

HEIDENHAIN

TNC 320

Modo de Empleo Programación de ciclos

Software NC

340551-06 340554-06

Español (es) 1/2014

Sobre este Manual

Sobre este Manual

A continuación encontrará una lista con los símbolos utilizados en este Manual.

Este símbolo le indicará que para la función descrita existen indicaciones especiales que deben observarse.

AVISO Este símbolo advierte de una situación posiblemente peligrosa, que puede originar lesiones leves, si no se evita.

Este símbolo le indicará que utilizando la función descrita existe uno o varios de los siguientes riesgos:

- Riesgos para la pieza
- Riesgos para los medios de sujeción
- Riesgos para las herramientas
- Riesgos para la máquina
- Riesgos para los operarios

Este símbolo le indicará que la función descrita debe ser adaptada por el fabricante de la máquina. Por lo tanto, la función descrita puede tener efectos diferentes en cada máquina.

Este símbolo le indicará que en otro manual de usuario encontrará la descripción más detallada de la función en cuestión.

¿Desea modificaciones o ha detectado un error?

Realizamos una mejora continua en nuestra documentación. Puede ayudarnos en este objetivo indicándonos sus sugerencias de modificaciones en la siguiente dirección de correo electrónico: **tnc-userdoc@heidenhain.de**.

Tipo de TNC, software y funciones

Este Modo de Empleo describe las funciones disponibles en los TNCs a partir de los siguientes números de software NC.

Tipo de TNC	Número de software NC
TNC 320	340551-06
TNC 320 Puesto de Programación	340554-06

La letra E corresponde a la versión export del TNC. Para la versión export del TNC existe la siguiente restricción:

■ Movimientos lineales simultáneos hasta 4 ejes

El fabricante de la máquina adapta las prestaciones del TNC a la máquina mediante parámetros de máquina. Por ello, en este manual se describen también funciones que no están disponibles en todos los TNC.

Las funciones del TNC que no están disponibles en todas las máquinas son, por ejemplo:

Medición de herramientas con el TT

Rogamos se pongan en contacto con el fabricante de la máquina para conocer el funcionamiento de la misma.

Muchos fabricantes de máquinas y HEIDENHAIN ofrecen cursillos de programación para los TNCs. Se recomienda tomar parte en estos cursillos, para aprender las diversas funciones del TNC.

Modo de Empleo:

Todas las funciones TNC que no estén relacionadas con los ciclos se encuentran descritas en el modo de empleo del TNC 320. Si precisan dicho Modo de Empleo, rogamos se pongan en contacto con HEIDENHAIN.

ID Manual de usuario, lenguaje conversacional: 679222--xx.

ID Manual de usuario DIN/ISO: 679226--xx.

Nociones básicas

Tipo de TNC, software y funciones

Opciones de software

El TNC 320 dispone de diversas opciones de software, que pueden ser habilitadas por el fabricante de la máquina. Cada opción debe ser habilitada por separado y contiene las funciones que se enuncian a continuación:

Opciones de hardware

- 1. Eje adicional para 4 ejes y cabezal
- 2. Eje adicional para 5 ejes y cabezal

Opción de Software 1 (nº de opción #08)

Mecanizado mesa giratoria ■		Programación de contornos sobre el desarrollo de un cilindro
		Avance en mm/min
Traslación de coordenadas	-	Inclinación del plano de mecanizado
Interpolación		Círculo en 3 ejes con plano de mecanizado girado (círculo espacial)

HEIDENHAIN DNC (opción nº 18)

 Comunicación con aplicaciones de PC externas mediante componentes COM

Opción de software Lenguajes conversacionales adicionales (nº opción 41)

Lenguajes conversacionales adicionales

- Esloveno
- Noruego
- Eslovaco
- Letón
- Coreano
- Estonio
- Turco
- Rumano
- Lituano

Tipo de TNC, software y funciones

Estado de desarrollo (Funciones Upgrade)

Junto a las opciones de software se actualizan importantes desarrollos del software del TNC mediante funciones Upgrade, el denominado **F**eature **C**ontent **L**evel (palabra ing. para Nivel de desarrollo). No podrá disponer de las funciones que están por debajo del FCL, cuando actualice el software en su TNC.

Al recibir una nueva máquina, todas las funciones Upgrade están a su disposición sin costes adicionales.

Las funciones Upgrade están identificadas en el manual con **FCL n**, donde **n** representa el número correlativo del nivel de desarrollo. Se pueden habilitar las funciones FCL de forma permanente adquiriendo un número clave. Para ello, ponerse en contacto con el fabricante de su máquina o con HEIDENHAIN.

Lugar de utilización previsto

El TNC pertenece a la clase A según la norma EN 55022 y está indicado principalmente para zonas industriales.

Aviso legal

Este producto utiliza un software del tipo "open source". Encontrará más información sobre el control numérico en

- ▶ Modo de funcionamiento Memorizar/Editar
- ► Función MOD
- ► Softkey DATOS DE LICENCIA

Nuevas funciones de ciclo del software 34049x02

Nuevas funciones de ciclo del software 34049x02

- Nuevo ciclo de mecanizado 225 Grabado ver "GRABAR (Ciclo 225, DIN/ISO: G225)", Página 266
- En el ciclo 256 isla rectangular ahora se dispone de un parámetro para poder determinar la posición de aproximación en la isla ver "ISLA RECTANGULAR (Ciclo 256, DIN/ISO: G256)", Página 145
- En el ciclo 257 fresar isla circular ahora se dispone de un parámetro para poder determinar la posición de aproximación en la isla ver "ISLA CIRCULAR (Ciclo 257, DIN/ISO: G257)", Página 149
- El ciclo 402 ahora también puede compensar una inclinación de la pieza mediante un giro de la mesa giratoria ver "GIRO BÁSICO mediante dos islas (Ciclo 402, DIN/ISO: G402)", Página 288
- Nuevo ciclo de palpación 484 para calibrar el palpador sin cable TT 449 ver "Calibrar TT sin cables (Ciclo 484, DIN/ISO: G484)", Página 423
- Nuevo ciclo de palpación manual "Eje central como punto de referencia" (véase el manual de usuario)
- Con la función PREDEF, en los ciclos ahora también se pueden incorporar valores predefinidos a un parámetro del ciclo ver "Consignas de programa para ciclos", Página 46
- La dirección de eje de herramienta activo se puede activar ahora en funcionamiento manual y durante la superposición del volante manual como eje de herramienta virtual (véase el manual de usuario)

1	Nociones básicas / Resúmenes	37
2	Utilizar ciclos de mecanizado	41
3	Ciclos de mecanizado: Taladro	61
4	Ciclos de mecanizado: Roscado / Fresado de rosca	91
5	Ciclos de mecanizado: Fresado de cajeras / Fresado de islas / Fresado de ranuras	125
6	Ciclos de mecanizado: Definiciones de modelo	157
7	Ciclos de mecanizado: Cajera de contorno	167
8	Ciclos de mecanizado: Superficies cilíndricas	191
9	Ciclos de mecanizado: Cajera de contorno con fórmula de contorno	205
10	Ciclos de mecanizado: Planeado	219
11	Ciclos: Conversiones de coordenadas	233
12	Ciclos: Funciones especiales	257
13	Trabajar con ciclos de palpación	269
14	Ciclos de palpación: determinar automáticamente la posición inclinada de la pieza	279
15	Ciclos de palpación: Determinar puntos de referencia automáticamente	301
16	Ciclos de palpación: Controlar las piezas automáticamente	357
17	Ciclos de palpación: Funciones especiales	401
18	Ciclos de palpación: medir herramientas automáticamente	415
19	Tablas resumen ciclos	431

1	Noci	iones básicas / Resúmenes	37
	1.1	Introducción	. 38
	1.2	Grupos de ciclos disponibles	.39
		·	
		Resumen ciclos de mecanizado	. 39
		Resumen ciclos de palpación	40
			. +0

2	Otili	lizar ciclos de mecanizado	
	2.1	Trabajar con ciclos de mecanizado	42
		Ciclos específicos de la máquina	42
		Definir ciclo mediante Softkeys	43
		Definir el ciclo a través de la función GOTO	43
		Llamar ciclo	44
	2.2	Consignas de programa para ciclos	46
		Resumen	46
		Introducir DEF GLOBAL	46
		Utilizar las indicaciones DEF GLOBAL	47
		Datos globales válidos en general	47
		Datos globales para el taladrado	48
		Datos globales para fresados con ciclos de cajeras 25x	48
		Datos globales para fresados con ciclos de contorno	48
		Datos globales para el comportamiento de un posicionamiento	49
		Datos globales para funciones de palpación	49
	2.3	Definición del modelo PATTERN DEF	50
	2.3	UtilizaciónUtilización	
	2.3		50
	2.3	Utilización	50
	2.3	UtilizaciónIntroducir PATTERN DEF	50 50
	2.3	Utilización Introducir PATTERN DEF Utilizar PATTERN DEF	50 50 51
	2.3	Utilización Introducir PATTERN DEF Utilizar PATTERN DEF Definir posiciones de mecanizado únicas.	50 51 51
	2.3	Utilización Introducir PATTERN DEF Utilizar PATTERN DEF Definir posiciones de mecanizado únicas. Definir filas únicas	50 51 51 52
	2.3	Utilización Introducir PATTERN DEF Utilizar PATTERN DEF Definir posiciones de mecanizado únicas Definir filas únicas Definición del modelo único	5051515253
	2.3	Utilización Introducir PATTERN DEF Utilizar PATTERN DEF Definir posiciones de mecanizado únicas Definir filas únicas Definición del modelo único Definir marcos únicos	
	2.3	Utilización. Introducir PATTERN DEF. Utilizar PATTERN DEF. Definir posiciones de mecanizado únicas. Definir filas únicas. Definición del modelo único. Definir marcos únicos. Definir círculo completo.	
		Utilización Introducir PATTERN DEF Utilizar PATTERN DEF Definir posiciones de mecanizado únicas Definir filas únicas Definición del modelo único Definir marcos únicos Definir círculo completo Definir círculo graduado	
		Utilización	
		Utilización Introducir PATTERN DEF Utilizar PATTERN DEF Definir posiciones de mecanizado únicas Definir filas únicas Definición del modelo único Definir marcos únicos Definir círculo completo Definir círculo graduado Tablas de puntos Aplicación	
		Utilización Introducir PATTERN DEF Utilizar PATTERN DEF Definir posiciones de mecanizado únicas Definir filas únicas Definición del modelo único Definir marcos únicos Definir círculo completo Definir círculo graduado Tablas de puntos Aplicación Introducción de una tabla de puntos	

3	Cicle	os de mecanizado: Taladro	61
	3.1	Nociones básicas	62
		Resumen	62
	3.2	CENTRAJE (Ciclo 240, DIN/ISO: G240)	63
		Desarrollo del ciclo	63
		¡Tener en cuenta durante la programación!	
		Parámetros de ciclo	64
	3.3	TALADRAR (ciclo 200)	65
		Desarrollo del ciclo	65
		¡Tener en cuenta durante la programación!	65
		Parámetros de ciclo	66
	3.4	ESCARIADO (Ciclo 201, DIN/ISO: G201)	67
		Desarrollo del ciclo	67
		¡Tener en cuenta durante la programación!	
		Parámetros de ciclo	68
	3.5	MANDRINADO (Ciclo 202, DIN/ISO: G202)	69
		Desarrollo del ciclo	69
		¡Tener en cuenta durante la programación!	69
		Parámetros de ciclo	71
	3.6	TALADRADO UNIVERSAL (Ciclo 203, DIN/ISO: G203)	72
		Desarrollo del ciclo	72
		¡Tener en cuenta durante la programación!	72
		Parámetros de ciclo	73
	3.7	AVELLANADO INVERSO (Ciclo 204, DIN/ISO: G204)	75
		Desarrollo del ciclo	75
		¡Tener en cuenta durante la programación!	75
		Parámetros de ciclo	76
	3.8	TALADRADO PROFUNDO UNIVERSAL (Ciclo 205, DIN/ISO: G205)	78
		Desarrollo del ciclo	78
		¡Tener en cuenta durante la programación!	78
		Parámetros de ciclo	80

3.9	FRESADO DE TALADRO (Ciclo 208)	82
	Desarrollo del ciclo	00
	¡Tener en cuenta durante la programación!	82
	Parámetros de ciclo	84
3.10	TALADRADO CON BROCA DE UN SOLO FILO (Ciclo 241, DIN/ISO: G241)	85
	Desarrollo del ciclo	85
	¡Tener en cuenta durante la programación!	85
	Parámetros de ciclo	86
3.11	Ejemplos de programación	88
	Ejemplo: Ciclos de taladrado	88
	Fiemplo: Utilizar ciclos de taladrado junto con PATTERN DEF	89

4	Cicle	os de mecanizado: Roscado / Fresado de rosca	91
	4.1	Nociones básicas	92
		Resumen	92
	4.2	ROSCADO NUEVO con macho flotante (Ciclo 206, DIN/ISO: G206)	93
		Desarrollo del ciclo	93
		¡Tener en cuenta durante la programación!	93
		Parámetros de ciclo	94
	4.3	ROSCADO sin macho flotante GS NEU (Ciclo 207, DIN/ISO: G207)	95
		Desarrollo del ciclo	95
		¡Tener en cuenta durante la programación!	95
		Parámetros de ciclo	96
	4.4	ROSCADO CON MACHO ROTURA DE VIRUTA (Ciclo 209, DIN/ISO: G209)	97
		Desarrollo del ciclo	97
		¡Tener en cuenta durante la programación!	98
		Parámetros de ciclo	99
	4.5	Fundamentos del fresado de rosca	101
		Condiciones	101
	4.6	FRESADO DE ROSCA INTERIOR (Ciclo 262, DIN/ISO: G262)	103
		Desarrollo del ciclo	103
		¡Tener en cuenta durante la programación!	104
		Parámetros de ciclo	105
	4.7	FRESADO DE ROSCA CON AVELLANADO (Ciclo 263, DIN/ISO:G263)	106
		Desarrollo del ciclo	106
		¡Tener en cuenta durante la programación!	107
		Parámetros de ciclo	108
	4.8	FRESADO DE ROSCA CON TALADRADO (Ciclo 264, DIN/ISO: G264)	110
		Desarrollo del ciclo	110
		¡Tener en cuenta durante la programación!	111
		Parámetros de ciclo	112

4.9	FRESADO DE ROSCA CON TALADRADO HELICOIDAL (Ciclo 265, DIN/ISO: G265)	. 114
	Desarrollo del ciclo	.114
	¡Tener en cuenta durante la programación!	. 115
	Parámetros de ciclo	. 116
4.10	FRESADO DE ROSCA EXTERIOR (Ciclo 267, DIN/ISO: G267)	. 118
	Desarrollo del ciclo	.118
	¡Tener en cuenta durante la programación!	. 119
	Parámetros de ciclo	. 120
4.11	Ejemplos de programación	. 122
	Figmple: Pagade	100

5	Cicle	os de mecanizado: Fresado de cajeras / Fresado de islas / Fresado de ranuras	125
	5.1	Nociones básicas	126
		Resumen	126
	5.2	CAJERA RECTANGULAR (Ciclo 251, DIN/ISO: G251)	127
		Desarrollo del ciclo	127
		¡Tener en cuenta durante la programación!	128
		Parámetros de ciclo	129
	5.3	CAJERA CIRCULAR (Ciclo 252, DIN/ISO: G252)	132
		Desarrollo del ciclo	132
		¡Tener en cuenta durante la programación!	133
		Parámetros de ciclo	134
	5.4	FRESADO DE RANURAS (Ciclo 253, DIN/ISO: G253)	136
		Desarrollo del ciclo	136
		¡Tener en cuenta durante la programación!	137
		Parámetros de ciclo	138
	5.5	RANURA REDONDA (Ciclo 254, DIN/ISO: G254)	140
		Desarrollo del ciclo	140
		¡Tener en cuenta durante la programación!	141
		Parámetros de ciclo	
	5.6	ISLA RECTANGULAR (Ciclo 256, DIN/ISO: G256)	145
		Desarrollo del ciclo	145
		¡Tener en cuenta durante la programación!	146
		Parámetros de ciclo	147
	5.7	ISLA CIRCULAR (Ciclo 257, DIN/ISO: G257)	149
		Desarrollo del ciclo	149
		¡Tener en cuenta durante la programación!	150
		Parámetros de ciclo	151
	5.8	Ejemplos de programación	153
		Eiemplo: Fresado de caiera, isla v ranura	153

6	Ciclo	os de mecanizado: Definiciones de modelo	157
	6.1	Fundamentos	158
		Resumen	158
	6.2	FIGURA DE PUNTOS SOBRE CÍRCULO (Ciclo 220, DIN/ISO: G220)	159
		Desarrollo del ciclo	159
		¡Tener en cuenta durante la programación!	159
		Parámetros de ciclo	. 160
	6.3	FIGURA DE PUNTOS SOBRE LÍNEAS (Ciclo 221, DIN/ISO: G221)	162
		Desarrollo del ciclo	162
		¡Tener en cuenta durante la programación!	162
		Parámetros de ciclo	. 163
	6.4	Ejemplos de programación	164
		Fiemplo: Círculos de puntos	164

Cicl	os de mecanizado: Cajera de contorno	167
7.1	Ciclos SL	168
	Fundamentos	168
	Resumen	169
7.2	CONTORNO (Ciclo 14, DIN/ISO: G37)	170
	:Tanar an cuanta duranta la programación l	170
72		
7.3		
	·	
	·	
<i>1</i> .4		
7.5	PRETALADRADO (Ciclo 21, DIN/ISO: G121)	176
	Desarrollo del ciclo	176
	¡Tener en cuenta durante la programación!	176
	Parámetros de ciclo	177
7.6	BROCHAR (Ciclo 22, DIN/ISO: G122)	178
	Desarrollo del ciclo	178
	¡Tener en cuenta durante la programación!	179
	Parámetros de ciclo	180
7.7	ACABADO DE PROFUNDIDAD (Ciclo 23, DIN/ISO: G123)	181
	Desarrollo del ciclo	181
	Parámetros de ciclo	
7.8	ACABADO DEL LADO (Ciclo 24. DIN/ISO: G124)	182
	Parámetros de ciclo	
	7.1 7.2 7.3 7.4	Fundamentos Resumen 7.2 CONTORNO (Ciclo 14, DIN/ISO: G37) Tener en cuenta durante la programación! Parámetros de ciclo 7.3 Contornos superpuestos Nociones básicas Subprogramas: Cajeras superpuestas 'Sumas" de superficies 'Resta" de superficies Superficie de la "intersección" 7.4 DATOS DEL CONTORNO (Ciclo 20, DIN/ISO: G120) Tener en cuenta durante la programación! Parámetros de ciclo 7.5 PRETALADRADO (Ciclo 21, DIN/ISO: G121) Desarrollo del ciclo Tener en cuenta durante la programación! Parámetros de ciclo 7.6 BROCHAR (Ciclo 22, DIN/ISO: G122) Desarrollo del ciclo Tener en cuenta durante la programación! Parámetros de ciclo 7.7 ACABADO DE PROFUNDIDAD (Ciclo 23, DIN/ISO: G123) Desarrollo del ciclo Tener en cuenta durante la programación! Parámetros de ciclo 7.8 ACABADO DEL LADO (Ciclo 24, DIN/ISO: G124) Desarrollo del ciclo Tener en cuenta durante la programación! Parámetros de ciclo Tener en cuenta durante la programación! Parámetros de ciclo Tener en cuenta durante la programación! Parámetros de ciclo Tener en cuenta durante la programación! Parámetros de ciclo Tener en cuenta durante la programación! Parámetros de ciclo Tener en cuenta durante la programación! Parámetros de ciclo Tener en cuenta durante la programación! Parámetros de ciclo Tener en cuenta durante la programación! Parámetros de ciclo Tener en cuenta durante la programación! Parámetros de ciclo Tener en cuenta durante la programación!

7.9	PERFIL DEL CONTORNO (Ciclo 25, DIN/ISO: G125)	. 184
	Desarrollo del ciclo	.184
	¡Tener en cuenta durante la programación!	. 184
	Parámetros de ciclo	. 185
7.10	Ejemplos de programación	196
7. 10	Ljempios de programación	. 100
	Ejemplo: Desbaste y acabado posterior de una cajera	.186
	Ejemplo: Pretaladrado, desbaste y acabado de contornos superpuestos	. 188
	Fiemplo: Trazado del contorno	190

8	Ciclo	os de mecanizado: Superficies cilíndricas	. 191
	8.1	Nociones básicas	192
		Resumen de los ciclos superficies cilíndricos	192
	8.2	SUPERFICIE CILÍNDRICA (Ciclo 27, DIN/ISO: G127, opción de software 1)	193
		Desarrollo del ciclo	193
		¡Tener en cuenta durante la programación!	194
		Parámetros de ciclo	195
	8.3	SUPERFICIE CILÍNDRICA Fresado de ranura (Ciclo 28, DIN/ISO: G128, opción de software 1)	196
		Desarrollo del ciclo	196
		¡Tener en cuenta durante la programación!	197
		Parámetros de ciclo	198
	8.4	SUPERFICIE CILÍNDRICA Fresado de resalte (Ciclo 29, DIN/ISO: G129, opción de software 1)	199
		Desarrollo del ciclo	199
		¡Tener en cuenta durante la programación!	200
		Parámetros de ciclo	201
	8.5	Ejemplos de programación	202
		Ejemplo: Superficie cilíndrica con ciclo 27	202
		Eiemplo: Superficie cilíndrica con ciclo 28	204

9	Cicl	os de mecanizado: Cajera de contorno con fórmula de contorno	205
	9.1	Ciclos SL con fórmulas de contorno complejas	206
		Nociones básicas	206
		Seleccionar programa con definición del contorno	208
		Definir descripciones del contorno	208
		Introducir fórmulas complejas del contorno	209
		Contornos superpuestos	210
		Ejecutar contorno con los ciclos SL	212
		Ejemplo: desbastar y acabar contornos superpuestos con fórmula de contorno	213
	9.2	Ciclos SL con fórmula de contorno simple	216
		Fundamentos	216
		Introducir una fórmula sencilla del contorno	218
		Ejecutar contorno con los ciclos SL	218

10	Ciclo	os de mecanizado: Planeado	219
	10.1	Nociones básicas	220
		Resumen	220
	10.2	PLANEADO (Ciclo 230, DIN/ISO: G230)	221
		Desarrollo del ciclo	221
		¡Tener en cuenta durante la programación!	221
		Parámetros de ciclo	222
	10.3	SUPERFICIE REGLADA (Ciclo 231, DIN/ISO: G231)	223
		Desarrollo del ciclo	223
		¡Tener en cuenta durante la programación!	224
		Parámetros de ciclo	225
	10.4	PLANEAR CON FRESA (Ciclo 232, DIN/ISO: G232)	227
		Desarrollo del ciclo	227
		¡Tener en cuenta durante la programación!	229
		Parámetros de ciclo	230
	10.5	Ejemplos de programación	232
		Fiemplo: Planeado	232

11.1		
	Fundamentos	234
	Resumen	234
	Activación de la traslación de coordenadas	
11.2	Traslación del PUNTO CERO (Ciclo 7, DIN/ISO: G54)	235
	Funcionamiento	235
	Parámetros de ciclo	
11.3	Traslación del PUNTO CERO con tablas de punto cero (ciclo 7, DIN/ISO: G53)	236
	Efecto	236
	¡Tener en cuenta durante la programación!	
	Parámetros de ciclo	
	Seleccionar la tabla de puntos cero en el programa NC	238
	Editar la tabla de puntos cero en el modo de funcionamiento Memorizar/Editar programa	238
	Configuración de la tabla de puntos cero	240
	Salida de la tabla de puntos cero	240
	Visualizaciones de estados	240
11.4	FIJAR PUNTO DE REFERENCIA (Ciclo 247, DIN/ISO: G247)	241
	Efecto	241
	¡Tener en cuenta antes de la programación!	241
	Parámetros de ciclo	241
	Visualizaciones de estados	241
11.5	CREAR SIMETRÍA (Ciclo 8, DIN/ISO: G28)	242
	Efecto	242
	¡Tener en cuenta durante la programación!	242
	Parámetros de ciclo	242
11.6	GIRO (Ciclo 10, DIN/ISO: G73)	243
	Efecto	243
	¡Tener en cuenta durante la programación!	243
	Description de side	
	Parámetros de ciclo	244
11.7	FACTOR DE ESCALA (Ciclo 11, DIN/ISO: G72)	
11.7		245

11.8	FACTOR DE ESCALA ESPEC. DEL EJE (ciclo 26)	246
	Efecto	246
	¡Tener en cuenta durante la programación!	246
	Parámetros de ciclo	247
11.9	PLANO DE MECANIZADO (Ciclo 19, DIN/ISO: G80, Opción de Software 1)	248
	Efecto	248
	¡Tener en cuenta durante la programación!	249
	Parámetros de ciclo	249
	Resetear	249
	Posicionar ejes giratorios	250
	Visualización de posiciones en el sistema inclinado	251
	Supervisión del espacio de trabajo	251
	Posicionamiento en el sistema inclinado	252
	Combinación con otros ciclos de traslación de coordenadas	252
	Guía para trabajar con ciclo 19 PLANO DE MECANIZADO	253
11.10	Ejemplos de programación	254
	Fiemplo: Traslación de coordenadas	254

12	Ciclo	os: Funciones especiales	257
	12.1	Fundamentos	258
		Resumen	258
	12.2	TIEMPO DE ESPERA (Ciclo 9, DIN/ISO: G04)	259
		Función	259
		Parámetros de ciclo	259
	12.3	LLAMADA DE PROGRAMA (Ciclo 12, DIN/ISO: G39)	260
		Función de ciclo	260
		¡Tener en cuenta durante la programación!	260
		Parámetros de ciclo	261
	12.4	ORIENTACIÓN DEL CABEZAL (Ciclo 13, DIN/ISO: G36)	262
		Función de ciclo	262
		¡Tener en cuenta durante la programación!	262
		Parámetros de ciclo	262
	12.5	TOLERANCIA (Ciclo 32, DIN/ISO: G62)	263
		Función de ciclo	263
		Influencias durante la definición de la geometría en el sistema CAM	263
		¡Tener en cuenta durante la programación!	264
		Parámetros de ciclo	265
	12.6	GRABAR (Ciclo 225, DIN/ISO: G225)	266
		Desarrollo del ciclo	266
		¡Tener en cuenta durante la programación!	266
		Parámetros de ciclo	267
		Caracteres de grabado permitidos	268
		Caracteres no imprimibles	268
		Grabar variables del sistema	268

13	Trab	ajar con ciclos de palpación	269
	13.1	Generalidades sobre los ciclos de palpación	270
		Modo de funcionamiento	270
		Tener en cuenta el giro básico en el modo de funcionamiento Manual	270
		Ciclos de palpación en los modos de funcionamiento Manual y Volante electrónico	
		Ciclos de palpación para el funcionamiento automático	271
	13.2	¡Antes de trabajar con los ciclos de palpación!	273
		Recorrido de desplazamiento máximo hasta el punto de palpación: DIST en tabla del sistema palpador	273
		Distancia de seguridad hasta el punto de palpación: SET_UP en la tabla de sistema de palpación	273
		Orientar el palpador infrarrojo en la dirección de palpación programada: TRACK en la tabla del sistem de palpación	
		Palpador digital, avance de palpación : F en la tabla de sistema de palpación	274
		Palpador digital, avance para posicionamiento de movimiento: FMAX	274
		Palpador digital, marcha rápida para movimientos de posicionamiento: F_PREPOS en tabla del siste	∍ma
		de palpación	
		Medición múltiple	275
		Margen de fiabilidad para la medición múltiple	275
		Ejecutar ciclos de palpación	276
	13.3	Tabla de palpación	277
		Generalidades	277
		Editar las tablas del palpador	277
		Datos de palpación	278

14	Ciclo	s de palpación: determinar automáticamente la posición inclinada de la pieza	279
	14.1	Fundamentos	280
		Resumen	280
		Datos comunes de los ciclos de palpación para registrar la inclinación de la pieza	281
	14.2	GIRO BÁSICO (Ciclo 400, DIN/ISO: G400)	282
		Desarrollo del ciclo	282
		¡Tener en cuenta durante la programación!	282
		Parámetros de ciclo	283
	14.3	GIRO BÁSICO mediante dos taladros (Ciclo 401, DIN/ISO: G401)	285
		Desarrollo del ciclo	285
		¡Tener en cuenta durante la programación!	285
		Parámetros de ciclo	286
	14.4	GIRO BÁSICO mediante dos islas (Ciclo 402, DIN/ISO: G402)	288
		Desarrollo del ciclo	288
		¡Tener en cuenta durante la programación!	288
		Parámetros de ciclo	289
	14.5	GIRO BÁSICO compensar mediante un eje de giro (Ciclo 403, DIN/ISO: G403)	291
		Desarrollo del ciclo	291
		¡Tener en cuenta durante la programación!	291
		Parámetros de ciclo	292
	14.6	FIJAR EL GIRO BÁSICO (Ciclo 404; DIN/ISO: G404)	294
		Desarrollo del ciclo	294
		Parámetros de ciclo	294
	14.7	Orientar la posición inclinada de una pieza mediante el eje C (Ciclo 405, DIN/ISO: G405)	295
		Desarrollo del ciclo	295
		¡Tener en cuenta durante la programación!	296
		Parámetros de ciclo	297
	14.8	Ejemplo: Determinar el giro básico mediante dos taladros	299

15	Ciclo	s de palpación: Determinar puntos de referencia automáticamente	301
	15.1	Fundamentos	302
		Resumen	302
		Correspondencias de todos los ciclos de palpación para fijar el punto de ref	305
	15.2	PUNTO DE REFERENCIA CENTRO DE RANURA (Ciclo 408, DIN/ISO: G408)	307
		Desarrollo del ciclo	307
		¡Tener en cuenta durante la programación!	
		Parámetros de ciclo	309
	15.3	PUNTO DE REFERENCIA CENTRO DE ISLA (Ciclo 409, DIN/ISO: G409)	311
		Desarrollo del ciclo	311
		¡Tener en cuenta durante la programación!	311
		Parámetros de ciclo	312
	15.4	PUNTO DE REFERENCIA RECTÁNGULO INTERIOR (Ciclo 410, DIN/ISO: G410)	314
		Desarrollo del ciclo	314
		¡Tener en cuenta durante la programación!	315
		Parámetros de ciclo	316
	15.5	PUNTO DE REFERENCIA RECTÁNGULO EXTERIOR (Ciclo 411, DIN/ISO: G411)	318
		Desarrollo del ciclo	318
		¡Tener en cuenta durante la programación!	
		Parámetros de ciclo	320
	15.6	PUNTO DE REFERENCIA CÍRCULO INTERIOR (Ciclo 412, DIN/ISO: G412)	322
		Desarrollo del ciclo	322
		¡Tener en cuenta durante la programación!	323
		Parámetros de ciclo	324
	15.7	PUNTO DE REFERENCIA CÍRCULO EXTERIOR (Ciclo 413, DIN/ISO: G413)	327
		Desarrollo del ciclo	327
		¡Tener en cuenta durante la programación!	328
		Parámetros de ciclo	329
	15.8	PUNTO DE REFERENCIA ESQUINA EXTERIOR (Ciclo 414, DIN/ISO: G414)	332
		Desarrollo del ciclo	332
		¡Tener en cuenta durante la programación!	333
		Parámetros de ciclo	334

15.9	PUNTO DE REFERENCIA ESQUINA EXTERIOR (Ciclo 415, DIN/ISO: G415)	. 337
	Desarrollo del ciclo	337
	¡Tener en cuenta durante la programación!	. 338
	Parámetros de ciclo	. 339
15.10	PUNTO DE REFERENCIA CENTRO DE CÍRCULO DE TALADROS (Ciclo 416, DIN/ISO: G416)	341
	Desarrollo del ciclo	341
	¡Tener en cuenta durante la programación!	. 342
	Parámetros de ciclo	. 343
15.11	PUNTO DE REFERENCIA EJE DEL PALPADOR (Ciclo 417, DIN/ISO: G417)	. 345
	Desarrollo del ciclo	345
	¡Tener en cuenta durante la programación!	. 345
	Parámetros de ciclo	. 346
15.12	PUNTO DE REFERENCIA CENTRO DE 4 TALADROS (Ciclo 418, DIN/ISO: G418)	347
	Desarrollo del ciclo	347
	¡Tener en cuenta durante la programación!	. 348
	Parámetros de ciclo	. 349
15.13	PUNTO DE REFERENCIA EJE INDIVIDUAL (Ciclo 419, DIN/ISO: G419)	. 351
	Desarrollo del ciclo	351
	¡Tener en cuenta durante la programación!	. 351
	Parámetros de ciclo	. 352
15.14	Ejemplo: Fijar el punto de referencia en el centro del segmento circular y en la superficie de la pieza	
15 15	Ejemplo: Fijar el punto de referencia en la superficie de la pieza y en el centro del círculo de	
10.10	taladros	355

16	Ciclos de palpación: Controlar las piezas automáticamente		
	16.1	Fundamentos	358
		Resumen	358
		Protocolización de los resultados de la medición	359
		Resultados de medición en parámetros Q	361
		Estado de la medición	361
		Vigilancia de la tolerancia	361
		Vigilancia de la herramienta	362
		Sistema de referencia para los resultados de medición	363
	16.2	PLANO DE REFERENCIA (Ciclo 0, DIN/ISO: G55)	364
		Desarrollo del ciclo	364
		¡Tener en cuenta durante la programación!	364
		Parámetros de ciclo	364
	16.3	PLANO DE REFERENCIA Polar (Ciclo 1)	365
		Desarrollo del ciclo	365
		¡Tener en cuenta durante la programación!	365
		Parámetros de ciclo	365
	16.4	MEDIR ÁNGULO (Ciclo 420; DIN/ISO: G420)	366
		Desarrollo del ciclo	366
		¡Tener en cuenta durante la programación!	366
		Parámetros de ciclo	367
	16.5	MEDIR TALADRO (Ciclo 421, DIN/ISO: G421)	369
		Desarrollo del ciclo	369
		¡Tener en cuenta durante la programación!	369
		Parámetros de ciclo	370
	16.6	MEDIR CÍRCULO EXTERIOR (Ciclo 422; DIN/ISO: G422)	372
		Desarrollo del ciclo	372
		¡Tener en cuenta durante la programación!	372
		Parámetros de ciclo	373
	16.7	MEDIR RECTÁNGULO INTERIOR (Ciclo 423; DIN/ISO: G423)	375
		Desarrollo del ciclo	375
		¡Tener en cuenta durante la programación!	376
		Parámetros de ciclo	377

16.8	MEDIR RECTÁNGULO EXTERIOR (Ciclo 424; DIN/ISO: G424)	379
	Desarrollo del ciclo	379
	¡Tener en cuenta durante la programación!	380
	Parámetros de ciclo	381
16.9	MEDIR ANCHURA INTERIOR (Ciclo 425, DIN/ISO: G425)	383
	Desarrollo del ciclo	383
	¡Tener en cuenta durante la programación!	
	Parámetros de ciclo	
16.10	MEDIR EXTERIOR ISLA (Ciclo 426, DIN/ISO: G426)	386
	Desarrollo del ciclo	386
	¡Tener en cuenta durante la programación!	
	Parámetros de ciclo	
16.11	MEDIR COORDINADA (Ciclo 427; DIN/ISO: G427)	389
	Desarrollo del ciclo	389
	¡Tener en cuenta durante la programación!	
	Parámetros de ciclo	
16.12	MEDIR CÍRCULO DE TALADROS (Ciclo 430; DIN/ISO: G430)	392
	Desarrollo del ciclo	392
	¡Tener en cuenta durante la programación!	392
	Parámetros de ciclo	393
16.13	MEDIR PLANO (Ciclo 431, DIN/ISO: G431)	395
	Desarrollo del ciclo	395
	¡Tener en cuenta durante la programación!	396
	Parámetros de ciclo	396
16.14	l Ejemplos de programación	398
	Ejemplo: Medición y mecanizado posterior de una isla rectangular	398
	Eiemplo: medir caiera rectangular, registrar resultados de medición	

17	Ciclos de palpación: Funciones especiales4		
	17.1	Nociones básicas	.402
		Resumen	
	17.2	MEDIR (Ciclo 3)	.403
		Desarrollo del ciclo;Tener en cuenta durante la programación!	
		Parámetros de ciclo	. 404
	17.3	Calibración del palpador digital	405
	17.4	Visualizar los valores de calibración	
	17.5	CALIBRAR TS (Ciclo 460, DIN/ISO: G460)	
	17.6	CALIBRAR LONGITUD DEL TS (Ciclo 461, DIN/ISO: G257)	
	17.7	CALIBRAR RADIO TS INTERIOR (Ciclo 462, DIN/ISO: G262)	. 410
	17.8	CALIBRAR RADIO EXTERIOR TS (PALPADOR) (Ciclo 463, DIN/ISO: G463)	412

18	Ciclo	Ciclos de palpación: medir herramientas automáticamente		
	18.1	Fundamentos	416	
		Resumen	416	
		Diferencias entre los ciclos 31 a 33 y 481 a 483	417	
		Ajustar parámetros de máquina	418	
		Introducciones en la tabla de herramienta TOOL.T	420	
	18.2	Calibrar TT (Ciclo 30 o 480, DIN/ISO: G480)	422	
		Desarrollo del ciclo	422	
		¡Tener en cuenta durante la programación!	422	
		Parámetros de ciclo	422	
	18.3	Calibrar TT sin cables (Ciclo 484, DIN/ISO: G484)	423	
		Nociones básicas	423	
		Desarrollo del ciclo	423	
		¡Tener en cuenta durante la programación!	423	
		Parámetros de ciclo	423	
	18.4	Medir la longitud de herramienta (Ciclo 31 o 481, DIN/ISO: G481)	424	
		Desarrollo del ciclo	424	
		¡Tener en cuenta durante la programación!	424	
		Parámetros de ciclo	425	
	18.5	Medir el radio de herramienta (Ciclo 32 o 482, DIN/ISO: G482)	426	
		Desarrollo del ciclo	426	
		¡Tener en cuenta durante la programación!	426	
		Parámetros de ciclo	427	
	18.6	Medición completa de la herramienta (Ciclo 33 o 483, DIN/ISO: G483)	428	
		Desarrollo del ciclo	428	
		¡Tener en cuenta durante la programación!	428	
		Parámetros de ciclo	429	

19	Tablas resumen ciclos		
	19.1	Tabla resumen	432
		Ciclos de mecanizado	432
		Ciclos de palpación	433

Nociones básicas / Resúmenes

1.1 Introducción

1.1 Introducción

Los mecanizados que se repiten y que comprenden varios pasos de mecanizado, se memorizan en el TNC como ciclos. También las traslaciones de coordenadas y algunas funciones especiales están disponibles como ciclos.

La mayoría de ciclos utilizan parámetros Ω como parámetros de transferencia. Las funciones que son comunes en los diferentes ciclos, tienen asignado un mismo número de Ω : p. ej. **Q200** es siempre la distancia de seguridad, **Q202** es siempre la profundidad de pasada, etc.

¡Atención: Peligro de colisión!

Los ciclos realizan mecanizados de gran volumen. ¡Por motivos de seguridad debe realizarse un test de programa gráfico antes del mecanizado!

Cuando se utilizan asignaciones indirectas de parámetros en ciclos con número mayor a 200 (p.ej. **Q210 = Q1**), después de la definición del ciclo no tiene efecto la modificación del parámetro asignado (p.ej. Q1). En estos casos debe definirse directamente el parámetro del ciclo (p.ej. **Q210**).

Cuando se define un parámetro de avance en ciclos de mecanizado con números mayores de 200, entonces se puede asignar mediante softkey también el avance (Softkey **FAUTO**) definido en la frase TOOL CALL en lugar de un valor dado. Dependiendo del correspondiente ciclo y de la correspondiente función del parámetro de avance, aún se dispone de las alternativas de avance **FMAX** (avance rápido), **FZ** (avance dentado) y **FU** (avance por vuelta).

Tener en cuenta que una modificación del avance **FAUTO** tras una definición del ciclo no tiene ningún efecto, ya que, al procesar la definición del ciclo, el TNC ha asignado internamente el avance desde la frase **TOOL CALL**.

Si desea borrar un ciclo con varias frases parciales, el TNC indica, si se debe borrar el ciclo completo.

1.2 Grupos de ciclos disponibles

Resumen ciclos de mecanizado

▶ La carátula de softkeys muestra los diferentes grupos de ciclos

Grupo de ciclos	Softkey	Página
Ciclos para el taladrado en profundidad, escariado, mandrinado y avellanado	TALADRADO ROSCADO	62
Ciclos para el roscado, roscado a cuchilla y fresado de una rosca	TALADRADO ROSCADO	92
Ciclos para el fresado de cajeras, islas y ranuras	CAJERAS/ ISLAS/ RANURAS	126
Ciclos para el trazado de figuras de puntos, p.ej. círculo de taladros o línea de taladros	FIGURA DE PUNTOS	158
Ciclos SL (Subcontur-List) con los que se mecanizan contornos paralelos al contorno, que se componen de varios contornos parciales superpuestos, interpolación de una superficie cilíndrica	SL II	192
Ciclos para el planeado de superficies planas o unidas entre si	PLANEADO	220
Ciclos para la traslación de coordenadas con los cuales se pueden desplazar, girar, reflejar, ampliar y reducir contornos	TRANSF.	234
Intervalo programado de ciclos especiales, llamada del programa, orientación del cabezal, tolerancia	CICLOS ESPECIAL.	258

▶ En su caso, cambiar a ciclos de mecanizado específicos de la máquina. El fabricante de su máquina puede habilitar tales ciclos de mecanizado.

1.2 Grupos de ciclos disponibles

Resumen ciclos de palpación

La carátula de softkeys muestra los diferentes grupos de ciclos

Grupo de ciclos	Softkey	Lado
Ciclos para el registro automático y compensación de una posición inclinada de la pieza		280
Ciclos para la fijación automática del punto de referencia		302
Ciclos para control automático de la pieza		358
Ciclos especiales	CICLOS ESPECIAL.	402
Ciclos para la medición automática de la cinemática	CINEMATICA	280
Ciclos para medición automática de la herramienta (autorizado por el fabricante de la máquina)	Ā	416

► En su caso, cambiar a ciclos de palpación específicos de la máquina. El fabricante de su máquina puede habilitar tales ciclos de palpación.

Utilizar ciclos de mecanizado

2.1 Trabajar con ciclos de mecanizado

2.1 Trabajar con ciclos de mecanizado

Ciclos específicos de la máquina

En muchas máquinas hay otros ciclos disponibles que el fabricante de su máquina implementa en el TNC adicionalmente a los ciclos HEIDENHAIN. Para ello están disponibles unos ciertos números de ciclos a parte:

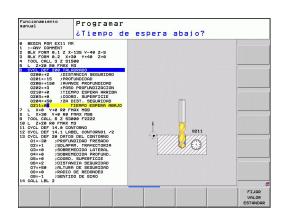
- Ciclos 300 a 399
 Ciclos específicos de la máquina que deben definirse mediante la tecla CYCLE DEF
- Ciclos 500 a 599
 Ciclos del palpador específicos de la máquina que deben definirse mediante la tecla TOUCH PROBE

Preste atención a la descripción de la función correspondiente en el manual de la máquina.

Bajo ciertas condiciones, se utilizan también parámetros de asignación en ciclos específicos de la máquina, los cuales HEIDENHAIN ya ha utilizado en ciclos estándar. Para evitar problemas en cuanto a la sobrescritura de parámetros de transferencia de uso múltiple en la utilización simultánea de ciclos DEF activos (ciclos que el TNC ejecuta automáticamente en la definición del ciclo, ver "Llamar ciclo", Página 44) y ciclos CALL activos (ciclos que se han de llamar para la ejecución, ver "Llamar ciclo", Página 44), prestar atención a la siguiente forma de proceder:

- Programar básicamente ciclos DEF antes de los ciclos CALL
- Programar un ciclo DEF solo entre la definición de un ciclo CALL y la llamada al ciclo correspondiente, en caso de que no se produzca ninguna interferencia en los parámetros de asignación de ambos ciclos

Definir ciclo mediante Softkeys


► La carátula de softkeys muestra los diferentes grupos de ciclos

 Seleccionar el grupo de ciclos, p.ej. ciclos de taladrado

- Seleccionar un ciclo, por ej. FRESADO DE ROSCA. El TNC abre un diálogo y solicita todos los valores de introducción; simultáneamente aparece en la mitad derecha de la pantalla un gráfico en el cual aparece el parámetro a introducir en color más claro
- ► Introducir todos los parámetros solicitados por el TNC y finalizar la entrada con la tecla ENT
- ► El TNC finaliza el diálogo después de haber introducido todos los datos necesarios

Definir el ciclo a través de la función GOTO

► La carátula de softkeys muestra los diferentes grupos de ciclos

- El TNC muestra en una ventana de transición el resumen de ciclos
- ► Seleccionar con el cursor el ciclo que se desea o
- Introducir el número de ciclo y confirmar respectivamente con la tecla ENT. El TNC abre entonces el diálogo del ciclo descrito anteriormente

Ejemplo de frases NC

0
;DIST. DE SEGURIDAD
;PROFUNDIDAD
;AVANCE DE PASO DE PROFUNDIZACIÓN
;PASO DE PROFUNDIZACIÓN
;TIEMPO DE ESPERA ARRIBA
;COOR. SUPERFICIE
;2ª DIST. DE SEGURIDAD
;TIEMPO DE ESPERA ABAJO

2.1 Trabajar con ciclos de mecanizado

Llamar ciclo

Condiciones

Antes de una llamada de ciclo debe programarse en cualquier caso:

- BLK FORM para la representación gráfica (solo se precisa para el test gráfico)
- Llamada de herramienta
- Dirección de giro del cabezal (funciones auxiliares M3/M4)
- Definición del ciclo (CYCL DEF).

Deberán tenerse en cuenta otras condiciones que se especifican en las siguientes descripciones de los ciclos.

Los siguientes ciclos actúan a partir de su definición en el programa de mecanizado. Estos ciclos no se pueden ni deben llamar:

- los ciclos 220 figura de puntos sobre círculo y 221 figura de puntos sobre líneas
- el ciclo SL 14 CONTORNO
- el ciclo SL 20 DATOS DE CONTORNO
- el ciclo 32 TOLERANCIA
- ciclos para la conversión de coordenadas
- el ciclo 9 TIEMPO DE ESPERA
- todos los ciclos de palpación

Todos los ciclos restantes pueden ser llamados con las funciones descritas a continuación.

Llamada de ciclo con CYCL CALL

La función **CYCL CALL** llama una vez al último ciclo de mecanizado definido. El punto inicial del ciclo es la última posición programada antes de la frase CYCL CALL.

- Programar la llamad de ciclo: Pulsar la teclaCYCL CALL
- Introducir la llamada de ciclo: pulsar la softkey CYCL CALL M
- Si es necesario, introducir la función auxiliar M (p.ej., M3 para conectar el cabezal), o finalizar el diálogo con la tecla END

Llamada de ciclo con CYCL CALL PAT

La función **CYCL CALL PAT** llama al último ciclo de mecanizado definido en todas las posiciones contenidas en una definición de figura PATTERN DEF (ver "Definición del modelo PATTERN DEF", Página 50) o en una tabla de puntos (ver "Tablas de puntos", Página 57).

Llamada de ciclo con CYCL CALL POS

La función **CYCL CALL POS** llama una vez al último ciclo de mecanizado definido. El punto de arranque del ciclo está en la posición que se ha definido en la frase **CYCL CALL POS**.

El TNC se desplaza con lógica de posicionamiento a la posición introducida en la frase **CYCL CALL POS**:

- Si la posición actual de la herramienta en el eje de la herramienta es mayor que el canto superior de la pieza (Ω203), el TNC se posiciona primero en el plano de mecanizado en la posición programada y a continuación en el eje de la herramienta.
- Si la posición actual de la herramienta en el eje de la herramienta está por debajo del canto superior de la pieza (Q203), el TNC se posiciona primero en el eje de la herramienta a la altura de seguridad y a continuación en el plano de mecanizado en la posición programada

En la frase **CYCL CALL POS** siempre debe haber programado tres ejes de coordenadas. Mediante las coordenadas en el eje de la herramienta se puede modificar de manera sencilla la posición inicial. Funciona como un desplazamiento del punto cero adicional.

El avance definido en la frase **CYCL CALL POS** sólo tiene efecto para la aproximación a la posición de arranque programada en esta frase.

Como norma, el TNC se aproxima a la posición definida en la frase**CYCL CALL POS** sin corrección de radio (R0).

Si se llama con **CYCL CALL POS** a un ciclo en el que está definida una posición inicial (p.ej., ciclo 212), entonces la posición definida en el ciclo actúa como un desplazamiento adicional a la posición definida en la frase **CYCL CALL POS**. Por esta razón se debería definir con 0 la posición de arranque determinada en el ciclo.

Llamada al ciclo con M99/M89

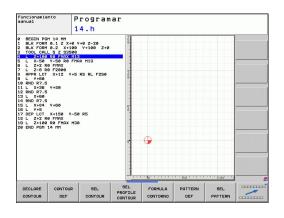
La función **M99** que tiene efecto por frases, llama una vez al último ciclo de mecanizado definido. **M99** puede programarse al final de una frase de posicionamiento, el TNC se desplaza hasta esta posición y llama a continuación al último ciclo de mecanizado definido.

Si el TNC debe ejecutar automáticamente el ciclo después de cada frase de posicionamiento, se programa la primera llamada al ciclo con M89

Para anular el efecto de M89 se programa

- **M99** en la frase de posicionamiento en la que se activa el último punto de arrangue, o
- se define con **CYCL DEF** un ciclo de mecanizado nuevo

2.2 Consignas de programa para ciclos


2.2 Consignas de programa para ciclos

Resumen

Todos los ciclos 20 hasta 25 y con números superiores a 200, siempre utilizan parámetros de ciclo repetitivos como, p. ej., la distancia de seguridad **Q200** que se debe indicar para cada definición de ciclo. A través de la función **GLOBAL DEF** se puede programar este parámetro de ciclo de manera central al principio del programa con lo que tendrá efectividad para todos los ciclos de mecanizado utilizado dentro del programa. En el ciclo de mecanizado correspondiente solamente se asigna el valor que se ha definido al inicio del programa.

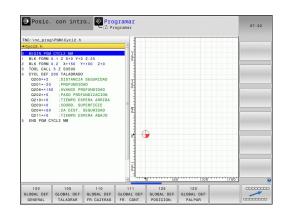
Se dispone de las siguientes funciones GLOBAL DEF:

Figuras de mecanizado	Softkey	Página
GLOBAL DEF GENERAL Definición de parámetros de ciclos de aplicación general	100 GLOBAL DEF GENERAL	47
GLOBAL DEF TALADRAR Definición de parámetros de ciclos de taladrado especiales	105 GLOBAL DEF TALADRAR	48
GLOBAL DEF FRESADO DE CAJERAS Definición de parámetros de ciclos de fresado de cajeras especiales	110 GLOBAL DEF FR.CAJERAS	48
GLOBAL DEF FRESADO DE CONTORNOS Definición de parámetros de fresado de contornos especiales	111 GLOBAL DEF FR. CONT.	48
GLOBAL DEF POSICIONAMIENTO Definición del comportamiento del posicionamiento con CYCL CALL PAT	125 GLOBAL DEF POSICION.	49
GLOBAL DEF PALPACIÓN Definición de parámetros de ciclos del sistema palpador especiales	120 GLOBAL DEF PALPAR	49

Introducir DEF GLOBAL

Seleccionar el modo Memorizar/Editar

Seleccionar funciones especiales


 Seleccionar funciones para las especificaciones del programa

Seleccionar funciones DEF GLOBAL

- Seleccionar la función DEF GLOBAL deseada, p. ej. DEF GLOBAL GENERAL
- Introducir las definiciones necesarias, confirmar con la tecla ENT

Utilizar las indicaciones DEF GLOBAL

Una vez introducidas las correspondientes funciones GLOBAL DEF al inicio del programa, al definir cualquier ciclo de mecanizado, ya se puede hacer referencia a los valores globales.

Debe procederse de la siguiente forma:

► Seleccionar el modo Memorizar/Editar

Seleccionar los ciclos de mecanizado

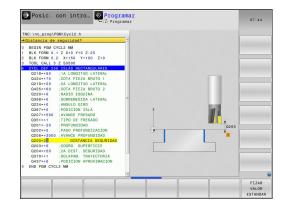
 Seleccionar el grupo de ciclos deseado, p.ej. ciclos de taladrado

- ► Seleccionar el ciclo deseado, p. ej. TALADRADO
- El TNC visualiza la softkey FIJAR VALOR ESTÁNDAR, cuando exista un parámetro global para ello

Pulsar la softkey FIJAR VALOR ESTÁNDAR: el TNC introduce la palabra PREDEF (inglés.: predefinido) en la definición del ciclo. Con ello se establece un enlace con el correspondiente parámetro DEF GLOBAL que se ha definido al inicio del programa

¡Atención: Peligro de colisión!

Tenga en cuenta que las modificaciones posteriores de los datos básicos del programa tienen efecto sobre todo el programa de mecanizado y así mismo pueden modificar notablemente el proceso de mecanizado.


Al introducir un valor fijo en un ciclo de mecanizado, no puede modificarse con la funciones **DEF GLOBAL**.

Datos globales válidos en general

- ▶ **Distancia de seguridad**: distancia entre la superficie frontal de la herramienta y la superficie de la pieza en la aproximación automática a la posición inicial del ciclo en el eje de la herramienta
- ▶ 2ª distancia de seguridad: Posición en la que el TNC posiciona la herramienta al final de una etapa de mecanizado. A esta altura se realiza el desplazamiento a la próxima posición en el plano de mecanizado
- ▶ Avance de posicionamiento F: avance con el que el TNC desplaza la herramienta dentro de un ciclo
- ► Avance de retroceso F: avance con el que el TNC posiciona la herramienta al retroceder

Parámetros válidos para todos los ciclos de mecanizado 2xx.

2.2 Consignas de programa para ciclos

Datos globales para el taladrado

- ▶ Retroceso en rotura de viruta: valor al que el TNC retrocede la herramienta con rotura de viruta
- ► Tiempo de espera abajo: tiempo en segundos que espera la hta. en la base del taladro
- ► Tiempo de espera arriba: tiempo en segundos que espera la hta. a la distancia de seguridad

Parámetros válidos para ciclos de taladrado, de roscado con macho y de fresado de rosca 200 al 209, 240 y 262 al 267.

Datos globales para fresados con ciclos de cajeras 25x

- ► Factor de solapamiento: el radio de la herramienta x factor de solapamiento da como resultado la aproximación lateral
- ▶ **Tipo de fresado**: Codireccional/Contrasentido
- ► Tipo de profundización: profundización helicoidal, pendular o perpendicular en el material

Parámetros válidos para los ciclos de fresado 251 al 257

Datos globales para fresados con ciclos de contorno

- ▶ **Distancia de seguridad**: distancia entre la superficie frontal de la herramienta y la superficie de la pieza en la aproximación automática a la posición inicial del ciclo en el eje de la herramienta
- ▶ Altura de seguridad: altura absoluta, en la cual no se puede producir ninguna colisión con la pieza (para posicionamiento intermedio y retroceso al final del ciclo)
- ► Factor de solapamiento: el radio de la herramienta x factor de solapamiento da como resultado la aproximación lateral
- ▶ Tipo de fresado: Codireccional/Contrasentido

Parámetros válidos para los ciclos SL 20, 22, 23, 24 y 25.

2.2

Datos globales para el comportamiento de un posicionamiento

► Comportamiento de posicionamiento: retroceso en el eje de herramienta al final de una etapa de mecanizado: retroceder a la 2ª distancia de seguridad o a la posición al inicio de la unidad

Parámetros válidos para todos los ciclos de mecanizado, al llamar el ciclo correspondiente con la función **CYCL CALL PAT**.

Datos globales para funciones de palpación

- ▶ **Distancia de seguridad**: distancia entre el vástago y la superficie de la pieza en la aproximación automática a la posición de palpación
- Altura de seguridad: coordenada en el eje de palpación, a la cual el TNC desplaza el palpador entre los puntos de medición, mientras esté activa la opción Desplazamiento a la altura de seguridad
- Desplazamientos a la altura de seguridad: seleccionar si el TNC debe desplazarse entre los puntos de medición a la distancia de seguridad o a la altura de seguridad

Parámetros válidos para todos los ciclos de palpación 4xx.

2.3 Definición del modelo PATTERN DEF

2.3 Definición del modelo PATTERN DEF

Utilización

Con la función **PATTERN DEF** se pueden definir de forma sencilla modelos de mecanizado regulares, a los cuales se puede llamar con la función **CYCL CALL PAT**. Al igual que en las definiciones de ciclo, en la definición del modelo también se dispone de figuras auxiliares, que ilustran el correspondiente parámetro de introducción.

¡Utilizar **PATTERN DEF** solo en combinación con el eje de herramienta Z!

Se dispone de los siguientes modelos de mecanizado:

Figuras de mecanizado	Softkey	Lado
PUNTO Definición de hasta 9 posiciones de mecanizado cualesquiera	PUNTO	51
FILA Definición de una fila individual, recta o girada	FILA	52
MODELO Definición de un modelo individual, recto, girado o deformado	MODELO	53
MARCO Definición de un marco individual, recto, girado o deformado	MARCO	54
CÍRCULO Definición de un círculo completo	CIRCULO	55
CÍRCULO PARCIAL Definición de un círculo parcial	CIRC.GRD.	55

Introducir PATTERN DEF

Seleccionar el modo Memorizar/Editar

Seleccionar funciones especiales

 Seleccionar funciones para mecanizados de contorno y de puntos

► Abrir la frase PATTERN DEF

- Seleccionar el modelo de mecanizado deseado, p. ej. fila única
- Introducir las definiciones necesarias, confirmar con la tecla ENT

2.3

Utilizar PATTERN DEF

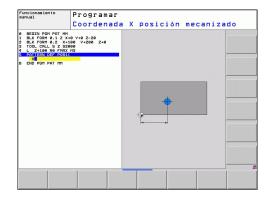
Una vez introducida una definición del modelo, es posible llamarla a través de la función CYCL CALL PAT"Llamar ciclo", Página 44. Entonces el TNC ejecuta el último ciclo de mecanizado definido en el modelo de mecanizado definido por el usuario.

Un modelo de mecanizado se mantiene activo hasta que se define uno nuevo, o hasta seleccionar una tabla de puntos mediante la función SEL PATTERN.

Mediante el avance de frase se puede elegir cualquier punto en él cual debe comenzar o continuar el mecanizado (ver Modo de Empleo, capítulo Test de programa y Avance de programa).

Definir posiciones de mecanizado únicas

Se pueden introducir un máximo de 9 posiciones de mecanizado, confirmar la entrada con la tecla ENT.


Si se ha definido una superficie de la pieza en Z con un valor distinto de 0, entonces este valor actúa adicionalmente a la superficie de la pieza Q203 que se ha definido en el ciclo de mecanizado.

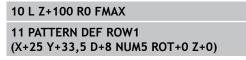
- ► Coordenada X posición mecanizado (valor absoluto): introducir coordenada X
- Coordenada Y posición mecanizado. (valor absoluto): introducir coordenada Y
- ► Coordenada de la superficie de la pieza (valor absoluto): introducir la coordenada Z, en la cual debe empezar el mecanizado

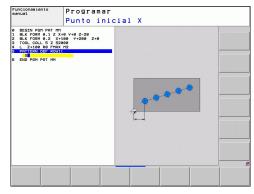
Bloques NC

10 L Z+100 RO FMAX 11 PATTERN DEF POS1 (X+25 Y+33,5 Z+0) POS2 (X+50 Y+75 Z +0)

2.3 Definición del modelo PATTERN DEF

Definir filas únicas




Si se ha definido una **superficie de la pieza en Z** con un valor distinto de 0, entonces este valor actúa adicionalmente a la superficie de la pieza **Q203** que se ha definido en el ciclo de mecanizado.

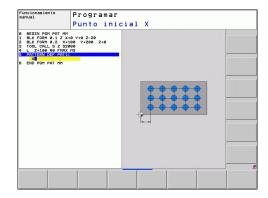
- ► Punto inicial X (valor absoluto): coordenada del punto inicial de la fila en el eje X
- ▶ Punto inicial Y (valor absoluto): coordenada del punto inicial de la fila en el eje Y
- Distancia posiciones de mecanizado (incremental): distancia entre las posiciones de mecanizado. Valor a introducir positivo o negativo
- ▶ **Número de mecanizados**: número total de posiciones de mecanizado
- ▶ Posición de giro de todo el modelo (absoluto): ángulo de giro alrededor del punto inicial introducido. Eje de referencia: eje principal del plano de mecanizado activo (por ej. X con eje de herramienta en Z). Valor a introducir positivo o negativo
- ► Coordenada de la superficie de la pieza (valor absoluto): introducir la coordenada Z, en la cual debe empezar el mecanizado

Bloques NC

Definición del modelo único

Si se ha definido una **superficie de la pieza en Z** con un valor distinto de 0, entonces este valor actúa adicionalmente a la superficie de la pieza **Q203** que se ha definido en el ciclo de mecanizado.

Los parámetros **Posición de giro del eje principal** y **Posición de giro del eje auxiliar** actúan adicionalmente sobre una **posición de giro** de la figura total realizado anteriormente.



- ▶ **Punto inicial X** (valor absoluto): coordenada del punto inicial del modelo en el eje X
- ▶ Punto inicial Y (valor absoluto): coordenada del punto inicial del modelo en el eje Y
- ▶ Distancia posiciones de mecanizado X (incremental): distancia entre las posiciones de mecanizado en dirección X. Valor a introducir positivo o negativo
- Distancia posiciones de mecanizado Y (incremental): distancia entre las posiciones de mecanizado en dirección Y. Valor a introducir positivo o negativo
- Número de columnas: número total de columnas del modelo
- Número de filas: número total de filas del modelo
- ▶ Posición de giro de un modelo completo (absoluto): ángulo de giro alrededor del cual se gira el modelo sobre el punto inicial introducido. Eje de referencia: eje principal del plano de mecanizado activo (por ej. X con eje de herramienta en Z). Valor a introducir positivo o negativo
- ▶ Posición de giro del eje principal: ángulo de giro alrededor del cual se deforma exclusivamente el eje principal del plano de mecanizado referido al punto inicial introducido. Valor a introducir positivo o negativo.
- ▶ Posición de giro del eje auxiliar: ángulo de giro alrededor del cual se deforma exclusivamente el eje auxiliar del plano de mecanizado referido al punto inicial introducido. Valor a introducir positivo o negativo.
- ► Coordenada de la superficie de la pieza (valor absoluto): introducir la coordenada Z, en la cual debe empezar el mecanizado

Frases NC

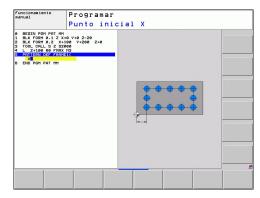
10 L Z+100 R0 FMAX

11 PATTERN DEF PAT1 (X+25 Y+33,5 DX+8 DY+10 NUMX5 NUMY4 ROT+0 ROTX+0 ROTY+0 Z+0)

2.3 Definición del modelo PATTERN DEF

Definir marcos únicos

Si se ha definido una **superficie de la pieza en Z** con un valor distinto de 0, entonces este valor actúa adicionalmente a la superficie de la pieza **Q203** que se ha definido en el ciclo de mecanizado.

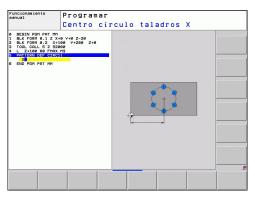

Los parámetros **Posición de giro del eje principal** y **Posición de giro del eje auxiliar** actúan adicionalmente sobre una **posición de giro** de la figura total realizado anteriormente.

- ▶ **Punto inicial X** (valor absoluto): coordenada del punto inicial del marco en el eje X
- ► Punto inicial Y (valor absoluto): coordenada del punto inicial del marco en el eje Y
- ▶ Distancia posiciones de mecanizado X (incremental): distancia entre las posiciones de mecanizado en dirección X. Valor a introducir positivo o negativo
- Distancia posiciones de mecanizado Y (incremental): distancia entre las posiciones de mecanizado en dirección Y. Valor a introducir positivo o negativo
- Número de columnas: número total de columnas del modelo
- Número de filas: número total de filas del modelo
- ▶ Posición de giro de un modelo completo (absoluto): ángulo de giro alrededor del cual se gira el modelo sobre el punto inicial introducido. Eje de referencia: eje principal del plano de mecanizado activo (por ej. X con eje de herramienta en Z). Valor a introducir positivo o negativo
- ▶ Posición de giro del eje principal: ángulo de giro alrededor del cual se deforma exclusivamente el eje principal del plano de mecanizado referido al punto inicial introducido. Valor a introducir positivo o negativo.
- ▶ Posición de giro del eje auxiliar: ángulo de giro alrededor del cual se deforma exclusivamente el eje auxiliar del plano de mecanizado referido al punto inicial introducido. Valor a introducir positivo o negativo.
- ► Coordenada de la superficie de la pieza (valor absoluto): introducir la coordenada Z, en la cual debe empezar el mecanizado

Bloques NC

10 L Z+100 RO FMAX 11 PATTERN DEF FRAME1 (X+25 Y+33,5 DX+8 DY+10 NUMX5 NUMY4 ROT+0 ROTX+0 ROTY+0 Z+0)

Definir círculo completo


Si se ha definido una **superficie de la pieza en Z** con un valor distinto de 0, entonces este valor actúa adicionalmente a la superficie de la pieza **Q203** que se ha definido en el ciclo de mecanizado.

