

TNC 426 B TNC 430

NC-Software 280 472 xx 280 473 xx

Manual do Utilizador Diálogo em texto claro da HEIDENHAIN

Teclas do ecrã

Potenciómetro de override para avanço/rotações da ferramenta

- Programação de trajectórias APPR Chegada/saída do contorno FK Livre programação de contornos FK L Recta - cc Pto, central do círculo/pólo para coord, polares °}° Traject. circ. em redor do pto. central círculo CR Trajectória circular com raio СТ? Trajectória circular tangente CHF Chanfre RND Arredondamento de esquinas Dados da ferramenta Introdução e chamada da longitude e TOOL do raio da ferramenta Ciclos, sub-programas e repetições parciais do programa Definição e chamada de ciclos Introdução e chamada de sub-LBL programas e repetições parciais do programa STOP Introdução de uma paragem dentro do pgm TOUCH Introdução das funções do apalpador num pgm Introdução dos eixos de coordenadas e algarismos, edição Seleccão dos eixos de coord. ou Х ۷ introdução destes num pgm 9 Algarismos Ponto decimal Comutação do sinal Introdução em coordenadas polares Valores incrementais Q Parâmetros Q Aceitação da posição real Salto de frases de diálogo e apagar palavras Finalizar a introdução e continuar o ENT diálogo
 - Finalizar a frase
- CE

Anular introduções de valores numéricos ou apagar os avisos de errro do TNC

Interrupção do diálogo, apagar parte do pgm

Modelo de TNC, software e funções

Este manual descreve as funções disponíveis nos TNCs a partir dos seguintes números de software:

Modelo deTNC	N.º de software
TNC 426 CB, TNC 426 PB	280 472 xx
TNC 426 CF, TNC 426 PF	280 473 xx
TNC 430 CA, TNC 430 PA	280 472 xx
TNC 430 CE, TNC 430 PE	280 473 xx

As letras E e F caracterizam versões de exportação do TNC. Para as versões de exportação do TNC é válida a seguinte limitação:

Movimentos lineares simultâneos até 4 eixos

O fabricante da máquina adapta as prestações úteis do TNC individualmente a cada máquina através de parâmteros de máquina. Por isso, neste manual podem estar descritas funções que não estejam disponíveis em todos os TNCs.

Funções de TNC não disponíveis em todas as máquinas, por exemplo:

- Função de apalpação para o sistema de apalpação 3D
- Opção de digitalização
- Medição de ferramentas com o TT 120
- Roscagem rígida
- Reentrada no contorno após uma interrupção

Para conhecer as prestações individuais da sua máquina, pedimos contacte o respectivo fabricante.

Muitos fabricantes, e também a HEIDENHAIN, oferecem cursos de programação de TNC. Recomenda-se a participação num destes cursos para se familiarizar de forma intensiva com as funções do TNC.

Manual do utilizador - ciclos do sistema de apalpação

Todas as funções do sistema de apalpação estão descritas num manual em separado. Dirija-se à HEIDENHAIN se precisar desse manual. Nº de identificação: 329 203 xx.

Lugar de instalação previsto

O TNC corresponde à Classe A segundo a EN 55022, e está previsto principalmente para o seu funcionamento em ambientes industriais.

1 2 3 4 5 6 7 8 9 10 2 3

Sumário

Introdução

Funcionamento manual e ajuste

Posicionamento com introdução manual

Programação: Princípios básicos, gestão de ficheiros, auxílios de programação

Programação: Ferramentas

Programação: Programar contornos

Programação: Funções auxiliares

Programação: Ciclos

Programação: Sub-programas e repetições parciais de um programa

Programação: Parâmetros Q

Teste e execução do programa

Funções MOD

Tabelas e resumos

1 INTRODUÇÃO 1

- 1.1 OTNC 426 B, oTNC 430 2
- 1.2 Ecrã e teclado 3
- 1.3 Modos de funcionamento 5
- 1.4 Visualização de estados 7
- 1.5 Acessórios: apalpadores 3D e volantes electrónicos da HEIDENHAIN 11

2 FUNCIONAMENTO MANUAL E AJUSTE 13

- 2.1 Conexão 14
- 2.2 Deslocação dos eixos da máquina 15
- 2.3 Rotações S, Avanço F e Função Auxiliar M 17
- 2.4 Memorizar o ponto de referência (sem apalpadores 3D) 18
- 2.5 Inclinação do plano de maquinação 19

3 POSICIONAMENTO COM INTRODUÇÃO MANUAL 23

3.1 Programação e execução de maquinações simples 24

4 PROGRAMAÇÃO: PRINCÍPIOS BÁSICOS, GESTÃO DE FICHEIROS, AUXÍLIOS DE PROGRAMAÇÃO, GESTÃO DE PALETES 27

- 4.1 Princípios básicos 28
- 4.2 Gestão de ficheiros: princípios básicos 33
- 4.3 Gestão de ficheiros standard 34
- 4.4 Chamar gestão de ficheiros 40
- 4.5 Abrir e introduzir programas 53
- 4.6 Gráfico deprogramação 57
- 4.7 Estruturar programas 58
- 4.8 Acrescentar comentários 59
- 4.9 Elaborar ficheiros de texto 60
- 4.10 A calculadora 63
- 4.11 Ajuda directa emNC-avisos d erro 64
- 4.12 Gestão de paletes 65

Sumário

5 PROGRAMAÇÃO: FERRAMENTAS 67

5.1 Introduções relativas à ferramenta 68

5.2 Dados da ferramenta 69

5.4 Correcção tridimensional da ferramenta 82

5.5 Trabalhar com tabelas de dados de corte 84

6 PROGRAMAÇÃO: PROGRAMAR CONTORNOS 91

6.1 Resumo: movimentos da ferramenta 92

- 6.2 Noções básicas sobre as funções de trajectória 93
- 6.3 Aproximação e saída do contorno 96

Resumo: tipos de trajectórias para a aproximação e saída do contorno 96

Posições importantes na aproximação e saída 96

Aproximação segundo uma recta tangente: APPR LT 97

Aproximação segundo uma recta perpendicular ao primeiro ponto do contorno: APPR LN 98

Aproximação segundo uma trajectória circular tangente: APPR CT 98

Aproximação segundo uma trajectória circular tangente ao contorno e segmento de recta: APPR LCT 99

Saída segundo uma recta tangente: DEP LT 100

Saída segundo uma recta perpendicular ao primeiro ponto do contorno: DEP LN 100

Saída segundo uma trajectória circular tangente: DEP CT 101

Saída segundo uma trajectória circular tangente ao contorno e segmento de recta: DEP LCT 101

6.4 Tipos de trajectórias - Coordenadas cartesianas 102

Resumo das funções de trajectória 102

Recta L 103

Acrescentar um chanfre CHF entre duas rectas 103

Ponto central do círculo CC 104

Trajectória circular C em redor do ponto central do círculo CC 105

Trajectória circular CR com um raio determinado 106

Trajectória circular tangente CT 107

Arredondamento de esquinas RND 108

Exemplo: Movimento linear e chanfre em cartesianas 109

Exemplo: movimentos circulares em cartesianas 110

Exemplo: círculo completo em cartesianas 111

6.5 Tipos de trajectórias - Coordenadas polares 112 Origem de coordenadas polares: pólo CC 112 Recta LP 113 Trajectória circular CP em redor do pólo CC 113 Trajectória circular tangente CTP 114 Linha helicoidal (Hélice) 114 Exemplo: movimento linear em polares 116 Exemplo: hélice 117 6.6 Tipos de trajectórias - Livre programação de contornos FK 118 Princípios básicos 118 Gráfico da programação FK 118 Abrir diálogo FK 119 Programação livre de rectas 120 Programação livre de trajectórias circulares 120 Pontos auxiliares 122 Referências relativas 123 Contornos fechados 125 Converter programas FK 125 Exemplo: Programação 1 FK 126 Exemplo: Programação 2 FK 127 Exemplo: Programação 3 FK 128

6.7 Tipos de trajectórias – Interpolação Spline 130

Sumário

7 PROGRAMAÇÃO: FUNÇÕES AUXILIARES 133

7.1 Introduzir funções auxiliares M e STOP 134

7.2 Funções auxiliares para o controlo da execução do pgm, ferramenta e refrigerante 135

7.3 Funções auxiliares para indicação de coordenadas 135

7.4 Funções auxiliares para o tipo de trajectória 138

Maquinar esquinas: M90 138

Acrescentar um círculo definido de arredondamento entre duas rectas: M112 139

Maquinar pequenos desníveis de contorno: M97 139

Maquinar completamente esquinas abertas do contorno: M98 140

Factor de avanço para movimentos de aprofundamento: M103 141

Velocidade de avanço em arcos de círculo: M109/M110/M111 142

Cálculo prévio do contorno com correcção de raio (LOOK AHEAD): M120 142

Sobreposicionar posicionamentos do volante durante a execução de um programa: M118 143

7.5 Funções auxiliares para eixos rotativos 144

Avanço em mm/min em eixos rotativos A, B, C: M116 144

Deslocar eixos rotativos de forma optimizada: M126 144

Reduzir a visualização do eixo rotativo a um valor inferior a 360°: M94 145

Correcção automática da geometria da máquina ao trabalhar com eixos basculantes: M114 146

Conservar a posição da extremidade da ferramenta em posicionamento de eixos

basculantes (TCPM*): M128 147

Paragem de precisão nas esquinas com transições não tangenciais: M134 148

7.6 Funções auxiliares para Laser-máquinas de corte 149

8 PROGRAMAÇÃO: CICLOS 151

8.1 Generalidades sobre os ciclos 152

8.2 Ciclos de furar 154

FURAR EM PROFUNDIDADE (Ciclo 1) 154

FURAR (ciclo 200) 156

ALARGAR FURO (ciclo 201) 157

MANDRILAR (ciclo 202) 158

FURAR UNIVERSAL (ciclo 203) 159

REBAIXAMENTO INVERTIDO (ciclo 204) 161

ROSCAR com embraiagem 163

ROSCAGEM RÍGIDA sem embraiagem GS (Zyklus 17) 164

ROSCAGEM À LÂMINA (ciclo 18) 165

Exemplo: ciclos de furar 166

Exemplo: ciclos de furar 167

8.3 Ciclos para fresar caixas, ilhas e ranhuras 168

FRESAR CAIXAS (ciclo 4) 169

ACABAMENTO DE CAIXAS (ciclo 212) 170

ACABAMENTO DE ILHAS (ciclo 213) 172

CAIXA CIRCULAR (ciclo 5) 173

ACABAMENTO DE CAIXA CIRCULAR (ciclo 214) 175

ACABAMENTO DE ILHA CIRCULAR (ciclo 215) 176

Fresar ranhuras (ciclo 3) 178

RANHURA (Langloch) com introdução pendular (ciclo 210) 179

RANHURA CIRCULAR (oblonga) com introdução pendular (ciclo 211) 181

Exemplo: fresar caixa, ilha e ranhura 183

8.4 Ciclos para elaboração de figuras de pontos 185

FIGURA DE PONTOS SOBRE UM CÍRCULO (ciclo 220) 186

FIGURA DE PONTOS SOBRE LINHAS (ciclo 221) 187

Exemplo: Círculos de pontos 189

8.5 Ciclos SL 191 CONTORNO (ciclo 14) 193 Contornos sobrepostos 193 DADOS DO CONTORNO (ciclo 20) 195 PRÉ-FURAR (ciclo 21) 197 DESBASTE (ciclo 22) 198 ACABAMENTO EM PROFUNDIDADE (ciclo 23) 199 ACABAMENTO LATERAL (ciclo 24) 199 TRACADO DO CONTORNO (ciclo 25) 200 SUPERFÍCIE CILÍNDRICA (ciclo 27) 202 Exemplo: desbaste e acabamento posterior de uma caixa 205 Exemplo: pré-furar, desbastar e acabar contornos sobrepostos 206 Exemplo: tracado do contorno 208 Exemplo: superfície cilíndrica 210 8.6 Ciclos para facejar - para programas digitalizados 212 EXECUCÃO DOS DADOS DIGITALIZADOS (ciclo 30) 212 FACEJAR (ciclo 230) 214 SUPERFÍCIE REGULAR (ciclo 231) 216 Exemplo: facejar 218 8.7 Ciclos para a conversão de coordenadas 219 Deslocação doPONTO ZERO (ciclo 7) 220 Deslocação do PONTO ZEROcom tabelas de pontos zero (ciclo 7) 221 ESPELHO (ciclo 8) 224 ROTAÇÃO (ciclo 10) 225 FACTOR DE ESCALA (ciclo 11) 226 FACTOR DE ESCALA ESPECÍF.EIXO (ciclo 26) 227 PLANO DE MAQUINAÇÃO INCLINADO (ciclo 19) 228 Exemplo: ciclos de conversão de coordenadas 232 8.8 Ciclos especiais 235 TEMPO DE ESPERA (ciclo 9) 235 CHAMADA DO PROGRAMA (ciclo 12) 235 ORIENTAÇÃO DA FERRAMENTA (ciclo 13) 236 TOLERÂNCIA (ciclo 32) 237

9 PROGRAMAÇÃO: SUB-PROGRAMAS E REPETIÇÕES PARCIAIS DE UM PROGRAMA 239

- 9.1 Caracterizar sub-programas e repetições parciais de um programa 240
- 9.2 Sub-programas 240
- 9.3 Repetições parciais de um programa 241
- 9.4 Um programa qualquer como sub-programa 242
- 9.5 Sobreposições 243
 - Sub-programa dentro de um sub-programa 243
 - Repetir repetições parciais de um programa 244
 - Repetição do sub-programa 245
- 9.6 Exemplos de programação 246
 - Exemplo: fresar um contorno em várias aproximações 246
 - Exemplo: grupos de furos 246
 - Exemplo: Grupos de furos com várias ferramentas 248

10 PROGRAMAÇÃO: PARÂMETROS Q 251

- 10.1 Princípio e resumo de funções 252
- 10.2 Tipos de funções Parâmetros Q em vez de valores numéricos 254
- 10.3 Descrever contornos através de funções matemáticas 255
- 10.4 Funções angulares (Trigonometria) 257
- 10.5 Cálculos de círculos 258
- 10.6 Funções se/então com parâmetros Q 259
- 10.7 Controlar e modificar parâmetros Q 260
- 10.8 Funções auxiliares 261
- 10.9 Introduzir uma fórmula directamente 270
- 10.10 parâmetros pré-determinados 273
- 10.11 Exemplos de programação 276
 - Exemplo: elipse 276
 - Exemplo: cilindro côncavo com fresa esférica 278
 - Exemplo: esfera convexa com fresa cónica 280

11 TESTE E EXECUÇÃO DO PROGRAMA 283

- 11.1 Gráficos 284
- 11.2 Funções para a visualização do programa na Execução do programa/Teste do programa 289
- 11.3 Teste do programa 289
- 11.4 Execução do programa 291
- 11.5 Saltar frases 296

12 FUNÇÕES MOD 297

- 12.1 Seleccionar, modificar e anular as funções MOD 298
- 12.2 Números de software e de opções 299
- 12.3 Introduzir o código 299
- 12.4 Ajuste da conexão de dados 300
- 12.5 Conexão Ethernet 304
- 12.6 Configurar PGM MGT 311
- 12.7 Parâmetros do utilizador específicos da máquina 311
- 12.8 Representação gráfica do bloco no espaço de trabalho 311
- 12.9 Seleccionar a visualização de posição 313
- 12.10Seleccionar o sistema métrico 313
- 12.11 Seleccionar a linguagem de programação para \$MDI 314
- 12.12 Selecção do eixo para gerar uma frase L 314
- 12.13 Introduzir os limites de deslocação, visualização do ponto zero 314
- 12.14 Visualizar ficheiros de AJUDA 315
- 12.15 Visualização de tempos de funcionamento 316

13 TABELAS E RESUMOS 317

- 13.1 Parâmetros gerais do utilizador 318
- 13.2 Distribuição de conectores e cablagem nas conexões de dados externas 333
- 13.3 Informação técnica 337
- 13.4 Trocar a bateria 340

Introdução

1.1 O TNC 426 B, o TNC 430

Os TNC da HEIDENHAIN são comandos numéricos destinados à oficina, com os quais você faz programas convencionais de fresar e furar directamente na máquina, em diálogo de texto claro de fácil entendimento. Destinam-se a ser aplicados em máquinas de fresar e furar bem como em centros de maquinação. O TNC 426 B pode comandar até 5 eixos, e o TNC 430 até nove eixos. Para além disso, você também pode ajustar de forma programada a posição angular da ferramenta.

No disco duro integrado você pode memorizar indiferentemente muitos programas, ainda que estes tenham sido elaborados externamente ou copiados por digitalização. Para cálculos rápidos, pode-se chamar uma calculadora a qualquer momento.

O teclado e a apresentação do ecrã são estruturados de forma clara, para que você possa chegar a todas as funções de forma rápida e simples.

Programação: Diálogo em texto claro HEIDENHAIN e DIN/ISO

A elaboração de programas é particularmente simples em diálogo de texto claro HEIDENHAIN, agradável ao utilizador. Um gráfico de programação apresenta um por um os passos de maquinação durante a introdução do programa. Para além disso, a programação livre de contornos FK ajuda se por acaso não houver nenhum desenho adequado ao NC. A simulação gráfica da maquinação da peça é possível tanto durante o teste de programa como também durante a execução do programa. Para além disso, você também pode programar os TNCs em linguagem DIN/ISO.

Também se pode depois introduzir e testar um programa enquanto um outro programa se encontra a executar uma maquinação de uma peça.

Compatibilidade

O TNC pode executar todos os programas de maquinação que tenham sido elaborados nos comandos numéricos HEIDENHAIN a partir do TNC 150 B.

I.2 Ecrã e teclado

1.2 Ecrã e teclado

Ecrã

O TNC pode fornecer-se com ecrã a cores BC 120 (CRT) ou com o ecrã a cores plano BF 120 (TFT). A figura em cima à direita mostra o teclado do BC 120. A figura no centro à direita mostra o teclado do BF 120:

1 Linha superior

Com o TNC ligado, o ecrã visualiza na linha superior os modos de funcionamento seleccionados: modos de funcionamento da máquina à esquerda, e modos de funcionamento da programação à direita. Na área maior da linha superior fica o modo de funcionamento em que está ligado o ecrã: aí aparecem as perguntas de diálogo e os textos de aviso (excepção: quando o TNC só visualiza gráficos)

2 Softkeys

Na linha inferior, Você selecciona estas funções com as teclas que se encontram por baixo **3**. Para orientação, há umas vigas estreitas a indicar directamente sobre a régua de softkeys o número de réguas de softkeys que se podem seleccionar com as teclas de setas pretas dispostas no exterior. A régua de softkeys activada é apresentada como a viga iluminada.

- 3 Teclas de selecção de softkey
- 4 Comutação de réguas de softkeys
- 5 Determinação da divisão do ecrã
- 6 Tecla de comutação do ecrã para modos de funcionamento da máquina e da programação

Teclas adicionais para o BC 120

7 Desmagnetizar o ecrã; Sair do menú principal para ajustar o ecrã

8	Sele No r No s	cção do menú princi nenú principal: submenú:	pal para ajustar o ecrã; Deslocar a área iluminada para baixo Reduzir um valor Deslocar a imagem para a esquerda ou para baixo
9	No r No s	menú principal: submenú:	Deslocar a área iluminada para cima Aumentar um valor Deslocar a imagem para a direita ou para cima
10	No r	menú principal:	Seleccionar submenú

Sair do submenú

Ajustes do ecrã: ver página seguinte

No submenú:

Diálogo do menú principal	Função
BRIGHTNESS	Regular a claridade
CONTRAST	Regular o contraste
H POSITION	Regular a posição horizontal da imagem
H SIZE	Regular a largura da imagem
V-POSITION	Regular a posição vertical da imagem
V-SIZE	Regular a altura da imagem
SIDE-PIN	Corrigir a distorção do efeito de pipa
	Vertical
TRAPEZOID	Corrigir a distorção do efeito de pipa horizontal
ROTATION	Corrigir a inclinação da imagem
COLORTEMP	Regular a intensidade da cor
R-GAIN	Regular o ajuste da cor vermelha
B-GAIN	Regular o ajuste da cor azul
RECALL	Sem função

O BC 120 é sensível a campos magnéticos ou electromagnéticos. Devido a isto, podem variar a posição e a geometria da imagem. Os campos alternativos produzem um deslocamento periódico ou uma distorção da imagem.

Divisão do ecrã

O utilizador selecciona a divisão do ecrã. Assim, o TNC pode, p.ex., no modo de funcionamento MEMORIZAÇÃO/EDIÇÃO DE PROGRAMA, visualizar o programa na janela esquerda, enquanto que a janela direita apresenta ao mesmo tempo, p.ex., um gráfico de programação. Como alternativa, na janela direita também pode visualizar-se o agrupamento de programas ou apenas exclusivamente o programa numa grande janela. A janela que o TNC pode mostrar depende do modo de funcionamento seleccionado.

Modificar a divisão do ecrã:

Premir a tecla de comutação do ecrã: a régua de softkeys mostra a divisão possível do ecrã (ver 1.3 Modos de funcionamento)

Seleccionar a divisão do ecrã com softkey

Teclado

A imagem à direita mostra as teclas do teclado que estão agrupadas consoante a sua função:

- Teclado alfanumérico para introdução de texto, nomes de ficheiros e programação DIN/ISO
- 2 Gestão de ficheiros, Calculadora, Função MOD, Função AJUDA
- 3 Modos de funcionamento de programação
- 4 Modos de funcionamento da máquina
- 5 Iniciar diálogo da programação
- 6 Teclas de setas e indicação de salto IR A
- 7 Introdução numérica e selecção de eixos

As funções das diferentes teclas apresentam-se na primeira página. As teclas externas, como p.ex. NC-START, apresentam-se descritas no manual da máquina.

1.3 Modos de funcionamento

Para as várias funções e etapas de trabalho necessários à elaboração de uma peça, o TNC dispõe dos seguintes modos de funcionamento:

Funcionamento manual e volante volante electrónico

As máquinas regulam-se com funcionamento manual. Neste modo de funcionamento posiciona-se os eixos da máquina manualmente ou progressivamente, memoriza-se os pontos de referência, e pode-se também inclinar o plano de maquinação.

O modo de funcionamento volante electrónico apoia o método manual dos eixos da máquina com um volante electrónico HR, através de movimentos de precisão.

Softkeys para a divisão do ecrã

(seleccione como antes descrito)

Janela	Softkey
Posições	POSICAO
À esquerda: posições. À direita: visualização de estado	POSICAO + ESTADO

Modo	de c	operacao manual			Edi pro	Edicao de programa	
A TUAL	X Y B C	+123,4 -244,4 +150,6 +89,5 +40,0	581 477 853 133 129	REST X +4 Y +1 Z +4 B+291 C+291	494,2846 294,3533 594,5632 996,5913 997,1947	A +60 B +30	,0000
т	s	0,087 F 1375	M 5/9	Ro	tacao elem	C +30	,0000
м	s	F	FUNCOES APALPADOR	FIXAR PONTO REF	INCRE- MENTO DFF/ ON	3D ROT	FERRAM. TABELA

Posicionamento com introdução manual

Neste modo de funcionamento, você programa movimentos simples de deslocação, p.ex. para facear ou para pré-posicionar. Também aqui você define tabelas de pontos para determinação do campo de digitilização.

Softkeys para a divisão do ecrã

Janela	Softkey
Materiais da peça 92	PGM
À esquerda: programa. À direita: visualização de estado	PROGRAMA + ESTADO

Posid	cionaı	n.c/	intro	d. ma	nual	Edica progr	o de ama
0 BEGIN 1 WMAT " 2 TOOL C 3 L 2+0 4 CYCL C 0200= 0201= 0206= 0202=	PGM \$MDI N St 37-2" SALL 1 Z S1 R0 F MAX DEF 200 FUR 2 \$DIS1 -20 \$PROF 150 \$AVAN 5 \$INCR	M 750 F140 AR ANCIA SEGL UNDIDADE CO INCREME EMENTO	IRANCA INTO	REST X Y Z B C	+0,0000 +0,0000 +0,0000 +0,0000 +0,0000 +0,0000	A *60,0 B *30,0 C *30,0 entar +0,0	3000
B ATUAL	+94,0	1985) 1983 (Y -24 C +4	46,86 41,93	21 Z 95 S F 1500	+153, 0,087 ™	9359 _{5/9}
ESTADO PGM	ESTADO POS.	ESTADO FERRAM.	ESTADO COORD. TRANSE	ESTADO HERRAM.			FERRAM. TABELA

Memorização/Edição de programas

É neste modo de funcionamento que você elabora os seus programas de maquinação. A programação livre de contornos, os diferentes ciclos e as funções de parâmetros Q oferecem apoio e complemento variados na programação. A pedido, o gráfico de programação mostra cada um dos passos, ou você utiliza uma outra janela para elaborar o seu agrupamento de programas.

Softkeys para a divisão do ecrã

Janela	Softkey
Materiais da peça 92	PGM
À esquerda: programa. À direita: agrupamento de programas	PROGRAMA + SECCOES
À esquerda: programa. À direita: gráfico de programação	PROGRAMA + GRAFICOS

Moc mar	do operacao nual	Ed	icao (de pro	ograma	a		
0	Ø BEGIN PGM 1E MM					1E		
1	BLK FORM Ø	.1 Z >	(+0 Y+0 Z-4	0	- Heramie	nta 1		
2	BLK FORM Ø	.2 X+1	100 Y+100 Z	+0	- Desba	ste		
3	* - Herami	enta 1	L		- Acabo	do		
4	TOOL CALL	1 Z S4	500		- Herrami	enta 2		
Б	L Z+100 R0	F MA>	(- Preta	ladrado		
6	CYCL DEF 2	03 FUR	AR UNIVERS	AL	- Posicionamiento en X, Y			
	0200=2	\$DIST	TANCIA SEGU	IRANCA	- Llamada del ciclo			
	Q201=-20 \$PROFUNDIDADE			- Herramienta 3				
	Q206=150 \$AVANCO INCREMENTO			NTO	END PGM 1	E		
	0202=5	\$INCR	REMENTO					
	Q210=0	\$ TEMP	PO ESPERA E	M CIMA				
	Q203=+0	\$C00R	D. SUPERFI	CIE				
	0204=50	;2. C	DIST. SEGUR	ANCA				
	0212=0	\$REDU	JCAO INCREM	IENTO				
I	NICIO	FIM Л	PAGINA ÎÎ	PAGINA ∏	PROCURAR			ALTERA JANELA

Teste do programa

O TNC simula programas na totalidade ou parcialmente no modo de funcionamento Teste de programa para, p.ex., detectar no programa incompatibilidades geométricas, falta de indicações, ou qualquer erro de programação. A simulação é apoiada graficamente com diferentes vistas.

Softkeys para a divisão do ecrã

Ver modos de funcionamento de execução do programa na próxima página.

Execução contínua de programa e execução de programa frase a frase

Em execução contínua de programa, o TNC executa um programa até ao final do programa ou até uma interrupção manual ou programada. Depois de uma interrupção, você pode retomar a execução do programa.

Em execução de programa frase a frase, você inicia cada frase com a tecla externa START individualmente.

Softkeys para a divisão do ecrã

Janela	Softkey
Materiais da peça 92	PGM
À esquerda: programa. À direita: agrupamento	PROGRAMA

+ SFCCOFS

A esquerda: programa. A direita: agrupamento de programas

À esquerda: programa. À direita: ESTADO	PROGRAMA + ESTADO	
À esquerda: programa. À direita: gráfico	PROGRAMA + GRAFICOS	
Gráfico 42	GRAFICO	

1.4 Visualização de estados

"Generalidades" Visualizações de estado

A visualização de estado informa-o sobre a situação actual da máquina. Aparece automaticamente nos modos de funcionamento

- Execução de programa frase a frase e execução contínua de programa, desde que para a visualização não tenha sido seleccionado exclusivamente "Gráfico, e em
- Posicionamento com introdução manual.

Nos modos de funcionamento Manual e Volante electrónico, a visualização de estado aparece na janela grande.

Informaç	ões da visualização de estado
Símbolo	Significado
REAL	Coordenadas reais ou nominativas da posição actual
XYZ	Eixos da máquina; o TNc visualiza os eixos auxiliares com letra minúscula. O fabricante da máquina determina a sequência e a quantidade dos eixos visualizados. Consulte o manual da máquina
FSM	A visualização do avanço em polegadas corresponde à décima parte do valor actuante. Rotações S, Avanço F e Função Auxiliar M efectiva
*	Inicia-se a execução do programa
-	O eixo é bloqueado
\odot	O eixo pode ser deslocado com o volante
	Os eixos são deslocados em plano de maquinação inclinado
	Os eixos são deslocados tendo em conta

Execucao continua			Edio	Edicao de programa	
0 BEGIN PGM FK1 MM 1 BLK FORM 0.1 Z X+00 Y+0 Z-20 2 BLK FORM 0.2 X+100 Y+100 Z+0 3 TOOL CALL 1 Z 4 L Z+250 R0 F MAX 5 L X-20 Y+30 R0 F MAX 6 L Z-10 R0 F1000 M3 7 APPR CT X+2 Y+30 CCA90 R+5 RL F250 8 FC DR- R18 CL50+ CCX+20 CCY+30		REST × +0,0000 Y +0,0000 2 +0,0000 B +0,0000 C +0,0000 C +0,0000 C +30,0000 Image: State S			
X +124,2106 Y -243,3663 Z +152,3902 B +88,6170 C +41,4572 S 0,087 ATURL T F 0 M 5/9					
ESTADO ESTADO ES PGM POS. FER	TADO ESTADO COORD. RAM. TRANSF.	ESTADO F HERRAM. APALP.		ADICIONAR	RESET 00:00:00

Visualizações de estado suplementares

a rotação base

As visualizações de estado suplementares fornecem informações pormenorizadas para a execução do programa. Podem ser chamadas em todos os modos de funcionamento, excepto Memorização/Edição de Programas.

Ligar visualizações de estado suplementares

ESTADO

Chamar régua de softkeys para a divisão do ecrã

Seleccionar apresentação do ecrã com visualização de estado suplementar

Segue-se a descrição de diversas visualizações de estado suplementares que você pode seleccionar com softkeys:

1.4 Visualização de esta<mark>dos</mark>

Comutar a régua de softkeys até aparecerem as softkeys de ESTADO

ESTADO PGM Selecionar Visualização de Estado Suplementar, p.ex., informações gerais de programas

ESTADO PGM

Informações gerais de programas

- 1 Nome do programa principal
- 2 Programas chamados
- 3 Ciclo activo de maquinação
- 4 Ponto central do círculo CC (pólo)
- 5 Tempo de maquinação
- 6 Contador para temo de espera

Posições e coordenadas

- 1 Indicações de posição
- 2 Modo da indicação de posição, p.ex., posições reais
- 3 Ângulo de inclinação para o plano de maquinação
- 4 Ângulo da rotação básica

ESTADO FERRAM. Informações para as ferramentas

- Indicação T: número e nome da ferramenta Indicação RT: número e nome de uma ferramenta gémea
- 2 Eixo da ferramenta
- 3 Longitudes e raios da ferramenta
- 4 Medidas excedentes (valores Delta) do TOOL CALL (PGM) e da tabela de ferramentas (TAB)
- 5 Tempo útil, tempo útil máximo (TIME 1) e tempo útil máximo em TOOL CALL (TIME 2)
- 6 Indicação da ferramenta activa e da (próxima) ferramenta gémea

Conversão de coordenadas

- 1 Nome do programa principal
- 2 Deslocação activa do ponto zero (Ciclo 7)
- 3 Ângulo de rotação activo (Ciclo 10)
- 4 Eixos espelhados
- 5 Factor de medição activo (factores de medição (Ciclos 11 / 26)
- 6 Ponto central da extensão cêntrica
- Ver "8.7 Ciclos para conversão de coordenadas"

Medição da ferramenta

- 1 Número da ferramenta que vai ser medida
- 2 Indicação se o raio ou a longitude da ferramenta vão ser medidos
- 3 Valor MIN e MÁX medição do corte individual e resultado da medição com ferramenta rotativa (DYN)
- 4 Número do corte da ferramenta com respectivo valor obtido A estrela por detrás do valor obtido indica que a tolerância da tabela de ferramentas foi excedida

1.5 Acessórios: apalpadores 3D e volantes electrónicos da HEIDENHAIN

Apalpadores 3D

Com os diferentes apalpadores 3D da HEIDENHAIN você pode

- Ajustar automaticamente a peça
- Memorizar pontos de referência com rapidez e precisão
- Efectuar medições da peça durante a execução do programa
- Digitalizar formas 3D (opção), bem como
- Medir e testar a peça

Estão descritas todas as funções do apalpador num outro manual do utilizador. Dirija-se à HEIDENHAIN se necessitar desse manual. Nº de Identificação: 329 203 xx.

Os apalpadores comutáveis TS 220 e TS 630

Estes apalpadores são especialmente concebidos para o ajuste automático de peças, memorização do ponto de referência e medições na peça, bem como para digitalização. O TS 220 transmite os sinais de conexão através de um cabo, sendo para além disso uma alternativa económica em caso de ter que digitalizar.

O TS 630 está especialmente concebido para máquinas com alternador de ferramentas que transmite os sinais de conexão, sem cabo, por infra-vermelhos.

Princípio de funcionamento: nos apalpadores digitais da HEIDENHAIN há um sensor óptico sem contacto que regista o desvio do apalpador. O sinal emitido produz a memorização do valor real a posição actual do apalpador.

Na digitalização, o TNC elabora um programa com frases lineares em formato HEIDENHAIN a partir de uma série de valores de posições. Pode-se continuar a processar este programa num PC com o software de avaliação SUSA, para se poder corrigi-lo segundo determinadas formas e raios de ferramenta, ou para se calcular peças positivas/negativas. Quando a esfera de apalpação é igual ao raio da fresa, estes programas podem executar-se imediatamente.

Apalpador de ferramentas TT 120 para a medição de ferramentas

O TT 120 é um apalpador 3D digital para a medição e comprovação de ferramentas. Para isso, o TNC dispõe de 3 ciclos com os quais se pode calcular o raio e a longitude da ferramenta com o cabeçote parado ou a rodar.

O tipo de construção especialmente robusto e o elevado tipo de protecção fazem com que o TT 120 seja insensível ao refrigerante e às aparas. O sinal de conexão é emitido com um sensor óptico sem contacto, que se caracteriza pela sua elevada segurança.

Volantes electrónicos HR

Os volantes electrónicos simplificam a deslocação manual precisa dos carros dos eixos. O percurso por rotação do volante seleccionase num vasto campo. Além dos volantes de embutir HR 130 e HR 150, a HEIDENHAIN põe à disposição o volante portátil HR 410 (ver figura à direita).

Funcionamento manual e ajuste

2.1 Conexão

 A conexão e a aproximação dos pontos de referência são
funções que dependem da máquina. Consulte o manual da máquina

Ligar a tensão de alimentação do TNC e da máquina.

A seguir, o TNC mostra o seguinte diálogo:

Teste de memorização

A memória do TNC é automaticamente verificada

Interrupção de corrente

Mensagem do TNC de que houve interrupção de corrente - Apagar a mensagem

Traduzir o programa PLC

O programa PLC é automaticamente traduzido

Falta tensão de comando para relés

I

Ligar a tensão de comando O TNC verifica o funcionamento da Paragem de EMERGÊNCIA

Funcionamento manual Passar os pontos de referência

Passar os pontos de referência na sequência pretendida: para cada eixo, premir a tecla de arranque (START) externa, ou

Passar os pontos de referência em qualquer sequência: para cada eixo, premir e manter premida a tecla de direcção externa até se ter passado o ponto de referência

O TNC está agora pronto a funcionar e encontra-se no Modo de Funcionamento Manual

Você só deve passar os pontos de referência quando quiser deslocar os eixos da máquina. Se você quiser apenas editar ou testar programas, imediatamente após a conexão da tensão de comando, seleccione o modo de funcionamento Memorização / Edição de programas ou Teste do Programa.

Posteriormente, você pode passar os pontos de referência. Para isso, prima no modo de funcionamento Manual a softkey Passar Sobre Referência. PASSAR

Passar um ponto de referência num plano de maquinação inclinado

É possível passar um ponto de referência num sistema de coordenadas inclinado, com as teclas de direcção externas de cada eixo. Para isso, tem que estar activada a função "Inclinação do plano de maquinação" em funcionamento Manual (ver capítulo "2.5 Inclinação do plano de maquinação"). O TNC interpola então os eixos correspondentes, com a activação de uma tecla de direcção de eixo.

A tecla de arraqnue NC-START não tem nenhuma função. O TNC emite, se necessário, o correspondente aviso de erro.

Tenha em conta que os valores angulares introduzidos no menú coincidam com o ângulo real do eixo basculante.

2.2 Deslocação dos eixos da máquina

A deslocação com as teclas de direcção externas é uma função que depende da máquina. Consulte o manual da máquina!

Deslocar o eixo com as teclas de direcção externas

(D)	Selecção do modo de funcionamento Manual
×	Premir e manter premida a tecla de direcção externa enquanto se tiver que deslocar o eixo

.... ou deslocar o eixo de forma contínua:

x)^e

0

(I

Manter premida a tecla de direcção externa e premir por breves momentos a tecla de START externa. O eixo desloca-se até parar por si próprio.

Parar: premir a tecla de STOP (paragem) externa

Destas duas formas, você pode deslocar vários eixos ao mesmo tempo. Você pode modificar o avanço com que se deslocam os eixos com a softkey F (ver "2.3 Rotações da ferramenta S, avanço F e função auxiliar M").

Deslocação com o volante electrónico HR 410

O volante portátil HR 410 está equipado com duas teclas de confirmação. Estas teclas encontram-se por baixo da roda dentada. Você só pode deslocar os eixos da máquina se estiver premida uma das teclas de confirmação (função dependente da máquina).

O volante HR 410 dispõe dos seguintes elementos de comando:

- 1 EMERGÊNCIA
- 2 volante electrónico
- 3 Teclas de confirmação
- 4 Teclas para selecção de eixos
- 5 Tecla para aceitação da posição real
- 6 Teclas para determinação do avanço (lento, médio, rápido; o fabricante da máquina determina os avanços
- 7 Direcção em que o TNC desloca o eixo seleccionado
- 8 Funções da máquina (são determinadas pelo fabricante da máquina)

As visualizações a vermelho assinalam qual o eixo e qual o avanço que você seleccionou.

A deslocação com o volante também é possível durante a execução do programa.

Deslocação

2.3 Rotações S, avanço F e função a<mark>uxili</mark>ar M

Х

16

Posicionamento por incrementos

Em posicionamento por incrementos, o TNC desloca um eixo da máguina com um valor incremental determinado por si.

Seleccionar posicionamento por incrementos: softkey Medida Incremental LIGADA

Ζ

8

8

8

Passo de aproximação

X

Introduzir passo de aproximação em mm, p.ex. 8 mm

Premir tecla externa de direcção: posicionar quantas vezes se quiser

2.3 Rotações S, Avanço F e Função Auxiliar M

Nos modos de funcionamento Manual e Volante você introduz as rotações S, o avanço F e a função auxiliar M com as softkeys. As funções auxiliares estão descritas no capítulo "7 Programação: funcões auxiliares".

Introduzir valores

Exemplo: introduzir rotações S da ferramenta

Seleccionar introdução para rotações da ferramenta: softkey S

Rotações S da ferramenta=

Introduzir rotações da ferramenta

e aceitar com a tecla externa START

Inicia-se a rotação da ferramenta com as rotações S introduzidas com uma função auxiliar M

Você introduz o avanço F a função auxiliar M da mesma maneira.

Para o avanço F, considera-se o seguinte:

- Se tiver sido introduzido F=0, actua o avanço menor a partir de MP1020
- o F mantém-se mesmo após uma interrupção de corrente

Modificar rotações da ferramenta e avanço

Com os potenciómetros de override para as rotações S da ferramenta e o avanço F, pode-se modificar o valor ajustado entre 0% e 150%.

O potenciómetro de override para as rotações da ferramenta só actua em máquinas com accionamento controlado da ferramenta.

O fabricante da máquina determina as funções auxiliares M que se podem utilizar, e a função que realizam.

2.4 Memorizar o ponto de referência (sem apalpadores 3D)

Memorizar o ponto de referência com o apalpador 3D: ver manual do utilizador - ciclos do apalpador

Na memorização do ponto de referência, a visualização do TNC fixase sobre as coordenadas de uma posição da peça.

Preparação

- Ajustar e centrar a peça
- Introduzir a ferramenta zero com raio conhecido
- Assegurar-se que o TNC visualiza as posições reais

2.5 Inclinação do plano de ma<mark>quin</mark>ação

Х

Memorização do ponto de referência

Memorização do ponto de referência Para o ponto de referência, introduza um valor superior, somado a d.

	Selecção do modo de funcionamento Manual
×	Deslocar cuidadosamente a ferramenta até ela roçar a peça
Ζ	Seleccionar o eixo (todos eixos podem ser também seleccionados no teclado ASCII)
Memorização o	lo nonto de referência 7=

ENT

Ferramenta zero, eixo da ferramenta: fixar a visualização numa posição da peca iá conhecida (p.ex. 0) ou introduzir Espessura d da chapa No plano de maquinação: ter em consideração o raio da ferramenta

Você memoriza da mesma forma os pontos de referência para os restantes eixos

Se você utilizar uma ferramenta pré-ajustada no eixo de aproximação, você fixa a visualização desse eixo na longitude L da ferramenta, ou na soma Z=L+d.

2.5 Inclinação do plano de maquinação

As funções para a inclinação do plano de maguinação são ajustadas pelo fabricante da máquina ao TNC e à máguina. Em determinadas cabeças basculantes ou mesas rotativas, o fabricante da máguina determina se os ângulos programados se interpretam como coordenadas dos eixos rotativos ou como ângulo no espaço. Consulte o manual da máquina

O TNC auxilia na inclinação de planos de maguinação em máguinas ferramenta com cabecas e mesas basculantes. As aplicações mais típicas são, p.ex., furos inclinados ou contornos inclinados no espaço. Nestes casos, o plano de maquinação inclina-se sempre em redor do ponto zero activado. Como de costume, é programada uma maguinação num plano principal (p.ex. plano X/Y); no entanto, é executada num plano inclinado relativamente ao plano principal.

Y

 \bigcirc

Z

Para a inclinação do plano de maquinação, existem duas funções:

- Inclinação manual com a softkey 3D ROT nos modos de funcionamento Manual e Volante electrónico (descritos a seguir)
- Inclinação comandada automática -, ciclo 19 PLANO DE MAQUINAÇÃO no programa de maquinação. Ver "8.7 Ciclos para a Conversão de Coordenadas".

As funções do TNC para a "Inclinação do Plano de Maquinação" são transformações de coordenadas. Assim, o plano de maquinação está sempre perpendicular à direcção do eixo da ferramenta.

Basicamente, na inclinação do plano de maquinação, o TNC distingue dois tipos de máquina:

Máquina com mesa basculante

- Você deve colocar a peça consoante o correspondente posicionamento da mesa basculante, p.e.x, com uma frase L, na posição de maquinação pretendida
- A situação do eixo da ferramenta transformado nãose modifica em relação ao sistema de coordenadas fixo da máquina. Se você rodar a mesa - isto é, a peça - p.ex. 90°, o sistema de coordenadas não roda. Se você premir, no modo de funcionamento Manual, a tecla de direcção do eixo Z+, a ferramenta desloca-se na direcção Z+.
- Para o cálculo do sistema de coordenadas transformado, o TNC tem em consideração apenas os desvios condicionados mecanicamente da respectiva mesa basculante - as chamadas zonas "translatórias".

Máquina com cabeça basculante

- Você deve colocar a ferramenta na posição de maquinação pretendida através do respectivo posicionamento da cabeça basculante, p.ex., com uma frase L.
- A posição do eixo da ferramenta inclinado (transformado) modifica-se em relação ao sistema de coordenadas fixo da máquina: se você fizer rodar a cabeça basculante da máquina - da ferramenta - p.ex. no eixo B +90°, o sistema de coordenadas também roda. Se você premir, em funcionamento manual, a tecla de direcção do eixo Z+, a ferramenta desloca-se na direcção X+ do sistema de coordenadas fixo da máquina.
- Para o cálculo do sistema de coordenadas transformado, o TNC tem em consideração desvios condicionados mecanicamente da cabeça basculante (zonas "translatórias") e desvios resultantes da oscilação da ferramenta (correcção 3D da longitude da ferramenta).
Passar os pontos de referência em eixos basculantes

Em eixos basculantes, passam-se os pontos de referência com as teclas de direcção externas. Para isso, o TNC interpola os respectivos eixos. Tome em atenção que a função "Inclinação do plano de maquinação" deve estar activada no modo de funcionamento Manual, e que o ângulo real do eixo esteja introduzido no menú.

Memorização do ponto de referência num sistema inclinado

Depois de ter posicionado os eixos basculantes, memorize o ponto de referência como no sistema sem inclinação. O TNC calcula o novo ponto de referência no sistema de coordenadas inclinado. O TNC vai buscar os valores angulares para este cálculo aos eixos regulados segundo a posição real do eixo rotativo.

No sistema inclinado, você não pode memorizar o ponto de referência se estiver fixado o Bit 3 no parâmetro de máquina 7500. Caso contrário, o TNC calcula mal o desvio.

Se os eixos basculantes da sua máquina não estiverem controlados, você deve introduzir a posição real do eixo rotativo no menú da inclinação manual: se a posição real do(s) eixo(s) rotativo(s) não coincidir com o programado o TNC irá calcular mal o ponto de referência.

Memorização do ponto de referência em máquinas com mesa redonda giratória

O comportamento do TNC na memorização do ponto de referência depende da máquina. Consulte o manual da máquina

O TNC desvia automaticamente o ponto de referência se você rodar a mesa e se estiver activada a função de inclinação do plano de maquinação.

MP 7500, Bit 3=0

Para calcular o desvio do ponto de referência, o TNC utiliza a diferença entre a coordenada REF ao memorizar o ponto de referência e a coordenada REF do eixo basculante depois da inclinação. Você tem que usar este método de cálculo se tiver fixado a sua peça ajustada na posição 0° (valor REF) da mesa redonda rotativa.

MP 7500, Bit 3=1

Se você alinhar com uma rotação da mesa uma peça fixada de forma transversal, o TNC já não pode calcular o desvio do ponto de referência mediante a diferença das coordenadas REF. OTNC utiliza directamente o valor REF do eixo basculante após a inclinação, partindo-se do princípio que antes da inclinação a peça está já alinhada.

Visualização de posições num sistema inclinado

As posições visualizadas no ecrã de estados (NOMINAL E REAL) referem-se ao sistema de coordenadas inclinado

Limitações ao inclinar o plano de maquinação

- Não está disponível a função de apalpação Rotação Básica
- Não se pode efectuar posicionamentos de PLC (determinados pelo fabricante da máguina)
- Não se permite frases de posicionamento com M91/M92

Seleccionar a inclinação manual: softkey 3D ROT. Os pontos do menú seleccionam-se então com as teclas de setas.

Mod	o de o	perac	ao mar	nual		Edi	cao de grama
Inc E×e Mod	linar cucao o oper	plano PGM: acao	de ti manua	rabalh Ac I <mark>Ac</mark>	no ctivo ctivo		
A =	+60		0				
В =	+30		0				
C =	+30		0				
Х	-189,	3195	Y – 6	58,780	34 Z	-107	,6349
В	+89,	5133	C +4	40,012	29		
					S	0,08	7
ATUAL		🖉 т			F 1375		M 5⁄9

Introduzir o ângulo de inclinação

Fixar no modo Activo o modo de funcionamento pretendido no ponto do menú Inclinação do Plano de Maquinação: seleccionar o ponto do menú, e comutar com a tecla ENT

Finalizar a introdução: tecla END

Para desactivar, ponha os modos de funcionamento pretendidos em modo Inactivo, no menú Inclinação do Plano de Maquinação de Inclinação.

Quando está activada a função Inclinação do plano de maquinação e o TNC desloca os eixos da máquina em relação aos eixos inclinados, aparece na visualização de estados 🖄 o símbolo

Se você activar a função Inclinação do Plano de Maquinação no modo de funcionamento Execução do Programa, o ângulo de inclinação introduzido no menú sera válido a partir da primeira frase do programa de maquinação a executar. Se você utilizar no programa de maquinação o ciclo 19 PLANO DE MAQUINAÇÃO, serão válidos os valores angulares definidos no ciclo (a partir da definição do ciclo). Neste caso, ficam sobre-escritos os valores angulares programados no menú.

Posicionamento com introdução manual

3.1 Programação e execução de maquinações simples

Para maquinações simples ou para o posicionamento prévio da ferramenta, adequa-se o modo de funcionamentoPosicionamento com Introdução Manual. Neste modo de funcionamento, você pode introduzir e executar directamente um programa curto em formato HEIDENHAIN em texto claro ou DIN/ISO. Você também pode chamar os ciclos do TNC. O programa é memorizado no ficheiro \$MDI. No Posicionamento com Introdução Manual, pode activar-se a visualização de estados adicional.

Seleccionar o modo de funcionamento Posicionamento com Introdução Manual Programar o ficheiro \$MDI como se guiser.

I

Iniciar a execução do programa: tecla externa START

Limitação: não estão disponíveis a programação livre do contorno FK, os gráficos de programação e os gráficos de execução do programa. O ficheiro \$MDI não pode conter nenhuma chamada de programa (PGM CALL).

Exemplo 1

Pretende-se efectuar um furo de 20 mm numa peça. Depois de se fixar e centrar a peça, e de se memorizar o ponto de referência, pode-se programar e executar o furo com poucas frases de programação.

Primeiro, posiciona-se a ferramenta com frases L (rectas) sobre a peça, e a uma distância de segurança de 5 mm sobre a posição do furo. Depois, efectua-se o furo com o ciclo 1 FURAR EM PROFUNDIDADE.

0	BEGIN PGM \$MDI MM	
1	TOOL DEF 1 L+0 R+5	D
2	TOOL CALL 1 Z S2000	С
		R
3	L Z+200 RO F MAX	R
4	L X+50 Y+50 RO F MAX M3	Р
		F
5	L Z+5 F2000	Р

Definir a ferramenta: ferramenta zero, raio 5 Chamar a ferramenta: eixo da ferramenta Z, Rotações da ferramenta 2000 U/min Retirar a ferramenta (F MAX = marcha rápida) Posicionarcomt FMAX a ferrta.medianteum orifício, Ferrta. ligada Posicionamento da ferramenta 5 mm sobre o furo

50

Ferram = Ferramenta

Ζ

50

6 CYCL DEF 1.0 FURAR EM PROFUNDIDADE	Definição do ciclo FURAR EM PROFUNDIDADE:
7 CYCL DEF 1.1 DIST 5	Distância de segurança da ferramenta sobre o furo
8 CYCL DEF 1.2 PROF20	Profundidade do furo (sinal = direcção da
	maquinação)
9 CYCL DEF 1.3 PASSO 10	Profundidade de passo antes de retirar a ferramenta
10 CYCL DEF 1.4 T.ESP. 0,5	Tempo de espera em segundos na base do furo
11 CYCL DEF 1.5 F250	Avanço
12 CYCL CALL	Chamada do ciclo FURAR EM PROFUNDIDADE
13 L Z+200 RO F MAX M2	Retirar a ferramenta
14 END PGM \$MDI MM	Fim do programa

A função de programação de rectas está descrita no capítulo "6.4 Tipos de movimentos - coordenadas cartesianas", e o ciclo FURAR EM PROFUNDIDADE no capítulo "8.2 Ciclos de furar".

Exemplo 2

Eliminar a inclinação da peça em máquinas com mesa redonda giratória

Executar uma rotação básica com um apalpador 3D. Ver capítulo "12.2 Ciclos de apalpação nos modos de funcionamento Manual e Volante Electrónico", parágrafo "Compensação da inclinação da peça".

Anotar o Ângulo de Rotação e anular a Rotação Básica

Seleccionar o modo de funcionamento: Posicionamento com introdução Manual

Seleccionar o eixo da mesa rotativa, anotar o
ângulo de rotação e introduzir o avanço
p.ex.L C+2.561 F50

	Finalizar a introdução
I	Premir a tecla externa START: anula-se a inclinação com a rotação da mesa rotativa

Guardar ou apagar programas a partir do \$MDI

O ficheiro \$MDI é habitualmente usado para programas curtos e necessários de forma transitória. Se no entanto você tiver que memorizar um programa, proceda da seguinte forma:

\bigcirc	Seleccionar modo de funcionamento: Memorização/Edição de Programas	
Chamar Gestão de Ficheiros: tecla PGM MGT (program Management)		
ł	Marcar ficheiro \$MDI	
COPIAR ABC ⇒ XYZ	Seleccionar "Copiar Ficheiro": Softkey COPY	
Ficheiro de d	lestino =	
FURO	Introduza o nome que se pretende memorizar no índice do ficheiro \$MDI	
EXECUTAR	Executar a cópia	
FIM	Sair da gestão de ficheiros: softkey END	

Para apagar o conteúdo do ficheiro \$MDI, proceda de forma semelhante: em vez de o copiar, apague o conteúdo com a softkey APAGAR. Na troca seguinte para o modo de funcionamento Posicionamento com Introdução Manual, o TNC visualiza um ficheiro vazio \$MDI.

Se quiser apagar o ficheiro \$MDI,

não pode ter seleccionado o modo de funcionamento Posicionamento com Introdução Manual (nem em plano de fundo)

não pode ter seleccionado o ficheiro \$MDI no modo de funcionamento Memorização/Edição dum Programa

Para mais informações, ver capítulo "4.2 Gestão de ficheiros".

Programação:

Princípios básicos, gestão de ficheiros, auxílios de programação, gestão de paletes

4.1 Princípios básicos

Sistemas de medida e marcas de referência

Nos eixos da máquina há sistemas de medida que registam as posições da mesa da máquina ou da ferramenta. Quando um eixo da máquina se move, o sistema de medida correspondente produz um sinal eléctrico, a partir do qual o TNC calcula a posição real exacta do eixo da máquina.

Com uma interrupção de corrente, perde-se a correspondência entre a posição do carro da máquina e a posição real calculada. Para que esta correspondência se possa realizar de novo, as escalas dos sistemas de medida dispõem de marcas de referência. Ao alcançarse uma marca de referência, o TNC recebe um sinal que caracteriza um ponto de referência fixo da máquina. Assim, o TNC pode realizar de novo a correspondência da posição real para a posição actual do carro da máquina.

Geralmente aplicam-se sistemas de medida lineares para eixos lineares. Em mesas redondas giratórias e eixos de inclinação, há sistemas de medida angulares. Para voltar a realizar a correspondência entre a posição real e a posição actual do carro da máquina, você tem que deslocar os eixos da máquina com marcas de referência codificadas num máximo de 20 mm para sistemas de medida lineares, e 20° para sistemas angulares.

Sistema de referência

Com um sistema de referência, você fixa claramente posições num plano ou no espaço. A indicação de uma posição refere-se sempre a um ponto fixado, e é descrita por coordenadas.

No sistema rectangular (sistema cartesiano), são determinadas três direcções como eixos X, Y e Z. Os eixos encontram-se perpendiculares entre si respectivamente, e cortam-se num ponto - o ponto zero. Uma coordenada indica a distância até ao ponto zero numa destas direcções. Assim, pode-se descrever uma posição no plano através de duas coordenadas, e no espaço através de três coordenadas.

As coordenadas que se referem ao ponto zero designam-se como coordenadas absolutas. As coordenadas relativas referem-se a qualquer outra posição (ponto de referência) no sistema de coordenadas. Os valores relativos de coordenadas também se designam como valores incrementais de coordenadas.

Sistemas de referência em fresadoras

Na maquinação de uma peça numa fresadora, você deve referir-se geralmente ao sistema de coordenadas cartesianas. A figura à direita mostra como é a correspondência do sistema de coordenadas cartesianas com os eixos da máquina. A regra-dos-três-dedos da mão direita serve de apoio à memória: Quando o dedo médio aponta na direcção do eixo da ferramenta, da peça para a ferramenta, está a indicar na direcção Z+, o polegar na direcção X+, e o indicador na direcção Y+.

O TNC 426 pode comandar no total um máximo de 5 eixos, e o TNC 430 num máximo de 9 eixos. Para além dos eixos principais X, Y e Z, existem também eixos auxiliares paralelos U, V e W. Os eixos rotativos são designados por A, B e C. A figura em baixo à direita mostra a correspondência dos eixos auxiliares com os eixos principais.

Coordenadas polares

Se o desenho da peça estiver dimensionado em coordenadas cartesianas, você elabora o programa de maquinação também com coordenadas cartesianas. Em peças com arcos de círculo ou em indicações angulares, costuma ser mais simples fixar as posições com coordenadas polares.

Ao contrário das coordenadas cartesianas X, Y e Z, as coordenadas polares só descrevem posições num plano. As coordenadas polares têm o seu ponto zero no pólo CC (CC = circle centre, em inglês; ponto central do círculo). Assim, uma posição num plano é claramente fixada através de

- Raio das coordenadas: a distância do pólo CC à posição
- Ângulo das coordenadas polares: ângulo entre o eixo de referência angular e o trajecto que une o pólo CC com a posição.

Ver figura em baixo, à direita.

Determinação de pólo e eixo de referência angular

Você determina o pólo através de duas coordenadas no sistema de coordenadas cartesiano num dos três planos. Estas duas coordenadas determinam assim também claramente o eixo de referência angular para o ângulo em coordenadas polares PA.

Coordenadas do pólo (plano)	Eixo de referência angular
XY	+X
YZ	+Y
ZX	+Z

4.1 Princípios básicos

Posições absolutas e incrementais da peça

Posições absolutas da peça

Quando as coordenadas de uma posição se referem ao ponto zero de coordenadas (origem), designam-se como coordenadas absolutas. Cada posição sobre a peça está determinada claramente pelas suas coordenadas absolutas.

Exemplo 1: Furo com coordenadas absolutas

X=10 mm	X=30 mm	X=50 mm
Y=10 mm	Y=20 mm	Y=30 mm

Posições incrementais da peça

As coordenadas incrementais referem-se à última posição programada da ferramenta, que serve de ponto zero (imaginário) relativo. As coordenadas incrementais indicam, assim, na elaboração do programa, a cota entre a última posição nominal e a que se lhe segue, e segundo a qual se deve deslocar a ferramenta. Por isso, também se designa por cota relativa.

Uma cota relativa caracteriza-se com um "I" antes da designação do eixo.

Exemplo 2: Furos com coordenadas incrementais

Coordenadas absolutas do furo 4:

X= 10 mm Y= 10 mm	
Furo <mark>5</mark> referente a <mark>4</mark>	Furo <mark>6</mark> referente a <mark>5</mark>
IX= 20 mm IY= 10 mm	IX= 20 mm IY= 10 mm

Coordenadas polares absolutas e incrementais

As coordenadas absolutas referem-se sempre ao pólo e ao eixo de referência angular.

As coordenadas incrementais referem-se sempre à última posição programada da ferramenta.

Seleccionar o ponto de referência

No desenho da peça indica-se um determinado elemento da peça como ponto de referência absoluto (ponto zero), quase sempre uma esquina da peça. Ao fixar o ponto de referência, alinhe primeiro a peça com os eixos da máquina e coloque a ferramenta em cada eixo, numa posição conhecida da peça. Para esta posição, fixe a visualização do TNC em zero ou num valor de posição previamente determinado. Assim, você põe a peça em correspondência com o sistema de referência que é válido para a visualização do TNC ou para o seu programa de maquinação.

Se o desenho da peça indicar pontos de referência relativos, você irá simplesmente utilizar os ciclos para a conversão de coordenadas. Ver capítulo "8.7 Ciclos para a conversão de coordenadas".

Se o desenho da peça não estiver cotado para NC, você selecciona uma posição ou uma esquina da peça como ponto de referência, a partir do qual as cotas das restantes posições da peça se podem verificar de forma extremamente simples.

Você pode fixar os pontos de referência de forma especialmente cómoda com um apalpador 3D da HEIDENHAIN. Ver capítulo "12.2 Memorização de ponto de referência com apalpadores 3D"

Exemplo

O plano da peça à direita mostra os furos (1 até 4), cujas cotas se referem a um ponto de referência absoluto com as coordenadas X=0 Y=0. Os furos (5 até 7) referem-se a um ponto de referência relativo com as coordenadas absolutas X=450 Y=750. Com o ciclo DESLOCAMENTO DO PONTO ZERO, você pode deslocar provisoriamente o ponto zero para a posição X=450, Y=750, para poder programar os furos (5 até 7) sem recorrer a mais cálculos.

4.2 Gestão de ficheiros: princípios básicos

Com a função MOD PGM MGT (ver capítulo 12.5), você selecciona entre a gestão de ficheiros e a gestão de ficheiros alargada.

Se o TNC estiver ligado a uma rede (opcão), utilize a gestão de ficheiros alargada.

Ficheiros

Quando introduzir um programa de maguinação no TNC, dê primeiro um nome a este programa. O TNC memoriza o programa no disco duro como um ficheiro com o mesmo nome. O TNC também memoriza textos e tabelas como ficheiros.

Para você poder rapidamente encontrar e gerir os ficheiros, o TNC dispõe de uma janela especial para a gestão de ficheiros. Agui, você pode chamar, copiar, dar novos nomes e apagar ficheiros.

Com o TNC você pode gerir a guantdade de ficheiros que guiser, não podendo, contudo a sua totalidade exceder **1.500 MBvte**.

Nomes de ficheiros

O nome do ficheiro pode ter um total de 16 caracteres. Nos programas, tabelas e textos, o TNC acrescenta uma extensão separada

do nome do ficheiro por um ponto. Esta extensão caracteriza o tipo de ficheiro: ver quadro à direita.

Nome do ficheiro

Salvaguarda de dados

A HEIDENHAIN recomenda memorizar periodicamente num PC os novos programas e ficheiros elaborados.

Para isso, a HEIDENHAIN dispõe de um programa de Backup grátis (TNCBACK.EXE). Consulte por favor o fabricante da máguina.

Para além disso, você precisa de uma disguete que contenha todos os dados específicos da máguina (programa de PLC, parâmetros da máguina, etc.). Contacte também, por favor, o fabricante da máquina.

Se guiser guaradra todos os ficheiros existentes no disco duro (máx. 1.500 MByte), isto pode durar várias horas. O melhor será realizar o processo de salvaguarda de dados durante a noite, ou então utilizar a função EXECUTAR EM PARALELO (executar a cópia no plano de fundo, de forma paralela).

Ficheiros noTNC	Tipo
Programas em diálogo em texto claro da HEIDENHAIN segundo DIN/ISO	.H .I
Tabelas para ferramentas Paletes Pontos zero Pontos (campo de digitalização) em apalpador analógico) dados de intersecção material de intersecção, material de trabalho	.T .P .D .PNT .CDT .TAB
T	

Textos como ficheiros ASCII

A.

4.3	Gestão de ficheiros standard
	Trabalhe com a gestão de ficheiros standard se quiser memorizar todos os ficheiros num directório, ou se já estiver familiarizado com a gestão de ficheiros de anteriores comandos de TNC.
	Para isso, ponha na função MOD PGM MGT standard (ver capítulo 12.5).
Chama	ar a Gestão de Ficheiros
PGM MGT	Premir a tecla PGM MGT: o TNC visualiza a janela para a gestão de ficheiros (ver figura em cima, à direita)
A janela ficheiro	mostra todos os ficheiros memorizados no TNC. Para cada visualizam-se várias informações: ver quadro da direita.
Seleco	cionar ficheiro
PGM MGT	Chamar gestão de ficheiros

Utilize as teclas de setas para mover o cursor sobre o ficheiro que pretende seleccionar:

Move o cursor para cima e para baixo, numa janela

SELECCIONAR ou tecla ENT

Seleccionar ficheiro: premir softkey

SELECCAO ou ENT -∕4

Modo operacao Edicao tabela de programas manual Nome do programa =<mark>\$MDI.H</mark> TNC:*.* Nome arquivo Byte Status \$MDI н 248 1 •Н 232 420 4354 .н 79247 .н 2316 79280 .н 1734 BRADFORD 644 .н 218 CYC .н DAUER .н 352 EXTRUDER .н 1438 FKDEMO .н 404 FKDEM02 .н 438 66 arq.(s) 915808 kbyte livres ULTIMO ARQUIVO PAGINA PAGINA SELECCAO COPIAR FIM EXT Û **B** ABC⇒XYZ Û -4 Vi

visualização	Significado
NOME DO FICHEIRO	Nome com um máximo de 16 caracteres e tipo de ficheiro
BYTE	Tamanho do ficheiro em bytes
ESTADO E	Natureza do ficheiro: O programa encontra-se seleccionado no modo de funcionamento Memorização/Edição DE PROGRAMA
S	O programa encontra-se seleccionado no modo de funcionamento Teste de programas Test
Μ	O programa encontra-se seleccionado num modo de funcionamento de execução de programa
Ρ	Ficheiro protegido contra apagar e modificar (Protected)

Visualização de ficheiros extensos	Softkey
Passar página para trás no ficheiro	PAGINA
Passar página para a frente	PAGINA J

4 Programação: Princípios básicos, gestão de ficheiros, auxílios de programação, gestão de paletes

Apagar ficheiro

Chamar gestão de ficheiros

Utilize as teclas de setas para mover o cursor sobre o ficheiro que pretende apagar:

Move o cursor para cima e para baixo, numa janela

APAGAR	Apagar ficheiro: premir a softkey APAGAR
Apagar	Ficheiro ?
SIM	Confirmar com a softkey SIM ou
NAD	Interromper com a softkey NÃO

Copiar ficheiro

Chamar gestão de ficheiros

Utilize as teclas de setas para mover o cursor sobre o ficheiro que pretende copiar:

Move o cursor para cima e para baixo, numa janela

Copiar ficheiro: premir a softkey COPIAR

Ficheiro de destino =

Introduzir o novo nome do ficheiro, e confirmar com a softkey EXECUTAR ou com a tecla ENT. O TNC acende uma janela de visualização de estado que informa sobre a continuação do processo de copiar. Enquanto o TNC estiver a copiar, você não pode continuar a trabalhar, ou

se pretender copiar programas muito extensos: introduzir um novo nome do ficheiro, e confirmar com a softkey EXECUTAR PARALELO. Após início do processo de cópia, você pode continuar a trabalhar, pois o TNC copia o ficheiro de forma paralela

Transmisssão de dados para/de uma base de dados externa

Antes de poder transmitir dados para uma base externa, você tem que ajustar a conexão de dados (ver "Capítulo 12.4 Ajustar conexão de dados").

PGM MGT

Chamar gestão de ficheiros

EXT

Activar transmissão de dados: premir a softkey EXT O TNC visualiza na metade esquerda do ecrã 1 Todos os ficheiros memorizados no TNC, e na metade direita do ecrã 2 Todos os ficheiros memorizados na base de dados externa

Utilize as teclas de setas para mover o cursor sobre o ficheiro que pretende transmitir

Move o cursor para cima e para baixo, numa janela

Move o cursor da janela direita para a janela esquerda e vice versa

Se pretender copiar do TNC para uma base externa, desloque o cursor na janela esquerda sobre o ficheiro a transmitir.

Se pretender copiar de uma base externa para o TNC, desloque o cursor na janela da direita sobre o ficheiro a transmitir

Transmitir só um ficheiro: premir a softkey COPIAR, ou

transmitir vários ficheiros: premir a softkey MARCAR (para funções de marcação, ver quadro à direita), ou

transmitir todos os ficheiros: premir a softkey TNC EXT

Modo operacao manual	Edic Nome	ao . do	tabela progr	a de p rama =	orogra <mark>%TCH</mark>	amas PRNT.f	
TNC:*.*	1			R\$232:*.	* 2	2	
Nome arquiv	0	Byte	Status	[NO DIR]			
%TCHPRNT	.Α	200					
ASDFGHJ	.Α	8644					
CVREPOR T	.Α	7927					
KJHGFD	.A	Ø					
LOGBOOK	.Α	58194					
BOHRER	.CDT	4522					
FRAES_2	.CDT	10382					
FRAES_GB	.CDT	10382					
VM1	.COM	13					
test	.D	406	м				
\$MDI	.н	248					
66 arq.(s) 9	15808 kb;	yte livr	es				
PAGINA PA	IGINA	COPIAR	TNC EXT				E T M
Û	Ų ⊡	IC)⇒ЕХТ	D⇒D	TAG			гIМ

Funções de marcação	Softkey
Marcar um só ficheiro	TAG ARQUIVO
Marcar todos os ficheiros	TAG TODOS ARQUIVOS
Anular a marcação para um só ficheiro	UNTAG ARQUIVO
Anular a amarcação para todos os ficheiros	UNTAG TODOS ARQUIVOS
Copiar todos os ficheiros marcados	COPIA TAG

4.3 Gestão de ficheiros standard

Confirmar com a softkey EXECUTAR ou com a tecla ENT. O TNC acende uma janela de visualização de estados onde você fica informado sobre a etapa do processo de copiar, ou

se pretender transmitir programas extensos ou vários programas: confirmar com a softkey EXECUTAR PARALELO. O TNC copia o ficheiro em forma paralela

Finalizar a transmissão de ficheiros: premir a softkey TNC. O TNC volta a visualizar a janela standard para a gestão de ficheiros

Escolher um dos 10 últimos ficheiros seleccionados

Utilize as teclas de setas para mover o cursor sobre o ficheiro que pretende seleccionar:

Move o cursor para cima e para baixo, numa janela

Seleccionar ficheiro: premir softkey SELECCIONAR ou tecla ENT

Execucao cont inua	Edica	ao de programa	
C SCREENS C ALTE-CYC C CDT C CUTTAB C daniel D DEMO D depo G G HE HE HE HE HE HE HE KE C KCUUDRK C CUUDRK D DUMPS		0: INC::NKYDURPSYFK1.H 1: TNC::FK1.H 2: TNC: WMAT_GB.TAB 3: TNC::TMAT_GB.TAB 4: TNC::TMAT_TAB 5: TNC::FRAES_2.CDT 6: TNC::NKYDURPSYBUK.H 7: TNC::NKYDURPSYBUJOINT.H 8: TNC::NKYDURPSYBUJOINT.H 9: TNC::NKYDURPSYBUJA.A	
SELECCAO			FIM

Mudar o nome a um ficheiro

PGM MGT	Chamar gestão de ficheiros
Utilize as tecla que pretende	as de setas para mover o cursor sobre o ficheiro a mudar o nome:
	Move o cursor para cima e para baixo, numa janela
	Mudar o nome do ficheiro: softkey CONFIRMAR RENOVAR
Ficheiro de	destino =
Introduzir o no EXECUTAR ou	ovo nome do ficheiro, e confirmar com a softkey u com a tecla ENT.

Converter um programa FK em formato em texto claro

PGM MGT

Chamar gestão de ficheiros

Utilize as teclas de setas para mover o cursor sobre o ficheiro que pretende converter:

Move o cursor para cima e para baixo, numa janela

Converter o ficheiro: premir a softkey CONVERTER FK -> H

Ficheiro de destino =

Introduzir o novo nome do ficheiro, e confirmar com a softkey EXECUTAR ou com a tecla ENT.

Proteger ficheiro / anular ficheiro

Chamar gestão de ficheiros

Utilize as teclas de setas para mover o cursor sobre o ficheiro que pretende proteger ou cuja protecção pretende anular:

Move o cursor para cima e para baixo, numa janela

Proteger o ficheiro: premir a softkey PROTEGER O ficheiro fica com o estado P, ou

Anular a protecção do ficheiro: premir a softkey DESPROTEGER O estado P é apagado

4.4 Chamar gestão de ficheiros

Trabalhe com a gestão de ficheiros standard se quiser memorizar ficheiros em diferentes directórios.

Para isso, ponha a função MOD PGM MGT (ver capítulo 12.5) em alargado

! Consulte também o capítulo "4.2 Gestão de ficheiros: princípios básicos"!

Directórios

Visto ser possível você memorizar muitos programas ou ficheiros no disco duro, ordene cada um dos ficheiros em directórios para garantir um devido resumo deles. Nestes directórios, você pode inserir outros directórios, chamados subdirectórios.

\sim	
Là	=

O TNC gere um máximo de 6 níveis de directórios!

Se você memorizar mais de 512 ficheiros num directório, o TNC deixa de os ordenar por ordem alfabética!

Nomes de directórios

O nome de um directório pode ter até um máximo de 8 caracteres e dispõe de uma extensão. Se você introduzir mais de 8 caracteres para o nome de um directório, o TNC encurta-o automaticamente para 8 caracteres.

Caminhos de busca

Um caminho de busca indica a base de dados e todos os directórios ou subdirectórios em que está memorizado um ficheiro. Cada uma das indicações está separada com o sinal "\".

Exemplo: na base de dados do TNC:\ está o subdirectório AUFTR1. A seguir criou-se no directório AUFTR1 o subdirectório NCPROG, no qual se memoriza o programa de maquinação PROG!.H. Desta forma, o programa de maquinação tem o seguinte caminho de busca:

TNC:\AUFTR1\NCPROG\PROG1.H

O gráfico à direita mostra um exemplo para a visualização de um directório com diferentes caminhos de busca.

