FMAX M3
13 CYCL CALL
14 L X+80 Y+50 FMAX M99
15 L Z+100 FMAX M2

214 8 Programmieren: Zyklen

REIBEN (Zyklus 201)


- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang FMAX auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche
- 2 Das Werkzeug reibt mit dem eingegebenen Vorschub F bis zur programmierten Tiefe
- 3 Am Bohrungsgrund verweilt das Werkzeug, falls eingegeben
- **4** Anschließend fährt die TNC das Werkzeug im Vorschub F zurück auf den Sicherheits-Abstand und von dort falls eingegeben mit FMAX auf den 2. Sicherheits-Abstand



Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur R0 programmieren.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze Werkstück-Oberfläche
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Bohrungsgrund
- ▶ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Reiben in mm/min
- ▶ Verweilzeit unten Q211: Zeit in Sekunden, die das Werkzeug am Bohrungsgrund verweilt
- ▶ Vorschub Rückzug Q208: Verfahrgeschwindigkeit des Werkzeugs beim Herausfahren aus der Bohrung in mm/min. Wenn Sie Q208 = 0 eingeben, dann gilt Vorschub Reiben
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann

Beispiel: NC-Sätze

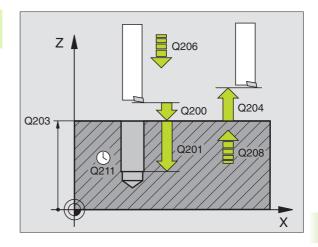
10 L Z+100 RO FMAX
11 CYCL DEF 201 REIBEN
Q200 = 2 ;SICHERHEITS-ABST.
Q201 = -15 ;TIEFE
Q206 = 100 ;VORSCHUB TIEFENZ.
Q211 = 0,5 ;VERWEILZEIT UNTEN
Q208 = 250 ; VORSCHUB RUECKZUG
Q203 = +20 ;KOOR. OBERFLAECHE
Q204 = 100 ;2. SICHERHEITS-ABST
12 L X+30 Y+20 FMAX M3
13 CYCL CALL
14 L X+80 Y+50 FMAX M9
15 L Z+100 FMAX M2

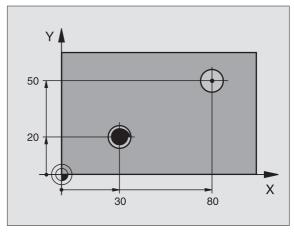
216 8 Programmieren: Zyklen

AUSDREHEN (Zyklus 202)

Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein.

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang FMAX auf den Sicherheits-Abstand über der Werkstück-Oberfläche
- 2 Das Werkzeug bohrt mit dem Bohrvorschub bis zur Tiefe
- 3 Am Bohrungsgrund verweilt das Werkzeug falls eingegeben mit laufender Spindel zum Freischneiden
- 4 Anschließend führt die TNC eine Spindel-Orientierung auf die 0°-Position durch
- **5** Falls Freifahren gewählt ist, fährt die TNC in der eingegebenen Richtung 0,2 mm (fester Wert) frei
- 6 Anschließend fährt die TNC das Werkzeug im Vorschub Rückzug auf den Sicherheits-Abstand und von dort – falls eingegeben – mit FMAX auf den 2. Sicherheits-Abstand. Wenn Q214=0 erfolgt der Rückzug an der Bohrungswand




Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur R0 programmieren.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Die TNC stellt am Zyklus-Ende den Kühlmittel- und Spindelzustand wieder her, der vor dem Zyklus-Aufruf aktiv war.

- ► Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze Werkstück-Oberfläche
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Bohrungsgrund
- Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Ausdrehen in mm/min
- ▶ **Verwei1zeit unten** Q211: Zeit in Sekunden, in der das Werkzeug am Bohrungsgrund verweilt
- ▶ Vorschub Rückzug Q208: Verfahrgeschwindigkeit des Werkzeugs beim Herausfahren aus der Bohrung in mm/min. Wenn Sie Q208=0 eingeben, dann gilt Vorschub Tiefenzustellung
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Freifahr-Richtung (0/1/2/3/4) Q214: Richtung festlegen, in der die TNC das Werkzeug am Bohrungsgrund freifährt (nach der Spindel-Orientierung)
 - Werkzeug nicht freifahren
 - Werkzeug freifahren in Minus-Richtung der Hauptachse
 - Werkzeug freifahren in Minus-Richtung der Nebenachse
 - 3 Werkzeug freifahren in Plus-Richtung der Hauptachse
 - 4 Werkzeug freifahren in Plus-Richtung der Nebenachse

Kollisionsgefahr!

Wählen Sie die Freifahr-Richtung so, dass das Werkzeug vom Bohrungsrand wegfährt.

Uberprüfen Sie, wo die Werkzeug-Spitze steht, wenn Sie eine Spindel-Orientierung auf den Winkel programmieren, den Sie im Q336 eingeben (z.B. in der Betriebsart Positionieren mit Handeingabe). Wählen Sie den Winkel so, dass die Werkzeug-Spitze parallel zu einer Koordinaten-Achse steht.

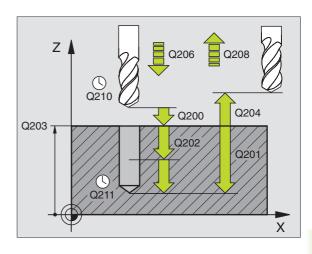
Winkel für Spindel-Orientierung Q336 (absolut): Winkel, auf den die TNC das Werkzeug vor dem Freifahren positioniert

Beispiel:

10 L Z+100 RO FMAX
11 CYCL DEF 202 AUSDREHEN
Q200 = 2 ;SICHERHEITS-ABST.
Q201 = -15 ;TIEFE
Q206 = 100 ;VORSCHUB TIEFENZ.
Q211 = 0,5 ;VERWEILZEIT UNTE
Q208 = 250 ; VORSCHUB RUECKZUG
Q203 = +20 ; KOOR. OBERFLAECHE
Q204 = 100 ;2. SICHERHEITS-ABST.
Q214 = 1 ;FREIFAHR-RICHTUNG
Q336 = 0 ;WINKEL SPINDEL
12 L X+30 Y+20 FMAX M3
13 CYCL CALL
14 L X+80 Y+50 FMAX M99

UNIVERSAL-BOHREN (Zyklus 203)

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang FMAX auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche
- 2 Das Werkzeug bohrt mit dem eingegebenen Vorschub F bis zur ersten Zustell-Tiefe
- 3 Falls Spanbruch eingegeben, fährt die TNC das Werkzeug um den eingegebenen Rückzugswert zurück. Wenn Sie ohne Spanbruch arbeiten, dann fährt die TNC das Werkzeug mit dem Vorschub Rückzug auf den Sicherheits-Abstand zurück, verweilt dort falls eingegeben und fährt anschließend wieder mit FMAX bis auf Sicherheits-Abstand über die erste Zustell-Tiefe
- 4 Anschließend bohrt das Werkzeug mit Vorschub um eine weitere Zustell-Tiefe. Die Zustell-Tiefe verringert sich mit jeder Zustellung um den Abnahmebetrag falls eingegeben
- 5 Die TNC wiederholt diesen Ablauf (2-4), bis die Bohrtiefe erreicht ist
- 6 Am Bohrungsgrund verweilt das Werkzeug falls eingegeben zum Freischneiden und wird nach der Verweilzeit mit dem Vorschub Rückzug auf den Sicherheits-Abstand zurückgezogen. Falls Sie einen 2. Sicherheits-Abstand eingegeben haben, fährt die TNC das Werkzeug mit FMAX dorthin


Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur R0 programmieren.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze Werkstück-Oberfläche
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Bohrungsgrund (Spitze des Bohrkegels)
- ▶ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Bohren in mm/min
- ▶ Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird. Die Tiefe muss kein Vielfaches der Zustell-Tiefe sein. Die TNC fährt in einem Arbeitsgang auf die Tiefe wenn:
 - Zustell-Tiefe und Tiefe gleich sind
 - die Zustell-Tiefe größer als die Tiefe ist
- ▶ Verweilzeit oben Q210: Zeit in Sekunden, die das Werkzeug auf Sicherheits-Abstand verweilt, nachdem es die TNC zum Entspanen aus der Bohrung herausgefahren hat
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche

Beispiel: NC-Sätze

11 CYCL DEF 203	B UNIVERSAL-BOHREN
Q200=2	;SICHERHEITS-ABST.
Q201=-20	;TIEFE
Q206=150	;VORSCHUB TIEFENZ.
Q202=5	;ZUSTELL-TIEFE
Q210=0	;VERWEILZEIT OBEN
Q203=+20	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q212=0.2	; ABNAHMEBETRAG
Q213=3	; SPANBRUECHE
Q205=3	;MIN. ZUSTELL-TIEFE
Q211=0.25	;VERWEILZEIT UNTEN
Q208=500	; VORSCHUB RUECKZUG
Q256=0.2	; RZ BEI SPANBRUCH

- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- Abnahmebetrag Q212 (inkremental): Wert, um den die TNC die Zustell-Tiefe Q202 nach jeder Zustellung verkleinert
- ▶ Anz. Spanbrüche bis Rückzug Q213: Anzahl der Spanbrüche bevor die TNC das Werkzeug aus der Bohrung zum Entspanen herausfahren soll. Zum Spanbrechen zieht die TNC das Werkzeug jeweils um den Rückzugswert Q256 zurück
- Minimale Zustell-Tiefe Q205 (inkremental): Falls Sie einen Abnahmebetrag eingegeben haben, begrenzt die TNC die Zustellung auf den mit Q205 eingegeben Wert
- ▶ Verweilzeit unten Q211: Zeit in Sekunden, die das Werkzeug am Bohrungsgrund verweilt
- ▶ Vorschub Rückzug Q208: Verfahrgeschwindigkeit des Werkzeugs beim Herausfahren aus der Bohrung in mm/min. Wenn Sie Q208=0 eingeben, dann fährt die TNC das Werkzeug mit Vorschub Q206 heraus
- ▶ Rückzug bei Spanbruch Q256 (inkremental): Wert, um die die TNC das Werkzeug beim Spanbrechen zurückfährt

8 Programmieren: Zyklen

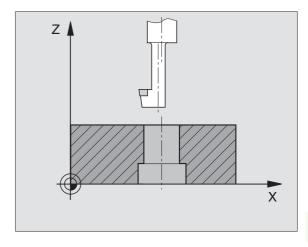
RUECKWAERTS-SENKEN (Zyklus 204)

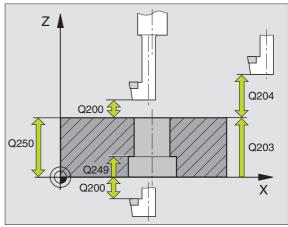
Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein.

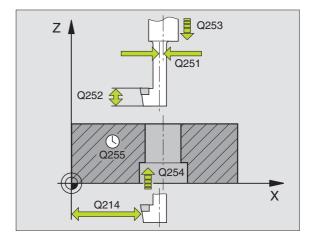
Zyklus arbeitet nur mit Rückwärtsbohrstangen.

Mit diesem Zyklus stellen Sie Senkungen her, die sich auf der Werkstück-Unterseite befinden.

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang FMAX auf den Sicherheits-Abstand über der Werkstück-Oberfläche
- 2 Dort führt die TNC eine Spindel-Orientierung auf die 0°-Position durch und versetzt das Werkzeug um das Exzentermaß
- 3 Anschließend taucht das Werkzeug mit dem Vorschub Vorpositionieren in die vorgebohrte Bohrung ein, bis die Schneide im Sicherheits-Abstand unterhalb der Werkstück-Unterkante steht
- **4** Die TNC fährt jetzt das Werkzeug wieder auf Bohrungsmitte, schaltet die Spindel und ggf. das Kühlmittel ein und fährt dann mit dem Vorschub Senken auf die eingegebene Tiefe Senkung
- **5** Falls eingegeben, verweilt das Werkzeug am Senkungsgrund und fährt anschließend wieder aus der Bohrung heraus, führt eine Spindelorientierung durch und versetzt erneut um das Exzentermaß
- **6** Anschließend fährt die TNC das Werkzeug im Vorschub Vorpositionieren auf den Sicherheits-Abstand und von dort falls eingegeben mit FMAX auf den 2. Sicherheits-Abstand.


Beachten Sie vor dem Programmieren


Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur R0 programmieren.


Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung beim Senken fest. Achtung: Positives Vorzeichen senkt in Richtung der positiven Spindelachse.

Werkzeug-Länge so eingeben, dass nicht die Schneide, sondern die Unterkante der Bohrstange vermaßt ist.

Die TNC berücksichtigt bei der Berechnung des Startpunktes der Senkung die Schneidenlänge der Bohrstange und die Materialstärke

- ► Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze Werkstück-Oberfläche
- ▶ Tiefe Senkung Q249 (inkremental): Abstand Werkstück-Unterkante – Senkungsgrund. Positives Vorzeichen stellt die Senkung in positiver Richtung der Spindelachse her
- Material stärke Q250 (inkremental): Dicke des Werkstücks
- ▶ Exzentermaß O251 (inkremental): Exzentermaß der Bohrstange; aus Werkzeug-Datenblatt entnehmen
- ▶ Schneidenhöhe Q252 (inkremental): Abstand Unterkante Bohrstange – Hauptschneide; aus Werkzeug-Datenblatt entnehmen
- ▶ Vorschub Vorpositionieren Q253: Verfahrgeschwindigkeit des Werkzeugs beim Eintauchen in das Werkstück bzw. beim Herausfahren aus dem Werkstück in mm/min
- ▶ Vorschub Senken Q254: Verfahrgeschwindigkeit des Werkzeugs beim Senken in mm/min
- Verweilzeit Q255: Verweilzeit in Sekunden am Senkungsgrund
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- Freifahr-Richtung (0/1/2/3/4) Q214: Richtung festlegen, in der die TNC das Werkzeug um das Exzentermaß versetzen soll (nach der Spindel-Orientierung); Eingabe von 0 nicht erlaubt
 - Werkzeug freifahren in Minus-Richtung der Hauptachse
 - Werkzeug freifahren in Minus-Richtung der Nebenachse
 - 3 Werkzeug freifahren in Plus-Richtung der Hauptachse
 - 4 Werkzeug freifahren in Plus-Richtung der Nebenachse

Kollisionsgefahr!

Überprüfen Sie, wo die Werkzeug-Spitze steht, wenn Sie eine Spindel-Orientierung auf den Winkel programmieren, den Sie im Q336 eingeben (z.B. in der Betriebsart Positionieren mit Handeingabe). Wählen Sie den Winkel so, dass die Werkzeug-Spitze parallel zu einer Koordinaten-Achse steht. Wählen Sie die Freifahr-Richtung so, dass das Werkzeug vom Bohrungsrand wegfährt.

Beispiel: NC-Sätze

11 CYCL DEF 204 RUECKWAERTS-SENKEN
Q200=2 ;SICHERHEITS-ABST.
Q249=+5 ;TIEFE SENKUNG
Q250=20 ;MATERIALSTAERKE
Q251=3.5 ;EXZENTERMASS
Q252=15 ;SCHNEIDENHOEHE
Q253=750 ; VORSCHUB VORPOS.
Q254=200 ; VORSCHUB SENKEN
Q255=O ;VERWEILZEIT
Q203=+20 ;KOOR. OBERFLAECHE
Q204=50 ;2. SICHERHEITS-ABST.
Q214=1 ;FREIFAHR-RICHTUNG
Q336=0 ;WINKEL SPINDEL

8 Programmieren: Zyklen

▶Winke1 für Spinde1-Orientierung Q336 (absolut): Winkel, auf den die TNC das Werkzeug vor dem Eintauchen und vor dem Herausfahren aus der Bohrung positioniert

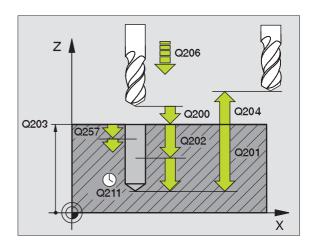
UNIVERSAL-TIEFBOHREN (Zyklus 205)

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang FMAX auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche
- 2 Das Werkzeug bohrt mit dem eingegebenen Vorschub F bis zur ersten Zustell-Tiefe
- 3 Falls Spanbruch eingegeben, fährt die TNC das Werkzeug um den eingegebenen Rückzugswert zurück. Wenn Sie ohne Spanbruch arbeiten, dann fährt die TNC das Werkzeug im Eilgang auf den Sicherheits-Abstand zurück und anschließend wieder mit FMAX bis auf den eingegebenen Vorhalteabstand über die erste Zustell-Tiefe
- 4 Anschließend bohrt das Werkzeug mit Vorschub um eine weitere Zustell-Tiefe. Die Zustell-Tiefe verringert sich mit jeder Zustellung um den Abnahmebetrag falls eingegeben
- 5 Die TNC wiederholt diesen Ablauf (2-4), bis die Bohrtiefe erreicht ist
- 6 Am Bohrungsgrund verweilt das Werkzeug falls eingegeben zum Freischneiden und wird nach der Verweilzeit mit dem Vorschub Rückzug auf den Sicherheits-Abstand zurückgezogen. Falls Sie einen 2. Sicherheits-Abstand eingegeben haben, fährt die TNC das Werkzeug mit FMAX dorthin

Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur R0 programmieren

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.



- ► Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze Werkstück-Oberfläche
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche Bohrungsgrund (Spitze des Bohrkegels)
- Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Bohren in mm/min
- ➤ Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird. Die Tiefe muss kein Vielfaches der Zustell-Tiefe sein. Die TNC fährt in einem Arbeitsgang auf die Tiefe wenn:
 - Zustell-Tiefe und Tiefe gleich sind
 - die Zustell-Tiefe größer als die Tiefe ist
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Abnahmebetrag Q212 (inkremental): Wert, um den die TNC die Zustell-Tiefe Q202 verkleinert
- Minimale Zustell-Tiefe Q205 (inkremental): Falls Sie einen Abnahmebetrag eingegeben haben, begrenzt die TNC die Zustellung auf den mit Q205 eingegeben Wert
- ▶ Vorhalteabstand oben Q258 (inkremental): Sicherheits-Abstand für Eilgang-Positionierung, wenn die TNC das Werkzeug nach einem Rückzug aus der Bohrung wieder auf die aktuelle Zustell-Tiefe fährt; Wert bei erster Zustellung
- ▶ Vorhalteabstand unten Q259 (inkremental): Sicherheits-Abstand für Eilgang-Positionierung, wenn die TNC das Werkzeug nach einem Rückzug aus der Bohrung wieder auf die aktuelle Zustell-Tiefe fährt; Wert bei letzter Zustellung

Wenn Sie Q258 ungleich Q259 eingeben, dann verändert die TNC den Vorhalteabstand zwischen der ersten und letzten Zustellung gleichmäßig.

- ▶ Bohrtiefe bis Spanbruch Q257 (inkremental): Zustellung, nach der die TNC einen Spanbruch durchführt. Kein Spanbruch, wenn 0 eingegeben
- ▶ Rückzug bei Spanbruch Q256 (inkremental): Wert, um die die TNC das Werkzeug beim Spanbrechen zurückfährt
- ▶ Verweilzeit unten Q211: Zeit in Sekunden, die das Werkzeug am Bohrungsgrund verweilt

Beispiel: NC-Sätze

11 CYCL DEF 20F	5 UNIVERSAL-TIEFBOHREN
Q200=2	
Q201=-80	;TIEFE
Q206=150	;VORSCHUB TIEFENZ.
Q202=15	;ZUSTELL-TIEFE
Q203=+100	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q212=0.5	; ABNAHMEBETRAG
Q205=3	;MIN. ZUSTELL-TIEFE
Q258=0.5	; VORHALTEABSTAND OBEN
Q259=1	;VORHALTEABST. UNTEN
Q257=5	;BOHRTIEFE SPANBRUCH
Q256=0.2	; RZ BEI SPANBRUCH
Q211=0.25	;VERWEILZEIT UNTEN

224 8 Programmieren: Zyklen

BOHRFRAESEN (Zyklus 208)

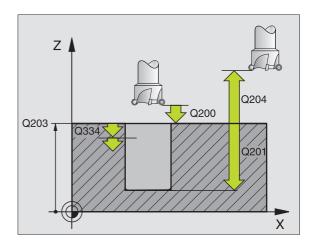
- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang FMAX auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche und fährt den eingegebenen Durchmesser auf einem Rundungskreis an (wenn Platz vorhanden ist)
- 2 Das Werkzeug fräst mit dem eingegebenen Vorschub F in einer Schraubenlinie bis zur eingegebenen Bohrtiefe
- 3 Wenn die Bohrtiefe erreicht ist, f\u00e4hrt die TNC nochmals einen Vollkreis, um das beim Eintauchen stehengelassene Material zu entfernen
- **4** Danach positioniert die TNC das Werkzeug wieder zurück in die Bohrungsmitte
- 5 Abschließend fährt die TNC mit FMAX zurück auf den Sicherheits-Abstand. Falls Sie einen 2. Sicherheits-Abstand eingegeben haben, fährt die TNC das Werkzeug mit FMAX dorthin

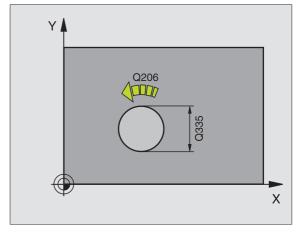
Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur R0 programmieren.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Wenn Sie den Bohrungs-Durchmesser gleich dem Werkzeug-Durchmesser eingegeben haben, bohrt die TNC ohne Schraubenlinien-Interpolation direkt auf die eingegebene Tiefe.


- ► Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeug-Unterkante Werkstück-Oberfläche
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Bohrungsgrund
- Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Bohren auf der Schraubenlinie in mm/min
- Zustellung pro Schraubenlinie Q334 (inkremental): Maß, um welches das Werkzeug auf einer Schraubenlinie (=360°) jeweils zugestellt wird



Beachten Sie, dass Ihr Werkzeug bei zu großer Zustellung sowohl sich selbst als auch das Werkstück beschädigt.

Um die Eingabe zu großer Zustellungen zu vermeiden, geben Sie in der Werkzeug-Tabelle in der Spalte ANGLE den maximal möglichen Eintauchwinkel des Werkzeugs an, siehe "Werkzeug-Daten", Seite 99. Die TNC berechnet dann automatisch die maximal erlaubte Zustellung und ändert ggf. Ihren eingegebenen Wert ab.

- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- Soll-Durchmesser Q335 (absolut): Bohrungs-Durchmesser. Wenn Sie den Soll-Durchmesser gleich dem Werkzeug-Durchmesser eingeben, dann bohrt die TNC ohne Schraubenlinien-Interpolation direkt auf die eingegebene Tiefe
- ▶ Vorgebohrter Durchmesser Q342 (absolut): Sobald Sie in Q342 einen Wert größer 0 eingeben, führt die TNC keine Überprüfung bzgl. des Durchmesser-Verhältnisses Soll- zu Werkzeug-Durchmesser mehr durch. Dadurch können Sie Bohrungen ausfräsen, deren Durchmesser mehr als doppelt so groß sind wie der Werkzeug-Durchmesser

Beispiel: NC-Sätze

12 CYCL DEF 208 BOHRFRAESEN		
Q200=2	;SICHERHEITS-ABST.	
Q201=-80	;TIEFE	
Q206=150	;VORSCHUB TIEFENZ.	
Q334=1.5	;ZUSTELL-TIEFE	
Q203=+100 ;	KOOR. OBERFLAECHE	
Q204=50 ;	2. SICHERHEITS-ABST.	
Q335=25	;SOLL-DURCHMESSER	
Q342=0	;VORGEB. DURCHMESSER	

226 8 Programmieren: Zyklen

GEWINDEBOHREN mit Ausgleichsfutter (Zyklus 2)

- 1 Das Werkzeug fährt in einem Arbeitsgang auf die Bohrtiefe
- 2 Danach wird die Spindeldrehrichtung umgekehrt und das Werkzeug nach der Verweilzeit auf die Startposition zurückgezogen
- 3 An der Startposition wird die Spindeldrehrichtung erneut umgekehrt

Beachten Sie vor dem Programmieren

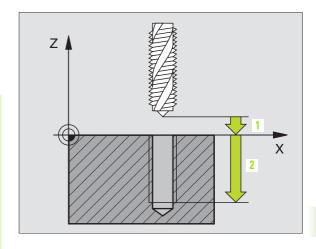
Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur R0 programmieren.

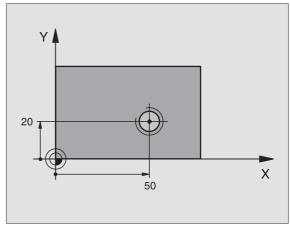
Positionier-Satz auf den Startpunkt in der Spindelachse (Sicherheits-Abstand über Werkstück-Oberfläche) programmieren.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Das Werkzeug muss in ein Längenausgleichsfutter gespannt sein. Das Längenausgleichsfutter kompensiert Toleranzen von Vorschub und Drehzahl während der Bearbeitung.

Während der Zyklus abgearbeitet wird, ist der Drehknopf für den Drehzahl-Override unwirksam. Der Drehknopf für den Vorschub-Override ist noch begrenzt aktiv (vom Maschinenhersteller festgelegt, Maschinenhandbuch beachten).


Für Rechtsgewinde Spindel mit M3 aktivieren, für Linksgewinde mit M4.



- ➤ Sicherheits-Abstand 1 (inkremental): Abstand Werkzeugspitze (Startposition) Werkstück-Oberfläche; Richtwert: 4x Gewindesteigung
- ▶ **Bohrtiefe 2** (Gewindelänge, inkremental): Abstand Werkstück-Oberfläche Gewindeende
- ▶ Verweilzeit in Sekunden: Wert zwischen 0 und 0,5 Sekunden eingeben, um ein Verkeilen des Werkzeugs beim Rückzug zu vermeiden
- ▶ Vorschub F: Verfahrgeschwindigkeit des Werkzeugs beim Gewindebohren

Vorschub ermitteln: $F = S \times p$

- F: Vorschub mm/min)
- S: Spindel-Drehzahl (U/min)
- p: Gewindesteigung (mm)

Beispiel: NC-Sätze

24 L Z+100 RO FMAX
25 CYCL DEF 2.0 GEWINDEBOHREN
26 CYCL DEF 2.1 ABST 3
27 CYCL DEF 2.2 TIEFE -20
28 CYCL DEF 2.3 V.ZEIT 0.4
29 CYCL DEF 2.4 F100
30 L X+50 Y+20 FMAX M3
31 L Z+3 FMAX M99

Freifahren bei Programm-Unterbrechung

Wenn Sie während des Gewindebohrens die externe Stop-Taste drükken, zeigt die TNC einen Softkey an, mit dem Sie das Werkzeug freifahren können.

GEWINDEBOHREN NEU mit Ausgleichsfutter (Zyklus 206)

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang FMAX auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche
- 2 Das Werkzeug fährt in einem Arbeitsgang auf die Bohrtiefe
- 3 Danach wird die Spindeldrehrichtung umgekehrt und das Werkzeug nach der Verweilzeit auf den Sicherheits-Abstand zurückgezogen. Falls Sie einen 2. Sicherheits-Abstand eingegeben haben, fährt die TNC das Werkzeug mit FMAX dorthin
- **4** Auf Sicherheits-Abstand wird die Spindeldrehrichtung erneut umgekehrt

Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur R0 programmieren.

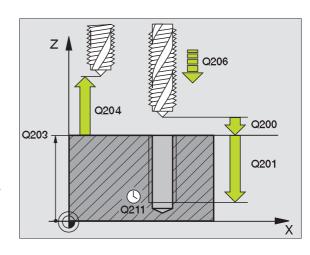
Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Das Werkzeug muss in ein Längenausgleichsfutter gespannt sein. Das Längenausgleichsfutter kompensiert Toleranzen von Vorschub und Drehzahl während der Bearbeitung.

Während der Zyklus abgearbeitet wird, ist der Drehknopf für den Drehzahl-Override unwirksam. Der Drehknopf für den Vorschub-Override ist noch begrenzt aktiv (vom Maschinenhersteller festgelegt, Maschinenhandbuch beachten).

Für Rechtsgewinde Spindel mit M3 aktivieren, für Linksgewinde mit M4.

en: Zyklen


- ➤ Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze (Startposition) Werkstück-Oberfläche; Richtwert: 4x Gewindesteigung
- ▶ Bohrtiefe Q201 (Gewindelänge, inkremental): Abstand Werkstück-Oberfläche – Gewindeende
- ▶ Vorschub F Q206: Verfahrgeschwindigkeit des Werkzeugs beim Gewindebohren
- ▶ Verweilzeit unten Q211: Wert zwischen 0 und 0,5 Sekunden eingeben, um ein Verkeilen des Werkzeugs beim Rückzug zu vermeiden
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann

Vorschub ermitteln: $F = S \times p$

- F: Vorschub mm/min)
- S: Spindel-Drehzahl (U/min)
- p: Gewindesteigung (mm)

Freifahren bei Programm-Unterbrechung

Wenn Sie während des Gewindebohrens die externe Stop-Taste drükken, zeigt die TNC einen Softkey an, mit dem Sie das Werkzeug freifahren können.

Beispiel: NC-Sätze

25 CYCL DEF 206	GEWINDEBOHREN NEU
Q200=2	;SICHERHEITS-ABST.
Q201=-20	;TIEFE
Q206=150	; VORSCHUB TIEFENZ.
Q211=0.25	;VERWEILZEIT UNTEN
Q203=+25	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.

GEWINDEBOHREN ohne Ausgleichsfutter GS (Zyklus 17)

Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein.

Die TNC schneidet das Gewinde entweder in einem oder in mehreren Arbeitsgängen ohne Längenausgleichsfutter.

Vorteile gegenüber dem Zyklus Gewindebohren mit Ausgleichsfutter:

- Höhere Bearbeitungsgeschwindigkeit
- Gleiches Gewinde wiederholbar, da sich die Spindel beim Zyklus-Aufruf auf die 0°-Position ausrichtet (abhängig von Maschinen-Parameter 7160)
- Größerer Verfahrbereich der Spindelachse, da das Ausgleichsfutter entfällt

Beachten Sie vor dem Programmieren

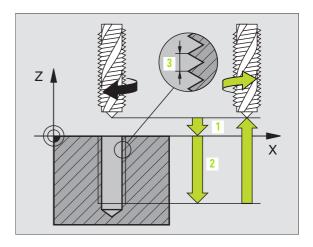
Positionier-Satz auf den Startpunkt (Bohrungsmitte) in der Bearbeitungsebene mit Radiuskorrektur R0 programmieren

Positionier-Satz auf den Startpunkt in der Spindelachse (Sicherheits-Abstand über Werkstück-Oberfläche) programmieren

Das Vorzeichen des Parameters Bohrtiefe legt die Arbeitsrichtung fest.

Die TNC berechnet den Vorschub in Abhängigkeit von der Drehzahl. Wenn Sie während des Gewindebohrens den Drehknopf für den Drehzahl-Override betätigen, passt die TNC den Vorschub automatisch an

Der Drehknopf für den Vorschub-Override ist nicht aktiv.


Am Zyklusende steht die Spindel. Vor der nächsten Bearbeitung Spindel mit M3 (bzw. M4) wieder einschalten.

- ➤ Sicherheits-Abstand 1 (inkremental): Abstand Werkzeugspitze (Startposition) Werkstück-Oberfläche
- ▶ Bohrtiefe 2 (inkremental): Abstand Werkstück-Oberfläche (Gewindebeginn) – Gewindeende
- ► Gewindesteigung 3:

Steigung des Gewindes. Das Vorzeichen legt Rechtsoder Linksgewinde fest:

- += Rechtsgewinde
- -= Linksgewinde

Beispiel: NC-Sätze

18 CYCL DEF 17.0 GEW.-BOHREN GS

19 CYCL DEF 17.1 ABST 2

20 CYCL DEF 17.2 TIEFE -20

21 CYCL DEF 17.3 STEIG +1

i

Freifahren bei Programm-Unterbrechung

Wenn Sie während des Gewindebohrens die externe Stop-Taste drükken, zeigt die TNC den Softkey MANUELL FREIFAHREN an. Wenn Sie MANUEL FREIFAHREN drücken, können Sie das Werkzeug gesteuert freifahren. Drücken Sie dazu die positive Achsrichtungs-Taste der aktiven Spindelachse.

GEWINDEBOHREN ohne Ausgleichsfutter GS NEU (Zyklus 207)

Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein.

Die TNC schneidet das Gewinde entweder in einem oder in mehreren Arbeitsgängen ohne Längenausgleichsfutter.

Vorteile gegenüber dem Zyklus Gewindebohren mit Ausgleichsfutter: Siehe "GEWINDEBOHREN ohne Ausgleichsfutter GS (Zyklus 17)", Seite 230

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang FMAX auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche
- 2 Das Werkzeug fährt in einem Arbeitsgang auf die Bohrtiefe
- 3 Danach wird die Spindeldrehrichtung umgekehrt und das Werkzeug nach der Verweilzeit auf den Sicherheits-Abstand zurückgezogen. Falls Sie einen 2. Sicherheits-Abstand eingegeben haben, fährt die TNC das Werkzeug mit FMAX dorthin
- 4 Auf Sicherheits-Abstand hält die TNC die Spindel an

Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) in der Bearbeitungsebene mit Radiuskorrektur R0 programmieren.

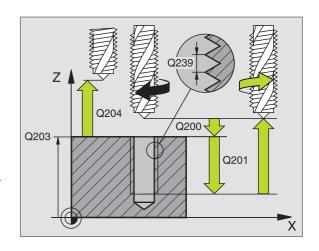
Das Vorzeichen des Parameters Bohrtiefe legt die Arbeitsrichtung fest.

Die TNC berechnet den Vorschub in Abhängigkeit von der Drehzahl. Wenn Sie während des Gewindebohrens den Drehknopf für den Drehzahl-Override betätigen, passt die TNC den Vorschub automatisch an.

Der Drehknopf für den Vorschub-Override ist nicht aktiv.

Am Zyklusende steht die Spindel. Vor der nächsten Bearbeitung Spindel mit M3 (bzw. M4) wieder einschalten.

i


- Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze (Startposition) – Werkstück-Oberfläche
- ▶ Bohrtiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Gewindeende
- ▶ Gewindesteigung Q239

Steigung des Gewindes. Das Vorzeichen legt Rechtsoder Linksgewinde fest:

- += Rechtsgewinde
- -= Linksgewinde
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann


Freifahren bei Programm-Unterbrechung

Wenn Sie während des Gewindeschneid-Vorgangs die externe Stop-Taste drücken, zeigt die TNC den Softkey MANUELL FREIFAHREN an. Wenn Sie MANUEL FREIFAHREN drücken, können Sie das Werkzeug gesteuert freifahren. Drücken Sie dazu die positive Achsrichtungs-Taste der aktiven Spindelachse.

Beispiel: NC-Sätze

26	CYCL DEF 20	D7 GEWBOHREN GS NEU
	Q200=2	;SICHERHEITS-ABST.
	Q201=-20	;TIEFE
	Q239=+1	; GEWINDESTEIGUNG
	Q203=+25	;KOOR. OBERFLAECHE
	Q204=50	;2. SICHERHEITS-ABST.

GEWINDESCHNEIDEN (Zyklus 18)

Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein.

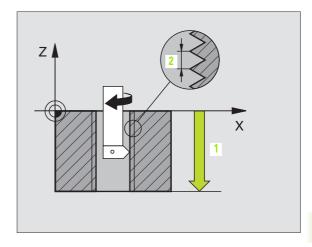
Zyklus 18 GEWINDESCHNEIDEN fährt das Werkzeug mit geregelter Spindel von der aktuellen Position mit der aktiven Drehzahl auf die Tiefe. Am Bohrungsgrund erfolgt ein Spindel-Stop. An- und Wegfahrbewegungen müssen Sie separat eingeben – am besten in einem Hersteller-Zyklus. Ihr Maschinenhersteller erteilt Ihnen hierzu nähere Informationen.

Beachten Sie vor dem Programmieren

Die TNC berechnet den Vorschub in Abhängigkeit von der Drehzahl. Wenn Sie während des Gewindeschneidens den Drehknopf für den Drehzahl-Override betätigen, passt die TNC der Vorschub automatisch an.

Der Drehknopf für den Vorschub-Override ist nicht aktiv.

Die TNC schaltet die Spindel automatisch Ein und Aus. Vor dem Zyklus-Aufruf nicht M3 oder M4 programmieren.


▶ Bohrtiefe 1: Abstand aktuelle Werkzeug-Position – Gewindeende

Das Vorzeichen der Bohrtiefe legt die Arbeitsrichtung fest ("—" entspricht negativer Richtung in der Spindelachse)

► Gewindesteigung 2:

Steigung des Gewindes. Das Vorzeichen legt Rechtsoder Linksgewinde fest:

- + = Rechtsgewinde (M3 bei negativer Bohrtiefe)
- = Linksgewinde (M4 bei negativer Bohrtiefe)

Beispiel: NC-Sätze

22 CYCL DEF 18.0 GEWINDESCHNEIDEN

23 CYCL DEF 18.1 TIEFE -20

24 CYCL DEF 18.2 STEIG +1

GEWINDEBOHREN SPANBRUCH (Zyklus 209)

Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein.

Die TNC schneidet das Gewinde in mehreren Zustellungen auf die eingegebene Tiefe. Über einen Parameter können Sie festlegen, ob beim Spanbruch ganz aus der Bohrung herausgefahren werden soll oder nicht.

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang FMAX auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche und führt dort eine Spindelorientierung durch
- 2 Das Werkzeug f\u00e4hrt auf die eingegebene Zustell-Tiefe, kehrt die Spindeldrehrichtung um und f\u00e4hrt – je nach Definition – einen bestimmten Betrag zur\u00fcck oder zum Entspanen aus der Bohrung heraus
- 3 Danach wird die Spindeldrehrichtung wieder umgekehrt und auf die nächste Zustelltiefe gefahren
- 4 Die TNC wiederholt diesen Ablauf (2 bis 3), bis die eingegebene Gewindetiefe erreicht ist
- 5 Danach wird das Werkzeug auf den Sicherheits-Abstand zurückgezogen. Falls Sie einen 2. Sicherheits-Abstand eingegeben haben, fährt die TNC das Werkzeug mit FMAX dorthin
- 6 Auf Sicherheits-Abstand hält die TNC die Spindel an

Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) in der Bearbeitungsebene mit Radiuskorrektur R0 programmieren.

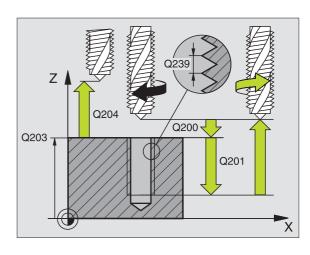
Das Vorzeichen des Parameters Gewindetiefe legt die Arbeitsrichtung fest.

Die TNC berechnet den Vorschub in Abhängigkeit von der Drehzahl. Wenn Sie während des Gewindebohrens den Drehknopf für den Drehzahl-Override betätigen, passt die TNC den Vorschub automatisch an.

Der Drehknopf für den Vorschub-Override ist nicht aktiv.

Am Zyklusende steht die Spindel. Vor der nächsten Bearbeitung Spindel mit M3 (bzw. M4) wieder einschalten.

8 Programmieren: Zyklen


- Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze (Startposition) – Werkstück-Oberfläche
- ▶ Gewindetiefe Q201 (inkremental): Abstand Werkstück-Oberfläche Gewindeende
- ▶ Gewindesteigung Q239

Steigung des Gewindes. Das Vorzeichen legt Rechtsoder Linksgewinde fest:

- += Rechtsgewinde
- -= Linksgewinde
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Bohrtiefe bis Spanbruch Q257 (inkremental): Zustellung, nachdem die TNC einen Spanbruch durchführt
- ▶ Rückzug bei Spanbruch Q256: Die TNC multipliziert die Steigung Q239 mit dem eingegebenen Wert und fährt das Werkzeug beim Spanbrechen um diesen errechneten Wert zurück. Wenn Sie Q256 = 0 eingeben, dann fährt die TNC zum Entspanen vollständig aus der Bohrung heraus (auf Sicherheits-Abstand)
- Winkel für Spindel-Orientierung Q336 (absolut): Winkel, auf den die TNC das Werkzeug vor dem Gewindeschneid-Vorgang positioniert. Dadurch können Sie das Gewinde ggf. nachschneiden

Freifahren bei Programm-Unterbrechung

Wenn Sie während des Gewindeschneid-Vorgangs die externe Stop-Taste drücken, zeigt die TNC den Softkey MANUELL FREIFAHREN an. Wenn Sie MANUEL FREIFAHREN drücken, können Sie das Werkzeug gesteuert freifahren. Drücken Sie dazu die positive Achsrichtungs-Taste der aktiven Spindelachse.

Beispiel: NC-Sätze

26	CYCL DEF 2	09 GEWBOHREN SPANBR.
	Q200=2	;SICHERHEITS-ABST.
	Q201=-20	;TIEFE
	Q239=+1	;GEWINDESTEIGUNG
	Q203=+25	;KOOR. OBERFLAECHE
	Q204=50	;2. SICHERHEITS-ABST.
	Q257=5	;BOHRTIEFE SPANBRUCH
	Q256=+25	;RZ BEI SPANBRUCH
	Q336=50	;WINKEL SPINDEL

Grundlagen zum Gewindefräsen

Voraussetzungen

- Die Maschine sollte mit einer Spindelinnenkühlung (Kühlschmiermittel min. 30 bar, Druckluft min. 6 bar) ausgerüstet sein
- Da beim Gewindefräsen in der Regel Verzerrungen am Gewindeprofil entstehen, sind in der Regel werkzeugspezifische Korrekturen erforderlich, die Sie aus dem Werkzeugkatalog entnehmen oder bei Ihrem Werkzeughersteller erfragen können. Die Korrektur erfolgt beim TOOL CALL über den Delta-Radius DR
- Die Zyklen 262, 263, 264 und 267 sind nur mit rechtsdrehenden Werkzeugen verwendbar. Für den Zyklus 265 können Sie rechtsund linksdrehende Werkzeuge einsetzen
- Die Arbeitsrichtung ergibt sich aus folgenden Eingabeparametern: Vorzeichen der Gewindesteigung Q239 (+ = Rechtsgewinde /- = Linksgewinde) und Fräsart Q351 (+1 = Gleichlauf /-1 = Gegenlauf). Anhand nachfolgender Tabelle sehen sie die Beziehung zwischen den Eingabeparametern bei rechtsdrehenden Werkzeugen.

Innengewinde	Steigung	Fräsart	Arbeitsrichtung
rechtsgängig	+	+1(RL)	Z+
linksgängig	-	-1(RR)	Z+
rechtsgängig	+	-1(RR)	Z-
linksgängig	_	+1(RL)	Z–

Außengewinde	Steigung	Fräsart	Arbeitsrichtung
rechtsgängig	+	+1(RL)	Z-
linksgängig	_	-1(RR)	Z–
rechtsgängig	+	-1(RR)	Z+
linksgängig	_	+1(RL)	Z+

8 Programmieren: Zyklen

Kollisionsgefahr!

Programmieren Sie bei den Tiefenzustellungen immer die gleichen Vorzeichen, da die Zyklen mehrere Abläufe enthalten, die voneinander unabhängig sind. Die Rangfolge nach welcher die Arbeitsrichtung entschieden wird, ist bei den jeweiligen Zyklen beschrieben. Wollen Sie z.B. einen Zyklus nur mit dem Senkvorgang wiederholen, so geben Sie bei der Gewindetiefe 0 ein, die Arbeitsrichtung wird dann über die Senktiefe bestimmt.

Verhalten bei Werkzeugbruch!

Wenn während des Gewindeschneidens ein Werkzeugbruch erfolgt, dann stoppen Sie den Programmlauf, wechseln in die Betriebsart Positionieren mit Handeingabe und fahren dort das Werkzeug in einer Linearbewegung auf die Bohrungsmitte. Anschließend können Sie das Werkzeug in der Zustellachse freifahren und auswechseln.

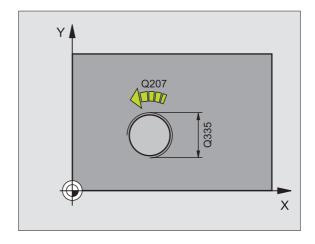
Die TNC bezieht den programmierten Vorschub beim Gewindefräsen auf die Werkzeug-Schneide. Da die TNC aber den Vorschub bezogen auf die Mittelpunktsbahn anzeigt, stimmt der angezeigte Wert nicht mit dem programmierten Wert überein.

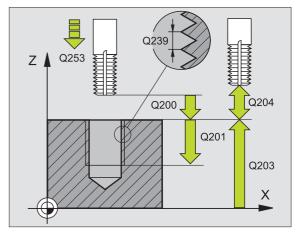
Der Umlaufsinn des Gewinde ändert sich, wenn Sie einen Gewindefräszyklus in Verbindung mit Zyklus 8 SPIEGELN in nur einer Achse abarbeiten.

GEWINDEFRAESEN (Zyklus 262)

- 1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang FMAX auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche
- 2 Das Werkzeug f\u00e4hrt mit dem programmierten Vorschub Vorpositionieren auf die Startebene, die sich aus dem Vorzeichen der Gewindesteigung, der Fr\u00e4sart und der Anzahl der G\u00e4nge zum Nachsetzten ergibt
- 3 Anschließend fährt das Werkzeug tangential in einer Helix-Bewegung an den Gewindenenndurchmesser. Dabei wird vor der Helix-Anfahrbewegung noch eine Ausgleichsbewegung in der Werkzeugachse durchgeführt, um mit der Gewindebahn auf der programmierten Startebene zu beginnen
- **4** Abhängig vom Parameter Nachsetzen fräst das Werkzeug das Gewinde in einer, in mehreren versetzten oder in einer kontinuierlichen Schraubenlinienbewegung
- **5** Danach fährt das Werkzeug tangential von der Kontur zurück zum Startpunkt in der Bearbeitungsebene
- 6 Am Ende des Zyklus fährt die TNC das Werkzeug im Eilgang auf den Sicherheits-Abstand oder falls eingegeben auf den 2. Sicherheits-Abstand

Beachten Sie vor dem Programmieren


Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur R0 programmieren.


Das Vorzeichen des Zyklusparameters Gewindetiefe legt die Arbeitsrichtung fest. Wenn Sie die Gewindetiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Die Anfahrbewegung an den Gewindenenndurchmesser erfolgt im Halbkreis von der Mitte aus. Ist der Werkzeugdurchmesser um die 4fache Steigung kleiner als der Gewindenenndurchmesser wird eine seitliche Vorpositionierung ausgeführt.

- ▶ Soll-Durchmesser Q335: Gewindenenndurchmesser
- ▶ Gewindesteigung Q239: Steigung des Gewindes. Das Vorzeichen legt Rechts- oder Linksgewinde fest:
 - + = Rechtsgewinde
 - = Linksgewinde
- ▶ Gewindetiefe Q201 (inkremental): Abstand zwischen Werkstück-Oberfläche und Gewindegrund
- Nachsetzen Q355: Anzahl der Gewindegänge um die das Werkzeug versetzt wird, siehe Bild rechts unten 0 = eine 360° Schraubenlinie auf die Gewindetiefe
 - 1 = kontinuierliche Schraubenlinie auf der gesamten Gewindelänge
 - >1 = mehrere Helixbahnen mit An -und Wegfahren, dazwischen versetzt die TNC das Werkzeug um Q355 mal der Steigung

i

- ▶ Vorschub Vorpositionieren Q253: Verfahrgeschwindigkeit des Werkzeugs beim Eintauchen in das Werkstück bzw. beim Herausfahren aus dem Werkstück in mm/min
- Fräsart Q351: Art der Fräsbearbeitung bei M03 **+1** = Gleichlauffräsen
 - -1 = Gegenlauffräsen
- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeugspitze und Werkstück-Oberflä-
- ► Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min

Beispiel: NC-Sätze

25 CYCL DEF 26	2 GEWINDEFRAESEN
Q335=10	;SOLL-DURCHMESSER
Q239=+1,5	;STEIGUNG
Q201=-20	;GEWINDETIEFE
Q355=0	; NACHSETZEN
Q253=750	; VORSCHUB VORPOS.
Q351=+1	; FRAESART
Q200=2	;SICHERHEITS-ABST.
Q203=+30	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q207=500	; VORSCHUB FRAESEN

SENKGEWINDEFRAESEN (Zyklus 263)

1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang FMAX auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche

Senken

- 2 Das Werkzeug f\u00e4hrt im Vorschub Vorpositionieren auf Senktiefe minus Sicherheitsabstand und anschlie\u00ddend im Vorschub Senken auf die Senktiefe
- 3 Falls ein Sicherheits-Abstand Seite eingeben wurde, positioniert die TNC das Werkzeug gleich im Vorschub Vorpositionieren auf die Senktiefe
- **4** Anschließend fährt die TNC je nach Platzverhältnissen aus der Mitte heraus oder mit seitlichem Vorpositionieren den Kerndurchmesser weich an und führt eine Kreisbewegung aus

Stirnseitig Senken

- 5 Das Werkzeug f\u00e4hrt im Vorschub Vorpositionieren auf die Senktiefe Stirnseitig
- 6 Die TNC positioniert das Werkzeug unkorrigiert aus der Mitte über einen Halbkreis auf den Versatz Stirnseitig und führt eine Kreisbewegung im Vorschub Senken aus
- 7 Anschließend fährt die TNC das Werkzeug wieder auf einem Halbkreis in die Bohrungsmitte

Gewindefräsen

- B Die TNC f\u00e4hrt das Werkzeug mit dem programmierten Vorschub Vorpositionieren auf die Startebene f\u00fcr das Gewinde, die sich aus dem Vorzeichen der Gewindesteigung und der Fr\u00e4sart ergibt
- 9 Anschließend fährt das Werkzeug tangential in einer Helix-Bewegung an den Gewindenenndurchmesser und fräst mit einer 360°-Schraubenlinienbewegung das Gewinde
- 10 Danach f\u00e4hrt das Werkzeug tangential von der Kontur zur\u00fcck zum Startpunkt in der Bearbeitungsebene

8 Programmieren: Zyklen

11 Am Ende des Zyklus f\u00e4hrt die TNC das Werkzeug im Eilgang auf den Sicherheits-Abstand oder – falls eingegeben – auf den 2. Sicherheits-Abstand

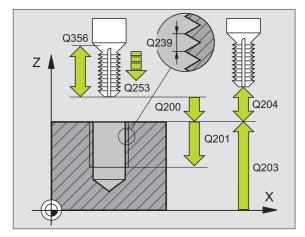
Beachten Sie vor dem Programmieren

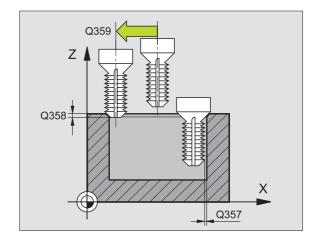
Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur R0 programmieren.

Die Vorzeichen der Zyklenparameter Gewindetiefe, Senktiefe bzw. Tiefe Stirnseitig legen die Arbeitsrichtung fest. Die Arbeitsrichtung wird nach folgender Reihenfolge entschieden:

- 1. Gewindetiefe
- 2. Senktiefe
- 3. Tiefe Stirnseitig


Falls Sie einen der Tiefenparameter mit 0 belegen, führt die TNC diesen Arbeitsschritt nicht aus.


Wenn Sie Stirnseitig senken wollen, dann den Parameter Senktiefe mit 0 definieren.


Programmieren Sie die Gewindetiefe mindestens um ein Drittel mal der Gewindesteigung kleiner als die Senktiefe.

- ▶ Soll-Durchmesser Q335: Gewindenenndurchmesser
- ▶ Gewindesteigung Q239: Steigung des Gewindes. Das Vorzeichen legt Rechts- oder Linksgewinde fest:
 - + = Rechtsgewinde
 - = Linksgewinde
- ▶ Gewindetiefe Q201 (inkremental): Abstand zwischen Werkstück-Oberfläche und Gewindegrund
- ▶ Senktiefe Q356: (inkremental): Abstand zwischen Werkstück-Oberfläche und Werkzeugspitze
- ▶ Vorschub Vorpositionieren Q253: Verfahrgeschwindigkeit des Werkzeugs beim Eintauchen in das Werkstück bzw. beim Herausfahren aus dem Werkstück in mm/min
- Fräsart Q351: Art der Fräsbearbeitung bei M03
 - +1 = Gleichlauffräsen
 - -1 = Gegenlauffräsen
- Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeugspitze und Werkstück-Oberfläche
- Sicherheits-Abstand Seite Q357 (inkremental): Abstand zwischen Werkzeugschneide und Bohrungswand
- ▶ Tiefe Stirnseitig Q358 (inkremental): Abstand zwischen Werkstück-Oberfläche und Werkzeugspitze beim stirnseitigen Senkvorgang
- ▶ Versatz Senken Stirnseite Q359 (inkremental): Abstand um den die TNC die Werkzeugmitte aus der Bohrungsmitte versetzt

- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Vorschub Senken Q254: Verfahrgeschwindigkeit des Werkzeugs beim Senken in mm/min
- ▶ Vorschub Fräsen O207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min

Beispiel: NC-Sätze

25 CYCL DEF 263	SENKGEWINDEFRAESEN
Q335=10	;SOLL-DURCHMESSER
Q239=+1,5	;STEIGUNG
Q201=-16	;GEWINDETIEFE
Q356=-20	;SENKTIEFE
Q253=750	; VORSCHUB VORPOS.
Q351=+1	; FRAESART
Q200=2	;SICHERHEITS-ABST.
Q357=0,2	;SIABST. SEITE
Q358=+0	;TIEFE STIRNSEITIG
Q359=+0	;VERSATZ STIRNSEITIG
Q203=+30	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q254=150	; VORSCHUB SENKEN
Q207=500	; VORSCHUB FRAESEN

1

BOHRGEWINDEFRAESEN (Zyklus 264)

1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang FMAX auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche

Bohren

- 2 Das Werkzeug bohrt mit dem eingegebenen Vorschub Tiefenzustellung bis zur ersten Zustell-Tiefe
- 3 Falls Spanbruch eingegeben, fährt die TNC das Werkzeug um den eingegebenen Rückzugswert zurück. Wenn Sie ohne Spanbruch arbeiten, dann fährt die TNC das Werkzeug im Eilgang auf den Sicherheits-Abstand zurück und anschließend wieder mit FMAX bis auf den eingegebenen Vorhalteabstand über die erste Zustell-Tiefe
- 4 Anschließend bohrt das Werkzeug mit Vorschub um eine weitere Zustell-Tiefe
- 5 Die TNC wiederholt diesen Ablauf (2-4), bis die Bohrtiefe erreicht ist

Stirnseitig Senken

- 6 Das Werkzeug f\u00e4hrt im Vorschub Vorpositionieren auf die Senktiefe Stirnseitig
- 7 Die TNC positioniert das Werkzeug unkorrigiert aus der Mitte über einen Halbkreis auf den Versatz Stirnseitig und führt eine Kreisbewegung im Vorschub Senken aus
- 8 Anschließend fährt die TNC das Werkzeug wieder auf einem Halbkreis in die Bohrungsmitte

Gewindefräsen

244

- **9** Die TNC fährt das Werkzeug mit dem programmierten Vorschub Vorpositionieren auf die Startebene für das Gewinde, die sich aus dem Vorzeichen der Gewindesteigung und der Fräsart ergibt
- 10 Anschließend fährt das Werkzeug tangential in einer Helix-Bewegung an den Gewindenenndurchmesser und fräst mit einer 360°-Schraubenliniebewegung das Gewinde
- 11 Danach f\u00e4hrt das Werkzeug tangential von der Kontur zur\u00fcck zum Startpunkt in der Bearbeitungsebene

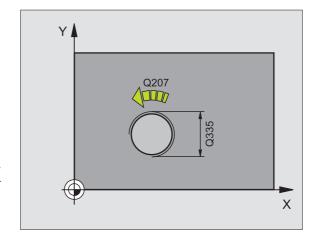
8 Programmieren: Zyklen

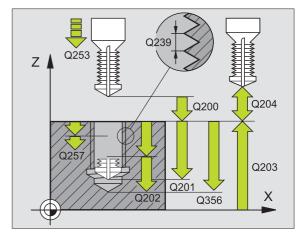
12 Am Ende des Zyklus f\u00e4hrt die TNC das Werkzeug im Eilgang auf den Sicherheits-Abstand oder – falls eingegeben – auf den 2. Sicherheits-Abstand

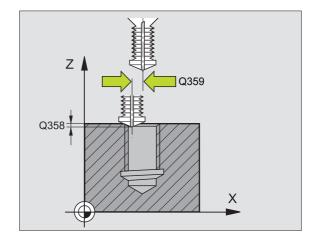
Beachten Sie vor dem Programmieren

Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur R0 programmieren.

Die Vorzeichen der Zyklenparameter Gewindetiefe, Senktiefe bzw. Tiefe Stirnseitig legen die Arbeitsrichtung fest. Die Arbeitsrichtung wird nach folgender Reihenfolge entschieden:


- 1. Gewindetiefe
- 2. Bohrtiefe
- 3. Tiefe Stirnseitig


Falls Sie einen der Tiefenparameter mit 0 belegen, führt die TNC diesen Arbeitsschritt nicht aus.


Programmieren Sie die Gewindetiefe mindestens um ein Drittel mal der Gewindesteigung kleiner als die Bohrtiefe.