- ► Centro de la figura de taladros X (valor absoluto): coordenada del punto central del círculo en el eje X
- Centro de la figura de taladros Y (valor absoluto): coordenada del punto central del círculo en el eje Y
- ▶ Diámetro de la figura de taladros: diámetro de la figura de taladros
- ▶ Ángulo inicial: ángulo polar de la primera posición de mecanizado. Eje de referencia: eje principal del plano de mecanizado activo (por ej. X con eje de herramienta en Z). Valor a introducir positivo o negativo
- Número de mecanizados: número total de posiciones de mecanizado sobre el círculo
- ► Coordenada de la superficie de la pieza (valor absoluto): introducir la coordenada Z, en la cual debe empezar el mecanizado

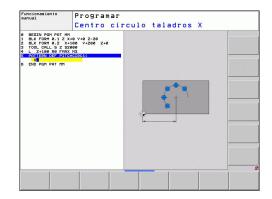
Bloques NC

10 L Z+100 R0 FMAX 11 PATTERN DEF CIRC1 (X+25 Y+33 D80 START+45 NUM8 Z+0)

Definir círculo graduado

Si se ha definido una **superficie de la pieza en Z** con un valor distinto de 0, entonces este valor actúa adicionalmente a la superficie de la pieza **Q203** que se ha definido en el ciclo de mecanizado.

Bloques NC


10 L Z+100 R0 FMAX

11 PATTERN DEF PITCHCIRC1 (X+25 Y+33 D80 START+45 STEP30 NUM8 Z+0)

2.3 Definición del modelo PATTERN DEF

- ► Centro de la figura de taladros X (valor absoluto): coordenada del punto central del círculo en el eje X
- Centro de la figura de taladros Y (valor absoluto): coordenada del punto central del círculo en el eje Y
- ▶ Diámetro de la figura de taladros: diámetro de la figura de taladros
- ▶ Ángulo inicial: ángulo polar de la primera posición de mecanizado. Eje de referencia: eje principal del plano de mecanizado activo (por ej. X con eje de herramienta en Z). Valor a introducir positivo o negativo
- ▶ Paso angular/ángulo final: ángulo polar incremental entre dos posiciones de mecanizado. Valor a introducir positivo o negativo. Alternativamente puede introducirse el ángulo final (conmutar mediante softkey)
- Número de mecanizados: número total de posiciones de mecanizado sobre el círculo
- ► Coordenada de la superficie de la pieza (valor absoluto): introducir la coordenada Z, en la cual debe empezar el mecanizado

2.4 Tablas de puntos

Aplicación

Cuando se quiere ejecutar un ciclo, o bien varios ciclos sucesivamente, sobre una figura de puntos irregular, entonces se elaboran tablas de puntos.

Cuando se utilizan ciclos de taladrado, las coordenadas del plano de mecanizado en la tabla de puntos corresponden a las coordenadas del punto central del taladro. Cuando se utilizan ciclos de fresado, las coordenadas del plano de mecanizado en la tabla de puntos corresponden a las coordenadas del punto inicial del ciclo correspondiente (p.ej. coordenadas del punto central de una cajera circular). Las coordenadas en el eje de la hta. corresponden a la coordenada de la superficie de la pieza.

Introducción de una tabla de puntos

Seleccionar el funcionamiento MEMORIZAR/EDITAR PROGRAMA:

Llamar la administración de ficheros: Pulsar la tecla PGM MGT.

¿NOMBRE DEL FICHERO?

► Introducir el nombre y el tipo de fichero de la tabla de puntos, confirmar con la tecla ENT.

Seleccionar la unidad de medida: pulsar la softkey MM o INCH. El TNC cambia a la ventana del programa y muestra una tabla de puntos vacía.

 Añadir nuevas filas con la softkey AÑADIR FILA e introducir las coordenadas del punto de mecanizado deseado.

Repetir el proceso hasta que se hayan programado todas las coordenadas deseadas.

El nombre de la tabla puntos debe empezar con una letra

Se determina qué coordenadas se pueden introducir en la tabla de puntos a través de las softkeys X DESCONECT./CONECT., Y DESCONECT./CONECT., Z DESCONECT./CONECT. (2ª carátula de softkeys).

Utilizar ciclos de mecanizado

2.4 Tablas de puntos

Omitir puntos individuales para el mecanizado

En la tabla de puntos se puede identificar el punto definido en la fila correspondiente mediante la columna **FADE** para que se omita en el mecanizado.

Seleccionar el punto de la tabla a omitir.

Seleccionar la columna FADE.

Activar omitir, o

Desactivar omitir.

Seleccionar la tabla de puntos en el programa

En el modo**MEMORIZAR/EDITAR PROGRAMA** seleccionar el programa para el que se debe activar la tabla de puntos:

Activar la función para seleccionar la tabla de puntos: Pulsar la tecla PGM CALL.

▶ Pulsar la Softkey TABLA DE PUNTOS.

Introducir el nombre de la tabla de puntos, confirmar con END. Si la tabla de puntos no está memorizada en la misma lista que el programa NC, deberá introducirse el nombre de ruta completo.

Ejemplo de frase NC

7 SEL PATTERN "TNC:\DIRKT5\NUST35.PNT"

Llamar el ciclo en combinación con tablas de puntos

El TNC ejecuta con CYCL CALL PAT la tabla de puntos definida por última vez (incluso si se ha definido en un programa imbricado con CALL PGM).

Si el TNC debe realizar la llamada al último ciclo de mecanizado definido en los puntos definidos en una tabla de puntos, se programa la llamada al ciclo con CYCL CALL PAT:

- Programar la llamad de ciclo: pulsar la teclaCYCL
- ► Llamar la tabla de puntos: pulsar la softkey CYCL **CALL PAT**
- Introducir el avance, con el cual el TNC realiza el desplazamiento entre los puntos (sin introducción: El desplazamiento se realiza con el último avance programado, no es válido FMAX)
- ► En caso necesario introducir la función M, confirmar con la tecla END

El TNC retira la herramienta entre los puntos iniciales hasta la altura de seguridad. Como altura de seguridad el TNC utiliza la coordenada del eje del cabezal en la llamada al ciclo o bien el valor del parámetro de ciclo Q204, según el valor mayor.

Si se desea desplazar el eje del cabezal en el posicionamiento previo con un avance reducido, se utiliza la función auxiliar M103.

Funcionamiento de las tablas de puntos con los ciclos SL y ciclo

El TNC interpreta los puntos como un desplazamiento adicional del cero pieza.

Funcionamiento de las tablas de puntos con los ciclos 200 a 208 y 262 a 267

El TNC interpreta los puntos del plano de mecanizado como coordenadas del punto central del taladro. Cuando se quieren utilizar en las tablas de puntos coordenadas definidas en el eje de la hta. como coordenadas del punto inicial, se define la coordenada de la superficie de la pieza (Q203) con 0.

Utilizar ciclos de mecanizado

2.4 Tablas de puntos

Funcionamiento de las tablas de puntos con los ciclos 210 a 215

El TNC interpreta los puntos como un desplazamiento adicional del cero pieza. Cuando se quieren utilizar los puntos definidos en la tabla de puntos como coordenadas del punto inicial, hay que programar 0 para los puntos iniciales y la coordenada de la superficie de la pieza (Q203) en el correspondiente ciclo de fresado

Funcionamiento de las tablas de puntos con los ciclos 251 a 254

El TNC interpreta los puntos del plano de mecanizado como coordenadas del punto de arranque del ciclo. Cuando se quieren utilizar en las tablas de puntos coordenadas definidas en el eje de la hta. como coordenadas del punto inicial, se define la coordenada de la superficie de la pieza (Q203) con 0.

3

Ciclos de mecanizado: Taladro

3.1 Nociones básicas

3.1 Nociones básicas

Resumen

El TNC dispone de un total de 9 ciclos para diferentes taladrados:

Ciclo	Softkey	Página
240 CENTRADO Con posicionamiento previo automático, 2ª distancia de seguridad, alternativamente introducción del diámetro de centrado/profundidad de centrado	240	63
200 TALADRADO Con posicionamiento previo automático 2ª distancia de seguridad	200	65
201 ESCARIADO Con posicionamiento previo automático 2ª distancia de seguridad	201	67
202 MANDRINADO Con posicionamiento previo automático 2ª distancia de seguridad	202	69
203 TALADRADO UNIVERSAL Con posicionamiento previo automático 2ª distancia de seguridad, rotura de viruta, degresión	203	72
204 REBAJE INVERSO Con posicionamiento previo automático 2ª distancia de seguridad	204	75
205 TALADRADO PROF. UNIVERSAL Con posicionamiento previo automático 2ª distancia de seguridad, rotura de viruta, distancia de posición previa	205 + + + + + + + + + + + + + + + + + + +	78
208 FRESADO DE TALADRO Con posicionamiento previo automático 2ª distancia de seguridad	208	82
241 TALADRADO CON BROCA DE UN SOLO FILO Con posicionamiento previo automático en el punto de partida más profundo, definición refrigerante, revoluciones	241	85

3.2 CENTRAJE (Ciclo 240, DIN/ISO: G240)

Desarrollo del ciclo

- 1 El TNC posiciona la herramienta en el eje de la herramienta en marcha rápida **FMAX** a la distancia de seguridad sobre la superficie de la pieza
- 2 La herramienta centra con el avance programado F hasta el diámetro de centrado programado, o hasta la profundidad de centrado programada
- 3 En el caso de que esté definido, la herramienta permanece en espera en la base de centrado
- 4 Finalmente la herramienta se desplaza con **FMAX** a la distancia de seguridad o en el caso de que esté programada a la 2ª distancia d seguridad

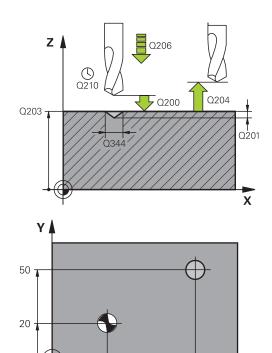
¡Tener en cuenta durante la programación!

Programar la frase de posicionamiento sobre el punto de partida (centro del taladro) en el plano de mecanizado con corrección de radio **R0**.

El signo del parámetro de ciclo **Q344** (diámetro) o bien del **Q201** (profundidad) determina la dirección de trabajo. Si se programa el diámetro o la profundidad = 0, el TNC no ejecuta el ciclo.

¡Atención: Peligro de colisión!

Con el parámetro de máquina **displayDepthErr** se ajusta, si el TNC debe emitir un aviso de error cuando se introduzca una profundidad positiva (on) o no (off).


Deberá tenerse en cuenta que, con diámetro positivo introducido o con profundidad positiva introducida, el TNC invierte el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta asimismo a la distancia de seguridad con marcha rápida bajola superficie de la pieza!

3.2 CENTRAJE (Ciclo 240, DIN/ISO: G240)

Parámetros de ciclo

- ▶ **Distancia de seguridad** Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza; introducir valor positivo Campo de introducción 0 a 99999,9999
- ▶ Selección profundidad/diámetro (0/1) Q343: Seleccionar si se desea centrar sobre el diámetro o sobre la profundidad introducida. Si se desea centrar sobre el diámetro introducido, se debe definir el ángulo extremo de la herramienta en la columna ÁNGULO T. de la tabla de herramientas TOOL.T
 - 0: Centrar a la profundidad introducida
 - 1: Centrar al diámetro introducido
- ▶ **Profundidad** Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de centrado (extremo del cono de centrado). Solo es efectiva si está definido Q343=0. Campo de introducción -99999,9999 a 99999,9999
- ▶ Diámetro (signo) Q344: Diámetro de centrado. Solo es efectiva si está definido Q343=1. Campo de introducción -99999,9999 a 99999,9999
- Avance al profundizar Q206: Velocidad de desplazamiento de la hta. en el centrado en mm/ min. Campo de introducción 0 a 99999.9999 alternativo FAUTO, FU
- ► Tiempo de espera abajo Q211: Tiempo en segundos que espera la hta. en la base del taladro Campo de introducción 0 hasta 3600,0000
- ► Coordenadas Superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza. Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 a 99999,9999

Χ

80

Bloques NC

30

•		
10 L Z+100 R0 FMAX		
CENTRAR 11 CYCL DEF 240		
Q200=2	;DIST. DE SEGURIDAD	
Q343=1	;SELECCIÓN PROFUNDIDAD/ DIÁMETRO	
Q201=+0	;PROFUNDIDAD	
Q344=-9	;DIÁMETRO	
Q206=250	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	
Q211=0.1	;TIEMPO DE ESPERA ABAJO	
Q203=+20	;COOR. SUPERFICIE	
Q204=100	;2ª DIST. DE SEGURIDAD	
12 L X+30 Y+2	0 R0 FMAX M3 M99	
13 L X+80 Y+5	0 R0 FMAX M99	

3.3 TALADRAR (ciclo 200)

Desarrollo del ciclo

- 1 El TNC posiciona la herramienta en el eje de la herramienta en marcha rápida **FMAX** a la distancia de seguridad sobre la superficie de la pieza
- 2 La herramienta taladra con el avance programado **F** hasta el primer paso de profundización
- 3 El TNC hace retornar la herramienta con FMAX hasta la distancia de seguridad, permanece allí - en el caso que se haya programado - y a continuación la hace desplazar de nuevo con FMAX hasta la distancia de seguridad sobre el primer paso de profundización
- 4 A continuación, la herramienta taladra con el avance F programado según otro paso de profundización
- 5 El TNC repite este proceso (2 a 4) hasta haber alcanzado la profundidad de taladrado programada
- 6 Desde la base de taladrado la herramienta se desplaza con **FMAX** a la distancia de seguridad o en el caso de que esté programada a la 2ª distancia d seguridad

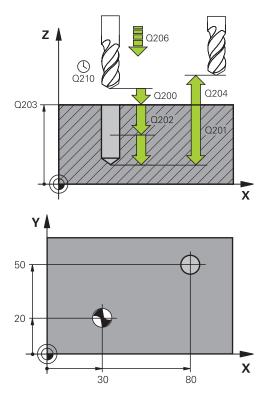
¡Tener en cuenta durante la programación!

Programar la frase de posicionamiento sobre el punto de partida (centro del taladro) en el plano de mecanizado con corrección de radio **R0**.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

¡Atención: Peligro de colisión!

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir un aviso de error cuando se introduzca una profundidad positiva (on) o no (off).


Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo**la superficie de la pieza!

3.3 TALADRAR (ciclo 200)

Parámetros de ciclo

- ▶ **Distancia de seguridad** Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza; introducir siempre valor positivo Campo de introducción 0 a 99999,9999
- ▶ **Profundidad** Q201 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro (extremo del cono del taladro). Campo de introducción -99999,9999 a 99999,9999
- Avance al profundizar Q206: Velocidad de desplazamiento de la hta. durante el taladro en mm/min. Campo de introducción 0 a 99999.9999 alternativo FAUTO, FU
- ▶ Paso de profundización Q202 (incremental): Medida a la que la herramienta correspondiente se aproxima. Campo de introducción 0 a 99999,999. La profundidad no tiene que ser múltiplo del paso de profundización. El TNC se desplaza en un solo paso de mecanizado a la profundidad total cuando:
 - El paso de profundización y la profundidad total son iguales
 - El paso de profundización es mayor a la profundidad total
- ► Tiempo de espera arriba O210: Tiempo en segundos que espera la hta. a la distancia de seguridad, después de que el TNC la ha retirado del taladro para desahogar la viruta Campo de introducción 0 a 3600,0000
- Coordenadas Superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 a 99999,9999
- ► Tiempo de espera abajo O211: Tiempo en segundos que espera la hta. en la base del taladro Campo de introducción 0 a 3600,0000

Bloques NC

TALADRAR 11 CYCL DEF 200		
Q200=2 ;DIST. DE SEGURIDAD		
Q201=-15 ;PROFUNDIDAD		
Q206=250 ;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD		
Q202=2 ;PASO DE PROFUNDIZACIÓN		
Q210=0 ;TIEMPO DE ESPERA ARRIBA		
Q203=+20 ;COOR. SUPERFICIE		
Q204=100 ;2° DIST. DE SEGURIDAD		
Q211=0.1 ;TIEMPO DE ESPERA ABAJO		
12 L X+30 Y+20 FMAX M3		
13 CYCL CALL		
14 L X+80 Y+50 FMAX M99		

3.4 ESCARIADO (Ciclo 201, DIN/ISO: G201)

Desarrollo del ciclo

- 1 El TNC posiciona la herramienta en el eje de la herramienta en marcha rápida FMAX a la distancia de seguridad programada sobre la superficie de la pieza
- 2 La herramienta escaria con el avance programado **F** hasta la profundidad programada
- 3 Si se ha programado, la hta. espera en la base del taladro
- 4 A continuación, el TNC hace retornar la herramienta en el avance F hasta la distancia de seguridad y desde allí — en el caso de que se haya programado – con FMAX hasta la 2ª distancia de seguridad

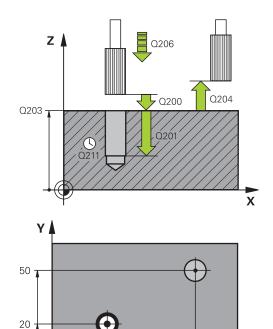
¡Tener en cuenta durante la programación!

Programar la frase de posicionamiento sobre el punto de partida (centro del taladro) en el plano de mecanizado con corrección de radio **R0**.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

¡Atención: Peligro de colisión!

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir un aviso de error cuando se introduzca una profundidad positiva (on) o no (off).


Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo**la superficie de la pieza!

3.4 ESCARIADO (Ciclo 201, DIN/ISO: G201)

Parámetros de ciclo

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 a 99999,9999
- ▶ **Profundidad** Q201 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro Campo de introducción -99999,9999 a 99999,9999
- ► Avance al profundizar Q206: Velocidad de desplazamiento de la hta. durante el escariado en mm/min. Campo de introducción 0 a 99999,9999 alternativo FAUTO, FU
- ► Tiempo de espera abajo Q211: Tiempo en segundos que espera la hta. en la base del taladro Campo de introducción 0 a 3600,0000
- ▶ Avance de retroceso Q208: Velocidad de desplazamiento de la hta. al retirarse del taladro en mm/min. Cuando se introduce Q208 = 0 es válido el avance de escariado. Campo de introducción 0 a 99999,999
- ► Coordenadas Superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza Campo de introducción 0 a 99999,9999
- ▶ 2ª distancia de seguridad O204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 a 99999,9999

Χ

80

Bloques NC

30

11 CYCL DEF 201 ESCARIAR		
Q200=2	;DIST. DE SEGURIDAD	
Q201=-15	;PROFUNDIDAD	
Q206=100	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	
Q211=0.5	;TIEMPO DE ESPERA ABAJO	
Q208=250	;AVANCE DE RETROCESO	
Q203=+20	;COOR. SUPERFICIE	
Q204=100	;2ª DIST. DE SEGURIDAD	
12 L X+30 Y+2	0 FMAX M3	
13 CYCL CALL		
14 L X+80 Y+50 FMAX M9		
15 L Z+100 FMAX M2		

3.5 MANDRINADO (Ciclo 202, DIN/ISO: G202)

Desarrollo del ciclo

- 1 El TNC posiciona la herramienta en el eje de la herramienta en marcha rápida FMAX a la distancia de seguridad sobre la superficie de la pieza
- 2 La hta. taladra con el avance de taladrado hasta la profundidad programada
- 3 La herramienta permanece en espera en la base de taladrado – en el caso de que se haya programado – con cabezal girando para el desbroce
- 4 A continuación, el TNC ejecuta una orientación del cabezal hasta alcanzar la posición que se ha definido en el parámetro Q236
- 5 Si se ha seleccionado el desplazamiento libre, el TNC se desplaza 0,2 mm hacia atrás en la dirección programada (valor fijo)
- A continuación, el TNC hace retornar la herramienta en el avance de retroceso hasta la distancia de seguridad y desde allí

 en el caso de que se haya programado con FMAX hasta la 2ª distancia de seguridad Cuando Ω214=0 el retroceso se realiza a la pared del taladro

¡Tener en cuenta durante la programación!

La máquina y el TNC deben estar preparados por el constructor de la máquina.

Ciclo aplicable sólo a máquinas con cabezal controlado.

Programar la frase de posicionamiento sobre el punto de partida (centro del taladro) en el plano de mecanizado con corrección de radio **R0**.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Al final del ciclo, el TNC vuelve a conectar el estado del refrigerante y del cabezal que estaba activado antes de la llamada al ciclo.

3.5 MANDRINADO (Ciclo 202, DIN/ISO: G202)

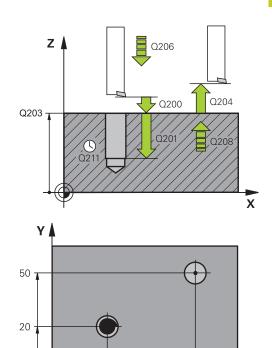
¡Atención: Peligro de colisión!

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir un aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superficie de la pieza!

Seleccionar la dirección de retroceso para que la hta. se retire del borde del taladro.

Deberá comprobarse donde se encuentra el extremo de la hta. cuando se programa una orientación del cabezal al ángulo programado en Q336 (p.ej. en el modo de funcionamiento Posicionamiento manual). Elegir el ángulo para que el extremo de la hta. esté paralelo al eje de coordenadas.


El TNC determina en el libre desplazamiento un giro del sistema de coordenadas automáticamente.

MANDRINADO (Ciclo 202, DIN/ISO: G202)

Parámetros de ciclo

- ▶ **Distancia de seguridad** Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 a 99999,9999
- ▶ **Profundidad** Q201 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro Campo de introducción -99999,9999 a 99999,9999
- ▶ Avance al profundizar Q206: Velocidad de desplazamiento de la hta, durante el Mandrinado en mm/min. Campo de introducción 0 a 99999,9999 alternativo FAUTO, FU
- ► Tiempo de espera abajo Q211: tiempo en segundos que espera la hta. en la base del taladro. Campo de introducción 0 a 3600,0000
- Avance de retroceso Q208: Velocidad de desplazamiento de la herramienta al retirarse del taladro en mm/min. Cuando se programa Q208=0 es válido el avance al profundizar Campo de introducción 0 a 99999,999 alternativo FMAX, **FAUTO**
- ► Coordenadas Superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 a 99999.999
- ▶ Dirección de retirada (0/1/2/3/4) Q214: Determinar la dirección con la que el TNC hace herramienta en la base de taladro (tras la orientación del cabezal)
 - 0: No retirar la herramienta
 - 1: Retirar la herramienta en la dirección negativa del eje principal
 - 2: Retirar la herramienta en la dirección negativa del eje transversal
 - 3: Retirar la herramienta en la dirección positiva del eje principal
 - 4: Retirar la herramienta en la dirección positiva del eje transversal
- Ángulo para orientación del cabezal Q336 (valor absoluto): ángulo sobre el cual el TNC posiciona la hta. antes de retirarla. Campo de introducción -360,000 a 360,000

30

10 L Z+100 R0	FMAX	
11 CYCL DEF 202 MANDRINADO		
Q200=2	;DIST. DE SEGURIDAD	
Q201=-15	;PROFUNDIDAD	
Q206=100	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	
Q211=0.5	;TIEMPO DE ESPERA ABAJO	
Q208=250	;AVANCE DE RETROCESO	
Q203=+20	;COOR. SUPERFICIE	
Q204=100	;2ª DIST. DE SEGURIDAD	
Q214=1	;DIRECCIÓN DE RETIRADA	
Q336=0	;ÁNGULO DEL CABEZAL	
12 L X+30 Y+20 FMAX M3		
13 CYCL CALL		
14 L X+80 Y+50 FMAX M99		

X

80

3.6 TALADRADO UNIVERSAL (Ciclo 203, DIN/ISO: G203)

3.6 TALADRADO UNIVERSAL (Ciclo 203, DIN/ISO: G203)

Desarrollo del ciclo

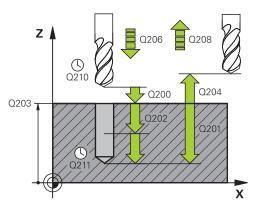
- 1 El TNC posiciona la herramienta en el eje de la herramienta en marcha rápida FMAX a la distancia de seguridad programada sobre la superficie de la pieza
- 2 La herramienta taladra con el avance programado **F** hasta el primer paso de profundización
- 3 En el caso de que se programe rotura de viruta, el TNC hace retirar la herramienta según el valor de retroceso programado. Si se trabaja sin rotura de viruta, el TNC hace retirar la herramienta con el avance de retroceso hasta la distancia de seguridad, permanece allí en espera caso de que se haya programado y a continuación vuelve a desplazarse con **FMAX** hasta la distancia de seguridad sobre el primer paso de profundización
- 4 A continuación, la herramienta taladra con el avance según otro paso de profundización El paso de profundización se reduce con cada aproximación según el valor de reducción – en el caso de que se haya programado
- 5 El TNC repite este proceso (2-4) hasta alcanzar la profundidad de taladrado
- 6 En la base de taladrado la herramienta permanece en espera en el caso de que se haya programado para el desbrozado y una vez transcurrido el tiempo de espera se retira, con el avance de retroceso, hasta la distancia de seguridad. En el caso de que se haya programado una 2ª distancia de seguridad, el TNC desplaza la herramienta con FMAX hasta la misma

¡Tener en cuenta durante la programación!

Programar la frase de posicionamiento sobre el punto de partida (centro del taladro) en el plano de mecanizado con corrección de radio **RO**.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

¡Atención: Peligro de colisión!


Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir un aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superficie de la pieza!

Parámetros de ciclo

- ▶ **Distancia de seguridad** Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza Campo de introducción 0 a 99999,9999
- ▶ **Profundidad** O201 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro (extremo del cono del taladro). Campo de introducción -99999,9999 a 99999,9999
- Avance al profundizar Q206: Velocidad de desplazamiento de la hta. durante el taladro en mm/min. Campo de introducción 0 a 99999.9999 alternativo FAUTO, FU
- ▶ Paso de profundización Q202 (incremental): Medida a la que la herramienta correspondiente se aproxima. Campo de introducción 0 a 99999,999. La profundidad no tiene que ser múltiplo del paso de profundización. El TNC se desplaza en un solo paso de mecanizado a la profundidad total cuando:
 - El paso de profundización y la profundidad total son iguales
 - El paso de profundización es mayor que la profundidad y, a la vez, no hay ninguna rotura de viruta definida
- ► Tiempo de espera arriba Q210: Tiempo en segundos que espera la hta. a la distancia de seguridad, después de que el TNC la ha retirado del taladro para desahogar la viruta Campo de introducción 0 a 3600,0000
- Coordenadas Superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 a 99999,9999
- ► Valor de reducción Q212 (valor incremental): Valor según el cual el TNC reduce la profundidad de paso Q202 en cada aproximación. Campo de introducción 0 a 99999,9999
- Número de roturas de viruta antes de retirarse Q213: Número de roturas de viruta, después de las cuales el TNC retira la hta. del taladro para soltarla. Para el arranque de viruta el TNC retira la hta. según el valor de retroceso de Q256. Campo de introducción 0 a 99999
- Mínima profundidad de paso Q205 (valor incremental): Si se ha introducido un valor de reducción, el TNC limita el paso de aproximación al valor programado en Q205. Campo de introducción 0 a 99999,9999

Bloques NC

11 CYCL DEF 203 TALADRO UNIVERSAL		
Q200=2	;DIST. DE SEGURIDAD	
Q201=-20	;PROFUNDIDAD	
Q206=100	;AVANCE DE PASO DE PROFUNDIZACIÓN	
Q202=2	;PASO DE PROFUNDIZACIÓN	
Q210=0	;TIEMPO DE ESPERA ARRIBA	
Q203=+20	;COOR. SUPERFICIE	
Q204=50	;2ª DIST. DE SEGURIDAD	
Q212=0.2	;VALOR DE REDUCCIÓN	
Q213=3	;ROTURAS DE VIRUTA	
Q202=3	;PASO DE PROFUNDIZACIÓN MÍNIMO	
Q211=0.25	;TIEMPO DE ESPERA ABAJO	
Q208=500	;AVANCE DE RETROCESO	
Q256=0.2	;RETROCESO CON ROTURA DE VIRUTA	

3

Ciclos de mecanizado: Taladro

3.6 TALADRADO UNIVERSAL (Ciclo 203, DIN/ISO: G203)

- ► Tiempo de espera abajo Q211: Tiempo en segundos que espera la hta. en la base del taladro Campo de introducción 0 a 3600,0000
- Avance de retroceso Q208: Velocidad de desplazamiento de la hta. al retirarse del taladro en mm/min. Cuando se introduce Q208=0 el TNC retira la hta. con el avance Q206. Campo de introducción 0 a 99999,999 alternativo FMAX, FAUTO
- ▶ Retroceso con rotura de viruta Q256 (valor incremental): Valor según el cual el TNC retira la herramienta con rotura de viruta. Campo de introducción 0,1000 a 99999,9999

3.7 AVELLANADO INVERSO (Ciclo 204, DIN/ISO: G204)

Desarrollo del ciclo

Con este ciclo se realizan profundizaciones que se encuentran en la parte inferior de la pieza.

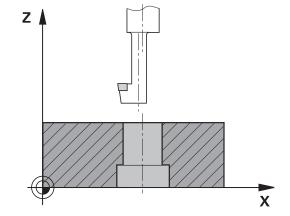
- 1 El TNC posiciona la herramienta en el eje de la herramienta en marcha rápida **FMAX** a la distancia de seguridad sobre la superficie de la pieza
- 2 El TNC realiza una orientación del cabezal sobre la posición 0° y desplaza la hta. según la cota de excentricidad
- 3 A continuación la hta. profundiza con el avance de posicionamiento previo a través del taladro ya realizado anteriormente, hasta que la cuchilla se encuentra a la distancia de seguridad por debajo de la pieza
- 4 Ahora el TNC centra la hta. de nuevo al centro del taladro, conecta el cabezal y si es preciso el refrigerante y se desplaza con el avance de rebaje a la profundidad de rebaje programada
- 5 Si se ha programado un tiempo de espera, la hta. espera en la base de la profundización y se sale de nuevo del taladro, ejecuta una orientación del cabezal y se desplaza de nuevo según la cota de excentricidad
- 6 A continuación, el TNC hace retornar la herramienta en el avance de posicionamiento previo hasta la distancia de seguridad y desde allí — en el caso de que se haya programado – con FMAX hasta la 2ª distancia de seguridad

¡Tener en cuenta durante la programación!

Tanto la máquina como el TNC deben haber sido preparados por el fabricante de la máquina.

Ciclo aplicable sólo a máquinas con cabezal controlado.

El ciclo solo trabaja con herramientas de corte inverso.



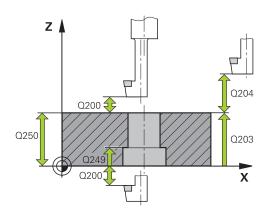
Programar la frase de posicionamiento sobre el punto de partida (centro del taladro) en el plano de mecanizado con corrección de radio **RO**.

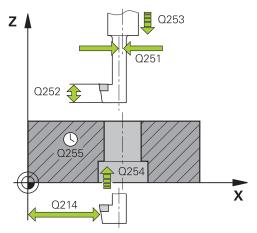
El signo del parámetro Profundidad determina la dirección del mecanizado en la profundización. Atención: El signo positivo profundiza en dirección al eje de la hta. positivo.

Introducir la longitud de la hta. de forma que se mida la arista inferior de la misma y no la cuchilla.

Para el cálculo de los puntos de partida de la profundización, el TNC tiene en cuenta la longitud de las cuchillas de la barra de taladrado y la espesor del material.

3.7 AVELLANADO INVERSO (Ciclo 204, DIN/ISO: G204)


¡Atención: Peligro de colisión!


Deberá comprobarse donde se encuentra el extremo de la hta. cuando se programa una orientación del cabezal al ángulo programado en **Q336** (p. ej. en el modo de funcionamiento Posicionamiento manual). Elegir el ángulo para que el extremo de la hta. esté paralelo al eje de coordenadas. Seleccionar la dirección de retroceso para que la hta. se retire del borde del taladro.

Parámetros de ciclo

- ▶ **Distancia de seguridad** Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza Campo de introducción 0 a 99999,9999
- ▶ **Profundidad rebaje** Q249 (valor incremental): Distancia entre el canto inferior de la pieza y la base del taladro El signo positivo realiza la profundización en la dirección positiva del eje de la hta. Campo de introducción -99999,9999 a 99999,9999
- Espesor del material Q250 (valor incremental): espesor de la pieza. Campo de introducción 0,0001 a 99999,9999
- Medida excéntrica Q251 (valor incremental): medida de excentricidad de la herramienta; sacar de la hoja de datos de la hta. Campo de introducción 0,0001 a 99999.9999
- ▶ Altura de corte O252 (valor incremental): distancia del canto inferior de la barra de taladrado a la cuchilla principal; sacar de la hoja de datos de la hta. Campo de introducción 0,0001 a 99999.9999
- ▶ Avance de preposicionamiento Q253: Velocidad de desplazamiento de la hta. al profundizar en la pieza o bien al salir de la pieza en mm/min. Campo de introducción 0 a 99999,999 alternativo FMAX, FAUTO
- Avance de rebaje Q254: Velocidad de desplazamiento de la hta. durante el rebaje en mm/min. Campo de introducción 0 a 99999,9999 alternativo FAUTO, FU
- ► Tiempo de espera Q255: tiempo de espera en segundos en la base de la profundización. Campo de introducción 0 a 3600,000
- Coordenadas Superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 a 99999,9999

Bloques NC

11 CYCL DEF 204 REBAJE INVERSO		
Q200=2	;DIST. DE SEGURIDAD	
Q249=+5	;PROFUNDIDAD REBAJE	
Q250=20	;ESPESOR DEL MATERIAL	
Q251=3.5	;MEDIDA DE EXCENTRICIDAD	
Q252=15	;ALTURA DE CORTE	
Q253=750	;AVANCE DE POSICIONAMIENTO PREVIO	

AVELLANADO INVERSO (Ciclo 204, DIN/ISO: G204) 3.7

- ▶ Dirección de retirada (1/2/3/4) O214: Determinar la dirección con la que el TNC debe desplazar la herramienta según la medida de excentricidad (según la orientación del cabezal); No se permite introducir el valor 0
 - 1: Retirar la herramienta en la dirección negativa del eje principal
 - 2: Retirar la herramienta en la dirección negativa del eje transversal
 - **3**: Retirar la herramienta en la dirección positiva del eje principal
 - **4**: Retirar la herramienta en la dirección positiva del eje transversal
- ▶ Angulo para la orientación del cabezal Q336 (valor absoluto): Angulo sobre el cual el TNC posiciona la hta. antes de la profundización y antes de retirarla del taladro. Campo de introducción -360,0000 a 360,0000

Q254=200	;AVANCE DE REBAJE
Q255=0	;TIEMPO DE ESPERA
Q203=+20	;COOR. SUPERFICIE
Q204=50	;2ª DIST. DE SEGURIDAD
Q214=1	;DIRECCIÓN DE RETIRADA
Q336=0	;ÁNGULO DEL CABEZAL

3.8 TALADRADO PROFUNDO UNIVERSAL (Ciclo 205, DIN/ISO: G205)

3.8 TALADRADO PROFUNDO UNIVERSAL (Ciclo 205, DIN/ISO: G205)

Desarrollo del ciclo

- 1 El TNC posiciona la herramienta en el eje de la herramienta en marcha rápida FMAX a la distancia de seguridad programada sobre la superficie de la pieza
- 2 Si se ha introducido un punto de arranque más profundo, el TNC se desplaza con el avance de posicionamiento definido a la distancia de seguridad por encima del punto de arranque más profundo.
- 3 La herramienta taladra con el avance programado **F** hasta el primer paso de profundización
- 4 En el caso de que se programe rotura de viruta, el TNC hace retirar la herramienta según el valor de retroceso programado. Si se trabaja sin rotura de viruta, el TNC hace retornar la herramienta en marcha rápida a la distancia de seguridad y a continuación de nuevo con **FMAX** hasta la distancia de posición previa por encima del primer paso de profundización
- 5 A continuación, la herramienta taladra con el avance según otro paso de profundización El paso de profundización se reduce con cada aproximación según el valor de reducción en el caso de que se haya programado
- 6 El TNC repite este proceso (2-4) hasta alcanzar la profundidad de taladrado
- 7 En la base de taladrado la herramienta permanece en espera en el caso de que se haya programado para el desbrozado y una vez transcurrido el tiempo de espera se retira, con el avance de retroceso, hasta la distancia de seguridad. En el caso de que se haya programado una 2ª distancia de seguridad, el TNC desplaza la herramienta con FMAX hasta la misma

¡Tener en cuenta durante la programación!

Programar la frase de posicionamiento sobre el punto de partida (centro del taladro) en el plano de mecanizado con corrección de radio **R0**.

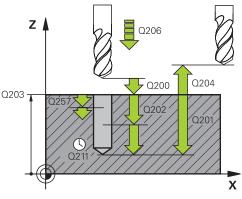
En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Si se programa las distancias de parada previa **Q258** diferente a **Q259**, el TNC modifica de forma regular la distancia de posición previa entre la primera y la última profundidad de paso.

Si se ha introducido mediante **Q379** un punto de partida profundizado, el TNC modifica entonces únicamente el punto de partida del movimiento de profundización. El TNC no modifica el movimiento de retirada sino que éste toma como referencia la coordenada de la superficie de la pieza.

¡Atención: Peligro de colisión!

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir un aviso de error cuando se introduzca una profundidad positiva (on) o no (off).


Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo**la superficie de la pieza!

3.8 TALADRADO PROFUNDO UNIVERSAL (Ciclo 205, DIN/ISO: G205)

Parámetros de ciclo

- ▶ **Distancia de seguridad** Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza Campo de introducción 0 a 99999,9999
- ▶ **Profundidad** Q201 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro (extremo del cono del taladro). Campo de introducción -99999,9999 a 99999,9999
- Avance al profundizar Q206: Velocidad de desplazamiento de la hta. durante el taladro en mm/min. Campo de introducción 0 a 99999.9999 alternativo FAUTO, FU
- ▶ Paso de profundización Q202 (incremental): Medida a la que la herramienta correspondiente se aproxima. Campo de introducción 0 a 99999,999. La profundidad no tiene que ser múltiplo del paso de profundización. El TNC se desplaza en un sólo paso de mecanizado a la profundidad total cuando:
 - El paso de profundización y la profundidad total son iguales
 - El paso de profundización es mayor que la profundidad total
- ► Coordenadas Superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 a 99999,9999
- Valor de reducción Q212 (valor incremental): Valor según el cual el TNC reduce la profundidad de paso Q202. Campo de introducción 0 a 99999,9999
- Mínima profundidad de paso Q205 (valor incremental): Si se ha introducido un valor de reducción, el TNC limita el paso de aproximación al valor programado en Q205. Campo de introducción 0 a 99999.9999
- ▶ Distancia de parada previa arriba Q258 (valor incremental): Distancia de seguridad para el posicionamiento en marcha rápida, cuando el TNC desplaza de nuevo la hta. después de un retroceso del taladro a la profundidad de paso actual; valor de la primera profundidad de paso. Campo de introducción 0 a 99999.9999
- ▶ Distancia de parada previa abajo Q259 (valor incremental): Distancia de seguridad para el posicionamiento en marcha rápida, cuando el TNC desplaza de nuevo la hta. después de un retroceso del taladro a la profundidad de paso actual; valor de la última profundidad de paso. Campo de introducción 0 a 99999,9999

Bloques NC

Dioquosito		
11 CYCL DEF 205 TALADRADO PROF. UNIVERSAL		
Q200=2	;DIST. DE SEGURIDAD	
Q201=-80	;PROFUNDIDAD	
Q206=100	;AVANCE DE PASO DE PROFUNDIZACIÓN	
Q202=15	;PASO DE PROFUNDIZACIÓN	
Q203=+100	;COOR. SUPERFICIE	
Q204=50	;2ª DIST. DE SEGURIDAD	
Q212=0.5	;VALOR DE REDUCCIÓN	
Q202=3	;PASO DE PROFUNDIZACIÓN MÍNIMO	
Q258=0.5	;DISTANCIA DE POSICIÓN PREVIA ARRIBA	
Q259=1	;DISTANCIA DE POSICIÓN PREVIA ABAJO	
Q257=5	;PROFUNDIDAD DE TALADRADO ROTURA DE VIRUTA	
Q256=0.2	;RETROCESO CON ROTURA DE VIRUTA	
Q211=0.25	;TIEMPO DE ESPERA ABAJO	
Q379=7.5	;PUNTO DE PARTIDA	
Q253=750	;AVANCE DE POSICIONAMIENTO PREVIO	

- ▶ Profundidad de taladrado hasta la rotura de viruta Q257 (incremental): Aproximación, después de la cual el TNC realiza la rotura de viruta. Si se programa 0, no se realiza la rotura de viruta. Campo de introducción 0 a 99999,9999
- ▶ Retroceso con rotura de viruta Q256 (valor incremental): Valor según el cual el TNC retira la herramienta con rotura de viruta El TNC realiza la retirada con un avance de 3000 mm/min. Campo de entrada 0,1000 hasta 99999,9999
- ► Tiempo de espera abajo Q211: Tiempo en segundos que espera la hta. en la base del taladro Campo de introducción 0 a 3600,0000
- ▶ Punto de partida profundizado Q379 (valor incremental referido a la superficie de la herramienta): Punto de partida del mecanizado de taladrado propiamente dicho, si ya se ha taladrado previamente con una herramienta más corta hasta una profundidad determinada. El TNC se desplaza con el Avance de preposicionamiento desde la distancia de seguridad hasta el punto de partida profundizado. Campo de introducción 0 a 99999,9999
- ► Avance de preposicionamiento Q253: velocidad de desplazamiento de la herramienta al posicionar desde la distancia de seguridad sobre un punto de partida profundizado en mm/min. Tiene efecto sólo si ha introducido Q379 no igual a 0. Campo de introducción 0 a 99999,999 alternativo FMAX, FAUTO

3.9 FRESADO DE TALADRO (Ciclo 208)

3.9 FRESADO DE TALADRO (Ciclo 208)

Desarrollo del ciclo

- 1 El TNC posiciona la herramienta en el eje del cabezal en marcha rápida **FMAX** sobre la distancia de seguridad programada por encima de la superficie de la pieza y se aproxima al diámetro programado sobre un círculo de redondeo (si hay espacio)
- 2 La herramienta fresa con el avance programado **F** en una línea de rosca hasta la profundidad de taladrado programada
- 3 Una vez alcanzada la profundidad de taladrado, el TNC recorre de nuevo un círculo completo para retirar el material sobrante de la profundización
- 4 A continuación el TNC posiciona la hta. de nuevo en el centro del taladro
- 5 Finalmente, el TNC retorna con **FMAX** a la distancia de seguridad. En el caso de que se haya programado una 2ª distancia de seguridad, el TNC desplaza la herramienta con **FMAX** hasta la misma

¡Tener en cuenta durante la programación!

Programar la frase de posicionamiento sobre el punto de partida (centro del taladro) en el plano de mecanizado con corrección de radio **R0**.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Si se ha programado un diámetro de taladrado igual al diámetro de la hta., el TNC taladra sin interpolación helicoidal directamente a la profundidad programada.

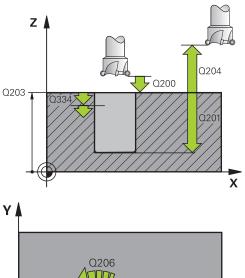
Un espejo activado **no** influye en el tipo de fresado definido en el ciclo.

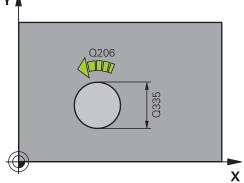
Cuando la aproximación es demasiado grande debe prestarse atención a que no se dañen la hta. o la pieza.

Para evitar programar pasos demasiado grandes, se programa en la tabla de herramientas TOOL.T en la columna **ANGLE** el máximo ángulo de profundización posible de la herramienta. Entonces el TNC calcula automáticamente el paso máximo posible y modifica, si es preciso, el valor programado.

¡Atención: Peligro de colisión!

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir un aviso de error cuando se introduzca una profundidad positiva (on) o no (off).


Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo**la superficie de la pieza!


3.9 FRESADO DE TALADRO (Ciclo 208)

Parámetros de ciclo

- ▶ **Distancia de seguridad** Q200 (valor incremental): Distancia entre el canto inferior de la hta. y la superficie de la pieza. Campo de introducción 0 a 99999,9999
- ▶ **Profundidad** Q201 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro Campo de introducción -99999,9999 a 99999,9999
- ► Avance al profundizar Q206: Velocidad de desplazamiento de la hta. durante el taladro en la línea de rosca en mm/min. Campo de introducción 0 a 99999,9999 alternativo FAUTO, FU, FZ
- ▶ Paso de la hélice Q334 (valor incremental): Cota, según la cual la hta. profundiza cada vez según una hélice (=360°). Campo de introducción 0 a 99999,9999
- Coordenadas Superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 a 99999,9999
- ▶ Diámetro nominal Q335 (valor absoluto): Diámetro del taladro. Si se programa el diámetro nominal igual al diámetro de la hta., el TNC taladra directamente hasta la profundidad programada sin interpolación helicoidal. Campo de introducción 0 a 99999,9999
- ▶ Diámetro taladrado previamente Q342 (valor absoluto): Tan pronto como se introduce un valor mayor que 0 en Q342, el TNC no lleva a cabo ninguna verificación de la relación entre el diámetro nominal y el diámetro de la herramienta. De esta forma se pueden fresar taladros, cuyo diámetro sea mayor al doble del diámetro de la hta. Campo de introducción 0 a 99999,9999
- ▶ Tipo de fresado Q351: Tipo de mecanizado de fresado con M3
 - +1 = Fresado codireccional
 - -1 = Fresado en contrasentido

Bloques NC

12 CYCL DEF 20 TALADRO	08 FRESADO DE
Q200=2	;DIST. DE SEGURIDAD
Q201=-80	;PROFUNDIDAD
Q206=150	;AVANCE DE PASO DE PROFUNDIZACIÓN
Q334=1.5	;PASO DE PROFUNDIZACIÓN
Q203=+100	;COOR. SUPERFICIE
Q204=50	;2ª DIST. DE SEGURIDAD
Q335=25	;DIÁMETRO NOMINAL
Q342=0	;DIÁMETRO PREDEFINIDO
Q351=+1	;TIPO DE FRESADO

3.10 TALADRADO CON BROCA DE UN SOLO FILO (Ciclo 241, DIN/ISO: G241)

Desarrollo del ciclo

- 1 El TNC posiciona la herramienta en el eje de la herramienta en marcha rápida FMAX a la distancia de seguridad programada sobre la superficie de la pieza
- 2 Luego el TNC desplaza la herramienta, con el avance de posicionamiento definido, hasta la distancia de seguridad por encima del punto de partida profundizado y allí conecta las revoluciones del taladrado con M3 y el refrigerante. El TNC ejecuta el movimiento de entrada según el sentido de giro definido en el ciclo, con cabezal de giro a derecha, de giro a izquierda o o sin giro
- 3 La herramienta taladra con el avance programado ${\bf F}$ hasta la profundidad programada
- 4 Si se ha programado, la hta. espera en la base del taladro, para el desbroce. A continuación, el TNC desconecta el refrigerante y vuelve a conectar las revoluciones al valor para salida definido
- 5 Una vez transcurrido el tiempo de espera, en la base de taladrado se retirará con el avance de retroceso hasta la distancia de seguridad. En el caso de que se haya programado una 2ª distancia de seguridad, el TNC desplaza la herramienta con FMAX hasta la misma

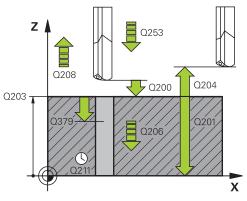
¡Tener en cuenta durante la programación!

Programar la frase de posicionamiento sobre el punto de partida (centro del taladro) en el plano de mecanizado con corrección de radio **R0**.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

¡Atención: Peligro de colisión!

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir un aviso de error cuando se introduzca una profundidad positiva (on) o no (off).


Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo**la superficie de la pieza!

3.10 TALADRADO CON BROCA DE UN SOLO FILO (Ciclo 241, DIN/ISO: G241)

Parámetros de ciclo

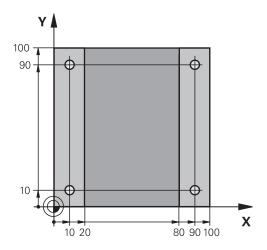
- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza Campo de introducción 0 a 99999,9999
- Profundidad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro Campo de introducción -99999,9999 a 99999,9999
- Avance al profundizar Q206: Velocidad de desplazamiento de la hta. durante el taladro en mm/min. Campo de introducción 0 a 99999.9999 alternativo FAUTO, FU
- ► Tiempo de espera abajo Q211: Tiempo en segundos que espera la hta. en la base del taladro Campo de introducción 0 a 3600,0000
- Coordenadas Superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 a 99999.9999
- Punto de partida profundizado Q379 (valor incremental referido a la superficie de la pieza): Punto de partida del mecanizado de taladrado propiamente dicho. El TNC se desplaza con el Avance de preposicionamiento desde la distancia de seguridad hasta el punto de partida profundizado. Campo de introducción 0 a 99999,9999
- ▶ Avance de preposicionamiento Q253: velocidad de desplazamiento de la herramienta al posicionar desde la distancia de seguridad sobre el punto de partida profundizado en mm/min. Tiene efecto sólo si ha introducido Q379 no igual a 0. Campo de introducción 0 a 99999,999 alternativo FMAX, FAUTO
- Avance de retroceso Q208: Velocidad de desplazamiento de la hta. al retirarse del taladro en mm/min. Cuando se introduce Q208=0 el TNC retira la hta. con el avance de taladro Q206. Campo de introducción 0 a 99999,999 alternativo FMAX, FAUTO
- ► Sentido de giro entrada/salida (3/4/5) Q426: Sentido de giro con el que debe girar la herramienta durante la entrada en el taladro y durante la salida del taladro. Valor de introducción:
 - 3: Giro de cabezal con M3
 - 4: Giro de cabezal con M4
 - 5: Desplazamiento del cabezal sin giro
- ▶ Revoluciones de husillo entrada/salida Q427: Revoluciones de la herramienta durante la entrada en el taladro y durante la salida del taladro. Campo de introducción 0 hasta 99999

Bloques NC

bioques ivc	
11 CYCL DEF 24 DE UN SOLO FIL	41 TALADRO CON BROCA LO
Q200=2	;DIST. DE SEGURIDAD
Q201=-80	;PROFUNDIDAD
Q206=150	;AVANCE DE PASO DE PROFUNDIZACIÓN
Q211=0.25	;TIEMPO DE ESPERA ABAJO
Q203=+100	;COOR. SUPERFICIE
Q204=50	;2ª DIST. DE SEGURIDAD
Q379=7.5	;PUNTO DE PARTIDA
Q253=750	;AVANCE DE POSICIONAMIENTO PREVIO
Q208=1000	;AVANCE DE RETROCESO
Q426=3	;SENTIDO DE GIRO DEL HUSILLO
Q427=25	;REVOLUCIONES ENTRADA/SALIDA
Q428=500	;REVOLUCIONES TALADRADO
Q429=8	;REFRIGERACIÓN ON
Q430=9	;REFRIGERACIÓN OFF

TALADRADO CON BROCA DE UN SOLO FILO (Ciclo 241, DIN/ISO: 3.10 G241)

- ► Revoluciones taladro Q428: Revoluciones con las que debe taladrar la herramienta Campo de introducción 0 a 99999
- ► Función M Refrigerante ON Q429: Función adicional M para conectar el refrigerante. El TNC conecta el refrigerante cuando la herramienta se encuentra dentro del taladro al punto inicial profundizado. Campo de introducción 0 a 999
- ► Función M Refrigerante OFF Q430: Función adicional M para desconectar el refrigerante. El TNC desconecta el refrigerante cuando la herramienta se encuentra a la altura de taladrar. Campo de introducción 0 a 999


3

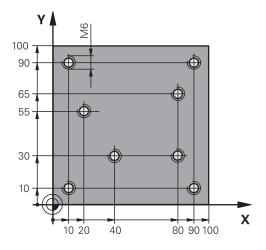
Ciclos de mecanizado: Taladro

3.11 Ejemplos de programación

3.11 Ejemplos de programación

Ejemplo: Ciclos de taladrado

O BEGIN PGM C200 M	M	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20		Definición de la pieza en bruto
2 BLK FORM 0.2 X+1	00 Y+100 Z+0	
3 TOOL CALL 1 Z S45	500	Llamada de herramienta (radio de herramienta 3)
4 L Z+250 R0 FMAX		Retirar la herramienta
TALADRAR 5 CYCL D	EF 200	Definición del ciclo
Q200=2	;DIST. DE SEGURIDAD	
Q201=-15	;PROFUNDIDAD	
Q206=250	;F APROXIMACIÓN DE PROFUNDIDAD	
Q202=2	;PASO DE PROFUNDIZACIÓN	
Q210=0	;TIEMPO F ARRIBA	
Q203=-10	;COORD. SUPERFICIE	
Q204=20	;2ª DIST. DE SEGURIDAD	
Q211=0.2	;TIEMPO DE ESPERA ABAJO	
6 L X+10 Y+10 R0 FA	MAX M3	Llegada al primer taladro, conexión del cabezal
7 CYCL CALL		Llamada al ciclo
8 L Y+90 RO FMAX M99		Llegada al 2º taladro, llamada al ciclo
9 L X+90 RO FMAX M99		Llegada al 3er taladro, llamada al ciclo
10 L Y+10 R0 FMAX M99		Llegada al 4º taladro, llamada al ciclo
11 L Z+250 R0 FMAX M2		Retirar la herramienta, final del programa
12 END PGM C200 MM		


Ejemplo: Utilizar ciclos de taladrado junto con PATTERN DEF

Las coordinadas del taladrado se memorizan en la definición del modelo PATTERN DEF POS y el TNC las llama con CYCL CALL PAT.

Los radios de la herramienta se seleccionan de tal manera que se pueden ver todos los pasos de trabajo en el gráfico de test.

Desarrollo del programa

- Centraje (radio de herramienta 4)
- Taladrar (radio de herramienta 2,4)
- Roscar (radio de herramienta 3)

O BEGIN PGM 1 M	M	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20		Definición de la pieza en bruto
2 BLK FORM 0.2 X	(+100 Y+100 Y+0	
3 TOOL CALL 1 Z	\$5000	Llamada de herramienta de centraje (radio 4)
4 L Z+10 R0 F500	00	Desplazar la herramienta a la altura de seguridad (programar F con valor), después de cada ciclo, el TNC se posiciona a la altura de seguridad
5 PATTERN DEF		Definir todas las posiciones de taladro en el modelo de puntos
POS1(X+10 Y+10	Z+0)	
POS2(X+40 Y+30	Z+0)	
POS3(X+20 Y+55	Z+0)	
POS4(X+10 Y+90	Z+0)	
POS5(X+90 Y+90	Z+0)	
POS6(X+80 Y+65	Z+0)	
POS7(X+80 Y+30	Z+0)	
POS8(X+90 Y+10	Z+0)	
6 CYCL DEF 240 (CENTRAR	Definición del ciclo Centraje
Q200=2	;DIST. DE SEGURIDAD	
Q343=0	;SELECCIÓN DIÁMETRO/ PROFUNDIDAD	
Q201=-2	;PROFUNDIDAD	
Q344=-10	;DIÁMETRO	
Q206=150	;F APROXIMACIÓN DE PROFUNDIDAD	
Q211=0	;TIEMPO DE ESPERA ABAJO	
Q203=+0	;COOR. SUPERFICIE	
Q204=50	;2ª DIST. DE SEGURIDAD	
7 CYCL CALL PAT	F5000 M13	Llamada de ciclo en combinación con modelo de puntos
8 L Z+100 R0 FM	AY.	Retirar la herramienta, cambio de herramienta

Ciclos de mecanizado: Taladro

3.11 Ejemplos de programación

10 L 7: 10 DO FEOOD		
10 L Z+10 R0 F5000 Desplazar la hta. a la altura de s para F)	Desplazar la hta. a la altura de seguridad (programar un valor para F)	
TALADRAR 11 CYCL DEF 200 Definición del ciclo taladrado		
Q200=2 ;DIST. DE SEGURIDAD		
Q201=-25 ;PROFUNDIDAD		
Q206=150 ;AVANCE DE PASO DE PROFUNDIZACIÓN		
Q202=2 ;PASO DE PROFUNDIZACIÓN		
Q210=0 ;TIEMPO DE ESPERA ARRIBA		
Q203=+0 ;COOR. SUPERFICIE		
Q204=50 ;2ª DIST. DE SEGURIDAD		
Q211=0.2 ;TIEMPO DE ESPERA ABAJO		
12 CYCL CALL PAT F5000 M13 Llamada de ciclo en combinaci	ón con modelo de puntos	
13 L Z+100 R0 FMAX Retirar la herramienta		
14 TOOL CALL 3 Z S200 Llamada de herramienta Mache	o de roscar (radio 3)	
15 L Z+50 R0 FMAX Desplazar la hta. a la altura de s	seguridad	
16 CYCL DEF 206 ROSCADO CON MACHO NUEVO Definición del ciclo Roscado		
Q200=2 ;DIST. DE SEGURIDAD		
Q201=-25 ;PROFUNDIDAD DE ROSCADO		
Q206=150 ;AVANCE DE PASO DE PROFUNDIZACIÓN		
Q211=0 ;TIEMPO DE ESPERA ABAJO		
Q203=+0 ;COOR. SUPERFICIE		
Q204=50 ;2ª DIST. DE SEGURIDAD		
17 CYCL CALL PAT F5000 M13 Llamada de ciclo en combinaci	ón con modelo de puntos	
18 L Z+100 R0 FMAX M2 Retirar la herramienta, Final de	programa	
19 END PGM 1 MM		

Ciclos de mecanizado: Roscado / Fresado de rosca

4 Ciclos de mecanizado: Roscado / Fresado de rosca

4.1 Nociones básicas

4.1 Nociones básicas

Resumen

El TNC dispone de un total de 8 ciclos para diferentes roscados:

Ciclo	Softkey	Página
206 ROSCADO NUEVO Con portabrocas de compensación, con posicionamiento previo automático, 2ª distancia de seguridad	206	93
207 ROSCADO GS NUEVO Sin portabrocas de compensación, con posicionamiento previo automático, 2ª distancia de seguridad	207 RT	95
209 ROSCADO ROTURA DE VIRUTA Sin portabrocas de compensación, con posicionamiento previo automático, 2ª distancia de seguridad, rotura de viruta	209 RT	97
262 FRESADO DE ROSCA Ciclo para fresar una rosca en el material previamente taladrado	262	103
263 FRESADO DE ROSCA CON AVELLANADO Ciclo para fresar una rosca en el material previamente taladrado, con realización de un avellanado	263	106
264 TALADRADO Y FRESADO DE ROSCA Ciclo para taladrar en el material completo, seguido de un fresado de la rosca con una herramienta	264	110
265 TALADRADO Y FRESADO DE LA ROSCA EN HÉLICE Ciclo para el fresado de la rosca en el material completo	265	114
267 FRESADO DE ROSCA EXTERIOR Ciclo para fresar un rosca exterior con realización de un avellanado	267	118

4.2 ROSCADO NUEVO con macho flotante (Ciclo 206, DIN/ISO: G206)

Desarrollo del ciclo

- 1 El TNC posiciona la herramienta en el eje de la herramienta en marcha rápida FMAX a la distancia de seguridad programada sobre la superficie de la pieza
- 2 La hta. se desplaza hasta la profundidad del taladro en una sola pasada
- 3 Después se invierte el sentido de giro del cabezal y la hta. retrocede a la distancia de seguridad una vez transcurrido el tiempo de espera. En el caso de que se haya programado una 2ª distancia de seguridad, el TNC desplaza la herramienta con **FMAX** hasta la misma
- 4 A la distancia de seguridad se invierte de nuevo el sentido de giro del cabezal

¡Tener en cuenta durante la programación!

Programar la frase de posicionamiento sobre el punto de partida (centro del taladro) en el plano de mecanizado con corrección de radio **R0**.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

La hta. debe estar sujeta mediante un sistema de compensación de longitudes. La compensación de longitud tiene en cuenta la tolerancia del avance y de las revoluciones durante el mecanizado.

Mientras se ejecuta el ciclo no está activado el potenciómetro de override de las revoluciones. El potenciómetro para el override del avance está limitado determinado por el fabricante de la máquina, consultar en el manual de la máquina).

Para el roscado a derechas activar el cabezal con M3, para el roscado a izquierdas con M4.

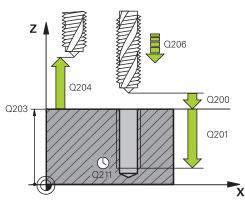
¡Atención: Peligro de colisión!

Con el parámetro de máquina displayDepthErr se ajusta si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superficie de la pieza!

Ciclos de mecanizado: Roscado / Fresado de rosca

4.2 ROSCADO NUEVO con macho flotante (Ciclo 206, DIN/ISO: G206)


Parámetros de ciclo

▶ **Distancia de seguridad** Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 hasta 99999.9999

Valor orientativo: 4x paso de rosca.

- ► Profundidad de roscado Q201 (valor incremental): Distancia de la superficie de la pieza a la base del roscado. Campo de introducción -99999,9999 a 99999,9999
- ► Avance F Q206: velocidad de desplazamiento de la hta. durante el roscado. Campo de introducción 0 a 99999.999 alternativo FAUTO
- ► Tiempo de espera abajo Q211: introducir un valor entre 0 y 0,5 segundos, para evitar un acuñamiento de la hta. al retirarla. Campo de introducción 0 a 3600,0000
- ► Coordenadas Superficie de la pieza Q203 (valor absoluto): coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad O204 (valor incremental): coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 hasta 99999.9999

Frases NC

25 CYCL DEF 206 ROSCADO NUEVO		
Q200=2	;DIST. DE SEGURIDAD	
Q201=-20	;PROFUNDIDAD	
Q206=150	;AVANCE DE PASO DE PROFUNDIZACIÓN	
Q211=0.25	;TIEMPO DE ESPERA ABAJO	
Q203=+25	;COOR. SUPERFICIE	
Q204=50	;2ª DIST. DE SEGURIDAD	

Cálculo del avance: F = S x p

F: Avance mm/min)

S: Revoluciones del cabezal (rpm)

p: Paso de roscado (mm)

Retirar la hta. durante la interrupción del programa

Si se pulsa la tecla de parada externa STOP durante el roscado rígido, el TNC visualiza un softkey, con el que es posible retirar libremente la herramienta.

4.3 ROSCADO sin macho flotante GS NEU (Ciclo 207, DIN/ISO: G207)

Desarrollo del ciclo

El TNC realiza el roscado en varios pasos sin compensación de la longitud.

- 1 El TNC posiciona la herramienta en el eje de la herramienta en marcha rápida FMAX a la distancia de seguridad programada sobre la superficie de la pieza
- 2 La hta. se desplaza hasta la profundidad del taladro en una sola pasada
- 3 Después se invierte el sentido de giro del cabezal y la hta. retrocede a la distancia de seguridad una vez transcurrido el tiempo de espera. En el caso de que se haya programado una 2ª distancia de seguridad, el TNC desplaza la herramienta con FMAX hasta la misma
- 4 El TNC detiene el cabezal a la distancia de seguridad

¡Tener en cuenta durante la programación!

La máquina y el TNC deben estar preparados por el fabricante de la máquina.

Ciclo aplicable sólo a máquinas con cabezal controlado.

Programar la frase de posicionamiento sobre el punto de partida (centro del taladro) en el plano de mecanizado con corrección de radio **RO**.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

El TNC calcula el avance dependiendo del número de revoluciones. Si se gira el potenciómetro de override para el avance durante el roscado, el TNC regula automáticamente el avance.

El potenciómetro del override de revoluciones está inactivo.

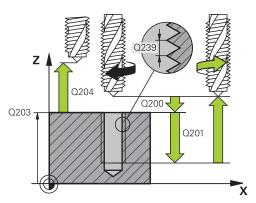
El cabezal se para al final del ciclo. Antes del siguiente mecanizado conectar de nuevo el cabezal con M3 (o bien M4)

4.3 ROSCADO sin macho flotante GS NEU (Ciclo 207, DIN/ISO: G207)

¡Atención: Peligro de colisión!

Con el parámetro de máquina displayDepthErr se ajusta si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superficie de la pieza!


Parámetros de ciclo

- ▶ Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 hasta 99999.9999
- ▶ **Profundidad de roscado** Q201 (valor incremental): Distancia de la superficie de la pieza a la base del roscado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Paso de rosca Q239:Paso de la rosca. El signo determina si el roscado es a derechas o a izquierdas:
 - += roscado a derechas
 - -= roscado a izquierdas Campo de introducción -99.9999 hasta 99.9999
- ► Coordenadas Superficie de la pieza Q203 (valor absoluto): coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 hasta 99999.9999

Retirar al interrumpirse el programa

Si durante el roscado se acciona el pulsador externo de parada, el TNC visualiza la softkey DESPLAZAR MANUALMENTE. Si se pulsa DESPLAZAR MANUALMENTE, se retira la herramienta de forma controlada. Para ello se activa el pulsador de dirección positiva del eje de la herramienta activado.

Frases NC

26 CYCL DEF 207 ROSCADO GS NUEVO		
Q200=2	;DIST. DE SEGURIDAD	
Q201=-20	;PROFUNDIDAD	
Q239=+1	;PASO DE ROSCA	
Q203=+25	;COOR. SUPERFICIE	
Q204=50	;2ª DIST. DE SEGURIDAD	

4.4 ROSCADO CON MACHO ROTURA DE VIRUTA (Ciclo 209, DIN/ISO: G209)

Desarrollo del ciclo

El TNC mecaniza el roscado en varias aproximaciones a la profundidad programada. Mediante un parámetro se determina si el arranque de viruta se saca por completo del taladro o no.