Visualização: funções da gestão de ficheiros alargada

Função	Softkey
Copiar (e converter) um só ficheiro	COPIAR ABC ⇒ XYZ
Visualizar um determinado tipo de ficheiro	SELECCI.
Visualizar os últimos 10 ficheiros seleccionados	
Apagar ficheiro ou directório	APAGAR
Marcar ficheiro	TAG
Mudar o nome a um ficheiro	RENOMEAR ABC = XYZ
Converter um programa FK em programa de texto claro	CONVERTER FK->H
Proteger ficheiro contra apagar e modificar	PROTEGER
Anular a protecção do ficheiro	DESPROT.
Gerir bases de dados de rede (só em caso de opção por conexão com Ethernet)	REDE
Copiar directórios	COPIA DIR
Visualizar directórios de uma base de dados	
Apagar directório com todos os subdirectórios	

Chamar a Gestão de Ficheiros

Premir a tecla PGM MGT: o TNC visualiza a janela para a gestão de ficheiros (a figura em cima, à direita, mostra o ajuste básico. Se o TNC visualizar uma outra divisão do ecrã, prima a softkey WINDOW)

A janela pequena da esquerda visualiza em cima três bases 1 de dados. Se o TNC estiver ligado a uma rede, o TNC visualiza a base de dados adicional. As bases de dados descrevem aparelhos com que se memorizam ou transmitem os dados. Uma base de dados é o disco duro do TNC, as outras bases de dados são as conexões de dados (RS232, RS422, Ethernet) às quais você pode ligar, por exemplo, um computador pessoal. Uma base de dados seleccionada (activada) é destacada com uma cor.

Na parte inferior da janela pequena o TNC visualiza todos os directórios 2 da base de dados seleccionada. Um directório é sempre caracterizado com um simbolo (à esquerda) e pelo nome do directório (à direita). Os subdirectórios estão inseridos para a direita.

Um directório seleccionado (activado) é destacado com um cor.

A janela larga à direita mostra todos os ficheiros 3 que estão memorizados no directório seleccionado. Para cada ficheiro, são apresentadas várias informações que são explicadas no quadro à direita.

Modo operacao Edic	ao tabel: torio= <mark>-</mark> N	a di	e pro	gramas T	
日子 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	TNC:\ALBERT*.*		Byte St	atus Data	Tempo
	TEST	.A	5101	15-01-1998	11:38:58
⊡ TNC:\ 2	CHRIS	.в .н	638	21-07-1998	11:38:40
	FK KERN	.н .н	580 208	21-07-1998 21-07-1998	11:38:38 11:38:38
SCREENS ALTE-CYC	NEU	.н	286	21-07-1998	11:38:28
	TEST	.н	722	21-07-1998	11:38:3
🗅 CUITAB	TEST2 TESTCDT	.н .н	146 130	21-07-1998 21-07-1998	11:38:3 11:38:4
DEMO	TESTM91	.н	72	21-07-1998	11:38:3
🗆 depo	19 arq.(s) 915	808 kb	yte livres	3	
PAGINA PAGINA SE	LECCAO COPIA DIR 2 D → D	SELEC	CI. JAN	ELA ULTIMO	FIM

Visualização	Significado
NOME DO FICHEIRO	Nome com um máximo de 16 caracteres e tipo de ficheiro
BYTE	Tamanho do ficheiro em bytes
ESTADO E	Natureza do ficheiro:Datei: O programa encontra-se seleccionado no modo de funcionamento Memorização/ Edição de programas
S	O programa encontra-se seleccionado no modo de funcionamento Teste de programas Test
Μ	O programa encontra-se seleccionado num modo de funcionamento de execução de programa
Ρ	Ficheiro protegido contra apagar e modificar (Protected)
DATA	data em que o ficheiro foi modificado pela última vez
HORA	hora em que o ficheiro foi modificado pela última vez

4 Programação: Princípios básicos, gestão de ficheiros, auxílios de programação, gestão de paletes

PGM MGT

Seleccionar as bases de dados, os directórios e os ficheiros

4		
	PGM	
	MGT	

Chamar gestão de ficheiros

Utilize as teclas de setas ou as softkeys para deslocar o cursor para o sítio pretendido do ecrã.:

Move o cursor da janela direita para a janela esquerda e vice versa

Move o cursor para cima e para baixo, numa janela

Move o cursor nos lados para cima e para baixo, numa janela

1º passo: seleccionar base de dados:

Marcar a base de dados na janela da esquerda:

Seleccionar base de dados: premir softkey SELECT ou tecla ENT

2º passo: seleccionar directório:

Marcar directório na janela da esquerda:

a janela da direita mostra automaticamente todos os ficheiros do directório que está marcado (iluminado)

3º passo: seleccionar o ficheiro:

Marcar o ficheiro na janela da direita:

O ficheiro seleccionado é activado no modo de funcionamento de onde você chamou a gestão de ficheiros: premir a softkey SELECT ou a tecla ENT

Elaborar um novo directório (só é possível na base de dados do TNC):

Marcar o directório na janela da esquerda em que pretende criar um subdirectório

Introduzir o novo nome de directório, premir a tecla ENT

Copiar ficheiros individuais

Desloque o cursor para o ficheiro que deve ser copiado

 RR
 Premir a softkey COPY: seleccionar função de copiar

Introduzir o nome do ficheiro de destino e aceitar com a tecla ENT ou com a softkey EXECUTE: o TNC copia o ficheiro para o directório actual. O ficheiro original conserva-se guardado. Prima a softkey PARALLEL EXECUTE, para copiar o ficheiro de forma parela. Utilize esta função ao copiar ficheiros extensos, pois assim você poderá continuar a trabalhar após início do processo de copiar. Enquanto o TNC copia de forma paralela, você pode, com a softkey INFO PARALLEL EXECUTE (em MORE FUNCTIONS, 2ª régua de softkeys) observar o estado do processo de copiar.

Copiar uma tabela

Se copiar tabelas, você pode com a softkey SUBSTITUTE AREAS escrever por cima de linhas/frases ou de colunas na tabela de destino. Condições:

- A tabela de destino tem que já existir
- O ficheiro que vai ser copiado só pode conter as colunas ou linhas/frases que vão ser substituídas

Exemplo:

Você tem num aparelho de ajuste prévio a longitude e o raio de ferramenta de 10 novas ferramentas Seguidamente, o aparelho de ajuste prévio cria a tabela de ferramentas TOOL.T com 10 linhas/ frases (correspondendo a 10 ferramentas) e as colunas

- Número da ferramenta
- Longitude da ferramenta
- Raio da ferramenta

Se você copiar este ficheiro para o TNC, o TNC pergunta se pode escrever-se por cima da tabela de ferramentas existente TOOL.T:

- Prima a softkey YES. O TNC escreve então por cima todo o ficheiro actual TOOL.T Após o processo de copiar, TOOL.T compõe-se de 10 linhas/frases. Todas as colunas - excepto, naturalmente, o número de coluna, longitude e raio - são anuladas
- Prima a softkey SUBSTITUTE AREA. O TNC escreve por cima, no ficheiro TOOL.T, o número de coluna, a longitude e o raio das primeiras 10 linhas/frases. O TNC não modifica os dados relativos às restantes linhas/frases e colunas

Copiar directório

Desloque o cursor para a janela da esquerda, para o directório que pretende copiar. Prima a softkey COPY DIR em vez da softkey COPY. Os subdirectórios são simultaneamente copiados pelo TNC.

Escolher um dos 10 últimos ficheiros seleccionados

continua	
SCREENS	3
□ ALTE-CYC	
CD CDT	0: INC:NNKNDUMPSNFK1.H
CUTTAB	1: TNC:\FK1.H
🗀 daniel	2: TNC:\WMAT_GB.TAB
DEMO	3: TNC:\TMAT_GB.TAB
n depo	4: TNC:\TMAT.TAB
CD GT	5: TNC:\FRAES_2.CDT
C bannor	6: TNC:\NK\DUMPS\BLK.H
	7: TNC:\NK\DUMPS\3DJOINT.H
	8: TNC:\NK\DUMPS\3516.A
L HE1	9: TNC:\NK\DUMPS\BSP.A
HERBERT	
D NK	
CYCUORK	<
🕞 DUMPS	
SELECCAD	FIM

Edicao de programa

Execucao

Move o cursor para cima e para baixo, numa janela

Seleccionar ficheiro: premir softkey SELECT ou tecla ENT

Apagar ficheiro

Desloque o cursor para o ficheiro que pretende apagar

- APAGAR
- Seleccionar a função de apagar: premir a softkey DELETE. O TNC pergunta se o ficheiro deve realmente ser apagado
- Confirmar apagar: premir a softkey YES. Interromper apagar: premir a softkey NO

Apagar directórios

- Apague todos os ficheiros e subdirectórios do directório que pretende apagar
- Desloque o cursor para o directório que pretende apagar

Seleccionar a função de apagar: premir a softkey DELETE. O TNC pergunta se o directório deve realmente ser apagado

Confirmar apagar: premir a softkey YES.. Interromper apagar: premir a softkey NO

Marcar os ficheiros

Você pode usar simultaneamente funções tais como copiar ou apagar ficheiros tanto para cada ficheiro individual como para vários ficheiros. Você marca vários ficheiros da seguinte forma:

TAG

ARQUIVO

Visualizar as funções de marcação de ficheiros: premir a softkey TAG

Deslocar o cursor para outro ficheiro

Marcar o outro ficheiro: premir a softkey TAG FILE, etc.

Copiar os ficheiros marcados: premir a softkey COPYTAG ou

apagar os ficheiros marcados: premir a softkey END para sair das funções de marcação de ficheiros, e seguidamente premir a softkey DELETE para apagar os ficheiros marcados

Mudar o nome a um ficheiro

> Desloque o cursor para o ficheiro a que pretende mudar o nome

RENOMERR Seleccionar a função para mudança de nome

- Introduzir o novo nome do ficheiro; o tipo de ficheiro não pode ser modificado
- ▶ Executar a mudança de nome: premir a tecla ENT

Funções de marcação	Softkey
Marcar ficheiros individualmente	TAG ARQUIVO
Marcar todos os ficheiros existentes num directório	TAG TODOS ARQUIVOS
Anular a marcação para circular	UNTAG ARQUIVO
Anular a marcação para circular	UNTAG TODOS ARQUIVOS
Copiar todos os ficheiros marcados	COPIA TAG → →

Funções auxiliares

Proteger ficheiro/anular a protecção do ficheiro

Desloque o cursor para o ficheiro que pretende proteger

 Seleccionar Funções Auxiliares: premir a softkey CONFIRMAR

R Activar a protecção do ficheiro:

premir a softkey PROTECT. O ficheiro fica com o Estado P

Você anula a protecção do ficheiro da mesma forma com a softkey UNPROTECT.

Converter um programa FK para formato em TEXTO CLARO

Desloque o cursor para o ficheiro que pretende converter

Seleccionar Funções Auxiliares: premir a softkey CONFIRMAR

CONVERTER FK->H

Seleccionar a função de conversão: premir a softkey CONVERT FK->H

- ▶ Introduzir o nome do ficheiro de destino
- ▶ Executar a conversão: premir a tecla ENT

Apagar o directório, incluindo todos os subdirectórios e ficheiros

Desloque o cursor para a janela da esquerda, para o directório que pretende apagar.

MAIS	
FUNCOES	

 Seleccionar Funções Auxiliares: premir a softkey CONFIRMAR

 Apagar o directório por completo: premir a softkey DELETE ALL

Confirmar apagar: premir a softkey YES.. Interromper apagar: premir a softkey NO

Transmissão de dados para/a partir de suporte de dados externo

Antes de poder transmitir dados para uma base externa. você tem que ajustar a conexão de dados (ver "Capítulo 12.4 Aiustar conexão de dados").

PGM
MGT

Chamar gestão de ficheiros

JANELA == =

Seleccionar a divisão de ecrã para a transmissão de dados: premir a softkey WINDOW. O TNC visualiza na metade esquerda do ecrã 1 Todos os ficheiros memorizados no TNC, e na metade direita do ecrã 2 todos os ficheiros memorizados na base de dados externa

Utilize as teclas de setas para mover o cursor sobre o ficheiro que pretende transmitir

Move o cursor para cima e para baixo, numa ianela

Move o cursor da janela direita para a janela esquerda e vice versa

Se pretender copiar do TNC para uma base externa, desloque o cursor na janela esquerda sobre o ficheiro a transmitir.

Se pretender copiar de uma base externa para o TNC, desloque o cursor na janela da direita sobre o ficheiro a transmitir

Transmitir só um ficheiro: premir a softkey COPY, ou

Transmitir vários ficheiros: premir a softkey TAG (para funções de marcação, ver quadro á direita), ou

TNC 426 B, TNC 430 da HEIDENHAIN

transmitir todos os ficheiros: premir a softkey TNC EXT

Modo operac manual	a∘ Ed:	icao	tabela	a de p	orogra	amas	
lianaar	Nor	ne do	progr	ama =	= <mark>\$</mark> MDI.	H	
TNC:\NK\DU	1PS*.*	1		TNC:*.*	2	2	
Nome arqu	Jivo	Byte	Status	Nome ar	quivo	Byte	Status
221	.н	2366		\$MDI	.н	248	
3507	.н	1220		1	.н	232	
35071	.н	596		420	.н	4354	
3516	.н	1372		79247	.н	2316	
3DJOINT	.н	732		79280	.н	1734	
BLK	.н	74		BRADFORD	н	644	
FK1	.н	716		CYC	.н	218	
NEU	.н	144		DAUER	.н	352	
SLOLD	.н	6174		EXTRUDER	.н	1438	
STAT	.н	28		FKDEMO	.н	404	
STAT1	.н	360		FKDEM02	.н	438	
25 arq.(s)	915808	kbyte livr	es	66 arq.(s) 915808	kbyte livr	es
PAGINA	PAGINA 	SELECCAO	COPIAR ABC}⇔XYZ	SELECCI.		PATH	FIM

Confirmar com a softkey EXECUTE ou com a tecla ENT. O TNC acende uma janela de visualização de estados onde você fica informado sobre a etapa do processo de copiar , ou

se pretender transmitir programas extensos ou vários programas: confirmar com a softkey PARALLEL EXECUTE. O TNC copia o ficheiro em forma paralela

JANELA	l

Finalizar a transmissão de dados: deslocar o cursor para a janela da esquerda e premir a softkey WINDOW. O TNC volta a visualizar a janela standard para a gestão de ficheiros

Quando está visualizada em duplicado a janela de ficheiros, para seleccionar um outro directório, prima a softkey PATH, e seleccione com as teclas de setas e a tecla ENT o directório pretendido!

Copiar os ficheiros para um outro directório

- > Seleccionar a divisão do ecrã com janelas do mesmo tamanho
- Visualizar os directórios em ambas as janelas: premir a softkey PATH

Janela da direita:

Deslocar o cursor para o directório para onde pretende copiar os ficheiros e com a tecla ENT visualizar os ficheiros existentes neste directório

Janela da esquerda:

Seleccionar o directório com os ficheiros que pretendo copiar, e visualizar os ficheiros com a tecla ENT

TAG	▶ Visualiza
TAG	▶ Desloca

Visualizar as funções para marcação dos ficheiros

Deslocar o cursor para o ficheiro que prtende copiar, e depois marcar. Se desejar, marque mais ficheiros da mesma maneira

ARQUIVO

Copiar os ficheiros marcados para o directório de destino

Para mais funções de marcação, ver "Marcar ficheiros".

Se você tiver marcado ficheiros na janela da esquerda e também na da direita, o TNC copia a partir do directório em que se encontra o cursor.

Escrever por cima de ficheiros

Se copiar ficheiros para um directório onde já se encontram ficheiros com nome igual, o TNC pergunta se os ficheiros podem ser escritos por cima no directório de destino:

- Escrever por cima de todos os ficheiros: premir a softkey YES, ou
- Não escrever por cima de nenhum ficheiro: premir a softkey NO, ou
- Confirmar escrever por cima de cada ficheiro individalmente: premir a softkey CONFIRMAR

Se pretender escrever por cima de um ficheiro protegido, você tem que confirmar ou interromper em separado.

O TNC na rede (só na opção conexão Ethernet)

PGM MGT

para ligar o cartão da Ethernet à sua rede, consulte o capítulo "12.5 Conexão de dados Ethernet

Os avisos de erro durante o funcionamento de rede são egistados pelo TNC (ver capítulo "12.5 Conexão de dados Ethernet").

Se o TNC estiver ligado a uma rede, você tem até 7 suportes de dados adicionais na janela do directório **1** na janela de directório (ver figura em cima, à direita). Todas as funções já descritas (seleccionar base de dados, copiar ficheiros, etc.) são válidas também para bases de dados em rede desde que a sua licença de alcance o permita.

Unir e desunir base de dados em rede

- Seleccionar Gestão de Ficheiros: premir a tecla PGM MGT, e eventualmente seleccionar com a softkey WINDOW a divisão do ecrã de forma a ficar como na figura à direita
- Gerir a base de dados em rede: premir a softkey NETWORK (segunda régua de softkeys). O TNC visualiza na janela da direita 2 as possíveis bases de dados em rede a que você pode aceder. Com as softkeys a seguir descritas, você determina as uniões para cada base de dados

Função	Softkey
Cria-se a ligação em rede, e o TNC regista Mnt na coluna se a ligação está activa. Você pode ligar até 7 suportes de dados adicionais ao TNC	MONTAR APARELHO
Finalizar a união em rede	NAO MONT. APARELHO
Efectuar a união automática em rede, ao ligar o TNC O TNC escreve na coluna Automático ligado A, se a ligação for efectuada automaticamente	MONTAR AUTOM.
Não efectuar a união automática em rede,	NAO MONTAR

Poderá demorar algum tempo a efectuar-se a ligação em rede. O TNC visualiza em cima à direita do ecrã [READ DIR]. A velocidade máxima de transmissão oscila entre 200 Kbaud e 1 Mbaud, consoante o tipo de ficheiro que você transmitir.

AUTOM.

Editar o ficheiro com uma impressora em rede

Se tiver definido uma impressora em rede, (ver capítulo "12.5 Conexão de dados Ethernet"), você pode imprimir directamente os ficheiros:

- Chamar Gestão de Ficheiros: premir a tecla PGM MGT
- Desloque o cursor para o ficheiro que pretende proteger
- ▶ Premir a softkey COPIAR
- Premir a softkey IMPRIMIR: se tiver definido uma única impressora, o TNC emite directamente o ficheiro.

Se tiver definido várias impressoras, o TNC acende uma janela com uma lista de todas as impressoras definidas. Com as teclas de setas, seleccione a impressora na janela sobreposta, e prima a tecla ENT

ao ligar o TNC

4.5 Abrir e intro<mark>duz</mark>ir programas

4.5 Abrir e introduzir programas

Estrutura de um programa NC em formato de texto claro HEIDENHAIN

Um programa de maquinação é composto por uma série de frases de programa. A figura à direita apresenta os elementos de uma frase.

O TNC numera as frases de um programa de maquinação em sequência ascendente.

A primeira frase de um programa é caracterizada com "BEGIN PGM", com o nome do programa e a unidade de medida utilizada.

As frases seguintes contêm informações sobre:

- O bloco
- Definições da ferramenta e chamadas da ferramenta
- Avanços e rotações
- Movimentos de trajectória, ciclos e outras funções.

A última frase de um programa é caracterizada com "END PGM", com o nome do programa e a unidade de medida válida utilizada.

Definir o bloco: BLK FORM

Logo a seguir a ter aberto um programa, defina uma peça em forma de paralelipípedo sem ter sido maquinada. O TNC precisa desta definição para as simulações gráficas. Os lados do paralelipípedo podem ter uma longitude máxima de 100 000 mm, e ser paralelos aos eixos X, Y e Z. Este bloco está determinado por dois pontos de duas esquinas:

- Ponto MÍN: Coordenada X, Y e Z mínimas do paralelipípedo; introduzir valores absolutos
- Ponto MÀX: Coordenada X, Y e Z máximas do paralelipípedo; introduzir valores absolutos

A definição de bloco só é necessária se você quiser testar graficamente o programa!

Abrir um programa novo de maguinação

Você introduz um programa de maguinação sempre no modo de funcionamento Memorização/Edição de Programas.

Seleccionar modo de funcionamento Memorização/Edição do Programa

PGM MGT

Chamar Gestão de Ficheiros: premir a tecla PGM MGT

Seleccione o directório onde pretende memorizar o novo programa:

Nome do ficheiro = ALT.H

Introduzir o novo nome do programa e confirmar com a tecla ENT

ΜM

Seleccionar a unidade métrica: premir a tecla MM ou POLEG. O TNC muda a janela do programa, e abre o diálogo para a definição do BLK-FORM (bloco)

100 ENT 100 ENT ENT ٥

Introduzir sucessivamente as coordenadas X, Y e Z do ponto MÁX

Execucao	Edicao de programa
continua	Def BLK FORM: ponto max?
0 BEG	IN PGM BLK MM
1 BLK	FORM 0.1 Z X+0 Y+0 Z-40
2 BLK	FORM 0.2 X+100 Y+100
3 END	≠ø PGM BLK MM

Se não quiser programar nenhuma definição do bloco, interrompa o diálogo com a tecla DEL.

A janela do programa indica a definição da BLK-Form:

O BEGIN PGM NOVO MM	Início do programa, nome e unidade de medida
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Eixo da ferramenta, coordenadas do ponto MÍN
2 BLK FORM 0.2 X+100 Y+100 Z+0	Coordenadas do ponto MÁX
3 END PGM NOVO MM	Fim do programa, nome e unidade de medida

Execucao continua

0

1

2

3

4 5

O TNC gera automaticamente os números de frase, bem como as frases BEGIN e END.

Programar movimentos da ferramenta em diálogo em texto claro

Para programar uma frase, comece com a tecla de diálogo. Na linha superior do ecrã, o TNC pergunta todos os dados necessários.

Exemplo para um diálogo

Loo	Abrir diálogo	
Coordenadas?		
X 10	Introduzir coordenada de destino para o eixo X	
Y 5 ENT	Introduzir a coordenada de destino para o eixo Y, e passar para a frase seguinte com a tecla ENT	
Correcç. raio	o: RL/RR/Sem correcç.?	-
ENT	Introduzir "Sem correcção de raio"e passar à pergunta seguinte com a tecla ENT	Salta
Avanço F=? /	F MAX = ENT	Finali
100 _{ент}	Avanço para este movimento de trajectória 100 mm/min, e passar à pergunta seguinte com a tecla ENT	Inter
Função auxili	ar M ?	Funç
3 _{ent}	Função auxiliar M3 "Ferramenta Ligada", e com a tecla ENT finalizar este diálogo	Desk Desk autor

Funções durante o diálogo	Tecla
Saltar frase de diálogo	NO ENT
Finalizar diálogo antes de tempo	
Interromper e apagar diálogo	DEL

Edicao de programa Funcao auxiliar M?

BLK FORM 0.1 Z X+0 Y+0 Z-40

L X-20 Y+50 R0 F MAX M3

BLK FORM 0.2 X+100 Y+100 Z+0

BEGIN PGM NEU MM

END PGM NEU MM

TOOL CALL 1 Z S5000

Funções para a determinação do avanço	Softkey
Deslocação em marcha rápida	F MAX
automaticamentem a partir da	F AUTO
frase TOOL CALL	

A janela do programa mostra a frase:

3 L X+10 Y+5 R0 F100 M3

Editar frases do programa

Enquanto você realiza ou modifica o programa as teclas de setas pode seleccionar frases do p de uma frase: ver quadro à direita.

Enquanto voce realiza ou modifica o programa de maquinação, com as teclas de setas pode seleccionar frases do programa e palavras de uma frase: ver quadro à direita. Procurar palavras iguais em frases diferentes Colocar a softkey DESENH AUTOM em ON.		Passar para a página de trás	
		Passar para a página da frente	PAGINA Ū
	Seleccionar uma palavra numa frase: ir	salto para o fim do programa	INICIO Î
	premindo as teclas de setas até que a palavra pretendida fique marcada	salto para o fim do programa	FIM <u>I</u>
Ŧ	Seleccionar uma frase com as teclas de setas	Saltar de frase para frase	
A marcação está na frase agora seleccionada, sobre a mesma		Seleccionar uma só palavra PGM+SECTS	

A marcação está na frase agora seleccionada, s palavra, tal como na outra frase anteriormente seleccionada.

Encontrar um texto qualquer

- ▶ Seleccionar a função de procura: premir a tecla SEARCH O TNC apresenta o diálogo SEARCH TEXT:
- Introduzir o texto procurado
- Procurar texto: premir a softkey EXECUTE

Acrescentar frases numa posição qualquer

Seleccione a frase por detrás da qual pretende acrescentar uma nova frase, e abra o diálogo.

Modificar e acrescentar palavras

- Seleccione uma palavra numa frase e escreva o novo valor por cima. Enquanto você tiver a palavra seleccionada, dispõe do diálogo em texto claro.
- ▶ Finalizar a modificação: premir a tecla END.

Quando acrescentar uma palavra, active as teclas de setas (para a direita ou para a esquerda) até aparecer o diálogo pretendido, e introduza o valor pretendido.

Apagar frases e palavras	Tecla
Colocar em zero o valor de uma palavra seleccionada	CE
Apagar o valor errado	CE
Apagar aviso de erro (fixo)	CE
Apagar palavra seleccionada	NO ENT
Apagar a frase seleccionada	
Apagar ciclos e partes de programa Seleccionar a última frase do ciclo que vai ser apagado ou seleccionar parte de programa, e apagar com a tecla DEL	

Selecc. uma frase ou uma palavra Softk./teclas
4.6 Gráfico de programação

4.6 Gráfico deprogramação

Enquanto você elabora um programa, o TNC pode visualizar o contorno programado num gráfico.

Desenvolvimento com ou sem gráfico de programação

▶ Para a divisão do ecrã, seleccionar o programa à esquerda, e o gráfico à direita: premir a tecla SPLIT SCREEN e a softkey PGM + GRAPHICS

Colocar a softkey DESENH AUTOM em ON. Enguanto você vai introduzindo as frases do programa, o TNC vai mostrando cada um dos movimentos programados na janela do gráfico, à direita.

Se não pretender visualizar o gráfico, cologue a softkey DESENH AUTOM em OFF.

DESENH AUTOM ON não desenha repetições parciais de um programa.

Efectuar o gráfico para o programa existente

Com as teclas de setas seleccione a frase até à qual se deve realizar o gráfico, ou prima GOTO, e introduza directamente o número de frase pretendido

Efectuar o gráfico: premir a softkey RESET + START RESET START

Para mais funções, ver o quadro à direita.

Acender e apagar o número da frase

 \triangleright

OMITTR

- Comutar a régua de softkeys: ver figura à direita
- Acender os números de frase: MOSTRAR Colocar a Softkey SHOW OMIT BLOCK NR. em SHOW BLOCO NR.
 - Apagar os números de frase: Colocar a Softkey SHOW OMIT BLOCK NR. em OMIT

Apagar o gráfico

Comutar a régua de softkeys: ver figura à direita

Funções do gráfico de programação Softkey

Efectuar um gráfico de programação frase a frase

START PASSO

Efectuar por completo um gráfico de programação ou completar para **RESET + START**

Parar o gráfico de programação

STOP

START

Esta softkey só aparece enquanto o TNC efectua um gráfico de programação

Ampliar ou reduzir uma seccão

Você pode determinar a vista de um gráfico. Com uma margem. você selecciona a seccão para a ampliar ou reduzir.

Seleccionar a régua de softkeys para ampliação/redução (segunda) réqua, ver figura à direita)

Desta forma, ficam disponíveis as seguintes funções:

Mode manu	o opera ual	асао	Edi	cao d	de pro	ograma	9		
33	FCT D	R- R7	ю ссрі	R+80					
34	FSELE	ст з							
35	FCT D	R- R7	,5						
36	FCT X	+0 Y+	80 DR	- R80 CCX+	0 CCY+0				
37	FSELE	CT 1)	1	
38	LBL 0						,)	
39	END P	GM 36	516 MM						
	†		ţ	÷	-+	<<	>>	JANELA BLK FORM	JANELA DETALHE

Ampliar a margem - para ampliar, mantenha premida a softkey

JANELA DETALHE Com a softkey BLK SECTION aceitar a área

>>

seleccionada

Com a softkey BLK AS BLK FORM, você volta a produzir a secção original.

4.7 Estruturar programas

O TNC dá-lhe a possibilidade de comentar os programas de maquinação com frases de estruturação. As frases de estruturação são pequenos textos (máx. 244 caracteres) que se entendem como comentários ou títulos para as frases seguintes do programa.

Os programas extensos e complicados ficam mais visíveis e entendem-se melhor por meio de frases de estruturação. Isto facilita o trabalho em posteriores modificações do programa. Você acrescenta as frases de estruturação num sítio gualquer do programa de maguinação. Para além disso, elas são apresentadas numa janela própria, podendo ser executadas ou completadas. Para uma estruturação mais detalhada, existe um segundo nível: os textos do segundo nível deslocam-se um pouco para a direita.

Visualizar a janela de estruturação/mudar a janela activada

E)

▶ Visualizar a janela de estruturação: seleccionar a divisão do ecrã PGM+SECTS

JANELA

Mudar a janela activada: premir a softkey CHANGE WINDOW

Moc mar	do opera nual	Ed:	icao (de pro	ograma	9		
0	BEGIN	PGM 1E MM			BEGIN PGM	1E		
1	BLK FO	RM 0.1 Z X	+0 Y+0 Z-4	0	– Heramienta 1			
2	BLK FO	RM 0.2 X+1	00 Y+100 Z	+0	- Desba	ste		
3	* - He:	ramienta 1			- Acabo	do		
4	TOOL C	ALL 1 Z S4	500		- Herrami	enta 2		
5	L Z+10	RO F MAX			- Pretaladrado			
6 CYCL DEF 203 FURAR UNIVERSAL					– Posicionamiento en X, Y			
Q200=2 \$DISTANCIA SEGURANCA					- Llamada del ciclo			
	0201=	-20 \$PROF	UNDIDADE		- Herramienta 3			
Q206=150 \$AVANCO INCREMENTO					END PGM 1	E		
	0202=	5 \$INCR	EMENTO					
	Q210=	0 \$TEMP	O ESPERA E	M CIMA				
	0203=	+0 \$COOR	D. SUPERFI	CIE				
	Q204=	50 \$2.D	IST. SEGUR	ANCA				
	Q212=	0 \$REDU	CAO INCREM	ENTO				
I	NICIO	FIM J	PAGINA Û	PAGINA ↓	PROCURAR			AL TERA JANELP

Acrescentar frase de estruturação na janela do programa (esquerda)

Seleccionar a frase pretendida por trás da qual você pretende acrescentar a frase de estruturação

INSERTR PIEITIII A SOILKEY INSERT SECTIO	INSERIR	RIR Pr	emir a	softkey	INSERT	SECHC)N
--	---------	--------	--------	---------	--------	-------	----

SECCAD Introduzir o texto de estruturação com o teclado alfanumérico

Você modifica o nível com a softkey CHANGE LEVEL.

Acrescentar a frase de estruturação na janela de estruturação (direita)

- Seleccionar a frase de estruturação pretendida por detrás da qual você pretende acrescentar a nova frase
- Introduzir o texto com o teclado alfanumérico o TNC acrescenta automaticamente a nova frase

Seleccionar frases na janela de estruturação

Se na janela de estruturação você saltar de frase para frase, o TNC acompanha a visualização da frase na janela do programa. Assim, você pode saltar partes extensas do programa com poucos passos.

4.8 Acrescentar comentários

Você pode acrescentar um comentário a cada frase do programa de maquinação, para explicar passos do programa ou para efectuar indicações. Há três possibilidades para se acrescentar um comentário:

1. Comentário durante a introdução do programa

- Introduzir os dados para uma frase do programa, e depois premir ";" (ponto e víirgula) no teclado alfanumérico - o TNC pergunta Comentário?
- Introduzir o comentário e finalizar a frase com a tecla END

2. Acrescentar um comentário posteriormente

- > Seleccionar a frase na qual se pretende acrescentar o comentário
- Com a tecla de seta-para-a-direita, seleccionar a última palavra da frase:

aparece um ponto e vírgula no fim da frase, e o TNC pergunta Comentário?

Introduzir o comentário e finalizar a frase com a tecla END

Comentário numa mesma frase

- Seleccionar a frase por detrás da qual você pretende acrescentar o comentário
- Abrir o diálogo de programação com a tecla ";" (ponto e vírgula) do teclado alfanumérico
- Introduzir o comentário e finalizar a frase com a tecla END

Execucao continua	Edicao c	de programa
0 BEG 1 BLK 2 BLK 3 J CO 4 TOO 5 TCH 022 022 022 024 024 026 026 026 026 026 026 026 026	IN PGM FK FORM 0.1 FORM 0.2 Pramenta CALL 1 PROBE 42 73=+0 53=0 53=0 51=+0 5224=0 5	<pre><1 MM 1 Z X+0 Y+0 Z-20 2 X+100 Y+100 Z+0 a 1 Z 23 MEDIR RECTAN INTERNO ; CENTRO DO 1. EIXO ; CENTRO DO 2. EIXO ; LONGITUDE 1. LADO ; LONGITUDE 2. LADO ; ALTURA MEDIDA ; DISTANCIA SEGURANCA</pre>
U82 Q82 Q82	224=+100 224=1 ; 224=0 ;	;HLTURH DE SEGURHNCH ;IR ALTURA SEGURANCA ;TAMANHO MAX. 1.LADO

4.9 Elaborar ficheiros de texto

No TNC você pode elaborar e retocar textos com um editor de textos. As aplicações típicas são:

- Memorizar valores práticos
- Documentar processos de maquinação
- Criar grupos de fórmulas

Os ficheiros de textos são ficheiros do tipo .A (ASCII). Se você quiser processar outros ficheiros, converta primeiro esses ficheiros em ficheiros do tipo .A.

Abrir e fechar ficheiros de texto

- Seleccionar modo de funcionamento Memorização/Edição do Programa
- Chamar Gestão de Ficheiros: premir a tecla PGM MGT
- Visualizar os ficheiros do tipo .A: premir sucessivamente as softkeys SELECTTYPE e SHOW.A
- Seleccionar o ficheiro e abri-lo com a softkey SELECT ou a tecla ENT ou abrir um ficheiro novo: introduzir o nome novo, e confirmar com a tecla ENT

Quando quiser sair do editor de textos, chame a Gestão de Ficheiros e seleccione um ficheiro de outro tipo, p.ex. um programa de maquinação.

Editar textos

Na primeira linha do editor de textos, há uma coluna de informação onde se visualiza o nome do ficheiro, a sua localização e o modo de escrita do cursor (inglês: marca de inserção):

Ficheiro:	Nome	do	ficheiro	de	texto

- Linha: Posição actual do cursor sobre a linha
- Coluna Posição actual do cursor sobre a coluna
- Insert: Acrescentam-se os novos sinais
- Overwrite: Os novos sinais são acrescentados escritos sobre o texto já existente, na posição do cursor

O texto é acrescentado na posição em que se encontrar actualmente o cursor. Com as teclas de setas, desloque o cursor para qualquer posição do ficheiro de texto.

A linha onde se encontra o cursor é destacada com uma cor diferente. Uma linha pode ter no máximo 77 caracteres, e muda-se de linha premindo a tecla RET (Return) ou ENT.

Modo operaca Edicao de programa manual Arquivo: 3516.A BEGIN PGM 3516 MM 1 BLK FORM 0.1 7 X-90 Y-90 Z-40 2 BLK FORM 0.2 X+90 Y+90 Z+0 3 TOOL DEE 50 4 TOOL CALL 1 Z S1400 5 L Z+50 R0 F MAX 6 L X+0 Y+100 R0 F MAX M3 7 L Z-20 R0 F MAX 8 I X+0 Y+80 RI E250 9 FPOL X+0 Y+0 10 FC DR- R80 CCX+0 CCY+0 11 FCT DR- R7,5 12 FCT DR+ R90 CCX+69,282 CCY-40 13 ESELECT 2 MOVER PALAVRA ULTIMA PALAVRA AGINE TIN TNSERTR Û PROCURAR Î îî Û REESCREV.

Movimentos do cursor	Softkey
Cursor uma palavra para a direita	MOVER PALAVRA >>
Cursor uma palavra para a esquerda	ULTIMA PALAVRA <<
Cursor para a página seguinte do ecrã	PAGINA Ū
Cursor para a página anterior do ecrã	PAGINA
Cursor para o início do ficheiro	INICIO
Cursor para o fim do ficheiro	FIM <u> </u>

Funções de edição	Tecla
Iniciar a nova linha	RET
Apagar o sinal à esquerda do cursor	X
Acrescentar sinal vazio	SPACE
Comutar entre maiúsculas e minúsculas	SHIFT + SPACE

Apagar e voltar a acrescentar sinais, palavras e linhas

Com o editor de textos, você pode apagar palavras ou linhas inteiras e voltar a acrescentá-las em outras posições: ver quadro à direita.

Mover palavra ou linha

Deslocar o cursor para a palavra ou linha que deve ser apagada ou acrescentada numa outra posição

Premir a softkey DELETE WORD ou DELETE LINE: o texto desaparece e fica memorizado

Deslocar o cursor para a posição onde se quer acrescenar o texto, e premir a softkey RESTORE LINE/WORD

Processar blocos de texto

Você pode copiar, apagar e voltar a acrescentar noutra posição blocos de texto de qualquer tamanho. Para qualquer destes casos, marque primeiro o bloco de texto pretendido:

Marcar o bloco de texto: deslocar o cursor sobre o sinal em que se deve começar a marcar o texto

SELECAO BLOCO

- Premir a softkey SELECT BLOCK
- Deslocar o cursor sobre o sinal em que se deve finalizar a marcação do texto. Se se mover o cursor com as teclas de setas directamente para cima e para baixo, as linhas de texto intermédias ficam completamente marcadas - o texto marcado fica destacado com uma cor diferente.

COPIAR BLOCO

Depois de marcar o boco de texto pretendido, continue a elaborar o texto com as seguintes softkeys:

Função	Softkey
Apagar o texto marcado e memorizá-lo	APAGAR BLOCO

Memorizar o texto marcado, mas sem o apagar (copiar)

Se quiser acrescentar o bloco memorizado noutra posição, execute os seguintes passos:

Deslocar o cursor para a posição onde se quer acrescentar o bloco de texto memorizado

Premir a softkey INSERT BLOCK: o texto é acrescentado

Enquanto o texto extiver memorizado, você pode acrescentá-lo quantas vezes quiser.

Funções de apagar	Softkey
Apagar e memorizar uma linha	APAGAR L INHA
Apagar e memorizar uma palavra	APAGAR PALAVRA
Apagar e memorizar um sinal	APAGAR CARACTER
Acrescentar a linha ou a palavra depois de ter apagado	INSERIR LINHA/ PALAVRA

Moc mar	do opera Nual	icao Edi	icao (de pr	ograma	3		
0 m	guivo:	3516 0		linha:	19 Col	una: 1	TNSEPT	
0	BEGIN	PGM 3516 M	м					
1	1 BLK FORM 0.1 Z X-90 Y-90 Z-40							
2	BLK FO	RM 0.2 X+9	0 Y+90 Z+0	1				
3 TOOL DEF 50								
4 TOOL CALL 1 Z S1400								
5 L Z+50 R0 F MAX								
6 L X+0 Y+100 R0 F MAX M3								
7 L Z-20 R0 F MAX								
8	L X+0	7+80 RL F2	50					
9	FPOL X	+0 Y+0						
10	FC DR	- R80 CCX+	0 CCY+0					
11 FCT DR- R7,5								
12 FCT DR+ R90 CCX+69,282 CCY-40								
13	FSELE	CT 2						
SE	ELECAD BLOCO	APAGAR BLOCO	INSERIR BLOCO	COPIAR BLOCO			JUNTAR NO ARQ.	LER ARQUIVO

Passar o texto marcado para outro ficheiro

Marcar o bloco de texto como já descrito

JUNTAR NO ARQ.

Premir a softkey PASTE ON FILEO TNC apresenta o diálogo FICHEIRO DESTINO =

Introduzir caminho e nome do ficheiro de destino. O TNC situa o bloco de texto marcado no ficheiro de destino. Se não existir nenhum ficheiro de destino com o nome indicado, o TNC situa o texto marcado num ficheiro novo.

Acrescentar outro ficheiro na posição do cursor

Desloque o cursor para a posição do texto onde pretende acrescentar outro ficheiro de texto.

Premir a softkey INSERT FILE

O TNC indica o diálogo Nome do ficheiro =

Introduza o caminho e o nome do ficheiro que pretende acrescentar

Procurar partes de texto

A função de procura do editor de texto encontra palavras ou sinais no texto. Existem duas possibilidades:

1. Procurar o texto actual

A função de procura deve encontrar uma palavra que corresponda à palavra marcada com o cursor

- Deslocar o cursor para a palavra pretendida
- Seleccionar a função de procura: premir a softkey FIND
- ▶ Premir a softkey FIND CURRENT WORD

2. Procurar um texto qualquer

- Seleccionar a função de procura: premir a softkey FIND O TNC indica o diálogo Procurar texto :
- Introduzir o texto procurado
- ▶ Procurar texto: premir a softkey EXECUTE

Você sai da função de procura com a softkey END.

mouo operacao Edicao de programa										
Procurar texto : L Z										
Ar	quivo: 351	6.A		Li	nha: 8	C	oluna:	1	INSERT	
0	BEGIN PGM	3516 M	м							
1	BLK FORM 0.1 Z X-90 Y-90 Z-40									
2	BLK FORM 0.2 X+90 Y+90 Z+0									
3	TOOL DEF 50									
4	4 TOOL CALL 1 Z S1400									
5 L Z+50 R0 F MAX										
6 L X+0 Y+100 R0 F MAX M3										
7	∟ Z-20 R0	F MAX								
E L X+0 Y+80 RL F250										
9	FPOL X+0	Y +Ø								
10 FC DR- R80 CCX+0 CCY+0										
11 FCT DR- R7,5										
12 FCT DR+ R90 CCX+69,282 CCY-40										
13 FSELECT 2										
EN Pi	CONTRA ALAVRA CTUAL								EXECUTAR	FIM

4.10 A calculadora

O TNC dispõe de uma calculadora com as funções matemáticas mais importantes.

Você abre e fecha a calculadora com a tecla CALC. Com as teclas de setas você pode deslocá-la livremente pelo ecrã.

Você selecciona as funções de cálculo com um comando abreviado sobre o teclado alfanumérico. Os comandos abreviados caracterizam-se com cores na calculadora:

Função de cálculo	Comando abreviado
Somar	+
Subtrair	_
Multiplicar	*
Dividir	:
Seno	S
Co-seno	С
Tangente	R
Arco-seno	AS
Arco-co-seno	AC
Arco-tangente	AT
Elevar a uma potência	Λ
Tirar a raiz quadrada	Q
Função de inversão	/
Cálculo entre parênteses	()
PI (3.14159265359)	Ρ
Visualizar o resultado	=

Quando você introduz um programa e se encontra no diálogo, você pode copiar directamente a visualização da calculadora para a área marcada com a tecla "Aceitar posições reais".

4.11 Ajuda directa emNC-avisos d erro

Entre outras coisas, o TNC visualiza automaticamente em caso de:

introduções erradas

- erros de lógica no programa
- elementos de contorno não executáveis
- aplicações do apalpador não adequadas

Um aviso de erro contendo o número de uma frase de programa foi originado por esta frase ou por uma anterior. Você apaga os textos de aviso do TNC com a tecla CE depois de ter eliminado a causa do erro.

Para obter informações mais precisas sobre um aviso de erro que possa surgir, prima a tecla HELP. O TNC acende a janela onde se encontram descritas a causa do erro e a sua eliminação.

Visualizar auxílio

Em caso de aviso de erro na linha superior do ecrã:

- ▶ Visualizar auxílio: premir a tecla HELP
 - ▶ Ler a descrição do erro e as possibilidades de o eliminar. Você fecha a janela de auxílio com a tecla CE e ao mesmo tempo sai do aviso de erro
 - Eliminar o erro de acordo com a descrição da janela de auxílio

Nos avisos de erro intermitentes, o TNC visualiza automaticamente o texto de auxílio. Depois de avisos de erro de luz intermitente, você tem que voltar a arrancar o TNC, enquanto mantém premida a tecla END durante 2 segundos

Posicionam. introd. man.	Linha T contorn	NC nao o nao	o perm estiv	nitida ∕er re	a enqu esolv:	uanto ido
16 FL RN+0. 17 FCT DR+ 1 18 FLT RN+8 19 FCT DR+ 1 20 END PGM :	Descritado de entro Causa do erro: Progranacado FK: A "normals", sem a do contorno. Excepcedante Estanta de entro Eliminacado de entro Resolver o contor	507 uma frase FK lev. e RND e CMF e L con movin amenta ou au of no FK comple	<pre>< so podem s a a uma company nento so no xiliar. tamente.</pre>	eguir frases leta resoluí eixo da	5 NC Dao	
	TIM PAGINA	PAGINA 	PROCURAR	START	START PASSO	RESET + START

4.12 Gestão de paletes

A Gestão de Paletes é uma função dependente da máquina. Descreve-se a seguir o âmbito das funções standard. Consulte o manual da máquina

As tabelas de paletes utilizam-se em centros de maquinação com substituidor de paletes. A tabela de paletes paletes chama os programas de maquinação correspondentes para as diferentes paletes, e activa a respectiva tabela de pontos zero.

Você também pode utilizar tabelas de paletes para processar diferentes programas com diferentes pontos de referência.

As tabelas de paletes contêm as seguintes indicações:

- PAL/PGM (registo absolutamente necessário): palete de conhecimento ou programa de NC (seleccionar com a tecla ENT ou NO ENT)
- NOME (registo absolutamente necessário): nome da palete ou do programa. O fabricante da máquina determina o nome da palete (consultar o manual da máquina). Os nomes de programa devem ser memorizados no mesmo directório da tabela de paletes, senão você tem que introduzir o nome completo do caminho do programa
- DATA (registo facultativo): nome da tabela de pontos zero. As tabelas de pontos zero devem ser memorizadas no mesmo directório da tabela de paletes, senão você tem que introduzir o nome completo do caminho da tabela de pontos zero. Você activa os pontos zero da respectiva tabela no programa NC com o ciclo 7 DESLOCAÇÃO DO PONTO ZERO
- X, Y, Z (registo facultativo, possibilidade de outros eixos): em nome de paletes as coordenadas programadas referem-se ao ponto zero da máquina. Em programas NC, as coordenadas programadas referem-se ao ponto zero de paletes.

Se você não tiver definido nenhuma palete antes de um programa NC, as coordenadas programadas referem-se ao ponto zero da máquina.

Seleccionar tabela de paletes

- Seleccionar Gestão de Ficheiros em modo de funcionamento Memorização/Edição de programas: premir a tecla PGM MGT
- ▶ Visualizar os ficheiros do tipo .P: premir as softkeys SELECTTYPE e SHOW.P
- Seleccionar a tabela de paletes com as teclas de setas ou introduzir o nome para uma nova tabela
- ▶ Confirmar a escolha com a tecla ENT.

Modo manua	operaca al	^{cao} Edicao tabela de programas PALETE / PROGRAMA NC ?						
Ar	quivo: P	AL.P						$\rangle\rangle$
NR	PAL/PG	M NAME						
0	PAL	12359	9					
1	PGM	TNC:>	DRILL\PA38	5.Н				
2	PGM	TNC:>	DRILL\PA38	6.Н				
3	PGM	TNC:>	TNC:\MILL\SLII35.I					
4	PGM	TNC:>	TNC:\MILL\FK35.H					
5	PAL	12351	0					
6	PGM	TNC:>	TNC:\DRILL\QST35.H					
7	PGM	TNC:>	TNC:\DRILL\K15.I					
8	PAL	12351	1					
9	PGM	TNC:>	CYCLE\MILL	ING∖C210.H				
10	PGM	TNC:>	TNC:\DRILL\K17.H					
11								
12								
INI	010	FIM <u>I</u>	PAGINA	PAGINA Ū	INSERIR LINHA	APAGAR LINHA	PROXIMA LINHA	MOVER-SE LINHAS N NO FINAL

Função	Softkey
Seleccionar o início da tabela	INICIO
Seleccionar o fim da tabela	FIM <u> </u>
Seleccionar a página anterior da tabela	PAGINA
Seleccionar a página seguinte da tabela	PAGINA
Acrescentar linha no fim da tabela	INSERIR LINHA
Apagar linha no fim da tabela	APAGAR L INHA
Seleccionar o início da linha seguinte	PROXIMA LINHA
Acrescentar quantidade possível de introduzir no fim da tabela	MOVER-SE LINHAS N NO FINAL
Copiar a área por detrás iluminada (2ª régua de softkeys)	COPIAR VALOR ACTUAL
Acrescentar a área copiada (2ª régua de softkeys)	INSERIR VALOR COPIADO

Sair do ficheiro de paletes

- Seleccionar Gestão de Ficheiros: premir a tecla PGM MGT
- Seleccionar outro tipo de ficheiro: premir a softkey SELECCIONAR TIPO e a softkey para o tipo de ficheiro pretendido, p.ex. VISUALIZAR.P
- ▶ Seleccionar o ficheiro pretendido

Elaborar ficheiro de paletes

- No parâmetro de máquina 7683, você determina se a tabela de paletes é elaborada frase a frase ou contínua (ver capítulo "13.1 Parâmetros gerais do utilizador").
- No modo de funcionamento Execução de Programa Contínua ou Execução de programa Frase a Frase, seleccionar Gestão de Programas: premir a tecla PGM MGT
- ▶ Visualizar ficheiros do tipo .P: premir as softkeys SELECCIONAR TIPO e VISUALIZAR .P
- Seleccionar quadro de paletes com as teclas de setas e confirmar com a tecla ENT
- Elaborar a tabela de paletes: premir a tecla NC Start. O TNC elabora as paletes como determinado no parâmetro de máquina 7683

Programação: Ferramentas

5.1 Introduções relativas à ferramenta

Avanço F

O avanço F é a velocidade em mm/min (poleg./min) com que se desloca a ferramenta na sua trajectória. O avanço máximo pode ser diferente para cada máquina, e está determinado por parâmetros da máquina.

Introdução

Você pode introduzir o avanço na frase TOOL CALL (chamada da ferrta.) e em todas as frases de posicionamento Ver capítulo "6.2 Noções básicas sobre as funções de trajectória".

Marcha rápida

Para a marcha rápida, introduza F MAX. Para introduzir F MAX, prima a tecla ENT ou a softkey FMAX quando aparecer a pergunta "Avanço F = ?".

Tempo de actuação

O avanço programado com um valor numérico é válido até que se indique um novo avanço em outra frase. F MAX só é válido para a frase em que foi programado. Depois da frase com F MAX, volta a ser válido o último avanço programado com um valor numérico.

Modificação durante a execução do programa

Durante a execução do programa, pode-se modificar o avanço com o potenciómetro de override F para esse avanço.

Rotações S da ferramenta

Você introduz as rotações S da ferramenta em rotações por minuto (rpm) numa frase TOOL CALL (chamada da ferramenta).

Programar uma modificação

No programa de maquinação podem-se modificar as rotações da ferramenta com uma rase TOOL CALL, na qual se introduz unicamente o novo número de rotações:

Programar chamada de ferramenta premir tecla TOOL CALL

- Passar a pergunta do diálogo "Número de Ferramenta?" com a tecla NO ENT
- Passar a pergunta do diálogo "Eixo de Ferramenta paralelo Y/Y/Z?" com a tecla NO ENT
- No diálogo "Rotações S da Ferramenta?" introduzemse as novas rotações da ferramenta, e confirma-se com a tecla END

Modificação durante a execução do programa

Durante a execução do programa, você pode modificar as rotações com o potenciómetro de override S.

5.2 Dados da ferramenta

5.2 Dados da ferramenta

Normalmente, você programa as coordenadas dos movimentos de trajectória tal como a peça está cotada no desenho. Para o TNC poder calcular a trajectória do ponto central da ferramenta, isto é, para poder realizar uma correcção da ferramenta, você tem que introduzir a longitude e o raio de cada ferramenta utilizada.

Você pode introduzir os dados da ferramenta com a função TOOL DEF directamente no programa, ou em separado nas tabelas de ferramentas. Se introduzir os dados da ferramenta em tabelas, você dispõe de outras informações específicas da ferramenta. O TNC tem em conta todas as informações introduzidas quando se executa o programa de maquinação.

Número da ferramenta e nome da ferramenta

Cada ferramenta é caracterizada com um número de 0 a 254. Quando você trabalha com tabelas de ferramenta, você pode utilizar números mais elevados e pode para além disso indicar nomes de ferramentas.

A ferramenta com o número 0 determina-se como ferramenta zero, e tem a longitude L=0 e o raio R=0. Nas tabelas de ferramentas, você deve definir também a ferramenta T0 com L=0 e R=0.

Longitude L da ferramenta

Você pode determinar a longitude L da ferramenta de duas maneiras:

1 A longitude L é a diferença entre a longitude da ferramenta e a longitude zero de uma ferramenta L_0 .

Sinal:

- A ferramenta é mais comprida do que a ferramenta zero: L>L₀
- A ferramenta é mais curta do que a ferramenta zero: L<L₀

Determinar a longitude:

- Deslocar a ferramenta zero para a posição de referência, segundo o eixo da ferramenta (p.ex. superfície da peça com Z=0)
- Colocar em zero a visualização do eixo da ferramenta (fixar ponto de referência)
- ▶ Trocar pela ferramenta seguinte
- Deslocar a ferramenta para a mesma posição de referência que a ferramenta zero
- A visualização do eixo da ferramenta indica a diferença de longitude em relação à ferramenta zero
- Aceitar o valor com a tecla "Aceitar posição real" na frase TOOL DEF ou aceitar na tabela de ferramentas
- 2 Determine a longitude L com um aparelho externo de ajuste. Depois, introduza o valor calculado directamente na definição da ferramenta TOOL DEF ou na tabela de ferramentas.

Raio R da ferramenta

Você introduz directamente o raio R da ferramenta.

Valores delta para longitudes e raios

Os valores delta indicam desvios da longitude e do raio das ferramentas.

Para uma medida excedente, indica-se um valor delta positivo (DL, DR, DR2>0). Numa maquinação com medida excedente, introduza este valor excedente na programação por meio de uma chamada da ferramenta TOOL CALL.

Um valor delta negativo indica uma submedida (DL, DR, DR2<0). Regista-se uma submedida na tabela de ferramentas para o desgaste da ferramenta.

Você introduz os valores delta como valores numéricos; numa frase TOOL CALL, você pode também admitir admitir um parâmetro Q como valor.

Campo de introdução: os valores delta podem ter no máximo ± 99,999 mm.

Introduzir dados da ferrta. no programa

Você determina o número, a longitude e o raio para uma determinada ferramenta uma única vez no programa de maquinação numa frase TOOL DEF:

Seleccionar a definição de ferramenta: premir a tecla TOOL DEF

- Introduzir o Número da Ferramenta: com o número de ferrta. determina-se claramente uma ferrta.
- Introduzir a Longitude da Ferramenta: valor de correcção para a longitude
- ▶ Introduzir o Raio da Ferramenta

Durante o diálogo, você pode aceitar directamente o valor para a longitude com a tecla "Aceitar posição real". Lembre-se que para isso tem que estar marcado o eixo da ferramenta na visualização de estados.

Exemplo de frase NC

4 TOOL DEF 5 L+10 R+5

Introduzir os dados da ferramenta na tabela

Numa tabela de ferramentas, você pode definir até 32767 ferramentas e memorizar os respectivos dados. Você define com o parâmetro da máquina 7260 a quantidade de ferramentas que o TNC coloca quando se abre uma nova tabela. Consulte também as funções de edição apresentadas mais adiante neste capítulo: Você utiliza as tabelas de ferramentas nos seguintes casos:

- Se a sua máquina estiver equipada com um alternador de ferramentas automático
- Se quiser medir automaticamente ferramentas com o apalpador TT 120. Ver Manual do Utilizador, Ciclos do apalpador, Capítulo 4
- Se quiser desbastar com o ciclo de maquinação 22, veja o capítulo "8.5 Ciclos SL, DESBASTAR"
- Se quiser trabalhar com cálculo automático de dados de corte

Abrev.	Introduções	Diálogo Largura da ranhura
R	Número com que se chama a ferrta. no programa	_
NOME	Nome com que se chama a ferramenta no programa	Nome da ferramenta ?
L	Valor de correcção para a longitude Lda ferrta.	_
R	Valor de correcção para o Raio R da ferrta.	Longitude da ferramenta ?
R2	Raio R2 da ferramenta para fresa toroidal (só para	Raio da ferramenta ?
	representação gráfica da maquinação com fresa esférica)	Raio 2 da ferramenta ?
DL	Valor delta da longitude da ferramenta	Medida excedente da Longitude da ferramenta ?
DR	Valor delta do raio R da ferramenta	Medida excedente do Raio da ferramenta ?
DR2	Valor delta do raio R2 da ferramenta	Medida excedente do Raio 2 da ferramenta ?
LCUTS	Longitude da lâmina da ferramenta para o ciclo 22	Longitude da lâmina do eixo da ferrta. ?
ANGLE	Máximo ângulo de aprofundamento da ferramenta	Ângulo máximo de penetração ?
	em movimentos de aprofundamento para o ciclo 22	
IL	Fixar o bloqueio da ferrta.(IL : para I ool L ocked = em	Ferrta, bloqueada ?
	Ingl. ferrta. bioqueada)	SIM = ENT / Nao = NO ENT
RI	Numero duma terrta, gemea – se existir – como	Ferramenta gemea ?
	enta. de substituição (RI , para R eplacement 1001 =	
	Máxima tompa da vida da forramenta em minutas	Méximo tompo do vido?
	Esta função ó dopondente da máquina, o está	
	descrita no manual da máquina	
TIME2	Máximo tempo de vida da ferrta num TOOL CALL em	Máximo tempo de vida em TOOL CALL ?
	minutos: se o tempo de vida actual atinge ou	
	excede este valor, no TOOL CALL seguinte o TNC	
	activa a ferrta. gémea (ver também CUR.TIME)	
CUR.TIME	Tempo de vida actual da ferrta. em minutos: o TNC	Tempo de vida actual ?
	actualiza automaticamente o tempo de vida	
	(CUR.TIME: equivale a CURrent TIME = em ingl.	
	tempo de/vida actual) Para ferramentas usadas, você	
	pode introduzir uma observação	
DOC	Comentário sobre a ferramenta (máximo 16 sinais)	Comentário da ferramenta ?
PLC	Informação sobre esta ferrta., e deve ser transmitida para o PLC	Estado do PLC ?

Tabela de ferramentas: possibilidades de introdução

Tabela de ferramentas: dados da ferramenta necessários na medição automática de ferramentas

Descrição dos ciclos para medição automática de ferramentas: ver Manual do Utilizador, Ciclos do apalpador, capítulo 4.

Abrev.	Introduções	Diálogo
CUT.	Quantidade de navalhas da ferramenta (máx. 20 navalhas)	Quantidade de navalhas ?
LTOL	Desvio admissível da longitude L da ferrta. para	Tolerância de desgaste: longitude ?
	reconhecimento do desgaste Se o valor programado	
	for excedido, o TNC bloqueia a ferrta. (estado L).	
	Campo de introdução: de 0 a 0,9999 mm	
RTOL	Desvio admissível do raio R da ferramenta para	Tolerância de desgaste: raio ?
	reconhecimento do desgaste Se o valor programado	
	for excedido, o INC bloqueia a ferrta. (estado L).	
DIDEOT	Campo de introduçao: de 0 a 0,9999 mm	
DIRECT.	Direcção de corte da ferramenta para medição com a	Direcção de corte (M3 = -) ?
	ferrta. a rodar	
TT:R-OFFS	Medição da longitude: desvio da ferramenta entre o	Raio de desvio da ferramenta ?
	centro da haste e o centro da ferrta. Ajuste prévio:	
	raio R da ferrta. (a tecla NO ENT produz R)	
TT:L-OFFS	Medição do raio: desvio adicional da ferrta. a MP	Longituide de desvio da ferramenta ?
	6530 (ver capítulo "13.1 Parâmetros gerais do	
	utilizador") entre a aresta superior da haste e o	
	lado interior da ferrta. Ajuste previo: U	
LBREAK	Desvio admissível da longitude L da ferrta, para	Iolerância de rotura: longitude ?
	reconhecimento da rotura Se o valor programado for	
	excedido, o INC bloqueia a ferrta. (estado L). Campo	
	de introduçao: de 0 a 0,9999 mm	
RBREAK	Desvio admissível do raio R da ferramenta para	Tolerância de rotura: raio ?
	reconhecimento da rotura. Se o valor programado for	
	excedido, o INC bloqueia a ferrta. (estado L). Campo	
	de introduçao: de U a U,9999 mm	

Tabela de ferramentas: dados da ferrta. suplementares para o cálculo automático de rotações //do avanço

Abrev.	Introduções	Diálogo
TIPO	Tipo de ferrta. (MILL=Fresa, DRILL=Broca P=Macho de abrir roscas): softkey SELECCIONARTIPO (3ª régua de softkeys); o TNC acende uma janela onde você pode seleccionar o tipo de ferrta.	Tipo de ferramenta ?
TMAT	Material de corte da ferrta. (MILL=Fresa, DRILL=Broca P=Macho de abrir roscas): softkey SELECCIONAR MATERIAL CORTE (3ª régua de softkeys); o TNC acende uma janela onde você pode seleccionar o material de corte	Agente de corte da ferramenta ?
CDT	Tabela de dados de corte (MILL=Fresa, DRILL=Broca P=Macho de abrir roscas): softkey SELECCIONAR DADOS CORTE (3ª régua de softkeys); o TNC acende uma janela onde você pode seleccionar a tabela de dados de corte	Nome da tabela de dados de corte ?

Editar tabelas de ferramentas

A tabela de ferramentas válida para a execução do programa tem o nome de ficheiro TOOL.T,que tem que estar memorizado no directório TNC:\ e que se pode editar num modo de funcionamento da máquina. Para as tabelas de ferramentas que você quer arquivar ou aplicar no teste do programa, introduza um outro nome qualquer de ficheiro com a extensão .T.

Abrir a tabela de ferramentas TOOL.T

> Seleccionar um modo de funcionamento da máquina qualquer

Abrir outra tabela de ferramentas qualquer:

Seleccionar modo de funcionamento Memorização/Edição do Programa

- ▶ Chamar a gestão de ficheiros
- Visualizar a selecção dos tipos de ficheiros: premir a softkey SELECCIONARTIPO
- ▶ Visualizar ficheiros do tipo .T: premir a softkey VISUALIZAR.T
- Selectione um ficheiro ou introduza o nome de um ficheiro novo. Confirme com a tecla ENT ou com a softkey SELECCIONAR

Quando tiver aberto uma tabela de ferramentas para editar, pode mover o cursor na tabela com as teclas de setas ou com as softkeys para uma posição qualquer (ver figura à direita). Em qualquer posição você pode escrever por cima dos valores memorizados e introduzir novos valores. Repare no quadro seguinte com mais funções de edição (ver página seguinte).

Quando o TNC não puder visualizar ao mesmo tempo todas as posições na tabela de ferramentas, aparece na parte superior da coluna o símbolo ">>" ou "<<".

Sair da tabela de ferramentas

Chamar a Gestão de Ficheiros e seleccionar um ficheiro de outro tipo, p.ex. um programa de maquinação

Edic	ao tal	bela d	le fei	rramer	nta	Edi pro	cao de grama
Areuin		errame	an ta f				
T N9	MF		P	82		ni r	R
18			N.	KL.			
19		+243	+0	+0		+0 +	0
20		+0	+5	+0		+0 +	0
21		+0	+2	+0		+0 +	0
22							
23							
24							
х	+122,6	5834 N	/ -24	45,904	45 Z	+148	,681
В	+90,8	3355 (; +4	46,300	91		
					S	0,08	7
ATUAL		Т			F 820		M 5∕9
INICIO	FIM "[PAGINA 11	PAGINA ∬	APAGAR		ENCONTRA FERRAM	CAIX

Funções de edição para tabelas de ferrtas.	Softkey
Seleccionar o início da tabela	INICIO
Seleccionar o fim da tabela	FIM <u> </u>
Seleccionar a página anterior da tabela	PAGINA Î
Seleccionar a página seguinte da tabela	PAGINA
Procurar nome da ferramenta na tabela	ENCONTRA FERRAM. NOME
Apresentar informações por coluna sobre a ferramenta ou apresentar informações sobre uma ferramenta numa página do ecrã	LISTAR FORMULAR
Salto para o início da linha	COMECO LINHA
Salto para o fim da linha	FINAL LINHA
Copiar a área por detrás iluminada	COP IAR VALOR ACTUAL

INSERIR

VALOR COPIADO

MOVER-SE LINHAS N NO FINAL

VISUALIZ. OMITIR NTPOSICAO

OMITIR FERRAMS.

OFF/ ON

Indicações para as tabelas de ferramentas

Com o parâmetro da máquina 7266.x você determina as indicações que podem ser registadas numa tabela de ferramentas, e a sequência em que são executadas. Ao configurar a tabela de erramentas, tome atenção a que a largura completa não exceda 250 sinais. As tabelas mais largas não podem ser transmitidas para a conexão de dados. A argura de cada coluna é indicada na descrição de MP7266.x.

Você pode escrever o conteúdo de um outro ficheiro por cima de uma coluna ou de uma linha de uma tabela de ferramentas. Condições:

- O ficheiro de destino tem que já existir
- O ficheiro que vai ser copiado só pode conter as colunas (linhas) que vão ser substituídas.

Você copia individualmente uma coluna ou linha com a softkey SUBSTITUIR CAMPOS (ver capítulo 4.4 Gestão de Ficheiros Alargada).

Acrescentar a quantidade de	linhas	(ferramentas)
possíveis de se introduzir)		
no fim da tabela		

Acrescentar a área copiada

Visualizar/Não visualizar o número da posição

Visualizar todas as ferramentas/só as ferramentas memorizadas na tabela de lugares

5.2 Dados da ferramenta

Tabela de posições para o alternador de ferramentas

Para a troca automática de ferramenta, programe num modo de funcionamento de execução do programa a tabela TOOL_P (TOOL Pocket em ingl. posição da ferramenta).

Seleccionar a tabela de posições

TABELA

EDITAR

▶ Seleccionar a tabela de posições: seleccionar a softkey TABELA POSIÇÕES

Colocar a softkey EDITAR em ON OFF / ON

Você pode introduzir na tabela de posições as seguintes informações sobre a ferramenta:

Εd	liçâ	áo t	abela	рс	siçá	ăΟ		Edi	cao ala RGM
Ρo	sic	cao	fi×a	sin	n = E N 1	[/nao=	=NOEN1		ela Fun
Ar	quivo	: TOOL_F	P.TCH						
Ρ	Т	ST F	L PLC						
Ø	Ø		%000	00000					
1	1	S 🛢	%000	00001					
2	2		%000	00000					
3	3		%000	00000					
4	4		%000	00000					
5	5		%000	00000					
6	6		%000	00000					
Х	+	124	,2106	Y	-24	13,360	63 Z	+152	,390
В		+88	,6170	С	+ 4	41,457	72		
							S	0,08	7
ATU	AL		т				F 1375		M 5⁄9

Coluna	Introduções	Diálogo
Р	Número da posição da ferramenta no armazém de ferrtas.	-
Т	Número da ferramenta	Número da ferramenta ?
ST	A ferrta. é uma ferrta. especial (ST : para S pecial T ool = em ingl. ferrta. especial); se a sua ferrta. especial bloquear posições diante e atrás da sua posição, bloqueie a respectiva posição na coluna L (estado L)	Ferramenta especial ?
F	Devolver sempre a ferrta. para a mesma posição no armazém(F : para F ixed = em ingl. fixa)	Posição fixa ? Sim = ENT / Não = NO ENT
L	Bloquear a posição (L: para Locked = em ingl. bloqueada, ver também coluna ST)	Posição bloqueada Sim = ENT / Não = NO ENT
PLC	Informação sobre a posição da ferrta. que deve ser transmitida para o PLC	Estado do PLC ?

Funções de edição para tabelas de posições	Softkey
Seleccionar o início da tabela	INICIO
Seleccionar o fim da tabela	FIM <u> </u>
Seleccionar a página anterior da tabela	PAGINA Û
Seleccionar a página seguinte da tabela	PAGINA Į
Anular a tabela de posições	RESET CAIXA TABELA
Salto para o início da linha seguinte	PROXIMA LINHA
Anular a coluna de número de ferrta. T	RESET COLUMN T
Salto para o fim da linha	FINAL LINHA ➡

Chamar dados da ferramenta

Você programa uma chamada da ferramenta TOOL CALL no programa de maquinação com as segintes indicações:

- Seleccionar a chamada da ferrta. com a tecla TOOL CALL
 - Número da ferramenta: introduzir número ou nome da ferramenta. Antes, você tem que definir a ferramenta numa frase TOOL DEF ou numa tabela de ferramentas. Você fixa o nome da ferramenta entre aspas. Os nomes referem-se a um registo na tabela activada de ferramentas TOOL.T.
 - Eixo da ferramenta paralelo X/Y/Z: introduzir o eixo da ferramenta
 - Rotações S da ferramenta: introduzir directamente as rotações S da ferramenta, ou deixar o TNC calcular quando estiver a trabalhar com tabelas de dados de corte. Prima para isso a softkey CÁLCULO S AUTOMÁTICO O TNC limita as rotações ao valor máximo determinado no parâmetro da máquina 3515
 - Avanço F da ferramenta: introduzir directamente o avanço, ou mandar o TNC calcular quando estiver a trabalhar com tabelas de dados de corte. Prima para isso a softkey CALCUL. F AUTOM. O TNC limita o avanço ao avanço máximo do "eixo mais lento" (determinado no parâmetro da máquina 1010). O F fica actuante até você programar um novo avanço numa frase de posicionamento ou numa frase TOOL CALL.
 - Medida excedente de longitude da ferramenta: valor delta para a longitude da ferramenta
 - Medida excedente de raio da ferramenta: valor delta para o raio da ferramenta
 - Medida excedente de raio 2 da ferramenta: valor delta para o raio 2 da ferramenta

Exemplo para uma chamada da ferramenta

Chama-se a ferramenta número 5 no eixo Z da ferramenta com rotações de 2500 rpm e um avanço de 350 mm/min. A medida excedente para a longitude da ferramenta e o raio 2 da ferrta. é de respectivamente 0,2 mm ou 0,05 mm, e a submedida para o raio da ferramenta é 1 mm.

20 TOOL CALL 5 Z S2500 F350 DL+0,2 DR-1 DR2:+0,05

O "D" antes do "L" e o "R" é para o valor delta.

Pré-selecção em tabelas de ferramentas

Quando você utiliza tabelas de ferramentas, você faz uma préselecção com uma frase TOOL DEF para a ferramenta a utilizar a seguir. Para isso, indique o número de ferramenta ou um parâmetro Q, ou o nome da ferramenta entre aspas.

TOOL CALL

5.2 Dados da ferramenta

Troca de ferramenta

A troca de ferramenta é uma função dependente da máquina. Consulte o manual da máquina!

Posição de troca de ferramenta

A posição de troca de ferramenta deve poder atingir-se sem risco de colisão. Com as funções auxiliares M91 e M92, pode-se introduzir uma posição de troca fixa da máquina. Se antes da primeira chamada da ferramenta se programar TOOL CALL 0, o TNC desloca a base da ferramenta para uma posição independente da longitude da ferramenta.

Troca manual da ferramenta

Antes de uma troca manual da ferramenta, pára-se o seu cabeçote e desloca-se a ferramenta sobre a posição de troca:

- ▶ Executar um programa para chegar à posição de troca
- Interromper a execução do programa; ver capítulo "11.4 Execução do programa"
- ▶ Trocar a ferramenta
- Continuar com a execução do programa; ver capítulo "11.4 Execução do programa"

Troca automática da ferramenta

Numa troca automática da ferramenta, não se interrompe a execução do programa. Numa chamada da ferramenta com TOOL CALL, o TNC troca a ferramenta no armazém de ferramentas.

Troca automática da ferramenta ao exceder-se o tempo de vida:M101

M101 é uma função dependente da máquina. Consulte o manual da máquina!

Quando se atinge o tempo de vida duma ferramenta TIME1 ou TIME2, o TNC troca automaticamente a ferramenta gémea. Para isso, active a função auxiliar M101 no princípio do programa. Você pode eliminar a activação de M101 com M102.

A troca automática de ferramenta nem sempre tem lugar depois de passado o tempo de vida mas sim algumas frases de programa depois, consoante a carga do comando.

Condições para frases NC standard com correcção de raio R0, RR, RL

O raio da ferramenta gémea deve ser igual ao raio da ferramenta original. Se os raios não forem iguais, o TNC emite um aviso e não troca a ferramenta.

Condições para frases NC com vectores normais à superfície e correcção 3D (ver Capítulo 5.4 "Correcção tridimensional da ferramenta")

O raio da ferramenta gémea pode ser diferente do raio da ferramenta original. Não é tido em conta em frases de programa transmitidas num sistema CAD. Você introduz o valor delta (DR) ou na tabela de ferrtas. ou na frase TOOL CALL.

Se DR for maior que zero, o TNC emite um aviso e não troca a ferramenta. Com a função M107, você suprime este aviso, e com M108 volta a activar.

5.3 Correcção da ferramenta

O TNC corrige a trajectória da ferramenta segundo o valor de correcção para a longitude da ferramenta no seu eixo e segundo o raio da ferramenta no plano de maquinação.

