

TNC 426 B TNC 430

NC-Software 280 472 xx 280 473 xx

Bruksanvisning HEIDENHAINdialogprogrammering

Kontroller på bildskärmen

Q s

150 50 . WWF %

TNC-typ, mjukvara och funktioner

Denna bruksanvisning beskriver funktioner som finns tillgängliga i TNC-styrsystem med följande NC-mjukvarunummer.

TNC-typ	NC-Software-Nr.
TNC 426 CB, TNC 426 PB	280 472 xx
TNC 426 CF, TNC 426 PF	280 473 xx
TNC 430 CA, TNC 430 PA	280 472 xx
TNC 430 CE, TNC 430 PE	280 473 xx

Modellbeteckningarna med bokstaven E och F är exportversioner av TNC. I dessa exportversioner av TNC gäller följande begränsningar:

Rätlinjeförflyttning simultant i upp till 4 axlar

Maskintillverkaren anpassar, via maskinparametrar, lämpliga funktioner i TNC:n till den specifika maskinen. Därför kan det förekomma funktioner som beskrivs i denna manual, vilka inte finns tillgängliga i alla TNC-utrustade maskiner.

TNC-funktioner som inte finns tillgängliga i alla maskiner är exempelvis:

- Avkännarfunktioner för 3D-avkännarsystem
- Option digitalisering
- Verktygsmätning med TT 120
- Gängning utan flytande gängtappshållare
- Återkörning till kontur efter avbrott

Kontakta Er maskintillverkare för mer information om funktioner och möjligheter i den specifika maskinen.

Många maskintillverkare och HEIDENHAIN erbjuder programmeringskurser för TNC. Att delta i sådana kurser rekommenderas då dessa kurser ofta ger en god inblick i användandet av TNC-funktionerna.

Bruksanvisning för Avkännarcykler

Alla avkännarfunktioner finns beskrivna i en separat bruksanvisning. Kontakta HEIDENHAIN om du behöver denna handbok. Id-Nr.: 329 203 xx.

Avsett användningsområde

TNC:n motsvarar klass A enligt EN 55022 och är huvudsakligen avsedd för användning inom industrin.

1 2 3 4 5 6 7 8 9 10 11 12 13

Innehåll

Introduktion

Manuell drift och inställning

Manuell positionering

Programmering: Grunder, Filhantering, Programmeringshjälp

Programmering: Verktyg

Programmering: Programmering av konture

Programmering:Tilläggsfunktioner

Programmering: Cykler

Programmering: Underprogram och programdelsupprepning

Programmering: Q-Parametrar

Programtest och programkörning

MOD-funktioner

Tabeller och översikt

1 INTRODUKTION 1

- 1.1 TNC 426 B, TNC 430 2
- 1.2 Bildskärm och knappsats 3
- 1.3 Driftarter 5
- 1.4 Statuspresentation 7
- 1.5 Tillbehör: 3D-avkännarsystem och elektroniska handrattar från HEIDENHAIN 11

2 MANUELL DRIFT OCH INSTÄLLNING 13

- 2.1 Uppstart, avstängning 14
- 2.2 Förflyttning av maskinaxlarna 15
- 2.3 Spindelvarvtal S, Matning FochTilläggsfunktion M 17
- 2.4 Inställning av utgångspunkt (utan 3D-avkännarsystem) 18
- 2.5 3D-vridning av bearbetningsplanet 19

3 MANUELL POSITIONERING 23

3.1 Programmera och utföra enkla bearbetningar 24

4 PROGRAMMERING: GRUNDER, FILHANTERING, PROGRAMMERINGSHJÄLP, PALETTHANTERING 27

- 4.1 Grunder 28
- 4.2 Filhantering: Grunder 33
- 4.3 Standard filhantering 34
- 4.4 Utökad filhantering 40
- 4.5 Öppna och mata in program 53
- 4.6 Programmeringsgrafik 57
- 4.7 Strukturera program 58
- 4.8 Infoga kommentarer 59
- 4.9 Skapa textfiler 60
- 4.10 Kalkylator 63
- 4.11 Direkt hjälp vid NC-felmeddelanden 64
- 4.12 Paletthantering 65

Innehåll

5 PROGRAMMERING: VERKTYG 67

5.1 Verktygsrelaterade uppgifter 68

5.2 Verktygsdata 69

5.3 Verktygskompensering 78

5.4 Tredimensionell verktygs-kompensering 82

5.5 Arbeta med skärdatatabeller 84

6 PROGRAMMERING: PROGRAMMERING AV KONTURER 91

6.1 Översikt: Verktygsrörelser 92

6.2 Allmänt om konturfunktioner 93

6.3 Fram-/frånkörning till och från kontur 96

Översikt: Konturformer för framkörning till och frånkörning från konturen 96

Viktiga positioner vid fram- och frånkörning 96

Framkörning på en tangentiellt anslutande rätlinje: APPR LT 97

Framkörning på en rätlinje vinkelrät mot första konturpunkten: APPR LN 98

Framkörning på en cirkelbåge med tangentiell anslutning: APPR CT 98

Framkörning på en cirkelbåge med tangentiell anslutning till kontur och rätlinje: APPR LCT 99

Frånkörning på en rätlinje med tangentiell anslutning: DEP LT 100

Frånkörning på en rätlinje vinkelrät från den sista konturpunkten: DEP LN 100

Frånkörning på en cirkelbåge med tangentiell anslutning: DEP CT 101

Frånkörning på en cirkelbåge med tangentiell anslutning till kontur och rätlinje: DEP LCT 101

6.4 Konturfunktioner – rätvinkliga koordinater 102

Översikt konturfunktioner 102 Rätlinje L 103

Infoga Fas CHF mellan två räta linjer 103

Cirkelcentrum CC 104

Cirkelbåge C runt cirkelcentrum CC 105

Cirkelbåge CR med bestämd radie 106

Cirkelbåge CT med tangentiell anslutning 107

Hörnrundning RND 108

Exempel: Rätlinjerörelse och fas med rätvinkliga koordinater 109

Exempel: Cirkelrörelse med rätvinkliga koordinater 110

Exempel: Fullcirkel med rätvinkliga koordinater 111

- Innehåll
- 6.5 Konturfunktioner polära koordinater 112 Polära koordinater utgångspunkt: Pol CC 112 Rätlinje LP 113 Cirkelbåge CP runt Pol CC 113 Cirkelbåge CTP med tangentiell anslutning 114 Skruvlinje (Helix) 114 Exempel: Rätlinjerörelse polärt 116 Exempel: Helix 117 6.6 Konturfunktioner – Flexibel konturprogrammering FK 118 Grunder 118 Grafik vid FK-programmering 118 Öppna FK-dialog 119 Flexibel programmering av räta linjer 120 Flexibel programmering av cirkelbågar 120 Hjälppunkter 122 Relativ referens 123 Sluten kontur 125 Konvertera FK-program 125 Exempel: FK-programmering 1 126 Exempel: FK-programmering 2 127 Exempel: FK-programmering 3 128 6.7 Konturfunktioner - Spline-interpolering 130

7 PROGRAMMERING: TILLÄGGSFUNKTIONER 133

- 7.1 Inmatning av tilläggsfunktioner M och STOPP 134
- 7.2 Tilläggsfunktioner för kontroll av programkörning, spindel och kylvätska 135
- 7.3 Tilläggsfunktioner för koordinatuppgifter 135
- 7.4 Tilläggsfunktioner för konturbeteende 138
 - Rundning av hörn: M90 138
 - Infoga definierad rundningsbåge mellan räta linjer: M112 139
 - Bearbeta små kontursteg: M97 139
 - Fullständig bearbetning av öppna konturhörn: M98 140
 - Matningsfaktor vid nedmatningsrörelse: M103 141
 - Matningshastighet vid cirkelbågar: M109/M110/M111 142
 - Förberäkning av radiekompenserad kontur (LOOK AHEAD): M120 142
 - Överlagra handrattsrörelser under programkörning: M118 143
- 7.5 Tilläggsfunktioner för rotationsaxlar 144
 - Matning i mm/min vid rotationsaxlar A, B, C: M116 144
 - Vägoptimerad förflyttning av rotationsaxlar: M126 144
 - Minskning av positionsvärde i rotationsaxel till ett värde under 360°: M94 145
 - Automatik kompensering för maskingeometrin vid arbete med rotationsaxlar: M114 146
 - Bibehåll verktygsspetsens position vid positionering av rotationsaxlar (TCPM*): M128 147
 - Precisionsstopp vid hörn med icke tangentiella övergångar: M134 148
- 7.6 Tilläggsfunktioner för laserskär-maskiner 149

8 PROGRAMMERING: CYKLER 151

8.1 Allmänt om cykler 152 8.2 Borrcykler 154 DJUPBORRNING (cykel 1) 154 BORRNING (cykel 200) 156 BROTSCHNING (cykel 201) 157 URSVARVNING (cykel 202) 158 UNIVERSAL-BORRNING (cykel 203) 159 BAKPLANING (cykel 204) 161 GÄNGNING med flytande gängtappshållare (cykel 2) 163 GÄNGNING utan flytande gängtappshållare GS (cykel 17) 164 GÄNGSKÄRNING (cykel 18) 165 Exempel: Borrcykler 166 Exempel: Borrcykler 167 8.3 Cykler för fräsning av fickor, öar och spår 168 URFRÄSNING (cykel 4) 169 FICKA FINSKÄR (cykel 212) 170 Ö FINSKÄR (cykel 213) 172 CIRKELURFRÄSNING (cykel 5) 173 CIRKELFICKA FINSKÄR (cykel 214) 175 CIRKEL Ö FINSKÄR (cykel 215) 176 SPÅRFRÄSNING (cykel 3) 178 SPÅR (långhål) med pendlande nedmatning (cykel 210) 179 CIRKULÄRT SPÅR med pendlande nedmatning (cykel 211) 181 Exempel: Fräsning av fickor, öar och spår 183 8.4 Cykler för att skapa punkt-mönster 185 PUNKTMÖNSTER PÅ CIRKEL (cykel 220) 186 PUNKTMÖNSTER PÅ LINJER (cykel 221) 187 Exempel: Hålcirkel 189

Innehåll

8.5 SL-cykler 191

KONTUR (cykel 14) 193

Överlagrade konturer 193

KONTURDATA (cykel 20) 195

FÖRBORRNING (cykel 21) 197

GROVSKÄR (cykel 22) 198

FINSKÄR DJUP (cykel 23) 199

FINSKÄR SIDA (cykel 24) 199

KONTURLINJE (cykel 25) 200

CYLINDERMANTEL (cykel 27) 202

Exempel: Urfräsning och efterfräsning av ficka 205

Exempel: Förborra, grovbearbeta och finbearbeta överlagrade konturer 206

Exempel: Konturlinje 208

Exempel: Cylindermantel 210

8.6 Cykler för uppdelning 212

BEARBETNING MED DIGITALISERADE DATA (cykel 30) 212

PLANING (cykel 230) 214

LINJALYTA (cykel 231) 216

Exempel: Planing 218

8.7 Cykler för koordinat-omräkningar 219

NOLLPUNKTS-förskjutning (cykel 7) 220

NOLLPUNKTS-förskjutning med nollpunktstabeller (cykel 7) 221

SPEGLING (cykel 8) 224

VRIDNING (cykel 10) 225

SKALFAKTOR (cykel 11) 226

SKALFAKTOR AXELSP. (cykel 26) 227

BEARBETNINGSPLAN (cykel 19) 228

Exempel: Cykler för koordinatomräkning 233

8.8 Specialcykler 235

VÄNTETID (cykel 9) 235 PROGRAMANROP (cykel 12) 235 SPINDELORIENTERING (cykel 13) 236 TOLERANS (cykel 32) 237

9 PROGRAMMERING: UNDERPROGRAM OCH PROGRAMDELSUPPREPNING 239

- 9.1 Underprogram och programdelsupprepning 240
- 9.2 Underprogram 240
- 9.3 Programdelsupprepning 241
- 9.4 Godtyckligt program som underprogram 242
- 9.5 Länkning av underprogram 243
 - Underprogram i underprogram 243
 - Upprepning av programdelsupprepning 244
 - Upprepning av underprogram 245
- 9.6 Programmeringsexempel 246
 - Exempel: Konturfräsning med flera ansättningar 246
 - Exempel: Hålbilder 247
 - Exempel: Hålbilder med flera verktyg 248

10 PROGRAMMERING: Q-PARAMETRAR 251

- 10.1 Princip och funktionsöversikt 252
- 10.2 Detaljfamiljer Q-parametrar istället för siffervärden 254
- 10.3 Beskrivning av konturer med hjälp av matematiska funktioner 255
- 10.4 Vinkelfunktioner (Trigonometri) 257
- 10.5 Cirkelberäkning 258
- 10.6 IF/THEN bedömning med Q-parametrar 259
- 10.7 Kontrollera och ändra Q-parametrar 260
- 10.8 Specialfunktioner 261
- 10.9 Formel direkt programmerbar 270
- 10.10 Fasta Q-parametrar 273
- 10.11 Programmeringsexempel 276
 - Exempel: Ellips 276
 - Exempel: Konkav cylinder med radiefräs 278
 - Exempel: Konvex kula med cylindrisk fräs 280

11 PROGRAMTEST OCH PROGRAMKÖRNING 283

- 11.1 Grafik 284
- 11.2 Funktioner för presentation av program i Programkörning/Programtest 289
- 11.3 Programtest 289
- 11.4 Programkörning 291
- 11.5 Hoppa över block 296

12 MOD-FUNKTIONER 297

- 12.1 Välja, ändra och lämna MOD-funktioner 298
- 12.2 Mjukvaru- och optionsnummer 299
- 12.3 Ange kodnummer 299
- 12.4 Inställning av datasnitt 300
- 12.5 Ethernet-datasnitt 304
- 12.6 Konfiguration av PGM MGT 311
- 12.7 Maskinspecifika användarparametrar 311
- 12.8 Presentation av råämnet i bearbetningsrummet 311
- 12.9 Välja typ av positionsindikering 313
- 12.10Välja måttenhet 313
- 12.11 Välja programspråk för \$MDI 314
- 12.12 Axelval för L-blocksgenerering 314
- 12.13 Ange begränsning av rörelse-område, nollpunktspresentation 314
- 12.14 Presentera HJÄLP-filer 315
- 12.15 Visa drifttid 316

13TABELLER OCH ÖVERSIKT 317

- 13.1 Allmänna användarparametrar 318
- 13.2 Kontakt- och kabelbeskrivning för datasnitt 333
- 13.3Teknisk information 337
- 13.4 Byta buffertbatteri 340

Introduktion

1.1 TNC 426 B, TNC 430

HEIDENHAIN TNC-system är verkstadsanpassade kurvlinjestyrsystem, med vilka man kan programmera fräs- och borrbearbetningar direkt i maskinen med hjälp av lättförståelig Klartext-Dialog. De är avsedda för fräsmaskiner, borrmaskiner och bearbetningscenter. TNC 426 B kan styra upp till 5 axlar, TNC 430 upp till nio axlar. Dessutom kan spindelns vinkelposition programmeras.

På den integrerade hårddisken kan ett godtyckligt antal program lagras, även sådana som har genererats externt eller genom digitalisering. För att utföra snabba beräkningar kan man, när som helst, kalla upp en kalkylator.

Knappsats och bildskärmspresentation är överskådligt utformade, så att alla funktioner kan nås snabbt och enkelt.

Programmering: HEIDENHAIN Klartext-Dialog och DIN/ISO

Skapandet av program är extra enkelt i den användarvänliga HEIDENHAIN-Klartext-Dialogen. En programmeringsgrafik presenterar de individuella bearbetningsstegen samtidigt som programmet matas in. Dessutom underlättar den Flexibla-Konturprogrammeringen FK när NC-anpassade ritningsunderlag saknas. Bearbetningen av arbetsstycket kan simuleras grafiskt både i programtest och under själva bearbetningen. Dessutom kan TNCsystemen programmeras enligt DIN/ISO eller i DNC-mode.

Program kan även matas in och testas samtidigt som ett annat program utför bearbetning av ett arbetsstycke.

Kompatibilitet

TNC:n kan hantera alla bearbetningsprogram som har skapats i HEIDENHAIN-kurvlinjestyrsystem från och med TNC 150 B.

1.2 Bildskärm och knapp<mark>sats</mark>

1.2 Bildskärm och knappsats

Bildskärm

TNC:n kan levereras antingen med färgbildskärmen BC 120 (CRT) eller med flatfärgskärmen BF 120 (TFT). Bilden till uppe till höger visar kontrollerna på BC 120, bilden i mitten till höger visar kontrollerna på BF 120:

1 Övre raden

Vid påslagen TNC visar bildskärmen den valda driftarten i den översta raden: Maskindriftarter till vänster och programmeringsdriftarter till höger. Den driftart som för tillfället presenteras i bildskärmen visas i ett större fält i den övre raden: där visas även dialogfrågor och meddelandetexter (Undantag: när TNC:n endast visar grafik).

2 Softkeys

I underkanten presenterar TNC:n ytterligare funktioner i form av en softkeyrad. Dessa funktioner väljer man med de därunder placerade knapparna **3**. För orientering indikerar smala linjer precis över softkeyraden antalet tillgängliga softkeyrader. Dessa ytterligare softkeyrader väljs med de svarta pilknapparna som är placerade längst ut i knappraden. Den aktiva softkeyraden markeras med en upplyst linje.

- 3 Knappar för softkeyval
- 4 Växla softkeyrad
- 5 Bestämmande av bildskärmsuppdelning
- 6 Knapp för bildväxling mellan maskin- och programmeringsdriftart

Ytterligare knappar för BC 120

- 7 Avmagnetisering av bildskärmen; Lämna huvudmeny för bildskärmsinställningar
- 8 Kalla upp huvudmeny för bildskärmsinställningar; Förflytta markör nedåt I huvudmeny: I undermeny: Minska värde Förflytta bild åt vänster resp. nedåt Förflytta markör uppåt I huvudmeny: 9 I undermeny: Öka värde Förflytta bild åt höger resp. uppåt 10 | huvudmenv: Väli undermenv I undermenv: Lämna undermenv

Bildskärmsinställningar: Se nästa sida

Huvudmeny dialog	Funktion
BRIGHTNESS	Ändra ljusstyrka
CONTRAST	Ändra kontrast
H-POSITION	Ändra horisontal bildposition
H-SIZE	Ändra bildbredd
V-POSITION	Ändra vertikal bildposition
V-SIZE	Ändra bildhöjd
SIDE-PIN	Korrigera fasformad förvrängning
TRAPEZOID	Korrigera trapetsformad förvrängning
ROTATION	Korrigera bildens vinkelläge
COLORTEMP	Ändra färgtemperatur
R-GAIN	Ändra röd färginställning
B-GAIN	Ändra blå färginställning
RECALL	Ingen funktion

BC 120 påverkas av magnetiska och elektromagnetiska fält. Bildens läge och geometri kan därigenom försämras. Växlande fält kan ge upphov till en periodisk förskjutning eller förvrängning av bilden.

Bildskärmsuppdelning

Användaren väljer själv önskad uppdelning av bildskärmen: På detta sätt kan TNC:n exempelvis i driftart PROGRAMINMATNING/ EDITERING presentera programmet i det vänstra fönstret, medan exempelvis programmeringsgrafiken visas samtidigt i det högra fönstret. Alternativt kan man välja att presentera programlänkning i det högra fönstret eller enbart programmet i ett stort fönster. Vilka fönster som TNC:n kan visa är beroende av vilken driftart som har valts.

Ändra bildskärmsuppdelning:

Tryck på knappen för bildskärmsuppdelning: Softkeyraden presenterar de möjliga bildskärmsuppdelningarna (se 1.3 Driftarter)

Välj bildskärmsuppdelning med softkey

Knappsats

Bilden till höger visar knappsatsens knappar. Dessa är uppdelade i följande funktionsgrupper:

- 1 Alfabetiskt tangentbord för textinmatning, filnamn och DIN/ISO-programmering
- 2 Filhantering, Kalkylator, MOD-funktion, HELP-funktion
- 3 Programmeringsdriftarter
- 4 Maskindriftarter
- 5 Öppning av programmeringsdialogen
- 6 Pilknappar och hoppinstruktion GOTO
- 7 Inmatning av siffror och axelval

De enskilda knapparnas funktion har sammanfattats på det första utviksbladet. Externa knappar, såsom exempelvis NC-START, beskrivs i maskinhandboken.

1.3 Driftarter

För de skilda funktionerna och arbetsstegen som fordras för att skapa ett arbetsstycke, förfogar TNC:n över följande driftarter:

Manuell drift och El. handratt

Inställning av maskinen utförs i Manuell drift. I denna driftart kan maskinaxlarna förflyttas manuellt eller stegvis, utgångspunkten kan ställas in och bearbetningsplanet kan vridas.

Driftarten El. Handratt stödjer manuell förflyttning av maskinaxlarna med hjälp av en elektronisk handratt HR.

Softkeys för bildskärmsuppdelning

(välj på tidigare beskrivet sätt)

Fönster	Softkey
Positioner	POSITION
vänster: Positioner, höger: Statuspresentation	POSITION + STATUS

MANUE	ELL DF	RIFT				PR00 INM	SRAM ATNING
ŔŔ	X + Y ₽ + B + C	150.0 -50.0 100.0 +0.0 180.0 +90.0	000 000 000 000 000 000	RESTV X +: Y -: Z +: B -: B -:	350.0000 350.0000 350.0000 350.0000 490.0000	C +35 A +0 B+180 B+180	0000 .0000 .0000
T	S 0	.000 ∎0	M 5/9	ВА	SPLANETS V	INKEL +0	.0000
м	s	F	AVKÄNNAR- FUNKTION	UTGÂNGS- PUNKT INSTÄLLN.	INKRE- MENT AV/PÅ	3D ROT	VERKTYG TABELL

Manuell positionering

l denna driftart kan enkla förflyttningar och funktioner programmeras, exempelvis för planfräsning eller förpositionering. Här definierar man även punkttabeller för bestämmande av digitaliseringsområde.

Softkeys för bildskärmsuppdelning

Fönster	Softkey
Program	PROGRAM
vänster: Program, höger: Statuspresentation	PROGRAM + STATUS

MANUE	ELL PO	JSITI	DNERI	NG		INM	GRAM ATNING
0 BEGIN 1 TOOL C 2 CYCL C 0200= 0201= 0206= 0211= 0208= 0203=	PGM \$MDI M ALL 1 2 S7 IEF 202 URS 2 \$SAEK -20 \$DJUP 150 \$MAIN 0 \$VREN 500 \$MAIN +0 \$KOOR	M 500 VARVNING ERHETSAVST ING DJUP TETID NERE ING TILLBF D. OEVERYT	aand Kra Ta	RESTU X Z A B	+0.0000 +0.0000 +0.0000 +0.0000 +0.0000	C + A +0 B+180 C +90 VINKEL +0	0.0000 .0000 .0000 .0000
X + A ^{AR}	-150.0 +0.0	000 (000 (1	Y -! 3 +1:	50.00 80.00	00 Z 00 C S ∎0	+100 +90 0.00	.0000 .0000 0 M 5/9
STATUS PGM	STATUS POS.	STATUS VERKTYG	STATUS KOORD OMRÄKN.	STATUS VERKTYGS- MATNING		PNT	VERKTYG TABELL

Programinmatning/Editering

l denna driftart skapar man sina bearbetningsprogram. Den flexibla konturprogrammeringen, de olika cyklerna och Qparameterfunktionerna erbjuder ett stort stöd och funktionsomfång. Om så önskas visar programmeringsgrafiken de enskilda programstegen eller så använder man ett annat fönster där programstrukturen kan skapas.

Softkeys för bildskärmsuppdelning

Fönster	Softkey
Program	PROGRAM
vänster: Program, höger: Programlänkning	PROGRAM * SEKTIONER
vänster: Program, höger: Programmeringsgrafik	PROGRAM + GRAFIK

I driftart Programtest simulerar TNC:n program och programdelar,

detta för att finna exempelvis geometriska motsägelser, saknade

eller felaktiga uppgifter i programmet samt rörelser utanför

arbetsområdet. Simulationen stöds med olika grafiska

Se driftarterna för Programkörning på nästa sida.

	MAN	JUELL DR	RIFT	PR	GRAM	INMA	「NING			
	0	BEGIN	PGM	1S MM			BEGIN PGM	15		
	1	BLK FO	RM Ø	.1 Z X	+0 Y+0 Z-4	0	- Borrbil	d LD-Nr 25	7943KL1	
	2	BLK FO	RM Ø	.2 X+1	00 Y+100 Z	+0	- Definit	io av Para	metrar	
	3	* - Во	rrbi	ld LD-	Nr 257943K	L1	- Bearbet	a ficka		
	4	TOOL C	ALL	1 Z S4	500		- Grovb	earbta fic	ka	
	5	L Z+10	0 R0	F MAX			- Finbe	arbeta fic	ka	
	6	CYCL D	EF 2	04 FOE	RSAENKNING	BAK.	- skapa Borrbild			
		0200=	2	\$SAEK	ERHETSAVST	AAND	- Centrera			
	Q249=+5 \$DJUP FOERSAENKNING					NING	- Borrning			
	Q250=20 \$MATERIALSTYRKA						- Gaeng	ning		
	Q251=3.5 \$EXCENTERMAATT					END PGM 1	S			
		Q252=	15	\$SKAE	RHOEJD					
	Q253=750 \$NEDMAININGSHASTIGHET									
	Q254=200 \$MATNING FOERSAENKN.									
		Q255=	0	\$VAEN	TETID					
ĺ	В	ÖR JAN	s	LUT J	SIDA Î	SIDA J	SÖK			VÄXLA FÖNSTER ⇔

1 Introduktion

6

Programtest

presentationsformer.

Softkeys för bildskärmsuppdelning

Program blockföljd och Program enkelblock

I Program blockföljd utför TNC:n ett bearbetningsprogram kontinuerligt till dess slut, eller till ett manuellt alternativt ett programmerat avbrott. Efter ett avbrott kan man återuppta programexekveringen.

I Program enkelblock startar man varje block separat genom att trycka på den externa START-knappen.

Softkeys för bildskärmsuppdelning

Fönster	Softkey
Program	PROGRAM
vänster: Program, höger: Programlänkning	PROGRAM + SEKTIONER
vänster: Program, höger: Status	PROGRAM + STATUS
vänster: Program, höger: Grafik	PROGRAM + GRAFIK
Grafik	GRAFIK

1.4 Statuspresentation

"Allmän" Statuspresentation

Statuspresentationen informerar dig om maskinens aktuella tillstånd. Den visas automatiskt i driftarterna

Program enkelblock och Program blockföljd, under förutsättning att inte presentation av enbart "Grafik" har valts, och vid

Manuell positionering.

I driftarterna Manuell drift och El. Handratt visas statuspresentationen i ett stort fönster.

PROGI	RAM BI	OCKF	ÖLJD			PRO	GRAM ATNING
0 BEGIN 1 BLK FC 2 BLK FC 3 T00L C	PGM 3507 M DRM 0.1 Z X DRM 0.2 X+2	M -20 Y-20 Z 0 Y+20 Z+0 000	2-20				
4 L Z+50	RØF MAX	м3					
5 L X+50	Y+50 R0 F	MAX M8					
6 L Z-5	R0 F MAX						
7 CC X+0	3 Y+Ø						
8 LP PR	14 PA+45 R	R F500					
							00:00:00
X -	150.0	000	Y – 9	50.000	30 Z	+100	.0000
A	+0.0	000	B +18	30.000	30 C	+90	.0000
					S	0.00	0
ÄR		Т			80		M 5/9
				RESTORE POS. AT	F MAX	/□ AV / ₽Â	VERKTYG TABELL

2	
ţi	S
enta	À
rese	>
dsn	
itat	_
4.	ŀ
<u> </u>	

Information i statuspresentationen

Oymbol	Detydelse
ÄR	Den aktuella positionens Är- eller Bör-koordinater
XYZ	Maskinaxlar; TNC:n presenterar hjälpaxlar med små bokstäver. Ordningsföljden och antalet visade axlar bestäms av Er maskintillverkare. Beakta anvisningarna i Er maskinhandbok
FSM	Presentationen av matning i tum motsvarar en tiondel av det verksamma värdet. Varvtal S, matning F och aktiv tilläggsfunktion M
*	Programkörning har startats
→←	Axeln är låst
\bigcirc	Axeln kan förflyttas med handratten
	Axlarna förflyttas i ett tippat bearbetningsplan
	Axlarna förflyttas i ett grundvridet bearbetningsplan

Utökad statuspresentation

Den utökade statuspresentationen ger detaljerad information om programförloppet. Man kan kalla upp den i alla driftarter med undantag för Programinmatning/Editering.

Kalla upp den utökade statuspresentationen

Kalla upp softkeyraden för bildskärmsuppdelning

PROGRAM
STATUS

Välj bildskärmsuppdelning med utökad statuspresentation

PROGRAM BLOCKFÖLJD)GRAM 1ATNING
0 BEGIN PGM 3507 MM 1 BLK FORM 0.1 Z X-20 Y-20 Z-20 2 BLK FORM 0.2 X+20 Y+20 Z+0 3 TOOL CRLL 3 Z S1000 4 L Z+50 R0 F MAX M3 5 L X+50 Y+50 R0 F MAX M8				RESTV X Y Z A B	+0.0000 +0.0000 +0.0000 +0.0000 +0.0000	C ·	+0.0000
6 L Z-5 R0 F MRX 7 CC X+0 Y+0 8 LP PR+14 PA+45 RR F500				R +0.0000 B 180.0000 C +90.0000 C +90.0000 C +90.0000 C +90.0000			
Image: Markowski state +150.0000 Y -50.0000 Z +100.0000 A +0.0000 B +180.0000 C +90.0000 A +0.0000 B +180.0000 C +90.0000 B 0 .0000 M 50.000							
STATUS PGM	STATUS POS.	STATUS VERKTYG	STATUS KOORD. OMRAKN.	STATUS VERKTYGS- MÄTNING	SPARA		ATERSTALL 00:00:00

Nedan beskrivs de olika typer av utökad statuspresentation som man kan välja via softkeys:

Växla softkeyrad, fortsätt tills STATUS-softkeys visas

STATUS PGM Välj typ av utökad statuspresentation, exempelvis allmän programinformation

Allmän programinformation

- 1 Huvudprogramnamn
- 2 Anropat program
- 3 Aktiv bearbetningscykel
- 4 Cirkelcentrum CC (Pol)
- 5 Bearbetningstid
- 6 Räknare för väntetid

Positioner och koordinater

- 1 Positionsvisning
- 2 Typ av positionsvisning, t.ex. Är-positioner
- 3 Tippningsvinkel för bearbetningsplanet
- 4 Vinkel för grundvridning

Information om verktyg

- 1 Presentation T: Verktygsnummer och -namn Presentation RT: Nummer och namn för ett systerverktyg
- 2 Verktygsaxel

STATUS

VERKTYG

- 3 Verktygslängd och -radie
- 4 Tilläggsmått (Deltavärde) från TOOL CALL (PGM) och verktygstabellen (TAB)
- 5 Livslängd, maximal livslängd (TIME 1) och maximal livslängd vid TOOL CALL (TIME 2)
- 6 Presentation av det aktiva verktyget och dess (nästa) systerverktyg

Koordinatomräkningar

- 1 Huvudprogramnamn
- 2 Aktiv nollpunktsförskjutning (cykel 7)
- 3 Aktiv vridningsvinkel (cykel 10)
- 4 Speglade axlar (cykel 8)
- 5 Aktiv skalfaktor / skalfaktorer (cykel 11 / 26)
- 6 Mittpunkt för skalfaktor
- Se "8.7 Cykler för koordinatomräkningar"

- 1 Verktygsnummer som mäts
- 2 Indikering, om verktygsradie eller -längd mäts
- 3 MIN- och MAX-värde vid mätning av individuella skär och resultat för mätning med roterande verktyg (DYN).
- 4 Verktygsskärets nummer med tillhörande mätvärde. Stjärnan efter mätvärdet indikerar att toleransen från verktygstabellen har överskridits.

1.5 Tillbehör: 3D-avkännarsystem och elektroniska handrattar från HEIDENHAIN

3D-avkännarsystem

Med de olika 3D-avkännarsystemen från HEIDENHAIN kan man

- Rikta upp arbetsstycket automatiskt
- Snabbt och noggrant ställa in utgångspunkten
- Utföra mätning på arbetsstycket under programexekveringen
- Digitalisera (option) 3D-former samt
- Mäta och kontrollera verktyg

 Alla avkännarfunktioner beskrivs i en separat bruksanvisning. Kontakta HEIDENHAIN om du behöver denna bruksanvisning. Ident-nr.: 329 203 xx.

De brytande avkännarsystemen TS 220 och TS 630

Dessa avkännarsystem lämpar sig väl för automatiskt uppriktning av arbetsstycket, inställning av utgångspunkten, mätning på arbetsstycket och för digitalisering. TS 220 överför triggersignalen via en kabel och är ett kostnadseffektivt alternativ då man önskar digitalisera ibland.

TS 630 lämpar sig speciellt för maskiner med verktygsväxlare eftersom triggersignalen överförs via en infraröd sändare/mottagare utan kabel.

Funktionsprincip: I de brytande avkännarsystemen från HEIDENHAIN registrerar en förslitningsfri optisk sensor utböjningen av mätstiftet. Den erhållna signalen medför att den aktuella avkännarpositionens är-värde lagras.

Vid digitalisering skapar TNC:n ett program, bestående av linjära block i HEIDENHAIN-format, från en serie positionsvärden erhållna på detta sätt. Därefter kan detta program förändras i en PC med utvärderingsmjukvaran SUSA, detta för att korrigera för bestämda verktygsformer och -radier eller för att beräkna positiva/negativa former. Om avkännarkulan är lika med verktygsradien kan detta program exekveras omgående.

Verktygsavkännarsystem TT 120 för verktygsmätning

TT 120 är ett brytande 3D-avkännarsystem för mätning och kontroll av verktyg. För detta ändamål erbjuder TNC:n tre cykler, med vilka verktygsradie och -längd med stillastående eller roterande spindel kan mätas.

Det mycket robusta utförandet och den höga skyddsklassen gör TT 120 okänslig mot kylvätska och spånor. Triggersignalen skapas med en förslitningsfri optisk sensor, vilken kännetecknas av en hög tillförlitlighet.

Elektroniska handrattar HR

De elektroniska handrattarna förenklar precisa manuella förflyttningar av axelsliderna. Förflyttningssträckan per handrattsvarv kan väljas inom ett brett område. Förutom inbyggnadshandrattarna HR 130 och HR 150 erbjuder HEIDENHAIN den portabla handratten HR 410 (se bilden till höger).

Manuell drift och inställning

2.1 Uppstart, av<mark>stän</mark>gnin

2.1 Uppstart, avstängning

Uppstart

Uppstartsproceduren och referenspunktssökningen är maskinavhängiga funktioner. Beakta anvisningarna i Er maskinhandbok.

Slå på matningsspänningen till TNC och maskin.

Därefter inleder TNC:n automatiskt med följande dialog:

Minnestest

TNC:ns minne testas automatiskt

Strömavbrott

TNC-meddelande, strömmen har varit bruten – radera meddelandet

Översätt PLC-Program

TNC:ns PLC-program översätts automatiskt

SYRSPÄNNING TILL RELÄ SAKNAS

Ι

I

Slå på styrspänningen, TNC:n testar Nödstopps-slingans funktion

Manuell Drift Passera referenspunkter

Passera referenspunkterna i föreslagen ordningsföljd: Tryck på den externa STARTknappen för varje axel, eller

Passera referenspunkterna i valfri ordningsföljd: Tryck och håll inne de externa riktningsknapparna, tills referenspunkterna har passerats

TNC:n är nu funktionsklar och befinner sig i driftart Manuell drift

Referenspunkterna behöver bara passeras då maskinaxlarna skall förflyttas. Om man bara skall editera eller testa program kan driftart Programinmatning/ Editering eller Programtest väljas direkt efter påslag av styrspänningen.

Referenspunkterna kan då passeras vid ett senare tillfälle. För att göra detta trycker man på softkey SÖK REF.PUNKT i driftart Manuell drift.

Referenspunktssökning vid 3D-vridet koordinatsystem

Passering av referenspunkter kan utföras i 3D-vridet koordinatsystem via de externa riktningsknapparna. Därtill måste även funktionen "Vridning av bearbetningsplan" vara aktiverad i driftart Manuell drift (se "2.5 3D-vridning av bearbetningsplan). Vid tryckning på de externa axelriktningsknapparna interpolerar TNC:n de däri ingående maskinaxlarna.

NC-START-knappen har ingen funktion. Om den används kommer TNC:n att presentera ett felmeddelande.

Kontrollera så att vinkelvärdet som angivits i menyn överensstämmer med vridningsaxelns verkliga vinkel.

Avstängning

För att undvika dataförlust vid avstängning måste man ta ner TNC:ns operativsystem på ett kontrollerat sätt:

▶ Välj driftart Manuell

 Välj funktionen för att stänga av, bekräfta med softkey JA igen

När TNC:n presenterar texten "Nu kan du stänga av" i ett överlagrat fönster, får man stänga av matningsspänningen till TNC:n

Godtycklig avstängning av TNC:n kan leda till dataförlust.

2.2 Förflyttning av maskinaxlarna

Förflyttning med de externa riktningsknapparna är en maskinavhängig funktion. Beakta anvisningarna i Er maskinhandbok!

Förflytta axel med de externa riktningsknapparna

...eller kontinuerlig förflyttning av axel:

Håll den externa riktningsknappen intryckt och tryck samtidigt på den externa START-knappen. Axeln fortsätter att förflyttas ända tills den stoppas.

Stoppa: Tryck på den externa STOPP-knappen

Med båda metoderna kan man förflytta flera axlar samtidigt. Man kan ändra matningen som axlarna förflyttar sig med via softkey F (se "2.3 Spindelvarvtal S, Matning F och Tilläggsfunktion M).

Förflyttning med elektronisk handratt HR 410

Den portabla handratten HR 410 är utrustad med två stycken säkerhetsbrytare. Säkerhetsbrytarna är placerade nedanför veven. Man kan bara förflytta maskinaxlarna då man trycker in en av säkerhetsbrytarna (maskinavhängig funktion).

Handratten HR 410 är bestyckad med följande manöverfunktioner:

- 1 NÖDSTOPP
- 2 handratt
- 3 Säkerhetsbrytare
- 4 Knappar för axelval
- 5 Knapp för överföring av Är-positionen
- 6 Knappar för att välja matningshastigheten (långsam, medel, snabb; matningshastigheterna bestäms av maskintillverkaren)
- 7 Riktning, i vilken TNC:n skall förflytta den valda axeln
- 8 Maskinfunktioner (bestäms av maskintillverkaren)

De röda lysdioderna indikerar vilken axel och vilken matningshastighet man har valt.

Förflyttning med handratten kan även utföras under programexekveringen.

Förflyttning

Stegvis positionering

Vid stegvis positionering förflyttar TNC:n en maskinaxel med ett av dig angivet stegmått.

2.3 Spindelvarvtal S, Matning F och Tilläggsfunktion M

I driftarterna Manuell drift och El. HANDRATT anger man spindelvarvtal S, matning F och tilläggsfunktion M via softkeys. Tilläggsfunktionerna beskrivs i "7. Programmering: Tilläggsfunktioner".

Ange värde

Exempel: Ange spindelvarvtal S

Spindelrotationen med det angivna varvtalet S startas med en tilläggsfunktion M.

Matningen F och tilläggsfunktionerna M anges på samma sätt.

För matningen F gäller:

- Om man anger F=0 så verkar den lägsta matningen från MP1020
- F kvarstår även efter ett ett strömavbrott

Ändra spindelvarvtal och matning

Med override-potentiometrarna för spindelvarvtal S och matning F kan det inställda värdet ändras från 0% till 150%.

Override-potentiometern för spindelvarvtal fungerar bara i maskiner med steglös spindeldrift.

Maskintillverkaren definierar vilka tilläggsfunktioner M som kan användas och deras betydelse.

2.4 Inställning av utgångspunkt (utan 3D-avkännarsystem)

Inställning av utgångspunkt med 3D-avkännarsystem: Se bruksanvisning Cykler för avkännarsystem

Vid inställning av utgångspunkten ändras TNC:ns positionsvärde så att det överensstämmer med en känd position på arbetsstycket.

Förberedelse

- Rikta och spänn fast arbetsstycket
- ▶ Växla in ett nollverktyg med känd radie
- ▶ Försäkra dig om att TNC:n visar Är-positioner

2.5 3D-vridning av bearbetningsplanet

Inställning av utgångspunkt

Skyddsåtgärder: Öm arbetsstyckets yta inte får repas kan ett bleck med tjocklek d placeras på arbetsstycket. Då anges utgångspunkten som ett värde d större än om verktyget hade tangerat arbetsstycket direkt.

vid en känd arbetsstyckesposition (t.ex. 0) eller till bleckets tjocklek d. I bearbetningsplanet: Ta hänsyn till verktygsradien

Inställning av utgångspunkten för de övriga axlarna utförs på samma sätt.

Om man använder ett förinställt verktyg i ansättningsaxeln skall positionen i ansättningsaxeln ändras till verktygets längd L alt. till summan Z=L+d.

2.5 3D-vridning av bearbetningsplanet

Funktionen för 3D-vridning av bearbetningsplanet måste anpassas i maskinen och TNC:n av maskintillverkaren. För det specifika spindelhuvudet eller tippningsbordet bestämmer maskintillverkaren om vinklarna skall anges som rotationsaxlarnas koordinater eller om de skall tolkas som en rymdvinkel. Beakta anvisningarna i Er maskinhandbok.

TNC:n understöder 3D-vridning av bearbetningsplanet i verktygsmaskiner med vridbara spindelhuvuden och tippningsbord. Typiska användningsområden är t.ex sned borrning eller konturer placerade på sneda ytor. Bearbetningsplanet vrids alltid runt den aktiva nollpunkten. Bearbetningen programmeras på vanligt sätt i ett huvudbearbetningsplan (t.ex. X/Y-planet). Däremot kommer bearbetningen att utföras i ett plan som är tippat i förhållande till det normala huvudbearbetningsplanet.

Y

 \bigcirc

Ζ

- Det finns två funktioner tillgängliga för vridning av bearbetningsplanet:
- Manuell vridning med softkey 3D ROT i driftarterna Manuell drift och El. Handratt (beskrivs här)
- Styrd vridning, cykel 19 BEARBETNINGSPLAN i bearbetningsprogram: Se "8.7 Cykler för koordinatomräkning".

TNC-funktionen för "3D-vridning av bearbetningsplanet" är av typen koordinattransformerande. Därvid förblir bearbetningsplanet alltid vinkelrätt mot den faktiska verktygsaxelns riktning.

Vid vridning av bearbetningsplanet skiljer TNC:n mellan två maskintyper:

Maskiner med tippbara rundbord

- Tippningsbordet måste först positioneras så att arbetsstycket hamnar i önskat läge. Detta kan utföras med t.ex. ett L-block.
- Den transformerade verktygsaxelns läge ändrar sig inte i förhållande till det maskinfasta koordinatsystemet. När rundbordet vrids – m.a.o även arbetsstycket – t.ex. till 90°, vrids inte koordinatsystemet med. När man trycker på axelriktningsknappen Z+, i driftart Manuell drift, kommer verktyget också att förflytta sig i Z+ riktningen.
- Vid beräkningen av det transformerade koordinatsystemet tar TNC:n bara hänsyn till mekaniskt betingade förskjutningar av rundbordet – så kallade "transformerings" komponenter.

Maskiner med vridbara spindelhuvuden

- Spindelhuvudet måste först positioneras så att **verktyget** hamnar i önskat bearbetningsläge. Detta kan utföras med t.ex. ett Lblock.
- Den vridna (transformerade) verktygsaxelns läge liksom även verktygets läge – ändrar sig i förhållande till det maskinfasta koordinatsystemet: När man vrider maskinen spindelhuvud – m.a.o. även verktyget – till t.ex. +90° i B-axel, vrider sig koordinatsystem med. När man trycker på axelriktningsknappen Z+ i driftart Manuell drift förflyttar sig verktyget i det maskinfasta koordinatsystemets X+ riktning.
- Vid beräkning av de transformerade koordinatsystemet tar TNC:n hänsyn till mekaniskt betingade förskjutningar i spindelhuvudet ("transformerings" komponenter) samt förskjutningar som uppstår genom vridningen av verktyget (3D verktygslängdkompensering).
Referenspunktssökning vid vridna axlar

Vid 3D-vridet bearbetningsplan kan referenspunkten sökas med de externa riktningsknapparna. TNC:n interpolerar därvid de tillhörande axlarna. Kontrollera att funktionen "3D-vridning av bearbetningsplanet" är aktiverad i driftart Manuell drift samt att vridningsaxelns är-vinkel har angivits i menyfältet.

Inställning av utgångspunkt i vridet system

Efter att ha positionerat vridningsaxlarna till sina positioner kan utgångspunkten ställas in på samma sätt som vid ett icke vridet koordinatsystem. TNC:n räknar därvid om den angivna utgångspunkten till det vridna koordinatsystemet. Vid styrda rotationsaxlar hämtar TNC:n vinkelvärdet för denna beräkning från rotationsaxelns är-position.

Man får inte ställa in utgångspunkten i det vridna systemet om bit 3 är satt i maskinparameter 750. I sådana fall kommer TNC:n att beräkna en felaktig förskjutning.

> Om din maskins tippningsaxlar inte är styrda måste rotationsaxlarnas Är-positioner anges i menyn för manuell vridning: Om rotationsaxelns(arnas) Är-position inte överensstämmer med det inmatade värdet kommer TNC:n att beräkna en felaktig utgångspunkt.

Inställning av utgångspunkt i maskiner med rundbord

TNC:ns beteende vid inställning av utgångspunkten är maskinberoende. Beakta anvisningarna i Er maskinhandbok.

TNC förskiuter automatiskt utgångspunkten när man roterar bordet och funktionen vridning av bearbetningsplan är aktiv.

MP 7500, Bit 3=0

För att beräkna förskjutningen av utgångspunkten använder TNC:n differensen mellan REF-koordinaten vid inställning av utgångspunkten och rotationsaxelns REF-koordinat efter vridningen. Denna beräkningsmetod skall användas när man spänner upp arbetsstycket uppriktat i rundbordets 0°-riktning (REF-värde).

MP 7500, Bit 3=1

Om man riktar upp ett snett placerat arbetsstycke med en rundbordsvridning, får TNC:n inte längre beräkna beräkna förskiutningen via differensen mellan REF-koordinaterna. TNC använder direkt rotationsaxelns REF-värden efter vridningen, utgår alltså alltid från att arbetsstycket var uppriktat före vridningen.

Positionsindikering i vridet system

Positionerna som visas i statusfältet (BÖR och ÄR) hänför sig till det vridna koordinatsystemet.

Begränsningar vid 3D-vridning av bearbetningsplanet

- Avkännarfunktionen Grundvridning kan inte användas
- PLC-positioneringar (skapas av maskintillverkaren) är inte tillåtna
- Positioneringsblock med M91/M92 är inte tillåtna

Aktivering av manuell vridning

Välj manuell vridning: Softkey 3D ROT. Menypunkten kan nu väljas med pil-knapparna

MANU	ELL DF	RIFT							PROG	RAMTEST
VRID PROG MANU	BEARE Ramköf Ell Df	BETNI RNING RIFT	NGS	PLF	A N	INA AKT	KTIV	J		
A = B = C =	+0 +180 +90		0 0 0							
Х	+80.9	420	Y	-13	35.8	249	Z	- 1	00	.0000
A	+0.0	000	В	+18	80.0	000	С	+	90	.0000
							S	0.	000	9
ÄR	6	≩ τ_				6	0			M 5⁄9

Ange vridningsvinkel

Sätt önskad driftart i menypunkten Vridning bearbetningsplan till Aktiv: Välj menypunkten, växla med knappen ENT

Avsluta inmatningen: Knappen END

För att deaktivera funktionen sätter man önskad driftart i menyn Vridning bearbetningsplan till Inaktiv.

När funktionen Vridning bearbetningsplan har valts Aktiv och TNC:n förflyttar maskinaxlarna enligt de vridna axlarna visas en symbol 🖾 i statuspresentationen.

Om funktionen Vridning bearbetningsplan väljs Aktiv för driftart Programkörning, kommer den i menyn angivna vridningsvinkeln att gälla från och med det första blocket i bearbetningsprogrammet som utförs. Om cykel 19 BEARBETNINGSPLAN används i bearbetningsprogrammet kommer värdet som har definierats i cykeln att bli verksamt (från och med cykeldefinitionen). Vinkelvärdet som har angivits i menyn kommer då att skrivas över.

Manuell positionering

3.1 Programmera och utföra enkla bearbetningar

Driftart Manuell positionering lämpar sig för enkla bearbetningar och förpositionering av verktyget. Här kan korta program i HEIDEN-HAIN-Klartext-format eller enligt DIN/ISO anges och utföras direkt. Även TNC:ns cykler kan anropas. Programmet lagras i filen \$MDI. Vid Manuell positionering kan den utökade statuspresentationen aktiveras.

Välj driftart Manuell positionering. Programmera filen \$MDI på önskat sätt

 (\mathbf{I})

Start programexekveringen: Extern START-knapp

Begränsningar: Den Flexibla Konturprogrammeringen FK, programmeringsgrafiken och programkörningsgrafiken finns inte tillgängliga i denna driftart. Filen \$MDI får inte innehålla några programanrop (PGM CALL).

Exempel 1

Ett arbetsstycke skall förses med ett 20 mm djupt hål. Efter uppspänning av arbetsstycket, uppriktningen och inställningen av utgångspunkten kan borrningen programmeras med ett fåtal programblock och därefter utföras.

Först förpositioneras verktyget över arbetsstycket, därefter till ett säkerhetsavstånd 5 mm över hålet. Dessa positioneringar utförs med L-block (rätlinje). Därefter utförs borrningen med cykel 1 DJUPBORRNING.

|--|

O BEGIN PGM \$MDI MM	
1 TOOL DEF 1 L+0 R+5	Definiera verktyg: nollverktyg, radie 5
2 TOOL CALL 1 Z S2000	Anropa verktyg: Verktygsaxel Z,
	Spindelvarvtal 2000 varv/min
3 L Z+200 RO F MAX	Frikör verktyg (F MAX = snabbtransport)
4 L X+50 Y+50 RO F MAX M3	Positionera verktyg med FMAX över hål,
	spindel till
5 L Z+5 F2000	Positionera verktyg 5 mm över hålet

Wkz = Verktyg

6 CYCL DEF 1.0 DJUPBORRNING	Definiera cykel DJUPBORRNING:
7 CYCL DEF 1.1 AVST 5	Verktygets säkerhetsavstånd över hålet
8 CYCL DEF 1.2 DJUP -20	Hålets djup (förtecken=arbetsriktning)
9 CYCL DEF 1.3 ARB DJ 10	Djup för varje ansättning innan återgång
10 CYCL DEF 1.4 V.TID 0,5	Väntetid vid hålets botten i sekunder
11 CYCL DEF 1.5 F250	Borrmatning
12 CYCL CALL	Anropa cykel DJUPBORRNING
13 L Z+200 R0 F MAX M2	Frikör verktyg
14 END PGM \$MDI MM	Programslut

Funktionen för rätlinje finns beskriven i "6.4 Verktygsrörelser – Rätvinkliga koordinater", cykeln DJUPBORRNING under "8.2 Borrcykler".

Exempel 2

Justera för snett placerat arbetsstycke i maskin med rundbord

Utför funktionen grundvridning med 3D-avkännarsystem. Se "12.2 Avkännarcykler i driftarterna Manuell drift och El. Handratt", Avsnitt "Kompensering för snett placerat arbetsstycke".

Notera	Vridningsvinkel	och	upphäv	Grundvridningen
	- 0			

	Välj driftart: Manuell positionering
کا (۲	Välj rundbordsaxel, ange den noterade vridningsvinkeln och matning t.ex. L C+2.561 F50
	Avsluta inmatningen
	Tryck på den externa START-knappen: Det snett placerade arbetsstycket justeras genom vridningen av arbetsstycket

Säkra eller radera program från \$MDI

Filen \$MDI används vanligen för korta program som inte behöver sparas. Skall ett program trots det sparas gör man på följande sätt:

\$	Välj driftart: Program- inmatning/Editering
PGM MGT	Kalla upp filhanteringen: Knapp PGM MGT (Program Management)
	Markera filen \$MDI
KOPIERA ABCÌ⇒ XYZ	Välj "Kopiera fil": Softkey KOPIERA
MAITII =	
BORRNING	Ange ett namn, under vilket det aktuella innehållet i filen \$MDI skall sparas
UTFÖR	Utför kopieringen
SLUT	Lämna filhantering: Softkey SLUT

För att radera innehållet i filen \$MDI gör man på ungefär samma sätt: Istället för att kopiera raderar man innehållet med softkey RADERA. Vid nästa växling till driftart Manuell Positionering visar TNC:n en tom fil \$MDI.

När man vill radera \$MDI, så

får inte driftart Manuell positionering vara vald (inte heller i bakgrunden)

får man inte ha valt filen \$MDI i driftart Programinmatning/editering

Ytterligare information i "4.2 Filhantering".

Programmering:

Grunder, Filhantering, Programmeringshjälp, Paletthantering

4.1 Grunder

Positionsmätsystem och referensmärken

På maskinaxlarna finns positionsmätsystem placerade, vilka registrerar maskinbordets alt. verktygets position. Då en maskinaxel förflyttas genererar det därtill hörande positionsmätsystemet en elektrisk signal. Från denna signal kan TNC:n beräkna maskinaxelns exakta Är-position.

Vid ett strömavbrott förloras sambandet mellan maskinslidernas position och den beräknade Är-positionen. För att kunna återskapa detta samband är mätsystemens mätstavar utrustade med referensmärken. Vid förflyttning över ett referensmärke erhåller TNC:n en signal som används som en maskinfast utgångspunkt. På detta sätt kan TNC:n återskapa förhållandet mellan Är-positionen och maskinslidens aktuella position.

Oftast monteras längdmätskalor på de linjära axlarna. På rundbord och tippningsaxlar används vinkelmätsystem. Vid längdmätsystem med avståndskodade referensmärken behöver maskinaxeln bara förflyttas 20 mm, vid vinkelmätsystem 20°, för att återskapa sambandet mellan Är-positionen och maskinslidens position.

I.1 Grunder

Positionssystem

Med ett referenssystem kan man fastlägga positioner placerade i ett plan eller i rymden. Uppgifterna för en position utgår alltid från en fast definierad punkt och beskrivs från denna i form av koordinater.

I ett rätvinkligt koordinatsystem (kartesiskt system) är tre riktningar definierade som axlarna X, Y och Z. Axlarna är alltid vinkelräta mot varandra och skär varandra i en enda punkt, nollpunkten. En koordinat anger avståndet till nollpunkten i en av dessa riktningar. På detta sätt kan en position i planet beskrivas med hjälp av två koordinater och i rymden med tre koordinater.

Koordinater som utgår ifrån nollpunkten kallas för absoluta koordinater. Relativa koordinater utgår ifrån en annan godtycklig position (utgångspunkt) i koordinatsystemet. Relativa koordinatvärden kallas även för inkrementella koordinatvärden.

Positionssystem i fräsmaskiner

Vid bearbetning av ett arbetsstycke i en fräsmaskin utgår man oftast från det rätvinkliga koordinatsystemet. Bilden till höger visar hur koordinatsystemet är tillordnat maskinaxlarna. Tre-finger-regeln för höger hand hjälper till som minnesregel: Om man håller långfingret i verktygsaxeln (pekande mot verktyget och från arbetsstycket) så motsvarar detta positiv riktning i Z-axeln, tummen motsvarar positiv riktning i X-axeln och pekfingret positiv riktning i Y-axeln.

TNC 426 kan styra maximalt fem axlar, TNC 430 maximalt nio axlar. Förutom huvudaxlarna X, Y och Z finns även parallellt löpande tilläggsaxlar U, V och W. Rotationsaxlar betecknas med A, B och C. Bilden nere till höger visar hur tilläggsaxlarna respektive rotationsaxlarna tilldelas huvudaxlarna.

Polära koordinater

Om ritningsunderlaget är måttsatt med rätvinkliga koordinater skapar man även bearbetningsprogrammet med rätvinkliga koordinater. Vid arbetsstycken med cirkelbågar eller vid vinkeluppgifter är det ofta enklare att definiera positionerna med hjälp av polära koordinater.

l motsats till de rätvinkliga koordinaterna X, Y och Z beskriver polära koordinater endast positioner i ett plan. Polära koordinater har sin nollpunkt i Pol CC (CC = circle centre; eng. cirkelcentrum). En position i ett plan bestäms då entydigt genom

- Polär koordinatradie: avstånd från Pol CC till positionen
- Polär koordinatvinkel: vinkel mellan vinkelreferensaxeln och sträckan som förbinder Pol CC med positionen.

Se bilden nere till höger.

Definiera Pol och vinkelreferensaxel

Pol bestämmes med två koordinater i rätvinkligt koordinatsystem i ett av de tre möjliga planen. Dessa båda koordinater bestämmer samtidigt vinkelreferensaxeln för den polära koordinatvinkeln PA.

Pol-koordinater (plan)	Vinkelreferensaxel
XY	+X
YZ	+Y
ZX	+Z

4.1 Grunder

Absoluta och relativa arbetsstyckespositioner

Absoluta arbetsstyckespositioner

När en positions koordinat utgår från koordinatnollpunkten (ursprung) kallas dessa för absoluta koordinater. Varje koordinat på arbetsstycket är genom sina absoluta koordinater entydigt bestämda.

Exempel 1: Borrning med absoluta koordinater

X=10 mm	X=30 mm	X=50 mm
Y=10 mm	Y=20 mm	Y=30 mm

Relativa arbetsstyckespositioner

Relativa koordinater utgår från den från den sist programmerade verktygspositionen. Denna verktygsposition fungerar som en relativ nollpunkt. Vid programframställningen motsvarar inkrementala koordinater följaktligen måttet mellan den sista och den därpå följande bör-positionen. Verktyget kommer att förflytta sig med detta mått. Därför kallas relativa koordinatangivelse även för kedjemått.

Ett inkrementalt mått kännetecknas av ett "I" innan axelbeteckningen.

Exempel 2: Borrning med relativa koordinater

Absoluta koordinater för hål 4:

X= 10 mm Y= 10 mm	
Hål <mark>5</mark> refererande till <mark>4</mark>	Hål <mark>6</mark> refererande till <mark>5</mark>
IX= 20 mm IY= 10 mm	IX= 20 mm IY= 10 mm

Absoluta och inkrementala polära koordinater

Absoluta koordinater hänför sig alltid till Pol och vinkelreferensaxeln.

Inkrementala koordinater hänför sig alltid till den sist programmerade verktygspositionen.

Inställning av utgångspunkt

Arbetsstyckets ritning specificerar ett särskilt konturelement som en absolut utgångspunkt (nollpunkt), ofta ett hörn på arbetsstycket. Vid inställning av utgångspunkten riktas först arbetsstycket upp i förhållande till maskinaxlarna, därefter förflyttas verktyget till en för alla axlar bekant position i förhållande till arbetsstycket. Vid denna position sätts TNC:ns positionsvärde till noll eller ett annat lämpligt värde. Därigenom relateras utgångspositionen, som gäller för TNCpresentationen liksom även bearbetningsprogrammet, till arbetsstycket.

Om det förekommer relativa utgångspunkter i arbetsstyckets ritning så använder man förslagsvis cyklerna för koordinatomräkningar. Se "8.7 Cykler för koordinatomräkning".

Om man har ett ritningsunderlag som inte är anpassat för NCprogrammering så bör man placera utgångspunkten vid en position eller ett hörn som det är lätt att beräkna måtten till övriga arbetsstyckespositioner ifrån.

Ett 3D-avkännarsystem från HEIDENHAIN underlättar mycket då man skall ställa in utgångspunkten. Se "12.2 Inställning av utgångspunkt med 3D-avkännarsystem".

Exempel

Skissen till höger visar ett arbetsstycke med hål (1 till 4). Dessa håls måttsättning utgår ifrån en absolut utgångspunkt med koordinaterna X=0 Y=0. Hålen (5 till 7) refererar till en relativ utgångspunkt med de absoluta koordinaterna X=450 Y=750. För att kunna programmera hålen (5 till 7) skall kunna programmeras utan ytterligare beräkningar.

4.2 Filhantering: Grunder

Via MOD-funktion PGM MGT (se kapitel 12.5) väljer man mellan standard filhantering och den utökade filhanteringen.

Om TNC:n är ansluten till ett nätverk (option) så använder man sig av den utökade filhanteringen

Filer

När ett bearbetningsprogram skall matas in i TNC:n börjar man med att ange programmets namn. TNC:n lagrar programmet på hårddisken som en fil med samma namn. TNC:n lagrar även texter och tabeller som filer.

För att man snabbt skall kunna hitta och hantera sina filer är TNC:n utrustad med ett speciellt fönster för filhantering. Här kan de olika filerna kallas upp, kopieras, raderas och döpas om.

Med TNC:n kan man lagra och hantera ett godtyckligt antal filer. Den sammanlagda storleken på alla filer får dock inte överskrida 1.500 MBvte.

Filers namn

En fils namn får vara maximalt 16 tecken långt. Bredvid programmen, tabellerna och texterna infogar TNC:n en filtyps-indikering vilken är skiljd från filnamnet med en punkt. Denna utökning indikerar filtyp: Se tabellen till höger.

PROG20	.Н
Filnamn	Filtyp

Datasäkerhet

HEIDENHAIN förordar att användaren regelbundet sparar säkerhetskopior av i TNC:n nyskapade program och filer på en PC. För detta ändamål tillhandahåller HEIDENHAIN ett BACKUP-program (TNCBACK.EXE) utan kostnad. Kontakta i förekommande fall Er maskintillverkare.

Dessutom behöver man en diskett med säkerhetskopior på alla maskinspecifika data (PLC-program, maskinparametrar mm). Kontakta även här Er maskintillverkare.

Om alla filerna som finn
i anspråk. Sådana säker
förslagsvis under natten
tupletion on LEE()D DAD

s på hårddisken (max. 1.500 opieras, kan detta ta flera timmar hetskopieringar utföres eller så använder man funktionen UTFÖR PARALLELLT (kopiera i bakgrunden).

Filer iTNC:n	Тур
Program i HEIDENHAIN-Klartext-Dialog enligt DIN/ISO	.H .I
Tabeller för	
Verktyg	.Т
Paletter	.P
Nollpunkter	.D
Punkter (digitaliseringsområde	.PNT
vid mätande avkännarsystem)	
Skärdata	.CDT
Skärmaterial, arbetsstyckesmaterial	.TAB
Texter som	
ASCII-filer	.A

filhanteringen i äldre TNC-system. När detta önskas väljer man MOD-funktionen PGM MGT (se Kapitel 12.5) till Standard .	CVRE TEST TEST FRAE 1
Kalla upp filhantering	\$MDI 11 111 112
Tryck på knappen PGM MGT: TNC:n visar fönstret för filhantering (se bilden uppe till höger)	44 F Î
Fönstret visar alla filer som finns lagrade i TNC:n. Bredvid varje fil visas mer information: se tabellen i mitten till höger.	FILNA
Välja fil	BYTE
Kalla upp filhanteringen	STATU E
Använd pilknapparna för att förflytta markören till filen som du vill kalla upp:	S
Förflytta markören upp eller ner	N/I
Välj fil: Tryck på softkey VÄLJ eller tryck på knappen ENT	P

4.3 Standard filhantering

Arbeta med standard filhantering när du vill lagra alla

FI	LNAMN	= <mark>%</mark> TCH	PRNT.	A		
TNC:*.*						
FIL-NAM	N		BYT	'Е S	STATUS	S
XTCHPRNT		.A	3	389		
CVREPORT		.А	128	347		
TEST		.Α		62		
TEST1		.Α	83	346		
FRAES_2		.CD	T 103	382		
FRAES_GB		.CD	T 103	382		
1		.D	96	58 5	SM	
\$MDI		.Н	1	10		
11		.Н	E	60		
111		.Н	10	38		
112		.Н	1	24		
44 FILCE	R) 906	5208 KI	BYTE	LEDIC	ЭT	
SIDA SIDA Î Î	VALJ	RADERA	KOPIERA ABC ⇔XYZ	EXT	SISTA FILERNA	SLUT

MANUELL DRIFT EDITERA PROGRAM-TABELL

Presentation	Betydelse
FILNAMN	Namn med maximalt 16 tecken och filtyp
BYTE	Filstorlek i Byte
STATUS E	Filens egenskaper: Programmet är valt i Driftart Program- inmatning/Editering
S	Programmet är valt i Driftart Programtest
Μ	Programmet är valt i en av driftarterna för Program- körning
Ρ	Filen är skyddad mot radering och förändring (Protected)

Presentation lång filöversikt	Softkey
Bläddra sida för sida uppåt genom filöversikten	SIDA Û
Bläddra sida för sida nedåt genom filöversikten	SIDA J

Radera fil

TNC:n kopierar filen i bakgrunden.

så länge TNC:n kopierar, eller

om man vill kopiera mycket långa program: Ange nytt filnamn, godkänn med softkey UTFÖR PARALLELLT. Man kan fortsätta arbeta efter det att kopieringsförloppet har startas eftersom

Dataöverföring till/från en extern dataenhet

Innan man kan överföra filer till en extern dataenhet måste datasnittet ställas in (se "Kapitel 12.4 Inställning av datasnitt").

	EVT.
	-~·

PGM

Kalla upp filhanteringen

Aktivera dataöverföring: Tryck på softkey EXT. TNC:n visar i den vänstra bildskärmsdelen 1 alla filer som finns lagrade i TNC:n, i den högra bildskärmsdelen 2 alla filer som finns lagrade i den externa dataenheten

MANUELL DRIFT	EDITERF	I PROGI	RAM-TE	ABELL		
	FILNAMN	= <mark>%</mark> TCI	IPRNT.	A		
TNC:*.*	1		R\$232:*.	*	2	
FIL-NAMN	BYTE	STATUS	[NO DIR]			
%TCHPRNT	.A 389					
CVREPORT	.A 12847					
TEST	.A 62					
TEST1	.A 8346					
FRAES_2	.CDT 10382					
FRAES_GB	.CDT 10382					
1	.D 9658	SM				
\$MDI	.H 110					
11	.H 660					
111	.H 1038					
112	.H 124					
44 FIL(ER) 9	06208 KBYTE LE	DIGT				
SIDA S	IDA KOPIERF	ITNC EXT	MARKERA	TNC		SLUT

Använd pilknapparna för att förflytta markören till filen som du vill överföra:

Förflytta markören upp och ner i ett fönster

Förflytta markören från höger till vänster fönster och tvärt om

Om man vill kopiera från TNC:n till den externa dataenheten förflyttar man markören i det vänstra fönstret till filen som skall överföras.

Om man vill kopiera från den externa dataenheten till TNC:n förflyttar man markören i det högra fältet till filen som skall överföras.

		Markeringsfunktioner	Softkey
KOPIERA ABC ⇒ XYZ	Överför enstaka filer: Tryck på softkey KOPIERA, eller	Markera enstaka fil	MARKERA FIL
		Markera alla filer	MARKERA ALLA FILER
MARKERA	övertör flera filen: Iryck på softkey MARKERA (markeringsfunktioner se tabellen till höger), eller	Upphäv markering för enstaka fil	UPPHÄV MARKERING
TNC EXT D ⇔ D	överför alla filer: Tryck på softkey TNC EXT	Upphäv markering för alla filer	UPPHÄV ALL MARKERING
		Kopiera alla markerade filer	KOP.MARK. D⇒D

Godkänn med softkey UTFÖR eller med knappen ENT. TNC:n visar ett statusfönster som informerar om kopieringsförloppet, eller

om man vill överföra långa eller många program: Godkänn med softkey UTFÖR PARALLELLT. TNC:n kopierar då filen i bakgrunden

Avsluta dataöverföringen: Tryck på softkey TNC. TNC:n visar åter filhanteringens standardfönster

Kalla upp en av de 10 sist valda filerna

Använd pilknapparna för att förflytta markören till filen som du vill kalla upp:

Förflytta markören upp eller ner

VÄLJ eller ent

Välj fil: Tryck på softkey VÄLJ eller tryck på knappen ENT

ANUELL DRIFT	PROG	RAM	INMA	「NING		
CUTTING DEMOBSP LSV2 DUMPS DUMPSISO NK DIGI HAE ISOBSP MESSZYH PROTB PROTB URSSSP	KL SP KOL JIR	0: TNC 1: TNC 2: TNC 3: TNC 4: TNC 5: TNC 6: TNC 7: TNC 9: TNC	C: NK-SGRD C: NK-SGRD C: NK-SGRD C: NK-SGRD C: NK-SGRD C: NK-SGRD C: NK-SGRD C: NK-SGRD	<pre>>>3516.H >>15.H >>35071.H >>35071.H >>3507.H ?>3507.H ?>RES_GB_CB_TRE >>BLK.H >>30JOINT.F >>3516.A >>BSPGB.A</pre>)T 3 4	
VALJ						SLUT

Döp om fil

ABC = XYZ Målfil =

DÖP OM

Döp om fil: Tryck på softkey DÖP OM

Ange det nya filnamnet, godkänn med softkey UTFÖR eller med knappen ENT.

Konvertera FK-program till Klartext-program

Kalla upp filhanteringen

Använd pilknapparna för att förflytta markören till filen som du vill konvertera:

Förflytta markören upp eller ner

Konvertera fil: Tryck på softkey KONVERTERA FK -> H

Målfil =

Ange det nya filnamnet, godkänn med softkey UTFÖR eller med knappen ENT.

Skydda filer/upphäv filskydd

PGM	1
MGT	ł
	,

Kalla upp filhanteringen

Använd pilknapparna för att förflytta markören till filen som du vill skydda alternativt upphäva filskyddet för:

Förflytta markören upp eller ner

SKYDDA	

Skydda fil: Tryck på softkey SKYDDA. Filen får status P, eller

OSKYDDAT	l
டம்	

Upphäv filskyddet: Tryck på softkey UPPHÄV SKYDD. Status P raderas

4.4 Utökad filhantering

Arbeta med utökad filhantering när du vill lagra filer i olika kataloger.

När detta önskas väljer man MOD-funktionen PGM MGT (se Kapitel 12.5) till **Utökad**!

Beakta även "4.2 Filhantering: Grunder"!

Kataloger

Eftersom hårddisken kan lagra många program respektive filer lägger man dessa filer i kataloger (mappar). På detta sätt får man en god överblick över sina filer. I dessa kataloger kan ytterligare kataloger läggas in, så kallade underkataloger.

TNC:n kan hantera maximalt 6 katalognivåer!

Om man lagrar fler än 512 filer i en och samma katalog kommer TNC:n inte att sortera dessa filer i alfabetisk ordning!

Katalogers namn

En fils namn får vara maximalt 8 tecken långt och är inte försedda med någon ytterligare indikering. Om man anger fler än 8 tecken som katalognamn kommer TNC:n automatiskt att korta ner namnet till 8 tecken.

Sökväg

En sökväg anger en logisk enhet och samtliga kataloger med eventuella underkataloger i vilken en fil finns lagrad. De olika uppgifterna skiljs från varandra med ett " $\$ ".

Exempel: På hårddisken TNC:\ har katalogen AUFTR1 lagts in. Därefter har även en underkatalog NCPROG lagts in i AUFTR1. Till denna underkatalog har man kopierat bearbetningsprogrammet PROG1.H. Bearbetningsprogrammet har då sökvägen:

TNC:\AUFTR1\NCPROG\PROG1.H

Bilden till höger visar ett exempel på en katalogpresentation med olika kataloger i TNC:n.

Översikt: Den utökade filhanteringens funktioner

Funktion	Softkey
Kopiera enstaka filer (och konvertera)	KOPIERA ABC)⇒XYZ
Visa en viss filtyp	VÄL J TYP
Visa de 10 sist valda filerna	SISTA FILERNA
Radera fil eller katalog	RADERA
Marker fil	MARKERA
Döp om fil	DÖP OM ABC = XYZ
Konvertera FK-program till Klartext-program	KONVERTE. FK->H
Skydda filer mot radering och förändring	SKYDDA
Upphäv filskydd	OSKYDDAT
Hantera nätverksenheter (endast vid option Ethernet-datasnitt)	NÄT
Kopiera katalog	КОР.КАТА. П ⇒ П
Visa en enhets kataloger	EVISA TRAD
Radera en katalog med alla underkataloger	

Kalla upp filhantering

PGM MGT Tryck på knappen PGM MGT: TNC:n visar fönstret för filhantering (Bilden uppe till höger visar grundinställningen). Om TNC:n visar en annan bildskärmsuppdelning trycker man på softkey FÖNSTER)

Högst upp i det smala fönstret till vänster visas tre logiska enheter **1**. Om TNC:n är ansluten till ett nätverk visar TNC:n dessutom ytterligare enheter där. Enheterna markerar utrustningar med vilka data kan lagras eller överföras. En enhet är TNC:ns hårddisk, andra enheter är datasnitten (RS232, RS422, Ethernet), till dessa kan exempelvis en persondator anslutas. En vald (aktiv) enhet framhävs med en annan färg.

