

NC-Software 280 472 xx 280 473 xx

Manuel d'utilisation Dialogue conversationnel HEIDENHAIN

Commandes à l'écran

ŧ

Décalage du champ clair

Sélection directe de séguences, cycles et fonctions paramétrées

Potentiomètres d'avance/de broche

Programmation d'opérations de contournage

- APPR Approche et sortie du contour
- FK Programmation flexible de contours FK

LP Droite

- [−]CC Centre de cercle/pôle pour coord. polaires
- ° Trajectoire circ. autour du centre de cercle
- CR Trajectoire circulaire avec rayon
- СТР Trajectoire circ. avec raccord. tangentiel
- CHF o: Chanfrein
- Arrondi d'angle

Données d'outils

Introduction et appel de la longueur et du rayon de l'outil

Cycles, sous-programmes et répétitions de parties de programme

Définition et appel de cycles

STOP

Х

0

Introduction et appel de sousprogrammes et répétitions de parties de programme

Introduire arrêt programmé dans un PGM

Introduire fonctions de palpage dans un programme

Introduction des axes de coordonnées et chiffres, édition

Sélection des axes de coordonnées V ou introduction dans le programme

9 Chiffres

- Point décimal
- Changement de signe -/+
- Ρ Introduction de coordonnées polaires
- I Valeurs incrémentales
- Q Paramètres Q
 - Prise en compte de position effective
- - Passer outre question dialogue, effacer mots

Valider l'introduction et poursuivre le dialogue

Clôre la séquence

Annuler les valeurs numériques introduites CE ou le message d'erreur de la TNC

Interrompre dialogue, effacer partie de PGM

Type de TNC, logiciel et fonctions

Ce Manuel décrit les fonctions dont disposent les TNC ayant les numéros de logiciel CN suivants:

Type deTNC	Numéro de logiciel CN
TNC 426 CB, TNC 426 PB	280 472 xx
TNC 426 CF, TNC 426 PF	280 473 xx
TNC 430 CA, TNC 430 PA	280 472 xx
TNC 430 CE, TNC 430 PE	280 473 xx

Les lettres E et F caractérisent les versions Export de la TNC. Les versions Export sont soumises aux restrictions suivantes:

Déplacements linéaires simultanés jusqu'à 4 axes.

A l'aide des paramètres-machine, le constructeur peut adapter à sa machine l'ensemble des possibilités dont dispose la TNC. Ce Manuel décrit donc également des fonctions non disponibles dans chaque TNC.

Les fonctions TNC qui ne sont pas disponibles sur toutes les machines sont, par exemple:

- Fonctions de palpage pour le système de palpage 3D
- Option digitalisation
- Etalonnage d'outils avec le TT 120
- Taraudage rigide (sans mandrin de compensation)
- Aborder à nouveau le contour après interruptions

Nous vous conseillons de prendre contact avec le constructeur de la machine pour connaître la configuration individuelle de commande de la machine.

De nombreux constructeurs de machines ainsi qu'HEIDENHAIN proposent des cours de programmation TNC. Il est conseillé de suivre de tels cours afin de se familiariser sans tarder avec les fonctions de la TNC.

Manuel d'utilisation Cycles palpeurs

Toutes les fonctions des palpeurs sont décrites dans un Manuel d'utilisation séparé. En cas de besoin, adressezvous à HEIDENHAIN. n° d'identification: 329 203 xx.

Lieu d'implantation prévu

La TNC correspond à la classe A selon EN 55022; elle est prévue principalement pour fonctionner en milieux industriels.

1 2 3 4 5 6 7 8 9 10 2 3

Sommaire

Introduction

Mode manuel et dégauchissage

Positionnement avec introduction manuelle

Programmation: Principes de base, gestion de fichiers, aides à la programmation

Programmation: Outils

Programmation: Programmer les contours

Programmation: Fonctions auxiliaires

Programmation: Cycles

Programmation: Sous-programmes et répétitions de parties de programme

Programmation: Paramètres Q

Test de programme et exécution de programme

Fonctions MOD

Tableaux et sommaires

1 INTRODUCTION 1

- 1.1 LaTNC 426 B, IaTNC 430 2
- 1.2 Ecran et panneau de commande 3
- 1.3 Modes de fonctionnement 5
- 1.4 Affichages d'état 7
- 1.5 Accessoires: palpeurs 3D et manivelles électroniques de HEIDENHAIN 11

2 MODE MANUEL ET DÉGAUCHISSAGE 13

- 2.1 Mise sous-tension, hors-tension 14
- 2.2 Déplacement des axes de la machine 15
- 2.3 Vitesse de rotation broche S, avance F et fonction auxiliaire M 17
- 2.4 Initialisation du point de référence (sans système de palpage 3D) 18
- 2.5 Inclinaison du plan d'usinage 19

3 POSITIONNEMENT AVEC INTRODUCTION MANUELLE 23

3.1 Programmation et exécution d'opérations simples d'usinage 24

4 PROGRAMMATION: PRINCIPES DE BASE, GESTION DE FICHIERS, AIDES À LA PROGRAMMATION, GESTION DE PALETTES 27

- 4.1 Principes de base 28
- 4.2 Gestion de fichiers: Principes de base 33
- 4.3 Gestion standard des fichiers 34
- 4.4 Gestion étendue des fichiers 40
- 4.5 Ouverture et introduction de programmes 53
- 4.6 Graphisme de programmation 57
- 4.7 Articulation de programmes 58
- 4.8 Insertion de commentaires 59
- 4.9 Créer des fichiers-texte 60
- 4.10 La calculatrice 63
- 4.11 Aide directe lors de messages d'erreur CN 64
- 4.12 Gestion de palettes 65

5 PROGRAMMATION: OUTILS 67

- 5.1 Introduction des données d'outils 68
- 5.2 Données d'outils 69
- 5.3 Correction d'outil 78
- 5.4 Correction d'outil tri-dimensionnelle 82
- 5.5 Travailler avec les tableaux de données de coupe 84

6 PROGRAMMATION: PROGRAMMER LES CONTOURS 91

- 6.1 Sommaire: Déplacements d'outils 92
- 6.2 Principes des fonctions de contournage 93
- 6.3 Approche et sortie du contour 96
 - Sommaire: Formes de trajectoires pour aborder et quitter le contour 96
 - Positions importantes à l'approche et à la sortie 96
 - Approche par une droite avec raccordement tangentiel: APPR LT 97
 - Approche par une droite perpendiculaire au premier point du contour: APPR LN 98
 - Approche par une trajectoire circulaire avec raccordement tangentiel: APPR CT 98
 - Approche par une trajectoire circulaire avec raccordement tangentiel au contour et segment de droite: APPR LCT 99
 - Sortie du contour par une droite avec raccordement tangentiel: DEP LT 100
 - Sortie du contour par une droite perpendiculaire au dernier point du contour: DEP LN 100
 - Sortie du contour par une trajectoire circulaire avec raccordement tangentiel: DEP CT 101
 - Sortie par trajectoire circulaire avec raccordement tangentiel et segement de droite: DEP LCT 101

6.4 Contournages – coordonnées cartésiennes 102

- Sommaire des fonctions de contournage 102
- Droite L 103
- Insérer un chanfrein CHF entre deux droites 103
- Centre de cercle CC 104
- Traject. circulaire C autour du centre de cercle CC 105
- Trajectoire circulaire CR de rayon défini 106
- Traject. circulaire CT avec raccordement tangentiel 107
- Arrondi d'angle RND 108
- Exemple: Déplacement linéaire et chanfreins en coordonnées cartésiennes 109
- Exemple: Déplacements circulaires en coordonnées cartésiennes 110
- Exemple: Cercle entier en coordonnées cartésiennes 111

6.5 Contournages - coordonnées polaires 112 Origine des coordonnées polaires: pôle CC 112 Droite LP 113 Trajectoire circulaire CP autour du pôle CC 113 Trajectoire circulaire CTP avec raccord. tangentiel 114 Trajectoire hélicoïdale (hélice) 114 Exemple: Déplacement linéaire en coordonnées polaires 116 Exemple: Trajectoire hélicoïdale 117 6.6 Contournages - Programmation flexible de contours FK 118 Principes de base 118 Graphisme de programmation FK 118 Ouvrir le dialogue FK 119 Programmation flexible de droites 120 Programmation flexible de trajectoires circulaires 120 Points auxiliaires 122 Rapports relatifs 123 Contours fermés 125 Convertir les programmes FK 125 Exemple: Programmation FK 1 126 Exemple: Programmation FK 2 127 Exemple: Programmation FK 3 128 6.7 Contournages - Interpolation spline 130

7 PROGRAMMATION: FONCTIONS AUXILIAIRES 133

- 7.1 Introduire les fonctions auxiliaires M et une commande de STOP 134
- 7.2 Fonctions auxiliaires pour contrôler l'exécution du programme, la broche et l'arrosage 135
- 7.3 Fonctions auxiliaires pour les indications de coordonnées 135
- 7.4 Fonctions auxiliaires pour le comportement de contournage 138
 - Arrondi d'angle: M90 138
 - Insérer un cercle d'arrondi défini entre deux segments de droite: M112 139
 - Usinage de petits éléments de contour: M97 139
 - Usinage complet d'angles de contour ouverts: M98 140
 - Facteur d'avance pour plongées: M103 141
 - Vitesse d'avance aux arcs de cercle: M109/M110/M111 142
 - Pré-calcul d'un contour avec correction de rayon (LOOK AHEAD): M120 142
 - Autoriser le positionnement avec la manivelle en cours d'exécution du programme: M118 143
- 7.5 Fonctions auxiliaires pour les axes rotatifs 144
 - Avance en mm/min. sur les axes rotatifs A, B, C: M116 144
 - Déplacement des axes rotatifs avec optimisation de la course: M126 144
 - Réduire l'affichage d'un axe rotatif à une valeur inférieure à 360°: M94 145
 - Correction automatique de la géométrie de la machine lors de l'usinage avec axes inclinés: M114 146
 - Conserver la position de la pointe de l'outil lors du positionnement des axes inclinés (TCPM*): M128 147
 - Arrêt précis aux angles avec transitions de contour non tangentielles: M134 148
- 7.6 Fonctions auxiliaires pour machines à découpe laser 149

8 PROGRAMMATION: CYCLES 151

8.1 Cycles: Généralités 152 8.2 Cycles de perçage 154 PERCAGE PROFOND (cycle 1) 154 PERCAGE (cycle 200) 156 ALESAGE (cycle 201) 157 ALESAGE AVEC ALESOIR (cycle 202) 158 PERCAGE UNIVERSEL (cycle 203) 159 CONTRE-PERCAGE (cycle 204) 161 TARAUDAGE avec mandrin de compensation (cycle 2) 163 TARAUDAGE RIGIDE (sans mandrin de compensation (cycle 17) 164 FILETAGE (cycle 18) 165 Exemple: Cycles de perçage 166 Exemple: Cycles de perçage 167 8.3 Cycles de fraisage de poches, tenons et rainures 168 FRAISAGE DE POCHE (cycle 4) 169 FINITION DE POCHE (cycle 212) 170 FINITION DETENON (cycle 213) 172 POCHE CIRCULAIRE (cycle 5) 173 FINITION DE POCHE CIRCULAIRE (cycle 214) 175 FINITION DETENON CIRCULAIRE (cycle 215) 176 Rainurage (cycle 3) 178 RAINURE (trou oblong) avec plongée pendulaire (cycle 210) 179 RAINURE CIRCULAIRE (trou oblong) avec plongée pendulaire (cycle 211) 181 Exemple: Fraisage de poche, tenon, rainure 183 8.4 Cycles d'usinage de motifs de points 185 MOTIFS DE POINTS SUR UN CERCLE (cycle 220) 186 MOTIFS DE POINTS SUR DES LIGNES (cycle 221) 187 Exemple: Cercles de trous 189

Sommaire

DONNEES DU CONTOUR (cycle 20) 195 PREPERCAGE (cycle 21) 197 EVIDEMENT (cycle 22) 198 FINITION EN PROFONDEUR (cycle 23) 199 FINITION LATERALE (cycle 24) 199 TRACE DE CONTOUR (cycle 25) 200 CORPS D'UN CYLINDRE (cycle 27) 202 Exemple: Evidement et déblaiement d'une poche 205 Exemple: Pré-perçage, ébauche et finition de contours superposés 206 Exemple: Tracé de contour 208 Exemple: Corps d'un cylindre 210 8.6 Cycles d'usinage ligne-à-ligne 212 EXECUTION DE DONNEES DIGITALISEES (cycle 30) 212 USINAGE LIGNE-A-LIGNE (cycle 230) 214 SURFACE REGULIERE (cycle 231) 216 Exemple: Usinage ligne-à-ligne 218 8.7 Cycles de conversion de coordonnées 219 Décalage du POINT ZERO (cycle 7) 220 Décalage du POINT ZERO :avec tableaux de points zéro (cycle 7) 221 IMAGE MIROIR (cycle 8) 224 ROTATION (cycle 10) 225 FACTEUR ECHELLE (cycle 11) 226 FACTEUR ECHELLE SPECIF. DE L'AXE (cycle 26) 227 PLAN D'USINAGE (cycle 19) 228 Exemple: Cycles de conversion de coordonnées 233 8.8 Cycles spéciaux 235 **TEMPORISATION (cycle 9) 235** APPEL DE PROGRAMME (cycle 12) 235 **ORIENTATION BROCHE(cycle 13) 236** TOLERANCE (cycle 32) 237

8.5 Cycles SL 191

CONTOUR (cycle 14) 193 Contours superposés 193

9 PROGRAMMATION: SOUS-PROGRAMMES ET RÉPÉTITIONS DE PARTIES DE PROGRAMME 239

- 9.1 Marquer des sous-programmes et répétitions de parties de programme 240
- 9.2 Sous-programmes 240
- 9.3 Répétitions de parties de programme 241
- 9.4 Programme quelconque pris comme sous-programme 242
- 9.5 Imbrications 243
 - Sous-programme dans sous-programme 243
 - Renouveler des répétitions de parties de PGM 244
 - Répéter un sous-programme 245
- 9.6 Exemples de programmation 246
 - Exemple: Fraisage d'un contour en plusieurs passes 246
 - Exemple: Séries de trous 247
 - Exemple: Séries de trous avec plusieurs outils 248

10 PROGRAMMATION: PARAMÈTRES Q 251

- 10.1 Principe et sommaire des fonctions 252
- 10.2 Familles de pièces paramètres Q au lieu de valeurs numériques 254
- 10.3 Décrire les contours avec fonctions arithmétiques 255
- 10.4 Fonctions angulaires (trigonométrie) 257
- 10.5 Calcul d'un cercle 258
- 10.6 Conditions si/alors avec paramètres Q 259
- 10.7 Contrôler et modifier les paramètres Q 260
- 10.8 Autres fonctions 261
- 10.9 Introduire directement une formule 270
- 10.10 Paramètres Q réservés 273
- 10.11 Exemples de programmation 276
 - Exemple: Ellipse 276
 - Exemple: Cylindre concave avec fraise à crayon 278
 - Exemple: Sphère convexe avec fraise deux tailles 280

11 TEST DE PROGRAMME ET EXÉCUTION DE PROGRAMME 283

- 11.1 Graphismes 284
- 11.2 Fonctions d'affichage pour l'exécution de programme/le test de programme 289
- 11.3 Test de programme 289
- 11.4 Exécution de programme 291
- 11.5 Passer outre certaines séquences 296

12 FONCTIONS MOD 297

- 12.1 Sélectionner, modifier et quitter les fonctions MOD 298
- 12.2 Numéros de logiciel et d'option 299
- 12.3 Introduire un code 299
- 12.4 Configurer les interfaces de données 300
- 12.5 Interface Ethernet 304
- 12.6 Configurer PGM MGT 311
- 12.7 Paramètres utilisateur spécifiques de la machine 311
- 12.8 Représenter la pièce brute dans la zone de travail 311
- 12.9 Sélectionner l'affichage de positions 313
- 12.10Sélectionner l'unité de mesure 313
- 12.11 Sélectionner le langage de programmation pour \$MDI 314
- 12.12 Sélectionner l'axe pour générer une séquence L 314
- 12.13 Introduire les limites de la zone de déplacement, affichage point zéro 314
- 12.14 Afficher les fichiers d'AIDE 315
- 12.15 Afficher les durées de fonctionnement 316

13 TABLEAUX ET SOMMAIRES 317

- 13.1 Paramètres utilisateur généraux 318
- 13.2 Distribution des plots et câbles de raccordement interfaces 333
- 13.3 Informations techniques 337
- 13.4 Changement de la batterie-tampon 340

Introduction

1.1 La TNC 426 B, la TNC 430

Les TNC de HEIDENHAIN sont des commandes de contournage conçues pour l'atelier. Elles vous permettent de programmer des opérations de fraisage et de perçage, directement au pied de la machine, en dialogue conversationnel Texte clair facilement accessible. Elles sont destinées à l'équipement de fraiseuses, perceuses et centres d'usinage. Die TNC 426 B peut piloter jusqu'à 5 axes, et la TNC 430, jusqu'à neuf axes. Elles vous permettent également de programmer le réglage de la position angulaire de la broche.

Sur le disque dur intégré, vous mémorisez autant de programmes que vous le désirez; ceux-ci peuvent être élaborés de manière externe ou à partir de la digitalisation. Pour effectuer des calculs rapides, une calculatrice intégrée peut être appelée à tout moment.

Le panneau de commande et l'écran sont structurés avec clarté de manière à vous permettre d'accéder rapidement et simplement à toutes les fonctions.

Programmation: en dialogue conversationnelTexte clair HEIDEN-HAIN et en DIN/ISO

Grâce au dialogue conversationnel Texte clair HEIDENHAIN, la programmation se révèle particulièrement conviviale pour l'opérateur. Pendant que vous introduisez un programme, un graphisme de programmation illustre les différentes séquences d'usinage. La programmation de contours libres FK constitue une aide supplémentaire lorsque la cotation des plans n'est pas normalisée pour l'utilisation d'une CN. La simulation graphique de l'usinage de la pièce est possible aussi bien pendant le test du programme que pendant son exécution. Les TNC sont aussi programmables selon DIN/ISO ou en mode DNC.

Il est également possible d'introduire et de tester un programme pendant qu'un autre programme est en train d'exécuter l'usinage de la pièce.

Compatibilité

La TNC peut exécuter tous les programmes d'usinage créés sur les commandes de contournage HEIDENHAIN à partir de la TNC 150B.

1.2 Ecran et panneau de commande

L'écran

La TNC est livrable, au choix, avec l'écran couleur BC 120 (CRT) ou l'écran plat couleur BF 120 (TFT). La figure en haut et à droite illustre les éléments de commande du BC 120 et la figure au centre et à droite montre ceux du BF 120:

1 En-tête

Lorsque la TNC est sous tension, l'écran affiche en en-tête les modes de fonctionnement sélectionnés: Modes Machine à gauche et modes Programmation à droite. Le mode actuel affiché par l'écran apparaît dans le plus grand champ d'en-tête: on y trouve les questions de dialogue et les textes de messages.

2 Softkeys

La TNC affiche d'autres fonctions dans un menu de softkeys. Sélectionnez ces fonctions avec les touches situées en-dessous. 3. De petits curseurs situés directement au-dessus du menu de softkeys indiquent le nombre de menus pouvant être sélectionnés à l'aide des touches fléchées noires positionnées à l'extérieur. Le menu de softkeys actif est mis en évidence par un curseur plus clair.

- 3 Softkeys de sélection
- 4 Commutation entre menus de softkeys
- 5 Définition du partage de l'écran
- 6 Touches de commutation écran pour les modes de fonctionnement Machine et Programmation

Autres touches pour le BC 120

7 Démagnétisation de l'écran; Quitter le menu principal de réglage de l'écran

8	Sélectionner le menu p	principal de réglage de l'écran;
	Dans menu principal:	Décaler le champ clair vers le bas
	Dans sous-menu:	Réduire la valeur
		Décaler l'image vers la gauche ou le bas

- Dans menu principal:
 Dans sous-menu:
 Décaler le champ clair vers le haut
 Augmenter la valeur
 Décaler l'image vers la droite ou le haut
- 10 Dans menu principal:Sélectionner le sous-menuDans sous-menu:Quitter le sous-menu

Réglages de l'écran: cf. page suivante

Dial. menu principal	Fonction
BRIGHTNESS	Modifier la luminosité
CONTRAST	Modifier le contraste
H-POSITION	Modifier position horizontale image
H-SIZE	Modifier la largeur de l'image
V-POSITION	Modifier position verticale image
V-SIZE	Modifier la hauteur de l'image
SIDE-PIN	Corriger distorsion en forme de tonneau
TRAPEZOID	Corriger distorsion trapézoïdale
ROTATION	Corriger désaxage de l'image
COLORTEMP	Modifier température de couleur
R-GAIN	Modifier réglage du rouge
B-GAIN	Modifier réglage du bleu
RECALL	Sans fonction

Le BC 120 est sensible aux interférences magnétiques ou électromagnétiques. La position et la géométrie de l'image peuvent en être affectées. Les champs alternatifs provoquent un décalage périodique de l'image ou une distorsion.

Partage de l'écran

L'opérateur choisit la répartition de l'écran: Ainsi, par ex., la TNC peut afficher le programme en mode Mémorisation/édition de programme dans la fenêtre de gauche alors que la fenêtre de droite représente simultanément un graphisme de programmation. On peut aussi afficher l'articulation de programmes dans la fenêtre de droite ou le programme seul à l'intérieur d'une grande fenêtre. Les fenêtres pouvant être affichées par la TNC dépendent du mode sélectionné.

Modifier le partage de l'écran:

Appuyer sur la touche de commutation de l'écran: Le menu de softkeys indique les partages possibles de l'écran (cf. 1.3 Modes de fonctionnement)

Choisir le partage de l'écran avec la softkey

Panneau de commande

La figure de droite illustre les touches du panneau de commande regroupées selon leur fonction:

- Clavier alphabétique pour l'introduction de textes, noms de fichiers et programmation en DIN/ISO
- 2 Gestion de fichiers, calculatrice, fonction MOD, fonction d'AIDE
- 3 Modes de fonctionnement Programmation
- 4 Modes de fonctionnement Machine
- 5 Ouverture des dialogues de programmation
- 6 Touches fléchées et instruction de saut GOTO
- 7 Introduction numérique et sélection d'axe

Les fonctions des différentes touches sont regroupées sur la première page de rabat. Les touches externes (touche START CN, par exemple) sont décrites dans le manuel de la machine.

1.3 Modes de fonctionnement

Pour les différentes fonctions et phases opératoires nécessaires à la fabrication d'une pièce, la TNC dispose des modes suivants:

Mode Manuel et Manivelle électronique

Le réglage des machines s'effectue en mode Manuel. Ce mode permet de positionner les axes de la machine manuellement ou pas-à-pas, d'initialiser les points de référence et d'incliner le plan d'usinage.

Le mode Manivelle électronique sert au déplacement manuel des axes de la machine à l'aide d'une manivelle électronique HR.

Softkeys pour le partage de l'écran

(à sélectionner tel que décrit précédemment)

Fenêtre	Softkey
Positions	POSITION
à gauche: positions, à droite: affichage d'état	POSITION + STATUS

Mode	manue	e 1				Mém pro	orisation gramme
EFF.	¥ - Z - A B + C	+50.0 150.0 100.0 +0.0 180.0 +90.0	000 000 000 000 000 000	DIST. X +3 Y +3 Z +3 B - B -	350.0000 350.0000 350.0000 350.0000 450.0000 450.0000	C +35 A +0 B+180 C +90	0.0000
K⊉ ⊺		0	M 5⁄9	R.	otation de	base +0	.0000
M	s	F	FONCTIONS PALPAGE	INITIAL. POINT DE REFERENCE	INCRE- MENTAL OFF/ ON	3D ROT	TABLEAU D'OUTILS

Ce mode sert à programmer des déplacements simples, par ex. pour le surfaçage ou le pré-positionnement. Il permet aussi de créer des tableaux de points pour la définition de la zone à digitaliser.

Softkeys pour le partage de l'écran

Fenêtre	Softkey
Programme	PGM
à gauche: programme, à droite: affichage d'état	PROGRAMME + STATUS

Positionnement par	introd. man. Mémorisation programme
8 BEGIN PGM 1MDI MM 1 L X+8 Y+8 Z+8 C+8 R0 F MAX M91 2 TODL CALL 1 Z S2080 3 L A+8 R0 F MAX M91 4 L X+108 R0 F180 M3 5 CYCL DEF 17.0 TARAUDAGE RIGIDE	DIST. X +0,0000 + C +0,0000 Y +0,0000 Z +0,0000 H = -0,0000 H = -0,0000 H = -0,0000
6 CYCL DEF 17.1 DIST. 2 7 CYCL DEF 17.2 PROF20 8 CYCL DEF 17.3 PRS +1	R +0.0000 B+180,0000 C +90,0000 C +90,0000
X +300,0000+₩ +; +A +177,7111+B +1;	22,0000+2 -25,000 80,0000+C +90,000 S 0,087
NOM. T INFOS INFOS INFOS PGM RFF. POS. OUITI	F 1500 M 5/9

Mémorisation/édition de programme

Vous élaborez vos programmes à l'aide de ce mode. La programmation de contours libres, les différents cycles et les fonctions des paramètres Q constituent une aide et un complément variés pour la programmation. Si vous le souhaitez, le graphisme de programmation illustre les différentes séquences; vous pouvez également utiliser une autre fenêtre pour articuler vos programmes.

Softkeys pour le partage de l'écran

Fenêtre	Softkey
Programme	PGM
à gauche: PGM, à droite: articulation de PGM	PROGRAMME + ARTICUL.
à gauche: PGM, à droite: graphisme programmation	PROGRAMME + GRAPHISME

Test de programme

La TNC simule les programmes et parties de programme en mode Test de programme, par ex. pour détecter les incompatibilités géométriques, les données manquantes ou erronées du programme et les endommagements dans la zone de travail. La simulation s'effectue graphiquement et sous plusieurs angles.

Softkeys pour le partage de l'écran

Cf. Modes de fonctionnement Exécution de programme à la page suivante.

Mot	de manue	¹ Mén	norisa	ation	∕éditi	on pi	rogran	nme
2	BLK FOR	M 0.2 X+1	00 Y+100 Z	+0	BEGIN PGM	1F		
з	* - Out	il 1			- Outil 1			
4	TOOL CA	ALL 1 Z S4	500		- Ebauci	he		
Б	L Z+100	ROF MAX			- Finis	sage		
6	CYCL DE	F 203 PER	CAGE UNIV.		- Outil 2			
	Q200=2	2 ;DIST	ANCE D'APP	ROCHE	- Prepe	rcage		
	0201=-	20 \$PROF	ONDEUR?		– Prepositionnement en X, Y			
	0206=1	150 \$AVAN	CE PLONGEE	PROF.	- Appel de cycle			
	Q202=5	5 \$PROF	ONDEUR DE	PASSE	- Outil 3			
	Q210=0	TEMP	O. EN HAUT		END PGM 1F			
	0203=+	0 \$COOR	D. SURFACE	PIECE				
	0204=5	i0 \$2. D	IST. D'APP	ROCHE				
	Q212=0 \$VALEUR DE REDUCTION							
	Q213=0 \$NB BRISES COPEAUX							
	Q205=0 \$PROF. PASSE MIN.							
0	DEBUT Î	FIN <u> </u>	PAGE	PAGE	RECHERCHE			CHANGER FENETRE ⇔

Exécution de programme en continu et exécution de programme pas-à-pas

En mode Exécution de programme en continu, la TNC exécute un programme jusqu'à la fin ou jusqu'à une interruption manuelle ou programmée. Vous pouvez poursuivre l'exécution du programme après son interruption.

En mode Exécution de programme pas-à-pas, vous lancez les séquences une à une à l'aide de la touche START externe.

Softkeys pour le partage de l'écran

Fenêtre	Softkey
Programme	PGM
à gauche: PGM, à droite: articulation de PGM	PROGRAMME + ARTICUL.
à gauche: programme, à droite: STATUS	PROGRAMME + STATUS
à gauche: programme, à droite: graphisme	PROGRAMME + GRAPHISME
Graphisme	GRAPHISME

.4 Affichages d'<mark>état</mark>

1.4 Affichages d'état

"Affichages d'états "généraux"

L'affichage d'état vous informe de l'état actuel de la machine. Il apparaît automatiquement dans les modes de fonctionnement

- Exécution de programme pas-à-pas et Exécution de programme en continu tant que l'on n'a pas sélectionné exclusivement "graphisme" ainsi qu'en mode
- Positionnement avec introduction manuelle

En modes de fonctionnement Manuel et Manivelle électronique, l'affichage d'état apparaît dans la grande fenêtre.

Execution	PGM er	וסס ו	ntinu		Mém pro	orisation gramme
Ø BEGIN PGM 3516	мм					
1 BLK FORM 0.1 Z	X-90 Y-90 Z-4	0				
2 BLK FORM 0.2 X+	90 Y+90 Z+0					
3 TOOL CALL 1 Z S	1400					
4 L Z+50 R0 F MAX						
5 CALL LBL 1						
6 L Z+100 R0 F MA	X M2					
7 LBL 1						
8 L X+0 Y+80 RL F	250					
						00:00:00
X +297,	7076+Y	+ :	16,589	92 + Z	-20	,1599
+A +182,	1728+B	+18	31,077	75 + C	+90	,0000
				S	0,08	7
NOM.	Т			FØ		M 5∕9
			AMORCE SEQUENCE			

Informat	tions délivrées par l'affichage d'état
Symbol	e Signification
EFF	Coord. effectives ou nominales de la position actuelle
XYZ	Axes machine; la TNC affiche les axes auxiliaires en minuscules. La succession et le nombre des axes affichés sont définis par le constructeur de votre machine. Consultez le manuel de votre machine.
FSM	L'affichage de l'avance en pouces correspond au dixième de la valeur active. Vitesse de rotation S, avance F et fonction auxiliaire active M
*	Exécution de programme lancée
	Axe verrouillé
\bigcirc	Axe peut être déplacé à l'aide de la manivelle
	Les axes sont déplacés dans le plan d'usinage rotation de base
	Les axes sont déplacés en tenant compte de la rotation de base

Affichages d'état supplémentaires

Les affichages d'état supplémentaires donnent des informations détaillées sur le déroulement du programme. Ils peuvent être appelés dans tous les modes de fonctionnement, excepté en mode Mémorisation/édition de programme.

Activer l'affichage d'état supplémentaire

Appeler le menu de softkeys pour le partage de l'écran

PROGRAMME + STATUS

Sélectionner le partage de l'écran avec l'affichage d'état supplémentaire

Execu	ution	PGM e	n cor	ntinu			Mémorisation programme
0 BEGIN PGM 3516 MM 1 BLK FORM 0.1 Z X-90 Y-90 Z-40 2 BLK FORM 0.2 X+90 Y+90 Z+0 3 TOOL CALL 1 Z S1400 4 L Z+50 R0 F MAX 5 CALL LBL 1 6 L Z+100 R0 F MAX M2 7 LBL 1 8 L X+0 Y+80 RL F250			-40	DIST. X +0,0000 + C + Y -0,0000 + A +0,0000 + B +0,0000 H B +0,0000		+ C + C A B- C	-0,0059 +0,0000 +180,0000 +30,0000
					otation de	base	+0,0000
X +	297,7	'076+Y	+ :	16,58	92 + Z	- 2	20,1599
++A +	182,1	.728 + B	+18	31,07	75 +C	+ 5	90,0000
					S	0,0	387
NOM.		Т			FØ		M 5/9
PAGE ①	PAGE Ū		FIN <u>1</u>	AMORCE SEQUENCE		/□ 0FF /[ON

Ci-après, description des différents affichages d'état supplémentaires que vous pouvez sélectionner par softkeys:

Commuter le menu de softkeys jusqu'à l'apparition des softkeys STATUS

INFOS PGM

PGM

Sélectionner l'affichage d'état supplémentaire, par exemple, les informations générales relatives au programme

INFOS Informations générales sur le programme

- Nom du programme principal 1
- 2 Programmes appelés
- 3 Cycle d'usinage actif
- 4 Centre de cercle CC (pôle)
- 5 Durée d'usinage
- 6 Compteur pour temporisation

1 Nom PGM STAT STAT1 2 PGM CALL 3 CYCL 17 TARAUDAGE RIGIDE DEF 4 6 +22,5000 X TEMPO Х +35,7500 5 () 00:00:00

INFOS

AFF. POS.

Positions et coordonnées

- 1 Affichage de positions
- 2 Type d'affichage de positions, ex. positions effectives
- 3 Angle d'inclinaison pour le plan d'usinage
- 4 Angle de la rotation de base

Informations sur les outils

- 1 Affichage T: numéro et nom de l'outil Affichage RT: numéro et nom d'un outil jumeau
- 2 Axe d'outil

INFOS

OUTIL

- 3 Longueur et rayons d'outil
- 4 Surépaisseurs (valeurs Delta) à partir de TOOL CALL (PGM) et du tableau d'outils (TAB)
- 5 Durée d'utilisation, durée d'utilisation max. (TIME 1) et durée d'utilisation max. avec TOOL CALL (TIME 2)
- 6 Affichage de l'outil actif et de l'outil jumeau (suivant)

Conversions de coordonnées

- 1 Nom du programme principal
- 2 Décalage actif du point zéro (cycle 7)
- 3 Angle de rotation actif (cycle 10)
- 4 Axes réfléchis (cycle 8)
- 5 Facteur échelle actif / facteurs échelles (cycles 11 / 26)
- 6 Point d'origine pour le facteur échelle
- Cf. "8.7 Cycles de conversion des coordonnées"

Etalonnage d'outils

- 1 Numéro de l'outil à étalonner
- 2 Affichage indiquant si l'étalonnage porte sur le rayon ou la longueur de l'outil
- 3 Valeurs MIN et MAX d'étalonnage des différentes dents et résultat de la mesure avec l'outil en rotation (DYN).
- 4 Numéro de la dent de l'outil avec sa valeur de mesure L'étoile située derrière la valeur de mesure indique que la tolérance admissible contenue dans le tableau d'outil a été dépassée

1.5 Accessoires: palpeurs 3D et manivelles électroniques de HEIDENHAIN

Palpeurs 3D

Les différents palpeurs 3D de HEIDENHAIN servent à:

- dégauchir les pièces automatiquement
- initialiser vite et précisément les points de référence
- mesurer la pièce pendant l'exécution du programme
- digitaliser des formes 3D (option) et
- étalonner et contrôler les outils.

Toutes les fonctions de palpage dans un autre Manuel d'utilisation. Si vous avez besoin de ce Manuel, adressezvous à HEIDENHAIN. Référence: 329 203 xx.

Les palpeurs à commutation TS 220 et TS 630

Ces palpeurs sont particulièrement bien adaptés au dégauchissage automatique de la pièce, à l'initialisation du point de référence, aux mesures sur la pièce et à la digitalisation. Le TS 220 transmet les signaux de commutation par l'intermédiaire d'un câble et représente donc une alternative à prix intéressant si vous comptez effectuer ponctuellement des opérations de digitalisation.

Le TS 630, sans câble, a été conçu spécialement pour les machines équipées d'un changeur d'outils. Les signaux de commutation sont transmis par voie infra-rouge.

Principe de fonctionnement: Dans les palpeurs à commutation de HEIDENHAIN, un commutateur optique anti-usure enregistre la déviation de la tige. Le signal émis permet de mémoriser la valeur effective correspondant à la position actuelle du système de palpage.

A partir d'une série de valeurs de positions ainsi digitalisées, la TNC crée un programme composé de séquences linéaires en format HEIDENHAIN. Ce programme peut être ensuite traité sur PC à l'aide du logiciel d'exploitation SUSA afin de corriger certaines formes et rayons d'outil ou pour calculer des formes positives/négatives. Si la bille de palpage est égale au rayon de la fraise, les programmes peuvent être exécutés immédiatement.

Le palpeur d'outilsTT 120 pour l'étalonnage d'outils

Le palpeur 3D à commutation TT 120 est destiné à l'étalonnage et au contrôle d'outils. La TNC dispose de 3 cycles pour calculer le rayon et la longueur d'outil avec broche à l'arrêt ou en rotation.

La structure particulièrement robuste et l'indice de protection élevé rendent le TT 120 insensible aux liquides de refroidissement et aux copeaux. Le signal de commutation est généré grâce à un commutateur optique anti-usure d'une grande fiabilité.

Manivelles électroniques HR

Les manivelles électroniques simplifient le déplacement manuel précis des chariots des axes. Le déplacement pour un tour de manivelle peut être sélectionné à l'intérieur d'une plage étendue. Outre les manivelles encastrables HR 130 et HR 150, HEIDENHAIN propose également la manivelle portable HR 410 (cf. fig. de droite).

Mode manuel et dégauchissage

2.1 Mise sous-tension, hors-tension

Mise sous tension

La mise sous tension et le franchissement des points de référence sont des fonctions qui dépendent de la machine. Consultez le manuel de votre machine.

Mettre sous tension l'alimentation de la TNC et de la machine.

La TNC affiche alors le dialogue suivant:

Test mémoire

La mémoire de la TNC est vérifiée automatiquement

Coupure d'alimentation

Message de la TNC indiquant une coupure d'alimentation – Effacer le message

Traduction programme automate

Traduction automatique du programme automate de la TNC

tension commande relais manque

Mettre la commande sous tension. La TNC vérifie la fonction Arrêt d'urgence

Mode Manuel Franchissement des points de référence

Franchir les points de référence dans l'ordre chronologique défini: pour chaque axe, appuyer sur la touche externe START ou

franchir les points de référence dans n'importe quel ordre: pour chaque axe, appuyer sur la touche de sens externe et la maintenir enfoncée jusqu'à ce que le point de référence ait été franchi

La TNC est maintenant prête à fonctionner et elle est en mode Manuel

 Vous ne devez franchir les points de référence que si vous désirez déplacer les axes de la machine. Si vous voulez seulement éditer ou tester des programmes, dès la mise sous tension de la commande, sélectionnez le mode Mémorisation/édition de programme ou Test de programme.

Vous pouvez alors franchir les points de référence après-coup. Pour cela, en mode manuel, appuyez sur la softkey FRANCHIR PT DE REF

Franchissement du point de référence avec inclinaison du plan d'usinage

Le franchissement du point de référence dans le système de coordonnées incliné s'effectue avec les touches de sens externes. La fonction "inclinaison du plan d'usinage" doit être active en mode manuel (cf. "2.5 Inclinaison du plan d'usinage). La TNC interpole alors les axes concernés lorsque l'on appuie sur une touche de sens.

La touche START CN est sans fonction. La TNC délivre le cas échéant un message d'erreur.

Veillez à ce que les valeurs angulaires inscrites au menu correspondent bien à l'angle réel de l'axe incliné.

Mise hors-tension

Pour éviter de perdre des données lors de la mise hors-tension, vous devez arrêter le système d'exploitation de la TNC avec précaution:

▶ Sélectionner le mode Manuel

Sélectionner la fonction d'arrêt du système, appuyer encore sur la softkey OUI

Lorsque la TNC affiche une fenêtre en surimpression comportant le texte "Vous pouvez maintenant mettre horstension", vous pouvez alors couper l'alimentation

Une mise hors-tension involontaire de la TNC peut provoquer la perte de données.

2.2 Déplacement des axes de la machine

Le déplacement avec touches de sens externes est une fonction machine. Consultez le manuel de votre machine!

Déplacer l'axe à l'aide des touches de sens externes

	Sélectionner le mode Manuel
X	Pressez la touche de sens externe, la maintenir enfoncée pendant tout le déplacement de l'axe

...ou déplacer l'axe en continu:

maintenir enfoncée la touche de sens externe et appuyer brièvement sur la touche START externe. L'axe se déplace jusqu'à ce qu'il soit stoppé

Stopper: appuyer sur la touche de STOP externe

Les deux méthodes peuvent vous permettre de déplacer plusieurs axes simultanément. Vous modifiez l'avance de déplacement des axes à l'aide de la softkey F (cf. "2.3 Vitesse de rotation broche S, avance F et fonction auxiliaire M).

Déplacement avec la manivelle électronique HR 410

La manivelle portable HR 410 est équipée de deux touches d'affectation. Elles sont situées sous la poignée en étoile. Vous ne pouvez déplacer les axes de la machine que si une touche d'affectation est enfoncée (fonction dépendant de la machine).

La manivelle HR 410 dispose des éléments de commande suivants:

- 1 ARRET D'URGENCE
- 2 électronique
- 3 Touches d'affectation
- 4 Touches de sélection des axes
- 5 Touche de prise en compte de la position effective
- 6 Touches de définition de l'avance (lente, moyenne, rapide; les avances sont définies par le constructeur de la machine)
- 7 Sens suivant lequel la TNC déplace l'axe sélectionné
- 8 Fonctions machine (définies par le constructeur de la machine)

Les affichages rouges indiquent l'axe et l'avance sélectionnés.

Le déplacement à l'aide de la manivelle est également possible pendant l'exécution du programme.

Déplacement

Positionnement pas-à-pas

Lors du positionnement pas-à-pas, la TNC déplace un axe de la machine de la valeur d'un incrément défini par vous-même.

2.3 Vitesse de rotation broche S, avance F et fonction auxiliaire M

En modes de fonctionnement Manuel et Manivelle électronique, vous introduisez avec les softkeys la vitesse de rotation broche S, l'avance F et la fonction auxiliaire M. Les fonctions auxiliaires sont décrites au chapitre +7. Programmation: Fonctions auxiliaires".

Introduction de valeurs

Exemple: Introduire la vitesse de rotation broche S

La rotation de la broche correspondant à la vitesse de rotation S programmée est lancée à l'aide d'une fonction auxiliaire M.

Introduisez l'avance F et la fonction auxiliaire M de la même manière.

Pour l'avance F, on a:

- Si on a introduit F=0, c'est l'avance la plus faible de PM1020 qui est active
- F reste sauvegardée même après une coupure d'alimentation.

Modifier la vitesse de rotation broche et l'avance

La valeur programmée pour vitesse de rotation broche S et avance F peut être modifiée de 0% à 150% avec les potentiomètres.

Le potentiomètre de broche ne peut être utilisé que sur machines équipées de broche à commande analogique.

Le constructeur de la machine définit les fonctions auxiliaires M que vous pouvez utiliser ainsi que leur fonction.

2.4 Initialisation du point de référence (sans système de palpage 3D)

Initialisation du point de référence avec palpeur 3D: cf. Manuel d'utilisation Cycles palpeurs

Lors de l'initialisation du point de référence, l'affichage de la TNC est initialisé aux coordonnées d'une position pièce connue.

Préparatifs

- Brider la pièce et la dégauchir
- Installer l'outil zéro de rayon connu
- S'assurer que la TNC affiche bien les positions effectives

2.5 Inclinaison du plan d<mark>'usin</mark>age

Initialiser le point de référence

Mesure préventive: Si la surface de la pièce ne doit pas être affleurée, il convient de poser dessus une cale d'épaisseur d. Introduisez alors pour le point de référence une valeur de d supérieure.

Initialisation point de réf. Z=

Outil zéro, axe de broche: Initialiser l'affichage à une position pièce connue (ex. 0) ou introduire l'épaisseur d de la cale d'épaisseur Dans le plan d'usinage: tenir compte du rayon d'outil

De la même manière, initialiser les points de référence des autres axes.

Si vous utilisez un outil pré-réglé dans l'axe de plongée, initialisez l'affichage de l'axe de plongée à la longueur L de l'outil ou à la somme Z=L+d.

2.5 Inclinaison du plan d'usinage

Les fonctions d'inclinaison du plan d'usinage sont adaptées par le constructeur de la machine à la TNC et à la machine. Sur certaines têtes pivotantes ou plateaux inclinés, le constructeur de la machine définit si les angles programmés doivent être interprétés comme coordonnées des axes rotatifs ou bien comme angle dans l'espace. Consultez le manuel de votre machine.

La TNC facilite l'inclinaison de plans d'usinage sur machines équipées de têtes pivotantes ou de plateaux inclinés. Cas d'applications types: ex. perçages ou contours inclinés dans l'espace. Le plan d'usinage pivote toujours autour du point zéro actif. Dans ce cas, et comme à l'habitude, l'usinage est programmé dans un plan principal (ex. plan X/Y); toutefois, il est exécuté dans le plan incliné par rapport au plan principal.

Il existe deux fonctions pour l'inclinaison du plan d'usinage:

- Inclinaison manuelle à l'aide de la softkey 3D ROT en modes Manuel et Manivelle électronique (description ci-après)
- Inclinaison programmée, cycle 19 PLAN D'USINAGE dans le programme d'usinage: cf. "8.7 Cycles de conversion de coordonnées".

Les fonctions de la TNC pour l', inclinaison du plan d'usinage" correspondent à des transformations de coordonnées. Le plan d'usinage est toujours perpendiculaire au sens de l'axe d'outil.

Pour l'inclinaison du plan d'usinage, la TNC distingue toujours deux types de machines:

Machine équipée d'un plateau incliné

- Vous devez amener la pièce à la position d'usinage souhaitée par un positionnement correspondant du plateau incliné, par ex. avec une séquence L.
- La position de l'axe d'outil transformé ne change pas en fonction du système de coordonnées machine. Si vous faites pivoter votre plateau – et par conséquent, la pièce – par ex. de 90°, le système de coordonnées ne pivote pas en même temps. En mode Manuel, si vous appuyez sur la touche de sens d'axe Z+, l'outil se déplace dans le sens Z+.
- Pour le calcul du système de coordonnées transformé, la TNC prend en compte uniquement les décalages mécaniques du plateau incliné concerné – parties "translationnelles".

Machine équipée de tête pivotante

- Vous devez amener l'outil à la position d'usinage souhaitée par un positionnement correspondant de la tête pivotante, par ex. avec une séquence L.
- La position de l'axe d'outil incliné (transformé) change en fonction du système de coordonnées machine: Faites pivoter la tête pivotante de votre machine – et par conséquent, l'outil – par ex. de 90° dans l'axe B. Il y a **en même temps rotation du système de coordonnées**. En mode MANUEL, si vous appuyez sur la touche de sens d'axe Z+, l'outil se déplace dans le sens X+ du système de coordonnées machine.
- Pour le calcul du système de coordonnées transformé, la TNC prend en compte les décalages mécaniques de la tête pivotante (parties "translationnelles") **ainsi que** les décalages provoqués par l'inclinaison de l'outil (correction de longueur d'outil 3D).
Axes inclinés: franchissement des points de référence

Les axes étant inclinés, franchissez les points de référence à l'aide des touches de sens externes. La TNC interpole alors les axes concernés. Veillez à ce que la fonction "inclinaison du plan d'usinage" soit active en mode Manuel et que l'angle effectif de l'axe rotatif ait été inscrit dans le champ de menu.

Initialisation du point de référence dans le système incliné

Après avoir positionné les axes rotatifs, initialisez le point de référence de la même manière que dans le système non incliné. La TNC convertit le nouveau point de référence dans le système de coordonnées incliné. Pour les axes asservis, la TNC prélève les valeurs angulaires nécessaires à ces calculs à partir de la position effective de l'axe rotatif.

Dans le système incliné, vous ne devez pas activer le point de référence si le bit 3 a été activé dans le paramètre-machine 7500. Sinon la TNC calcule un décalage erroné.

Si les axes rotatifs de votre machine ne sont pas asservis, vous devez inscrire la position effective de l'axe rotatif dans le menu d'inclinaison manuelle: Si la position effective de ou des axe(s) rotatif(s) ne coïncide pas avec cette valeur, le point de référence calculé par la TNC sera erroné.

Initialisation du point de référence sur machines équipées d'un plateau circulaire

Le comportement de la TNC lors de l'initialisation du point de référence dépend de la machine. Consultez le manuel de votre machine.

La TNC décale automatiquement le point de référence si vous faîtes pivoter la table et si la fonction d'inclinaison du plan d'usinage est active.

PM 7500, bit 3=0

Pour calculer le décalage du point de référence, la TNC prend la différence entre la coordonnée REF d'initialisation du point de référence et la coordonnée REF de l'axe incliné une fois l'inclinaison réalisée. Cette méthode de calcul est à utiliser lorsque vous avez bridé votre pièce à la position 0° (valeur REF) du plateau circulaire.

PM 7500, Bit 3=1

Si vous dégauchissez une pièce bridée de travers sur une rotation du plateau circulaire, la TNC ne doit pas calculer le décalage du point de référence à partir de la différence des coordonnées REF. La TNC utilise directement la valeur REF de l'axe incliné une fois l'inclinaison réalisée; elle part donc toujours du principe que la pièce était déjà dégauchie avant l'inclinaison.

Affichage de positions dans le système incliné

Les positions qui apparaissent dans l'affichage d'état (NOM et EFF) se rapportent au système de coordonnées incliné.

Restrictions pour l'inclinaison du plan d'usinage

- La fonction de palpage Rotation de base n'est pas disponible
- Les positionnements automate (définis par le constructeur de la machine) ne sont pas autorisés
- Les séquences de positionnement avec M91/ M92 ne sont pas autorisées

Activation de l'inclinaison manuelle Mode manuel Incliner plan d'usinage Sélectionner l'inclinaison manuelle: softkey 3D ROT. Les points du menu peuvent être maintenant sélectionnés à l'aide des touches fléchées Introduire l'angle d'inclinaison

Dans le menu Inclinaison du plan d'usinage, mettre sur Actif le mode choisi: Sélectionner le point du menu, valider avec la touche ENT.

Achever l'introduction: touche END

Pour désactiver la fonction, mettre les modes souhaités sur Inactif dans le menu Inclinaison du plan d'usinage.

Si la fonction Inclinaison du plan d'usinage est active et si la TNC déplace les axes de la machine en fonction des axes inclinés, l'affichage d'état fait apparaître le symbole 🖄 .

Si vous mettez sur Actif la fonction INCLINAISON DU PLAN D'USINAGE pour le mode Exécution de programme, l'angle d'inclinaison incrit au menu est actif dès la première séquence du programme d'usinage qui doit être exécuté. Si vous utilisez dans le programme d'usinage le cycle 19 PLAN D'USINAGE, les valeurs angulaires définies dans le cycle sont actives (à partir de la définition du cycle). Les valeurs angulaires inscrites au menu sont écrasées par les valeurs appelées.

In Ex Mo	ic: éc de	li cu ⊇	n∈ ti ma	er or anu	p J J J P	la PG 1	n c M	1'ı	ısir	na⊆	le I A	na ct	<mark>cti</mark> if	£			
A	=	+	0					٥									
в	=	+	18	80				۰									
С	=	+	90)				0									
Х			- 4	7,	4	929	9 +	(+26	67,	21	86	₩Ζ	-12	22	,68	49
₩Α		+	17	7,	7	11:	1 + E	3	+18	30,	00	00	+0	+ 9	90	,00	00
													S	0,0	38	7	
NOM					Ø	T						F	1500			M 5∕9	

Mémorisation

programme

Positionnement avec introduction manuelle

3.1 Programmation et exécution d'opérations simples d'usinage

Pour des opérations simples d'usinage ou pour le prépositionnement de l'outil, on utilise le mode Positionnement avec introduction manuelle. Pour cela, vous pouvez introduire un petit programme en Texte clair HEIDENHAIN ou en DIN/ISO et l'exécuter directement. Les cycles de la TNC peuvent être appelés à cet effet. Le programme est mémorisé dans le fichier \$MDI. L'affichage d'état supplémentaire peut être activé en mode Positionnement avec introduction manuelle.

Sélectionner le mode Positionnement avec introduction manuelle. Programmer au choix le fichier \$MDI

 (\mathbf{I})

Lancer le programme: touche START externe

La programmation de contours libres FK, les graphismes de programmation et d'exécution de programme ne sont pas disponibles. Le fichier \$MDI ne doit pas contenir d'appel de programme (PGM CALL).

Exemple 1

Une seule pièce doit être dotée d'un trou profond de 20 mm. Après avoir bridé et dégauchi la pièce et initialisé le point de référence, le trou peut être programmé en quelques lignes, puis usiné.

L'outil est pré-positionné tout d'abord au dessus de la pièce à l'aide de séquences L (droites), puis positionné à une distance d'approche de 5 mm au-dessus du trou. Celui-ci est ensuite usiné à l'aide du cycle 1 PERCAGE PROFOND.

|--|

O BEGIN PGM \$MDI MM	
1 TOOL DEF 1 L+0 R+5	définir out: outil zéro, rayon 5
2 TOOL CALL 1 Z S2000	appeler out: axe d'outil Z,
	vitesse de rotation broche 2000 t/min.
3 L Z+200 RO F MAX	dégager out (F MAX = avance rapide)
4 L X+50 Y+50 RO F MAX M3	positionner out avec FMAX au-dessus du trou,
	marchebroche

Out = outil

simples	
ages	
d'usina	
exécution	
et	
Programmation	
$\mathbf{\omega}$	

5 L Z+5 F2000	positionner out à 5 mm au-dessus du trou
6 CYCL DEF 1.0 PERCAGE PROFOND	définir le cycle PERCAGE PROFOND
7 CYCL DEF 1.1 DIST 5	distance d'approche out au-dessus du trou
8 CYCL DEF 1.2 PROF20	profondeur de trou (signe = sens de l'usinage)
9 CYCL DEF 1.3 PASSE 10	profondeur de la passe avant le retraît
10 CYCL DEF 1.4 TEMP. 0,5	temporisation au fond du trou, en secondes
11 CYCL DEF 1.5 F250	avance de perçage
12 CYCL CALL	appeler le cycle PERCAGE PROFOND
13 L Z+200 RO F MAX M2	dégager out
14 END PGM \$MDI MM	fin du programme

La fonction des droites est décrite au chapitre "6.4 Contournages – coordonnées cartésiennes" et le cycle PERCAGE PROFOND sous "8.2 Cycles de perçage".

Exemple 2

Eliminer le désaxage de la pièce sur machines équipées d'un plateau circulaire

Exécution la rotation de base avec palpeur 3D. Cf. "12.2 Cycles de palpage en modes Manuel et Manivelle électronique", paragr. "Compenser le désaxage de la pièce".

Noter l'angle de rotation et annuler la rotation de base

Sélectionner le mode Positionnement avec introduction manuelle

الا

Ι

Sélectionner l'axe du plateau circulaire, introduire l'angle de rotation noté ainsi que l'avance, par ex. L C+2.561 F50

Achever l'introduction

Appuyer sur la touche START externe: Annulation du désaxage par rotation du plateau circulaire

Sauvegarder ou effacer des programmes contenus dans \$MDI

Le fichier \$MDI est habituellement utilisé pour des programmes courts et utilisés de manière transitoire. Si vous désirez néanmoins mémoriser un programme, procédez ainsi:

\$	Sélectionner le mode Mémorisation/ édition de programme
PGM MGT	Appeler la gestion de fichiers: touche PGM MGT (Program Management)
	Marquer le fichier \$MDI
COP IER RBCे⇔XYZ	Sélectionner "Copier fichier": softkey COPIER
Fichier-cible	e =
TROU	Introduisez un nom sous lequel doit être mémorisé le contenu actuel du fichier \$MDI
EXECUTER	Exécuter la copie
FIN	Quitter la gestion de fichiers: softkey FIN

Pour effacer le contenu du fichier \$MDI, procédez de la même manière: au lieu de copier, effacez le contenu avec la softkey EFFACER. Lors du prochain retour au mode Positionnement avec introduction manuelle, la TNC affiche un fichier \$MDI vide.

Si vous désirez effacer \$MDI,

le mode Positionnement avec introduction manuelle ne doit pas être sélectionné (et pas davantage en arrièreplan)

le fichier \$MDI ne doit pas être sélectionné en mode Mémorisation/édition de programme

Autres informations: cf. "4.2 Gestion de fichiers".

Programmation:

Principes de base, gestion de fichiers, aides à la programmation, gestion de palettes

4.1 Principes de base

Systèmes de mesure de déplacement et marques de référence

Des systèmes de mesure situés sur les axes de la machine enregistrent les positions de la table ou de l'outil. Lorsqu'un axe se déplace, le système de mesure correspondant génère un signal électrique qui permet à la TNC de calculer la position effective exacte de l'axe de la machine.

Une coupure d'alimentation provoque la perte de la relation entre la position du chariot de la machine et la position effective calculée. Pour rétablir cette relation, les règles de mesure des systèmes de mesure de déplacement disposent de marques de référence. Lors du franchissement d'une marque de référence, la TNC reçoit un signal qui désigne un point de référence machine. Celui-ci permet à la TNC de rétablir la relation entre la position effective et la position actuelle du chariot de la machine.

En règle générale, les axes linéaires sont équipés de systèmes de mesure linéaire. Les plateaux circulaires et axes inclinés, quant-à eux, sont équipés de systèmes de mesure angulaire. Pour rétablir la relation entre la position effective et la position actuelle du chariot de la machine, il vous suffit d'effectuer un déplacement max. de 20 mm avec les systèmes de mesure linéaire à distances codées, et de 20° max. avec les systèmes de mesure angulaire.

4.1 Principes de base

Système de référence

Un système de référence vous permet de définir sans ambiguité les positions dans un plan ou dans l'espace. La donnée de position se réfère toujours à un point défini; elle est décrite au moyen de coordonnées.

Dans le système de coordonnées cartésiennes, trois directions sont définies en tant qu'axes X, Y et Z. Les axes sont perpendiculaires entre eux et se rejoignent en un point: le point zéro. Une coordonnée indique la distance par rapport au point zéro, dans l'une de ces directions. Une position est donc décrite dans le plan au moyen de deux coordonnées et dans l'espace, au moyen de trois coordonnées.

Les coordonnées qui se réfèrent au point zéro sont désignées comme coordonnées absolues. Les coordonnées relatives se réfèrent à une autre position quelconque (point de référence) du système de coordonnées. Les valeurs des coordonnées relatives sont aussi appelées valeurs de coordonnées incrémentales.

Systèmes de référence sur fraiseuses

Pour l'usinage d'une pièce sur une fraiseuse, vous vous référez généralement au système de coordonnées cartésiennes. La figure de droite illustre la relation entre le système de coordonnées cartésiennes et les axes de la machine. La règle des trois doigts de la main droite est un moyen mnémotechnique: Si le majeur est dirigé dans le sens de l'axe d'outil, de la pièce vers l'outil, il indique alors le sens Z+; le pouce indique le sens X+ et l'index, le sens Y+.

La TNC 426 peut commander jusqu'à 5 axes et la TNC 430, jusqu'à 9 axes. Outre les axes principaux X, Y et Z, on a également les axes auxiliaires U, V et W qui leur sont parallèles.Les axes rotatifs sont les axes A, B et C. La figure en bas, à droite illustre la relation entre les axes auxiliaires ou axes rotatifs et les axes principaux.

Coordonnées polaires

Si le plan d'usinage est coté en coordonnées cartésiennes, élaborez aussi votre programme d'usinage en coordonnées cartésiennes. En revanche, lorsque des pièces comportent des arcs de cercle ou des coordonnées angulaires, il est souvent plus simple de définir les positions en coordonnées polaires.

Contrairement aux coordonnées cartésiennes X, Y et Z, les coordonnées polaires ne décrivent les positions que dans un plan. Les coordonnées polaires ont leur point zéro sur le pôle CC (= centre de cercle). De cette manière, une position dans un plan est définie sans ambiguité par

- Rayon de coordonnées polaires: distance entre le pôle CC et la position
- Angle de coordonnées polaires: angle formé par l'axe de référence angulaire et la ligne reliant le pôle CC et la position.

Cf. figure de droite, en bas.

Définition du pôle et de l'axe de référence angulaire

Dans le système de coordonnées cartésiennes, vous définissez le pôle au moyen de deux coordonnées dans l'un des trois plans. L'axe de référence angulaire pour l'angle polaire PA est ainsi défini simultanément.

Coordonnées polaires (plan)	Axe de référence angulaire
XY	+X
YZ	+Y
ZX	+Z

4.1 Principes de base

Positions de la pièce en valeur absolue et relative

Positions pièce en valeur absolue

Lorsque les coordonnées d'une position se réfèrent au point zéro (origine), on les appelle des coordonnées absolues. Chaque position sur une pièce est définie clairement au moyen de ses coordonnées absolues.

Exemple 1: Trous avec coordonnées absolues

X=10 mm	X=30 mm	X=50 mm
Y=10 mm	Y=20 mm	Y=30 mm

Positions pièce relatives

Les coordonnées relatives se réfèrent à la dernière position d'outil programmée servant de point zéro (imaginaire) relatif. Lors de l'élaboration du programme, les coordonnées incrémentales indiquent ainsi la cote (située entre la dernière position nominale et la suivante) à laquelle l'outil doit se déplacer. C'est pour cette raison qu'elle est appelée cote incrémentale.

Vous marquez une cote incrémentale à l'aide d'un ${}_{\!\!\!\!\!\!\!\!\!\!}{}^{\prime\prime}$ devant la désignation de l'axe.

Exemple 2: Trous avec coordonnées relatives

Coordonnées absolues du trou 4:

X=	10	mm
Y=	10	mm

Trou <mark>5</mark> se référant à <mark>4</mark>

IX= 20 mm IY= 10 mm Trou 6 se référant à 5 IX= 20 mm IY= 10 mm

Coordonnées polaires absolues et incrémentales

Les coordonnées absolues se réfèrent toujours au pôle et à l'axe de référence angulaire.

Les coordonnées incrémentales se réfèrent toujours à la dernière position d'outil programmée.

Sélection du point de référence

Pour l'usinage, le plan de la pièce définit comme point de référence absolu (point zéro) une certaine partie de la pièce, un coin généralement. Pour initialiser le point de référence, vous alignez tout d'abord la pièce sur les axes de la machine, puis sur chaque axe, vous amenez l'outil à une position donnée par rapport à la pièce. Pour cette position, réglez l'affichage de la TNC soit à zéro, soit à une valeur de position donnée. De cette manière, vous affectez la pièce à un système de référence valable pour l'affichage de la TNC ou pour votre programme d'usinage.

Si le plan de la pièce donne des points de référence relatifs, utilisez alors simplement les cycles de conversion de coordonnées. Cf. "8.7 Cycles de conversion de coordonnées".

Si la cotation du plan de la pièce n'est pas conforme à la programmation des CN, vous choisissez alors comme point de référence une position ou un angle de la pièce à partir duquel vous définirez aussi simplement que possible les autres positions de la pièce.

L'initialisation des points de référence à l'aide d'un système de palpage 3D de HEIDENHAIN est particulièrement aisée. Cf. "12.2 Initialisation du point de référence avec systèmes de palpage 3D.".

Exemple

Le schéma de la pièce à droite indique des trous (1 à 4) dont les cotes se réfèrent à un point de référence absolu de coordonnées X=0 Y=0. Les trous (5 à 7) se réfèrent à un point de référence relatif de coodonnées absolues X=450 Y=750. A l'aide du cycle DECALAGE DU POINT ZERO, vous pouvez décaler provisoirement le point zéro à la position X=450, Y=750 afin de pouvoir programmer les trous (5 à 7) sans avoir à effectuer d'autres calculs.

4.2 Gestion de fichiers: Principes de base

Avec la fonction MOD PGM MGT (cf. chap. 12.5), sélectionnez entre la gestion standard des fichiers et la aestion étendue des fichiers.

> Si la TNC est raccordée à un réseau (option), sélectionnez dans ce cas la gestion étendue des fichiers.

Fichiers

Lorsque vous introduisez un programme d'usinage dans la TNC, vous lui attribuez tout d'abord un nom. La TNC le mémorise sur le disgue dur sous forme d'un fichier de même nom. La TNC mémorise également les textes et tableaux sous forme de fichiers.

Pour retrouver rapidement vos fichiers et les gérer, la TNC dispose d'une fenêtre spéciale réservée à la gestion des fichiers. Vous pouvez y appeler, copier, renommer et effacer les différents fichiers.

Sur la TNC, vous pouvez gérer autant de fichiers que vous le désirez mais la capacité totale de l'ensemble des fichiers ne doit pas excéder 1.500 Mo.

Noms de fichiers

L

Le nom d'un fichier peut contenir jusqu'à 16 caractères. Pour les programmes, tableaux et textes, la TNC ajoute une extension qui est séparée du nom du fichier par un point. Cette extension désigne le type du fichier: cf. tableau de droite.

Sauvegarde des données

HEIDENHAIN conseille de sauvegarder régulièrement sur PC les derniers programmes et fichiers créés sur la TNC. A cet effet, HEIDENHAIN met à votre disposition grâcieusement un programme Backup (TNCBACK.EXE). Adressez-vous au constructeur de votre machine.

Vous devez en outre disposer d'une disquette sur laquelle sont sauvegardées toutes les données spécifiques de votre machine (programme automate, paramètres-machine, etc. Adressez-vous pour cela au constructeur de votre machine.

F	Si vous désirez sauvegarder la totalité des fichiers
	contenus sur le disque dur (1.500 Mo max.), ceci peut
	prendre plusieurs heures. Reportez éventuellement
	cette opération de sauvegarde pendant la nuit ou utilisez
	la fonction EXECUTION PARALLELE (copie en arrière-
	plan).

Fichiers dans IaTNC	Туре
Programmes en dialogue Texte clair HEIDENHAIN selon DIN/ISO	.H .I
Tableaux pour outils palettes points zéro points (zone de digitalisation avec palpeur mesurant) données de coupe	.T .P .D .PNT .CDT
matériaux pièce, de coupe Textes sous forme de	.TAB

fichiers ASCII

.Α

anciennes commandes TNC. Pour cela, réglez sur Standard la fonction MOD PGM MGT (cf. chap. 12.5).	FRAES_2 \$MDI 1 79247 79280
Appeler la gestion de fichiers	DAUER EXTRUDER GEHAEUSE 32 fichi
Appuyer sur la touche PGM MGT: La TNC affiche la fenêtre de gestion des fichiers (cf. fig. en haut, à droite)	PAGE PAGE Î Ĵ Ĵ Affichage
La fenêtre affiche tous les fichiers mémorisés dans la TNC. Pour chaque fichier: plusieurs informations sont affichées: cf. tableau à	NOM FICH
droite et au centre.	OCTET
Sélectionner un fichier	ETAT
Appeler la gestion de fichiers	E
Utilisez les touches fléchées pour déplacer le champ clair sur le fichier que vous voulez sélectionner:	S
Déplace le champ clair dans la fenêtre vers le haut et le bas	Μ
Sélectionner le fichier: appuyer sur la softkey SELECT. ou sur la touche ENT	Р

4.3 Gestion standard des fichiers

Travaillez avec la gestion standard des fichiers si vous désirez mémoriser tous les fichiers dans un répertoire ou si vous êtes familiarisé à la gestion de fichiers sur les

Mode manuel	Ed	iter	tablea	au PG	М			
	Noi	n de	fichie	er = <mark>%</mark>	тсн	<u> </u>	Т.А	
TNC:\	*.*							
Nom	fic	nier		0 c	tet	Е	tat	
×TCH	PRNT		.А		73			
1			.A		0			
BOHRI	ER		.00)T 4	522			
FRAES	S_2		.00	DT 10	382			
\$MDI			.Н		220			
1			.Н		304			
7924	7		.Н	2	316			
79280	3		.н	1	734			
DAUE	२		.н		352			
EXTRU	JDER		.Н	1	402			
GEHA	EUSE		•Н	6	416			
32 f.	ichi	er(s)	91844	18 ko	ct.	li	bres	
PAGE	PAGE	SELECT.	EFFACER	COPIER			DERNIERS	
Û	Û	-4	6	ABC⇔XYŻ	EX	1 S	-∠ € S	FIN

Affichage	Signification
NOM FICHIER	Nom de 16 caratères max. et type de fichier
OCTET	Dimensions du fichier en octets
ETAT E	Propriétés du fichier: Programme sélectionné en mode Test sation/édition de programme
S	Programme sélectionné en mode Test de programme
Μ	Programme sélectionné
	dans un mode Exécution de programme
Ρ	Fichier protégé contre effacement et modification (Protected)

Affichage longs sommaires fichiers Softkey

Feuilleter page-à-page vers le haut le sommaire des fichiers

PAGE Û

Feuilleter page-à-page vers le bas le sommaire des fichiers

Effacer un fichier

Appeler la gestion de fichiers

Utilisez les touches fléchées pour déplacer le champ clair sur le fichier que vous voulez effacer:

Déplace le champ clair dans la fenêtre vers le haut et le bas

EFFACER	Effacer le fichier: appuyer sur la softkey EFFACER
Effacer .	fichier ?
OUI	Valider avec la softkey OUI ou

quitter avec la softkey NON

Copier un fichier

NON

Appeler la gestion de fichiers

Utilisez les touches fléchées pour déplacer le champ clair sur le fichier que vous voulez copier:

Déplace le champ clair dans la fenêtre vers le haut et le bas

Copier le fichier: appuyer sur la softkey COPIER

Fichier-cible =

Introduire un nouveau nom de fichier, valider avec la softkey EXECUTER ou avec la touche ENT. La TNC affiche une fenêtre délivrant des informations sur le processus de copie. Tant que la TNC est en train de copier, vous ne pouvez pas continuer à travailler ou

si vous voulez copier de très longs programmes: introduisez un nouveau nom de fichier et validez avec la softkey EXECUTION PARALLELE. Après avoir lancé le processus de copie, vous pouvez continuer à travailler dans la mesure où la TNC copie de fichier en arrière-plan

Transfert des données vers/à partir d'un support externe de données

Avant de pouvoir transférer les données vers un support externe, vous devez configurer l'interface de données (cf. "Chap. 12.4 Configurer l'interface de données").

EXT

Appeler la gestion de fichiers

Activer la transmission des données: appuyer sur la softkey EXT. La TNC affiche sur la moitié gauche de l'écran 1 tous les fichiers mémorisés dans la TNC, et sur la moitié droite 2, tous les fichiers mémorisés sur le support externe de données

Utilisez les touches fléchées pour déplacer le champ clair sur le fichier que vous voulez transférer:

déplace le champ clair dans une fenêtre vers le haut et le bas

déplace le champ clair de la fenêtre de droite vers la fenêtre de gauche et inversement

Si vous désirez copier de la TNC vers le support externe de données, décalez le champ clair de la fenêtre de gauche sur le fichier à transférer.

Si vous désirez copier du support externe de données vers la TNC, décalez le champ clair de la fenêtre de droite sur le fichier à transférer.

		Fonctions de marquage	Softkey
COP IER ABC ⇒ XYZ	Transférer un fichier donné: appuyer sur la softkey COPIER ou	Protéger un fichier donné	MARQUER FICHIER
		Marquer tous les fichiers	MARQUER TOUS LES FICHIERS
MARQUER	transferer plusieurs fichiers: appuyer sur la softkey MARQUER (fonctions de marquage: cf. tableau de droite) ou	Annuler le marquage pour un fichier donné	OTER MARQ FICHIER
TNC EXT	transférer tous les fichiers: appuyer sur la softkey TNC EXT	Annuler le marquage de tous les fichiers	OTER MARQ TOUS LES FICHIERS
		Copier tous les fichiers marqués	COP. MARQ → →

lode manuel	Edit	ter de	tablea	u PGN	1 4 п.т. н		
TNC:*.*	<u>1</u>	ue	lichie	R\$232:*.	* 2	2	
Nom fichie	г	Octet	Etat	[NO DIR]			
XTCHPRNT	.Α	73					
1	.Α	Ø					
BOHRER	.CDT	4522					
FRAES_2	.CDT	10382					
\$MDI	.н	220					
1	.н	304					
79247	.н	2316					
79280	.н	1734					
DAUER	.н	352					
EXTRUDER	.н	1402					
GEHAEUSE	.н	6416					
32 fichier(s) 918 448	koct.	libres				
PAGE	PAGE	COPIER	TNC EXT				E T N
17		10 -	16-61	MODULED	TNC >		F L N

4 Programmation: Principes de base, gestion de fichiers, aides à la programmation, gestion de palettes

4.3 Gestion stan<mark>dard</mark> des fichiers

Valider avec la softkey EXECUTER ou avec la touche ENT. La TNC affiche une fenêtre délivrant des informations sur le processus de copie ou

si vous voulez transférer de longs programmes ou plusieurs programmes: appuyer sur la sofktey EXECUTION PARALLELE. La TNC copie alors le fichier en arrière-plan

Clôre la transmission des données: appuyer sur la softkey TNC. La TNC affiche à nouveau le fenêtre standard de gestion des fichiers

Sélectionner l'un des 10 derniers fichiers sélectionnés

Utilisez les touches fléchées pour déplacer le champ clair sur le fichier que vous voulez sélectionner:

Déplace le champ clair dans la fenêtre vers le haut et le bas

Sélectionner le fichier: appuyer sur la softkey SELECT. ou sur la touche ENT

Renommer un fichier

fichie	
des	
dard	
stan	
Gestion	
4.3	

S

Appeler la gestion de fichiers

Utilisez les touches fléchées pour déplacer le champ clair sur le fichier que vous voulez renommer:

PGM MGT

Déplace le champ clair dans la fenêtre vers le haut et le bas

Renommer un fichier: appuyer sur RENOMMER

Fichier-cible =

Introduire un nouveau nom de fichier, valider avec la softkey EXECUTER ou avec la touche ENT.

Convertir un programme FK en programme Texte clair

Appeler la gestion de fichiers

Utilisez les touches fléchées pour déplacer le champ clair sur le fichier que vous voulez convertir:

Déplace le champ clair dans la fenêtre vers le haut et le bas

Convertir le fichier: appuyer sur la softkey CONVERTIR FK -> H

Fichier-cible =

Introduire un nouveau nom de fichier, valider avec la softkey EXECUTER ou avec la touche ENT.

Protéger un fichier/annuler la protection de fichier

Appeler la gestion de fichiers

Utilisez les touches fléchées pour déplacer le champ clair sur le fichier que vous voulez protéger ou dont vous désirez annuler la protection:

Déplace le champ clair dans la fenêtre vers le haut et le bas

Protéter le fichier: appuyer sur la softkey PROTEGER. Le fichier reçoit l'état P, ou

annuler la protection du fichier: appuyer sur la softkey NON PROT. L'état P est alors effacé

4.4 Gestion étendue des fichiers

4.4 Gestion étendue des fichiers

Travaillez avec la gestion étendue des fichiers si vous désirez mémoriser les fichiers dans différents répertoires.

> Pour cela, réglez la fonction MOD PGM MGT (cf. chap. 12.5) sur Etendu!

(cf. chap. "4.2 Gestion de fichiers: Principes de base"!)

Répertoires

Comme vous pouvez mémoriser de nombreux programmes ou fichiers sur le disque dur, vous classez les différents fichiers dans des répertoires (classeurs) pour conserver une vue d'ensemble. Dans ces répertoires, vous pouvez créer d'autres répertoires appelés sous-répertoires.

La TNC peut gérer jusqu'à 6 niveaux de répertoires!

Si vous mémorisez plus de 512 fichiers à l'intérieur d'un répertoire, la TNC ne les classe plus dans l'ordre alphabétique!