- ▶ Soll-Durchmesser Q335: Gewindenenndurchmesser
- ▶ Gewindesteigung Q239: Steigung des Gewindes. Das Vorzeichen legt Rechts- oder Linksgewinde fest:
 - + = Rechtsgewinde
 - = Linksgewinde
- ▶ Gewindetiefe Q201 (inkremental): Abstand zwischen Werkstück-Oberfläche und Gewindegrund
- ▶ **Bohrtiefe** Q356: (inkremental): Abstand zwischen Werkstück-Oberfläche und Bohrungsgrund
- ▶ Vorschub Vorpositionieren Q253: Verfahrgeschwindigkeit des Werkzeugs beim Eintauchen in das Werkstück bzw. beim Herausfahren aus dem Werkstück in mm/min
- ▶ Fräsart Q351: Art der Fräsbearbeitung bei M03
 - +1 = Gleichlauffräsen
 - **-1** = Gegenlauffräsen
- ➤ Zustell-Tiefe O202 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird. Die Tiefe muss kein Vielfaches der Zustell-Tiefe sein. Die TNC fährt in einem Arbeitsgang auf die Tiefe wenn:
 - Zustell-Tiefe und Tiefe gleich sind
 - die Zustell-Tiefe größer als die Tiefe ist
- ▶ Vorhalteabstand oben Q258 (inkremental): Sicherheits-Abstand für Eilgang-Positionierung, wenn die TNC das Werkzeug nach einem Rückzug aus der Bohrung wieder auf die aktuelle Zustell-Tiefe fährt
- ▶ Bohrtiefe bis Spanbruch Q257 (inkremental): Zustellung, nachdem die TNC einen Spanbruch durchführt. Kein Spanbruch, wenn 0 eingegeben
- ▶ Rückzug bei Spanbruch Q256 (inkremental): Wert, um die die TNC das Werkzeug beim Spanbrechen zurückfährt
- ▶ Tiefe Stirnseitig Q358 (inkremental): Abstand zwischen Werkstück-Oberfläche und Werkzeugspitze beim stirnseitigen Senkvorgang
- ▶ Versatz Senken Stirnseite Q359 (inkremental): Abstand um den die TNC die Werkzeugmitte aus der Bohrungsmitte versetzt

i

- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeugspitze und Werkstück-Oberfläche
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Bohren in mm/min
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min

Beispiel: NC-Sätze

	25	CYCL	DEF	264	BOHRGEWINDEFRAESEN
		Q33	35=10)	;SOLL-DURCHMESSER
		Q23	39=+1	L,5	;STEIGUNG
		Q2 ()1=- 1	L6	;GEWINDETIEFE
		Q35	56=-2	20	;BOHRTIEFE
		Q2	53=7	50	; VORSCHUB VORPOS.
		Q35	51=+1	l .	; FRAESART
		Q2	02=5		;ZUSTELL-TIEFE
		Q2	58=0	, 2	; VORHALTEABSTAND
		Q2	57=5		;BOHRTIEFE SPANBRUCH
		Q2	56=0	, 2	;RZ BEI SPANBRUCH
		Q3	58=+	0	;TIEFE STIRNSEITIG
		Q3	59=+	0	;VERSATZ STIRNSEITIG
		Q2	00=2		;SICHERHEITS-ABST.
		Q2(03=+	30	;KOOR. OBERFLAECHE
		Q 20)4=5()	;2. SICHERHEITS-ABST.
		Q 20	06=1	50	;VORSCHUB TIEFENZ.
		Q2 ()7=5(00	; VORSCHUB FRAESEN
•					

HELIX- BOHRGEWINDEFRAESEN (Zyklus 265)

1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang FMAX auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche

Stirnseitig Senken

- Beim Senken vor der Gewindebearbeitung fährt das Werkzeug im Vorschub Senken auf die Senktiefe Stirnseitig. Beim Senkvorgang nach der Gewindebearbeitung fährt die TNC das Werkzeug auf die Senktiefe im Vorschub Vorpositionieren
- Die TNC positioniert das Werkzeug unkorrigiert aus der Mitte über einen Halbkreis auf den Versatz Stirnseitig und führt eine Kreisbewegung im Vorschub Senken aus
- 4 Anschließend fährt die TNC das Werkzeug wieder auf einem Halbkreis in die Bohrungsmitte

Gewindefräsen

- Die TNC fährt das Werkzeug mit dem programmierten Vorschub Vorpositionieren auf die Startebene für das Gewinde
- Anschließend fährt das Werkzeug tangential in einer Helix-Bewegung an den Gewindenenndurchmesser
- Die TNC fährt das Werkzeug auf einer kontinuierlichen Schraubenlinie nach unten, bis die Gewindetiefe erreicht ist
- Danach fährt das Werkzeug tangential von der Kontur zurück zum Startpunkt in der Bearbeitungsebene
- Am Ende des Zyklus fährt die TNC das Werkzeug im Eilgang auf den Sicherheits-Abstand oder - falls eingegeben - auf den 2. Sicherheits-Abstand

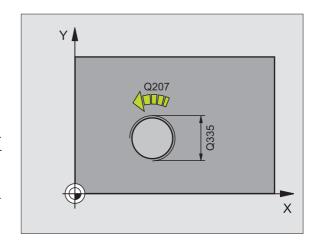
248

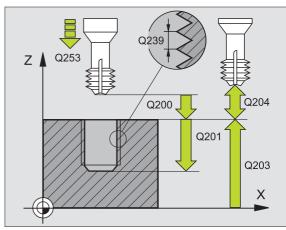
Beachten Sie vor dem Programmieren

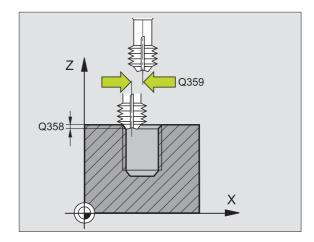
Positionier-Satz auf den Startpunkt (Bohrungsmitte) der Bearbeitungsebene mit Radiuskorrektur R0 programmieren.

Die Vorzeichen der Zyklenparameter Gewindetiefe oder Tiefe Stirnseitig legen die Arbeitsrichtung fest. Die Arbeitsrichtung wird nach folgender Reihenfolge entschie-

- 1. Gewindetiefe
- 2. Tiefe Stirnseitig


Falls Sie einen der Tiefenparameter mit 0 belegen, führt die TNC diesen Arbeitsschritt nicht aus.


Die Fräsart (Gegen-/Gleichlauf) ist durch das Gewinde (Rechts-/Linksgewinde) und die Drehrichtung des Werkzeugs bestimmt, da nur die Arbeitsrichtung von der Werkstückoberfläche ins Teil hinein möglich ist.



- ▶ Soll-Durchmesser Q335: Gewindenenndurchmesser
- ▶ **Gewindesteigung** Q239: Steigung des Gewindes. Das Vorzeichen legt Rechts- oder Linksgewinde fest:
 - + = Rechtsgewinde
 - = Linksgewinde
- ▶ **Gewindetiefe** Q201 (inkremental): Abstand zwischen Werkstück-Oberfläche und Gewindegrund
- ▶ Vorschub Vorpositionieren Q253: Verfahrgeschwindigkeit des Werkzeugs beim Eintauchen in das Werkstück bzw. beim Herausfahren aus dem Werkstück in mm/min
- ▶ Tiefe Stirnseitig Q358 (inkremental): Abstand zwischen Werkstück-Oberfläche und Werkzeugspitze beim stirnseitigen Senkvorgang
- ▶ Versatz Senken Stirnseite Q359 (inkremental): Abstand um den die TNC die Werkzeugmitte aus der Bohrungsmitte versetzt
- Senkvorgang Q360: Ausführung der Fase
 - **0** = vor der Gewindebearbeitung
 - 1 = nach der Gewindebearbeitung
- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeugspitze und Werkstück-Oberfläche

- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Vorschub Senken Q254: Verfahrgeschwindigkeit des Werkzeugs beim Senken in mm/min
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min

Beispiel: NC-Sätze

25 CYCL DEF 26	5 HELIX-BOHRGEWINDEFR.
Q335=10	;SOLL-DURCHMESSER
Q239=+1,5	;STEIGUNG
Q201=-16	;GEWINDETIEFE
Q253=750	; VORSCHUB VORPOS.
Q358=+O	;TIEFE STIRNSEITIG
Q359=+O	;VERSATZ STIRNSEITIG
Q360=0	;SENKVORGANG
Q200=2	;SICHERHEITS-ABST.
Q203=+30	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q254=150	; VORSCHUB SENKEN
Q207=500	;VORSCHUB FRAESEN

250 8 Programmieren: Zyklen

AUSSENGEWINDE-FRAESEN (Zyklus 267)

1 Die TNC positioniert das Werkzeug in der Spindelachse im Eilgang FMAX auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche

Stirnseitig Senken

- 2 Die TNC f\u00e4hrt den Startpunkt f\u00fcr das stirnseitige Senken ausgehend von der Zapfenmitte auf der Hauptachse der Bearbeitungsebene an. Die Lage des Startpunktes ergibt sich aus Gewinderadius, Werkzeugradius und Steigung
- 3 Das Werkzeug f\u00e4hrt im Vorschub Vorpositionieren auf die Senktiefe Stirnseitig
- 4 Die TNC positioniert das Werkzeug unkorrigiert aus der Mitte über einen Halbkreis auf den Versatz Stirnseitig und führt eine Kreisbewegung im Vorschub Senken aus
- 5 Anschließend fährt die TNC das Werkzeug wieder auf einem Halbkreis auf den Startpunkt

Gewindefräsen

- **6** Die TNC positioniert das Werkzeug auf den Startpunkt falls vorher nicht stirnseitig gesenkt wurde. Startpunkt Gewindefräsen = Startpunkt Stirnseitig Senken
- 7 Das Werkzeug f\u00e4hrt mit den programmierten Vorschub Vorpositionieren auf die Startebene, die sich aus dem Vorzeichen der Gewindesteigung, der Fr\u00e4sart und der Anzahl der G\u00e4nge zum Nachsetzten ergibt
- **8** Anschließend fährt das Werkzeug tangential in einer Helix-Bewegung an den Gewindenenndurchmesser
- **9** Abhängig vom Parameter Nachsetzen fräst das Werkzeug das Gewinde in einer, in mehreren versetzten oder in einer kontinuierlichen Schraubenlinienbewegung
- 10 Danach f\u00e4hrt das Werkzeug tangential von der Kontur zur\u00fcck zum Startpunkt in der Bearbeitungsebene

11 Am Ende des Zyklus f\u00e4hrt die TNC das Werkzeug im Eilgang auf den Sicherheits-Abstand oder – falls eingegeben – auf den 2. Sicherheits-Abstand

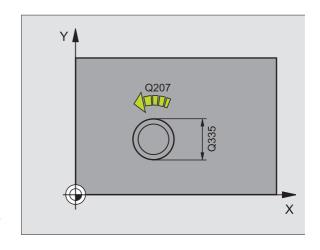
Beachten Sie vor dem Programmieren

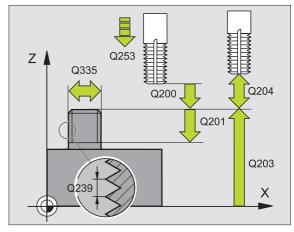
Positionier-Satz auf den Startpunkt (Zapfenmitte) der Bearbeitungsebene mit Radiuskorrektur R0 programmieren.

Der erforderliche Versatz für das Senken Stirnseite sollte vorab ermittelt werden. Sie müssen den Wert von Zapfenmitte bis Werkzeugmitte (unkorrigierter Wert) angeben.

Die Vorzeichen der Zyklenparameter Gewindetiefe bzw. Tiefe Stirnseitig legen die Arbeitsrichtung fest. Die Arbeitsrichtung wird nach folgender Reihenfolge entschieden:

- 1. Gewindetiefe
- 2. Tiefe Stirnseitig

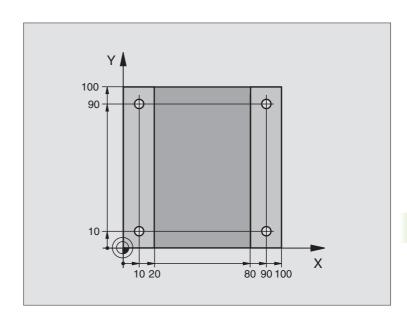

Falls Sie einen der Tiefenparameter mit 0 belegen, führt die TNC diesen Arbeitsschritt nicht aus.


Das Vorzeichen des Zyklusparameters Gewindetiefe legt die Arbeitsrichtung fest.

i

- ▶ Soll-Durchmesser Q335: Gewindenenndurchmesser
- ▶ **Gewindesteigung** Q239: Steigung des Gewindes. Das Vorzeichen legt Rechts- oder Linksgewinde fest:
 - += Rechtsgewinde
 - = Linksgewinde
- ▶ Gewindetiefe Q201 (inkremental): Abstand zwischen Werkstück-Oberfläche und Gewindegrund
- ▶ Nachsetzen Q355: Anzahl der Gewindegänge um die das Werkzeug versetzt wird, siehe Bild rechts unten
 - **0** = eine Schraubenlinie auf die Gewindetiefe
 - **1** = kontinuierliche Schraubenlinie auf der gesamten Gewindelänge
 - >1 = mehrere Helixbahnen mit An -und Wegfahren, dazwischen versetzt die TNC das Werkzeug um Q355 mal der Steigung
- ▶ Vorschub Vorpositionieren Q253: Verfahrgeschwindigkeit des Werkzeugs beim Eintauchen in das Werkstück bzw. beim Herausfahren aus dem Werkstück in mm/min
- ▶ Fräsart Q351: Art der Fräsbearbeitung bei M03
 - +1 = Gleichlauffräsen
 - -1 = Gegenlauffräsen

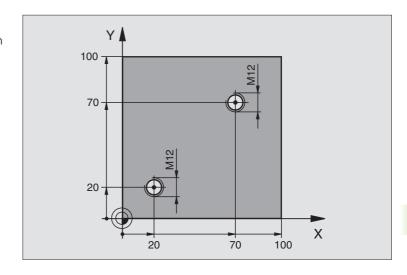
- ➤ Sicherheits-Abstand O200 (inkremental): Abstand zwischen Werkzeugspitze und Werkstück-Oberfläche
- ▶ Tiefe Stirnseitig Q358 (inkremental): Abstand zwischen Werkstück-Oberfläche und Werkzeugspitze beim stirnseitigen Senkvorgang
- ▶ Versatz Senken Stirnseite Q359 (inkremental): Abstand um den die TNC die Werkzeugmitte aus der Zapfenmitte versetzt
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Vorschub Senken Q254: Verfahrgeschwindigkeit des Werkzeugs beim Senken in mm/min
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min


Beispiel: NC-Sätze

25 CYCL DEF 267 AUSSENGEWINDE FR.
Q335=10 ;SOLL-DURCHMESSER
Q239=+1,5 ;STEIGUNG
Q201=-20 ;GEWINDETIEFE
Q355=O ; NACHSETZEN
Q253=750 ;VORSCHUB VORPOS.
Q351=+1 ;FRAESART
Q200=2 ;SICHERHEITS-ABST.
Q358=+0 ;TIEFE STIRNSEITIG
Q359=+0 ;VERSATZ STIRNSEITIG
Q203=+30 ;KOOR. OBERFLAECHE
Q204=50 ;2. SICHERHEITS-ABST.
Q254=150 ;VORSCHUB SENKEN
Q207=500 ; VORSCHUB FRAESEN

254 8 Programmieren: Zyklen

Beispiel: Bohrzyklen


O BEGIN PGM C200 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Rohteil-Definition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+3	Werkzeug-Definition
4 TOOL CALL 1 Z S4500	Werkzeug-Aufruf
5 L Z+250 RO F MAX	Werkzeug freifahren
6 CYCL DEF 200 BOHREN	Zyklus-Definition
Q200=2 ;SICHERHEITSABST.	
Q201=-15 ;TIEFE	
Q206=250 ;F TIEFENZUST.	
Q202=5 ;ZUSTELL-TIEFE	
Q210=0 ;VZEIT OBEN	
Q203=-10 ;KOOR. OBERFL.	
Q204=20 ;2. SABSTAND	
Q211=0.2 ;VERWEILZEIT UNTEN	

7 L X+10 Y+10 R0 F MAX M3	Bohrung 1 anfahren, Spindel einschalten
8 CYCL CALL	Zyklus-Aufruf
9 L Y+90 RO F MAX M99	Bohrung 2 anfahren, Zyklus-Aufruf
10 L X+90 RO F MAX M99	Bohrung 3 anfahren, Zyklus-Aufruf
11 L Y+10 RO F MAX M99	Bohrung 4 anfahren, Zyklus-Aufruf
12 L Z+250 RO F MAX M2	Werkzeug freifahren, Programm-Ende
13 END PGM C200 MM	

Beispiel: Bohrzyklen

Programm-Ablauf

- Bohrzyklus programmieren im Hauptprogramm
- Bearbeitung programmieren im Unterprogramm, siehe "Unterprogramme", Seite 347

O BEGIN PGM C18 MM			
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Rohteil-Definition		
2 BLK FORM 0.2 X+100 Y+100 Z+0			
3 TOOL DEF 1 L+0 R+6	Werkzeug-Definition		
4 TOOL CALL 1 Z S100	Werkzeug-Aufruf		
5 L Z+250 RO F MAX	Werkzeug freifahren		
6 CYCL DEF 18.0 GEWINDESCHNEIDEN	Zyklus-Definition Gewindeschneiden		
7 CYCL DEF 18.1 TIEFE +30			
8 CYCL DEF 18.2 STEIG -1,75			
9 L X+20 Y+20 RO F MAX	Bohrung 1 anfahren		
10 CALL LBL 1	Unterprogramm 1 rufen		
11 L X+70 Y+70 RO F MAX	Bohrung 2 anfahren		
12 CALL LBL 1	Unterprogramm 1 rufen		
13 L Z+250 RO F MAX M2	Werkzeug freifahren, Ende des Hauptprogramms		

i

258

14 LBL 1	Unterprogramm 1: Gewindeschneiden	
15 CYCL DEF 13.0 ORIENTIERUNG	Spindelwinkel definieren (wiederholtes Schneiden möglich)	
16 CYCL DEF 13.1 WINKEL 0		
17 L M19	Spindel orientieren (maschinenabhängige M-Funktion)	
18 L IX-2 RO F1000	Werkzeug versetzen für kollisionsfreies Eintauchen (abhängig	
	vom Kerndurchmesser und Werkzeug)	
19 L Z+5 RO F MAX	Vorpositionieren Eilgang	
20 L Z-30 R0 F1000	Auf Starttiefe fahren	
21 L IX+2	Werkzeug wieder auf Bohrungsmitte	
22 CYCL CALL	Zyklus 18 aufrufen	
23 L Z+5 RO F MAX	freifahren	
24 LBL 0	Ende Unterprogramm 1	
25 END PGM C18 MM		

8 Programmieren: Zyklen

8.4 Zyklen zum Fräsen von Taschen, Zapfen und Nuten

Übersicht

Zyklus	Softkey
4 TASCHENFRAESEN (rechteckförmig) Schrupp-Zyklus ohne automatische Vorpositionierung	4 0
212 TASCHE SCHLICHTEN (rechteckförmig) Schlicht-Zyklus mit automatischer Vorpositionierung, 2. Sicherheits-Abstand	212
213 ZAPFEN SCHLICHTEN (rechteckförmig) Schlicht-Zyklus mit automatischer Vorpositionierung, 2. Sicherheits-Abstand	213
5 KREISTASCHE Schrupp-Zyklus ohne automatische Vorpositionierung	5 🗳
214 KREISTASCHE SCHLICHTEN Schlicht-Zyklus mit automatischer Vorpositionierung, 2. Sicherheits-Abstand	214
215 KREISZAPFEN SCHLICHTEN Schlicht-Zyklus mit automatischer Vorpositionierung, 2. Sicherheits-Abstand	215
3 NUTENFRAESEN Schrupp-/Schlicht-Zyklus ohne automatische Vorposi- tionierung, senkrechte Tiefen-Zustellung	3
210 NUT PENDELND Schrupp-/Schlicht-Zyklus mit automatischer Vorposi- tionierung, pendelnder Eintauchbewegung	210
211 RUNDE NUT Schrupp-/Schlicht-Zyklus mit automatischerVorpositio- nierung, pendeInder Eintauchbewegung	211

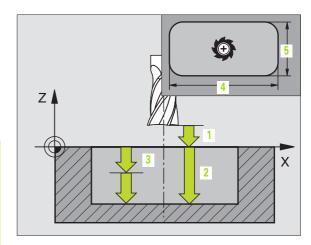
TASCHENFRAESEN (Zyklus 4)

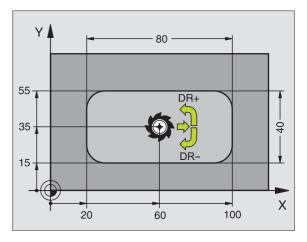
- 1 Das Werkzeug sticht an der Startposition (Taschenmitte) in das Werkstück ein und fährt auf die erste Zustell-Tiefe
- 2 Anschließend fährt das Werkzeug zunächst in die positive Richtung der längeren Seite bei quadratischen Taschen in die positive Y-Richtung und räumt dann die Tasche von innen nach außen aus
- 3 Dieser Vorgang wiederholt sich (1 bis 2), bis die Tiefe erreicht ist
- 4 Am Ende des Zyklus fährt die TNC das Werkzeug auf die Startposition zurück

Beachten Sie vor dem Programmieren

Fräser mit einem über Mitte schneidenden Stirnzahn verwenden (DIN 844) oder Vorbohren in der Taschenmitte.

Vorpositionieren über Taschenmitte mit Radiuskorrektur R0


Positionier-Satz auf den Startpunkt in der Spindelachse (Sicherheits-Abstand über Werkstück-Oberfläche) programmieren.


Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Für die 2. Seiten-Länge gilt folgende Bedingung: 2. Seiten-Länge größer als [(2 x Rundungs-Radius) + Seitliche Zustellung k].

- Sicherheits-Abstand 1 (inkremental): Abstand Werkzeugspitze (Startposition) – Werkstück-Oberfläche
- ▶ Tiefe 2 (inkremental): Abstand Werkstück-Oberfläche – Taschengrund
- Zustell-Tiefe 3 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird. Die TNC fährt in einem Arbeitsgang auf die Tiefe wenn:
 - Zustell-Tiefe und Tiefe gleich sind
 - die Zustell-Tiefe größer als die Tiefe ist
- ▶ Vorschub Tiefenzustellung: Verfahrgeschwindigkeit des Werkzeugs beim Einstechen
- ▶ 1. Seiten-Länge 4: Länge der Tasche, parallel zur Hauptachse der Bearbeitungsebene
- ▶ 2. Seiten-Länge 5: Breite der Tasche
- ▶ Vorschub F: Verfahrgeschwindigkeit des Werkzeugs in der Bearbeitungsebene
- ▶ Drehung im Uhrzeigersinn DR +: Gleichlauf-Fräsen bei M3 DR -: Gegenlauf-Fräsen bei M3

Beispiel: NC-Sätze

11 L Z+100 RO FMAX

12	CYCL	DEF	4.0	TASCHENFRAESEN
13	CYCL	DEF	4.1	ABST 2

14 CYCL DEF 4.2 TIEFE -10

4- 4-4

15 CYCL DEF 4.3 ZUSTLG 4 F80

16 CYCL DEF 4.4 X80

17 CYCL DEF 4.5 Y40

18 CYCL DEF 4.6 F100 DR+ RADIUS 10

19 L X+60 Y+35 FMAX M3

20 L Z+2 FMAX M99

260 8 Programmieren: Zyklen

Rundungs-Radius: Radius für die Taschenecken. Für Radius = 0 ist der Rundungs-Radius gleich dem Werkzeug-Radius

Berechnungen:

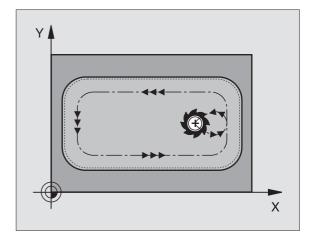
Seitliche Zustellung $k = K \times R$

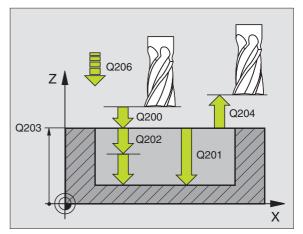
K: Überlappungs-Faktor, in Maschinen-Parameter 7430 festgelegt

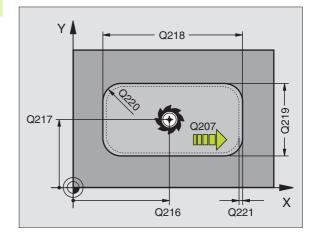
R: Radius des Fräsers

TASCHE SCHLICHTEN (Zyklus 212)

- 1 Die TNC f\u00e4hrt das Werkzeug automatisch in der Spindelachse auf den Sicherheits-Abstand, oder – falls eingegeben – auf den 2. Sicherheits-Abstand und anschlie\u00dden din die Taschenmittte
- 2 Von der Taschenmitte aus f\u00e4hrt das Werkzeug in der Bearbeitungsebene auf den Startpunkt der Bearbeitung. Die TNC ber\u00fccksichtigt f\u00fcr die Berechnung des Startpunkts das Aufma\u00df und den Werkzeug-Radius. Ggf. sticht die TNC in der Taschenmitte ein
- 3 Falls das Werkzeug auf dem 2. Sicherheits-Abstand steht, fährt die TNC im Eilgang FMAX auf den Sicherheits-Abstand und von dort mit dem Vorschub Tiefenzustellung auf die erste Zustell-Tiefe
- 4 Anschließend fährt das Werkzeug tangential an die Fertigteilkontur und fräst im Gleichlauf einen Umlauf
- 5 Danach fährt das Werkzeug tangential von der Kontur weg zurück zum Startpunkt in der Bearbeitungsebene
- 6 Dieser Vorgang (3 bis 5) wiederholt sich, bis die programmierte Tiefe erreicht ist
- Am Ende des Zyklus fährt die TNC das Werkzeug im Eilgang auf den Sicherheits-Abstand oder falls eingegeben auf den 2. Sicherheits-Abstand und anschließend in die Mitte der Tasche (Endposition = Startposition)


Beachten Sie vor dem Programmieren


Die TNC positioniert das Werkzeug in der Werkzeug-Achse und in der Bearbeitungsebene automatisch vor.


Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Wenn Sie die Tasche aus dem Vollen heraus schlichten wollen, dann verwenden Sie einen Fräser mit einem über Mitte schneidenden Stirnzahn (DIN 844) und geben einen kleinen Vorschub Tiefenzustellung ein.

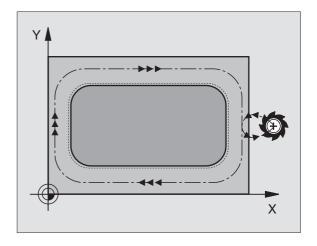
Mindestgröße der Tasche: dreifacher Werkzeug-Radius.

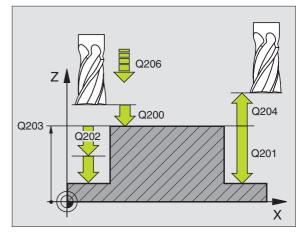
- ► Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze Werkstück-Oberfläche
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Taschengrund
- ▶ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Fahren auf Tiefe in mm/min. Wenn Sie ins Material eintauchen, dann kleineren Wert eingeben als in Q207 definiert
- Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird; Wert größer 0 eingeben
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Mitte 1. Achse Q216 (absolut): Mitte der Tasche in der Hauptachse der Bearbeitungsebene
- ▶ Mitte 2. Achse Q217 (absolut): Mitte der Tasche in der Nebenachse der Bearbeitungsebene
- ▶ 1. Seiten-Länge Q218 (inkremental): Länge der Tasche, parallel zur Hauptachse der Bearbeitungsebene
- ▶ 2. Seiten-Länge Q219 (inkremental): Länge der Tasche, parallel zur Nebenachse der Bearbeitungsebene
- ▶ Eckenradius O220: Radius der Taschenecke. Wenn nicht eingegeben oder kleiner als der aktive Werkzeug-Radius, setzt die TNC den Eckenradius gleich dem Werkzeug-Radius
- ▶ Aufmaß 1. Achse Q221 (inkremental): Aufmaß zur Berechnung der Vorposition in der Hauptachse der Bearbeitungsebene, bezogen auf die Länge der Tasche

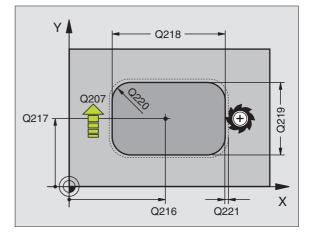
34 CYCL DEF 2	12 TASCHE SCHLICHTEN
Q200=2	;SICHERHEITS-ABST.
Q201=-20	;TIEFE
Q206=150	;VORSCHUB TIEFENZ.
Q202=5	;ZUSTELL-TIEFE
Q207=500	;VORSCHUB FRAESEN
Q203=+30	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q216=+50	;MITTE 1. ACHSE
Q217=+50	;MITTE 2. ACHSE
Q218=80	;1. SEITEN-LAENGE
Q219=60	;2. SEITEN-LAENGE
Q220=5	; ECKENRADIUS
Q221=0	; AUFMASS

ZAPFEN SCHLICHTEN (Zyklus 213)

- 1 Die TNC f\u00e4hrt das Werkzeug in der Spindelachse auf den Sicherheits-Abstand, oder falls eingegeben auf den 2. Sicherheits-Abstand und anschlie\u00dfend in die Zapfenmitte
- 2 Von der Zapfenmitte aus fährt das Werkzeug in der Bearbeitungsebene auf den Startpunkt der Bearbeitung. Der Startpunkt liegt den ca 3,5-fachen Werkzeug-Radius rechts vom Zapfen
- 3 Falls das Werkzeug auf dem 2. Sicherheits-Abstand steht, f\u00e4hrt die TNC das Werkzeug im Eilgang FMAX auf den Sicherheits-Abstand und von dort mit dem Vorschub Tiefenzustellung auf die erste Zustell-Tiefe
- 4 Anschließend fährt das Werkzeug tangential an die Fertigteilkontur und fräst im Gleichlauf einen Umlauf
- 5 Danach f\u00e4hrt das Werkzeug tangential von der Kontur weg zur\u00fcck zum Startpunkt in der Bearbeitungsebene
- 6 Dieser Vorgang (3 bis 5) wiederholt sich, bis die programmierte Tiefe erreicht ist
- 7 Am Ende des Zyklus fährt die TNC das Werkzeug mit FMAX auf den Sicherheits-Abstand oder falls eingegeben auf den 2. Sicherheits-Abstand und anschließend in die Mitte des Zapfens (Endposition = Startposition)




Beachten Sie vor dem Programmieren


Die TNC positioniert das Werkzeug in der Werkzeug-Achse und in der Bearbeitungsebene automatisch vor.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Wenn Sie den Zapfen aus dem Vollen heraus umfräsen wollen, dann verwenden Sie einen Fräser mit einem über Mitte schneidenden Stirnzahn (DIN 844). Geben Sie dann für den Vorschub Tiefenzustellung einen kleinen Wert ein.

8.4 Zyklen zum Fräsen

- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze - Werkstück-Oberfläche
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche - Zapfengrund
- ▶ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Fahren auf Tiefe in mm/ min. Wenn Sie ins Material eintauchen, dann kleinen Wert eingeben, wenn Sie im Freien eintauchen, höheren Wert eingeben
- ▶ Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird. Wert größer 0 eingeben
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen
- ▶ Mitte 1. Achse Q216 (absolut): Mitte des Zapfens in der Hauptachse der Bearbeitungsebene
- ▶ Mitte 2. Achse Q217 (absolut): Mitte des Zapfens in der Nebenachse der Bearbeitungsebene
- ▶ 1. Seiten-Länge Q218 (inkremental): Länge des Zapfens parallel zur Hauptachse der Bearbeitungsebene
- ▶ 2. Seiten-Länge Q219 (inkremental): Länge des Zapfens parallel zur Nebenachse der Bearbeitungsebene
- ▶ Eckenradius O220: Radius der Zapfenecke
- ▶ Aufmaß 1. Achse Q221 (inkremental): Aufmaß zur Berechnung der Vorposition in der Hauptachse der Bearbeitungsebene, bezogen auf die Länge des Zapfens

35 CYCL DEF 213 ZAPFEN SCHLICHTEN
Q200=2 ;SICHERHEITS-ABST.
Q201=-20 ;TIEFE
Q206=150 ;VORSCHUB TIEFENZ.
Q202=5 ;ZUSTELL-TIEFE
Q207=500 ;VORSCHUB FRAESEN
Q203=+30 ;KOOR. OBERFLAECHE
Q204=50 ;2. SICHERHEITS-ABST.
Q216=+50 ;MITTE 1. ACHSE
Q217=+50 ;MITTE 2. ACHSE
Q218=80 ;1. SEITEN-LAENGE
Q219=60 ;2. SEITEN-LAENGE
Q220=5 ; ECKENRADIUS
Q221=0 ;AUFMASS

8.4 Zyklen zum Fräsen von <mark>Tas</mark>chen, Zapfen und Nuten

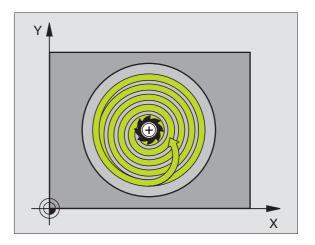
KREISTASCHE (Zyklus 5)

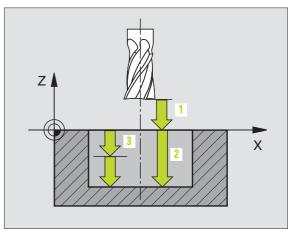
- 1 Das Werkzeug sticht an der Startposition (Taschenmitte) in das Werkstück ein und fährt auf die erste Zustell-Tiefe
- 2 Anschließend beschreibt das Werkzeug mit dem Vorschub F die im Bild rechts gezeigte spiralförmige Bahn; zur seitlichen Zustellung k, siehe "TASCHENFRAESEN (Zyklus 4)", Seite 260
- 3 Dieser Vorgang wiederholt sich, bis die Tiefe erreicht ist
- 4 Am Ende fährt die TNC das Werkzeug auf die Startposition zurück

Beachten Sie vor dem Programmieren

Fräser mit einem über Mitte schneidenden Stirnzahn verwenden (DIN 844) oder Vorbohren in der Taschenmitte.

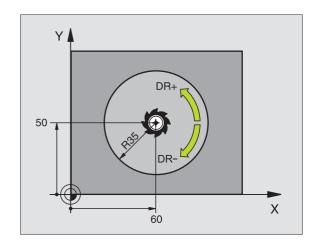
Vorpositionieren über Taschenmitte mit Radiuskorrektur R0.


Positionier-Satz auf den Startpunkt in der Spindelachse (Sicherheits-Abstand über Werkstück-Oberfläche) programmieren.


Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

266

- ➤ Sicherheits-Abstand 1 (inkremental): Abstand Werkzeugspitze (Startposition) Werkstück-Oberfläche
- ▶ Frästiefe 2: Abstand Werkstück-Oberfläche Taschengrund
- Zustell-Tiefe 3 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird. Die TNC fährt in einem Arbeitsgang auf die Tiefe wenn:
 - Zustell-Tiefe und Tiefe gleich sind
 - die Zustell-Tiefe größer als die Tiefe ist



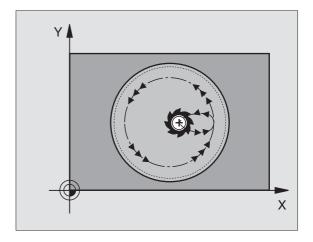
8 Programmieren: Zyklen

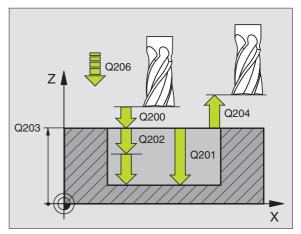
- ▶ Vorschub Tiefenzustellung: Verfahrgeschwindigkeit des Werkzeugs beim Einstechen
- ▶ Kreisradius: Radius der Kreistasche
- ▶ Vorschub F: Verfahrgeschwindigkeit des Werkzeugs in der Bearbeitungsebene
- ▶ Drehung im Uhrzeigersinn DR +: Gleichlauf-Fräsen bei M3 DR –: Gegenlauf-Fräsen bei M3

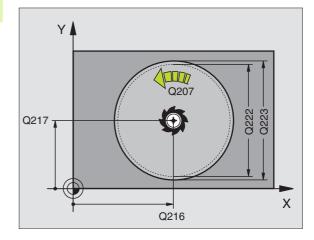
16 L Z+100 RO FMAX
17 CYCL DEF 5.0 KREISTASCHE.
18 CYCL DEF 5.1 ABST 2
19 CYCL DEF 5.2 TIEFE -12
20 CYCL DEF 5.3 ZUSTLG 6 F80
21 CYCL DEF 5.4 RADIUS 35
22 CYCL DEF 5.5 F100 DR+
23 L X+60 Y+50 FMAX M3
24 L Z+2 FMAX M99

KREISTASCHE SCHLICHTEN (Zyklus 214)

- 1 Die TNC f\u00e4hrt das Werkzeug automatisch in der Spindelachse auf den Sicherheits-Abstand, oder – falls eingegeben – auf den 2. Sicherheits-Abstand und anschlie\u00dfend in die Taschenmittte
- 2 Von der Taschenmitte aus f\u00e4hrt das Werkzeug in der Bearbeitungsebene auf den Startpunkt der Bearbeitung. Die TNC ber\u00fccksichtigt f\u00fcr die Berechnung des Startpunkts den Rohteil-Durchmesser und den Werkzeug-Radius. Falls Sie den Rohteil-Durchmesser mit 0 eingeben, sticht die TNC in der Taschenmitte ein
- 3 Falls das Werkzeug auf dem 2. Sicherheits-Abstand steht, f\u00e4hrt die TNC das Werkzeug im Eilgang FMAX auf den Sicherheits-Abstand und von dort mit dem Vorschub Tiefenzustellung auf die erste Zustell-Tiefe
- 4 Anschließend fährt das Werkzeug tangential an die Fertigteilkontur und fräst im Gleichlauf einen Umlauf
- 5 Danach fährt das Werkzeug tangential von der Kontur zurück zum Startpunkt in der Bearbeitungsebene
- 6 Dieser Vorgang (3 bis 5) wiederholt sich, bis die programmierte Tiefe erreicht ist
- 7 Am Ende des Zyklus fährt die TNC das Werkzeug mit FMAX auf den Sicherheits-Abstand oder falls eingegeben auf den 2. Sicherheits-Abstand und anschließend in die Mitte der Tasche (Endposition = Startposition)




Beachten Sie vor dem Programmieren


Die TNC positioniert das Werkzeug in der Werkzeug-Achse und in der Bearbeitungsebene automatisch vor.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Wenn Sie die Tasche aus dem Vollen heraus schlichten wollen, dann verwenden Sie einen Fräser mit einem über Mitte schneidenden Stirnzahn (DIN 844) und geben einen kleinen Vorschub Tiefenzustellung ein.

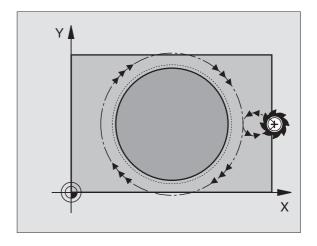
- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze - Werkstück-Oberfläche
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche - Taschengrund
- ▶ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Fahren auf Tiefe in mm/ min. Wenn Sie ins Material eintauchen, dann kleineren Wert eingeben als in Q207 definiert
- ▶ Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen
- ▶ Mitte 1. Achse Q216 (absolut): Mitte der Tasche in der Hauptachse der Bearbeitungsebene
- ▶ Mitte 2. Achse Q217 (absolut): Mitte der Tasche in der Nebenachse der Bearbeitungsebene
- ▶ Rohteil-Durchmesser Q222: Durchmesser der vorbearbeiteten Tasche zur Berechnung der Vorposition; Rohteil-Durchmesser kleiner als Fertigteil-Durchmesser eingeben
- ▶ Fertigteil-Durchmesser Q223: Durchmesser der fertig bearbeiteten Tasche; Fertigteil-Durchmesser größer als Rohteil-Durchmesser und größer als Werkzeug-Durchmesser eingeben

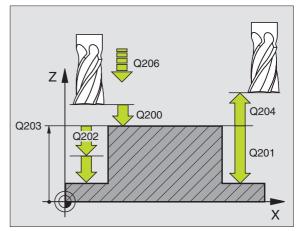
42 CY	CL DEF 21	4 KREIST. SCHLICHTEN
Q	200=2	;SICHERHEITS-ABST.
Q	201=-20	;TIEFE
Q	206=150	;VORSCHUB TIEFENZ.
Q	202=5	;ZUSTELL-TIEFE
Q	207=500	; VORSCHUB FRAESEN
Q	203=+30	;KOOR. OBERFLAECHE
Q	204=50	;2. SICHERHEITS-ABST.
Q	216=+50	;MITTE 1. ACHSE
Q	217=+50	;MITTE 2. ACHSE
C	222=79	;ROHTEIL-DURCHMESSER
(223=80	;FERTIGTEIL-DURCHM.

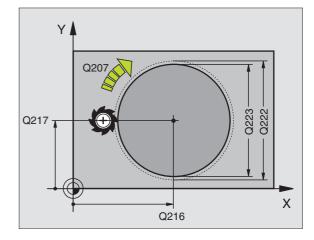
HEIDENHAIN TNC 426, TNC 430

KREISZAPFEN SCHLICHTEN (Zyklus 215)

- 1 Die TNC fährt das Werkzeug automatisch in der Spindelachse auf den Sicherheits-Abstand, oder – falls eingegeben – auf den 2. Sicherheits-Abstand und anschließend in die Zapfenmitte
- 2 Von der Zapfenmitte aus fährt das Werkzeug in der Bearbeitungsebene auf den Startpunkt der Bearbeitung. Der Startpunkt liegt den ca 3,5-fachen Werkzeug-Radius rechts vom Zapfen
- Falls das Werkzeug auf dem 2. Sicherheits-Abstand steht, fährt die TNC das Werkzeug im Eilgang FMAX auf den Sicherheits-Abstand und von dort mit dem Vorschub Tiefenzustellung auf die erste Zustell-Tiefe
- Anschließend fährt das Werkzeug tangential an die Fertigteilkontur und fräst im Gleichlauf einen Umlauf
- Danach fährt das Werkzeug tangential von der Kontur weg zurück zum Startpunkt in der Bearbeitungsebene
- Dieser Vorgang (3 bis 5) wiederholt sich, bis die programmierte Tiefe erreicht ist
- Am Ende des Zyklus fährt die TNC das Werkzeug mit FMAX auf den Sicherheits-Abstand oder - falls eingegeben - auf den 2. Sicherheits-Abstand und anschließend in die Mitte der Tasche (Endposition = Startposition)




Beachten Sie vor dem Programmieren

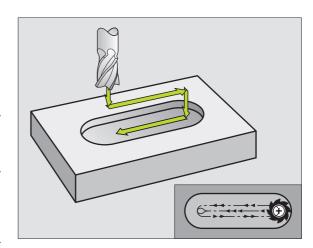

Die TNC positioniert das Werkzeug in der Werkzeug-Achse und in der Bearbeitungsebene automatisch vor.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Wenn Sie den Zapfen aus dem Vollen heraus umfräsen wollen, dann verwenden Sie einen Fräser mit einem über Mitte schneidenden Stirnzahn (DIN 844). Geben Sie dann für den Vorschub Tiefenzustellung einen kleinen Wert ein.

- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze - Werkstück-Oberfläche
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche - Zapfengrund
- ▶ Vorschub Tiefenzustellung Q206: Verfahrgeschwindigkeit des Werkzeugs beim Fahren auf Tiefe in mm/ min. Wenn Sie ins Material eintauchen, dann kleinen Wert eingeben; wenn Sie im Freien eintauchen, dann höheren Wert eingeben
- ▶ Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird; Wert größer 0 eingeben
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen
- ▶ Mitte 1. Achse Q216 (absolut): Mitte des Zapfens in der Hauptachse der Bearbeitungsebene
- ▶ Mitte 2. Achse Q217 (absolut): Mitte des Zapfens in der Nebenachse der Bearbeitungsebene
- ▶ Rohteil-Durchmesser Q222: Durchmesser des vorbearbeiteten Zapfens zur Berechnung der Vorposition; Rohteil-Durchmesser größer als Fertigteil-Durchmesser eingeben
- ▶ Fertigteil-Durchmesser Q223: Durchmesser des fertig bearbeiteten Zapfens; Fertigteil-Durchmesser kleiner als Rohteil-Durchmesser eingeben

43 CYCL DEF	215 KREISZ. SCHLICHTEN
Q200=2	;SICHERHEITS-ABST.
Q201=-20	;TIEFE
Q206=150	;VORSCHUB TIEFENZ.
Q202=5	;ZUSTELL-TIEFE
Q207=500	;VORSCHUB FRAESEN
Q203=+30	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q216=+50	;MITTE 1. ACHSE
Q217=+50	;MITTE 2. ACHSE
Q222=81	;ROHTEIL-DURCHMESSER
Q223=80	;FERTIGTEIL-DURCHM.


NUTENFRAESEN (Zyklus 3)

Schruppen

- 1 Die TNC versetzt das Werkzeug um das Schlicht-Aufmaß (halbe Differenz zwischen Nutbreite und Werkzeug-Durchmesser) nach innen. Von dort aus sticht das Werkzeug in das Werkstück ein und fräst in Längsrichtung der Nut
- 2 Am Ende der Nut erfolgt eine Tiefenzustellung und das Werkzeug fräst in Gegenrichtung. Dieser Vorgang wiederholt sich, bis die programmierte Frästiefe erreicht ist

Schlichten

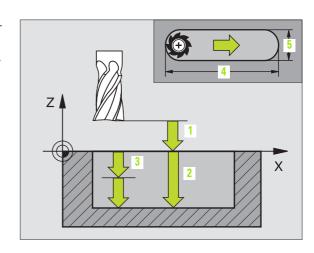
- 3 Am Fräsgrund fährt die TNC das Werkzeug auf einer Kreisbahn tangential an die Außenkontur; danach wird die Kontur im Gleichlauf (bei M3) geschlichtet
- 4 Abschließend fährt das Werkzeug im Eilgang FMAX auf den Sicherheits-Abstand zurück. Bei einer ungeraden Anzahl von Zustellungen fährt das Werkzeug im Sicherheits-Abstand zur Startposition

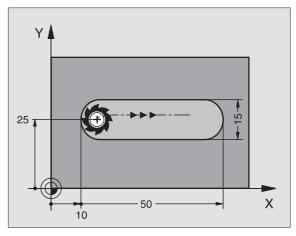
Beachten Sie vor dem Programmieren

Fräser mit einem über Mitte schneidenden Stirnzahn verwenden (DIN 844), oder Vorbohren am Startpunkt.

Vorpositionieren in die Mitte der Nut und um den Werkzeug-Radius versetzt in die Nut mit Radiuskorrektur R0.

Fräserdurchmesser nicht größer als die Nutbreite und nicht kleiner als die halbe Nutbreite wählen.


Positionier-Satz auf den Startpunkt in der Spindelachse (Sicherheits-Abstand über Werkstück-Oberfläche) programmieren.

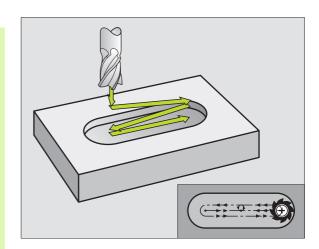

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

- ► Sicherheits-Abstand 1 (inkremental): Abstand Werkzeugspitze (Startposition) Werkstück-Oberfläche
- ▶ Frästiefe 2 (inkremental): Abstand Werkstück-Oberfläche – Taschengrund
- Zustell-Tiefe 3 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird; die TNC fährt in einem Arbeitsgang auf die Tiefe wenn:
 - Zustell-Tiefe und Tiefe gleich sind
 - die Zustell-Tiefe größer als die Tiefe ist
- ▶ Vorschub Tiefenzustellung: Verfahrgeschwindigkeit beim Einstechen
- ▶ 1. Seiten-Länge 4: Länge der Nut; 1. Schnittrichtung durch Vorzeichen festlegen
- ▶ 2. Seiten-Länge 5: Breite der Nut
- ▶ Vorschub F: Verfahrgeschwindigkeit des Werkzeugs in der Bearbeitungsebene

9 L Z+100 RO FMAX
10 TOOL DEF 1 L+0 R+6
11 TOOL CALL 1 Z S1500
12 CYCL DEF 3.0 NUTENFRAESEN
13 CYCL DEF 3.1 ABST 2
14 CYCL DEF 3.2 TIEFE -15
15 CYCL DEF 3.3 ZUSTLG 5 F80
16 CYCL DEF 3.4 X50
17 CYCL DEF 3.5 Y15
18 CYCL DEF 3.6 F120
19 L X+16 Y+25 RO FMAX M3
20 L Z+2 M99

NUT (Langloch) mit pendelndem Eintauchen (Zyklus 210)

Beachten Sie vor dem Programmieren

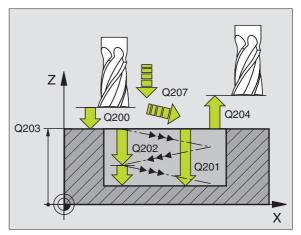

Die TNC positioniert das Werkzeug in der Werkzeug-Achse und in der Bearbeitungsebene automatisch vor.

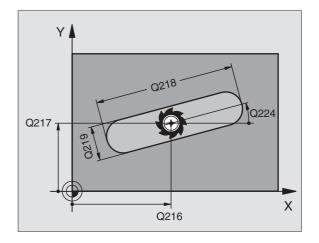
Beim Schruppen taucht das Werkzeug pendelnd von einem zum anderen Nutende ins Material ein. Vorbohren ist daher nicht erforderlich.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Fräserdurchmesser nicht größer als die Nutbreite und nicht kleiner als ein Drittel der Nutbreite wählen.

Fräserdurchmesser kleiner als die halbe Nutlänge wählen: Sonst kann die TNC nicht pendelnd eintauchen.




Schruppen

- 1 Die TNC positioniert das Werkzeug im Eilgang in der Spindelachse auf den 2. Sicherheits-Abstand und anschließend ins Zentrum des linken Kreises; von dort aus positioniert die TNC das Werkzeug auf den Sicherheits-Abstand über der Werkstück-Oberfläche
- 2 Das Werkzeug fährt mit dem Vorschub Fräsen auf die Werkstück-Oberfläche; von dort aus fährt der Fräser in Längsrichtung der Nut - schräg ins Material eintauchend - zum Zentrum des rechten Kreises
- Anschließend fährt das Werkzeug wieder schräg eintauchend zurück zum Zentrum des linken Kreises; diese Schritte wiederholen sich, bis die programmierte Frästiefe erreicht ist
- Auf der Frästiefe fährt die TNC das Werkzeug zum Planfräsen an das andere Ende der Nut und danach wieder in die Mitte der Nut

Schlichten

- Von der Mitte der Nut fährt die TNC das Werkzeug tangential an die Fertigkontur; danach schlichtet die TNC die Kontur im Gleichlauf (bei M3), wenn eingegeben auch in mehreren Zustellungen
- 6 Am Konturende fährt das Werkzeug tangential von der Kontur weg - zur Mitte der Nut
- 7 Abschließend fährt das Werkzeug im Eilgang FMAX auf den Sicherheits-Abstand zurück und – falls eingegeben – auf den 2. Sicherheits-Abstand

- ► Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze Werkstück-Oberfläche
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche – Nutgrund
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min
- Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug bei einer Pendelbewegung in der Spindelachse insgesamt zugestellt wird
- ▶ Bearbeitungs-Umfang (0/1/2) Q215: Bearbeitungs-Umfang festlegen:
 - 0: Schruppen und Schlichten
 - 1: Nur Schruppen
 - 2: Nur Schlichten
- Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate der Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Z-Koordinate, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Mitte 1. Achse Q216 (absolut): Mitte der Nut in der Hauptachse der Bearbeitungsebene
- ▶ Mitte 2. Achse Q217 (absolut): Mitte der Nut in der Nebenachse der Bearbeitungsebene
- ▶ 1. Seiten-Länge Q218 (Wert parallel zur Hauptachse der Bearbeitungsebene): Längere Seite der Nut eingeben
- ▶ 2. Seiten-Länge Q219 (Wert parallel zur Nebenachse der Bearbeitungsebene): Breite der Nut eingeben; wenn Nutbreite gleich Werkzeug-Durchmesser eingegeben, dann schruppt die TNC nur (Langloch fräsen)
- Drehwinkel Q224 (absolut): Winkel, um den die gesamte Nut gedreht wird; das Drehzentrum liegt im Zentrum der Nut
- ➤ Zustellung Schlichten Q338 (inkremental): Maß, um welches das Werkzeug in der Spindelachse beim Schlichten zugestellt wird. Q338=0: Schlichten in einer Zustellung

51 CYCL DEF 210	NUT PENDELND
Q200=2	SICHERHEITS-ABST.
Q201=-20	;TIEFE
Q207=500	VORSCHUB FRAESEN
Q202=5	ZUSTELL-TIEFE
Q215=0 ;	BEARBEITUNGS-UMFANG
Q203=+30 ;	KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q216=+50	MITTE 1. ACHSE
Q217=+50	MITTE 2. ACHSE
Q218=80 ;	1. SEITEN-LAENGE
Q219=12	;2. SEITEN-LAENGE
Q224=+15	; DREHLAGE
Q338=5	ZUST. SCHLICHTEN

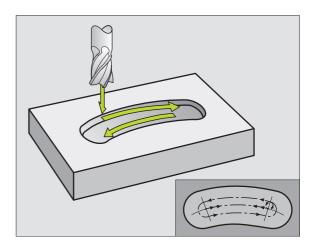
RUNDE NUT (Langloch) mit pendelndem Eintauchen (Zyklus 211)

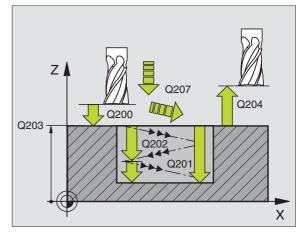
Schruppen

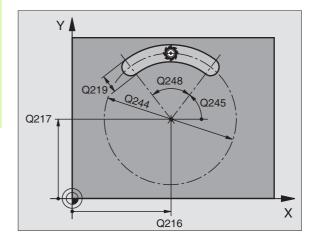
- 1 Die TNC positioniert das Werkzeug im Eilgang in der Spindelachse auf den 2. Sicherheits-Abstand und anschließend ins Zentrum des rechten Kreises. Von dort aus positioniert die TNC das Werkzeug auf den eingegebenen Sicherheits-Abstand über der Werkstück-Oberfläche
- 2 Das Werkzeug f\u00e4hrt mit dem Vorschub Fr\u00e4sen auf die Werkst\u00fcck-Oberfl\u00e4che; von dort aus f\u00e4hrt der Fr\u00e4ser – schr\u00e4g ins Material eintauchend – zum anderen Ende der Nut
- **3** Anschließend fährt das Werkzeug wieder schräg eintauchend zurück zum Startpunkt; dieser Vorgang (2 bis 3) wiederholt sich, bis die programmierte Frästiefe erreicht ist
- 4 Auf der Frästiefe fährt die TNC das Werkzeug zum Planfräsen ans andere Ende der Nut

- 5 Von der Mitte der Nut f\u00e4hrt die TNC das Werkzeug tangential an die Fertigkontur; danach schlichtet die TNC die Kontur im Gleichlauf (bei M3), wenn eingegeben auch in mehreren Zustellungen. Der Startpunkt f\u00fcr den Schlichtvorgang liegt im Zentrum des rechten Kreises.
- 6 Am Konturende fährt das Werkzeug tangential von der Kontur weg
- 7 Abschließend fährt das Werkzeug im Eilgang FMAX auf den Sicherheits-Abstand zurück und – falls eingegeben – auf den 2. Sicherheits-Abstand

Beachten Sie vor dem Programmieren

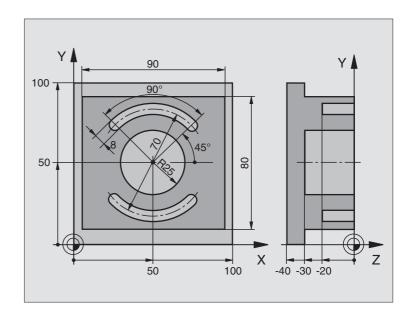

Die TNC positioniert das Werkzeug in der Werkzeug-Achse und in der Bearbeitungsebene automatisch vor.


Beim Schruppen taucht das Werkzeug mit einer HELIX-Bewegung pendelnd von einem zum anderen Nutende ins Material ein. Vorbohren ist daher nicht erforderlich.


Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Fräserdurchmesser nicht größer als die Nutbreite und nicht kleiner als ein Drittel der Nutbreite wählen.

Fräserdurchmesser kleiner als die halbe Nutlänge wählen. Sonst kann die TNC nicht pendelnd eintauchen.


8 Programmieren: Zyklen

- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand Werkzeugspitze - Werkstück-Oberfläche
- ▶ Tiefe Q201 (inkremental): Abstand Werkstück-Oberfläche - Nutgrund
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min
- ► Zustell-Tiefe Q202 (inkremental): Maß, um welches das Werkzeug bei einer Pendelbewegung in der Spindelachse insgesamt zugestellt wird
- ▶ Bearbeitungs-Umfang (0/1/2) Q215: Bearbeitungs-Umfang festlegen:
 - 0: Schruppen und Schlichten
 - 1: Nur Schruppen
 - 2: Nur Schlichten
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate der Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Z-Koordinate, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Mitte 1. Achse Q216 (absolut): Mitte der Nut in der Hauptachse der Bearbeitungsebene
- ▶ Mitte 2. Achse Q217 (absolut): Mitte der Nut in der Nebenachse der Bearbeitungsebene
- ▶ Teilkreis-Durchmesser Q244: Durchmesser des Teilkreises eingeben
- ▶ 2. Seiten-Länge Q219: Breite der Nut eingeben; wenn Nutbreite gleich Werkzeug-Durchmesser eingegeben, dann schruppt die TNC nur (Langloch fräsen)
- ▶ Startwinkel O245 (absolut): Polarwinkel des Startpunkts eingeben
- ▶ Öffnungs-Winkel der Nut Q248 (inkremental): Offnungs-Winkel der Nut eingeben
- ▶ Zustellung Schlichten Q338 (inkremental): Maß, um welches das Werkzeug in der Spindelachse beim Schlichten zugestellt wird. Q338=0: Schlichten in einer Zustellung

52 CYCL DEF 21	1 RUNDE NUT
Q200=2	;SICHERHEITS-ABST.
Q201=-20	;TIEFE
Q207=500	; VORSCHUB FRAESEN
Q202=5	;ZUSTELL-TIEFE
Q215=0	;BEARBEITUNGS-UMFANG
Q203=+30	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q216=+50	;MITTE 1. ACHSE
Q217=+50	;MITTE 2. ACHSE
Q244=80	;TEILKREIS-DURCHM.
Q219=12	;2. SEITEN-LAENGE
Q245=+45	;STARTWINKEL
Q248=90	;OEFFNUNGSWINKEL
Q338=5	;ZUST. SCHLICHTEN

Beispiel: Tasche, Zapfen und Nuten fräsen

O BEGIN PGM C210 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Rohteil-Definition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+6	Werkzeug-Definition Schruppen/Schlichten
4 TOOL DEF 2 L+0 R+3	Werkzeug-Definition Nutenfräser
5 TOOL CALL 1 Z S3500	Werkzeug-Aufruf Schruppen/Schlichten
6 L Z+250 RO F MAX	Werkzeug freifahren
7 CYCL DEF 213 ZAPFEN SCHLICH.	Zyklus-Definition Außenbearbeitung
Q200=2 ;SICHERHEITSABST.	
Q201=-30 ;TIEFE	
Q206=250 ;F TIEFENZUST.	
Q202=5 ;ZUSTELL-TIEFE	
Q207=250 ;F FRAESEN	
Q203=+0 ;KOOR. OBERFL.	
Q204=20 ;2. SABSTAND	
Q216=+50 ;MITTE 1. ACHSE	
Q217=+50 ;MITTE 2. ACHSE	
Q218=90 ;1. SEITEN-LAENGE	
Q219=80 ;2. SEITEN-LAENGE	

Q220=0 ;ECKENRADIUS	
Q221=5 ;AUFMASS	
8 CYCL CALL M3	Zyklus-Aufruf Außenbearbeitung
9 CYCL DEF 5.0 KREISTASCHE	Zyklus-Definition Kreistasche
10 CYCL DEF 5.1 ABST 2	
11 CYCL DEF 5.2 TIEFE -30	
12 CYCL DEF 5.3 ZUSTLG 5 F250	
13 CYCL DEF 5.4 RADIUS 25	
14 CYCL DEF 5.5 F400 DR+	
15 L Z+2 RO F MAX M99	Zyklus-Aufruf Kreistasche
16 L Z+250 RO F MAX M6	Werkzeug-Wechsel
17 TOOL CALL 2 Z S5000	Werkzeug-Aufruf Nutenfräser
18 CYCL DEF 211 RUNDE NUT	Zyklus-Definition Nut 1
Q200=2 ;SICHERHEITSABST.	
Q201=-20 ;TIEFE	
Q207=250 ;F FRAESEN	
Q202=5 ;ZUSTELL-TIEFE	
Q215=O ;BEARBUMFANG	
Q203=+0 ;KOOR. OBERFL.	
Q204=100 ;2. SABSTAND	
Q216=+50 ;MITTE 1. ACHSE	
Q217=+50 ;MITTE 2. ACHSE	
Q244=70 ;TEILKREIS-DURCH.	
Q219=8 ;2. SEITEN-LAENGE	
Q245=+45 ;STARTWINKEL	
Q248=90 ;OEFFNWINKEL	
Q338=5 ;ZUST. SCHLICHTEN	
19 CYCL CALL M3	Zyklus-Aufruf Nut 1
20 FN 0: Q245 = +225	Neuer Startwinkel für Nut 2
21 CYCL CALL	Zyklus-Aufruf Nut 2
22 L Z+250 RO F MAX M2	Werkzeug freifahren, Programm-Ende
23 END PGM C210 MM	

HEIDENHAIN TNC 426, TNC 430 **279**

8.5 Zyklen zum Herstellen von Punktemustern

Übersicht

Die TNC stellt 2 Zyklen zur Verfügung, mit denen Sie Punktemuster direkt fertigen können:

Zyklus	Softkey
220 PUNKTEMUSTER AUF KREIS	220
221 PUNKTEMUSTER AUF LINIEN	221 † • • • • • • • • • • • • • • • • • •

Folgende Bearbeitungszyklen können Sie mit den Zyklen 220 und 221 kombinieren:

Wenn Sie unregelmäßige Punktemuster fertigen müssen, dann verwenden Sie Punkte-Tabellen mit **CYCL CALL PAT** (siehe "Punkte-Tabellen" auf Seite 206).