Se você elaborar o programa de maquinação directamente no TNC, a correcção do raio da ferramenta só actua no plano de maquinação. Para isso, o TNC só tem em conta até um total de cinco eixos, incluindo os eixos rotativos.

Quando se elaboram frases de programa num sistema CAD com vectores normais à superfície, o TNC pode realizar uma correcção tridimensional da ferramenta; ver capítulo "5.4 Correcção tridimensional da ferramenta".

Correcção da longitude da ferramenta

A correcção da longitude da ferramenta actua quando você chama uma ferramenta e se desloca no eixo da mesma. Elimina-se logo que se chama uma ferramenta com a longitude L=0.

Se você eliminar uma correcção de longitude de valor positivo com TOOL CALL 0, diminui a distância entre a ferramenta e a peça.

Depois de uma chamada da ferramenta TOOL CALL, modifica-se a trajectória programada da ferrta. no seu eixo segundo a diferença de longitudes entra a ferrta. anterior e a nova.

Na correcção da longitude, têm-se em conta os valores delta tanto da frase TOOL CALL como da tabela de ferramentas

Valor de correcção = L + $DL_{TOOL CALL}$ + DL_{TAB} com

- L Longitude L da ferramenta da frase TOOL DEF ou da tabela de ferramentas
- DL_{TOOL CALL} Medida excedente DL para a longitude da frase TOOL CALL (a visualização de posições não é tida em conta)
- DL_{TAB} Medida excedente DL para a tabela de ferramentas

5.3 Corr<mark>ecçã</mark>o da ferramenta

Correcção do raio da ferramenta

A frase do programa para um movimento da ferramenta contém

- RL ou RR para uma correcção do raio
- R+ ou R-, para uma correcção de raio num movimento paralelo a um eixo
- R0, quando não se pretende realizar nenhuma correcção de raio

A correcção de raio actua enquanto se chama uma ferramenta e se desloca no plano de maquinação com RL ou RR.

O TNC também anula a corecção do raio se você:
 programar uma frase de posicionamento com R0

- sair do contorno com a função DEP
- programar um PGM CALL
- seleccionar um novo programa com PGM MGT

Na correcção de raio, têm-se em conta valores delta tanto da frase TOOL como da tabela de ferramentas:

Valor de correcção = $R + DR_{TOOL CALL} + DR_{TAB}$ com

- R Raio R da ferramenta da frase TOOL DEF ou da tabela de ferramentas
- DR_{TOOL CALL} Medida excedente DR para o raio da frase TOOL CALL (a visualização de posições não é tida em conta)
- DR_{TAB} Medida excedente DR para o raio da tabela de ferramentas

Movimentos de trajectória sem correcção do raio: R0

A ferramenta desloca-se no plano de maquinação com o seu ponto central na trajectória programada, ou nas coordenadas programadas.

Aplicação: furar, posicionamento prévio Ver figura à direita.

Movimentos de trajectória com correcção do raio: RR e RL

RR A ferramenta desloca-se para a direita do contorno

RL A ferramenta desloca-se para a esquerda do contorno

O ponto central da ferramenta tem assim a distância entre o raio da ferramenta e o contorno programado. "à direita" e "à esquerda" designa a posição da ferramenta na direcção de deslocação ao longo do contorno da peça. Ver figuras na próxima página.

Entre duas frases de programa com diferente correcção de raio RR e RL, deve programar-se pelo menos uma frase com correcção de raio R0.

A correcção de raio fica activada até ao final da frase em que foi programada pela primeira vez.

Na primeira frase com correcção de raio RR/RL e na eliminação com R0, o TNC posiciona a ferramenta sempre na perpendicular no ponto inicial ou final programado. Posicione a ferramenta diante do primeiro ponto do contorno ou por detrás do último ponto do contorno para que este não figue danificado.

Introdução da correcção do raio

Na programação de um movimento de trajectória, depois de você introduzir as coordenadas, aparece a seguinte pergunta:

5.3 Cor<mark>recç</mark>ão da ferramenta

Correcção de raio: maquinar esquinas

Esquinas exteriores

Quando tiver programado uma correcção de raio, o TNC desloca a ferramenta nas esquinas exteriores ou segundo um círculo de transição, ou segundo uma Spline (seleccção com MP7680). Se necessário, o TNC reduz o avanço nas esquinas exteriores, por exemplo quando se verificam grandes mudanças de direcção.

Esquinas interiores

Nas esquinas interiores, o TNC calcula o ponto de intersecção das trajectórias em que se desloca corrigido o ponto central da ferramenta. A partir deste ponto, a ferramenta desloca-se ao longo do elemento seguinte do contorno. Desta forma, a peça não fica danificada nas esquinas interiores. Assim, não se pode seleccionar um raio da ferramenta com um tamanho qualquer para um determinado contorno.

Não situe o ponto inicial ou final numa maquinação interior sobre o ponto da esquina do contorno, senão esse contorno danifica-se.

Maquinar esquinas sem correcção de raio

Você pode influenciar sem raio de correcção a trajectória da ferramenta e o avanço em esquinas da peça com a função auxiliar M90. Ver capítulo "7.4 Funções auxiliares para o tipo de trajectória".

5.4 Correcção tridimensional da ferramenta

O TNC pode executar uma correcção tridimensional (correcção 3D) da ferramenta para frases lineares. Para além das coordenadas X, Y e Z do ponto final da recta, estas frases devem conter também os componentes NX, NY e NZ da normal à superfície (ver figura em baixo, à direita). O ponto final da recta e a normal à superfície calculam-se num sistema CAD. Com a correcção 3D você pode usar ferramentas com outras dimensões em relação à ferramenta original.

Formas da ferramenta

As formas válidas da ferramenta (ver figura em cima à direita e no meio à direita) determinam-se com os raios R e R2:

RAIO DA FERRAMENTA: R

Medida entre o ponto central da ferrta. e o lado exterior da mesma

RAIO 2 DA FERRAMENTA: R2 Raio de arredondamento desde o extremo da ferrta. até ao lado exterior da mesma

A relação de R com R2 determina a forma da ferramenta:

- R2 = 0 Fresa cilíndrica
- R2 = R Fresa esférica
- 0 < R2 < R Fresa toroidal

Destas indicações resultam também as coordenadas para o ponto de referência da ferramenta P_{T} .

Você introduz os valores para o RAIO DA FERRTA. e para o RAIO 2 DA FERRTA.na tabela de ferramentas.

Vectores normais à superfície

Definição da normal à superfície

A normal à superfície é uma medida matemática com

um valor

aqui: distância entre a superfície da peça e o ponto de referência da ferramenta P_{T} e

uma direcção

Fresa cilíndrica e fresa esférica: partindo perpendicularmente da superfície da peça a maquinar até ao ponto de referência da ferramenta P_T

: Fresa toroidal por meio de P_T ou P_T

O valor e a direcção da normal à superfície determinam-se com os componentes NX, NY e NZ.

5.4 Correcção tridimen<mark>sion</mark>al da ferramenta

5.4 Correcção tridimen<mark>sion</mark>al da ferramenta

 As coordenadas X, Y e Z para a posição e para a normal à superfície NX, NY e NZ devem ter a mesma sequência na frase NC.

A correcção 3D com normais à superfície é válida para a indicação de coordenadas nos eixos principais X, Y e Z.

Quando você muda para uma ferrta. com medida excedente (valor delta positivo), o TNC emite um aviso de erro. Você pode suprimir o aviso de erro com a função M M107 (ver capítulo "5.2 Dados da ferramenta, troca da ferramenta").

Quando as medidas excedentes da ferramenta prejudicam o contorno, o TNC **não** emite um aviso de erro se essas medidas fossem prejudicar o contorno.

Com o parâmetro da máquina 7680, você determina se o sistema CAD corrigiu a longitude da ferramenta com o centro da bola P_{rou} o extremo da bola P_{sp} .

Utilizar outras ferramentas: valores delta

Quando utilizar ferramentas com dimensões diferentes da ferrta. original, introduza a diferença de longitudes e raios como valores delta na tabela de ferramentas ou na chamada da ferrta. TOOL CALL:

■ Valor delta positivo DL, DR, DR2

As dimensões da ferrta. são maiores do que as da ferrta. original (medida excedente)

 Valor delta negativo DL, DR, DR2 As dimensões da ferrta. são menores do que as da ferrta. original (submedida)

O TNC corrige a posição da ferrta. com valores delta e normais à superfície.

Exemplo: frase do programa com normais à superfície

LN X+31,737 Y+21,954 Z+33,165 NX+0,2637581 NY+0,0078922 NZ-0,8764339 F1000 M3

- LN Recta com correcção 3D
- X, Y, Z Coordenadas do ponto final da recta corrigidas
- NX, NY, NZ Componentes da medida normal à superfície
- F Avanço
- M Função auxiliar

Você pode introduzir e modificar o avanço F e a função auxiliar M no modo de funcionamento Memorização/Edição do Programa.

As coordenadas do ponto final da recta e os componentes da normal à superfície são indicados pelo sistema CAD.

5.5 Trabalhar com tabelas de dados de corte

O fabricante da máquina deve preparar o TNC para se trabalhar com tabelas de dados de corte

É provável que a sua máquina não disponha de todas as funções aqui descritas ou de funções adicionais. Consulte o manual da máquina

Com as tabelas de dados de corte, onde estão determinadas combinações de utensílios de trabalho/utensílios de intersecção, o TNC pode, a partir da velocidade de intersecção V_C e do avanço dos dentes f_Z calcular as rotações S e o avanço F. Para o cálculo, é indispensável que você tenha determinado no programa o material da peça e numa tabela de ferramentas diferentes características específicas da ferramenta.

Antes de mandar o TNC calcular dados de corte automaticamente, você tem de activar a tabela de ferramentas no modo de funcionamento Teste do Programa (estado S), à qual o TNC deve ir buscar os dados específicos da ferramenta.

Funções de edição para tabelas de corte	Softkey
Acrescentar linhas	INSERIR LINHA
Apagar linha	APAGAR L INHA
Salto para o início da linha seguinte	PROXIMA LINHA
Classificar tabelas (colunas)	ORDER
Copiar campo iluminado por detrás (2º plano de softkeys)	COPIAR VALOR ACTUAL
Acrescentar campo (2º plano de softkeys)	INSERIR VALOR COPIADO
Editar formato da tabela (2º plano de softkeys)	EDITAR FORMATO

Tabela para materias da peça

Você define os materiais da peça na tabelaTAB MATPEÇ (ver figura central à direita) TAB.MATPEÇ é memorizado de forma standard no directório TNC:\ e pode conter muitos nomes de materiais. O nome do material pode ter no máximo 32 sinais (também sinais vazios). O TNC visualiza o conteúdo da coluna NOME quando você determina o material da peça no programa (ver próximo parágrafo).

Se modificar a tabela standard de material, tem que a copiar para um outro directório. Senão as suas modificações ficam com texto sobreposto com os dados standard da HEIDENHAIN quando houver uma actualização de software . Defina o caminho no ficheiro TNC.SYS com a palavra passe WMAT= (ver "Ficheiro de configuração TNC.SYS" mais adiante neste capítulo).

Para evitar perder dados, guarde o ficheiro TAB.MATPEÇ. em intervalos regulares de tempo.

Determinar o material da peça no programa NC

Seleccione no programa NC o material de trabalho com a softkey WMAT da tabela WMAT.TAB.:

- Programar o material da peça:premir a tecla WMAT PROBE no modo de funcionamento Memorização/ Edição do Programa.
- SELECCIO. MATERIAL PECA MORKMAT.; o TNC acende numa janela acima os materias de trabalho memorizados em WMAT.TAB.
 - Seleccionar o material da peça: mova o cursor com as teclas de setas para o material pretendido, e confirme com a tecla ENT. O TNC aceita o material na frase frase WMAT. Para folhear mais depressa a tabela de material, prima a tecla SHIFT e depois a tecla de seta. O TNC folheia página a página.
 - Finalizar o diálogo: premir a tecla END

Se você modificar num programa a frase WMAT, o TNC emite uma aviso. Verifique se os dados de corte memorizados na frase TOOL CALL ainda estão válidos.

Execu conti	inua Ed NO	icao ME ?	tabela	9			
Ar	quivo: WMAT_GE	.TAB					
NR	NAME	DOC					
0	110 WCrV 5	Tool steel	1.2519				
1	14 NiCr 14	Hardened s	teel 1.575	2			
2	142 WV 13	Tool steel	1.2562				
3	15 CrNi 6	Hardened s	teel 1.591	9			
ł	16 CrMo 4 4	Structural	steel 1.7	337			
5	16 MnCr 5	Hardened s	teel 1.713	1			
3	17 MoV 8 4	Structural	steel 1.5	406			
7	18 CrNi 8	Hardened s	teel 1.592	0			
3	19 Mn 5	Structural	steel 1.0	482			
Э	21 MnCr 5	Tool steel	1.2162				
10	26 CrMo 4	Structural steel 1.7219					
11	28 NiCrMo 4	Structural steel 1.6513					
12	30 CrMoV 9	Tempering	steel 1.77	07			
INI	CIO FIM	PAGINA	PAGINA ∬	INSERIR LINHA	APAGAR LINHA	PROXIMA LINHA	ORDER

Tabela para materiais de corte da ferrta.

Você define os materiais de intersecção da ferramenta na tabela TMAT.TAB. TMAT.TAB é memorizado de forma standard no directório TNC:\ e pode conter muitos nomes de utensílios de intersecção (ver figura em cima, à direita). O nome do material de corte pode ter no máximo 16 sinais (também sinais vazios). O TNC visualiza o conteúdo da coluna NOME quando você determina o material de intersecção da ferramenta na tabela de ferramentas TOOL.T

Se modificar a tabela standard de material, tem que a copiar para um outro directório. Senão as suas modificações ficam com texto sobreposto com os dados standard da HEIDENHAIN quando houver uma actualização de software . Defina o caminho no ficheiro TNC.SYS com a palavra passe TMAT= (ver "Ficheiro de configuração TNC.SYS" mais adiante neste capítulo).

Para evitar perder dados, guarde o ficheiro TMAT.TAB em intervalos regulares de tempo.

Tabela para dados de corte

Você define as combinações de material de trabalho/material de corte com os respectivos dados de corte numa tabela com o nome posterior CDT (em ingl. cutting data file: tabela de dados de corte; ver figura no centro, à direita). As introduções na tabela de dados de corte podem ser livremente configuradas por si. Para além das colunas absolutamente necessárias NR, WMAT e TMAT, o TNC pode gerir até combinações de velocidades de corte (Vc)/avanço (F).

No directório TNC:\ está memorizada a tabela standard de dados de corte FRAES_2 .CDT. Você pode editar e aumentar FRAES_2.CDT como quiser ou acrescentar quantas tabelas novas de dados de corte quiser.

Se modificar a tabela standard de material, tem que a copiar para um outro directório. Senão as suas modificações ficam com texto sobreposto com os dados standard da HEIDENHAIN quando houver uma actualização de software (ver "Ficheiro de configuração TNC.SYS" mais adiante neste capítulo)

As tabelas de dados de corte devem ser todas memorizadas no mesmo directório. Se o directório não for o directório standard TNC:\, você deve introduzir no ficheiro TNC.SYS depois da palavra passe PCDT= ao caminho onde estão memorizadas as suas tabelas de dados de corte.

Execu conti	cao E nua N	dicao [.] OME ?	tabela	9				
Arc	auivo: TMAT_C	B.TAB						
NR	NAME	DOC						
ø	HC-K15	Coated car	bide					
1	HC-P25	Coated car	bide					
2	HC-P35	Coated car	bide					
3	HSS							
4	HSSE-C⊙5	HSS + coba	1 t					
5	HSSE-Co8	HSS + coba	1 t					
6	6 HSSE-Co8-TiN HSS + cobalt							
7	HSSE∕TiCN	TiCN coate	TiCN coated					
8	HSSE∕TiN	TiN coated						
9	HT-P15	Cermet						
10	HT-M15	Cermet						
11	HW-K15	Uncoated carbide						
12	HW-K25	Uncoated c	arbide					
INIC Û	FIM <u> ↓</u>	PAGINA	PAGINA ↓	INSERIR LINHA	APAGAR LINHA	PROXIMA LINHA	ORDER	

Exec	ucao inua	E c M F	licao ITERIAL	tabela _ NAVA	a Alha	?				
Ar	quivo	: FRAES_	2.CDT							
NR	WMA	T	TMAT		Vc1	F	1	Vc2	F2	
0	St	33-1	HSSE/T	iN	40	Ø	,016	65	0,020	
1	St	33-1	HSSE/T	iCN	40	Ø	,016	55	0,020	
2	St	33-1	HC-P25	i	100	Ø	,200	130	0,250	
3	St	37-2	HSSE-C	65	20	Ø	,025	45	0,030	
4	St	37-2	HSSE/TiCN		40	Ø	,016	65	0,020	
5	St	37-2	HC-P25	i	100	Ø	,200	130	0,250	
6	St	50-2	HSSE/T	iN	40	Ø	,016	55	0,020	
7	St	50-2	HSSE/T	iCN	40	Ø	,016	66	0,020	
8	St	50-2	HC-P25	i	100	Ø	,200	130	0,250	
9	St	60-2	HSSE/T	iN	40	Ø	,016	55	0,020	
10	St	60-2	HSSE/T	iCN	40	Ø	,016	55	0,020	
11	St	60-2	HC-P25	i	100	Ø	,200	130	0,250	
12	C 1	5	HSSE-C	05	20	0	,040	45	0,050	
INI	10]	FIM I	PAGINA Û	PAGINA ↓	INSER LINH	IR A	APA LIN	sar Ha	PROXIMA LINHA	ORDER

5.5 Trabalhar com tabel<mark>as d</mark>e dados de corte

Juntar uma nova tabela de dados de corte

- ▶ Seleccionar modo de funcionamento Memorização/Edição do Programa
- Seleccionar Gestão de Ficheiros: premir a tecla PGM MGT
- Seleccionar o directório onde devem ser memorizadas as tabelas. de dados de corte (Standard: TNC:\)
- ▶ Introduzir um nome gualquer e o tipo de ficheiro .CDT, e confirmar com a tecla ENT
- ▶ O TNC visualiza na metade direita do ecrã diferentes formatos de tabelas (dependente da máguina, para exemplo, ver figura em cima, à direita) que se diferenciam pela quantidade das combinações de velocidade de corte/avanço. Mova o cursor com as teclas de setas para o formato de tabela pretendido, e confirme com a tecla ENT. O TNC produz uma nova tabela vazia de material de dados de corte

Indicações necessárias na tabela de ferramentas

- Raio da ferramenta Coluna R (DR)
- Quantidade de dentes (só com ferramentas de fresar) Coluna CUT.
- Tipo de ferramenta Coluna TYP

O tipo de ferramenta influencia o cálculo do avanço da trajectória: Ferramentas de fresar: $F = S \bullet f_7 \bullet z$ $F = S \bullet f_U$

- Todas as outras ferramentas:
- S = Rotações da ferramenta
- $f_7 = Avanço por dente$
- f₁₁ = Avanco por rotação
- z = Quantidade de dentes
- Material de intersecção da ferramenta Coluna TMAT
- Nome da tabela de dados de corte que deve utilizar-se para esta ferramenta - Coluna CDT

Você selecciona na Tabela de Ferramentas o tipo de ferramenta, o material da navalha da ferramenta e o nome da tabela de dados de corte com uma softkey (ver capítulo "5.2 Dados da ferramenta").

Procedimento ao trabalhar com cálculo automático de rotações/de avanço

- 1 Se ainda não tiver sido registado: introduzir o material da peça no ficheiro WMAT.TAB
- 2 Se ainda não tiver sido registado: introduzir o material do utensílio de corte no ficheiro TMAT.TAB
- 3 Se ainda não tiver sido registado: introduzir na Tabela de Ferramentas todos os dados específicos da ferramenta, necessários para o cálculo dos dados de corte:
 - Raio da ferramenta
 - Quantidade de dentes
 - Tipo de ferramenta
 - Material da navalha da ferramenta
 - Tabela de dados de corte relativa à ferramenta
- 4 Se ainda não tiver sido registado: introduzir dados de corte de uma Tabela de Intersecção qualquer (ficheiro CDT)
- 5 Teste do modo de funcionamento: activar a tabela de ferramentas donde o TNC deve retirar os dados específicos da ferrta.(estado S)
- No programa NC: determinar o material da peça com a softkey WMAT
- 7 No programa NC: na frase TOOL CALL mandar calcular automaticamente com uma softkey as rotações da ferramenta e o avanço

Modificar a estrutura duma tabela

As Tabelas de dados de Corte são para o TNC as chamadas "Tabelas de definição livre" Você pode modificar o formato de tabelas de definição livre com o editor de estrutura.

Chamar o editor de estrutura

Prima a softkey EDITAR FORMATO (2º plano de sotkeys). O TNC abre a janela do editor (ver figura à direita) onde é apresentada a estrutura da tabela "rodada a 90°". Uma linha na janela do editor define uma coluna na tabela correspondente. Retire o significado da indicação de estrutura (registo na linha de cima da tabela ao lado.

Encerrar o editor de estrutura

Prima a tecla END. O TNC transforma dados que já estavam memorizados na tabela no novo formato. Os elementos que o TNC não pode transformar na nova estrutura, são identificados com # (p.ex. se tiver diminuído a largura da coluna).

Comando de estrutura Significado

NR	Número da coluna
NOME	Escrita sobre a coluna
TIPO	N: Introdução numérica C: Introdução alfanumérica
WIDTH	Largura da coluna Em tipo N incluindo sinal, vírgula e posições depois de vírgula
DEC	Quantidade de posições depois de vírgula (máx. 4, actua só com tipo N)
INGLÊS até HUNGRIA	Diálogo dependente do idioma (máx. 32 sinais)

Exec cont	ucao inua	Ed	Edicao tabela Nome do campo?						
Ar	rquivo: 9	81840C	2555.	TDB	o a mp s				\rightarrow
NR	NAME	ΤΥP	UIDT	H DEC	ENGLISH				
ø	UMA T	С	16	Ø	Workpiece	material?			
1	TMAT	С	16	Ø	Tool mater	ial?			
2	Vc1	Ν	7	3	Cutting sp	eed Vc1?			
3	F 1	Ν	7	3	Feed rate	Fz1?			
4	Vc2	Ν	7	3	Cutting sp	eed Vc2?			
5	F2	Ν	7	з	Feed rate	Fz2?			
[END]									
IN	ICIO	FIM	PF	GINA	PAGINA	71105070	000000	00011710	
7	Ŷ	Û		î	Û				

Transmissão de dados de Tabelas de dados de Corte

Se você passar um ficheiro do tipo .TAB ou .CDT para uma base de intersecção de dados externa, o TNC memoriza a definição de estrutura da tabela. A definição de estrutura começa com a frase #STRUCT BEGIN e acaba com a frase #STRUCT END. Retire o significado de cada palavra passe da tabela "Indicação (?? - Befehl) de estrutura" (ver página anterior). Por detrás de #STRUCTEND o TNC memoriza o conteúdo definitivo da tabela.

Ficheiro de configuração TNC.SYS

Você deve usar o ficheiro de configuração TNC.SYS se as suas tabelas de dados de corte não estiverem memorizadas no directório standard TNC:\. Determine agora no TNC.SYS os caminhos onde as suas tabelas de dados de corte estão memorizadas.

Registos emTNC.SYS	Significado
WMAT=	Caminho para tabelas de materiais
TMAT=	Caminho para uma tabela de material
	de corte
PCDT=	Caminho para tabelas de dados de corte

Exemplo paraTNC.SYS:

WMAT=TNC:\CUTTAB\WMAT GB.TAB
TMAT=TNC:\CUTTAB\TMAT GB.TAB

PCDT=TNC:\CUTTAB\

Programação: Programar contornos

6.1 Resumo: movimentos da ferramenta

Funções de trajectória

O contorno de uma peça compõe-se normalmente de várias trajectórias como rectas e arcos de círculo. Com as funções de trajectória, você programa os movimentos da ferramenta para **rectas** e **arcos de círculo**.

Livre programação de contornos FK

Quando não existir um plano cotado, e as indicações das medidas no programa NC estiverem incompletas, programe o contorno da peça com a livre programação de contornos. O TNC calcula as indicações que faltam.

Com a programação FK você também programa movimentos da ferramenta para **rectas** e **arcos de círculo**

Funções auxiliares M

Com as funções auxiliares do TNC, você comanda

- a execução do programa, p.ex. uma interrupção da execução
- as funções da máquina, como p.ex. a conexão e desconexão da rotação da ferramenta e do refrigerante
- o comportamento da ferramenta na trajectória

Sub-programas e repetições parciais de um programa

Introduza só uma vez como sub-programas ou repetições parciais de um programa os passos de maquinação que se repetem. Se você quiser executar uma parte do programa só consoante certas condições, determine também esses passos de maquinação num sub-programa. Para além disso, um programa de maquinação pode chamar um outro programa e executá-lo.

A programação com sub-programas e repetições parciais de um programa estão descritas no capítulo 9.

Programação com parâmetros Q

No programa de maquinação substituem-se os valores numéricos por parâmetros Q. A um parâmetro Q atribui-se um valor numérico em outra posição. Com parâmetros Q você pode programar funções matemáticas que comandem a execução do programa ou descrevam um contorno.

Para além disso, com a ajuda da programação de parâmetros Q você também pode efectuar medições com um apalpador 3D durante a execução do programa.

A programação com parâmetros Q está descrita no capítulo 10.

6.2 Noções básicas sobre as funções de trajectória

Programar o movimento da ferrta. para uma maquinação

Quando você criar um programa de maquinação, programe sucessivamente as funções de trajectória para cada um dos elementos do contorno da peça. Para isso, introduza **as coordenadas para os pontos finais dos elementos do contorno** indicadas no desenho. Com a indicação das coordenadas, os dados da ferramenta e a correcção do raio, o TNC calcula o percurso real da ferramenta.

O TNC desloca simultaneamente todos os eixos da máquina que você programou na frase do programa de uma função de trajectória.

Movimentos paralelos aos eixos da máquina

A frase do programa contém a indicação das coordenadas: o TNC desloca a ferramenta paralela aos eixos da máquina programados.

Consoante o tipo de máquina, na execção desloca-se a ferramenta ou a mesa da máquina com a peça fixada. A programação dos movimentos de trajectória faz-se como se fosse a ferramenta a deslocar-se.

Exemplo:

L X+100	
L	Função de trajectória "Recta"
X+100	Coordenadas do ponto final
A ferramen	ta mantém as coordenadas Y e 7 e desloca-se nara a

A ferramenta mantém as coordenadas Y e Z e desloca-se para a posição X=100. Ver figura em cima, à direita.

Movimentos em planos principais

A frase do programa contém duas indicações de coordenadas: o TNC desloca a ferramenta no plano programado.

Exemplo:

L X+70 Y+50

A ferramenta mantém a coordenada Z e desloca-se no plano XY para a posição X=70, Y=50. Ver figura no centro, à direita.

Movimento tridimensional

A frase do programa contém três indicações de coordenadas: o TNC desloca a ferramenta no espaço para a posição programada.

Exemplo:

L X+80 Y+0 Z-10

Ver figura em baixo, à direita.

Introdução de mais de três coordenadas

O TNC pode comandar até 5 eixos ao mesmo tempo. Numa maquinação com 5 eixos, movem-se por exemplo 3 eixos lineares e 2 rotativos simultaneamente.

O programa de maquinação para este tipo tipo de maquinação gerase habitualmente num sistema CAD, e não pode ser criado na máquina.

Exemplo:

L X+20 Y+10 Z+2 A+15 C+6 R0 F100 M3

O TNC não pode representar graficamente um movimento de mais de 3 eixos.

Círculos e arcos de círculo

Nos movmentos circulares, o TNC desloca simultaneamente dois eixos da máquina: a ferramenta desloca-se em relação à peça segundo uma trajectória circular. Para os movimentos circulares, você pode introduzir o ponto central do círculo CC.

Com as funções de trajectória para arcos de círculo programe círculos nos planos principais: há que definir o plano principal na chamada da ferramenta TOOL CALL ao determinar-se o eixo da ferramenta:

Eixo da ferramenta	Plano principal
Z	XY , também UV, XV, UY
Y	ZX , também WU, ZU, WX
X	YZ , também VW, YW, VZ

Você programa os círculos que não são paralelos ao plano principal com a função" Inclinação do plano de maquinação" (ver capítulo 8) ou com parâmetros Q (ver capítulo 10).

Sentido de rotação DR em movimentos circulares

Para os movimentos circulares não tangentes a outros elementos do contorno, introduza o sentido de rotação DR:

Rotação em sentido horário:DR-Rotação em sentido anti-horário: DR+

Correcção do raio

A correcção de raio deve estar na frase com que você faz a aproximação ao primeiro elemento de contorno. A correcção do raio não pode começar na frase para uma trajectória circular. Programe esta primeriramente numa frase linear ou na frase de aproximação(frase APPR).

Para frase APPR e frase linear, ver capítulo "6.3 Aproximação e saída do contorno" e capítulo "6.4 Movimentos de trajectória - Coordenadas cartesianas".

6.2 Noções básicas sobre <mark>as f</mark>unções de trajectória

Posicionamento prévio

Posicione previamente a ferramenta no princípio do programa de maguinação de forma a não se danificar a ferramenta nem a peça.

Elaboração de frases de programa com as teclas de movimentos de trajectória

Você abre o diálogo em texto claro com as teclas cinzentas de funções de trajectória. O TNC vai perguntando sucessivamente todos os dados necessários e acrescenta esta frase no programa de maguinação.

Exemplo - programação de uma recta:

0 BEGIN PGM NEU MM 1 BLK FORM 0.1 Z X+0 Y+0 Z-40 2 BLK FORM 0.2 X+100 Y+100 Z+0 3 TOOL CALL 1 Z S5000 4 L X-20 Y+50 R0 F MAX M3 5 END PGM NEU MM	, and a second sec	Funcao auxiliar M?	
	0 BEG 1 BLK 2 BLK 3 TOO 4 L X 5 END	IN PGM NEU MM FORM 0.1 Z X+0 Y+0 Z-40 FORM 0.2 X+100 Y+100 Z+0 L CALL 1 Z S5000 -20 Y+50 R0 F MAX M3 PGM NEU MM	

Edicao de programa

Execucao

TNC 426 B, TNC 430 da HEIDENHAIN

O programa de maquinação mostra a frase:

L X+10 Y+5 RL F100 M3

6.3 Aproximação e saída do contorno

Resumo: tipos de trajectórias para a aproximação e saída do contorno

As funções APPR (em ingl. approach = aproximação) e DEP (em ingl. departure = saída) activam-se com a tecla APPR/DEP. Depois, com as softkeys pode-se seleccionar os seguintes tipos de trajectória:

Função	Softkeys: Ap	proximação	Saída
Recta tangente		APPR LT	DEP LT
Recta perpendicular ao pto. do	o contorno	APPR LN	
Trajectória circular tangente		APPR CT	DEP CT

Trajectória circular tangente ao contorno, aproximação e saída a um ponto auxiliar fora do contorno sobre uma recta tangente

Aproximação e saída a uma trajectória helicoidal

Na aproximação e saída a uma hélice, a ferramenta desloca-se segunda um prolongamento da hélice, unindo-se assim com uma trajectória circular tangente ao contorno. Utilize para isso a função APPR CT ou a DEP CT.

Posições importantes na aproximação e saída

Ponto de partida Ps

Você programa esta posição sempre antes da frase APPR. P_S encontra-se sempre fora do contorno e atinge-se sem correcção do raio (R0).

Ponto auxiliar P_H

A aproximação e saída passa em alguns tipos de trajectória por um ponto auxiliar $\mathsf{P}_{\mathsf{H}},$ que o TNC calcula a partir da frase APPR e DEP.

- Primeiro ponto do contorno P_Ae último ponto do contorno P_E Você programa o primeiro ponto do contornoP_A na frase APPR; e o último ponto do contorno P_E com uma função de trajectória qualquer.
- Se a frase APPR contiver também a coordenada Z, o TNC desloca a ferramenta primeiro no plano de maquinação para o ponto P_H e aí segundo o respectivo eixo à profundidade programada.
- Ponto final P_N

A posição P_N encontra-se fora do contorno e calcula-se a partir das indicações introduzidas na frase DEP. Se a frase DEP contiver também a coordenada Z, o TNC desloca primeiro a ferrta. para o ponto P h e aí segundo o respectivo eixo à altura programada.

Modo opera manual	icao Ed:	icao	de pro	ograma	3		
1 BLK F0 2 BLK F0 3 TOOL C 4 L X-20 5 L Z-5 6 END PG	RM 0.1 Z X RM 0.2 X+1 PLL 1 Z S5 Y+50 R0 F R0 F MAX M NEU MM	+0 Y+0 Z-4 00 Y+100 ; 000 MAX	10 2 + 0				
APPR LT	APPR LN	APPR CT		DEP LT	DEP LN	DEP CT	

6.3 Aproxim<mark>ação</mark> e saída do contorno

Pode introduzir-se as coordenadas de forma absoluta ou incremental em coordenadas cartesianas ou polares.

No posicionamento da posição real em relação ao ponto auxiliar P_H o TNC não verifica se o contorno programado é danificado. Faça a verificação com o Gráfico de Teste!

Na aproximação, o espaço entre o ponto de partida P_S e o primeiro ponto do contorno P_A deve ser suficientemente grande, para se atingir o avanço de maquinação programado.

Desde a posição real, para o ponto auxiliar P_{H} o TNC desloca-se com o último avanço programado.

Correcção do raio

Você programa a correcção do raio juntamente com o primeiro ponto do contorno P_A na frase APR. As frases DEP eliminam automaticamente a correcção de raio!

Aproximação sem correcção de raio: quando na frase APPR se programar R0, o TNC desloca a ferramenta como se fosse uma ferramenta com

R = 0 mm e correcção de raio RR! Desta forma está determinada a direcção nas funções APPR/DEP LN e APPR/DEP CT, na qual o TNC desloca a ferramenta até e a partir do contorno.

Aproximação segundo uma recta tangente: APPR LT

O TNC desloca a ferramenta segundo uma recta desde o ponto de partida P_S para um ponto auxiliar P_H. A partir daí, a ferrta. desloca-se para o primeiro ponto do contorno P_A sobre uma recta tangente. O ponto auxiliar P_H está a uma distância LEN do primeiro ponto do contorno P_A.

Dualquer função de trajectória: aproximação ao ponto de partida Ps

▶ Abrir diálogo com a tecla APPR/DEP e a softkey APPR LT:

- Coordenadas do primeiro ponto do contorno P_A
- \blacktriangleright LEN: distância do ponto auxiliar $\mathsf{P}_{\mathsf{H}}\mathsf{ao}$ primeiro ponto do contorno P_{A}
- ► Correcção de Raio para a maquinação

Exemplo de frases NC

7 L X+40 Y+10 R0 FMAX M3	Aproximação a P _S sem correcção do raio
8 APPR LT X+20 Y+20 Z-10 LEN15 RR F100	P _A com correcção do raio RR, distância P _H a P _A :
	LEN=15
9 L X+35 Y+35	Ponto final do primeiro elemento do contorno
10 L	Seguinte elemento do contorno

Breve descrição	Significado
APPR	em ingl. APPRoach =
	Aproximação
DEP	Em ingl. DEParture = saída
L	Em ingl. Line = recta
С	Em ingl. Circle = Círculo
R	Tangente (passagem contínua)
	lisa)
Ν	Normal (perpendicular)

Aproximação segundo uma recta perpendicular ao primeiro ponto do contorno: APPR LN

O TNC desloca a ferramenta segundo uma recta desde o ponto de partida P_S para um ponto auxiliar P_H. A partir daí, para o primeiro ponto do contorno P_A segundo uma recta perpendicular. O ponto auxiliar P_H está a uma distância LEN + o Raio da Ferramenta do primeiro ponto do contorno P_A.

Dualquer função de trajectória: aproximação ao ponto de partida Ps

Abrir diálogo com a tecla APPR/DEP e a softkey APPR LN:

- APPR LN Coordenadas do primeiro ponto do contorno PA
 - └── Longitude: introduzir a distância do ponto auxiliar P_H LEN sempre positiva!
 - ▶ Correcção do raio RR/RL para a maquinação

Exemplo de frases NC

7 L X+40 Y+10 RO FMAX M3	Aproximação a P _S sem correcção do raio
8 APPR LN X+10 Y+20 Z-10 LEN+15 RR F100	P _A com correcção do raio RR
9 L X+20 Y+35	Ponto final do primeiro elemento do contorno
10 L	Seguinte elemento do contorno

Aproximação segundo uma trajectória circular tangente: APPR CT

O TNC desloca a ferramenta segundo uma recta desde o ponto de partida P_S para um ponto auxiliar P_H . Daí desloca-se segundo uma trajectória circular tangente ao primeiro elemento do contorno e ao primeiro ponto do contorno P_A .

A trajectória circular de $P_{Ha} P_A$ está determinada pelo raio R e pelo ângulo do ponto central CCA. O sentido de rotação da trajectória circular está indicado pelo percurso do primeiro elemento do contorno.

- Qualquer função de trajectória: aproximação ao ponto de partida P_S
- ▶ Abrir diálogo com a tecla APPR/DEP e a softkey APPR CT:

▶ Coordenadas do primeiro ponto do contorno P_A

- ▶ Raio R da trajectória circular
 - Aproximação pelo lado da peça definido pela correcção do raio: Introduzir R positivo
 - Aproximação a partir dum lado da peça: Introduzir R negativo
- Angulo do ponto central CCA da trajectória circular
- Introduzir CCA apenas positivo
- Máximo valor de introdução 360°
- Correcção do raio RR/RL para a maquinação

6.3 Aproxim<mark>ação</mark> e saída do contorno

Exemplo de frases NC

7	L X+4	40	Y+10 F	₹0 F M/	AX M3				
8	APPR	СТ	X+10	Y+20	Z-10	CCA180	R+10	RR	F100

9 L X+20 Y+35

10 L ...

Aproximação a P_S sem correcção do raio P_A com correcção do raio RR, Raio R=10 Ponto final do primeiro elemento do contorno Seguinte elemento do contorno

Aproximação segundo uma trajectória circular tangente ao contorno e segmento de recta: APPR LCT

O TNC desloca a ferramenta segundo uma recta desde o ponto de partida P_S para um ponto auxiliar $\mathsf{P}_{\mathsf{H}}.$ Daí desloca-se segundo uma trajectória circular para o primeiro elemento do contorno $\mathsf{P}_{\mathsf{A}}.$

A trajectória circular une-se tangencialmente tanto à recta $P_S - P_H$ como também ao primeiro elemento de contorno. Assim, a trajectória determina-se claramente através do raio R.

- ▶ Qualquer função de trajectória: aproximação ao ponto de partida P_S
- ▶ Abrir diálogo com a tecla APPR/DEP e a softkey APPR LCT:

Coordenadas do primeiro ponto do contorno P_A

 Raio R da trajectória circular indicar R positivo

▶ Correcção de Raio para a maquinação

Exemplo de frases NC

7 L X+40 Y+10 R0 FMAX M3	Aproximação a P _S sem correcção do raio
8 APPR LCT X+10 Y+20 Z-10 R10 RR F100	P _A com correcção de raio RR, raio R=10
9 L X+20 Y+35	Ponto final do primeiro elemento do contorno
10 L	Seguinte elemento do contorno

TNC 426 B, TNC 430 da HEIDENHAIN

Saída segundo uma recta tangente: DEP LT

O TNC desloca a ferramenta segundo uma recta desde o último ponto do contorno P_E para o ponto final P_N . A recta encontra-se no prolongamento do último elemento do contorno P_N encontra-se na distância LEN de P_E .

- Programar o último elemento do contorno com o ponto final P_Ee correcção do raio
- Abrir diálogo com a tecla APPR/DEP e a softkey DEP LT:

LEN: introduzir a distância do ponto final P_N do último elemento do contorno P_E

Exemplo de frases NC

23 L Y+20 RR F100	Último elemento do contorno: P _E com correcção
	do raio
24 DEP LT LEN 12,5 F100	Sair com LEN = 12,5 mm
25 L Z+100 FMAX M2	Retirar Z, retrocesso, fim do programa

Υ

20

Saída segundo uma recta perpendicular ao primeiro ponto do contorno: DEP LN

O TNC desloca a ferramenta segundo uma recta desde o último ponto do contorno P_E para o ponto final P_N. A recta afasta-se na perpendicular desde o último ponto do contorno P_E. A ferrta.P_N encontra-se desde P_E à distância LEN + Raio da Ferrta.

- Programar o último elemento do contorno com o ponto final P_Ee correcção do raio
- Abrir diálogo com a tecla APPR/DEP e a softkey DEP LN:

	DEP LN
	1
	<u>^ </u>
ļ	

LEN: introduzir a distância do ponto final P_N importante: introduzir LEN positivo!

Exemplo de frases NC

23 L Y+20 RR F100	Último elemento do contorno: P _E com correcção
	do raio
24 DEP LN LEN+20 F100	Saída perpendicular ao contorno com LEN = 20 mm
25 L Z+100 FMAX M2	Retirar Z, retrocesso, fim do programa

Y		
20	P _N R0	
20	20 P _E RR	
		×

RR

12.5

Р_Е RR

P_N

R0

Х

Х

Saída segundo uma trajectória circular tangente: DEP CT

O TNC desloca a ferramenta segundo uma trajectória circular desde o último ponto do contorno P_E para o ponto final P_N . A trajectória circular une-se tangencialmente ao último elemento do contorno.

- Programar o último elemento do contorno com o ponto final P_Ee correcção do raio
- ▶ Abrir diálogo com a tecla APPR/DEP e a softkey DEP CT:
 - ▶ Raio R da trajectória circular

A ferramenta deve sair da peça pelo lado determinado através da correcção do raio: Introduzir R positivo

- A ferramenta deve sair da peça pelo lado oposto determinado através da correcção do raio: Introduzir R positivo
- ▶ Ângulo do ponto central CCA da trajectória circular

Exemplo de frases NC

Y

20 -

P_N B0 /

Saída segundo uma trajectória circular tangente ao contorno e segmento de recta: DEP LCT

O TNC desloca a ferramenta segundo uma trajectória circular desde o último ponto do contorno P_E para um ponto auxiliar P_H. Daí desloca-se segundo uma recta para o ponto final P_N. O último elemento do contorno e a recta de P_H - P_N são tangentes à trajectória circular. Assim, a trajectória circular determina-se claramente através do raio R.

- Programar o último elemento do contorno com o ponto final P_Ee correcção do raio
- ▶ Abrir diálogo com a tecla APPR/DEP e a softkey DEP LCT:

DEP LCT Introduzir as coordenadas do ponto final P_N

Raio R da trajectória circular. Introduzir R positivo

Exemplo de frases NC

23 L Y+20 RR F100	Último elemento do contorno: P _E com correcção
	do raio
24 DEP LCT X+10 Y+12 R+8 F100	Coordenadas P _N , raio da trajectória circular = 10 mm
25 L Z+100 FMAX M2	Retirar Z, retrocesso, fim do programa

RR

RR

6.4 Tipos de trajectórias – Coordenadas cartesianas

Resumo das funções de trajectória

Função Tecla de funções d	le trajectória	a Movimento da ferramenta	Introduções necessárias
Recta L em ingl.: Line	L.P.	Recta	Coordenadas do ponto final de uma recta
Chanfre CHF em ingl.: CH am F er	CHFo	Chanfre entre duas rectas	Longitude de chanfre
Ponto central do círculo CC; em ingl.: C ircle C enter	¢	Sem função	Coordenadas do ponto central do círculo ou do pólo
Arco de círculo C em ingl.: C ircle	Jc	Trajectória circular em redor do ponto central do círculo CC para o ponto final do arco de círculo	Coordenadas do ponto final do círculo e sentido de rotação
Arco de círculo CR em ingl.: C ircle by R adius	CR	Trajectória circular com um raio determinado	Coordenadas do ponto final do círculo, raio do círculo e sentido de rotação
Arco de círculo CT em ingl.: C ircle T angential	CT ?	Trajectória circular tangente ao elemento de contorno anterior	Coordenadas do ponto final do círculo
Arredondamento de esquinas RND em ingl.: R ou ND ing of Corner	RND _o o:Co	Trajectória circular tangente ao elemento de contorno anterior e posterior	Raio R de uma esquina
Livre programação de contorno FK	FK	Recta ou trajectória circular de uma forma qualquer tangente ao elemento de contorno anterior	Ver capítulo 6.6

6.4 Tipos de trajectórias - <mark>coo</mark>rdenadas cartesianas

Recta L

O TNC desloca a ferramenta sobre uma recta desde a sua posição actual para o ponto final da recta. O ponto de partida é o ponto final da frase anterior.

Introduzir as coordenadas do ponto final da recta Se necessário:

- ▶ Correcção de Raio RL/RR/R0
- ► Avanço F
- ▶ Função auxiliar M

Exemplo de frases NC

7	L	X+10 Y+40 RL F200 M3
8	L	IX+20 IY-15
9	L	X+60 IY-10

Aceitar a posição real

Você também pode gerar uma frase linear (frase L) com a tecla "Aceitar posição real":

- Desloque a ferramenta no modo de funcionamento Manual para a posição que se quer aceitar
- Mudar a visualização do ecrã para Memorização/Edição do Programa
- Seleccionar a frase do programa por trás da qual se qur acrescentar a frase L

CHF.

Premir a tecla "Aceitar posição real": o TNC gera uma frase L com as coordenadas da posição real

Você determina com o função MOD a quantidade de eixos que o TNC memoriza na frase L (ver capítulo 14 "Funções MOD, selecção de eixos para gerar uma frase L").

Acrescentar um chanfre CHF entre duas rectas

Você pode recortar com um chanfre as esquinas do contorno geradas por uma intersecção de duas rectas.

- Nas frases lineares antes e depois da frase CHF, você programa as duas coordenadas do plano em que se executa o chanfre
- A correcção de raio deve ser a mesma antes e depois da frase CHF
- O chanfre deve poder efectuar-se com a ferramenta actual

Secção do Chanfre: introduzir a longitude do chanfre Se necessário:

► Avanço F (actua somente na frase CHF)

Observe as indicações da próxima página!

Exemplo de frases NC

7 L X+0 Y+30 RL F300 M3 8 L X+40 IY+5 9 CHF 12 F250 10 L IX+5 Y+0 Image: State State

Um chanfre só é executado no plano de maguinação.

Um avanço programado na frase CHF só actua nessa frase CHF. Depois, volta a ser válido o avanço programado antes da frase CHF.

Não se faz a aproximação ao ponto de esquina cortado pelo chanfre.

Ponto central do círculo CC

Você determina o ponto central do círculo para as trajectórias circulares que programa com a tecla C (trajectória circular C). Para isso,

- Introduza as coordenadas cartesianas do ponto central do círculo ou
- aceite a última posição programada ou
- aceite as coordenadas com a tecla "Aceitação da posição real"

Para aceitar a última posição programada: não introduzir nenhuma coordenada

Exemplo de frases NC

5 CC X+25 Y+25

ou

÷ ¢ CC

10 L X+25 Y+25 11 CC

As linhas 10 e 11 do programa não se referem à figura.

Validade

O ponto central do círculo permanece determinado até você programar um novo ponto central do círculo. Você também pode determinar um ponto central do círculo para os eixos auxiliares U, V e W.

Introduzir o ponto central do círculo CC em incremental

Uma coordenada introduzida em incremental para o ponto central do círculo refere-se sempre à ultima posição programada da ferramenta.

Com CC, você indica uma posição como centro do círculo: a ferramenta não se desloca para essa posição.

O ponto central do círculo é ao mesmo tempo pólo das coordenadas.

Trajectória circular C em redor do ponto central do círculo CC

Antes de programar a trajectória circular C, determine o ponto central do círculo CC. A última posição da ferramenta programada antes da frase C é o ponto de partida da trajectória circular.

Deslocar a ferramenta sobre o ponto de partida da trajectória circular

▶ Introduzir as coordenadas do ponto central do círculo

► Coordenadas do ponto final do arco de círculo

▶ Sentido de rotação DR

Se necessário:

- ▶ Avanço F
- ▶ Função auxiliar M

Exemplo de frases NC

5	C	C X+2	5 Y+25	5		
6	L	X+45	Y+25	RR F200	М3	
7	С	X+45	Y+25	DR+		

Círculo completo

Programe para o ponto final as mesmas coordenadas que para o ponto de partida.

O ponto de partida e o ponto final devem estar na mesma trajectória circular.

Tolerância de introdução: até 0,016 mm (selecção em MP7431)

Trajectória circular CR com um raio determinado

A ferramenta desloca-se segundo uma trajectória circular com rajo R.

- Introduzir as Coordenadas do ponto final do arco de círculo
 - Raio R Atenção: o sinal determina o tamanho do arco de círculo
 - ▶ Sentido de rotação DR Atenção: o sinal determina se a curvatura é côncava ou convexa!

Se necessário:

- Avanco F
- Função auxiliar M

Círculo completo

CR

Para um círculo completo, programe duas frases CR sucessivas:

O ponto final da primeira metade do círculo é o ponto de partida do segundo. O ponto final da segunda metade do círculo é o ponto de partida do primeiro. Ver figura em cima, à direita.

Ângulo central CCA e raio R do arco de círculo

O ponto de partida e o ponto final do contorno podem unir-se entre si por meio de guatro arcos de círculo diferentes com o mesmo raio:

Arco de círculo pequeno: CCA<180° O raio tem sinal positivo R>0

Arco de círculo grande: CCA>180° O raio tem sinal negativo R<0

Com o sentido de rotação, você determina se o arco de círculo está curvado para fora (convexo) ou para dentro (côncavo):

Convexo: sentido de rotação DR- (com correcção de raio RL)

Côncavo: sentido de rotação DR+ (com correcção de raio RL)

Exemplo de frases NC

Ver figuras no centro e em baixo, à direita.

10 L X+40 Y+40 RL F200 M3 11 CR X+70 Y+40 R+20 DR- (Arco 1) ou 11 CR X+70 Y+40 R+20 DR+ (Arco 2) ou 11 CR X+70 Y+40 R-20 DR- (Arco 3) ou 11 CR X+70 Y+40 R-20 DR+ (Arco 4)

Observe as indicações da próxima página!

A distância do ponto de partida ao ponto final do do diâmetro do círculo não pode ser maior do que o diâmetro do círculo.

O raio máximo pode ser de 99,9999 m.

Podem utilizar-se eixos angulares A, B e C.

Trajectória circular tangente CT

A ferramenta desloca-se segundo um arco de círculo tangente ao elemento de contorno anteriormente programado.

A transição é "tangente" quando no ponto de intersecção dos elementos de contorno não se produz nenhum ponto de inflexão ou de esquina, tendo os elementos de contorno uma transição contínua entre eles.

Você programa directamente antes da frase CT o elemento de contorno ao qual se une tangencialmente o arco de círculo. Para isso, são precisas pelo menos duas frases de posicionamento.

Introduzir as Coordenadas do ponto final do arco de círculo

Se necessário:

▶ Avanço F

▶ Função auxiliar M

Exemplo de frases NC

7	L	X+0	Y+25	RL	F300	Μ3	
8	L	X+2	5 Y+3	0			
9	C	TX+	45 Y+	20			
1	0	L Y+	0				

A frase CT e o elemento de contorno anteriormente programado devem conter as duas coordenadas do plano onde se realiza o arco de círculo!

Arredondamento de esquinas RND

A função RND arredonda esquinas do contorno.

A ferramenta desloca-se segundo uma trajectória circular, que se une tangencialmente tanto à trajectória anterior do contorno como à posterior.

O círculo de arredondamento pode-se executar com a ferramenta chamada.

Raio de arredondamento: introduzir o raio do arco de círculo

Se necessário:

Avanço F (actua somente na frase RND)

Exemplo de frases NC

5	L	X+10	Y+40	RL	F300	М3
6	L	X+40	Y+25			
7	R	ND R5	F100			
8	L	X+10	Y+5			

Os elementos de contorno anterior e posterior devem conter as duas coordenadas do plano onde se executa o arredondamento de esquinas.

Não se faz a aproximação (não se maquina) do ponto da esquina.

O avanço programado numa frase RND só actua nessa frase. Depois, volta a ser válido o avanço programado antes dessa frase RND.

Uma frase RND também se pode utilizar para a chegada suave ao contorno, se não se utilizarem as funções APPR.

Exemplo: Movimento linear e chanfre em cartesianas

O BEGIN PGM LINEAR MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definição do bloco para a simulação gráfica da maquinação
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Definição da ferramenta no programa
4 TOOL CALL 1 Z S4000	Chamada da ferrta. com eixo da ferrta. e rotações da ferrta.
5 L Z+250 RO F MAX	Retirar a ferrta. no eixo da ferrta. em marcha rápida FMAX
6 L X-10 Y-10 R0 F MAX	Posicionamento prévio da ferramenta
7 L Z-5 RO F1000 M3	Alcançar a profundidade de maquinação com Avanço F = 1000 mm/min
8 APPR LT X+5 Y+5 LEN10 RL F300	Chegada ao contorno no ponto 1 segundo uma recta
	tangente
9 L Y+95	Chegada ao ponto 2
10 L X+95	Ponto 3: primeira recta da esquina 3
11 CHF 10	Programar o chanfre de longitude 10 mm
12 L Y+5	Ponto 4: segunda recta da esquina 3, 1ª recta para a esquina 4
13 CHF 20	Programar o chanfre de longitude 20 mm
14 L X+5	Chegada ao último pto. 1 do contorno, segunda recta da esquina 4
15 DEP LT LEN10 F1000	saída do contorno segundo uma recta tangente
16 L Z+250 RO F MAX M2	Retirar a ferramenta. fim do programa
17 END PGM LINEAR MM	

Exemplo: movimentos circulares em cartesianas

O BEGIN PGM CIRCULAR MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definição do bloco para a simulação gráfica da maquinação
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Definição da ferramenta no programa
4 TOOL CALL 1 Z S4000	Chamada da ferrta. com eixo da ferrta. e rotações da ferrta.
5 L Z+250 RO F MAX	Retirar a ferrta. no eixo da ferrta. em marcha rápida FMAX
6 L X-10 Y-10 R0 F MAX	Posicionamento prévio da ferramenta
7 L Z-5 RO F1000 M3	Alcançar a profundidade de maquinação com Avanço F = 1000 mm/min
8 APPR LCT X+5 Y+5 R5 RL F300	Chegada ao ponto 1 segundo uma trajectória circular
	tangente
9 L X+5 Y+85	Ponto 2: primeira recta da esquina 2
10 RND R10 F150	Acrescentar raio R = 10 mm, Avanço: 150 mm/min
11 L X+30 Y+85	Chegada ao ponto 3: ponto de partida do círculo com CR
12 CR X+70 Y+95 R+30 DR-	Chegada ao ponto 4: ponto final do círculo com CR, raio 30 mm
13 L X+95	Chegada ao ponto 5
14 L X+95 Y+40	Chegada ao ponto 6
15 CT X+40 Y+5	Chegada ao ponto 7: ponto final do círculo, arco de círculo
	tangente ao ponto 6, o TNC calcula automaticamente o raio
16 L X+5	Chegada ao último ponto do contorno 1
17 DEP LCT X-20 Y-20 R5 F1000	Saída do contorno segundo uma trajectória circular tangente
18 L Z+250 RO F MAX M2	Retirar a ferramenta. fim do programa
19 END PGM CIRCULAR MM	

Exemplo: círculo completo em cartesianas

O BEGIN PGM C-CC MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definição do bloco
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+12,5	Definição da ferramenta
4 TOOL CALL 1 Z S3150	Chamada da ferramenta
5 CC X+50 Y+50	Definição do ponto central do círculo
6 L Z+250 R0 F MAX	Retirar a ferramenta
7 L X-40 Y+50 R0 F MAX	Posicionamento prévio da ferramenta
8 L Z-5 R0 F1000 M3	Deslocação à profundidade de maquinação
9 APPR LCT X+0 Y+50 R5 RL F300	Chegada ao ponto inicial do círculo sobre uma trajectória circular
	tangente
10 C X+O DR-	Chegada ao ponto final do círculo (=ponto de partida do círculo)
11 DEP LCT X-40 Y+50 R5 F1000	Saída do contorno segundo uma trajectória circular
	tangente
12 L Z+250 RO F MAX M2	Retirar a ferramenta. fim do programa
13 END PGM C-CC MM	

6.5 Tipos de trajectórias – Coordenadas polares

Com as coordenadas polares, você determina uma posição por meio de um ângulo PA e uma distância PR a um pólo CC anteriormente definido. Ver capítulo "4.1 Princípios básicos"

Você introduz as coordenadas polares de preferência para

- Posições sobre arcos de círculo
- Desenhos da peça com indicações angulares, p.ex. círculos de furos

Resumo dos tipos de trajectórias com coordenadas polares

Função 1	eclas para função/tipo de trajectória	Movimento da ferramenta	Introduções necessárias
Recta LP	۲ + P	Recta	Raio polar e ângulo polar do ponto final da recta
Arco de círculo	о СР (ус) + (Р)	Trajectória circular em redor do ponto central do círculo/Pólo CC ao ponto final do arco de círculo	Ângulo polar do ponto final do círculo e sentido de rotação
Arco de círculo	• CTP (") + P	Trajectória circular tangente ao elemento de contorno anterior	Raio polar e ângulo polar do ponto final do círculo
Hélice (Helix)	<u>्</u> रि + P	Sobreposição de uma trajectória circular com uma recta	Raio polar, ângulo polar do ponto final do círculo e coordenada do ponto final no eixo da ferramenta

Origem de coordenadas polares: pólo CC

Você pode determinar o pólo CC em qualquer posição do programa de maquinação, antes de indicar as posições com coordenadas polares. Proceda da mesma forma que para a programação do ponto central do círculo CC.

Coordenadas CC: introduzir as coordenadas cartesianas do pólo ou

Para aceitar a última posição programada: não introduzir nenhuma coordenada

6.5 Tipos de trajectórias - Coordenadas polares

Recta LP

A ferramenta desloca-se segundo uma recta desde a sua posição actual para o ponto final da recta. O ponto de partida é o ponto final da frase anterior.

RAIO PR em Coordenadas Polares: introduzir a distância do ponto final da recta ao pólo CC

ÂNGULO PA em Coordenadas Polares: posição angular do ponto final da recta entre -360° e +360°

O sinal de PA determina-se por meio do eixo de referência angular: Ângulo do eixo de referência angular a PR em sentido anti-horário: PA>0 Ângulo do eixo de referência a PR em sentido horário: PA<0

Exemplo de frases NC

12	00	X+45	Y+25			
13	LP	PR+30	PA+0	RR	F300	М3
14	LP	PA+60				
15	LP	IPA+6	0			
16	LP	PA+18	0			

Trajectória circular CP em redor do pólo CC

o raio PR em coordenadas polares é ao mesmo tempo o raio do arco de círculo. PR determina-se através da distância do ponto de partida ao pólo CC A última posição da ferramenta programada antes da frase CP é o ponto de partida da trajectória circular.

Ângulo PA em Coordenadas Polares: posição angular do ponto final da trajectória circular entre -5400° e +5400°

▶ Sentido de rotação DR

Exemplo de frases NC

18	00	X+25 Y+25			
19	LP	PR+20 PA+0	RR	F250	М3
20	CP	PA+180 DR+			

Quando as coordenadas são incrementais, introduz-se o mesmo sinal para DR e PA.

Trajectória circular tangente CTP

A ferramenta desloca-se segundo uma trajectória circular, que se une tangencialmente a um elemento de contorno anterior.

- RAIO PR em Coordenadas Polares: distância do ponto final da trajectória circular ao pólo CC
 - Ângulo PA em Coordenadas Polares: posição angular do ponto final da trajectória circular

Exemplo de frases NC

12	CC X+40 Y+35
13	L X+0 Y+35 RL F250 M3
14	LP PR+25 PA+120
15	CTP PR+30 PA+30
16	L Y+0

O pólo CC não é o ponto central do círculo do contorno!

Linha helicoidal (Hélice)

Uma hélice produz-se pela sobreposição de um movimento circular e um movimento linear perpendiculares. Você programa a trajectória circular num plano principal.

Você só pode programar em coordenadas polares os movimentos de trajectória para a hélice.

Aplicação

Roscar no interior e no exterior com grandes diâmetros

Ranhuras de lubrificação

Cálculo da hélice

Para a programação, você precisa da indicação incremental do ângulo total que a ferramenta percorre sobre a hélice e e da altura total da hélice.

Para o cálculo da maquinação na direcção de fresagem, tem-se:

№ de passos n	Passos de rosca + sobrepassagem no início e fim da rosca
Altura total h	Passo P x № de passos n
Incremental ângulo total IPA	№ de passos x 360° + ângulo para Início da rosca + ângulo para a passagem
Coordenada inicial Z	Passo P x (passos de rosca + sobrepassagem do percurso ao início da rosca)

Forma da hélice

O quadro mostra a relação entre a direcção da maquinação, o sentido de rotação e a correcção de raio para determinadas formas de trajectória.

Rosca interior	Direcção da maqui	nação Sentido rotaç.	Correcç.raio
para a direita	Z+	DR+	RL
para a esquerd	la Z+	DR–	RR
para a direita	Z–	DR–	RR
para a esquerd	la Z–	DR+	RL
Rosca exterio	r		
para a direita	Z+	DR+	RR
para a esquerd	la Z+	DR–	RL
para a direita	Z–	DR–	RL
para a esquerd	la Z–	DR+	RR

Programar uma hélice

Ρ

Introduza o sentido de rotação DR e o ângulo total IPA em incremental com o mesmo sinal, senão a ferramenta pode deslocar-se numa trajectória errada.

Para o ângulo total IPA, você pode introduzir um valor de -5400° até +5400°. Se o roscar tiver mais de 15 passos, programe a hélice com uma repetição parcial do programa

(ver capítulo "9.2 Repetições parciais do programa")

- Ângulo em Coordenadas Polares: introduzir o ângulo total em incremental segundo o qual a ferrta. se desloca sobre a hélice. Depois de introduzir o ângulo, seleccione o eixo da ferrta. com as teclas dos eixos.
 - Introduzir em incremental a Coordenada para a altura da hélice
 - Sentido de rotação DR Hélice em sentido horário: DR-Hélice em sentido anti-horário: DR+
 - Correcção de Raio RL/RR/R0 Introduzir a introdução do raio conforme o quadro

Exemplo de frases NC

12 CC X+40 Y+25
13 Z+0 F100 M3
14 LP PR+3 PA+270 RL F50
15 CP IPA-1800 IZ+5 DR-

Exemplo: movimento linear em polares

O BEGIN PGM LINEARPO MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definição do bloco
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+7,5	Definição da ferramenta
4 TOOL CALL 1 Z S4000	Chamada da ferramenta
5 CC X+50 Y+50	Definição do ponto de referência para as coordenadas polares
6 L Z+250 R0 F MAX	Retirar a ferramenta
7 LP PR+60 PA+180 R0 F MAX	Posicionamento prévio da ferramenta
8 L Z-5 RO F1000 M3	Deslocação à profundidade de maquinação
9 APPR PLCT PR+45 PA+180 R5 RL F250	Chegada ao ponto 1 do contorno sobre um círculo
	tangente
10 LP PA+120	Chegada ao ponto 2
11 LP PA+60	Chegada ao ponto 3
12 LP PA+0	Chegada ao ponto 4
13 LP PA-60	Chegada ao ponto 5
14 LP PA-120	Chegada ao ponto 6
15 LP PA+180	Chegada ao ponto 1
16 DEP PLCT PR+60 PA+180 R5 F1000	Saída do contorno segundo um círculo tangente
17 L Z+250 RO F MAX M2	Retirar a ferramenta. fim do programa
18 END PGM LINEARPO MM	

O BEGIN PGM HELIX MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definição do bloco
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+5	Definição da ferramenta
4 TOOL CALL 1 Z S1400	Chamada da ferramenta
5 L Z+250 RO F MAX	Retirar a ferramenta
6 L X+50 Y+50 R0 F MAX	Posicionamento prévio da ferramenta
7 CC	Aceitar a última posição programada como pólo
8 L Z-12,75 RO F1000 M3	Deslocação à profundidade de maquinação
9 APPR PCT PR+32 PA-180 CCA180 R+2	Chegada ao contorno segundo um círculo
RL F100	tangente
10 CP IPA+3240 IZ+13,5 DR+ F200	Deslocação helicoidal
11 DEP CT CCA180 R+2	Saída do contorno segundo um círculo tangente
12 L Z+250 RO F MAX M2	Retirar a ferramenta. fim do programa
13 END PGM HELIX MM	
Se tiver que efectuar mais de 16 :	
•••	
8 L Z-12.75 R0 F1000	

•••	
8 L Z-12.75 R0 F1000	
9 APPR PCT PR+32 PA-180 CCA180 R+2 RL F100	
10 LBL 1	Início da repetição parcial do programa
11 CP IPA+360 IZ+1,5 DR+ F200	Introduzir directamente o passo como valor IZ
12 CALL LBL 1 REP 24	Número de repetições (passagens)
13 DEP CT CCA180 R+2	

6.6 Tipos de trajectórias – Livre programação de contornos FK

Princípios básicos

Os desenhos de peças não cotados contêm muitas vezes indicações de coordenadas que você não pode introduzr com as teclas cinzentas de diálogo. Assim,

- pode haver coordenadas conhecidas no elemento de contorno ou na sua proximidade,
- as indicações de coordenadas podem referir-se a um outro elemento de contorno ou
- podem conhecer-se as indicações da direcção e do percurso do contorno.

Você programa este tipo de indicações directamente com a livre programação de contornos FK. O TNC calcula o contorno com as coordenadas conhecidas e auxilia o diálogo de programação com o gráfico FK interactivo. A figura em cima à direita mostra uma cotação que você introduz de forma simples com a programação FK.

Para criar programas FK em comandos TNC antigos, você utiliza a função de conversão (ver capítulo "4.3 Gestão de Dados standard", converter um programa FK num programa em texto claro").

Gráfico da programação FK

Para poder usar o gráfico na programação FK, seleccione a divisão do ecrã PROGRAM + GRAPHIC (ver capítulo "1.3 Modos de funcionamento, softkeys para a divisão do ecrã")

Se faltarem indicações das coordenadas, é difícil determinar o contorno de uma peça. Neste caso, o TNC mostra diferentes soluções no gráfico FK, e você selecciona a correcta. O gráfico FK representa o contorno da peça em diferentes cores:

- branco O elemento do contorno está claramente determinado
- verde Os dados introduzidos indicam várias soluções; seleccione a correcta
- vermelho Os dados introduzidos não são sufcientes para determinar o elemento de contorno; introduza mais dados

Se os dados indicarem várias soluções e o elemento de contorno se visualizar em verde, seleccione o contorno correcto da seguinte forma:

Premindo a softkey SHOW SOLUTION as vezes necessárias até se visualizar correctamente o contorno desejado

O elemento de contorno visualizado corresponde ao desenho: prima a softkey FSELECT

¥ 6.6 Tipos de trajectórias – Livre progr<mark>ama</mark>ção de contornos

Você deve determinar o elemento de contorno representado a verde o mais depressa possível com FSELECT, para limitar a ambiguidade dos elementos de contorno seguintes.

Se ainda não quiser determinar um contorno representado a verde, prima a softey EDITAR para continuar com o diálogo FK.

O fabricante da máquina pode determinar outras cores para o gráfico FK.

As frases NC dum programa chamado com PGM CALL indicam-se noutra cor.

Abrir diálogo FK

Se premir a tecla cinzenta de função de trajectória FK, o TNC visualiza softkeys com que você pode abrir o diálogo: ver quadro à direita. Para voltar a selecionar as softkeys, prima de novo a tecla FK.

Se você abrir o diálogo FK com uma destas softkeys, o TNC mostra outras réguas de softkeys com que você pode introduzir coordenadas conhecidas, ou aceitar indicações de direcção e do percurso do contorno.

Para a programação FK, tenha em conta as seguintes condições

Você só pode programar os elementos de contorno com a Livre Programação de Contornos apenas no plano de maquinação. Você determina o plano de maquinação na primeira frase BLK-FORM do programa de maquinação.

Introduza para cada elemento de contorno todos os dados disponíveis. Programe também em cada frase as indicações que não se modificam: os dados que não se programam não são válidos!

São permitidos parâmetros Q em todos os elementos FK, excepto em elementos com referências relativas (p.ex. RX ou RAN), isto é, elementos que se referem a outras frases NC.

Se você misturar no programa a livre programação de contornos convencional, deverá determinar claramente cada secção FK.

O TNC precisa de um ponto fixo a partir do qual se realizem os cálculos. Programe directamente, antes da secção FK, uma posição com as teclas cinzentas de diálogo que contenha as duas coordenadas do plano de maquinação. Nessa frase, não programe nenhuns parâmetros Q.

Quando na primeira secção FK há uma frase FCT ou FLT, há que programar antes como mínimo duas frases NC usando as teclas de diálogo cinzentas, para determinar claramente a direcção de deslocação.

Uma secção FK não pode começar directamente atrás de uma marca LBL.

Elemento do contorno	Softkey
Recta tangente	FLT
Recta não tangente	FL
Arco de círculo tangente	FCT
Arco de círculo não tangente	FC

Programação livre de rectas

FΚ

FL _

Visualizar as softkeys para a Livre Programação de Contornos: premir a tecla FK

- Abrir o diálogo para recta livre: premir a softkey FL. O TNC visualiza outras softkeys - ver o quadro à direita
- Com estas softkeys, introduzir na frase todas as indicações conhecidas O gráfico FK mostra a vermelho o contorno programado até as indicações serem suficientes. O gráfico mostra várias soluções a verde. Ver "Gráfico da Livre Programação de Contornos"

Para exemplos de frases NC, ver página seguinte.

Recta tangente

Quando a recta se une tangencialmente a outro elemento de contorno, abra o diálogo com a softkey FLT:

- Visualizar as softkeys para a Livre Programação de Contornos: premir a tecla FK
- FLT
- ▶ Abrir o diálogo: premir a softkey FLT
- _____
- Com as softkeys (quadro à direita) introduzir na frase todas as indicações conhecidas.

Programação livre de trajectórias circulares

FC f

- ▶ Visualizar as softkeys para a Livre Programação de Contornos: premir a tecla FK
- Abrir o diálogo para arcos de círculo livres: premir a softkey FC; o TNC mostra softkeys para indicações directas sobre a trajectória circular ou indicações sobre o ponto central do círculo; ver quadro à direita
 - Com essas softkeys introduzir na frase todos os dados conhecidos: o gráfico FK mostra o contorno programado a vermelho até as indicações serem suficientes; se houver soluções, estas aparecem a verde; ver "Gráfico da livre programação de contornos".

Trajectória circular tangente

Quando a trajectória circular se une tangencialmente a outro elemento de contorno, abra o diálogo com a softkey FCT:

Visualizar as softkeys para a Livre Programação de Contornos: premir a tecla FK

- Abrir o diálogo: premir a softkey FCT
- Com as softkeys (quadro à direita) introduzir na frase todas as indicações conhecidas.

Indicações conhecidas	Softkey
Coordenada X do ponto central da recta	×
Coordenada Y do ponto final da recta	† ^v
Raio em coordenadas polares	PR •
Ângulo em coordenadas polares	PA
Longitude das rectas	LEN
Ângulo de entrada das rectas	RN
Início/fim de um contorno fechado	+ CLSD

Para referências a outras frases, ver parágrafo "Referências relativas"; para pontos auxiliares, parágrafo "Pontos auxiliares" neste subcapítulo.

Indicações directas sobre traject. circular	Softk.
Coordenada X do pto. central da trajectória circular	×
Coordenada Y do ponto final da trajectória circular	ţ,
Raio em coordenadas polares	PR •
Ângulo em coordenadas polares	PA
Sentido de rotação da trajectória circular	DR (- •)
Raio da trajectória circular	R
Ângulo do eixo condutor ao ponto final do círculo	

Ângulo de entrada da trajectória circular

O ângulo de entrada AN da trajectória circular é o ângulo da tangente de entrada. Ver figura à direita.

Longitude da corda da trajectória circular

A longitude da corda de uma trajectória circular é a longitude LEN do arco do círculo. Ver figura à direita.

Ponto central de círculos de livre programação

Para as trajectórias de livre programação, com as indicações que se introduzem, o TNC calcula um ponto central do círculo. Assim, você também pode programar

numa frase um círculo completo com a programação FK.

Se quiser definir um ponto central do círculo em coordenadas polares, tem que definir o pólo em vez de o fazer com CC com a função FPOL. FPOL actua até á frase seguinte com FPOL, e determina-se em coordenadas cartesianas.

Um ponto central do círculo, programado de forma convencional ou já calculado, já não actua na secção FK como pólo ou como ponto central do círculo: quando as coordenadas polares programadas de forma convencional se referem a um pólo determinado anteriormente numa frase CC, determine este pólo de novo segundo a secção FK, com uma frase CC.

Exemplo de frases NC para FL, FPOL e FCT

7	FPOL X+20 Y+30	
8	FL IX+10 Y+20 RR F100	
9	FCT PR+15 IPA+30 DR+ R15	

Ver figura em baixo, à direita.

Indicações sobre o ponto central do círculo	Softk.
Coordenada X do ponto central do círculo	сск -ф-
Coordenada Y do ponto central do círculo	ccv +
Raio em coordenadas polares do ponto central do círculo	CC PR P R

Ângulo em coordenadas polares do ponto central do círculo

SS ≯	
Ψ	

Para referências a outras frases, ver parágrafo "Referências relativas"; para pontos auxiliares, parágrafo "Pontos auxiliares" neste subcapítulo.