Noms de fichiers

Le nom d'un répertoire peut contenir jusqu'à 8 caractères; il n'a pas d'extension. Si vous introduisez plus de 8 caractères pour le nom du répertoire, la TNC raccourcit celui-ci à 8 caractères.

Chemins d'accès

Un chemin d'accès indique le lecteur et les différents répertoires ou sous-répertoires à l'intérieur desquels un fichier est mémorisé. Les différents éléments sont séparés par "\"

Exemple: Le répertoire AUFTR1 a été créé sous le lecteur TNC:\. Puis, dans le répertoire AUFTR1, on a créé un sous-répertoire NCPROG à l'intérieur duquel on a importé le programme d'usinage PROG1.H. Chemin d'accès du programme d'usinage:

TNC:\AUFTR1\NCPROG\PROG1.H

Le graphisme de droite illustre un exemple d'affichage des répertoires avec les différents chemins d'accès.

Sommaire: Fonctions de la gestion étendue des fichiers

Fonction	Softkey
Copier un fichier donné (et le convertir)	COPIER ABC)⇒XYZ
Afficher type de fichier donné	SELECT.
Afficher les 10 derniers fichiers sélectionnés	DERNIERS FICHIERS
Effacer un fichier ou un répertoire	EFFACER
Marquer un fichier	MARQUER
Renommer un fichier	RENOMMER ABC = XYZ
Convertir un programme FK en programme Texte clair	CONVERTIR FK->H
Protéger un fichier contre l'effacement ou l'écriture	PROTEGER
Annuler la protection d'un fichier	NON PROT.
Gérer les lecteurs du réseau (seulement avec option interface Ethernet)	RESEAU
Copier un répertoire	COP. REP.
Afficher les répertoires d'un lecteur	AFFICH ARBOR.
Effacer un répertoire et tous ses sous-répertoires	EFFAC.

Appeler la gestion de fichiers

PGM MGT Appuyer sur la touche PGM MGT: La TNC affiche la fenêtre de gestion des fichiers (la fig. en haut, à droite illustre la configuration de base. Si la TNC affiche un autre partage de l'écran, appuyez sur la softkey FENETRE)

La fenêtre étroite de gauche indique en haut trois lecteurs 1. Si la TNC est raccordée à un réseau, la TNC affiche ici les autres lecteurs. Les lecteurs désignent les appareils avec lesquels seront mémorisées ou transmises les données. Un lecteur correspond au disque dur de la TNC; les autres lecteurs sont les interfaces (RS232, RS422, Ethernet) auxquelles vous pouvez raccorder, par exemple, un PC. Le lecteur sélectionné (actif) ressort en couleur.

Dans la partie inférieure de la fenêtre étroite, la TNC affiche tous les répertoires 2 du lecteur sélectionné. Un répertoire est toujours désigné par un symbole de classeur (à gauche) et le nom du répertoire (à droite). Les sous-répertoires sont décalés vers la droite. Un répertoire sélectionné (actif) ressort en couleur.

La fenêtre large de droite affiche tous les fichiers **3** mémorisés dans le répertoire sélectionné. Pour chaque fichier, plusieurs informations détaillées sont affichées à droite dans le tableau.

Manueller Betrieb	Mémo: Nom	risation de fichi	/éd er :	itio = <mark>STR</mark>	n p: 	rogra	mme
¥ WORLD:∖ 	1	TNC:\NK\DUMPS*	•.*	Octet	Etat D	ate	Temps
E TNC:\	2	1S 3507	.н .н	418 1220	0 0	2-09-1997 2-09-1997	13:55:24 14:08:00
D TNC:\		35071 3516 3DJOINT	.н .н .н	596 1372 732	0 M 0 0	2-09-1997 2-09-1997 2-09-1997	13:47:30 13:48:38 13:27:18
CDT CUTTAB C depo		BLK FK1	.н .н	188 602	0	2-09-1997 2-09-1997	13:16:44 13:01:02
 HERBERT NK 		SLOLD	.н .н .н	128 6174 28	0 S 0	2-09-1997 2-09-1997 3-09-1997	13:01:28 05:16:20
🔁 DUMPS		STAT1 23 fichier(s)	.H 918448	360 koct.	E G libres	3-09-1997 <mark>3</mark>	05:49:42
PAGE P	age se ↓ _	LECT. COPIER 2 ABC ⇒ XYZ	SELE	ст. г }=		DERNIERS	FIN

Affichage	Signification
NOM FICHIER	Nom de 16 caratères max. et type de fichier
OCTETS	Dimensions du fichier en octets
ETAT E	Propriétés du fichier: Programme sélectionné en mode Test sation/édition de programme
S	Programme sélectionné en mode Mémori- de programme
Μ	Programme sélectionné dans un mode Exécution de programme
Ρ	Fichier protégé contre effacement et modification (Protected)
DATE	Date de la dernière modification du fichier
HEURE	Heure de la dernière modification du fichier

Sélectionner les lecteurs, répertoires et fichiers

Appeler la gestion de fichiers

Utilisez les touches fléchées ou les softkeys pour déplacer le champ clair à l'endroit désiré de l'écran:

déplace le champ clair de la fenêtre de droite vers la fenêtre de gauche et inversement

déplace le champ clair dans une fenêtre vers le haut et le bas

déplace le champ clair dans une fenêtre page à page, vers le haut et le bas

1ère étape: Sélectionner le lecteur:

Marquer le lecteur dans la fenêtre de gauche:

sélectionner le lecteur: appuyer sur la softkey SELECT. ou sur la touche ENT

2ème étape: Sélectionner le répertoire:

Marquer le répertoire dans la fenêtre de gauche: La fenêtre de droite affiche automatiquement tous les fichiers du répertoire marqué (sur fond clair).

3ème étape: Sélectionner le fichier:

Marquer le fichier dans la fenêtre de droite:

Le fichier sélectionné est activé dans le mode de fonctionnement avec lequel vous avez appelé la gestion de fichiers: appuyer sur la softkey SELECT. ou sur ENT

Créer un nouveau répertoire (possible seulement sur le lecteur TNC):

Dans la fenêtre de gauche, marquez le répertoire à l'intérieur duquel vous désirez créer un sous-répertoire

NOUV

Introduire le nom du nouveau répertoire, appuyer sur la touche ENT

Copier un fichier donné

Déplacez le champ clair sur le fichier que vous désirez copier

Appuyer sur la softkey COPIER: sélectionner la fonction de copie

Introduire le nom du fichier-cible et valider avec la touche ENT ou la softkey EXECUTER: La TNC copie le fichier vers le répertoire en cours. Le fichier d'origine est conservé.

Appuyez sur la softkey EXECUTION PARALLELE pour copier en arrière-plan le fichier. Utilisez cette fonction pour copier de gros fichiers; vous pourrez continuer votre travail lorsque l'opération de copie aura été lancée. Alors que la TNC copie en arrière-plan, à l'aide de la softkey INFO EXECUTION PARALLELE (sous AUTRES FONCTIONS, 2ème menu de softkeys), vous pouvez observer le processus de copie.

Copier un tableau

Si vous copiez des tableaux, à l'aide de la softkey REMPLACER CHAMPS, vous pouvez écraser certaines lignes ou colonnes dans le tableau-cible. Conditions requises:

- Le tableau-cible doit déjà exister
- Le fichier à copier ne doit contenir que les colonnes ou lignes à remplacer

Exemple:

Sur un appareil de pré-réglage, vous avez étalonné la longueur et le rayon d'outil de 10 nouveaux outils. L'appareils de pré-réglage a ensuite généré le tableau d'outils TOOL.T comportant 10 lignes (pour 10 outils) et les colonnes

- Numéro d'outil
- Longueur d'outil
- Rayon d'outil

Lorsque vous copiez ce fichier vers la TNC, celle-ci vous demande si le tableau d'outils TOOL.T existant doit être écrasé:

- Appuyez sur la softkey OUI; dans ce cas, la TNC écrase en totalité le fichier TOOL.T actuel. A l'issue de l'opération de copie, TOOL.T comporte 10 lignes. Toutes les colonnes – bien entendu, excepté les colonnes Numéro, Longueur et Rayon sont réinitialisées
- Appuyez sur la softkey REMPLACER CHAMPS; dans ce cas, la TNC n'écrase dans le fichier TOOL.T que les colonnes Numéro, Longueur et Rayon des 10 premières lignes. Les données des lignes et colonnes restantes ne seront pas modifiées par la TNC

Copier un répertoire

Déplacez le champ clair dans la fenêtre de gauche sur le répertoire que vous voulez copier. Appuyez ensuite sur la sofktey COP. REP. au lieu de la softkey COPIER. La TNC copie également les sousrépertoires.

Sélectionner l'un des 10 derniers fichiers sélectionnés

Utilisez les touches fléchées pour déplacer le champ clair sur le fichier que vous voulez sélectionner:

Déplace le champ clair dans la fenêtre vers le haut et le bas

Sélectionner le fichier: appuyer sur la softkey SELECT. ou sur la touche ENT

Effacer un fichier

- Déplacez le champ clair sur le fichier que vous désirez effacer
 - EFFACER **E**
- ▶ Sélectionner sur la fonction d'effacement: appuyer sur la softkey EFFACER. La TNC demande si le fichier doit être réellement effacé
 - ► Valider l'effacement: appuyer sur OUI. Quitter l'effacement: appuyer sur NON

Effacer un répertoire

- Effacez du répertoire tous les fichiers et sous-répertoires que vous voulez effacer
- Déplacez le champ clair sur le répertoire que vous désirez effacer

EFFACER | Sélectionner sur la fonction d'effacement: appuyer sur la softkey EFFACER.

La TNC demande si le répertoire doit être réellement effacé

▶ Valider l'effacement: appuyer sur OUI. Quitter l'effacement: appuyer sur NON

RS232: \ RS422: \ RS422: \ TNC: \ ALBERT CDT CUTTAB depo HERBERT NK L DUMPS	0: 1: 2: 3: 4: 5: 6: 7: 8: 9:	INC:NK-DUM NC:NK-DUM TNC:NK-DUM TNC:NK-DUM TNC:NK-DUM TNC:NK-DUM TNC:NK-DUM TNC:NK-DUM TNC:NK-DUM	2533607.H 2551F.H 25516.H 2553516.H 2553516.A 2553516.A 2553516.A 2553516.A 255351.H 255551.H 255551.H 255551.H 255551.H 255551.H 255551.H 255551.H 255551.H 255551.H 255551.H 255551.H 255551.H 255551.H 255551.H 255551.H 255551.H 2555551.H 2555551.H 255555	T H	
SELECT.					FTN

Marquer des fichiers

Vous pouvez utiliser les fonctions telles que copier ou effacer des fichiers, aussi bien pour un ou plusieurs fichiers simultanément. Pour marquer plusieurs fichiers, procédez de la manière suivante:

la softkey MARQUER

MARQUER FICHIER Marquer un fichier: appuyer sur la softkey MARQUER FICHIER

Afficher les fonctions de marquage: appuyer sur

Déplacer le champ clair sur un autre fichier

Marquer un autre fichier: appuyer sur la softkey MARQUER FICHIER, etc.

Copier des fichiers marqués: appuyer sur la softkey COP. MARQ. ou

effacer les fichiers marqués: appuyer sur la softkey FIN pour quitter les fonctions de marquage, puis sur la softkey EFFACER pour effacer les fichiers marqués

Renommer un fichier

Déplacez le champ clair sur le fichier que vous désirez renommer

- RENOMMER > Sélectionner la fonction pour renommer
 - Introduire le nouveau nom du fichier; le type de fichiers ne peut pas être modifié
 - ▶ Valider le nouveau nom en appuyant sur la touche ENT

Fonctions de marquage	Softkey
Marquer des fichiers donnés	MARQUER FICHIER
Marquer tous les fichiers dans le répertoire	MARQUER TOUS LES FICHIERS
Ôter le marquage d'un fichier les fichiers	OTER MARQ FICHIER
Ôter le marquage de tous les fichiers	OTER MARQ TOUS LES FICHIERS
Copier tous les fichiers marqués	COP. MARQ D⇔D

Autres fonctions

Protéger un fichier/annuler la protection de fichier

Déplacer le champ clair sur le fichier que vous désirez protéger

▶ Sélectionner les fonctions auxiliaires: appuyez sur la softkey FONCTIONS AUXIL.

PROTEGER Activer la protection de fichiers: appuyer sur la softkey PROTEGER. Le fichier reçoit l'état P

Vous annulez la protection de fichiers de la même manière avec la softkey NON PROT.

Convertir un programme FK en format TEXTE CLAIR

Déplacez le champ clair sur le fichier que vous désirez convertir

▶ Sélectionner les fonctions auxiliaires: appuyez sur la softkey FONCTIONS AUXIL.

▶ Sélectionner la fonction de conversion: appuyer sur la softkey CONVERTIR FK->H FK->H

- ▶ Introduire le nom du fichier-cible
- ▶ Effectuer la conversion: appuyer sur la touche ENT

Effacer le répertoire avec tous ses sous-répertoires et fichiers

Déplacez le champ clair dans la fenêtre de gauche sur le répertoire que vous voulez effacer.

FONCTIONS Sélectionner les fonctions auxiliaires: appuyez sur la softkey FONCTIONS AUXIL.

EFFAC.

Effacer le répertoire entier: appuyer sur la softkey EFFAC. TOUS

► Valider l'effacement: appuyer sur OUI. Quitter l'effacement: appuyer sur NON

Transfert des données vers/à partir d'un support externe de données

Avant de pouvoir transférer les données vers un support externe, vous devez configurer l'interface de données (cf. "Chap. 12.4 Configurer l'interface de données").

PGM

Appeler la gestion de fichiers

FENÊTRE == =

Sélectionner le partage de l'écran pour la transmission des données: appuver sur la softkey FENETRE. La TNC affiche sur la moitié gauche de l'écran 1 tous les fichiers mémorisés dans la TNC, et sur la moitié droite 2, tous les fichiers mémorisés sur le support externe de données

Utilisez les touches fléchées pour déplacer le champ clair sur le fichier que vous voulez transférer:

déplace le champ clair dans une fenêtre vers le haut et le bas

déplace le champ clair de la fenêtre de droite vers la fenêtre de gauche et inversement

Si vous désirez copier de la TNC vers le support externe de données, décalez le champ clair de la fenêtre de gauche sur le fichier à transférer.

Si vous désirez copier du support externe de données vers la TNC, décalez le champ clair de la fenêtre de droite sur le fichier à transférer.

Transférer un fichier donné: appuyer sur la softkey COPIER ou

transférer plusieurs fichiers: appuyer sur la softkey MARQUER (2ème menu de softkeys, cf. également Fonctions de marguage plus haut dans ce chapitre), ou

transférer tous les fichiers: appuyer sur la softkey TNC EXT

noue manuer	E a i t e	r table	au Pum			
	Nom d	e fichi	er = <mark>2</mark> 73.	Н		
TNC:\NK*.*	1		TNC:*.*	2		
Nom fichier	. 00	tet Etat	Nom fichier		Octet	Etat
273	.H 2	680	%TCHPRNT	.Α	73	
3510	.H 1	268	1	.Α	Ø	
EMOSEFK	.н :	934	BOHRER	.CDT	4522	
WIEST	.н	604	FRAES_2	.CDT	10382	
ZIEHSTE2	.н :	452	\$MDI	.н	220	
265	.HNC	.441	1	.н	304	
26501	.HNC 1	445	79247	.н	2316	
266	.HNC	893	79280	.н	1734	
273	.HNC 2	117	DAUER	.н	352	
			EXTRUDER	.н	1402	
			GEHAEUSE	.н	6416	
9 fichier(s	5) 918 448 ko	ct. libres	32 fichier(s)	918448	koct. 1	ibres
1						
PAGE F	PAGE SEL	ECT. COPIER	SELECT. FEN	ETRE	ЦЕМ	ETI
1 U I	₩ -4	PBC ⇒ XY			n E n	1 11

Valider avec la softkey EXECUTER ou avec la touche ENT. La TNC affiche une fenêtre délivrant des informations sur le processus de copie ou

si vous voulez transférer de longs programmes ou plusieurs programmes: appuyer sur la sofktey EXECUTION PARALLELE. La TNC copie alors le fichier en arrière-plan

F	ENé	ÊTRE
≡	≡	

Clôre la transmission des données: décaler le champ clair vers la fenêtre de gauche, puis appuyer sur le softkey FENETRE. La TNC affiche à nouveau le fenêtre standard de gestion des fichiers

Pour pouvoir sélectionner un autre répertoire avec la double représentation de fenêtre de fichiers, appuyez sur la softkey CHEM et sélectionnez le répertoire désiré avec les touches fléchées ou la touche ENT!

Copier des fichiers vers un autre répertoire

- Sélectionner le partage de l'écran avec fenêtres de même grandeur
- Afficher les répertoires dans les deux fenêtres: appuyer sur la softkey PATH

Fenêtre de droite:

Déplacer le champ clair sur le répertoire vers lequel vous voulez copier les fichiers et afficher avec la touche ENT les fichiers contenus dans ce répertoire

Fenêtre de gauche:

Sélectionner le répertoire avec les fichiers que vous voulez copier et afficher les fichiers avec la touche ENT

MARQUER	
	Ξ.

Afficher les fonctions de marquage des fichiers

MARQUER FICHIER Déplacer le champ clair sur le fichier que vous désirez copier et le marquer. Si vous le souhaitez, marquez d'autres fichiers de la même manière

R0 ► Copier les fichiers marqués dans le répertoire-cible

Autres fonctions de marquage: cf. "Marquer des fichiers".

Si vous avez marqué des fichiers aussi bien dans la fenêtre de droite que dans celle de gauche, la TNC copie alors à partir du répertoire contenant le champ clair.

Ecraser des fichiers

Si vous copiez des fichiers dans un répertoire contenant des fichiers de même nom, la TNC vous demande si les fichiers du répertoirecible peuvent être écrasés:

- Ecraser tous les fichiers: appuyer sur la softkey OUI ou
- ▶ n'effacer aucun fichier: appuyer sur la softkey NON ou
- ▶ valider l'écrasement fichier par fichier: appuyer sur la softkey CONFIRMER

Si vous désirez écraser un fichier protégé, vous devez confirmer ou interrompre séparément cette opération.

La TNC en réseau (seulement avec option interface Ethernet)

 Pour raccorder la carte Ethernet sur votre réseau, consultez le chapitre "12.5 Interface Ethernet"!

Les messages d'erreur intervenant en fonctionnement réseau sont édités par la TNC (cf. "12.5 Interface Ethernet").

Si la TNC est raccordée à un réseau, la fenêtre des répertoires affiche jusqu'à 7 lecteurs supplémentaires 1 (cf. figure de droite, en haut). Toutes les fonctions décrites précédemment (sélection du lecteur, copie de fichiers, usw.) sont également valables pour les lecteurs du réseau dans la mesure où vous y avez accès.

Relier et délier les lecteurs du réseau

PGM MGT Sélectionner la gestion de fichiers: appuyer sur PGM MGT; le cas échéant, sélectionner le partage d'écran avec la softkey FENETRE, comme indiqué dans la figure en haut et à droite

Gestion de lecteurs en réseau: appuyer sur la softkey RESEAU (2ème menu de softkeys). La TNC indique dans la fenêtre de droite 2 les lecteurs du réseau possibles auxquels vous avez accès. A l'aide des softkeys ci-après, vous définissez les liaisons pour chaque lecteur

Fonction	Softkey
Etablir liaison réseau; la TNC incrit un M dans la colonne Mnt lorsque la liaison est activée. Vous pouvez relier à la TNC jusqu'à 7 lecteurs supplémentaires	CONNECTER LECTEUR
Fermer la liaison réseau	DECONNECT LECTEUR

CONNECT. AUTOMAT.

PAS DE

CONNECT

AUTOMAT.

Etablir automatiquement la liaison réseau à la mise sous tension de la TNC. La TNC inscrit un A dans la colonne Auto lorsque la liaison est établie automatiquement

Ne pas établir automatiquement la liaison réseau à la mise sous tension de la TNC

L'établissement de la liaison réseau peut prendre un certain temps. La TNC affiche alors [READ DIR] à droite, en haut de l'écran. La vitesse de transmission max. est comprise entre 200 Kbauds et 1 Mbauds, selon le type de fichier que vous transférez.

Imprimer un fichier sur l'imprimante-réseau

Si vous avez défini une imprimante réseau (cf. "12.5 Interface Ethernet"), vous pouvez imprimer les fichiers directement:

- Appeler la gestion de fichiers: appuyer sur la touche PGM MGT
- Déplacez le champ clair sur le fichier que vous désirez imprimer
- ▶ Appuyer sur la softkey COPIER
- Appuyer sur la softkey IMPRIMER: Si vous n'avez défini qu'une seule imprimante, la TNC délivre directement le fichier.

Si vous avez défini plusieurs imprimantes, la TNC affiche une fenêtre avec toutes les imprimantes définies. Dans la fenêtre en avant-plan, sélectionnez l'imprimante à l'aide des touches fléchées et appuyez sur la touche ENT

4.5 Ouverture et introduction de programmes

Structure d'un programme CN en format Texte clair HEIDENHAIN

Un programme d'usinage est constitué d'une série de séquences de programme. La figure de droite indique les éléments d'une séquence.

La TNC numérote les séquences d'un programme d'usinage en ordre croissant.

La première séquence d'un programme comporte "BEGIN PGM", le nom du programme et l'unité de mesure utilisée.

Les séquences suivantes renferment les informations concernant:

- la pièce brute
- les définitions et appels d'outils
- les avances et vitesses de rotation
- les déplacements de contournage, cycles et autres fonctions.

La dernière séquence d'un programme comporte "END PGM", le nom du programme et l'unité de mesure utilisée.

Définition de la pièce brute: BLK FORM

Immédiatement après avoir ouvert un nouveau programme, vous définissez une pièce parallélépipèdique non usinée. La TNC a besoin de cette définition pour effectuer les simulations graphiques. Les faces du parallélépipède ne doivent pas avoir une longueur dépassant 100 000 mm. Elles sont parallèles aux axes X, Y et Z. Cette pièce brute est définie par deux de ses coins:

- Point MIN: la plus petite coordonnée X,Y et Z du parallélépipède; à programmer en valeurs absolues
- Point MAX: la plus grande coordonnée X, Y et Z du parallélépipède; à programmer en valeurs absolues ou incrémentales

La définition de la pièce brute n'est indispensable que si vous désirez tester graphiquement le programme!

Ouverture d'un nouveau programme d'usinage

Vous introduisez toujours un programme d'usinage en mode de fonctionnement Mémorisation/édition de programme.

Exemple d'ouverture d'un programme

Sélectionner le mode Mémorisation/édition de programme

Appeler la gestion de fichiers: appuyer sur la touche PGM MGT

Exe en	contion PGM	Mémo Déf	orisa BLK	ation, FORM	∕éditi ∶poir	ion nt	pro max?	gran '	nme
0	BEGIN PGM	NEU MM							
1	BLK FORM 0	.1 Z X+0	Y+0 Z-4	0					
2	BLK FORM 0	.2 X+100	Y+100						
	Z+0								
3	END PGM NE	U MM							

Sélectionnez le répertoire dans lequel vous désirez mémoriser le nouveau programme:

Nom de fichie	r = OLD.H	
	Introduire le nom du nouveau programme, valider avec la touche ENT	
ММ	Sélectionner l'unité de mesure: appuyer sur la softkey MM ou INCH. La TNC change de fenêtre de programme et ouvre le dialogue de définition de la BLK-FORM (pièce brute)	
Axe broche pa	rallèle X/Y/Z ?	
Z	Introduire l'axe de broche	48
Def BLK-FORM:	point min.?	
0 _{ent}	Introduire les unes après les autres les coordonnées en X, Y et Z du point MIN	

Si vous ne désirez pas programmer la définition d'une pièce brute, interrompez le dialogue avec la touche DEL.

Def BLK-FORM: point max.?

ENT

ENT

0

-40

Introduire les unes après les autres les coordonnées en X, Y et Z du point MAX

Le fenêtre du programme affiche la définition de la BLK-FORM:

O BEGIN PGM NOUV MM	Début du programme, nom, unité de mesure
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Axe de broche, coordonnées du point MIN
2 BLK FORM 0.2 X+100 Y+100 Z+0	Coordonnées du point MAX
3 END PGM NOUV MM	Fin du programme, nom, unité de mesure

Position. par introd. man.

0

1

2

3

4

Mémorisation/édition programme

Fonction auxiliaire M?

BLK FORM 0.1 Z X+0 Y+0 Z-40

L X+10 Y+5 RL F100 M3

BLK FORM 0.2 X+100 Y+100 Z+0

BEGIN PGM NEU MM

L Z+150 R0 F MAX

END PGM NEU MM

La TNC génère de manière automatique les numéros de séquences et les séquences BEGIN et END.

Programmation de déplacements d'outils en dialogue conversationnel Texte clair

Pour programmer une séquence, commencez avec une touche de dialogue. En en-tête d'écran, la TNC réclame les données requises.

Exemple de dialogue

L	Ouvrir le dialogue	
Coordonnées	?	
X 10	Introduire la coordonnée-cible pour l'axe X	
Y ⁵ ent	Introduire la coordonnée-cible pour l'axe Y; passer à la question suivante en appuyant sur la touche ENT	
Corr. rayon:	RL/RR/Pas de corr.: ?	Fonctions pendant le dialogue Touche
ENT	Introduire "pas de correction de rayon"; passer	Passer outre la question de dialogue
	a la question suivante avec ENT	Clôre prématurément le dialogue
Avance F=? /	F MAX = ENT	
100 _{ент}	Avance de ce déplacement de contournage	Interrompre et effacer le dialogue
	100 mm/min.; passer à la question suivante en	
		Fonctions définition de l'avance Softkey
Fonction aux	xiliaire M ?	Déplacement en rapide
3 _{ent}	Fonction auxiliaire M3 "Marche broche"; la TNC clôt le dialogue avec ENT	Déplacement selon avance calculée automatiquement à partir de la séquence TOOL CALL

TNC 426 B, TNC 430 HEIDENHAIN

Le fenêtre de programme affiche la ligne:

3 L X+10 Y+5 R0 F100 M3

Edition des lignes de programme

Alors que vous êtes en train d'élaborer ou de modifier un programme d'usinage, vous pouvez sélectionner chaque ligne du programme ou certains mots d'une séquence à l'aide des touches fléchées ou des softkeys: cf. tableau de droite.

Recherche de mots identiques dans plusieurs séquences

Pour cette fonction, mettre la softkey DESSIN AUTO sur OFF.

+	

Sélectionner un mot dans une séquence: appuyer sur les touches fléchées jusqu'à ce que le mot choisi soit marqué

Sélectionner une séquence à l'aide des touches fléchées

Dans la nouvelle séquence sélectionnée, le marquage se trouve sur le même mot que celui de la séquence sélectionnée à l'origine.

Trouver n'importe quel texte

- Sélectionner la fonction de recherche: appuyer sur la softkey RECHERCHE. La TNC affiche le dialogue RECHERCHE TEXTE:
- ▶ Introduire le texte à rechercher
- ▶ Rechercher le texte: appuyer sur la softkey EXECUTER

Insérer des séquences à un endroit quelconque

Sélectionner la séquence derrière laquelle vous désirez insérer une nouvelle séquence et ouvrez le dialogue.

Modifier et insérer des mots

- Dans une séquence, sélectionnez un mot et écrivez par dessus la nouvelle valeur. Lorsque vous avez sélectionné le mot, vous disposez du dialogue Texte clair.
- Achever la modification: appuyez sur la touche END.

Si vous désirez insérer un mot, appuyez sur les touches fléchées (vers la droite ou vers la gauche) jusqu'à ce que le dialogue souhaité apparaisse; introduisez ensuite la valeur souhaitée.

Sélectionner séquence ou mot	Softk./touches
Feuilleter vers le haut	PAGE
Feuilleter vers le bas	PAGE I
Saut à la fin du programme	
Saut à la fin du programme	FIN <u>I</u>
Sauter d'une séquence à une autre	
Sélectionner des mots donnés de la séquence	

Effacer séquences et mots	Touche
Mettre à zéro la valeur d'un mot sélectionné	CE
Effacer une valeur erronée	CE
Effacer message erreur (non clignotant)	CE
Effacer mot sélectionné	NO ENT
Effacer séquence sélectionnée	DEL
Effacer cycles et parties de programme Effacer dernière séquence du cycle à effacer ou sélectionner la partie de programme et l'effacer avec la touche DEL	DEL
4.6 Graphisme de <mark>pro</mark>grammation

4.6 Graphisme de programmation

Pendant que vous élaborez un programme, la TNC peut afficher le graphisme du contour programmé.

Déroulement/pas de déroulement du graphisme de programmation

Commuter sur le partage de l'écran avec le programme à gauche et le graphisme à droite: appuyer sur la touche SPLIT SCREEN et sur la softkey PGM + GRAPHISME

Mettre la softkey DESSIN AUTO sur ON. Pendant que vous introduisez les lignes du programme, la TNC affiche dans la fenêtre du graphisme de droite chaque déplacement de contournage programmé.

Si le graphisme ne doit pas être affiché, mettez la softkey DESSIN AUTO sur OFF.

DESSIN AUTO sur ON ne dessine pas les répétitions de parties de programme.

Elaboration du graphisme de programmation pour un programme existant

A l'aide des touches fléchées, sélectionnez la séquence jusqu'à laquelle le graphisme doit être créé ou appuyez sur GOTO et introduisez directement le numéro de la séquence choisie

RESET	
+	I
START	I

Elaborer le graphisme: appuyer sur la softkey RESET + START

Autres fonctions: cf. tableau de droite.

Faire apparaître ou non les numéros de séquences

Commuter le menu de softkeys: cf. figure de droite

 \triangleright

- Afficher les numéros de séquence: Mettre la softkey AFFICHER OMETTRE N° SEQU. sur AFFICHER
- Omettre les numéros de séquence: mettre la softkey AFFICHER OMETTRE N° SEQU. sur OMETTRE

Effacer le graphisme

Commuter le menu de softkeys: cf. figure de droite

 \triangleright

Effacer le graphisme: appuyer sur la softkey EFFACER GRAPHISME

Fonctions graph. programmation	Softkey
Créer graphisme de programmation pas-à-pas	START PAS-A-PAS
Créer graphisme programmation complet ou le compléter après RESET + START	START
Stopper graphisme de programmation	

Stopper graphisme de programmation Cette softkey n'apparaît que lorsque la TNC créé un graphisme de programmation

STOP

Agrandissement ou réduction de la projection

Vous pouvez vous-même définir la projection d'un graphisme. Sélectionner avec un cadre la projection pour l'agrandissement ou la réduction.

Sélectionner le menu de softkeys pour l'agrandissement/ réduction de la projection (deuxième menu, cf. figure de droite) Vous disposez des fonctions suivantes:

Fonction	Softkey
Afficher le cadre et le décaler Pour décaler, maintenir enfoncée la softkey désirée	$\begin{array}{c c} \leftarrow & - \\ \hline \\ \uparrow & \downarrow \end{array}$
Diminuer le cadre – pour réduire, maintenir la softkey enfoncée	< <

Agrandir le cadre - pour agrandir, maintenir la softkey enfoncée

DETAIL PIECE BR. ► Avec la sofkey DETAIL PIECE BR., prendre en compte la zone sélectionnée

>>

La softkey PIECE BR. DITO BLK FORM vous permet de rétablir la projection d'origine.

4.7 Articulation de programmes

La TNC vous offre la possibilité de commenter les programmes d'usinage à l'aide de séquences d'articulation; celles-ci sont constituées de petits texte (244 caractères max.) de commentaires ou titres portant sur les lignes suivantes du programme.

Des séquences d'articulation explicites permettent une meilleure lisibilité et compréhension des programmes longs et complexes. Elles facilitent notamment les modifications à apporter après-coup au programme. Vous pouvez insérer des séquences d'articulation à n'importe quel endroit du programme d'usinage. Elles peuvent être affichées dans une fenêtre à part et y être également traitées et complétées. Un deuxième niveau permet de réaliser une articulation plus fine: La TNC repousse vers la droite les textes du second niveau.

Afficher la fenêtre d'articulation / changer de fenêtre active

FENÊTRE

⇔

PROGRAMME Afficher la fenêtre d'articulation: sélectionner le partage d'écran PGM+ ARTICUL.

Changer de fenêtre active: appuyer sur la softkey CHANGER CHANGER FENETRE

Mode ⊪anuel	Mémo	risa	ation	ڎditi	ion p	rogran	nme
 33 FCT DR- 34 FSELECT 35 FCT DR- 36 FCT X+0 37 FSELECT 38 LBL 0 	R70 CCPR+8 3 R7,5 Y+80 DR- R 1	0 80 CCX+	0 CCY+0)		
39 END PGM	3516 MM						
t	Ļ	+	-	<<	>>	PIECE BR. DITO	DETAIL

Мос	de ⊪anue]	Mér	norisa	ation	/éditi	ion pr	rogran	nme
2	BLK FOR	4 0.2 X+1	00 Y+100 Z	+0	BEGIN PGM	1F		
3	* - Out	il 1			- Outil 1			
4	TOOL CA	_L 1 Z S4	500		- Ebauc	he		
5 L Z+100 R0 F MAX				- Finis	sage			
6 CYCL DEF 203 PERCAGE UNIV.			- Outil 2					
Q200=2 \$DISTANCE D'APPROCHE			- Prepercage					
0201=-20 \$PROFONDEUR?				- Prepositionnement en X, Y				
0206=150 \$AVANCE PLONGEE PROF.			- Appel de cycle					
0202=5 \$PROFONDEUR DE PASSE			- Outil 3					
	0210=0	\$ TEMP	O. EN HAUT		END PGM 1F			
	0203=+	a \$COOR	D. SURFACE	PIECE				
	Q204=5	a ;2. D	IST. D'APP	ROCHE				
	Q212=0	\$VALE	UR DE REDU	ICTION				
Q213=0 \$NB BRISES COPEAUX								
Q205=0 \$PROF. PASSE MIN.								
(DEBUT	FIN J	PAGE	PAGE ↓	RECHERCHE			CHANGE FENETR

Insérer une séquence d'articulation dans la fenêtre du programme (à gauche)

Sélectionner la séquence derrière laquelle vous désirez insérer la séquence d'articulation

▶ Appuyer sur la softkey INSERER ARTICULATION

Introduire le texte d'articulation au clavier alphabétique

Pour changer de niveau, utilisez la softkey CHANGER DE NIVEAU.

Insérer une séquence d'articulation dans la fenêtre d'articulation (à droite)

- Sélectionner la séquence d'articulation désirée derrière laquelle vous souhaitez insérer la nouvelle séquence
- Introduire le texte sur le clavier alphabétique La TNC insère la nouvelle séquence automatiquement

Sélectionner des séquences dans la fenêtre d'articulation

Si vous sautez d'une séquence à une autre dans la fenêtre d'articulation, la TNC affiche en même temps la séquence dans la fenêtre du programme. Ceci vous permet de sauter de grandes parties de programme en peu d'opérations.

4.8 Insertion de commentaires

Vous pouvez doter d'un commentaire chaque séquence d'un programme d'usinage afin d'expliciter des éléments de programmes ou y adjoindre des remarques. Vous disposez de trois possibilités pour insérer un commentaire:

1. Commentaire pendant l'introduction du programme

- Introduire les données d'une séquence de programme, puis appuyer sur ";" (point virgule) du clavier alphabétique – La TNC affiche la question Commentaire ?
- Introduire le commentaire et fermer la séquence avec la touche END

2. Insérer un commentaire après-coup

- Sélectionner la séquence à doter d'un commentaire
- Avec la touche flêche vers la droite, sélectionner le dernier mot de la séquence: un point virgule apparaît en fin de séquence et la TNC affiche la question Commentaire ?
- Introduire le commentaire et fermer la séquence avec la touche END

3. Commentaire dans une séquence propre

- Sélectionner la séquence derrière laquelle vous désirez insérer le commentaire
- Ouvrir le dialogue de programmation avec la touche ";" (point virgule) du clavier alphabétique
- Introduire le commentaire et fermer la séquence avec la touche END

0 BEGIN PGM 3507 MM 1 BLK FORM 0.1 Z X-20 Y-20 Z-20 2 BLK FORM 0.2 X+20 Y+20 Z+0 3 ; Outil 1 4 TOOL CALL 1 Z S1000 5 L Z+50 R0 F MAX M3 6 L X+50 Y+50 R0 F MAX M8	
1 BLK FORM 0.1 Z X-20 Y-20 Z-20 2 BLK FORM 0.2 X+20 Y+20 Z+0 3 ; Outil 1 4 TOOL CALL 1 Z S1000 5 L Z+50 R0 F MAX M3 6 L X+50 Y+50 R0 F MAX M8	
2 BLK FORM 0.2 X+20 Y+20 Z+0 3 ; Outil 1 4 TOOL CALL 1 Z S1000 5 L Z+50 R0 F MAX M3 6 L X+50 Y+50 R0 F MAX M8	
3 ; Outil 1 4 TOOL CALL 1 Z S1000 5 L Z+50 R0 F MAX M3 6 L X+50 Y+50 R0 F MAX M8	
4 TOOL CALL 1 Z S1000 5 L Z+50 R0 F MAX M3 6 L X+50 Y+50 R0 F MAX M8	
5 L Z+50 R0 F MAX M3 6 L X+50 Y+50 R0 F MAX M8	
16 L X+50 Y+50 R0 F MAX M8	
7 L Z-5 RØ F MAX	
8 CC X+0 Y+0	
9 LP PR+14 PA+45 RR F500	
10 RND R1	
11 FC DR+ R2,5 CLSD+	
12 FLT AN+180,925	
13 FCT DR+ R10,5 CCX+0 CCY+0	
14 FSELECI 1	

4.9 Créer des fichiers-texte

Sur la TNC, vous pouvez créer et exploiter des textes à l'aide d'un éditeur de texte. Applications types:

- Conserver des valeurs en tant que documents
- Informer sur des phases d'usinage
- Créer une compilation de formules

Les fichiers-texte sont des fichiers de type .A (ASCII). Si vous désirez traiter d'autres fichiers, vous devez tout d'abord les convertir en fichiers .A.

Ouvrir et quitter les fichiers-texte

- Sélectionner le mode Mémorisation/édition de programme
- Appeler la gestion de fichiers: appuyer sur la touche PGM MGT
- Afficher les fichiers de type .A: appuyer sur la softkey SELECT. TYPE puis sur la softkey AFFICHER .A
- Sélectionner le fichier et l'ouvrir avec la softkey SELECT. ou la touche ENT

 \mathbf{ou} ouvrir un nouveau fichier: introduire le nouveau nom et valider avec la touche ENT

Si vous désirez quitter l'éditeur de texte, appelez la gestion de fichiers et sélectionnez un fichier d'un autre type, un programme d'usinage par exemple.

Editer des textes

La première ligne de l'éditeur de texte comporte un curseur d'informations qui affiche le nom du fichier, l'endroit où il se trouve et le mode d'écriture du curseur:

- Fichier: Nom du fichier-texte
- Ligne: Position ligne actuelle du curseur
- Colonne: Position colonne actuelle du curseur
- Insérer: Les nouveaux caractères programmés sont insérés
- Ecraser: Les nouveaux caractères programmés écrasent le texte situé à la position du curseur

Le texte est inséré à l'endroit où se trouve le curseur. Vous déplacez le curseur à l'aide des touches fléchées à n'importe quel endroit du fichier-texte.

La ligne sur laquelle se trouve le curseur ressort en couleur. Une ligne peut comporter jusqu'à 77 caractères; fin de ligne à l'aide de la touche RET (Return) ou ENT.

Execution en continu	°™ Méi	morisa	ation	/édit:	ion pr	rogra	mme
Fichier: 3	516.A		Ligne:	5 Col	onne: 41	INSERT	
0 BEGIN P	GM 3516 M	IM					
*******	*******	********	********	********	******		
1 BLK FOR	M 0.1 Z >	(-90 Y-90 Z	-40				
2 BLK FOR	M 0.2 X+9	90 Y+90 Z+0					
*******	*******	********	********	********	*****		
3 TOOL DE	F 50	**	Outil 1 +	•*			
4 TOOL CF	LL 1 Z S1	400 **	Axe: Z +	*			
5 L Z+50	RØ F MAX						
6 L X+0 Y	+100 R0 F	мах мз					
7 L Z-20	RØ F MAX						
8 L X+0 Y	+80 RL F2	250					
9 FPOL X+	0 Y + 0						
10 FC DR-	R80 CCX+	0 CCY+0					
11 FCT DR	- R7,5						
INSERER	MOT SUIVANT	MOT PRECEDENT	PAGE	PAGE		FIN "	RECHERCH

Déplacements du curseur	Softkey
Curseur un mot vers la droite	MOT SUIVANT >>
Curseur un mot vers la gauche	MOT PRECEDENT <<
Curseur à la page d'écran suivante	PAGE Ţ
Curseur à la page d'écran précédente	PAGE
Curseur en début de fichier	
Curseur en fin de fichier	FIN <u>I</u>

Fonctions d'édition	Touche
Débuter une nouvelle ligne	RET
Effacer caractère à gauche du curseur	X
Insérer un espace	SPACE
Changer petits/grands caractères	SHIFT + SPACE

Effacer des caractères, mots et lignes et les insérer à nouveau

Avec l'éditeur de texte, vous pouvez effacer des lignes ou mots entiers pour les insérer à un autre endroit: cf. tableau de droite.

Décaler un mot ou une ligne

- Déplacer le curseur sur le mot ou sur la ligne à effacer et à insérer à un autre endroit
- Appuyer sur la softkey EFFACER MOT ou EFFACER LIGNE: Le texte disparaît et est mis en mémoire tampon
- Déplacer le curseur à la position d'insertion du texte et appuyer sur la softkey INSERER LIGNE/MOT

Traiter des blocs de texte

Vous pouvez copier, effacer et insérer à un autre endroit des blocs de texte de n'importe quelle grandeur. Dans tous les cas, vous devez d'abord sélectionner le bloc de texte souhaité:

Sélectionner le bloc de texte: déplacer le curseur sur le caractère à partir duquel doit débuter la sélection du texte

SELECT. BLOC

- ► Appuyer sur la softkey SELECT. BLOC
 - Déplacer le curseur sur le caractère qui doit terminer la sélection du texte. Si vous faîtes glisser directement le curseur à l'aide des touches fléchées vers le haut et le bas, les lignes de texte intermédiaires seront toutes sélectionnées – Le texte sélectionné est en couleur

Après avoir sélectionné le bloc de texte désiré, continuez à traiter le texte à l'aide des softkeys suivantes:

Fonction	Softkey
Effacer le bloc sélectionné et le mettre en mémoire tampon	EFFACER BLOC
Mettre le texte sélectionné en mémoire	COPIER

Si vous désirez insérer à un autre endroit le bloc mis en mémoire

tampon, exécutez encore les opérations suivantes:

- Déplacer le curseur à la position d'insertion du bloc de texte de la mémoire tampon
 - INSERER BLOC

Appuyer sur la softkey INSERER BLOC: Le texte sera inséré

BLOC

Tant que le texte est dans la mémoire tampon, vous pouvez l'insérer autant de fois que vous le souhaitez.

Fonctions d'effacement	Softkey
Effacer ligne et mettre en mémoire	EFFACER LIGNE
Effacer mot et mettre en mémoire	EFFACER MOT
Effacer caractère et mettre en mémoire	EFFACER CARACTERE
Insérer ligne ou mot après l'avoir effacé	INSERER LIGNE / MOT

Executi en cont	n PGM Mé nu	morisa	ation,	∕éditi	ion pı	rogran	nme
Fichier	3516.A		Ligne:	10 Col	onne: 1	INSERT	
Ø BEGI	N PGM 3516 I	чм					
1 BLK	ORM 0.1 Z	K-90 Y-90 Z	-40				
2 BLK	ORM 0.2 X+	90 Y+90 Z+0					
3 TOOL	DEF 50						
4 TOOL	CALL 1 Z S	1400					
5 L Z+	50 R0 F MAX						
6 L X+	9 Y+100 R0 I	г мах мз					
7 L Z-	0 RO F MAX						
8 L X+	9 Y+80 RL F	250					
9 FPOL	X+0 Y+0						
10 FC	DR- R80 CCX	+0 CCY+0					
11 FCT	DR- R7,5						
12 FCT	DR+ R90 CC	(+69,282 CC	Y-40				
13 FSE	ECT 2						
SELECT	EFFACER	INSERER	COPIER			TRANSF.	INSERER
BLOC	BLOC	BLOC	BLOC			A FICHIER	FICHIER

tampon, sans l'effacer (copier)

Transférer un bloc sélectionné vers un autre fichier

Sélectionner le bloc de texte tel que décrit précédemment

	TRANSF.	
A	FICHIER	

Appuyer sur la softkey TRANSF. A FICHIER. La TNC affiche le dialogue Fichier-cible =

Introduire le chemin d'accès et le nom du fichier-cible. La TNC accroche le bloc de texte sélectionné au fichier-cible. Si aucun fichier-cible ne correspond au nom introduit, la TNC inscrit le texte sélectionné dans un nouveau fichier

Insérer un autre fichier à la position du curseur

Déplacer le curseur à l'endroit où vous désirez insérer un nouveau fichier-texte

INSERER	
FICHIER	

Appuyer sur la softkey INSERER FICHIER.

La TNC affiche le dialogue Nom de fichier =

Introduire le chemin d'accès et le nom du fichier que vous désirez insérer

Recherche des parties de texte

La fonction de recherche de l'éditeur de texte est capable de rechercher des mots ou chaines de caractères à l'intérieur du texte. Il existe pour cela deux possibilités:

1. Trouver le texte actuel

La fonction de recherche doit trouver un mot correspondant au mot sur lequel se trouve actuellement le curseur:

- Déplacer le curseur sur le mot souhaité
- Sélectionner la fonction de recherche: appuyer sur la softkey RECHERCHE
- ▶ Appuyer sur la softkey CHERCHER MOT ACTUEL

2. Trouver n'importe quel texte

- Sélectionner la fonction de recherche: appuyer sur la softkey RECHERCHE. La TNC affiche le dialogue Cherche texte :
- ▶ Introduire le texte à rechercher
- ▶ Rechercher le texte: appuyer sur la softkey EXECUTER

Quittez la fonction de recherche avec la softkey FIN.

4.10 La calculatrice

La TNC dispose d'une calculatrice qui comporte les principales fonctions mathématiques.

Vous ouvrez et fermez la calculatrice avec la touche CALC. A l'aide des touches fléchées, vous pouvez la déplacer librement sur l'écran.

Sur le clavier alphabétique, vous pouvez sélectionnez les fonctions de calculs au moyen d'un raccourci. Les raccourcis sont en couleur sur la calculatrice:

Fonction de calcul	Raccourci
Addition	+
Soustraction	_
Multiplication	*
Division	:
Sinus	S
Cosinus	С
Tangente	Т
Arc-sinus	AS
Arc-cosinus	AC
Arc-tangente	AT
Puissance	^
Extraîre la racine carrée	Q
Fonction inverse	/
Calcul entre parenthèses	()
PI (3.14159265359)	Ρ
Afficher le résultat	=

Lorsque vous introduisez un programme et que vous êtes dans le dialogue, vous pouvez copier l'affichage de la calculatrice directement dans le champ sélectionné à l'aide de la touche "Prise en compte de position effective".

4.11 Aide directe lors de messages d'erreur CN

La TNC délivre automatiquement les messages d'erreur, notamment:

- lors d'introduction de données erronées
- en cas d'erreurs logiques dans le programme
- lorsque les éléments du contour ne peuvent pas être exécutés
- lors d'une utilisation du palpeur non conforme aux prescriptions

Un message d'erreur contenant le numéro d'une séquence provient de cette même séquence ou d'une séquence précédente. Effacez les messages avec la touche CE après avoir remédié à la cause de l'erreur.

Pour obtenir plus amples informations sur un message d'erreur, appuyez sur la touche HELP. La TNC affiche alors une fenêtre décrivant l'origine de l'erreur et la manière d'y remédier.

Afficher l'aide

Si un message d'erreur est affiché en en-tête de l'écran:

- ▶ Afficher l'aide: appuyer sur la touche HELP
- Lire la description de l'erreur ainsi que les possibilités d'y remédier. Pour fermer la fenêtre d'aide et supprimer simultanément le message d'erreur, appuyer sur la touche CE
- Eliminer l'erreur conformément aux instructions affichées dans la fenêtre d'aide

En présence de messages d'erreur clignotant, la TNC affiche le texte d'aide automatiquement. Après les messages d'erreur clignotants, vous devez redémarrer la TNC en appuyant sur la touche END pendant 2 secondes.

4.12 Gestion de palettes

La gestion de palettes est une fonction qui dépend de la machine. Le contenu des fonctions standard est décrit ciaprès. Consultez également le manuel de votre machine.

Les tableaux de palettes sont utilisés sur centres d'usinage équipés d'un changeur de palettes: Pour les différentes palettes, le tableau de palettes appelle les programmes d'usinage qui lui appartiennent et active les décalages de points zéro ou les tableaux de points zéro correspondants.

Vous pouvez également utiliser les tableaux de palettes pour exécuter les uns à la suite des autres différents programmes comportant différents points de référence.

Les tableaux de palettes contiennent les données suivantes:

- PAL/PGM (introduction impérative): identification de la palette ou du programme CN (sélectionner avec la touche ENT ou NO ENT).
- NAME (introduction impérative): nom de la palette ou du programme. C'est le constructeur de la machine qui définit le nom des palettes (consulter le manuel de la machine). Les noms de programmes doivent être mémorisés dans le même répertoire que celui du tableau de palettes. Sinon, il vous faut introduire le chemin d'accès complet
- DATUM (introduction facultative): nom du tableau de points zéro. Les tableaux de palettes doivent être mémorisés dans le même répertoire que celui du tableau de palettes. Sinon, il vous faut introduire le chemin d'accès complet Vous activez les points zéro à partir du tableau de points zéro dans le programme d'usinage à l'aide du cycle 7 DECALAGE DU POINT ZERO
- X, Y, Z (introduction facultative, autres axes possibles): Pour les noms de palettes, les coordonnées programmées se réfèrent au point zéro machine. Pour les programmes CN, les coordonnées programmées se réfèrent au point zéro de palette.

Avant un programme CN, si vous n'avez pas défini de palette, les coordonnées programmées se réfèrent au point zéro machine.

Sélectionner le tableau de palettes

- En mode Mémorisation/édition de programme, sélectionner la gestion de fichiers avec la touche PGM MGT
- Afficher les fichiers de type .P: appuyer sur les softkeys SELECT. TYPE et AFFICHER .P
- Sélectionner le tableau de palettes à l'aide des touches fléchées ou introduire le nom d'un nouveau tableau
- Valider la sélection avec la touche ENT

Mode	∥anuel	Ed. Pa	iter llette	tablea ⊵=PAL	au PGN / Pro	1 ogramm	ne=PG1	1
1 111	chier:	PAL.P						\rightarrow
NR	PAL/P	GM NAME						
ø	PAL	12359						
1	PGM	TNC:>	DRILL\PA35	і.н				
2	PGM	TNC:>	DRILL\PA36	.н				
3	PGM	TNC:>	MILL\SLII3	5.I				
4	PGM	TNC:>	MILL\FK35.	н				
Б	PAL	12351	0					
6	PGM	TNC:>	TNC:\DRILL\QST35.H					
7	PGM	TNC:>	DRILL\K15.	I				
8	PAL	12351	1					
9	PGM	TNC:>	CYCLENMILL	ING∖C210.H				
10	PGM	TNC:>	TNC:\DRILL\K17.H					
11								
12								
DEB Ú	TUE	F IN	PAGE	PAGE J	INSERER LIGNE	EFFACER	LIGNE SUIVANTE	AJOUTER N LIGNES A LA FIN

Fonction	Softkey	
Sélectionner le début du tableau		
Sélectionner la fin du tableau	FIN <u>I</u>	
Sélectionner page précédente du tableau	PAGE	
Sélection page suivante du tableau	PAGE 	
Insérer ligne en fin de tableau	INSERER LIGNE	
Effacer ligne en fin de tableau	EFFACER LIGNE	
Sélectionner début de la ligne suivante	LIGNE SUIVANTE	
Ajouter nombre de lignes possibles en fin de tableau	AJOUTER N LIGNES A LA FIN	
Copier le champ sur fond clair (2ème menu de softkeys)	COPIER VALEUR ACTUELLE	
Insérer le champ copié (2ème menu de softkeys)	INSERER VALEUR COPIEE	

Quitter le tableau de palettes

- Sélectionner la gestion de fichiers: appuyer sur la touche PGM MGT
- Sélectionner l'autre type de fichier: appuyer sur la softkey SELECT. TYPE et sur la softkey correspondant à l'autre type de fichier désiré, par ex. AFFICHER .H
- ▶ Sélectionner le fichier désiré

Exécuter un fichier de palettes

- - Dans le paramètre-machine 7683, vous définissez si le tableau de palettes doit être exécuté pas-à-pas ou en continu (cf. "13.1 Paramètres utilisateur généraux").
- ▶ En mode Exécution de programme en continu ou Exécution de programme pas-à-pas, sélectionner la gestion de fichiers: appuyer sur la touche PGM MGT
- ► Afficher les fichiers de type .P: appuyer sur les softkeys SELECT. TYPE et AFFICHER .P
- ▶ Sélectionner le tableau de palettes avec les touches fléchées; valider avec la touche ENT
- ▶ Exécuter le tableau de palettes: appuyez sur la touche de start CN; la TNC exécute les palettes de la manière définie dans le paramètre-machine 7683

Programmation:

Outils

5.1 Introduction des données d'outils

Avance F

L'avance F correspond à la vitesse en mm/min. (inch/min.) à laquelle le centre de l'outil se déplace sur sa trajectoire. L'avance max. peut être définie pour chaque axe séparément, par paramètre-machine.

Introduction

Vous pouvez introduire l'avance à l'intérieur de la séquence TOOL CALL (appel d'outil) et dans chaque séquence de positionnement. Cf. "6.2 Principes de base des fonctions de contournage".

Avance rapide

Pour l'avance rapide, introduisez F MAX. Pour introduire F MAX, appuyez sur la touche ENT ou sur la softkey FMAX afin de répondre à la question de dialogue "Avance F = ?".

Durée d'effet

L'avance programmée en valeur numérique reste active jusqu'à la séquence où une nouvelle avance a été programmée. F MAX n'est valable que pour la séquence dans laquelle elle a été programmée. L'avance active après la séquence avec F MAX est la dernière avance programmée en valeur numérique.

Modification en cours d'exécution du programme

Pendant l'exécution du programme, vous pouvez modifier l'avance à l'aide du potentiomètre d'avance F.

Vitesse de rotation broche S

Vous introduisez la vitesse de rotation broche S en tours par minute (t/min.) dans une séquence TOOL CALL (appel d'outil).

Modification programmée

Dans le programme d'usinage, vous pouvez modifier la vitesse de rotation broche dans une séquence TOOL CALL en n'introduisant que la nouvelle vitesse de rotation broche:

Programmer l'appel d'outil: appuyer sur la touche TOOL CALL

- Passer outre le dialogue "Numéro d'outil ?" avec la touche NO ENT
- Passer outre le dialogue "Axe broche parallèle X/Y/Z ?" avec la touche NO ENT
- Introduire une nouvelle vitesse dans le dialogue "Vitesse rotation broche S= ?" et valider avec la touche END

Modification en cours d'exécution du programme

Pendant l'exécution du programme, vous pouvez modifier la vitesse de rotation de la broche à l'aide du potentiomètre de broche S.

5.2 Données d'outils

Habituellement, vous programmez les coordonnées de contournages en prenant la cotation de la pièce sur le plan. Pour que la TNC calcule la trajectoire du centre de l'outil et soit donc en mesure d'exécuter une correction d'outil, vous devez introduire la longueur et le rayon de chaque outil utilisé.

Vous pouvez introduire les données d'outils soit directement dans le programme à l'aide de la fonction TOOL DEF, soit séparément dans des tableaux d'outils. Si vous introduisez les données d'outils dans les tableaux, vous disposez alors d'autres informations relatives aux outils. Lors de l'exécution du programme d'usinage, la TNC prend en compte toutes les informations programmées.

Numéro d'outil, nom d'outil

Chaque outil porte un numéro compris entre 0 et 254. Si vous travaillez avec les tableaux d'outils, vous pouvez utiliser des numéros plus élevés et, en outre, attribuer des noms aux outils.

L'outil de numéro 0 est défini comme outil zéro et par sa longueur L=0 et son rayon R=0. A l'intérieur des tableaux d'outils, vous devez également définir l'outil T0 par L=0 et R=0.

Longueur d'outil L

Vous pouvez définir la longueur d'outil L de deux manières:

1 La longueur correspond à la différence entre la longueur de l'outil et la longueur L_0 d'un outil zéro.

Signe:

- L'outil est plus long que l'outil zéro: L>L₀
- L'outil est plus court que l'outil zéro: L<L₀

Définir la longueur:

- Déplacer l'outil zéro dans l'axe d'outil, à la position de référence (ex. surface de la pièce avec Z=0)
- Mettre à zéro l'affichage de l'axe d'outil (initialisation du point de référence)
- ▶ Installer l'outil suivant
- Déplacer l'outil à la même position de référence que celle de l'outil zéro
- L'affichage dans l'axe d'outil indique la différence linéaire entre l'outil et l'outil zéro
- A l'aide de la touche "Prise en compte de position effective", prendre en compte cette valeur dans la séquence TOOL DEF ou dans le tableau d'outils
- **2** Déterminez la longueur L à l'aide d'un dispositif de pré-réglage. Puis, introduisez directement la valeur calculée dans la définition d'outil TOOL DEF ou dans le tableau d'outils.

Rayon d'outil R

Introduisez directement le rayon d'outil R.

Valeurs Delta pour longueurs et rayons

Les valeurs Delta indiquent les écarts de longueur et de rayon des outils.

Une valeur Delta positive correspond à une surépaisseur (DL, DR, DR2>0). Pour un usinage avec surépaisseur, introduisez la valeur de surépaisseur en programmant l'appel d'outil avec TOOL CALL.

Une valeur Delta négative correspond à une réduction d'épaisseur (DL, DR, DR2<0). Elle est introduite pour l'usure d'outil dans le tableau d'outils.

Les valeurs Delta à introduire sont des valeurs numériques. Dans une séquence TOOL CALL, vous pouvez également introduire la valeur sous forme de paramètre Q.

Plage d'introduction: Les valeurs Delta ne doivent pas excéder ± 99,999 mm.

Introduire les données d'outilsdans le programme

Pour un outil donné, vous définissez une fois dans une séquence TOOL DEF le numéro, la longueur et le rayon d'un outil:

- Sélectionner la définition d'outil: appuyer sur la touche TOOL DEF
 - Introduire le numéro d'outil: pour désigner l'outil sans ambiguité.
 - Introduire la longueur d'outil: valeur de correction pour la longueur
 - Introduire le rayon d'outil
- Pendant le dialogue, vous pouvez insérer directement la valeur de longueur dans le champ de dialogue à l'aide de la touche "Prise en compte de position effective". Veillez à ce que l'axe d'outil soit sélectionné dans l'affichage d'état.

Exemple de séquence CN

4 TOOL DEF 5 L+10 R+5

Introduire les données d'outils dans le tableau

Dans un tableau d'outils, vous pouvez définir jusqu'à 32767 outils et y mémoriser leurs données. A l'aide du paramètre-machine 7260, vous définissez le nombre d'outils que la TNC propose à l'ouverture d'un nouveau tableau. Consultez également les fonctions d'édition, plus loin dans ce chapitre. Vous devez utiliser les tableaux d'outils si

- votre machine est équipée d'un changeur d'outils automatique
- vous désirez procéder à l'étalonnage automatique d'outils avec le TT 120 (cf. Manuel d'utilisation Cycles palpeurs)
- vous désirez effectuer un évidement de finition avec le cycle d'usinage 22; cf. "8.5 Cycle SL, EVIDEMENT"
- vous désirez travailler avec calcul automatique des données de coupe

Abr.	Données à introduire	Dialogue Largeur colonne
Т	Numéro avec lequel l'outil est appelé dans	_
	le programme	
NAME	Nom avec lequel l'outil est appelé dans	Nom d'outil ?
	le programme	
L	Valeur de correction pour la longueur d'outil L	Longueur d'outil ?
R	Valeur de correction pour le rayon d'outil R	Rayon d'outil ?
R2	Rayon d'outil R2 pour fraise à crayon pour angles	Rayon d'outil 2 ?
	(correction rayon tri-dimensionnelle seulement ou	
	representation graphique de l'usinage avec fraise a	
	Crayon)	Curéncies our lengueur d'autil
	Valeur Delta pour la rayon d'outil R	
	Valeur Delta pour le rayon d'outil R2	Surepaisseur rayon d'outil 2?
	Longueur des dents de l'outil pour le cycle 22	Longueur dent dans axe d outil ?
ANGLE	Angle max. de plongee de l'outil lors de la plongee pendulaire avec le cycle 22	Angle max. plongee ?
TL	Bloquer l'outil (TL : de l'angl. T ool L ocked = outil	Outil bloqué ?
	bloqué)	Oui = ENT / Non = NO ENT
RT	Numéro d'un outil jumeau – s'il existe – en tant	Outil jumeau ?
	qu'outil de rechange (RT : de l'angl. R eplacement T ool	
	= outil de rechange); cf. également TIME2	
TIME1	Durée d'utilisation max. de l'outil, exprimée en	Durée d'utilisation max.?
	minutes Cette fonction dépend de la machine. Elle	
	est décrite dans le manuel de la machine	
TIME2	Durée d'utilisation max. de l'outil pour un TOOL	Durée d'utilisation max. avec IOOL CALL ?
	CALL, en minutes: Si la duree d'utilisation actuelle	
	atteint ou depasse cette valeur, la TNC Installe Loutil	
	Duráo d'utilisation actuallo do l'autil, on minutos: La	Durán d'utilisation actualla 2
CON. HIVIL	TNC décompte automatiquement la durée	Duree d'utilisation actuelle :
	d'utilisation (CUB TIME : de l'angl CUB rent TIME =	
	durée actuelle/en cours). Pour les outils usagés, vous	
	pouvez allouer une durée donnée	
DOC	Commentaire sur l'outil (16 caractères max.)	Commentaire sur l'outil ?
PLC	Information concernant cet outil et devant être	Etat automate ?
	transmise à l'automate	

Tableau d'outils: Possibilités d'introduction

Tableau d'outils: Données d'outils pour l'étalonnage automatique d'outils

Description des cycles pour l'étalonnage automatique d'outils: cf. Manuel d'utilisation Cycles palpeurs, chap. 4.

Abr.	Données à introduire	Dialogue
CUT.	Nombre de dents de l'outil (20 dents max.)	Nombre de dents ?
LTOL	Ecart admissible pour la longueur d'outil L et pour la détection d'usure. Si la valeur introduite est	Tolérance d'usure: Longueur ?
	dépassée, la TNC bloque l'outil (état L). Plage d'introduction: 0 à 0,9999 mm	
RTOL	Ecart admissible pour le rayon d'outil R, pour la détection d'usure. Si la valeur introduite est dépassée, la TNC bloque l'outil (état L). Plage d'introduction: 0 à 0,9999 mm	Tolérance d'usure: Rayon ?
DIRECT.	Direction de la dent de l'outil pour l'étalonnage avec outil en rotation	Direction dent (M3 = $-$) ?
TT:R-OFFS	Etalonnage de la longueur: décalage de l'outil entre le sens de la tige de palpage et le centre de l'outil. Configuration: Rayon d'outil R (touche NO ENT donne R)	Décalage outil: Rayon ?
TT:L-OFFS	Etalonnage rayon: décalage complémentaire de l'outil (PM6530) (cf. "13.1 Param. utilisateur généraux") entre arête supérieure tige de palpage et arête inférieure de l'outil. Configuration: 0	Décalage outil: Longueur ?
LBREAK	Ecart admissible pour la longueur d'outil L et pour la détection de rupture. Si la valeur introduite est dépassée, la TNC bloque l'outil (état L). Plage d'introduction: 0 à 0,9999 mm	Tolérance de rupture: Longueur ?
RBREAK	Ecart admissible pour le rayon d'outil R, pour la détection de rupture. Si la valeur introduite est dépassée, la TNC bloque l'outil (état L). Plage d'introduction: 0 à 0,9999 mm	Tolérance de rupture: Rayon ?

Tableau d'outils: Données d'outils complémentaires pour le calcul automatique de la vitesse de rotation/de l'avance

Abr.	Données à introduire	Dialogue
TYPE	Type d'outil (MILL=fraise, DRILL=foret, TAP=taraud): softkey SELECT TYP (3ème menu de softkeys); la TNC affiche une fenêtre où vous pouvez sélectionner le type d'outil	Type d'outil ?
TMAT	Métériau de coupe de l'outil: softkey SELECTION MATERIAU DE COUPE (3ème menu de softkeys); la TNC affiche une fenêtre où vous pouvez sélectionner le matériau de coupe	Matériau coupe de l'outil ?
CDT	Tableau de données de coupe: softkey SELECT. CDT (3ème menu de softkeys); la TNC affiche une fenêtre où vous pouvez sélectionner le tableau de données de coupe	Nom tableau données de coupe ?

Editer les tableaux d'outils

Le tableau d'outils valable pour l'exécution du programme a pour nom TOOL.T. TOOL.T doit être mémorisé dans le répertoire TNC:\ et peut être édité dans l'un des modes de fonctionnement Machine. Attribuez un autre nom de fichier avec l'extension .T aux tableaux d'outils que vous voulez archiver ou utiliser pour le test du programme.

Ouvrir le tableau d'outils TOOL.T:

Sélectionner n'importe quel mode de fonctionnement Machine

 TABLEAU
 Sélectionner le tableau d'outils: appuyer sur la softkey

 D'OUTILS
 TABLEAU D'OUTILS

 EDITER
 Mettre la softkey EDITER sur "ON"

Ouvrir n'importe quel autre tableau d'outils:

▶ Sélectionner le mode Mémorisation/édition de programme

OFF/ ON

- ► Appeler la gestion de fichiers
- Afficher le choix de types de fichiers: appuyer sur la softkey SELECT. TYPE
- ► Afficher les fichiers de type .T: appuyer sur AFFICHE .T
- Sélectionnez un fichier ou introduisez un nouveau nom de fichier. Validez avec la touche ENT ou la softkey SELECT.

Si vous avez ouvert un tableau d'outils pour l'éditer, à l'aide des touches fléchées ou des softkeys, vous pouvez déplacer le champ clair dans le tableau et à n'importe quelle position (cf. figure de droite, au centre). A n'importe quelle position, vous pouvez écraser les valeurs mémorisées ou introduire de nouvelles valeurs. Autres fonctions d'édition: cf. tableau à la page suivante.

Lorsque la TNC ne peut pas afficher simultanément toutes les positions du tableau d'outils, le curseur affiche en haut du tableau le symbole ">>" ou "<<".

Quitter le tableau d'outils:

Appeler la gestion de fichiers et sélectionner un fichier d'un autre type, un programme d'usinage, par exemple

< <f i<="" th=""><th>chier: TO</th><th>OL.T</th><th></th><th>MM</th><th></th><th></th><th></th><th></th></f>	chier: TO	OL.T		MM				
T	L	R	R	2	ANGLE	TYP	TMAT	
а	+0	+0		0	0			
1	+0	+5	-	0	90	MILL	HSSE/TiCN	
2	+0	+2		0	0	MILL	HSSE/TiCN	
3	+0	+1		0	Ø	DRILL	HSSE/TiCN	
Ŧ	+0	+2		2	Ø			
5	+0	+3		0	Ø			
õ	+0	+3	•	0	90			
⊠ +A	+29	7,70	76 + Y 28 + B	++1	16,589	92 +2	2 -:	20,159
		- / - ·		-				087 087
NOM.			т			F 150	90 90	сс. м Б∕9

Fonctions d'édition pour tableaux outils	Softkey
Sélectionner le début du tableau	
Sélectionner la fin du tableau	FIN U
Sélectionner page précédente du tableau	PAGE Î
Sélection page suivante du tableau	PAGE Ū
Chercher le nom d'outil dans le tableau	CHERCHER NOM DE

Réprésenter les informations sur l'outil en colonnes ou représenter toutes les informations concernant un outil FORMULAIR sur une page d'écran

Saut au début de la ligne	DEBUT LIGNE
Saut en fin de ligne	FIN LIGNE ➡
Copier le champ sur fond clair	COPIER VALEUR ACTUELLE
Insérer le champ copié	INSERER VALEUR COPIEE
Ajouter nombre de lignes possibles (outils) en fin de tableau	AJOUTER N LIGNES A LA FIN
Afficher/ne pas afficher n° emplacement	AFFICHER OMETTRE NO EMPL.
Afficher tous les outils / n'afficher que mémorisés dans le tableau d'emplacements	CACHER OUTILS DFF/ ON

Remarques concernant les tableaux d'outils

Le paramètre utilisateur PM7266.x vous permet de définir les données que vous pouvez introduire dans un tableau d'outils ainsi que leur ordre chronologique à l'intérieur de celui-ci. Lors de la configuration du tableau d'outils, veillez à ce que la largeur complète n'excède pas 250 caractères. Des tableaux plus larges ne peuvent pas être transférés via l'interface de données. La largeur des différentes colonnes est indiquée dans la description de PM7266.x.

Vous pouvez écraser des colonnes ou lignes données dans un tableau d'outils par le contenu d'un autre fichier. Conditions requises:

Le fichier-cible doit déjà exister

Le fichier à copier ne doit contenir que les colonnes (lignes) à remplacer.

Copier des colonnes ou lignes données à l'aide de la softkey REMPLACER CHAMPS (cf. 4.4 Gestion étendue des fichiers).

5.2 Données d'outils

Tableau d'emplacements pour changeur d'outils

Pour le changement d'outil automatique, vous programmez dans un mode de fonctionnement Exécution de programme le tableau TOO_P (de l'angl. **TOOL P**ocket = emplacement d'outil).

Sélectionner le tableau d'emplacements

Dans le tableau d'emplacements, vous pouvez introduire les informations suivantes concernant un outil:

Ed P1	iti ace	on t blo	ableau quée d	u d'er bui=El	mplace NT/nor	ements n=NOEM	s Mém Pro	orisatior gramme
Fi	chier:	TOOL_P.	TCH					
P	T	ST F	L PLC					
0	Ø		%0000000	0				
1	10	S	%1100110	1				
2	2		%0000000	0				
3	7		%0100100	Ø				
4			*0000000	Ø				
5	12	F	%1111101	0				
6			L %0000000	0				
Х	+	302,	1887+	(+:	19,885	54 + Z	-21	,782
₩A	+	181,	2249+8	3 +1	78,770	95 + C	+90	,001
						S	0,08	7
NOM.			Т			F 1500		M 5⁄9
DEB	TUE	F IN Ţ	PAGE	PAGE J	RESET TABLEAU	EDITER OFF (ON)	LIGNE SUIVANTE	TABLEA

Colonne:	Données à introduire	Dialogue
Р	Numéro d'emplacement de l'outil dans le magasin	-
Т	Numéro d'outil	Numéro d'outil ?
ST	L'outil est un outil spécial (ST : de l'angl. S pecial T ool = outil spécial); si votre outil spécial occupe plusieurs places avant et après sa place, vous devez bloquer l'emplacement correspondant dans la colonne L (état L)	Outil spécial ?
F	Changer l'outil toujours à la même place dans le magasin (F : de l'angl. F ixed = fixe)	Emplacement défini ? Oui = ENT / Non = NO ENT
L	Bloquer l'emplacement (L: de l'angl. Locked = bloqué, cf. également colonne ST)	Emplacement bloqué Oui = ENT / Non = NO ENT
PLC	Information concernant cet emplacement d'outil et devant être transmise à l'automate	Etat automate ?

Fonctions d'édition pour tableaux d'emplacements	Softkey
Sélectionner le début du tableau	
Sélectionner la fin du tableau	FIN I
Sélectionner page précédente du tableau	PAGE Î
Sélection page suivante du tableau	PAGE U
Annuler tableau d'emplacements	RESET TABLEAU EMPLACMNT
Saut au début de la ligne suivante	LIGNE SUIVANTE
Annuler colonne numéro d'outil T	RESET COLOMNE T
Saut en fin de ligne	FIN LIGNE ➡

Appeler les données d'outils

Vous programmez un appel d'outil TOOL CALL dans le programme d'usinage avec les données suivantes:

- TOOL CALL
- Sélectionner l'appel d'outil à l'aide de la touche TOOL CALL
 - Numéro d'outil: introduire le numéro ou le nom de l'outil. Vous avez précédemment défini l'outil dans une séquence TOOL DEF ou dans le tableau d'outils. Mettez le nom de l'outil entre guillemets. Les noms se réfèrent à ce qui a été introduit dans le tableau d'outils actif TOOL .T.
 - Axe broche parallèle X/Y/Z: introduire l'axe d'outil
 - Vitesse de rotation broche S: introduire directement la vitesse de rotation broche ou la laisser calculer par la TNC si vous travaillez avec les tableaux de données de coupe. Pour cela, appuyez sur la softkey S CALCUL AUTOMAT. La TNC limite la vitesse de rotation broche à la valeur max. définie dans le paramètre-machine 3515
 - Avance F: introduire directement l'avance ou la laisser calculer par la TNC si vous travaillez avec les tableaux de données de coupe. Pour cela, appuyez sur la softkey F CALCUL AUTOMAT. La TNC limite l'avance à l'avance max. de l'"axe le plus lent" (définie dans le paramètre-machine 1010). F est active jusqu'à ce que vous introduisiez une nouvelle avance dans une séquence de positionnement ou dans une séquence TOOL CALL
 - Surépaisseur longueur d'outil: valeur Delta pour la longueur d'outil
 - Surép. rayon d'outil: valeur Delta pour le rayon d'outil
 - Surép. rayon d'outil 2: valeur Delta pour le rayon d'outil 2

Exemple pour un appel d'outil

L'outil numéro 5 est appelé dans l'axe d'outil Z avec une vitesse de rotation broche de 2500 tours/min et une avance de 350 mm/min. La surépaisseur pour la longueur d'outil et le rayon d'outil 2 est de 0,2 mm et la réduction d'épaisseur pour le rayon d'outil, de 1 mm.

20 TOOL CALL 5 Z S2500 F350 DL+0,2 DR-1 DR2:+0,05

Le "D" devant "L" et "R" correspond à la valeur Delta.

Pré-sélection dans les tableaux d'outils

Si vous vous servez des tableaux d'outils, vous pré-sélectionnez dans une séquence TOOL DEF le prochain outil qui doit être utilisé. Pour cela, vous introduisez soit le numéro de l'outil, soit un paramètre Q, soit encore un nom d'outil entre guillemets.