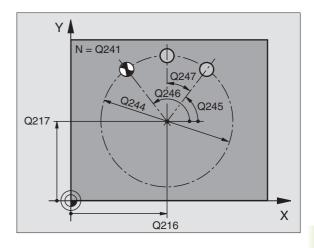
- Zyklus 1 TIEFBOHREN
- Zyklus 2 GEWINDEBOHREN mit Ausgleichsfutter
- Zyklus 3 NUTENFRAESEN
- Zyklus 4 TASCHENFRAESEN
- Zyklus 5 KREISTASCHE
- Zyklus 17 GEWINDEBOHREN GS ohne Ausgleichsfutter
- Zyklus 18 GEWINDESCHNEIDEN
- Zyklus 200 BOHREN
- Zyklus 201 REIBEN
- Zyklus 202 AUSDREHEN
- Zyklus 203 UNIVERSAL-BOHREN
- Zyklus 204 RUECKWAERTS-SENKEN
- Zyklus 205 UNIVERSAL-TIEFBOHREN
- Zyklus 206 GEWINDEBOHREN NEU mit Ausgleichsfutter
- Zyklus 207 GEWINDEBOHREN GS NEU ohne Ausgleichsfutter
- Zyklus 208 BOHRFRAESEN
- Zyklus 209 GEWINDEBOHREN SPANBRUCH
- Zyklus 212 TASCHE SCHLICHTEN
- Zyklus 213 ZAPFEN SCHLICHTEN
- Zyklus 214 KREISTASCHE SCHLICHTEN
- Zyklus 215 KREISZAPFEN SCHLICHTEN
- Zyklus 262 GEWINDEFRAESEN
- Zyklus 263 SENKGEWINDEFRAESEN
- Zyklus 264 BOHRGEWINDEFRAESEN
- Zyklus 265 HELIX-BOHRGEWINDEFRAESEN
- Zyklus 267 AUSSEN-GEWINDEFRAESEN

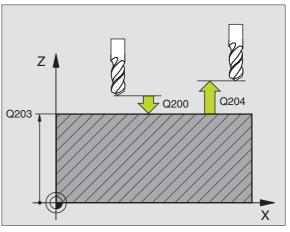
PUNKTEMUSTER AUF KREIS (Zyklus 220)

1 Die TNC positioniert das Werkzeug im Eilgang von der aktuellen Position zum Startpunkt der ersten Bearbeitung.

Reihenfolge:

- 2. Sicherheits-Abstand anfahren (Spindelachse)
- Startpunkt in der Bearbeitungsebene anfahren
- Auf Sicherheits-Abstand über Werkstück-Oberfläche fahren (Spindelachse)
- **2** Ab dieser Position führt die TNC den zuletzt definierten Bearbeitungszyklus aus
- 3 Anschließend positioniert die TNC das Werkzeug mit einer Geraden-Bewegung auf den Startpunkt der nächsten Bearbeitung; das Werkzeug steht dabei auf Sicherheits-Abstand (oder 2. Sicherheits-Abstand)
- **4** Dieser Vorgang (1 bis 3) wiederholt sich, bis alle Bearbeitungen ausgeführt sind


Beachten Sie vor dem Programmieren


Zyklus 220 ist DEF-Aktiv, das heißt, Zyklus 220 ruft automatisch den zuletzt definierten Bearbeitungszyklus auf.

Wenn Sie einen der Bearbeitungszyklen 200 bis 208, 212 bis 215, 262 bis 265 und 267 mit Zyklus 220 kombinieren, wirken der Sicherheits-Abstand, die Werkstück-Oberfläche und der 2. Sicherheits-Abstand aus Zyklus 220.

- ▶ Mitte 1. Achse Q216 (absolut): Teilkreis-Mittelpunkt in der Hauptachse der Bearbeitungsebene
- ▶ Mitte 2. Achse Q217 (absolut): Teilkreis-Mittelpunkt in der Nebenachse der Bearbeitungsebene
- ▶ Teilkreis-Durchmesser Q244: Durchmesser des Teilkreises
- ▶ Startwinkel Q245 (absolut): Winkel zwischen der Hauptachse der Bearbeitungsebene und dem Startpunkt der ersten Bearbeitung auf dem Teilkreis
- ▶ Endwinke1 O246 (absolut): Winkel zwischen der Hauptachse der Bearbeitungsebene und dem Startpunkt der letzten Bearbeitung auf dem Teilkreis (gilt nicht für Vollkreise); Endwinkel ungleich Startwinkel eingeben; wenn Endwinkel größer als Startwinkel eingegeben, dann Bearbeitung im Gegen-Uhrzeigersinn, sonst Bearbeitung im Uhrzeigersinn
- ▶ Winkel schritt Q247 (inkremental): Winkel zwischen zwei Bearbeitungen auf dem Teilkreis; wenn der Winkelschritt gleich null ist, dann berechnet die TNC den Winkelschritt aus Startwinkel, Endwinkel und Anzahl Bearbeitungen; wenn ein Winkelschritt eingegeben ist, dann berücksichtigt die TNC den Endwinkel nicht; das Vorzeichen des Winkelschritts legt die Bearbeitungsrichtung fest (− = Uhrzeigersinn)

Beispiel: NC-Sätze

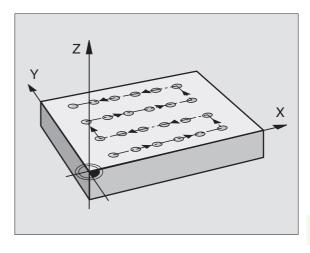
53 CYCL DEF 220 MUSTER KREIS
Q216=+50 ;MITTE 1. ACHSE.
Q217=+50 ;MITTE 2. ACHSE
Q244=80 ;TEILKREIS-DURCHM.
Q245=+0 ;STARTWINKEL
Q246=+360 ;ENDWINKEL
Q247=+0 ;WINKELSCHRITT
Q241=8 ;ANZAHL BEARBEITUNGEN
Q200=2 ;SICHERHEITS-ABST.
Q203=+30 ;KOOR. OBERFLAECHE
Q204=50 ;2. SICHERHEITS-ABST.
Q301=1 ;FAHREN AUF S. HOEHE

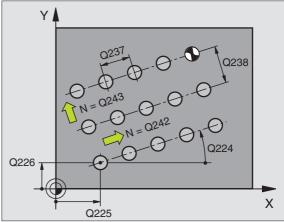
- ▶ Anzahl Bearbeitungen Q241: Anzahl der Bearbeitungen auf dem Teilkreis
- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeugspitze und Werkstück-Oberfläche; Wert positiv eingeben
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand O204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann; Wert positiv eingeben
- ▶ Fahren auf sichere Höhe Q301: Festlegen, wie das Werkzeug zwischen den Bearbeitungen verfahren soll:
 - **0**: Zwischen den Bearbeitungen auf Sicherheits-Abstand verfahren
 - 1: Zwischen den Bearbeitungen auf 2. Sicherheits-Abstand verfahren

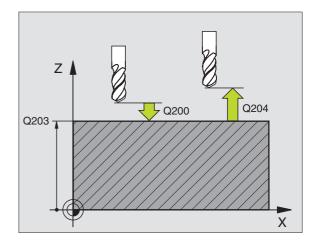
282 8 Programmieren: Zyklen

PUNKTEMUSTER AUF LINIEN (Zyklus 221)

Beachten Sie vor dem Programmieren

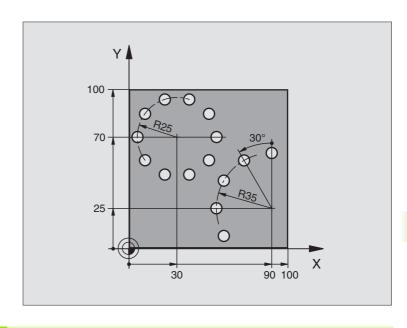

Zyklus 221 ist DEF-Aktiv, das heißt, Zyklus 221 ruft automatisch den zuletzt definierten Bearbeitungszyklus auf.


Wenn Sie einen der Bearbeitungszyklen 200 bis 208, 212 bis 215, 262 bis 265 und 267 mit Zyklus 221 kombinieren, wirken der Sicherheits-Abstand, die Werkstück-Oberfläche und der 2. Sicherheits-Abstand aus Zyklus 221.


1 Die TNC positioniert das Werkzeug automatisch von der aktuellen Position zum Startpunkt der ersten Bearbeitung

Reihenfolge:

- 2. Sicherheits-Abstand anfahren (Spindelachse)
- Startpunkt in der Bearbeitungsebene anfahren
- Auf Sicherheits-Abstand über Werkstück-Oberfläche fahren (Spindelachse)
- **2** Ab dieser Position führt die TNC den zuletzt definierten Bearbeitungszyklus aus
- 3 Anschließend positioniert die TNC das Werkzeug in positiver Richtung der Hauptachse auf den Startpunkt der nächsten Bearbeitung; das Werkzeug steht dabei auf Sicherheits-Abstand (oder 2. Sicherheits-Abstand)
- **4** Dieser Vorgang (1 bis 3) wiederholt sich, bis alle Bearbeitungen auf der ersten Zeile ausgeführt sind; das Werkzeug steht am letzten Punkt der ersten Zeile
- **5** Danach fährt die TNC das Werkzeug zum letzten Punkt der zweiten Zeile und führt dort die Bearbeitung durch
- 6 Von dort aus positioniert die TNC das Werkzeug in negativer Richtung der Hauptachse auf den Startpunkt der nächsten Bearbeitung
- 7 Dieser Vorgang (6) wiederholt sich, bis alle Bearbeitungen der zweiten Zeile ausgeführt sind
- 8 Anschließend fährt die TNC das Werkzeug auf den Startpunkt der nächsten Zeile
- 9 In einer Pendelbewegung werden alle weiteren Zeilen abgearbeitet


- ▶ Startpunkt 1. Achse Q225 (absolut): Koordinate des Startpunktes in der Hauptachse der Bearbeitungsebene
- Startpunkt 2. Achse Q226 (absolut): Koordinate des Startpunktes in der Nebenachse der Bearbeitungsebene
- ▶ Abstand 1. Achse Q237 (inkremental): Abstand der einzelnen Punkte auf der Zeile
- ▶ Abstand 2. Achse Q238 (inkremental): Abstand der einzelnen Zeilen voneinander
- Anzahl Spalten Q242: Anzahl der Bearbeitungen auf der Zeile
- ▶ Anzahl Zeilen Q243: Anzahl der Zeilen
- Drehwinkel Q224 (absolut): Winkel, um den das gesamte Anordnungsbild gedreht wird; das Drehzentrum liegt im Startpunkt
- ▶ Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeugspitze und Werkstück-Oberfläche
- ▶ Koord. Werkstück-Oberfläche Q203 (absolut): Koordinate Werkstück-Oberfläche
- ▶ 2. Sicherheits-Abstand Q204 (inkremental): Koordinate Spindelachse, in der keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Fahren auf sichere Höhe Q301: Festlegen, wie das Werkzeug zwischen den Bearbeitungen verfahren soll:
 - **0:** Zwischen den Bearbeitungen auf Sicherheits-Abstand verfahren
 - 1: Zwischen den Messpunkten auf 2. Sicherheits-Abstand verfahren

54 CYCL DEF 22	1 MUSTER LINIEN
Q225=+15	;STARTPUNKT 1. ACHSE
Q226=+15	;STARTPUNKT 2. ACHSE
Q237=+10	;ABSTAND 1. ACHSE
Q238=+8	;ABSTAND 2. ACHSE
Q242=6	;ANZAHL SPALTEN
Q243=4	;ANZAHL ZEILEN
Q224=+15	;DREHLAGE
Q200=2	;SICHERHEITS-ABST.
Q203=+30	;KOOR. OBERFLAECHE
Q204=50	;2. SICHERHEITS-ABST.
Q301=1	;FAHREN AUF S. HOEHE

284 8 Programmieren: Zyklen

Beispiel: Lochkreise

O BEGIN PGM BOHRB MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Rohteil-Definition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+3	Werkzeug-Definition
4 TOOL CALL 1 Z S3500	Werkzeug-Aufruf
5 L Z+250 RO F MAX M3	Werkzeug freifahren
6 CYCL DEF 200 BOHREN	Zyklus-Definition Bohren
Q200=2 ;SICHERHEITSABST.	
Q201=-15 ;TIEFE	
Q206=250 ;F TIEFENZUST.	
Q202=4 ;ZUSTELL-TIEFE	
Q210=0 ;VZEIT	
Q203=+0 ;KOOR. OBERFL.	
Q204=0 ;2. SABSTAND	
Q211=0.25 ;VERWEILZEIT UNTEN	

T AVAI DEE AAA HUCTED KAETA	7
7 CYCL DEF 220 MUSTER KREIS	Zyklus-Definition Lochkreis 1, CYCL 200 wird automatisch gerufen,
Q216=+30 ;MITTE 1. ACHSE	Q200, Q203 und Q204 wirken aus Zyklus 220
Q217=+70 ;MITTE 2. ACHSE	
Q244=50 ;TEILKREIS-DURCH.	
Q245=+O ;STARTWINKEL	
Q246=+360 ;ENDWINKEL	
Q247=+0 ;WINKELSCHRITT	
Q241=10 ;ANZAHL	
Q200=2 ;SICHERHEITSABST.	
Q203=+0 ;KOOR. OBERFL.	
Q204=100 ;2. SABSTAND.	
Q301=1 ;FAHREN AUF S. HOEHE	
8 CYCL DEF 220 MUSTER KREIS	Zyklus-Definition Lochkreis 2, CYCL 200 wird automatisch gerufen,
Q216=+90 ;MITTE 1. ACHSE	Q200, Q203 und Q204 wirken aus Zyklus 220
Q217=+25 ;MITTE 2. ACHSE	
Q244=70 ;TEILKREIS-DURCH.	
Q245=+90 ;STARTWINKEL	
Q246=+360 ;ENDWINKEL	
Q247=30 ;WINKELSCHRITT	
Q241=5 ;ANZAHL	
Q200=2 ;SICHERHEITSABST.	
Q203=+0 ;KOOR. OBERFL.	
Q204=100 ;2. SABSTAND	
Q301=1 ;FAHREN AUF S. HOEHE	
9 L Z+250 RO F MAX M2	Werkzeug freifahren, Programm-Ende
10 END PGM BOHRB MM	

286 8 Programmieren: Zyklen

8.6 SL-Zyklen

Grundlagen

Mit den SL-Zyklen können Sie komplexe Konturen aus bis zu 12 Teilkonturen (Taschen oder Inseln) zusammensetzen. Die einzelnen Teilkonturen geben Sie als Unterprogramme ein. Aus der Liste der Teilkonturen (Unterprogramm-Nummern), die Sie im Zyklus 14 KONTUR angeben, berechnet die TNC die Gesamtkontur.

Der Speicher für einen SL-Zyklus (alle Kontur-Unterprogramme) ist auf 48 Kbyte begrenzt. Die Anzahl der möglichen Konturelemente hängt von der Konturart (Innen-/Außenkontur) und der Anzahl der Teilkonturen ab und beträgt z.B. ca. 256 Geradensätze.

Eigenschaften der Unterprogramme

- Koordinaten-Umrechnungen sind erlaubt. Werden sie innerhalb der Teilkonturen programmiert, wirken sie auch in den nachfolgenden Unterprogrammen, müssen aber nach dem Zyklusaufruf nicht zurückgesetzt werden
- Die TNC ignoriert Vorschübe F und Zusatz-Funktionen M
- Die TNC erkennt eine Tasche, wenn Sie die Kontur innen umlaufen, z.B. Beschreibung der Kontur im Uhrzeigersinn mit Radius-Korrektur RR
- Die TNC erkennt eine Insel, wenn Sie die Kontur außen umlaufen, z.B. Beschreibung der Kontur im Uhrzeigersinn mit Radius-Korrektur RL
- Die Unterprogramme dürfen keine Koordinaten in der Spindelachse enthalten
- Im ersten Koordinatensatz des Unterprogramms legen Sie die Bearbeitungsebene fest. Zusatzachsen U,V,W sind erlaubt

Eigenschaften der Bearbeitungszyklen

- Die TNC positioniert vor jedem Zyklus automatisch auf den Sicherheits-Abstand
- Jedes Tiefen-Niveau wird ohne Werkzeug-Abheben gefräst; Inseln werden seitlich umfahren
- Der Radius von "Innen-Ecken" ist programmierbar das Werkzeug bleibt nicht stehen, Freischneide-Markierungen werden verhindert (gilt für äußerste Bahn beim Räumen und Seiten-Schlichten)
- Beim Seiten-Schlichten fährt die TNC die Kontur auf einer tangentialen Kreisbahn an
- Beim Tiefen-Schlichten fährt die TNC das Werkzeug ebenfalls auf einer tangentialen Kreisbahn an das Werkstück (z.B.: Spindelachse Z: Kreisbahn in Ebene Z/X)
- Die TNC bearbeitet die Kontur durchgehend im Gleichlauf bzw. im Gegenlauf

Mit MP7420 legen Sie fest, wohin die TNC das Werkzeug am Ende der Zyklen 21 bis 24 positioniert.

Beispiel: Schema: Abarbeiten mit SL-Zyklen

O BEGIN PGM SL2 MM

. . .

12 CYCL DEF 14.0 KONTUR ...

13 CYCL DEF 20.0 KONTUR-DATEN ...

. . .

16 CYCL DEF 21.0 VORBOHREN ...

17 CYCL CALL

• • •

18 CYCL DEF 22.0 RAEUMEN ...

19 CYCL CALL

. .

22 CYCL DEF 23.0 SCHLICHTEN TIEFE ...

23 CYCL CALL

• • •

26 CYCL DEF 24.0 SCHLICHTEN SEITE ...

27 CYCL CALL

• • •

50 L Z+250 RO FMAX M2

51 LBL 1

• • •

55 LBL 0

56 LBL 2

. . .

60 LBL 0

• • •

99 END PGM SL2 MM

Die Maßangaben für die Bearbeitung, wie Frästiefe, Aufmaße und Sicherheits-Abstand geben Sie zentral im Zyklus 20 als KONTUR-DATEN ein.

Übersicht SL-Zyklen

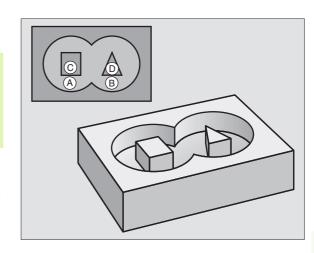
Zyklus	Softkey
14 KONTUR (zwingend erforderlich)	14 LBL 1N
20 KONTUR-DATEN (zwingend erforderlich)	20 KONTUR- DATEN
21 VORBOHREN (wahlweise verwendbar)	21 🛛
22 RAEUMEN (zwingend erforderlich)	22
23 SCHLICHTEN TIEFE (wahlweise verwendbar)	23
24 SCHLICHTEN SEITE (wahlweise verwendbar)	24

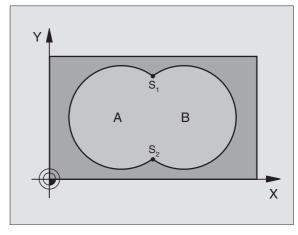
Erweiterte Zyklen:

Zyklus	Softkey
25 KONTUR-ZUG	25 25
27 ZYLINDER-MANTEL	27
28 ZYLINDER-MANTEL Nutenfräsen	28

KONTUR (Zyklus 14)

In Zyklus 14 KONTUR listen Sie alle Unterprogramme auf, die zu einer Gesamtkontur überlagert werden sollen.


Beachten Sie vor dem Programmieren


Zyklus 14 ist DEF-Aktiv, das heißt ab seiner Definition im Programm wirksam.

In Zyklus 14 können Sie maximal 12 Unterprogramme (Teilkonturen) auflisten.

▶ Label-Nummern für die Kontur: Alle Label-Nummern der einzelnen Unterprogramme eingeben, die zu einer Kontur überlagert werden sollen. Jede Nummer mit der Taste ENT bestätigen und die Eingaben mit der Taste END abschließen.

Beispiel: NC-Sätze

12 CYCL DEF 14.0 KONTUR

13 CYCL DEF 14.1 KONTURLABEL 1 /2 /3 /4

Überlagerte Konturen

Taschen und Inseln können Sie zu einer neuen Kontur überlagern. Damit können Sie die Fläche einer Tasche durch eine überlagerte Tasche vergrößern oder eine Insel verkleinern.

Unterprogramme: Überlagerte Taschen

Die nachfolgenden Programmierbeispiele sind Kontur-Unterprogramme, die in einem Hauptprogramm von Zyklus 14 KONTUR aufgerufen werden.

Die Taschen A und B überlagern sich.

Die TNC berechnet die Schnittpunkte S1 und S2, sie müssen nicht programmiert werden.

Die Taschen sind als Vollkreise programmiert.

Unterprogramm 1: Tasche A

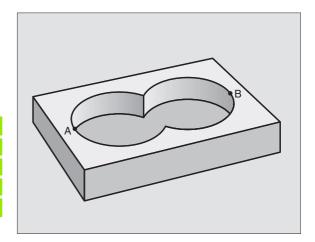
- 51 LBL 1
- 52 L X+10 Y+50 RR
- 53 CC X+35 Y+50
- 54 C X+10 Y+50 DR-
- 55 LBL 0

Unterprogramm 2: Tasche B

- 56 LBL 2
- 57 L X+90 Y+50 RR
- 58 CC X+65 Y+50
- 59 C X+90 Y+50 DR-
- 60 LBL 0

"Summen"-Fläche

Beide Teilflächen A und B inklusive der gemeinsam überdeckten Fläche sollen bearbeitet werden:


- Die Flächen A und B müssen Taschen sein.
- Die erste Tasche (in Zyklus 14) muss außerhalb der zweiten beginnen.

Fläche A:

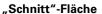
- 51 LBL 1
- 52 L X+10 Y+50 RR
- 53 CC X+35 Y+50
- 54 C X+10 Y+50 DR-
- 55 LBL 0

Fläche B:

- 56 LBL 2
- 57 L X+90 Y+50 RR
- 58 CC X+65 Y+50
- 59 C X+90 Y+50 DR-
- 60 LBL 0

"Differenz"-Fläche

Fläche A soll ohne den von B überdeckten Anteil bearbeitet werden:


- Fläche A muss Tasche und B muss Insel sein.
- A muss außerhalb B beginnen.

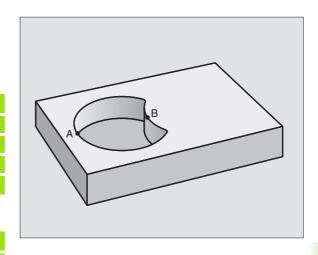
Fläche A:

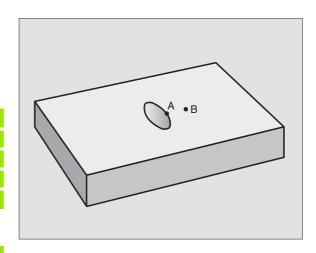
- 51 LBL 1
- 52 L X+10 Y+50 RR
- 53 CC X+35 Y+50
- 54 C X+10 Y+50 DR-
- 55 LBL 0

Fläche B:

- 56 LBL 2
- 57 L X+90 Y+50 RL
- 58 CC X+65 Y+50
- 59 C X+90 Y+50 DR-
- 60 LBL 0

Die von A und B überdeckte Fläche soll bearbeitet werden. (Einfach überdeckte Flächen sollen unbearbeitet bleiben.)


- A und B müssen Taschen sein.
- A muss innerhalb B beginnen.


Fläche A:

- 51 LBL 1
- 52 L X+60 Y+50 RR
- 53 CC X+35 Y+50
- 54 C X+60 Y+50 DR-
- 55 LBL 0

Fläche B:

- 56 LBL 2
- 57 L X+90 Y+50 RR
- 58 CC X+65 Y+50
- 59 C X+90 Y+50 DR-
- 60 LBL 0

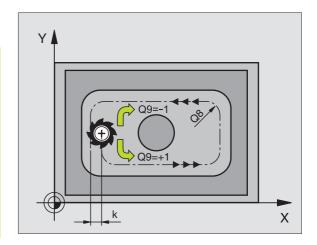
KONTUR-DATEN (Zyklus 20)

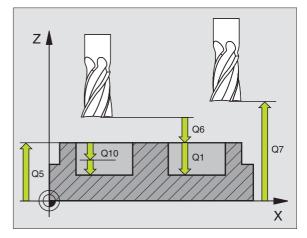
In Zyklus 20 geben Sie Bearbeitungs-Informationen für die Unterprogramme mit den Teilkonturen an.

Beachten Sie vor dem Programmieren

Zyklus 20 ist DEF-Aktiv, das heißt Zyklus 20 ist ab seiner Definition im Bearbeitungs-Programm aktiv.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den jeweiligen Zyklus nicht aus.


Die in Zyklus 20 angegebenen Bearbeitungs-Informationen gelten für die Zyklen 21 bis 24.


Wenn Sie SL-Zyklen in Q-Parameter-Programmen anwenden, dann dürfen Sie die Parameter Q1 bis Q19 nicht als Programm-Parameter benutzen.

- ▶ Frästiefe Q1 (inkremental): Abstand Werkstückoberfläche – Taschengrund.
- ▶ Bahn-Überlappung Faktor Q2: Q2 x Werkzeug-Radius ergibt die seitliche Zustellung k.
- ▶ Schlichtaufmaß Seite Q3 (inkremental): Schlicht-Aufmaß in der Bearbeitungs-Ebene.
- Schlichtaufmaß Tiefe Q4 (inkremental): Schlicht-Aufmaß für die Tiefe.
- ▶ Koordinate Werkstück-Oberfläche Q5 (absolut): Absolute Koordinate der Werkstück-Oberfläche
- Sicherheits-Abstand Q6 (inkremental): Abstand zwischen Werkzeug-Stirnfläche und Werkstück-Oberfläche
- Sichere Höhe Q7 (absolut): Absolute Höhe, in der keine Kollision mit dem Werkstück erfolgen kann (für Zwischenpositionierung und Rückzug am Zyklus-Ende)
- ▶ Innen-Rundungsradius Q8: Verrundungs-Radius an Innen-"Ecken"; Eingegebener Wert bezieht sich auf die Werkzeug-Mittelpunktsbahn
- ▶ Drehsinn? Uhrzeigersinn = -1 Q9: Bearbeitungs-Richtung für Taschen
 - im Uhrzeigersinn (Q9 = -1 Gegenlauf für Tasche und Insel)
 - im Gegenuhrzeigersinn (Q9 = +1 Gleichlauf für Tasche und Insel)

Sie können die Bearbeitungs-Parameter bei einer Programm-Unterbrechung überprüfen und ggf. überschreiben.

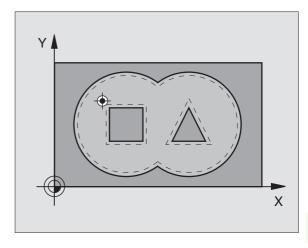
57	CYCL DEF	20.0 KONTUR-DATEN
	Q1=-20	;FRAESTIEFE
	Q2=1	;BAHN-UEBERLAPPUNG
	Q3=+0.2	;AUFMASS SEITE
	Q4=+0.1	;AUFMASS TIEFE
	Q5=+30	;KOOR. OBERFLAECHE
	Q6=2	;SICHERHEITS-ABST.
	Q7=+80	;SICHERE HOEHE
	Q8=0.5	; RUNDUNGS RADIUS
	Q9=+1	;DREHSINN

VORBOHREN (Zyklus 21)

Die TNC berücksichtigt einen im TOOL CALL-Satz programmierten Deltawert DR nicht zur Berechnung der Einstichpunkte.

An Engstellen kann die TNC ggf. nicht mit einem Werkzeug vorgebohren das größer ist als das Schruppwerkzeug.

Zyklus-Ablauf


Wie Zyklus 1 Tiefbohren, siehe "Zyklen zum Bohren, Gewindebohren und Gewindefräsen", Seite 210.

Einsatz

Zyklus 21 VORBOHREN berücksichtigt für die Einstichpunkte das Schlichtaufmaß Seite und das Schlichtaufmaß Tiefe, sowie den Radius des Ausräum-Werkzeugs. Die Einstichpunkte sind gleichzeitig die Startpunkte fürs Räumen.

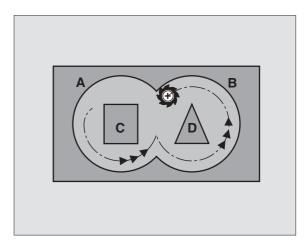
- ➤ Zustell-Tiefe Q10 (inkremental): Maß, um das das Werkzeug jeweils zugestellt wird (Vorzeichen bei negativer Arbeitsrichtung "—")
- ▶ Vorschub Tiefenzustellung Q11: Bohrvorschub in mm/min
- ▶ Ausräum-Werkzeug Nummer Q13: Werkzeug-Nummer des Ausräum-Werkzeugs

58	CYCL DEF	21.0 VORBOHREN
	Q10=+5	;ZUSTELL-TIEFE
	Q11=100	;VORSCHUB TIEFENZ.
	Q13=1	; AUSRAEUM-WERKZEUG

RAEUMEN (Zyklus 22)

- 1 Die TNC positioniert das Werkzeug über den Einstichpunkt; dabei wird das Schlichtaufmaß Seite berücksichtigt
- In der ersten Zustell-Tiefe fräst das Werkzeug mit dem Fräsvorschub Q12 die Kontur von innen nach außen
- 3 Dabei werden die Inselkonturen (hier: C/D) mit einer Annäherung an die Taschenkontur (hier: A/B) freigefräst
- 4 Anschließend fährt die TNC die Taschenkontur fertig und das Werkzeug auf die Sichere Höhe zurück

Beachten Sie vor dem Programmieren


Ggf. Fräser mit einem über Mitte schneidenden Stirnzahn verwenden (DIN 844), oder Vorbohren mit Zyklus 21.

- ▶ Zustell-Tiefe Q10 (inkremental): Maß, um das das Werkzeug jeweils zugestellt wird
- ▶ Vorschub Tiefenzustellung Q11: Eintauchvorschub in mm/min
- ▶ Vorschub Ausräumen Q12: Fräsvorschub in mm/min
- ▶ Vorräum-Werkzeug Nummer Q18: Nummer des Werkzeugs, mit dem die TNC bereits vorgeräumt hat. Falls nicht vorgeräumt wurde "0" eingeben; falls Sie hier eine Nummer eingeben, räumt die TNC nur den Teil aus, der mit dem Vorräum-Werkzeug nicht bearbeitet werden konnte.

Falls der Nachräumbereich nicht seitlich anzufahren ist, taucht die TNC pendelnd ein; dazu müssen Sie in der Werkzeug-Tabelle TOOL.T, siehe "Werkzeug-Daten", Seite 99 die Schneidenlänge LCUTS und den maximalen Eintauchwinkel ANGLE des Werkzeugs definieren. Ggf. gibt die TNC eine Fehlermeldung aus

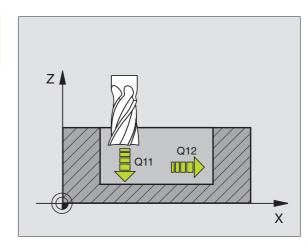
▶ Vorschub Pendeln Q19: Pendelvorschub in mm/min

Beispiel: NC-Sätze

59	CYCL DEF	22.0 RAEUMEN
	Q10=+5	;ZUSTELL-TIEFE
	Q11=100	;VORSCHUB TIEFENZ.
	Q12=350	;VORSCHUB RAEUMEN
	Q18=1	; VORRAEUM-WERKZEUG
	Q19=150	;VORSCHUB PENDELN

294 8 Programmieren: Zyklen

SCHLICHTEN TIEFE (Zyklus 23)



Die TNC ermittelt den Startpunkt fürs Schlichten selbständig. Der Startpunkt ist abhängig von den Platzverhältnissen in der Tasche.

Die TNC fährt das Werkzeug weich (vertikaler Tangentialkreis) auf die zu bearbeitende Fläche. Anschließend wird das beim Ausräumen verbliebene Schlichtaufmaß abgefräst.

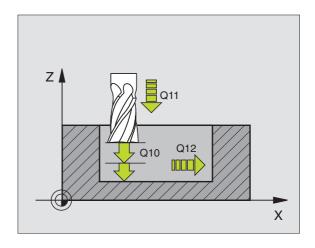
- ▶ Vorschub Tiefenzustellung Q11: Verfahrgeschwindigkeit des Werkzeugs beim Einstechen
- ▶ Vorschub Ausräumen Q12: Fräsvorschub

60	CYCL DEF 23.0 S	CHLICHTEN TIEFE
	Q11=100 ; VORS	CHUB TIEFENZ.
	Q12=350 ; VORS	CHUB RAEUMEN

SCHLICHTEN SEITE (Zyklus 24)

Die TNC fährt das Werkzeug auf einer Kreisbahn tangential an die Teilkonturen. Jede Teilkontur wird separat geschlichtet.

Beachten Sie vor dem Programmieren


Die Summe aus Schlichtaufmaß Seite (Q14) und Schlichtwerkzeug-Radius muss kleiner sein als die Summe aus Schlichtaufmaß Seite (Q3,Zyklus 20) und Räumwerkzeug-Radius.

Wenn Sie Zyklus 24 abarbeiten ohne zuvor mit Zyklus 22 ausgeräumt zu haben, gilt oben aufgestellte Berechnung ebenso; der Radius des Räum-Werkzeugs hat dann den Wert "0".

Die TNC ermittelt den Startpunkt fürs Schlichten selbständig. Der Startpunkt ist abhängig von den Platzverhältnissen in der Tasche.

- ▶ Drehsinn? Uhrzeigersinn = -1 Q9: Bearbeitungsrichtung:
 - +1:Drehung im Gegen-Uhrzeigersinn
 - -1:Drehung im Uhrzeigersinn
- ▶ Zustell-Tiefe Q10 (inkremental): Maß, um das das Werkzeug jeweils zugestellt wird
- ▶ Vorschub Tiefenzustellung Q11: Eintauchvorschub
- ▶ Vorschub Ausräumen Q12: Fräsvorschub
- ► Schlichtaufmaß Seite Q14 (inkremental): Aufmaß für mehrmaliges Schlichten; der letzte Schlicht-Rest wird ausgeräumt, wenn Sie Q14 = 0 eingeben

61	CYCL DEF 2	4.0 SCHLICHTEN SEITE
	Q9=+1	;DREHSINN
	Q10=+5	;ZUSTELL-TIEFE
	Q11=100	;VORSCHUB TIEFENZ.
	Q12=350	;VORSCHUB RAEUMEN
	Q14=+0	;AUFMASS SEITE

KONTUR-ZUG (Zyklus 25)

Mit diesem Zyklus lassen sich zusammen mit Zyklus 14 KONTUR - "offene" Konturen bearbeiten: Konturbeginn und -ende fallen nicht zusammen.

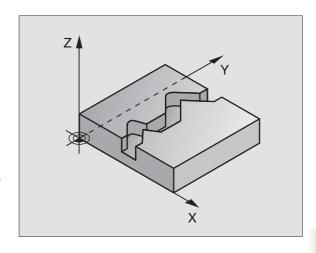
Der Zyklus 25 KONTUR-ZUG bietet gegenüber der Bearbeitung einer offenen Kontur mit Positioniersätzen erhebliche Vorteile:

- Die TNC überwacht die Bearbeitung auf Hinterschneidungen und Konturverletzungen. Kontur mit der Test-Grafik überprüfen
- Ist der Werkzeug-Radius zu groß, so muss die Kontur an Innenecken eventuell nachbearbeitet werden
- Die Bearbeitung lässt sich durchgehend im Gleich- oder Gegenlauf ausführen. Die Fräsart bleibt sogar erhalten, wenn Konturen gespiegelt werden
- Bei mehreren Zustellungen kann die TNC das Werkzeug hin und her verfahren: Dadurch verringert sich die Bearbeitungszeit
- Sie k\u00f6nnen Aufma\u00ede eingeben, um in mehreren Arbeitsg\u00e4ngen zu schruppen und zu schlichten

Beachten Sie vor dem Programmieren

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Die TNC berücksichtigt nur das erste Label aus Zyklus 14 KONTUR.


Der Speicher für einen SL-Zyklus ist begrenzt. Sie können in einem SL-Zyklus z.B. maximal 256 Geraden-Sätze programmieren.

Zyklus 20 KONTUR-DATEN wird nicht benötigt.

Direkt nach Zyklus 25 programmierte Positionen im Kettenmaß beziehen sich auf die Position des Werkzeugs am Zyklus-Ende.

- ▶ Frästiefe Q1 (inkremental): Abstand zwischen Werkstück-Oberfläche und Konturgrund
- ▶ Schlichtaufmaß Seite Q3 (inkremental): Schlichtaufmaß in der Bearbeitungsebene
- Koord. Werkstück-Oberfläche Q5 (absolut): Absolute Koordinate der Werkstück Oberfläche bezogen auf den Werkstück-Nullpunkt
- ▶ Sichere Höhe Q7 (absolut): Absolute Höhe, in der keine Kollision zwischen Werkzeug und Werkstück erfolgen kann; Werkzeug-Rückzugposition am Zyklus-Ende
- ➤ Zustell-Tiefe Q10 (inkremental): Maß, um das das Werkzeug jeweils zugestellt wird
- ▶ Vorschub Tiefenzustellung Q11:Vorschub bei Verfahrbewegungen in der Spindelachse

62 CYCL DEF 2	25.0 KONTUR-ZUG
Q1=-20	;FRAESTIEFE
Q3=+0	;AUFMASS SEITE
Q5=+0	;KOOR. OBERFLAECHE
Q7=+50	;SICHERE HOEHE
Q10=+5	;ZUSTELL-TIEFE
Q11=100	;VORSCHUB TIEFENZ.
Q12=350	; VORSCHUB FRAESEN
015=-1	; FRAESART

▶ Vorschub Fräsen Q12: Vorschub bei Verfahrbewegungen in der Bearbeitungsebene

► Fräsart? Gegenlauf = -1 Q15: Gleichlauf-Fräsen: Eingabe = +1

Gegenlauf-Fräsen: Eingabe = -1

Abwechselnd im Gleich- und Gegenlauf fräsen bei

mehreren Zustellungen:Eingabe = 0

ZYLINDER-MANTEL (Zyklus 27)

Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein.

Mit diesem Zyklus können Sie eine auf der Abwicklung definierte Kontur auf den Mantel eines Zylinders übertragen. Verwenden Sie den Zyklus 28, wenn Sie Führungsnuten auf dem Zylinder fräsen wollen.

Die Kontur beschreiben Sie in einem Unterprogramm, das Sie über Zyklus 14 (KONTUR) festlegen.

Das Unterprogramm enthält Koordinaten in einer Winkelachse (z.B. C-Achse) und der Achse, die dazu parallel verläuft (z.B. Spindelachse). Als Bahnfunktionen stehen L, CHF, CR, RND, APPR (außer APPR LCT) und DEP zur Verfügung.

Die Angaben in der Winkelachse können Sie wahlweise in Grad oder in mm (Inch) eingeben (bei der Zyklus-Definition festlegen).

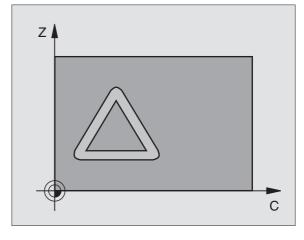
- 1 Die TNC positioniert das Werkzeug über den Einstichpunkt; dabei wird das Schlichtaufmaß Seite berücksichtigt
- 2 In der ersten Zustell-Tiefe fräst das Werkzeug mit dem Fräsvorschub Q12 entlang der programmierten Kontur
- **3** Am Konturende fährt die TNC das Werkzeug auf Sicherheitsabstand und zurück zum Einstichpunkt;
- **4** Die Schritte 1 bis 3 wiederholen sich, bis die programmierte Frästiefe Q1 erreicht ist
- 5 Anschließend fährt das Werkzeug auf Sicherheitsabstand

Beachten Sie vor dem Programmieren

Der Speicher für einen SL-Zyklus ist begrenzt. Sie können in einem SL-Zyklus z.B. maximal 256 Geraden-Sätze programmieren.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

Fräser mit einem über Mitte schneidenden Stirnzahn verwenden (DIN 844).


Der Zylinder muss mittig auf dem Rundtisch aufgespannt sein.

Die Spindelachse muss senkrecht zur Rundtisch-Achse verlaufen. Wenn dies nicht der Fall ist, dann gibt die TNC eine Fehlermeldung aus.

Diesen Zyklus können Sie auch bei geschwenkter Bearbeitungsebene ausführen.

Die TNC überprüft, ob die korrigierte und unkorrigierte Bahn des Werkzeugs innerhalb des Anzeige-Bereichs der Drehachse liegt (ist im Maschinen-Parameter 810.x definiert). Bei Fehlermeldung "Kontur-Programmierfehler" ggf. MP 810.x = 0 setzen.

- ▶ Frästiefe Q1 (inkremental): Abstand zwischen Zylinder-Mantel und Konturgrund
- ➤ Schlichtaufmaß Seite Q3 (inkremental): Schlichtaufmaß in der Ebene der Mantel-Abwicklung; das Aufmaß wirkt in der Richtung der Radiuskorrektur
- ▶ Sicherheits-Abstand Q6 (inkremental): Abstand zwischen Werkzeug-Stirnfläche und Zylinder Mantelfläche
- ▶ **Zustell-Tiefe** Q10 (inkremental): Maß, um das das Werkzeug jeweils zugestellt wird
- ▶ Vorschub Tiefenzustellung Q11: Vorschub bei Verfahrbewegungen in der Spindelachse
- ▶ Vorschub Fräsen Q12: Vorschub bei Verfahrbewegungen in der Bearbeitungsebene
- ▶ **Zy1inderradius** Q16: Radius des Zylinders, auf dem die Kontur bearbeitet werden soll
- ▶ Bemaßungsart? Grad =0 MM/INCH=1 Q17: Koordinaten der Drehachse im Unterprogramm in Grad oder mm (inch) programmieren

Beispiel: NC-Sätze

63 CYCL DEF	27.0 ZYLINDER-MANTEL
Q1=-8	;FRAESTIEFE
Q3=+0	;AUFMASS SEITE
Q6=+0	;SICHERHEITS-ABST.
010=+3	;ZUSTELL-TIEFE
Q11=100	;VORSCHUB TIEFENZ.
Q12=350	;VORSCHUB FRAESEN
Q16=25	; RADIUS
Q17=0	; BEMASSUNGSART

ZYLINDER-MANTEL Nutenfräsen (Zyklus 28)

Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein.

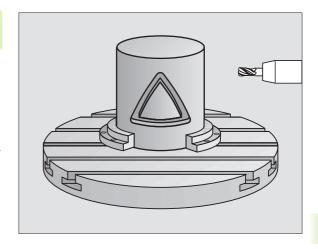
Mit diesem Zyklus können Sie eine auf der Abwicklung definierte Führungsnut auf den Mantel eines Zylinders übertragen. Im Gegensatz zum Zyklus 27, stellt die TNC das Werkzeug bei diesem Zyklus so an, dass die Wände bei aktiver Radiuskorrektur immer parallel zueinander verlaufen. Programmieren Sie die Mittelpunktsbahn der Kontur mit Angabe der Werkzeug-Radiuskorrektur. Über die Radiuskorrektur legen Sie fest, ob die TNC die Nut im Gleich- oder Gegenlauf herstellt:.

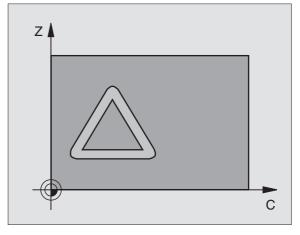
- RL: Gleichlauf
- RR: Gegenlauf
- 1 Die TNC positioniert das Werkzeug über den Einstichpunkt
- 2 In der ersten Zustelltiefe fräst das Werkzeug mit dem Fräsvorschub Q12 entlang der Nutwand; dabei wird das Schlichtaufmaß Seite berücksichtigt
- **3** Am Konturende versetzt die TNC das Werkzeug an die gegenüberliegende Nutwand und fährt zurück zum Einstichpunkt
- **4** Die Schritte 2 und 3 wiederholen sich, bis die programmierte Frästiefe Q1 erreicht ist
- 5 Anschließend fährt das Werkzeug auf Sicherheitsabstand

Beachten Sie vor dem Programmieren

Der Speicher für einen SL-Zyklus ist begrenzt. Sie können in einem SL-Zyklus z.B. maximal 256 Geraden-Sätze programmieren.

Das Vorzeichen des Zyklusparameters Tiefe legt die Arbeitsrichtung fest. Wenn Sie die Tiefe = 0 programmieren, dann führt die TNC den Zyklus nicht aus.

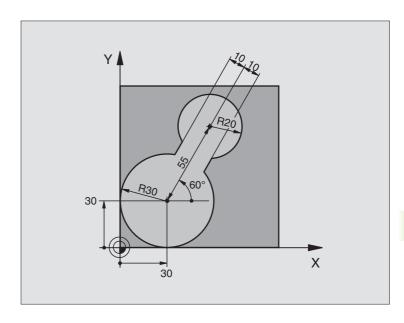

Fräser mit einem über Mitte schneidenden Stirnzahn verwenden (DIN 844).


Der Zylinder muss mittig auf dem Rundtisch aufgespannt sein.

Die Spindelachse muss senkrecht zur Rundtisch-Achse verlaufen. Wenn dies nicht der Fall ist, dann gibt die TNC eine Fehlermeldung aus.

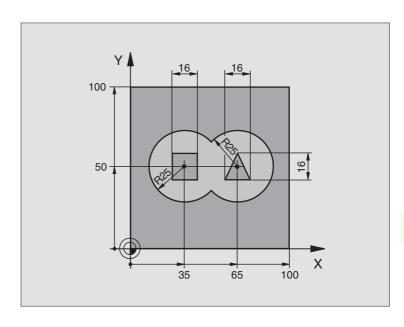
Diesen Zyklus können Sie auch bei geschwenkter Bearbeitungsebene ausführen.

Die TNC überprüft, ob die korrigierte und unkorrigierte Bahn des Werkzeugs innerhalb des Anzeige-Bereichs der Drehachse liegt (ist in Maschinen-Parameter 810.x definiert). Bei Fehlermeldung "Kontur-Programmierfehler" ggf. MP 810.x = 0 setzen.


- ▶ Frästiefe Q1 (inkremental): Abstand zwischen Zylinder-Mantel und Konturgrund
- ▶ Schlichtaufmaß Seite Q3 (inkremental): Schlichtaufmaß an der Nutwand. Das Schlichtaufmaß verkleinert die Nutbreite um den zweifachen eingegebenen Wert
- Sicherheits-Abstand Q6 (inkremental): Abstand zwischen Werkzeug-Stirnfläche und Zylinder Mantelfläche
- ▶ Zustell-Tiefe Q10 (inkremental): Maß, um das das Werkzeug jeweils zugestellt wird
- ▶ Vorschub Tiefenzustellung Q11: Vorschub bei Verfahrbewegungen in der Spindelachse
- ▶ Vorschub Fräsen Q12: Vorschub bei Verfahrbewegungen in der Bearbeitungsebene
- ▶ **Zy1inderradius** Q16: Radius des Zylinders, auf dem die Kontur bearbeitet werden soll
- ▶ Bemaßungsart? Grad =0 MM/INCH=1 Q17: Koordinaten der Drehachse im Unterprogramm in Grad oder mm (inch) programmieren
- Nutbreite Q20: Breite der herzustellenden Nut

Beispiel: NC-Sätze

63	CYCL DEF	28.0 ZYLINDER-MANTEL
	Q1=-8	;FRAESTIEFE
	Q3=+0	;AUFMASS SEITE
	Q6=+0	;SICHERHEITS-ABST.
	Q10=+3	;ZUSTELL-TIEFE
	Q11=100	;VORSCHUB TIEFENZ.
	Q12=350	;VORSCHUB FRAESEN
	Q16=25	;RADIUS
	Q17=0	;BEMASSUNGSART
	Q20=12	;NUTBREITE


Beispiel: Tasche räumen und nachräumen

O BEGIN PGM C20 MM	
1 BLK FORM 0.1 Z X-10 Y-10 Z-40	
2 BLK FORM 0.2 X+100 Y+100 Z+0	Rohteil-Definition
3 TOOL DEF 1 L+0 R+15	Werkzeug-Definition Vorräumer
4 TOOL DEF 2 L+0 R+7,5	Werkzeug-Definition Nachräumer
5 T00L CALL 1 Z S2500	Werkzeug-Aufruf Vorräumer
6 L Z+250 RO F MAX	Werkzeug freifahren
7 CYCL DEF 14.0 KONTUR	Kontur-Unterprogramm festlegen
8 CYCL DEF 14.1 KONTURLABEL 1	
9 CYCL DEF 20.0 KONTUR-DATEN	Allgemeine Bearbeitungs-Parameter festlegen
Q1=-20 ;FRAESTIEFE	
Q2=1 ;BAHN-UEBERLAPPUNG	
Q3=+O ;AUFMASS SEITE	
Q4=+O ;AUFMASS TIEFE	
Q5=+O ;KOOR. OBERFLAECHE	
Q6=2 ;SICHERHEITS-ABST.	
Q7=+100 ;SICHERE HOEHE	
Q8=0,1 ;RUNDUNGSRADIUS	
Q9=-1 ;DREHSINN	

10 CYCL DEF 22.0 RAEUMEN	Zyklus-Definition Vorräumen
Q10=5 ;ZUSTELL-TIEFE	
Q11=100 ;VORSCHUB TIEFENZ	
Q12=350 ; VORSCHUB RAEUMEN	
Q18=O ; VORRAEUM-WERKZEUG	
Q19=150 ; VORSCHUB PENDELN	
11 CYCL CALL M3	Zyklus-Aufruf Vorräumen
12 L Z+250 RO F MAX M6	Werkzeug-Wechsel
13 TOOL CALL 2 Z S3000	Werkzeug-Aufruf Nachräumer
14 CYCL DEF 22.0 RAEUMEN	Zyklus-Definition Nachräumen
Q10=5 ;ZUSTELL-TIEFE	
Q11=100 ; VORSCHUB TIEFENZ.	
Q12=350 ; VORSCHUB RAEUMEN	
Q18=1 ; VORRAEUM-WERKZEUG	
Q19=150 ;VORSCHUB PENDELN	
15 CYCL CALL M3	Zyklus-Aufruf Nachräumen
16 L Z+250 RO F MAX M2	Werkzeug freifahren, Programm-Ende
17 LBL 1	Kontur-Unterprogramm
18 L X+0 Y+30 RR	siehe "Beispiel: FK-Programmierung 2", Seite 169
19 FC DR- R30 CCX+30 CCY+30	
20 FL AN+60 PDX+30 PDY+30 D10	
21 FSELECT 3	
22 FPOL X+30 Y+30	
23 FC DR- R20 CCPR+55 CCPA+60	
24 FSELECT 2	
25 FL AN-120 PDX+30 PDY+30 D10	
26 FSELECT 3	
27 FC X+0 DR- R30 CCX+30 CCY+30	
28 FSELECT 2	
29 LBL 0	
30 END PGM C20 MM	

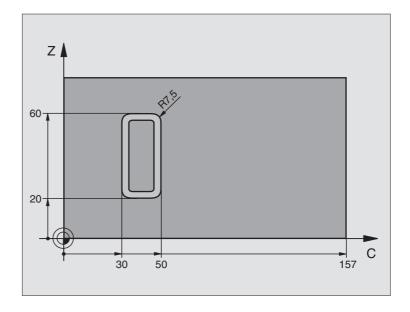
Beispiel: Überlagerte Konturen vorbohren, schruppen, schlichten

O BEGIN PGM C21 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Rohteil-Definition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+6	Werkzeug-Definition Bohrer
4 TOOL DEF 2 L+0 R+6	Werkzeug-Definition Schruppen/Schlichten
5 TOOL CALL 1 Z S2500	Werkzeug-Aufruf Bohrer
6 L Z+250 RO F MAX	Werkzeug freifahren
7 CYCL DEF 14.0 KONTUR	Kontur-Unterprogramme festlegen
8 CYCL DEF 14.1 KONTURLABEL 1 /2 /3 /4	
9 CYCL DEF 20.0 KONTUR-DATEN	Allgemeine Bearbeitungs-Parameter festlegen
Q1=-20 ;FRAESTIEFE	
Q2=1 ;BAHN-UEBERLAPPUNG	
Q3=+0,5 ;AUFMASS SEITE	
Q4=+0,5 ;AUFMASS TIEFE	
Q5=+O ;KOOR. OBERFLAECHE	
Q6=2 ;SICHERHEITS-ABST.	
Q7=+100 ;SICHERE HOEHE	
Q8=0,1 ;RUNDUNGSRADIUS	
Q9=-1 ;DREHSINN	

10 CYCL DEF 21.0 VORBOHREN	Zyklus-Definition Vorbohren
Q10=5 ;ZUSTELL-TIEFE	
Q11=250 ;VORSCHUB TIEFENZ.	
Q13=2 ;AUSRAEUM-WERKZEUG	
11 CYCL CALL M3	Zyklus-Aufruf Vorbohren
12 L Z+250 RO F MAX M6	Werkzeug-Wechsel
13 TOOL CALL 2 Z S3000	Werkzeug-Aufruf Schruppen/Schlichten
14 CYCL DEF 22.0 RAEUMEN	Zyklus-Definition Räumen
Q10=5 ;ZUSTELL-TIEFE	
Q11=100 ;VORSCHUB TIEFENZ.	
Q12=350 ; VORSCHUB RAEUMEN	
Q18=0 ; VORRAEUM-WERKZEUG	
Q19=150 ;VORSCHUB PENDELN	
15 CYCL CALL M3	Zyklus-Aufruf Räumen
16 CYCL DEF 23.0 SCHLICHTEN TIEFE	Zyklus-Definition Schlichten Tiefe
Q11=100 ;VORSCHUB TIEFENZ.	
Q12=200 ; VORSCHUB RAEUMEN	
17 CYCL CALL	Zyklus-Aufruf Schlichten Tiefe
18 CYCL DEF 24.0 SCHLICHTEN SEITE	Zyklus-Definition Schlichten Seite
Q9=+1 ;DREHSINN	
Q10=5 ;ZUSTELL-TIEFE	
Q11=100 ;VORSCHUB TIEFENZ.	
Q12=400 ; VORSCHUB RAEUMEN	
Q14=+0 ;AUFMASS SEITE	
19 CYCL CALL	Zyklus-Aufruf Schlichten Seite
20 L Z+250 R0 F MAX M2	Werkzeug freifahren, Programm-Ende

21 LBL 1	Kontur-Unterprogramm 1: Tasche links
22 CC X+35 Y+50	
23 L X+10 Y+50 RR	
24 C X+10 DR-	
25 LBL 0	
26 LBL 2	Kontur-Unterprogramm 2: Tasche rechts
27 CC X+65 Y+50	Nortal officiplografilm 2. Tasono footilo
28 L X+90 Y+50 RR	
29 C X+90 DR-	
30 LBL 0	
31 LBL 3	Kontur-Unterprogramm 3: Insel Viereckig links
32 L X+27 Y+50 RL	Kontui-Onterprogramm 5. Inserviereckig illiks
34 L X+43	
35 L Y+42	
36 L X+27	
37 LBL 0	
38 LBL 4	Kontur-Unterprogramm 4: Insel Dreieckig rechts
39 L X+65 Y+42 RL	
40 L X+57	
41 L X+65 Y+58	
42 L X+73 Y+42	
43 LBL 0	
44 END PGM C21 MM	

Beispiel: Kontur-Zug

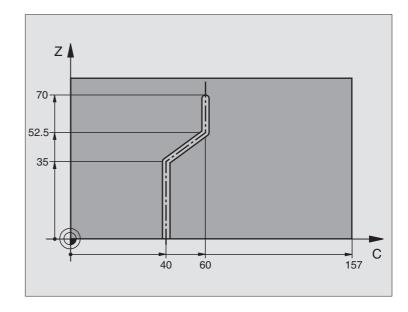

O BEGIN PGM C25 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Rohteil-Definition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Werkzeug-Definition
4 TOOL CALL 1 Z S2000	Werkzeug-Aufruf
5 L Z+250 RO F MAX	Werkzeug freifahren
6 CYCL DEF 14.0 KONTUR	Kontur-Unterprogramm festlegen
7 CYCL DEF 14.1 KONTURLABEL 1	
8 CYCL DEF 25.0 KONTUR-ZUG	Bearbeitungs-Parameter festlegen
Q1=-20 ;FRAESTIEFE	
Q3=+O ;AUFMASS SEITE	
Q5=+O ;KOOR. OBERFLAECHE	
Q7=+250 ;SICHERE HOEHE	
Q10=5 ;ZUSTELL-TIEFE	
Q11=100 ;VORSCHUB TIEFENZ.	
Q12=200 ; VORSCHUB FRAESEN	
Q15=+1 ;FRAESART	
9 CYCL CALL M3	Zyklus-Aufruf
10 L Z+250 RO F MAX M2	Werkzeug freifahren, Programm-Ende

11 LBL 1	Kontur-Unterprogramm
12 L X+0 Y+15	RL
13 L X+5 Y+20	
14 CT X+5 Y+75	
15 L Y+95	
16 RND R7,5	
17 L X+50	
18 RND R7,5	
19 L X+100 Y+80	
20 LBL 0	
21 END PGM C25	MM

Beispiel: Zylinder-Mantel mit Zyklus 27

Hinweis:

- Zylinder mittig auf Rundtisch aufgespannt.
- Bezugspunkt liegt in der Rundtisch-Mitte


O BEGIN PGM C27 MM	
1 TOOL DEF 1 L+0 R+3,5	Werkzeug-Definition
2 TOOL CALL 1 Y S2000	Werkzeug-Aufruf, Werkzeug-Achse Y
3 L Y+250 RO FMAX	Werkzeug freifahren
4 L X+O RO FMAX	Werkzeug auf Rundtisch-Mitte positionieren
5 CYCL DEF 14.0 KONTUR	Kontur-Unterprogramm festlegen
6 CYCL DEF 14.1 KONTURLABEL 1	
7 CYCL DEF 27.0 ZYLINDER-MANTEL	Bearbeitungs-Parameter festlegen
Q1=-7 ;FRAESTIEFE	
Q3=+O ;AUFMASS SEITE	
Q6=2 ;SICHERHEITS-ABST.	
Q10=4 ;ZUSTELL-TIEFE	
Q11=100 ;VORSCHUB TIEFENZ.	
Q12=250 ; VORSCHUB FRAESEN	
Q16=25 ; RADIUS	
Q17=1 ;BEMASSUNGSART	
8 L C+O RO F MAX M3	Rundtisch vorpositionieren
9 CYCL CALL	Zyklus-Aufruf
10 L Y+250 RO F MAX M2	Werkzeug freifahren, Programm-Ende

11 LBL 1	Kontur-Unterprogramm
12 L C+40 Z+20 RL	Angaben in der Drehachse in mm (Q17=1)
13 L C+50	
14 RND R7,5	
15 L Z+60	
16 RND R7,5	
17 L IC-20	
18 RND R7,5	
19 L Z+20	
20 RND R7,5	
21 L C+40	
22 LBL 0	
23 END PGM C27 MM	

Beispiel: Zylinder-Mantel mit Zyklus 28

Hinweise:

- Zylinder mittig auf Rundtisch aufgespannt.
- Bezugspunkt liegt in der Rundtisch-Mitte
- Beschreibung der Mittelpunktsbahn im Kontur-Unterprogramm

O BEGIN PGM C28 MM	
1 TOOL DEF 1 L+0 R+3,5	Werkzeug-Definition
2 TOOL CALL 1 Y S2000	Werkzeug-Aufruf, Werkzeug-Achse Y
3 L Y+250 RO FMAX	Werkzeug freifahren
4 L X+O RO FMAX	Werkzeug auf Rundtisch-Mitte positionieren
5 CYCL DEF 14.0 KONTUR	Kontur-Unterprogramm festlegen
6 CYCL DEF 14.1 KONTURLABEL 1	
7 CYCL DEF 28.0 ZYLINDER-MANTEL	Bearbeitungs-Parameter festlegen
Q1=-7 ;FRAESTIEFE	
Q3=+O ;AUFMASS SEITE	
Q6=2 ;SICHERHEITS-ABST.	
Q10=-4 ;ZUSTELL-TIEFE	
Q11=100 ; VORSCHUB TIEFENZ.	
Q12=250 ; VORSCHUB FRAESEN	
Q16=25 ;RADIUS	
Q17=1 ;BEMASSUNGSART	
Q20=10 ;NUTBREITE	
8 L C+O RO F MAX M3	Rundtisch vorpositionieren
9 CYCL CALL	Zyklus-Aufruf
10 L Y+250 RO F MAX M2	Werkzeug freifahren, Programm-Ende

11 LBL 1	Kontur-Unterprogramm, Beschreibung der Mittelpunktsbahn
12 L C+40 Z+0 RL	Angaben in der Drehachse in mm (Q17=1)
13 L Z+35	
14 L C+60 Z+52,5	
15 L Z+70	
16 LBL 0	
17 END PGM C28 MM	

8.7 Zyklen zum Abzeilen

Übersicht

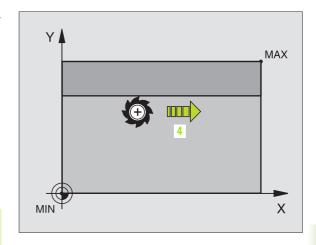
Die TNC stellt drei Zyklen zur Verfügung, mit denen Sie Flächen mit folgenden Eigenschaften bearbeiten können:

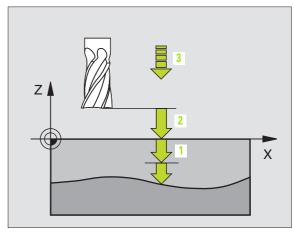
- Durch Digitalisieren oder von einem CAD-/CAM-System erzeugt
- Eben rechteckig
- Eben schiefwinklig
- Beliebig geneigt
- In sich verwunden

Zyklus	Softkey
30 DIGITALISIERDATEN ABARBEITEN Zum Abzeilen von Digitalisierdaten in mehreren Zustel- lungen	30 PNT-DATE I FRASEN
230 ABZEILEN Für ebene rechteckige Flächen	230
231 REGELFLAECHE Für schiefwinklige, geneigte und verwundene Flächen	231

DIGITALISIERDATEN ABARBEITEN (Zyklus 30)

- 1 Die TNC positioniert das Werkzeug im Eilgang FMAX von der aktuellen Position aus in der Spindelachse auf Sicherheits-Abstand über den im Zyklus programmierten MAX-Punkt
- 2 Anschließend fährt die TNC das Werkzeug mit FMAX in der Bearbeitungsebene auf den im Zyklus programmierten MIN-Punkt
- **3** Von dort aus fährt das Werkzeug mit Vorschub Tiefenzustellung auf den ersten Konturpunkt
- 4 Anschließend arbeitet die TNC alle in der Digitalisierdaten-Datei gespeicherten Punkte im Vorschub Fräsen ab; falls nötig fährt die TNC zwischendurch auf Sicherheits-Abstand, um unbearbeitete Bereiche zu überspringen
- 5 Am Ende fährt die TNC das Werkzeug mit FMAX zurück auf den Sicherheits-Abstand


Beachten Sie vor dem Programmieren


Mit Zyklus 30 können Sie Digitalisierdaten und PNT-Dateien abarbeiten.