I det smala fönstrets undre del visar TNC:n alla katalogerna 2 på den valda enheten. En katalog kännetecknas alltid av en katalogsymbol (vänster) och ett katalognamn (höger). Underkataloger är något förskjutna mot höger. En vald (aktiv) katalog presenteras med en annan färg.

I det breda fönstret till höger visas alla filer 3 som finns lagrade i den valda katalogen. Bredvid varje fil visas mer information, denna information beskrivs i tabellen på nästa sida.

MANUELL DRIFT E	DITE	RA	PROG	RAM-	TABE	ELL		
B RS232:\ 1 B RS422:\ ■ TNC:\		TNC:\N 79407	K\HAE*.*	.н	BY112 1544	STATUS 27	Dattuk 1-01-1998	TID 09:42:14
TNC:> 2 CUTTAB CUTTING DEMOBSP LSV2 DUMPS DUMPSISO NK BRCKUP DIGI F HGE		79408 79409 79410 79411 79412 79413 79420 79421 79422 79423 86 FI	: : : : : : : : : : : : : : : : : : :	.H .H .H .H .H .H .H .H 208 KB	1592 1738 512 598 650 562 764 738 892 1188 YTE LEDIN	27 27 27 27 27 27 27 27 27 27 27 27 27	-01-1998 -01-1998 -01-1998 -01-1998 -01-1998 -01-1998 -01-1998 -01-1998 -01-1998 -01-1998 -01-1998	09:42:18 09:42:24 09:42:26 09:42:28 09:42:32 09:42:34 09:42:36 09:42:40 09:42:42 09:42:42
SIDA SIDA Î		iLJ ₽	кор.ката. О⇒О	VAL	J FÖ		SISTA FILERNA	SLUT

Presentation	Betydelse
FILNAMN	Namn med maximalt 16 tecken och filtyp
BYTE	Filstorlek i Byte
STATUS E	Filens egenskaper: Programmet är valt i Driftart Program- inmatning/Editering
S	Programmet är valt i Driftart Programtest
Μ	Programmet är valt i en av driftarterna för Program- körning
Р	Filen är skyddad mot radering och förändring (Protected)
DATUM	Datum, vid vilket filen förändrades sista gången
TID	Klockslag, vid vilket filen förändrades sista gången

Välj enhet, katalog och fil

Kalla upp filhanteringen

Använd pilknapparna eller softkeys för att förflytta markören till önskat ställe på bildskärmen:

Förflytta markören från höger till vänster fönster och tvärt om

Förflytta markören sida för sida upp och ner i ett fönster

Steg 1: Välj enhet:

Markera önskad enhet i det vänstra fönstret:

Välj enhet: Tryck på softkey VÄLJ eller på knappen ENT

Steg 2: Välj katalog:

Markera en katalog i det vänstra fönstret: Det högra fönstret visar automatiskt alla filer från katalogen som är markerad (presenteras med ljusare färg)

Steg 3: Välj fil:

Markera önskad fil i det högra fönstret:

Den valda filen aktiveras i den driftart som man befinner sig i då man kallar upp filhanteringen: Tryck på softkey VÄLJ eller på knappen ENT

Skapa en ny katalog (endast möjligt på enhet TNC:):

Markera önskad katalog i det vänstra fönstret, i vilken en underkatalog skall skapas

NY _{ent}

Ange det nya katalognamnet, tryck på knappen ENT

Kopiera enstaka fil

Förflytta markören till filen som skall kopieras

KOPIERA | Tryck på softkey KOPIERA: Välj kopieringsfunktionen

Ange målfilens namn och bekräfta genom att trycka på knappen ENT eller på softkey UTFÖR: TNC:n kopierar filen till den aktuella katalogen. Den ursprungliga filen förblir oförändrad. Tryck på softkey UTFÖR PARALLELLT för att kopiera filen i bakgrunden. Använd denna funktion för att kopiera stora filer, som du vill kunna bearbeta vtterligare efter att ha startat kopieringsförloppet. Samtidigt som TNC:n kopierar i bakgrunden kan man kontrollera kopieringsförloppets status via softkey INFO UTFÖR PARALLELLT (under UTÖKADE FUNKTIONER, andra softkeyraden).

Kopiera tabell

När man kopierar tabeller kan man skriva över individuella rader eller kolumner i måltabellen med softkey ERSÄTT FÄLT. Förutsättning:

- måltabellen måste redan existera
- filen som kopieras får bara innehålla raderna eller kolumnerna som skall ersättas

Exempel:

I en förinställningsapparat har man mätt upp verktygslängden och verktygsradien för 10 nya verktyg. Förinställningsapparaten genererar verktygstabellen TOOL.T med 10 rader (motsvarar 10 verktyg) och spalterna

- Verktygsnummer
- Verktygslängd
- Verktygsradie

När man kopierar denna fil till TNC:n frågar TNC:n om den befintliga verktygstabellen TOOL.T skall skrivas över:

- Om man trycker på softkey JA så kommer TNC:n att skriva över den aktuella filen TOOL.T fullständigt. Efter kopieringen består alltså TOOL T av 10 rader. Alla kolumner – naturligtvis med undantag för kolumnerna nummer, längd och radie – återställs
- Om man trycker på softkev ERSÄTT FÄLT kommer TNC:n endast att skriva över de första 10 radernas kolumner nummer, längd och radie i filen TOOL.T. Data i övriga rader och kolumner förändras inte av TNC:n. Man kan även skriva över enskilda rader, under förutsättning att filen som skall kopieras innehåller det avsedda radnumret.

Kopiera katalog

Förflytta markören i det vänstra fönstret till katalogen som du vill kopiera. Tryck på softkey KOP. KAT. istället för softkey KOPIERA. Även underkatalogerna kopieras av TNC:n.

PGM MGT	Kalla upp filhanteringen
SISTA FILERNA 2010	Visa de 10 sist valda filerna: Tryck på softkey SISTA FILERNA

t	Ŧ	

Förflytta markören upp eller ner

Välj fil: Tryck på softkey VÄLJ eller tryck på knappen ENT

Radera fil

Förflytta markören till filen som skall raderas

RADERA Välj raderingsfunktionen: Tryck på softkey RADERA. TNC:n frågar om filen verkligen skall raderas

> ▶ Godkänn raderingen: Tryck på softkey JA. Avbryt raderingen: Tryck på softkey NEJ

Radera katalog

- ▶ Radera alla filer och underkataloger från katalogen som skall raderas
- Förflytta markören till katalogen som du vill radera

▶ Välj raderingsfunktionen: Tryck på softkey RADERA. TNC:n frågar om katalogen verkligen skall raderas

▶ Godkänn raderingen: Tryck på softkey JA. Avbryt raderingen: Tryck på softkey NEJ

MANUELL DRIFT PROG	RAM INMATNING	
CUTTING DEMOSSP LSV2 DUMPS DUMPSISO NK BRCKUP DIGI HAE ISOBSP MESS2YKL PGMBSP PROTKOL UNCKOIR SCRDP	0: TNC:NK*SCRDP-3516.H 1: TNC:NK*SCRDP-35071.H 2: TNC:NK*SCRDP-35071.H 3: TNC:NK*SCRDP-3507.H 4: TNC:NCUTTAB-VARAT_GB_TAB 6: TNC:NK*SCRDP-3DJOINT_H 6: TNC:NK*SCRDP-3DJOINT_H 8: TNC:NK*SCRDP-3516.A 9: TNC:NK*SCRDP-3516.A	
VALJ	SL	UT

Markera filer

Funktioner såsom kopiering eller radering av filer kan utföras såväl för enskilda som för flera filer samtidigt. Flera filer markeras på följande sätt:

Markeringsfunktioner	Softkey
Markera enstaka filer	MARKERA FIL
Markera alla filer i katalogen	MARKERA ALLA FILER
Upphäv markering för enstaka fil	UPPHÄV MARKERING
Upphäv markering för alla filer	UPPHÄV ALL MARKERING
Kopiera alla markerade filer	KOP.MARK.

Visa markeringsfunktioner: Tryck på softkey

Förflytta markören till den första filen

MARKERA

MARKERA

Markera fil: Tryck på softkey MARKERA FIL

Förflytta markören nästa fil

Markera ytterligare filer: Tryck på softkey MARKERA FIL o.s.v.

Kopiera markerade filer: Tryck på softkey KOP. MARK., eller

Radera markerade filer: Tryck på softkey SLUT för att lämna markeringsfunktionen och tryck därefter på softkey RADERA för att radera de markerade filerna

Döp om fil

- Förflytta markören till filen som skall döpas om
 - Döp om |ABC|= [XY2] ► Välj funktionen för att döpa om
 - Ange det nya filnamnet; Filtypen kan inte ändras
 - ▶ Utför omdöpningen: Tryck på knappen ENT

Specialfunktioner

Skydda filer/upphäv filskydd

Förflytta markören till filen som skall skyddas

Välj utökade funktioner: Tryck på softkey UTÖKADE FUNKT.

Aktivera filskydd: Tryck på softkey SKYDDA Filen får status P

Man upphäver filskyddet på samma sätt med softkey OSKYDDA.

Konvertera FK-program till KLARTEXT-format

Förflytta markören till filen som skall konverteras

		_
	🕨 Väli utökade funktioner: Tryck på softkey UTOKAD	E
FLER		
FUNKITON.	I FUNKT.	
	-	

колverte. FK->н Välj konverteringsfunktionen: Tryck på softkey konvertera FK->H

- ► Ange målfilens namn
- ▶ Utför konverteringen: Tryck på knappen ENT

Radera katalog inklusive alla underkataloger och filer

Förflytta markören i det vänstra fönstret till katalogen som du vill radera.

FLER FUNKTION.	

Välj utökade funktioner: Tryck på softkey UTÖKADE FUNKT.

E

Radera komplett katalog: Tryck på softkey RADERA ALLA

Godkänn raderingen: Tryck på softkey JA. Avbryt raderingen: Tryck på softkey NEJ

4.4 Ut<mark>ökad</mark> filhantering

Dataöverföring till/från en extern dataenhet

Innan man kan överföra filer till en extern dataenhet måste datasnittet ställas in (se "Kapitel 12.4 Inställning av datasnitt").

MGI	

FÖNSTER

===

PGM

Kalla upp filhanteringen

Väli bildskärmsuppdelning för dataöverföring: Tryck på softkey FÖNSTER. TNC:n visar i den vänstra bildskärmsdelen 1 alla filer som finns lagrade i TNC:n, i den högra bildskärmsdelen 2 alla filer som finns lagrade i den externa dataenheten

FILNAMN =<mark>7</mark>9423.H 2 TNC:\NK\HAE*.* TNC:*.* FIL-NAMM FIL-NAMM BY TE STATUS BY TE STATUS 79407 1544 %TCHPRNT .A 389 .н 79408 .н 1592 CVREPORT .A 12847 79409 TEST 1738 .A 62 .н 79410 512 TEST1 .A 8346 .н 79411 FRAFS 2 .CDT 10382 .н 598 79412 .н 650 FRAES_GB .CDT 10382 79413 9658 SM .н 562 1 п 79420 .н 764 \$MDI .н 110 79421 .н 738 11 .н 660 79422 .н 892 111 .н 1038 112 .н 124 86 FIL(ER) 906208 KBYTE LEDIGT 44 FIL(ER) 906208 KBYTE LEDIGT KOPIERA VÄLJ VAL J FÖNSTER PATH SLUT Û Ũ

АВС⇔ХҮŻ

== ==

-4₽

EDITERA PROGRAM-TABELL

MANUELL DRIFT

Använd pilknapparna för att förflytta markören till filen som du vill överföra:

Förflytta markören upp och ner i ett fönster

Förflytta markören från höger till vänster fönster och tvärt om

Om man vill kopiera från TNC:n till den externa dataenheten förflyttar man markören i det vänstra fönstret till filen som skall överföras.

Om man vill kopiera från den externa dataenheten till TNC:n förflyttar man markören i det högra fältet till filen som skall överföras.

KOPIERA	Överför enstaka filer: Tryck på softkey KOPIERA,
ABC)⇒XYZ	eller
MARKERA	Överför flera filer: Tryck på softkey MARKERA (i den andra softkeyraden, se även

eller

k på softkey a softkeyraden, se även markeringsfunktioner tidigare i detta kapitel),

överför alla filer: Tryck på softkey TNC EXT

Godkänn med softkey UTFÖR eller med knappen ENT. TNC:n visar ett statusfönster som informerar om kopieringsförloppet, eller

om man vill överföra långa eller många program: Godkänn med softkey UTFÖR PARALLELLT. TNC:n kopierar då filen i bakgrunden

FÖN	STER
≡∣≡	\equiv

Avsluta dataöverföringen: Förflytta markören till det vänstra fönstret och tryck därefter på softkey FÖNSTER. TNC:n visar åter filhanteringens standardfönster

För att välja en annan katalog vid presentation i två filfönster trycker man på softkey SÖKVÄG och väljer den önskade katalogen med pilknapparna och knappen ENT!

Kopiera filer till en annan katalog

- ▶ Välj bildskärmsuppdelning med två lika stora fönster
- Visa kataloger i båda fönstren: Tryck på softkey PATH

Högra fönstret:

Förflytta markören till katalogen till vilken du vill kopiera filerna och visa filerna i denna katalog med knappen ENT

Vänstra fönstret:

▶ Välj katalogen med filerna som du vill kopiera och visa filerna med knappen ENT

MARKERA	
MARKERA FIL	

Visa funktionen f
ör att markera filer

Förflytta markören till filen som skall kopieras och markera den. Om så önskas markeras ytterligare filer på motsvarande sätt

KOP.MARK. Kopiera de markerade filerna till målkatalogen

Ytterligare markeringsfunktioner se "Markera filer".

Om man har markerat filer i både det vänstra och i det högra fönstret så kommer TNC:n att kopiera från katalogen som markören befinner sig i.

Skriv över filer

När man kopierar filer till en katalog som redan innehåller filer med samma filnamn, så frågar TNC:n om filerna i målkatalogen får skrivas över:

- Skriv över alla filer: Tryck på softkey JA eller
- Skriv inte över några filer: Tryck på softkey NEJ eller
- ▶ Bekräfta varje enskild fil som skall skrivas över: Tryck på softkey GODKÄNN

Om man vill skriva över en skyddad fil, måste man godkänna detta separat, alternativt avbryta.

TNC:n på nätverk (endast vid option Ethernet-datasnitt)

Ê

Beakta kapitel "12.5 Ethernet-datasnitt" vid anslutning av ethernet-kortet till Ert nätverk!

TNC:n loggar felmeddelande som inträffar under nätverksdrift (se "12.5 Ethernet-datasnitt").

Om TNC:n är ansluten till ett nätverk ställer TNC:n dessutom upp till 7 ytterligare enheter i katalogfönstret 1 till förfogande (se bilden uppe till höger). Alla tidigare beskrivna funktioner (välja enhet, kopiera filer o.s.v.) gäller även för nätverksenheter, såvida Era åtkomsträttigheter tillåter detta.

Logga på och logga ur nätverk

Välj filhantering: Tryck på knappen PGM MGT, i förekommande fall välj bildskärmsuppdelning som visas i bilden uppe till höger med softkey FÖNSTER

Hantera nätverksenhet: Tryck på softkey NÄTVERK (andra softkeyraden). I det högra fönstret visar TNC:n 2 möjliga nätverksenheter som Ni har åtkomst till. Med nedan beskrivna softkeys definieras förbindelsen med respektive enhet

> AUTOMAT. ANSLUTN.

EJ AUTOMAT.

ANSI UTN.

Funktion	Softkey
Upprätta nätverksförbindelse, TNC:n skriver ett M i spalten Mnt, när förbindelsen är aktiv. Man kan förbinda upp till 7 ytterligare enheter till TNC:n	ANSLUT ENHET
Avsluta nätverksförbindelse	TA BORT ENHET

Upprätta automatiskt nätverksförbindelse när TNC:n startas upp. TNC:n skriver i spalten Auto ett A, när förbindelsen upprättas automatiskt

Upprätta inte automatiskt nätverksförbindelse när TNC:n startas upp

Det kan ta en ganska lång tid att upprätta nätverksförbindelsen. TNC:n presenterar då [READ DIR] uppe till höger i bildskärmen. Den maximala överföringshastigheten ligger mellan 200 Kbaud och 1 Mbaud, beroende på vilken datatyp som överförs.

Skriva ut fil via nätverks-skrivare

Om man har definierat en nätverks-skrivare (se "12.5 Ethernet-datasnitt"), kan man skriva ut filer direkt:

- Kalla upp filhanteringen: Tryck på knappen PGM MGT
- Förflytta markören till filen som skall skrivas ut
- ▶ Tryck på softkey KOPIERA
- Tryck på softkey SKRIV UT: Om man bara har definierat en enda skrivare kommer TNC:n att skriva ut filen direkt.

Om man har definierat flera skrivare, visar TNC:n ett fönster i vilket alla definierade skrivare listas. Välj ut skrivaren i det inväxlade fönstret med pilknapparna och tryck på knappen ENT

4.5 Öppna och <mark>mat</mark>a in program

4.5 Öppna och mata in program

Uppbyggnad av ett NC-program i HEIDENHAIN-Klartext-Format

Ett bearbetningsprogram består av en serie programblock. Bilden till höger visar elementen i ett block.

TNC:n numrerar ett bearbetningsprograms block i en stigande ordningsföljd.

Det första blocket i ett program innehåller texten "BEGIN PGM", programnamnet och den använda måttenheten.

De därpå följande blocken innehåller information om:

- 🔳 Råämnet
- Verktygsdefinitioner och -anrop
- Matningshastighet och varvtal
- Konturrörelser, cykler och andra funktioner.

Det sista blocket i ett program innehåller texten "END PGM", programnamnet och den använda måttenheten.

Definiera råämne: BLK FORM

Direkt när man har öppnat ett nytt program definierar man ett fyrkantigt obearbetat arbetsstycke. TNC:n behöver denna definition för grafiska simuleringar. Råämnets sidor får vara maximalt 100 000 mm långa och måste ligga parallellt med axlarna X, Y och Z. Detta råämne bestäms med hjälp av två hörnpunkter:

- MIN-punkt: fyrkantens minsta X-, Y- och Z-koordinat; ange absoluta värden
- MAX-punkt: fyrkantens största X-, Y- och Z-koordinat; ange absoluta eller inkrementala värden

Råämnesdefinitionen behövs endast om man vill testa programmet grafiskt!

TNC:n kan bara presentera grafiken om förhållandet mellan kortaste/längsta sida i BLK FORM är mindre än 1:64!

Öppna ett nytt bearbetningsprogram

Nya bearbetningsprogram skapas alltid i driftart Programinmatning/ Editering.

Exempel på en programöppning

PROGRA BLOCKF	₩ ÖLJD	PRO	GRAM 5 BLK	INMA [.] Form	ſNING ∶MAX-	-VÄRDE	E ?	
0	BEGI	EN F	GM B	LK MM				
1	BLK	FOF	RM Ø.	1 Z X·	+0 Y+€	0 Z-40	3	
2	BLK	FOF	RM 0.:	2 X+10	00 Y+:	100		
	Z 1	10						
3	END	PGN	1 BLK	MM				
								1

Välj katalogen som det nya programmet skall sparas i:

Filnamn = ALT.H			
NYTT	Ange det nya programmets namn, bekräfta med knappen ENT		
MM	Välj måttenhet: Tryck på softkey MM eller INCH. TNC:n växlar till programfönstret och öppnar dialogen för definition av BLK-FORM (råämne)		

Spindelaxel parallell X/Y/Z ?

0

0

Ange spindelaxel

Ange i tur och ordning MIN-punktens X-, Y- och Zkoordinater

-40 ^{ENT}

ENT

ENT

Def BLK-FORM: Max-Punkt ?

Om man inte vill programmera någon råämnes-definition avbryter man dialogen med knappen DEL.

O BEGIN PGM NEU MM	Programbörjan, namn, måttenhet
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Spindelaxel, MIN-punktskoordinater
2 BLK FORM 0.2 X+100 Y+100 Z+0	MAX-punktskoordinater
3 END PGM NEU MM	Programslut, namn, måttenhet

Blocknummer, BEGIN- och END-block genereras automatiskt av TNC:n.

Programmera verktygsrörelser i Klartext-Dialog

När ett block skall programmeras, börjar man med en dialogknapp. I bildskärmens övre rad frågar TNC:n efter alla erforderliga data.

fråga med knappen ENT

Exempel på en dialog

Koordinater ?

L

X 10

5

Υ

ENT

MANUELL DRIFT

BLK

1

2

PROGRAM INMATNING

MATNING F=? / F MAX = ENT

FORM 0.1 Z X+0 Y+0 Z-40

BLK FORM 0.2 X+100 Y+100 Z+0

Radiekorr.: RL/RR/Ingen korr.: ?

Ange "ingen radiekompensering", gå till nästa fråga med knappen ENT

Matning F=? / F MAX = ENT

Matningshastighet för denna konturrörelse 100 mm/min, gå till nästa fråga med knappen ENT

Tilläggsfunktion M ?

Tilläggsfunktion M3 "spindelstart", med knappen ENT avslutar TNC:n denna dialog

l programfönstret visas raden:

3 L X+10 Y+5 R0 F100 M3

Funktioner under dialogen	Knapp
Hoppa över dialogfrågan	NO ENT
Avsluta dialogen i förväg	END
Avbryt dialogen och radera	

Funktioner för matningsangivelse	Softkey
Förflyttning med snabbtransport	F MAX
Förflytta med automatiskt beräknad matning från verfahren	F AUTO

Editera programrader

När man skapar eller förändrar ett bearbetningsprogram kan man använda pilknapparna eller softkeys för att gå in på de olika programraderna och välja ett enskilt ord i ett block: Se tabellen till höger.

Sök efter samma ord i andra block

Vid denna funktion skall softkey AUTOM. RITNING ställas in på AV.

Välj ett ord i ett block: Tryck på pilknappen tills

¥

Välj block med pilknapparna

det önskade ordet markerats

Välj block och ord	Softkeys/Knappar
Bläddra en sida uppåt	SIDA Î
Bläddra en sida nedåt	SIDA I
Hoppa till program- början	BÖRJAN Î
Hoppa till program- slut	SLUT U
Hoppa från block till block	
Välja enskilda ord i ett block	

Markören befinner sig nu i ett nytt block på samma ord som valdes i det första blocket.

Söka godtycklig text

- Välj sökfunktionen: Tryck på softkey SÖK TNC:n visar dialogen SÖK TEXT:
- Skriv in den sökta texten
- ▶ Sök text: Tryck på softkey UTFÖR

Infoga block på ett godtyckligt ställe

Välj ett block, efter vilket det nya blocket skall infogas, och öppna dialogen.

Ändra och infoga ord

- Välj ett ord i ett block och skriv över med ett nytt värde. När ordet har valts står Klartext-Dialogen till förfogande.
- Avsluta ändringen: Tryck på knappen END.

Om man vill infoga ett nytt ord trycker man på pilknapparna (till höger eller vänster), tills den önskade dialogen visas och anger då önskat värde.

Radera block och ord	Knapp
Nollställ ett valt ords värde	CE
Radera ett felaktigt värde	CE
Radera ett felmeddelande (icke blinkande)	CE
Radera valt ord	
Radera valt block	DEL
Radera cykler och programdelar: Välj det sista blocket i cykeln eller programdelen som skall raderas och radera med knappen DEL	DEL
4.6 Progr<mark>amm</mark>eringsgrafik

4.6 Programmeringsgrafik

TNC:n kan presentera den programmerade konturen grafiskt samtidigt som ett program skapas.

Medritning / ej medritning av programmeringsgrafik

För att växla till bildskärmsuppdelning med program till vänster och grafik till höger: Tryck först på knappen SPLIT SCREEN och sedan på softkey PROGRAM + GRAFIK

Växla softkey AUTOM. RITNING till PÅ. Samtidigt som man matar in nya programrader kommer TNC:n automatiskt att visa alla programmerade konturrörelser i grafikfönstret till höger.

Om man inte vill att grafiken skall presenteras automatiskt ställer man in softkey AUTOM. RITNING på AV.

Vid AUTOM. RITNING PÅ visas inte programdelsupprepningar.

Framställning av programmeringsgrafik för ett program

Välj ett block med pilknapparna, fram till vilket grafiken skall framställas eller tryck på GOTO och ange önskat radnummer direkt

▶ Framställ grafik: Tryck på softkey RESET + START

För ytterligare funktioner se tabellen till höger.

Visa eller ta bort radnummer

Växla softkeyrad: Se bild till höger

VISA INTE BLOCK NR. Visa blocknummer: Växla softkey VISA /

Växla softkey VISA / VISA INTE BLOCK-NR. till VISA

Visa inte blocknummer: Växla softkey VISA / VISA INTE BLOCK-NR. till VISA INTE

Radera grafik

▶Växla softkeyrad: Se bilden till höger

Radera grafik: Tryck på softkey RADERA GRAFIK

Programmeringsgrafikens funktioner	Softkey
Framställ programmeringsgrafik blockvis	START ENKELBL.
Framställ programmeringsgrafik komplett eller fullfölj efter	START
RESET + START	

Stoppa programmeringsgrafik Denna softkey visas bara då TNC:n framställer en programmeringsgrafik

Delförstoring eller delförminskning

Man kan själv välja vilket område som skall visas i grafiken. Med en ram väljer man ett lämpligt område för delförstoring eller delförminskning.

- Välj softkeyrad för delförstoring/delförminskning (andra raden, se bild till höger)
 - Därvid står följande funktioner till förfogande:

FÖRSTORA DE TALJ

Håll softkey intryckt

Med softkey RÅÄMNE DELFÖRST. överförs det valda delområdet

Med softkey RÅÄMNE SOM BLK FORM kan man återställa grafiken till det ursprungliga området.

4.7 Strukturera program

TNC:n ger dig möjlighet att kommentera bearbetningsprogrammet med länkningstexter. Länkningsblocken är korta texter (max. 244 tecken) som i form av kommentarer eller överskrifter förklarar de efterföljande programraderna.

Långa och komplexa program blir överskådligare och mer lättförståeliga då de kan förses med lämpliga länkningsblock. Detta underlättar mycket vid senare förändringar av programmet. Man kan infoga länkningsblock på godtyckliga ställen i

bearbetningsprogrammet. De kan även presenteras, men även bearbetas eller utökas, i ett eget fönster. För finstrukturering finns det en andra länkningsnivå: Texten i den andra nivån är något förskjuten till höger.

Växla mellan länkningsfönster/aktivt fönster

⇔

Visa länkningsfönstret: Välj bildskärmsuppdelning PROGRAM + LÄNKNING

Växla det aktiva fönstret: Tryck på softkey VÄXLA FÖNSTER

MANUELL DRIFT PROGRAM INMATI					「NING			
Ø BEGIN PGM 1S MM					BEGIN PGM	15		
1	BLK FO	RM 0.1 Z >	+0 Y+0 Z-4	0	- Borrbil	d LD-Nr 25	7943KL1	
2	BLK FO	RM 0.2 X+1	00 Y+100 Z	+0	- Definit	io av Para	metrar	
3	* - Bo	rrbild LD-	Nr 257943K	L1	- Bearbet	a ficka		
4	TOOL C	ALL 1 Z S4	500		- Grovb	earbta fic	ka	
5	L Z+10	0 R0 F MAX			- Finbe	arbeta fic	ka	
6	CYCL D	EF 204 FOE	RSAENKNING	BAK.	- skapa Borrbild			
	0200=	2 \$SAEK	ERHETSAVST	AAND	- Centrera			
	Q249=	+5 ≯DJUP	FOERSAENK	NING	- Borrning			
	Q250=	20 \$MATE	RIALSTYRKA		- Gaengning			
	Q251=	3.5 \$EXCE	NTERMAATT		END PGM 1	S		
	Q252=	15 \$SKAE	RHOEJD					
	Q253=	750 \$NEDM	IATNINGSHAS	TIGHET				
Q254=200 \$MATNING FOERSAENKN.								
Q255=0 \$VAENTETID								
В	ÖRJAN	SLUT <u>]</u>	SIDA Î	SIDA J	SÖK			VÄXLA FÖNSTE ⇔

Infoga länkningsblock i programfönstret (till vänster)

> Välj önskat block, efter vilket länkningsblocket skall infogas

INFOGA | > Tryck på softkey INFOGA LÄNKNING

Skriv in länkningstexten med alfa-knappsatsen

Länkningsnivån ändras med softkey VÄXLA NIVÅ

Infoga länkningsblock i länkningsfönstret (till höger)

- Välj önskat länkningsblock, efter vilket det nya blocket skall infogas
- Skriv in länkningstexten med alfa-knappsatsen TNC:n infogar automatiskt det nya länkningsblocket

Välj block i länkningsfönstret

När man bläddrar mellan blocken i länkningsfönstret kommer TNC:n automatiskt att bläddra fram till motsvarande block i programfönstret. På detta sätt kan man alltså bläddra fram ett stort antal bearbetningsblock med ett fåtal knapptryckningar.

4.8 Infoga kommentarer

Varje block i ett bearbetningsprogram kan förses med kommentarer för att förklara eller ge anvisningar om programsteg. Det finns tre olika möjligheter att infoga kommentarer:

1. Kommentar under programinmatningen

- Ange data för ett programblock, därefter trycker man på ";" (semikolon) på alfa-knappsatsen – TNC:n visar då frågan Kommentar ?
- Skriv in kommentaren och avsluta blocket med knappen END

2. Infoga kommentar i efterhand

- ▶ Välj blocket som kommentaren skall skrivas in i
- Välj blockets sista ord med pilknappen pil-höger: Ett semikolon visas i slutet av blocket och TNC:n visar frågan Kommentar ?
- Skriv in kommentaren och avsluta blocket med knappen END

3. Kommentar i ett eget block

▶ Välj ett block, efter vilket en kommentar skall infogas

- Öppna programmeringsdialogen med knappen ";" (semikolon) på alfa-knappsatsen
- Skriv in kommentaren och avsluta blocket med knappen END

MANUEL	PROGRAM INMATNING
0	BEGIN PGM 3516 MM
1	BLK FORM 0.1 Z X-90 Y-90 Z-40
2	BLK FORM 0.2 X+90 Y+90 Z+0
	; CALLING TOOL FOR ROUGHING
3	TOOL CALL 1 Z S1400
4	L Z+50 R0 F MAX
5	CALL LBL 1
6	L Z+100 R0 F MAX M2
7	LBL 1
8	L X+0 Y+80 RL F250
9	FPOL X+0 Y+0
10	FC DR- R80 CCX+0 CCY+0
11	FCT DR- R7.5
12	FCT DR+ R90 CCX+69.282 CCY-40
13	FSELECT 2 ; Vorschlag 1 entspric

4.9 Skapa textfiler

ITNC:n kan man skapa och bearbeta texter med en text-editor. Typiska användningsområden:

- Spara erfarenhetsvärden
- Dokumentera bearbetningsprocedurer
- Skapa formelsamlingar

Textfiler är filer av typ .A (ASCII). Om man vill bearbeta andra filer konverterar man först dessa till typ .A.

Öppna och lämna textfiler

- ▶ Välj driftart Programinmatning/Editering
- ▶ Kalla upp filhanteringen: Tryck på knappen PGM MGT
- Visa filer av typ .A: Tryck först på softkey VÄLJ TYP och därefter på softkey VISA .A
- Välj fil och öppna den därefter med softkey VÄLJ eller knappen ENT eller öppna en ny fil: Ange ett nytt namn, bekräfta med knappen ENT

När man vill lämna texteditorn kallar man upp filhanteringen och väljer en fil med en annan filtyp, såsom exempelvis ett bearbetningsprogram.

Editera text

I texteditorns första rad befinner sig ett informationsfält som visar filnamnet, markörens position och cursorns (eng. insättningspunkt) skrivsätt:

- Fil: Textfilens namn
- Rad: Markörens aktuella radposition
- Spalt: Markörens aktuella kolumnposition
- Infoga: Nya tecken infogas
- Skriv över: Nya tecken skrivs över den befintliga texten vid insättningspunkten

Texten infogas på det ställe som markören befinner sig för tillfället. Med pilknapparna kan markören förflyttas till en godtycklig position i textfilen.

Raden som markören befinner dig i framhävs med en annan färg. En rad får innehålla maximalt 77 tecken och bryts med knappen RET (Return) eller knappen ENT.

ANUELL DRIFT PROGRAM INMATNING FIL: BSPGB. ∎his is a text file... In the text file you may - record test results - document working procedures store formulas and tables - write messages - record machine parameters etc. **FEND1** NÄSTA ORD sidf ∏ SLUT SISTA ORDET INFOGA Û SÖK Û îî SKRIV ÖVR

Förflyttning av markören	Softkey
Flytta markören ett ord till höger	NÄISTA ORD >>
Flytta markören ett ord till vänster	SISTA ORDET <<
Flytta markören till nästa sida	SIDA Į
Flytta markören till föregående sida	SIDA Ĵ
Flytta markören till filens början	BÖR JAN
Flytta markören till filens slut	

Editeringsfunktioner	Knapp
Påbörja en ny rad	RET
Radera tecken till vänster om markören	X
Infoga ett mellanslag	SPACE
Växla mellan stora och små bokstäver	SHIFT + SPACE

Radera tecken, ord och rader samt återinfoga

Med texteditorn kan man radera hela ord och rader för att sedan infoga dem på ett annat ställe: Se tabellen till höger.

Flytta ord eller rader

- Förflytta markören till ordet eller raden som skall raderas och därefter infogas på ett annat ställe
- Tryck på softkey DELETE WORD alt. DELETE LINE: Texten raderas och sparas temporärt
- Förflytta markören till den position som texten skall återinfogas i och tryck på softkey RESTORE LINE/WORD

Bearbeta textblock

Man kan kopiera, radera och återinfoga textblock av godtycklig storlek. För att göra detta markerar man alltid först det önskade textblocket:

Markera textblock: Förflytta markören till tecknet som textmarkeringen skall börja vid

- ► Tryck på softkey MARKERA BLOCK
- Förflytta markören till tecknet där textmarkeringen skall sluta. Om man förflyttar markören med pilknapparna direkt nedåt eller uppåt så kommer hela textraderna som ligger däremellan att markeras fullständigt – den markerade texten framhävs med en annan färg

Efter det att man har markerat önskat textblock vidarebearbetar man texten med följande softkeys:

Funktion	Softkey	
Radera markerat block och lagra temporärt	RADERA BLOCK	
	[]	

Lagra markerat block temporärt,	KOPIERA	
utan att radera (kopiera)	BLOCK	

När det temporärt lagrade textblocket skall infogas på ett annat ställe utför man följande steg:

▶ Förflytta markören till en position där det temporärt lagrade textblocket skall infogas

INFOGA BLOCK: Texten infogas BLOCK

Så länge texten är temporärt lagrad kan man infoga den ett godtyckligt antal gånger.

Raderingsfunktion	Softkey
Radera rad och lagra temporärt	RADERA RAD
Radera ord och lagra temporärt	RADERA ORD
Radera tecken och lagra temporärt	RADERA TECKEN
Återinfoga rad eller ord efter radering	INFOGA RAD / ORD

MAN	NUELL DR		OGRAM	INMA	「NING			
FI	L: 3516	.A		RAD:	9 SPA	LT: 1	INSERT	
Ø	BEGIN	PGM 3516 M	IM					
1	BLK FO	RM 0.1 Z >	-90 Y-90 Z	-40				
2	BLK FO	RM 0.2 X+9	10 Y+90 Z+0					
3	TOOL D	EF 50						
4	TOOL C	ALL 1 Z S1	400					
5	L Z+50	RØ F MAX						
6	L X+0	Y+100 R0 F	MAX M3					
7	L Z-20	RØ F MAX						
8	L X+0	Y+80 RL F2	50					
9	FPOL X	+0 Y+0						
10	FC DR	- R80 CCX+	0 CCY+0					
11 FCT DR- R7,5								
12 FCT DR+ R90 CCX+69,282 CCY-40								
13 FSELECT 2								
MA	ARKERA	RADERA	INFOGA	KOPIERA			KOPIERA	INFOGA
6	BLOCK	BLOCK	BLOCK	BLOCK			TILL FIL	FRÂN FIL

Överför markerat block till en annan fil

Markera textblocket på tidigare beskrivet sätt

ĺ	KOPIERA
	TILL FIL

▶ Tryck på softkey LÄGG TILL I FIL TNC:n visar dialogen Målfil =

Ange målfilens sökväg och namn. TNC:n infogar det markerade textblocket i målfilen. När det inte existerar någon målfil med det angivna namnet så kommer TNC:n att skriva in den markerade texten i en ny fil.

Infoga en annan fil vid markörpositionen

Förflytta markören till positionen, vid vilken den andra filen skall infogas

INFOGA FRÂN FIL

Tryck på softkey INFOGA FRÅN FIL TNC:n visar dialogen Filnamn =

Ange namn och sökväg för filen som skall infogas

Hitta textdelar

Med texteditorns sökfunktion kan man finna ord eller teckenkedjor. Det finns två möjligheter:

1. Söka aktuell text

Med sökfunktionen skall man hitta ett ord, som motsvarar ordet som markören befinner sig i:

- Förflytta markören till önskat ord
- ▶ Välj sökfunktionen: Tryck på softkey SÖK
- ▶ Tryck på softkey SÖK AKTUELLT ORD

2. Söka godtycklig text

- Välj sökfunktionen: Tryck på softkey SÖK TNC:n visar dialogen Sök text :
- ▶ Skriv in den sökta texten
- ▶ Sök text: Tryck på softkey UTFÖR

Man lämnar sökfunktionen med softkey SLUT.

MANUELL DRIFT PROGRAM INMATNING						
SÖ	SÖK TEXT: L Z+100					
FIL: 3516.A		RAD:	9 SPA	LT: 1	INSERT	
Ø BEGIN PGM 3516	мм					
1 BLK FORM 0.1 Z	X-90 Y-90 Z	-40				
2 BLK FORM 0.2 X+	90 Y+90 Z+0					
3 TOOL DEF 50						
4 TOOL CALL 1 Z S	1400					
5 L Z+50 R0 F MAX						
6 L X+0 Y+100 R0	F MAX M3					
7 L Z-20 R0 F MAX						
8 L X+0 Y+80 RL F	8 L X+0 Y+80 RL F250					
S FPOL X+0 Y+0	9 FPOL X+0 Y+0					
10 FC DR- R80 CCX	+0 CCY+0					
11 FCT DR- R7,5						
12 FCT DR+ R90 CCX+69,282 CCY-40						
13 FSELECT 2						
SÖK AKTUELLT ORD					UTFÖR	SLUT

4 Programmering: Grunder, Filhantering, Programmeringshjälp, Paletthantering

4.10 Kalkylator

TNC:n förfogar över en kalkylator som innehåller de viktigaste matematiska funktionerna.

Med knappen CALC öppnar och stänger man kalkylatorn. Med pilknapparna kan man förflytta den fritt på bildskärmen.

Räknefunktionerna väljer man med kortkommandon på alfaknappsatsen. Kortkommandona framhävs i kalkylatorn med en annan färg:

Räknefunktion	Kortkommando
Addition	+
Subtraktion	-
Multiplikation	*
Division	:
Sinus	S
Cosinus	С
Tangens	Т
Arcus-Sinus	AS
Arcus-Cosinus	AC
Arcus-Tangens	AT
Potens	^
Kvadratroten ur	Q
Invers	/
Parentes	()
PI (3.14159265359)	P
Visa resultat	=

4.10 Kalkylatorn

F MAX	F AUTO				

Om man håller på att mata in ett program och befinner sig i dialogen kan man kopiera värdet från kalkylatorn direkt till det markerade fältet med knappen "Överför är-position".

4.11 Direkt hjälp vid NC-felmeddelanden

TNC:n presenterar automatiskt felmeddelanden vid

- felaktigt inmatade uppgifter
- logiska fel i programmet
- ej utförbara konturelement
- felaktig användning av avkännarsystemet

Orsaken till ett felmeddelande, som innehåller ett blocknummer, skall sökas i det blocket eller i blocken innan. Man raderar TNCfelmeddelanden med knappen CE efter det att felorsaken har åtgärdats.

För att erhålla mer information om ett felmeddelande som presenteras trycker man på knappen HELP. TNC:n visar då ett fönster i vilket felorsaken och felåtgärden finns beskriven.

Visa hjälp

När ett felmeddelande visas i bildskärmens övre rad:

- ▶ Visa hjälp: Tryck på knappen HELP
 - Läs igenom felbeskrivningen och möjligheterna till att avhjälpa felet. Man stänger hjälp-fönstret med knappen CE och kvitterar samtidig de presenterade felmeddelandet.
 - Avhjälp felet i enlighet med beskrivningen i hjälpfönstret

Vid blinkande felmeddelanden visar TNC:n automatiskt hjälptexten. Efter blinkande felmeddelanden måste man starta om TNC:n, exempelvis genom att trycka på END-knappen i 2 sekunder

MANUELL DRIF	TNC PROGR Så länge	AMBLC Konti	JR EJ	IJ TIL Beri	LÅTE1 IKNAD	,
15 FL AN+0. 16 FCT DR+ 17 FLT AN+8 18 FCT DR+ 19 END PGM	Felbeskrivning 507 Felorsak: Fk-brodramering: "No Fk-block nar FK-block Issnipg å konturen. Undantag: - RND-bloc - Grubboc - G	nmala" bloci n leder ti son endast skel eller i «andigt.	k får bara 11 en full innehåller hjälpaxel.	a följa efte Islandig • rörelse i	r	
BÖRJAN	SLUT SIDA	SIDA Ĵ	SÖK	START	START ENKELBL.	RESET * START

4.12 Paletthantering

Paletthanteringen är en maskinavhängig funktion. Här beskrivs standard-funktionsomfånget. Beakta dessutom Er maskinhandbok.

Palettabeller används i bearbetningscenter med palettväxlare: Palettabellen anropar bearbetningsprogrammen som hör till respektive palett samt aktiverar nollpunktsförskjutningar och nollpunktstabeller.

Man kan även använda palettabeller för att exekvera olika program med skilda utgångspunkter i en följd.

Palettfilen innehåller följande uppgifter:

- PAL/PGM (uppgift krävs alltid): Markerar palett eller NC-program (välj med knappen ENT alternativt NO ENT)
- NAMN (uppgift krävs alltid): Palettnamn, alternativt programnamn. Palettnamnen bestäms av maskintillverkaren (beakta maskinhandboken). Programnamnen måste finnas lagrade i samma katalog som palettabellen annars krävs att man anger hela sökvägen till programmet
- DATUM (uppgift om så önskas): Nollpunktstabellens namn. Nollpunktstabellen måste finnas lagrad i samma katalog som palettabellen annars krävs att man anger hela sökvägen till nollpunktstabellen. Man aktiverar nollpunkterna från nollpunktstabellen med cykel 7 NOLLPUNKTSFÖRSKJUTNING
- X, Y, Z (uppgift om så önskas, fler axlar möjliga): Vid palettnamn utgår de programmerade koordinaterna från maskinnollpunkten. Vid NC-program utgår de programmerade koordinaterna från palettnollpunkten.

Om man inte har definierat någon palett före ett NCprogram utgår de programmerade koordinaterna från maskinnollpunkten. Om man inte definierar någon uppgift förblir den manuellt inställda utgångspunkten aktiv.

Välj palettfil

- Välj filhantering i driftart Programinmatning/Editering: Tryck på knappen PGM MGT
- ▶ Visa filer av typ .P: Tryck på softkey VÄLJTYP och VISA .P
- ▶ Välj palettfil med pilknapparna eller ange namnet för en ny fil
- ▶ Godkänn valet med knappen ENT.

Manue	ELL DR	FT EDITERA PROGRAM-TABELL								
		PAL	PALETT / NC-PROGRAM ?							
FI	L: PAL	P						>>		
NR	PAL/	PGM NAME								
0	PAL	12359)							
1	PGM	TNC:>	DRILL\PA35	.н						
2	PGM	TNC:>	DRILL\PA36	.н						
3	PGM	TNC:>	MILL\SLII3	5.I						
4	PGM	TNC:>	MILL\FK35.	н						
5	PAL	12351	123510							
6	PGM	TNC:>	DRILLNOST3	Б.Н						
7	PGM	TNC:>	DRILL\K15.	I						
8	PAL	12351	1							
9	PGM	TNC:>	CYCLENMILL	ING∖C210.H						
10	PGM	TNC:>	TNC:\DRILL\K17.H							
11	11									
12										
BÖR		SLUT I	SIDA Û	SIDA J	INFOGA RAD	RADERA RAD	NASTA RAD	LÄGG TILL N RADER VID SLUT		

4.12 Paletthantering

Funktion	Softkey
Gå till tabellens början	BÖR JAN
Gå till tabellens slut	
Gå till föregående sida i tabellen	SIDA Î
Gå till nästa sida i tabellen	SIDA J
Infoga rad i tabellens slut	INFOGA RAD
Radera rad i tabellens slut	RADERA RAD
Gå till början på nästa rad	NÄSTA RAD
Infoga ett definierbart antal rader vid tabellens slut	APPEND N LINES
Kopiera markerat fält (andra softkeyraden)	KOPIERA FÄLT
Infoga kopierat fält (andra softkeyraden)	INFOGA FÄLT

Lämna palettfil

- ▶ Välj filhantering: Tryck på knappen PGM MGT
- Välj en annan filtyp: Tryck på softkey VÄLJ TYP och därefter softkey för den önskade filtypen, t.ex. VISA .H
- ▶ Välj önskad fil

Exekvera palettfil

- I maskinparameter 7683 definierar man om palettabellen skall exekveras block för block eller kontinuerligt (se "13.1 Allmänna användarparametrar").
- Välj filhantering i driftart Programkörning blockföljd eller Programkörning enkelblock: Tryck på knapp PGM MGT
- Visa filer av Typ .P: Tryck på softkeys VÄLJ TYP och VISA .P
- ▶ Välj palettabell med pilknapparna, bekräfta med knappen ENT
- Exekvera palettabell: Tryck på knappen NC-start, TNC:n utför paletterna på det sätt som definierats i maskinparameter 7683

Programmering: Verktyg

5.1 Verktygsrelaterade uppgifter

Matning F

Matningen F är den hastighet i mm/min (tum/min) med vilken verktygets centrum förflyttar sig på sin bana. Den maximala matningen är individuellt inställd för varje axel via maskinparametrar.

Inmatning

Man kan ange matningshastigheten i TOOL CALL-blocket (verktygsanrop) och i alla positioneringsblock. Se "6.2 Grunder för konturfunktioner".

Snabbtransport

Om snabbtransport önskas anger man F MAX. För att ange F MAX trycker man vid dialogfrågan "Matning F = ?" på knappen ENT eller på softkey FMAX.

Varaktighet

En med siffror programmerad matning gäller ända tills ett block med en ny matning programmeras. F MAX gäller endast i de block den har programmerats i. Efter ett block med F MAX gäller åter den med siffror sist programmerade matningen.

Ändring under programkörning

Matningshastigheten kan justeras med hjälp av potentiometern för matningsoverride F under programkörningen.

Spindelvarvtal S

Spindelvarvtalet S programmeras i varv per minut (varv/min) i TOOL CALL-blocket (verktygsanrop).

Programmerad ändring

Spindelvarvtalet kan ändras med ett TOOL CALL-block i bearbetningsprogrammet. I detta block programmerar man bara det nya spindelvarvtalet:

Programmera verktygsanrop: Tryck på knappen TOOL CALL

- Hoppa över dialogen "Verktygsnummer ?" med knappen NO ENT
- Hoppa över dialogen "Spindelaxel parallell X/Y/Z ?" med knappen NO ENT
- Ange det nya spindelvarvtalet i dialogen "Spindelvarvtal S= ?" samt bekräfta med knappen END

Ändring under programkörning

Spindelvarvtalet kan justeras med hjälp av potentiometern för spindeloverride S under programkörningen.

5.2 Verktygsdata

5.2 Verktygsdata

Vanligen programmerar man koordinaterna för konturrörelserna såsom de är måttsatta i ritningsunderlaget. För att TNC:n då skall kunna beräkna verktygscentrumets bana, alltså utföra en verktygskompensering, måste man ange längd och radie för alla använda verktyg.

Verktygsdata kan programmeras antingen med funktionen TOOL DEF direkt i programmet eller separat i en verktygstabell. Om man använder sig av verktygsdata i en tabell finns det fler verktygsspecifika informationer. När bearbetningsprogrammet exekveras tar TNC:n hänsyn till alla de inmatade uppgifterna.

Verktygsnummer, Verktygsnamn

Varje verktyg kännetecknas av ett nummer mellan 0 och 254. Om man arbetar med verktygstabell kan man använda högre nummer och dessutom namnge verktygen med ett verktygsnamn.

Verktyget med nummer 0 är förutbestämt som nollverktyg och har längden L=0 och radien R=0. Även i verktygstabellen bör man därför definiera verktyg T0 med L=0 och R=0.

Verktygslängd L

Verktygslängden L kan bestämmas på två olika sätt:

1 Längden L som är längdskillnaden mellan verktygets längd och nollverktygets längd $\mathsf{L}_0.$

Förtecken:

- Verktygets längd är längre än nollverktyget: L>L₀
- Verktygets längd är kortare än nollverktyget: L<L₀

Bestämma längd:

- ▶ Förflytta nollverktyget till en utgångsposition i verktygsaxeln (t.ex. arbetsstyckets yta med Z=0)
- Ställ in positionsvärdet i verktygsaxeln till noll (inställning av utgångspunkt)
- Växla in nästa verktyg
- Förflytta verktyget till samma utgångsposition som nollverktyget
- Det presenterade positionsvärdet visar längdskillnaden mellan verktyget och nollverktyget
- Överför värdet med knappen "Överför är-position" till TOOL DEFblocket alt. till verktygstabellen
- 2 Bestämma längden L med hjälp av en förinställningsapparat. Då anger man det uppmätta värdet direkt i verktygsdefinitionen TOOL DEF eller i verktygstabellen.

Verktygsradie R

Verktygsradien R anges direkt.

Delta-värde för längd och radie

Delta-värden används för att definiera avvikelser i verktygets längd och radie.

Ett positivt delta-värde motsvarar ett övermått (DL, DR, DR2>0). Vid bearbetning med övermått anger man värdet för övermåttet vid programmeringen av verktygsanropet med TOOL CALL.

Ett negativt delta-värde motsvarar ett undermått (DL, DR, DR2<0). Ett undermått anges i verktygstabellen för att kompensera för förslitning av ett verktyg.

Delta-värden anges som siffervärden, i TOOL CALL-block kan man dock även ange värdet med en Q-parameter.

Inmatningsområde: Delta-värdet måste ligga inom området ± 99,999 mm.

Inmatning av verktygsdata i program

Man definierar det specifika verktygets nummer, längd och radie en gång i bearbetningsprogrammet, i ett TOOL DEF-block:

- ▶ Välj verktygsdefinition: Tryck på knappen TOOL DEF
- Ange Verktygsnummer: Med verktygsnumret bestäms ett verktyg entydigt.
- Ange verktygslängd: Kompenseringsvärde för längd
- ► Ange Verktygsradie

Under dialogen kan man överföra värdet för verktygslängden direkt till dialogfältet med hjälp av knappen "Överför är-position". Kontrollera då vilken verktygsaxel som är aktiv i statusmarkeringen.

Exempel NC-block

TOOL

4 TOOL DEF 5 L+10 R+5

Inmatning av verktygsdata i tabell

I en verktygstabell kan man definiera upp till 32767 verktyg samt lagra deras verktygsdata. Man definierar antalet verktyg som TNC:n lägger upp när man skapar en ny tabell via maskinparameter 7260. Beakta även editeringsfunktionerna som beskrivs senare i detta kapitel. Man måste använda verktygstabell då

- Maskinen är utrustad med automatisk verktygsväxlare
- Man vill mäta verktyg automatiskt med TT 120, se bruksanvisning Cykler för avkännarsystem, kapitel 4
- Man vill efterutvidga med bearbetningscykel 22, se "8.5 SL-cykler, GROVSKÄR"
- Man vill arbeta med automatisk skärdataberäkning

Verktygstabell: Inmatningsmöjligheter

Förkortn.	Inmatning	Dialog	Kolumnbredd
Т	Nummer, med vilket verktyget anropas från program	_	
NAME	Namn, med vilket verktyget anropas från program	Verktygsnamn ?	
L	Kompenseringsvärde för verktygslängden L	Verktygslängd ?	
R	Kompenseringsvärde för verktygsradien R	Verktygsradie ?	
R2	Verktygsradie R2 för hörnradiefräsar (endast för tre-	Verktygsradie 2 ?	
	dimensionell radiekompensering eller för grafisk		
	simulering av bearbetning med radiefräsar)		
DL	Delta-värde för verktygslängd	Tilläggsmått verktygslängd	1?
DR	Delta-värde för verktygsradie R	Tilläggsmått verktygsradie	?
DR2	Delta-värde för verktygsradie R2	Tilläggsmått verktygsradie	2?
LCUTS	Verktygsskärens längd för verktyget (för cykel 22)	Skärlängd i verktygsaxeln	?
ANGLE	Verktygets maximala nedmatningsvinkel vid pendlande nedmatningsrörelse (för cykel 22)	Maximal nedmatningsvink	el ?
TL	Verktygsspärr (TL: för Tool Locked = eng. verktyg	Verktyg spärr ?	
	spärrat)	Ja = ENT / Nej = NO ENT	
RT	Nummer på ett systerverktyg – om det finns något –	Systerverktyg?	
	tillgängligt ersättningsverktyg (RT: för Replacement		
	T ool = eng. ersättningsverktyg); se även TIME2		
TIME1	Verktygets maximala livslängd i minuter. Denna	Max. livslängd?	
	funktion är maskinavhängig och finns beskriven i		
	Maskinnandboken		
TIVIEZ	verktygets maximala invsiangu viu ett foot CALL i minutor: Upppår eller överskrider den sktuelle	Maximal instangu viu 100	L CALL ?
	livslängden detta värde, kommer TNC:n att väyla in		
	systerverktyget vid nästa TOOL CALL (se även		
	CUR.TIME)		
CUR.TIME	Verktygets aktuella livslängd i minuter: TNC:n räknar	Aktuell livslängd ?	
	automatiskt upp verktygets aktuella livslängd	5	
	(CUR.TIME: för CURrent TIME = eng. aktuell/löpande		
	tid). För redan använda verktyg kan ett startvärde		
	anges		
DOC	Kommentar till verktyget (maximalt 16 tecken)	Verktygskommentar ?	
PLC	Information om detta verktyg, som skall överföras till PLC	PLC-status ?	

Verktygstabell: Nödvändiga verktygsdata vid automatisk verktygsmätning

Beskrivning av cyklerna för automatisk verktygsmätning: Se Bruksanvisning Cykler för avkännarsystem, Kapitel 4.

Förkortn.	Inmatning	Dialog
CUT.	Antal verktygsskär (max. 20 skär)	Antal skär ?
LTOL	Tillåten avvikelse från verktygslängden L för att detektera förslitning. Om det inmatade värdet	Förslitningstolerans: Längd ?
	överskrids, spärrar TNC:n verktyget (Status L).	
	Inmatningsområde: 0 till 0,9999 mm	
RTOL	Tillåten avvikelse från verktygsradien R för att	Förslitningstolerans: Radie ?
	aetektera forsiltning. Om det inmatade vardet	
	Inmatningsområde: 0 till 0.9999 mm	
DIRECT.	Verktygets skärriktning för mätning med roterande	Skärriktning (M3 = –) ?
	verktyg	
TT:R-OFFS	Längdmätning: förskjutning av verktyget från	Verktygsförskjutning radie ?
	avkännarens centrum till verktygets centrum.	
	Förinställning: Verktygsradie R (knappen NO ENT ger R)	
TT:L-OFFS	Radiemätning: tillägg till verktygsförskjutningen från	Verktygsförskjutning längd ?
	MP6530 (Se "13.1 Allmanna anvandarparametrar")	
	undorkant Förinställning: 0	
IBREAK	Tillåten avvikelse från verktvaslängden L för att	Brott-tolerans: Längd ?
EDITEAR	detektera brott. Om det inmatade värdet överskrids	
	spärrar TNC:n verktyget (Status L).	
	Inmatningsområde: 0 till 0,9999 mm	
RBREAK	Tillåten avvikelse från verktygsradien R för att	Brott-tolerans: Radie ?
	detektera brott. Om det inmatade värdet överskrids,	
	spärrar TNC:n verktyget (Status L).	
	Inmatningsområde: 0 till 0,9999 mm	

Verktygstabell: Ytterligare verktygsdata för automatisk varvtals-/matnings-beräkning

Förkortn.	Inmatning	Dialog
TYP	Verktygstyp (MILL=fräs, DRILL=borr, TAP=gängtapp): Softkey VÄLJ TYP (3:e softkeyraden); TNC:n presenterar ett fönster, i vilket man kan välja verktygstypen	Verktygstyp?
TMAT	Verktygets material: Softkey VÄLJ VERKTYGSMATERIAL (3:e softkeyraden); TNC:n presenterar ett fönster, i vilket man kan välja skärmaterial	Verktygs-skärmaterial ?
CDT	Skärdatatabell: Softkey VÄLJ CDT (3:e softkeyraden); TNC:n presenterar ett fönster, i vilket man kan välja skärdatatabellen	Namn skärdatatabell ?

5.2 Verktygsdata

Editera verktygstabell

Det är alltid verktygstabellen med filnamnet TOOL.T som är aktiv vid programkörning. TOOL.T måste lagras i katalogen TNC:\ och kan editeras i någon av maskindriftarterna. Verktygstabeller som man vill arkivera eller använda för programtest ger man ett annat godtyckligt filnamn med avslutningen .T .

Öppna verktygstabell TOOL.T:

Välj någon av maskindriftarterna

VERKTYG TABELL EDITERA AV/ PÅ Kalla upp verktygstabell: Tryck på softkey VERKTYGSTABELL

► Växla softkey EDITERING till "PÅ"

Öppna någon annan verktygstabell:

▶ Välj driftart Programinmatning/Editering

- ▶ Kalla upp filhanteringen
- Välj vilken filtyp som skall presenteras: Tryck på softkey VÄLJTYP
- ▶ Visa filer av typ .T: Tryck på softkey VISA .T
- Välj en av filerna eller skriv in ett nytt filnamn. Godkänn med knappen ENT eller med softkey VÄLJ

När man har öppnat verktygstabellen för editering kan man förflytta markören till en godtycklig position i tabellen med hjälp av pilknapparna eller med softkeys (se bilden i mitten till höger). Man kan skriva över tidigare sparade värden eller lägga in nya värden i tabellen. Ytterligare editerings-funktioner finner du i den efterföljande tabellen (se nästa sida).

Om TNC:n inte kan presentera alla tabellens positioner samtidigt visas ett fält högst upp i tabellen med symbolerna ">>" alt. "<<".

Lämna verktygstabellen:

▶ Kalla upp filhanteringen och välj en fil av annan typ, t.ex. ett bearbetningsprogram

EDITERA VERKTYGSTABELL PROGRAM VERKTYGSRADIE ?							GRAM ATNING
< <fil< th=""><th>: TOOL.T</th><th></th><th>MM</th><th></th><th></th><th></th><th>>></th></fil<>	: TOOL.T		MM				>>
T	L	R	R2	DL	DR	DR2	TL RT
0							
1	+0	+3	+0	+0.1	+0.05	+0.001	L 10
2	-10	+1.5	+0	+0	+0	+0	
3	-12.5	+12.5	+0	+0	+0	+0	
4	-33	+5	+0	+Ø	+0	+0	
5	-17.357	+3	+3	+0.1	+0	+0	
6							
Х	+150	.0000	Y	-50.00	00 Z	+100	.0000
A	+0	.0000	B +	180.00	00 C	+90	.0000
					S	0.00	0
ÄR		т			80		M 5⁄9
BÖRJ		T SIDA	A SIDA	RADERA RAD	EDITERA AV /PÂ	SÖK VERKTYGS- NAMN	PLATS TABELL

Editeringsfunktioner for v.tygstabell	Softkey
Gå till tabellens början	BÖRJAN
Gå till tabellens slut	
Gå till föregående sida i tabellen	SIDA Î
Gå till nästa sida i tabellen	SIDA I
Sök efter verktygsnamn tabellen	SÖK VERKTYGS- NAMN
Visa information om verktyg i kolumner eller visa all information om ett verktyg på en bildskärmssida	LISTA FORMULAR
Hoppa till radens början	RAD- BÖRJAN
Hoppa till radens slut	RAD- SLUT
Kopiera markerat fält	KOPIERA FÄLT
Infoga kopierat fält	INFOGA FÄLT
Infoga ett definierbart antal rader (verktyg) vid tabellens slut	APPEND N LINES
Visa / visa inte platsnummer	VISA (VISA INTE PLATS-NR.
Visa alla verktyg / visa endast verktyg som finns lagrade i platstabellen	DÖLJ VERKTYG RVJ/PÅ

Beakta vid verktygstabeller

Via maskinparameter 7266.x definierar man vilka nformationsfält som skall kunna användas i verktygstabellen samt i vilken ordningsföljd de skall oresenteras där. Beakta vid konfigurationen av verktygstabellen att den totala bredden inte får överskrida 250 tecken. Bredare tabeller kan inte överföras via datasnittet. De olika kolumnernas oredd finns angivna i beskrivningen av MP7266.x.

- Man kan skriva över enskilda kolumner eller rader i verktygstabellen med innehållet från en annan fil. Förutsättning:
 - Målfilen måste redan existera
 - Filen från vilken kopieringen skall ske får bara innehålla kolumnerna (raderna) som skall ersättas.

Individuella kolumner eller rader kopierar man med softkey ERSÄTT FÄLT (se 4.4 Utökad filhantering).

5.2 Verktygsdata

Platstabell för verktygsväxlare

För automatiska verktygsväxlare programmerar man tabellen TOOL_P (**TOOL P**ocket eng. verktygsplats) i någon av driftarterna för programkörning.

Kalla upp platstabell

ΡL	ATS	STABE	LL E	DI.	TERI	١G		EC	DITERA
SΡ	EC:	TALVE	RKTY	G	JA=E	ENT/NE	E J = N O E	EN T 🔤	UGIHBELL
FI	L: TO	OL_P.TCH							
Ρ	T	ST F L	. PLC						
0	Ø		%00000	000					
1	1	S F	%00000	000					
2	2		%00000	000					
3	3	8	%00000	000					
4	4		%00000	000					
5	5	F	%11110	010					
6	6		%00000	000					
X	+	-150.0 +0.0	0000	Y B	- t + 1 t	50.000	30 Z 30 C	+10	0.000
							S	0.0	00
ÄR			Т				0		M 5⁄9
BÖR	JAN	slut Л	SIDA ÎÎ		sida Л	ÂTERSTÄLL PLATS-		NÄSTA	VERKTYG

Följande uppgifter kan läggas in i platstabellen för ett verktyg:

Kolumn	Inmatning	Dialog
Р	Verktygets platsnummer i verktygsmagasinet	-
Т	Verktygsnummer	Verktygsnummer ?
ST	Verktyget är ett specialverktyg (ST : för S pecial T ool = eng. specialverktyg); om ditt specialverktyg blockerar flera verktygsplatser före och efter sin plats, så spärrar man ett lämpligt antal platser L (Status L)	Specialverktyg ?
F	Verktyget växlas alltid tillbaka till samma plats i magasinet (F : för F ixed = eng. fast)	Fast plats? Ja = ENT / Nej = NO ENT
L	Spärra plats (L: för Locked = eng. spärrad, se även kolumn ST)	Plats spärrad Ja = ENT / Nej = NO ENT
PLC	Information om denna verktygsplats som skall överföras till PLC	PLC-status ?

Editeringsfunktioner för platstabeller	Softkey
Gå till tabellens början	BÖRJAN
Gå till tabellens slut	SLUT I
Gå till föregående sida i tabellen	SIDA Î
Gå till nästa sida i tabellen	SIDA Į
Återställ platstabell	ÂTERSTÄLL PLATS- TABELL
Gå till början på nästa rad	NÄSTA RAD
Återställ kolumn verktygsnummer T	RESET COLUMN T
Hoppa till radens slut	RAD- SLUT

Anropa verktygsdata

Ett verktygsanrop TOOL CALL programmeras i bearbetningsprogrammet med följande uppgifter:

- ▶ Välj verktygsanrop med knappen TOOL CALL
- Verktygsnummer: Ange verktygets nummer eller namn. Redan innan har verktyget definierats i ett TOOL DEF-block eller i verktygstabellen. Om man vill anropa via namnet skriver man in det inom citationstecken. Namnet kopplas samman med ett namn som har skrivits in i den aktiva verktygstabellen TOOL .T.
- ► Spindelaxel parallell X/Y/Z: Ange verktygsaxel
- Spindelvarvtal S: Ange spindelvarvtalet direkt eller låt TNC:n beräkna det om du arbetar med skärdatatabeller. Tryck i så falla på softkey BERÄKNA S AUTOM. TNC:n begränsar spindelvarvtalet till det maximala värdet som finns angivit i maskinparameter 3515.
- Matning F: Ange matningen direkt eller låt TNC:n beräkna den om du arbetar med skärdatatabeller. Tryck i så falla på softkey BERÄKNA F AUTOM. TNC:n begränsar matningen till den maximala matningen i den "långsammaste axeln" (definierat i maskinparameter 1010). F är verksamt ända tills man programmerar en ny matning i ett positioneringsblock eller i ett TOOL CALL-block.
- Tilläggsmått verktygslängd: Delta-värde för verktygslängden
- Tilläggsmått verktygsradie: Delta-värde för verktygsradien
- Tilläggsmått verktygsradie 2: Delta-värde för verktygsradie 2

Exempel på ett verktygsanrop

Verktyg nummer 5 anropas med verktygsaxel Z, med spindelvarvtal 2500 varv/min samt en matning 350 mm/min. Övermåttet för verktygslängden och verktygsradie 2 motsvarar 0,2 respektive 0,05 mm, undermåttet för verktygsradien 1 mm.

20 TOOL CALL 5 Z S2500 F350 DL+0,2 DR-1 DR2:+0,05

Tecknet "D" framför "L" och "R" står för delta-värde.

Förval av verktyg vid verktygstabell

Om man arbetar med verktygstabell kan det nästkommande verktyget förväljas med ett TOOL DEF-block. I detta TOOL DEF-block anges bara verktygsnumret, alternativt en Q-parameter eller ett verktygsnamn inom citationstecken.

5.2 Verktygsdata

Verktygsväxling

Verktygsväxling är en maskinavhängig funktion. Beakta anvisningarna i Er maskinhandbok!

Verktygsväxlingsposition

Verktygsväxlingspositionen måste kunna nås utan risk för kollision. Med tilläggsfunktionerna M91 och M92 kan man ange en maskinfast växlingsposition. Om TOOL CALL 0 har programmerats innan det första verktygsanropet kommer TNC:n att förflytta spindelaxeln till en position som är oberoende av verktygslängden.

Manuell verktygsväxling

Innan en manuell verktygsväxling utförs skall spindeln stoppas och verktyget förflyttas till verktygsväxlingspositionen:

- ► Kör programmerat till verktygsväxlingspositionen
- Stoppa programexekveringen, se "11.4 Programkörning"
- ► Växla verktyget
- Återuppta programexekveringen, se "11.4 Programkörning"

Automatisk verktygsväxling

Vid automatisk verktygsväxling avbryts inte programexekveringen. Vid ett verktygsanrop med TOOL CALL växlar TNC:n självständigt in det anropade verktyget från verktygsmagasinet.

Automatisk verktygsväxling då livslängden har överskridits: M101

M101 är en maskinavhängig funktion. Beakta anvisningarna i Er maskinhandbok!

Om ett verktygs aktuella livslängd uppnår TIME1 växlar TNC:n automatiskt in ett systerverktyg. För att åstadkomma detta aktiveras funktionen i programmets början med tilläggsfunktionen M101. Funktionen M101 kan upphävas med M102.

Den automatiska verktygsväxlingen utförs inte omedelbart efter det att den maximala livslängden har uppnåtts, utan ett antal programblock senare, beroende på styrningens arbetsbelastning.

Förutsättning för standard NC-block med radiekompensering R0, RR, RL

Systerverktygets radie måste vara densamma som det ursprungliga verktygets radie. Om radien inte är densamma så kommer TNC:n att visa ett felmeddelande och växlar inte in systerverktyget.

Förutsättning för NC-block med ytnormalvektorer och 3D-kompensering (se Kapitel 5.4 "Tredimensionell verktygskompensering")

Systerverktygets radie får avvika från det ursprungliga verktygets radie. Den inkluderas inte i programblocken som överförs från CAD-system. Delta-värde (DR) anger man antingen i verktygstabellen eller i TOOL CALL-blocket.

Om DR är större än noll så kommer TNC:n att visa ett felmeddelande och växlar inte in systerverktyget. Med M-funktionen M107 kan detta meddelande undertryckas, med M108 kan det åter aktiveras.

5.3 Verktygskompensering

TNC:n korrigerar verktygsbanan med kompensationsvärdet för verktygslängden i spindelaxeln och för verktygsradien i bearbetningsplanet.

När man skapar bearbetningsprogrammet direkt i TNC:n, är kompenseringen för verktygsradien bara verksam i bearbetningsplanet. TNC:n tar då hänsyn till upp till fem axlar inkl. rotationsaxlarna.

Om programblock med ytnormal-vektorer har skapats i ett CAD-system, kan TNC:n utföra en tredimensionell verktygskompensering, se "5.4 Tredimensionell verktygskompensering"
verktygskompensening.

Kompensering verktygslängd

Kompenseringen för verktygslängden aktiveras automatiskt så fort ett verktyg har anropats och förflyttas i spindelaxeln. Den upphävs direkt då ett verktyg med längden L=0 anropas.

När man upphäver en positiv längdkompensering med TOOL CALL 0, minskar avståndet mellan verktyget och arbetsstycket.

Efter ett verktygsanrop TOOL CALL ändrar sig verktygets programmerade sträcka i spindelaxeln med längddifferensen mellan det gamla och det nya verktyget.

Vid längdkompensering tas hänsyn till delta-värdet både från TOOL CALL-blocket och det från verktygstabellen

Kompenseringsvärde = $L + DL_{TOOL CALL} + DL_{TAB}$ med

- L Verktygslängd L från TOOL DEF-block eller verktygstabell
- DL_{TOOL CALL} Tilläggsmått DL för längd från TOOL CALL-block (inkluderas inte i det presenterade positionsvärdet)
- DL_{TAB} Tilläggsmått DL för längd från verktygstabellen

5.3 Ve<mark>rkty</mark>gskompensering

Kompensering verktygsradie

Programblock för verktygsrörelser innehåller

- Radiekompensering RL eller RR
- R+ eller R-, för radiekompensering vid axelparallella förflyttningar
- R0, då ingen radiekompensering skall utföras

Radiekompenseringen aktiveras så snart ett verktyg har anropats och förflyttas i bearbetningsplanet med RL eller RR.

- TNC:n upphäver radiekompenseringen när man:
 - programmerar ett positioneringsblock med R0
 - lämnar konturen med funktionen DEP
 - programmerar ett PGM CALL
 - kallar upp ett nytt program med PGM MGT

Vid radiekompensering tas hänsyn till både delta-värdet från TOOL CALL-blocket och det från verktygstabellen:

Kompenseringsvärde = $R + DR_{TOOL CALL} + DR_{TAB}$ med

R	Verktygsradie R från TOOL DEF-block eller verk- tygstabell
DR _{TOOL CALL}	Tilläggsmått DR för radie från TOOL CALL-block (inkluderas inte i det presenterade positionsvärdet)

DR_{TAB} Tilläggsmått DR för radie från verktygstabellen

Konturrörelser utan radiekompensering: R0

Verktyget förflyttar sig i bearbetningsplanet med sitt centrum på den programmerade konturen alt. till de programmerade koordinaterna.

Användning: borrning, förpositionering Se bilden till höger.

Konturrörelser med radiekompensering: RR och RL

RR Verktyget förflyttas på höger sida om konturen

RL Verktyget förflyttas på vänster sida om konturen

Verktygets centrum förflyttas därvid på ett avstånd motsvarande verktygsradien från den programmerade konturen. "Höger" och "vänster" hänför sig till verktygets läge, i förflyttningsriktningen, i förhållande till arbetsstyckets kontur. Se bilderna på nästa sida.

Mellan två programblock med olika radiekompenseringar RR och RL måste det finnas minst ett block utan radiekompensering R0.

En radiekompensering är fullt aktiverad i slutet på det block som den programmeras i första gången.

Man kan även aktivera radiekompenseringen för bearbetningsplanets tilläggsaxlar. Programmera i sådana fall tilläggsaxlarna i varje efterföljande block eftersom TNC:n annars åter kommer att utföra radiekompenseringen i huvudaxlarna.