- 1 El TNC posiciona la herramienta en el eje de la herramienta en marcha rápida **FMAX** a la distancia de seguridad programada sobre la superficie de la pieza y realiza allí una orientación del cabezal
- 2 La herramienta se desplaza al paso de profundización programado, invierte el sentido de giro del cabezal y retrocede según la definición - un valor determinado o sale del taladro para la relajación. Una vez definido un factor para la aceleración, el TNC sale con velocidad suficientemente elevada del taladro
- 3 Luego se invierte de nuevo el sentido de giro del cabezal y se desplaza hasta el paso de profundización siguiente
- 4 El TNC repite este proceso (2 a 3) hasta haber alcanzado la profundidad de roscado programada
- 5 Luego la herramienta retrocede hasta la distancia de seguridad. En el caso de que se haya programado una 2ª distancia de seguridad, el TNC desplaza la herramienta con FMAX hasta la misma
- 6 El TNC detiene el cabezal a la distancia de seguridad

Ciclos de mecanizado: Roscado / Fresado de rosca

4.4 ROSCADO CON MACHO ROTURA DE VIRUTA (Ciclo 209, DIN/ISO: G209)

¡Tener en cuenta durante la programación!

La máquina y el TNC deben estar preparados por el fabricante de la máquina.

Ciclo aplicable sólo a máquinas con cabezal controlado.

Programar la frase de posicionamiento sobre el punto de partida (centro del taladro) en el plano de mecanizado con corrección de radio **R0**.

En el ciclo, el signo del parámetro Profundidad de roscado determina la dirección del mecanizado.

El TNC calcula el avance dependiendo del número de revoluciones. Si se gira el potenciómetro de override para el avance durante el roscado, el TNC regula automáticamente el avance.

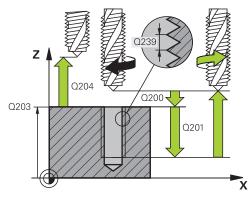
El potenciómetro del override de revoluciones está inactivo.

Si mediante el parámetro del ciclo **Q403** se ha definido un factor de revoluciones para un retroceso rápido, el TNC limita las revoluciones al número de revoluciones máximo de la etapa de reducción activa.

El cabezal se para al final del ciclo. Antes del siguiente mecanizado conectar de nuevo el cabezal con M3 (o bien M4)

¡Atención: Peligro de colisión!

Con el parámetro de máquina displayDepthErr se ajusta si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).


Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superficie de la pieza!

ROSCADO CON MACHO ROTURA DE VIRUTA (Ciclo 209, DIN/ISO: 4.4 G209)

Parámetros de ciclo

- ▶ Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 hasta 99999.9999
- ► Profundidad de roscado Q201 (valor incremental): Distancia de la superficie de la pieza a la base del roscado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Paso de rosca Q239:Paso de la rosca. El signo determina si el roscado es a derechas o a izquierdas:
 - += roscado a derechas
 - -= roscado a izquierdas Campo de introducción -99.9999 hasta 99.9999
- ▶ Coordenadas Superficie de la pieza Q203 (valor absoluto): coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 hasta 99999.9999
- ► Profundidad de taladrado hasta la rotura de viruta Q257 (incremental): Aproximación, después de la cual el TNC realiza una rotura de viruta. Si se introduce 0, no hay rotura de viruta. Campo de introducción 0 hasta 99999.9999
- ▶ Retroceso con rotura de viruta Q256: El TNC multiplica el paso Q239 por el valor introducido y hace retroceder la herramienta al romper viruta según dicho valor calculado. Si se programa Q256 = 0, el TNC retira la hta. del taladro completamente (a la distancia de seguridad) para retirar la viruta. Campo de introducción 0,1000 a 99999,9999

Frases NC

26 CYCL DEF 209 ROSCADO ROTURA DE VIRUTA		
Q200=2	;DIST. DE SEGURIDAD	
Q201=-20	;PROFUNDIDAD	
Q239=+1	;PASO DE ROSCA	
Q203=+25	;COOR. SUPERFICIE	
Q204=50	;2ª DIST. DE SEGURIDAD	
Q257=5	;PROFUNDIDAD DE TALADRADO ROTURA DE VIRUTA	
Q256=+25	;RETROCESO CON ROTURA DE VIRUTA	
Q336=50	;ÁNGULO DEL CABEZAL	
Q403=1.5	;FACTOR REVOLUCIONES	

4 Ciclos de mecanizado: Roscado / Fresado de rosca

4.4 ROSCADO CON MACHO ROTURA DE VIRUTA (Ciclo 209, DIN/ISO: G209)

- ▶ Ángulo para orientación del cabezal Q336 (valor absoluto): ángulo sobre el cual el TNC posiciona la hta. antes de la etapa de roscado. De este modo, si es preciso, puede repasarse la rosca. Campo de introducción -360,0000 a 360,0000
- ► Factor cambio de revoluciones durante el retroceso Q403: factor, según el cual el TNC aumenta las revoluciones del cabezal y con ello también el avance de retroceso al salir del taladrado. Campo de introducción 0,0001 a 10 Aumento máximo hasta el número de revoluciones máximo de la etapa de reducción activa

Retirar al interrumpirse el programa

Si durante el roscado se acciona el pulsador externo de parada, el TNC visualiza la softkey RETIRAR HERRAMIENTA MANUALMENTE Si se pulsa RETIRAR HERRAMIENTA MANUALMENTE, se retira la hta. de forma controlada. Para ello pulse la tecla de dirección de eje positiva del eje del cabezal activo.

4.5 Fundamentos del fresado de rosca

Condiciones

- La máquina debería estar equipada con un refrigerante interno del cabezal (refrigerante mínimo 30 bar, presión mín. 6 bar)
- Como, en el fresado de roscas, normalmente se producen daños en el perfil de roscado, se precisan generalmente correcciones específicas de la hta., que se obtienen del catálogo de la herramienta o que puede consultar al fabricante de herramientas. La corrección se realiza en el TOOL CALL mediante el radio delta DR
- Los ciclos 262, 263, 264 y 267 solo pueden emplearse con herramientas que giren a derechas. Para el ciclo 265 se pueden utilizar herramientas que giren a derechas e izquierdas
- La dirección del mecanizado se determina mediante los siguientes parámetros de introducción: Signo del paso de roscado Q239 (+ = roscado a derechas /- = roscado a izquierdas) y tipo de fresado Q351 (+1 = sincronizado /-1 = a contramarcha). En base a la siguiente tabla se puede ver la relación entre los parámetros de introducción en las htas. que giran a derechas.

Roscado interior	Paso	Tipo de fresado	Dirección
a derechas	+	+1(RL)	Z+
a izquierdas	_	-1(RR)	Z+
a derechas	+	-1(RR)	Z–
a izquierdas	_	+1(RL)	Z-

Rosca exterior	Paso	Tipo de fresado	Dirección de trabajo
a derechas	+	+1(RL)	Z–
a izquierdas	_	-1(RR)	Z-
a derechas	+	-1(RR)	Z+
a izquierdas	_	+1(RL)	Z+

El avance para el fresado de roscado que se programa se refiere a la cuchilla de la herramienta. Como el TNC visualiza el avance en relación a la trayectoria, el valor visualizado no coincide con el valor programado.

El sentido de giro del roscado se modifica si se ejecuta un ciclo de fresado de rosca junto con el ciclo 8 ESPEJO en solo un eje.

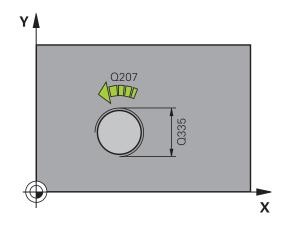
4

Ciclos de mecanizado: Roscado / Fresado de rosca

4.5 Fundamentos del fresado de rosca

¡Atención: Peligro de colisión!

En las profundizaciones debe programarse siempre el mismo signo ya que los ciclos contienen procesos que dependen unos de otros. La secuencia en la cual se decide la dirección del mecanizado se describe en el ciclo correspondiente. Si se desea por ej. repetir un ciclo con solo una profundización, se programa en la profundidad de la rosca 0, con lo cual la dirección del mecanizado se determina por la profundidad.


¡Procedimiento en caso de rotura de la herramienta!

Si se rompe la hta. durante el roscado a cuchilla, Vd. deberá detener la ejecución del programa, cambiar al modo de funcionamiento Posicionamiento manual y desplazar la hta. linealmente sobre el centro del taladro. A continuación ya se puede retirar la hta. del eje y cambiarla.

4.6 FRESADO DE ROSCA INTERIOR (Ciclo 262, DIN/ISO: G262)

Desarrollo del ciclo

- 1 El TNC posiciona la herramienta en el eje de la herramienta en marcha rápida FMAX a la distancia de seguridad programada sobre la superficie de la pieza
- 2 La herramienta se desplaza con el avance programado de posicionamiento previo hasta el plano inicial, resultante del signo del paso de rosca, del tipo de fresado y del número de vueltas para el seguimiento
- 3 A continuación la herramienta se desplaza tangencialmente con un movimiento helicoidal al diámetro nominal de la rosca. Para ello, antes del movimiento de aproximación helicoidal se realiza un movimiento de compensación del eje de la herramienta, para poder comenzar con la trayectoria del roscado sobre el plano inicial programado
- 4 En función del parámetro de seguimiento, la herramienta fresa la rosca en un movimiento helicoidal, en varios decalados o en uno continuo
- 5 Después la hta. sale tangencialmente desde el contorno al punto de partida en el plano de mecanizado
- 6 Al final del ciclo, el TNC desplaza la herramienta en marcha rápida hasta la distancia de seguridad o si se ha programado hasta la 2ª distancia de seguridad

4.6 FRESADO DE ROSCA INTERIOR (Ciclo 262, DIN/ISO: G262)

¡Tener en cuenta durante la programación!

Programar la frase de posicionamiento sobre el punto de partida (centro del taladro) en el plano de mecanizado con corrección de radio **R0**.

En el ciclo, el signo del parámetro Profundidad de roscado determina la dirección del mecanizado.

Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

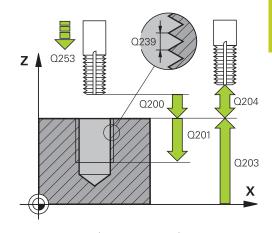
El movimiento de desplazamiento en el diámetro de rosca tiene lugar en semicírculo a partir del centro. Si el paso del diámetro de la herramienta es 4 veces menor que el diámetro de rosca, se lleva a cabo un preposicionamiento lateral.

Tener en cuenta que el TNC realiza un movimiento de compensación antes del movimiento de aproximación en el eje de la herramienta. La longitud del movimiento de compensación asciende como máximo medio paso de rosca. ¡Prestar atención al espacio necesario en el hueco!

Si se modifica la profundidad de la rosca, el TNC cambia automáticamente el punto de inicio para el movimiento de la hélice.

¡Atención: Peligro de colisión!

Con el parámetro de máquina displayDepthErr se ajusta si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).


Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superficie de la pieza!

FRESADO DE ROSCA INTERIOR (Ciclo 262, DIN/ISO: G262) 4.6

Parámetros de ciclo

- ▶ Diámetro nominal Q335: Diámetro nominal de rosca Campo de introducción 0 hasta 99999.9999
- ▶ **Paso de rosca** Q239:Paso de la rosca. El signo determina si el roscado es a derechas o a izquierdas:
 - += roscado a derechas
 - -= roscado a izquierdas Campo de introducción -99.9999 hasta 99.9999
- ▶ Profundidad de roscado Q201 (valor incremental): Distancia de la superficie de la pieza a la base del roscado. Campo de introducción -99999,9999 a 99999.9999
- ▶ **Seguimiento** Q355: Número de vueltas de rosca que se desplaza la herramienta:
 - 0 = una hélice sobre la profundidad de rosca
 - 1 = hélice continua sobre toda la longitud de rosca
 - >1 = varias pistas helicoidales con entrada y salida, desplazando el TNC entre las mismas la herramienta Q355 veces el paso. Campo de introducción 0 a 99999
- Avance posicionamiento previo Q253: Velocidad de desplazamiento de la herramienta al profundizar en la pieza o al retirarse de la pieza en mm/min. Campo de introducción 0 hasta 99999.9999 alternativo FMAX, FAUTO
- ► **Tipo de fresado** Q351: Tipo de mecanizado de fresado con M3
 - +1 = Fresado codireccional
 - **-1** = Fresado en contrasentido
- ▶ Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 hasta 99999.9999
- Coordenadas Superficie de la pieza Q203 (valor absoluto): coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 hasta 99999.9999
- Avance al fresar Q207: Velocidad de desplazamiento de la herramienta al fresar en mm/min. Campo de introducción 0 a 99999,999 alternativo FAUTO

Frases NC

25 CYCL DEF 262 FRESADO DE ROSCA			
Q335=10	;DIÁMETRO NOMINAL		
Q239=+1.5	;PASO DE ROSCA		
Q201=-20	;PROFUNDIDAD DE ROSCADO		
Q355=0	;SEGUIMIENTO		
Q253=750	;AVANCE DE POSICIONAMIENTO PREVIO		
Q351=+1	;TIPO DE FRESADO		
Q200=2	;DIST. DE SEGURIDAD		
Q203=+30	;COOR. SUPERFICIE		
Q204=50	;2ª DIST. DE SEGURIDAD		
Q207=500	;AVANCE AL FRESAR		

Ciclos de mecanizado: Roscado / Fresado de rosca

4.7 FRESADO DE ROSCA CON AVELLANADO (Ciclo 263, DIN/ ISO:G263)

4.7 FRESADO DE ROSCA CON AVELLANADO (Ciclo 263, DIN/ ISO:G263)

Desarrollo del ciclo

1 El TNC posiciona la herramienta en el eje de la herramienta en marcha rápida FMAX a la distancia de seguridad programada sobre la superficie de la pieza

Avellanado

- 2 La hta. se desplaza con avance de posicionamiento previo a la profundidad de avellanado menos la distancia de seguridad y a continuación con avance de avellanado a la profundidad de avellanado programada
- 3 En el caso que se hubiera programado una distancia de seguridad lateral, el TNC posiciona la herramienta al mismo tiempo que el avance de posicionamiento previo a la profundidad de avellanado.
- 4 A continuación, según las condiciones de espacio, el TNC sale del centro o se aproxima suavemente al diámetro del núcleo con posicionamiento previo lateral y ejecuta un movimiento circular

Introducción frontal o rebaje

- 5 La hta. se desplaza con el avance de posicionamiento previo a la profundidad de introducción frontal
- 6 El TNC posiciona la herramienta sin corregir, partiendo del centro recorriendo un semicírculo, en el desplazamiento frontal y y ejecuta un movimiento circular en el avance de rebaje
- 7 A continuación el TNC desplaza la herramienta de nuevo hasta un semicírculo en el centro del taladro

Fresado de rosca

- 8 El TNC desplaza la herramienta, con el avance de posicionamiento previo programado, hasta el plano inicial para la rosca, que resulta del signo del paso de rosca y del tipo de fresado
- 9 A continuación, la herramienta se desplaza tangencialmente en un movimiento helicoidal en el diámetro nominal de la rosca y fresa la rosca con un movimiento helicoidal de 360º
- 10 Después la hta. sale tangencialmente desde el contorno al punto de partida en el plano de mecanizado
- 11 Al final del ciclo, el TNC desplaza la herramienta en marcha rápida hasta la distancia de seguridad o si se ha programado hasta la 2ª distancia de seguridad

¡Tener en cuenta durante la programación!

Programar la frase de posicionamiento sobre el punto de partida (centro del taladro) en el plano de mecanizado con corrección de radio **R0**.

El signo de los parámetros del ciclo profundidad de rosca, profundidad de rebaje o profundidad de cara frontal determinan la dirección de trabajo. La dirección de trabajo se decide según la siguiente secuencia:

1º Profundidad de rosca

2º Profundidad de rebaje

3º Profundidad de la cara frontal

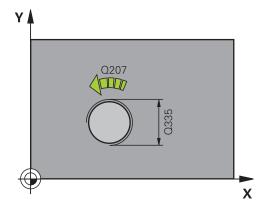
En el caso de que a uno de los parámetros de profundidad se le asigne 0, el TNC no ejecuta este paso del trabajo

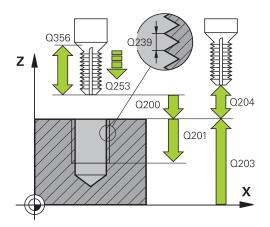
Si se quiere profundizar frontalmente, se define el parámetro de la profundidad de introducción con el valor 0

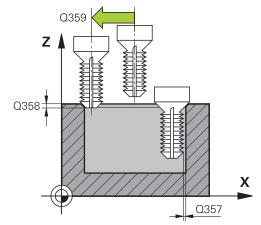
La profundidad de roscado debe ser como mínimo una tercera parte del paso de roscado menor a la profundidad de introducción.

¡Atención: Peligro de colisión!

Con el parámetro de máquina displayDepthErr se ajusta si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).


Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superficie de la pieza!


4.7 FRESADO DE ROSCA CON AVELLANADO (Ciclo 263, DIN/ ISO:G263)


Parámetros de ciclo

- ▶ **Diámetro nominal** Q335: Diámetro nominal de rosca Campo de introducción 0 hasta 99999.9999
- ▶ Paso de rosca Q239:Paso de la rosca. El signo determina si el roscado es a derechas o a izquierdas:
 - += roscado a derechas
 - -= roscado a izquierdas Campo de introducción -99.9999 hasta 99.9999
- ▶ Profundidad de roscado Q201 (valor incremental): Distancia de la superficie de la pieza a la base del roscado. Campo de introducción -99999,9999 a 99999,9999
- ▶ **Profundidad de rebaje** Q356 (valor incremental): Distancia entre la superficie de la pieza y el extremo de la herramienta. Campo de introducción -99999,9999 a 99999,9999
- ▶ Avance posicionamiento previo Q253: Velocidad de desplazamiento de la herramienta al profundizar en la pieza o al retirarse de la pieza en mm/min. Campo de introducción 0 hasta 99999.9999 alternativo FMAX, FAUTO
- ► Tipo de fresado Q351: Tipo de mecanizado de fresado con M3
 - +1 = Fresado codireccional
 - -1 = Fresado en contrasentido
- ▶ Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 hasta 99999.9999
- ▶ Distancia de seguridad lateral Q357 (valor incremental): Distancia entre la cuchilla de la hta. y la pared del taladrado. Campo de introducción 0 hasta 99999.9999
- ▶ Profundidad de fresado frontal Q358 (valor incremental): Distancia entre la superficie de la pieza y el extremo de la herramienta en la profundización frontal. Campo de introducción -99999,9999 a 99999,9999
- ▶ Desplazamiento rebaje cara frontal Q359 (valor incremental): Distancia con la que el TNC desplaza el centro de la herramienta partiendo del centro. Campo de introducción 0 hasta 99999.9999

FRESADO DE ROSCA CON AVELLANADO (Ciclo 263, DIN/ 4.7 ISO:G263)

- ► Coordenadas Superficie de la pieza Q203 (valor absoluto): coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 hasta 99999.9999
- Avance del rebaje Q254: Velocidad de desplazamiento de la herramienta al rebajar en mm/ min. Campo de introducción 0 hasta 99999.9999 alternativamente FAUTO, FU
- Avance al fresar Q207: Velocidad de desplazamiento de la herramienta al fresar en mm/min. Campo de introducción 0 a 99999,999 alternativo FAUTO

25 CYCL DEF 263 FRESADO ROSCA AVELLANADA		
Q335=10	;DIÁMETRO NOMINAL	
Q239=+1.5	;PASO DE ROSCA	
Q201=-16	;PROFUNDIDAD DE ROSCADO	
Q356=-20	;PROFUNDIDAD DE REBAJE	
Q253=750	;AVANCE DE POSICIONAMIENTO PREVIO	
Q351=+1	;TIPO DE FRESADO	
Q200=2	;DIST. DE SEGURIDAD	
Q357=0.2	;DIST. DE SEGURIDAD LATERAL	
Q358=+0	;PROFUNDIDAD CARA FRONTAL	
Q359=+0	;DESPLAZAMIENTO CARA FRONTAL	
Q203=+30	;COOR. SUPERFICIE	
Q204=50	;2ª DIST. DE SEGURIDAD	
Q254=150	;AVANCE DE REBAJE	
Q207=500	;AVANCE AL FRESAR	

4.8 FRESADO DE ROSCA CON TALADRADO (Ciclo 264, DIN/ISO: G264)

4.8 FRESADO DE ROSCA CON TALADRADO (Ciclo 264, DIN/ISO: G264)

Desarrollo del ciclo

1 El TNC posiciona la herramienta en el eje de la herramienta en marcha rápida FMAX a la distancia de seguridad programada sobre la superficie de la pieza

Taladrado

- 2 La herramienta taladra con el avance de profundización programado hasta el primer paso de profundización
- 3 En el caso de que se programe rotura de viruta, el TNC hace retirar la herramienta según el valor de retroceso programado. Si se trabaja sin rotura de viruta, el TNC hace retornar la herramienta en marcha rápida a la distancia de seguridad y a continuación de nuevo con **FMAX** hasta la distancia de posición previa por encima del primer paso de profundización
- 4 A continuación, la herramienta taladra con el avance según otro paso de profundización
- 5 El TNC repite este proceso (2-4) hasta alcanzar la profundidad de taladrado

Introducción frontal o rebaje

- 6 La hta. se desplaza con el avance de posicionamiento previo a la profundidad de introducción frontal
- 7 El TNC posiciona la herramienta sin corregir, partiendo del centro recorriendo un semicírculo, en el desplazamiento frontal y y ejecuta un movimiento circular en el avance de rebaje
- 8 A continuación el TNC desplaza la herramienta de nuevo hasta un semicírculo en el centro del taladro

Fresado de rosca

- 9 El TNC desplaza la herramienta, con el avance de posicionamiento previo programado, hasta el plano inicial para la rosca, que resulta del signo del paso de rosca y del tipo de fresado
- 10 A continuación, la herramienta se desplaza tangencialmente en un movimiento helicoidal en el diámetro nominal de la rosca y fresa la rosca con un movimiento helicoidal de 360º
- 11 Después la hta. sale tangencialmente desde el contorno al punto de partida en el plano de mecanizado
- 12 Al final del ciclo, el TNC desplaza la herramienta en marcha rápida hasta la distancia de seguridad o si se ha programado hasta la 2ª distancia de seguridad

¡Tener en cuenta durante la programación!

Programar la frase de posicionamiento sobre el punto de partida (centro del taladro) en el plano de mecanizado con corrección de radio **R0**.

El signo de los parámetros del ciclo profundidad de rosca, profundidad de rebaje o profundidad de cara frontal determinan la dirección de trabajo. La dirección de trabajo se decide según la siguiente secuencia:

1º Profundidad de rosca

2º Profundidad de rebaje

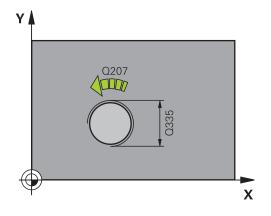
3º Profundidad de la cara frontal

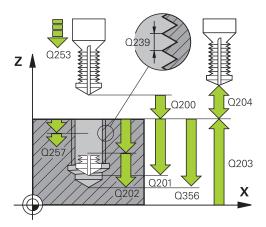
En el caso de que a uno de los parámetros de profundidad se le asigne 0, el TNC no ejecuta este paso del trabajo

La profundidad de roscado debe ser como mínimo una tercera parte del paso de roscado menor a la profundidad de taladrado.

¡Atención: Peligro de colisión!

Con el parámetro de máquina displayDepthErr se ajusta si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).


Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superficie de la pieza!


4.8 FRESADO DE ROSCA CON TALADRADO (Ciclo 264, DIN/ISO: G264)

Parámetros de ciclo

- ▶ Diámetro nominal Q335: Diámetro nominal de rosca Campo de introducción 0 hasta 99999.9999
- ▶ Paso de rosca Q239:Paso de la rosca. El signo determina si el roscado es a derechas o a izquierdas:
 - += roscado a derechas
 - -= roscado a izquierdas Campo de introducción -99.9999 hasta 99.9999
- ▶ **Profundidad de roscado** Q201 (valor incremental): Distancia de la superficie de la pieza a la base del roscado. Campo de introducción -99999,9999 a 99999,9999
- ▶ **Profundidad de taladrado** Q356 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro. Campo de introducción -99999,9999 a 99999,9999
- ► Avance posicionamiento previo Q253: Velocidad de desplazamiento de la herramienta al profundizar en la pieza o al retirarse de la pieza en mm/min. Campo de introducción 0 hasta 99999.9999 alternativo FMAX, FAUTO
- ► Tipo de fresado Q351: Tipo de mecanizado de fresado con M3
 - +1 = Fresado codireccional
 - -1 = Fresado en contrasentido
- ▶ Paso de profundización Q202 (incremental): Medida a la que la herramienta correspondiente se aproxima. La profundidad de taladrado no tiene porque ser múltiplo del paso de profundización. Campo de introducción 0 hasta 99999.9999 El TNC se desplaza en un sólo paso de mecanizado a la profundidad total cuando:
 - El paso de profundización y la profundidad total son iguales
 - El paso de profundización es mayor a la profundidad total
- ▶ Distancia de parada previa arriba O258 (valor incremental): Distancia de seguridad para el posicionamiento en marcha rápida, cuando el TNC desplaza de nuevo la hta. después de un retroceso del taladro a la profundidad de paso actual. Campo de introducción 0 hasta 99999.9999
- ▶ Profundidad de taladrado hasta la rotura de viruta O257 (incremental): Aproximación, después de la cual el TNC realiza una rotura de viruta. Si se introduce 0, no hay rotura de viruta. Campo de introducción 0 hasta 99999.9999
- Retroceso con rotura de viruta Q256 (valor incremental): Valor según el cual el TNC retira la herramienta en la rotura de viruta Campo de introducción 0,1000 a 99999,9999

25 CYCL DEF 2 EN TALADRO	64 FRESADO DE ROSCA
Q335=10	;DIÁMETRO NOMINAL
Q239=+1.5	;PASO DE ROSCA
Q201=-16	;PROFUNDIDAD DE ROSCADO
Q356=-20	;PROFUNDIDAD DE TALADRO
Q253=750	;AVANCE DE POSICIONAMIENTO PREVIO
Q351=+1	;TIPO DE FRESADO
Q202=2	;PASO DE PROFUNDIZACIÓN
Q258=0.2	;DISTANCIA DE POSICIÓN PREVIA
Q257=5	;PROFUNDIDAD DE TALADRADO ROTURA DE VIRUTA
Q256=0.2	;RETROCESO CON ROTURA DE VIRUTA

FRESADO DE ROSCA CON TALADRADO (Ciclo 264, DIN/ISO: G264) 4.8

- ▶ Profundidad de fresado frontal Q358 (valor incremental): Distancia entre la superficie de la pieza y el extremo de la herramienta en la profundización frontal. Campo de introducción -99999,9999 a 99999,9999
- ▶ Desplazamiento rebaje cara frontal Q359 (valor incremental): Distancia con la que el TNC desplaza el centro de la herramienta partiendo del centro. Campo de introducción 0 hasta 99999.9999
- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 hasta 99999.9999
- ► Coordenadas Superficie de la pieza Q203 (valor absoluto): coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 hasta 99999.9999
- Avance de la profundización Q206: velocidad de desplazamiento de la herramienta al profundizar en mm/min. Campo de introducción 0 a 99999,999 alternativamente FAUTO, FU
- Avance al fresar Q207: Velocidad de desplazamiento de la herramienta al fresar en mm/min. Campo de introducción 0 a 99999,999 alternativo FAUTO

Q358=+0	;PROFUNDIDAD CARA FRONTAL
Q359=+0	;DESPLAZAMIENTO CARA FRONTAL
Q200=2	;DIST. DE SEGURIDAD
Q203=+30	;COOR. SUPERFICIE
Q204=50	;2ª DIST. DE SEGURIDAD
Q206=150	;AVANCE DE PASO DE PROFUNDIZACIÓN
Q207=500	;AVANCE AL FRESAR

Ciclos de mecanizado: Roscado / Fresado de rosca

4.9 FRESADO DE ROSCA CON TALADRADO HELICOIDAL (Ciclo 265, DIN/ISO: G265)

4.9 FRESADO DE ROSCA CON TALADRADO HELICOIDAL (Ciclo 265, DIN/ISO: G265)

Desarrollo del ciclo

1 El TNC posiciona la herramienta en el eje de la herramienta en marcha rápida FMAX a la distancia de seguridad programada sobre la superficie de la pieza

Introducción frontal o rebaje

- 2 Si se ha de mecanizar un rebaje antes de fresar la rosca, la herramienta se desplaza previamente a la altura superior del rebaje. En el proceso de profundización después del roscado el TNC desplaza la hta. a la profundidad de introducción con el avance de posicionamiento previo.
- 3 El TNC posiciona la herramienta sin corregir, partiendo del centro recorriendo un semicírculo, en el desplazamiento frontal y y ejecuta un movimiento circular en el avance de rebaje
- 4 A continuación el TNC desplaza la herramienta de nuevo hasta un semicírculo en el centro del taladro

Fresado de rosca

- 5 La hta. se desplaza con el avance de posicionamiento previo programado sobre el plano inicial para realizar el roscado
- 6 A continuación la herramienta se desplaza tangencialmente con un movimiento helicoidal al diámetro nominal de la rosca.
- 7 El TNC desplaza la herramienta sobre una hélice continua hacia abajo, hasta alcanzar la profundidad de rosca
- 8 Después la hta. sale tangencialmente desde el contorno al punto de partida en el plano de mecanizado
- 9 Al final del ciclo, el TNC desplaza la herramienta en marcha rápida hasta la distancia de seguridad o – si se ha programado – hasta la 2ª distancia de seguridad

¡Tener en cuenta durante la programación!

Programar la frase de posicionamiento sobre el punto de partida (centro del taladro) en el plano de mecanizado con corrección de radio **RO**.

El signo de los parámetros del ciclo profundidad de rosca o profundidad de cara frontal determinan la dirección de trabajo. La dirección de trabajo se decide según la siguiente secuencia:

1º Profundidad de rosca

2º Profundidad de la cara frontal

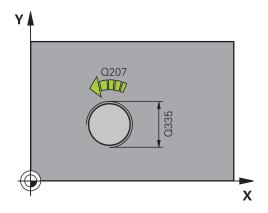
En el caso de que a uno de los parámetros de profundidad se le asigne 0, el TNC no ejecuta este paso del trabajo

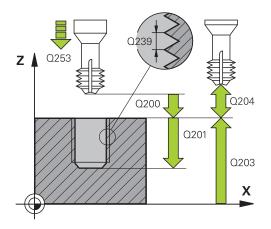
Si se modifica la profundidad de la rosca, el TNC cambia automáticamente el punto de inicio para el movimiento de la hélice.

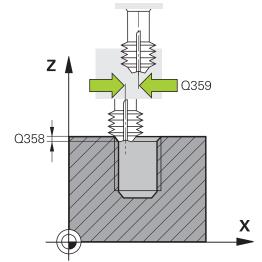
El tipo de fresado (sincronizado/a contramarcha) depende de si la rosca es a izquierdas o derechas y del sentido de giro de la herramienta, ya que solo es posible la dirección de mecanizado entrando desde la superficie de la pieza.

¡Atención: Peligro de colisión!

Con el parámetro de máquina displayDepthErr se ajusta si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).


Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superficie de la pieza!


4.9 FRESADO DE ROSCA CON TALADRADO HELICOIDAL (Ciclo 265, DIN/ISO: G265)


Parámetros de ciclo

- ▶ **Diámetro nominal** Q335: Diámetro nominal de rosca Campo de introducción 0 hasta 99999.9999
- ▶ **Paso de rosca** Q239:Paso de la rosca. El signo determina si el roscado es a derechas o a izquierdas:
 - += roscado a derechas
 - -= roscado a izquierdas Campo de introducción -99.9999 hasta 99.9999
- ▶ **Profundidad de roscado** Q201 (valor incremental): Distancia de la superficie de la pieza a la base del roscado. Campo de introducción -99999,9999 a 99999.9999
- Avance posicionamiento previo Q253: Velocidad de desplazamiento de la herramienta al profundizar en la pieza o al retirarse de la pieza en mm/min. Campo de introducción 0 hasta 99999.9999 alternativo FMAX, FAUTO
- ▶ Profundidad de fresado frontal Q358 (valor incremental): Distancia entre la superficie de la pieza y el extremo de la herramienta en la profundización frontal. Campo de introducción -99999,9999 a 99999,9999
- ▶ Desplazamiento rebaje cara frontal Q359 (valor incremental): Distancia con la que el TNC desplaza el centro de la herramienta partiendo del centro. Campo de introducción 0 hasta 99999.9999
- Proceso de rebaje Q360: Ejecución del chaflán
 0 = antes del mecanizado de rosca
 1 = después del mecanizado de rosca
- ▶ Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 hasta 99999.9999
- ► Coordenadas Superficie de la pieza Q203 (valor absoluto): coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 hasta 99999.9999
- Avance del rebaje Q254: Velocidad de desplazamiento de la herramienta al rebajar en mm/ min. Campo de introducción 0 hasta 99999.9999 alternativamente FAUTO, FU

FRESADO DE ROSCA CON TALADRADO HELICOIDAL (Ciclo 265, 4.9 DIN/ISO: G265)

► Avance al fresar Q207: Velocidad de desplazamiento de la herramienta al fresar en mm/min. Campo de introducción 0 a 99999,999 alternativo FAUTO

25 CYCL DEF 265 FRESADO DE ROSCA HELICOIDAL EN TALADRO		
Q335=10	;DIÁMETRO NOMINAL	
Q239=+1.5	;PASO DE ROSCA	
Q201=-16	;PROFUNDIDAD DE ROSCADO	
Q253=750	;AVANCE DE POSICIONAMIENTO PREVIO	
Q358=+0	;PROFUNDIDAD CARA FRONTAL	
Q359=+0	;DESPLAZAMIENTO CARA FRONTAL	
Q360=0	;PROCESO DE REBAJE	
Q200=2	;DIST. DE SEGURIDAD	
Q203=+30	;COOR. SUPERFICIE	
Q204=50	;2ª DIST. DE SEGURIDAD	
Q254=150	;AVANCE DE REBAJE	
Q207=500	;AVANCE AL FRESAR	

4.10 FRESADO DE ROSCA EXTERIOR (Ciclo 267, DIN/ISO: G267)

4.10 FRESADO DE ROSCA EXTERIOR (Ciclo 267, DIN/ISO: G267)

Desarrollo del ciclo

1 El TNC posiciona la herramienta en el eje de la herramienta en marcha rápida FMAX a la distancia de seguridad programada sobre la superficie de la pieza

Introducción frontal o rebaje

- 2 El TNC aproxima la hta. al punto de partida para la profundización frontal partiendo del centro de la isla sobre el eje principal en el plano de mecanizado. La posición del punto de partida se obtiene del radio de la rosca, del radio de la hta. y del paso de roscado
- 3 La hta. se desplaza con el avance de posicionamiento previo a la profundidad de introducción frontal
- 4 El TNC posiciona la herramienta sin corregir, partiendo del centro recorriendo un semicírculo, en el desplazamiento frontal y y ejecuta un movimiento circular en el avance de rebaje
- 5 A continuación el TNC desplaza la herramienta de nuevo hasta un semicírculo en el punto de partida

Fresado de rosca

- 6 Si antes no se ha profundizado frontalmente, el TNC posiciona la hta. sobre el punto de partida. Punto de partida del fresado de la rosca = punto de partida de la profundización frontal
- 7 La herramienta se desplaza con el avance programado de posicionamiento previo hasta el plano inicial, resultante del signo del paso de rosca, del tipo de fresado y del número de vueltas para el seguimiento
- 8 A continuación la herramienta se desplaza tangencialmente con un movimiento helicoidal al diámetro nominal de la rosca.
- 9 En función del parámetro de seguimiento, la herramienta fresa la rosca en un movimiento helicoidal, en varios decalados o en uno continuo
- 10 Después la hta. sale tangencialmente desde el contorno al punto de partida en el plano de mecanizado
- 11 Al final del ciclo, el TNC desplaza la herramienta en marcha rápida hasta la distancia de seguridad o si se ha programado hasta la 2ª distancia de seguridad

¡Tener en cuenta durante la programación!

Programar la frase de posicionamiento sobre el punto de partida (centro de la isla) en el plano de mecanizado con corrección de radio **R0**.

Debería calcularse previamente la desviación necesaria para el rebaje en la parte frontal. Debe indicarse el valor desde el centro de la isla hasta el centro de la herramienta (valor sin corrección).

El signo de los parámetros del ciclo profundidad de rosca o profundidad de cara frontal determinan la dirección de trabajo. La dirección de trabajo se decide según la siguiente secuencia:

1º Profundidad de rosca

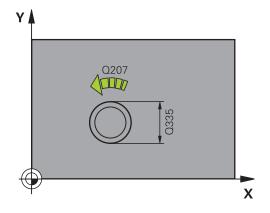
2º Profundidad de la cara frontal

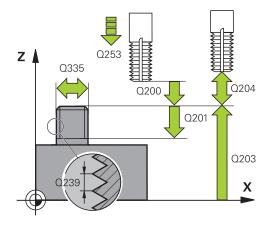
En el caso de que a uno de los parámetros de profundidad se le asigne 0, el TNC no ejecuta este paso del trabajo

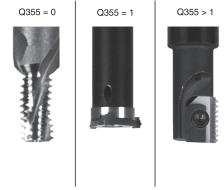
En el ciclo, el signo del parámetro Profundidad de roscado determina la dirección del mecanizado.

¡Atención: Peligro de colisión!

Con el parámetro de máquina displayDepthErr se ajusta si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).


Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superficie de la pieza!


4.10 FRESADO DE ROSCA EXTERIOR (Ciclo 267, DIN/ISO: G267)


Parámetros de ciclo

- ▶ **Diámetro nominal** Q335: Diámetro nominal de rosca Campo de introducción 0 hasta 99999.9999
- ▶ Paso de rosca Q239:Paso de la rosca. El signo determina si el roscado es a derechas o a izquierdas:
 - += roscado a derechas
 - -= roscado a izquierdas Campo de introducción -99.9999 hasta 99.9999
- ▶ Profundidad de roscado Q201 (valor incremental): Distancia de la superficie de la pieza a la base del roscado. Campo de introducción -99999,9999 a 99999.9999
- ▶ **Seguimiento** Q355: Número de vueltas de rosca que se desplaza la herramienta:
 - **0** = una hélice sobre la profundidad de rosca
 - 1 = hélice continua sobre toda la longitud de rosca
 - >1 = varias pistas helicoidales con entrada y salida, desplazando el TNC entre las mismas la herramienta Q355 veces el paso. Campo de introducción 0 a 99999
- Avance posicionamiento previo Q253: Velocidad de desplazamiento de la herramienta al profundizar en la pieza o al retirarse de la pieza en mm/min. Campo de introducción 0 hasta 99999.9999 alternativo FMAX, FAUTO
- ► Tipo de fresado Q351: Tipo de mecanizado de fresado con M3
 - +1 = Fresado codireccional
 - **-1** = Fresado en contrasentido
- ▶ Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 hasta 99999.9999
- ▶ Profundidad de fresado frontal Q358 (valor incremental): Distancia entre la superficie de la pieza y el extremo de la herramienta en la profundización frontal. Campo de introducción -99999,9999 a 99999,9999
- ▶ Desplazamiento rebaje cara frontal Q359 (valor incremental): Distancia con la que el TNC desplaza el centro de la herramienta partiendo del centro. Campo de introducción 0 hasta 99999.9999
- Coordenadas Superficie de la pieza Q203 (valor absoluto): coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 hasta 99999.9999

114555115		
25 CYCL DEF 267 FRESADO DE ROSCA EXTERIOR		
Q335=10	;DIÁMETRO NOMINAL	
Q239=+1.5	;PASO DE ROSCA	
Q201=-20	;PROFUNDIDAD DE ROSCADO	
Q355=0	;SEGUIMIENTO	
Q253=750	;AVANCE DE POSICIONAMIENTO PREVIO	

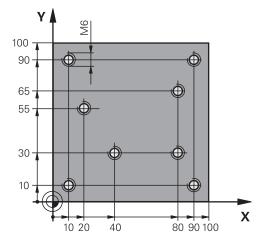
FRESADO DE ROSCA EXTERIOR (Ciclo 267, DIN/ISO: G267) 4.10

- Avance del rebaje Q254: Velocidad de desplazamiento de la herramienta al rebajar en mm/ min. Campo de introducción 0 hasta 99999.9999 alternativamente FAUTO, FU
- Avance al fresar Q207: Velocidad de desplazamiento de la herramienta al fresar en mm/min. Campo de introducción 0 a 99999,999 alternativo FAUTO

Q351=+1	;TIPO DE FRESADO
Q200=2	;DIST. DE SEGURIDAD
Q358=+0	;PROFUNDIDAD CARA FRONTAL
Q359=+0	;DESPLAZAMIENTO CARA FRONTAL
Q203=+30	;COOR. SUPERFICIE
Q204=50	;2ª DIST. DE SEGURIDAD
Q254=150	;AVANCE DE REBAJE
Q207=500	;AVANCE AL FRESAR

4.11 Ejemplos de programación

4.11 Ejemplos de programación


Ejemplo: Roscado

Las coordinadas del taladrado se memorizan en la tabla de puntos TAB1.PNT y el TNC las llama con **CYCL CALL PAT**

Los radios de la herramienta se seleccionan de tal modo que se pueden ver todos los pasos de trabajo en el gráfico de test.

Desarrollo del programa

- Centrado
- Taladrado
- Roscado con macho

1 BLK FORM 0.1 Z X+0 Y+0 Z-20 2 BLK FORM 0.2 X+100 Y+100 Y+0 3 TOOL CALL 1 Z S5000 Llamada a la hta. de centraje 4 L Z+10 R0 F5000 Desplazar la herramienta a la altura de seguridad (programar F con valor), después de cada ciclo, el TNC se posiciona a la altura de seguridad 5 SEL PATTERN "TAB1" Determinar la tabla de puntos TALADRAR 6 CYCL DEF 200 Definición del ciclo Centraje Q200=2 ;DIST. DE SEGURIDAD Q201=-2 ;PROFUNDIDAD Q201=-2 ;PASO DE PROFUNDIZACIÓN Q210=0 ;TIEMPO F ARRIBA Q203=+0 ;COOR. SUPERFICIE Introducir obligatoriamente el 0. Actúa como tabla de puntos Q201=0.2 ;7IEMPO DE ESEGURIDAD Llamada al ciclo junto con la tabla de puntos TAB1.PNT, avance entre los puntos: 5000 mm/min. 11 L Z+100 R0 FMAX M6 Retirar la herramienta, cambio de herramienta Llamada a la hta. Taladrado 13 L Z+10 R0 F5000 Desplazar la hta. a la altura de seguridad (programar un valor para F) TALADRAR 14 CYCL DEF 200 Definición del ciclo taladrado			
2 BLK FORM 0.2 X+100 Y+100 Y+0 3 TOOL CALL 1 Z 55000 Llamada a la hta. de centraje 4 L Z+10 R0 F5000 Desplazar la herramienta a la altura de seguridad (programar F con valor), después de cada ciclo, el TNC se posiciona a la altura de seguridad 5 SEL PATTERN "TAB1" Determinar la tabla de puntos TALADRAR 6 CYCL DEF 200 Q200=2 ;DIST. DE SEGURIDAD Q201=-2 ;PROFUNDIDAD Q201=-2 ;PROFUNDIDAD Q202=2 ;PASO DE PROFUNDIZACIÓN Q210=0 ;TIEMPO F ARRIBA Q203=+0 ;COOR. SUPERFICIE Introducir obligatoriamente el 0. Actúa como tabla de puntos Q204=0 ;2" DIST. DE SEGURIDAD Introducir obligatoriamente el 0. Actúa como tabla de puntos Q211=0.2 ;TIEMPO DE ESPERA ABAJO 10 CYCL CALL PAT F5000 M3 Llamada al ciclo junto con la tabla de puntos TAB1.PNT, avance entre los puntos: 5000 mm/min. 11 L Z+100 R0 FMAX M6 Retirar la herramienta, cambio de herramienta 12 TOOL CALL 2 Z 55000 Llamada a la hta. Taladrado Desplazar la hta. a la altura de seguridad (programar un valor para F) TALADRAR 14 CYCL DEF 200 Definición del ciclo taladrado	0 BEGIN PGM 1 MM		
3 TOOL CALL 1 Z S5000 Llamada a la hta. de centraje Desplazar la herramienta a la altura de seguridad (programar F con valor), después de cada ciclo, el TNC se posiciona a la altura de seguridad 5 SEL PATTERN "TAB1" Determinar la tabla de puntos TALADRAR 6 CYCL DEF 200 Q200=2 ;DIST. DE SEGURIDAD Q201=-2 ;PROFUNDIDAD Q206=150 ;F APROXIMACIÓN DE PROFUNDIDAD Q202=2 ;PASO DE PROFUNDIZACIÓN Q210=0 ;TIEMPO F ARRIBA Q203=+0 ;COOR. SUPERFICIE Introducir obligatoriamente el 0. Actúa como tabla de puntos Q204=0 ;2ª DIST. DE SEGURIDAD Introducir obligatoriamente el 0. Actúa como tabla de puntos Q211=0.2 ;TIEMPO DE ESPERA ABAJO 10 CYCL CALL PAT F5000 M3 Llamada al ciclo junto con la tabla de puntos TAB1.PNT, avance entre los puntos: 5000 mm/min. 11 L Z+100 RO FMAX M6 Retirar la herramienta, cambio de herramienta 12 TOOL CALL 2 Z 55000 Llamada a la hta. Taladrado Desplazar la hta. a la altura de seguridad (programar un valor para F) TALADRAR 14 CYCL DEF 200 Definición del ciclo taladrado	1 BLK FORM 0.1 Z	X+0 Y+0 Z-20	Definición de la pieza en bruto
Desplazar la herramienta a la altura de seguridad (programar F con valor), después de cada ciclo, el TNC se posiciona a la altura de seguridad 5 SEL PATTERN "TAB1" Determinar la tabla de puntos TALADRAR 6 CYCL DEF 200 Q200=2 ;DIST. DE SEGURIDAD Q201=-2 ;PROFUNDIDAD Q206=150 ;F APROXIMACIÓN DE PROFUNDIDAD Q202=2 ;PASO DE PROFUNDIZACIÓN Q210=0 ;TIEMPO F ARRIBA Q203=+0 ;COOR. SUPERFICIE Introducir obligatoriamente el 0. Actúa como tabla de puntos Q204=0 ;2ª DIST. DE SEGURIDAD Introducir obligatoriamente el 0. Actúa como tabla de puntos Q211=0.2 ;TIEMPO DE ESPERA ABAJO 10 CYCL CALL PAT F5000 M3 Llamada al ciclo junto con la tabla de puntos TAB1.PNT, avance entre los puntos: 5000 mm/min. 11 L Z+100 RO FMAX M6 Retirar la herramienta, cambio de herramienta 12 TOOL CALL 2 Z 55000 Llamada a la hta. Taladrado Desplazar la hta. a la altura de seguridad (programar un valor para F) TALADRAR 14 CYCL DEF 200 Definición del ciclo taladrado	2 BLK FORM 0.2 X+	-100 Y+100 Y+0	
F con valor), después de cada ciclo, el TNC se posiciona a la altura de seguridad 5 SEL PATTERN "TAB1" Determinar la tabla de puntos Definición del ciclo Centraje Q200=2 ;DIST. DE SEGURIDAD Q201=-2 ;PROFUNDIDAD Q206=150 ;F APROXIMACIÓN DE PROFUNDIZACIÓN Q210=0 ;TIEMPO F ARRIBA Q203=+0 ;COOR. SUPERFICIE Introducir obligatoriamente el 0. Actúa como tabla de puntos Q204=0 ;2ª DIST. DE SEGURIDAD Introducir obligatoriamente el 0. Actúa como tabla de puntos Q211=0.2 ;TIEMPO DE ESPERA ABAJO 10 CYCL CALL PAT F5000 M3 Llamada al ciclo junto con la tabla de puntos TAB1.PNT, avance entre los puntos: 5000 mm/min. 11 L Z+100 RO FMAX M6 Retirar la herramienta, cambio de herramienta 12 TOOL CALL 2 Z S5000 Llamada a la hta. Taladrado 13 L Z+10 RO F5000 Desplazar la hta. a la altura de seguridad (programar un valor para F) TALADRAR 14 CYCL DEF 200 Definición del ciclo taladrado	3 TOOL CALL 1 Z S	5000	Llamada a la hta. de centraje
TALADRAR 6 CYCL DEF 200 Q200=2 ;DIST. DE SEGURIDAD Q201=-2 ;PROFUNDIDAD Q206=150 ;F APROXIMACIÓN DE PROFUNDIDAD Q202=2 ;PASO DE PROFUNDIZACIÓN Q210=0 ;TIEMPO F ARRIBA Q203=+0 ;COOR. SUPERFICIE Introducir obligatoriamente el 0. Actúa como tabla de puntos Q204=0 ;2ª DIST. DE SEGURIDAD Introducir obligatoriamente el 0. Actúa como tabla de puntos Q211=0.2 ;TIEMPO DE ESPERA ABAJO 10 CYCL CALL PAT F5000 M3 Llamada al ciclo junto con la tabla de puntos :5000 mm/min. 11 L Z+100 RO FMAX M6 Retirar la herramienta, cambio de herramienta 12 TOOL CALL 2 Z S5000 Llamada a la hta. Taladrado 13 L Z+10 RO F5000 Desplazar la hta. a la altura de seguridad (programar un valor para F) TALADRAR 14 CYCL DEF 200 Definición del ciclo taladrado	4 L Z+10 R0 F5000		F con valor), después de cada ciclo, el TNC se posiciona a la
Q200=2 ;DIST. DE SEGURIDAD Q201=-2 ;PROFUNDIDAD Q206=150 ;F APROXIMACIÓN DE PROFUNDIDAD Q202=2 ;PASO DE PROFUNDIZACIÓN Q210=0 ;TIEMPO F ARRIBA Q203=+0 ;COOR. SUPERFICIE Introducir obligatoriamente el 0. Actúa como tabla de puntos Q204=0 ;2ª DIST. DE SEGURIDAD Introducir obligatoriamente el 0. Actúa como tabla de puntos Q211=0.2 ;TIEMPO DE ESPERA ABAJO 10 CYCL CALL PAT F5000 M3 Llamada al ciclo junto con la tabla de puntos TAB1.PNT, avance entre los puntos: 5000 mm/min. 11 L Z+100 RO FMAX M6 Retira la herramienta, cambio de herramienta 12 TOOL CALL 2 Z S5000 Llamada a la hta. Taladrado 13 L Z+10 RO F5000 Desplazar la hta. a la altura de seguridad (programar un valor para F) TALADRAR 14 CYCL DEF 200 Definición del ciclo taladrado	5 SEL PATTERN "TA	AB1"	Determinar la tabla de puntos
Q201=-2 ;PROFUNDIDAD Q206=150 ;F APROXIMACIÓN DE PROFUNDIDAD Q202=2 ;PASO DE PROFUNDIZACIÓN Q210=0 ;TIEMPO F ARRIBA Q203=+0 ;COOR. SUPERFICIE Introducir obligatoriamente el 0. Actúa como tabla de puntos Q204=0 ;2ª DIST. DE SEGURIDAD Introducir obligatoriamente el 0. Actúa como tabla de puntos Q211=0.2 ;TIEMPO DE ESPERA ABAJO 10 CYCL CALL PAT F5000 M3 Llamada al ciclo junto con la tabla de puntos TAB1.PNT, avance entre los puntos: 5000 mm/min. 11 L Z+100 RO FMAX M6 Retirar la herramienta, cambio de herramienta 12 TOOL CALL 2 Z S5000 Llamada a la hta. Taladrado 13 L Z+10 RO F5000 Desplazar la hta. a la altura de seguridad (programar un valor para F) TALADRAR 14 CYCL DEF 200 Definición del ciclo taladrado	TALADRAR 6 CYCL	DEF 200	Definición del ciclo Centraje
Q206=150 ;F APROXIMACIÓN DE PROFUNDIDAD Q202=2 ;PASO DE PROFUNDIZACIÓN Q210=0 ;TIEMPO F ARRIBA Q203=+0 ;COOR. SUPERFICIE Introducir obligatoriamente el 0. Actúa como tabla de puntos Q204=0 ;2ª DIST. DE SEGURIDAD Introducir obligatoriamente el 0. Actúa como tabla de puntos Q211=0.2 ;TIEMPO DE ESPERA ABAJO 10 CYCL CALL PAT F5000 M3 Llamada al ciclo junto con la tabla de puntos TAB1.PNT, avance entre los puntos: 5000 mm/min. 11 L Z+100 R0 FMAX M6 Retirar la herramienta, cambio de herramienta 12 TOOL CALL 2 Z S5000 Llamada a la hta. Taladrado 13 L Z+10 R0 F5000 Desplazar la hta. a la altura de seguridad (programar un valor para F) TALADRAR 14 CYCL DEF 200 Definición del ciclo taladrado	Q200=2	;DIST. DE SEGURIDAD	
PROFUNDIDAD Q202=2 ;PASO DE PROFUNDIZACIÓN Q210=0 ;TIEMPO F ARRIBA Q203=+0 ;COOR. SUPERFICIE Introducir obligatoriamente el 0. Actúa como tabla de puntos Q204=0 ;2ª DIST. DE SEGURIDAD Introducir obligatoriamente el 0. Actúa como tabla de puntos Q211=0.2 ;TIEMPO DE ESPERA ABAJO 10 CYCL CALL PAT F5000 M3 Llamada al ciclo junto con la tabla de puntos TAB1.PNT, avance entre los puntos: 5000 mm/min. 11 L Z+100 R0 FMAX M6 Retirar la herramienta, cambio de herramienta 12 TOOL CALL 2 Z S5000 Llamada a la hta. Taladrado 13 L Z+10 R0 F5000 Desplazar la hta. a la altura de seguridad (programar un valor para F) TALADRAR 14 CYCL DEF 200 Definición del ciclo taladrado Q200=2 ;DIST. DE SEGURIDAD	Q201=-2	;PROFUNDIDAD	
Q210=0 ;TIEMPO F ARRIBA Q203=+0 ;COOR. SUPERFICIE Introducir obligatoriamente el 0. Actúa como tabla de puntos Q204=0 ;2ª DIST. DE SEGURIDAD Introducir obligatoriamente el 0. Actúa como tabla de puntos Q211=0.2 ;TIEMPO DE ESPERA ABAJO 10 CYCL CALL PAT F5000 M3 Llamada al ciclo junto con la tabla de puntos TAB1.PNT, avance entre los puntos: 5000 mm/min. 11 L Z+100 R0 FMAX M6 Retirar la herramienta, cambio de herramienta 12 TOOL CALL 2 Z S5000 Llamada a la hta. Taladrado 13 L Z+10 R0 F5000 Desplazar la hta. a la altura de seguridad (programar un valor para F) TALADRAR 14 CYCL DEF 200 Definición del ciclo taladrado Q200=2 ;DIST. DE SEGURIDAD	Q206=150		
Q203=+0 ;COOR. SUPERFICIE Introducir obligatoriamente el 0. Actúa como tabla de puntos Q204=0 ;2ª DIST. DE SEGURIDAD Introducir obligatoriamente el 0. Actúa como tabla de puntos Q211=0.2 ;TIEMPO DE ESPERA ABAJO 10 CYCL CALL PAT F5000 M3 Llamada al ciclo junto con la tabla de puntos TAB1.PNT, avance entre los puntos: 5000 mm/min. 11 L Z+100 R0 FMAX M6 Retirar la herramienta, cambio de herramienta 12 TOOL CALL 2 Z S5000 Llamada a la hta. Taladrado 13 L Z+10 R0 F5000 Desplazar la hta. a la altura de seguridad (programar un valor para F) TALADRAR 14 CYCL DEF 200 Definición del ciclo taladrado	Q202=2	;PASO DE PROFUNDIZACIÓN	
puntos Q204=0 ; 2ª DIST. DE SEGURIDAD Introducir obligatoriamente el 0. Actúa como tabla de puntos Q211=0.2 ; TIEMPO DE ESPERA ABAJO 10 CYCL CALL PAT F5000 M3 Llamada al ciclo junto con la tabla de puntos TAB1.PNT, avance entre los puntos: 5000 mm/min. 11 L Z+100 R0 FMAX M6 Retirar la herramienta, cambio de herramienta 12 TOOL CALL 2 Z S5000 Llamada a la hta. Taladrado 13 L Z+10 R0 F5000 Desplazar la hta. a la altura de seguridad (programar un valor para F) TALADRAR 14 CYCL DEF 200 Definición del ciclo taladrado Q200=2 ; DIST. DE SEGURIDAD	Q210=0	;TIEMPO F ARRIBA	
Q211=0.2 ;TIEMPO DE ESPERA ABAJO 10 CYCL CALL PAT F5000 M3 Llamada al ciclo junto con la tabla de puntos TAB1.PNT, avance entre los puntos: 5000 mm/min. 11 L Z+100 R0 FMAX M6 Retirar la herramienta, cambio de herramienta 12 TOOL CALL 2 Z S5000 Llamada a la hta. Taladrado 13 L Z+10 R0 F5000 Desplazar la hta. a la altura de seguridad (programar un valor para F) TALADRAR 14 CYCL DEF 200 Definición del ciclo taladrado Q200=2 ;DIST. DE SEGURIDAD	Q203=+0	;COOR. SUPERFICIE	· · · · · · · · · · · · · · · · · · ·
10 CYCL CALL PAT F5000 M3 Llamada al ciclo junto con la tabla de puntos TAB1.PNT, avance entre los puntos: 5000 mm/min. 11 L Z+100 R0 FMAX M6 Retirar la herramienta, cambio de herramienta 12 TOOL CALL 2 Z S5000 Llamada a la hta. Taladrado Desplazar la hta. a la altura de seguridad (programar un valor para F) TALADRAR 14 CYCL DEF 200 Definición del ciclo taladrado Q200=2 ;DIST. DE SEGURIDAD	Q204=0	;2ª DIST. DE SEGURIDAD	-
avance entre los puntos: 5000 mm/min. 11 L Z+100 R0 FMAX M6 Retirar la herramienta, cambio de herramienta 12 TOOL CALL 2 Z S5000 Llamada a la hta. Taladrado Desplazar la hta. a la altura de seguridad (programar un valor para F) TALADRAR 14 CYCL DEF 200 Definición del ciclo taladrado Q200=2 ;DIST. DE SEGURIDAD	Q211=0.2	;TIEMPO DE ESPERA ABAJO	
12 TOOL CALL 2 Z S5000 Llamada a la hta. Taladrado Desplazar la hta. a la altura de seguridad (programar un valor para F) TALADRAR 14 CYCL DEF 200 Q200=2 ;DIST. DE SEGURIDAD	10 CYCL CALL PAT	F5000 M3	
13 L Z+10 R0 F5000 Desplazar la hta. a la altura de seguridad (programar un valor para F) TALADRAR 14 CYCL DEF 200 Definición del ciclo taladrado Q200=2 ;DIST. DE SEGURIDAD	11 L Z+100 R0 FMA	AX M6	Retirar la herramienta, cambio de herramienta
para F) TALADRAR 14 CYCL DEF 200 Definición del ciclo taladrado Q200=2 ;DIST. DE SEGURIDAD	12 TOOL CALL 2 Z S5000		Llamada a la hta. Taladrado
Q200=2 ;DIST. DE SEGURIDAD	13 L Z+10 R0 F5000		
	TALADRAR 14 CYCL	_ DEF 200	Definición del ciclo taladrado
020125 • PROFINDIDAD	Q200=2	;DIST. DE SEGURIDAD	
Q201-25 ,1 NOI ONDIDAD	Q201=-25	;PROFUNDIDAD	

Ejemplos de programación 4.11

Q206=150	;AVANCE DE PASO DE PROFUNDIZACIÓN	
Q202=2	;PASO DE PROFUNDIZACIÓN	
Q210=0	;TIEMPO DE ESPERA ARRIBA	
Q203=+0	;COOR. SUPERFICIE	Introducir obligatoriamente el 0. Actúa como tabla de puntos
Q204=0	;2ª DIST. DE SEGURIDAD	Introducir obligatoriamente el 0. Actúa como tabla de puntos
Q211=0.2	;TIEMPO DE ESPERA ABAJO	
15 CYCL CALL PAT F	5000 M3	Llamada al ciclo junto con la tabla de puntos TAB1.PNT.
16 L Z+100 R0 FMAX	(M6	Retirar la herramienta, cambio de herramienta
17 TOOL CALL 3 Z S	200	Llamada a la herramienta Macho de roscar
18 L Z+50 R0 FMAX		Desplazar la hta. a la altura de seguridad
19 CYCL DEF 206 RC	SCADO CON MACHO NUEVO	Definición del ciclo Roscado
Q200=2	;DIST. DE SEGURIDAD	
Q201=-25	;PROFUNDIDAD DE ROSCADO	
Q206=150	;AVANCE DE PASO DE PROFUNDIZACIÓN	
Q211=0	;TIEMPO DE ESPERA ABAJO	
Q203=+0	;COOR. SUPERFICIE	Introducir obligatoriamente el 0. Actúa como tabla de puntos
Q204=0	;2ª DIST. DE SEGURIDAD	Introducir obligatoriamente el 0. Actúa como tabla de puntos
20 CYCL CALL PAT F	5000 M3	Llamada al ciclo junto con la tabla de puntos cero TAB1.PNT.
21 L Z+100 R0 FMAX	(M2	Retirar la herramienta, final del programa
22 END PGM 1 MM		

TAB1. PNT MM
NR X Y Z
0 +10 +10 +0
1 +40 +30 +0
2 +90 +10 +0
3 +80 +30 +0
4 +80 +65 +0
5 +90 +90 +0
6 +10 +90 +0
7 +20 +55 +0
[FIN]

5.1 Nociones básicas

5.1 Nociones básicas

necesario un movimiento múltiple

Resumen

El TNC dispone de un total de 6 ciclos para el mecanizado de cajeras, islas y ranuras:

Ciclo	Softkey	Página
251 CAJERA RECTANGULAR Ciclo de desbaste/acabado con selección del alcance de mecanizado y profundización en forma de hélice	251	127
252 CAJERA CIRCULAR Ciclo de desbaste/acabado con selección del tipo del mecanizado y profundización en forma de hélice	252	132
253 FRESADO DE RANURAS Ciclo de desbaste/acabado con selección del alcance de mecanizado y profundización pendular	253	136
254 RANURA CIRCULAR Ciclo de desbaste/acabado con selección del tipo del mecanizado y profundización pendular	254	140
256 ISLA RECTANGULAR Ciclo de desbaste/acabado con posicionamiento lateral, cuando es necesario un movimiento múltiple	256	145
257 ISLA CIRCULAR Ciclo de desbaste/acabado con posicionamiento lateral, cuando es	257	149

5.2 CAJERA RECTANGULAR (Ciclo 251, DIN/ISO: G251)

Desarrollo del ciclo

Con el ciclo 251 Cajera rectangular es posible mecanizar completamente una cajera rectangular. Dependiendo de los parámetros del ciclo están disponibles las siguientes alternativas de mecanizado:

- Mecanizado completo: desbaste, acabado en profundidad, acabado lateral
- Solo Desbaste
- Solo Acabado en profundidad y Acabado lateral
- Solo Acabado en profundidad
- Solo acabado del lado

Desbaste

- 1 La hta. profundiza en la pieza en el centro de la cajera y se desplaza a la primera profundidad de paso. La estrategia de profundización puede determinarse con el parámetro Q366
- 2 El TNC vacía la cajera de dentro a fuera teniendo en cuenta el factor de solapamiento (parámetro Q370) y la sobremedida del acabado (parámetro Q368 y Q369)
- 3 Al final del proceso de desbaste, el TNC retira la herramienta desde la pared de la cajera, se desplaza a la distancia de seguridad a través de la profundidad de paso actual y desde allí retorna en marcha rápida al centro de la cajera
- 4 Este proceso se repite hasta alcanzar la profundidad de fresado programada

Acabado

- 5 Tan pronto como se definen las sobremedidas de acabado, el TNC realiza a continuación el acabado de las paredes de la cajera, en el caso de que se introduzcan varias aproximaciones. La aproximación a la pared de la cajera se realizará en este caso de forma tangencial
- 6 A continuación el TNC realiza el acabado de la base de la cajera desde dentro hacia fuera. La aproximación al fondo de la cajera se realizará en este caso de forma tangencial

5.2 CAJERA RECTANGULAR (Ciclo 251, DIN/ISO: G251)

¡Tener en cuenta durante la programación!

En la tabla de herramientas inactiva se debe profundizar siempre perpendicularmente (Q366=0), ya que no se pueden definir ángulos de profundización.

Preposicionar la herramienta sobre el punto de partida en el plano de mecanizado con corrección de radio **RO**. Tener en cuenta el parámetro Q367 (posición).

El TNC preposiciona la herramienta en el eje de la herramienta de forma automática. Tener en cuenta el parámetro Q204 (2ª distancia de seguridad).

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Al final del ciclo, el TNC posiciona la herramienta de nuevo en la posición partida,

El TNC retira la herramienta al final de un proceso de desbaste en marcha rápida al centro de la cajera. La herramienta permanece en la distancia de seguridad sobre la profundidad de aproximación actual. Introducir la distancia de seguridad, ya que la herramienta no se puede bloquear en el desplazamiento con virutas.

Al profundizar helicoidalmente, el TNC emite un aviso de error si el diámetro helicoidal internamente calculado es inferior al diámetro doble de la herramienta. Si se utiliza una herramienta cortante en el centro, este control se puede desactivar con el parámetro de máquina suppressPlungeErr.

El TNC reduce la profundidad de paso a la longitud de corte LCUTS definida en la tabla de herramienta, en el caso de que la longitud de corte sea más corta que la profundidad de paso Q202 introducida en el ciclo.