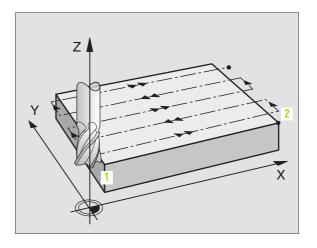
Wenn Sie PNT-Dateien abarbeiten, in denen keine Spindelachsen-Koordinate steht, ergibt sich die Frästiefe aus dem programmierten MIN-Punkt der Spindelachse.

- ▶ PGM Name Digitalisierdaten: Name der Datei eingeben, in der die Digitalisierdaten gespeichert sind; wenn die Datei nicht im aktuellen Verzeichnis steht, kompletten Pfad eingeben. Wenn Sie eine Punkte-Tabelle abarbeiten wollen, zusätzlich noch den Dateityp .PNT angeben
- ▶ MIN-Punkt Bereich: Minimal-Punkt (X-, Y- und Z-Koordinate) des Bereichs, in dem gefräst werden soll
- ▶ MAX-Punkt Bereich: Maximal-Punkt (X-, Y- und Z-Koordinate) des Bereichs, in dem gefräst werden soll
- ➤ Sicherheits-Abstand 1 (inkremental): Abstand zwischen Werkzeugspitze und Werkstück-Oberfläche bei Eilgang-Bewegungen
- ▶ Zustell-Tiefe 2 (inkremental): Maß, um welches das Werkzeug jeweils zugestellt wird
- ▶ Vorschub Tiefenzustellung 3: Verfahrgeschwindigkeit des Werkzeugs beim Eintauchen in mm/min
- ▶ Vorschub Fräsen 4: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min
- ► Zusatz-Funktion M: Optionale Eingabe einer Zusatz-Funktion, z.B. M13

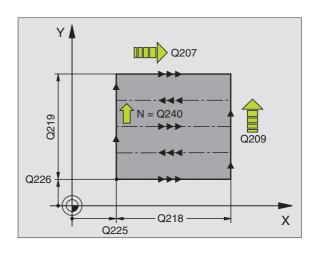
Beispiel: NC-Sätze

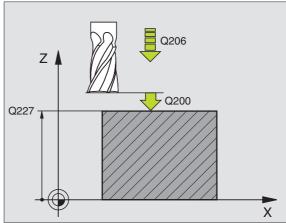
64	CYCL DEF 30.0 DIGIDATEN ABARBEITEN
65	CYCL DEF 30.1 PGM DIGIT.: BSP.H
66	CYCL DEF 30.2 X+0 Y+0 Z-20
67	CYCL DEF 30.3 X+100 Y+100 Z+0
68	CYCL DEF 30.4 ABST 2
69	CYCL DEF 30.5 ZUSTLG +5 F100
70	CYCL DEF 30.6 F350 M8

ABZEILEN (Zyklus 230)


- 1 Die TNC positioniert das Werkzeug im Eilgang FMAX von der aktuellen Position aus in der Bearbeitungsebene auf den Startpunkt 1; die TNC versetzt das Werkzeug dabei um den Werkzeug-Radius nach links und nach oben
- 2 Anschließend fährt das Werkzeug mit FMAX in der Spindelachse auf Sicherheits-Abstand und danach im Vorschub Tiefenzustellung auf die programmierte Startposition in der Spindelachse
- 3 Danach f\u00e4hrt das Werkzeug mit dem programmierten Vorschub Fr\u00e4sen auf den Endpunkt 2; den Endpunkt berechnet die TNC aus dem programmierten Startpunkt, der programmierten L\u00e4nge und dem Werkzeug-Radius
- 4 Die TNC versetzt das Werkzeug mit Vorschub Fräsen quer auf den Startpunkt der nächsten Zeile; die TNC berechnet den Versatz aus der programmierten Breite und der Anzahl der Schnitte
- 5 Danach f\u00e4hrt das Werkzeug in negativer Richtung der 1. Achse zur\u00fcck
- 6 Das Abzeilen wiederholt sich, bis die eingegebene Fläche vollständig bearbeitet ist
- 7 Am Ende fährt die TNC das Werkzeug mit FMAX zurück auf den Sicherheits-Abstand

Beachten Sie vor dem Programmieren


Die TNC positioniert das Werkzeug von der aktuellen Position zunächst in der Bearbeitungsebene und anschließend in der Spindelachse auf den Startpunkt.


Werkzeug so vorpositionieren, dass keine Kollision mit dem Werkstück oder Spannmitteln erfolgen kann.

- ▶ Startpunkt 1. Achse Q225 (absolut): Min-Punkt-Koordinate der abzuzeilenden Fläche in der Hauptachse der Bearbeitungsebene
- ▶ Startpunkt 2. Achse Q226 (absolut): Min-Punkt-Koordinate der abzuzeilenden Fläche in der Nebenachse der Bearbeitungsebene
- ▶ Startpunkt 3. Achse Q227 (absolut): Höhe in der Spindelachse, auf der abgezeilt wird
- ▶ 1. Seiten-Länge Q218 (inkremental): Länge der abzuzeilenden Fläche in der Hauptachse der Bearbeitungsebene, bezogen auf den Startpunkt 1. Achse
- ▶ 2. Seiten-Länge Q219 (inkremental): Länge der abzuzeilenden Fläche in der Nebenachse der Bearbeitungsebene, bezogen auf den Startpunkt 2. Achse
- ▶ Anzahl Schnitte Q240: Anzahl der Zeilen, auf denen die TNC das Werkzeug in der Breite verfahren soll
- ▶ Vorschub Tiefenzustellung 206: Verfahrgeschwindigkeit des Werkzeugs beim Fahren vom Sicherheits-Abstand auf die Frästiefe in mm/min
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/min
- Vorschub quer Q209: Verfahrgeschwindigkeit des Werkzeugs beim Fahren auf die nächste Zeile in mm/min; wenn Sie im Material quer fahren, dann Q209 kleiner als Q207 eingeben; wenn Sie im Freien quer fahren, dann darf Q209 größer als Q207 sein
- Sicherheits-Abstand Q200 (inkremental): Abstand zwischen Werkzeugspitze und Frästiefe für Positionierung am Zyklus-Anfang und am Zyklus-Ende

Beispiel: NC-Sätze

71 CYCL DEF 230 ABZEILEN
Q225=+10 ;STARTPUNKT 1. ACHSE
Q226=+12 ;STARTPUNKT 2. ACHSE
Q227=+2.5 ;STARTPUNKT 3. ACHSE
Q218=150 ;1. SEITEN-LAENGE
Q219=75 ;2. SEITEN-LAENGE
Q240=25 ;ANZAHL SCHNITTE
Q206=150 ;VORSCHUB TIEFENZ.
Q207=500 ; VORSCHUB FRAESEN
Q209=200 ;VORSCHUB QUER
Q200=2 ;SICHERHEITS-ABST.

REGELFLAECHE (Zyklus 231)

- 1 Die TNC positioniert das Werkzeug von der aktuellen Position aus mit einer 3D-Geradenbewegung auf den Startpunkt 1
- 2 Anschließend fährt das Werkzeug mit dem programmierten Vorschub Fräsen auf den Endpunkt 2
- 3 Dort f\u00e4hrt die TNC das Werkzeug im Eilgang FMAX um den Werkzeug-Durchmesser in positive Spindelachsenrichtung und danach wieder zur\u00fcck zum Startpunkt 1
- 4 Am Startpunkt 1 fährt die TNC das Werkzeug wieder auf den zuletzt gefahrenen Z-Wert
- 5 Anschließend versetzt die TNC das Werkzeug in allen drei Achsen von Punkt 1 in Richtung des Punktes 4 auf die nächste Zeile
- 6 Danach fährt die TNC das Werkzeug auf den Endpunkt dieser Zeile. Den Endpunkt berechnet die TNC aus Punkt 2 und einem Versatz in Richtung Punkt 3
- 7 Das Abzeilen wiederholt sich, bis die eingegebene Fläche vollständig bearbeitet ist
- 8 Am Ende positioniert die TNC das Werkzeug um den Werkzeug-Durchmesser über den höchsten eingegebenen Punkt in der Spindelachse

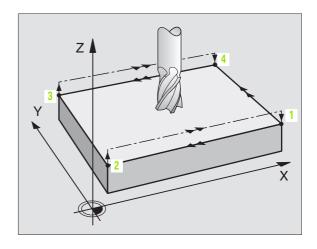
Der Startpunkt und damit die Fräsrichtung ist frei wählbar, weil die TNC die Einzelschnitte grundsätzlich von Punkt 1 nach Punkt 2 fährt und der Gesamtablauf von Punkt 1/2 nach Punkt 3/4 verläuft. Sie können Punkt 1 an jede Ecke der zu bearbeitenden Fläche legen.

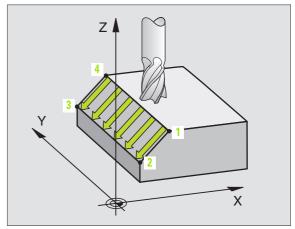
Die Oberflächengüte beim Einsatz von Schaftfräsern können Sie optimieren:

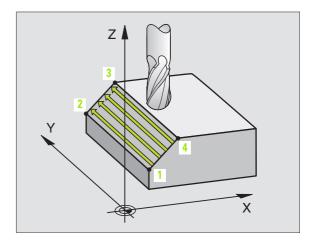
- Durch stoßenden Schnitt (Spindelachsenkoordinate Punkt 1 größer als Spindelachsenkoordinate Punkt 2) bei wenig geneigten Flächen.
- Durch ziehenden Schnitt (Spindelachsenkoordinate Punkt 1 kleiner als Spindelachsenkoordinate Punkt 2) bei stark geneigten Flächen
- Bei windschiefen Flächen, Hauptbewegungs-Richtung (von Punkt 1 nach Punkt 2) in die Richtung der stärkeren Neigung legen

Die Oberflächengüte beim Einsatz von Radiusfräsern können Sie optimieren:

Bei windschiefen Flächen Hauptbewegungs-Richtung (von Punkt 1 nach Punkt 2) senkrecht zur Richtung der stärksten Neigung legen

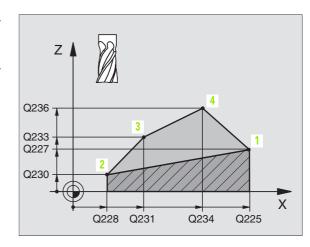


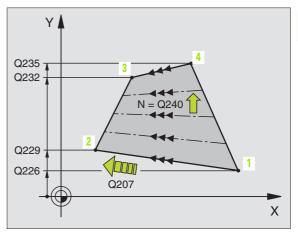

Beachten Sie vor dem Programmieren


Die TNC positioniert das Werkzeug von der aktuellen Position mit einer 3D-Geradenbewegung auf den Startpunkt 1. Werkzeug so vorpositionieren, dass keine Kollision mit dem Werkstück oder Spannmitteln erfolgen kann.

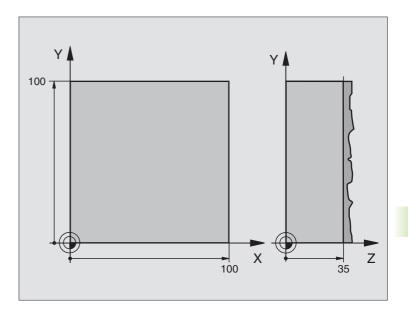
Die TNC fährt das Werkzeug mit Radiuskorrektur R0 zwischen den eingegebenen Positionen

Ggf. Fräser mit einem über Mitte schneidenden Stirnzahn verwenden (DIN 844).





- ▶ Startpunkt 1. Achse Q225 (absolut): Startpunkt-Koordinate der abzuzeilenden Fläche in der Hauptachse der Bearbeitungsebene
- ▶ Startpunkt 2. Achse Q226 (absolut): Startpunkt-Koordinate der abzuzeilenden Fläche in der Nebenachse der Bearbeitungsebene
- ▶ Startpunkt 3. Achse Q227 (absolut): Startpunkt-Koordinate der abzuzeilenden Fläche in der Spindelachse
- ▶ 2. Punkt 1. Achse Q228 (absolut): Endpunkt-Koordinate der abzuzeilenden Fläche in der Hauptachse der Bearbeitungsebene
- ▶ 2. Punkt 2. Achse Q229 (absolut): Endpunkt-Koordinate der abzuzeilenden Fläche in der Nebenachse der Bearbeitungsebene
- ▶ 2. Punkt 3. Achse Q230 (absolut): Endpunkt-Koordinate der abzuzeilenden Fläche in der Spindelachse
- ▶ 3. Punkt 1. Achse Q231 (absolut): Koordinate des Punktes 3 in der Hauptachse der Bearbeitungsebene
- ▶ 3. Punkt 2. Achse Q232 (absolut): Koordinate des Punktes 3 in der Nebenachse der Bearbeitungsebene
- ▶ 3. Punkt 3. Achse Q233 (absolut): Koordinate des Punktes 3 in der Spindelachse


- ▶ 4. Punkt 1. Achse Q234 (absolut): Koordinate des Punktes 4 in der Hauptachse der Bearbeitungsebene
- ▶ 4. Punkt 2. Achse Q235 (absolut): Koordinate des Punktes 4 in der Nebenachse der Bearbeitungsebene
- ▶ 4. Punkt 3. Achse Q236 (absolut): Koordinate des Punktes 4 in der Spindelachse
- ▶ Anzahl Schnitte Q240: Anzahl der Zeilen, die die TNC das Werkzeug zwischen Punkt 1 und 4, bzw. zwischen Punkt 2 und 3 verfahren soll
- ▶ Vorschub Fräsen Q207: Verfahrgeschwindigkeit des Werkzeugs beim Fräsen in mm/ min. Die TNC führt den ersten Schnitt mit dem halben programmierten Wert aus.

Beispiel: NC-Sätze

72	CYCL DEF 23	1 REGELFLAECHE
	Q225=+0	;STARTPUNKT 1. ACHSE
	Q226=+5	;STARTPUNKT 2. ACHSE
	Q227=-2	;STARTPUNKT 3. ACHSE
	Q228=+100	;2. PUNKT 1. ACHSE
	Q229=+15	;2. PUNKT 2. ACHSE
	Q230=+5	;2. PUNKT 3. ACHSE
	Q231=+15	;3. PUNKT 1. ACHSE
	Q232=+125	;3. PUNKT 2.ACHSE
	Q233=+25	;3. PUNKT 3. ACHSE
	Q234=+15	;4. PUNKT 1. ACHSE
	Q235=+125	;4. PUNKT 2.ACHSE
	Q236=+25	;4. PUNKT 3. ACHSE
	Q240=40	;ANZAHL SCHNITTE
	Q207=500	;VORSCHUB FRAESEN

Beispiel: Abzeilen

Rohteil-Definition
Werkzeug-Definition
Werkzeug-Aufruf
Werkzeug freifahren
Zyklus-Definition Abzeilen

7 L X+-25 Y+0 RO F MAX M3	Vorpositionieren in die Nähe des Startpunkts	
8 CYCL CALL	Zyklus-Aufruf	
9 L Z+250 R0 F MAX M2 Werkzeug freifahren, Programm-Ende		
10 END PGM C230 MM		

8.8 Zyklen zur Koordinaten-**Umrechnung**

Übersicht

Mit Koordinaten-Umrechnungen kann die TNC eine einmal programmierte Kontur an verschiedenen Stellen des Werkstücks mit veränderter Lage und Größe ausführen. Die TNC stellt folgende Koordinaten-Umrechnungszyklen zur Verfügung:

Zyklus	Softkey
7 NULLPUNKT Konturen verschieben direkt im Programm oder aus Nullpunkt-Tabellen	7
247 BEZUGSPUNKT SETZEN Bezugspunkt während des Programmlaufs setzen	247
8 SPIEGELN Konturen spiegeln	8
10 DREHUNG Konturen in der Bearbeitungsebene drehen	10
11 MASSFAKTOR Konturen verkleinern oder vergrößern	11
26 ACHSSPEZIFISCHER MASSFAKTOR Konturen verkleinern oder vergrößern mit achsspezifischen Maßfaktoren	26 CC
19 BEARBEITUNGSEBENE Bearbeitungen im geschwenkten Koordinatensystem durchführen für Maschinen mit Schwenkköpfen und/oder Drehtischen	19

Wirksamkeit der Koordinaten-Umrechnungen

Beginn der Wirksamkeit: Eine Koordinaten-Umrechnung wird ab ihrer Definition wirksam - wird also nicht aufgerufen. Sie wirkt so lange, bis sie rückgesetzt oder neu definiert wird.

Koordinaten-Umrechnung rücksetzen:

- Zyklus mit Werten für das Grundverhalten erneut definieren, z.B. Maßfaktor 1.0
- Zusatzfunktionen M02, M30 oder den Satz END PGM ausführen (abhängig von Maschinen-Parameter 7300)
- Neues Programm wählen
- Zusatzfunktion M142 Modale Programminformationen löschen programmieren

NULLPUNKT-Verschiebung (Zyklus 7)

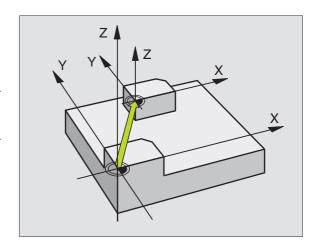
Mit der NULLPUNKT-VERSCHIEBUNG können Sie Bearbeitungen an beliebigen Stellen des Werkstücks wiederholen.

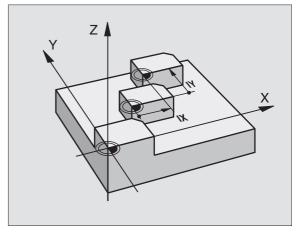
Wirkung

Nach einer Zyklus-Definition NULLPUNKT-VERSCHIEBUNG beziehen sich alle Koordinaten-Eingaben auf den neuen Nullpunkt. Die Verschiebung in jeder Achse zeigt die TNC in der zusätzlichen Status-Anzeige an. Die Eingabe von Drehachsen ist auch erlaubt.

▶ Verschiebung: Koordinaten des neuen Nullpunkts eingeben; Absolutwerte beziehen sich auf den Werkstück-Nullpunkt, der durch das Bezugspunkt-Setzen festgelegt ist; Inkrementalwerte beziehen sich immer auf den zuletzt gültigen Nullpunkt – dieser kann bereits verschoben sein

Rücksetzen


Die Nullpunkt-Verschiebung mit den Koordinatenwerten X=0, Y=0 und Z=0 hebt eine Nullpunkt-Verschiebung wieder auf.


Grafik

Wenn Sie nach einer Nullpunkt-Verschiebung eine neue BLK FORM programmieren, können Sie über den Maschinen-Parameter 7310 entscheiden, ob sich die BLK FORM auf den neuen oder alten Nullpunkt beziehen soll. Bei der Bearbeitung mehrerer Teile kann die TNC dadurch jedes Teil einzeln grafisch darstellen.

Status-Anzeigen

- Die große Positions-Anzeige bezieht sich auf den aktiven (verschobenen) Nullpunkt
- Alle in der zusätzlichen Status-Anzeige angezeigte Koordinaten (Positionen, Nullpunkte) beziehen sich auf den manuell gesetzten Bezugspunkt

Beispiel: NC-Sätze

12	CVCI	DEE 7	∧ NIIII	LPUNKT
1.3	LILL	DEF /	.U NUL	LPUNKI

14 CYCL DEF 7.1 X+60

16 CYCL DEF 7.3 Z-5

15 CYCL DEF 7.2 Y+40

NULLPUNKT-Verschiebung mit Nullpunkt-Tabellen (Zyklus 7)

Wenn Sie Nullpunkt-Verschiebungen mit Nullpunkt-Tabellen einsetzen, dann verwenden Sie die Funktion SEL TABLE, um die gewünschte Nullpunkt-Tabelle vom NC-Programm aus zu aktivieren.

Wenn Sie ohne SEL-TABLE arbeiten, dann müssen Sie die gewünschte Nullpunkt-Tabelle vor dem Programm-Test oder dem Programm-Lauf aktivieren (gilt auch für die Programmier-Grafik):

- Gewünschte Tabelle für Programm-Test in der Betriebsart Programm-Test über die Datei-Verwaltung wählen: Tabelle erhält den Status S
- Gewünschte Tabelle für den Programmlauf in einer Programmlauf-Betriebsart über die Datei-Verwaltung wählen: Tabelle erhält den Status M

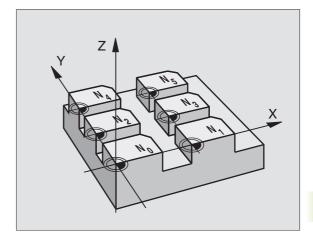
Nullpunkte aus der Nullpunkt-Tabelle können sich auf den aktuellen Bezugspunkt oder den Maschinen-Nullpunkt beziehen (abhängig von Maschinen-Parameter 7475)

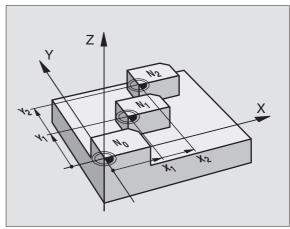
Die Koordinaten-Werte aus Nullpunkt-Tabellen sind ausschließlich absolut wirksam.

Neue Zeilen können Sie nur am Tabellen-Ende einfügen.

Anwendung

Nullpunkt-Tabellen setzen Sie z.B. ein bei


- häufig wiederkehrenden Bearbeitungsgängen an verschiedenen Werkstück-Positionen oder
- häufiger Verwendung derselben Nullpunktverschiebung Innerhalb eines Programms können Sie Nullpunkte sowohl direkt in der Zyklus-Definition programmieren als auch aus einer Nullpunkt-Tabelle heraus aufrufen.



▶ Verschiebung: Nummer des Nullpunktes aus der Nullpunkt-Tabelle oder einen Q-Parameter eingeben; Wenn Sie einen Q-Parameter eingeben, dann aktiviert die TNC die Nullpunkt-Nummer, die im Q-Parameter steht

Rücksetzen

- Aus der Nullpunkt-Tabelle Verschiebung zu den Koordinaten X=0; Y=0 etc. aufrufen
- Verschiebung zu den Koordinaten X=0; Y=0 etc. direkt mit einer Zyklus-Definition aufrufen

Beispiel: NC-Sätze

77 CYCL DEF 7.0 NULLPUNKT

78 CYCL DEF 7.1 #5

Nullpunkt-Tabelle im NC-Programm wählen

Mit der Funktion **SEL TABLE** wählen Sie die Nullpunkt-Tabelle, aus der die TNC die Nullpunkte entnimmt:

- ► Funktionen zum Programm-Aufruf wählen: Taste PGM CALL drücken
- ► Softkey NULLPUNKT TABELLE drücken
- ▶ Vollständigen Pfadnamen der Nullpunkt-Tabelle eingeben, mit Taste END bestätigen

SEL TABLE-Satz vor Zyklus 7 Nullpunkt-Verschiebung programmieren.

Eine mit SEL TABLE gewählte Nullpunkt-Tabelle bleibt solange aktiv, bis Sie mit SEL TABLE oder über PGM MGT eine andere Nullpunkt-Tabelle wählen.

Nullpunkt-Tabelle editieren

Die Nullpunkt-Tabelle wählen Sie in der Betriebsart **Programm-Einspeichern/Editieren**

- ▶ Datei-Verwaltung aufrufen: Taste PGM MGT drücken, siehe "Datei-Verwaltung: Grundlagen", Seite 39
- Nullpunkt-Tabellen anzeigen: Softkeys TYP WÄHLEN und ZEIGE .D drücken
- Gewünschte Tabelle wählen oder neuen Dateinamen eingeben
- ▶ Datei editieren. Die Softkey-Leiste zeigt dazu folgende Funktionen an:

Funktion	Softkey
Tabellen-Anfang wählen	ANFANG
Tabellen-Ende wählen	ENDE
Seitenweise blättern nach oben	SEITE Î
Seitenweise blättern nach unten	SEITE
Zeile einfügen (nur möglich am Tabellen-Ende)	ZEILE EINFÜGEN
Zeile löschen	ZEILE LÖSCHEN
Eingegebene Zeile übernehmen und Sprung zur nächsten Zeile	NACHSTE ZEILE
Eingebbare Anzahl von Zeilen (Nullpunkten) am Tabellenende anfügen	N ZEILEN AM ENDE ANFÜGEN

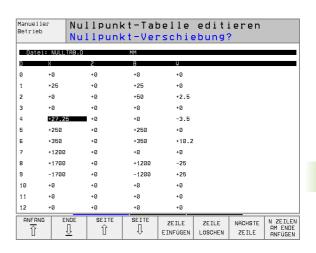
Nullpunkt-Tabelle in einer Programmlauf-Betriebsart editieren

In einer Programmlauf-Betriebsart können Sie die jeweils aktive Nullpunkt-Tabelle wählen. Drücken Sie dazu den Softkey NULLPUNKT-TABELLE. Ihnen stehen dann die selben Editierfunktionen zur Verfügung wie in der Betriebsart **Programm-Einspeichern/Editieren**

Nullpunkt-Tabelle konfigurieren

Auf der zweiten und dritten Softkeyleiste können Sie für jede Nullpunkt-Tabelle die Achsen festlegen, für die Sie Nullpunkte definieren wollen. Standardmäßig sind alle Achsen aktiv. Wenn Sie eine Achse aussperren wollen, dann setzen Sie den entsprechenden Achs-Softkey auf AUS. Die TNC löscht dann die zugehörige Spalte in der Nullpunkt-Tabelle.

Wenn Sie zu einer aktiven Achse keinen Nullpunkt definieren wollen, drücken Sie die Taste NO ENT. Die TNC trägt dann einen Bindestrich in die entsprechende Spalte ein.


Nullpunkt-Tabelle verlassen

In der Datei-Verwaltung anderen Datei-Typ anzeigen lassen und gewünschte Datei wählen.

Status-Anzeigen

Wenn sich Nullpunkte aus der Tabelle auf den Maschinen-Nullpunkt beziehen, dann

- bezieht sich die große Positions-Anzeige auf den aktiven (verschobenen) Nullpunkt
- beziehen sich alle in der zusätzlichen Status-Anzeige angezeigten Koordinaten (Positionen, Nullpunkte) auf den Maschinen-Nullpunkt, wobei die TNC den manuell gesetzten Bezugspunkt mit einrechnet

BEZUGSPUNKT SETZEN (Zyklus 247)

Mit dem Zyklus BEZUGSPUNKT SETZEN können Sie einen in einer Nullpunkt-Tabelle definierten Nullpunkt als neuen Bezugspunkt aktivieren.

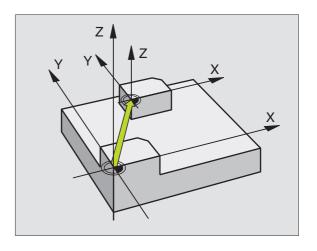
Wirkung

Nach einer Zyklus-Definition BEZUGSPUNKT SETZEN beziehen sich alle Koordinaten-Eingaben und Nullpunkt-Verschiebungen (absolute und inkrementale) auf den neuen Bezugspunkt. Das Setzen von Bezugspunkten bei Drehachsen ist auch erlaubt.

▶ Nummer für Bezugspunkt?: Nummer des Bezugspunktes in der Nullpunkt-Tabelle angeben

Rücksetzen

Den zuletzt in der Betriebsart Manuell gesetzten Bezugspunkt aktivieren Sie wieder durch Eingabe der Zusatz-Funktion M104.



Die TNC setzt den Bezugspunkt nur in den Achsen, die in der Nullpunkt-Tabelle aktiv sind. Eine an der TNC nicht vorhandene, aber als Spalte in der Nullpunkt-Tabelle eingeblendete Achse erzeugt eine Fehlermeldung.

Zyklus 247 interpretiert die in der Nullpunkt-Tabelle gespeicherten Werte immer als Koordinaten, die sich auf den Maschinen-Nullpunkt beziehen. Der Maschinen-Parameter 7475 hat darauf keinen Einfluss.

Wenn Sie Zyklus 247 verwenden, können Sie nicht mit der Funktion Satzvorlauf in ein Programm einsteigen.

In der Betriebsart PGM-Test ist Zyklus 247 nicht wirksam.

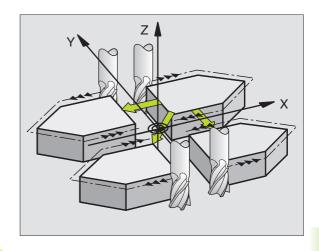
Beispiel: NC-Sätze

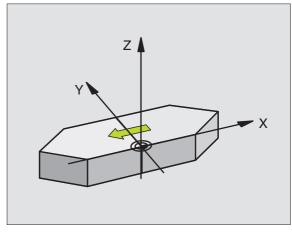
13 CYCL DEF 247 BEZUGSPUNKT SETZEN

Q339=4 ;BEZUGSPUNKT-NUMMER

SPIEGELN (Zyklus 8)

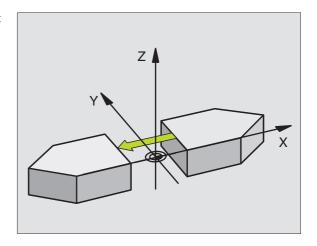
Die TNC kann Bearbeitung in der Bearbeitungsebene spiegelbildlich ausführen.


Wirkung


Die Spiegelung wirkt ab ihrer Definition im Programm. Sie wirkt auch in der Betriebsart Positionieren mit Handeingabe. Die TNC zeigt aktive Spiegelachsen in der zusätzlichen Status-Anzeige an.

- Wenn Sie nur eine Achse spiegeln, ändert sich der Umlaufsinn des Werkzeugs. Dies gilt nicht bei Bearbeitungszyklen.
- Wenn Sie zwei Achsen spiegeln, bleibt der Umlaufsinn erhalten. Das Ergebnis der Spiegelung hängt von der Lage des Nullpunkts ab:
- Nullpunkt liegt auf der zu spiegelnden Kontur: Das Element wird direkt am Nullpunkt gespiegelt;
- Nullpunkt liegt außerhalb der zu spiegelnden Kontur: Das Element verlagert sich zusätzlich;

Wenn Sie nur eine Achse Spiegeln, ändert sich der Umlaufsinn bei den neuen Bearbeitungszyklen mit 200er Nummer . Bei älteren Bearbeitungszyklen, wie z.B. Zyklus 4 TASCHENFRÄSEN, bleibt der Umlaufsinn gleich.



▶ Gespiegelte Achse?: Achsen eingeben, die gespiegelt werden soll; Sie können alle Achsen spiegeln – incl. Drehachsen – mit Ausnahme der Spindelachse und der dazugehörigen Nebenachse. Erlaubt ist die Eingabe von maximal drei Achsen

Rücksetzen

Zyklus SPIEGELN mit Eingabe NO ENT erneut programmieren.

Beispiel: NC-Sätze

79 CYCL DEF 8.0 SPIEGELN

80 CYCL DEF 8.1 X Y U

DREHUNG (Zyklus 10)

Innerhalb eines Programms kann die TNC das Koordinatensystem in der Bearbeitungsebene um den aktiven Nullpunkt drehen.

Wirkung

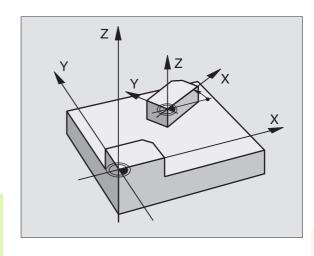
Die DREHUNG wirkt ab ihrer Definition im Programm. Sie wirkt auch in der Betriebsart Positionieren mit Handeingabe. Die TNC zeigt den aktiven Drehwinkel in der zusätzlichen Status-Anzeige an.

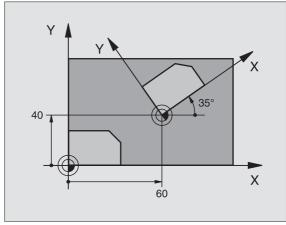
Bezugsachse für den Drehwinkel:

- X/Y-Ebene X-Achse
- Y/Z-Ebene Y-Achse
- Z/X-Ebene Z-Achse

Beachten Sie vor dem Programmieren

Die TNC hebt eine aktive Radius-Korrektur durch Definieren von Zyklus 10 auf. Ggf. Radius-Korrektur erneut programmieren.


Nachdem Sie Zyklus 10 definiert haben, verfahren Sie beide Achsen der Bearbeitungsebene, um die Drehung zu aktivieren.



▶ Drehung: Drehwinkel in Grad (°) eingeben. Eingabe-Bereich: -360° bis +360° (absolut oder inkremental)

Rücksetzen

Zyklus DREHUNG mit Drehwinkel 0° erneut programmieren.

Beispiel: NC-Sätze

12 CALL LBL1
13 CYCL DEF 7.0 NULLPUNKT
14 CYCL DEF 7.1 X+60
15 CYCL DEF 7.2 Y+40
16 CYCL DEF 10.0 DREHUNG
17 CYCL DEF 10.1 ROT+35
18 CALL LBL1

MASSFAKTOR (Zyklus 11)

Die TNC kann innerhalb eines Programms Konturen vergrößern oder verkleinern. So können Sie beispielsweise Schrumpf- und Aufmaß-Faktoren berücksichtigen.

Wirkung

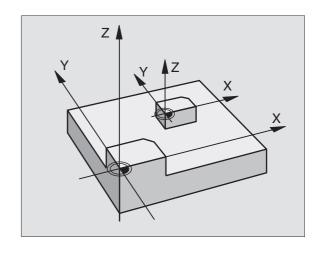
Der MASSFAKTOR wirkt ab seiner Definition im Programm. Er wirkt auch in der Betriebsart Positionieren mit Handeingabe. Die TNC zeigt den aktiven Maßfaktor in der zusätzlichen Status-Anzeige an.

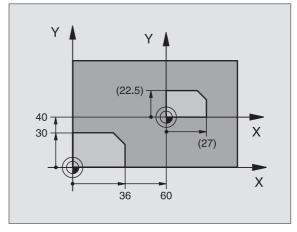
Der Maßfaktor wirkt

- in der Bearbeitungsebene, oder auf alle drei Koordinatenachsen gleichzeitig (abhängig von Maschinen-Parameter 7410)
- auf Maßangaben in Zyklen
- auch auf Parallelachsen U,V,W

Voraussetzung

Vor der Vergrößerung bzw. Verkleinerung sollte der Nullpunkt auf eine Kante oder Ecke der Kontur verschoben werden.




▶ Faktor?: Faktor SCL eingeben (engl.: scaling); die TNC multipliziert Koordinaten und Radien mit SCL (wie in "Wirkung" beschrieben)

Vergrößern: SCL größer als 1 bis 99,999 999 Verkleinern: SCL kleiner als 1 bis 0,000 001

Rücksetzen

Zyklus MASSFAKTOR mit Maßfaktor 1 erneut programmieren.

Beispiel: NC-Sätze

11	CALL	LBL1	

12 CYCL DEF 7.0 NULLPUNKT

13 CYCL DEF 7.1 X+60

14 CYCL DEF 7.2 Y+40

15 CYCL DEF 11.0 MASSFAKTOR

16 CYCL DEF 11.1 SCL 0.75

17 CALL LBL1

en 1

MASSFAKTOR ACHSSP. (Zyklus 26)

Beachten Sie vor dem Programmieren

Koordinatenachsen mit Positionen für Kreisbahnen dürfen Sie nicht mit unterschiedlichen Faktoren strecken oder stauchen.

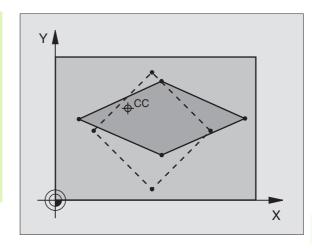
Für jede Koordinaten-Achse können Sie einen eigenen achsspezifischen Maßfaktor eingeben.

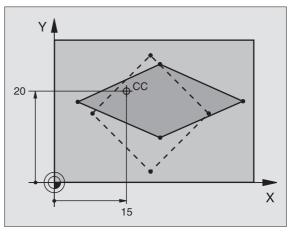
Zusätzlich lassen sich die Koordinaten eines Zentrums für alle Maßfaktoren programmieren.

Die Kontur wird vom Zentrum aus gestreckt oder zu ihm hin gestaucht, also nicht unbedingt vom und zum aktuellen Nullpunkt – wie beim Zyklus 11 MASSFAKTOR.

Wirkung

Der MASSFAKTOR wirkt ab seiner Definition im Programm. Er wirkt auch in der Betriebsart Positionieren mit Handeingabe. Die TNC zeigt den aktiven Maßfaktor in der zusätzlichen Status-Anzeige an.




- ▶ Achse und Faktor: Koordinatenachse(n) und Faktor(en) der achsspezifischen Streckung oder Stauchung. Wert positiv maximal 99,999 999 eingeben
- ▶ Zentrums-Koordinaten: Zentrum der achsspezifischen Streckung oder Stauchung

Die Koordinatenachsen wählen Sie mit Softkeys.

Rücksetzen

Zyklus MASSFAKTOR mit Faktor 1 für die entsprechende Achse erneut programmieren

Beispiel: NC-Sätze

25 CALL LBL1

26 CYCL DEF 26.0 MASSFAKTOR ACHSSP.

27 CYCL DEF 26.1 X 1.4 Y 0.6 CCX+15 CCY+20

28 CALL LBL1

BEARBEITUNGSEBENE (Zyklus 19)

Die Funktionen zum Schwenken der Bearbeitungsebene werden vom Maschinenhersteller an TNC und Maschine angepasst. Bei bestimmten Schwenkköpfen (Schwenktischen) legt der Maschinenhersteller fest, ob die im Zyklus programmierten Winkel von der TNC als Koordinaten der Drehachsen oder als mathematische Winkel einer schiefen Ebene interpretiert werden. Beachten Sie Ihr Maschinenhandbuch.

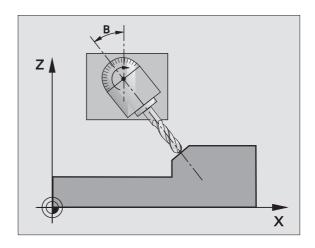
Das Schwenken der Bearbeitungsebene erfolgt immer um den aktiven Nullpunkt.

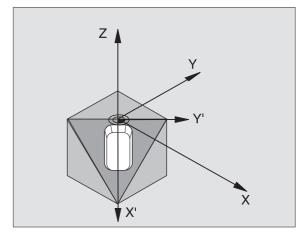
Grundlagen siehe "Bearbeitungsebene schwenken", Seite 24: Lesen Sie diesen Abschnitt vollständig durch.

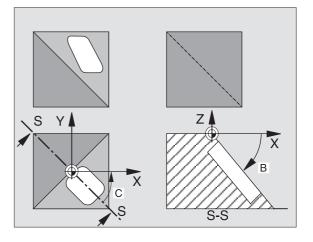
Wirkung

Im Zyklus 19 definieren Sie die Lage der Bearbeitungsebene – sprich die Lage der Werkzeugachse bezogen auf das maschinenfeste Koordinatensystem – durch die Eingabe von Schwenkwinkeln. Sie können die Lage der Bearbeitungsebene auf zwei Arten festlegen:

- Stellung der Schwenkachsen direkt eingeben
- Lage der Bearbeitungsebene durch bis zu drei Drehungen (Raumwinkel) des **maschinenfesten** Koordinatensystems beschreiben. Die einzugebenden Raumwinkel erhalten Sie, indem Sie einen Schnitt senkrecht durch die geschwenkte Bearbeitungsebene legen und den Schnitt von der Achse aus betrachten, um die Sie schwenken wollen. Mit zwei Raumwinkeln ist bereits jede beliebige Werkzeuglage im Raum eindeutig definiert.




Beachten Sie, dass die Lage des geschwenkten Koordinatensystems und damit auch Verfahrbewegungen im geschwenkten System davon abhängen, wie Sie die geschwenkte Ebene beschreiben.


Wenn Sie die Lage der Bearbeitungsebene über Raumwinkel programmieren, berechnet die TNC die dafür erforderlichen Winkelstelllungen der Schwenkachsen automatisch und legt diese in den Parametern Q120 (A-Achse) bis Q122 (C-Achse) ab. Sind zwei Lösungen möglich, wählt die TNC – ausgehend von der Nullstellung der Drehachsen – den kürzeren Weg.

Die Reihenfolge der Drehungen für die Berechnung der Lage der Ebene ist festgelegt: Zuerst dreht die TNC die A-Achse, danach die B-Achse und schließlich die C-Achse.

Zyklus 19 wirkt ab seiner Definition im Programm. Sobald Sie eine Achse im geschwenkten System verfahren, wirkt die Korrektur für diese Achse. Wenn die Korrektur in allen Achsen verrechnet werden soll, dann müssen Sie alle Achsen verfahren.

Falls Sie die Funktion SCHWENKEN Programmlauf in der Betriebsart Manuell auf AKTIV gesetzt haben (siehe "Bearbeitungsebene schwenken", Seite 24) wird der in diesem Menü eingetragene Winkelwert vom Zyklus 19 BEARBEITUNGSEBENE überschrieben.

▶ Drehachse und -winkel?: Drehachse mit zugehörigem Drehwinkel eingeben; die Drehachsen A, B und C über Softkeys programmieren

Wenn die TNC die Drehachsen automatisch positioniert, dann können Sie noch folgende Parameter eingeben

- ▶ Vorschub? F=: Verfahrgeschwindigkeit der Drehachse beim automatischen Positionieren
- ▶ Sicherheits-Abstand? (inkremental): Die TNC positioniert den Schwenkkopf so, dass die Position, die sich aus der Verlängerung des Werkzeugs um den Sicherheits-Abstand, sich relativ zum Werkstück nicht ändert

Rücksetzen

Um die Schwenkwinkel rückzusetzen, Zyklus BEARBEITUNGSEBENE erneut definieren und für alle Drehachsen 0° eingeben. Anschließend Zyklus BEARBEITUNGSEBENE nochmal definieren, und die Dialogfrage mit der Taste NO ENT bestätigen. Dadurch setzen Sie die Funktion inaktiv.

Drehachse positionieren

Der Maschinenhersteller legt fest, ob Zyklus 19 die Drehachse(n) automatisch positioniert, oder ob Sie die Drehachsen im Programm vorpositionieren müssen. Beachten Sie Ihr Maschinenhandbuch.

Wenn Zyklus 19 die Drehachsen automatisch positioniert, gilt:

- Die TNC kann nur geregelte Achsen automatisch positionieren.
- In der Zyklus-Definition müssen Sie zusätzlich zu den Schwenkwinkeln einen Sicherheits-Abstand und einen Vorschub eingeben, mit dem die Schwenkachsen positioniert werden.
- Nur voreingestellte Werkzeuge verwenden (volle Werkzeuglänge im TOOL DEF-Satz bzw. in der Werkzeug-Tabelle).
- Beim Schwenkvorgang bleibt die Position der Werkzeugspitze gegenüber dem Werkstück nahezu unverändert.
- Die TNC führt den Schwenkvorgang mit dem zuletzt programmierten Vorschub aus. Der maximal erreichbare Vorschub hängt ab von der Komplexität des Schwenkkopfes (Schwenktisches).

Wenn Zyklus 19 die Drehachsen nicht automatisch positioniert, positionieren Sie die Drehachsen z.B. mit einem L-Satz vor der Zyklus-Definition.

NC-Beispielsätze:

10 L Z+100 RO FMAX	
11 L X+25 Y+10 RO FMAX	
12 L B+15 RO F1000	Drehachse positionieren

13 CYCL DEF 19.0 BEARBEITUNGSEBENE	Winkel für Korrekturberechnung definieren
14 CYCL DEF 19.1 B+15	
15 L Z+80 RO FMAX	Korrektur aktivieren Spindelachse
16 L X-7.5 Y-10 RO FMAX	Korrektur aktivieren Bearbeitungsebene

Positions-Anzeige im geschwenkten System

Die angezeigten Positionen (**SOLL** und **IST**) und die Nullpunkt-Anzeige in der zusätzlichen Status-Anzeige beziehen sich nach dem Aktivieren von Zyklus 19 auf das geschwenkte Koordinatensystem. Die angezeigte Position stimmt direkt nach der Zyklus-Definition also ggf. nicht mehr mit den Koordinaten der zuletzt vor Zyklus 19 programmierten Position überein.

Arbeitsraum-Überwachung

Die TNC überprüft im geschwenkten Koordinatensystem nur die Achsen auf Endschalter, die verfahren werden. Ggf. gibt die TNC eine Fehlermeldung aus.

Positionieren im geschwenkten System

Mit der Zusatz-Funktion M130 können Sie auch im geschwenkten System Positionen anfahren, die sich auf das ungeschwenkte Koordinatensystem beziehen, siehe "Zusatz-Funktionen für Koordinatenangaben", Seite 178.

Auch Positionierungen mit Geradensätzen die sich auf das Maschinen-Koordinatensystem beziehen (Sätze mit M91 oder M92), lassen sich bei geschwenkter Bearbeitungsebene ausführen. Einschränkungen:

- Positionierung erfolgt ohne Längenkorrektur
- Positionierung erfolgt ohne Maschinengeometrie-Korrektur
- Werkzeug-Radiuskorrektur ist nicht erlaubt

8 Programmieren: Zyklen

Kombination mit anderen Koordinaten-Umrechnungszyklen

Bei der Kombination von Koordinaten-Umrechnungszyklen ist darauf zu achten, dass das Schwenken der Bearbeitungsebene immer um den aktiven Nullpunkt erfolgt. Sie können eine Nullpunkt-Verschiebung vor dem Aktivieren von Zyklus 19 durchführen: dann verschieben Sie das "maschinenfeste Koordinatensystem".

Falls Sie den Nullpunkt nach dem Aktivieren von Zyklus 19 verschieben, dann verschieben Sie das "geschwenkte Koordinatensystem".

Wichtig: Gehen Sie beim Rücksetzen der Zyklen in der umgekehrten Reihenfolge wie beim Definieren vor:

- 1. Nullpunkt-Verschiebung aktivieren
- 2. Bearbeitungsebene schwenken aktivieren
- 3. Drehung aktivieren

...

Werkstückbearbeitung

٠.

- 1. Drehung rücksetzen
- 2. Bearbeitungsebene schwenken rücksetzen
- 3. Nullpunkt-Verschiebung rücksetzen

Automatisches Messen im geschwenkten System

Mit den Messzyklen der TNC können Sie Werkstücke im geschwenkten System vermessen. Die Messergebnisse werden von der TNC in Q-Parametern gespeichert, die Sie anschließend weiterverarbeiten können (z.B. Messergebnisse auf Drucker ausgeben).

Leitfaden für das Arbeiten mit Zyklus 19 BEARBEITUNGSEBENE

1 Programm erstellen

- Werkzeug definieren (entfällt, wenn TOOL.T aktiv), volle Werkzeug-Länge eingeben
- ▶ Werkzeug aufrufen
- Spindelachse so freifahren, dass beim Schwenken keine Kollision zwischen Werkzeug und Werkstück (Spannmittel) erfolgen kann
- ▶ Ggf. Drehachse(n) mit L-Satz positionieren auf entsprechenden Winkelwert (abhängig von einem Maschinen-Parameter)
- ▶ Ggf. Nullpunkt-Verschiebung aktivieren
- Zyklus 19 BEARBEITUNGSEBENE definieren; Winkelwerte der Drehachsen eingeben
- ▶ Alle Hauptachsen (X, Y, Z) verfahren, um die Korrektur zu aktivieren
- Bearbeitung so programmieren, als ob sie in der ungeschwenkten Ebene ausgeführt werden würde
- ▶ Ggf. Zyklus 19 BEARBEITUNGSEBENE mit anderen Winkeln definieren, um die Bearbeitung in einer anderen Achsstellung auszuführen. Es ist in diesem Fall nicht erforderlich Zyklus 19 zurückzusetzen, Sie können direkt die neuen Winkelstellungen definieren
- Zyklus 19 BEARBEITUNGSEBENE rücksetzen; für alle Drehachsen 0° eingeben
- ► Funktion BEARBEITUNGSEBENE deaktivieren; Zyklus 19 erneut definieren, Dialogfrage mit NO ENT bestätigen

- ► Ggf. Nullpunkt-Verschiebung rücksetzen
- ▶ Ggf. Drehachsen in die 0°-Stellung positionieren

2 Werkstück aufspannen

3 Vorbereitungen in der Betriebsart Positionieren mit Handeingabe

Drehachse(n) zum Setzen des Bezugspunkts auf entsprechenden Winkelwert positionieren. Der Winkelwert richtet sich nach der von Ihnen gewählten Bezugsfläche am Werkstück.

4 Vorbereitungen in der Betriebsart Manueller Betrieb

Funktion Bearbeitungsebene schwenken mit Softkey 3D-ROT auf AKTIV setzen für Betriebsart Manueller Betrieb; bei nicht geregelten Achsen Winkelwerte der Drehachsen ins Menü eintragen

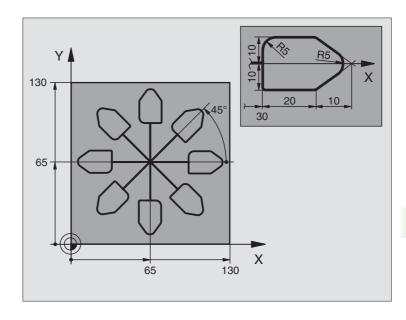
Bei nicht geregelten Achsen müssen die eingetragenen Winkelwerte mit der Ist-Position der Drehachse(n) übereinstimmen, sonst berechnet die TNC den Bezugspunkt falsch.

5 Bezugspunkt-Setzen

- Manuell durch Ankratzen wie im ungeschwenkten System siehe "Bezugspunkt-Setzen (ohne 3D-Tastsystem)", Seite 22
- Gesteuert mit einem HEIDENHAIN 3D-Tastsystem (siehe Benutzer-Handbuch Tastsystem-Zyklen, Kapitel 2)
- Automatisch mit einem HEIDENHAIN 3D-Tastsystem (siehe Benutzer-Handbuch Tastsystem-Zyklen, Kapitel 3)

6 Bearbeitungsprogramm in der Betriebsart Programmlauf Satzfolge starten

7 Betriebsart Manueller Betrieb


Funktion Bearbeitungsebene schwenken mit Softkey 3D-ROT auf INAKTIV setzen. Für alle Drehachsen Winkelwert 0° ins Menü eintragen, siehe "Manuelles Schwenken aktivieren", Seite 27.

8 Programmieren: Zyklen

Beispiel: Koordinaten-Umrechnungszyklen

Programm-Ablauf

- Koordinaten-Umrechnungen im Hauptprogramm
- Bearbeitung im Unterprogramm, siehe "Unterprogramme", Seite 347

O BEGIN PGM KOUMR MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Rohteil-Definition
2 BLK FORM 0.2 X+130 Y+130 Z+0	
3 TOOL DEF 1 L+0 R+1	Werkzeug-Definition
4 TOOL CALL 1 Z S4500	Werkzeug-Aufruf
5 L Z+250 RO F MAX	Werkzeug freifahren
6 CYCL DEF 7.0 NULLPUNKT	Nullpunkt-Verschiebung ins Zentrum
7 CYCL DEF 7.1 X+65	
8 CYCL DEF 7.2 Y+65	
9 CALL LBL 1	Fräsbearbeitung aufrufen
10 LBL 10	Marke für Programmteil-Wiederholung setzen
11 CYCL DEF 10.0 DREHUNG	Drehung um 45° inkremental
12 CYCL DEF 10.1 IROT+45	
13 CALL LBL 1	Fräsbearbeitung aufrufen
14 CALL LBL 10 REP 6/6	Rücksprung zu LBL 10; insgesamt sechsmal
15 CYCL DEF 10.0 DREHUNG	Drehung rücksetzen
16 CYCL DEF 10.1 ROT+0	
17 CYCL DEF 7.0 NULLPUNKT	Nullpunkt-Verschiebung rücksetzen
18 CYCL DEF 7.1 X+0	
19 CYCL DEF 7.2 Y+0	

20	L Z+250 RO F MAX M2	Werkzeug freifahren, Programm-Ende
21	LBL 1	Unterprogramm 1:
22	L X+O Y+O RO F MAX	Festlegung der Fräsbearbeitung
23	L Z+2 RO F MAX M3	
24	L Z-5 R0 F200	
25	L X+30 RL	
26	L IY+10	
27	RND R5	
28	L IX+20	
29	L IX+10 IY-10	
30	RND R5	
31	L IX-10 IY-10	
32	L IX-20	
33	L IY+10	
34	L X+0 Y+0 R0 F500	
35	L Z+20 RO F MAX	
36	LBL 0	
37	END PGM KOUMR MM	

8 Programmieren: Zyklen

8.9 Sonder-Zyklen

VERWEILZEIT (Zyklus 9)

Der Programmlauf wird für die Dauer der VERWEILZEIT angehalten. Eine Verweilzeit kann beispielsweise zum Spanbrechen dienen.

Wirkung

Der Zyklus wirkt ab seiner Definition im Programm. Modal wirkende (bleibende) Zustände werden dadurch nicht beeinflusst, wie z.B. die Drehung der Spindel.

▶ Verweilzeit in Sekunden: Verweilzeit in Sekunden eingeben

Eingabebereich 0 bis 3 600 s (1 Stunde) in 0,001 s-Schritten

Beispiel: NC-Sätze

89 CYCL DEF 9.0 VERWEILZEIT

90 CYCL DEF 9.1 V.ZEIT 1.5

PROGRAMM-AUFRUF (Zyklus 12)

Sie können beliebige Bearbeitungs-Programme, wie z.B. spezielle Bohrzyklen oder Geometrie-Module, einem Bearbeitungs-Zyklus gleichstellen. Sie rufen dieses Programm dann wie einen Zyklus auf.

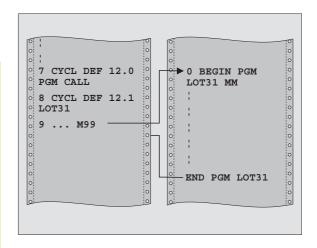
Beachten Sie vor dem Programmieren

Das aufgerufene Programm muss auf der Festplatte der TNC gespeichert sein.

Wenn Sie nur den Programm-Namen eingeben, muss das zum Zyklus deklarierte Programm im selben Verzeichnis stehen wie das rufende Programm.

Wenn das zum Zyklus deklarierte Programm nicht im selben Verzeichnis steht wie das rufende Programm, dann geben Sie den vollständigen Pfadnamen ein, z.B.TNC:\KLAR35\FK1\50.H.

Wenn Sie ein DIN/ISO-Programm zum Zyklus deklarieren wollen, dann geben Sie den Datei-Typ .I hinter dem Programm-Namen ein.


▶ **Programm-Name**: Name des aufzurufenden Programms ggf. mit Pfad, in dem das Programm steht

Das Programm rufen Sie auf mit

- CYCL CALL (separater Satz) oder
- M99 (satzweise) oder
- M89 (wird nach jedem Positionier-Satz ausgeführt)

Beispiel: Programm-Aufruf

Aus einem Programm soll ein über Zyklus aufrufbares Programm 50 gerufen werden.

Beispiel: NC-Sätze

55 CYCL DEF 12.0 PGM CALL

56 CYCL DEF 12.1 PGM TNC:\KLAR35\FK1\50.H

57 L X+20 Y+50 FMAX M99

SPINDEL-ORIENTIERUNG (Zyklus 13)

Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein.

In den Bearbeitungszyklen 202, 204 und 209 wird intern Zyklus 13 verwendet. Beachten Sie in Ihrem NC-Programm, daß Sie ggf. Zyklus 13 nach einem der oben genannten Bearbeitungszyklen erneut programmieren müssen.