5.2 Données d'outils

Changement d'outil

Le changement d'outil est une fonction qui dépend de la machine. Consultez le manuel de votre machine!

Position de changement d'outil

La position de changement d'outil doit être abordée sans risque de collision. A l'aide des fonctions auxiliaires M91 et M92, vous pouvez introduire une position de changement d'outil liée à la machine. Si vous programmez TOOL CALL 0 avant le premier appel d'outil, la TNC déplace le cône de bridage dans l'axe de broche à une position indépendante de la longueur de l'outil.

Changement d'outil manuel

Avant un changement d'outil manuel, la broche est arrêtée, l'outil amené à la position de changement:

- aborder de manière programmée la position de changement d'outil
- Interrompre l'exécution du programme, cf. "11.4 Exécution du programme"
- ▶ changer l'outil
- Poursuivre l'exécution du programme, cf. "11.4 Exécution du programme"

Changement d'outil automatique

Avec le changement automatique, l'exécution du programme n'est pas interrompue. Lors d'un appel d'outil avec TOOL CALL, la TNC remplace l'outil par un autre outil du magasin d'outils.

Changement d'outil automatique lors du dépassement de la durée d'utilisation: M101

M101 est une fonction machine. Consultez le manuel de votre machine!

Lorsque la durée d'utilisation d'un outil TIME1 ou TIME2 est atteinte, la TNC remplace l'outil automatiquement par un outil jumeau: Activez en début de programme la fonction auxiliaire M101. Vous pouvez annuler l'action de M101 avec M102.

Le changement d'outil automatique n'est pas toujours enclenché immédiatement après écoulement de la durée d'utilisation; suivant la charge de la commande, il intervient parfois quelques séquences de programme plus tard.

Conditions requises pour séquence CN standard avec correction de rayon R0, RR, RL

Le rayon de l'outil jumeau doit être égal à celui de l'outil d'origine. Si les rayons ne sont pas égaux, la TNC affiche un message et ne procède pas au changement d'outil.

Conditions requises pour séquences CN avec vecteurs normaux de surface et correction 3D (cf. chap. 5.4 "Correction d'outil tridimensionnelle")

Le rayon de l'outil jumeau peut différer de celui de l'outil d'origine. Il n'est pas pris en compte dans les séquences transmises par le système CAO. Vous introduisez la valuer Delta (DR) soit dans le tableau d'outils, soit dans la séquence TOOL CALL.

Si DR est supérieur à zéro, la TNC affiche un message et ne procède pas au changement de l'outil. Vous pouvez inhiber ce message avec la fonction M107 et le réactiver avec M108.

5.3 Correction d'outil

La TNC corrige la trajectoire de l'outil en fonction de la valeur de correction de la longueur d'outil dans l'axe de broche et du rayon d'outil dans le plan d'usinage.

Si vous élaborez le programme d'usinage directement sur la TNC, la correction du rayon d'outil n'est active que dans le plan d'usinage. La TNC peut prendre en compte jusqu'à cinq axes, y compris les axes rotatifs.

 Si des séquences de programme sont créées par un système CAO avec vecteurs normaux de surface, la TNC peut exécuter une correction d'outil tri-dimensionnelle; cf. "5.4 Correction d'outil tri-dimensionnelle".

Correction d'outil linéaire

La correction d'outil pour la longueur est active dès que vous appelez un outil et le déplacez dans l'axe de broche. Pour l'annuler, appeler un outil de longueur L=0.

Après un appel d'outil TOOL CALL, le déplacement programmé de l'outil dans l'axe de broche est modifié en fonction de la différence de longueur entre l'ancien et le nouvel outil.

Pour une correction linéaire, les valeurs Delta sont prises en compte aussi bien en provenance de la séquence TOOL CALL que du tableau d'outils:

Valeur de correction = L + $DL_{TOOL CALL}$ + DL_{TAB} avec

- L Longueur d'outil L de la séquence TOOL DEF ou du tableau d'outils
- DL_{TOOL CALL} Surépaisseur DL pour longueur dans séquence TOOL CALL (non prise en compte par l+affichage de position)
- DL_{TAB} Surépaisseur DL pour longueur dans le tableau d'outils

5.3 Correction d'outil

Correction du rayon d'outil

La séquence de programme pour un déplacement d'outil contient:

- RL ou RR pour une correction de rayon
- R+ ou R- pour une correction de rayon lors d'un déplacement paraxial
- R0 si aucune correction de rayon ne doit être exécutée

La correction de rayon devient active dès qu'un outil est appelé et déplacé dans le plan d'usinage avec RL ou RR.

<u>f</u>	La TNC annule la correction de rayon également dans le cas où:
	vous programmez une séquence de positionnement avec R0
	vous quittez le contour par la fonction DEP
	vous programmez un PGM CALL
	vous sélectionnez un nouveau programme avec PGM MGT

Pour une correction de rayon, les valeurs Delta sont prises en compte aussi bien dans la séquence TOOL CALL que dans le tableau d'outils:

Valeur de correction = $R + DR_{TOOL CALL} + DR_{TAB}$ avec

R	Rayon d'outil R de la séquence TOOL DEF ou du tableau d'outils
DR _{TOOL CALL}	Surépaisseur DR pour rayon dans séquence TOOL CALL (non prise en compte par l+affichage de

position)

DR_{TAB} Surépaisseur DR pour rayon dans le tableau d'outils

Contournages sans correction de rayon: R0

L'outil se déplace dans le plan d'usinage avec son centre situé sur la trajectoire programmée, par exemple jusqu'au coordonnées programmées.

Applications: Perçage, pré-positionnement. Cf. figure de droite.

Contournages avec correction de rayon: RR et RL

RR L'outil se déplace à droite du contour

RL L'outil se déplace à gauche du contour

La distance entre le centre de l'outil et le contour programmé correspond à la valeur du rayon de l'outil. "droite" et "gauche" désignent la position de l'outil dans le sens du déplacement le long du contour de la pièce. Cf. figures à la page suivante.

Au minimum une séquence sans correction de rayon R0 doit séparer deux séquences de programme dont la correction de rayon RR et RL diffère.

Une correction de rayon est active en fin de séquence où elle a été programmée pour la première fois.

Lors de la 1ère séquence avec correction de rayon RR/ RL et lors de l'annulation avec R0, la TNC positionne toujours l'outil perpendiculairement au point initial ou au point final programmé. Positionnez l'outil devant le 1er point du contour ou derrière le dernier point du contour de manière à éviter que celui-ci ne soit endommagé.

Introduction de la correction de rayon

Dans la programmation d'un contournage, la question suivante s'affiche après que vous ayez introduit les coordonnées:

5.3 Correction d'outil

Correction de rayon: Usinage des angles

Angles externes

Si vous avez programmé une correction de rayon, la TNC guide l'outil aux angles externes soit par un cercle de transition, soit par un spline (sélection avec PM7680). Si nécessaire, la TNC réduit l'avance au passage des angles externes, par exemple lors d'importants changements de sens.

Angles internes

Aux angles internes, la TNC calcule le point d'intersection des trajectoires sur lesquelles le centre de l'outil se déplace avec correction du rayon. En partant de ce point, l'outil se déplace le long de l'élément de contour suivant. Ainsi la pièce n'est pas endommagée aux angles internes. Par conséquent, le rayon d'outil ne peut pas avoir n'importe quelle dimension pour un contour donné.

Pour l'usinage des angles internes, ne définissez pas le point initial ou le point final sur un angle du contour car celui-ci pourrait être endommagé.

Usinage des angles sans correction de rayon

Sans correction de rayon, vous pouvez influer sur la trajectoire de l'outil et sur l'avance aux angles de la pièce à l'aide de la fonction auxiliaire M90. Cf. "7.4 Fonctions auxiliaires pour le comportement de contournage".

La TNC peut exécuter une correction d'outil tri-dimensionnelle (correction 3D) pour des séquences linéaires. Outre les coordonnées X, Y et Z du point final de la droite, ces séquences doivent également contenir les composantes NX, NY et NZ des normales de surface (cf. fig. en bas et à droite). Le point final de la droite et la normale de surface sont calculés par un système CAO. Grâce à la correction 3D, vous pouvez utiliser des outils de dimensions différentes de celles des outils prévus à l'origine.

Formes d'outils

Les formes d'outils valables (cf. figures en haut à droite et au centre à droite)sont définies par les rayons d'outil R et R2:

RAYON D'OUTIL: R

Cote entre le centre de l'outil et la face externe de l'outil

RAYON D'OUTIL 2: R2

Rayon d'arrondi entre la pointe de l'outil et la face externe de l'outil

Le rapport entre R et R2 détermine la forme de l'outil:

- R2 = 0 Fraise deux tailles
- R2 = R Fraise à crayon
- 0 < R2 < R Fraise à rayon d'angle

Ces données permettent également d'obtenir les coordonnées du point de référence P_{T} de l'outil.

Inscrivez les valeurs du RAYON D'OUTIL et du RAYON D'OUTIL 2 dans le tableau d'outils.

Normale de surface

Definition de la normale de surface

Une normale de surface est une dimension mathématique comportant:

une valeur

ici: distance entre la surface de la pièce et le point de référence P_{T} de l'outil et

une direction

fraise deux tailles et fraise à crayon: en s'éloignant perpendiculairement de la surface à usiner de la pièce, en direction de point de référence de l'outil P_T fraise à rayon d'angle: par P_T ' ou P_T

La valeur et la direction de la normale de surface sont définies par les composantes NX, NY et NZ.

Les coordonnées pour la position X,Y, Z et pour les normales de surface NX, NY, NZ doivent être dans le même ordre à l'intérieur de la séguence CN.

La correction 3D avec normales de surface est valable pour les coordonnées dans les axes principaux X, Y, Z.

Si vous changer un outil avec surépaisseur (valeurs Delta positives), la TNC délivre un message d'erreur. Vous pouvez inhiber le message d'erreur avec la fonction M107 (cf. "5.2 Données d'outils, changement d'outil").

La TNC n'émet **pas** de message d'erreur si des surépaisseurs d'outil devaient endommager le contour.

Le paramètre-machine 7680 vous permet de définir si le système CAO a corrigé la longueur d'outil en prenant en compte le centre de la bille $P_{\rm T}$ ou son pôle sud $P_{\rm SP}.$

Utilisation d'autres outils: Valeurs Delta

Si vous utilisez des outils de dimensions différentes de celles des outils prévus à l'origine, introduisez la différence des longueurs et rayons comme valeurs Delta dans le tableau d'outils ou dans l'appel d'outil TOOL CALL:

- Valeur Delta positive DL, DR, DR2 Les cotes de l'outil sont supérieures à celles de l'outil d'origine (surépaisseur)
- Valeur Delta négative DL, DR, DR2 Les cotes de l'outil sont inférieures à celles de l'outil d'origine (réduction d'épaisseur)

La TNC corrige la position de l'outil à l'aide des valeurs Delta et des normales de surface.

Exemple: Séquence de programme avec normales de surface

LN	X+31,737 Y+21,954	Z+33,165 NX+0,2637581
	NY+0,0078922 NZ-0	,8764339 F1000 M3

- LN Droite avec correction 3D
- X, Y, Z Coordonnées corrigées du point final de la droite
- NX, NY, NZ Composantes des normales de surface
- F Avance
- M Fonction auxiliaire

Vous pouvez introduire et modifier l'avance F et la fonction auxiliaire M en mode Mémorisation de programme.

Les coordonnées du point final de la droite et les composantes des normales de surface sont à calculer par le système CAO.

¥

5.5 Travailler avec les tableaux de données de coupe

La TNC doit avoir été préparée par le constructeur de la machine pour travailler avec les tableaux des données de coupe.

Il est possible que tous les cycles ou fonctions supplémentaires décrits ici ne soient pas disponibles sur votre machine. Consultez le manuel de votre machine.

Avec les tableaux de données de coupe dans lesquels sont définis les combinaisons matériau pièce/matériau de coupe, la TNC peut calculer la vitesse de rotation broche S et l'avance de contournage F à partir de la vitesse de coupe V_Cet de l'avance de la dent f_Z. Pour ce calcul, vous devez définir définir le matériau pièce dans le programme et diverses caractéristiques spécifiques à l'outil dans un tableau d'outils.

Avant de laisser calculer les données de coupe automatiquement par la TNC, vous devez avoir activé en mode Test de programme le tableau d'outils (état S) dans lequel la TNC doit prélever les données spécifiques de l'outil.

Fonctions d'édition pour tableaux de données de coupe	Ботткеу
Insérer une ligne	INSERER LIGNE
Effacer une ligne	EFFACER LIGNE
Saut au début de la ligne suivante	LIGNE SUIVANTE
Trier les tableaux (colonnes)	ORDER
Copier champ d'arrière plan (2ème plan de softkey)	COPIER VALEUR ACTUELLE
Insérer le champ copié (2ème plan de softkey)	INSERER VALEUR COPIEE
Editer le format de tableau (2ème plan de softkey)	EDITER FORMAT

Tableau pour matériaux pièces

Vous définissez les matériaux des pièces dans le tableau WMAT.TAB (cf. fig. de droite, au centre). En standard, WMAT.TAB est mémorisé dans le répertoire TNC:\ et peut contenir autant de noms de matériaux qu'on le désire. Le nom du matériau peut contenir jusqu'à 32 caractères (y compris les espaces). La TNC affiche le contenu de la colonne NAME lorsque vous définissez dans le programme le matériau de la pièce (cf. section suivante).

Si vous modifiez le tableau standard de matériaux pièces, vous devez le copier dans un autre répertoire. Sinon, vos modifications seraient écrasées par les données standard HEIDENHAIN lors de la mise à jour du logiciel. Par conséguent, définissez le chemin d'accès dans le fichier TNC.SYS avec le code WMAT= (cf. "Fichier de configurations TNC.SYS" plus bas dans ce chapitre).

> Pour éviter les pertes de données, mémorisez le fichier WMAT.TAB à intervalles réguliers.

Définir le matériau pièce dans le programme CN

Dans le programme CN, sélectionnez le matériau avec la softkey WMAT:

- Programmer le matériau pièce: En mode имат Mémorisation/édition de programme, appuyer sur la softkey WMAT.
- ► Afficher le tableau WMAT.TAB: appuyer sur la softkey SELECTION MATIERE SELECT MATIERE PIECE: la TNC affiche les matériaux PIECE mémorisés dans WMAT.TAB à l'intérieur d'une fenêtre en superposition
 - ▶ Sélectionner le matériau pièce: à l'aide des touches fléchées, déplacez le champ clair sur le matériau souhaité et validez avec la touche ENT. La TNC prend en compte le matériau de la pièce dans la séquence WMAT. Pour feuilleter plus rapidement dans le tableau de matériaux pièces, appuyez sur la touche SHIFT, puis sur la touche fléchée. La TNC feuillète alors page-àpage
 - ▶ Fermer le dialogue: appuyer sur la touche END
- Si vous modifiez la séguence WMAT dans un programme, la TNC émet un avertissement. Vérifiez si les données de coupe mémorisées dans TOOL CALL sont toujours actuelles.

Mode	∎anuel	Ed	iter [.] m?	tablea	au					
Fi	Fichier: WMAT_GB.TAB									
NR	NAME		DOC							
0	110 WC	rVБ	Tool steel	1.2519						
1	14 NiC	r 14	Hardened s	teel 1.575	2					
2	142 WV	13	Tool steel	1.2562						
3	15 CrN	i 6	Hardened s	teel 1.591	9					
4	16 CrMe	544	Structural	steel 1.7	337					
5	16 MnC)	6 5	Hardened s	teel 1.713	1					
6	17 MoV	84	Structural	steel 1.5	406					
7	18 CrN	i 8	Hardened s	teel 1.592	0					
8	19 Mn 8	5	Structural	steel 1.0	482					
9	21 MnC	6 5	Tool steel	1.2162						
10	26 CrM	04	Structural steel 1.7219							
11	28 NiC	rMo 4	Structural steel 1.6513							
12	30 CrM	oV 9	Tempering	steel 1.77	07					
DEBUT FIN			PAGE	PAGE J	INSERER LIGNE	EFFACER	LIGNE SUIVANTE	ORDER		

Tableau pour matériaux d'outils

Vous définissez les matériaux de coupe dans le tableau TMAT.TAB. En standard, TMAT.TAB est mémorisé dans le répertoire TNC:\ et peut contenir autant de noms de matériaux de coupe qu'on le désire. Le nom du matériau peut contenir jusqu'à 16 caractères (y compris les espaces). La TNC affiche le contenu de la colonne NAME lorsque vous définissez dans le programme le matériau de coupe de l'outil (cf. section suivante).

Si vous modifiez le tableau standard des matériaux de coupe, vous devez le copier dans un autre répertoire. Sinon, vos modifications seraient écrasées par les données standard HEIDENHAIN lors de la mise à jour du logiciel. Par conséquent, définissez le chemin d'accès dans le fichier TNC.SYS avec le code TMAT= (cf. "Fichier de configurations TNC.SYS" plus bas dans ce chapitre).

Pour éviter les pertes de données, mémorisez le fichier TMAT.TAB à intervalles réguliers.

Tableau pour données de coupe

Vous définissez les combinaisons matériaux pièces/matériaux de coupe avec leurs données de coupe correspondantes dans un tableau ayant l'extension .CDT (de l'angl. cutting data file: tableau de données de coupe; cf. fig. de droite, au centre). Vous pouvez configurer librement les entrées dans le tableau de données de coupe. En dehors des colonnes impératives NR, WMAT et TMAT, la TNC peut gérer jusqu'à quatre combinaisons vitesse de coupe (Vc)/ avance (F).

Le tableau standard de données de coupe FRAES_2.CDT est mémorisé dans le répertoire TNC:\. Vous pouvez éditer et compléter librement FRAES_2.CDT ou ajouter autant de nouveaux tableaux de données de coupe que vous le désirez.

Si vous modifiez le tableau standard des données de coupe, vous devez le copier dans un autre répertoire. Sinon, vos modifications seraient écrasées par les données standard HEIDENHAIN lors de la mise à jour du logiciel (cf. +Fichier de configurations TNC.SYS+ plus bas dans ce chapitre).

Tous les tableaux de données de coupe doivent être mémorisés dans le même répertoire. Si le répertoire n'est pas le répertoire standard TNC:\, vous devez introduire dans le fichier TNC.SYS, après le code PCDT=, le chemin d'accès pour la mémorisation de vos tableaux de données de coupe.

Mode	manue	1 Ed. NO	iter [.] M ?	tablea	au				
Fio	Fichier: TMAT.TAB								
NR	NAME		DOC						
Ø	HC-H	(15	HM beschic	htet					
1	HC-F	P25	HM beschic	htet					
2	HC-F	°35	HM beschic	htet					
3	HSS								
4	HSSE	E-C05	HSS + Koba	1 t					
5	HSSI	E-C08	HSS + Koba	1 t					
6	HSSE	E-Co8-TiN	HSS + Koba	1 t					
7	HSSE	E∕TiCN	TiCN-besch	ichtet					
8	HSSE	E∕TiN	TiN-beschi	chtet					
9	HT-F	P15	Cermet						
10	HT-M	115	Cermet						
11	HW-H	-K15 HM unbeschichtet							
12	HW-H	(25	HM unbesch	ichtet					
DEB Û	UT	FIN J	PAGE Û	PAGE	INSERER LIGNE	EFFACER LIGNE	LIGNE SUIVANTE	ORDER	

Exect	ution PGM	1 E d :	iter †	tablea	au					
	ontina	MA.	FIERE	DE CO	DUPE	?				
E	Fichier: FRAES_2.CDT									
NR	UMA T		TMAT		Vc1	F1	Vc2	F2		
Ø	St 33-	1	HSSE/T	iN	40	0,016	55	0,020		
1	St 33-	1	HSSE/T	iCN	40	0,016	55	0,020		
2	St 33-	1	HC-P25		100	0,200	130	0,250		
3	St 37-	2	HSS-Co	5	20	0,025	45	0,030		
4	St 37-	2	HSSE/T	iCN	40	0,016	55	0,020		
5	St 37-	2	HC-P25		100	0,200	130	0,250		
6	St 50-	2	HSSE/T	iN	40	0,016	55	0,020		
7	St 50-	2	HSSE/T	iCN	40	0,016	66	0,020		
8	St 50-	2	HC-P25		100	0,200	130	0,250		
9	St 60-	2	HSSE/T	iN	40	0,016	55	0,020		
10	St 60-	2	HSSE/T	iCN	40	0,016	55	0,020		
11	St 60-	2	HC-P25		100	0,200	130	0,250		
12 C 15		HSS-Co5		20	0,040	45	0,050			
		FIN <u> </u>	PAGE	PAGE 	INSERE LIGNE	R EFF	ACER GNE	LIGNE SUIVANTE	ORDER	

Ajouter un nouveau tableau de données de coupe

- ▶ Sélectionner le mode Mémorisation/édition de programme
- Sélectionner la gestion de fichiers: appuyer sur la touche PGM MGT
- Sélectionner le répertoire où doivent être mémorisés les tableaux de données de coupe (standard: TNC:)
- Introduire un nom de fichier au choix avec l'extension .CDT; valider avec la touche ENT
- Sur la moitié droite de l'écran, la TNC affiche différents formats de tableaux (dépendant de la machine, exemple: cf. fig. de droite, en haut), qui se différentient par le nombre de combinaisons vitesse de coupe/avance. A l'aide des touches fléchées, déplacez le champ clair sur le format de tableau désiré et validez avec la touche ENT. La TNC génère un nouveau tableau vide de données de coupe

Données requises dans le tableau d'outils

- Rayon d'outil colonne R (DR)
- Nombre de dents (seulement avec fraises) colonne CUT.

Type d'outil – colonne TYPE Le type d'outil influe sur le calcul de l'avance de contournage: Fraises: $F = S \bullet f_Z \bullet z$ Tous les autres outils: $F = S \bullet f_U$ S = Vitesse de rotation broche $f_Z = Avance pour chaque dent$ $f_U = Avance par tour$ z = Nombre de dents

- Matériau de coupe de l'outil colonne TMAT
- Nom du tableau de données de coupe à utiliser pour cet outil colonne CDT

Vous sélectionnez par softkey, dans le tableau d'outils le type de l'outil, le matériau de coupe de l'outil ainsi que le nom du tableau de données de coupe (cf. +5.2 Données d'outils+).

Procédure du travail avec calcul automatique de la vitesse de rotation/de l'avance

- 1 S'il ne l'a pas encore été, introduire le matériau pièce dans le fichier WMAT.TAB
- 2 S'il ne l'a pas encore été, introduire le matériau de coupe dans le fichier TMAT.TAB
- 3 Si elles ne l'ont pas encore été, introduire dans le tableau d'outils toutes les données d'outils caractéristiques nécessaires au calcul des données de coupe:
 - Rayon d'outil
 - Nombre de dents
 - Type d'outil
 - Matériau de coupe de l'outil
 - Tableau de coupe correspondant à l'outil
- 4 Si elles ne l'ont pas encore été, introduire les données de coupe dans un tableau de données de coupe au choix (fichier CDT)
- 5 Mode Test: activer le tableau d'outils dans lequel la TNC doit prélever les données de l'outil (état S)
- 6 Dans le programme CN: définir le matériau pièce avec la softkey WMAT
- 7 Dans le programme CN: par softkey, laisser calculer automatiquement la vitesse de rotation broche et l'avance dans la séquence TOOL CALL

Modifier la structure des tableaux

Pour la TNC, les tableaux de données de coupe correspondent à ce qu'on appelle des "tableaux pouvant être librement définis". L'éditeur de structure vous permet de modifier le format des tableaux pouvant être librement définis.

Appeler l'éditeur de structure

Appuyez sur la softkey EDITER FORMAT (2ème plan de softkey). La TNC ouvre la fenêtre de l'éditeur (cf. fig. de droite) représentant la structure des tableaux "avec rotation de 90°". Une ligne de la fenêtre de l'éditeur définit une colonne du tableau correspondant. Signification de l'instruction de structure (ligne d'en-tête): cf. tableau ci-contre.

Fermer l'éditeur de structure

Appuyez sur la touche END. La TNC convertit dans le nouveau format les données qui étaient mémorisées dans le tableau. Les éléments que la TNC n'a pas pû convertir dans la nouvelle structure ne sont pas marqués (par ex. si vous avez réduit la largeur de colonne).

Instruction	Signification
NR	Numéro de colonne
NAME	Titre de la colonne
TYPE	N: introduction numérique C: introduction alphanumérique
WIDTH	Largeur colonne. Avec type N y compris signe, virgule et emplacement après la virgule
DEC	Nb d'emplacements après la virgule (4 max., actif avec type N seulement)
ENGLISH la HUNGARIA	Dialogues en fonction de langue (32 caract. max.)

Mode	^{ode manuel} Editer tableau Type de champ?										
		1131	Je u	e cham	P :			, ,			
NP	NR NAME TYP WIDTH DEC ENGLISH										
0	UMAT	С	16 0	Workpiece	material?						
1	TMAT	С	16 0	Tool mater	ial?						
2	Vc1	M	7 3	Cutting sp	eed Vc1?						
3	F1	Ν	7 3	Feed rate	Fz1?						
4	Vc2	Ν	7 3	Cutting sp	eed Vc2?						
5	F2	Ν	7 3	Feed rate	Fz2?						
CEN	נס										
DE	BUT	FIN	PAGE	PAGE	INSERER	EFFACER	LIGNE				
·	ប	$\overline{\Omega}$	្រប	1 Û	LIGNE	LIGNE	SUIVANTE				

Transfert des données de tableaux de données de coupe

Lorsque vous émettez un fichier de type .TAB ou .CDT via une interface de données externe, la TNC mémorise en même temps la définition de structure du tableau. Cette définition commence par la ligne #STRUCTBEGIN et finit par la ligne #STRUCTEND. Pour la signification des différents codes, reportez-vous au tableau "instruction de structure" (cf. page précédente). Après #STRUCTEND, la TNC mémorise le contenu réel du tableau.

Fichier de configurations TNC.SYS

Vous devez utiliser le fichier de configuration TNC.SYS si vos tableaux de données de coupe ne sont pas mémorisés dans le répertoire standard TNC:\. Dans ce cas, vous définissez dans TNC.SYS le chemin d'accès pour la mémorisation de vos tableaux de données de coupe.

Le fichier TNC.SYS doit être mémorisé dans le répertoireracine TNC:\.

Introductions dans TNC.SYS	Signification
WMAT=	Chemin d'accès pour tableau de matériaux pièces
TMAT=	Chemin d'accès pour tableau de matériaux de coupe
PCDT=	Chemin d'accès pour tableaux de données de coupe

Exemple de TNC.SYS:

WMAT=TNC:\CUTTAB\WMAT_GB.TAB TMAT=TNC:\CUTTAB\TMAT_GB.TAB PCDT=TNC:\CUTTAB\

Programmation: Programmer les contours

6.1 Sommaire: Déplacements d'outils

Fonctions de contournage

Un contour de pièce est habituellement composé de plusieurs éléments de contour tels que droites ou arcs de cercles. Les fonctions de contournage vous permettent de programmer des déplacements d'outils pour les **droites** et **arcs de cercle**.

Programmation flexible de contours FK

Si vous ne disposez pas d'un plan conforme à la programmation CN et si les données sont incomplètes pour le programme CN, vous programmez alors le contour de la pièce avec la programmation flexible de contours. La TNC calcule les données manquantes.

Grâce à la programmation FK, vous pouvez programmer également les déplacements d'outils pour les **droites** et **arcs de cercle**.

Fonctions auxiliaires M

Les fonctions auxiliaires de la TNC vous permettent de commander:

- l'exécution du programme, une interruption par exemple
- les fonctions de la machine, par exemple, l'activation et la désactivation de la rotation broche et de l'arrosage
- le comportement de contournage de l'outil

Sous-programmes et répétitions de parties de programme

Vous programmez une seule fois sous forme de sous-programme ou de répétition de partie de programme des phases d'usinage qui se répètent. Si vous ne désirez exécuter une partie du programme que dans certaines conditions, vous définissez les séquences de programme dans un sous-programme. En outre, un programme d'usinage peut appeler un autre programme et le faire exécuter.

Programmation à l'aide de sous-programmes et de répétitions de parties de programme: cf. chapitre 9.

Programmation avec paramètres Q

Dans le programme d'usinage, les paramètres Q remplacent des valeurs numériques: à un autre endroit, une valeur numérique est affectée à un paramètre Q. Grâce aux paramètres Q, vous pouvez programmer des fonctions mathématiques destinées à commander l'exécution du programme ou à décrire un contour.

A l'aide de la programmation de paramètres Q, vous pouvez également exécuter des mesures avec un système de palpage 3D pendant l'exécution du programme.

Programmation à l'aide de paramètres Q: cf. chapitre 10.

6.2 Principes des fonctions de contournage

Programmer un déplacement d'outil pour une opération d'usinage

Lorsque vous élaborez un programme d'usinage, vous programmez les unes après les autres les fonctions de contournage des différents éléments du contour de la pièce. Pour cela, vous introduisez habituellement **les coordonnées des points finaux des éléments du contour** en les prélevant sur le plan. A partir de ces coordonnées, des données d'outils et de la correction de rayon, la TNC calcule le déplacement réel de l'outil.

La TNC déplace simultanément les axes machine programmés dans la séquence de programme d'une fonction de contournage.

Déplacements parallèles aux axes de la machine

La séquence de programme contient des coordonnées: la TNC déplace l'outil parallèlement à l'axe machine programmé.

Selon la structure de votre machine, soit c'est l'outil, soit c'est la table de la machine avec l'outil bridé qui se déplace pendant l'usinage. Pour programmer le déplacement de contournage, considérez par principe que c'est l'outil qui se déplace.

Exemple:

L X+100	
L	Fonction de contournage "Droite"

X+100 Coordonnées du point final

L'outil conserve les coordonnées Y et Z et se déplace à la position X=100. Cf. figure de droite, en haut.

Déplacements dans les axes principaux

La séquence de programme contient 2 indications de coordonnées: la TNC guide l'outil dans le plan programmé.

Exemple:

L X+70 Y+50

L'outil conserve la coordonnée Z et se déplace dans le plan XY à la position X=70, Y=50. Cf. figure de droite, au centre.

Déplacement tri-dimensionnel

La séquence de programme contient 3 indications de coordonnées: La TNC guide l'outil dans l'espace jusqu'à la position programmée.

Exemple:

L X+80 Y+0 Z-10

Cf. figure de droite, en bas.

Introduction de plus de trois coordonnées

La TNC peut commander jusqu'à 5 axes simultanément. Lors d'un usinage sur 5 axes, la commande déplace simultanément, par exemple, 3 axes linéaires et 2 axes rotatifs.

Le programme d'usinage pour ce type d'usinage est habituellement délivré par un système CAO et ne peut pas être élaboré sur la machine.

Exemple:

L X+20 Y+10 Z+2 A+15 C+6 R0 F100 M3

Un déplacement sur plus de 3 axes ne peut pas être représenté graphiquement par la TNC.

Cercles et arcs de cercle

Pour les déplacements circulaires, la TNC déplace simultanément deux axes de la machine: L'outil se déplace par rapport à la pièce en suivant une trajectoire circulaire. Pour les déplacements circulaires, vous pouvez introduire un centre de cercle CC.

Avec les fonctions de contournage des arcs de cercle, vous pouvez programmer des cercles dans les plans principaux: Le plan principal doit être défini avec définition de l'axe de broche dans TOOL CALL:

t
t
t
t

Vous programmez les cercles non parallèles au plan principal à l'aide de la fonction "Inclinaison du plan d'usinage" (cf. chap. 8) ou avec les paramètres Q (cf. chap. 10).

Sens de rotation DR pour les déplacements circulaires

Pour les déplacements circulaires sans raccordement tangentiel à d'autres éléments du contour, introduisez le sens de rotation DR:

Rotation sens horaire: DR-Rotation sens anti-horaire: DR+

Correction de rayon

La correction de rayon doit être dans la séquence vous permettant d'aborder le premier élément du contour. Elle ne doit pas commencer dans une séquence de trajectoire circulaire. Avant, programmez-la dans une séquence linéaire ou dans la séquence d'approche du contour (séquence APPR).

Séquence APPR et séquence linéaire: cf. "6.3 Aborder et quitter le contour" et "6.4 Contournages – coordonnées cartésiennes".

Pré-positionnement

Au début d'un programme d'usinage, pré-positionnez l'outil de manière à éviter que l'outil et la pièce ne soient endommagés.

Elaboration de séquences de programme à l'aide des touches de contournage

A l'aide des touches de fonctions de contournage, vous ouvrez le dialogue conversationnel en Texte clair. La TNC réclame toutes les informations et insère la séquence de programme à l'intérieur du programme d'usinage.

Exemple – Programmation d'une droite:

le dialogue avec la touche ENT

Position. par introd. man.	Mémorisation/édition programme Fonction auxiliaire M?
0 BEGI 1 BLK	IN PGM NEU MM Form 0.1 Z X+0 Y+0 Z-40
2 BLK 3 L Z+	FORM 0.2 X+100 Y+100 Z+0 +150 R0 F MAX +10 Y+5 PL F100 M3
4 END	PGM NEU MM

TNC 426 B, TNC 430 HEIDENHAIN

Le programme d'usinage affiche la ligne:

L X+10 Y+5 RL F100 M3

Sommaire: Formes de trajectoires pour aborder et quitter le contour

Les fonctions APPR (de l'anglais approach = approche) et DEP (de l'angl. departure = départ) sont activées avec la touche APPR/DEP. Les contours suivants peuvent être sélectionnés par softkeys:

Fonction	Softkeys:	Approch	e Sortie
Droite avec raccordement tange	ntiel	APPR LT	DEP LT
Droite perpendiculaire au point d	du contour	APPR LN	DEP LN
Traj. circulaire avec raccord. tang	entiel	APPR CT	DEP CT

Traj. circulaire avec raccord. tangentiel au contour, approche et sortie vers un point auxiliaire à l'extérieur du contour, sur un segment de droite avec raccord. tangentiel

Aborder et quitter une trajectoire hélicoïdale

En abordant et en quittant une trajectoire hélicöidale (hélice), l'outil se déplace dans le prolongement de l'hélice et se raccorde ainsi au contour par une trajectoire circulaire tangentielle. Pour cela, utilisez la fonction APPR CT ou DEP CT.

Positions importantes à l'approche et à la sortie

Point initial P_S

Programmez cette position immédiatement avant la séquence. APPR. P_S est situé à l'extérieur du contour et est abordé sans correction de rayon (R0).

Point auxiliaire P_H

Avec certaines trajectoires, l'approche et la sortie du contour passent par un point auxiliaire P_H que la TNC calcule à partir des données contenues dans la séquence APPR et DEP.

- Premier point du contour P_Aet dernier point du contour P_E Programmez le premier point du contour P_A dans la séquence APPR et le dernier point du contour P_E avec n'importe quelle fonction de contournage.
- Si la séquence APPR contient également la coordonnée Z, la TNC déplace l'outil tout d'abord dans le plan d'usinage jusqu'à P_H, puis dans l'axe d'outil à la profondeur programmée.
- Point final P_N

La position \dot{P}_{N} est en dehors du contour et résulte des données de la séquence DEP. Si celle-ci contient aussi la coordonnée Z, la TNC déplace l'outil d'abord dans le plan d'usinage jusqu'à P_{H} puis dans l'axe d'outil à la hauteur programmée.

Mode manuel	Mémorisa	ation	∕éditi	ion pr	rogran	nme
2 BLK FORM 0 3 TOOL CALL 4 L Z+250 R0 5 L X-20 Y+5 6 L Z-5 R0 F 7 END PGM BL	2 X+100 Y+100 Z I Z S2500 F MAX 0 R0 F MAX 2000 M3 K MM	+0				
	PR LN APPR CT	APPR LCT	DEP LT	DEP LN	DEP CT	

6.3 Appr<mark>oche</mark> et sortie du contour

Les coordonnées peuvent être introduites en absolu ou en incrémental, en coordonnées cartésiennes ou polaires.

Dans le positionnement de la position effective au point auxiliaire P_H, la TNC ne contrôle pas si le contour programmé risque d'être endommagé. Vérifiez-le à l'aide du graphisme de test!

A l'approche du contour, l'espace séparant le point initial Ps du premier point du contour PA doit être assez important pour que l'avance d'usinage programmée puisse être atteinte.

De la position effective au point auxiliaire P_H, la TNC se déplace suivant la dernière avance programmée.

Correction de rayon

Programmez la correction de rayon en même temps que le premier point du contour P_A dans la séguence APPR. Les séguences DEP annulent automatiquement la correction de rayon!

Approche sans correction de rayon: si l'on programme R0 dans la séquence APPR, la TNC quide l'outil comme elle le ferait d'un outil avec R = 0 mm et correction de rayon RR! Ainsi les fonctions APPR/ DEP LN et APPR/DEP CT définissent le sens suivant leguel la TNC déplace l'outil vers le contour ou en guittant celui-ci.

Approche par une droite avec raccordement tangentiel: APPR LT

La TNC guide l'outil sur une droite allant du point initial P_S jusqu'à un point auxiliaire P_H. Partant de là, il aborde le premier point du contour P_A en suivant une droite tangentielle. Le point auxiliaire P_H se situe à une distance LEN du premier point du contour P_A.

► Fonction de contournage au choix: aborder le point initial P_S

APPR LT Ouvrir le dialogue avec la touche APPR/DEP et la softkev APPR LT:

- ▶ Coordonnées du premier point du contour P_A
- ▶ LEN: Distance entre le point auxiliaire P_H et le premier point du contour P_A
- ► Correction de rayon pour l'usinage

Exemple de séquences CN

7 L X+40 Y+10 R0 FMAX M3	Aborder P _S sans correction de rayon
8 APPR LT X+20 Y+20 Z-10 LEN15 RR F100	P_A avec corr. rayon. RR, distance P_H à P_A : LEN=15
9 L X+35 Y+35	Point final du premier élément du contour
10 L	Elément de contour suivant

Raccourci	Signification
APPR	angl. APPRoach = approche
DEP	angl. DEParture = départ
L	angl. Line = droite
С	angl. Circle = cercle
Т	tangentiel (transition lisse,
	continue)
Ν	Normale (perpendiculaire)

Approche par une droite perpendiculaire au premier point du contour: APPR LN

La TNC guide l'outil sur une droite allant du point initial Ps jusqu'à un point auxiliaire P_H. Partant de là, il aborde le premier point du contour PA en suivant une droite perpendiculaire. Le point auxiliaire P_H se situe à une distance LEN + rayon d'outil du premier point du contour P_{Δ} .

- ► Fonction de contournage au choix: aborder le point initial Ps
- ▶ Ouvrir le dialogue avec touche APPR/DEP et la softkey APPR LN:
 - ► Coordonnées du premier point du contour P_A
- Longueur: Ecart par rapport au point auxiliaire P_H Introduire LEN toujours avec son signe positif!
 - Correction de rayon RR/RL pour l'usinage

Aborder P _S sans correction de rayon
P _A avec corr. rayon. RR
Point final du premier élément du contour
Elément de contour suivant

Exemple de séguences CN

7 L X+40 Y+10 R0 FMAX M3	Aborder P _S sans correction d
8 APPR LN X+10 Y+20 Z-10 LEN+15 RR F100	P _A avec corr. rayon. RR
9 L X+20 Y+35	Point final du premier éléme
10 L	Elément de contour suivant

Approche par une trajectoire circulaire avec raccordement tangentiel: APPR CT

La TNC guide l'outil sur une droite allant du point initial Ps jusqu'à un point auxiliaire P_H. Partant de là, il aborde le premier point du contour P_A en suivant une trajectoire circulaire qui se raccorde par tangentement au premier élément du contour.

La trajectoire circulaire de P_H à P_A est définie par le rayon R et l'angle au centre CCA. Le sens de rotation de la trajectoire circulaire est donné par l'allure générale du premier élément de contour.

- ▶ Fonction de contournage au choix: aborder le point initial Ps
- ▶ Ouvrir le dialogue avec touche APPR/DEP et softkey APPR CT:

- ▶ Coordonnées du premier point du contour P_A
- Rayon R de la trajectoire circulaire
- Approche du côté de la pièce défini par la correction de rayon: introduire R avec son signe positif
- Approche par le côté de la pièce: introduire R avec son signe négatif
- Angle au centre CCA de la trajectoire circulaire
- CCA doit toujours être introduit avec son signe positif
- Valeur d'introduction max. 360°
- Correction de rayon RR/RL pour l'usinage

6.3 Appr<mark>oche</mark> et sortie du contour

Exemple de séquences CN

7 L X+40 Y+10 RO FMAX M3	Abo
8 APPR CT X+10 Y+20 Z-10 CCA180 R+10 RR F100	P _A a
9 L X+20 Y+35	Poir
10 L	Elér

rder P_S sans correction de rayon vec corr. rayon. RR, rayon R=10 nt final du premier élément du contour ment de contour suivant

Approche par une trajectoire circulaire avec raccordement tangentiel au contour et segment de droite: APPR LCT

La TNC guide l'outil sur une droite allant du point initial Ps jusqu'à un point auxiliaire P_H. Partant de là, il aborde le premier point du contour P_A en suivant une trajectoire circulaire.

La trajectoire circulaire se raccorde tangentiellement à la droite P_S -P_H ainsi qu'au premier élément du contour. De ce fait, elle est définie clairement par le rayon R.

- ► Fonction de contournage au choix: aborder le point initial P_s
- ▶ Ouvrir le dialogue avec touche APPR/DEP et softkey APPR LCT:

- ▶ Rayon R de la trajectoire circulaire introduire R avec son signe positif
- ► Correction de rayon pour l'usinage

Exemple de séquences CN

7 L X+40 Y+10 RO FMAX M3	Aborder P _S sans correction de rayon
8 APPR LCT X+10 Y+20 Z-10 R10 RR F100	P _A avec correction de rayon RR, rayon R=10
9 L X+20 Y+35	Point final du premier élément du contour
10 L	Elément de contour suivant

Aborder P _S sans correction de rayon
P _A avec correction de rayon RR, rayon R=10
Point final du premier élément du contour
Elément de contour suivant

Sortie du contour par une droite avec raccordement tangentiel: DEP LT

La TNC guide l'outil sur une droite allant du dernier point du contour P_E jusqu'au point final P_N. La droite est dans le prolongement du dernier élément du contour. P_N est situé à distance LEN de P_E.

- Programmer le dernier élément du contour avec le point final P_E et la correction de rayon
- ▶ Ouvrir le dialogue avec touche APPR/DEP et la softkey DEP LT:

Introduire LEN: distance entre le point final P_N et le dernier élément du contour P_E

20 PE RR PE RR CI PN RO X

Exemple de séquences CN

23 L Y+20 RR F100	Dernier élément cont.: P _E avec corr. rayon
24 DEP LT LEN 12,5 F100	S'éloigner du contour de LEN = 12,5 mm
25 L Z+100 FMAX M2	Dégagement en Z, retour, fin du programme

Sortie du contour par une droite perpendiculaire au dernier point du contour: DEP LN

La TNC guide l'outil sur une droite allant du dernier point du contour P_E jusqu'au point final P_N. La droite s'éloigne perpendiculairement du dernier point du contour P_E. P_N est situé à distance LEN + rayon d'outil de P_E.

- Programmer le dernier élément du contour avec le point final P_E et la correction de rayon
- ▶ Ouvrir le dialogue avec touche APPR/DEP et softkey DEP LN:

LEN: Introduire la distance du point final P_N Important: LEN doit toujours être de signe positif!

Exemple de séguences CN

23 L Y+20 RR F100	De
24 DEP LN LEN+20 F100	S
25 L Z+100 FMAX M2	Dé

Dernier élément cont.: P_E avec corr. rayon S'éloigner perpendiculairement de LEN = 20 mm Dégagement en Z, retour, fin du programme

Sortie du contour par une trajectoire circulaire avec raccordement tangentiel: DEP CT

La TNC guide l'outil sur une trajectoire ciculaire allant du dernier point du contour P_F jusqu'au point final P_N. La trajectoire circulaire se raccorde par tangentement au dernier point du contour.

- ▶ Programmer le dernier élément du contour avec le point final P_F et la correction de rayon
- ▶ Ouvrir le dialogue avec touche APPR/DEP et softkey DEP CT:
 - ▶ Rayon R de la trajectoire circulaire DEP CT
 - L'outil doit guitter la pièce du côté défini par la correction de ravon: Introduire R avec son signe positif
 - L'outil doit guitter la pièce du côté **opposé** à celui gui est défini par la correction de rayon. Introduire R avec son signe négatif
 - Angle au centre CCA de la trajectoire circulaire

Exemple de séquences CN

23 L Y+20 RR F100	Dernier élément contour: P _E avec correction rayon
24 DEP CT CCA 180 R+8 F100	Angle au centre=180°, rayon traj. circulaire=10 mm
25 L Z+100 FMAX M2	Dégagement en Z, retour, fin du programme

Sortie par trajectoire circulaire avec raccordement tangentiel et segement de droite: DEP LCT

La TNC guide l'outil sur une trajectoire circulaire allant du dernier point du contour P_E jusqu'à un point auxiliaire P_H. Partant de là, il se déplace sur une droite en direction du point final P_N. Le dernier élément du contour et la droite P_H – P_N se raccordent à la trajectoire circulaire par tangentement. De ce fait, elle est définie clairement par le rayon R.

- ▶ Programmer le dernier élément du contour avec le point final P_F et la correction de rayon
- ▶ Ouvrir le dialogue avec touche APPR/DEP et softkey DEP LCT:

Rayon R de la trajectoire circulaire Introduire R avec son signe positif

Exemple de séguences CN

23 L Y+20 RR F100	Dernier élément contour: P _E avec correction rayon
24 DEP LCT X+10 Y+12 R+8 F100	Coordonnées P _N , rayon traj. circulaire=10 mm
25 L Z+100 FMAX M2	Dégagement en Z, retour, fin du programme

6.4 Contournages – coordonnées cartésiennes

Sommaire des fonctions de contournage

Fonction	Touche de contourn.	Déplacement de l'outil	Données nécessaires
Droite L angl.: L ine	ιμρ σ ^ρ	Droite	Coordonnées du point final de la droite
Chanfrein CHF angl.: CH am F er	CHF, c:Lo	Chanfrein entre deux droites	Longueur du chanfrein
Centre de cercle CC; angl.: C ircle C enter	33	aucun	Coordonnées du centre du cercle ou pôle
Arc de cercle C angl.: C ircle	Jc	Traj. circulaire autour centre cercle CC vers le point final de l'arc de cercle	Coordonnées point final du cercle, sens de rotation
Arc de cercle CR angl.: C ircle by R adius	CR	Trajectoire circulaire de rayon défini	Coordonnées point final du cercle, rayon, sens de rotation
Arc de cercle CT angl.: C ircle T angential	CTP	Traj. circulaire avec racc. tangentiel à l'élément de contour précédent	Coordonnées point final du cercle
Arrondi d'angle RND angl.: R ou ND ing of Corner	RND o:Co	Traj. circulaire avec racc. tangentiel à l'élément de contour précédent et suivant	Rayon d'angle R
Programmation flexible de contours FK	FK	Droite ou trajectoire circulaire avec n'importe quel raccordement à l'élément de contour précédent	Cf. chapitre 6.6

6.4 Contournages – Coordonnées cartésiennes

Droite L

La TNC déplace l'outil sur une droite allant de sa position actuelle jusqu'au point final de la droite. Le point initial correspond au point final de la séquence précédente.

Introduire les coordonnées du point final de la droite Si nécessaire:

- ► Correction de rayon RL/RR/R0
- ► Avance F
- ► Fonction auxiliaire M

Exemple de séquences CN

7	L	X+10	Y+40	RL	F200	M3
8	L	IX+20	IY- 1	L5		
9	L	X+60	IY-10)		

Prise en compte de la position effective

Vous pouvez aussi générer une séquence linéaire (séquence L) avec la touche "Prise en compte de position effective":

- Déplacez l'outil en mode Manuel jusqu'à la position qui doit être prise en compte
- Commuter l'affichage de l'écran sur Mémorisation/édition de programme
- Sélectionner la séquence de programme derrière laquelle doit être insérée la séquence L

Appuyer sur la touche "Prise en compte de position effective": La TNC génère une séquence L ayant les coordonnées de la position effective

Insérer un chanfrein CHF entre deux droites

Les angles de contour formés par l'intersection de deux droites peuvent être chanfreinés.

- Dans les séquences linéaires précédant et suivant la séquence CHF, programmez les deux coordonnées du plan dans lequel le chanfrein doit être exécuté
- La correction de rayon doit être identique avant et après la séquence CHF
- Le chanfrein doit pouvoir être usiné avec l'outil actuel

Si nécessaire:

Avance F (n'agit que dans la séquence CHF)

Chanfrein: introduire la longueur du chanfrein

Tenez compte des remarques à la page suivante!

Exemple de séquences CN

7 L X+0 Y+30 RL F300 M3 8 L X+40 IY+5 9 CHF 12 F250 10 L IX+5 Y+0

Un contour ne doit pas débuter par une séquence CHF.

Un chanfrein ne peut être exécuté que dans le plan d'usinage.

Une avance programmée dans une séquence CHF n'est active que dans cette séquence. Par la suite, c'est l'avance active avant la séquence CHF qui redevient active.

Le coin sectionné par le chanfrein ne sera pas abordé.

Centre de cercle CC

Définissez le centre du cercle pour les trajectoires circulaires à l'aide de la touche C (trajectoire circulaire C). Pour cela:

- introduisez les coordonnées cartésiennes du centre du cercle ou
- prenez en compte la dernière position programmée ou
- prenez en compte les coordonnées avec la touche "Prise en compte de position effective"

► Coordonnées CC: introduire les coordonnées du centre du cercle ou

pour prendre en compte la dernière position programmée: ne pas introduire de coordonnées

Exemple de séquences CN

5 CC X+25 Y+25 ou 10 L X+25 Y+25 11 CC

Les lignes 10 et 11 du programme ne se réfèrent pas à la figure cicontre.

Durée de l'effet

Le centre du cercle reste défini jusqu'à ce que vous programmiez un nouveau centre de cercle. Vous pouvez également définir un centre de cercle pour les axes auxiliaires U, V et W.

Introduire le centre de cercle CC en valeur incrémentale

Une coordonnée introduite en valeur incrémentale pour le centre du cercle se réfère toujours à la dernière position d'outil programmée.

Avec CC, vous désignez une position comme centre de cercle: L'outil ne se déplace pas jusqu'à cette position.

Le centre du cercle correspond simultanément au pôle pour les coordonnées polaires.

Traject. circulaire C autour du centre de cercle CC

Définissez le centre CC avant de programmer la trajectoire circulaire C. La dernière position d'outil programmée avant la séquence C correspond au point initial de la trajectoire circulaire.

Déplacer l'outil sur le point initial de la trajectoire circulaire

+cc

°°° ⊂

- Introduire les coordonnées du centre du cercle
- ▶ Coordonnées du point final de l'arc de cercle
 - ▶ Sens de rotation DR
 - Si nécessaire:
 - ► Avance F
 - ► Fonction auxiliaire M

Exemple de séquences CN

5	C	C X+2!	5 Y+25	5					
6	L	X+45	Y+25	RR	F200	M3			
7	С	X+45	Y+25	DR	F				

Cercle entier

Pour le point final, programmez les mêmes coordonnées que celles du point initial.

Le point initial et le point final du déplacement circulaire doivent se situer sur la trajectoire circulaire.

Tolérance d'introduction: jusqu'à 0,016 mm (par PM7431)

Trajectoire circulaire CR de rayon défini

L'outil se déplace sur une trajectoire circulaire de rayon R.

CR

- ▶ Introduire les coordonnées du point final de l'arc de cercle
- Rayon R Attention: le signe définit la grandeur de l'arc de cercle!
- Sens de rotation DR Attention: le signe définit la courbe concave ou convexe!
- Si nécessaire:
- Avance F
- ► Fonction auxiliaire M

Cercle entier

Pour un cercle entier, programmez à la suite deux séquences CR:

Le point final du premier demi-cercle correspond au point initial du second. Le point final du second demi-cecle correspond au point initial du premier. Cf. figure de droite, en haut.

Angle au centre CCA et rayon R de l'arc de cercle

Le point initial et le point final du contour peuvent être reliés ensemble par quatre arcs de cercle différents et de même rayon:

Petit arc de cercle: CCA<180° Rayon de signe positif R>0

Grand arc de cercle: CCA>180° Rayon de signe négatif R<0

Au moyen du sens de rotation, vous définissez si la courbure de l'arc de cercle est dirigée vers l'extérieur (convexe) ou vers l'intérieur (concave):

Convexe: Sens de rotation DR- (avec correction de ravon RL)

Concave: Sens de rotation DR+ (avec correction de rayon RL)

Exemple de séguences CN

Cf. figures de droite au centre et en bas.

Tenez compte des remargues à la page suivante!

6.4 Contournages – C<mark>oord</mark>onnées cartésiennes

L'écart entre le point initial et le point final du diamètre du cercle ne doit pas être supérieur au diamètre du cercle.

Rayon max.: 99,9999 m.

Fonction autorisée pour les axes angulaires A, B et C.

Traject. circulaire CT avec raccordement tangentiel

L'outil se déplace sur un arc de cercle qui se raccorde par tangentement à l'élément de contour précédent.

Un raccordement est "tangentiel" lorsqu'il n'y a ni coin ni coude à l'intersection des éléments du contour qui s'interpénètrent ainsi d'une manière continue.

Programmez directement avant la séquence CT l'élément de contour sur lequel se raccorde l'arc de cercle par tangentement. Il faut pour cela au minimum deux séquences de positionnement.

Introduire les coordonnées du point final de l'arc de cercle

Si nécessaire:

► Avance F

▶ Fonction auxiliaire M

Exemple de séquences CN

7	L	X+0	Y+25	RL	F300	Μ3	
8	L	X+2	5 Y+3	0			
9	CI	Г X+	45 Y+2	20			
1) I	. Y+(0				

La séquence CT et l'élément de contour programmé avant doivent contenir les deux coordonnées du plan dans lequel l'arc de cercle doit être exécuté!

Arrondi d'angle RND

La fonction RND permet d'arrondir les angles du contour.

L'outil se déplace sur une trajectoire circulaire qui se raccorde par tangentement à la fois à l'élément de contour précédent et à l'élément de contour suivant.

Le cercle d'arrondi doit pouvoir être exécuté avec l'outil en cours d'utilisation.

Rayon d'arrondi: introduire le rayon de l'arc de cercle

Si nécessaire:

Avance F (n'agit que dans la séquence RND)

Exemple de séquences CN

5	L X+10	Y+40 RL F300 M3
6	L X+40	Y+25
7	RND R5	F100
8	L X+10	Y+5

L'élément de contour précédent et l'élément de contour suivant doivent contenir les deux coordonnées du plan dans lequel doit être exécuté l'arrondi d'angle.

L'angle ne sera pas abordé.

Une avance programmée dans une séquence RND n'est active que dans cette séquence. Par la suite, c'est l'avance active avant la séquence RND qui redevient active.

Une séquence RND peut être également utilisée pour approcher le contour en douceur lorsqu'il n'est pas possible de faire appel aux fonctions APPR.

Exemple: Déplacement linéaire et chanfreins en coordonnées cartésiennes

O BEGIN PGM LINEAIRE MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Définition de la pièce brute pour simulation graphique de l'usinage
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Définition d'outil dans le programme
4 TOOL CALL 1 Z S4000	Appel d'outil avec axe de broche et vitesse de rotation broche
5 L Z+250 R0 F MAX	Dégager l'outil dans l'axe de broche en avance rapide FMAX
6 L X-10 Y-10 R0 F MAX	Pré-positionner l'outil
7 L Z-5 RO F1000 M3	Aller à la profondeur d'usinage avec avance F = 1000 mm/min.
8 APPR LT X+5 Y+5 LEN10 RL F300	Aborder le contour au point 1 sur une droite avec raccordement
	tangentiel
9 L Y+95	Aborder le point 2
10 L X+95	Point 3: première droite pour angle 3
11 CHF 10	Programmer un chanfrein de longueur 10 mm
12 L Y+5	Point 4: deuxième droite pour angle 3, première droite pour angle 4
13 CHF 20	Programmer un chanfrein de longueur 20 mm
14 L X+5	Aborder le dernier point 1 du contour, deuxième droite pour angle 4
15 DEP LT LEN10 F1000	Quitter le contour sur une droite avec raccordement tangentiel
16 L Z+250 RO F MAX M2	Dégager l'outil, fin du programme
17 END PGM LINEAIRE MM	

Exemple: Déplacements circulaires en coordonnées cartésiennes

O BEGIN PGM CIRCULAIR MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Définition de la pièce brute pour simulation graphique de l'usinage
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Définition d'outil dans le programme
4 TOOL CALL 1 Z S4000	Appel d'outil avec axe de broche et vitesse de rotation broche
5 L Z+250 R0 F MAX	Dégager l'outil dans l'axe de broche en avance rapide FMAX
6 L X-10 Y-10 R0 F MAX	Pré-positionner l'outil
7 L Z-5 RO F1000 M3	Aller à la profondeur d'usinage avec avance F = 1000 mm/min.
8 APPR LCT X+5 Y+5 R5 RL F300	Aborder le contour au point 1 sur une trajectoire circulaire avec
	raccordement tangentiel
9 L X+5 Y+85	Point 2: première droite pour angle 2
10 RND R10 F150	Insérer un rayon R = 10 mm, avance: 150 mm/min.
11 L X+30 Y+85	Aborder le point 3: point initial du cercle avec CR
12 CR X+70 Y+95 R+30 DR-	Aborder le point 4: point final du cercle avec CR, rayon 30 mm
13 L X+95	Aborder le point 5
14 L X+95 Y+40	Aborder le point 6
15 CT X+40 Y+5	Aborder le point 7: point final du cercle, arc de cercle avec raccord.
	tangentiel au point 6, la TNC calcule automatiquement le rayon
16 L X+5	Aborder le dernier point du contour 1
17 DEP LCT X-20 Y-20 R5 F1000	Quitter le contour sur trajectoire circulaire avec raccord. tangentiel
18 L Z+250 RO F MAX M2	Dégager l'outil, fin du programme
19 END PGM CIRCULAIR MM	

Exemple: Cercle entier en coordonnées cartésiennes

O BEGIN PGM C-CC MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Définition de la pièce brute
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+12,5	Définition d'outil
4 TOOL CALL 1 Z S3150	Appel de l'outil
5 CC X+50 Y+50	Définir le centre du cercle
6 L Z+250 R0 F MAX	Dégager l'outil
7 L X-40 Y+50 R0 F MAX	Pré-positionner l'outil
8 L Z-5 RO F1000 M3	Aller à la profondeur d'usinage
9 APPR LCT X+0 Y+50 R5 RL F300	Aborder le point initial en suivant une trajectoire circulaire avec
	tangentiel
10 C X+O DR-	Aborder le point final (=point initial du cercle)
11 DEP LCT X-40 Y+50 R5 F1000	Quitter le contour en suivant une trajectoire circulaire avec
	tangentiel
12 L Z+250 RO F MAX M2	Dégager l'outil, fin du programme
13 FND DCM C_CC MM	

6.5 Contournages – coordonnées polaires

Les coordonnées polaires vous permettent de définir une position à partir d'un angle PA et d'une distance PR par rapport à une pôle CC défini précédemment. Cf. "4.1 Principes de base".

Les coordonnées polaires sont intéressantes à utiliser pour:

les positions sur des arcs de cercle

les plans avec données angulaires (ex. cercles de trous)

Sommaire des contournages avec coordonnées polaires

Fonction	Touches de contournage	Déplacement de l'outil	Données nécessaires
Droite LP	¥ + P	Droite	Rayon polaire du point final de la droite
Arc de cercle CP	℃ + P	Traj. circ. autour centre de cercle/pôle CC vers pt final arc de cercle	Angle polaire du point final du cercle, sens de rotation
Arc de cercle CTP	^{ст} ? + ₽	Traj. circ. avec raccord. tangentiel à l'élément de contour précédent	Rayon polaire, angle polaire du point final du cercle
Traj. hélicoïdale	<u>⟩</u> + P	Conjonction d'une trajectoire circulaire et d'une droite	Rayon polaire, angle polaire du point final du cercle, coordonnée point final dans l'axe d'outil

Origine des coordonnées polaires: pôle CC

Avant d'indiquer les positions en coordonnées polaires, vous pouvez définir le pôle CC à n'importe quel endroit du programme d'usinage. Pour définir le pôle, procédez de la même manière que pour la programmation du centre de cercle CC.

Coordonnées CC: introduire les coordonnées cartésiennes pour le pôle ou

pour prendre en compte la dernière position programmée: ne pas introduire de coordonnées

6.5 Contournages – Coordonnées polaires

Droite LP

L'outil se déplace sur une droite, à partir de sa position actuelle jusqu'au point final de la droite. Le point initial correspond au point final de la séquence précédente.

Rayon polaire PR: introduire la distance entre le point final de la droite et le pôle CC

► Angle polaire PA: position angulaire du point final de la droite comprise entre -360° et +360°

Le signe de PA est déterminé par l'axe de référence angulaire:

Angle compris entre l'axe de référence angulaire et PR, sens anti-horaire: PA>0

Angle compris entre l'axe de référence angulaire et PR, sens horaire: PA<0

Exemple de séquences CN

12	00	X+45	Y+25			
13	LP	PR+30	PA+0	RR	F300	Μ3
14	LP	PA+60				
15	LP	IPA+6	0			
16	LP	PA+18	0			

Trajectoire circulaire CP autour du pôle CC

Le rayon en coordonnées polaires PR est en même temps le rayon de l'arc de cercle. PR est défini par la distance séparant le point initial du pôle CC. La dernière position d'outil programmée avant la séquence CP correspond au point initial de la trajectoire circulaire.

Angle polaire PA: position angulaire du point final de la trajectoire circulaire comprise entre -5400° et +5400°

▶ Sens de rotation DR

Exemple de séquences CN

19 LP PR+20 PA+0 RR F250 M3 20 CP PA+180 DR+	18	00	X+25	Y +25												
20 CP PA+180 DR+	19	LP	PR+20	PA+0	RR	F250	М3									
	20	CP	PA+18	0 DR+												

En valeurs incrémentales, les coordonnées de DR et PA ont le même signe.

Trajectoire circulaire CTP avec raccord. tangentiel

L'outil se déplace sur une trajectoire circulaire qui se raccorde par tangentement à un élément de contour précédent.

- Rayon polaire PR: distance entre le point final de la trajectoire circulaire et le pôle CC
 - Angle polaire PA: position angulaire du point final de la trajectoire circulaire

Exemple de séquences CN

12	CC X+40 Y+35
13	L X+0 Y+35 RL F250 M3
14	LP PR+25 PA+120
15	CTP PR+30 PA+30
16	L Y+0

Trajectoire hélicoïdale (hélice)

Une trajectoire hélicoïdale est la conjonction d'une trajectoire circulaire et d'un déplacement linéaire qui lui est perpendiculaire. Vous programmez la trajectoire circulaire dans un plan principal.

Vous ne pouvez programmer les contournages pour la trajectoire hélicoïdale qu'en coordonnées polaires.

Applications

Taraudage et filetage avec grands diamètres

Rainures de graissage

Calcul de la trajectoire hélicoïdale

Pour programmer, il vous faut disposer de la donnée incrémentale de l'angle total parcouru par l'outil sur la trajectoire hélicoïdale ainsi que de la hauteur totale de la trajectoire hélicoïdale.

Pour le calcul dans le sens du fraisage, de bas en haut, on a:

Hauteur totale h Pas de vis P x nombre de rotations n
Angle total Nombre de rotations x 360° + angle pou
incrémental IPA début filet + angle pour
dépassement de course
Coordonnée initiale Z Pas de vis P x (rotations +
dépassement course en début de filet)

Forme de la trajectoire hélicoïdale

Le tableau indique la relation entre sens de l'usinage, sens de rotation et correction de rayon pour certaines formes de trajectoires.

Taraudage	Sens usinage	Sens rot.	Correct. rayon
vers la droite	Z+	DR+	RL
vers la gauche	Z+	DR–	RR
vers la droite	Z–	DR-	RR
vers la gauche	Z–	DR+	RL
Filetage			
vers la droite	Z+	DR+	RR
vers la gauche	Z+	DR–	RL
vers la droite	Z–	DR–	RL
vers la gauche	Z–	DR+	RR

Programmer une trajectoire hélicoïdale

Introduisez le sens de rotation DR et l'angle total incrémental IPA avec le même signe. Sinon, l'outil pourrait effectuer une trajectoire erronée.

> Pour l'angle total IPA, vous pouvez introduire une valeur comprise entre -5400° et +5400°. Si le filet comporte plus de 15 rotations, programmez la trajectoire hélicoïdale dans une répétition de partie de programme (cf. "9.2 Répétitions de parties de programme")

- Angle polaire: introduire en incrémental l'angle total parcouru par l'outil sur la trajectoire hélicoïdale.
 Après avoir introduit l'angle, sélectionnez l'axe d'outil à l'aide d'une touche de sélection d'axe.
 - Introduire en incrémental la coordonnée de la hauteur de la trajectoire hélicoïdale
 - SENS DE ROTATION DR Trajectoire hélicoïdale dans le sens horaire: DR– Trajectoire hélicoïdale dans le sens anti-horaire: DR+
 - Correction de rayon RL/RR/R0 Introduire la correction de rayon en fonction du tableau

Exemple de séquences CN

Ъс

12 CC X+40 Y+25
13 Z+O F100 M3
14 LP PR+3 PA+270 RL F50
15 CP IPA-1800 IZ+5 DR-

Exemple: Déplacement linéaire en coordonnées polaires

O BEGIN PGM LIN	EPOL MM	
1 BLK FORM 0.1	Z X+0 Y+0 Z-20	Définition de la pièce brute
2 BLK FORM 0.2	X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0	0 R+7,5	Définition d'outil
4 TOOL CALL 1 Z	S4000	Appel de l'outil
5 CC X+50 Y+50		Définir le point de référence pour les coordonnées polaires
6 L Z+250 R0 F	ЧАХ	Dégager l'outil
7 LP PR+60 PA+12	80 RO F MAX	Pré-positionner l'outil
8 L Z-5 R0 F100	D M3	Aller à la profondeur d'usinage
9 APPR PLCT PR+4	45 PA+180 R5 RL F250	Aborder le contour au point 1 en suivant un cercle avec
		raccordement tangentiel
10 LP PA+120		Aborder le point 2
11 LP PA+60		Aborder le point 3
12 LP PA+0		Aborder le point 4
13 LP PA-60		Aborder le point 5
14 LP PA-120		Aborder le point 6
15 LP PA+180		Aborder le point 1
16 DEP PLCT PR+	60 PA+180 R5 F1000	Quitter le contour sur un cercle avec raccordement tangentiel
17 L Z+250 R0 F	MAX M2	Dégager l'outil, fin du programme
18 END PGM LTNE	POL MM	

polaires	
cordonnées	
1	
Contournages	
5.5	

O BEGIN PGM HELICE MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Définition de la pièce brute
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+5	Définition d'outil
4 TOOL CALL 1 Z S1400	Appel de l'outil
5 L Z+250 RO F MAX	Dégager l'outil
6 L X+50 Y+50 R0 F MAX	Pré-positionner l'outil
7 CC	Prendre en compte comme pôle la dernière position programmée
8 L Z-12,75 RO F1000 M3	Aller à la profondeur d'usinage
9 APPR PCT PR+32 PA-180 CCA180 R+2	Aborder le contour en suivant un cercle avec raccordement
RL F100	tangentiel
10 CP IPA+3240 IZ+13,5 DR+ F200	Parcourir la trajectoire hélicoïdale
11 DEP CT CCA180 R+2	Quitter le contour sur un cercle avec raccordement tangentiel
12 L Z+250 RO F MAX M2	Dégager l'outil, fin du programme
13 END PGM HELICE MM	
Si vous devez usiner plus de 16 rotations	
•••	
0 I 7 10 75 DO 51000	

•••	
8 L Z-12.75 R0 F1000	
9 APPR PCT PR+32 PA-180 CCA180 R+2 RL F100	
10 LBL 1	Début de la répétition de partie de programme
11 CP IPA+360 IZ+1,5 DR+ F200	Introduire directement le pas de vis comme valeur IZ
12 CALL LBL 1 REP 24	Nombre de répétitions (rotations)
13 DEP CT CCA180 R+2	

6.6 Contournages – Programmation flexible de contours FK

Principes de base

Les plans de pièces dont la cotation n'est pas conforme à la programmation des CN contiennent souvent des coordonnées non programmables avec les touches de dialogue grises. Ainsi:

- des coordonnées connues peuvent être situées sur l'élément de contour ou à proximité de celui-ci,
- des indications de coordonnées peuvent se rapporter à un autre élément de contour ou
- des indications de sens et données relatives à l'allure générale du contour peuvent être connues.

Vous programmez de telles données directement à l'aide de la programmation flexible de contours FK. La TNC calcule le contour à partir des indications de coordonnées connues et assiste le dialogue de programmation à l'aide du graphisme interactif FK. La figure en haut, à droite illustre une cotation que vous pouvez introduire très simplement en programmation FK.

Pour exécuter des programmes FK sur des TNC plus anciennes, utilisez la fonction de conversion (cf. "4.3 Gestion de fichiers, convertir les programmes FK en format Texte clair+).

Graphisme de programmation FK

Pour pouvoir utiliser le graphisme avec la programmation FK, sélectionnez la répartition d'écran PGM + GRAPHISME (cf. "1.3 Modes de fonctionnement, softkevs pour la répartition de l'écran")

Souvent, lorsque les indications de coordonnées sont incomplètes, le contour d'une pièce n'est pas défini clairement. La TNC affiche alors les différentes solutions à l'aide du graphisme FK; il ne vous reste plus qu'à sélectionner la solution correcte. Le graphisme FK représente le contour de la pièce en plusieurs couleurs:

- blanc L'élément de contour est clairement défini
- vert Les données introduites donnent lieu à plusieurs solutions; sélectionnez la bonne
- **rouge** Les données introduites ne suffisent pas encore pour définir l'élément de contour; introduisez d'autres données

Lorsque les données donnent lieu à plusieurs solutions et que l'élément de contour est en vert, sélectionnez le contour correct de la manière suivante:

Appuyer sur la softkey AFFICHER SOLUTION jusqu'à ce que l'élément de contour soit affiché correctement

L'élément de contour affiché correspond au plan: le définir avec la softkey SELECTION SOLUTION

뜻 **6.6 Contournages – Programmation flexible de contours**

Il est souhaitable que vous définissiez aussi vite que possible avec SELECTION SOLUTION les éléments de contour en vert afin de restreindre la multiplicité de solutions pour les éléments de contour suivants.

Si vous ne désirez pas définir tout de suite un contour affiché en vert, appuyez sur la softkey STOP SELECT. pour poursuivre le dialogue FK.

Le constructeur de votre machine peut choisir d'autres couleurs pour le graphisme FK.

Les séquences CN d'un programme appelé avec PGM CALL sont affichées par la TNC dans une autre couleur.

Ouvrir le dialogue FK

Lorsque vous appuyez sur la touche grise de fonction de contournage FK, la TNC affiche des softkeys qui vous permettent d'ouvrir le dialogue FK: Cf. tableau de droite. Pour quitter les softkeys, appuyez à nouveau sur la touche FK.

Si vous ouvrez le dialogue FK avec l'une de ces softkeys, la TNC affiche d'autres menus de softkeys à l'aide desquels vous pouvez introduire des coordonnées connues, des indications de sens et des données relatives à la courbe du contour.

Tenez compte des conditions suivantes pour la programmation FK

Avec la programmation FK, vous ne pouvez introduire les éléments du contour que dans le plan d'usinage. Vous définissez celui-ci dans la première séquence BLK FORM du programme d'usinage.

Introduisez pour chaque élément du contour toutes les données dont vous disposez. Programmez également dans chaque séquence toutes les données qui ne subissent pas de modifications: Les indications non programmées ne sont pas reconnues par la commande!

Les paramètres Q sont autorisés dans tous les éléments FK, excepté dans les éléments comportant des rapports relatif (ex. RX ou RAN), par conséquent dans des éléments qui se réfèrent à d'autres séquences CN.

Dans un programme, si vous mélangez des données conventionnelles à la programmation FK, chaque bloc FK doit être défini clairement.

La TNC requiert un point fixe servant de base aux calculs. A l'aide des touches de dialogue grises, programmez directement avant le bloc FK une position contenant les deux coordonnées du plan d'usinage. Ne pas programmer de paramètres Q dans cette séquence.

Si la première séquence du bloc FK est une séquence FCT ou FLT, vous devez programmer au moins deux séquences avant le bloc FK avec les touches de dialogue grises afin de définir clairement le sens du démarrage.

Un bloc FK ne doit pas commencer directement derrière une marque LBL.

Elément de contour	Softkey
Droite avec raccordement tangentiel	FLT
Droite sans raccordement tangentiel	FL
Arc de cercle avec raccord. tangentiel	FCT
Arc de cercle sans raccord. tangentiel	FC

Programmation flexible de droites

FΚ

- Afficher les softkeys de programmation flexible des contours: appuyer sur la touche FK
- Ouvrir le dialogue pour une droite flexible: appuyer sur la softkey FL. La TNC affiche plusieur softkeys – cf. tableau de droite
- A l'aide de ces softkeys, introduire dans la séquence toutes les données connues. Le graphisme FK affiche le contour programmé en rouge jusqu'à ce que les données suffisent. Plusieurs solutions sont affichées en vert. Cf. "Graphisme de programmation FK".

Exemples de séquences CN: cf. page suivante.

Droite avec raccordement tangentiel

Si la droite se raccorde tangentiellement à un autre élément du contour, ouvrez le dialogue avec la softkey FLT:

Afficher les softkeys de programmation flexible des contours: appuyer sur la touche FK

- ▶ Ouvrir le dialogue: appuyer sur la softkey FLT
- A l'aide des softkeys (tableau de droite), introduire dans la séquence toutes les données connues

Programmation flexible de trajectoires circulaires

FC J

- ► Afficher les softkeys de programmation flexible des contours: appuyer sur la touche FK
- Ouvrir le dialogue pour les trajectoires circulaires flexibles: appuyer sur la softkey FC; la TNC affiche les softkeys pour les indications directes relatives à la trajectoire circulaire ou les données concernant le centre de cercle; cf. tableau de droite
 - A l'aide de ces softkeys, introduire dans la séquence toutes les données connues: Le graphisme FK affiche le contour programmé en rouge jusqu'à ce que les données suffisent. Plusieurs solutions sont affichées en vert. Cf.+Graphisme de programmation FK+.