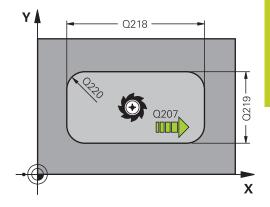
¡Atención: Peligro de colisión!

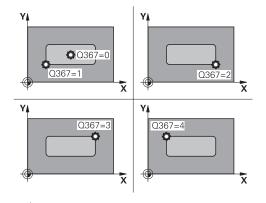
Con el parámetro de máquina displayDepthErr se ajusta si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

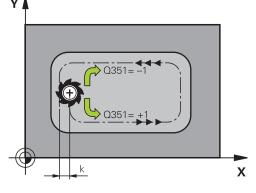
Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superficie de la pieza!

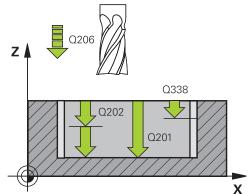
Si se activa el ciclo con el volumen de mecanizado 2 (sólo acabado), el TNC posiciona la herramienta con marcha rápida en el centro de la cajera al primer paso de profundización.

Parámetros de ciclo


- ► Tipo de mecanizado (0/1/2) Q215: Determinar el tipo de mecanizado:
 - 0: Desbaste y acabado
 - 1: Solo desbaste
 - 2: Solo acabado


La cara y la profundidad de acabado sólo se llevan a cabo, si se define la sobremedida del acabado correspondiente (Q368, Q369)


- ▶ Longitud lado 1 Q218 (valor incremental): Longitud de la cajera, paralela al eje principal del plano de mecanizado. Campo de introducción 0 hasta 99999.9999
- Longitud lado 2 Q219 (valor incremental): Longitud de la cajera, paralela al eje auxiliar del plano de mecanizado. Campo de introducción 0 hasta 99999.9999
- ▶ Radio de la esquina Q220: Radio de la esquina de la cajera. Si se entra 0, el TNC programa el radio de la esquina igual al radio de la hta. Campo de introducción 0 a 99999,9999
- Sobremedida del acabado lateral Q368 (valor incremental): Sobremedida de acabado en el plano de mecanizado. Campo de introducción 0 hasta 99999.9999
- ▶ **Posición de giro** Q224 (absoluta): Ángulo que gira el mecanizado completo El centro del giro está en la posición en la que esté la herramienta en el momento de llamar al ciclo. Campo de introducción -360,0000 a 360,0000
- Posición de la cajera Q367: Posición de la cajera referida a la posición de la herramienta al llamar el ciclo:
 - 0: Posición de la herramienta = Centro de la cajera
 - **1**: Posición de la herramienta = Esquina inferior izquierda
 - 2: Posición de la herramienta = Esquina inferior derecha
 - **3**: Posición de la herramienta = Esquina superior derecha
 - **4**: Posición de la herramienta = Esquina superior izquierda
- Avance al fresar Q207: velocidad de desplazamiento de la herramienta al fresar en mm/min. Campo de introducción 0 a 99999,999 alternativamente FAUTO, FU, FZ
- ▶ **Tipo de fresado** Q351: Tipo de fresado con M3:
 - +1 = fresado sincronizado
 - -1 = frenado en contramarcha


PREDEF: El TNC emplea valor de frase DEF GLOBAL

▶ **Profundidad** Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de la cajera. Campo de introducción -99999,9999 a 99999,9999

5.2 CAJERA RECTANGULAR (Ciclo 251, DIN/ISO: G251)

- ▶ **Profundidad de paso** Q202 (valor incremental): medida, según la cual la hta. penetra cada vez en la pieza; introducir un valor mayor que 0. Campo de introducción 0 hasta 99999.9999
- ➤ Sobremedida de acabado en profundidad Q369 (valor incremental): Sobremedida de acabado para la profundidad. Campo de introducción 0 hasta 99999.9999
- ► Avance al profundizar Q206: Velocidad de desplazamiento de la hta. durante el desplazamiento a profundidad en mm/min. Campo de introducción 0 a 99999,9999 alternativo FAUTO, FU, FZ
- ▶ Paso de acabado Q338 (v. incremental): medida, según la cual se desplaza la hta. en el eje de la misma para el acabado. Q338=0: Acabado en un solo paso. Campo de introducción 0 hasta 99999.9999
- ▶ Distancia de seguridad Q200 (valor incremental): distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 a 99999,9999 alternativo PREDEF
- ► Coordenadas Superficie de la pieza Q203 (valor absoluto): coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- 2ª distancia de seguridad Q204 (valor incremental): coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 a 99999,9999 alternativo PREDEF
- ► Factor de solapamiento en la trayectoria Q370: Q370 x radio de la herramienta da como resultado la aproximación lateral k. Campo de introducción 0,1 a 1.9999 alternativo PREDEF
- ► Estrategia de profundización Q366: Tipo de estrategia de profundización:
 - **0**: profundización vertical. Independientemente del ángulo de profundización **ÁNGULO** definido en la tabla de la herramienta, el TNC profundiza perpendicularmente
 - 1: profundiza en forma de hélice. En la tabla de herramientas, el ángulo de profundización de la herramienta activa **ANGLE** debe estar definido distinto de 0. De lo contrario el TNC emite un aviso de error
 - 2: profundización pendular. En la tabla de herramientas, el ángulo de profundización de la herramienta activa ANGLE debe estar definido distinto de 0. De lo contrario el TNC emite un aviso de error. La longitud pendular depende del ángulo de profundización, como valor mínimo el TNC utiliza el doble del diámetro de herramienta

PREDEF: TNC emplea valor de frase DEF GLOBAL

Bloques NC

8 CYCL DEF 25	1 CAJERA RECTANGULAR
Q215=0	;ALCANCE DE MECANIZADO
Q218=80	;LONGITUD LADO 1
Q219=60	;LONGITUD LADO 2
Q220=5	;RADIO ESQUINA
Q368=0.2	;SOBREMEDIDA LATERAL
Q224=+0	;POSICIÓN DE GIRO
Q367=0	;POSICIÓN DE LA CAJERA
Q207=500	;AVANCE DE FRESADO
Q351=+1	;TIPO DE FRESADO
Q201=-20	;PROFUNDIDAD
Q202=5	;PROFUNDIDAD DE PASO
Q369=0.1	;PROFUNDIDAD SOBREMEDIDA
Q206=150	;AVANCE AL PROFUNDIZAR
Q338=5	;PASO PARA ACABADO
Q200=2	;DIST. DE SEGURIDAD
Q203=+0	;COORD. SUPERFICIE
Q204=50	;2ª DIST. DE SEGURIDAD
Q370=1	;SOLAPAMIENTO DE LA TRAYECTORIA
Q366=1	;PROFUNDIZAR
Q385=500	;AVANCE ACABADO

9 L X+50 Y+50 RO FMAX M3 M99

CAJERA RECTANGULAR (Ciclo 251, DIN/ISO: G251) 5.2

Avance acabado Q385: velocidad de desplazamiento de la hta. durante el acabado lateral y de profundidad en mm/min. Campo de introducción 0 a 99999.999 alternativo FAUTO, FU, FZ

5.3 CAJERA CIRCULAR (Ciclo 252, DIN/ISO: G252)

5.3 CAJERA CIRCULAR (Ciclo 252, DIN/ISO: G252)

Desarrollo del ciclo

Con el ciclo 252 Cajera circular es posible mecanizar completamente una cajera circular. Dependiendo de los parámetros del ciclo están disponibles las siguientes alternativas de mecanizado:

- Mecanizado completo: desbaste, acabado en profundidad, acabado lateral
- Solo desbaste
- Solo acabado en profundidad y acabado lateral
- Solo acabado en profundidad
- Solo acabado del lado

Desbaste

- 1 La hta. profundiza en la pieza en el centro de la cajera y se desplaza a la primera profundidad de paso. La estrategia de profundización puede determinarse con el parámetro Q366
- 2 El TNC vacía la cajera de dentro a fuera teniendo en cuenta el factor de solapamiento (parámetro Q370) y la sobremedida del acabado (parámetro Q368 y Q369)
- 3 Al final del proceso de desbaste, el TNC retira la herramienta desde la pared de la cajera, se desplaza a la distancia de seguridad a través de la profundidad de paso actual y desde allí retorna en marcha rápida al centro de la cajera
- 4 Este proceso se repite hasta alcanzar la profundidad de fresado programada

Acabado

- 1 Tan pronto como se definen las sobremedidas de acabado, el TNC realiza a continuación el acabado de las paredes de la cajera, en el caso de que se introduzcan varias aproximaciones. La aproximación a la pared de la cajera se realizará en este caso de forma tangencial
- 2 A continuación el TNC realiza el acabado de la base de la cajera desde dentro hacia fuera. La aproximación al fondo de la cajera se realizará en este caso de forma tangencial

¡Tener en cuenta durante la programación!

En la tabla de herramientas inactiva se debe profundizar siempre perpendicularmente (Q366=0), ya que no se pueden definir ángulos de profundización.

Preposicionar la herramienta sobre el punto de partida (centro de círculo) en el plano de mecanizado con corrección de radio **RO**.

El TNC preposiciona la herramienta en el eje de la herramienta de forma automática. Tener en cuenta el parámetro Q204 (2ª distancia de seguridad).

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Al final del ciclo, el TNC posiciona la herramienta de nuevo en la posición partida,

El TNC retira la herramienta al final de un proceso de desbaste en marcha rápida al centro de la cajera. La herramienta permanece en la distancia de seguridad sobre la profundidad de aproximación actual. Introducir la distancia de seguridad, ya que la herramienta no se puede bloquear en el desplazamiento con virutas.

Al profundizar helicoidalmente, el TNC emite un aviso de error si el diámetro helicoidal internamente calculado es inferior al diámetro doble de la herramienta. Si se utiliza una herramienta cortante en el centro, este control se puede desactivar con el parámetro de máquina suppressPlungeErr.

El TNC reduce la profundidad de paso a la longitud de corte LCUTS definida en la tabla de herramienta, en el caso de que la longitud de corte sea más corta que la profundidad de paso Q202 introducida en el ciclo.

¡Atención: Peligro de colisión!

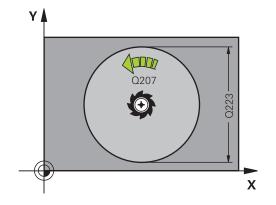
Con el parámetro de máquina displayDepthErr se ajusta si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

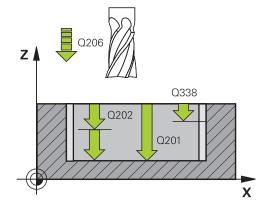
Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superficie de la pieza!

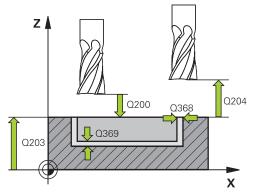
Si se activa el ciclo con el volumen de mecanizado 2 (sólo acabado), el TNC posiciona la herramienta con marcha rápida en el centro de la cajera al primer paso de profundización.

5.3 CAJERA CIRCULAR (Ciclo 252, DIN/ISO: G252)

Parámetros de ciclo


- ► Tipo de mecanizado (0/1/2) Q215: Determinar el tipo de mecanizado:
 - 0: Desbaste y acabado
 - 1: Solo desbaste
 - 2: Solo acabado


La cara y la profundidad de acabado sólo se llevan a cabo, si se define la sobremedida del acabado correspondiente (Q368, Q369)


- ▶ Diámetro del círculo Q223: Diámetro de la cajera que se acaba de mecanizar. Campo de introducción 0 hasta 99999.9999
- ► Sobremedida del acabado lateral Q368 (valor incremental): Sobremedida de acabado en el plano de mecanizado. Campo de introducción 0 hasta 99999.9999
- Avance al fresar Q207: velocidad de desplazamiento de la herramienta al fresar en mm/min. Campo de introducción 0 a 99999,999 alternativamente FAUTO, FU, FZ
- ▶ **Tipo de fresado** Q351: Tipo de fresado con M3:
 - +1 = fresado sincronizado
 - -1 = frenado en contramarcha

PREDEF: El TNC emplea valor de frase DEF GLOBAL

- ▶ **Profundidad** Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de la cajera. Campo de introducción -99999,9999 a 99999,9999
- ▶ **Profundidad de paso** Q202 (valor incremental): medida, según la cual la hta. penetra cada vez en la pieza; introducir un valor mayor que 0. Campo de introducción 0 hasta 99999.9999
- ► Sobremedida de acabado en profundidad Q369 (valor incremental): Sobremedida de acabado para la profundidad. Campo de introducción 0 hasta 99999.9999
- Avance al profundizar Q206: Velocidad de desplazamiento de la hta. durante el desplazamiento a profundidad en mm/min. Campo de introducción 0 a 99999,9999 alternativo FAUTO, FU, FZ
- ▶ Paso de acabado Q338 (v. incremental): medida, según la cual se desplaza la hta. en el eje de la misma para el acabado. Q338=0: Acabado en un solo paso. Campo de introducción 0 hasta 99999.9999
- ▶ **Distancia de seguridad** Q200 (valor incremental): distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 a 99999,9999 alternativo **PREDEF**
- ► Coordenadas Superficie de la pieza Q203 (valor absoluto): coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999

8 CYCL DEF 252 CAJERA CIRCULAR		
Q215=0	;ALCANCE DE MECANIZADO	
Q223=60	;DIÁMETRO DEL CÍRCULO	
Q368=0.2	;SOBREMEDIDA LATERAL	
Q207=500	;AVANCE DE FRESADO	
Q351=+1	;TIPO DE FRESADO	
Q201=-20	;PROFUNDIDAD	
Q202=5	;PROFUNDIDAD DE PASO	

CAJERA CIRCULAR (Ciclo 252, DIN/ISO: G252) 5.3

- ▶ 2ª distancia de seguridad Q204 (valor incremental): coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 a 99999,9999 alternativo PREDEF
- ► Factor de solapamiento en la trayectoria Q370: Q370 x radio de la herramienta da como resultado la aproximación lateral k. Campo de introducción 0,1 a 1.9999 alternativo PREDEF
- Estrategia de profundización Q366: Tipo de estrategia de profundización
 - 0 = profundización vertical En la tabla de herramientas, para el ángulo de profundización de la herramienta activa ANGLE hay que introducir 0 ó 90. De lo contrario el TNC emite un aviso de error.
 - 1 = profundización en forma de hélice En la tabla de herramientas, el ángulo de profundización de la herramienta activa ANGLE debe estar definido distinto de 0. De lo contrario el TNC emite un aviso de error.
 - Alternativo **PREDEF**
- Avance acabado Q385: velocidad de desplazamiento de la hta. durante el acabado lateral y de profundidad en mm/min. Campo de introducción 0 a 99999.999 alternativo FAUTO, FU, FZ

Q369=0.1	;PROFUNDIDAD SOBREMEDIDA	
Q206=150	;AVANCE AL PROFUNDIZAR	
Q338=5	;PASO PARA ACABADO	
Q200=2	;DIST. DE SEGURIDAD	
Q203=+0	;COORD. SUPERFICIE	
Q204=50	;2ª DIST. DE SEGURIDAD	
Q370=1	;SOLAPAMIENTO DE LA TRAYECTORIA	
Q366=1	;PROFUNDIZAR	
Q385=500	;AVANCE ACABADO	
9L X+50 Y+50 R0 FMAX M3 M99		

5.4 FRESADO DE RANURAS (Ciclo 253, DIN/ISO: G253)

5.4 FRESADO DE RANURAS (Ciclo 253, DIN/ISO: G253)

Desarrollo del ciclo

Con el ciclo 253 Cajera rectangular es posible mecanizar completamente una ranura. Dependiendo de los parámetros del ciclo están disponibles las siguientes alternativas de mecanizado:

- Mecanizado completo: desbaste, acabado en profundidad, acabado lateral
- Solo desbaste
- Solo acabado en profundidad y acabado lateral
- Solo acabado en profundidad
- Solo acabado del lado

Desbaste

- 1 La herramienta se desplaza de forma pendular, partiendo del punto central del círculo de ranura, a la primera profundización con el ángulo de profundización definido en la tabla de herramienta. La estrategia de profundización puede determinarse con el parámetro Q366
- 2 El TNC desbasta la ranura desde dentro hacia fuera considerando la sobremedida de acabado (parámetros Q368 y Q369)
- 3 Este proceso se repite hasta alcanzar la profundidad de ranura programada

Acabado

- 4 Tan pronto como se definen las sobremedidas de acabado, el TNC realiza a continuación el acabado de las paredes de la ranura, en el caso de que se introduzcan varias aproximaciones. La aproximación a las paredes de la ranura se realizará en este caso de forma tangencial en el círculo izquierdo de la ranura
- 5 A continuación el TNC realiza el acabado de la base de la ranura desde dentro hacia fuera.

¡Tener en cuenta durante la programación!

En la tabla de herramientas inactiva se debe profundizar siempre perpendicularmente (Q366=0), ya que no se pueden definir ángulos de profundización.

Preposicionar la herramienta sobre el punto de partida en el plano de mecanizado con corrección de radio **R0**. Tener en cuenta el parámetro Q367 (posición).

El TNC preposiciona la herramienta en el eje de la herramienta de forma automática. Tener en cuenta el parámetro Q204 (2ª distancia de seguridad).

Al final del ciclo, el TNC desplaza la herramienta en el plano de mecanizado sólo hacia el centro de la ranura. En el otro eje del plano de mecanizado, el TNC no realiza ningún posicionado. Al definir una posición de ranura con un valor distinto a 0, el TNC posiciona la herramienta a la 2ª distancia de seguridad sólo en el eje de la herramienta. Antes de una nueva llamada de ciclo desplazar la herramienta de nuevo en posición inicial o programar siempre movimientos de desplazado absolutos después de la llamada de ciclo.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Si la anchura de la ranura es mayor que el doble del diámetro de la herramienta, el TNC desbasta correspondientemente la ranura desde dentro hacia fuera. Se pueden fresar también con pequeñas herramientas las ranuras que se desee.

El TNC reduce la profundidad de paso a la longitud de corte LCUTS definida en la tabla de herramienta, en el caso de que la longitud de corte sea más corta que la profundidad de paso Q202 introducida en el ciclo.

¡Atención: Peligro de colisión!

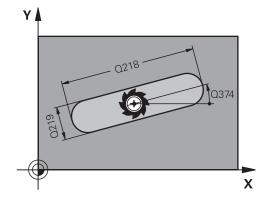
Con el parámetro de máquina displayDepthErr se ajusta si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

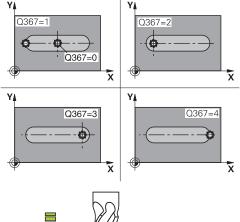
Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superficie de la pieza!

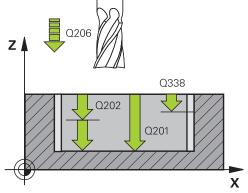
Si se activa el ciclo con el volumen de mecanizado 2 (solo acabado), el TNC posiciona la herramienta con marcha rápida al primer paso de profundización.

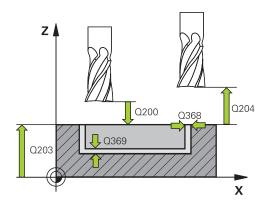
5.4 FRESADO DE RANURAS (Ciclo 253, DIN/ISO: G253)

Parámetros de ciclo




- ► Tipo de mecanizado (0/1/2) Q215: Determinar el tipo de mecanizado:
 - 0: Desbaste y acabado
 - 1: Solo desbaste
 - 2: Solo acabado


La cara y la profundidad de acabado sólo se llevan a cabo, si se define la sobremedida del acabado correspondiente (Q368, Q369)


- ► Longitud de la ranura Q218 (valor paralelo al eje principal del plano de mecanizado): Introducir el lado más largo de la ranura. Campo de introducción 0 hasta 99999.9999
- ▶ Ancho de la ranura Q219 (valor paralelo al eje transversal del plano de mecanizado): Introducir la anchura de la ranura. Si se introduce la anchura de la ranura igual al diámetro de la hta, el TNC sólo realiza el desbaste (fresado de la ranura). Ancho máximo de la ranura en el desbaste: doble del diámetro de la herramienta. Campo de introducción 0 hasta 99999.9999
- ▶ Sobremedida del acabado lateral Q368 (valor incremental): Sobremedida de acabado en el plano de mecanizado. Campo de introducción 0 hasta 99999.9999
- ▶ Angulo de giro Q374 (valor absoluto): Angulo sobre el que gira toda la ranura. El centro del giro está en la posición en la que esté la herramienta en el momento de llamar al ciclo. Campo de introducción -360.000 hasta 360.000
- ▶ Posición de la ranura (0/1/2/3/4) Q367: Posición de la ranura referida a la posición de la herramienta al llamar el ciclo:
 - 0: Posición de la herramienta = Centro de la ranura
 - 1: Posición de la herramienta = Extremo izquierdo de la ranura
 - 2: Posición de la herramienta = Centro del círculo de ranura izquierdo
 - **3**: Posición de la herramienta = Centro del círculo de ranura derecho
 - **4**: Posición de la herramienta = Extremo derecho de la ranura:
- ► Avance al fresar Q207: velocidad de desplazamiento de la herramienta al fresar en mm/min. Campo de introducción 0 a 99999,999 alternativamente FAUTO, FU, FZ
- ▶ **Tipo de fresado** Q351: Tipo de fresado con M3:
 - +1 = fresado sincronizado
 - -1 = frenado en contramarcha

PREDEF: El TNC emplea valor de frase DEF GLOBAL

FRESADO DE RANURAS (Ciclo 253, DIN/ISO: G253) 5.4

- ▶ **Profundidad** Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de la ranura. Campo de introducción -99999,9999 a 99999,9999
- ▶ **Profundidad de paso** Q202 (valor incremental): medida, según la cual la hta. penetra cada vez en la pieza; introducir un valor mayor que 0. Campo de introducción 0 hasta 99999.9999
- ➤ Sobremedida de acabado en profundidad Q369 (valor incremental): Sobremedida de acabado para la profundidad. Campo de introducción 0 hasta 99999.9999
- ► Avance al profundizar Q206: Velocidad de desplazamiento de la hta. durante el desplazamiento a profundidad en mm/min. Campo de introducción 0 a 99999,9999 alternativo FAUTO, FU, FZ
- ▶ Paso de acabado Q338 (v. incremental): medida, según la cual se desplaza la hta. en el eje de la misma para el acabado. Q338=0: Acabado en un solo paso. Campo de introducción 0 hasta 99999.9999
- Distancia de seguridad Q200 (valor incremental): distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 a 99999,9999 alternativo PREDEF
- Coordenadas Superficie de la pieza Q203 (valor absoluto): coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 a 99999,9999 alternativo PREDEF
- Estrategia de profundización Q366: tipo de estrategia de profundización
 - 0 = profundización vertical El ángulo de profundización ÁNGULO en la tabla de la herramienta no se evalúa.
 - 1, 2 = profundización pendular. En la tabla de herramientas, el ángulo de profundización de la herramienta activa ANGLE debe estar definido distinto de 0. De lo contrario el TNC emite un aviso de error.
 - Alternativo **PREDEF**
- Avance acabado Q385: velocidad de desplazamiento de la hta. durante el acabado lateral y de profundidad en mm/min. Campo de introducción 0 a 99999.999 alternativo FAUTO, FU, FZ

8 CYCL DEF 25	8 CYCL DEF 253 FRESADO DE RANURAS		
Q215=0	;ALCANCE DE MECANIZADO		
Q218=80	;LONGITUD DE RANURA		
Q219=12	;ANCHURA DE RANURA		
Q368=0.2	;SOBREMEDIDA LATERAL		
Q374=+0	;POSICIÓN DE GIRO		
Q367=0	;POSICIÓN DE LA RANURA		
Q207=500	;AVANCE DE FRESADO		
Q351=+1	;TIPO DE FRESADO		
Q201=-20	;PROFUNDIDAD		
Q202=5	;PROFUNDIDAD DE PASO		
Q369=0.1	;PROFUNDIDAD SOBREMEDIDA		
Q206=150	;AVANCE AL PROFUNDIZAR		
Q338=5	;PASO PARA ACABADO		
Q200=2	;DIST. DE SEGURIDAD		
Q203=+0	;COORD. SUPERFICIE		
Q204=50	;2ª DIST. DE SEGURIDAD		
Q366=1	;PROFUNDIZAR		
Q385=500	;AVANCE ACABADO		
9L X+50 Y+50 R0 FMAX M3 M99			

5.5 RANURA REDONDA (Ciclo 254, DIN/ISO: G254)

5.5 RANURA REDONDA (Ciclo 254, DIN/ISO: G254)

Desarrollo del ciclo

Con el ciclo 254 es posible mecanizar completamente una ranura circular. Dependiendo de los parámetros del ciclo están disponibles las siguientes alternativas de mecanizado:

- Mecanizado completo: desbaste, acabado en profundidad, acabado lateral
- Solo desbaste
- Solo acabado en profundidad y acabado lateral
- Solo acabado en profundidad
- Solo acabado del lado

Desbaste

- 1 La herramienta se desplaza de forma pendular en el centro de la ranura a la primera profundización con el ángulo de profundización definido en la tabla de herramienta. La estrategia de profundización puede determinarse con el parámetro Q366
- 2 El TNC desbasta la ranura desde dentro hacia fuera considerando la sobremedida de acabado (parámetros Q368 y Q369)
- 3 Este proceso se repite hasta alcanzar la profundidad de ranura programada

Acabado

- 4 Tan pronto como se definen las sobremedidas de acabado, el TNC realiza a continuación el acabado de las paredes de la ranura, en el caso de que se introduzcan varias aproximaciones. La aproximación a las paredes de la ranura se realizará en este caso de forma tangencial
- 5 A continuación el TNC realiza el acabado de la base de la ranura desde dentro hacia fuera.

¡Tener en cuenta durante la programación!

En la tabla de herramientas inactiva se debe profundizar siempre perpendicularmente (Q366=0), ya que no se pueden definir ángulos de profundización.

Preposicionar la herramienta sobre el punto de partida en el plano de mecanizado con corrección de radio **RO**. Tener en cuenta el parámetro Q367 (posición).

El TNC preposiciona la herramienta en el eje de la herramienta de forma automática. Tener en cuenta el parámetro Q204 (2ª distancia de seguridad).

Al final del ciclo el TNC vuelve a posicionar la herramienta en el punto de partida el plano de mecanizado (centro del círculo graduado). Excepción: al definir una posición de ranura con un valor distinto a 0, el TNC posiciona la herramienta a la 2ª distancia de seguridad solo en el eje de la herramienta. En tales casos programar siempre los movimientos de desplazamiento después de la llamada de ciclo.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo

Si la anchura de la ranura es mayor que el doble del diámetro de la herramienta, el TNC desbasta correspondientemente la ranura desde dentro hacia fuera. Se pueden fresar también con pequeñas herramientas las ranuras que se desee.

Si se utiliza el ciclo 254 Ranura circular en combinación con el ciclo 221, entonces no se permite la posición de ranura 0.

El TNC reduce la profundidad de paso a la longitud de corte LCUTS definida en la tabla de herramienta, en el caso de que la longitud de corte sea más corta que la profundidad de paso Q202 introducida en el ciclo.

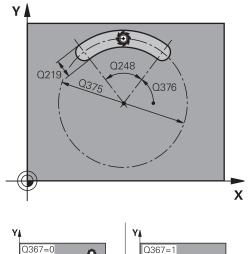
¡Atención: Peligro de colisión!

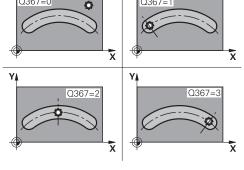
Con el parámetro de máquina displayDepthErr se ajusta si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

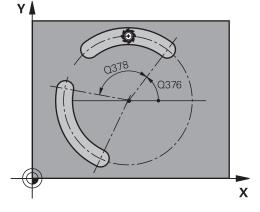
Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superficie de la pieza!

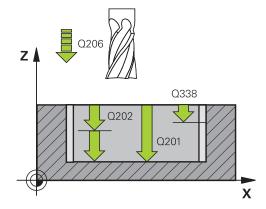
Si se activa el ciclo con el volumen de mecanizado 2 (solo acabado), el TNC posiciona la herramienta con marcha rápida al primer paso de profundización.

5.5 RANURA REDONDA (Ciclo 254, DIN/ISO: G254)

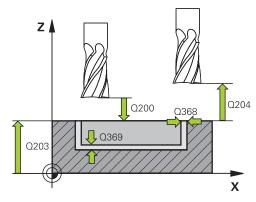

Parámetros de ciclo




- ► Tipo de mecanizado (0/1/2) Q215: Determinar el tipo de mecanizado:
 - 0: Desbaste y acabado
 - 1: Solo desbaste
 - 2: Solo acabado


La cara y la profundidad de acabado sólo se llevan a cabo, si se define la sobremedida del acabado correspondiente (Q368, Q369)

- ▶ Ancho de la ranura Q219 (valor paralelo al eje transversal del plano de mecanizado): Introducir la anchura de la ranura. Si se introduce la anchura de la ranura igual al diámetro de la hta, el TNC sólo realiza el desbaste (fresado de la ranura). Ancho máximo de la ranura en el desbaste: doble del diámetro de la herramienta. Campo de introducción 0 hasta 99999.9999
- ▶ Sobremedida del acabado lateral Q368 (valor incremental): Sobremedida de acabado en el plano de mecanizado. Campo de introducción 0 hasta 99999.9999
- ▶ Diámetro del arco de círculo Q375: Introducir el diámetro del arco de círculo. Campo de introducción 0 hasta 99999.9999
- Referencia para posición de ranura (0/1/2/3) Q367: Posición de la ranura referida a la posición de la herramienta al llamar el ciclo:
 - **0**: La posición de la herramienta no se tiene en cuenta. La posición de la ranura proviene del centro del círculo parcial dado y el ángulo inicial
 - 1: Posición de la herramienta = Centro del círculo izquierdo de la ranura. El ángulo de partida Q376 se refiere a esta posición. El centro del círculo parcial dado no se tiene en cuenta
 - 2: Posición de la herramienta = Centro del eje central. El ángulo de partida Q376 se refiere a esta posición. El centro del círculo parcial dado no se tiene en cuenta
 - **3**: posición de la herramienta = Centro del círculo derecho de la ranura. El ángulo de partida Q376 se refiere a esta posición. No se tiene en cuenta el centro del círculo graduado introducido
- ► Centro 1. Eje Q216 (absoluto): Centro del círculo graduado en el eje principal del plano de mecanizado. Solo tiene efecto si Q367 = 0 Campo de introducción -99999,9999 a 99999,9999
- ► Centro 2. Eje Q217 (absoluto): Centro del círculo graduado en el eje transversal del plano de mecanizado Solo tiene efecto si Q367 = 0 Campo de introducción -99999,9999 a 99999,9999
- ► Angulo inicial Q376 (valor absoluto): introducir el angulo del punto inicial en coordenadas polares. Campo de introducción -360.000 hasta 360.000



- ► Angulo de abertura de la ranura Q248 (valor incremental): introducir el ángulo de abertura de la ranura. Campo de introducción 0 a 360,000
- ▶ Paso angular Q378 (valor absoluto): ángulo sobre el que gira toda la ranura. El centro del giro está situado en el centro del círculo graduado. Campo de introducción -360.000 hasta 360.000
- ▶ Número de mecanizados Q377: Número de mecanizados sobre el disco graduado. Campo de introducción 1 a 99999
- Avance al fresar Q207: velocidad de desplazamiento de la herramienta al fresar en mm/min. Campo de introducción 0 a 99999,999 alternativamente FAUTO, FU, FZ
- ▶ **Tipo de fresado** Q351: Tipo de fresado con M3:
 - +1 = fresado sincronizado
 - -1 = frenado en contramarcha

PREDEF: El TNC emplea valor de frase DEF GLOBAL

- ► **Profundidad** Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de la ranura. Campo de introducción -99999,9999 a 99999,9999
- ► Profundidad de paso Q202 (valor incremental): medida, según la cual la hta. penetra cada vez en la pieza; introducir un valor mayor que 0. Campo de introducción 0 hasta 99999.9999
- ➤ Sobremedida de acabado en profundidad Q369 (valor incremental): Sobremedida de acabado para la profundidad. Campo de introducción 0 hasta 99999.9999
- Avance al profundizar Q206: Velocidad de desplazamiento de la hta. durante el desplazamiento a profundidad en mm/min. Campo de introducción 0 a 99999,9999 alternativo FAUTO, FU, FZ
- ▶ Paso de acabado Q338 (v. incremental): medida, según la cual se desplaza la hta. en el eje de la misma para el acabado. Q338=0: Acabado en un solo paso. Campo de introducción 0 hasta 99999.9999
- ▶ Distancia de seguridad Q200 (valor incremental): distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 a 99999,9999 alternativo PREDEF
- Coordenadas Superficie de la pieza Q203 (valor absoluto): coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 a 99999,9999 alternativo PREDEF

8 CYCL DEF 25	8 CYCL DEF 254 RANURA CIRCULAR		
Q215=0	;ALCANCE DE MECANIZADO		
Q219=12	;ANCHURA DE RANURA		
Q368=0.2	;SOBREMEDIDA LATERAL		
Q375=80	;DIÁMETRO DEL CÍRCULO GRADUADO		
Q367=0	;REFERENCIA POSICIÓN DE LA RANURA		
Q216=+50	;CENTRO 1ER EJE		
Q217=+50	;CENTRO 2° EJE		
Q376=+45	;ÁNGULO INICIAL		
Q248=90	;ÁNGULO DE ABERTURA		
Q378=0	;PASO ANGULAR		
Q377=1	;NÚMERO DE MECANIZADOS		
Q207=500	;AVANCE DE FRESADO		
Q351=+1	;TIPO DE FRESADO		
Q201=-20	;PROFUNDIDAD		
Q202=5	;PROFUNDIDAD DE PASO		
Q369=0.1	;PROFUNDIDAD SOBREMEDIDA		
Q206=150	;AVANCE AL PROFUNDIZAR		
Q338=5	;PASO PARA ACABADO		
Q200=2	;DIST. DE SEGURIDAD		
Q203=+0	;COORD. SUPERFICIE		
Q204=50	;2ª DIST. DE SEGURIDAD		
Q366=1	;PROFUNDIZAR		
Q385=500	;AVANCE ACABADO		
9L X+50 Y+50	9L X+50 Y+50 R0 FMAX M3 M99		

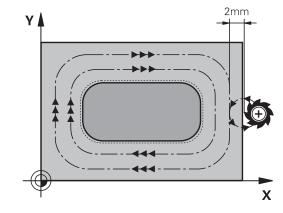
5

Ciclos de mecanizado: Fresado de cajeras / Fresado de islas / Fresado de ranuras

5.5 RANURA REDONDA (Ciclo 254, DIN/ISO: G254)

- ► Estrategia de profundización Q366: Tipo de estrategia de profundización:
 - **0**: profundización vertical. El ángulo de profundización ÁNGULO en la tabla de la herramienta no se evalúa.
 - 1, 2: profundización en forma pendular. En la tabla de herramientas, el ángulo de profundización de la herramienta activa **ANGLE** debe estar definido distinto de 0. De lo contrario el TNC emite un aviso de error

PREDEF: El TNC utiliza el valor de frase DEF GLOBAL


Avance acabado Q385: velocidad de desplazamiento de la hta. durante el acabado lateral y de profundidad en mm/min. Campo de introducción 0 a 99999.999 alternativo FAUTO, FU, FZ

5.6 ISLA RECTANGULAR (Ciclo 256, DIN/ISO: G256)

Desarrollo del ciclo

Con el ciclo 256 Isla rectangular es posible mecanizar una isla rectangular. Si una cota de la pieza en bruto es mayor que el incremento lateral máximo permitido, entonces el TNC realiza varios incrementos laterales hasta alcanzar la dimensión final.

- 1 La herramienta parte de la posición inicial del ciclo (centro de la isla) a la posición inicial del mecanizado de la isla. La posición inicial se determina con el parámetro Q437. La posición del ajuste estándar (Q437=0) se encuentra 2 mm a la derecha, junto a la pieza en bruto de la isla
- 2 En el caso de que la herramienta esté en la 2ª distancia de seguridad, el TNC desplaza la hta. en marcha rápida FMAX a la distancia de seguridad y desde allí, con avance de profundización a la primera profundidad de paso
- 3 A continuación la herramienta realiza la entrada tangencial al contorno de la isla y después fresa una vuelta.
- 4 Si no se puede alcanzar una dimensión final en una vuelta, el TNC aproxima la herramienta a la profundidad de aproximación actual y después vuelve a fresar una vuelta. El TNC tiene en cuenta la dimensión de la pieza en bruto, la dimensión final y el incremento lateral permitido. Este proceso se repite hasta alcanzar la dimensión final definida. Si el punto inicial se ha situado en una esquina (Q437 distinto a 0), el TNC realiza el fresado en forma de espiral desde el punto inicial hacia el interior hasta la cota final
- 5 Si se requieren más aproximaciones, la herramienta se retira tangencialmente del contorno hasta el punto de partida del mecanizado de isla
- 6 A continuación el TNC desplaza la herramienta a la siguiente profundidad de aproximación y mecaniza la isla a dicha profundidad
- 7 Este proceso se repite hasta alcanzar la profundidad de isla programada
- 8 Al final del ciclo, el TNC posiciona la herramienta solamente en el eje de la herramienta a la altura segura definida en el ciclo. Por tanto, la posición final no coincide con la posición inicial

Ciclos de mecanizado: Fresado de cajeras / Fresado de islas / Fresado de ranuras

5.6 ISLA RECTANGULAR (Ciclo 256, DIN/ISO: G256)

¡Tener en cuenta durante la programación!

Preposicionar la herramienta sobre el punto de partida en el plano de mecanizado con corrección de radio **RO**. Tener en cuenta el parámetro Q367 (posición).

El TNC preposiciona la herramienta en el eje de la herramienta de forma automática. Tener en cuenta el parámetro Q204 (2ª distancia de seguridad).

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

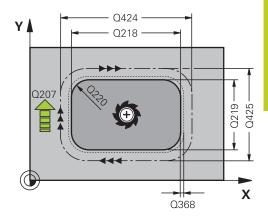
El TNC reduce la profundidad de paso a la longitud de corte LCUTS definida en la tabla de herramienta, en el caso de que la longitud de corte sea más corta que la profundidad de paso Q202 introducida en el ciclo.

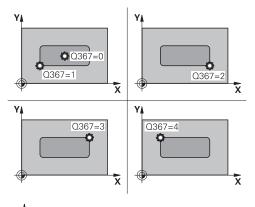
¡Atención: Peligro de colisión!

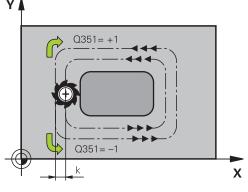
Con el parámetro de máquina displayDepthErr se ajusta si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

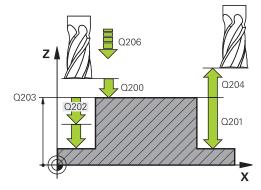
Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superficie de la pieza!

Dejar suficiente espacio para el movimiento de desplazamiento a la derecha, junto a la isla. Mínimo: diámetro de herramienta + 2 mm.


El TNC vuelve a posicionar la herramienta al final, a la distancia de seguridad, si se ha introducido a la 2ª distancia de seguridad. Por tanto, después del ciclo la posición final de la herramienta no coincide con la posición inicial.


5.6


Parámetros de ciclo



- ▶ Longitud lado 1 Q218: Longitud de la isla, paralela al eje principal del plano de mecanizado. Campo de introducción 0 hasta 99999.9999
- Dimensión de la pieza en bruto, longitud lateral 1 Q242: longitud de la pieza en bruto de la isla, paralela al eje principal del plano de mecanizado. Introducir la dimensión de la pieza en bruto, longitud lateral 1 mayor a la longitud lateral 1. El TNC ejecuta varias aproximaciones laterales, si la diferencia entre la dimensión de la pieza en bruto 1 y la dimensión final 1 es mayor a la aproximación lateral permitida (radio de herramienta x solapamiento de la trayectoria Q370). El TNC siempre calcula una aproximación lateral constante. Campo de introducción 0 hasta 99999.9999
- ▶ Longitud lateral 2 Q219: Longitud de la isla, paralela al eje auxiliar del plano de mecanizado. Introducir la dimensión de la pieza en bruto, longitud lateral 2 mayor a la longitud lateral 2. El TNC ejecuta varias aproximaciones laterales, si la diferencia entre la dimensión de la pieza en bruto 2 y la dimensión final 2 es mayor a la aproximación lateral permitida (radio de herramienta x solapamiento de la trayectoria Q370). El TNC siempre calcula una aproximación lateral constante. Campo de introducción 0 hasta 99999.9999
- Dimensión de la pieza en bruto, longitud lateral 2 Q425: longitud de la pieza en bruto de la isla, paralela al eje auxiliar del plano de mecanizado. Campo de introducción 0 hasta 99999.9999
- ▶ Radio de la esquina Q220: Radio de la esquina de la isla. Campo de introducción 0 hasta 99999.9999
- Sobremedida del acabado lateral Q368 (valor incremental): Sobremedida de acabado en el plano de mecanizado, que el TNC permite durante el mecanizado. Campo de introducción 0 hasta 99999.9999
- ▶ Posición de giro Q224 (absoluta): Ángulo que gira el mecanizado completo El centro del giro está en la posición en la que esté la herramienta en el momento de llamar al ciclo. Campo de introducción -360,0000 a 360,0000
- Posición de la isla Q367: Posición de la isla referida a la posición de la herramienta al llamar el ciclo:
 - 0: Posición de la herramienta = Centro de la isla
 - 1: Posición de la herramienta = Esquina inferior izauierda
 - 2: Posición de la herramienta = Esquina inferior derecha
 - 3: Posición de la herramienta = Esquina superior
 - 4: Posición de la herramienta = Esquina superior izquierda

Bloques NC

8CYCL DEF 256 ISLA RECTANGULAR Q218=60 **;LONGITUD LADO 1** ;MEDIDA DE LA PIEZA Q424=74 **EN BRUTO 1**

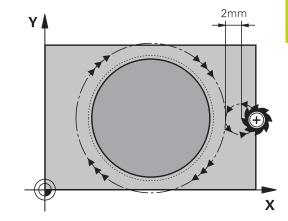
Ciclos de mecanizado: Fresado de cajeras / Fresado de islas / Fresado de ranuras

5.6 ISLA RECTANGULAR (Ciclo 256, DIN/ISO: G256)

- Avance al fresar Q207: velocidad de desplazamiento de la herramienta al fresar en mm/min. Campo de introducción 0 a 99999,999 alternativamente FAUTO, FU, FZ
- ▶ **Tipo de fresado** Q351: Tipo de fresado con M3:
 - +1 = fresado sincronizado
 - **-1** = frenado en contramarcha

PREDEF: El TNC emplea valor de frase DEF GLOBAL

- Profundidad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de la isla. Campo de introducción -99999,9999 a 99999,9999
- ► **Profundidad de paso** Q202 (valor incremental): medida, según la cual la hta. penetra cada vez en la pieza; introducir un valor mayor que 0. Campo de introducción 0 hasta 99999.9999
- ► Avance al profundizar Q206: Velocidad de desplazamiento de la hta. durante el desplazamiento a profundidad en mm/min. Campo de introducción 0 a 99999,9999 FMAX, FAUTO, FU, FZ
- Distancia de seguridad Q200 (valor incremental): distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 a 99999,9999 alternativo PREDEF
- Coordenadas Superficie de la pieza Q203 (valor absoluto): coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad O204 (valor incremental): coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 a 99999,9999 alternativo PREDEF
- ► Factor de solapamiento en la trayectoria Q370: Q370 x radio de la herramienta da como resultado la aproximación lateral k. Campo de introducción 0,1 a 1,414 alternativo **PREDEF**
- ▶ Posición de desplazamiento (0...4) Q437 Fijar la estrategia de desplazamiento de la herramienta:
 - 0: Derecha de la isla (ajuste básico)
 - 1: Esquina inferior izquierda
 - 2: Esquina inferior derecha
 - 3: Esquina superior derecha
 - **4**: Esquina superior izquierda Si al realizar el desplazamiento con el ajuste Q437=0 apareciesen marcas de desplazamiento sobre la superficie de la isla, deberá seleccionarse otra posición de desplazamiento


Q219=40	;LONGITUD LADO 2
Q424=60	;MEDIDA DE LA PIEZA EN BRUTO 2
Q220=5	;RADIO ESQUINA
Q368=0.2	;SOBREMEDIDA LATERAL
Q224=+0	;POSICIÓN DE GIRO
Q367=0	;POSICIÓN DE LA ISLA
Q207=500	;AVANCE DE FRESADO
Q351=+1	;TIPO DE FRESADO
Q201=-20	;PROFUNDIDAD
Q202=5	;PROFUNDIDAD DE PASO
Q206=150	;AVANCE AL PROFUNDIZAR
Q200=2	;DIST. DE SEGURIDAD
Q203=+0	;COORD. SUPERFICIE
Q204=50	;2ª DIST. DE SEGURIDAD
Q370=1	;SOLAPAMIENTO DE LA TRAYECTORIA
Q437=0	;POSICIÓN DE DESPLAZAMIENTO
9L X+50 Y+50	RO FMAX M3 M99

5.7 ISLA CIRCULAR (Ciclo 257, DIN/ISO: G257)

Desarrollo del ciclo

Con el ciclo 257 Isla circular es posible mecanizar una isla circular. Si el diámetro de la pieza en bruto es mayor que el incremento lateral máximo permitido, entonces el TNC realiza varios incrementos laterales hasta alcanzar el diámetro de la pieza acabada.

- 1 La herramienta parte de la posición inicial del ciclo (centro de la isla) a la posición inicial del mecanizado de la isla. La posición inicial se determina mediante el ángulo polar referido al centro de la isla con el parámetro Q376
- 2 En el caso de que la herramienta esté en la 2ª distancia de seguridad, el TNC desplaza la hta. en marcha rápida FMAX a la distancia de seguridad y desde allí, con avance de profundización a la primera profundidad de paso
- 3 A continuación, la herramienta se aproxima tangencialmente y en un movimiento espiral al contorno de la isla y después fresa una vuelta.
- 4 Si no se puede alcanzar el diámetro de la pieza acabada en una vuelta, el TNC profundiza en un movimiento espiral hasta obtener el diámetro de la pieza acabada. El TNC tiene en cuenta el diámetro de la pieza en bruto, el diámetro de la pieza acabada y el incremento lateral permitido
- 5 El TNC retira la herramienta del contorno en una trayectoria de forma espiral
- 6 Si se requieren varias profundizaciones, la nueva profundización se realiza en el punto más próximo al movimiento de retirada
- 7 Este proceso se repite hasta alcanzar la profundidad de isla programada
- 8 Al final del ciclo y después de la retirada en forma espiral, el TNC posiciona la herramienta en el eje de la herramienta a la segunda distancia de seguridad y a continuación en el centro de la isla

Ciclos de mecanizado: Fresado de cajeras / Fresado de islas / Fresado de ranuras

5.7 ISLA CIRCULAR (Ciclo 257, DIN/ISO: G257)

¡Tener en cuenta durante la programación!

Preposicionar la herramienta sobre el punto de partida en el plano de mecanizado (centro de la isla) con corrección de radio **R0**.

El TNC preposiciona la herramienta en el eje de la herramienta de forma automática. Tener en cuenta el parámetro Q204 (2ª distancia de seguridad).

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Al final del ciclo, el TNC posiciona la herramienta de nuevo en la posición partida,

El TNC reduce la profundidad de paso a la longitud de corte LCUTS definida en la tabla de herramienta, en el caso de que la longitud de corte sea más corta que la profundidad de paso Q202 introducida en el ciclo.

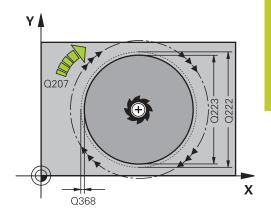
¡Atención: Peligro de colisión!

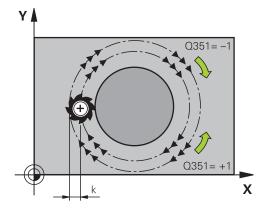
Con el parámetro de máquina displayDepthErr se ajusta si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

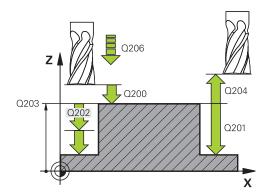
Deberá tenerse en cuenta que con una **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superficie de la pieza!

Dejar suficiente espacio para el movimiento de desplazamiento a la derecha, junto a la isla. Mínimo: diámetro de herramienta + 2 mm.

El TNC vuelve a posicionar la herramienta al final, a la distancia de seguridad, si se ha introducido a la 2ª distancia de seguridad. Por tanto, después del ciclo la posición final de la herramienta no coincide con la posición inicial.


Parámetros de ciclo



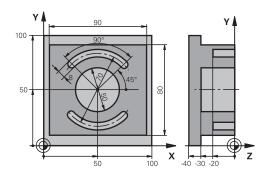

- ▶ Diámetro de la pieza acabada Q223: diámetro de la isla mecanizada. Campo de introducción 0 hasta 99999.9999
- ▶ Diámetro de la pieza en bruto Q222: diámetro de la pieza en bruto. Introducir el diámetro de la pieza en bruto mayor que el diámetro de la pieza acabada. El TNC ejecuta varias aproximaciones laterales, si la diferencia entre el diámetro de la pieza en bruto y el de la pieza acabada es mayor a la aproximación lateral permitida (radio de herramienta x solapamiento de la trayectoria Q370). El TNC siempre calcula una aproximación lateral constante. Campo de introducción 0 hasta 99999.9999
- Sobremedida del acabado lateral Q368 (valor incremental): Sobremedida de acabado en el plano de mecanizado. Campo de introducción 0 hasta 99999.9999
- Avance al fresar Q207: velocidad de desplazamiento de la herramienta al fresar en mm/min. Campo de introducción 0 a 99999,999 alternativamente FAUTO, FU, FZ
- ▶ **Tipo de fresado** Q351: Tipo de fresado con M3:
 - +1 = fresado sincronizado
 - -1 = frenado en contramarcha

PREDEF: El TNC emplea valor de frase DEF **GLOBAL**

- ▶ Profundidad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de la isla. Campo de introducción -99999,9999 a 99999,9999
- Profundidad de paso Q202 (valor incremental): medida, según la cual la hta. penetra cada vez en la pieza; introducir un valor mayor que 0. Campo de introducción 0 hasta 99999.9999
- ▶ Avance al profundizar Q206: Velocidad de desplazamiento de la hta. durante el desplazamiento a profundidad en mm/min. Campo de introducción 0 a 99999,9999 FMAX, FAUTO, FU, FZ

Ciclos de mecanizado: Fresado de cajeras / Fresado de islas / Fresado de ranuras

5.7 ISLA CIRCULAR (Ciclo 257, DIN/ISO: G257)


- ▶ Distancia de seguridad Q200 (valor incremental): distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 a 99999,9999 alternativo PREDEF
- ► Coordenadas Superficie de la pieza Q203 (valor absoluto): coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad O204 (valor incremental): coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 a 99999,9999 alternativo PREDEF
- ► Factor de solapamiento en la trayectoria Q370: Q370 x radio de la herramienta da como resultado la aproximación lateral k. Campo de introducción 0,1 a 1,414 alternativo **PREDEF**
- ► Ángulo inicial Q376: ángulo polar referido al centro de la isla desde donde la herramienta se aproxima a la isla. Campo de introducción 0 a 359°

Bloques NC

8CYCL DEF 257 ISLA CIRCULAR			
Q223=60	;DIÁMETRO DE LA PIEZA ACABADA		
Q222=60	;DIÁMETRO DE LA PIEZA EN BRUTO		
Q368=0.2	;SOBREMEDIDA LATERAL		
Q207=500	;AVANCE DE FRESADO		
Q351=+1	;TIPO DE FRESADO		
Q201=-20	;PROFUNDIDAD		
Q202=5	;PROFUNDIDAD DE PASO		
Q206=150	;AVANCE AL PROFUNDIZAR		
Q200=2	;DIST. DE SEGURIDAD		
Q203=+0	;COORD. SUPERFICIE		
Q204=50	;2ª DIST. DE SEGURIDAD		
Q370=1	;SOLAPAMIENTO DE LA TRAYECTORIA		
Q376=0	;ÁNGULO INICIAL		
9L X+50 Y+50 RO FMAX M3 M99			

Ejemplos de programación 5.8

Ejemplo: Fresado de cajera, isla y ranura

O BEGINN PGM C21	IO MM	
1 BLK FORM 0.1 Z	X+0 Y+0 Z-40	Definición de la pieza en bruto
2 BLK FORM 0.2 X	+100 Y+100 Z+0	
3 TOOL CALL 1 Z S	3500	Llamada a la hta. para el desbaste/acabado
4 L Z+250 R0 FMA	x	Retirar la herramienta
5CYCL DEF 256 ISL	_A RECTANGULAR	Definición del ciclo de mecanizado exterior
Q218=90	;LONGITUD LADO 1	
Q424=100	;MEDIDA DE LA PIEZA EN BRUTO 1	
Q219=80	;LONGITUD LADO 2	
Q424=100	;MEDIDA DE LA PIEZA EN BRUTO 2	
Q220=0	;RADIO ESQUINA	
Q368=0	;SOBREMEDIDA LATERAL	
Q224=0	;POSICIÓN DE GIRO	
Q367=0	;POSICIÓN DE LA ISLA	
Q207=250	;AVANCE DE FRESADO	
Q351=+1	;TIPO DE FRESADO	
Q201=-30	;PROFUNDIDAD	
Q202=5	;PROFUNDIDAD DE PASO	
Q206=250	;AVANCE AL PROFUNDIZAR	
Q200=2	;DIST. DE SEGURIDAD	
Q203=+0	;COORD. SUPERFICIE	
Q204=20	;2ª DIST. DE SEGURIDAD	
Q370=1	;SOLAPAMIENTO DE LA TRAYECTORIA	
Q437=0	;POSICIÓN DE DESPLAZAMIENTO	
6 L X+50 Y+50 R0	M3 M99	Llamada al ciclo de mecanizado exterior
7 CYCL DEF 252 C	AJERA CIRCULAR	Definición del ciclo cajera circular
Q215=0	;ALCANCE DE MECANIZADO	
Q223=50	;DIÁMETRO DEL CÍRCULO	
Q368=0.2	;SOBREMEDIDA LATERAL	
Q207=500	;AVANCE DE FRESADO	

Ciclos de mecanizado: Fresado de cajeras / Fresado de islas / Fresado de ranuras

5.8 Ejemplos de programación

Q351=+1	;TIPO DE FRESADO	
Q201=-30	;PROFUNDIDAD	
Q202=5	;PROFUNDIDAD DE PASO	
Q369=0.1	;PROFUNDIDAD SOBREMEDIDA	
Q206=150	;AVANCE AL PROFUNDIZAR	
Q338=5	;PASO PARA ACABADO	
Q200=2	;DIST. DE SEGURIDAD	
Q203=+0	;COORD. SUPERFICIE	
Q204=50	;2ª DIST. DE SEGURIDAD	
Q370=1	;SOLAPAMIENTO DE LA TRAYECTORIA	
Q366=1	;PROFUNDIZAR	
Q385=750	;AVANCE DE ACABADO	
8 L X+50 Y+50 R0 FA	AAX M99	Llamada al ciclo cajera circular
9 L Z+250 R0 FMAX /	M6	Cambio de herramienta
10 TOLL CALL 2 Z S5	000	Llamada a la herramienta para el fresado de la ranura
11 CYCL DEF 254 RA	NURA CIRCULAR	Definición del ciclo Ranuras
Q215=0	;ALCANCE DE MECANIZADO	
Q219=8	;ANCHURA DE RANURA	
Q368=0.2	;SOBREMEDIDA LATERAL	
Q375=70	;DIÁMETRO DEL CÍRCULO GRADUADO	
Q367=0	;REFERENCIA POSICIÓN DE LA RANURA	No es indispensable el preposicionamiento en X/Y
Q216=+50	;CENTRO 1ER EJE	
Q217=+50	;CENTRO 2° EJE	
Q376=+45	;ÁNGULO INICIAL	
Q248=90	;ÁNGULO DE ABERTURA	
Q378=180	;PASO ANGULAR	Punto de partida 2ª ranura
Q377=2	;NÚMERO DE MECANIZADOS	
Q207=500	;AVANCE DE FRESADO	
Q351=+1	;TIPO DE FRESADO	
Q201=-20	;PROFUNDIDAD	
Q202=5	;PROFUNDIDAD DE PASO	
Q369=0.1	;PROFUNDIDAD SOBREMEDIDA	
Q206=150	;AVANCE AL PROFUNDIZAR	
Q338=5	;PASO PARA ACABADO	
Q200=2	;DIST. DE SEGURIDAD	
Q203=+0	;COORD. SUPERFICIE	
Q204=50	;2ª DIST. DE SEGURIDAD	
Q366=1	;PROFUNDIZAR	
12 CYCL CALL FMAX	M3	Llamada al ciclo Ranuras
13 L Z+250 R0 FMAX	M2	Retirar la herramienta, final del programa

14 END PGM C210MM

6

Ciclos de mecanizado: Definiciones de modelo

6.1 Fundamentos

6.1 Fundamentos

Resumen

El TNC dispone de 2 ciclos para poder realizar directamente figuras de puntos:

Ciclo	Softkey	Página
220 FIGURA DE PUNTOS SOBRE UN CÍRCULO	220	159
221 FIGURA DE PUNTOS SOBRE LÍNEAS	221	162

Con los ciclos 220 y 221 se pueden combinar los siguientes ciclos de mecanizado:

Si se desea realizar figuras de puntos irregulares, se utilizan tablas de puntos con **CYCL CALL PAT**(ver "Tablas de puntos", Página 57).

Con la función **PATTERN DEF** se dispone de otros modelos de puntos regulares (ver "Definición del modelo PATTERN DEF", Página 50).

Ciclo 200	TALADRADO
Ciclo 201	ESCARIADO
Ciclo 202	MANDRINADO
Ciclo 203	TALADRO UNIVERSAL
Ciclo 204	REBAJE INVERSO
Ciclo 205	TALADRADO PROF. UNIVERSAL
Ciclo 206	ROSCADO NUEVO con macho flotante
Ciclo 207	ROSCADO RIGIDO GS NUEVO sin macho flotante
Ciclo 208	FRESADO DE TALADRO
Ciclo 209	ROSCADO CON ROTURA DE VIRUTA
Ciclo 240	CENTRAJE
Ciclo 251	CAJERA RECTANGULAR
Ciclo 252	CAJERA CIRCULAR
Ciclo 253	FRESADO DE RANURAS
Ciclo 254	RANURA CIRCULAR (solo combinable con el ciclo 221)
Ciclo 256	ISLA RECTANGULAR
Ciclo 257	ISLAS CIRCULARES
Ciclo 262	FRESADO DE ROSCA
Ciclo 263	FRESADO ROSCA AVELLANADA
Ciclo 264	FRESADO DE TALADRO DE ROSCA
Ciclo 265	FRESADO DE TALADRO DE ROSCA HELICOIDAL
Ciclo 267	FRESADO DE ROSCA EXTERIOR

6.2 FIGURA DE PUNTOS SOBRE CÍRCULO (Ciclo 220, DIN/ISO: G220)

Desarrollo del ciclo

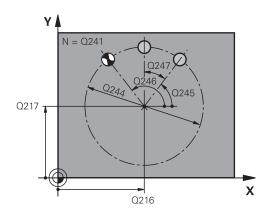
1 El TNC posiciona la hta. en marcha rápida desde la posición actual al punto de partida del primer mecanizado.

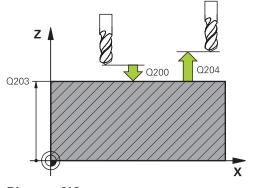
Secuencia:

- 2. Aproximación a la distancia de seguridad (eje de la hta.)
- Aproximación al punto de partida en el plano de mecanizado
- Desplazamiento a la distancia de seguridad sobre la superficie de la pieza (eje del cabezal)
- 2 A partir de esta posición el TNC ejecuta el último ciclo de mecanizado definido
- 3 A continuación el TNC posiciona la hta. según un movimiento lineal o según un movimiento circular sobre el punto de partida del siguiente mecanizado; para ello la hta. se encuentra a la distancia de seguridad (o 2ª distancia de seguridad)
- 4 Este proceso (1 a 3) se repite hasta que se han realizado todos los mecanizados

¡Tener en cuenta durante la programación!

El ciclo 220 se activa a partir de su definición DEF, es decir el ciclo 220 llama automáticamente al último ciclo de mecanizado definido.


Cuando se combina uno de los ciclos de mecanizado 200 a 209 y 251 a 267 con el ciclo 220, se activan la distancia de seguridad, la superficie de la pieza y la 2ª distancia de seguridad del ciclo 220.


6.2 FIGURA DE PUNTOS SOBRE CÍRCULO (Ciclo 220, DIN/ISO: G220)

Parámetros de ciclo

- ► Centro 1er eje Q216 (valor absoluto): Centro del círculo técnico en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► Centro 2º eje Q217 (valor absoluto): Centro del círculo técnico en el eje transversal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Diámetro del arco de círculo Q244: Introducir el diámetro del arco de círculo. Campo de introducción 0 a 99999,9999
- Ángulo inicial Q245 (valor absoluto): ángulo entre el eje principal del plano de mecanizado y el punto inicial del primer mecanizado sobre el círculo técnico. Campo de introducción -360,000 a 360,000
- ▶ Ángulo final Q246 (valor absoluto): ángulo entre el eje principal del plano de mecanizado y el punto inicial del último mecanizado sobre el círculo técnico (no sirve para círculos completos); introducir el ángulo final diferente al ángulo inicial; si el ángulo final es mayor al ángulo inicial, la dirección del mecanizado es en sentido antihorario, de lo contrario el mecanizado es en sentido horario. Campo de introducción -360.000 hasta 360.000
- ▶ Incremento angular Q247 (valor incremental): ángulo entre dos puntos a mecanizar sobre el cálculo teórico; cuando el incremento angular es igual a cero, el TNC calcula el incremento angular en relación al Ángulo inicial, Ángulo final y número de mecanizados; si se ha programado un incremento angular incremento angular, el TNC no tiene en cuenta el Ángulo final; el signo del incremento angular determina la dirección del mecanizado (- = sentido horario) Campo de introducción -360.000 hasta 360.000
- ▶ Número de mecanizados Q241: Número de mecanizados sobre el círculo técnico. Campo de introducción 1 a 99999
- ▶ Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 hasta 99999.9999
- ► Coordenadas Superficie de la pieza Q203 (valor absoluto): coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 hasta 99999.9999

Bloques NC

Bioquos ito	
53 CYCL DEF 2	20 FIGURA CIRCULAR
Q216=+50	;;CENTRO 1ER EJE
Q217=+50	;;CENTRO 2° EJE
Q244=80	;DIÁMETRO CÍRCULO
Q245=+0	;ÁNGULO INICIAL
Q246=+360	;ÁNGULO FINAL
Q247=+0	;PASO ANGULAR
Q241=8	;NÚMERO DE MECANIZADOS
Q200=2	;DIST. DE SEGURIDAD
Q203=+30	;COORD. SUPERFICIE
Q204=50	;2° DIST. DE SEGURIDAD.
Q301=1	;IR A ALTURA DE SEGURIDAD
Q365=0	;TIPO DE DESPLAZAMIENTO

FIGURA DE PUNTOS SOBRE CÍRCULO (Ciclo 220, DIN/ISO: G220) 6.2

▶ Desplazar hasta la altura de seguridad Q301:

determinar cómo debe ser desplazada la herramienta entre los mecanizados:

- **0**: Desplazar entre los mecanizados hasta la distancia de seguridad
- 1: Desplazar entre los mecanizados a la 2ª distancia de seguridad

▶ ¿Tipo de desplazamiento? Recta=0/Círculo=1

Q365: Determinar con qué tipo de trayectoria se debe desplazar la herramienta entre los mecanizados:

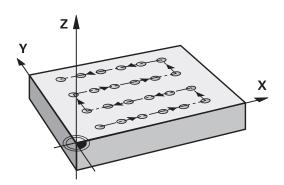
- **0**: Desplazar entre los mecanizados según una recta
- 1: Desplazar entre los mecanizados circularmente según el diámetro de círculo parcial

6.3 FIGURA DE PUNTOS SOBRE LÍNEAS (Ciclo 221, DIN/ISO: G221)

6.3 FIGURA DE PUNTOS SOBRE LÍNEAS (Ciclo 221, DIN/ISO: G221)

Desarrollo del ciclo

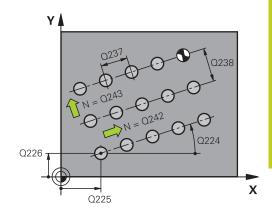
- 1 El TNC posiciona la hta. automáticamente desde la posición actual al punto de partida del primer mecanizado Secuencia:
 - 2. Aproximación a la distancia de seguridad (eje de la hta.)
 - Aproximación al punto de partida en el plano de mecanizado
 - Desplazamiento a la distancia de seguridad sobre la superficie de la pieza (eje del cabezal)
- 2 A partir de esta posición el TNC ejecuta el último ciclo de mecanizado definido
- 3 A continuación el TNC posiciona la hta. en dirección positiva al eje principal sobre el punto inicial del siguiente mecanizado; la hta. se encuentra a la distancia de seguridad (o a la 2ª distancia de seguridad)
- 4 Este proceso (1 a 3) se repite hasta que se han realizado todos los mecanizados sobre la primera línea; la hta. se encuentra en el último punto de la primera línea
- 5 Después el TNC desplaza la hta. al último punto de la segunda línea y realiza allí el mecanizado
- 6 Desde allí el TNC posiciona la hta. en dirección negativa al eje principal hasta el punto inicial del siguiente mecanizado
- 7 Este proceso (6) se repite hasta que se han ejecutado todos los mecanizados de la segunda línea
- 8 A continuación el TNC desplaza la hta. sobre el punto de partida de la siguiente línea
- 9 Todas las demás líneas se mecanizan con movimiento oscilante

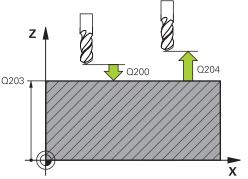

¡Tener en cuenta durante la programación!