Pontos auxiliares

Tanto para rectas livres como para trajectórias circulares livres, você pode introduzir coordenadas para pontos auxiliares sobre ou junto do contorno. As softkeys ficam disponíveis logo que você abre o diálogo FK com as softkeys FL, FLT, FC ou FCT.

Pontos auxiliares para a recta

Os pontos auxiliares encontram-se sobre as rectas ou sobre o prolongamento destas: ver quadro em cima, à direita.

Os pontos auxiliares encontram-se à distância D da recta: ver quadro no centro, à direita.

Pontos auxiliares para a trajectória circular

Para a trajectória circular, você pode indicar1, 2 ou 3 pontos auxiliares sobre o contorno: ver quadro em baixo, à direita.

Exemplo de frases NC

13	FC D)R— F	10 P1X+	42.929 P	1Y+60.071
14	FLT	AN - 7	0 PDX+50) PDY+53	D10

Ver figura em baixo, à direita.

Pontos auxiliares sobre a recta	Softkey	
Coordenada X Ponto auxiliar P1 ou P2	P1X P2X	
Coordenada Y Ponto auxiliar P1 ou P2	P1V P2V	

Pontos auxiliares junto da recta	Softkey
Coordenada X do ponto auxiliar	PDX
Coordenada Y do ponto auxiliar	PDV
Distância do ponto auxiliar às rectas	P →

Pontos auxiliares sobre a trajectória circular Softk.

Coordenada X de um ponto auxiliar P1, P2 ou P3

(P1 X)	(P2X)	РЗК
		-

Coordenada Y de um ponto auxiliar P1, P2 ou P3	P1V	P2V	P3V
Coordenadas de um ponto a junto da trajectória circular	iuxiliar	PDX	PDV

Distância do ponto auxiliar junto da trajectória circular

¥ 6.6 Tipos de trajectórias – Livre progr<mark>ama</mark>ção de contornos

Referências relativas

As referências relativas são indicações que se referem a um outro elemento de contorno. As softkeys e as palavras do programa para referências Relativas começam com um "**R**". A figura à direita mostra as indicações de cotas que se devem programar como referências relativas.

Programe sempre as coordenadas e o ângulo das referências relativas em **incremental**. Além disso, indique o nº de frase da trajectória do contorno a a que você se quer referir.

O elemento do contorno cujo nº de frase se indica não pode estar a mais de 64 frases de posicionamento diante da frase onde você programa a referência.

> Quando você apaga uma frase a que fez referência, o TNC emite um aviso de erro. Modifique o programa antes de apagar essa frase.

Referências relativas para uma recta livre	Softkey
Coordenada referente ao ponto final da frase N	RVN
Modificar o raio em coord. polares relativamente à frase N	RPRN
Modificar o ângulo em coord. polares relativamente à frase N	RPAN
Ângulo entre uma recta e outro elemento do contorno	RANN
Recta paralela a outro elemento do contorno	PARN
Distância das rectas ao elemento do contorno paralelo	

Referências relativas para coord. de tarject. circular Softkey

Coordenadas referentes ao ponto final da frase N	RYN
Modificar o raio em coord. polares relativamente à frase N	RPRN
Modificar o ângulo em coord. polares relativamente à frase N	RPAN
Ângulo entre a tangente de entrada do arco de círculo e outro elemento do contorno	RAN

Referências relativas para coord. de pontos centrais de círc. Softk.
Coordenadas CC referentes ao ponto final da frase N RCCXIII RCCVIII
Modificar o raio em coord. polares relativamente à frase N
Modificar o ângulo em coord. polares relativamente à frase N
Exemple de fraços NC

Exemplo de frases NC

Coordenadas conhecidas referentes à frase N. Ver figura em cima, à direita:

12	FPO	OL XH	10	Y+10
13	FL	PR+2	20 F	PA+20
14	FL	AN+4	15	
15	FCI	T IX-	F20	DR- R20 CCA+90 RX 13
16	FL	IPR	+35	PA+0 RPR 13
Dire	eccã		lictô	nois conhecidas de clamente de conterne
refe	ren ⁻	tes à	fras	e N. Ver figura no centro, à direita.
refe 17	FL FL	tes à LEN	fras 20	AN+15
17 18 19	FL FL FL	LEN AN+2 PAR	fras 20 105 17	AN+15 LEN 12.5 DP 12.5
17 18 19 20	FL FL FL FSI	LEN AN+1 PAR ELEC1	fras 20 105 17	AN+15 LEN 12.5 DP 12.5
17 18 19 20 21	FL FL FL FSI FL	LEN AN+1 PAR ELEC1 LEN	fras 20 105 17 20 20	AN+15 LEN 12.5 DP 12.5 IAN+95
17 18 19 20 21 22	FL FL FL FSI FSI FL FL	LEN AN+1 PAR ELEC1 LEN IAN+	fras 20 105 17 20 20 220	AN+15 LEN 12.5 DP 12.5 IAN+95 O RAN 18

Coordenadas conhecidas do ponto central do círculo referentes à frase N. Ver figura em baixo, à direita.

12	FL	X+10) Y+1	LO RL					
13	FL								
14	FL	X+18	3 Y+3	35					
15	FL								
16	FL								
17	FC	DR-	R10	CCA+0	ICCX+20	ICCY-15	RCCX12	RCCY14	

¥ 6.6 Tipos de trajectórias – Livre progr<mark>ama</mark>ção de contornos

Contornos fechados

Com a softkey CLSD você marca o início e o fim de um contorno fechado. Assim, reduzem-se as possíveis soluções do último elemento do contorno.

Você introduz CLSD adicionalmente a uma outra indicação de contorno na primeira e na última frase de um segmento FK.

Converter programas FK

Você converte um programa FK num programa em texto claro na Gestão de Ficheiros:

- ▶ Chamar a gestão de ficheiros e visualizar os ficheiros.
- Deslocar o cursor para o ficheiro que pretende converter.
 - CONVERTER FK->H
- Premir as softkeys MAIS FUNÇÕES e depois CONVERT FK->H. O TNC converte todas as frases FK em frases em texto claro.

Os pontos centrais do círculo que você introduz antes da secção FK, devem determinar-se se necessário de novo no programa transformado. Verifique o seu programa de maquinação depois da conversão, antes de o executar.

0	BEGIN PGM FK1 MM	
1	BLK FORM 0.1 Z X+0 Y+0 Z-20	Definição do bloco
2	BLK FORM 0.2 X+100 Y+100 Z+0	
3	TOOL DEF 1 L+0 R+10	Definição da ferramenta
4	TOOL CALL 1 Z S500	Chamada da ferramenta
5	L Z+250 RO F MAX	Retirar a ferramenta
6	L X-20 Y+30 R0 F MAX	Posicionamento prévio da ferramenta
7	L Z-10 RO F1000 M3	Deslocação à profundidade de maquinação
8	APPR CT X+2 Y+30 CCA90 R+5 RL F250	Chegada ao contorno segundo um círculo tangente
9	FC DR- R18 CLSD+ CCX+20 CCY+30	Secção FK:
10	FLT	Programar os dados conhecidos para cada elemento do contorno
11	FCT DR- R15 CCX+50 CCY+75	
12	FLT	
13	FCT DR- R15 CCX+75 CCY+20	
14	FLT	
15	FCT DR- R18 CLSD- CCX+20 CCY+30	
16	DEP CT CCA90 R+5 F1000	Saída do contorno segundo um círculo tangente
17	L X-30 Y+0 R0 F MAX	
18	L Z+250 RO F MAX M2	Retirar a ferramenta. fim do programa
19	END PGM FK1 MM	

O BEGIN PGM FK2 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definição do bloco
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+2	Definição da ferramenta
4 TOOL CALL 1 Z S4000	Chamada da ferramenta
5 L Z+250 R0 F MAX	Retirar a ferramenta
6 L X+30 Y+30 R0 F MAX	Posicionamento prévio da ferramenta
7 L Z+5 RO F MAX M3	Posicionamento prévo do eixo da ferramenta
8 L Z-5 R0 F100	Deslocação à profundidade de maquinação
9 APPR LCT X+0 Y+30 R5 RR F350	Chegada ao contorno segundo um círculo tangente
10 FPOL X+30 Y+30	Secção FK:
11 FC DR- R30 CCX+30 CCY+30	Programar os dados conhecidos para cada elemento do contorno
12 FL AN+60 PDX+30 PDY+30 D10	
13 FSELECT 3	
14 FC DR- R20 CCPR+55 CCPA+60	
15 FSELECT 2	
16 FL AN-120 PDX+30 PDY+30 D10	
17 FSELECT 3	
18 FC X+0 DR- R30 CCX+30 CCY+30	
19 FSELECT 2	
20 DEP LCT X+30 Y+30 R5	Saída do contorno segundo um círculo tangente
21 L Z+250 RO F MAX M2	Retirar a ferramenta. fim do programa
22 END PGM FK2 MM	

Exemplo: Programação 3 FK

O BEGIN PGM FK3 MM	
1 BLK FORM 0.1 Z X-45 Y-45 Z-20	Definição do bloco
2 BLK FORM 0.2 X+120 Y+70 Z+0	
3 TOOL DEF 1 L+0 R+3	Definição da ferramenta
4 TOOL CALL 1 Z S4500	Chamada da ferramenta
5 L Z+250 RO F MAX	Retirar a ferramenta
6 L X-70 Y+0 R0 F MAX	Posicionamento prévio da ferramenta
7 L Z-5 RO F1000 M3	Deslocação à profundidade de maquinação
8 APPR CT X-40 Y+0 CCA90 R+5 RL F250	Chegada ao contorno segundo um círculo tangente
9 FC DR- R40 CCX+0 CCY+0	Secção FK:
10 FLT	Programar os dados conhecidos para cada elemento do contorno
11 FCT DR- R10 CCX+0 CCY+50	
12 FLT	
13 FCT DR+ R6 CCX+0 CCY+0	
14 FCT DR+ R24	
15 FCT DR+ R6 CCX+12 CCY+0	
16 FSELECT 2	
17 FCT DR- R1,5	
18 FCT DR- R36 CCX+44 CCY-10	
19 FSELECT 2	
20 FCT DR+ R5	
21 FLT X+110 Y+15 AN+0	
22 FL AN-90	
ntornos FK	
----------------	--
COL	
de	
Ição	
ama	
progi	
Livre	
trajectórias –	
de	
Tipos	
6.6	

23	FL X+65 AN+180 PAR21 DP30	
24	RND R5	
25	FL X+65 Y-25 AN-90	
26	FC DR+ R50 CCX+65 CCY-75	
27	FCT DR- R65	
28	FSELECT 1	
29	FCT Y+0 DR- R40 CCX+0 CCY+0	
30	FSELECT 4	
31	DEP CT CCA90 R+5 F1000	Saída do contorno segundo um círculo tangente
32	L X-70 RO F MAX	
33	L Z+250 RO F MAX M2	Retirar a ferramenta. fim do programa
34	END PGM FK3 MM	

6.7 Tipos de trajectórias – Interpolação Spline

Você pode transmitir directamente para o TNC e trabalhar os contornos descritos num sistema CAD como Splines. O TNC dispõe de um interpolador de Spline, com o qual se pode trabalhar polinómios do terceiro grau em dois, três, quatro ou cinco eixos.

 Você não pode editar frases Spline no TNC. Excepção: avanço F e função auxiliar na frase Spline.

Exemplo: formato de frase para dois eixos

7 L X+33,909 Z+75,107 F MAX	Ponto inicial de Spline
8 SPL X+39,824 Z+77,425	Ponto final de Spline
K3X+0,0983 K2X-0,441 K1X-5,5724	Parâmetro de Spline para o eixo X
K3Z+0,0015 K2Z-0,9549 K1Z+3,0875 F10000	Parâmetro de Spline para o eixo Z
9 SPL X+44,862 Z+73,44	Ponto final de Spline
K3X+0,0934 K2X-0,7211 K1X-4,4102	Parâmetro de Spline para o eixo X
K3Z-0,0576 K2Z-0,7822 K1Z+4,8246	Parâmetro de Spline para o eixo Z
10	

O TNC executa a frase Spline conforme os seguintes polinómios de terceiro grau:

 $X(t) = K3X \cdot t^3 + K2X \cdot t^2 + K1X \cdot t + X$

 $Z(t) = K3Z \cdot t^3 + K2Z \cdot t^2 + K1Z \cdot t + Z$

Onde a variável t se move de 1 para 0.

Exemplo: formato de frase para cinco eixos

	• •	
7	L X+33,909 Y-25,838 Z+75,107 A+17 B-10,103 F MAX	Ponto inicial de Spline
8	SPL X+39,824 Y-28,378 Z+77,425 A+17,32 B-12,75	Ponto final de Spline
	K3X+0,0983 K2X-0,441 K1X-5,5724	Parâmetro de Spline para o eixo X
	K3Y-0,0422 K2Y+0,1893 K1Y+2,3929	Parâmetro de Spline para o eixo Y
	K3Z+0,0015 K2Z-0,9549 K1Z+3,0875	Parâmetro de Spline para o eixo Z
	K3A+0,1283 K2A-0,141 K1A-0,5724	Parâmetro de Spline para o eixo A
	K3B+0,0083 K2B-0,413 E+2 K1B-1,5724 E+1 F10000	Parâmetro de Spline para o eixo B com forma de
		escrever com expoente
_		

O TNC executa a frase Spline conforme os seguintes polinómios de terceiro grau:

 $X(t) = K3X \cdot t^3 + K2X \cdot t^2 + K1X \cdot t + X$

9 . . .

 $X(t) = K3Y \cdot t^3 + K2Y \cdot t^2 + K1Y \cdot t + Y$

 $Z(t) = K3Z \cdot t^3 + K2Z \cdot t^2 + K1Z \cdot t + Z$

 $A(t) = K3A \cdot t^3 + K2A \cdot t^2 + K1A \cdot t + A$

 $B(t) = K3B \cdot t^3 + K2B \cdot t^2 + K1B \cdot t + B$

Onde a variável t se move de 1 para 0.

Em cada coordenada do ponto final na frase Spline, têm que estar programados os parâmetros da Spline de K3 a K1. A sequência das coordenadas do ponto final na frase Spline é arbitrária.

O TNC aguarda os parâmetros K da Spline para cada eixo sempre na sequência K3, K2, K1.

Para além dos eixos principais X, Y e Z, o TNC também pode na frase SPL trabalhar eixos auxiliares U, V e W, e também eixos rotativos A, B e C. No parâmetro K de uma Spline deve aparecer indicado o eixo respectivo (p.ex. K3A+0,0953 K2A-0,441 K1A+0,5724).

Se o valor do parâmetro K de uma Spline for superior a 9,99999999, o processador posterior deve emitir K na forma de escrever os expoentes (p.ex. K3X+1,2750 E2).

O TNC também pode executar um programa com frases Spline no plano de maquinação inclinado activado.

Campo de introdução

- Ponto final Spline: -99 999,9999 a +99 999,9999
- Parâmetro K Spline: -9,99999999 a +9,99999999
- Expoente para Parâmetro K Spline: -255 a +255 (valor inteiro)

7.1 Introduzir funções auxiliares M e STOP

Com as funções auxiliares do TNC, também chamadas M, você comanda

- a execução do programa, p.ex. uma interrupção da execução
- as funções da máquina, como p.ex. a conexão e desconexão da rotação da ferramenta e do refrigerante
- o comportamento da ferramenta na trajectória

O fabricante da máquina pode validar certas funções auxiliares que não estão descritas neste manual. Consulte o manual da máquina

Você introduz uma função auxiliar M no fim duma frase de posicionamento. O TNC indica o diálogo:

Função auxiliar M ?

Normalmente, no diálogo indica-se o número da função auxiliar. Em algumas funções auxiliares, continua-se com o diálogo para se poder indicar parâmetros dessa função.

Nos modos de funcionamento Manual e Volante Electrónico, você introduz as funções auxiliares com a softkey M.

Lembre-se que algumas funções auxiliares actuam no início, e outras no fim da frase de posicionamento.

As funções auxiliares activam-se a partir da frase onde são chamadas. Sempre que a função auxiliar não actuar por frases, elimina-se na frase seguinte ou no fim do programa. Algumas funções auxiliares actuam somente na frase onde são chamadas.

Introduzir uma função auxiliar na frase STOP

Uma frase de STOP programada interrompe a execução do programa ou do teste de programa, p.ex., para verificar uma ferramenta. Numa frase de STOP, você pode programar uma função auxiliar M:

- Programar uma interrupção na execução do programa:premir a tecla STOP
- ▶ Introduzir a Função Auxiliar M

Exemplo de frase NC

87 STOP M6

7.2 Funções auxiliares para o controlo da execução do pgm, ferramenta e refrigerante

Μ	Activação	Actua no
M00	PARAGEM da execução do pgm	fim da frase
	PARAGEM da ferrta.	
	Refrigerante DESLIGADO	
M02	PARAGEM da execução do pgm	fim da frase
	PARAGEM da ferrta.	
	Refrigerante desligado	
	Salto para a frase 1	
	Apagar visualização de estados(depende do)
	parâmetro da máquina 7300)	
M03	Ferramenta LIGADA no sentido horário	início da frase
M04	Ferramenta LIGADA em sentido anti-horário	início da frase
M05	PARAGEM da ferrta.	fim da frase
M06	Troca de ferramenta	fim da frase
	PARAGEM da ferrta.	
	PARAGEM da execução do pgm (depende o	ob
	parâmetro da máquina 7440)	
M08	Refrigerante LIGADO	início da frase
M09	Refrigerante DESLIGADO	fim da frase
M13	Ferramenta LIGADA no sentido horário	início da frase
	Refrigerante LIGADO	
M14	Ferramenta LIGADA em sentido anti-horário	início da frase
	Refrigerante ligado	
M30	como M02	fim da frase

7.3 Funções auxiliares para indicação de coordenadas

Programar coordenadas referentes à máquina: M91/M92

Ponto zero da régua

Numa régua, a marca de referência indica a posição do ponto zero dessa régua.

Ponto zero da máquina

Você precisa do ponto zero da máquina, para:

- fixar os limites de deslocação (finais de carreira)
- chegar a posições fixas da máquina (p.ex. posição para a troca de ferramenta)
- fixar um ponto de referência na peça

O fabricante da máquina introduz para cada eixo a distância desde o ponto zero da máquina e o ponto zero da régua num parâmetro da máquina.

Comportamento standard

As coordenadas referem-se ao zero peça (ver "Memorização do ponto de referência").

Comportamento com M91 - Ponto zero da máquina

Quando numa frase de posicionamento as coordenadas se referem ao ponto zero da máquina, introduza nessa frase M91.

O TNC indica os valores de coordenadas referentes ao ponto zero da máquina. Na visualização de estados você comuta a visualização de coordenadas em REF (ver capítulo "1.4 Visualização de estados").

Comportamento com M92 - Ponto de referência da máquina

Para além do ponto zero da máquina, o fabricante da máquina também pode determinar outra posição fixa da máquina (ponto de ref^a da máquina).

O fabricante da máquina determina para cada eixo a distância do ponto de ref^a da máquina ao ponto zero da mesma (ver manual da máquina).

Quando nas frases de posicionamento as coordenadas se devem referir ao ponto de referência da máquina, introduza nessas frases M92.

> Também com M91 ou M92 o TNC realiza correctamente a correcção de raio. No entanto, **não** se tem em conta a longitude da ferramenta.

M91 e M92 não funcionam no plano inclinado de maquinação. Neste caso, o TNC emite um aviso de erro.

Activação

M91 e M92 só funcionam nas frases de programa/posicionamento onde estiver programado M91 ou M92.

M91 e M92 activam-se no início da frase.

Ponto de referência da peça

Quando se quiser que as coordenadas se refiram sempre ao ponto zero da máquina, pode-se bloquear a memorização do ponto de referência para um ou vários eixos; ver o parâmetro da máquina 7295.

Quando a memorização do ponto de referência está bloqueada para todos os eixos, o TNC já não mostra a softkey DATUM SET no modo de funcionamento Manual.

A figura à direita mostra sistemas de coordenadas com pontos zero da máquina e da peça.

M91/M92 no modo de funcionamento Teste do Programa

Para poder simular também graficamente movimentos M91/M92, você deve activar a vigilância do espaço de trabalho e mandar visualizar o bloco referente ao ponto de referência memorizado (ver capítulo "12.8 Representar o bloco no espaço de trabalho").

Aproximação às posições num sistema de coordenadas sem inclinação com um plano inclinado de maquinação: M130

Comportamento standard num plano de maquinação inclinado

As coordenadas nas frases de posicionamento referem-se ao sistema de coordenadas inclinado.

Comportamento com M130

As coordenadas de **frases lineares**, quando está activado o plano de maquinação inclinado, referem-se ao sistema de coordenadas da peça sem inclinar

O TNC posiciona então a ferrta. (inclinada) sobre a coordenada programada no sistema sem inclinar.

Activação

M130 só actua nas frases lineares sem correcção de raioe nas frases do programa onde está programado M130.

7.4 Funções auxiliares para o tipo de trajectória

Maquinar esquinas: M90

Comportamento standard

Nas frases de posicionamento sem correcção de raio da ferramenta, o TNC detém brevemente a ferramenta nas esquinas (paragem de precisão).

Nas frases do programa com correcção de raio (RR/RL), o TNC acrescenta automaticamente um círculo de transição nas esquinas exteriores.

Comportamento com M90

A ferramenta desloca-se nas transições angulares com velocidade constante: as esquinas são maquinadas e a superfície da peça fica mais lisa. Para além disso, reduz-se o tempo de maquinação. Ver figura no centro, à direita.

Exemplo de utilização: superfícies de pequenas rectas.

Activação

N90 actua só nas frases de programa onde se tiver programado M90.

M90 actua no início da frase. Deve estar seleccionado o funcionamento com erro de arrasto.

Acrescentar um círculo definido de arredondamento entre duas rectas: M112

Por razões de compatibilidade, a função M112 continua disponível. Para determinar a tolerância em fresagem rápida de contornos, a HEIDENHAIN recomenda contudo o uso do ciclo TOLERÂNCIA (ver capítulo "8.8 Ciclos especiais")

Maquinar pequenos desníveis de contorno: M97

Comportamento standard

O TNC acrescenta um círculo de transição nas esquinas exteriores. Em desníveis demasiado pequenos, a ferramenta iria danificar o contorno. Ver figura em cima, à direita.

O TNC interrompe a execução do programa nessas posições e emite o aviso de erro "Raio da ferramenta demasiado grande".

Comportamento com M97

O TNC calcula um ponto de intersecção na trajectória para os elementos de contorno - como em esquinas interiores - e desloca a ferramenta para esse ponto. Ver figura em baixo, à direita.

Programe M97 na frase onde é programado o ponto da esquina exterior.

Activação

M97 actua só na frase de programa onde se tiver programado M97.

A esquina do contorno não é completamente maquinada com M97. Você terá talvez que maquinar posteriormente as esquinas do econtorno com uma ferramenta mais pequena.

5	TOOL DEF L R+20	Raio da ferramenta grande
13	L X Y R F M97	Chegada ao ponto do contorno 13
14	L IY-0,5 R F	Maquinar um pequeno desnível no contorno 13 e 14
15	L IX+100	Chegada ao ponto do contorno 15
16	L IY+0,5 R F M97	Maquinar um pequeno desnível no contorno 15 e 16
17	L X Y	Chegada ao ponto do contorno 17

Maquinar completamente esquinas abertas do contorno: M98

Comportamento standard

O TNC calcula nas esquinas interiores o ponto de intersecção das trajectórias de fresagem, e desloca a ferrta. a partir desse ponto, numa nova direcção.

Quando o contorno está aberto nas esquinas, a maquinação não é completa: ver figura em cima, à direita.

Comportamento com M98

Com a função auxiliar M98, o TNC vai deslocando a ferrta. até ficarem maquinados todos os pontos do contorno: ver figura em baixo, à direita.

Activação

M98 só funciona nas frases de programa/posicionamento onde estiver programado M98.

M98 actua no fim da frase.

Exemplo de frases NC

Chegar sucessivamente aos pontos de contorno 10, 11 e 12:

10	L	Х		•	Y	•	•	RL	F
11	L	Χ.			IY			M98	

12 L IX+ ...

Factor de avanço para movimentos de aprofundamento: M103

Comportamento standard

O TNC desloca a ferramenta com o último avanço programado independentemente da direcçãode deslocação.

Comportamento com M103

O TNC reduz o avanço quando a ferramenta se desloca na direcção negativa do eixo da ferrta. O avanço ao aprofundar FZMAX calculase a partir do último avanço programado FPROGR e do factor F%:

 $FZMAX = FPROG \times F\%$

Introduzir M103

Quando você introduz M103 numa frase de posicionamento, o diálogo do TNC pede o factor F.

Activação

M103 actua no início da frase. para eliminar M103: programar de novo M1033 **sem factor**

Exemplo de frases NC

O avanço ao aprofundar é 20% do avanço no plano.

•••	Avanço efectivo da trajectória (mm/min):
17 L X+20 Y+20 RL F500 M103 F20	500
18 L Y+50	500
19 L IZ-2,5	100
20 L IY+5 IZ-5	141
21 L IX+50	500
22 L Z+5	500

Você activa M103 com o parâmetro de máquina 7440; ver capítulo "13.1 Parâmetros gerais do utilizador".

Velocidade de avanço em arcos de círculo: M109/M110/M111

Comportamento standard

O TNC relaciona a velocidade de avanço programada em relação à trajetória do ponto central da ferrta.

Comportamento em arcos de círculo com M109

O TNC mantém constante o avanço da lâmina da ferrta. nas maquinações interiores e exteriores dos arcos de círculo.

Comportamento em arcos de círculo com M110

O TNC mantém constante o avanço na maquinação interior de arcos de círculo. Numa maquinação exterior de arcos de círculo, não actua nenhum ajuste do avanço.

M110 actua também na maquinação interior de arcos de círculo com ciclos de contorno.

Activação

M109 e M110 actuam no início da frase. Você anula M109 e M110 com M111.

Cálculo prévio do contorno com correcção de raio (LOOK AHEAD): M120

Comportamento standard

Quando o raio da ferramenta é maior do que um desnível de contorno com correcção de raio, o TNC interrompe a execução do programa e emite um aviso de erro. M97 (ver "Maquinar pequenos desníveis de contorno: M97") impede o aviso de erro mas ocasiona uma marca na peça e além disso desloca a esquina.

Nos rebaixamentos, o TNC pode produzir danos no contorno. Ver figura à direita.

Comportamento com M120

O TNC verifica os rebaixamentos e saliências de um contorno com correcção de raio, e faz um cálculo prévio da trajectória da ferramenta a partir da frase actual. As posições em que a ferramenta iria danificar o contorno ficam por maquinar (apresentado a escuro na figura). Você também pode usar M120 para ter com correcção do raio da ferramenta os dados de digitalização ou os dados elaborados por um sistema de programação externo. Desta forma, é possível compensar os desvios do raio teórico da ferramenta.

Você determina a quantidade de frases (máx. 99) que o TNC calcula previamente com LA (em ingl. Look Ahead: prever) por trás de M120. Quanto maior for a quantidade de frases pré-seleccionadas por si, para o TNC calcular previamente, mais lento será o processamento das frases.

Introdução

Quando você introduz M120 numa frase de posicionamento, o TNC continua com o diálogo para essa frase e pede a quantidade de frases pré-calculadas LA.

Activação

M120 deverá estar numa frase NC que tenha também a correcção de raio RL ou RR. M120 actua a partir dessa frase até

- que se elimine a correcção de raio com R0
- que se programe M120 LA0
- que se programe M120 sem LA
- se chame um outro programa com PGM CALL
- M120 actua no início da frase.

Limitações

- Você só deve realizar a reentrada num contorno depois de Stop Externo/Interno com a função PROCESSO ATÉ FRASE N
- Quando você utiliza as funções RND e CHF, as frases à frente e atrás de RND ou CHF só podem conter as coordenadas do plano de maquinação
- Quando você chega tangencialmente ao contorno, deve utilizar a função APPR LCT; a frase com APPR LCT só pode conter as coordenadas do plano de maquinação
- Quando sair tangencialmente do contorno, utilize a função DEP LCT; a frase com DEP LCT só pode conter as coordenadas do plano de maquinação

Sobreposicionar posicionamentos do volante durante a execução de um programa: M118

Comportamento standard

O TNC desloca a ferramenta nos modos de funcionamento de execução do programa, tal como se determina no programa de maquinação.

Comportamento com M118

Com M118, você pode efectuar correcções manualmente com o volante. Para isso, programe M118 e introduza uma valor específico em mm para cada eixo X, Y e Z.

Introduzir M118

Quando você introduz M118 numa frase de posicionamento, o TNC continua com o diálogo e pede os valores específicos de cada eixo. Para introduzir as coordenadas, utilize as teclas de cor laranja dos eixos ou o teclado ASCII.

Activação

Você elimina o posicionamento do volante programando de novo M118 sem X, Y e Z.

M118 actua no início da frase.

Exemplo de frase NC

Durante a execução do programa, ao mover-se o volante, deve poder produzir-se uma deslocação no plano de maquinação X/Y de ±1 mm do valor programado:

L X+0 Y+38,5 RL F125 M118 X1 Y1

M118 actua sempre no sistema de coordenadas original inclusive quando está activada a função do plano inclinado!

M118 também actua no modo de funcionamento Posicionamento com Introdução Manual!

Quando está activado M118 numa interrupção do programa, não se dispõe da função MANUAL OPERATION!

7.5 Funções auxiliares para eixos rotativos

Avanço em mm/min em eixos rotativos A, B, C: M116

Comportamento standard

O NC interpreta o avanço programado nos eixos rotativos em garus/ min. O avanço da trajectória depende portanto da distância entre o ponto central da ferramenta e o centro do eixo rotativo.

Quanto maior for a distância, maior é o avanço da trajectória.

Avanço em mm/min em eixos rotativos com M116

O TNC interpreta o avanço programado num eixo rotativo em mm/ min. O TNC calcula assim no **início da frase** o avanço para esta frase. O avanço não se modifica enquanto a frase é executada, inclusive quando a ferramenta se dirige ao centro do eixo rotativo.

Activação

M116 actua no plano de maquinação, e desactiva-se no fim do programa.

O fabricante da máquina determina a geometria da máquina no parâmetro da máquina 7510 e seguintes.

M116 actua no início da frase.

Deslocar eixos rotativos de forma optimizada: M126

Comportamento standard

O comportamento standard do TNC em posicionamento de eixos rotativos, cuja visualização está reduzida a valores inferiores a 360°, depende do parâmetro da máquina 7682. Aí determina-se se o TNC deve aproximar-se com a diferença obtida entre a posição nominal e a posição real, ou se o TNC deve aproximar-se sempre por norma (também sem M126) segundo o percurso mais curto da posição programada. Para exemplos, ver quadro em cima, à direita.

Comportamento com M126

Com M126, o TNC desloca um eixo rotativo cuja visualização está reduzida a valores inferiores a 360°, pelo caminho mais curto. Para exemplos, ver quadro em baixo, à direita.

Activação

M126 actua no início da frase. Você anula M126 com M127; no fim do programa, M126 deixa também de actuar.

Comportamento standard doTNC

Posição real	Posição nominal Percurso		
350°	10°	-340°	
10°	340°	+330°	

Comportamento com M126

Posição real	Posição nominal Percurso		
350°	10°	+20°	
10°	340°	-30°	

Reduzir a visualização do eixo rotativo a um valor inferior a 360°: M94

Comportamento standard

O TNC desloca a ferramenta desde o valor angular actual para o valor angular programado.

Exemplo: Valor angular actual: 538° Valor angular programado: 180° Percurso efectivo: -358°

Comportamento com M94

No início da frase o TNC reduz o valor angular actual para um valor inferior a 360°, e a seguir desloca-se sobre o valor programado. Quando estiverem activados vários eixos rotativos, M94 reduz a visualização de todos os eixos rotativos. Como alternativa, você pode introduzir um eixo rotativo por trás de M94. Assim, o TNC reduz só a visualização deste eixo.

Exemplo de frases NC

Reduzir os valores de visualização de todos os eixos rotativos activados:

L M94

Reduzir apenas o valor de visualização do eixo C:

L M94 C

Reduzir a visualização de todos os eixos rotativos activados e a seguir deslocar o eixo C para o valor programado.

L C+180 FMAX M94

Activação

M94 actua só na frase de programa onde estiver programado M94.

M94 actua no início da frase.

Correcção automática da geometria da máquina ao trabalhar com eixos basculantes: M114

Comportamento standard

O TNC desloca a ferramenta para as posições determinadas no programa de maquinação. Se a posição de um eixo basculante se modificar no programa, é necessário um processador para calcular o desvio daí resultante nos eixos lineares (ver figura em cima, à direita) Como aqui também a geometria da máquina desempenha o seu papel, o programa NC tem que ser calculado separadamente para cada máquina.

Comportamento com M114

Se no programa se modificar a posição de um eixo basculante comandado, o TNC compensa automaticamente o desvio da ferramenta com uma correcção de longitude 3D. Visto a geometria da máquina se apresentar em parâmetros da máquina, o TNC compensa automaticamente também os desvios específicos da máquina. Os programas devem ser calculados só uma vez pelo processador posterior, mesmo se forem executados em diferentes máquinas com comando TNC.

Se a sua máquina não tiver nenhum eixo basculante comandado (inclinação manual da ferramenta, a ferramenta é posicionada pelo PLC), você pode por detrás de M114 introduzir a respectiva posição válida de ferramenta basculante (p.ex. M114 B+45, permitido parâmetro Q).

A correcção do raio da ferramenta deve ser tida em conta pelo sistema CAD ou pelo processador. Uma correcção de raio programada RL/RR provoca um aviso de erro.

Quando o TNC efectua a correcção de longitude da ferramenta, o avanço programado refere-se ao extremo da ferramenta, ou pelo contrário ao ponto de referência da mesma.

Se a sua máquina tiver uma ferramenta basculante controlada, você pode interromper a execução do programa e modificar a posição do eixo basculante (p.ex. com o volante).

> Com a função PROCESSO ATÉ FRASE N você pode continuar com o programa de maquinação na posição onde se tinha interrompido. Com M114 activado, o TNC tem automaticamente em conta a nova posição do eixo basculante.

Para modificar a posição do eixo basculante com o volante, durante a execução do programa, utilize M118 em conjunto com M128.

Activação

M114 actua no início da frase, e M115 no fim da frase. M114 não actua se estiver activada a correcção de raio da ferramenta.

Você elimina M114 com M115. M114 também deixa de actuar no fim do programa.

O fabricante da máquina determina a geometria da máquina no parâmetro da máquina 7510 e seguintes.

Conservar a posição da extremidade da ferramenta em posicionamento de eixos basculantes (TCPM*): M128

Comportamento standard

O TNC desloca a ferramenta para as posições determinadas no programa de maquinação. Se a posição de um eixo basculante se modificar no programa, tem que se calcular o desvio daí resultante nos eixos lineares e ser deslocado para uma frase de posicionamento (ver figura à esquerda em M114).

Comportamento com M128

Se no programa se modificar a posição de um eixo basculante comandado, durante o processo de basculação a posição da extremidade da ferramenta permanece sem se modificar em relação à peça.

Utilize M128 em conjunto com M118 se durante a execução do programa quiser modificar a posição do eixo basculante com o volante. A sobreposição de um posicionamento do volante efectuase com M128 activado, no sistema de coordenadas fixas da máquina.

Antes de posicionamentos com M91 ou M92 e antes de um TOOL CALL: anular M128.

Para evitar danos no contorno, com M128 você só deve usar uma fresa esférica.

A longitude da ferrta. deve referir-se ao centro da esfera da fresa esférica.

O TNC não acompanha a inclinação da correcção de raio da ferrta. activada. Resulta daí um erro que depende da posição angular do eixo rotativo.

Quando M128 está activado, o TNC mostra o símbolo na visulização 🔗 de estados

M128 em mesas rotativas

Se com M128 você programar o movimento de uma mesa inclinada, o TNC roda o sistema de coordenadas da forma correspondente. Rode p.ex. o eixo C em 90° e programe a seguir um movimento no eixo X, e o TNC executa o movimento no eixo Y da máquina.

O TNC também transforma o ponto de referência memorizado, que se desloca com o movimento da mesa redonda.

Activação

M128 actua no início da frase, e M129 no fim da frase. M128 também actua nos modos de funcionamento manuais e permanece activado depois de uma troca de modo de funcionamento.

Você anula M128 com M129. Se você seleccionar um novo programa num modo de funcionamento de execução do programa, o TNC também anula M128.

O fabricante da máquina determina a geometria da máquina no parâmetro da máquina 7510 e seguintes.

*) **TCPM** = Tool Center Point Management

Paragem de precisão nas esquinas com transições não tangenciais: M134

Comportamento standard

O TNC desloca a ferrta. ao posicionar com eixos rotativos de forma a que seja acrescentado um elemento de transição em transições de contorno não tangenciais. A transição de contorno depende da aceleração, do solavanco e da tolerância determinada do desvio do contorno.

Comportamento com M134

O TNC desloca a ferrta. ao posicionar com eixos rotativos de forma a que seja executada uma paragem de precisão nas transições de contorno não tangenciais.

Activação

M134 actua no início da frase, e M135 no fim da frase.

Você anula M134 com M135. Se você seleccionar um novo programa num modo de funcionamento de execução do programa, o TNC também anula M134.

7.6 Funções auxiliares para Lasermáquinas de corte

Para comandar a potência de laser, o TNC emite valores de tensão através da saída analógica S. Com as funções M200 a M204, você pode modificar a potência do laser durante a execução do programa.

Introduzir funções auxiliares para máquinas laser

Quando você introduz uma função M numa frase de posicionamento para uma máquina laser, o TNC continua com o diálogo e pede os respectivos parâmetros da função auxiliar.

Todas as funções auxiliares para máquinas laser actuam no início da frase.

Emitir directamente a tensão programada: M200

O NC emite o valor programado por trás de M200 como tensão V.

Campo de introdução: de 0 a 9.999 V

Activação

M200 actua até se emitir uma nova tensão através de M200, M201, M202, M203 ou M204.

Tensão em função do percurso: M201

M201 emite uma tensão que depende do caminho percorrido. O TNC aumenta ou reduz a tensão actual de forma linear até ao valor V programado.

Campo de introdução: de 0 a 9.999 V

Activação

M201 actua até se emitir uma nova tensão através de M200, M201, M202, M203 ou M204.

Tensão em função da velocidade: M202

O TNC emite a tensão em função da velocidade. O fabricante da máquina determina nos parâmetros da máquina até três linhas características FNR, nas quais se atribui velocidades de avanço a determinadas tensões. Com M202, você selecciona a linha característica FNR da qual o TNC calcula a tensão a emitir.

Campo de introdução: de 1 a 3

Activação

M202 actua até se emitir uma nova tensão através de M200, M201, M202, M203 ou M204.

Emitir a tensão em função do tempo (depende do impulso): M203

O TNC emite a tensão V em função do tempo TIME. O TNC aumenta ou reduz a tensão actual linearmente num tempo programado TIM para o valor V programado da tensão.

Campo de introdução

Tensão V: De a 9.999 Volt Tempo TIME:De 0 a 1.999 segundos

Activação

M203 actua até se emitir uma nova tensão através de M200, M201, M202, M203 ou M204.

Emitir a tensão como função do tempo (impulso depende do tempo): M204

O TNC emite uma tensão como impulso com uma duração programada TIME.

Campo de introdução

Tensão V: De a 9.999 Volt Tempo TIME: De 0 a 1.999 segundos

Activação

M204 actua até se emitir uma nova tensão através de M200, M201, M202, M203 ou M204.

Programação: Ciclos

8.1 Generalidades sobre os ciclos	Grupode ciclos	Softkey	
As maquinações que se repetem com frequência e que contêm vários passos de maquinação memorizam-se no TNC como ciclos. Também estão disponíveis como ciclos as conversões de coordenadas e algumas funções especiais. O guadro à direita	Ciclos para furar em profundidade, alargar furo mandrilar, rebaixar, roscar e roscar à lâmina	FURO	
mostra os diferentes grupos de ciclos. Os ciclos de maquinação com números a partir de 200 utilizam parâmetros Ω como parâmetros de transmissão. Os parâmetros	Ciclos para fresar caixas, ilhas e ranhuras	CAIXAS/ ILHAS/ RANHURAS	
com a mesma função, de que o TNC precisa em diferentes ciclos, têm sempre o mesmo número:p.ex. Q200 é sempre a distância de segurança, Q202 é sempre a profundidade de passo, etc.	Ciclos para a elaboração de figuras de pontos, p.ex. círculo de pontos, ou superfície de pontos	FIGURA DE PONTOS	
Definir ciclo			
CYCL ► A régua de softkeys mostra os diferentes grupos de ciclos	Ciclos SL (Subcontur-List) com que se maquina contornos com mais trabalho	SLΠ	
Furo ► Seleccionar o grupo de ciclo, p.ex. ciclo de furar	paralelamente ao contorno compostos por vários contornos sobrepostos, interpolação de corpo de cilindro		
 Seleccionar o ciclo, p.ex. FURAR EM PROFUNDIDADE. O TNC abre um diálogo e pede todos os valores de introdução; ao mesmo tempo, o TNC acende um gráfico na metade direita do ecrã, onde está iluminado por trás o parâmetro a introduzir 	Ciclos para facejar superfícies planas ou ou torcidas em si	SUPERFI- CICS PLANRS	
Introduza todos os parâmetros pedidos pelo TNC e termine cada introdução com tecla ENT	Ciclos para a conversão de coordenadas com que são deslocados,	TRANSF. COORDE - NADAS	
 O TNC termina o diálogo depois de você introduzir todos os dados necessários 	rodados, espelhados, ampliados e reduzidos quaisquer contornos	<u> </u>	
Exemplo de frases NC	Transis de la constata de states encontrata		
CYCL DEF 1.0 FURAR EM PROFUNDIDADE	lempo de espera de ciclos especiais, chamada do programa, orientação da	CICLOS ESPECIAIS	
CYCL DEF 1.1 DIST 2	ferramenta, tolerância	L	
CYCL DEF 1.2 PROFUNDIDADE -30			
CYCL DEF 1.3 PASSO 5			
CYCL DEF 1.4 T. ESPR 1			
CYCL DEF 1.5 F 150			

Para poder elaborar os ciclos de maquinação de 1 a 17 também em comandos de TNC antigos, você deve programar também um sinal negativo em distância de segurança e em profundidade de passo.

F 150

Chamar ciclo

Condições

Antes de uma chamada de ciclo, programe de todas as vezes:

- BLK FORM para a representação gráfica (só é necessário para o teste gráfico)
- Chamada da ferramenta
- Sentido de rotação da ferramenta (função auxiliar M3/M4)
- Definição do ciclo (CYCL DEF).

Tenha em conta outras condições apresentadas nas descrições a seguir sobre ciclos.

Os seguintes ciclos actuam a partir da sua sua definição no programa de maquinação. Você não pode nem deve chamar estes ciclos:

- os ciclos figura de pontos sobre um círculo e figura de pontos sobre linhas
- o ciclo SL CONTORNO
- o ciclo SL DADOS DO CONTORNO
- Ciclo 32 TOLERÂNCIA
- Ciclos para a conversão de coordenadas
- o cicloTEMPO DE ESPERA

Você chama todos os outros ciclos tal como a seguir se descreve:

Se quiser que o TNC execute uma vez o ciclo depois da última frase programada, programe a chamada de ciclo com a função auxiliar M99 ou com CYCL CALL:

Programar a chamada de ciclo: premir a tecla CYCL CALL

Introduzir a função auxiliar M, p.ex. para refrigerante

Se quiser que o TNC execute automaticamente o ciclo depois de cada frase de posicionamento, programe a chamada de ciclo com M89 (dependente do parâmetro da máquina 7440).

Para anular a actuação de M89, programe

- 🔳 M 99 ou
- CYCL CALL ou
- CYCL DEF

Trabalhar com eixos auxiliares U/V/W

O TNC executa movimentos de avanço no eixo que você definiu como eixo da ferramenta na frase TOOL CALL. O TNC executa os movimentos no plano de maquinação basicamente apenas nos eixos principais X, Y ou Z. Excepções:

- Quando no ciclo 3 FRESAR RANHURAS e no ciclo 4 FRESAR CAIXAS você programar eixos auxiliares directamente para as longitudes laterais
- Quando nos ciclos SL você programar eixos auxiliares no sub-programa do contorno

8.2 Ciclos de furar

O TNC dispõe de um total de 9 ciclos para as mais variadas maquinações de furar:

Ciclo	Softkey
1 FURAR EM PROFUNDIDADE Sem posicionamento prévio automático	1 🗭
200 FURAR Com posicionamento prévio automático, 2ª Distância de segurança	200 () []]]
201 ALARGAR FURO Com posicioamento prévio automático, 2ª Distância de segurança	201 m
202 MANDRILAR Com posicionamento prévio automático, 2ª Distância de segurança	202 [] 27-23
203 FURAR UNIVERSAL Com posicionamento prévio automático, 2ª Distância de segurança, rotura de apara, redução de cota	203 ()
204 REBAIXAMENTO INVERTIDO Com posicionamento prévio automático, 2ª Distância de segurança	204 23-52
2 ROSCAR Com embraiagem	2 ()
17 ROSCAGEM RÍGIDA Sem embraiagem	17 🔂 RT
18 ROSCAR À LÂMINA	

8.2 Ciclos de furar

FURAR EM PROFUNDIDADE (Ciclo 1)

- A ferramenta fura com o avanço F introduzido, desde a posição actual até à primeira Profundidade de Passo
- 2 Depois, o TNC retira a ferramenta em marcha rápida FMAX e volta a deslocar-se até à primeira Profundidade de Passo, reduzindo a distância de paragem prévia t.
- 3 O controlo calcula automaticamente a distância de paragem prévia:
 Profundidade de furo até 30 mm: t = 0,6 mm
 Profundidade de furo superior a 30 mm: t = profundidade de

furar mm

Máxima distância de paragem prévia: 7 mm

- 4 A seguir, a ferramenta desloca-se com o Avanço F introduzido até à seguinte Profundidade de Passo
- **5** O TNC repete este processo (1 a 4) até alcançar a Profundidade de Furar programada
- 6 Na base do furo, uma vez transcorrido o tempo de espera para o desafogo da apara, o TNC retira a ferramenta para a posição inicial com FMAX

Antes da programação, deverá ter em conta

Programar a frase de posicionamento sobre o ponto inicial (centro do furo) no plano de maquinação com correcção de raio R0.

Programar a frase de posicionamento sobre o ponto de partida no eixo da ferrta. (Distância de Segurança sobre a superfície da peça).

No ciclo, o sinal do parâmetro Profundidade determina a direcção da maquinação.

Distância de segurança 1 (valor incremental): Distância entre o extremo da ferrta. (posição inicial) e a superfície da peça

- Profundidade de furo 2 (valor incremental): distância entre a superfície da peça e a base do furo (extremo do cone do furo)
- Profundidade de passo 3 (valor incremental): Medida segundo a qual a ferrta. penetra de cada vez na peça. O TNC desloca-se num só passo de maquinação para a profundidade total do furo quando:

A Profundidade de Passo e a Profundidade Total são iguais

A Profundidade de Passo é maior do que a Profundidade Total

A Profundidade Total não tem que ser um múltiplo da Profundidade de Passo

- ▶ Tempo de espera em segundos: tempo que precisa a ferrta. na base do furo para cortar livremente
- Avanço F: velocidade de deslocação da ferramenta ao furar em mm/min

1	CYCL	DEF	1.0	FURAR	ЕМ	PROFUNDIDAD	E
2	CYCL	DEF	1.1	DIST 2	2		
3	CYCL	DEF	1.2	PROF.	-20)	
4	CYCL	DEF	1.3	PASSO	5		
5	CYCL	DEF	1.4	T.ESP.	0		
6	CYCL	DEF	1.5 F	500			

FURAR (ciclo 200)

- 1 O TNC posiciona a ferramenta no seu eixo em marcha rápida FMAX na distância de segurança sobre a superfície da peça
- 2 A ferrta. fura com o avanço F programado, até à primeira Profundidade de Passo
- **3** O TNC retira a ferramenta com FMAX na distância de segurança, espera aí - se tiver sido programado - e a seguir desloca-se de novo com FMAX para a a distância de segurança sobre a primeira profundidade de passo
- 4 A seguir, a ferramenta fura com o avanço F programado até uma outra Profundidade de Passo
- **5** O TNC repete este processo (2 a 4) até alcançar a Profundidade de Furar programada
- 6 Na base do furo, a ferramenta desloca-se com FMAX para a distância de segurança ou - se tiver sido programado - para a 2ª distância de segurança

Antes da programação, deverá ter em conta

Programar a frase de posicionamento sobre o ponto de partida (centro do furo) no plano de maquinação com correcção de raio R0.

O sinal do parâmetro Profundidade determina a direcção da maquinação.

200 Ø

Distância de segurança Q200 (incremental): distância entre a extremidade da ferramenta e a superfície da peça: introduzir valor positivo

- Profundidade Q201 (incremental): distância entre a superfície da peça e a base do furo (extremidade do cone do furo)
- Avanço ao aprofundar Q206: velocidade de deslocação da ferramenta ao furar em mm/min
- Profundidade de passo Q202 (valor incremental): medida segundo a qual a ferrta. penetra de cada vez na peça. O TNC desloca-se num só passo de maquinação para a profundidade total quando:
 A profundidade de passo e a profund. total são iguais

A profund. de passo é maior do que a profund. total

A Profundidade Total não tem que ser um múltiplo da Profundidade de Passo

Tempo de Espera em cima Q210: tempo em segundos que a ferramenta espera na distância de segurança depois de o TNC a ter retirado do furo

7	CYCL DEF 200	FURAR
	Q200=2	;DISTÂNCIA SEGURANÇA
	Q201=-20	; PROFUNDIDADE
	Q206=150	;AVANÇO EM PROFUNDIDADE
	Q2O2=5	;PROFUNDIDADE DE PASSO
	Q210=0	;TEMPO DE ESPERA EM CIMA
	Q203=+0	;COORD. SUPERFÍCIE
	Q204=50	;2ª DIST. SEGURANÇA

- Coord, da superf, da peca O203 (valor absoluto): coordenada da superfície da peca
- ▶ 2ª distância de seguranca Q204 (valor incremental): coordenada no eixo da ferrta. na qual não se pode produzir nenhuma colisão entre a ferrta. e a peca

ALARGAR FURO (ciclo 201)

- 1 O TNC posiciona a ferramenta no seu eixo em marcha rápida FMAX na distância de seguranca programada sobre a superfície da peca
- 2 A ferramenta alarga o furo com o avanco F programado até à profundidade programada
- 3 Se tiver sido programado, a ferramenta espera na base do furo
- 4 Seguidamente, o TNC retira a ferrta. com avanço F à distância de segurança e daí - se tiver sido programado - com FMAX para a 2ª distância de seguranca

Antes da programação, deverá ter em conta

Programar a frase de posicionamento sobre o ponto de partida (centro do furo) no plano de maguinação com correcção de raio R0.

O sinal do parâmetro Profundidade determina a direcção da maquinação.

▶ Distância de segurança Q200 (incremental): distância entre a extremidade da ferrta. e a superfície da peca

- ▶ Profundidade Q201 (incremental): distância entre a superfície da peca e a base do furo
- ► Avanco ao aprofundar Q206: velocidade de deslocação da ferramenta ao alargar o furo em mm/min
- ▶ Tempo de espera em baixo Q211: tempo em segundos que a ferrta. espera na base do furo
- ► Avanco de retrocesso Q208: velocidade de deslocação da ferramenta ao afastar-se do furo em mm/min. Se introduzir Q208 = 0, é válido o co de alargar furo
- ▶ Coord. da superf. da peça Q203 (valor absoluto): coordenada da superfície da peca
- ▶ 2ª distância de seguranca Q204 (valor incremental): coordenada no eixo da ferrta. na qual não se pode produzir nenhuma colisão entre a ferrta. e a peca

8	CYCL DEF 201	ALARGAR FURO
	Q200=2	;DISTÂNCIA SEGURANÇA
	Q201=-20	; PROFUNDIDADE
	Q206=150	;AVANÇO EM PROFUNDIDADE
	Q211=0.25	;TEMPO DE ESPERA EM BAIXO
	Q208=500	;AVANÇO DE RETROCESSO
	Q203=+0	;COORD. SUPERFÍCIE
	Q204=50	;2ª DIST. SEGURANÇA

MANDRILAR (ciclo 202)

O fabricante da máquina prepara a máquina e o TNC para
 o ciclo 202.

- 1 O TNC posiciona a ferramenta no seu eixo em marcha rápida FMAX na distância de segurança sobre a superfície da peça
- 2 A ferramenta fura com o Avanço de furar até à profundidade programada
- **3** Se tiver sido programado um tempo para cortar livremente, a ferramenta espera na base do furo
- 4 A seguir, o TNC realiza a orientação da ferramenta sobre a posição 0°
- 5 Se tiver sido seleccionada deslocação livre, o TNC desloca-se livremente 0,2 mm na direcção programada (valor fixo)
- 6 A seguir, o TNC desloca a ferrta. com o Avanço de Retrocesso à Distância de Segurança, e daí - se tiver sido programado - com FMAX para a 2ª Distância de Segurança

Antes da programação, deverá ter em conta

Programar a frase de posicionamento sobre o ponto de partida (centro do furo) no plano de maquinação com correcção de raio R0.

No ciclo, o sinal do parâmetro Profundidade determina a direcção da maquinação.

O TNC volta a estabelecer no fim do ciclo o estado do refrigerante e da ferramenta que estava activado antes da chamada do ciclo.

- Distância de segurança Q200 (incremental): distância entre a extremidade da ferrta. e a superfície da peça
- Profundidade Q201 (incremental): distância entre a superfície da peça e a base do furo
- Avanço ao aprofundar Q206: velocidade de deslocação da ferramenta ao mandrilar em mm/min
- Tempo de espera em baixo Q211: tempo em segundos que a ferrta. espera na base do furo
- Avanço em retrocesso Q208: velocidade de deslocação da ferramenta ao retirar-se do furo em mm/min. Se introduzir Q208=0, é válido avanço ao aprofundar
- Coord. da superf. da peça Q203 (valor absoluto): coordenada da superfície da peça
- 2ª distância de segurança Q204 (valor incremental): coordenada no eixo da ferrta. na qual não se pode produzir nenhuma colisão entre a ferrta. e a peça

Exemplo de frases NC:

9	CYCL DEF 202	MANDRILAR
	Q200=2	;DISTÂNCIA SEGURANÇA
	Q201=-20	; PROFUNDIDADE
	Q206=150	;AVANÇO EM PROFUNDIDADE
	Q211=0.5	;TEMPO DE ESPERA EM BAIXO
	Q208=500	;AVANÇO DE RETROCESSO
	Q2O3=+0	;COORD. SUPERFÍCIE
	Q204=50	;2ª DIST. SEGURANÇA
	Q214=1	;DIRECÇÃO DE RETIRAR

202

- Sentido de afastamento (0/1/2/3/4) Q214: determinar a direcção em que o TNC desloca livremente a ferramenta na base do furo (depois da orientação da ferramenta)
- 0: Não retirar a ferramenta
- 1: Retirar a ferramenta em sentido negativo do eixo principal
- 2: Retirar a ferramenta em sentido negativo do eixo secundário
- 3: Retirar a ferramenta em sentido positivo do eixo principal
- 4: Retirar a ferramenta em sentido positivo do eixo secundário

Perigo de colisão!

Quando programar uma orientação da ferrt. a 0°, verifique onde se encontra o extremo da ferrta. (p.ex. no modo de funcionamento Posicionamento com Introdução Manual). Oriente o extremo da ferrta. de forma ficar paralela a um eixo de coordenadas. Seleccione a direcção de livre deslocação de forma a que a ferrta. se desloque longe da margem do furo.

FURAR UNIVERSAL (ciclo 203)

- 1 O TNC posiciona a ferramenta no seu eixo em marcha rápida FMAX na distância de segurança programada sobre a superfície da peça
- 2 A ferrta. fura com o avanço F programado, até à primeira Profundidade de Passo
- 3 Se tiver programado rotura da apara, o TNC retira a ferrta. à distância de segurança. Se você trabalhar sem rotura da apara, o TNC retira a ferrta. com o Avanço de Retrocesso na Distância de Segurança, espera aí - se tiver sido programado - e a seguir desloca-se novamente com FMAX até à distância de segurança sobre a primeira Profundidade de Passo
- 4 A seguir, a ferramenta fura com o Avanço até à seguinte Profundidade de Passo. Se você tiver programado, a Profundidade de Passo vai diminuindo com cada aproximação segundo o Valor de Redução
- 5 OTNC repete este processo (2 a 4) até alcançar a Profundidade do Furo
- 6 Na base do furo, se tiver sido programado, a ferrta. espera um tempo para cortar livremente, retirando-se depois de transcorrido o Tempo de Espera com o Avanço de Retrocesso para a Distância de Segurança. Se você tiver programado uma 2ª Distância de Segurança, a ferrta. desloca-se para aí com FMAX.

203 Ø

Antes da programação, deverá ter em conta

Programar a frase de posicionamento sobre o ponto de partida (centro do furo) no plano de maquinação com correcção de raio R0.

No ciclo, o sinal do parâmetro Profundidade determina a direcção da maquinação.

- Distância de segurança Q200 (incremental): distância entre a extremidade da ferrta. e a superfície da peça
- Profundidade Q201 (incremental): distância entre a superfície da peça e a base do furo (extremidade do cone do furo)
- Avanço ao aprofundar Q206: velocidade de deslocação da ferramenta ao furar em mm/min
- Profundidade de passo Q202 (valor incremental): medida segundo a qual a ferrta. penetra de cada vez na peça. O TNC desloca-se num só passo de maquinação para a profundidade total quando:
 A profundidade de passo e a profund. total são iguais
 A profund, de passo é major do que a profund, total

A Profundidade Total não tem que ser um múltiplo da Profundidade de Passo

- Tempo de Espera em cima Q210: tempo em segundos que a ferramenta espera na distância de segurança depois de o TNC a ter retirado do furo
- Coord. da superf. da peça Q203 (valor absoluto): coordenada da superfície da peça
- 2ª distância de segurança Q204 (valor incremental): coordenada no eixo da ferrta. na qual não se pode produzir nenhuma colisão entre a ferrta. e a peça
- Valor de Redução Q212 (incremental): valor com que o TNC reduz a Profundidade de Passo em cada passo
- Nº de Roturas de Apara até ao Retrocesso Q213:número de roturas de apara antes de o TNC retirar a ferramenta do furo para a soltar. Para a rotura de apara, o TNC retira a ferrta. de cada vez à distância de segurança Q200
- Mínima Profundidade de Passo Q205 (valor incremental): se você tiver introduzido um valor de redução, o TNC limita a profundidade de passo ao valor introduzido com Q205
- Tempo de espera em baixo Q211: tempo em segundos que a ferrta. espera na base do furo
- Avanço de retrocesso Q208: velocidade de deslocação da ferrta. ao retirar-se do furo em mm/min. Se introduzir Q208=0, o TNC retira a ferrta. com FMAX

10 CYCL DEF 203	FURAR UNIVERSAL
Q200=2	;DISTÂNCIA SEGURANÇA
Q201=-20	; PROFUNDIDADE
Q206=150	;AVANÇO AO APROFUNDAR
Q202=5	;PROFUNDIDADE DE PASSO
Q210=0	;TEMPO DE ESPERA EM CIMA
Q203=+0	;COORD. SUPERFÍCIE
Q204=50	;2ª DIST. SEGURANÇA
Q212=0.2	;VALOR DE REDUÇÃO
Q213=3	;ROTURAS DE APARA
Q205=3	;MÍN. PROFUNDIDADE DE PASSO
Q211=0.25	;TEMPO DE ESPERA EM BAIXO
Q208=500	;AVANÇO DE RETROCESSO

REBAIXAMENTO INVERTIDO (ciclo 204)

O fabricante da máquina prepara a máquina e o TNC para o ciclo de rebaixamento invertido

O ciclo só trabalha com as chamadas barras de broquear em retrocesso

Com este ciclo, você pode efectuar abaixamentos situados no lado inferior da peça.

- 1 O TNC posiciona a ferramenta no seu eixo em marcha rápida FMAX na distância de segurança sobre a superfície da peça
- 2 Aí o TNC efectua uma orientação da ferramenta para a posição de 0° e desloca a ferrta. segundo a dimensão do excêntrico
- 3 A seguir, a ferramenta penetra com o avanço de posicionamento prévio no furo pré-furado até a lâmina estar na distância de segurança por baixo do canto inferior da peça
- 4 O TNC desloca agora a ferrta. outra vez para o centro do furo, liga a ferrta. e se necessário também o refrigerante, e depois deslocase com o avanço de rebaixamento para o rebaixamento de profundidade programado
- 5 Se tiver sido programado, a ferrta. espera na base do rebaixamento e a seguir retira-se de novo do furo, efectua uma orientação e desloca-se de novo segundo a medida do excêntrico
- 6 A seguir, o TNC desloca a ferrta. com o avanço de posicionamento prévio para a distância de segurança, e daí - se tiver sido programado - com FMAX para a 2ª distância de segurança.

Antes da programação, deverá ter em conta

Programar a frase de posicionamento sobre o ponto de partida (centro do furo) no plano de maquinação com correcção de raio R0.

O sinal do parâmetro de ciclo determina a direcção da maquinação ao abaixar. Atenção: o sinal positivo abaixa na direcção do eixo positivo da ferrta.

Introduzir uma longitude de ferrta. que esteja dimensionada não pela lâmina mas pelo canto inferior barra de broquear.

Ao calcular o ponto de partida do abaixamento, o TNC tem em conta a longitude da lâmina da barra de broquear e a solidez da peça.

- 8.2 Ciclos de furar
- Distância de segurança Q200 (incremental): distância entre a extremidade da ferrta. e a superfície da peça
 - Profundidade de rebaixamento (incremental): distância entre a o canto inferior da peça e a base do rebaixamento O sinal positivo executa o rebaixamento em direcção positiva do eixo da ferrta.
 - Solidez da peça Q250 (incremental): espessura da peça
 - Medida do excêntrico (Q251 (incremental): medida do excêntrico da barra de broquear; ir ver à folha de dados da ferrta.
 - Altura da lâmina Q252 (incremental): distância entre o lado inferior da barra de broquear e a lâmina principal; ir ver à folha de dados da ferrta.
 - Avanço de posicionamento prévio Q253: velocidade de deslocação da ferrta. ao penetrar na peça ou ao retirar-se da peça em mm/min
 - Avanço de rebaixamento Q254: velocidade de deslocação da ferrta. ao rebaixar em mm/min
 - ► Tempo de espera Q255: tempo de espera em segundos na base do rebaixamento
 - Coord. da superf. da peça Q203 (valor absoluto): coordenada da superfície da peça
 - 2ª distância de segurança Q204 (valor incremental): coordenada no eixo da ferrta. na qual não se pode produzir nenhuma colisão entre a ferrta. e a peça
 - Sentido de afastamento (0/1/2/3/4) Q214: determinar a direcção em que o TNC desloca a ferrta. segundo a dimensão do excêntrico (depois da orientação da ferrta.); não é permitida a introdução de 0
- 1: Deslocar a ferramenta em sentido negativo do eixo principal
- 2: Deslocar a ferramenta em sentido negativo do eixo secundário
- 3: Deslocar a ferramenta em sentido positivo do eixo principal
- 4: Deslocar a ferramenta em sentido positivo do eixo secundário

Perigo de colisão!

Quando programar uma orientação da ferrt. a 0°, verifique onde se encontra o extremo da ferrta. (p.ex. no modo de funcionamento Posicionamento com Introdução Manual). Oriente o extremo da ferrta. de forma ficar paralela a um eixo de coordenadas. Seleccione a direcção de livre deslocação de forma a que a ferrta. possa penetrar no furo sem colisões.

Exemplo de frases NC:

	inplo de fidoco	
11	CYCL DEF 20	4 REBAIXAMENTO INVERTIDO
	Q200=2	;DISTÂNCIA SEGURANÇA
	Q249=+5	;REBAIXAMENTO EM PROFUNDIDADE
	Q250=20	;SOLIDEZ DO MATERIAL
	Q251=3.5	;MEDIDA DO EXCÊNTRICO
	Q252=15	;ALTURA DA LÂMINA
	Q253=750	;AVANÇO POSICION. PRÉVIO
	Q254=200	;AVANÇO DE REBAIXAMENTO
	Q255=0	;TEMPO DE ESPERA
	Q203=+0	;COORD. SUPERFÍCIE
	Q204=50	;2ª DIST. SEGURANÇA
	Q214=1	;DIRECÇÃO DE RETIRAR

204 J

8.2 Ciclos de furar

ROSCAR com embraiagem

- 1 A ferramenta desloca-se num só passo até à profundidade do furo
- 2 A seguir, inverte-se a direcção de rotação da ferrta, e após o tempo de espera a ferrta. retrocede à posição inicial
- 3 Na posição inicial, inverte-se de novo a direcção de rotação da ferrta

Antes da programação, deverá ter em conta

Programar a frase de posicionamento sobre o ponto de partida (centro do furo) no plano de maguinação com correcção de raio R0.

Programar a frase de posicionamento sobre o ponto de partida no eixo da ferrta. (Distância de Seguranca sobre a superfície da peça).

O sinal do parâmetro Profundidade determina a direcção da maguinação.

A ferrta. deve estar fixa com um sistema de compensação de longitude. Este sistema compensa tolerâncias do avanço e das rotações durante a maguinação.

Enquanto se executa o ciclo, não está activado o potenciómetro de override de rotações. O potenciómetro para o override de avanço está limitado determinado pelo fabricante da máquina, consultar o manual da máguina).

Para roscar à direita, activar a ferramenta com M3, e para roscar à esquerda, com M4.

- ▶ Distância de seguranca 1 (incremental): distância entre o extremo da ferrta. (posição inicial) e a superfície da peca. Valor orientativo: 4 vezes o passo de rosca.
 - ▶ Profundidade de furo 2 (longitude da rosca, valor incremental): distância entre a superfície da peça e o final da rosca
 - ▶ Tempo de espera em segundos: introduzir um valor entre 0 e

0,5 segundos para evitar acunhamento da ferramenta quando esta retrocede

► Avanço F: velocidade de deslocação da ferramenta ao roscar

Cálculo do avanco: $F = S \times p$

F: avanço mm/min) S: rotações da ferrta. (rpm) p: passo da roscagem (mm)

Retirar a ferramenta durante a interrupção do programa

Se durante a roscagem, você premir a tecla de stop externa, o TNC mostra uma softkey com que você pode retirar a ferrta.

13	CYCL DEF	2.0	ROSCAR
14	CYCL DEF	2.1	DIST 2
15	CYCL DEF	2.2	PROFUNDIDADE -20
16	CYCL DEF	2.3	TEMPO E. O
17	CYCL DEF	2.4	F100

ROSCAGEM RÍGIDA sem embraiagem GS (Zyklus 17)

8.2 Ciclos de furar

O fabricante da máguina prepara a máguina e o TNC para a roscagem sem embraiagem.

O TNC realiza a roscagem à lâmina num ou em vários passos sem compensação da longitude.

Vantagens em relação ao ciclo de Roscar com embraaigem:

- Maior velocidade de maguinação
- Pode repetir-se a mesma roscagem iá que na chamada de ciclo a ferrta. se orienta sobre a posição 0° (depende do parâmetro da máquina 7160)
- Maior margem de deslocação do eixo da ferramenta já que desaparece o sistema de compensação (embraiagem)

Antes da programação, deverá ter em conta

Programar a frase de posicionamento sobre o ponto de partida (centro do furo) no plano de maguinação com correcção de raio RO

Programar a frase de posicionamento sobre o ponto de partida no eixo da ferrta. (Distância de Segurança sobre a superfície da peca)

O sinal do parâmetro Profundidade determina a direcção da maquinação.

O TNC calcula o Avanco dependendo do número de rotações. Se durante a roscagem você activar o potenciómetro de override de rotações, o TNC ajusta automaticamente o Avanco.

O potenciómetro de override de avanco não está activo.

No fim do ciclo, a ferramenta está parada Antes da maguinação seguinte, ligar de novo a ferramenta com M3 (ou M4)

Distância de seguranca 1 (valor incremental): Distância entre o extremo da ferrta. (posicão inicial) e a superfície da peça

- ▶ Profundidade de furo 2 (valor incremental): distância entre a superfície da peça (início da rosca) e final da rosca
- Passo de rosca 3: Passo da rosca. O sinal determina se a roscagem é á direita ou à esquerda:
 - + = roscagem à direita
 - = roscagem à esquerda

Exemplo de frases NC:

18	CYCL DEF	17.0	ROSCAR GS
19	CYCL DEF	17.1	DIST 2
20	CYCL DEF	17.2	PROFUNDIDADE -20
21	CYCL DEF	17.3	PASSO DE ROSCA +1

Retirar a ferramenta durante a interrupção do programa

Se durante a roscagem, você premir a tecla de stop externa, o TNC mostra a softkey MANUAL OPERATI-ON. Se você premir MANUAL OPERATION, pode retirar a ferrta. de forma controlada. Para isso, prima a tecla positiva de aiuste de eixos do eixo activado da ferrta.

ROSCAGEM À LÂMINA (ciclo 18)

O fabricante da máquina prepara a máquina e o TNC para se poder usar a roscagem à lâmina.

O ciclo 18 ROSCAGEM À LÂMINA desloca a ferramenta, com o seu cabeçote regulado, desde a posição actual com as rotações activadas para a profundidade programada. Na base do furo tem lugar uma paragem da ferrta. Você deve programar separadamente os movimentos de aproximação e saída - de preferência num ciclo do fabricante. O fabricante da máquina dar-lhe-á mais informações a este respeito.

Antes da programação, deverá ter em conta

O TNC calcula o Avanço dependendo do número de rotações. Se durante a roscagem à lâmina você activar o potenciómetro de override de rotações, o TNC ajusta automaticamente o Avanço.

O potenciómetro de override de avanço não está activo.

O TNC liga e desliga a ferramenta automaticamente. Antes da chamada de ciclo, não programe M3 ou M4.

18 L

Profundidade de furo 1: Distância entre a posição actual da ferramenta e o fim da rosca

O sinal de Profundidade de Furo determina a direcção da maquinação ("-" corresponde à direcção negativa no eixo da ferramenta)

▶ Passo de rosca 2:

Passo da rosca. O sinal determina se a roscagem é á direita ou à esquerda:

+ = roscagem à direita (M3 quando a profundidade do furo é negativa)

 – roscagem à esquerda (M4 quando a profundidade do furo é negativa

22	CYCL	DEF	18.0	ROSCAGEM À LÂMINA
23	CYCL	DEF	18.1	PROFUNDIDADE -20
24	CYCL	DEF	18.2	PASSO DE ROSCA +1
Exemplo: ciclos de furar

O BEGIN PGM C200 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definição do bloco
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+3	Definição da ferramenta
4 TOOL CALL 1 Z S4500	Chamada da ferramenta
5 L Z+250 R0 F MAX	Retirar a ferramenta
6 CYCL DEF 200 FURAR	Definição do ciclo
Q200=2 ;DISTÂNCIA SEGURANÇA	
Q201=-15 ; PROFUNDIDADE	
Q206=250 ;F AVANÇO AO APROFUNDAR	
Q2O2=5 ;PROFUNDIDADE DE PASSO	
Q210=0 ;TEMPO ESPERA CIMA	
Q2O3=-10 ;COORD. SUPERFÍCIE	
Q2O4=20 ;2ª DIST. SEGURANÇA	
7 L X+10 Y+10 RO F MAX M3	Chegada ao primeiro furo, ligar a ferramenta
8 CYCL CALL	Chamada do ciclo
9 L Y+90 RO F MAX M99	Chegada ao 2º furo, chamado do ciclo
10 L X+90 RO F MAX M99	Chegada ao 3º furo, chamada do ciclo
11 L Y+10 RO F MAX M99	Chegada ao 4º furo, chamada do ciclo
12 L Z+250 RO F MAX M2	Retirar a ferramenta, fim do programa
13 END PGM C200 MM	

Execução do programa

- Programar o ciclo de furar no programa principal
- Programar a maquinação no sub-programa (ver capítulo "9 Programação: sub-programas e repetições parcias de programa")

O BEGIN PGM C18 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definição do bloco
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+6	Definição da ferramenta
4 TOOL CALL 1 Z S100	Chamada da ferramenta
5 L Z+250 RO F MAX	Retirar a ferramenta
6 CYCL DEF 18.0 ROSCAGEM À LÂMINA	Definição do ciclo roscagem à lâmina
7 CYCL DEF 18.1 PROFUNDIDADE +30	
8 CYCL DEF 18.2 subida -1,75	
9 L X+20 Y+20 R0 F MAX	Chegada ao 1º furo
10 CALL LBL 1	Chamada do sub-programa 1
11 L X+70 Y+70 R0 F MAX	Chegada ao 2º furo
12 CALL LBL 1	Chamada do sub-programa 1
13 L Z+250 RO F MAX M2	Retirar a ferramenta, fim do programa principal
14 LBL 1	Sub-programa 1: roscagem à lâmina
15 CYCL DEF 13.0 ORIENTAÇÃO	Orientação da ferramenta (é possíVel um corte repetitivo)
16 CYCL DEF 13.1 ÂNGULO O	
17 L IX-2 RO F1000	Ferrta. desviada para aprofundamento sem colisão (depende do
	diâmetro do núcleo e da ferramenta)
18 L Z+5 RO F MAX	Posicionamento prévio em marcha rápida
19 L Z-30 RO F1000	Aproximação à profundidade inicial
20 L IX+2	Ferramenta de novo no centro do furo
21 CYCL CALL	Chamada do ciclo 18
22 L Z+5 RO F MAX	Retirada
23 LBL 0	Fim do sub-programa 1
24 END PGM C18 MM	

8.3 Ciclos para fresar caixas, ilhas e ranhuras

Ciclo	Softkey
4 FRESAR CAIXA (rectangular) Ciclo de desbaste sem posicionamento prévio automático	4
212 ACABAMENTO DE CAIXA (rectangular) Ciclo de acabamento, com posicionamento prévio automático, 2ª Distância de segurança	212
213 ACABAMENTO DE ILHA (rectangular) Ciclo de acabamento, com posicionamento prévio automático, 2ª Distância de segurança	213
5 CAIXA CIRCULAR Ciclo de desbaste sem posicionamento prévio automático	5
214 ACABAMENTO DE CAIXA CIRCULAR Ciclo de acabamento com posicionamento prévio automático, 2ª Distância de segurança	214
215 ACABAMENTO DE ILHA CIRCULAR Ciclo de acabamento com posicionamento prévio automático, 2ª Distância de segurança	215
3 FRESADO DE RANHURAS Ciclo de desbaste/acabamento sem posicionamento prévio automático, profundidade de passo vertical	3
210 RANHURA COM INTRODUÇÃO PENDULAR Ciclo de desbaste/acabamento com posicionamento prévio automático, movimento de introdução pendular	210
211 RANHURA CIRCULAR Ciclo de desbaste/acabamento com posicionamento prévio automático, movimento de introdução pendular	211

FRESAR CAIXAS (ciclo 4)

- 1 A ferramenta penetra na peça em posição de partida (centro da caixa) e desloca-se para a primeira profundidade de passo
- 2 A seguir, a ferramenta desloca-se primeiro na direcção positiva do lado mais comprido - em caixas quadradas, na direcção positiva Y e desbasta a caixa de dentro para fora
- 3 Este processo repete-se (1 até 2) até se alcançar a profundidade programada
- 4 No fim do ciclo, o TNC retira a ferramenta para a posição de partida

Antes da programação, deverá ter em conta

Programar a frase de posicionamento sobre o ponto de partida (centro da caixa) no plano de maquinação com correcção de raio R0.