Die TNC kann die Hauptspindel einer Werkzeugmaschine ansteuern und in eine durch einen Winkel bestimmte Position drehen.

Die Spindel-Orientierung wird z.B. benötigt

- bei Werkzeugwechsel-Systemen mit bestimmter Wechsel-Position für das Werkzeug
- zum Ausrichten des Sende- und Empfangsfensters von 3D-Tastsystemen mit Infrarot-Übertragung

Wirkung

Die im Zyklus definierte Winkelstellung positioniert die TNC durch Programmieren von M19 oder M20 (maschinenabhängig).

Wenn Sie M19, bzw. M20 programmieren, ohne zuvor den Zyklus 13 definiert zu haben, dann positioniert die TNC die Hauptspindel auf einen Winkelwert, der in einem Maschinen-Parameter festgelegt ist (siehe Maschinenhandbuch).

▶ Orientierungswinkel: Winkel bezogen auf die Winkel-Bezugsachse der Arbeitsebene eingeben

Eingabe-Bereich: 0 bis 360°

Eingabe-Feinheit: 0,1°

Beispiel: NC-Sätze

93 CYCL DEF 13.0 ORIENTIERUNG

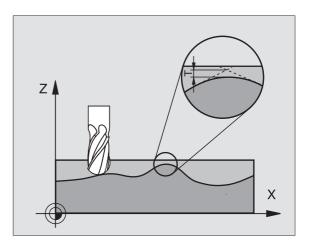
94 CYCL DEF 13.1 WINKEL 180

TOLERANZ (Zyklus 32)

Maschine und TNC müssen vom Maschinenhersteller vorbereitet sein.

Die TNC glättet automatisch die Kontur zwischen beliebigen (unkorrigierten oder korrigierten) Konturelementen. Dadurch verfährt das Werkzeug kontinuierlich auf der Werkstück-Oberfläche. Falls erforderlich, reduziert die TNC den programmierten Vorschub automatisch, so dass das Programm immer "ruckelfrei" mit der schnellstmöglichen Geschwindigkeit von der TNC abgearbeitet wird. Die Oberflächengüte wird erhöht und die Maschinenmechanik geschont.

Durch das Glätten entsteht eine Konturabweichung. Die Größe der Konturabweichung (**Toleranzwert**) ist in einem Maschinen-Parameter von Ihrem Maschinenhersteller festgelegt. Mit dem Zyklus 32 verändern Sie den voreingestellten Toleranzwert.


Beachten Sie vor dem Programmieren

Zyklus 32 ist DEF-Aktiv, das heißt ab seiner Definition im Programm wirksam.

Sie setzen Zyklus 32 zurück, indem Sie den Zyklus 32 erneut definieren und die Dialogfrage nach dem **Toleranzwert** mit NO ENT bestätigen. Die voreingestellte Toleranzwird durch das Rücksetzen wieder aktiv:

▶ Toleranzwert: Zulässige Konturabweichung in mm

Beispiel: NC-Sätze

95 CYCL DEF 32.0 TOLERANZ

96 CYCL DEF 32.1 TO.05

9

Programmieren: Unterprogramme und Programmteil-Wiederholungen

9.1 Unterprogramme und Programmteil-Wiederholungen kennzeichnen

Einmal programmierte Bearbeitungsschritte können Sie mit Unterprogrammen und Programmteil-Wiederholungen wiederholt ausführen lassen.

Label

Unterprogramme und Programmteil-Wiederholungen beginnen im Bearbeitungsprogramm mit der Marke LBL, eine Abkürzung für LABEL (engl. für Marke, Kennzeichnung).

LABEL erhalten eine Nummer zwischen 1 und 254. Jede LABEL-Nummer dürfen Sie im Programm nur einmal vergeben mit LABEL SET.

Wenn Sie eine LABEL-Nummer mehrmals vergeben, gibt die TNC beim Beenden des LBL SET-Satzes eine Fehlermeldung aus. Bei sehr langen Programmen können Sie über MP7229 die Überprüfung auf eine eingebbare Anzahl von Sätzen begrenzen.

LABEL 0 (LBL 0) kennzeichnet ein Unterprogramm-Ende und darf deshalb beliebig oft verwendet werden.

9.2 Unterprogramme

Arbeitsweise

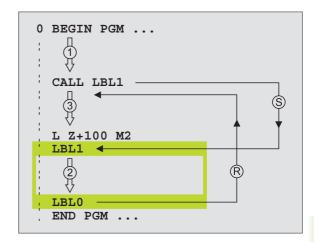
- 1 Die TNC führt das Bearbeitungs-Programm bis zu einem Unterprogramm-Aufruf CALL LBL aus
- **2** Ab dieser Stelle arbeitet die TNC das aufgerufene Unterprogramm bis zum Unterprogramm-Ende LBL 0 ab
- **3** Danach führt die TNC das Bearbeitungs-Programm mit dem Satz fort, der auf den Unterprogramm-Aufruf CALL LBL folgt

Programmier-Hinweise

- Ein Hauptprogramm kann bis zu 254 Unterprogramme enthalten
- Sie k\u00f6nnen Unterprogramme in beliebiger Reihenfolge beliebig oft aufrufen
- Ein Unterprogramm darf sich nicht selbst aufrufen
- Unterprogramme ans Ende des Hauptprogramms (hinter dem Satz mit M2 bzw. M30) programmieren
- Wenn Unterprogramme im Bearbeitungs-Programm vor dem Satz mit M02 oder M30 stehen, dann werden sie ohne Aufruf mindestens einmal abgearbeitet

Unterprogramm programmieren

- Anfang kennzeichnen: Taste LBL SET drücken und eine Label-Nummer eingeben
- ► Unterprogramm-Nummer eingeben
- ▶ Ende kennzeichnen: Taste LBL SET drücken und Label-Nummer "0"eingeben


Unterprogramm aufrufen

- ▶ Unterprogramm aufrufen: Taste LBL CALL drücken
- ▶ Labe1-Nummer: Label-Nummer des aufzurufenden Unterprogramms eingeben
- ▶ Wiederholungen REP: Dialog mit Taste NO ENT übergehen. Wiederholungen REP nur bei Programmteil-Wiederholungen einsetzen

CALL LBL 0 ist nicht erlaubt, da es dem Aufruf eines Unterprogramm-Endes entspricht.

9.3 Programmteil-Wiederholungen

Label LBL

Programmteil-Wiederholungen beginnen mit der Marke LBL (LABEL). Eine Programmteil-Wiederholung schließt mit CALL LBL /REP ab.

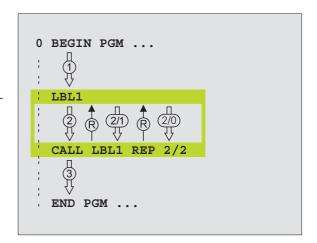
Arbeitsweise

- 1 Die TNC führt das Bearbeitungs-Programm bis zum Ende des Programmteils (CALL LBL /REP) aus
- 2 Anschließend wiederholt die TNC den Programmteil zwischen dem aufgerufenen LABEL und dem Label-Aufruf CALL LBL /REP so oft, wie Sie unter REP angegeben haben
- 3 Danach arbeitet die TNC das Bearbeitungs-Programm weiter ab

Programmier-Hinweise

- Sie k\u00f6nnen einen Programmteil bis zu 65 534 mal hintereinander wiederholen
- Die TNC führt rechts vom Schrägstrich hinter REP einen Zähler für die Programmteil-Wiederholungen mit, die noch durchzuführen sind
- Programmteile werden von der TNC immer einmal häufiger ausgeführt, als Wiederholungen programmiert sind

Programmteil-Wiederholung programmieren



- Anfang kennzeichnen: Taste LBL SET drücken und LABEL-Nummer für den zu wiederholenden Programmteil eingeben
- ▶ Programmteil eingeben

Programmteil-Wiederholung aufrufen

▶ Taste LBL CALL drücken, Label-Nummer des zu wiederholenden Programmteils und Anzahl der Wiederholungen REP eingeben

9.4 Beliebiges Programm als Unterprogramm

Arbeitsweise

- 1 Die TNC führt das Bearbeitungs-Programm aus, bis Sie ein anderes Programm mit CALL PGM aufrufen
- 2 Anschließend führt die TNC das aufgerufene Programm bis zu seinem Ende aus
- 3 Danach arbeitet die TNC das (aufrufende) Bearbeitungs-Programm mit dem Satz weiter ab, der auf den Programm-Aufruf folgt

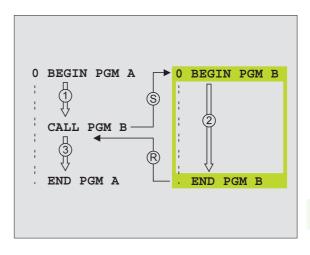
Programmier-Hinweise

- Um ein beliebiges Programm als Unterprogramm zu verwenden, benötigt die TNC keine LABELs
- Das aufgerufene Programm darf keine Zusatz-Funktion M2 oder M30 enthalten
- Das aufgerufene Programm darf keinen Aufruf CALL PGM ins aufrufende Programm enthalten (Endlosschleife)

Beliebiges Programm als Unterprogramm aufrufen

▶ Funktionen zum Programm-Aufruf wählen: Taste PGM CALL drücken

- ► Softkey PROGRAMM drücken
- Vollständigen Pfadnamen des aufzurufenden Programms eingeben, mit Taste END bestätigen


Das aufgerufene Programm muss auf der Festplatte der TNC gespeichert sein.

Wenn Sie nur den Programm-Namen eingeben, muss das aufgerufene Programm im selben Verzeichnis stehen wie das rufende Programm.

Wenn das aufgerufene Programm nicht im selben Verzeichnis steht wie das rufende Programm, dann geben Sie den vollständigen Pfadnamen ein, z.B. TNC:\ZW35\SCHRUPP\PGM1.H

Wenn Sie ein DIN/ISO-Programm aufrufen wollen, dann geben Sie den Datei-Typ .I hinter dem Programm-Namen ein.

Sie können ein beliebiges Programm auch über den Zyklus 12 PGM CALL aufrufen

9.5 Verschachtelungen

Verschachtelungsarten

- Unterprogramme im Unterprogramm
- Programmteil-Wiederholungen in Programmteil-Wiederholung
- Unterprogramme wiederholen
- Programmteil-Wiederholungen im Unterprogram

Verschachtelungstiefe

Die Verschachtelungs-Tiefe legt fest, wie oft Programmteile oder Unterprogramme weitere Unterprogramme oder Programmteil-Wiederholungen enthalten dürfen.

- Maximale Verschachtelungstiefe für Unterprogramme: 8
- Maximale Verschachtelungstiefe für Hauptprogramm-Aufrufe: 4
- Programmteil-Wiederholungen k\u00f6nnen Sie beliebig oft verschachteln

Unterprogramm im Unterprogramm

NC-Beispielsätze

O BEGIN PGM UPGMS MM	
•••	
17 CALL LBL 1	Unterprogramm bei LBL 1 aufrufen
•••	
35 L Z+100 RO FMAX M2	Letzter Programmsatz des
	Hauptprogramms (mit M2)
36 LBL 1	Anfang von Unterprogramm 1
•••	
39 CALL LBL 2	Unterprogramm bei LBL2 wird aufgerufen
•••	
45 LBL 0	Ende von Unterprogramm 1
46 LBL 2	Anfang von Unterprogramm 2
•••	
62 LBL 0	Ende von Unterprogramm 2
63 END PGM UPGMS MM	

Programm-Ausführung

- 1 Hauptprogramm UPGMS wird bis Satz 17 ausgeführt
- 2 Unterprogramm 1 wird aufgerufen und bis Satz 39 ausgeführt
- **3** Unterprogramm 2 wird aufgerufen und bis Satz 62 ausgeführt. Ende von Unterprogramm 2 und Rücksprung zum Unterprogramm, von dem es aufgerufen wurde
- 4 Unterprogramm 1 wird von Satz 40 bis Satz 45 ausgeführt. Ende von Unterprogramm 1 und Rücksprung ins Hauptprogramm UPGMS
- **5** Hauptprogramm UPGMS wird von Satz 18 bis Satz 35 ausgeführt. Rücksprung zu Satz 1 und Programm-Ende

Programmteil-Wiederholungen wiederholen

NC-Beispielsätze

O BEGIN PGM REPS MM	
•••	
15 LBL 1	Anfang der Programmteil-Wiederholung 1
•••	
20 LBL 2	Anfang der Programmteil-Wiederholung 2
•••	
27 CALL LBL 2 REP 2/2	Programmteil zwischen diesem Satz und LBL 2
•••	(Satz 20) wird 2 mal wiederholt
35 CALL LBL 1 REP 1/1	Programmteil zwischen diesem Satz und LBL 1
•••	(Satz 15) wird 1 mal wiederholt
50 END PGM REPS MM	

Programm-Ausführung

- 1 Hauptprogramm REPS wird bis Satz 27 ausgeführt
- 2 Programmteil zwischen Satz 27 und Satz 20 wird 2 mal wiederholt
- 3 Hauptprogramm REPS wird von Satz 28 bis Satz 35 ausgeführt
- 4 Programmteil zwischen Satz 35 und Satz 15 wird 1 mal wiederholt (beinhaltet die Programmteil-Wiederholung zwischen Satz 20 und Satz 27)
- **5** Hauptprogramm REPS wird von Satz 36 bis Satz 50 ausgeführt (Programm-Ende)

Unterprogramm wiederholen

NC-Beispielsätze

O BEGIN PGM UPGREP MM	
•••	
10 LBL 1	Anfang der Programmteil-Wiederholung 1
11 CALL LBL 2	Unterprogramm-Aufruf
12 CALL LBL 1 REP 2/2	Programmteil zwischen diesem Satz und LBL1
•••	(Satz 10) wird 2 mal wiederholt
19 L Z+100 RO FMAX M2	Letzter Satz des Hauptprogramms mit M2
20 LBL 2	Anfang des Unterprogramms
•••	
28 LBL 0	Ende des Unterprogramms
29 END PGM UPGREP MM	

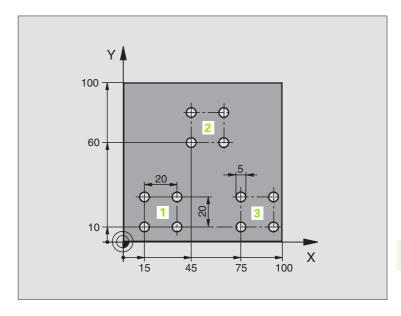
Programm-Ausführung

- 1 Hauptprogramm UPGREP wird bis Satz 11 ausgeführt
- 2 Unterprogramm 2 wird aufgerufen und ausgeführt
- **3** Programmteil zwischen Satz 12 und Satz 10 wird 2 mal wiederholt: Unterprogramm 2 wird 2 mal wiederholt
- **4** Hauptprogramm UPGREP wird von Satz 13 bis Satz 19 ausgeführt; Programm-Ende

Beispiel: Konturfräsen in mehreren Zustellungen

Programm-Ablauf

- Werkzeug vorpositionieren auf Oberkante Werkstück
- Zustellung inkremental eingeben
- Konturfräsen
- Zustellung und Konturfräsen wiederholen

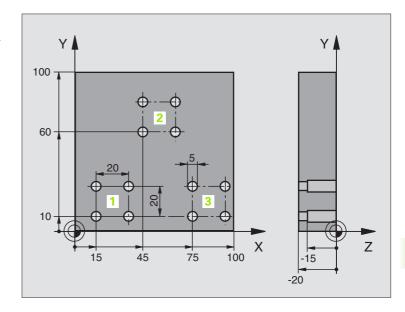

O BEGIN PGM PGMWDH MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Werkzeug-Definition
4 TOOL CALL 1 Z S500	Werkzeug-Aufruf
5 L Z+250 RO F MAX	Werkzeug freifahren
6 L X-20 Y+30 RO F MAX	Vorpositionieren Bearbeitungsebene
7 L Z+0 R0 F MAX M3	Vorpositionieren auf Oberkante Werkstück

8 LBL 1	Marke für Programmteil-Wiederholung
9 L IZ-4 RO F MAX	Inkrementale Tiefen-Zustellung (im Freien)
10 APPR CT X+2 Y+30 CCA90 R+5 RL F250	Kontur anfahren
11 FC DR- R18 CLSD+ CCX+20 CCY+30	Kontur
12 FLT	
13 FCT DR- R15 CCX+50 CCY+75	
14 FLT	
15 FCT DR- R15 CCX+75 CCY+20	
16 FLT	
17 FCT DR- R18 CLSD- CCX+20 CCY+30	
18 DEP CT CCA90 R+5 F1000	Kontur verlassen
19 L X-20 Y+0 RO F MAX	Freifahren
20 CALL LBL 1 REP 4/4	Rücksprung zu LBL 1; insgesamt vier Mal
21 L Z+250 RO F MAX M2	Werkzeug freifahren, Programm-Ende
22 END PGM PGMWDH MM	

Beispiel: Bohrungsgruppen

Programm-Ablauf

- Bohrungsgruppen anfahren im Hauptprogramm
- Bohrungsgruppe aufrufen (Unterprogramm 1)
- Bohrungsgruppe nur einmal im Unterprogramm 1 programmieren


O BEGIN PGM UP1 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+2,5	Werkzeug-Definition
4 TOOL CALL 1 Z S5000	Werkzeug-Aufruf
5 L Z+250 RO F MAX	Werkzeug freifahren
6 CYCL DEF 200 BOHREN	Zyklus-Definition Bohren
Q200=2 ;SICHERHEITSABST.	
Q201=-10 ;TIEFE	
Q206=250 ;F TIEFENZUST.	
Q202=5 ;ZUSTELL-TIEFE	
Q210=0 ;VZEIT OBEN	
Q203=+0 ;KOOR. OBERFL.	
Q204=10 ;2. SABSTAND	
Q211=0.25 ;VERWEILZEIT UNTEN	

7 L X+15 Y+10 RO F MAX M3	Startpunkt Bohrungsgruppe 1 anfahren
8 CALL LBL 1	Unterprogramm für Bohrungsgruppe rufen
9 L X+45 Y+60 RO F MAX	Startpunkt Bohrungsgruppe 2 anfahren
10 CALL LBL 1	Unterprogramm für Bohrungsgruppe rufen
11 L X+75 Y+10 RO F MAX	Startpunkt Bohrungsgruppe 3 anfahren
12 CALL LBL 1	Unterprogramm für Bohrungsgruppe rufen
13 L Z+250 RO F MAX M2	Ende des Hauptprogramms
14 LBL 1	Anfang des Unterprogramms 1: Bohrungsgruppe
15 CYCL CALL	Bohrung 1
16 L IX+20 RO F MAX M99	Bohrung 2 anfahren, Zyklus aufrufen
17 L IY+20 RO F MAX M99	Bohrung 3 anfahren, Zyklus aufrufen
18 L IX-20 RO F MAX M99	Bohrung 4 anfahren, Zyklus aufrufens
19 LBL 0	Ende des Unterprogramms 1
20 END PGM UP1 MM	

Beispiel: Bohrungsgruppe mit mehreren Werkzeugen

Programm-Ablauf

- Bearbeitungs-Zyklen programmieren im Hauptprogramm
- Komplettes Bohrbild aufrufen (Unterprogramm 1)
- Bohrungsgruppen anfahren im Unterprogramm 1, Bohrungsgruppe aufrufen (Unterprogramm 2)
- Bohrungsgruppe nur einmal im Unterprogramm 2 programmieren

O BEGIN PGM UP2 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+4	Werkzeug-Definition Zentrierbohrer
4 TOOL DEF 2 L+0 R+3	Werkzeug-Definition Bohrer
5 TOOL DEF 3 L+0 R+3,5	Werkzeug-Definition Reibahle
6 TOOL CALL 1 Z S5000	Werkzeug-Aufruf Zentrierbohrer
7 L Z+250 RO F MAX	Werkzeug freifahren
8 CYCL DEF 200 BOHREN	Zyklus-Definition Zentrieren
Q200=2; SICHERHEITSABST.	
Q201=-3; TIEFE	
Q206=250; F TIEFENZUST.	
Q202=3; ZUSTELL-TIEFE	
Q210=0; VZEIT OBEN	
Q203=+0; KOOR. OBERFL.	
Q204=10; 2. SABSTAND	
Q211=0.25; VERWEILZEIT UNTEN	
9 CALL LBL 1	Unterprogramm 1 für komplettes Bohrbild rufen

10 L Z+250 RO F MAX M6	Werkzeug-Wechsel
11 TOOL CALL 2 Z S4000	Werkzeug-Aufruf Bohrer
12 FN 0: Q201 = -25	Neue Tiefe fürs Bohren
13 FN 0: Q202 = +5	Neue Zustellung fürs Bohren
14 CALL LBL 1	Unterprogramm 1 für komplettes Bohrbild rufen
15 L Z+250 RO F MAX M6	Werkzeug-Wechsel
16 TOOL CALL 3 Z S500	Werkzeug-Aufruf Reibahle
17 CYCL DEF 201 REIBEN	Zyklus-Definition Reiben
Q200=2; SICHERHEITSABST.	
Q201=-15; TIEFE	
Q206=250; F TIEFENZUST.	
Q211=0,5; VZEIT UNTEN	
Q208=400; F RUECKZUG	
Q203=+0; KOOR. OBERFL.	
Q204=10; 2. SABSTAND	
18 CALL LBL 1	Unterprogramm 1 für komplettes Bohrbild rufen
19 L Z+250 RO F MAX M2	Ende des Hauptprogramms
20 LBL 1	Anfang des Unterprogramms 1: Komplettes Bohrbild
21 L X+15 Y+10 RO F MAX M3	Anfang des Unterprogramms 1: Komplettes Bohrbild Startpunkt Bohrungsgruppe 1 anfahren
21 L X+15 Y+10 RO F MAX M3 22 CALL LBL 2	Startpunkt Bohrungsgruppe 1 anfahren Unterprogramm 2 für Bohrungsgruppe rufen
21 L X+15 Y+10 RO F MAX M3 22 CALL LBL 2 23 L X+45 Y+60 RO F MAX	Startpunkt Bohrungsgruppe 1 anfahren
21 L X+15 Y+10 R0 F MAX M3 22 CALL LBL 2 23 L X+45 Y+60 R0 F MAX 24 CALL LBL 2	Startpunkt Bohrungsgruppe 1 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 2 anfahren Unterprogramm 2 für Bohrungsgruppe rufen
21 L X+15 Y+10 RO F MAX M3 22 CALL LBL 2 23 L X+45 Y+60 RO F MAX 24 CALL LBL 2 25 L X+75 Y+10 RO F MAX	Startpunkt Bohrungsgruppe 1 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 2 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 3 anfahren
21 L X+15 Y+10 R0 F MAX M3 22 CALL LBL 2 23 L X+45 Y+60 R0 F MAX 24 CALL LBL 2	Startpunkt Bohrungsgruppe 1 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 2 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 3 anfahren Unterprogramm 2 für Bohrungsgruppe rufen
21 L X+15 Y+10 RO F MAX M3 22 CALL LBL 2 23 L X+45 Y+60 RO F MAX 24 CALL LBL 2 25 L X+75 Y+10 RO F MAX	Startpunkt Bohrungsgruppe 1 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 2 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 3 anfahren
21 L X+15 Y+10 RO F MAX M3 22 CALL LBL 2 23 L X+45 Y+60 RO F MAX 24 CALL LBL 2 25 L X+75 Y+10 RO F MAX 26 CALL LBL 2 27 LBL 0	Startpunkt Bohrungsgruppe 1 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 2 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 3 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Ende des Unterprogramms 1
21 L X+15 Y+10 RO F MAX M3 22 CALL LBL 2 23 L X+45 Y+60 RO F MAX 24 CALL LBL 2 25 L X+75 Y+10 RO F MAX 26 CALL LBL 2 27 LBL 0 28 LBL 2	Startpunkt Bohrungsgruppe 1 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 2 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 3 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Ende des Unterprogramms 1 Anfang des Unterprogramms 2: Bohrungsgruppe
21 L X+15 Y+10 RO F MAX M3 22 CALL LBL 2 23 L X+45 Y+60 RO F MAX 24 CALL LBL 2 25 L X+75 Y+10 RO F MAX 26 CALL LBL 2 27 LBL 0 28 LBL 2 29 CYCL CALL	Startpunkt Bohrungsgruppe 1 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 2 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 3 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Ende des Unterprogramms 1 Anfang des Unterprogramms 2: Bohrungsgruppe Bohrung 1 mit aktivem Bearbeitungs-Zyklus
21 L X+15 Y+10 RO F MAX M3 22 CALL LBL 2 23 L X+45 Y+60 RO F MAX 24 CALL LBL 2 25 L X+75 Y+10 RO F MAX 26 CALL LBL 2 27 LBL 0 28 LBL 2	Startpunkt Bohrungsgruppe 1 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 2 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 3 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Ende des Unterprogramms 1 Anfang des Unterprogramms 2: Bohrungsgruppe Bohrung 1 mit aktivem Bearbeitungs-Zyklus Bohrung 2 anfahren, Zyklus aufrufen
21 L X+15 Y+10 RO F MAX M3 22 CALL LBL 2 23 L X+45 Y+60 RO F MAX 24 CALL LBL 2 25 L X+75 Y+10 RO F MAX 26 CALL LBL 2 27 LBL 0 28 LBL 2 29 CYCL CALL 30 L IX+20 RO F MAX M99 31 L IY+20 RO F MAX M99	Startpunkt Bohrungsgruppe 1 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 2 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 3 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Ende des Unterprogramms 1 Anfang des Unterprogramms 2: Bohrungsgruppe Bohrung 1 mit aktivem Bearbeitungs-Zyklus Bohrung 2 anfahren, Zyklus aufrufen Bohrung 3 anfahren, Zyklus aufrufen
21 L X+15 Y+10 RO F MAX M3 22 CALL LBL 2 23 L X+45 Y+60 RO F MAX 24 CALL LBL 2 25 L X+75 Y+10 RO F MAX 26 CALL LBL 2 27 LBL 0 28 LBL 2 29 CYCL CALL 30 L IX+20 RO F MAX M99	Startpunkt Bohrungsgruppe 1 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 2 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 3 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Ende des Unterprogramms 1 Anfang des Unterprogramms 2: Bohrungsgruppe Bohrung 1 mit aktivem Bearbeitungs-Zyklus Bohrung 2 anfahren, Zyklus aufrufen Bohrung 3 anfahren, Zyklus aufrufen Bohrung 4 anfahren, Zyklus aufrufen
21 L X+15 Y+10 RO F MAX M3 22 CALL LBL 2 23 L X+45 Y+60 RO F MAX 24 CALL LBL 2 25 L X+75 Y+10 RO F MAX 26 CALL LBL 2 27 LBL 0 28 LBL 2 29 CYCL CALL 30 L IX+20 RO F MAX M99 31 L IY+20 RO F MAX M99	Startpunkt Bohrungsgruppe 1 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 2 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Startpunkt Bohrungsgruppe 3 anfahren Unterprogramm 2 für Bohrungsgruppe rufen Ende des Unterprogramms 1 Anfang des Unterprogramms 2: Bohrungsgruppe Bohrung 1 mit aktivem Bearbeitungs-Zyklus Bohrung 2 anfahren, Zyklus aufrufen Bohrung 3 anfahren, Zyklus aufrufen

Programmieren: Q-Parameter

10.1 Prinzip und Funktionsübersicht

Mit Q-Parametern können Sie mit einem Bearbeitungs-Programm eine ganze Teilefamilie definieren. Dazu geben Sie anstelle von Zahlenwerten Platzhalter ein: die Q-Parameter.

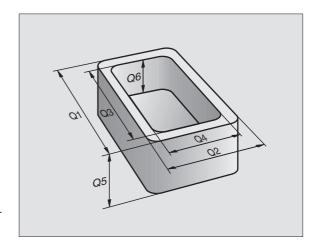
Q-Parameter stehen beispielsweise für

- Koordinatenwerte
- Vorschübe
- Drehzahlen
- Zyklus-Daten

Außerdem können Sie mit Q-Parametern Konturen programmieren, die über mathematische Funktionen bestimmt sind oder die Ausführung von Bearbeitungsschritten von logischen Bedingungen abhängig machen. In Verbindung mit der FK-Programmierung, können Sie auch Konturen die nicht NC-gerecht bemaßt sind mit Q-Parametern kombinieren.

Ein Q-Parameter ist durch den Buchstaben Q und eine Nummer zwischen 0 und 299 gekennzeichnet. Die Q-Parameter sind in drei Bereiche unterteilt:

Bedeutung	Bereich
Frei verwendbare Parameter, global für alle im TNC-Speicher befindlichen Programme wirksam	Q0 bis Q99
Parameter für Sonderfunktionen der TNC	Q100 bis Q199
Parameter, die bevorzugt für Zyklen verwendet werden, global für alle im TNC-Speicher befindlichen Programme wirksam	Q200 bis Q399


Programmierhinweise

Q-Parameter und Zahlenwerte dürfen in ein Programm gemischt eingegeben werden.

Sie können Q-Parametern Zahlenwerte zwischen –99 999,9999 und +99 999,9999 zuweisen. Intern kann die TNC Zahlenwerte bis zu einer Breite von 57 Bit vor und bis zu 7 Bit nach dem Dezimalpunkt berechnen (32 bit Zahlenbreite entsprechen einem Dezimalwert von 4 294 967 296).

Die TNC weist einigen Q-Parametern selbsttätig immer die gleichen Daten zu, z.B. dem Q-Parameter Q108 den aktuellen Werkzeug-Radius, siehe "Vorbelegte Q-Parameter", Seite 390. Wenn Sie die Parameter Q60 bis Q99 in Hersteller-Zyklen verwenden, legen Sie über den Maschinen-Parameter MP7251 fest, ob diese Parameter nur lokal im Hersteller-Zyklus wirken oder global für alle Programme.

Q-Parameter-Funktionen aufrufen

Während Sie ein Bearbeitungsprogramm eingeben, drücken Sie die Taste "Q" (im Feld für Zahlen-Eingaben und Achswahl unter –/+ -Taste). Dann zeigt die TNC folgende Softkeys:

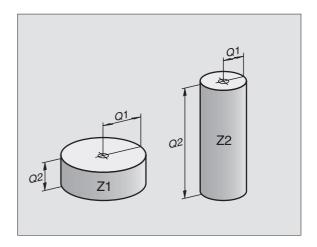
Funktionsgruppe	Softkey
Mathematische Grundfunktionen	GRUND- FUNKT.
Winkelfunktionen	WINKEL- FUNKT.
Funktion zur Kreisberechnung	KREIS- BERECH- NUNG
Wenn/dann-Entscheidungen, Sprünge	SPRÜNGE
Sonstige Funktionen	SONDER- FUNKT.
Formel direkt eingeben	FORMEL

10.2 Teilefamilien – Q-Parameter statt Zahlenwerte

Mit der Q-Parameter-Funktion FN0: ZUWEISUNG können Sie Q-Parametern Zahlenwerte zuweisen. Dann setzen Sie im Bearbeitungs-Programm statt dem Zahlenwert einen Q-Parameter ein.

NC-Beispielsätze

15 FNO: Q10=25	Zuweisung
•••	Q10 erhält den Wert 25
25 L X +Q10	entspricht L X +25


Für Teilefamilien programmieren Sie z.B. die charakteristischen Werkstück-Abmessungen als Q-Parameter.

Für die Bearbeitung der einzelnen Teile weisen Sie dann jedem dieser Parameter einen entsprechenden Zahlenwert zu.

Beispiel

Zylinder mit Q-Parametern

Zylinder-Radius	R = Q1
Zylinder-Höhe	H = Q2
Zylinder Z1	Q1 = +30 Q2 = +10
Zylinder Z2	Q1 = +10
	Q2 = +50

10.3 Konturen durch mathematische Funktionen beschreiben

Anwendung

Mit Q-Parametern können Sie mathematische Grundfunktionen im Bearbeitungsprogramm programmieren:

- Q-Parameter-Funktion wählen: Taste Q drücken (im Feld für Zahlen-Eingabe, rechts). Die Softkey-Leiste zeigt die Q-Parameter-Funktionen
- ▶ Mathematische Grundfunktionen wählen: Softkey GRUNDFUNKT. drücken. Die TNC zeigt folgende Softkeys:

Übersicht

Funktion	Softkey
FNO: ZUWEISUNG z.B. FNO: Q5 = +60 Wert direkt zuweise	FNO X = Y
FN1: ADDITION z.B. FN1: Q1 = -Q2 + -5 Summe aus zwei Werten bilden und zuweisen	FN1 X + Y
FN2: SUBTRAKTION z.B. FN2: Q1 = +10 - +5 Differenz aus zwei Werten bilden und zuweisen	FN2 X - Y
FN3: MULTIPLIKATION z.B. FN3: Q2 = +3 * +3 Produkt aus zwei Werten bilden und zuweisen	FN3 X * Y
FN4: DIVISION z.B. FN4: Q4 = +8 DIV +Q2 Quotient aus zwei Werten bilden und zuweisen Verboten: Division durch 0!	FN4 X × Y
FN5: WURZEL z.B. FN5: Q20 = SQRT 4 Wurzel aus einer Zahl ziehen und zuweisen Verboten: Wurzel aus negativem Wert!	FN6 WURZEL

Rechts vom "="-Zeichen dürfen Sie eingeben:

- zwei Zahlen
- zwei Q-Parameter
- eine Zahl und einen Q-Parameter

Die Q-Parameter und Zahlenwerte in den Gleichungen können Sie beliebig mit Vorzeichen versehen.

Grundrechenarten programmieren

Beispiel:

Q-Parameter-Funktionen wählen: Taste Q drücken

Mathematische Grundfunktionen wählen: Softkey

GRUNDFUNKT. drücken

FN0 X = Y Q-Parameter-Funktion ZUWEISUNG wählen: Softkey FN0 X = Y drücken

Parameter-Nr. für Ergebnis?

5

Nummer des Q- Parameters eingeben: 5

1. Wert oder Parameter?

10

Q5 den Zahlenwert 10 zuweisen

Q

Q-Parameter-Funktionen wählen: Taste Q drücken

GRUND-FUNKT. Mathematische Grundfunktionen wählen: Softkey GRUNDFUNKT. drücken

FN3 X * Y Q-Parameter-Funktion MULTIPLIKATION wählen: Softkey FN3 X * Y drücken

Parameter-Nr. für Ergebnis?

12

Nummer des Q- Parameters eingeben: 12

1. Wert oder Parameter?

Q5

Q5 als ersten Wert eingeben

2. Wert oder Parameter?

7

7 als zweiten Wert eingeben

Beispiel: Programmsätze in der TNC

16 FNO: Q5 = +10

17 FN3: Q12 = +Q5 * +7

10.4 Winkelfunktionen (Trigonometrie)

Definitionen

Sinus, Cosinus und Tangens entsprechen den Seitenverhältnissen eines rechtwinkligen Dreiecks. Dabei entspricht

Sinus: $\sin \alpha = a/c$ Cosinus: $\cos \alpha = b/c$

Tangens: $\tan \alpha = a / b = \sin \alpha / \cos \alpha$

Dabei ist

■ c die Seite gegenüber dem rechten Winkel

a die Seite gegenüber dem Winkel a

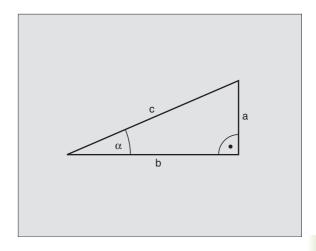
■ b die dritte Seite

Aus dem Tangens kann die TNC den Winkel ermitteln:

 α = arctan (a / b) = arctan (sin α / cos α)

Beispiel:

 $a = 25 \, \text{mm}$


b = 50 mm

 α = arctan (a / b) = arctan 0,5 = 26,57°

Zusätzlich gilt:

 $a^2 + b^2 = c^2$ (mit $a^2 = a \times a$)

$$C = \sqrt{(a^2 + b^2)}$$

Winkelfunktionen programmieren

Die Winkelfunktionen erscheinen mit Druck auf den Softkey WINKEL-FUNKT. Die TNC zeigt die Softkeys in der Tabelle unten.

Programmierung: vergleiche "Beispiel: Grundrechenarten programmieren"

Funktion	Softkey
FN6: SINUS z.B. FN6: Q20 = SIN-Q5 Sinus eines Winkels in Grad (°) bestimmen und zuweisen	FN6 SIN(X)
FN7: COSINUS z.B. FN7: Q21 = COS-Q5 Cosinus eines Winkels in Grad (°) bestimmen und zuweisen	FN7 COS(X)
FN8: WURZEL AUS QUADRATSUMME z.B. FN8: Q10 = +5 LEN +4 Länge aus zwei Werten bilden und zuweisen	FN8 X LEN Y
FN13: WINKEL z.B. FN13: Q20 = +25 ANG-Q1 Winkel mit arctan aus zwei Seiten oder sin und cos des Winkels (0 < Winkel < 360°) bestimmen und zuweisen	FN13 X ANG Y

10.5 Kreisberechnungen

Anwendung

Mit den Funktionen zur Kreisberechnung können Sie aus drei oder vier Kreispunkten den Kreismittelpunkt und den Kreisradius von der TNC berechnen lassen. Die Berechnung eine Kreises aus vier Punkten ist genauer.

Anwendung: Diese Funktionen können Sie z.B. einsetzen, wenn Sie über die programmierbare Antastfunktion Lage und Größe einer Bohrung oder eines Teilkreises bestimmen wollen.

Funktion	Softkey
FN23: KREISDATEN ermitteln aus drei Kreispunkten z.B. FN23: Q20 = CDATA Q30	FN23 KREIS AUS 3 PUNKTEN

Die Koordinatenpaare von drei Kreispunkten müssen im Parameter Q30 und den folgenden fünf Parametern – hier also bis Q35 –gespeichert sein.

Die TNC speichert dann den Kreismittelpunkt der Hauptachse (X bei Spindelachse Z) im Parameter Q20, den Kreismittelpunkt der Nebenachse (Y bei Spindelachse Z) im Parameter Q21 und den Kreisradius im Parameter Q22 ab.

Funktion	Softkey
FN24: KREISDATEN ermitteln aus vier Kreispunkten z.B. FN24: Q20 = CDATA Q30	FN24 KREIS AUS 4 PUNKTEN

Die Koordinatenpaare von vier Kreispunkten müssen im Parameter Q30 und den folgenden sieben Parametern – hier also bis Q37 – gespeichert sein.

Die TNC speichert dann den Kreismittelpunkt der Hauptachse (X bei Spindelachse Z) im Parameter Q20, den Kreismittelpunkt der Nebenachse (Y bei Spindelachse Z) im Parameter Q21 und den Kreisradius im Parameter Q22 ab.

Beachten Sie, dass FN23 und FN24 neben dem Ergebnis-Parameter auch die zwei folgenden Parameter automatisch überschreiben.

10.6 Wenn/dann-Entscheidungen mit Q-Parametern

Anwendung

Bei Wenn/Dann-Entscheidungen vergleicht die TNC einen Q-Parameter mit einem anderen Q-Parameter oder einem Zahlenwert. Wenn die Bedingung erfüllt ist, dann setzt die TNC das Bearbeitungs-Programm an dem LABEL fort, der hinter der Bedingung programmiert ist (LABEL siehe "Unterprogramme und Programmteil-Wiederholungen kennzeichnen", Seite 346). Wenn die Bedingung nicht erfüllt ist, dann führt die TNC den nächsten Satz aus.

Wenn Sie ein anderes Programm als Unterprogramm aufrufen möchten, dann programmieren Sie hinter dem LABEL ein PGM CALL.

Unbedingte Sprünge

Unbedingte Sprünge sind Sprünge, deren Bedingung immer (=unbedingt) erfüllt ist, z.B.

FN9: IF+10 EQU+10 GOTO LBL1

Funktion

Wenn/dann-Entscheidungen programmieren

Die Wenn/dann-Entscheidungen erscheinen mit Druck auf den Softkey SPRÜNGE. Die TNC zeigt folgende Softkeys:

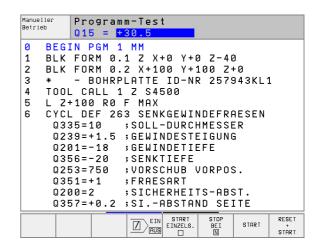
Softkey

FN9: WENN GLEICH, SPRUNG z.B. FN9: IF +Q1 EQU +Q3 GOTO LBL 5 Wenn beide Werte oder Parameter gleich, Sprung zu angegebenem Label	FN9 IF X EQ Y GOTO
FN10: WENN UNGLEICH, SPRUNG z.B. FN10: IF +10 NE -Q5 G0T0 LBL 10 Wenn beide Werte oder Parameter ungleich, Sprung zu angegebenem Label	FN10 IF X NE Y GOTO
FN11: WENN GROESSER, SPRUNG z.B. FN11: IF+Q1 GT+10 G0T0 LBL 5 Wenn erster Wert oder Parameter größer als zweiter Wert oder Parameter, Sprung zu angegebenem Label	FN11 IF X GT Y GOTO
FN12: WENN KLEINER, SPRUNG z.B. FN12: IF+Q5 LT+0 G0T0 LBL 1 Wenn erster Wert oder Parameter kleiner als zweiter Wert oder Parameter, Sprung zu angegebenem Label	FN12 IF X LT Y GOTO

Verwendete Abkürzungen und Begriffe

IF (engl.): Wenn EQU (engl. equal): Gleich (engl. not equal): NE Nicht gleich GT (engl. greater than): Größer als LT (engl. less than): Kleiner als **GOTO** (engl. go to): Gehe zu

10.7 Q-Parameter kontrollieren und ändern


Vorgehensweise

Sie können Q-Parameter während eines Programmlaufs oder Programm-Tests kontrollieren und auch ändern.

▶ Programmlauf abbrechen (z.B. externe STOP-Taste und Softkey INTERNER STOP drücken) bzw. Programm-Test anhalten

- ▶ Q-Parameter-Funktionen aufrufen: Taste Q drücken
- Nummer des Q-Parameters eingeben und Taste ENT drücken. Die TNC zeigt im Dialog-Feld den aktuellen Wert des Q-Parameters an
- Wenn Sie den Wert ändern möchten, geben Sie einen neuen Wert ein, bestätigen Sie mit der Taste ENT und schließen die Eingabe mit der Taste END ab
- Wenn Sie den Wert nicht ändern möchten, dann beenden Sie den Dialog mit der Taste END

10.8 Zusätzliche Funktionen

Übersicht

Die zusätzlichen Funktionen erscheinen mit Druck auf den Softkey SONDER-FUNKT. Die TNC zeigt folgende Softkeys:

Funktion	Softkey
FN14:ERROR Fehlermeldungen ausgeben	FN14 FEHLER=
FN15:PRINT Texte oder Q-Parameter-Werte unformatiert ausgeben	FN15 DRUCKEN
FN16:PRINT Texte oder Q-Parameter-Werte formatiert ausgeben	FN16 F-DRUCKEN
FN18:SYS-DATUM READ Systemdaten lesen	FN18 LESEN SYS-DATEN
FN19:PLC Werte an die PLC übergeben	FN19 PLC=
FN20:WAIT FOR NC und PLC synchronisieren	FN20 UARTEN AUF
FN25:PRESET Bezugspunkt Setzen während des Programmlaufs	FN25 BEZUGSP. SETZEN
FN26:TABOPEN Frei definierbare Tabelle öffnen	FN26 TABELLE ÖFFNEN
FN27:TABWRITE In eine frei definierbare Tabelle schreiben	FN27 TABELLE SCHREIBEN
FN28:TABREAD Aus einer frei definierbaren Tabelle lesen	FN28 TABELLE LESEN

FN14: ERROR: Fehlermeldungen ausgeben

Mit der Funktion FN14: ERROR können Sie programmgesteuert Meldungen ausgeben lassen, die vom Maschinenhersteller bzw. von HEIDENHAIN vorprogrammiert sind: Wenn die TNC im Programmlauf oder Programm-Test zu einem Satz mit FN 14 kommt, so unterbricht sie und gibt eine Meldung aus. Anschließend müssen Sie das Programm neu starten. Fehler-Nummern: siehe Tabelle unten.

Bereich Fehler-Nummern	Standard-Dialog
0 299	FN 14: Fehler-Nummer 0 299
300 999	Maschinenabhängiger Dialog
1000 1099	Interne Fehlermeldungen (siehe Tabelle rechts)

NC-Beispielsatz

Die TNC soll eine Meldung ausgeben, die unter der Fehler-Nummer 254 gespeichert ist

180 FN14: ERROR = 254

Fehler-Nummer	Text	
1000	Spindel?	
1001	Werkzeugachse fehlt	
1002	Nutbreite zu groß	
1003	Werkzeug-Radius zu groß	
1004	Bereich überschritten	
1005	Anfangs-Position falsch	
1006	DREHUNG nicht erlaubt	
1007	MASSFAKTOR nicht erlaubt	
1008	SPIEGELUNG nicht erlaubt	
1009	Verschiebung nicht erlaubt	
1010	Vorschub fehlt	
1011	Eingabewert falsch	
1012	Vorzeichen falsch	
1013	Winkel nicht erlaubt	
1014	Antastpunkt nicht erreichbar	
1015	Zu viele Punkte	
1016	Eingabe widersprüchlich	
1017	CYCL unvollständig	
1018	Ebene falsch definiert	
1019	Falsche Achse programmiert	
1020	Falsche Drehzahl	
1021	Radius-Korrektur undefiniert	
1022	Rundung nicht definiert	
1023	Rundungs-Radius zu groß	
1024	Undefinierter Programmstart	
1025	Zu hohe Verschachtelung	
1026	Winkelbezug fehlt	
1027	Kein BearbZyklus definiert	
1028	Nutbreite zu klein	
1029	Tasche zu klein	
1030	Q202 nicht definiert	
1031	Q205 nicht definiert	
1032	Q218 größer Q219 eingeben	
1033	CYCL 210 nicht erlaubt	
1034	CYCL 211 nicht erlaubt	
1035	Q220 zu groß	
1036	Q222 größer Q223 eingeben	
1037	Q244 größer 0 eingeben	
1038	Q245 ungleich Q246 eingeben	
1039	Winkelbereich < 360° eingeben	
1040	Q223 größer Q222 eingeben	
1041	Q214: 0 nicht erlaubt	

Fehler-Nummer	Text			
1042	Verfahrrichtung nicht definiert			
1043	Keine Nullpunkt-Tabelle aktiv			
1044	Lagefehler: Mitte 1. Achse			
1045	Lagefehler: Mitte 2. Achse			
1046	Bohrung zu klein			
1047	Bohrung zu groß			
1048	Zapfen zu klein			
1049	Zapfen zu groß			
1050	Tasche zu klein: Nacharbeit 1.A.			
1051	Tasche zu klein: Nacharbeit 2.A.			
1052	Tasche zu groß: Ausschuss 1.A.			
1053	Tasche zu groß: Ausschuss 2.A.			
1054	Zapfen zu klein: Ausschuss 1.A.			
1055	Zapfen zu klein: Ausschuss 2.A.			
1056	Zapfen zu groß: Nacharbeit 1.A.			
1057	Zapfen zu groß: Nacharbeit 2.A.			
1058	TCHPROBE 425: Fehler Größtmaß			
1059	TCHPROBE 425: Fehler Kleinstmaß			
1060	TCHPROBE 426: Fehler Größtmaß			
1061	TCHPROBE 426: Fehler Kleinstmaß			
1062	TCHPROBE 430: Durchm. zu groß			
1063	TCHPROBE 430: Durchm. zu klein			
1064	Keine Messachse definiert			
1065	Werkzeug-Bruchtoleranz überschr.			
1066	Q247 ungleich 0 eingeben			
1067	Betrag Q247 größer 5 eingeben			
1068	Nullpunkt-Tabelle?			
1069	Fraesart Q351 ungleich 0 eingeben			
1070	Gewindetiefe verringern			
1071	Kalibrierung durchführen			
1072	Toleranz überschritten			
1073	Satzvorlauf aktiv			
1074	ORIENTIERUNG nicht erlaubt			
1075	3DROT nicht erlaubt			
1076	3DROT aktivieren			
1077	Tiefe negativ eingeben			

HEIDENHAIN TNC 426, TNC 430

FN15: PRINT: Texte oder Q-Parameter-Werte ausgeben

Datenschnittstelle einrichten: Im Menüpunkt PRINT bzw. PRINT-TEST legen Sie den Pfad fest, auf dem die TNC die Texte oder Q-Parameter-Werte speichern soll. Siehe "Zuweisung", Seite 427.

Mit der Funktion FN 15: PRINT können Sie Werte von Q-Parametern und Fehlermeldungen über die Datenschnittstelle ausgeben, zum Beispiel an einen Drucker. Wenn Sie die Werte intern abspeichern oder an einen Rechner ausgeben, speichert die TNC die Daten in der Datei %FN 15RUN.A (Ausgabe während des Programmlaufs) oder in der Datei %FN15SIM.A (Ausgabe während des Programm-Tests).

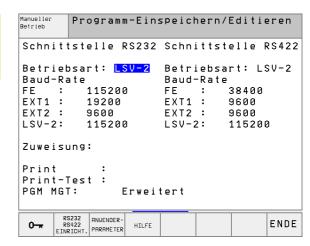
Die Ausgabe erfolgt gepuffert und wird spätestens am PGM-Ende, oder wenn Sie das PGM anhalten, ausgelöst. In der Betriebsart Einzelsatz startet die Datenübertragung am Satzende.

Dialoge und Fehlermeldung ausgeben mit FN 15: PRINT "Zahlenwert"

Zahlenwert 0 bis 99: Dialoge für Hersteller-Zyklen ab 100: PLC-Fehlermeldungen

Beispiel: Dialog-Nummer 20 ausgeben

67 FN15: PRINT 20


Dialoge und Q-Parameter ausgeben mit FN15: PRINT "Q-Parameter"

Anwendungsbeispiel: Protokollieren einer Werkstück-Vermessung.

Sie können bis zu sechs Q-Parameter und Zahlenwerte gleichzeitig ausgeben. Die TNC trennt diese mit Schrägstrichen.

Beispiel: Dialog 1 und Zahlenwert Q1 ausgeben

70 FN15: PRINT1/Q1

FN16: F-PRINT: Texte und Q-Parameter-Werte formatiert ausgeben

Datenschnittstelle einrichten: Im Menüpunkt PRINT bzw. PRINT-TEST legen Sie den Pfad fest, auf dem die TNC die Textdatei speichern soll. Siehe "Zuweisung", Seite 427.

Mit der Funktion FN 16: F-PRINT können Sie Q-Parameter-Werte und Texte formatiert über die Datenschnittstelle ausgeben, zum Beispiel an einen Drucker. Wenn Sie die Werte intern abspeichern oder an einen Rechner ausgeben, speichert die TNC die Daten in der Datei, die Sie im FN 16-Satz definieren.

Um formatierten Text und die Werte der Q-Parameter auszugeben, erstellen Sie mit dem Text-Editor der TNC eine Text-Datei, in der Sie die Formate und die auszugebenden Q-Parameter festlegen.

Beispiel für eine Text-Datei, die das Ausgabeformat festlegt:

"MESSPROTOKOLL SCHAUFELRAD-SCHWERPUNKT";

"DATUM: %02.2d-%02.2d-%4d", DAY, MONTH, YEAR4;

"UHRZEIT: %2d:%02.2d:%02.2d",HOUR,MIN,SEC;"

"ANZAHL MESSWERTE: = 1";

"X1 = %5.3LF", Q31;

"Y1 = %5.3LF". Q32:

"Z1 = %5.3LF", Q33;

Zum Erstellen von Text-Dateien setzen Sie folgende Formatierungsfunktionen ein:

Sonderzeichen	Funktion
""	Ausgabeformat für Text und Variablen zwischen Anführungszeichen oben festlegen
%5.3LF	Format für Q-Parameter festlegen: 5 Vorkomma-, 4 Nachkomma-Stellen, Long, Floating (Dezimalzahl)
%S	Format für Textvariable
,	Trennzeichen zwischen Ausgabeformat und Parameter
;	Satzende-Zeichen, schließt eine Zeile ab

Um verschiedene Informationen mit in die Protokolldatei ausgeben zu können stehen folgende Funktionen zur Verfügung:

Schlüsselwort	Funktion		
CALL_PATH	Gibt den Pfadnamen des NC-Programms aus, in dem die FN16-Funktion steht. Beispiel: "Messprogramm: %S",CALL_PATH;		
M_CLOSE	Schließt die Datei, in die Sie mit FN16 schreiben. Beispiel: M_CLOSE;		
L_ENGLISCH	Text nur bei Dialogspr. Englisch ausgeben		
L_GERMAN	Text nur bei Dialogspr. Deutsch ausgeben		
L_CZECH	Text nur bei Dialogspr. Tschechisch ausgeben		
L_FRENCH	Text nur bei Dialogspr. Französisch ausgeben		
L_ITALIAN	Text nur bei Dialogspr. Italienisch ausgeben		
L_SPANISH	Text nur bei Dialogspr. Spanisch ausgeben		
L_SWEDISH	Text nur bei Dialogspr. Schwedisch ausgeben		
L_DANISH	Text nur bei Dialogspr. Dänisch ausgeben		
L_FINNISH	Text nur bei Dialogspr. Finnisch ausgeben		
L_DUTCH	Text nur bei Dialogspr. Niederl. ausgeben		
L_POLISH	Text nur bei Dialogspr. Polnisch ausgeben		
L_HUNGARIA	Text nur bei Dialogspr. Ungarisch ausgeben		
L_ALL	Text unabhängig von der Dialogspr. ausgeben		
HOUR	Anzahl Stunden aus der Echtzeit		
MIN	Anzahl Minuten aus der Echtzeit		
SEC	Anzahl Sekunden aus der Echtzeit		
DAY	Tag aus der Echtzeit		
MONTH	Monat als Zahl aus der Echtzeit		
STR_MONTH	Monat als Stringkürzel aus der Echtzeit		
YEAR2	Jahreszahl zweistellig aus der Echtzeit		
YEAR4	Jahreszahl vierstellig aus der Echtzeit		

Im Bearbeitungs-Programm programmieren Sie FN 16: F-PRINT, um die Ausgabe zu aktivieren:

96 FN16: F-PRINT TNC:\MASKE\MASKE1.A/RS232:\PROT1.TXT

Die TNC gibt dann die Datei PROT1.TXT über die serielle Schnittstelle aus:

MESSPROTOKOLL SCHAUFELRAD-SCHWERPUNKT

DATUM: 27:11:2001 UHRZEIT: 8:56:34

ANZAHL MESSWERTE: = 1

X1 = 149,360 Y1 = 25,509 Z1 = 37,000

Wenn Sie FN 16 mehrmals im Programm verwenden, speichert die TNC alle Texte in der Datei, die Sie bei der ersten FN 16-Funktion festgelegt haben. Die Ausgabe der Datei erfolgt erst, wenn die TNC den Satz END PGM liest, wenn Sie die NC-Stop-Taste drücken oder wenn Sie die Datei mit M_CLOSE schließen

FN18: SYS-DATUM READ: Systemdaten lesen

Mit der Funktion FN 18: SYS-DATUM READ können Sie Systemdaten lesen und in Q-Parametern speichern. Die Auswahl des Systemdatums erfolgt über eine Gruppen-Nummer (ID-Nr.), eine Nummer und ggf. über einen Index.