El ciclo 221 se activa a partir de su definición DEF, es decir el ciclo 221 llama automáticamente al último ciclo de mecanizado definido.

Cuando se combinan uno de los ciclos de mecanizado 200 a 209 y 251 a 267 con el ciclo 221, se activan la distancia de seguridad, la superficie de la pieza, la 2ª distancia de seguridad y la posición de giro del ciclo 221.

Si se utiliza el ciclo 254 Ranura circular en combinación con el ciclo 221, entonces no se permite la posición de ranura 0.

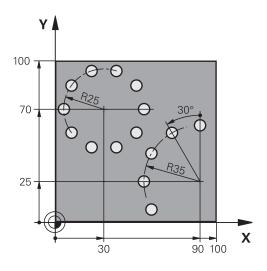



FIGURA DE PUNTOS SOBRE LÍNEAS (Ciclo 221, DIN/ISO: G221) 6.3

Parámetros de ciclo

- ▶ Punto inicial 1er eje Q225 (valor absoluto): coordenada del punto de partida en el eje principal del plano de mecanizado
- ▶ Punto inicial 2º eje Q226 (valor absoluto): coordenadas del punto inicial en el eje transversal del plano de mecanizado
- ▶ **Distancia 1er eje** Q237 (valor incremental): distancia entre los diferentes puntos de la línea
- ▶ **Distancia 2º eje** Q238 (valor incremental): distancia entre las diferentes líneas
- Número de columnas Q242: número de mecanizados sobre una línea
- ▶ Número de líneas Q243: número de líneas
- ▶ **Posición angular** Q224 (valor absoluto): ángulo, según el cual se gira toda la disposición de la figura; el centro de giro se encuentra en el punto de partida.
- ▶ Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 hasta 99999.9999
- Coordenadas Superficie de la pieza Q203 (valor absoluto): coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 hasta 99999.9999
- Desplazar hasta la altura de seguridad Q301: determinar cómo debe ser desplazada la herramienta entre los mecanizados:
 - **0**: Desplazar entre los mecanizados hasta la distancia de seguridad
 - 1: Desplazar entre los mecanizados a la 2ª distancia de seguridad

Bloques NC


54 CYCL DEF 2	21 LÍNEAS DE LA FIGURA
Q225=+15	;PUNTO INICIAL 1ER EJE
Q226=+15	;PUNTO INICIAL 2° EJE
Q237=+10	;DISTANCIA AL 1ER EJE
Q238=+8	;DISTANCIA AL 2° EJE
Q242=6	;NÚMERO DE COLUMNAS
Q243=4	;NÚMERO DE FILAS
Q224=+15	;POSICIÓN DE GIRO
Q200=2	;DIST. DE SEGURIDAD
Q203=+30	;COORD. SUPERFICIE
Q204=50	;2ª DIST. DE SEGURIDAD.
Q301=1	;IR A ALTURA DE SEGURIDAD

Ciclos de mecanizado: Definiciones de modelo

6.4 Ejemplos de programación

6.4 Ejemplos de programación

Ejemplo: Círculos de puntos

O BEGIN PGM TALAD	N 1414	
	· · · · · · · · · · · · · · · · · · ·	
1 BLK FORM 0.1 Z X		Definición de la pieza en bruto
2BLK FORM 0.2 Y+1	100 Y+100 Z+0	
3 TOOL CALL 1 Z S3	3500	Llamada de herramienta
4 L Z+250 R0 FMAX	. M3	Retirar la herramienta
5 CYCL DEF 200 TALADRADO		Definición del ciclo taladrado
Q200=2	;DIST. DE SEGURIDAD	
Q201=-15	;PROFUNDIDAD	
Q206=250	;AVANCE AL PROFUNDIZAR	
Q202=4	;PROFUNDIDAD DE PASO	
Q210=0	;TIEMPO DE ESPERA ARRIBA	
Q203=+0	;COORD. SUPERFICIE	
Q204=0	;2. DIST. DE SEGURIDAD.	
Q211=0.25	;TIEMPO DE ESPERA ABAJO	
6 CYCL DEF 220 FIG	GURA CIRCULAR	Definición del ciclo círculo de puntos 1, CYCL 220 se llama automáticamente, Q200, Q203 y Q204 tienen efecto del ciclo 220
Q216=+30	;CENTRO 1ER EJE	
Q217=+70	;CENTRO 2° EJE	
Q244=50	;DIÁMETRO CÍRCULO	
Q245=+0	;ÁNGULO INICIAL	
Q246=+360	;ÁNGULO FINAL	
Q247=+0	;PASO ANGULAR	
Q241=10	;NÚMERO DE MECANIZADOS	
Q200=2	;DIST. DE SEGURIDAD	
Q203=+0	;COORD. SUPERFICIE	
Q204=100	;2. DIST. DE SEGURIDAD	

Ejemplos de programación 6.4

Q301=1	;IR A ALTURA DE SEGURIDAD	
Q365=0	;TIPO DE DESPLAZAMIENTO	
7 CYCL DEF 220 FIGU	JRA CIRCULAR	Definición del ciclo círculo de puntos 2, CYCL 220 se llama automáticamente, Q200, Q203 y Q204 tienen efecto del ciclo 220
Q216=+90	;CENTRO 1ER EJE	
Q217=+25	;CENTRO 2° EJE	
Q244=70	;DIÁMETRO CÍRCULO	
Q245=+90	;ÁNGULO INICIAL	
Q246=+360	;ÁNGULO FINAL	
Q247=30	;PASO ANGULAR	
Q241=5	;NÚMERO DE MECANIZADOS	
Q200=2	;DIST. DE SEGURIDAD	
Q203=+0	;COORD. SUPERFICIE	
Q204=100	;2ª DIST. DE SEGURIDAD.	
Q301=1	;IR A ALTURA DE SEGURIDAD	
Q365=0	;TIPO DE DESPLAZAMIENTO	
8 L Z+250 R0 FMAX A	A2	Retirar la herramienta, final del programa
9END PGM TALAD. MA	М	

Ciclos de mecanizado: Cajera de contorno

7.1 Ciclos SL

7.1 Ciclos SL

Fundamentos

Con los ciclos SL se pueden realizar contornos complejos compuestos de hasta 12 subcontornos (cajeras e islas). Los subcontornos se introducen como subprogramas. De la lista de subcontornos (números de subprogramas) que se indican en el ciclo 14 CONTORNO, el TNC calcula el contorno completo.

La memoria de un ciclo SL es limitada. En un ciclo SL se pueden programar un máximo de 16384 elementos de contorno.

A través de ciclos SL se realizan innumerables y complejos cálculos y con ellos los mecanizados correspondientes. ¡Por motivos de seguridad debe realizarse en cualquier caso un test de programa gráfico antes del mecanizado! Por ello se puede determinar de una forma sencilla, si el mecanizado realizado por el TNC se realiza correctamente.

Si se emplean parámetros Q locales **QL** en un subprograma de contorno, éstos deben asignarse o computarse dentro del subprograma de contorno.

Características de los subprogramas

- Son posibles las traslaciones de coordenadas. Si se programan dentro de un contorno parcial, también actúan en los siguientes subprogramas, pero no deben ser cancelados después de la llamada al ciclo
- El TNC reconoce una cajera cuando el contorno se recorre por el interior , p.ej. descripción del contorno en sentido horario con correccion de radio RR
- El TNC reconoce una isla cuando el cotorno se recorre por el exterior p.ej. descripción del contorno en sentido horario con corrección de radio RL
- Los subprogramas no pueden contener ninguna coordenada en el eje de la hta.
- En la primera frase del subprograma siempre programar ambas ejes.
- Si utiliza parámetros Q, realice los cálculos correspondientes y las asignaciones solo dentro del correspondiente subprograma de contorno

Esquema: Ejecución con ciclos SL

0 BEGIN PGM SL2 MM
12 CYCL DEF 14 CONTORNO
13 CYCL DEF 20 DATOS CONTORNO
16 CYCL DEF 21 TALADRADO PREVIO
17 CYCL CALL
18 CYCL DEF 22 DESBASTE
19 CYCL CALL
22 CYCL DEF 23 ACABADO PROFUNDIDAD
23 CYCL CALL
26 CYCL DEF 24 ACABADO LATERAL
27 CYCL CALL
50 L Z+250 R0 FMAX M2
51 LBL 1
55 LBL 0
56 LBL 2
60 LBL 0
99 END PGM SL2 MM

Características de los ciclos de mecanizado

- El TNC posiciona automáticamente la hta. a la distancia de seguridad antes de cada ciclo
- Cada nivel de profundidad se fresa sin levantar la hta.; las islas se mecanizan por el lateral
- Se puede programar el radio de "esquinas interiores", la hta. no se detiene, se evitan marcas de cortes (válido para la trayectoria más exterior en el Desbaste y en el Acabado lateral)
- En el acabado lateral el TNC efectúa la llegada al contorno sobre una trayectoria circular tangente
- En el acabado en profundidad el TNC desplaza también la hta. sobre una trayectoria circular tangente a la pieza (p.ej. eje de la hta Z: Trayectoria circular en el plano Z/X)
- El TNC mecaniza el contorno de forma continua en sentido sincronizado o a contramarcha

La indicación de cotas para el mecanizado, como la profundidad de fresado, sobremedidas y distancia de seguridad se introducen en el ciclo 20 como DATOS DEL CONTORNO.

Resumen

Ciclo

25 TRAZADO DEL CONTORNO

Ciclo	Softkey	Página
14 CONTORNO (totalmente necesario)	14 LBL 1N	170
20 DATOS DEL CONTORNO (totalmente necesario)	20 DATOS CONTORNO	174
21 PRETALADRADO (se utiliza a elección)	21	176
22 DESBASTE (totalmente necesario)	22	178
23 ACABADO EN PROF. (se utiliza a elección)	23	181
24 ACABADO LATERAL (se utiliza a elección)	24	182
Otros ciclos:		

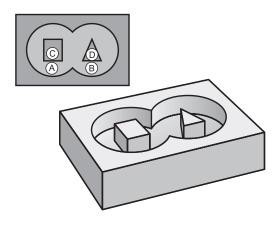
Softkey

Lado

184

7.2 CONTORNO (Ciclo 14, DIN/ISO: G37)

7.2 CONTORNO (Ciclo 14, DIN/ISO: G37)

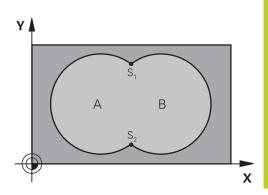

¡Tener en cuenta durante la programación!

En el ciclo 14 CONTORNO se enumeran todos los subprogramas que se superponen para formar un contorno completo.

El ciclo 14 se activa a partir de su definición, es decir actua a partir de su definición en el programa.

En el ciclo 14 se enumeran un máximo de 12 subprogramas (subcontornos).

Parámetros de ciclo



▶ Números label para el contorno: Se introducen todos los números label de los diferentes subcontornos, que se superponen en un contorno. Cada número se confirma con la tecla ENT y la introducción finaliza con la tecla END. Entrada de hasta 12 números de subprogramas 1 hasta 254

7.3 **Contornos superpuestos**

Nociones básicas

Las cajeras e islas se pueden superponer a un nuevo contorno. De esta forma una superficie de cajera se puede ampliar mediante una cajera superpuesta o reducir mediante una isla.

Bloques NC

12 CYCL DEF 14.0 CONTORNO

13 CYCL DEF 14.1 ETIQUETA DEL CONTORNO 1 /2 /3 /4

Subprogramas: Cajeras superpuestas

Los siguientes ejemplos de programación son subprogramas de contornos, llamados en un programa principal del ciclo 14 CONTORNO.

Se superponen las cajeras A y B.

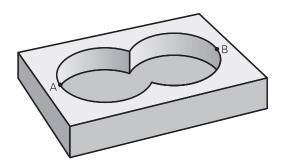
El TNC calcula los puntos de intersección S1 y S2, no deben programarse.

Las cajeras se han programado como círculos completos.

Subprograma 1: Cajera A

51 LBL 1 52 L X+10 Y+50 RR 53 CC X+35 Y+50 54 C X+10 Y+50 DR-55 LBL 0

Subprograma 2: Cajera B


56 LBL 2 57 L X+90 Y+50 RR 58 CC X+65 Y+50 59 C X+90 Y+50 DR-60 LBL 0

7.3 Contornos superpuestos

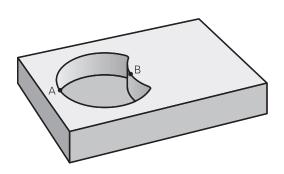
"Sumas" de superficies

Se mecanizan las dos superficies parciales A y B incluida la superficie común:

- Las superficies A y B tienen que ser cajeras
- La primera cajera (en ciclo 14) debe empezar fuera de la segunda.

Superficie A:

51 LBL 1	
52 L X+10 Y+50 RR	
53 CC X+35 Y+50	
54 C X+10 Y+50 DR-	
55 LBL 0	


Superficie B:

56 LBL 2	
57 L X+90 Y+50 RR	
58 CC X+65 Y+50	
59 C X+90 Y+50 DR-	
60 LBL 0	

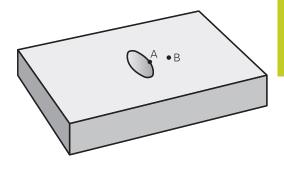
"Resta" de superficies

Se mecanizan la superficie A sin la parte que es común a B:

- La superficie A debe ser una cajera y la B una isla.
- A tiene que comenzar fuera de B.
- B debe comenzar dentro de A

Superficie A:

•	
51 LBL 1	
52 L X+10 Y+50 RR	
53 CC X+35 Y+50	
54 C X+10 Y+50 DR-	
55 LBL 0	


Superficie B:

56 LBL 2	
57 L X+40 Y+50 RL	
58 CC X+65 Y+50	
59 C X+40 Y+50 DR-	
60 LBL 0	

Superficie de la "intersección"

Se mecaniza la parte común de A y B. (Sencillamente las superficies no comunes permanecen sin mecanizar.)

- A y B tienen que ser cajeras.
- A debe comenzar dentro de B.

Superficie A:

51 LBL 1
52 L X+60 Y+50 RR
53 CC X+35 Y+50
54 C X+60 Y+50 DR-
55 LBL 0

Superficie B:

56 LBL 2	
57 L X+90 Y+50 RR	
58 CC X+65 Y+50	
59 C X+90 Y+50 DR-	
60 LBL 0	

7.4 DATOS DEL CONTORNO (Ciclo 20, DIN/ISO: G120)

7.4 DATOS DEL CONTORNO (Ciclo 20, DIN/ISO: G120)

¡Tener en cuenta durante la programación!

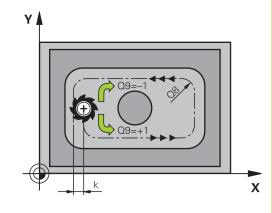
En el ciclo 20 se indican las informaciones del mecanizado para los subprogramas con los contornos parciales.

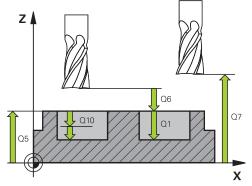
El ciclo 20 se activa a partir de su definición, es decir se activa a partir de su definición en el pgm de mecanizado.

La información sobre el mecanizado indicada en el ciclo 20 es válida para los ciclos 21 a 24.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Cuando se emplean ciclos SL en programas con parámetros Q, no se pueden utilizar los parámetros Q1 a Q20 como parámetros del programa.


7.4


Parámetros de ciclo

- ▶ Profundidad de fresado Q1 (valor incremental): Distancia entre la superficie de la pieza y la base de la cajera Campo de introducción -99999,9999 a 99999,9999
- ► Factor de **solapamiento en la trayectoria** Q2: Q2 x radio de la herramienta. da como resultado la aproximación lateral k. Campo de introducción -0,0001 a 1,9999
- ► Sobremedida del acabado lateral Q3 (valor incremental): Sobremedida de acabado en el plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ➤ Sobremedida de acabado en profundidad Q4 (valor incremental): Sobremedida de acabado para la profundidad. Campo de introducción -99999,9999 a 99999,9999
- Coordenada de la superficie de la pieza Q5 (valor absoluto): Coordenada absoluta de la superficie de la pieza. Campo de introducción -99999,9999 a 99999,9999
- Distancia de seguridad Q6 (valor incremental): distancia entre la superficie frontal de la hta. y la superficie de la pieza. Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad Q7 (valor absoluto): Altura absoluta, en la cual no se puede producir ninguna colisión con la pieza (para posicionamiento intermedio y retroceso al final del ciclo). Campo de introducción -99999,9999 a 99999,9999
- ▶ Radio de redondeo interior Q8: Radio de redondeo en "esquinas" interiores; el valor introducido se refiere a la trayectoria del centro de la hta. y se utiliza para calcular movimientos de desplazamiento más suaves entre los elementos del contorno. ¡Q8 no es un radio que el TNC inserta como elemento de contorno separado entre los elementos programados! Campo de entrada: 0 a 99999,9999
- ¿Sentido de giro ? Q9: Dirección de mecanizado para cajeras
 - Q9 = -1 contramarcha para cajera e isla
 - Q9 = +1 marcha síncrona para cajera e isla

En una interrupción del programa se pueden comprobar y si es preciso sobreescribir los parámetros del mecanizado

Bloques NC

57 CYCL DEF	20 DATOS DEL CONTORNO
Q1=-20	;PROFUNDIDAD DE FRESADO
Q2=1	;SOLAPE DE TRAYECTORIA
Q3=+0.2	;SOBREMEDIDA LATERAL
Q4=+0.1	;PROFUNDIDAD DE SOBREMEDIDA
Q5=+30	;COOR. SUPERFICIE
Q6=2	;DIST. DE SEGURIDAD
Q7=+80	;ALTURA SEGURA
Q8=0.5	;RADIO DE REDONDEO
Q9=+1	;SENTIDO DE GIRO

7.5 PRETALADRADO (Ciclo 21, DIN/ISO: G121)

7.5 PRETALADRADO (Ciclo 21, DIN/ISO: G121)

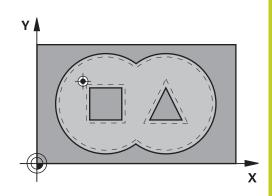
Desarrollo del ciclo

- 1 La herramienta taladra con el avance programado **F** desde la posición actual hasta el primer paso de profundización
- 2 Luego el TNC hace retroceder de nuevo la herramienta en marcha rápida FMAX hasta el primer paso de profundización, reduciéndose este recorrido según la distancia de parada previa t
- 3 El control calcula automáticamente la distancia de parada previa:
 - Profundidad de taladrado hasta 30 mm: t = 0,6 mm
 - Profundidad de taladrado más de 30 mm: t = profundidad /50
 - máxima distancia de parada previa: 7 mm
- 4 A continuación la hta. taladra con el avance F programado hasta la siguiente profundidad de pasada
- 5 El TNC repite este proceso (1 a 4) hasta alcanzar la profundidad del taladro programada
- 6 En la base del taladro, una vez transcurrido el tiempo de espera para el corte, el TNC retira la herramienta hasta la posición de partida con **FMAX**

Empleo

En el ciclo 21 PRETALADRADO, se tiene en cuenta para los puntos de profundización la sobremedida de acabado lateral y la sobremedida de acabado en profundidad, así como el radio de la hta. de desbaste. Los puntos de penetración son además también puntos de partida para el desbaste.

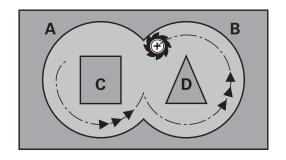
¡Tener en cuenta durante la programación!


En una frase **TOOL CALL**, el TNC no tiene en cuenta el valor delta programado **DR** para el cálculo de los puntos de profundización.

En los estrechamientos puede ser que el TNC no pueda realizar el taladrado previo con una herramienta que sea mayor que la herramienta de desbaste.

Parámetros de ciclo

- ▶ Profundidad de paso Q10 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza (signo "-" cuando la dirección de mecanizado es negativa). Campo de introducción -99999,9999 a 99999,9999
- ▶ Avance al profundizar Q11: Velocidad de desplazamiento de la herramienta durante la profundización en mm/min. Campo de introducción 0 a 99999,9999 alternativo FAUTO, FU, FZ
- ▶ Número/nombre de hta. de desbaste Q13 o QS13: Número o nombre de la hta. de desbaste. Campo de introducción 0 a 32767,9 para la introducción del número, más 16 caracteres para la introducción del nombre.


Bloques NC

58 CYCL DEF 21 PRETALADRADO	
Q10=+5	;PASO DE PROFUNDIZACIÓN
Q11=100	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD
Q13=1	;HERRAMIENTA DE DESBASTE

7.6 BROCHAR (Ciclo 22, DIN/ISO: G122)

Desarrollo del ciclo

- 1 El TNC posiciona la hta. sobre el punto de profundización; para ello se tiene en cuenta la sobremedida de acabado lateral
- 2 En la primera profundidad de pasada la hta. fresa el contorno de dentro hacia fuera con el avance de fresado Q12
- 3 Para ello se fresa libremente el contorno de la isla (aquí: C/D) con una aproximación al contorno de la cajera (aquí: A/B)
- 4 En el paso siguiente, el TNC desplaza la herramienta hasta el paso de profundización siguiente y repite el proceso de desbaste hasta que se haya alcanzado la profundidad programada
- 5 Finalmente el TNC hace retroceder la herramienta hasta la altura segura

¡Tener en cuenta durante la programación!

Si es preciso utilizar una fresa con dentado frontal cortante en el centro (DIN 844) o pretaladrado con el ciclo 21.

El comportamiento de profundización del ciclo 22 se determina con el parámetro Q19 y en la tabla de herramienta con las columnas ANGLE y LCUTS:

- Si se define Q19=0, el TNC profundiza siempre de forma perpendicular, también si está definido un ángulo de profundización para la herramienta activa (ANGULO)
- Si se define **ANGULO**=90°, el TNC profundiza de forma perpendicular. Como avance de profundización se utiliza el avance pendular Q19
- Cuando se define el avance pendular Q19 en el ciclo 22, y el **ANGULO** en la tabla de herramientas entre 0.1 y 89.999, el TNC profundiza con el ANGULO determinado de forma helicoidal
- Cuando el avance pendular en el ciclo 22 se define y no existe ningún ANGULO en la tabla de herramientas, el TNC emite un aviso de error
- Si los comportamientos geométricos son de tal forma que no se puede profundizar de forma helicoidal (geometría de ranura), el TNC intenta profundizar pendularmente. La longitud pendular se calcula por LCUTS y ANGLE (longitud pendular = **LCUTS** / tan **ANGLE**)

En contornos de cajeras con esquinas interiores puntiagudas puede guedar material restante durante el desbaste, si se utiliza un factor de solapamiento mayor a 1. Comprobar especialmente la trayectoria más interior en el gráfico de test y, en caso necesario, modificar ligeramente el factor de solapamiento. Con ello se consigue otra división de corte, lo que conduce, la mayoría de veces, al resultado deseado.

El TNC no tiene en cuenta en el acabado un valor definido de desgaste DR de la herramienta en desbaste previo.

¡Atención: Peligro de colisión!

Tras la ejecución de un ciclo SL se debe programar el primer movimiento de desplazamiento en el plano de mecanizado con ambos datos de coordenadas, p. ej. L X+80 Y+0 R0 FMAX.

Ciclos de mecanizado: Cajera de contorno

7.6 BROCHAR (Ciclo 22, DIN/ISO: G122)

Parámetros de ciclo

- ► Profundidad de paso Q10 (valor incremental): medida, según la cual la hta. penetra cada vez en la pieza Campo de introducción -99999,9999 a 99999,9999
- Avance al profundizar Q11: Avance de desplazamiento en el eje de la hta. Campo de introducción 0 a 99999.9999 alternativo FAUTO, FU, FZ
- Avance de fresado Q12: Avance de desplazamiento en el plano de mecanizado. Campo de introducción 0 a 99999.9999 alternativo FAUTO, FU, FZ
- ▶ Hta. para el desbaste previo Q18 o bien QS18: Número o nombre de la hta. con la cual se ha realizado el desbaste previo. Conmutar a la entrada del nombre: pulsar la softkey NOMBRE DE HERRAMIENTA. Indicación especial para AWT-Weber: el TNC añade automáticamente las comillas al salir del campo de introducción. Si no se ha realizado el desbaste previo, se programa "0"; si se programa un número o un nombre, el TNC solo desbasta la parte que no se ha podido mecanizar con la hta. de desbaste previo. En caso de que la zona de desbaste no se pueda alcanzar lateralmente, el TNC penetra pendularmente; para ello se debe definir el la tabla de herramientas TOOL.T, la longitud de la cuchilla **LCUTS** y el ángulo máximo de penetración ANGLE de la herramienta. Si se precisa el TNC emite un mensaje de error. Campo de introducción 0 a 32767,9 para la introducción del número, más 16 caracteres para la introducción del nombre.
- Avance pendular Q19: Avance pendular en mm/ min. Campo de introducción 0 a 99999,9999 alternativo FAUTO, FU, FZ
- ► Avance de retroceso Q208: Velocidad de desplazamiento de la hta. al retirarse tras el mecanizado en mm/min. Cuando se introduce Q208=0 el TNC retira la hta. con el avance Q12 Campo de introducción 0 a 99999,9999 alternativo FMAX,FAUTO

Bloques NC

59 CYCL DEF 22 DESBASTE		
Q10=+5	;PASO DE PROFUNDIZACIÓN	
Q11=100	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	
Q12=750	;AVANCE DESBASTE	
Q18=1	;HERRAMIENTA DE DESBASTE PREVIO	
Q19=150	;AVANCE OSCILACIÓN	
Q208=9999	;AVANCE DE RETROCESO	

7.7

7.7 ACABADO DE PROFUNDIDAD (Ciclo 23, DIN/ISO: G123)

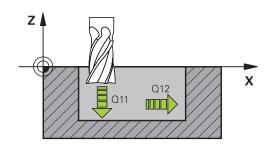
Desarrollo del ciclo

El TNC desplaza la hta. de forma suave (círculo tangente vertical) sobre la primera superficie a mecanizar, siempre que se disponga de suficiente espacio. En caso de espacios estrechos, el TNC profundiza la herramienta de manera perpendicular. A continuación se fresa la distancia de acabado que ha quedado del desbaste.

¡Tener en cuenta durante la programación!

El TNC determina automáticamente el punto de partida para la profundidad de acabado. El punto inicial depende de las proporciones de espacio de la cajera.

El radio de entrada para el posicionamiento a la profundidad final queda internamente fijado y no depende del ángulo de entrada de la herramienta.


¡Atención: Peligro de colisión!

Tras la ejecución de un ciclo SL se debe programar el primer movimiento de desplazamiento en el plano de mecanizado con ambos datos de coordenadas, p. ej. L X+80 Y+0 R0 FMAX.

Parámetros de ciclo

- Avance al profundizar Q11: Velocidad de desplazamiento de la herramienta durante la profundización en mm/min. Campo de introducción 0 a 99999,9999 alternativo FAUTO, FU, FZ
- Avance de fresado Q12: Avance de desplazamiento en el plano de mecanizado. Campo de introducción 0 a 99999.9999 alternativo FAUTO, FU, FZ
- ► Avance de retroceso Q208: Velocidad de desplazamiento de la hta. al retirarse tras el mecanizado en mm/min. Cuando se introduce Q208=0 el TNC retira la hta. con el avance Q12 Campo de introducción 0 a 99999,9999 alternativo FMAX,FAUTO

Bloques NC

60 CYCL DEF 23 ACABADO EN PROFUNDIDAD		
Q11=100 ;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD		
Q12=350	;AVANCE DESBASTE	
Q208=9999 ;AVANCE DE RETROCESO		

7.8 ACABADO DEL LADO (Ciclo 24, DIN/ISO: G124)

7.8 ACABADO DEL LADO (Ciclo 24, DIN/ISO: G124)

Desarrollo del ciclo

El TNC desplaza la herramienta sobre una trayectoria circular tangente a los contornos parciales. El acabado de cada contorno parcial se realiza por separado.

¡Tener en cuenta durante la programación!

La suma de la sobremedida del acabado lateral (Q14) y el radio de la hta. para el acabado, tiene que ser menor que la suma de la sobremedida del acabado lateral (Q3, ciclo 20) y el radio de la hta. de desbaste. Si se ejecuta el ciclo 24 sin antes haber desbastado con el ciclo 22, también es válido el cálculo citado anteriormente; en este caso se introduce "0" para el radio de la herramienta de desbaste.

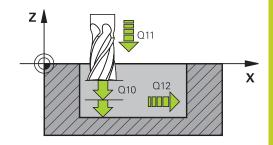
También se puede utilizar el ciclo 24 para el fresado de contornos. Entonces se debe

- definir el contorno a fresar como isla individual (sin limitación de cajeras) e
- introducir en el ciclo 20 una sobremedida de acabado (Q3) mayor que la suma de la sobremedida de acabado Q14 + radio de la herramienta utilizada

El TNC calcula automáticamente el punto inicial para el acabado. El punto de arranque depende de los comportamientos de las posiciones en la cajera y de la sobremedida programada en el ciclo 20.

El TNC calcula el punto de partida dependiendo también del orden durante la ejecución. Si se selecciona el ciclo de Acabado con la tecla GOTO y se inicia el programa, puede situarse el punto de partida en otra posición que al ejecutar el programa en el orden definido.

¡Atención: Peligro de colisión!


Tras la ejecución de un ciclo SL se debe programar el primer movimiento de desplazamiento en el plano de mecanizado con ambos datos de coordenadas, p. ej. L X+80 Y+0 R0 FMAX.

ACABADO DEL LADO (Ciclo 24, DIN/ISO: G124)

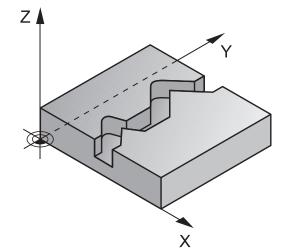
Parámetros de ciclo

- ▶ Sentido de giro Q9: Dirección de mecanizado:
 - +1: Giro en el sentido antihorario
 - -1: Giro en el sentido horario
- ► **Profundidad de paso** Q10 (valor incremental): medida, según la cual la hta. penetra cada vez en la pieza Campo de introducción -99999,9999 a 99999,9999
- Avance al profundizar Q11: Velocidad de desplazamiento de la herramienta durante la profundización en mm/min. Campo de introducción 0 a 99999,9999 alternativo FAUTO, FU, FZ
- Avance de fresado Q12: Avance de desplazamiento en el plano de mecanizado. Campo de introducción 0 a 99999.9999 alternativo FAUTO, FU, FZ
- ▶ Sobremedida de acabado lateral Q14 (valor incremental): Sobremedida para varios acabados; cuando Q14=0 se desbasta la última distancia de acabado. Campo de introducción -99999,9999 a 99999,9999

Bloques NC

61 CYCL DEF 24 ACABADO LATERAL			
Q9=+1	;SENTIDO DE GIRO		
Q10=+5	;PASO DE PROFUNDIZACIÓN		
Q11=100	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD		
Q12=350	;AVANCE DESBASTE		
Q14=+0	;SOBREMEDIDA LATERAL		

7.9 PERFIL DEL CONTORNO (Ciclo 25, DIN/ISO: G125)


7.9 PERFIL DEL CONTORNO (Ciclo 25, DIN/ISO: G125)

Desarrollo del ciclo

Con este ciclo y el ciclo 14 CONTORNO se pueden mecanizar contornos abiertos y cerrados.

El ciclo 25 TRAZADO DEL CONTORNO ofrece considerables ventajas en comparación con el mecanizado de un contorno con frases de posicionamiento:

- El TNC supervisa el mecanizado para realizar entradas sin rebabas y evitar daños en el contorno. Comprobar el contorno con el test del gráfico
- Cuando el radio de la hta. es demasiado grande, se tendrá que volver a mecanizar, si es preciso, el contorno en las esquinas interiores
- El mecanizado se ejecuta en una sola pasada de forma sincronizada o a contramarcha. El tipo de fresado elegido se mantiene incluso cuando se realiza el espejo de los contornos
- Cuando se trata de varias prof. de pasada, la hta. se desplaza en ambos sentidos: De esta forma es más rápido el mecanizado
- Se pueden introducir diversas medidas, para realizar el desbaste y el acabado con varios pasos de mecanizado

¡Tener en cuenta durante la programación!

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

El TNC solo tiene en cuenta el primer label del ciclo 14 CONTORNO.

La memoria de un ciclo SL es limitada. En un ciclo SL se pueden programar un máximo de 16384 elementos de contorno.

Ciclo 20 DATOS DEL CONTORNO no se precisa.

Las funciones adicionales **M109** y **M110** no tienen efecto en el mecanizado de un contorno con el ciclo 25.

Cuando se empleen parámetros Q**QL** locales en un subprograma de contorno, éstos deben asignarse o calcularse asimismo dentro del subprograma de contorno.

7.9

PERFIL DEL CONTORNO (Ciclo 25, DIN/ISO: G125)

¡Atención: Peligro de colisión!

Para evitar posibles colisiones:

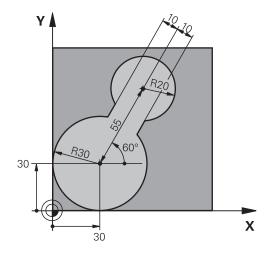
- No programar cotas incrementales directamente después del ciclo 25, ya que se refieren a la posición de la hta. al final del ciclo.
- En todos los ejes principales aproximar la hta. a las posiciones definidas (absolutas), ya que la posición de la herramienta al final del ciclo no coincide con la posición al comienzo del ciclo.

Parámetros de ciclo

- ► Profundidad de fresado Q1 (valor incremental): Distancia entre la superficie de la pieza y la base del contorno. Campo de introducción -99999,9999 a 99999,9999
- ► Sobremedida del acabado lateral Q3 (valor incremental): Sobremedida de acabado en el plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► Coordenada de la superficie de la pieza Q5 (valor absoluto): Coordenada absoluta de la superficie de la pieza. Campo de introducción -99999,9999 a 99999,9999
- ▶ Altura de seguridad Q7 (valor absoluto): Altura absoluta, en la cual no se puede producir ninguna colisión con la pieza (para posicionamiento intermedio y retroceso al final del ciclo). Campo de introducción -99999,9999 a 99999,9999
- ► Profundidad de paso Q10 (valor incremental): medida, según la cual la hta. penetra cada vez en la pieza Campo de introducción -99999,9999 a 99999,9999
- Avance al profundizar Q11: Avance de desplazamiento en el eje de la hta. Campo de introducción 0 a 99999.9999 alternativo FAUTO, FU, FZ
- Avance de fresado Q12: Avance de desplazamiento en el plano de mecanizado. Campo de introducción 0 a 99999.9999 alternativo FAUTO, FU, FZ
- ► Tipo de fresado Q15:

Fresado codireccional: Introducción = +1
Fresado en contrasentido: Introducción = -1
Fresar alternativamente en el sentido de rotación de la fresa y en contrasentido con varias pasadas: Introducción = 0

Bloques NC

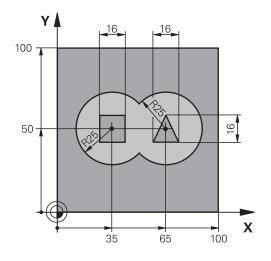

62 CYCL DEF 25 TRAZADO DEL CONTORNO		
Q1=-20	;PROFUNDIDAD DE FRESADO	
Q3=+0	;SOBREMEDIDA LATERAL	
Q5=+0	;COOR. SUPERFICIE	
Q7=+50	;ALTURA SEGURA	
Q10=+5	;PASO DE PROFUNDIZACIÓN	
Q11=100	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	
Q12=350	;AVANCE DE FRESADO	
Q15=-1	;TIPO DE FRESADO	

Ciclos de mecanizado: Cajera de contorno

7.10 Ejemplos de programación

7.10 Ejemplos de programación

Ejemplo: Desbaste y acabado posterior de una cajera

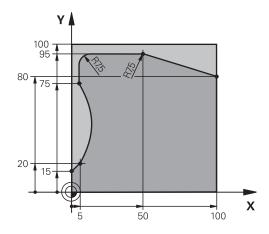

0 BEGIN PGM C20 MM	1	
1 BLK FORM 0.1 Z X-10 Y-10 Z-40		
2 BLK FORM 0.2 X+100 Y+100 Z+0		Definición de la pieza en bruto
3 TOOL CALL 1 Z S25	600	Llamada a la hta. para el Desbaste previo, diámetro 30
4 L Z+250 R0 FMAX		Retirar la herramienta
5 CYCL DEF 14.0 CON	NTORNO	Determinar el subprograma del contorno
6 CYCL DEF 14.1 ETIC	QUETA DEL CONTORNO 1	
7 CYCL DEF 20 DATO	S DEL CONTORNO	Determinar los parámetros de mecanizado generales
Q1=-20	;PROFUNDIDAD DE FRESADO	
Q2=1	;SOLAPE DE TRAYECTORIA	
Q3=+0	;SOBREMEDIDA LATERAL	
Q4=+0	;PROFUNDIDAD DE SOBREMEDIDA	
Q5=+0	;COOR. SUPERFICIE	
Q6=2	;DIST. DE SEGURIDAD	
Q7=+100	;ALTURA SEGURA	
Q8=0.1	;RADIO DE REDONDEO	
Q9=-1	;SENTIDO DE GIRO	
8 CYCL DEF 22 DESBA	ASTE	Definición del ciclo de Desbaste previo
Q10=5	;PASO DE PROFUNDIZACIÓN	
Q11=100	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	
Q12=350	;AVANCE DESBASTE	
Q18=0	;HERRAMIENTA DE DESBASTE PREVIO	
Q19=150	;AVANCE PENDULAR	
Q208=1000 ;AVANCE DE RETROCESO		
9 CYCL CALL M3		Llamada al ciclo de Desbaste previo
10 L Z+250 R0 FMAX	M6	Cambio de herramienta

11 TOOL CALL 2 Z S3000		Llamada a la hta. para el Desbaste posterior, diámetro 15
12 CYCL DEF 22 DESBASTE		Definición del ciclo Desbaste posterior
Q10=5	;PASO DE PROFUNDIZACIÓN	
Q11=100	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	
Q12=350	;AVANCE DESBASTE	
Q18=1	;HERRAMIENTA DE DESBASTE PREVIO	
Q19=150	;AVANCE PENDULAR	
Q208=1000	;AVANCE DE RETROCESO	
13 CYCL CALL M3		Llamada al ciclo Desbaste posterior
14 L Z+250 R0 FMAX	M2	Retirar la herramienta, final del programa
15 LBL 1		Subprograma del contorno
16 L X+0 Y+30 RR		
17 FC DR- R30 CCX+3	30 CCY+30	
18 FL AN+60 PDX+30	PDY+30 D10	
19 FSELECT 3		
20 FPOL X+30 Y+30		
21 FC DR- R20 CCPR+	+55 CCPA+60	
22 FSELECT 2		
23 FL AN-120 PDX+30 PDY+30 D10		
24 FSELECT 3		
25 FC X+0 DR- R30 CCX+30 CCY+30		
26 FSELECT 2		
27 LBL 0		
28 END PGM C20 MM		

Ciclos de mecanizado: Cajera de contorno

7.10 Ejemplos de programación

Ejemplo: Pretaladrado, desbaste y acabado de contornos superpuestos



O BEGIN PGM C21 MM	٨	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40		Definición de la pieza en bruto
2 BLK FORM 0.2 X+1	00 Y+100 Z+0	
3 TOOL CALL 1 Z S2!	500	Llamada a la hta. broca, diámetro 12
4 L Z+250 R0 FMAX		Retirar la herramienta
5 CYCL DEF 14.0 CO	NTORNO	Determinar el subprograma del contorno
6 CYCL DEF 14.1 ETI	QUETA DEL CONTORNO 1 /2 /3 /4	
7 CYCL DEF 20 DATO	S DEL CONTORNO	Determinar los parámetros de mecanizado generales
Q1=-20	;PROFUNDIDAD DE FRESADO	
Q2=1	;SOLAPE DE TRAYECTORIA	
Q3=+0.5	;SOBREMEDIDA LATERAL	
Q4=+0.5	;PROFUNDIDAD DE SOBREMEDIDA	
Q5=+0	;COOR. SUPERFICIE	
Q6=2	;DIST. DE SEGURIDAD	
Q7=+100	;ALTURA SEGURA	
Q8=0.1	;RADIO DE REDONDEO	
Q9=-1	;SENTIDO DE GIRO	
8 CYCL DEF 21 PRET	ALADRADO	Definición del ciclo Pretaladrado
Q10=5	;PASO DE PROFUNDIZACIÓN	
Q11=250	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	
Q13=2	;HERRAMIENTA DE DESBASTE	
9 CYCL CALL M3		Llamada al ciclo Pretaladrado
10 L +250 R0 FMAX M6		Cambio de herramienta
11 TOOL CALL 2 Z S	3000	Llamada a la hta. para Desbaste/Acabado, diámetro 12
12 CYCL DEF 22 DES	BASTE	Definición del ciclo Desbaste
Q10=5	;PASO DE PROFUNDIZACIÓN	
Q11=100	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	

Ciclos de mecanizado: Cajera de contorno

7.10 Ejemplos de programación

Ejemplo: Trazado del contorno

O BEGIN PGM C25 MM	·	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40		Definición de la pieza en bruto
2 BLK FORM 0.2 X+10	00 Y+100 Z+0	
3 TOOL CALL 1 Z S20	00	Llamada a la hta., diámetro 20
4 L Z+250 R0 FMAX		Retirar la herramienta
5 CYCL DEF 14.0 CON	NTORNO	Determinar el subprograma del contorno
6 CYCL DEF 14.1 ETIC	QUETA DEL CONTORNO 1	
7 CYCL DEF 25 TRAZA	ADO DEL CONTORNO	Determinar los parámetros del mecanizado
Q1=-20	;PROFUNDIDAD DE FRESADO	
Q3=+0	;SOBREMEDIDA LATERAL	
Q5=+0	;COOR. SUPERFICIE	
Q7=+250	;ALTURA SEGURA	
Q10=5	;PASO DE PROFUNDIZACIÓN	
Q11=100	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	
Q12=200	;AVANCE DE FRESADO	
Q15=+1	;TIPO DE FRESADO	
8 CYCL CALL M3		Llamada al ciclo
9 L Z+250 R0 FMAX M	12	Retirar la herramienta, Final de programa
10 LBL 1		Subprograma del contorno
11 L X+0 Y+15 RL		
12 L X+5 Y+20		
13 CT X+5 Y+75		
14 L Y+95		
15 RND R7.5		
16 L X+50		
17 RND R7.5		
18 L X+100 Y+80		
19 LBL 0		
20 END PGM C25 MM		

8

Ciclos de mecanizado: Superficies cilíndricas

8.1 Nociones básicas

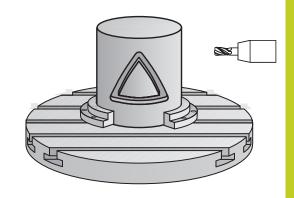
8.1 Nociones básicas

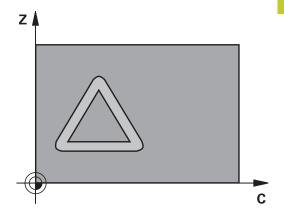
Resumen de los ciclos superficies cilíndricos

Ciclo	Softkey	Página
27 SUPERFICIE CILÍNDRICA	27	193
28 SUPERFICIE CILÍNDRICA Fresado de ranuras	28	196
29 SUPERFICIE CILÍNDRICA Fresado de islas	29	199

8.2 SUPERFICIE CILÍNDRICA (Ciclo 27, DIN/ ISO: G127, opción de software 1)

Desarrollo del ciclo


Con este ciclo se puede mecanizar un contorno cilíndrico previamente programado según el desarrollo de dicho cilindro. El ciclo 28 se utiliza para fresar la guía de una ranura en un cilindro.


El contorno se describe en un subprograma, determinado a través del ciclo 14 (CONTORNO).

En el subprograma se describe siempre el contorno con las coordenadas X e Y, independientemente de qué ejes giratorios existan en la máquina. Por tanto, la descripción del contorno es independiente de la configuración de la máquina. Como funciones para programar trayectorias se dispone de L, CHF, CR, RND y CT.

Las indicaciones para el eje angular (coordenadas X) pueden ser introducidas en grados o en mm (pulgadas) (se determina en la definición del ciclo Q17).

- 1 El TNC posiciona la hta. sobre el punto de profundización; para ello se tiene en cuenta la sobremedida de acabado lateral
- 2 En la primera profundidad de pasada la hta. fresa el contorno programado con el avance de fresado Q12
- 3 En el final del contorno, el TNC desplaza la herramienta hasta la distancia de seguridad y retorno al punto de inserción
- 4 Se repiten los pasos 1 a 3, hasta alcanzar la profundidad de fresado Q1 programada
- 5 A continuación la hta. se desplaza a la distancia de seguridad

Ciclos de mecanizado: Superficies cilíndricas

8.2 SUPERFICIE CILÍNDRICA (Ciclo 27, DIN/ISO: G127, opción de software 1)

¡Tener en cuenta durante la programación!

El fabricante de la máquina debe preparar la máquina y el TNC para la Interpolación superficie cilíndrica. Rogamos consulte el manual de la máquina.

Programar siempre ambas coordenadas de la superficie cilíndrica en la primera frase NC del subprograma de contorno.

La memoria de un ciclo SL es limitada. En un ciclo SL se pueden programar un máximo de 16384 elementos de contorno.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Deberá utilizarse una fresa con dentado frontal cortante en el centro(DIN 844).

El cilindro debe estar sujeto a la mesa giratoria y centrado. Poner el punto de referencia en el centro de la mesa redonda.

Al llamar el ciclo, el eje del cabezal debe estar perpendicular al eje de la mesa giratoria Si no fuera así, el TNC emite un aviso de error. Dado el caso se precisará un conmutación de la cinemática.

Este ciclo puede ejecutarse también en el plano de mecanizado inclinado.

El espacio de seguridad debe ser mayor que el diámetro de la herramienta.

El tiempo de mecanizado puede aumentar, si el contorno está compuesto de muchos elementos de contornos no tangenciales.

Si se emplean parámetros Q locales **QL** en un subprograma de contorno, éstos deben asignarse o computarse dentro del subprograma de contorno.

SUPERFICIE CILÍNDRICA (Ciclo 27, DIN/ISO: G127, opción de software 1)

Parámetros de ciclo

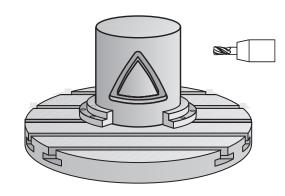
- ▶ Profundidad de fresado Q1 (valor incremental): Distancia entre la superficie cilíndrica y la base del contorno Campo de introducción -99999,9999 a 99999,9999
- ▶ Sobremedida acabado lateral Q3 (valor incremental): sobremedida de acabado en el plano del desarrollo de la superficie cilíndrica; la sobremedida actúa en la dirección de la corrección de radio. Campo de introducción -99999,9999 a 99999,9999
- Distancia de seguridad Q6 (valor incremental): distancia entre la superficie frontal de la hta. y la superficie del cilindro. Campo de introducción 0 a 99999,9999
- ► Profundidad de paso Q10 (valor incremental): medida, según la cual la hta. penetra cada vez en la pieza Campo de introducción -99999,9999 a 99999,9999
- Avance al profundizar Q11: Avance de desplazamiento en el eje de la hta. Campo de introducción 0 a 99999.9999 alternativo FAUTO, FU, FZ
- Avance de fresado Q12: Avance de desplazamiento en el plano de mecanizado. Campo de introducción 0 a 99999.9999 alternativo FAUTO, FU, FZ
- ▶ Radio del cilindro Q16: Radio del cilindro sobre el que se mecaniza el contorno. Campo de introducción 0 a 99999,9999
- ¿Tipo de acotación ? Grados =0 MM/PULG.=1 Q17: Programar las coordenadas del eje giratorio en el subprograma en grados o mm (pulgadas)

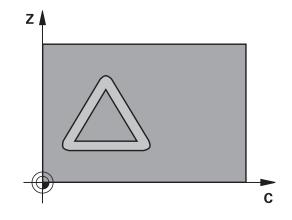
Bloques NC

63 CYCL DEF 27 SUPERFICIE CILÍNDRICA		
Q1=-8	;PROFUNDIDAD DE FRESADO	
Q3=+0	;SOBREMEDIDA LATERAL	
Q6=+0	;DIST. DE SEGURIDAD	
Q10=+3	;PASO DE PROFUNDIZACIÓN	
Q11=100	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	
Q12=350	;AVANCE DE FRESADO	
Q16=25	;RADIO	
Q17=0	;TIPO DE ACOTADO	

8.3 SUPERFICIE CILÍNDRICA Fresado de ranura (Ciclo 28, DIN/ISO: G128, opción de software 1)

8.3 SUPERFICIE CILÍNDRICA Fresado de ranura (Ciclo 28, DIN/ISO: G128, opción de software 1)


Desarrollo del ciclo


Con este ciclo se puede transferir a la superficie de un cilindro una ranura de guía definida en el desarrollo. Al contrario que en el ciclo 27, en este ciclo el TNC posiciona la hta. de tal forma que cuando está activada la corrección de radio las paredes se mecanizan paralelas entre si. Obtendrá un recorrido con paredes exactamente paralelas cuando utilice una herramienta con un diámetro exacto al ancho de la ranura.

Mientras menor sea la herramienta en relación al ancho de ranura, mayores distorsiones existirán en trayectorias circulares y en rectas oblicuas. Para minimizar estas distorsiones por desplazamiento, se puede definir una tolerancia mediante el parámetro Q21, con la que el TNC aproxima la ranura a realizar a otra ranura fabricada anteriormente con una herramienta cuyo diámetro se corresponde con el ancho de ranura.

Programar la trayectoria de punto medio del contorno introduciendo la corrección de radio de la herramienta. Mediante la corrección del radio se fija si el TNC crea la ranura en sentido de la marcha o en sentido contrario a la marcha.

- 1 El TNC posiciona la hta. sobre el punto de profundización:
- 2 En el primer paso de profundización, la herramienta fresa con el avance de fresado Q12 a lo largo de la pared dela ranura; teniéndose en cuenta la sobremedida de acabado lateral
- 3 Al final del contorno el TNC desplaza la hta. a la pared contraria de la ranura y retrocede al punto de profundización
- 4 Se repiten los pasos 2 y 3, hasta alcanzar la profundidad de fresado Q1 programada
- 5 Si se ha definido la tolerancia Q21, el TNC ejecuta el mecanizado de repaso a fin de obtener las paredes de ranura lo más paralelas que sea posible.
- 6 Finalmente la herramienta retrocede en el eje de la herramienta hasta la altura segura o hasta la última posición programada antes del ciclo

SUPERFICIE CILÍNDRICA Fresado de ranura (Ciclo 28, DIN/ISO: 8.3 G128, opción de software 1)

¡Tener en cuenta durante la programación!

El fabricante de la máquina debe preparar la máquina y el TNC para la Interpolación superficie cilíndrica. Rogamos consulte el manual de la máquina.

Programar siempre ambas coordenadas de la superficie cilíndrica en la primera frase NC del subprograma de contorno.

La memoria de un ciclo SL es limitada. En un ciclo SL se pueden programar un máximo de 16384 elementos de contorno.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Deberá utilizarse una fresa con dentado frontal cortante en el centro(DIN 844).

El cilindro debe estar sujeto a la mesa giratoria y centrado. Poner el punto de referencia en el centro de la mesa redonda.

Al llamar el ciclo, el eje del cabezal debe estar perpendicular al eje de la mesa giratoria Si no fuera así, el TNC emite un aviso de error. Dado el caso se precisará un conmutación de la cinemática.

Este ciclo puede ejecutarse también en el plano de mecanizado inclinado.

El espacio de seguridad debe ser mayor que el diámetro de la herramienta.

El tiempo de mecanizado puede aumentar, si el contorno está compuesto de muchos elementos de contornos no tangenciales.

Si se emplean parámetros Q locales **QL** en un subprograma de contorno, éstos deben asignarse o computarse dentro del subprograma de contorno.

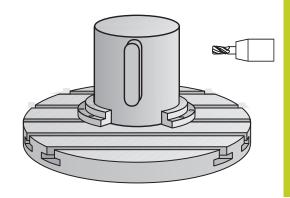
8.3 SUPERFICIE CILÍNDRICA Fresado de ranura (Ciclo 28, DIN/ISO: G128, opción de software 1)

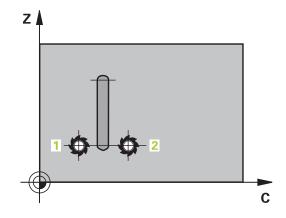
Parámetros de ciclo

- Profundidad de fresado Q1 (valor incremental): Distancia entre la superficie cilíndrica y la base del contorno Campo de introducción -99999,9999 a 99999,9999
- ▶ Sobremedida acabado lateral Q3 (valor incremental): Sobremedida de acabado en la pared de la ranura. La sobremedida de acabado empequeñece el ancho de la ranura al valor introducido dos veces. Campo de introducción -99999,9999 a 99999,9999
- Distancia de seguridad Q6 (valor incremental): distancia entre la superficie frontal de la hta. y la superficie del cilindro. Campo de introducción 0 a 99999,9999
- ► **Profundidad de paso** Q10 (valor incremental): medida, según la cual la hta. penetra cada vez en la pieza Campo de introducción -99999,9999 a 99999,9999
- Avance al profundizar Q11: Avance de desplazamiento en el eje de la hta. Campo de introducción 0 a 99999.9999 alternativo FAUTO, FU, FZ
- Avance de fresado Q12: Avance de desplazamiento en el plano de mecanizado. Campo de introducción 0 a 99999.9999 alternativo FAUTO, FU, FZ
- ▶ Radio del cilindro Q16: Radio del cilindro sobre el que se mecaniza el contorno. Campo de introducción 0 a 99999,9999
- ► ¿Tipo de acotación ? Grados = 0 MM/PULG. = 1 Q17: Programar las coordenadas del eje giratorio en el subprograma en grados o mm (pulgadas)
- ► Anchura de la ranura Q20: Anchura de la ranura a realizar. Campo de introducción -99999,9999 a 99999,9999
- ▶ Tolerancia Q21: Si se utiliza una herramienta más pequeña que la anchura de ranura Q20 programada, se originan deformaciones en la pared de la ranura en círculos y rectas oblicuas debidas al procedimiento. Cuando se define la tolerancia Q21, entonces el TNC realiza la ranura según un proceso de fresado con una forma aproximada, como si se hubiera fresado la ranura con una herramienta exactamente del mismo tamaño que el ancho de ranura. Con Q21 se define la desviación permitida por esta ranura ideal. El número de pasos de postmecanizado depende del radio del cilindro, de la herramienta utilizada y de la profundidad de ranura. Mientras más pequeña se defina la tolerancia, más exacta es la ranura pero tardará más tiempo en realizarla. Campo de introducción 0 a 9,9999 Recomendación: Emplear una tolerancia de

Función inactiva: introducir 0 (Ajuste básico).

Frases NC


63 CYCL DEF 28 SUPERFICIE CILÍNDRICA		
Q1=-8	;PROFUNDIDAD DE FRESADO	
Q3=+0	;SOBREMEDIDA LATERAL	
Q6=+0	;DIST. DE SEGURIDAD	
Q10=+3	;PASO DE PROFUNDIZACIÓN	
Q11=100	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	
Q12=350	;AVANCE DE FRESADO	
Q16=25	;RADIO	
Q17=0	;TIPO DE ACOTADO	
Q20=12	;ANCHURA DE RANURA	
Q21=0	;TOLERANCIA	


8.4 SUPERFICIE CILÍNDRICA Fresado de resalte (Ciclo 29, DIN/ISO: G129, opción de software 1)

Desarrollo del ciclo

Con este ciclo se puede transferir el desarrollo de una isla, a la superficie de un cilindro. En este ciclo el TNC posiciona la hta. de tal forma que cuando está activada la corrección de radio las paredes se mecanizan paralelas entre si. Programar la trayectoria de punto medio de la isla introduciendo la corrección de radio de la herramienta. Mediante la corrección del radio se fija si el TNC crea la isla en sentido de la marcha o en sentido contrario a la marcha. En los extremos de la isla el iTNC básicamente siempre añade un semicírculo, cuyo radio es la mitad de la anchura de la isla.

- 1 El TNC posiciona la hta. sobre el punto de partida del mecanizado. El punto inicial lo calcula el TNC según el ancho de isla y el diámetro de la herramienta. Éste se encuentra próximo al primer punto definido en el subprograma del contorno y desplazado según la mitad de la anchura de la isla y el diámetro de la herramienta. La corrección del radio determina si se parte de la izquierda (1, RL=codireccional) o desde la derecha de la isla (2, RR=en contrasentido)
- 2 Una vez que el TNC ha realizado el posicionamiento en el primer paso de profundización, la herramienta se desplaza a un arco circular con avance de fresado Q12 tangencialmente a la pared de la isla. Si es necesario, se tiene en cuenta la sobremedida de acabado lateral.
- 3 En el primer paso de profundización, la herramienta fresa con el avance de fresado Q12 a lo largo de la pared de la isla hasta que la isla se ha realizado completamente
- 4 A continuación, la herramienta retorna tangencialmente desde la pared de la isla al punto de partida del mecanizado
- 5 Se repiten los pasos 2 a 4, hasta alcanzar la profundidad de fresado Q1 programada
- 6 Finalmente la herramienta retrocede en el eje de la herramienta hasta la altura segura o hasta la última posición programada antes del ciclo

8.4 SUPERFICIE CILÍNDRICA Fresado de resalte (Ciclo 29, DIN/ISO: G129, opción de software 1)

¡Tener en cuenta durante la programación!

El fabricante de la máquina debe preparar la máquina y el TNC para la Interpolación superficie cilíndrica. Rogamos consulte el manual de la máquina.

Programar siempre ambas coordenadas de la superficie cilíndrica en la primera frase NC del subprograma de contorno.

La memoria de un ciclo SL es limitada. En un ciclo SL se pueden programar un máximo de 16384 elementos de contorno.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Deberá utilizarse una fresa con dentado frontal cortante en el centro(DIN 844).

El cilindro debe estar sujeto a la mesa giratoria y centrado. Poner el punto de referencia en el centro de la mesa redonda.

Al llamar el ciclo, el eje del cabezal debe estar perpendicular al eje de la mesa giratoria Si no fuera así, el TNC emite un aviso de error. Dado el caso se precisará un conmutación de la cinemática.

Este ciclo puede ejecutarse también en el plano de mecanizado inclinado.

El espacio de seguridad debe ser mayor que el diámetro de la herramienta.

El tiempo de mecanizado puede aumentar, si el contorno está compuesto de muchos elementos de contornos no tangenciales.

Si se emplean parámetros Q locales **QL** en un subprograma de contorno, éstos deben asignarse o computarse dentro del subprograma de contorno.

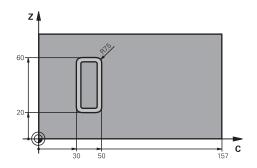
SUPERFICIE CILÍNDRICA Fresado de resalte (Ciclo 29, DIN/ISO: 8.4 G129, opción de software 1)

Parámetros de ciclo

- ► Profundidad de fresado Q1 (valor incremental): Distancia entre la superficie cilíndrica y la base del contorno Campo de introducción -99999,9999 a 99999,9999
- ▶ Sobremedida acabado lateral Q3 (valor incremental): Sobremedida de acabado en la pared de la isla. La sobremedida de acabado aumenta el ancho de la isla al doble del valor introducido. Campo de introducción -99999.9999 a 99999.9999
- ▶ **Distancia de seguridad** Q6 (valor incremental): distancia entre la superficie frontal de la hta. y la superficie del cilindro. Campo de introducción 0 a 99999,9999
- ► Profundidad de paso Q10 (valor incremental): medida, según la cual la hta. penetra cada vez en la pieza Campo de introducción -99999,9999 a 99999,9999
- Avance al profundizar Q11: Avance de desplazamiento en el eje de la hta. Campo de introducción 0 a 99999.9999 alternativo FAUTO, FU, FZ
- Avance de fresado Q12: Avance de desplazamiento en el plano de mecanizado. Campo de introducción 0 a 99999.9999 alternativo FAUTO, FU, FZ
- ▶ Radio del cilindro Q16: Radio del cilindro sobre el que se mecaniza el contorno. Campo de introducción 0 a 99999,9999
- ¿Tipo de acotación ? Grados = 0 MM/PULG.=1 Q17: Programar las coordenadas del eje giratorio en el subprograma en grados o mm (pulgadas)
- ► Anchura de la isla Q20: Anchura de la isla a realizar. Campo de introducción -99999,9999 a 99999,9999

Bloques NC

63 CYCL DEF 29 SUPERFICIE CILÍNDRICA ISLA		
Q1=-8	;PROFUNDIDAD DE FRESADO	
Q3=+0	;SOBREMEDIDA LATERAL	
Q6=+0	;DIST. DE SEGURIDAD	
Q10=+3	;PASO DE PROFUNDIZACIÓN	
Q11=100	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	
Q12=350	;AVANCE DE FRESADO	
Q16=25	;RADIO	
Q17=0	;TIPO DE ACOTADO	
Q20=12	;ANCHURA DE ISLA	


8.5 Ejemplos de programación

8.5 Ejemplos de programación

Ejemplo: Superficie cilíndrica con ciclo 27

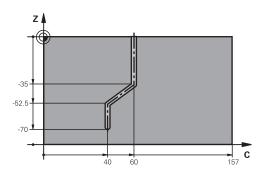
- Máquina con cabezal B y mesa C
- Cilindro sujeto en el centro de la mesa giratoria
- El punto de referencia se encuentra en la parte inferior en el centro de la mesa giratoria

0 DECUL DOM 607		
0 BEGIN PGM C27		
1 TOOL CALL 1 Z S2000		Llamada a la hta., diámetro 7
2 L Z+250 R0 FMA	XX	Retirar la herramienta
3 L X+50 Y0 R0 F	MAX	Preposicionar la hta. sobre el centro de la mesa giratoria
4 PLANE SPATIAL FMAX	SPA+0 SPB+90 SPC+0 TURN MBMAX	Inclinar
5 CYCL DEF 14.0	CONTORNO	Determinar el subprograma del contorno
6 CYCL DEF 14.1	ETIQUETA DEL CONTORNO 1	
7 CYCL DEF 27 SU	JPERFICIE CILÍNDRICA	Determinar los parámetros del mecanizado
Q1=-7	;PROFUNDIDAD DE FRESADO	
Q3=+0	;SOBREMEDIDA LATERAL	
Q6=2	;DIST. DE SEGURIDAD	
Q10=4	;PASO DE PROFUNDIZACIÓN	
Q11=100	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	
Q12=250	;AVANCE DE FRESADO	
Q16=25	;RADIO	
Q17=1	;TIPO DE ACOTADO	
8 L C+0 R0 FMAX	M13 M99	Preposicionar mesa redonda, entrar husillo, llamar ciclo
9 L Z+250 R0 FMA	ΛX	Retirar la herramienta
10 PLANE RESET	TURN FMAX	Inclinar hacia atrás, cancelar función PLANE
11 M2		Final del programa
12 LBL 1		Subprograma del contorno
13 L X+40 Y+20 R	RL	Indicación en mm en el eje giratorio (Q17=1)
14 L X+50		
15 RND R7.5		
16 L Y+60		
17 RND R7.5		
18 L IX-20		
19 RND R7.5		
20 L Y+20		
21 RND R7.5		

22 L X+50

23 LBL 0

24 END PGM C27 MM


Ciclos de mecanizado: Superficies cilíndricas

8.5 Ejemplos de programación

Ejemplo: Superficie cilíndrica con ciclo 28

- Cilindro fijo central en la mesa circular
- Máquina con cabezal B y mesa C
- El punto de ref. está en el centro de la mesa giratoria
- Descripción de la trayectoria de punto medio en subprograma del contorno

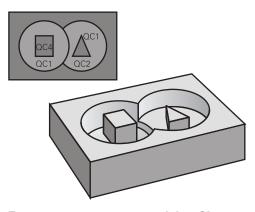
0 BEGIN PGM C28 MM		
1 TOOL CALL 1 Z S2000		Llamada a la hta. , eje de la hta. Z, diámetro 7
2 L Z+250 RO FMAX		Retirar la herramienta
3 L X+50 Y+0 R0 FMAX		Posicionar la hta. sobre el centro de la mesa giratoria
	4+0 SPB+90 SPC+0 TURN FMAX	Inclinar
5 CYCL DEF 14.0 CONTORNO		Determinar el subprograma del contorno
6 CYCL DEF 14.1 ETIQUETA DEL CONTORNO 1		
7 CYCL DEF 28 SUPERFICIE CILÍNDRICA		Determinar los parámetros del mecanizado
Q1=-7	;PROFUNDIDAD DE FRESADO	
Q3=+0	;SOBREMEDIDA LATERAL	
Q6=2	;DIST. DE SEGURIDAD	
Q10=5	;PASO DE PROFUNDIZACIÓN	
Q11=100	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	
Q12=250	;AVANCE DE FRESADO	
Q16=25	;RADIO	
Q17=1	;TIPO DE ACOTADO	
Q20=10	;ANCHURA DE RANURA	
Q21=0.02	;TOLERANCIA	Postmecanizado activo
8 L C+0 R0 FMAX M3	M99	Preposicionar mesa redonda, entrar husillo, llamar ciclo
9 L Z+250 R0 FMAX		Retirar la herramienta
10 PLANE RESET TUR	RN FMAX	Inclinar hacia atrás, cancelar función PLANE
11 M2		Final del programa
12 LBL 1		Subprograma de contorno, descripción de la trayectoria de punto medio
13 L X+60 X+0 RL		Indicación en mm en el eje giratorio (Q17=1)
14 L Y-35		
15 L X+40 Y-52.5		
16 L Y-70		
17 LBL 0		
18 END PGM C28 MM		

9

Ciclos de mecanizado: Cajera de contorno con fórmula de contorno

9.1 Ciclos SL con fórmulas de contorno complejas

9.1 Ciclos SL con fórmulas de contorno complejas


Nociones básicas

Con los ciclos SL y las fórmulas de contorno complejas se fijan contornos complejos a partir de contornos parciales (cajeras o islas). Los subcontornos (datos geométricos) se introducen como subprogramas. De este modo es posible volver a emplear todos los contornos parciales cuando se desee. El TNC calcula el contorno total a partir de los contornos parciales seleccionados, que se unen unos a otros mediante una fórmula de contorno.