Programar a frase de posicionamento sobre o ponto de partida no eixo da ferrta. (Distância de Segurança sobre a superfície da peça).

O sinal do parâmetro Profundidade determina a direcção da maquinação.

Utilizar uma fresa com dentado frontal cortante no centro (DIN 844) ou pré-furado no centro da caixa.

Para a longitude do 2º lado, há a seguinte condição:longitude do 2º lado maior do que [(2 x raio de arredondamento) + aproximação lateral k].

- Distância de segurança 1 (valor incremental): Distância entre o extremo da ferrta. (posição inicial) e a superfície da peça
- Profundidade de fresagem 2 (valor incremental): distância entre a superfície da peça e a base da caixa
- Profundidade de passo 3 (valor incremental): Medida segundo a qual a ferrta. penetra de cada vez na peça. O TNC desloca-se num só passo quando:
 - A prof.de de passo e a prof. total são iguais
 - A prof. de passo é maior do que a prof. total
- Avanço ao aprofundar: velocidade de deslocação da ferramenta ao aprofundar
- Longitude do lado 1 4: longitude da caixa, paralela ao eixo principal do plano de maquinação
- ▶ Longitude do lado 2 5: largura da caixa
- Avanço F: velocidade de deslocação da ferramenta no plano de maquinação

Exemplo de frases NC:

	-	
27	CYCL DEF 4.0	FRESAR CAIXA
28	CYCL DEF 4.1	DIST 2
29	CYCL DEF 4.2	PROFUNDIDADE -20
30	CYCL DEF 4.3	PASSO 5 F100
31	CYCL DEF 4.4	X80
32	CYCL DEF 4.5	Y60
33	CYCL DEF 4.6	F275 DR+ RAIO 5

•

- Rotação no sentido horário
 DR + : fresagem sincronizada com M3
 DR : fresagem a contra-marcha com M3
- Raio de arredondamento: raio para as esquinas da caixa.
 Para raio = 0 o raio de arredondamento é igual ao raio da ferramenta

Cálculos:

Aproximação lateral $k = K \times R$

- K: Factor de sobreposição, determinado em paraâmetros de máquina 7430
- R: Raio da fresa

ACABAMENTO DE CAIXAS (ciclo 212)

- 1 O TNC desloca a ferramenta automaticamente no seu eixo para a distância de segurança, ou - se tiver sido programado - para a 2ª distância de segurança, e a seguir para o centro da caixa
- 2 A partir do centro da caixa, a ferramenta desloca-se no plano de maquinação para o ponto inicial da maquinação Para o cálculo do ponto inicial, o TNC considera a medida excedente e o raio da ferramenta. Se for necessário, o TNC penetra no centro da caixa
- 3 Se a ferramenta estiver na 2ª distância de segurança, o TNC desloca-se em marcha rápida FMAX para a distância de segurança, e daí com o avanço de aprofundamento para a primeira profundidade de passo
- 4 A seguir, a ferramenta desloca-se tangencialmente para o contorno parcialmente acabado e fresa uma volta em sentido sincronizado
- 5 Depois, a ferramenta sai tangencialmente do contorno para o ponto de partida no plano de maquinação
- 6 Este processo (3 a 5) repete-se até se atingir a profundidade programada
- 7 No fim do ciclo, o TNC desloca a ferramenta em marcha rápida para a distância de segurança, ou - se tiver sido programado - para a 2ª distância de segurança, e a seguir para o centro da caixa (posição inicial = posição de partida)

Antes da programação, deverá ter em conta

O sinal do parâmetro Profundidade determina a direcção da maquinação.

Se você quiser acabar a caixa toda, utilize uma fresa com dentado frontal cortante no centro (DIN 844) e introduza um pequeno avanço para a profundidade de passo

Tamanho mínimo da caixa: o triplo do raio da ferrta.

- 212
- Distância de segurança Q200 (incremental): distância entre a extremidade da ferrta. e a superfície da peça
- Profundidade Q201 (incremental): distância entre a superfície da peça e a base da caixa
- Avanço ao aprofundar Q206: velocidade de deslocação da ferramenta ao aprofundar em mm/min. Quando se penetra a peça, introduz-se um valor pequeno; quando já se desbastou, introduz-se um avanço maior
- Profundidade de passo Q202 (valor incremental): Medida segundo a qual a ferrta. penetra de cada vez na peça; introduzir um valor superior a 0
- Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min
- Coord. da superf. da peça Q203 (valor absoluto): coordenada da superfície da peça
- 2ª distância de segurança Q204 (valor incremental): coordenada no eixo da ferrta. na qual não se pode produzir nenhuma colisão entre a ferrta. e a peça
- Centro do 1º eixo Q216 (valor absoluto): centro da caixa no eixo secundário do plano de maquinação
- Centro do 2º eixo Q217 (valor absoluto): centro da caixa no eixo secundário do plano de maquinação
- Longitude lado 1 Q218 (incremental): longitude da caixa, paralela ao eixo principal do plano de maquinação
- Longitude lado 2 Q219 (incremental): longitude da caixa, paralela ao eixo secundário do plano de maquinação
- Raio da esquina Q220: raio da esquina da caixa. Se não tiver sido programado, o TNC fixa o raio da esquina igual ao raio da ferrta
- Distância de acabado 1º eixo Q221 (incremental): medida excedente no eixo principal do plano de maquinação, referente à longitude da caixa

Exemplo de frases NC:		
34 CYCL DEF 212	ACABAR CAIXA	
Q200=2	;DISTÂNCIA SEGURANÇA	
Q201=-20	; PROFUNDIDADE	
Q206=150	;AVANÇO AO APROFUNDAR	
Q202=5	;PROFUNDIDADE DE PASSO	
Q207=500	;AVANÇO FRESAGEM	
Q203=+0	;COORD. SUPERFÍCIE	
Q204=50	;2ª DIST. SEGURANÇA	
Q216=+50	;CENTRO 1º EIXO	
Q217=+50	;CENTRO 2º EIXO	
Q218=80	;LONGITUDE LADO 1	
Q219=60	;LONGITUDE LADO 2	
Q220=5	;RAIO DA ESQUINA	
0221=0	; MEDIDA EXCEDENTE	

ACABAMENTO DE ILHAS (ciclo 213)

- O TNC desloca a ferrta. no seu eixo para a distância de segurança, ou - se tiver sido programado - para a 2ª distância de segurança, e a seguir para o centro da ilha
- 2 A partir do centro da ilha, a ferramenta desloca-se no plano de maquinação para o ponto inicial da maquinação O ponto inicial encontra-se aprox. a 3,5 vezes do raio da ferrta. à direita da ilha
- 3 Se a ferramenta estiver na 2ª distância de segurança, o TNC desloca a ferramenta em marcha rápida FMAX para a distância de segurança, e daí com o avanço de aprofundamento para a primeira profundidade de passo
- **4** A seguir, a ferramenta desloca-se tangencialmente para o contorno parcialmente acabado e fresa uma volta em sentido sincronizado
- 5 Depois, a ferramenta sai tangencialmente do contorno para o ponto de partida no plano de maquinação
- 6 Este processo (3 a 5) repete-se até se atingir a profundidade programada
- 7 No fim do ciclo, o TNC desloca a ferramenta com FMAX para a distância de segurança, ou - se tiver sido programado - para a 2ª distância de segurança, e a seguir para o centro da ilha (posição inicial = posição de partida)

Antes da programação, deverá ter em conta

O sinal do parâmetro Profundidade determina a direcção da maquinação.

Se você quiser acabar a fresagem da ilha toda, utilize uma fresa com dentado frontal cortante no centro (DIN 844). Introduza um pequeno valor para o avanço ao aprofundar.

- Distância de segurança Q200 (incremental): distância entre a extremidade da ferrta. e a superfície da peça
- Profundidade Q201 (incremental): distância entre a superfície da peça e a base da ilha
- Avanço ao aprofundar Q206: velocidade de deslocação da ferramenta ao deslocar-se em profundidade em mm/min. Quando se penetra a peça, introduz-se um valor pequeno; quando se aprofunda em vazio, introduz-se um valor
- Profundidade de passo Q202 (valor incremental): medida segundo a qual a ferrta. penetra de cada vez na peça. Introduzir um valor superior a 0
- Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min
- Coord. da superf. da peça Q203 (valor absoluto): coordenada da superfície da peça

-		-
35	CYCL DEF 213	ACABAMENTO DE ILHA
	Q200=2	;DISTÂNCIA SEGURANÇA
	Q201=-20	; PROFUNDIDADE
	Q206=150	;AVANÇO AO APROFUNDAR
	Q2O2=5	;PROFUNDIDADE DE PASSO
	Q207=500	;AVANÇO FRESAGEM
	Q2O3=+0	;COORD. SUPERFÍCIE
	Q204=50	;2ª DIST. SEGURANÇA
	Q216=+50	;CENTRO 1º EIXO
	Q217=+50	;CENTRO 2º EIXO
	Q218=80	;LONGITUDE LADO 1
	Q219=60	LONGITUDE LADO 2
	Q220=5	;RAIO DA ESQUINA
	0221=0	:MEDIDA EXCEDENTE

- 2ª distância de segurança Q204 (valor incremental): coordenada no eixo da ferrta. na qual não se pode produzir nenhuma colisão entre a ferrta. e a peça
- Centro do 1º eixo Q216 (valor absoluto): centro da ilha no eixo principal do plano de maquinação
- Centro do 2º eixo Q217 (valor absoluto): centro da ilha no eixo secundário do plano de maquinação
- ▶ Longitude lado 1 Q218 (incremental): longitude da ilha, paralela ao eixo principal do plano de maquinação
- Longitude lado 2 Q219 (incremental): longitude da ilha, paralela ao eixo secundário do plano de maquinação
- ▶ Raio da esquina Q220: raio da esquina da ilha
- Distância de acabado 1º eixo Q221 (valor incremental): medida excedente no eixo principal do plano de maquinação, referente à longitude da ilha

CAIXA CIRCULAR (ciclo 5)

- 1 A ferramenta penetra na peça em posição de partida (centro da caixa) e desloca-se para a primeira profundidade de passo
- 2 A seguir, a ferramenta percorre com o avanço F a trajectória em forma de espiral representada na figura à direita; para aproximação lateral k, ver o ciclo 4 FRESAR CAIXAS
- **3** Este processo repete-se até se alcançar a profundidade programada
- 4 No fim, o TNC retira a ferramenta para a posição de partida

Antes da programação, deverá ter em conta

Programar a frase de posicionamento sobre o ponto de partida (centro da caixa) no plano de maquinação com correcção de raio R0.

Programar a frase de posicionamento sobre o ponto de partida no eixo da ferrta. (Distância de Segurança sobre a superfície da peça).

O sinal do parâmetro Profundidade determina a direcção da maquinação.

Utilizar uma fresa com dentado frontal cortante no centro (DIN 844) ou pré-furado no centro da caixa.

 \bigcirc

- Distância de segurança 1 (valor incremental): Distância entre o extremo da ferrta. (posição inicial) e a superfície da peça
 - Profundidade de fresagem 2 (valor incremental): distância entre a superfície da peça e a base da caixa
 - Profundidade de passo 3 (valor incremental): Medida segundo a qual a ferrta. penetra de cada vez na peça. O TNC desloca-se num só passo quando:
 - A prof.de de passo e a prof. total são iguais
 - A prof. de passo é maior do que a prof. total
 - Avanço ao aprofundar: velocidade de deslocação da ferramenta ao aprofundar
 - Raio do círculo: raio da caixa circular
 - Avanço F: velocidade de deslocação da ferramenta no plano de maquinação
 - ▶ Rotação no sentido horário
 - DR + : fresagem sincronizada com M3
 - DR : fresagem a contra-marcha com M3

Exer	Exemplo de frases NC:			
36	CYCL	DEF	5.0	CAIXA CIRCULAR
37	CYCL	DEF	5.1	2ª DIST.
38	CYCL	DEF	5.2	PROFUNDIDADE -20
39	CYCL	DEF	5.3	PASSO 5 F100
40	CYCL	DEF	5.4	RAIO 40
41	CYCL	DEF	5.5	F250 DR+

ACABAMENTO DE CAIXA CIRCULAR (ciclo 214)

- 1 O TNC desloca a ferramenta automaticamente no seu eixo para a distância de segurança, ou - se tiver sido programado - para a 2ª distância de segurança, e a seguir para o centro da caixa
- 2 A partir do centro da caixa, a ferramenta desloca-se no plano de maquinação para o ponto inicial da maquinação Para o cálculo do ponto inicial, o TNC considera o diâmetro do bloco e o raio da ferramenta. Se você introduzir o diâmetro do bloco com 0, o TNC penetra no centro da caixa
- 3 Se a ferramenta estiver na 2ª distância de segurança, o TNC desloca a ferramenta em marcha rápida FMAX para a distância de segurança, e daí com o avanço de aprofundamento para a primeira profundidade de passo
- 4 A seguir, a ferramenta desloca-se tangencialmente para o contorno parcialmente acabado e fresa uma volta em sentido sincronizado
- 5 Depois, a ferramenta sai tangencialmente do contorno para o ponto de partida no plano de maquinação
- 6 Este processo (3 a 5) repete-se até se atingir a profundidade programada
- 7 No fim do ciclo, o TNC desloca a ferramenta com FMAX para a distância de segurança, ou se tiver sido programado para a 2ª distância de segurança, e a seguir para o centro da caixa (posição final = posição de partida)

Antes da programação, deverá ter em conta

O sinal do parâmetro Profundidade determina a direcção da maquinação.

Se você quiser acabar a caixa toda, utilize uma fresa com dentado frontal cortante no centro (DIN 844) e introduza um pequeno avanço para a profundidade de passo

214

Distância de segurança Q200 (incremental): distância entre a extremidade da ferrta. e a superfície da peça

- Profundidade Q201 (incremental): distância entre a superfície da peça e a base da caixa
- Avanço ao aprofundar Q206: velocidade de deslocação da ferramenta ao aprofundar em mm/min. Quando se penetra a peça, introduz-se um valor pequeno; quando se penetra em vazio, introduz-se um valor maior
- Profundidade de passo Q202 (valor incremental): Medida que a ferrta. penetra de cada vez na peça
- Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min

42	CYCL DEF 214	ACABAR CAIXA CIRCULAR
	Q200=2	;DISTÂNCIA SEGURANÇA
	Q201=-20	; PROFUNDIDADE
	Q206=150	;AVANÇO AO APROFUNDAR
	Q202=5	;PROFUNDIDADE DE PASSO
	Q207=500	;AVANÇO FRESAGEM
	Q203=+0	;COORD. SUPERFÍCIE
	Q204=50	;2ª DIST. SEGURANÇA
	Q216=+50	;CENTRO 1º EIXO
	Q217=+50	;CENTRO 2º EIXO
	Q222=79	;DIÂMETRO DO BLOCO
	0223=80	;DIÂMETRO PECA TERMIN.

- Coord. da superf. da peça Q203 (valor absoluto): coordenada da superfície da peça
- 2ª distância de segurança Q204 (valor incremental): coordenada no eixo da ferrta. na qual não se pode produzir nenhuma colisão entre a ferrta. e a peça
- Centro do 1º eixo Q216 (valor absoluto): centro da caixa no eixo secundário do plano de maquinação
- Centro do 2º eixo Q217 (valor absoluto): centro da caixa no eixo secundário do plano de maquinação
- Diâmetro do bloco Q222: diâmetro da caixa prémaquinada; introduzir diâmetro do bloco (peça em bruto) menor do que o diâmetro da peça terminada
- Diâmetro da peça terminada Q223: diâmetro da caixa terminada; introduzir diâmetro da peça terminada maior do que diâmetro do bloco e maior do que o diâmetro da ferrta.

ACABAMENTO DE ILHA CIRCULAR (ciclo 215)

- 1 O TNC desloca a ferramenta automaticamente no seu eixo para a distância de segurança, ou - se tiver sido programado - para a 2ª distância de segurança, e a seguir para o centro da ilha
- 2 A partir do centro da ilha, a ferramenta desloca-se no plano de maquinação para o ponto inicial da maquinação O ponto inicial encontra-se aprox. a 3,5 vezes do raio da ferrta. à direita da ilha
- 3 Se a ferramenta estiver na 2ª distância de segurança, o TNC desloca a ferramenta em marcha rápida FMAX para a distância de segurança, e daí com o avanço de aprofundamento para a primeira profundidade de passo
- 4 A seguir, a ferramenta desloca-se tangencialmente para o contorno parcialmente acabado e fresa uma volta em sentido sincronizado
- 5 Depois, a ferramenta sai tangencialmente do contorno para o ponto de partida no plano de maquinação
- 6 Este processo (3 a 5) repete-se até se atingir a profundidade programada
- 7 No fim do ciclo, o TNC desloca a ferramenta com FMAX para a distância de segurança, ou - se tiver sido programado - para a 2ª distância de segurança, e a seguir para o centro da ilha (posição final = posição de partida)

215

Antes da programação, deverá ter em conta

O sinal do parâmetro Profundidade determina a direcção da maquinação.

Se você quiser acabar a fresagem da ilha toda, utilize uma fresa com dentado frontal cortante no centro (DIN 844). Introduza um pequeno valor para o avanço ao aprofundar.

- Distância de segurança Q200 (incremental): distância entre a extremidade da ferrta. e a superfície da peça
- Profundidade Q201 (incremental): distância entre a superfície da peça e a base da ilha
- Avanço ao aprofundar Q206: velocidade de deslocação da ferramenta ao aprofundar em mm/min. Quando se penetra a peça, introduz-se um valor pequeno; quando se penetra em vazio, introduz-se um valor maior
- Profundidade de passo Q202 (valor incremental): Medida segundo a qual a ferrta. penetra de cada vez na peça; introduzir um valor superior a 0
- Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min
- Coord. da superf. da peça Q203 (valor absoluto): coordenada da superfície da peça
- 2ª distância de segurança Q204 (valor incremental): coordenada no eixo da ferrta. na qual não se pode produzir nenhuma colisão entre a ferrta. e a peça
- Centro do 1º eixo Q216 (valor absoluto): centro da ilha no eixo principal do plano de maquinação
- Centro do 2º eixo Q217 (valor absoluto): centro da ilha no eixo secundário do plano de maquinação
- Diâmetro do bloco Q222: diâmetro da ilha prémaquinada; introduzir diâmetro do bloco maior do que diâmetro da peça terminada
- Diâmetro da ilha terminada Q223: diâmetro da ilha terminada; introduzir diâmetro da peça terminada menor do que diâmetro da peça em bruto

43	CYCL DEF 215	ACABAR ILHA CIRCULAR
	Q200=2	;DISTÂNCIA SEGURANÇA
	Q201=-20	; PROFUNDIDADE
	Q206=150	;AVANÇO AO APROFUNDAR
	Q202=5	;PROFUNDIDADE DE PASSO
	Q207=500	;AVANÇO FRESAGEM
	Q203=+0	;COORD. SUPERFÍCIE
	Q204=50	;2ª DIST. SEGURANÇA
	Q216=+50	;CENTRO 1º EIXO
	Q217=+50	;CENTRO 2º EIXO
	Q222=81	;DIÂMETRO DO BLOCO
	Q223=80	;DIÂMETRO PEÇA TERMIN.

FRESAR RANHURAS (ciclo 3)

Desbaste

- 1 O TNC desloca a ferrta. segundo a medida excedente de acabamento (metade da diferença entre a largura da ranhura e o diâmetro da ferrta.) para dentro. Daí, a ferrta. penetra na peça e fresa em direcção longitudinal à ranhura
- 2 No fim da ranhura, realiza-se uma profundização e a ferrta. fresa em sentido oposto.

Este processo repete-se até se alcançar a profundidade de fresagem programada

Acabamento

- 3 A ferrta. desloca-se na base da fresa segundo uma trajectória circular tangente ao contorno exterior; depois, o contorno é percorrido em sentido sincronizado ao avanço (com M3)
- 4 A seguir, a ferrta. retira-se em marcha rápida FMAX para a distância de segurança

Quando o número de passos é ímpar, a ferrta. desloca-se na distância de segurança para a posição de partida.

Antes da programação, deverá ter em conta

Programar a frase de posicionamento sobre o ponto de partida no plano de maquinação - centro da ranhura (longitude lado 2) e deslocação na ranhura segundo o raio da ferrta. - com correcção do raio R0.

Programar a frase de posicionamento sobre o ponto de partida no eixo da ferrta. (Distância de Segurança sobre a superfície da peça).

O sinal do parâmetro Profundidade determina a direcção da maquinação.

Utilizar uma fresa com dentado frontal cortante no centro (DIN 844) ou pré-furado no ponto de partida.

Seleccionar o diâmetro da fresa que não seja maior do que a largura da ranhura e que não seja menor do que a metade da largura da ranhura.

- 3
- Distância de segurança 1 (valor incremental):
 Distância entre o extremo da ferrta. (posição inicial) e a superfície da peça
- Profundidade de fresagem 2 (valor incremental): distância entre a superfície da peça e a base da caixa
- Profundidade de passo 3 (valor incremental): medida em que a ferrta. avança; o TNC desloca-se num só passo sobre a profundidade quando:
 A prof.de de passo e a prof. total são iguais
 - A prof. de passo é maior do que a prof. total

8.3 Ciclos p<mark>ara f</mark>resar caixas, ilhas e ranhuras

- Avanço ao aprofundar: velocidade de deslocação da ferramenta ao aprofundar
- Longitude do lado 1 4: longitude da ranhura; determinar o 1º sentido de corte através do sinal
- ▶ Longitude do lado 2 5: largura da ranhura
- Avanço F: velocidade de deslocação da ferramenta no plano de maquinação

RANHURA (Langloch) com introdução pendular (ciclo 210)

Antes da programação, deverá ter em conta

O sinal do parâmetro Profundidade determina a direcção da maquinação.

Seleccionar o diâmetro da fresa que não seja maior do que a largura da ranhura e que não seja menor do que um terço da largura da ranhura.

Seleccionar diâmetro da fresa menor do que metade da longitude da ranhura senão o TNC não pode realizar a introdução pendular.

Desbaste

- 1 O TNC posiciona a ferrta. em marcha rápida no seu eixo sobre a 2ª distância de segurança e a seguir no centro do círculo esquerdo; daí o TNC posiciona a ferrta. na distância de segurança sobre a superfície da peça
- 2 A ferrta. desloca-se com o avanço de fresagem até à superfície da peça; daí a fresa desloca-se em direcção longitudinal da ranhura penetra inclinada na peça - até ao centro do círculo direito
- 3 A seguir, a ferrta. retira-se de novo inclinada para o centro do círculo esquerdo; estes passos repetem-se até se alcançar a profundidade de fresagem programada
- 4 Na profundidade de fresagem programada, o TNC desloca a ferrta. para realizar a fresagem horizontal, até ao outro extremo da ranhura, e depois outra vez para o centro da ranhura

Acabamento

- 5 A partir do centro da ranhura, o TNC desloca a ferrta. tangencialmente para o contorno acabado; depois, o TNC maquina o contorno em sentido sincronizado ao avanço (com M3)
- 6 No fim do contorno, a ferrta. retira-se do contorno tangencialmente - para o centro da ranhura
- 7 A seguir, a ferrta. retira-se em marcha rápida FMAX para a distância de segurança e - se tiver sido programado - para a 2ª distância de segurança

-		
44	CYCL DEF 3.0	FRESAR RANHURA
45	CYCL DEF 3.1	DIST 2
46	CYCL DEF 3.2	PROFUNDIDADE -20
47	CYCL DEF 3.3	PASSO 5 F100
48	CYCL DEF 3.4	X+80
49	CYCL DEF 3.5	Y12
50	CYCL DEF 3.6	F275

- Distância de segurança Q200 (incremental): distância entre a extremidade da ferrta. e a superfície da peça
 - Profundidade Q201 (incremental): distância entre a superfície da peça e a base da ranhura
 - Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min
 - Profundidade de passo Q202 (valor incremental): Medida em que a ferrta. penetra na peça com um movimento pendular no seu eixo
 - Tipo de maquinação (0/1/2) Q215: determinar o tipo de maquinação:
 - 0: Desbaste e acabamento
 - 1: Só desbaste
 - 2: Só acabamento
 - Coord. da superf. da peça Q203 (valor absoluto): coordenada da superfície da peça
 - 2ª distância de segurança Q204 (incremental): Coordenada Z onde não pode produzir-se nenhuma colisão entre ferramenta e peça
 - Centro 1º eixo Q216 (absoluto): centro da ranhura no eixo principal do plano de maquinação
 - Centro 2º eixo Q217 (absoluto): centro da ranhura no eixo secundário do plano de maquinação
 - Longitude lado 1 Q218 (valor paralelo ao eixo principal do plano de maquinação): introduzir lado mais longo da ranhura
 - Longitude lado 2 Q219 (valor paralelo ao eixo secundário do plano de maquinação): introduzir largura da ranhura; Se se introduzir largura da ranhura igual ao diâmetro da ferrta., o TNC só desbaste (fresar oblongo)
 - Ângulo de rotação Q224 (valor absoluto): ângulo em que é rodada toda a ranhura; o centro de rotação situase no centro da ranhura

51	CYCL DEF 210	RANHURA PENDULAR
	Q200=2	;DISTÂNCIA SEGURANÇA
	Q201=-20	; PROFUNDIDADE
	Q207=500	;AVANÇO FRESAGEM
	Q202=5	;PROFUNDIDADE DE PASSO
	Q215=0	;TIPO DE MAQUINAÇÃO
	Q203=+0	;COORD. SUPERFÍCIE
	Q204=50	;2ª DIST. SEGURANÇA
	Q216=+50	;CENTRO 1º EIXO
	Q217=+50	;CENTRO 2º EIXO
	Q218=80	;LONGITUDE LADO 1
	Q219=12	LONGITUDE LADO 2
	0224=+15	; POSICÃO DE ROTACÃO

RANHURA CIRCULAR (oblonga) com introdução pendular (ciclo 211)

Desbaste

- 1 O TNC posiciona a ferrta. no seu eixo sobre a 2ª distância de segurança e a seguir no centro do círculo direito. Daí o TNC posiciona a ferrta. na distância de segurança programada, sobre a superfície da peça
- 2 A ferrta. desloca-se com o avanço de fresagem até à superfície da peça; daí a fresa desloca-se - e penetra inclinada na peça - para o outro extremo da ranhura
- 3 A seguir, a ferrta. retira-se de novo inclinada para o ponto de partida; este processo repete-se (2 a 3) até se alcançar a profundidade de fresagem programada
- 4 Na profundidade de fresagem programada, o TNC desloca a ferrta. para realizar a fresagem horizontal, até ao outro extremo da ranhura

Acabamento

- 5 Para o acabamento da ranhura, o TNC desloca a ferrta. tangencialmente para o contorno acabado. Depois, o TNC faz o acabamento do contorno em sentido sincronizado com o avanço (com M3). O ponto de partida para o processo de acabamento situa-se no centro do círculo direito.
- 6 No fim do contorno, a ferrta. retira-se tangencialmente do contorno
- 7 A seguir, a ferrta. retira-se em marcha rápida FMAX para a distância de segurança e - se tiver sido programado - para a 2ª distância de segurança

Antes da programação, deverá ter em conta

O sinal do parâmetro Profundidade determina a direcção da maquinação.

Seleccionar o diâmetro da fresa que não seja maior do que a largura da ranhura e que não seja menor do que um terço da largura da ranhura.

Seleccionar diâmetro da fresa menor do que metade da longitude da ranhura. Caso contrário, o TNC não pode realizar a introdução pendular

- Distância de segurança Q200 (incremental): distância entre a extremidade da ferrta. e a superfície da peça
 - Profundidade Q201 (incremental): distância entre a superfície da peça e a base da ranhura
 - Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min
 - Profundidade de passo Q202 (valor incremental): Medida em que a ferrta. penetra na peça com um movimento pendular no seu eixo
 - Tipo de maquinação (0/1/2) Q215: determinar o tipo de maquinação:
 - 0: Desbaste e acabamento
 - 1: Só desbaste
 - 2: Só acabamento
 - Coord. da superf. da peça Q203 (valor absoluto): coordenada da superfície da peça
 - 2ª distância de segurança Q204 (incremental): Coordenada Z onde não pode produzir-se nenhuma colisão entre ferramenta e peça
 - Centro 1º eixo Q216 (absoluto): centro da ranhura no eixo principal do plano de maquinação
 - Centro 2º eixo Q217 (absoluto): centro da ranhura no eixo secundário do plano de maquinação
 - Diâmetro do círculo teórico Q244: introduzir diâmetro do círculo teórico
 - Longitude lado 2 Q219: introduzir largura da ranhura; Se se introduzir largura da ranhura igual ao diâmetro da ferrta., o TNC só desbasta (fresar oblongo)
 - Ângulo de partida Q245 (absoluto): introduzir ângulo polar do ponto de partida
 - Ângulo de abertura da ranhura Ω248 (incremental): introduzir ângulo de abertura da ranhura

Exemplo de frases NC:

52	CYCL DEF 211	RANHURA CIRCULAR
	Q200=2	;DISTÂNCIA SEGURANÇA
	Q201=-20	; PROFUNDIDADE
	Q207=500	;AVANÇO FRESAGEM
	Q202=5	;PROFUNDIDADE DE PASSO
	Q215=0	;TIPO DE MAQUINAÇÃO
	Q203=+0	;COORD. SUPERFÍCIE
	Q204=50	;2ª DIST. SEGURANÇA
	Q216=+50	;CENTRO 1º EIXO
	Q217=+50	;CENTRO 2º EIXO
	Q244=80	;DIÂMETRO CÍRCULO TEÓRICO
	Q219=12	;LONGITUDE LADO 2
	Q245=+45	;ÂNGULO INICIAL
	Q248=90	;ÂNGULO DE ABERTURA

Ø

U	BEGIN PGM CZIU MM	
1	BLK FORM 0.1 Z X+0 Y+0 Z-40	Definição do bloco
2	BLK FORM 0.2 X+100 Y+100 Z+0	
3	T00L DEF 1 L+0 R+6	Definição da ferrta. para o desbaste/acabamento
4	TOOL DEF 2 L+0 R+3	Definição da ferrta. para a fresagem da ranhura
5	TOOL CALL 1 Z S3500	Chamada da ferrta. para desbaste/acabamento
6	L Z+250 RO F MAX	Retirar a ferramenta
7	CYCL DEF 213 ACABAMENTO DA ILHA	Definição do ciclo de maquinação exterior
	Q2OO=2 ;DISTÂNCIA SEGURANÇA	
	Q201=-30 ;PROFUNDIDADE	
	Q206=250 ;F AVANÇO AO APROFUNDAR	
	Q2O2=5 ;PROFUNDIDADE DE PASSO	
	Q207=250 ;F FRESAR	
	Q2O3=+O ;COOR. SUPERFÍCIE	
	Q2O4=2O ;2ª DIST. SEGURANÇA	
	Q216=+50 ;CENTRO 1º EIXO	
	Q217=+50 ;CENTRO 2º EIXO	
	Q218=90 ;LONGITUDE LADO 1	
	Q219=80 ;LONGITUDE LADO 2	
	Q220=0 ;RAIO DA ESQUINA	
	Q221=5 ;MEDIDA EXCEDENTE	
8	CYCL CALL M3	Chamada do ciclo de maquinação exterior

as	9	CYCL DEF 5.	O CAI
IL	10	CYCL DEF 5	5.1 2 ^a
þſ	10	CYCL DEF 5	5.1 2 ^a
an	12	CYCL DEF 5	5.3 PA
2	13	CYCL DEF 5	5.4 RA
Φ	14	CYCL DEF 5	5.5 F4
as	15	L Z+2 R0 F	MAX
lh	16	L Z+250 R() F MA
	17	TOOL CALL	2 Z S
JS,	18	CYCL DEF 2	211 RA
.×		Q200=2	;DIST
Sai		Q201=-20	; PROF
Ľ		Q207=250	;F FR
Sal		Q2O2=5	; PROF
ě		Q215=0	;TIPO
÷		Q2O3=+0	;COOR
ra		Q2O4=1OO	;2ª D
09		Q216=+50	;CENT
		Q217=+50	;CENT
ő		Q244=70	;DIÂM
<u>ic</u>			(PRIM
S		Q219=8	;LONG
က်		Q245=+45	;ÂNGU
00		Q248=90	;ÂNGU
	19	CYCL CALL	M3

9	CYCL DEF 5.0 CAIXA CIRCULAR	Definição do ciclo de caixa circular
10	CYCL DEF 5.1 2ª DIST.	
10	CYCL DEF 5.1 2ª DIST.	
12	CYCL DEF 5.3 PASSO 5 F250	
13	CYCL DEF 5.4 RAIO 25	
14	CYCL DEF 5.5 F400 DR+	
15	L Z+2 RO F MAX M99	Chamada do ciclo de caixa circular
16	L Z+250 RO F MAX M6	Troca de ferramenta
17	T00L CALL 2 Z S5000	Chamada da ferramenta para a fresagem da ranhura
18	CYCL DEF 211 RANHURA CIRCULAR	Definição do ciclo Ranhura 1
	Q200=2 ;DISTÂNCIA SEGURANÇA	
	Q201=-20 ;PROFUNDIDADE	
	Q207=250 ;F FRESAR	
	Q2O2=5 ; PROFUNDIDADE DE PASSO	
	Q215=0 ;TIPO MAQUINAÇÃO	
	Q2O3=+O ;COOR. SUPERFÍCIE	
	Q204=100 ;2ª DIST. SEGURANÇA	
	Q216=+50 ;CENTRO 1º EIXO	
	Q217=+50 ;CENTRO 2° EIXO	
	Q244=70 ;DIÂMETRO CÍRCULO TEÓRICO	
	(PRIMITIVO)	
	Q219=8 ;LONGITUDE LADO 2	
	Q245=+45 ;ÂNGULO INICIAL	
	Q248=90 ;ÂNGULO ABERTURA	
19	CYCL CALL M3	Chamada do ciclo ranhura 1
20	FN 0: Q245 = +225	Novo ângulo inicial para a ranhura 2
21	CYCL CALL	Chamada do ciclo da ranhura 2
22	L Z+250 RO F MAX M2	Retirar a ferramenta, fim do programa
23	END PGM C210 MM	

8.4 Ciclos para elaboração de figuras de pontos

O TNC dispõe de 2 ciclos com que você pode elaborar figuras de pontos:

Ciclo	Softkey
220 FIGURA DE PONTOS SOBRE CÍRCULO	²²⁰ ***
221 FIGURA DE PONTOS SOBRE LINHAS	22110000000000000000000000000000000000

Você pode combinar os seguintes ciclos de maquinação com os ciclos 220 e 221:

Ciclo 1 FURAR EM PROFUNDIDADE		
Ciclo 2	ROSCAR com embraiagem	
Ciclo 3	FRESAR RANHURAS	
Ciclo 4	FRESAR CAIXAS	
Ciclo 5	CAIXA CIRCULAR	
Ciclo 17	ROSCAR sem embraiagem- Roscagem rígida	
Ciclo 18	ROSCAR À LÂMINA	
Ciclo 200	FURAR	
Ciclo 201	ALARGAR FURO	
Ciclo 202	MANDRILAR	
Ciclo 203	CICLO DE FURAR UNIVERSAL	
Ciclo 204	REBAIXAMENTO INVERTIDO	
Ciclo 212	ACABAMENTO DE CAIXA	
Ciclo 213	ACABAMENTO DE ILHA	
Ciclo 214	ACABAMENTO DE CAIXA CIRCULAR	
Ciclo 215	ACABAMENTO DE ILHA CIRCULAR	

FIGURA DE PONTOS SOBRE UM CÍRCULO (ciclo 220)

1 O TNC posiciona a ferrta. em marcha rápida desde a posição actual para o ponto de partida da primeira maquinação

Sequência:

- Chegada à 2ª distância de segurança (eixo da ferrta.)
- Chegada ao ponto de partida no plano de maquinação
 Deslocação para a distância de segurança sobre a superfície da peca (eixo da ferramenta)
- 2 A partir desta posição, o TNC executa o último ciclo de maquinação definido
- 3 A seguir, o TNC posiciona a ferrta. segundo um movimento linear sobre o ponto de partida da maquinação seguinte; para isso, a ferrta. encontra-se na distância de segurança (ou 2ª distância de segurança)
- 4 Este processo (1 a 3) repete-se até se executarem todas as maquinações

Antes da programação, deverá ter em conta

O ciclo 220 activa-se com DEF, quer dizer, o ciclo 220 chama automaticamente o último ciclo de maquinação definido!

Se você combinar um dos ciclos de maquinação de 200 a 215 com o ciclo 220, activam-se a distância de segurança, a superfície da peça e a 2ª distância de segurança do ciclo 220!

- Centro 1º eixo Q216 (absoluto): ponto central do círculo teórico no eixo principal do plano de maquinação
- Centro 2º eixo Q217 (absoluto): ponto central do círculo teórico no no eixo secundário do plano de maquinação
- Diâmetro do círculo teórico Q244: diâmetro do círculo teórico
- Ângulo inicial Q245 (absoluto): ângulo entre o eixo principal do plano de maquinação e o ponto inicial (primeiro furo) da primeira maquinação sobre o círculo teórico
- Ângulo final Q246 (valor absoluto): ângulo entre o eixo principal do plano de maquinação e o ponto inicial da última maquinação sobre o círculo teórico (não é válido para círculos completos); introduzir o ângulo final diferente do ângulo inicial; se o ângulo final for maior do que o ângulo inicial, a direcção da maquinação é em sentido anti-horário; caso contrário, é em sentido horário
- Incremento angular Q247 (incremental): ângulo entre dois pontos a maquinar sobre o círculo teórico; se o incremento angular for igual a zero, o TNC calcula o incremento angular a partir do ângulo inicial e do ângulo final; se se introduzir incremento angular, o TNC não considera o ângulo final: o sinal do incremento angular determina a direcção da maquinação (- = sentido horário)

-		-
53	CYCL DEF 220	FIGURA CIRCULAR
	Q216=+50	;CENTRO 1º EIXO
	Q217=+50	;CENTRO 2º EIXO
	Q244=80	;DIÂMETRO CÍRCULO TEÓRICO
	Q245=+0	;ÂNGULO INICIAL
	Q246=+360	;ÂNGULO FINAL
	Q247=+0	;PASSO ANGULAR
	Q241=8	;NÚMERO MAQUINAÇÕES
	Q200=2	;DISTÂNCIA SEGURANÇA
	Q2O3=+0	;COORD. SUPERFÍCIE
	Q204=50	;2ª DIST. SEGURANÇA

- Nº de maquinações (furos) Q241: quantidade de furos (de maquinações) sobre o círculo teórico
- Distância de segurança Q200 (incremental): distância entre a extremidade da ferramenta e a superfície da peça: introduzir valor positivo
- Coord. da superf. da peça Q203 (valor absoluto): coordenada da superfície da peça
- 2ª distância de segurança Q204 (incremental): coordenada no eixo da ferrta. na qual não se pode produzir nenhuma colisão entre a ferrta. e a peça

FIGURA DE PONTOS SOBRE LINHAS (ciclo 221)

Antes da programação, deverá ter em conta

O ciclo 221 activa-se com DEF, quer dizer, o ciclo 221 chama automaticamente o último ciclo de maquinação definido!

Se você combinar um dos ciclos de maquinação de 200 a 215 com o ciclo 221, activam-se a distância de segurança, a superfície da peça e a 2ª distância de segurança do ciclo 221.

1 O TNC posiciona automaticamente a ferrta. desde a posição actual para o ponto de partida da primeira maquinação

Sequência:

- 2. Chegada à 2ª distância de segurança (eixo da ferramenta)
- Chegada ao ponto de partida no plano de maquinação

Deslocação para a distância de segurança sobre a superfície da peça (eixo da ferrta.)

- 2 A partir desta posição, o TNC executa o último ciclo de maquinação definido
- 3 A seguir, o TNC posiciona a ferrta. na direcção positiva do eixo principal sobre o ponto de partida da maquinação seguinte; para isso, a ferrta. encontra-se na distância de segurança (ou 2ª distância de segurança)
- 4 Este processo (1 a 3) repete-se até se executarem todas as maquinações (furos) da primeira linha
- 5 Depois, o TNC desloca a ferrta. para o último furo da segunda linha e executa aí a maquinação
- 6 A partir daí o TNC posiciona a ferrta. na direcção negativa do eixo principal sobre o ponto de partida da maquinação seguinte
- 7 Este processo (6) repete-se até se executarem todas as maquinações (pontos) da segunda linha

- 8 A seguir, o TNC desloca a ferrta. para o ponto de partida da linha seguinte
- **9** Todas as outras linhas são maquinadas em movimento oscilante

- Ponto de partida 1º eixo Q225 (absoluto): coordenada do ponto de partida no eixo principal do plano de maguinação
- Ponto de partida 2º eixo Q226 (absoluto): coordenada do ponto de partida no eixo secundário do plano de maguinação
- Distância 1º eixo Q237 (incremental): distância entre os furos de uma linha
- Distância 2º eixo Q238 (incremental): distância entre as diferentes linhas
- ▶ Nº de colunas Q242: quantidade de furos (de maquinações) sobre uma linha
- ▶ Nº de linhas Q243: quantidade de linhas
- Ângulo de rotação Q224 (valor absoluto): ângulo em que é rodada toda a ranhura; o centro de rotação situase no centro da ranhura
- Distância de segurança Q200 (incremental): distância entre a extremidade da ferrta. e a superfície da peça
- Coord. da superf. da peça Q203 (valor absoluto): coordenada da superfície da peça
- 2ª distância de segurança Q204 (valor incremental): coordenada no eixo da ferrta. na qual não se pode produzir nenhuma colisão entre a ferrta. e a peça

54	CYCL DEF 221	FIGURA LINHAS
	Q225=+15	;PONTO DE PARTIDA 1º EIXO
	Q226=+15	;PONTO DE PARTIDA 2º EIXO
	Q237=+10	;DISTÂNCIA 1º EIXO
	Q238=+8	;DISTÂNCIA 2º EIXO
	Q242=6	;NÚMERO DE COLUNAS
	Q243=4	;NÚMERO DE LINHAS
	Q224=+15	;POSIÇÃO DE ROTAÇÃO
	Q200=2	;DISTÂNCIA SEGURANÇA
	Q203=+0	;COORD. SUPERFÍCIE
	Q204=50	;2ª DIST. SEGURANÇA

0	BEGIN PGM CIRCEM MM	
1	BLK FORM 0.1 Z X+0 Y+0 Z-40	Definição do bloco
2	BLK FORM 0.2 X+100 Y+100 Z+0	
3	TOOL DEF 1 L+0 R+3	Definição da ferramenta
4	TOOL CALL 1 Z S3500	Chamada da ferramenta
5	L Z+250 RO F MAX M3	Retirar a ferramenta
6	CYCL DEF 200 FURAR	Definição do ciclo de Furar
	Q200=2 ;DISTÂNCIA SEGURANÇA	
	Q201=-15 ;PROFUNDIDADE	
	Q206=250 ;F AVANÇO AO APROFUNDAR	
	Q2O2=4 ; PASSO DE APROFUNDAMENTO	
	Q210=0 ;TEMPO ESPERA	
	Q2O3=+O ;COOR. SUPERFÍCIE	
	Q204=0 ;2ª DIST. SEGURANÇA	

7 CYCL DEF 220 FIGURA CIRCULAR	Definição do ciclo Círculo de pontos 1, CYCL 220 chama-se automat.
Q216=+30 ;CENTRO 1º EIXO	Actuam Q200, Q203 e Q204 do ciclo 220
Q217=+70 ;CENTRO 2° EIXO	
Q244=50 ;DIÂMETRO CÍRCULO TEÓRICO	
(PRIMITIVO)	
Q245=+0 ;ÂNGULO INICIAL	
Q246=+360 ;ÂNGULO FINAL	
Q247=+0 ;PASSO ANGULAR	
Q241=10 ;NÚMERO DE MAQUINAÇÕES	
Q200=2 ;DISTÂNCIA SEGURANÇA	
Q2O3=+O ;COOR. SUPERFÍCIE	
Q2O4=100 ;2ª DIST. SEGURANÇA	
8 CYCL DEF 220 FIGURA CIRCULAR	Definição do ciclo Círculo de pontos 2, CYCL 200 chama-se automat.
Q216=+90 ;CENTRO 1° EIXO	Actuam Q200, Q203 e Q204 do ciclo 220
Q217=+25 ;CENTRO 2° EIXO	
Q244=70 ;DIÂMETRO CÍRCULO TEÓRICO	
(PRIMITIVO)	
Q245=+90 ;ÂNGULO INICIAL	
Q246=+360 ;ÂNGULO FINAL	
Q247=30 ;PASSO ANGULAR	
Q241=5 ;NÚMERO DE MAQUINAÇÕES	
Q200=2 ;DISTÂNCIA SEGURANÇA	
Q2O3=+O ;COOR. SUPERFÍCIE	
Q2O4=100 ;2ª DIST. SEGURANÇA	
9 L Z+250 RO F MAX M2	Retirar a ferramenta, fim do programa
10 END PGM CTRCEM MM	

8.5 Ciclos SL

Com os ciclos SL pode-se maquinar contornos difíceis, para se obter uma elevada qualidade de superfície.

Características do contorno

- Um contorno total pode compor-se por vários sub-contornos sobrepostos (até 12). Qualquer caixa ou ilha formam assim os sub-contornos
- Você introduz a lista dos sub-contornos (números de subprogramas) no ciclo 14 CONTORNO. O TNC calcula o contorno total que formam os sub-contornos
- Você introduz os sub-contornos como sub-programas.
- A memória de um ciclo SL é limitada. Os sub-prgramas não podem conter no total mais de p.ex. 128 frases lineares

Características dos sub-prograams

- São possíveis as conversões de coordenadas
- O TNC ignora avanços F e funções auxiliares M
- O TNC caracteriza uma caixa se você percorrer o contorno por dentro, p.ex. descrição do contorno em sentido horário com correcção de raio RR
- O TNC caracteriza uma ilha se você percorrer o contorno por fora, p.ex. descrição do contorno em sentido horário com correcção de raio RL
- Os sub-programas não podem conter nenhuma coordenada no eixo da ferrta.
- Na primeira frase de coordenadas do sub-programa, você determina o plano de maquinação. São permitidos eixos auxiliares U,V,W

Características dos ciclos de maquinação

- O TNC posiciona-se automaticamente antes de cada ciclo na distância de segurança
- Cada nível de profundidade é fresado sem levantamento da ferrta.; as ilhas maquinam-se lateralmente.
- O raio de "esquinas interiores" é programável a ferrta. não pára, evita-se marcas de corte (válido para a trajectória mais exterior em desbaste e em acabamento lateral)
- Em acabamento lateral, o TNC efectua a chegada ao contorno segundo uma trajectória circular tangente
- Em acabamento em profundidade, o TNC desloca a ferrta. também segundo uma trajectória circular tangente à peça (p.ex.: eixo da ferrta. Z: trajectória circular no plano Z/X)
- O TNC maquina o contorno de forma contínua em sentido sincronizado ou em sentido contrário

Com MP7420, você determina onde o TNC posiciona a ferta. no fim dos ciclos 21 até 24.

Você introduz as indicações de cotas para a maquinação, tais como profundidade de fresagem, medidas excedentes e distância de segurança, centralmente no ciclo 20 como DADOS DO CONTORNO.

Resumo: Ciclos SL

25 TRAÇADO DO CONTORNO

27 SUPERFÍCIE CILÍNDRICA

Ciclo	Softkey
14 CONTORNO (absolutamente necessário)	14 LBL 1N
20 DADOS DO CONTORNO (absolutamente necessário) 20 DADOS DO CONTORNO
21 PRÉ-FURAR (utilizável como opção)	21
22 DESBASTE (absolutamente necessário)	
23 ACABAMENTO EM PROF. (utilizável como opção)	23
24 ACABAMENTO LATERAL (utilizável como opção)	24
Outros ciclos:	
Ciclo	Softkey

25 MSTA

27

Esquema: trabalhar com ciclos SL

O BEGIN PGM SL2 MM
12 CYCL DEF 14.0 CONTORNO
13 CYCL DEF 20.0 DADOS DO CONTORNO
16 CYCL DEF 21.0 PRÉ-FURAR
17 CYCL CALL
•••
18 CYCL DEF 22.0 DESBASTE
19 CYCL CALL
•••
22 CYCL DEF 23.0 PROFUNDIDADE ACABAMENTO
23 CYCL CALL
•••
26 CYCL DEF 24.0 ACABAMENTO LATERAL
27 CYCL CALL
•••
50 L Z+250 RO FMAX M2
51 LBL 1
•••
55 LBL 0
56 LBL 2
•••
60 LBL 0
•••
99 END PGM SL2 MM

CONTORNO (ciclo 14)

No ciclo 14 CONTORNO você faz a listagem de todos os subprogramas que devem ser sobrepostos para formarem um contorno completo.

Antes da programação, deverá ter em conta

O ciclo 14 activa-se com DEF, quer dizer, actua a partir da sua definição no programa.

No ciclo 14, você pode fazer a listagem até um máximo de 12 sub-programas (sub-contornos).

Números Label para o contorno: introduzir todos os LBL 1...N números Label de cada sub-programa e que se sobrepõem num contorno. Confirmar cada número com a tecla ENT e terminar as introduções com a tecla END.

Exemplo de frases NC:

55 CYCL DEF 14.0 CONTORNO 56 CYCL DEF 14.1 LABEL CONTORNO 1 /2 /3

Contornos sobrepostos

Você pode sobrepor caixas e ilhas num novo contorno. Você pode assim aumentar uma superfície de caixa por meio de uma caixa sobreposta ou diminuir por meio de uma ilha.

Sub-programas: caixas sobrepostas

Os seguintes exemplos de programação são sub-[b] programas de contorno, chamados num programa principal do ciclo 14 CONTORNO.

As caixas A e B sobrepõem-se.

OTNC calcula os pontos de intersecção S1 e S2, pelo que não há que programá-los.

As caixas estão programadas como círculos completos.

Sub-programa 1: caixa esquerda

51	LBL 1
52	L X+10 Y+50 RR
53	CC X+35 Y+50
54	C X+10 Y+50 DR-
55	LBL 0

Sub-programa 2: caixa direita

56	LBL 2
57	L X+90 Y+50 RR
58	CC X+65 Y+50
59	C X+90 Y+50 DR-
60	LBL 0

8.5 Ciclos SI

Superfície resultante da "soma"

Maquinam-se ambas as superfícies parciais A e B incluindo a superfície comum:

As superfícies A e B têm que ser caixas.

A primeira caixa (no ciclo 14) deverá começar fora da segunda.

Superfície A:

51 LBL 1	
52 L X+10 Y+50 RR	
53 CC X+35 Y+50	
54 C X+10 Y+50 DR-	
55 LBL 0	

Superfície B:

56	LBL 2
57	L X+90 Y+50 RR
58	CC X+65 Y+50
59	C X+90 Y+50 DR-
60	LBL 0

Superfície da "diferença"

Maquina-se a superfície A sem a parte que é comum a B:

A superfície A tem que ser uma caixa e a B uma ilha.

A tem que começar fora de B.

Superfície A:

51 LBL 1
52 L X+10 Y+50 RR
53 CC X+35 Y+50
54 C X+10 Y+50 DR-
55 LBL 0

Superfície B:

57 I X+00 V+50 PI	
58 CC X+65 Y+50	
59 C X+90 Y+50 DR-	
60 LBL 0	

8.5 Ciclos SL

Superfície de "intersecção"

Maquina-se a parte comum de A e B (as superfícies não comuns ficam simplesmente sem se maquinar)

A e B têm que ser caixas.

A deve começar dentro de B.

Superfície A:

51	LBL 1
52	L X+60 Y+50 RR
53	CC X+35 Y+50
54	C X+60 Y+50 DR-
55	LBL 0

Superfície B:

56	LBL 2
57	L X+90 Y+50 RR
58	CC X+65 Y+50
59	C X+90 Y+50 DR-
60	LBL 0

DADOS DO CONTORNO (ciclo 20)

No ciclo 20 você indica as informações da maquinação para os subprogramas com os contornos parciais.

Antes da programação, deverá ter em conta

O ciclo 20 activa-se com DEF, quer dizer, actua a partir da sua definição no programa de maquinação.

O sinal do parâmetro Profundidade determina a direcção da maquinação.

As informações sobre a maquinação, indicadas no ciclo 20, são válidas para os ciclos 21 a 24.

Se você utilizar ciclos SL em programas com parâmetros Q, não pode utilizar os parâmetros Q1 a Q9 como parâmetros do programa.

- 20 DADOS DO CONTORNO
- Profundidade de fresagem Q1 (valor incremental): distância entre a superfície da peça e a base da caixa.
- Factor de sobreposição em trajectória Q2: Q2 x raio da ferrta. dá como resultado a aproximação lateral k.
- Medida exced. acabamento lateral Q3 (incremental): medida excedente de acabamento no plano de maquinação.
- Medida exced. acabamento em profundiadde Q4 (incremental): medida exced. de acabamento para a profundidade.
- Coordenada da superfície da peça Q5 (valor absoluto): coordenada absoluta da superfície da peça

- Distância de segurança Q6 (incremental): distância entre o extremo da ferrta. e a superfície da peça
- Altura de segurança Q7 (absoluto): altura absoluta onde não pode produzir-se nenhuma colisão com a peça (para posicionamento intermédio e retrocesso no fim do ciclo)
- Raio interior de arredondamento Q8: raio de arredondamento em "esquinas" interiores; o valor programado refere-se à trajectória do ponto central da ferrta.
- ▶ Sentido de rotação ? Sentido horário = -1 Q9: direcção de maquinação para caixas
 ■ no sentido horário (Q9 = -1 contra-marcha para caixa e ilha)

no sentido anti-horário (Q9 = +1 sincronizado para caixa e ilha)

Numa interrupção do programa, você pode verificar e se necessário escrever por cima os parâmetros de maquinação.

57	CYCL DEF	20.0 DADOS DO CONTORNO	
	Q1=-20	;PROFUNDIDADE DE FRESAGEM	
	Q2 =1	;SOBREPOSIÇÃO TRAJECTÓRIA	
	Q3=+0.2	;MEDIDA EXC. LATERAL	
	Q4=+0.1	;MEDIDA EXC. PROFUNDIDADE	
	Q5 =+ 0	;COORD. SUPERFÍCIE	
	Q6 =+2	;DISTÂNCIA SEGURANÇA	
	Q7 =+50	;ALTURA SEGURANÇA	
	Q8=0.5	;RAIO DE ARREDONDAMENTO	
	Q9 =+1	;SENTIDO DE ROTAÇÃO	

PRÉ-FURAR (ciclo 21)

Para o cálculo dos pontos de inserção, o TNC não considera um valor delta DR que tenha sido programado na frase TOOL CALL.

Desenvolvimento do ciclo

Como no ciclo 1 Furar em Profundidade (ver capítulo "8.2 Ciclos de furar").

Aplicação

O ciclo 21 PRÉ-FURAR considera para os pontos de penetração a medida excedente de acabamento lateral e a medida excedente de acabamento em profundidade, bem como o raio da ferrta. de desbaste. Os pontos de penetração são também pontos de partida para o desbaste.

Profundidade de passo Q10 (valor incremental): Medida segundo a qual a ferrta. penetra de cada vez na peça (sinal"-" quando a direcção de maquinação é negativa)

- Avanço ao aprofundar Q11: avanço ao furar em mm/min
- Número da ferrta. de desbaste Q13: número da ferrta. de desbaste

58	CYCL DEF	21.0 PRÉ-FURAR
	Q10=+5	;PROFUNDIDADE DE PASSO
	Q11=100	;AVANÇO AO APROFUNDAR
	Q13=1	;FERRTA. DE DESBASTE

DESBASTE (ciclo 22)

- 1 OTNC posiciona a ferrta. sobre o ponto de penetração; para isso, tem-se em conta a medida excedente de acabamento lateral
- **2** Na primeira profundidade de passo, a ferrta. fresa o contorno de dentro para fora com o avanço de fresagem Q12
- **3** Para isso, fresam-se livremente os contornos da ilha (aqui: C/D) com uma aproximação ao contorno da caixa (aqui: A/B)
- **4** A seguir, o TNC faz o acabamento do contorno e retira a ferrta. para a altura de segurança

Antes da programação, deverá ter em conta

Se necessário, utilizar uma fresa com dentado frontal cortante no centro (DIN 844) ou pré-furar no ponto de partida.

22

Profundidade de passo Q10 (valor incremental): Medida segundo a qual a ferrta. penetra de cada vez na peça

- Avanço ao aprofundar Q11: avanço ao aprofundar em mm/min
- Avanço para desbaste Q12: avanço de fresagem em mm/min

Número de ferrta. para desbaste prévio Q18: número da ferrta. com que o TNC já efectuou desbaste prévio. Se não tiver efectuado um desbaste prévio, introduza "0"; se você introduzir aqui um número, o TNC só desbasta a parte que não pôde ser maquinada com a ferrta. de desbaste prévio. Se não se quiser fazer a aproximação lateral ao campo de desbaste posterior, o TNC penetra de forma

pendular; para isso, você deve definir na tabela de ferrtas. TOOL.T (ver capítulo 5.2) a longitude da lâmina LCUTS e o ângulo máximo de aprofundamento ANGLE da ferrta. Se necessário, o TNC emite um aviso de erro

Avanço pendular Q19: avanço oscilante em mm/min

59	CYCL DEF	22.0 DESBASTE	
	Q10=+5	;PROFUNDIDADE DE PASSO	
	Q11=100	;AVANÇO AO APROFUNDAR	
	Q12=350	;AVANÇO PARA DESBASTE	
	Q18=1	;FERRTA. DE PRÉ-DESBASTE	
	Q19=150	;AVANÇO PENDULAR	

ACABAMENTO EM PROFUNDIDADE (ciclo 23)

O TNC calcula automaticamente o ponto inicial para o acabamento. O ponto inicial depende das proporções de espaco da caixa.

O TNC desloca a ferrta. suavemente (círculo tangente vertical) para a superfície a maguinar. A seguir, fresa-se a distância de acabamento que ficou do desbaste.

► Avanco ao aprofundar Q11: velocidade de deslocação da ferrta, ao aprofundar

► Avanco para desbaste Q12: avanco de fresagem

Exemplo de frases NC:

60	CYCL DEF 23	.O PROFUNDIDADE ACABAMENTO	
	Q11=100	;AVANÇO AO APROFUNDAR	
	012=350	; AVANCO PARA DESBASTE	

ACABAMENTO LATERAL (ciclo 24)

O TNC desloca a ferrta. segundo uma trajectória circular tangente aos contornos parciais. Cada contorno parcial é acabado em separado.

Antes da programação, deverá ter em conta

A soma da medida excedente do acabamento lateral (Q14) e do raio da ferrta, de acabamento tem que ser menor do que a soma da medida excedente de acabamento lateral (Q3, ciclo 20) e o raio da ferrta. de desbaste.

Se você executar o ciclo 24 sem ter primeiro desbastado o ciclo 22, também é válido o cálculo apresentado em cima; o raio da ferrta. de desbaste tem, neste caso, o valor "0".

O TNC calcula automaticamente o ponto inicial para o acabamento. O ponto inicial depende das proporções de espaco da caixa.

b

Sentido de rotação ? Sentido horário = -1 Q9: Direcção da maguinação:

- +1: Rotação em sentido anti-horário
- -1: Rotação em sentido horário
- ▶ Profundidade de passo Q10 (valor incremental): Medida segundo a qual a ferrta. penetra de cada vez na peca
- ► Avanco ao aprofundar Q11: avanco para penetração
- ► Avanco para desbaste Q12: avanco de fresagem
- ▶ Medida excedente de acabamento lateral Q14 (incremental): medida excedente para vários acabamentos: o último acabamento é desbastado se você introduzir Q14=0

61	CYCL DEF 24.0) ACABAMENTO LATERAL
	Q9=+1	;SENTIDO DE ROTAÇÃO
	Q10=+5	; PROFUNDIDADE DE PASSO
	Q11=100	;AVANÇO AO APROFUNDAR
	Q12=350	;AVANÇO PARA DESBASTE
	Q14=+0	;MEDIDA EXC. LATERAL

TRAÇADO DO CONTORNO (ciclo 25)

Com este ciclo pode-se maquinar juntamente com o ciclo 14 CONTORNO contornos "abertos": o princípio e o fim do contorno não coincidem.

O ciclo 25 TRAÇADO DO CONTORNO oferece consideráveis vantagens em comparação com a maquinação de um contorno aberto com frases de posicionamento:

- O TNC vigia a maquinação relativamente a danos no contorno. Verificar o contorno com o gráfico de testes
- Se o raio da ferrta. for demasiado grande, o contorno que, se necessário voltar a ser maquinado nas esquinas interiores
- A maquinação executa-se de forma contínua, sincronizada ou em contra-marcha. O tipo de fresagem mantém-se inclusive quando de se espelham contornos
- Com várias profundidades de passo, o TNC pode deslocar a ferrta. em ambos os sentidos. Desta forma, a maquinação é mais rápida
- Você pode introduzir medidas excedentes para desbastar e acabar, com vários passos de maguinação

Antes da programação, deverá ter em conta

O sinal do parâmetro Profundidade determina a direcção da maquinação.

O TNC considera apenas o primeiro Label do ciclo 14 CONTORNO.

A memória de um ciclo SL é limitada. Você pode p.ex. programar num ciclo SL até um máx. de 128 frases lineares.

Não é necessário o ciclo 20 DADOS DO CONTORNO.

As posições em cotas incrementais programadas directamente depois do ciclo 25 referem-se à posição da ferrta. no fim do ciclo.

- Profundidade Q1 (incremental): distância entre a superfície da peça e a base do contorno
- Medida exced. acabamento lateral Q3 (incremental): medida excedente no plano de maquinação
- Coord. Superfície da peça Q5 (valor absoluto): coordenada absoluta da superfície da peça referente ao zero peça
- Altura de segurança Q7 (absoluto): altura absoluta onde não pode produzir-se nenhuma colisão entre a ferrta. e a peça; posição de retrocesso da ferrta. no fim do ciclo
- Profundidade de passo Q10 (valor incremental): Medida segundo a qual a ferrta. penetra de cada vez na peça
- Avanço ao aprofundar Q11: avanço de deslocação no eixo da ferrta.
- Avanço ao fresar Q12: avanço de deslocação no plano de maquinação
- Tipo de fresagem ? Contra-marcha = -1 Q15: Fresagem sincronizada: Introdução = +1
 Fresagem em contra-marcha: Introdução = -1
 Mudando de fresagem sincronizada para fresagem em contra-marcha com várias aproximações: Introdução = 0

62	CYCL DEF	25.0 TRAÇADO DO CONTORNO
	Q1=-20	;PROFUNDIDADE DE FRESAGEM
	Q3=+0	;MEDIDA EXC. LATERAL
	Q5=+0	;COORD. SUPERFÍCIE
	Q7=+50	;ALTURA SEGURANÇA
	Q10=+5	;PROFUNDIDADE DE PASSO
	Q11=100	;AVANÇO AO APROFUNDAR
	Q12=350	;AVANÇO FRESAGEM
	Q15=+1	;TIPO DE FRESAGEM
SUPERFÍCIE CILÍNDRICA (ciclo 27)

8.5 Ciclos SL

â

O fabricante da máquina deve preparar a máquina e o 7 TNC para o ciclo 27 SUPERFÍCIE CILÍNDRICA

Com este ciclo, você pode maquinar um contorno cilíndrico previamente programado segundo o desenvolvimento desse cilindro.

Você descreve o contorno num sub-programa determinado no ciclo 14 (CONTORNO).

O sub-programa contém as coordenadas dum eixo angular (p.ex.eixo C) e do eixo paralelo (p.ex. eixo da ferrta.). Como funções para programar trajectórias, dispõe-se de L, CHF, CR E RND

Você pode introduzir as indicações no eixo angular tanto em graus como em mm (inch - polegadas)(determinar com definição de ciclo)

Antes da programação, deverá ter em conta

A memória de um ciclo SL é limitada. Você pode p.ex. programar num ciclo SL até um máx. de 128 frases lineares.

O sinal do parâmetro Profundidade determina a direcção da maquinação.

Utilizar uma fresa com dentado frontal cortante no centro (DIN 844).

O cilindro deve estar fixado no centro da mesa rotativa

O eixo da ferrta. deverá deslocar-se perpendicularmente ao eixo da mesa rotativa. Se não for assim, o TNC emite um aviso de erro.

Posicionar previamente a ferrta. no eixo X (com eixo da ferrta. Y) antes da chamada de ciclo sobre o centro da mesa rotativa.

Você também pode executar este ciclo com plano de maquinação inclinado.

O TNC verifica se a trajectória corrigida e não corrigida da ferramenta se encontra no campo de visualização do eixo rotativo e que está definido no parâmetro de máquina 810.x . Com aviso de erro "Erro de programação de contorno" se necessário fixar memorizar MP 810.x = 0.

- 27
- Profundidade de fresagem Q1 (incremental): distância entre a superfície cilíndrica e a base do contorno
- Medida exced. acabamento lateral Q3 (incremental): medida excedente de acabamento no plano do desenvolvimento do cilindro
- Distância de segurança Q6 (incremental): distância entre o extremo da ferrta. e a superfície cilíndrica
- Profundidade de passo Q10 (valor incremental): Medida segundo a qual a ferrta. penetra de cada vez na peça
- Avanço ao aprofundar Q11: avanço de deslocação no eixo da ferrta.
- Avanço ao fresar Q12: avanço de deslocação no plano de maquinação
- Raio do cilindro Q16: raio do cilindro sobre o qual se maquina o contorno
- Tipo de cotização ? Graus =0 MM/POLEGADA=1 Q17: programar as coordenadas do eixo rotativo no suprograma em graus ou mm (poleg.)