Trajectoire circulaire avec raccordement tangentiel

Si la trajectoire circulaire se raccorde tangentiellement à un autre élément du contour, ouvrez le dialogue avec la softkey FCT:

► Afficher les softkeys de programmation flexible des contours: appuyer sur la touche FK

- Ouvrir le dialogue: appuyer sur la softkey FCT
- A l'aide des softkeys (tableau de droite), introduire dans la séquence toutes les données connues

Donnée connue	Softkey
Coordonnée X du point final de la droite	×
Coordonnée Y du point final de la droite	ţŸ
Rayon en coordonnées polaires	PR •
Angle en coordonnées polaires	PA +
Longueur de la droite	LEN
Angle de montée de la droite	AN
Début/fin d'un contour fermé	+ CLSD

Rapports à d'autres séquences: cf. paragr. "Rapports relatifs"; points auxiliaires: cf. paragr. "Points auxiliaires" dans ce sous-chapitre.

Données directes pour traj. circulaire	Softkey
Coordonnée X point final traj. circulaire	×
Coordonnée Y point final traj. circulaire	ţ
Rayon en coordonnées polaires	PR •
Angle en coordonnées polaires	PA
Sens de rotation de la traj. circulaire	DR (- *)
Rayon de la trajectoire circulaire	R
Angle compris entre l'axe directeur et le point final du cercle	CCR

Angle de montée de la trajectoire circulaire

L'angle de montée AN d'une trajectoire circulaire correspond à l'angle formé par la tangente d'entrée. Cf. figure de droite.

Longueur de corde de la trajectoire circulaire

La longueur de corde d'une trajectoire circulaire correspond à la longueur LEN de l'arc de cercle. Cf. figure de droite.

Centre de cercles programmés en mode FK

Pour des trajectoires circulaires programmées en mode FK, la TNC calcule un centre de cercle à partir des données que vous avez introduites. Avec la programmation FK, vous pouvez aussi programmer un cercle entier dans une séquence.

Si vous désirez définir un centre de cercle en coordonnées polaires, vous devez définir le pôle avec la fonction FPOL au lieu de CC. FPOL reste actif jusqu'à la prochaine séquence contenant FPOL et est défini en coordonnées incrémentales.

Un centre de cercle programmé de manière conventionnelle ou calculé par la TNC n'est plus actif comme pôle ou centre de cercle dans un nouveau bloc FK: Si des coordonnées polaires programmées conventionnellement se réfèrent à un pôle que vous avez défini précédemment à l'intérieur d'une séquence CC, reprogrammez alors le pôle après le bloc FK.

Exemple de séquences CN pour FL, FPOL et FCT

	comple de sequences on pour l'E, l'r o'E et r o'r
7	FPOL X+20 Y+30
8	FL IX+10 Y+20 RR F100
9	FCT PR+15 IPA+30 DR+ R15

Cf. figure de droite, en bas.

Données pour centre de cercle	Softkey
Coordonnée X du centre de cercle	жээ
Coordonnée Y du centre de cercle	ccv +
Rayon en coordonnées polaires du centre de cercle	CC PR +

Angle en coordonnées polaires du centre de cercle

Rapports à d'autres séquences: cf. paragr. "Rapports relatifs"; points auxiliaires: cf. paragr. "Points auxiliaires" dans ce sous-chapitre.

₩ ₩

Points auxiliaires

Vous pouvez introduire les coordonnées de points auxiliaires sur le contour ou à proximité de celui-ci, aussi bien pour les droites flexibles que pour les trajectoires circulaires flexibles. Les softkeys sont disponibles à cet effet dès que vous avez ouvert le dialogue FK à l'aide de la softkey FL, FLT, FC ou FCT.

Points auxiliaires pour la droite

Les points auxiliaires sont situés sur la droite ou dans son prolongement: cf. tableau de droite, en haut.

Les points auxiliaires se trouvent à distance D de la droite: cf. tableau de droite, au centre

Points auxiliaires pour la trajectoire circulaire

Pour la trajectoire circulaire, vous pouvez indiquer 1, 2 ou 3 points auxiliaires sur le contour. Cf. tableau de droite, en bas.

Exemple de séquences CN

13	FC DR-	R10 P1X+4	2.929 P1Y+60.071	
14	FLT AN-	70 PDX+50	PDY+53 D10	

Cf. figure de droite, en bas.

Points auxiliaires sur la droite	Softkey
Coord. X point auxiliaire P1 ou P2	P2X
Coord. Y point auxiliaire P1 ou P2	P1V P2V

Points auxiliaires près de la droite	Softkey
Coordonnée X du point auxiliaire	PDX
Coordonnée Y du point auxiliaire	PDV
Distance entre point auxil. et droite	

Points auxiliaires sur la traj. circulaire Softkey

Coordonnée X d'un point auxiliaire P1, P2 ou P3

P1X	(^{P2X})	P3X

Coordonnée Y d'un point
auxiliaire P1, P2 ou P3

|--|

Coordonnées d'un point auxil. et trajectoire circulaire

Distance entre point auxiliaire et trajectoire circulaire

D	/
1	ŕ
	· · · ·

Rapports relatifs

Les rapports relatifs sont des données qui se réfèrent à un autre élément de contour. Les softkeys et mots de programme destinés aux rapports **R**elatfs débutent par un **"R**". La figure de droite montre les cotes que vous devez programmer comme rapports relatifs.

Vous programmez toujours **en incrémental** les coordonnées et angles des rapports relatifs. Vous devez en plus indiquer le numéro de la séquence de l'élément de contour auquel vous vous référez.

L'élément de contour pour lequel vous indiquez le n° de séquence ne doit pas être à plus de 64 séquences devant la séquence dans laquelle vous programmez le rapport.

Si vous effacez une séquence par rapport à laquelle vous vous référez, la TNC émet un message d'erreur. Modifiez le programme avant d'effacer la séquence.

Rapports relatifs pour coord. traj. circulaire	Softkey
Coord. se référant au point final de la séquence N	RXN RVN
Modif. du rayon polaire par rapport à la séquence N	RPR
Modif. de l'angle polaire par rapport à la séquence N	RPA
Angle entre la tangente en entrée de l'arc de cercle et l'autre élément de contour	RANN

Rapports relatifs pour coord. centre de cercle	Softkey
Coord. CC se référant au point final séquence N	RCCXNRCCVN
Modif. du rayon polaire par rapport à la séquence N	RCCPR
Modif. de l'angle polaire par rapport à la séquence N	RCCPAN

Exemple de séquences CN

Coordonnées connues se référant à la séquence N. Cf. figure de droite, en haut:

12	FPO)L XH	F10	Y+10)															
13	FL	PR+2	20 F	PA+20)															
14	FL	AN+4	15																	
15	FC1	Γ IX+	⊦20	D R-	R20	CCA+90	RX	1	.3											
16	FL	IPR	+35	PA+) RPR	13														
Dire éfé	ectic	n coi tàla	nnue	e et o	distan	ce par r	appo	or	tá	àI	ľé	lé	me	ent	du	I C	on	tοι	ır s	e
		l u iu	sey	uenc	e N. (JT. TIGUI	e de	d	irc	Dite	e,	a	лс	en	пe	•				
17	FL	LEN	20	AN+:	e N. (1 5	JT. TIGUI	e de	e d	irc	Dite	e,	a	лс	en	lie					
17 18	FL FL	LEN AN+1	20 20	AN+:	e N. (15 12.5	UT. TIGUTE	e de	e d	irc	DIT	e,	a	l C	en	lie	•				
17 18 19	FL FL FL	LEN AN+1 PAR	20 105 17	AN+: LEN DP 1	e N. (15 12.5 .2.5	ut. tigure	e de	e d	irc	DIT	e,	a	JC	en	lie	•				
17 18 19 20	FL FL FL FSE	LEN AN+1 PAR ELEC1	20 105 17 7	AN+: LEN DP	e N. (15 12.5 .2.5		e de	e d	irc		e,	a	JC	en	lie	•				
17 18 19 20 21	FL FL FL FSE FL	LEN AN+1 PAR ELEC1 LEN	20 105 17 [2 20	AN+: LEN DP : IAN+	e N. (15 12.5 .2.5 .95		e de	e d	lrc		e,	a	L C	en						
17 18 19 20 21 22	FL FL FSE FL FL	LEN AN+: PAR ELEC1 LEN IAN+	20 105 17 [2] 20 ⊦22(AN+: LEN DP : IAN+	e N. (12.5 .2.5 .95 I 18		e de) d	lirc		e,	a	JC	en						

12	FL	X+10) Y +1	10 RL				
13	FL							
14	FL	X+18	(Y+3	35				
15	FL							
16	FL							
17	FC	DR-	R10	CCA+0	ICCX+20	ICCY-15	RCCX12	RCCY14

6.6 Contournages – Programmatio<mark>n fle</mark>xible de contours FK

Contours fermés

A l'aide de la softkey CLSD, vous marquez le début et la fin d'un contour fermé. Ceci permet de réduire le nombre de solutions possibles pour le dernier élément du contour.

Introduisez CLSD en complément d'une autre donnée de contour dans la première et la dernière séquence d'un élément FK.

Convertir les programmes FK

Pour convertir un programme FK en programme Texte clair à l'aide de la gestion de fichiers, procédez de la manière suivante:

- Appeler la gestion de fichiers et afficher les fichiers.
- Déplacer le champ clair sur le fichier que vous désirez convertir.
 - CONVERTIR FK->H
- Appuyer sur les softkeys AUTRES FONCTIONS puis CONVERTIR FK->H. La TNC convertit toutes les séquences FK en séquences Texte clair.

Vous devez éventuellement redéfinir dans le programme qui a été converti les centres de cercle que vous avez introduits avant un bloc FK. Une fois la conversion effectuée, contrôlez votre programme d'usinage avant de l'exécuter.

O BEGIN PGM FK1 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Définition de la pièce brute
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Définition d'outil
4 TOOL CALL 1 Z S500	Appel de l'outil
5 L Z+250 RO F MAX	Dégager l'outil
6 L X-20 Y+30 R0 F MAX	Pré-positionner l'outil
7 L Z-10 RO F1000 M3	Aller à la profondeur d'usinage
8 APPR CT X+2 Y+30 CCA90 R+5 RL F250	Aborder le contour sur un cercle avec raccordement tangentiel
9 FC DR- R18 CLSD+ CCX+20 CCY+30	Bloc FK:
10 FLT	Pour chaque élément du contour, programmer données connues
11 FCT DR- R15 CCX+50 CCY+75	
12 FLT	
13 FCT DR- R15 CCX+75 CCY+20	
14 FLT	
15 FCT DR- R18 CLSD- CCX+20 CCY+30	
16 DEP CT CCA90 R+5 F1000	Quitter le contour sur un cercle avec raccordement tangentiel
17 L X-30 Y+0 RO F MAX	
18 L Z+250 RO F MAX M2	Dégager l'outil, fin du programme
19 FND PGM FK1 MM	

O BEGIN PGM FK2 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Définition de la pièce brute
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+2	Définition d'outil
4 TOOL CALL 1 Z S4000	Appel de l'outil
5 L Z+250 RO F MAX	Dégager l'outil
6 L X+30 Y+30 R0 F MAX	Pré-positionner l'outil
7 L Z+5 RO F MAX M3	Pré-positionner l'axe d'outil
8 L Z-5 R0 F100	Aller à la profondeur d'usinage
9 APPR LCT X+0 Y+30 R5 RR F350	Aborder le contour sur un cercle avec raccordement tangentiel
10 FPOL X+30 Y+30	Bloc FK:
11 FC DR- R30 CCX+30 CCY+30	Pour chaque élément du contour, programmer données connues
12 FL AN+60 PDX+30 PDY+30 D10	
13 FSELECT 3	
14 FC DR- R20 CCPR+55 CCPA+60	
15 FSELECT 2	
16 FL AN-120 PDX+30 PDY+30 D10	
17 FSELECT 3	
18 FC X+0 DR- R30 CCX+30 CCY+30	
19 FSELECT 2	
20 DEP LCT X+30 Y+30 R5	Quitter le contour sur un cercle avec raccordement tangentiel
21 L Z+250 RO F MAX M2	Dégager l'outil, fin du programme
22 END PGM FK2 MM	

O BEGIN PGM FK3 MM	
1 BLK FORM 0.1 Z X-45 Y-45 Z-20	Définition de la pièce brute
2 BLK FORM 0.2 X+120 Y+70 Z+0	
3 TOOL DEF 1 L+0 R+3	Définition d'outil
4 TOOL CALL 1 Z S4500	Appel de l'outil
5 L Z+250 RO F MAX	Dégager l'outil
6 L X-70 Y+0 R0 F MAX	Pré-positionner l'outil
7 L Z-5 RO F1000 M3	Aller à la profondeur d'usinage
8 APPR CT X-40 Y+0 CCA90 R+5 RL F250	Aborder le contour sur un cercle avec raccordement tangentiel
9 FC DR- R40 CCX+0 CCY+0	Bloc FK:
10 FLT	Pour chaque élément du contour, programmer données connues
11 FCT DR- R10 CCX+0 CCY+50	
12 FLT	
13 FCT DR+ R6 CCX+0 CCY+0	
14 FCT DR+ R24	
15 FCT DR+ R6 CCX+12 CCY+0	
16 FSELECT 2	
17 FCT DR- R1,5	
18 FCT DR- R36 CCX+44 CCY-10	
19 FSELECT 2	
20 FCT DR+ R5	
21 FLT X+110 Y+15 AN+0	
22 EL AN QO	
FK	

contours	
de	
exible	
fle	
Programmatior	
Т	
Contournages	
6.6	

23	FL X+65 AN+180 PAR21 DP30	
24	RND R5	
25	FL X+65 Y-25 AN-90	
26	FC DR+ R50 CCX+65 CCY-75	
27	FCT DR- R65	
28	FSELECT 1	
29	FCT Y+O DR- R4O CCX+O CCY+O	
30	FSELECT 4	
31	DEP CT CCA90 R+5 F1000	Quitter le contour sur un cercle avec raccordement tangentiel
32	L X-70 RO F MAX	
33	L Z+250 RO F MAX M2	Dégager l'outil, fin du programme
34	END PGM FK3 MM	

6.7 Contournages – Interpolation spline

Les contours décrits comme splines par un système CAO peuvent être transférés vers la TNC et exécutés par elle directement. La TNC dispose d'un interpolateur spline permettant d'exécuter des polynomes de troisième ordre sur deux, trois, quatre ou cing axes.

Vous ne pouvez pas éditer les séquences spline dans la TNC. Exception: Avance F et fonction auxiliaire M dans une séquence spline.

Exemple: Format de séquence pour deux axes

7 L X+33,909 Z+75,107 F MAX	Point initial spline
8 SPL X+39,824 Z+77,425	Point final spline
K3X+0,0983 K2X-0,441 K1X-5,5724	Paramètre spline pour axe X
K3Z+0,0015 K2Z-0,9549 K1Z+3,0875 F10000	Paramètre spline pour axe Z
9 SPL X+44,862 Z+73,44	Point final spline
K3X+0,0934 K2X-0,7211 K1X-4,4102	Paramètre spline pour axe X
K3Z-0,0576 K2Z-0,7822 K1Z+4,8246	Paramètre spline pour axe Z
10	

La TNC exécute la séquence spline en fonction des polynomes de troisième ordre suivants:

 $X(t) = K3X \cdot t^3 + K2X \cdot t^2 + K1X \cdot t + X$

 $Z(t) = K3Z \cdot t^3 + K2Z \cdot t^2 + K1Z \cdot t + Z$

La variable t va de 1 à 0.

Exemple: Format de séquence pour cinq axes

7	L X+33,909 Y-25,838 Z+75,107 A+17 B-10,103 F MAX	Point initial spline
8	SPL X+39,824 Y-28,378 Z+77,425 A+17,32 B-12,75	Point final spline
	K3X+0,0983 K2X-0,441 K1X-5,5724	Paramètre spline pour axe X
	K3Y-0,0422 K2Y+0,1893 K1Y+2,3929	Paramètre spline pour axe Y
	K3Z+0,0015 K2Z-0,9549 K1Z+3,0875	Paramètre spline pour axe Z
	K3A+0,1283 K2A-0,141 K1A-0,5724	Paramètre spline pour axe A
	K3B+0,0083 K2B-0,413 E+2 K1B-1,5724 E+1 F10000	Paramètre spline pour axe B avec
		exposant
9		

La TNC exécute la séquence spline en fonction des polynomes de troisième ordre suivants:

$$\begin{split} X(t) &= K3X \cdot t^3 + K2X \cdot t^2 + K1X \cdot t + X \\ X(t) &= K3Y \cdot t^3 + K2Y \cdot t^2 + K1Y \cdot t + Y \\ Z(t) &= K3Z \cdot t^3 + K2Z \cdot t^2 + K1Z \cdot t + Z \\ A(t) &= K3A \cdot t^3 + K2A \cdot t^2 + K1A \cdot t + A \\ B(t) &= K3B \cdot t^3 + K2B \cdot t^2 + K1B \cdot t + B \end{split}$$

La variable t va de 1 à 0.

Pour chaque coordonnée de point final dans la séquence spline, vous devez programmer les paramètres-spline K3 à K1. L'ordre chronologique des coordonnées du point final de la séquence spline peut être librement choisi.

La TNC attend toujours l'introduction du paramètre spline K pour chaque axe dans l'ordre K3, K2, K1.

Outre les axes principaux X, Y et Z, la TNC peut également traîter dans la séquence SPL les axes auxiliaires U, V et W ainsi que les axes rotatifs A, B et C. Dans le paramètre spline K, il convient d'introduire l'axe correspondant

(ex. K3A+0,0953 K2A-0,441 K1A+0,5724).

Si la valeur d'un paramètre spline K est supérieure à 9,99999999, le post-processeur doit délivrer K sous forme d'exposant (ex. K3X+1,2750 E2).

La TNC peut également exécuter un programme comportant des séquences spline en mode avec inclinaison du plan d'usinage.

Plages d'introduction

- Point final spline: -99 999,9999 à +99 999,9999
- Paramètre spline K: -9,99999999 à +9,99999999
- Exposant pour paramètre spline K: -255 à +255 (nombre entier)

7.1 Introduire les fonctions auxiliaires M et une commande de STOP

Grâce aux fonctions auxiliaires de la TNC – encore appelées fonctions M – vous commandez:

- l'exécution du programme, une interruption par exemple
- les fonctions de la machine, par exemple, l'activation et la désactivation de la rotation broche et de l'arrosage
- le comportement de contournage de l'outil

Le constructeur de la machine peut valider certaines fonctions auxiliaires non décrites dans ce Manuel. Consultez le manuel de votre machine.

Vous introduisez une fonction auxiliaire M à la fin d'une séquence de positionnement. La TNC affiche alors le dialogue:

Fonction auxiliaire M ?

Dans le dialogue, vous n'indiquez normalement que le numéro de la fonction auxiliaire. Pour certaines fonctions auxiliaires, le dialogue se poursuit afin que vous puissiez introduire les paramètres de cette fonction.

En modes de fonctionnement Manuel et Manivelle électronique, introduisez les fonctions auxiliaires avec la softkey M.

Notez que certaines fonctions auxiliaires sont activées au début d'une séquence de positionnement et d'autres à la fin.

Les fonctions auxiliaires sont actives à partir de la séquence dans laquelle elles sont appelées. Si la fonction auxiliaire n'est pas active seulement dans une séquence, elle est annulée dans une séquence suivante ou bien en fin de programme. Certaines fonctions auxiliaires ne sont actives que dans la séquence où elles sont appelées.

Introduire une fonction auxiliaire dans la séquence STOP

Une séquence STOP programmée interrompt l'exécution ou le test du programme, par exemple, pour vérifier l'outil. Vous pouvez programmer une fonction auxiliaire M dans une séquence STOP:

Programmer l'interruption de l'exécution du programme: appuyer sur la touche STOP

▶ Introduire la fonction auxiliaire M

Exemple de séquence CN

87 STOP M6

7.2 Fonctions auxiliaires pour contrôler l'exécution du programme, la broche et l'arrosage

Μ	Effet	Effet en	
M00	ARRET déroulement du programme ARRET broche ARRET arrosage	fin séquence	
M02 ARRET déroulement du programme fin séque ARRET broche ARRET arrosage Retour à la séquence 1 Effacement de l'affichage d'état (dépend de PM7300)			
M03	MARCHE broche sens horaire	début séquence	
M04	MARCHE broche sens anti-horaire	début séquence	
M05	ARRET broche	fin séquence	
M06	Changement d'outil fin séquence ARRET broche ARRET déroulement du programme dépend de PM7440)		
M08	MARCHE arrosage	début séquence	
M09	ARRET arrosage	fin séquence	
M13	MARCHE broche sens horaire MARCHE arrosage	début séquence	
M14	MARCHE broche sens anti-horaire MARCHE arrosage	début séquence	
M30	dito M02	fin séquence	

7.3 Fonctions auxiliaires pour les indications de coordonnées

Programmer les coordonnées machine: M91/M92

Point zéro règle

Sur la règle de mesure, une marque de référence définit la position du point zéro règle.

Point zéro machine

Vous avez besoin du point zéro machine pour

- activer les limitations de la zone de déplacement (commutateurs de fin de course de logiciel)
- aborder les positions machine (position de changement d'outil, par exemple)
- initialiser un point de référence pièce

Pour chaque axe, le constructeur de la machine introduit dans un paramètre-machine la distance entre le point zéro machine et le point zéro règle.

Comportement standard

Les coordonnées se réfèrent au point zéro pièce (cf. "Initialisation du point de référence").

Comportement avec M91 – Point zéro machine

Si les coordonnées des séquences de positionnement doivent se référer au point zéro machine, introduisez alors M91 dans ces séquences.

La TNC affiche les valeurs de coordonnées se référant au point zéro machine. Dans l'affichage d'état, commutez l'affichage des coordonnées sur REF (cf. "1.4 Affichages d'état").

Comportement avec M92 – Point de référence machine

Outre le point zéro machine, le constructeur de la machine peut définir une autre position machine (point de référence machine).

Pour chaque axe, le constructeur de la machine définit la distance entre le point de référence machine et le point zéro machine (cf. manuel de la machine).

Si les coordonnées des séquences de positionnement doivent se référer au point de référence machine, introduisez alors M92 dans ces séquences.

Même avec les fonctions M91 ou M92, la TNC exécute la correction de rayon de manière correcte. Toutefois, dans ce cas, la longueur d'outil **n'est pas** prise en compte.

M91 et M92 n'agissent pas avec plan d'usinage incliné. Dans ce cas, la TNC délivre un message d'erreur.

Effet

M91 et M92 ne sont actives que dans les séquences de programme où elles ont été programmées.

M91 et M92 deviennent actives en début de séquence.

Point de référence pièce

Si les coordonnées doivent toujours se référer au point zéro machine, il est possible de bloquer l'initialisation du point de référence pour un ou plusieurs axes; cf. Paramètre-machine 7295.

Si l'initialisation du point de référence est bloquée pour tous les axes, la TNC n'affiche plus la softkey INITIAL. PT DE REF. en mode Manuel.

La figure de droite illustre les systèmes de coordonnées avec le point zéro machine et le point zéro pièce.

M91/M92 en mode Test de programme

Pour pouvoir également simuler graphiquement des déplacements M91/M92, vous devez activer la surveillance de la zone de travail et faire afficher la pièce brute se référant au point de référence initialisé (cf. chap. "12.8 Représenter la pièce brute dans la zone de travail").

Aborder les positions dans le système de coordonnées non incliné avec plan d'usinage incliné: M130

Comportement standard avec plan d'usinage incliné

La TNC réfère les coordonnées des séquences de positionnement au système de coordonnées incliné.

Comportement avec M130

Lorsque le plan d'usinage incliné est actif, la TNC réfère les coordonnées des **séquences linéaires**au système de coordonnées non incliné

La TNC positionne alors l'outil (incliné) à la coordonnée programmée du système non incliné.

Effet

M130 n'agit que dans les séquences linéaires sans correction de rayon d'outil et dans les séquences de programme où M130 a été programmée.

7.4 Fonctions auxiliaires pour le comportement de contournage

Arrondi d'angle: M90

Comportement standard

Avec les séquences de positionnement sans correction du rayon d'outil, la TNC arrête brièvement l'outil aux angles (arrêt précis).

Avec les séquences de programme avec correction du rayon (RR/ RL), la TNC insère automatiquement un cercle de transition aux angles externes.

Comportement avec M90

L'outil est déplacé aux angles à vitesse de contournage constante: Les coins sont arrondis et la surface de la pièce est plus lisse. En outre, le temps d'usinage diminue. Cf. figure de droite, au centre.

Ex. d'application: Surfaces formées de petits segments de droite.

Effet

M90 n'est active que dans la séquence de programme où elle a été programmée.

M90 devient active en début de séquence. Le mode erreur de poursuite doit être sélectionné.

Insérer un cercle d'arrondi défini entre deux segments de droite: M112

Pour raisons de compatibilité, la fonction M112 reste disponible. Pour définir la tolérance du fraisage rapide de contour, HEIDENHAIN préconise toutefois l'utilisation du cycle TOLERANCE (cf. "8.8 Cycles spéciaux")

Usinage de petits éléments de contour: M97

Comportement standard

A un angle externe, la TNC insère un cercle de transition. Lorsqu'il rencontre de très petits éléments de contour, l'outil risque alors d'endommager celui-ci. Cf. figure de droite, en haut.

Là, la TNC interrompt l'exécution du programme et délivre le message d'erreur "Rayon d'outil trop grand".

Comportement avec M97

La TNC définit un point d'intersection pour les éléments du contour – comme aux angles internes – et déplace l'outil sur ce point. Cf. figure de droite, en bas.

Programmez M97 dans la séquence où l'angle externe a été défini.

Effet

M97 n'est active que dans la séquence où elle a été programmée.

L'angle du contour sera usiné de manière incomplète avec M97. Vous devez éventuellement effectuer un autre usinage à l'aide d'un outil plus petit.

Exemple de séquences CN

5	TOOL DEF L R+20	Grand rayon d'outil
13	L X Y R F M97	Aborder le point 13 du contour
14	L IY-0,5 R F	Usiner les petits éléments de contour 13 et 14
15	L IX+100	Aborder le point 15 du contour
16	L IY+0,5 R F M97	Usiner les petits éléments de contour 15 et 16
17	L X Y	Aborder le point 17 du contour

Usinage complet d'angles de contour ouverts: M98

Comportement standard

Aux angles internes, la TNC calcule le point d'intersection des trajectoires de la fraise et déplace l'outil à partir de ce point, dans la nouvelle direction.

Lorsque le contour est ouvert aux angles, l'usinage est alors incomplet: cf. figure de droite, en haut.

Comportement avec M98

Avec M98, la TNC déplace l'outil jusqu'à ce que chaque point du contour soit réellement usiné: cf. figure de droite, en bas.

Effet

M98 n'est active que dans les séquences de programme où elle a été programmée.

M98 devient active en fin de séquence.

Exemple de séquences CN

Aborder les uns après les autres les points 10, 11 et 12 du contour:

10	L X Y	RL F
11	L X IY	M98
12	L IX+	

Facteur d'avance pour plongées: M103

Comportement standard

La TNC déplace l'outil suivant l'avance précédemment programmée et indépendamment du sens du déplacement.

Comportement avec M103

La TNC réduit l'avance de contournage lorsque l'outil se déplace dans le sens négatif de l'axe d'outil. L'avance de plongée FZMAX est calculée à partir de la dernière avance programmée FPROG et d'un facteur F%:

 $FZMAX = FPROG \times F\%$

Introduire M103

Lorsque vous introduisez M103 dans une séquence de positionnement, la TNC poursuit le dialogue et réclame le facteur F.

Effet

M103 devient active en début de séquence. Pour annuler M103 : reprogrammer M103 **sans facteur**

Exemple de séquences CN

L'avance de plongée est de 20% de l'avance dans le plan.

	Avance de contournage réelle (mm/min.):
17 L X+20 Y+20 RL F500 M103 F20	500
18 L Y+50	500
19 L IZ-2,5	100
20 L IY+5 IZ-5	141
21 L IX+50	500
22 L Z+5	500

Vous activez M103 à l'aide du paramètre-machine 7440; cf. "13.1 Paramètres utilisateur généraux".

Vitesse d'avance aux arcs de cercle: M109/M110/M111

Comportement standard

La vitesse d'avance programmée se réfère à la trajectoire du centre de l'outil.

Comportement sur les arcs de cercle avec M109

Lorsque la TNC usine l'intérieur et l'extérieur des arcs de cercle, l'avance reste constante à la dent de l'outil.

Comportement sur les arcs de cercle avec M110

L'avance ne reste constante que lorsque la TNC usine l'intérieur des arcs de cercle. Lors de l'usinage externe d'un arc de cercle, il n'y a pa d'équilibrage de l'avance.

M110 agit également pour l'usinage interne d'arcs de cercle avec les cycles de contournage.

Effet

M109 et M110 deviennent actives en début de séquence. Pour annuler M109 et M110, introduisez M111.

Pré-calcul d'un contour avec correction de rayon (LOOK AHEAD): M120

Comportement standard

Lorsque le rayon d'outil est supérieur à un élément de contour qui doit être usiné avec correction de rayon, la TNC interrompt l'exécution du programme et affiche un message d'erreur. M97 (cf. "Usinage de petits éléments de contour: M97") évite le message d'erreur mais provoque une marque de dépouille et décale en outre le coin.

Si le contour comporte des contre-dépouilles, la TNC endommage celui-ci. Cf. figure de droite.

Comportement avec M120

La TNC vérifie un contour avec correction de rayon en prévention des contre-dépouilles et dépouilles. Elle effectue un pré-calcul de la trajectoire de l'outil à partir de la séquence actuelle. Les endroits où le contour pourrait être endommagé par l'outil restent non usinés (représentation en gris sombre sur la figure de droite). Vous pouvez également utiliser M120 pour attribuer une correction de rayon d'outil à des données ou données de digitalisation créées sur un support externe de données. De cette manière, les écarts par rapport au rayon d'outil théorique sont compensables.

Derrière M120, vous définissez avec LA (de l'angl. Look Ahead: "voir avant") le nombre de séquences (99 max.) que la TNC précalcule. Plus le nombre de séquences que vous avez sélectionné est élevé et plus lent sera le traitement des séquences.

Introduction

Si vous introduisez M120 dans une séquence de positionnement, la TNC poursuit le dialogue pour cette séquence et réclame le nombre LA de séquences pour lesquelles elle doit effectuer le précalcul.

Effet

M120 doit être dans une séquence CN avec correction de rayon RL ou RR. M120 est active à partir de cette séquence et jusqu'à ce que

- la correction de rayon soit annulée avec R0
- M120 LA0 soit programmée
- M120 soit programmée sans LA
- et qu'un autre programme soit appelé avec PGM CALL
- M120 devient active en début de séquence.

Conditions restrictives

- Vous ne devez exécuter la rentrée dans un contour après un stop externe/interne qu'avec la fonction AMORCE SEQUENCE N
- Lorsque vous utilisez les fonctions de contournage RND et CHF, les séquences situées avant et après RND ou CHF ne doivent contenir que des coordonnées du plan d'usinage
- Lorsque vous abordez le contour par tangentement, vous devez utiliser la fonction APPR LCT; la séquence contenant APPR LCT ne doit contenir que des coordonnées du plan d'usinage
- Lorsque vous quittez le contour par tangentement, vous devez utiliser la fonction DEP LCT; la séquence contenant DEP LCT ne doit contenir que des coordonnées du plan d'usinage

Autoriser le positionnement avec la manivelle en cours d'exécution du programme: M118

Comportement standard

Dans les modes Exécution du programme, la TNC déplace l'outil tel que défini dans le programme d'usinage.

Comportement avec M118

A l'aide de M118, vous pouvez effectuer des corrections manuelles avec la manivelle pendant l'exécution du programme. Pour cela, programmez M118 et introduisez pour chaque axe X, Y et Z une valeur spécifique en mm.

Introduire M118

Lorsque vous introduisez M118 dans une séquence de positionnement, la TNC poursuit le dialogue et réclame les valeurs spécifiques pour chaque axe. Utilisez les touches d'axes oranges ou le clavier ASCII pour l'introduction des coordonnées.

Effet

Vous annulez le positionnement à l'aide de la manivelle en reprogrammant M118 sans X, Y et Z.

M118 devient active en début de séquence.

Exemple de séquence CN

Pendant l'exécution du programme, il faut pouvoir se déplacer avec la manivelle dans le plan d'usinage X/Y à ± 1 mm de la valeur programmée:

L X+0 Y+38,5 RL F125 M118 X1 Y1

M118 agit toujours dans le système de coordonnées d'origine, même avec inclinaison du plan d'usinage active!

> M118 agit aussi en mode Positionnement avec introduction manuelle!

Lors d'une interruption du programme, si M118 est active, la fonction DEPLACEMENT MANUEL n'est pas disponible!

Avance en mm/min. sur les axes rotatifs A, B, C: M116

Comportement standard

Pour un axe rotatif, la TNC interprète l'avance programmée en degrés/min. L'avance dépend donc de la distance comprise entre le centre de l'outil et le centre des axes rotatifs.

Plus la distance sera grande et plus l'avance de contournage sera importante.

Avance en mm/min. sur axes rotatifs avec M116

Pour un axe rotatif, la TNC interprète l'avance programmée en mm/ min. La TNC calcule toujours **en début de séquence** l'avance valable pour cette séquence. L'avance ne varie pas pendant l'exécution de cette séquence, même si l'outil se déplace en direction du centre des axes rotatifs.

Effet

M116 est active dans le plan d'usinage et devient inactive en fin de programme.

La géométrie de la machine doit être définie par le constructeur de la machine dans le paramètre-machine 7510 et les suivants.

M116 devient active en début de séquence.

Déplacement des axes rotatifs avec optimisation de la course: M126

Comportement standard

Le comportement standard de la TNC lors du positionnement des axes rotatifs dont l'affichage a été réduit à des valeurs inférieures à 360° dépend du paramètre-machine 7682. On y définit si la TNC doit prendre en compte la différence entre la position nominale et la position effective, ou bien si elle doit toujours (également sans M126) aborder le contour en prenant la course la plus courte. Exemples: cf. tableau de droite, en haut.

Comportement avec M126

Avec M126, la TNC déplace sur une courte distance un axe rotatif dont l'affichage est réduit en-dessous de 360°. Exemples: cf. tableau de droite, en bas.

Effet

M126 devient active en début de séquence. Pour annuler M126, introduisez M127; M126 est également désactivé en fin de programme.

Comportement standard de la TNC

Pos. effective	Pos. nominale	Course
350°	10°	-340°
10°	340°	+330°

Comportement avec M126

Pos. effective	Pos. nominale	Course
350°	10°	+20°
10°	340°	-30°

Réduire l'affichage d'un axe rotatif à une valeur inférieure à 360°: M94

Comportement standard

La TNC déplace l'outil de la valeur angulaire actuelle à la valeur angulaire programmée.

Exemple:

actuelle:	538°
programmée:	180°
	–358°
	actuelle: programmée:

Comportement avec M94

En début de séquence, la TNC réduit la valeur angulaire actuelle à une valeur inférieure à 360°, puis se déplace à la valeur angulaire programmée. Si plusieurs axes rotatifs sont actifs, M94 réduit l'affichage de tous les axes rotatifs. Un axe rotatif peut être introduit derrière M94. La TNC ne réduit alors que l'affichage de cet axe.

Exemple de séquences CN

Réduire les valeurs d'affichage de tous les axes rotatifs actifs:

L M94

Ne réduire que la valeur d'affichage de l'axe C:

L M94 C

Réduire l'affichage de tous les axes rotatifs actifs, puis se déplacer avec l'axe C à la valeur programmée:

L C+180 FMAX M94

Effet

M94 n'agit que dans la séquence de programme à l'intérieur de laquelle elle a été programmée.

M94 devient active en début de séquence.

Correction automatique de la géométrie de la machine lors de l'usinage avec axes inclinés: M114

Comportement standard

La TNC déplace l'outil jusqu'aux positions définies dans le programme d'usinage. Dans le programme, si la position d'un axe rotatif est modifiée, le post-processeur doit calculer le décalage qui en résulte sur les axes linéaires (cf. fig. de droite, en haut) et réaliser le déplacement dans une séquence de positionnement. Dans la mesure où la géométrie de la machine joue également ici un rôle, le programme CN doit être calculé séparément pour chaque machine.

Comportement avec M114

Si la position d'un axe incliné commandé est modifiée dans le programme, la TNC compense automatiquement le décalage de l'outil avec une correction linéaire 3D. Dans la mesure où la géométrie de la machine est définie dans les paramètres-machine, la TNC compense également automatiquement les décalages spécifiques à la machine. Les programmes ne doivent être calculés par le post-processeur qu'une seule fois, même s'ils doivent être exécutés sur différentes machines équipées de TNC.

Si votre machine ne possède pas d'axes inclinés commandés (inclinaison manuelle de la tête; tête positionnée par l'automate), vous pouvez introduire derrière M114 la position adéquate d'inclinaison de la tête (ex. M114 B+45, paramètre Q autorisé).

La correction de rayon doit être prise en compte par le système CAO ou par le post-processeur. Une correction de rayon programmée RL/ RR entraîne l'apparition d'un message d'erreur

Si la correction d'outil linéaire est réalisée par la TNC, l'avance programmée se réfère à la pointe de l'outil, ou sinon, au point de référence de l'outil.

 Si votre machine est équipée d'une tête pivotante commandée, vous pouvez interrompre l'exécution du programme et modifier la position de l'axe incliné (par exemple, à l'aide de la manivelle).

Avec la fonction AMORCE SEQUENCE N, vous pouvez poursuivre le programme d'usinage à l'endroit où il a été interrompu. Lorsque M114 est activée, la TNC prend en compte automatiquement la nouvelle position de l'axe incliné.

Pour modifier la position de l'axe incliné avec la manivelle pendant l'exécution du programme, utilisez M118 en liaison avec M128.

Effet

M114 est active en début de séquence et M115, en fin de séquence. M114 n'agit pas lorsque la correction du rayon d'outil est active.

Pour annuler M114, introduisez M115. M114 est également désactivée en fin de programme.

La géométrie de la machine doit être définie par le constructeur de la machine dans le paramètre-machine 7510 et les suivants.

Conserver la position de la pointe de l'outil lors du positionnement des axes inclinés (TCPM*): M128

Comportement standard

La TNC déplace l'outil jusqu'aux positions définies dans le programme d'usinage. Dans le programme, si la position d'un axe rotatif est modifiée, le décalage qui en résulte sur les axes linéaires doit être calculé et le déplacement doit être réalisé dans une séquence de positionnement (cf. fig. de gauche sous M114).

Comportement avec M128

Si la position d'un axe incliné commandé est modifiée dans le programme, pendant la procédure d'inclinaison, la position de la pointe de l'outil n'est pas modifiée par rapport à la pièce.

Pour modifier la position de l'axe incliné avec la manivelle pendant l'exécution du programme, utilisez M118 en liaison avec M128. Lorsque M128 est active, l'autorisation d'un positionnement avec la manivelle a lieu dans le système de coordonnées machine.

Avant les positionnements avec M91 ou M92 et avant un TOOL CALL: annuler M128.

Pour éviter d'endommager le contour, vous ne devez utiliser avec M128 que des fraises à crayon.

La longueur d'outil doit se référer au centre de la bille de la fraise à crayon.

La TNC n'exécute pas d'inclinaison simultanée de la correction du rayon d'outil. Il en résulte une erreur qui dépend de la position angulaire de l'axe rotatif.

Lorsque M128 est active, la TNC affiche le symbole 😥 .

M128 avec plateaux inclinés

Si vous programmez un déplacement du plateau incliné alors que M128 est active, la TNC fait pivoter le système de coordonnées en conséquence. Par exemple, si vous faîtes pivoter l'axe C de 90° et si vous programmez ensuite un déplacement dans l'axe X, la TNC exécute le déplacement dans l'axe Y de la machine.

La TNC transforme également le point de référence initialisé qui est décalé lors du déplacement du plateau circulaire.

Effet

M128 est active en début de séquence et M129, en fin de séquence. M128 agit également dans les modes de fonctionnement manuels et reste activée après un changement de mode.

Pour annuler M128, introduisez M129. Si vous sélectionnez un nouveau programme dans un mode Exécution de programme, la TNC désactive également M128.

La géométrie de la machine doit être définie par le constructeur de la machine dans le paramètre-machine 7510 et les suivants.

*) **TCPM** = Tool Center Point Management

Arrêt précis aux angles avec transitions de contour non tangentielles: M134

Comportement standard

Dans les positionnements avec axes rotatifs, la TNC déplace l'outil de manière à insérer un élément de transition aux transitions de contour non tangentielles. La transition de contour dépend de l'accélération, de la secousse et de la tolérance définie au niveau de la variation du contour.

Comportement avec M134

Dans les positionnements avec axes rotatifs, la TNC déplace l'outil de manière à exécuter un arrêt précis aux transitions de contour non tangentielles.

Effet

M134 est active en début de séquence et M135, en fin de séquence.

Pour annuler M134, introduisez M135. Si vous sélectionnez un nouveau programme dans un mode Exécution de programme, la TNC désactive également M134.

7.6 Fonctions auxiliaires pour machines à découpe laser

Pour gérer la puissance laser, la TNC émet des valeurs de tension via la sortie analogique S. Les fonctions M200 à M204 influent sur la puissance laser en cours d'exécution du programme.

Introduire les fonctions auxiliaires pour les machines à découpe laser

Si vous introduisez une fonction M pour machines à découpe laser dans une séquence de positionnement, la TNC poursuit le dialogue et réclame les paramètres correspondants à la fonction auxiliaire.

Toutes les fonctions auxiliaires des machines à découpe laser deviennent actives en début de séquence.

Emission directe de la tension programmée: M200

La TNC émet comme tension V la valeur programmée derrière M200.

Plage d'introduction: 0 à 9.999 V

Effet

M200 est active jusqu'à ce qu'une nouvelle tension soit émise avec M200, M201, M202, M203 ou M204.

Tension comme fonction de la course: M201

M201 émet la tension en fonction de la course déjà parcourue. La TNC augmente ou réduit la tension actuelle de manière linéaire pour atteindre la valeur V programmée.

Plage d'introduction: 0 à 9.999 V

Effet

M201 est active jusqu'à ce qu'une nouvelle tension soit émise avec M200, M201, M202, M203 ou M204.

Tension comme fonction de la vitesse: M202

La TNC émet la tension comme fonction de la vitesse. Le constructeur de la machine définit dans les paramètres-machine jusqu'à trois valeurs caractéristiques FNR. à l'intérieur desquelles les vitesses d'avance sont affectées à des tensions. Avec M202, vous sélectionnez la valeur FNR. permettant à la TNC de déterminer la tension qu'elle devra émettre.

Plage d'introduction: 1 à 3

Effet

M202 est active jusqu'à ce qu'une nouvelle tension soit émise avec M200, M201, M202, M203 ou M204.

Emission de la tension comme fonction de la durée (rampe dépendant de la durée): M203

La TNC émet la tension V comme fonction de la durée TIME. Elle augmente ou réduit la tension actuelle de manière linéaire dans une durée TIME programmée jusqu'à ce qu'elle atteigne la valeur de tension V programmée.

Plage d'introduction

Tension V: 0 à 9.999 volts Durée TIME: 0 à 1.999 secondes

Effet

M203 est active jusqu'à ce qu'une nouvelle tension soit émise avec M200, M201, M202, M203 ou M204.

Emission d'une tension comme fonction de la durée (impulsion dépendant de la durée): M204

La TNC émet une tension programmée sous la forme d'une impulsion de durée TIME programmée.

Plage d'introduction

Tension V: 0 à 9.999 volts Durée TIME: 0 à 1.999 secondes

Effet

M204 est active jusqu'à ce qu'une nouvelle tension soit émise avec M200, M201, M202, M203 ou M204.

Programmation: Cycles

8.1 Cycles: Généralités

Les opérations d'usinage répétitives comprenant plusieurs phases d'usinage sont mémorisées dans la TNC sous forme de cycles. Il en va de même pour les conversions de coordonnées et certaines fonctions spéciales. Le tableau de droite indique les différents groupes de cycles.

Les cycles d'usinage portant un numéro à partir de 200 utilisent les paramètres Q comme paramètres de transmission. Les paramètres de même fonction que la TNC utilise dans différents cycles portent toujours le même numéro: Ainsi, par exemple, Q200 correspond toujours à la distance d'approche, Q202 à la profondeur de passe, etc.

Définir le cycle avec structure de softkeys

Le menu de softkeys indique les différents groupes de cycles

- Sélectionner le groupe de cycles, par exemple, les cycles de perçage
- Sélectionner le cycle, par exemple, PERCAGE PROFOND. La TNC ouvre un dialogue et réclame toutes les données d'introduction requises; en même temps, la TNC affiche dans la moitié droite de l'écran un graphisme dans lequel le paramètre à introduire est sur fond clair
- Introduisez tous les paramètres réclamés par la TNC et validez chaque introduction à l'aide de la touche ENT
- ► La TNC ferme le dialogue lorsque vous avez introduit toutes les données requises

Définir le cycle avec fonction GOTO

- Le menu de softkeys affiche les différents groupes de cycles
- Afficher le sommaire de tous les cycles disponibles dans la TNC
- Introduire le numéro du cycle, valider avec la touche ENT ou bien sélectionner dans la liste un cycle avec les touches fléchées et valider avec ENT

Exemple de séquences CN

CYCL DEF 1	.O PERCAG	E PROFOND
CYCL DEF 1	.1 DIST 2	
CYCL DEF 1	.2 PROF.	-30
CYCL DEF 1	.3 PASSE	5
CYCL DEF 1	.4 TEMP.	1
CYCL DEF 1	.5 F 150	

Pour pouvoir exécuter également les cycles d'usinage 1 à 17 sur les anciennes commandes de contournage TNC, vous devez programmer en complément le signe négatif pour la distance de sécurité et pour la profondeur de passe.

droupe de cycles	Sonkey
Cycles Perçage profond, alésage, alésage avec alésoir, contre-perçage, taraudage et filetage	PERCAGE
Cycles de fraisage de poches, tenons et rainures	POCHES/ ÎLOTS
Cycles pour motifs de points, par ex. cercle de trous ou surface de trous	MOTIFS DE POINTS
Cycles SL (Subcontur-List) pour l'usinage parallèle à l'axe de contours complexes composés de plusieurs segments de contour superposés, interpolation du corps d'un cylindre	SLI
Cycles d'usinage ligne-à-ligne de surfaces planes ou gauchies	USINAGE LIGNE -A- LIGNE
Cycles de conversion de coordonnées: les contours peuvent subir un décalage du point zéro, une rotation, être usinés en image miroir, agrandis ou réduits	CONVERS. DE COOR- DONNEES
Cycles spéciaux: temporisation, appel de programme, orientation broche, tolérand	CYCLES SPECIAUX

Appeler le cycle

Les cycles suivants sont actifs dès leur définition dans le programme d'usinage. Vous ne pouvez et ne devez pas appeler ces cycles:

- les cycles de motifs de points sur un cercle ou sur des lignes
- le cycle SL CONTOUR
- le cycle SL DONNEES DU CONTOUR
- Cycle 32 TOLERANCE
- les cycles de conversion de coordonnées
- le cycle TEMPORISATION

Vous appelez tous les autres cycles tel que décrit ci-après.

Si la TNC doit exécuter une fois le cycle après la dernière séquence programmée, vous devez programmer l'appel de cycle avec la fonction auxiliaire M99 ou avec CYCL CALL:

Programmer l'appel de cycle: appuyer sur la touche CYCL CALL

Introduire une fonction auxiliaire, par exemple pour l'arrosage

Si la TNC doit exécuter automatiquement le cycle après chaque séquence de positionnement, vous devez programmer l'appel de cycle avec M89 (qui dépend du paramètre-machine 7440).

Pour annuler l'effet de M89, programmez

- 🔳 M99 ou
- CYCL CALL ou
- CYCL DEF

Travail avec les axes auxiliaires U/V/W

La TNC exécute des passes dans l'axe que vous avez défini comme axe de broche dans la séquence TOOL CALL. Pour les déplacements dans le plan d'usinage, la TNC ne les exécute systématiquement que dans les axes principaux X, Y ou Z. Exceptions:

- si vous programmez directement des axes auxiliaires pour les côtés dans le cycle 3 RAINURAGE et dans le cycle 4 FRAISAGE DE POCHES
- si vous programmez des axes auxiliaires dans le sous-programme de contour avec les cycles SL

8.2 Cycles de perçage

8.2 Cycles de perçage

La TNC dispose de 9 cycles destinés aux différentes opérations de perçage:

Cycle	Softkey
1 PERCAGE PROFOND sans pré-positionnement automatique	
200 PERCAGE avec pré-positionnement automatique, 2ème distance d'approche	200 0
201 ALESAGE avec pré-positionnement automatique, 2ème distance d'approche	201
202 ALESAGE AVEC ALESOIR avec pré-positionnement automatique, 2ème distance d'approche	202 [] 21-23
203 PERCAGE UNIVERSEL avec pré-positionnement automatique, 2ème distance d'approche, brise-copeaux, cote en réduction	203 ()
204 CONTRE-PERCAGE avec pré-positionnement automatique, 2ème distance d'approche	204
2 TARAUDAGE avec mandrin de compensation	2 (3)
17 TARAUDAGE RIGIDE sans mandrin de compensation	17 🕃 RT
18 FILETAGE	

8.2 Cycles de perçage

PERCAGE PROFOND (cycle 1)

- 1 Suivant l'avance F programmée, l'outil perce de la position actuelle jusqu'à la première profondeur de passe
- 2 La TNC rétracte l'outil en avance rapide FMAX, puis le déplace à nouveau à la première profondeur de passe en tenant compte de la distance de sécurité t.
- 3 La commande calcule automatiquement la distance de sécurité:
 - Profondeur de perçage jusqu'à 30 mm: t = 0,6 mm
 - Profondeur de perçage > 30 mm: t = profondeur perçage/50

Distance de sécurité max.: 7 mm

- 4 Selon l'avance F programmée, l'outil perce ensuite une autre profondeur de passe
- **5** La TNC répète ce processus (1 à 4) jusqu'à ce que l'outil ait atteint la profondeur de perçage programmée
- **6** Une fois l'outil rendu au fond du trou, la TNC le rétracte avec FMAX à sa position initiale après avoir effectué une temporisation pour brise-copeaux.

Remarques avant que vous ne programmiez

Programmer la séquence de positionnement du point initial (centre du trou) du plan d'usinage avec correction de rayon R0.

Programmer la séquence de positionnement du point initial dans l'axe de broche (distance d'approche audessus de la surface de la pièce).

Le signe du paramètre de cycle Profondeur détermine le sens de l'usinage.

- Distance d'approche 1 (en incrémental): distance entre la pointe de l'outil (position initiale) et la surface de la pièce
 - Profondeur de perçage 2 (en incrémental): distance entre la surface de la pièce et le fond du trou (pointe cônique du foret)
 - Profondeur de passe 3 (en incrémental): distance parcourue par l'outil en une passe. L'outil se déplace en une passe à la profondeur de perçage lorsque:
 - Prof. de passe = prof. de perçage
 - Prof. de passe > prof. de perçage

La profondeur de perçage n'est pas forcément un multiple de la profondeur de passe

- ▶ Temporisation en secondes: durée de rotation à vide de l'outil au fond du trou pour briser les copeaux
- Avance F: Vitesse de déplacement de l'outil lors du perçage, en mm/min.

Exemples de séquences CN:

1	CYCL DEF	1.0	PERCAGE PROFOND
2	CYCL DEF	1.1	DIST 2
3	CYCL DEF	1.2	PROF20
4	CYCL DEF	1.3	PASSE 5
5	CYCL DEF	1.4	TEMP. O
6	CYCL DEF	1.5	F500

PERCAGE (cycle 200)

- 1 La TNC positionne l'outil dans l'axe de broche en avance rapide FMAX, à la distance d'approche, au-dessus de la surface de la pièce
- **2** Suivant l'avance F introduite, l'outil perce jusqu'à la première profondeur de passe
- **3** La TNC rétrace l'outil avec FMAX à la distance d'approche, exécute une temporisation - si celle-ci est programmée - puis le déplace à nouveau avec FMAX à la distance d'approche au-dessus de la première profondeur de passe
- 4 Selon l'avance F programmée, l'outil perce ensuite une autre profondeur de passe
- **5** La TNC répète ce processus (2 à 4) jusqu'à ce que l'outil ait atteint la profondeur de perçage programmée
- 6 Partant du fond du trou, l'outil se déplace avec FMAX jusqu'à la distance d'approche ou si celle-ci est introduite jusqu'à la 2ème distance d'approche

Remarques avant que vous ne programmiez

Programmer la séquence de positionnement du point initial (centre du trou) dans le plan d'usinage avec correction de rayon R0.

Le signe du paramètre Profondeur détermine le sens de l'usinage.

- ▶ Distance d'approche Q200 (en incrémental): distance entre la pointe de l'outil et la surface de la pièce; introduire une valeur positive
- Profondeur Q201 (en incrémental): distance entre surface pièce et fond du trou (pointe cônique du foret)
- Avance plongée en profondeur Q206: vitesse de déplacement de l'outil lors du perçage, en mm/min.
- ▶ Profondeur de passe Q202 (en incrémental): distance parcourue par l'outil en une passe. L'outil se déplace en une passe à la profondeur lorsque:
 - Prof. de passe égale à la profondeur
 - Prof. de passe supérieure à la profondeur

La profondeur de perçage n'est pas forcément un multiple de la profondeur de passe

► Temporisation en haut Q210: durée en secondes de rotation à vide de l'outil à la distance d'approche après que la TNC l'ait rétracté du trou pour le débridage.

Exemples de séquences CN:

7	CYCL DEF 200	PERCAGE
	Q200=2	;DISTANCE D'APPROCHE
	Q201=-20	; PROFONDEUR
	Q206=150	;AVANCE PLONGEE PROF.
	Q202=5	; PROFONDEUR DE PASSE
	Q210=0	;TEMPO. EN HAUT
	Q203=+0	;COOR. SURFACE
	Q204=50	;2ème DISTANCE D'APPROCHE

200 Ø

- Coord. surface pièce Q203 (en absolu): coordonnée de la surface de la pièce
- 2ème distance d'approche Q204 (en incrémental): coordonnée dans l'axe de broche excluant toute collision entre l'outil et la pièce (matériels de bridage)

ALESAGE (cycle 201)

201

- 1 La TNC positionne l'outil dans l'axe de broche en avance rapide FMAX, à la distance d'approche introduite, au-dessus de la surface de la pièce
- 2 Suivant l'avance F introduite, l'outil alèse jusqu'à la profondeur programmée
- **3** Au fond du trou, l'outil exécute une temporisation (si programmée)
- 4 Pour terminer, la TNC rétracte l'outil suivant l'avance F à la distance d'approche puis, de là, à la 2ème distance d'approche – si celle-ci est programmée – avec FMAX

Remarques avant que vous ne programmiez

Programmer la séquence de positionnement du point initial (centre du trou) dans le plan d'usinage avec correction de rayon R0.

Le signe du paramètre Profondeur détermine le sens de l'usinage.

- ▶ Distance d'approche Q200 (en incrémental): distance entre la pointe de l'outil et la surface de la pièce
- Profondeur Q201 (en incrémental): distance entre la surface de la pièce et le fond du trou
- ► Avance plongée en profondeur Q206: vitesse de déplacement de l'outil lors de l'alésage, en mm/min.
- ► Temporisation en bas Q211: durée en secondes de rotation à vide de l'outil au fond du trou
- Avance de retrait Q208: vitesse de déplacement de l'outil à sa sortie du trou, en mm/min. Si vous introduisez Q208 = 0, sortie alors avec avance alésage
- Coord. surface pièce Q203 (en absolu): coordonnée de la surface de la pièce
- ≥ 2ème distance d'approche Q204 (en incrémental): coordonnée dans l'axe de broche excluant toute collision entre l'outil et la pièce (matériels de bridage)

Exemples de séquences CN:

8	CYCL DEF 201	ALESAGE
	Q200=2	;DISTANCE D'APPROCHE
	Q201=-20	; PROFONDEUR
	Q206=150	;AVANCE PLONGEE PROF.
	Q211=0.25	;TEMPO. AU FOND
	Q208=500	;AVANCE RETRAIT
	Q203=+0	;COOR. SURFACE
	0204=50	:2ème DISTANCE D'APPROCHE

ALESAGE AVEC ALESOIR (cycle 202)

La machine et la TNC doivent avoir été préparées par le constructeur de la machine pour l'utilisation du cycle 202.

- 1 La TNC positionne l'outil dans l'axe de broche en avance rapide FMAX, à la distance d'approche, au-dessus de la surface de la pièce
- 2 Avec l'avance de perçage, l'outil perce à la profondeur
- **3** Au fond du trou, l'outil exécute une temporisation si celle-ci est programmée avec broche en rotation pour casser les copeaux.
- 4 Puis la TNC effectue une rotation broche à la position 0°
- **5** Si le dégagement d'outil a été sélectionné, la TNC dégage l'outil à 0,2 mm (valeur fixe) dans la direction programmée
- 6 Pour terminer, la TNC déplace l'outil suivant l'avance de retrait jusqu'à la distance d'approche et, partant de là, jusqu'à la 2ème distance d'approche – si celle-ci est introduite – avec FMAX

Remarques avant que vous ne programmiez

Programmer la séquence de positionnement du point initial (centre du trou) dans le plan d'usinage avec correction de rayon R0.

Le signe du paramètre de cycle Profondeur détermine le sens de l'usinage.

En fin de cycle, la TNC rétablit les états de l'arrosage et de la broche qui étaient actifs avant l'appel du cycle.

- 202 <u>|</u>
- Distance d'approche Q200 (en incrémental): distance entre la pointe de l'outil et la surface de la pièce
- Profondeur Q201 (en incrémental): distance entre la surface de la pièce et le fond du trou
- Avance plongée en profondeur Q206: vitesse de déplacement de l'outil lors de l'alésage avec alésoir, en mm/min.
- ► Temporisation en bas Q211: durée en secondes de rotation à vide de l'outil au fond du trou
- Avance de retrait Q208: vitesse de déplacement de l'outil à sa sortie du trou, en mm/min. Si vous introduisez Q208 = 0, sortie alors avec avance plongée en profondeur
- Coord. surface pièce Q203 (en absolu): coordonnée de la surface de la pièce
- 2ème distance d'approche Q204 (en incrémental): coordonnée dans l'axe de broche excluant toute collision entre l'outil et la pièce (matériels de bridage)

Exemples de séquences CN:

9	CYCL DEF 202	ALESAGE AVEC ALESOIR
	Q200=2	;DISTANCE D'APPROCHE
	Q201=-20	; PROFONDEUR
	Q206=150	;AVANCE PLONGEE PROF.
	Q211=0.5	;TEMPO. AU FOND
	Q208=500	;AVANCE RETRAIT
	Q203=+0	;COOR. SURFACE
	Q204=50	;2ème DISTANCE D'APPROCHE
	Q214=1	;SENS DEGAGEMENT

- Sens de dégagement (0/1/2/3/4) Q214: définir le sens de dégagement de l'outil au fond du trou (après l'orientation de la broche)
- 0: ne pas dégager l'outil
- 1: dégager l'outil dans le sens moins de l'axe principal
- 2: dégager l'outil dans le sens moins de l'axe auxiliaire
- 3: dégager l'outil dans le sens plus de l'axe principal
- 4: dégager l'outil dans le sens plus de l'axe auxiliaire

Danger de collision!

Lorsque vous programmez l'orientation de la broche sur 0°, vérifiez où se trouve la pointe de l'outil (par ex. en mode Positionnement avec introduction manuelle). Dirigez la pointe de l'outil pour qu'elle soit parallèle à un axe de coordonnées. Sélectionnez le sens de dégagement de manière à ce qu'il s'éloigne du bord du trou.

PERCAGE UNIVERSEL (cycle 203)

- 1 La TNC positionne l'outil dans l'axe de broche en avance rapide FMAX, à la distance d'approche introduite, au-dessus de la surface de la pièce
- 2 Suivant l'avance F programmée, l'outil perce jusqu'à la première profondeur de passe
- 3 Si l'on a programmé un brise-copeaux, la TNC rétracte l'outil de la valeur de la distance d'approche. Si vous travaillez sans brisecopeaux, la TNC rétracte l'outil suivant l'avance de retrait jusqu'à la distance d'approche, exécute une temporisation – si celle-ci est programmée – puis le déplace à nouveau avec FMAX à la distance d'approche au-dessus de la première profondeur de passe
- 4 Selon l'avance, l'outil perce ensuite une autre profondeur de passe. A chaque passe, celle-ci diminue en fonction de la valeur de réduction – si celle-ci est programmée
- **5** La TNC répète ce processus (2 à 4) jusqu'à ce que l'outil ait atteint la profondeur de perçage
- 6 Au fond du trou, l'outil exécute une temporisation si celle-ci est programmée – pour briser les copeaux. Après temporisation, il est rétracté suivant l'avance de retraît jusqu'à la distance d'approche. Si vous avez introduit une 2ème distance d'approche, la TNC déplace l'outil à ce niveau avec FMAX

203 0

Remarques avant que vous ne programmiez

Programmer la séquence de positionnement du point initial (centre du trou) dans le plan d'usinage avec correction de rayon R0.

Le signe du paramètre de cycle Profondeur détermine le sens de l'usinage.

- ▶ Distance d'approche Q200 (en incrémental): distance entre la pointe de l'outil et la surface de la pièce
- Profondeur Q201 (en incrémental): distance entre surface pièce et fond du trou (pointe cônique du foret)
- Avance plongée en profondeur Q206: vitesse de déplacement de l'outil lors du perçage, en mm/min.
- Profondeur de passe Q202 (en incrémental): distance parcourue par l'outil en une passe. L'outil se déplace en une passe à la profondeur lorsque:
 - Prof. de passe égale à la profondeur
 - Prof. de passe supérieure à la profondeur

La profondeur de perçage n'est pas forcément un multiple de la profondeur de passe

- ► Temporisation en haut Q210: durée en secondes de rotation à vide de l'outil à la distance d'approche après que la TNC l'ait rétracté du trou pour le débridage.
- Coord. surface pièce Q203 (en absolu): coordonnée de la surface de la pièce
- 2ème distance d'approche Q204 (en incrémental): coordonnée dans l'axe de broche excluant toute collision entre l'outil et la pièce (matériels de bridage)
- Valeur de réduction Q212 (en incrémental): après chaque passe, la TNC diminue la profondeur de passe de cette valeur
- Nb brise copeaux avant retraît Q213: nombre de brisecopeaux avant que la TNC ne rétracte l'outil hors du trou pour le débrider. Pour briser les copeaux, la TNC rétracte l'outil chaque fois de la valeur de la distance de sécurité Q200
- Profondeur de passe min. Q205 (en incrémental): si vous avez introduit une valeur de réduction, la TNC limite la passe à la valeur introduite sous Q205
- ► Temporisation en bas Q211: durée en secondes de rotation à vide de l'outil au fond du trou
- Avance de retrait Q208: vitesse de déplacement de l'outil à sa sortie du trou, en mm/min. Si vous introduisez Q208 = 0, sortie alors avec avance Q206

Exemples de séquences CN:

10	CYCL DEF 203	PERCAGE UNIVERSEL
	Q200=2	;DISTANCE D'APPROCHE
	Q201=-20	; PROFONDEUR
	Q206=150	;AVANCE PLONGEE PROF.
	Q202=5	;PROFONDEUR DE PASSE
	Q210=0	;TEMPO. EN HAUT
	Q203=+0	;COOR. SURFACE
	Q204=50	;2ème DISTANCE D'APPROCHE
	Q212=0.2	;VALEUR REDUCTION
	Q213=3	;BRISE-COPEAUX
	Q205=3	;PROF. PASSE MIN.
	Q211=0.25	;TEMPO. AU FOND
	Q208=500	;AVANCE RETRAIT

CONTRE-PERCAGE (cycle 204)

La machine et la TNC doivent avoir été préparées par le constructeur de la machine pour le contre-perçage.

Le cycle ne travaille qu'avec ce qu'on appelle des outils pour usinage en tirant.

Ce cycle vous permet de réaliser des perçages situés sur la face inférieure de la pièce.

- 1 La TNC positionne l'outil dans l'axe de broche en avance rapide FMAX, à la distance d'approche, au-dessus de la surface de la pièce
- **2** Puis la TNC effectue une rotation broche à la position 0° et décale l'outil de la valeur de la cote excentrique
- **3** Puis, l'outil plonge suivant l'avance de pré-positionnement dans le trou pré-percé jusqu'à ce que la dent se trouve à la distance d'approche au-dessous de l'arête inférieure de la pièce
- 4 Ensuite, la TNC déplace à nouveau l'outil au centre du trou, met en route la broche et le cas échéant l'arrosage, puis le déplace suivant l'avance de contre-perçage à la profondeur de contreperçage
- **5** Si celle-ci a été introduite, l'outil effectue une temporisation au fond du trou, puis ressort du trou, effectue une orientation broche et se décale à nouveau de la valeur de la cote excentrique
- 6 Pour terminer, la TNC déplace l'outil suivant l'avance de prépositionnement jusqu'à la distance d'approche et, partant de là, jusqu'à la 2ème distance d'approche – si celle-ci est introduite – avec FMAX

Remarques avant que vous ne programmiez

Programmer la séquence de positionnement du point initial (centre du trou) dans le plan d'usinage avec correction de rayon R0.

Le signe du paramètre de cycle Profondeur détermine le sens de l'usinage lors de la plongée. Attention: le signe positif correspond à une plongée dans le sens de l'axe de broche positif.

Introduire la longueur d'outil de manière à ce que ce soit l'arête inférieure de l'outil qui soit prise en compte et non la dent.

Pour le calcul du point initial du contre-perçage, la TNC prend en compte la longueur de la dent de l'outil et l'épaisseur du matériau.

8.2 Cycles de perçage

204 (774)

- Distance d'approche Q200 (en incrémental): distance entre la pointe de l'outil et la surface de la pièce
 - Profondeur de contre-perçage Q249 (en incrémental): distance entre l'arête inférieure de la pièce et la base du contre-perçage Le signe positif réalise un perçage dans le sens positif de l'axe de broche
 - Epaisseur matériau Q250 (en incrémental): Epaisseur de la pièce
 - Cote excentrique Q251 (en incrémental): cote excentrique de l'outil; à relever sur la fiche technique de l'outil
 - Hauteur de la dent Q252 (en incrémental): distance entre l'arête inférieure de l'outil et la dent principale; à relever sur la fiche technique de l'outil
 - Avance de pré-positionnement Q253: vitesse de déplacement de l'outil lors de la plongée dans la pièce ou lors de la sortie hors de celle-ci, en mm/min.
 - Avance de contre-perçage: Vitesse de déplacement de l'outil lors du contre-perçage, en mm/min.
 - ► Temporisation Q255: Temporisation en secondes à la base du contre-perçage
 - Coord. surface pièce Q203 (en absolu): coordonnée de la surface de la pièce
 - 2ème distance d'approche Q204 (en incrémental): coordonnée dans l'axe de broche excluant toute collision entre l'outil et la pièce (matériels de bridage)
 - Sens de dégagement (0/1/2/3/4) Q214: définir le sens suivant lequel la TNC doit décaler l'outil de la valeur de la cote excentrique (après l'orientation broche); introduction de 0 interdite
- 1: décaler l'outil dans le sens moins de l'axe principal
- 2: décaler l'outil dans le sens moins de l'axe auxiliaire
- 3: décaler l'outil dans le sens plus de l'axe principal
- 4: décaler l'outil dans le sens plus de l'axe auxiliaire

Danger de collision!

Lorsque vous programmez l'orientation de la broche sur 0°, vérifiez où se trouve la pointe de l'outil (par ex. en mode Positionnement avec introduction manuelle). Dirigez la pointe de l'outil pour qu'elle soit parallèle à un axe de coordonnées. Sélectionnez le sens de dégagement de manière à ce que l'outil puisse plonger dans le trou sans risque de collision

Exemples de séquences CN:

11	CYCL DEF 204	CONTRE PERCAGE
	Q200=2	;DISTANCE D'APPROCHE
	Q249=+5	; PROFONDEUR CONTRE-PERCAGE
	Q250=20	;EPAISSEUR MATERIAU
	Q251=3.5	;COTE EXCENTRIQUE
	Q252=15	;HAUTEUR DE LA DENT
	Q253=750	;AVANCE PRE-POSIT.
	Q254=200	;AVANCE CONTRE-PERCAGE
	Q255=0	;TEMPORISATION
	Q2O3=+0	;COOR. SURFACE
	Q204=50	;2ème DISTANCE D'APPROCHE
	0214=1	;SENS DEGAGEMENT

TARAUDAGE avec mandrin de compensation (cycle 2)

- 1 L'outil se déplace en une passe à la profondeur de perçage
- **2** Le sens de rotation de la broche est ensuite inversé et l'outil est rétracté à la position initiale après temporisation
- 3 A la position initiale, le sens de rotation est à nouveau inversé

Remarques avant que vous ne programmiez

Programmer la séquence de positionnement du point initial (centre du trou) dans le plan d'usinage avec correction de rayon R0.

Programmer la séquence de positionnement du point initial dans l'axe de broche (distance d'approche audessus de la surface de la pièce).

Le signe du paramètre Profondeur détermine le sens de l'usinage.

L'outil doit être bridé dans un mandrin de serrage permettant une correction de longueur. Le mandrin sert à compenser les tolérances d'avance et de vitesse de rotation en cours d'usinage.

Pendant l'exécution du cycle, le potentiomètre de broche est inactif. Le potentiomètre d'avance est encore partiellement actif (définition par le constructeur de la machine, consulter le manuel de la machine).

Pour le taraudage à droite, activer la broche avec M3, et à gauche, avec M4.

2 0 2 0 Distance d'approche 1 (en incrémental): distance entre la pointe de l'outil (position initiale) et la surface de la pièce; valeur indicative: 4x pas de vis

- Profondeur de perçage 2 (longueur du filet, en incrémental): distance entre la surface de la pièce et la fin du filet
- Temporisation en secondes: introduire une valeur comprise entre 0 et 0,5 seconde afin d'éviter que l'outil ne se coince lors de son retrait
- Avance F: vitesse de déplacement de l'outil lors du taraudage

Calcul de l'avance: F = S x p

F: avance en mm/min.) S: vitesse de rotation broche (tours/min.) p: pas de vis (mm)

Dégagement en cas d'interruption du programme

Si vous appuyez sur la touche stop externe pendant le taraudage, la TNC affiche une softkey vous permettant de dégager l'outil.

Exemples de séquences CN:

13	CYCL DEF	2.0	TARAUDAGE
14	CYCL DEF	2.1	DIST 2
15	CYCL DEF	2.2	PROF20
16	CYCL DEF	2.3	TEMP. O
17	CYCL DEF	2.4	F100

TARAUDAGE RIGIDE (sans mandrin de compensation (cycle 17)

La machine et la TNC doivent avoir été préparées par le constructeur de la machine pour le taraudage rigide (sans mandrin de compensation).

La TNC usine le filet sans mandrin de compensation en une ou plusieurs étapes.

Avantages par rapport au cycle de taraudage avec mandrin de compensation:

- Vitesse d'usinage plus élevée
- Répétabilité sur le même filet dans la mesure où la broche s'oriente en position 0° lors de l'appel du cycle (dépend du paramètre-machine 7160)
- Plus grande plage de déplacement de l'axe de broche due à l'absence du mandrin de compensation

Remarques avant que vous ne programmiez

Programmer la séquence de positionnement du point initial (centre du trou) dans le plan d'usinage avec correction de rayon R0

Programmer la séquence de positionnement du point initial dans l'axe de broche (distance d'approche audessus de la surface de la pièce).

Le signe du paramètre Profondeur de perçage détermine le sens de l'usinage.

La TNC calcule l'avance en fonction de la vitesse de rotation. Si vous actionnez le potentiomètre de broche pendant le taraudage, la TNC règle automatiquement l'avance.

Le potentiomètre d'avance est inactif.

En fin de cycle la broche est immobile. Avant l'opération d'usinage suivante, réactiver la broche avec M3 (ou M4).

- Distance d'approche 1 (en incrémental): distance entre la pointe de l'outil (position initiale) et la surface de la pièce
- Profondeur de perçage 2 (en incrémental): distance entre la surface de la pièce (début du filet) et la fin du filet
- ▶ Pas de vis <mark>3</mark>:

Pas de la vis. Le signe détermine le sens du filet:

- + = filet à droite
- = filet à gauche

Exemples de séquences CN:

-						
18	CYCL	DEF	17.0	TARAUDAGE	RIGIDE	
10	CVCL	DEE	17 1	DICT 2		
19	UTUL	VEF	1/.1	DISI Z		
20	CYCL	DEF	17.2	PROF20		
21	CYCL	DEF	17.3	PAS +1		

Dégagement en cas d'interruption du programme

Si vous appuyez sur la touche stop externe pendant le taraudage, la TNC affiche la softkey DEPLACEMENT MANUEL. Si vous appuyez sur DEPLACEMENT MANUEL, vous pouvez commander le dégagement de l'outil. Pour cela, appuyez sur la touche positive de sens d'axe de l'axe de broche actif.

FILETAGE (cycle 18)

La machine et la TNC doivent avoir été préparées par le constructeur de la machine pour le filetage.

Avec le cycle 18 FILETAGE, l'outil se déplace avec asservissement de broche et vitesse de rotation active, de la position actuelle jusqu'à la profondeur. Un arrêt broche a lieu au fond du trou. Vous devez introduire séparément – de préférence avec un cycle constructeur – les déplacements d'approche et de sortie. Consultez le constructeur de votre machine pour plus amples informations.

Remarques avant que vous ne programmiez

La TNC calcule l'avance en fonction de la vitesse de rotation. Si vous actionnez le potentiomètre de broche pendant le filetage, la TNC règle automatiquement l'avance.

Le potentiomètre d'avance est inactif.

La TNC lance et arrête la broche automatiquement. Ne pas programmer M3 ou M4 avant l'appel du cycle.