Gruppen-Name, ID-Nr.	Nummer	Index	Bedeutung
Programm-Info, 10	1	-	mm/inch-Zustand
	2	-	Überlappungsfaktor beim Taschenfräsen
	3	-	Nummer aktiver Bearbeitungs-Zyklus
Maschinenzustand, 20	1	-	Aktive Werkzeug-Nummer
	2	-	Vorbereitete Werkzeug-Nummer
	3	-	Aktive Werkzeug-Achse 0=X, 1=Y, 2=Z, 6=U, 7=V, 8=W
	4	-	Programmierte Spindeldrehzahl
	5	-	Aktiver Spindelzustand: -1=undefiniert, 0=M3 aktiv, 1=M4 aktiv, 2=M5 nach M3, 3=M5 nach M4
	8	-	Kühlmittelzustand: 0=aus, 1=ein

Gruppen-Name, ID-Nr.	Nummer	Index	Bedeutung
	9	-	Aktiver Vorschub
	10	-	Index des vorbereiteten Werkzeugs
	11	-	Index des aktiven Werkzeugs
Zyklus-Parameter, 30	1	-	Sicherheits-Abstand aktiver Bearbeitungs-Zyklus
	2	-	Bohrtiefe/Frästiefe aktiver Bearbeitungs-Zyklus
	3	-	Zustell-Tiefe aktiver Bearbeitungs-Zyklus
	4	-	Vorschub Tiefenzust. aktiver Bearbeitungs-Zyklus
	5	-	Seitenlänge Zyklus Rechtecktasche
	6	-	2. Seitenlänge Zyklus Rechtecktasche
	7	-	1. Seitenlänge Zyklus Nut
	8	-	2. Seitenlänge Zyklus Nut
	9	-	Radius Zyklus Kreistasche
	10	-	Vorschub Fräsen aktiver Bearbeitungs-Zyklus
	11	-	Drehsinn aktiver Bearbeitungs-Zyklus
	12	-	Verweilzeit aktiver Bearbeitungs-Zyklus
	13	-	Gewindesteigung Zyklus 17, 18
	14	-	Schlichtaufmaß aktiver Bearbeitungs-Zyklus
	15	-	Ausräumwinkel aktiver Bearbeitungs-Zyklus
Daten aus der Werkzeug-Tabelle, 50	1	WKZ-Nr.	Werkzeug-Länge
	2	WKZ-Nr.	Werkzeug-Radius
	3	WKZ-Nr.	Werkzeug-Radius R2
	4	WKZ-Nr.	Aufmaß Werkzeug-Länge DL
	5	WKZ-Nr.	Aufmaß Werkzeug-Radius DR
	6	WKZ-Nr.	Aufmaß Werkzeug-Radius DR2
	7	WKZ-Nr.	Werkzeug gesperrt (0 oder 1)
	8	WKZ-Nr.	Nummer des Schwester-Werkzeugs
	9	WKZ-Nr.	Maximale Standzeit TIME1
	10	WKZ-Nr.	Maximale Standzeit TIME2
	11	WKZ-Nr.	Aktuelle Standzeit CUR. TIME

Gruppen-Name, ID-Nr.	Nummer	Index	Bedeutung
	12	WKZ-Nr.	PLC-Status
	13	WKZ-Nr.	Maximale Schneidenlänge LCUTS
	14	WKZ-Nr.	Maximaler Eintauchwinkel ANGLE
	15	WKZ-Nr.	TT: Anzahl der Schneiden CUT
	16	WKZ-Nr.	TT: Verschleiß-Toleranz Länge LTOL
	17	WKZ-Nr.	TT: Verschleiß-Toleranz Radius RTOL
	18	WKZ-Nr.	TT: Drehrichtung DIRECT (0=positiv/-1=negativ)
	19	WKZ-Nr.	TT: Versatz Ebene R-OFFS
	20	WKZ-Nr.	TT: Versatz Länge L-OFFS
	21	WKZ-Nr.	TT: Bruch-Toleranz Länge LBREAK
	22	WKZ-Nr.	TT: Bruch-Toleranz Radius RBREAK
	Ohne Index	k: Daten des a	ktiven Werkzeugs
Daten aus der Werkzeug-Tabelle, 51	1	Platz-Nr.	Werkzeug-Nummer
	2	Platz-Nr.	Sonderwerkzeug: 0=nein, 1=ja
	3	Platz-Nr.	Festplatz: 0=nein, 1=ja
	4	Platz-Nr.	gesperrter Platz: 0=nein, 1=ja
	5	Platz-Nr.	PLC-Status
Platz-Nummer eines Werkzeugs in der Platz-Tabelle, 52	1	WKZ-Nr.	Platz-Nummer
Direkt nach TOOL CALL programmierte Position, 70	1	-	Position gültig/ungültig (1/0)
	2	1	X-Achse
	2	2	Y-Achse
	2	3	Z-Achse
	3	-	Programmierter Vorschub (-1: Kein Vorschub progr.)
Aktive Werkzeug-Korrektur, 200	1	-	Werkzeug-Radius (incl. Delta-Werte)
	2	-	Werkzeug-Länge (incl. Delta-Werte)
Aktive Transformationen, 210	1	-	Grunddrehung Betriebsart Manuell
	2	-	Programmierte Drehung mit Zyklus 10
	3	-	Aktive Spiegelachse

HEIDENHAIN TNC 426, TNC 430 379

Gruppen-Name, ID-Nr.	Nummer	Index	Bedeutung
			0: Spiegeln nicht aktiv
			+1: X-Achse gespiegelt
			+2: Y-Achse gespiegelt
			+4: Z-Achse gespiegelt
			+64: U-Achse gespiegelt
			+128: V-Achse gespiegelt
			+256: W-Achse gespiegelt
			Kombinationen = Summe der Einzelachsen
	4	1	Aktiver Maßfaktor X-Achse
	4	2	Aktiver Maßfaktor Y-Achse
	4	3	Aktiver Maßfaktor Z-Achse
	4	7	Aktiver Maßfaktor U-Achse
	4	8	Aktiver Maßfaktor V-Achse
	4	9	Aktiver Maßfaktor W-Achse
	5	1	3D-ROT A-Achse
	5	2	3D-ROT B-Achse
	5	3	3D-ROT C-Achse
	6	-	Bearbeitungsebene Schwenken aktiv/inaktiv (-1/0)
Aktive Nullpunkt-Verschiebung, 220	2	1	X-Achse
		2	Y-Achse
		3	Z-Achse
		4	A-Achse
		5	B-Achse
		6	C-Achse
		7	U-Achse
		8	V-Achse
		9	W-Achse
Verfahrbereich, 230	2	1 bis 9	Negativer Software-Endschalter Achse 1 bis 9
	3	1 bis 9	Positiver Software-Endschalter Achse 1 bis 9

Gruppen-Name, ID-Nr.	Nummer	Index	Bedeutung
Soll-Position im REF-System, 240	1	1	X-Achse
		2	Y-Achse
		3	Z-Achse
		4	A-Achse
		5	B-Achse
		6	C-Achse
		7	U-Achse
		8	V-Achse
		9	W-Achse
Soll-Position im Eingabe-System, 270	1	1	X-Achse
		2	Y-Achse
		3	Z-Achse
		4	A-Achse
		5	B-Achse
		6	C-Achse
		7	U-Achse
		8	V-Achse
		9	W-Achse
Status von M128, 280	1	-	0: M128 inaktiv, -1: M128 aktiv
	2	-	Vorschub, der mit M128 programmiert wurde
Schaltendes Tastsystem, 350	10	-	Tastsystem-Achse
	11	-	Wirksamer Kugelradius
	12	-	Wirksame Länge
	13	-	Radius Einstellring
	14	1	Mittenversatz Hauptachse
		2	Mittenversatz Nebenachse
	15	-	Richtung des Mittenversatzes gegenüber 0°-Stellung
Tischtastsystem TT 130	20	1	Mittelpunkt X-Achse (REF-System
		2	Mittelpunkt Y-Achse (REF-System)

Gruppen-Name, ID-Nr.	Nummer	Index	Bedeutung
		3	Mittelpunkt Z-Achse (REF-System)
	21	-	Teller-Radius
Messendes Tastsystem, 350	30	-	Kalibrierte Tasterlänge
	31	-	Tasterradius 1
	32	-	Tasterradius 2
	33	-	Durchmesser Einstellring
	34	1	Mittenversatz Hauptachse
		2	Mittenversatz Nebenachse
	35	1	Korrekturfaktor 1. Achse
		2	Korrekturfaktor 2. Achse
		3	Korrekturfaktor 3. Achse
	36	1	Kraftverhältnis 1. Achse
		2	Kraftverhältnis 2. Achse
		3	Kraftverhältnis 3. Achse
Letzter Antastpunkt TCH PROBE- Zyklus 0 oder letzter Antastpunkt aus Betriebsart Manuell, 360	1	1 bis 9	Position im aktiven Koordinaten-System Achse 1 bis 9
	2	1 bis 9	Position im REF-System Achse 1 bis 9
Wert aus der aktiven Nullpunkt- Tabelle im aktiven Koordinatensy- stem, 500	NP-Num- mer	1 bis 9	X-Achse bis W-Achse
REF-Wert aus der aktiven Nullpunkt- Tabelle, 501	NP-Num- mer	1 bis 9	X-Achse bis W-Achse
Nullpunkt-Tabelle angewählt, 505	1	-	Rückgabewert = 0: Keine Nullpunkt-Tabelle aktiv Rückgabewert = 1: Nullpunkt-Tabelle aktiv
Daten aus der aktiven Paletten- Tabelle, 510	1	-	Aktive Zeile
	2	-	Palettennummer aus Feld PAL/PGM
Maschinen-Parameter vorhanden, 1010	MP-Num- mer	MP-Index	Rückgabewert = 0: MP nicht vorhanden Rückgabewert = 1: MP vorhanden

Beispiel: Wert des aktiven Maßfaktors der Z-Achse an Q25 zuweisen

55 FN18: SYSREAD Q25 = ID210 NR4 IDX3

FN19: PLC: Werte an PLC übergeben

Mit der Funktion FN 19: PLC können Sie bis zu zwei Zahlenwerte oder Q-Parameter an die PLC übergeben.

Schrittweiten und Einheiten: 0,1 µm bzw. 0,0001°

Beispiel: Zahlenwert 10 (entspricht 1 μ m bzw. 0,001°) an PLC übergeben

56 FN19: PLC=+10/+03

FN20: WAIT FOR: NC und PLC synchronisieren

Diese Funktion dürfen Sie nur in Abstimmung mit Ihrem Maschinenhersteller verwenden!

Mit der Funktion FN 20: WAIT FOR können Sie während des Programmlaufs eine Synchronisation zwischen NC und PLC durchführen. Die NC stoppt das Abarbeiten, bis die Bedingung erfüllt ist, die Sie im FN 20-Satz programmiert haben. Die TNC kann dabei folgende PLC-Operanden überprüfen:

PLC- Operand	Kurz- bezeichnung	Adressbereich
Merker	М	0 bis 4999
Eingang	I	0 bis 31, 128 bis 152 64 bis 126 (erste PL 401 B) 192 bis 254 (zweite PL 401 B)
Ausgang	0	0 bis 30 32 bis 62 (erste PL 401 B) 64 bis 94 (zweite PL 401 B)
Zähler	С	48 bis 79
Timer	Т	0 bis 95
Byte	В	0 bis 4095
Wort	W	0 bis 2047
Doppelwort	D	2048 bis 4095

Im FN 20-Satz sind folgende Bedingungen erlaubt:

Bedingung	Kurzbezeichnung
Gleich	==

Bedingung	Kurzbezeichnung
Kleiner als	<
Größer als	>
Kleiner-Gleich	<=
Größer-Gleich	>=

Beispiel: Programmlauf anhalten, bis die PLC den Merker 4095 auf 1 setzt

32 FN20: WAIT FOR M4095==1

FN25: PRESET: Neuen Bezugspunkt setzen

Diese Funktion können Sie nur programmieren, wenn Sie die Schlüssel-Zahl 555343 eingegeben haben, siehe "Schlüssel-Zahl eingeben", Seite 425.

Mit der Funktion FN 25: PRESET können Sie während des Programmlaufs in einer wählbaren Achse einen neuen Bezugspunkt setzen.

- Q-Parameter-Funktion wählen: Taste Q drücken (im Feld für Zahlen-Eingabe, rechts). Die Softkey-Leiste zeigt die Q-Parameter-Funktionen
- ▶ Zusätzliche Funktionen wählen: Softkey SONDER-FUNKT. drücken
- ▶ FN25 wählen: Softkey-Leiste auf die zweite Ebene schalten, Softkey FN25 BEZUGSP. SETZEN drücken
- ▶ Achse?: Achse eingeben, in der Sie einen neuen Bezugspunkt setzen wollen, mit Taste ENT bestätigen
- ▶ Umzurechnender Wert?: Koordinate im aktiven Koordinatensystem eingeben, an der Sie den neuen Bezugspunkt setzen wollen
- ▶ Neuer Bezugspunkt?: Koordinate eingeben, die der umzurechnende Wert im neuen Koordinatensystem haben soll

Beispiel: Auf der aktuellen Koordinate X+100 neuen Bezugspunkt setzen

56 FN25: PRESET = X/+100/+0

Beispiel: Die aktuelle Koordinate Z+50 soll im neuen Koordinatensystem den Wert -20 haben

56 FN25: PRESET = Z/+50/-20

FN26: TABOPEN: Frei definierbare Tabelle öffnen

Mit der Funktion FN 26: TABOPEN öffnen Sie eine beliebige frei definierbare Tabelle, um diese Tabelle mit FN27 zu beschreiben, bzw. aus dieser Tabelle mit FN28 zu lesen.

In einem NC Programm kann immer nur eine Tabelle geöffnet sein. Ein neuer Satz mit TABOPEN schließt die zuletzt geöffnete Tabelle automatisch.

Die zu öffnende Tabelle muss den Nachnamen .TAB haben.

Beispiel: Tabelle TAB1.TAB öffnen, die im Verzeichnis TNC:\DIR1 gespeichert ist

56 FN26: TABOPEN TNC:\DIR1\TAB1.TAB

FN27: TABWRITE: Frei definierbare Tabelle beschreiben

Mit der Funktion FN 27: TABWRITE beschreiben Sie die Tabelle, die Sie zuvor mit FN 26 TABOPEN geöffnet haben.

Sie können bis zu 8 Spaltennamen in einem TABWRITE-Satz definieren, d.h. beschreiben. Die Spaltennamen müssen zwischen Hochkommas stehen und durch ein Komma getrennt sein. Den Wert, den die TNC in die jeweilige Spalte schreiben soll, definieren Sie in Q-Parametern.

Sie können nur numerische Tabellenfelder beschreiben.

Wenn Sie mehrere Spalten in einem Satz beschreiben wollen, müssen Sie die zu schreibenden Werte in aufeinanderfolgenden Q-Parameter-Nummern speichern

Beispiel:

In die Zeile 5 der momentan geöffneten Tabelle die Spalten Radius, Tiefe und D beschreiben. Die Werte, die in die Tabelle geschrieben werden sollen, müssen in den Q-Parametern Q5, Q6 und Q7 gespeichert sein

53 FNO: Q5 = 3,75

54 FNO: Q6 = -5

55 FNO: Q7 = 7,5

56 FN27: TABWRITE 5/"Radius, Tiefe, D" = Q5

FN28\: TABREAD: Frei definierbare Tabelle lesen

Mit der Funktion FN 28: TABREAD lesen Sie aus der Tabelle, die Sie zuvor mit FN 26 TABOPEN geöffnet haben.

Sie können bis zu 8 Spaltennamen in einem TABREAD-Satz definieren, d.h. lesen. Die Spaltennamen müssen zwischen Anführungszeichen stehen und durch ein Komma getrennt sein. Die Q-Parameter-Nummer, in die die TNC den ersten gelesenen Wert schreiben soll, definieren Sie im FN 28-Satz.

Sie können nur numerische Tabellenfelder lesen.

Wenn Sie mehrere Spalten in einem Satz lesen, dann speichert die TNC die gelesenen Werte in aufeinanderfolgenden Q-Parameter-Nummern.

Beispiel:

Aus der Zeile 6 der momentan geöffneten Tabelle die Werte der Spalten Radius, Tiefe und D lesen. Den ersten Wert im Q-Parametern Q10 speichern (zweiter Wert in Q11, dritter Wert in Q12).

56 FN28: TABREAD Q10 = 6/"Radius, Tiefe, D"

10.9 Formel direkt eingeben

Formel eingeben

Über Softkeys können Sie mathematische Formeln, die mehrere Rechenoperationen beinhalten, direkt ins Bearbeitungs-Programm eingeben.

Die Formeln erscheinen mit Druck auf den Softkey FORMEL. Die TNC zeigt folgende Softkeys in mehreren Leisten:

Verknüpfungs-Funktion	Softkey
Addition z.B. Q10 = Q1 + Q5	+
Subtraktion z.B. Q25 = Q7 - Q108	_
Multiplikation z.B. Q12 = 5 * Q5	*
Division z.B. Q25 = Q1 / Q2	/
Klammer auf z.B. Q12 = Q1 * (Q2 + Q3)	(
Klammer zu z.B. Q12 = Q1 * (Q2 + Q3))
Wert quadrieren (engl. square) z.B. Q15 = \$Q 5	SQ
Wurzel ziehen (engl. square root) z.B. Q22 = SQRT 25	SQRT
Sinus eines Winkels z.B. Q44 = SIN 45	SIN
Cosinus eines Winkels z.B. Q45 = C0S 45	cos
Tangens eines Winkels z.B. Q46 = TAN 45	TAN
Arcus-Sinus Umkehrfunktion des Sinus; Winkel bestimmen aus dem Verhältnis Gegenkathete/Hypotenuse z.B. Q10 = ASIN 0,75	ASIN
Arcus-Cosinus Umkehrfunktion des Cosinus; Winkel bestimmen aus dem Verhältnis Ankathete/Hypotenuse z.B. Q11 = ACOS Q40	ACOS

N 1 " 6 F 14	0.61
Verknüpfungs-Funktion	Softkey
Arcus-Tangens Umkehrfunktion des Tangens; Winkel bestimmen aus dem Verhältnis Gegenkathete/Ankathete z.B. Q12 = ATAN Q50	ATAN
Werte potenzieren z.B. Q15 = 3^3	^
Konstante PI (3,14159) z.B. Q15 = PI	PI
Logarithmus Naturalis (LN) einer Zahl bilden Basiszahl 2,7183 z.B. Q15 = LN Q11	LN
Logarithmus einer Zahl bilden, Basiszahl 10 z.B. Q33 = L0G Q22	LOG
Exponentialfunktion, 2,7183 hoch n z.B. Q1 = EXP Q12	EXP
Werte negieren (Multiplikation mit -1) z.B. Q2 = NEG Q1	NEG
Nachkomma-Stellen abschneiden Integer-Zahl bilden z.B. Q3 = INT Q42	INT
Absolutwert einer Zahl bilden z.B. Q4 = ABS Q22	ABS
Vorkomma-Stellen einer Zahl abschneiden Fraktionieren z.B. Q5 = FRAC Q23	FRAC

Rechenregeln

Für das Programmieren mathematischer Formeln gelten folgende Regeln:

Punkt- vor Strichrechnung

- **1.** Rechenschritt 5 * 3 = 15
- **2.** Rechenschritt 2 * 10 = 20
- **3.** Rechenschritt 15 + 20 = 35

oder

13 Q2 = SQ 10 - 3^3 = 73

- 1. Rechenschritt 10 quadrieren = 100
- 2. Rechenschritt 3 mit 3 potenzieren = 27
- **3.** Rechenschritt 100 27 = 73

Distributivgesetz

Gesetz der Verteilung beim Klammerrechnen

$$a * (b + c) = a * b + a * c$$

Eingabe-Beispiel

Winkel berechnen mit arctan aus Gegenkathete (Q12) und Ankathete (Q13); Ergebnis Q25 zuweisen:

Pormel-Eingabe wählen: Taste Q und Softkey FOR-MEL drücken

Parameter-Nr. für Ergebnis?

Parameter-Nummer eingeben

Softkey-Leiste weiterschalten und Arcus-Tangens-Funktion wählen

Softkey-Leiste weiterschalten und Klammer öffnen

Q-Parameter Nummer 12 eingeben

Division wählen

Q-Parameter Nummer 13 eingeben

Klammer schließen und Formel-Eingabe beenden

NC-Beispielsatz

37 Q25 = ATAN (Q12/Q13)

10.10 Vorbelegte Q-Parameter

Die Q-Parameter Q100 bis Q122 werden von der TNC mit Werten belegt. Den Q-Parametern werden zugewiesen:

- Werte aus der PLC
- Angaben zu Werkzeug und Spindel
- Angaben zum Betriebszustand usw.

Werte aus der PLC: Q100 bis Q107

Die TNC benutzt die Parameter Q100 bis Q107, um Werte aus der PLC in ein NC-Programm zu übernehmen.

Aktiver Werkzeug-Radius: Q108

Der aktive Wert des Werkzeug-Radius wird Q108 zugewiesen. Q108 setzt sich zusammen aus:

- Werkzeug-Radius R (Werkzeug-Tabelle oder TOOL DEF-Satz)
- Delta-Wert DR aus der Werkzeug-Tabelle
- Delta-Wert DR aus dem TOOL CALL-Satz

Werkzeugachse: Q109

Der Wert des Parameters Q109 hängt von der aktuellen Werkzeugachse ab:

Werkzeugachse	Parameter-Wert
Keine Werkzeugachse definiert	Q109 = -1
X-Achse	Q109 = 0
Y-Achse	Q109 = 1
Z-Achse	Q109 = 2
U-Achse	Q109 = 6
V-Achse	Q109 = 7
W-Achse	Q109 = 8

Spindelzustand: Q110

Der Wert des Parameters Q110 hängt von der zuletzt programmierten M-Funktion für die Spindel ab:

M-Funktion	Parameter-Wert
Kein Spindelzustand definiert	Q110 = -1
M03: Spindel EIN, Uhrzeigersinn	Q110 = 0

M-Funktion	Parameter-Wert	
M04: Spindel EIN, Gegenuhrzeigersinn	Q110 = 1	
M05 nach M03	Q110 = 2	
M05 nach M04	Q110 = 3	

Kühlmittelversorgung: Q111

M-Funktion	Parameter-Wert
M08: Kühlmittel EIN	Q111 = 1
M09: Kühlmittel AUS	Q111 = 0

Überlappungsfaktor: Q112

Die TNC weist Q112 den Überlappungsfaktor beim Taschenfräsen (MP7430) zu.

Maßangaben im Programm: Q113

Der Wert des Parameters Q113 hängt bei Verschachtelungen mit PGM CALL von den Maßangaben des Programms ab, das als erstes andere Programme ruft.

Maßangaben des Hauptprogramms	Parameter-Wert
Metrisches System (mm)	Q113 = 0
Zoll-System (inch)	Q113 = 1

Werkzeug-Länge: Q114

Der aktuelle Wert der Werkzeug-Länge wird Q114 zugewiesen.

Koordinaten nach Antasten während des Programmlaufs

Die Parameter Q115 bis Q119 enthalten nach einer programmierten Messung mit dem 3D-Tastsystem die Koordinaten der Spindelposition zum Antast-Zeitpunkt. Die Koordinaten beziehen sich auf den Bezugspunkt, der in der Betriebsart Manuell aktiv ist.

Die Länge des Taststifts und der Radius der Tastkugel werden für diese Koordinaten nicht berücksichtigt.

Koordinatenachse	Parameter-Wert
X-Achse	Q115
Y-Achse	Q116

Koordinatenachse	Parameter-Wert
Z-Achse	Q117
IV. Achse abhängig von MP100	Q118
V. Achse abhängig von MP100	Q119

Ist-Sollwert-Abweichung bei automatischer Werkzeug-Vermessung mit dem TT 130

Ist-Soll-Abweichung	Parameter-Wert
Werkzeug-Länge	Q115
Werkzeug-Radius	Q116

Schwenken der Bearbeitungsebene mit Werkstück-Winkeln: von der TNC berechnete Koordinaten für Drehachsen

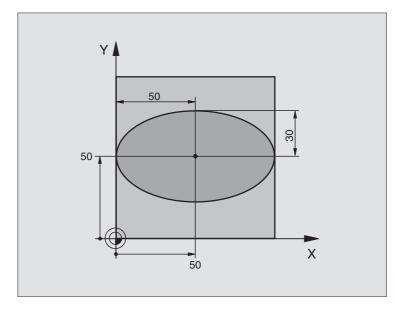
Koordinaten	Parameter-Wert
A-Achse	Q120
B-Achse	Q121
C-Achse	Q122

Messergebnisse von Tastsystem-Zyklen

(siehe auch Benutzer-Handbuch Tastsystem-Zyklen)

Gemessene Istwerte	Parameter-Wert
Winkel einer Geraden	Q150
Mitte in der Hauptachse	Q151
Mitte in der Nebenachse	Q152
Durchmesser	Q153
Taschenlänge	Q154
Taschenbreite	Q155
Länge in der im Zyklus gewählten Achse	Q156
Lage der Mittelachse	Q157
Winkel der A-Achse	Q158
Winkel der B-Achse	Q159
Koordinate der im Zyklus gewählten Achse	Q160

Ermittelte Abweichung	Parameter-Wert
Mitte in der Hauptachse	Q161
Mitte in der Nebenachse	Q162
Durchmesser	Q163
Taschenlänge	Q164
Taschenbreite	Q165
Gemessene Länge	Q166
Lage der Mittelachse	Q167

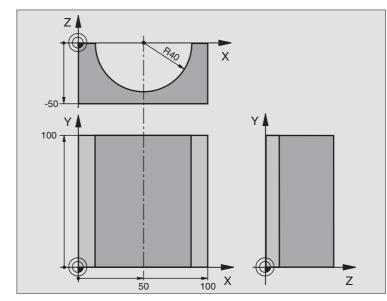

Ermittelte Raumwinkel	Parameter-Wert
Drehung um die A-Achse	Q170
Drehung um die B-Achse	Q171
Drehung um die C-Achse	Q172

Werkstück-Status	Parameter-Wert
Gut	Q180
Nacharbeit	Q181
Ausschuss	Q182
Gemessene Abweichung mit Zyklus 440	Parameter-Wert
X-Achse	Q185
Y-Achse	Q186
Z-Achse	Q187
Reserviert für interne Verwendung	Parameter-Wert
Merker für Zyklen (Bearbeitungsbilder)	Q197
Status Werkzeug-Vermessung mit TT	Parameter-Wert
Werkzeug innerhalb Toleranz	Q199 = 0.0
Werkzeug ist verschlissen (LTOL/RTOL überschritten)	Q199 = 1,0
Werkzeug ist gebrochen (LBREAK/RBREAK überschritten)	Q199 = 2,0

Beispiel: Ellipse

Programm-Ablauf

- Die Ellipsen-Kontur wird durch viele kleineGeradenstücke angenähert (über Q7 definierbar). Je mehr Berechnungsschritte definiert sind, desto glatter wird die Kontur
- Die Fräsrichtung bestimmen Sie über den Startund Endwinkel in der Ebene: Bearbeitungsrichtung im Uhrzeigersinn: Startwinkel > Endwinkel Bearbeitungsrichtung im Gegen-Uhrzeigersinn: Startwinkel < Endwinkel</p>
- Werkzeug-Radius wird nicht berücksichtigt

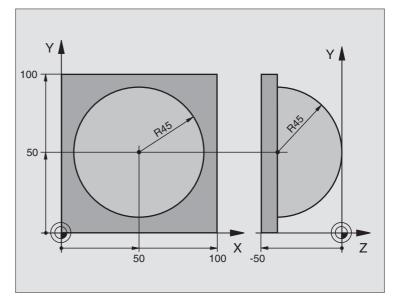

O BEGIN PGM ELLIPSE MM	
1 FN 0: Q1 = +50	Mitte X-Achse
2 FN 0: Q2 = +50	Mitte Y-Achse
3 FN 0: Q3 = +50	Halbachse X
4 FN 0: Q4 = +30	Halbachse Y
5 FN 0: Q5 = +0	Startwinkel in der Ebene
6 FN 0: Q6 = +360	Endwinkel in der Ebene
7 FN 0: Q7 = +40	Anzahl der Berechnungs-Schritte
8 FN 0: Q8 = +0	Drehlage der Ellipse
9 FN 0: Q9 = +5	Frästiefe
10 FN 0: Q10 = +100	Tiefenvorschub
11 FN 0: Q11 = +350	Fräsvorschub
12 FN 0: Q12 = +2	Sicherheits-Abstand für Vorpositionierung
13 BLK FORM 0.1 Z X+0 Y+0 Z-20	Rohteil-Definition
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+2,5	Werkzeug-Definition
16 TOOL CALL 1 Z S4000	Werkzeug-Aufruf
17 L Z+250 RO F MAX	Werkzeug freifahren
18 CALL LBL 10	Bearbeitung aufrufen
19 L Z+100 RO F MAX M2	Werkzeug freifahren, Programm-Ende

20 LBL 10	Unterprogramm 10: Bearbeitung
21 CYCL DEF 7.0 NULLPUNKT	Nullpunkt ins Zentrum der Ellipse verschieben
22 CYCL DEF 7.1 X+Q1	
23 CYCL DEF 7.2 Y+Q2	
24 CYCL DEF 10.0 DREHUNG	Drehlage in der Ebene verrechnen
25 CYCL DEF 10.1 ROT+Q8	
26 Q35 = (Q6 - Q5) / Q7	Winkelschritt berechnen
27 Q36 = Q5	Startwinkel kopieren
28 Q37 = 0	Schnittzähler setzen
29 Q21 = Q3 * COS Q36	X-Koordinate des Startpunkts berechnen
30 Q22 = Q4 * SIN Q36	Y-Koordinate des Startpunkts berechnen
31 L X+Q21 Y+Q22 RO F MAX M3	Startpunkt anfahren in der Ebene
32 L Z+Q12 RO F MAX	Vorpositionieren auf Sicherheits-Abstand in der Spindelachse
33 L Z-Q9 R0 FQ10	Auf Bearbeitungstiefe fahren
34 LBL 1	
35 Q36 = Q36 + Q35	Winkel aktualisieren
36 Q37 = Q37 + 1	Schnittzähler aktualisieren
37 Q21 = Q3 * COS Q36	Aktuelle X-Koordinate berechnen
38 Q22 = Q4 * SIN Q36	Aktuelle Y-Koordinate berechnen
39 L X+Q21 Y+Q22 R0 FQ11	Nächsten Punkt anfahren
40 FN 12: IF +Q37 LT +Q7 GOTO LBL 1	Abfrage ob unfertig, wenn ja dann Rücksprung zu LBL 1
41 CYCL DEF 10.0 DREHUNG	Drehung rücksetzen
42 CYCL DEF 10.1 ROT+0	
43 CYCL DEF 7.0 NULLPUNKT	Nullpunkt-Verschiebung rücksetzen
44 CYCL DEF 7.1 X+0	
45 CYCL DEF 7.2 Y+0	
46 L Z+Q12 RO F MAX	Auf Sicherheits-Abstand fahren
47 LBL 0	Unterprogramm-Ende
48 END PGM ELLIPSE MM	

Beispiel: Zylinder konkav mit Radiusfräser

Programm-Ablauf

- Programm funktioniert nur mit Radiusfräser, die Werkzeuglänge bezieht sich auf das Kugelzentrum
- Die Zylinder-Kontur wird durch viele kleineGeradenstücke angenähert (über Q13 definierbar). Je mehr Schnitte definiert sind, desto glatter wird die Kontur
- Der Zylinder wird in Längsschnitten (hier: Parallel zur Y-Achse) gefräst
- Die Fräsrichtung bestimmen Sie über den Startund Endwinkel im Raum: Bearbeitungsrichtung im Uhrzeigersinn: Startwinkel > Endwinkel Bearbeitungsrichtung im Gegen-Uhrzeigersinn: Startwinkel < Endwinkel</p>
- Werkzeug-Radius wird automatisch korrigiert


O BEGIN PGM ZYLIN MM	
1 FN 0: Q1 = +50	Mitte X-Achse
2 FN 0: Q2 = +0	Mitte Y-Achse
3 FN 0: Q3 = +0	Mitte Z-Achse
4 FN 0: Q4 = +90	Startwinkel Raum (Ebene Z/X)
5 FN 0: Q5 = +270	Endwinkel Raum (Ebene Z/X)
6 FN 0: Q6 = +40	Zylinderradius
7 FN 0: Q7 = +100	Länge des Zylinders
8 FN 0: Q8 = +0	Drehlage in der Ebene X/Y
9 FN 0: Q10 = +5	Aufmaß Zylinderradius
10 FN 0: Q11 = +250	Vorschub Tiefenzustellung
11 FN 0: Q12 = +400	Vorschub Fräsen
12 FN 0: Q13 = +90	Anzahl Schnitte
13 BLK FORM 0.1 Z X+0 Y+0 Z-50	Rohteil-Definition
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+3	Werkzeug-Definition
16 TOOL CALL 1 Z S4000	Werkzeug-Aufruf
17 L Z+250 RO F MAX	Werkzeug freifahren
18 CALL LBL 10	Bearbeitung aufrufen
19 FN 0: Q10 = +0	Aufmaß rücksetzen

20 CALL LBL 10	Bearbeitung aufrufen
21 L Z+100 RO F MAX M2	Werkzeug freifahren, Programm-Ende
22 LBL 10	Unterprogramm 10: Bearbeitung
23 Q16 = Q6 - Q10 - Q108	Aufmaß und Werkzeug bezogen auf Zylinder-Radius verrechnen
24 FN 0: Q20 = +1	Schnittzähler setzen
25 FN 0: Q24 = +Q4	Startwinkel Raum (Ebene Z/X) kopieren
26 Q25 = (Q5 - Q4) / Q13	Winkelschritt berechnen
27 CYCL DEF 7.0 NULLPUNKT	Nullpunkt in die Mitte des Zylinders (X-Achse) verschieben
28 CYCL DEF 7.1 X+Q1	
29 CYCL DEF 7.2 Y+Q2	
30 CYCL DEF 7.3 Z+Q3	
31 CYCL DEF 10.0 DREHUNG	Drehlage in der Ebene verrechnen
32 CYCL DEF 10.1 ROT+Q8	
33 L X+0 Y+0 R0 F MAX	Vorpositionieren in der Ebene in die Mitte des Zylinders
34 L Z+5 R0 F1000 M3	Vorpositionieren in der Spindelachse
35 LBL 1	
36 CC Z+0 X+0	Pol setzen in der Z/X-Ebene
37 LP PR+Q16 PA+Q24 FQ11	Startposition auf Zylinder anfahren, schräg ins Material eintauchend
38 L Y+Q7 R0 FQ12	Längsschnitt in Richtung Y+
39 FN 1: Q20 = +Q20 + +1	Schnittzähler aktualisieren
40 FN 1: Q24 = +Q24 + +Q25	Raumwinkel aktualisieren
41 FN 11: IF +Q20 GT +Q13 GOTO LBL 99	Abfrage ob bereits fertig, wenn ja, dann ans Ende springen
42 LP PR+Q16 PA+Q24 FQ11	Angenäherten "Bogen" fahren für nächsten Längsschnitt
43 L Y+0 R0 FQ12	Längsschnitt in Richtung Y-
44 FN 1: Q20 = +Q20 + +1	Schnittzähler aktualisieren
45 FN 1: Q24 = +Q24 + +Q25	Raumwinkel aktualisieren
46 FN 12: IF +Q20 LT +Q13 GOTO LBL 1	Abfrage ob unfertig, wenn ja dann Rücksprung zu LBL 1
47 LBL 99	
48 CYCL DEF 10.0 DREHUNG	Drehung rücksetzen
49 CYCL DEF 10.1 ROT+0	
50 CYCL DEF 7.0 NULLPUNKT	Nullpunkt-Verschiebung rücksetzen
51 CYCL DEF 7.1 X+0	
52 CYCL DEF 7.2 Y+0	
53 CYCL DEF 7.3 Z+0	
54 LBL 0	Unterprogramm-Ende
55 END PGM ZYLIN	

Beispiel: Kugel konvex mit Schaftfräser

Programm-Ablauf

- Programm funktioniert nur mit Schaftfräser
- Die Kugel-Kontur wird durch viele kleine Geradenstücke angenähert (Z/X-Ebene, über Q14 definierbar). Je kleiner der Winkelschritt definiert ist, desto glatter wird die Kontur
- Die Anzahl der Kontur-Schnitte bestimmen Sie durch den Winkelschritt in der Ebene (über Q18)
- Die Kugel wird im 3D-Schnitt von unten nach oben gefräst
- Werkzeug-Radius wird automatisch korrigiert

O BEGIN PGM KUGEL MM	
1 FN 0: Q1 = +50	Mitte X-Achse
2 FN 0: Q2 = +50	Mitte Y-Achse
3 FN 0: Q4 = +90	Startwinkel Raum (Ebene Z/X)
4 FN 0: Q5 = +0	Endwinkel Raum (Ebene Z/X)
5 FN 0: Q14 = +5	Winkelschritt im Raum
6 FN 0: Q6 = +45	Kugelradius
7 FN 0: Q8 = +0	Startwinkel Drehlage in der Ebene X/Y
8 FN 0: Q9 = +360	Endwinkel Drehlage in der Ebene X/Y
9 FN 0: Q18 = +10	Winkelschritt in der Ebene X/Y fürs Schruppen
10 FN 0: Q10 = +5	Aufmaß Kugelradius fürs Schruppen
11 FN 0: Q11 = +2	Sicherheits-Abstand für Vorpositionierung in der Spindelachse
12 FN 0: Q12 = +350	Vorschub Fräsen
13 BLK FORM 0.1 Z X+0 Y+0 Z-50	Rohteil-Definition
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+7,5	Werkzeug-Definition
16 TOOL CALL 1 Z S4000	Werkzeug-Aufruf
17 L Z+250 RO F MAX	Werkzeug freifahren

18	CALL LBL 10	Bearbeitung aufrufen
19	FN 0: Q10 = +0	Aufmaß rücksetzen
20	FN 0: Q18 = +5	Winkelschritt in der Ebene X/Y fürs Schlichten
21	CALL LBL 10	Bearbeitung aufrufen
22	L Z+100 R0 F MAX M2	Werkzeug freifahren, Programm-Ende
23	LBL 10	Unterprogramm 10: Bearbeitung
24	FN 1: Q23 = +Q11 + +Q6	Z-Koordinate für Vorpositionierung berechnen
25	FN 0: Q24 = +Q4	Startwinkel Raum (Ebene Z/X) kopieren
26	FN 1: Q26 = +Q6 + +Q108	Kugelradius korrigieren für Vorpositionierung
27	FN 0: Q28 = +Q8	Drehlage in der Ebene kopieren
28	FN 1: Q16 = +Q6 + -Q10	Aufmaß berücksichtigen beim Kugelradius
29	CYCL DEF 7.0 NULLPUNKT	Nullpunkt ins Zentrum der Kugel verschieben
30	CYCL DEF 7.1 X+Q1	
31	CYCL DEF 7.2 Y+Q2	
32	CYCL DEF 7.3 Z-Q16	
33	CYCL DEF 10.0 DREHUNG	Startwinkel Drehlage in der Ebene verrechnen
34	CYCL DEF 10.1 ROT+Q8	
35	CC X+0 Y+0	Pol setzen in der X/Y-Ebene für Vorpositionierung
36	LP PR+Q26 PA+Q8 RO FQ12	Vorpositionieren in der Ebene
37	LBL 1	Vorpositionieren in der Spindelachse
38	CC Z+0 X+Q108	Pol setzen in der Z/X-Ebene, um Werkzeug-Radius versetzt
39	L Y+0 Z+0 FQ12	Fahren auf Tiefe

40 LBL 2		
	A "I - D " - I - I - I - I	
41 LP PR+Q6 PA+Q24 RO FQ12	Angenäherten "Bogen" nach oben fahren	
42 FN 2: Q24 = +Q24 - +Q14	Raumwinkel aktualisieren	
43 FN 11: IF +Q24 GT +Q5 G0T0 LBL 2	Abfrage ob ein Bogen fertig, wenn nicht, dann zurück zu LBL 2	
44 LP PR+Q6 PA+Q5	Endwinkel im Raum anfahren	
45 L Z+Q23 RO F1000	In der Spindelachse freifahren	
46 L X+Q26 RO F MAX	Vorpositionieren für nächsten Bogen	
47 FN 1: Q28 = +Q28 + +Q18	Drehlage in der Ebene aktualisieren	
48 FN 0: Q24 = +Q4	Raumwinkel rücksetzen	
49 CYCL DEF 10.0 DREHUNG	Neue Drehlage aktivieren	
50 CYCL DEF 10.1 ROT+Q28		
51 FN 12: IF +Q28 LT +Q9 G0T0 LBL 1		
52 FN 9: IF +Q28 EQU +Q9 GOTO LBL 1	Abfrage ob unfertig, wenn ja, dann Rücksprung zu LBL 1	
53 CYCL DEF 10.0 DREHUNG	Drehung rücksetzen	
54 CYCL DEF 10.1 ROT+0		
55 CYCL DEF 7.0 NULLPUNKT	Nullpunkt-Verschiebung rücksetzen	
56 CYCL DEF 7.1 X+0		
57 CYCL DEF 7.2 Y+0		
58 CYCL DEF 7.3 Z+0		
59 LBL 0	Unterprogramm-Ende	
60 END PGM KUGEL MM		

Programm-Test und Programmlauf

11.1 Grafiken

Anwendung

In den Programmlauf-Betriebsarten und der Betriebsart Programm-Test simuliert die TNC eine Bearbeitung grafisch. Über Softkeys wählen sie, ob als

- Draufsicht
- Darstellung in 3 Ebenen
- 3D-Darstellung

Die TNC-Grafik entspricht der Darstellung eines Werkstücks, das mit einem zylinderförmigen Werkzeug bearbeitet wird. Bei aktiver Werkzeug-Tabelle können Sie die Bearbeitung mit einem Radiusfräser darstellen lassen. Geben Sie dazu in der Werkzeug-Tabelle R2 = R ein.

Die TNC zeigt keine Grafik, wenn

- das aktuelle Programm keine gültige Rohteil-Definition enthält
- kein Programm angewählt ist

Über die Maschinen-Parameter 7315 bis 7317 können Sie einstellen, dass die TNC auch dann eine Grafik anzeigt, wenn Sie keine Spindelachse definiert haben oder verfahren.

Die grafische Simulation können Sie nicht für Programmteile bzw. Programme mit Drehachsen-Bewegungen oder geschwenkter Bearbeitungsebene nutzen: In diesen Fällen gibt die TNC eine Fehlermeldung aus.

Die TNC stellt ein im TOOL CALL-Satz programmiertes Radius-Aufmaß DR nicht in der Grafik dar.

Die TNC kann die Grafik nur dann darstellen, wenn das Verhältnis kürzeste: längste Seite der **BLK FORM** kleiner als 1:64 ist.

Übersicht: Ansichten

In den Programmlauf-Betriebsarten und in der Betriebsart Programm-Test zeigt die TNC folgende Softkeys:

Ansicht	Softkey
Draufsicht	
Darstellung in 3 Ebenen	
3D-Darstellung	

Einschränkung während des Programmlaufs

Die Bearbeitung lässt sich nicht gleichzeitig grafisch darstellen, wenn der Rechner der TNC durch komplizierte Bearbeitungsaufgaben oder großflächige Bearbeitungen bereits ausgelastet ist. Beispiel: Abzeilen über das ganze Rohteil mit großem Werkzeug. Die TNC führt die Grafik nicht mehr fort und blendet den Text **ERROR** im Grafik-Fenster ein. Die Bearbeitung wird jedoch weiter ausgeführt.

Draufsicht

Draufsicht mit Softkey wählen

Anzahl der Tiefenniveaus mit Softkey wählen (Leiste umschalten): Umschalten zwischen 16 oder 32 Tiefenniveaus; für die Tiefendarstellung dieser Grafik gilt:

"Je tiefer, desto dunkler"

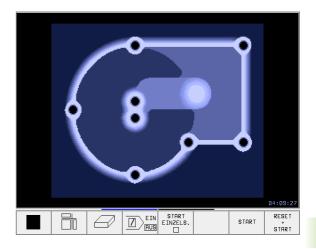
Diese grafische Simulation läuft am schnellsten ab.

Darstellung in 3 Ebenen

Die Darstellung zeigt eine Draufsicht mit 2 Schnitten, ähnlich einer technischen Zeichnung. Ein Symbol links unter der Grafik gibt an, ob die Darstellung der Projektionsmethode 1 oder der Projektionsmethode 2 nach DIN 6, Teil 1 entspricht (über MP7310 wählbar).

Bei der Darstellung in 3 Ebenen stehen Funktionen zur Ausschnitts-Vergrößerung zur Verfügung, siehe "Ausschnitts-Vergrößerung", Seite 406.

Zusätzlich können Sie die Schnittebene über Softkeys verschieben:


- ▶ Darstellung in 3 Ebenen mit Softkey wählen
- Schalten Sie die Softkey-Leiste um, bis die TNC folgende Softkeys zeigt:

Funktion	Softkeys
Vertikale Schnittebene nach rechts oder links verschieben	ф ф
Horizontale Schnittebene nach oben oder unten verschieben	† □ ±□

Die Lage der Schnittebene ist während des Verschiebens am Bildschirm sichtbar.

Koordinaten der Schnittlinie

Die TNC blendet die Koordinaten der Schnittlinie, bezogen auf den Werkstück-Nullpunkt unten im Grafik-Fenster ein. Angezeigt werden nur Koordinaten in der Bearbeitungsebene. Diese Funktion aktivieren Sie mit Maschinen-Parameter 7310.

3D-Darstellung

Die TNC zeigt das Werkstück räumlich.

Die 3D-Darstellung können Sie um die vertikale Achse drehen. Die Umrisse des Rohteils zu Beginn der grafischen Simulation können Sie als Rahmen anzeigen lassen.

In der Betriebsart Programm-Test stehen Funktionen zur Ausschnitts-Vergrößerung zur Verfügung, siehe "Ausschnitts-Vergrößerung", Seite 406.

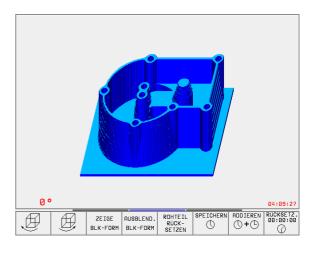
▶ 3D-Darstellung mit Softkey wählen

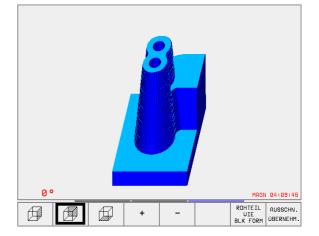
3D-Darstellung drehen

Softkey-Leiste umschalten, bis folgende Softkeys erscheinen:

Funktion	Softkeys
Darstellung in 27°-Schritten vertikal drehen	

Rahmen für die Umrisse des Rohteils ein- und ausblenden


- ▶ Rahmen einblenden: Softkey ZEIGE BLK-FORM
- Rahmen ausblenden: Softkey AUSBLEND. BLK-FORM



Den Ausschnitt können Sie in der Betriebsart Programm-Test ändern, für

- Darstellung in 3 Ebenen und die
- 3D-Darstellung

Dafür muss die grafische Simulation gestoppt sein. Eine Ausschnitts-Vergrößerung ist immer in allen Darstellungsarten wirksam.

Softkey-Leiste in der Betriebsart Programm-Test umschalten, bis folgende Softkeys erscheinen:

Funktion	Softkeys
Linke/rechte Werkstückseite wählen	
Vordere/hintere Werkstückseite wählen	
Obere/untere Werkstückseite wählen	
Schnittfläche zum Verkleinern oder Vergrößern des Rohteils verschieben	- +
Ausschnitt übernehmen	AUSSCHN. ÜBERNEHM.

Ausschnitts-Vergrößerung ändern

Softkeys siehe Tabelle

- Falls nötig, grafische Simulation stoppen
- ► Werkstückseite mit Softkey (Tabelle) wählen
- ▶ Rohteil verkleinern oder vergrößern: Softkey "–" bzw. "+" gedrückt halten
- ▶ Programm-Test oder Programmlauf neu starten mit Softkey START (RESET + START stellt das ursprüngliche Rohteil wieder her)

Cursor-Position bei der Ausschnitts-Vergrößerung

Die TNC zeigt während einer Ausschnitts-Vergrößerung die Koordinaten der Achse an, die Sie gerade beschneiden. Die Koordinaten entsprechen dem Bereich, der für die Ausschnitts-Vergrößerung festgelegt ist. Links vom Schrägstrich zeigt die TNC die kleinste Koordinate des Bereichs (MIN-Punkt), rechts davon die größte (MAX-Punkt).

Bei einer vergrößerten Abbildung blendet die TNC unten rechts am Bildschirm **MAGN** ein.

Wenn die TNC das Rohteil nicht weiter verkleinern bzw. vergrößern kann, blendet die Steuerung eine entsprechende Fehlermeldung ins Grafik-Fenster ein. Um die Fehlermeldung zu beseitigen, vergrößern bzw. verkleinern Sie das Rohteil wieder.

407

Grafische Simulation wiederholen

Ein Bearbeitungs-Programm lässt sich beliebig oft grafisch simulieren. Dafür können Sie die Grafik wieder auf das Rohteil oder einen vergrößerten Ausschnitt aus dem Rohteil zurücksetzen.

Funktion	Softkey
Unbearbeitetes Rohteil in der zuletzt gewählten Ausschnitts-Vergrößerung anzeigen	ROHTEIL RÜCK- SETZEN
Ausschnitts-Vergrößerung zurücksetzen, so dass die TNC das bearbeitete oder unbearbeitete Werkstück gemäß programmierter BLK-Form anzeigt	ROHTEIL WIE BLK FORM

Mit dem Softkey ROHTEIL WIE BLK FORM zeigt die TNC – auch nach einem Ausschnitt ohne AUSSCHN. ÜBER-NEHM. – das Rohteil wieder in programmierter Größe an.

Bearbeitungszeit ermitteln

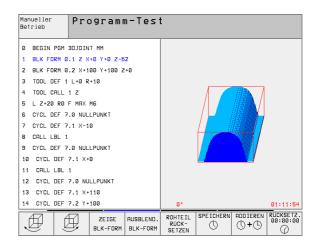
Programmlauf-Betriebsarten

Anzeige der Zeit vom Programm-Start bis zum Programm-Ende. Bei Unterbrechungen wird die Zeit angehalten.

Programm-Test

Anzeige der ungefähren Zeit, die die TNC für die Dauer der Werkzeug-Bewegungen, die mit Vorschub ausgeführt werden, errechnet. Die von der TNC ermittelte Zeit eignet sich nicht zur Kalkulation der Fertigungszeit, da die TNC keine maschinenabhängigen Zeiten (z.B. für Werkzeug-Wechsel) berücksichtigt.

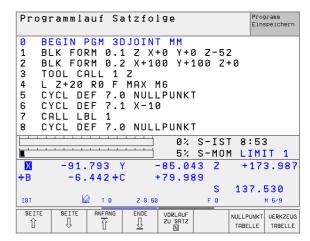
Stoppuhr-Funktion anwählen


Softkey-Leiste umschalten, bis die TNC folgende Softkeys mit den Stoppuhr-Funktionen zeigt:

Stoppuhr-Funktionen	Softkey
Angezeigte Zeit speichern	SPEICHERN
Summe aus gespeicherter und angezeigter Zeit anzeigen	ADDIEREN + D
Angezeigte Zeit löschen	RÜCKSETZ. 00:00:00

Die Softkeys links von den Stoppuhr-Funktionen hängen von der gewählten Bildschirm-Aufteilung ab.

Die Zeit wird mit Eingabe einer neuen BLK-Form zurückgesetzt.



11.2 Funktionen zur **Programmanzeige**

Übersicht

In den Programmlauf-Betriebsarten und der Betriebsart Programm-Test zeigt die TNC Softkeys, mit denen Sie das Bearbeitungs-Programm seitenweise anzeigen lassen können:

Funktionen	Softkey
Im Programm um eine Bildschirm-Seite zurückblättern	SEITE Î
Im Programm um eine Bildschirm-Seite vorblättern	SEITE
Programm-Anfang wählen	ANFANG
Programm-Ende wählen	ENDE

HEIDENHAIN TNC 426, TNC 430

11.3 Programm-Test

Anwendung

In der Betriebsart Programm-Test simulieren Sie den Ablauf von Programmen und Programmteilen, um Fehler im Programmlauf auszuschließen. Die TNC unterstützt Sie beim Auffinden von

- geometrischen Unverträglichkeiten
- fehlenden Angaben
- nicht ausführbaren Sprüngen
- Verletzungen des Arbeitsraums

Zusätzlich können Sie folgende Funktionen nutzen:

- Programm-Test satzweise
- Testabbruch bei beliebigem Satz
- Sätze überspringen
- Funktionen für die grafische Darstellung
- Bearbeitungszeit ermitteln
- Zusätzliche Status-Anzeige

Programm-Test ausführen

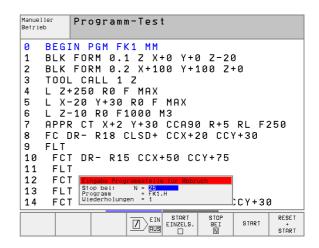
Bei aktivem zentralen Werkzeug-Speicher müssen Sie für den Programm-Test eine Werkzeug-Tabelle aktiviert haben (Status S). Wählen Sie dazu in der Betriebsart Programm-Test über die Datei-Verwaltung (PGM MGT) eine Werkzeug-Tabelle aus.

Mit der MOD-Funktion ROHTEIL IM ARB.-RAUM aktivieren Sie für den Programm-Test eine Arbeitsraum-Überwachung, siehe "Rohteil im Arbeitsraum darstellen", Seite 439.

- ▶ Betriebsart Programm-Test wählen
- Datei-Verwaltung mit Taste PGM MGT anzeigen und Datei wählen, die Sie testen möchten oder
- ▶ Programm-Anfang wählen: Mit Taste GOTO Zeile "0" wählen und Eingabe mit Taste ENT bestätigen

Die TNC zeigt folgende Softkeys:

Funktionen	Softkey
Gesamtes Programm testen	START
Jeden Programm-Satz einzeln testen	START EINZELS.
Rohteil abbilden und gesamtes Programm testen	RESET + START
Programm-Test anhalten	STOP


Programm-Test bis zu einem bestimmten Satz ausführen

Mit STOP BEI N führt die TNC den Programm-Test nur bis zum Satz mit der Satz-Nummer N durch.

- ▶ In der Betriebsart Programm-Test den Programm-Anfang wählen
- Programm-Test bis zu bestimmtem Satz wählen: Softkey STOP BEI N drücken

- ▶ Stop bei N: Satz-Nummer eingeben, bei der der Programm-Test gestoppt werden soll
- ▶ Programm: Name des Programms eingeben, in dem der Satz mit der gewählten Satz-Nummer steht; die TNC zeigt den Namen des gewählten Programms an; wenn der Programm-Stop in einem mit PGM CALL aufgerufenen Programm stattfinden soll, dann diesen Namen eintragen
- ▶ Wiederholungen: Anzahl der Wiederholungen eingeben, die durchgeführt werden sollen, falls N innerhalb einer Programmteil-Wiederholung steht
- Programm-Abschnitt testen: Softkey START drücken; die TNC testet das Programm bis zum eingegebenen Satz

i

11.4 Programmlauf

Anwendung

In der Betriebsart Programmlauf Satzfolge führt die TNC ein Bearbeitungs-Programm kontinuierlich bis zum Programm-Ende oder bis zu einer Unterbrechung aus.

In der Betriebsart Programmlauf Einzelsatz führt die TNC jeden Satz nach Drücken der externen START-Taste einzeln aus.

Die folgenden TNC-Funktionen können Sie in den Programmlauf-Betriebsarten nutzen:

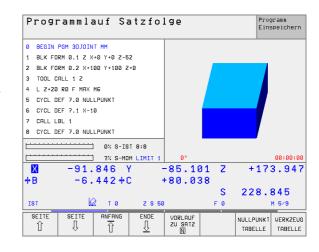
- Programmlauf unterbrechen
- Programmlauf ab bestimmtem Satz
- Sätze überspringen
- Werkzeug-Tabelle TOOL.T editieren
- Q-Parameter kontrollieren und ändern
- Handrad-Positionierung überlagern
- Funktionen für die grafische Darstellung
- Zusätzliche Status-Anzeige

Bearbeitungs-Programm ausführen

Vorbereitung

- 1 Werkstück auf dem Maschinentisch aufspannen
- 2 Bezugspunkt setzen
- **3** Benötigte Tabellen und Paletten–Dateien wählen (Status M)
- 4 Bearbeitungs-Programm wählen (Status M)

Vorschub und Spindeldrehzahl können Sie mit den Override-Drehknöpfen ändern.


Über den Softkey FMAX können Sie die Eilgang-Geschwindigkeit reduzieren, wenn Sie das NC-Programm einfahren wollen. Der eingegebene Wert ist auch nach dem Aus-/Einschalten der Maschine aktiv. Um die ursprüngliche Eilgang-Geschwindigkeit wiederherzustellen, müssen Sie den entsprechenden Zahlenwert wieder eingeben.

Programmlauf Satzfolge

▶ Bearbeitungs-Programm mit externer START-Taste starten

Programmlauf Einzelsatz

▶ Jeden Satz des Bearbeitungs-Programms mit der externen START-Taste einzeln starten

Bearbeitung unterbrechen

Sie haben verschiedene Möglichkeiten, einen Programmlauf zu unterbrechen:

- Programmierte Unterbrechungen
- Externe STOP-Taste
- Umschalten auf Programmlauf Einzelsatz

Registriert die TNC während eines Programmlaufs einen Fehler, so unterbricht sie die Bearbeitung automatisch.

Programmierte Unterbrechungen

Unterbrechungen können Sie direkt im Bearbeitungs-Programm festlegen. Die TNC unterbricht den Programmlauf, sobald das Bearbeitungs-Programm bis zu dem Satz ausgeführt ist, der eine der folgenden Eingaben enthält:

- STOP (mit und ohne Zusatzfunktion)
- Zusatzfunktion M0, M2 oder M30
- Zusatzfunktion M6 (wird vom Maschinenhersteller festgelegt)

Unterbrechung durch externe STOP-Taste

- ▶ Externe STOP-Taste drücken: Der Satz, den die TNC zum Zeitpunkt des Tastendrucks abarbeitet, wird nicht vollständig ausgeführt; in der Status-Anzeige blinkt das "*"-Symbol
- ▶ Wenn Sie die Bearbeitung nicht fortführen wollen, dann die TNC mit dem Softkey INTERNER STOP zurücksetzen: das "*"-Symbol in der Status-Anzeige erlischt. Programm in diesem Fall vom Programm-Anfang aus erneut starten

Bearbeitung unterbrechen durch Umschalten auf Betriebsart Programmlauf Einzelsatz

Während ein Bearbeitungs-Programm in der Betriebsart Programmlauf Satzfolge abgearbeitet wird, Programmlauf Einzelsatz wählen. Die TNC unterbricht die Bearbeitung, nachdem der aktuelle Bearbeitungsschritt ausgeführt wurde.

i

Maschinenachsen während einer Unterbrechung verfahren

Sie können die Maschinenachsen während einer Unterbrechung wie in der Betriebsart Manueller Betrieb verfahren.

Kollisionsgefahr!

Wenn sie bei geschwenkter Bearbeitungsebene den Programmlauf unterbrechen, können Sie mit dem Softkey 3D EIN/AUS das Koordinatensystem zwischen geschwenkt und ungeschwenkt umschalten.

Die Funktion der Achsrichtungstasten, des Handrads und der Wiederanfahrlogik werden dann von der TNC entsprechend ausgewertet. Achten Sie beim Freifahren darauf, dass das richtige Koordinatensystem aktiv ist, und die Winkelwerte der Drehachsen im 3D-ROT-Menü eingetragen sind.

Anwendungsbeispiel: Freifahren der Spindel nach Werkzeugbruch

- ▶ Bearbeitung unterbrechen
- Externe Richtungstasten freigeben: Softkey MANUEL VERFAHREN drücken
- Maschinenachsen mit externen Richtungstasten verfahren

Bei einigen Maschinen müssen Sie nach dem Softkey MANUEL VERFAHREN die externe START-Taste zur Freigabe der externen Richtungstasten drücken. Beachten Sie Ihr Maschinenhandbuch.

Programmlauf nach einer Unterbrechung fortsetzen

Wenn Sie den Programmlauf während eines Bearbeitungszyklus unterbrechen, müssen Sie beim Wiedereinstieg mit dem Zyklusanfang fortfahren. Bereits ausgeführte Bearbeitungsschritte muss die TNC dann erneut abfahren.

Wenn Sie den Programmlauf innerhalb einer Programmteil-Wiederholung oder innerhalb eines Unterprogramms unterbrechen, müssen Sie mit der Funktion VORLAUF ZU SATZ N die Unterbrechungsstelle wieder anfahren.

Die TNC speichert bei einer Programmlauf-Unterbrechung

- die Daten des zuletzt aufgerufenen Werkzeugs
- aktive Koordinaten-Umrechnungen (z.B. Nullpunkt-Verschiebung, Drehung, Spiegelung)
- die Koordinaten des zuletzt definierten Kreismittelpunkts

Beachten Sie, dass die gespeicherten Daten solange aktiv bleiben, bis Sie sie zurücksetzen (z.B. indem Sie ein neues Programm anwählen).

Die gespeicherten Daten werden für das Wiederanfahren an die Kontur nach manuellem Verfahren der Maschinenachsen während einer Unterbrechung (Softkey POSITION ANFAHREN) genutzt.

Programmlauf mit START-Taste fortsetzen

Nach einer Unterbrechung können Sie den Programmlauf mit der externen START-Taste fortsetzen, wenn Sie das Programm auf folgende Art angehalten haben:

- Externe STOP-Taste gedrückt
- Programmierte Unterbrechung

Programmlauf nach einem Fehler fortsetzen

Bei nichtblinkender Fehlermeldung:

- ► Fehlerursache beseitigen
- ▶ Fehlermeldung am Bildschirm löschen: Taste CE drücken
- Neustart oder Programmlauf fortsetzen an der Stelle, an der unterbrochen wurde

Bei blinkender Fehlermeldung:

- ▶ Taste END zwei Sekunden gedrückt halten, TNC führt einen Warmstart aus
- ► Fehlerursache beseitigen
- ▶ Neustart

Bei wiederholtem Auftreten des Fehlers notieren Sie bitte die Fehlermeldung und benachrichtigen den Kundendienst.

Beliebiger Einstieg ins Programm (Satzvorlauf)

Die Funktion VORLAUF ZU SATZ N muss vom Maschinenhersteller freigegeben und angepasst werden. Beachten Sie Ihr Maschinenhandbuch.

Mit der Funktion VORLAUF ZU SATZ N (Satzvorlauf) können Sie ein Bearbeitungs-Programm ab einem frei wählbaren Satz N abarbeiten. Die Werkstück-Bearbeitung bis zu diesem Satz wird von der TNC rechnerisch berücksichtigt. Sie kann von der TNC grafisch dargestellt werden.

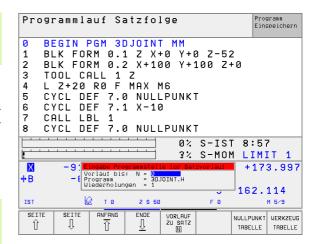
Wenn Sie ein Programm mit einem INTERNEN STOP abgebrochen haben, dann bietet die TNC automatisch den Satz N zum Einstieg an, in dem Sie das Programm abgebrochen haben.

Der Satzvorlauf darf nicht in einem Unterprogramm beginnen

Alle benötigten Programme, Tabellen und Paletten-Dateien müssen in einer Programmlauf-Betriebsart angewählt sein (Status M).

Enthält das Programm bis zum Ende des Satzvorlaufs eine programmierte Unterbrechung, wird dort der Satzvorlauf unterbrochen. Um den Satzvorlauf fortzusetzen, die externe START-Taste drücken.

Nach einem Satzvorlauf wird das Werkzeug mit der Funktion POSITION ANFAHREN auf die ermittelte Position gefahren.