Exemplo de frases NC:

63	CYCL DEF	27.0 SUPERF. CILÍNDRICA
	Q1=-8	;PROFUNDIDADE DE FRESAGEM
	Q3=+0	;MEDIDA EXC. LATERAL
	Q6=+0	;DISTÂNCIA SEGURANÇA
	Q10=+3	;PROFUNDIDADE DE PASSO
	Q11=100	;AVANÇO AO APROFUNDAR
	Q12=350	;AVANÇO FRESAGEM
	Q16=25	;RAIO
	Q17=0	;TIPO DE COTIZAÇÃO

Exemplo: desbaste e acabamento posterior de uma caixa

0	BEGIN PGM C20 MM	
1	BLK FORM 0.1 Z X-10 Y-10 Z-40	
2	BLK FORM 0.2 X+100 Y+100 Z+0	Definição do bloco
3	TOOL DEF 1 L+0 R+15	Definição da ferrta. para o desbaste prévio
4	TOOL DEF 2 L+0 R+7,5	Definição da ferrta. para o desbaste posterior
5	TOOL CALL 1 Z S2500	Chamada da ferrta. para o desbaste prévio
6	L Z+250 RO F MAX	Retirar a ferramenta
7	CYCL DEF 14.0 CONTORNO	Determinar o sub-programa do contorno
8	CYCL DEF 14.1 LABEL CONTORNO 1	
9	CYCL DEF 20.0 DADOS DO CONTORNO	Determinar os parâmetros gerais de maquinação
	Q1=-20 ;PROFUNDIDADE DE FRESAGEM	
	Q2=1 ;SOBREPOSIÇÃO TRAJECTÓRIA	
	Q3=+0 ;MEDIDA EXC. LATERAL	
	Q4=+0 ;MEDIDA EXC. PROFUNDIDADE	
	Q5=+0 ;COORD. SUPERFÍCIE	
	Q6=2 ;DISTÂNCIA SEGURANÇA	
	Q7=+100 ;ALTURA SEGURANÇA	
	Q8=0,1 ;RAIO DE ARREDONDAMENTO	
	09=-1 :SENTIDO DE ROTACÃO	

10	CYCL DEF 22.0 DESBASTE	Definição do ciclo de desbaste prévio
	Q10=5 ;PROFUNDIDADE DE PASSO	
	Q11=100 ;AVANÇO AO APROFUNDAR	
	Q12=350 ; AVANÇO PARA DESBASTE	
	Q18=0 ; FERRTA. DE PRÉ-DESBASTE	
	Q19=150 ;AVANÇO PENDULAR	
11	CYCL CALL M3	Chamada do ciclo de desbaste prévio
12	L Z+250 RO F MAX M6	Troca de ferramenta
13	T00L CALL 2 Z S3000	Chamada da ferrta. para o desbaste posterior
14	CYCL DEF 22.0 DESBASTE	Definição do ciclo desbaste posterior
	Q10=5 ; PROFUNDIDADE DE PASSO	
	Q11=100 ;AVANÇO AO APROFUNDAR	
	Q12=350 ;AVANÇO PARA DESBASTE	
	Q18=1 ;FERRTA. DE PRÉ-DESBASTE	
	Q19=150 ;AVANÇO PENDULAR	
15	CYCL CALL M3	Chamada do ciclo desbaste posterior
16	L Z+250 RO F MAX M2	Retirar a ferramenta, fim do programa
17	LBL 1	Sub-programa do contorno
17 18	LBL 1 L X+0 Y+30 RR	Sub-programa do contorno (Ver FK 2º exemplo no capítulo "6.6 Tipos de trajectórias" -
17 18 19	LBL 1 L X+0 Y+30 RR FC DR- R30 CCX+30 CCY+30	Sub-programa do contorno (Ver FK 2º exemplo no capítulo "6.6 Tipos de trajectórias" - Livre programação de contornos FK"
17 18 19 20	LBL 1 L X+0 Y+30 RR FC DR- R30 CCX+30 CCY+30 FL AN+60 PDX+30 PDY+30 D10	Sub-programa do contorno (Ver FK 2º exemplo no capítulo "6.6 Tipos de trajectórias" - Livre programação de contornos FK"
17 18 19 20 21	LBL 1 L X+O Y+3O RR FC DR- R3O CCX+3O CCY+3O FL AN+6O PDX+3O PDY+3O D1O FSELECT 3	Sub-programa do contorno (Ver FK 2º exemplo no capítulo "6.6 Tipos de trajectórias" - Livre programação de contornos FK"
17 18 19 20 21 22	LBL 1 L X+0 Y+30 RR FC DR- R30 CCX+30 CCY+30 FL AN+60 PDX+30 PDY+30 D10 FSELECT 3 FPOL X+30 Y+30	Sub-programa do contorno (Ver FK 2º exemplo no capítulo "6.6 Tipos de trajectórias" - Livre programação de contornos FK"
17 18 19 20 21 22 23	LBL 1 L X+O Y+3O RR FC DR- R3O CCX+3O CCY+3O FL AN+6O PDX+3O PDY+3O D1O FSELECT 3 FPOL X+3O Y+3O FC DR- R2O CCPR+55 CCPA+60	Sub-programa do contorno (Ver FK 2º exemplo no capítulo "6.6 Tipos de trajectórias" - Livre programação de contornos FK"
17 18 19 20 21 22 23 24	LBL 1 L X+O Y+3O RR FC DR- R3O CCX+3O CCY+3O FL AN+6O PDX+3O PDY+3O D1O FSELECT 3 FPOL X+3O Y+3O FC DR- R2O CCPR+55 CCPA+60 FSELECT 2	Sub-programa do contorno (Ver FK 2º exemplo no capítulo "6.6 Tipos de trajectórias" - Livre programação de contornos FK"
17 18 19 20 21 22 23 24 25	LBL 1 L X+O Y+3O RR FC DR- R3O CCX+3O CCY+3O FL AN+6O PDX+3O PDY+3O D1O FSELECT 3 FPOL X+3O Y+3O FC DR- R2O CCPR+55 CCPA+60 FSELECT 2 FL AN-12O PDX+3O PDY+3O D10	Sub-programa do contorno (Ver FK 2º exemplo no capítulo "6.6 Tipos de trajectórias" - Livre programação de contornos FK"
17 18 19 20 21 22 23 24 25 26	LBL 1 L X+0 Y+30 RR FC DR- R30 CCX+30 CCY+30 FL AN+60 PDX+30 PDY+30 D10 FSELECT 3 FPOL X+30 Y+30 FC DR- R20 CCPR+55 CCPA+60 FSELECT 2 FL AN-120 PDX+30 PDY+30 D10 FSELECT 3	Sub-programa do contorno (Ver FK 2º exemplo no capítulo "6.6 Tipos de trajectórias" - Livre programação de contornos FK"
17 18 19 20 21 22 23 24 25 26 27	LBL 1 L X+0 Y+30 RR FC DR- R30 CCX+30 CCY+30 FL AN+60 PDX+30 PDY+30 D10 FSELECT 3 FPOL X+30 Y+30 FC DR- R20 CCPR+55 CCPA+60 FSELECT 2 FL AN-120 PDX+30 PDY+30 D10 FSELECT 3 FC X+0 DR- R30 CCX+30 CCY+30	Sub-programa do contorno (Ver FK 2º exemplo no capítulo "6.6 Tipos de trajectórias" - Livre programação de contornos FK"
17 18 19 20 21 22 23 24 25 26 27 28	LBL 1 L X+0 Y+30 RR FC DR- R30 CCX+30 CCY+30 FL AN+60 PDX+30 PDY+30 D10 FSELECT 3 FPOL X+30 Y+30 FC DR- R20 CCPR+55 CCPA+60 FSELECT 2 FL AN-120 PDX+30 PDY+30 D10 FSELECT 3 FC X+0 DR- R30 CCX+30 CCY+30 FSELECT 2	Sub-programa do contorno (Ver FK 2º exemplo no capítulo "6.6 Tipos de trajectórias" - Livre programação de contornos FK"
17 18 19 20 21 22 23 24 25 26 25 26 27 28 29	LBL 1 L X+0 Y+30 RR FC DR- R30 CCX+30 CCY+30 FL AN+60 PDX+30 PDY+30 D10 FSELECT 3 FPOL X+30 Y+30 FC DR- R20 CCPR+55 CCPA+60 FSELECT 2 FL AN-120 PDX+30 PDY+30 D10 FSELECT 3 FC X+0 DR- R30 CCX+30 CCY+30 FSELECT 2 LBL 0	Sub-programa do contorno (Ver FK 2º exemplo no capítulo "6.6 Tipos de trajectórias" - Livre programação de contornos FK"

Exemplo: pré-furar, desbastar e acabar contornos sobrepostos

0	BEGIN PGM C21 MM	
1	BLK FORM 0.1 Z X+0 Y+0 Z-40	Definição do bloco
2	BLK FORM 0.2 X+100 Y+100 Z+0	
3	TOOL DEF 1 L+O R+6	Definição da ferrta. Furar
4	TOOL DEF 2 L+0 R+6	Definição da ferrta. para o desbaste/acabamento
5	TOOL CALL 1 Z S2500	Chamada da ferrta. para o ciclo de furar
6	L Z+250 RO F MAX	Retirar a ferramenta
7	CYCL DEF 14.0 CONTORNO	Determinar sub-programas de contorno
8	CYCL DEF 14.1 LABEL CONTORNO 1 /2 /3 /4	
9	CYCL DEF 20.0 DADOS DO CONTORNO	Determinar os parâmetros gerais de maquinação
	Q1=-20 ;PROFUNDIDADE DE FRESAGEM	
	Q2=1 ;SOBREPOSIÇÃO TRAJECTÓRIA	
	Q3=+0,5 ;MEDIDA EXC. LATERAL	
	Q4=+0,5 ;MEDIDA EXC. PROFUNDIDADE	
	Q5=+0 ;COORD. SUPERFÍCIE	
	Q6=2 ;DISTÂNCIA SEGURANÇA	
	Q7=+100 ;ALTURA SEGURANÇA	
	Q8=0,1 ;RAIO DE ARREDONDAMENTO	
	Q9=-1 ;SENTIDO DE ROTAÇÃO	
10	CYCL DEF 21.0 PRÉ-FURAR	Definição do ciclo de Pré-furar
	Q10=5 ;PROFUNDIDADE DE PASSO	
	Q11=250 ;AVANÇO AO APROFUNDAR	
	Q13=2 ;FERRTA. DE DESBASTE	
11	CYCL CALL M3	Chamada do ciclo de pré-furar

8 Programação: Ciclos

12	L Z+250 RO F MAX M6	Troca de ferramenta
13	TOOL CALL 2 Z S3000	Chamada da ferrta. para desbaste/acabamento
14	CYCL DEF 22.0 DESBASTE	Definição do ciclo de desbaste
	Q10=5 ; PROFUNDIDADE DE PASSO	
	Q11=100 ;AVANÇO AO APROFUNDAR	
	Q12=350 ; AVANÇO PARA DESBASTE	
	Q18=0 ;FERRTA. DE PRÉ-DESBASTE	
	Q19=150 ;AVANÇO PENDULAR	
15	CYCL CALL M3	Chamada do ciclo de desbaste
16	CYCL DEF 23.0 PROFUNDIDADE ACABAMENTO	Definição do ciclo de profundidade de acabamento
	Q11=100 ;AVANÇO AO APROFUNDAR	
	Q12=200 ;AVANÇO PARA DESBASTE	
17	CYCL CALL	Chamada do ciclo de profundidade de acabamento
18	CYCL DEF 24.0 ACABAMENTO LATERAL	Definição do ciclo de acabamento lateral
	Q9=+1 ;SENTIDO DE ROTAÇÃO	
	Q10=5 ;PROFUNDIDADE DE PASSO	
	Q11=100 ;AVANÇO AO APROFUNDAR	
	Q12=400 ;AVANÇO PARA DESBASTE	
	Q14=+0 ;MEDIDA EXC. LATERAL	
19	CYCL CALL	Chamada do ciclo de acabamento lateral
20	L Z+250 R0 F MAX M2	Retirar a ferramenta, fim do programa
21	LBL 1	Sub-programa do contorno 1: caixa esquerda
22	CC X+35 Y+50	
23	L X+10 Y+50 RR	
24	C X+10 DR-	
25	LBL O	
26	LBL 2	Sub-programa do contorno 2: caixa direita
27	CC X+65 Y+50	
28	L X+90 Y+50 RR	
29	C X+90 DR-	
30	LBL O	
31	LBL 3	Sub-programa do contorno 3: ilha quadrangular esquerda
32	L X+27 Y+50 RL	
33	L Y+58	
34	L X+43	
35	L Y+42	
36	L X+27	
37	LBL O	
38	LBL 4	Sub-programa do contorno 4: ilha quadrangular direita
39	L X+65 Y+42 RL	
40	L X+57	
41	L X+65 Y+58	
42	L X+73 Y+42	
43	LBL 0	
44	END PGM C21 MM	

Exemplo: traçado do contorno

O BEGIN PGM C25 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Definição do bloco
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Definição da ferramenta
4 TOOL CALL 1 Z S2000	Chamada da ferramenta
5 L Z+250 RO F MAX	Retirar a ferramenta
6 CYCL DEF 14.0 CONTORNO	Determinar o sub-programa do contorno
7 CYCL DEF 14.1 LABEL CONTORNO 1	
8 CYCL DEF 25.0 TRAÇADO DO CONTORNO	Determinar os parâmetros de maquinação
Q1=-20 ;PROFUNDIDADE DE FRESAGEM	
Q3=+0 ;MEDIDA EXC. LATERAL	
Q5=+0 ;COORD. SUPERFÍCIE	
Q7=+250 ;ALTURA SEGURANÇA	
Q10=5 ;PROFUNDIDADE DE PASSO	
Q11=100 ;AVANÇO AO APROFUNDAR	
Q12=200 ;AVANÇO FRESADO	
Q15=+1 ;TIPO DE FRESAGEM	
9 CYCL CALL M3	Chamada do ciclo
10 L Z+250 RO F MAX M2	Retirar a ferramenta, fim do programa

11	LBL 1	Sub-programa do contorno	۲ ۲
12	L X+0 Y+15 RL		0)
13	L X+5 Y+20		SO
14	CT X+5 Y+75		C S
15	L Y+95		ü
16	RND R7,5		D
17	L X+50		, co
18	RND R7,5		
19	L X+100 Y+80		
20	LBL O		
21	END PGM C25 MM		

8.5 Ciclos SL

Exemplo: superfície cilíndrica

Cilindro fixado no centro da mesa rotativa.

O ponto de referência situa-se no centro da mesa rotativa

U BEGIN PGM C27 MM	
1 TOOL DEF 1 L+O R+3,5	Definição da ferramenta
2 TOOL CALL 1 Y S2000	Chamada da ferrta., eixo Y da ferrta.
3 L Y+250 RO FMAX	Retirar a ferramenta
4 L X+0 RO FMAX	Posicionar a ferrta. no centro da mesa rotativa
5 CYCL DEF 14.0 CONTORNO	Determinar o sub-programa do contorno
6 CYCL DEF 14.1 LABEL CONTORNO 1	
7 CYCL DEF 27.0 SUPERF. CILÍNDRICA	Determinar os parâmetros de maquinação
Q1=-7 ;PROFUNDIDADE DE FRESAGEM	
Q3=+0 ;MEDIDA EXC. LATERAL	
Q6=2 ;DISTÂNCIA SEGURANÇA	
Q10=4 ;PROFUNDIDADE DE PASSO	
Q11=100 ;AVANÇO AO APROFUNDAR	
Q12=250 ;AVANÇO FRESAGEM	
Q16=25 ;RAIO	
Q17=1 ;TIPO DE COTIZAÇÃO	
8 L C+O RO F MAX M3	Posicionamento prévio da mesa rotativa
9 CYCL CALL	Chamada do ciclo
10 L Y+250 RO F MAX M2	Retirar a ferramenta, fim do programa

11	LBL 1	Sub-programa do contorno
12	L C+40 Z+20 RL	Indicações do eixo rotativo em mm (Q17=1)
13	L C+50	
14	RND R7,5	
15	L Z+60	
16	RND R7,5	
17	L IC-20	
18	RND R7,5	
19	L Z+20	
20	RND R7,5	
21	L C+40	
22	LBL O	
23	END PGM C27 MM	

8.6 Ciclos para facejar - para programas digitalizados

O TNC dispõe de quatro ciclos com que você pode maquinar superfícies com as seguintes características:

- produzidas por digitalização ou por um sistema CAD/CAM
- ser planas e rectangulares
- ser planas segundo um ângulo oblíquo
- estar inclinadas de qualquer forma
- estar unidas entre si

Ciclo

Softkey

230 ÷

1ª

30 DIGITALIZAÇÃO DOS DADOS DIGITALIZADOS Para o facejamento dos dados digitalizados em vários passos

230 FACEJAMENTO Para superfícies planas rectangulares

231 SUPERFÍCIE REGULAR

Para superfícies segundo um ângulo oblíquo, inclinadas e unidas entre si

EXECUÇÃO DOS DADOS DIGITALIZADOS (ciclo 30)

- 1 O TNC posiciona a ferrta. em marcha rápida FMAX desde a posição actual no eixo da ferrta.na distância de segurança sobre o ponto MAX programado no ciclo
- 2 A seguir, o TNC desloca a ferrta. no plano de maquinação com FMAX sobre o ponto MIN programado no ciclo
- **3** Daí a ferrta. desloca-se com avanço de aprofundamento para o primeiro ponto do contorno
- 4 A seguir, o TNC executa com avanço de fresagem todos os pontos memorizados no ficheiro de dados de digitalização; se necessário, durante a execução o TNC desloca-se para a distância de segurança para saltar as zonas não maquinadas
- 5 No fim, o TNC retira a ferramenta com FMAX para a distância de segurança

Antes da programação, deverá ter em conta

Com o ciclo 30 você pode executar os dados da digitalização e os ficheiros PNT.

Quando você executa ficheiros PNT onde não há nenhuma coordenada do eixo da ferrta., a profundidade de fresagem produz-se no ponto MIN programado do eixo da ferrta.

- PGM nome de dados de digitalização: introduzir o nome do ficheiro onde estão memorizados os dados da digitalização; se o ficheiro não estiver no directório actual, introduza o caminho completo. Se quiser elaborar uma tabela de pontos, visualizar também o tipo de ficheiro. PNT
 - Campo ponto MIN: ponto mínimo (coordenada X, Y e Z) do campo onde se pretende fresar
 - Campo ponto MAX: ponto máximo (coordenada X, Y e Z) do campo onde se pretende fresar
 - Distância de segurança 1 (incremental): distância entre a extremidade da ferramenta e a superfície da peça em movimentos em marcha rápida
 - Profundidade de passo 2 (incremental): Medida segundo a qual a ferrta. penetra de cada vez na peça
 - Avanço ao aprofundar 3 Velocidade de deslocação da ferramenta ao aprofundar em mm/min
 - Avanço de fresagem 4Velocidade de deslocação da ferramenta ao fresar em mm/min
 - Função auxiliar M: introdução opcional de uma função auxiliar, p.ex. M13

Exemplo de frases NC:

64	CYCL DEF	30.0	ELABORAR DADOS DIGITALIZADOS
65	CYCL DEF	30.1	PGM DIGIT.: BSP.H
66	CYCL DEF	30.2	X+0 Y+0 Z-20
67	CYCL DEF	30.3	X+100 Y+100 Z+0
68	CYCL DEF	30.4	DIST 2
69	CYCL DEF	30.5	PASSO +5 F100
70	CYCL DEF	30.6	F350 M8

FACEJAR (ciclo 230)

- 1 O TNC posiciona a ferrta. em marcha rápida FMAX desde a posição actual no plano de maquinação sobre o ponto de partida
 1; o TNC desloca a ferrta. segundo o seu raio para a esquerda e para cima
- 2 A seguir, a ferrta. desloca-se com FMAX no seu eixo para a distância de segurança, e depois com o avanço de aprofundamento sobre a posição de partida programada, no eixo da ferrta.
- **3** Depois, a ferrta. desloca-se com avanço de fresagem programado sobre o ponto final 2; o TNC calcula o ponto final a partir do ponto de partida programado, da longitude programada e do raio da ferrta.programado
- 4 O TNC desloca a ferrta. com avanço de fresagem transversal para o ponto de partida da linha seguinte; o TNC calcula esta deslocação a partir da largura programada e do número de cortes programados
- 5 Depois, a ferrta. retira-se em direcção negativa ao 1º eixo
- **6** O facejamento repete-se até se maquinar completamente a superfície programada
- 7 No fim, o TNC retira a ferramenta com FMAX para a distância de segurança

Antes da programação, deverá ter em conta

230 O TNC posiciona a ferrta, desde a posição actual primeiro no plano de maguinação e a seguir no eixo da ferrta. sobre o ponto de partida 1.

Posicionar previamente a ferrta, de forma a que não se possa produzir nenhuma colisão com a peça.

- ▶ Ponto de partida 1º eixo Q225 (absoluto): coordenada do ponto Mín. da superfície a facejar no eixo principal do plano de maquinação
- ▶ Ponto de partida 2º eixo Q226 (absoluto): coordenada do ponto Mín. da superfície a faceiar no eixo secundário do plano de maguinação
- ▶ Ponto de partida 3º eixo Q227 (absoluto): altura no eixo da ferrta. do plano de facejamento
- ► Longitude lado 1 Q218 (incremental): longitude da superfície a facejar no eixo principal do plano de maguinação, referente ao ponto de partida 1º eixo
- ► Longitude lado 2 Q219 (incremental): longitude da superfície a facejar no eixo secundário do plano de maguinação, referente ao ponto de partida 2º eixo
- Número de cortes Q240: quantidade de linhas sobre as quais o TNC deve deslocar a ferrta, na largura da peca
- ▶ Avanço ao aprofundar 206: velocidade de deslocação da ferramenta ao deslocar-se da distância de segurança para a profundidade de fresagem em mm/ min
- ► Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min
- ► Avanco lateral Q209: velocidade de deslocação da ferrta. ao deslocar-se para a primeira linha em mm/min: se você se deslocar lateralmente na peca. introduza Q9 menor do que Q8; se se deslocar em vazio, Q209 deve ser maior do que Q207
- ▶ Distância de segurança Q200 (incremental): distância entre a extremidade da ferramenta e a profundidade de fresagem para posicionamento no início do ciclo e no fim do ciclo

Exer	nplo de frases l'	NC:	
71	CYCL DEF 230	FACEJAR	
	Q225=+10	;PONTO DE PARTIDA 1º EIXO	
	Q226=+12	;PONTO DE PARTIDA 2º EIXO	
	Q227=+2.5	;PONTO DE PARTIDA 3º EIXO	
	Q218=150	;LONGITUDE LADO 1	
	Q219=75	;LONGITUDE LADO 2	
	Q240=25	;N° DE CORTES	
	Q206=150	;AVANÇO AO APROFUNDAR	
	Q207=500	;AVANÇO FRESAGEM	
	Q209=200	;AVANÇO TRANSVERSAL	
	Q200=2	; DISTÂNCIA SEGURANÇA	

HEIDENHAIN TNC 426 B, TNC 430

SUPERFÍCIE REGULAR (ciclo 231)

- 1 O TNC posiciona a ferrta. desde a posição actual com um movimento linear 3D sobre o ponto de partida 1
- 2 Depois, a ferrta. desloca-se com avanço de fresagem programado sobre o ponto final 2
- 3 Daí o TNC desloca a ferrta. em marcha rápida FMAX segundo o diâmetro da ferrta. na direcção positiva do eixo da ferrta. e de novo para o ponto de partida 1
- 4 No ponto de partida 1 o TNC desloca de novo a ferrta. para o último valor Z alcançado
- 5 A seguir, o TNC desloca a ferrta. nos três eixos desde o ponto 1 segundo a direcção do ponto 4 até à liha seguinte
- 6 Depois, o TNC desloca a ferrta. até ao último ponto final desta linha O TNC calcula o ponto final 2 e uma deslocação na direcção do ponto 3
- **7** O facejamento repete-se até se maquinar completamente a superfície programada
- **8** No fim, o TNC posiciona a ferrta. sgundo o diâmetro da mesma sobre o ponto mais elevado programado no eixo da ferrta.

Direcção de corte

O ponto de partida e desta forma a direcção de fresagem podem escolher-se livremente, já que o TNC efectua os cortes por linhas no mesmo sentido do ponto 1 para o ponto 2 transcorrendo o desenvolvimento completo desde o ponto 1 / 2 para o ponto 3 / 4 Você pode fixar o ponto 1 em cada esquina da superfície a maquinar.

Você pode optimizar a qualidade da superfície utilizando uma fresa cilíndrica:

- através de um corte de empurrar (coordenada do eixo da ferrta. ponto 1 maior do que a coordenada do eixo da ferrta. do ponto 2) em superfícies pouco inclinadas.
- através de um corte de empurrar (coordenada do eixo da ferrta. ponto 1 menor do que a coordenada do eixo da ferrta. do ponto
 2) em superfícies muito inclinadas
- Em superfícies torcidas/irregulares, situar a direcção do movimento principal (do ponto 1 para o ponto 2) segundo a direcção de maior inclinação. Ver figura no centro, à direita.

Você pode optimizar a qualidade da superfície utilizando uma fresa esférica:

Em superfícies torcidas/irregulares, situar a direcção do movimento principal (do ponto 1 para o ponto 2) perpendiclar à direcção da maior inclinação. Ver figura em baixo, à direita.

8.6 Ciclos para facej<mark>ar -</mark> para programas digitalizados

Antes da programação, deverá ter em conta

r b

231

O TNC posiciona a ferrta. desde a posição actual com um movimento linear 3D sobre o ponto de partida 1. Posicionar previamente a ferrta. de forma a que não se possa produzir nenhuma colisão com a peça.

O TNC desloca a ferrta. com correcção de raio R0, entre as posições programadas

Se necessário, utilizar uma fresa com dentado frontal cortante no centro (DIN 844).

- Ponto de partida 1º eixo Q225 (absoluto): coordenada do ponto de partida na superfície a facejar no eixo principal do plano de maquinação
 - Ponto de partida 2º eixo Q226 (absoluto): coordenada do ponto de partida na superfície a facejar no eixo secundário do plano de maquinação
 - Ponto de partida 3º eixo Q227 (absoluto): coordenada do ponto de partida da superfície a facejar no eixo da ferrta.
 - 2º ponto 1º eixo Q228 (absoluto): coordenada do ponto final da superfície a facejar no eixo principal do plano de maquinação
 - 2º ponto 2º eixo Q229 (absoluto): coordenada do ponto final da superfície a facejar no eixo secundário do plano de maquinação
 - 2º ponto 3º eixo Q230 (absoluto): coordenada do ponto final da superfície a facejar no eixo da ferrta.
 - 3º ponto 1º eixo Ω231 (absoluto): coordenada do ponto 3 no eixo principal do plano de maquinação
 - 3º ponto 2º eixo Q232 (absoluto): coordenada do ponto 3 no eixo secundário do plano de maquinação
 - 3º ponto 3º eixo Q233 (absoluto): coordenada do ponto 3 no eixo da ferrta.
 - 4º ponto 1º eixo Q234 (absoluto): coordenada do ponto 4 no eixo principal do plano de maquinação
 - 4º ponto 2º eixo Q235 (absoluto): coordenada do ponto 4 no eixo secundário do plano de maquinação
 - 4º ponto 3º eixo Q236 (absoluto): coordenada do ponto 4 no eixo da ferrta.
 - Número de cortes Q240: quantidade de cortes que a ferrta. deve efectuar entre o ponto 1 e 4 entre o ponto 2 e 3 ou entre o ponto
 - Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min

Exemplo de frases NC:

	-	
2	CYCL DEF 231	SUPERFICIE REGULAR
	Q225=+0	;PONTO DE PARTIDA 1º EIXO
	Q226=+5	;PONTO DE PARTIDA 2º EIXO
	Q227=-2	;PONTO DE PARTIDA 3º EIXO
	Q228=+100	;2º PONTO 1º EIXO
	Q229=+15	;2º PONTO 2º EIXO
	Q230=+5	;2° PONTO 3° EIXO
	Q231=+15	;3º PONTO 1º EIXO
	Q232=+125	;3º PONTO 2º EIXO
	Q233=+25	;3° PONTO 3° EIXO
	Q234=+85	;4° PONTO 1° EIXO
	Q235=+95	;4° PONTO 2° EIXO
	Q236=+35	;4° PONTO 3° EIXO
	Q240=40	;N° DE CORTES
	0207=500	;AVANCO FRESAGEM

O BEGIN PGM C230 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z+0	Definição do bloco
2 BLK FORM 0.2 X+100 Y+100 Z+40	
3 TOOL DEF 1 L+0 R+5	Definição da ferramenta
4 TOOL CALL 1 Z S3500	Chamada da ferramenta
5 L Z+250 RO F MAX	Retirar a ferramenta
6 CYCL DEF 230 FACEJAR	Definição do ciclo de facejar
Q225=+0 ;INÍCIO 1º EIXO	
Q226=+0 ;INÍCIO 2º EIXO	
Q227=+35 ;INÍCIO 3º EIXO	
Q218=100 ;LONGITUDE LADO 1	
Q219=100 ;LONGITUDE LADO 2	
Q240=25 ;N° DE CORTES	
Q206=250 ;F AVANÇO AO APROFUNDAR	
Q207=400 ;F FRESAR	
Q2O9=150 ;F TRANSVERSAL	
Q200=2 ;DISTÂNCIA SEGURANÇA	
7 L X+-25 Y+0 R0 F MAX M3	Posicionamento prévio perto do ponto de partida
8 CYCL CALL	Chamada do ciclo
9 L Z+250 RO F MAX M2	Retirar a ferramenta, fim do programa
10 END PGM C230 MM	

8.7 Ciclos para a conversão de coordenadas

Com as conversões de coordenadas, o TNC pode executar um contorno programado uma vez em diversos pontos da peça com posição e dimensão modificadas. O TNC dispõe dos seguintes ciclos de conversão de coordenadas:

Ciclo	Softkey
7 PONTO ZERO Deslocar contornos directamente no programa ou das tabelas de zero peças	2 ~ 4
8 ESPELHO Reflectir contornos	
10 ROTAÇÃO Rodar contornos no plano de maquinação	10
11 FACTOR DE ESCALA Reduzir ou ampliar contornos	
26 FACTOR DE ESCALA ESPECÍFICO DE CADA EIXO Reduzir ou ampliar contornos com factores de escala específicos de cada eixo	
19 PLANO INCLINADO DE MAQUINAÇÃO Realizar maquinações num sistema de coordenadas inclinado para máquinas com ferrta. basculante e/ou mesas rotativas	19

Activação da conversão de coordenadas

Início da activação: uma conversão de coordenadas activa-se a partir da sua definição - não é, portanto, chamada. A conversão actua até ser anulada ou definida uma nova.

Anular uma conversão de coordenadas:

- Definir o ciclo com os valores para o comportamento básico, p.ex. factor de escala 1,0
- Executar as funções auxiliares M02, M30 ou a frase END PGM (depende do parâmetro da máquina 7300)
- Seleccionar novo programa

Deslocação doPONTO ZERO (ciclo 7)

Com DESLOCAÇÃO DO PONTO ZERO, você pode repetir maquinações em qualquer ponto da peça.

Activação

Após uma definição de ciclo DESLOCAÇÃO DO PONTO ZERO, todas as introduções de coordenadas referem-se ao novo ponto zero. O TNC visualiza a deslocação em cada eixo na visualização adicional de estados. Também é permitida a introdução de eixos rotativos

Deslocação: introduzir as coordenadas do novo ponto zero; os valores absolutos referem-se ao ponto zero da peça determinado atarvés da memorização do ponto de referência; os valores incrementais referem-se sempre ao último ponto zero válido - este pode já ser deslocado

Exemplo de frases NC:

73	CYCL DEF	7.0	PONTO	ZERO
74	CYCL DEF	7.1	X+10	
75	CYCL DEF	7.2	Y+10	
76	CYCL DEF	7.3	Z - 5	

Anular

A deslocação do ponto zero com os valores de coordenadas X=0, Y=0 e Z=0 anula uma deslocação do ponto zero.

Gráfico

Se depois de uma deslocação do ponto zero você programar uma nova BLK FORM, você pode com o parâmetro de máquina 7310 decidir se a BLK FORM se refere ao novo ou ao antigo ponto zero. Na maquinação de várias unidades, o TNC pode representar cada uma delas graficamente.

Visualização de estados

- A indicação grande de posição refere-se ao ponto zero activado (deslocado)
- Todas as coordenadas indicadas na visualização de estados adicional (posições, pontos zero) referem-se ao ponto de referência memorizado manualmente.

Deslocação do PONTO ZEROcom tabelas de pontos zero (ciclo 7)

Se utilizar o gráfco de programação juntamente com as tabelas de pontos zero, seleccione antes do início do gráfico, no modo de funcionamento TEST, a respectiva tabela de pontos zero (Estado S).

Se utilizar só uma tabela de pontos zero, evita a confusão de activar nos modos de funcionamento da execução do programa.

Os pontos zero da tabela de pontos zero podem referirse ao ponto de referência actual ou ao ponto zero da máquina (depende do parâmetro de máquina 7475)

Os valores das coordenadas das tabelas de zero peças são exclusivamente absolutos.

Só se pode acrescentar novas linhas no fim da tabela.

Aplicação

a

Você introduz tabelas de pontos zero p. ex. em caso de

- passos de maquinação que se repetem com frequência em diferentes posições da peça ou
- utilização frequente da mesma deslocação do ponto zero

Dentro dum programa, você pode programar pontos zero directamente na definição do ciclo, como também chamá-los de uma tabela de pontos zero.

Deslocação: introduzir o número do ponto zero a partir da tabela de pontos zero, ou o parâmetro Q; se utilizar um parâmetro Q, o TNC activa o número de ponto zero desse parâmetro Q

Exemplo de frases NC:

77	CYCL	DEF	7.0	PONTO	ZERO
78	CYCL	DEF	7.1	#12	

Anular

- Chamar a deslocação a partir da tabela de pontos zero para as coordenadas X=0; Y=0, etc.
- Chamar a deslocação para as coordenadas X=0; Y=0, et., directamente com uma definição de ciclo.

Visualização de estados

Quando os pontos zero da tabela se referem ao ponto zero da máquina,

- A indicação grande de posição refere-se ao ponto zero activado (deslocado)
- Todas as coordenadas indicadas na visualização de estados adicional referem-se ao ponto zero da máquina, considerando o TNC o ponto de referência memorizado manualmente

Editar uma tabela de pontos zero

Você selecciona a tabela de pontos zero no modo de funcionamento Memorização/Edição do programa

- Chamar Gestão de Ficheiros: premir a tecla PGM MGT; ver também capítulo "4.2 Gestão de ficheiros"
- Visualizar tabelas de pontos zero: premir as softkeys SELECCIONARTIPO e VISUALIZAR. D
- Seleccionar a tabela pretendida ou introduzir um novo nome de ficheiro
- Editar um ficheiro A régua de softkeys indica as seguintes funções:

Função	Softkey
Seleccionar o início da tabela	INICIO
Seleccionar o fim da tabela	FIM U
Passar para a página de trás	PAGINA
Passar para a página da frente	PAGINA
Acrescentar linha (só é possível no fim da tabela)	INSERIR LINHA
Apagar linha	APAGAR LINHA
Aceitar a linha introduzida e saltar para a linha seguinte	PROXIMA LINHA

Modo manua	operacao al	Edi Tra	cao nslao	tabela cao?	a pont	to-zer	- o	
Ar	quivo: NU	LL TAB.C	1	MM				
D	Х	B		W				
0	+0	+ (9	+0				
1	+25	+2	25	+0				
2	+0	+ 5	50	+2,5				
3	+0	+(9	+0				
4	+27,25	+ (9	-3,5				
5	+250	+2	250	+0				
6	+350	+3	350	+10,2				
7	+1200	+(9	+0				
8	+1700	+1	200	-25				
9	-1700	-1	200	+25				
10	+0	+6	3	+0				
11	+0	+(9	+0				
12	+0	+(9	+0				
INI	<u>c10</u>	FIM <u>J</u>	PAGINA	PAGINA ↓	INSERIR LINHA	APAGAR LINHA	PROXIMA LINHA	MOVER-S LINHAS NO FINF

Configurar a tabela de pontos zero

Na segunda e terceira régua de softkeys você pode determinar, para cada tabela de pontos zero, os eixos para os quais se pretende definir pontos zero. Em forma standard, todos os eixos estão activados. Quando quiser desactivar um eixo, fixe a softkey do eixo respectivo em OFF. O TNC apaga a coluna correspondente na tabela de pontos zero.

Sair da tabela de pontos zero

Visualizar outro tipo de ficheiro na gestão de ficheiros e seleccionar o ficheiro pretendido.

Activar a tabela de pontos zero para a execução do programa ou teste do programa

Para activar uma tabela de pontos zero em modo de funcionamento de execução do programa ou de teste do programa, proceda como descrito em "Editar tabela de pontos zero". Em vez de introduzir um novo nome, prima a softkey SELECCIONAR.

ESPELHO (ciclo 8)

O TNC pode realizar uma maquinação espelho no plano de maquinação. Ver figura em cima, à direita.

Activação

O ciclo espelho activa-se a partir da sua definição no programa. Também actua no modo de funcionamento Posicionamento com Introdução Manual. O TNC mostra na visualização de estados adicional os eixos espelho activados

- Se você reflectir só um eixo, modifica-se o sentido de deslocação da ferrta. Isto não é válido nos ciclos de maquinação.
- Se você reflectir dois eixos, não se modifica o sentido de deslocação.
- O resultado do espelho depende da posição do ponto zero:
- O ponto zero situa-se sobre o contorno a reflectir: a trajectória reflecte-se directamente no ponto zero; ver figura no centro, à direita
- O ponto zero situa-se fora do contorno a reflectir: a trajectória desloca-se; ver figura em baixo, à direita

Eixo espelho? : introduzir o eixo que se pretende reflectir; o eixo da ferrta. não se pode reflectir

Exemplo de frases NC:

79	CYCL	DEF	8.0	ESPELHO
80	CYCL	DEF	8.1	ХҮ

Anular

Programar de novo o ciclo ESPELHO com a introdução NO ENT.

ROTAÇÃO (ciclo 10)

Dentro dum programa pode-se rodar o sistema de coordenadas no plano de maquinação segundo o ponto zero activado.

Activação

A ROTÁÇÃO activa-se a partir da sua definição no programa. Também actua no modo de funcionamento Posicionamento com Introdução Manual. O TNC visualiza o ângulo de rotação activado na visualização de estados adicional.

Eixo de referência para o ângulo de rotação:

- Plano X/Y Eixo X
- Plano Y/Z Eixo Y
- Plano Z/X Eixo da ferramenta

Antes da programação, deverá ter em conta

O TNC anula uma correcção de raio activada através da definição do ciclo 10. Se necessário, programar de novo a correcção do raio.

Depois de ter definido o ciclo 10, desloque os dois eixos do plano de maquinação para poder activar a rotação.

 Rotação: introduzir o ângulo de rotação em graus (°). Campo de introdução: -360° a +360° (absoluto ou incremental)

Exemplo de frases NC:

81 CYCL DEF 10.0 ROTAÇÃO

82 CYCL DEF 10.1 ROT+12.357

Anular

Programa-se de novo o ciclo ROTAÇÃO indicando o ângulo de rotação.

FACTOR DE ESCALA (ciclo 11)

O TNC pode ampliar ou reduzir contornos dentro dum programa. Você pode assim diminuir ou aumentar o tamanho da peça.

Activação

O FACTOR DE ESCALA activa-se a partir da sua definição no programa Também se activa no modo de funcionamento Posicionamento com Introdução Manual. O TNC visualiza o factor de escala activado na visualização de estados adicional.

O factor de escala actua

- no plano de maquinação, ou simultaneamente nos três eixos de coordenadas (depende do parâmetro de máquina 7410)
- nas cotas indicadas nos ciclos
- também nos eixos paralelos U,V,W

Condições

Antes da ampliação ou redução, o ponto zero deve ser deslocado para um lado ou esquina do contorno.

Factor?: introduzir o factor SCL (em inglês: scaling); o TNC multiplica as coordenadas e raios pelo factor SCL (tal como descrito em "Activação")

Ampliar: SCL maior do que 1 a 99,999 999

Diminuir: SCL menor do que 1 a 0,000 001

Exemplo de frases NC:

83	CYCL DEI	11.0	FACTOR DE ESCALA
84	CYCL DEI	11.1	SCL0.99537

Anular

Programar de novo o ciclo FACTOR DE ESCALA com factor 1

Você também pode introduzir um factor de escala específico do eixo (ver ciclo 26).

FACTOR DE ESCALA ESPECÍF.EIXO (ciclo 26)

Antes da programação, deverá ter em conta

Você não pode prolongar ou reduzir com diferentes escalas os eixos de coordenadas com posições para trajectórias circulares.

Você pode introduzir para cada eixo um factor de escala específico de cada eixo

Além disso, também se pode programar as coordenadas do centro para todos os factores de escala.

O contorno é prolongado a partir do centro, ou reduzido em direcção a este, quer dizer, não é necessário realizá-lo com o ponto zero actual, como no ciclo 11 FACTOR DE ESCALA.

Activação

O FACTOR DE ESCALA activa-se a partir da sua definição no programa Também se activa no modo de funcionamento Posicionamento com Introdução Manual. O TNC visualiza o factor de escala activado na visualização de estados adicional.

Eixo e factor: eixo(s) de coordenadas e factor(es) de escala da ampliação ou redução específicos de cada eixo. Introduzir o valor positivo, máximo 99,999 999

Coordenadas do centro: centro da ampliação ou redução especíifica de cada eixo

Os eixos de coordenadas seleccionam-se com softkeys.

Anular

Programar de novo o ciclo FACTOR DE ESCALA com factor 1 para o eixo respectivo

Exemplo

Factores de escala específicos de cada eixo no plano de maguinação

Indica-se: quadrado - ver gráfico em baixo, à direita

Esquina 1:	X = 20,0 mm Y = 2,5 mm
Esquina 2:	X = 32,5 mm Y = 15,0 mm
Esquina 3:	X = 20,0 mm Y = 27,5 mm
Esquina 4:	X = 7,5 mm Y = 15,0 mm

Ampliar o eixo X segundo o factor 1,4

Reduzir o eixo Y segundo o factor 0,6

Centro em CCY = 15 mm CCY = 20 mm

Exemplo de frases NC

 As funções para a inclinação do plano de maquinação
 são ajustadas pelo fabricante da máquina ao TNC e à máquina. Em determinadas cabeças basculantes (mesas basculantes), o fabricante da máquina determina se os ângulos programados no ciclo se interpretam como coordenadas dos eixos rotativos ou como ângulo no espaço. Consulte o manual da máquina

A inclinação do plano de maquinação realiza-se sempre em redor do ponto zero activado.

Para noções básicas, ver o capítulo "2.5 Inclinar plano de maquinação". Leia atentamente todo este capítulo.

Activação

8.7 Ciclos para a conversão de coordenadas

No ciclo 19, você define a posição do plano de maquinação com a introdução de ângulos de inclinação. Os ângulos introduzidos descrevem directamente a posição dos eixos basculantes (ver figura no centro e em baixo, à direita).

Se você programar os componentes angulares do vector no espaço, o TNC calcula automaticamente a posição angular dos eixos basculantes. O TNC calcula a posição do vector no espaço, quer dizer, a posição do eixo da ferrta., por meio da rotação segundo o sistema de coordenadas **fixo da máquina** A sequência das rotações para o cálculo do vector no espaço é fixa: o TNC roda primeiro o eixo A, depois o eixo B, e a seguir o eixo C.

O ciclo 19 activa-se a partir da sua definição no programa. Logo que se desloca um eixo no sistema inclinado, activa-se a correcção para esse eixo. Para se activar a compensação em todos os eixos, tem de se movê-los todos.

Se tiver fixado em ACTIVO a função INCLINAÇÂO da execução do programa no modo de funcionamento Manual (ver capítulo "2.5 Inclinar o plano de maquinação"), o valor angular programado nesse ciclo será reescrito em manual e ficará activo.

Eixo de rotação e ângulo de rotação: eixo de rotação inclinado com o respectivo ângulo de rotação; os eixos de rotação A, B e C programam-se com softkeys.

Se o TNC posicionar automaticamente os eixos inclinados, você deverá ainda introduzir os seguintes parâmetros:

- Avanço ? F=: velocidade de deslocação do eixo rotativo em posicionamento automático
- Distância de segurança ? (valor incremental): o TNC posiciona o cabeçote basculante de forma a que a posição, originada do prolongamento da ferramenta à distância de segurança, não se modifique relativamente à peça

Anular

Para se anular os ângulos de inclinação, definir de novo o ciclo PLANO DE MAQUINAÇÃO INCLINADO e introduzir 0° para todos os eixos rotativos. Seguidamente, definir outra vez o ciclo PLANO DE MAQUINAÇÃO INCLINADO, e confirmar a pergunta de diálogo com a tecla "NO ENT". Desta forma, a função fica inactiva.

Posicionar o eixo rotativo

O fabricante da máquina determina se o ciclo 19 posiciona automaticamente o(s) eixo(s) rotativo(s), ou se é preciso posicionar previamente os eixos rotativos no programa. Consulte o manual da máquina

Quando o ciclo 19 posiciona automaticamente os eixos rotativos, é válido:

- OTNC só pode posicionar automaticamente eixos controlados.
- Na definição do ciclo, é ainda preciso introduzir para além dos ângulos de inclinação a distância de segurança e o avanço com que são posicionados os eixos de inclinação.
- Só se utiliza ferramentas previamente ajustadas (longitude total da ferrta. na frase TOOL DEF ou na tabela de ferrtas.)
- No processo dde inclinação, a posição do extremo da ferrta. permanece invariável em relação à peça.
- O TNC efectua o processo de inclinação com o último avanço programado. O máximo avanço possível depende da complexidade da cabeça basculante (mes basculante)

Quando o ciclo 19 não posiciona automaticamente os eixos rotativos, posicioneos p.ex. com uma frase L diante da definição do ciclo:

Exemplo de frases NC

L Z+100 RO FMAX	
L X+25 Y+10 RO FMAX	
L A+15 RO F1000	Posicionar o eixo rotativo
CYCL DEF 19.0 PLANO DE MAQUINAÇÃO	Definir o ângulo para o cálculo da correcção
CYCL DEF 19.1 A+15	
L Z+80 RO FMAX	Activar a correcção eixo da ferrta.
L X-7.5 Y-10 RO FMAX	Activar a correcção plano de maquinação

Visualização de posições num sistema inclinado

As posições visualizadas (NOMINAL E REAL) e a visualização do ponto zero na visualização de estados adicional, depois da activação do ciclo 19, referem-se ao sistema de coordenadas inclinado. A posição visualizada já não coincide, depois da definição do ciclo com as coordenadas da última posição programada antes do ciclo 19.

Supervisão do espaço de trabalho

O TNC comprova, no sistema de coordenadas inclinado, apenas os limites dos eixos que se estão a mover. Se necessário, o TNC emite um aviso de erro

Posicionamento no sistema inclinado

Com a função auxiliar M130, você também pode alcançar posições no sistema inclinado e que se refiram ao sistema de coordenadas sem inclinar (ver capítulo "7.3 Funções auxiliares para indicação de coordenadas").

Combinação com outros ciclos de conversão de coordenadas

Na combinação de ciclos de conversão de coordenadas, há que terse em conta que a inclinação do plano de maquinação sempre se efectua em redor do ponto zero activado. Você pode realizar uma deslocação do ponto zero antes de activar o ciclo 19: neste caso, você desloca o "sistema de coordenadas fixo da máquina".

Se deslocar o ponto zero antes de activar o ciclo 19, você está a deslocar o "sistema de coordenadas inclinado".

Importante: ao anular os ciclos, proceda na ordem inversa da utilizada na definição:

- 1. Activar a deslocação do ponto zero
- 2. Activar a inclinação do plano de maquinação
- 3. Activar a rotação

Maquinação da peça

- 1. Anular a rotação
- 2. Anular a inclinação do plano de maquinação
- 3. Anular a deslocação do ponto zero

Medição automática no sistema inclinado

Com o ciclo TCH PROBE 1.0 PLANO DE REFERÊNCIA, você pode medir peças num sistema inclinado. Os resultados da medição são memorizados em parâmetros Q, e você pode posteriormente utilizá-los (p.ex. emissão dos resultados da medição para uma impressora).

Normas para trabalhar com o ciclo 19 PLANO DE MAQUINAÇÃO INCLINADO

1 Elaborar o programa

- Definir a ferrta. (não é preciso, se estiver activado TOOL.T), e introduzir a longitude da ferrta.
- Chamada da ferrta.
- Retirar a ferrta. de forma a que ao inclinar não se possa produzir nenhuma colisão entre a ferrta. e a peça.
- Se necessário, posicionar o(s) eixo(s) rotativo(s) com a frase L no respectivo valor angular (depende de um parâmetro de máquina)
- Se necessário, activar a deslocação do ponto zero
- Definir o ciclo 19 PLANO DE MAQUINAÇÃO INCLINADO; introduzir os valores angulares dos eixos rotativos
- Deslocar todos os eixos principais (X, Y, Z) para activar a correcção
- Programar a maquinação como se fosse efectuada no plano não inclinado
- Anular o ciclo 10 PLANO DE MAQUINAÇÃO INCLINADO, introduzir 0° para todos os eixos rotativos
- Desactivar a função PLANO DE MAQUINAÇÃO INCLINADO; definir de novo o ciclo 19, confirmar a pergunta de diálogo com "NO ENT"
- Se necessário, anular a deslocação do ponto zero
- Se necessário, posicionar os eixos rotativos na posição 0°

2 Fixar a peça

3 Preparação no modo de funcionamento posicionamento com introdução manual

Posicionar o(s) eixo(s) rotativo(s) para memorização do ponto de referência no valor angular respectivo. O valor angular orienta-se segundo a superfície de referência seleccionada na peça.

4 Preparação no modo de funcionamento manual

Fixar a função Inclinar plano de maquinação com a softkey 3D-ROT em ACTIVO para o modo de funcionamento Manual;em eixos não controlados, introduzir os valores angulares no menú

Nos eixos não controlados, os valores angulares introduzidos devem coincidir com a posição real do(s) eixo(s) senão o TNC calcula mal o ponto de referência.

5 Memorizar o ponto de referência

- Manualmente, roçando a peça da mesma forma que no sistema não inclinado (ver capítulo "Memorizar ponto de referência sem apalpador 3D")
- Controlado com o apalpador 3-D da HEIDENHAIN (ver Manual do utilizador, Ciclos de apalpação, Capítulo 2)

6 Iniciar o programa de maquinação no modo de funcionamento Execução contínua do Programa

7 Modo de funcionamento manual

Fixar a função Inclinar plano de maquinação com a softkey 3D-ROT em INACTIVO. Introduzir no menú o valor angular 0° para todos os eixos angulares (ver capítulo "2.5 Inclinação do plano de maquinação)

Execução do programa

- Conversão de coordenadas no programa principal
- Maquinação no sub-programa 1 (ver capítulo "9 Programação: sub-programas e repetições parciais dum programa")

O BEGIN PGM KOUMR MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definição do bloco
2 BLK FORM 0.2 X+130 Y+130 Z+0	
3 TOOL DEF 1 L+0 R+1	Definição da ferramenta
4 TOOL CALL 1 Z S4500	Chamada da ferramenta
5 L Z+250 RO F MAX	Retirar a ferramenta
6 CYCL DEF 7.0 PONTO ZERO	Deslocação do ponto zero para o centro
7 CYCL DEF 7.1 X+65	
8 CYCL DEF 7.2 Y+65	
9 CALL LBL 1	Chamada da fresagem
10 LBL 10	Fixar uma marca para a repetição parcial do programa
11 CYCL DEF 10.0 ROTAÇÃO	Rotação a 45° em incremental
12 CYCL DEF 10.1 IROT+45	
13 CALL LBL 1	Chamada da fresagem
14 CALL LBL 10 REP 6/6	Retrocesso ao LBL 10; seis vezes no toal
15 CYCL DEF 10.0 ROTAÇÃO	Anular a rotação
16 CYCL DEF 10.1 ROT+0	
17 CYCL DEF 7.0 PONTO ZERO	Anular a deslocação do ponto zero
18 CYCL DEF 7.1 X+0	
19 CYCL DEF 7.2 Y+0	
20 L Z+250 R0 F MAX M2	Retirar a ferramenta, fim do programa

21 LBL 1	Sub-programa 1:
22 L X+0 Y+0 R0 F MAX	Determinação da fresagem
23 L Z+2 RO F MAX M3	
24 L Z-5 R0 F200	
25 L X+30 RL	
26 L IY+10	
27 RND R5	
28 L IX+20	
29 L IX+10 IY-10	
30 RND R5	
31 L IX-10 IY-10	
32 L IX-20	
33 L IY+10	
34 L X+0 Y+0 R0 F500	
35 L Z+20 R0 F MAX	
36 LBL 0	
37 END PGM KOUMR MM	

8.8 Ciclos especiais

8.8 Ciclos especiais

TEMPO DE ESPERA (ciclo 9)

Num programa em funcionamento, o TNC executa a frase seguinte só depois de decorrido o tempo de espera programado. Um tempo de espera pode, por exemplo, servir para retirar aparas.

Activação

O ciclo activa-se a partir da sua definição no programa. Não afecta os estados (permanentes) que actuam de forma modal, como p.ex. a rotação da ferrta. (cabecote).

▶ Tempo de espera em segundos: introduzir o tempo de espera em segundos

Campo de introdução de 0 a 600 s (1 hora) em passos de 0.001 s

Exemplo de frases NC

89 CYCL DEF 9.0 TEMPO ESPERA 90 CYCL DEF 9.1 TEMPO ESP. 1.5

CHAMADA DO PROGRAMA (ciclo 12)

Você pode atribuir quaisquer programas de maquinação como, p.ex. ciclos especiais de furar ou módulos geométricos a um ciclo de maguinação. Você chama este programa como se fosse um ciclo.

Antes da programação, deverá ter em conta

Se introduzir só o nome do programa, o programa do ciclo deve estar no mesmo directório que o programa chamado.

Se o programa do ciclo não estiver no mesmo directório que o programa chamado, deve-se introduzir o nome do caminho dae procura completo, p.ex.\KLAR35\FK1\50.H.

Se você quiser declarar um programa DIN/ISO para o ciclo, deve introduzir o tipo de ficheiro. I por trás do nome do programa.

12 PGM CALL

Nome do programa: nome do programa que se pretende chamar, se necessário indicando o caminho de procura onde está o programa

Você chama o programa com CYCL CALL (frase separada) ou M99 (por frases) ou M89 (executa-se depois de cada frase de

posicionamento)

Exemplo: chamada do programa

Pretende-se chamar o programa 50 com a chamada de ciclo

Exemplo de frases NC

55	CYCL	DEF	12.0	PGM	CALL
56	CYCL	DEF	12.1	PGM	\KLAR35\FK1\50.H
57	L X+2	20 Y-	-50 FI	AX N	199

ORIENTAÇÃO DA FERRAMENTA (ciclo 13)

O fabricante da máquina prepara a máquina e o TNC para
 o ciclo 13

O TNC pode controlar a ferrta. principal duma máquina de ferrtas. e rodá-la numa posição determinada segundo um ângulo.

A orientação da ferrta. é precisa, p.ex.

- em sistemas de troca de ferrta. com uma determinada posição para a troca da ferrta.
- para ajustar a janela de envio e recepção do apalpador 3D com transmissão de infra-vermelhos

Activação

O TNC posiciona a posição angular definida no ciclo com a programação de M19.

Se você programar M19 sem ter definido primeiro o ciclo 13, o TNC posiciona a ferrta. principal num valor angular determinado num parâmetro da máquina (ver manual da máquina).

Ângulo de orientação: introduzir o ângulo referente ao eixo de referência angular do plano de maquinação

Campo de introdução: o a 360°

Precisão de introdução: 0,1°

Exemplo de frases NC

93 CYCL DEF 13.0 ORIENTAÇÃO

94 CYCL DEF 13.1 ÂNGULO 180

TOLERÂNCIA (ciclo 32)

O fabricante da máguina adegua a fresagem rápida de contornos ao TNC e à máquina. Consulte o manual da máquina

O TNC alisa automaticamente o contorno entre quaisquer elementos de contorno (não corrigidos ou corrigidos). A ferrta. desloca-se, assim, de forma contínua sobre a superfície da peca. Se necessário, o TNC reduz automaticamente o avanco programado de forma a que o programa 3D seja sempre executado pelo TNC "sem solavancos" com a máxima velocidade possível. Melhora-se a qualidade da superfície e poupa-se a parte mecânica da máguina.

Com o alisamento, produz-se um desvio do contorno. O tamanho do desvio de contorno (VALOR DE TOLERÂNCIA) está num parâmetro de máquina determinado pelo fabricante da máquina. Com o ciclo 32 você modifica o valor de tolerância pré-determinado (ver figura em cima à direita).

Antes da programação, deverá ter em conta

O ciclo 32 activa-se com DEF, quer dizer, actua a partir da sua definição no programa.

Você anula o ciclo 32 definindo de novo o ciclo 32 e confirmando a pergunta de diálogo VALOR DE TOLERÂNCIA com NO ENT. A tolerância pré-ajustada é de novo activada por meio de anulação.

32	1
	<u>∕</u> ₹'

▶ Valor de tolerância: desvio permitido do contorno em mm

Exemplo de frases NC

95 CYCL DEF 32.0 TOLERÂNCIA 96 CYCL DEF 32.1 T0.05

Programação:

Sub-programas e repetições parciais de um programa

9.1 Caracterizar sub-programas e repetições parciais de um programa

Você pode executar repetidas vezes com sub-programas e repetições parciais de um programa os passos de maquinação programados uma vez.

Label

Os sub-programas e as repetições parciais de um programa começam num programa de maquinação com a marca LBL, que é a abreviatura de LABEL (em inglês, marca).

Os LABEL recebem um número entre LABEL 1 e 254. Você só pode atribuir uma vez cada número LABEL no programa, ao premir a tecla LABEL SET.

Se você atribuir um número LABEL mais do que uma vez, o TNC emite um aviso de erro no final da frase LBL SET. Em programas muito extensos, com MP7229 você pode limitar a verificação a um número programável de frases.

LABEL 0 (LBL 0) caracteriza o final de um sub-programa e por isso pode ser utilizado quantas vezes se pretender.

9.2 Sub-programas

Funcionamento

- 1 O TNC executa o programa de maquinação até à chamada dum sub-programa CALL LBL
- 2 A partir daqui, o TNC executa o sub-programa chamado até ao fim do do sub-programa LBL 0
- **3** Depois, o TNC prossegue o programa de maquinação com a frase a seguir à chamada do sub-programa CALL LBL

Indicações sobre a programação

- Um programa principal pode conter até 254 sub-programas
- Pode chamar-se sub-programas em qualquer sequência quantas vezes se pretender
- Um sub-programa não pode chamar-se a si mesmo
- Os sub-programas programam-se no fim de um programa principal (por detrás da frase com M2 ou M30)
- Se houver sub-programas dentro do programa de maquinação antes da frase com m02 ou M3, estes executam-se, pelo menos uma vez, sem chamada

Programar o sub-programa

LBL SET

LBL CALL

- Assinalar o começo: premir a tecla LBL SET e introduzir um número LABEL
- ▶ Introduzir um sub-programa
- Assinalar o fim: premir a tecla LBL SET e introduzir o número LABEL "0"

Chamar o sub-programa

- Chamar um sub-programa: premir a tecla LBL CALL
- Número label: introduzir número label do programa que se pretende chamar
- Repetições REP: sem repetições, premir NO ENT. As repetições REP só se usam nas repetições parciais de um programa

CALL LBL 0 não é permitido pois corresponde à chamada do fim de um sub-programa.

9.3 Repetições parciais de um programa

As repetições parcais de um programa começam com a marca LBL (LABEL). Uma repetição parcial de um programa termina com CALL LBL /REP.

Funcionamento

- O TNC executa o programa de maquinação até ao fim do programa parcial (CALL LBL /REP)
- 2 A seguir, o TNC repete a parte do programa entre o LABEL chamado e a chamada de Label CALL LBL /REP tantas vezes quantas se tiver indicado em REP
- 3 Depois o TNC continua com o programa de maquinação

Indicações sobre a programação

- Você pode repetir uma parte de programa até 65 534 vezes sucessivamente
- O TNC mostra à direita da linha por trás de REP, um contador para as repetições parciais do programa que faltam
- A repetição parcial de um programa realiza-se sempre uma vez mais do que as repetições programadas.

Programar repetições parciais de programa

- Assinalar o começo: premir a tecla LBL SET e introduzir um número LABEL para repetir a parte do programa
- Introduzir um programa parcial

Chamar repetições parcias de programa

Premir a tecla LBL CALL, e introduzir o nº label do programa parcial a repetir e a quantidade de repetições REP

9.4 Um programa qualquer como sub-programa

- 1 O TNC executa o programa de maquinação até você chamar um outro programa com CALL PGM
- 2 A seguir, o TNC executa o programa chamado até ao seu fim
- **3** Depois, o TNC executa o programa (chamado) de maquinação com a frase a seguir à chamada do programa.

Indicações sobre a programação

- O TNC não precisa de nenhum LABEL para poder utilizar um programa qualquer como sub-programa.
- O programa chamado não pode conter a função auxiliar M2 ou M30
- O programa chamado não deve conter nenhuma CALL PGM do programa original.

Chamar um programa qualquer como sub-programa

PGM
CALL
· · · ·

- Chamar o programa: premir a tecla PGM CALL e introduzir o nome do programa que se pretende chamar
- O programa que se pretende chamar deve estar memorizado no disco duro do TNC.
 - Se introduzir só o nome do programa, o programa que se chama deve estar no mesmo directório que o programa chamado.
 - Se o programa já chamado não estiver no mesmo directório do programa que se vai chamar, introduza o nome compelto do caminho, z.B. TNC:\VZW35\SCHRUPP\PGM1.H
 - Se você quiser chamar um programa DIN/ISO, deve introduzir o tipo de ficheiro .I por trás do nome do programa.
 - Você também pode chamar um programa qualquer com o ciclo 12 PGM CALL.

9.5 Sobreposições

Você pode sobrepor sub-programas e repetições parciais de um programa da seguinte forma:

- Sub-programas dentro de um sub-programa
- Repetições parciais dentro de uma repetição parcial do programa
- Repetir sub-programas
- Repetições parciais de um programa dentro de um sub-programa

Profundidade de sobreposição

A profundidade de sobreposição determina quantas vezes os programas parciais ou sub-programas podem conter outros subprogramas ou repetições parciais de um programa.

- Máxima profundidade de sobreposição para sub-programas: 8
- Máxima profundidade de sobreposição para chamadas de programa principal: 4
- Você pode sobrepor quantas vezes quiser repetições parciais de um programa

Sub-programa dentro de um sub-programa

Exemplo de frases NC

0		
U	BEGIN FGM UPGMS MM	
17	CALL LBL 1	Chamada de sub-programa em LBL 1
35	L Z+100 RO FMAX M2	Última frase do
		programa principal (com M2)
36	LBL 1	Início do sub-programa 1
39	CALL LBL 2	Chamada do sub-programa em LBL2
45	LBL O	Fim do sub-programa 1
46	LBL 2	Início do sub-programa 2
62	LBL O	Fim do sub-programa 2
63	END PGM UPGMS MM	

Execução do programa

- 1º passo: Execução do programa principal UPGMS até à frase 17.
- 2º passo: Chamada do sub-programa 1 e execução até à frase 39.
- 3º passo: Chamada do sub-programa 2 e execução até à frase 62. Fim do sub-programa 2 e retrocesso ao subprograma de onde foi chamado.
- 4º passo: Execução do sub-programa 1 da frase 40 até à frase
 45. Fim do sub-programa 1 e retrocesso ao programa principal UPGMS.
- 5º passo: Execução do programa principal UPGMS da frase 18 até à frase 35. Retrocesso à frase 1 e fim do programa.

Repetir repetições parciais de um programa

Exemplo de frases NC

O BEGIN PGM REPS MM	
15 LBL 1	Início da repetição do programa parcial
20 LBL 2	Início da repetição do programa parcial 2
27 CALL LBL 2 REP 2/2	Programa parcial entre esta frase e LBL 2
	(Frase 20) é repetida 2 vezes
35 CALL LBL 1 REP 1/1	Programa parcial entre esta frase e LBL 1
	(Frase 15) é repetida 1 vez
50 FND PGM REPS MM	

- 1º passo: Execução do programa principal REPS até à frase 27
- 2º passo: O programa parcial é repetido 2 vezes entre a frase 27 e a frase 20
- 3º passo: Execução do programa principal REPS da frase 28 até à frase 35
- 4º passo: O programa parcial entre a frase 35 e a frase 15 é repetido 1 vez (contém a repetição de programa parcial entre a frase 20 e a frase 27)
- 5º passo: Execução do programa principal REPS da frase 36 até à frase 50 (fim do programa)

Repetição do sub-programa

Exemplo de frases NC

O BEGIN PGM UPGREP MM	
10 LBL 1	Início da repetição parcial do programa
11 CALL LBL 2	Chamada do sub-programa
12 CALL LBL 1 REP 2/2	Programa parcial entre esta frase e LBL 1
	(Frase 10) é repetida 2 vezes
19 L Z+100 RO FMAX M2	Última frase de programa do programa principal
	com M2
20 LBL 2	Início do sub-programa
28 LBL 0	Fim do sub-programa
29 END PGM UPGREP MM	

- 1º passo: Execução do programa principal UPGREP até à frase 11
 2º passo: Chamada e execução do sub-programa 2
 3º passo: O programa parciail entre a frase 12 e a frase 10 é repetido 2 vezes: o sub-programa 2 é repetido 2 vezes
- 4º passo: Execução do programa principal UPGREP da frase 13 até à frase 19; fim do programa

Exemplo: fresar um contorno em várias aproximações

- Posicionamento prévio da ferrta. sobre o lado superior da peça
- Introduzir passo em incremental
- Fresar contorno
- Repetir passo e fresar contorno

O BEGIN PGM PGMWDH MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Definição da ferramenta
4 TOOL CALL 1 Z S500	Chamada da ferramenta
5 L Z+250 RO F MAX	Retirar a ferramenta
6 L X-20 Y+30 R0 F MAX	Posicionamento prévio no plano de maquinação
7 L Z+O RO F MAX M3	Posicionamento prévio sobre o lado superior da peça
8 LBL 1	Marca para a repetição parcial do programa
9 L IZ-4 RO F MAX	Aprofundamento em incremental (em vazio)
10 APPR CT X+2 Y+30 CCA90 R+5 RL F250	Chegada ao contorno
11 FC DR- R18 CLSD+ CCX+20 CCY+30	Contorno
12 FLT	
13 FCT DR- R15 CCX+50 CCY+75	
14 FLT	
15 FCT DR- R15 CCX+75 CCY+20	
16 FLT	
17 FCT DR- R18 CLSD- CCX+20 CCY+30	
18 DEP CT CCA90 R+5 F1000	Saída do contorno
19 L X-20 Y+0 R0 F MAX	Retirar
20 CALL LBL 1 REP 4/4	Retrocesso a LBL 1; quatro vezes no total
21 L Z+250 RO F MAX M2	Retirar a ferramenta, fim do programa
22 END PGM PGMWDH MM	

Exemplo: grupos de furos

- Aproximação de grupos de furos no programa principal
- Chamada de grupo de furos (sub-programa 1)
- Programar grupo de furos só uma vez no subprograma

O BEGIN PGM UP1 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+2,5	Definição da ferramenta
4 TOOL CALL 1 Z S5000	Chamada da ferramenta
5 L Z+250 RO F MAX	Retirar a ferramenta
6 CYCL DEF 200 FURAR	Definição do ciclo de Furar
Q200=2 ;DISTÂNCIA SEGURANÇA	
Q201=-10 ;PROFUNDIDADE	
Q206=250 ;F AVANÇO AO APROFUNDAR	
Q2O2=5 ;PROFUNDIDADE DE PASSO	
Q210=0 ;TEMPO ESPERA CIMA	
Q2O3=+O ;COOR. SUPERFÍCIE	
Q204=10 ;2ª DIST. SEGURANÇA	
7 L X+15 Y+10 RO F MAX M3	Chegada ao ponto de partida do grupo de furos 1
8 CALL LBL 1	Chamada do sub-programa para o grupo de furos
9 L X+45 Y+60 R0 F MAX	Chegada ao ponto de partida do grupo de furos 2
10 CALL LBL 1	Chamada do sub-programa para o grupo de furos
11 L X+75 Y+10 R0 F MAX	Chegada ao ponto de partida do grupo de furos 3
12 CALL LBL 1	Chamada do sub-programa para o grupo de furos
13 L Z+250 RO F MAX M2	Fim do programa principal

14 LBL 1	Início do sub-programa 1: grupo de furos
15 CYCL CALL	Furo 1
16 L IX+20 RO F MAX M99	Chegada ao furo 2, chamada do ciclo
17 L IY+20 RO F MAX M99	Chegada ao furo 3, chamada do ciclo
18 L IX-20 RO F MAX M99	Chegada ao furo 4, chamada do ciclo
19 LBL 0	Fim do sub-programa 1
20 END PGM UP1 MM	

Exemplo: Grupos de furos com várias ferramentas

- Programar ciclos de maquinação no programa principal
- Chamada da figura de furos completa (Subprograma 1)
- Chegada aos grupos de furos no subprograma 1, chamada do grupo de furos (subprograma 2)
- Programar grupo de furos só uma vez no subprograma 2

O BEGIN PGM UP2 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+4	Definição da ferrta. broca de centragem
4 TOOL DEF 2 L+0 R+3	Definição da ferrta. broca
5 TOOL DEF 3 L+O R+3,5	Definição da ferrta. escariador
6 TOOL CALL 1 Z S5000	Chamada da ferrta. broca de centragem
7 L Z+250 RO F MAX	Retirar a ferramenta

programação
de
Exemplos
9.6

8 CYCL DEF 200 BOHREN	Definição do ciclo Centrar
Q200=2 ; DISTÂNCIA SEGURANÇA	
Q201=-3 ; PROFUNDIDADE	
Q206=250 ;F AVANÇO AO APROFUNDAR	
Q2O2=3;APROFUNDAMENTO	
Q210=0 ;TEMPO ESPERA CIMA	
Q2O3=+O ;COOR. SUPERFÍCIE	
Q204=10 ;2ª DIST. SEGURANÇA	
9 CALL LBL 1	Chamada do sub-programa 1 para figura de furos completa
10 L Z+250 RO F MAX M6	Troca de ferramenta
11 TOOL CALL 2 Z S4000	Chamada da ferrta. para o ciclo de furar
12 FN 0: Q201 = -25	Nova profundidade para furar
13 FN 0: Q202 = +5	Nova aproximação para furar
14 CALL LBL 1	Chamada do sub-programa 1 para figura de furos completa
15 L Z+250 RO F MAX M6	Troca de ferramenta
16 TOOL CALL 3 Z S500	Chamada da ferrta. escariador
17 CYCL DEF 201 ALARGAR FURO	Definição do ciclo alargar furo
Q200=2 ; DISTÂNCIA SEGURANÇA	
Q201=-15 ; PROFUNDIDADE	
Q206=250 ;F AVANÇO AO APROFUNDAR	
Q211=0,5 ;TEMPO ESPERA	
Q208=400 ;F RETROCESSO	
Q2O3=+O ;COOR. SUPERFÍCIE	
Q204=10 ;2ª DIST. SEGURANÇA	
18 CALL LBL 1	Chamada do sub-programa 1 para figura de furos completa
19 L Z+250 RO F MAX M2	Fim do programa principal
20 LBL 1	Início do sub-programa 1: figura de furos completa
21 L X+15 Y+10 R0 F MAX M3	Chegada ao ponto de partida do grupo de furos 1
22 CALL LBL 2	Chamada do sub-programa 2 para grupo de furos
23 L X+45 Y+60 R0 F MAX	Chegada ao ponto de partida do grupo de furos 2
24 CALL LBL 2	Chamada do sub-programa 2 para grupo de furos
25 L X+75 Y+10 R0 F MAX	Chegada ao ponto de partida do grupo de furos 3
26 CALL LBL 2	Chamada do sub-programa 2 para grupo de furos
27 LBL 0	Fim do sub-programa 1
28 LBL 2	Início do sub-programa 2: grupo de furos
29 CYCL CALL	Furo 1 com ciclo de maquinação activado
30 L IX+20 R0 F MAX M99	Chegada ao furo 2, chamada do ciclo
31 L IY+20 R0 F MAX M99	Chegada ao furo 3, chamada do ciclo
32 L IX-20 R0 F MAX M99	Chegada ao furo 4, chamada do ciclo
33 LBL 0	Fim do sub-programa 2
34 END PGM UP2 MM	

Programação:

Parâmetros Q

10.1 Princípio e resumo de funções

Com parâmetros Q você pode definir um grupo inteiro de funções Para isso, em vez de valores numéricos, introduzem-se parâmetros Q.

Os parâmetros Q utilizam-se por exemplo para

- Valores de coordenadas
- Avanços
- Rotações
- Dados do ciclo

Para além disso, com os parâmetros Q pode-se programar contornos determinados através de funções matemáticas, ou executar os passos da maquinação que dependem de condições lógicas. Em junção com a programação FK, você também pode combinar com parâmetros Q os contornos que não se adequam a ser medidos com o cálculo NC.

Um parâmetro Q é caracterizado com a letra Q e um número de 0 a 299. Os parâmetros Q dividem-se em três campos:

Significado	Campo
Parâmetros de uso livre, na globalidade actuam para todos os programas existentes na memória do TNC	Q0 até Q99
Parâmetros para funções especiais do TNC	Q100 até Q199
Parâmetros utilizados de preferência para ciclos, actuam globalmente para todos os programas da memória do TNC	Q200 até Q399

Avisos sobre a programação

Não se pode misturar num programa parâmetros $\ensuremath{\Omega}$ com valores numéricos.

Pode-se atribuir aos parâmetros Q valores numéricos entre -99 999,9999 e +99 999,9999 Internamente, o TNC pode calcular valores numéricos com uma largura até 57 Bit antes e até 7 Bit depois do ponto decimal(32 bit de largura numérica correspondem a um valor decimal de 4 294 967 296).

O TNC atribui a certos parâmetros Q sempre o mesmo dado, p.ex., ao parâmetro Q108 atribui o raio actual da ferrta. Ver capítulo "10.10 Parâmetros Q prédeterminados"

Se você usar os parâmetros de Q1 a Q99 em ciclos do fabricante, determine com o parâmetro de máquina MP7251 se estes parâmetros actuam só localmente no ciclo do fabricante, ou se actuam globalmente para todos os programas.

Chamar as funções de parâmetros Q

Quando estiver a introduzir um programa de maquinação, prima a tecla "Q" (no campo de introdução numérica e selecção de eixos, sob a tecla -/+ - O TNC mostra as seguintes softkeys:

Softkey
FUNCOES BASICAS
TRIGO- NOMETRIA
CALCULO CIRCULO
DESVIOS
FUNCOES DIVERSAS
FORMULA

10.2 Tipos de funções - Parâmetros Q em vez de valores numéricos

Com a função paramétrica FN0: ATRIBUIÇÃO, você pode atribuir valores numéricos aos parâmetros Q. No programa de maquinação fixa-se então um parâmetro Q em vez de um valor numérico.

Exemplo de frases NC

15 FN0: Q10 = 25	Atribuição:
	Q10 recebe o valor 25
25 L X +Q10	corresponde a L X +25

Para os tipos de funções, programam-se p.ex. como parâmetros Q as dimensões de uma peça.

Para a maquinação dos diferentes tipos de peças, atribua a cada um destes parâmetros um valor numérico correspondente.

Exemplo

Cilindro com parâmetros Q

Raio do cilindro	R = Q1
Altura do cilindro	H = Q2
Cilindro Z1	$ \begin{array}{rcl} 01 &=& +30 \\ 02 &=& +10 \end{array} $
Cilindro Z2	$ \begin{array}{rcl} Q1 &=& +10 \\ Q2 &=& +50 \end{array} $

10.3 Descrever contornos através de funções matemáticas

Com os parâmetros Q você pode programar funções matemáticas básicas no programa de maquinação

- Seleccionar parâmetros Q: premir a tecla Q (situada no campo para introdução de valores numéricos, à direita). A régua de softkeys mostra as funções dos parâmetros Q.
- Seleccionar funções matemáticas básicas: premir a softkey ARITMÉTICA BÁSICA. O TNC mostra as seguintes softkeys

Função	Softkey
FN0: ATRIBUIÇÃO p.ex. FN0: Q5 = +60 Atribuir valor directamente	FN0 X = Y
FN1: ADIÇÃO p.ex. FN1: Q1 = -Q2 + -5 Determinar e atribuir a soma de dois valores	FN1 X + Y
FN2: SUBTRACÇÃO p.ex. FN2: Q1 = +10 - +5 Determinar e atribuir a diferença de dois valores	FN2 X - V
FN3: MULTIPLICAÇÃO p.ex. FN3: Q2 = +3 * +3 Determinar e atribuir o produto de dois valores	FN3 X * V
FN4: DIVISÃO p.ex. FN4: Q4 = +8 DIV +Q2 Determinar e atribuir o quociente de dois valores Proibido: Dividir por 0!	FN4 X × V
FN5: RAIZ p.ex. FN5: Q20 = SQRT 4 Determinar e atribuir a raiz quadrada de um número Proibido: raiz de um valor negativo!	FN5 RAIZ QUAD
À direita do sinal "=", pode-se introduzir: dois números	

■ dois parâmetros Q

um número e um parâmetro Q

Os parâmetros ${\bf Q}$ e os valores numéricos nas comparações podem ser com ou sem sinal

Exemplo: programar cálculos básicos

Q	Seleccionar parâmetros Q: premir a tecla Q
FUNCOES BRSICRS	Seleccionar funções matemáticas básicas: premir a softkey BASIC ARITHMETIC
FN8 X = V	Seleccionar parâmetros Q ATRIBUIÇÃO: premir a softkey FN0 X = Y
Nº do Parâmet	ro para resultado?
5 ENT	Introduzir o número do parâmetro Q: 5
1. Valor ou p	arâmetro ?
10 ^{ent}	Atribuir o valor numérico 10 a Ω5
Q	Seleccionar parâmetros Q: premir a tecla Q
FUNCOES BASICAS	Seleccionar funções matemáticas básicas: premir a softkey ARITMÉTICA BÁSICA
FN3 X * V	Seleccionar a função de parâmetros Q MULTIPLICAÇÃO: premir a softkey FN3 X * Y
Nº de parâmet	ro para resultado?
12 ENT	Introduzir o número do parâmetro Q: 12
1. Valor ou p	arâmetro ?
Q5 ^{ent}	Introduzir Q5 como primeiro valor
2. Valor ou p	arâmetro ?
7 ^{ENT}	Introduzir 7 como segundo valor

16 FNO: Q5 = +10 17 FN3: Q12 = +Q5 * +7

10.4 Funções angulares (Trigonometria)

O seno, o co-seno e a tangente correspondem às proporções de cada lado de um triângulo rectângulo. Sendo:

cos a

Seno:	seno a=	a/c
Co-seno:	cos a =	b/c
Tangente:	tan a 🛛 =	a / b = seno a /

Sendo

■ c o lado oposto ao ângulo recto

a die Seite gegenüber dem Winkel α

b o terceiro lado

Através da tangente, o TNC pode calcular o ângulo:

 α = arctan α = arctan (a / b) = arctan (sin α / cos α)

Exemplo:

- a = 10 mm
- b = 10 mm
- α = arctan (a / b) = arctan 1 = 45°

E também:

 $a^{2} + b^{2} = c^{2}$ (com $a^{2} = a \times a$)

 $c = \sqrt{(a^2 + b^2)}$

Programar funções angulares

Premindo a softkey TRIGONOMETRIA, aparecem as funções angulares. O TNC mostra as softkeys na tabela à direita.