¹⁸

Profondeur de perçage 1: distance entre la position actuelle de l'outil et la fin du filet

Le signe de la profondeur de perçage détermine le sens de l'usinage ("–" correspond au sens négatif de l'axe de broche)

▶ Pas de vis 2:

Pas de la vis. Le signe détermine le sens du filet: + = filet à droite (M3 avec profondeur de perçage négative)

– = filet à gauche (M4 avec profondeur de perçage négative)

Exemples de séquences CN:

22	CYCL	DEF	18.0	FILETAGE
23	CYCL	DEF	18.1	PROF20
24	CVCI	DEE	10 0	DAC 11
Exemple: Cycles de perçage

O BEGIN PGM C200 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Définition de la pièce brute
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+3	Définition de l'outil
4 TOOL CALL 1 Z S4500	Appel de l'outil
5 L Z+250 RO F MAX	Dégager l'outil
6 CYCL DEF 200 PERCAGE	Définition du cycle
Q200=2 ;DISTANCE D'APPROCHE	
Q201=-15 ;PROFONDEUR	
Q206=250 ;AVANCE PLONGEE PROF.	
Q2O2=5 ; PROFONDEUR DE PASSE	
Q210=0 ;TEMPO. EN HAUT	
Q2O3=-10 ;COORD. SURFACE PIECE	
Q204=20 ;2. DIST. D'APPROCHE	
7 L X+10 Y+10 R0 F MAX M3	Aborder le trou 1, marche broche
8 CYCL CALL	Appel du cycle
9 L Y+90 R0 F MAX M99	Aborder le trou 2, appel du cycle
10 L X+90 RO F MAX M99	Aborder le trou 3, appel du cycle
11 L Y+10 RO F MAX M99	Aborder le trou 4, appel du cycle
12 L Z+250 RO F MAX M2	Dégager l'outil, fin du programme
13 END PGM C200 MM	

Exemple: Cycles de perçage

Déroulement du programme

- Programmer le cycle de perçage dans le programme principal
- Programmer l'usinage dans le sous-programme (cf. "9 Programmation: Sous-programmes et répétitions de parties de programme")

O BEGIN PGM C18 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Définition de la pièce brute
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+6	Définition de l'outil
4 TOOL CALL 1 Z S100	Appel de l'outil
5 L Z+250 RO F MAX	Dégager l'outil
6 CYCL DEF 18.0 FILETAGE	Définition du cycle Filetage
7 CYCL DEF 18.1 PROF. +30	
8 CYCL DEF 18.2 PAS -1,75	
9 L X+20 Y+20 R0 F MAX	Aborder le trou 1
10 CALL LBL 1	Appeler le sous-programme 1
11 L X+70 Y+70 R0 F MAX	Aborder le trou 2
12 CALL LBL 1	Appeler le sous-programme 1
13 L Z+250 RO F MAX M2	Dégager l'outil, fin du programme principal
14 LBL 1	Sous-programme 1: Filetage
15 CYCL DEF 13.0 ORIENTATION	Orienter la broche (répétition possible du filetage)
16 CYCL DEF 13.1 ANGLE O	
17 L IX-2 RO F1000	Décaler l'outil pour plongée sans risque de collision (dépend du
	diamètre du noyau et de l'outil)
18 L Z+5 RO F MAX	Pré-positionnement en avance rapide
19 L Z-30 RO F1000	Aller à la position initiale
20 L IX+2	Amener l'outil à nouveau au centre du trou
21 CYCL CALL	Appeler le cycle 18
22 L Z+5 RO F MAX	Dégagement
23 LBL 0	Fin du sous-programme 1
24 FND PGM C18 MM	

8.3 Cycles de fraisage de poches, tenons et rainures

Cycle	Softkey
4 FRAISAGE DE POCHE (rectangulaire) Cycle d'ébauche sans pré-positionnement automatique	4
212 FINITION DE POCHE (rectangulaire) Cycle de finition avec pré-positionnement automatique, 2ème distance d'approche	212
213 FINITION DE POCHE (rectangulaire) Cycle de finition avec pré-positionnement automatique, 2ème distance d'approche	213
5 POCHE CIRCULAIRE Cycle d'ébauche sans pré-positionnement automatique	5
214 FINITION DE POCHE CIRCULAIRE Cycle de finition avec pré-positionnement automatique, 2ème distance d'approche	214
215 FINITION DE TENON CIRCULAIRE Cycle de finition avec pré-positionnement automatique, 2ème distance d'approche	215
3 RAINURAGE Cycle d'ébauche/finition sans pré-positionnement automatique, plongée verticale	3 💿
210 RAINURE PENDULAIRE Cycle d'ébauche/finition avec pré-positionnement automatique, plongée pendulaire	218 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
211 RAINURE CIRCULAIRE Cycle d'ébauche/finition avec pré-positionnement automatique, plongée pendulaire	211

8.3 Cycles de fraisa<mark>ge d</mark>e poches, tenons et rainures

FRAISAGE DE POCHE (cycle 4)

- 1 L'outil plonge dans la pièce à la position initiale (au centre de la poche) et se déplace à la première profondeur de passe
- 2 Il se déplace ensuite dans le sens positif du côté le plus long lorsqu'il s'agit de poches carrés, dans le sens positif de l'axe Y – puis évide la poche de l'intérieur vers l'extérieur
- **3** Ce processus est répété (1 à 2) jusqu'à ce que la profondeur soit atteinte
- 4 A la fin du cycle, la TNC rétracte l'outil à sa position initiale

Remarques avant que vous ne programmiez

Programmer la séquence de positionnement du point initial (centre de la poche) dans le plan d'usinage avec correction de rayon R0.

Programmer la séquence de positionnement du point initial dans l'axe de broche (distance d'approche audessus de la surface de la pièce).

Le signe du paramètre Profondeur détermine le sens de l'usinage.

Utiliser une fraise à denture frontale (DIN 844) ou effectuer un pré-perçage au centre de la poche.

Le 2ème côté doit remplir la condition suivante: 2ème côté supérieur à [(2 x rayon d'arrondi) + passe latérale k].

- Distance d'approche 1 (en incrémental): distance entre la pointe de l'outil (position initiale) et la surface de la pièce
- Profondeur de fraisage 2 (en incrémental): distance entre surface de la pièce et fond de la poche
- Profondeur de passe 3 (en incrémental): distance parcourue par l'outil en une passe. L'outil se déplace en une passe à la profondeur lorsque:
 - Prof. de passe égale à la profondeur
 - Prof. de passe supérieure à la profondeur
- Avance plongée en profondeur: vitesse de déplacement de l'outil lors de la plongée
- 1er côté 4: longueur de la poche parallèle à l'axe principal du plan d'usinage
- ▶ 2ème côté 5: largeur de la poche
- Avance F: vitesse de déplacement de l'outil dans le plan d'usinage

Exer	nples	de sé	quer	nces CN:		
27	CYCL	DEF	4.0	FRAISAGE	POCHE	
28	CYCL	DEF	4.1	DIST 2		
29	CYCL	DEF	4.2	PROF2	0	
30	CYCL	DEF	4.3	PASSE 5	F100	
31	CYCL	DEF	4.4	X80		
32	CYCL	DEF	4.5	Y60		
33	CYCL	DEF	4.6	F275 DR+	RAYON	5

(o)

- Rotation sens horaire
 DR + : fraisage en avalant avec M3
 DR : fraisage en opposition avec M3
- Rayon d'arrondi: Rayon pour angles de poches. Pour rayon = 0, le rayon d'arrondi est égal au rayon d'outil

Calculs:

Passe latérale $k = K \times R$

- K: Facteur de superposition défini dans le paramètre-machine 7430
- R: Rayon de la fraise

FINITION DE POCHE (cycle 212)

- La TNC déplace l'outil automatiquement dans l'axe de broche à la distance d'approche ou – si celle-ci est programmée – à la 2ème distance d'approche, puis au centre de la poche
- 2 Partant du centre de la poche, l'outil se déplace dans le plan d'usinage jusqu'au point initial de l'usinage. Pour le calcul du point initial, la TNC tient compte de la surépaisseur et du rayon de l'outil Le cas échéant, la TNC perce au centre de la poche
- 3 Si l'outil se trouve à la 2ème distance d'approche, la TNC le déplace en rapide FMAX à la distance d'approche et ensuite, à la première profondeur de passe suivant l'avance plongée en profondeur
- 4 Ensuite, l'outil se déplace tangentiellement au contour partiel usiné et fraise sur le contour en avalant
- **5** Puis l'outil quitte le contour par tangentement pour retourner au point initial dans le plan d'usinage
- 6 Ce processus (3 à 5) est répété jusqu'à ce que la profondeur programmée soit atteinte
- 7 En fin de cycle, la TNC déplace l'outil en rapide à la distance d'approche ou – si celle-ci est programmée – à la 2ème distance d'approche, puis pour terminer, au centre de la poche (position finale = position initiale)

Remarques avant que vous ne programmiez

Le signe du paramètre Profondeur détermine le sens de l'usinage.

Si vous désirez une finition de la poche dans la masse, utilisez une fraise à denture frontale (DIN 844) et introduisez une petite valeur pour l'avance plongée en profondeur.

Taille min. de la poche: trois fois le rayon d'outil.

Distance d'approche Q200 (en incrémental): distance entre la pointe de l'outil et la surface de la pièce

212

- Profondeur Q201 (en incrémental): distance entre la surface de la pièce et le fond de la poche
- Avance plongée en profondeur Ω206: vitesse de déplacement de l'outil lors du déplacement jusqu'à la profondeur, en mm/min. Si vous plongez dans la matière, introduisez une faible valeur; si un préévidement a déjà été effectué, introduisez une avance plus élevée
- Profondeur de passe Q202 (en incrémental): distance parcourue par l'outil en une passe; introduire une valeur supérieure à 0
- ► Avance de fraisage Q207: vitesse de déplacement de l'outil lors du fraisage, en mm/min.
- Coord. surface pièce Q203 (en absolu): coordonnée de la surface de la pièce
- 2ème distance d'approche Q204 (en incrémental): coordonnée dans l'axe de broche excluant toute collision entre l'outil et la pièce (matériels de bridage)
- ▶ Centre 1ème axe Q216 (en absolu): centre de la poche dans l'axe principal du plan d'usinage
- ► Centre 2ème axe Q217 (en absolu): centre de la poche dans l'axe auxiliaire du plan d'usinage
- ▶ 1er côté Q218 (en incrémental): longueur de la poche parallèle à l'axe principal du plan d'usinage
- 2ème côté Q219 (en incrémental): longueur de la poche parallèle à l'axe auxiliaire du plan d'usinage
- Rayon d'angle Q220: rayon de l'angle de poche. S'il n'a pas été programmé, la TNC prend un rayon d'angle égal au rayon d'outil
- Surépaisseur 1er axe Q221(en incrémental): surépaisseur dans l'axe principal du plan d'usinage; se réfère à la longueur de la poche

34	CYCL DEF 212	FINITION POCHE
	Q200=2	;DISTANCE D'APPROCHE
	Q201=-20	; PROFONDEUR
	Q206=150	;AVANCE PLONGEE PROF.
	Q202=5	;PROFONDEUR DE PASSE
	Q207=500	;AVANCE FRAISAGE
	Q203=+0	;COOR. SURFACE
	Q204=50	;2ème DISTANCE D'APPROCHE
	Q216=+50	;CENTRE 1er AXE
	Q217=+50	;CENTRE 2ème AXE
	Q218=80	;1er COTE
	Q219=60	;2ème COTE
	Q220=5	;RAYON D'ANGLE
	Q221=0	; SUREPAISSEUR

FINITION DE TENON (cycle 213)

- 1 La TNC déplace l'outil dans l'axe de broche à la distance d'approche ou – si celle-ci est programmée – à la 2ème distance d'approche, puis au centre du tenon
- 2 Partant du centre du tenon, l'outil se déplace dans le plan d'usinage jusqu'au point initial de l'usinage. Le point initial est situé à droite du tenon, env. 3-5 fois la valeur du rayon d'outil
- **3** Si l'outil se trouve à la 2ème distance d'approche, la TNC le déplace en rapide FMAX à la distance d'approche et ensuite, à la première profondeur de passe suivant l'avance plongée en profondeur
- 4 Ensuite, l'outil se déplace tangentiellement au contour partiel usiné et fraise sur le contour en avalant
- **5** Puis l'outil quitte le contour par tangentement pour retourner au point initial dans le plan d'usinage
- 6 Ce processus (3 à 5) est répété jusqu'à ce que la profondeur programmée soit atteinte
- 7 En fin de cycle, la TNC déplace l'outil avec FMAX à la distance d'approche ou – si celle-ci est programmée – à la 2ème distance d'approche, puis pour terminer, au centre du tenon (position finale = position initiale)

213

Remargues avant que vous ne programmiez

Le signe du paramètre Profondeur détermine le sens de l'usinage.

Si vous désirez fraiser le tenon dans la masse, utilisez une fraise à denture frontale (DIN 844). Introduisez une petite valeur pour l'avance plongée en profondeur.

- ▶ Distance d'approche Q200 (en incrémental): distance entre la pointe de l'outil et la surface de la pièce
 - ▶ Profondeur Q201 (en incrémental): distance entre la surface de la pièce et le fond du tenon
 - ► Avance plongée en profondeur Q206: vitesse de déplacement de l'outil lors du déplacement jusqu'à la profondeur, en mm/min. Si vous plongez dans la matière, introduisez une faible valeur, si vous plongez dans le vide, introduisez une avance plus élevée
 - ▶ Profondeur de passe Q202 (en incrémental): distance parcourue par l'outil en une passe. Introduire une valeur supérieure à 0.
 - ► Avance de fraisage Q207: vitesse de déplacement de l'outil lors du fraisage, en mm/min.
 - ► Coord. surface pièce Q203 (en absolu): coordonnée de la surface de la pièce

35	LILL DEF 213	FINITION TENON
	Q200=2	;DISTANCE D'APPROCHE
	Q201=-20	; PROFONDEUR
	Q206=150	;AVANCE PLONGEE PROF.
	Q202=5	;PROFONDEUR DE PASSE
	Q207=500	;AVANCE FRAISAGE
	Q203=+0	;COOR. SURFACE
	Q204=50	;2ème DISTANCE D'APPROCHE
	Q216=+50	;CENTRE 1er AXE
	Q217=+50	;CENTRE 2ème AXE
	Q218=80	;1er COTE
	Q219=60	;2ème COTE
	Q220=5	;RAYON D'ANGLE
	0221=0	; SUREPAISSEUR

- 2ème distance d'approche Q204 (en incrémental): coordonnée dans l'axe de broche excluant toute collision entre l'outil et la pièce (matériels de bridage)
- Centre 1er axe Q216 (en absolu): centre du tenon dans l'axe principal du plan d'usinage
- Centre 2ème axe Q217 (en absolu): centre du tenon dans l'axe auxiliaire du plan d'usinage
- ▶ 1er côté Q218 (en incrémental): longueur du tenon parallèle à l'axe principal du plan d'usinage
- 2ème côté Q219 (en incrémental): longueur du tenon parallèle à l'axe auxiliaire du plan d'usinage
- ▶ Rayon d'angle Q220: rayon de l'angle du tenon
- Surépaisseur 1er axe Q221(en incrémental): surépaisseur dans l'axe principal du plan d'usinage; se réfère à la longueur du tenon

POCHE CIRCULAIRE (cycle 5)

- 1 L'outil plonge dans la pièce à la position initiale (au centre de la poche) et se déplace à la première profondeur de passe
- 2 Suivant l'avance F, l'outil décrit ensuite la trajectoire en forme de spirale représentée sur la figure de droite; en ce qui concerne la passe latérale k, reportez-vous au cycle 4 FRAISAGE DE POCHE.
- **3** Ce processus est répété jusqu'à ce que la profondeur soit atteinte
- 4 Pour terminer, la TNC rétracte l'outil à la position initiale

Remarques avant que vous ne programmiez

Programmer la séquence de positionnement du point initial (centre de la poche) dans le plan d'usinage avec correction de rayon R0.

Programmer la séquence de positionnement du point initial dans l'axe de broche (distance d'approche audessus de la surface de la pièce).

Le signe du paramètre Profondeur détermine le sens de l'usinage.

Utiliser une fraise à denture frontale (DIN 844) ou effectuer un pré-perçage au centre de la poche.

 \odot

- Distance d'approche 1 (en incrémental): distance entre la pointe de l'outil (position initiale) et la surface de la pièce
 - Profondeur de fraisage 2 (en incrémental): distance entre surface de la pièce et fond de la poche
 - Profondeur de passe 3 (en incrémental): distance parcourue par l'outil en une passe. L'outil se déplace en une passe à la profondeur lorsque:
 - Prof. de passe égale à la profondeur
 - Prof. de passe supérieure à la profondeur
 - Avance plongée en profondeur: vitesse de déplacement de l'outil lors de la plongée
 - ▶ Rayon du cercle: rayon de la poche circulaire
 - Avance F: vitesse de déplacement de l'outil dans le plan d'usinage
 - ▶ Rotation sens horaire
 - DR + : fraisage en avalant avec M3
 - DR : fraisage en opposition avec M3

Exem	nles	de sé	équer	ices	CN:	
LACIN	pics	46.30	quu	1003	UI4 .	

36	CYCL DEF	5.0	POCHE CIE	RCULAIRE
37	CYCL DEF	5.1	DIST. 2	
38	CYCL DEF	5.2	PROF20)
39	CYCL DEF	5.3	PASSE 5 I	F100
40	CYCL DEF	5.4	RAYON 40	
41	CYCL DEF	5.5	F250 DR+	

FINITION DE POCHE CIRCULAIRE (cycle 214)

- La TNC déplace l'outil automatiquement dans l'axe de broche à la distance d'approche ou – si celle-ci est programmée – à la 2ème distance d'approche, puis au centre de la poche
- 2 Partant du centre de la poche, l'outil se déplace dans le plan d'usinage jusqu'au point initial de l'usinage. Pour calculer le point initial, la TNC tient compte du diamètre de la pièce brute et du rayon de l'outil Si vous introduisez un diamètre 0 pour la pièce brute, la TNC perce au centre de la poche
- **3** Si l'outil se trouve à la 2ème distance d'approche, la TNC le déplace en rapide FMAX à la distance d'approche et ensuite, à la première profondeur de passe suivant l'avance plongée en profondeur
- 4 Ensuite, l'outil se déplace tangentiellement au contour partiel usiné et fraise sur le contour en avalant
- **5** Puis l'outil quitte le contour par tangentement pour retourner au point initial dans le plan d'usinage
- 6 Ce processus (3 à 5) est répété jusqu'à ce que la profondeur programmée soit atteinte
- 7 En fin de cycle, la TNC déplace l'outil avec FMAX à la distance d'approche ou – si celle-ci est programmée – à la 2ème distance d'approche, puis pour terminer, au centre de la poche (position finale = position initiale)

Remarques avant que vous ne programmiez

Le signe du paramètre Profondeur détermine le sens de l'usinage.

Si vous désirez une finition de la poche dans la masse, utilisez une fraise à denture frontale (DIN 844) et introduisez une petite valeur pour l'avance plongée en profondeur.

Distance d'approche Q200 (en incrémental): distance entre la pointe de l'outil et la surface de la pièce

- Profondeur Q201 (en incrémental): distance entre la surface de la pièce et le fond de la poche
- Avance plongée en profondeur Q206: vitesse de déplacement de l'outil lors du déplacement jusqu'à la profondeur, en mm/min. Si vous plongez dans la matière, introduisez une faible valeur; si vous plongez dans le vide, introduisez une avance plus élevée
- Profondeur de passe Q202 (en incrémental): distance parcourue par l'outil en une passe.
- Avance de fraisage Ω207: vitesse de déplacement de l'outil lors du fraisage, en mm/min.

42	CYCL DEF 214	FINITION DE POCHE CIRCULAIRE
	Q200=2	;DISTANCE D'APPROCHE
	Q201=-20	; PROFONDEUR
	Q206=150	;AVANCE PLONGEE PROF.
	Q2O2=5	; PROFONDEUR DE PASSE
	Q207=500	;AVANCE FRAISAGE
	Q203=+0	;COOR. SURFACE
	Q204=50	;2ème DISTANCE D'APPROCHE
	Q216=+50	;CENTRE 1er AXE
	Q217=+50	;CENTRE 2ème AXE
	Q222=79	;DIAMETRE PIECE BRUTE
	Q223=80	;DIAM. PIECE FINIE

- Coord. surface pièce Q203 (en absolu): coordonnée de la surface de la pièce
- 2ème distance d'approche Q204 (en incrémental): coordonnée dans l'axe de broche excluant toute collision entre l'outil et la pièce (matériels de bridage)
- Centre 1ème axe Q216 (en absolu): centre de la poche dans l'axe principal du plan d'usinage
- Centre 2ème axe Ω217 (en absolu): centre de la poche dans l'axe auxiliaire du plan d'usinage
- Diamètre pièce brute Q222: diamètre de la poche prête à être usinée; introduire un diamètre de la pièce brute inférieur au diamètre de la pièce finie
- Diamètre pièce finie Q223: diamètre de la poche après usinage; introduire un diamètre de la pièce finie supérieur au diamètre de la pièce brute et supérieur au diamètre de l'outil

FINITION DE TENON CIRCULAIRE (cycle 215)

- 1 La TNC déplace l'outil automatiquement dans l'axe de broche à la distance d'approche ou si celle-ci est programmée à la 2ème distance d'approche, puis au centre du tenon
- 2 Partant du centre du tenon, l'outil se déplace dans le plan d'usinage jusqu'au point initial de l'usinage. Le point initial est situé à droite du tenon, env. 3-5 fois la valeur du rayon d'outil
- 3 Si l'outil se trouve à la 2ème distance d'approche, la TNC le déplace en rapide FMAX à la distance d'approche et ensuite, à la première profondeur de passe suivant l'avance plongée en profondeur
- **4** Ensuite, l'outil se déplace tangentiellement au contour partiel usiné et fraise sur le contour en avalant
- **5** Puis l'outil quitte le contour par tangentement pour retourner au point initial dans le plan d'usinage
- 6 Ce processus (3 à 5) est répété jusqu'à ce que la profondeur programmée soit atteinte
- 7 En fin de cycle, la TNC déplace l'outil avec FMAX à la distance d'approche ou – si celle-ci est programmée – à la 2ème distance d'approche, puis pour terminer, au centre de la poche (position finale = position initiale)

Remarques avant que vous ne programmiez

Le signe du paramètre Profondeur détermine le sens de l'usinage.

Si vous désirez fraiser le tenon dans la masse, utilisez une fraise à denture frontale (DIN 844). Introduisez une petite valeur pour l'avance plongée en profondeur.

215

(P

Distance d'approche Q200 (en incrémental): distance entre la pointe de l'outil et la surface de la pièce

- Profondeur Q201 (en incrémental): distance entre la surface de la pièce et le fond du tenon
- Avance plongée en profondeur Q206: vitesse de déplacement de l'outil lors du déplacement jusqu'à la profondeur, en mm/min. Si vous plongez dans la matière, introduisez une faible valeur; si vous plongez dans le vide, introduisez une avance plus élevée
- Profondeur de passe Q202 (en incrémental): distance parcourue par l'outil en une passe; introduire une valeur supérieure à 0
- Avance de fraisage Ω207: vitesse de déplacement de l'outil lors du fraisage, en mm/min.
- Coord. surface pièce Q203 (en absolu): coordonnée de la surface de la pièce
- 2ème distance d'approche Ω204 (en incrémental): coordonnée dans l'axe de broche excluant toute collision entre l'outil et la pièce (matériels de bridage)
- Centre 1er axe Ω216 (en absolu): centre du tenon dans l'axe principal du plan d'usinage
- Centre 2ème axe Q217 (en absolu): centre du tenon dans l'axe auxiliaire du plan d'usinage
- Diamètre pièce brute Q222: diamètre du tenon prêt à être usiné; introduire un diamètre de la pièce brute supérieur au diamètre de la pièce finie
- Diamètre pièce finie Q223: diamètre du tenon après usinage; introduire un diamètre de la pièce finie inférieur au diamètre de la pièce brute

43	CYCL DEF 215	FINITION DE TENON CIRCULAIRE
	Q200=2	;DISTANCE D'APPROCHE
	Q201=-20	; PROFONDEUR
	Q206=150	;AVANCE PLONGEE PROF.
	Q202=5	; PROFONDEUR DE PASSE
	Q207=500	;AVANCE FRAISAGE
	Q203=+0	;COOR. SURFACE
	Q204=50	;2ème DISTANCE D'APPROCHE
	Q216=+50	;CENTRE 1er AXE
	Q217=+50	;CENTRE 2ème AXE
	Q222=81	;DIAMETRE PIECE BRUTE
	0223=80	:DIAM. PIECE FINIE

RAINURAGE (cycle 3)

Ebauche

- 1 La TNC décale l'outil vers l'intérieur, d'une valeur correspondant à la surépaisseur de finition (la moitié de la différence entre la largeur de la rainure et le diamètre de l'outil). Partant de là, l'outil plonge dans la pièce et fraise dans le sens longitudinal de la rainure
- **2** A la fin de la rainure, l'outil effectue une plongée en profondeur et fraise en sens inverse

Ce processus est répété jusqu'à ce que la profondeur de fraisage programmée soit atteinte

Finition

- 3 Au fond de la rainure, la TNC déplace l'outil sur une trajectoire circulaire tangentielle au contour externe. L'outil effectue ensuite la finition du contour en avalant (avec M3)
- 4 Pour terminer, l'outil retourne avec FMAX à la distance d'approche

Si le nombre de passes est impair, l'outil retourne à la position initiale en tenant compte de la distance d'approche

Remarques avant que vous ne programmiez

Programmer la séquence de positionnement du point initial dans le plan d'usinage – centre de la rainure (2ème côté) et avec décalage dans la rainure de la valeur du rayon d'outil – avec correction de rayon R0.

Programmer la séquence de positionnement du point initial dans l'axe de broche (distance d'approche audessus de la surface de la pièce).

Le signe du paramètre Profondeur détermine le sens de l'usinage.

Utiliser une fraise à denture frontale (DIN 844) ou effectuer un pré-perçage au point initial.

Le diamètre de la fraise ne doit pas être supérieur à la largeur de la rainure et pas inférieur à la moitié de la largeur de la rainure.

- 3 💿
- Distance d'approche 1 (en incrémental): distance entre la pointe de l'outil (position initiale) et la surface de la pièce
- Profondeur de fraisage 2 (en incrémental): distance entre surface de la pièce et fond de la poche
- Profondeur de passe 3 (incrémental): distance parcourue par l'outil en une passe. L'outil se déplace en une passe à la profondeur lorsque:
 - Prof. de passe égale à la profondeur
 - Prof. de passe supérieure à la profondeur

- Avance plongée en profondeur: vitesse de déplacement de l'outil lors de la plongée
- 1er côté 4: longueur de la rainure; définir le premier sens de coupe avec son signe
- > 2ème côté 5: largeur de la rainure
- Avance F: vitesse de déplacement de l'outil dans le plan d'usinage

RAINURE (trou oblong) avec plongée pendulaire (cycle 210)

Remarques avant que vous ne programmiez

Le signe du paramètre Profondeur détermine le sens de l'usinage.

Le diamètre de la fraise ne doit pas être supérieur à Larg. rainure ni inférieur à 1/3 de Larg. rainure

Le diamètre de la fraise ne doit pas être inférieur à 1/2 longueur de rainure: sinon pas de plongée pendulaire.

Ebauche

- 1 La TNC positionne l'outil en rapide dans l'axe de broche à la 2ème distance d'approche, puis au centre du cercle de gauche; partant de là, la TNC positionne l'outil à la distance d'approche au-dessus de la surface de la pièce
- 2 L'outil se déplace suivant l'avance de fraisage sur la surface de la pièce; partant de là, la fraise se déplace dans le sens longitudinal de la rainure en plongeant obliquement dans la matière vers le centre du cercle de droite
- **3** Ensuite, l'outil se déplace à nouveau en plongeant obliquement vers le centre du cercle de gauche; ces phases se répètent jusqu'à ce que la prof. de fraisage programmée soit atteinte
- 4 A la profondeur de fraisage, la TNC déplace l'outil pour le surfaçage à l'autre extrêmité de la rainure, puis à nouveau en son centre

Finition

- **5** Partant du centre de la rainure, la TNC déplace l'outil tangentiellement au contour achevé; celui-ci effectue ensuite la finition du contour en avalant (avec M3)
- **6** A la fin du contour, l'outil s'éloigne du contour par tangentement pour aller jusqu'au centre de la rainure
- 7 Pour terminer, l'outil retourne en rapide FMAX à la distance d'approche et – si celle-ci est programmée – à la 2ème distance d'approche

LYCH	ipies .	ue se	quei	1003 01	u.			
44	CYCL	DEF	3.0	RAINU	RAGE			
45	CYCL	DEF	3.1	DIST	2			
46	CYCL	DEF	3.2	PROF.	-20			
47	CYCL	DEF	3.3	PASSE	5 F	100		
48	CYCL	DEF	3.4	X+80				
49	CYCL	DEF	3.5	Y12				
50	CYCL	DEF	3.6	F275				

- Distance d'approche Q200 (en incrémental): distance entre la pointe de l'outil et la surface de la pièce
 - Profondeur Q201 (en incrémental): distance entre la surface de la pièce et le fond de la rainure
 - Avance de fraisage Q207: vitesse de déplacement de l'outil lors du fraisage, en mm/min.
 - Profondeur de passe Q202 (en incrémental): valeur égale à la distance totale parcourue par l'outil lors d'une plongée pendulaire dans l'axe de broche
 - Opérations d'usinage (0/1/2) Q215: définir les opérations d'usinage:
 - 0: ébauche et finition
 - 1: ébauche seulement
 - 2: finition seulement
 - Coord. surface pièce Q203 (en absolu): coordonnée de la surface de la pièce
 - 2ème distance d'approche Q204 (en incrémental): coordonnée Z excluant toute collision entre l'outil et la pièce (matériels de bridage)
 - Centre 1er axe Q216 (en absolu): centre de la rainure dans l'axe principal du plan d'usinage
 - Centre 2ème axe Q217 (en absolu): centre de la rainure dans l'axe auxiliaire du plan d'usinage
 - ▶ 1er côté Q218 (valeur parallèle à l'axe principal du plan d'usinage): introduire le plus grand côté de la rainure
 - 2ème côté Q219 (valeur parallèle à l'axe auxiliaire du plan d'usinage): introduire la largeur de la rainure; si l'on a introduit une largeur de rainure égale au diamètre de l'outil, la TNC n'effectue que l'ébauche (fraisage d'un trou oblong)
 - Angle de rotation Q224 (en absolu): angle de rotation de la totalité de la rainure; le centre de rotation est situé au centre de la rainure

	ipico do coquo.	
51	CYCL DEF 210	RAINURE PENDULAIRE
	Q200=2	;DISTANCE D'APPROCHE
	Q201=-20	; PROFONDEUR
	Q207=500	;AVANCE FRAISAGE
	Q2O2=5	;PROFONDEUR DE PASSE
	Q215=0	;OPERATIONS D'USINAGE
	Q2O3=+0	;COOR. SURFACE
	Q204=50	;2ème DISTANCE D'APPROCHE
	Q216=+50	;CENTRE 1er AXE
	Q217=+50	;CENTRE 2ème AXE
	Q218=80	;1er COTE
	Q219=12	;2ème COTE
	0224=+15	; POSITION ANGULAIRE

RAINURE CIRCULAIRE (trou oblong) avec plongée pendulaire (cycle 211)

Ebauche

- 1 La TNC positionne l'outil en rapide dans l'axe de broche à la 2ème distance d'approche, puis au centre du cercle de droite. Partant de là, la TNC positionne l'outil à la distance d'approche programmée au-dessus de la surface de la pièce
- 2 L'outil se déplace avec avance de fraisage sur la surface de la pièce; partant de là, la fraise se déplace – en plongeant obliquement dans la matière – vers l'autre extrêmité de la rainure
- **3** En plongeant à nouveau obliquement, l'outil retourne ensuite au point initial; ce processus (2 à 3) est répété jusqu'à ce que la profondeur de fraisage programmée soit atteinte
- **4** Ayant atteint la profondeur de fraisage, la TNC déplace l'outil pour le surfaçage à l'autre extrêmité de la rainure

Finition

- 5 Pour effectuer la finition de la rainure, la TNC déplace l'outil tangentiellement au contour achevé. Celui-ci effectue ensuite la finition du contour en avalant (avec M3) Pour l'opération de finition, le point initial est au centre du cercle de droite.
- 6 A la fin du contour, l'outil s'éloigne du contour par tangentement
- 7 Pour terminer, l'outil retourne en rapide FMAX à la distance d'approche et – si celle-ci est programmée – à la 2ème distance d'approche

Remarques avant que vous ne programmiez

Le signe du paramètre Profondeur détermine le sens de l'usinage.

Le diamètre de la fraise ne doit pas être supérieur à Larg. rainure ni inférieur à 1/3 de Larg. rainure

Le diamètre de la fraise doit être inférieur à la moitié de la longueur de la rainure: Sinon la TNC ne peut pas effectuer de plongée pendulaire.

- Distance d'approche Q200 (en incrémental): distance entre la pointe de l'outil et la surface de la pièce
 - Profondeur Q201 (en incrémental): distance entre la surface de la pièce et le fond de la rainure
 - Avance de fraisage Q207: vitesse de déplacement de l'outil lors du fraisage, en mm/min.
 - Profondeur de passe Q202 (en incrémental): valeur égale à la distance totale parcourue par l'outil lors d'une plongée pendulaire dans l'axe de broche
 - Opérations d'usinage (0/1/2) Q215: définir les opérations d'usinage:
 - 0: ébauche et finition
 - 1: ébauche seulement
 - 2: finition seulement
 - Coord. surface pièce Q203 (en absolu): coordonnée de la surface de la pièce
 - 2ème distance d'approche Q204 (en incrémental): coordonnée Z excluant toute collision entre l'outil et la pièce (matériels de bridage)
 - Centre 1er axe Q216 (en absolu): centre de la rainure dans l'axe principal du plan d'usinage
 - ▶ Centre 2ème axe Q217 (en absolu): centre de la rainure dans l'axe auxiliaire du plan d'usinage
 - Diamètre cercle primitif Q244: introduire le diamètre du cercle primitif
 - 2ème côté Q219: introduire la largeur de la rainure; si l'on a introduit une largeur de rainure égale au diamètre de l'outil, la TNC n'effectue que l'ébauche (fraisage d'un trou oblong)
 - Angle initial Q245 (en absolu): introduire l'angle polaire du point initial
 - Angle d'ouverture de la rainure Q248 (en incrémental): introduire l'angle d'ouverture de la rainure

Exemples de séquences CN:

52	CYCL DEF 211	RAINURE CIRC.
	Q200=2	;DISTANCE D'APPROCHE
	Q201=-20	; PROFONDEUR
	Q207=500	;AVANCE FRAISAGE
	Q202=5	;PROFONDEUR DE PASSE
	Q215=0	;OPERATIONS D'USINAGE
	Q203=+0	;COOR. SURFACE
	Q204=50	;2ème DISTANCE D'APPROCHE
	Q216=+50	;CENTRE 1er AXE
	Q217=+50	;CENTRE 2ème AXE
	Q244=80	;DIA. CERCLE PRIMITIF
	Q219=12	;2ème COTE
	Q245=+45	;ANGLE INITIAL
	Q248=90	;ANGLE D'OUVERTURE

211

O BEGIN PGM C210 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Définition de la pièce brute
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+6	Définition de l'outil d'ébauche/ de finition
4 TOOL DEF 2 L+0 R+3	Définition d'outil pour fraise à rainurer
5 TOOL CALL 1 Z S3500	Appel de l'outil d'ébauche/ de finition
6 L Z+250 R0 F MAX	Dégager l'outil
7 CYCL DEF 213 FINITION TENONS	Définition du cycle pour usinage externe
Q200=2 ;DISTANCE D'APPROCHE	
Q201=-30 ; PROFONDEUR	
Q206=250 ;AVANCE PLONGEE PROF.	
Q2O2=5 ;PROFONDEUR DE PASSE	
Q207=250 ;AVANCE FRAISAGE	
Q2O3=+O ;COORD. SURFACE PIECE	
Q2O4=2O ;2. DIST. D'APPROCHE	
Q216=+50 ;CENTRE 1ER AXE	
Q217=+50 ;CENTRE 2EME AXE	
Q218=90 ;1ER COTE	
Q219=80 ;2EME COTE	
Q220=0 ;RAYON D'ANGLE	
Q221=5 ;SUREPAISSEUR	
8 CYCL CALL M3	Appel du cycle pour usinage externe

CYCL DEF 5.0 POCHE CIRCULAIRE	Définition du cycle Poche circulaire
O CYCL DEF 5.1 DIST. 2	
1 CYCL DEF 5.2 PROF30	
2 CYCL DEF 5.3 PASSE 5 F250	
3 CYCL DEF 5.4 RAYON 25	
4 CYCL DEF 5.5 F400 DR+	
.5 L Z+2 RO F MAX M99	Appel du cycle Poche circulaire
.6 L Z+250 R0 F MAX M6	Changement d'outil
.7 TOOL CALL 2 Z S5000	Appel d'outil pour fraise à rainurer
8 CYCL DEF 211 RAINURE CIRC.	Définition du cycle Rainure 1
Q200=2 ;DISTANCE D'APPROCHE	
Q201=-20 ;PROFONDEUR	
Q207=250 ;AVANCE FRAISAGE	
Q2O2=5 ;PROFONDEUR DE PASSE	
Q215=0 ;OPERATIONS D'USINAGE	
Q2O3=+O ;COORD. SURFACE PIECE	
Q2O4=100 ;2. DIST. D'APPROCHE	
Q216=+50 ;CENTRE 1ER AXE	
Q217=+50 ;CENTRE 2EME AXE	
Q244=70 ;DIA. CERCLE PRIMITIF	
Q219=8 ;2EME COTE	
Q245=+45 ;ANGLE INITIAL	
Q248=90 ;ANGLE D'OUVERTURE	
I9 CYCL CALL M3	Appel du cycle Rainure 1
0 FN 0: Q245 = +225	Nouvel angle initial pour rainure 2
21 CYCL CALL	Appel du cycle Rainure 2
2 L Z+250 R0 F MAX M2	Dégager l'outil, fin du programme
3 END PGM C210 MM	

8.4 Cycles d'usinage de motifs de points

La TNC dispose de 2 cycles destinés à l'usinage de motifs de points:

Cycle	Softkey
220 MOTIFS DE POINTS SUR UN CERCLE	220 sta
221 MOTIFS DE POINTS SUR DES LIGNES	221 _ _ _ _ _ _ _ _ _ _ _ _ _

Vous pouvez combiner les cycles d'usinage suivants avec les cycles 220 et 221:

Cycle 1	PERCAGE PROFOND
Cycle 2	TARAUDAGE avec mandrin de compensation
Cycle 3	RAINURAGE
Cycle 4	FRAISAGE DE POCHE
Cycle 5	POCHE CIRCULAIRE
Cycle 17	TARAUDAGE sans mandrin de compensation
Cycle 18	FILETAGE
Cycle 200	PERCAGE
Cycle 201	ALESAGE
Cycle 202	ALESAGEAVECALESOIR
Cycle 203	CYCLE DE PERCAGE UNIVERSEL
Cycle 204	CONTRE-PERCAGE
Cycle 212	FINITION DE POCHE
Cycle 213	FINITION DE TENON
Cycle 214	FINITION DE POCHE CIRCULAIRE
Cycle 215	FINITION DE TENON CIRCULAIRE

MOTIFS DE POINTS SUR UN CERCLE (cycle 220)

1 La TNC positionne l'outil en rapide de la position actuelle jusqu'au point initial de la première opération d'usinage.

Etapes:

- Aborder la 2ème distance d'approche (axe de broche)
- Aborder le point initial dans le plan d'usinage
- Aller à la distance d'approche au-dessus de la pièce (axe de broche)
- 2 A partir de cette position, la TNC exécute le dernier cycle d'usinage défini
- **3** Ensuite, la TNC positionne l'outil en suivant un déplacement linéaire jusqu'au point initial de l'opération d'usinage suivante; l'outil est positionné à la distance d'approche (ou à la 2ème distance d'approche)
- 4 Ce processus (1 à 3) est répété jusqu'à ce que toutes les opérations d'usinage aient été exécutées

Remarques avant que vous ne programmiez

Le cycle 220 est actif avec DEF, c'est-à-dire qu'il appelle automatiquement le dernier cycle d'usinage défini!

Si vous combinez l'un des cycles d'usinage 200 à 204 et 212 à 215 avec le cycle 220, la distance d'approche, la surface de la pièce et la 2ème distance d'approche programmées dans le cycle 220 sont actives!

220 ats

- ► Centre 1er axe Q216 (en absolu): centre du cercle primitif dans l'axe principal du plan d'usinage
- ▶ Centre 2ème axe Q217 (en absolu): entre du cercle primitif dans l'axe auxiliaire du plan d'usinage
- Diamètre du cercle primitif Q244: diamètre du cercle primitif
- ► Angle initial Q245 (en absolu): angle compris entre l'axe principal du plan d'usinage et le point initial du premier usinage sur le cercle primitif
- Angle final Q246 (en absolu): angle compris entre l'axe principal du plan d'usinage et le point initial du dernier usinage sur le cercle primitif (non valable pour les cercles entiers); introduire l'angle final différent de l'angle initial; si l'angle final est supérieur à l'angle initial, l'usinage est exécuté dans le sens anti-horaire; dans le cas contraire, il est exécuté dans le sens horaire
- Incrément angulaire Q247 (en incrémental): angle séparant deux opérations d'usinage sur le cercle primitif ; si l'incrément angulaire est égal à 0, la TNC le calcule à partir de l'angle initial, de l'angle final et du nombre d'opérations d'usinage. Si un incrément angulaire a été programmé, la TNC ne prend pas en compte l'angle final; le signe de l'incrément angulaire détermine le sens de l'usinage (- = sens horaire)

53 C	YCL DEF 220	CERCLE DE TROUS
	Q216=+50	;CENTRE 1er AXE
	Q217=+50	;CENTRE 2ème AXE
	Q244=80	;DIA. CERCLE PRIMITIF
	Q245=+0	;ANGLE INITIAL
	Q246=+360	;ANGLE FINAL
	Q247=+0	;PAS ANGULAIRE
	Q241=8	;NOMBRE D'OPERAT. D'USINAGE
	Q200=2	;DISTANCE D'APPROCHE
	Q2O3=+0	;COOR. SURFACE
	0204=50	:2ème DISTANCE D'APPROCHE

- Nombre d'usinages Q241: nombre d'opérations d'usinage sur le cercle primitif
- Distance d'approche Q200 (en incrémental): distance entre la pointe de l'outil et la surface de la pièce; introduire une valeur positive
- Coord. surface pièce Q203 (en absolu): coordonnée de la surface de la pièce
- > 2ème distance d'approche Q204 (en incrémental): coordonnée dans l'axe de broche excluant toute collision entre l'outil et la pièce (matériels de bridage). Introduire une valeur positive

MOTIFS DE POINTS SUR DES LIGNES (cycle 221)

Remarques avant que vous ne programmiez

Le cycle 221 est actif avec DEF, c'est-à-dire qu'il appelle automatiquement le dernier cycle d'usinage défini!

Si vous combinez l'un des cycles d'usinage 200 à 204 et 211 à 215 avec le cycle 220, la distance d'approche, la surface de la pièce et la 2ème distance d'approche du cycle 220 sont actives!

1 La TNC positionne l'outil automatiquement de la position actuelle jusqu'au point initial de la première opération d'usinage.

Etapes:

- Aborder la 2ème distance d'approche (axe de broche)
- Aborder le point initial dans le plan d'usinage

Aller à la distance d'approche au-dessus de la pièce (axe de broche)

- 2 A partir de cette position, la TNC exécute le dernier cycle d'usinage défini
- **3** Ensuite, la TNC positionne l'outil dans le sens positif de l'axe principal, sur le point initial de l'opération d'usinage suivante; l'outil est positionné à la distance d'approche (ou à la 2ème distance d'approche)
- 4 Ce processus (1 à 3) est répété jusqu'à ce que toutes les opérations d'usinage soient exécutées sur la première ligne; l'outil se trouve sur le dernier point de la première ligne
- 5 La TNC déplace ensuite l'outil sur le dernier point de le deuxième ligne où il exécute l'usinage
- 6 Partant de là, la TNC positionne l'outil dans le sens négatif de l'axe principal, sur le point initial de l'opération d'usinage suivante
- 7 Ce processus (6) est répété jusqu'à ce que toutes les opérations d'usinage soient exécutées sur la deuxième ligne

- 8.4 Cycles d'usinage de motifs de points
- 8 Ensuite, la TNC déplace l'outil sur le point initial de la dernière ligne
- **9** Toutes les autres lignes sont usinées suivant un déplacement pendulaire

- ▶ Point initial 1er axe Q225 (en absolu): coordonnée du point initial dans l'axe principal du plan d'usinage
- Point initial 2ème axe Q226 (en absolu): coordonnée du point initial dans l'axe auxiliaire du plan d'usinage
- Distance 1er axe Q237 (en incrémental): distance entre les différents points sur la ligne
- Distance 2ème axe Q238 (en incrémental): distance entre les lignes
- ▶ Nombre d'intervalles Q242: nombre d'opérations d'usinage sur la ligne
- ▶ Nombre de lignes Q243: nombre de lignes
- Position angulaire Q224 (en absolu): angle de rotation de l'ensemble du schéma de perçages; le centre de rotation est situé sur le point initial
- Distance d'approche Q200 (en incrémental): distance entre la pointe de l'outil et la surface de la pièce
- Coord. surface pièce Q203 (en absolu): coordonnée de la surface de la pièce
- 2ème distance d'approche Q204 (en incrémental): coordonnée dans l'axe de broche excluant toute collision entre l'outil et la pièce (matériels de bridage)

-		
54	CYCL DEF 221	GRILLE DE TROUS
	Q225=+15	;PT INITIAL 1ER AXE
	Q226=+15	;PT INITIAL 2EME AXE
	Q237=+10	;DISTANCE 1ER AXE
	Q238=+8	;DISTANCE 2EME AXE
	Q242=6	;NB INTERSTICES
	Q243=4	;NB LIGNES
	Q224=+15	;POSITION ANGULAIRE
	Q200=2	;DISTANCE D'APPROCHE
	Q2O3=+0	;COOR. SURFACE
	Q204=50	;2ème DISTANCE D'APPROCHE

poin	
de	
motifs	
de	
l'usinage	,
les d	
Cycl	
8.4	

tS

Définition de la pièce brute
Définition de l'outil
Appel de l'outil
Dégager l'outil
Définition du cycle Perçage

7	CYCL DEF 220 CERCLE DE TROUS	Définition cycle cercles de trous 1, CYCL 200 est appelé
	Q216=+30 ;CENTRE 1ER AXE	automatiquement; Q200, Q203 et Q204 agissent à partir cycle 220
	Q217=+70 ;CENTRE 2EME AXE	
	Q244=50 ;DIA. CERCLE PRIMITIF	
	Q245=+0 ;ANGLE INITIAL	
	Q246=+360 ;ANGLE FINAL	
	Q247=+0 ;PAS ANGULAIRE	
	Q241=10 ;NOMBRE D'USINAGES	
	Q200=2 ;DISTANCE D'APPROCHE	
	Q2O3=+O ;COORD. SURFACE PIECE	
	Q204=100 ;2. DIST. D'APPROCHE	
8	CYCL DEF 220 CERCLE DE TROUS	Définition cycle cercles de trous 2, CYCL 200 est appelé
	Q216=+90 ;CENTRE 1ER AXE	automatiquement; Q200, Q203 et Q204 agissent à partir cycle 220
	Q217=+25 ;CENTRE 2EME AXE	
	Q244=70 ;DIA. CERCLE PRIMITIF	
	Q245=+90 ;ANGLE INITIAL	
	Q246=+360 ;ANGLE FINAL	
	Q247=+30 ;PAS ANGULAIRE	
	Q241=5 ;NOMBRE D'USINAGES	
	Q200=2 ;DISTANCE D'APPROCHE	
	Q2O3=+O ;COORD. SURFACE PIECE	
	Q2O4=100 ;2. DIST. D'APPROCHE	
9	L Z+250 RO F MAX M2	Dégager l'outil, fin du programme
10	END PGM CERCTR MM	

8.5 Cycles SL

Les cycles SL sont conçus pour l'usinage de combinaisons complexes de contours variés et permettent d'obtenir une qualité de surface particulièrement élevée.

Caractéristiques du contour

- Un contour entier peut être formé de contours partiels superposés (jusqu'à 12 éléments). Poches et îlots constituent les contours partiels
- Vous introduisez la liste des contours partiels (numéros de sousprogrammes) dans le cycle 14 CONTOUR. A partir des contours partiels, la TNC calcule le contour entier
- Vous introduisez les contours partiels sous forme de sousprogrammes.
- La mémoire réservée à un cycle SL est limitée. Ainsi, par exemple, la totalité des sous-programmes ne peut dépasser 128 séquences linéaires

Caractéristiques des sous-programmes

- Les conversions de coordonnées sont autorisées
- La TNC ignore les avances F et fonctions auxiliaires M
- La TNC reconnaît s'il s'agit d'une poche lorsque vous parcourez l'intérieur du contour. Par exemple, description du contour dans le sens horaire avec correction de rayon RR
- La TNC reconnaît s'il s'agit d'un îlot lorsque vous parcourez l'extérieur d'un contour. Par exemple, description du contour dans le sens horaire avec correction de rayon RL
- Les sous-programmes ne doivent pas contenir de coordonnées dans l'axe de broche
- Définissez le plan d'usinage dans la première séquence de coordonnées. Les axes auxiliaires U,V,W sont autorisés

Caractéristiques des cycles d'usinage

- Avant chaque cycle, la TNC positionne l'outil automatiquement à la distance d'approche
- Le fraisage à chaque niveau de profondeur est réalisé sans qu'il soit besoin de relever l'outil; les îlots sont contournés latéralement
- Le rayon des "angles internes" est programmable l'outil ne se bloque pas, permettant ainsi d'éviter les traces de dégagement de l'outil (ceci est valable pour la trajectoire externe lors de l'évidement et de la finition latérale)
- Lors de la finition latérale, la TNC aborde le contour en suivant une trajectoire circulaire tangentielle
- Lors de la finition en profondeur, la TNC déplace également l'outil en suivant une trajectoire circulaire tangentielle à la pièce (par ex.: axe de broche Z: trajectoire circulaire dans le plan Z/X)
- La TNC usine le contour en continu, en avalant ou en opposition

A l'aide de PM7420, vous définissez l'endroit où la TNC doit positionner l'outil à la fin des cycles 21 à 24.

Introduisez les cotes d'usinage telles que la profondeur de fraisage, les surépaisseurs et la distance d'approche sous formes de DONNEES DU CONTOUR dans le cycle 20.

Sommaire: Cycles SL

Cycle	Softkey
14 CONTOUR (impératif)	14 LBL 1N
20 DONNEES DU CONTOUR (impératif)	20 DONNEES DU CONTOUR
21 PREPERCAGE (utilisation facultative)	21
22 EVIDEMEMENT (impératif)	
23 FINITION EN PROFONDEUR (utilisation facultative)	23
24 FINITION LATERALE (utilisation facultative)	24
Cycles étendus:	

Cycle	Softkey
25 TRACE DE CONTOUR	25 1113_5773
27 CORPS D'UN CYLINDRE	27

Schéma: Travail avec les cycles SL

O BEGIN PGM SL2 MM
12 CYCL DEF 14.0 CONTOUR
13 CYCL DEF 20.0 DONNEES DU CONTOUR
•••
16 CYCL DEF 21.0 PREPERCAGE
17 CYCL CALL
18 CYCL DEF 22.0 EVIDEMENT
19 CYCL CALL
22 CYCL DEF 23.0 FINITION PROF
23 CYCL CALL
26 CYCL DEF 24.0 FINITION LATERALE
27 CYCL CALL
50 L 7+250 R0 FMAX M2
51 LRI 1
JI LDL I
···
JU LDL Z
99 END PGM SL2 MM

CONTOUR (cycle 14)

Dans le cycle 14 CONTOUR, listez tous les sous-programmes qui doivent être superposés pour former un contour entier.

Remarques avant que vous ne programmiez

Le cycle 14 est actif avec DEF, c'est-à-dire qu'il est actif dès qu'il a été défini dans le programme

Vous pouvez lister jusqu'à 12 sous-programmes (contours partiels) dans le cycle 14

14 LBL 1...N Numéros de label pour contour: introduire tous les numéros de label des différents sous-programmes qui doivent être superposés pour former un contour. Valider chaque numéro avec la touche ENT et achever l'introduction avec la touche FIN.

- 55 CYCL DEF 14.0 CONTUR
- 56 CYCL DEF 14.1 LABEL CONTOUR 1 /2 /3

Contours superposés

Afin de former un nouveau contour, vous pouvez superposer poches et îlots. De cette manière, vous pouvez agrandir la surface d'une poche par superposition d'une poche ou réduire un îlot.

Sous-programmes: Poches superposées

Les exemples de programmation suivants correspondent à des sous-programmes de contour appelés par le cycle 14 CONTOUR dans un programme principal.

Les poches A et B sont superposées.

La TNC calcule les points d'intersection S_1 et $S_2;$ ils n'ont pas à être reprogrammés.

Les poches sont programmées comme des cercles entiers.

Sous-programme 1: Poche à gauche

51	LBL 1
52	L X+10 Y+50 RR
53	CC X+35 Y+50
54	C X+10 Y+50 DR-
55	LBL 0

Sous-programme 2: Poche à droite

56	LBL 2
57	L X+90 Y+50 RR
58	CC X+65 Y+50
59	C X+90 Y+50 DR-
60	LBL 0

8.5 Cycles SI

Surface "composée"

Les deux surfaces partielles A et B, y compris leur surface commune de recouvrement, doivent être usinées:

- Les surfaces A et B doivent être des poches.
- La première poche (dans le cycle 14) doit débuter à l'extérieur de la seconde.

Surface A:

51	LBL 1
52	L X+10 Y+50 RR
53	CC X+35 Y+50
54	C X+10 Y+50 DR-
55	LBL O

Surface B:

56	LBL 2		
57	L X+90 Y+50 RR		
58	CC X+65 Y+50		
59	C X+90 Y+50 DR-		
60	LBL O		

Surface "différentielle"

La surface A doit être usinée sans la partie recouverte par B:

La surface A doit être une poche et B, un îlot.

A doit débuter à l'extérieur de B.

Surface A:

51 LBL 1

52 L X+10 Y+50 RR

53 CC X+35 Y+50

54 C X+10 Y+50 DR-

55 LBL 0

Surface B:

56	LBL 2
57	L X+90 Y+50 RL
58	CC X+65 Y+50
59	C X+90 Y+50 DR-
60	LBL 0

8.5 Cycles SL

Surface "d'intersection"

La surface commune de recouvrement de A et de B doit être usinée. (les surfaces avec simple recouvrement doivent rester non usinées)

A et B doivent être des poches.

A doit débuter à l'intérieur de B.

Surface A:

51 LBL 1	
52 L X+60 Y+50 RR	
53 CC X+35 Y+50	
54 C X+60 Y+50 DR-	
55 LBL 0	

Surface B:

56	LBL 2
57	L X+90 Y+50 RR
58	CC X+65 Y+50
59	C X+90 Y+50 DR-
60	LBL 0

DONNEES DU CONTOUR (cycle 20)

Dans le cycle 20, introduisez les données d'usinage destinées aux sous-programmes avec contours partiels.

Remarques avant que vous ne programmiez

Le cycle 20 est actif avec DEF, c'est-à-dire qu'il est actif dès qu'il a été défini dans le programme d'usinage.

Le signe du paramètre Profondeur détermine le sens de l'usinage.

Les données d'usinage indiquées dans le cycle 20 sont valables pour les cycles 21 à 24.

Si vous utilisez des cycles SL dans les programmes avec paramètres Q, vous ne devez pas utiliser les paramètres Q1 à Q19 comme paramètres de programme.

20 DONNEES DU CONTOUR Profondeur de fraisage Q1 (en incrémental): distance entre surface de la pièce et fond de la poche.

- ► Facteur de superposition de trajectoire Q2: Q2 x rayon d'outil donne la passe latérale k
- Surép. latérale finition Q3 (en incrémental): surépaisseur de finition dans plan d'usinage
- Surép. de finition en profondeur Q4 (en incrémental): surépaisseur de finition pour la profondeur
- ► Coord. surface pièce Q5 (en absolu): coordonnée absolue de la surface de la pièce

- ▶ Dist. d'approche Q6 (en incrémental): distance entre surface frontale de l'outil et surface de la pièce
- Hauteur de sécurité Q7 (en absolu): hauteur en valeur absolue à l'intérieur de laquelle aucune collision ne peut se produire avec la pièce (pour positionnement intermédiaire et retraît en fin de cycle)
- Rayon d'arrondi interne Q8: Rayon d'arrondi aux "angles" internes; la valeur introduite se réfère à la trajectoire du centre de l'outil
- Sens de rotation ? Sens horaire = -1 Q9: Sens de l'usinage pour les poches
 sens horaire (Q9 = -1 usinage en opposition pour poche et îlot)
 sens anti-horaire (Q9 = +1 usinage en avalant pour

Vous pouvez vérifier les paramètres d'usinage lors d'une interruption du programme et, si nécessaire, les écraser.

Exer	nples	de sé	que	enc	es	CN:	
F 7	OVOL	DEE	0.0	•	0.0	MALE EA	~

poche et îlot)

57	CYCL DEF	20.0 DONNEES DU CONTOUR
	Q1=-20	;PROFONDEUR DE FRAISAGE
	Q2 = 1	;CHEMIN DE RECOUVREMENT
	Q3=+0.2	;SUREPAISSEUR LATERALE
	Q4=+0.1	;SUREP. DE PROFONDEUR
	Q5=+0	;COOR. SURFACE
	Q6 =+ 2	;DISTANCE D'APPROCHE
	Q7=+50	;HAUTEUR DE SECURITE
	Q8=0.5	;RAYON D'ARRONDI
	Q9=+1	;SENS DE ROTATION

PREPERCAGE (cycle 21)

Pour le calcul des points de plongée, la TNC ne tient pas compte d'une valeur Delta DR programmée dans TOOL CALL.

Déroulement du cycle

dito cycle 1 Perçage profond (cf. "8.2 Cycles de perçage").

Applications

Pour les points de plongée, le cycle 21 PREPERCAGE tient compte de la surép. latérale de finition, de la surép. de finition en profondeur, et du rayon de l'outil d'évidement. Les points de plongée sont aussi points initiaux pour l'évidement.

Profondeur de passe Q10 (en incrémental): Distance parcourue par l'outil en une passe (signe "-" avec sens d'usinage négatif)

- ► Avance plongée en profondeur Q11: avance de perçage en mm/min.
- Numéro outil d'évidement Q13: numéro de l'outil d'évidement

58	CYCL DEF	21.0 PREPERCAGE	
	Q10=+5	;PROFONDEUR DE PASSE	
	Q11=100	;AVANCE PLONGEE PROF.	
	Q13=1	;OUTIL D'EVIDEMENT	

EVIDEMENT (cycle 22)

- **1** La TNC positionne l'outil au-dessus du point de plongée. La surép. latérale de finition est alors prise en compte.
- **2** Lors de la première profondeur de passe, l'outil fraise le contour de l'intérieur vers l'extérieur, suivant l'avance de fraisage Q12
- **3** Les contours d'îlots (ici: C/D) sont fraisés librement en se rapprochant du contour des poches
- **4** Pour terminer, la TNC parcourt le contour des poches et rétracte l'outil à la hauteur de sécurité

Remarques avant que vous ne programmiez

Utiliser si nécessaire une fraise à denture frontale (DIN 844) ou prépercer avec le cycle 21.

Profondeur de passe Q10 (en incrémental): Distance parcourue par l'outil en une passe

- Avance plongée en profondeur Q11: avance de plongée en mm/min.
- Avance d'évidement Q12: avance de fraisage en mm/min.
- Numéro outil d'évidement Q18: numéro de l'outil avec lequel la TNC vient d'effectuer l'évidement. S'il n'y a pas eu de pré-évidement, "0" a été programmé; si vous introduisez ici un numéro, la TNC n'évidera que la partie qui n'a pas pû être évidée avec l'outil de pré-évidement.

Si la zone à évider en second lieu ne peut être abordée latéralement, la TNC effectue une plongée pendulaire; A cet effet, vous devez définir la longueur de dent LCUTS et l'angle max. de plongée ANGLE de l'outil à l'intérieur du tableau d'outils TOOL.T (cf. chap. 5.2). Le TNC émettra le cas échéant un message d'erreur

Avance pendulaire Q19: avance pendulaire en mm/ min.

59	CYCL DEF	22.0 EVIDEMENT
	Q10=+5	;PROFONDEUR DE PASSE
	Q11=100	;AVANCE PLONGEE PROF.
	Q12=350	;AVANCE EVIDEMENT
	Q18=1	;OUTIL DE PRE-EVIDEMENT
	Q19=150	;AVANCE PENDULAIRE

FINITION EN PROFONDEUR (cycle 23)

La TNC détermine automatiquement le point initial pour la finition. Celui-ci dépend des relations d'emplacement à l'intérieur de la poche.

La TNC déplace l'outil en douceur (cercle tangentiel vertical) vers la surface à usiner. L'outil fraise ensuite ce qui reste après l'évidement, soit la valeur de la surépaisseur de finition.

Avance plongée en profondeur Q11: vitesse de déplacement de l'outil lors de la plongée

► Avance d'évidement Q12: Avance de fraisage

Exemples de séquences CN:

60	CYCL DEF	23.0 FINITION EN PROF.	
	Q11=100	;AVANCE PLONGEE PROF.	
	Q12=350	;AVANCE EVIDEMENT	

FINITION LATERALE (cycle 24)

La TNC déplace l'outil sur une trajectoire circulaire tangentielle aux courtours partiels. Chaque contour partiel sera fini séparément.

Remarques avant que vous ne programmiez

La somme de la surépaisseur latérale de finition (Q14) et du rayon de l'outil d'évidement doit être inférieure à la somme de la surépaisseur latérale de finition (Q3,cycle 20) et du rayon de l'outil d'évidement.

Si vous exécutez le cycle 14 sans avoir avant évidé avec le cycle 22, le calcul indiqué plus haut reste valable; le rayon de l'outil d'évidement a alors la valeur "0".

La TNC détermine automatiquement le point initial pour la finition. Celui-ci dépend des relations d'emplacement à l'intérieur de la poche.

 Sens de rotation ? Sens horaire = -1 Q9: Sens de l'usinage:
 +1: rotation sens anti-horaire

- -1: rotation sens horaire
- Profondeur de passe Q10 (en incrémental): Distance parcourue par l'outil en une passe
- Avance plongée en profondeur Q11: Avance de plongée
- ► Avance d'évidement Q12: Avance de fraisage
- Surép. finition latérale Q14 (en incrémental): surépaisseur pour finition répétée; le dernier résidu de finition est évidé si vous avez programmé Q14 = 0

61	CYCL DEF 24	4.0 FINITION LATERALE	
	Q9=+1	;SENS DE ROTATION	
	Q10=+5	; PROFONDEUR DE PASSE	
	Q11=100	;AVANCE PLONGEE PROF.	
	Q12=350	;AVANCE EVIDEMENT	
	Q14=+0	;SUREPAISSEUR LATERALE	

TRACE DE CONTOUR (cycle 25)

En liaison avec le cycle 14 CONTOUR, ce cycle permet d'usiner également des contours "ouverts": Le début et la fin du contour ne coïncident pas.

Le cycle 25 TRACE DE CONTOUR présente des avantages considérables par rapport à l'usinage d'un contour ouvert à l'aide de séquences de positionnement:

- La TNC contrôle l'usinage au niveau des contres-dépouilles et endommagements du contour. Utilisez le graphisme de test
- Si le rayon d'outil est trop grand, il convient éventuellement de réusiner le contour aux angles internes
- L'usinage est réalisé en continu, en avalant ou en opposition. Le type de fraisage est conservé même si les contours sont inversés en image miroir
- Sur plusieurs passes, la TNC peut déplacer l'outil dans un sens ou dans l'autre: La durée d'usinage s'en trouve ainsi réduite
- Vous pouvez introduire des surépaisseurs afin de réaliser l'ébauche et la finition en plusieurs passes

Remarques avant que vous ne programmiez

Le signe du paramètre Profondeur détermine le sens de l'usinage.

La TNC ne prend en compte que le premier label du cycle 14 CONTOUR.

La mémoire réservée à un cycle SL est limitée. Ainsi, par exemple, vous pouvez programmer au maximum 128 séquences linéaires dans un cycle SL.

Le cycle 20 DONNEES DU CONTOUR est superflu.

Les positions incrémentales programmées directement après le cycle 25 se réfèrent à la position de l'outil en fin de cycle

- Prof. fraisage Q1 (en incrémental): distance entre la surface de la pièce et le fond du contour
- Surép. latérale finition Q3 (en incrémental): surépaisseur de finition dans plan d'usinage
- Coord. surface pièce Q5 (en absolu): coordonnée absolue de la surface de la pièce par rapport au point zéro pièce
- Hauteur de sécurité Q7 (en absolu): hauteur en valeur absolue à l'intérieur de laquelle aucune collision ne peut se produire entre l'outil et la pièce; position de retrait de l'outil en fin de cycle
- Profondeur de passe Q10 (en incrémental): Distance parcourue par l'outil en une passe
- Avance plongée en profondeur Q11: avance lors des déplacements dans l'axe de broche
- Avance de fraisage Q12: avance lors des déplacements dans le plan d'usinage
- ► Type de fraisage ? en opposition = -1 Q15: Fraisage en avalant: Fraisage en opposition: Alternativement, fraisage en avalant et en opposition sur plusieurs passes: introduire = 0

62	CYCL DEF	25.0 TRACE DE CONTOUR
	Q1=-20	;PROFONDEUR DE FRAISAGE
	Q3=+0	;SUREPAISSEUR LATERALE
	Q5=+0	;COOR. SURFACE
	Q7=+50	;HAUTEUR DE SECURITE
	Q10=+5	;PROFONDEUR DE PASSE
	Q11=100	;AVANCE PLONGEE PROF.
	Q12=350	;AVANCE FRAISAGE
	015=+1	: TYPE FRAISAGE
CORPS D'UN CYLINDRE (cycle 27)

La machine et la TNC doivent avoir été préparées par le constructeur de la machine pour l'utilisation du cycle 27 CORPS D'UN CYLINDRE.

Ce cycle vous permet de transposer le déroulé d'un contour sur le corps d'un cylindre.

Vous décrivez le contour dans un sous-programme que vous définissez avec le cycle 14 (CONTOUR).

Le sous-programme contient les coordonnées d'un axe angulaire (ex. axe C) et de l'axe dont la trajectoire lui est parallèle (ex. axe de broche). Fonctions de contournage disponibles: L, CHF, CR, RND.

Vous pouvez introduire soit en degrés, soit en mm (inch) les données dans l'axe angulaire (lors de la définition du cycle).

Remarques avant que vous ne programmiez

La mémoire réservée à un cycle SL est limitée. Ainsi, par exemple, vous pouvez programmer au maximum 128 séquences linéaires dans un cycle SL.

Le signe du paramètre Profondeur détermine le sens de l'usinage.

Il convient d'utiliser une fraise à denture frontale (DIN 844).

Le cylindre doit avoir été bridé au centre du plateau circulaire.

L'axe de broche doit être perpendiculaire à l'axe du plateau circulaire. Dans le cas contraire, la TNC délivre un message d'erreur.

Avant l'appel d'outil, pré-positionner l'outil dans l'axe X (pour axe de broche Y), au centre du plateau circulaire

Vous ne pouvez pas exécuter ce cycle avec inclinaison du plan d'usinage.

La TNC vérifie que la trajectoire corrigée et non-corrigée de l'outil soit bien située dans la zone d'affichage de l'axe rotatif définie dans le paramètre-machine 810.x. Si la TNC affiche le message d'erreur "Erreur de programmation du contour" initialiser le cas échéant PM 810.x = 0.

- 27
- Profondeur de fraisage Q1 (en incrémental): distance entre le corps du cylindre et le fond du contour
- Surépaisseur latérale de finition Q3 (en incrémental): surépaisseur de finition dans le plan du déroulé du corps du cylindre; la surépaisseur est active dans le sens de la correction de rayon
- Distance d'approche Q6 (en incrémental): distance entre la surface frontale de l'outil et le corps du cylindre
- Profondeur de passe Q10 (en incrémental): Distance parcourue par l'outil en une passe
- Avance plongée en profondeur Q11: avance lors des déplacements dans l'axe de broche
- Avance de fraisage Q12: avance lors des déplacements dans le plan d'usinage
- Rayon du cylindre Q16: rayon du cylindre sur lequel doit être usiné le contour
- Cotation ? Degré=0 MM/INCH=1 Q17: Programmer en degré ou en mm (inch) les coordonnées de l'axe rotatif dans le sous-programme

Exemples de séquences CN:

63	CYCL DEF	27.0 CORPS DU CYLINDRE
	Q1=-8	;PROFONDEUR DE FRAISAGE
	Q3=+0	;SUREPAISSEUR LATERALE
	Q6=+0	;DISTANCE D'APPROCHE
	Q10=+3	;PROFONDEUR DE PASSE
	Q11=100	;AVANCE PLONGEE PROF.
	Q12=350	;AVANCE FRAISAGE
	Q16=25	; RAYON
	017=0	:UNITE DE MESURE

Exemple: Evidement et déblaiement d'une poche

0	BEGIN PGM C20 MM	
1	BLK FORM 0.1 Z X-10 Y-10 Z-40	
2	BLK FORM 0.2 X+100 Y+100 Z+0	Définition de la pièce brute
3	TOOL DEF 1 L+0 R+15	Définition de l'outil de pré-évidement
4	TOOL DEF 2 L+0 R+7,5	Définition de l'outil pour le déblaiement
5	TOOL CALL 1 Z S2500	Appel de l'outil pour le pré-évidement
6	L Z+250 RO F MAX	Dégager l'outil
7	CYCL DEF 14.0 CONTOUR	Définir le sous-programme de contour
8	CYCL DEF 14.1 LABEL CONTOUR 1	
9	CYCL DEF 20.0 DONNEES DU CONTOUR	Définir les paramètres généraux pour l'usinage
	Q1=-20 ;PROFONDEUR DE FRAISAGE	
	Q2=1 ;CHEMIN DE RECOUVREMENT	
	Q3=+0 ;SUREPAISSEUR LATERALE	
	Q4=+0 ;SUREP. DE PROFONDEUR	
	Q5=+0 ;COORD. SURFACE	
	Q6=2 ;DISTANCE D'APPROCHE	
	Q7=+100 ;HAUTEUR DE SECURITE	
	Q8=0,1 ;RAYON D'ARRONDI	
	09=-1 :SENS DE ROTATION	

10 CYCL DEF 22.0 EVIDEMENT	Définition du cycle pour le pré-évidement
Q10=5 ;PROFONDEUR DE PASSE	
Q11=100 ;AVANCE PERCAGE	
Q12=350 ;AVANCE EVIDEMENT	
Q18=0 ;OUTIL DE PRE-EVIDEMENT	
Q19=150 ;AVANCE PENDULAIRE	
11 CYCL CALL M3	Appel du cycle pour le pré-évidement
12 L Z+250 RO F MAX M6	Changement d'outil
13 TOOL CALL 2 Z S3000	Appel du cycle pour le déblaiement
14 CYCL DEF 22.0 EVIDEMENT	Définition du cycle pour évidement
Q10=5 ;PROFONDEUR DE PASSE	
Q11=100 ;AVANCE PERCAGE	
Q12=350 ;AVANCE EVIDEMENT	
Q18=1 ;OUTIL DE PRE-EVIDEMENT	
Q19=150 ;AVANCE PENDULAIRE	
15 CYCL CALL M3	Appel du cycle pour le déblaiement
16 L Z+250 RO F MAX M2	Dégager l'outil, fin du programme
17 LBL 1	Sous-programme de contour
18 L X+0 Y+30 RR	(cf. FK 2ème exemple "6.6 Contournages –
19 FC DR- R30 CCX+30 CCY+30	Programmation flexible de contours FK")
20 FL AN+60 PDX+30 PDY+30 D10	
21 FSELECT 3	
22 FPOL X+30 Y+30	
23 FC DR- R20 CCPR+55 CCPA+60	
24 FSELECT 2	
25 FL AN-120 PDX+30 PDY+30 D10	
26 FSELECT 3	
27 FC X+0 DR- R30 CCX+30 CCY+30	
28 FSELECT 2	
29 LBL 0	

Exemple: Pré-perçage, ébauche et finition de contours superposés

0 BE(GIN PGM C21 MM	
1 BL	K FORM 0.1 Z X+0 Y+0 Z-40	Définition de la pièce brute
2 BL	K FORM 0.2 X+100 Y+100 Z+0	
3 TO	OL DEF 1 L+0 R+6	Définition d'outil pour le foret
4 TO	OL DEF 2 L+0 R+6	Définition de l'outil d'ébauche/ de finition
5 TO	OL CALL 1 Z S2500	Appel d'outil pour le foret
6 L 2	Z+250 RO F MAX	Dégager l'outil
7 CY	CL DEF 14.0 CONTOUR	Définir les sous-programmes de contour
8 CY	CL DEF 14.1 LABEL CONTOUR 1 /2 /3 /4	
9 CY	CL DEF 20.0 DONNEES DU CONTOUR	Définir les paramètres généraux pour l'usinage
Q	1=-20 ; PROFONDEUR DE FRAISAGE	
Q	2=1 ;CHEMIN DE RECOUVREMENT	
Q	3=+0,5 ;SUREPAISSEUR LATERALE	
Q	4=+0,5 ;SUREP. DE PROFONDEUR	
Q	5=+0 ;COORD. SURFACE	
Q	6=2 ;DISTANCE D'APPROCHE	
Q	7=+100 ;HAUTEUR DE SECURITE	
Q	B=0,1 ;RAYON D'ARRONDI	
Q	9=-1 ;SENS DE ROTATION	
10 C'	YCL DEF 21.0 PREPERCAGE	Définition du cycle de pré-perçage
Q	10=5 ;PROFONDEUR DE PASSE	
Q	11=250 ;AVANCE PERCAGE	
Q	13=2 ;OUTIL D'EVIDEMENT	
11 C	YCL CALL M3	Appel du cycle de pré-perçage

8.5 Cycles SL

8 Programmation: Cycles

12	L Z+250 RO F MAX M6	Changement d'outil
13	TOOL CALL 2 Z S3000	Appel de l'outil d'ébauche/ de finition
14	CYCL DEF 22.0 EVIDEMENT	Définition du cycle d'évidement
	Q10=5 ;PROFONDEUR DE PASSE	
	Q11=100 ;AVANCE PERCAGE	
	Q12=350 ;AVANCE EVIDEMENT	
	Q18=0 ;OUTIL DE PRE-EVIDEMENT	
	Q19=150 ;AVANCE PENDULAIRE	
15	CYCL CALL M3	Appel du cycle Evidement
16	CYCL DEF 23.0 PROFOND. FINITION	Définition du cycle Finition latérale
	Q11=100 ;AVANCE PERCAGE	
	Q12=200 ;AVANCE EVIDEMENT	
17	CYCL CALL	Appel du cycle Finition latérale
18	CYCL DEF 24.0 FINITION LATERALE	Définition du cycle Finition latérale
	Q9=+1 ;SENS DE ROTATION	
	Q10=5 ;PROFONDEUR DE PASSE	
	Q11=100 ;AVANCE PERCAGE	
	Q12=400 ;AVANCE EVIDEMENT	
	Q14=+0 ;SUREPAISSEUR LATERALE	
19	CYCL CALL	Appel du cycle Finition latérale
20	L Z+250 R0 F MAX M2	Dégager l'outil, fin du programme
21	LBL 1	Sous-programme de contour 1: poche à gauche
22	CC X+35 Y+50	
23	L X+10 Y+50 RR	
24	C X+10 DR-	
25	LBL O	
26	LBL 2	Sous-programme de contour 2: poche à droite
27	CC X+65 Y+50	
28	L X+90 Y+50 RR	
29	C X+90 DR-	
30	LBL O	
31	LBL 3	Sous-programme de contour 3: îlot carré à gauche
32	L X+27 Y+50 RL	
33	L Y+58	
34	L X+43	
35	L Y+42	
36	L X+27	
37	LBL O	
38	LBL 4	Sous-programme de contour 4: îlot triangulaire à droite
39	L X+65 Y+42 RL	
40	L X+57	
41	L X+65 Y+58	
42	L X+73 Y+42	
43	LBL O	
44	END PGM C21 MM	

8.5 Cycles SL

Exemple: Tracé de contour

O BEGIN PGM C25 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Définition de la pièce brute
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Définition de l'outil
4 TOOL CALL 1 Z S2000	Appel de l'outil
5 L Z+250 R0 F MAX	Dégager l'outil
6 CYCL DEF 14.0 CONTOUR	Définir le sous-programme de contour
7 CYCL DEF 14.1 LABEL CONTOUR 1	
8 CYCL DEF 25.0 TRACE DU CONTOUR	Définir les paramètres généraux pour l'usinage
Q1=-20 ;PROFONDEUR DE FRAISAGE	
Q3=+0 ;SUREPAISSEUR LATERALE	
Q5=+0 ;COORD. SURFACE	
Q7=+250 ;HAUTEUR DE SECURITE	
Q10=5 ;PROFONDEUR DE PASSE	
Q11=100 ;AVANCE PERCAGE	
Q12=200 ;AVANCE FRAISAGE	
Q15=+1 ;TYPE FRAISAGE	
9 CYCL CALL M3	Appel du cycle
10 L Z+250 R0 F MAX M2	Dégager l'outil, fin du programme

11	LBL 1	Sous-programme de contour	
12	L X+0 Y+15 RL		0)
13	L X+5 Y+20		es
14	CT X+5 Y+75		Ç
15	L Y+95		С С
16	RND R7,5		10
17	L X+50		8
18	RND R7,5		
19	L X+100 Y+80		
20	LBL O		
21	END PGM C25 MM		

Exemple: Corps d'un cylindre

- Cylindre bridé au centre du plateau circulaire.
 - Le point de référence est situé au centre du plateau circulaire

O BEGIN PGM C27 MM	
1 TOOL DEF 1 L+0 R+3,5	Définition de l'outil
2 TOOL CALL 1 Y S2000	Appel de l'outil, axe d'outil Y
3 L Y+250 RO FMAX	Dégager l'outil
4 L X+0 RO FMAX	Positionner l'outil au centre du plateau circulaire
5 CYCL DEF 14.0 CONTOUR	Définir le sous-programme de contour
6 CYCL DEF 14.1 LABEL CONTOUR 1	
7 CYCL DEF 27.0 CORPS DU CYLINDRE	Définir les paramètres généraux pour l'usinage
Q1=-7 ;PROFONDEUR DE FRAISAGE	
Q3=+0 ;SUREPAISSEUR LATERALE	
Q6=2 ;DISTANCE D'APPROCHE	
Q10=4 ;PROFONDEUR DE PASSE	
Q11=100 ;AVANCE PERCAGE	
Q12=250 ;AVANCE FRAISAGE	
Q16=25 ; RAYON	
Q17=1 ;UNITE DE MESURE	
8 L C+O RO F MAX M3	Pré-positionner le plateau circulaire
9 CYCL CALL	Appel du cycle
10 L Y+250 RO F MAX M2	Dégager l'outil, fin du programme

11	LBL 1	Sous-programme de contour
12	L C+40 Z+20 RL	Données dans l'axe rotatif en mm (Q17=1)
13	L C+50	
14	RND R7,5	
15	L Z+60	
16	RND R7,5	
17	L IC-20	
18	RND R7,5	
19	L Z+20	
20	RND R7,5	
21	L C+40	
22	LBL O	
23	END PGM C27 MM	

8.5 Cycles SL

8.6 Cycles d'usinage ligne-à-ligne

La TNC dispose de quatre cycles destinés à l'usinage de surfaces ayant les propriétés suivantes:

- nées de la digitalisation ou d'un système CAO/DAO
- planes et rectangulaires
- planes et obliques
- tous types de surfaces inclinées
- gauchies

Cycle	Softkey
30 EXECUTION DONNEES DIGITALISEES pour usinage von ligne-à-ligne de données digitalisées en plusieurs passes	30 MILL PNT-DAT
230 LIGNE-A-LIGNE pour surfaces planes et rectangulaires	230
231 SURFACE REGULIERE pour surfaces obliques, inclinées ou gauchies	231

EXECUTION DE DONNEES DIGITALISEES (cycle 30)

- 1 Partant de la position actuelle dans l'axe de broche, la TNC positionne l'outil en avance rapide FMAX à la distance d'approche, au-dessus du point MAX programmé dans le cycle
- 2 Puis la TNC déplace l'outil avec FMAX dans le plan d'usinage jusqu'au point MIN programmé dans le cycle
- **3** A partir de là, l'outil se déplace suivant l'avance de plongée en profondeur jusqu'au premier point du contour
- 4 Ensuite, la TNC exécute avec l'avance de fraisage tous les points mémorisés dans le fichier de données digitalisées; entretemps et si nécessaire, la TNC se déplace à la distance d'approche pour passer outre les zones non usinées
- 5 Pour terminer, la TNC rétracte l'outil avec FMAX à la distance d'approche

Remarques avant que vous ne programmiez

A l'aide du cycle 30, vous pouvez exécuter les données de la digitalisation et les fichiers PNT.