Vid första blocket med radiekompensering RR/RL och vid upphävande med R0 positionerar TNC:n alltid verktyget vinkelrätt mot den programmerade start- eller slutpunkten. Positionera därför verktyget i blocket innan den första konturpunkten, alt. efter den sista konturpunkten, så att inga skador på konturen uppstår.

Vid programmeringen av en konturrörelse presenteras följande fråga efter det att man har matat in koordinaterna:

Radiekorr.:	RL/RR/Ingen korr. ?
RL	Verktygsrörelse till vänster om den programmer- ade konturen: Tryck på softkey RL eller
RR	Verktygsrörelse till höger om den programmer- ade konturen: Tryck på softkey RR eller
ENT	Verktygsrörelse utan radiekompensering alt. upphäv radiekompensering: Tryck på knapp ENT
	Avsluta dialogen: Tryck på knapp END

5.3 Ve<mark>rkty</mark>gskompensering

Radiekompensering: Bearbetning av hörn

Ytterhörn

När man har programmerat en radiekompensering förflyttar TNC:n verktyget runt ytterhörn på en övergångscirkel eller på en spline (väljes via MP7680). Om det är nödvändigt kommer TNC:n att minska matningshastigheten vid ytterhörnet, exempelvis vid stora riktningsförändringar.

Innerhörn

TNC:n beräknar skärningspunkten mellan de kompenserade banorna som verktygets centrum förflyttar sig på. Från denna punkt förflyttas sedan verktyget på nästa konturelement. På detta sätt skadas inte arbetsstycket vid bearbetning av innerhörn. Den tillåtna verktygsradien begränsas därför av den programmerade konturens geometri.

Vid bearbetning av innerhörn får start- eller slutpunkten inte läggas vid konturhörnpunkten, då kan konturen skadas.

Bearbeta hörn utan radiekompensering

Då radiekompensering inte används kan verktygsbanan och matningshastigheten påverkas vid hörn på arbetsstycket med hjälp av tilläggsfunktionen M90. Se "74 Tilläggsfunktioner för konturbeteende".

5.4 Tredimensionell verktygskompensering

TNC:n kan utföra en tredimensionell verktygskompensering (3Dkompensering) vid rätlinjeblock. Förutom den räta linjens slutpunkts-koordinater X,Y och Z måste dessa block även innehålla ytnormalens komponenter NX, NY och NZ (se bilden nere till höger). De räta linjernas slutpunkter och ytnormalerna beräknas av ett CADsystem. Med 3D-kompenseringen kan man använda verktyg med andra dimensioner än det ursprungliga verktyget.

Verktygsformer

De tillåtna verktygsformerna (se bilderna uppe och i mitten till höger) definieras med verktygsradierna R och R2:

VERKTYGSRADIE: R

Mått från verktygets centrum till verktygets ytterkant

VERKTYGSRADIE 2: R2 Rundningsradie från verktygsspetsen till verktygets ytterkant

Förhållandet mellan R och R2 bestämmer verktygets form:

R2 = 0 Cylindrisk fräs

R2 = R Fullradiefräs

0 < R2 < R Hörnradiefräs

Ur dessa uppgifter ges även koordinaterna för verktygets utgångspunkt $\mathsf{P}_{\mathsf{T}}.$

Värdena för VERKTYGSRADIE och VERKTYGSRADIE 2 matas in i verktygstabellen.

Ytnormal

Definition ytnormal

En ytnormal är en matematisk storhet med

en längd

här: Avståndet mellan arbetsstyckets yta och verktygets utgångspunkt P_{T} och

en riktning

Cylindrisk fräs och radiefräs: vinkelrät från ytan på arbetsstycket som skall bearbetas mot verktygets utgångspunkt P_T Hörnradiefräs: Genom P_T ' resp. P_T

Ytnormalens längd och riktning definieras med komponenterna NX, NY och NZ.

Koordinaterna för positionen X, Y, Z och för ytnormalen NX, NY, NZ måste anges i samma ordningsföljd i NCblocket.

3D-kompensering med ytnormaler kan bara utföras i huvudaxlarna X, Y, Z.

Om man växlar in ett verktyg med övermått (positivt delta-värde), kommer TNC:n att presentera ett felmeddelande. Detta felmeddelande kan undertryckas med M-funktionen M107 (se "5.2 Verktygsdata, verktygsväxling").

TNC:n kommer **inte** att varna med ett felmeddelande om ett verktygsövermått kommer att skapa ett konturfel.

Via maskinparameter 7680 definierar man om CADsystemet har kompenserat verktygslängden utifrån kulans centrum P_{τ} eller kulans sydpol P_{sp} .

Använda andra verktyg: Delta-värde

När man använder verktyg med andra dimensioner än det verktyg som ursprungligen avsågs, för man in skillnaden i längd och radie som delta-värden i verktygstabellen eller i verktygsanropet TOOL CALL:

- Positiva delta-värden DL, DR, DR2
 Verktygsmåtten är större än originalverktygets (övermått)
- Negativa delta-värden DL, DR, DR2
 Verktygsmåtten är mindre än originalverktygets (undermått)

TNC:n korrigerar verktygspositionerna med delta-värdena och ytnormalerna.

Exempel: Program-block med ytnormaler

LN X+31,737 Y+21,954 Z+33,165 NX+0,2637581 NY+0,0078922 NZ-0,8764339 F1000 M3

- LN Rätlinje med 3D-kompensering
- X,Y,Z Kompenserade koordinater för den räta linjens slutpunkt
- NX, NY, NZ Ytnormalens komponenter
- F Matning
- M Tilläggsfunktion

Matningshastighet F och tilläggsfunktion M kan anges och ändras i driftart Programinmatning/Editering.

Koordinaterna för de räta linjernas slutpunkter och ytnormalernas komponenter måste genereras av ett CAD-system.

5.5 Arbeta med skärdatatabeller

TNC:n måste förberedas för arbete med skärdatatabeller av maskintillverkaren.

l vissa maskiner finns inte alla här beskrivna funktioner tillgängliga - alternativt fler funktioner tillgängliga. Beakta anvisningarna i Er maskinhandbok.

Via skärdatatabeller, i vilka godtyckliga kombinationer av arbetsstyckes-/skärmaterial finns definierade, kan TNC:n beräkna spindelvarvtal S och banhastighet F med hjälp av skärhastighet V_C och matning per tand f_Z. Grundläggande för beräkningen är att man anger arbetsstyckets material i programmet samt olika verktygsspecifika egenskaper i verktygstabellen.

Innan man låter TNC:n beräkna skärdata automatiskt måste man ha aktiverat den verktygstabell, från vilken TNC:n skall hämta de verktygsspecifika uppgifterna, i driftart programtest (status S).

Editeringsfunktioner för skärdatatabeller	Softkey
Infoga rad	INFOGA RAD
Radera rad	RADERA RAD
Gå till början på nästa rad	NÄCHSTE ZEILE
Sortera tabell (spalt-orienterad)	ORDER
Kopiera markerat fält (andra softkeyraden)	KOPIERA FÄLT
Infoga kopierat fält (andra softkeyraden)	INFOGA FÄLT
Editera tabellformat (andra softkeyraden)	EDIT FORMAT

5.5 Arbeta <mark>med</mark> skärdatatabeller

Tabeller för arbetsstyckets material

Man definierar arbetsstyckesmaterialen i tabellen WMAT.TAB (se bilden i mitten till höger). WMAT.TAB lagras standardmässigt i katalogen TNC:\ och kan innehålla ett godtyckligt antal materialnamn. Materialnamnen får vara maximalt 32 tecken långa (även mellanslag). TNC:n visar innehållet i kolumnen NAME när man bestämmer arbetsstyckets material i programmet (se efterföljande avsnitt).

Om man vill förändra standardtabellen för arbetsstyckesmaterial, måste man kopiera denna till en annan katalog. Annars skrivs dina ändringar över med HEIDENHAIN-standarddata vid en mjukvaru-uppdatering. Definiera i sådana fall sökvägen i filen TNC.SYS med nyckelord WMAT= (se "Konfigurationsfil TNC.SYS" längre fram i detta kapitel).

För att förhindra dataförlust skall man ta en backup på filen WMAT.TAB med jämna intervaller.

Ange arbetsstyckets material i NC-programmet

I NC-programmet väljer man arbetsstyckets material ur tabellen WMAT.TAB med hjälp av softkey WMAT:

- ▶ Programmera arbetsstyckets material: Tryck på softkey WMAT i driftart Programinmatning/Editering.
- VALJ ARBETSST. MATERIAL WATERIAL WMAT.TAB i ett överlagrat fönster
 - Välj arbetsstyckets material: Förflytta markören med pilknapparna till det önskade materialet och bekräfta med knappen ENT. TNC:n överför arbetsstyckesmaterialet till WMAT-blocket. Tryck på knappen SHIFT och sedan pilknappen för att snabbt kunna bläddra genom tabellen med arbetsstyckesmaterial. TNC:n bläddrar då sida för sida
 - Avsluta dialogen: Tryck på knapp END
- Om man ändrar WMAT-blocket i ett program kommer TNC:n att visa ett varningsmeddelande. Kontrollera om skärdata som lagrats i TOOL CALL-blocket fortfarande är giltiga.

PROGI BLOCI	RAM KFÖLJD	EDITERA TABELL NAMN ?					
F I NR	L: WMAT_GB	. TAB DOC					
0	10 WCrV	5 Tool stee	1 1.2519				
1	14 NiCr	14 Hardened	steel 1.575	2			
2	142 WV 1	3 Tool stee	1 1.2562				
3	15 CrNi	6 Hardened	steel 1.591	9			
4	16 CrMo	4 4 Structura	Structural steel 1.7337				
5	16 MnCr	5 Hardened	Hardened steel 1.7131				
6	17 MoV 8	4 Structura	Structural steel 1.5406				
7	18 CrNi	8 Hardened	Hardened steel 1.5920				
8	19 Mn 5	Structura	l steel 1.0	482			
9	21 MnCr	5 Tool stee	1 1.2162				
10	26 CrMo	4 Structura	Structural steel 1.7219				
11	28 NiCrM	o 4 Structura	Structural steel 1.6513				
12	30 CrMoV	9 Tempering	steel 1.77	07			
BÖR	SIAN SL	UT SIDA	SIDA ∬	INFOGA RAD	RADERA RAD	NÄSTA RAD	ORDER

Tabeller för verktygets material

Man definierar vertygsskärsmaterial i tabellen TMAT.TAB. TMAT.TAB lagras standardmässigt i katalogen TNC:\ och kan innehålla ett godtyckligt antal skärmaterialnamn (se bilden uppe till höger). Skärmaterialnamnet får vara maximalt 16 tecken långt (även mellanslag). TNC:n visar innehållet i kolumnen NAME när man bestämmer verktygets skärmaterial i verktygstabellen TOOL.T.

Om man vill förändra standardtabellen för verktygsmaterial, måste man kopiera denna till en annan katalog. Annars skrivs dina ändringar över med HEIDEN-HAIN-standarddata vid en mjukvaru-uppdatering. Definiera i sådana fall sökvägen i filen TNC.SYS med nyckelord TMAT= (se "Konfigurationsfil TNC.SYS" längre fram i detta kapitel).

För att förhindra dataförlust skall man ta en backup på filen TMAT.TAB med jämna intervaller.

Tabell för	skärdata
------------	----------

Man definierar kombinationer av arbetsstyckes- och skärmaterial med tillhörande skärdata i en tabell med efternamnet .CDT (eng. cutting data file: skärdatatabell; se bilden i mitten till höger). Du kan själv fritt konfigurera uppgifterna i skärdatatabellen. Förutom kolumnerna NR, WMAT och TMAT, vilka alltid krävs, kan TNC:n hantera upp till fyra kombinationer av skärhastighet (Vc) och matning (F).

I katalogen TNC:\ finns standardtabellen för skärdata FRAES_2.CDT lagrad. Man kan editera och utöka FRAES_2.CDT godtyckligt eller lägga till ett godtyckligt antal skärdatatabeller.

Om man vill förändra standardtabellen för skärdata, måste man kopiera denna till en annan katalog. Annars skrivs dina ändringar över med HEIDENHAINstandarddata vid en mjukvaru-uppdatering (se "Konfigurationsfil TNC.SYS" längre fram i detta kapitel).

> Alla skärdatatabeller måste finnas lagrade i samma katalog. Om katalogen inte är standardkatalogen TNC:\, måste man ange sökvägen till de egna skärdatatabellerna i filen TNC.SYS efter nyckelordet PCDT=.

PROGR BLOCK	RM EDITERA TABELL Roljd NAMN ?							
FI	L: TMA	T_GB.TAB						
NR	NAME		DOC					
0	HC-K	15	Coated car	bide				
1	HC-P	25	Coated car	bide				
2	HC-P	35	Coated car	bide				
3	HSS							
4	HSSE	-Co5	HSS + cobalt					
5	HSSE	-C08	HSS + cobalt					
6	HSSE	-Co8-TiN	I HSS + cobalt					
7	HSSE	∕TiCN	TiCN coated					
8	HSSE	∕TiN	TiN coated					
9	HT-P	15	Cermet					
10	HT-M	15	Cermet					
11	HW-K	15	Uncoated carbide					
12	HW-K	-K25 Uncoated carbide						
BÖR	JAN	SLUT <u>[</u>	SIDA Û	SIDA ↓	INFOGA RAD	RADERA RAD	NÄSTA RAD	ORDER

PROGI BLOCI	RAM KFÖLJD	ED: Ma	ITERA Ferial	TABEL ., ARE	LL BETS	ST	ГҮСІ	KE?	,	
FI	L: FRAES_	.GB.CDT								
NR	UMA T		TMAT		Vc1	F	1	Vc2	F2	
0	St 33-1		HSSE/T	iN	40	Ø	,016	55	0,020	
1	St 33-1		HSSE/T	iCN	40	Ø	,016	55	0,020	
2	St 33-1		HC-P25		100	Ø	,200	130	0,250	
3	St 37-2	2	HSSE-C	05	20	Ø	,025	45	0,030	
4	St 37-2	2	HSSE/TiCN		40	Ø	,016	55	0,020	
5	St 37-2	2	HC-P25		100	Ø	,200	130	0,250	
6	St 50-2	2	HSSE/T	iN	40	Ø	,016	55	0,020	
7	St 50-2	2	HSSE/T	iCN	40	Ø	,016	55	0,020	
8	St 50-2	2	HC-P25		100	Ø	,200	130	0,250	
9	St 60-2	2	HSSE/T	iN	40	Ø	,016	55	0,020	
10	St 60-2	2	HSSE/TiCN		40	Ø	,016	55	0,020	
11	St 60-2	2	HC-P25		100	Ø	,200	130	0,250	
12	C 15		HSSE-C	05	20	0	,040	45	0,050	
BÖR	S NALS	slut ∬	SIDA Û	SIDA J	INFOC RAD	ŝA	RADE	ERA D	NÄSTA RAD	ORDER

Lägga in nya skärdatatabeller

- ▶ Välj driftart Programinmatning/Editering
- ▶ Välj filhantering: Tryck på knappen PGM MGT
- Välj katalogen som skärdatatabellerna alltid skall lagras i (standard: TNC:\)
- Ange ett godtyckligt filnamn och filtypen .CDT, bekräfta med knappen ENT
- I den högra bildskärmshälften presenterar TNC:n olika tabellformat (maskinberoende, se exempel i bilden uppe till höger), vilka skiljer sig åt beträffande antal kombinationer av skärhastigheter/matningar. Förflytta markören med pilknapparna till det önskade tabellformatet och bekräfta med knappen ENT. TNC:n genererar en ny tom skärdatatabell

Erforderliga uppgifter i verktygstabellen

- Verktygsradie Kolumn R (DR)
- Antal skär (endast vid fräsverktyg) Kolumn CUT.

```
 Verktygstyp – Kolumn TYP
 Verktygstypen påverkar beräkningen av banhastigheten:
 Fräsverktyg: F = S • f<sub>Z</sub> • z
 Alla andra verktyg F = S • f<sub>U</sub>
 S = Spindelvarvtal
 f<sub>Z</sub> = Matning per tand
 f<sub>U</sub> = Matning per varv
 z = Antal skär
```

- Verktygsskärmaterial Kolumn TMAT
- Namn på skärdatatabellen som skall användas för detta verktyg Kolumn CDT

Man väljer verktygstypen, verktygsskärmaterialet och namnet på skärdatatabellen via softkeys i verktygstabellen (se "5.2 Verktygsdata").

Tillvägagångssätt vid arbete med automatisk beräkning av varvtal/matning

- 1 Om uppgift inte redan finns: Ange arbetsstyckets material i filen WMAT.TAB
- 2 Om uppgift inte redan finns: Ange skärmaterial i filen TMAT.TAB
- 3 Om uppgift inte redan finns: Ange alla för skärdataberäkningen erforderliga verktygsspecifika uppgifter i verktygstabellen:
 - Verktygsradie
 - Antal skär
 - Verktygstyp
 - Verktygets skärmaterial
 - Till verktyget hörande skärdatatabell
- 4 Om uppgift inte redan finns: Ange skärdata i en godtycklig skärdatatabell (CDT-fil)
- 5 Driftart test: Aktivera verktygstabellen från vilken TNC:n skall hämta de verktygsspecifika uppgifterna (status S)
- 6 I NC-programmet: Ange arbetsstyckets material via softkey WMAT
- 7 I NC-programmet: Låt spindelvarvtal och matning beräknas automatiskt via softkey i TOOL CALL-blocket

Förändra tabell-struktur

För TNC:n är skärdatatabellerna så kallade "fritt definierbara tabeller". Man kan ändra de fritt definierbara tabellernas format med struktur-editorn.

Kalla upp struktur-editor

Tryck på softkey EDITERA FORMAT (andra softkeyraden). TNC öppnar editor-fönstret (se bilden till höger), i vilket tabellstrukturen presenteras "vriden med 90°". En rad i editor-fönstret definierar en kolumn i den tillhörande tabellen. Struktur-kommandonas (uppgift om överskrift) betydelse kan utläsas i tabellen här bredvid.

Avsluta struktur-editor

Tryck på knappen END. TNC omvandlar uppgifterna som redan fanns lagrade i tabellen till det nya formatet. Element som TNC:n inte kan omvandla till den nya strukturen markeras med # (t.ex. om man har förminskat kolumnbredden).

Strukturkommando	Betydelse
NR	Kolumnnummer
NAME	Kolumnöverskrift
ТҮР	N: Numerisk uppgift C: Alfanumerisk uppgift
WIDTH	Kolumnens bredd. Vid typ N endast heltal, Komma och antal decimaler
DEC	Antal decimaler (max. 4, endast verksam vid typ N)
ENGLISH upp till HUNGABIA	Språkberoende dialog (max. 32 tecken)

PROG BLOC	RAM KFÖLJD	E D Fä	EDITERA TABELL Fältnamn?						
	IL: 5C76F	22A.TD	3						\rightarrow
NR	NAME	TYP	WIDT	H DEC	ENGLISH				
Ø	. Ma t	С	16	Ø	Workpiece	∎aterial?			
1	TMAT	С	16	Ø	Tool mater	ial?			
2	Vc1	Ν	7	3	Cutting sp	eed Vc1?			
3	F1	Ν	7	3	Feed rate	Fz1?			
4	Vc2	Ν	7	3	Cutting sp	eed Vc2?			
5	F2	Ν	7	3	Feed rate	Fz2?			
CENC	נכ								
BÖ	RJAN	SLUT	s	IDA 介	SIDA	INFOGA	RADERA	NHISTA	
1	ľ	<u>₩</u>		Ц	Ϋ́	RAD	RAD	RAD	

Dataöverföring av skärdatatabeller

Om man läser ut en fil av filtypen .TAB eller .CDT via ett externt datasnitt kommer TNC:n även att läsa ut tabellens strukturdefinition. Strukturdefinitionen börjar med raden #STRUCTBEGIN och slutar med raden #STRUCTEND. De enskilda kodordens betydelse kan utläsas i tabellen "Struktur-kommando" (se föregående sida). Efter #STRUCTEND lagrad TNC:n tabellens egentliga innehåll.

Konfigurationsfil TNC.SYS

Man måste använda konfigurationsfilen TNC.SYS när de egna skärdata-tabellerna inte finns lagrade i standard-katalogen TNC:\. Då fastlägger man sökvägen till de egna skärdata-tabellerna i TNC.SYS.

	Filen TNC.SYS måste lagras i rot-katalogen TNC:\.
--	---

Uppgifter iTNC.SYS	Betydelse
WMAT=	Sökväg till tabeller för arbetsstyckes- material
TMAT=	Sökväg till tabeller för skärmaterial
PCDT=	Sökväg till tabeller för skärdata

Exempel förTNC.SYS:

WMAT=TNC:\CUTTAB\WMAT_GB.TAB TMAT=TNC:\CUTTAB\TMAT_GB.TAB PCDT=TNC:\CUTTAB\

Programmering: Programmering av konturer

6.1 Översikt: Verktygsrörelser

Konturfunktioner

Ett arbetsstycke består oftast av flera sammanfogade konturelement, såsom exempelvis räta linjer och cirkelbågar. Med konturfunktionerna programmerar man verktygsrörelser för **rätlinjer** och **cirkelbågar**.

Flexibel konturprogrammering FK

Med FK-programmering kan man skapa bearbetningsprogram direkt i maskinen även då ritningsunderlaget saknar de uppgifter som behövs vid normal NC-programmering. TNC:n kommer då själv att beräkna de saknade uppgifterna.

Även vid flexibel konturprogrammering anges verktygsrörelserna som **rätlinjer** och **cirkelbågar**.

Tilläggsfunktioner M

Med TNC:ns tilläggsfunktioner styr man

- programförloppet, t.ex. ett avbrott i programexekveringen
- maskinfunktionerna, såsom påslag och avstängning av spindelrotationen och kylvätskan
- verktygets konturbeteende

Underprogram och programdelsupprepningar

Om en bearbetningssekvens skall utföras flera gånger i programmet anger man denna en gång i form av ett underprogram eller en programdelsupprepning. Om en del av programmet bara skall utföras under vissa förutsättningar lägger man även då denna bearbetningssekvens i ett underprogram. Dessutom kan ett bearbetningsprogram anropa och utföra ett annat bearbetningsprogram.

Programmering med underprogram och programdelsupprepningar beskrivs i kapitel 9.

Programmering med Q-parametrar

Istället för siffror kan variabler anges i bearbetningsprogram, så kallade Q-parametrar: En Q-parameter tilldelas ett siffervärde på ett annat ställe i programmet. Med Q-parametrar kan man programmera matematiska funktioner som påverkar programexekveringen eller beskriver en kontur.

Dessutom kan man utföra mätningar med 3D-avkännarsystem under programexekveringen med hjälp av Q-parameterprogrammering.

Programmeringen med Q-parametrar beskrivs i kapitel 10.

6.2 Allmänt om konturfunktioner

Programmera verktygsrörelser för en bearbetning

När man skapar ett bearbetningsprogram programmerar man konturfunktionerna för arbetsstyckets individuella konturelement efter varandra. När detta utförs anges oftast **koordinaterna för konturelementens slutpunkter** från ritningsunderlaget. Från dessa koordinatangivelser, verktygsdata och radiekompenseringen beräknar TNC:n verktygets verkliga rörelsebana.

TNC:n förflyttar alla maskinaxlar, som har programmerats i programblockets konturfunktion, samtidigt.

Rörelser parallella med maskinaxlarna

Programblocket innehåller en koordinatangivelse: TNC:n förflyttar verktyget parallellt med den programmerade maskinaxeln.

Beroende på din maskins konstruktion rör sig antingen verktyget eller maskinbordet med det uppspända arbetsstycket vid bearbetningen. Programmering av konturrörelserna skall dock alltid utföras som om det vore verktyget som förflyttar sig.

Exempel:

L X+100

X+100 Slutpunktens koordinater

Verktyget behåller Y- och Z-koordinaten oförändrade och förflyttar sig till positionen X=100. Se bilden uppe till höger.

Rörelser i huvudplanet

Programblocket innehåller två koordinatangivelser: TNC:n förflyttar verktyget i det programmerade planet.

Exempel:

L X+70 Y+50

Verktyget behåller Z-koordinaten oförändrad och förflyttas i XY-planet till positionen X=70, Y=50. Se bilden i mitten till höger.

Tredimensionell rörelse

Programblocket innehåller tre koordinatangivelser: TNC:n förflyttar verktyget i rymden till den programmerade positionen.

Exempel:

L X+80 Y+0 Z-10

Se bilden nere till höger.

Inmatning av fler än tre koordinater

TNC:n kan styra upp till fem axlar simultant. Vid femaxlig bearbetning förflyttas exempelvis tre linjära och två roterande axlar samtidigt.

Bearbetningsprogrammet för en sådan bearbetning genereras oftast i ett CAD-system eftersom det är för komplicerat för att kunna programmeras direkt i maskinen.

Exempel:

L X+20 Y+10 Z+2 A+15 C+6 R0 F100 M3

Rörelser med fler än 3 axlar kan inte simuleras grafiskt i TNC:n.

Cirklar och cirkelbågar

Vid cirkelrörelser förflyttar TNC:n två maskinaxlar simultant: Verktyget förflyttas på en cirkelbåge relativt arbetsstycket. Vid cirkelrörelser kan man ange ett cirkelcentrum CC.

Med konturfunktionerna för cirkelbågar programmerar man cirkelbågar i huvudplanet: Huvudplanet bestäms genom definitionen av spindelaxel vid verktygsanropet TOOL CALL:

Spindelaxel	Huvudplan
Z	XY , även UV, XV, UY
Y	ZX , även
	WU, ZU, WX
Х	YZ, även
	VW, YW, VZ

Cirklar som inte ligger parallellt med ett huvudplan kan programmeras med funktionen "3D-vridning av bearbetningsplanet" (se kapitel 8) eller med Qparametrar (se kapitel 10).

Rotationsriktning DR vid cirkelrörelser

När en cirkelrörelse inte ansluter tangentiellt till ett annat konturelement anges den matematiska rotationsriktningen DR:

Medurs vridning: DR-Moturs vridning: DR+

Radiekompensering

Radiekompenseringen måste stå i blocket som utför förflyttningen fram till det första konturelementet. Radiekompenseringen får inte börja i ett block med en cirkelbåge. Programmera den tidigare i ett rätlinjeblock eller i ett framkörningsblock (APPR-block).

APPR-block och rätlinjeblock se "6.3 Framkörning till och frånkörning från konturen" och "6.4 Konturrörelser – rätvinkliga koordinater".

Förpositionering

Förpositionera verktyget i början av ett bearbetningsprogram på ett sådant sätt att verktyg eller arbetsstycke inte kan skadas.

Skapa programblock med konturfunktionsknapparna

Man öppnar klartext-dialogen med de grå konturfunktionsknapparna. TNC:n frågar efter all nödvändig information och infogar därefter programblocket i bearbetningsprogrammet.

Exempel – Programmering av en rätlinje:

L	Öppna programmeringsdialogen: t.ex. rätlinje					
Koordinater ?		F MAX	F AUTO			
X 10	Ange koordinaterna för den räta linjens slutpunkt					
Y 5						
Radiekorr.: R	L/RR/Ingen korr.?					
RL	Välj radiekompensering: t.ex. tryck på softkey RL, verktyget förflyttas till vänster om konturen					
Matning F=? /	F MAX = ENT					
100 _{ENT}	Ange matning och bekräfta med knappen ENT: t.ex. 100 mm/min. Vid INCH- programmering: Inmatning av värdet 100 motsvarar matning 10 inch/min					
F MAX	Förflytta med snabbtransport: Tryck på softkey FMAX, eller					
F AUTO	Förflytta med automatiskt beräknad matning (skärdatatabeller): Tryck på softkey FAUTO					
Tilläggsfunkt	ion M ?					

MANUELL DRIFT

1 2

3

4

5

6

PROGRAM INMATNING

L X+10 Y+5 R0 F100 M3

L Z+250 R0 F MAX

END PGM NEU MM

BLK FORM 0.1 Z X+0 Y+0 Z-40

BLK FORM 0.2 X+100 Y+100 Z+0

TOOL CALL 1 Z S3500 DL+1 DR+1

MATNING F=? / F MAX = ENT

Ange tilläggsfunktion, t.ex. M3, och avsluta dialogen med knappen ENT

Bearbetningsprogrammet visar raden:

L X+10 Y+5 RL F100 M3

Översikt: Konturformer för framkörning till och frånkörning från konturen

Funktionerna APPR (eng. approach = närma) och DEP (eng. departure = lämna) aktiveras med APPR/DEP-knappen. Därefter kan följande konturformer väljas via softkeys:

Funktion	Softkeys:	Närma	Lämna
Rätlinje med tangentiell anslutni	ng	APPR LT	DEP LT
Rätlinje vinkelrät mot konturpun	kten	APPR LN	DEP LN
Cirkelbåge med tangentiell anslu	utning	APPR CT	
Cirkelbåge med tangentiell anslu konturen, framkörning till och frå från en hjälppunkt utanför kontur	utning till Inkörning ren med	APPR LCT	

en tangentiellt anslutande rätlinje

Framkörning till och frånkörning från en skruvlinje

Vid framkörning till och frånkörning från en skruvlinje (helix) förflyttas verktyget i skruvlinjens förlängning och ansluter till konturen på en tangentiell cirkelbåge. Använd funktionerna APPR CT respektive DEP CT för detta ändamål.

Viktiga positioner vid fram- och frånkörning

■ Startpunkt P_S

Denna position programmeras i blocket omedelbart innan APPR-blocket. P_{S} ligger utanför konturen och programmeras utan radiekompensering (R0).

■ Hjälppunkt P_H

Verktygsbanan vid fram- och frånkörning går vid en del konturformer genom en hjälppunkt P_H. Hjälppunkten beräknas automatiskt av TNC:n med hjälp av uppgifterna i APPR- och DEP-blocket.

- Första konturpunkten P_Aoch sista konturpunkten P_E Den första konturpunkten P_A programmeras i APPR-blocket. Den sista konturpunkten P_E programmeras med en godtycklig konturfunktion.
- Om APPR-blocket även innehåller Z-koordinaten, förflyttar TNC:n verktyget först i bearbetningsplanet till P_H och därifrån i verktygsaxeln till det angivna djupet.
- Slutpunkt P_N

Positionen P_N ligger utanför konturen och erhålles från uppgifterna som programmeras i DEP-blocket. Om DEP-blocket även innehåller Z-koordinaten, förflyttar TNC:n verktyget först i bearbetningsplanet till P_H och därifrån i verktygsaxeln till den angivna höjden.

MANUELL DRIF	PROG	GRAM I	NMAT	NING			
1 BLk 2 BLk 3 TOC 4 L 2 5 L 3 6 END	(FOR FOR DL CAL 2+250 (+10) PGM	1 0.1 1 0.2 LL 1 Z R0 F (+5 R0 NEU M	Z X+ X+10 S35 MAX F10 M	0 Y+0 0 Y+1 00 DL 0 M3	1 2-46 .00 2+ .+1 DF	9 - Ø ? + 1	
APPR LT F	APPR LN F	APPR CT AP	PR LCT	DEP LT		DEP CT	

Koordinaterna får anges både absolut och inkrementalt i rätvinkligt eller polärt koordinatsystem.

TNC:n kontrollerar inte om den programmerade konturen kan skadas vid positionering från Är-positionen till hjälppunkten P_H. Kontrollera detta med hjälp av testgrafiken!

Vid framkörning måste utrymmet mellan startpunkten P_S och den första konturpunkten P_A vara tillräckligt stort, för att den programmerade bearbetningsmatningen skall hinna uppnås.

TNC:n förflyttar verktyget från är-positionen till hjälppunkten P_{H} med den sist programmerade matningshastigheten.

Radiekompensering

Radiekompenseringen programmeras tillsammans med den första konturpunkten P_A i APPR-blocket. DEP-blocket upphäver automatiskt radiekompenseringen!

Framkörning utan radiekompensering: Om R0 programmeras i APPR-blocket, så förflyttar TNC:n verktyget som ett verktyg med radie R = 0 mm och radiekompensering RR! Därigenom är riktningen, i vilken TNC:n förflyttar verktyget till och från konturen, fastlagd vid funktionerna APPR/DEP LN och APPR/DEP CT.

Framkörning på en tangentiellt anslutande rätlinje: APPR LT

TNC:n förflyttar verktyget på en rät linje från startpunkten P_S till en hjälppunkt P_H . Därifrån förflyttas det till den första konturpunkten P_A på en tangentiellt anslutande rätlinje. Hjälppunkten P_H befinner sig på avståndet LEN från den första konturpunkten P_A .

► Godtycklig konturfunktion: Framkörning till startpunkt Ps

▶ Öppna dialogen med knappen APPR/DEP och softkey APPR LT:

- ▶ Koordinater för den första konturpunkten P_A
- LEN: Avstånd från hjälppunkten P_H till den första konturpunkten P_A
- ▶ Radiekompensering för bearbetningen

Exempel NC-block

7 L X+40 Y+10 RO FMAX M3	Framkörning till P _s utan radiekompensering
8 APPR LT X+20 Y+20 Z-10 LEN15 RR F100	P _A med radiekomp. RR, avstånd P _H till P _A : LEN=15
9 L X+35 Y+35	Första konturelementets slutpunkt
10 L	Nästa konturelement

Förkortning	Betydelse
APPR	eng. APPRoach = närma
DEP	eng. DEParture = lämna
L	eng. Line = linje
С	eng. Circle = cirkel
Т	Tangentiell (mjuk, kontinuerlig
	övergång)
Ν	Normal (vinkelrät)

Framkörning på en rätlinje vinkelrät mot första konturpunkten: APPR LN

TNC:n förflyttar verktyget på en rät linje från startpunkten P_S till en hjälppunkt P_H. Därifrån förflyttas verktyget till den första konturpunkten P_A på en vinkelrät anslutande rätlinje. Hjälppunkten P_H befinner sig på avståndet LEN + verktygsradien från den första konturpunkten P_A.

- ► Godtycklig konturfunktion: Framkörning till startpunkt P_S
- ▶ Öppna dialogen med knappen APPR/DEP och softkey APPR LN:

- ▶ Koordinater för den första konturpunkten P_A
- Längd: Avstånd till hjälppunkten P_H LEN anges alltid positiv!
- ▶ Radiekompensering RR/RL för bearbetningen

Exempel NC-block

7 L X+40 Y+10 RO FMAX M3	Framkörning till P _s utan radiekompensering
8 APPR LN X+10 Y+20 Z-10 LEN+15 RR F100	P _A med radiekomp. RR
9 L X+20 Y+35	Första konturelementets slutpunkt
10 L	Nästa konturelement

Y

RR

10

RR :

20

R0

40

Х

35

20

10

Framkörning på en cirkelbåge med tangentiell anslutning: APPR CT

TNC:n förflyttar verktyget på en rät linje från startpunkten $P_{\rm S}$ till en hjälppunkt $P_{\rm H}.$ Därifrån förflyttas verktyget på en cirkelbåge, som ansluter tangentiellt till det första konturelementet, till den första konturpunkten $P_{\rm A}$.

Cirkelbågen från $P_{\rm H}$ till $P_{\rm A}$ bestäms med radien R och centrumvinkeln CCA. Cirkelbågens rotationsriktning fastställs med hjälp av information om det första konturelementet.

- ► Godtycklig konturfunktion: Framkörning till startpunkt Ps
- ▶ Öppna dialogen med knappen APPR/DEP och softkey APPR CT:

► Koordinater för den första konturpunkten P_A

- Radie R för cirkelbågen
- Vid framkörning från den sida på arbetsstycket som definierats via radiekompenseringen: Ange ett positivt R
- Vid framkörning ut från arbetsstyckets sida: Ange ett negativt R
- ▶ Centrumvinkel CCA för cirkelbågen
- CCA anges bara med positiva värden
- Maximalt inmatningsvärde 360°
- ▶ Radiekompensering RR/RL för bearbetningen

.3 Framkörning till oc<mark>h frå</mark>nkörning från kontur

Exempel NC-block

7 L X+40 Y+10 RO FMAX M3	Framkörning till P _s utan radiekompensering
8 APPR CT X+10 Y+20 Z-10 CCA180 R+10 RR F100	P _A med radiekomp. RR, radie R=10
9 L X+20 Y+35	Första konturelementets slutpunkt
10 L	Nästa konturelement

Framkörning på en cirkelbåge med tangentiell anslutning till kontur och rätlinje: APPR LCT

TNC:n förflyttar verktyget på en rät linje från startpunkten P_S till en hjälppunkt P_H. Därifrån förflyttas verktyget på en cirkelbåge till den första konturpunkten P_A.

Cirkelbågen ansluter tangentiellt både till den räta linjen $P_{S} - P_{H}$ och till det första konturelementet. Därför behövs bara radien R för att entydigt fastställa verktygsbanan.

► Godtycklig konturfunktion: Framkörning till startpunkt Ps

▶ Öppna dialogen med knappen APPR/DEP och softkey APPR LCT:

▶ Radie R för cirkelbågen

Ange ett positivt R

▶ Radiekompensering för bearbetningen

Exempel NC-block

7 L X+40 Y+10 RO FMAX M3	Framkörning till P _S utan radiekompensering
8 APPR LCT X+10 Y+20 Z-10 R10 RR F100	P _A med radiekompensering RR, radie R=10
9 L X+20 Y+35	Första konturelementets slutpunkt
10 L	Nästa konturelement

ramkörning till P _S utan radiekompensering	
P _A med radiekompensering RR, radie R=10	
örsta konturelementets slutpunkt	
Jästa konturelement	

Frånkörning på en rätlinje med tangentiell anslutning: DEP LT

TNC:n förflyttar verktyget på en rät linje från den sista konturpunkten P_E till slutpunkten P_N. Den räta linjen ligger i det sista konturelementets förlängning. P_N befinner sig på avståndet LEN

- ▶ Programmera sista konturelementet med slutpunkten P_E och radiekompensering
- ▶ Öppna dialogen med knappen APPR/DEP och softkey DEP LT:

6.3 Framkörning till oc<mark>h frå</mark>nkörning från kontur

▶ LEN: Ange avståndet från det sista konturelementet P_F till slutpunkten P_N

Exempel NC-block

23 L Y+20 RR F100	Sista konturelementet: P _E med radiekompensering
24 DEP IT LEN 12 5 E100	Frånkörning med LEN = 12.5 mm
LT DET ET EEN IE,5 TIGG	
25 L Z+100 FMAX M2	Frikörning Z, återhopp, programslut

Frånkörning på en rätlinje vinkelrät från den sista konturpunkten: DEP LN

TNC:n förflyttar verktyget på en rät linje från den sista konturpunkten P_E till slutpunkten P_N. Den räta linjen går vinkelrät från den sista konturpunkten P_E. P_N befinner sig på avståndet LEN + verktygsradien från P_E.

- ▶ Programmera sista konturelementet med slutpunkten P_E och radiekompensering
- ▶ Öppna dialogen med knappen APPR/DEP och softkey DEP LN:

DEP	LN
	1
0	ľ

▶ LEN: Ange anståndet till slutpunkten P_N Viktigt: Ange LEN positivt!

Exempel NC-block

23 L Y+20 RR F100	Sista konture
24 DEP LN LEN+20 F100	Frånkörning r
25 L Z+100 FMAX M2	Frikörning Z,

Sista konturelementet: P _E med radiekompensering
Frankorning med LEN = 12.5 mm
Frikörning 7 återhonn programslut

elementet: P_F med radiekompensering med LEN = 20 mm vinkelrät mot kontur återhopp, programslut

Frånkörning på en cirkelbåge med tangentiell anslutning: DEP CT

TNC:n förflyttar verktyget på en cirkelbåge från den sista konturpunkten P_{E} till slutpunkten $\mathsf{P}_{\mathsf{N}}.$ Cirkelbågen ansluter tangentiellt till det sista konturelementet.

- Programmera sista konturelementet med slutpunkten P_E och radiekompensering
- ▶ Öppna dialogen med knappen APPR/DEP och softkey DEP CT:

Radie R för cirkelbågen

Verktyget skall köra ifrån arbetsstycket åt det håll som definierats via radiekompenseringen: Ange ett positivt R

- Verktyget skall köra ifrån arbetsstycket åt det motsatta hållet som definierats via radiekompenseringen: Ange ett negativt R
- ► Centrumvinkel CCA för cirkelbågen

Exempel NC-block 23 L Y+20 RR F100

25 L Z+100 FMAX M2

24 DEP CT CCA 180 R+8 F100

Sista konturelementet: P _E med radiekompensering
Centrumvinkel = 180°, cirkelradie = 10 mm
Frikörning Z, återhopp, programslut

Frånkörning på en cirkelbåge med tangentiell anslutning till kontur och rätlinje: DEP LCT

TNC:n förflyttar verktyget på en cirkelbåge från den sista konturpunkten P_E till en hjälppunkt P_H. Därifrån förflyttas verktyget på en rät linje till slutpunkten P_N. Det sista konturelementet och den räta linjen P_H – P_N ansluter tangentiellt till cirkelbågen. Därför behövs bara radien R för att entydigt fastlägga cirkelbågen.

- Programmera sista konturelementet med slutpunkten P_E och radiekompensering
- ▶ Öppna dialogen med knappen APPR/DEP och softkey DEP LCT:

I ► Koordinater för slutpunkten P_N anges

Radie R för cirkelbågen. Ange ett positivt R

Exempel NC-block

23 L Y+20 RR F100	Sista konturelementet: P _E med radiekompensering
24 DEP LCT X+10 Y+12 R+8 F100	Koordinater P _N , cirkelradie = 10 mm
25 L Z+100 FMAX M2	Frikörning Z, återhopp, programslut

6.4 Konturfunktioner – rätvinkliga koordinater

Översikt konturfunktioner

Funktion	Konturfunktionsknapp	Verktygsrörelse	Erforderliga uppgifter
Rätlinje L eng.: Line		Rätlinje	Koordinater för den räta linjens slutpunkt
Fas CHF eng.: CH am F er		Fas mellan två räta linjer	Fasens längd
Cirkelcentrum CC; eng.: Circle Center	(D) (D)	Ingen	Koordinater för cirkelcentrum alt. Pol
Cirkelbåge C eng.: C ircle	Jc	Cirkelbåge runt cirkelcentrum CC till cirkelbågens slutpunkt	Koordinater för cirkelns slutpunkt, rotationsriktning
Cirkelbåge CR eng.: C ircle by R adius	CF o	Cirkelbåge med bestämd radie	Koordinater för cirkelns slutpunkt, cirkelradie, rotations- riktning
Cirkelbåge CT eng.: C ircle T angential		Cirkelbåge med tangentiell anslutning till föregående konturelement	Koordinater för cirkelns slutpunkt
Hörnrundning RND eng.: R ou ND ing of Corn	er	Cirkelbåge med tangentiell anslutning till föregående och efterföljande konturelement	Hörnradie R
Flexibel kontur- programmering FK	FK	Rätlinje eller cirkelbåge med godtycklig anslutning till föregående konturelement	Se kapitel 6.6

6.4 Konturfunktioner – rätvinkliga koordinater

Х

60

Rätlinje L

TNC:n förflyttar verktyget på en rät linje från sin aktuella position till den räta linjens slutpunkt. Startpunkten är det föregående blockets slutpunkt.

► Ange koordinater för den räta linjens slutpunkt

- Om så önskas:
- ▶ Radiekompensering RL/RR/R0
- Matning F
- ► Tilläggsfunktion M

Exempel NC-block

7	L	X+10	Y+40	RL	F200	M3	
8	L	IX+20) IY-1	L 5			
9	L	X+60	IY-10)			

Överför är-position

Man kan även generera ett rätlinjeblock (L-block) med knappen "överför är-position" (teach in):

- Förflytta verktyget, i driftart Manuell drift, till positionen som skall överföras
- ► Växla bildskärmspresentation till Programinmatning/Editering
- Välj ett programblock, efter vilket man önskar infoga L-blocket

 Tryck på knappen "överför är-position": TNC:n genererar ett L-block med är-positionens koordinater

Via MOD-funktionen fastlägger man hur många axlar som TNC:n skall lagra i L-blocket (se "14 MOD-funktioner, axelval för L-block-generering").

Infoga Fas CHF mellan två räta linjer

Fasningsfunktionen gör det möjligt att fasa av hörn som ligger mellan två räta linjer.

- I rätlinjeblocket innan och efter CHF-blocket skall man alltid programmera båda koordinaterna i planet som fasen skall utföras i.
- Radiekompenseringen innan och efter CHF-blocket måste alltid vara lika
- Fasen måste kunna utföras med det aktuella verktyget

► Fasens längd: Ange fasens längd

Om så önskas:

Matning F (endast verksam i CHF-blocket)

Beakta anvisningarna på nästa sida!

Y

15

5

20

10

40

Exempel NC-block

7 L X+0 Y+30 RL F300 M3 8 L X+40 IY+5 9 CHF 12 F250 10 L IX+5 Y+0

En kontur får inte börja med ett CHF-block.

En fas kan bara utföras i bearbetningsplanet.

En matningshastighet som anges i CHF-blocket är bara aktiv i detta CHF-block. Efter CHF-blocket blir den tidigare programmerade matningen åter aktiv.

Positionering till den av fasen avskurna hörnpunkten kommer inte att utföras.

Cirkelcentrum CC

Med cirkelcentrum definierar man cirkelbågar som programmeras med C-knappen (cirkelbåge C). För detta:

- anger man cirkelcentrumets rätvinkliga koordinater eller
- Sverför den sist programmerade positionen eller
- överför koordinaterna med knappen "överför är-position"

Koordinater CC: Ange koordinaterna för cirkelcentrumet eller

Överför den sist programmerade positionen: Ange inga koordinater

Exempel NC-block

5 CC X+25 Y+25

eller

10 L X+25 Y+25 11 CC

Programblocken 10 och 11 överensstämmer inte med bilden.

Varaktighet

Ett cirkelcentrum gäller ända tills man programmerar ett nytt cirkelcentrum. Ett cirkelcentrum kan även definieras för tilläggsaxlarna U, V och W.

Ange ett cirkelcentrum CC inkrementalt

Om ett cirkelcentrum anges med inkrementala koordinater så hänför sig cirkelcentrumets koordinater till den sist programmerade verktygspositionen.

Med CC markerar man en position som cirkelcentrum: Verktyget kommer inte att förflytta sig till denna position.

Cirkelcentrum CC används samtidigt som Pol för polära koordinater.

Cirkelbåge C runt cirkelcentrum CC

Definiera cirkelcentrum CC innan cirkelbåge C programmeras. Den sist programmerade verktygspositionen innan C-blocket är cirkelbågens startpunkt.

Förflytta verktyget till cirkelbågens startpunkt

°

- ► Ange koordinater för cirkelcentrum
- ▶ Koordinater för cirkelbågens slutpunkt
 - ▶ Rotationsriktning DR
 - Om så önskas:
 - Matning F
 - ► Tilläggsfunktion M

Exempel NC-block

5	C	C X+2	5 Y+2	5												
6	L	X+45	Y+25	RR	F200	Μ3										
7	C	X+45	Y+25	DR	F											

Fullcirkel

Programmera samma koordinater för slutpunkten som för startpunkten.

Cirkelbågens start- och slutpunkt måste ligga på cirkelbågen.

Inmatningstol.: upp till 0,016 mm (valbar via MP7431)

Cirkelbåge CR med bestämd radie

Verktyget förflyttas på en cirkelbåge med radie R.

- CR
- Ange koordinater för cirkelbågens slutpunkt
- Radie R Varning: Förtecknet definierar cirkelbågens storlek!
- Rotationsriktning DR Varning: Förtecknet bestämmer konkav eller konvex cirkelbåge!

Om så önskas:

- Matning F
- ► Tilläggsfunktion M

Fullcirkel

För att åstadkomma en fullcirkel programmerar man två CR-block efter varandra:

Den första halvcirkelns slutpunkt är den andra halvcirkelns startpunkt. Den andra halvcirkelns slutpunkt är den förstas startpunkt. Se bilden uppe till höger.

Centrumvinkel CCA och cirkelbågens radie R

Konturens startpunkt och slutpunkt kan förbindas med fyra olika cirkelbågar, vilka alla har samma radie:

Mindre cirkelbåge: CCA<180° Radien har positivt förtecken R>0

Större cirkelbåge: CCA>180° Radien har negativt förtecken R<0

Med rotationsriktningen definierar man om cirkelbågen välvning skall vara utåt (konvex) eller inåt (konkav):

Konvex: Rotationsriktning DR- (med radiekompensering RL)

Konkav: Rotationsriktning DR+ (med radiekompensering RL)

Exempel NC-block

Se bilderna i mitten och nere till höger.

10 L X+40 Y+40 RL F200 M3

11 CR X+70 Y+40 R+20 DR- (Båge 1) eller

11 CR X+70 Y+40 R+20 DR+ (Båge 2)

eller

11 CR X+70 Y+40 R-20 DR- (Båge 3)

eller

11 CR X+70 Y+40 R-20 DR+ (Båge 4)

Beakta anvisningarna på nästa sida!

Cirkelbåge CT med tangentiell anslutning

Verktyget förflyttas på en cirkelbåge som ansluter tangentiellt till det föregående programmerade konturelementet.

En anslutning är "tangentiell" då skärningspunkten mellan två konturelement är mjuk och kontinuerlig. Det bildas alltså inget synligt hörn i skarven mellan konturelementen.

Konturelementet som cirkelbågen skall ansluta tangentiellt till skall programmeras i blocket direkt innan CT-blocket. För detta behövs minst två positioneringsblock

Ange koordinater för cirkelbågens slutpunkt

Om så önskas:

- ▶ Matning F
- ► Tilläggsfunktion M

Exempel NC-block

7	L	X+0	Y+25	5 RL	F300	Μ3							
8	L	X+2	5 Y+3	30									
9	C .	Г Х+	45 Y-	+20									
1	0 1	- Y+	0										

CT-blocket och det föregående programmerade konturelementet skall innehålla båda koordinaterna i planet som cirkelbågen skall utföras i!

Hörnrundning RND

Med funktionen RND kan konturhörn rundas av.

Verktyget förflyttas på en cirkelbåge som ansluter tangentiellt både till det föregående och till det efterföljande konturelementet.

Rundningsbågen måste kunna utföras med det aktuella verktyget.

Rundningsradie: Ange cirkelbågens radie

Om så önskas:

Matning F (endast verksam i RND-blocket)

Exempel NC-block

5	L	X+10	Y+40	RL	F300	M3					
6	L	X+40	Y+25								
7	RI	ND R5	F100								
8	L	X+10	Y+5								

I det föregående och det efterföljande konturelementet anges båda koordinaterna i planet som hörnrundningen skall utföras i. Om man bearbetar konturen utan verktygsradiekompensering så måste man programmera bearbetningsplanets båda koordinater.

Positionering till själva hörnpunkten kommer inte att utföras.

En matningshastighet som anges i RND-blocket är bara aktiv i detta RND-block. Efter RND-blocket blir den tidigare programmerade matningen åter aktiv.

RND-block kan även användas för tangentiell framkörning till en kontur, exempelvis då APPR-funktionen inte bör användas.

Exempel: Rätlinjerörelse och fas med rätvinkliga koordinater

O BEGIN PGM LINEAR MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råämnesdefinition för grafisk simulering av bearbetningen
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Verktygsdefinition i programmet
4 TOOL CALL 1 Z S4000	Verktygsanrop med spindelaxel och spindelvarvtal
5 L Z+250 RO F MAX	Frikörning av verktyget i spindelaxeln med snabbtransport FMAX
6 L X-10 Y-10 R0 F MAX	Förpositionering av verktyget
7 L Z-5 RO F1000 M3	Förflyttning till bearbetningsdjupet med matning F = 1000 mm/min
8 APPR LT X+5 Y+5 LEN10 RL F300	Förflyttning till konturen vid punkt 1 på en rät linje med tangentiell
	anslutning
9 L Y+95	Förflyttning till punkt 2
10 L X+95	Punkt 3: första räta linjen för hörn 3
11 CHF 10	Programmering av fas med längd 10 mm
12 L Y+5	Punkt 4: andra räta linjen för hörn 3, första räta linjen för hörn 4
13 CHF 20	Programmering av fas med längd 20 mm
14 L X+5	Förflyttning till sista konturpunkten 1, andra räta linjen för hörn 4
15 DEP LT LEN10 F1000	Lämna konturen på en rät linje med tangentiell anslutning
16 L Z+250 RO F MAX M2	Frikörning av verktyget, programslut
17 END PGM LINEAR MM	

Exempel: Cirkelrörelse med rätvinkliga koordinater

O BEGIN PGM CIRCULAR MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råämnesdefinition för grafisk simulering av bearbetningen
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Verktygsdefinition i programmet
4 TOOL CALL 1 Z S4000	Verktygsanrop med spindelaxel och spindelvarvtal
5 L Z+250 RO F MAX	Frikörning av verktyget i spindelaxeln med snabbtransport FMAX
6 L X-10 Y-10 R0 F MAX	Förpositionering av verktyget
7 L Z-5 RO F1000 M3	Förflyttning till bearbetningsdjupet med matning F = 1000 mm/min
8 APPR LCT X+5 Y+5 R5 RL F300	Förflyttning till konturen vid punkt 1 på en cirkelbåge med
	tangentiell anslutning
9 L X+5 Y+85	Punkt 2: första räta linjen för hörn 2
10 RND R10 F150	Infoga radie med R = 10 mm, Matning: 150 mm/min
11 L X+30 Y+85	Förflyttning till punkt 3: Startpunkt för cirkelbågen med CR
12 CR X+70 Y+95 R+30 DR-	Förflyttning till punkt 4: Slutpunkt för cirkelbåge CR, Radie 30 mm
13 L X+95	Förflyttning till punkt 5
14 L X+95 Y+40	Förflyttning till punkt 6
15 CT X+40 Y+5	Förflyttning till punkt 7: Cirkelbågens slutpunkt, Cirkelbåge med
	tangentiell anslutning till punkt 6, TNC:n beräknar själv radien
16 L X+5	Förflyttning till sista konturpunkten 1
17 DEP LCT X-20 Y-20 R5 F1000	Lämna konturen på en cirkelbåge med tangentiell anslutning
18 L Z+250 RO F MAX M2	Frikörning av verktyget, programslut
19 END PGM CIRCULAR MM	

Exempel: Fullcirkel med rätvinkliga koordinater

O BEGIN PGM C-CC MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råämnesdefinition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+12,5	Verktygsdefinition
4 TOOL CALL 1 Z S3150	Verktygsanrop
5 CC X+50 Y+50	Definiera cirkelcentrum
6 L Z+250 RO F MAX	Frikörning av verktyget
7 L X-40 Y+50 RO F MAX	Förpositionering av verktyget
8 L Z-5 RO F1000 M3	Förflyttning till bearbetningsdjupet
9 APPR LCT X+0 Y+50 R5 RL F300	Förflyttning till cirkelns startpunkt på en cirkelbåge med tangentiell
	anslutning
10 C X+0 DR-	Förflyttning till cirkelns slutpunkt (=cirkelns startpunkt)
11 DEP LCT X-40 Y+50 R5 F1000	Lämna konturen på en cirkelbåge med tangentiell
	anslutning
12 L Z+250 R0 F MAX M2	Frikörning av verktyget, programslut
13 END DCM C_CC MM	

6.5 Konturfunktioner – polära koordinater

Med polära koordinater definierar man en position via en vinkel PA och ett avstånd PR från en tidigare definierad Pol CC. Se "4.1 Grunder".

Polära koordinater användes med fördel vid:

Positioner på cirkelbågar

Arbetsstyckesritningar med vinkeluppgifter, t.ex. vid hålcirklar

Översikt konturfunktioner med polära koordinater

Funktion	Konturfunktionsknapp	Verktygsrörelse	Erforderliga uppgifter
Rätlinje LP	יא ₽ + ₽	Rätlinje	Polär radie, polär vinkel för rätlinjens slutpunkt
Cirkelbåge CP	<u>}</u> • + ₽	Cirkelbåge runt cirkelcentrum/Pol CC till cirkelbågens slutpunkt	Polär vinkel för cirkelbågens slutpunkt, rotationsriktning
Cirkelbåge CTP	(ジ) + P	Cirkelbåge med tangentiell anslutning till föregående konturelement	Polär radie, polär vinkel för cirkelbågens slutpunkt
Skruvlinje (Helix)	℃ + P	Överlagring av en cirkelbåge och en rätlinje	Polär radie, polär vinkel för cirkelbågens slutpunkt, koordinat för slutpunkten i verktygsaxeln

Polära koordinater utgångspunkt: Pol CC

Pol CC kan definieras på ett godtyckligt ställe i bearbetningsprogrammet, innan positioner anges med polära koordinater. Definitionen av Pol CC programmeras på samma sätt som vid cirkelcentrum CC.

Koordinater CC: Ange rätvinkliga koordinater för Pol eller

Överför den sist programmerade positionen: Ange inga koordinater

6.5 Konturfunkti<mark>oner</mark> – polära koordinater

Rätlinje LP

Verktyget förflyttas på en rät linje från sin aktuella position till den räta linjens slutpunkt. Startpunkten är det föregående blockets slutpunkt.

Polär koordinatradie PR: Ange avståndet från den räta linjens slutpunkt till Pol CC

Polär koordinatvinkel PA: Vinkelposition för den räta linjens slutpunkt mellan –360° och +360°

Förtecknet för PA är fastlagd genom vinkelreferensaxeln och relateras därtill: För moturs vinkel från vinkelreferensaxeln till PR: PA>0 För medurs vinkel från vinkelreferensaxeln till PR: PA<0

Exempel NC-block

12	00	X+45	Y+25			
13	LP	PR+30) PA+0	RR	F300	Μ3
14	LP	PA+60)			
15	LP	IPA+6	50			
16	LP	PA+18	30			

Cirkelbåge CP runt Pol CC

Den polära koordinatradien PR är samtidigt cirkelbågens radie. PR är bestämd genom avståndet mellan startpunkten och Pol CC. Den sist programmerade verktygspositionen innan CP-blocket är cirkelbågens startpunkt.

Polär koordinatvinkel PA: Vinkelposition för cirkelbågens slutpunkt med ett värde mellan –5400° och +5400°

▶ Rotationsriktning DR

Exempel NC-block

18 0	C C 🖸	X+25 ۱	(+25			
19 L	LP	PR+20	PA+0	RR	F250	M3
20 0	CP	PA+180) DR+			

Cirkelbåge CTP med tangentiell anslutning

Verktyget förflyttas på en cirkelbåge som ansluter tangentiellt till det föregående konturelementet.

Polär koordinatradie PR: Avstånd mellan cirkelbågens slutpunkt och Pol CC

Polär koordinatvinkel PA: Vinkelposition för cirkelbågens slutpunkt

Exempel NC-block

12 CC X+40 Y+35 13 L X+0 Y+35 RL F250 M3 14 LP PR+25 PA+120 15 CTP PR+30 PA+30

16 L Y+0

Pol CC är inte cirkelbågens centrumpunkt!

Skruvlinje (Helix)

En skruvlinje är en kombination av en cirkulär rörelse och en linjär rörelse vinkelrät mot den cirkulära rörelsen. Dessa rörelser överlagras och utförs samtidigt. Cirkelbågen programmeras i ett huvudplan.

Skruvlinjer kan bara programmeras med polära koordinater.

Användningsområde

Inner- och yttergängor med stora diametrar

Smörjspår

Beräkning av skruvlinjen

För programmeringen behöver man den inkrementala uppgiften om den totala vinkeln som verktyget skall förflyttas på skruvlinjen samt skruvlinjens totala höjd.

För beräkning vid fräsriktning nedifrån och upp gäller:

Antal gängor n	Gängor + gängöverlapp vid gängans början och slut
Total höjd h	Stigning P x antal gängor n
Inkremental total vinkel IPA	Antal gängor x 360° + vinkel för gängans början + vinkel för gäng- överlapp
Startkoordinat Z	Stigning P x (gängor + gängöverlapp vid gängans början)

Skruvlinjens form

Tabellen visar sambandet mellan arbetsriktningen, rotationsriktningen och radiekompenseringen för olika konturformer.

Innergänga	Arbetsrikt.	Rotationsrikt.	Radiekomp.
högergänga	Z+	DR+	RL
vänstergänga	Z+	DR-	RR
högergänga	Z–	DR-	RR
vänstergänga	Z–	DR+	RL
Yttergänga			
högergänga	Z+	DR+	RR
vänstergänga	Z+	DR-	RL
högergänga	Z–	DR-	RL
vänstergänga	Z–	DR+	RR

Programmering av skruvlinje

Ange rotationsriktningen DR och den inkrementala totala vinkeln IPA med samma förtecken, annars kan verktyget beskriva en felaktig rörelse.

För den totala vinkeln IPA kan man ange ett värde från -5400° till +5400°. Om gängan som skall fräsas kommer att innehålla fler än 15 varv så programmerar man skruvlinjen i en programdelsupprepning (se "9.2 Programdelsupprepning")

- ר ר פ ר
- Polär koordinatvinkel: Ange den totala inkrementala vinkeln som verktyget skall förflyttas på skruvlinjen. Efter inmatning av vinkeln väljer man verktygsaxeln med en av axelvalsknapparna.
- Ange koordinat för skruvlinjens höjd inkrementalt
- ROTATIONSRIKTNING DR Medurs skruvlinje: DR– Moturs skruvlinje: DR+
- Radiekompensering RL/RR/R0 Ange radiekompensering enligt tabellen

Exempel NC-block

12	CC X+40 Y+25
1.2	7.0 F100 N2
13	2+0 F100 M3
1 /	
14	LP PR+3 PA+270 KL F50
15	CP TPA-1800 T7+5 DR-

Exempel: Rätlinjerörelse polärt

O BEGIN PGM LINEARPO MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råämnesdefinition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+7,5	Verktygsdefinition
4 TOOL CALL 1 Z S4000	Verktygsanrop
5 CC X+50 Y+50	Definiera utgångspunkt för polära koordinater
6 L Z+250 RO F MAX	Frikörning av verktyget
7 LP PR+60 PA+180 RO F MAX	Förpositionering av verktyget
8 L Z-5 RO F1000 M3	Förflyttning till bearbetningsdjupet
9 APPR PLCT PR+45 PA+180 R5 RL F250	Förflyttning till konturen vid punkt 1 på en cirkelbåge med
	tangentiell anslutning
10 LP PA+120	Förflyttning till punkt 2
11 LP PA+60	Förflyttning till punkt 3
12 LP PA+0	Förflyttning till punkt 4
13 LP PA-60	Förflyttning till punkt 5
14 LP PA-120	Förflyttning till punkt 6
15 LP PA+180	Förflyttning till punkt 1
16 DEP PLCT PR+60 PA+180 R5 F1000	Lämna konturen på en cirkelbåge med tangentiell anslutning
17 L Z+250 RO F MAX M2	Frikörning av verktyget, programslut
18 END PGM LINEARPO MM	

O BEGIN PGM HELIX MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råämnesdefinition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+5	Verktygsdefinition
4 TOOL CALL 1 Z S1400	Verktygsanrop
5 L Z+250 RO F MAX	Frikörning av verktyget
6 L X+50 Y+50 R0 F MAX	Förpositionering av verktyget
7 CC	Överför den sist programmerade positionen som Pol
8 L Z-12,75 RO F1000 M3	Förflyttning till bearbetningsdjupet
9 APPR PCT PR+32 PA-180 CCA180 R+2	Förflyttning till konturen på en cirkelbåge med tangentiell
RL F100	anslutning
10 CP IPA+3240 IZ+13,5 DR+ F200	Förflyttning med Helix-interpolering
11 DEP CT CCA180 R+2	Lämna konturen på en cirkelbåge med tangentiell anslutning
12 L Z+250 RO F MAX M2	Frikörning av verktyget, programslut
13 END PGM HELIX MM	
Om fler än 15 gängor skall fräsas:	

8 L Z-12.75 R0 F1000	
9 APPR PCT PR+32 PA-180 CCA180 R+2 RL F100	
10 LBL 1	Programdelsupprepningens början
11 CP IPA+360 IZ+1,5 DR+ F200	Ange stigning direkt som IZ-värde
12 CALL LBL 1 REP 24	Antal upprepningar (gängor)
13 DEP CT CCA180 R+2	

6.6 Konturfunktioner – Flexibel konturprogrammering FK

Grunder

Arbetsstyckesritningar som inte är NC-anpassade innehåller ofta måttuppgifter som man inte kan programmera med de grå dialogknapparna. Då kan exempelvis

- bekanta koordinater ligga på konturelementet eller i dess närhet,
- koordinatuppgifter referera till ett annat konturelement eller
- riktningsuppgifter och uppgifter om konturförloppet vara bekanta.

Sådana uppgifter programmerar man direkt med hjälp av den flexibla konturprogrammeringen FK. TNC:n beräknar konturen utifrån de kända koordinatuppgifterna och stödjer programmeringsdialogen med en interaktiv FK-grafik. Bilden uppe till höger visar ett exempel på ritningsunderlag som enklast definieras med FK-programmering.

För att kunna exekvera FK-program i äldre TNC-styrsystem finns en konverteringsfunktion (se "4.3 Standard filhantering, konvertera FK-program till Klartext-program").

Grafik vid FK-programmering

För att kunna använda grafiken vid FK-programmering väljer man bildskärmsuppdelning PROGRAM + GRAFIK (se "1.3 Driftarter, softkeys för bildskärmsuppdelning")

Med ofullständiga koordinatuppgifter kan oftast inte en arbetsstyckeskontur bestämmas entydigt. I dessa fall presenterar TNC:n de olika möjliga lösningarna i FK-grafiken och man får själv möjlighet att välja en av dessa lösningar. FK-grafiken presenterar arbetsstyckeskonturen med olika färger:

- vit Konturelementet är entydigt bestämt
- **grön** De inmatade uppgifterna ger ett antal möjliga lösningar; man väljer själv en av dessa
- **röd** De inmatade uppgifterna räcker ännu inte för att beräkna konturen; man anger ytterligare uppgifter

När de inmatade uppgifterna erbjuder flera lösningar och konturelementet presenteras med grön färg så väljer man den korrekta konturen på följande sätt:

- VISA LÖSNING
- Tryck på softkey VISA LÖSNING upprepade gånger tills det korrekta konturelementet visas
- VÄLJ LÖSNING
- Det presenterade konturelementet motsvarar ritningsunderlaget: Bestäm med softkey VÄLJ LÖSNING

Ϋ́ 6.6 Konturfunktioner – Flexibel konturprogrammering

Konturelement som presenteras med grön färg bör väljas med VÄLJ LÖSNING så snart som möjligt. Detta underlättar TNC:ns beräkningar av efterföljande konturelement.

Om man ännu inte vill välja en med grön färg presenterad kontur så trycker man på softkey AVSLUTA VAL för att fortsätta FK-dialogen.

Er maskintillverkare kan definiera andra färger för FKgrafiken.

NC-block, från ett program som anropas med PGM CALL, presenteras av TNC:n med en annan färg.

Öppna FK-dialog

Om man trycker på den grå konturfunktionsknappen FK kommer TNC:n att presentera softkeys med vilka FK-dialogen kan öppnas: Se tabellen till höger. För att sedan välja bort dessa softkeys trycker man på knappen FK på nytt.

När man öppnar FK-dialogen med en av dessa softkeys så visar TNC:n en utökad softkeyrad. Med denna softkeyrad kan man ange kända koordinater, ge riktningsangivelser och mata in uppgifter om konturförloppet.

Beakta följande förutsättningar för FK-programmeringen

Konturelement som programmeras med flexibel konturprogrammering kan bara programmeras i bearbetningsplanet. Bearbetningsplanet definieras i bearbetningsprogrammets första BLK-FORM-block.

Ange alla tillgängliga uppgifter om varje konturelement. Programmera även uppgifter som inte förändras i varje block: Icke programmerade uppgifter tolkas som obekanta!

Q-parametrar är tillåtna i alla FK-element förutom element med relativa referenser (t.ex RX eller RAN), med andra ord element som refererar till andra NC-block.

Om man blandar både konventionell programmering och flexibel konturprogrammering så måste varje FK-avsnitt vara entydigt bestämt.

TNC:n behöver en fast punkt från vilken beräkningarna utgår. Programmera därför en position med de grå dialogknapparna, som innehåller bearbetningsplanets båda koordinater, innan FK-avsnittet. I detta block får inga Q-parametrar programmeras.

Om det första blocket i FK-avsnittet är ett FCT- eller FLTblock måste framkörningsriktningen vara entydigt definierad. Därför skall man programmera minst två NCblock med de grå dialogknapparna innan FK-avsnittet börjar.

Ett FK-avsnitt får inte börja direkt efter ett LBL-märke.

Konturelement	Softkey
Rätlinje med tangentiell anslutning	FLT
Rätlinje utan tangentiell anslutning	FL
Cirkelbåge med tangentiell anslutning	FCT
Cirkelbåge utan tangentiell anslutning	FC

Flexibel programmering av räta linjer

- ▶ Visa softkeys för Flexibel konturprogrammering: Tryck på knappen FK
- FL
- Öppna dialogen för flexibel rätlinje: Tryck på softkey FL. TNC:n presenterar ytterligare softkeys – se tabellen till höger
- Ange alla kända uppgifter i blocket med hjälp av dessa softkeys. FK-grafiken presenterar den programmerade konturen med röd färg tills de inmatade uppgifterna är tillräckliga. Flera lösningar presenteras i grafiken med grön färg. Se "Grafik vid Flexibel konturprogrammering".

Exempel NC-block se nästa sida.

Rätlinje med tangentiell anslutning

När en rätlinje skall ansluta tangentiellt till det föregående konturelementet öppnar man dialogen med softkey FLT:

- Visa softkeys för Flexibel konturprogrammering: Tryck på knappen FK
- FLT
- ▶ Öppna dialogen: Tryck på softkey FLT
- Ange alla kända uppgifter i blocket med hjälp av softkeys (tabellen till höger)

Flexibel programmering av cirkelbågar

FC

- Visa softkeys för Flexibel konturprogrammering: Tryck på knappen FK
- Öppna dialogen för flexibel cirkelbåge: Tryck på softkey FC; TNC:n presenterar ytterligare softkeys för direkta uppgifter om cirkelbågen eller om cirkelns centrum; se tabellen till höger
 - Ange alla kända uppgifter i blocket med hjälp av dessa softkeys: FK-grafiken presenterar den programmerade konturen med röd färg tills de inmatade uppgifterna är tillräckliga. Flera lösningar presenteras i grafiken med grön färg; Se "Grafik vid FK-programmering".

Cirkelbåge med tangentiell anslutning

När en cirkelbåge skall ansluta tangentiellt till det föregående konturelementet öppnar man dialogen med softkey FCT:

Visa softkeys för Flexibel konturprogrammering: Tryck på knappen FK

- Öppna dialogen: Tryck på softkey FCT
- Ange alla kända uppgifter i blocket med hjälp av softkeys (tabellen till höger)

Kända uppgifter	Softkey
X-koordinat för den räta linjens slutpunkt	×
Y-koordinat för den räta linjens slutpunkt	ţŸ
Polär koordinatradie	PR •
Polär koordinatvinkel	PA •
Linjens längd	LEN
Linjens stigningsvinkel	AN
Början/slut på en sluten kontur	

Referens till andra block se avsnitt "Relativ referens"; Hjälppunkter se avsnitt "Hjälppunkter" i detta underkapitel.

Direkta uppgifter om cirkelbågen	Softkey
X-koordinat för cirkelbågens slutpunkt	×
Y-koordinat för cirkelbågens slutpunkt	ţ
Polär koordinatradie	PR +
Polär koordinatvinkel	PA
Cirkelbågens rotationsriktning	DR (- *)
Cirkelbågens radie	() R
Vinkel från huvudaxeln till cirkelbågens slutpunkt	

Stigningsvinkel för cirkelbågar

En cirkelbåges stigningsvinkel AN är ingångstangentens vinkel. Se bilden till höger.

Kordans längd för cirkelbågar

En cirkelbåges kordalängd LEN är det linjära avståndet mellan cirkelbågens start- och slutpunkt. Se bilden till höger.

Cirkelcentrum för flexibelt programmerade cirklar

TNC:n beräknar cirkelcentrumet för flexibelt programmerade cirkelbågar utifrån de inmatade uppgifterna. Därför är det möjligt att programmera fullcirklar med ett block även vid FK-programmering.

Om man vill definiera cirkelcentrum med polära koordinater måste Pol programmeras med funktionen FPOL istället för med CC. FPOL är aktiv fram till nästa block med FPOL och anges med rätvinkliga koordinater.

Ett konventionellt programmerat eller beräknat cirkelcentrum är inte längre aktivt som Pol eller cirkelcentrum i ett nytt FK-avsnitt: När konventionellt programmerade polära koordinater refererar till en Pol, som definierats tidigare i ett CC-block, så skall man definiera denna Pol på nytt med ett CC-block efter FK-avsnittet.

Exempel NC-block för FL, FPOL och FCT

7	FPO)L	X+2	0 Y+3	0	
8	FL	I)	(+10	Y+20	RR	F10

9 FCT PR+15 IPA+30 DR+ R15

Se bilden nere till höger.