La memoria para un ciclo SL (todos los programas de descripción de contorno) se limita a un máximo de **128 contornos**. El número de los elementos del contorno posibles depende del tipo de contorno (interior/exterior) y del número de descripciones de contorno, y asciende a un máximo de **16384** elementos de contorno.

Los ciclos SL con fórmula de contorno presuponen una construcción de programa estructurada y ofrecen la posibilidad de almacenar contornos repetidos en programas individuales. Mediante la fórmula de contorno se liga un subcontorno con un contorno total y se establece si se trata de una cajera o de una isla. La función de ciclos SL con fórmula de contorno divide la superficie de manejo del TNC en varias zonas y sirve de base para desarrollos extensos.

Esquema: procesar con ciclos SL y fórmulas del contorno complejas

O BEGIN PGM CONTORNO MM

...

5 SEL CONTOUR "MODEL"

6 CYCL DEF 20 DATOS CONTORNO...

8 CYCL DEF 22 BROCHAR...

9 CYCL CALL

•••

12 CYCL DEF 23 ACABADO PROFUNDIDAD...

13 CYCL CALL

...

16 CYCL DEF 24 ACABADO LATERAL...

17 CYCL CALL

63 L Z+250 RO FMAX M2

64 END PGM CONTORNO MM

Propiedades de los contornos parciales

- El TNC reconoce fundamentalmente todos los contornos como cajera. No debe programarse la corrección de radio.
- El TNC ignora los avances F y las funciones auxiliares M
- Son posibles las traslaciones de coordenadas. Si se programan dentro de un contorno parcial, también actúan en los siguientes subprogramas, pero no deben ser cancelados después de la llamada al ciclo
- Los subprogramas pueden contener también coordenadas en el eje del cabezal, las cuales se ignoran
- En la primera frase de coordenadas del subprograma se determina el plano de mecanizado.
- Se es necesario, se pueden definir contornos parciales con profundidades diferentes

Características de los ciclos de mecanizado

- El TNC posiciona automáticamente la hta. a la distancia de seguridad antes de cada ciclo
- Cada nivel de profundidad se fresa sin levantar la hta.; las islas se mecanizan por el lateral
- Se puede programar el radio de "esquinas interiores", la hta. no se detiene, se evitan marcas de cortes (válido para la trayectoria más exterior en el Desbaste y en el Acabado lateral)
- En el acabado lateral el TNC efectúa la llegada al contorno sobre una trayectoria circular tangente
- En el acabado en profundidad el TNC desplaza también la hta. sobre una trayectoria circular tangente a la pieza (p.ej. eje de la hta Z: Trayectoria circular en el plano Z/X)
- El TNC mecaniza el contorno de forma continua en sentido sincronizado o a contramarcha

La indicación de cotas para el mecanizado, como la profundidad de fresado, sobremedidas y distancia de seguridad se introducen en el ciclo 20 como DATOS DEL CONTORNO.

Esquema: Cálculo de subcontornos con fórmula de contorno

O BEGIN PGM MODEL MM

- 1 DECLARE CONTOUR QC1 = "CIRCULO1"
- 2 DECLARE CONTOUR QC2 = "CÍRCULOXY" DEPTH15
- 3 DECLARE CONTOUR QC3 = "TRIÁNGULO" DEPTH10
- 4 DECLARE CONTOUR QC4 = "CUADRADO" DEPTH15
- 5 QC10 = (QC1 | QC3 | QC4) \ QC2
- 6 END PGM MODEL MM

O BEGIN PGM CÍRCULO 1 MM

- 1 CC X+75 Y+50
- 2 LP PR+45 PA+0
- 3 CP IPA+360 DR+
- 4 END PGM CÍRCULO 1 MM

0 BEGIN PGM CÍRCULO31XY MM

•••

•••

Ciclos de mecanizado: Cajera de contorno con fórmula de contorno

9.1 Ciclos SL con fórmulas de contorno complejas

Seleccionar programa con definición del contorno

Con la función **SEL CONTOUR** se selecciona un programa con definiciones de contorno, de las cuales el TNC recoge las descripciones de contorno:

 Visualizar la carátula de softkeys con funciones especiales

 Seleccionar menú para funciones para mecanizados de contorno y de puntos

- ▶ Pulsar la softkey SEL CONTOUR
- ► Introducir el nombre completo del programa con las definiciones del contorno. Confirmar con la tecla END

Programar la frase **SEL CONTOUR** antes de los ciclos SL. El ciclo **14 CONTORNO** ya no es necesario si se emplea **SEL CONTOUR**.

Definir descripciones del contorno

Con la función **DECLARE CONTOUR** se le introduce en un programa el camino para programas, de los cuales el TNC extrae las descripciones de contorno. Además se puede seleccionar una profundidad independiente para esta descripción de contorno (función FCL 2):

 Visualizar la carátula de softkeys con funciones especiales

 Seleccionar menú para funciones para mecanizados de contorno y de puntos

- ► Pulsar la softkey DECLARE CONTOUR
- ► Introducir el número para la designación del contorno **QC**. Confirmar con la tecla ENT
- ► Introducir el nombre completo del programa con la descripción del contorno. Confirmar con la tecla END o, si se desea,
- definir profundidades independientes para el contorno seleccionado

Con las designaciones de contorno proporcionadas **QC** es posible incluir varios contornos en la fórmula de contorno.

Cuando utilice contornos con profundidades independientes, deberá asignar a todos los contornos parciales una profundidad (en caso necesario, asignar profundidad 0).

Introducir fórmulas complejas del contorno

Mediante softkeys es posible unir contornos distintos en una fórmula matemática:

 Visualizar la carátula de softkeys con funciones especiales

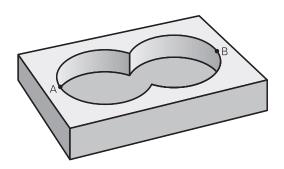
► Seleccionar menú para funciones para mecanizados de contorno y de puntos

► Pulsar la softkey FÓRMULA DEL CONTORNO: el TNC muestra los siguientes softkeys:

Función lógica	Softkey
intersección con p.ej., QC10 = QC1 & QC5	8.0
unión con p.ej., QC25 = QC7 QC18	
unión con, pero sin intersección por ej. QC12 = QC5 ^ QC25	
sin p.ej QC25 = QC1 \ QC2	
Paréntesis abierto p.ej., QC12 = QC1 * (QC2 + QC3)	C
Paréntesis cerrado p.ej., QC12 = QC1 * (QC2 + QC3)	>

Definir el contorno individual

por ej. **QC12 = QC1**


Ciclos de mecanizado: Cajera de contorno con fórmula de contorno

9.1 Ciclos SL con fórmulas de contorno complejas

Contornos superpuestos

El TNC tiene en cuenta fundamentalmente un contorno programado como cajera. Con las funciones de la fórmula del contorno es posible transformar un contorno en una isla

Las cajeras e islas se pueden superponer a un nuevo contorno. De esta forma una superficie de cajera se puede ampliar mediante una cajera superpuesta o reducir mediante una isla.

Subprogramas: Cajeras superpuestas

Los siguientes ejemplos de programación son programas de descripción del contorno, los cuales se definen en un programa de definición del contorno. El programa de definición del contorno se llama, a su vez, a través de la función **SEL CONTOUR** en el mismo programa principal.

Se superponen las cajeras A y B.

El TNC calcula los puntos de intersección S1 y S2, de forma que no hay que programarlos.

Las cajeras se han programado como círculos completos.

Programa de descripción del contorno 1: cajera A

n	BECIN	DCM	CY IED/	MM A

1 L X+10 Y+50 R0

2 CC X+35 Y+50

3 C X+10 Y+50 DR-

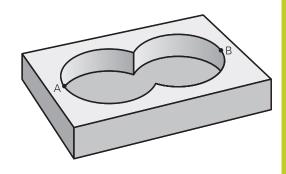
4 END PGM CAJERA_A MM

Programa de descripción de contorno 2: Cajera B

O BEGIN PGM CAJERA_B MM

1 L X+90 Y+50 R0

2 CC X+65 Y+50

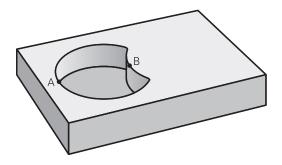

3 C X+90 Y+50 DR-

4 END PGM CAJERA_B MM

"Sumas" de superficies

Se mecanizan las dos superficies parciales A y B incluida la superficie común:

- Las superficies A y B deben programarse por separado sin corrección de radio
- En la fórmula de contorno las superficies A y B se calculan con la función "unión con"


Programa de definición de contorno:

50
51
52 DECLARE CONTOUR QC1 = "CAJERA_A.H"
53 DECLARE CONTOUR QC1 = "CAJERA_B.H"
54 QC10 = QC1 QC2
55
56

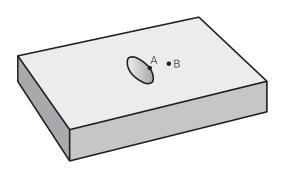
"Resta" de superficies

Se mecanizan la superficie A sin la parte que es común a B:

- Las superficies A y B deben estar programadas en programas separados sin corrección del radio
- En la fórmula del contorno la superficie B se separa de la superficie A con la función sin

Programa de definición de contorno:

50
51
52 DECLARE CONTOUR QC1 = "CAJERA_A.H"
53 DECLARE CONTOUR QC1 = "CAJERA_B.H"
54 QC10 = QC1 \ QC2
55
56


Ciclos de mecanizado: Cajera de contorno con fórmula de contorno

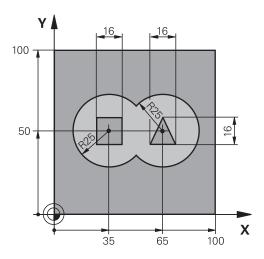
9.1 Ciclos SL con fórmulas de contorno complejas

Superficie de la "intersección"

Se mecaniza la parte común de A y B. (Sencillamente las superficies no comunes permanecen sin mecanizar.)

- Las superficies A y B deben estar programadas en programas separados sin corrección del radio
- En la fórmula de contorno las superficies A y B se calculan con la función "intersección con"

Programa de definición de contorno:


50 ...
51 ...
52 DECLARE CONTOUR QC1 = "CAJERA_A.H"
53 DECLARE CONTOUR QC1 = "CAJERA_B.H"
54 QC10 = QC1 & QC2
55 ...
56 ...

Ejecutar contorno con los ciclos SL

El mecanizado del contorno completo definido se realiza con los ciclos SL 20 - 24 (ver "Resumen", Página 169)

Ejemplo: desbastar y acabar contornos superpuestos con fórmula de contorno

O BEGIN PGM CONTORNO MM		
1 BLK FORM 0.1 Z X+0 Y+0 Z-40		Definición de la pieza en bruto
2 BLK FORM 0.2 X+100 Y+100 Z+0		
3 TOOL DEF 1 L+0 R+2.5		Definición de herramienta con fresa de desbaste
4 TOOL DEF 2 L+0 R+3		Definición de herramienta con fresa de acabado
5 TOOL CALL 1 Z S2500		Llamada de herramienta con fresa de desbaste
6 L Z+250 RO FMAX		Retirar la herramienta
7 SEL CONTOUR "MOI	DEL"	Fijar programa de definición de contorno
8 CYCL DEF 20 DATOS DEL CONTORNO		Determinar los parámetros de mecanizado generales
Q1=-20	;PROFUNDIDAD DE FRESADO	
Q2=1	;SOLAPE DE TRAYECTORIA	
Q3=+0.5	;SOBREMEDIDA LATERAL	
Q4=+0.5	;PROFUNDIDAD DE SOBREMEDIDA	
Q5=+0	;COOR. SUPERFICIE	
Q6=2	;DIST. DE SEGURIDAD	
Q7=+100	;ALTURA SEGURA	
Q8=0.1	;RADIO DE REDONDEO	
Q9=-1	;SENTIDO DE GIRO	

Ciclos de mecanizado: Cajera de contorno con fórmula de contorno

9.1 Ciclos SL con fórmulas de contorno complejas

9 CYCL DEF 22 DESBASTE		Definición del ciclo Desbaste
Q10=5	;PASO DE PROFUNDIZACIÓN	
Q11=100	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	
Q12=350	;AVANCE DESBASTE	
Q18=0	;HERRAMIENTA DE DESBASTE PREVIO	
Q19=150	;AVANCE OSCILACIÓN	
Q401=100	;FACTOR DE AVANCE	
Q404=0	;ESTRATEGIA DE DESBASTE POSTERIOR	
10 CYCL CALL M3		Llamada al ciclo Desbaste
11 TOOL CALL 2 Z S5000		Llamada de herramienta con fresa de desbaste
12 CYCL DEF 23 ACABADO EN PROFUNDIDAD		Definición del ciclo para Acabado en profundidad
Q11=100	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	
Q12=200	;AVANCE DESBASTE	
13 CYCL CALL M3		Llamada al ciclo Acabado en profundidad
14 CYCL DEF 24 ACAE	BADO LATERAL	Definición del ciclo Acabado lateral
Q9=+1	;SENTIDO DE GIRO	
Q10=5	;PASO DE PROFUNDIZACIÓN	
Q11=100	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	
Q12=400	;AVANCE DESBASTE	
Q14=+0	;SOBREMEDIDA LATERAL	
15 CYCL CALL M3		Llamada al ciclo Acabado lateral
16 L Z+250 RO FMAX M2		Retirar la herramienta, final del programa
17 END PGM CONTORNO MM		

Programa de definición de contorno con fórmula de contorno:

0 BEGIN PGM MODEL MM	Programa de definición de contorno
1 DECLARE CONTOUR QC1 = "CIRCULO1"	Definición de la designación del contorno para el programa "CÍRCULO1"
2 FN 0: Q1 =+35	Asignación de valores para parámetros empleados en PGM "CÍRCULO31XY"
3 FN 0: Q2 =+50	
4 FN 0: Q3 =+25	
5 DECLARE CONTOUR QC2 = "CAJERA31XY"	Definición de la designación del contorno para el programa "CÍRCULO31XY"
6 DECLARE CONTOUR QC3 = "TRIÁNGULO"	Definición de la designación del contorno para el programa "TRIÁNGULO"
7 DECLARE CONTOUR QC4 = "CUADRADO"	Definición del indicador de contorno para el programa "CUADRADO"
8 QC10 = (QC 1 QC 2) \ QC 3 \ QC 4	Fórmula del contorno
9 END PGM MODEL MM	

Programa de descripción de contorno:

0 BEGIN PGM CÍRCULO 1 MM	Programa de descripción de contorno: círculo a la derecha
1 CC X+65 Y+50	
2 L PR+25 PA+0 R0	
3 CP IPA+360 DR+	
4 END PGM CÍRCULO 1 MM	
0 BEGIN PGM CÍRCULO31XY MM	Programa de descripción de contorno: círculo de la izquierda
1 CC X+Q1 Y+Q2	
2 LP PR+Q3 PA+0 R0	
3 CP IPA+360 DR+	
4 END PGM CÍRCULO31XY MM	
O BEGIN PGM TRIÁNGULO MM	Programa de descripción del contorno: triángulo de la derecha
1 L X+73 Y+42 R0	
2 L X+65 Y+58	
3 L X+58 Y+42	
4 L X+73	
5 END PGM TRIÁNGULO MM	
0 BEGIN PGM CUADRADO MM	Programa de descripción del contorno: cuadrado de la izquierda
1 L X+27 Y+58 R0	
2 L X+43	
3 L Y+42	
4 L X+27	
5 L Y+58	
6 END PGM CUADRADO MM	

9.2 Ciclos SL con fórmula de contorno simple

9.2 Ciclos SL con fórmula de contorno simple

Fundamentos

Con los ciclos SL y las fórmulas de contorno sencillas se fijan contornos hasta 9 contornos parciales (cajeras o islas) fácilmente. Los subcontornos (datos geométricos) se introducen como subprogramas. De este modo es posible volver a emplear todos los contornos parciales cuando se desee. El TNC calcula el contorno total a partir de los contornos parciales seleccionados.

La memoria para un ciclo SL (todos los programas de descripción de contorno) se limita a un máximo de **128 contornos**. El número de los elementos del contorno posibles depende del tipo de contorno (interior/exterior) y del número de descripciones de contorno, y asciende a un máximo de **16384** elementos de contorno.

Esquema: procesar con ciclos SL y fórmulas del contorno complejas

O BEGIN PGM CONTDEF MM

...

5 CONTOUR DEF P1= "POCK1.H" I2 = "ISLE2.H" DEPTH5 I3 "ISLE3.H" DEPTH7.5

6 CYCL DEF 20 DATOS CONTORNO...

8 CYCL DEF 22 DESBASTE...

9 CYCL CALL

• • •

12 CYCL DEF 23 ACABADO PROFUNDIDAD...

13 CYCL CALL

...

16 CYCL DEF 24 ACABADO LATERAL...

17 CYCL CALL

63 L Z+250 RO FMAX M2

64 END PGM CONTDEF MM

Características de los contornos parciales

- No hay que programar la corrección de radio. En la fórmula del contorno se puede
- El TNC ignora los avances F y las funciones auxiliares M.
- Son posibles las traslaciones de coordenadas. Si se programan dentro de los contornos parciales, actúan también en los subprogramas sucesivos, pero no deben reponerse tras la llamada del ciclo
- Los subprogramas pueden contener asimismo coordenadas en el eje del cabezal, pero éstas se ignoran
- En la primera frase de coordenadas del subprograma se determina el plano de mecanizado.

Características de los ciclos de mecanizado

- El TNC posiciona automáticamente la hta. a la distancia de seguridad antes de cada ciclo
- Cada nivel de profundidad se fresa sin levantar la herramienta;
 las islas se sortean lateralmente
- El radio de "esquinas interiores" es programable la herramienta no permanece inmóvil, se impiden las marcas de corte (es aplicable para la trayectoria más exterior en el desbaste y en el acabado lateral)
- En el acabado lateral el TNC efectúa la llegada al contorno sobre una trayectoria circular tangente
- En el acabado de profundidad, el TNC desplaza la herramienta asimismo sobre una trayectoria circular tangencial en la pieza (p. ej.: eje del cabezal Z: trayectoria circular en plano Z/X)
- El TNC mecaniza el contorno de forma continua en sentido sincronizado o a contramarcha

Los datos de medidas para el mecanizado, tales como profundidad de fresado, sobremedidas y distancia de seguridad se introducen centralizadamente en el ciclo 20 como DATOS DE CONTORNO.

Ciclos de mecanizado: Cajera de contorno con fórmula de contorno

9.2 Ciclos SL con fórmula de contorno simple

Introducir una fórmula sencilla del contorno

Mediante softkeys es posible unir contornos distintos en una fórmula matemática:

► Seleccionar menú para funciones para mecanizados de contorno y de puntos

- Pulsar la softkey CONTOUR DEF: el TNC inicia la introducción de la fórmula del contorno
- ► Introducir el nombre del primer contorno parcial. El primer contorno parcial siempre debe ser la cajera más profunda, confirmar con la tecla ENT

- Determinar mediante softkey, si el siguiente contorno es una cajera o una isla, confirmar con la tecla ENT
- ► Introducir el nombre del segundo contorno parcial, confirmar con la tecla ENT
- En caso necesario, introducir la profundidad del segundo contorno parcial, confirmar con la tecla ENT
- Continuar del modo anteriormente descrito, hasta que se hayan introducido todos los contornos parciales

¡Empezar la lista de contornos parciales siempre con la cajera más profunda!

Cuando el contorno se ha definido como isla, entonces el TNC interpreta la profundidad introducida como altura de isla. ¡Entonces el valor introducido sin signo se refiere a la superficie de la pieza!

¡Si la profundidad se ha introducido con valor 0, entonces en las cajeras actúa la profundidad definida en el ciclo 20, las islas se elevan hasta la superficie de la pieza!

Ejecutar contorno con los ciclos SL

El mecanizado del contorno completo definido se realiza con los ciclos SL 20 - 24 (ver "Resumen", Página 169)

Ciclos de mecanizado: Planeado

10.1 Nociones básicas

10.1 Nociones básicas

Resumen

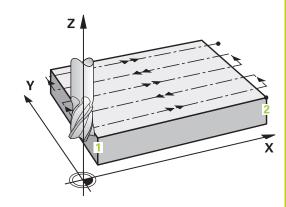
El TNC dispone de tres ciclos para mecanizar superficies con las siguientes características:

- ser planas y rectangulares
- ser planas según un ángulo oblicuo
- estar inclinadas de cualquier forma
- estar unidas entre sí

Ciclo	Softkey	Página
230 PLANEADO Para superficies rectangulares planas	230	221
231 SUPERFICIE REGULAR Para superficies en ángulo oblicuo, inclinadas o torsionadas	231	223
232 FRESADO PLANO Para superficies planas rectangulares, con indicación de sobremedida y varias aproximaciones	232	227

10.2 PLANEADO (Ciclo 230, DIN/ISO: G230)

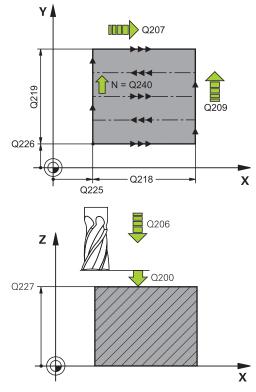
Desarrollo del ciclo


- 1 El TNC posiciona la herramienta en marcha rápida FMAX partiendo de la posición actual en el plano de mecanizado sobre el punto de partida 1; el TNC desplaza la herramienta hacia la derecha y hacia arriba según el radio de la herramienta
- 2 A continuación la herramienta se desplaza con FMAX en el eje de la herramienta a la distancia de seguridad y luego, en avance al profundizar, a la posición de partida programada en el eje de la herramienta
- 3 Luego la herramienta se desplaza con el avance de fresado programado al punto final 2; el punto final lo calcula el TNC a partir del punto de partida programado, de la longitud programada y del radio de la herramienta
- 4 El TNC desplaza la herramienta con avance de fresado transversal sobre el punto de partida de la siguiente línea; el TNC calcula este desplazamiento con la anchura y el número de cortes programados.
- 5 Después la herramienta se retira en dirección negativa al 1er eie.
- 6 El planeado se repite hasta mecanizar completamente la superficie programada
- 7 Al final, el TNC hace retirar la herramienta con **FMAX** hasta la distancia de seguridad

¡Tener en cuenta durante la programación!

El TNC posiciona la herramienta desde la posición actual, primero en el plano de mecanizado y a continuación en el eje de la herramienta sobre el punto de partida.

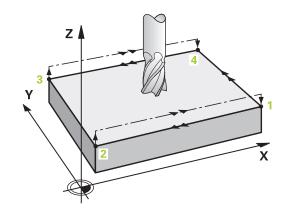
Posicionar previamente la herramienta, de forma que no se produzca ninguna colisión con la pieza o la sujeción.

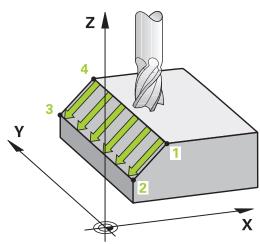


10.2 PLANEADO (Ciclo 230, DIN/ISO: G230)

Parámetros de ciclo

- ▶ Punto de partida 1er eje Q225 (valor absoluto): Coordenadas del punto de partida de la superficie a mecanizar en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Punto de partida 2º eje Q226 (valor absoluto): Coordenadas del punto de partida de la superficie a mecanizar en el eje transversal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Punto de partida del 3er eje O227 (valor absoluto): Altura en el eje de la hta. a la cual se realiza el planeado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Longitud lado 1 Q218 (valor incremental): Longitud de la superficie para el planeado en el eje principal del plano de mecanizado, referida al punto de partida del primer eje. Campo de introducción 0 a 99999,9999
- ► Longitud lado 2 O219 (valor incremental): Longitud de la superficie para el planeado en el eje transversal del plano de mecanizado, referida al punto de partida del segundo eje. Campo de introducción 0 a 99999,9999
- ▶ **Número de cortes** Q240: Número de líneas sobre las cuales el TNC desplaza la hta. a lo ancho de la pieza. Campo de introducción 0 a 99999
- Avance al profundizar Q206: Velocidad de desplazamiento de la hta. durante el desplazamiento a profundidad en mm/min. Campo de introducción 0 a 99999,9999 alternativo FAUTO, FU, FZ
- Avance al fresar Q207: velocidad de desplazamiento de la herramienta al fresar en mm/min. Campo de introducción 0 a 99999,999 alternativamente FAUTO, FU, FZ
- Avance transversal Q209: Velocidad de desplazamiento de la hta. para la llegada a la línea siguiente en mm/min; cuando la hta. se aproxima a la pieza transversalmente, se introduce Q209 menor a Q207; cuando se desplaza transversalmente en vacío, Q209 puede ser mayor a Q207. Campo de introducción 0 a 99999.9999 alternativo FAUTO, FU, FZ
- ▶ **Distancia de seguridad** Q200 (valor incremental): Distancia entre el extremo de la hta. y la profundidad de fresado para el posicionamiento al principio y al final del ciclo. Campo de introducción 0 a 99999.9999


Frases NC


PLANEAR 71 CYCL DEF 230		
Q225=+10	;PUNTO DE PARTIDA 1. EJE	
Q226=+12	;PUNTO DE PARTIDA 2. EJE	
Q227=+2.5	;PUNTO DE PARTIDA 3. EJE	
Q218=150	;LONGITUD LADO 1	
Q219=75	;LONGITUD LADO 2	
Q240=25	;NÚMERO DE CORTES	
Q206=150	;AVANCE AL PROFUNDIZAR	
Q207=500	;AVANCE AL FRESAR	
Q209=200	;AVANCE AL FRESAR	
Q200=2	;DIST. DE SEGURIDAD	

10.3 SUPERFICIE REGLADA (Ciclo 231, DIN/ISO: G231)

Desarrollo del ciclo

- 1 El TNC posiciona la herramienta, partiendo de la posición actual con un movimiento recto en 3D, en el punto de partida 1
- 2 A continuación, la herramienta se desplaza, con el avance al fresar programado, hasta el punto final 2
- 3 Allí el TNC desplaza la herramienta en marcha rápida **FMAX**, según el diámetro de la herramienta, en la dirección positiva del eje de la herramienta y luego la hace volver al punto de partida 1
- 4 En el punto de partida 1, el TNC desplaza de nuevo la herramienta hasta el último valor Z al que se había accedido
- 5 A continuación, el TNC desplaza la herramienta en los tres ejes partiendo del punto 1 en dirección al punto 4 en la línea siguiente
- 6 Después el TNC desplaza la hta. hasta el punto final de esta línea. El TNC calcula el punto final según el punto 2 y un movimiento en dirección al punto 3
- 7 El planeado se repite hasta mecanizar completamente la superficie programada
- 8 Al final el TNC posiciona la hta. según el diámetro de la misma sobre el punto más elevado programado en el eje de la hta.

10.3 SUPERFICIE REGLADA (Ciclo 231, DIN/ISO: G231)

Dirección de corte

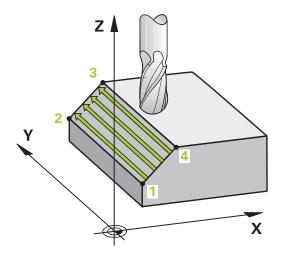
El punto inicial y con él la dirección de fresado son de libre elección, ya que el TNC desplaza los cortes del punto 1 al punto 2 y recorre el proceso completo del punto 1 / 2 al punto 3 / 4. Se puede establecer el punto 1 en cualquier esquina de la superficie a mecanizar.

La calidad de la superficie al utilizar una fresa cilíndrica se puede optimizar:

- A través del corte del filo (punto 1 de coordenadas de eje del cabezal mayor que el punto 2 de coordenadas de eje del cabezal) en superficies poco inclinadas.
- A través de corte de arrastre (punto 1 de coordenadas de eje del cabezal menor que el punto 2 de coordenadas de eje del cabezal) en superficies fuertemente inclinadas.
- En superficies torsionadas, establecer la dirección del movimiento principal (del punto 1 al punto 2) en la dirección de la inclinación más fuerte

La calidad de la superficie al utilizar una fresa esférica se puede optimizar:

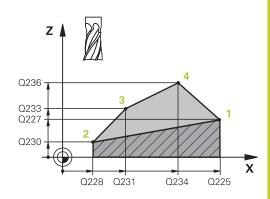
 En superficies torsionadas, establecer la dirección del movimiento principal (del punto 1 al punto 2) perpendicular a la dirección de la inclinación más fuerte

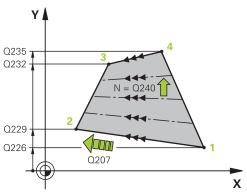

¡Tener en cuenta durante la programación!

El TNC posiciona la hta. desde la posición actual sobre el punto de partida 1 con un movimiento 3D. Posicionar previamente la herramienta de modo que no pueda producirse ninguna colisión con la pieza o con la sujeción

El TNC desplaza la hta. con corrección de radio **RO** entre las posiciones programadas.

Si es preciso utilizar una fresa con dentado frontal cortante en el centro (DIN 844) o pretaladrado con el ciclo 21.




SUPERFICIE REGLADA (Ciclo 231, DIN/ISO: G231) 10.3

Parámetros de ciclo

- ► Punto de partida 1er eje Q225 (valor absoluto): Coordenadas del punto de partida de la superficie a mecanizar en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Punto de partida 2º eje Q226 (valor absoluto): Coordenadas del punto de partida de la superficie a mecanizar en el eje transversal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- Punto de partida 3er eje Q227 (valor absoluto): Coordenada del punto de partida de la superficie a planear en el eje de la hta. Campo de introducción -99999,9999 a 99999,9999
- ▶ 2º punto 1er eje O228 (valor absoluto): Coordenada del pto. final de la superficie a planear en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- 2º punto del 2º eje Q229 (valor absoluto): Coordenada del pto. final de la superficie a planear en el eje transversal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- 2º punto 3er eje Q230 (valor absoluto): Coordenada del pto. final de la superficie a planear en el eje de la hta. Campo de introducción -99999,9999 a 99999,9999
- ▶ **3er punto del 1er eje** Q231 (valor absoluto): Coordenada del **3er** punto en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ **3er punto del 2º eje** Q232 (valor absoluto): Coordenada del **3er** punto en el eje transversal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 3er punto del 3er eje Q233 (valor absoluto): Coordenada del 3er punto en el eje de la hta. Campo de introducción -99999,9999 a 99999,9999
- 4er punto del 1er eje Q234 (valor absoluto): Coordenada del 4º punto en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- 4º punto del 2º eje O235 (valor absoluto): Coordenada del 4º punto en el eje transversal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- 4º punto del 3er eje Q236 (valor absoluto): Coordenada del 4º punto en el eje de la hta. Campo de introducción -99999,9999 a 99999,9999

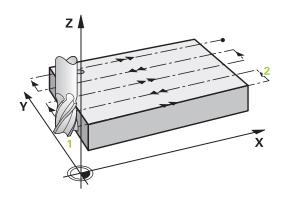
Bloques NC

Dioquos ito
72 CYCL DEF 231 SUPERFICIE REGULAR
Q225=+0 ;PUNTO DE PARTIDA 1ER EJE
Q226=+5 ;PUNTO DE PARTIDA 2° EJE
Q227=-2 ;PUNTO DE PARTIDA 3ER EJE
Q228=+100;2° PUNTO 1ER EJE
Q229=+15 ;2° PUNTO 2° EJE
Q230=+5 ;2° PUNTO 3ER EJE
Q231=+15 ;3ER PUNTO 1ER EJE
Q232=+125;3ER PUNTO 2° EJE
Q233=+25 ;3ER PUNTO 3ER EJE
Q234=+15 ;4° PUNTO 1ER EJE
Q235=+125;4° PUNTO 2° EJE
Q236=+25 ;4° PUNTO 3ER EJE
Q240=40 ;NÚMERO DE CORTES
Q207=500 ;AVANCE AL FRESAR

10.3 SUPERFICIE REGLADA (Ciclo 231, DIN/ISO: G231)

- Número de cortes Q240: Número de filas que el TNC debe desplazar entre los puntos 1 y 4, o bien entre los puntos 2 y 3. Campo de introducción 0 a 99999
- ▶ Avance de fresado Q207: Velocidad de desplazamiento de la hta. durante el fresado en mm/min. El TNC realiza el primer corte con la mitad del valor programado. Campo de introducción 0 a 99999,999 alternativo FAUTO, FU, FZ

10.4 PLANEAR CON FRESA (Ciclo 232, DIN/ISO: G232)

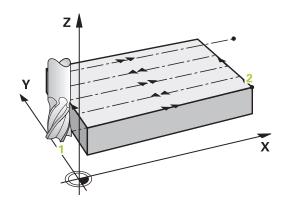

Desarrollo del ciclo

Con el ciclo 232 se pueden fresar superficies en varias pasadas y teniendo en cuenta una sobremedida de acabado. Para ello están disponibles tres estrategias de mecanizado:

- **Estrategia Q389=0**: Mecanizar en forma de meandro, incremento lateral por fuera de la superficie a mecanizar
- Estrategia Q389=1: Mecanizar en forma de meandro, incremento lateral por dentro de la superficie a mecanizar
- **Estrategia Q389=2**: Mecanizar línea a línea, retroceso e incremento lateral con avance de posicionamiento
- 1 El TNC posiciona la herramienta en marcha rápida **FMAX** sobre el punto de partida **1** con la lógica de posicionamiento partiendo de la posición actual: si la posición actual en el eje de la herramienta es superior a la de la 2ª distancia de seguridad, el TNC desplaza la herramienta primeramente en el plano de mecanizado y luego en el eje de la herramienta, de lo contrario la desplaza primeramente a la 2ª distancia de seguridad y luego en el plano de mecanizado. El punto de partida en el plano de mecanizado se encuentra desplazado junto a la pieza según el radio de la herramienta y según la distancia de seguridad lateral.
- 2 A continuación, la herramienta se desplaza con avance de posicionamiento en el eje de la herramienta hasta la primera profundidad de aproximación calculada por el TNC

Estrategia Q389=0

- 3 A continuación, la herramienta se desplaza, con el avance al fresar programado, hasta el punto final 2 El punto final se encuentra **fuera de** la superficie, el TNC lo calcula a partir del punto de partida programado, de la longitud programada, de la distancia de seguridad lateral programada y del radio de la herramienta
- 4 El TNC desplaza la herramienta, con avance de posicionamiento previo transversalmente, hasta el punto de partida de la siguiente línea; el TNC calcula este desplazamiento a partir de la anchura programada, del radio de la herramienta y del factor de solapamiento de trayectoria máximo
- 5 Luego la herramienta retorna al punto de partida 1
- 6 El proceso se repite hasta mecanizar completamente la superficie programada. Al final de la última trayectoria se realiza la aproximación a la siguiente profundidad de mecanizado
- 7 Para evitar recorridos en vacío, la superficie se mecaniza a continuación siguiendo el orden secuencial inverso.
- 8 El proceso se repite hasta que se hayan ejecutado todas las aproximaciones. En la última aproximación, en el avance de acabado se fresará únicamente la sobremedida de acabado programada.
- 9 Al final, el TNC hace retirar la herramienta con **FMAX** hasta la 2ª distancia de seguridad


10.4 PLANEAR CON FRESA (Ciclo 232, DIN/ISO: G232)


Estrategia Q389=1

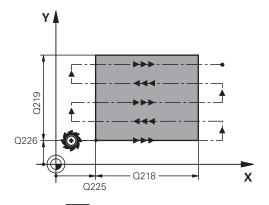
- 3 A continuación, la herramienta se desplaza, con el avance al fresar programado, hasta el punto final 2 El punto final se encuentra dentro de la superficie, el TNC lo calcula a partir del punto de partida programado, de la longitud programada y del radio de la herramienta
- 4 El TNC desplaza la herramienta, con avance de posicionamiento previo transversalmente, hasta el punto de partida de la siguiente línea; el TNC calcula este desplazamiento a partir de la anchura programada, del radio de la herramienta y del factor de solapamiento de trayectoria máximo
- 5 Luego la herramienta retorna al punto de partida 1 El desplazamiento hasta la línea siguiente se vuelve a realizar dentro de la pieza
- 6 El proceso se repite hasta mecanizar completamente la superficie programada. Al final de la última trayectoria se realiza la aproximación a la siguiente profundidad de mecanizado
- 7 Para evitar recorridos en vacío, la superficie se mecaniza a continuación siguiendo el orden secuencial inverso.
- 8 El proceso se repite hasta que se hayan ejecutado todas las aproximaciones. En la última aproximación, en el avance de acabado se fresará únicamente la sobremedida de acabado programada.
- 9 Al final, el TNC hace retirar la herramienta con FMAX hasta la 2ª distancia de seguridad

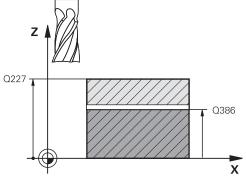
Estrategia Q389=2

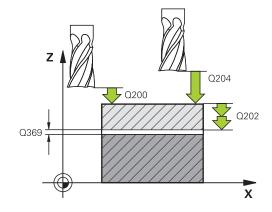
- 3 A continuación, la herramienta se desplaza, con el avance al fresar programado, hasta el punto final 2 El punto final se encuentra fuera de la superficie, el TNC lo calcula a partir del punto de partida programado, de la longitud programada, de la distancia de seguridad lateral programada y del radio de la herramienta
- 4 El TNC hace desplazar la herramienta en el eje de la herramienta hasta la distancia de seguridad sobre la profundidad de aproximación actual y la hace retornar en avance de posicionamiento previo directamente hasta el punto de partida de la línea siguiente. El TNC calcula el desplazamiento a partir de la anchura programada, del radio de la herramienta y del factor de solapamiento de trayectoria máximo
- 5 Luego la herramienta retorna de nuevo a la profundidad de aproximación actual, y a continuación se dirige de nuevo al punto final 2
- 6 El proceso de planeado se repite hasta mecanizar completamente la superficie programada. Al final de la última trayectoria se realiza la aproximación a la siguiente profundidad de mecanizado
- 7 Para evitar recorridos en vacío, la superficie se mecaniza a continuación siguiendo el orden secuencial inverso.
- 8 El proceso se repite hasta que se hayan ejecutado todas las aproximaciones. En la última aproximación, en el avance de acabado se fresará únicamente la sobremedida de acabado programada.
- 9 Al final, el TNC hace retirar la herramienta con FMAX hasta la 2ª distancia de seguridad

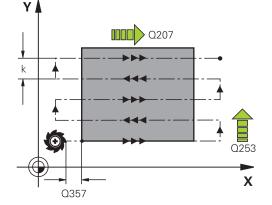
¡Tener en cuenta durante la programación!

Programar la 2ª distancia de seguridad Q204 de tal modo que no pueda producirse ninguna colisión con la pieza o con la sujeción.


Si el punto de inicio 3er eje Q227 y el punto final 3er eje Q386 introducidos son iguales, el TNC no realizará el ciclo (Profundidad = 0 programado).


10.4 PLANEAR CON FRESA (Ciclo 232, DIN/ISO: G232)

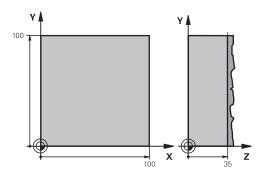

Parámetros de ciclo



- ► Estrategia de mecanizado (0/1/2) Q389: Determinar cómo debe mecanizar el TNC la superficie:
 - **0**: Mecanizar en forma de meandro, incremento lateral con avance de posicionamiento por fuera de la superficie a mecanizar
 - 1: Mecanizar en forma de meandro, incremento lateral con avance de fresado por dentro de la superficie a mecanizar
 - 2: mecanizar línea a línea, retroceso e incremento lateral con avance de posicionamiento
- ▶ Punto de partida 1er eje Q225 (valor absoluto): Coordenadas del punto de partida de la superficie a mecanizar en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Punto de partida 2º eje Q226 (valor absoluto): Coordenadas del punto de partida de la superficie a mecanizar en el eje transversal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Punto de partida del 3er. eje Q227 (absoluto): Coordenada de la superficie de la pieza, a partir de la cual se deben calcular las aproximaciones. Campo de introducción -99999,9999 a 99999,9999
- ▶ Punto final del 3er. eje Q386 (absoluto): Coordenada en el eje de la herramienta sobre la que se debe realizar el fresado plano de la superficie. Campo de introducción -99999,9999 a 99999,9999
- ▶ Longitud lado 1 Q218 (valor incremental): Longitud de la superficie a mecanizar en el eje principal del plano de mecanizado. A través del signo se puede determinar la dirección de la primera trayectoria de fresado referida al punto de partida del 1er. eje. Campo de introducción -99999,9999 a 99999,9999
- ▶ Longitud lado 2 Q219 (valor incremental): Longitud de la superficie a mecanizar en el eje transversal del plano de mecanizado. A través del signo se puede determinar la dirección de la primera aproximación transversal referida al punto de partida del 2° eje. Campo de introducción -99999,9999 a 99999,9999
- ▶ Profundidad de aproximación máxima Q202 (incremental): Medida a la que la herramienta correspondiente se aproxima como máximo. El TNC calcula la profundidad de aproximación real de la diferencia entre el punto final y el de arranque en el eje de la herramienta considerando la sobremedida de acabado de tal forma que se mecanicen con la misma profundidad de aproximación. Campo de introducción 0 a 99999,9999

PLANEAR CON FRESA (Ciclo 232, DIN/ISO: G232) 10.4

- Profundidad de sobremedida de acabado Q369 (incremental): Valor con el que se debe desplazar la última aproximación. Campo de introducción 0 a 99999,9999
- Máx. factor de solapamiento de trayectoria Q370: Aproximación lateral máxima k.El TNC calcula la aproximación real lateral según la segunda longitud lateral (Q219) y el radio de la herramienta de tal forma que se mecanice correspondientemente con aproximación constante lateral. Si se ha introducido en la tabla de herramientas un radio R2 (por ej. radio de discos en la utilización de un cabezal lector), el TNC disminuye la aproximación lateral correspondiente. Campo de introducción 0,1 a 1,9999
- Avance al fresar Q207: velocidad de desplazamiento de la herramienta al fresar en mm/min. Campo de introducción 0 a 99999,999 alternativamente FAUTO, FU, FZ
- Avance acabado Q385: Velocidad de desplazamiento de la hta. durante el fresado de la última aproximación en mm/min. Campo de introducción 0 a 99999,9999 alternativo FAUTO, FU, FZ
- ▶ Avance de posicionamiento previo Q253: Velocidad de recorrido de la herramienta en el desplazamiento desde la posición de partida y en desplazamiento a la próxima línea en mm/min; si se desplaza en el material transversalmente (Q389=1), el TNC desplaza la aproximación transversal con el avance de fresado Q207. Campo de introducción 0 a 99999,9999 alternativo FMAX, FAUTO
- Distancia de seguridad Q200 (valor incremental):
 Distancia entre el extremo de la hta. y la posición de partida en el eje de la herramienta. Si se fresa con la estrategia de mecanizado Q389=2, el TNC desplaza el punto de arranque según la distancia de seguridad desde la profundidad de aproximación actual a la próxima línea. Campo de introducción 0 a 99999,9999
- ▶ Distancia de seguridad lateral Q357 (incremental): distancia lateral de la herramienta desde la pieza en el desplazamiento según la primera profundidad de aproximación y a la distancia a la que la aproximación lateral se desplaza en la estrategia de mecanizado Q389=0 y Q389=2. Campo de introducción 0 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 a 99999,9999 alternativo PREDEF


Bloques NC

FRESADO PLANO 71 CYCL DEF 232		
Q389=2	;ESTRATEGIA	
Q225=+10	;PUNTO DE PARTIDA 1. EJE	
Q226=+12	;PUNTO DE PARTIDA 2. EJE	
Q227=+2.5	;PUNTO DE PARTIDA 3. EJE	
Q386=-3	;PUNTO FINAL 3ER EJE	
Q218=150	;LONGITUD LADO 1	
Q219=75	;LONGITUD LADO 2	
Q202=2	;MÁX. PROFUNDIDAD DE APROXIMACIÓN	
Q369=0.5	;PROFUNDIDAD DE SOBREMEDIDA	
Q370=1	;SOLAPAMIENTO MÁXIMO	
Q207=500	;AVANCE AL FRESAR	
Q385=800	;AVANCE DE ACABADO	
Q253=2000	;AVANCE DE POSICIONAMIENTO PREVIO	
Q200=2	;DIST. DE SEGURIDAD	
Q357=2	;DIST. DE SEGURIDAD LATERAL	
Q204=2	;2ª DIST. DE SEGURIDAD	

10.5 Ejemplos de programación

10.5 Ejemplos de programación

Ejemplo: Planeado

O BEGIN PGM C230 A	MM	
1 BLK FORM 0.1 Z X	+0 Y+0 Z+0	Definición de la pieza en bruto
2 BLK FORM 0.2 X+1	00 Y+100 Z+40	
3 TOOL CALL 1 Z S3	500	Llamada a una herramienta
4 L Z+250 R0 FMAX		Retirar la herramienta
PLANEAR 5 CYCL DE	F 230	Definición del ciclo Planeado
Q225=+0	;PUNTO DE PARTIDA 1ER EJE	
Q226=+0	;PUNTO DE PARTIDA 2º EJE	
Q227=+35	;PUNTO DE PARTIDA 3. EJE	
Q218=100	;LONGITUD LADO 1	
Q219=100	;LONGITUD LADO 2	
Q240=25	;NÚMERO DE CORTES	
Q206=250	;AVANCE DE APROXIMACIÓN DE PROFUNDIDAD	
Q207=400	;AVANCE AL FRESAR	
Q209=150	;AVANCE TRANSVERSAL	
Q200=2	;DIST. DE SEGURIDAD	
6 L X+-25 Y+0 R0 FA	MAX M3	Posicionamiento previo cerca del punto de partida
7 CYCL CALL		Llamada al ciclo
8 L Z+250 R0 FMAX	M2	Retirar la herramienta, final del programa
9 END PGM C230 MM	l	

Ciclos: Conversiones de coordenadas

11.1 Fundamentos

11.1 Fundamentos

Resumen

Con la traslación de coordenadas se puede realizar un contorno programado una sola vez, en diferentes posiciones de la pieza con posición y medidas modificadas. El TNC dispone de los siguientes ciclos para la traslación de coordenadas:

Ciclo	Softkey	Página
7 PUNTO CERO Trasladar contornos directamente en el programa o desde tablas de punto cero	7	235
247 FIJAR PUNTO DE REFERENCIA Fijar punto de referencia durante la ejecución del programa	247	241
8 SIMETRÍAS Realizar simetrías de contornos	8	242
10 GIRO Girar contornos en el plano de mecanizado	10	243
11 FACTOR DE ESCALA Reducir o ampliar contornos	11	245
26 FACTOR DE ESCALA ESPECÍFICO DEL EJE Reducir o ampliar contornos con factores de escala específicos del eje	26 CC	246
19 PLANO DE MECANIZADO Realizar los mecanizado en el sistema de coordinadas inclinado para máquinas con cabezales basculantes y/o mesas giratorias	19	248

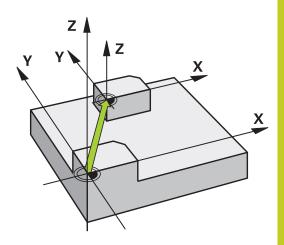
Activación de la traslación de coordenadas

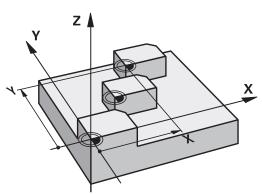
Principio de activación: una traslación de coordenadas se activa a partir de su definición, es decir, no es preciso llamarla. La traslación actúa hasta que se anula o se define una nueva.

Anulación de la traslación de coordenadas:

- Definición del ciclo con los valores para el comportamiento básico, p.ej. factor de escala 1.0
- Ejecución de las funciones auxiliares M2, M30 o la frase END PGM (depende del parámetro de máquina clearMode)
- Selección de un nuevo programa

11.2 Traslación del PUNTO CERO (Ciclo 7, DIN/ISO: G54)


Funcionamiento


Con el DESPLAZAMIENTO DEL PUNTO CERO se pueden repetir mecanizados en cualquier otra posición de la pieza.

Después de la definición del ciclo DESPLAZAMIENTO DEL PUNTO CERO, las coordenadas se refieren al nuevo punto del cero pieza. El desplazamiento en cada eje se visualiza en la visualización de estados adicional. También se pueden programar ejes giratorios.

Anulación

- Programar el desplazamiento a las coordenadas X=0; Y=0 mediante nueva definición de ciclo
- A partir de la tabla de puntos cero, llamar la traslación a las coordenadas X=0; Y=0 etc.

Parámetros de ciclo

► Traslación: se introducen las coordenadas del nuevo punto cero; los valores absolutos se refieren al punto cero de la pieza, determinado mediante la fijación del punto de referencia; los valores incrementales se refieren al último punto cero de la pieza válido; si se desea, éste puede ya estar trasladado. Campo de introducción de hasta 6 ejes NC, cada uno de -99999,9999 a 99999,9999

Bloques NC

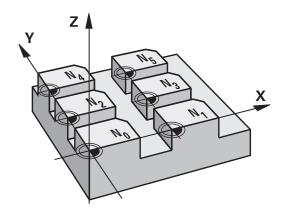
13 CYCL DEF 7.0 PUNTO CERO

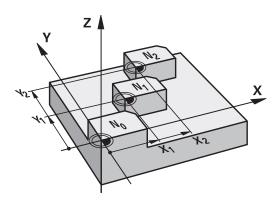
14 CYCL DEF 7.1 X+60

16 CYCL DEF 7.3 Z-5

15 CYCL DEF 7.2 Y+40

11.3 Traslación del PUNTO CERO con tablas de punto cero (ciclo 7, DIN/ISO: G53)


11.3 Traslación del PUNTO CERO con tablas de punto cero (ciclo 7, DIN/ISO: G53)


Efecto

Las tablas de puntos cero se utilizan p.ej. en

- pasos de mecanizado que se repiten con frecuencia en diferentes posiciones de la pieza o
- cuando se utiliza a menudo el mismo desplazamiento de punto cero

Dentro de un programa los puntos cero se pueden programar directamente en la definición del ciclo o bien se pueden llamar de una tabla de puntos cero.

Resetear

- A partir de la tabla de puntos cero, llamar la traslación a las coordenadas X=0; Y=0 etc.
- El desplazamiento a las coordenadas X=0; Y=0 etc. se llama directamente con una definición del ciclo

Visualizaciones de estados

En las visualizaciones de estado adicionales se visualizan los siguientes datos desde la tabla de puntos cero:

- Nombre y camino de la tabla de puntos cero activa
- Número de punto cero activo
- Comentario de la columna DOC del número de punto cero activo

¡Tener en cuenta durante la programación!

¡Atención: Peligro de colisión!

Los puntos cero de la tabla de punto cero se refieren **siempre y exclusivamente** al punto de referencia actual (preset).

Cuando se utilizan desplazamientos del punto cero con tablas de puntos cero, se emplea la función **SEL TABLE**, para poder activar la tabla de puntos cero deseada desde el programa NC.

Si se trabaja sin **SEL TABLE** entonces hay que activar la tabla de puntos cero deseada antes del test o la ejecución del programa (también válido para el gráfico de programación):

- Seleccionar la tabla deseada para el test del programa en un modo de funcionamiento de Test del programa mediante la gestión de ficheros: La tabla adopta el estado S
- Al seleccionar la tabla deseada para la ejecución del programa en un modo de funcionamiento de Ejecución del programa mediante la gestión de ficheros, en la tabla aparece el estado M

Los valores de las coordenadas de las tablas de cero pieza son exclusivamente absolutas.

Solo se pueden añadir nuevas líneas al final de la tabla.

Si se crean tablas de puntos cero, el nombre del fichero debe empezar con una letra

Parámetros de ciclo

Traslación: introducir el número del punto cero de la tabla de puntos cero o un parámetro Ω; si se introduce un parámetro Q, el TNC activa el número de punto cero del parámetro Q. Campo de introducción 0 a 9999

Frases NC

77 CYCL DEF 7.0 PUNTO CERO 78 CYCL DEF 7.1 #5

11.3 Traslación del PUNTO CERO con tablas de punto cero (ciclo 7, DIN/ISO: G53)

Seleccionar la tabla de puntos cero en el programa NC

Con la función **SEL TABLE** se selecciona la tabla de puntos cero, de la cual el TNC obtiene los puntos cero:

- Seleccionar las funciones para la llamada de programa: pulsar la tecla PGM CALL
- ▶ Pulsar la softkey TABLA PTOS. CERO
- Introducir el nombre completo de búsqueda de la tabla de puntos cero o seleccionar un fichero con la softkey SELECCIONAR y confirmar con la tecla END.

Programar la frase **SEL TABLE** antes del ciclo 7 Desplazamiento del punto cero.

Una tabla de puntos cero seleccionada con **SEL TABLE** permanece activa hasta que se selecciona otra tabla de puntos cero con **SEL TABLE** o con PGM MGT.

Editar la tabla de puntos cero en el modo de funcionamiento Memorizar/Editar programa

Después de haber modificado un valor en la tabla de puntos cero, se debe guardar la modificación con la tecla ENT. De lo contrario no se tomará en cuenta la modificación en el proceso de un programa.

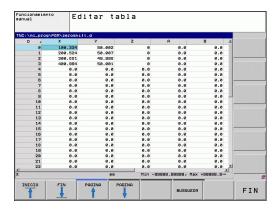
La tabla de puntos cero se selecciona en el modo de funcionamiento **Memorizar/Editar programa**

- ▶ Ir a la gestión de ficheros: pulsar la tecla PGM MGT
- ▶ Visualización de tablas de puntos cero: Pulsar las softkeys SELECC. TIPO y MOSTRAR .D
- Seleccionar la tabla deseada o introducir un nuevo nombre de fichero
- Edición de un fichero. La carátula de softkeys indica las siguientes funciones:

Función	Softkey
Seleccionar el principio de la tabla	INICIO
Seleccionar el final de la tabla	FIN
Pasar página hacia arriba	PAGINA
Pasar página a página hacia abajo	PAGINA
Añadir línea (sólo es posible al final de la tabla)	INSERTAR LINEA

Traslación del PUNTO CERO con tablas de punto cero (ciclo 7, DIN/ ISO: G53)

Función	Softkey
Borrar línea	BORRAR LINEA
Buscar	BUSQUEDA
Cursor al principio de la línea	INICIO FILAS
Cursor al final de la línea	FINAL FILAS
Copiar el valor actual	COPIAR VALOR ACTUAL
Añadir el valor copiado	INSERTAR VALOR COPIADO
Añadir el número de líneas (puntos cero) programadas al final de la tabla	AÑADIR LINEAS N AL FINAL


11.3 Traslación del PUNTO CERO con tablas de punto cero (ciclo 7, DIN/ISO: G53)

Configuración de la tabla de puntos cero

Si no se desea definir para un eje activo ningún punto cero, pulsar la tecla DEL. Entonces el TNC borra el valor numérico del campo de introducción correspondiente.

Se pueden modificar las propiedades de las tablas. Para ello, en el menú MOD se introduce el código 555343. Entonces, el TNC ofrece la softkey EDITAR FORMATO al seleccionar una tabla. Al pulsar esta softkey, el TNC muestra una ventana superpuesta con las columnas de la tabla seleccionada con sus propiedades respectivas. Las modificaciones solo se aplican para la tabla abierta.

Salida de la tabla de puntos cero

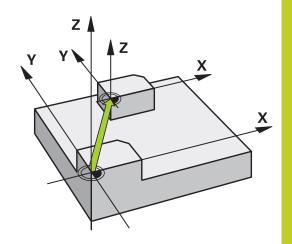
Se visualiza otro tipo de fichero en la gestión de ficheros y se selecciona el fichero deseado.

Después de haber modificado un valor en la tabla de puntos cero, se debe guardar la modificación con la tecla ENT. De lo contrario, el TNC no tendrá en cuenta la modificación en el proceso de un programa.

Visualizaciones de estados

En las visualizaciones de estado adicionales se visualizan los valores del desplazamiento activo del punto cero.

11.4 FIJAR PUNTO DE REFERENCIA (Ciclo 247, DIN/ISO: G247)


Efecto

Con el ciclo FIJAR PUNTO REFERENCIA se puede activar un preset definido en una tabla de presets como nuevo punto de referencia.

Después de la definición del ciclo FIJAR PUNTO REFERENCIA todas las coordenadas y desplazamientos del punto cero (absolutas e incrementales) se refieren al nuevo preset.

Visualización de estados

En la visualización de estado el TNC muestra el número de preset activo tras el símbolo del punto de referencia.

¡Tener en cuenta antes de la programación!

Al activar un punto de referencia a partir de la tabla de Preset, el TNC repone la traslación del punto cero, la creación de simetrías, el giro, el factor de escala y el factor de escala específico del eje

Cuando se active el número preset 0 (fila 0), activar entonces el punto de referencia que se haya fijado por última vez en modo manual.

En el modo de funcionamiento Test del programa no se puede activar el ciclo 247.

Parámetros de ciclo

▶ ¿Número para el punto de referencia?: introducir número del punto de referencia de la tabla de presets, que debe ser activado. Campo de introducción 0 a 65535

Frases NC

13 CYCL DEF 247 FIJAR PUNTO DE REFERENCIA

Q339=4

;NÚMERO DE PUNTO DE REFERENCIA

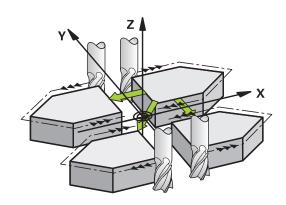
Visualizaciones de estados

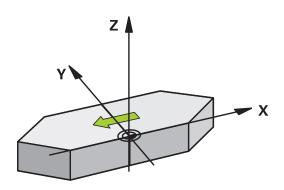
En la visualización adicional de estado (VISUALIZACIÓN DE POSICIÓN DE ESTADO) el TNC muestra el número de preset activo tras el diálogo **punto de referencia**.

11.5 CREAR SIMETRÍA (Ciclo 8, DIN/ISO: G28)

11.5 CREAR SIMETRÍA (Ciclo 8, DIN/ISO: G28)

Efecto


El TNC puede realizar un mecanizado espejo en el plano de mecanizado.


El ciclo espejo se activa a partir de su definición en el programa. También actúa en el modo de funcionamiento Posicionamiento manual. El TNC muestra los ejes espejo activados en la visualización de estados adicional.

- Si solo se refleja un eje, se modifica el sentido de desplazamiento de la hta. Esto no es válido en los ciclos SL.
- Cuando se reflejan dos ejes, no se modifica el sentido de desplazamiento.

El resultado del espejo depende de la posición del punto cero:

- El punto cero está sobre el contorno a reflejar: La trayectoria se refleja directamente en el punto cero,
- El punto cero está fuera del contorno a reflejar: La trayectoria se prolonga;

Resetear

Programar de nuevo el ciclo ESPEJO (crear simetría) con la introducción NO FNT.

¡Tener en cuenta durante la programación!

Si únicamente se crea simetría de un eje, se modifica el sentido de giro en los ciclos de fresado con el número 2xx Excepción: ciclo 208, en el cual se mantiene el sentido definido en el ciclo.

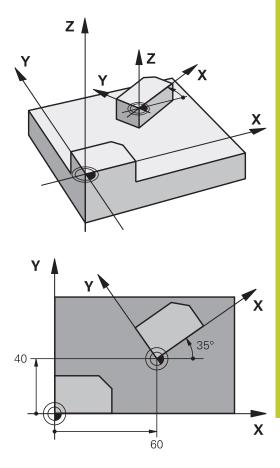
Parámetros de ciclo

¿Eje reflejado?: introducir el eje, que se quiere reflejar; se pueden reflejar todos los ejes, incluidos los ejes giratorios, a excepción del eje del cabezal y de su correspondiente eje auxiliar. Se pueden programar un máximo tres ejes. Campo de introducción de hasta 3 ejes NC X, Y, Z, U, V, W, A, B, C

Frases NC

79 CYCL DEF 8.0 ESPEJO 80 CYCL DEF 8.1 X Y Z

11.6 GIRO (Ciclo 10, DIN/ISO: G73)


Efecto

Dentro de un programa el TNC puede girar el sistema de coordenadas en el plano de mecanizado según el punto cero activado.

El GIRO se activa a partir de su definición en el programa. También actúa en el modo de funcionamiento Posicionamiento manual. El TNC visualiza los ángulo de giro activados en la visualización de estados adicional.

Eje de referencia para el ángulo de giro:

- Plano X/Y Eje X
- Plano Y/Z Eje Y
- Plano Z/X Eje Z

Resetear

Se programa de nuevo el ciclo GIRO indicando el ángulo de giro 0°.

¡Tener en cuenta durante la programación!

El TNC elimina una corrección de radio activada mediante la definición del ciclo 10. Si es necesario, programar nuevamente la corrección del radio. Después de definir el ciclo 10, hay que desplazar los dos ejes del plano de mecanizado para poder activar el giro.

Ciclos: Conversiones de coordenadas

11.6 GIRO (Ciclo 10, DIN/ISO: G73)

Parámetros de ciclo

► **Giro**: Introducir el ángulo de giro en grados (°). Campo de introducción: -360.000° a +360.000° (valores absolutos o incrementales)

Frases NC

12 CALL LBL 1
13 CYCL DEF 7.0 PUNTO CERO
14 CYCL DEF 7.1 X+60
15 CYCL DEF 7.2 Y+40
16 CYCL DEF 10.0 GIRO
17 CYCL DEF 10.1 ROT+35
18 CALL LBL 1

11.7 FACTOR DE ESCALA (Ciclo 11, DIN/ISO: G72)

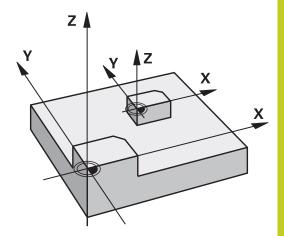
Efecto

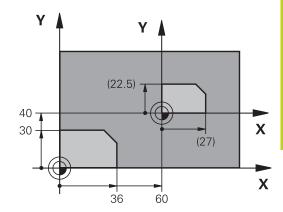
El TNC puede ampliar o reducir contornos dentro de un programa. De esta forma se pueden tener en cuenta, por ejemplo, factores de reducción o ampliación.

El FACTOR DE ESCALA se activa a partir de su definición en el programa. También funciona en el modo de funcionamiento Posicionamiento manual. El TNC muestra el factor de escala activado en la visualización de estados adicional.

El factor de escala actúa

- en los tres ejes de coordenadas al mismo tiempo
- en las cotas indicadas en el ciclo


Condiciones


Antes de la ampliación o reducción deberá desplazase el punto cero a un lado o esquina del contorno.

Ampliar: SCL mayor que 1 hasta 99,999 999 Reducir: SCL menor que 1 hasta 0,000 001

Resetear

Programar de nuevo el ciclo FACTOR DE ESCALA indicando el factor 1.

Parámetros de ciclo

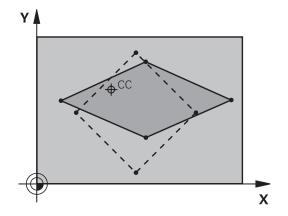
▶ ¿Factor?: Introducir el factor SCL (en inglés.: scaling); el TNC multiplica las coordenadas y radios por el factor SCL (tal como se describe en "Activación"). Campo de introducción 0,000000 a 99,999999

Frases NC

11 CALL LBL 1
12 CYCL DEF 7.0 PUNTO CERO
13 CYCL DEF 7.1 X+60
14 CYCL DEF 7.2 Y+40
15 CYCL DEF 11.0 FACTOR DE ESCALA
16 CYCL DEF 11.1 SCL 0.75
17 CALL LBL 1

11.8 FACTOR DE ESCALA ESPEC. DEL EJE (ciclo 26)

11.8 FACTOR DE ESCALA ESPEC. DEL EJE (ciclo 26)


Efecto

Con el ciclo 26 se pueden tener en cuenta factores de contracción y de prolongación específicos de eje.

El FACTOR DE ESCALA se activa a partir de su definición en el programa. Actúa también en el modo Posicionar con introducción manual. El TNC indica el factor de escala activo en la indicación de estado adicional.

Resetear

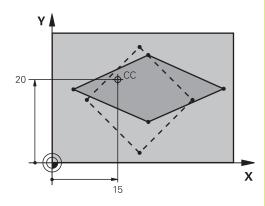
Se programa de nuevo el ciclo FACTOR DE ESCALA con el factor 1 para el eje correspondiente.

¡Tener en cuenta durante la programación!

Los ejes de coordenadas con posiciones sobre trayectorias circulares no pueden prolongarse o reducirse con diferentes escalas.

Se puede introducir un factor de escala específico para cada eje.

Además se pueden programar las coordenadas de un centro para todos los factores de escala.


El contorno se prolonga desde el centro o se reduce hacia el mismo, es decir, no es necesario realizarlo con el punto cero actual, como en el ciclo 11 F. DE ESCALA.