Si vous exécutez des fichiers PNT ne comportant pas de coordonnée de l'axe de broche, la profondeur de fraisage correspond au point MIN programmé sur l'axe de broche.

- Nom PGM données digitalisées: introduire le nom du fichier où sont mémorisées les données digitalisées; si le fichier n'est pas dans le répertoire actuel, introduire le chemin d'accès complet Si vous désirez exécuter un tableau de points, indiquez également le type de fichier .PNT
 - Zone point MIN: point min. (coordonnée X, Y et Z) de la zone dans laquelle doit s'effectuer le fraisage
 - Zone point MAX: point max.(coordonnée X, Y et Z) de la zone dans laquelle doit s'effectuer le fraisage
 - Distance d'approche 1 (en incrémental): distance entre la pointe de l'outil et la surface de la pièce lors de déplacements en rapide
 - Profondeur de passe 2 (en incrémental): distance parcourue par l'outil en une passe
 - Avance plongée en profondeur 3: vitesse de déplacement de l'outil lors de la plongée, en mm/min.
 - Avance de fraisage 4: vitesse de déplacement de l'outil lors du fraisage, en mm/min.
 - Fonction auxiliaire M: option permettant d'introduire une fonction auxiliaire, par ex. M13

Exemples de séquences CN:

64	CYCL DEF	30.0	EXECUTION DONNEES DIGIT.
65	CYCL DEF	30.1	PGM DIGIT.: EX.H
66	CYCL DEF	30.2	X+0 Y+0 Z-20
67	CYCL DEF	30.3	X+100 Y+100 Z+0
68	CYCL DEF	30.4	DIST 2
69	CYCL DEF	30.5	PASSE +5 F100
70	CYCL DEF	30.6	F350 M8

USINAGE LIGNE-A-LIGNE (cycle 230)

- En partant de la position actuelle, la TNC positionne l'outil en rapide FMAX dans le plan d'usinage au point initial 1; la TNC décale l+outil de la valeur du rayon d+outil vers la gauche et vers le haut
- 2 L'outil se déplace ensuite avec FMAX dans l'axe de broche à la distance d'approche, puis, suivant l'avance de plongée en profondeur, jusqu'à la position initiale programmée dans l'axe de broche
- 3 L'outil se déplace ensuite suivant l'avance de fraisage programmée jusqu'au point final 2; la TNC calcule le point final à partir du point initial et de la longueur programmés et du rayon d'outil
- **4** La TNC décale l'outil avec avance de fraisage, transversalement sur le point initial de la ligne suivante; la TNC calcule le décalage à partir de la largeur programmée et du nombre de coupes
- 5 L'outil retourne ensuite dans le sens négatif du premier axe.
- 6 L'usinage ligne-à-ligne est répété jusqu'à ce que la surface programmée soit entièrement usinée
- 7 Pour terminer, la TNC rétracte l'outil avec FMAX à la distance d'approche

Remarques avant que vous ne programmiez

Partant de la position actuelle, la TNC positionne tout d'abord l'outil dans le plan d'usinage, puis dans l'axe de broche au point initial **1**.

Pré-positionner l'outil de manière à éviter toute collision avec la pièce ou les matériels de bridage.

230 ÷

Point initial 1er axe Q225 (absolu): coordonnée du point Min de la surface à usiner ligne-à-ligne dans l'axe principal du plan d'usinage

- ▶ Point initial 2ème axe Q226 (absolu): coordonnée du point Min de la surface à usiner ligne-à-ligne dans l'axe auxiliaire du plan d'usinage
- Point initial 3ème axe Q227 (en absolu): hauteur dans l'axe de broche à laquelle sera effectué l'usinage ligneà-ligne
- 1er côté Q218 (incrémental): longueur de la surface à usiner ligne-à-ligne dans l'axe principal du plan d'usinage (se réfère au point initial du 1er axe)
- 2ème côté Q219 (incrémental): longueur de la surface à usiner ligne-à-ligne dans l'axe auxiliaire du plan d'usinage (se réfère au point initial du 2ème axe)
- Nombre de coupes Q240: nombre de lignes sur lesquelles la TNC doit déplacer l'outil dans la largeur
- Avance plongée en profondeur 206: vitesse de déplacement de l'outil allant de la distance d'approche à la profondeur de fraisage, en mm/min.
- Avance de fraisage Ω207: vitesse de déplacement de l'outil lors du fraisage, en mm/min.
- Avance transversale Q209: vitesse de l'outil lors de son déplacement à la ligne suivante, en mm/min.; si vous vous déplacez obliquement dans la matière, programmez Q209 inférieur à Q207; si vous vous déplacez obliquement dans le vide, Q209 peut être supérieur à Q207
- Distance d'approche Q200 (en incrémental): distance entre la pointe de l'outil et la profondeur de fraisage pour le positionnement en début et en fin de cycle

Exemples de séque	nces CN:
71 CYCL DEF 230	LIGNE-A-LIGNE
Q225=+10	;PT INITIAL 1ER AXE
Q226=+12	;PT INITIAL 2EME AXE
Q227=+2.5	;POINT INITIAL 3ème AXE
Q218=150	;ler COTE
Q219=75	;2ème COTE
Q240=25	;NOMBRE DE COUPES
Q206=150	;AVANCE PLONGEE PROF.
Q207=500	;AVANCE FRAISAGE
Q209=200	;AVANCE TRANSVERSALE
0200=2	• DISTANCE D'APPROCHE

F

TNC 426 B, TNC 430 HEIDENHAIN

SURFACE REGULIERE (cycle 231)

- 1 En partant de la position actuelle et en suivant une trajectoire linéaire 3D, la TNC positionne l'outil au point initial 1
- 2 L'outil se déplace ensuite suivant l'avance de fraisage programmée jusqu'au point final 2
- 3 A cet endroit, la TNC déplace l'outil en rapide FMAX, de la valeur du rayon d'outil dans le sens positif de l'axe de broche, puis le rétracte au point initial 1
- 4 Au point initial 1 la TNC déplace à nouveau l'outil à la dernière valeur Z abordée
- 5 La TNC décale ensuite l'outil sur les trois axes, du point 1 en direction du point 4 sur la ligne suivante
- 6 Puis l'outil déplace l'outil au point final de cette ligne. La TNC calcule le point final à partir du point 2 et d'un décalage en direction du point 3
- 7 L'usinage ligne-à-ligne est répété jusqu'à ce que la surface programmée soit entièrement usinée
- 8 Pour terminer, la TNC positionne l'outil de la valeur de son diamètre, au-dessus du point programmé le plus élevé dans l'axe de broche

Sens de coupe

Le point initial, de même que le sens du fraisage est facultatif dans la mesure où la TNC exécute systématiquement les différentes coupes en allant du point 1 au point 2 et effectue une trajectoire glabale du point 1 / 2 au point 3 / 4. Vous pouvez programmer le point 1 à chaque angle de la surface à usiner.

Vous pouvez optimiser la qualité de surface en utilisant des fraises deux tailles:

- coupe en descendant (coordonnée dans l'axe de broche du point
 supérieure à la coordonnée dans l'axe de broche du point
 pour surfaces à faible pente.
- coupe en remontant (coordonnée dans l'axe de broche du point 1 inférieure à la coordonnée dans l'axe de broche du point 2) pour surfaces à forte pente.
- pour les surfaces gauchies, programmer le déplacement principal (du point 1 au point 2) dans le sens de la pente la plus forte. Cf. figure de droite, au centre.

Vous pouvez optimiser la qualité de surface en utilisant des fraises à crayon:

pour les surfaces gauchies, programmer le déplacement principal (du point 1 au point 2) perpendiculairement au sens de la pente la plus forte. Cf. figure de droite, en bas.

8.6 Cycles d'usinage ligne-à-ligne

Remarques avant que vous ne programmiez

En partant de la position actuelle et en suivant une trajectoire linéaire 3D, la TNC positionne l'outil au point initial 1. Pré-positionner l'outil de manière à éviter toute collision avec la pièce ou les matériels de bridage.

La TNC déplace l'outil avec correction de rayon R0 entre les positions programmées

Le cas échéant, utiliser une fraise à denture frontale (DIN 844).

- ▶ Point initial 1er axe Q225 (absolu): coordonnée du 231 point initial de la surface à usiner ligne-à-ligne dans l'axe principal du plan d'usinage
 - ▶ Point initial 2ème axe Q226 (absolu): coordonnée du point initial de la surface à usiner ligne-à-ligne dans l'axe auxiliaire du plan d'usinage
 - ▶ Point initial 3ème axe Q227 (absolu): coordonnée du point initial de la surface à usiner ligne-à-ligne dans l'axe de broche
 - ▶ 2ème point 1er axe Q228 (absolu): coordonnée du point final de la surface à usiner ligne-à-ligne dans l'axe principal du plan d'usinage
 - > 2ème point 2ème axe Q229 (absolu): coordonnée du point final de la surface à usiner ligne-à-ligne dans l'axe auxiliaire du plan d'usinage
 - ▶ 2ème point 3ème axe Q230 (absolu): coordonnée du point final de la surface à usiner ligne-à-ligne dans l'axe de broche
 - ▶ 3ème point 1er axe Q231 (absolu): Coordonnée du point 3 dans l'axe principal du plan d'usinage
 - ▶ 3ème point 2ème axe Q232 (absolu): Coordonnée du point 3 dans l'axe auxiliaire du plan d'usinage
 - ▶ 3ème point 3ème axe Q233 (absolu): Coordonnée du point 3 dans l'axe de broche
 - ▶ 4ème point 1er axe Q234 (absolu): Coordonnée du point 4 dans l'axe principal du plan d'usinage
 - ▶ 4ème point 2ème axe Q235 (absolu): Coordonnée du point 4 dans l'axe auxiliaire du plan d'usinage
 - ▶ 4ème point 3ème axe Q236 (absolu): Coordonnée du point 4 dans l'axe de broche
 - ▶ Nombre de coupes Q240: nombre de lignes sur lesquelles la TNC doit déplacer l'outil entre les points 1 et 4, ou entre les points 2 et 3.
 - ► Avance de fraisage Q207: vitesse de déplacement de l'outil lors du fraisage, en mm/min. La TNC exécute la première coupe en fonction de la moitié de la valeur programmée

Exemples de séquences CN:

72	CYCL DEF 231	SURFACE REGULIERE
	Q225=+0	;PT INITIAL 1ER AXE
	Q226=+5	;PT INITIAL 2EME AXE
	Q227=-2	;POINT INITIAL 3ème AXE
	Q228=+100	;2EME POINT 1ER AXE
	Q229=+15	;2EME POINT 2EME AXE
	Q230=+5	;2EME POINT 3EME AXE
	Q231=+15	;3EME POINT 1ER AXE
	Q232=+125	;3EME POINT 2EME AXE
	Q233=+25	; 3EME POINT 3EME AXE
	Q234=+85	;4EME POINT 1ER AXE
	Q235=+95	;4EME POINT 2EME AXE
	Q236=+35	;4EME POINT 3EME AXE
	Q240=40	;NOMBRE DE COUPES
	0207=500	;AVANCE FRAISAGE

Exemple: Usinage ligne-à-ligne

O BEGIN PGM C230 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z+0	Définition de la pièce brute
2 BLK FORM 0.2 X+100 Y+100 Z+40	
3 TOOL DEF 1 L+0 R+5	Définition de l'outil
4 TOOL CALL 1 Z S3500	Appel de l'outil
5 L Z+250 RO F MAX	Dégager l'outil
6 CYCL DEF 230 LIGNE-A-LIGNE	Définition du cycle Usinage ligne-à-ligne
Q225=+0 ;POINT INIT. 1ER AXE	
Q226=+0 ;POINT INIT. 2EME AXE	
Q227=+35 ;POINT INIT. 3EME AXE	
Q218=100 ;1ER COTE	
Q219=100 ;2EME COTE	
Q240=25 ;NOMBRE DE COUPES	
Q206=250 ;AVANCE PLONGEE PROF.	
Q2O7=400 ;AVANCE FRAISAGE	
Q2O9=150 ;AVANCE TRANSVERSALE	
Q200=2 ;DISTANCE D'APPROCHE	
7 L X+-25 Y+O RO F MAX M3	Pré-positionnement à proximité du point initial
8 CYCL CALL	Appel du cycle
9 L Z+250 RO F MAX M2	Dégager l'outil, fin du programme
10 END PGM C230 MM	

8.7 Cycles de conversion de coordonnées

Grâce aux conversions de coordonnées, la TNC peut usiner à plusieurs endroits de la pièce un contour déjà programmé en faisant varier sa position et ses dimensions. La TNC dispose des cycles de conversion de coordonnées suivants:

Cycle	Softkey
7 POINT ZERO Décalage des contours directement dans le programme ou à partir des tableaux de points zéro	? • •
8 IMAGE MIROIR Inversion des contours	
10 ROTATION Rotation des contours dans le plan d'usinage	10
11 FACTEUR ECHELLE Réduction ou agrandissement des contours	
26 FACTEUR ECHELLE SPECIFIQUE DE L'AXE Réduction ou agrandissement des contours avec facteurs échelle spécifiques de chaque axe	
19 PLAN D'USINAGE Exécution d'opérations d'usinage avec inclinaison du système de coordonnées pour machines équipées de têtes pivotantes et/ou de plateaux circulaires	19

Effet des conversions de coordonnées

Début de l'effet: Une conversion de coordonnées devient active dès qu'elle a été définie – et n'a donc pas besoin d'être appelée. Elle reste active jusqu'à ce qu'elle soit annulée ou redéfinie.

Annulation d'une conversion de coordonnées:

- Redéfinir le cycle avec valeurs du comportement standard, par exemple, facteur échelle 1,0
- Exécuter les fonctions auxiliaires M02, M30 ou la séquence END PGM (dépend du paramètre-machine 7300)
- Sélectionner un autre programme

Décalage du POINT ZERO (cycle 7)

Grâce au DECALAGE DU POINT ZERO, vous pouvez répéter des opérations d'usinage à plusieurs endroits de la pièce.

Effet

Après la définition du cycle DECALAGE DU POINT ZERO, toutes les coordonnées introduites se réfèrent au nouveau point zéro. La TNC affiche le décalage sur chaque axe dans l'affichage d'état supplémentaire. Il est également possible de programmer des axes rotatifs.

Décalage: introduire les coordonnées du nouveau point zéro; les valeurs absolues se réfèrent au point zéro pièce défini par initialisation du point de référence; les valeurs incrémentales se réfèrent toujours au dernier point zéro actif – celui-ci peut être déjà décalé

Exemples de séquences CN:

73	0.001	DFF	7 0	POINT	7 F R O
	0101				
74	CYCL	DEF	7.1	X+10	
75	CYCL	DEF	7.2	Y+10	
76	CVCL	DEE	7 2	7 5	
70	UTUL	VEF	1.3	2-3	

Annulation

Pour annuler le décalage du point zéro, introduire un décalage de point zéro ayant pour coordonnées X=0, Y=0 et Z=0.

Graphisme

Si vous programmez une nouvelle BLK FORM après un décalage du point zéro, vous pouvez décidez avec le paramètre-machine 7310 si la BLK FORM doit se référer au nouveau point zéro ou à l'ancien. Pour l'usinage de plusieurs pièces, ceci a l'avantage de permettre à la TNC de représenter graphiquement chacune des pièces.

Affichages d'état

- Le grand affichage de position se réfère au point zéro (décalé) actif
- Toutes les coordonnées (positions, points zéro) affichées dans l'affichage d'état supplémentaire se réfèrent au point de référence initialisé manuellement

Décalage du POINT ZERO :avec tableaux de points zéro (cycle 7)

Si vous utilisez le graphisme de programmation en liaison avec les tableaux de points zéro, sélectionnez le tableau de points zéro adéquat (état S) en mode TEST et avant de lancer le graphisme.

L'utilisation d'un seul tableau de points zéro permet d'éviter les méprises lors de l'activation dans les modes de fonctionnement Exécution de programme.

Les points zéro des tableaux de points zéro peuvent se référer au point de référence actuel ou au point zéro machine (dépend du paramètre-machine 7475).

Les valeurs de coordonnées des tableaux de points zéro ne sont actives qu'en valeur absolue.

N'insérer d'autres lignes qu'en fin de tableau.

Utilisation

Vous utilisez les tableaux de points zéro, par exemple,

- pour des opérations d'usinage répétitives à diverses positions de la pièce ou
- pour une utilisation fréquente du même décalage de point zéro.

A l'intérieur d'un même programme, vous pouvez programmer les points zéro soit directement dans la définition du cycle, soit en les appelant dans un tableau de points zéro.

Décalage: introduire le numéro du point zéro provenant du tableau de points zéro ou un paramètre Q; si vous introduisez un paramètre Q, la TNC active le numéro du point zéro inscrit dans ce paramètre

Exemples de séquences CN:

77	CYCL	DEF	7.0	POINT	ZERO	

78 CYCL DEF 7.1 #12

Annulation

- appeler dans le tableau de points zéro un décalage ayant pour coordonnées X=0; Y=0 etc.
- appeler un décalage ayant pour coordonnées X=0; Y=0 etc. directement avec la définition du cycle.

Affichages d'état

- Si les points zéro du tableau se réfèrent au point zéro machine,
- Le grand affichage de position se réfère au point zéro (décalé) actif
- toutes les coordonnées (positions, points zéro) affichées dans l'affichage d'état supplémentaire se réfèrent au point zéro machine; la TNC prend alors en compte le point de référence initialisé manuellement

Editer un tableau de points zéro

Sélectionnez le tableau de points zéro en mode Mémorisation/ édition de programme

Appeler la gestion de fichiers: appuyer sur la touche PGM MGT; cf. également "4.2 Gestion de fichiers"

- Affichage des tableaux de points zéro: appuyer sur les softkeys SELECT. TYPE et AFFICHE .D
- Sélectionner le tableau désiré ou introduire un nouveau nom de fichier
- Editer le fichier. Le menu de softkeys affiche pour cela les fonctions suivantes:

Fonction	Softkey
Sélectionner le début du tableau	
Sélectionner la fin du tableau	FIN <u> </u>
Feuilleter vers le haut	PAGE Î
Feuilleter vers le bas	PAGE I
Insérer une ligne (possible seulement en fin de tableau)	INSERER LIGNE
Effacer une ligne	EFFACER LIGNE
Prendre en compte une ligne et saut à la ligne suivante	LIGNE SUIVANTE

Mode	manuel	Editer Décala⊆	table Ne poi	au poi nt zér	ints: ro?	zéro	
Fi	chier: NU	LLTAB.D	ММ				
D	Х	Y	Z	В	С		
Ø	+0	+0	+0	+0	+0		
1	+25	+25	+0	+0	+0		
2	+0	+50	+2,5	+0	+0		
3	+0	+0	+0	+90	+0		
4	+27,25	+0	-3,5	+0	+0		
5	+250	+250	+0	+0	+0		
6	+350	+350	+10,2	+0	+0		
7	+1200	+0	+0	+0	+0		
8	+1700	+1200	-25	+0	+0		
9	-1700	-1200	+25	+0	+0		
10	+0	+0	+0	+0	+0		
11	+0	+0	+0	+0	+0		
12	+0	+0	+0	+0	+0		
DEI	i TUE	TIN PAGE ↓ Û	PAGE	INSERER LIGNE	EFFACER LIGNE	L IGNE SUIVANTE	

Configurer le tableau de points zéro

Dans le second et le troisième menu de softkeys, vous pouvez déterminer pour chaque tableau de points zéro les axes sur lesquels vous désirez définir des points zéro. En standard, tous les axes sont actifs. Si vous voulez déverrouiller un axe, mettez la softkey d'axe concernée sur OFF. La TNC efface alors la colonne correspondante dans le tableau de points zéro.

Quitter le tableau de points zéro

Dans la gestion de fichiers, afficher un autre type de fichier et sélectionner le fichier désiré.

Activer le tableau de points zéro pour l'exécution ou le test du programme

Pour activer un tableau de points zéro dans un mode Exécution de programme ou en mode Test de programme, procédez de la manière décrite dans "Editer un tableau de points zéro". Au lieu d'introduire un nouveau nom, appuyez sur la softkey SELECT.

IMAGE MIROIR (cycle 8)

Dans le plan d'usinage, la TNC peut exécuter une opération d'usinage en image miroir. Cf. figure de droite, en haut.

Effet

L'image miroir est active dès qu'elle a été définie dans le programme. Elle agit aussi en mode Positionnement avec introduction manuelle. Les axes réfléchis apparaissent également dans l'affichage d'état supplémentaire.

- Si vous n'exécutez l'image miroir que d'un seul axe, il y a inversion du sens de déplacement de l'outil. Ceci n'est pas valable pour les cycles d'usinage.
- Si vous exécutez l'image miroir de deux axes, le sens du déplacement n'est pas modifié.
- Le résultat de l'image miroir dépend de la position du point zéro:
- Le point zéro est situé sur le contour devant être réfléchi: L'élément est réfléchi directement à partir du point zéro; cf. figure de droite, au centre
- Le point zéro est situé à l'extérieur du contour devant être réfléchi: L'élément est décalé par rapport à l'axe; cf. figure de droite, en bas

Axe réfléchi ?: introduire l'axe devant être réfléchi; vous ne pouvez pas réfléchir l'axe de broche

Exemples de séquences CN:

79 CYCL DEF 8.0 IMAGE MIROIR

80 CYCL DEF 8.1 X Y

Annulation

Reprogrammer le cycle IMAGE MIROIR en introduisant NO ENT.

ROTATION (cycle 10)

A l'intérieur d'un programme, la TNC peut faire pivoter le système de coordonnées dans le plan d'usinage, autour du point zéro actif.

Effet

La ROTATION est active dès qu'elle a été définie dans le programme. Elle agit aussi en mode Positionnement avec introduction manuelle. L'angle de rotation actif apparaît également dans l'affichage d'état supplémentaire.

Axes de référence pour l'angle de rotation:

- Plan X/Y Axe X
- Plan Y/Z Axe Y
- Plan Z/X Axe de broche

Remarques avant que vous ne programmiez

La TNC annule une correction de rayon active si l'on définit le cycle 10. Si nécessaire, reprogrammer la correction de rayon.

Après avoir défini le cycle 10, déplacez les deux axes afin d'activer la rotation.

Rotation: introduire l'angle de rotation en degré (°).
 Plage d'introduction: -360° à +360° (en absolu ou en incrémental)

Exemples de séquences CN:

81 CYCL DEF 10.0 ROTATION

82 CYCL DEF 10.1 R0T+12.357

Annulation

Reprogrammer le cycle ROTATION avec un angle de rotation 0°.

FACTEUR ECHELLE (cycle 11)

A l'intérieur d'un programme, la TNC peut faire augmenter ou diminuer certains contours. Ainsi, par exemple, vous pouvez usiner en tenant compte de facteurs de retrait ou d'agrandissement.

Effet

Le FACTEUR ECHELLE est actif dès qu'il a été défini dans le programme. Il agit aussi en mode Positionnement avec introduction manuelle. Le facteur échelle actif apparaît également dans l'affichage d'état supplémentaire.

- Le facteur échelle est actif
- dans le plan d'usinage, ou simultanément sur les trois axes de coordonnées (dépend du paramètre-machine 7410)
- sur l'unité de mesure dans les cycles
- sur les axes paraxiaux U,V,W

Condition requise

Avant de procéder à l'agrandissement ou à la réduction, il convient de décaler le point zéro sur une arête ou un angle du contour.

Facteur ?: introduire le facteur SCL (de l'angl.: scaling); la TNC multiplie toutes les coordonnées et tous les rayons par SCL (tel que décrit au paragraphe "Effet")

Agrandissement:SCL supérieur à 1 - 99,999RéductionSCL inférieur à 1 - 0,000 001

Exemples de séquences CN:

83	CYCL	DEF	11.0	FACTEUR ECHELLE
84	CYCL	DEF	11.1	SCL0.99537

Annulation

Reprogrammer le cycle FACTEUR ECHELLE avec le facteur 1.

Vous pouvez également introduire un facteur échelle pour un axe donné (cf. cycle 26).

FACTEUR ECHELLE SPECIF. DE L'AXE (cycle 26)

Remarques avant que vous ne programmiez

Vous ne devez ni étirer, ni comprimer les axes de coordonnées comportant des positions de trajectoires circulaires à partir de facteurs de valeur différente.

Pour chaque axe de coordonnée, vous pouvez introduire un facteur échelle qui lui soit propre.

Les coordonnées d'un centre peuvent être programmées pour tous les facteurs échelle.

Le contour est étiré à partir du centre ou comprimé vers lui – et donc pas toujours comme avec le cycle 11 FACT. ECHELLE, à partir du point zéro actuel ou vers lui.

Effet

Le FACTEUR ECHELLE est actif dès qu'il a été défini dans le programme. Il agit aussi en mode Positionnement avec introduction manuelle. Le facteur échelle actif apparaît également dans l'affichage d'état supplémentaire.

Axe et facteur: axe(s) de coordonnées et facteur(s) d'étirement ou de compression spécifique de l'axe. Introduire une valeur positive – 99,999 999 max.

Coordonnées du centre: centre de l'étirement ou de la compression spécifique de l'axe

Sélectionnez les axes de coordonnées à l'aide des softkeys.

Annulation

Reprogrammer le cycle FACTEUR ECHELLE avec le facteur 1 pour l'axe concerné.

Exemple

Facteurs échelles spécifiques d'un axe dans le plan d'usinage

Donné: carré; cf. graphisme de droite, en bas

Coin 1:	X = 20,0 mm	Y = 2,5 mm
Coin 2:	X = 32,5 mm	Y = 15,0 mm
Coin 3:	X = 20,0 mm	Y = 27,5 mm
Coin 4:	X = 7,5 mm	Y = 15,0 mm

- Etirer l'axe X en fonction du facteur 1,4
- Comprimer l'axe Y en fonction du facteur 0,6
- Centre à CCX = 15 mm CCY = 20 mm

Exemple de séquences CN

CYCL	DEF	26.0	FACT	ECH.	AXE			
CYCL	DEF	26.1	X1,4	Y0,6	CCX+15	CCY+20		

PLAN D'USINAGE (cycle 19)

Les fonctions d'inclinaison du plan d'usinage sont adaptées par le constructeur de la machine à la TNC et à la machine. Sur certaines têtes pivotantes (plateaux inclinés), le constructeur de la machine définit si les angles programmés dans le cycle doivent être interprétés comme coordonnées des axes rotatifs ou comme angles solides. Consultez le manuel de votre machine.

8.7 Cycles de conversion de coordonnées

L'inclinaison du plan d'usinage est toujours réalisée autour du point zéro actif.

Principes de base: cf. "2.5 Inclinaison du plan d'usinage": Lisez entièrement ce paragraphe.

Effet

Dans le cycle 19, vous définissez la position du plan d'usinage en introduisant des angles d'inclinaison. Ceux-ci décrivent soit directement la position des axes inclinés (cf. figure de droite, en haut), soit les composantes angulaires d'un vecteur spatial (cf. figures de droite, au centre et à droite).

Lorsque vous programmez les composantes angulaires du vecteur spatial, la TNC calcule automatiquement la position angulaire des axes inclinés. La TNC calcule la position du vecteur spatial - et donc celle de l'axe de broche – en faisant pivoter le système de coordonnées machine. La suite chronologique des rotations destinées au calcul du vecteur spatial est déterminée: La TNC fait pivoter tout d'abord l'axe A, puis l'axe B et enfin, l'axe C.

Le cycle 19 est actif dès qu'il a été défini dans le programme. Dès que vous déplacez un axe dans le système incliné, la correction de cet axe est activée. Si la correction doit agir sur tous les axes, vous devez déplacer tous les axes.

Si vous avez mis sur ACTIF la fonction Exécution de programme INCLINAISON en mode MANUEL, (cf. "2.5 Inclinaison du plan d'usinage"), la valeur angulaire du cycle 19 introduite dans ce menu sera écrasée.

Axe et angle de rotation: axe rotatif incliné avec son angle de rotation; programmer par softkeys les axes rotatifs A, B et C.

Si la TNC positionne automatiquement les axes inclinés, vous devez encore introduire les paramètres suivants:

- Avance ? F=: Vitesse de déplacement de l'axe rotatif lors du positionnement automatique
- ▶ Distance d'approche ? (en incrémental): La TNC positionne la tête pivotante de manière à ce que la position dans le prolongement de l'outil ne soit pas modifiée par rapport à la pièce, tout en tenant compte de la distance d'approche.

228

Annulation

Pour annuler les angles d'inclinaison, redéfinir le cycle PLAN D'USINAGE et introduire 0° pour tous les axes rotatifs. Puis, redéfinir encore le cycle PLAN D'USINAGE et valider la question de dialogue avec la touche "NO ENT". Vous désactiver la fonction de cette manière.

Positionner l'axe rotatif

Le constructeur de la machine définit si le cycle 19 doit positionner automatiquement le ou les axe(s) rotatif(s) ou bien si vous devez les pré-positionner dans le programme. Consultez le manuel de votre machine.

Si le cycle 19 positionne automatiquement les axes rotatifs:

- La TNC ne positionne automatiquement que les axes asservis.
- Dans la définition du cycle, en plus des angles d'inclinaison, vous devez introduire une distance d'approche et une avance pour le positionnement des axes inclinés.
- N'utiliser que des outils pré-réglés (longueur d'outil totale dans la séquence TOOL DEF ou dans le tableau d'outils).
- Dans l'opération d'inclinaison, la position de la pointe de l'outil reste pratiquement inchangée par rapport à la pièce.
- La TNC exécute l'inclinaison suivant la dernière avance programmée. L'avance max. pouvant être atteinte dépend de la complexité de la tête pivotante (plateau incliné).

Si le cycle 19 ne positionne pas automatiquement les axes rotatifs, positionnez-les, par exemple, avec une séquence L avant la définition du cycle:

Exemple de séquences CN

L Z+100 RO FMAX	
L X+25 Y+10 RO FMAX	
L A+15 RO F1000	Positionner l'axe rotatif
CYCL DEF 19.0 PLAN D'USINAGE	Définir l'angle pour le calcul de la correction
CYCL DEF 19.1 A+15	
L Z+80 RO FMAX	Activer la correction dans l'axe de broche
L X-7.5 Y-10 RO FMAX	Activer la correction dans le plan d'usinage

Affichage de positions dans le système incliné

Après activation du cycle 19, les positions affichées (NOM et EFF) ainsi que l'affichage du point zéro dans l'affichage d'état supplémentaire se réfèrent au système de coordonnées incliné. Directement après la définition du cycle, la position affichée ne coïncide donc plus avec les coordonnées de la dernière position programmée avant le cycle 19.

Surveillance de la zone d'usinage

Dans le système incliné, la TNC ne contrôle avec les commutateurs de fin de course que les axes à déplacer. La TNC délivre éventuellement un message d'erreur.

Positionnement dans le système incliné

Avec la fonction auxiliaire M130, vous pouvez également, dans le système incliné, aborder des positions qui se réfèrent au système de coordonnées non incliné (cf. "7.3 Fonctions auxiliaires pour indications de coordonnées").

Combinaison avec d'autres cycles de conversion de coordonnées

Si l'on désire combiner des cycles de conversion de coordonnées, il convient de veiller à ce que l'inclinaison du plan d'usinage ait toujours lieu autour du point zéro actif. Vous pouvez exécuter un décalage du point zéro avant d'activer le cycle 19: décalez le "système de coordonnées machine".

Si vous décalez le point zéro après avoir activé le cycle 19, vous décalez alors le "système de coordonnées incliné".

Important: En annulant les cycles, suivez l'ordre chronologique inverse de celui que vous utilisez pour leur définition:

- 1. Activer le décalage du point zéro
- 2. Activer l'inclinaison du plan d'usinage
- 3. Activer la rotation

Usinage de la pièce

- 1. Annuler la rotation
- 2. Annuler l'inclinaison du plan d'usinage
- 3. Annuler le décalage du point zéro

Mesure automatique dans le système incliné

Le cycle TCH PROBE 1.0 PLAN DE REFERENCE vous permet d'étalonner des pièces dans le système incliné. Les résultats de la mesure sont mémorisés par la TNC dans les paramètres Q et vous pouvez alors les traiter ultérieurement (sortie des résultats de la mesure, sur une imprimante, par exemple).

8.7 Cycles de conversion de coordonnées

Marche à suivre pour l'usinage à l'aide du cycle 19 PLAN D'USINAGE

1 Elaborer le programme

- Définir l'outil (sauf si TOOL.T est actif), introduire la longueur totale de l'outil
- Appeler l'outil
- Dégager l'axe de broche de manière à éviter toute collision entre l'outil et la pièce (matériels de bridage)
- Si nécessaire, positionner le ou les axe(s) rotatif(s) avec une séquence L à la valeur angulaire correspondante (dépend d'un paramètre-machine)
- Si nécessaire, activer le décalage du point zéro
- Définir le cycle 19 PLAN D'USINAGE; introduire les valeurs angulaires des axes rotatifs
- Déplacer tous les axes principaux (X, Y, Z) pour activer la correction
- Programmer l'usinage comme s'il devait être exécuté dans le plan non-incliné
- Annuler le cycle 19 PLAN D'USINAGE; introduire 0° pour tous les axes rotatifs
- Désactiver la fonction PLAN D'USINAGE; redéfinir le cycle 19 et répondre par "NO ENT" à la question de dialogue
- Si nécessaire, annuler le décalage du point zéro
- Si nécessaire, positionner les axes rotatifs à la position 0°

2 Brider la pièce

3 Préparatifs en mode Positionnement avec introduction manuelle

Positionner le ou les axe(s) rotatif(s) à la valeur angulaire correspondante pour initialiser le point de référence. La valeur angulaire s'oriente vers la surface de référence de la pièce que vous avez sélectionnée.

4 Préparatifs en mode manuel

Pour le mode Manuel, mettre sur ACTIF la fonction d'inclinaison du plan d'usinage à l'aide de la softkey 3D-ROT; pour les axes non asservis, introduire dans le menu les valeurs angulaires des axes rotatifs

Lorsque les axes ne sont pas asservis, les valeurs angulaires introduites doivent coïncider avec la position effective de ou des axe(s) rotatif(s); sinon, le point de référence calculé par la TNC sera erroné.

5 Initialisation du point de référence

- Initialisation manuelle par affleurement, de la même manière que dans le système non-incliné (cf. "2.4 Initialisation du point de référence sans système de palpage 3D")
- Initialisation commandée par un palpeur 3D de HEIDENHAIN (cf. Manuel d'utilisation Cycles palpeurs, chap. 2)

6 Lancer le programme d'usinage en mode Exécution de programme en continu

7 Mode manuel

Mettre sur INACTIF la fonction Plan d'usinage à l'aide de la softkey 3D-ROT. Pour tous les axes rotatifs, introduire dans le menu la valeur angulaire 0° (cf. "2.5 Inclinaison du plan d'usinage").

Déroulement du programme

- Conversions de coordonnées dans le programme principal
- Usinage dans le sous-programme 1 (cf. "9 Programmation: Sous-programmes et répétitions de parties de programme")

_		
0	BEGIN PGM CONVER MM	
1	BLK FORM 0.1 Z X+0 Y+0 Z-20	Définition de la pièce brute
2	BLK FORM 0.2 X+130 Y+130 Z+0	
3	T00L DEF 1 L+0 R+1	Définition de l'outil
4	TOOL CALL 1 Z S4500	Appel de l'outil
5	L Z+250 RO F MAX	Dégager l'outil
6	CYCL DEF 7.0 POINT ZERO	Décalage de l'outil au centre
7	CYCL DEF 7.1 X+65	
8	CYCL DEF 7.2 Y+65	
9	CALL LBL 1	Appeler le fraisage
10	LBL 10	Initialiser un label pour la répétition de parties de programme
11	CYCL DEF 10.0 ROTATION	Rotation de 45° (en incrémental)
12	CYCL DEF 10.1 IROT+45	
13	CALL LBL 1	Appeler le fraisage
14	CALL LBL 10 REP 6/6	Retour au LBL 10; six fois au total
15	CYCL DEF 10.0 ROTATION	Annuler la rotation
16	CYCL DEF 10.1 ROT+0	
17	CYCL DEF 7.0 POINT ZERO	Annuler le décalage du point zéro
18	CYCL DEF 7.1 X+0	
19	CYCL DEF 7.2 Y+0	
20	L Z+250 RO F MAX M2	Dégager l'outil, fin du programme

21 LBL 1	Sous-programme 1:
22 L X+0 Y+0 R0 F MAX	Définition du fraisage
23 L Z+2 RO F MAX M3	
24 L Z-5 R0 F200	
25 L X+30 RL	
26 L IY+10	
27 RND R5	
28 L IX+20	
29 L IX+10 IY-10	
30 RND R5	
31 L IX-10 IY-10	
32 L IX-20	
33 L IY+10	
34 L X+0 Y+0 R0 F500	
35 L Z+20 R0 F MAX	
36 LBL 0	
37 END PGM CONVER MM	

8.8 Cycles spéciaux

8.8 Cycles spéciaux

TEMPORISATION (cycle 9)

Dans un programme en cours, la TNC usine la séquence suivante après écoulement de la temporisation programmée. Une temporisation peut aussi servir, par exemple, à briser les copeaux.

Effet

Le cycle est actif dès qu'il a été défini dans le programme. La temporisation n'influe donc pas sur les états à effet modal, comme par exemple, la rotation broche.

Temporisation en secondes: introduire la temporisation en secondes

Plage d'introduction 0 à 3 600 s (1 heure) par pas de 0,001 s

Exemple de séquences CN

89	CYCL	DEF	9.0	TEMPORISATION	
90	CYCL	DEF	9.1	TEMP. 1.5	

APPEL DE PROGRAMME (cycle 12)

Tous les programmes d'usinage (ex. cycles spéciaux de perçage ou modules géométriques) peuvent équivaloir à un cycle d'usinage. Vous appelez ensuite ce programme comme un cycle.

12 CALL

Remarques avant que vous ne programmiez

Si vous n'introduisez que le nom du programme, le programmé indiqué comme cycle doit se situer dans le même répertoire que celui du programme qui appelle.

Si le programme indiqué comme cycle n'est pas dans le même répertoire que celui du programme qui appelle, vous devez alors introduire en entier le chemin d'accès, par ex..\CLAIR35\FK1\50.H.

Si vous désirez utiliser comme cycle un programme en DIN/ISO, vous devez alors introduire le type de fichier .I derrière le nom du programme.

Nom du PGM: nom du programme à appeler, éventl. avec chemin dans lequel se trouve le programme

Vous appelez le programme avec

- CYCL CALL (séquence séparée) ou
- M99 (pas-à-pas) ou
- M89 (après chaque séquence de positionnement)

Exemple: Appel de programme

Un programme 50 qui peut être appelé au moyen de l'appel de cycle doit être appelé dans un programme.

Exemple de séquences CN

- 55 CYCL DEF 12.0 PGM CALL
- 56 CYCL DEF 12.1 PGM \CLAIR35\FK1\50.H
- 57 L X+20 Y+50 FMAX M99

ORIENTATION BROCHE(cycle 13)

La machine et la TNC doivent avoir été préparées par le constructeur de la machine pour le cycle 13.

La TNC est en mesure de commander la broche principale d'une machine-outil et de l'orienter à une position angulaire donnée.

L'orientation broche est nécessaire, par exemple,

- sur systèmes changeurs d'outils avec position de changement déterminée pour l'outil
- pour le réglage de la fenêtre émettrice-réceptrice de systèmes de palpage 3D avec transmission infra-rouge

Effet

The second secon

La position angulaire définie dans le cycle est positionnée par la TNC par programmation de M19.

Si vous programmez M19 sans avoir défini préalablement le cycle 13, la TNC positionne alors la broche principale à une valeur angulaire définie dans un paramètre-machine (cf. manuel de la machine).

Angle d'orientation: introduire l'angle se rapportant à l'axe de référence angulaire du plan d'usinage

Plage d'introduction 0 à 360°

Finesse d'introduction 0,1°

Exemple de séquences CN

93	CYCL DEF	13.0	ORIENTATION
94	CYCL DEF	13.1	ANGLE 180

TOLERANCE (cycle 32)

Le fraisage rapide du contour est adapté par le constructeur de la machine à la TNC et à la machine. Consultez le manuel de votre machine.

La TNC lisse automatiquement le contour compris entre deux éléments de contour quelconques (non corrigés ou corrigés). Ce cette manière, l'outil se déplace en continu sur la surface de la pièce. Si nécessaire, la TNC réduit automatiquement l'avance programmée de telle sorte que le programme soit toujours exécuté "sans à-coups" par la TNC et à la vitesse la plus rapide possible. La qualité de surface en est améliorée et la mécanique de la machine épargnée.

Le lissage implique un écart de contour. La valeur de l'écart de contour (TOLERANCE) est définie par le constructeur de votre machine dans un paramètre-machine. Vous modifiez la tolérance configurée à l'aide du cycle 32 (cf. fig. de droite, en haut).

Remarques avant que vous ne programmiez

Le cycle 32 est actif avec DEF, c'est-à-dire qu'il est actif dès qu'il a été défini dans le programme

Pour annuler le cycle 32, redéfinissez-le et répondez à la question de dialogue suivant la TOLERANCE en appuyant sur NO ENT. La tolérance configurée est réactivée par l'annulation:

▶ Tolérance: Ecart de contour admissible, en mm

Exemple de séquences CN

95 CYCL DEF 32.0 TOLERANCE 96 CYCL DEF 32.1 T0.05

Programmation:

Sous-programmes et répétitions de parties de programme

9.1 Marquer des sous-programmes et répétitions de parties de programme

A l'aide des sous-programmes et répétitions de parties de programmes, vous pouvez exécuter plusieurs fois des phases d'usinage déjà programmées une fois.

Labels

Les sous-programmes et répétitions de parties de programme débutent dans le programme d'usinage par la marque LBL, abréviation de LABEL (de l'angl. signifiant marque, désignation).

Les LABELS recoivent un numéro compris entre 1 et 254. Dans le programme, vous ne pouvez attribuer chaque numéro de LABEL avec LABEL SET qu'une seule fois.

Si vous attribuez plusieurs fois un même numéro de LABEL, la TNC délivre un message d'erreur à la fermeture de la séquence LBL SET. Avec des programmes très longs, vous pouvez limiter le contrôle sur un nombre programmable de séquences à l'aide de PM7229.

LABEL 0 (LBL 0) désigne la fin d'un sous-programme et peut donc être utilisé autant qu'on le désire.

9.2 Sous-programmes

Processus

- 1 La TNC exécute le programme d'usinage jusqu'à l'appel d'un sous-programme CALL LBL
- 2 A partir de cet endroit, la TNC exécute le programme appelé jusqu'à sa fin LBL 0
- **3** Puis, la TNC poursuit le programme d'usinage avec la séquence suivant l'appel du sous-programme CALL LBL

Remarques concernant la programmation

- Un programme principal peut contenir jusqu'à 254 sousprogrammes
- Vous pouvez appeler les sous-programmes dans n'importe quel ordre et autant de fois que vous le désirez
- Un sous-programme ne peut pas s'appeler lui-même
- Programmer les sous-programmes à la fin du programme principal (derrière la séquence avec M2 ou M30)
- Si des sous-programmes sont situés dans le programme avant la séquence avec M02 ou M30, ils seront exécutés au moins une fois sans qu'il soit nécessaire de les appeler

Programmer un sous-programme

LBL SET

LBL

- Marquer le début: appuyer sur la touche LBL SET et introduire un numéro de label
- Introduire le sous-programme
- Marquer la fin: appuyer sur la touche LBL SET et introduire le numéro de label "0"

Appeler un sous-programme

- ► Appeler le sous-programme: appuyer sur LBL CALL
- Numéro de label: introduire le numéro de label du sous-programme à appeler
- Répétitions REP: passer outre cette question de dialogue avec NO ENT N'utiliser répétitions REP que pour les répétitions de parties de programme

CALL LBL 0 n'est pas autorisé dans la mesure où il correspond à l'appel de la fin d'un sous-programme.

9.3 Répétitions de parties de programme

Une répétition de partie de programme débute par la marque LBL (LABEL). Elle se termine avec CALL LBL /REP.

Processus

- 1 La TNC exécute le programme d'usinage jusqu'à la fin de la partie de programme (CALL LBL /REP)
- 2 La TNC répète ensuite la partie de programme entre le LABEL appelé et l'appel de label CALL LBL /REP autant de fois que vous l'avez défini sous REP
- 3 La TNC poursuit ensuite l'exécution du programme d'usinage

Remarques concernant la programmation

- Vous pouvez répéter une partie de programme jusqu'à 65 534 fois de suite
- A droite du trait oblique suivant REP, la TNC dispose d'un incrément de décomptage pour les répétitions de parties de programme restant à exécuter
- Les parties de programme sont toujours exécutées une fois de plus qu'elles n'ont été programmées.

Programmer une répétition de partie de programme

- Marquer le début: appuyer sur la touche LBL SET et introduire un numéro de LABEL pour la partie de programme qui doit être répétée
 - ▶ Introduire la partie de programme

Appeler une répétition de partie de programme

LBL CALL

LBL SET

> Appuyer sur LBL CALL et introduire le numéro de label de la partie de programme à répéter ainsi que le nombre de répétitions REP

9.4 Programme quelconque pris comme sous-programme

- 1 La TNC exécute le programme d'usinage jusqu'à ce que vous appeliez un autre programme avec CALL PGM
- 2 La TNC exécute ensuite le programme appelé jusqu'à la fin de celui-ci
- **3** Puis, la TNC poursuit l'exécution du programme d'usinage (qui appelle) avec la séquence suivant l'appel du programme.

Remarques concernant la programmation

- Pour utiliser un programme quelconque comme un sousprogramme, la TNC n'a pas besoin de LABELs.
- Le programme appelé ne doit pas contenir les fonctions auxiliaires M2 ou M30.
- Le programme appelé ne doit pas contenir d'appel CALL PGM dans le programme qui appelle.

Appeler un programme quelconque comme sous-programme

- Appeler le programme: appuyer sur la touche PGM
 - CALL et introduire le nom du programme à appeler
- Le programme appelé doit être mémorisé sur le disque dur de la TNC.
 - Si vous n'introduisez que le nom du programme, le programme appelé doit se trouver dans le même répertoire que celui du programme qui appelle.

Si le programme appelé n'est pas dans le même répertoire que celui du programme qui appelle, vous devez alors introduire en entier le chemin d'accès, par ex. TNC:\VZW35\EBAUCHE\PGM1.H

Si vous désirez appeler un programme en DIN/ISO, introduisez dans ce cas le type de fichier .I derrière le nom du programme.

Vous pouvez également appeler n'importe quel programme à l'aide du cycle 12 PGM CALL.

PGM CALL

9.5 Imbrications

Les sous-programmes et répétitions de parties de programme peuvent s'imbriquer de la manière suivante:

- Sous-programme dans sous-programme
- Répétition de partie de programme dans répétition de partie de programme
- Répétition de sous-programmes
- Répétitions de parties de programme dans le sous-programme

Niveaux d'imbrication

Les niveaux d'imbrication définissent combien les parties de programme ou les sous-programmes peuvent contenir d'autres sous-programmes ou répétitions de parties de programme.

- Niveaux d'imbrication max. pour les sous-programmes: 8
- Niveaux d'imbrication max. pour les appels de programme principal: 4
- Vous pouvez imbriquer à volonté une répétition de partie de programme

Sous-programme dans sous-programme

Exemple de séquences CN

0	BEGIN PGM SPGMS MM	
17	CALL LBL 1	Le sous-programme est appelé au niveau de LBL1
35	L Z+100 RO FMAX M2	Dernière séquence de programme du
		programme principal (avec M2)
36	LBL 1	Début du sous-programme 1
39	CALL LBL 2	Le sous-programme est appelé au niveau de LBL2
45	LBL O	Fin du sous-programme 1
46	LBL 2	Début du sous-programme 2
62	LBL O	Fin du sous-programme 2
63	END PGM SPGMS MM	

Exécution du programme

- 1er pas: Le programme principal SPGMS est exécuté jusqu'à la séquence 17.
- 2ème pas: Le sous-programme 1 est appelé et exécuté jusqu'à la séquence 39.
- 3ème pas: Le sous-programme 2 est appelé et exécuté jusqu'à la séquence 62. Fin du sous-programme 2 et retour au sous-programme dans lequel il a été appelé.
- 4ème pas: Le sous-programme 1 est exécuté de la séquence 40 à la séquence 45. Fin du sous-programme 1 et retour au programme principal SPGMS.
- 5ème pas: Le programme principal SPGMS est exécuté de la séquence 18 à la séquence 35. Retour à la séquence 1 et fin du programme.

Renouveler des répétitions de parties de PGM

Exemple de séquences CN

O BEGIN PGM REPS MM	
15 LBL 1	Début de la répétition de partie de programme 1
20 LBL 2	Début de la répétition de partie de programme 2
27 CALL LBL 2 REP 2/2	Partie de programme entre cette séquence et LBL 2
	(séquence 20) répétée 2 fois
35 CALL LBL 1 REP 1/1	Partie de programme entre cette séquence et LBL 1
	(séquence 15) répétée 1 fois
50 END PGM REPS MM	

Exécution du programme

- 1er pas: Le programme principal REPS est exécuté jusqu'à la séquence 27
- 2ème pas: La partie de programme située entre la séquence 27 et la séquence 20 est répétée 2 fois
- 3ème pas: Le programme principal REPS est exécuté de la séquence 28 à la séquence 35
- 4ème pas: La partie de programme située entre la séquence 35 et la séquence 15 est répétée 1 fois (contenant la répétition de partie de programme de la séquence 20 à la séquence 27)
- 5ème pas: Le programme principal REPS est exécuté de la séquence 36 à la séquence 50 (fin du programme)

9.5 Imbrications

Répéter un sous-programme

Exemple de séquences CN

O BEGIN PGM UPGREP MM	
10 LBL 1	Début de la répétition de partie de programme
11 CALL LBL 2	Appel du sous-programme
12 CALL LBL 1 REP 2/2	Partie de programme entre cette séquence et LBL1
	(séquence 10) exécutée 2 fois
19 L Z+100 RO FMAX M2	Dernière séquence du programme principal avec M2
20 LBL 2	Début du sous-programme
28 LBL 0	Fin du sous-programme
20 END DEM HDEDED MM	

Exécution du programme

- 1er pas: Le programme principal REPS est exécuté jusqu'à la séquence 11
- 2ème pas: Le sous-programme 2 est appelé et exécuté
- 3ème pas: La partie de programme située entre la séquence 12 et la séquence 10 est répétée 2 fois: Le sousprogramme 2 est répété 2 fois
- 4ème pas: Le programme principal SPGREP est exécuté de la séquence 13 à la séquence 19; fin du programme

Exemple: Fraisage d'un contour en plusieurs passes

- Déroulement du programme Pré-positionner l'outil sur l'arête supérieure de la pièce
- Introduire la passe en valeur incrémentale
- Fraiser le contour
- Répéter la passe et le fraisage du contour

O BEGIN PGM PGMWDH MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Définition d'outil
4 TOOL CALL 1 Z S500	Appel de l'outil
5 L Z+250 RO F MAX	Dégager l'outil
6 L X-20 Y+30 R0 F MAX	Pré-positionnement dans le plan d'usinage
7 L Z+O RO F MAX M3	Pré-positionnement sur l'arrêt supérieure de la pièce
8 LBL 1	Marque pour répétition de partie de programme
9 L IZ-4 RO F MAX	Passe en profondeur incrémentale (dans le vide)
10 APPR CT X+2 Y+30 CCA90 R+5 RL F250	Aborder le contour
11 FC DR- R18 CLSD+ CCX+20 CCY+30	Contour
12 FLT	
13 FCT DR- R15 CCX+50 CCY+75	
14 FLT	
15 FCT DR- R15 CCX+75 CCY+20	
16 FLT	
17 FCT DR- R18 CLSD- CCX+20 CCY+30	
18 DEP CT CCA90 R+5 F1000	Quitter le contour
19 L X-20 Y+0 R0 F MAX	Dégager l'outil
20 CALL LBL 1 REP 4/4	Retour au LBL 1; au total quatre fois
21 L Z+250 RO F MAX M2	Dégager l'outil, fin du programme
22 END PGM PGMWDH MM	

Exemple: Séries de trous

Déroulement du programme

- Aborder les séries de trous dans le programme principal
- Appeler la série de trous (sous-programme 1)
- Ne programmer la série de trous qu'une seule fois dans le sous-programme 1

O REGIN DOM HD1 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+2,5	Définition d'outil
4 TOOL CALL 1 Z S5000	Appel de l'outil
5 L Z+250 RO F MAX	Dégager l'outil
6 CYCL DEF 200 PERCAGE	Définition du cycle Perçage
Q200=2 ;DISTANCE D'APPROCHE	
Q201=-10 ;PROFONDEUR	
Q206=250 ;AVANCE PLONGEE PROF.	
Q2O2=5 ;PROFONDEUR DE PASSE	
Q210=0 ;TEMPO. EN HAUT	
Q2O3=+O ;COORD. SURFACE PIECE	
Q204=10 ;2. DIST. D'APPROCHE	
7 L X+15 Y+10 RO F MAX M3	Aborder le point initial de la série de trous 1
8 CALL LBL 1	Appeler le sous-programme pour la série de trous
9 L X+45 Y+60 R0 F MAX	Aborder le point initial de la série de trous 2
10 CALL LBL 1	Appeler le sous-programme pour la série de trous
11 L X+75 Y+10 R0 F MAX	Aborder le point initial de la série de trous 3
12 CALL LBL 1	Appeler le sous-programme pour la série de trous
13 L Z+250 RO F MAX M2	Fin du programme principal

14 LBL 1	Début du sous-programme 1: série de trous
15 CYCL CALL	1er trou
16 L IX+20 RO F MAX M99	Aborder le 2ème trou, appeler le cycle
17 L IY+20 RO F MAX M99	Aborder le 3ème trou, appeler le cycle
18 L IX-20 RO F MAX M99	Aborder le 4ème trou, appeler le cycle
19 LBL 0	Fin du sous-programme 1
20 END PGM UP1 MM	

Exemple: Séries de trous avec plusieurs outils

Déroulement du programme

- Programmer les cycles d'usinage dans le programme principal
- Appeler l'ensemble du schéma de trous (sous-programme 1)
- Aborder les séries de trous dans le sousprogramme 1, appeler la série de trous (sous-programme 2)
- Ne programmer la série de trous qu'une seule fois dans le sous-programme 2

O BEGIN PGM UP2 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+4	Définition d'outil pour le foret à centrer
4 TOOL DEF 2 L+0 R+3	Définition d'outil pour le foret
5 TOOL DEF 3 L+0 R+3,5	Définition d'outil pour l'alésoir
6 TOOL CALL 1 Z S5000	Appel d'outil pour le foret à centrer
7 L Z+250 RO F MAX	Dégager l'outil

-
5
H
ι Ω
5
ŏ
Ľ
Q
e
0
S
Ű
Ē
Ξ
Ð
X
ШÌ
Q
ס

8 CYCL DEF 200 PERCAGE	Définition du cycle de centrage
Q200=2 ;DISTANCE D'APPROCHE	
Q201=-3 ; PROFONDEUR	
Q206=250 ;AVANCE PLONGEE PROF.	
Q2O2=3 ; PROFONDEUR DE PASSE	
Q210=0 ;TEMPO. EN HAUT	
Q2O3=+O ;COORD. SURFACE PIECE	
Q2O4=10 ;2. DIST. D'APPROCHE	
9 CALL LBL 1	Appeler sous-programme 1 pour l'ensemble du schéma de trous
10 L Z+250 RO F MAX M6	Changement d'outil
11 TOOL CALL 2 Z S4000	Appel d'outil pour le foret
12 FN 0: Q201 = -25	Nouvelle profondeur de perçage
13 FN 0: Q202 = +5	Nouvelle passe de perçage
14 CALL LBL 1	Appeler sous-programme 1 pour l'ensemble du schéma de trous
15 L Z+250 RO F MAX M6	Changement d'outil
16 TOOL CALL 3 Z S500	Appel d'outil pour l'alésoir
17 CYCL DEF 201 ALESAGE	Définition du cycle d'alésage
Q200=2 ;DISTANCE D'APPROCHE	
Q201=-15 ; PROFONDEUR	
Q206=250 ;AVANCE PLONGEE PROF.	
Q211=0,5 ;TEMPO. AU FOND	
Q208=400 ;AVANCE RETRAIT	
Q2O3=+O ;COORD. SURFACE PIECE	
Q2O4=10 ;2. DIST. D'APPROCHE	
18 CALL LBL 1	Appeler sous-programme 1 pour l'ensemble du schéma de trous
19 L Z+250 RO F MAX M2	Fin du programme principal
20 LBL 1	Début sous-programme 1: schéma de trous complet
21 L X+15 Y+10 R0 F MAX M3	Aborder le point initial de la série de trous 1
22 CALL LBL 2	Appeler sous-programme 2 pour la série de trous
23 L X+45 Y+60 R0 F MAX	Aborder le point initial de la série de trous 2
24 CALL LBL 2	Appeler sous-programme 2 pour la série de trous
25 L X+75 Y+10 R0 F MAX	Aborder le point initial de la série de trous 3
26 CALL LBL 2	Appeler sous-programme 2 pour la série de trous
27 LBL 0	Fin du sous-programme 1
28 LBL 2	Début sous-programme 2: série de trous
29 CYCL CALL	1er perçage avec cycle d'usinage actif
30 L IX+20 R0 F MAX M99	Aborder le 2ème trou, appeler le cycle
31 L IY+20 R0 F MAX M99	Aborder le 3ème trou, appeler le cycle
32 L IX-20 R0 F MAX M99	Aborder le 4ème trou, appeler le cycle
33 LBL 0	Fin du sous-programme 2
34 END PGM UP2 MM	

Programmation:

Paramètres Q

10.1 Principe et sommaire des fonctions

Grâce aux paramètres Q, vous pouvez définir toute une famille de pièces dans un même programme d'usinage. A la place des valeurs numériques, vous introduisez des variables encore appelées paramètres Q.

Exemples d'utilisation des paramètres Q:

- Valeurs de coordonnées
- Avances
- Vitesses de rotation
- Données de cycle

En outre, les paramètres Q vous permettent de programmer des contours définis par des fonctions arithmétiques ou bien encore d'exécuter des phases d'usinage en liaison avec des conditions logiques. En liaison avec la programmation FK, vous pouvez aussi combiner avec les paramètres Q des contours dont la cotation n'est pas conforme à la programmation des CN.

Un paramètre Ω est désigné par la lettre Ω et un numéro compris entre 0 et 299. Les paramètres Ω sont répartis en trois groupes:

Signification	Plage
Paramètres pouvant être utilisés librement, à effet global pour tous les programmes de la mémoire de la TNC	Q0 à Q99
Paramètres fonctions spéciales de la TNC	Q100 à Q199
Paramètres préconisés pour les cycles, à effet global pour tous les programmes contenus dans la mémoire de la TNC	Q200 à Q399

Remarques concernant la programmation

Les paramètres Q et valeurs numériques peuvent être mélangés dans un programme.

Vous pouvez affecter aux paramètres Q des valeurs numériques comprises entre –99 999,9999 et +99 999,9999. De manière interne, la TNC peut calculer des valeurs numériques d'une largeur jusqu'à 57 bits avant et 7 bits après le point décimal (une largeur numérique de 32 bits correspond à une valeur décimale de 4 294 967 296).

De manière automatique, la TNC affecte toujours les mêmes données à certains paramètres Q, comme par exemple, le rayon d'outil actuel pour le paramètre Q 108. Cf. "10.10 Paramètres Q réservés".

Si vous utilisez les paramètres Q1 à Q99 dans les cycles constructeur, définissez dans le paramètre-machine PM7251 si ces paramètres doivent être à effet local dans le cycle constructeur ou à effet global pour tous les programmes.

Appeler les fonctions des paramètres Q

Pendant que vous introduisez un programme d'usinage, appuyez sur la touche "Q" (dans le champ des introductions numériques et de la sélection d'axes situé sous la touche -/+). La TNC affiche les softkeys suivantes:

Groupe de fonctions	Softkey
Fonctions arithmétiques de base	ARITHM. DE BASE
Fonctions angulaires	TRIGONO- METRIE
Fonction de calcul d'un cercle	CALCUL CERCLE
Conditions si/alors, sauts	SAUTS
Autres fonctions	FONCTIONS SPECIALES
Introduire directement une formule	FORMULE

10.2 Familles de pièces – paramètres Q au lieu de valeurs numériques

A l'aide de la fonction des paramètres Q FN0: AFFECTATION, vous pouvez affecter aux paramètres Q des valeurs numériques. Dans le programme d'usinage, vous remplacez alors la valeur numérique par un paramètre Q.

Exemple de séquences CN

15 FN0: Q10 = 25	Affectation:
	Q10 reçoit la valeur 25
25 L X +Q10	correspond à L X +25

Pour réaliser des familles de pièces, vous programmez, par exemple, les dimensions caractéristiques de la pièce sous forme de paramètres Q.

Pour l'usinage des différentes pièces, vous affectez alors à chacun de ces paramètres une autre valeur numérique.

Exemple

Cylindre	avec	paramètres	Q
----------	------	------------	---

Rayon du cylindre	R	=	Q1
Hauteur du cylindre	Н	=	Q2
Cylindre Z1	Q1 Q2	=	+30 +10
Cylindre Z2	Q1 Q2	=	+10 +50

10.3 Décrire les contours avec fonctions arithmétiques

Grâces aux paramètres Q, vous pouvez programmer des fonctions arithmétiques de base dans le programme d'usinage:

- Sélectionner la fonction des paramètres Q: appuyer sur la touche Q (dans le champ d'introductions numériques, à droite). Le menu de softkeys affiche les fonctions des paramètres Q.
- Sélectionner les fonctions arithmériques de base: appuyer sur la softkey ARITHM. DE BASE La TNC affiche les softkeys suivantes:

Fonction	Softkey
FN0: AFFECTATION Ex. FN0: Q5 = +60 Affecter directement une valeur	FNØ X = V
FN1: ADDITION Ex. FN1: $Q1 = -Q2 + -5$ Définir la somme de deux valeurs et l'affecter	FN1 X + Y
FN2: SOUSTRACTION Ex. FN2: Q1 = +10 - +5 Définir la différence de deux valeurs et l'affecter	FN2 X - V
FN3: MULTIPLICATION Ex. FN3: Q2 = +3 * +3 Définir le produit de deux valeurs et l'affecter	FN3 X * V
FN4: DIVISION Ex. FN4: Q4 = +8 DIV +Q2 Définir le quotient de deux valeurs et l'affecter Interdit: division par 0!	FN4 X × Y
FN5: RACINE CARREE Ex. FN5: Q20 = SQRT 4 Extraire la racine carrée d'un nombre et l'affecter Interdit: racine carrée d'une valeur négative!	FN5 RACINE
A droite du signe "=", vous pouvez introduire: deux nombres	

■ deux paramètres Q

■ un nombre et un paramètre Q

A l'intérieur des équations, vous pouvez donner n'importe quel signe aux paramètres ${\rm Q}$ et valeurs numériques.

Sélectionner les fonctions des paramètres Q: Q appuyer sur la touche Q Sélectionner les fonctions arithmériques de ARITHM. DE BASE base: appuyer sur la softkey ARITHM. DE BASE Sélectionner la fonction des paramètres Q FNØ X = V AFFECTATION: appuyer sur la softkey FN0 X = Y N° de paramètre pour résultat ?

Exemple de programmation pour les calculs de base

0	5 ENT	Introduire le numero du parametre Q: 5
5	lère valeu	r ou paramètre ?
	10 ^{ENT}	Affecter à Q5 la valeur numérique 10
	Q	Sélectionner les fonctions des paramètres Q: appuyer sur la touche Q
	ARITHM. DE BASE	Sélectionner les fonctions arithmériques de base: appuyer sur la softkey ARITHM. DE BASE

N° de paramètre pour résultat ?

Introduire le numéro du paramètre Q: 12

Sélectionner la fonction des paramètres Q

MULTIPLICATION: appuyer sur FN3 X * Y

lère valeur ou paramètre ?

ENT

Introduire Q5 comme première valeur

2ème valeur ou paramètre ?

Introduire 7 comme deuxième valeur

La TNC affiche les séquences de programme suivantes:

16 FNO: Q5 = +10 17 FN3: Q12 = +Q5 * +7

10.4 Fonctions angulaires (trigonométrie)

Sinus, cosinus et tangente correspondent aux rapports entre les côtés d'un triangle rectangle. On a:

Sinus:	sin α	=	a/c
Cosinus:	$\cos \alpha$	=	b/c
Tangente:	tan α	=	$a / b = \sin \alpha / \cos \alpha$

Composantes

■ c est le côté opposé à l'angle rectangle

 \blacksquare a est le côté opposé à l'angle α

■ b est le troisième côté

La TNC peut calculer l'angle à partir de la tangente:

 α = arctan α = arctan (a / b) = arctan (sin α / cos α)

Exemple:

a = 10 mm

 α = arctan (a / b) = arctan 1 = 45°

De plus, on a:

 $a^{2} + b^{2} = c^{2}$ (avec $a^{2} = a \times a$) $c = \sqrt{(a^{2} + b^{2})}$

Programmer les fonctions angulaires

Les fonctions angulaires apparaissent lorsque l'on appuye sur la softkey TRIGONOMETRIE. La TNC affiche les softkeys du tableau de droite.

Programmation: comparer "Exemple de programmation pour les calculs de base".

Fonction	Softkey
FN6: SINUS Ex. FN6: Q20 = SIN–Q5 Définir le sinus d'un angle en degrés (°) et l'affecter	FNG SIN(X)
FN7: COSINUS Ex. FN7: Q21 = COS–Q5 Définir le cosinus d'un angle en degrés (°) l'affecter	EN7 COS(X) et

FN8: RACINE DE SOMME DE CARRES Ex. FN8: Q10 = +5 LEN +4 Définir la différence de deux valeurs et l'affecter

	EN8	
X	I FN	V.
		•

FN13: ANGLE Ex. FN13: Q20 = +10 ANG-Q1 Définir l'angle avec arctan à partir de deux côtés ou sin et cos de l'angle (0 < angle < 360°) et l'affecter

FN13 X ANG Y

10.5 Calcul d'un cercle

Grâce à la fonction de calcul d'un cercle, la TNC peut déterminer le centre du cercle et son rayon à partir de trois ou quatre points situés sur le cercle. Le calcul d'un cercle à partir de quatre points est plus précis.

Application: Vous pouvez utiliser ces fonctions notamment lorsque vous voulez déterminer à l'aide de la fonction de palpage programmable la position et la dimension d'un trou ou d'un cercle de trous.

Fonction

Softkey

FN23 CERCLE PAR 3 PTS

FN23: Calculer les DONNEES D'UN CERCLE à partir de 3 points. Ex. FN23: Q20 = CDATA Q30

Les paires de coordonnées de trois points du cercle doivent être mémorisées dans le paramètre Q30 et les cinq paramètres suivants – et donc jusqu'à Q35.

La TNC mémorise alors le centre du cercle de l'axe principal (X pour axe de broche Z) dans le paramètre Q20, le centre du cercle de l'axe auxiliaire (Y pour axe de broche Z) dans le paramètre Q21 et le rayon du cercle dans le paramètre Q22.

FN24: Calculer les DONNEES D'UN CERCLE à partir de 4 points. Ex. FN24: Q20 = CDATA Q30

Les paires de coordonnées de quatre points du cercle doivent être mémorisées dans le paramètre Q30 et les sept paramètres suivants – et donc jusqu'à Q37.

La TNC mémorise alors le centre du cercle de l'axe principal (X pour axe de broche Z) dans le paramètre Q20, le centre du cercle de l'axe auxiliaire (Y pour axe de broche Z) dans le paramètre Q21 et le rayon du cercle dans le paramètre Q22.

Notez que FN23 et FN24, outre le paramètre pour résultat, écrasent aussi automatiquement les deux paramètres suivants.

10.6 Conditions si/alors avec paramètres Q

Avec les conditions si/alors, la TNC compare un paramètre Q à un autre paramètre Q ou à une autre valeur numérique. Si la condition est remplie, la TNC poursuit le programme d'usinage lorsqu'elle atteint le LABEL programmé derrière la condition (LABEL cf. "9. Sous-programmes et répétitions de parties de programme+). Si la condition n'est pas remplie, la TNC exécute la séquence suivante.

Si vous désirez appeler un autre programme comme sousprogramme, programmez alors un PGM CALL derrière le LABEL.