Referens till andra block se avsnitt "Relativ referens"; Hjälppunkter se avsnitt "Hjälppunkter" i detta underkapitel.

Hjälppunkter

Både för flexibla rätlinjer och för flexibla cirkelbågar kan man ange hjälppunkter som ligger på eller i närheten av konturen. Softkeys för detta finns tillgängliga så snart FK-dialogen har öppnats med softkey FL, FLT, FC eller FCT.

Hjälppunkter för rätlinjer

Hjälppunkten befinner sig på rätlinjen eller i rätlinjens förlängning: Se tabellen uppe till höger.

Hjälppunkten befinner sig på avståndet D bredvid rätlinjen: Se tabellen i mitten till höger.

Hjälppunkter för cirkelbågar

För en cirkelbåge kan man ange 1, 2 eller 3 hjälppunkter på konturen: Se tabellen nere till höger.

Exempel NC-block

13 FC DR- R10 P1X+42.929 P1Y+60.071 14 FLT AN-70 PDX+50 PDY+53 D10

Se bilden nere till höger.

Hjälppunkter på rätlinjen	Softkey
X-koordinat hjälppunkt P1 eller P2	P2X
Y-koordinat hjälppunkt P1 eller P2	P1V P2V

Hjälppunkter bredvid rätlinjen	Softkey
X-koordinat för hjälppunkten	PDX
Y-koordinat för hjälppunkten	PDV
Avstånd mellan hjälppunkten och rätlinjen	

Hjälppunkt på cirkelbågen		Softkey
X-koordinat för en hjälppunkt P1, P2 eller P3	(P1X)	P2X (P3X)
Y-koordinat för en hjälppunkt P1, P2 eller P3	P1V	P2V P3V
Koordinater för en hjälppunkt bredvid cirkelbågen		PDX,
Avstånd till hjälppunkten bredvid cirkelbågen		D

6.6 Konturfunktioner – Flexibel <mark>kont</mark>urprogrammering FK

Relativ referens

Relativa referenser är uppgifter som refererar till andra konturelement. Softkeys och programord för **R**elativa referenser börjar med ett "**R**". Bilden till höger visar måttuppgifter som man bör programmera med relativa referenser.

Den relativa referensens koordinater och vinkel programmeras alltid **inkrementalt**. Dessutom anges blocknumret på konturelementet som man refererar till.

Konturelementet, vars blocknummer man anger, får inte ligga mer än 64 positioneringsblock ifrån blocket som man programmerar referensen i.

Om man raderar ett block som ett annat block refererar till så kommer TNC:n att presentera ett felmeddelande. Korrigera programmet innan detta block raderas.

Relativ referens för en flexibel rätlinje	Softkey
Koordinater utgående från slutpunkten på block N	RYM
Ändring av polär koordinatradie i förhållande till block N	RPRN
Ändring av polär koordinatvinkel i förhållande till block N	RPA
Vinkel mellan rätlinjen och ett annat konturelement	RANN
Rätlinje parallell med ett annat konturelement	PAR
Avstånd mellan rätlinjen och det parallella konturelementet	

Relativ referens för en cirkelbåges koordinater	Softkey
Koordinater utgående från slutpunkten på block N	RVIN
Ändring av polär koordinatradie i förhållande till block N	RPR
Ändring av polär koordinatvinkel i förhållande till block N	RPAN
Vinkel mellan cirkelbågens ingångstangent och det andra konturelementet	RANIN

Relativ referens för cirkelcentrumkoordinater S	oftkey
CC-koordinater utgående från slutpunkten på block N	RCCVN
Ändring av polär koordinatradie i förhållande till block N	RCCPRN
Ändring av polär koordinatvinkel i förhållande till block N	RCCPAN

Exempel NC-block

Kända koordinater utgående från block N. Se bilden uppe till höger:

12	FPOL X+10 Y+10
13	FL PR+20 PA+20
14	FL AN+45
15	FCT IX+20 DR- R20 CCA+90 RX 13
16	FL IPR+35 PA+0 RPR 13

Kända riktningar och avstånd för konturelementet utgående från block N. Se bilden i mitten till höger.

17	FL LEN 20 AN+15
18	FL AN+105 LEN 12.5
19	FL PAR 17 DP 12.5
20	FSELECT 2
21	FL LEN 20 IAN+95
22	FL IAN+220 RAN 18
Kän	da koordinater för cirkelcentrum utgående från block N. Se

Kända koordinater för cirkelcentrum utgående från block N. Se bilden nere till höger.

12 FL X+10	Y+10 RL	
13 FL		
14 FL X+18	Y+35	
15 FL		
16 FL		

17 FC DR- R10 CCA+0 ICCX+20 ICCY-15 RCCX12 RCCY14

6.6 Konturfunktioner – Flexibel <mark>kont</mark>urprogrammering FK

Sluten kontur

Med softkey CLSD kan man markera början och slut på en sluten kontur. Därigenom reduceras antalet möjliga lösningar för det sista konturelementet.

CLSD anger man som ett tillägg till en annan konturuppgift i ett FKavsnitts första och sista block.

Konvertera FK-program

I filhanteringen kan ett FK-program omvandlas till ett Klartextprogram på följande sätt:

- ► Kalla upp filhanteringen och presentera filer.
- Förflytta markören till filen som skall omvandlas.
 - KONVERTE. FK->H

Tryck på softkey YTTERLIG. FUNKT. och därefter KONVERTERA FK->H. TNC:n omvandlar alla FK-blocken till klartext-block.

Cirkelcentrum som har definierats före ett FK-avsnitt kan eventuellt behöva definieras på nytt i det konverterade programmet. Testa Klartext-bearbetningsprogrammet efter konverteringen innan det exekveras.

O BEGIN PGM FK1 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råämnesdefinition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Verktygsdefinition
4 TOOL CALL 1 Z S500	Verktygsanrop
5 L Z+250 RO F MAX	Frikörning av verktyget
6 L X-20 Y+30 R0 F MAX	Förpositionering av verktyget
7 L Z-10 RO F1000 M3	Förflyttning till bearbetningsdjupet
8 APPR CT X+2 Y+30 CCA90 R+5 RL F250	Förflyttning till konturen på en cirkelbåge med tangentiell anslutning
9 FC DR- R18 CLSD+ CCX+20 CCY+30	FK-avsnitt:
10 FLT	Programmering av kända uppgifter om varje konturelement
11 FCT DR- R15 CCX+50 CCY+75	
12 FLT	
13 FCT DR- R15 CCX+75 CCY+20	
14 FLT	
15 FCT DR- R18 CLSD- CCX+20 CCY+30	
16 DEP CT CCA90 R+5 F1000	Lämna konturen på en cirkelbåge med tangentiell anslutning
17 L X-30 Y+0 R0 F MAX	
18 L Z+250 RO F MAX M2	Frikörning av verktyget, programslut
19 END PGM FK1 MM	

O BEGIN PGM FK2 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råämnesdefinition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+2	Verktygsdefinition
4 TOOL CALL 1 Z S4000	Verktygsanrop
5 L Z+250 RO F MAX	Frikörning av verktyget
6 L X+30 Y+30 R0 F MAX	Förpositionering av verktyget
7 L Z+5 RO F MAX M3	Förpositionering i verktygsaxeln
8 L Z-5 R0 F100	Förflyttning till bearbetningsdjupet
9 APPR LCT X+0 Y+30 R5 RR F350	Förflyttning till konturen på en cirkelbåge med tangentiell anslutning
10 FPOL X+30 Y+30	FK-avsnitt:
11 FC DR- R30 CCX+30 CCY+30	Programmering av kända uppgifter om varje konturelement
12 FL AN+60 PDX+30 PDY+30 D10	
13 FSELECT 3	
14 FC DR- R20 CCPR+55 CCPA+60	
15 FSELECT 2	
16 FL AN-120 PDX+30 PDY+30 D10	
17 FSELECT 3	
18 FC X+0 DR- R30 CCX+30 CCY+30	
19 FSELECT 2	
20 DEP LCT X+30 Y+30 R5	Lämna konturen på en cirkelbåge med tangentiell anslutning
21 L Z+250 RO F MAX M2	Frikörning av verktyget, programslut
22 END PGM FK2 MM	

O BEGIN PGM FK3 MM		
1 BLK FORM 0.1 Z X-45 Y-45 Z-20	Råämnesdefinition	
2 BLK FORM 0.2 X+120 Y+70 Z+0		
3 TOOL DEF 1 L+0 R+3	Verktygsdefinition	
4 TOOL CALL 1 Z S4500	Verktygsanrop	
5 L Z+250 RO F MAX	Frikörning av verktyget	
6 L X-70 Y+0 R0 F MAX	Förpositionering av verktyget	
7 L Z-5 RO F1000 M3	Förflyttning till bearbetningsdjupet	
8 APPR CT X-40 Y+0 CCA90 R+5 RL F250	Förflyttning till konturen på en cirkelbåge med tangentiell anslutning	
9 FC DR- R40 CCX+0 CCY+0	FK-avsnitt:	
10 FLT	Programmering av kända uppgifter om varje konturelement	
11 FCT DR- R10 CCX+0 CCY+50		
12 FLT		
13 FCT DR+ R6 CCX+0 CCY+0		
14 FCT DR+ R24		
15 FCT DR+ R6 CCX+12 CCY+0		
16 FSELECT 2		
17 FCT DR- R1,5		
18 FCT DR- R36 CCX+44 CCY-10		
19 FSELECT 2		
20 FCT DR+ R5		
21 FLT X+110 Y+15 AN+0		
22 FL AN-90		
23	FL X+65 AN+180 PAR21 DP30	
----	-----------------------------	--
24	RND R5	
25	FL X+65 Y-25 AN-90	
26	FC DR+ R50 CCX+65 CCY-75	
27	FCT DR- R65	
28	FSELECT 1	
29	FCT Y+0 DR- R40 CCX+0 CCY+0	
30	FSELECT 4	
31	DEP CT CCA90 R+5 F1000	Lämna konturen på en cirkelbåge med tangentiell anslutning
32	L X-70 RO F MAX	
33	L Z+250 RO F MAX M2	Frikörning av verktyget, programslut
34	END PGM FK3 MM	

6.7 Konturfunktioner – Spline-interpolering

Konturer, som beskrivs med splines i ett CAD-system, kan överföras och exekveras direkt i TNC:n. TNC:n förfogar över en splineinterpolator, med vilken ett polynom av tredje graden kan utföras i två, tre, fyra eller fem axlar.

 Man kan inte editera spline-block i TNC:n. Undantag: Matning F och tilläggsfunktion M i spline-block.

Exempel: Blockformat för två axlar

7 L X	+33,909 Z+75,107 F MAX	Spline-startpunkt
8 SPL	X+39,824 Z+77,425	Spline-slutpunkt
К	(3X+0,0983 K2X-0,441 K1X-5,5724	Spline-parameter för X-axel
K	3Z+0,0015 K2Z-0,9549 K1Z+3,0875 F10000	Spline-parameter för Z-axel
9 SPL	X+44,862 Z+73,44	Spline-slutpunkt
K	(3X+0,0934 K2X-0,7211 K1X-4,4102	Spline-parameter för X-axel
K	3Z-0,0576 K2Z-0,7822 K1Z+4,8246	Spline-parameter för Z-axel
1.0		

10 ...

TNC:n exekverar spline-blocket enligt följande polynom av tredje graden:

 $X(t) = K3X \cdot t^3 + K2X \cdot t^2 + K1X \cdot t + X$

 $Z(t) = K3Z \cdot t^3 + K2Z \cdot t^2 + K1Z \cdot t + Z$

Därvid löper variabel t från 1 till 0.

Exempel: Blockformat för fem axlar

	•	
7	L X+33,909 Y-25,838 Z+75,107 A+17 B-10,103 F MAX	Spline-startpunkt
8	SPL X+39,824 Y-28,378 Z+77,425 A+17,32 B-12,75	Spline-slutpunkt
	K3X+0,0983 K2X-0,441 K1X-5,5724	Spline-parameter för X-axel
	K3Y-0,0422 K2Y+0,1893 K1Y+2,3929	Spline-parameter för Y-axel
	K3Z+0,0015 K2Z-0,9549 K1Z+3,0875	Spline-parameter för Z-axel
	K3A+0,1283 K2A-0,141 K1A-0,5724	Spline-parameter för A-axel
	K3B+0,0083 K2B-0,413 E+2 K1B-1,5724 E+1 F10000	Spline-parameter för B-axel med exponent-
		form
9		

TNC:n exekverar spline-blocket enligt följande polynom av tredje graden:

 $X(t) = K3X \cdot t^3 + K2X \cdot t^2 + K1X \cdot t + X$

 $Y(t) = K3Y \cdot t^3 + K2Y \cdot t^2 + K1Y \cdot t + Y$

 $Z(t) = K3Z \cdot t^3 + K2Z \cdot t^2 + K1Z \cdot t + Z$

 $A(t) = K3A \cdot t^3 + K2A \cdot t^2 + K1A \cdot t + A$

 $B(t) = K3B \cdot t^3 + K2B \cdot t^2 + K1B \cdot t + B$

Därvid löper variabel t från 1 till 0.

För varje slutpunktskoordinat i spline-blocket måste spline-parameter K3 till K1 vara programmerad. Slutpunktskoordinaternas ordningsföljd i spline-blocket är godtycklig.

TNC förväntar sig alltid spline-parameter K för varje axel i ordningsföljd K3, K2, K1.

Förutom huvudaxlarna X, Y och Z kan TNC:n behandla tilläggsaxlarna U, V och W, samt även rotationsaxlarna A, B och C i SPL-blocket. I spline-parameter K måste då alltid respektive axel finnas angiven (t.ex. K3A+0,0953 K2A-0,441 K1A+0,5724).

Om en värdet i en spline-parameter K är större än 9,99999999, måste postprocessorn beskriva K i exponent-form (t.ex. K3X+1,2750 E2).

TNC:n kan även exekvera ett program med spline-block vid aktiv vridning av bearbetningsplanet.

Inmatningsområde

Spline-slutpunkt: -99 999,9999 till +99 999,9999

- Spline-parameter K: -9,99999999 till +9,99999999
- Exponent för spline-parameter K: -255 till +255 (jämnt heltalsvärde)

Programmering: Tilläggsfunktioner

7.1 Inmatning av tilläggsfunktioner M och STOPP

Med TNC:ns tilläggsfunktioner – även kallade M-funktioner – kan man styra:

- programförloppet, t.ex. ett avbrott i programexekveringen
- maskinfunktionerna, såsom påslag och avstängning av spindelrotationen och kylvätskan
- verktygets konturbeteende

Maskintillverkaren kan frige tilläggsfunktioner som inte finns beskrivna i denna handbok. Beakta anvisningarna i Er maskinhandbok.

Man anger en tilläggsfunktion M i slutet av ett positioneringsblock. TNC:n presenterar då följande dialog:

Tilläggsfunktion M ?

l dialogen anger man oftast bara numret på den önskade tilläggsfunktionen. Vid en del tilläggsfunktioner fortsätter dock dialogen så att man kan mata in parametrar för denna funktion.

l driftarterna Manuell drift och El. handratt anger man tilläggsfunktionerna via softkey M.

Beakta att en del tilläggsfunktioner aktiveras i början av positioneringsblocket medan andra aktiveras i slutet.

Tilläggsfunktionerna blir verksamma från det block som de definierats i. Såvida en specifik tilläggsfunktion inte bara är verksamma blockvis så upphävs de i ett senare block eller vid programslutet. Vissa tilläggsfunktioner är bara aktiverade i det block i vilket de definierats i.

Ange tilläggsfunktion i STOP-block

Ett programmerat STOP-block avbryter programexekveringen alternativt programtestet, t.ex. för att kontrollerar verktyget. I ett STOP-block kan man programmera en tilläggsfunktion M:

Programmera ett avbrott i programkörningen: Tryck på knappen STOP

► Ange tilläggsfunktion M

Exempel NC-block

87 STOP M6

7.2 Tilläggsfunktioner för kontroll av programkörning, spindel och kylvätska

М	Verkan	Aktiveras vid
M00	Programexekvering STOPP Spindel STOPP Kylvätska AV	Blockslut
M02	Programexekvering STOPP Spindel STOPP Kylvätska från Återhopp till block 1 Radera statuspresentationen (avhängi maskinparameter 7300)	Blockslut gt
M03	Spindel TILL medurs	Blockbörjan
M04	Spindel TILL moturs	Blockbörjan
M05	Spindel STOPP	Blockslut
M06	Verktygsväxling Spindel STOPP Programexekvering STOPP (avhängigt maskinparameter 7440)	Blockslut
M08	Kylvätska TILL	Blockbörjan
M09	Kylvätska AV	Blockslut
M13	Spindel TILL medurs Kylvätska TILL	Blockbörjan
M14	Spindel TILL moturs Kylvätska på	Blockbörjan
M30	som M02	Blockslut

7.3 Tilläggsfunktioner för koordinatuppgifter

Programmering av maskinfasta koordinater: M91/M92

Mätskalans nollpunkt

På mätskalan finns ett referensmärke som indikerar mätskalans nollpunkt.

Maskinens nollpunkt

Maskinens nollpunkt behöver man för följande ändamål:

- Ställa in begränsning av rörelseområdet (mjukvarubegränsning)
- Förflytta till maskinfasta positioner (t.ex. position för verktygsväxling)
- Inställning av arbetsstyckets utgångspunkt

I en maskinparameter definierar maskintillverkaren avståndet från mätskalornas nollpunkter till maskinens nollpunkt för varje enskild axel.

Standardbeteende

TNC:n refererar koordinater till arbetsstyckets utgångspunkt (se "Inställning av utgångspunkt").

Beteende vid M91 – Maskinens nollpunkt

Om koordinaterna i positioneringsblock skall utgå från maskinens nollpunkt, istället för arbetsstyckets utgångspunkt, så anger man M91 i dessa block.

TNC:n presenterar koordinatvärdena utifrån maskinens nollpunkt. I statuspresentationen väljer man koordinatvisning REF i (se "1.4 Statuspresentation").

Beteende vid M92 – Maskinens utgångspunkt

Förutom maskinens nollpunkt kan maskintillverkaren definiera ytterligare en maskinfast position (Maskinens utgångspunkt).

Maskintillverkaren definierar, för varje axel, avståndet från maskinens nollpunkt till maskinens utgångspunkt (se maskinhandboken).

Om koordinaterna i positioneringsblock skall utgå från maskinens utgångspunkt, istället för arbetsstyckets utgångspunkt, så anger man M92 i dessa block.

> Även vid M91 och M92 kommer TNC:n att utföra korrekt radiekompensering. Däremot sker inte kompensering för verktygslängden.

M91 och M92 fungerar inte vid 3D-vridet bearbetningsplan. TNC:n kommer i detta fall att presentera ett felmeddelande.

Verkan

M91 och M92 är bara aktiva i programblocken, i vilka M91 eller M92 har programmerats.

M91 och M92 aktiveras i blockets början.

Arbetsstyckets utgångspunkt

Om koordinaterna alltid skall utgå från maskinens nollpunkt så kan funktionen för inställning av arbetsstyckets utgångspunkt spärras i en eller flera axlar; se maskinparameter 7295.

Om funktionen för inställning av arbetsstyckets utgångspunkt har spärrats för alla axlar så kommer TNC:n inte att visa softkey INSTÄLLN. UTGÅNGSPUNKT i driftart Manuell drift.

Bilden till höger visar ett koordinatsystem med maskinens och arbetsstyckets nollpunkt.

M91/M92 i driftart programtest

För att även kunna simulera M91/M92-förflyttningar grafiskt måste man aktivera övervakningen av bearbetningsutrymmet och låta råämnet presenteras i förhållande till den inställda utgångspunkten (se Kapitel "12.8 Presentera råämnet i bearbetningsrummet").

Förflyttning till positioner i icke vridet koordinatsystem vid 3D-vridet bearbetningsplan: M130

Standardbeteende vid 3D-vridet bearbetningsplan

TNC:n hänför koordinaterna i positioneringsblocken till det vridna koordinatsystemet.

Beteende med M130

TNC:n hänför koordinater i **rätlinjeblock** till det icke vridna koordinatsystemet, även när vridning av bearbetningsplanet är aktiv.

TNC:n positionerar då det vinklade verktyget till de programmerade koordinaterna i det icke vridna systemet.

Verkan

M130 är endast aktiv i rätlinjeblock utan radiekompensering och i de programblock i vilka M130 har programmerats i.

7.4 Tilläggsfunktioner för konturbeteende

Rundning av hörn: M90

Standardbeteende

Vid positioneringsblock utan radiekompensering stoppar TNC:n verktyget under en kort tid vid hörn (precisions-stopp).

Vid programblock med radiekompensering (RR/RL) infogar TNC:n automatiskt en övergångsbåge vid ytterhörn.

Beteende med M90

Vid hörnövergångar kommer verktyget att förflyttas med konstant banhastighet: Hörnet rundas av och arbetsstyckets yta blir jämnare. Dessutom minskar detta bearbetningstiden. Se bilden i mitten till höger.

Användningsexempel: Ytor med korta linjära inkrement.

Verkan

M90 är bara aktiv i de programblock, i vilka M90 har programmerats.

M90 aktiveras i blockets början. Driftsätt släpfelsberäkning måste vara aktiverad.

Infoga definierad rundningsbåge mellan räta linjer: M112

Av kompatibilitetsskäl är funktionen M112 fortfarande tillgänglig. För att fastlägga toleransen vid snabb konturfräsning förordar dock HEIDENHAIN användning av cykeln TOLERANS (se "8.8 Specialcykler")

Bearbeta små kontursteg: M97

Standardbeteende

Vid ytterhörn infogar TNC:n en övergångsbåge. Vid mycket små kontursteg kan detta medföra att verktyget skadar konturen. Se bilden uppe till höger.

Vid sådana tillfällen avbryter TNC:n programkörningen och presenterar ett felmeddelande "Verktygsradie för stor".

Beteende med M97

TNC:n beräknar konturskärningspunkten för konturelementen – på samma sätt som vid innerhörn – och förflyttar verktyget via denna punkt. Se bilden nere till höger.

Programmera M97 i samma block som punkten för ytterhörnet.

Verkan

M97 är bara verksam i det programblock som den har programmerats i.

Konturhörn som bearbetas med M97 blir inte fullständigt bearbetade. Eventuellt måste konturhörnet efterbearbetas med ett mindre verktyg.

Exempel NC-block

5	TOOL DEF L R+20	Stor verktygsradie
13	L X Y R F M97	Förflyttning till konturpunkt 13
14	L IY-0,5 R F	Bearbetning av små kontursteg 13 och 14
15	L IX+100	Förflyttning till konturpunkt 15
16	L IY+0,5 R F M97	Bearbetning av små kontursteg 15 och 16
17	L X Y	Förflyttning till konturpunkt 17

Fullständig bearbetning av öppna konturhörn: M98

Standardbeteende

Vid innerhörn beräknar TNC:n skärningspunkten för fräsbanorna och ändrar verktygets rörelseriktning i denna punkt.

När konturen är öppen vid hörnet ger detta upphov till en ofullständig bearbetning: Se bilden uppe till höger.

Beteende med M98

Med tilläggsfunktionen M98 förflyttar TNC:n verktyget så långt att varje konturpunkt blir fullständigt bearbetad: Se bilden nere till höger.

Verkan

M98 är bara verksam i det programblock som den har programmerats i.

M98 aktiveras i blockets slut.

Exempel NC-block

Förflyttning i tur och ordning till konturpunkterna 10, 11 och 12:

Matningsfaktor vid nedmatningsrörelse: M103

Standardbeteende

TNC:n förflyttar verktyget, oberoende av rörelseriktningen, med den sist programmerade matningshastigheten.

Beteende med M103

TNC:n reducerar matningshastigheten vid rörelser i negativ riktning i verktygsaxeln. Hastighetsvektorn i negativ verktygsaxel FZMAX begränsas till en faktor F% av den sist programmerade matningshastigheten FPROG:

 $FZMAX = FPROG \times F\%$

Inmatning av M103

När man anger M103 i ett positioneringsblock så fortsätter TNC:n dialogen och frågar efter faktor F.

Verkan

M103 aktiveras i blockets början. Upphäv M103: Förnyad programmering av M103 **utan faktor**

Exempel NC-block

Matning vid nedmatning motsvarar 20% av matningen i planet.

	Verklig banhastighet (mm/min):
17 L X+20 Y+20 RL F500 M103 F20	500
18 L Y+50	500
19 L IZ-2,5	100
20 L IY+5 IZ-5	141
21 L IX+50	500
22 L Z+5	500

Man aktiverar M103 med maskinparameter 7440; se "13.1 Allmänna användarparametrar".

Matningshastighet vid cirkelbågar: M109/M110/M111

Standardbeteende

TNC:n hänför den programmerade matningshastigheten till verktygsbanans centrum.

Beteende vid cirkelbågar med M109

TNC:n anpassar hastigheten vid inner- och ytterbearbetning av cirkelbågar så att matningen i verktygsskäret förblir konstant.

Beteende vid cirkelbågar med M110

TNC:n anpassar hastigheten endast vid innerbearbetning av cirkelbågar så att matningen i verktygsskäret förblir konstant. Vid vtterbearbetning av cirkelbågar sker ingen matningsanpassning.

M110 är även verksam vid invändig bearbetning av cirkelbågar med konturcykler.

Verkan

M109 och M110 aktiveras i blockets början. M109 och M110 upphävs med M111.

Förberäkning av radiekompenserad kontur (LOOK AHEAD): M120

Standardbeteende

Om verktygsradien är större än ett kontursteg som skall utföras med radiekompensering så avbryter TNC:n programexekveringen och presenterar ett felmeddelande. M97 (se "Bearbetning av små kontursteg: M97") förhindrar felmeddelandet men ger upphov till ett fräsmärke och förskjuter dessutom hörnet.

Om konturen innehåller sekvenser där verktyget överlappar efterkommande konturelement, förstör TNC:n i förekommande fall konturen.

Se bilden till höger.

Beteende med M120

TNC:n övervakar en radiekompenserad kontur så att efter- och överskärningar inte uppstår samt beräknar verktygsbanan fram till det aktuella blocket i förväg. Ställen som verktyget skulle ha skadat konturen vid förblir obearbetade (visas i bilden till höger med mörkare färg). Man kan även använda M120 för att förse digitaliserade data eller data som genererats av ett externt programmeringssystem med verktygsradiekompensering. Därigenom kan avvikelser från den teoretiska verktygsradien kompenseras.

Antalet block (maximalt 99), som TNC:n förberäknar, definierar man med LA (eng. Look Ahead: titta framåt) efter M120. Ju större antal block som väljs, desto längre blir blockcykeltiden.

Inmatning

När man anger M120 i ett positioneringsblock så fortsätter TNC:n dialogen och frågar efter antalet block LA som skall förberäknas.

Verkan

M120 måste anges i ett NC-block som även innehåller radiekompensering RL eller RR. M120 är verksam från detta block tills man:

- upphäver radiekompenseringen med R0
- programmerar M120 LA0
- programmerar M120 utan LA
- anropar ett annat program med PGM CALL
- M120 aktiveras i blockets början.

Begränsningar

- Återkörning till en kontur efter externt/internt stopp får bara utföras med funktionen FRAMKÖRNING TILL BLOCK N
- Om man använder konturfunktionerna RND och CHF, får blocket innan och efter RND respektive CHF endast innehålla koordinater i bearbetningsplanet
- Om man vill köra fram till konturen tangentiellt, måste man använda funktionen APPR LCT; Blocket med APPR LCT får bara innehålla koordinater i bearbetningsplanet
- Om man vill köra ifrån konturen tangentiellt, måste man använda funktionen DEP LCT; Blocket med DEP LCT får bara innehålla koordinater i bearbetningsplanet

Överlagra handrattsrörelser under programkörning: M118

Standardbeteende

l driftarterna för programkörning förflyttar TNC:n verktyget på det sätt som definierats i bearbetningsprogrammet.

Beteende med M118

Funktionen M118 möjliggör manuella korrigeringar med handratten parallellt med programexekveringen. Rörelseområdet för dessa överlagrade förflyttningar definieras med axelspecifika värden X, Y och Z i mm.

Inmatning av M118

När man anger M118 i ett positioneringsblock så fortsätter TNC:n dialogen och frågar efter de axelspecifika värdena. Använd de orangefärgade axelknapparna eller ASCII-knappsatsen för koordinatinmatning.

Verkan

Handrattspositionering upphävs med en förnyad programmering av M118 utan X, Y och Z.

M118 aktiveras i blockets början.

Exempel NC-block

Under programkörningen önskas möjlighet till handrattsrörelser i bearbetningsplanet X/Y med ±1 mm från de programmerade värdena:

L X+0 Y+38,5 RL F125 M118 X1 Y1

M118 verkar alltid i originalkoordinatsystemet, även om funktionen 3D-vridning av bearbetningsplan är aktiv!

M118 är även verksam i driftart Manuell positionering!

När M118 är aktiv erbjuds inte funktionen Manuell förflyttning i samband med avbrott i programexekveringen!

7.5 Tilläggsfunktioner för rotationsaxlar

Matning i mm/min vid rotationsaxlar A, B, C: M116

Standardbeteende

I rotationsaxlar tolkar TNC:n den programmerade matningshastigheten som grad/min. Banhastigheten är därför avhängig avståndet mellan verktygscentrum och rotationsaxelns centrum.

Ju större avståndet är desto högre blir banhastigheten.

Matning i mm/min vid rotationsaxlar med M116

Maskintillverkaren måste definiera maskinens geometri i maskinparameter 7510 och framåt.

I rotationsaxlar tolkar TNC:n den programmerade matningshastigheten som mm/min. För detta beräknar TNC:n, vid varje **blockbörjan**, matningshastigheten för det specifika blocket. Matningen ändrar sig inte inom ett block, även om verktyget förflyttas mot rotationsaxelns centrum.

Verkan

M116 verkar i bearbetningsplanet.

M117 upphävs med M116; Likaså upphävs M116 vid programmets slut.

M116 aktiveras i blockets början.

Vägoptimerad förflyttning av rotationsaxlar: M126

Standardbeteende

TNC:ns standardbeteende vid positionering av rotationsaxlar, vilkas positionsvärde har reducerats till ett värde mindre än 360°, är beroende av maskinparameter 7682. Där definieras om TNC:n skall förflytta till den programmerade positionen med differensen mellan bör-position – är-position eller om TNC:n standardmässigt (även utan M126) skall förflytta den kortaste vägen till den programmerade positionen. Se exempel i tabellen uppe till höger.

Beteende med M126

Med M126 förflyttar TNC:n en rotationsaxel, vars positionsvärde har reducerats till ett värde under 360°, den kortaste vägen. Se exempel i tabellen nere till höger.

Verkan

M126 aktiveras i blockets början. M126 upphävs med M127; Vid programslutet upphävs alltid M126.

TNC:ns standardbeteende

Är-position	Bör-position	Faktisk väg
350°	10°	-340°
10°	340°	+330°

Beteende med M126

Är-position	Bör-position	Faktisk väg
350°	10°	+20°
10°	340°	–30°

Minskning av positionsvärde i rotationsaxel till ett värde under 360°: M94

Standardbeteende

TNC:n förflyttar verktyget från det aktuella vinkelvärdet till det programmerade vinkelvärdet.

Exempel: Aktuellt vinkelvärde: 538° Programmerat vinkelvärde: 180° Verklig vinkelförflyttning: -358°

Beteende med M94

Vid blockets början reducerar TNC:n det aktuella vinkelvärdet till ett värde mindre än 360°. Därefter sker förflyttningen till det programmerade värdet. Om det finns flera aktiva rotationsaxlar, minskar M94 positionsvärdet i alla rotationsaxlar. Alternativt kan en specifik rotationsaxel anges efter M94. TNC:n reducerar då bara positionsvärdet i denna axel.

Exempel NC-block

Reducera positionsvärde i alla aktiva rotationsaxlar:

L M94

Reducera endast positionsvärdet i C-axeln:

L M94 C

Reducera alla aktiva rotationsaxlar och förflytta därefter C-axeln till det programmerade värdet:

L C+180 FMAX M94

Verkan

M94 är bara verksam i de positioneringsblock som den programmeras i.

M94 aktiveras i blockets början.

Automatik kompensering för maskingeometrin vid arbete med rotationsaxlar: M114

Standardbeteende

TNC:n förflyttar verktyget till de i bearbetningsprogrammet definierade positionerna. Om en rotationsaxels position ändrar sig i programmet så måste postprocessorn beräkna den därigenom uppkomna förskjutningen i linjäraxlarna (se bilden uppe till höger) och kompensera detta i ett positioneringsblock. Eftersom även maskingeometrin kommer att påverka detta måste NC-programmet beräknas individuellt för olika maskiner.

Beteende med M114

7.5 Tillägg<mark>sfun</mark>ktioner för rotationsaxlar

Om en styrd rotationsaxels position ändrar sig i programmet kommer TNC:n automatiskt att kompensera för förskjutningen av verktyget med en 3D-längdkompensering. Eftersom maskinens geometri har angivits i maskinparametrar kommer TNC:n även att kompensera för den maskinspecifika förskjutningen.

Postprocessorn behöver endast beräkna programmet en gång, även då det skall exekveras i olika maskiner som är utrustade med TNC-styrsystem.

Om din maskin inte är utrustad med styrda rotationsaxlar (huvudet kan endast vridas manuellt eller huvudet positioneras av PLC), kan man ange spindelhuvudets aktuella position efter M114 (t.ex. M114 B+45, Q-parametrar är tillåtna).

CAD-systemet alternativt postprocessorn måste ta hänsyn till verktygsradiekompenseringen. En programmerad radiekompensering RL/RR ger upphov till ett felmeddelande.

Om verktygets längdkompensering beräknas av TNC:n, kommer den programmerade matningshastigheten att gälla verktygsspetsen annars gäller den verktygets utgångspunkt.

 Om man har en maskin som är utrustad med ett styrt vridbart spindelhuvud går det att avbryta programexekveringen och ändra vridningsaxelns inställning (t.ex. med handratten).

Med funktionen FRAMKÖRNING TILL BLOCK N kan man sedan återuppta bearbetningsprogrammet vid stället där avbrottet utfördes. Vid aktiv M114 tar TNC:n automatiskt hänsyn till rotationsaxlarnas nya inställning.

För att ändra rotationsaxlarnas inställning under programexekveringen med handratten använder man sig av M118 i kombination med M128.

Verkan

M114 aktiveras i blockets början, M115 vid blockets slut. M114 är inte verksam vid aktiv verktygsradiekompensering.

Man upphäver M114 med M115. Vid programslutet upphävs alltid M114.

Maskintillverkaren måste definiera maskinens geometri i maskinparameter 7510 och framåt.

Bibehåll verktygsspetsens position vid positionering av rotationsaxlar (TCPM*): M128

Standardbeteende

TNC:n förflyttar verktyget till de i bearbetningsprogrammet definierade positionerna. Om en rotationsaxels position ändrar sig i programmet så måste den därigenom uppkomna förskjutningen i linjäraxlarna beräknas och kompenseras i ett positioneringsblock (se bilden till vänster vid M114).

Beteende med M128

Om en styrd rotationsaxels position ändrar sig i programmet så förblir verktygsspetsens position oförändrad i förhållande till arbetsstycket under vridningsrörelsen.

Använd M128 i kombination med M118 om du vill förändra rotationsaxlarnas inställning under programexekveringen med handratten. Överlagringen av en handrattspositionering sker vid aktiv M128 i det maskinfasta koordinatsystemet.

Före positioneringar med M91 eller M92 och före ett TOOL CALL: Återställ M128.

För att undvika konturavvikelser får man endast använda radiefräsar vid M128.

Verktygslängden måste utgå från radiefräsens kulcentrum.

TNC:n vrider inte med den aktiva verktygsradiekompenseringen. Därigenom uppstår ett fel som beror på rotationsaxelns vinkelläge.

När M128 är aktiv presenterar TNC:n symbolen 😥 an

M128 bei Schwenktischen

Wenn Sie bei aktivem M128 einen Schwenktisch-Bewegung programmieren, dann dreht die TNC das Koordinaten-System entsprechend mit. Drehen Sie z.B. die C-Achse um 90° und programmieren anschließend eine Bewegung in der X-Achse, dann führt die TNC die Bewegung in der Maschinenachse Y aus.

Auch den gesetzten Bezugspunkt, der sich durch die Rundtisch-Bewegung verlagert, transformiert die TNC.

Wirkung

M128 wird wirksam am Satz-Anfang, M129 am Satz-Ende. M128 wirkt auch in den manuellen Betriebsarten und bleibt nach einem Betriebsartenwechsel aktiv.

M128 setzen Sie mit M129 zurück. Wenn Sie in einer Programmlauf-Betriebsart ein neues Programm wählen, setzt die TNC M128 ebenfalls zurück.

Maskintillverkaren måste definiera maskinens geometri i maskinparameter 7510 och framåt.

Precisionsstopp vid hörn med icke tangentiella övergångar: M134

Standardbeteende

TNC förflyttar verktyget, vid positioneringar med rotationsaxlar, så att ett övergångselement infogas vid icke tangentiella övergångar. Konturövergången är avhängig accelerationen, rycket och den fastlagda toleransen för konturavvikelsen.

Beteende med M134

TNC förflyttar verktyget, vid positioneringar med rotationsaxlar, så att ett precisionsstopp utförs vid icke tangentiella övergångar.

Verkan

M134 aktiveras i blockets början, M135 vid blockets slut.

Man upphäver M134 med M135. TNC:n återställer själv M134 när man väljer ett nytt program i en programkörningsdriftart.

7.6 Tilläggsfunktioner för laserskärmaskiner

TNC:n kan styra laserns effekt via S-analogutgångens spänningsvärde. Med M-funktionerna M200 till M204 ges möjlighet till reglering av lasereffekten under programexekveringen.

Inmatning av tilläggsfunktioner för laserskärmaskiner

När man anger en M-funktion för laserskärmaskiner i ett positioneringsblock så fortsätter TNC:n dialogen och frågar efter tilläggsfunktionens aktuella parametrar.

Alla tilläggsfunktioner för laserskärmaskiner aktiveras i blockets början.

Direkt utmatning av programmerad spänning: M200

TNC:n matar ut värdet, vilket programmerats efter M200, som spänning V.

Inmatningsområde: 0 till 9.999 V

Verkan

M200 är aktiv tills ett nytt spänningsvärde matas ut via M200, M201, M202, M203 eller M204.

Spänning som funktion av sträcka: M201

M201 matar ut spänning beroende av den tillryggalagda sträckan. TNC:n ökar eller minskar den aktuella spänningen linjärt till det programmerade värdet V.

Inmatningsområde: 0 till 9.999 V

Verkan

M201 är aktiv tills ett nytt spänningsvärde matas ut via M200, M201, M202, M203 eller M204.

Spänning som funktion av hastigheten: M202

TNC:n matar ut spänningen som en funktion av hastigheten. Maskintillverkaren definierar, via maskinparametrar, upp till tre karaktäristik-kurvor FNR. i vilka specifika matningshastigheter tilldelas bestämda spänningar. Med M202 väljs vilken karaktäristikkurva FNR. som TNC:n skall använda vid beräkningen av spänningen.

Inmatningsområde: 1 till 3

Verkan

M202 är aktiv tills ett nytt spänningsvärde matas ut via M200, M201, M202, M203 eller M204.

Spänning som funktion av tid (tidsberoende ramp): M203

TNC:n matar ut spänningen V som en funktion av tiden TIME. TNC:n ökar eller minskar den aktuella spänningen linjärt under den programmerade tiden TIME till det programmerade spänningsvärdet V.

Inmatningsområde

Spänning V: 0 till 9.999 Volt Tid TIME: 0 till 1.999 Sekunder

Verkan

M203 är aktiv tills ett nytt spänningsvärde matas ut via M200, M201, M202, M203 eller M204.

Spänning som funktion av tid (tidsberoende puls): M204

TNC:n matar ut en programmerad spänning som en puls under den programmerade tiden TIME.

Inmatningsområde

Spänning V: 0 till 9.999 Volt Tid TIME: 0 till 1.999 Sekunder

Verkan

M204 är aktiv tills ett nytt spänningsvärde matas ut via M200, M201, M202, M203 eller M204.

Programmering: Cykler

8.1 All	lmän	t om cykler	Cykelgrupper Soft	key
Ofta återk bearbetnir koordinato som cykle	komman ngssteg omräknin er. Tabell	de bearbetningssekvenser, som omfattar flera , finns lagrade i TNC:n i form av cykler. Även ngar och andra specialfunktioner finns tillgängliga len till höger visar de olika cykelgrupperna.	Cykler för djupborrning, brotschning, ursvarvning, försänkning, gängning och gängskärning	RNING
Bearbetningscykler med nummer från 200 använder Q-parametrar som inmatningsparametrar. Parametrar som TNC:n behöver för de olika cyklerna använder sig av samma parameternummer då de har		er med nummer från 200 använder Q-parametrar arametrar. Parametrar som TNC:n behöver för de änder sig av samma parameternummer då de har	Cykler för fräsning av fickor, öar och spår	CKOR/ ÖAR
samma fu Q202 är a	unktion: alltid skä	exempelvis är Q200 alltid säkerhetsavståndet, rdjupet osv.	Cykler för att skapa punktmönster, t.ex. hålcirkel eller hålrader	JNKT- INSTER
Cyklus	definit	tion med softkeys	SLovklor (Subconturlist) mod vilka	
CYCL	▶ Soft	keyraden presenterar de olika cykelgrupperna	konturer som byggs upp med flera	LΠ
BORRNING	▶ Välj	cykelgrupp, t.ex. borrcykler	överlagrade konturer kan bearbetas konturparallellt, cylindermantel- interpolering	
	► Välj dialo pres bilds som	cykel, t.ex. DJUPBORRNING. TNC:n öppnar en og och frågar efter alla inmatningsvärden; samtidigt senterar TNC:n en hjälpbild i den högra skärmsdelen. I denna hjälpbild visas parametern n skall anges med en ljusare färg.	t Cykler för uppdelning av plana eller vridna ytor	YTOR
	► Ang och	e alla parametrar som TNC:n frågar efter avsluta varje inmatning med knappen ENT	Cykler för koordinatomräkning, med vilka godtyckliga konturer	OORD. MRAK- ING
	TNC:n avslutar dialogen då alla erforderliga data har matats in		kan förskjutas, vridas, speglas, förstoras och förminskas	
Cyklus	definit	tion med GOTO-funktion	Specialcykler för väntetid, program-	ECIAL- YKLER
CYCL	▶ Soft	key-listen viser de forskellige cyklus-grupper		
 TNC´en viser i et vindue cyklus-oversigten. De vælger med piltasterne den ønskede cyklus eller DE indlæser cyklus-nummeret og overfører i alle tilfælde med tasten ENT. TNC´en åbner så cyklus-dialogen som tidkigere beskrevet 		Om man använder indirekt parameter- tilldelning vid bearbetningscykler med nummer högre än 200 (t.ex. Q210 = Q1 kommer en ändring av den tilldelade parametern (t.ex. Q1) efter cykel-),	
Exempel NC-block			Definitionen inte att vara verksam. Definiera i sådana fall cykelparametern	
CYCL DEF	F 1.0	DJUPBORRNING	(t.ex. Q210) direkt.	
CYCL DEF	F 1.1	AVST 2	För att även kunna exekvera bear-	
CYCL DEF	F 1.2	DJUP -30	betningscyklerna 1 till 17 på äldre TNC-	
CYCL DEF	F 1.3	ARB DJ 5	programmera ett negativt förtecken vid	
CYCL DEF	F 1.4	V.TID 1	säkerhetsavståndet och skärdjupet.	

CYCL DEF 1.5 F 150

8.1 Allmänt om cykler

Anropa cykel

Följande cykler aktiveras direkt efter deras definition i bearbetningsprogrammet. Dessa cykler kan och får inte anropas:

- Cyklerna för punktmönster på cirkel och punktmönster på linjer
- SL-cykeln KONTUR
- SL-cykeln KONTURDATA
- Cykel 32 TOLERANS
- Cykler för koordinatomräkningar
- cykeln VÄNTETID

Alla andra cykler anropas på nedan beskrivna sätt.

Om TNC:n skall utföra cykeln en gång efter det sist programmerade blocket, programmerar man cykelanropet med tilläggsfunktionen M99 eller med CYCL CALL:

Programmera cykelanrop: Tryck på knappen CYCL CALL

► Ange tilläggsfunktion M, t.ex. för kylvätska

Om TNC:n automatiskt skall utföra cykeln efter varje positioneringsblock, programmerar man cykelanropet med M89 (beroende av maskinparameter 7440).

Inverkan av M89 upphäver man genom att programmera

- M99 eller
- CYCL CALL eller
- CYCL DEF

Arbeta med tilläggsaxlar U/V/W

TNC:n utför ansättningsrörelserna i den axel som man har definierat som spindelaxel i TOOL CALLblocket. Rörelser i bearbetningsplanet utför TNC:n standardmässigt i huvudaxlarna X, Y eller Z. Undantag:

- När man programmerar tilläggsaxlar direkt för sidornas längder i cykel 3 SPÅRFRÄSNING och i cykel 4 FICKFRÄSNING
- Om man har programmerat tilläggsaxlar i konturunderprogrammet vid SL-cykler

8.2 Borrcykler

TNC:n erbjuder totalt 9 cykler för olika typer av borrningsbearbetning:

Cykel	Softkey
1 DJUPBORRNING Utan automatisk förpositionering	
200 BORRNING Med automatisk förpositionering, 2. säkerhetsavstånd	200 Ø
201 BROTSCHNING Med automatisk förpositionering, 2. säkerhetsavstånd	201 m 201 m
202 URSVARVNING Med automatisk förpositionering, 2. säkerhetsavstånd	202
203 UNIVERSAL-BORRNING Med automatisk förpositionering, 2. säkerhetsavstånd, spånbrytning, minskning av skärdjup	203 ()
204 BAKPLANING Med automatisk förpositionering, 2. säkerhetsavstånd	204
2 GÄNGNING Med flytande gängtappshållare	2 3
17 GÄNGNING GS Utan flytande gängtappshållare	17 <u>3</u> RT
18 GÄNGSKÄRNING	18

8.2 Borrcykler

DJUPBORRNING (cykel 1)

- 1 Verktyget borrar från den aktuella positionen till det första Skärdjupet med den angivna Matningen F
- 2 Därefter lyfter TNC:n verktyget till startpositionen med snabbtransport och återför det sedan tillbaka till det första Skärdjupet minus stoppavståndet t.
- 3 Styrningen beräknar själv stoppavståndet:
 - Borrdjup upp till 30 mm: t = 0,6 mm
 - Borrdjup över 30 mm: t = borrdjup/50

maximalt stoppavstånd: 7 mm

- 4 Därefter borrar verktyget ner till nästa skärdjup med den angivna Matningen F.
- **5** TNC:n upprepar detta förlopp (1 till 4) tills det angivna Borrdjupet uppnås
- 6 Vid hålets botten stannar TNC:n verktyget under Väntetiden för att bryta spånor för att slutligen återföra verktyget till startpositionen med FMAX

Att beakta innan programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Programmera positioneringsblocket till startpunkten i spindelaxeln (Säkerhetsavståndet över arbetsstyckets yta).

Cykelparametern Djups förtecken bestämmer arbetsriktningen.

- Säkerhetsavstånd 1 (inkrementalt): Avstånd mellan verktygsspetsen (startposition) och arbetsstyckets yta
 - Borrdjup 2 (inkrementalt): Avstånd mellan arbetsstyckets yta och hålets botten (verktygets spets)
 - Skärdjup 3 (inkrementalt): Mått med vilket verktyget skall stegas nedåt. TNC:n förflyttar verktyget i en sekvens direkt till Borrdjup om:
 - Skärdjup och Borrdjup är lika
 - Skärdjup är större än Borrdjup

Borrdjup behöver inte vara en jämn multipel av Skärdjup

- Väntetid i sekunder: Tid under vilken verktyget stannar vid hålets botten för att bryta spånor
- Matning F: Verktygets förflyttningshastighet under borrningen i mm/min

1	CYCL DEF	1.0	DJUPBORRNING
2	CYCL DEF	1.1	AVST 2
3	CYCL DEF	1.2	DJUP -20
4	CYCL DEF	1.3	ARB DJ 5
5	CYCL DEF	1.4	V.TID O
6	CYCL DEF	1.5	F500

BORRNING (cykel 200)

- **1** TNC:n positionerar verktyget i spindelaxeln till Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX
- 2 Verktyget borrar ner till det första Skärdjupet med den programmerade Matningen F
- **3** TNC:n förflyttar verktyget tillbaka till Säkerhetsavståndet med FMAX, väntar där - om så har angivits - och förflyttar det slutligen tillbaka med FMAX till en position motsvarande säkerhetsavståndet över det första skärdjupet
- 4 Därefter borrar verktyget ner till nästa Skärdjup med den angivna Matningen F
- **5** TNC:n upprepar detta förlopp (2 till 4) tills det angivna Borrdjupet uppnås
- 6 Från hålets botten förflyttas verktyget till säkerhetsavståndet eller – om så har angivits – till det andra säkerhetsavståndet med FMAX

Att beakta innan programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Cykelparametern Djups förtecken bestämmer arbetsriktningen.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta; ange ett positivt värde
- Djup Q201 (inkrementalt): Avstånd mellan arbetsstyckets yta och hålets botten (verktygets spets)
- Nedmatningshastighet Q206: Verktygets förflyttningshastighet vid borrning i mm/min
- Skärdjup Q202 (inkrementalt): Mått med vilket verktyget stegas nedåt. TNC:n förflyttar verktyget i en sekvens direkt till Djup om:
 Skärdjup och Djup är lika
 Skärdjup är större än Djup

Djup behöver inte vara en jämn multipel av Skärdjup

Väntetid uppe Q210: Tid i sekunder, under vilken verktyget väntar vid säkerhetsavståndet, efter det att TNC:n har lyft det ur hålet för urspåning

NC-exempelblock:

-		
7	CYCL DEF 200	BORRNING
	Q200=2	;SAEKERHETSAVST.
	Q201=-20	; DJUP
	Q206=150	;MATNING DJUP
	Q202=5	; SKAERDJUP
	Q210=0	;VAENTETID UPPE
	Q203=+0	;KOORD. OEVERYTA
	Q204=50	;2. SAEKERHETSAVST.

8 Programmering: Cykler

200 0

- ▶ Koord. arbetsstyckets yta Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske

BROTSCHNING (cykel 201)

- 1 TNC:n positionerar verktyget i spindelaxeln till det angivna Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX
- 2 Verktyget brotschar ner till det angivna Djupet med den programmerade Matningen F
- 3 Vid hålets botten väntar verktyget, om så har angivits
- 4 Slutligen förflyttar TNC:n verktyget tillbaka till Säkerhetsavståndet med Matning F och därifrån – om så har angivits – med FMAX till det andra Säkerhetsavståndet

Att beakta innan programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Cykelparametern Djups förtecken bestämmer arbetsriktningen.

201

► Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta

- ▶ Djup Q201 (inkrementalt): Avstånd mellan arbetsstyckets yta och hålets botten
- ▶ Nedmatningshastighet Q206: Verktygets förflyttningshastighet vid brotschning i mm/min
- ► Väntetid nere Q211: Tid i sekunder, under vilken verktyget väntar vid hålets botten
- ▶ Matning tillbaka Q208: Verktygets förflyttningshastighet vid återgång upp ur hålet i mm/ min. Om Q208 = 0 anges kommer återgången att ske med matning brotschning
- ▶ Koord. arbetsstyckets yta Q203 (absolut): Koordinat för arbetsstyckets yta
- > 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske

8	CYCL DEF 201	BROTSCHNING
	Q200=2	;SAEKERHETSAVST.
	Q201=-20	;DJUP
	Q206=150	;MATNING DJUP
	Q211=0.25	;VAENTETID NERE
	Q208=500	;MATNING TILLBAKA
	Q203=+0	;KOORD. OEVERYTA
	0204=50	;2. SAEKERHETSAVST.

URSVARVNING (cykel 202)

Både maskinen och TNC:n måste vara förberedd av maskintillverkaren för cykel 202.

- **1** TNC:n positionerar verktyget i spindelaxeln till Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX
- 2 Verktyget borrar ner till Djup med den programmerade borrmatningen
- **3** Vid hålets botten väntar verktyget om så har angivits med roterande spindel för friskärning
- 4 Därefter utför TNC:n en spindelorientering till 0°-positionen
- **5** Om frikörning har valts kommer TNC:n att förflytta verktyget 0,2 mm (fast värde) i den angivna riktningen
- 6 Slutligen förflyttar TNC:n verktyget tillbaka till Säkerhetsavståndet med Matning tillbaka och därifrån – om så har angivits – med FMAX till det andra Säkerhetsavståndet

202 <u>|</u>

Ê

Att beakta innan programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Cykelparametern Djups förtecken bestämmer arbetsriktningen.

Vid cykelslutet återställer TNC:n kylvätske- och spindeltillståndet som var aktivt före cykelanropet.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta
- Djup Q201 (inkrementalt): Avstånd mellan arbetsstyckets yta och hålets botten
- Nedmatningshastighet Q206: Verktygets förflyttningshastighet vid ursvarvning i mm/min
- Väntetid nere Q211: Tid i sekunder, under vilken verktyget väntar vid hålets botten
- Matning tillbaka Q208: Verktygets förflyttningshastighet vid återgång upp ur hålet i mm/ min. Om Q208 = 0 anges så kommer återgången att ske med nedmatningshastighet
- Koord. arbetsstyckets yta Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske

9	CYCL DEF 202	URSVARVNING
	Q200=2	;SAEKERHETSAVST.
	Q201=-20	; DJUP
	Q206=150	;MATNING DJUP
	Q211=0.5	;VAENTETID NERE
	Q208=500	;MATNING TILLBAKA
	Q2O3=+0	;KOORD. OEVERYTA
	Q2O4=50	;2. SAEKERHETSAVST.
	Q214=1	;FRIKOERNRIKTNING

- Frikörningsriktning (0/1/2/3/4) Q214: Riktning i vilken TNC:n skall friköra verktyget vid hålets botten (efter spindelorientering)
- 0: Ingen frikörning av verktyget
- 1: Frikörning av verktyget i huvudaxelns minusriktning
- 2: Frikörning av verktyget i närliggande axels minusriktning
- 3: Frikörning av verktyget i huvudaxelns plusriktning
- 4: Frikörning av verktyget i närliggande axelns plusriktning

Kollisionsrisk!

Kontrollera i vilken riktning verktygsspetsen befinner sig i efter att en spindelorientering till 0° har programmerats (t.ex. i driftart Manuell positionering).

Rikta in verktyget så att verktygsspetsen är parallell med någon av koordinataxlarna. Välj frikörningsriktningen så att verktyget förflyttar sig från hålets innervägg.

UNIVERSAL-BORRNING (cykel 203)

- 1 TNC:n positionerar verktyget i spindelaxeln till det angivna Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX
- 2 Verktyget borrar ner till det första Skärdjupet med den programmerade Matningen F
- **3** Om spånbrytning har valts förflyttar TNC:n verktyget tillbaka med säkerhetsavståndet. Om man arbetar utan spånbrytning förflyttar TNC:n verktyget tillbaka till Säkerhetsavståndet med Matning tillbaka, väntar där – om så har angivits – och förflyttar det slutligen tillbaka med FMAX till en position motsvarande säkerhetsavståndet över det första Skärdjupet.
- 4 Därefter borrar verktyget ner till nästa Skärdjup med den angivna Matningen. Skärdjupet minskas för varje ny ansättning med Minskningsvärdet – om så har angivits.
- **5** TNC:n upprepar detta förlopp (2-4) tills det angivna borrdjupet uppnås.
- 6 Vid hålets botten väntar verktyget om så har angivits för spånbrytning och förflyttas efter Väntetiden tillbaka till Säkerhetsavståndet med Matning tillbaka. Om ett andra Säkerhetsavstånd har angivits, förflyttar därefter TNC:n verktyget dit med FMAX.

_
Φ
\mathbf{X}
~
ΰ
<u> </u>
0
\mathbf{m}
\mathbf{N}
00
00

203 🖉

Att beakta innan programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Cykelparametern Djups förtecken bestämmer arbetsriktningen.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta
- Djup Q201 (inkrementalt): Avstånd mellan arbetsstyckets yta och hålets botten (verktygets spets)
- Nedmatningshastighet Q206: Verktygets förflyttningshastighet vid borrning i mm/min
- Skärdjup Q202 (inkrementalt): Mått med vilket verktyget stegas nedåt. TNC:n förflyttar verktyget i en sekvens direkt till Djup om:
 - Skärdjup och Djup är lika
 - Skärdjup är större än Djup

Djup behöver inte vara en jämn multipel av Skärdjup

- Väntetid uppe Q210: Tid i sekunder, under vilken verktyget väntar vid säkerhetsavståndet, efter det att TNC:n har lyft det ur hålet för urspåning
- Koord. arbetsstyckets yta Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Minskningsvärde Q212 (inkrementalt): Värde med vilket TNC:n minskar skärdjupet vid varje ny ansättning
- Ant. spånbrytningar innan återgång Q213: Antal spånbrytningar innan TNC:n skall lyfta verktyget ur hålet för urspåning. För att bryta spånor lyfter TNC:n verktyget tillbaka med säkerhetsavståndet Q200
- Minimalt skärdjup Q205 (inkrementalt): Om man har valt ett minskningsvärde begränsar TNC:n minskningen av Skärdjupet till det med Q205 angivna värdet
- Väntetid nere Q211: Tid i sekunder, under vilken verktyget väntar vid hålets botten
- Matning tillbaka Q208: Verktygets förflyttningshastighet vid lyftning upp ur hålet i mm/ min. Om man anger Q208=0 så utför TNC:n förflyttningen tillbaka med matning Q206

10	CYCL DEF 203	UNIVERSAL-BORRNING
	Q200=2	;SAEKERHETSAVST.
	Q201=-20	; DJUP
	Q206=150	;MATNING DJUP
	Q202=5	; SKAERDJUP
	Q210=0	;VAENTETID UPPE
	Q203=+0	;KOORD. OEVERYTA
	Q204=50	;2. SAEKERHETSAVST.
	Q212=0.2	;MINSKNINGSVAERDE
	Q213=3	; SPAANBRYTNING
	Q205=3	;MIN. SKAERDJUP
	Q211=0.25	;VAENTETID NERE
	Q208=500	;MATNING TILLBAKA

BAKPLANING (cykel 204)

Maskinen och TNC:n måste vara förberedd av maskintillverkaren för Bakplaning.

Cykeln fungerar endast med så kallade bakplaningsverktyg.

Med denna cykel skapar man försänkningar som är placerade på arbetsstyckets undersida.

- 1 TNC:n positionerar verktyget i spindelaxeln till Säkerhetsavståndet över arbetsstyckets yta med snabbtransport FMAX
- 2 Där utför TNC:n en spindelorientering till 0°-positionen och förskjuter verktyget med excentermåttet.
- 3 Därefter förs verktyget ner i det förborrade hålet med Matning förpositionering, tills skäret befinner sig på Säkerhetsavståndet under arbetsstyckets underkant.
- 4 TNC:n förflyttar då verktyget tillbaka till hålets centrum, startar spindeln och i förekommande fall även kylvätskan för att därefter utföra förflyttningen till angivet Djup försänkning med Matning försänkning.
- **5** Om så har angivits väntar verktyget vid försänkningens botten och förflyttas sedan ut ur hålet, där genomförs en spindelorientering och en förskjutning på nytt med excentermåttet.
- 6 Slutligen förflyttar TNC:n verktyget tillbaka till Säkerhetsavståndet med Matning förpositionering och därifrån – om så har angivits – med FMAX till det andra Säkerhetsavståndet.

Att beakta innan programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Cykelparametern Djups förtecken bestämmer arbetsriktningen vid försänkningen. Varning: Positivt förtecken försänker i spindelaxelns positiva riktning.

Ange verktygslängden så att måttet inte avser skären utan istället borrstångens underkant.

Vid beräkningen av försänkningens startpunkt tar TNC:n hänsyn till borrstångens skärlängd och materialets tjocklek.

8.2 Borrcykler

204 J

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta
 - Djup försänkning (inkrementalt): Avstånd mellan arbetsstyckets yta och hålets botten. Positivt förtecken ger försänkning i spindelaxelns positiva riktning.
 - Materialtjocklek Q250 (inkrementalt): Arbetsstyckets tjocklek
 - Excentermått Q251 (inkrementalt): Borrstångens excentermått; hämtas från verktygets datablad
 - Skärhöjd Q252 (inkrementalt): Avstånd mellan borrstångens underkant och huvudskäret; hämtas från verktygets datablad
 - Matning förpositionering Q253: Verktygets förflyttningshastighet vid nedmatning i arbetsstycket respektive lyftning upp ur arbetsstycket i mm/min
 - Matning försänkning Q254: Verktygets förflyttningshastighet vid försänkning i mm/min
 - Väntetid Q255: Väntetid i sekunder vid försänkningens botten
 - Koord. arbetsstyckets yta Q203 (absolut): Koordinat för arbetsstyckets yta
 - 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
 - ▶ Frikörningsriktning (0/1/2/3/4) Q214: Riktning i vilken TNC:n skall friköra verktyget med excentermåttet (efter spindelorienteringen); Inmatning av 0 är inte tillåtet
- 1: Förskjutning av verktyget i huvudaxelns minusriktning
- **2:** Förskjutning av verktyget i närliggande axelns minusriktning
- 3: Förskjutning av verktyget i huvudaxelns plusriktning
- **4:** Förskjutning av verktyget i närliggande axelns plusriktning

Kollisionsrisk!

Kontrollera i vilken riktning verktygsspetsen befinner sig i efter att en spindelorientering till 0° har programmerats (t.ex. i driftart Manuell positionering).

Rikta in verktyget så att verktygsspetsen är parallell med någon av koordinataxlarna. Välj Frikörningsriktning så att verktyget kan förflyttas ner i hålet utan att kollidera.

11	CYCL DEF 204	BAKPLANING
	Q200=2	;SAEKERHETSAVST.
	Q249=+5	;DJUP FOERSAENKNING
	Q250=20	;MATERIALTJOCKLEK
	Q251=3.5	; EXCENTERMAAT
	Q252=15	; SKAERHOEJD
	Q253=750	;MATNING FOERPOS.
	Q254=200	;MATNING FOERSAENKNING
	Q255=0	;VAENTETID
	Q2O3=+0	;KOORD. OEVERYTA
	Q204=50	;2. SAEKERHETSAVST.
	0214=1	; FRIKOERNRIKTNING

8.2 Borrcykler

GÄNGNING med flytande gängtappshållare (cykel 2)

- 1 Verktyget förflyttas i en sekvens direkt till borrdjupet
- **2** Därefter växlas spindelns rotationsriktning och verktyget förflyttas, efter Väntetiden, tillbaka till startpositionen.
- 3 Vid startpositionen växlas spindelns rotationsriktning tillbaka på nytt

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Programmera positioneringsblocket till startpunkten i spindelaxeln (Säkerhetsavståndet över arbetsstyckets yta).

Cykelparametern Djups förtecken bestämmer arbetsriktningen.

Verktyget måste spännas upp i en verktygshållare med längdutjämningsmöjlighet. Den flytande gängtappshållaren kompenserar eventuella skillnader mellan matningshastigheten och spindelvarvtalet under gängningen.

Under det att cykeln exekveras är potentiometern för spindelvarvtals-override inte verksam. Potentiometern för matnings-override är verksam men inom ett begränsat område (definierat av maskintillverkaren, beakta maskinhandboken).

För högergänga skall spindeln startas med M3, för vänstergänga med M4.

2 () 2 - () 2 - () Säkerhetsavstånd 1 (inkrementalt): Avstånd mellan verktygsspetsen (startposition) och arbetsstyckets yta; Riktvärde: 4x gängans stigning

- Borrdjup 2 (Gängans längd, inkrementalt): Avstånd mellan arbetsstyckets yta och gängans slut
- Väntetid i sekunder: Ange ett värde mellan 0 och 0,5 sekunder, för att förhindra verktygsbrott vid förflyttning tillbaka
- Matning F: Verktygets förflyttningshastighet vid gängning

Beräkning av matning: F = S x p

- F: Matning mm/min)
- S: Spindelvarvtal (varv/min)
- p: Gängans stigning (mm)

Frikörning vid avbrott i programexekveringen

Om man trycker på den externa Stopp-knappen i samband med gängning, kommer TNC:n att presentera en softkey med vilken verktyget kan friköras.

13	CYCL DEF	2.0	GAENGNING
14	CYCL DEF	2.1	AVST 2
15	CYCL DEF	2.2	DJUP -20
16	CYCL DEF	2.3	V.TID O
17	CYCL DEF	2.4	F100

GÄNGNING utan flytande gängtappshållare GS (cykel 17)

Maskinen och TNC:n måste vara förberedd av maskintillverkaren för cykeln gängning utan flytande gängtappshållare.

TNC:n utför gängningen, i ett eller i flera arbetssteg, utan att flytande gängtappshållare behöver användas.

Fördelar gentemot cykeln Gängning med flytande gängtappshållare:

- Högre bearbetningshastighet
- Upprepad gängning i samma hål då spindeln orienteras till 0°positionen vid cykelanropet (denna orientering är beroende av maskinparameter 7160)
- Större rörelseområde i spindelaxeln då flytande gängtappshållare inte behöver användas

Att beakta innan programmering

Programmera positioneringsblocket till startpunkten (hålets mitt) i bearbetningsplanet med radiekompensering R0.

Programmera positioneringsblocket till startpunkten i spindelaxeln (Säkerhetsavståndet över arbetsstyckets yta).

Cykelparametern Borrdjups förtecken bestämmer arbetsriktningen.

TNC:n beräknar matningshastigheten beroende av spindelvarvtalet. Om man använder potentiometern för spindel-override under gängningen, kommer TNC:n automatiskt att anpassa matningshastigheten.

Potentiometern för matnings-override är inte aktiv.

Vid cykelslutet stannar spindeln. Starta åter spindeln med M3 (alt. M4) före nästa bearbetning.

- Säkerhetsavstånd 1 (inkrementalt): Avstånd mellan verktygsspetsen (startposition) och arbetsstyckets yta
- ▶ Borrdiup 2 (inkrementalt): Avstånd mellan arbetsstyckets yta (gängans början) och gängans slut
- ► GÄNGANS STIGNING 3: Gängans stigning. Förtecknet anger höger- eller vänstergänga:
 - + = Högergänga
 - = Vänstergänga

NC-exempelblock:

18	CYCL	DEF	17.0	SYNKRONISERAD	GAENGNING
19	CYCL	DEF	17.1	AVST 2	
20	CYCL	DEF	17.2	DJUP -20	
21	0.00	DEE	17 3	STICNING ±1	

Frikörning vid avbrott i programexekveringen

Om man trycker på den externa Stopp-knappen i samband med gängningen, kommer TNC:n att visa softkey MANUELL FRIKÖRNING. Om man trycker på MANUELL FRIKÖRNING, kan verktyget friköras kontrollerat. För att göra detta trycker man på positiv axelriktningsknapp för den aktiva spindelaxeln.

GÄNGSKÄRNING (cykel 18)

Maskinen och TNC:n måste vara förberedd av maskintillverkaren för cykeln Gängskärning.

Cykel 18 GÄNGSKÄRNING förflyttar verktyget, med reglerad spindel och det aktiva varvtalet, från den aktuella positionen till det angivna Djupet. Spindeln stoppas vid hålets botten. Fram- och frånkörningsrörelserna måste programmeras separat – förslagsvis i en maskintillverkarcykel. Mer information om detta erhålles från Er maskintillverkare.

Att beakta innan programmering

TNC:n beräknar matningshastigheten beroende av spindelvarvtalet. Om man använder potentiometern för spindel-override under gängskärningen, kommer TNC:n automatiskt att anpassa matningshastigheten.

Potentiometern för matnings-override är inte aktiv.

TNC:n startar och stoppar automatiskt spindeln. Programmera inte M3 eller M4 innan cykelanropet.

- 18 L
- Borrdjup 1: Avstånd mellan den aktuella verktygspositionen och gängans slut

Borrdjupets förtecken bestämmer arbetsriktningen ("–" motsvarar negativ riktning i spindelaxeln)

- GÄNGANS STIGNING 2: Gängans stigning. Förtecknet anger höger- eller vänstergänga:
 - + = Högergänga (M3 vid negativt Borrdjup)
 - = Vänstergänga (M4 vid negativt Borrdjup)

22	CYCL DEF	18.0	GAENGSKAERNING
23	CYCL DEF	18.1	DJUP -20
24	CYCL DEF	18.2	STIGNING +1

O BEGIN PGM C200 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råämnesdefinition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+3	Verktygsdefinition
4 TOOL CALL 1 Z S4500	Verktygsanrop
5 L Z+250 R0 F MAX	Frikörning av verktyget
6 CYCL DEF 200 BORRNING	Cykeldefinition
Q200=2;SAEKERHETSAVSTAAND	
Q201=-15 ;DJUP	
Q206=250 ;MATNING DJUP	
Q2O2=5; SKAERDJUP	
Q210=0 ;VAENTETID UPPE	
Q2O3=-10 ;KOORD. OEVERYTA	
Q2O4=2O ;2. SAEKERHETSAVST.	
7 L X+10 Y+10 RO F MAX M3	Förflyttning till första hålet, Spindelstart
8 CYCL CALL	Cykelanrop
9 L Y+90 R0 F MAX M99	Förflyttning till andra hålet, Cykelanrop
10 L X+90 RO F MAX M99	Förflyttning till tredje hålet, Cykelanrop
11 L Y+10 RO F MAX M99	Förflyttning till fjärde hålet, Cykelanrop
12 L Z+250 RO F MAX M2	Frikörning av verktyget, programslut
13 END PGM C200 MM	

8.2 Borrcykler

Exempel: Borrcykler

Programförlopp

- Gängskärningscykel är programmerad i huvudprogrammet
- Bearbetningen är programmerad i underprogram (se "9 Programmering: Underprogram och programdelsupprepning")

O BEGIN PGM C18 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råämnesdefinition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+6	Verktygsdefinition
4 TOOL CALL 1 Z S100	Verktygsanrop
5 L Z+250 RO F MAX	Frikörning av verktyget
6 CYCL DEF 18.0 GAENGSKAERNING	Cykeldefinition Gängskärning
7 CYCL DEF 18.1 DJUP +30	
8 CYCL DEF 18.2 STIGN1,75	
9 L X+20 Y+20 R0 F MAX	Förflyttning till första hålet
10 CALL LBL 1	Anropa underprogram 1
11 L X+70 Y+70 R0 F MAX	Förflyttning till andra hålet
12 CALL LBL 1	Anropa underprogram 1
13 L Z+250 RO F MAX M2	Frikörning av verktyget, Slut på huvudprogrammet
14 LBL 1	Underprogram 1: Gängskärning
15 CYCL DEF 13.0 ORIENTERING	Spindelorientering (möjliggör upprepad gängskärning)
16 CYCL DEF 13.1 VINKEL O	
17 L IX-2 RO F1000	Förskjutning av verktyget för kollisionsfri nedmatning (beroende av
	kärndiametern och verktyget)
18 L Z+5 RO F MAX	Förpositionering med snabbtransport
19 L Z-30 R0 F1000	Förflyttning till startdjupet
20 L IX+2	Förflyttning av verktyget tillbaka till hålets mitt
21 CYCL CALL	Anropa cykel 18
22 L Z+5 RO F MAX	Frikörning
23 LBL 0	Slut på underprogram 1
24 FND PGM C18 MM	

8.3 Cykler för fräsning av fickor, öar och spår

Cykel	Softkey
4 URFRÄSNING (fyrkantig) Grovbearbetningscykel utan automatisk förpositionering	4
212 FICKA FINSKÄR (fyrkantig) Finbearbetningscykel med automatisk förpositionering, 2. säkerhetsavstånd	212
213 Ö FINSKÄR (fyrkantig) Finbearbetningscykel med automatisk förpositionering, 2. säkerhetsavstånd	213
5 CIRKELURFRÄSNING Grovbearbetningscykel utan automatisk förpositionering	5
214 CIRKULÄR FICKA FINSKÄR Finbearbetningscykel med automatisk förpositionering, 2. säkerhetsavstånd	214
215 CIRKULÄR Ö FINSKÄR Finbearbetningscykel med automatisk förpositionering, 2. säkerhetsavstånd	215
3 SPÅRFRÄSNING Grov-/finbearbetningscykel utan automatisk förpositionering, lodrät ansättningsrörelse	3 💿
210 SPÅR PENDLING Grov-/finbearbetningscykel med automatisk förpositionering, pendlande ansättningsrörelse	210 💿
211 CIRKULÄRT SPÅR Grov-/finbearbetningscykel med automatisk förpositionering, pendlande ansättningsrörelse	211

8.3 Cykler f<mark>ör fr</mark>äsning av fickor, öar och spår

URFRÄSNING (cykel 4)

- **1** Verktyget matas ned i arbetsstycket vid startpositionen (fickans centrum) och förflyttas ner till det första Skärdjupet.
- 2 Därefter förflyttas verktyget i den längre sidans positiva riktning vid kvadratiska fickor i Y-axelns positiva riktning – och utökar sedan fickan inifrån och ut
- 3 Detta förlopp upprepas (1 till 2) tills det angivna Djupet uppnås.