Über Maschinen-Parameter 7680 wird festgelegt, ob der Satzvorlauf bei verschachtelten Programmen im Satz 0 des Hauptprogramms oder im Satz 0 des Programms beginnt, in dem der Programmlauf zuletzt unterbrochen wurde.

Mit dem Softkey 3D EIN/AUS legen Sie fest, ob die TNC bei geschwenkter Bearbeitungsebene im geschwenkten oder ungeschwenkten System anfahren soll.

Die Funktion M128 ist bei einem Satzvorlauf nicht erlaubt.

Wenn Sie den Satzvorlauf innerhalb einer Paletten-Tabelle einsetzen wollen, dann wählen Sie zunächst mit den Pfeiltasten in der Paletten-Tabelle das Programm, in das Sie einsteigen wollen und wählen dann direkt den Softkey VORLAUF ZU SATZ N.

Alle Tastsystemzyklen und der Zyklus 247 werden bei einem Satzvorlauf von der TNC übersprungen. Ergebnisparameter, die von diesen Zyklen beschrieben werden, enthalten dann ggf. keine Werte.

▶ Ersten Satz des aktuellen Programms als Beginn für Vorlauf wählen: GOTO "0" eingeben.

- Satzvorlauf wählen: Softkey VORLAUF ZU SATZ N drücken
- ▶ Vorlauf bis N: Nummer N des Satzes eingeben, bei dem der Vorlauf enden soll
- Programm: Namen des Programms eingeben, in dem der Satz N steht
- Wiederholungen: Anzahl der Wiederholungen eingeben, die im Satz-Vorlauf berücksichtigt werden sollen, falls Satz N innerhalb einer Programmteil-Wiederholung steht
- ▶ Satzvorlauf starten: Externe START-Taste drücken
- ▶ Kontur anfahren: siehe "Wiederanfahren an die Kontur", Seite 417

Wiederanfahren an die Kontur

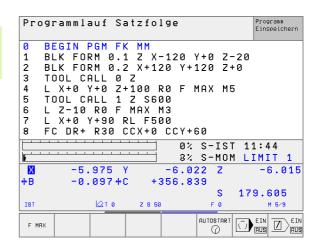
Mit der Funktion POSITION ANFAHREN fährt die TNC das Werkzeug in folgenden Situationen an die Werkstück-Kontur:

- Wiederanfahren nach dem Verfahren der Maschinenachsen während einer Unterbrechung, die ohne INTERNER STOP ausgeführt wurde
- Wiederanfahren nach einem Vorlauf mit VORLAUF ZU SATZ N, z.B. nach einer Unterbrechung mit INTERNER STOP
- Wenn sich die Position einer Achse nach dem Öffnen des Regelkreises während einer Programm-Unterbrechung verändert hat (maschinenabhängig)
- Wiederanfahren an die Kontur wählen: Softkey POSITION ANFAH-REN wählen
- Achsen in der Reihenfolge verfahren, die die TNC am Bildschirm vorschlägt: Externe START-Taste drücken oder
- Achsen in beliebiger Reihenfolge verfahren: Softkeys ANFAHREN X, ANFAHREN Z usw. drücken und jeweils mit externer START-Taste aktivieren
- ▶ Bearbeitung fortsetzen: Externe START-Taste drücken

i

11.5 Automatischer Programmstart

Anwendung



Um einen automatischen Programmstart durchführen zu können, muss die TNC von Ihrem Maschinen-Hersteller vorbereitet sein, Maschinen-Handbuch beachten.

Über den Softkey AUTOSTART (siehe Bild rechts oben), können Sie in einer Programmlauf-Betriebsart zu einem eingebbaren Zeitpunkt das in der jeweiligen Betriebsart aktive Programm starten:

- ► Fenster zur Festlegung des Startzeitpunktes einblenden (siehe Bild rechts MItte)
- ▶ Zeit (Std:Min:Sek): Uhrzeit, zu der das Programm gestartet werden soll
- ▶ Datum (TT.MM.JJJJ): Datum, an dem das Programm gestartet werden soll
- Um den Start zu aktivieren: Softkey AUTOSTART auf EIN stellen


```
Automatischer Programmstart
Uhrzeit: 03.08.1999 11:24:03
Programm starten um:
Zeit (Std:Min:Sek): 22:00:00
Datum (TT.MM.JJJJ): 03.08.1999
Inaktiv
```


11.6 Sätze überspringen

Anwendung

Sätze, die Sie beim Programmieren mit einem "/"-Zeichen gekennzeichnet haben, können Sie beim Programm-Test oder Programmlauf überspringen lassen:

▶ Programm-Sätze mit "/"-Zeichen nicht ausführen oder testen: Softkey auf EIN stellen

▶ Programm-Sätze mit "/"-Zeichen ausführen oder testen: Softkey auf AUS stellen

Diese Funktion wirkt nicht für TOOL DEF-Sätze.

Die zuletzt gewählte Einstellung bleibt auch nach einer Stromunterbrechung erhalten.

11.7 Wahlweiser Programmlauf-Halt

Anwendung

Die TNC unterbricht wahlweise den Programmlauf oder den Programm-Test bei Sätzen in denen ein M01 programmiert ist. Wenn Sie M01 in der Betriebsart Programmlauf verwenden, dann schaltet die TNC die Spindel und das Kühlmittel nicht ab.

▶ Programmlauf oder Programm-Test bei Sätzen mit M01 nicht unterbrechen: Softkey auf AUS stellen

▶ Programmlauf oder Programm-Test bei Sätzen mit M01 unterbrechen: Softkey auf EIN stellen

12

12.1 MOD-Funktion wählen

Über die MOD-Funktionen können Sie zusätzliche Anzeigen und Eingabemöglichkeiten wählen. Welche MOD-Funktionen zur Verfügung stehen, hängt von der gewählten Betriebsart ab.

MOD-Funktionen wählen

Betriebsart wählen, in der Sie MOD-Funktionen ändern möchten.

▶ MOD-Funktionen wählen: Taste MOD drücken. Die Bilder rechts zeigen typische Bildschirm-Menüs für Programm-Einspeichern/Editieren (Bild rechts oben), Programm-Test (Bild rechts unten) und in einer Maschinen-Betriebsart (Bild nächste Seite)

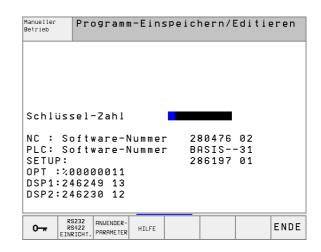
Einstellungen ändern

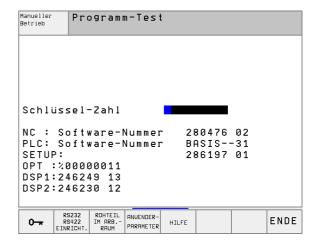
MOD-Funktion im angezeigten Menü mit Pfeiltasten wählen

Um eine Einstellung zu ändern, stehen – abhängig von der gewählten Funktion – drei Möglichkeiten zur Verfügung:

- Zahlenwert direkt eingeben, z.B. beim Festlegen der Verfahrbereichs-Begrenzung
- Einstellung durch Drücken der Taste ENT ändern, z.B. beim Festlegen der Programm-Eingabe
- Einstellung ändern über ein Auswahlfenster. Wenn mehrere Einstellmöglichkeiten zur Verfügung stehen, können Sie durch Drücken der Taste GOTO ein Fenster einblenden, in dem alle Einstellmöglichkeiten auf einen Blick sichtbar sind. Wählen Sie die gewünschte Einstellung direkt durch Drücken der entsprechenden Zifferntaste (links vom Doppelpunkt), oder mit der Pfeiltaste und anschließendem bestätigen mit der Taste ENT. Wenn Sie die Einstellung nicht ändern wollen, schließen Sie das Fenster mit der Taste END

MOD-Funktionen verlassen

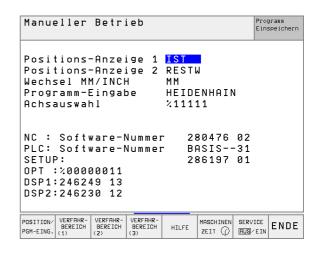

▶ MOD-Funktion beenden: Softkey ENDE oder Taste END drücken


Übersicht MOD-Funktionen

Abhängig von der gewählten Betriebsart können Sie folgende Änderungen vornehmen:

Programm-Einspeichern/Editieren:

- Verschiedene Software-Nummern anzeigen
- Schlüsselzahl eingeben
- Schnittstelle einrichten
- Ggf. Maschinenspezifische Anwenderparameter
- Ggf. HILFE-Dateien anzeigen



Programm-Test:

- Verschiedene Software-Nummern anzeigen
- Schlüsselzahl eingeben
- Datenschnittstelle einrichten
- Rohteil im Arbeitsraum darstellen
- Ggf. Maschinenspezifische Anwenderparameter
- Ggf. HILFE-Dateien anzeige

Alle übrigen Betriebsarten:

- Verschiedene Software-Nummern anzeigen
- Kennziffern für vorhandene Optionen anzeigen
- Positions-Anzeigen wählen
- Maß-Einheit (mm/inch) festlegen
- Programmier-Sprache festlegen für MDI
- Achsen für Ist-Positions-Übernahme festlegen
- Verfahrbereichs-Begrenzung setzen
- Nullpunkte anzeigen
- Betriebszeiten anzeigen
- Ggf. HILFE-Dateien anzeigen
- Ggf. Teleservice-Funktionen aktivieren

12.2 Software- und Options-Nummern

Anwendung

Die Software-Nummern von NC, PLC und den SETUP-Disketten stehen nach Anwahl der MOD-Funktionen im TNC-Bildschirm. Direkt darunter stehen die Nummern für vorhandene Optionen (OPT:):

Keine Optionen OPT 00000000
Option Digitalisieren mit schaltendem Taster OPT 00000001
Option Digitalisieren mit messendem Taster OPT 00000011

12.3 Schlüssel-Zahl eingeben

Anwendung

Die TNC benötigt für folgende Funktionen eine Schlüssel-Zahl:

Funktion	Schlüssel-Zahl
Anwender-Parameter wählen	123
Ethernet-Karte konfigurieren	NET123
Sonder-Funktionen bei der Q-Parameter- Programmierung freigeben	555343

12.4 Datenschnittstellen einrichten

Anwendung

Zum Einrichten der Datenschnittstellen drücken Sie den Softkey RS 232- / RS 422 - EINRICHT. Die TNC zeigt ein Bildschirm-Menü, in das Sie folgende Einstellungen eingeben:

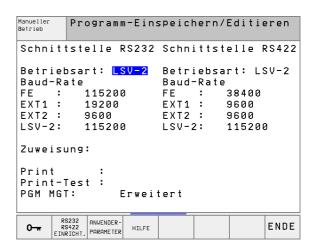
RS-232-Schnittstelle einrichten

Betriebsart und Baud-Raten werden für die RS-232-Schnittstelle links im Bildschirm eingetragen.

RS-422-Schnittstelle einrichten

Betriebsart und Baud-Raten werden für die RS-422-Schnittstelle rechts im Bildschirm eingetragen.

BETRIEBSART des externen Geräts wählen



In den Betriebsarten FE2 und EXT können Sie die Funktionen "alle Programme einlesen", "angebotenes Programmeinlesen" und "Verzeichnis einlesen" nicht nutzen

BAUD-RATE einstellen

Die BAUD-RATE (Datenübertragungs-Geschwindigkeit) ist zwischen 110 und 115.200 Baud wählbar.

Externes Gerät	Betriebsart	Symbol
PC mit HEIDENHAIN-Software TNCremo zur Fernbedienung der TNC	LSV2	모
PC mit HEIDENHAIN Übertra- gungs-Software TNCremo	FE1	
HEIDENHAIN Disketten-Einheiten FE 401 B FE 401 ab ProgNr. 230 626 03	FE1 FE1	n.
HEIDENHAIN Disketten-Einheit FE 401 bis einschl. Prog. Nr. 230 626 02	FE2	
Fremdgeräte, wie Drucker, Leser, Stanzer, PC ohne TNCremo	EXT1, EXT2	D)

Zuweisung

Mit dieser Funktion legen Sie fest, wohin Daten von der TNC übertragen werden.

Anwendungen:

- Werte mit der Q-Parameter-Funktion FN15 ausgeben
- Werte mit der Q-Parameter-Funktion FN16 ausgeben
- Pfad auf der Festplatte der TNC, in dem die Digitalisierdaten abgelegt werden

Von der TNC-Betriebsart hängt ab, ob die Funktion PRINT oder PRINT-TEST benutzt wird:

TNC-Betriebsart	Übertragungs-Funktion
Programmlauf Einzelsatz	PRINT
Programmlauf Satzfolge	PRINT
Programm-Test	PRINT-TEST

PRINT und PRINT-TEST können Sie wie folgt einstellen:

Funktion	Pfad
Daten über RS-232 ausgeben	RS232:\
Daten über RS-422 ausgeben	RS422:\
Daten auf der Festplatte der TNC ablegen	TNC:\
Daten in dem Verzeichnis speichern, in dem das Programm mit FN15/FN16 bzw. in dem das Pro- gramm mit den Digitalisierzyklen steht	leer

Datei-Namen:

Daten	Betriebsart	Datei-Name
Digitalisier-Daten	Programmlauf	Festgelegt in Zyklus BEREICH
Werte mit FN15	Programmlauf	%FN15RUN.A
Werte mit FN15	Programm-Test	%FN15SIM.A
Werte mit FN16	Programmlauf	%FN16RUN.A
Werte mit FN16	Programm-Test	%FN16SIM.A

Software für Datenübertragung

Zur Übertragung von Dateien von der TNC und zur TNC, sollten Sie eine der HEIDENHAIN-Softwaren zur Datenübertragung TNCremo oder TNCremoNT benutzen. Mit TNCremo/TNCremoNT können Sie über die serielle Schnittstelle alle HEIDENHAIN-Steuerungen ansteuern.

Setzen Sie sich bitte mit HEIDENHAIN in Verbindung, um gegen eine Schutzgebühr die Datenübertragungs-Software TNCremo oder TNCremoNT zu erhalten.

System-Voraussetzungen für TNCremo:

- Personalcomputer AT oder kompatibles System
- Betriebssystem MS-DOS/PC-DOS 3.00 oder höher, Windows 3.1, Windows for Workgroups 3.11, Windows NT 3.51, OS/2
- 640 kB Arbeitsspeicher
- 1 MByte frei auf Ihrer Festplatte
- Eine freie serielle Schnittstelle
- Für komfortables Arbeiten eine Microsoft (TM) kompatible Maus (nicht zwingend erforderlich)

System-Voraussetzungen für TNCremoNT:

- PC mit 486 Prozessor oder besser
- Betriebssystem Windows 95, Windows 98, Windows NT 4.0
- 16 MByte Arbeitsspeicher
- 5 MByte frei auf Ihrer Festplatte
- Eine freie serielle Schnittstelle oder Anbindung ans TCP/IP-Netzwerk bei TNC mit Ethernet-Karte

Installation unter Windows

- Starten Sie das Installations-Programm SETUP.EXE mit dem Datei-Manager (Explorer)
- ▶ Folgen Sie den Anweisungen des Setup-Programms

TNCremo unter Windows 3.1, 3.11 und NT 3.51 starten

Windows 3.1, 3.11, NT 3.51:

▶ Doppelklicken Sie auf das Icon in der Programmgruppe HEIDEN-HAIN Anwendungen

Wenn Sie TNCremo das erste Mal starten, werden Sie nach der angeschlossenen Steuerung, der Schnittstelle (COM1 oder COM2) und nach der Datenübertragungs-Geschwindigkeit gefragt. Geben Sie die gewünschten Informationen ein.

TNCremoNT unter Windows 95, Windows 98 und NT 4.0 starten

Klicken Sie auf <Start>, <Programme>, <HEIDENHAIN Anwendungen>, <TNCremoNT>

Wenn Sie TNCremoNT das erste Mal starten, versucht TNCremoNT automatisch eine Verbindung zur TNC herzustellen.

Datenübertragung zwischen TNC und TNCremo

Überprüfen Sie, ob:

- die TNC an der richtigen seriellen Schnittstelle Ihres Rechners angeschlossen ist
- die Betriebsart der Schnittstelle an der TNC auf LSV-2 steht
- die Datenübertragungs-Geschwindigkeit an der TNC für LSV2-Betrieb und in der TNCremo übereinstimmen

Nachdem Sie die TNCremo gestartet haben, sehen Sie im linken Teil des Hauptfensters 1 alle Dateien, die im aktiven Verzeichnis gespeichert sind. Über <Verzeichnis>, <Wechseln> können Sie ein beliebiges Laufwerk bzw. ein anderes Verzeichnis auf Ihrem Rechner wählen.

Wenn Sie die Datenübertragung vom PC aus steuern wollen, dann bauen Sie die Verbindung auf dem PC wie folgt auf:

- ▶ Wählen Sie <Verbindung>, <Verbindung>. Die TNCremo empfängt nun die Datei- und Verzeichnis-Struktur von der TNC und zeigt diese im unteren Teil des Hauptfensters 2 an
- Um eine Datei von der TNC zum PC zu übertragen, wählen Sie die Datei im TNC-Fenster (durch Mausklick hell hinterlegen) und aktivieren die Funktion <Datei> <Übertragen>
- ▶ Um eine Datei vom PC zur TNC zu übertragen, wählen Sie die Datei im PC-Fenster (durch Mausklick hell hinterlegen) und aktivieren die Funktion <Datei> <Übertragen>

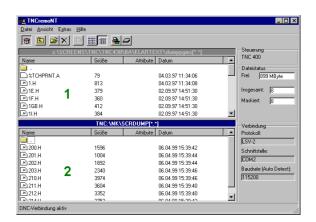
Wenn Sie die Datenübertragung von der TNC aus steuern wollen, dann bauen Sie die Verbindung auf dem PC wie folgt auf:

- ▶ Wählen Sie <Verbindung>, <Dateiserver (LSV-2)>. Die TNCremo befindet sich jetzt im Serverbetrieb und kann von der TNC Daten empfangen, bzw. an die TNC Daten senden
- Wählen Sie auf der TNC die Funktionen zur Datei-Verwaltung über die Taste PGM MGT (siehe "Datenübertragung zu/von einem externen Datenträger" auf Seite 59) und übertragen die gewünschten Dateien

TNCremo beenden

Wählen Sie den Menüpunkt <Datei>, <Beenden>, oder drücken Sie die Tastenkombination ALT+X

Beachten Sie auch die Hilfefunktion der TNCremo, in der alle Funktionen erklärt sind


Datenübertragung zwischen TNC und TNCremoNT

Überprüfen Sie, ob:

- die TNC an der richtigen seriellen Schnittstelle Ihres Rechners, bzw. am Netzwerk angeschlossen ist
- die Betriebsart der Schnittstelle an der TNC auf LSV-2 steht

Nachdem Sie die TNCremoNT gestartet haben, sehen Sie im oberen Teil des Hauptfensters 1 alle Dateien, die im aktiven Verzeichnis gespeichert sind. Über <Datei>, <Ordner wechseln> können Sie ein beliebiges Laufwerk bzw. ein anderes Verzeichnis auf Ihrem Rechner wählen.

Wenn Sie die Datenübertragung vom PC aus steuern wollen, dann bauen Sie die Verbindung auf dem PC wie folgt auf:

- ▶ Wählen Sie <Datei>, <Verbindung erstellen>. Die TNCremoNT empfängt nun die Datei- und Verzeichnis-Struktur von der TNC und zeigt diese im unteren Teil des Hauptfensters 2 an
- Um eine Datei von der TNC zum PC zu übertragen, wählen Sie die Datei im TNC-Fenster durch Mausklick und ziehen die markierte Datei bei gedrückter Maustaste in das PC-Fenster 1
- Um eine Datei vom PC zur TNC zu übertragen, wählen Sie die Datei im PC-Fenster durch Mausklick und ziehen die markierte Datei bei gedrückter Maustaste in das TNC-Fenster 2

Wenn Sie die Datenübertragung von der TNC aus steuern wollen, dann bauen Sie die Verbindung auf dem PC wie folgt auf:

- Wählen Sie «Extras», «TNCserver». Die TNCremoNT startet dann den Serverbetrieb und kann von der TNC Daten empfangen, bzw. an die TNC Daten senden
- Wählen Sie auf der TNC die Funktionen zur Datei-Verwaltung über die Taste PGM MGT (siehe "Datenübertragung zu/von einem externen Datenträger" auf Seite 59) und übertragen die gewünschten Dateien

TNCremoNT beenden

Wählen Sie den Menüpunkt < Datei>, < Beenden>

Beachten Sie auch die Hilfefunktion der TNCremo, in der alle Funktionen erklärt sind

12.5 Ethernet-Schnittstelle

Einführung

Sie können die TNC optional mit einer Ethernet-Karte ausrüsten, um die Steuerung als Client in Ihr Netzwerk einzubinden. Die TNC überträgt Daten über die Ethernet-Karte gemäß der TCP/IP-Protokoll-Familie (Transmission Control Protocol/Internet Protocol) und mit Hilfe des NFS (Network File System). TCP/IP und NFS sind insbesondere in UNIX-Systemen implementiert, so dass Sie die TNC in der UNIX-Welt meist ohne zusätzliche Software einbinden können.

Die PC-Welt mit Microsoft-Betriebssystemen arbeitet bei der Vernetzung ebenfalls mit TCP/IP, jedoch nicht mit NFS. Deshalb benötigen Sie eine zusätzliche Software um die TNC in ein PC-Netzwerk einzubinden. HEIDENHAIN empfiehlt für die Betriebssysteme Windows 95, Windows 98 und Windows NT 4.0 die Netzwerk-Software **CimcoNFS for HEIDENHAIN**, die Sie separat oder zusammen mit der Ethernet-Karte für die TNC bestellen können:

Artikel	HEIDENHAIN Bestell-Nummer
Ausschließlich Software CimcoNFS for HEIDENHAIN	339 737-01
Ethernet-Karte und Software CimcoNFS for HEIDENHAIN	293 890-73

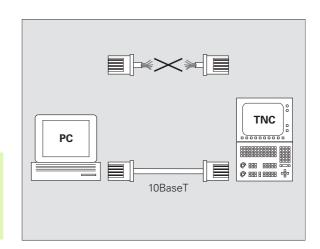
Ethernet-Karte einbauen

Vor dem Einbau der Ethernet-Karte TNC und Maschine ausschalten!

Beachten Sie die Hinweise der Montageanleitung, die der Ethernet-Karte beiliegt!

Anschluss-Möglichkeiten

Sie können die Ethernet-Karte der TNC über den RJ45-Anschluss (X26,10BaseT) in Ihr Netzwerk einbinden. Der Anschluss ist galvanisch von der Steuerungselektronik getrennt.

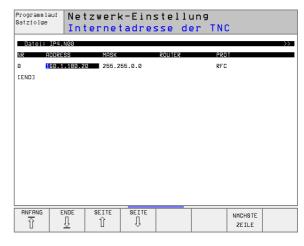

RJ45-Anschluss X26 (10BaseT)

Beim 10BaseT-Anschluss verwenden Sie Twisted Pair-Kabel, um die TNC an Ihr Netzwerk anzuschließen.

Die maximale Kabellänge zwischen TNC und einem Knotenpunkt beträgt bei ungeschirmten Kabeln maximal 100 m, bei geschirmten Kabeln maximal 400 m.

Wenn Sie die TNC direkt mit einem PC verbinden, müssen Sie ein gekreuztes Kabel verwenden.

TNC konfigurieren

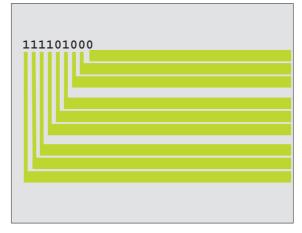

Lassen Sie die TNC von einem Netzwerk-Spezialisten konfigurieren.

▶ Drücken Sie in der Betriebsart Programm-Einspeichern/Editieren die Taste MOD. Geben Sie die Schlüsselzahl NET123 ein, die TNC zeigt den Hauptbildschirm zur Netzwerk-Konfiguration

Allgemeine Netzwerk-Einstellungen

▶ Drücken Sie den Softkey DEFINE NET zur Eingabe der algemeinen Netzwerk-Einstellungen und geben Sie folgende Informationen ein:

Einstellung	Bedeutung
ADDRESS	Adresse, die Ihr Netzwerk-Manager für die TNC vergeben muss. Eingabe: Vier durch Punkt getrennte Dezimalzeichen, z.B. 160.1.180.20
MASK	Die SUBNET MASK zum Einsparen von Adressen innerhalb Ihres Netzwerks. Eingabe: Vier durch Punkt getrennte Dezimalzeichen, Wert beim Netzwerk-Manager erfragen, z.B. 255.255.0.0
ROUTER	Internet-Adresse Ihres Default-Routers. Nur eingeben, wenn Ihr Netzwerk aus mehreren Teilnetzen besteht. Eingabe: Vier durch Punkt getrennte Dezimalzeichen, Wert beim Netzwerk-Manager erfragen, z.B. 160.2.0.2
PROT	Definition des Übertragungsprotokolls
	RFC: Übertragungsprotokoll gemäß RFC 894 IEEE: Übertragungsprotokoll gemäß IEE 802.2/ 802.3
HW	Definition des verwendeten Anschlusses 10BASET: Wenn Sie 10BaseT verwenden
HOST	Name, mit dem sich die TNC im Netzwerk meldet



Gerätespezifische Netzwerk-Einstellungen

▶ Drücken Sie den Softkey DEFINE MOUNT zur Eingabe der gerätespezifischen Netzwerk-Einstellungen. Sie können beliebig viele Netzwerk-Einstellungen festlegen, jedoch nur maximal 7 gleichzeitig verwalten

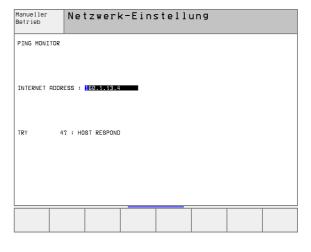
Einstellung	Bedeutung
ADDRESS	Adresse Ihres Servers. Eingabe: Vier durch Punkt getrennte Dezimalzeichen, Wert beim Netzwerk- Manager erfragen, z.B. 160.1.13.4
RS	Paketgröße für Datenempfang in Byte. Eingabe- bereich: 512 bis 4 096. Eingabe 0: Die TNC ver- wendet die vom Server gemeldete optimale Paketgröße
WS	Paketgröße für Datenversand in Byte. Eingabebereich: 512 bis 4 096. Eingabe 0: Die TNC verwendet die vom Server gemeldete optimale Paketgröße
TIMEOUT	Zeit in ms, nach der die TNC einen vom Server nicht beantworteten Remote Procedure Call wie- derholt. Eingabebereich: 0 bis 100 000. Standard- Eingabe: 700, das entspricht einem TIMEOUT von 700 Millisekunden. Höhere Werte nur ver- wenden, wenn die TNC über mehrere Router mit dem Server kommunizieren muss. Wert beim Netzwerk-Manager erfragen
НМ	Definition, ob die TNC den Remote Procedure Call solange wiederholen soll, bis der NFS-Server ant- wortet. 0: Remote Procedure Call immer wiederholen 1: Remote Procedure Call nicht wiederholen
DEVICE- NAME	Name, den die TNC in der Datei-Verwaltung anzeigt, wenn die TNC mit dem Gerät verbunden ist
PATH	Verzeichnis des NFS-Servers, das Sie mit der TNC verbinden wollen. Achten Sie bei der Pfadangabe auf die Groß- Kleinschreibung
UID	Definition, mit welcher User-Identifikation Sie im Netzwerk auf Dateien zugreifen. Wert beim Netz- werk-Manager erfragen
GID	Definition, mit welcher Gruppen-Identifikation Sie im Netzwerk auf Dateien zugreifen. Wert beim Netzwerk-Manager erfragen
DCM	Hier vergeben Sie die Zugriffsrechte auf Verzeichnisse des NFS-Servers (siehe Bild rechts Mitte). Wert binärcodiert eingeben. Beispiel: 111101000 0: Zugriff nicht erlaubt 1: Zugriff erlaubt

	lge	Int	erne	tadr	esse	d	es Ser	rvers	
Date	ei: IP4.	M00							
R	ADDRE	SS	RS	WS	TIMEOU	HM	DEVICENAME		
3	<mark>1</mark> 60.1	.11.56	0	0	0	1	PC1331		
	160.1	.7.68	Ø	Ø	0	0	PC1128		
	160.1	.7.68	0	0	0	0	PC0815		
	160.1	.13.4	0	0	0	0	WORLD		
ENDJ									
NFAI	NG E	NDE	SEITE	SEITE	ZEI EINF(ZEILE LÖSCHEN	NÄCHSTE ZEILE	

Einstellung	Bedeutung
DCM	Hier vergeben Sie die Zugriffsrechte auf. Dateien des NFS-Servers (siehe Bild rechts oben). Wert binärcodiert eingeben. Beispiel: 111101000 0: Zugriff nicht erlaubt 1: Zugriff erlaubt
AM	Definition, ob sich die TNC beim Einschalten automatisch mit dem Netzwerk verbinden soll. 0: Nicht automatisch verbinden 1: Automatisch verbinden

Netzwerk-Drucker definieren

▶ Drücken Sie den Softkey DEFINE PRINT, wenn Sie Dateien direkt von der TNC auf einen Netzwerk-Drucker ausdrucken wollen:


Einstellung	Bedeutung
ADDRESS	Adresse Ihres Servers. Eingabe: Vier durch Punkt getrennte Dezimalzeichen, Wert beim Netzwerk- Manager erfragen, z.B. 160.1.13.4
DEVICE NAME	Name des Druckers den die TNC anzeigt, wenn Sie den Softkey DRUCKEN betätigen, siehe "Erweiterte Datei-Verwaltung", Seite 49
PRINTER NAME	Name des Druckers in Ihrem Netzwerk, Wert beim Netzwerk-Manager erfragen

Verbindung prüfen

- ▶ Drücken Sie den Softkey PING
- ▶ Geben Sie die Internet-Adresse des Gerätes ein, zu dem Sie die Verbindung prüfen wollen und bestätigen mit ENT. Die TNC sendet Datenpakete so lange, bis Sie mit der Taste END den Prüfmonitor verlassen

In der Zeile TRY zeigt die TNC die Anzahl der Datenpaket an, die an den zuvor definierten Empfänger abgeschickt wurden. Hinter der Anzahl der abgeschickten Datenpaket zeigt die TNC den Status:

Status-Anzeige	Bedeutung
HOST RESPOND	Datenpaket wieder empfangen, Verbindung in Ordnung
TIMEOUT	Datenpaket nicht wieder empfangen, Verbindung prüfen
CAN NOT ROUTE	Datenpaket konnte nicht gesendet werden, Internet-Adresse des Servers und des Routers an der TNC prüfen

Fehlerprotokoll anzeigen

▶ Drücken Sie den Softkey SHOW ERROR, wenn Sie das Fehlerprotokoll ansehen möchten. Die TNC protokolliert hier alle Fehler, die seit dem letzten Einschalten der TNC im Netzwerkbetrieb aufgetreten sind

Die aufgelisteten Fehlermeldungen sind in zwei Kategorien unterteilt:

Warnmeldungen sind mit (W) gekennzeichnet. Bei diesen Meldungen konnte die TNC die Netzwerk-Verbindung herstellen, musste dazu aber Einstellungen korrigieren.

Fehlermeldungen sind mit (E) gekennzeichnet. Treten solche Fehlermeldungen auf, dann konnte die TNC keine Netzwerk-Verbindung herstellen.

Fehlermeldung	Ursache
LL: (W) CONNECTION xxxxx UNKNOWN USING DEFAULT 10BASET	Sie haben bei DEFINE NET, HW eine falsche Bezeichnung eingegeben
LL: (E) PROTOCOL xxxxx UNKNOWN	Sie haben bei DEFINE NET, PROT eine falsche Bezeichnung eingegeben
IP4: (E) INTERFACE NOT PRESENT	Die TNC konnte keine Ethernet-Karte finden
IP4: (E) INTERNETADRESS NOT VALID	Sie haben für die TNC eine ungültige Internet- Adresse verwendet
IP4: (E) SUBNETMASK NOT VALID	Die SUBNET MASK passt nicht zur Internet-Adresse der TNC
IP4: (E) SUBNETMASK OR HOST ID NOT VALID	Sie haben für die TNC eine falsche Internet-Adresse vergeben, oder die SUBNET MASK falsch eingege- ben oder alle Bits der HostID auf 0 (1) gesetzt
IP4: (E) SUBNETMASK OR SUBNET ID NOT VALID	Alle Bits der SUBNET ID sind 0 oder 1
IP4: (E) DEFAULTROUTERADRESS NOT VALID	Sie haben für den Router eine ungültige Internet- Adresse verwendet
IP4: (E) CAN NOT USE DEFAULTROUTER	Der Defaultrouter hat nicht die selbe Net- oder Sub- netID wie die TNC
IP4: (E) I AM NOT A ROUTER	Sie haben die TNC als Router definiert
MOUNT: <gerätename> (E) DEVICENAME NOT VALID</gerätename>	Der Gerätename ist zu lang oder enthält unzulässige Zeichen
MOUNT: <gerätename> (E) DEVICENAME ALREADY ASSIGNED</gerätename>	Sie haben bereits ein Gerät mit diesem Namen defi- niert
MOUNT: <gerätename> (E) DEVICETABLE OVERFLOW</gerätename>	Sie haben versucht mehr als 7 Netzlaufwerke mit der TNC zu verbinden
NFS2: <gerätename> (W) READSIZE SMALLER THEN x SET TO x</gerätename>	Sie haben bei DEFINE MOUNT, RS einen zu kleinen Wert eingegeben. Die TNC setzt RS auf 512 Byte
NFS2: <gerätename> (W) READSIZE LARGER THEN x SET TO x</gerätename>	Sie haben bei DEFINE MOUNT, RS einen zu großen Wert eingegeben. Die TNC setzt RS auf 4096 Byte

i

Fehlermeldung	Ursache
NFS2: <gerätename> (W) WRITESIZE SMALLER THEN x SET TO x</gerätename>	Sie haben bei DEFINE MOUNT, WS einen zu kleinen Wert eingegeben. Die TNC setzt WS auf 512 Byte
NFS2: <gerätename> (W) WRITESIZE LARGER THEN x SET TO x</gerätename>	Sie haben bei DEFINE MOUNT, WS einen zu großen Wert eingegeben. Die TNC setzt WS auf 4096 Byte
NFS2: <gerätename> (E) MOUNTPATH TO LONG</gerätename>	Sie haben bei DEFINE MOUNT, PATH einen zu langen Namen eingegeben
NFS2: <gerätename> (E) NOT ENOUGH MEMORY</gerätename>	Es steht momentan zu wenig Arbeitsspeicher zur Verfügung um eine Netzwerk-Verbindung aufzu- bauen
NFS2: <gerätename> (E) HOSTNAME TO LONG</gerätename>	Sie haben bei DEFINE NET, HOST einen zu langen Namen eingegeben
NFS2: <gerätename> (E) CAN NOT OPEN PORT</gerätename>	Um die Netzwerkverbindung herzustellen kann die TNC einen erforderlichen Port nicht öffnen
NFS2: <gerätename> (E) ERROR FROM PORTMAPPER</gerätename>	Die TNC hat vom Portmapper Daten erhalten die nicht plausibel sind
NFS2: <gerätename> (E) ERROR FROM MOUNTSERVER</gerätename>	Die TNC hat vom Mountserver Daten erhalten die nicht plausibel sind
NFS2: <gerätename> (E) CANT GET ROOTDIRECTORY</gerätename>	Der Mountserver lässt die Verbindung mit dem bei DEFINE MOUNT, PATH definierten Verzeichnis nicht zu
NFS2: <gerätename> (E) UID OR GID 0 NOT ALLOWED</gerätename>	Sie haben bei DEFINE MOUNT, UID oder GID 0 eingegeben. Der Eingabewert 0 ist dem Systemadministrator vorbehalten

12.6 PGM MGT konfigurieren

Anwendung

Mit dieser Funktion legen Sie den Funktionsumfang der Datei-Verwaltung fest

- Standard: Vereinfachte Datei-Verwaltung ohne Verzeichnis-Anzeige
- Erweitert: Datei-Verwaltung mit erweiterten Funktionen und Verzeichnis-Anzeige

Beachten Sie: siehe "Standard-Datei-Verwaltung", Seite 41, und siehe "Erweiterte Datei-Verwaltung", Seite 49.

Einstellung ändern

- Datei-Verwaltung in der Betriebsart Programm-Einspeichern/Editieren wählen: Taste PGM MGT drücken
- ▶ MOD-Funktion wählen: Taste MOD drücken
- ▶ Einstellung PGM MGT wählen: Hellfeld mit Pfeiltasten auf Einstellung PGM MGT schieben, mit Taste ENT zwischen STANDARD und ERWEITERT umschalten

i

12.7 Maschinenspezifische Anwenderparameter

Anwendung

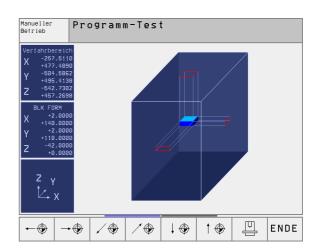
Um die Einstellung maschinenspezifischer Funktionen für den Anwender zu ermöglichen, kann Ihr Maschinenhersteller bis zu 16 Maschinen-Parameter als Anwender-Parameter definieren.

Diese Funktion steht nicht bei allen TNC's zur Verfügung. Beachten Sie Ihr Maschinenhandbuch.

12.8 Rohteil im Arbeitsraum darstellen

Anwendung

In der Betriebsart Programm-Test können Sie die Lage des Rohteils im Arbeitsraum der Maschine grafisch überprüfen und die Arbeitsraum-Überwachung in der Betriebsart Programm-Test aktivieren: Drücken Sie dazu den Softkey ROHTEIL IM ARB.-RAUM.


Die TNC stellt einen Quader für den Arbeitsraum dar, dessen Maße im Fenster "Verfahrbereich" aufgeführt sind. Die Maße für den Arbeitsraum entnimmt die TNC aus den Maschinen-Parametern für den aktiven Verfahrbereich. Da der Verfahrbereich im Referenzsystem der Maschine definiert ist, entspricht der Nullpunkt des Quaders dem Maschinen-Nullpunkt. Die Lage des Maschinen-Nullpunkts im Quader können Sie durch drücken des Softkeys M91 (2. Softkey-Leiste) sichtbar machen.

Ein weiterer Quader () stellt das Rohteil dar, dessen Abmaße () die TNC aus der Rohteil-Definition des angewählten Programms entnimmt. Der Rohteil-Quader definiert das Eingabe-Koordinatensystem, dessen Nullpunkt innerhalb des Quaders liegt. Die Lage des Nullpunkts im Quader können Sie durch drücken des Softkeys "Werkstück-Nullpunkt anzeigen" (2. Softkey-Leiste) sichtbar machen.

Wo sich das Rohteil innerhalb des Arbeitsraumes befindet ist im Normalfall für den Programm-Test unerheblich. Wenn Sie jedoch Programme testen, die Verfahrbewegungen mit M91 oder M92 enthalten, müssen Sie das Rohteil "grafisch" so verschieben, dass keine Konturverletzungen auftreten. Benützen Sie dazu die in der Tabelle rechts aufgeführten Softkeys.

Darüber hinaus können Sie auch die Arbeitsraum-Überwachung für die Betriebsart Programm-Test aktivieren, um das Programm mit dem aktuellen Bezugspunkt und den aktiven Verfahrbereichen zu testen (siehe nachfolgende Tabelle, letzte Zeile).

Funktion	Softkey
Rohteil nach links verschieben	←◆
Rohteil nach rechts verschieben	→
Rohteil nach vorne verschieben	/ ⊕
Rohteil nach hinten verschieben	[/⊕]
Rohteil nach oben verschieben	↑ ⊕
Rohteil nach unten verschieben	- ↓ ⊕

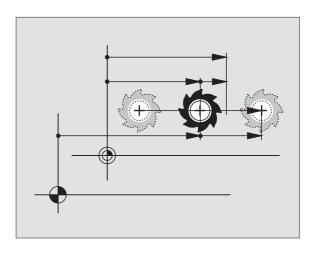
Funktion	Softkey
Rohteil bezogen auf den gesetzten Bezugspunkt anzeigen	
Gesamten Verfahrbereich bezogen auf das dargestellte Rohteil anzeigen	
Maschinen-Nullpunkt im Arbeitsraum anzeigen	M91 🍑
Vom Maschinenhersteller festgelegte Position (z.B. Werkzeug- Wechselpunkt) im Arbeitsraum anzeigen	M92 🍑
Werkstück-Nullpunkt im Arbeitsraum anzeigen	•
Arbeitsraum-Überwachung beim Programm-Test einschalten (EIN)/ ausschalten (AUS)	HH AUS/EIN

12.9 Positions-Anzeige wählen

Anwendung

Für den Manuellen Betrieb und die Programmlauf-Betriebsarten können Sie die Anzeige der Koordinaten beeinflussen:

Das Bild rechts zeigt verschiedene Positionen des Werkzeugs


- Ausgangs-Position
- Ziel-Position des Werkzeugs
- Werkstück-Nullpunkt
- Maschinen-Nullpunkt

Für die Positions-Anzeigen der TNC können Sie folgende Koordinaten wählen:

Funktion	Anzeige
Soll-Position; von der TNC aktuell vorgegebener Wert	SOLL
Ist-Position; momentane Werkzeug-Position	IST
Referenz-Position; Ist-Position bezogen auf den Maschinen-Nullpunkt	REF
Restweg zur programmierten Position; Differenz zwischen Ist- und Ziel-Position	RESTW
Schleppfehler; Differenz zwischen Soll und Ist- Position	SCHPF
Auslenkung des messenden Tastsystems	AUSL.
Verfahrwege, die mit der Funktion Handrad-Überlagerung (M118) ausgeführt wurden (Nur Positions-Anzeige 2)	M118

Mit der MOD-Funktion Positions-Anzeige 1 wählen Sie die Positions-Anzeige in der Status-Anzeige.

Mit der MOD-Funktion Positions-Anzeige 2 wählen Sie die Positions-Anzeige in der zusätzlichen Status-Anzeige.

12.10 Maßsystem wählen

Anwendung

Mit dieser MOD-Funktion legen Sie fest, ob die TNC Koordinaten in mm oder Inch (Zoll-System) anzeigen soll.

- Metrisches Maßsystem: z.B. X = 15,789 (mm) MOD-Funktion Wechsel mm/inch = mm. Anzeige mit 3 Stellen nach dem Komma
- Zoll-System: z.B. X = 0,6216 (inch) MOD-Funktion Wechsel mm/inch = inch. Anzeige mit 4 Stellen nach dem Komma

Wenn Sie die Inch-Anzeige aktiv haben, zeigt die TNC auch den Vorschub in inch/min an. In einem Inch-Programm müssen Sie den Vorschub mit einem Faktor 10 größer eingeben.

tionen (

12.11 Programmiersprache für \$MDI wählen

Anwendung

Mit der MOD-Funktion Programm-Eingabe schalten Sie der Programmierung der Datei \$MDI um.

■ \$MDI.H im Klartext-Dialog programmieren: Programm-Eingabe: HEIDENHAIN

■ \$MDI.I gemäß DIN/ISO programmieren:

Programm-Eingabe: ISO

12.12 Achsauswahl für L-Satz-Generierung

Anwendung

Im Eingabe-Feld für die Achsauswahl legen Sie fest, welche Koordinaten der aktuellen Werkzeug-Position in einen L-Satz übernommen werden. Die Generierung eines separaten L-Satzes erfolgt mit der Taste "Ist-Position übernehmen". Die Auswahl der Achsen erfolgt wie bei Maschinen-Parametern bitorientiert:

Achsauswahl %11111X, Y, Z, IV., V. Achse übernehmen

Achsauswahl %01111X, Y, Z, IV. Achse übernehmen

Achsauswahl %00111X, Y, Z Achse übernehmen

Achsauswahl %00011X, Y Achse übernehmen

Achsauswahl %00001X Achse übernehmen

D-Funktionen 1

12.13 Verfahrbereichs-Begrenzungen eingeben, Nullpunkt-Anzeige

Anwendung

Innerhalb des maximalen Verfahrbereichs können Sie den tatsächlich nutzbaren Verfahrweg für die Koordinatenachsen einschränken.

Anwendungsbeispiel: Teilapparat gegen Kollisionen sichern.

Der maximale Verfahrbereich ist durch Software-Endschalter begrenzt. Der tatsächlich nutzbare Verfahrweg wird mit der MOD-Funktion VERFAHRBEREICH eingeschränkt: Dazu geben Sie die Maximalwerte in positiver und negativer Richtung der Achsen bezogen auf den Maschinen-Nullpunkt ein. Wenn Ihre Maschine über mehrere Verfahrbereiche verfügt, können Sie die Begrenzung für jeden Verfahrbereich separat einstellen (Softkey VERFAHRBEREICH (1) bis VERFAHRBEREICH (3)).

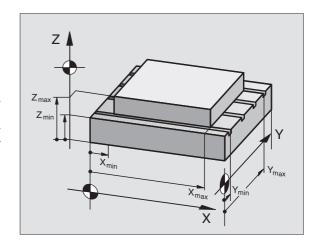
Arbeiten ohne Verfahrbereichs-Begrenzung

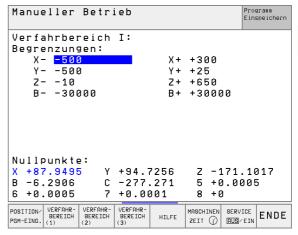
Für Koordinatenachsen, die ohne Verfahrbereichs-Begrenzungen verfahren werden sollen, geben Sie den maximalen Verfahrweg der TNC (+/- 99999 mm) als VERFAHRBEREICH ein.

Maximalen Verfahrbereich ermitteln und eingeben

- ▶ Positions-Anzeige REF anwählen
- Gewünschte positive und negative End-Positionen der X-, Y- und Z-Achse anfahren
- ▶ Werte mit Vorzeichen notieren
- ▶ MOD-Funktionen wählen: Taste MOD drücken

- Verfahrbereichs-Begrenzung eingeben: Softkey VER-FAHRBEREICH drücken. Notierte Werte für die Achsen als Begrenzungen eingeben
- ▶ MOD-Funktion verlassen: Softkey ENDE drücken




Werkzeug-Radiuskorrekturen werden bei Verfahrbereichs-Begrenzungen nicht berücksichtigt.

Verfahrbereichs-Begrenzungen und Software-Endschalter werden berücksichtigt, nachdem die Referenz-Punkte überfahren sind.

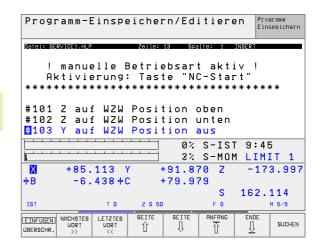
Nullpunkt-Anzeige

Die im Bildschirm links unten angezeigten Werte sind die manuell gesetzten Bezugspunkte bezogen auf den Maschinen-Nullpunkt. Sie können im Bildschirm-Menü nicht verändert werden.

12.14 HILFE-Dateien anzeigen

Anwendung

Hilfe-Dateien sollen den Bediener in Situationen unterstützen, in denen festgelegte Handlungsweisen, z.B. das Freifahren der Maschine nach einer Stromunterbrechung, erforderlich sind. Auch Zusatz-Funktionen lassen sich in einer HILFE-Datei dokumentieren. Das Bild rechts zeigt die Anzeige einer HILFE-Datei.


Die HILFE-Dateien sind nicht an jeder Maschine verfügbar. Nähere Informationen erteilt Ihr Maschinenhersteller.

HILFE-DATEIEN wählen

▶ MOD-Funktion wählen: Taste MOD drücken

- ▶ Wählen der zuletzt aktiven HILFE-Datei: Softkey HILFE drücken
- ► Falls nötig, Datei Verwaltung aufrufen (Taste PGM MGT) und andere Hilfe-Datei wählen

446 12 MOD-Funktionen

12.15 Betriebszeiten anzeigen

Anwendung

Der Maschinenhersteller kann noch zusätzliche Zeiten anzeigen lassen. Maschinenhandbuch beachten!

Über den Softkey MASCHINEN ZEIT können Sie sich verschiedene Betriebszeiten anzeigen lassen:

Betriebszeit	Bedeutung
Steuerung ein	Betriebszeit der Steuerung seit der Inbetriebnahme
Maschine ein	Betriebszeit der Maschine seit der Inbetriebnahme
Programmlauf	Betriebszeit für den gesteuerten Betrieb seit der Inbetriebnahme

12.16 Teleservice

Anwendung

Die Funktionen zum Teleservice werden vom Maschinen-Hersteller freigegeben und festgelegt. Maschinenhandbuch beachten!

Die TNC stellt zwei Softkeys für den Teleservice zur Verfügung, damit zwei verschiedene Servicestellen eingerichten werden können.

Die TNC verfügt über die Möglichkeit, Teleservice durchführen zu können. Dazu sollte Ihre TNC mit einer Ethernet-Karte ausgerüstet sein, mit der sich eine höhere Datenübertragungs-Geschwindigkeit erreichen lässt als über die serielle Schnittstelle RS-232-C.

Mit der HEIDENHAIN TeleService-Software, kann Ihr Maschinen-Hersteller dann zu Diagnosezwecken über ein ISDN- Modem eine Verbindung zur TNC aufbauen. Folgende Funktionen stehen zur Verfügung:

- Online-Bildschirmübertragung
- Abfragen von Maschinenzuständen
- Übertragung von Dateien
- Fernsteuerung der TNC


Grundsätzlich möglich wäre auch eine Verbindung über das Internet. Erste Versuche haben aber gezeigt, dass die Übertragungsgeschwindigkeit aufgrund der oftmals hohen Netzauslastung heute noch nicht ausreicht.

Teleservice aufrufen/beenden

- ▶ Beliebige Maschinenbetriebsart wählen
- ▶ MOD-Funktion wählen: Taste MOD drücken

- Verbindung zur Servicestelle aufbauen: Softkey SER-VICE bzw. SUPPORT auf EIN stellen. Die TNC beendet die Verbindung automatisch, wenn für eine vom Maschinen-Hersteller festgelegte Zeit (Standard: 15 min) keine Datenübertragung durchgeführt wurde
- Verbindung zur Servicestelle lösen: Softkey SERVICE bzw. SUPPORT auf AUS stellen. Die TNC beendet die Verbindung nach ca. einer Minute

12 MOD-Funktionen

12.17 Externer Zugriff

Anwendung

Der Maschinenhersteller kann die externen Zugriffsmöglichkeiten über die LSV-2 Schnittstelle konfigurieren. Maschinenhandbuch beachten!

Mit dem Softkey EXTERNER ZUGRIFF können Sie den Zugriff über die LSV-2 Schnittstelle freigeben oder sperren.

Durch einen Eintrag in der Konfigurationsdatei TNC.SYS können Sie ein Verzeichnis einschließlich vorhandener Unterverzeichnisse mit einem Passwort schützen. Bei einem Zugriff über die LSV-2 Schnittstelle auf die Daten aus diesem Verzeichnis wird das Passwort abgefragt. Legen Sie in der Konfigurationsdatei TNC.SYS den Pfad und das Passwort für den externen Zugriff fest.

Die Datei TNC.SYS muss im Root-Verzeichnis TNC:\ gespeichert sein.

Wenn Sie nur einen Eintrag für das Passwort vergeben, wird das ganze Laufwerk TNC:\ geschützt.

Verwenden Sie für die Datenübertragung die aktualisierten Versionen der HEIDENHAIN-Software TNCremo oder TNCremoNT.

Einträge in TNC.SYS	Bedeutung
REMOTE.TNCPASSWORD=	Passwort für LSV-2 Zugriff
REMOTE.TNCPRIVATEPATH=	Pfad der geschützt werden soll

Beispiel für TNC.SYS

REMOTE.TNCPASSWORD=KR1402

REMOTE.TNCPRIVATEPATH=TNC:\RK

Externen Zugriff erlauben/sperren

- ▶ Beliebige Maschinenbetriebsart wählen
- ▶ MOD-Funktion wählen: Taste MOD drücken

- ▶ Verbindung zur TNC erlauben: Softkey EXTERNER ZUGRIFF auf EIN stellen. Die TNC lässt den Zugriff auf Daten über die LSV-2 Schnittstelle zu. Bei einem Zugriff auf ein Verzeichnis, welches in der Konfigurationsdatei TNC.SYS angegeben wurde, wird das Passwort abgefragt
- Verbindung zur TNC sperren: Softkey EXTERNER ZUGRIFF auf AUS stellen. Die TNC sperrt den Zugriff über die LSV-2 Schnittstelle

13

Tabellen und Übersichten

13.1 Allgemeine Anwenderparameter

Allgemeine Anwenderparameter sind Maschinen-Parameter, die das Verhalten der TNC beeinflussen.

Typische Anwenderparameter sind z.B.

- die Dialogsprache
- das Schnittstellen-Verhalten
- Verfahrgeschwindigkeiten
- Bearbeitungsabläufe
- die Wirkung der Override

Eingabemöglichkeiten für Maschinen-Parameter

Maschinen-Parameter lassen sich beliebig programmieren als

■ **Dezimalzahlen**Zahlenwert direkt eingeben

■ Dual-/Binärzahlen

Prozent-Zeichen "%" vor Zahlenwert eingeben

■ **Hexadezimalzahlen**Dollar-Zeichen "\$" vor Zahlenwert eingeben

Beispiel:

Anstelle der Dezimalzahl 27 können Sie auch die Binärzahl %11011 oder die Hexadezimalzahl \$1B eingeben.

Die einzelnen Maschinen-Parameter dürfen gleichzeitig in den verschiedenen Zahlensystemen angegeben sein.

Einige Maschinen-Parameter haben Mehrfach-Funktionen. Der Eingabewert solcher Maschinen-Parameter ergibt sich aus der Summe der mit einem + gekennzeichneten Einzeleingabewerte.

Allgemeine Anwenderparameter anwählen

Allgemeine Anwenderparameter wählen Sie in den MOD-Funktionen mit der Schlüsselzahl 123 an.

In den MOD-Funktionen stehen auch maschinenspezifische ANWENDERPARAMETER zur Verfügung.

Externe Datenübertragung	
TNC-Schnittstellen EXT1 (5020.0) und EXT2 (5020.1) an externes Gerät anpassen	MP5020.x 7 Datenbit (ASCII-Code, 8.bit = Parität): +0 8 Datenbit (ASCII-Code, 9.bit = Parität): +1
	Block-Check-Charakter (BCC) beliebig: +0 Block-Check-Charakter (BCC) Steuerzeichen nicht erlaubt: +2
	Übertragungs-Stop durch RTS aktiv: +4 Übertragungs-Stop durch RTS nicht aktiv: +0
	Übertragungs-Stop durch DC3 aktiv: +8 Übertragungs-Stop durch DC3 nicht aktiv: +0
	Zeichenparität geradzahlig: +0 Zeichenparität ungeradzahlig: +16
	Zeichenparität unerwünscht: +0 Zeichenparität erwünscht: +32
	11/2 Stoppbit: +0 2 Stoppbit: +64
	1 Stoppbit: +128 1 Stoppbit: +192
	Beispiel:
	TNC-Schnittstelle EXT2 (MP 5020.1) auf externes Fremdgerät mit folgender Einstellung anpassen:
	8 Datenbit, BCC beliebig, Übertragungs-Stop durch DC3, geradzahlige Zeichenparität, Zeichenparität erwünscht, 2 Stoppbit
	Eingabe für MP 5020.1 : 1+0+8+0+32+64 = 105
Schnittstellen-Typ für EXT1 (5030.0) und EXT2 (5030.1) festlegen	MP5030.x Standard-Übertragung: 0 Schnittstelle für blockweises Übertragen: 1
3D-Tastsysteme und Digitalisieren	
Tastsystem wählen (nur bei Option Digitalisieren mit messen- dem Tastsystem)	MP6200 Schaltendes Tastsystem einsetzen: 0 Messendes Tastsystem einsetzen: 1
Übertragungsart wählen	MP6010 Tastsystem mit Kabel-Übertragung: 0 Tastsystem mit Infrarot-Übertragung: 1
Antastvorschub für schaltendes Tastsystem	MP6120 1 bis 3 000 [mm/min]
Maximaler Verfahrweg zum Antastpunkt	MP6130 0,001 bis 99 999,9999 [mm]

MP6140

0,001 bis **99 999,9999** [mm]

automatischem Messen

Sicherheitsabstand zum Antastpunkt bei

3D-Tastsysteme und Digitalisieren	
Eilgang zum Antasten für schaltendes Tastsystem	MP6150 1 bis 300 000 [mm/min]
Tastsystem-Mittenversatz messen beim Kalibrieren des schaltenden Tastsystems	MP6160 Keine 180°-Drehung des 3D-Tastsystems beim Kalibrieren: 0 M-Funktion für 180°-Drehung des Tastsystems beim Kalibrieren: 1 bis 999
M-Funktion um Infrarottaster vor jedem Messvorgang zu orientieren	MP6161 Funktion inaktiv: 0 Orientierung direkt über die NC: -1 M-Funktion für Orientierung des Tastsystems: 1 bis 999
Orientierungswinkel für den Infrarottaster	MP6162 0 bis 359,9999 [°]
Differenz zwischen aktuellem Orientie- rungswinkel und Orientierungswinkel aus MP 6162 ab dem eine Spindelorientierung durchgeführt werden soll	MP6163 0 bis 3,0000 [°]
Infrarottaster vor dem Antasten automatisch auf die programmierte Antastrichtung orientieren	MP6165 Funktion inaktiv: 0 Infrarottaster orientieren: 1
Mehrfachmessung für programmierbare Antastfunktion	MP6170 1 bis 3
Vertrauensbereich für Mehrfachmessung	MP6171 0,001 bis 0,999 [mm]
Automatischer Kalibrierzyklus: Mitte des Kalibrierrings in der X-Achse bezogen auf den Maschinen-Nullpunkt	MP6180.0 (Verfahrbereich 1) bis MP6180.2 (Verfahrbereich3) 0 bis 99 999,9999 [mm]
Automatischer Kalibrierzyklus: Mitte des Kalibrierrings in der Y-Achse bezogen auf den Maschinen-Nullpunkt für	MP6181.x (Verfahrbereich 1) bis MP6181.2 (Verfahrbereich3) 0 bis 99 999,9999 [mm]
Automatischer Kalibrierzyklus: Oberkante des Kalibrierrings in der Z-Achse bezogen auf den Maschinen-Nullpunkt für	MP6182.x (Verfahrbereich 1) bis MP6182.2 (Verfahrbereich3) 0 bis 99 999,9999 [mm]
Automatischer Kalibrierzyklus: Abstand unterhalb der Ringoberkante, an der die TNC die Kalibrierung durchführt	MP6185.x (Verfahrbereich 1) bis MP6185.2 (Verfahrbereich3) 0,1 bis 99 999,9999 [mm]
Eintauchtiefe des Taststifts beim Digitalisieren mit messendem Tastsystem	MP6310 0,1 bis 2,0000 [mm] (Empfehlung: 1mm)
Tastsystem-Mittenversatz messen beim Kalibrieren des messenden Tastsystems	MP6321 Mittenversatz messen: 0 Mittenversatz nicht messen: 1

3D-Tastsysteme und Digitalisieren	
Zuordnung Tastsystemachse zur Maschinenachse beim messenden Tastsystem	MP6322.0 Maschinenachse X liegt parallel zur Tastsystemachse X: 0, Y: 1, Z: 2
Hinweis:	MP6322.1
Die richtige Zuordnung der Tastsystemachsen zu den Maschinenachsen muss sichergestellt	Maschinenachse Y liegt parallel zur Tastsystemachse X: 0, Y: 1, Z: 2
sein, sonst besteht Taststift-Bruchgefahr	MP6322.2 Maschinenachse Z liegt parallel zur Tastsystemachse X: 0 , Y: 1 , Z: 2
Maximale Taststift-Auslenkung des messenden Tastsystems	MP6330 0,1 bis 4,0000 [mm]
Vorschub zum Positionieren des messenden Tastsystems auf MIN-Punkt und Anfahren an die Kontur	MP6350 1 bis 3 000 [mm/min]
Antastvorschub für messendes Tastsystem	MP6360 1 bis 3 000 [mm/min]
Eilgang im Antast-Zyklus für messendes Tastsystem	MP6361 10 bis 3 000 [mm/min]
Vorschubabsenkung, wenn Taststift des messenden Tastsystems seitlich ausgelenkt wird	MP6362 Vorschubabsenkung nicht aktiv: 0 Vorschubabsenkung aktiv: 1
Die TNC senkt den Vorschub nach einer vorgegebenen Kennlinie ab. Der minimale Vorschub beträgt 10% vom programmierten Digitalisiervorschub.	
Radialbeschleunigung beim Digitalisieren für messendes Tastsystem	MP6370 0,001 bis 5,000 [m/s ²] (Empfehlung: 0,1)
Mit MP6370 begrenzen Sie den Vorschub, mit dem die TNC während des Digitalisiervorgangs Kreisbewegungen fährt. Kreisbewegungen entstehen z.B. bei starken Richtungsänderun- gen.	
Solange der programmierte Digitalisiervorschub kleiner als der über MP6370 berechnete Vorschub ist, fährt die TNC mit dem programmierten Vorschub. Ermitteln Sie den für Sie richtigen Wert durch praktische Versuche.	
Zielfenster für Digitalisieren in Höhenlinien mit messendem Tastsystem	MP6390 0,1 bis 4,0000 [mm]
Beim Digitalisieren von Höhenlinien fällt der Endpunkt nicht exakt mit dem Startpunkt zusammen.	
MP6390 definiert ein quadratisches Zielfenster, innerhalb dessen der Endpunkt nach einem Umlauf liegen muss. Der einzugebende Wert definiert die halbe Seitenlänge des Quadrats.	