Sauts inconditionnels

Les sauts inconditionnels sont des sauts dont la condition est toujours remplie. Exemple:

FN9: IF+10 EQU+10 GOTO LBL1

Programmer les conditions si/alors

Les conditions si/alors apparaissent lorsque vous appuyez sur la softkey SAUTS. La TNC affiche les softkeys suivantes:

Fonction	Softkey
FN9: SI EGAL, ALORS SAUT Ex. FN9: IF +Q1 EQU +Q3 GOTO LBL 5 Si les deux valeurs ou paramètres sont égaux, saut au label donné	FN9 IF X EQ Y GOTO
FN10: SI DIFFERENT, ALORS SAUT Ex. FN10: IF +10 NE –Q5 GOTO LBL 10	FN10 IF X NE Y GOTO

FN11: SI PLUS GRAND, ALORS SAUT

saut au label donné

Ex. FN11: IF+Q1 GT+10 GOTO LBL 5 Si la 1ère valeur ou le 1er paramètre est supérieur(e) à la 2ème valeur ou au 2ème paramètre, saut au label donné

Si les deux valeurs ou paramètres sont différents,

FN12: SI PLUS PETIT, ALORS SAUT

Ex. FN12: IF+Q5 LT+0 GOTO LBL 1

FN12 IF X LT Y GOTO Si la 1ère valeur ou le 1er paramètre est inférieur(e) à la 2ème valeur ou au 2ème paramètre, saut au label donné

Abréviations et expressions utilisées		
EQU	(de l'angl. equal):	égal à
NE	(de l'angl. not equal):	différent de
GT	(de l'angl. greater than):	supérieur à
LT	(de l'angl. less than):	inférieur à
GOTO	(de l'angl. go to):	aller à

10.7 Contrôler et modifier les paramètres Q

Vous pouvez contrôler et également modifier les paramètres Q pendant l'exécution ou le test du programme.

▶ Interrompre l'exécution du programme (par exemple, en appuyant sur la touche STOP externe et la softkey STOP INTERNE) ou suspendre le test du programme

Appeler les fonctions des paramètres Q: appuyer sur la touche Q

- ▶ Introduire le numéro du paramètre Q et appuyer sur la touche ENT. Dans le champ de dialogue, la TNC affiche la valeur actuelle du paramètre Q
- ▶ Si vous désirez modifier la valeur, introduisez-en une nouvelle, validez avec la touche ENT et fermez l'introduction avec la touche END

Si vous ne désirez pas modifier la valeur, fermez le dialogue avec la touche END

Mode man	^{Jel} Test du programme Q35 = <mark>+35,258</mark>		
0 B 1 B 2 B 3 T 4 L 5 C 6 L 7 L 8 L 9 F 10 11 12 13 14	EGIN PGM 3516 MM LK FORM 0.1 Z X-90 Y-90 Z- LK FORM 0.2 X+90 Y+90 Z+0 OOL CALL 1 Z S1400 Z+50 R0 F MAX ALL LBL 1 Z+100 R0 F MAX M2 BL 1 X+0 Y+80 RL F250 POL X+0 Y+0 FC DR- R80 CCX+0 CCY+0 FCT DR- R7,5 FCT DR+ R90 CCX+69,282 CCY FSELECT 2 ; FCT DR+ R10 PDX+0 PDY+0 D2	- 40 40 20	
			FIN

10.8 Autres fonctions

Les autres fonctions apparaissent si vous appuyez sur la softkey FONCTION SPECIALE. La TNC affiche les softkeys suivantes:

Fonction	Softkey
FN14:ERROR	FN14
Emission d'un message d'erreur	ERREUR=
FN15:PRINT	FN15
Emission non formatée de textes ou paramètres Q	IMPRIMER
FN16:F-PRINT	FN16
Emission formatée de textes ou paramètres Q	F-PRINT
FN18:SYS-DATUM READ Lecture des données-système	FN18 LIRE DON- NEES SYST
FN19:PLC	FN19
Transmission des valeurs à l'automate	AP=
FN20:WAIT FOR	FN20
Synchronisation CN et automate	ATTENDRE

FN14: ERROR

Emission de messages d'erreur

La fonction FN14: ERROR vous permet de programmer l'émission de messages pré-programmés par le constructeur de la machine ou par HEIDENHAIN: Lorsque la TNC rencontre une séquence avec FN 14 pendant l'exécution ou le test du programme, elle interrompt sa marche et délivre un message. Vous devez alors relancer le programme. Numéros d'erreur: cf. tableau ci-dessous.

Exemple de séquence CN

190 EN 14.EDDOD - 254

La TNC doit émettre un message mémorisé sous le numéro d'erreur 254

TOO IN THERMON FOR	
Plage de numéros d'erreur	Dialogue standard
0 299	FN 14: N° d'erreur 0 299
300 999	Dialog dépendant de la machine
1000 1099	Messages d'erreur internes (cf. tableau de droite)

Numéro	et texte du message d'erreur
1000	Broche ?
1001	Axe d'outil manque
1002	Largeur rainure trop grande
1003	Rayon d'outil trop grand
1004	Zone dépassée
1005	Position initiale erronée
1006	ROTATION non autorisée
1007	Facteur échelle non autorisé
1008	IMAGE MIROIR non autorisée
1009	Décalage non autorisé
1010	Avance manque
1011	Valeur introduite erronée
1012	Signe erroné
1013	Angle non autorisé
1014	Point de palpage inaccessible
1015	Trop de points
1016	Introduction non cohérente
1017	CYCLE incomplet
1018	Plan mal défini
1019	Programmation mauvais axe
1020	Vitesse broche erronée
1021	Correction rayon non définie
1022	Arrondi non autorisé
1023	Rayon d'arrondi trop grand
1024	Départ progr. non défini
1025	Imbrication trop élevée
1026	Référence angulaire manque
1027	Aucun cycle d'usinage défini
1028	Largeur rainure trop grande
1029	Poche trop petite
1030	Q202 non défini
1031	Q205 non défini
1032	Introduire Q218 supérieur à Q219
1033	CYCL 210 non autorisé
1034	CYCL 211 non autorisé
1035	Q220 trop grand
1036	Introduire Q222 supérieur à Q223
1037	Introduire Q244 supérieur à 0
1038	Introduire Q245 différent de Q246
1039	Introduire plage angul. < 360°
1040	Introduire Q223 supérieur à Q222
1041	Q214: 0 non autorisé

FN15: PRINT Emission non formatée de textes ou valeurs de paramètres Q

Configurer l'interface de données: dans le menu PRINT ou PRINT-TEST, définir le chemin vers lequel la TNC doit mémoriser les textes ou valeurs de paramètres Q. Cf. "12 Fonctions MOD, configurer les interfaces de données".

Avec FN15: PRINT, vous pouvez sortir les valeurs des paramètres Q et les messages via l'interface de données, par ex. sur une imprimante. En mémorisant les valeurs de manière interne ou en les transmettant à un calculateur, la TNC les enregistre dans le fichier %FN15RUN.A (sortie pendant l'exécution du programme) ou dans le fichier %FN15SIM.A (sortie pendant le test du programme).

Emission de dialogues et messages d'erreur avec FN15: PRINT "valeur numérique"

Valeur numérique 0 à 99: Dialogues pour cycles constructeur à partir de 100: Messages d'erreur automate

Exemple: sortie du numéro de dialogue 20

67 FN 15: PRINT20

Emission de dialogues et paramètres Q avec FN15: PRINT "paramètres Q"

Exemple: Edition du procès-verbal d'étalonnage d'une pièce

Vous pouvez sortir simultanément jusqu'à 6 paramètres Q et valeurs numériques. La TNC les sépare par des barres obliques.

Exemple: sortie du dialogue 1 et de la valeur numérique de Q1

70 FN 15: PRINT1/Q1

Mode manuel	Editer tabl	eau PGM		
Interfa	ce RS232	Interface R	\$422	
Mode fo Vitesse FE : EXT1 : EXT2 : LSV-2:	nct.: LSV-2 en bauds 115200 150 9600 115200	Mode fonct. Vitesse en FE : 57 EXT1 : 96 EXT2 : 96 LSV-2: 96	: FE1 bauds 600 00 00 00	
Affecta	tion:			
Impression : Test impr. : PGM MGT: Etendu				
O-r RS SF	232 PARAMET. 422 TUP UTILISAT. AIDE	<u>.</u>	FIN	

FN16: F-PRINT Emission formatée de textes et valeurs de paramètres Q

Configurer l'interface de données: dans le menu PRINT ou PRINT-TEST, vous définissez le chemin vers leguel la TNC doit mémoriser le fichier-texte. Cf. "12 Fonctions MOD, configurer les interfaces de données".

Avec FN16: F-PRINT vous pouvez sortir formatés les valeurs de paramètres Q et les textes via l'interface de données, par ex, sur une imprimante. Si vous mémorisez les valeurs de manière interne ou les transmettez à un calculateur, la TNC enregistre les données dans le fichier que vous définissez dans la séquence FN 16.

Pour restituer le texte formaté et les valeurs des paramètres Q, créez à l'aide de l'éditeur de texte de la TNC un fichier-texte dans lequel vous définirez les formats et les paramètres Q.

Exemple de fichier-texte définissant le format d'émission:

"PROTOCOLE DE MESURE CENTRE GRAVITE ROUE A GODETS";

"NOMBREVALEURS DE MESURE : = 1";

"X1 = %5.3LF", Q31;

"__

"Y1 = %5.3LF", Q32;

"Z1 = %5.3LF", Q33;

Pour élaborer les fichiers-texte, utilisez les fonctions de formatage suivantes:

Caractère spécial Fonction

"	Définir le format d'émission pour textes et variables entre guillemets
%5.3LF	Définir le format pour paramètres Q: 5 chiffres avant la virgule, 4 chiffres après la virgule, long, Floating (chiffre décimal)
%S	Format pour variable de texte
,	Caractère de séparation entre le format d'émission et le paramètre
;	Caractère fin de séquence, termine une ligne

Pour restituer également diverses informations dans le fichier de protocole, vous disposez des fonctions suivantes:

Clé	Fonction
CALL_PATH	Restitue le chemin d'accès du programme CN où se trouve la fonction FN16. Exemple: "Programme de mesure: %S",CALL_PATH;
M_CLOSE	Ferme le fichier dans lequel vous écrivez avec FN16. Exemple: M_CLOSE;
L_ENGLISCH L_GERMAN L_CZECH L_FRENCH L_ITALIAN L_SPANISH L_DANISH L_FINNISH L_DUTCH L_POLISH L_HUNGARIA L_ALL	Restituer texte seulement pour dialogue anglais Restituer texte seulement pour dialogue allemand Restituer texte seulement pour dialogue tchèque Restituer texte seulement pour dialogue français Restituer texte seulement pour dialogue italien Restituer texte seulement pour dialogue espagnol Restituer texte seulement pour dialogue danois Restituer texte seulement pour dialogue finnois Restituer texte seulement pour dialogue néerlandais Restituer texte seulement pour dialogue néerlandais Restituer texte seulement pour dialogue polonais Restituer texte seulement pour dialogue hongrois Restituer texte quelque soit le dialogue

Dans le programme d'usinage, vous programmez FN16: F-PRINT pour activer l'émission:

96 FN16:F-PRINT TNC:\MAQUE\MASQUE1.A / RS232:\PROT1.TXT

La TNC restitue alors le fichier PROT1.TXT via l'interface série:

PROTOCOLE DE MESURE CENTRE DE GRAVITE ROUE A GODETS
NOMBRE VALEURS DE MESURE : = 1

X1 = 149,360
Y1 = 25,509
Z1 = 37,000

Si vous utilisez FN plusieurs fois dans le programme, la TNC mémorise tous les textes dans le fichier que vous avez défini à la première fonction FN 16. La restitution du fichier n'est réalisée que lorsque la TNC lit la séquence END PGM ou lorsque vous appuyez sur la touche Stop CN.

FN18: SYS-DATUM READ Lecture des données-système

A l'aide de la fonction FN: SYS-DATUM READ, vous pouvez lire les données-système et les mémoriser dans les paramètres Q. La sélection de la donnée-système a lieu à l'aide d'un numéro de groupe (ID-Nr.), d'un numéro et éventuellement, d'un indice.

Nom du groupe, n° ident.	Numéro	Indice	Donnée-système
Infos programme, 10	1	_	Etat mm/inch
	2	_	Facteur de recouvrement dans fraisage de poche
	3	_	Numéro du cycle d'usinage actif
Etat de la machine, 20	1	-	Numéro d'outil actif
	2	-	Numéro d'outil préparé
	3	_	Axe d'outil actif
			0=X, 1=Y, 2=Z, 6=U, 7=V, 8=W
	4	_	Vitesse de rotation broche programmée
	5	_	Etat broche actif: 0=inact. 1=actif
	8	_	Etat arrosage: 0=inact. 1=actif
	9	_	Avance active
Paramètre de cycle, 30	1	_	Distance d'approche cycle d'usinage actif
	2	_	Prof. perçage/fraisage cycle d'usinage actif
	3	_	Profondeur passe cycle d'usinage actif
	4	_	Avance plongée prof. cycle d'usinage actif
	5	-	1ème côté cycle poche rectangulaire
	6	_	2ème côté cycle poche rectangulaire
	7	_	1er côté cycle rainurage
	8	_	2ème côté cycle rainurage
	9	_	Rayon cycle poche circulaire
	10	_	Avance fraisage cycle d'usinage actif
	11	_	Sens rotation cycle d'usinage actif
	12	_	Temporisation cycle d'usinage actif
	13	_	Pas de vis cycle 17, 18
	14	_	Surépaisseur de finition cycle d'usinage actif
	15	_	Angle d'évidement cycle d'usinage actif

Nom du groupe, n° ident.	Numéro	Indice	Donnée-système
Données du tableau d'outils, 50	1	N°OUT.	Longueur d'outil
	2	N°OUT.	Rayon d'outil
	3	N°OUT.	Rayon d'outil R2
	4	N°OUT.	Surépaisseur longueur d'outil DL
	5	N°OUT.	Surépaisseur rayon d'outil DR
	6	N°OUT.	Surépaisseur rayon d'outil DR2
	7	N°OUT.	Outil bloqué (0 ou 1)
	8	N°OUT.	Numéro de l'outil jumeau
	9	N°OUT.	Durée d'utilisation max.TIME1
	10	N°OUT.	Durée d'utilisation max. TIME2
	11	N°OUT.	Durée d'utilisation actuelle CUR. TIME
	12	N°OUT.	Etat automate
	13	N°OUT.	Longueur max. de la dent LCUTS
	14	N°OUT.	Angle de plongée max. ANGLE
	15	N°OUT.	TT: nombre de dents CUT
	16	N°OUT.	TT: tolérance d'usure longueur LTOL
	17	N°OUT.	TT: tolérance d'usure rayon RTOL
	18	N°OUT.	TT: sens de rotation DIRECT (0=positif/-1=négatif)
	19	N°OUT.	TT: décalage plan R-OFFS
	20	N°OUT.	TT: décalage longueur L-OFFS
	21	N°OUT.	TT: tolérance de rupture longueur LBREAK
	22	N°OUT.	TT: tolérance de rupture rayon RBREAK
	Sans indice: Do	nnées de l'out	il actif
Numéro d'emplacement d'un	4		
outil dans le tableau d'outils, 52	1	N°OUI.	Numéro d'emplacement
directoment derrière TOOL CALL 7	0.1		Position valable/pop valable (1/0)
directement demere TOOL CALL, 7	2	1	
	2	1	
	2	2	
	2	3	
programmée)	5	_	Avalice programmee (-1. aucune avalice
programmee/			
Correction d'outil active 200	1	_	Bayon d'outil (y compris valeurs Delta)
	2	_	Longueur d'outil (v compris valeurs Delta)
	-		

Nom du groupe, n° ident.	Numéro	Indice	Donnée-système
Transformations actives, 210	1	_	Rotation de base en mode manuel
	2	_	Rotation programmée dans le cycle 10
	3	_	Axe réfléchi actif
			0: image miroir inactive
			+1: axe X réfléchi
			+2: axe Y réfléchi
			+4: axe Z réfléchi
			+64: axe U réfléchi
			+128: axe V réfléchi
			+256: axe W réfléchi
			Combinaisons = somme des différents axes
	4	1	Facteur échelle actif axe X
	4	2	Facteur échelle actif axe Y
	4	3	Facteur échelle actif axe Z
	4	7	Facteur échelle actif axe U
	4	8	Facteur échelle actif axe V
	4	9	Facteur échelle actif axe W
	5	1	ROT. 3D axe A
	5	2	ROT. 3D axe B
	5	3	ROT. 3D axe C
	6	-	Inclinaison plan d'usinage active/inact. (-1/0)
Décalage actif du point zéro, 220	2	1 à 9	Indice 1=axe X 2=axe Y 3=axe Z
			Indice 4=axe A 5=axe B 6=axe C
			Indice 7=axe U 8=axe V 9=axe W
Diago do déplocament 220	0	1 2 0	Commutateur fin de equirae lociaiel négatif
Plage de déplacement, 230	Z	1 8 9	
	3	1 à 0	Commutatour fin de course logiciel positif
	5	1 8 9	
			AX63 T 0 0
Position nominal dans système REF. 240	1	1 à 9	Indice 1=axe X 2=axe Y 3=axe Z
	-		Indice 4=axe A 5=axe B 6=axe C
			Indice 7=axe U 8=axe V 9=axe W
Position nominale dans le système			
d'introduction, 270	1	1 à 9	Indice 1=axe X 2=axe Y 3=axe Z
			Indice 4=axe A 5=axe B 6=axe C
			Indice 7=axe U 8=axe V 9=axe W
	10		
Paipeur a commutation, 350	10	-	Axe du paipeur
	10	-	
	12	-	
	1.0	-	nayon bague de reglage
	14	1 2	
	1 Г	Z	
	15	-	Sens du desaxage par rapport à la position 0°

Nom du groupe, n° ident.	Numéro	Indice	Donnée-système
Palpeur de table TT 120	20	1	Centre axe X (système REF)
		2	Centre axe Y (système REF)
		3	Centre axe Z (système REF)
	21	-	Rayon plateau
Palpeur mesurant, 350	30	_	Longueur palpeur étalonnée
	31	_	Rayon palpeur 1
	32	_	Rayon palpeur 2
	33	-	Diamètre bague de réglage
	34	1	Désaxage axe principal
		2	Désaxage axe auxiliaire
	35	1	Facteur de correction 1er axe
		2	Facteur de correction 2ème axe
		3	Facteur de correction 3ème axe
	36	1	Rapport de force 1er axe
		2	Rapport de force 2ème axe
		3	Rapport de force 3ème axe
Données du tableau de points			
zéro actif, 500	(n° pt zéro)	1 à 9	Indice 1=axe X 2=axe Y 3=axe Z
			Indice 4=axe A 5=axe B 6=axe C
			Indice 7=axe U 8=axe V 9=axe W
Tableau de points zéro sélectionné, 505	1	-	Valeur de consigne = 0: Pas de tableau de points zéro actif
			Valeur de consigne = 1: lableau de points zero actif
Données du tableau de			
palettes actif, 510	1	_	Ligne active
	2	_	Numéro palettes dans champ PAL/PGM
Paramètre-machine			
existant, 1010	Numéro	Indice	Valeur de consigne = 0: PM inexistant
	de PM	de PM	Valeur de consigne = 1: PM existant
			-

Exemple: affecter à Q25 la valeur du facteur échelle actif de l'axe Z

55 FN18: SYSREAD Q25 = ID210 NR4 IDX3

FN19: PLC Transmission de valeurs à l'automate

La fonction FN19: PLC vous permet de transmettre à l'automate jusqu'à deux valeurs numériques ou paramètres Q. Résolution et unité de mesure: 0,1 μm ou 0,0001°

Exemple: transmettre à l'automate la valeur 10 (correspondant à $1\mu m$ ou 0,001°)

56 FN 19: PLC=+10/+Q3

FN20: WAIT FOR Synchronisation CN et automate

Vous ne devez utiliser cette fonction qu'en accord avec le constructeur de votre machine!

A l'aide de la fonction FN20: WAIT FOR, vous pouvez exécuter une synchronisation entre la CN et l'automate pendant le déroulement du programme. La CN stoppe l'usinage jusqu'à ce que soit réalisée la condition programmée dans la séquence FN20. Pour cela, la TNC peut contrôler les opérandes automate suivantes:

Opérande PLC	Abréviation	Plage d'adresses
Marqueur	Μ	0 à 4999
Entrée		0 à 31, 128 à 152
		64 à 126 (1ère PL 401 B)
		192 à 254 (2ème PL 401 B)
Sortie	0	0 à 30
		32 à 62 (1ère PL 401 B)
		64 à 94 (2ème PL 401 B)
Compteur	С	48 à 79
Timer	Т	0 à 95
Byte	В	0 à 4095
Mot	W	0 à 2047
Double mot	D	2048 à 4095

Les conditions suivantes sont autorisées dans la séquence FN20:

Condition	Raccourci
égal à	==
inférieur à	<
supérieur à	>
Inférieur/égal	<=
Supérieur/égal	>=

Exemple: Suspendre le déroulement du programme jusqu'à ce que l'automate mettre à 1 le marqueur 4095

32 FN 20: WAIT FOR M4095==1

FN 25: PRESET Initialisation d'un nouveau point de référence

 Vous ne pouvez programmer cette fonction que si vous avez préalablement introduit le code 555343 (cf. "12.3 Introduire un code").

A l'aide de la fonction FN 25: PRESET et en cours d'exécution du programme, vous pouvez initialiser un nouveau point de référence sur un axe sélectionnable.

- Sélectionner la fonction des paramètres Q: appuyer sur la touche Q (dans le champ d'introductions numériques, à droite). Le menu de softkeys affiche les fonctions des paramètres Q.
- Sélectionner d'autres fonctions: appuyez sur la softkey FONCTIONS SPECIALES
- Sélectionner FN25: commuter sur le second plan du menu de softkeys, softkey FN25 PT DE REF. Appuyer sur INIT
- ► Axe?: introduire l'axe sur lequel vous désirez initialiser un nouveau point de référence, valider avec la touche ENT
- Valeur à convertir?: introduire la coordonnée située dans le système de coordonnées actif à laquelle vous désirez initialiser le nouveau point de référence
- Nouveau point de référence?: introduire la coordonnée que doit avoir la valeur à convertir dans le nouveau système de coordonnées

Exemple: Initialiser un nouveau point de référence à la coordonnée actuelle X+100

56 FN 25: PRESET = X / +100 / +0

Exemple: La coordonnée actuelle Z+50 doit avoir la valeur -20 dans le nouveau système de coordonnées

56 FN 25: PRESET = Z / +50 / -20

10.9 Introduire directement une formule

A l'aide des softkeys, vous pouvez introduire directement dans le programme d'usinage des formules arithmétiques contenant plusieurs opérations de calcul:

Introduire la formule

Les formules apparaissent lorsque vous appuyez sur la softkey FORMULE. La TNC affiche alors les softkeys suivantes dans plusieurs menus:

Fonction de liaison	Softkey
Addition Ex. Q10 = Q1 + Q5	+
Soustraction Ex. Q25 = Q7 – Q108	-
Multiplication Ex. Q12 = 5 * Q5	*
Division Ex. Q25 = Q1 / Q2	/
Parenthèse ouverte Ex. Q12 = Q1 * (Q2 + Q3)	(
Parenthèse fermée Ex. Q12 = Q1 * (Q2 + Q3)	
Elévation d'une valeur au carrée (de l'angl. square) Ex. Q15 = SQ 5	SD
Extraire la racine carrée (de l'angl. square root) Ex. Q22 = SQRT 25	SORT
Sinus d'un angle Ex. Q44 = SIN 45	SIN
Cosinus d'un angle Ex. Q45 = COS 45	cos
Tangente d'un angle Ex. Q46 = TAN 45	TAN

Arc-sinus Fonction inverse du sinus; définir l'angle issu du rapport de la perpendiculaire opposée à l'hypothénuse Ex. Q10 = ASIN 0,75

Arc-cosinus

Fonction de liaison

Fonction inverse du cosinus; définir l'angle issu du
rapport du côté adjacent à l'hypothénuse
Ex. Q11 = ACOS Q40

Arc-tangente

Fonction inverse de la tangente; définir l'angle issu du rapport entre perpendiculaire et coté adjacent Ex. Q12 = ATAN Q50

Elever des valeurs à une puissance Ex. Q15 = 3^3

Constante PI (3,14159) Ex. Q15 = PI

Calcul du logarithme naturel (LN) d'un nombre nombre de base 2,7183 Ex. Q15 = LN Q11

Calcul logarithme d'un nombre, nombre de base 10 Ex. Q33 = LOG Q22

Fonction exponentielle, 2,7183 puissance n Ex. Q1 = EXP Q12

Inversion logique (multiplication par -1) Ex. Q2 = NEG Q1

Suppression d'emplacements après la virgule
Calculer un nombre entier
Ex. Q3 = INT Q42

Calcul de la valeur absolue	
Ex. Q4 = ABS Q22	

Suppression d'emplacements avant la virgule
Fractionnement
Ex. Q5 = FRAC Q23

Règles régissant les calculs

Softkey

ASIN

ACOS

^

ΡI

LN

LOG

EXP

NEG

INT

ABS

FRAC

Les formules suivantes régissent la programmation de formules arithmétiques:

Multiplication et division avec addition et soustraction

$12 \ Q1 = 5 \times 3 + 2 \times 10 = 35$

1ère étape 5 * 3 = 15 2ème étape 2 * 10 = 20 3ème étape 15 + 20 = 35

$13 \ Q2 = SQ \ 10 - 3^3 = 73$

1ère étape 10 puissance 2 = 1002ème étape 3 puissance 3 = 273ème étape 100 - 27 = 73

Règle de distributivité

pour calculs entre parenthèses

a * (b + c) = a * b + a * c

Exemple d'introduction

Calculer un angle avec arctan comme perpendiculaire (Q12) et côté adjacent (Q13); affecter le résultat à Q25:

Sélectionner l'introduction de la formule: appuyer sur la touche Q et sur la softkey FORMULE

N° de paramè	tre pour résultat ?
25 ^{■NT}	Introduire le numéro du paramètre
RTRN	Commuter à nouveau le menu de softkeys; sélectionner la fonction arc-tangente
	Commuter à nouveau le menu de softkeys et ouvrir la parenthèse
Q 12	Introduire le numéro de paramètre Q12
/	Sélectionner la division
Q 13	Introduire le numéro de paramètre Q13
) END	Fermer la parenthèse et clôre l'introduction de la formule

Exemple de séquence CN

37 Q25 = ATAN (Q12/Q13)

10.10 Paramètres Q réservés

La TNC affecte des valeurs aux paramètres Q100 à Q122. Les paramètres Q recoivent:

- des valeurs de l'automate
- des informations concernant l'outil et la broche
- des informations sur l'état de fonctionnement, etc.

Valeurs de l'automate: Q100 à Q107

La TNC utilise les paramètres Q100 à Q107 pour transférer des valeurs de l'automate vers un programme CN

Rayon d'outil actif: Q108

La valeur active du rayon d'outil est affectée au paramètre Q108. Q108 est composé de:

- rayon d'outil R (tableau d'outils ou séquence TOO DEF)
- valeur Delta DR à partir du tableau d'outils
- valeur Delta DR à partir de la séquence TOOL CALL

Axe d'outil: Q109

La valeur du paramètre Q109 dépend de l'axe d'outil en cours d'utilisation:

Axe d'outil	Val. paramètre
Aucun axe d'outil défini	Q109 = -1
Axe X	Q109 = 0
Axe Y	Q109 = 1
Axe Z	Q109 = 2
Axe U	Q109 = 6
AxeV	Q109 = 7
Axe W	Q109 = 8

Fonction de la broche: Q110

La valeur du paramètre Q110 dépend de la dernière fonction M programmée pour la broche:

Fonction M	Val. paramètre
Aucune fonction broche définie	Q110 = -1
M03: MARCHE broche sens horaire	Q110 = 0
M04: MARCHE broche sens anti-horaire	Q110 = 1
M05 après M03	Q110 = 2
M05 après M04	Q110 = 3

Arrosage: Q111

Fonction M	Val. paramètre
M08: MARCHE arrosage	Q111 = 1
M09: ARRET arrosage	Q111 = 0
Facteur de recouvrement: Q112

La TNC affecte au paramètre Q112 le facteur de recouvrement pour le fraisage de poche (PM7430).

Unité de mesure dans le programme: Q113

Pour les imbrications avec PGM CALL, la valeur du paramètre Q113 dépend de l'unité de mesure utilisée dans le programme qui appelle en premier d'autres programmes.

Unité de mesure dans programme principal	Val. paramètre
Système métrique (mm)	Q113 = 0
Système en pouce (inch)	Q113 = 1

Longueur d'outil: Q114

La valeur effective de la longueur d'outil est affectée au paramètre Q114.

Coordonnées issues du palpage en cours d'exécution du programme

Après une mesure programmée réalisée au moyen du palpeur 3D, les paramètres Q115 à Q119 contiennent les coordonnées de la position de la broche au point de palpage.

La longueur de la tige de palpage et le rayon de la bille ne sont pas pris en compte pour ces coordonnées.

Axe de coordonnées		Paramètre
Axe X		Q115
Axe Y		Q116
Axe Z		Q117
Axe IV	(dépend de PM100)	Q118
Axe V	(dépend de PM100)	Q119

Ecart entre valeur nominale et valeur effective lors de l'étalonnage d'outil automatique avec le TT 120

Ecart val. nom./eff.	Paramètre
Longueur d'outil	Q115
Rayon d'outil	Q116

Inclinaison du plan d'usinage avec angles de la pièce: coordonnées des axes rotatifs calculés par la TNC

Coordonnées	Paramètre
Axe A	Q120
Axe B	Q121
Axe C	Q122

Résultats des mesures réalisées avec les cycles de palpage (se reporter également au Manuel d'utilisation Cycles palpeurs)

Valeurs effectives mesurées	Paramètre
Centre axe principal	Q151
Centre axe auxiliaire	Q152
Diamètre	Q153
Longueur poche	Q154
Largeur poche	Q155
Longueur de l'axe sélectionné dans le cycle	Q156
Position de l'axe moyen	Q157
Angle de l'axe A	Q158
Angle de l'axe B	Q159
Coordonnée de l'axe sélectionné dans le cycle	Q160

Ecart calculé	Paramètre
Centre axe principal	Q161
Centre axe auxiliaire	Q162
Diamètre	Q163
Longueur poche	Q164
Largeur poche	Q165
Longueur mesurée	Q166
Position de l'axe moyen	Q167

Etat de la pièce	Paramètre
Bon	Q180
Réusinage	Q181
Pièce rebutée	Q182

Exemple: Ellipse

Déroulement du programme

- Le contour de l'ellipse est constitué de nombreux petits segments de droite (à définir avec Q7). Plus vous aurez défini de pas de calcul et plus lisse sera le contour
- Définissez le sens du fraisage avec l'angle initial et l'angle final dans le plan:

Sens de l'usinage dans le sens horaire: angle initial > angle final Sens de l'usinage dans le sens anti-horaire: angle initial < angle final

Le rayon d'outil n'est pas pris en compte

O BEGIN PGM ELLIPSE MM	
1 FN 0: Q1 = +50	Centre de l'axe X
2 FN 0: Q2 = +50	Centre de l'axe Y
3 FN 0: Q3 = +50	Demi-axe X
4 FN 0: Q4 = +30	Demi-axe Y
5 FN 0: Q5 = +0	Angle initial dans le plan
6 FN 0: Q6 = +360	Angle final dans le plan
7 FN 0: Q7 = +40	Nombre de pas de calcul
8 FN 0: Q8 = +0	Position angulaire de l'ellipse
9 FN 0: Q9 = +5	Profondeur de fraisage
10 FN 0: Q10 = +100	Avance au fond
11 FN 0: Q11 = +350	Avance de fraisage
12 FN 0: Q12 = +2	Distance d'approche pour le pré-positionnement
13 BLK FORM 0.1 Z X+0 Y+0 Z-20	Définition de la pièce brute
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+2,5	Définition de l'outil
16 TOOL CALL 1 Z S4000	Appel de l'outil
17 L Z+250 RO F MAX	Dégager l'outil
18 CALL LBL 10	Appeler l'usinage
19 L Z+100 RO F MAX M2	Dégager l'outil, fin du programme

programmation
de
Exemples
10.11

20	LBL 10	Sous-programme 10: Usinage
21	CYCL DEF 7.0 POINT ZERO	Décaler le point zéro au centre de l'ellipse
22	CYCL DEF 7.1 X+Q1	
23	CYCL DEF 7.2 Y+Q2	
24	CYCL DEF 10.0 ROTATION	Calculer la position angulaire dans le plan
25	CYCL DEF 10.1 ROT+Q8	
26	Q35 = (Q6 - Q5) / Q7	Calculer le pas angulaire
27	Q36 = Q5	Copier l'angle initial
28	Q37 = 0	Initialiser le compteur pour les pas fraisés
29	Q21 = Q3 * COS Q36	Calculer la coordonnée X du point initial
30	Q22 = Q4 * SIN Q36	Calculer la coordonnée Y du point initial
31	L X+Q21 Y+Q22 RO F MAX M3	Aborder le point initial dans le plan
32	L Z+Q12 RO F MAX	Pré-positionnement à la distance d'approche dans l'axe de broche
33	L Z-Q9 R0 FQ10	Aller à la profondeur d'usinage
34	LBL 1	
35	Q36 = Q36 + Q35	Actualiser l'angle
36	Q37 = Q37 + 1	Actualiser le compteur
37	Q21 = Q3 * COS Q36	Calculer la coordonnée X effective
38	Q22 = Q4 * SIN Q36	Calculer la coordonnée Y effective
39	L X+Q21 Y+Q22 R0 FQ11	Aborder le point suivant
40	FN 12: IF +Q37 LT +Q7 GOTO LBL 1	Demande si travail non encore terminé, si oui, retour à LBL 1
41	CYCL DEF 10.0 ROTATION	Annuler la rotation
42	CYCL DEF 10.1 ROT+0	
43	CYCL DEF 7.0 POINT ZERO	Annuler le décalage du point zéro
44	CYCL DEF 7.1 X+0	
45	CYCL DEF 7.2 Y+0	
46	L Z+Q12 RO F MAX	Aller à la distance d'approche
47	LBL O	Fin du sous-programme
48	END PGM ELLIPSE MM	

Exemple: Cylindre concave avec fraise à crayon

Déroulement du programme

- Ce programme ne fonctionne qu'avec fraise à crayon
- Le contour de l'ellipse est constitué de nombreux petits segments de droite (à définir avec Q13). Plus vous aurez défini de pas de calcul et plus lisse sera le contour
- Le cylindre est fraisé en coupes longitudinales (dans ce cas: parallèles à l'axe Y)
- Définissez le sens du fraisage avec l'angle initial et l'angle final dans l'espace:

Sens de l'usinage dans le sens horaire: angle initial > angle final Sens de l'usinage dans le sens anti-horaire: angle initial < angle final

Le rayon d'outil est corrigé automatiquement

U BEGIN PGM CYLIN MM	
1 FN 0: Q1 = +50	Centre de l'axe X
2 FN 0: Q2 = +0	Centre de l'axe Y
3 FN 0: Q3 = +0	Centre de l'axe Z
4 FN 0: Q4 = +90	Angle initial dans l'espace (plan Z/X)
5 FN 0: Q5 = +270	Angle final dans l'espace (plan Z/X)
6 FN 0: Q6 = +40	Rayon du cylindre
7 FN 0: Q7 = +100	Longueur du cylindre
8 FN 0: Q8 = +0	Position angulaire dans le plan X/Y
9 FN 0: Q10 = +5	Surépaisseur de rayon du cylindre
10 FN 0: Q11 = +250	Avance plongée en profondeur
11 FN 0: Q12 = +400	Avance de fraisage
12 FN 0: Q13 = +90	Nombre de coupes
13 BLK FORM 0.1 Z X+0 Y+0 Z-50	Définition de la pièce brute
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+3	Définition de l'outil
16 TOOL CALL 1 Z S4000	Appel de l'outil
17 L Z+250 RO F MAX	Dégager l'outil
18 CALL LBL 10	Appeler l'usinage
19 FN 0: Q10 = +0	Annuler la surépaisseur
20 CALL LBL 10	Appeler l'usinage
21 L Z+100 R0 F MAX M2	Dégager l'outil, fin du programme

22	LBL 10	Sous-programme 10: Usinage
23	Q16 = Q6 - Q10 - Q108	Calcul surépaisseur et outil par rapport au rayon du cylindre
24	FN 0: Q20 = +1	Initialiser le compteur pour les pas fraisés
25	FN 0: Q24 = +Q4	Copier l'angle initial dans l'espace (plan Z/X)
26	Q25 = (Q5 - Q4) / Q13	Calculer le pas angulaire
27	CYCL DEF 7.0 POINT ZERO	Décaler le point zéro au centre du cylindre (axe X)
28	CYCL DEF 7.1 X+Q1	
29	CYCL DEF 7.2 Y+Q2	
30	CYCL DEF 7.3 Z+0	
31	CYCL DEF 10.0 ROTATION	Calculer la position angulaire dans le plan
32	CYCL DEF 10.1 ROT+Q8	
33	L X+O Y+O RO F MAX	Pré-positionnement dans le plan, au centre du cylindre
34	L Z+5 R0 F1000 M3	Pré-positionnement dans l'axe de broche
35	CC Z+0 X+0	Initialiser le pôle dans le plan Z/X
36	LP PR+Q16 PA+Q24 FQ11	Aborder position initiale du cyclindre, obliquement dans la matière
37	LBL 1	
38	L Y+Q7 R0 FQ11	Coupe longitudinale dans le sens Y+
39	FN 1: Q20 = +Q20 + +1	Actualiser le compteur
40	FN 1: Q24 = +Q24 + +Q25	Actualiser l'angle solide
41	FN 11: IF +Q20 GT +Q13 GOTO LBL 99	Demande si travail terminé, si oui, aller à la fin
42	LP PR+Q16 PA+Q24 FQ12	Aborder l'"arc" pour usiner la coupe longitudinale suivante
43	L Y+0 R0 FQ11	Coupe longitudinale dans le sens Y-
44	FN 1: Q20 = +Q20 + +1	Actualiser le compteur
45	FN 1: Q24 = +Q24 + +Q25	Actualiser l'angle solide
46	FN 12: IF +Q20 LT +Q13 GOTO LBL 1	Demande si travail non encore terminé, si oui, retour à LBL 1
47	LBL 99	
48	CYCL DEF 10.0 ROTATION	Annuler la rotation
49	CYCL DEF 10.1 ROT+0	
50	CYCL DEF 7.0 POINT ZERO	Annuler le décalage du point zéro
51	CYCL DEF 7.1 X+0	
52	CYCL DEF 7.2 Y+0	
53	CYCL DEF 7.3 Z+0	
54	LBL O	Fin du sous-programme
55	END PGM CYLIN	

Exemple: Sphère convexe avec fraise deux tailles

Déroulement du programme

- Ce programme ne fonctionne qu'avec fraise deux tailles
- Le contour de l'ellipse est constitué de nombreux petits segments de droite (à définir avec Q14). Plus vous aurez défini de pas de calcul et plus lisse sera le contour
- Définissez le nombre de coupes sur le contour avec le pas angulaire dans le plan (avec Q18)
- La sphère est fraisée suivant des coupes 3D dirigées de bas en haut
- Le rayon d'outil est corrigé automatiquement

U BEGIN PGM SPHERE MM	
1 FN 0: Q1 = +50	Centre de l'axe X
2 FN 0: Q2 = +50	Centre de l'axe Y
3 FN 0: Q4 = +90	Angle initial dans l'espace (plan Z/X)
4 FN 0: Q5 = +0	Angle final dans l'espace (plan Z/X)
5 FN 0: Q14 = +5	Pas angulaire dans l'espace
6 FN 0: Q6 = +45	Rayon de la sphère
7 FN 0: Q8 = +0	Position de l'angle initial dans le plan X/Y
8 FN 0: Q9 = +360	Position de l'angle final dans le plan X/Y
9 FN 0: Q18 = +10	Pas angulaire dans le plan X/Y pour l'ébauche
10 FN 0: Q10 = +5	Surépaisseur du rayon de la sphère pour l'ébauche
11 FN 0: Q11 = +2	Distance d'approche pour prépositionnement dans l'axe de broche
12 FN 0: Q12 = +350	Avance de fraisage
13 BLK FORM 0.1 Z X+0 Y+0 Z-50	Définition de la pièce brute
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+7,5	Définition de l'outil
16 TOOL CALL 1 Z S4000	Appel de l'outil
17 L Z+250 RO F MAX	Dégager l'outil
18 CALL LBL 10	Appeler l'usinage
19 FN 0: Q10 = +0	Annuler la surépaisseur
20 FN 0: Q18 = +5	Pas angulaire dans le plan X/Y pour la finition
21 CALL LBL 10	Appeler l'usinage
22 L Z+100 R0 F MAX M2	Dégager l'outil, fin du programme

10.11 Exemples de programmation

23	LBL 10	Sous-programme 10: Usinage
24	FN 1: Q23 = +Q11 + +Q6	Calculer coordonnée Z pour le pré-positionnement
25	FN 0: $Q24 = +Q4$	Copier l'angle initial dans l'espace (plan Z/X)
26	FN 1: $Q26 = +Q6 + +Q108$	Corriger le rayon de la sphère pour le pré-positionnement
27	FN 0: Q28 = +Q8	Copier la position angulaire dans le plan
28	FN 1: Q16 = +Q6 + -Q10	Prendre en compte la surépaisseur pour le rayon de la sphère
29	CYCL DEF 7.0 POINT ZERO	Décaler le point zéro au centre de la sphère
30	CYCL DEF 7.1 X+Q1	
31	CYCL DEF 7.2 Y+Q2	
32	CYCL DEF 7.3 Z-Q16	
33	CYCL DEF 10.0 ROTATION	Calculer la position angulaire dans le plan
34	CYCL DEF 10.1 ROT+Q8	
35	CC X+0 Y+0	Initialiser le pôle dans le plan X/Y pour le pré-positionnement
36	LP PR+Q26 PA+Q8 R0 FQ12	Pré-positionnement dans le plan
37	LBL 1	Pré-positionnement dans l'axe de broche
38	CC Z+0 X+Q108	Initialiser le pôle dans le plan Z/X, avec décalage du rayon d'outil
39	L Y+0 Z+0 FQ12	Se déplacer à la profondeur
40	LBL 2	
41	LP PR+Q6 PA+Q24 R0 FQ12	Se déplacer sur l'"arc" vers le haut
42	FN 2: Q24 = +Q24 - +Q14	Actualiser l'angle solide
43	FN 11: IF +Q24 GT +Q5 GOTO LBL 2	Demande si un arc est terminé, si non, retour au LBL 2
44	LP PR+Q6 PA+Q5	Aborder l'angle final dans l'espace
45	L Z+Q23 R0 F1000	Dégager l'outil dans l'axe de broche
46	L X+Q26 RO F MAX	Pré-positionnement pour l'arc suivant
47	FN 1: Q28 = +Q28 + +Q18	Actualiser la position angulaire dans le plan
48	FN 0: Q24 = +Q4	Annuler l'angle solide
49	CYCL DEF 10.0 ROTATION	Activer nouvelle position angulaire
50	CYCL DEF 10.1 ROT+Q28	
51	FN 12: IF +Q28 LT +Q9 GOTO LBL 1	
52	FN 9: IF +Q28 EQU +Q9 GOTO LBL 1	Demande si travail non encore terminé, si oui, retour au LBL 1
53	CYCL DEF 10.0 ROTATION	Annuler la rotation
54	CYCL DEF 10.1 ROT+0	
55	CYCL DEF 7.0 POINT ZERO	Annuler le décalage du point zéro
56	CYCL DEF 7.1 X+0	
57	CYCL DEF 7.2 Y+0	
58	CYCL DEF 7.3 Z+0	
59	LBL O	Fin du sous-programme
60	END PGM SPHERE MM	

Test de programme et exécution de programme

11.1 Graphismes

En modes Exécution de programme et en mode Test de programme, la TNC simule l'usinage de manière graphique. A l'aide des softkeys, vous sélectionnez le graphisme avec

Vue de dessus

Représentation en 3 plans

Représentation 3D

Le graphisme de la TNC représente une pièce usinée avec un outil de forme cylindrique. Si le tableau d'outils est actif, vous pouvez également représenter l'usinage avec fraise à crayon. Pour cela, introduisez R2 = R dans le tableau d'outils.

La TNC ne représente pas le graphisme

lorsque le programme actuel ne contient pas de définition correcte de la pièce brute

et si aucun programme n'a été sélectionné

A l'aide des paramètres-machine 7315 à 7317, vous pouvez décréter que la TNC doit quand même représenter le graphisme si l'axe de broche n'est ni défini, ni déplacé.

Vous ne pouvez pas utiliser la simulation graphique pour des parties de programme ou programmes comportant des déplacements d'axes rotatifs ou l'inclinaison du plan d'usinage: Dans de tels cas, la TNC délivre un message d'erreur.

Vue d'ensemble: Projections

En modes Exécution de programme et en mode Test de programme, la TNC affiche les softkeys suivantes:

Projection	Softkey
Vue de dessus	
Représentation en 3 plans	
Représentation 3D	

Restriction en cours d'exécution du programme

L'usinage ne peut être représenté simultanément de manière graphique si le calculateur de la TNC est saturé par des instructions d'usinage complexes ou opérations d'usinage de grande envergure. Ex.: Usinage ligne-à-ligne sur toute la pièce brute avec un gros outil. La TNC n'affiche plus le graphisme et délivre le texte ERROR dans la fenêtre du graphisme. L'usinage se poursuit néanmoins.

Vue de dessus

Sélectionner la vue de dessus à l'aide de la softkey

€ 16/32 Sélectionner le nombre de niveaux de profondeur (commuter le menu): commuter entre 16 ou 32 niveaux. Il est de règle pour la représentation que:

"plus le niveau est profond, plus le graphisme est sombre"

Cette simulation graphique est très rapide.

Représentation en 3 plans

La projection donne une vue de dessus avec 2 coupes, comme sur un plan. Le symbole en bas et à gauche du graphisme précise si la représentation correspond aux méthodes de projection 1 ou 2 selon DIN 6, chap. 1 (sélectionnable par PM7310).

La représentation en 3 plans dispose de fonctions loupe (cf. "Agrandissement de la projection")

Vous pouvez aussi faire glisser le plan de coupe avec les softkeys:

► A l'aide de la softkey, sélectionner la représentation en 3 plans

Commutez le menu de softkeys jusqu'à ce que la TNC affiche les softkeys suivantes:

Pendant le décalage, l'écran affiche la position du plan de coupe.

Coordonnées de la ligne transversale

La TNC affiche les coordonnées de la ligne transversale par rapport au point zéro pièce dans la fenêtre graphique, en bas de l'écran. Seules les coordonnées du plan d'usinage sont affichées. Vous activez cette fonction à l'aide du paramètre-machine 7310.

Représentation 3D

La TNC représente la pièce dans l'espace.

Vous pouvez faire pivoter la représentation 3D autour de l'axe vertical. Au début de la simulation graphique, vous pouvez représenter les contours de la pièce brute sous forme de cadre.

Les fonctions loupe sont disponibles en mode Test de programme (cf. "Agrandissement de la projection).

▶ Sélectionner la représentation 3D par softkey

Rotation de la représentation 3D

Commuter le menu de softkeys jusqu'à ce que les softkeys suivantes apparaissent:

Faire pivoter verticalement la représentation par pas de 27°

Softkeys

Faire apparaître le cadre du contour de la pièce brute ou le supprimer

Fonction

► Faire apparaître le cadre: softkey AFFICHE BLK-FORM

Faire disparaître le cadre: Softkey OMETTRE BLK-FORM

Agrandissement de la projection

Vous pouvez modifier la projection en mode Test de programme pour

la représentation en 3 plans et

Représentation 3D

04:08:14

RESET

START

START

Pour cela, la simulation graphique doit être arrêtée. Un agrandissement de la projection est toujours actif dans tous les modes de représentation.

Commuter le menu de softkeys en mode Test de programme jusqu'à ce que les softkeys suivantes apparaissent:

Fonction	Softkeys
Sélection face gauche/droite de la pièce	
Sélection face avant/arrière de la pièce	
Sélection face haut/bas de la pièce	
Faire glisser surface de coupe pour réduire ou agrandir la pièce brute	- +
Prendre en compte le détail souhaité	PR. CPTE DETAIL

Modifier l'agrandissement de la projection

Softkeys: cf. tableau

- ▶ Si nécessaire, arrêter la simulation graphique
- A l'aide de la softkey (tableau), sélectionner le côté de la pièce
- ▶ Réduire ou agrandir la pièce brute: maintenir enfoncée la softkey "-" ou "+"
- Prendre en compte le détail souhaité: appuyer sur la softkey PR. EN CPTE BLOC-A-BLOC
- Relancer le test ou l'exécution du programme avec la softey START (RESET + START rétablit la pièce brute d'origine)

Position du curseur avec l'agrandissement de la projection

Lors d'un agrandissement de la projection, la TNC affiche les coordonnées de l'axe que vous avez sectionné. Les coordonnées correspondent à la zone définie pour l'agrandissement de la projection. A gauche du trait oblique, la TNC affiche la plus petite coordonnée de la zone (point MIN) et à droite, la plus grande coordonnée (point MAX).

Lors d'un agrandissement de la projection, la TNC affiche MAGN en bas et à droite de l'écran.

Lorsque la TNC ne peut plus réduire ou agrandir davantage la pièce brute, elle affiche le message d'erreur adéquat dans la fenêtre du graphisme. Pour supprimer le message d'erreur, agrandissez ou diminuez à nouveau la pièce brute.

Répéter la simulation graphique

Un programme d'usinage peut être simulé graphiquement à volonté. Pour cela, vous pouvez remettre le graphisme conforme à la pièce brute ou annuler un agrandissement de celle-ci.

Fon	ction	Softke
Affie l'ag	cher la pièce brute non usinée suivant randissement de projection précédent	ANNULER PIECE BRUTE
Ann à ce	uler l'agrandissement de projection de manière a que la TNC représente la pièce usinée ou non	PIECE BR. DITO BLK FORM

Annuler l'agrandissement de projection de manière à ce que la TNC représente la pièce usinée ou non usinée conformément à la BLK FORM programmée

Avec la softkey PIECE BR. DITO BLK FORM, la TNC affiche - même après découpe sans PR. EN CPTE softkey PR. EN CPTE – la pièce usinée selon sa dimension programmée.

Calcul du temps d'usinage

Modes de fonctionnement Exécution de programme

Affichage de la durée comprise entre le début et la fin du programme. Le temps est arrêté en cas d'interruption.

Test de programme

Affichage du temps approximatif calculé par la TNC pour la durée des déplacements avec avance de l'outil. Cette durée ne peut pas être utilisée pour calculer les temps de fabrication car la TNC ne prend pas en compte les temps machine (par exemple, le changement d'outil).

Sélectionner la fonction chronomètre

Commuter le menu de softkeys jusqu'à ce que la TNC affiche les softkeys suivantes avec les fonctions chronomètre:

Fonctions chronomètre	Softkey
Mémoriser le temps affiché	MEMORISER
Afficher la somme du temps mémorisé et du temps affiché	ADDITION.
Effacer le temps affiché	RE-INIT. 00:00:00

Les softkeys à gauche des fonctions chronomètre dépendent de la répartition d'écran sélectionnée.

Мос	le manue	Tes	st du	progr	amme			
ø	BEGIN	PGM 3DJOIN	IT MM					
1	BLK FO	RM 0.1 Z X	+0 Y+0 Z-5	2				
2	BLK FO	RM 0.2 X+1	00 Y+100 Z	+0				
з	TOOL D	EF 1 L+0 R	+10					
4	TOOL C	ALL 1 Z					1112	
Б	L Z+20	RØ F MAX	M6					
6	CYCL D	EF 7.0 POI	NT ZERO					
7	CYCL D	EF 7.1 X-1	0			HØ.		
8	8 CALL LBL 1							
9	CYCL D	EF 7.0 POI	NT ZERO					
10	CYCL	DEF 7.1 X+	0					
11	CALL	LBL 1						
12	CYCL	DEF 7.0 PO	INT ZERO					
13	CYCL	DEF 7.1 X+	110					
14	CYCL	DEF 7.2 Y+	100		0°			01:11:54
	Ð	Ð,	AFFICHE BLK-FORM	OMETTRE BLK-FORM	ANNULER PIECE BRUTE	MEMORISER	ADDITION.	RE-INIT. 00:00:00

11.2 Fonctions d'affichage pour l'exécution de programme/ le test de programme

En modes Exécution de programme et Test de programme, la TNC affiche les softkeys qui vous permettent de feuilleter dans le programme d'usinage:

Fonctions	Softkey
Dans le programme, feuilleter d'une page d'écran en arrière	PAGE
Dans le programme, feuilleter d'une page d'écran en avant	PAGE J
Sélectionner le début du programme	
Sélectionner la fin du programme	FIN <u>U</u>

E×e	cuti	on	PGM	en co	ntinu		Mi p:	émorisation rogramme
0	BEGI	ΝP	GM 3!	516 M	М		•	
1	BLK	FOR	м Ø.	1 Z X	-90 Y	-90 Z-	-40	
2	BLK	FOR	м ø.:	2 X+9	0 Y+9	0 Z+0		
3	TOOL	CA	LL 1	Z S1	400			
4	L Z+	50	RØ F	MAX				
5	CALL	LΒ	L 1					
6	L Z+	100	RØ I	г мах	M2			
7	LBL	1						
8	L X+	0 Y	+80	RL F2	50			
Х	+29	7,70	976 * '	Y +	16,58	92 + Z	-2	0,1599
₩ A	+18	2,1	728 +1	B +1	81,07	75 +C	+9	0,0000
						S	0,0	87
NOM.			Т			F Ø		M 5⁄9
PAGE	E PA	IGE	DEBUT	FIN	AMORCE			

11.3 Test de programme

En mode Test de programme, vous simulez le déroulement des programmes et parties de programmes afin d'éviter par la suite les erreurs lors de l'exécution du programme. La TNC vous permet de détecter les

- incompatibilités géométriques
- données manquantes
- sauts ne pouvant être exécutés
- endommagements de la zone de travail

Vous pouvez en outre utiliser les fonctions suivantes:

- test de programme pas-à-pas
- arrêt du test à une séquence quelconque
- Passer outre certaines séquences
- fonctions destinées à la représentation graphique
- calcul du temps d'usinage
- affichages d'état supplémentaires

Exécuter un test de programme

Si la mémoire centrale d'outils est active, vous devez avoir activé un tableau d'outils (état S) pour réaliser le test du programme. Pour cela, en mode Test de programme, sélectionnez un fichier d'outils avec la gestion de fichiers (PGM MGT).

La fonction MOD PIECE BR. DANS ZONE TRAVAIL vous permet d'activer une surveillance de la zone de travail pour le test du programme (cf. "12 Fonctions MOD, Représenter la pièce brute dans la zone de travail").

- ▶ Sélectionner le mode Test de programme
- Afficher la gestion de fichiers avec la touche PGM MGT et sélectionner le fichier que vous désirez tester ou
- sélectionner le début du programme: avec GOTO, sélectionner la ligne "0" et validez avec ENT

La TNC affiche les softkeys suivantes:

Fonctions	Softkey
Tester tout le programme	START
Tester une à une chaque séquence du programme	START PAS-A-PAS
Représenter la pièce brute et tester tout le programme	RESET + START
Arrêter le test du programme	STOP

Exécuter le test du programme jusqu'à une séquence donnée

Avec STOP A N, la TNC n'exécute le test de programme que jusqu'à la séquence portant le numéro N.

- En mode Test de programme, sélectionner le début du programme
- Sélectionner le test de programme jusqu'à une séquence donnée:

appuyer sur la softkey STOP A N

Stop à N: introduire le numéro de la séquence à laquelle le test du programme doit être arrêté

- Programme: introduire le nom du programme contenant la séquence portant le numéro de la séquence sélectionnée; la TNC affiche le nom du programme sélectionné; si l'arrêt de programme doit se situer à l'intérieur d'un programme appelé avec PGM CALL, introduire alors ce nom
- Répétitions: nombre de répétitions à exécuter dans le cas où N est situé à l'intérieur d'une répétition de partie de programme
- Tester une section de programme: appuyer sur la softkey START; la TNC teste le programme jusqu'à la séquence programmée

Execution PGM en continu	Test du	progr	ramme			
0 BEG 1 BLK 2 BLK 3 TOOL 4 L Z- 5 CALL 6 L Z- 7 LBL 8 L X- 9 FPOL 10 FC	IN PGM 35 FORM 0.1 FORM 0.2 L CALL 1 +50 R0 F L LBL 1 +100 R0 F 1 +0 Y+80 F L X+0 Y+6 DR- R80	516 MN 2 X+90 2 S14 MAX 7 MAX 7 MAX 7 MAX 7 CCX+0	1 -90 Y- 3 Y+90 400 M2 50 3 CCY+	-90 Z- 3 Z+0	- 4 0	
Jusqu'a Progran Répétii	au bloc M mme tions	N = <mark>28</mark> = 38 = 1	5 516.H			
		∕□ DFF/ ON	START PAS-A-PAS	FIN	START	RESET * START

11.4 Exécution de programme

En mode Exécution de programme en continu, la TNC exécute un programme d'usinage de manière continue jusqu'à la fin du programme ou jusqu'à une interruption de celui-ci.

En mode Exécution de programme pas-à-pas, vous exécutez chaque séquence en appuyant sur la touche de START externe.

Vous pouvez utiliser les fonctions TNC suivantes en mode Exécution de programme:

- Interruption de l'exécution du programme
- Exécution du programme à partir d'une séquence donnée
- Passer outre certaines séquences
- Editer un tableau d'outils TOOL.T
- Contrôler et modifier les paramètres Q
- Priorité sur le positionnement manivelle
- Fonctions destinées à la représentation graphique
- Affichages d'état supplémentaires

Exécuter un programme d'usinage

Préparatifs

- 1 Brider la pièce sur la table de la machine
- 2 Initialiser le point de référence
- 3 Sélectionner les tableaux et fichiers de palettes (état M)
- 4 Sélectionner le programme d'usinage (état M)

Vous pouvez modifier l'avance et la vitesse de rotation broche à l'aide des boutons des potentiomètres.

Exécution de programme en continu

Lancer le programme d'usinage à l'aide de la touche START externe

Exécution de programme pas-à-pas

► Lancer une-à-une chaque séquence du programme d'usinage à l'aide de la touche START externe

11.4 Exécution de programme

Interrompre l'usinage

Vous disposez de plusieurs possibilités pour interrompre l'exécution d'un programme:

- Interruptions programmées
- Touche STOP externe
- Commutation sur Exécution de programme pas-à-pas

Lorsque la TNC enregistre une erreur pendant l'exécution du programme, elle interrompt alors automatiquement l'usinage.

Interruptions programmées

Vous pouvez définir des interruptions directement dans le programme d'usinage. La TNC interrompt l'exécution de programme dès que le programme d'usinage arrive à la séquence contenant l'une des indications suivantes:

- STOP (avec ou sans fonction auxiliaire)
- Fonction auxiliaire M0, M2 ou M30
- Fonction auxiliaire M6 (définie par le constructeur de la machine)

Interruption à l'aide de la touche STOP externe

- Appuyer sur la touche STOP externe: La séquence que la TNC est en train d'exécuter au moment où vous appuyez sur la touche ne sera pas exécutée intégralement; le symbole "*" clignote dans l'affichage d'état
- Si vous ne désirez pas poursuivre l'usinage, arrêtez la TNC à l'aide de la softkey STOP INTERNE: Le symbole "*" s'éteint dans l'affichage d'état. Dans ce cas, il convient de relancer le programme à partir du début

Interrompre l'usinage en commutant sur le mode Exécution de programme pas-à-pas

Pendant que le programme d'usinage est exécuté en mode Exécution de programme en continu, sélectionnez Exécution de programme pas-à-pas. La TNC interrompt l'usinage lorsque le pas d'usinage en cours est achevé.

Déplacer les axes de la machine pendant une interruption

Vous pouvez déplacer les axes de la machine pendant une interruption, de la même manière qu'en mode Manuel.

Danger de collision!

Si le plan d'usinage est incliné et si vous interrompez l'exécution du programme, vous pouvez commuter le système de coordonnées avec la softkey 3D ON/OFF entre l'inclinaison et la non-inclinaison.

La fonction des touches de sens des axes, de la manivelle et de la logique de redémarrage est traitée en conséquence par la TNC. Lors du dégagement, veillez à ce que le bon système de coordonnées soit activé et à ce que les valeurs angulaires des axes rotatifs aient été introduites dans le menu ROT 3D.

Exemple d'application:

Dégagement de la broche après une rupture de l'outil

- ▶ Interrompre l'usinage
- ▶ Déverrouiller les touches de sens externes; appuver sur la softkev DEPLACEMENT MANUEL.
- ▶ Déplacer les axes machine avec les touches de sens externes

Sur certaines machines, vous devez appuyer sur la touche START externe après avoir actionné la softkey DEPLACEMENT MANUEL pour déverrouiller les touches de sens externes. Consultez le manuel de votre machine

Poursuivre l'exécution du programme après une interruption

Si vous interrompez l'exécution du programme pendant un cycle d'usinage, vous devez la reprendre au début du cycle. Les pas d'usinage déjà exécutés par la TNC le seront à nouveau.

Si vous interrompez l'exécution du programme à l'intérieur d'une répétition de partie de programme ou d'un sous-programme, vous devez retourner à la position de l'interruption à l'aide de la fonction AMORCE SEQUENCE N.

Lors d'une interruption de l'exécution du programme, la TNC mémorise:

- les données du dernier outil appelé
- les conversions de coordonnées actives
- les coordonnées du dernier centre de cercle défini

Les données mémorisées sont utilisées pour aborder à nouveau le contour après déplacement manuel des axes de la machine pendant une interrruption (ABORDER POSITION).

Poursuivre l'exécution du programme à l'aide de la touche START externe

Vous pouvez relancer l'exécution du programme à l'aide de la touche START externe si vous avez arrêté le programme:

- en appuyant sur la touche STOP externe
- par une interruption programmée

Poursuivre l'exécution du programme à la suite d'une erreur

- Avec un message d'erreur non clignotant:
- Remédier à la cause de l'erreur
- Effacer le message d'erreur à l'écran: appuyer sur la touche CE
- Relancer ou poursuivre l'exécution du programme à l'endroit où il a été interrompu
- Avec un message d'erreur clignotant:
- Maintenir enfoncée la touche END pendant deux secondes, la TNC effectue un démarrage à chaud
- Remédier à la cause de l'erreur
- Relancer

Si l'erreur se répète, notez le message d'erreur et prenez contact avec le service après-vente.

Rentrer dans le programme à un endroit quelconque (amorce de séquence)

La fonction AMORCE SEQUENCE N doit être adaptée à la machine et validée par son constructeur. Consultez le manuel de votre machine.

Avec la fonction AMORCE SEQUENCE N, vous pouvez exécuter un programme d'usinage à partir de n'importe quelle séquence N. La TNC tient compte dans ses calculs de l'usinage de la pièce jusqu'à cette séquence. L'usinage peut être représenté graphiquement.

Si vous avez interrompu un programme par un STOP INTERNE, la TNC vous propose automatiquement la séquence N à l'intérieur de laquelle vous avez arrêté le programme.

Tous les programmes, tableaux et fichiers de palettes dont vous avez besoin doivent être sélectionnés dans un mode Exécution de programme (état M).

Si le programme contient jusqu'à la fin de l'amorce de séquence une interruption programmée, l'amorce de séquence sera interrompue à cet endroit. Pour poursuivre l'amorce de séquence, appuyez sur la touche START externe.

Après une amorce de séquence, l'outil est déplacé à l'aide de la fonction ABORDER POSITION jusqu'à la position calculée.

Le paramètre-machine 7680 permet de définir si l'amorce de séquence débute à la séquence 0 du programme principal lorsque les programmes sont imbriqués, ou à la séquence 0 du programme dans lequel a eu lieu la dernière interruption de l'exécution du programme.

Lors de l'inclinaison du plan d'usinage, vous définissez à l'aide de la softkey 3D ON/OFF si la TNC doit aborder le contour avec système incliné ou non.

- Sélectionner comme début de l'amorce la première séquence du programme actuel: introduire GOTO "0".
- ► Sélectionner l'amorce de séquence: appuyer sur la softkey AMORCE SEQUENCE N

Amorce jusqu'à N: introduire le numéro N de la séquence où doit s'arrêter l'amorce

- Programme: introduire le nom du programme contenant la séquence N
- Répétitions: introduire le nombre de répétitions à prendre en compte dans l'amorce de séquence dans le cas où la séquence N se trouve dans une répétition de partie de programme
- Lancer l'amorce de séquence: appuyer sur la touche START externe
- Aborder le contour: cf. paragr. suivant "Aborder à nouveau le contour"

Exec	ution	PGM e	en cor	ntinu		Mém pro	orisation gramme			
0 BEGIN PGM 3516 MM 1 BLK FORM 0.1 Z X-90 Y-90 Z-40 2 BLK FORM 0.2 X+90 Y+90 Z+0 3 TOOL CALL 1 Z S1400 4 L Z+50 R0 F MAX										
Avance à: N = <mark>35</mark> Programme = 3516.H Répétitions = 1										
X I	+297,7	'076+Y	′ + <u>′</u>	16,589	32 + Z	-20	,1599			
++A +	+182,1	.728 + E	8 +18	31,077	75 + C	+90	,0000			
					S	0,08	7			
NOM.		т			FØ		М Б∕9			
PAGE 介	PAGE ,	DEBUT	FIN ∬				FIN			

Aborder à nouveau le contour

La fonction ABORDER POSITION permet à la TNC de déplacer l'outil vers le contour de la pièce dans les situations suivantes:

- Aborder à nouveau le contour après déplacement des axes de la machine lors d'une interruption réalisée sans STOP INTERNE
- Aborder à nouveau le contour après une amorce avec AMORCE SEQUENCE N, par exemple après une interruption avec STOP INTERNE
- Sélectionner la réapproche du contour: sélectionner la softkey ABORDER POSITION
- Déplacer les axes dans l'ordre proposé par la TNC à l'écran: appuyer sur la touche START externe.
- Déplacer les axes dans n'importe quel ordre: appuyer sur les softkeys ABORDER X, ABORDER Z etc. et activer à chaque fois avec la touche START externe
- ▶ Poursuivre l'usinage: appuyer sur la touche START externe

11.5 Passer outre certaines séquences

Lors du test ou de l'exécution du programme, vous pouvez omettre les séquences marquées du signe "/" lors de la programmation:

▶ Ne pas exécuter ou tester les séquences marquées du signe "/": mettre la softkey sur ON

Exécuter ou tester les séquences de programme marquées du signe "/": mettre la softkey sur OFF

Cette fonction est inactive sur les séquences TOOL DEF

Le dernier choix effectué reste sauvegardé après une coupure d'alimentation.

Fonctions MOD

12.1 Sélectionner, modifier et quitter les fonctions MOD

Grâce aux fonctions MOD, vous disposez d'autres affichages et possibilités d'introduction. Les fonctions MOD disponibles dépendent du mode de fonctionnement sélectionné.

Sélectionner les fonctions MOD

Sélectionner le mode de fonctionnement dans lequel vous désirez modifier des fonctions MOD.

- MOD
- Sélectionner les fonctions MOD: appuyer sur la touche MOD. Les figures de droite illustrent des menus d'écran types en mode Mémorisation/édition de programme (figure de droite, en haut) et Test de programme (figure de droite, au centre) et dans un mode de fonctionnement machine (figure sur la page suivante).

Modifier les configurations

Sélectionner la fonction MOD à l'aide des touches fléchées

Pour modifier une configuration, vous disposez – selon la fonction sélectionnée – de trois possibilités:

- Introduction directe d'une formule, par exemple pour définir la limitation de la zone de déplacement
- Modification de la configuration par pression sur la touche ENT, par ex. pour définir l'introduction du programme
- Modification de la configuration avec une fenêtre de sélection. Si plusieurs solutions sont à votre disposition, avec la touche GOTO, vous pouvez faire apparaître une fenêtre qui vous permet de visualiser en bloc toutes les possibilités de configuration. Sélectionnez directement la configuration retenue en appuyant sur la touche numérique correspondante (à gauche du double point) ou à l'aide de la touche fléchée, puis validez avec la touche ENT. Si vous ne désirez pas modifier la configuration, fermez la fenêtre avec la touche END.

Quitter les fonctions MOD

Quitter la fonction MOD: appuyer sur la softkey FIN ou sur la touche END

Sommaire des fonctions MOD

Suivant le mode de fonctionnement sélectionné, vous pouvez opérer les modifications suivantes:

Mémorisation/édition de programme

- Afficher le numéro du logiciel CN
- Afficher le numéro du logiciel automate
- Introduire un code
- Configurer l'interface
- Paramètres utilisateur spécifiques de la machine
- Si nécessaire, afficher les fichiers d'AIDE

Test de programme:

- Afficher le numéro du logiciel CN
- Afficher le numéro du logiciel automate
- Introduire un code
- Configurer l'interface de données
- Représenter la pièce brute dans la zone de travail
- Paramètres utilisateur spécifiques de la machine
- Si nécessaire, afficher les fichiers d'AIDE
- Autres modes de fonctionnement:
- Afficher le numéro du logiciel CN
- Afficher le numéro du logiciel automate
- Afficher les indices pour les options disponibles
- Sélectionner l'affichage de positions
- Définir l'unité de mesure (mm/inch)
- Définir la langue de programmation pour MDI
- Définir les axes pour prise en compte de la position effective
- Initialiser les limites de déplacement
- Afficher les points zéro
- Afficher les temps d'usinage
- Si nécessaire, afficher les fichiers d'AIDE

12.2 Numéros de logiciel et d'option

Les numéros de logiciel CN et de logiciel automate apparaissent à l'écran de la TNC lorsque vous avez sélectionné les fonctions MOD. Les numéros des options disponibles (OPT:) sont incrits immédiatement en-dessous:

Pas d'option	OPT: 00000000
 Option digitalisation avec palpeur à commutation 	OPT: 00000001
Option digitalisation avec palpeur mesurant	OPT: 00000011

12.3 Introduire un code

La TNC a besoin d'un code pour la fonction suivante:

Fonction	Numéro de code
Sélectionner les paramètres utilisateur	123
Configurer la carte Ethernet	NET123
Valider les fonctions spéciales	555343

CN : numéro logiciel 280474 00A AP : numéro logiciel OPT: %00000011	Affi Affi Comm Intr Choi	ch. po ch. po utatio oduct: x de 1	ositio ositio on MM, ion de l'axe	ons 1 ons 2 ∕INCH ⊵ PGM	EFF. DIST. MM HEIDE %0011	Enhair 11	N
	CN : AP : OPT:	numéi numéi	ro log ro log	giciel giciel	L 28 L %8	30474 300008	00A 011

Mode manuel

Mémorisation

FIN

programme

12.4 Configurer les interfaces de données

Pour configurer les interfaces de données, appuyez sur la softkey RS 232- / RS 422 - SETUP. La TNC affiche un menu dans lequel vous effectuez les réglages suivants:

Configurer l'interface RS-232

Le mode de fonctionnement et la vitesse en Bauds de l'interface RS-232 sont introduits sur la partie gauche de l'écran.

Configurer l'interface RS-422

Le mode de fonctionnement et la vitesse en Bauds de l'interface RS-422 sont introduits sur la partie droite de l'écran.

Sélectionner le MODE DE FONCTIONNEMENT de l'appareil externe

En modes FE2 et EXT, vous ne pouvez pas utiliser les fonctions "lire tous les programmes," "lire le programme proposé" et "lire le répertoire."

Configurer la VITESSE EN BAUDS

La VITESSE EN BAUDS (vitesse de transmission des données) peut être sélectionnée entre 110 et 115.200 Bauds.

Appareil externe	Mode	Symbole
Unité à disquettes HEIDENHAIN FE 401 B FE 401 Pgm à partir de 230 626 03	FE1 FE1	
Unité à disquettes HEIDENHAIN FE 401 y compris jusqu'au prog. 230 626 02	FE2	
PC avec logiciel de transfert Logiciel TNCremo	FE1	
Autres appareils: imprimante, lecteur, unité perforation, PC sans TNCremo.	EXT1, EXT2	Ð
PC avec logiciel HEIDENHAIN TNCremo (commande TNC à distance)	LSV2	

Mode manue	^{∋1} Ed.	iter 1	ablea	au PGN	1		
Inter	face	RS232	2	Inter	face	RS422	2
Mode Vites FE EXT1 EXT2 LSV-2	fonc se er : : : 2:	t.: <mark>LS</mark> n baud 115200 150 9600 115200	<mark>3V-2</mark> 15 1	Mode Vites FE EXT1 EXT2 LSV-2	fonc se er : ! : !	t.: FE n bau 57600 9600 9600 9600	E1 ds
Offor	- t = t i i	nn:					
milet							
Impression : Test impr							
PGM MGT: Etendu							
0 .,	RS232 RS422 SETUP	PARAMET. UTILISAT.	AIDE				FIN

AFFECTATION

Cette fonction vous permet de déterminer la destination des données en provenance de la TNC.

Applications:

- Restituer des valeurs avec la fonction de paramètres Q FN15
- Restituer des valeurs avec la fonction de paramètres Q FN16
- Chemin d'accès sur le disque dur de la TNC vers lequel seront mémorisées les données de la digitalisation

C'est le mode de fonctionnement de la TNC qui détermine si l'on utilisera la fonction PRINT ou la fonction PRINT-TEST:

ModeTNC	Fonction de transfert
Exécution de programme pas-à-pas	PRINT
Exécution de programme en continu	PRINT
Test de programme	PRINT-TEST

Vous configurez PRINT et PRINT-TEST de la manière suivante:

Fonction	Chemin
Sortie des données par RS-232	RS232:\
Sortie des données par RS-422	RS422:\
Mémorisation des données sur disque dur TNC	TNC:\
Mémoriser les données dans le répertoire où est	
situé le programme contenant FN15/FN16 ou le	
programme contenant les cycles de digitalisation	- vide -

Noms des fichiers

Données	Mode	Nom du fichier
Données digitalisées	Exécution de programme	définies dans le cycle ZONE
Valeurs avec FN15	Exécution de programme	%FN15RUN.A
Valeurs avec FN15	Test de programme	%FN15SIM.A
Valeurs avec FN16	Exécution de programme	%FN16RUN.A
Valeurs avec FN16	Test de programme	%FN16SIM.A

Logiciel de transfert des données

Pour transférer vos fichiers à partir de la TNC ou vers elle, nous vous conseillons l'utilisation du logiciel HEIDENHAIN TNCremo. TNCremo vous permet de gérer toutes les commandes HEIDEN-HAIN via l'interface série.

 Pour recevoir gratuitement une version shareware de TNCremo, merci de bien vouloir prendre contact avec HEIDENHAIN.