4 Vid cykelns slut förflyttar TNC:n verktyget tillbaka till startpositionen.

Att beakta innan programmering

Programmera positioneringsblocket till startpunkten (fickans centrum) i bearbetningsplanet med radiekompensering R0.

Programmera positioneringsblocket till startpunkten i spindelaxeln (Säkerhetsavståndet över arbetsstyckets yta).

Cykelparametern Djups förtecken bestämmer arbetsriktningen.

Använd en borrande fräs med ett skär över centrum (DIN 844), eller förborra i fickans centrum.

För den 2. Sidans längd gäller följande villkor: 2.Sidans längd större än [(2 x Rundningsradien) + ansättningen i sida k].

- Säkerhetsavstånd 1 (inkrementalt): Avstånd mellan verktygsspetsen (startposition) och arbetsstyckets yta
- Fräsdjup 2 (inkrementalt): Avstånd mellan arbetsstyckets yta och fickans botten
- Skärdjup 3 (inkrementalt): Mått med vilket verktyget skall stegas nedåt. TNC:n förflyttar verktyget i en sekvens direkt till Djup om:
 - Skärdjup och Djup är lika

•

- Skärdjup är större än Djup
- Nedmatningshastighet: Verktygets förflyttningshastighet vid nedmatning
- 1. Sidans längd 4: Fickans längd, parallell med bearbetningsplanets huvudaxel
- 2. Sidans längd 5: Fickans bredd
- Matning F: Verktygets förflyttningshastighet i bearbetningsplanet

27	CYCL DEF	4.0	URFRAESNING
28	CYCL DEF	4.1	AVST 2
29	CYCL DEF	4.2	DJUP -20
30	CYCL DEF	4.3	ARB DJ 5 F100
31	CYCL DEF	4.4	X80
32	CYCL DEF	4.5	Y60
33	CYCL DEF	4.6	F275 DR+ RADIE 5

- Vridning medurs
 DR + : Medfräsning vid M3
 DR : Motfräsning vid M3
- Rundningsradie: Radie för fickans hörn. Vid radie = 0 är rundningsradien samma som verktygsradien

Beräkningar:

Ansättning sida $k = K \times R$

- K: Överlappningsfaktor, definierad i maskinparameter 7430
- R: Fräsens radie

FICKA FINSKÄR (cykel 212)

- 1 TNC:n förflyttar automatiskt verktyget i spindelaxeln till Säkerhetsavståndet, eller – om så har angivits – till det andra Säkerhetsavståndet och därefter till fickans centrum.
- **2** Från fickans centrum förflyttas verktyget i bearbetningsplanet till startpunkten för bearbetningen. Vid beräkningen av startpunkten tar TNC:n hänsyn till Tilläggsmåttet och verktygets radie. I vissa fall utför TNC:n ansättningen i fickans mitt.
- **3** Om verktyget befinner sig på det andra Säkerhetsavståndet, förflyttar TNC:n verktyget till Säkerhetsavståndet med snabbtransport FMAX och därifrån med Nedmatningshastigheten till det första Skärdjupet.
- **4** Därefter förflyttas verktyget tangentiellt till den slutgiltiga konturen och följer denna ett varv med medfräsning.
- **5** Därefter förflyttas verktyget tangentiellt från konturen tillbaka till startpunkten i bearbetningsplanet.
- 6 Detta förlopp (3 till 5) upprepas tills det programmerade Djupet uppnås.
- 7 Vid cykelns slut förflyttar TNC:n verktyget med snabbtransport till Säkerhetsavståndet eller – om så har angivits – till det andra Säkerhetsavståndet och slutligen till fickans centrum (slutposition = startposition).

Att beakta innan programmering

Cykelparametern Djups förtecken bestämmer arbetsriktningen.

Om man vill använda finbearbetningscykeln för att skapa hela fickan, krävs en borrande fräs med ett skär över centrum (DIN 844) och att en liten Nedmatningshastighet anges.

Fickans minsta storlek: tre gånger verktygsradien.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta
- Djup Q201 (inkrementalt): Avstånd mellan arbetsstyckets yta och fickans botten

212

- Nedmatningshastighet Q206: Verktygets förflyttningshastighet vid förflyttning mot Djup i mm/min. Om nedmatningen sker i materialet skall man ange ett mindre värde än det som har definierats i Q207
- Skärdjup Q202 (inkrementalt): Mått med vilket verktyget stegas nedåt; Ange ett värde som är större än 0
- Matning fräsning Ω207: Verktygets förflyttningshastighet vid fräsning i mm/min
- Koord. arbetsstyckets yta Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Mitt 1. axel Q216 (absolut): Fickans mitt i bearbetningsplanets huvudaxel
- Mitt 2. axel Q217 (absolut): Fickans mitt i bearbetningsplanets närliggande axel
- ▶ 1. sidans längd Q218 (inkrementalt): Fickans längd, parallell med bearbetningsplanets huvudaxel
- 2. sidans längd Q219 (inkrementalt): Fickans längd, parallell med bearbetningsplanets komplementaxel
- Hörnradie Q220: Radie för fickans hörn. Om inget anges sätter TNC:n hörnradien lika med verktygsradien.
- Tilläggsmått 1. axel Q221 (inkrementalt): Tilläggsmått i bearbetningsplanets huvudaxel, utgående från fickans längd.

INC-exemperproce	NC-	exem	pelb	lock
------------------	-----	------	------	------

Inc-eventhenpince	\ .
34 CYCL DEF 2	12 FICKA FINSKAER
Q200=2	;SAEKERHETSAVST.
Q201=-20	; DJUP
Q206=150	;MATNING DJUP
Q202=5	; SKAERDJUP
Q207=500	;MATNING FRAESNING
Q203=+0	;KOORD. OEVERYTA
Q204=50	;2. SAEKERHETSAVST.
Q216=+50	;MITT 1:A AXEL
Q217=+50	;MITT 2:A AXEL
Q218=80	;1. SIDANS LAENGD
Q219=60	;2. SIDANS LAENGD
Q220=5	;HOERNRADIE
Q221=0	; TILLAEGGSMAAT

Ö FINSKÄR (cykel 213)

- TNC:n förflyttar automatiskt verktyget i spindelaxeln till Säkerhetsavståndet, eller – om så har angivits – till det andra Säkerhetsavståndet och därefter till öns centrum.
- **2** Från öns centrum förflyttas verktyget i bearbetningsplanet till startpunkten för bearbetningen. Startpunkten befinner sig ca 3,5-gånger verktygsradien till höger om ön
- **3** Om verktyget befinner sig på det andra Säkerhetsavståndet, förflyttar TNC:n verktyget till Säkerhetsavståndet med snabbtransport FMAX och därifrån med Nedmatningshastigheten till det första Skärdjupet.
- **4** Därefter förflyttas verktyget tangentiellt till den slutgiltiga konturen och följer denna ett varv med medfräsning.
- **5** Därefter förflyttas verktyget tangentiellt från konturen tillbaka till startpunkten i bearbetningsplanet.
- 6 Detta förlopp (3 till 5) upprepas tills det programmerade Djupet uppnås.
- 7 Vid cykelns slut förflyttar TNC:n verktyget med FMAX till Säkerhetsavståndet eller – om så har angivits – till det andra Säkerhetsavståndet och slutligen till öns centrum (slutposition = startposition).

Att beakta innan programmering

Cykelparametern Djups förtecken bestämmer arbetsriktningen.

Om man vill använda finbearbetningscykeln för att skapa hela ön, krävs en borrande fräs med ett skär över centrum (DIN 844). Ange i sådana fall en liten Nedmatningshastighet.

- ¹³
- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta
- Djup Q201 (inkrementalt): Avstånd mellan arbetsstyckets yta och öns botten
- Nedmatningshastighet Q206: Verktygets förflyttningshastighet vid förflyttning mot Djup i mm/ min. Om nedmatningen sker i materialet skall ett litet värde anges, om nedmatningen sker i luften kan ett högre värde anges
- Skärdjup Q202 (inkrementalt): Mått med vilket verktyget stegas nedåt. Ange ett värde som är större än 0
- Matning fräsning Q207: Verktygets förflyttningshastighet vid fräsning i mm/min
- Koord. arbetsstyckets yta Q203 (absolut): Koordinat för arbetsstyckets yta

35	CYCL DEF 213	FINSKAER OE
	Q200=2	;SAEKERHETSAVST.
	Q201=-20	; DJUP
	Q206=150	;MATNING DJUP
	Q2O2=5	; SKAERDJUP
	Q207=500	;MATNING FRAESNING
	Q2O3=+0	;KOORD. OEVERYTA
	Q204=50	;2. SAEKERHETSAVST.
	Q216=+50	;MITT 1:A AXEL
	Q217=+50	;MITT 2:A AXEL
	Q218=80	;1. SIDANS LAENGD
	Q219=60	;2. SIDANS LAENGD
	Q220=5	; HOERNRADIE
	Q221=0	;TILLAEGGSMAAT

- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Mitt 1. axel Q216 (absolut): Öns mitt i bearbetningsplanets huvudaxel
- Mitt 2. axel Q217 (absolut): Öns mitt i bearbetningsplanets närliggande axel
- 1. sidans längd Q218 (inkrementalt): Öns längd, parallell med bearbetningsplanets huvudaxel
- 2. sidans längd Q219 (inkrementalt): Öns längd, parallell med bearbetningsplanets närliggande axel
- ▶ Hörnradie Q220: Radie för öns hörn
- Tilläggsmått 1. axel Q221 (inkrementalt värde): Tilläggsmått i bearbetningsplanets huvudaxel, utgående från öns längd.

CIRKELURFRÄSNING (cykel 5)

- **1** Verktyget matas ned i arbetsstycket vid startpositionen (fickans centrum) och förflyttas ner till det första Skärdjupet.
- 2 Därefter följer verktyget den i bilden till höger beskrivna spiralformiga verktygsbanan med Matning F; för ansättning i sida (k) se cykel 4 URFRÄSNING.
- 3 Detta förlopp upprepas tills det angivna Djupet uppnås.
- 4 Slutligen förflyttar TNC:n verktyget tillbaka till startpositionen.

Att beakta innan programmering

Programmera positioneringsblocket till startpunkten (fickans centrum) i bearbetningsplanet med radiekompensering R0.

Programmera positioneringsblocket till startpunkten i spindelaxeln (Säkerhetsavståndet över arbetsstyckets yta).

Cykelparametern Djups förtecken bestämmer arbetsriktningen.

Använd en borrande fräs med ett skär över centrum (DIN 844), eller förborra i fickans centrum.

8.3 Cykler f<mark>ör fr</mark>äsning av fickor, öar och spår

٢

- Säkerhetsavstånd 1 (inkrementalt): Avstånd mellan verktygsspetsen (startposition) och arbetsstyckets yta
- Fräsdjup 2 (inkrementalt): Avstånd mellan arbetsstyckets yta och fickans botten
- Skärdjup 3 (inkrementalt): Mått med vilket verktyget skall stegas nedåt. TNC:n förflyttar verktyget i en sekvens direkt till Djup om:
 Skärdjup och Djup är lika
 - Skärdjup är större än Djup
- Nedmatningshastighet: Verktygets förflyttningshastighet vid nedmatning
- ▶ Cirkelradie: Cirkelfickans radie
- Matning F: Verktygets förflyttningshastighet i bearbetningsplanet
- Vridning medurs
 DR + : Medfräsning vid M3
 DR : Motfräsning vid M3

1	Ν	`-o	vo	m	nol	h	oc	6
	UV.	<i>-</i> е	хе		pei	D	UC	к.

36	CYCL DEF 5.0 CIRKELURFRAESN
37	CYCL DEF 5.1 AVST 2
38	CYCL DEF 5.2 DJUP -20
39	CYCL DEF 5.3 ARB DJ 5 F100
40	CYCL DEF 5.4 RADIE 40
41	CYCL DEF 5.5 F250 DR+

CIRKELFICKA FINSKÄR (cykel 214)

- 1 TNC:n förflyttar automatiskt verktyget i spindelaxeln till Säkerhetsavståndet, eller – om så har angivits – till det andra Säkerhetsavståndet och därefter till fickans centrum.
- 2 Från fickans centrum förflyttas verktyget i bearbetningsplanet till startpunkten för bearbetningen. Vid beräkningen av startpunkten tar TNC:n hänsyn till råämnets diameter och verktygets radie. Om råämnets diameter anges med 0 kommer TNC:n att utföra ansättningen i fickans mitt
- **3** Om verktyget befinner sig på det andra Säkerhetsavståndet, förflyttar TNC:n verktyget till Säkerhetsavståndet med snabbtransport FMAX och därifrån med Nedmatningshastigheten till det första Skärdjupet.
- **4** Därefter förflyttas verktyget tangentiellt till den slutgiltiga konturen och följer denna ett varv med medfräsning.
- **5** Därefter förflyttas verktyget tangentiellt från konturen tillbaka till startpunkten i bearbetningsplanet.
- 6 Detta förlopp (3 till 5) upprepas tills det programmerade Djupet uppnås.
- Vid cykelns slut förflyttar TNC:n verktyget med FMAX till Säkerhetsavståndet eller – om så har angivits – till det andra Säkerhetsavståndet och slutligen till fickans centrum (slutposition = startposition).

Att beakta innan programmering

Cykelparametern Djups förtecken bestämmer arbetsriktningen.

Om man vill använda finbearbetningscykeln för att skapa hela fickan, krävs en borrande fräs med ett skär över centrum (DIN 844) och att en liten Nedmatningshastighet anges.

Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta

- Djup Q201 (inkrementalt): Avstånd mellan arbetsstyckets yta och fickans botten
- Nedmatningshastighet Q206: Verktygets förflyttningshastighet vid förflyttning mot Djup i mm/min. Om nedmatningen sker i materialet skall man ange ett mindre värde än det som har definierats i Q207
- Skärdjup Q202 (inkrementalt): Mått med vilket verktyget stegas nedåt.
- Matning fräsning Ω207: Verktygets förflyttningshastighet vid fräsning i mm/min

NC-exemp	belblock:
----------	-----------

42	CYCL DEF 214	CIRKELFICKA FINSKAER
	Q200=2	;SAEKERHETSAVST.
	Q201=-20	;DJUP
	Q206=150	;MATNING DJUP
	Q202=5	; SKAERDJUP
	Q207=500	;MATNING FRAESNING
	Q2O3=+0	;KOORD. OEVERYTA
	Q204=50	;2. SAEKERHETSAVST.
	Q216=+50	;MITT 1:A AXEL
	Q217=+50	;MITT 2:A AXEL
	Q222=79	;RAAMNE DIAMETER
	Q223=80	;FAERDIG DIAMETER

- Koord. arbetsstyckets yta Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Mitt 1. axel Q216 (absolut): Fickans mitt i bearbetningsplanets huvudaxel
- Mitt 2. axel Q217 (absolut): Fickans mitt i bearbetningsplanets närliggande axel
- Råämnets diameter Q222: Den förbearbetade fickans diameter; Ange ett mindre värde för råämnets diameter än för diameter färdig detalj.
- Diameter färdig detalj Q223: Den färdigbearbetade fickans diameter; Ange ett större värde för diameter färdig detalj än för råämnets diameter och större än verktygets diameter.

CIRKEL Ö FINSKÄR (cykel 215)

- 1 TNC:n förflyttar automatiskt verktyget i spindelaxeln till Säkerhetsavståndet, eller – om så har angivits – till det andra Säkerhetsavståndet och därefter till öns centrum.
- 2 Från öns centrum förflyttas verktyget i bearbetningsplanet till startpunkten för bearbetningen. Startpunkten befinner sig ca 3,5gånger verktygsradien till höger om ön
- **3** Om verktyget befinner sig på det andra Säkerhetsavståndet, förflyttar TNC:n verktyget till Säkerhetsavståndet med snabbtransport FMAX och därifrån med Nedmatningshastigheten till det första Skärdjupet.
- **4** Därefter förflyttas verktyget tangentiellt till den slutgiltiga konturen och följer denna ett varv med medfräsning.
- **5** Därefter förflyttas verktyget tangentiellt från konturen tillbaka till startpunkten i bearbetningsplanet.
- 6 Detta förlopp (3 till 5) upprepas tills det programmerade Djupet uppnås.
- 7 Vid cykelns slut förflyttar TNC:n verktyget med FMAX till Säkerhetsavståndet eller – om så har angivits – till det andra Säkerhetsavståndet och slutligen till öns centrum (slutposition = startposition).

Att beakta innan programmering

215

Cykelparametern Djups förtecken bestämmer arbetsriktningen.

Om man vill använda finbearbetningscykeln för att skapa hela ön, krävs en borrande fräs med ett skär över centrum (DIN 844). Ange i sådana fall en liten Nedmatningshastighet.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta
- Djup Q201 (inkrementalt): Avstånd mellan arbetsstyckets yta och öns botten
- Nedmatningshastighet Q206: Verktygets förflyttningshastighet vid förflyttning mot Djup i mm/ min. Om nedmatningen sker i materialet skall ett litet värde anges; om nedmatningen sker i luften kan ett högre värde anges.
- Skärdjup Ω202 (inkrementalt): Mått med vilket verktyget stegas nedåt; Ange ett värde som är större än 0
- Matning fräsning Ω207: Verktygets förflyttningshastighet vid fräsning i mm/min
- Koord. arbetsstyckets yta Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
- Mitt 1. axel Q216 (absolut): Öns mitt i bearbetningsplanets huvudaxel
- Mitt 2. axel Q217 (absolut): Öns mitt i bearbetningsplanets närliggande axel
- Råämnets diameter Q222: Den förbearbetade öns diameter; Ange ett större värde för råämnets diameter än för diameter färdig detalj
- Diameter färdig detalj Q223: Den färdigbearbetade öns diameter; Ange ett mindre värde för diameter färdig detalj än för råämnets diameter

43	CYCL DEF 215	CIRKEL OE FINSKAER
	Q200=2	;SAEKERHETSAVST.
	Q201=-20	; DJUP
	Q206=150	;MATNING DJUP
	Q202=5	; SKAERDJUP
	Q207=500	;MATNING FRAESNING
	Q2O3=+0	;KOORD. OEVERYTA
	Q204=50	;2. SAEKERHETSAVST.
	Q216=+50	;MITT 1:A AXEL
	Q217=+50	;MITT 2:A AXEL
	Q222=81	;RAAMNE DIAMETER
	0223=80	;FAERDIG DIAMETER

SPÅRFRÄSNING (cykel 3)

Grovbearbetning

- 1 TNC:n förskjuter verktyget inåt med finskärsmåttet (halva differensen mellan spårets bredd och verktygets diameter). Därifrån matas verktyget ned i arbetsstycket och och fräser i spårets längdriktning.
- **2** Vid spårets slut följer en nedmatning till nästa Skärdjup och verktyget fräser tillbaka i motsatt riktning.

Detta förlopp upprepas tills det programmerade fräsdjupet uppnås.

Finbearbetning

- **3** Vid spårets botten förflyttar TNC:n verktyget, på en tangentiellt anslutande cirkelbåge, ut mot ytterkonturen. Därefter finbearbetas konturen med medfräsning (vid M3).
- **4** Avslutningsvis förflyttas verktyget tillbaka till Säkerhetsavståndet med snabbtransport FMAX.

Om antalet nedmatningar är ojämnt sker förflyttningen av verktyget till Säkerhetsavståndet vid startpositionen.

Att beakta innan programmering

Programmera positioneringsblocket till startpunkten i bearbetningsplanet – spårets mitt (2. sidans längd) och förskjutet i spåret med verktygsradien – med radiekompensering R0.

Programmera positioneringsblocket till startpunkten i spindelaxeln (Säkerhetsavståndet över arbetsstyckets yta).

Cykelparametern Djups förtecken bestämmer arbetsriktningen.

Använd en borrande fräs med ett skär över centrum (DIN 844), eller förborra i startpunkten.

Välj en fräsdiameter som är mindre än Spårets bredd och större än halva Spårets bredd.

- Säkerhetsavstånd 1 (inkrementalt): Avstånd mellan verktygsspetsen (startposition) och arbetsstyckets yta
- Fräsdjup 2 (inkrementalt): Avstånd mellan arbetsstyckets yta och fickans botten
- Skärdjup 3 (inkrementalt): Mått med vilket verktyget stegas nedåt; TNC:n förflyttar verktyget i en sekvens direkt till djup om:
 - Skärdjup och djup är lika
 - Skärdjup är större än djup

8.3 Cykler f<mark>ör fr</mark>äsning av fickor, öar och spår

٩

- Nedmatningshastighet: Verktygets förflyttningshastighet vid nedmatning
- 1. Sidans längd 4: Spårets längd; förtecknet bestämmer den första bearbetningsriktningen
- 2. Sidans längd 5: Spårets bredd
- Matning F: Verktygets förflyttningshastighet i bearbetningsplanet

SPÅR (långhål) med pendlande nedmatning (cykel 210)

Att beakta innan programmering

Cykelparametern Djups förtecken bestämmer arbetsriktningen.

Välj en fräsdiameter som är mindre än SPÅRETS BREDD och större än en tredjedel av SPÅRETS BREDD.

Välj fräsdiameter som är mindre än halva spårets längd: Annars kan TNC:n inte utföra pendlande nedmatning.

Grovbearbetning

- 1 TNC:n positionerar verktyget i spindelaxeln till det andra Säkerhetsavståndet och därefter över den vänstra cirkelns centrum med snabbtransport; därifrån positionerar TNC:n verktyget till Säkerhetsavståndet över arbetsstyckets yta.
- 2 Verktyget förflyttas till arbetsstyckets yta med Matning fräsning; därifrån förflyttas fräsen i spårets längdriktning – samtidigt som det matas ner snett i materialet – till den högra cirkelns centrum.
- **3** Därefter förflyttas verktyget tillbaka till den vänstra cirkelns centrum, fortfarande under sned nedmatning; detta förlopp upprepas tills det programmerade fräsdjupet uppnås.
- **4** Vid fräsdjupet förflyttar TNC:n verktyget, för planfräsning, till spårets andra ände och sedan tillbaka till spårets mitt.

Finbearbetning

- 5 Från spårets mitt förflyttar TNC:n verktyget tangentiellt till den slutliga konturen; därefter finbearbetar TNC:n konturen med medfräsning (vid M3).
- 6 Vid konturens slut förflyttas verktyget tangentiellt från konturen till spårets mitt.
- 7 Slutligen förflyttas verktyget tillbaka till Säkerhetsavståndet med snabbtransport FMAX eller – om så har angivits – till det andra Säkerhetsavståndet.

	-				
44	CYCL DEF	3.0	SPAARF	RAE	SNING
45	CYCL DEF	3.1	AVST	2	
46	CYCL DEF	3.2	DJUP -	20	
47	CYCL DEF	3.3	ARB DJ	5	F100
48	CYCL DEF	3.4	X+80		
49	CYCL DEF	3.5	Y12		
50	CYCL DEF	3.6	F275		

- 8.3 Cykler f<mark>ör fr</mark>äsning av fickor, öar och spår
- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta
 - Djup Q201 (inkrementalt): Avstånd mellan arbetsstyckets yta och spårets botten
 - Matning fräsning Q207: Verktygets förflyttningshastighet vid fräsning i mm/min
 - Skärdjup Q202 (inkrementalt): Totalt mått med vilket verktyget matas nedåt i spindelaxeln under en hel pendlingsrörelse
 - Bearbetningstyp (0/1/2) Q215: Definition av bearbetningsomfång:
 - 0: Grov- och finbearbetning
 - 1: Endast grovbearbetning
 - 2: Endast finbearbetning
 - Koord. arbetsstyckets yta Q203 (absolut): Koordinat för arbetsstyckets yta
 - 2. Säkerhetsavstånd Q204 (inkrementalt): Z-koordinat vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
 - Mitt 1. axel Q216 (absolut): Spårets mitt i bearbetningsplanets huvudaxel
 - Mitt 2. axel Q217 (absolut): Spårets mitt i bearbetningsplanets närliggande axel
 - 1. Sidans längd Q218 (värde parallellt med bearbetningsplanets huvudaxel): Ange spårets längre sida
 - 2. Sidans längd Q219 (värde parallellt med bearbetningsplanets närliggande axel): Ange spårets bredd; om spårets bredd är densamma som verktygets diameter kommer TNC:n bara att utföra grovbearbetningen
 - Vridningsvinkel Q224 (absolut): Vinkel till vilken hela spåret skall vridas; vridningscentrum ligger i spårets centrum

140	exempendioux.	
51	CYCL DEF 210	SPAAR PENDLING
	Q200=2	;SAEKERHETSAVST.
	Q201=-20	; DJUP
	Q207=500	;MATNING FRAESNING
	Q202=5	; SKAERDJUP
	Q215=0	; BEARBETNINGSTYP
	Q2O3=+0	;KOORD. OEVERYTA
	Q204=50	;2. SAEKERHETSAVST.
	Q216=+50	;MITT 1:A AXEL
	Q217=+50	;MITT 2:A AXEL
	Q218=80	;1. SIDANS LAENGD
	Q219=12	;2. SIDANS LAENGD
	0224=+15	; VRIDNINGSLAAGE

CIRKULÄRT SPÅR med pendlande nedmatning (cykel 211)

Grovbearbetning

- 1 TNC:n positionerar verktyget i spindelaxeln till det andra Säkerhetsavståndet och därefter över den högra cirkelns centrum med snabbtransport. Därifrån positionerar TNC:n verktyget till det angivna Säkerhetsavståndet över arbetsstyckets yta.
- 2 Verktyget förflyttas med Matning fräsning till arbetsstyckets yta; därifrån förflyttas fräsen – samtidigt som den matas ner snett i materialet – till spårets andra ände.
- **3** Därefter förflyttas verktyget tillbaka till startpunkten, fortfarande under sned nedmatning; detta förlopp (2 till 3) upprepas tills det programmerade fräsdjupet uppnås.
- **4** Vid fräsdjupet förflyttar TNC:n verktyget, för planfräsning, till spårets andra ände.

Finbearbetning

- 5 För att finbearbeta spåret förflyttar TNC:n verktyget tangentiellt till den slutliga konturen. Därefter finbearbetar TNC:n konturen med medfräsning (vid M3). Finbearbetningens startpunkt ligger i den högra cirkelns centrum.
- 6 Vid konturens slut förflyttas verktyget tangentiellt från konturen.
- 7 Slutligen förflyttas verktyget tillbaka till Säkerhetsavståndet med snabbtransport FMAX eller – om så har angivits – till det andra Säkerhetsavståndet.

Att beakta innan programmering

Cykelparametern Djups förtecken bestämmer arbetsriktningen.

Välj en fräsdiameter som är mindre än SPÅRETS BREDD och större än en tredjedel av SPÅRETS BREDD.

Välj fräsdiameter som är mindre än halva spårets längd. Annars kan TNC:n inte utföra pendlande nedmatning.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta
 - Djup Q201 (inkrementalt): Avstånd mellan arbetsstyckets yta och spårets botten
 - Matning fräsning Q207: Verktygets förflyttningshastighet vid fräsning i mm/min
 - Skärdjup Q202 (inkrementalt): Totalt mått med vilket verktyget matas nedåt i spindelaxeln under en hel pendlingsrörelse
 - Bearbetningstyp (0/1/2) Q215: Definition av bearbetningsomfång:
 - **0**: Grov- och finbearbetning
 - 1: Endast grovbearbetning
 - 2: Endast finbearbetning
 - Koord. arbetsstyckets yta Q203 (absolut): Koordinat för arbetsstyckets yta
 - 2. Säkerhetsavstånd Q204 (inkrementalt): Z-koordinat vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske
 - Mitt 1. axel Q216 (absolut): Spårets mitt i bearbetningsplanets huvudaxel
 - Mitt 2. axel Q217 (absolut): Spårets mitt i bearbetningsplanets närliggande axel
 - Diameter cirkelsegment Q244: Ange diameter för cirkelsegmentet
 - 2. Sidans längd Q219: Ange spårets bredd; om spårets bredd är densamma som verktygets diameter kommer TNC:n bara att utföra grovbearbetningen
 - Startvinkel Q245 (absolut): Ange polär vinkel till startpunkten
 - Öppningsvinkel Q248 (inkrementalt): Ange spårets öppningsvinkel (vinkellängd)

NC-exempelblock:

52	CYCL DEF 211	RUNT SPAAR
	Q200=2	;SAEKERHETSAVST.
	Q201=-20	; DJUP
	Q207=500	;MATNING FRAESNING
	Q202=5	; SKAERDJUP
	Q215=0	; BEARBETNINGSTYP
	Q203=+0	;KOORD. OEVERYTA
	Q204=50	;2. SAEKERHETSAVST.
	Q216=+50	;MITT 1:A AXEL
	Q217=+50	;MITT 2:A AXEL
	Q244=80	;CIRKELSEGMENT DIAMETER
	Q219=12	;2. SIDANS LAENGD
	Q245=+45	;STARTVINKEL
	Q248=90	;OEPPNINGSVINKEL

211

0 BEGIN PGM C210 MM		
1 BLK FORM 0.1 Z X+0	Y+0 Z-40	Råämnesdefinition
2 BLK FORM 0.2 X+100	Y+100 Z+0	
3 TOOL DEF 1 L+0 R+6		Verktygsdefinition grov/fin
4 TOOL DEF 2 L+0 R+3		Verktygsdefinition spårfräs
5 TOOL CALL 1 Z S350	0	Verktygsanrop grov/fin
6 L Z+250 R0 F MAX		Frikörning av verktyget
7 CYCL DEF 213 OE FI	NSKAER	Cykeldefinition utvändig bearbetning
Q200=2 ; SAEKER	HETSAVSTAAND	
Q201=-30 ;DJUP		
Q206=250 ; MATNIN	G DJUP	
Q202=5 ; SKAERD	JUP	
Q207=250 ; MATNIN	G FRAESNING	
Q203=+0 ;K00RD.	OEVERYTA	
Q204=20 ;2. SAE	KERHETSAVST.	
Q216=+50 ;CENTRU	M 1. AXEL	
Q217=+50 ;CENTRU	M 2. AXEL	
Q218=90 ;1. SID	ANS LAENGD	
Q219=80 ;2. SID	ANS LAENGD	
Q220=0 ; HOERNR	ADIE	
Q221=5 ; FINSKA	ER	
8 CYCL CALL M3		Cykelanron utvändig bearbetning

9	CYCL DEF 5.0 CIRKELURFRAESN	Cykeldefinition cirkelurfräsning
10	CYCL DEF 5.1 AVST 2	
11	CYCL DEF 5.2 DJUP -30	
12	CYCL DEF 5.3 ARB DJ 5 F250	
13	CYCL DEF 5.4 RADIE 25	
14	CYCL DEF 5.5 F400 DR+	
15	L Z+2 RO F MAX M99	Cykelanrop cirkelurfräsning
16	L Z+250 RO F MAX M6	Verktygsväxling
17	TOOL CALL 2 Z S5000	Verktygsanrop spårfräs
18	CYCL DEF 211 CIRKEL SPAAR	Cykeldefinition spår 1
	Q200=2;SAEKERHETSAVSTAAND	
	Q201=-20 ;DJUP	
	Q207=250 ;MATNING FRAESNING	
	Q2O2=5; SKAERDJUP	
	Q215=0 ; BEARBETNINGSSAETT	
	Q2O3=+O ;KOORD. OEVERYTA	
	Q2O4=100 ;2. SAEKERHETSAVST.	
	Q216=+50 ;CENTRUM 1. AXEL	
	Q217=+50 ;CENTRUM 2. AXEL	
	Q244=70 ;CIRK.SEGDIAMETER	
	Q219=8 ;2. SIDANS LAENGD	
	Q245=+45 ;STARTVINKEL	
	Q248=90 ;OEPPNINGSVINKEL	
19	CYCL CALL M3	Cykelanrop spår 1
20	FN 0: Q245 = +225	Ny startvinkel för spår 2
21	CYCL CALL	Cykelanrop spår 2
22	L Z+250 RO F MAX M2	Frikörning av verktyget, programslut
23	END PGM C210 MM	

8.4 Cykler för att skapa punktmönster

TNC:n erbjuder två cykler med vilka man kan skapa punktmönster:

Cykel	Softkey
220 PUNKTMÖNSTER PÅ CIRKEL	220 at a
221 PUNKTMÖNSTER PÅ LINJER	2211 \$\overline{\phi_{\ph_{\phi}_{\phi_{\phi_{\phi_{\phi_{\phi_{\phi_{\phi}{\phi_{\phi_{\phi_{\phi}{\phi_{\phi}_{\phi_{\phi}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

Följande bearbetningscykler kan kombineras med cykel 220 och cykel 221:

Cykel 1	DJUPBORRNING
Cykel 2	GÄNGNING med flytande gängtappshållare
Cykel 3	SPÅRFRÄSNING
Cykel 4	FICKURFRÄSNING
Cykel 5	CIRKELURFRÄSNING
Cykel 17	GÄNGNING utan flytande gängtappshållare
Cykel 18	GÄNGSKÄRNING
Cykel 200	BORRNING
Cykel 201	BROTSCHNING
Cykel 202	URSVARVNING
Cykel 203	UNIVERSALBORRNING
Cykel 204	BAKPLANING
Cykel 212	FICKA FINSKÄR
Cykel 213	Ö FINSKÄR
Cykel 214	CIRKULÄR FICKA FINSKÄR
Cykel 215	CIRKULÄR Ö FINSKÄR

PUNKTMÖNSTER PÅ CIRKEL (cykel 220)

1 TNC:n positionerar verktyget från den aktuella positionen till startpunkten för den första bearbetningen med snabbtransport.

Ordningsföljd:

220 ets

- Förflyttning till 2. säkerhetsavståndet (spindelaxel)
- Förflyttning till startpunkt i bearbetningsplanet
- Förflyttning till säkerhetsavståndet över arbetsstyckets yta (spindelaxel)
- 2 Från denna position utför TNC:n den sist definierade bearbetningscykeln.
- **3** Därefter positionerar TNC:n verktyget, med rätlinjeförflyttning, till startpunkten för nästa bearbetning; Verktyget befinner sig då på Säkerhetsavståndet (eller det andra Säkerhetsavståndet).
- **4** Detta förlopp (1 till 3) upprepas tills alla bearbetningarna har utförts.

Cykel 220 är DEF-aktiv, detta betyder att cykel 220 automatiskt anropar den sist definierade bearbetningscykeln!

Om man kombinerar en av bearbetningscyklerna 200 till 204 och 212 till 215 med cykel 220 så hämtas Säkerhetsavståndet, Arbetsstyckets yta och det andra Säkerhetsavståndet från cykel 220!

- ▶ Mitt 1. axel Q216 (absolut): Cirkelsegmentets mittpunkt i bearbetningsplanets huvudaxel
- Mitt 2. axel Q217 (absolut): Cirkelsegmentets mittpunkt i bearbetningsplanets närliggande axel
- Diameter cirkelsegment Q244: Cirkelsegmentets diameter
- Startvinkel Q245 (absolut): Vinkel mellan bearbetningsplanets huvudaxel och startpunkten för den första bearbetningen på cirkelsegmentet
- Slutvinkel Q246 (absolut): Vinkel mellan bearbetningsplanets huvudaxel och startpunkten för den sista bearbetningen på cirkelsegmentet (gäller inte vid fullcirkel); ange en Slutvinkel som skiljer sig från Startvinkel; om man anger en Slutvinkel som är större än Startvinkel så utförs bearbetningen moturs, annars medurs
- Vinkelsteg Q247 (inkrementalt): Vinkel mellan två bearbetningar på cirkelsegmentet; om Vinkelsteg är lika med noll så beräkna TNC:n själv Vinkelsteget ur Startvinkel, Slutvinkel och Antal bearbetningar; om ett Vinkelsteg anges så tar TNC:n inte hänsyn till Slutvinkel; förtecknet för Vinkelsteg bestämmer bearbetningsriktningen (- = Medurs)
- Antal bearbetningar Q241: Antal bearbetningar på cirkelsegmentet

	exempensiook.	
53	CYCL DEF 220	MOENSTER CIRKEL
	Q216=+50	;MITT 1:A AXEL
	Q217=+50	;MITT 2:A AXEL
	Q244=80	;CIRKELSEGMENT DIAMETER
	Q245=+0	;STARTVINKEL
	Q246=+360	;SLUTVINKEL
	Q247=+0	;VINKELSTEG
	Q241=8	;ANTAL BEARBETNINGAR
	Q200=2	;SAEKERHETSAVST.
	Q2O3=+0	;KOORD. OEVERYTA
	Q204=50	;2. SAEKERHETSAVST.

- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta; ange ett positivt värde
- ▶ Koord. arbetsstyckets yta Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske; ange ett positivt värde

PUNKTMÖNSTER PÅ LINJER (cykel 221)

Att beakta innan programmering

Cykel 221 är DEF-aktiv, detta betyder att cykel 221 automatiskt anropar den sist definierade bearbetningscykeln!

Om man kombinerar en av bearbetningscyklerna 200 till 204 och 211 till 215 med cykel 220 så hämtas Säkerhetsavståndet, Arbetsstyckets yta och det andra Säkerhetsavståndet från cykel 220!

1 TNC:n positionerar automatiskt verktyget från den aktuella positionen till startpunkten för den första bearbetningen.

Ordningsföljd:

- Förflyttning till 2. säkerhetsavståndet (spindelaxel)
- Förflyttning till startpunkten i bearbetningsplanet
- Förflyttning till säkerhetsavståndet över arbetsstyckets yta (Spindelaxel)
- 2 Från denna position utför TNC:n den sist definierade bearbetningscykeln.
- 3 Därefter positionerar TNC:n verktyget i huvudaxelns positiva riktning till startpunkten för nästa bearbetning; verktyget befinner sig då på Säkerhetsavståndet (eller på det andra Säkerhetsavståndet).
- 4 Detta förlopp (1 till 3) upprepas tills alla bearbetningarna på den första raden har utförts; verktyget befinner sig vid den sista punkten i den första raden.
- 5 Därefter förflyttar TNC:n verktyget till den andra radens sista punkt och utför där bearbetningen.
- 6 Därifrån positionerar TNC:n verktyget i huvudaxelns negativa riktning till startpunkten för nästa bearbetning.
- 7 Detta förlopp (6) upprepas tills alla bearbetningarna på den andra raden har utförts.

- 8 Efter detta förflyttar TNC:n verktyget till startpunkten på nästa rad.
- **9** Med den beskrivna pendlande rörelsen kommer alla andra rader att utföras.

- Startpunkt 1. axel Q225 (absolut): Koordinat för startpunkten i bearbetningsplanets huvudaxel
- Startpunkt 2. axel Q226 (absolut): Koordinat för startpunkten i bearbetningsplanets närliggande axel
- Avstånd 1. axel Q237 (inkrementalt): Avstånd mellan de enskilda punkterna inom raden
- Avstånd 2. axel Q238 (inkrementalt): Avstånd mellan de enskilda raderna
- Antal spalter Q242: Antal bearbetningar per rad
- ▶ Antal rader Q243: Antal rader
- Vridningsvinkel Q224 (absolut): Vinkel med vilken hela hålbilden skall vridas; vridningscentrum ligger i startpunkten
- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta
- Koord. arbetsstyckets yta Q203 (absolut): Koordinat för arbetsstyckets yta
- 2. Säkerhetsavstånd Q204 (inkrementalt): Koordinat i spindelaxeln, vid vilken kollision mellan verktyg och arbetsstycke (spännanordningar) inte kan ske

No exempensiook.	
54 CYCL DEF 221	MOENSTER LINJER
Q225=+15	;STARTPUNKT 1:A AXEL
Q226=+15	;STARTPUNKT 2:A AXEL
Q237=+10	;AVSTAAND 1:A AXEL
Q238=+8	;AVSTAAND 2:A AXEL
Q242=6	;ANTAL KOLUMNER
Q243=4	;ANTAL RADER
Q22 4=+15	; VRIDNINGSLAAGE
Q200=2	;SAEKERHETSAVST.
Q203=+0	;KOORD. OEVERYTA
Q204=50	;2. SAEKERHETSAVST.

0	BEGIN PGM BOHRB MM	
1	BLK FORM 0.1 Z X+0 Y+0 Z-40	Råämnesdefinition
2	BLK FORM 0.2 X+100 Y+100 Z+0	
3	TOOL DEF 1 L+0 R+3	Verktygsdefinition
4	TOOL CALL 1 Z S3500	Verktygsanrop
5	L Z+250 R0 F MAX M3	Frikörning av verktyget
6	CYCL DEF 200 BORRNING	Cykeldefinition borrning
	Q200=2; SAEKERHETSAVSTAAND	
	Q201=-15 ;DJUP	
	Q206=250 ;MATNING DJUP	
	Q2O2=4 ; SKAERDJUP	
	Q210=0 ;VAENTETID UPPE	
	Q2O3=+O ;KOORD. OEVERYTA	
	Q2O4=O ;2. SAEKERHETSAVST.	

7	CYCL DEF 2	20 MOENSTER CIRKEL	Cykeldefinition hålcirkel 1, CYCL 200 anropas automatiskt,
	Q216=+30	;CENTRUM 1. AXEL	Q200, Q203 och Q204 hämtas från cykel 220
	Q217=+70	;CENTRUM 2. AXEL	
	Q244=50	;CIRK.SEGDIAMETER	
	Q245=+0	; STARTVINKEL	
	Q246=+360	;SLUTVINKEL	
	Q247=+0	;VINKELSTEG	
	Q241=10	;ANTAL BEARBETNINGAR	
	Q200=2	; SAEKERHETSAVSTAAND	
	Q2O3=+0	;KOORD. OEVERYTA	
	Q204=100	;2. SAEKERHETSAVST.	
8	CYCL DEF 2	20 MOENSTER CIRKEL	Cykeldefinition hålcirkel 2, CYCL 200 anropas automatiskt,
	Q216=+90	;CENTRUM 1. AXEL	Q200, Q203 och Q204 hämtas från cykel 220
	Q217=+25	;CENTRUM 2. AXEL	
	Q244=70	;CIRK.SEGDIAMETER	
	Q245=+90	; STARTVINKEL	
	Q246=+360	;SLUTVINKEL	
	Q247=+30	;VINKELSTEG	
	Q241=5	;ANTAL BEARBETNINGAR	
	Q200=2	; SAEKERHETSAVSTAAND	
	Q2O3=+0	;KOORD. OEVERYTA	
	Q204=100	;2. SAEKERHETSAVST.	
9	L Z+250 R0	F MAX M2	Frikörning av verktyget, programslut
10	FND PGM B	OHRB MM	

8.5 SL-cykler

Med SL-cyklerna kan komplexa sammansatta konturer bearbetas konturorienterat, vilket gör att en mycket hög ytjämnhet kan erhållas.

Konturens egenskaper

- En sammansatt kontur kan byggas upp av flera överlagrade delkonturer (upp till 12 stycken). Godtyckliga fickor och öar bildar då delkonturerna.
- Man definierar en lista med delkonturerna (underprogramnummer) i cykel 14 KONTUR. TNC:n beräknar den slutliga sammansatta konturen med hjälp av dessa delkonturer.
- De individuella delkonturerna definierar man i form av underprogram.
- Minnesutrymmet för en SL-cykel är begränsat. Exempelvis får underprogrammen tillsammans inte innehålla mer än 128 rätlinjeblock.

Underprogrammens egenskaper

- Koordinatomräkningar är tillåtna.
- TNC:n ignorerar matning F och tilläggsfunktioner M
- TNC:n identifierar en ficka om man programmerar förflyttning på insidan av konturen, t.ex. om konturen beskrivs medurs med radiekompensering RR.
- TNC:n identifierar en ö om man programmerar förflyttning på utsidan av konturen, t.ex. om konturen beskrivs medurs med radiekompensering RL.
- Underprogrammen får inte innehålla några koordinater i spindelaxeln.
- I underprogrammets första koordinatblock fastlägger man bearbetningsplanet. Tilläggsaxlar U,V,W är tillåtna

Bearbetningscyklernas egenskaper

- TNC:n positionerar automatiskt verktyget till S\u00e4kerhetsavst\u00e4nd f\u00f6re varje cykel.
- Varje djupnivå fräses utan lyftning av verktyget eftersom fräsningen sker runt öar.
- Radien på "Innerhörn" kan programmeras verktyget stannar inte, fräsmärken undviks (gäller för den yttersta verktygsbanan vid urfräsning och finskär sida).
- Vid finskär sida förflyttar TNC:n verktyget till konturen på en tangentiellt anslutande cirkelbåge.
- Även vid finskär botten förflyttar TNC:n verktyget till arbetsstycket på en tangentiellt anslutande cirkelbåge (t.ex: spindelaxel Z: cirkelbåge i planet Z/X).
- TNC:n bearbetar konturerna genomgående med medfräsning alternativt med motfräsning.

Med MP7420 definierar man vart TNC:n skall positionera verktyget efter att cyklerna 21 till 24 har slutförts.

Måttuppgifterna för bearbetningen såsom fräsdjup, tilläggsmått och säkerhetsavstånd anges centralt i cykel 20 som KONTURDATA.

Översikt: SL-cykler

Cykel	Softkey
14 KONTUR (krävs alltid)	14 LBL 1N
20 KONTURDATA (krävs alltid)	20 Contdur Data
21 FÖRBORRNING (valbar)	21 Ø
22 GROVSKÄR (krävs alltid)	
23 FINSKÄR DJUP (valbar)	
24 FINSKÄR SIDA (valbar)	24
Ytterligare cykler:	
Cykel	Softkey
	25

Schema: Arbeta med SL-cykler

O BEGIN PGM SL2 MM
12 CYCL DEF 14.0 KONTUR
13 CYCL DEF 20.0 KONTURDATA
•••
16 CYCL DEF 21.0 FOERBORRNING
17 CYCL CALL
•••
18 CYCL DEF 22.0 GROVSKAER
19 CYCL CALL
•••
22 CYCL DEF 23.0 FINSKAER DJUP
23 CYCL CALL
•••
26 CYCL DEF 24.0 FINSKAER SIDA
27 CYCL CALL
•••
50 L Z+250 RO FMAX M2
51 LBL 1
55 LBL 0
56 LBL 2
60 LBL 0
99 FND PGM SL2 MM

Cykel	Softkey
25 KONTURLINJE	25 1995-1995-1996-1996-1996-1996-1996-1996-
27 CYLINDERMANTEL	27

KONTUR (cykel 14)

I cykel 14 KONTUR listar man underprogrammen som skall överlagras för att skapa den slutgiltiga sammansatta konturen.

LBL 1...N

Att beakta innan programmering

Cykel 14 är DEF-aktiv, detta innebär att den aktiveras direkt efter sin definition i programmet.

I cykel 14 kan man lista maximalt 12 underprogram (delkonturer).

Labelnummer för kontur: Ange alla labelnummer för de olika underprogrammen som skall överlagras för att skapa en kontur. Bekräfta varje nummer med knappen ENT och avsluta sedan inmatningen med knappen END.

55	CYCL	DEF	14.0	KONTUR				
56	CYCL	DEF	14.1	KONTURLABEL	1	12	/3	

Överlagrade konturer

Man kan överlagra fickor och öar för skapa en ny kontur. Därigenom kan en fickas vta ökas med en överlagrad ficka eller minskas med en överlagrad ö.

Underprogram: Överlappande fickor

Fickan A och B överlappar varandra.

TNC:n beräknar skärningspunkterna S1 och S2, man behöver inte programmera dessa själv.

Fickorna har programmerats som fullcirklar.

Underprogram 1: Vänster ficka

51	LBL 1
52	L X+10 Y+50 RR
53	CC X+35 Y+50
54	C X+10 Y+50 DR-
55	LBL 0

Underprogram 2: Höger ficka

56	LBL 2
57	L X+90 Y+50 RR
58	CC X+65 Y+50
59	C X+90 Y+50 DR-
60	LBL 0

"Summa" -yta

Båda delytorna A och B inklusive den gemensamt överlappade ytan skall bearbetas:

- Ytorna A och B måste vara fickor.
- Den första ytan (i cykel 14) måste börja utanför den andra ytan.

Yta A:

51	LBL 1
52	L X+10 Y+50 RR
53	CC X+35 Y+50
54	C X+10 Y+50 DR-
55	LBL 0

Yta B:

56	LBL 2
57	L X+90 Y+50 RR
58	CC X+65 Y+50
59	C X+90 Y+50 DR-
60	LBL O

"Differens" -yta Ytan A skall bearbetas förutom den av B överlappade delen:

■ Ytan A måste vara en ficka och B måste vara en ö.

A måste börja utanför B.

Yta A:

51 LBL 1
52 L X+10 Y+50 RR
53 CC X+35 Y+50
54 C X+10 Y+50 DR-
55 LBL 0

Yta B:

56	LBL 2
57	L X+90 Y+50 RL
58	CC X+65 Y+50
59	C X+90 Y+50 DR-
60	LBL 0

"Snitt" -yta

Den av A och B överlappade ytan skall bearbetas. (Ytor som bara täcks av en ficka skall lämnas obearbetade.)

A och B måste vara fickor.

A måste börja inuti B.

Yta A:

51	LBL 1
52	L X+60 Y+50 RR
53	CC X+35 Y+50
54	C X+60 Y+50 DR-
55	LBL 0

Yta B:

56	LBL 2
57	L X+90 Y+50 RR
58	CC X+65 Y+50
59	C X+90 Y+50 DR-
60	LBL 0

KONTURDATA (cykel 20)

l cykel 20 anger man bearbetningsinformation för underprogrammen som innehåller delkonturerna.

Att beakta innan programmering

Cykel 20 är DEF-aktiv, detta innebär att cykel 20 aktiveras direkt efter sin definition i bearbetningsprogrammet.

Cykelparametern Djups förtecken bestämmer arbetsriktningen.

Den i cykel 20 angivna bearbetningsinformationen gäller för cykel 21 till 24.

Om man använder SL-cykler i Q-parameterprogram, får inte parameter Q1 till Q19 användas som programparametrar.

- 20 CONTOUR DATA
- Fräsdjup Q1 (inkrementalt): Avstånd mellan arbetsstyckets yta och fickans botten.
- Banöverlapp Faktor Q2: Q2 x verktygsradien ger ansättningen i sida k.
- ► Tillägg för finskär sida Q3 (inkrementalt): Arbetsmån för finskär i bearbetningsplanet.
- Tillägg för finskär djup Q4 (inkrementalt): Arbetsmån för finskär i fickans botten.
- Koordinat arbetsstyckets yta Q5 (absolut): Absolut koordinat för arbetsstyckets yta.

- Säkerhetsavstånd Q6 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta.
- Säkerhetshöjd Q7 (absolut): Absolut höjd, på vilken kollision mellan verktyg och arbetsstycke inte kan ske (för mellanpositioneringar och återgång vid cykelslut)
- Radie innerhörn Q8: Rundningsradie för inner-"hörn"; Det angivna värdet avser verktygscentrumets bana.
- Rotationsriktning ? Medurs = -1 Q9: Bearbetningsriktning för fickor
 medurs (Q9 = -1 motfräsning för fickor och öar)
 moturs (Q9 = +1 medfräsning för fickor och öar)

Bearbetningsparametrarna kan kontrolleras och, om så önskas, ändras vid ett programstopp.

NC-e	exempelblo	ck:	
57	CYCL DEF	20.0 KONTURDATA	
	Q1=-20	; FRAESDJUP	
	Q2=1	; BANOEVERLAPP	
	Q3=+0.2	;TILLAEGG SIDA	
	Q4=+0.1	;TILLAEGG DJUP	
	Q5=+0	;KOORD. OEVERYTA	
	Q6=+2	; SAEKERHETSAVST.	
	Q7=+50	; SAEKERHETSHOEJD	
	Q8=0.5	; RUNDNINGSRADIE	
	Q9=+1	; ROTATIONSRIKTNING	

8.5 SL-cykler

FÖRBORRNING (cykel 21)

TNC:n tar inte hänsyn till ett eventuellt deltavärde DR som har programmerats i TOOL CALL-blocket vid beräkningen av instickspunkten.

Cykelförlopp

Som cykel 1 Djupborrning (se "8.2 Borrcykler").

Användningsområde

Cykel 21 FÖRBORRNING tar hänsyn till Tilläggsmått finskär sida och Tilläggsmått finskär djup samt urfräsningsverktygets radie då nedmatningspunkten beräknas. Nedmatningspunkten är samtidigt startpunkt för urfräsningen.

► Skärdjup Q10 (inkrementalt): Mått med vilket verktyget stegas nedåt (förtecken vid negativ arbetsriktning "-")

- ▶ Nedmatningshastighet Q11: Borrmatning i mm/min
- ► Grovskär verktygsnummer Q13: Numret på verktyget som skall användas vid grovbearbetningen

58	CYCL DEF	21.0 FOERBORRNING	
	Q10=+5	; S KA E RD J U P	
	Q11=100	; NEDMATNINGSHASTIGHET	
	Q13=1	; URFRAESNINGSVERKTYG	

GROVSKÄR (cykel 22)

- TNC:n förflyttar verktyget till en position ovanför nedmatningspunkten; hänsyn tas till Tilläggsmått finskär sida.
- **2** På det första Skärdjupet fräser verktyget, med Fräsmatning Q12, konturen inifrån och ut.
- **3** Först frifräses öarnas konturer (här: C/D) för att därefter utvidga fickan utåt mot fickornas konturer (här: A/B).
- **4** Slutligen färdigställer TNC:n fickans kontur och verktyget återförs till Säkerhetshöjden.

Att beakta innan programmering

I förekommande fall skall en borrande fräs med ett skär över centrum användas (DIN 844), alt förborrning via cykel 21.

- Skärdjup Q10 (inkrementalt): Mått med vilket verktyget stegas nedåt
- Nedmatningshastighet Q11: Matningshastighet nedåt i mm/min
- Matning fräsning Q12: Fräsmatning i mm/min
- Förbearbetningsverktyg nummer Q18: Nummer på verktyget som TNC:n redan har använt för urfräsning. Om ingen tidigare urfräsning har utförts anges "0"; om man anger ett nummer här, utför TNC:n urfräsning bara vid de delar som inte kunde bearbetas med förbearbetningsverktyget.

Om det inte går att förflytta verktyget i sidled till det område som skall efterbearbetas, kommer TNC:n att utföra en pendlande nedmatning; på grund av detta måste man ange skärlängden LCUTS och den maximala nedmatningsvinkeln ANGLE för verktyget i verktygstabellen TOOL.T (se Kapitel 5.2). Om detta inte har definierats kommer TNC:n att presentera ett felmeddelande.

Matning pendling Q19: Pendlingsmatning i mm/min

NC-exempelblock:

59	CYCL DEF	22.0 GROVSKAER
	Q10=+5	; SKAERDJUP
	Q11=100	; NEDMATNINGSHASTIGHET
	Q12=350	;MATNING FRAESNING
	Q18=1	; FOERBEARBETNINGSVERKTYG
	Q19=150	;MATNING PENDLING

FINSKÄR DJUP (cykel 23)

TNC:n beräknar siälv startpunkten för finbearbetningen. Startpunkten påverkas av utrymmesförhållandena i fickan.

TNC:n förflyttar verktyget på en vertikal tangentiellt anslutande cirkelbåge ner till ytan som skall bearbetas. Därefter fräses det vid grovbearbetningen kvarlämnade finskärsmåttet bort.

▶ Nedmatningshastighet Q11: Verktygets förflyttningshastighet vid nedmatning

Matning fräsning Q12: Fräsmatning

NC-exempelblock:

60	CYCL DEF	23.0 FINSKAER DJUP	
	Q11=100	; NEDMATNINGSHASTIGHET	
	Q12=350	;MATNING FRAESNING	

FINSKÄR SIDA (cykel 24)

TNC:n förflyttar verktyget på en tangentiellt anslutande cirkelbåge fram till delkonturerna. Varje delkontur finbearbetas separat.

Att beakta innan programmering

Summan av Tillägg för finskär sida (Q14) och finbearbetningsverktygets radie måste vara mindre än summan av Tillägg för finskär sida (Q3, cykel 20) och grovbearbetningsverktygets radie.

Om cykel 24 används utan att urfräsning med cykel 22 har utförts först, gäller ändå ovanstående beräkning; i formeln skall då värdet "O" användas för radien på grovbearbetningsverktyget.

TNC:n beräknar själv startpunkten för finbearbetningen. Startpunkten påverkas av utrymmesförhållandena i fickan.

- ĥ
- ▶ Rotationsriktning ? Medurs = -1 Q9: Bearbetningsriktning:
 - +1: Rotation moturs
 - -1: Rotation medurs
- Skärdjup Q10 (inkrementalt): Mått med vilket verktyget stegas nedåt
- ▶ Nedmatningshastighet Q11: Matning nedåt
- ▶ Matning fräsning Q12: Fräsmatning
- ▶ Tillägg för finskär sida Q14 (inkrementalt): Inmatningsmöjlighet för arbetsmån vid upprepade finskär; den sista arbetsmånen kommer att fräsas bort om man anger Q14 = 0

61	CYCL DEF	24.0 FINSKAER SIDA
	Q9=+1	; ROTATIONSRIKTNING
	Q10=+5	; SKAERDJUP
	Q11=100	;NEDMATNINGSHASTIGHET
	Q12=350	;MATNING FRAESNING
	Q14=+0	;TILLAEGG SIDA

8.5 SL-cvkler

KONTURLINJE (cykel 25)

Med denna cykel kan, i kombination med cykel 14 KONTUR, "öppna" konturer bearbetas: konturens början och slut sammanfaller inte.

Cykeln 25 KONTURLINJE erbjuder betydande fördelar gentemot vanliga positioneringsblock vid bearbetning av en öppen kontur:

- TNC:n övervakar bearbetningen för att undvika underskärning och konturskador. Kontrollera konturen med testgrafiken innan programkörning.
- Om verktvosradien är för stor så måste eventuellt konturens innerhörn efterbearbetas
- Bearbetningen kan genomgående utföras med medfräsning eller motfräsning. Fräsmetoden bibehålles även om konturen speglas.
- Vid flera ansättningar kan TNC:n förflytta verktyget fram och tillbaka längs med konturen: därigenom reduceras bearbetningstiden.
- Man kan ange en arbetsmån vilket möjliggör flera arbetssteg för grov respektive finbearbetning.

Att beakta innan programmering

Cykelparametern Djups förtecken bestämmer arbetsriktningen.

TNC:n tar bara hänsyn till den första Labeln i cykel 14 KONTUR.

Minnesutrymmet för en SL-cykel är begränsat. Exempelvis kan man programmera maximalt 128 rätlinjeblock i en SL-cykel.

Cykel 20 KONTURDATA behövs inte.

Positioner som programmeras inkrementalt direkt efter cykel 25 utgår ifrån verktygets position efter cykelns slut.

- Fräsdjup Q1 (inkrementalt): Avstånd mellan arbetsstyckets yta och konturens botten.
- ► Tillägg för finskär sida Q3 (inkrementalt): Arbetsmån för finskär i bearbetningsplanet.
- Koord. arbetsstyckets yta Q5 (absolut): Absolut koordinat för arbetsstyckets yta i förhållande till arbetsstyckets nollpunkt.
- Säkerhetshöjd Q7 (absolut): Absolut höjd, på vilken kollision mellan verktyg och arbetsstycke inte kan ske; verktygets återgångsposition vid cykelns slut.
- Skärdjup Q10 (inkrementalt): Mått med vilket verktyget stegas nedåt
- Nedmatningshastighet Q11: Matningshastighet vid förflyttningar i spindelaxeln
- Matning fräsning Q12: Matningshastighet vid förflyttningar i bearbetningsplanet
- Fräsmetod ? Motfräsning = -1 Q15: Medfräsning: Inmatning = +1 Motfräsning: Inmatning = -1
 Växling mellan med- och motfräsning vid flera ansättningar: Inmatning = 0

62	CYCL DEF 2	25.0 KONTURLINJE
	Q1=-20	; FRAESDJUP
	Q3=+0	;TILLAEGG SIDA
	Q5=+0	;KOORD. OEVERYTA
	Q7=+50	; SAEKERHETSHOEJD
	Q10=+5	; SKAERDJUP
	Q11=100	;NEDMATNINGSHASTIGHET
	Q12=350	;MATNING FRAESNING
	015=+1	:FRAESMETOD
CYLINDERMANTEL (cykel 27)

8.5 SL-cykler

Maskinen och TNC:n måste förberedas för cykel 27 CYLINDERMANTEL av maskintillverkaren.

Med denna cykel kan en normalt definierad kontur projiceras på en cvlindermantel.

Konturen beskriver man i ett underprogram som anges i cykel 14 (KONTUR).

Underprogrammet innehåller koordinater i en vinkelaxel (t.ex. Caxeln) och en därtill parallellt löpande axel (t.ex. spindelaxeln). Som konturfunktioner står L, CHF, CR, och RND till förfogande.

Måttuppgifterna i vinkelaxeln kan anges antingen i grader eller i mm (tum) (väljes vid cykeldefinitionen).

P

Att beakta innan programmering

Minnesutrymmet för en SL-cykel är begränsat. Exempelvis kan man programmera maximalt 128 rätlinjeblock i en SL-cykel.

Cykelparametern Djups förtecken bestämmer arbetsriktningen.

Använd en borrande fräs med ett skär över centrum (DIN 844).

Cylindern måste spännas upp i rundbordets centrum.

Spindelaxelns rörelse måste vara vinkelrät mot rundbordsaxeln. Om så inte är fallet kommer TNC:n att presentera ett felmeddelande.

Förpositionera verktyget i X-axeln (vid spindelaxel Y) till rundbordets centrum före cykelanropet.

Denna cykel kan man även utföra vid 3D-vridet bearbetningsplan.

TNC:n kontrollerar om den kompenserade eller icke kompenserade banan ligger innanför rotationsaxelns positionsområde som har definierats i maskinparameter 810.x. I förekommande fall sätter man MP 810.x = 0 vid felmeddelande "Konturprogrammeringsfel".

- ► Fräsdjup Q1 (inkrementalt): Avstånd mellan cylindermantel och konturens botten.
- Tillägg för finskär sida Q3 (inkrementalt): Arbetsmån för finskär i det utrullade mantelplanet; tilläggsmåttet verkar i radiekompenseringens riktning.
- Säkerhetsavstånd Q6 (inkrementalt): Avstånd mellan verktygets spets och cylindermantelns yta.
- Skärdjup Q10 (inkrementalt): Mått med vilket verktyget stegas nedåt
- Nedmatningshastighet Q11: Matningshastighet vid förflyttningar i spindelaxeln
- Matning fräsning Q12: Matningshastighet vid förflyttningar i bearbetningsplanet
- Cylinderradie Q16: Cylinderns radie, på vilken konturen skall bearbetas.
- Måttenhet ? Grad=0 MM/INCH=1 Q17: Rotationsaxelns koordinater i underprogrammet programmeras i grader eller mm (tum).

NC-exempelblock:

63	CYCL DEF	27.0 CYLINDERMANTEL
	Q1=-8	; F RAE SD J U P
	Q3=+0	;TILLAEGG SIDA
	Q6=+0	;SAEKERHETSAVST.
	Q10=+3	; SKAERDJUP
	Q11=100	; NEDMATNINGSHASTIGHET
	Q12=350	;MATNING FRAESNING
	Q16=25	; RADIE
	017=0	; MAATTYP

Exempel: Urfräsning och efterfräsning av ficka

0	BEGIN PGM C20 MM	
1	BLK FORM 0.1 Z X-10 Y-10 Z-40	
2	BLK FORM 0.2 X+100 Y+100 Z+0	Råämnesdefinition
3	TOOL DEF 1 L+0 R+15	Verktygsdefinition förbearbetning
4	TOOL DEF 2 L+0 R+7,5	Verktygsdefinition efterbearbetning
5	TOOL CALL 1 Z S2500	Verktygsanrop förbearbetning
6	L Z+250 RO F MAX	Frikörning av verktyget
7	CYCL DEF 14.0 KONTUR	Definiera underprogram för kontur
8	CYCL DEF 14.1 KONTURLABEL 1	
9	CYCL DEF 20.0 KONTURDATA	Definiera allmänna bearbetningsparametrar
	Q1=-20 ;FRAES DJUP	
	Q2=1 ;BANOEVERLAPP	
	Q3=+0 ;TILLAEGG SIDA	
	Q4=+0 ;TILLAEGG DJUP	
	Q5=+0 ;KOORD. OEVERYTA	
	Q6=2;SAEKERHETSAVST.	
	Q7=+100 ;SAEKERHETSHOEJD	
	Q8=0,1 ;RUNDNINGSRADIE	
	Q9=-1 ;ROTATIONSRIKTNING	

10	CYCL DEF 22.0 GROVSKAER	Cykeldefinition förbearbetning
	Q10=5 ;SKAERDJUP	
	Q11=100 ;MATNING DJUPBORRNING	
	Q12=350 ;MATNING FRAESNING	
	Q18=0 ; FOERBEARBETNINGSVERKTYG	
	Q19=150 ; MATNING PENDLING	
11	CYCL CALL M3	Cykelanrop förbearbetning
12	L Z+250 RO F MAX M6	Verktygsväxling
13	TOOL CALL 2 Z S3000	Verktygsanrop efterbearbetning
14	CYCL DEF 22.0 GROVSKAER	Cykeldefinition efterbearbetning
	Q10=5 ; SKAERDJUP	
	Q11=100 ;MATNING DJUPBORRNING	
	Q12=350 ;MATNING FRAESNING	
	Q18=1 ;FOERBEARBETNINGSVERKTYG	
	Q19=150 ; MATNING PENDLING	
15	CYCL CALL M3	Cykelanrop efterbearbetning
16	L Z+250 RO F MAX M2	Frikörning av verktyget, programslut
17	LBL 1	Underprogram för kontur
18	L X+0 Y+30 RR	(Se FK 2. exempel "6.6 Konturrörelser –
19	FC DR- R30 CCX+30 CCY+30	Flexibel konturprogrammering FK")
20	FL AN+60 PDX+30 PDY+30 D10	
21	FSELECT 3	
22	FPOL X+30 Y+30	
23	FC DR- R20 CCPR+55 CCPA+60	
24	FSELECT 2	
25	FL AN-120 PDX+30 PDY+30 D10	
26	FSELECT 3	
27	FC X+0 DR- R30 CCX+30 CCY+30	
28	FSELECT 2	
29	LBL O	
30	END PGM C20 MM	

Exempel: Förborra, grovbearbeta och finbearbeta överlagrade konturer

O BEGIN PGM C21 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-4	0 Råämnesdefinition
2 BLK FORM 0.2 X+100 Y+100 Z	+0
3 TOOL DEF 1 L+0 R+6	Verktygsdefinition borr
4 TOOL DEF 2 L+0 R+6	Verktygsdefinition grov/fin
5 TOOL CALL 1 Z S2500	Verktygsanrop borr
6 L Z+250 R0 F MAX	Frikörning av verktyget
7 CYCL DEF 14.0 KONTUR	Lista underprogram för kontur
8 CYCL DEF 14.1 KONTURLABEL	1 /2 /3 /4
9 CYCL DEF 20.0 KONTURDATA	Definiera allmänna bearbetningsparametrar
Q1=-20 ;FRAES DJUP	
Q2=1 ;BANOEVERLAPP	
Q3=+0,5 ;TILLAEGG SIDA	
Q4=+0,5 ;TILLAEGG DJUP	
Q5=+0 ;KOORD.OEVERYT	A
Q6=2;SAEKERHETSAVST	· · · · · · · · · · · · · · · · · · ·
Q7=+100 ; SAEKERHETSHOEJ	D
Q8=0,1 ;RUNDNINGSRADIE	
Q9=-1 ;ROTATIONSRIKTN	ING
10 CYCL DEF 21.0 FOERBORRNIN	G Cykeldefinition förborrning
Q10=5;SKAERDJUP	
Q11=250 ;MATNING DJUPBC	RRNING
Q13=2 ;GROVSKAERSVER	TYG
11 CYCL CALL M3	Cykelanrop förborrning

8 Programmering: Cykler

12	L Z+250 RO F MAX M6	Verktygsväxling
13	T00L CALL 2 Z S3000	Verktygsanrop grov/fin
14	CYCL DEF 22.0 GROVSKAER	Cykeldefinition urfräsning
	Q10=5; SKAERDJUP	
	Q11=100 ;MATNING DJUPBORRNING	
	Q12=350 ;MATNING FRAESNING	
	Q18=0 ; FOERBEARBETNINGSVERKTYG	
	Q19=150 ; MATNING PENDLING	
15	CYCL CALL M3	Cykelanrop urfräsning
16	CYCL DEF 23.0 FINSKAER DJUP	Cykeldefinition finskär djup
	Q11=100 ;MATNING DJUPBORRNING	
	Q12=200 ;MATNING FRAESNING	
17	CYCL CALL	Cykelanrop finskär djup
18	CYCL DEF 24.0 FINSKAER SIDA	Cykeldefinition finskär sida
	Q9=+1 ;ROTATIONSRIKTNING	
	Q10=5; SKAERDJUP	
	Q11=100 ; MATNING DJUPBORRNING	
	Q12=400 ; MATNING FRAESNING	
	Q14=+0 ;TILLAEGG SIDA	
19	CYCL CALL	Cykelanrop finskär sida
20	L Z+250 RO F MAX M2	Frikörning av verktyget, programslut
21	LBL 1	Underprogram för kontur 1: vänster ficka
22	CC X+35 Y+50	
23	L X+10 Y+50 RR	
24	C X+10 DR-	
25	LBL O	
26	LBL 2	Underprogram för kontur 2: höger ficka
27	CC X+65 Y+50	
28	L X+90 Y+50 RR	
29	C X+90 DR-	
30	LBL O	
31	LBL 3	Underprogram för kontur 3: vänster fyrkantig ö
32	L X+27 Y+50 RL	
33	L Y+58	
34	L X+43	
35	L Y+42	
36	L X+27	
37	LBL O	
38	LBL 4	Underprogram för kontur 4: höger trekantig ö
39	L X+65 Y+42 RL	
40	L X+57	
41	L X+65 Y+58	
42	L X+73 Y+42	
43	LBL O	
44	END PGM C21 MM	

O BEGIN PGM C25 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Råämnesdefinition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Verktygsdefinition
4 TOOL CALL 1 Z S2000	Verktygsanrop
5 L Z+250 RO F MAX	Frikörning av verktyget
6 CYCL DEF 14.0 KONTUR	Definiera underprogram för kontur
7 CYCL DEF 14.1 KONTURLABEL 1	
8 CYCL DEF 25.0 KONTURLINJE	Definiera bearbetningsparametrar
Q1=-20 ;FRAES DJUP	
Q3=+0 ;TILLAEGG SIDA	
Q5=+O ;KOORD.OEVERYTA	
Q7=+250 ;SAEKERHETSHOEJD	
Q10=5; SKAERDJUP	
Q11=100 ;MATNING DJUPBORRNING	
Q12=200 ;MATNING FRAESNING	
Q15=+1 ;FRAESMETOD	
9 CYCL CALL M3	Cykelanrop
10 L Z+250 RO F MAX M2	Frikörning av verktyget, programslut

11	LBL 1	Underprogram för kontur	P
12	L X+0 Y+15 RL		X
13	L X+5 Y+20		>
14	CT X+5 Y+75		Ŀ
15	L Y+95		S
16	RND R7,5		ß
17	L X+50		00
18	RND R7,5		
19	L X+100 Y+80		
20	LBL O		
21	END PGM C25 MM		

Exempel: Cylindermantel

Cylindern är uppspänd i rundbordets centrum.

Utgångspunkten ligger i rundbordets centrum.