Radiusvermessung mit TT 130:	MP6505.0 (Verfahrbereich 1) bis 6505.2 (Verfahrbereich 3)
Antastrichtung	Positive Antastrichtung in der Winkel-Bezugsachse (0°-Achse): 0
· ····································	Positive Antastrichtung in der +90°-Achse: 1
	Negative Antastrichtung in der Winkel-Bezugsachse (0°-Achse): 2
	Negative Antastrichtung in der +90°-Achse: 3
Antastvorschub für zweite Messung mit	MP6507
TT 120, Stylus-Form, Korrekturen in TOOL.T	Antastvorschub für zweite Messung mit TT 130 berechnen, mit konstanter Toleranz: +0
	Antastvorschub für zweite Messung mit TT 130 berechnen,
	mit variabler Toleranz: +1
	Konstanter Antastvorschub für zweite Messung mit TT 130: +2
Maximal zulässiger Messfehler mit TT 130	MP6510
bei der Messung mit rotierendem Werkzeug	0,001 bis 0,999 [mm] (Empfehlung: 0,005 mm)
Notwendig für die Berechnung des Antastvor-	
schubs in Verbindung mit MP6570	
Antastvorschub für TT 130 bei stehendem	MP6520
Werkzeug	1 bis 3 000 [mm/min]
Radius-Vermessung mit TT 130: Abstand	MP6530.0 (Verfahrbereich 1) bis MP6530.2 (Verfahrbereich 3)
Werkzeug-Unterkante zu Stylus-Oberkante	0,001 bis 99,9999 [mm]
Sicherheits-Abstand in der Spindelachse	MP6540.0
über dem Stylus des TT 130 bei Vorpositio-	0,001 bis 30 000,000 [mm]
nierung	
Sicherheitszone in der Bearbeitungsebene	MP6540.1
um den Stylus des TT 130 bei Vorpositionie- rung	0,001 bis 30 000,000 [mm]
Eilgang im Antastzyklus für TT 130	MP6550 10 bis 10 000 [mm/min]
M-Funktion für Spindel-Orientierung bei Einzelschneiden-Vermessung	MP6560 0 bis 999
<u> </u>	פנב פוע ט
Messung mit rotierendem Werkzeug: Zuläs-	MP6570
sige Umlaufgeschwindigkeit am Fräserum- fang	1,000 bis 120,000 [m/min]
Notwendig für die Berechnung von Drehzahl	
und Antastvorschub	
Magazina mit vatiorandore Medimerica Mari	MP6572
Messung mit rotierendem Werkzeug: Maximal zulässige Drehzahl	0,000 bis 1 000,000 [U/min]
•	Bei Eingabe 0 wird die Drehzahl auf 1000 U/min begrenzt

3D-Tastsysteme und Digitalisieren

Koordinaten des TT-120-Stylus Mittelpunkts bezogen auf den Maschinen-Nullpunkt MP6580.0 (Verfahrbereich 1)

X-Achse

MP6580.1 (Verfahrbereich 1)

Y-Achse

MP6580.2 (Verfahrbereich 1)

Z-Achse

MP6581.0 (Verfahrbereich 2)

X-Achse

MP6581.1 (Verfahrbereich 2)

Y-Achse

MP6581.2 (Verfahrbereich 2)

Z-Achse

MP6582.0 (Verfahrbereich 3)

X-Achse

MP6582.1 (Verfahrbereich 3)

Y-Achse

MP6582.2 (Verfahrbereich 3)

Z-Achse

TNC-Anzeigen, TNC-Editor

Zyklus 17: Spindelorientierung am Zyklus-

Anfang

MP7160

Spindelorientierung durchführen: 0

Keine Spindelorientierung durchführen: 1

Programmierplatz einrichten

MP7210

TNC mit Maschine: 0

TNC als Programmierplatz mit aktiver PLC: **1**TNC als Programmierplatz mit nicht aktiver PLC: **2**

Dialog Stromunterbrechung nach dem Einschalten quittieren MP7212

Mit Taste quittieren: **0**

Automatisch quittieren: 1

DIN/ISO-Programmierung: Satznummern-Schrittweite festlegen MP7220

0 bis **150**

Anwahl von Datei-Typen sperren MP7224.0

Alle Datei-Typen über Softkey anwählbar: +0

Anwahl von HEIDENHAIN-Programme sperren (Softkey ZEIGE .H): +1
Anwahl von DIN/ISO-Programme sperren (Softkey ZEIGE .I): +2
Anwahl von Werkzeug-Tabellen sperren (Softkey ZEIGE .T): +4
Anwahl von Nullpunkt-Tabellen sperren (Softkey ZEIGE .D): +8
Anwahl von Paletten-Tabellen sperren (Softkey ZEIGE .P): +16

Anwahl von Text-Dateien sperren (Softkey ZEIGE .A): **+32**Anwahl von Punkte-Tabellen sperren (Softkey ZEIGE .PNT): **+64**

TNC-Anzeigen, TNC-Edit	tor
Editieren von Datei- Typen sperren Hinweis:	MP7224.1 Editor nicht sperren: +0 Editor sperren für
Falls Sie Datei-Typen sperren, löscht die TNC alle Dateien dieses Typs.	 HEIDENHAIN-Programme: +1 DIN/ISO-Programme: +2 Werkzeug-Tabellen: +4 Nullpunkt-Tabellen: +8 Paletten-Tabellen: +16 Text-Dateien: +32 Punkte-Tabellen: +64
Paletten-Tabellen konfigurieren	MP7226.0 Paletten-Tabelle nicht aktiv: 0 Anzahl der Paletten pro Paletten-Tabelle: 1 bis 255
Nullpunkt-Dateien konfigurieren	MP7226.1 Nullpunkt-Tabelle nicht aktiv: 0 Anzahl der Nullpunkte pro Nullpunkt-Tabelle: 1 bis 255
Programmlänge zur Programmüberprüfung	MP7229.0 Sätze 100 bis 9 999
Programmlänge, bis zu der FK-Sätze erlaubt sind	MP7229.1 Sätze 100 bis 9 999
Dialogsprache festlegen	MP7230 Englisch: 0 Deutsch: 1 Tschechisch: 2 Französisch: 3 Italienisch: 4 Spanisch: 5 Portugiesisch: 6 Schwedisch: 7 Dänisch: 8 Finnisch: 9 Niederländisch: 10 Polnisch: 11 Ungarisch: 12 reserviert: 13 Russisch: 14
Interne Uhrzeit der TNC einstellen	MP7235 Weltzeit (Greenwich time): 0 Mitteleuropäische Zeit (MEZ): 1 Mitteleuropäische Sommerzeit: 2 Zeit-Unterschied zur Weltzeit: -23 bis +23 [Stunden]

TNC-Anzeigen, TNC-Edit	tor
Werkzeug-Tabelle konfigurieren	MP7260 Nicht aktiv: 0 Anzahl der Werkzeuge, die die TNC beim Öffnen einer neuen Werkzeug-Tabelle generiert: 1 bis 254 Wenn Sie mehr als 254 Werkzeuge benötigen, können Sie die Werkzeug-Tabelle erweitern mit der Funktion N ZEILEN AM ENDE ANFÜGEN, siehe "Werkzeug-Daten", Seite 99
Werkzeug-Platztabelle konfigurieren	MP7261.0 (Magazin 1) MP7261.1 (Magazin 2) MP7261.2 (Magazin 3) MP7261.3 (Magazin 4) Nicht aktiv: 0 Anzahl der Plätze im Werkzeug-Magazin: 1 bis 254 Wird in MP 7261.1 bis MP7261.3 der Wert 0 eingetragen, wird nur ein Werkzeug-Magazin verwendet.
Werkzeug-Nummern indizieren, um zu einer Werkzeug-Nummer mehrere Korrektur- daten abzulegen	MP7262 Nicht indizieren: 0 Anzahl der erlaubten Indizierung: 1 bis 9
Softkey Platztabelle	MP7263 Softkey PLATZ TABELLE in der Werkzeug-Tabelle anzeigen: 0 Softkey PLATZ TABELLE in der Werkzeug-Tabelle nicht anzeigen: 1
Werkzeug-Tabelle konfigurieren (Nicht aufführen: 0); Spalten-Nummer in der Werkzeug-Tabelle für	MP7266.0 Werkzeug-Name – NAME: 0 bis 31; Spaltenbreite: 16 Zeichen MP7266.1 Werkzeug-Länge – L: 0 bis 31; Spaltenbreite: 11 Zeichen MP7266.2 Werkzeug-Radius – R: 0 bis 31; Spaltenbreite: 11 Zeichen MP7266.3 Werkzeug-Radius 2 – R2: 0 bis 31; Spaltenbreite: 11 Zeichen MP7266.4 Aufmaß Länge – DL: 0 bis 31; Spaltenbreite: 8 Zeichen MP7266.5 Aufmaß Radius – DR: 0 bis 31; Spaltenbreite: 8 Zeichen MP7266.6 Aufmaß Radius 2 – DR2: 0 bis 31; Spaltenbreite: 8 Zeichen MP7266.7 Werkzeug gesperrt – TL: 0 bis 31; Spaltenbreite: 2 Zeichen MP7266.8 Schwester-Werkzeug – RT: 0 bis 31; Spaltenbreite: 3 Zeichen MP7266.9 Maximale Standzeit – TIME1: 0 bis 31; Spaltenbreite: 5 Zeichen MP7266.10 Max. Standzeit bei TOOL CALL – TIME2: 0 bis 31; Spaltenbreite: 5 Zeichen MP7266.11 Aktuelle Standzeit – CUR. TIME: 0 bis 31; Spaltenbreite: 8 Zeichen

TNC-Anzeigen, TNC-Editor

Werkzeug-Tabelle konfigurieren (Nicht aufführen: 0); Spalten-Nummer in der Werkzeug-Tabelle für MP7266.12

Werkzeug-Kommentar – DOC: **0** bis **31**; Spaltenbreite: 16 Zeichen

MP7266.13

Anzahl der Schneiden – CUT.: 0 bis 31; Spaltenbreite: 4 Zeichen

MP7266.14

Toleranz für Verschleiß-Erkennung Werkzeug-Länge – LTOL: 0 bis 31; Spaltenbreite: 6 Zeichen

MP7266.15

Toleranz für Verschleiß-Erkennung Werkzeug-Radius – RTOL: 0 bis 31; Spaltenbreite: 6 Zeichen

MP7266.16

Schneid-Richtung - DIRECT.: 0 bis 31; Spaltenbreite: 7 Zeichen

MP7266.17

PLC-Status - PLC: 0 bis 31; Spaltenbreite: 9 Zeichen

MP7266.18

Zusätzlicher Versatz des Werkzeugs in der Werkzeugachse zu MP6530 – TT:L-OFFS: 0 bis 31;

Spaltenbreite: 11 Zeichen

MP7266.19

Versatz des Werkzeugs zwischen Stylus-Mitte und Werkzeug-Mitte - TT:R-OFFS: 0 bis 31;

Spaltenbreite: 11 Zeichen

MP7266.20

Toleranz für Bruch-Erkennung Werkzeug-Länge – LBREAK.: 0 bis 31; Spaltenbreite: 6 Zeichen

MP7266.21

Toleranz für Bruch-Erkennung Werkzeug-Radius – RBREAK: 0 bis 31; Spaltenbreite: 6 Zeichen

MP7266.22

Schneidenlänge (Zyklus 22) – LCUTS: **0** bis **31**; Spaltenbreite: 11 Zeichen

MP7266.23

Maximaler Eintauchwinkel (Zyklus 22) - ANGLE.: 0 bis 31; Spaltenbreite: 7 Zeichen

MP7266.24

Werkzeug-Typ –TYP: **0** bis **31**; Spaltenbreite: 5 Zeichen

MP7266.25

Werkzeug-Schneidstoff – TMAT: **0** bis **31**; Spaltenbreite: 16 Zeichen

MP7266.26

Schnittdaten-Tabelle - CDT: 0 bis 31; Spaltenbreite: 16 Zeichen

MP7266.27

PLC-Wert – PLC-VAL: **0** bis **31**; Spaltenbreite: 11 Zeichen

MP7266.28

Taster-Mittenversatz Hauptachse – CAL-OFF1: **0** bis **31**; Spaltenbreite: 11 Zeichen

MP7266.29

Taster-Mittenversatz Nebenachse - CALL-OFF2: 0 bis 31; Spaltenbreite: 11 Zeichen

MP7266.30

Spindelwinkel beim Kalibrieren – CALL-ANG: 0 bis 31; Spaltenbreite: 11 Zeichen

Werkzeug-Platztabelle konfigurieren; Spalten-Nummer in der Werkzeug-Tabelle für (nicht aufführen: 0)

MP7267.0

Werkzeugnummer – T: 0 bis 7

MP7267.1

Sonderwerkzeug – ST: 0 bis 7

MP7267.2

Festplatz – F: 0 bis 7

MP7267.3

Platz gesperrt - L: 0 bis 7

MP7267.4

PLC - Status - PLC: 0 bis 7

MP7267.5

Werkzeugname aus der Werkzeug-Tabelle – TNAME: 0 bis 7

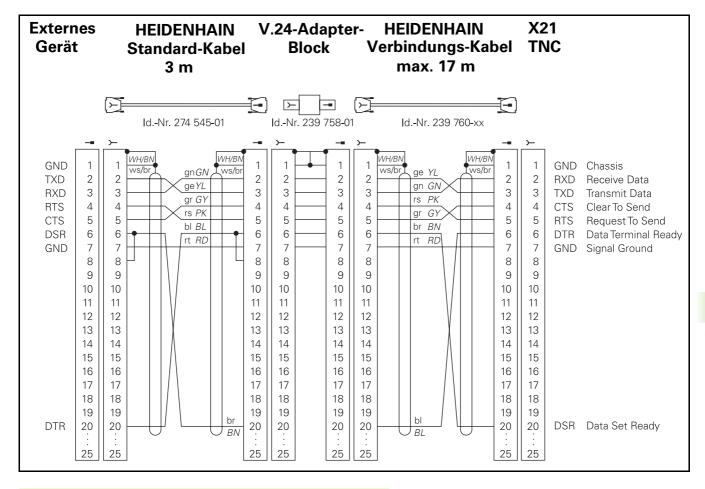
MP7267.6

Kommentar aus der Werkzeug-Tabelle – DOC: 0 bis 7

TNC-Anzeigen, TNC-Edi	itor
Betriebsart Manueller Betrieb: Anzeige des Vorschubs	MP7270 Vorschub F nur anzeigen, wenn Achsrichtungs-Taste gedrückt wird: 0 Vorschub F anzeigen, auch wenn keine Achsrichtungs-Taste gedrückt wird (Vorschub, der über Softkey F definiert wurde oder Vorschub der "langsamsten" Achse): 1
Dezimalzeichen festlegen	MP7280 Komma als Dezimalzeichen anzeigen: 0 Punkt als Dezimalzeichen anzeigen: 1
Anzeigemodus festle-	MP7281.0 Betriebsart Programm-Einspeichern/Editieren
gen	MP7281.1 Abarbeiten-Betriebsart Mehrzeilige Sätze immer vollständig darstellen: 0 Mehrzeilige Sätze vollständig darstellen, wenn mehrzeiliger Satz = aktiver Satz ist: 1 Mehrzeilige Sätze vollständig darstellen, wenn mehrzeiliger Satz editiert wird: 2
Positions-Anzeige in der Werkzeugachse	MP7285 Anzeige bezieht sich auf den Werkzeug-Bezugspunkt: 0 Anzeige in der Werkzeugachse bezieht sich auf die Werkzeug-Stirnfläche: 1
Anzeigeschritt für die Spindelposition	MP7289 0,1 °: 0 0,05 °: 1 0,01 °: 2 0,005 °: 3 0,001 °: 4 0,0005 °: 5 0,0001 °: 6
Anzeigeschritt	MP7290.0 (X-Achse) bis MP7290.8 (9. Achse) 0,1 mm: 0 0,05 mm: 1 0,01 mm: 2 0,005 mm: 3 0,001 mm: 4 0,0005 mm: 5 0,0001 mm: 6
Bezugspunkt-Setzen sperren	MP7295 Bezugspunkt-Setzen nicht sperren: +0 Bezugspunkt-Setzen in der X-Achse sperren: +1 Bezugspunkt-Setzen in der Y-Achse sperren: +2 Bezugspunkt-Setzen in der Z-Achse sperren: +4 Bezugspunkt-Setzen in der IV. Achse sperren: +8 Bezugspunkt-Setzen in der V. Achse sperren: +16 Bezugspunkt-Setzen in der 6. Achse sperren: +32 Bezugspunkt-Setzen in der 7. Achse sperren: +64 Bezugspunkt-Setzen in der 8. Achse sperren: +128 Bezugspunkt-Setzen in der 9. Achse sperren: +256
Bezugspunkt-Setzen mit orangenen Achsta- sten sperren	MP7296 Bezugspunkt-Setzen nicht sperren: 0 Bezugspunkt-Setzen über orangefarbige Achstasten sperren: 1

Status-Anzeige, Q-	MP7300
Parameter und Werk- zeugdaten rücksetzen	Alles rücksetzen, wenn Programm angewählt wird: 0 Alles rücksetzen, wenn Programm angewählt wird und bei M02, M30, END PGM: 1 Nur Status-Anzeige und Werkzeugdaten rücksetzen, wenn Programm angewählt wird: 2 Nur Status-Anzeige und Werkzeugdaten rücksetzen, wenn Programm angewählt wird und bei M02, M30, END PGM: 3 Status-Anzeige und Q-Parameter rücksetzen, wenn Programm angewählt wird: 4 Status-Anzeige und Q-Parameter rücksetzen, wenn Programm angewählt wird und bei M02, M30, END PGM: 5 Status-Anzeige rücksetzen, wenn Programm angewählt wird: 6 Status-Anzeige rücksetzen, wenn Programm angewählt wird und bei M02, M30, END PGM:
Festlegungen für Grafik-Darstellung	MP7310 Grafische Darstellung in drei Ebenen nach DIN 6, Teil 1, Projektionsmethode 1: +0 Grafische Darstellung in drei Ebenen nach DIN 6, Teil 1, Projektionsmethode 2: +1 Koordinatensystem für grafische Darstellung nicht drehen: +0 Koordinatensystem für grafische Darstellung um 90° drehen: +2 Neue BLK FORM bei Zykl. 7 NULLPUNKT bezogen auf den alten Nullpunkt anzeigen: +0 Neue BLK FORM bei Zykl. 7 NULLPUNKT bezogen auf den neuen Nullpunkt anzeigen: +4 Cursorposition bei der Darstellung in drei Ebenen nicht anzeigen: +0 Cursorposition bei der Darstellung in drei Ebenen anzeigen: +8
Grafische Simulation ohne programmierte Spindelachse: Werk- zeug-Radius	MP7315 0 bis 99 999,9999 [mm]
Grafische Simulation ohne programmierte Spindelachse: Eindringtiefe	MP7316 0 bis 99 999,9999 [mm]
Grafische Simulation ohne programmierte Spindelachse: M-Funk- tion für Start	MP7317.0 0 bis 88 (0: Funktion nicht aktiv)
Grafische Simulation ohne programmierte Spindelachse: M-Funktion für Ende	MP7317.1 0 bis 88 (0: Funktion nicht aktiv)
Bildschirmschoner einstellen	MP7392 0 bis 99 [min] (0: Funktion nicht aktiv)
Geben Sie die Zeit ein, nach der die TNC den Bildschirmschoner akti- vieren soll	

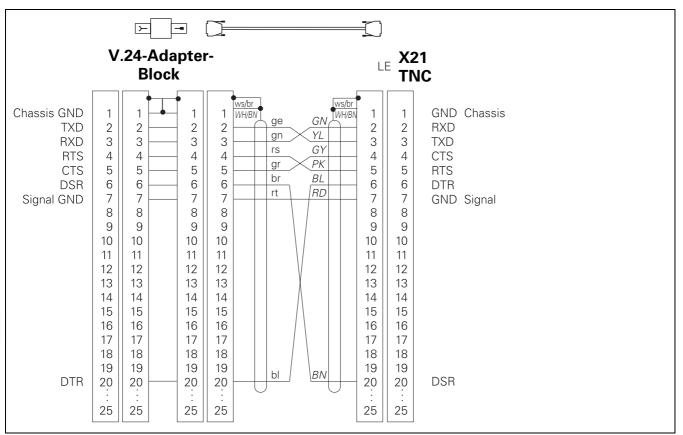
Wirksamkeit Zyklus 11 MASSFAKTOR	MP7410
Wirdsanken Zykius II WAGOI AKTON	MASSFAKTOR wirkt in 3 Achsen: 0
	MASSFAKTOR wirkt nur in der Bearbeitungsebene: 1
Werkzeugdaten/Kalibrierdaten verwalten	MP7411
	Aktuelle Werkzeugdaten mit Kalibrierdaten des 3D-Tastsystems über-
	schreiben: +0 Aktuelle Werkzeugdaten bleiben erhalten: +1
	Kalibrierdaten im Kalibriermenü verwalten: +0
	Kalibrierdaten in der Werkzeug-Tabelle verwalten: +2
SL-Zyklen	MP7420
	Kanal um die Kontur fräsen im Uhrzeigersinn für Inseln und im Gegen-Uhrzeigersinn für Taschen: +0
	Kanal um die Kontur fräsen im Uhrzeigersinn für Taschen und im
	Gegen-Uhrzeigersinn für Inseln: +1
	Konturkanal vor dem Ausräumen fräsen: +0
	Konturkanal nach dem Ausräumen fräsen: +2 Korrigierte Konturen vereinigen: +0
	Unkorrigierte Konturen vereinigen: +4
	Ausräumen jeweils bis zur Taschentiefe: +0
	Tasche vor jeder weiteren Zustellung vollständig umfräsen und ausräumen: +8
	Für die Zyklen 6, 15, 16, 21, 22, 23, 24 gilt: Werkzeug am Zyklusende auf die letzte vor dem Zyklus-Aufruf program mierte Position fahren: +0 Werkzeug zum Zyklus-Ende nur in der Spinddelachse freifahren: +16
Zyklus 4 TASCHENFRAESEN und Zyklus 5 KREISTASCHE: Überlappungsfaktor	MP7430 0,1 bis 1,414
Zulässige Abweichung des Kreisradius am Kreis-Endpunkt im Vergleich zum Kreis- Anfangspunkt	MP7431 0,0001 bis 0,016 [mm]
Wirkungsweise verschiedener Zusatz-	MP7440
Funktionen M	Programmlauf-Halt bei M06: +0 Kein Programmlauf-Halt bei M06: +1
Hinweis:	Kein Zyklus-Aufruf mit M89: +0 Zyklus-Aufruf mit M89: +2
D: E	
Die k _V -Faktoren werden vom Maschinenher-	Programmlauf-Halt bei M-Funktionen: +0
steller festgelegt. Beachten Sie Ihr Maschinen-	Programmlauf-Halt bei M-Funktionen: +0 Kein Programmlauf-Halt bei M-Funktionen: +4
	Kein Programmlauf-Halt bei M-Funktionen: +4 k _V -Faktoren über M105 und M106 nicht umschaltbar: +0
steller festgelegt. Beachten Sie Ihr Maschinen-	Kein Programmlauf-Halt bei M-Funktionen: +4 k _V -Faktoren über M105 und M106 nicht umschaltbar: +0 k _V -Faktoren über M105 und M106 umschaltbar: +8
steller festgelegt. Beachten Sie Ihr Maschinen-	Kein Programmlauf-Halt bei M-Funktionen: +4 k _V -Faktoren über M105 und M106 nicht umschaltbar: +0 k _V -Faktoren über M105 und M106 umschaltbar: +8 Vorschub in der Werkzeugachse mit M103 F
steller festgelegt. Beachten Sie Ihr Maschinen-	Kein Programmlauf-Halt bei M-Funktionen: +4 k _V -Faktoren über M105 und M106 nicht umschaltbar: +0 k _V -Faktoren über M105 und M106 umschaltbar: +8
steller festgelegt. Beachten Sie Ihr Maschinen-	Kein Programmlauf-Halt bei M-Funktionen: +4 k _V -Faktoren über M105 und M106 nicht umschaltbar: +0 k _V -Faktoren über M105 und M106 umschaltbar: +8 Vorschub in der Werkzeugachse mit M103 F Reduzieren nicht aktiv: +0


1 1

Bearbeitung und Programmlauf	
Fehlermeldung bei Zyklusaufruf	MP7441 Fehlermeldung ausgeben, wenn kein M3/M4 aktiv: 0 Fehlermeldung unterdrücken, wenn kein M3/M4 aktiv: +1 reserviert: +2 Fehlermeldung unterdrücken, wenn Tiefe positiv programmiert: +0 Fehlermeldung ausgeben, wenn Tiefe positiv programmiert: +4
M-Funktion für Spindel-Orientierung in den Bearbeitungszyklen	MP7442 Funktion inaktiv: 0 Orientierung direkt über die NC: -1 M-Funktion für die Spindel-Orientierung: 1 bis 999
Maximale Bahngeschwindigkeit bei Vor- schub-Override 100% in den Programmlauf- Betriebsarten	MP7470 0 bis 99 999 [mm/min]
Vorschub für Ausgleichsbewegungen von Drehachsen	MP7471 0 bis 99 999 [mm/min]
Nullpunkte aus der Nullpunkt-Tabelle bezie- hen sich auf den	MP7475 Werkstück-Nullpunkt: 0 Maschinen-Nullpunkt: 1
Abarbeiten von Paletten-Tabellen	MP7683 Programmlauf Einzelsatz: Bei jedem NC-Start eine Zeile des aktiven NC-Programms abarbeiten, Programmlauf Satzfolge: Bei jedem NC-Start das komplette NC-Programm abarbeiten: +0 Programmlauf Einzelsatz: Bei jedem NC-Start das komplette NC-Programm abarbeiten: +1 Programmlauf Satzfolge: Bei jedem NC-Start alle NC-Programm bis zur nächsten Palette abarbeiten: +2 Programmlauf Satzfolge: Bei jedem NC-Start die komplette Paletten-Datei abarbeiten: +4 Programmlauf Satzfolge: Wenn komplette Paletten-Datei abarbeiten gewählt ist (+4), dann Paletten-Datei endlos abarbeiten, d.h. bis Sie NC-Stop drücken: +8 Paletten-Tabelle kann mit Softkey EDIT PALETTE editiert werden: +16 Softkey AUTOSTART anzeigen: +32 Paletten-Tabelle oder NC-Programm wird angezeigt: +64

13.2 Steckerbelegung und Anschlusskabel für Datenschnittstellen

Schnittstelle V.24/RS-232-C HEIDEHAIN-Geräte

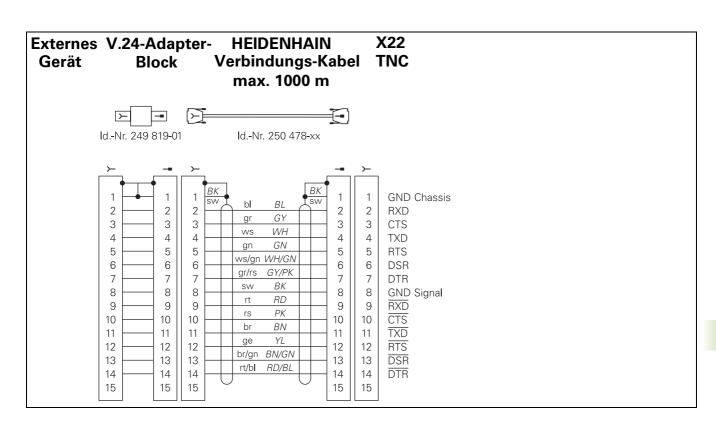


Die Stecker-Belegungen an der TNC-Logikeinheit (X21) und am Adapter-Block sind verschieden.

Fremdgeräte

Die Stecker-Belegung am Fremdgerät kann erheblich von der Stecker-Belegung eines HEIDENHAIN-Gerätes abweichen.

Sie ist vom Gerät und der Übertragungsart abhängig. Entnehmen Sie bitte die Steckerbelegung des Adapter-Blocks der untenstehenden Abbildung.



Schnittstelle V.11/RS-422

An der V.11-Schnittstelle werden nur Fremdgeräte angeschlossen.

Die Steckerbelegungen von TNC-Logikeinheit (X22) und Adapter-Block sind identisch.

Ethernet-Schnittstelle RJ45-Buchse (Option)

Maximale Kabellänge:ungeschirmt: 100 m geschirmt: 400 m

Pin	Signal	Beschreibung
1	TX+	Transmit Data
2	TX-	Transmit Data
3	REC+	Receive Data
4	frei	
5	frei	
6	REC-	Receive Data
7	frei	
8	frei	

Ethernet-Schnittstelle BNC-Buchse (Option)

Maximale Kabellänge: 180 m

Pin	Signal	Beschreibung
1	Daten (RXI, TXO)	Innenleiter (Seele)
2	GND	Abschirmung

13.3 Technische Information

Die TNC-Charakteristik	
Kurzbeschreibung	Bahnsteuerung für Maschinen mit bis zu 9 Achsen, zusätzlich Spindel-Orientierung; TNC 426 CB, TNC 430 CA mit analoger Drehzahl-Regelung TNC 426 PB, TNC 430 PB mit digitaler Drehzahl-Regelung und integriertem Stromregler
Komponenten	■ Logik-Einheit
	■ Bedienfeld
	■ Farbbildschirm mit Softkeys
Datenschnittstellen	■ V.24 / RS-232-C
	■ V.11 / RS-422
	Ethernet-Schnittstelle (Option)
	■ Erweiterte Datenschnittstelle mit LSV-2-Protokoll zum externenBedie- nen der TNC über die Datenschnittstelle mit HEIDENHAIN-Software TNCremo
Gleichzeitig verfahrende Achsen bei Kontur- elementen	■ Geraden bis zu 5 Achsen Exportversionen TNC 426 CF, TNC 426 PF, TNC 430 CE, TNC 430 PE: 4 Achsen
	■ Kreise bis zu 3 Achsen (bei geschwenkter Bearbeitungsebene)
	■ Schraubenlinie 3 Achsen
"Look Ahead"	 Definiertes Verrunden von unstetigen Konturübergängen (z.B. bei 3D- Formen)
	 Kollisionsbetrachtung mit dem SL-Zyklus für "offene Konturen" Für radiuskorrigierte Positionen mit M120 LA-Vorausberechnung der Geometrie zur Vorschubanpassung
Parallelbetrieb	Editieren, während die TNC ein Bearbeitungs-Programm ausführt
Grafische Darstellungen	■ Programmier-Grafik
·	■ Test-Grafik
	■ Programmlauf-Grafik
Datei-Typen	■ HEIDENHAIN-Klartext-Dialog-Programme
	■ DIN/ISO-Programme
	■ Werkzeug-Tabellen
	■ Schnittdaten-Tabellen
	■ Nullpunkt-Tabellen
	■ Punkte-Tabellen
	■ Paletten-Dateien
	■ Text-Dateien
	■ System-Dateien
Programm-Speicher	■ Festplatte mit 1.500 MByte für NC-Programme
	■ Beliebig viele Dateien verwaltbar

Die TNC-Charakteristik		
Werkzeug-Definitionen	Bis zu 254 Werkzeuge im Programm, beliebig viele Werkzeuge in Tabellen	
Programmierhilfen	 Funktionen zum Anfahren und Verlassen der Kontur Integrierter Taschenrechner Gliedern von Programmen Kommentar-Sätze Direkte Hilfe zu anstehenden Fehlermeldungen (kontextsensitive Hilf 	
Programmierbare Funktionen		
Konturelemente	 Gerade Fase Kreisbahn Kreismittelpunkt Kreisradius Tangential anschließende Kreisbahn Ecken-Runden Geraden und Kreisbahnen zum Anfahren und Verlassen der Kontur B-Spline 	
Freie Kontur-Programmierung	Für alle Konturelemente, für die keine NC-gerechte Bemaßung vorliegt	
Dreidimensionale Werkzeug-Radiuskorrektur	Zur nachträglichen Änderung von Werkzeugdaten, ohne das Programm erneut berechnen zu müssen	
Programmsprünge	UnterprogrammProgrammteil-WiederholungBeliebiges Programm als Unterprogramm	
Bearbeitungs-Zyklen	 Bohrzyklen zum Bohren, Tiefbohren, Reiben, Ausdrehen, Senken Gewindebohren mit und ohne Ausgleichsfutter Zyklen zum Fräsen von Innen- und Außengewinden Rechteck- und Kreistasche schruppen und schlichten Zyklen zum Abzeilen ebener und schiefwinkliger Flächen Zyklen zum Fräsen gerader und kreisförmiger Nuten Punktemuster auf Kreis und Linien Beliebige Taschen und Inseln bearbeiten Zylinder-Mantel-Interpolation 	
Koordinaten-Umrechnungen	 Nullpunkt-Verschiebung Spiegeln Drehung Maßfaktor Bearbeitungsebene schwenken 	

Programmierbare Funktionen	
3D-Tastsystem-Einsatz	 Antastfunktionen zur Kompensation einer Werkstück-Schieflage Antastfunktionen zum Bezugspunkt-Setzen Antastfunktionen zur automatischen Werkstück-Kontrolle Digitalisieren von 3D-Formen mit messendem Tastsystem (Option) Digitalisieren von 3D-Formen mit schaltendem Tastsystem (Option) Automatische Werkzeug-Vermessung mit TT 130
Mathematische Funktionen	■ Grundrechenarten +, −, x und / ■ Dreiecksberechnungen sin, cos, tan, arcsin, arccos, arctan ■ Wurzel aus Werten und Quadratsummen ■ Quadrieren von Werten (SQ) ■ Potenzieren von Werten (^) ■ Konstante PI (3,14) ■ Logarithmus-Funktionen ■ Exponential-Funktion ■ Negativen Wert bilden (NEG) ■ Ganze Zahl bilden (INT) ■ Absoluten Wert bilden (ABS) ■ Vorkommastellen abschneiden (FRAC) ■ Funktionen zur Kreisberechnung ■ Vergleiche größer, kleiner, gleich, ungleich

TNC-Daten	
Satz-Verarbeitungszeit	4 ms/Satz
Regelkreis-Zykluszeit	 TNC 426 CB, TNC 430 CA: Bahninterpolation: 3 ms Feininterpolation: 0,6 ms (Lage) TNC 426 PB, TNC 430 PB: Bahninterpolation: 3 ms Feininterpolation: 0,6 ms (Drehzahl) TNC M, TNC 430 M: Bahninterpolation: 3 ms Feininterpolation: 3 ms Feininterpolation: 0,6 ms (Drehzahl)
Datenübertragungs-Geschwindigkeit	Maximal 115.200 Baud über V.24/V.11 Maximal 1 Mbaud über Ethernet-Schnittstelle (Option)
Umgebungstemperatur	■ Betrieb: 0°C bis +45°C ■ Lagerung:–30°C bis +70°C
Verfahrweg	Maximal 100 m (3 937 Zoll)
Verfahrgeschwindigkeit	Maximal 300 m/min (11 811 Zoll/min)
Spindeldrehzahl	Maximal 99 999 U/min

TNC-Daten		
Eingabebereich	■ Minimum 0,1µm (0,00001 Zoll) bzw. 0,0001° ■ Maximum 99 999,999 mm (3.937 Zoll) bzw. 99 999,999°	
Eingabe-Formate und Einheiten von TNC-Funk	ctionen	
Positionen, Koordinaten, Kreisradien, Fasen- längen	-99 999.9999 bis +99 999.9999 (5,4: Vorkommastellen,Nachkommastellen) [mm]	
Werkzeug-Nummern	0 bis 32 767,9 (5,1)	
Werkzeug-Namen	16 Zeichen, bei TOOL CALL zwischen "" geschrieben. Erlaubte Sonderzeichen: #, \$, %, &, -	
Delta-Werte für Werkzeug-Korrekturen	-99,9999 bis +99,9999 (2,4) [mm]	
Spindeldrehzahlen	0 bis 99 999,999 (5,3) [U/min]	
Vorschübe	0 bis 99 999,999 (5,3) [mm/min] oder [mm/U]	
Verweilzeit in Zyklus 9	0 bis 3 600,000 (4,3) [s]	
Gewindesteigung in diversen Zyklen	-99,9999 bis +99,9999 (2,4) [mm]	
Winkel für Spindel-Orientierung	0 bis 360,0000 (3,4) [°]	
Winkel für Polar-Koordinaten, Rotation, Ebene schwenken	-360,0000 bis 360,0000 (3,4) [°]	
Polarkoordinaten-Winkel für Schraubenlinien-Interpolation (CP)	-5 400,0000 bis 5 400,0000 (4,4) [°]	
Nullpunkt-Nummern in Zyklus 7	0 bis 2 999 (4,0)	
Maßfaktor in Zyklen 11 und 26	0,000001 bis 99,999999 (2,6)	
Zusatz-Funktionen M	0 bis 999 (1,0)	
Q-Parameter-Nummern	0 bis 399 (1,0)	
Q-Parameter-Werte	-99 999,9999 bis +99 999,9999 (5,4)	
Marken (LBL) für Programm-Sprünge	0 bis 254 (3,0)	
Anzahl von Programmteil-Wiederholungen REP	1 bis 65 534 (5,0)	
Fehler-Nummer bei Q-Parameter-Funktion FN14	0 bis 1 099 (4,0)	
Digitalisierparameter in Digitalisierzyklen	0 bis 5,0000 (1,4) [mm]	
Spline-Parameter K	-9,9999999 bis +9,99999999 (1,8)	
Exponent für Spline-Parameter	-255 bis 255 (3,0)	
Normalenvektoren N und T bei 3D-Korrektur	-9,9999999 bis +9,99999999 (1,8)	

13.4 Puffer-Batterie wechseln

Wenn die Steuerung ausgeschaltet ist, versorgt eine Puffer-Batterie die TNC mit Strom, um Daten im RAM-Speicher nicht zu verlieren.

Wenn die TNC die Meldung **Puffer-Batterie wechseln** anzeigt, müssen Sie die Batterien austauschen:

Zum Wechseln der Puffer-Batterie Maschine und TNC ausschalten!

Die Puffer-Batterie darf nur von entsprechend geschultem Personal gewechselt werden!

TNC 426 CB/PB, TNC 430 CA/PA

Batterie-Typ:3 Mignon-Zellen, leak-proof, IEC-Bezeichnung "LR6"

- 1 Logik-Einheit öffnen, die Pufferbatterien befinden sich neben der Stromversorgung
- 2 Batteriefach öffnen: Mit einem Schraubendreher die Abdeckung durch eine Viertelumdrehung gegen den Uhrzeigersinn öffnen
- **3** Batterien wechseln und sicherstellen, dass das Batteriefach anschließend wieder richtig verschlossen wurde

TNC 426 M, TNC 430 M

Batterie-Typ:1 Lithium-Batterie, Typ CR 2450N (Renata) Id.-Nr. 315 878-01

- 1 Logik-Einheit öffnen, die Pufferbatterie befindet sich rechts neben den EPROM's der NC-Software
- 2 Batterie wechseln; neue Batterie kann nur in der richtigen Lage eingesetzt werden

Symbole	В	D
3D-Darstellung 406	Bahnbewegungen	Darstellung in 3 Ebenen 405
3D-Korrektur 114	Freie Kontur-Programmierung	Datei-Status 41, 51
Delta-Werte 116	FK: Siehe FK-Programmierung	Datei-Verwaltung
Face Milling 116	Polarkoordinaten	aufrufen 41, 51
Normierter Vektor 115	Gerade 152	Datei kopieren 43, 54
Peripheral Milling 118	Kreisbahn mit tangetialem	Datei löschen 42, 56
Werkzeug-Formen 115	Anschluß 153	Datei schützen 48, 58
Werkzeug-Orientierung 116	Kreisbahn um Pol CC 152	Datei umbenennen 46, 58
3	Übersicht 151	Datei wählen 42, 52
Α	rechtwinklige Koordinaten	Dateien markieren 57
Antastzyklen: Siehe Benutzer-	Gerade 140	Dateien überschreiben 61
Handbuch Tastsystem-Zyklen	Kreisbahn mit festgelegtem	Datei-Name 39
Anwender-Parameter 452	Radius 145	Datei-Typ 39
Anwenderparameter	Kreisbahn mit tangentialem	erweiterte 49
allgemeine	Anschluss 146	Übersicht 50
für 3D-Tastsysteme und	Kreisbahn um Kreismittelpunkt	externe Datenübertragung 44, 59
Digitalisieren 453	CC 144	konigurieren über MOD 437
für Bearbeitung und	Übersicht 139	Standard 41
Programmlauf 463	Bahnfunktionen	Tabellen kopieren 54
für externe	Grundlagen 128	Verzeichnisse 49
Datenübertragung 453	Kreise und Kreisbögen 130	erstellen 53
für TNC-Anzeigen,	Vorpositionieren 131	kopieren 55
TNC-Editor 457	BAUD-Rate einstellen 426	Datenschnittstelle
maschinenspezifische 438	Bearbeitung unterbrechen 413	einrichten 426
Arbeitsraum-Überwachung 410, 439	Bearbeitungsebene	Steckerbelegungen 465
ASCII-Dateien 74	schwenken 24, 334	zuweisen 427
Ausdrehen 217	Leitfaden 337	Datensicherung 40
Ausräumen: Siehe SL-Zyklen, Räumen	manuell 24	Datenübertragungs-
Ausschalten 17	Zyklus 334	Geschwindigkeit 426
Automatische Schnittdaten-	Bearbeitungszeit ermitteln 408	Datenübertragungs-Software 428
Berechnung 103, 120	Bedienfeld 5	Dialog 66
Automatische Werkzeug-	Betriebsarten 6	Digitalisierdaten abarbeiten 315
Vermessung 102	Betriebszeiten 447	Draufsicht 405
Automatischer Programmstart 418	Bezugspunkt setzen 22	Drehachse
	im Programmlauf 384	Anzeige reduzieren: M94 192
	ohne 3D-Tastsystem 22	wegoptimiert verfahren:
	Bezugspunkt wählen 38	M126 191
	Bezugssystem 35	Drehung 331
	Bildschirm 3	_ · · · · · · · · · · · · · · · · · · ·
	Bildschirm-Aufteilung 4	
	Bohren 213, 219, 223	
	Bohrfräsen 225	

Bohrgewindefräsen ... 244

Bohrzyklen ... 210

E	G	L
Ecken-Runden 142	Gerade 140, 152	Langloch fräsen 274
Eilgang 98	Gewindebohren	Laserschneiden,
Einschalten 16	mit Ausgleichsfutter 227, 228	Zusatz-Funktionen 198
Ellipse 395	ohne Ausgleichsfutter 230, 231,	Lochkreis 281
Ethernet-Schnittstelle	234	Look ahead 185
Anschluss-Möglichkeiten 431	Gewindefräsen außen 251	L-Satz-Generierung 444
Einführung 431	Gewindefräsen Grundlagen 236	
konfigurieren 432	Gewindefräsen innen 238	M
Netzlaufwerke verbinden und	Gewindeschneiden 233	Maschinenachsen verfahren 18
lösen 61	Gliedern von Programmen 72	mit dem elektronischen
Netzwerk-Drucker 62, 434	Grafiken	Handrad 19
Externer Zugriff 449	Ansichten 404	mit externen Richtungstasten 18
_	Ausschnitts-Vergrößerung 406	schrittweise 20
F	beim Programmieren 70	Maschinenfeste Koordinaten: M91,
Fase 141	Ausschnittsvergrößerung 71	M92 178
Fehlermeldungen 79	Grafische Simulation 408	Maschinen-Parameter
Hilfe bei 79	Groß-/Kleinschreibung	für 3D-Tastsysteme 453
Festplatte 39	umschalten 75	für Bearbeitung und
FK-Programm in Klartext-Programm	Grundlagen 34	Programmlauf 463
konvertieren 167		für externe
FK-Programmierung 158	H	Datenübertragung 453
Dialog eröffnen 160	Handrad-Positionierungen	für TNC-Anzeigen und den TNC-
Eingabemöglichkeiten	überlagern: M118 187	Editor 457
Endpunkte 162	Hauptachsen 35	Maßeinheit wählen 64
Geschlossene Konturen 164	Helix-Bohrgewindefräsen 248	Maßfaktor 332
Hilfspunkte 164	Helix-Interpolation 153	Maßfaktor achsspezifisch 333
Kreisdaten 163	Help-Dateien anzeigen 446	M-Funktionen: Siehe Zusatz-Funktionen
Relativbezüge 165	Hilfe bei Fehlermeldungen 79	MOD-Funktion
Richtung und Länge von Konturelementen 162	1	Ubersicht 422 verlassen 422
FK-Programm konvertieren 167	Indizierte Werkzeuge 105	wählen 422
Geraden 160	maizierte vverkzeuge 105	Walliell 422
Grafik 159	K	N
Grundlagen 158	Klammerrechnung 387	NC und PLC synchronisieren 383
Kreisbahnen 161	Klartext-Dialog 66	NC-Fehlermeldungen 79
FN 26: TABOPEN: Frei definierbare	Kommentare einfügen 73	Netzwerk-Anschluß 61
Tabelle öffnen 385	Konstante	Netzwerk-Drucker 62, 434
FN 27: TABWRITE: Frei definierbare	Bahngeschwindigkeit: M90 181	Netzwerk-Einstellungen 432
Tabelle beschreiben 385	Kontur anfahren 133	Nullpunkt-Verschiebung
FN 28: TABREAD: Frei definierbare	Kontur verlassen 133	im Programm 324
Tabelle lesen 386	Kontur-Zug 297	mit Nullpunkt-Tabellen 325
FN xx: Siehe Q-Parameter-	Koordinaten-Umrechnung 323	Nutenfräsen 272
Programmierung	Kopieren von Programmteilen 69	pendelnd 274
FN14: ERROR: Fehlermeldungen	Kreisbahn 144, 145, 146, 152, 153	
ausgeben 372	Kreisberechnungen 367	0
FN18: SYSREAD: Systemdaten	Kreismittelpunkt 143	Offene Konturecken: M98 183
lesen 377	Kreistasche	Options-Nummer 424
FN20: WAIT FOR: NC und PLC	schlichten 268	
synchronisieren 383	schruppen 266	
FN25: PRESET: Neuen Bezugspunkt	Kreiszapfen schlichten 270	
setzen 384	Kugel 399	
Formatinformationen 472		

Paletten-Tabelle	Punktemuster	Senkgewindefräsen 240
abarbeiten 82, 94	auf Kreis 281	SL-Zyklen
Anwendung 80, 84	auf Linien 283	Ausräumen 294
Übernehmen von	Übersicht 280	Grundlagen 287
Koordinaten 80, 85	Punkte-Tabellen 206	Kontur-Daten 292
wählen und verlassen 82, 89		Kontur-Zug 297
Parameter-Programmierung:	Q	Schlichten Seite 296
Siehe Q-Parameter-Programmierung	Q-Paramete-Programmierung	Schlichten Tiefe 295
Pfad 49	Mathematische	Überlagerte Konturen 289
Platz-Tabelle 106	Grundfunktionen 363	Vorbohren 293
PLC und NC synchronisieren 383	Programmierhinweise 360	Zyklus Kontur 289
Polarkoordinaten	Wenn/dann-Entscheidungen 368	Software-Nummer 424
Grundlagen 36	Winkelfunktionen 365	Spiegeln 329
Programmieren 151	Zusätzliche Funktionen 371	Spindeldrehzahl ändern 21
Positionieren	Q-Parameter	Spindeldrehzahl eingeben 107
bei geschwenkter	formatiert ausgeben 375	Spindel-Orientierung 343
Bearbeitungsebene 180, 197	kontrollieren 370	Spline-Interpolation 173
mit Handeingabe 30	unformatiert ausgeben 374	Eingabebereich 174
Programm	vorbelegte 390	Satzformat 173
-Aufbau 63	Werte an PLC übergeben 383	Status-Anzeige 9
editieren 67	Q-Parameter-Programmierung 360	allgemeine 9
gliedern 72	Kreisberechnungen 367	zusätzliche 10
neues eröffnen 64		Steckerbelegung
Programm-Aufruf	R	Datenschnittstellen 465
Beliebiges Programm als	Radiuskorrektur 111	
Unterprogramm 349	Außenecken, Innenecken 113	T
über Zyklus 342	Eingabe 112	Taschenrechner 78
Programmier-Grafik 159	Rechtecktasche	Tastsystem-Überwachung 189
Programmlauf	Schlichten 262	Teach In 140
ausführen 412	Schruppen 260	Teilefamilien 362
fortsetzen nach	Rechteckzapfen schlichten 264	Teleservice 448
Unterbrechung 415	Referenzpunkte überfahren 16	Text-Datei
Sätze überspringen 419	Regelfläche 318	Editier-Funktionen 74
Satzvorlauf 416	Reiben 215	Lösch-Funktionen 76
Übersicht 412	Rohteil definieren 64	öffnen und verlassen 74
unterbrechen 413	Rückwärts-Senken 221	Textteile finden 77
Programm-Name: Siehe Datei-	Rückzug von der Kontur 188	Tiefbohren 212, 223
Verwaltung, Datei-Name	Runde Nut fräsen 276	Tiefenschlichten 295
Programmteile kopieren 69		TNC 426, TNC 430 2
Programmteil-Wiederholung 348	S	TNCremo 428, 429
Programm-Test	Satz	TNCremoNT 428, 429
ausführen 410	einfügen, ändern 68	Trigonometrie 365
bis zu einem	löschen 67	
bestimmten Satz 411	Satzvorlauf 416	U
Übersicht 409	Schlüssel-Zahlen 425	Universal-Bohren 219, 223
Programm-Verwaltung: Siehe Datei-	Schnittdaten-Berechnung 120	Unterprogramm 347
Verwaltung	Schnittdaten-Tabelle 120	
Puffer-Batterie wechseln 473	Schraubenlinie 153	
	Schwenkachsen 193, 194	
	Schwenken der	
	Bearbeitungsebene 24, 334	
	Seitenschlichten 296	

S

Ρ

V	Z
Verschachtelungen 350	Zubehör 13
Verweilzeit 341	Zusatzachsen 35
Verzeichnis 49, 53	Zusatz-Funktionen
erstellen 53	eingeben 176
kopieren 55	für das Bahnverhalten 181
löschen 56	für Drehachsen 191
Vollkreis 144	für Koordinatenangaben 178
Vorschub 21	für Laser-Schneidmaschinen 198
ändern 21	für Programmlauf-Kontrolle 177
bei Drehachsen, M116 191	für Spindel und Kühlmittel 177
Vorschub in Millimeter/Spindel-	Zyklen und Punkte-Tabellen 208
Umdrehung: M136 184	Zyklus
Vorschubfaktor für	aufrufen 204
Eintauchbewegungen: M103 183	definieren 202
Emitadonisovvogangom ivi ioo ioo	Gruppen 203
W	Zylinder 397
Werkstück-Material festlegen 121	Zylinder 337 Zylinder-Mantel 299, 301
Werkstück-Positionen	24111401 141411101 200, 001
absolute 37	
inkrementale 37	
Werkzeug-Bewegungen	
programmieren 66	
Werkzeug-Daten	
aufrufen 107	
Delta-Werte 100	
in die Tabelle eingeben 101	
indizieren 105	
ins Programm eingeben 100	
Werkzeug-Korrektur	
dreidimensionale 114	
Länge 110	
Radius 111	
Werkzeug-Länge 99	
Werkzeug-Name 99	
Werkzeug-Nummer 99	
Werkzeug-Radius 100	
Werkzeug-Schneidstoff 103, 122	
Werkzeug-Tabelle	
editieren, verlassen 103	
Editierfunktionen 104	
Eingabemöglichkeiten 101	
Werkzeugtyp wählen 103	
Werkzeug-Vermessung 102	
Werkzeugwechsel 108	
Wiederanfahren an die Kontur 417	
Winkelfunktionen 365	
WMAT.TAB 121	

Übersichtstabelle: Zusatz-Funktionen

М	Wirkung Wirkung am Satz -	Anfang	Ende	Seite
M00	Programmlauf HALT/Spindel HALT/Kühlmittel AUS		-	Seite 177
M01	Wahlweiser Programmlauf HALT		-	Seite 420
M02	Programmlauf HALT/Spindel HALT/Kühlmittel AUS/ggf. Löschen der Status-Anzeige (abhängig von Maschinen-Parameter)/Rücksprung zu Satz 1			Seite 177
M03 M04 M05	Spindel EIN im Uhrzeigersinn Spindel EIN gegen den Uhrzeigersinn Spindel HALT			Seite 177
M06	Werkzeugwechsel/Programmlauf HALT (abhängig von Maschinen-Parameter)/Spindel HALT			Seite 177
M08 M09	Kühlmittel EIN Kühlmittel AUS			Seite 177
M13 M14	Spindel EIN im Uhrzeigersinn/Kühlmittel EIN Spindel EIN gegen den Uhrzeigersinn/Kühlmittel ein			Seite 177
M30	Gleiche Funktion wie M02			Seite 177
M89	M89 Freie Zusatz-Funktion oder Zyklus-Aufruf, modal wirksam (abhängig von Maschinen-Parameter)			Seite 204
M90	Nur im geschleppten Betrieb: konstante Bahngeschwindigkeit an Ecken		-	Seite 181
M91	Im Positioniersatz: Koordinaten beziehen sich auf den Maschinen-Nullpunkt			Seite 178
M92	Im Positioniersatz: Koordinaten beziehen sich auf eine vom Maschinenhersteller definierte Position, z.B. auf die Werkzeugwechsel-Position			Seite 178
M94	Anzeige der Drehachse reduzieren auf einen Wert unter 360°			Seite 192
M97	Kleine Konturstufen bearbeiten		-	Seite 182
M98	Offene Konturen vollständig bearbeiten		-	Seite 183
M99	Satzweiser Zyklus-Aufruf		-	Seite 204
M101 M102	Automatischer Werkzeugwechsel mit Schwesterwerkzeug, bei abgelaufener Standzeit M101 rücksetzen			Seite 109
M103	Vorschub beim Eintauchen reduzieren auf Faktor F (prozentualer Wert)			Seite 183
M104	Zuletzt gesetzten Bezugspunkt wieder aktivieren			Seite 180
M105 M106	Bearbeitung mit zweitem kv-Faktor durchführen Bearbeitung mit erstem kv-Faktor durchführen			Seite 463
M107 M108	Fehlermeldung bei Schwesterwerkzeugen mit Aufmaß unterdrücken M107 rücksetzen	-		Seite 108

M	Wirkung Wirkung am Satz -	Anfang	Ende	Seite
M109	Konstante Bahngeschwindigkeit an der Werkzeug-Schneide (Vorschub-Erhöhung und -Reduzierung)			Seite 185
M110	Konstante Bahngeschwindigkeit an der Werkzeug-Schneide			
M111	(nur Vorschub-Reduzierung) M109/M110 rücksetzen			
	Autom. Korrektur der Maschinengeometrie beim Arbeiten mit Schwenkachsen M114 rücksetzen			Seite 193
M116 M117	Vorschub bei Winkelachsen in mm/min M116 rücksetzen			Seite 191
M118	Handrad-Positionierung während des Programmlaufs überlagern			Seite 187
M120	Radiuskorrigierte Kontur vorausberechnen (LOOK AHEAD)			Seite 185
M126 M127	0 1			Seite 191
M128 M129	Position der Werkzeugspitze beim Positionieren von Schwenkachsen beibehalten (TCPM) M128 rücksetzen			Seite 194
M130	Im Positioniersatz: Punkte beziehen sich auf das ungeschwenkte Koordinatensystem			Seite 180
	Genauhalt an nicht tangentialen Konturübergängen bei Positionierungen mit Drehachsen M134 rücksetzen			Seite 196
M136 M137	Vorschub F in Millimeter pro Spindel-Umdrehung M136 rücksetzen			Seite 184
M138	Auswahl von Schwenkachsen			Seite 196
M140	Rückzug von der Kontur in Werkzeugachsen-Richtung			Seite 188
M141	Tastsystem-Überwachung unterdrücken			Seite 189
M142	Modale Programminformationen löschen			Seite 190
M143	Grunddrehung löschen			Seite 190
M144 M145	Berücksichtigung der Machinen-Kinematik in IST/SOLL-Positionen am Satzende M144 zurücksetzen			Seite 197
M201 M202 M203	Laserschneiden: Programmierte Spannung direkt ausgeben Laserschneiden: Spannung als Funktion der Strecke ausgeben Laserschneiden: Spannung als Funktion der Geschwindigkeit ausgeben Laserschneiden: Spannung als Funktion der Zeit ausgeben (Rampe) Laserschneiden: Spannung als Funktion der Zeit ausgeben (Puls)			Seite 198

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH

Dr.-Johannes-Heidenhain-Straße 5

83301 Traunreut, Germany

② +49 (8669) 31-0 FAX +49 (8669) 5061

E-Mail: info@heidenhain.de

Technical support FAX +49 (8669) 31-1000

E-Mail: service@heidenhain.de

Measuring systems [®] +49 (8669) 31-3104 E-Mail: service.ms-support@heidenhain.de

NC programming ② +49 (8669) 31-3103 E-Mail: service.nc-pgm@heidenhain.de

PLC programming 9 +49 (8669) 31-31 02

E-Mail: service.plc@heidenhain.de

E-Mail: service.hsf@heidenhain.de

www.heidenhain.de

3D-Tastsysteme von HEIDENHAIN

helfen Ihnen, Nebenzeiten zu reduzieren:

Zum Beispiel

- Werkstücke ausrichten
- Bezugspunkte setzen
- Werkstücke vermessen
- 3D-Formen digitalisieren

mit den Werkstück-Tastsystemen

TS 220 mit Kabel

TS 640 mit Infrarot-Übertragung

- Werkzeuge vermessen
- Verschleiß überwachen
- Werkzeugbruch erfassen

mit dem Werkzeug-Tastsystem

TT 140