Programação: comparar o "Exemplo: programar cálculos básicos.

Função	Softkey
FN6: SENO p.ex. FN6: Q20 = SENO-Q5 Determinar e atribuir seno de um ângulo em Graus (°)	FNG SIN(X)
FN7: CO-SENO p.ex. FN7: Q21 = COS-Q5 Determinar e atribuir co-seno de um ângulo em Graus (°)	FN7 COS(X)
FN8: RAIZ DE UMA SOMA DOS QUADRAD p.ex. FN8: Q10 = +5 LEN +4 Determinar e atribuir a longitude de dois valores	OS X LEN V

FN13: ÂNGULO p.ex. FN13: Q20 = +10 ANG-Q1 Determinar e atribuir o ângulo com arctan a partir de dois lados, ou sen e cos do ângulo (0 < ângulo < 360°)

FN13

X ANG Y

10.5 Cálculos de círculos

Com as funções para o cálculo de um círculo, você pode calcular o ponto central do círculo a partir de três ou quatro pontos do círculo. O cálculo de um círculo a partir de quatro pontos é mais exacto.

Emprego: você pode usar estas funções p.ex. quando quiser determinar a posição e o tamanho de um furo ou de um círculo original recorrendo à função de apalpação programada.

Função

Softkey

FN23: calcular DADOS DO CÍRCULO a partir de três pontos do círculo p.ex. FN23: Q20 = CDATA Q30

Os pares de coordenadas de três pontos do círculo têm que estar memorizados no parâmetro Q30 e nos cinco parâmetros seguintes - neste caso até Q35.

O TNC memoriza então o ponto central do círculo do eixo principal (X em caso de eixo da ferramenta Z) no parâmetro Q21 e o raio do círculo no parâmetro Q22.

FN24: calcular DADOS DO CÍRCULO a partir de quatro pontos do círculo p.ex. FN24: Q20 = CDATA Q30

FN2 CIRC. 4 PON	4 DE TOS

Os pares de coordenadas de quatro pontos do círculo têm que estar memorizados no parâmetro Q30 e nos sete parâmetros seguintes - neste caso até Q37.

O TNC memoriza então o ponto central do círculo do eixo principal (X em caso de eixo da ferramenta Z) no parâmetro Q20, o ponto central do círculo do eixo secundário (Y em caso de eixo da feerrta. Z) no parâmetro Q21 e o raio do círculo no parâmetro Q22.

Tome atenção a que FN23 e FN24 perto do parâmetro de resultado escrevam automaticamente também por cima dos dois parâmetros seguintes.

10.6 Funções se/então com parâmetros Q

Ao determinar a função se/então, o TNC compara um parâmetro Q com um outro parâmetro Q ou com um valor numérico. Quando se cumpre a condição, o TNC continua com o programa de maguinação no LABEL programado atrás da condição (para LABEL. ver o capítulo "Sub-programas e repetições parciais de programas"). Se a condição não for cumprida, o TNC executa a frase a sequir.

Se guiser chamar um outro programa como sub-programa, programe por detrás do LABEL um PGM CALL

Saltos incondicionais

Saltos incondicionais são saltos cuia condição é sempre (=incondicionalmente) cumprida

FN9: IF+10 EQU+10 GOTO LBL1

Programar funções se/então

Premindo a softkey JUMP, aparecem as funções se/então. O TNC mostra as seguintes softkeys:

Função

FN9: SE É IGUAL, SALTO

P.EX. FN9: IF +Q1 EQU +Q3 GOTO LBL 5 Se são iquais dois valores ou parâmetros, salto para o Label indicado

FN10: SE É DIFERENTE, SALTO

p.ex. FN10; IF +10 NE -05 GOTO LBL 10 Se são diferentes dois valores ou parâmetros, salto para o Label indicado

FN11: SE É MAIOR, SALTO

FN11 X GT V GOTO p.ex. FN11: IF+Q1 GT+10 GOTO LBL 5 Se o primeiro valor ou parâmetro é maior do que o segundo valor ou parâmetro, salto para o Label indicado

FN12: SE É MENOR, SALTO

p.ex. FN12: IF+Q5 LT+0 GOTO LBL 1 Se o primeiro valor ou parâmetro é menor do que o segundo valor ou parâmetro, salto para o Label indicado

Softkey

FN9 X EQ V GOTO

Abrevi IF	aturas e conceitos u (engl.):	itilizados Se
EQU	(engl. equal):	Igual
NE	(em ingl. not equal):	Não igual
GT	(engl. greater than):	Maior do que
LT	(em ingl. less than):	Menor do que
GOTO	(em ingl. go to):	lr para

10.7 Controlar e modificar parâmetros Q

Durante a execução ou teste de um programa, você pode controlar e também modificar parâmetros Q.

- Interromper a execução do programa (p.ex. premir tecla externa de STOP e a softkey INTERNAL STOP) ou parar o teste de programa.
- Q
- ▶ Chamar funções de parâmetros Q: premir a tecla Q
- Introduzir o número do parâmetro Q e premir a tecla ENT. O TNC mostra no campo de diálogo o valor actual do parâmetro Q
- Se quiser modificar o valor, introduza um novo valor, confirme com a tecla ENT e termine a introdução com a tecla END

Se não quiser modificar o valor, finalize o diálogo com a tecla END

Modo d manual	operacao	[este	e de	pro	grama			
	L. L.	120 -	- + 2	(5,5				
0	BEGIN	V PGI	1 F K	(1 MM				
1	BLK F	FORM	0.1	LΖΧ·	+0 Y+0	0 Z-20	3	
2	BLK F	FORM	0.2	2 X+10	00 Y+:	100 Z+	۰0	
3	TOOL	CALL	_ 1	Z				
4	L Z+2	250 F	70 F	F MAX				
5	L X-2	20 Y-	+30	RØ F	MAX			
6	L Z-:	10 R 🛛	9 F1	1000	13			
7	APPR	CT)	(+2	Y+30	CCA90	3 R+5	RL F2	250
8	FC DF	R- R:	18 C	LSD+	CCX+2	20 CCN	(+30	
9	FLT							
10	FCT	DR-	R15	5 CCX	+50 CC	CY+75		
11	FLT							
12	FCT	DR-	R15	5 CCX	+75 C(CY+20		
13	L							
14	FLT							
								ЕТМ
								- 1 11

10.8 Funções auxiliares

Premindo a softkey SPEC.FUNCT, aparecem as funções auxiliares. O TNC mostra as seguintes softkeys:

Função	Softkey
FN14:ERRO	FN14
Emitir avisos de erro	ERRO=
FN15:IMPRIMIR	FN15
Emitir textos ou valores de parâmetro Q não formatados	PRINT
FN16:IMPRIMIR-F	FN16
Emitir textos ou valores de parâmetro Q formatados	F-IMPRIME
FN18:SYS-LER DADO Ler dados do sistema	FN18 LER DADOS SISTEMA
FN19:PLC	FN19
transmitir valores para o PLC	PLC=
FN20:ESPERAR POR sincronizar NC e PLC	FN20 ESPERAR A

FN 14: ERRO Emitir avisos de erro

Com a função FN14: ERRO você pode fazer emitir avisos comandados num programa, que estão pré-programados pelo fabricante da máquina ou pela HEIDENHAIN: quando o TNC atinge uma frase com FN 14 na execução ou no teste de um programa, interrompe-os e emite um aviso de erro. A seguir, deverá iniciar de novo o programa. Para os números de erro, ver tabela em baixo.

Exemplo de frase NC

O TNC deve emitir um aviso de erro memorizado com o número de erro 254

180 FN 14:ERRU = 254	
Campo dos números de erro	Diálogo standard
0 299	FN 14: Número de erro 0 299
300 999	Diálogo dependente da máquina
1000 1099	Avisos de erro internos (ver tabela à direita)

Número	e texto de erro
1000	Ferramenta ?
1001	Falta o eixo da ferramenta
1002	Largura da ranhura demasiado grande
1003	Raio da ferramenta demasiado grande
1004	Campo foi excedido
1005	Posição de início errada
1006	ROTAÇÂO não permitida
1007	FACTOR DE ESCALA não permitido
1008	ESPELHO não permitido
1009	Deslocação não permitida
1010	Falta avanço
1011	Valor de introdução errado
1012	Sinal errado
1013	Ângulo não permitido
1014	Ponto de apalpação não atingível
1015	Demasiados pontos
1016	Introdução controversa
1017	CYCL incompleto
1018	Plano mal definido
1019	Programado um eixo errado
1020	Rotações erradas
1021	Correcção do raio indefinida
1022	Arredondamento não definido
1023	Raio de arredondamento demasiado
	grande
1024	Tipo de programa indefinido
1025	Sobreposição demasiado elevada
1026	Falta referência angular
1027	Nenhum ciclo de maquinaç. definido
1028	Largura da ranhura demasiado grande
1029	Caixa demasiado pequena
1030	Q202 não definido
1031	Q205 não definido
1032	Introduzir Q218 maior do que Q219
1033	CYCL 210 não permitido
1034	CYCL 211 não permitido
1035	Q220 demasiado grande
1036	Introduzir Q222 maior do que Q223
1037	Introduzir Q244 maior do que 0
1038	Introduzir Q245 diferente de Q246
1039	Introduzir campo angular < 360°
1040	Introduzir Q223 maior do que Q222
1041	Q214: 0 não permitido

FN 15: PRINT Emitir textos ou valores de parâmetros Q não formatados

Ajustar as conexões de dados: em PRINT ou PRINT-TEST existentes no menú você determina o caminho onde o TNC deve memorizar os textos ou os valores de parâmetros Q. Ver capítulo "12 Funções MOD, ajustar conexões de dados".

Com a função FN15: PRINT, você pode transmitir valores de parâmetros Q e avisos de erro para uma conexão de dados, por exemplo, para uma impressora. Se memorizar os valores internamente ou se os transmitir para uma calculadora, o TNC memoriza os dados no ficheiro %FN15RUN.A (emissão durante o teste do programa)

Emitir diálogos e aviso de erro com FN15: PRINT "valor numérico"

Valor numérico de 0 a 99: Diálogos para os ciclos do fabricante

a partir de 100: Avisos de erro do PLC

Exemplo: emitir número de diálogo 20

67 FN 15: PRINT20

Emitir diálogos e parâmetros Q com mit FN15: PRINT "Parâmetro Q"

Exemplo de aplicação: registar a medição de uma peça.

Você pode emitir ao mesmo tempo até seis parâmetros Q e valores numéricos. O TNC separa-os com traços

Exemplo: emitir diálogo 1 e valor numérico Q1

70 FN 15: PRINT1/Q1

Modo operacao manual	Teste de	e prog	rama			
Interf	ace RS232	2	Inter	face	RS423	2
Modo or Baud ra	per.: LS ate	<u> 8V-2</u>	Modo Baud	oper. rate	.: L:	SV-2
FE : EXT1 :	38400 19200		FE EXT1	: 3	38400 3600	
EXT2 : LSV-2:	9600 115200)	EXT2 LSV-2	: 9	3600 11520	3
Atribu	ir:					
Impressao : Teste impr.: PGM MGT: Ampliado						
0	S232 PEC.BRUTO S422 EM ESPAC.	PARAME TRO	HELP			FIM

FN 16: F-PRINT Emitir textos e Parâmetros Q formatados

Ajustar as conexões de dados: em PRINT ou PRINT-TEST existentes no menú você determina o caminho onde o TNC deve memorizar o ficheiro de texto. Ver capítulo "12 Funções MOD, ajustar conexões de dados".

Com a função FN16: F-PRINT, você pode transmitir valores de parâmetros Q e textos formatados para a conexão de dados, por exemplo, para uma impressora. Se memorizar os valores internamente ou se os transmitir para uma calculadora, o TNC memoriza os dados no ficheiro que você define em FN frase 16.

Para emitir texto formatado e os valores dos parâmetros Q, crie um ficheiro de texto com o editor de texto do TNC, onde você determina os formatos e parâmetros Q.

Exemplo para um ficheiro de texto que determina o formato da emissão:

"REGISTO DE MEDICÃO CENTRO DE GRAVIDADE DA RODA DE PALETES":

"QUANTIDADE DE VALORES DE MEDICÃO : = 1";

"X1 = %5.3LF", Q31;

"Y1 = %5.3LF", Q32;

"Z1 = %5.3LF" Q33:

Para criar ficheiros de texto, utilize as seguintes funcões de formatação:

Sinal especial	Função
" "	Determinar o formato de emissão para o texto e as variáveis entre aspas
%5.3LF	Determinar o formato para parâmetros Q: 5 posições diante da vírgula, 4 posições por detrás, Long,Floating (número decimal)
%S	Formato para opção de texto
,	Sinal de separação entre o formato de emissão e o parâmetro
;	sinal de fim de frase, linha finalizada

Para se emitir várias informações para o ficheiro de registo, existem as seguintes funções:

Código	Função
CALL_PATH	Emite o nome do caminho do programa NC onde está a Função FN16-Funktion. Exemplo: "Programa de medição: %S",CALL_PATH;
M_CLOSE	Fecha o ficheiro onde você escreve com FN16. Exemplo: M_CLOSE;
L_ENGLISCH L_ALEMÃO L_CHECO L_FRANCÊS L_ITALIANO L_ESPANHOL L_DINAMARQUÊS L_FINLANDÊS L_HOLANDÊS L_POLACO L_HÚNGARO L_TODOS	Emitir texto só em diálogo em inglês Emitir texto só em diálogo em alemão Emitir texto só em diálogo checo Emitir texto só em diálogo em francês Emitir texto só em diálogo em italiano Emitir texto só em diálogo em espanhol Emitir texto só em diálogo em dinamarquês Emitir texto só em diálogo em finlandês Emitir texto só em diálogo em holandês Emitir texto só em diálogo em polaco Emitir texto só em diálogo em húngaro Emitir texto independente do idioma

No programa de maquinação, programe FN16: F-PRINT para activar a emissão:

96 FN16:F-PRINT TNC:\MASKE\MASKE1.A / RS232:\PROT1.TXT

O TNC emite o ficheiro PROT1.TXT por eio da conexão de dados serial:

REGISTO	DE	MEDIÇÃO	CENTRO	DE	GRAVIDADE	RODA	DE	PALETES

X1 = 149,360

Y1 = 25,509

Z1 = 37,000

Se usar várias vezes FN16 num programa, o TNC memoriza todos os textos no ficheiro que você tiver definido aquando da primeira função FN 16. A emissão do ficheiro só tem lugar quando o TNC lê a frase END PGM, ou quando você prime a tecla de Stop NC.

FN 18: SYS-DATUM READ Ler dados do sistema

Com a função FN 18: SYS-DATUM READ você pode ler dados de sistema e memorizá-los em parâmetros Q. Escolhe-se o dado de sistema com um número de grupo (ID-Nr.), um número e se necessário, com um índice.

Nome do grupo, ID-Nr.	Número	Índice	Dado do sistema
Info. sobre programa, 10	1	_	Estado em mm/poleg.
	2	_	Factor de sobreposição em fresagem de caixas
	3	_	Número de ciclo de maquinação activado
Estado da máquina, 20	1	_	Número de ferramenta activado
	2	_	Número de ferramenta preparado
	3	_	Eixo de ferramenta activado
			0=X, 1=Y, 2=Z, 6=U, 7=V, 8=W
	4	_	Rotações da ferramenta programadas
	5	_	Estado da ferramenta activado: 0=desligada, 1=ligada
	8	_	Estado do refrigerAnte: 0=desligado, 1=ligado
	9	_	Avanço activado
Parâmetro de ciclo, 30	1	_	Distância de segurança ciclo de maquinação activado
	2	_	Profundidade de furar/profundidade de fresar ciclo de
			maquinação activado
	3	_	Profundidade de passo ciclo de maquinação activado
	4	_	Avanço de passo ao aprofundar Ciclo de maquinação
			activado
	5	_	Longitude de lado 1 ciclo de caixa rectangular
	6	_	Longitude de lado 2 ciclo de caixa rectangular
	7	_	Longitude de lado 1 ciclo de ranhura
	8	_	Longitude de lado 2 ciclo de ranhura
	9	-	Raio ciclo caixa circular
	10	_	Avanço ao fresar ciclo de maquinação activado
	11	_	Sentido de rotação ciclo de maquinação activado
	12	_	Tempo de espera ciclo de maquinação activado
	13	_	Passo de rosca ciclo 17, 18
	14	_	Medida excedente de acabamento ciclo de
			maquinação activado
	15	_	Ângulo de desbaste ciclo de maquinação activado

Nome do grupo, ID-Nr.	Número	Índice	Dado do sistema
Dados da tabela de ferrtas., 50	1	Nº ferrta.	Longitude da ferramenta
	2	Nº ferrta.	Raio da ferramenta
	3	Nº ferrta.	Raio da ferramenta R2
	4	Nº ferrta.	Medida excedente da longitude da ferrta. DL
	5	Nº ferrta.	Medida excedente do raio da ferrta. DR
	6	Nº ferrta.	Medida excedente do raio da ferrta. DR2
	7	Nº ferrta.	Bloqueio da ferrta. (0 ou 1)
	8	Nº ferrta.	Número da ferrta. gémea
	9	Nº ferrta.	Máximo tempo de vida TIME1
	10	Nº ferrta.	Máximo tempo de vida TIME2
	11	Nº ferrta.	Tempo de vida actual CUR. TIME
	12	Nº ferrta.	Estado do PLC
	13	Nº ferrta.	Máxima longitude da lâmina LCUTS
	14	Nº ferrta.	Máximo ângulo de aprofundamento ANGLE
	15	Nº ferrta.	TT: № de navalhas CUT
	16	Nº ferrta.	TT: Tolerância de desgaste da longitude LTOL
	17	Nº ferrta.	TT: Tolerância de desgaste do raio RTOL
	18	Nº ferrta.	TT: Sentido de rotação DIRECTO (0=positivo/-1=negativo)
	19	Nº ferrta.	TT: Desvio do plano R-OFFS
	20	Nº ferrta.	TT: Desvio da longitude L-OFFS
	21	Nº ferrta.	TT: Tolerância de rotura da longitude LBREAK
	22	Nº ferrta.	TT: Tolerância de rotura do raio RBREAK
	Sem índice: dad	os da ferrta.	activada
Número de lugar de uma forsta			
numero de lugar de uma rema. na tabela de lugares 52	1	Nº forrta	Número de lugar
	I	n lenta.	
Posição programada directamente			
depois de TOOL CALL, 70	1	_	Posição válida/inválida (1/0)
	2	1	Eixo X
	2	2	Eixo Y
	2	3	Eixo Z
	3	_	Avanço programado (-1: sem avanço programado)
Correcção da ferrta. activada, 200	1	-	Raio da ferrta. (incl. valores delta)
	2	-	Longitude da ferrta.(incl. valores delta)

Nome do grupo, ID-Nr.	Número	Índice	Dado do sistema
Transformações acltvas, 210	1	_	Rotação básica em funcionamento manual
	2	_	Rotação programada com o ciclo 10
	3	_	Eixo espelho activado
			0: Espelho não activado
			+1: Eixo X reflectido
			+2: Eixo Y reflectido
			+4: Eixo Z reflectido
			+64: Eixo U reflectido
			+128: Eixo V reflectido
			+256: Eixo W reflectido
			Combinações = soma dos diferentes eixos
	4	1	Factor de escala eixo X activado
	4	2	Factor de escala eixo Y activado
	4	3	Factor de escala eixo Z activado
	4	7	Factor de escala eixo U activado
	4	8	Factor de escala eixo V activado
	4	9	Factor de escala eixo W activado
	5	1	3D-ROT eixo A
	5	2	3D-ROT eixo B
	5	3	3D-ROT eixo C
	6	_	Inclinação do plano de maquinação activa/não activa (-1/0)
Deslocação do ponto zero activada, 220	2	de 1 a 9	Índice 1=eixo X 2=eixo Y 3=eixo Z Índice 4=eixo A 5=eixo B 6=eixo C Índice 7=eixo U 8=eixo V 9=eixo W
Campo de deslocação, 230	2	de 1 a 9	Final de curso de software negativo Eixo 1 a 9
	3	de 1 a 9	Final de curso de software positivo Eixo 1 a 9
Posição nominal no sistema REF, 240	1	de 1 a 9	Índice 1=eixo X 2=eixo Y 3=eixo Z Índice 4=eixo A 5=eixo B 6=eixo C Índice 7=eixo U 8=eixo V 9=eixo W
Posição nominal no sistema de			
introdução, 270	1	de 1 a 9	Índice 1=eixo X 2=eixo Y 3=eixo Z
·			Índice 4=eixo A 5=eixo B 6=eixo C
			Índice 7=eixo U 8=eixo V 9=eixo W
Apalpador digital 350	10	_	Fixo do analnador
	10		Baio da esfera efectivo
	12		
	13		Baio do anol de ajuste
	14	1	Desvio central do eixo principal
	14	2	Desvio central do eixo secundário
	15	ے 	Direcção do desvio central em relação à nosição 0º
	10	_	Direcção do desvio central en relação a posição O

Nome do grupo, ID-Nr.	Número	Índice	Dado do sistema
Dados de calibração TT 120	20	1	Ponto central do eixo X (sistema de REF)
		2	Ponto central do eixo Y (sistema de REF)
		3	Ponto central do eixo Z (sistema de REF)
	21	_	Raio de disco
Apalpador analógico 350	30	_	l ongitude do apalpador calibrada
<u> </u>	31	_	Raio do apalpador
	32	_	Raio do apalpador 2
	33	_	Diâmetro do anel de ajuste
	34	1	Desvio central do eixo principal
	-	2	Desvio central do eixo secundário
	35	1	Factor de correcção do 1º eixo
		2	Factor de correcção do 2º eixo
		3	Factor de correcção do 3º eixo
	36	1	Potência do 1º eixo
		2	Potência do 2º eixo
		3	Potência do 3º eixo
Dados da tabela de pontos zero activada, 500	(Número NP)	de 1 a 9	Índice 1=eixo X 2=eixo Y 3=eixo Z Índice 4=eixo A 5=eixo B 6=eixo C Índice 7=eixo U 8=eixo V 9=eixo W
Tabela de pontos zero seleccionada, 505	1	-	Valor de anulação = 0: nenhuma tabela de pontos zero activada Valor de anulação = 1: tabela de pontos zero activada
Dados da tabela de paletes activada, 510	1	_	Linha activada
	۷	-	
parâmetro de máquina existente, 1010	Número MP	Índice MP	Valor de anulação = 0: MP não disponível Valor de anulação = 1: MP disponível

Exemplo: atribuir o valor do factor de escala activo ao eixo Z a Q25

55 FN18: SYSREAD Q25 = ID210 NR4 IDX3

FN 19: PLC Tranmitir valores para o PLC

Com a função FN19: PLC, você pode transmitir até dois valores numéricos ou parâmetros Q para o PLC Valores e unidades: 0,1 µm ou 0,0001°

Exemplo: transmitir o valor numérico 10 (corresponde a 1µm ou 0,001°) para o PLC

56 FN 19: PLC=+10/+Q3

FN 20: WAIT FOR sincronizar NC e PLC

Você só pode usar esta função em consonância com o fabricante da máquina!

Com a função FN20: WAIT FOR você pode usar durante a execução do programa uma sincronização entre o NC e o PLC. O TNC pára a maguinação enguanto não se tiver cumprido a condição programada na frase FN20. Para isso, o TNC pode verificar os sequintes operandos do PLC:

Operando de PLC	Abreviatura	Margem de direcção
Marca	Μ	0 a 4999
Entrada		0 a 31, 128 a 152
		64 a 126 (primeira PL 401 B)
		192 a 254 (segunda PL 401 B)
Saída	0	0 a 30
		32 a 62 (primeira PL 401 B)
		64 a 94 (segunda PL 401 B)
Contador	С	48 a 79
Temporizador	R	0 a 95
Byte	В	0 a 4095
Palavra	W	0 a 2047
Dupla palavra	D	2048 a 4095

Na frase FN20 permitem-se as seguintes condições:

Condição	Abreviatura
Igual	==
Menor do que	<
Maior do que	>
Menor-igual	<=
Maior-igual	>=

Exemplo: parar a execução do programa enquanto o PLC não fixar a marca 4095 em 1

32 FN20: WAIT FOR M4095==1

10.9 Introduzir uma fórmula directamente

Com as softkeys, você pode introduzir directamente no programa de maquinação, fórmulas matemáticas com várias operaçõese de cálculo:

Inroduzir a fórmula

As fórmulas aparecem, premindo a softkey FORMULA. O TNC mostra as seguintes softkeys em várias réguas:

Função de relação	Softkey
Adição p.ex. Q10 = Q1 + Q5	+
Subtracção p.ex. Q25 = Q7 - Q108	-
Multiplicação p.ex. Q12 = 5 * Q5	*
Divisão p.ex. Q25 = Q1 / Q2	/
Abrir parênteses p.ex. Q12 = Q1 * (Q2 + Q3)	(
Fechar parênteses p.ex. Q12 = Q1 * (Q2 + Q3))
Valor ao quadrado (em ingl.suare) p.ex. Q15 = SQ 5	SQ
Raiz quadrada (em ingl. square root) p.ex. Q22 = SQRT 25	SORT
Seno de um ângulo p.ex. Q44 = SIN 45	SIN
Co-seno de um ângulo p.ex. Q45 = COS 45	COS
Tangente de um ângulo p.ex. Q46 = TAN 45	TAN

Função de relação	Softkey	Regras de cálculo
Arco-seno Função inversa ao seno; determinar o ângulo da relação entre o cateto oposto/hipotenusa p.ex. Q10 = ASIN 0,75	RSIN	 Para a programação de fórmulas matemáticas, há as seguintes regras: Os cálculos de multiplicação efectuam-se antes dos de somar e subtrair
Arco-co-seno Função inversa ao co-seno; determinar o ângulo da relação entre o cateto contíguo/hipotenusa p.ex. Q11 = ACOS Q40	ACOS	12 Q1 = 5 * 3 + 2 * 10 = 35 1. Passo de cálculo 5 * 3 = 15 2. Passo de cálculo 2 * 10 = 20 3. Passo de cálculo 15 + 20 = 35 13 Q2 = 50 10 = 202 = 72
Arco-tangente função inversa à tangente; determinar o ângulo da relação entre o cateto oposto/cateto contíguo p.ex. Q12 = ATAN Q50	RTAN	 13 Q2 = SQ 10 - S²S = 73 1. Passo de cálculo elevar 10 ao quadrado = 100 2. Passo de cálculo elevar 3 ao cubo (à potência 3) = 27 3. Passo de cálcUlo 100 - 27 = 73
Valores a uma potência p.ex. Q15 = 3^3	^	 Lei da distribuição (lei da distribuição) em cálculos entre parênteses a * (b + c) = a * b + a * c
Constante PI (3,14159) p.ex. Q15 = PI	PI	
Determinar o logaritmo natural (LN) de um número Número base 2,7183 p.ex. Q15 = LN Q11	LN	
Determinar o logaritmo de um número em base 10 p.ex. Q33 = LOG Q22	LOG	
Função exponencial, 2,7183 elevado a n p.ex. Q1 = EXP Q12	EXP	
Negar valores (multiplicar por -1) p.ex. Q2 = NEG Q1	NEG	
Arredondar posições atrás da vírgula Determinar o número íntegro p.ex. Q3 = INT Q42	INT	
Determinar o valor absoluto de um número p.ex.Q4 = ABS Q22	ABS	
Arredondar posições diante da vírgula Fraccionar p.ex. Q5 = FRAC Q23	FRAC	

Exemplo de introdução Calcular o ângulo com o arctan como cateto oposto (Q12) e cateto contíguo (Q13); atribuir o resultado a Q25:

Seleccionar a introdução de fórmula: premir a tecla Q e a softkey FÓRMULA

Nº do Parâmetro para resultado?		
25 ^{ent}	Introduzir o número do parâmetro	
ATAN	Comutar a régua de softkeys e selecionar a função Arco-Tangente	
	Comutar a régua de softkeys e abrir parênteses	
Q 12	Introduzir o número 12 de parâmetro Q	
/	Seleccionar divisão	
Q 13	Introduzir o número 13 de parâmetro Q	
) END	Fechar parênteses e finalizar a introdução da fórmula	

Exemplo de frase NC

37 Q25 = ATAN (Q12/Q13)

10.10 parâmetros pré-determinados

O TNC memoriza valores nos parâmetros Q de Q100 a Q122. Aos parâmetros Q são atribuídos:

- Valores do PLC
- Indicações sobre a ferrta.
- Indicações sobre o estado de funcionamento, etc.

Valores do PLC: de Q100 a Q107

O TNC utiliza os parâmetros de Q100 a Q107 para poder aceitar valores do PLC num programa NC

Raio actual da ferrta.: Q108

O valor actual do raio da ferrta. é atribuído a Q108. Q108 é composto por:

■ Raio da ferrta. R (tabela de ferrtas. ou frase TOOL DEF)

■ Valor delta DR da tabela de ferrtas.

■ Valor delta DR da frase TOOL CALL

Eixo da ferrta.: Q109

O valor do parâmetro Q109 depende do eixo actual da ferrta.:

Eixo da ferramenta	Valor do parâmetro
Nenhum eixo da ferrta. definido	Q109 = -1
Eixo X	Q109 = 0
Eixo Y	Q109 = 1
Eixo Z	Q109 = 2
Eixo U	Q109 = 6
Eixo V	Q109 = 7
Eixo W	Q109 = 8

Estado da ferrta.: Q110

O valor do parâmetro depende da última função M programada para a ferrta.

Função M	Valor do parâmetro
Nenhum estado da ferrta. definido	Q110 = -1
M03: ferrta. LIGADA, sentido horário	Q110 = 0
M04: ferrta LIGADA, sentido anti-horário	Q110 = 1
M05 depois de M03	Q110 = 2
M05 nach M04	Q110 = 3

Abastecimento de refrigerante: Q111

Função M	Valor do parâmetro
M08: refrigerante LIGADO	Q111 = 1
M09: refrigerante DESLIGADO	Q111 = 0
factor de sobreposição: Q112

O TNC atribui a Q112 o factor de sobreposição em fresagem de caixa

(MP7430).

Indicações de cotas no programa: Q113

O valor do parâmetro Q113 em sobreposições com PGM CALL depende das indicações de cotas do programa que como primeiro chama outros programas.

Indicações de cotas no programa principal	Valor do parâmetro
Sistema métrico (mm)	Q113 = 0
Sistema em polegadas (poleg.)	Q113 = 1

Longitude da ferrta.: Q114

O valor actual da longitude da ferrta. é atribuído a Q114.

Coordenadas depois da apalpação durante a execução do programa

Depois de uma medição programada com o apalpador 3D, os parãmetros de Q115 a Q119 contêm as coordenadas da posição da ferrta. no momento da apalpação.

Para estas coordenadas, não se tem em conta a longitude da haste e o raio da esfera de apalpação.

Eixo de o	oordenadas	parâmetro
Eixo X		Q115
Eixo Y		Q116
Eixo Z		Q117
IV. Eixo	(depende de MP100)	Q118
Eixo V	(depende de MP100)	Q119

Desvio do valor real/nominal na medição automática da ferrta. com o TT 120

Desvio real/nominal	parâmetro
Longitude da ferramenta	Q115
Raio da ferramenta	Q116

Inclinação do plano de maquinação com ângulos da peça: coordenadas para eixos rotativos calculadas pelo TNC

Coordenadas	parâmetro
Eixo A	Q120
Eixo B	Q121
Eixo C	Q122

Resultados de medição de ciclos do apalpador (ver também manual do utilizador Ciclos de apalpação)

Valores nominais medidos	Parâmetro
Centro no eixo principal	Q151
Centro no eixo auxiliar	Q152
Diâmetro	Q153
Longitude da caixa	Q154
Largura da caixa	Q155
Longitude no eixo seleccionado no ciclo	Q156
Posição do eixo central	Q157
Ângulo do eixo A	Q158
Ângulo do eixo B	Q159
Coordenada do eixo seleccioando no ciclo	Q160

Desvio calculado	Parâmetro
Centro no eixo principal	Q161
Centro no eixo principal	Q162
Diâmetro	Q163
Longitude da caixa	Q164
Largura da caixa	Q165
Longitude medida	Q166
Posição do eixo central	Q167

Estado da peça	Parâmetro
Gut ??????	Q180
Acabamento	Q181
Desperdícios	Q182

Exemplo: elipse

Execução do programa

- A aproximação ao contorno da elipse faz-se por meio de pequenos segmentos de recta (definem-se com Q7). Quantos mais passos de cálculo estiverem definidos, mais liso fica o contorno
- Você determina a direcção de fresagem com o ângulo inicial e o ângulo final no plano:

Direcção de maquinação em sentido horário: ângulo inicial > ângulo final Direcção de maquinação em sentido antihorário: ângulo inicial < ângulo final

Não se tem em conta o raio da ferrta.

U BEGIN PGM ELIPSE MM	
1 FN 0: Q1 = +50	Centro do eixo X
2 FN 0: Q2 = +50	Centro do eixo Y
3 FN 0: Q3 = +50	Semieixo X
4 FN 0: Q4 = +30	Semieixo Y
5 FN 0: Q5 = +0	Ângulo inicial no plano
6 FN 0: Q6 = +360	Ângulo final no plano
7 FN 0: Q7 = +40	Quantidade de passos de cálculo
8 FN 0: Q8 = +0	Posição angular da elipse
9 FN 0: Q9 = +5	Profundidade de fresagem
10 FN 0: Q10 = +100	Tiefenvorschub
11 FN 0: Q11 = +350	Avanço de fresagem
12 FN 0: Q12 = +2	Distância de segurança para posicionamento prévio
13 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definição do bloco
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+2,5	Definição da ferramenta
16 TOOL CALL 1 Z S4000	Chamada da ferramenta
17 L Z+250 RO F MAX	Retirar a ferramenta
18 CALL LBL 10	Chamada da maquinação
19 L Z+100 R0 F MAX M2	Retirar a ferramenta, fim do programa

20	LBL 10	Sub-programa 10: maquinação
21	CYCL DEF 7.0 PONTO ZERO	Deslocar o ponto zero para o centro da elipse
22	CYCL DEF 7.1 X+Q1	
23	CYCL DEF 7.2 Y+Q2	
24	CYCL DEF 10.0 ROTAÇÃO	Calcular a posição angular no plano
25	CYCL DEF 10.1 ROT+Q8	
26	Q35 = (Q6 - Q5) / Q7	Calcular o passo angular
27	Q36 = Q5	Copiar o ângulo inicial
28	Q37 = 0	Fixar o contador de cortes
29	Q21 = Q3 * COS Q36	Calcular a coordenada X do ponto inicial
30	Q22 = Q4 * SIN Q36	Calcular a coordenada Y do ponto inicial
31	L X+Q21 Y+Q22 R0 F MAX M3	Chegada ao ponto inicial no plano
32	L Z+Q12 RO F MAX	Posicionamento prévio à distância de segurança no eixo da ferrta.
33	L Z-Q9 R0 FQ10	Deslocação à profundidade de maquinação
34	LBL 1	
35	Q36 = Q36 + Q35	Actualização do ângulo
36	Q37 = Q37 + 1	Actualização do contador de cortes
37	Q21 = Q3 * COS Q36	Calcular a coordenada X actual
38	Q22 = Q4 * SIN Q36	Calcular a coordenada Y actual
39	L X+Q21 Y+Q22 R0 FQ11	Chegada ao ponto seguinte
40	FN 12: IF +Q37 LT +Q7 GOTO LBL 1	Pergunta se está terminado, em caso afirmativo salto para o LBL 1
41	CYCL DEF 10.0 ROTAÇÃO	Anular a rotação
42	CYCL DEF 10.1 ROT+0	
43	CYCL DEF 7.0 PONTO ZERO	Anular a deslocação do ponto zero
44	CYCL DEF 7.1 X+0	
45	CYCL DEF 7.2 Y+0	
46	L Z+Q12 RO F MAX	Chegada à distância de segurança
47	LBL O	Fim do sub-programa
48	END PGM ELIPSE MM	

Exemplo: cilindro côncavo com fresa esférica

Execução do programa

- O programa só funciona com fresa esférica
- A aproximação ao contorno do cilindro faz-se por meio de pequenos segmentos de recta (definemse com Q13). Quantos mais cortes estiverem definidos, mais liso fica o contorno
- O cilindro é fresado nos cortes longitudinais (aqui: paralelamente ao eixo Y)
- Você determina a direcção de fresagem com o ângulo inicial e o ângulo final no espaço:

Direcção de maquinação em sentido horário: ângulo inicial > ângulo final Direcção de maquinação em sentido anti-horário: ângulo inicial < ângulo final

O raio da ferrta. é corrigido automaticamente

O BEGIN PGM CILIN MM	
1 FN 0: Q1 = +50	Centro do eixo X
2 FN 0: Q2 = +0	Centro do eixo Y
3 FN 0: Q3 = +0	Centro do eixo Z
4 FN 0: Q4 = +90	Ângulo inicial no espaço (plano Z/X)
5 FN 0: Q5 = +270	Ângulo final no espaço (plano Z/X)
6 FN 0: Q6 = +40	Raio do cilindro
7 FN 0: Q7 = +100	Longitude do cilindro
8 FN 0: Q8 = +0	Posição angular no plano X/Y
9 FN 0: Q10 = +5	Medida excedente do raio do cilindro
10 FN 0: Q11 = +250	Avanço ao aprofundar
11 FN 0: Q12 = +400	Avanço de fresagem
12 FN 0: Q13 = +90	Quantidade de cortes
13 BLK FORM 0.1 Z X+0 Y+0 Z-50	Definição do bloco
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+3	Definição da ferramenta
16 TOOL CALL 1 Z S4000	Chamada da ferramenta
17 L Z+250 RO F MAX	Retirar a ferramenta
18 CALL LBL 10	Chamada da maquinação
19 FN 0: Q10 = +0	Anular a medida excedente
20 CALL LBL 10	Chamada da maquinação
21 L Z+100 R0 F MAX M2	Retirar a ferramenta, fim do programa

22	LBL 10	Sub-programa 10: maquinação
23	Q16 = Q6 - Q10 - Q108	Calcular a medida excedente e a ferrta. referentes ao raio do cilindro
24	FN 0: Q20 = +1	Fixar o contador de cortes
25	FN 0: Q24 = +Q4	Copiar ângulo inicial no espaço (plano Z/X)
26	Q25 = (Q5 - Q4) / Q13	Calcular o passo angular
27	CYCL DEF 7.0 PONTO ZERO	Deslocação do ponto zero para o centro do cilindro (eixo X)
28	CYCL DEF 7.1 X+Q1	
29	CYCL DEF 7.2 Y+Q2	
30	CYCL DEF 7.3 Z+0	
31	CYCL DEF 10.0 ROTAÇÃO	Calcular a posição angular no plano
32	CYCL DEF 10.1 ROT+Q8	
33	L X+O Y+O RO F MAX	Posicionamento prévio no plano no centro do cilindro
34	L Z+5 RO F1000 M3	Posicionamento prévio no eixo da ferrta.
35	CC Z+0 X+0	Fixar o pólo no plano Z/X
36	LP PR+Q16 PA+Q24 FQ11	Chegada à posição inicial sobre o cilindro, aprofundamento
		inclinado na peça
37	LBL 1	
38	L Y+Q7 R0 FQ11	Corte longitudinal na direcção Y+
39	FN 1: $Q20 = +Q20 + +1$	Actualização do contador de cortes
40	FN 1: Q24 = +Q24 + +Q25	Actualização do ângulo no espaço
41	FN 11: IF +Q20 GT +Q13 GOTO LBL 99	Pergunta se está terminado, em caso afirmativo salto para o fim
42	LP PR+Q16 PA+Q24 FQ12	Aproximação ao "arco" para o corte longitudinal seguinte
43	L Y+0 R0 FQ11	Corte longitudinal na direcção Y-
44	FN 1: Q20 = +Q20 + +1	Actualização do contador de cortes
45	FN 1: Q24 = +Q24 + +Q25	Actualização do ângulo no espaço
46	FN 12: IF +Q20 LT +Q13 GOTO LBL 1	Pergunta se está terminado, em caso afirmativo salto para o LBL 1
47	LBL 99	
48	CYCL DEF 10.0 ROTAÇÃO	Anular a rotação
49	CYCL DEF 10.1 ROT+0	
50	CYCL DEF 7.0 PONTO ZERO	Anular a deslocação do ponto zero
51	CYCL DEF 7.1 X+0	
52	CYCL DEF 7.2 Y+0	
53	CYCL DEF 7.3 Z+0	
54	LBL O	Fim do sub-programa
55	END PGM CILIN	

Exemplo: esfera convexa com fresa cónica

Execução do programa

- O programa só funciona com fresa cónica
- A aproximação ao contorno da esfera faz-se por meio de segmentos de recta (plano Z/X, define-se com Q14). Quanto mais pequeno o passo angular estiver definido, mais liso fica o contorno
- Você determina a quantidade de cortes do contorno com o paso angular no plano (com Q18)
- A esfera é fresada no corte 3D de baixo para cima
- O raio da ferrta. é corrigido automaticamente

U DEUIN PUM ESFEKA MM	
1 FN 0: Q1 = +50	Centro do eixo X
2 FN 0: Q2 = +50	Centro do eixo Y
3 FN 0: Q4 = +90	Ângulo inicial no espaço (plano Z/X)
4 FN 0: Q5 = +0	Ângulo final no espaço (plano Z/X)
5 FN 0: Q14 = +5	Passo angular no espaço
6 FN 0: Q6 = +45	Raio da esfera
7 FN 0: Q8 = +0	Ângulo inicial posição angular no plano X/Y
8 FN 0: Q9 = +360	Ângulo final posição angular no plano X/Y
9 FN 0: Q18 = +10	Passo angular no plano X/Y para o desbaste
10 FN 0: Q10 = +5	Medida excedente raio da esfera para o desbaste
11 FN 0: Q11 = +2	Distância de segurança para posicionamento prévio no eixo da ferrta.
12 FN 0: Q12 = +350	Avanço de fresagem
13 BLK FORM 0.1 Z X+0 Y+0 Z-50	Definição do bloco
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+7,5	Definição da ferramenta
16 TOOL CALL 1 Z S4000	Chamada da ferramenta
17 L Z+250 RO F MAX	Retirar a ferramenta
18 CALL LBL 10	Chamada da maquinação
19 FN 0: Q10 = +0	Anular a medida excedente
20 FN 0: Q18 = +5	Passo angular no plano X/Y para o acabamento
21 CALL LBL 10	Chamada da maquinação
22 L Z+100 RO F MAX M2	Retirar a ferramenta, fim do programa

23	LBL 10	Sub-programa 10: maquinação
24	FN 1: Q23 = +Q11 + +Q6	Calcular a coordenada Z para posicionamento prévio
25	FN 0: $Q24 = +Q4$	Copiar ângulo inicial no espaço (plano Z/X)
26	FN 1: $Q26 = +Q6 + +Q108$	Corrigir o raio da esfera para posicionamento prévio
27	FN 0: Q28 = +Q8	Copiar posição angular no plano
28	FN 1: Q16 = +Q6 + -Q10	Ter em conta a medida excedente para raio da esfera
29	CYCL DEF 7.0 PONTO ZERO	Deslocar o ponto zero para o centro da esfera
30	CYCL DEF 7.1 X+Q1	
31	CYCL DEF 7.2 Y+Q2	
32	CYCL DEF 7.3 Z-Q16	
33	CYCL DEF 10.0 ROTAÇÃO	Calcular o ângulo inicial da posição angular no plano
34	CYCL DEF 10.1 ROT+Q8	
35	CC X+0 Y+0	Fixar o pólo no plano X/Y para posicionamento prévio
36	LP PR+Q26 PA+Q8 R0 FQ12	Posicionamento prévio no plano
37	LBL 1	Posicionamento prévio no eixo da ferrta.
38	CC Z+0 X+Q108	Fixar o pólo no plano Z/X para raio da ferrta. desviado
39	L Y+0 Z+0 FQ12	Deslocação para a profundidade pretendida
40	LBL 2	
41	LP PR+Q6 PA+Q24 R0 FQ12	Deslocar o "arco" para cima
42	FN 2: Q24 = +Q24 - +Q14	Actualização do ângulo no espaço
43	FN 11: IF +Q24 GT +Q5 GOTO LBL 2	Pergunta se o arco está terminado, senão retrocesso para LBL2
44	LP PR+Q6 PA+Q5	Chegada ao ângulo final no espaço
45	L Z+Q23 R0 F1000	Retrocesso segundo o eixo da ferrta.
46	L X+Q26 RO F MAX	Posicionamento prévio para o arco seguinte
47	FN 1: Q28 = +Q28 + +Q18	Actualização da posição de rotação no plano
48	FN 0: Q24 = +Q4	Anular o ângulo no espaço
49	CYCL DEF 10.0 ROTAÇÃO	Activar a nova posição de rotação
50	CYCL DEF 10.1 ROT+Q28	
51	FN 12: IF +Q28 LT +Q9 GOTO LBL 1	
52	FN 9: IF +Q28 EQU +Q9 GOTO LBL 1	Pergunta se não está terminado, em caso afirmativo salto para o LBL 1
53	CYCL DEF 10.0 ROTAÇÃO	Anular a rotação
54	CYCL DEF 10.1 ROT+0	
55	CYCL DEF 7.0 PONTO ZERO	Anular a deslocação do ponto zero
56	CYCL DEF 7.1 X+0	
57	CYCL DEF 7.2 Y+0	
58	CYCL DEF 7.3 Z+0	
59	LBL O	Fim do sub-programa
60	END PGM ESFERA MM	

Teste e execução do programa

11.1 Gráficos

Nos modos de funcionamento de execução do programa e no modo de funcionamento teste do programa, o TNC simula graficamente a maquinação. Com as softkeys, você selecciona:

- Vista de cima
- Representação em 3 planos
- Representação 3D

O gráfico do TNC corresponde à representação de uma peça maquinada com uma ferramenta cilíndrica. Quando está activada a tabela de ferrtas., você pode representar a maquinação com uma fresa esférica. Para isso, introduza na tabela de ferrtas R2 = R.

O TNC não mostra o gráfico quando

o programa actual não contém uma definição válida do bloco

não está seleccionado nenhum programa

Com os parâmetros de máquina de 7315 a 7317 você pode ajustar o TNC para se visualizar também um gráfico quando não se tiver definido ou deslocado nenhum eixo da ferrta.

Você não pode usar a simulação gráfica nas partes parcias de um programa ou em programas com movimentos de eixos rotativos ou no plano inclinado de maquinação: nestes casos, o TNC emite um aviso de erro.

Resumo: vistas

Nos modos de funcionamento de execução do programa e no modo de funcionamento

teste do programa o TNC mostra as seguintes softkeys:

Vista	Softkey
Vista de cima	
Representação em 3 planos	
Representação 3D	

11.1 Gráficos

Limitações durante a execução do programa

A maquinação não se pode simular graficamente ao mesmo tempo quando a calculadora do TNC já está sobrecarregada com cálculos muito complicados ou com superfícies de maquinação muito grandes. Exemplo: maquinação sobre todo o bloco com uma ferrta. grande. O TNC não continua com o gráfico e emite o texto ERROR na janela do gráfico. No entanto, a maquinação continua a executarse.

Vista de cima

16/32

Seleccionar vista de cima com a softkey

Seleccionar o número de níveis de profundidade com a softkey (comutar a régua): comutar entre 16 ou 32 níveis de profundidade; para a representação em profundidade deste gráfico, é válido:

"Quanto mais profundo, mais escuro"

Esta simulação gráfica é a mais rápida

Representação em 3 planos

A representação realiza-se com uma vista de cima com duas secções, semelhante a um desenho técnico. Sob o gráfico à esquerda, um símbolo indica se a representação corresponde ao método de projecção 1 ou ao método de projecção 2 segundo a norma DIN 6, 1ª Parte (selecciona-se com MP 7310).

Na representação em 3 planos, dispõe-se de funções para a ampliação de secções (ver "Ampliação de um pormenor").

Para além disso, você pode deslocar com softkeys o plano da secção:

 Seleccionar a representação em 3 planos com a softkey

Vá comutando a régua de softkeys até o TNC visualizar as seguintes softkeys:

+⊟-

•----

Função	Softkeys
Deslocar o plano da secção vertical para a dir.ou para a esq.	ф. •
Deslocar o plano da seccão horizontal	

Durante a deslocação pode-se observar no ecrã a posição do plano da seccão.

Coordenadas da linha da secção

para cima ou para baixo

O TNC visualiza sob a janela do gráfico as coordenadas da linha da secção, referentes ao ponto zero da peça. Só se visualizam as coordenadas no plano de maquinação. Você activa estas funções com o parâmetro de máquina 7310.

HEIDENHAIN TNC 426 B, TNC 430

Representação 3D

O TNC mostra a peça no espaço

Você pode rodar a representação em redor do eixo vertical. Você pode representar com uma moldura os contornos do bloco para iniciar a simulação gráfica.

No modo de funcionamento Teste do Programa existem funções para a ampliação de um pormenor (ver "Ampliação de um pormenor)

ł

Seleccionar a representação 3D com esta softkey

Rodar a representação 3D

Ir comutando a régua de softkeys até aparecer a seguinte softkey:

Função	Softkey
Rodar o gráfico om passos do 27º	

Visualizar e omitir a moldura do contorno da peça

Visualizar a moldura: softkey VISUALIZAR BLK-FORM

▶ Omitir a moldura: softkey OMITIR BLK-FORM

Ampliação de um pormenor

No modo de funcionamento Teste do programa você pode modificar o pormenor para

- Representação em 3 planos e
- Representação 3D

Para isso, deve estar parada a simulação gráfica. A ampliação de um pormenor actua sempre em todos os modos de representação.

Ir comutando a régua de softkeys no modo de funcionamento Teste do Programa até aparecerem as seguintes softkeys:

Função	Softkeys
Seleccionar a parte esq./dir. da peça	F
Seleccionar a parte posterior/frontal	
Seleccionar a parte superior/inferior	
Deslocar a superfície da secção para ampliar ou reduzir a peça	- +
Aceitar o pormenor	TRANSFERE DE TALHE

Modificar a ampliação do pormenor

Para softkeys, ver tabela

- ▶ Se necessário, parar a simulação gráfica
- Seleccionar o lado da peça com a softkey (tabela)
- Reduzir ou ampliar um bloco: Manter premida a softkey "-" ou "+"
- Aceitar a secção pretendida: premir a softkey ACEITAR PORMENOR
- Iniciar de novo o teste doe programa ou a execução do programa com a softkey START (RESET + START produz de novo o bloco original).

Posição do cursor na ampliação de um pormenor

Durante a ampliação de um pormenor, o TNC mostra as coordenadas do eixo com que você está a cortar. As coordenadas correspondem ao campo determinado para a ampliação do pormenor À esquerda da barra, o TNC mostra a coordenada mais pequena do campo (ponto MIN) e à direita a maior (ponto MAX)

Durante uma ampliação, o TNC visualiza em baixo à direita do ecrã o símbolo MAGN.

Se o TNC não continuar a reduzir ou a ampliar a peça, emite um aviso de erro na janela do gráfico. para eliminar esse aviso, volte a reduzir ou ampliar a peça.

Repetir a simulação gráfica

Pode-se simular quantas vezes se quiser um programa de maquinação. Para isso, você pode anular o bloco do gráfico ou um pormenor ampliado desse bloco.

Função	Softke
Visualizar o bloco por maquinar com a última ampliação de pormenor seleccionada	RESET BLK FORM

Anular a ampliação do pormenor de forma a que o TNC visualize a peça maquinada ou por maquinar Visualizar a peça segundo o BLK-FORM visualizado

Com a softkey BLK COMO BLK FORM, o TNC visualiza outra vez - também depois de um pormenor sem ACEITAR PORMENOR – o bloco no tamanho programado.

Calcular o tempo de maquinação

Funcionamento de execução do programa

Visualização do tempo desde o início do programa até ao seu fim. Se houver alguma interrupção, o tempo pára.

Teste do programa

Visualização do tempo aproximado que o TNC calcula para a duração dos movimentos da ferrta. que se realizam com o avanço. O tempo calculado pelo TNC não se ajusta aos cálculos do tempo de acabamento, já que o TNC não tem em conta os tempos dependentes da máquina (p.ex. para a troca de ferrta.).

Seleccionar a função do cronómetro

Ir comutando a régua de softkeys até o TNC mostrar as seguintes softkeys com as funções do cronómetro:

Funções do cronómetro	Softkey
Memorizar o tempo visualizado	
Visualizar a soma dos tempos memorizados ou visualizados	
Apagar o tempo visualizado	RESET 00:00:00 0

As softkeys à esquerda das funções do cronómetro dependem da subdivisão do ecrã seleccionada.

11.2 Funções para a visualização do programa na Execução do programa/Teste do programa

Nos modos de funcionamento de execução do programa e no modo de funcionamento teste do programa o TNC mostra as softkeys com que você pode visualizar o programa de maquinação por páginas:

Funções	Softkey
Passar uma página para trás no programa	PAGINA Û
Passar página à frente no programa	PAGINA
Seleccionar o princípio do programa	
Seleccionar o fim do programa	FIM <u> </u>

11.3 Teste do	programa
---------------	----------

No modo de funcionamento Teste do programa você simula o desenvolvimento de programas e partes do programa para excluir erros na sua execução. O TNC ajuda-o a procurar

- incompatibilidades geométricas
- falta de indicações
- saltos não executáveis
- estragos no espaço de trabalho

Para além disso, pode-se usar as seguintes funções:

- teste do programa frase a frase
- interrupção do teste em qualquer frase
- saltar frases
- funções para a representação gráfica
- Calcular o tempo de maquinação
- Visualizações de estado suplementares

Execu	ucao (contir	านล				Teste de programa
0 B 1 B 2 B 3 T 4 L 5 L 6 L 7 A 8 F 0	EGIN F LK FOF DOL CF Z+250 X-20 Z-10 PPR C C DR-	PGM F RM 0.2 RM 0.2 RLL 1 PLL 1 R0 F R0 F R0 F R18 ((1 MM 1 Z X- 2 X+10 7 MAX 80 F 1000 M Y+30 CLSD+	+0 Y+0 30 Y+3 MAX 13 CCA90 CCX+2	0 Z-20 100 Z 0 R+5 20 CC	∂ ⊦0 RL (+30	F250
B ATUAL	124,2 +88,6	106 v 170 ((-24 C +4	43,360 41,457	63 Z 72 S F0	+15	52,3902 387 M 5/9
PAGINA	PAGINA J	INICIO	FIM <u> </u>	GUARDAR POS.ATE		/□ 0FF /[FERRAM.

Executar o teste do programa

Com o armazém de ferrtas activado, você tem que activar uma tabela de ferrtas. para o teste do programa (estado S). Para isso, seleccione uma tabela de ferrtas. no modo de funcionamento teste do programa por meio da Gestão de ficheiros (PGM MGT).

Com a função MOD BLOCO NO ESPAÇO DE TRABALHO você activa para o teste do programa uma vigilância do espaço de trabalho (ver capítulo 12 Funções MOD, representar o bloco no espaço de trabalho").

- Seleccionar o modo de funcionamento Teste do programa
 - Visualizar a gestão de ficheiros com a tecla PGM MGT e seleccionar o ficheiro que se pretende verificar ou
 - Selecccionar o início do programa: seleccionar com a tecla GOTO linha "0" e confirmar a introdução com a tecla ENT

O TNC mostra as seguintes softkeys:

Funções	Softkey
Verificar todo o programa	START
Verificar cada frase do programa por separado	START PASSO
Representar o bloco e verificar o programa completo	RESET + START
Parar o teste do programa	STOP

Executar o teste do programaaté uma determinada frase

Com STOP AT N o TNC executa o teste do programa só até uma frase com o número N.

- Seleccionar o princípio do programa no modo de funcionamento Teste do programa
- Seleccionar o teste do programa até uma determinada frase: premir a softkey STOP EM N

Stop em N: introduzir o número da frase onde se pretende parar o teste do programa

- Programa: introduzir o nome do programa onde se encontra a frase com o número seleccionado; o TNC visualiza o nome do programa seleccionado; se a paragem do programa tiver que realizar-se num programa chamado com PGM CALL, introduza este nome
- Repetições: introduzir a quantidade de repetições que se deve executar se N não se encontrar dentro de uma repetição parcial do programa
- Verificar a secção do programa: premir a softkey START; o TNC verifica o programa até à frase introduzida

Execucao continua	Teste d	e prog	grama				
Ø BEG 1 BLK 2 BLK 3 TOOI 4 L 5 L 6 L 7 APPI 8 FC 9 FLT 10 FC	IN PGM F FORM 0. FORM 0. L CALL 1 +250 R0 -20 Y+30 -10 R0 F R CT X+2 DR- R18 T DR- R1	K1 MM 1 Z X+ 2 X+10 F MAX R0 F 1000 M Y+30 CLSD+ 5 CCX-	+0 Y+0 30 Y+1 MAX 13 CCA90 CCX+2	3 Z-20 100 Z- 3 R+5 20 CC1 CY+75	3 +0 RL F2 Y+30	250	
Pare na linha Nr.= <mark>25</mark> PGM = FK1.H Repeticoes = 1							
		✓□ DFF ✓ ON	START PASSO	FIM	START	RESET * START	

11.4 Execução do programa

No modo de funcionamento Execução Contínua do Programa, o TNC executa o programa de maquinação de forma contínua até ao seu fim ou até uma interrupção.

No modo de funcionamento Execução do Programa Frase a Frase o TNC executa cada frase depois de accionar a tecla externa de arranque START.

Você pode usar as seguintes funções do TNC nos modos de funcionamento de execução do programa:

- Interromper a execução do programa
- Executar o programa a partir de uma determinada frase
- Saltar frases
- Editar a tabela de ferrtas. TOOL.T
- Controlar e modificar parâmetros Q
- Sobrepor posicionamentos do volante
- Funções para a representação gráfica
- Visualizações de estado suplementares

Executar o programa de maquinação

Preparação

- 1 Fixar a peça na mesa da máquina
- 2 Memorização do ponto de referência
- **3** Seleccionar as tabelas necessárias e os ficheiros de paletes (estado M)
- 4 Seleccionar o programa de maquinação

Com o potenciómetro de override você pode modificar o avanço e as rotações.

Execução contínua do programa

Iniciar o programa de maquinação com a tecla externa de arranque Start

Execução do programa frase a frase

Iniciar cada frase do programa de maquinação com a tecla externa de arranque Start

Interromper a maquinação

Você pode interromper a execução do programa de diferentes maneiras:

- Interrupção programada
- Tecla externa STOP
- Comutação à execução do programa frase a frase

Se durante a execução do programa o TNC registar um erro, interrompe-se automaticamente a maquinação.

Interrupção programada

Interrupção programada O TNC interrompe a execução do programa logo que o programa é executado até à frase que contém uma das seguintes introduções:

- STOP (com e sem função auxiliar)
- Função auxiliar M0, M2 ou M30
- E Função auxiliar M6 (determinada pelo fabricante da máquina)

Interrupção com a tecla externa STOP

- Premir a tecla STOP: a frase que o TNC está a executar quando se acciona essa tecla não acaba de se realizar; na visualização de estados aparece um asterisco "*" a piscar
- Se não quiser continuar a execução da maquinação, pode anulá-la no TNC com a softkey STOP INTERNO: na visualização de estados desaparece o asterisco "*". Neste caso, iniciar o programa desde o princípio.

Interrupção da maquinação comutando para o modo de funcionamento Execução do programa frase a frase

Enquanto você executa um programa de maquinação no modo de funcionamento Execução contínua do programa, seleccione Execução do programa frase a frase. O TNC interrompe a maquinação depois de executar a frase de maquinação actual.

Deslocar os eixos da máquina durante uma interrupção

Durante uma interrupção, você pode deslocar os eixos da máquina com o modo de funcionamento Manual.

Perigo de colisão!

Se interromper a execução do programa num plano inclinado de maquinação, você pode comutar o sistema de coordenadas entre inclinado e não inclinado com a softkey 3D ON/OFF.

O TNC avalia a seguir de forma correspondente a função das teclas de direcção dos eixos, do volante e lógica de reentrada. Ao retirar, deve ter em conta que esteja activado o sistema de coordenadas correcto e que se tenham introduzido os valores angulares dos eixos rotativos no menú 3D-ROT.

Exemplo de utilização:

Retirar a ferrta. do cabeçote depois de uma rotura da ferrta..

▶ Interromper a maquinação

- Desbloquear as teclas externas de direcção: premir a softkey OPERAÇÃO MANUAL
- > Deslocar os eixos da máquina com as teclas externas de direcção

Em algumas máquinas, depois de se premir a softkey OPERAÇÃO MANUAL, há que premir a tecla externa START para desbloquear as teclas externas de direcção. Consulte o manual da máquina

Continuar com a execução do programa após uma Unterbrechung interrupção

Se interromper a execução do programa durante um ciclo de maquinação, você deverá realizar a reentrada no princípio do ciclo. O TNC deverá realizar de novo os passos de maquinação já executados.

Quando interromper a execução do programa dentro de uma repetição parcial do programa ou dentro de um sub-programa, você deverá ir de novo para a posição onde interrompeu o programa, com a função ?RECUPERAR POSIÇÃO EM N

Na interrupção da execução de um programa o TNC memoriza :

- os dados da última ferrta. chamada
- as conversões de coordenadas activadas
- as coordenadas do último ponto central do círculo definido

Os dados memorizados são utilizados para a reentrada no contorno depois da deslocação manual dos eixos da máquina durante uma interrupção (RESTORE POSITION).

Continuar a execução do pgm com a tecla externa START

Depois de uma interrupção, você pode continuar a execução do programa com a tecla externa START sempre que tiver parado o programa de uma das seguintes formas:

- Premindo a tecla externa STOP
- Interrupção programada

Continuar a execução do programa depois de um erro

Com avisos de erro não intermitentes:

- ▶ Eliminar a causa do erro
- Apagar o aviso de erro do ecrã: premir a tecla CE
- Arrancar de novo ou continuar a execução do pgm no mesmo lugar onde foi interrompido
- Com avisos de erro intermitentes:
- Manter premida a tecla END durante dois segundos, e o TNC executa um arranque a quente
- ▶ Eliminar a causa do erro
- Arrancar de novo

Se o erro se repetir, anote-o e avise o serviço técnico.

Reentrada livre no programa (processo a partir de uma frase)

A função RECUPERAR POS EM N deverá ser activada e ajustada pelo fabricante da máquina. Consulte o manual da máquina

Com a função RECUPERAR POS EM N (processo a partir de uma frase) você pode executar um programa de maquinação a partir de uma rase N livremente escolhida. O TNC tem em conta o cálculo da maquinação da peça até essa frase. Pode ser representada graficamente pelo TNC.

Se você tiver interrompido um programa com INTERNAL STOP, o TNC oferece automaticamente a frase N para a reentrada onde você interrompeu o programa. O processo a partir de uma frase não deverá começar num sub-programa.

Todos os rogramas, tabelas e ficheiros de paletes necessários deverão estar seleccionados num modo de funcionamento de execução do programa (estado M).

Se o programa contém uma interrupção programada antes do final do processo a partir de uma frase, este é aí interrompido. Para continuar o processo desde uma frase, prima a tecla externa START.

Depois de um processo a partir de uma rase, a ferrta. desloca-se com a função RECUPERAR POSIÇÃO para a posição calculada.

Determina-se com parâmetro de máquina 7680 se o processo a partir de uma frase em programas sobrepostos começa na frase 0 do programa principal ou se começa na frase 0 do programa onde se interrompeu pela úlytima vez a execução do programa.

Com a softkey 3D ON/OFF você determina se o TNC trabalha no plano aquinação inclinado ou não inclinado.

- Seleccionar a primeira frase do programa actual como início para a execução do processo a partir de uma frase: introduzir "0".
- Seleccionar processo a partir de uma frase: premir a softkey RECUPERAR POSIÇÃO EM N

Processo de avanço até N: introduzir o número N da frase onde deve acabar o processo de avanço

- Programa: introduzir o nome do programa onde se encontra a frase N
- Repetições: introduzir a quantidade de repetições que se deve ter em conta no processo a partir de uma frase, se acaso a frase N não se encontrar dentro de uma repetição parcial do programa
- Iniciar o processo a partir de uma frase: premir a tecla externa START
- Chegada ao contorno: ver o próximo parágrafo "Reentrada no contorno"

Execu	ucao (contir	nua				Tes pro	ite de grama
0 BI 1 BI 2 BI 3 TC 4 L	EGIN F LK FOF LK FOF OOL CF Z+256	PGM FK RM 0.2 RM 0.2 ALL 1 8 R0 F	(1 MM L Z X- 2 X+10 Z 7 MAX	+0 Y+0 30 Y+1	9 Z. 100	-26 Z+) - 0	
Avance linha Nr.= <mark>25</mark> PGM = FK1.H Repeticoes = 1								
X +	124,2	106	/ -2/	43,360	53	Z	+152	,3902
	.00,0	110 (,	11,40	2	s	0,08	7
ATUAL		T			F 0			M 5⁄9
PAGINA 介	PAGINA	INICIO ①	FIM N				1	FIM

Reentrada no contorno

Com a função APROXIMAR POSIÇÃO o TNC desloca a ferrta. para o contorno da peça nas seguintes situações:

- Reentrada depois de deslocar os eixos da máquina durante uma interrupção, executada sem STOP INTERNO.
- Reentrada depois do processo a partir de uma frase com RECUPERAR POS. EM N, p.ex. depois de uma interrupção com STOP INTERNO
- Seleccionar a reentrada no contorno: seleccionar a softkey RECUPERAR POSIÇÃO
- Deslocar os eixos na sequência que o TNC sugere no ecrã: premir a a tecla externa START ou
- Deslocar os eixos em qualquer sequência: premir as softkeys RECUPERAR X, RECUPERAR Z, etc., e activar com a tecla externa START
- Continuar a maquinação: premir a tecla externa START

11.5 Saltar frases

As frases que você tiver caracterizado na programação com o sinal "/", podem saltar-se no teste ou na execução do programa

/D DFF/ ON Não executar nem testar as frases do programa com o sinal "/": premir a softkey em OFF

Execução ou teste de frases do programa com o sinal "/": premir a softkey em OFF

Esta função não actua nas frases TOOL DEF.

Depois de uma interrupção de energia, mantém-se válido o último ajuste seleccionado.

Funções MOD

12.1 Seleccionar, modificar e anular as funções MOD

Com as funções MOD, você pode seleccionar as visualizações adicionais e as possibilidades de introdução. As funções MOD disponíveis dependem do modo de funcionamento seleccionado.

Seleccionar as funções MOD

Seleccione o modo de funcionamento onde pretende modificar as funções MOD

Seleccionar as funções MOD: premir a tecla MOD. As figuras à direita mostram menús típicos dos funcionamentos Memorização/Edição do programa (figura em cima, à direita), teste do programa (figura no centro, à direita) e um modo de funcionamento de máquina (figura na próxima página).

Modificar ajustes

Seleccionar a função MOD com as teclas de setas no menú visualizado.

Para se modificar um ajuste - depende da função selecionada - dispõe-se de três possibilidades:

- Introduzir directamente o valor numérico, p.ex. na determinação dos finais de curso
- Modificar o ajuste premindo a tecla ENT, p.ex., na determinação da introdução do programa
- Modificar o ajuste com uma janela de selecção. Quando se dispõe de várias possibilidades de ajuste, pode-se abrir uma janela premindo a tecla GOTO (IR A) onde rapidamente se vêm todas as possibilidades de ajuste. Seleccione directamente o ajuste pretendido, premindo a respectiva tecla numérica (à esquerda do ponto duplo), ou com a tecla de seta, e a seguir confirme com a tecla ENT. Se não quiser modificar o ajuste, feche a janela com a tecla END.

Sair das Funções MOD

Finalizar a função MOD: premir a softkey END ou a tecla END.

Resumo das funções MOD

Consoante o modo de funcionamento seleccionado, você pode efectuar as seguintes modificações:

Memorização/Edição do programa

- Visualizar o número de software NC
- Visualizar o número de software PLC
- Introduzir o código
- Ajustar a conexão de dados externa
- Parâmetros do utilizador específicos da máquina
- Se necessário, visualizar ficheiros HELP

Teste do programa:

- Visualizar o número de software NC
- Visualizar o número de software de PLC
- Introduzir o código
- Ajuste da conexão de dados externa
- Representação gráfica do bloco no espaço de trabalho
- Parâmetros do utilizador específicos da máquina
- Se necessário, visualizar ficheiros HELP

Todos os outros modos de funcionamento:

- Visualizar o número de software NC
- Visualizar o número de software de PLC
- Visualizar os índices para as opções disponíveis
- Seleccionar a visualização de posições
- Determinar o sistema métrico (mm/poleg.)
- Determinar a linguagem de programação para MDI
- Determinar os eixos para a aceitação da posição real
- Fixar os finais de curso
- Visualizar os zero peça
- Visualizar os tempos de maquinação
- Se necessário, visualizar ficheiros HELP

12.2 Números de software e de opções

Os números de software do NC e do PLC visualizam-se no ecrã do TNC depois de se ter seleccionado as funções MOD. Directamente abaixo estão os números para as opções disponíveis (OPT:):

Nenhuma opção	OPT: 00000000
Opção digitalização com apalpador digital	OPT: 00000001
Opção digitalização com apalpador analógico	OPT: 00000011

12.3 Introduzir o código

O TNC precisa de um código para a seguinte função:

Função	Código
Seleccionar parâmetros do utilizador	123
Configurar o cartão da Ethernet	NET123

Modo	de or	peraca	ao mar	nual		Edio	∶ao de ∦rama
Visua Visua Troca Edica Selec	aliz. aliz.c ar MM, ao de ao de	cota: cotas /pol progr e eixo	s 1 2 rama o	REAL REST MM HEIDE %001:	ENHAIN 11	١	
NC : numero software 280472 08 PLC: numero software TNC430-IB OPT: %00000001							
POSICAO/ ENTRA.PGM	FIM DE CURSO (1)	FIM DE CURSO (2)	FIM DE CURSO (3)	HELP	TEMPO MAQUI ()		FIM

12.4 Ajuste da conexão de dados

Para ajustar a conexão de dados, prima a softkey RS 232- / RS 422 - AJUST. O TNC mostra um menú no ecrã onde se introduzem os seguintes ajustes:

Ajustar a conexão RS-232

O modo de funcionamento e a velocidade Baud para a conexão RS-232 introduzem-se à esquerda do ecrã.

Ajustar a conexão RS-422

O modo de funcionamento e a velocidade Baud para a conexão RS-422 introduzem-se à direita do ecrã.

Seleccionar o MODO DE FUNCIONAMENTO num aparelho externo

Nos modos de funcionamento FE2 e EXT você não pode utilizar as funções "memorizar todos os programas", "memorizar o programa visualizado", e "memorizar o directório".

Ajustar a VELOCIDADE BAUD

A VELOCIDADE BAUD (Datenübertragungs-Geschwindigkeit) pode selecionar-se entre 110 e 115.200 Baud.

Aparelho externo Mo	do de funcio	namento	Símbolo
Unidades de disquetes da HEID FE 401 B FE 401 a partir do Nº de Prog. 2	DENHAIN 30 626 03	FE1 FE1	
Unidade de disquetes da HEIDI FE 401 incl. até o prog. Nº. 230	ENHAIN 626 02	FE2	
PC com software de transmissa HEIDENHAIN Software TNCremo	áo	FE1	
Aparelhos externos, como impre Unidade perfuradora, PC sem T	essora, leitor, NCremo.	EXT1, EXT2	Ð
PC com software HEIDENHAIN TNCremo para comando à distâ	incia do TNC	LSV2	₽

Modo opera manual	ecao Te	ste de	e prog	grama			
Inter	face	RS232	2	Inter	face	RS422	2
Modo Baud	oper rate	.: [<u> 5V-2</u>	Modo Baud	oper. rate	.: LS	SV-2
FE FXT1	:	38400 19200		FE FXT1	: 3	38400 3600	
EXT2	: :	9600 11520	a	EXT2		9600 115200	a
Atribuir:							
Impressao : Teste impr.: PGM MGT: Ampliado							
	86333						
0 . "	RS422 SELECC.	EM ESPAC. TRABALHO	PARAMETRO USUARIO	HELP			FIM

ATRIBUIÇÃO

Com esta função, você determina para onde se transmitem os dados do TNC.