O BEGIN PGM C27 MM	
1 TOOL DEF 1 L+0 R+3,5	Verktygsdefinition
2 TOOL CALL 1 Y S2000	Verktygsanrop, verktygsaxel Y
3 L Y+250 RO FMAX	Frikörning av verktyget
4 L X+0 RO FMAX	Positionera verktyget till rundbordets centrum
5 CYCL DEF 14.0 KONTUR	Definiera underprogram för kontur
6 CYCL DEF 14.1 KONTURLABEL 1	
7 CYCL DEF 27.0 CYLINDERMANTEL	Definiera bearbetningsparametrar
Q1=-7 ;FRAES DJUP	
Q3=+0 ;TILLAEGG SIDA	
Q6=2;SAEKERHETSAVST.	
Q10=4 ; SKAERDJUP	
Q11=100 ;MATNING DJUPBORRNING	
Q12=250 ;MATNING FRAESNING	
Q16=25 ;RADIE	
Q17=1 ;MATTENHET	
8 L C+O RO F MAX M3	Förpositionera rundbord
9 CYCL CALL	Cykelanrop
10 L Y+250 RO F MAX M2	Frikörning av verktyget, programslut

11	LBL 1	Underprogram för kontur
12	L C+40 Z+20 RL	Måttuppgifter för rotationsaxel i mm (Q17=1)
13	L C+50	
14	RND R7,5	
15	L Z+60	
16	RND R7,5	
17	L IC-20	
18	RND R7,5	
19	L Z+20	
20	RND R7,5	
21	L C+40	
22	LBL O	
23	END PGM C27 MM	

8.5 SL-cykler

8.6 Cykler för uppdelning

TNC:n erbjuder fyra cykler med vilka ytor med följande egenskaper kan bearbetas:

- Genererade genom digitalisering eller av ett CAD-/CAM-system
- Plana rektangulära ytor
- Vtor placerade i snett plan
- Godtyckligt tippade
- Vridna

Cykel

30 MILL PNT-DAT

30 BEARBETNING MED DIGITALISERADE DATA För uppdelning av digitaliserade data i flera ansättningar

230 PLANING För plana rektangulära ytor

231 LINJALYTA För icke rektangulära, tippade eller vridna ytor

231	<u>/</u> *	2
6	كالمستنه	<i>></i>

BEARBETNING MED DIGITALISERADE DATA (cykel 30)

- **1** TNC:n positionerar verktyget, med snabbtransport FMAX, från den aktuella positionen i spindelaxeln till Säkerhetsavståndet över den i cykeln programmerade MAX-punkten.
- 2 Därefter förflyttar TNC:n verktyget, med FMAX, i bearbetningsplanet till den i cykeln programmerade MIN-punkten.
- **3** Därifrån förflyttas verktyget, med Nedmatningshastighet, till den första konturpunkten.
- 4 Därefter utför TNC:n alla i filen med digitaliseringsdata lagrade punkterna med Matning fräsning; om det behövs utför TNC:n emellanåt förflyttning till Säkerhetsavstånd för att hoppa över områden som inte skall bearbetas.
- 5 Slutligen förflyttar TNC:n verktyget tillbaka till Säkerhetsavstånd med FMAX.

Att beakta innan programmering

Med cykel 30 kan man bearbeta med digitaliserade data och PNT-filer.

Om man bearbetar med en PNT-fil, i vilken inga koordinater i spindelaxeln finns, erhålles fräsdjupet av den programmerade MIN-punkten i spindelaxeln.

- PGM namn digitaliseringsdata: Ange namnet på filen, i vilken digitaliseringsdata finns lagrad; om filen inte finns i den aktuella katalogen måste den kompletta sökvägen anges. Om man vill exekvera en punkttabell anges dessutom filtypen .PNT
 - MIN-punkt område: Min-punkt (X-, Y- och Z-koordinat) för området inom vilket fräsningen skall utföras.
 - MAX-punkt område: Max-punkt (X-, Y- och Z-koordinat) för området inom vilket fräsningen skall utföras.
 - Säkerhetsavstånd 1 (inkrementalt): Avstånd mellan verktygsspetsen och arbetsstyckets yta för rörelser med snabbtransport
 - Skärdjup 2 (inkrementalt): Mått med vilket verktyget skall stegas nedåt
 - Nedmatningshastighet 3: Verktygets förflyttningshastighet vid nedmatning i mm/min
 - Matning fräsning 4: Verktygets förflyttningshastighet vid fräsning i mm/min
 - Tilläggsfunktion M: Möjlighet att ange en tilläggsfunktion, t.ex. M13

NC-exempelblock:

30 MILL PNT-DAT

64	CYCL DEF	30.0	EXEKVERA DIGIDATA
65	CYCL DEF	30.1	PGM DIGIT.: BSP.H
66	CYCL DEF	30.2	X+0 Y+0 Z-20
67	CYCL DEF	30.3	X+100 Y+100 Z+0
68	CYCL DEF	30.4	AVST 2
69	CYCL DEF	30.5	ARB DJ +5 F100
70	CYCL DEE	30 6	F350 M8

PLANING (cykel 230)

- TNC:n positionerar verktyget, med snabbtransport FMAX, från den aktuella positionen i bearbetningsplanet till startpunkten
 TNC:n förskjuter då verktyget med verktygsradien åt vänster och uppåt.
- **2** Därefter förflyttas verktyget med FMAX i spindelaxeln till Säkerhetsavstånd och förflyttas därifrån med Nedmatningshastighet till den programmerade startpositionen i spindelaxeln.
- **3** Därefter förflyttar TNC:n verktyget med den programmerade Matning fräsning till slutpunkten. **2**; slutpunkten beräknas av TNC:n med hjälp av den programmerade startpunkten, den programmerade längden och verktygsradien.
- **4** TNC:n förskjuter verktyget med Matning sidled till nästa rads startpunkt; TNC:n beräknar förskjutningen med hjälp av den programmerade bredden och antalet fräsbanor.
- 5 Därefter förflyttas verktyget tillbaka i 1. axelns negativa riktning
- **6** Uppdelningen upprepas tills hela den angivna ytan har bearbetats fullständigt.
- 7 Slutligen förflyttar TNC:n verktyget tillbaka till Säkerhetsavstånd med FMAX.

8.6 Cykler för uppdelning

Att beakta innan programmering

230 c

TNC:n positionerar verktyget från den aktuella positionen först i bearbetningsplanet och därefter i spindelaxeln till startpunkten 1.

Verktyget skall förpositioneras så att kollision med arbetsstycke och spännanordningar inte kan ske.

- Startpunkt 1. axel Q225 (absolut): Min-punkt-koordinat i bearbetningsplanets huvudaxel för ytan som skall planas
- Startpunkt 2. axel Q226 (absolut): Min-punkt-koordinat i bearbetningsplanets närliggande axel för ytan som skall planas
- Startpunkt 3. axel Q227 (absolut): Höjd i spindelaxeln vid vilken planingen skall ske
- 1. Sidans längd Q218 (inkrementalt): Längd i bearbetningsplanets huvudaxel för ytan som skall planas, utgående från Startpunkt 1. axel
- 2. Sidans längd Q219 (inkrementalt): Längd i bearbetningsplanets närliggande axel för ytan som skall planas, utgående från Startpunkt 2. axel
- Antal rader Q240: Antal rader, på bredden, som TNC:n skall förflytta verktyget på
- Nedmatningshastighet 206: Verktygets förflyttningshastighet vid förflyttning från Säkerhetsavstånd till fräsdjupet i mm/min
- Matning fräsning Ω207: Verktygets förflyttningshastighet vid fräsning i mm/min
- Matning tvär Q209: Verktygets förflyttningshastighet vid förflyttning till nästa rad i mm/min; om förflyttningen i sidled sker i materialet anges ett mindre Q209 än Q207; om förflyttningen sker utanför materialet kan Q209 vara större än Q207
- Säkerhetsavstånd Q200 (inkrementalt): Avstånd mellan verktygsspetsen och fräsdjupet för positionering vid cykelns början och cykelns slut

NC-exempelblock:

71	CYCL DEF 230	PLANING
	Q225=+10	;STARTPUNKT 1:A AXEL
	Q226=+12	;STARTPUNKT 2:A AXEL
	Q227=+2.5	;STARTPUNKT 3:E AXEL
	Q218=150	;1. SIDANS LAENGD
	Q219=75	;2. SIDANS LAENGD
	Q240=25	;ANTAL SKAER
	Q206=150	;MATNING DJUP
	Q207=500	;MATNING FRAESNING
	Q209=200	;MATNING TVAER
	Q200=2	;SAEKERHETSAVST.

LINJALYTA (cykel 231)

- 1 TNC:n positionerar verktyget från den aktuella positionen med en 3D-rätlinjerörelse till startpunkten 1
- 2 Därefter förflyttar TNC:n verktyget med den programmerade Matning fräsning till slutpunkten.
- **3** Därifrån förflyttar TNC:n verktyget ,med snabbtransport FMAX, med verktygsdiametern i positiv spindelaxel och sedan åter tillbaka till startpunkten **1**
- 4 Vid startpunkten 1 förflyttar TNC:n verktyget åter till det sist utförda Z-värdet.
- **5** Därefter förskjuter TNC:n verktyget i alla tre axlarna från punkt **1**, i riktning mot punkt **4**, till nästa rad.
- 6 Därefter förflyttar TNC:n verktyget till slutpunkten på denna rad. Denna slutpunkt beräknar TNC:n med hjälp av punkt 2 och en förskjutning i riktning mot punkt 3
- 7 Uppdelningen upprepas tills hela den angivna ytan har bearbetats fullständigt.
- 8 Slutligen positionerar TNC:n verktyget till verktygsradien över den högsta angivna punkten i spindelaxeln.

Fräsbanor

Startpunkten och därmed även fräsriktningen är fritt valbar då TNC:n lägger den första fräsbanan från punkt 1 mot punkt 2 och hela ytan från punkt 1 / 2 mot punkt 3 / 4 . Man kan placera punkt 1 i det hörn på ytan som man önskar.

Ytfinheten vid användande av ett cylindriskt verktyg kan optimeras enligt följande:

- Genom dykande verktygsbanor (koordinat i spindelaxeln punkt 1 större än koordinat i spindelaxeln punkt 2) vid ytor med liten lutning.
- Genom klättrande verktygsbanor (koordinat i spindelaxeln punkt
 1 mindre än koordinat i spindelaxeln punkt
 2) vid ytor med stor lutning
- Vid vridna ytor, huvudrörelseriktning (från punkt 1 mot punkt 2) i riktningen där den största lutningen ligger. Se bilden i mitten till höger.

Ytfinheten vid användande av en radiefräs kan optimeras enligt följande:

Vid vridna ytor, huvudrörelseriktning (från punkt 1 mot punkt 2) vinkelrätt mot riktningen där den största lutningen ligger. Se bilden nere till höger.

8.6 Cykler för uppdelning

Att beakta innan programmering

231

TNC:n positionerar verktyget från den aktuella positionen med en 3D-rätlinjerörelse till startpunkten 1. Verktyget skall förpositioneras så att kollision med arbetsstycke och spännanordningar inte kan ske.

TNC:n förflyttar verktyget mellan de angivna positionerna med radiekompensering R0.

l förekommande fall skall en borrande fräs med ett skär över centrum användas (DIN 844).

- Startpunkt 1. axel Q225 (absolut): Koordinat i bearbetningsplanets huvudaxel för startpunkten på ytan som skall delas upp
 - Startpunkt 2. axel Q226 (absolut): Koordinat i bearbetningsplanets närliggande axel för startpunkten på ytan som skall delas upp
 - Startpunkt 3. axel Ω227 (absolut): Koordinat i spindelaxeln för startpunkten på ytan som skall delas upp
 - 2. Punkt 1. axel Q228 (absolut): Koordinat i bearbetningsplanets huvudaxel för slutpunkten på ytan som skall delas upp
 - 2. Punkt 2. axel Q229 (absolut): Koordinat i bearbetningsplanets närliggande axel för slutpunkten på ytan som skall delas upp
 - 2. Punkt 3. axel Q230 (absolut): Koordinat i spindelaxeln för slutpunkten på ytan som skall delas upp
 - 3. Punkt 1. axel Q231 (absolut): Koordinat för punkt 3 i bearbetningsplanets huvudaxel
 - ▶ 3. Punkt 2. axel Q232 (absolut): Koordinat för punkt 3 i bearbetningsplanets närliggande axel
 - 3. Punkt 3. axel Q233 (absolut): Koordinat för punkt 3 i spindelaxeln
 - 4. Punkt 1. axel Q234 (absolut): Koordinat för punkt 4 i bearbetningsplanets huvudaxel
 - 4. Punkt 2. axel Q235 (absolut): Koordinat f
 ör punkt 4 i bearbetningsplanets n
 ärliggande axel
 - 4. Punkt 3. axel Q236 (absolut): Koordinat för punkt 4 i spindelaxeln
 - Antal rader Q240: Antal rader som TNC:n skall förflytta verktyget på mellan punkt 1 och 4, resp. mellan punkt 2 och 3
 - Matning fräsning Q207: Verktygets förflyttningshastighet vid fräsning i mm/min. TNC:n utför den första fräsbanan med halva det programmerade värdet.

NC-exempelblock:

72 CYCL DEF 2	31 LINJALYTA
Q225=+0	;STARTPUNKT 1:A AXEL
Q226=+5	;STARTPUNKT 2:A AXEL
Q227=-2	;STARTPUNKT 3:E AXEL
Q228=+100	;2:A PUNKT 1:A AXEL
Q229=+15	;2:A PUNKT 2:A AXEL
Q230=+5	;2:A PUNKT 3:E AXEL
Q231=+15	;3:E PUNKT 1:A AXEL
Q232=+125	;3:E PUNKT 2:A AXEL
Q233=+25	;3:E PUNKT 3:E AXEL
Q234=+85	;4:E PUNKT 1:A AXEL
Q235=+95	;4:E PUNKT 2:A AXEL
Q236=+35	;4:E PUNKT 3:E AXEL
Q240=40	;ANTAL SKAER
Q207=500	;MATNING FRAESNING

Exempel: Planing

O BEGIN PGM C230 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z+0	Råämnesdefinition
2 BLK FORM 0.2 X+100 Y+100 Z+40	
3 TOOL DEF 1 L+0 R+5	Verktygsdefinition
4 TOOL CALL 1 Z S3500	Verktygsanrop
5 L Z+250 RO F MAX	Frikörning av verktyget
6 CYCL DEF 230 PLANING	Cykeldefinition planing
Q225=+0 ;STARTPUNKT 1. AXEL	
Q226=+0 ;STARTPUNKT 2. AXEL	
Q227=+35 ;STARTPUNKT 3. AXEL	
Q218=100 ;1. SIDANS LAENGD	
Q219=100 ;2. SIDANS LAENGD	
Q240=25 ;ANTAL SKAER	
Q206=250 ;MATNING DJUP	
Q207=400 ;MATNING FRAESNING	
Q2O9=150 ;MATNING TVAER	
Q200=2;SAEKERHETSAVSTAAND	
7 L X+-25 Y+0 R0 F MAX M3	Förpositionering i närheten av startpunkten
8 CYCL CALL	Cykelanrop
9 L Z+250 RO F MAX M2	Frikörning av verktyget, programslut
10 END PGM C230 MM	

8.7 Cykler för koordinatomräkningar

När en kontur har programmerats kan TNC:n förändra dess position på arbetsstycket, dess storlek och läge med hjälp av koordinatomräkningar. TNC:n erbjuder följande cykler för omräkning av koordinater:

Cykel	Softkey
7 NOLLPUNKT Konturer förskjuts direkt i programmet eller från en nollpunktstabell	7 ****
8 SPEGLING Konturer speglas	
10 VRIDNING Konturer vrids i bearbetningsplanet	10
11 SKALFAKTOR Konturer förminskas eller förstoras	
26 AXELSPECIFIK SKALFAKTOR Konturer förminskas eller förstoras med axelspecifika skalfaktorer	26 CC
19 BEARBETNINGSPLAN Bearbetningar utförs i ett tippat koordinatsystem för maskiner med vridbara spindelhuvuden och/eller rundbord	19

Koordinatomräkningarnas varaktighet

Aktivering: En koordinatomräkning aktiveras vid dess definition – den behöver och skall inte anropas. Den är verksam tills den återställs eller definieras på nytt.

Återställning av koordinatomräkningar:

- Definiera cykeln på nytt med dess grundvärde, t.ex. SKALFAKTOR 1,0
- Utför tilläggsfunktionerna M02, M30 eller blocket END PGM (avhängigt maskinparameter 7300)
- Välj ett nytt program

NOLLPUNKTS-förskjutning (cykel 7)

Med hjälp av NOLLPUNKTSFÖRSKJUTNING kan man upprepa bearbetningssekvenser på godtyckliga ställen på arbetsstycket.

Verkan

Efter en cykeldefinition NOLLPUNKTSFÖRSKJUTNING hänförs alla koordinatuppgifter till den nya nollpunkten. Varje axels förskjutning presenteras av TNC:n i den utökade statuspresentationen. Det är även tillåtet att ange rotationsaxlar.

▶ Förskjutning: Den nya nollpunktens koordinater anges; absoluta värden anges i förhållande till arbetsstyckets utgångspunkt, arbetsstyckets utgångspunkt har definierats genom inställning av origos läge; inkrementala värden anges i förhållande till den sist aktiverade nollpunkten – denna kan i sin tur ha varit förskjuten.

NC-exempelblock:

73	CYCL DEF 7.0 NOLLPUNKT
74	CYCL DEF 7.1 X+10
75	CYCL DEF 7.2 Y+10
76	CYCL DEF 7.3 Z-5

Återställning

En nollpunktsförskjutning upphävs genom att en ny nollpunktsförskjutning med koordinatvärdena X=0, Y=0 och Z=0 anges.

Grafik

Om en ny BLK FORM programmeras efter en nollpunktsförskjutning, så kan man via maskinparameter 7310 välja om BLK FORM skall hänföras till den nya eller den gamla nollpunkten. Vid bearbetning av flera detaljer kan TNC:n på detta sätt simulera varje enskild detalj grafiskt.

Statuspresentation

- Den stora positions-presentationen utgår ifrån den aktiv (förskjutna) nollpunkten
- Alla koordinater som presenteras i den utökade statuspresentationen (positioner, nollpunkter) utgår ifrån den manuellt inställda utgångspunkten

NOLLPUNKTS-förskjutning med nollpunktstabeller (cykel 7)

Om man använder programmeringsgrafiken i samband med nollpunktstabell, så skall man välja vilken nollpunktstabell man vill använda i driftart PROGRAM-TEST innan grafikstarten (status S).

Om man bara använder en nollpunktstabell så undviker man förväxling vid aktivering i driftarterna för programkörning.

Nollpunkter från nollpunktstabellen kan utgå från den aktuella utgångspunkten för arbetsstycket eller från maskinens nollpunkt (avhängigt maskinparameter 7475).

Koordinatvärdena från nollpunktstabellen är uteslutande absoluta.

Nya rader kan bara infogas i tabellens slut.

Användningsområde

Nollpunktstabeller använder man exempelvis vid

- ofta förekommande bearbetningssekvenser på olika positioner på arbetsstycket eller
- vid ofta förekommande förskjutning till samma nollpunkter

l ett och samma program kan nollpunktsförskjutningen programmeras både direkt i cykeldefinitionen och anropas från en nollpunktstabell.

> Förskjutning: Antingen anges nollpunktens nummer från nollpunktstabellen eller en Q-parameter; Om man anger en Q-parameter så aktiverar TNC:n det nollpunktsnummer som står i Q-parametern.

NC-exempelblock:

- 77 CYCL DEF 7.0 NOLLPUNKT
- 78 CYCL DEF 7.1 #12

Återställning

1

- En förskjutning till koordinaterna X=0; Y=0 etc. anropas från nollpunktstabellen.
- En förskjutning till koordinaterna X=0; Y=0 etc. anges direkt i cykeldefinitionen.

Statuspresentation

När nollpunkterna från tabellen utgår ifrån maskinens nollpunkt gäller följande:

- den stora positions-presentationen utgår ifrån den aktiva (förskjutna) nollpunkten
- koordinater som visas i den utökade status-presentationen (positioner, nollpunkter) utgår ifrån maskinnollpunkten, varvid TNC:n medräknar den manuellt inställda utgångspunkten

Editera nollpunktstabell

PGM MGT

Nollpunktstabellen väljer man i driftart Programinmatning/Editering.

- Kalla upp filhanteringen: Tryck på knappen PGM MGT; se även "4.2 Filhantering"
 - Visa nollpunktstabeller: Tryck på softkeys VÄLJ TYP och VISA .D
 - ▶ Välj önskad tabell eller ange ett nytt filnamn
 - ▶ Editera fil. Softkeyraden visar då följande funktioner:

Funktion	Softkey
Gå till tabellens början	BÖRJAN T
Gå till tabellens slut	SLUT
Bläddra en sida uppåt	SIDA Î
Bläddra en sida nedåt	SIDA I
Infoga rad (endast möjligt i tabellens slut)	INFOGA RAD
Radera rad	RADERA RAD
Spara inmatad rad och hoppa till nästa rad	NASTA RAD

		NOLLPUN	NKTSFÖ	RSKJUT	INING	?	
FI	L: NULLTAE	.D	MM				
D	Х	Z	В	W			
0	+0	+0	+0	+0			
1	+25	+25	+0	+0			
2	+0	+50	+2.5	+0			
3	+0	+0	+0	+90			
4	+27.25	+0	-3.5	+0			
5	+250	+250	+0	+0			
6	+350	+350	+10.2	+0			
7	+1200	+0	+0	+0			
8	+1700	+1200	-25	+0			
9	-1700	-1200	+25	+0			
10	+0	+0	+0	+0			
11	+0	+0	+0	+0			
12	+0	+0	+0	+0			
	к	Y Z	A	В	C	U	v
AV	PÂ AV]∕ PÂ AV ∕[P	AV⁄PÂ	AV ∕PÂ	AV / PÂ	AV∕ PÂ	AV/I

Konfigurera nollpunktstabell

I den andra och tredje softkeyraden kan man, för varje nollpunktstabell, välja vilka axlar som man skall kunna definiera nollpunkter i. Som standard är alla axlar aktiva. Om man vill spärra bort en axel så ändrar man dess axelsoftkey till AV. TNC:n kommer då att radera den därtill hörande kolumnen i nollpunktstabellen.

Lämna nollpunktstabell

Visa en annan filtyp i filhanteringen och välj önskad fil.

Aktivera nollpunktstabell för programkörning eller programtest

För att aktivera en nollpunktstabell i en driftart för programkörning eller driftart programtest går man tillväga på det sätt som beskrivs under "Editera nollpunktstabell". Istället för att ange ett nytt namn trycker man på softkey VÄLJ.

SPEGLING (cykel 8)

TNC:n kan utföra en bearbetnings spegelbild i bearbetningsplanet. Se bilden uppe till höger.

Verkan

Speglingen aktiveras direkt efter dess definition i programmet. Den är även verksam i driftart Manuell Positionering. TNC:n visar de speglade axlarna i den utökade statuspresentationen.

- Om endast en axel speglas kommer verktygets bearbetningsriktning att ändras. Detta gäller inte för bearbetningscykler.
- Om två axlar speglas bibehålles bearbetningsriktningen.

Resultatet av speglingen påverkas av nollpunktens position:

Nollpunkten ligger på konturen som skall speglas: detaljen speglas direkt vid nollpunkten; se bilden i mitten till höger

Nollpunkten ligger utanför konturen som skall speglas: detaljen förskjuts även till en annan position; se bilden nere till höger

Speglad axel ?: Ange axlarna som skall speglas; man kan spegla alla axlar – inkl. rotationsaxlar – med undantag för spindelaxeln och den därtill hörande komplementaxeln

NC-exempelblock:

79 CYCL DEF 8.0 SPEGLING

80 CYCL DEF 8.1 X Y

Återställning

Programmera cykel SPEGLING på nytt och besvara dialogfrågan med NO ENT.

8.7 Cykler för koordinatomräkning

VRIDNING (cykel 10)

I ett program kan TNC:n vrida koordinatsystemet runt den aktuella nollpunkten i bearbetningsplanet.

Verkan

Vridningen aktiveras direkt efter dess definition i programmet. Den är även verksam i driftart Manuell Positionering. TNC:n presenterar den aktiva vridningsvinkeln i den utökade statuspresentationen.

Referensaxel för vridningsvinkel:

X/Y-plan X-axe	X/Y-plan	X-axel
----------------	----------	--------

- Y/Z-plan Y-axel
- Z/X-plan Spindelaxel

Att beakta innan programmering

TNC:n upphäver en aktiverad radiekompensering genom definitionen av cykel 10. I förekommande fall måste radiekompenseringen programmeras på nytt.

Efter det att man har definierat cykel 10 måste bearbetningsplanets båda axlar förflyttas för att aktivera vridningen.

Vridning: Ange vridningsvinkel i grader (°).
 Inmatningsområde: -360° till +360° (absolut eller inkrementalt)

NC-exempelblock:

- 81 CYCL DEF 10.0 VRIDNING
- 82 CYCL DEF 10.1 R0T+12.357

Återställning

Programmera cykel VRIDNING på nytt med vridningsvinkel 0°.

SKALFAKTOR (cykel 11)

l ett program kan TNC:n förstora eller förminska konturer. På detta sätt kan man exempelvis ta hänsyn till krymp- eller arbetsmån.

Verkan

Skalfaktorn aktiveras direkt efter dess definition i programmet. Den är även verksam i driftart Manuell Positionering. TNC:n visar den aktiva skalfaktorn i den utökade statuspresentationen.

Skalfaktorn verkar:

- i bearbetningsplanet eller i alla tre koordinataxlarna samtidigt (avhängigt maskinparameter 7410)
- i cyklers måttuppgifter
- även i parallellaxlarna U, V och W

Förutsättning

Innan en förstoring alternativt en förminskning bör nollpunkten förskjutas till en kant eller ett hörn på konturen.

Faktor?: Ange faktor SCL (eng.: scaling); TNC:n multiplicerar koordinater och radier med SCL (som beskrivits i "Verkan")

Förstoring: SCL större än 1 till 99,999 999

Förminskning: SCL mindre än 1 till 0,000 001

NC-exempelblock:

83	CYCL	DEF	11.0	SKALFAKTOR
84	CYCL	DEF	11.1	FAKTOR 0.99537

Återställning

Programmera cykel SKALFAKTOR på nytt med faktor 1.

En skalfaktor kan även programmeras axelspecifikt (se cykel 26).

8<mark>.7 C</mark>ykler för koordinatomräkning

SKALFAKTOR AXELSP. (cykel 26)

Att beakta innan programmering

Koordinataxlar med positioner för cirkelbågar får inte förstoras eller förminskas med olika faktorer.

Man kan ange en egen axelspecifik skalfaktor för varje koordinataxel.

Dessutom kan koordinaterna för skalfaktorernas centrum programmeras.

Konturen dras ut från eller trycks ihop mot det programmerade centrumet, alltså inte nödvändigtvis – som i cykel 11 SKALFAKTOR – från den aktuella nollpunkten.

Verkan

Skalfaktorn aktiveras direkt efter dess definition i programmet. Den är även verksam i driftart Manuell Positionering. TNC:n visar den aktiva skalfaktorn i den utökade statuspresentationen.

Axel och faktor: Koordinataxel(axlar) och faktor(er) för den axelspecifika förstoringen eller förminskningen. Ange ett positivt värde – maximalt 99,999 999

Medelpunktskoordinater: Centrum för den axelspecifika förstoringen eller förminskningen.

Koordinataxlarna väljs med softkeys.

Återställning

Programmera cykel SKALFAKTOR på nytt med faktor 1 för respektive axel.

Exempel

Axelspecifika skalfaktorer i bearbetningsplanet

Givet: Kvadrat, se bilden nere till höger

Hörn 1: X = 20,0 mm	Y = 2,5 mm
Hörn 2: X = 32,5 mm	Y = 15,0 mm
Hörn 3: X = 20,0 mm	Y = 27,5 mm
Hörn 4: X = 7,5 mm	Y = 15,0 mm

- X-axeln skall förstoras med faktor 1,4
- Y-axeln skall förminskas med faktor 0,6

Centrum vid CCX = 15 mm CCY = 20 mm

Exempel NC-block

CYCL DEF 26.0 SKALFAKTOR AXELSP. CYCL DEF 26.1 X1,4 Y0,6 CCX+15 CCY+20

BEARBETNINGSPLAN (cykel 19)

8.7 Cykler för koordinatomräkning

 Funktionen för 3D-vridning av bearbetningsplanet måste anpassas i maskinen och TNC:n av maskintillverkaren.
 För det specifika spindelhuvudet (tippningsbordet) bestämmer maskintillverkaren om TNC:n skall tolka vinklarna som programmeras i cykeln som rotationsaxlarnas koordinater eller som en rymdvinkel. Beakta anvisningarna i Er maskinhandbok.

3D-vridningen av bearbetningsplanet sker alltid runt den aktiva nollpunkten.

Grunder se "2.5 3D-vridning av bearbetningsplanet": Läs först igenom hela detta avsnitt.

Verkan

I cykel 19 definierar man bearbetningsplanets läge genom att ange vridningsvinklar. De angivna vinklarna beskriver antingen rotationsaxlarnas verkliga position (se bilden uppe till höger) eller en rymdvektors vinkelkomponenter (se bilden i mitten och nere till höger).

Om man programmerar rymdvektorns vinkelkomponenter kommer TNC:n automatiskt att beräkna rotationsaxlarnas vinkelposition. Rymdvektorns läge – alltså spindelaxelns läge – beräknas av TNC:n genom vridning av det **maskinfasta** koordinatsystemet. Ordningsföljden för beräkningen av rymdvektorn är fast: Först vrider TNC:n A-axeln, därefter B-axeln och slutligen C-axeln.

Cykel 19 aktiveras direkt efter dess definition i programmet. Så fort man förflyttar en axel i det vridna koordinatsystemet kommer kompenseringen för denna axel att aktiveras. Man måste alltså förflytta alla axlarna om kompenseringen för alla axlarna skall aktiveras.

Om man har ställt in funktionen VRIDNING PROGRAMKÖRNING i driftart Manuell drift på AKTIV (se "2.5 3D-vridning av koordinatsystemet") så kommer värdet som har angivits i menyn att skrivas över med vinkelvärdet från cykel 19 BEARBETNINGSPLAN.

Vridningsaxel och vinkel: Vriden rotationsaxel med tillhörande vridningsvinkel; Rotationsaxlar A, B och C väljes via softkeys.

Om TNC:n positionerar vridningsaxlarna automatiskt så kan man även ange följande parametrar

- Matning ? F=: Vridningsaxlarnas förflyttningshastighet vid automatisk positionering
- Säkerhetsavstånd ? (inkrementalt): TNC:n positionerar spindelhuvudet så att positionen som är en förlängning av verktyget med säkerhetsavståndet, inte ändrar sig relativt arbetsstycket

Återställning

För att återställa vridningsvinkeln definierar man cykeln BEARBETNINGSPLAN på nytt och anger 0° för alla vridningsaxlarna. Därefter definierar man återigen cykel BEARBETNINGSPLAN och besvarar dialogfrågan med knappen "NO ENT". På detta sätt återställes funktion (först vridning tillbaka till noll och sedan avstängning).

Positionera rotationsaxel

Maskintillverkaren bestämmer om cykel 19 även positionerar rotationsaxeln(arna) automatiskt eller om man själv måste förpositionera rotationsaxlarna i programmet. Beakta anvisningarna i Er maskinhandbok.

Om cykel 19 positionerar rotationsaxlarna automatiskt gäller:

- TNC:n kan bara positionera styrda axlar automatiskt.
- I cykeldefinitionen måste man förutom vridningsvinkel även ange ett säkerhetsavstånd och en matning med vilken vridningsaxlarna positioneras.
- Endast förinställda verktyg kan användas (hela verktygslängden måste anges i TOOL DEF-blocket alt. i verktygstabellen).
- Under vridningsförloppet förblir verktygsspetsens position i princip oförändrad i förhållande till arbetsstycket.
- TNC:n utför vridningssekvensen med den sist programmerade matningen. Den maximala matningshastigheten som kan uppnås beror på spindelhuvudets (tippningsbordets) komplexitet.

Om cykel 19 inte positionerar vridningsaxlarna automatiskt, måste man själv programmera positioneringen av vridningsaxlarna med exempelvis ett L-block innan cykeldefinitionen:

Exempel NC-block

L Z+100 RO FMAX	
L X+25 Y+10 RO FMAX	
L A+15 RO F1000	Positionera rotationsaxel
CYCL DEF 19.0 BEARBETNINGSPLAN	Definiera vinkel för kompenseringsberäkning
CYCL DEF 19.1 A+15	
L Z+80 RO FMAX	Aktivera kompensering för spindelaxel
L X-7.5 Y-10 RO FMAX	Aktivera kompensering för bearbetningsplanet

Positionspresentation i vridet system

De presenterade positionerna (BÖR och ÄR) samt nollpunktspresentationen i den utökade statuspresentationen hänförs, efter aktivering av cykel 19, till det vridna koordinatsystemet. Positionerna som presenteras direkt efter cykeldefinitionen kommer alltså inte att överensstämma med positionerna som presenterades precis innan cykel 19.

Övervakning av bearbetningsområdet

I vridet koordinatsystem övervakar TNC:n ändlägena bara för axlar som förflyttas. I förekommande fall kommer TNC:n att presentera ett felmeddelande.

Positionering i vridet system

Med tilläggsfunktionen M130 kan man, även vid vridet system, utföra förflyttning till positioner som utgår från det icke vridna koordinatsystemet (se "7.3 Tilläggsfunktioner för koordinatuppgifter").

Kombination med andra cykler för koordinatomräkning

Vid kombination av flera cykler för koordinatomräkning, måste man beakta att tippningen av bearbetningsplanet alltid sker runt den aktiva nollpunkten. Man kan utföra en nollpunktsförskjutning innan aktiveringen av cykel 19 utförs: då förskjuts det "maskinfasta koordinatsystemet".

Om man förskjuter nollpunkten efter att cykel 19 har aktiverats så förskjuts det "vridna koordinatsystemet".

Viktigt: Då cyklerna skall återställas skall de upphävas i omvänd ordningsföljd i förhållande till hur de aktiverades:

- 1. Aktivering nollpunktsförskjutning
- 2. Aktivering tippning av bearbetningsplanet
- 3. Aktivering vridning

Bearbetning

- 1. Återställning vridning
- 2. Återställning tippning av bearbetningsplanet
- 3. Återställning nollpunktsförskjutning

Automatisk mätning i vridet system

Med cykel TCH PROBE 1.0 REFERENSYTA kan arbetsstycket mätas även i vridet koordinatsystem. TNC:n lagrar mätresultatet i en Qparameter, vilken sedan kan behandlas ytterligare (t.ex. Skriva ut mätresultatet på en skrivare).

Arbeta med cykel 19 BEARBETNINGSPLAN, steg för steg

1 Skapa programmet

- Definiera verktyget (om inte TOOL.T är aktiv), ange hela verktygslängden.
- Anropa verktyget
- Frikörning av verktygsaxeln så att verktyget inte kolliderar med arbetsstycket (spännanordningar) vid vridningen.
- I förekommande fall, positionera vridningsaxel(ar) med ett L-block till respektive vinkelvärde (avhängigt en maskinparameter).
- Aktivera nollpunktsförskjutning om det behövs.
- Definiera cykel 19 BEARBETNINGSPLAN; ange vridningsaxlarnas vinkelvärden.
- Förflytta alla huvudaxlar (X, Y, Z) för att aktivera kompenseringen.
- Programmera bearbetningen som om den skulle utföras i ett icke vridet plan.
- Återställ vinkel i cykel 19 BEARBETNINGSPLAN; ange 0° för alla vridningsaxlar
- Upphäv funktionen BEARBETNINGSPLAN; definiera återigen cykel 19, besvara dialogfrågan med "NO ENT"
- I förekommande fall, återställ nollpunktsförskjutningen
- I förekommande fall, positionera vridningsaxlarna till 0°positionen

2 Spänn upp arbetsstycket

3 Förberedelse i driftart Manuell positionering

Positionera vridningsaxel(ar) till lämpligt vinkelvärde för att ställa in arbetsstyckets utgångspunkt. Vinkelvärdet anges i förhållande till den valda utgångsytan på arbetsstycket.

4 Förberedelse i driftart Manuell drift

Funktion vridning av bearbetningsplan väljs till AKTIV med softkey 3D-ROT för driftart Manuell drift; vid icke styrda axlar anges vridningsaxlarnas vinkelvärde i menyn.

Vid icke styrda axlar måste de inmatade värdet överensstämma med vridningsaxelns(axlarnas) är-position, annars kommer TNC:n att beräkna en felaktig utgångspunkt.

5 Ställ in utgångspunkten

- Manuellt genom att tangera arbetsstycket på samma sätt som i icke vridet system (se "2.4 Inställning av utgångspunkt utan 3Davkännarsystem")
- Styrt med ett HEIDENHAIN 3D-avkännarsystem (se bruksanvisning Cykler för avkännarsystem, kapitel 2)

6 Starta bearbetningsprogrammet i driftart Program blockföljd

7 Driftart Manuell drift

Funktionen vridning av bearbetningsplan väljs till INAKTIV med softkey 3D-ROT. Ange vinkelvärdet 0° i menyn för alla vridningsaxlarna (se "2.5 3D-vridning av bearbetningsplan").

Programförlopp

- Koordinatomräkning i huvudprogram
- Bearbetning i underprogram 1 (se "9 Programmering: Underprogram och programdelsupprepning")

U BEGIN PGM KOUMR MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råämnesdefinition
2 BLK FORM 0.2 X+130 Y+130 Z+0	
3 TOOL DEF 1 L+0 R+1	Verktygsdefinition
4 TOOL CALL 1 Z S4500	Verktygsanrop
5 L Z+250 RO F MAX	Frikörning av verktyget
6 CYCL DEF 7.0 NOLLPUNKT	Nollpunktsförskjutning till centrum
7 CYCL DEF 7.1 X+65	
8 CYCL DEF 7.2 Y+65	
9 CALL LBL 1	Anropa fräsbearbetning
10 LBL 10	Sätt märke för programdelsupprepning
11 CYCL DEF 10.0 VRIDNING	Vridning med 45° inkrementalt
12 CYCL DEF 10.1 IROT+45	
13 CALL LBL 1	Anropa fräsbearbetning
14 CALL LBL 10 REP 6/6	Återhopp till LBL 10; totalt sex gånger
15 CYCL DEF 10.0 VRIDNING	Återställ vridning
16 CYCL DEF 10.1 ROT+0	
17 CYCL DEF 7.0 NOLLPUNKT	Återställ nollpunktsförskjutning
18 CYCL DEF 7.1 X+0	
19 CYCL DEF 7.2 Y+0	
20 L Z+250 R0 F MAX M2	Frikörning av verktyget, programslut

21	LBL 1	Underprogram 1:
22	L X+O Y+O RO F MAX	Definition av fräsbearbetningen
23	L Z+2 RO F MAX M3	
24	L Z-5 R0 F200	
25	L X+30 RL	
26	L IY+10	
27	RND R5	
28	L IX+20	
29	L IX+10 IY-10	
30	RND R5	
31	L IX-10 IY-10	
32	L IX-20	
33	L IY+10	
34	L X+0 Y+0 R0 F500	
35	L Z+20 RO F MAX	
36	LBL 0	
37	END PGM KOUMR MM	

8.8 Specialcykler

8.8 Specialcykler

VÄNTETID (cykel 9)

I ett löpande program kan TNC:n fördröja exekveringen av blocket efter cykeln med den programmerade väntetiden. En väntetid kan exempelvis användas för spånbrytning.

Verkan

 \bigcirc

90

Cykeln aktiveras direkt efter dess definition i programmet. Modala tillstånd såsom exempelvis spindelrotation påverkas inte av väntetiden.

▶ Väntetid i sekunder: Ange en väntetid i sekunder

Inmatningsområde 0 till 3 600 s (1 timme) i 0,001 ssteg

Exempel NC-block

89 CYCL DEF 9.0 VAENTETID

PROGRAMANROP (cykel 12)

CYCL DEF 9.1 V.TID 1.5

Man kan likställa bearbetningsprogram, såsom exempelvis speciella borrcykler eller geometrimoduler, med bearbetningscykler. Man anropar dessa program på ungefär samma sätt som cyklerna.

Att beakta innan programmering

Om man bara anger programnamnet, måste det i cykeln angivna programmet finnas i samma katalog som det anropande programmet.

Om det i cykeln angivna programmet inte finns i samma katalog som det anropande programmet, måste man ange hela sökvägen, t.ex.\KLAR35\FK1\50.H

Om man vill ange ett DIN/ISO-program i cykeln så skall filtypen .I skrivas in efter programnamnet.

12 PGM CALL

▶ Programnamn: Ange namnet på programmet som skall anropas och i förekommande fall även sökvägen.

Programmet anropas sedan med

- CYCL CALL (separat block) eller
- M99 (blockvis) eller
- M89 (utförs efter varje positioneringsblock)

Exempel: Programanrop

Ett anropbart program 50 skall anropas från ett annat program med hjälp av cykelanrop.

Exempel NC-block

55	CYCL	DEF	12.0	PGM	CALL
56	CYCL	DEF	12.1	PGM	\KLAR35\FK1\50.H
57	L X+2	20 Y+	⊦50 FI	MAX N	199

SPINDELORIENTERING (cykel 13)

Maskinen och TNC:n måste förberedas av Å maskintillverkaren för cykel 13.

TNC:n kan styra en verktygsmaskins huvudspindel och positionera den till bestämda vinklar.

Spindelorienteringen behövs exempelvis

- vid verktygsväxlarsystem med fast växlarposition för verktyget.
- för att rikta in sändar- och mottagarfönstret i 3D-avkännarsystem med infraröd överföring

Verkan

TNC:n positionerar spindeln till den i cykeln definierade vinkeln genom att M19 eller M20 programmeras (maskinberoende).

Om M19 programmeras utan föregående definition av cykel 13 så positionerar TNC:n huvudspindeln till ett vinkelvärde som har angivits i en maskinparameter (se maskinhandboken).

▶ Orienteringsvinkel: Ange vinkel i förhållande till bearbetningsplanets vinkelreferensaxel.

Inmatningsområde: 0 till 360°

Inmatningssteg: 0,1°

Exempel NC-block

93 CYCL DEF 13.0 ORIENTERING

94 CYCL DEF 13.1 VINKEL 180

TOLERANS (cykel 32)

Den snabba konturfräsningen anpassas av maskintillverkaren till TNC:n och maskinen. Beakta anvisningarna i Er maskinhandbok.

TNC glättar automatiskt konturen mellan godtyckliga (okompenserade eller kompenserade) konturelement. Därigenom förflyttas verktyget kontinuerligt på arbetsstyckets yta. Om det behövs reducerar TNC:n automatiskt den programmerade matningen så att programmet alltid utförs "ryckfritt" med högsta möjliga matningshastighet. Ytan blir jämnare och maskinmekaniken skonas.

Genom glättningen uppstår en konturavvikelse. Konturavvikelsens storlek (TOLERANSVÄRDE) är fastlagd av Er maskintillverkare i en maskinparameter. Med cykel 32 förändrar man det förinställda toleransvärdet (se bilden uppe till höger).

Att beakta innan programmering

Cykel 32 är DEF-aktiv, detta innebär att cykel 32 aktiveras direkt efter sin definition i programmet.

Man återställer cykel 32 genom att definiera cykel 32 på nytt och besvara dialogfrågan efter TOLERANSVÄRDE med NO ENT. Den förinställda toleransen aktiveras åter genom återställningen:

▶ Toleransvärde: Tillåten konturavvikelse i mm

Exempel NC-block

95	CYCL	DEF	32.0	TOLERANS
96	CYCL	DEF	32.1	T0.05

Programmering:

Underprogram och programdelsupprepning

9.1 Underprogram och programdelsupprepning

Underprogram och programdelsupprepning gör det möjligt att programmera en bearbetningssekvens en gång för att därefter utföra den flera gånger.

Label

Underprogram och programdelsupprepningar påbörjas i bearbetningsprogrammet med ett märke LBL, en förkortning för LABEL (eng. för märke).

LABEL tilldelas ett nummer mellan 1 och 254. Varje individuellt LABEL-nummer får bara anges en gång i programmet med LABEL SET.

Om ett och samma LABEL-nummer anges flera gånger kommer TNC:n att presentera ett felmeddelande när man avslutar LBL SET-blocket. Vid mycket långa program kan man via MP7229 begränsa kontrollen till ett definierbart antal block.

LABEL 0 (LBL 0) markerar slutet på ett underprogram och får därför anges ett godtyckligt antal gånger.

9.2 Underprogram

Arbetssätt

- 1 TNC:n utför ett bearbetningsprogram fram till ett anrop av underprogram CALL LBL.
- 2 Från detta ställe utför TNC:n det anropade underprogrammet fram till underprogrammets slut LBL 0.
- **3** Därefter återupptar TNC:n exekveringen av bearbetningsprogrammet vid blocket efter anropet av underprogrammet CALL LBL.

Programmering - anmärkning

- Ett huvudprogram kan innehålla upp till 254 underprogram.
- Man kan anropa underprogram i en godtycklig ordningsföljd och så ofta som önskas.
- Ett underprogram får inte anropa sig själv.
- Programmera underprogram i slutet av huvudprogrammet (efter blocket med M2 alt. M30).
- Om ett underprogram placeras innan blocket med M02 eller M30 i bearbetningsprogrammet så kommer det att utföras minst en gång även om det inte anropas.

Programmering av underprogram

LBL SET

LBL

- Markera början: Tryck på knappen LBL SET och ange ett Label-nummer
- Mata in underprogrammet
- Markera slutet: Tryck på knappen LBL SET och ange Label-nummer "0"

Anropa underprogram

- Anropa underprogram: Tryck på knappen LBL CALL
- Label-nummer: Ange det anropade underprogrammets label-nummer
- Upprepning REP: Hoppa över dialogfrågan med knappen NO ENT. Upprepning REP skall endast användas vid programdelsupprepning.

CALL LBL 0 är inte tillåtet då det skulle innebära ett anrop av underprogrammets slut.

9.3 Programdelsupprepning

Programdelsupprepningar börjar med ett märke LBL (LABEL). En programdelsupprepning avslutas med CALL LBL /REP.

Arbetssätt

- 1 TNC:n utför bearbetningsprogrammet fram till slutet på programdelen (CALL LBL /REP).
- 2 Därefter upprepar TNC:n programdelen mellan anropad LABEL och label-anropet CALL LBL /REP, så många gånger som man har angivit i REP.
- **3** Därefter fortsätter TNC:n vidare i exekveringen av bearbetningsprogrammet.

Programmering - anmärkning

- Man kan upprepa en programdel upp till 65 534 gånger efter varandra.
- Till höger om snedstrecket, efter REP, visar TNC:n hur många programdelsupprepningar som är kvar att utföra.
- TNC:n kommer alltid att utföra programdelar en gång mer än antalet programmerade upprepningar.

Programmering av programdelsupprepning

LBL SET

LBL

- Markera början: Tryck på knappen LBL SET och ange sedan LABEL-nummer för programdelen som skall upprepas
 - Mata in programdelen

Anropa program del supprepning

Tryck på knappen LBL CALL, ange Label-nummer för programdelen som skall upprepas samt ange antalet upprepningar REP.

9.4 Godtyckligt program som underprogram

- **1** TNC:n utför bearbetningsprogrammet fram till dess att ett annat program anropas med CALL PGM.
- 2 Efter detta utför TNC:n det anropade programmet fram till dess slut.
- **3** Därefter återupptar TNC:n exekveringen av det anropande bearbetningsprogrammet från blocket som befinner sig efter programanropet.

Programmering - anmärkning

- TNC:n behöver inga LABELs för att anropa ett program som underprogram.
- Det anropade programmet får inte innehålla tilläggsfunktionerna M2 eller M30.
- Det anropade programmet får inte innehålla några CALL PGM tillbaka till det anropande programmet.

Anropa godtyckligt program som underprogram

- Anropa program: Tryck på knappen PGM CALL och ange sedan Programnamn för det anropade programmet.
- Det anropade programmet måste finnas på TNC:ns hårddisk.

Om man bara anger programnamnet, måste det anropade programmet finnas i samma katalog som det anropande programmet.

Om det anropade programmet inte finns i samma katalog som det anropande programmet, måste man ange hela sökvägen, t.ex. TNC:\VZW35\SCHRUPP\PGM1.H

Om ett DIN/ISO-program skall anropas så anger man filtypen .I efter programnamnet.

Man kan också anropa ett godtyckligt program med cykel 12 PGM CALL.

9 Programmering: Underprogram och programdelsupprepning

PGM CALL

9.5 Länkning av underprogram

Underprogram och programdelsupprepningar kan länkas på följande sätt:

- Underprogram i underprogram
- Programdelsupprepning i programdelsupprepning
- Upprepa underprogram
- Programdelsupprepning i underprogram

Länkningsdjup

Länkningsdjupet är det antal nivåer som programdelar eller programdelsupprepningar kan anropa ytterligare underprogram eller programdelsupprepningar.

- Maximalt länkningsdjup för underprogram: 8
- Maximalt länkningsdjup för huvudprogramanrop: 4
- Man kan länka programdelsupprepningar ett godtyckligt antal gånger

Underprogram i underprogram

Exempel NC-block

0	BEGIN PGM UPGMS MM	
17	CALL LBL 1	Underprogram vid LBL1 anropas
35	L Z+100 RO FMAX M2	Sista programblocket i
		huvudprogrammet (med M2)
36	LBL 1	Början på underprogram 1
39	CALL LBL 2	Underprogram vid LBL2 anropas
45	LBL O	Slut på underprogram 1
46	LBL 2	Början på underprogram 2
62	LBL O	Slut på underprogram 2
63	END PGM UPGMS MM	

Programexekvering

Steg 1: Huvudprogrammet UPGMS utförs fram till block 17. Steg 2: Underprogram 1 anropas och utförs sedan fram till block 39. Steg 3: Underprogram 2 anropas och utförs sedan fram till block 62. Slut på underprogram 2 och återhopp till underprogrammet som underprogram 2 anropades ifrån. Steg 4: Underprogram 1 utförs från block 40 fram till block 45. Slut på underprogram 1 och återhopp till huvudprogram UPGMS. Huvudprogram UPGMS utförs sedan från block 18 Steg 5: fram till block 35. Återhopp till block 1 och programslut.

Upprepning av programdelsupprepning

Exempel NC-block

O BEGIN PGM REPS MM	
15 LBL 1	Början på programdelsupprepning 1
20 LBL 2	Början på programdelsupprepning 2
27 CALL LBL 2 REP 2/2	Programdel mellan detta block och LBL 2
	(block 20) upprepas 2 gånger
35 CALL LBL 1 REP 1/1	Programdel mellan detta block och LBL 1
	(block 15) upprepas 1 gång
50 END PGM REPS MM	

Programexekvering

- Steg 1: Huvudprogram REPS utförs fram till block 27.
- Steg 2: Programdelen mellan block 27 och block 20 upprepas 2 gånger.
- Steg 3: Huvudprogram REPS utförs från block 28 fram till block 35.
- Steg 4: Programdelen mellan block 35 och block 15 upprepas 1 gång (innehåller även programdelsupprepningen mellan block 20 och block 27).
- Steg 5: Huvudprogram REPS utförs från block 36 fram till block 50 (programslut).

9.5 Länkning av underprogram

Upprepning av underprogram

Exempel NC-block

O BEGIN PGM UPGREP MM	
10 LBL 1	Början på programdelsupprepningen
11 CALL LBL 2	Anropa underprogram
12 CALL LBL 1 REP 2/2	Programdel mellan detta block och LBL1
	(block 10) upprepas 2 gånger
19 L Z+100 RO FMAX M2	Huvudprogrammets sista programblock med M2
20 LBL 2	Början på underprogrammet
28 LBL 0	Slut på underprogrammet
29 END PGM UPGREP MM	

Programexekvering

- Steg 1: Huvudprogram UPGREP utförs fram till block 11.
- Steg 2: Underprogram 2 anropas och utförs.
- Steg 3: Programdelen mellan block 12 och block 10 upprepas 2 gånger; Underprogram 2 upprepas 2 gånger.
- Steg 4: Huvudprogram UPGREP utförs från block 13 fram till block 19; Programslut.

Exempel: Konturfräsning med flera ansättningar

9.6 Programmeringsexempel

- Programförlopp Verktyget förpositioneras till arbetsstyckets överkant
- Ansättningen anges inkrementalt
- Konturfräsning
- Upprepa ansättning och konturfräsning

O BEGIN PGM PGMWDH MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Verktygsdefinition
4 TOOL CALL 1 Z S500	Verktygsanrop
5 L Z+250 RO F MAX	Frikörning av verktyget
6 L X-20 Y+30 R0 F MAX	Förpositionering i bearbetningsplanet
7 L Z+O RO F MAX M3	Förpositionering till arbetsstyckets överkant
8 LBL 1	Märke för programdelsupprepning
9 L IZ-4 RO F MAX	Inkrementalt skärdjup (ansättning i luften)
10 APPR CT X+2 Y+30 CCA90 R+5 RL F250	Förflyttning till konturen
11 FC DR- R18 CLSD+ CCX+20 CCY+30	Kontur
12 FLT	
13 FCT DR- R15 CCX+50 CCY+75	
14 FLT	
15 FCT DR- R15 CCX+75 CCY+20	
16 FLT	
17 FCT DR- R18 CLSD- CCX+20 CCY+30	
18 DEP CT CCA90 R+5 F1000	Förflyttning från konturen
19 L X-20 Y+0 RO F MAX	Frikörning
20 CALL LBL 1 REP 4/4	Återhopp till LBL 1; totalt fyra gånger
21 L Z+250 RO F MAX M2	Frikörning av verktyget, programslut
22 END PGM PGMWDH MM	

Exempel: Hålbilder

Programförlopp

- Förflyttning till hålbild i huvudprogram
- Anropa hålbild (underprogram 1)
- Hålbilden programmeras bara en gång i underprogram 1

O BEGIN PGM UP1 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+2,5	Verktygsdefinition
4 TOOL CALL 1 Z S5000	Verktygsanrop
5 L Z+250 RO F MAX	Frikörning av verktyget
6 CYCL DEF 200 BORRNING	Cykeldefinition borrning
Q200=2; SAEKERHETSAVSTAAND	
Q201=-10 ;DJUP	
Q206=250 ;MATNING DJUP	
Q2O2=5;SKAERDJUP	
Q210=0 ;VAENTETID UPPE	
Q2O3=+O ;KOORD. OEVERYTA	
Q2O4=10 ;2. SAEKERHETSAVST.	
7 L X+15 Y+10 R0 F MAX M3	Förflyttning till startpunkt hålbild 1
8 CALL LBL 1	Anropa underprogram för hålbild
9 L X+45 Y+60 R0 F MAX	Förflyttning till startpunkt hålbild 2
10 CALL LBL 1	Anropa underprogram för hålbild
11 L X+75 Y+10 RO F MAX	Förflyttning till startpunkt hålbild 3
12 CALL LBL 1	Anropa underprogram för hålbild
13 L Z+250 RO F MAX M2	Slut på huvudprogrammet

14 LBL 1	Början på underprogram 1: Hålbild
15 CYCL CALL	Första hålet
16 L IX+20 RO F MAX M99	Förflyttning till andra hålet, anropa cykel
17 L IY+20 RO F MAX M99	Förflyttning till tredje hålet, anropa cykel
18 L IX-20 RO F MAX M99	Förflyttning till fjärde hålet, anropa cykel
19 LBL 0	Slut på underprogram 1
20 END PGM UP1 MM	

Exempel: Hålbilder med flera verktyg

Programförlopp

- Bearbetningscykler programmeras i huvudprogrammet
- Anropa komplett hålbild (underprogram 1)
- Förflyttning till hålbild i underprogram 1, anropa hålbild (underprogram 2)
- Hålbilden programmeras bara en gång i underprogram 2

O BEGIN PGM UP2 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+4	Verktygsdefinition centrumborr
4 TOOL DEF 2 L+0 R+3	Verktygsdefinition borr
5 TOOL DEF 3 L+O R+3,5	Verktygsdefinition brotsch
6 TOOL CALL 1 Z S5000	Verktygsanrop centrumborr
7 L Z+250 RO F MAX	Frikörning av verktyget

Φ
Õ.
Ξ
ā
X
A
W.
S
σ
• 🚍 -
Ð
o,
O,
0
_
9
—
0

Cykeldefinition centrumborrning
Anropa underprogram 1 för komplett hålbild
Verktygsväxling
Verktygsanrop borr
Nytt djup för borr
Nytt skärdjup för borr
Anropa underprogram 1 för komplett hålbild
Verktygsväxling
Verktygsanrop brotsch
Cykeldefinition brotschning
Anropa underprogram 1 för komplett hålbild
Slut på huvudprogrammet
Början på underprogram 1: Komplett hålbild
Förflyttning till startpunkt hålbild 1
Anropa underprogram 2 för hålbild
Förflyttning till startpunkt hålbild 2
Anropa underprogram 2 för hålbild
Förflyttning till startpunkt hålbild 3
Anropa underprogram 2 för hålbild
Slut på underprogram 1
Början på underprogram 2: Hålbild
Första hålet med aktiv bearbetningscykel
Förflyttning till andra hålet, anropa cykel
Förflyttning till tredje hålet, anropa cykel
Förflyttning till fjärde hålet, anropa cykel
Slut på underprogram 2

Programmering:

Q-Parametrar

10.1 Princip och funktionsöversikt

Med Q-parametrar kan man definiera en hel detaljfamilj i ett enda gemensamt bearbetningsprogram. Detta görs genom att man programmerar variabler istället för siffervärden: Q-parametrar.

Q-parametrar kan representera exempelvis:

- Koordinatvärden
- Matningshastigheter
- Spindelvarvtal
- Cykeldata

Förutom detta kan man med Q-parametrar exempelvis programmera konturer som definieras med hjälp av matematiska funktioner eller ställa logiska villkor för att bearbetningssekvenser skall utföras eller inte. I kombination med FK-programmeringen kan man även använda Q-parametrar vid konturer som inte är NCanpassade vad beträffar sin måttsättning.

En Q-parameter kännetecknas av bokstaven Q och ett parameternummer mellan 0 och 299. Q-parametrarna är uppdelade i tre huvudgrupper:

Betydelse	Område
Fritt användbara parametrar, globala verksamma för alla program som finns lagrade i TNC:ns minne	Q0 till Q99
Parametrar för specialfunktioner i TNC:n	Q100 till Q199
Parametrar som företrädesvis används för cykler, dessa är globalt verksamma för alla program som finns lagrade i TNC:n	Q200 till Q399

Programmeringsanvisning

Q-parametrar och siffervärden får blandas vid inmatningen av ett bearbetningsprogram.

Q-parametrar kan tilldelas siffervärden mellan –99 999,9999 och +99 999,9999. Internt kan TNC:n beräkna siffervärden med en heltalsdel motsvarande 57 Bit och en decimaldel motsvarande 7 Bit (32 bit sifferbredd motsvarar det decimala talet 4 294 967 296).

Vissa Q-parametrar tilldelas automatiskt alltid samma data av TNC:n, exempelvis tilldelar TNC:n Q-parameter Q108 den aktuella verktygsradien. Se "10.10 Fasta Qparametrar".

Om man använder parameter Q1 till Q99 i maskintillverkar-cykler bestämmer man via maskinparameter MP7251 huruvida dessa parametrar endast skall vara lokalt verksamma i maskintillverkarcykeln eller globalt verksamma för alla program.

Kalla upp Q-parameterfunktioner

När ett bearbetningsprogram matas in trycker man på knappen "Q" (i fältet för sifferinmatning och axelval under –/+ -knappen). Då presenterar TNC:n följande softkeys:

Funktionsgrupp	Softkey
Matematiska grundfunktioner	GRUND- FUNKTION.
Vinkelfunktioner	TRIGO- NOMETRI
Funktion för cirkelberäkning	CIRKEL- BERÄK- NING
IF/THEN-bedömning, hopp	норр
Specialfunktioner	DIVERSE FUNKTION.
Formel direkt programmerbar	FORMEL

10.2 Detaljfamiljer – Q-parametrar istället för siffervärden

Med Q-parameterfunktionen FN0: TILLDELNING kan Q-parametrar tilldelas siffervärden. Detta gör det möjligt att mata in variabla Q-parametrar istället för siffervärden i bearbetningsprogrammet.

Exempel NC-block

15 FNO: Q10 = 25	Tilldelning:
	Q10 får värdet 25
25 L X +Q10	motsvarar L X +25

För en detaljfamilj kan man exempelvis programmera karaktäristiska dimensioner som Q-parametrar.

För bearbetning av en specifik detalj behöver man då bara tilldela dessa parametrar lämpliga värden.

Exempel

Cylinder med Q-parametrar

Cylinderradie	R = Q1
Cylinderhöjd	H = Q2
Cylinder Z1	$ \begin{array}{rcl} 01 &= +30 \\ 02 &= +10 \end{array} $
Cylinder Z2	$ \begin{array}{rcl} 01 &= +10 \\ 02 &= +50 \end{array} $

10.3 Beskrivning av konturer med hjälp av matematiska funktioner

Med Q-parametrar kan man programmera matematiska grundfunktioner i ett bearbetningsprogram:

- ▶ Välj Q-parameterfunktioner: Tryck på knappen Q (till höger i fältet för sifferinmatning). Softkeyraden visar Q-parameterfunktionerna.
- Välj matematiska grundfunktioner: Tryck på softkey GRUND-FUNKT. TNC:n visar följande softkeys:

Funktion	Softkey
FN0:TECKEN t.ex. FN0: Q5 = +60 Tilldela ett värde direkt	FN0 X = V
FN1: ADDITION t.ex. FN1: Q1 = -Q2 + -5 Summera två värden och tilldela resultatet	FN1 X + Y
FN2: SUBTRAKTION t.ex. FN2: Q1 = +10 - +5 Subtrahera två värden och tilldela resultatet	FN2 X - V
FN3: MULTIPLIKATION t.ex. FN3: Q2 = +3 * +3 Multiplicera två värden och tilldela resultatet	FN3 X * Y
FN4: DIVISION t.ex. FN4: Q4 = +8 DIV +Q2 Dividera två värden och tilldela resultatet Förbjudet: Division med 0!	FN4 X / Y
FN5: ROTEN UR t.ex. FN5: Q20 = SQRT 4 Beräkna roten ur ett värde och tilldela resultatet Förbjudet: Roten ur negativa tal!	FN5 ROTEN UR

Till höger om "="-tecknet får man ange:

🔳 två tal

■ två Q-parametrar

ett tal och en Q-parameter

Q-parametrarna och siffervärdena i beräkningarna kan anges med både positivt och negativt förtecken.

Q	Välj Q-parameterfunktioner: Tryck på knappen Q
GRUND- FUNKTION.	Välj matematiska grundfunktioner: Tryck på softkey GRUNDFUNKT.
FN8 X = Y	Välj Q-parameterfunktion TECKEN: Tryck på softkey FN0 X = Υ
Parameter-N	r. för resultat ?
5 ENT	Ange Q-parameterns nummer: 5
Första värd	e eller parameter?
10 ^{ent}	Tilldela Ω5 siffervärdet 10
Q	Välj Q-parameterfunktioner: Tryck på knappen Q
GRUND- FUNKTION.	Välj matematiska grundfunktioner: Tryck på softkey GRUNDFUNKT.
FN3 X + V	Välj Q-parameterfunktion MULTIPLIKATION: Tryck på softkey FN3 X * Y
Parameter -	Nr. för resultat ?
12 ENT	Ange Q-parameterns nummer: 12
Första värd	e eller parameter?
	Ange Q5 som första värde
Andra värde	eller parameter ?
7 ENT	Ango 7 som andra värda
	Ange / som andra varde

Exempel: Matematisk grundfunktioner

16 FNO: Q5 = +10 17 FN3: Q12 = +Q5 * +7

10.4 Vinkelfunktioner (Trigonometri)

Sinus, cosinus och tangens beskriver förhållandet mellan sidorna i en rätvinklig triangel. Där motsvarar:

Sinus: $\sin \alpha = a/c$

Cosinus: $\cos \alpha = b/c$

Tangens: tan α = a / b = sin α / cos α

Där:

■ c är sidan mitt emot den räta vinkeln

a är sidan mitt emot vinkeln α

■ b är den tredje sidan

Med tangens kan TNC:n beräkna vinkeln:

 α = arctan α = arctan (a / b) = arctan (sin α / cos α)

Exempel:

a = 10 mm

b = 10 mm

 α = arctan (a / b) = arctan 1 = 45°

Dessutom gäller:

 $a^2 + b^2 = c^2$ (med $a^2 = a \times a$)

 $c = \sqrt{(a^2 + b^2)}$

Programmera vinkelfunktioner

Vinkelfunktionerna presenteras när man har tryckt på softkey VINKELFUNKT. TNC:n presenterar då softkeys enligt tabellen till höger.

Programmering: jämförbar med "Exempel: Programmera matematiska grundfunktioner".

Funktion	Softkey
FN6: SINUS t.ex. FN6: Q20 = SIN–Q5 Beräkna sinus för en vinkel i grader (°) och tilldela resultatet	FNG SIN(X)
FN7: COSINUS t.ex. FN7: Q21 = COS–Q5 Beräkna cosinus för en vinkel i grader (°) och tilldela resultatet	FN7 COS(X)
FN8: ROTEN UR KVADRATSUMMA t.ex. FN8: Q10 = +5 LEN +4 Beräkna längden med hjälp av två värden och tilldela resultatet	FN8 X LEN Y
FN13: VINKEL t.ex. FN13: Q20 = +10 ANG–Q1 Beräkna vinkel med arctan för två sidor eller sin och cos för vinkeln	FN13 X ANG Y

 $(0 < vinkel < 360^\circ)$ och tilldela

resultatet

10.5 Cirkelberäkning

Med funktionerna för cirkelberäkning kan man låta TNC:n beräkna cirkelcentrum och cirkelradie via tre eller fyra punkter på cirkeln. Beräkning av en cirkel med hjälp av fyra punkter är noggrannare.

Användning: Exempelvis kan dessa funktioner användas när man vill bestämma ett håls eller ett cirkelsegments läge och storlek med hjälp av de programmerbara avkännarfunktionerna.

Funktion

Softkey

FN23 3 PUNKTER PÅ CIRKEL

FN23: CIRKELDATA beräknas med tre cirkelpunkter t.ex. FN23: Q20 = CDATA Q30

Koordinatpar från tre punkter måste finnas lagrade i parameter Q30 och de följande fem parametrarna – här alltså till och med Q35. TNC:n lagrar sedan cirkelcentrum i huvudaxeln (X vid spindelaxel Z) i parameter Q20, cirkelcentrum i den närliggande axeln (Y vid spindelaxel Z) i parameter Q21 och cirkelradien i parameter Q22.

FN24: CIRKELDATA beräknas med fyra cirkelpunkter t.ex. FN24: Q20 = CDATA Q30

Koordinatpar från fyra punkter måste finnas lagrade i parameter Q30 och de följande sju parametrarna – här alltså till och med Q37. TNC:n lagrar sedan cirkelcentrum i huvudaxeln (X vid spindelaxel Z) i parameter Q20, cirkelcentrum i den närliggande axeln (Y vid spindelaxel Z) i parameter Q21 och cirkelradien i parameter Q22.

Beakta att FN23 och FN24 även automatiskt skriver över de två efterföljande parametrarna utöver resultatparametrarna.

10.6 IF/THEN - bedömning med Q-parametrar

Vid IF/THEN - bedömning jämför TNC:n en Q-parameter med en annan Q-parameter eller ett siffervärde. Om det programmerade villkoret är uppfyllt så fortsätter TNC:n bearbetningsprogrammet vid den efter villkoret programmerade LABELn (LABEL se "9. Underprogram och programdelsupprepning"). Om villkoret inte är uppfyllt så fortsätter TNC:n programexekveringen vid nästa block.

Om man vill anropa ett annat program som underprogram så programmerar man PGM CALL efter LABELn.

Ovillkorligt hopp

Ovillkorliga hopp programmeras som villkorliga hopp men med ett villkor som alltid är uppfyllt (=ovillkorligt), t.ex.

FN9: IF+10 EQU+10 GOTO LBL1

IF/THEN - bedömning programmering

IF/THEN - villkoren presenteras genom att trycka på på softkey HOPP. TNC:n visar följande softkeys:

Funktion	Softkey
FN9: OM LIKA MED, HOPP t.ex. FN9: IF +Q1 EQU +Q3 GOTO LBL 5 Om båda värdena eller parametrarna är lika, hoppa till angiven label	FN9 IF X EQ V GOTO
FN10: OM OLIKA, HOPP t.ex. FN10: IF +10 NE –Q5 GOTO LBL 10 Om båda värdena eller parametrarna är olika, hoppa till angiven label	IF X NE V GOTO
FN11: OM STÖRRE ÄN, HOPP t.ex. FN11: IF+Q1 GT+10 GOTO LBL 5 Om första värdet eller parametern är större än det värdet eller parametern, hoppa till angiven label	FN11 IF X GT V GOTO t andra
FN12: OM MINDRE ÄN, HOPP t.ex. FN12: IF+Q5 LT+0 GOTO LBL 1	FN12 IF X LT Y GOTO

Om första värdet eller parametern är mindre än det andra

värdet eller parametern, hoppa till angiven label

Anvan IF	da begrepp och fork (eng.):	ortningar Om
equ	(eng. equal):	Lika
NE	(eng. not equal):	Inte lika
GT	(eng. greater than):	Större än
LT	(eng. less than):	Mindre än
GOTO	(eng. go to):	Gå till

.

10.7 Kontrollera och ändra Qparametrar

.....

Man kan kontrollera och även ändra Q-parametrar under en programkörning eller ett programtest.

Stoppa programkörningen (t.ex. tryck på den externa STOPPknappen och softkey INTERNT STOPP) alt. stoppa programtestet.

- ▶ Kalla upp Q-parameterfunktioner: Tryck på knapp Q
 - Ange nummer på Q-parameter och tryck på knapp ENT. TNC:n visar då Q-parameterns aktuella värde i dialogfältet.
 - Om man vill ändra värdet anger man ett nytt värde, bekräftar med knappen ENT och avslutar inmatningen med knappen END.

Om man inte vill ändra värdet så avslutar man dialogen med knappen END.

MAN	UELL DRIFT	PROGR	RUN.	TEST			
		Q13 =	+ 4	41.50:	1		
0	BEGIN PGM	SLOLD MM					
1	FN 0: Q1 =	+0.5					
2	FN 0: Q2 =	+32					
3	FN 0: 03 =	+16					
4	FN 0: Q4 =	+24					
6	FN 0: Q5 =	+10					
6	FN 0: 06 =	+6					
7	FN 0: 07 =	+12					
8	FN 0: Q8 =	+6					
9	FN 0: Q10	= +0.5					
10	FN 0: Q11	= +80					
11	FN 0: Q12	= +45.8					
12	FN 0: 013	= +41.501					
13	FN 0: Q14	= +45.5					
14	FN 0: Q15	= +41.5					00:00:00
							SLUI

10.8 Specialfunktioner

Specialfunktionerna visas efter det att man har tryckt på softkey SPECIAL-FUNKTION. TNC:n visar följande softkeys:

Funktion	Softkey
FN14:ERROR	FN14
Kalla upp ett felmeddelande	ERROR=
FN15:PRINT	FN15
Oformaterad utmatning av text eller Q-parametervärde	PRINT
FN16:F-PRINT	FN16
Formaterad utmatning av text eller Q-parametervärde	F-PRINT
FN18:SYS-DATUM READ Läsa systemdata	FN18 SYS-DATA LAS
FN19:PLC	FN19
Överför värde till PLC	PLC=
FN20:WAIT FOR NC och PLC synkronisering	FN20 VÄNTA PÅ
FN25:PRESET Inställning av utgångspunkt i programkörning	FN25 SHIT UTGÅNGSP.

FN 14: ERROR utmatning av felmeddelande

Med funktionen FN14: ERROR kan programstyrda meddelanden som har förprogrammerats av maskintillverkaren alt. av HEIDEN-HAIN kallas upp: Om TNC:n kommer till ett block med FN 14 under programkörning eller programtest så stoppas programexekveringen och ett meddelande visas. Därefter måste programmet startas på nytt. Felnummer se tabellen till nedan.

Exempel NC-block

TNC:n skall presentera ett meddelande som finns lagrats under felnummer 254

180 FN 14: ERROR = 254

Felnum	imer och text
1000	Spindel ?
1001	Verktygsaxel saknas
1002	Spårbredd för stor
1003	Verktygsradie för stor
1004	Område överskridet
1005	Startposition ej korrekt
1006	VRIDNING ej tillåten
1007	SKALFAKTOR ej tillåten
1008	SPEGLING ej tillåten
1009	Förskjutning ej tillåten
1010	Matning saknas
1011	Inmatat värde fel
1012	Fel förtecken
1013	Vinkel ej tillåten
1014	Kan ej köra till beröringspunkt
1015	För många punkter
1016	Inmatning motsägelsefull
1017	CYKEL ofullständig
1018	Yta fel definierad
1019	Fel axel programmerad
1020	Fel varvtal
1021	Radiekorrektur odefinierad
1022	Rundning odefinierad
1023	Rundningsradie för stor
1024	Programstart odefinierad
1025	För stor sammanfogning
1026	Vinkelreferens saknas
1027	Ingen bearbcykel definierad
1028	Spårbredd för stor
1029	Ficka för liten
1030	Q202 ej definierad
1031	Q205 ej definierad
1032	Ange Q218 större än Q219
1033	CYKEL 210 ej tillåten
1034	CYKEL 211 ej tillåten
1035	Q220 för stor
1036	Ange Q222 större än Q223
1037	Ange Q244 större än 0
1038	Ange Q245 skiljd från Q246
1039	Ange vinkelområde < 360°
1040	Ange Q223 större än Q222
1041	Q214: 0 ej tillåtet

Område felnummer	Standard-dialog
0 299	FN 14: Felnummer 0 299
300 999	Maskinberoende dialog
1000 1099	Interna felmeddelanden (se tabellen till höger)

FN15: PRINT Oformaterad utmatning av texter eller Q-parametervärden

Ställ in datasnittet: Under menypunkt PRINT resp. PRINT-TEST anger man sökvägen till katalogen i vilken TNC:n skall spara texter eller Q-parametrar. Se "12 MOD-Funktioner, inställning av datasnitt".