Conditions requises au niveau du système pourTNCremo

- PC AT ou système compatible
- Mémoire principale 640 ko
- 1 Mo libre sur votre disque dur
- une interface série libre
- Système d'exploitation MS-DOS/PC-DOS 3.00 ou plus récent, Windows 3.1 ou plus récent, OS/2
- Pour un meilleur confort d'utilisation: une souris compatible Microsoft (TM) (non indispensable)

Installation sousWindows

- Lancez le programme d'installation SETUP.EXE à partir du gestionnaire de fichiers (explorer)
- ▶ Suivez les indications du programme setup

LancerTNCremo sousWindows

Windows 3.1, 3.11, NT:

Cliquez deux fois sur l'icône dans le groupe de programmes Applications HEIDENHAIN

Windows95:

Cliquez sur <Start>, <Programmes>, <Applications HEIDEN-HAIN>, <TNCremo>

Lorsque vous lancez TNCremo pour la première fois, il vous est demandé d'indiquer la commande raccordée, l'interface (COM1 ou COM2) ainsi que la vitesse de transmission des données. Introduisez les informations demandées.

12.4 Configurer les interfaces de données

Transfert des données entre TNC et TNCremo

Vérifiez si:

- la TNC est bien raccordée sur la bonne interface série de votre ordinateur
- la vitesse de transmission des données est la même sur la TNC pour le mode LSV2 et dans TNCremo
- la TNC est raccordée sur la bonne interface série de votre ordinateur

Après avoir lancé TNCremo, vous apercez dans la partie gauche de la fenêtre principale 1 tous les fichiers mémorisés dans le répertoire actif. Avec <Répertoire>, <Changer>, vous pouvez sélectionner n'importe quel lecteur ou un autre répertoire de votre ordinateur.

Pour établir la liaison vers la TNC, sélectionnez <Liaison>, <Liaison>. TNCremo récupère maintenant de la TNC la structure des fichiers et répertoires et l'affiche dans la partie inférieure de la fenêtre principale (2). Pour transférer un fichier de la TNC vers le PC, sélectionnez le fichier dans la fenêtre TNC (le mettre en surbrillance en cliquant dessus avec la souris) et activez la fonction <Fichier> <Transfert>.

Pour transférer des fichiers du PC vers la TNC, sélectionnez le fichier dans la fenêtre PC et activez ensuite la fonction <Fichier> <Transfert>.

Fermer TNCremo

Sélectionnez le sous-menu <Fichier>, <Fin> ou utilisez la combinaison de touches ALT+X

Utilisez également l'aide de TNCremo dans laquelles toutes les fonctions sont expliquées.

12.5 Interface Ethernet

Introduction

En option, vous pouvez équiper la TNC d'une carte Ethernet pour relier la commande en tant que **Client** à votre réseau. La TNC transfère les données par la carte Ethernet en protocoles TCP/IP (Transmission Control Protocol/Internet Protocol) et grâce au système NFS (Network File System). TCP/IP et NFS sont mis en oeuvre particulièrement dans les systèmes UNIX; ceci permet donc généralement d'intégrer la TNC dans l'univers UNIX sans avoir recours à un logiciel supplémentaire.

L'environnement PC équipé de systèmes d'exploitation Microsoft travaille également pour la mise en réseau avec TCP/IP mais pas avec NFS. Vous avez donc besoin d'un logiciel supplémentaire pour relier la TNC à un réseau de PC. HEIDENHAIN préconise les logiciels de réseaux suivants:

Système d'exploitation	Logiciels-réseaux
DOS, Windows 3.1, Windows 3.11, Windows NT	Maestro 6.0, société HUMMINGBIRD e-mail: support@hummingbird.com www: http:\\www.hummingbird.com
Windows 95	Serveur OnNet 2.0, société FTP e-mail: support@ftp.com www: http:\\www.ftp.com

Installation de la carte Ethernet

Avant d'installer la carte Ethernet, mettre la TNC et la machine hors-tension!

Consultez les remarques indiquées dans les Instructions de montage jointes à la carte Ethernet!

12.5 Interface Ethernet

Possibilités de raccordement

Vous pouvez relier à votre réseau la carte Ethernet de la TNC par un raccordement BNC (X26, câble coaxial 10Base2) ou par le raccordement RJ45 (X25,10BaseT). Vous ne pouvez utiliser à la fois que l'un des deux raccordements. Les deux raccordements sont séparés galvaniquement de l'électronique de la commande.

Raccordement BNC X26 (câble coaxial 10Base2, cf. fig. de droite, en haut)

Le raccordement 10Base2 est également appelé Thin-Ethernet ou CheaperNet. Pour le raccordement 10Base2, utilisez des prises BNC-T pour relier la TNC à votre réseau.

L'écart entre deux éléments T doit être au moins de 0,5 m.

Le nombre d'éléments T est limité à un maximum de 30.

Vous devez prévoir des résistances de charge de 50 Ohm aux ouvertures d'extrêmité du bus.

La longueur max. de phase entre deux résistances de charge est de 185 m. Vous pouvez relier jusqu'à 5 phases au moyen d'amplificateurs de signaux (repeater).

Raccordement RJ45 X25 (10BaseT, cf. figu. de droite, au centre)

Pour le raccordement 10Base2, utilisez un câble Twisted Pair pour relier la TNC à votre réseau.

La longueur de câble max. entre la TNC et un noeud de jonction est de 100 m avec câble non blindé et de 400 m avec câble blindé.

Si vous reliez la TNC directement à un PC, vous devez utiliser un câble croisé.

Configurer la TNC

Faîtes configurer la TNC par un spécialiste réseaux.

En mode Mémorisation/édition de programme, appuyez sur la touche MOD. Introduisez le code NET123; la TNC affiche l'écran principal de configuration du réseau

Réglages généraux du réseau

Appuyez sur la softkey DEFINE NET pour introduire les réglages généraux du réseau (cf. fig. de droite, en haut) et introduisez les informations suivantes:

Configurat. Signification

ADDRESS	Adresse que votre manager réseau doit attribuer à la TNC. Introduction: 4 caractères décimaux séparés par un point, ex. 160.1.180.20
MASK	SUBNET MASK pour économie d'adresses à
	l'intérieur de votre réseau. Introduction: 4 caractères
	décimaux séparés par un point; demander
	la valeur au manager réseau, ex. 255.255.0.0
ROUTER	Adresse Internet de votre routeur par défaut.
	A n'introduire que si votre réseau comporte plusieurs
	réseaux partiels. Introduction: 4 caractères décimaux
	séparés par un point; demander la valeur à votre
	manager réseau, ex. 160.2.0.2
PROT	Définition du protocole de transfert.
	RFC: Protocole de transfert selon RFC 894
	IEEE: Protocole de transfert selon IEE 802.2/802.3
HW	Définition du raccordement utilisé
	10BASET : si vous utilisez 10BaseT
	10BASE2: si vous utilisez 10Base2
HOST	Nom par lequel la TNC s'annonce dans le réseau: Si
	vous utilisez un serveur-hôte, vous devez inscrire ici
	le "Fully Qualified Hostname+. Si vous n'inscrivez
	aucun nom, la TNC utilise ce qu'on appelle
	l'authentification ZERO. Les configurations UID, GID,
	DCM et FCM spécifiques aux appareils (cf. page
	suivante) sont alors ignorées par la TNC

ode manuel	Con	figur	atio	n rés	seau	
	Adr	esse	inte	rnet	de la	TNC
Fichier:	TP4 NOO					
	99	MOSK			PPOT	
	180 20	255 255	00	COOTER	PEC	
	.100.20	200.200	.0.0		KI U	
LIGUL						
DEDUT	EIN	POGE	POGE	1		
DEBUI		11106	INGL			I TONE

12 Fonctions MOD

Configurations réseau spécifiques aux appareils

Appuyez sur la softkey DEFINE MOUNT pour introduire les réglages réseau spécifiques aux appareils (cf. fig. de droite, en haut). Vous pouvez définir autant de configurations de réseau que vous le désirez mais ne pouvez en gérer que 7 au maximum.

Configuration	Signification
ADDRESS	Adresse de votre serveur. Introduction: 4 caractères décimaux séparés par un point; demander la valeur à votre manager réseau, ex. 160.1.13.4
RS	Dimension paquet pour réception données, en octets. Plage d'introduction: 512 à 4 096. Introduction 0: La TNC utilise la dimension de paquet optimale annoncée par le serveur
WS	Dimension paquet pour envoi de données, en octets. Plage d'introduction: 512 à 4 096. Introduction 0: La TNC utilise la dimension de paquet optimale annoncée par le serveur
TIMEOUT	Durée en ms à l'issue de laquelle la TNC répète un Remote Procedure Call. Plage d'introduction: 0 à 100 000 Introduction standard: 0 correspondant à un TIMEOUT de 7 secondes. N'utiliser des valeurs plus élevées que si la TNC doit communiquer avec le serveur au moyen de plusieurs routeurs. Demander la valeur au manager de réseau.
HM	Définition indiquant si la TNC doit répéter le Remote Procedure Call jusqu'à ce que le serveur NFS réponde. 0: Répéter toujours le Remote Procedure Call 1: Ne pas répéter le Remote Procedure Call
DEVICENAME	Nom affiché par la TNC dans la gestion de fichiers lorque la TNC est reliée à l'appareil
РАТН	Répertoire du serveur NFS que vous désirez relier à la TNC. Pour le chemin d'accès, tenez compte de l'écriture des minuscules et majuscules
UID	Identification de l'utilisateur vous permettant d'accéder aux fichiers à l'intérieur du réseau. Demander la valeur au manager de réseau.
GID	ldentification du groupe vous permettant d'accéder aux fichiers à l'intérieur du réseau. Demander la valeur au manager de réseau.

Configuration	Signification
DCM	lci, vous attribuez les habilitations d'accès aux répertoires du serveur NFS (cf. fig. en haut et à droite). Introduire une valeur codée binaire. Exemple: 111101000
	0: Accès non autorisé
	1: Accès autorisé
DCM	lci, vous attribuez les habilitations d'accès aux
	fichiers du serveur NFS (cf. fig. en haut et à
	droite). Introduire une valeur codée binaire.
	Exemple: 111101000
	0: Accès non autorisé
	1: Accès autorisé
AM	Définition indiquant si la TNC doit se relier
	automatiquement au réseau à la mise sous
	tension.
	0: Pas de liaison automatique

11110	1000		
IIII	Tous les autres utilisate	urs:	
	Rechercher		
	Tous les autres utilisate	urs: Ecrire	
	Tous les autres utilisate	urs: Lire	
	Groupe de travail:		
Boohorobor			
	Groupe de travail:	Ecrire	
	Groupe de travail:	Line	
		LIIC	
	Utilisateur:		
	Rechercher		
	Utilisateur:	Ecrire	
	Utilisateur:	Lire	

Définir l'imprimante-réseau

Appuyez sur la softkey DEFINE PRINT si vous désirez imprimer les fichiers de la TNC directement sur une imprimante-réseau:

1: Liaison automatique

Configuration	Signification
ADDRESS	Adresse de votre serveur. Introduction: 4 caractères décimaux séparés par un point; demander la valeur à votre manager réseau, ex. 160.1.13.4
DEVICE NAME	Nom de l'imprimante affichée par la TNC quand vous appuyez sur la softkey IMPRIMER (cf. également "4.4 Gestion étendue des fichiers")
PRINTER NAME	Nom de l'imprimante dans votre réseau; en demander la valeur au manager réseau

Contrôler la liaison

- Appuyez sur la softkey PING
- Introduisez l'adresse Internet de l'appareil pour lequel vous voulez contrôler la liaison et appuyez sur ENT. La TNC envoie des paquets de données jusqu'à ce que vous quittiez le moniteur de contrôle en appuyant sur la touche END

Dans la ligne TRY, la TNC affiche le nombre de paquets de données envoyés au récepteur défini précédemment. Derrière le nombre de paquets de données envoyés, elle affiche l'état:

Affichages d'état	Signification
HOST RESPOND	Nouvelle réception du paquet de données, liaison correcte
TIMEOUT	Pas de nouvelle réception du paquet, contrôler la liaison
CAN NOT ROUTE	Le paquet de données n'a pas pû être envoyé, contrôler l'adresse Internet du serveur et du routeur sur la TNC

Mode manuel	Configur	ation	rése	au	
PING MONITOR					
INTERNET ADDR	ESS : 160.1.13.4				
TRY 3	B : HOST RESPOND				

Afficher le protocole d'erreurs

Appuyez sur la softkey SHOW ERROR si vous désirez visualiser le protocole d'erreurs. La TNC enregistre ici toutes les erreurs survenues en mode réseau depuis la dernière mise sous-tension de la TNC

Les messages d'erreur de la liste se subdivisent en deux catégories:

Messages d'avertissement marqués (W). Ces messages indiquent que la TNC a pû établir la liaison-réseau mais qu'elles a dû corriger des configurations.

Messages d'erreur marqués (E). De tels messages d'erreurs indiquent que la TNC n'a pas pû établir la liaison-réseau.

Message d'erreur	Origine
LL: (W) CONNECTION XXXXX UNKNOWN USING DEFAULT 10BASET	Pour DEFINE NET, HW vous avez indiqué une
	désignation erronée
LL: (E) PROTOCOL xxxxx UNKNOWN	Pour DEFINE NET, PROT vous avez indiqué une
	désignation erronée
IP4: (E) INTERFACE NOT PRESENT	La TNC n'a pas trouvé de carte Ethernet
IP4: (E) INTERNETADRESS NOT VALID	Pour la TNC, vous avez indiqué une adresse
	Internet non valable
IP4: (E) SUBNETMASK NOT VALID	Le SUBNET MASK ne convient pas à l'adresse
	Internet de la TNC
IP4: (E) SUBNETMASK OR HOST ID NOT VALID	Pour la TNC, vous avez indiqué une adresse
	Internet erronée, ou bien le SUBNET MASK a
	été mal introduit, ou bien tous les bits de
	l'HostID ont été mis à 0 (1)
IP4: (E) SUBNETMASK OR SUBNETID NOTVALID	Ious les bits du SUBNET ID sont mis à 0 ou 1
IP4: (E) DEFAULTROUTERADRESS NOT VALID	Pour le routeur, vous avez utilisé une adresse
	Internet erronee
IP4: (E) CAN NOT USE DEFAULTROUTER	Le routeur par défaut n'a pas le même NetID
	vous avez defini la TNC comme routeur
MOUNI: <nom appareii=""> (E) DEVICENAME NOT VALID</nom>	Le nom de l'appareil est trop long ou contient
MOUNT reason approvally (E) DEV/ICENAME ALDEADY ASSIGNED	des caracteres non autorises
MOUNT: <nom appareil=""> (E) DEVICENAIVIE ALREADY ASSIGNED</nom>	vous avez deja defini un appareil avec ce
MOUNT: com apparoils (E) DEV/ICETARI E OVERELOW	
WOONT. CHOIT APPAIEITS (L) DEVICETABLE OVENT LOVV	
NES2: <nom (m)="" appareils="" readsize="" setto="" smaller="" td="" then="" x="" x<=""><td>Pour DEFINE MOUNT BS yous avez indiqué</td></nom>	Pour DEFINE MOUNT BS yous avez indiqué
THE OZ. CHOIN APPARENT (WY HEADOIZE OWALLER THEN X DETTO X	une valeur trop petite La TNC règle BS sur 512
	octets
NFS2: <nom appareil=""> (W) READSIZE LARGER THEN x SET TO x</nom>	Pour DEFINE MOUNT. RS vous avez indiqué
	une valeur trop grande La TNC règle RS sur
	4096 octets
et	Message d'erreu
---------	---------------------------------
hern	NFS2: <nom app<="" td=""></nom>
ë Et	NFS2: <nom app<="" td=""></nom>
terfa	NFS2: <nom app<="" th=""></nom>
.5 Int	NFS2: <nom app<="" td=""></nom>
12	NFS2: <nom app<="" th=""></nom>
	NES2: <nom ann<="" th=""></nom>

Message d'erreur	Origine
NFS2: <nom appareil=""> (W) WRITESIZE SMALLER THEN x SET TO x</nom>	Pour DEFINE MOUNT, WS vous avez indiqué une valeur trop grande La TNC règle WS sur 512 octets
NFS2: <nom appareil=""> (W) WRITESIZE LARGER THEN x SET TO x</nom>	Pour DEFINE MOUNT, WS vous avez indiqué une valeur trop grande La TNC règle WS sur 4096 octets
NFS2: <nom appareil=""> (E) MOUNTPATH TO LONG</nom>	Pour DEFINE MOUNT, PATH vous avez attribué un nom trop long
NFS2: <nom appareil=""> (E) NOT ENOUGH MEMORY</nom>	Vous disposez momentanément d'une mémoire de travail trop réduite pour établir une liaison réseau
NFS2: <nom appareil=""> (E) HOSTNAME TO LONG</nom>	Pour DEFINE NET, HOST vous avez attribué un nom trop long
NFS2: <nom appareil=""> (E) CAN NOT OPEN PORT</nom>	Pour établir la liaison-réseau, la TNC ne peut pas ouvrir un port qui lui est nécessaire
NFS2: <nom appareil=""> (E) ERROR FROM PORTMAPPER</nom>	La TNC a reçu des données non plausibles du portmapper
NFS2: <nom appareil=""> (E) ERROR FROM MOUNTSERVER</nom>	La TNC a reçu des données non plausibles du serveur Mount
NFS2: <nom appareil=""> (E) CANT GET ROOTDIRECTORY</nom>	Le serveur Mount n'autorise pas la liaison vers le répertoire défini avec DEFINE MOUNT, PATH
NFS2: <nom appareil=""> (E) UID OR GID 0 NOT ALLOWED</nom>	Pour DEFINE MOUNT, UID ou GID, vous avez introduit 0. La valeur d'introduction 0 est réservée au gestionnaire du système

12.6 Configurer PGM MGT

Cette fonction vous permet de définir le cadre des fonctions de la gestion des fichiers:

- Standard: Gestion de fichiers simplifiée sans affichage des répertoires
- Etendu: Gestion de fichiers avec fonctions étendues et affichage des répertoires

Cf. également "Chap. 4.3 Gestion de fichiers stantdard" et "Chap. 4.4 Gestion de fichiers étendue".

Modifier la configuration

- En mode Mémorisation/édition de programme, sélectionner la gestion de fichiers avec la touche PGM MGT
- Sélectionner la fonction MOD: appuyer sur la touche MOD
- Sélectionner la configuration PGM MGT: A l'aide des touches fléchées, décaler le champ clair sur la configuration PGM MGT; commuter entre STANDARD et ETENDU avec ENT

12.7 Paramètres utilisateur spécifiques de la machine

Le constructeur de la machine peut attribuer des fonctions à 16 "paramètres utilisateur". Consultez le manuel de votre machine.

12.8 Représenter la pièce brute dans la zone de travail

En mode Test de programme, vous pouvez contrôler graphiquement la position de la pièce brute dans la zone de travail de la machine et activer la surveillance de la zone de travail en mode Test de programme: appuyer sur la softkey "CONTROLE PT DE REF.+

La TNC affiche la zone de travail, différentes fenêtres contenant des informations relatives aux coordonnées et les softkeys qui vous permettent de modifier l'affichage.

Zone de déplacement/points zéro disponibles et se référant à la pièce brute affichée:

- 1 Zone de travail
- 2 Dimensions de la pièce brute
- 3 Système de coordonnées
- 4 Pièce brute avec projection dans les plans, zone de travail

Afficher la position de la pièce brute se référant au point de référence: appuyer sur la softkey avec symbole machine.

TNC 426 B, TNC 430 HEIDENHAIN

Si la pièce brute est située à l'extérieur de la zone de travail 4, vous pouvez, dans le graphisme, la décaler complètement vers l'intérieur de la zone de travail à l'aide des softkeys du point de référence. Pour terminer, décalez le point de référence en mode Manuel en fonction de la même valeur.

Sommaire des fonctions

Fonction	Softkey
Décaler la pièce brute vers la gauche (graphiquement)	← ⊕
Décaler la pièce brute vers la droite (graphiquement)	→ ⊕
Décaler la pièce brute vers l'avant (graphiquement)	× +
Décaler la pièce brute vers l'arrière (graphiquement)	∕ 争
Décaler la pièce brute vers le haut (graphiquement)	↑ ⊕
Décaler la pièce brute vers le bas (graphiquement)	$\downarrow \circledast$
Afficher la pièce brute se référant au dernier point de référence initialisé	
Afficher la course totale se référant à la pièce brute représentée	++
Afficher le point zéro machine dans la zone de travail	M91 💮
Afficher la position définie par le constructeur de la machine (ex. point de changement d'outil) précédent	H92 🕀
Afficher le point zéro pièce dans la zone de travail	•
Activer (ON)/désactiver (OFF) la surveillance de la zone de travail lors du Test de programme	i• →i (〕EFF/ ON

12.9 Sélectionner l'affichage de positions

Vous pouvez influer sur l'affichage des coordonnées pour le mode Manuel et les modes de déroulement du programme:

La figure de droite indique différentes positions de l'outil

- 1 Position de départ
- 2 Position à atteindre par l'outil
- 3 Point zéro pièce
- 4 Point zéro machine

Pour les affichages de positions de la TNC, vous pouvez sélectionner les coordonnées suivantes:

Fonction	Affichage
Position nominale; valeur actuelle donnée par la TNC	NOM
Position effective; position actuelle de l'outil	EFF
Position de référence; position effective calculée	REF
par rapport au point zéro machine	
Chemin restant à parcourir jusqu'à la position	DIST
programmée; différence entre la position effective	
et la position à atteindre	
Erreur de poursuite; différence entre la position	ER.P
Déviation de la tige du palpeur mesurant	DEV

La fonction MOD: Affichage de position 1 vous permet de sélectionner l'affichage de position dans l'affichage d'état. La fonction MOD: Affichage de position 2 vous permet de sélectionner l'affichage de position dans l'affichage d'état supplémentaire.

12.10 Sélectionner l'unité de mesure

Grâce à cette fonction, vous pouvez définir si la TNC doit afficher les coordonnées en mm ou en inch (pouces).

- Système métrique: ex. X = 15,789 (mm): Fonction MOD Commutation mm/inch MM. Affichage avec 3 chiffres après la virgule
- Affichage en pouces: ex. X = 0,6216 (inch): Fonction MOD Commutation mm/inch INCH Affichage avec 4 chiffres après la virgule

12.11 Sélectionner le langage de programmation pour \$MDI

La fonction MOD Introduction de programme vous permet de commuter la programmation du fichier \$MDI:

- Programmation de \$MDI en dialogue Texte clair: Introduction de programme: HEIDENHAIN
- Programmation de \$MDI.H en DIN/ISO: Introduction de programme: ISO

12.12 Sélectionner l'axe pour générer une séquence L

Dans le champ d'introduction permettant la sélection d'axe, vous définissez les coordonnées de la position effective de l'outil à prendre en compte dans une séquence L. Une séquence L séparée est générée à l'aide de la touch +Prise en compte de position effective+. La sélection des axes est réalisée par bit, comme avec les paramètres-machine:

Sélection d'axe	%11111	Prise en compte axes X, Y, Z, IV, V
Sélection d'axe	%01111	Prise en compte axes X, Y, Z, IV
Sélection d'axe	%00111	Prise en compte axes X, Y, Z
Sélection d'axe	%00011	Prise en compte axes X, Y
Sélection d'axe	%00001	Prise en compte axe X

12.13 Introduire les limites de la zone de déplacement, affichage point zéro

Dans la zone de déplacement max., vous pouvez limiter la course utile pour les axes de coordonnées.

Exemple d'application: Protection d'un appareil diviseur contre tout risque de collision

La zone de déplacement max. est limitée par des commutateurs de fin de course de logiciel. La course utile est limitée avec la fonction MOD: COMMUTATEUR FIN DE COURSE: Vous introduisez dans les sens positif et négatif des axes les valeurs max. se référant au point zéro machine. Si votre machine dispose de plusieurs zones de déplacement, vous pouvez configurer la limitation de zone séparément pour chacune d'entre elles (Softkey COMMUT. FIN DE COURSE (1) à COMMUT. FIN DE COURSE (3)).

Usiner sans limites de la zone de déplacement

Lorsque le déplacement dans les axes de coordonnées doit s'effectuer sans limitation de course, introduisez le déplacement max. de la TNC (+/- 99999 mm) comme COMMUTATEUR DE FIN DE COURSE.

Calculer et introduire la zone de déplacement max.

▶ Sélectionner l'affichage de position REF

- Aborder les limites positive et négative souhaitées sur les axes X, Y et Z
- ▶ Noter les valeurs avec leur signe
- Sélectionner les fonctions MOD: appuyer sur la touche MOD
 - Introduire la limite de la zone de déplacement: appuyer sur la softkey COMMUT. FIN DE COURSE. Introduire comme limitations les valeurs notées pour les axes
 - ▶ Quitter la fonction MOD: appuyer sur la softkey FIN

Les corrections du rayon d'outil ne sont pas prises en compte lors des limitations de la zone de déplacement.

Les limitations de la zone de déplacement et commutateurs de fin de course de logiciel ne seront pris en compte qu'après avoir franchi les points de référence.

Affichage du point zéro

Les valeurs affichées en bas et à gauche de l'écran correspondent aux points de référence initialisés manuellement et se référant au point zéro machine. Ils ne peuvent pas être modifiés dans le menu de l'écran.

12.14 Afficher les fichiers d'AIDE

Les fichiers d'aide sont destinés à assister l'opérateur dans les situations où des procédures définies doivent être appliquées, par exemple, lors du dégagement de la machine après une coupure d'alimentation. Il en va de même pour les fonctions auxiliaires qui peuvent être consultées dans un fichier d'AIDE. La figure de droite illustre l'affichage d'un fichier d'AIDE.

AIDE

Les fichiers d'AIDE ne sont pas disponibles sur toutes les machines. Pour plus amples informations, consultez le constructeur de votre machine.

Sélectionner les FICHIERS D'AIDE

Sélectionner la fonction MOD: appuyer sur la touche MOD

- Sélectionner le dernier fichier d'AIDE actif: appuyer sur la softkey AIDE
- ▶ Si nécessaire, appeler la gestion de fichiers (touche PGM MGT) et sélectionner un autre fichier d'aide.

Mode manuel	Mémorisation programme
Plage déplac. I: Limitations: X500 X++20 Y300 Y++150 Z50 Z++300 A30000 A++30000 B30000 B++30000 C20000 C++20000	
Points zéro: X +293,32 Y +14,4361 Z -29,3 A +173,2985 B +174,3779 C +90,0 6 +4589,1253 7 +12387,49998 +9875	8506 1005 5,459
POSITION COMM. FIN COMM. FIN COMM. FIN DE COURSE DE COURSE AIDE TEMPS (1) (2) (3)	FIN

Mémorisation/édition programme	Mémorisation programme
Fichier: NK1F.HLP Ligne: 0 Colonne: 1 INSERT	
<pre>Plan d'usinage</pre>	
Dans le mode de fonctionnement	
manuel, lorsque la fonction	
execution de programme d'un plan	
incline a ete activee, le cycle	
prend effet des definition dans l	e
programme d'usinage.	
X +300,0000+₩ +22,0000+Z -:	25,0000
+A +177,7111+B +180,0000+C +1	90,0000
S Ø,	087
NOM. T F 1500	M 5/9
INSERER MOT MOT PAGE PAGE DEBUT FIN SUIVANT PRECEDENT 介 П 示 П	RECHERCHE

12.15 Afficher les durées de fonctionnement

Le constructeur de la machine peut également afficher d'autres durées. Consultez le manuel de votre machine!

Vous pouvez afficher différentes durées de fonctionnement à l'aide de la softkey TEMPS MACH.:

Durée fonctionnement	Signification
Marche commande	Durée de fonctionnement commande depuis la mise en route
Marche machine	Durée de fonctionnement machine
	depuis la mise en route
Exécution de programme	Durée pour le fonctionnement
	programmé depuis la mise en route

Mode manue	1				Mém pro	orisation gramme
CN sous te Marche mac Déroulemen	nsion hine t PGM	= = =	12:	2:01:0 6:08:2 5:34:3	27 27 33	
						FIN

Tableaux et sommaires

13.1 Paramètres utilisateur généraux

Les paramètres utilisateur généraux sont des paramètres-machine qui influent sur le comportement de la TNC.

Ils permettent de configurer par exemple:

- la langue de dialogue
- l'interface
- les vitesses de déplacement
- le déroulement d'opérations d'usinage
- l'action des potentiomètres

Possibilités d'introduction des paramètres-machine

Les paramètres-machine peuvent être programmés, au choix, sous forme de

nombres décimaux

Introduire directement la valeur numérique

nombres binaires

Avant la valeur numérique, introduire un pourcentage "%"

nombres hexadécimaux

Avant la valeur numérique, introduire le signe Dollar "\$"

Exemple:

Au lieu du nombre décimal 27, vous pouvez également introduire le nombre binaire %11011 ou le nombre hexadécimal \$1B.

Les différents paramètres-machine peuvent être donnés simultanément dans les différents systèmes numériques.

Certains paramètres-machine ont plusieurs fonctions. La valeur d'introduction de ces paramètres-machine résulte de la somme des différentes valeurs d'introduction marquées du signe +.

Sélectionner les paramètres utilisateur généraux

Sélectionnez les paramètres utilisateur généraux en introduisant le code 123 dans les fonctions MOD.

 Les fonctions MOD disposent également de paramètres utilisateur spécifiques de la machine. Adapter les interfaces EXT1 (5020.0) et EXT2 (5020.1) à l'appareil externe

PM5020.x

7 bits de données (code ASCII, 8ème bit = parité): +0 8 bits de données (code ASCII, 9ème bit = parité): +1
Caractère de commande BCC au choix:+0
Caractère de commande BCC non autorisé: +2
Arrêt de transmission par RTS actif: +4
Arrêt de transmission par RTS inactif: +0
Arrêt de transmission par DC3 actif: +8
Arrêt de transmission par DC3 inactif: +0
Parité de caractère paire: +0
Parité de caractère impaire: +16
Parité de caractère non souhaitée: +0
Parité de caractère souhaitée: +32
$11/_2$ bit de stop: +0
2 bits de stop: +64
1 bit de stop: +128
1 bit de stop: +192

Exemple:

Aligner l'interface TNC EXT2 (PM 5020.1) sur l'appareil externe avec la configuration suivante:

8 bits de données, BCC au choix, arrêt de transmission par DC3, parité de caractère paire, parité de caractère souhaitée, 2 bits de stop

Introduire dans **PM 5020.1**: 1+0+8+0+32+64 = **105**

Définir le type d'interface EXT1 (5030.0) et EXT2 (5030.1)

PM5030.x

Transmission standard: **0** Interface pour transmission bloc-à-bloc: **1**

Palpeurs 3D et digitalisation

Sélectionner le palpeur	
(seulement avec option digitalisation avec palper	ur mesurant)
	PM6200
	Installer le palpeur à commutation: 0
	Installer le palpeur mesurant: 1
Sélectionner le type de transmission	
	PM6010
	Palpeur avec transmission par câble: 0
	Palpeur avec transmission infra-rouge: 1
Avance de palpage pour palpeur à commutation	
	PM6120
	1 à 3000 [mm/min.]
Course max. jusqu'au point de palpage	
	PM6130
	0,001 à 99.999,9999 [mm]
Distance d'approche jusqu'au point de palpage lo	rs d'une mesure automatique
	PM6140
	0,001 à 99 999,9999 [mm]
Avance rapide de palpage pour palpeur à commu	tation
	PM6150
	1 à 300.000 [mm/min.]
Mesure du désaxage du palpeur lors de l'étalonna	age du palpeur à commutation
	PM6160
	Pas de rotation à 180° du palpeur 3D lors de l'étalonnage: 0
	Fonction M pour rotation à 180° du palpeur lors de l'étalonnage: 1 à 88
Mesure multiple pour fonction de palpage progra	mmable
	PM6170
	1 à 3
Plage de fiabilité pour mesure multiple	
	PM6171
	0,001 à 0,999 [mm]
Profondeur de plongée de la tige de palpage lors	de la digitalisation avec palpeur mesurant
	PM6310
	0,1 à 2,0000 [mm] (recommandation: 1 mm)
Mesure du désaxage du palpeur lors de l'étalonn	age avec palpeur mesurant
	PM6321
	Mesurer le désaxage: 0
	Ne pas mesurer le désaxage: 1

Affecta	tion de l'axe de palpage à l'axe de la mac	hine avec palpeur mesurant
~		PM6322.0
L'affectation correcte des axes de palpage aux axes de la machine doit être définie; sinon, il y a danger de rupture de la tige de palpage	Laffectation correcte des axes de	L'axe X de la machine est parallèle à l'axe du palpeur X: 0 , Y: 1 , Z: 2
	PM6322.1	
	rupture de la tige de palpage.	L'axe Y de la machine est parallèle à l'axe du palpeur X: 0, Y: 1, Z: 2
		PM6322.2
		L'axe ${\bf Z}$ de la machine est parallèle à l'axe du palpeur X: 0, Y: 1, Z: 2
Déviati	on max. de la tige de palpage du palpeur	mesurant
		PM6330
		0,1 à 4,0000 [mm]
Avance	de positionnement du palpeur mesurant	jusqu'au point MIN et d'approche du contour
		PM6350
		1 à 3.000 [mm/min.]
Avance	de palpage du palpeur mesurant	
		PM6360
		1 à 3.000 [mm/min.]
Avance	rapide dans le cycle de palpage pour pal	peur mesurant
		PM6361
		10 à 3.000 [mm/min.]
Réducti	ion de l'avance lors de la déviation latéral	e de la tige du palpeur mesurant
La TNC caractér de l'ava	réduit l'avance en fonction d'une courbe ristique donnée. L'avance min. est de 10% unce de digitalisation programmée.	DMC2C2

PM6362

Réduction d'avance inactive: 0 Réduction d'avance active: 1

Accélération radiale lors de la digitalisation avec palpeur mesurant

PM6370 vous permet de limiter l'avance de la TNC lors de déplacements circulaires pendant la digitalisation. On rencontre des déplacements circulaires, par exemple, lors de brusques changements de sens.

Tant que l'avance de digitalisation programmée est inférieure à l'avance calculée avec PM6370, la TNC se déplace suivant l'avance programmée. Définissez l'avance qui vous convient en réalisant des essais.

PM6370 0,001 à 5,000 [m/s²] (recommandation: 0,1)

	PM6560 0 à 88
Fonction M pour l'orientation de la broche lors de	e l'étalonnage dent-par-dent
	10 à 10.000 [mm/min.]
Avance rapide dans cycle palpage pour I I 120	PM6550
Avenae renide dans avels pelpage pour TT 100	
	PM6540 0.001 à 99.999.999 [mm]
Zone de sécurité autour de la tige duTT 120 lors o	lu pré-positionnement
Etalonnage rayon avec TT 120: écart entre arête	inférieure outil/arête supérieure tige PM6530.0 (zone de déplacement 1) à PM6530.2 (zone de déplacement 3)
	1 à 3.000 [mm/min.]
Avance de palpage pour TT 120 avec outil à l'arrê	t
	0,001 à 0,999 [mm] (recommandation: 0,005 mm)
nécessaire pour le calcul l'avance en liaison avec PM6570	DMcc10
Erreur de mesure max. admissible avecTT 120 lo	rs d'une mesure avec outil en rotation
	Avance de palpage constante pour 2ème mesure avec TT 120: +2
	Calcul de l'avance de palpage pour 2ème mesure avec TT120, avec tolérance variable: +1
	avec tolérance constante: +0
Avance de paipage pour une zeme mesure avec i	PM6507
Avance de palpage pour une 2ème mesure avec 1	T 120 forme de la tige, corrections dans TOOL T
	 PM6505 Sens de palpage positif dans l'axe de référence angulaire (axe 0°): 0 Sens de palpage positif dans l'axe +90°: 1 Sens de palpage négatif dans l'axe de référence angulaire (axe 0°): 2 Sens de palpage négatif dans l'axe +90°: 3
Etalonnage rayon avec TT 120: sens du palpage	
	0,1 à 4,0000 [mm]
PM6390 permet de définir une fenêtre-cible dans laquelle doit se situer le point final après une rotation. La valeur à introduire définit la demi- longueur du carré.	PM0000
Lors de la digitalisation de courbes de niveaux, le point final ne coïncide pas exactement avec le point initial.	

Fenêtre-cible pour la digitalisation de courbes de niveaux avec palpeur mesurant

Mesure avec outil en rotation: vitesse de rotation adm. sur le pourtour de la fraise

nécessaire pour calculer la vitesse de rotation et l'avance de palpage

PM6570

	1,000 à 120,000 [m/min.]
Coordonnées du centre de la tige du	TT 120 se référant au point zéro machine
_	PM6580.0 (zone de déplacement 1)
	Axe X
	PM6580.1 (zone de déplacement 1)
	Axe Y
	PM6580.2 (zone de déplacement 1)
	Axe Z
	PM6581.0 (zone de déplacement 2)
	Axe X
	PM6581.1 (zone de déplacement 2)
	Axe Y
	PM6581.2 (zone de déplacement 2)
	Axe Z
	PM6582.0 (zone de déplacement 3)
	Axe X
	PM6582.1 (zone de déplacement 3)
	Axe Y
	PM6582.2 (zone de déplacement 3)
	Axe Z

Affichages TNC, éditeur TNC

Configuration du poste de programmation	
	PM7210
	TNC avec machine: 0
	TNC comme poste de programmation avec automate actif: 1
	TNC comme poste de programmation avec automate inactif: 2
Confirmer le dialogue COUPURE D'ALIMENT	ATION à la mise sous tension
	PM7212
	Confirmer à l'aide de la touche: 0
	Confirmer automatiquemnet: 1
Programmation DIN/ISO: définir le pas de nu	mérotation des séquences
	PM7220
	0 à 150
	PM7220 0 à 150

Bloquer la sélectio	on de types de fichiers		
-		PM7224.0	
		Tous types de fichiers s Bloquer sélection de PC Bloquer sélection de PC Bloquer sélection de ta Bloquer sélection tables Bloquer sélection de fic Bloquer sélection de fic	sélectionnables par softkey: +0 GM HEIDENHAIN (softkey AFFICHE .H): +1 GM DIN/ISO (softkey AFFICHE .I): +2 bleaux d'outils (softkey AFFICHE .T): +4 aux pts zéro (softkey AFFICHE .D): +8 aux de palettes (softkey AFFICHE .P): +16 chiers-texte (softkey AFFICHE .A): +32 aux points (softkey AFFICHE .PNT): +64
Bloquer l'édition d	le types de fichiers		
		PM7224.1	
		Ne pas bloquer l'éditeu	ir: +0
Lorsque v fichier, la 1 ce type.	ous bloquez un type de FNC efface tous les fichiers de	Bloquer l'éditeur pour Programmes HEIDENHAIN: +1 Programmes DIN/ISO: +2	
		Tableaux de points zé	iro: +8
		Tableaux de palettes:	+16
		Fichiers-texte: +32	
		Tableaux de palettes:	+64
Configurer les tab	leaux de palettes		
-		PM7226.0	
		Tableau de palettes inactif: 0	
		Nombre de palettes par	r tableau de palettes: 1 à 255
Configurer les fich	iers de points zéro		
		PM7226.1	
		lableau de points zéro inactif: 0	
		Nombre de points zero	par tableau de points zero. 1 a 233
Longueur du prog	ramme pour son contrôle		
		PM7229.0	
		Sequences 100 a 9.999	
Longueur du prog	ramme max. pour autorisation	des séquences FK	
		PM7229.1	
		Séquences 100 à 9.999	
Définir la langue d	u dialogue		
		PM7230	
		Anglais: 0	Suédois: 7
		Allemand: 1	
		Français: 2	FIIIIUIS. J Néorlandais:10
		Italien: 4	Polonais: 11
		Espagnol: 5	Hongrois: 12
		Portugais: 6	.

Régler l'horloge interne de laTNC	
	PM7235
	Heure universelle (de Greenwich): 0
	Heure européenne: 1
	Heure européenne d'été: 2
	Ecart par rapport à l'eure universelle: -23 à +23 [heures]
Configurer le tableau d'outils	
	PM7260
	Inactif: 0
	Nombre d'outils générés par la TNC à l'ouverture d'un nouveau tableau d'outils: 1 à 254
	Si vous avez besoin de plus de 254 outils, vous pouvez étendre le
	tableau d'outils avec la fonction INSERER N LIGNES A LA EIN (cf. 5.2
	Données d'outils")
Configurer le tableau d'emplacements d'outils	
	PM7261
	Inactif: 0
	Nombre d'emplacements par tableau d'emplacements: 1 à 254

Configurer le tableau d'outils (ne pas exécuter: 0); numéro de colonne dans le tableau d'outils pour

PM7266.0	Nom de l'outil – NAME: 0 à 27; largeur colonne: 16 caractères		
PM7266.1	Longueur d'outil – L: 0 à 27; largeur colonne: 11 caractères		
PM7266.2	Rayon d'outil – R: 0 à 27; largeur colonne: 11 caractères		
PM7266.3	Rayon d'outil 2 – R2: 0 à 24		
PM7266.4	Surépaisseur longueur – DL: 0 à 27; largeur colonne: 8 caractères		
PM7266.5	Surépaisseur rayon – DR: 0 à 27; largeur colonne: 8 caractères		
PM7266.6	Surépaisseur rayon 2 – DR2: 0 à 27; largeur colonne: 8 caractères		
PM7266.7	Outil bloqué – TL: 0 à 27; largeur colonne: 2 caractères		
PM7266.8	Outil jumeau – RT: 0 à 27; largeur colonne: 3 caractères		
PM7266.9	Durée d'utilisation max. – TIME1: 0 à 27; largeur colonne: 5 caractères		
PM7266.10	Durée d'utilisation max. avec TOOL CALL – TIME2: 0 à 27; largeur colonne: 5 caractères		
PM7266.11	Durée d'utilisation actuelle – CUR. TIME: 0 à 27; largeur colonne: 8 caractères		
PM7266.12	Commentaire sur l'outil – DOC: 0 à 27; largeur colonne: 16 caractères		
PM7266.13	Nombre de dents – CUT.: 0 à 27; largeur colonne: 4 caractères		
PM7266.14	Tolérance de détection d'usure pour longueur d'outil – LTOL: 0 à 27; largeur colonne: 6 caractères		
PM7266.15	Tolérance de détection d'usure pour le rayon d'outil - RTOL: 0 à 27; largeur colonne: 6 caractères		
PM7266.16	Direction de la dent – DIRECT.: 0 à 27; largeur colonne: 7 caractères		
PM7266.17	Etat automate – PLC: 0 à 27; largeur colonne: 9 caractères		
PM7266.18	Décalage complémentaire de l'outil dans l'axe d'outil pour PM6530 – TT:L-OFFS: 0 à 27 ; Largeur colonne: 11 caractères		
PM7266.19	Décalage de l'outil entre le centre de la tige de palpage et le centre de l'outil – TT:R-OFFS: 0 à 27; Largeur colonne: 11 caractères		
PM7266.20	Tolérance de détection de rupture pour longueur d'outil – LBREAK.: 0 à 27; largeur colonne: 6 caractères		
PM7266.21	Tolérance pour détection de rupture pour rayon d'outil – RBREAK: 0 à 27; largeur colonne: 6 caractères		
PM7266.22	Longueur de la dent (cycle 22) – LCUTS: 0 à 27; largeur colonne: 11 caractères		
PM7266.23	Angle de plongée max. (cycle 22) – ANGLE.: 0 à 27; largeur colonne: 7 caractères		
PM7266.24	Type d'outil –TYP: 0 à 27; largeur colonne: 5 caractères		
PM7266.25	Matériau de l'outil – TMAT: 0 à 27; largeur colonne: 16 caractères		
PM7266.26	Tableau de données de coupe - CDT: 0 à 27; largeur colonne: 16 caractères		

Configurer tableau d'emplacements d'outils	; numéro de colonne da	ns le tableau d'outils pour		
	PM7267.0			
	Numéro de l'outil -	– T: 0 à 5		
	PM7267.1	PM7267.1		
	Outil spécial – ST:	0 à 5		
	PM7267.2			
	Emplacement fixe	e – F: 0 à 5		
	PM7267.3			
	Emplacement bloc	qué – L: 0 à 5		
	PM7267.4			
	Etat de l'automate	e – PLC: 0 à 5		
Mode de fonctionnement Manuel: Affichage	de l'avance			
-	PM7270			
	N'afficher l'avance	F que si une touche de sens d'axe est actionnée: 0		
	Afficher l'avance F	même si aucune touche de sens d'axe n'est		
	actionnée (avance	de l'axe défini par softkey F ou avance de l'axe le		
	pius "ient): 1			
Définir le caractère décimal				
	PM7280			
	Virgule comme ca	rractère décimal: 0		
	Point comme cara	ictère décimal: 1		
Affichage de positions dans l'axe d'outil				
	PM7285			
	L'affichage se réfè	re au point de référence de l'outil dans l'axe d'outil: 0		
	L'attichage dans l'axe d'outil se réfère à la			
	surface frontale de	e l'outil: 1		
Résolution d'affichage pour l'axe X				
	PM7290.0			
	0,1 mm: 0			
	0,05 mm: 1	0,001 mm: 4		
	0,01 mm: 2	0,0005 mm: 5		
	0,005 mm: 3	0,0001 mm: 6		
Résolution d'affichage pour l'axe Y				
	PM7290.1			
	Valeurs d'introduc	tion: cf. PM7290.0		
Résolution d'affichage pour l'axe Z				
	PM7290.2			
	Valeurs d'introduc	tion: cf. PM7290.0		
Résolution d'affichage nour l'ave IV				
Resolution d'anichage pour l'axe ly	PM7290 3			
	Valeurs d'introduc	tion: cf. PM7290.0		
Résolution d'affichage pour l'axe V				
	PM7290.4	1 (DN 17000 0		
	Valeurs d'introduc	tion: ct. PIVI/290.0		

Résolution d'affichage pour le 6ème axe	
	PM7290.5
	Valeurs d'introduction: cf. PM7290.0
Résolution d'affichage pour le 7ème axe	
	PM7290.6
	Valeurs d'introduction: cf. PM7290.0
Résolution d'affichage pour le 8ème axe	
	PM7290.7
	Valeurs d'introduction: cf. PM7290.0
Résolution d'affichage pour le 9ème axe	
	PM7290.8
	Valeurs d'introduction: ct. PM/290.0
Bloquer l'initialisation du point de référence	
	PM7295
	Ne pas bloquer l'initialisation du point de référence: +0
	Bloquer l'initialisation du point de référence dans l'axe X: +1
	Bloquer l'initialisation du point de reference dans l'axe Y: +2
	Bioquer l'initialisation du point de référence dans la Aème ave: 19
	Bloquer l'initialisation du point de reference dans le fème axe: +16
	Bloquer l'initialisation du point de référence dans le 6ème ave: ±32
	Bloquer l'initialisation du point de référence dans le 7ème axe: +64
	Bloquer l'initialisation du point de référence dans le 8ème axe: +128
	Bloquer l'initialisation du point de référence dans le 9ème axe: +256
Bloquer l'initialisation du point de référence ave	c les touches d'axe orange
	PM7296
	Ne pas bloquer l'initialisation du point de référence: 0
	Bloquer l'initialisation du point de référence avec touches d'axe
	orange: 1
Annuler l'affichage d'état, les paramètres Q et le	es données d'outils
	PM7300
	Tout annuler lorsque le programme est selectionne: U
	avec M02_M30_ENID_PGM: 1
	N'annuler que l'affichage d'état et les données d'outils lorsque le
	programme est sélectionné: 2
	N'annuler que l'affichage d'état et les données d'outils lorsque le
	programme est sélectionné et avec M02, M30, END PGM: 3
	Annuler l'affichage d'état et les paramètres Q lorsque le programme
	est sélectionné: 4
	Annuler l'affichage d'état et les paramètres Ω lorsque le programme
	est sélectionné et avec M02, M30, END PGM: 5
	Annuler l'affichage d'état lorsque le programme est sélectionné: 6
	Annuler l'affichage d'état lorsque le programme est sélectionné et

PM7310

Représentation graphique en trois plans selon DIN 6, chap. 1, méthode de projection 1: +0

Grafische Représentation graphique en trois plans selon DIN 6, chap. 1, méthode de projection 2: **+1**

Aucune rotation du système de coordonnées pour la représentation graphique: **+0** Rotation de 90° du système de coordonnées pour la représentation graphique: **+2** Afficher nouvelle BLK FORM dans le cycle 7 POINT ZERO par rapport à l'ancien point zéro: **+0**

Afficher nouvelle BLK FORM dans le cycle 7 POINT ZERO par rapport au nouveau point zéro: +4

Ne pas afficher position curseur dans représentation en 3 plans: **+0** Afficher la position du curseur dans représentation en 3 plans:**+8**

Simulation graphique sans axe de broche programmé: rayon d'outil PM7315

0 à **99 999,9999** [mm]

Simulation graphique sans axe de broche programmé: profondeur de pénétration PM7316 0 à 99 999,9999 [mm]

Simulation graphique sans axe de broche programmé: fonction M pour Start PM7317.0

0 à **88** (0: fonction inactive)

Simulation graphique sans axe de broche programmé: fonction M pour fin PM7317.1 0 à 88 (0: fonction inactive)

Réglage du rafraîchissement de l'écran

Introduisez la durée à l'issue de laquelle la TNC doit enclencher le rafraîchissement de l'écran

PM7392

0 à 99 [min] (0: fonction inactive)

Usinage et déroulement du programme

Cycle 17: Orientation de la broche en début de cycle

PM7160 Exécuter l'orientation broche: 0 Ne pas exécuter d'orientation broche: 1

Effet du cycle 11 FACTEUR ECHELLE

PM7410

FACTEUR ECHELLE agit sur 3 axes: **0** FACTEUR ECHELLE n'agit que dans le plan d'usinage: **1**

Données d'outils dans le cycle de palpage programméTOUCH–PROBE 0 PM7411

Ecraser les données d'outils actuelles par les données d'étalonnage du palpeur 3D: 0

Les données d'outils actuelles sont sauvegardées: 1

PM7420

Fraisage d'un canal le long du contour, sens horaire pour îlots et sens anti-horaire pour poches: +0
Fraisage d'un canal le long du contour, sens horaire pour poches et sens anti-horaire pour îlots: +1
Fraisage d'un canal de contour avant évidement: +0
Fraisage d'un canal de contour après évidement: +2
Combinaison de contours corrigés: +0
Combinaison de contours non-corrigés: +4
Evidement jusqu'au fond de la poche: +0
Fraisage et évidement complet de la poche avant chaque passe suivante: +8
Pour les cycles 6, 15, 16, 21, 22, 23, 24, on a: Déplacer l'outil en fin de cycle à la dernière position programmée

Dégager l'outil en fin de cycle dans l'axe de broche: +16
Cycle 4 FRAISAGE DE POCHE et cycle 5 POCHE CIRCULAIRE: Facteur de recouvrement
PM7430

avant l'appel du cycle: +0

0,1 à 1,414

Ecart admissible pour rayon du cercle, au point final du cercle par rapport au point initial du cercle PM7431 0,0001 à 0,016 [mm]

Comportement de certaines fonctions auxiliaire	s M
	PM7440
	Arrêt de l'exécution du programme avec M06: +0
	Pas d'arrêt de l'exécution du programme avec M06: +1
	Pas d'appel de cycle avec M89: +0
	Appel de cycle avec M89: +2
	Arrêt de l'exécution du programme avec fonctions M: +0
	Pas d'arrêt de l'exécution du programme avec fonctions M: +4
Les facteur k, sont définis par le	Facteurs k _v non commutables par M105 et M106: +0
constructeur de la machine. Consultez	Facteurs k _v commutables par M105 et M106: +8
le manuel de votre machine.	Réduction d'avance inactive dans l'axe d'outil avec M103 F. : +0
	Réduction d'avance active dans l'axe d'outil avec M103 F. : +16

Vitesse de contournage max. avec potentiomètre d'avance 100% en modes de déroulement du programme PM7470

0 à 99.999 [mm/min.]

Les points zero dans le tableau de point	PM7475
	Point zéro nièce: 0
	Point zéro machine: 1
Exécuter un fichier de palettes	
	PM7683
	Exécution de programme pas-à-pas: A chaque Start CN, exécuter une ligne du programme CN actif: +0
	Exécution de programme pas-à-pas: A chaque Start CN, exécuter le programme CN complet: +1
	Exécution de programme en continu: A chaque Start CN, exécuter le programme CN complet: +0
	Exécution de programme en continu: A chaque Start CN, exécuter tous les programmes jusqu'à la palette suivante: +2
	Exécution de programme en continu: A chaque Start CN, exécuter le programme CN complet: +0
	Exécution de programme en continu: A chaque Start CN, exécuter le fichier de palettes complet: +4
	Exécution de programme en continu: A chaque Start CN, exécuter le fichier de palettes complet: +0
	Exécution de programme en continu: Si vous avez sélectionné l'exécution du fichier de palettes complet (+4), exécutez sans arrêt le fichiers de palettes c'est-à-dire jusqu'à ce que vous appuyiez sur Stop CN: +8

Manivelles électroniques

Définir le type de la manivelle		
	PM7640	
	Machine sans ma	anivelle: 0
	HR 330 avec toud d'avance rapide s HR 130 sans toud HR 330 avec toud d'avance rapide s	ches auxiliaires – les touches de sens des axes et sur la manivelle sont exploitées par la CN: 1 ches auxiliaires: 2 ches auxiliaires – les touches de sens des axes et sur la manivelle sont exploitées par l'automate: 3
	HR 332 avec dou	ze touches auxiliaires: 4
	Manivelle multiple	e avec touches auxiliaires: 5
	HR 410 avec fond	ctions auxiliaires: 6
Facteur de subdivision		
	PM7641	
	pour introduction	au clavier: 0
	défini par l'autom	nate: 1
Fonctions manivelles pouvant être défi	nies par le constructeur de l	la machine
	PM 7645.0	0 à 255
	PM 7645.1	0 à 255
	PM 7645.2	0 à 255
	PM 7645.3	0 à 255
	PM 7645.4	0 à 255
	PM 7645.5	0 à 255
	PM 7645.6	0 à 255

PM 7645.7

0 à 255

13.2 Distribution des plots et câbles de raccordement interfaces

Interface V.24/RS-232-C

Appareils HEIDENHAIN

La distribution des plots sur l'unité logique de la TNC (X21) et sur le bloc adaptateur diffèrent.

Autres appareils

La distribution des plots sur un autre appareil peut diverger considérablement de celle d'un appareil HEIDENHAIN.

Elle dépend de l'appareil et du type de transmission. Utilisez la distribution des plots du bloc adaptateur décrite ci-dessous.

Interface V.11/RS-422

Seuls des appareils non HEIDENHAIN sont raccordables sur l'interface V.11.

La distribution des plots sur l'unité logique de la TNC (X22) et sur le bloc adaptateur est la même.

Prise fe Longue	emelle RJ45 pour ur câble max.:	Interface Eth non blindé blindé:	ernet (option) 9: 100 m 400 m
Plot	Signal		Description
1	TX+		Transmit Data
2	TX–		Transmit Data
3	REC+		Receive Data
4	libre-		
5	libre-		
6	REC-		Receive Data
7	libre-		
8	libre-		
Prise fe Longue	emelle BNC pour ur câble max.:	Interface Eth 180 m	ernet (option)
Plot	Signal		Description
1	Données (RXI,	TXO)	Conducteur interne
2	GND		Blindage

13 Tableaux et sommaires

13.3 Informations techniques

Les caractéristiques de la TNC

Description simplifiée	Commande de contournage pour machines comportant jusqu'à 9 axes, plus orientation de broche; TNC 426 CB, TNC 430 CA avec asservissement de vitesse analogique et TNC 426 PB, TNC 430 PB avec asservissement de vitesse digitale et asservissement de courant intégré
Composants	 Unité logique Clavier Ecran graphique couleur avec softkeys
Interfaces de données	 V.24 / RS-232-C V.11 / RS-422 Interface Ethernet (option) Interface de données étendue avec protocole LSV-2 pour commande à distance de la TNC via l'interface de données avec logiciel HEIDEN- HAIN TNCremo
Déplacement simultané des axes sur le	 éléments du contour Droites jusqu'à 5 axes Versions Export TNC 426 CF, TNC 426 PF, TNC 430 CE, TNC 430 PE: 4 axes Cercles jusqu'à 3 axes (avec inclinaison du plan d'usinage) Trajectoire hélicoïdale 3 axes
"Look Ahead"	 Arrondi défini de transitions de contour discontinues (ex. avec formes 3D); Examen de collision avec le cycle SL pour "contours ouverts" Pour positions avec correction de rayon avec M120 LA, anticipation de calcul de la géométrie pour adaptation de l'avance
Fonctionnement en parallèle	Edition pendant l'exécution d'un programme d'usinage par la TNC
Représentation graphique	 Graphisme de programmation Graphisme de test Graphisme d'exécution de programme
Types de fichiers	 Programmes en dialogue conversationnel Texte clair HEIDENHAIN Programmes en DIN/ISO Tableaux d'outils Tableaux de données de coupe Tableaux de points zéro Tableaux de points Fichiers de palettes Fichiers-texte Fichiers-système

Mémoire de programmes	Disque dur de 1.500 Mo pour programmes CN	
	Gestion d'un nombre illimité de fichiers	
Définitions des outils	jusqu'à 254 outils dans le programme, nombre d'outils illimité dans les	
	tableaux	
Aides à la programmation	Fonctions d'approche et de sortie du contour	
	Calculatrice intégrée	
	Articulation de programmes	
	Séquences de commentaires	
	Aide directe pour messages d'erreur délivrés (aide rattachée au	
	contexte)	

Fonctions programmables

Eléments du contour	 Droite Chanfrein Trajectoire circulaire Centre de cercle Rayon de cercle Trajectoire circulaire avec raccordement tangentiel Arrondi d'angle Droites et trajectoires circulaires pour aborder et quitter le contour Spline B
Programmation flexible de contours	pour tous éléments du contour avec cotation non conforme aux normes CN
Correction de rayon d'outil tri-dimensionnelle	pour modification après-coup des données d'outils sans avoir à recalculer le programme
Sauts dans le programme	 Sous-programme Répétition de parties de programme Programme quelconque pris comme sous-programme
Cycles d'usinage	 Cycles de perçage, perçage profond, alésage, alésage avec alésoir, taraudage, taraudage rigide Ebauche et finition de poche rectangulaire et circulaire Cycles de fraisage de rainures droites ou circulaires Motifs de points sur un cercle ou sur des lignes Cycles d'usinage ligne -à-ligne de surfaces planes ou gauchies Usinage de poches et îlots à contours variés Interpolation du corps d'un cylindre

Conversions de coordonnées	 Décalage du point zéro Image miroir Rotation Facteur échelle Inclinaison du plan d'usinage
Utilisation d'un palpeur 3D	 Fonctions de palpage pour compensation du désaxage de la pièce Fonctions de palpage pour initialisation du point de référence Fonctions de palpage pour contrôle automatique de la pièce Digitalisation de formes 3D avec palpeur mesurant (option) Digitalisation de formes 3D avec palpeur à commutation (option) Etalonnage automatique d'outils avec TT 120
Fonctions arithmétiques	 Fonctions de calcul de base +, -, x et , Fonctions trigonométriques sin, cos, tan, arcsin, arccos, arctan Racine de valeurs (√a) et sommes de carrés (√a² + b²) Elévation de valeurs au carré (SQ) Elévation de valeurs à une puissance (^) Constante PI (3,14) Fonctions logarithmiques Fonction exponentielle Inverser logiquement (NEG) Former un nombre entier (INT) Calculer la valeur absolue (ABS) Suppression d'espaces avant la virgule (FRAC) Fonctions de calcul d'un cercle Comparaisons supérieur à, inférieur à, égal à

Caractéristiques de la TNC

Durée de traitement des séquences	4 ms/séquence		
Durée du cycle d'asservissement	TNC 426 CB, TNC 430 CA:	Interpolation trajectoire: 3 ms Finesse d'interpolation: 0,6 ms (position)	
	TNC 426 PB, TNC 430 PB:	Interpolation trajectoire: 3 ms	
		Finesse d'interpolation: 0,6 ms	
		(vitesse de rotation)	
Vitesse de transmission des données	115.200 bauds max. avec V.24/V.11		
	1 Mbaud max. avec interface Ethernet (option)		
Température ambiante	■ de travail: 0°C à +4	5°C	
	■ de stockage: -30°C à +7	0°C	
Course de déplacement	100 m max. (2540 pouces)		
Vitesse de déplacement	300 m/min. max. (11.811 pouces/min.)		
Vitesse de rotation broche	99.999 tours/min. max.		
Plage d'introduction	■ 0,1µm min. (0,00001 pouce) ou 0,0001°		
	99.999,999 mm max. (3.937 pouces) ou 99.999,999°		

13.4 Changement de la batterie-tampon

Lorsque la commande est hors-tension, une batterie-tampon alimente la TNC en courant pour que les données de la mémoire RAM ne soient pas perdues.

Lorsque la TNC affiche le message Changer batterie-tampon, vous devez alors changer les batteries. Les batteries sont logées près de l'alimentation à l'intérieur de l'unité logique (boîtier rond et noir). La TNC contient également une mémoire d'énergie qui alimente en courant la commande pendant que vous effectuez le changement des batteries (durée transitoire max. 24 heures).

Pour changer la batterie-tampon, mettre la machine et la TNC hors-tension!

La batterie-tampon ne doit être changée que par un personnel dûment formé!

Type de batterie: 3 piles rondes, leak-proof, désignation IEC "LR6"

SYMBOLES

3D, correction 82formes d'outils 82valeurs Delta 833D, représentation 286

Α

Aborder à nouveau le contour 296 Accessoires 11 Affichages d'état 7 généraux 7 supplémentaires 8 Alésage 157 Alésage avec alésoir 158 Amorce de séguence 294 Angles contours ouverts: M98 140 Appel de programme avec cycle 235 programme quelconque comme sous-PGM 242 Arrondi d'angle 108 Arrondi entre segments de droite: M112 139 Avance 17 avec axes rotatifs: M116 144 modifier 18 Avance rapide 68 Axe rotatif 144 déplacement avec optimisation course 144 réduire l'affichage 145 Axes auxiliaires 29 Axes inclinés 146 Axes principaux 29 Axes rotatifs, déplacement avec opt. course: M126 144

B Batterie-tampon, changer 338

С

Calcul automatique des données de coupe 72, 84 Calcul données de coupe 84 Calcul du temps d'usinage 288 Calcul entre parenthèses 270 Calculatrice 63 Calculs de cercles 258 Centre de cercle CC 104 Cercle de trous 186 Cercle entier 105 Chanfrein 103 Changement d'outil 77 automatique 77 Chemin d'accès 40 Code 299 Commuter majuscules/minuscules 60 Contour, aborder 96 Contour, guitter 96 Contournage, fonctions 93 principes de base 93 cercles et arcs de cercle 94 prépositionnement 95

Contournages 102 coordonnées cartésiennes 102 droite 103 sommaire 102 traj. circ. autour du centre cercle 105 traj. circ. avec raccord. tangentiel 107 traj. circ. de rayon défini 106 coordonnées polaires 112 droite 113 sommaire 112 traj. circ. autour du pôle CC 113 traj. circ. avec raccord. tangentiel 114 programmation flexible de contours FK cf. Programmation FK Contre-percage 161 Conversion de coordonnées sommaire 219 Coordonnées machine: M91/M92 135 Coordonnées polaires définir le pôle 30 principes de base 30 Correction d'outil longueur 78 rayon 79 tri-dimensionnelle 82 Correction de rayon 79 angles externes 81 angles internes 81 introduire 80 usinage des angles 81

dex

С

Cycle appeler 153 définir 152 groupes 152 Cycles de contournage. Cf. Cycles SL Cycles SL contours superposés 193 cvcle Contour 193 données du contour 195 évidement 198 finition en profondeur 199 finition latérale 199 pré-perçage 197 sommaire 191 Cvlindre 279 Cylindre, corps 202

D

Décalage du point zéro avec tableaux points zéro 221 dans le programme 220 Découpe laser, fonctions auxiliaires 149 Déplacement axes machine 15 avec manivelle électronique 16 avec touches sens externes 15 pas-à-pas 17 Déplacements d'outil programmer 55 Dialogue 55 Dialogue Texte clair 55 Disgue dur 33

D

Données d'outils appeler 76 introduire dans programme 70 introduire dans tableau 71 valeurs Delta 70 Données digitalisées exécuter 212 Données-système, lire 265 Droite 103, 113 Durées de fonctionnement 314

E

Ecran 3 Ellipse 277 Etalonnage automatique d'outils 72 Etalonnage d'outil 72 Etat fichiers 34, 42 Evidement. cf. Cycles SL: Evidement Exécution de programme exécuter 291 interrompre 292 omettre des séguences 296 poursuivre après une interruption 293 rentrer dans le PGM à un endroit quelconque 294 sommaire 291

F

Facteur d'avance 141 Facteur d'avance pour plongée: M103 141 Facteur échelle 226 Facteur échelle, spécifique de l'axe 227 Familles de pièces 254 **Fichiers HELP** afficher 313 Fichier-texte fonctions d'édition 60 fonctions d'effacement 61 ouvrir 60 quitter 60 trouver parties de texte 62 Filetage 165 Finition en profondeur 199 Finition latérale 199 FNxx. cf. Programmation paramètres Q Fonction MOD quitter 298 sélectionner 298 Fonctions angulaires 257 Fonctions auxiliaires 134 axes rotatifs 144 broche 135 comportement de contournage 138 contrôle exécution du programme 135 indications de coordonnées 135 introduire 134 machines à découpe laser 149 Fonctions M. cf. Fonctions auxiliaires Formules, introduire 270

G

Gestion de fichiers appeler 34, 42 configurer avec MOD 309 copier fichier 35, 45 copier fichier 39, 48 copier tableaux 45 écraser des fichiers 51 effacer fichier 35, 46 étendue 40 sommaire 41 marguer des fichiers 47 nom de fichier 33 renommer fichier 38, 47 répertoire copier 45 créer 44 sélectionner fichier 34, 44 standard 34 transmission ext. des données 36. 49 type de fichier 33 Gestion de programmes. cf. Gestion de fichiers Graphisme agrandissement de la projection 58 lors de la programmation 57 Graphisme de programmation 57 Graphismes agrandissement projection 286 projections 284

1

Image-miroir 224 Imbrications 243 Imprimante réseau 52, 306 Inclinaison du plan d'usinage 19, 228 Inclinaison du plan d'usinage 19 cycle 228 manuelle 19 marche à suivre 231 Insertion de commentaires 59 Interface de données affecter 301 configurer 300 raccordement 331 Interface Ethernet configurer 304 possibilités de raccordement 303 relier et délier les lecteurs du réseau 52 Interfaces de données distribution des plots 331 Interpolation hélicoïdale 114 Interpolation Spline 130 format de séguence 130 plages d'introduction 131 Interrompre l'usinage 292

Logiciel, numéro 299 Look ahead 142

L

M

Matériau pièce, définir 85, 86 Messages d'erreur 64 aide 64 émission 261 Messages d'erreur CN 64 Messages d'erreurs, aide Mise hors-tension 14 Mise sous tension 14 Modes fonctionnement 5 Motifs de points sommaire 185 sur des lignes 187 sur un cercle 186

Ν

Normale de surface 82

0

Option, numéro 299 Orientation broche 236 Outil, longueur 69 Outil, matériau de coupe 86 Outil, nom 69 Outil, numéro 69 Outil, rayon 70 Outil, sélectionner type 72 Ρ

Panneau de commande 5 Paramètres Q 262 contrôler 260 émission formatée 263 émission non-formatée 262 réservés 273 transmettre valeurs à l'automate 269 Paramètres utilisateur 309 généraux affichages TNC, éditeur TNC 321 palpeurs 3D et digitalisation 318 transmission ext. données 317 usinage et exécution du programme 327 spécifiques de la machine 309 Paramètres-machine affichages TNC et éditeur TNC 321 palpeurs 3D 318 transmission ext. données 317 Percage 156 Percage profond 155 Percage universel 159 Percage, cycles 154 Pièce brute, définir 53 Pièce, positions absolues 31 incrémentales 31 relatives 31 Poche circulaire ébauche 173 finition 175 Poche rectangulaire ébauche 169 finition 170 Point de réf., initialiser 18 sans palpeur 3D 18

Ρ

Point de réf., sélectionner 32 Points de réf., franchir 14 Positionnement avec inclinaison du plan d'usinage 137 avec introduction manuelle 24 Positionnement manivelle. autoriser 143 Principes de base 28 Programmation FK 118 contours fermés 125 droites 120 graphisme 118 ouvrir dialogue 119 points auxiliaires 122 principes de base 118 programme FK, convertir 125 rapports relatifs 123 trajectoires circulaires 120 Programmation paramétrée. cf. Programmation paramètres Q Programmation paramètres Q 252 autres fonctions 261 calcul de cercle 258 calculs de cercles 258 conditions si/alors 259 fonctions angulaires 257 fonctions arithmétiques de base 255 remarques concernant la programmation 252 Programme articuler 58 éditer 56 ouvrir 54 structure 53 Programme FK, convertir en PGM Texte clair 38 Programme, nom. cf. Gestion de fichiers: nom de fichier

R

Raccordement secteur 52 Rainurage 178 pendulaire 179 Rainure circulaire, fraisage 181 Réglages du réseau 304 Répartition de l'écran 4 Répertoire 40 copier 45 créer 44 Répétition partie de programme 241 appeler 242 processus 241 programmer 242 remarques concernant la programmation 241 Représentation en 3 plans 285 Rotation 225

S

Sauvegarde des données 33 Séquence effacer 56 insérer 56 modifier 56 Séquence L, générer 312 Simulation graphique 288 Sous-programme 240 appeler 241 processus 240 programmer 241 remarques concernant la programmation 240 Sphère 281 Surface régulière 216 Surveillance zone de travail 290, 309 Synchronisation automate et CN 269 Synchronisation CN et automate 269 Système de référence 29

Т

Tableau de palettes exécuter 66 Tableau d'emplacements 75 Tableau données de coupe 84 transmission des données 89 Tableau d'outils éditer 73 fonctions d'édition 74 possibilités d'introduction 71 quitter 73 Taraudage avec mandrin de compensation 163 rigide 164 Teach In 103 Temporisation 235 Tenon circulaire, finition 176 Tenon rectangulaire, finition 172 Test de programme exécuter 290 jusqu'à une séquence donnée 290 sommaire 289 TNC 426 B, TNC 430 2 TNCremo 302 Tracé de contour 200 Trajectoire circulaire 105, 106, 107, 113, 114 Trajectoire hélicoïdale 114 Transmission des données, logiciel 302 Trigonométrie 257 Trou oblong, fraiser 179

U

Unité de mesure, sélectionner 54

V

Vitesse de contournage constante: M90 138 VITESSE EN BAUDS, configurer300 Vitesse rotation broche 17 introduire 18, 68 modifier 18 Vitesse transmission des données 300 Vue de dessus 285

W

WMAT.TAB 85
Μ	Effet de la fonction M Action sur séquence er	n début	à la fi	n Page
MOO	ABRET de déroulement du programme/ABRET broche/ABRET arrosage			143
M02	ARRET de déroulement du programme/ARRET broche/ARRET arrosage éventuellement		-	145
10102	effacement de l'affichage d'état (dépend de PM)/retour à la séquence 1		1.0	143
M03	MARCHE broche sens horaire			
M04	MARCHE broche sens anti-horaire			
M05	ARRET broche			143
M06	Changement d'outil/ARRET déroulement du PGM (dépend de PM)/ARRET broche			143
M08	MARCHE arrosage			
M09	ARRET arrosage			143
M13	MARCHE broche sens horaire/MARCHE arrosage			
M14	MARCHE broche sens anti-horaire/MARCHE arrosage			143
M30	Fonction identique à M02			143
M89	Fonction auxiliaire libre ou			
	appel de cycle, effet modal (en fonction des paramètres-machine)			161
M90	Seulement en mode ERP: vitesse contournage constante aux angles			146
M91	Séquence positionnement: coordonnées se référent au point zéro machine			143
M92	Séquence positionnement: coordonnées se référent à une position			
	définie par le constructeur, position de changement d'outil, par ex.			143
M94	Réduction de l'affichage de position dans l'axe rotatif à une valeur <360°			153
M97	Usinage de petits éléments de contour			147
M98	Usinage complet d'angles de contours ouverts			148
M99	Appel de cycle actif pas-à-pas			161
M101	Changement d'outil autom. avec outil-jumeau, après écoulement durée d'utilisation max.			
M102	Annulation de la fonction M101			77
M103	Réduire au facteur F l'avance de plongée (pourcentage)			149
M105	Exécuter l'usinage avec deuxième facteur kv			
M106	Exécuter l'usinage avec premier facteur kv			364
M107	Inhibation du message d'erreur pour outils-jumeaux avec surépaisseur			
M108	Annulation de la fonction M107			77
M109	Vitesse de contournage constante à la dent de l'outil sur arcs de cercle			
	(réduction et augmentation de l'avance)			
M110	Vitesse de contournage constante à la dent de l'outil sur arcs de cercle	_		
1111	(reduction d avance seulement)		_	150
	Annulation de la fonction IVI 109/IVI 110	_		150
IVI I 14	Appulation de la fanction M114			154
M116				154
N/110	Transférer la positionnement de la manivalle en sours d'avégution de DCM			152
N/120				151
N1120	Déplesement des aves retetifs aves entimisation de la source			150
M120	Appulation de la fonction M126			152
M128	Concerver la nosition de la nointe de l'outil lors du nositionnement des aves inclinés (TCPM)		-	152
M129	Annulation de la fonction M128		1.1	155
M130	Aborder les positions dans le système de coordonnées non incliné avec plan d'usinage incliné			145
M134	Arrêt précis aux angles avec transitions de contour non tangentielles			140
M135	Annulation de la fonction M134	_		156
M200	Découpe laser: émission directe de la tension programmée	1.1		
M201	Découpe laser: émission tension comme fonction de la course			
M202	Découpe laser: émission tension comme fonction de la vitesse			
M203	Découpe laser: émission tension comme fonction de la durée (rampe)			
M204	Découpe laser: émission tension comme fonction de la durée (impulsion)			157

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH Dr.-Johannes-Heidenhain-Straße 5 83301 Traunreut, Germany · +49 (8669) 31-0 FAX +49 (8669) 5061 E-Mail: info@heidenhain.de **Technical support FAX** +49 (8669) 31-1000 E-Mail: service@heidenhain.de Measuring systems 2 +49 (8669) 31-3104 E-Mail: service.ms-support@heidenhain.de TNC support E-Mail: service.nc-support@heidenhain.de NC programming 2 +49 (8669) 31-3103 E-Mail: service.nc-pgm@heidenhain.de **PLC programming** (2) +49 (86 69) 31-31 02 E-Mail: service.plc@heidenhain.de

Lathe controls 2 +49 (711) 952803-0 E-Mail: service.hsf@heidenhain.de

www.heidenhain.de