Aplicações:

- Emitir valores de parâmetros Q com a função FN15
- Emitir os valores de parâmetros Q com a função FN16
- Caminho de busca no disco duro do TNC onde são memorizados os dados de digitalização

Consoante o modo de funcionamento do TNC, utiliza-se a função PRINT ou PRINT-TEST:

Modo de funcionamento doTNC	Função de transmissão
Execução do programa frase a frase	PRINT
Execução contínua do programa	PRINT
Teste do programa	PRINT-TEST

PRINT e PRINT-TEST podem-se ajustar da seguinte forma:

Função	Caminho
Emitir dados através de RS-232	RS232:\
Emitir dados através de RS-422	RS422:\
Memorizar dados no disco duro do TNC	TNC:\
Memorizar dados no subdirectório onde	
se encontra o programa com FN15/FN16 ou o program	าล
com os ciclos de digitalização	- vazio -

Nomes dos ficheiros:

Dados	Modo de funcionamento	Nome do ficheiro
Dados da digitalizad	ção Execução do programa	Determinado no ciclo CAMPO
Valores com FN15	Execução do programa	%FN15RUN.A
Valores com FN15	Teste do programa	%FN15SIM.A
Valores com FN16	Execução do programa	%FN16RUN.A
Valores com FN16	Teste do programa	%FN16SIM.A

Software para a transmissão de dados

Para a transmissão de dados desde o TNC e para o TNC, você deverá utilizar o software HEIDENHAIN para a transmissão de dados TNCremo. Com o TNCremo você pode dirigir todos os comandos HEIDENHAIN mediante a conexão de dados de série.

 Para receber grátis um Shareware do TNCremo ponha-se em contacto com a HEIDENHAIN.

Condições de sistema para o TNCremo

Computador pessoal AT ou um sistema compatível

- Memória de trabalho de 640 kB
- 1 MByte livre no seu disco duro
- uma conexão de dados livre de série
- Sistema operativo MS-DOS/PC-DOS 3.00 ou superior, Windows 3.1 ou superior, OS/2
- Para trabalhar confortavelemente, um rato compatível com Microsoft (TM) (não é absolutamente obrigatório)

Instalação emWindows

- Arranque o programa de instalação SETUP.EXE com o gestor de ficheiros (Explorer)
- Siga as instruções do programa de setup

Arrancar o TNCremo em Windows

Windows 3.1, 3.11, NT:

Faça um duploi clique sobre o ícone no grupo de programas aplicações HEIDENHAIN

Windows95:

Faça um clique sobre <Start>, <Programme>, <Aplicações HEIDENHAIN >, <TNCremo>

Se estiver a arrancar o TNCremo pela primeira vez, vai-lhe ser perguntado qual o comando, a interface (COM1 ou COM2) e a velocidade de transmissão de dados. Introduza a informação pretendida.

Transmissão de dados entre oTNC e oTNCremo

Verifique se:

- o TNC está conectado na interface correcta de série da sua calculadora
- a velocidade de transmissão de dados no TNC para o funcionamento LSV2 coincide com a velocidade no TNCremo

Depois de ter arrancado o TNCremo, veja no lado esquerdo da janela principal **1** todos os ficheiros que estão memorizados no directório activado. Mediante <directório>, <trocar> você pode seleccionar um suporte de dados qualquer ou um outro directório na sua calculadora.

Para fazer a ligação ao TNC, seleccione <ligação>, <ligação>. O TNCremo recebe a estrutura de ficheiros e directórios do TNC e visualiza-a no lado inferior da janela principal (2). Para transmitir um ficheiro do TNC para o PC, seleccione o ficheiro na janela do TNC (com um clique do rato no espaço iluminado) e active a função <transmitir> <ficheiro>.

Para transmitir ficheiros do PC para o TNC, seleccione o ficheiro na janela do PC e active a função <transmitir> <ficheiro>.

Finalizar oTNCremo

Seleccione o ponto de menu <finalizar>, <ficheiro>, ou prima a combinação de teclas ALT+X

Observe também a função de auxílio do TNCremo onde são esclarecidas todas as funções.

12.5 Conexão Ethernet

Introdução

Você pode, como opção, equipar o TNC com um cartão para ligar o comando como **Client** na sua rede. O TNC transmite dados para a placa Ethernet segundo o tipo de protocolos TCP/IP (Transmission Control Protocol/Internet Protocol) e com auxílio do NFS (Network File System). TCP/IP e NFS estão implementados sobetudo em sistemas UNIX de forma a que você possa ligar o TNC no mundo UNIX na maior parte das vezes sem software adicional.

O mundo dos PCs com sistemas operativos Microsoft trabalha em termos de rede também com TCP/IP, mas não com NFS. Por isso, você precisa de um software adicional para ligar o TNC a uma rede de PC. A HEIDENHAIN recomenda os seguintes softwares de rede:

Sistema operativo	Software de rede
DOS, Windows 3.1, Windows 3.11, Windows NT	Maestro 6.0, Firma HUMMINGBIRD e-mail: support@hummingbird.com www: http:\\www.hummingbird.com
Windows 95	OnNet Servidor 2.0, Firma FTP e-mail: support@ftp.com www: http:\\www.ftp.com

Instalar a placa Ethernet

Antes da instalação da placa Ethernet, desligar o TNC e a máquina!

Respeite os avisos das instruções de montagem anexas à placa Ethernet!

12.5 Conexão Ethernet

Possibilidades de conexão

Você pode ligar à sua rede a placa Ethernet do TNC mediante uma conexão BNC (X26, Koaxkabel 10Base2) ou uma conexão RJ45 (X25,10BaseT). Você só pode usar uma de ambas as conexões. Ambas as conexões têm que estar separadas galvanicamente da electrónica de comando.

Conexão BNC X26 (Koaxkabel 10Base2, ver figura em cima, à direita)

A conexão 10Base2 também é designada por Thin-Ethernet ou CheaperNet. Com uma conexão 10Base2, use uma ficha BNC-T para ligar o TNC à sua rede.

A distância entre duas peças em T deve ser pelo menos de 0,5 mm.

A quantidade de peças em T élimitada a um máximo de 30 unidades.

As extremidades abertas do transmissor devem ter resistências de terminação com 50 Ohm

O comprimento máximo de strang – que é o comprimento entre duas resistências – é de 185 m. Você pode ligar até 5 strang entre si recorrendo a um amplificador de sinais (Repeater).

Conexão RJ45 X25 (10BaseT, ver figura central à direita)

Com uma conexão 10BaseT, use uma ficha verwenden Sie BNC-T para ligar o TNC à sua rede.

O comprimento máximo de cabo entre o TNC e um ponto nodal é de 100 m (máx.) para cabos não blindados, e de 400 m (máx.) para cabos blindados.

Se ligar o TNC directamente a um PC, tem que usar um cabo cruzado.

Configurar o TNC

Mande configurar o TNC por um especialista em rede.

Prima a tecla MOD em modo de funcionamento Memorização/ Edição do programa. Introduza o código NET123, e o TNC visualiza o ecrã principal para a configuração de rede.

Ajustes gerais de rede

Prima a softkey DEFINIR REDE para a introdução dos ajustes gerais de rede (ver figura em cima à direita) e introduza as seguintes informações:

Ajuste	Significado
ADDRESS	Endereço que o seu gestor de rede deve dar para o TNC. Introdução: quatro introduções separadas por pontos decimais, p.ex. 160.1.180.20
MASK (MÁSCARA)	A MÁSCARA SUBNET MASK para economia de endereços dentro da sua rede. Introdução: quatro decimais separados por um ponto, perguntar o valor junto do gestor, p.ex. 255.255.0.0
ROUTER	Endereço Internet do seu Default-Router Introduzir somente se a sua rede se compõe de várias redes parciais. Introdução: quatro decimais separados por um ponto, perguntar junto do gestor de rede, p.ex. 160.2.0.2
PROT	Definição do protocolo de transmissão RFC : protocolo de transmissão segundo RFC 894 IEEE : protocolo de transmissão segundo IEE 802.2/802.3
HW	Definição da conexão utilizada 10BASET: se utilizar 10BaseT 10BASE2: se utilizar 10Base2
HOST	Nome com que o TNC se apresenta na rede: se utilizar um servidor "hostname-server", tem que registar aqui o "Fully Qualified Hostname". Se não introduzir nenhum nome, o TNC utiliza a chamada autenticação NULL. Os ajustes específicos de cada aparelho UID, GID, DCM e FCM (ver página seguinte), serão ignorados pelo TNC

Ajustes de rede específicos do aparelho

Prima a softkey DEFINIR MOUNT para a introdução dos ajustes de rede específicos do aparelho (ver figura em cima, à direita). Você pode determinar quantos ajustes de rede quiser, mas só pode gerir simultaneamente até ao máximo de 7.

Ajuste	Significado
ADDRESS	Endereço do seu servidor. Introdução: quatro decimais separados por um ponto, perguntar junto do gestor de rede, p.ex. 160.1.13.4
RS	Tamanho do pacote para recepção de dados em Bytes. Campo de introdução: 512 a 4 096. Introdução 0: o TNC utiliza o tamanho ideal anunciado pelo servidor
WS	Tamanho de pacote para envio de dados em Bytes. Campo de introdução: 512 a 4 096. Introdução 0: o TNC utiliza o tamanho ideal anunciado pelo servidor
TIMEOUT	Tempo ao fim do qual o TNC repete um Remote Procedure Call não respondido pelo servidor. Campo de introdução: 0 a 100 000. Introdução standard: 0, isto corresponde a um TIMEOUT de 7 segundos. Utilizar valores supeiores só se o TNC tiver que comunicar mediante vários router com o servidor. Perguntar o valor junto do gestor de rede
HM	Definição se o TNC deve repetir o Remote Procedure Call enquanto o servidor NFS não tiver respondido. 0 : Repetir Remote Procedure Call sempre
	1: Não repetir Remote Procedure Call
DEVICENAME	Nome que o TNC visualiza na gestão de ficheiros quando o TNC está em ligação com o aparelho
РАТН	Directório do servidor NFS que você pretende ligar com o TNC. Na indicação do caminho, tome atenção às letras em minúsculas e maiúsculas
UID	Definição da identificação de user com que você acede aos ficheiros na rede. Perguntar o valor junto do gestor de rede
GID	Definição da identificação de grupo com que você acede aos dados na rede. Perguntar o valor junto do gestor de rede

Ajuste	Significado
DCM	Aqui você adjudica os direitos de acesso a directórios do servidor NFS (ver figura em cima à direita). Introduzir o valor codificado em binário. Exemplo: 111101000 0 : Acesso não permitido 1 : Acesso permitido
DCM	Aqui você adjudica os direitos de acesso a ficheiros do servidor NFS (ver figura em cima à direita). Introduzir o valor codificado em binário. Exemplo: 111101000 0 : Acesso não permitido 1 : Acesso permitido
AM	Definir se ao ligar o TNC se deve estabelecer automaticamente a comunicação com a rede. 0: Não comunicar automaticamente verbinden 1: Comunicar automaticamente

Definir a impressora de rede

Prima a softkey DEFINIR IMPRESSÃO quando quiser imprimir ficheiros directamente do TNC para uma impressora de rede:

Ajuste	Significado
ADDRESS	Endereço do seu servidor. Introdução: quatro sinais decimais separados por um ponto, valor que determina o servidor, p.ex. 160.1.13.4
DEVICE NAME	Nome da impressora que o TNC visualiza quando você acciona a softkey IMPRIMIR (ver também o capítulo "4.4 Gestão de ficheiros alargada")
PRINTER NAME	Nome da impressora na sua rede, perguntar o valor ao servidor da rede

Testar a ligação

▶ Prima a softkey PING

Introduza o endereço Internet do aparelho para o qual você quer testar a ligação, e confirme com ENT. O TNC vai mandando pacotes de dados até você sair do monitor de teste com a tecla END.

Na linha TRY o TNC visualiza o número de pacotes de dados que foram enviados para o receptor anteriormente definido. Atrás do número de pacote de dados enviados, o TNC indica o estado:

Visualização de estados	Significado
HOST RESPOND	Receber de novo o pacote de dados, ligação em ordem
TIMEOUT	Não receber de novo o pacote de dados, testar ligação
CAN NOT ROUTE	O pacote de dados não pôde ser enviado, testar endereço Internet do servidor e a rota no TNC

111101000					
	Todos os outros utilizad Todos os outros utilizad Todos os outros utilizad	ores:Procurar ores:Escrever ores:Ler			
	Grupos de trabalho: grupo de trabalho: grupo de trabalho:	Procurar Escrever Ler			
	Utilizador: Utilizador: Utilizador: Utilizador:	Procurar Escrever Ler			
		LUI			

Execucao continua	Configuração	rede		
PING MONITOR	1			
INTERNET ADD	RESS : 160.1.13.4			
TRY	49 : HOST RESPOND			
	<u> </u>		 	

Visualizar o registo de erro

Prima a softkey MOSTRAR ERRO se quiser ver o registo de erro. O TNC regista aqui todos os erros ocorridos desde a última ligação do TNC no funcionamento de rede.

Os avisos de erro apresentados em lista estão divididos em duas categorias:

Os avisos de advertência são assinalados com (W). Nestes avisos, o TNC conseguiu estabelecer a ligação de rede, mas para isso teve que corrigir ajustes.

Os avisos de erro são assinalados com (E). Se ocorrerem avisos destes, é porque o TNC não conseguiu estabeleber nenhuma ligação de rede.

Aviso de erro	Causa
LL: (W) CONNECTION XXXXX UNKNOWN USING DEFAULT 10BASET	Em DEFINE NET, HW você introduziu uma designação errada.
LL: (E) PROTOCOL xxxxx UNKNOWN	Em DEFINE NET, PROT você introduziu uma designação errada.
IP4: (E) INTERFACE NOT PRESENT	O TNC não conseguiu encontrar nenhum cartão Ethernet
IP4: (E) INTERNETADRESS NOT VALID	Você usou um endereço Internet inválido para o TNC
IP4: (E) SUBNETMASK NOT VALID	A SUBNET MASK não se ajusta ao endereço Internet do TNC
IP4: (E) SUBNETMASK OR HOST ID NOT VALID	Você deu um endereço Internet errado para o TNC ou introduziu mal a SUBNET MASK ou fixou em 0 (1) todos os bits do HostID
IP4: (E) SUBNETMASK OR SUBNET ID NOT VALID	Todos os bits da SUBNET ID são 0 ou 1
IP4: (E) DEFAULTROUTERADRESS NOT VALID	Você usou para o Router um endereço Internet inválido
IP4: (E) CAN NOT USE DEFAULTROUTER	A rota por defeito não tem o mesmo ID de Net ou ID de SubnetID que o TNC
IP4: (E) I AM NOT A ROUTER	Você definiu o TNC como Router
MOUNT: <nome aparelho="" do=""> (E) DEVICENAME NOT VALID</nome>	O nome do aparelho é demasiado grande ou contém sinais não admitidos
MOUNT: <nome aparelho="" do=""> (E) DEVICENAME ALREADY ASSIGNED</nome>	Você já definiu um aparelho com este nome
MOUNT: <nome aparelho="" do=""> (E) DEVICETABLE OVERFLOW</nome>	Você tentou ligar mais de 7 uniaddes de rede ao TNC
NFS2: <nome aparelho="" do=""> (W) READSIZE SMALLER THEN x SET TO x</nome>	Em DEFINE MOUNT, você introduziu um valor demasiado pequeno em RS. O TNC fixa RS em 512 Bytes
NFS2: <nome aparelho="" do=""> (W) READSIZE LARGER THEN x SET TO x</nome>	Em DEFINE MOUNT, você introduziu um valor demasiado grande em RS. O TNC fixa RS em 4 096 Bytes
Causa	

Em DEFINE MOUNT, você introduziu um valor WS demasiado pequeno. O TNC fixa WS em 512 Bytes	
Em DEFINE MOUNT, você introduziu um valor WS demasiado grande. O TNC fixa WS em 4 096 Bytes	
Em DEFINE MOUNT, você introduziu para PATH um nome demasiado longo.	
De momento há pouca memória de trabalho disponível para estabelecer ligação à rede	
Em DEFINE NET, você introduziu HOST um nome demasiado comprido	
Para estabelecer ligação com a rede, o TNC não consegue abrir o PORT necessário	
O TNC recebeu dados do Portmapper que não são plausíveis	
O TNC recebeu dados do Mountserver que não são plausíveis	
O Mountserver não consegue aceder à conexão com o directório definido em DEFINE MOUNT, PATH	
Em DEFINE MOUNT, você introduziu 0 em UID ou GID 0. O valor de introdução 0 é reservado ao administrador do sistema	

12.6 Configurar PGM MGT

Com esta função, você determina o alcance de funcionamento da gestão de ficheiros:

- Standard: Gestão de ficheiros simplificada sem visualização de directórios
- Alargada: gestão de ficheiros com funções alargadas e visualização do directório

Modificar um ajuste

- Seleccionar Gestão de Ficheiros em modo de funcionamento Memorização/Edição de programas: premir a tecla PGM MGT
- ▶ Seleccionar a função MOD: premir a tecla MOD.
- Seleccionar o ajuste PGM MGT: deslocar o cursor com as teclas de setas para o ajuste PGM MGT, e comutar com a tecla ENT entre STANDARD e ALARGADA

12.7 Parâmetros do utilizador específicos da máquina

O fabricante da máquina pode atribuir até 16 funções com os "User Parameter". Consulte o manual da máquina

12.8 Representação gráfica do bloco no espaço de trabalho

No modo de funcionamento Teste do programa, você pode verificar graficamente a posição do bloco e activar avigilância do espaço de trabalho no modo de funcionamento Teste do programa: prima para isso a softkey "Testar ponto de referência"

O TNC mostra o espaço de trabalho, diversas janelas com a informação das coordenadas e softkeys com as quais você pode modificar a visualização.

Campos de deslocação/pontos zero disponíveis, referentes ao bloco visualizado:

- 1 Espaço de trabalho
- 2 Tamanho do bloco
- 3 Sistema de coordenadas
- 4 Bloco com projecção nos planos, espaço de trabalho

Visualizar a posição do bloco referente ao ponto zero: premir a softkey com o símbolo de máquina.

Resumo de funções

Função	Softkey
Deslocar o bloco para a esquerda (graficamente)	← ⊕
Deslocar o bloco para a direita (graficamente)	\rightarrow
Deslocar o bloco para a frente (graficamente)	/ 🏵
Deslocar o bloco para trás (graficamente)	/ 🏵
Deslocar o bloco para cima (graficamente)	1 🕀
Deslocar o bloco para baixo (graficamente)	↓ ⊕
Visualizar o bloco em relação ao ponto de referência	
Visualizar todo o campo de deslocação referente ao bloco representado	++
Visualizar o zero peça da máquina no espaço	M91
Visualizar a posição no espaço determinada pelo fabricante da máquina (p.ex. ponto de troca da ferrta.) Visualizar	M92 💮
o zero peça no espaço	•
Conectar (ON), desconectar (OFF) a supervisão do espaço de trabalho no Teste do programa	i t →i <u>DFF</u> ∕ DN

12.9 Seleccionar a visualização de posição

Para o funcionamento Manual e os modos de funcionamento de execução do programa, você pode influenciar a visualização de coordenadas:

- A figura à direita mostra algumas posições da ferrta.
- 1 Posição de saída
- 2 Posição de destino da ferrta.
- 3 Zero peça
- 4 Ponto zero da máquina

Para a visualização das posições do TNC, você pode seleccionar as seguintes coordenadas:

Função	Visualização
Posição nominal; valor actual indicado pelo TNC	NOMINAL
Posição real; posição actual da ferrta.	REAL
Posição de referência; posição real referente ao	REF
ponto zero da máquina	
Percurso restante até à posição programada; diferença	a REST.
entre a posição real e a de destino	
Erro de arrasto; diferença entre a posição nominal	
e a real	E.ARR.
Desvio do apalpador analógico	DESV.

Com a função MOD Visualização de Posição 1 você selecciona a visualização de posições na visualização de estados. Com a função MOD Visualização de Posição 2 você selecciona a visualização de posições na visualização de estados adicional.

12.10 Seleccionar o sistema métrico

Com esta função MOD você determina se o TNC visualiza as coordenadas em mm ou em polegadas (sistema em polegadas).

- Sistema métrico: p.ex. X = 15,789 (mm) Função MOD muda mm/ poleg. = mm. Visualização com 3 posição depois da vírgula
- Sistema em polegadas: p.ex. X = 0,6216 (poleg.) Função MOD muda mm/poleg. = poleg. Visualização com 4 posição depois da vírgula

12.11 Seleccionar a linguagem de programação para \$MDI

Com a função MOD Introdução do programa, você comuta o diálogo de programação do ficheiro \$MDI:

- Programar \$MDI.H em texto claro: Introdução do programa: HEIDENHAIN
- Programar \$MDI.I segundo a norma DIN/ISO: Introdução do programa: ISO

12.12 Selecção do eixo para gerar uma frase L

No campo de introdução para a selecção do eixo, você determina as as coordenadas da posição da ferrta. actual que se aceitam numa frase L. Gera-se uma frase L em separado com a tecla "Aceitar posição real". A selecção dos eixos realiza-se da mesma forma que nos parâmetros de máquina segundo o bit correspondente:

Selecção V.	do eixo	% 11111	Aceitar os eixos X, Y, Z, IV.,
Selecção	do eixo	%01111	Aceitar os eixos X, Y, Z, IV.
Selecção	do eixo	%00111	Aceitar os eixos X, Y, Z
Selecção	do eixo	%00011	Aceitar os eixos X, Y
Selecção	do eixo	%00001	Aceitar o eixo X

12.13 Introduzir os limites de deslocação, visualização do ponto zero

Dentro da margem de deslocação máxima, você pode delimitar o percurso útil para os eixos de coordenadas.

Exemplo de aplicação: assegurar o divisor óptico contra colisões

A margem máxima de deslocação delimita-se com os finais de curso. O percurso realmente útil delimita-se com a função MOD -AXIS LIMIT: para isso, introduza os valores máximos em direcção positiva e negativa dos eixos referentes ao ponto zero da máquina Se a sua máquina tiver várias margens de deslocação, você pode ajustar em separado os limites para cada margem de deslocação (da softkey AXIS LIMIT (1) até à softkey AXIS LIMIT (3)).

Edicao de

programa

X+ +485

Z+ +10

B+ +30000

C+ +30000

8 +0

TEMPO

марит (7

Z +145,2485

FIM

5 +0,0005

Y+ +375

Modo de operação manual

Y

С

7

FIM DE CURSO -250,0944

HELP

+37,2076

+0,0001

FIM DE CURSO

Curso I: Limites:

> X- <mark>-250</mark> Y- -10

2- -500

Ponto-zero:

R

6

POSTCOD

ENTRA PON

+117,7427

FIM DE CURSO

+86,1046

+0,0005

B- -30000

C- -30000

Trabalhar sem limitação da margem de deslocação

Para os eixos de coordenadas sem limitação da margem de deslocação, introduza o percurso máximo do TNC (+/- 99999 mm) como AXIS LIMIT.

Calcular e introduzir a margem máxima de deslocação

- Seleccionar a visualização de posição REF
- Chegada à posição final positiva e negativa pretendida dos eixos X, Y e Z
- Anotar os valores com um sinal
- ▶ Seleccionar as funções MOD: premir a tecla MOD
 - FIM DE CURSO (1)

Introduzir a limitação da margem de deslocação: premir a softkey AXIS LIMIT. Introduzir os valores anotados para os eixos como Limitações

Sair da função MOD: premir a softkey END

A corr

A correcção de raios da ferrta. não é tida em conta na limitação da margem de deslocação.

Depois de os pontos de referência serem ultrapassados, têm-se em conta as limitações da margem de deslocação e os finais de curso de software.

Visualização do ponto zero

Os valores visualizados no ecrã, em baixo à esquerda, são os pontos de ref. memorizados manualmente referentes ao ponto zero da máquina. Você não pode modificar estes pontos de ref. no menú do ecrã.

12.14 Visualizar ficheiros de AJUDA

Os ficheiros Help devem auxiliar o utilizador em situações em que são necessários determinados funcionamentos de manejo, p.ex. libertar a máquina depois de uma interrupção de corrente eléctrica. Também se pode documentar funções auxiliares num ficheiro HELP. A figura à direita apresenta a visualização de um ficheiro HELP.

Os ficheiros AJUDA não estão disponíveis em todas as máquinas. O fabricante da máquina dar-lhe-á mais informações a este respeito.

Seleccionar FICHEIROS AJUDA (HELP)

Seleccionar a função MOD: premir a tecla MOD.

- Selecção do último ficheiro AJUDA activado: Premir a softkey AJUDA
- Se necessário, chamar a gestão de ficheiros (tecla PGM MGT) e seleccionar o ficheiro.

Edicao de	program	a		Edicao de programa	
Arquivo: DIAGNOSE.H	ILP Lir	nha:4 Col	una: 1	INSERT	-
sta	tus NC-a	×is			
#000 statu	us curre	nt tempe	eratur	e,I2T	
#001 read.	iness RP	M-contro	5 l		
#002 revo.	lutions	actual >	<th></th> <th></th>		
#003 revo.	lutions	actual 2	2/4		
#004 revo.	lutions	actual 🤅	5/S		
READINESS	RPM CON	TROL :=	-54ZY	'X	
X +127,0	985 Y	-246,862	21 Z	+153,935	9
B +94,0	1983 C	+41,939	95		
			S	0,087	
ATUAL	т		F 1500	M 5/9	
INSERIR MOVER PALAVRA NEESCREV.	ULTIMA PAG PALAVRA << Û	INA PAGINA	INICIO		AR

12.15 Visualização de tempos de funcionamento

O fabricante da máquina pode fazer visualizar outros tempos adicionais. Consulte o manual da máquina!

Com a softkey TEMPO MÁQUINA você pode visualizar diferentes tempos de funcionamento:

Tempo de funcionamento	Significado
Comando ligado	Tempo de funcionamento do comando desde o início da operação
da máquina	Tempo de funcionamento da máquina desde o início da operação
Execução do programa	Tempo de funcionamento para o funcionamento comandado desde o início da operação

Execucao co	ntinua				Edi pro	cao de grama
Comando lig Maquina lig Execucao PG	ado ada M	= =	749 453 20	1:27:0 3:02:3 1:51:5	50 32 54	
						FIM

Tabelas e resumos

13.1 Parâmetros gerais do utilizador

Os parâmetros gerais do utilizador são parâmetros de máquina que influenciam o comportamento do TNC.

São parâmetros típicos do utilizador, p.ex.

- Idioma do diálogo
- Comportamento das conexões
- Velocidades de deslocação
- Desenvolvimento de operações de maquinação
- Activação dos potenciómetros de override

Possíveis introduções para os parâmetros de máquina

Os parâmetros de máquina podem programar-se como:

Números decimais

Introduzir directamente o valor numérico

Números dual/binário

Introduzir o sinal de percentagem "%" antes do valor numérico

Números hexadecimais

Introduzir sinal de cifrão "\$" antes do valor numérico

Exemplo:

Em vez do número decimal 27 você pode introduzir também o número binário %11011 ou o número hexadecimal \$1B.

Os diferentes parâmetros de máquina podem ser indicados simultaneamente nos diferentes sistemas numéricos.

Alguns parâmetros de máquina têm funções múltiplas. O valor de introdução desses parâmetros de máquina resulta da soma dos diferentes valores de introdução individuais, caracterizando-se com um

Seleccionar parâmetros gerais do utilizador

Você selecciona parâmetros gerais do utilizador nas funções MOD com o código 123.

Nas funções MOD dispõe-se também de parâmetros do utilizador específicos da máquina USER PARAMETER.

Ajustar a conexão de dados doTNC EXT1 (5020.0) e EXT2 (5020.1) a um aparelho externo

MP5020.x

IVIF 5020.X
7 bits de dados (código ASCII, 8.bit = paridade): +0
8 bits de dados (código ASCII, 9.bit = paridade): +1
Qualquer Block-Check-Charakter (BCC) :+0
Block-Check-Charakter (BCC) sinal de controlo não permitido: +2
Paragem da transmissão activada com RTS: +4
Paragem da transmissão com RTS inactiva: +0
Paragem da transmisssão activada com DC3: +8
Paragem da transmissão com DC3 inactiva: +0
Paridade de sinais par: +0
Paridade de sinais ímpar: +16
Paridade de sinais não desejada: +0
Solicitada a paridade de sinais: +32
$11/_2$ bits de stop: +0
2 bits de stop: +64
1 bit de stop: +128
1 bit de stop: +192

Exemplo:

Ajustar a conexão EXT2 do TNC (MP 5020.1) a um aparelho externo, da seguinte forma:

8 bits de dados, qualquer sinal BCC, stop da transmissão com DC3, paridade de sinais par, paridade de sinais desejada, 2 bits de stop

Introdução para **MP 5020.1**: 1+0+8+0+32+64 = **105**

Determinar tipo de conexão para EXT1 (5030.0) e EXT2 (5030.1)

MP5030.x

Transmissão standard: **0** Conexão para a transmissão por blocos: **1**

Apalpadores 3D e digitalização

Seleccionar o apalpador	
(só na opção digitalização com apalpador analógie	co)
	MP6200
	Apalpador digital: 0
	Apalpador analógico: 1
Seleccionar o tipo de transmissão	
	MP6010
	Apalpador com transmissão por cabo: 0
	Apalpador com transmissão por infra-vermelhos: 1
Avanço de apalpação para apalpador digital	
	MP6120
	1 bis 3000 [mm/min]
Percurso máximo até ao ponto de apalpação	110
	MP6130
	0,001 a 99.999,9999 [mm]
Distância de segurança até ao ponto de apalpaçã	o em medição automática
	MP6140
	0,001 a 99 999,9999 [mm]
Marcha rápida para a apalpação com apalpador d	igital
	MP6150
	1 a 300.000 [mm/min]
Medir desvio do apalpador na calibragem do apal	pador digital
	MP6160
	Sem rotação de 180° do apalpador 3D na calibragem: 0
	Função M para rotação de 180° do apalpador na calibragem: 1 a 88
Medição múltipla para função programável de ap	alpação
	MP6170
	1 a 3
Margem fiável para medição múltipla	
	MP6171
	0,001 a 0,999 [mm]
Profundidade de introdução da haste de apalpaçã	o na digitalização com apalpador analógico MP6310
	0,1 a 2,0000 [mm] (recomenda-se: 1mm)
Medir desvio médio ao calibrar o apalpador analó	gico
	MP6321
	Medir o desvio médio: 0
	Não medir o desvio médio: 1

Atribuição do eixo do apalpador ao eixo da máquina com apalpador analógico MP6322.0 Deverá assegurar-se a correcta r b Eixo da máguina Xparalelo ao eixo do apalpador X: 0, Y: 1, Z: 2 atribuição dos eixos do apalpador aos MP6322.1 eixos da máguina senão há perigo de Eixo da máguina Yparalelo ao eixo do apalpador X: 0, Y: 1, Z: 2 rotura da haste de apalpação. MP6322.2 Eixo da máguina Zparalelo ao eixo do apalpador X: 0, Y: 1, Z: 2 Máximo desvio da haste de apalpação do apalpador analógico MP6330 0,1 a 4,0000 [mm] Avanço para posicionar o apalpador analógico no ponto MIN e aproximação ao contorno MP6350 1 bis 3.000 [mm/min] Avanço de apalpação para apalpador analógico **MP6360** 1 bis 3.000 [mm/min] Marcha rápida no ciclo de apalpação para apalpador analógico **MP6361** 10 a 3.000 [mm/min] Diminuição do avanço quando a haste de apalpaç, do apalpador analógico se desvia lateralmente

O TNC diminui o avanço segundo uma linha característica previamente indicada. O avanço mínimo é 10% do avanço programado para a digitalização.

MP6362

Diminuição do avanço inactivo: **0** Diminuição do avanço activado: **1**

Aceleração radial na digitalização com apalpador analógico

Com MP6370 você limita o avanço com que o TNC realiza movimentos circulares durante o processo de digitalização. Os movimentos circulares aparecem, p.ex., com mudanças bruscas de direcção.

Enquanto o avanço de digitalização programado for menor do que o avanço calculado com MP6370, o TNC utiliza o avanço programado. Calcule o valor correcto por meio de tentativas práticas.

MP6370

0,001 a 5,000 [m/s²] (recomenda-se: 0,1)

Na digitalização de linhas de nível, o ponto final não coincide exactamente com o ponto de partida	
Em MP6390 define-se uma janela final quadrada, dentro da qual se deve encontrar o ponto final depois de uma volta. O valor a introduzir define a metade de um lado do quadrado.	
	MP6390
	~
Medição com raio, com i i 120: direcção de apaip	açao MP6505.0 (margem de deslocação 1) a 6505.2 (margem de
	deslocação 3)
	Direcção positiva de apalpação no eixo de ref. angular (eixo 0°): 0 Direcção positiva de apalpação no eixo +90°: 1
	Direcção negativa de apalpação no eixo de ref. angular (eixo 0°): 2
	Direcção negativa de apalpação no eixo +90°: 3
Avanço de apalpação para a segunda medição co	om TT 120, forma da haste, correcções em TOOL.T
	MIP6507 Calcular o avanço de analgação para a segunda medição com o TT 120
	com tolerância constante: +0
	Calcular o avanço de apalpação para a segunda medição com o TT 120, com tolerância variável: +1
	Avanço constante de apalpação para a segunda medição com TT 120: +2
Máximo erro de medição admissível com oTT 12	0 na medição com a ferrta. a rodar
Necessário para o cálculo do avanço de apalpação em relação com MP6570	
	MP6510
	0,001 a 0,999 [mm] (recomenda-se: 0,005 mm)
Avanço de apalpação para o TT 120 com a ferrta.	parada
	MP6520
Medição do raio com o TT 120: distância entre o	extremo da ferrta. e a aresta superior da haste
	MP6530.0 (margem de deslocação 1) à MP6530.2 (margem de deslocação 3)
Zona de segurança em redor da haste do TT 120 e	em posicionamento prévio MP6540
	0.001 a 99.999.999 [mm]
Manche nénide na siele de englaceão nome e TT 42	
iviarcha rapida no cició de apalpação para o 11 12	0 MP6550
	10 a 10.000 [mm/min]
Função M para orientação da ferrta. na medição i	individual de lâminas
· · · · · · ·	MP6560
	0 a 88

Janela de chegada para digitalização de linhas de nível com apalpador analógico

2
ŏ
utiliza
qo
erais
ő
âmetros ge
Parâmetros ge
3.1 Parâmetros go

Medição com a ferrta. a rodar: velocidade de rotação admissível no contorno de fresagem

Necessário para o cálculo das rotações e do avanço de apalpação

MP6570 1,000 a 120,000 [m/min]

Coordenadas do ponto central da haste do TT-12	0 referentes ao ponto zero da máquina
-	MP6580.0 (margem de deslocação 1)
	Eixo X
	MP6580.1 (margem de deslocação 1)
	Eixo Y

MP6580.2 (margem de deslocação 1)
Eixo Z
MP6581.0 (margem de deslocação 2)
Eixo X
MP6581.1 (margem de deslocação 2)
Eixo Y
MP6581.2 (margem de deslocação 2)
Eixo Z
MP6582.0 (margem de deslocação 3)
Eixo X
MP6582.1 (margem de deslocação 3)
Eixo Y
MP6582.2 (margem de deslocação 3)
Eixo Z

Visualizações do TNC, Editor do TNC

Ajustar o posto de programação	
	MP7210
	TNC com máquina: 0
	TNC como posto de programação com PLC activo: 1
	TNC como posto de programação com inactivo: 2
Eliminar o diálogo INTERRUPÇÃO DETER	NSÃO depois de conectar o comando
	MP7212
	Eliminar premindo uma tecla: 0
	Eliminar automaticamente: 1
Programação DIN/ISO: determinar o pas	sso entre as frases
	MP7220
	0 a 150

Bloquear a selecção de tipos de ficheiros

_	inar o idioma de diálogo	
		Frases 100 a 9.999
Longitu	ıde do programa até onde se permitem fi	rases FK MP7229.1
		Frases 100 a 9.999
Longitu	ide do programa para sua verificação	MP7229.0
Lanatta		
		Tabela de pontos zero nactiva:0 Número de pontos zero por tabela: 1 a 255
	• • • • • • • • • • • • • • • • • • • •	MP7226.1
Configu	ırar ficheiros de pontos zero	
		Número de paletes por tabela: 1 a 255
conngt	irar as tabelas de paletes	MP7226.0 Tabela de paletes inactiva:0
0	way an tabalan da walatar	Iabelas de paletes: +64
		Ficheiros de texto: +32
		Tabelas de paletes: +16
		Tabelas de ferramentas: +4
		Programas DIN/ISO: +2
	INC apaga todos os ficheiros deste tipo.	programas HEIDENHAIN: +1
	Se você bloquear tipos de ficheiros, o	Bloquear o editor para
		MP7224.1
Bloquea	ar edição dos diferentes tipos de ficheiros	
		Bloquear a selecção de programas DIN/ISO (softkey MOSTRAR .I): +2 Bloquear a selecção de tabelas de ferramentas (softkey MOSTRAR .T): +4 Bloquear a selecção de tabelas de pontos zero (softkey MOSTRAR .D): +8 Bloquear a selecção de tabelas de paletes (softkey MOSTRAR .P): +16 Bloquear a selecção de ficheiros de texto (softkey MOSTRAR .A): +32 Bloquear a selecção de tabelas de pontos (softkey MOSTRAR .PNT): +64
		Bloquear a selecção de programas HEIDENHAIN (softkey MOSTRAR .H): +1

Inglês: 0

Alemão: 1

Checo: 2

Francês: 3

Italiano: 4

Espanhol: 5

Português: 6

Sueco: 7

Dinamarquês:8

Finlandês: 9

Holandês: 10

Húngaro: 12

Polaco: 11

MP7224.0

Ajustar o horário interno do TNC	
•	MP7235
	Horário mundial (Greenwich time): 0
	Horário centro europeu (MEZ): 1
	Horário centro europeu de Verão: 2
	Diferença horária em relação ao horário mundial: -23 a +23 [horas]
Configurar a tabela de ferramentas	
	MP7260
	Inactiva: O
	Número de ferramentas que o TNC produz na abertura de uma nova tabela de ferramentas: 1 a 254
	Se você precisar de mais de 254 ferramentas, pode aumentar a tabela de ferramentas com a função INSERT N LINES AT THE END (ver capítulo "5.2 Dados da ferramenta")
Configurar a tabela de posições	
	MP7261
	Inactiva: O
	Número de posições por tabela: 1 a 254

Configurar a tabela de ferramentas (não visualizar: 0); número das colunas na tabela de ferramentas para

MP7266.0	Nome da ferrta. – NOME: 0 a 27 ; largura da coluna: 16 caracteres
MP7266.1	Longitude da ferrta. – L: 0 a 27 ; largura da coluna: 11 caracteres
MP7266.2	Raio da ferrta. – R: 0 a 27; largura da coluna: 11 caracteres
MP7266.3	Raio da ferrta. 2 – R2: 0 a 27 ; largura da coluna: 11 caracteres
MP7266.4	Medida excedente da longitude – DL: 0 a 27; largura da coluna: 8 caracteres
MP7266.5	Medida excedente do raio – DR: 0 a 27; largura da coluna: 8 caracteres
MP7266.6	Medida excedente do raio 2 – DR2: 0 a 27; largura da coluna: 8 caracteres
MP7266.7	Bloquear ferrta. – TL: 0 a 27; largura da coluna: 2 caracteres
MP7266.8	Ferrta. gémea – RT: 0 a 27 ; largura da coluna: 3 caracteres
MP7266.9	Máximo tempo de vida – TIME1: 0 a 27; largura da coluna: 5 caracteres
MP7266.10	Máximo tempo de vida com TOOL CALL – TIME2: 0 a 27 ; largura da coluna: 5 caracteres
MP7266.11	Tempo de vida actual – CUR. TIME: 0 a 27; largura da coluna: 8 caracteres
MP7266.12	Comentário sobre a ferrta. – DOC: 0 a 27; largura da coluna: 16 caracteres
MP7266.13	Numero de navalhas - CUT: 0 a 27; largura da coluna: 4 caracteres
MP7266.14	Tolerância para desgaste na longitude da ferrta LTOL: 0 a 27; largura da coluna: 6 caracteres
MP7266.15	Tolerância para desgaste no raio da ferrta RTOL: 0 a 27; largura da coluna: 6 caracteres
MP7266.16	Direcção de corte: 0 a 27 ; largura da coluna: 7 caracteres
MP7266.17	Estado do PLC – PLC: 0 a 27 ; largura da coluna: 9 caracteres
MP7266.18	Desvio adicional da ferrta. no seu eixo em relação a MP6530 – TT:L-OFFS: 0 a 27 ; Largura da coluna: 11 caracteres
MP7266.19	Desvio da ferrta. entre o centro da haste e o centro da ferrta. – TT:R-OFFS: 0 a 27 ; Largura da coluna: 11 caracteres
MP7266.20	Tolerância de rotura na longitude da ferrta LBREAK: 0 a 27; largura da coluna: 6 caracteres
MP7266.21	Tolerância de rotura no raio da ferrta RBREAK: 0 a 27; largura da coluna: 6 caracteres
MP7266.22	Longitude de corte – LCUTS: 0 a 27; largura da coluna: 11 caracteres
MP7266.23	Máximo ângulo de aprofundamento – ANGLE: 0 a 27; largura da coluna: 7 caracteres
MP7266.24	Tipo de ferrta: 0 a 27 ; largura da coluna: 5 caracteres
MP7266.25	Material de corte da ferrta. – TMAT: 0 a 27; largura da coluna: 16 caracteres
MP7266.26	Tabela de dados de intersecção – CDT: 0 a 27; largura da coluna: 16 caracteres

Configurar a tabela de posições de ferramen	ntas (não visualizar: 0);	
número das colunas na tabela de ferrament	as para	
	MP7267.0	
	Número de ferrta.	– T: 0 a 5
	MP7267.1	
	Ferrta. especial – S	ST: 0 a 5
	MP7267.2	
	Posto fixo – F: 0 a	5
	MP7267.3	
	Posto bloqueado -	- L: 0 a 5
	MP7267.4	
	Estado do PLC - Pl	LC: 0 a 5
Modo de funcionamento Manual: Visualizaçã	o do avanço	
	MP7270	
	Visualizar o avanço	p F só quando se prime a tecla de direcção do eixo: 0
	Visualizar o avanço	o F também quando não se prime nenhuma tecla de
	direcção do eixo (a	avanço definido com a softkey F ou avanço do eixo
	"mais lento"): 1	
Determinar o sinal decimal		
	MP7280	
	Visualizar virgula c	omo sinal decimal: 0
	Visualizar ponto co	omo sinal decimal: 1
Visualização da posição no eixo da ferrta.		
	MP7285	
	A visualização rete	ere-se ao ponto de ref. da ferrta.: 0
	A visualização no e	eixo da ferrta. refere-se à superfície
	trontal da ferria: 1	
Passo de visualização para o eixo X		
	MP7290.0	
	0,1 mm: 0	
	0,05 mm: 1	0,001 mm: 4
	0,01 mm: 2	0,0005 mm: 5
	0,005 mm: 3	0,0001 mm: 6
Passo de visualização para o eixo Y		
	MP7290.1	
	Para valor de intro	dução, ver MP7290.0
Passo de visualização para o eixo Z		
	MP7290.2	
	Para valor de intro	dução, ver MP7290.0
Passo de visualização para o eixo IV.		
	MP7290.3	
	Para valor de intro	dução, ver MP7290.0
Passo de visualização para o eixo V		
	MP7290.4	
	Para valor de intro	dução, ver MP7290.0

Passo de visualização para o 6º eixo	
	MP7290.5
	Para valor de introdução, ver MP7290.0
Passo de introdução para o 7º eixo	
3	MP7290.6
	Para valor de introdução, ver MP7290.0
Passo de visualização para o 8º eixo	
	MP7290.7
	Para valor de introdução, ver MP7290.0
Passo de visualização para o 9º eixo	
	MP7290.8
	Para valor de introdução, ver MP7290.0
Bloquear a memorização do ponto de ref.	
	MP7295
	Não bloquear memorização do ponto de ref.: +0
	Bloquear memorização do ponto de ref. no eixo X: +1
	Bloquear memorização do ponto de ref. no eixo Y: +2
	Bloquear memorização do ponto de ref. no eixo Z: +4
	Bloquear memorização do ponto de ref. Bloquear eixos: +8
	Bioquear memorização do ponto de ref. no eixo V: +16
	Bioquear memorização do ponto de ref. no 6ª eixo: +32
	Bioquear memorização do ponto de ref. no 7- eixo. +04
	Bloquear memorização do ponto de ref. no 9° eixo: +126
Bioquear a memorização do ponto de ref. com teo	MP7296
	Não bloquear a memorização do ponto de ref.: 0
	Bloquear a memorização do ponto de ref. com as teclas dos eixos
	laranjas: 1
Anular a visualização de estados, os parâmetros	Q e os dados da ferrta.
	MP7300
	Anular tudo quando se selecciona um programa: 0
	Anular tudo quando se selecciona um programa e com M02, M30, END PGM: 1
	Anular só a visualização de estados e dados da ferrta. quando se
	selecciona um programa: 2
	Anular só a visualização de estados e dados da ferrta. quando se
	selecciona um programa e com M02, M30, END PGM: 3
	Anular a visualização de estados e parâmetros Q quando se selecciona um programa: 4
	Anular a visualização de estados e parâmetros Ω quando se selecciona um programa e com M02, M30, END PGM: 5
	Anular a visualização de estados quando se seleccciona um programa: 6 Anular a visualização de estados quando se selecciona um programa e com M02, M30, END PGM: 7

MP7310

Representação gráfica em três planos segundo DIN 6, 1ª Parte, método de projecção 1: **+0**

Representação gráfica em três planos segundo DIN 1ª Parte, método de projecção 2: +1

Não rodar o sistema de coordenadas para a representação gráfica: **+0** rodar 90° o sistema de coordenadas para a representação gráfica: **+2** Visualizar o novo BLK FORM no ciclo 7 PONTO ZERO referente ao ponto zero original: **+0**

Visualizar o novo BLK FORM no ciclo 7 PONTO ZERO referente ao novo ponto zero: +4

Não visualizar a posição do cursor na representação em três planos: **+0** Visualizar a posição do cursor na representação em três planos: **+8**

Simulação gráfica sem eixo da ferrta.	programado: raio da ferrta.
	MP7315
	0 a 99 999,9999 [mm]

Simulação gráfica sem eixo da ferrta. programado	o: profundidade de penetração
	MP7316
	0 a 99 999,9999 [mm]

Simulação	gráfica	sem	eixo d	da ferrta	a.	. pro	gra	ma	ado	: fu	nçã	io l	Иp	ara	0	arr	and	que	•
										MP	731	17.0)						

0 a 88 (0: função inactiva)

Simulação gráfica sem eixo da ferrta.	programado: função	о М ра	ara d	o fin	nal
	MP731	7.1			
	0 00	~ ~	~		

0 a **88** (0: função inactiva)

Ajustar a protecção do ecrã

Introduza o tempo depois do qual o TNC deve activar a protecção do ecrã

MP7392

0 a 99 [min] (0: Função inactiva)

Maquinação e execução do programa

Ciclo 17: orientação da ferrta. no início do ciclo MP7160 Efectuar a orientação da ferrta.: 0 Não efectuar a orientação da ferrta.: 1 Funcionamento do ciclo 11 FACTOR DE ESCALA MP7410 FACTOR DE ESCALA activo em 3 eixos: 0

FACTOR DE ESCALA activo em 3 eixos: **0** FACTOR DE ESCALA activo apenas no plano de maquinação: **1**

Dados da ferrta. no ciclo de apalpação programável TOUCH–PROBE 0 MP7411

Escrever por cima dados actuais da ferrta. com dados de calibração do apalpador 3D: **0** Manter os dados actuais da ferrta.: **1**

MP7420

Fresar o canal em redor do contorno em sentido horário para ilhas, e em sentido anti-horário para caixas: +0 Fresar o canal em redor do contorno em sentido horário para caixas, e em sentido anti-horário para ilhas: +1 Fresar o canal do contorno antes do desbaste: +0 Fresar o canal do contorno depois do desbaste: +2 Unir os contornos corrigidos: +0 Unir os contornos sem corrigir: +4 Desbaste até à profundidade da caixa: +0 Fresagem e desbaste completos da caixa antes de qualquer outra aproximação: +8

Para os ciclos 6, 15, 16, 21, 22, 23, 24 é válido: Deslocar a ferrta. para o fim do ciclo sobre a última posição programada antes da chamada de ciclo: **+0** Posicionar eixo da ferrta. para o fim do ciclo: **+16**

Ciclo 4 FRESAR CAIXAS e ciclo 5 CAIXA CIRCULAR: factor de sobreposição MP7430 0,1 a 1,414

Desvio admissível do raio do círculo no ponto final do círculo em comparação com o ponto inicial do círculo MP7431 0.0001 a 0.016 [mm]

Funcionamento das diferentes funções auxilia	ires M
	MP7440
	Paragem da execução do programa com M06: +0 Sem paragem da execução do programa com M06: +1 Sem chamada do ciclo com M89: +0 Chamada do ciclo com M89: +2 Paragem da execução do programa nas funções M: +0
Os factores k _v são determinados pelo fabricante da máquina. Consulte o manual da máquina.	Sem paragem da execução do programa nas tunções IVI: +4 Sem comutação dos factores k _v através de M105 e M106: +8 Avanço no eixo da ferrta com M103 F Redução inactiva: +0
	Avanço no eixo da ferrta. com M103 F. Redução activada: +16

Máxima velocidade de uma trajectória com o override de avanço a 100% nos modos de funcionamento de execução do programa

MP7470	
0 a 99.999	[mm/min]

Os pontos zero da tabela referem-se a

MP7475

Zero peça:	0		
Ponto zero	da	máquina:	1

Elaboração de tabelas de paletes

MD7692

WP 7683
Execução do programa frase a frase: em cada arranque do NC, executar uma frase do programa NC activado: +0
Execução do programa frase a frase: em cada arranque do NC, executar o programa NC completo: +1
Execução contínua do programa: em cada arranque do NC, executar o programa NC completo: +0
Execução contínua do programa: em cada arranque do NC, executar todos os programas NC até à palete seguinte: +2
Execução contínua do programa: em cada arranque do NC, executar o programa NC completo: +0
Execução contínua do programa: em cada arranque do NC, executar o ficheiro de paletes completo: +4
Execução contínua do programa: em cada arranque do NC, executar o ficheiro de paletes completo: +0
Execução contínua do programa: quando é seleccionado executar o ficheiro de paletes completo, (+4), executar então ficheiro de paletes sem fim, isto é, até você premir stop NC: +8

Volantes electrónicos

utilizador
qo
gerais
Parâmetros
3.1

Determinar o tipo de volante			
	MP7640	MP7640	
	Máguina sem vola	ante: 0	
	HR 330 com tecla	as adicionais – o NC avalia as teclas para a direcção de	
	deslocação e mar	rcha ránida no volante: 1	
	HB 130 sem tecla	as adicionais: 2	
		as adicionais. Z	
		as aucionais - o i EC avalia as tecias para a unecção	
	HR 332 com doze	HR 332 com doze teclas adicionais: 4	
	Volante multiplo d	com teclas adicionais:5	
	HR 410 com tunç	cões auxilaires:6	
Factor de subdivisão			
	MP7641		
	Introdução com o	teclado: 0	
	Determinado pelo) PLC: 1	
Funções para o volante determinadas p	elo fabricante da máguina		
3 1 1	MP 7645.0	0 a 255	
	MP 7645.1	0 a 255	
	MP 7645.2	0 a 255	
	MP 7645.3	0 a 255	
	MP 7645 4	0 a 255	
	MP 7645 5	0 a 255	
	MP 7645 6	0 a 255	
	MD 7645 7	0 0 255	
	IVIE / 045./		

13.2 Distribuição de conectores e cablagem nas conexões de dados externas

Conexão V.24/RS-232-C

Aparelhos HEIDENHAIN

A distribuição de conectors na unidade lógica do TNC (X21) é idêntica à do bloco adaptador.

Aparelhos que não são da marca HEIDENHAIN

A distribuição de conectores no aparelho que não é da marca HEIDENHAIN pode pode ser muito diferente de um aparelho HEIDENHAIN.

Essa distribuição depende do aparelho e do tipo de transmisssão. Para a distribuição de pinos do bloco conector, ver o desenho em baixo:

Conexão V.11/RS-422

Na conexão V.11 só se ligam aparelhos externos.

A distribuição de conectores da unidade lógica do TNC (X22) é idêntica ao bloco adaptador.

_

Conexão Ethernet conector bucha RJ45 (opção)

Máximo comprimento do cabo: com blindagem: 100 m sem blindagem: 400 m

Pin	Sinal	Descrição	
1	TX+	Transmit Data	
2	TX-	Transmit Data	
3	REC+	Receive Data	
4	sem conexão-		
5	sem conexão-		
6	REC-	Receive Data	
7	sem conexão-		
8	sem conexão-		

Conexão Ethernet macho BNC (opção)

Máximo comprimento do cabo: 180 m

Pin	Sinal	Descrição
1	Dados	Conduto interno (Seele)
2	GND	Blindagem

13.3 Informação técnica

Características do TNC

Breve descrição	Comando numérico para máquinas até 9 eixos, com orientação da ferramenta adicional, TNC 426 CB, TNC 430 CA com regulação analógica das rotações TNC 426 PB, TNC 430 PB com regulação digital das rotações e regulador de corrente eléctrica integrado
Componentes	 Unidade lógica Teclado Ecrã a cores com softkeys
Conexões de dados	 V.24 / RS-232-C V.11 / RS-422 Conexão de dados Ethernet (option) Conexão de dados alargada com protocolo LSV-2 para operação externa do TNC por meio da conexão de dados com o software TNCremo da HEIDENHAIN
Eixos com deslocação simultânea em elem	entos do contorno
	 Rectas até 5 eixos Modelos de exportação TNC 426 CF, TNC 426 PF, TNC 430 CE, TNC 430 PE: 4 eixos Círculos até 3 eixos (em plano de maquinação inclinado) Hélice 3 eixos
"Look Ahead"	 Arredondamento definido de transições de contorno inconstantes (p.ex. em formas 3D); consideração da colisão com o ciclo SL para "contornos abertos" para posições com correcção de raio com M120 cálculo prévio de LA da geometria para adequação ao avanço
Funcionamento paralelo	Editar enquanto o TNC executa um programa de maquinação
Representação gráfica	 Gráfico de programação Teste gráfico Gráfico da execução do programa
Tipos de ficheiros	 Programas com diálogo em texto claro HEIDENHAIN Programas DIN/ISO Tabelas de ferramentas Tabelas de dados de intersecção Tabelas de pontos zero Tabelas de pontos Ficheiros de paletes Ficheiros de texto Ficheiros do sistema

Memória do programa	 Disco duro com 1.500 MByte para programas NC Pode gerir-se tantos ficheiros quantos se prentender Até 254 ferramentas no programa, quantas ferramentas se quiser nas tabelas 	
Definições da ferramenta		
Auxílios à programação	 Funções para a aproximação e saída do contorno Calculadora integrada Estruturação de programas Frases de comentário Auxílio directo a avisos de erro em espera (auxílio sensível ao contexto) 	

Funções programáveis

Elementos do contorno	 Recta Chanfre Trajectória circular Ponto central do círculo Raio do círculo Trajectória circular tangente Arredondamento de esquinas Rectas e trajectórias circulares para a aproximação e saída do contorno B-Spline
Livre programação de contornos	Para todos os elementos do contorno com desenhos não cotados pelo NC
Correcção tridimensional do raio da ferrta.	Para posteriores modificações dos dados da ferramenta, sem ter que voltar a calcular o programa
Saltos no programa	 Sub-programa Repetição parcial de um programa Um programa qualquer como sub-programa
Ciclos de maquinação	 Ciclos de furar para furar, furar em profundidade, alargar furo, mandrilar, aprofundar, roscagem com embraiagem e roscagem rígida Desbaste e acabamento de caixas rectangulares e circulares Ciclos para fresar ranhuras rectas e circulares Figuras de pontos sobre círculos e linhas Ciclos para facejar superfícies planas e oblíquas line Maquinar quaisquer caixas e ilhas Interpolação de uma superfície cilíndrica

Conversão de coordenadas	Deslocação do ponto zero	
	Rotação	
	Inclinar o plano de maquinação	
Aplicação de um apalpador 3D	Funções de apalpação para a compensação de a posição de uma	
	peçao	
	Funções de apalpação para a memorização do ponto de referência	
	Funções de apalpação para a verificação automática da peça	
	Digitalização de formas 3D com apalpdor analógico (opção)	
	Digitalização de formas 3D com apalpador digital (opção)	
	Medição automática da ferramenta com apalpador TT 120	
Funções matemáticas	■ Tipos de cálculo básicos +, -, x e	
	Cálculos trigonométricos sen, cos, tan, arcsen, arccos, arctan	
	Raiz guadrada de valores (\sqrt{a}) e soma de guadrados ($\sqrt{a^2 + b^2}$)	
	Valores elevados ao guadrado (SQ)	
	Elevar valores a uma potência(^)	
	Constante PI (3.14)	
	Funções logarítmicas	
	Função exponencial	
	Formar um valor negativo (NEG)	
	Formar um número inteiro (INT)	
	Formar um valor absoluto (ABS)	
	Arredondar posicões antes da vírgula (FRAC)	
	■ Funcões para o cálculo do círculo	
	Comparações maior, menor, igual, diferente	

Dados do TNC

Tempo de maquinação de uma frase	4 ms/frase	
Tempo do ciclo de regulação	TNC 426 CB, TNC 430 CA:	Interpolação de trajectória: 3 ms
	TNC 426 PB, TNC 430 PB:	Interpolação de trajectória: 3 ms Interpolação fina: 0,6 ms (rotações)
Velocidade de transmissão de dados	Máxima 115.200 Baud com V	24/V.11
	Máxima 1 Mbaud com conexão de dados Ethernet (opção)	
Temperatura ambiente	Funcionamento:	0°C a +45°C
	Armazenamento:	–30°C a +70°C
Percurso	Máximo 100 m (2540 poleg.)	
Velocidade de deslocação	Máximal 300 m/min (11.811 poleg./min)	
Rotações da ferrta.	Máximas 99.999 U/min	
Campo de introdução	 Mínimo 0,1µm (0,00001 poleg.) ou 0,0001° Máximo 99,999,999 mm (3,937 poleg.) ou 99,999,999° 	

13.4 Trocar a bateria

Quando o comando está desligado, há uma bateria compensadora que abastece com corrente o TNC para não se perder dados na memória RAM.

Quando o TNc visualiza o aviso de troca da bateria compensadora, você deverá mudar as baterias. Para além do bloco de alimentação de corrente, as baterias encontram-se na unidade lógica (caixa redonda preta). Também existe no TNC um armazenador de energia que abastece o comando com energia enquanto você substitui as baterias (tempo máximo: 24 horas).

Para substituir a bateria compensadora, desligue a máquina e o TNC!

A bateria compensadora só pode ser substituída por pessoal para isso qualificado!

Tipo de bateria: 3 pilhas redondas, leak-proof, especificação IEC "LR6"

SÍMBOLOS

Representação 3D 286 Correcção 3D 82 valores delta 83 formas da ferramenta 82

Α

Acabamento de ilhas circulares 176 Acabamento de ilhas rectangulares 172 Acabamento em profundidade 199 Acabamento lateral 199 Acessórios 11 Acrescentar comentários 59 Aiuda em caso de avisos de erro Ajustar a VELOCIDADE BAUD 300 Ajustes de rede 304 Aproximação ao contorno 96 Arredondamento de esquinas 108 Assegurar dados 33 Avanco 17 modificar 18 com eixos rotativos: M116 144 Avisos de erro NC 64 Avisos de erro 64 emitir 261 ajuda em caso de 64

С

Caixa circular acabar 175 desbastar 173 Caixa rectangular acabar 170 desbastar 169 Calculadora 63 Calcular o tempo de maquinação 288 Cálculo automático dos dados de conexão 72, 84 Cálculo dos dados de corte 84 Cálculo entre parênteses 270 Cálculos de círculos 258 Caminho 40 Chamada do programa um programa qualquer como sub-programa 242 por meio de ciclo 235 Chanfre 103 Ciclo chamar 153 definir 152 grupos 152 Ciclos de contorno. Verciclos SL Ciclos de furar 154 Ciclos SI dados do contorno 195 desbastar 198 acabamento lateral 199 acabamento em profundidade 199 contornos sobrepostos 193 resumo 191 pré-furar 197 ciclo contorno 193 Cilindro 279 Círculo completo 105 Círculo de arredondamento entre duas rectas: M112 139 Círculo de furos 186 Código 299 Comutar de maiúsculas para minúsculas 60 Conexão de dados ajustar 300 disposição dos conectores 331 atribuir 301 Conexão de dados Ethernet possibilidades de conexão 303 configurar 304 unir e desunir suportes de dados de rede

52

Conexão de rede 52 Conversão de coordenadas resumo 219 Coordenadas fixas da máguina: M91/M92 135 Coordenadas polares nocões básicas 30 determinar o pólo 30 Correcção da ferramenta tridmensional 82 lonaitude 78 raio 79 Correcção de raio 79 esquinas exteriores 81 maquinar esquinas 81 introduzir 80 esquinas interiores 81 Corte laser funções auxiliares 149 D Dados da ferramenta

chamar 76 valores delta 70 introduzir na tabela 71 introduzir no programa 70 Dados de digitalização executar 212 Definir bloco 53 Desbastar *Ver*Ciclos SL: desbastar Deslocação do ponto zero no programa 220 com tabelas de pontos zero 57 Deslocar os eixos da máquina 15 com volante electrónico 16 com teclas de direcção externas 15 por incrementos 17 Deslocação optimizada dos eixos rotativos: M126 144 Determinar o material da peça 85, 86 Diálogo 55 Diálogo em texto claro 55 Disposição dos conectores em conexão de dados 331 Directório 40 criar 44 copiar 45 Disco duro 33 Divisão do ecrã 4

Е

Ecrã 3 Eixo rotativo 144 reduzir a visualização 145 deslocação optimizada 144 Eixos auxiliares 29 Eixos basculantes 146 Eixos principais 29 Elipse 277 Esfera 281 Espelho 224 Esquinas abertas do contorno: M98 140 Estado do ficheiro 34, 42 Execução do programa executar 291 uma entrada gualguer no programa 294 continuar após interrupção 293 saltar frases 296 resumo 291 interromper 292

F

Factor de avanço 141

Factor de avanco para aprofundamento: M103141 Factor de escala 226 Factor de escala específico do eixo 227 Ficheiro de texto Funções de edição 60 Funcões de apagar 61 abrir 60 encontrar partes de texto 62 sair 60 Ficheiros HELP (AJUDA) visualizar 313 Figura de pontos sobre círculo 186 sobre linhas 187 resumo 185 FNxx. Ver Programação de parâmetros Q Frase modificar 56 acrescentar 56 apagar 56 Fresar ranhura circular 181 Fresar ranhura oblonga 179 Fresar ranhuras 178 pendular 179 Função MOD sair 298 seleccionar 298 Funcões M Ver Funcões auxiliares Funções angulares 257 Funcões auxiliares 134 introduzir 134 para o comportamento da trajectória138 para a ferramenta 135 para os eixos rotativos 144 para a indicação de coordenadas 135 para máguinas laser 149 para verificação da execução dos programas 135

Funções de trajectória 93

noções básicas 93 círculos e arcos de círculo 94 posicionamento prévio 95 Furar 156 Furar em profundidade 155 Furar universal 159

G

Gerar uma frase L. 312 Gestão de programas. Ver Gestão de ficheiros Gestão de ficheiros chamar 34, 42 copiar ficheiro 35, 45 apagar ficheiro 35, 46 proteger ficheiro 39, 48 dar novo nome ao ficheiro 38,47 seleccionar ficheiro 34, 44 nome do ficheiro 33 tipo de ficheiro 33 marcar ficheiros 47 escrever sobre ficheiros 51 alargada 40 resumo 41 transmissão de dados externa 36, 49 configurar com MOD 309 standard 34 copiar tabelas 45 Directório criar 44 copiar 45 Gráfico de programação 57 Gráfico ampliação de uma secção 58 ao programar 57 Gráficos Vistas 284 ampliação de uma secção 286

Т

Impressora de rede 52, 306 Inclinação do plano de maquinação 19, 228 Inclinação do plano de maquinação 19 normas 231 manual 19 ciclo 228 Interpolação da hélice 114 Interpolação da hélice 114 Interpolação de Spline 130 campos de introdução 131 formato de frase 130 Interromper a maquinação 292 Introduzir uma fórmula 270

L

Ler dados do sistema 265 Ligar 14 Linha helicoidal 114 Longitude da ferramenta 69 Look ahead 142

Μ

Mandrilar 158 Marcha rápida 68 Material de corte da ferramenta 86 Medição da ferramenta 72 Medição automática da ferramenta 72 Memorizar o ponto de referência 18 sem apalpador 3D 18 Modos de funcionamento 5 Movimentos da ferramenta programar 55

Ν

Noções básicas 28 Nome da ferramenta 69 Nome do programa. *Ver* Gestão de ficheiros: nome de ficheiro Normal à superfície 82 Número da ferramenta 69 Número de opção 299 Número de software 299

Orientação da ferramenta 236

Ρ

Parâmetros da máquina para apalpadores 3D 318 para transmissão de dados externa 317 para visualizações do TNC e para o editor do TNC 321

Parâmetros do utilizador 309 para apalpadores 3D e para digitalização 318

> para maquinação e execução do programa327

para transmissão externa de dados 317

para visualização do TNC, editor do TNC 321

específicos da máquina 309 Parâmetros Q 262 emitir formatados 263 verificar 260 emitir não formatados 262 pré-determinados 273 ransmitir valores para PLC 269 Passar pontos de referência 14 Ponto central do círculo CC 104 Posições da peça absolutas 31 incrementais 31 relativas 31 Processo a partir duma frase 294 Programa estrutura 53 editar 56 abrir 54

agrupar 58 Programação de parâmetros Q 252 Cálculo de círculo 258 Cálculos de círculos 258 funcões matemáticas básicas 255 indicações de programação 252 decisões se/então 259 funções angulares 257 outras funcões 261 Programação FK 118 abrir diálogo 119 converter um programa FK 125 rectas 120 contornos fechados 125 aráfico 118 nocões básicas 118 pontos auxiliares 122 traiectórias circulares 120 referências relativas 123 Programação de parâmetros. Ver Programação de parâmeros Q Posicionar com plano de maguinação inclinado 137

com introdução manual 24

R

Raio da ferramenta 70 Rebaixamento invertido 161 Recta 103, 113 Reentrada no contorno 296 Representação em 3 planos 285 Roscar com embraiagem 163 sem embraiagem - roscagem rígida 164 Roscagem à lâmina 165 Rotação 225 Rotações da ferramenta 17 modificar 18 introduzir 18.68

S

Saída do contorno 96 Seleccionar o ponto de referência 32 Seleccionar tipo de ferramenta 72 Seleccionar unidade de medida 54 Simulação gráfica 288 Sincronizar PLC e NC 269 Sincronizar NC e PLC 269 Sistema de referência 29 Sobrepor posicionamento do volante 143 Sobreposições 243 Software da transmissão de dados 302 Sub-programa 240 funcionamento 240 chamar 241 Indicações de programação 240 programar 241 Superfície cilíndrica 202 Superfícies regulares 216

т

Tabela de dados de corte 84 transmissão de dados 89 Tabela de ferramentas editar 73 funções de edição 74 possibiliaddes de introdução 71 sair 73 Tabela de paletes elaborar 66 Tabela de posições 75 Teach In 103 Teclado 5 Tempo de espera 235 Tempos de funcionamento 314 Teste do programa executar 290

até uma determinada frase 290 resumo 289 Tipos de funcões 254 Tipos de trajectória 102 Livre programação de contornos FKVer programação FK Coordenadas polares 112 recta 113 trajectória circular tangente 114 trajectória circular em redor do pólo CC 113 resumo 112 Coordenadas cartesianas 102 recta 103 trajectória circular com raio determinado106 traiectória circular tangente107 trajectória circular em redor do ponto central do círculo 105 resumo 102 Tracado do contorno 200 Traiectória circular 105, 106, 107, 113, 114 Trnasformar um programa FK em programa de texto claro38 Troca de ferramenta 77 automática 77 Trocar a bateria 338 TNC 426 B, TNC 430 2 TNCremo 302 Trigonometria 257

Velocidade constante da trajectória: M90 138 Velocidade da transmissão de dados 300 Vigilância do espaço de trabalho 290, 309 Vista de cima 285

V

Visualização de estados 7 geral 7 adicional 8

W

WMAT.TAB 85
Μ	Activação da função M activada	no início no fim Pág.		
M00	PARAGEM da execução do programa/PARAGEM da ferr.ta/Refrigerante DESLIGADO			135
M02	PARAGEM da execução do programa/PARAGEM da ferr.ta/Refrigerante DESLIGADO,			
	event. apagar a visualização de estados (depende dos parâmetros da máquina)/regresso à frase	1		135
M03	Ferramenta LIGADA em sentido horário			
M04	Ferramenta LIGADA em sentido anti-horário			
M05	PARAGEM da ferramenta			135
M06	Troca da ferr.ta/PARAGEM da execução do programa (depende dos parâmetros de			
N 100	maquina)/PARAGEM da ferramenta			135
N108	Refrigerante LIGADO		_	105
N112	Remgerante DESLIGADO			135
N/17	Ferrita LIGADA em sentido norario/Refrigerante LIGADO	2 - C		125
M30	Mesma função que MO2	-		135
M89			-	155
10100	chamada de ciclo activada de forma modal (depende de PM)	_		153
M90	Só em funcionamento com erro de arrasto: velocidade constante nas esquinas			138
M91	Na frase de posicionamento: as coordenadas referem-se ao zero peca da máquina		_	135
M92	Na frase de posicionamento: as coordenadas referem-se a uma posição definida	_		
	pelo fabricante da máguina, p.ex. à posição de troca da ferr.ta			135
M94	Reduzir a visualização do eixo rotativo para um valor inferior a 360º			146
M97	Maguinação de peguenos desníveis no contorno			139
M98	Maguinação completa de contornos abertos			140
M99	Chamada de ciclo por frases			153
M101	Troca automática de ferr.ta com ferr.ta gémea quando se passou o tempo de vida máx.			
M102	Anular M101			77
M103	Reduzir o avanço do factor F no aprofundamento F (valor percentual)			141
M105	Realizar a maquinação com o segundo factor kv			
M106	Realizar a maquinação com o primeiro factor kv			330
M107	Suprimir o aviso de erro em ferr.tas gémeas com medida excessiva			
M108	Anular M107			77
M109	Velocidade constante no extremo da ferr.ta em arcos de círculo			
	(aumento e redução do avanço)			
IVI110	Velocidade constante no extremo da ferr.ta em arcos de circulo	_		
N/111	(so redução do avanço) Apular M109/M110			1/2
N/11/	Correcção automática da geometria da máguina ao trabalhar com eivos basculantes			142
M115	Anular M114			146
M116	Avanco em eixos angulares em mm/min		_	144
M118	Sobreposição de posicionamentos do volante durante a execução do pom	-		143
M120	Cálculo prévio do contorno com correcção de raio (LOOK AHEAD)			142
M126	Deslocar os eixos rotativos pelo curso mais curto			
M127	Anular M126			144
M128	Conservar a posição da ponta da ferr.ta ao posicionar eixos basculantes (TCPM)			
M129	Anular M128			147
M130	Na frase de posicionamento: os pontos referem-se ao sistema de coordenadas não basculado			137
M134	Exactidão em transições de contorno ao posicionar com eixos rotativos			
M135	Anular M134			148
M200	Máquinas Laser: emissão directa da tensão programada			
M201	Máquinas Laser: emissão da tensão em função do percurso			
M202	Máquinas Laser: emissão da tensão em função da velocidade			
M203	Maquinas Laser: emissão da tensão em função do tempo (rampa)			
M204	Máquinas Laser: emissão da tensão em tunção do tempo (impulso)			149

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH Dr.-Johannes-Heidenhain-Straße 5 83301 Traunreut, Germany · +49 (8669) 31-0 FAX +49 (8669) 5061 E-Mail: info@heidenhain.de **Technical support FAX** +49 (8669) 31-1000 E-Mail: service@heidenhain.de Measuring systems 2 +49 (8669) 31-3104 E-Mail: service.ms-support@heidenhain.de TNC support E-Mail: service.nc-support@heidenhain.de NC programming 2 +49 (8669) 31-3103 E-Mail: service.nc-pgm@heidenhain.de **PLC programming** (2) +49 (86 69) 31-31 02 E-Mail: service.plc@heidenhain.de

Lathe controls 2 +49 (711) 952803-0 E-Mail: service.hsf@heidenhain.de

www.heidenhain.de