Med funktionen FN15: PRINT kan man mata ut Q-parametrars värden och felmeddelanden via datasnittet, exempelvis till en skrivare. Om man lagrar värdena internt eller skickar ut dem till en dator, kommer TNC:n att göra detta i filen %FN15RUN.A (utmatning under programkörning) eller i filen %FN15SIM.A (utmatning under programtest).

Utmatning av dialoger och felmeddelanden med FN15: PRINT "siffervärde"

Siffervärde 0 till 99:	Dialoger för maskintillverkarcykler
från 100:	PLC-felmeddelanden

Exempel: Mata ut dialognummer 20

67 FN15:PRINT 20

Utmatning av Q-parametrar med FN15: PRINT "Q-parameter"

Användningsexempel: Mätprotokoll för ett arbetsstycke.

Upp till sex Q-parametrar och siffervärden kan matas ut samtidigt. TNC:n skiljer dem åt med ett snedstreck.

Exempel: Mata ut dialog 1 och siffervärde Q1

70 FN 15: PRINT1/01

MANUELL DRIFT EDITERA PROGI	RAM-TABELL		
GRÄNSSNITT RS232	GRÄNSSNITT RS422		
DRIFTART: LSV-2 BAUD-RATE FE : 9600 EXT1 : 57600 EXT2 : 115200 LSV-2: 115200	DRIFTART: LSV-2 BAUD-RATE FE : 9600 EXT1 : 9600 EXT2 : 9600 LSV-2: 115200		
TILLDELNING			
PRINT : PRINT-TEST : RS232:\ PGM MGT: UTÖKAD			
C-RS232 RS422 TNSTELLN PARAMETER HJÄLP	SLUT		

FN16: F-PRINT Formaterad utmatning av text och Qparametervärde

Ställ in datasnittet: Under menypunkt PRINT resp. PRINT-TEST anger man sökvägen till katalogen i vilken TNC:n skall spara textfilen. Se "12 MOD-Funktioner, inställning av datasnitt".

Med funktionen FN16: F-PRINT kan man mata ut Q-parametrars värden och felmeddelanden formaterat via datasnittet, exempelvis till en skrivare. Om man lagrar värdena internt eller skickar ut dem till en dator, kommer TNC:n spara informationen i den fil som man definierar i FN 16-blocket.

För att mata ut formaterade texter och Q-parametrars värden skapar man först en textfil med TNC:ns texteditor i vilken man definierar utskriftens format och Q-parametrar.

Exempel på en textfil som definierar utskriftsformatet:

"MAETPROTOKOLL SKOVELHJUL-TYNGDPUNKT";

För att skapa textfilen använder man sig av följande formateringsfunktioner:

Specialtecken	Funktion
" <u> </u>	Definiera utmatningsformat för texter och variabler mellan citationstecken
%5.3LF	Definiera format för Q-parameter: 5 heltal, 4 decimaler, long, floating (decimaltal)
%S	Format för textvariabel
,	Skiljetecken mellan utmatningsformat och parameter
;	Tecken för blockslut, avslutar raden

<u> </u>
Φ
L
0
12
J
<u>ب</u>
Ŧ
g
5
ā
ð
0)
ω
Ö
=

Följande funktioner finns tillgängliga för att kunna medsända olika information i protokollfilen:

I ett bearbetningsprogram programmerar man FN16: F-PRINT för att aktivera utskriften:

Nyckelord	Funktion
CALL_PATH	Skickar med sökvägen till NC-programmet i vilken FN16-funktionen finns. Exempel: "Mätprogram: %S",CALL_PATH;
M_CLOSE	Stänger filen som man skriver till med FN16. Exempel: M_CLOSE;
L_ENGLISCH L_GERMAN L_CZECH L_FRENCH L_ITALIAN L_SPANISH L_DANISH L_FINNISH L_FINNISH L_DUTCH L_POLISH L_HUNGARIA L_ALL	Endast utmatning av text vid dialogspråk engelska Endast utmatning av text vid dialogspråk tyska Endast utmatning av text vid dialogspråk tjeckiska Endast utmatning av text vid dialogspråk franska Endast utmatning av text vid dialogspråk italienska Endast utmatning av text vid dialogspråk spanska Endast utmatning av text vid dialogspråk danska Endast utmatning av text vid dialogspråk danska Endast utmatning av text vid dialogspråk finska Endast utmatning av text vid dialogspråk nederländska Endast utmatning av text vid dialogspråk nederländska Endast utmatning av text vid dialogspråk nederländska Endast utmatning av text vid dialogspråk nederländska Utmatning av text oberoende av dialogspråk
HOUR MIN SEC DAY MONTH STR_MONTH YEAR2 YEAR4	Antal timmar från realtidsklockan Antal minuter från realtidsklockan Antal sekunder från realtidsklockan Dag från realtidsklockan Månad som siffror från realtidsklockan Månad som sträng-förkortning från realtidsklockan Årtal tvåställigt från realtidsklockan Årtal fyrställigt från realtidsklockan

96 FN16:F-PRINT TNC:\MASKE\MASKE1.A / RS232:\PROT1.TXT

TNC:n kommer då att skicka ut filen PROT1.TXT via det seriella datasnittet:

MAETPROTOKOLL SKOVELHJUL-TYNGDPUNKT
ANTAL MAETVAERDEN : = 1

X1 = 149,360
Y1 = 25,509
Z1 = 37,000

Om man använder FN 16 flera gånger i programmet, lagrar TNC:n alla texterna i filen som man angav i den första FN 16funktionen. Utmatningen av filen sker först när TNC:n läser blocket END PGM eller när man trycker på knappen NC-Stopp.

FN18: SYS-DATUM READ Läsa systemdata

Med funktionen FN 18: SYS-DATUM READ kan man läsa systemdata och lägga in dem i Q-parametrar. Valet av systemdata sker med ett gruppnummer (ID-Nr.), ett nummer samt i vissa fall även ett index.

Gruppnamn, ID-Nr.	Nummer	Index	Systemdata
Programinfo, 10	1	_	mm/inch-inställning
	2	-	Överlappningsfaktor vid fickfräsning
	3	_	Nummer på aktiv bearbetningscykel
	4		
IVIaskinstatus, 20	1	_	Aktivt verktygsnummer
	2	_	Forberett verktygsnummer
	3	-	Aktiv verktygsaxel
			0=X, 1=Y, 2=Z, 6=U, 7=V, 8=W
	4	_	Programmerat spindelvarvtal
	5	-	Aktivt spindeltillstånd: -1=odefinierat, 0=M3 aktiv,
			1=M4 aktiv, 2=M5 efter M3, 3=M5 efter M4
	8	_	Kylvätsketillstånd: 0=från, 1=till
	9	-	Aktiv matning
Cykelparameter, 30	1	_	Säkerhetsavstånd aktiv bearbetningscykel
	2	_	Borrdjup/fräsdjup aktiv bearbetningscykel
	3	_	Skärdjup aktiv bearbetningscykel
	4	_	Nedmatningshastighet aktiv bearbetningscykel
	5	_	1. Sidans längd cykel Urfräsning
	6	_	2. Sidans längd cykel Urfräsning
	7	-	1. Sidans längd cykel Spår
	8	_	2. Sidans längd cykel Spår
	9	_	Radie cykel Cirkelurfräsning
	10	_	Matning fräsning aktiv bearbetningscykel
	11	_	Rotationsriktning aktiv bearbetningscykel
	12	_	Väntetid aktiv bearbetningscykel
	13	_	Gängans stigning cykel 17, 18
	14	_	Finskärsmått aktiv bearbetningscykel
	15	_	Urfräsningsvinkel aktiv bearbetningscykel

Gruppnamn ID-Nr	Nummer	Index	Systemdata
	4		
Data från verktygstabellen, 50	1	VK I-Nr.	Verktygslangd
	2	VK I-Nr.	Verktygsradie
	3	VK I-Nr.	Verktygsradie R2
	4	VK I-Nr.	Tillaggsmått verktygslangd DL
	5	VK I-Nr.	Tillaggsmått verktygsradie DR
	6	VK I-Nr.	Tillaggsmått verktygsradie DR2
	7	VKT-Nr.	Verktyg spärrat (0 eller 1)
	8	VKT-Nr.	Nummer på systerverktyg
	9	VK I-Nr.	Maximal livslängd TIME1
	10	VKT-Nr.	Maximal livslängd TIME2
	11	VKT-Nr.	Aktuell livslängd CUR. TIME
	12	VKT-Nr.	PLC-status
	13	VKT-Nr.	Maximal skärlängd LCUTS
	14	VKT-Nr.	Maximal nedmatningsvinkel ANGLE
	15	VKT-Nr.	TT: Antal skär CUT
	16	VKT-Nr.	TT: Förslitningstolerans längd LTOL
	17	VKT-Nr.	TT: Förslitningstolerans radie RTOL
	18	VKT-Nr.	TT: Rotationsriktning DIRECT (0=positiv/-1=negativ)
	19	VKT-Nr.	TT: Förskjutning i planet R-OFFS
	20	VKT-Nr.	TT: Förskjutning längd L-OFFS
	21	VKT-Nr.	TT: Brott-tolerans längd LBREAK
	22	VKT-Nr.	TT: Brott-tolerans radie RBREAK
	Utan index: [Det aktiva verkty	ygets data
Data från platstabellen, 51	1	Plats-nr.	Verktygsnummer
	2	Plats-nr.	Specialverktyg: 0=nej, 1=ja
	3	Plats-nr.	Fast plats: 0=nej, 1=ja
	4	Plats-nr.	Spärrad plats: 0=nej, 1=ja
	5	Plats-nr.	PLC-status
Ett verktygs platsnummer			
i platstabellen, 52	1	VKT-Nr.	Platsnummer
Programmerad position direkt	4		
efter TOOL CALL, 70	1	-	Position giltig/ej giltig (1/0)
	2	1	X-axel
	2	2	Y-axel
	2	3	Z-axel
	3	-	Programmerad matning (-1: Ingen matning progr.)
	1		Made a secolar California (California)
Aktiv verktygskompensering, 200	1	-	Verktygsradie (inkl. delta-varde)
	2	-	Verktygslangd (inkl. delta-värde)

Gruppnamn, ID-Nr.	Nummer	Index	Systemdata
Aktiva omräkningar, 210	1	_	Grundvridning i driftart MANUELL
	2	_	Programmerad vridning med cykel 10
	3	_	Aktiv speglingsaxel
			0: Spegling ej aktiv
			+1: X-axel speglad
			+2: Y-axel speglad
			+4: Z-axel speglad
			+64: U-axel speglad
			+128: V-axel speglad
			+256: W-axel speglad
			Kombinationer = summan av de enskilda axlarna
	4	1	Aktiv skalfaktor X-axel
	4	2	Aktiv skalfaktor Y-axel
	4	3	Aktiv skalfaktor Z-axel
	4	7	Aktiv skalfaktor U-axel
	4	8	Aktiv skalfaktor V-axel
	4	9	Aktiv skalfaktor W-axel
	5	1	3D-ROT A-axel
	5	2	3D-ROT B-axel
	5	3	3D-ROT C-axel
	6	-	3D-vridning bearbetningsplan aktiv/inaktiv (-1/0)
Aktiv nollpunktsförskiutning, 220	2	1 till 9	Index 1=X-axel 2=Y-axel 3=Z-axel
	-		Index 4=A-axel 5=B-axel 6=C-axel
			Index 7=U-axel 8=V-axel 9=W-axel
Förflyttningsområde, 230	2	1 till 9	Negativt mjukvarugränsläge
			Axel 1 till 9
	3	1 till 9	Positivt mjukvarugränsläge
			Axel 1 till 9
Bör-position i REF-system, 240	1	1 till 9	Index 1=X-axel 2=Y-axel 3=Z-axel
			Index 4=A-axel 5=B-axel 6=C-axel
			Index 7=U-axel 8=V-axel 9=W-axel
Börnosition i inmatnings-system 270	1	1 till 9	Index 1–X-avel 2–X-avel 3–7-avel
bol position i mindenings system, 270		T third	Index $4=A$ -axel $5=B$ -axel $6=C$ -axel
			Index 7=U-axel 8=V-axel 9=W-axel
Pritanda avkännaravstam 250	10		Avkäppingsavol
	10	_	
	12	_	Effektiv kulland
	13	_	Kalibreringsringens radie
	1/		Centrumförskjutning huvudaval
	14	2	Centrumförskjutning närliggande avel
	15	_	Centrumförskjutningens riktning i förhållande till 0°
	10	_	

Gruppnamn, ID-Nr.	Nummer	Index	Systemdata
Verktygsavkännare TT 120	20	1	Centrum X-axel (REF-system)
		2	Centrum Y-axel (REF-system)
		3	Centrum Z-axel (REF-system)
	21	-	Plattans radie
Mätande avkännarsystem, 350	30	_	Kalibrerad avkännarlängd
	31	_	Avkännarradie 1
	32	_	Avkännarradie 2
	33	_	Diameter kalibreringsring
	34	1	Centrumförskjutning huvudaxel
		2	Centrumförskjutning närliggande axel
	35	1	Kompenseringsfaktor 1. axel
		2	Kompenseringsfaktor 2. axel
		3	Kompenseringsfaktor 3. axel
	36	1	Kraftförhållande 1. axel
		2	Kraftförhållande 2. axel
		3	Kraftförhållande 3. axel
Data från den aktiva nollpunktstabellen, 500	(NP-nummer)	1 till 9	Index 1=X-axel 2=Y-axel 3=Z-axel Index 4=A-axel 5=B-axel 6=C-axel
Nollpunktstabell vald, 505	1	-	Returvärde = 0: Ingen aktiv nollpunktstabell Returvärde = 1: Aktiv nollpunktstabell
Data från den aktiva	1		
palett-tabellen, 510		_	
	2	_	Palettnummer fran fait PAL/PGM
Maskinparameter finns, 1010	MP-nummer	MP-index	Returvärde = 0: MP finns inte Returvärde = 1: MP finns

Exempel: Spara Z-axelns aktiva skalfaktor i Q25

55 FN18: SYSREAD Q25 = ID210 NR4 IDX3

FN19: PLC Överför värde till PLC

Med funktionen FN19: PLC kan man överföra upp till två siffervärden eller Q-parametrar till PLC. Inkrement och enheter: 0,1 µm alt. 0,0001°

Exempel: Överför siffervärdet 10 (motsvarar 1µm alt. 0,001°) till PLC

56 FN 19: PLC=+10/+Q3

FN20: WAIT FOR NC och PLC synkronisering

Denna funktion får endast användas efter överenskommelse med Er maskintillverkare!

Med funktionen FN20: WAIT FOR kan man under programexekveringen utföra en synkronisering mellan NC och PLC. NC:n stoppar exekveringen tills villkoret, som man har har programmerat i FN20-blocket, har uppfyllts. I samband med detta kan TNC:n kontrollera följande PLC-operander:

PLC-Operand	Förkortning	Adressområde
Merker	Μ	0 till 4999
Ingång		0 till 31, 128 till 152
		64 till 126 (första PL 401 B)
		192 till 254 (andra PL 401 B)
Utgång	0	0 till 30
		32 till 62 (första PL 401 B)
		64 till 94 (andra PL 401 B)
Räknare	С	48 till 79
Timer	Т	0 till 95
Byte	В	0 till 4095
Ord	W	0 till 2047
Dubbelord	D	2048 till 4095

I FN 20-blocket är följande villkor tillåtna:

Villkor	Förkortning
Lika	==
Mindre än	<
Större än	>
Mindre/lika	<=
Större/lika	>=

Exempel: Stoppa programexekveringen tills PLC:n sätter merker 4095 till 1

32 FN 20: WAIT FOR M4095==1

FN25: PRESET Ställ in ny utgångspunkt

Man kan bara programmera denna funktion om man har angivit kodnummer 555343 (se "12.3 Ange kodnummer").

Med funktionen FN 25: PRESET kan man ställa in en ny utgångspunkt i en valbar axel under programexekveringen.

- ▶ Välj Q-parameterfunktioner: Tryck på knappen Q (till höger i fältet för sifferinmatning). Softkeyraden visar Q-parameterfunktionerna.
- Välj ytterligare funktioner: Tryck på softkey SPECIALFUNKT.
- Välj FN25: Växla softkeyraden till den andra nivån, tryck på softkey FN25 SÄTT UTGPKT.
- Axel?: Ange axel som du vill ställa in den nya utgångspunkten i, bekräfta med knappen ENT
- Omräknat värde?: Ange koordinat i det aktiva koordinatsystemet som den nya utgångspunkten skall sättas vid
- Ny utgångspunkt?: Ange koordinat som det omräknade värdet skall ha i det nya koordinatsystemet

Exempel: Ställ in en ny utgångspunkt vid den aktuella koordinaten X+100

56 FN 25: PRESET = X / +100 / +0

Exempel: Den aktuella koordinaten Z+50 skall ha värdet -20 i det nya koordinatsystemet

56 FN 25: PRESET = Z / +50 / -20

10.9 Formel direkt programmerbar

Via softkeys kan man mata in matematiska formler, som innehåller flera räkneoperationer, direkt i bearbetningsprogrammet:

Inmatning av formel

Formeln visas då man trycker på softkey FORMEL. TNC:n visar följande softkeys i flera softkeyrader:

Matematisk funktion	Softkey
Addition t.ex. Q10 = Q1 + Q5	+
Subtraktion t.ex. Q25 = Q7 – Q108	-
Multiplikation t.ex. Q12 = 5 * Q5	*
Division t.ex. Q25 = Q1 / Q2	/
Vänster parentes t.ex. $Q12 = Q1 * (Q2 + Q3)$	(
Höger parentes t.ex. $Q12 = Q1 * (Q2 + Q3)$	
Kvadrat (eng. square) t.ex. Q15 = SQ 5	SQ
Kvadratroten ur (eng. square root) t.ex. Q22 = SQRT 25	SORT
Sinus för em vinkel t.ex. Q44 = SIN 45	SIN
Cosinus för en vinkel t.ex. Q45 = COS 45	COS
Tangens för en vinkel t.ex. Q46 = TAN 45	TAN

Omvänd funktion till sinus; Vinkeln beräknas ur förhållandet mellan motstående katet/hypotenusa t.ex. Q10 = ASIN 0,75 **Arcus-Cosinus** Omvänd funktion till cosinus; Vinkeln beräknas ur förhållandet mellan närliggande katet/hypotenusa t.ex. Q11 = ACOS Q40 **Arcus-Tangens** Omvänd funktion till tangens; Vinkeln beräknas ur förhållandet mellan motstående/närliggande katet

förhållandet mellan motstående/närliggande katet t.ex. Q12 = ATAN Q50

Potens för ett värde t.ex. Q15 = 3^3

Matematisk funktion

Arcus-Sinus

Konstant PI (3,14159) t.ex. Q15 = PI

t.ex. Q15 = LN Q11

t.ex. Q33 = LOG Q22

Logaritm Naturalis (LN) för ett tal Bastal 2,7183

Logaritm för ett tal, bastal 10

Exponentialfunktion, 2,7183 upphöjt till n

Negering av ett tal (Multiplikation med -1) t.ex. Q2 = NEG Q1

Ta bort decimaler Skapa ett heltal t.ex. Q3 = INT Q42

Absolutvärde för ett tal t.ex. Q4 = ABS Q22

Ta bort siffror innan decimalkomma Fraktion

t.ex. Q5 = FRAC Q23

Räkneregler

Softkey

ASIN

ACOS

ATAN

^

ΡI

I N

LOG

EXP

NEG

INT

ABS

FRAC

För programmering av matematiska funktioner gäller följande regler:

Punkt- innan streckräkning

$12 \ Q1 = 5 \times 3 + 2 \times 10 = 35$

- 1. Räknesteg 5 * 3 = 15
- 2. Räknesteg 2 * 10 = 20
- 3. Räknesteg 15 + 20 = 35

$13 \ Q2 = SQ \ 10 - 3^3 = 73$

- 1. Räknesteg 10 i kvadrat = 100 2. Räknesteg 3 med potens 3 = 27 3. Räknesteg 100 – 27 = 73
- 3. Raknesteg 100 27 = 7

Distributionsregler

Fördelning vid parentesberäkningar

a * (b + c) = a * b + a * c

Inmatningsexempel Vinkel beräknas med arctan där motstående katet är (Q12) och närliggande katet är (Q13); resultatet tilldelas Q25:

Välj formelinmatning: Tryck på knappen Q och softkey FORMEL

Parameter-Nr.	för resultat ?
25 ^{ENT}	Ange parameternummer
	Växla softkeyrad åt höger och välj funktionen arcus-tangens
	Växla softkeyrad åt vänster och välj vänster parentes
Q 12	Ange Q-parameternummer 12
/	Välj division
Q 13	Ange Q-parameternummer 13
	Välj höger parentes och avsluta formelinmatningen

Exempel NC-block

 $37 \ Q25 = ATAN \ (Q12/Q13)$

10.10 Fasta Q-parametrar

Q-parametrarna Q100 till Q122 tilldelas automatiskt värden av TNC:n. Dessa Q-parametrar innehåller:

Värden från PLC

- Uppgifter om verktyg och spindel
- Uppgifter om driftstatus o.s.v.

Värden från PLC: Q100 till Q107

TNC:n använder parametrarna Q100 till Q107 för att överföra värden från PLC till ett NC-program.

Aktiv verktygsradie: Q108

Q108 tilldelas det aktuella värdet för verktygsradien. Q108 är sammansatt av:

- Verktygsradie R (verktygstabell eller TOOL DEF-block)
- Delta-värde DR från verktygstabellen
- Delta-värde DR från TOOL CALL-blocket

Verktygsaxel: Q109

Värdet i parameter Q109 påverkas av den aktuella verktygsaxeln:

Verktygsaxel	Parametervärde
Ingen verktygsaxel definierad	Q109 = -1
X-axel	Q109 = 0
Y-axel	Q109 = 1
Z-axel	Q109 = 2
U-axel	Q109 = 6
V-axel	Q109 = 7
W-axel	Q109 = 8

Spindelstatus: Q110

Värdet i parameter Q110 påverkas av den sist programmerade Mfunktionen för spindeln:

M-funktion	Parametervärde
Ingen spindelstatus definierad	Q110 = -1
M03: Spindel TILL, medurs	Q110 = 0
M04: Spindel TILL, moturs	Q110 = 1
M05 efter M03	Q110 = 2
M05 efter M04	Q110 = 3

Kylvätska till/från: Q111

M-funktion	Parametervärde
M08: Kylvätska TILL	Q111 = 1
M09: Kylvätska FRÅN	Q111 = 0
Överlappningsfaktor: Q112

TNC:n tilldelar Q112 överlappningsfaktorn för fickurfräsning (MP7430).

Måttenhet i program: Q113

Värdet i parameter Q113 påverkas, vid länkning av program med PGM CALL, av måttenheten i det programmet som utför det första anropet av ett annat program (huvudprogrammet).

Måttenhet i huvudprogrammet	Parametervärde
Metriskt system (mm)	Q113 = 0
Tum (inch)	Q113 = 1

Verktygslängd: Q114

Q114 tilldelas det aktuella värdet för verktygslängden.

Koordinater efter avkänning under programkörning

Parametrarna Q115 till Q119 innehåller spindelpositionens uppmätta koordinater efter en programmerad mätning med ett 3D-avkännarsystem.

Mätstiftets längd och radie är inte inräknade i dessa koordinater.

Koordinataxel		parameter
X-axel		Q115
Y-axel		Q116
Z-axel		Q117
IV. axel	(beroende av MP100)	Q118
V. axel	(beroende av MP100)	Q119

Avvikelse mellan är- och börvärde vid automatisk verktygsmätning med TT 120

Avvikelse mellan är- och börvärde	parameter
Verktygslängd	Q115
Verktygsradie	Q116

3D-vridning av bearbetningsplanet med arbetsstyckets vinkel: av TNC:n beräknade koordinater för vridningsaxlar

Koordinat	parameter
A-axel	Q120
B-axel	Q121
C-axel	Q122

Mätresultat från avkännarcykler (se även bruksanvisning Cykler för avkännarsystem)

Uppmätt ärvärde	parameter
Centrum i huvudaxel	Q151
Centrum i komplementaxel	Q152
Diameter	Q153
Fickans längd	Q154
Fickans bredd	Q155
Längd i den i cykeln valda axeln	Q156
Centrumaxelns läge	Q157
Vinkel i A-axeln	Q158
Vinkel i B-axeln	Q159
Koordinat i den i cykeln valda axeln	Q160

Beräknad avvikelse	parameter
Centrum i huvudaxel	Q161
Centrum i komplementaxel	Q162
Diameter	Q163
Fickans längd	Q164
Fickans bredd	Q165
Uppmätt längd	Q166
Centrumaxelns läge	Q167

Arbetstyckets status	parameter
Bra	Q180
Efterbearbetning	Q181
Skrot	Q182

Exempel: Ellips

Programförlopp

- Ellipskonturen approximeras med många korta räta linjer (definierbart via Q7). Ju fler beräkningssteg som väljs desto jämnare blir konturen
- Fräsriktningen bestämmer man med start- och slutvinkeln i planet:

Medurs bearbetningsriktning: Startvinkel > Slutvinkel Moturs bearbetningsriktning: Startvinkel < Slutvinkel

Ingen kompensering sker för verktygsradien

U BEGIN PGM ELLIPSE MM	
1 FN 0: Q1 = +50	Centrum X-axel
2 FN 0: Q2 = +50	Centrum Y-axel
3 FN 0: Q3 = +50	Halvaxel X
4 FN 0: Q4 = +30	Halvaxel Y
5 FN 0: Q5 = +0	Startvinkel i planet
6 FN 0: Q6 = +360	Slutvinkel i planet
7 FN 0: Q7 = +40	Antal beräkningssteg
8 FN 0: Q8 = +0	Vridningsposition för ellipsen
9 FN 0: Q9 = +5	Fräsdjup
10 FN 0: Q10 = +100	Nedmatningshastighet
11 FN 0: Q11 = +350	Fräsmatning
12 FN 0: Q12 = +2	Säkerhetsavstånd för förpositionering
13 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råämnesdefinition
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+2,5	Verktygsdefinition
16 TOOL CALL 1 Z S4000	Verktygsanrop
17 L Z+250 RO F MAX	Frikörning av verktyget
18 CALL LBL 10	Anropa bearbetningen
19 L Z+100 RO F MAX M2	Frikörning av verktyget, programslut

U.
Ő
U

()
S CO
-
0
-
Ð
σ
<u> </u>
0
0
_
~
· ·
—
0
_

20	LBL 10	Underprogram 10: Bearbetning
21	CYCL DEF 7.0 NOLLPUNKT	Förskjut nollpunkten till ellipsens centrum
22	CYCL DEF 7.1 X+Q1	
23	CYCL DEF 7.2 Y+Q2	
24	CYCL DEF 10.0 VRIDNING	Vridning till vridningsposition i planet
25	CYCL DEF 10.1 ROT+Q8	
26	Q35 = (Q6 - Q5) / Q7	Beräkna vinkelsteg
27	Q36 = Q5	Kopiera startvinkel
28	Q37 = 0	Ställ in stegräknare
29	Q21 = Q3 * COS Q36	Beräkna X-koordinat för startpunkt
30	Q22 = Q4 * SIN Q36	Beräkna Y-koordinat för startpunkt
31	L X+Q21 Y+Q22 R0 F MAX M3	Förflyttning till startpunkt i planet
32	L Z+Q12 RO F MAX	Förpositionering till säkerhetsavstånd i spindelaxeln
33	L Z-Q9 RO FQ10	Förflyttning till bearbetningsdjupet
34	LBL 1	
35	Q36 = Q36 + Q35	Uppdatera vinkel
36	Q37 = Q37 + 1	Uppdatera stegräknare
37	Q21 = Q3 * COS Q36	Beräkna aktuell X-koordinat
38	Q22 = Q4 * SIN Q36	Beräkna aktuell Y-koordinat
39	L X+Q21 Y+Q22 R0 FQ11	Förflyttning till nästa punkt
40	FN 12: IF +Q37 LT +Q7 GOTO LBL 1	Kontroll om ej färdig, om ej färdig återhopp till LBL 1
		°
41	CYCL DEF 10.0 VRIDNING	Aterställ vridning
42	CYCL DEF 10.1 ROT+0	•
43	CYCL DEF 7.0 NOLLPUNKT	Aterställ nollpunktsförskjutning
44	CYCL DEF 7.1 X+0	
45	CYCL DEF 7.2 Y+0	
46	L Z+Q12 RO F MAX	Förflyttning till säkerhetshöjd
47		Slut på underprogram
48	END PGM ELLIPSE MM	

Exempel: Konkav cylinder med radiefräs

Programförlopp

- Programmet fungerar endast med radiefräs, verktygslängden avser kulans centrum
- Cylinderkonturen approximeras med många korta räta linjer (definierbart via Q13). Ju fler beräkningssteg som väljs desto jämnare blir konturen
- Cylindern fräses med längsgående fräsbanor (här: parallellt med Yaxeln)
- Fräsriktningen bestämmer man med start- och slutvinkeln i rymden:

Medurs bearbetningsriktning: Startvinkel > Slutvinkel Moturs bearbetningsriktning: Startvinkel < Slutvinkel

Kompensering för verktygsradien sker automatiskt

U BEGIN PGM ZYLIN MM	
1 FN 0: Q1 = +50	Centrum X-axel
2 FN 0: Q2 = +0	Centrum Y-axel
3 FN 0: Q3 = +0	Centrum Z-axel
4 FN 0: Q4 = +90	Startvinkel i rymden (plan Z/X)
5 FN 0: Q5 = +270	Slutvinkel i rymden (plan Z/X)
6 FN 0: Q6 = +40	Cylinderradie
7 FN 0: Q7 = +100	Cylinderns längd
8 FN 0: Q8 = +0	Vridningsposition i planet X/Y
9 FN 0: Q10 = +5	Arbetsmån cylinderradie
10 FN 0: Q11 = +250	Nedmatningshastighet
11 FN 0: Q12 = +400	Matning fräsning
12 FN 0: Q13 = +90	Antal beräkningssteg
13 BLK FORM 0.1 Z X+0 Y+0 Z-50	Råämnesdefinition
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+3	Verktygsdefinition
16 TOOL CALL 1 Z S4000	Verktygsanrop
17 L Z+250 RO F MAX	Frikörning av verktyget
18 CALL LBL 10	Anropa bearbetningen
19 FN 0: Q10 = +0	Återställ tilläggsmåttet
20 CALL LBL 10	Anropa bearbetningen
21 L Z+100 RO F MAX M2	Frikörning av verktyget, programslut

10.11 Programmeringsexempel

22	LBL 10	Underprogram 10: Bearbetning
23	Q16 = Q6 - Q10 - Q108	Beräkna tilläggsmått och verktyg i förhållande till cylinderradie
24	FN 0: Q20 = +1	Ställ in stegräknare
25	FN 0: Q24 = +Q4	Kopiera startvinkel i rymden (plan Z/X)
26	Q25 = (Q5 - Q4) / Q13	Beräkna vinkelsteg
27	CYCL DEF 7.0 NOLLPUNKT	Förskjut nollpunkten till cylinderns centrum (X-axel)
28	CYCL DEF 7.1 X+Q1	
29	CYCL DEF 7.2 Y+Q2	
30	CYCL DEF 7.3 Z+Q3	
31	CYCL DEF 10.0 VRIDNING	Vridning till vridningsposition i planet
32	CYCL DEF 10.1 ROT+Q8	
33	L X+O Y+O RO F MAX	Förpositionering i planet till cylinderns centrum
34	L Z+5 RO F1000 M3	Förpositionering i spindelaxeln
35	CC Z+0 X+0	Sätt Pol i Z/X-planet
36	LP PR+Q16 PA+Q24 FQ11	Förflyttning till cylinderns startposition, sned nedmatning i material
37	LBL 1	
38	L Y+Q7 R0 FQ11	Längsgående fräsning i riktning Y+
39	FN 1: Q20 = +Q20 + +1	Uppdatera stegräknare
40	FN 1: Q24 = +Q24 + +Q25	Uppdatera rymdvinkel
41	FN 11: IF +Q20 GT +Q13 GOTO LBL 99	Kontrollera om redan färdigt, om ja hoppa till slutet
42	LP PR+Q16 PA+Q24 FQ12	Förflyttning till approximerad "Båge" för nästa längsgående bana
43	L Y+0 R0 FQ11	Längsgående fräsning i riktning Y-
44	FN 1: Q20 = +Q20 + +1	Uppdatera stegräknare
45	FN 1: Q24 = +Q24 + +Q25	Uppdatera rymdvinkel
46	FN 12: IF +Q20 LT +Q13 GOTO LBL 1	Kontroll om ej färdig, om ej färdig återhopp till LBL 1
47	LBL 99	
48	CYCL DEF 10.0 VRIDNING	Återställ vridning
49	CYCL DEF 10.1 ROT+0	
50	CYCL DEF 7.0 NOLLPUNKT	Återställ nollpunktsförskjutning
51	CYCL DEF 7.1 X+0	
52	CYCL DEF 7.2 Y+0	
53	CYCL DEF 7.3 Z+0	
54	LBL O	Slut på underprogram
55	END PGM ZYLIN	

Exempel: Konvex kula med cylindrisk fräs

Programförlopp

- Programmet fungerar endast med en cylindrisk fräs
- Kulans kontur approximeras med många korta räta linjer (Z/X-planet, definierbart via Q14). Ju mindre vinkelsteg som väljs desto jämnare blir konturen
- Antalet kontursteg bestämmer man via vinkelsteget i planet (via Q18)
- Kulan fräses nedifrån och upp med 3D-rörelser
- Kompensering för verktygsradien sker automatiskt

O BEGIN PGM KUGEL MM	
1 FN 0: Q1 = +50	Centrum X-axel
2 FN 0: Q2 = +50	Centrum Y-axel
3 FN 0: Q4 = +90	Startvinkel i rymden (plan Z/X)
4 FN 0: Q5 = +0	Slutvinkel i rymden (plan Z/X)
5 FN 0: Q14 = +5	Vinkelsteg i rymden
6 FN 0: Q6 = +45	Kulradie
7 FN 0: Q8 = +0	Startvinkel för vridningsläge i planet X/Y
8 FN 0: Q9 = +360	Slutvinkel för vridningsläge i planet X/Y
9 FN 0: Q18 = +10	Vinkelsteg i planet X/Y för grovbearbetning
10 FN 0: Q10 = +5	Tilläggsmått för kulradien för grovbearbetning
11 FN 0: Q11 = +2	Säkerhetsavstånd för förpositionering i spindelaxeln
12 FN 0: Q12 = +350	Matning fräsning
13 BLK FORM 0.1 Z X+0 Y+0 Z-50	Råämnesdefinition
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+7,5	Verktygsdefinition
16 TOOL CALL 1 Z S4000	Verktygsanrop
17 L Z+250 RO F MAX	Frikörning av verktyget
18 CALL LBL 10	Anropa bearbetningen
19 FN 0: Q10 = +0	Återställ tilläggsmåttet
20 FN 0: Q18 = +5	Vinkelsteg i planet X/Y för finbearbetning
21 CALL LBL 10	Anropa bearbetningen
22 L Z+100 R0 F MAX M2	Frikörning av verktyget, programslut

10.11 Programmeringsexempel

LBL 10	Underprogram 10: Bearbetning
FN 1: Q23 = +Q11 + +Q6	Beräkna Z-koordinat för förpositionering
FN 0: Q24 = +Q4	Kopiera startvinkel i rymden (plan Z/X)
FN 1: Q26 = +Q6 + +Q108	Korrigera kulradie för förpositionering
FN 0: Q28 = +Q8	Kopiera vridningsläge i planet
FN 1: Q16 = +Q6 + -Q10	Ta hänsyn till tilläggsmåttet vid kulradie
CYCL DEF 7.0 NOLLPUNKT	Förskjut nollpunkten till kulans centrum
CYCL DEF 7.1 X+Q1	
CYCL DEF 7.2 Y+Q2	
CYCL DEF 7.3 Z-Q16	
CYCL DEF 10.0 VRIDNING	Beräkna startvinkel för vridningsläge i planet
CYCL DEF 10.1 ROT+Q8	
CC X+0 Y+0	Sätt Pol i X/Y-planet för förpositionering
LP PR+Q26 PA+Q8 R0 FQ12	Förpositionering i planet
LBL 1	Förpositionering i spindelaxeln
CC Z+0 X+Q108	Sätt Pol i Z/X-planet, förskjuten med verktygsradien
L Y+0 Z+0 FQ12	Förflyttning till djupet
LBL 2	
LP PR+Q6 PA+Q24 R0 FQ12	Förflyttning uppåt på approximerad "Båge"
FN 2: $Q24 = +Q24 - +Q14$	Uppdatera rymdvinkel
FN 11: IF +Q24 GT +Q5 GOTO LBL 2	Kontrollera om en båge är färdig, om inte hoppa tillbaka till LBL 2
LP PR+Q6 PA+Q5	Förflyttning till slutvinkel i rymden
L Z+Q23 RO F1000	Frikörning i spindelaxeln
L X+Q26 RO F MAX	Förpositionering för nästa båge
FN 1: Q28 = +Q28 + +Q18	Uppdatera vridningsläge i planet
FN 0: $Q24 = +Q4$	Återställ rymdvinkel
CYCL DEF 10.0 VRIDNING	Aktivera nytt vridningsläge
CYCL DEF 10.1 ROT+Q28	
FN 12: IF +Q28 LT +Q9 GOTO LBL 1	
FN 9: IF +Q28 EQU +Q9 GOTO LBL 1	Kontrollera om ej färdig, om ej färdig hoppa tillbaka till LBL 1
CYCL DEF 10.0 VRIDNING	Återställ vridning
CYCL DEF 10.1 ROT+0	
CYCL DEF 7.0 NOLLPUNKT	Återställ nollpunktsförskjutning
CYCL DEF 7.1 X+0	
CYCL DEF 7.2 Y+0	
CYCL DEF 7.3 Z+0	
LBL 0	Slut på underprogram
END PGM KUGEL MM	

23

24 25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

Programtest och programkörning

11.1 Grafik

l driftarterna för programkörning och i driftarten programtest kan TNC:n simulera en bearbetning grafiskt. Via softkeys väljer man:

- Vy ovanifrån
- Presentation i 3 plan
- 3D-framställning

TNC-grafiken motsvarar ett arbetsstycke som bearbetats med ett cylinderformigt verktyg. Vid aktiv verktygstabell kan man även simulera bearbetning med en radiefräs. För att göra detta anger man R2 = R i verktygstabellen.

TNC:n presenterar inte någon grafik:

om det aktuella programmet inte har någon giltig råämnesdefinition

om inte något program har valts

Via maskinparameter 7315 till 7317 kan man välja att TNC:n skall skapa grafik även då man inte har definierat spindelaxeln eller förflyttar spindelaxeln.

Man kan inte använda den grafiska simuleringen vid programsekvenser alt. program som innehåller rörelser i rotationsaxlar eller vid 3D-vridet bearbetningsplan: I dessa fall kommer TNC:n att visa ett felmeddelande.

TNC:n presenterar inte ett radie-tilläggsmått DR som har programmerats i TOOL CALL-blocket i grafiken.

Översikt: presentationssätt

l driftarterna för programkörning och i driftarten för programtest visar TNC:n följande softkeys:

Presentationssätt	Softkey
Vy ovanifrån	
Presentation i 3 plan	
3D-framställning	

Begränsningar under programkörning

Bearbetningen kan inte presenteras grafiskt samtidigt som TNC:ns processor redan är belastad med komplicerade bearbetningsuppgifter eller bearbetning av stora ytor. Exempel: Planing över hela råämnet med ett stort verktyg. TNC:n fortsätter inte grafikpresentationen och presenterar istället texten ERROR i grafikfönstret. Däremot fortlöper bearbetningen.

Vy ovanifrån

₽ 16∕32 Välj vy ovanifrån med softkey

Välj antal djupnivåer med softkey (växla softkeyrad): Växla mellan 16 eller 32 djupnivåer; för djupframställningen i denna grafik gäller:

"Ju djupare, desto mörkare"

Vy ovanifrån är den grafiska simulering som utförs snabbast.

Presentation i 3 plan

Presentationen visas i vy ovanifrån med två snitt, motsvarande en teknisk ritning. En symbol till vänster under grafiken indikerar om presentationen motsvarar projektionsmetod 1 eller projektionsmetod 2 enligt DIN 6, del 1 (valbart via MP7310).

Vid presentation i tre plan finns funktioner för delförstoring tillgängliga (se "Delförstoring")

Dessutom kan man förskjuta snittytorna med hjälp av softkeys:

▶ Välj presentation i 3 plan med softkey

▶ Växla softkeyrad, tills TNC:n visar följande softkeys:

Funktion	Softkeys
Förskjut den vertikala snittytan till höger eller vänster	ф ф
Förskjut den horisontala snittytan uppåt eller nedåt	_±

Snittytans position visas i bildskärmen i samband med förskjutningen.

Snittytans koordinater

TNC:n presenterar snittytans koordinater, i förhållande till arbetsstyckets utgångspunkt, i grafikfönstrets underkant. Endast koordinaterna i bearbetningsplanet visas. Denna funktion aktiveras med maskinparameter 7310.

3D-framställning

TNC:n avbildar arbetsstycket tredimensionellt.

3D-framställningen kan vridas runt den vertikala axeln. Råämnets ytterkanter, som de såg ut innan den grafiska simuleringen, kan presenteras i form av en ram.

I driftart Programtest finns funktioner för delförstoring av tillgängliga (se "Delförstoring).

▶ Välj 3D-framställning med softkey

Vridning av 3D-framställning

Växla softkeyrad, tills följande softkeys visas:

runt den vertikala axeln

Visa och ta bort ram för råämnets ytterkanter

	VISA BLK-FORM				
I	VISA	INTE			

BLK-FORM

► Ta bort ram: Softkey VISA INTE BLK-FORM

▶ Visa ram: Softkey VISA BLK-FORM

Delförstoring

Man kan ändra delförstoringen i driftart Programtest vid:

- Presentation i 3 plan och vid
- 3D-framställning

För att kunna göra detta måste den grafiska simuleringen stoppas. En delförstoring är alltid aktiv i alla presentationssätten.

Växla softkeyrad i driftart Programtest, tills följande softkeys visas:

Funktion	Softkeys
Välj vänster/höger sida på arbetsstycket	
Välj främre/bakre sida på arbetsstycket	
Välj övre/undre sida på arbetsstycket	
Förskjut snittytan för förminskning eller förstoring av råämnet	- +
Godkänn delförstoring/förminskning	ÖVERFÖR DETALJ

Ändra delförstoring

Softkeys se tabell

- > Om det behövs, stoppa den grafiska simuleringen
- ▶ Välj sida på arbetsstycket med softkey (tabell)
- Förminska eller förstora råämne: Håll softkey "-" alt. "+" intryckt
- Överför önskad delförstoring: Tryck på softkey ÖVERFÖR DETALJ
- Start programtest eller programkörning på nytt med softkey START (RESET + START återställer det ursprungliga råämnet)

Markörposition vid delförstoring

Vid en delförstoring visar TNC:n koordinaterna för axeln som för tillfället beskärs. Koordinaterna motsvarar området som valts för delförstoringen. Till vänster om snedstrecket visar TNC:n områdets minsta koordinat (MIN-punkt), till höger den största (MAX-punkt).

Vid en förstorad avbildning visar TNC:n MAGN nere till höger i bildskärmen.

Om TNC:n inte kan förminska alternativt förstora råämnet mer, kommer styrsystemet att visa ett felmeddelande i grafikfönstret. För att bli av med felmeddelandet måste råämnet förstoras eller förminskas tillbaka lite.

Upprepa grafisk simulering

En grafisk simulering av ett bearbetningsprogram kan återupprepas ett godtyckligt antal gånger. Därför kan grafiken eller en förstorad del återställas till råämnet.

Funktion	Softkey
Återskapa det obearbetade råämnet som det presenterades i den sista delförstoringen	RÂĤMNE SOM BLK FORM
Återställ delförstoring, så att TNC:n visar det bearbetade eller obearbetade arbetsstycket enligt programmerad BLK-FORM	RÂŘMNE Som Blk form

Med softkey RÅÄMNE SOM BLK FORM visar TNC:n – även efter en avgränsning utan ÖVERFÖR DETALJ – åter råämnet med den programmerade storleken.

Beräkning av bearbetningstid

driftarter för programkörning

Tiden från programstart till programslut visas. Vid avbrott i programexekveringen stoppas tidräkningen.

Programtest

Den ungefärliga tiden som visas beräknas från tidsåtgången som TNC:n behöver för att utföra verktygsrörelserna med den programmerade matningen. Den av TNC:n beräknade tiden är inte avsedd för kalkylering av bearbetningstiden eftersom TNC:n inte tar hänsyn till maskinberoende tider (såsom exempelvis för verktygsväxling).

Kalla upp stoppur-funktion

Växla softkeyrad, tills TNC:n visar följande softkeys med stoppurfunktioner:

Stoppur-funktioner	Softkey
Lagring av visad tid	SPARA
Presentera summa av lagrad och visad tid	
Återställning av visad tid	ATERSTALL 00:00:00 00
Vilka softkeys som visas till vänster	om

 Vilka softkeys som visas till vänster om stoppurfunktionerna är beroende av vald bildskärmsuppdelning.

11.2 Funktioner för presentation av program i Programkörning/ Programtest

l driftarterna för programkörning och i driftart programtest visar TNC:n softkeys, med vilka man kan bläddra sida för sida i bearbetningsprogrammet:

Funktion	Softkey
Bläddra en bildskärmssida tillbaka i programmet	SIDA Û
Bläddra en bildskärmssida framåt i programmet	SIDA J
Gå till programbörjan	BÖRJAN Î
Gå till programslut	SLUT I

PROG	RAM BI	_OCKFi	jljD			PROGRAM INMATNIN	G
0 B 1 B 2 B 3 T 4 L 5 L 6 L 7 C 8 L	EGIN F LK FOF OOL CF Z+50 X+50 Z-5 F C X+0 P PR+1	PGM 3 RM 0.2 RM 0.2 RU 3 R0 F Y+50 R0 F N Y+0 14 PA-	507 MN 1 Z X- 2 X+20 Z S10 MAX N R0 F 1AX	1 -20 Y- 3 Y+20 300 13 MAX M R F500	-20 Z- 3 Z+0 18 3	-20	
XI · A	+150.0 +0.0	000 v 1000 E	7 - 9 3 + 18	50.000 80.000	00 Z 00 C S	+100.00	300 300
ÄR		т			8 0	M 5/5	Э
SIDA ÎÎ	SIDA "Ĵ	BÖRJAN	SLUT "Ņ	RESTORE POS. AT	F MAX		KTYG

11.3 Programtest

I driftart Programtest simulerar man programs och programdelars förlopp, för att undvika fel vid programkörningen. TNC:n hjälper dig att finna följande feltyper:

- geometriska motsägelser
- saknade uppgifter
- ej utförbara hopp
- förflyttning utanför bearbetningsområdet

Dessutom kan man använda följande funktioner:

- Programtest blockvis
- Testavbrott vid ett godtyckligt block
- Hoppa över block
- Funktioner för grafisk simulering
- Beräkning av bearbetningstid
- Utökad statuspresentation

Använda programtest

Vid aktivt centralt verktygsregister måste man välja en verktygstabell som skall användas för programtestet (status S). För att göra detta väljer man en verktygstabell i driftart Programtest med filhanteringen (PGM MGT).

Med MOD-funktionen RÅÄMNE I ARB.-RUM kan man aktivera en övervakning av bearbetningsområdet för programtestet (se "12 MOD-funktioner, Presentation av råämnet i bearbetningsrummet").

 \rightarrow

▶ Välj driftart Programtest

- Välj filhantering med knappen PGM MGT och välj sedan filen som skall testas eller
- Välj programbörjan: Välj med knappen GOTO rad "0" och bekräfta inmatningen med knappen ENT

TNC:n visar följande softkeys:

Funktion	Softkey
Testa hela programmet	START
Testa varje block individuellt	START ENKELBL.
Visa råämnet och testa hela programmet	RESET * START
Stoppa programtestet	STOP

Programtest fram till ett bestämt block

Med STOPP VID N utför TNC:n programtestet fram till ett valbart block med blocknummer N.

- ▶ Välj programbörjan i driftart Programtest
- Välj programtest fram till ett bestämt block: Tryck på softkey STOPP VID N

290

Stopp vid N: Ange blocknumret som programtestet skall stoppas vid

- Program: Ange namnet på programmet som innehåller blocket med det valda blocknumret; TNC:n visar automatiskt det valda programmets namn; om programstoppet skall ske i ett med PGM CALL anropat program så anger man detta programs namn
- Upprepning: Ange antal upprepningar som skall utföras, om N befinner sig inom en programdelsupprepning
- Testa programsekvens: Tryck på softkey START; TNC:n testar programmet fram till det angivna blocket

MANUELL DR		GRAMI	TEST				
0 B 1 BL 2 BL 3 TC 4 L 5 C 0 0 0 0 0 0 0 0 0 0 0 0 0	GIN 6 -K F0 -K F0 -	PGM T RM 0.2 RM 0.2 ALL 1 3 R0 F 2 R0 F 2 S 2 S 1000 S 16,1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S	800 MM L Z X- 2 X+10 Z S35 MAX 3 SAEKE SAEKE SAEKE MATN NOMIN STIGN	1	0 Z-40 100 Z- SAVSTF JUP DIAME	a ⊦ø AAND FER	
	203- 204-	NMAIN. PRO ILL SATS N ROGRAM PPREPNING	<mark>gramställe</mark> UMMER= 15 = MBG = 1	för avbro 0.H	tt	ST.	
			∕⊡ AV ∕₽Â	START ENKELBL.	STOPP VID N	START	RESET * START

11.4 Programkörning

I driftarten Program blockföljd utför TNC:n ett bearbetningsprogram kontinuerligt fram till programslutet eller tills bearbetningen avbryts.

I driftarten Program enkelblock utför TNC:n ett block i taget då man trycker på den externa START-knappen.

Följande TNC-funktioner kan användas i driftarterna för programkörning:

- Avbrott i programkörningen
- Programkörning från ett bestämt block
- Hoppa över block
- Editera verktygstabell TOOL.T
- Kontrollera och ändra Q-parametrar
- Överlagra handrattsrörelser
- Funktioner för grafisk simulering
- Utökad statuspresentation

Körning av bearbetningsprogram

Förberedelse

- 1 Spänn fast arbetsstycket på maskinbordet
- 2 Inställning av utgångspunkt
- 3 Välj nödvändiga tabell- och palettfiler (status M)
- 4 Välj bearbetningsprogram (status M)

Matning och spindelvarvtal kan ändras med overridepotentiometrarna.

Program blockföljd

Starta bearbetningsprogrammet med den externa start-knappen.

Program enkelblock

Starta varje enskilt block i bearbetningsprogrammet individuellt med den externa start-knappen.

11.4 Programkörning

Avbryta bearbetningen

Det finns olika möjligheter att stoppa en programkörning:

- Programmerat stopp
- Extern STOPP-knapp
- Växla till Program enkelblock

Om TNC:n registrerar ett fel under programkörningen så stoppas bearbetningen automatiskt.

Programmerat stopp

Stopp kan programmeras direkt i bearbetningsprogrammet. TNC:n avbryter programexekveringen när bearbetningsprogrammet har utförts fram till ett block som innehåller någon av följande uppgifter:

- STOP (med eller utan tilläggsfunktion)
- Tilläggsfunktioner M0, M2 eller M30
- Tilläggsfunktion M6 (bestäms av maskintillverkaren)

Stoppa med extern STOPP-knapp

- Tryck på extern STOPP-knapp: Blocket som TNC:n utför vid tidpunkten då knappen trycks in, kommer inte att slutföras; i statuspresentationen blinkar "*"-symbolen
- Om bearbetningen inte skall återupptas, återställer man TNC:n med softkey INTERNT STOPP: "*"-symbolen i statuspresentationen släcks. I detta läge kan programmet startas om från början.

Stoppa bearbetningen genom att växla till driftart Program enkelblock

Under det att ett bearbetningsprogram exekveras i driftart Program blockföljd väljs driftart Program enkelblock. TNC:n stoppar bearbetningen efter att det aktuella bearbetningssteget har slutförts.

Förflyttning av maskinaxlarna under ett avbrott

Vid ett avbrott i bearbetningen kan maskinaxlarna förflyttas på samma sätt som i driftart Manuell drift.

Kollisionsrisk!

Om en programkörning stoppas i samband med 3Dvridet bearbetningsplan, kan man med softkev 3D PÅ/AV växla mellan vridet och icke vridet koordinatsystem.

Axelriktningsknapparnas, handrattens och återkörningslogikens funktion utvärderas av TNC:n med hänsvn tagen till softkey-inställningen. Kontrollera, innan

frikörning, att rätt koordinatsystem är aktiverat och att rotationsaxlarnas vinkelvärden har förts in i 3D-ROTmenyn.

Användningsexempel:

Frikörning av spindeln efter verktygsbrott

- Stoppa bearbetningen
- Frige de externa riktningsknapparna: Tryck på softkev MANUELL FORFLYTTNING.
- ► Förflytta maskinaxlarna med de externa riktningsknapparna

C

I en del maskiner måste man även trycka på den externa START-knappen, efter softkey MANUELL FÖRFLYTTNING, för att frige de externa riktningsknapparna. Beakta anvisningarna i Er maskinhandbok

Fortsätt programkörning efter ett avbrott

Om man stoppar programkörningen under en bearbetningscykel måste återstarten ske i cykelns
borjan.
INC:n måste då återupprepa redan utförda
bearbetningssteg

Om programkörningen stoppas inom en programdelsupprepning eller inom ett underprogram, måste återstarten till avbrottsstället utföras med funktionen FRAMKÖRNING TILL BLOCK N.

Om bearbetningen avbryts lagrar TNC:n:

- information om det sist anropade verktyget
- aktiva koordinatomräkningar
- det sist definierade cirkelcentrumets koordinater

Den lagrade informationen används för återkörning till konturen efter manuell förflyttning av maskinaxlarna i samband med ett avbrott (ÅTERSKAPA POSITION).

Fortsätt programkörning med START-knappen

Genom att trycka på den externa START-knappen kan programkörningen återupptas, om den stoppades på något av följande sätt:

- Tryckning på den externa STOPP-knappen
- Programmerat stopp

Fortsätt programkörning efter ett fel

Vid icke blinkande felmeddelanden:

- Åtgärda felorsaken
- Radera felmeddelandet: Tryck på knappen CE
- Starta om programmet eller fortsätt bearbetningen från stället där avbrottet inträffade
- Vid blinkande felmeddelanden:
- Håll knappen END intryckt i två sekunder, TNC:n utför en varmstart
- Åtgärda felorsaken
- ▶ Starta igen

Vid återkommande fel, notera felmeddelandet och kontakta er service-representant.

Godtyckligt startblock i program (block scan)

Funktionen FRAMKÖRNING TILL BLOCK N måste anpassas och friges av maskintillverkaren. Beakta anvisningarna i Er maskinhandbok.

Med funktionen FRAMKÖRNING TILL BLOCK N (block scan) kan man starta ett bearbetningsprogram från ett fritt valbart block N. TNC:n läser internt igenom programmets bearbetningssekvenser fram till det valda blocket. TNC:n kan simulera bearbetningen av arbetsstycket grafiskt.

När ett program har avbrutits med ett INTERNT STOPP, föreslår TNC:n automatiskt det avbrutna blocket N som återstartsblock.

Blockläsningen får inte påbörjas i ett underprogram.

Alla nödvändiga program, tabeller och palettfiler måste väljas i någon av driftarterna för programkörning (status M).

Om programmet innehåller ett programmerat stopp innan återstartsblocket kommer blockläsningen att stoppas där. Tryck på den externa START-knappen för att fortsätta blockläsningen.

Efter en blockläsning förflyttas verktyget till den beräknade positionen med funktionen ÅTERSKAPA POSITION.

Via maskinparameter 7680 bestämmer man om blockläsningen, vid länkade program, skall påbörjas i huvudprogrammets block 0 eller i block 0 på programmet som programkörningen sist avbröts i.

Med softkey 3D PÅ/AV definierar man om TNC:n, vid 3Dvridet bearbetningsplan, skall köra fram i vridet eller i icke vridet system.

- Välj det aktuella programmets första block som början för blockläsning: Ange GOTO "0"
- ▶ Välj blockläsning: Tryck på softkey FRAMKÖRNING TILL BLOCK N
 - RESTORE POS. AT

Framkörning till N: Ange numret på blocket N som blockläsningen skall utföras till

- Program: Ange namnet på programmet som innehåller blocket N
- Upprepning: Ange antal upprepningar som skall utföras i blockläsningen, om N befinner sig inom en programdelsupprepning
- Starta blockläsning: Tryck på extern START-knapp
- Framkörning till konturen: Se nästa avsnitt "Återkörning till konturen"

PROGRAM BLOCKFÖLJD PROGRAMIEST 0 BEGIN PGM T300 MM BLK FORM 0.1 Z X+0 Y+0 Z-40 1 2 BLK FORM 0.2 X+100 Y+100 Z+0 3 TOOL CALL 1 Z S3500 L Z+100 R0 F MAX 4 5 CYCL DEF 300 **SAEKERHETSAVSTAAND** Q200=2 Q201=-20 ;DJUP Q206=1000 ;MATNING DJUP X +12345,679 Y +0,000 🛛 +0,000 В +0,000 C +0,000 ÄR FØ M 5/9 SIDA () BÖRJAI slui Û RESTORE POS. AT VERKING ∕□ Û E MAX Û AV / PÅ TABELL

Återkörning till konturen

Med funktionen ÅTERSKAPA POSITION återför TNC:n verktyget till arbetsstyckets kontur i följande situationer:

- Återkörning till konturen efter att maskinaxlarna har förflyttats under ett avbrott, som har utförts utan ett INTERNT STOPP
- Återkörning till konturen efter en blockläsning med FRAMKÖRNING TILL BLOCK N, exempelvis efter ett avbrott med INTERNT STOPP
- Välj återkörning till konturen: Tryck på softkey ÅTERSKAPA POSITI-ON
- Förflytta axlarna i den ordningsföljd som TNC:n föreslår i bildskärmen: Tryck på den externa START-knappen eller
- Förflytta axlarna i en godtycklig ordningsföljd: Softkey FRAMKÖRNING X, FRAMKÖRNING Z osv. trycks in samt att respektive förflyttning aktiveras med den externa START-knappen
- Återuppta bearbetningen: Tryck på extern START-knapp

11.5 Hoppa över block

l programtest eller programkörning kan block, som har markerats med ett "/"-tecken, hoppas över:

Utför inte respektive testa inte programblock med "/"tecken: Ändra softkey till PÅ

▶ Utföra respektive testa programblock med "/"-tecken: Ställ in softkey på AV

Denna funktion fungerar inte på TOOL DEF-block.

Den sista valda inställningen kvarstår även efter ett strömavbrott.

MOD-funktioner

12.1 Välja, ändra och lämna MODfunktioner

Med MOD-funktionerna kan man välja ytterligare presentations- och inmatningsmöjligheter. Vilka MOD-funktioner som erbjuds beror på vilken driftart som är aktiv.

Välja MOD-funktioner

Välj driftart, i vilken MOD-funktionerna önskas ändras.

Välj MOD-funktioner: Tryck på knappen MOD. Bilderna till höger visar typiska bildskärmsmenyer för Programinmatning/Editering (bilden uppe till höger), Programtest (bilden i mitten till höger) och i en maskindriftart (bilden på nästa sida).

Ändra inställningar

▶ Välj MOD-funktion i den presenterade menyn med pilknapparna.

För att ändra en inställning står – beroende på den valda funktionen – tre möjligheter till förfogande:

- Ange siffervärde direkt, t.ex. vid begränsning av rörelseområde
- Ändra inställning genom att trycka på knappen ENT, t.ex. bestämmande av programmeringsspråk
- Ändra inställning via ett fönster med alternativ. När flera inställningsmöjligheter finns tillgängliga, kan man genom att trycka på knappen GOTO växla in ett fönster, i vilket alla inställningsmöjligheterna visas samtidigt. Välj den önskade inställningen direkt genom att trycka på motsvarande sifferknapp (till vänster om kolon), alternativt med pilknapparna och godkänn sedan med knappen ENT. Om man inte vill ändra inställningen stänger man fönstret med knappen END.

Lämna MOD-funktioner

Avsluta MOD-funktioner: Tryck på softkey SLUT eller knappen END.

Översikt MOD-funktioner

Beroende på den valda driftarten kan följande ändringar utföras:

Programinmatning/Editering:

- Visa NC-mjukvarunummer
- Visa PLC-mjukvarunummer
- Ange kodnummer
- Inställning av datasnitt
- Maskinspecifika användarparametrar
- Visa HJÄLP-filer, om sådana finns tillgängliga

MANUELL DR	PRO	GRAM	INMAI	「NING			
KODNI	JMMER						
NC :	SOFTW			R 28	30474	02	
OPT:	SUFIW		UNNER	×.	00000	011	
	RS232	ANVÄNDAR-					01.11 T
0	RS422 INSTALLN.	PARAMETER	HJÄLP				SLUI

- Visa NC-mjukvarunummer
- Visa PLC-mjukvarunummer
- Ange kodnummer
- Inställning av datasnitt
- Presentation av råämnet i bearbetningsrummet
- Maskinspecifika användarparametrar
- Visa HJÄLP-filer, om sådana finns tillgängliga
- Alla andra driftarter:
- Visa NC-mjukvarunummer
- Visa PLC-mjukvarunummer
- Visa installerade optionsnummer
- Välja positionspresentation
- Välja måttenhet (mm/tum)
- Välja programmeringsspråk för \$MDI
- Välja axlar för överföring av är-position
- Ställa in begränsning av rörelseområde
- Visa nollpunkt
- Visa drifttid
- Visa HJÄLP-filer, om sådana finns tillgängliga

12.2 Mjukvaru- och optionsnummer

Mjukvarunummer för NC och PLC visas i bildskärmen efter det att MOD-funktioner har valts. Direkt under dem visas nummer på de installerade optionerna (OPT:):

■ Inga optioner OPT: 0000000

- Option digitalisering med brytande avkännare OPT: 00000001
- Option digitalisering med mätande avkännare OPT: 00000011

12.3 Ange kodnummer

Kodnummer måste anges för att få tillgång till följande funktion:

Funktion	Kodnummer
Kalla upp användarparametrar	123
Konfigurering av ethernet-kort	NET123
Frige specialfunktioner	555343

MANUELL DF	RIFT			PRO INM	GRAM ATNING
POSITIONS POSITIONS VÄXLA MM/ PROGRAMIN AXELVAL	VAERDE 1 VAERDE 2 TUM 1ATNING	AR RESTV MM HEIDE %001:) Enhair L1	N	
NC : SOFTI PLC: SOFTI OPT:	IARE-NUMME IARE-NUMME	R 28 R %	30474 30000	02 011	
POSITION∕ RÖRELSE- PGM-INMAT OMRÅDE	HJÄLP TID				SLUT

12.4 Inställning av datasnitt

För att ställa in datasnitten trycker man på softkey INSTÄLLNING RS 232- / RS 422. TNC:n visar en bildskärmsmeny i vilken följande inställningar kan ändras:

Inställning av RS-232-datasnitt

För RS-232-datasnittet väljs driftart och baudrate i bildskärmens vänstra del

Inställning av RS-422-datasnitt

För RS-422-datasnittet väljs driftart och baudrate i bildskärmens högra del.

Välja DRIFTART för extern enhet

I driftarterna FE2 och EXT kan man inte använda funktionerna "inläsning av alla program", "inläsning av erbjudet program" och "inläsning av filförteckning".

Inställning av BAUD-RATE

BAUD-RATE (dataöverföringshastighet) kan väljas mellan 110 och 115.200 Baud.

Extern enhet	Driftart	Symbol
HEIDENHAIN diskettenhet FE 401 B FE 401 från progNr. 230 626 03	FE1 FE1	
HEIDENHAIN diskettenhet FE2 FE 401 till och med prog. Nr. 230 626	6 02	
PC med HEIDENHAIN överförings- Programvara TNCremo	FE1	
Främmande enhet, såsom skrivare, remsläsare/stans, PC utan TNCremo	EXT1, EXT2	Ŷ
PC med HEIDENHAIN-mjukvara TNCremo för fjärrstyrning av TNC:n	LSV2	

MANUELL D	RIFTED	ITERA	PROGI	RAM-TA	ABELL		
GRÄN	SSNIT	r RS23	32	GRÄNS	SSNIT	TRS42	22
DRIF BAUD FE EXT1 EXT2 LSV-	TART: -RATE : ! : ! 2:	0600 57600 115200 115200	3V−2 3	DRIF BAUD- FE EXT1 EXT2 LSV-2	FART: -RATE : : : : : :	L: 9600 9600 9600 11520	SV-2 2
TILLI	- Delnii	NG	-		_		-
PRIN PRIN PGM I	T T-TES MGT:	: T: F L	85232 JTÖKAI	: \)			
0-#	RS232 RS422 INSTALLN.	ANVÄNDAR – PARAMETER	HJÄLP				SLUT

TILLDELNING

Med denna funktion definierar man var TNC:n skall överföra olika typer av data.

Användning:

- Utmatning av värde med Q-parameterfunktion FN15
- Utmatning av värde med Q-parameterfunktion FN16
- Sökväg till katalog på TNC:ns hårddisk där digitaliserade data skall sparas

Beroende på vilken TNC-driftart som används kommer antingen funktionen PRINT eller PRINT-TEST att användas:

TNC-driftart	Överföringsfunktion
Program enkelblock	PRINT
Program blockföljd	PRINT
Programtest	PRINT-TEST

PRINT och PRINT-TEST kan ställas in på följande sätt:

Funktion	Sökväg
Utmatning av data via RS-232	RS232:\
Utmatning av data via RS-422	RS422:\
Lagring av data på TNC:ns hårddisk	TNC:\
Lagring av data i samma katalog som programmet	
med FN15/FN16 alternativt programmet med	
digitaliseringscykeln finns i	- tom -

Filnamn:

Data	Driftart	Filnamn
Digitaliseringsdata	Programkörning	Bestäms i cykel OMRÅDE
Värde med FN15	Programkörning	%FN15RUN.A
Värde med FN15	Programtest	%FN15SIM.A
Värde med FN16	Programkörning	%FN16RUN.A
Värde med FN16	Programtest	%FN16SIM.A

Programvara för dataöverföring

Man bör använda HEIDENHAIN programvara TNCRemo för överföring av filer från och till TNC:n. Med TNCremo kan man kommunicera med alla HEIDENHAIN-styrsystem via det seriella datasnittet.

Kontakta HEIDENHAIN för att erhålla dataöverföringsprogramvaran TNCremo.

Systemförutsättningar för TNCremo

- Persondator AT eller kompatibelt system
- 640 kB arbetsminne
- 1 MByte ledigt på hårddisken
- Ett ledigt seriellt datasnitt
- Operativsystem MS-DOS/PC-DOS 3.00 eller högre, Windows 3.1 eller högre, OS/2
- En Microsoft (TM) kompatibel mus för att förenkla arbetet (ej krav)

Installation underWindows

- Starta installationsprogrammet SETUPEXE från filhanteraren (utförskaren)
- Följ anvisningarna i setup-programmet

Starta TNCremo under Windows

Windows 3.1, 3.11, NT:

- Dubbelklicka på ikonen i programgrupp HEIDENHAIN applikationer
- Windows95:
- Klicka på <Start>, <Program>, <HEIDENHAIN applikationer>, <TNCremo>

När man startar TNCremo för första gången frågar programmet dig om ansluten styrning, datasnitt (COM1 eller COM2) och efter dataöverföringshastigheten. Ange den önskade informationen.

Dataöverföring mellanTNC ochTNCremo

Kontrollera om:

- TNC:n är ansluten till rätt seriella datasnitt på din dator
- Dataöverföringshastigheten för LSV2-drift i TNC:n och den i TNCremo överensstämmer

När man har startat TNCremo ser man, i huvudfönstrets vänstra del, 1 alla filer som finns lagrade i den aktiva katalogen. Via <Katalog>, <Växla> kan man välja en godtycklig enhet alternativt en annan katalog i datorn.

För att aktivera kommunikationen med TNC:n väljer man <Anslut>, <Anslut>. TNCremo tar nu emot fil- och katalogstrukturen från TNC:n och presenterar denna i huvudfönstrets undre del (2). För att överföra en fil från TNC:n till PC:n väljer man filen i TNC-fönstret (genom musklick markeras den med ljusare färg) och aktiverar funktionen <Fil> <Överför>.

För att överföra filer från PC:n till TNC:n väljer man filen i PC-fönstret och aktivera sedan funktionen <Fil> <Överför>.

AvslutaTNCremo

Välj menypunkt <Fil>, <Avsluta>, eller tryck på knappkombinationen ALT+X

Beakta även hjälpfunktionen i TNCremo, i denna förklaras alla funktionerna.

12.5 Ethernet-datasnitt

Introduktion

Som tillägg kan man utrusta TNC:n med ett ethernet-kort och därigenom kunna ansluta styrsystemet som **Client** i det egna nätverket. TNC:n överför data via ethernet-kortet enligt familjen TCP/IP-protokoll (Transmission Control Protocol/Internet Protocol) samt med hjälp av NFS (Network File System). TCP/IP och NFS är vanligen implementerade i UNIX-system vilket medför att TNC:n kan anslutas till UNIX-världen utan ytterligare programvara.

PC-världen med Microsoft operativsystem arbetar också med TCP/IP vid nätverksuppkoppling men däremot inte med NFS. Därför behöver man en extra programvara för att kunna ansluta TNC:n till ett PC-nätverk. HEIDENHAIN förordar följande nätverksprogramvaror:

Operativsystem	Nätverks-programvara
DOS, Windows 3.1, Windows 3.11, Windows NT	Maestro 6.0, fabrikat HUMMINGBIRD e-mail: support@hummingbird.com www: http:\\www.hummingbird.com Tel.: 089/89755205
Windows 95	OnNet Server 2.0, fabrikat FTP e-mail: support@ftp.com www: http:\\www.ftp.com Tel.: 089/74940 (Computer 2000 GmbH)

Montering av ethernet-kort

Innan installation av ethernet-kortet måste TNC:n och maskinen stängas av!

Beakta anvisningarna i montageanvisningen som medföljer ethernet-kortet!

12.5 Ethernet-datasnitt

Anslutningsmöjligheter

Man kan ansluta TNC:ns ethernet-kort till nätverket antingen via en BNC-anslutning (X26, koaxkabel 10Base2) eller via en RJ45anslutning (X25,10BaseT). Man kan endast använda en av de båda anslutningarna åt gången. Båda anslutningarna är galvaniskt frånskilda styrningselektroniken.

BNC-anslutning X26 (koaxkabel 10Base2, se bilden uppe till höger)

10Base2-anslutningen kallas även för Thin-Ethernet eller CheaperNet. Vid 10Base2-anslutning använder man en BNC-Tkontakt för att ansluta TNC:n till sitt nätverk.

Avståndet mellan två T-kopplingar måste vara minst 0,5 m.

Antalet T-kopplingar är begränsat till maximalt 30 stycken.

Man måste förse bussens öppna ände med 50 Ohm avslutningsmotstånd.

Den maximala nodlängden – det är avståndet mellan två avslutningsmotstånd – motsvarar 185 m. Man kan förbinda upp till 5 noder till varandra via signalförstärkare (repeater).

RJ45-anslutning X25 (10BaseT, se bilden i mitten till höger)

Vid 10BaseT-anslutning använder man twisted pair-kabel för att ansluta TNC:n till sitt nätverk.

Den maximala kabellängden mellan TNC:n och en knutpunkt motsvarar vid oskärmad kabel maximalt 100 m, vid skärmad kabel maximalt 400 m.

Om man kopplar upp TNC:n direkt mot en PC måste en korsad kabel användas.

Konfiguration av TNC:n

Låt en nätverksspecialist konfigurera TNC:n.

I driftart programinmatning/editering trycker man på knappen MOD. Ange kodnummer NET123, TNC:n presenterar huvudbildskärmen för nätverkskonfigurering.