FACTOR DE ESCALA ESPEC. DEL EJE (ciclo 26) 11.8

Parámetros de ciclo

- ► **Eje y factor**: seleccionar Eje(s) de coordenadas con softkey e introducir factor(es) de la prolongación o reducción específicas. Campo de introducción 0,000000 a 99,999999
- ► Coordenadas del centro: centro de la prolongación o reducción específica de cada eje. Campo de introducción -99999,9999 a 99999,9999

Frases NC

25 CALL LBL 1

26 CYCL DEF 26,0 FACTOR DE ESCALA ESPEC. DEL EJE

27 CYCL DEF 26.1 X 1.4 Y 0.6 CCX+15 CCY+20

28 CALL LBL 1

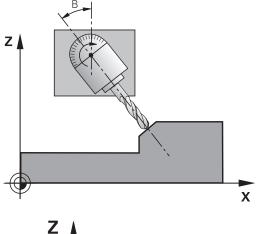
11.9 PLANO DE MECANIZADO (Ciclo 19, DIN/ISO: G80, Opción de Software 1)

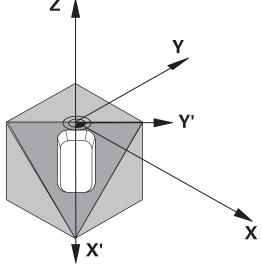
11.9 PLANO DE MECANIZADO (Ciclo 19, DIN/ISO: G80, Opción de Software 1)

Efecto

En el ciclo 19 se define la posición del plano de mecanizado - corresponde a la posición en el eje de la hta. en relación al sistema de coordenadas fijo de la máquina - mediante la introducción de ángulos basculantes. La posición del plano de mecanizado se puede determinar de dos formas:

- Programando directamente la posición de los ejes basculantes
- Describir la posición del plano de mecanizado mediante un total de hasta tres giros (ángulo en el espacio) del sistema de coordenadas fijo de la máquina. El ángulo en el espacio a programar se obtiene, realizando un corte perpendicular a través del plano de mecanizado inclinado y observando el corte desde el eje alrededor del cual se quiere bascular. Con dos ángulos en el espacio queda claramente definida cualquier posición de la hta. en el espacio


Debe tenerse en cuenta, que la posición del sistema de coordenadas inclinado y de esta forma también los desplazamientos en el sistema inclinado dependen de como se describa el plano inclinado.


Cuando se programa la posición del plano de mecanizado mediante un ángulo en el espacio, el TNC calcula automáticamente las posiciones angulares necesarias de los ejes basculantes y memoriza dichas posiciones en los parámetros Q120 (eje A) a Q122 (eje C). Si hay dos soluciones posibles, el TNC selecciona - partiendo de la posición cero de los ejes giratorios - el camino más corto.

La secuencia de los giros para el cálculo de la posición del plano está determinada: El TNC gira primero el eje A, después el eje B y a continuación el eje C.

El ciclo G80 se activa a partir de su definición en el programa. Tan pronto como se desplaza un eje en el sistema inclinado, se activa la corrección para dicho eje. Si se quiere calcular la corrección en todos los ejes se deberán desplazar todos los ejes.

Si se ha fijado la función **Inclinación de la ejecución del programa** en **Activo** en el modo de funcionamiento manual, el valor angular introducido en dicho menú se sobrescribe con el ciclo 19 PLANO DE MECANIZADO.

PLANO DE MECANIZADO (Ciclo 19, DIN/ISO: G80, 11.9 Opción de Software 1)

¡Tener en cuenta durante la programación!

El fabricante de la máquina ajusta las funciones para la inclinación del plano de mecanizado al TNC y a la máquina. En determinados cabezales basculantes (mesas giratorias), el constructor de la máquina determina si el TNC interpreta los ángulos programados en el ciclo como coordenadas de los ejes giratorios o como componentes angulares de un plano inclinado.

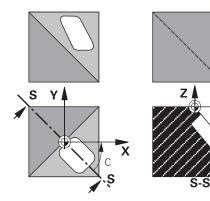
Rogamos consulte el manual de la máquina.

Ya que los valores no programados de los ejes de giro se interpretan casi siempre como valores no modificados, se deben definir siempre los tres ángulos espaciales, incluso cuando uno o varios ángulos sean iguales a 0.

La inclinación del plano de mecanizado se realiza siempre alrededor del punto cero activado.

Si utiliza el ciclo 19 con la función M120 activa, el TNC anula automáticamente la corrección de radio y, con ello, también la función M120.

Parámetros de ciclo


▶ ¿Eje y ángulo de giro?: Introducir el eje de giro con su correspondiente ángulo de giro; los ejes giratorios A, B y C se programan mediante softkeys. Campo de introducción -360,000 a 360,000

Cuando el TNC posiciona automáticamente los ejes giratorios, se pueden programar los siguientes parámetros

- ¿Avance? F=: Velocidad de desplazamiento del eje giratorio en el posicionamiento automático. Campo de introducción 0 a 99999.999
- ▶ ¿Distancia de seguridad?(valor incremental): El TNC posiciona el cabezal basculante de forma que no varíe demasiado la posición causada por la prolongación de la herramienta según la distancia de seguridad, en relación con la pieza. Campo de introducción 0 a 99999,9999

Resetear

Para anular los ángulos de la inclinación, se define de nuevo el ciclo INCLINACIÓN DEL PLANO DE MECANIZADO y se introduce 0° en todos los ejes giratorios. A continuación se define de nuevo el ciclo PLANO DE MECANIZADO INCLINADO, y se confirma la pregunta del diálogo con la tecla NO ENT. De esta forma se desactiva la función.

Ciclos: Conversiones de coordenadas

11.9 PLANO DE MECANIZADO (Ciclo 19, DIN/ISO: G80, Opción de Software 1)

Posicionar ejes giratorios

El fabricante de la máquina determina si el ciclo 19 posiciona automáticamente los ejes giratorios o si es preciso posicionar previamente los ejes giratorios en el programa. Rogamos consulte el manual de la máquina.

Posicionar ejes giratorios manualmente

En el caso de que el ciclo 19 no posicione automáticamente los ejes giratorios, deberá posicionarlos con una frase L después de cada definición de ciclo.

Si se trabaja con ángulos de eje, los valores de eje se pueden definir directamente en la frase L. Si se trabaja con ángulo espacial, se utilizan los parámetros Q descritos por el ciclo 19 **Q120** (valor eje A), **Q121** (valor eje B) y **Q122** (valor eje C).

Para el posicionamiento manual siempre hay utilizar las posiciones de ejes giratorios guardados en los parámetros Q (Q120 hasta Q122).

Evitar las funciones como p. ej. M94 (reducción de ángulo) para no obtener incongruencias entre las posiciones real y nominal de los ejes giratorios en caso de llamadas múltiples.

Ejemplo de frases NC:

10 L Z+100 R0 FMAX	
11 L X+25 Y+10 R0 FMAX	
12 CYCL DEF 19.0 PLANO DE MECANIZADO	Definir el ángulo espacial para el cálculo de la corrección
13 CYCL DEF 19.1 A+0 B+45 C+0	
14 L A+Q120 C+Q122 R0 F1000	Posicionar los ejes giratorios con los valores calculados por el ciclo 19
15 L Z+80 R0 FMAX	Activar la corrección en el eje de la hta.
16 L X-8.5 Y-10 RO FMAX	Activar la corrección en el plano de mecanizado

PLANO DE MECANIZADO (Ciclo 19, DIN/ISO: G80, 11.9 Opción de Software 1)

Posicionar ejes giratorios automáticamente

Cuando el ciclo 19 posiciona los ejes de rotación automáticamente se tiene:

- El TNC solo puede posicionar automáticamente ejes controlados.
- En la definición del ciclo deberá introducirse además de los ángulos de inclinación una distancia de seguridad y un avance, con los cuales se posicionaran los ejes basculantes.
- Emplear únicamente herramientas preajustadas (debe estar definida la longitud completa de la herramienta).
- En el proceso de inclinación la posición del extremo de la hta. permanece invariable en relación a la pieza.
- El TNC dirige el proceso de inclinación con el último avance programado. El máximo avance posible depende de la complejidad del cabezal basculante (mesa basculante).

Ejemplo de frases NC:

10 L Z+100 R0 FMAX	
11 L X+25 Y+10 R0 FMAX	
12 CYCL DEF 19.0 PLANO DE MECANIZADO	Definición del ángulo para el cálculo de la corrección
13 CYCL DEF 19.1 A+0 B+45 C+0 F5000 ABST50	Definir avance adicional y distancia
14 L Z+80 R0 FMAX	Activar la corrección en el eje de la hta.
15 L X-8.5 Y-10 RO FMAX	Activar corrección plano de mecanizado

Visualización de posiciones en el sistema inclinado

Las posiciones visualizadas (**NOMINAL** y **REAL**) y la visualización del punto cero en la visualización de estados adicional se refieren después de la activación del ciclo 19 al sistema de coordenadas inclinado. La posición visualizada ya no coincide, después de la definición del ciclo, con las coordenadas de la última posición programada antes del ciclo 19.

Supervisión del espacio de trabajo

El TNC comprueba en el sistema de coordenadas inclinado únicamente los finales de carrera de los ejes. Si es necesario el TNC emite un mensaje de error.

11.9 PLANO DE MECANIZADO (Ciclo 19, DIN/ISO: G80, Opción de Software 1)

Posicionamiento en el sistema inclinado

Con la función auxiliar M130 también se pueden alcanzar posiciones en el sistema inclinado, que se refieran al sistema de coordenadas sin inclinar.

También se pueden realizar posicionamientos con frases lineales que se refieren al sistema de coordenadas de la máquina (frases con M91 o M92), en el plano de mecanizado inclinado. Limitaciones:

- El posicionamiento se realiza sin corrección de la longitud
- El posicionamiento se realiza sin corrección de la geometría de la máquina
- No se puede realizar la corrección del radio de la herramienta

Combinación con otros ciclos de traslación de coordenadas

En la combinación de los ciclos de traslación de coordenadas deberá prestarse atención a que la inclinación del plano de mecanizado siempre se lleva a cabo alrededor del punto cero activado. Se puede realizar un desplazamiento del punto cero después de activar el ciclo 19, en cuyo caso se desplaza el "sistema de coordenadas fijo de la máquina".

En el caso de desplazar el punto cero antes de activar el ciclo 19, lo que se desplaza es el "sistema de coordenadas inclinado".

Importante: Al anular el ciclo deberá mantenerse justamente la secuencia inversa a la empleada en la definición:

- 1. activar el desplazamiento del punto cero
- 2. Activar la inclinación del plano de mecanizado
- 3. Activar el giro

...

Mecanizado de la pieza

...

- 1. Anular el giro
- 2. Anular la inclinación del plano de mecanizado
- 3. Anular el desplazamiento del punto cero

PLANO DE MECANIZADO (Ciclo 19, DIN/ISO: G80, 11.9 Opción de Software 1)

Guía para trabajar con ciclo 19 PLANO DE MECANIZADO

1º Elaboración del programa

- ▶ Definición de la hta. (se suprime cuando está activado TOOL.T), introducir la longitud total de la hta.
- ▶ Llamar a la herramienta
- ► Retirar el eje de la hta. de tal forma, que no se produzca en la inclinación colisión alguna entre la hta. y la pieza
- ➤ Si es preciso posicionar el (los) eje(s) con una frase L al valor angular correspondiente (depende de un parámetro de máquina)
- ► Si es preciso activar el desplazamiento del punto cero
- ▶ Definir el ciclo 19 PLANO DE MECANIZADO; Introducir los valores de ángulo de los ejes de giro
- Desplazar todos los ejes principales (X, Y, Z) para activar la corrección
- ► Programar el mecanizado como si fuese a ser ejecutado en un plano sin inclinar
- definir el ciclo 19 INCLINACIÓN DEL PLANO DE MECANIZADO con otros ángulos, para ejecutar el mecanizado en otra posición del eje. En este caso no es necesario cancelar el ciclo 19, se pueden definir directamente las nuevas posiciones angulares
- ► Cancelación del ciclo 19 PLANO DE MECANIZADO; introducir 0º para todos los ejes de giro
- ▶ Desactivar la función PLANO INCLINADO; definir de nuevo el ciclo 19, introducir NO ENT a la pregunta del diálogo
- ▶ Si es preciso anular el desplazamiento del punto cero
- ► Si es preciso, posicionar los ejes giratorios a la posición 0°

2º Fijar la pieza

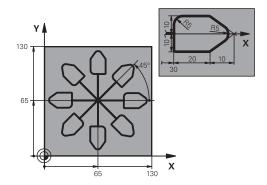
3 Fijar el punto de referencia

- Manual mediante rascar
- Controlado con un palpador 3D de HEIDENHAIN (véase el modo de empleo de los ciclos de palpación, capítulo 2)
- Automáticamente con un palpador 3D de HEIDENHAIN (véase el modo de empleo de los ciclos de palpación, capítulo 3)

4 Arrancar el programa de mecanizado en el modo de funcionamiento Ejecución continua del programa

5 Funcionamiento Manual

Fijar la función Inclinar plano de trabajo con la softkey 3D-ROT en INACTIVO. Introducir en el menú el valor de ángulo 0º para todos los ejes de giro.


11.10 Ejemplos de programación

11.10 Ejemplos de programación

Ejemplo: Traslación de coordenadas

Desarrollo del programa

- Traslación de coordenadas en el pgm principal
- Programación del mecanizado en el subprograma

0 BEGIN PGM KOUMR MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición de la pieza en bruto
2 BLK FORM 0.2 X+130 Y+130 Z+0	
3 TOOL CALL 1 Z S4500	Llamada a una herramienta
4 L Z+250 R0 FMAX	Retirar la herramienta
5 CYCL DEF 7.0 PUNTO CERO	Desplazamiento del punto cero al centro
6 CYCL DEF 7.1 X+65	
7 CYCL DEF 7.2 Y+65	
8 CALL LBL 1	Llamada al fresado
9 LBL 10	Fijar una marca para la repetición parcial del programa
10 CYCL DEF 10.0 GIRO	Giro a 45° en incremental
11 CYCL DEF 10.1 IROT+45	
12 CALL LBL 1	Llamada al fresado
13 CALL LBL 10 REP 6/6	Retroceso al LBL 10; en total seis veces
14 CYCL DEF 10.0 GIRO	Anular el giro
15 CYCL DEF 10.1 ROT+0	
16 CYCL DEF 7.0 PUNTO CERO	Anular la traslación del punto cero
17 CYCL DEF 7.1 X+0	
18 CYCL DEF 7.2 Y+0	
19 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
20 LBL 1	Subprograma 1
21 L X+0 Y+0 R0 FMAX	Determinación del fresado
22 L Z+2 R0 FMAX M3	
23 L Z-5 R0 F200	
24 L X+30 RL	
25 L IY+10	
26 RND R5	
27 L IX+20	
28 L IX+10 IY-10	
29 RND R5	
30 L IX-10 IY-10	

31 L IX-20
32 L IY+10
33 L X+0 Y+0 R0 F5000
34 L Z+20 R0 FMAX
35 LBL 0
36 END PGM KOUMR MM

Ciclos: Funciones especiales

12.1 Fundamentos

12.1 **Fundamentos**

Resumen

El TNC proporciona cinco ciclos para las aplicaciones especiales siguientes:

Ciclo	Softkey	Página
9. TIEMPO DE ESPERA	***	259
12. ACCESO AL PROGRAMA	PGM CALL	260
13. ORIENTACIÓN DEL CABEZAL	13	262
32. TOLERANCIA	32 T	263
225 GRABADOS de textos	ABC	266

12.2 TIEMPO DE ESPERA (Ciclo 9, DIN/ISO: G04)

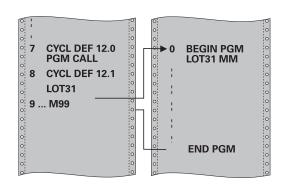
Función

La ejecución del programa se detiene según el TIEMPO DE ESPERA programado. El tiempo de espera sirve, p.ej., para la rotura de viruta. El ciclo se activa a partir de su definición en el programa. No tiene influencia sobre los estados que actúan de forma modal, como p.ej. el giro del cabezal.

Frases NC

89 CYCL DEF 9.0 TIEMPO DE ESPERA 90 CYCL DEF 9.1 TIEMPO ESPERA 1.5

Parámetros de ciclo


► Tiempo de espera en segundos: Introducir el tiempo de espera en segundos. Campo de introducción 0 a 3 600 s (1 hora) en pasos de 0,001 s

12.3 LLAMADA DE PROGRAMA (Ciclo 12, DIN/ISO: G39)

12.3 LLAMADA DE PROGRAMA (Ciclo 12, DIN/ISO: G39)

Función de ciclo

Los programas de mecanizado, como p.ej. ciclos de taladrado especiales o módulos geométricos, se pueden asignar como ciclos de mecanizado. En este caso el programa se llama como si fuese un ciclo.

¡Tener en cuenta durante la programación!

El programa llamado debe estar memorizado en el disco duro del TNC.

Si solo se introduce el nombre del programa, el programa al que se llama deberá estar en el mismo directorio que el programa llamado.

Si el programa para realizar el ciclo no se encuentra en el mismo directorio que el programa llamado, se introduce el nombre del camino de búsqueda completo, p.ej. TNC:\KLAR35\FK1\50.H.

Si se quiere declarar un programa DIN/ISO para el ciclo, deberá introducirse el tipo de fichero .l detrás del nombre del programa.

Los parámetros Q tienen un efecto fundamentalmente global en una llamada de programa con el ciclo 12. Tener en cuenta, por consiguiente, que la modificaciones en los parámetros Q en el programa llamado también tengan efecto en el programa a llamar.

LLAMADA DE PROGRAMA (Ciclo 12, DIN/ISO: G39) 12.3

Parámetros de ciclo

- ▶ Nombre del programa: Nombre del programa que se quiere llamar, si es preciso indicando el camino de búsqueda en el que está el programa, o
- a través de la softkeySELECCIONAR, activar el Diálogo File-Select y seleccionar el programa elegido

El programa se llama con:

- CYCL CALL (frase por separado) o
- M99 (por frases) o
- M89 (se ejecuta después de cada frase de posicionamiento)

Declarar el programa 50 como ciclo y llamarlo con M99

55 CYCL DEF 12.0 PGM CALL

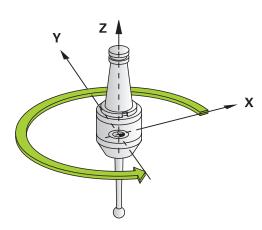
56 CYCL DEF 12.1 PGM TNC: \KLAR35\FK1\50.H

57 L X+20 Y+50 FMAX M99

12.4 ORIENTACIÓN DEL CABEZAL (Ciclo 13, DIN/ISO: G36)

12.4 ORIENTACIÓN DEL CABEZAL (Ciclo 13, DIN/ISO: G36)

Función de ciclo


La máquina y el TNC deben estar preparados por el fabricante de la máquina.

El TNC puede controlar el cabezal principal de una máquina herramienta y girarlo a una posición determinada según un ángulo. La orientación del cabezal se utiliza p.ej.

- sistemas de cambio de herramienta con una determinada posición para el cambio de la misma
- para ajustar la ventana de emisión y recepción del palpador 3D con transmisión por infrarrojos

El TNC posiciona la posición angular definida en el ciclo mediante la programación de M19 o M20 (depende de la máquina).

Cuando se programa M19 ó M20, sin haber definido antes el ciclo 13, el TNC posiciona el cabezal principal en un valor angular, que se ha fijado por el fabricante de la máquina (ver manual de la máquina).

Frases NC

93 CYCL DEF 13.0 ORIENTACIÓN 94 CYCL DEF 13.1 ÁNGULO 180

¡Tener en cuenta durante la programación!

En los ciclos de mecanizado 202, 204 y 209 se emplea internamente el ciclo 13. Tener en cuenta en el programa NC, que si es preciso se deberá reprogramar el ciclo 13 tras uno de los anteriormente nombrados ciclos de mecanizado.

Parámetros de ciclo

► Angulo de orientación: Introducir el ángulo referido al eje de referencia angular del plano de mecanizado. Campo de introducción: 0,0000° a 360.0000°

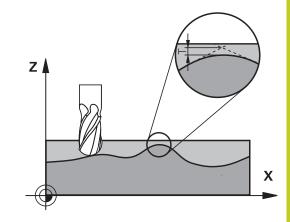
12.5 TOLERANCIA (Ciclo 32, DIN/ISO: G62)

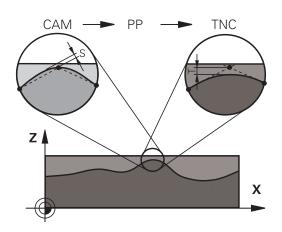
Función de ciclo

La máquina y el TNC deben estar preparados por el fabricante de la máquina.

En el mecanizado HSC se puede influir mediante las introducciones en el ciclo 32 sobre la precisión resultante, acabado de superficie y velocidad, siempre que se haya ajustado el TNC a las propiedades específicas de máquina.

El TNC suaviza automáticamente el contorno entre cualquier elemento del mismo (sin o con corrección). De esta forma, la hta. se desplaza de forma continua sobre la superficie de la pieza y conserva, con ello, la mecánica de la máquina. Adicionalmente la tolerancia definida en el ciclo también actúa en movimientos de recorrido sobre círculos.


En caso necesario, el TNC reduce automáticamente el avance programado, de forma que el programa se pueda ejecutar siempre "libre de sacudidas" a la máxima velocidad posible. El TNC, aun sin desplazarse con velocidad reducida, mantiene siempre la tolerancia definida. Cuanto mayor sea la tolerancia definida, más rápidamente podrá desplazarse el TNC.


Al suavizar el contorno resulta una variación. La desviación de este contorno (**valor de tolerancia**) está indicada por el constructor de la máquina en un parámetro de máquina. Con el ciclo **32** se puede modificar el valor de tolerancia previamente ajustado y seleccionar diferentes ajustes de filtro, siempre que el fabricante de la máquina utilice estas posibilidades de ajuste.

Influencias durante la definición de la geometría en el sistema CAM

El factor de influencia esencial en la generación externa de programas NC es el error cordal S definible en el sistema CAM. Mediante este error se define la distancia máxima del punto de un programa NC generado mediante un postprocesador (PP). Si el error cordal es igual o inferior al valor de tolerancia **T** seleccionado en el ciclo 32, entonces el TNC puede suavizar los puntos de contorno, siempre que no se sobrepase el avance programado mediante ajustes de máquina especiales.

Se obtiene una suavización del contorno, si se selecciona el valor de tolerancia en el ciclo 32 entre x 1,1 y x 2 del error cordal CAM.

12.5 TOLERANCIA (Ciclo 32, DIN/ISO: G62)

¡Tener en cuenta durante la programación!

Con valores de tolerancia muy reducidos, la máquina ya no puede mecanizar el contorno libre de sacudidas. Las sacudidas no tienen su origen en una potencia de cálculo deficiente, sino en el hecho de que TNC sobrepasa casi exactamente las transiciones de contorno, por lo que debe reducir drásticamente la velocidad de desplazamiento.

El ciclo 32 se activa a partir de su definición, es decir actúa a partir de su definición en el programa.

El TNC desactiva el ciclo 32 cuando

- se define de nuevo el ciclo 32 y se activa la pregunta de diálogo después del valor de tolerancia con NO ENT
- se selecciona un nuevo programa mediante la tecla PGM MGT

Una vez desactivado el ciclo 32, el TNC activa de nuevo la tolerancia ajustada previamente mediante parámetros de máguina.

El valor de tolerancia T introducido es interpretado por el TNC en un programa MM en la unidad de medida mm y en un programa pulgada en la unidad de medida pulgada

Si se lee un programa con ciclo 32, que como parámetro del ciclo contiene únicamente el **valor de tolerancia** T, el TNC incorpora, si es necesario, los dos parámetros restantes con el valor 0.

En caso de que la introducción de la tolerancia aumente, con movimientos circulares se reduce, por norma general, el diámetro circular. Si el filtro HSC está activo en su máquina (en caso necesario, consultar al fabricante de la máquina), el círculo también puede agrandarse.

Cuando el ciclo 32 está activo, el TNC indica el parámetro de ciclo 32 definido, en la indicación de estado adicional, guión **CYC**.

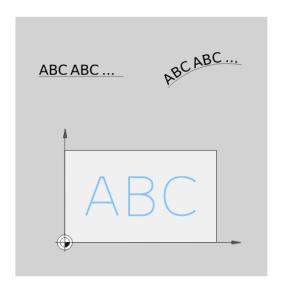
Parámetros de ciclo

- Valor de tolerancia T: desviación del contorno admisible en mm (o pulgadas en programas con pulgadas). Campo de introducción 0 a 99999,9999
- ► HSC-MODE, Acabado=0, Desbaste=1: Activar filtros:
 - Valor de introducción 0: Fresado con precisión elevada del contorno. El TNC utiliza los ajustes de filtro de acabado definidos internamente
 - Valor de introducción 1: Fresado con velocidad de avance más alta. El TNC utiliza los ajustes de filtro de desbaste definidos internamente
- ► Tolerancia de ejes giratorios TA: Desviación de la posición permitida de ejes giratorios en grados con M128 activado (FUNCTION TCPM). El TNC reduce el avance resultante de una trayectoria para desplazar el eje más lento, en movimientos de varios ejes, con su máximo avance. Normalmente los ejes giratorios son más lentos que los lineales. A través de la introducción de una gran tolerancia (por ej. 10º), se puede acortar el tiempo de mecanizado en programas de mecanizado de varios ejes, ya que el TNC no tiene por qué desplazar siempre los ejes giratorios a la posición nominal dada previamente. El contorno no se ve dañado por la introducción de la tolerancia de ejes giratorios. Solo cambia la posición del eje giratorio referido a la superficie de la pieza. Campo de introducción 0 a 179,9999

Frases NC

95 CYCL DEF 32.0 TOLERANCIA 96 CYCL DEF 32.1 T0.05

97 CYCL DEF 32.2 HSC-MODE:1 TA5


12.6 GRABAR (Ciclo 225, DIN/ISO: G225)

12.6 GRABAR (Ciclo 225, DIN/ISO: G225)

Desarrollo del ciclo

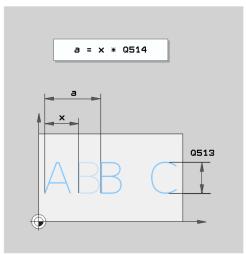
Con este ciclo se pueden grabar textos en una superficie plana de la pieza. Los textos se pueden grabar en línea recta o a lo largo de un arco de círculo.

- 1 En el plano de mecanizado, el TNC posiciona en el punto inicial del primer carácter.
- 2 La herramienta emerge perpendicularmente sobre la base del grabado y fresa el carácter. El TNC realiza los movimientos de elevación entre los caracteres a la distancia de seguridad. Al final del carácter, la herramienta está a la altura de seguridad por encima de la superficie.
- 3 Este proceso se repite para todos los caracteres a grabar.
- 4 Finalmente, el TNC posiciona la herramienta en la 2ª distancia de seguridad.

¡Tener en cuenta durante la programación!

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Si el texto se graba en un recta (Q516=0), entonces la posición de la herramienta en el momento de la llamada de ciclo determina el punto inicial del primer carácter.


Si el texto se graba en un círculo (**Q516=1**), entonces la posición de la herramienta en el momento de la llamada de ciclo determina el punto central del círculo.

El texto de grabado, también se puede entregar mediante cadenas de caracteres (**QS**).

Parámetros de ciclo

- ► Texto grabado QS500: Texto grabado entre comillas. Asignación de una cadena de caracteres mediante la tecla Q del bloque numérico, la tecla Q en el teclado ASCI corresponde a la entrada de texto normal. Signos de entrada permitidos: ver "Grabar variables del sistema", Página 268
- ► Altura de carácter Q513 (absoluto): altura de los caracteres a grabar en mm. Campo de introducción 0 a 99999,9999
- ► Factor distancia Q514: el tipo de letra utilizado es un tipo de letra denominado proporcional. Por tanto, cada carácter tiene su anchura propia que el TNC graba de manera correspondiente al definir Q514=0 Con una definición Q514 no igual a 0, el TNC escala la distancia entre caracteres. Campo de introducción 0 a 9,9999
- ▶ Tipo de letra Q515: de momento sin función
- ► Texto sobre recta/círculo (0/1) Q516: Grabar texto a lo largo de una recta: Introducción = 0 Grabar texto sobre un arco circular: Introducción = 1
- ▶ **Posición giratoria** Q374: ángulo del punto central si el texto se debe situar en un círculo. Campo de introducción -360,0000 a 360,0000°
- ▶ Radio para texto en círculo Q517 (absoluto): radio del arco de círculo sobre el cual el TNC debe situar el texto en mm. Campo de introducción 0 a 99999,9999
- Avance al fresar Q207: velocidad de desplazamiento de la herramienta al fresar en mm/min. Campo de introducción 0 a 99999,999 alternativamente FAUTO, FU, FZ
- ▶ **Profundidad** Q201 (incremental): distancia entre superficie de la pieza a la base de grabado
- Avance de la profundización Q206: velocidad de desplazamiento de la herramienta al profundizar en mm/min. Campo de introducción 0 a 99999,999 alternativamente FAUTO, FU
- ▶ Distancia de seguridad Q200 (valor incremental): distancia entre el extremo de la hta. y la superficie de la pieza. Campo de introducción 0 a 99999,9999 alternativo PREDEF
- Coordenadas Superficie de la pieza Q203 (valor absoluto): coordenadas de la superficie de la pieza Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª distancia de seguridad Q204 (valor incremental): coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción) Campo de introducción 0 a 99999,9999 alternativo PREDEF

Frases NC

62 CYCL DEF 2	25 GRABAR
Qs500="A"	;TEXTO DE GRABACIÓN
Q513=10	;ALTURA DEL CARÁCTER
Q514=0	;FACTOR DISTANCIA
Q513=0	;TIPO DE ESCRITURA
Q516=0	;DISPOSICIÓN DEL TEXTO
Q374=0	;POSICIÓN DE GIRO
Q517=0	;RADIO DEL CÍRCULO
Q207=750	;AVANCE AL FRESAR
Q201=-0,5	;PROFUNDIDAD
Q206=150	;AVANCE DE PASO DE PROFUNDIZACIÓN
Q200=2	;DIST. DE SEGURIDAD
Q203=+20	;COOR. SUPERFICIE
0204=50	:2ª DIST. DE SEGURIDAD

12.6 GRABAR (Ciclo 225, DIN/ISO: G225)

Caracteres de grabado permitidos

Junto a minúsculas, mayúsculas y cifras se permiten los caracteres especiales siguientes:

Los caracteres especiales % y \ los utiliza el TNC para funciones especiales. Si se desea grabar estos caracteres, estos se deben indicar de manera duplicada en el texto de grabado, p. ej.: %%.

Caracteres no imprimibles

Además de texto, también se pueden definir algunos caracteres no imprimibles para fines de formateo. La indicación de caracteres no imprimibles se inicia con el carácter especial \lambda.

Existen las posibilidades siguientes:

- \n: Salto de línea
- \t: tabulador horizontal (ancho de tabulación fijado en 8 caracteres)
- \v: tabulador vertical (ancho de tabulación fijado en una línea)

Grabar variables del sistema

Adicionalmente a los caracteres fijos también se puede grabar el contenido de variables de sistema determinadas. La indicación de una variable de sistema se inicia con el carácter especial %.

Se puede grabar la fecha actual. Introducir para ello **%time<x>. <x>** define el formato de fecha, cuyo significado es idéntico a la función **SYSSTR ID332** (véase el lenguaje conversacional HEIDENHAIN en el manual de Instrucciones, Capítulo Programación parámetros Q, copiar apartado datos del sistema en un parámetro tipo cadena de caracteres).

Hay que observar que para la introducción de los formatos de fecha 1 hasta 9 hay que anteponer un 0, p. ej. **time08**.

13

Trabajar con ciclos de palpación

13.1 Generalidades sobre los ciclos de palpación

13.1 Generalidades sobre los ciclos de palpación

HEIDENHAIN solo garantiza la función de los ciclos de palpación si se utilizan sistemas de palpación de HEIDENHAIN.

El TNC debe estar preparado por el fabricante de la máquina para el empleo de palpadores 3D.

Rogamos consulte el manual de la máquina.

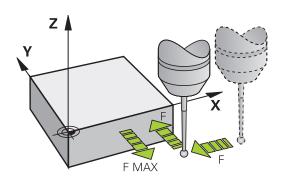
Modo de funcionamiento

Cuando el TNC ejecuta un ciclo de palpación, el palpador 3D se aproxima a la pieza (incluso con el giro básico activado y en plano de mecanizado inclinado). El fabricante de la máquina determina el avance de palpación en un parámetro de máquina (véase la sección "Antes de trabajar con ciclos de palpación" en este capítulo).

Cuando el palpador roza la pieza,

- el palpador 3D emite una señal al TNC: se memorizan las coordenadas de la posición palpada
- se para el palpador 3D y
- retrocede en avance rápido a la posición inicial del proceso de palpación

Cuando dentro de un recorrido determinado no se desvía el vástago, el TNC emite el aviso de error correspondiente (recorrido: **DIST** en la tabla sistema de palpación).

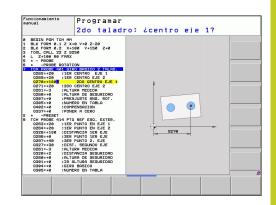

Tener en cuenta el giro básico en el modo de funcionamiento Manual

El TNC considera un giro básico activo durante el proceso de palpación y se aproxima a la pieza de forma oblicua.

Ciclos de palpación en los modos de funcionamiento Manual y Volante electrónico

El TNC pone a su disposición los ciclos de palpación en los modos de funcionamiento Manual y Volante electrónico, con los que:

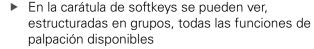
- calibrar el palpador
- compensar la posición inclinada de la pieza
- Fijación de los puntos cero de referencia


Ciclos de palpación para el funcionamiento automático

Junto a los ciclos de palpación que se utilizan en los modos de funcionamiento Manual y Volante electrónico, el TNC pone a su disposición un gran número de ciclos para las más diferentes posibilidades de aplicación en el modo de funcionamiento Automático:

- Calibración del palpador digital
- Compensar la posición inclinada de la pieza
- Poner puntos de referencia
- Control automático de pieza
- Medición automática de htas.

Los ciclos de palpación se programan en el modo de funcionamiento Memorizar/editar programa, mediante la tecla TOUCH PROBE. Los ciclos de palpación a partir del 400, utilizan al igual que los nuevos ciclos de mecanizado, parámetros Q como parámetros de transferencia. Los parámetros de una misma función, que el TNC emplea en diferentes ciclos, tienen siempre el mismo número: p.ej. Q260 es siempre la altura de seguridad, Q261 es siempre la altura de medición, etc.


El TNC muestra durante la definición del ciclo una figura auxiliar para simplificar la programación. En la figura auxiliar se muestra el parámetro que se debe introducir (véase la figura de la derecha).

13.1 Generalidades sobre los ciclos de palpación

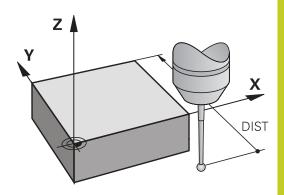
Definir el ciclo del sistema de palpación en el modo memorizar/ editar

Selección de un grupo de ciclos de palpación, p.ej. fijación del punto de referencia. Los ciclos para la medición automática de herramientas, solo están disponibles si la máquina ha sido preparada para ello

- Selección del ciclo, p.ej. fijación del punto de referencia en el centro de una cajera. El TNC abre un diálogo y pregunta por todos los valores de introducción; simultáneamente aparece en la mitad derecha de la pantalla un gráfico en el cual aparecen los parámetros a introducir en color más claro
- ► Introducir todos los parámetros solicitados por el TNC y finalizar la introducción con la tecla ENT
- ► El TNC finaliza el diálogo después de haber introducido todos los datos precisos

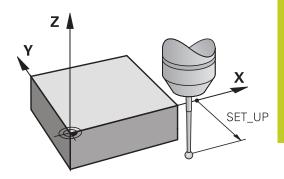
Grupo de ciclo de medición	Softkey	Página
Ciclos para el registro automático y compensación de una posición inclinada de la pieza		280
Ciclos para la fijación automática del punto de referencia		302
Ciclos para control automático de la pieza		358
Ciclos especiales	CICLOS ESPECIAL.	402
Ciclos para medición automática de la herramienta (autorizado por el fabricante de la máquina)	Ā	416

Bloques NC


5 TCH PROBE 410 PUNTO REF. RECTÁNGULO INTERIOR		
Q321=+50	;CENTRO 1ER EJE	
Q322=+50	;CENTRO 2° EJE	
Q323=60	;LONGITUD 1ER LADO	
Q324=20	;LONGITUD 2° LADO	
Q261=-5	;ALTURA DE MEDICIÓN	
Q320=0	;DIST. DE SEGURIDAD	
Q260=+20	;ALTURA SEGURA	
Q301=0	;DESPLAZAR HASTA ALTURA SEGURA	
Q305=10	;N° EN TABLA	
Q331=+0	;PUNTO DE REFERENCIA	
Q332=+0	;PUNTO DE REFERENCIA	
Q303=+1	;TRANSFERENCIA DEL VALOR DE MEDIDA	
Q381=1	;PALPAR EJE PALPADOR	
Q382=+85	;1° COOR. PARA EJE DE PALPADOR	
Q383=+50	;2ª COOR PARA EJE DE PALPADOR	
Q384=+0	;3° COOR. PARA EJE DE PALPADOR	
Q333=+0	;PUNTO DE REFERENCIA	

13.2 ¡Antes de trabajar con los ciclos de palpación!

Para poder cubrir un campo de aplicación lo más grande posible en las mediciones requeridas, se dispone de posibilidades de ajuste mediante parámetros de máquina, que fijan el comportamiento básico de todos los ciclos de palpación:


Recorrido de desplazamiento máximo hasta el punto de palpación: DIST en tabla del sistema palpador

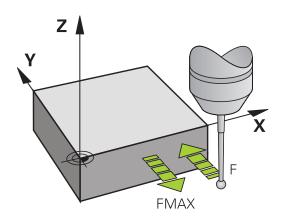
El TNC emite un aviso de error, cuando el vástago no se desvía en el recorrido determinado en **DIST**.

Distancia de seguridad hasta el punto de palpación: SET_UP en la tabla de sistema de palpación

En **SET_UP** se determina a qué distancia del punto de palpación definido, o calculado por el ciclo, el TNC posiciona previamente el palpador. Cuanto menor sea el valor introducido, más precisas se definen las posiciones de palpación. En muchos ciclos del sistema de palpación se puede definir una distancia de seguridad adicional, que se suma al parámetro de máquina **SET_UP**.

Orientar el palpador infrarrojo en la dirección de palpación programada: TRACK en la tabla del sistema de palpación

Para aumentar la precisión de medida, es posible obtener por medio de **TRACK** = ON que un palpador infrarrojo se oriente antes de cada proceso de palpación en dirección del palpador programado. De este modo, el palpador siempre se desvía en la misma dirección.



Si modifica **TRACK** = ON, entonces debe calibrar el palpador de nuevo.

13.2 ¡Antes de trabajar con los ciclos de palpación!

Palpador digital, avance de palpación : F en la tabla de sistema de palpación

En **F** se determina el avance con el cual el TNC palpa la pieza.

Palpador digital, avance para posicionamiento de movimiento: FMAX

En **FMAX** se determina el avance con el cual el TNC posiciona previamente el palpador, o bien posiciona entre puntos de medición.

Palpador digital, marcha rápida para movimientos de posicionamiento: F_PREPOS en tabla del sistema de palpación

En **F_PREPOS** se determina, si el TNC debería posicionar el palpador con el avance definido en FMAX, o en la marcha rápida de la máquina.

- Valor de introducción = FMAX_PRUEBA: posicionar con avance de FMAX
- Valor de introducción = FMAX_MAQUINA: posicionar previamente con marcha rápida

Medición múltiple

Para aumentar la seguridad de medida. el TNC puede ejecutar cada palpación hasta tres veces seguidas. Determinar el número de mediciones en el parámetro de máquina ProbeSettings > Configuración del comportamiento de la palpación > Modo automático: Medición múltiple en la función de palpación. Cuando los valores de la posición medidos difieren mucho entre si, el TNC emite un aviso de error (valor límite determinado en margen de fiabilidad en medición múltiple). Mediante la medición múltiple se pueden averiguar, si es preciso, errores de medición casuales producidos p.ej. por suciedad.

Si los valores de medición se encuentran dentro del margen de tolerancia, el TNC memoriza el valor medio a partir de las posiciones registradas.

Margen de fiabilidad para la medición múltiple

Cuando se ejecuta una medición múltiple debe memorizarse en los parámetros de máquina ProbeSettings > Configuración del comportamiento de la palpación > Modo automático: margen de fiabilidad para medición múltiple el valor con el que pueden discrepar entre sí los valores medidos. Si la diferencia de los valores de medición sobrepasa el valor definido, el TNC proporciona un aviso de error.

13.2 ¡Antes de trabajar con los ciclos de palpación!

Ejecutar ciclos de palpación

Todos los ciclos de palpación se activan a partir de su definición. Es decir el TNC ejecuta el ciclo automáticamente, cuando en la ejecución del programa el TNC ejecuta la definición del ciclo.

¡Atención: Peligro de colisión!

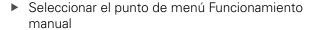
Estando el ciclo de palpación en funcionamiento, no se debe tener activado ningún ciclo de conversión de coordenadas (Ciclo 7 CERO-PIEZA, ciclo 8 ESPEJO, ciclo 10 GIRO, ciclo 11 y 26 FACTOR DE ESCALA).

Los ciclos de palpación 408 a 419 también se pueden ejecutar cuando está activado el giro básico. Tener en cuenta que el ángulo de giro básico no se vuelve a modificar cuando se trabaja tras el ciclo de medición con el ciclo 7 desplazamiento del punto 0.

Los ciclos de palpación con un número superior a 400 posicionan previamente el sistema palpador según una lógica de posicionamiento:

- Cuando la coordenada actual de la parte inferior del vástago es menor a la coordenada de la altura de seguridad (definida en el ciclo), el TNC retira primero el palpador según el eje del mismo a la altura de seguridad y a continuación lo posiciona en el plano de mecanizado hacia el primer punto de palpación.
- Si la coordenada actual del punto sur del palpador es mayor que la coordenada de la altura segura, el TNC posiciona el palpador en primer lugar en el plano de mecanizado en el primer punto de palpación y finalmente en el eje de palpador directamente en la altura de medición

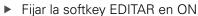
13.3 Tabla de palpación

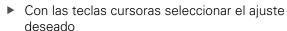

Generalidades

En la tabla de palpación hay varios datos grabados, que determinan el comportamiento del proceso de palpado. Cuando se tienen en la máquina varios palpadores en funcionamiento, se pueden grabar datos por separado en cado uno de los palpadores.

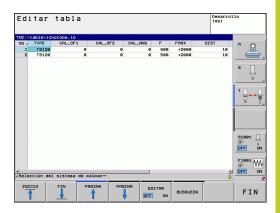
Editar las tablas del palpador

Para poder editar la tabla de palpación, proceder de la siguiente manera:





 Seleccionar las funciones de palpación: pulsar la softkey FUNCIONES PALPADOR. El TNC muestra otras softkeys: véase la tabla de arriba


 Seleccionar la tabla del palpador: pulsar la softkey TABLA DE PALPACIÓN



Salir de la tabla de palpación: Pulsar la softkey FIN

277

13.3 Tabla de palpación

Datos de palpación

Abrev.	Datos introducidos	Diálogo
NO.	Número del palpador: este número se introduce en la tabla de la herramienta (columna: TP_NO) bajo el correspondiente número de herramienta	_
TYPE	Selección del palpador utilizado	¿Selección del sistema de palpación?
CAL_OF1	Desplazamiento del eje del palpador al eje del cabezal en el eje principal	¿Desviación del centro del palpador eje principal? [mm]
CAL_OF2	Desplazamiento del eje del palpador al eje del cabezal en el eje auxiliar	¿Desviación del centro del palpador eje auxiliar? [mm]
CAL_ANG	El TNC orienta el palpador antes de la calibración o palpación en el ángulo de orientación (en caso de ser posible la orientación)	¿Ángulo del cabezal en la calibración?
F	Avance, con el que el TNC debe palpar la pieza	¿Avance de palpación? [mm/ min]
FMAX	Avance con el que el palpador realiza el posicionamiento previo o con el que se posicionará entre los puntos de medición	¿Marcha rápida en el ciclo de palpación? [mm/min]
DIST	El TNC emite un aviso de error, si el vástago no se desvía dentro del valor definido	¿Recorrido de medición máximo? [mm]
SET_UP	En SET_UP se determina a que distancia del punto de palpación definido, o calculado por el ciclo, el TNC posiciona previamente el palpador. Cuanto más pequeño se introduzca dicho valor, tanto mayor será la precisión con la que se deben definir las posiciones de palpación. En muchos ciclos de palpación se puede definir una distancia de seguridad adicional, que se suma al parámetro de máquina SET_UP	¿Distancia de seguridad? [mm]
F_PREPOS	Determinar la velocidad al preposicionar:	¿Posición previa, con marcha
	Posicionamiento previo con velocidad de FMAX: FMAX_PROBE	rápida? ENT/NO ENT
	Preposicionar con máquina en marcha rápida: FMAX_MAQUINA	
TRACK	Para aumentar la precisión de medida, es posible obtener por medio de TRACK = ON que un palpador infrarrojo se oriente antes de cada proceso de palpación en dirección del palpador programado. De este modo, el vástago siempre se desvía en la misma dirección:	¿Orient. palpador? Si=ENT, No=NOENT
	ON: Efectuar Seguimiento-CabezalOFF: No Efectuar Seguimiento-Cabezal	

Ciclos de palpación: determinar automáticamente la posición inclinada de la pieza

Ciclos de palpación: determinar automáticamente la posición inclinada de la pieza

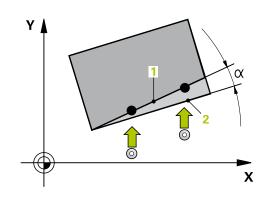
14.1 Fundamentos

14.1 Fundamentos

Resumen

Al ejecutar los ciclos del sistema de palpación, el ciclo 8 CREAR SIMETRÍA, el ciclo 11 FACTOR DE MEDIDA y el ciclo 26 FACTOR DE MEDIDA ESPEC. POR EJE no deben estar activos.

HEIDENHAIN solo garantiza la función de los ciclos de palpación si se utilizan sistemas de palpación de HEIDENHAIN.


El TNC debe estar preparado por el fabricante de la máquina para el empleo de palpadores 3D. Rogamos consulte el manual de la máquina.

El TNC dispone de cinco ciclos con los cuales registrar y compensar una posición inclinada de la pieza. Además con el ciclo 404 se puede cancelar un giro básico:

Ciclo	Softkey	Lado
400 GIRO BÁSICO Detección automática mediante dos puntos, compensación mediante la función Giro básico	400	282
401 ROT 2 TALADROS Detección automática mediante dos taladros, compensación mediante la función Giro básico	401	285
402 ROT 2 ISLAS Detección automática mediante dos islas, compensación mediante la función Giro básico	402	288
403 ROT MEDIANTE EJE DE GIRO Detección automática mediante dos puntos, compensación mediante giro de la mesa giratoria	403	291
405 ROT MEDIANTE EJE C Orientación automática de un desplazamiento angular entre un centro de taladro y el eje Y positivo, compensación mediante giro de la mesa giratoria	405	295
404 FIJAR GIRO BÁSICO Fijar un giro básico cualquiera	404	294

Datos comunes de los ciclos de palpación para registrar la inclinación de la pieza

En los ciclos 400, 401 y 402, mediante el parámetro Q307 **Preajuste giro básico** se puede determinar si el resultado de la medición se debe corregir según un ángulo # conocido (véase la figura de la derecha). De este modo, puede medirse el giro básico en cualquier recta 1 de la pieza y establecer la referencia con la dirección 0° real 2 .

14

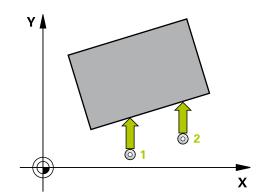
Ciclos de palpación: determinar automáticamente la posición inclinada de la pieza

14.2 GIRO BÁSICO (Ciclo 400, DIN/ISO: G400)

14.2 GIRO BÁSICO (Ciclo 400, DIN/ISO: G400)

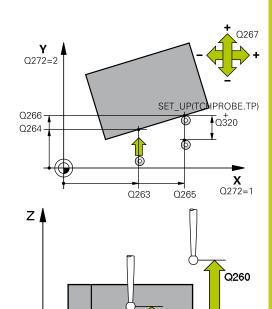
Desarrollo del ciclo

El ciclo de palpación 400 calcula la posición inclinada de la pieza, mediante la medición de dos puntos que deben encontrarse sobre una recta. El TNC compensa a través de la función Giro básico el valor medido.


- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación programado 1. Para ello, el TNC desplaza el palpador según la distancia de seguridad en la dirección de desplazamiento opuesta a la determinada
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y ejecuta el primer proceso de palpación con avance de palpación (Columna **F**)
- 3 A continuación, el palpador se desplaza, hasta el siguiente punto de palpación 2 y ejecuta allí el segundo proceso de palpación
- 4 El TNC hace retroceder el palpador hasta la altura de seguridad y realiza el giro básico calculado

¡Tener en cuenta durante la programación!

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.


Al principio del ciclo el TNC anula el giro básico activado.

Parámetros de ciclo

- ▶ 1er punto de medición del 1er eje Q263 (valor absoluto): coordenada del 1er punto de palpación en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 1er punto de medición del 2º eje Q264 (valor absoluto): coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- 2º punto de medición del 1er eje Q265 (valor absoluto): coordenada del segundo punto de palpación en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 2º punto de medición del 2º eje Q266 (absoluto): coordenada del segundo punto de palpación en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► Eje de medición Q272: Eje del plano de mecanizado en el que debe tener lugar la medición:
 - 1: Eje principal = Eje de medición
 - 2: Eje auxiliar = Eje de medición
- ▶ **Dirección de desplazamiento 1** Q267: dirección en la que el palpador debe desplazarse hasta llegar a la pieza:
 - -1: dirección de desplazamiento negativa
 - +1: dirección de desplazamiento positiva
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999

`Q261

Χ

Frases NC

5 TCH PROBE 4	00 GIRO BASICO
Q263=+10	;1ER PUNTO 1ER EJE
Q264=+3,5	;1ER PUNTO 2° EJE
Q265=+25	;2° PUNTO 1ER EJE
Q266=+2	;2° PUNTO 2° EJE
Q272=2	;EJE DE MEDICIÓN
Q267=+1	;DIRECCIÓN DE DESPLAZAMIENTO
Q261=-5	;ALTURA DE MEDICIÓN
Q320=0	;DIST. DE SEGURIDAD
Q260=+20	;ALTURA SEGURA
Q301=0	;DESPLAZAR HASTA ALTURA SEGURA
Q307=0	;PREAJUSTE ANGULO DE GIRO
Q305=0	;N° EN TABLA

Ciclos de palpación: determinar automáticamente la posición inclinada de la pieza

14.2 GIRO BÁSICO (Ciclo 400, DIN/ISO: G400)

- ▶ Desplazamiento a altura de seguridad Q301: determinar cómo se debe desplazar el palpador entre los puntos de medición:
 - **0**: desplazarse entre los puntos de medición a la altura de medición
 - 1: desplazarse entre los puntos de medición a la altura de seguridad
- ▶ Preajuste del ángulo de giro Q307 (valor absoluto): introducir el ángulo de la recta de referencia cuando la posición inclinada a medir no debe referirse al eje principal, sino a cualquier recta. Entonces el TNC calcula para el giro básico la diferencia entre el valor medido y el ángulo de las rectas de referencia. Campo de introducción -360.000 a 360.000
- ▶ Número de preset en la tabla Q305: indicar el número en la tabla de presets, donde el TNC debe memorizar el giro básico calculado. Al introducir Q305=0, el TNC coloca el giro básico calculado en el menú ROT del modo de funcionamiento Manual. Campo de introducción 0 a 2999

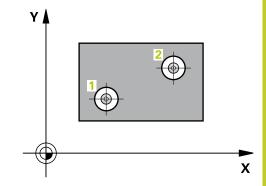
14.3 GIRO BÁSICO mediante dos taladros (Ciclo 401, DIN/ISO: G401)

Desarrollo del ciclo

El ciclo de palpación 401 registra los puntos medios de dos taladros. A continuación el TNC calcula el ángulo entre el eje principal del plano de mecanizado y la recta que une los puntos centrales de los taladros. El TNC compensa a través de la función Giro básico el valor calculado. De forma alternativa, también se puede compensar la inclinación calculada mediante un giro de la mesa giratoria.

- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el centro introducido del primer taladro 1.
- 2 A continuación, el palpador se desplaza a la altura de medición introducida y, mediante cuatro palpaciones, determina el centro del primer taladro
- 3 A continuación, el palpador vuelve a la altura segura y se posiciona en el centro introducido del segundo taladro 2
- 4 El TNC desplaza el palpador a la altura de medición introducida y, mediante cuatro palpaciones, determina el centro del segundo taladro
- 5 Para finalizar el TNC hace retroceder al palpador posicionándolo a la altura de seguridad y realiza el giro básico calculado

¡Tener en cuenta durante la programación!

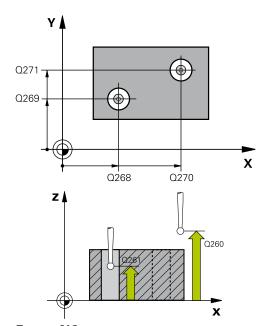


Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.

Al principio del ciclo el TNC anula el giro básico activado.

Si se desea compensar la inclinación mediante un giro de la mesa giratoria, entonces el TNC utiliza automáticamente los siguientes ejes giratorios:

- C en el eje de herramienta Z
- B en el eje de herramienta Y
- A en el eje de herramienta X


Ciclos de palpación: determinar automáticamente la posición inclinada de la pieza

14.3 GIRO BÁSICO mediante dos taladros (Ciclo 401, DIN/ISO: G401)

Parámetros de ciclo

- ▶ 1er taladro: centro 1er eje Q268 (valor absoluto): punto central del primer taladro en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 1er taladro: centro del 2º eje Q269 (valor absoluto): punto central del primer taladro en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 2º taladro: centro 1er eje Q270 (valor absoluto): punto central del segundo taladro en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª taladro: centro 2º eje Q271 (absoluto): punto central del segundo taladro en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- ▶ Preajuste del ángulo de giro Q307 (valor absoluto): introducir el ángulo de la recta de referencia cuando la posición inclinada a medir no debe referirse al eje principal, sino a cualquier recta. Entonces el TNC calcula para el giro básico la diferencia entre el valor medido y el ángulo de las rectas de referencia. Campo de introducción -360.000 a 360.000

Frases NC

5 TCH PROBE 4	101 ROT 2 TALADROS
Q268=-37	;1ER CENTRO 1ER EJE
Q269=+12	;1ER CENTRO 2° EJE
Q270=+75	;2° CENTRO 1ER EJE
Q271=+20	;2° CENTRO 2° EJE
Q261=-5	;ALTURA DE MEDICIÓN
Q260=+20	;ALTURA SEGURA
Q307=0	;PREAJUSTE ANGULO GIRO
Q305=0	;N° EN TABLA
Q405=0	;COMPENSACIÓN
Q337=0	;PONER CERO

GIRO BÁSICO mediante dos taladros (Ciclo 401, DIN/ISO: G401) 14.3

- Número de preset en la tabla Q305: indicar el número en la tabla de presets, donde el TNC debe memorizar el giro básico calculado. Al introducir Q305=0, el TNC coloca el giro básico calculado en el menú ROT del modo de funcionamiento Manual. El parámetro no tiene ningún efecto, si la inclinación debe compensarse mediante un giro de la mesa giratoria (Q402=1). En este caso la posición inclinada no se memoriza como valor angular. Campo de introducción 0 a 2999
- ► Compensación Q402: establecer si el TNC debe poner como giro básico la posición inclinada determinada, o si debe orientar mediante giro de la mesa giratoria:
 - 0: Poner giro básico
 - 1: ejecutar giro de la mesa giratoria Si se selecciona giro de la mesa giratoria, el TNC no guarda la posición inclinada determinada, incluso aunque en el parámetro Q305 se haya definido una línea de la tabla
- ▶ Poner cero tras la orientación Q337: determinar si el TNC debe poner a 0 la indicación del eje de giro orientado:
 - **0**: No poner a 0 la indicación del eje de giro tras la orientación
 - 1: poner a 0 la indicación del eje de giro tras la orientación El TNC solo pone la indicación = 0 cuando se hay definido **Q402=1**

14

Ciclos de palpación: determinar automáticamente la posición inclinada de la pieza

14.4 GIRO BÁSICO mediante dos islas (Ciclo 402, DIN/ISO: G402)

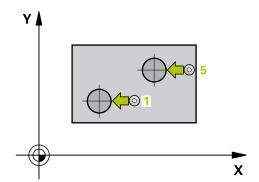
14.4 GIRO BÁSICO mediante dos islas (Ciclo 402, DIN/ISO: G402)

Desarrollo del ciclo

El ciclo de palpación 402 registra los puntos centrales de islas binarias. A continuación el TNC calcula el ángulo entre el eje principal del plano de mecanizado y la recta que une los puntos centrales de la isla. El TNC compensa a través de la función Giro básico el valor calculado. De forma alternativa, también se puede compensar la inclinación calculada mediante un giro de la mesa giratoria.

- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) sobre el punto de palpación 1 de la primera isla
- 2 A continuación, el palpador se desplaza a la **altura de medición 1** introducida y, mediante cuatro palpaciones, determina el centro de la isla. Entre los puntos de palpación desplazados entre si 90° el palpador se desplaza sobre un arco de círculo
- 3 A continuación, el palpador vuelve a la altura segura y se posiciona en el punto de palpación 5 de la segunda isla
- 4 El TNC desplaza el palpador a la **altura de medición 2** introducida y, mediante cuatro palpaciones, determina el centro de la segunda isla
- 5 Para finalizar el TNC hace retroceder al palpador a la altura de seguridad y realiza el giro básico calculado

¡Tener en cuenta durante la programación!

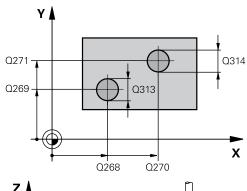


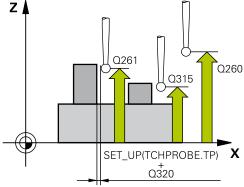
Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.

Al principio del ciclo el TNC anula el giro básico activado.

Si se desea compensar la inclinación mediante un giro de la mesa giratoria, entonces el TNC utiliza automáticamente los siguientes ejes giratorios:

- C en el eje de herramienta Z
- B en el eje de herramienta Y
- A en el eje de herramienta X




GIRO BÁSICO mediante dos islas (Ciclo 402, DIN/ISO: G402) 14.4

Parámetros de ciclo

- ▶ 1ª isla: centro 1er eje O268 (valor absoluto): punto central de la primera isla en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 1ª isla: centro 2º eje Q269 (absoluto): punto central de la primera isla en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ **Diámetro isla 1** Q313: Diámetro aproximado de la 1ª isla. Introducir un valor superior al estimado. Campo de introducción 0 a 99999,9999
- Altura de medición isla 1 en eje palpación O261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se debe realizar la medición de la isla 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª isla: centro 1er eje Q270 (valor absoluto): punto central de la segunda isla en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 2ª isla: centro 2º eje O271(absoluto): punto central de la segunda isla en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ **Diámetro isla 2** Q314: Diámetro aproximado de la 2ª isla. Introducir un valor superior al estimado. Campo de introducción 0 a 99999,9999
- ▶ Altura de medición isla 2 en eje palpación Q315 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se debe realizar la medición de la isla 2. Campo de introducción -99999,9999 a 99999,9999
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- Desplazamiento a altura de seguridad Q301: determinar cómo se debe desplazar el palpador entre los puntos de medición:
 - **0**: desplazarse entre los puntos de medición a la altura de medición
 - 1: desplazarse entre los puntos de medición a la altura de seguridad

Frases NC

114303110	
5 TCH PROBE 4	102 ROT 2 ISLAS
Q268=-37	;1ER CENTRO 1ER EJE
Q269=+12	;1ER CENTRO 2° EJE
Q313=60	;DIÁMETRO ISLA 1
Q261=-5	;ALTURA DE MEDICIÓN
Q270=+75	;2° CENTRO 1ER EJE
Q271=+20	;2° CENTRO 2° EJE
Q314=60	;DIÁMETRO ISLA 2
Q315=-5	;ALTURA DE MEDICIÓN 2
Q320=0	;DIST. DE SEGURIDAD
Q260=+20	;ALTURA SEGURA
Q301=0	;DESPLAZAR HASTA ALTURA SEGURA
Q307=0	;PREAJUSTE ANGULO ROT.
Q305=0	;N° EN TABLA
Q405=0	;COMPENSACIÓN
Q337=0	;PONER CERO

Ciclos de palpación: determinar automáticamente la posición inclinada de la pieza

14.4 GIRO BÁSICO mediante dos islas (Ciclo 402, DIN/ISO: G402)

- ▶ Preajuste del ángulo de giro Q307 (valor absoluto): introducir el ángulo de la recta de referencia cuando la posición inclinada a medir no debe referirse al eje principal, sino a cualquier recta. Entonces el TNC calcula para el giro básico la diferencia entre el valor medido y el ángulo de las rectas de referencia. Campo de introducción -360.000 a 360.000
- ▶ Número de preset en la tabla Q305: indicar el número en la tabla de presets, donde el TNC debe memorizar el giro básico calculado. Al introducir Q305=0, el TNC coloca el giro básico calculado en el menú ROT del modo de funcionamiento Manual. El parámetro no tiene ningún efecto, si la inclinación debe compensarse mediante un giro de la mesa giratoria (Q402=1). En este caso la posición inclinada no se memoriza como valor angular. Campo de introducción 0 a 2999
- CompensaciónQ402: establecer si el TNC debe poner como giro básico la posición inclinada determinada, o si debe orientar mediante giro de la mesa giratoria:
 - 0: Poner giro básico
 - 1: ejecutar giro de la mesa giratoria Si se selecciona giro de la mesa giratoria, el TNC no guarda la posición inclinada determinada, incluso aunque en el parámetro Q305 se haya definido una línea de la tabla
- ▶ Poner cero tras la orientación Q337: determinar si el TNC debe poner a 0 la indicación del eje de giro orientado:
 - **0**: No poner a 0 la indicación del eje de giro tras la orientación
 - 1: poner a 0 la indicación del eje de giro tras la orientación El TNC solo pone la indicación = 0 cuando se hay definido **Q402=1**

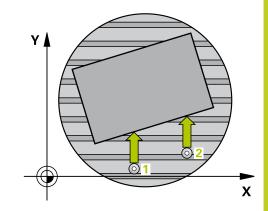
14.5 GIRO BÁSICO compensar mediante un eje de giro (Ciclo 403, DIN/ISO: G403)

Desarrollo del ciclo

El ciclo de palpación 403 calcula la posición inclinación de una pieza, mediante la medición de dos puntos de una superficie lineal. El TNC compensa la posición inclinada de la pieza que se ha calculado, mediante el giro del eje A, B o C. Para ello, la pieza puede estar fijada a la mesa giratoria de cualquier forma.

- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación programado 1. Para ello, el TNC desplaza el palpador según la distancia de seguridad en la dirección de desplazamiento opuesta a la determinada
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y ejecuta el primer proceso de palpación con avance de palpación (Columna **F**)
- 3 A continuación, el palpador se desplaza, hasta el siguiente punto de palpación 2 y ejecuta allí el segundo proceso de palpación
- 4 El TNC posiciona el palpador retrocediendo hasta la altura de seguridad y posiciona el eje de giro definido en el ciclo según el valor determinado. Opcionalmente, tras la orientación se puede poner la indicación a 0

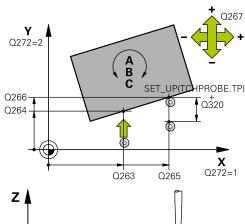
¡Tener en cuenta durante la programación!

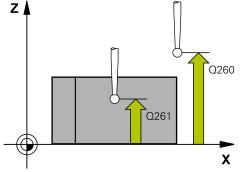

¡Atención: Peligro de colisión!

El TNC ya no realiza una comprobación de plausibilidad respecto a los puntos de palpación y el eje de compensación. Con ello pueden originarse movimientos compensarios desfasados en 180°.

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.

El TNC también memoriza el ángulo calculado en el parámetro **Q 150**.