Allmänna nätverksinställningar

Tryck på softkey DEFINE NET för inmatning av allmänna nätverksinställningar (se bilden uppe till höger) och ange följande information:

Inställning Betydelse

ADDRESS	Adress som Er nätverksadministratör måste tilldela TNC:n. Inmatning: Fyra decimalvärden åtskiljda av punkter, t.ex. 160.1.180.20
MASK	SUBNET MASK för att minska antalet adresser inom Ert nätverk. Inmatning: Fyra decimalvärden åtskiljda av punkter, fråga nätverks-administratören, t.ex. 255.255.0.0
ROUTER	Internet-adress för Er default-router. Använd endast om Ert nätverk består av flera sammankopplade delnätverk. Inmatning: Fyra decimalvärden åtskiljda av punkter, fråga nätverksadministratören om värdet, t.ex. 160.2.0.2
PROT	Definition av överföringsprotokollet. RFC : Överföringsprotokoll enligt RFC 894 IEEE : Överföringsprotokoll enligt IEE 802.2/802.3
HW	Definition av den använda anslutningen 10BASET: Om man använder 10BaseT 10BASE2: Om man använder 10Base2
HOST	Namn som TNC:n meddelar sig med i nätverket: Om man använder en hostname-server måste man ange "Fully Qualified Hostname+ här. Om man inte anger något namn kommer TNC:n att använda en så kallad NUL-identifiering. De enhetsspecifika inställningarna UID, GID, DCM och FCM (se nästa sida) kommer då att ignoreras av TNC:n

PROGRAM	10	NÄT	VERKS	SINS	TÄLLN	ING			
BLUCKFOL	_JU	TNC	:NS 3	INTE	RNETA	DRESS			
FIL:	IP4.N0	10							×
NR A	DDRESS	;	MASK		ROUTER	PR	OT		
0	60.1.1	80.20	255.255	5.0.0		RF	С		
[END]									
BÖRJAN	3 1	SLUT	SIDA	SIDA			NE	İSTA	

Enhetsspecifika nätverksinställningar

Tryck på softkey DEFINE MOUNT för inmatning av enhetsspecifika nätverksinställningar (se bilden uppe till höger). Man kan definiera ett godtyckligt antal nätverksinställningar, dock kan maximalt 7 stycken hanteras samtidigt.

Inställning	Betydelse
ADDRESS	Er servers adress. Inmatning: Fyra decimalvärden åtskiljda av punkter, fråga nätverksadministratören om värdet, t.ex. 160.1.13.4
RS	Paketstorlek för datamottagande i byte. Inmatningsområde: 512 till 4 096. Inmatning 0: TNC:n använder den av servern meddelade optimala paketstorleken
WS	Paketstorlek för datasändning i byte. Inmatningsområde: 512 till 4 096. Inmatning 0: TNC:n använder den av servern meddelade optimala paketstorleken
TIMEOUT	Tid i ms, efter vilken TNC:n upprepar en av servern icke besvarad Remote Procedure Call. Inmatningsområde: 0 till 100 000. Standard- inmatning: 0, detta motsvarar en TIMEOUT på 7 sekunder. Använd endast högre värde när TNC:n måste kommunicera med servern via flera routers. Fråga nätverksadministratören om värdet
HM	Definierar huruvida TNC:n skall upprepa Remote Procedure Call ända tills TNC-servern svarar. 0: Upprepa alltid Remote Procedure Call 1: Upprepa inte Remote Procedure Call
DEVICENAME	Namn som TNC:n visar i filhanteringen när TNC:n är ansluten till en enhet
PATH	NFS-serverns katalog som man vill ansluta till TNC:n. Beakta stora och små bokstäver vid inmatning av sökvägen
UID	Definierar med vilken användar-identifikation man vill få åtkomst till filer i nätverket. Fråga nätverksadministratören om värdet
GID	Definierar med vilken gruppidentifikation man vill få åtkomst till filer i nätverket. Fråga nätverksadministratören om värdet

Inställning	Betydelse
DCM	Här anger man åtkomsträttigheten till kataloger i NFS-servern (se bilden uppe till höger). Ange värdet med binärkod. Exempel: 111101000 0 : Åtkomst ej tillåten 1 : Åtkomst tillåten
DCM	Här anger man åtkomsträttigheten till filer i NFS-servern (se bilden uppe till höger). Ange värdet med binärkod. Exempel: 111101000 0 : Åtkomst ej tillåten 1 : Åtkomst tillåten
AM	Definierar huruvida TNC:n skall logga på nätverket automatiskt vid uppstart. 0: Logga inte på automatiskt 1: Logga på automatiskt

111101	Alla andra användare: Alla andra användare: Alla andra användare:	söker skriver	
	Arbetsgrupper: Arbetsgrupper: Arbetsgrupper:	söker skriver läser	
	Användare: Användare:	söker skriver	
	Anvandare:	laser	

Definiera nätverksskrivare

Tryck på softkey DEFINE PRINT om du vill skriva ut filer direkt från TNC:n till en nätverksskrivare:

Inställning	Betydelse
ADDRESS	Er servers adress. Inmatning: Fyra decimalvärden åtskiljda av punkter, fråga nätverksadministratören om värdet, t.ex. 160.1.13.4
DEVICE NAME	Namn på skrivaren som TNC:n visar om man trycker på softkey SKRIV UT (se även "4.4 Utökad filhantering")
PRINTER NAME	Namnet på skrivaren i Ert nätverk, fråga nätverksadministratören om värdet

Testa förbindelsen

▶ Tryck på softkey PING

Ange internet-adressen till enheten som du vill testa förbindelsen till och bekräfta med ENT. TNC:n skickar datapaket ända tills man avslutar testmonitorn med knappen END.

I raden TRY visar TNC:n antalet datapaket som har skickats iväg till den tidigare definierade mottagaren. Efter antal datapaket som har skickats iväg visar TNC:n statusen:

Statuspresentation Betydelse

HOST RESPOND	Datapaket har kommit tillbaka, förbindelsen fungerar
TIMEOUT	Datapaket har inte kommit tillbaka, kontrollera förbindelsen
CAN NOT ROUTE	Datapaket kunde inte skickas iväg, kontrollera serverns och routerns internet-adress i TNC:n

PROGRAM BLOCKFÖLJD	NÄ	[VERKS	SINSTÀ	ALLNIN	١G	
PING MONITOR						
INTERNET AD	DDRESS :	1 60.1.13.4				
TRY 66 : HOST RESPOND						

Visa felprotokoll

Tryck på softkey SHOW ERROR om du vill se felprotokollet. Här loggar TNC:n alla fel som har uppträtt i nätverksdriften sedan den sista uppstarten av TNC:n.

De listade felmeddelandena är uppdelade i två kategorier:

Varningsmeddelanden är markerade med (W). Vid dessa meddelanden kunde TNC:n upprätta nätverksförbindelse men var tvungen att korrigera inställningar för att göra detta.

Felmeddelanden är markerade med (E). Om sådana felmeddelanden inträffar kan inte TNC:n upprätta någon nätverksförbindelse.

Felmeddelande	Orsak
LL: (W) CONNECTION XXXXX UNKNOWN USING DEFAULT 10BASET	Vid DEFINE NET har du angivit en felaktig beteckning för HW
LL: (E) PROTOCOL xxxxx UNKNOWN	Vid DEFINE NET har du angivit en felaktig beteckning för PROT
IP4: (E) INTERFACE NOT PRESENT	TNC:n kunde inte hitta något ethernet-kort
IP4: (E) INTERNETADRESS NOT VALID	Du har använt en felaktig internet-adress för TNC:n
IP4: (E) SUBNETMASK NOT VALID	SUBNET MASK passar inte till TNC:ns internet- adress
IP4: (E) SUBNETMASK OR HOST ID NOT VALID	Du har angivit en felaktig internet-adress för TNC:n, eller angivit en felaktig SUBNET MASK eller satt alla bitar i HostID till 0 (1)
IP4: (E) SUBNETMASK OR SUBNET ID NOT VALID	Alla bitar i SUBNET ID är 0 eller 1
IP4: (E) DEFAULTROUTERADRESS NOT VALID	Du har angivit en felaktig internet-adress för routern
IP4: (E) CAN NOT USE DEFAULTROUTER	Defaultroutern har inte samma Net- eller SubnetID som TNC:n
IP4: (E) I AM NOT A ROUTER	Du har definierat TNC:n som router
MOUNT: <enhetsnamn> (E) DEVICENAME NOT VALID</enhetsnamn>	Enhetsnamnet är för långt eller innehåller otillåtna tecken
MOUNT: <enhetsnamn> (E) DEVICENAME ALREADY ASSIGNED</enhetsnamn>	Du har redan definierat en enhet med detta namn
MOUNT: <enhetsnamn> (E) DEVICETABLE OVERFLOW</enhetsnamn>	Du har försökt att förbinda TNC:n med fler än 7 nätenheter
NFS2: <enhetsnamn> (W) READSIZE SMALLER THEN x SET TO x</enhetsnamn>	Du har angivit ett för litet värde för RS vid DEFINE MOUNT. TNC:n sätter RS till 512 Byte
NFS2: <enhetsnamn> (W) READSIZE LARGER THEN x SET TO x</enhetsnamn>	Du har angivit ett för stort värde för RS vid DEFINE MOUNT. TNC:n sätter RS till 4 096 Byte
Felmeddelande	Orsak
---	--
NFS2: <enhetsnamn> (W) WRITESIZE SMALLER THEN x SET TO x</enhetsnamn>	Du har angivit ett för litet värde för WS vid DEFINE MOUNT. TNC:n sätter WS till 512 Byte
NFS2: <enhetsnamn> (W) WRITESIZE LARGER THEN x SET TO x</enhetsnamn>	Du har angivit ett för stort värde för WS vid DEFINE MOUNT. TNC:n sätter WS till 4 096 Byte
NFS2: <enhetsnamn> (E) MOUNTPATH TO LONG</enhetsnamn>	Du har angivit ett för långt namn i PATH vid DEFINE MOUNT.
NFS2: <enhetsnamn> (E) NOT ENOUGH MEMORY</enhetsnamn>	För tillfället finns det för lite arbetsminne tillgängligt för att kunna upprätta en nätverksförbindelse
NFS2: <enhetsnamn> (E) HOSTNAME TO LONG</enhetsnamn>	Du har angivit ett för långt namn i HOST vid DEFINE NET.
NFS2: <enhetsnamn> (E) CAN NOT OPEN PORT</enhetsnamn>	TNC:n kan inte öppna en erforderlig port för att upprätta nätverksförbindelsen
NFS2: <enhetsnamn> (E) ERROR FROM PORTMAPPER</enhetsnamn>	TNC:n har erhållit data från portmapper som inte är rimliga
NFS2: <enhetsnamn> (E) ERROR FROM MOUNTSERVER</enhetsnamn>	TNC:n har erhållit data från mountserver som inte är rimliga
NFS2: <enhetsnamn> (E) CANT GET ROOTDIRECTORY</enhetsnamn>	Mountserver tillåter inte åtkomst till katalogen som definierats i PARH vid DEFINE MOUNT
NFS2: <enhetsnamn> (E) UID OR GID 0 NOT ALLOWED</enhetsnamn>	Du har angivit 0 i UID eller GID vid DEFINE MOUNT. Inmatningsvärdet 0 är förbehållet systemadministratören

12.6 Konfiguration av PGM MGT

Med denna funktion bestämmer man filhanteringens funktionsomfång:

- Standard: Förenklad filhantering utan kataloger
- Utökad: Filhantering med utökade funktioner och katalogpresentation

Se även "Kapitel 4.3 Standard filhantering" och "Kapitel 4.4 Utökad filhantering".

Ändra inställning

- Välj filhantering i driftart Programinmatning/Editering: Tryck på knappen PGM MGT
- ▶ Välj MOD-funktion: Tryck på knappen MOD
- Välj inställning PGM MGT: Förflytta markören med pilknapparna till inställning PGM MGT, växla mellan STANDARD och UTÖKAD med knappen ENT

12.7 Maskinspecifika användarparametrar

Maskintillverkaren kan lägga in funktioner i upp till 16 "Användarparametrar". Beakta anvisningarna i Er maskinhandbok.

12.8 Presentation av råämnet i bearbetningsrummet

I driftart Programtest kan man grafiskt kontrollera råämnets position i maskinens bearbetningsrum. Med denna funktion kan även övervakning av maskinens arbetsområde aktiveras för driftart Programtest: För dessa funktioner trycker man på softkey "Kontrollera utgångspunkt"

TNC:n visar bearbetningsutrymmet, olika fönster med koordinatinformation och softkeys med vilka man kan ändra presentationen.

Tillgängligt förflyttningsområde/nollpunkt, i förhållande till det presenterade råämnet:

- 1 Arbetsutrymme
- 2 Råämnets storlek
- 3 Koordinatsystem
- 4 Råämne med projektion i planet, arbetsutrymme

Visa råämnets position i förhållande till utgångspunkten: Tryck på softkey med maskinsymbol.

Om råämnet ligger utanför bearbetningsutrymmet 4, kan man förskjuta råämnet in i bearbetningsutrymmet med softkeys för utgångspunkt. Förskjut därefter även utgångspunkten i driftart Manuell drift med motsvarande värde.

Funktionsöversikt

Funktion	Softkey
Flytta råämnet åt vänster (grafiskt)	← ⊕
Flytta råämnet åt höger (grafiskt)	\rightarrow
Flytta råämnet framåt (grafiskt)	/ -
Flytta råämnet bakåt (grafiskt)	/ -
Flytta råämnet uppåt (grafiskt)	† 🕀
Flytta råämnet nedåt (grafiskt)	$\downarrow $
Visa råämnet i förhållande till den inställda utgångspunkten	T
Visa det totala rörelseområdet i förhållande till det presenterade råämnet	++
Visa maskinnollpunkten i bearbetningsrummet	M91 🕁
Visa en av maskintillverkaren definierad position (t.ex. verktygsväxlingsposition) i bearbetnings- rummet	M92
Visa arbetsstyckets nollpunkt i bearbetningsrummet	•
Övervakning av arbetsområdet vid Programtest, aktivera (PÅ)/ deaktivera (AV)	ie e [RV]∕ PÂ

12.9 Välja typ av positionsindikering

Man kan påverka presentationen av koordinater som sker i driftarterna Manuell drift och Programkörning:

Bilden till höger visar olika positioner för verktyget

- 1 Utgångsposition
- 2 Verktygets målposition
- 3 Arbetsstyckets nollpunkt
- 4 Maskinens nollpunkt

Följande typer av koordinater kan väljas för TNC:ns positionspresentation:

Funktion	Presentation
Bör-position; värdet som TNC:n för tillfället arbetar mot	tBÖR
Är-position; momentan verktygsposition	ÄR
Referens-position; är-position i förhållande till	REF
maskinens nollpunkt	
Restväg till den programmerade positionen; differens	RESTV
mellan är- och mål-position	
Släpfel; differens mellan bör- och är-position	SLÄP
Utböjning av det mätande avkännarsystemet	UTBJN

Med MOD-funktionen Positionsvärde 1 kan man välja olika typer av positionsvärden för den vanliga statuspresentationen. Med MOD-funktionen Positionsvärde 2 kan man välja olika typer av positionsvärden för den utökade statuspresentationen.

12.10 Välja måttenhet

Med denna MOD-funktion definierar man om TNC:n skall presentera koordinater i mm eller tum.

- Metriskt måttsystem: t.ex. X = 15,789 (mm) MOD-funktionen Växla mm/tum = mm. Värdet visas med tre decimaler.
- Tum måttsystem: t.ex. X = 0,6216 (tum) MOD-funktionen Växla mm/tum = tum. Värdet visas med fyra decimaler.

Om man har tum-presentation aktiv visar TNC:n även matningen i tum/min. I ett tum-program måste man ange en högre matning med faktor 10.

12.11 Välja programspråk för \$MDI

Med MOD-funktionen Programinmatning växlar man mellan programmering av filen \$MDI enligt:

- SMDI.H programmering i klartext-dialog: Programinmatning: HEIDENHAIN
- \$MDI.I programmering enligt DIN/ISO: Programinmatning: ISO

12.12 Axelval för L-blocksgenerering

I inmatningsfältet Axelval definieras vilka axlars aktuella verktygspositioner som skall överföras till ett L-block. För att skapa ett separat L-block trycker man på knappen "överför är-position". Axlarna väljs med en bit-kod på samma sätt som maskinparametrarna:

Axelval %1111	1 X, Y, Z	, IV., V. axel överförs
Axelval %0111	1 X, Y, Z	, IV. axel överförs
Axelval %001	11 X, Y, Z	axel överförs
Axelval %000	11 X, Y a:	xel överförs
Axelval %000	01 X axe	l överförs

12.13 Ange begränsning av rörelseområde, nollpunktspresentation

Inom maskinens maximala rörelseområde kan ytterligare begränsning av det användbara rörelseområdet i koordinataxlarna göras.

Användningsexempel: Skydda en delningsapparat mot kollision

Det maximala rörelseområdet är begränsat av mjukvarugränslägen. Det för tillfället användbara rörelseområdet kan minskas med MODfunktionen ÄNDLÄGE: Detta görs genom att ange axlarnas maximala positionsvärden i positiv och negativ riktning i förhållande till maskinens nollpunkt. Om Er maskin förfogar över flera förflyttningsområden kan begränsningen ställas in separat för respektive förflyttningsområde (softkey ÄNDLÄGE (1) till ÄNDLÄGE (3)).

EDITERA TABELL

SLUT

X+ +500

Y+ +500

A+ +360

B+ +90

Z+ +400

C+ +30000

Z +100

C +90

W +0

Arbeta utan extra begränsning av rörelseområdet

För koordinataxlar som inte skall förses med någon extra rörelsebegränsning anges TNC:ns maximala rörelseområde (+/- 99999 mm) som ÄNDLÄGE.

Visa och ange det maximala rörelseområdet

- ▶ Välj Positionsvärde REF
- Förflytta maskinen till önskade positiva och negativa begränsningspositioner i X-, Y- och Z-axeln
- Notera värdena med förtecken
- ▶ Välj MOD-funktioner: Tryck på knappen MOD
 - RÖRELSE-OMRÅDE

Ange begränsning av förflyttningsområde: Tryck på softkey ÄNDLÄGE. Knappa in de noterade värdena för axlarna i Begränsning.

Lämna MOD-funktionen: Tryck på softkey SLUT

Kompensering för verktygsradie inkluderas inte i begränsningen av rörelseområdet.

Begränsningen av rörelseområdet och mjukvarugränslägena aktiveras först när referenspunkterna har passerats.

Visa nollpunkt

Värdena som visas i bildskärmens nedre vänstra del är de manuellt inställda utgångspunkterna i förhållande till maskinens nollpunkt. Dessa kan inte ändras i denna bildskärmsmeny.

12.14 Presentera HJÄLP-filer

HJÄLP-filer är till för att hjälpa användaren i situationer som kräver ett förutbestämt handlingssätt, såsom exempelvis frikörning av maskinen efter ett strömavbrott. Även tilläggsfunktioner (Mfunktioner) kan dokumenteras i en HJÄLP-fil. Bilden till höger visar ett exempel på innehåll i en HJÄLP-fil.

HJÄLP-filer finns inte tillgängliga i alla maskiner. Ytterligare information får du av din maskintillverkare.

Välja HJÄLP-filer

▶ Välj MOD-funktion: Tryck på knappen MOD

Välj den sist aktiverade HJÄLP-filen: Tryck på softkey HJÄLP

Om det behövs, kalla upp filhanteringen (knappen PGM MGT) och välj en annan HJÄLP-fil.

PROGRAM IN	MATNIN	IG			PRO	GRAM ATNING
FIL: MACH1.HLP		RAD:	a spa	LĬ: 1	INSERT	
Commands f	or the	too	l cha	anger		
#1111 chai	n forw	ard				
#2222 chai	n back	ward	I			
CENDJ						
X +150.00	200 Y	- 5	0.000	00 Z	+100	.0000
A +0.00	300 B	+18	0.000	30 C	+90	.0000
				S	0.00	0
AR	т			. 0		M 5⁄9
INFOGA NÄSTA ORD SKRIV ÖVR >>	SISTA ORDET <<	SIDA Î	SIDA J	BÖR JAN	SLUT J	SÖK

MANUELL DRIFT

BEGRÄNSNINGAR:

X- -500

Y- -500

Z- +0

A- +0

B- -90

NOLLPUNKTER:

RÖRFL SF

OMPÂDE

X +150

A +0

U +0

POSTTION

PGM-INMAT

C- -30000

Y -50

V +0

H.TALP

B +180

MASKIN

тю 🕜

12.15 Visa drifttid

Maskintillverkaren kan även presentera andra tider.Beakta anvisningarna i Er maskinhandbok!

Via softkey MASKINTID kan man presentera av olika drifttider:

Drifttid	Betydelse
Styrning till	Styrsystemets drifttid sedan det startades första gången
Maskin till	Maskinens drifttid sedaninstallation
Programkörning	Drifttid för styrd drift sedan det startades första gången

MANUE	ELL DI	RIFT				PI	ROGRAM
STYRS MASKJ PROGF	SYSTEI In pá Ramexi	M TILL EKVERI	. = = NG =	173	1:44: 0:00: 0:00:	42 00 00	
							SLU

Tabeller och översikt

13.1 Allmänna användarparametrar

Allmänna användarparametrar är maskinparametrar som användaren kan ändra för att påverka TNC:ns beteende.

Typiska användarparametrar är exempelvis:

- Dialogspråk
- Inställning av datasnitt
- Matningshastigheter
- Bearbetningsförlopp
- Override-potentiometrarnas funktion

Inmatningsmöjligheter för maskinparametrar

Maskinparametrar kan programmeras med:

- Decimala tal
 - Ange siffervärde direkt

Dual/binära tal

Ange procenttecken "%" innan siffervärdet

Hexadecimala tal

Ange dollartecken "\$" innan siffervärdet

Exempel:

Istället för det decimala talet 27 kan även det binära talet %11011 eller det hexadecimala talet \$1B anges.

De olika maskinparametrarna får definieras med skilda tal-system.

En del maskinparametrar innehåller mer än en funktion. Inmatningsvärdena i sådana maskinparametrar är summan av de med ett + tecken markerade delvärdena.

Kalla upp allmänna användarparametrar

Allmänna användarparametrar väljs med kodnummer 123 i MODfunktionen.

I MOD-funktionen finns också de maskinspecifika ANVÄNDARPARAMETRARNA tillgängliga.

Anpassning av TNC-datasnitt EXT1 (5020.0) och
EXT2 (5020.1) till extern enhet

MP5020.x

Exempel:

Anpassa TNC-datasnitt EXT2 (MP 5020.1) till en extern enhet med följande inställning:

8 databitar, BCC godtycklig, överföringsstopp med DC3, jämn teckenparitet, teckenparitet önskad, 2 stoppbitar

Inmatning i **MP 5020.1**: 1+0+8+0+32+64 = **105**

Typ av datasnitt för EXT1 (5030.0) och EXT2 (5030.1)

MP5030.x

Standardöverföring: **0** Datasnitt för blockvis överföring: **1**

3D-avkännarsystem och digitalisering

Välj avkännarsystem	
(endast vid option digitalisering med måtande	avkännarsystem)
	IVIF0200 Brutando aukännarevetore: 0
	Mätande avkännarsystem: 1
Välj typ av överföring	
	MP6010
	Avkännarsystem med kabelöverföring: 0
	Avkännarsystem med infraröd överföring: 1
Avkänningshastighet för brytande avkännars	ystem
	MP6120
	1 till 3000 [mm/min]
Maximal förflyttningssträcka till avkänningsp	unkt
	0,001 till 99.999,9999 [mm]
Säkerhetsavstånd till avkänningspunkt vid au	tomatisk mätning
	0,001 till 99 999,9999 [mm]
Snabbtransport vid avkänning med brytande	avkännarsystem
	MP6150
	1 till 300.000 [mm/min]
Mätning av avkännarens centrumförskjutning	vid kalibrering av brytande avkännarsystem
	MP6160
	M-funktion för 180°-vridning av 3D-avkannarsystemet vid kalibrering: 0 M-funktion för 180°-vridning av avkännarsystemet vid kalibrering: 1 till 88
Upprepad mätning vid programmerbar avkän	narfunktion
	MP6170
	1 till 3
Toleransområde för upprepad mätning	
	MP6171
	0,001 till 0,999 [mm]
Nedmatningsdjup av mätstiftet vid digitaliser	ing med mätande avkännarsystem
	MP6310
	0,1 till 2,0000 [mm] (riktvärde: 1mm)
Mätning av avkännarens centrumförskjutning	ı vid kalibrering av mätande avkännarsystem
	MP6321
	Mät centrumförskjutning: 0
	IVIat inte centrumforskjutning: 1

Tilldelning av avkännarsystemets axlar till maskinaxlarna vid mätande avkännarsystem MP6322.0 Avkännarsystemets axlar måste Maskinaxel X är parallell med avkännarsystemets axel X: 0, Y: 1, Z: 2 tilldelas maskinaxlarna korrekt, annars MP6322.1 finns risk för att förstöra avkännaren. Maskinaxel Y är parallell med avkännarsystemets axel X: 0, Y: 1, Z: 2 MP6322.2 Maskinaxel Z är parallell med avkännarsystemets axel X: 0, Y: 1, Z: 2 Maximal utböjning av det mätande avkännarsystemets mätstift MP6330 0,1 till 4,0000 [mm] Matning för positionering av det mätande avkännarsystemet till MIN-punkten och framkörning till konturen MP6350 1 till 3.000 [mm/min] Avkänningshastighet för mätande avkännarsystem **MP6360** 1 till 3.000 [mm/min] Snabbtransport i avkänningscyklerna för mätande avkännarsystem MP6361 10 till 3.000 [mm/min] Matningsreducering då det mätande avkännarsystemets mätstift påverkas i sidled TNC:n minskar matningen enligt en förinställd karaktäristik. Den minimala matningen motsvarar 10% av den programmerade digitaliseringshastigheten. **MP6362**

Sänkning av matningshastigheten ej aktiv: ${\bf 0}$ Sänkning av matningshastigheten aktiv: ${\bf 1}$

Radialacceleration vid digitalisering med mätande avkännarsystem

Med MP6370 begränsar man matningen som TNC:n förflyttar avkännaren med under digitalisering på cirkelrörelser. Cirkelrörelser uppstår exempelvis vid stora riktningsförändringar.

Så länge den programmerade digitaliseringshastigheten är mindre än den via MP6370 beräknade hastigheten så förflyttar TNC:n avkännaren med den programmerade matningen. Ett lämpligt värde erhålles genom praktiska försök.

MP6370

0,001 till 5,000 [m/s²] (riktvärde: 0,1)

Målfönster för digitalisering på konturlinjer med	mätande avkännarsystem
Vid digitalisering på konturlinjer kommer slutpunkten inte sammanfalla helt exakt med startpunkten.	
MP6390 definierar ett kvadratiskt målfönster inom vilket slutpunkten måste ligga efter digitalisering ett varv runt konturlinjen. De inmatade värdet motsvarar kvadratens halva sida.	
	MP6390 0,1 till 4,0000 [mm]
Radiemätning medTT 120: Avkänningsriktning	
	 MP6505 Positiv avkänningsriktning i vinkelreferensaxeln (0°-axel): 0 Positiv avkänningsriktning i +90°-axel: 1 Negativ avkänningsriktning i vinkelreferensaxeln (0°-axel): 2 Negativ avkänningsriktning i +90°-axel: 3
Avkänningshastighet för andra mätningen med T	T 120, mätplattans form, korrektur i TOOL.T
	 MP6507 Avkänningshastigheten för andra mätningen med TT 120 beräknas med konstant tolerans: +0 Avkänningshastigheten för andra mätningen med TT 120 beräknas med variabel tolerans: +1 Konstant avkänningshastighet för andra mätningen med TT 120: +2
Maximalt tillåtet mätfel med TT 120 vid mätning	med roterande verktyg
Nödvändig för beräkningen av avkänningshastigheten tillsammans med MP6570	MP6510 0,001 till 0,999 [mm] (riktvärde: 0,005 mm)
Avkänningshastighet för TT 120 vid stillastående	verktyg
	MP6520 1 till 3.000 [mm/min]
Radiemätning med TT 120: avstånd från verktyge	ets underkant till avkännarens överkant MP6530.0 (förflyttningsområde 1) till MP6530.2 (förflyttningsområde 3)
Säkerhetszon runt beröringsplattan på TT 120 vid	förpositionering
	MP6540 0,001 till 99.999,999 [mm]
Snabbtransport i avkännarcyklerna för TT 120	MP6550 10 till 10.000 [mm/min]
M-funktion för spindelorientering vid mätning av	individuella skär
	MP6560 0 till 88

Mätning med roterande verktyg: Verktygets tillåtna periferihastighet

Nödvändig för beräkning av spindelvarvtal och för beräkning av avkänningshastigheten

MP6570

1,000 till 120,000 [m/min]

Koordinater för TT-120-mätplattans m	ittpunkt i förhållande till maskin-nollpunkten	
•	MP6580.0 (förflyttningsområde 1)	
	X-axel	
	MP6580.1 (förflyttningsområde 1)	
	Y-axel	
	MP6580.2 (förflyttningsområde 1)	
	Z-axel	
	MP6581.0 (förflyttningsområde 2)	
	X-axel	
	MP6581.1 (förflyttningsområde 2)	
	Y-axel	
	MP6581.2 (förflyttningsområde 2)	
	Z-axel	
	MP6582.0 (förflyttningsområde 3)	
	X-axel	
	MP6582.1 (förflyttningsområde 3)	
	Y-axel	
	MP6582.2 (förflyttningsområde 3)	
	Z-axel	

TNC-presentation, TNC-editor

Programmeringsplats		
	MP7210	
	TNC med maskin: 0	
	TNC som programmeringsplats med aktivt PLC: 1	
	TNC som programmeringsplats utan aktivt PLC: 2	
Kvittering av meddelandet STRÖ	MAVBROTT efter uppstart	
	MP7212	
	Kvittering med knapp: 0	
	Automatisk kvittering: 1	
DIN/ISO-programmering: Förvalt	blocknummersteg	
	MP7220	
	0 till 150	

Spärra val av vissa filtyper		
	MP7224.0	
	Alla filtyper kan väljas	s via softkey: +0
	Spärra val av HEIDEN	IHAIN-program (softkey VISA .H): +1
	, Spärra val av DIN/ISC)-program (softkey VISA .I): +2
	Spärra val av verktvo	stabeller (softkey VISA T): +4
	Spärra val av pollpup	ktstabollor (softkov VISA D): 19
	Sparra val av holpull	valler (softkey//ISA_D): 16
	Sparra val av textfiler	
	Sparra val av punkttal	beller (softkey VISA .PNT): +64
Spärra editering av vissa filtyper		
opund cattering av vicca intyper	MP7224 1	
	Spärra into oditoring	10
		.+0
Om en filtyp spärras kommer TNC:n att		
radera alla filer av denna typ.	HEIDENHAIN-prog	ram: +1
	DIN/ISO-program:	+2
	Verktygstabeller: +	4
	Nollpunktstabeller:	+8
	Palettabeller: +16	
	Textfiler: +32	
	Palettabeller: +64	
Konfiguration av palettiller		
	MP/226.0	
	Palettfiler ej aktiva: 0	
	Antal paletter per pal	lettfil: 1 till 255
Konfiguration av nollpunktsfiler		
Ronngulation av honpuliktonion	MP7226 1	
	Nollpunktefiler of akt	
		iva. U
	Antai nonpunkter per	
Programlängd för programprövning		
	MP7229.0	
	Block 100 till 9.999	
Programlangd som FK-block ar tillatha till	MD7000 4	
	Block 100 till 9.999	
Dialogspråk		
	MP7230	
	Engelska: 0	Svenska: 7
	Tycka: 1	Danska: 9
	Tiookicko: 7	Einska: O
	Franska: 3	INederlandska: 10
	Italienska: 4	Polska: 11
	Spanska: 5	Ungerska: 12
	Portugisiska: 6	

Inställning av TNC:ns interna klocka	
J.	MP7235
	Världstid (Greenwich time): 0
	Centraleuropeisk tid (CET): 1
	Centraleuropeisk sommartid: 2
	Tidsskillnad till världstid: -23 till +23 [timmar]
Konfiguration av verktygstabeller	
	MP7260
	Ej aktiv: O
	Antal verktyg som TNC:n genererar när en ny verktygstabell öppnas:
	1 till 254
	Om man behöver fler än 254 verktyg kan verktygstabellen utökas med
	funktionen INFOGA N RADER VID SLUTET (se "5.2 Verktygsdata")
Konfiguration av platstabeller	
	MP7261
	Ej aktiv: 0
	Antal platser per platstabell: 1 till 254

Konfiguration av verktygstabeller; Kolumnnummer i verktygstabellen (ej använd: 0) för

MP7266.0	Verktygsnamn – NAME: 0 till 27; Kolumnbredd: 16 tecken	
MD7266 1	Verktveslängd – L. O till 27: Kelumpbredd: 11 tecken	
INF 7200.1		
MP7266.2	Verktygsradie – R: 0 till 27 ; Kolumnbredd: 11 tecken	
MP7266.3	Verktygsradie 2 – R2: 0 till 27; Kolumnbredd: 11 tecken	
MP7266.4	Övermått längd – DL: 0 till 27 ; Kolumnbredd: 8 tecken	
MP7266.5	Övermått radie – DR: 0 till 27; Kolumnbredd: 8 tecken	
MP7266.6	Övermått radie 2 – DR2: 0 till 27 ; Kolumnbredd: 8 tecken	
MP7266.7	Verktyg spärrat – TL: 0 till 27; Kolumnbredd: 2 tecken	
MP7266.8	Systerverktyg – RT: 0 till 27; Kolumnbredd: 3 tecken	
MP7266.9	Maximal livslängd – TIME1: 0 till 27; Kolumnbredd: 5 tecken	
MP7266.10	Max. livslängd vid TOOL CALL – TIME2: 0 till 27; Kolumnbredd: 5 tecken	
MP7266.11	Aktuell livslängd – CUR. TIME: 0 till 27; Kolumnbredd: 8 tecken	
MP7266.12	Verktygskommentar – DOC: 0 till 27; Kolumnbredd: 16 tecken	
MP7266.13	Antal skär – CUT.: 0 till 27; Kolumnbredd: 4 tecken	
MP7266.14	Tolerans för detektering av förslitning verktygslängd – LTOL: 0 till 27 ; Kolumnbredd: 6 tecken	
MP7266.15	Tolerans för detektering av förslitning verktygsradie – RTOL: 0 till 27; Kolumnbredd: 6 tecken	
MP7266.16	Skärriktning – DIRECT.: 0 till 27; Kolumnbredd: 7 tecken	
MP7266.17	PLC-status – PLC: 0 till 27; Kolumnbredd: 9 tecken	
MP7266.18	Tillägg till verktygsförskjutningen i verktygsaxeln från MP6530 – TT:L-OFFS: 0 till 27 ; Kolumnbredd: 11 tecken	
MP7266.19	Förskjutning av verktyget från avkännarens centrum till verktygets centrum – TT:R-OFFS: 0 till 27 ; Kolumnbredd: 11 tecken	
MP7266.20	Tolerans för detektering av brott verktygslängd – LBREAK.: 0 till 27; Kolumnbredd: 6 tecken	
MP7266.21	Tolerans för detektering av brott verktygsradie – RBREAK: 0 till 27 ; Kolumnbredd: 6 tecken	
MP7266.22	Skärlängd (cykel 22) – LCUTS: 0 till 27; Kolumnbredd: 11 tecken	
MP7266.23	Maximal nedmatningsvinkel (cykel 22) – ANGLE.: 0 till 27; Kolumnbredd: 7 tecken	
MP7266.24	Verktygstyp –TYP: 0 till 27; Kolumnbredd: 5 tecken	
MP7266.25	Verktygets skärmaterial – TMAT: 0 till 27; Kolumnbredd: 16 tecken	
MP7266.26	Skärdatatabell – CDT: 0 till 27; Kolumnbredd: 16 tecken	

(e) anvand: 0) MP7267.0 Verktygsnummer – T: 0 till 5 MP7267.1 Specialverktyg – ST: 0 till 5 MP7267.2 Fast verktygsplats – F: 0 till 5 MP7267.3 Plats spärrad – L: 0 till 5 MP7267.4 PLC – status – PLC: 0 till 5 Driftart Manuell drift: Presentation av matningshastighet MP7270 Matning F visas bara då en axelriktningsknapp trycks in: 0 Matning F visas bara då en axelriktningsknapp trycks in (matning som har definierats via softkey F eller matning i den "långsammaste" axeln): 1 Decimaltecken MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxel i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxel i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxel i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxel i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxel i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxel i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxel i förhållande
Verktygsnummer – T: 0 till 5 MP7267.1 Specialverktyg – ST: 0 till 5 MP7267.2 Fast verktygsplats – F: 0 till 5 MP7267.3 Plats spärrad – L: 0 till 5 MP7267.4 PLC – status – PLC: 0 till 5 Driftart Manuell drift: Presentation av matningshastighet MP7270 Matning F visas bara då en axelriktningsknapp trycks in: 0 Matning F visas även då inte någon axelriktningsknapp trycks in (matning som har definierats via softkey F eller matning i den "långsammaste" axeln): 1 Decimaltecken MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionen i i verktygsaxeln i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxeln 1 Positionsvisning för X-axeln MP7290.0
MP7267.1 Specialverktyg – ST: 0 till 5 MP7267.2 Fast verktygsplats – F: 0 till 5 MP7267.3 Plats spärrad – L: 0 till 5 MP7267.4 PLC – status – PLC: 0 till 5 MP7270 Matning F visas bara då en axelriktningsknapp trycks in: 0 Matning F visas även då inte någon axelriktningsknapp trycks in (matning som har definierats via softkey F eller matning i den "långsammaste" axeln): 1 Decimaltecken MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionsvisning för X-axeln MP7290.0
Specialverktyg – ST: 0 till 5 MP72672 Fast verktygsplats – F: 0 till 5 MP72673 Plats spärrad – L: 0 till 5 MP72674 PLC – status – PLC: 0 till 5 Driftart Manuell drift: Presentation av matningshastighet MP7270 Matning F visas bara då en axelriktningsknapp trycks in: 0 Matning F visas bara då en axelriktningsknapp trycks in: 0 Matning Som har definierats via softkey F eller matning i den "långsammaste" axeln): 1 Decimaltecken MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionen i förhållande till verktygets utgångspunkt: 0 Positionen i förhållande till verktygets utgångspunkt: 1 Positionsvisning för X-axeln MP7290.0
MP7267.2 Fast verktygsplats – F: 0 till 5 MP7267.3 Plats spärrad – L: 0 till 5 MP7267.4 PLC – status – PLC: 0 till 5 Driftart Manuell drift: Presentation av matningshastighet MP7270 Matning F visas bara då en axelriktningsknapp trycks in: 0 Matning F visas bara då en axelriktningsknapp trycks in (matning som har definierats via softkey F eller matning i den "långsammaste" axeln): 1 Decimaltecken MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionsvisning för X-axeln MP7290.0
Fast verktygsplats – F: 0 till 5 MP7267.3 Plats spärrad – L: 0 till 5 MP7267.4 PLC – status – PLC: 0 till 5 Driftart Manuell drift: Presentation av matningshastighet MP7270 Matning F visas bara då en axelriktningsknapp trycks in: 0 Matning F visas även då inte någon axelriktningsknapp trycks in (matning som har definierats via softkey F eller matning i den "långsammaste" axeln): 1 Decimaltecken MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionsvisning för X-axeln MP7290.0
MP7267.3 Plats spärrad – L: 0 till 5 MP7267.4 PLC – status – PLC: 0 till 5 Driftart Manuell drift: Presentation av matningshastighet MP7270 Matning F visas bara då en axelriktningsknapp trycks in: 0 Matning F visas även då inte någon axelriktningsknapp trycks in (matning som har definierats via softkey F eller matning i den "långsammaste" axeln): 1 Decimaltecken MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxeln i förhållande till verktygets utgångspunkt: 0 Positionsvisning för X-axeln MP7290.0
Plats spärrad – L: 0 till 5 MP7267.4 PLC – status – PLC: 0 till 5 Driftart Manuell drift: Presentation av matningshastighet MP7270 Matning F visas bara då en axelriktningsknapp trycks in: 0 Matning F visas även då inte någon axelriktningsknapp trycks in (matning som har definierats via softkey F eller matning i den "långsammaste" axeln): 1 Decimaltecken MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionsvisning för X-axeln MP7290.0
MP7267.4 PLC – status – PLC: 0 till 5 Driftart Manuell drift: Presentation av matningshastighet MP7270 Matning F visas bara då en axelriktningsknapp trycks in: 0 Matning F visas även då inte någon axelriktningsknapp trycks in (matning som har definierats via softkey F eller matning i den "långsammaste" axeln): 1 Decimaltecken MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionsvisning för X-axeln MP7290.0
PLC – status – PLC: 0 till 5 Driftart Manuell drift: Presentation av matningshastighet MP7270 Matning F visas bara då en axelriktningsknapp trycks in: 0 Matning F visas även då inte någon axelriktningsknapp trycks in (matning som har definierats via softkey F eller matning i den "långsammaste" axeln): 1 Decimaltecken MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxeln i förhållande till verktygsspetsen: 1 Positionsvisning för X-axeln MP7290.0
Driftart Manuell drift: Presentation av matningshastighet MP7270 Matning F visas bara då en axelriktningsknapp trycks in: 0 Matning F visas även då inte någon axelriktningsknapp trycks in (matning som har definierats via softkey F eller matning i den "långsammaste" axeln): 1 Decimaltecken MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxeln i förhållande till verktygesselsen: 1 Positionsvisning för X-axeln MP7290.0
MP7270 Matning F visas bara då en axelriktningsknapp trycks in: 0 Matning F visas även då inte någon axelriktningsknapp trycks in (matning som har definierats via softkey F eller matning i den "långsammaste" axeln): 1 Decimaltecken MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxeln i förhållande till verktygets utgångspunkt: 0 Positionsvisning för X-axeln MP7290.0
Matning F visas bara då en axelriktningsknapp trycks in: 0 Matning F visas även då inte någon axelriktningsknapp trycks in (matning som har definierats via softkey F eller matning i den "långsammaste" axeln): 1 Decimaltecken MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionsvisning för X-axeln MP7290.0
Matning F visas även då inte någon axelriktningsknapp trycks in (matning som har definierats via softkey F eller matning i den "långsammaste" axeln): 1 Decimaltecken MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxeln i förhållande till verktygsspetsen: 1 Positionsvisning för X-axeln MP7290.0
(matning som har definierats via softkey F eller matning i den "långsammaste" axeln): 1 Decimaltecken MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxeln i förhållande till verktygsspetsen: 1 Positionsvisning för X-axeln MP7290.0
"långsammaste" axeln): 1 Decimaltecken MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxeln i förhållande till verktygsspetsen: 1 Positionsvisning för X-axeln MP7290.0
Decimaltecken MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxeln i förhållande till verktygsaxeln i förhållande till verktygsspetsen: 1 Positionsvisning för X-axeln MP7290.0
MP7280 Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxeln i förhållande till verktygsaxeln i förhållande till verktygsspetsen: 1 Positionsvisning för X-axeln MP7290.0
Komma som decimaltecken: 0 Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxeln i förhållande till verktygsspetsen: 1 Positionsvisning för X-axeln MP7290.0
Punkt som decimaltecken: 1 Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxeln i förhållande till verktygsspetsen: 1 Positionsvisning för X-axeln MP7290.0
Positionsvisning i verktygsaxeln MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxeln i förhållande till verktygsspetsen: 1 Positionsvisning för X-axeln MP7290.0
MP7285 Positionen i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxeln i förhållande till verktygsspetsen: 1 Positionsvisning för X-axeln MP7290.0
Positionen i förhållande till verktygets utgångspunkt: 0 Positionen i verktygsaxeln i förhållande till verktygsspetsen: 1 Positionsvisning för X-axeln MP7290.0
Positionen i verktygsaxeln i förhållande till verktygsspetsen: 1 Positionsvisning för X-axeln MP7290.0
Verktygsspetsen: 1 Positionsvisning för X-axeln MP7290.0
Positionsvisning för X-axeln MP7290.0
MP7290.0
0,1 mm: 0
0,05 mm: 1 0,001 mm: 4
0,01 mm: 2 0,0005 mm: 5
0,005 mm: 3 0,0001 mm: 6
Positionsvisning förY-axeln
MP7290.1
Inmatningsvärde se MP7290.0
Positionsvisning för Z-axeln
MP7290.2
Inmatningsvärde se MP7290.0
Pegitianguigning för IV gygl
MP7290 2
Inmatningsvärde se MP7290.0
Positionsvisning för V. axeln
MP7290.4
Inmatningsvärde se MP7290.0

Positionsvisning för 6. axeln	
	MP7290.5
	Inmatningsvärde se MP7290.0
Positionsvisning för 7. axeln	
	MP7290.6
	Inmatningsvärde se MP7290.0
Positionsvisning för 8. axeln	
	MP7290.7
	Inmatningsvärde se MP7290.0
Positionsvisning för 9. axeln	
	MP/290.8
	Inmatningsvarde se IMP7290.0
Spärra ändring av utgångspunkten	
	MP7295
	Andring av utgångspunkten ej sparrad: +0
	Andring av utgangspunkten i X-axein sparrad: +1
	Andring av utgangspunkten i Y-axein sparrad: +2
	Ändring av utgångspunkten i Z-axein spärrad: +4
	Ändring av utgångspunkten i den V aveln spanad. +6
	Ändring av utgångspunkten i 6. aveln spärrad: 122
	Ändring av utgångspunkten i 7. avolg spärrad: +64
	Ändring av utgångspunkten i 8. aveln spärrad: ±128
	Ändring av utgångspunkten i 9. axeln spärrad: +256
Spärra ändring av utgångspunkten med de or	rangefärgade axelknapparna
	MP7296
	Ändring av utgångspunkten ej spärrad: 0
	Ändring av utgångspunkten med de orangefärgade axelknapparna
	spärrad: 1
Återställ statuspresentation, Q-parametrar o	ch verktygsdata
	MP7300
	Aterställ alla då ett program väljs: 0
	Aterställ alla då ett program väljs och vid
	M02, M30, END PGM: 1
	Aterstall bara statuspresentation och verktygsdata
	då ett program valjs: 2
	Aterstall bara statuspresentation och verktygsdata
	da eπ program valjs och vid iviu2, ivi30, END PGIVI: 3
	Aterstall statuspresentation och Q-parametrar då ett program valjs: 4
	Aterstall statuspresentation och Q-parametrar da ett program
	vaijs uch viu iviUZ, iviJU, END PGIVI. 3 Åtaratäll statusprospotation då att program välig: 6
	Alerställ statuspresentation då ett program välis och
	vid M02 M30 END PGM: 7

MP7310

Grafisk presentation i tre plan enligt DIN 6, del 1, projektionsmetod 1: +0 Grafisk presentation i tre plan enligt DIN 6, del 1, projektionsmetod 2: +1 Vrid inte koordinatsystemet för grafisk presentation: +0 Vrid koordinatsystemet för grafisk presentation med 90°: +2 Ny BLK FORM vid cykel 7 NOLLPUNKT i förhållande till den gamla nollpunkten visas: +0 Ny BLK FORM vid cykel 7 NOLLPUNKT i förhållande till den nya nollpunkten visas: +4 Visa inte markörens position vid presentation i tre plan: +0 Visa markörens position vid presentation i tre plan: +8

Grafisk simulering utan programmerad spindelaxel: Verktygsradie MP7315 0 till 99 999.9999 [mm]

Grafisk simulering utan programmerad spindelaxel: Arbetsdjup MP7316 0 till 99 999,9999 [mm]

Grafisk simulering utan programmerad spindelaxel: M-funktion för start

MP7317.0 0 till **88** (0: funktion inaktiv)

Grafisk simulering utan programmerad spindelaxel: M-funktion för slut MP7317.1

0 till 88 (0: funktion inaktiv)

Inställning av skärmsläckare

Ange efter vilken tid TNC:n skall aktivera skärmsläckaren

MP7392

0 till 99 [min] (0: funktion inaktiv)

Bearbetning och programkörning

Cykel 17: Spindelorientering vid cykelns början

MP7160

Spindelorientering utförs: **0** Ingen spindelorientering utförs: **1**

Effekt av cykel 11 SKALFAKTOR

MP7410

SKALFAKTOR är aktiv i 3 axlar: **0** SKALFAKTOR är bara aktiv i bearbetningsplanet: **1**

Verktygsdata vid den programmerbara avkännarcykeln TOUCH–PROBE 0 MP7411

> Aktuella verktygsdata skrivs över med 3D-avkännarsystemets kalibreringsdata: **0** Aktuella verktygsdata bibehålles: **1**

SL-cykler

MP7420

Fräs kanal runt konturen i medurs riktning för öar och i moturs riktning för fickor: +0 Fräs kanal runt konturen i medurs riktning för fickor och i moturs riktning för öar: +1 Fräs konturkanal innan urfräsning: +0 Fräs konturkanal efter urfräsning: +2 Sammanfoga kompenserade konturer: +0 Sammanfoga okompenserade konturer: +4 Urfräsning på samtliga djup ner till fickans botten: +0 Fräs både kanal och urfräsning på varje skärdjup innan växling till nästa skärdjup: +8

För cyklerna 6, 15, 16, 21, 22, 23, 24 gäller: Förflytta verktyget vid cykelslutet tillbaka till den sist programmerade positionen innan cykelanropet: **+0** Endast frikörning i spindelaxeln vid cykelslutet: **+16**

Cykel 4 FICKURFRÄSNING och cykel 5 CIRKELURFRÄSNING: Överlappningsfaktor MP7430 0,1 till 1,414

Cirkelradiens tillåtna avvikelse vid cirkel-slutpunkten jämfört med cirkel-startpunkten MP7431 0,0001 till 0,016 [mm]

Funktion för ett antal tilläggsfunktioner M	
	MP7440
	Stoppa programkörning vid M06: +0
	Stoppa inte programkörning vid M06: +1
	Inget cykelanrop med M89: +0
	Modalt cykelanrop med M89: +2
	Stoppa programkörning vid M-funktioner: +0
	Stoppa inte programkörning vid M-funktioner: +4
😴 k,-faktorerna definieras av	k _v -faktorer ej växlingsbara via M105 och M106: +0
maskintillverkaren. Beakta	k _v -faktorer växlingsbara via M105 och M106: +8
anvisningarna i Er maskinhandbok.	Reducering av matningshastighet i verktygsaxeln
	med M103 F. ej aktiv: +0
	Reducering av matningshastighet i verktygsaxeln med M103 F. aktiv: +16

Maximal banhastighet vid matningsoverride 100% i driftarterna för programkörning MP7470

0 till 99.999 [mm/min]

Nollpunkter från nollpunktstabellen i förhållande till

MP7475

Arbetsstyckets nollpunkt: **0** Maskinens nollpunkt: **1**

Exekvering av palettabeller

MP7683

Program enkelblock: En rad i det aktiva NC-programmet exekveras för varje NC-start: **+0** Program enkelblock: Hela NC-programmet exekveras för varje NC-start: **+1** Program blockföljd: Hela NC-programmet exekveras för varje NC-start: **+0** Program blockföljd: Alla NC-program fram till nästa palett exekveras för varje NC-start: **+2** Program blockföljd: Hela NC-programmet exekveras för varje NC-start: **+0** Program blockföljd: Hela NC-programmet exekveras för varje NC-start: **+4** Program blockföljd: Hela palettfilen exekveras för varje NC-start: **+0** Program blockföljd: Hela palettfilen exekveras för varje NC-start: **+0** Program blockföljd: Om exekvering av komplett palettfil har valts (+4),

så exekveras palettfilen utan slut, d.v.s. tills man trycker NC-stopp: **+8**

Elektroniska handrattar

Typ av handratt		
	MP7640	
	Maskin utan handratt: C)
	HR 330 med tilläggskn	appar – knapparna för rörelseriktning och
	snabbtransport utvärde	ras av NC: 1
	HR 130 utan tilläggskna	appar: 2
	HR 330 med tilläggskn	appar – knapparna för rörelseriktning och
	snapptransport utvarde	ras av PLC: 3
	HR 332 med tolv tillage	gsknappar: 4
	Fleraxlig handratt med	tilläggsknappar: 5
	HR 410 med tilläggsfur	nktioner: 6
Omräkningsfaktor		
	MP7641	
	Anges via knappsatsen	: 0
	Anges från PLC: 1	
Handrattsfunktioner som definieras av maskinti	Ilverkaren	
	MP 7645.0	0 till 255
	MP 7645.1	0 till 255
	MP 7645.2	0 till 255
	MP 7645.3	0 till 255
	MP 7645 4	0 till 255
	MP 7645 5	0 till 255
	MD 7645.5	0 till 255
	MD 7645.0	0 till 255 0 +ill 255
	IVIF /043./	U LIII 233

13.2 Kontakt- och kabelbeskrivning för datasnitt

Datasnitt V.24/RS-232-C

HEIDENHAIN-utrustning

Kontaktbeläggningen på TNC-logikenheten (X21) skiljer sig från den på adapterblocket.

Främmande utrustning

Kontaktbeläggningen på en icke -HEIDENHAIN-enhet kan skiljas sig markant från den på en HEIDENHAIN-enhet.

Detta är beroende av enheten och typen av överföring. Nedanstående figur visar adapterblockets kontaktbeläggning.

Datasnitt V.11/RS-422

På datasnitt V.11 anslutes endast icke-HEIDENHAIN utrustning.

Kontaktbeläggningen på TNC-logikenheten (X22) och den på adapterblocket är identisk.

Maximal kabellängd: oskärmad: 100 m skärmad: 400 m

Pin	Signal	Beskrivning
1	TX+	Transmit Data
2	TX-	Transmit Data
3	REC+	Receive Data
4	fri–	
5	fri–	
6	REC-	Receive Data
7	fri–	
8	fri–	

Ethernet datasnitt BNC-kontakt (Option)

Maximal kabellängd: 180 m

Pin	Signal	Beskrivning
1	Data (RXI,TXO)	Innerledare (kärna)
2	GND	Skärm

.

13.3 Teknisk information

TNC-karaktäristik

Kortbeskrivning	Kurvlinjestyrsystem för maskiner med upp till 9 axlar samt spindelorientering; TNC 426 CB, TNC 430 CA med analog hastighetsreglering TNC 426 PB, TNC 430 PB med digital hastighetsreglering och integrerad strömreglering
Komponenter	 Logikenhet Knappsats Färgbildskärm med softkeys
Datasnitt	 V.24 / RS-232-C V.11 / RS-422 Ethernet-datasnitt (Option) Utökat datasnitt med LSV-2-protokoll för extern fjärrstyrning av TNC:n via datasnittet med HEIDENHAIN programvara TNCremo
Simultan förflyttning av axlar vid konturelement	
	 Rätlinje upp till 5 axlar Exportversioner TNC 426 CF, TNC 426 PF, TNC 430 CE, TNC 430 PE: 4 axlar Cirkelbåge upp till 3 axlar (vid 3D-vridet bearbetningsplan) Skruvlinje 3 axlar
"Look Ahead"	 Definierad rundning av icke kontinuerliga konturövergångar (t.ex. vid 3D-former); Kollisionsövervakning med SL-cykel för "öppna konturer" och för radiekompenserade positioner med M120 LA förberäkning av geometri för matningsanpassning
Parallelldrift	Editering av ett bearbetningsprogram samtidigt som TNC:n exekverar ett annat
Grafisk presentation	 Programmeringsgrafik Testgrafik Programkörningsgrafik
Filtyper	 HEIDENHAIN-klartext-dialogprogram DIN/ISO-program Verktygstabeller Skärdatatabeller Nollpunktstabeller Punkttabeller Palettfiler Textfiler Systemfiler

Programminne	 Hårddisk med 1.500 MByte för NC-program Godtyckligt antal filer kan hanteras
Verktygsdefinitioner	Upp till 254 verktyg i program eller godtyckligt antal verktyg i tabeller
Programmeringshjälp	 Funktioner för framkörning till och frånkörning från konturen Integrerad kalkylator Strukturering av program Kommentar-block Direkt hjälp för visat felmeddelande (hjälp anpassad till sammanhanget)

Programmerbara funktioner

Konturelement	 Rätlinje Fas Cirkelbåge Cirkelcentrum Cirkelradie Tangentiellt anslutande cirkelbåge Hörnrundning Rätlinjer och cirkelbågar för framkörning till och frånkörning från konturen B-spline
Flexibel Konturprogrammering	För alla konturelement som saknar måttsättning för konventionell NC-programmering
Tredimensionell verktygsradiekompensering	För ändring av verktygsdata i efterhand utan att programmet behöver beredas på nytt
Programhopp	 Underprogram Programdelsupprepning Godtyckligt program som underprogram
Bearbetningscykler	 Borrcykler för borrning, djupborrning, brotschning, ursvarvning, försänkning, gängning med och utan flytande gänghuvud Grov- och finbearbetning av rektangulär och cirkulär ficka Cykler för fräsning av raka och cirkelformade spår Punktmönster på cirkel och linjer Cykler för uppdelning av plana och vinklade ytor Bearbetning av godtyckliga fickor och öar Cylindermantel-interpolation

Koordinatomräkningar	 Nollpunktsförskjutning Spegling Vridning Skalfaktor 3D-vridning av bearbetningsplanet
3D-avkännarsystem	 Avkännarfunktioner för kompensering för arbetsstyckets snedställning Avkännarfunktioner för inställning av utgångspunkt Avkännarfunktioner för automatisk kontroll av arbetsstycket Digitalisering av 3D-former med mätande avkännarsystem (option) Digitalisering av 3D-former med brytande avkännarsystem (option) Automatisk verktygsmätning med TT 120
Matematiska funktioner	 Grundläggande räknesätt +, -, x och , Trigonometri sin, cos, tan, arcsin, arccos, arctan Roten ur värde (√a) och ur kvadratsumma (√a² + b²) Kvadrat av värde (SQ) Upphöjt till (^) Konstant PI (3, 14) Logaritmfunktioner Exponentialfunktion Skapa negativt värde (NEG) Skapa absolutvärde (ABS) Ta bort heltalsdel (FRAC) Funktioner för cirkelberäkning
	 Ta bort heltalsdel (FRAC) Funktioner för cirkelberäkning Jämförelse större än, mindre än, lika, olika

TNC-prestanda

Blockcykeltid	4 ms/block
Reglercykeltid	■TNC 426 CB, TNC 430 CA: Konturinterpolering: 3 ms
	Fininterpolering: 0,6 ms (läge)
	■ TNC 426 PB, TNC 430 PB: Konturinterpolering: 3 ms
	Fininterpolering: 0,6 ms (varvtal)
Dataöverföringshastighet	Maximalt 115.200 Baud via V.24/V.11
	Maximalt 1 Mbaud via Ethernet-datasnitt (option)
Omgivningstemperatur	■ Drift: 0°C till +45°C
	■ Lagring: -30°C till +70°C
Rörelsesträcka	Maximalt 100 m (2540 tum)
Matningshastighet	Maximalt 300 m/min (11.811 tum/min)
Spindelvarvtal	Maximalt 99.999 varv/min
Inmatningsområde	Minimum 0,1µm (0,00001 tum) alt. 0,0001°
	Maximum 99.999,999 mm (3.937 tum) alt. 99.999,999°

13.4 Byta buffertbatteri

När styrsystemet är avstängt försörjer ett buffert-batteri TNC:n med ström för att data i RAM-minnet inte skall förloras.

Om TNC:n presenterar felmeddelandet Byt buffert-batteri måste man byta batterierna. Batterierna är placerade inuti logikenheten bredvid strömförsörjningen (rund, svart hållare). Dessutom finns det i TNC:n ytterligare en ackumulator som försörjer styrningen med ström under tiden som batterierna byts (maximal funktionstid: 24 timmar).

Stäng av maskinen och TNC:n före växling av buffertbatteri!

Buffert-batteri får endast bytas av personal med utbildning för detta!

Batterityp: 3 Mignon-celler, leak-proof, IEC-beteckning "LR6"

SYMBOLER

3D-framställning 286 3D-kompensering 82 Delta-värde 83 Verktygsformer 82

Α

Användarparametrar 309 allmänna för 3D-avkännarsvstem och digitalisering 318 för bearbetning och programkörning 327 för extern dataöverföring 317 för TNC-presentation, TNC-editor 321 maskinspecifika 309 Arbetsstycke, bestämma material 85, 86 Arbetsstyckespositioner absoluta 31 inkrementala 31 relativa 31 ASCII-filer 60 Automatisk skärdataberäkning 72, 84 Automatisk verktygs -mätning 72 Avstängning 14

В

Bakplaning 161 BAUD-RATE, inställning 300 Bearbetning, avbryta 292 Bearbetningsområde, övervakning 290, 309 Bearbetningsplan, tippa 19 Cykel 228 Manuell 19 Steg för steg 231 Bearbetningstid, beräkna 288 Bildskärm 3 Bildskärmsuppdelning 4 Block infoga 56 radera 56 ändra 56 Blockläsning 294 Bokstäver, växla mellan stora och små 60 Borrcykler 154 Borrning 156 Brotschning 157 Buffertbatteri, byta 338

С

Cirkelberäkningar 258 Cirkelbåge 105, 106, 107, 113, 114 Cirkelcentrum CC 104 Cirkelficka finskär 175 grovskär 173 Cirkulär ö finskär 176 Cykel anropa 153 definiera 152 grupper 152 Cylinder 279 Cylindermantel 202

Datasnitt inställning 300 kontaktbeskrivning 331 tilldela 301 Datasäkerhet 33 Dataöverföringshastighet 300 Dataöverföringsprogram 302 Detaljfamiljer 254 Dialog 55 Digitaliserade data bearbeta med 212 Djupborrning 155 Driftarter 5 Drifttid 314

Е

Ellips 277 Ethernet-datasnitt Anslutningsmöjligheter 303 Konfigurera 304 Logga på och logga ur nätverk 52 Register

F

Fas 103 Felmeddelanden 64 Hiälp vid 64 Utmatning 261 Filhantering döpa om filer 38, 47 extern dataöverföring 36, 49 filnamn 33 filtyp 33 kalla upp 34, 42 kalla upp filer 34, 44 kataloger kopiera 45 skapa 44 konfigurera via MOD 309 kopiera filer 35, 45 kopiera tabeller 45 markera filer 47 radera filer 35, 46 skriva över filer 51 skydda fil 39, 48 standard 34 utökad 40 översikt 41 Filstatus 34, 42 Finskär djup 199 Finskär sida 199

F

FK-programmering 118 Cirkebåge 120 FK-program, konvertera 125 Grafik 118 Grunder 118 Hjälppunkter 122 Rätlinje 120 Relativ referens 123 Slutna konturer 125 Öppna dialog 119 FNxx. *Se* Q-parameterprogrammering Formel, inmatning 270 Fullcirkel 105

G

Grafik delförstoring 58 vid programmering 57 Grafik Delförstoring 286 Presentationssätt 284 Grafisk simulering 288 Grunder 28 Gängning med flytande gänghuvud 163 utan flytande gänghuvud 164 Gängskärning 165

н

Handrattspositionering, överlagra 143 Helix-interpolering 114 HELP-filer kalla upp 313 Hjälp vid felmeddelanden Huvudaxlar 29 Hålcirkel 186 Hårddisk 33 Hörnrundning 108

Kalkylator 63 Katalog 40 kopiera 45 skapa 44 Klartext-dialog 55 Knappsats 5 Kodnummer 299 Kommentarer, infoga 59 Konstant banhastighet: M90 138 Kontaktbeskrivning, datasnitt 331 Kontur, framkörning 96 Kontur, frånkörning 96 Konturcykler. Se SL-cykler Konturfunktioner 93 Grunder 93 Cirklar och cirkelbågar 94 Förpositionering 95 Konturlinje 200 Konturrörelser 102 Flexibel konturprogrammering FK. Se FK-programmering Polära koordinater 112 Cirkelbåge med tangentiell anslutning 114 Cirkelbåge runt Pol CC 113 Rätlinje 113 Översikt 112 Rätvinkliga koordinater 102 Cirkelbåge med bestämd radie 106 Cirkelbåge med tangentiell anslutning 107 Cirkelbåge runt cirkelcentrum 105 Rätlinje 103 Översikt 102

К

Konvertera FK-program till Klartextprogram 38 Koordinatomräkning översikt 219 Kula 281

L

Laserskärning, tilläggsfunktioner 149 L-blocks-generering, 312 Linjalyta 216 Look ahead 142 Långhål. fräsning 179 Länkning av underprogram 243

Μ

Maskinaxlar, förflytta 15 med elektronisk handratt 16 med externa riktningsknappar 15 stegvis 17 Maskinfasta koordinater: M91/M92 135 Maskinparametrar för 3D-avkännarsystem 318 för extern dataöverföring 317 för TNC-presentation och TNC-editor 321 Matning 17 vid rotationsaxlar: M116 144 ändra 18 Matningsfaktor 141 Matningsfaktor vid nedmatningsrörelse: M103 141 Mjukvarunummer 299 MOD-funktion lämna 298 välja 298 M-Funktioner. Se Tilläggsfunktioner Måttenhet, välja 54

Ν

NC och PLC synkronisering 269 NC-felmeddelanden 64 Nollpunktsförskjutning i program 220 med nollpunktstabell 221 Nätverksanslutning 52 Nätverksinställningar 304 Nätverksskrivare 52, 306

0

Optionsnummer 299

Ρ

Palettabell exekvera 66 Parameterprogrammering. Se Qparameterprogrammering Parentesberäkning 270 Platstabell 75 PLC och NC synkronisering 269 Polära koordinater definiera POL 30 grunder 30 Positionering manuell 24 vid tippat bearbetningsplan 137 Presentation i 3 plan 285 Program editering 56 strukturera 58 -uppbyggnad 53 öppna 54

Programanrop

Godtvckligt program

Register

som underprogram 242 via cykel 235 Programdelsupprepning 241 anropa 242 arbetssätt 241 programmering 242 programmering - anmärkning 241 Programhantering. Se Filhantering Programkörning avbryta 292 aodtyckligt startblock i program 294 hoppa över block 296 utföra 291 återuppta efter avbrott 293 översikt 291 Programmeringsgrafik 57 Programnamn. Se Filhantering: Filnamn Programtest fram till ett bestämt block 290 utföra 290 översikt 289 Punktmönster på cirkel 186 på linjer 187 översikt 185

Q

Q-parameter 262 fasta 273 formaterad utmatning 263 kontrollera 260 oformaterad utmatning 262 överför värde till PLC 269
Q-parameterprogrammering 252 cirkelberäkning 258 cirkelberäkningar 258 if/then-jämförelse 259 matematiska grundfunktioner 255 programmering - anmärkning 252 vinkelfunktioner 257 ytterligare funktioner 261

R

Radiekompensering 79 bearbeta hörn 81 inmatning 80 innerhörn 81 ytterhörn 81 Referenspunkter, passera 14 Referenssystem 29 Rektangulär ficka finskär 170 grovskär 169 Rektangulär ö finskär 172 Rotationsaxel 144 reducera positionsvärde 145 vägoptimerad förflyttning 144 Rotationsaxlar 146 Rotationsaxlar, förflytta närmaste väg: M126 144 Rundningsbåge mellan räta linjer: M112 139 Runt spår, fräsning 181 Råämne, definiera 53 Rätlinje 103, 113

S

Skalfaktor 226 Skalfaktor axelspecifik 227 Skruvlinje 114 Skärdataberäkning 84 Skärdatatabell 84 Dataöverföring 89 SL-cykler cykel kontur 193 finskär djup 199 finskär sida 199 förborrning 197 grovskär 198 konturdata 195 överlagrade konturer 193 översikt 191 Snabbtransport 68 Spegling 224 Spindelorientering 236 Spindelvarvtal 17 ange 18, 68 ändra 18 Spline-interpolation 130 blockformat 130 inmatningsområde 131 Spårfräsning 178 pendlande 179 Statuspresentation 7 allmän 7 utökad 8 Strukturera program 58 Systemdata, läsa 265 Sökväg 40

T

Teach In 103 Textfil editeringsfunktioner 60 lämna 60 raderingsfunktioner 61 söka textblock 62 öppna 60 Tillbehör 11 Tilläggsaxlar 29 Tilläggsfunktioner 134 inmatning 134 för kontroll av programexekvering 135 för konturbeteende 138 för koordinatuppgifter 135 för laserskärmaskiner 149 för rotationsaxlar 144 för spindeln 135 Tippning av bearbetningsplanet 19, 228 TNC 426 B, TNC 430 2 TNCremo 302 Trigonometri 257

U

Underprogram 240 anropa 241 arbetssätt 240 programmering 241 programmering - anmärkning 240 Universal-borrning 159 Uppstart 14 Urfräsning. *Se* SL-cykler: grovskär Ursvarvning 158 Utgångspunkt, inställning 18 utan 3D-avkännarsystem 18 Utgångspunkt, välja 32

V

Verktygets material 86 Verktygsdata anropa 76 delta-värde 70 inmatning i tabell 71 inmatning i program 70 Verktygskompensering längd 78 radie 79 tredimensionell 82 Verktygslängd 69 Verktygsmätning 72 Verktygsnamn 69 Verktygsnummer 69 Verktygsradie 70 Verktygsrörelser programmering 55 Verktygstabell editera 73 editeringsfunktioner 74 inmatningsmöjligheter 71 lämna 73 Verktygstyp, välja 72 Verktygsväxling 77 automatisk 77 Vinkelfunktioner 257 Vridning 225 Väntetid 235 Vy ovanifrån 285

W

WMAT.TAB 85

Υ

Ytnormal 82

Å

Återkörning till konturen 296

Ö

Öppna konturhörn: M98 140
Φ
L
0
Ę,
¥
<u> </u>
<u> </u>
S
0
δ
a:
Ϊ

_

Μ	Effekt av M-funktionen Aktiveras vid block -	början	slut	Sida
M00	Programstopp/Spindelstopp/Kylvätska från			135
M02	Programstopp/Spindelstopp/Kylvätska från/i vissa fall Radera statuspresentationen			
	(avhängigt maskinparameter)/Återhopp till block 1			135
M03	Spindel TILL medurs			
M04	Spindel TILL moturs			
M05	Spindel STOPP			135
M06	Verktygsväxling/Programstopp (avhängigt maskinparameter)/Spindelstopp			135
M08	Kylvätska TILL			
M09	Kylvätska AV			135
M13	Spindel TILL medurs/Kylvätska TILL			
M14	Spindel IILL moturs/Kylvatska IILL			135
M30	Samma funktion som M02			135
M89	Fri tillaggstunktion eller		_	150
N100	Cykelaniop, modali verksami (avhangigi maskinparameter)			103
N190	Endast i slaptelsberäkning: Konstant bannastignet vid norn	_		138
10191	T positioneringsblock. Koordinater i förhållanda till an av maakin			135
10192	tillverkaren definierad nesitien, t.ev. till verktvæsvävlingsnesitienen			125
N/Q/	Presentation av rotationsavol roducoras till ott värdo mindro än 360°			1/5
N/07	Boarbotning av små konturstog			120
M98	Fullständig bearbetning av öppna konturer		- 11	140
	Blockvis cykelanron			153
M101	Automatisk verktvæväxling till systerverktva när max, livslängd har uppnåtts		-	155
M102	Återställ M101	_		77
M103	Reducering av hastighet med faktor E vid nedmatning (procentuellt värde)			141
M105	Genomför bearbetning med den andra kv-faktorn			
M106	Genomför bearbetning med den första kv-faktorn			330
M107	Ignorera felmeddelande vid systerverktyg med övermått			
M108	Återställ M107			77
M109	Konstant banhastighet i verktygsskäret			
	(höjning och sänkning av matningshastigheten)			
M110	Konstant banhastighet i verktygsskäret			
	(endast sänkning av matningshastigheten)			
M111	Aterstall M109/M110			142
M114	Autom, kompensering för maskingeometrin vid arbete med rotationsaxlar		_	440
IVI 115	Aterstall M114			146
IVI I 16	Natning i mm/min via vinkelaxiar			144
N/110	Äleisiali Millo	-		144
M120				143
M120				142
M127	Återställ M126			144
M128	Ribehåll verktvosspetsens position vid positionering av rotationsaxlar (TCPM)			111
M129	Återställ M128	_		147
M130	l positioneringsblock: Punkt refererar till icke vridet koordinatsystem			137
M134	Precisionsstopp vid icke tangentiella konturövergångar vid positioneringar med rotationsaxla	r		
M135	Återställ M134			148
M200	Laserskärning: Direkt utmatning av programmerad spänning			
M201	Laserskärning: Utmatning av spänning som funktion av sträckan			
M202	Laserskärning: Utmatning av spänning som funktion av hastigheten			
M203	Laserskärning: Utmatning av spänning som funktion av tiden (ramp)			
M204	Laserskärning: Utmatning av spänning som funktion av tiden (puls)			149

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH Dr.-Johannes-Heidenhain-Straße 5 83301 Traunreut, Germany · +49 (8669) 31-0 FAX +49 (8669) 5061 E-Mail: info@heidenhain.de **Technical support FAX** +49 (8669) 31-1000 E-Mail: service@heidenhain.de Measuring systems 2 +49 (8669) 31-3104 E-Mail: service.ms-support@heidenhain.de TNC support E-Mail: service.nc-support@heidenhain.de NC programming 2 +49 (8669) 31-3103 E-Mail: service.nc-pgm@heidenhain.de **PLC programming** (2) +49 (86 69) 31-31 02 E-Mail: service.plc@heidenhain.de

Lathe controls 2 +49 (711) 952803-0 E-Mail: service.hsf@heidenhain.de

www.heidenhain.de