Ciclos de palpación: determinar automáticamente la posición inclinada de la pieza


14.5 GIRO BÁSICO compensar mediante un eje de giro (Ciclo 403, DIN/ISO: G403)

Parámetros de ciclo

- ▶ 1er punto de medición del 1er eje Q263 (valor absoluto): coordenada del 1er punto de palpación en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 1er punto de medición del 2º eje Q264 (valor absoluto): coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 2º punto de medición del 1er eje Q265 (valor absoluto): coordenada del segundo punto de palpación en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 2º punto de medición del 2º eje Q266 (absoluto): coordenada del segundo punto de palpación en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► Eje de medición (1...3: 1=Eje principal) Q272: Eje en el que debe tener lugar la medición:
 - 1: Eje principal = Eje de medición
 - 2: Eje auxiliar = Eje de medición
 - 3: Eje de palpador = Eje de medición
- ▶ **Dirección de desplazamiento 1** Q267: dirección en la que el palpador debe desplazarse hasta llegar a la pieza:
 - -1: dirección de desplazamiento negativa
 - +1: dirección de desplazamiento positiva
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- Desplazamiento a altura de seguridad Q301: determinar cómo se debe desplazar el palpador entre los puntos de medición:
 - **0**: desplazarse entre los puntos de medición a la altura de medición
 - 1: desplazarse entre los puntos de medición a la altura de seguridad

Frases NC

5 TCH PROBE 4 DE GIRO	103 ROT. MEDIANTE EJE
Q263=+0	;1ER PUNTO 1ER EJE
Q264=+0	;1ER PUNTO 2° EJE
Q265=+20	;2° PUNTO 1ER EJE
Q266=+30	;2° PUNTO 2° EJE
Q272=1	;EJE DE MEDICIÓN
Q267=-1	;DIRECCIÓN DE DESPLAZAMIENTO
Q261=-5	;ALTURA DE MEDICIÓN
Q320=0	;DIST. DE SEGURIDAD
Q260=+20	;ALTURA SEGURA
Q301=0	;DESPLAZAR HASTA ALTURA SEGURA
Q312=6	;EJE DE COMPENSACIÓN
Q337=0	;PONER CERO
Q305=1	;N° EN TABLA
Q303=+1	;TRANSFERENCIA DEL VALOR DE MEDIDA
Q380=+90	;ÁNGULO DE REFERENCIA

GIRO BÁSICO compensar mediante un eje de giro (Ciclo 403, DIN/ 14.5 ISO: G403)

- ► Eje para el movimiento de compensación Q312: determinar con que eje de giro el TNC debe
 - compensar la posición inclinada medida:
 - **4**: Compensar la posición inclinada con el eje giratorio A
 - **5**: Compensar la posición inclinada con el eje giratorio B
 - **6**: Compensar la posición inclinada con el eje giratorio C
- Poner cero tras la orientación Q337: determinar si el TNC debe poner a 0 la indicación del eje de giro orientado:
 - **0**: no poner a 0 la indicación del eje de giro tras la orientación
 - 1: poner a 0 la indicación del eje de giro tras la orientación
- ▶ Número en la tabla Q305: indicar el número en la tabla de preset/tabla de puntos cero, donde el TNC debe fijar a cero el eje de giro. Solo tiene efecto si se fija Q337 = 1. Campo de introducción 0 a 2999
- ► Transmisión del valor de medición (0,1) Q303: determinar si se debe depositar el giro básico calculado en la tabla de puntos cero o en la tabla de preset:
 - **0**: escribir el giro básico determinado como desplazamiento del punto cero en la tabla de puntos cero. El sistema de referencia es el sistemas de coordenadas activo de la pieza
 - 1: escribir el giro básico determinado en la tabla de preset. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).
- ▶ ¿Ángulo de referencia? (0=eje principal) Q380: ángulo con el que el TNC debe orientar la recta palpada. Solo es efectivo si se selecciona el eje de giro = C (Q312 = 6). Campo de introducción -360,000 a 360,000

Ciclos de palpación: determinar automáticamente la posición inclinada de la pieza

14.6 FIJAR EL GIRO BÁSICO (Ciclo 404; DIN/ISO: G404)

14.6 FIJAR EL GIRO BÁSICO (Ciclo 404; DIN/ISO: G404)

Desarrollo del ciclo

Con el ciclo de palpación 404 se puede fijar automáticamente cualquier giro básico durante la ejecución del programa. Este ciclo se utiliza preferentemente cuando se quiere cancelar un giro básico realizado anteriormente.

Frases NC

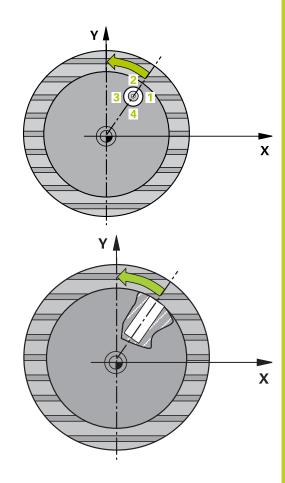
5 TCH PROBE 404 GIRO BÁSICO

Q307=+0 ;PREAJUSTE ANGULO ROT.

Parámetros de ciclo

► Preajuste del ángulo de giro: Valor angular con el cual debe fijarse el giro básico. Campo de introducción -360.000 a 360.000

14.7 Orientar la posición inclinada de una pieza mediante el eje C (Ciclo 405, DIN/ISO: G405)


Desarrollo del ciclo

Con el ciclo de palpación 405 se calcula

- el desvío angular entre el eje Y positivo del sistema de coordenadas activo y la línea central de un taladro o
- el desvío angular entre la posición nominal y la posición real del punto central de un taladro

El TNC compensa la desviación angular calculada, girando el eje C. La pieza debe estar sujeta en la mesa giratoria, la coordenada Y del taladro debe ser positiva. Si se mide descentramiento angular del taladro con el eje de palpación Y (posición horizontal del taladro), puede ser necesario ejecutar el ciclo varias veces, puesto que debido a la estrategia de medición se origina una imprecisión de aprox. un 1% de la posición inclinada.

- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación 1. El TNC calcula los puntos de palpación a partir de los datos del ciclo y de la distancia de seguridad de la columna SET_UP de la tabla de palpación
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y ejecuta el primer proceso de palpación con avance de palpación (Columna F) El TNC determina automáticamente la dirección de palpación en relación al ángulo inicial programado
- 3 Luego el palpador se desplaza circularmente, o bien hasta la altura de medición, o bien hasta la altura segura, para el siguiente punto de palpación 2 y ejecuta allí el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y luego en el punto de palpación 4 y ejecuta allí el tercer y el cuarto proceso de palpación respectivamente y posiciona el palpador en el centro del taladro calculado
- 5 Para finalizar el TNC posiciona el palpador de nuevo a la altura de seguridad y posiciona la pieza mediante el giro de la mesa giratoria, El TNC gira la mesa de tal forma que el punto central del taladro tras las compensación tanto en ejes de palpación verticales como horizontales está situado en la dirección del eje Y positivo, o en la posición nominal del punto central del taladro. El desplazamiento angular medido se encuentra disponible además en el parámetro Ω150

14

Ciclos de palpación: determinar automáticamente la posición inclinada de la pieza

14.7 Orientar la posición inclinada de una pieza mediante el eje C (Ciclo 405, DIN/ISO: G405)

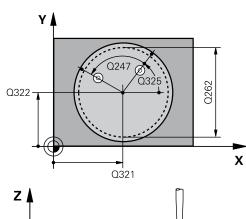
¡Tener en cuenta durante la programación!

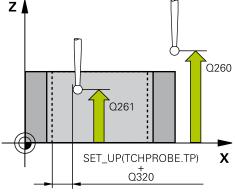
¡Atención: Peligro de colisión!

Para evitar que el palpador colisione con la pieza, deberá introducirse el diámetro nominal de la cajera (taladro) **menor** a lo estimado.

Cuando las dimensiones de la cajera y la distancia de seguridad no permiten un posicionamiento previo en la proximidad de los puntos de palpación, el TNC siempre palpa partiendo del centro de la cajera. Entre los cuatro puntos de medida el palpador no se desplaza a la altura de seguridad.

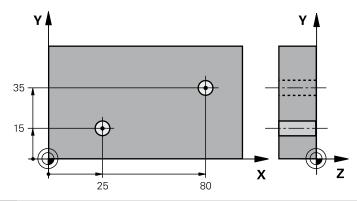
Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.


Cuanto menor sea el paso angular que se programa, más impreciso es el cálculo que realiza el TNC del punto central del círculo. Valor de introducción mínimo: 5°.


Orientar la posición inclinada de una pieza mediante el eje C (Ciclo 14.7 405, DIN/ISO: G405)

Parámetros de ciclo

- ► Centro 1er eje Q321 (valor absoluto): centro del taladro en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Centro 2º eje Q322 (absoluto): centro del taladro en el eje auxiliar del plano de mecanizado. Si se programa Q322 = 0, el TNC dirige el punto medio del taladro al eje Y positivo si se programa Q322 distinto de 0, el TNC dirige el punto medio del taladro a la posición nominal (ángulo, que resulta del centro del taladro). Campo de introducción -99999,9999 a 99999,9999
- ▶ **Diámetro nominal** Q262: Diámetro aproximado de la cajera circular (taladro). Introducir un valor menor al estimado. Campo de introducción 0 a 99999,9999
- ▶ Ángulo inicial Q325 (valor absoluto): ángulo entre el eje principal del plano de mecanizado y el primer punto de palpación. Campo de introducción -360.000 a 360.000
- ▶ Paso angular Q247 (valor incremental): ángulo entre dos puntos de medición, el signo del paso angular determina el sentido de giro (- = sentido horario), con el que el palpador se desplaza al siguiente punto de medición. Si se quieren medir arcos de círculo, deberá programarse un paso angular menor a 90°. Campo de introducción -120,000 a 120,000
- ► Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- Desplazamiento a altura de seguridad Q301: determinar cómo se debe desplazar el palpador entre los puntos de medición:
 - **0**: desplazarse entre los puntos de medición a la altura de medición
 - 1: desplazarse entre los puntos de medición a la altura de seguridad


Frases NC

5 TCH PROBE 4	105 ROT MEDIANTE EJE C
Q321=+50	;CENTRO 1ER EJE
Q322=+50	;CENTRO 2° EJE
Q262=10	;DIÁMETRO NOMINAL
Q355=+0	;ÁNGULO INICIAL
Q247=90	;PASO ANGULAR
Q261=-5	;ALTURA DE MEDICIÓN
Q320=0	;DIST. DE SEGURIDAD
Q260=+20	;ALTURA SEGURA
Q301=0	;DESPLAZAR HASTA ALTURA SEGURA
Q337=0	;PONER CERO

Ciclos de palpación: determinar automáticamente la posición inclinada de la pieza

- 14.7 Orientar la posición inclinada de una pieza mediante el eje C (Ciclo 405, DIN/ISO: G405)
 - Poner a cero tras la orientación Q337: determinar si el TNC debe poner a 0 la indicación del eje C, o si debe escribir el desplazamiento angular en la columna C de la tabla de puntos cero:
 0: Poner a 0 la indicación del eje C
 >0: Escribir el desplazamiento angular medido, con el signo correcto, en la tabla de puntos cero. № de línea = valor de Q337. Si ya está registrado un desplazamiento C en la tabla de puntos cero, el TNC suma el desvío angular medido con el signo correcto

14.8 Ejemplo: Determinar el giro básico mediante dos taladros

0 BEGIN PGM CYC40	01 MM	
1 TOOL CALL 69 Z		
2 TCH PROBE 401 R	OT 2 TALADROS	
Q268=+25	;1ER PUNTO 1ER EJE	Centro del 1er taladro: Coordenada X
Q269=+15	;1ER CENTRO 2° EJE	Centro del 1er taladro: Coordenada Y
Q270=+80	;2° CENTRO 1ER EJE	Centro del 2º taladro: Coordenada X
Q271=+35	;2° CENTRO 2° EJE	Centro del 2º taladro: Coordenada Y
Q261=-5	;ALTURA DE MEDICIÓN	Coordenada en el eje de palpación desde la cual se realiza la medición
Q260=+20	;ALTURA SEGURA	Altura sobre la cual se desplaza el eje de palpación sin colisionar
Q307=+0	;PREAJUSTE ANGULO ROT.	Ángulo de las rectas de referencia
Q402=1	;COMPENSACIÓN	Compensar inclinación mediante giro de la mesa giratoria
Q337=1	;PONER CERO	Después de la alineación, poner la visualización a cero
3 CALL PGM 35K47		Llamada al programa de mecanizado
4 END PGM CYC401	MM	

15.1 Fundamentos

15.1 Fundamentos

Resumen

Al ejecutar los ciclos del sistema de palpación, el ciclo 8 CREAR SIMETRÍA, el ciclo 11 FACTOR DE MEDIDA y el ciclo 26 FACTOR DE MEDIDA ESPEC. POR EJE no deben estar activos.

HEIDENHAIN solo garantiza la función de los ciclos de palpación si se utilizan sistemas de palpación de HEIDENHAIN.

El TNC debe estar preparado por el fabricante de la máquina para el empleo de palpadores 3D.
Rogamos consulte el manual de la máquina.

El TNC dispone de doce ciclos, con los que se puede calcular automáticamente puntos de referencia y procesarlos como sigue:

- Fijar el valor calculado como valor de visualización
- Escribir el valor calculado en la tabla de presets
- Introducir el valor calculado en una tabla de puntos cero

Ciclo	Softkey	Página
408 PTO. REF. CENTRO RANURA Medición de la anchura interior de una ranura, establecer como punto de referencia el centro de la ranura	408	307
409 PTO. REF. CENTRO DE ISLA Medición de la anchura exterior de una isla, establecer como punto de referencia el centro de la isla	409	311
410 PTO. REF. RECTÁNGULO INTERIOR Medición de la longitud y anchura interiores de un rectángulo, establecer como punto de referencia el centro del rectángulo	410	314
411 PTO. REF. RECTÁNGULO EXTERIOR Medición de la longitud y anchura exteriores de un rectángulo, establecer como punto de referencia el centro del rectángulo	411	318
412 PTO. REF. CÍRCULO INTERIOR Medir cuatro puntos cualquiera del interior del círculo, fijar el centro del círculo como punto de referencia	412	322
413 PTO. REF. CÍRCULO EXTERIOR Medir cuatro puntos cualquiera del exterior del círculo, fijar el centro del círculo como punto de referencia	413	327
414 PTO. REF.ESQUINA EXTERIOR Medición de dos rectas exteriores, establecer como punto de referencia la intersección de las rectas	414	332
415 PTO. REF.ESQUINA EXTERIOR Medición de dos rectas interiores, establecer como punto de referencia la intersección de las rectas	415	337
416 PTO. REF. CENTRO DEL CÍRCULO DE TALADROS (2ª. Softkey-Plano) Medición de tres agujeros cualesquiera en el círculo de agujeros, establecer como punto de referencia el centro del círculo de taladros	416	341
417 PTO. REF. EJE DE PALPADOR (2ª Softkey-Plano) Medición de una posición cualquiera en el eje del palpador y establecerla como punto de referencia	417	345

15.1 Fundamentos

Ciclo	Softkey	Página
418 PTO. REF. 4 TALADROS (2ª Softkey-Plano) Medición cruzada respectivamente de 2 taladros, establecer como punto de referencia el punto de intersección de las rectas de unión	418	347
419 PTO. REF. EJE INDIVIDUAL (2ª Softkey-Plano) Medición de una posición cualquiera en el eje seleccionable y establecerla como punto de referencia	419	351

Correspondencias de todos los ciclos de palpación para fijar el punto de ref.

Es posible procesar los ciclos de palpación 408 a 419 también con la rotación activa (giro básico o ciclo 10)

Punto de referencia y eje de palpación

El TNC fija el punto de referencia en el plano de mecanizado en función del eje del palpador que se ha definido en el programa de medición

Eje de palpación activado	Fijación del punto de referencia en
Z	XeY
Υ	ZyX
X	YyZ

Memorizar el punto de referencia calculado

En todos los ciclos para la fijación del punto de referencia puede determinarse mediante los parámetros Q303 y Q305 como debe memorizar el TNC el punto de referencia calculado:

- Q305 = 0, Q303 = cualquier valor: El TNC muestra en pantalla el punto de referencia calculado. El nuevo punto de referencia es activo de inmediato. Al mismo tiempo, el TNC guarda el punto de referencia fijado por ciclo en la indicación también en la línea 0 de la tabla preset.
- Q305 no igual a 0, Q303 = -1

Esta combinación puede originarse solo, cuando

- se leen programas con los ciclos 410 hasta 418, que fueron generados en un TNC 4xx
- Leer programas con los ciclos 410 hasta 418, que fueron generados con un software del iTNC530 anterior
- no se ha definido de forma consciente en la definición del ciclo la transmisión del valor de medición con el parámetro Q303

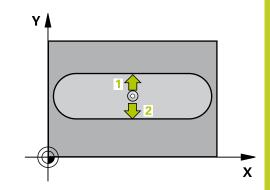
En casos similares, aparece en el TNC un aviso de error porque se ha modificado el handling completo en relación con las tablas de cero-pieza referidas a REF y debe determinarse mediante el parámetro Q303 una transmisión del valor de medición definida.

15.1 Fundamentos

- Q305 diferente de 0, Q303 = 0El TNC escribe el punto de referencia calculado en la tabla de cero-piezas activa. El sistema de referencia es el sistema de coordenadas de la pieza activo. El valor del parámetro Q305 determina el número de cero-pieza. Activar cero-pieza mediante el ciclo 7 en el programa NC
- Q305 diferente de 0, Q303 = 1 El TNC escribe el punto de referencia calculado en la tabla de preset. El sistema de referencia es el sistema de coordenadas de la máquina (coordenadas REF). El valor del parámetro Q305 determina el número de preset. Activar preset mediante el ciclo 247 en el programa NC

Resultados de medición en parámetros Q

Los resultados de medición del ciclo de palpación correspondientes se guardan por el TNC en los parámetros Q globales Q150 a Q160. Estos parámetros pueden continuar utilizándose en su programa. Deberá tenerse en cuenta la tabla de los parámetros de resultados, que aparece en cada descripción del ciclo.


15.2 PUNTO DE REFERENCIA CENTRO DE RANURA (Ciclo 408, DIN/ISO: G408)

Desarrollo del ciclo

El ciclo de palpación 408 determina el punto central de una ranura y fija este punto central como punto de referencia. Si se desea, el TNC también puede escribir el punto central en una tabla de puntos cero o en una tabla de presets.

- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación 1. El TNC calcula los puntos de palpación a partir de los datos del ciclo y de la distancia de seguridad de la columna SET_UP de la tabla de palpación
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y ejecuta el primer proceso de palpación con avance de palpación (Columna **F**)
- 3 Luego el palpador se desplaza, o bien paralelamente al eje hasta la altura de medición, o bien linealmente hasta la altura segura para el siguiente punto de palpación 2 y ejecuta allí el segundo proceso de palpación
- 4 Finalmente, el TNC posiciona de nuevo el palpador en la altura segura y procesa el punto de referencia determinado, en función de los parámetros de ciclo Q303 y Q305 (ver "") y memoriza los valores reales en los parámetros Q que se listan a continuación
- 5 Si se desea, el TNC determina a continuación, en un proceso de palpación separado, además el punto de referencia en el eje del palpador

Nº de parámetro	Significado
Q166	Valor actual del ancho de ranura medido
Q157	Valor real posición eje central

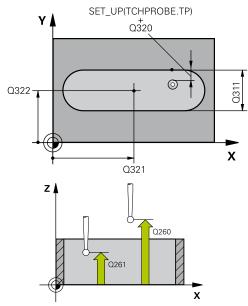
15.2 PUNTO DE REFERENCIA CENTRO DE RANURA (Ciclo 408, DIN/ISO: G408)

¡Tener en cuenta durante la programación!

¡Atención: Peligro de colisión!

Para evitar que el palpador colisione con la pieza, deberá indicarse la anchura de la ranura **menor** a lo estimado.

Si la anchura de la ranura y la distancia de seguridad no permiten un preposicionamiento cerca del punto de palpación, el TNC palpa siempre partiendo del centro de la ranura. El palpador no se desplaza entre los dos puntos de medición a la altura de seguridad. Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.


Si se fija un punto de referencia con el ciclo de palpación (Q303 = 0) y adicionalmente se emplea palpar eje de palpador (Q381 = 1), no podrá estar activa ninguna conversión de coordenadas.

PUNTO DE REFERENCIA CENTRO DE RANURA (Ciclo 408, DIN/ISO: 15.2 G408)

Parámetros de ciclo

- ▶ Centro 1er eje Q321 (valor absoluto): centro de la ranura en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► Centro 2º eje Q322 (absoluto): centro de la ranura en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► Anchura de la ranura Q311 (valor incremental): anchura de la ranura independiente de la posición en el plano de mecanizado. Campo de introducción 0 hasta 99999,9999
- ► Eje de medición Q272: Eje del plano de mecanizado en el que debe tener lugar la medición:
 - 1: Eje principal = Eje de medición
 - 2: Eje auxiliar = Eje de medición
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- Desplazamiento a altura de seguridad Q301: determinar cómo se debe desplazar el palpador entre los puntos de medición:
 - **0**: desplazarse entre los puntos de medición a la altura de medición
 - 1: desplazarse entre los puntos de medición a la altura de seguridad
- ▶ Número en la tabla Q305: indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas del centro de la ranura. Al introducir Q305=0, el TNC fija la visualización automáticamente, de forma que el nuevo punto de referencia se encuentra en el centro de la ranura. Campo de introducción 0 a 2999
- ▶ Nuevo punto de referencia Q405 (absoluto): coordenada en el eje de medición en la que el TNC debe fijar el centro de ranura determinado. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999

Bloques NC

5 TCH PROBE 4 DE RANURA	108 PTO. REF. CENTRO
Q321=+50	;CENTRO 1ER EJE
Q322=+50	;CENTRO 2° EJE
Q311=25	;ANCHURA DE RANURA
Q272=1	;EJE DE MEDICIÓN
Q261=-5	;ALTURA DE MEDICIÓN
Q320=0	;DIST. DE SEGURIDAD
Q260=+20	;ALTURA SEGURA
Q301=0	;DESPLAZAR HASTA ALTURA SEGURA
Q305=10	;N° EN TABLA
Q405=+0	;PUNTO DE REFERENCIA
Q303=+1	;TRANSFERENCIA DEL VALOR DE MEDIDA
Q381=1	;PALPAR EJE PALPADOR
Q382=+85	;1° COOR. PARA EJE DE PALPADOR
Q383=+50	;2ª COOR. PARA EJE DE PALPADOR
Q382=+0	;3° COOR. PARA EJE DE PALPADOR
O333=+1	·PLINTO DE REFERENCIA

15.2 PUNTO DE REFERENCIA CENTRO DE RANURA (Ciclo 408, DIN/ISO: G408)

- ➤ Transmisión del valor de medición (0,1) Q303: determinar si se debe depositar el giro básico calculado en la tabla de puntos cero o en la tabla de preset:
 - **0**: escribir el giro básico determinado como desplazamiento del punto cero en la tabla de puntos cero. El sistema de referencia es el sistemas de coordenadas activo de la pieza
 - 1: escribir el giro básico determinado en la tabla de preset. El sistema de referencia es el sistema de coordenadas de la máguina (sistema REF).
- ▶ Palpar en eje del TS Q381: determinar si el TNC debe fijar también el punto de referencia en el eje del palpador:
 - **0**: No fijar el punto de referencia en el eje del palpador
 - 1: fijar el punto de referencia en el eje del palpador
- ▶ Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Nuevo punto de referencia eje TS Q333 (absoluto): coordenada en el eje del palpador en la que el TNC debe fijar el punto de referencia. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999

15.3 PUNTO DE REFERENCIA CENTRO DE ISLA (Ciclo 409, DIN/ISO: G409)

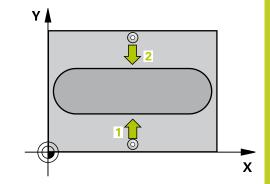
Desarrollo del ciclo

El ciclo de palpación 409 determina el punto central de una isla y fija este punto central como punto de referencia. Si se desea, el TNC también puede escribir el punto central en una tabla de puntos cero o en una tabla de presets.

- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación 1. El TNC calcula los puntos de palpación a partir de los datos del ciclo y de la distancia de seguridad de la columna SET_UP de la tabla de palpación
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y ejecuta el primer proceso de palpación con avance de palpación (Columna **F**)
- 3 Luego el palpador se desplaza, hasta la altura de seguridad para el siguiente punto de palpación 2 y ejecuta allí el segundo proceso de palpación
- 4 Finalmente, el TNC posiciona de nuevo el palpador en la altura segura y procesa el punto de referencia determinado, en función de los parámetros de ciclo Q303 y Q305 (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305) y memoriza los valores reales en los parámetros Q que se listan a continuación
- 5 Si se desea, el TNC determina a continuación, en un proceso de palpación separado, además el punto de referencia en el eje del palpador

Número de parámetro	Significado
Q166	Valor real de la anchura de la isla medida
Q157	Valor real posición eje central

¡Tener en cuenta durante la programación!

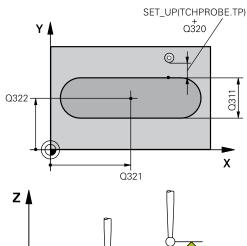


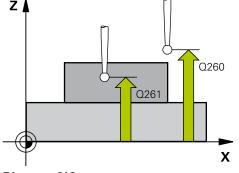
¡Atención: Peligro de colisión!

Para evitar una colisión entre el palpador y la pieza, deberá introducirse la anchura de la isla **mayor** a lo estimado

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.

Si se fija un punto de referencia con el ciclo de palpación (Q303 = 0) y adicionalmente se emplea palpar eje de palpador (Q381 = 1), no podrá estar activa ninguna conversión de coordenadas.




15.3 PUNTO DE REFERENCIA CENTRO DE ISLA (Ciclo 409, DIN/ISO: G409)

Parámetros de ciclo

- ► Centro 1er eje Q321 (valor absoluto): centro de la isla en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► Centro 2º eje Q322 (valor absoluto): centro de la isla en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► Anchura de la isla Q311 (valor incremental): Anchura de la isla independiente de la posición del plano de mecanizado. Campo de introducción 0 a 99999,9999
- ► Eje de medición Q272: Eje del plano de mecanizado en el que debe tener lugar la medición:
 - 1: Eje principal = Eje de medición
 - 2: Eje auxiliar = Eje de medición
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- ▶ Número en la tabla Q305: indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas del centro de la isla. Al introducir Q305=0, el TNC fija la visualización automáticamente, de forma que el nuevo punto de referencia se encuentra en el centro de la ranura. Campo de introducción 0 a 2999
- ▶ Nuevo punto de referencia Q405 (absoluto): coordenada en el eje de medición en la que el TNC debe fijar el centro de isla determinado. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999
- Transmisión del valor de medición (0,1) Q303: determinar si se debe depositar el giro básico calculado en la tabla de puntos cero o en la tabla de preset:
 - **0**: escribir el giro básico determinado como desplazamiento del punto cero en la tabla de puntos cero. El sistema de referencia es el sistemas de coordenadas activo de la pieza
 - 1: escribir el giro básico determinado en la tabla de preset. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).

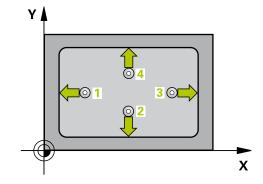
Bloques NC

5 TCH PROBE 4 DE ISLA	409 PTO. REF. CENTRO
Q321=+50	;CENTRO 1ER EJE
Q322=+50	;CENTRO 2° EJE
Q311=25	;ANCHURA DE ISLA
Q272=1	;EJE DE MEDICIÓN
Q261=-5	;ALTURA DE MEDICIÓN
Q320=0	;DIST. DE SEGURIDAD
Q260=+20	;ALTURA SEGURA
Q305=10	;N° EN TABLA
Q405=+0	;PUNTO DE REFERENCIA
Q303=+1	;TRANSFERENCIA DEL VALOR DE MEDIDA
Q381=1	;PALPAR EJE PALPADOR
Q382=+85	;1ª COOR. PARA EJE DE PALPADOR
Q383=+50	;2ª COOR. PARA EJE DE PALPADOR
Q382=+0	;3° COOR. PARA EJE DE PALPADOR
Q333=+1	;PUNTO DE REFERENCIA

PUNTO DE REFERENCIA CENTRO DE ISLA (Ciclo 409, DIN/ISO: 15.3 G409)

- ▶ Palpar en eje del TS Q381: determinar si el TNC debe fijar también el punto de referencia en el eje del palpador:
 - **0**: No fijar el punto de referencia en el eje del palpador
 - 1: fijar el punto de referencia en el eje del palpador
- ▶ Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Nuevo punto de referencia eje TS Q333 (absoluto): coordenada en el eje del palpador en la que el TNC debe fijar el punto de referencia. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999

15.4 PUNTO DE REFERENCIA RECTÁNGULO INTERIOR (Ciclo 410, DIN/ISO: G410)


15.4 PUNTO DE REFERENCIA RECTÁNGULO INTERIOR (Ciclo 410, DIN/ISO: G410)

Desarrollo del ciclo

Con el ciclo de palpación 410 se calcula el centro de una cajera rectangular y se fija este punto central como punto de referencia. Si se desea, el TNC también puede escribir el punto central en una tabla de puntos cero o en una tabla de presets.

- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación 1. El TNC calcula los puntos de palpación a partir de los datos del ciclo y de la distancia de seguridad de la columna SET_UP de la tabla de palpación
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y ejecuta el primer proceso de palpación con avance de palpación (Columna **F**)
- 3 Luego el palpador se desplaza, o bien paralelamente al eje hasta la altura de medición, o bien linealmente hasta la altura segura para el siguiente punto de palpación 2 y ejecuta allí el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y luego en el punto de palpación 4 y ejecuta allí el tercer y el cuarto proceso de palpación respectivamente
- 5 Finalmente, el TNC vuelve a posicionar el palpador en la altura de seguridad y procesa el punto de referencia determinado en función de los parámetros del ciclo Q303 y Q305 (ver "")
- 6 Si se desea, el TNC determina a continuación, en un proceso de palpación separado, además el punto de referencia en el eje del palpador y memoriza los valores reales en los parámetros Q siguientes

Número de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real del centro en eje auxiliar
Q154	Valor real longitud del lado en el eje principal
Q155	Valor real del lado en el eje auxiliar

PUNTO DE REFERENCIA RECTÁNGULO INTERIOR (Ciclo 410, DIN/ 15.4 ISO: G410)

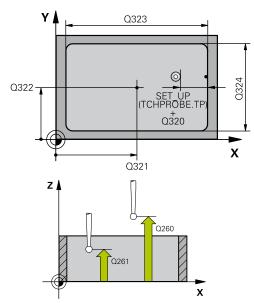
¡Tener en cuenta durante la programación!

¡Atención: Peligro de colisión!

Para evitar que el palpador colisione con la pieza, deberá introducirse la longitud del lado 1 y del lado 2 de la cajera con valores **inferiores** a lo estimado.

Cuando las dimensiones de la cajera y la distancia de seguridad no permiten un posicionamiento previo en la proximidad de los puntos de palpación, el TNC siempre palpa partiendo del centro de la cajera. Entre los cuatro puntos de medida el palpador no se desplaza a la altura de seguridad.

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.


Si se fija un punto de referencia con el ciclo de palpación (Q303 = 0) y adicionalmente se emplea palpar eje de palpador (Q381 = 1), no podrá estar activa ninguna conversión de coordenadas.

15.4 PUNTO DE REFERENCIA RECTÁNGULO INTERIOR (Ciclo 410, DIN/ISO: G410)

Parámetros de ciclo

- ► Centro 1er eje Q321 (valor absoluto): centro de la cajera en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► Centro 2° eje Q322 (absoluto): centro de la cajera en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► Longitud lado 1 Q323 (valor incremental): Longitud de la cajera, paralela al eje principal del plano de mecanizado. Campo de introducción 0 a 99999,9999
- ► Longitud lado 2 Q324 (valor incremental): Longitud de la cajera, paralela al eje auxiliar del plano de mecanizado. Campo de introducción 0 a 99999,9999
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- ▶ Desplazamiento a altura de seguridad Q301: determinar cómo se debe desplazar el palpador entre los puntos de medición:
 - **0**: desplazarse entre los puntos de medición a la altura de medición
 - 1: desplazarse entre los puntos de medición a la altura de seguridad
- ▶ Número del punto cero en la tabla Q305: indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas del centro de la cajera. Introduciendo Q305=0, el TNC fija la visualización automática de tal forma que el nuevo punto de referencia se encuentre en el centro de la cajera. Campo de introducción 0 a 2999
- ▶ Nuevo punto de referencia eje principal Q331 (absoluto): coordenada en el eje principal en la que el TNC debe fijar el centro de isla determinado. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999
- ▶ Nuevo punto de referencia eje secundario Q332 (absoluto): coordenada en el eje secundario en la que el TNC debe fijar el centro de isla determinado. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999

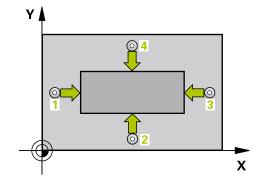
Frases NC

5 TCH PROBE 410 PUNTO REF. RECTÁNGULO INTERIOR	
Q321=+50	;CENTRO 1ER EJE
Q322=+50	;CENTRO 2° EJE
Q323=60	;LONGITUD 1ER LADO
Q324=20	;LONGITUD 2° LADO
Q261=-5	;ALTURA DE MEDICIÓN
Q320=0	;DIST. DE SEGURIDAD
Q260=+20	;ALTURA SEGURA
Q301=0	;DESPLAZAR HASTA ALTURA SEGURA
Q305=10	;N° EN TABLA
Q331=+0	;PUNTO DE REFERENCIA
Q332=+0	;PUNTO DE REFERENCIA
Q303=+1	;TRANSFERENCIA DEL VALOR DE MEDIDA
Q381=1	;PALPAR EJE PALPADOR
Q382=+85	;1° COOR. PARA EJE DE PALPADOR
Q383=+50	;2ª COOR. PARA EJE DE PALPADOR
Q382=+0	;3° COOR. PARA EJE DE PALPADOR
Q333=+1	;PUNTO DE REFERENCIA

PUNTO DE REFERENCIA RECTÁNGULO INTERIOR (Ciclo 410, DIN/ 15.4 ISO: G410)

- ► Transmisión del valor de medición (0,1) Q303: determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:
 - -1: ¡No utilizar! Lo introduce el TNC cuando se leen programas antiguos (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305)
 - 0: escribir el punto de referencia determinado en la tabla de puntos cero activa. El sistema de referencia es el sistemas de coordenadas activo de la pieza
 1: escribir en la tabla de preset el punto de referencia determinado. El sistema de referencia es el sistema de coordenadas de la máquina (sistema RFF)
- ▶ Palpar en eje del TS Q381: determinar si el TNC debe fijar también el punto de referencia en el eje del palpador:
 - **0**: No fijar el punto de referencia en el eje del palpador
 - 1: fijar el punto de referencia en el eje del palpador
- ▶ Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999.9999 a 99999.9999
- ▶ Nuevo punto de referencia Q333 (absoluto): coordenada en la que el TNC debe fijar el punto de referencia. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999

15.5 PUNTO DE REFERENCIA RECTÁNGULO EXTERIOR (Ciclo 411, DIN/ISO: G411)


15.5 PUNTO DE REFERENCIA RECTÁNGULO EXTERIOR (Ciclo 411, DIN/ISO: G411)

Desarrollo del ciclo

Con el ciclo de palpación 411 se calcula el centro de una isla rectangular y se fija dicho centro como punto de referencia. Si se desea, el TNC también puede escribir el punto central en una tabla de puntos cero o en una tabla de presets.

- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación 1. El TNC calcula los puntos de palpación a partir de los datos del ciclo y de la distancia de seguridad de la columna SET_UP de la tabla de palpación
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y ejecuta el primer proceso de palpación con avance de palpación (Columna **F**)
- 3 Luego el palpador se desplaza, o bien paralelamente al eje hasta la altura de medición, o bien linealmente hasta la altura segura para el siguiente punto de palpación 2 y ejecuta allí el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y luego en el punto de palpación 4 y ejecuta allí el tercer y el cuarto proceso de palpación respectivamente
- 5 Finalmente, el TNC vuelve a posicionar el palpador en la altura de seguridad y procesa el punto de referencia determinado en función de los parámetros del ciclo Q303 y Q305 (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305)
- 6 Si se desea, el TNC determina a continuación, en un proceso de palpación separado, además el punto de referencia en el eje del palpador y memoriza los valores reales en los parámetros Q siguientes

Número de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real centro eje secundario
Q154	Valor real longitud del lado eje principal
Q155	Valor real longitud del lado eje secundario

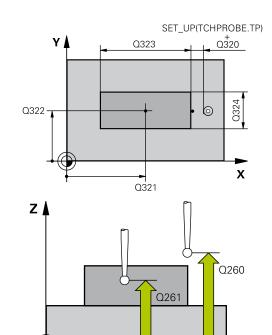
PUNTO DE REFERENCIA RECTÁNGULO EXTERIOR (Ciclo 411, DIN/ 15.5 ISO: G411)

¡Tener en cuenta durante la programación!

¡Atención: Peligro de colisión!

Para evitar que el palpador colisione con la pieza, deberá introducirse la longitud del lado 1 y del lado 2 de la cajera con valores **superiores** a lo estimado.

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.


Si se fija un punto de referencia con el ciclo de palpación (Q303 = 0) y adicionalmente se emplea palpar eje de palpador (Q381 = 1), no podrá estar activa ninguna conversión de coordenadas.

15.5 PUNTO DE REFERENCIA RECTÁNGULO EXTERIOR (Ciclo 411, DIN/ISO: G411)

Parámetros de ciclo

- ► Centro 1er eje Q321 (valor absoluto): centro de la isla en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► Centro 2° eje Q322 (valor absoluto): centro de la isla en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► Longitud lado 1 Q323 (valor incremental): Longitud de la isla, paralela al eje principal del plano de mecanizado. Campo de introducción 0 a 99999,9999
- ► Longitud lado 2 Q324 (valor incremental): Longitud de la isla, paralela al eje auxiliar del plano de mecanizado. Campo de introducción 0 a 99999,9999
- ► Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- ▶ Desplazamiento a altura de seguridad Q301: determinar cómo se debe desplazar el palpador entre los puntos de medición:
 - **0**: desplazarse entre los puntos de medición a la altura de medición
 - 1: desplazarse entre los puntos de medición a la altura de seguridad
- ▶ Número del punto cero en la tabla Q305: indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas del centro de la isla. Introduciendo Q305=0, el TNC fija la visualización automáticamente, de forma que el nuevo punto de referencia se encuentra ajustado en el centro de la isla. Campo de introducción 0 a 2999
- ▶ Nuevo punto de referencia eje principal Q331 (absoluto): coordenada en el eje principal en la que el TNC debe fijar el centro de isla determinado. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999
- ▶ Nuevo punto de referencia eje secundario Q332 (absoluto): coordenada en el eje secundario en la que el TNC debe fijar el centro de isla determinado. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999

X

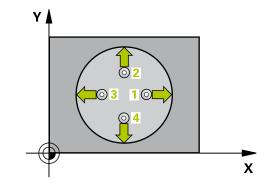
Bloques NC

5 TCH PROBE 411 PUNTO REF. RECTÁNGULO EXTERIOR		
Q321=+50	;CENTRO 1ER EJE	
Q322=+50	;CENTRO 2° EJE	
Q323=60	;LONGITUD 1ER LADO	
Q324=20	;LONGITUD 2° LADO	
Q261=-5	;ALTURA DE MEDICIÓN	
Q320=0	;DIST. DE SEGURIDAD	
Q260=+20	;ALTURA SEGURA	
Q301=0	;DESPLAZAR HASTA ALTURA SEGURA	
Q305=0	;N° EN TABLA	
Q331=+0	;PUNTO DE REFERENCIA	
Q332=+0	;PUNTO DE REFERENCIA	
Q303=+1	;TRANSFERENCIA DEL VALOR DE MEDIDA	
Q381=1	;PALPAR EJE PALPADOR	
Q382=+85	;1° COOR. PARA EJE DE PALPADOR	
Q383=+50	;2ª COOR. PARA EJE DE PALPADOR	
Q382=+0	;3° COOR. PARA EJE DE PALPADOR	
Q333=+1	;PUNTO DE REFERENCIA	

PUNTO DE REFERENCIA RECTÁNGULO EXTERIOR (Ciclo 411, DIN/ 15.5 ISO: G411)

- ► Transmisión del valor de medición (0,1) Q303: determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:
 - -1: ¡No utilizar! Lo introduce el TNC cuando se leen programas antiguos (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305)
 - 0: escribir el punto de referencia determinado en la tabla de puntos cero activa. El sistema de referencia es el sistemas de coordenadas activo de la pieza
 1: escribir en la tabla de preset el punto de referencia determinado. El sistema de referencia es el sistema de coordenadas de la máquina (sistema RFF)
- ▶ Palpar en eje del TS Q381: determinar si el TNC debe fijar también el punto de referencia en el eje del palpador:
 - **0**: No fijar el punto de referencia en el eje del palpador
 - 1: fijar el punto de referencia en el eje del palpador
- ▶ Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999.9999 a 99999.9999
- ▶ Nuevo punto de referencia eje TS Q333 (absoluto): coordenada en el eje del palpador en la que el TNC debe fijar el punto de referencia. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999

15.6 PUNTO DE REFERENCIA CÍRCULO INTERIOR (Ciclo 412, DIN/ISO: G412)


15.6 PUNTO DE REFERENCIA CÍRCULO INTERIOR (Ciclo 412, DIN/ISO: G412)

Desarrollo del ciclo

El ciclo de palpador 412 determina el centro de una cajera circular (taladro) y fija este centro como punto de referencia. Si se desea, el TNC también puede escribir el punto central en una tabla de puntos cero o en una tabla de presets.

- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación 1. El TNC calcula los puntos de palpación a partir de los datos del ciclo y de la distancia de seguridad de la columna SET_UP de la tabla de palpación
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y ejecuta el primer proceso de palpación con avance de palpación (Columna F) El TNC determina la dirección de palpación automáticamente en función del ángulo inicial programado
- 3 Luego el palpador se desplaza circularmente, o bien hasta la altura de medición, o bien hasta la altura segura, para el siguiente punto de palpación 2 y ejecuta allí el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y luego en el punto de palpación 4 y ejecuta allí el tercer y el cuarto proceso de palpación respectivamente
- 5 Finalmente, el TNC posiciona de nuevo el palpador en la altura segura y procesa el punto de referencia determinado, en función de los parámetros de ciclo Q303 y Q305 (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305) y memoriza los valores reales en los parámetros Q que se listan a continuación
- 6 Si se desea, el TNC determina a continuación, en un proceso de palpación separado, además el punto de referencia en el eje del palpador

Número de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real centro eje secundario
Q153	Valor real del diámetro

PUNTO DE REFERENCIA CÍRCULO INTERIOR (Ciclo 412, DIN/ISO: 15.6 G412)

¡Tener en cuenta durante la programación!

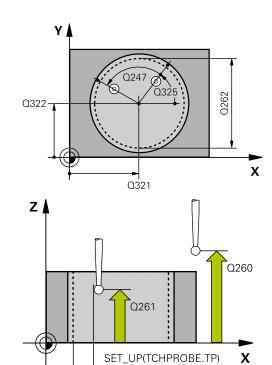
¡Atención: Peligro de colisión!

Para evitar que el palpador colisione con la pieza, deberá introducirse el diámetro nominal de la cajera (taladro) **menor** a lo estimado.

Cuando las dimensiones de la cajera y la distancia de seguridad no permiten un posicionamiento previo en la proximidad de los puntos de palpación, el TNC siempre palpa partiendo del centro de la cajera. Entre los cuatro puntos de medida el palpador no se desplaza a la altura de seguridad.

Cuando menor sea el paso angular Q247 programado, más impreciso será el punto de referencia calculado por el TNC. Valor de introducción mínimo: 5°.

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.


Si se fija un punto de referencia con el ciclo de palpación (Q303 = 0) y adicionalmente se emplea palpar eje de palpador (Q381 = 1), no podrá estar activa ninguna conversión de coordenadas.

15.6 PUNTO DE REFERENCIA CÍRCULO INTERIOR (Ciclo 412, DIN/ISO: G412)

Parámetros de ciclo

- ► Centro 1er eje Q321 (valor absoluto): centro de la cajera en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Centro 2º eje Q322 (absoluto): centro de la cajera en el eje auxiliar del plano de mecanizado. Cuando se programa Q322 = 0, el TNC orienta el centro del taladro sobre el eje Y positivo, cuando Q322 es distinto de 0, el TNC orienta el centro del taladro sobre la posición nominal. Campo de introducción -99999,9999 a 99999,9999
- ▶ **Diámetro nominal** Q262: Diámetro aproximado de la cajera circular (taladro). Introducir un valor menor al estimado. Campo de introducción 0 a 99999,9999
- ▶ Ángulo inicial Q325 (valor absoluto): ángulo entre el eje principal del plano de mecanizado y el primer punto de palpación. Campo de introducción -360.000 a 360.000
- ▶ Paso angular Q247 (valor incremental): ángulo entre dos puntos de medición, el signo del paso angular determina el sentido de giro (- = sentido horario), con el que el palpador se desplaza al siguiente punto de medición. Si se quieren medir arcos de círculo, deberá programarse un paso angular menor a 90°. Campo de introducción -120,000 a 120,000

Q320

PUNTO DE REFERENCIA CÍRCULO INTERIOR (Ciclo 412, DIN/ISO: 15.6 G412)

- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- ▶ Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- ▶ Desplazamiento a altura de seguridad Q301: determinar cómo se debe desplazar el palpador entre los puntos de medición:
 - **0**: desplazarse entre los puntos de medición a la altura de medición
 - 1: desplazarse entre los puntos de medición a la altura de seguridad
- ▶ Número del punto cero en la tabla Q305: indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas del centro de la cajera. Introduciendo Q305=0, el TNC fija la visualización automática de tal forma que el nuevo punto de referencia se encuentre en el centro de la cajera. Campo de introducción 0 a 2999
- ▶ Nuevo punto de referencia eje principal Q331 (absoluto): coordenada en el eje principal en la que el TNC debe fijar el centro de isla determinado. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999
- ▶ Nuevo punto de referencia eje secundario Q332 (absoluto): coordenada en el eje secundario en la que el TNC debe fijar el centro de isla determinado. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999
- ► Transmisión del valor de medición (0,1) Q303: determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:
 - -1: ¡No utilizar! Lo introduce el TNC cuando se leen programas antiguos (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305)
 - **0**: escribir el punto de referencia determinado en la tabla de puntos cero activa. El sistema de referencia es el sistemas de coordenadas activo de la pieza **1**: escribir en la tabla de preset el punto de referencia determinado. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).

Frases NC

5 TCH PROBE 4 INTERIOR	112 PUNTO REF. CÍRCULO
Q321=+50	;CENTRO 1ER EJE
Q322=+50	;CENTRO 2° EJE
Q262=75	;DIÁMETRO NOMINAL
Q355=+0	;ÁNGULO INICIAL
Q247=+60	;PASO ANGULAR
Q261=-5	;ALTURA DE MEDICIÓN
Q320=0	;DIST. DE SEGURIDAD
Q260=+20	;ALTURA SEGURA
Q301=0	;DESPLAZAR HASTA ALTURA SEGURA
Q305=12	;N° EN TABLA
Q331=+0	;PUNTO DE REFERENCIA
Q332=+0	;PUNTO DE REFERENCIA
Q303=+1	;TRANSFERENCIA DEL VALOR DE MEDIDA
Q381=1	;PALPAR EJE PALPADOR
Q382=+85	;1° COOR. PARA EJE DE PALPADOR
Q383=+50	;2ª COOR. PARA EJE DE PALPADOR
Q382=+0	;3° COOR. PARA EJE DE PALPADOR
Q333=+1	;PUNTO DE REFERENCIA
Q423=4	;NÚMERO DE PUNTOS DE MEDICIÓN
Q351=1	;TIPO DE DESPLAZAMIENTO

15.6 PUNTO DE REFERENCIA CÍRCULO INTERIOR (Ciclo 412, DIN/ISO: G412)

- ▶ Palpar en eje del TS Q381: determinar si el TNC debe fijar también el punto de referencia en el eje del palpador:
 - **0**: No fijar el punto de referencia en el eje del palpador
 - 1: fijar el punto de referencia en el eje del palpador
- ▶ Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Nuevo punto de referencia eje TS Q333 (absoluto): coordenada en el eje del palpador en la que el TNC debe fijar el punto de referencia. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999
- ▶ Número de puntos de medición (4/3) Q423: determinar si el TNC debe medir la isla con 4 o con 3 palpaciones:
 - 4: Utilizar 4 puntos de medición (ajuste estándar)
 - 3: Utilizar 3 puntos de medición
- ▶ ¿Tipo de desplazamiento? Recta=0/Círculo=1 Q365: determinar con cual función de trayectoria debe desplazarse la herramienta entre los puntos de medición, cuando está activo el desplazamiento hasta la altura segura (Q301=1):
 - 0: Desplazar entre los mecanizados sobre una recta
 - 1: Desplazar entre los mecanizados circularmente sobre el diámetro del círculo parcial

15.7 PUNTO DE REFERENCIA CÍRCULO EXTERIOR (Ciclo 413, DIN/ISO: G413)

Desarrollo del ciclo

El ciclo de palpación 413 calcula el centro de la isla circular y fija dicho centro como punto de referencia. Si se desea, el TNC también puede escribir el punto central en una tabla de puntos cero o en una tabla de presets.

- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación 1. El TNC calcula los puntos de palpación a partir de los datos del ciclo y de la distancia de seguridad de la columna SET_UP de la tabla de palpación
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y ejecuta el primer proceso de palpación con avance de palpación (Columna F) El TNC determina automáticamente la dirección de palpación en función del ángulo inicial programado
- 3 Luego el palpador se desplaza circularmente, o bien hasta la altura de medición, o bien hasta la altura segura, para el siguiente punto de palpación 2 y ejecuta allí el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y luego en el punto de palpación 4 y ejecuta allí el tercer y el cuarto proceso de palpación respectivamente
- 5 Finalmente, el TNC posiciona de nuevo el palpador en la altura segura y procesa el punto de referencia determinado, en función de los parámetros de ciclo Q303 y Q305 (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305) y memoriza los valores reales en los parámetros Q que se listan a continuación
- 6 Si se desea, el TNC determina a continuación, en un proceso de palpación separado, además el punto de referencia en el eje del palpador

Número de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real centro eje secundario
Q153	Valor real del diámetro

15.7 PUNTO DE REFERENCIA CÍRCULO EXTERIOR (Ciclo 413, DIN/ISO: G413)

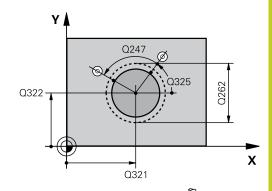
¡Tener en cuenta durante la programación!

¡Atención: Peligro de colisión!

Para evitar que el palpador colisione con la pieza, deberá introducirse el diámetro nominal de la isla **mayor**que lo estimado.

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.

Cuando menor sea el paso angular Q247 programado, más impreciso será el punto de referencia calculado por el TNC. Valor de introducción mínimo: 5°.


Si se fija un punto de referencia con el ciclo de palpación (Q303 = 0) y adicionalmente se emplea palpar eje de palpador (Q381 = 1), no podrá estar activa ninguna conversión de coordenadas.

PUNTO DE REFERENCIA CÍRCULO EXTERIOR (Ciclo 413, DIN/ISO: 15.7 G413)

Parámetros de ciclo

- ► Centro 1er eje Q321 (valor absoluto): centro de la isla en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Centro 2º eje Q322 (valor absoluto): centro de la isla en el eje auxiliar del plano de mecanizado. Cuando se programa Q322 = 0, el TNC orienta el centro del taladro sobre el eje Y positivo, cuando Q322 es distinto de 0, el TNC orienta el centro del taladro sobre la posición nominal. Campo de introducción -99999,9999 a 99999,9999
- ▶ Diámetro nominal Q262: Diámetro aproximado de la isla. Introducir un valor superior al estimado. Campo de introducción 0 a 99999,9999
- ▶ Ángulo inicial Q325 (valor absoluto): ángulo entre el eje principal del plano de mecanizado y el primer punto de palpación. Campo de introducción -360.000 a 360.000
- ▶ Paso angular Q247 (valor incremental): ángulo entre dos puntos de medición, el signo del paso angular determina el sentido de giro (- = sentido horario), con el que el palpador se desplaza al siguiente punto de medición. Si se quieren medir arcos de círculo, deberá programarse un paso angular menor a 90°. Campo de introducción -120,000 a 120,000
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- ▶ Desplazamiento a altura de seguridad Q301: determinar cómo se debe desplazar el palpador entre los puntos de medición:
 - **0**: desplazarse entre los puntos de medición a la altura de medición
 - 1: desplazarse entre los puntos de medición a la altura de seguridad
- ▶ Número del punto cero en la tabla Q305: indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas del centro de la isla. Introduciendo Q305=0, el TNC fija la visualización automáticamente, de forma que el nuevo punto de referencia se encuentra ajustado en el centro de la isla. Campo de introducción 0 a 2999

Bloques NC

Dioques No	
5 TCH PROBE 4 EXTERIOR	113 PUNTO REF. CÍRCULO
Q321=+50	;CENTRO 1ER EJE
Q322=+50	;CENTRO 2° EJE
Q262=75	;DIÁMETRO NOMINAL
Q355=+0	;ÁNGULO INICIAL
Q247=+60	;PASO ANGULAR
Q261=-5	;ALTURA DE MEDICIÓN
Q320=0	;DIST. DE SEGURIDAD
Q260=+20	;ALTURA SEGURA
Q301=0	;DESPLAZAR HASTA ALTURA SEGURA
Q305=15	;N° EN TABLA
Q331=+0	;PUNTO DE REFERENCIA
Q332=+0	;PUNTO DE REFERENCIA
Q303=+1	;TRANSFERENCIA DEL VALOR DE MEDIDA
Q381=1	;PALPAR EJE PALPADOR
Q382=+85	;1° COOR. PARA EJE DE PALPADOR
Q383=+50	;2ª COOR. PARA EJE DE PALPADOR
Q382=+0	;3° COOR. PARA EJE DE PALPADOR

15.7 PUNTO DE REFERENCIA CÍRCULO EXTERIOR (Ciclo 413, DIN/ISO: G413)

- ▶ Nuevo punto de referencia eje principal Q331 (absoluto): coordenada en el eje principal en la que el TNC debe fijar el centro de isla determinado. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999
- ▶ Nuevo punto de referencia eje secundario Q332 (absoluto): coordenada en el eje secundario en la que el TNC debe fijar el centro de isla determinado. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999
- ► Transmisión del valor de medición (0,1) Q303: determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:
 - -1: ¡No utilizar! Lo introduce el TNC cuando se leen programas antiguos (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305)
 - 0: escribir el punto de referencia determinado en la tabla de puntos cero activa. El sistema de referencia es el sistemas de coordenadas activo de la pieza
 1: escribir en la tabla de preset el punto de referencia determinado. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).
- Palpar en eje del TS Q381: determinar si el TNC debe fijar también el punto de referencia en el eje del palpador:
 - **0**: No fijar el punto de referencia en el eje del palpador
 - 1: fijar el punto de referencia en el eje del palpador
- ▶ Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Nuevo punto de referencia eje TS Q333 (absoluto): coordenada en el eje del palpador en la que el TNC debe fijar el punto de referencia. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999

Q333=+1	;PUNTO DE REFERENCIA
Q423=4	;NÚMERO DE PUNTOS DE MEDICIÓN
Q351=1	;TIPO DE DESPLAZAMIENTO

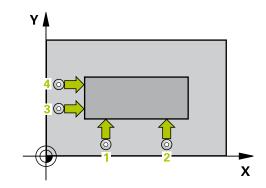
PUNTO DE REFERENCIA CÍRCULO EXTERIOR (Ciclo 413, DIN/ISO: 15.7 G413)

- ▶ Número de puntos de medición (4/3) Q423: determinar si el TNC debe medir la isla con 4 o con 3 palpaciones:
 - 4: Utilizar 4 puntos de medición (ajuste estándar)
 - 3: Utilizar 3 puntos de medición
- ▶ ¿Tipo de desplazamiento? Recta=0/Círculo=1

Q365: determinar con cual función de trayectoria debe desplazarse la herramienta entre los puntos de medición, cuando está activo el desplazamiento hasta la altura segura (Q301=1):

- 0: Desplazar entre los mecanizados sobre una recta
- 1: Desplazar entre los mecanizados circularmente sobre el diámetro del círculo parcial

15.8 PUNTO DE REFERENCIA ESQUINA EXTERIOR (Ciclo 414, DIN/ISO: G414)


15.8 PUNTO DE REFERENCIA ESQUINA EXTERIOR (Ciclo 414, DIN/ISO: G414)

Desarrollo del ciclo

Con el ciclo de palpación 414 se calcula el punto de intersección de dos rectas y se fija dicho punto de intersección como punto de referencia. Si se desea, el TNC también puede escribir el punto de intersección en una tabla de puntos cero o en una tabla de presets.

- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el primer punto de palpación 1 (véase la imagen superior derecha). Para ello, el TNC desplaza el palpador según la distancia de seguridad en la dirección de desplazamiento opuesta a la que le corresponde
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y ejecuta el primer proceso de palpación con avance de palpación (Columna F) El TNC determina la dirección de palpación automáticamente en función del 3er punto de medición programado
- 1 Luego el palpador se desplaza, hasta el siguiente punto de palpación 2 y ejecuta allí el segundo proceso de palpación
- 2 El TNC posiciona el palpador en el punto de palpación 3 y luego en el punto de palpación 4 y ejecuta allí el tercer y el cuarto proceso de palpación respectivamente
- 3 Finalmente, el TNC posiciona de nuevo el palpador en la altura segura y procesa el punto de referencia determinado, en función de los parámetros de ciclo Q303 y Q305 (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305) y memoriza las coordenadas de la esquina determinada en los parámetros Q que se listan a continuación
- 4 Si se desea, el TNC determina a continuación, en un proceso de palpación separado, además el punto de referencia en el eje del palpador

Número de parámetro	Significado
Q151	Valor actual de la esquina en el eje principal
Q152	Valor actual de la esquina en el eje auxiliar

PUNTO DE REFERENCIA ESQUINA EXTERIOR (Ciclo 414, DIN/ISO: 15.8 G414)

¡Tener en cuenta durante la programación!

¡Atención: Peligro de colisión!

Si se fija un punto de referencia con el ciclo de palpación (Q303 = 0) y adicionalmente se emplea palpar eje de palpador (Q381 = 1), no podrá estar activa ninguna conversión de coordenadas.

D

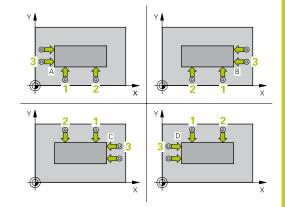
Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.

El TNC mide la primera recta siempre en dirección del eje auxiliar del plano de mecanizado.

Mediante la posición del punto de medición 1 y 3 se fija la esquina, en la que el TNC fija el punto de referencia (véase figura a la derecha y la tabla siguiente).

	siguiente).	a a la defectia y la tabla
Esquina	coordenada X	coordenada Y
A	Punto 1 mayor que punto 3	Punto 1 menor que punto 3
В	Punto 1 menor que punto 3	Punto 1 menor que punto 3
С	Punto 1 menor que	Punto 1 mayor que

punto 3

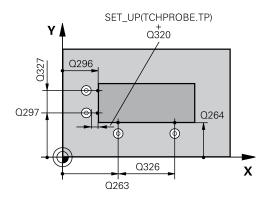

punto 3

Punto 1 mayor que

punto 3

punto 3

Punto 1 mayor que



15.8 PUNTO DE REFERENCIA ESQUINA EXTERIOR (Ciclo 414, DIN/ISO: G414)

Parámetros de ciclo

- ▶ 1er punto de medición del 1er eje Q263 (valor absoluto): coordenada del 1er punto de palpación en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 1er punto de medición del 2° eje Q264 (valor absoluto): coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Distancia 1er eje Q326 (valor incremental): Distancia entre el primer y el segundo punto de medición en el eje principal del plano de mecanizado. Campo de introducción 0 a 99999,9999
- ▶ **3er punto de medición del 1er eje** Q296 (valor absoluto): coordenada del tercer punto de palpación en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 3er punto de medición del 2º eje Q297 (valor absoluto): coordenada del tercer punto de palpación en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ **Distancia 2º eje** Q327 (valor incremental): Distancia entre el tercer y el cuarto punto de medición en el eje auxiliar del plano de mecanizado. Campo de introducción 0 a 99999,9999
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- ▶ Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- Desplazamiento a altura de seguridad Q301: determinar cómo se debe desplazar el palpador entre los puntos de medición:
 - **0**: desplazarse entre los puntos de medición a la altura de medición
 - 1: desplazarse entre los puntos de medición a la altura de seguridad
- ▶ **Ejecutar giro básico** Q304: determinar si el TNC debe compensar la posición inclinada de la pieza mediante un giro básico:
 - 0: No ejecutar ningún giro básico
 - 1: Ejecutar un giro básico

Bloques NC

-	
5 TCH PROBE 4 INTERIOR	414 PUNTO REF. ESQUINA
Q263=+37	;1ER PUNTO 1ER EJE
Q264=+7	;1ER PUNTO 2° EJE
Q326=50	;DISTANCIA 1ER EJE
Q296=+95	;3ER PUNTO 1ER EJE
Q297=+25	;2° PUNTO 2° EJE
Q327=45	;DISTANCIA 2° EJE
Q261=-5	;ALTURA DE MEDICIÓN
Q320=0	;DIST. DE SEGURIDAD
Q260=+20	;ALTURA SEGURA
Q301=0	;DESPLAZAR HASTA ALTURA SEGURA
Q304=0	;GIRO BÁSICO
Q305=7	;N° EN TABLA
Q331=+0	;PUNTO DE REFERENCIA
Q332=+0	;PUNTO DE REFERENCIA
Q303=+1	;TRANSFERENCIA DEL VALOR DE MEDIDA
Q381=1	;PALPAR EJE PALPADOR
Q382=+85	;1° COOR. PARA EJE DE PALPADOR
Q383=+50	;2ª COOR. PARA EJE DE PALPADOR
Q382=+0	;3° COOR. PARA EJE DE PALPADOR
Q333=+1	;PUNTO DE REFERENCIA

PUNTO DE REFERENCIA ESQUINA EXTERIOR (Ciclo 414, DIN/ISO: 15.8 G414)

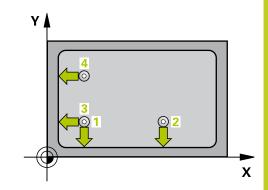
- ▶ Número del punto cero en la tabla Q305: indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas de la esquina. En la introducción de Q305=0, el TNC fija la visualización automática de tal manera que el nuevo punto de referencia se encuentra en la esquina. Campo de introducción 0 a 2999
- ▶ Nuevo punto de referencia eje principal O331 (absoluto): coordenada en el eje principal en la que el TNC debe fijar la esquina determinada. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999
- ▶ Nuevo punto de referencia eje secundario Q332 (absoluto): coordenada en el eje secundario en la que el TNC debe fijar la esquina determinada. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999
- ► Transmisión del valor de medición (0,1) Q303: determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:
 - -1: ¡No utilizar! Lo introduce el TNC cuando se leen programas antiguos (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305)
 - 0: escribir el punto de referencia determinado en la tabla de puntos cero activa. El sistema de referencia es el sistemas de coordenadas activo de la pieza
 1: escribir en la tabla de preset el punto de referencia determinado. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).
- ▶ Palpar en eje del TS Q381: determinar si el TNC debe fijar también el punto de referencia en el eje del palpador:
 - **0**: No fijar el punto de referencia en el eje del palpador
 - 1: fijar el punto de referencia en el eje del palpador
- ▶ Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999

15

Ciclos de palpación: Determinar puntos de referencia automáticamente

15.8 PUNTO DE REFERENCIA ESQUINA EXTERIOR (Ciclo 414, DIN/ISO: G414)

- ▶ Palpar en eje del TS: Coord. 3. Eje 0384 (absoluto): coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija 0381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Nuevo punto de referencia eje TS Q333 (absoluto): coordenada en el eje del palpador en la que el TNC debe fijar el punto de referencia. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999


15.9 PUNTO DE REFERENCIA ESQUINA EXTERIOR (Ciclo 415, DIN/ISO: G415)

Desarrollo del ciclo

Con el ciclo de palpación 415 se calcula el punto de intersección de dos rectas y se fija dicho punto de intersección como punto de referencia. Si se desea, el TNC también puede escribir el punto de intersección en una tabla de puntos cero o en una tabla de presets.

- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el primer punto de palpación 1 (véase la imagen superior derecha), que se define en el ciclo. Para ello, el TNC desplaza el palpador según la distancia de seguridad en la dirección de desplazamiento opuesta a la que le corresponde
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y ejecuta el primer proceso de palpación con avance de palpación (Columna F) La dirección de palpación resulta del número que identifica la esquina.
- 1 Luego el palpador se desplaza, hasta el siguiente punto de palpación 2 y ejecuta allí el segundo proceso de palpación
- 2 El TNC posiciona el palpador en el punto de palpación 3 y luego en el punto de palpación 4 y ejecuta allí el tercer y el cuarto proceso de palpación respectivamente
- 3 Finalmente, el TNC posiciona de nuevo el palpador en la altura segura y procesa el punto de referencia determinado, en función de los parámetros de ciclo Q303 y Q305 (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305) y memoriza las coordenadas de la esquina determinada en los parámetros Q que se listan a continuación
- 4 Si se desea, el TNC determina a continuación, en un proceso de palpación separado, además el punto de referencia en el eje del palpador

Número de parámetro	Significado
Q151	Valor actual de la esquina en el eje principal
Q152	Valor actual de la esquina en el eje auxiliar

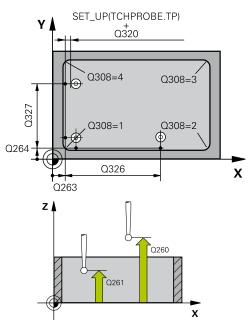
15.9 PUNTO DE REFERENCIA ESQUINA EXTERIOR (Ciclo 415, DIN/ISO: G415)

¡Tener en cuenta durante la programación!

¡Atención: Peligro de colisión!

Si se fija un punto de referencia con el ciclo de palpación (Q303 = 0) y adicionalmente se emplea palpar eje de palpador (Q381 = 1), no podrá estar activa ninguna conversión de coordenadas.

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.


El TNC mide la primera recta siempre en dirección del eje auxiliar del plano de mecanizado.

PUNTO DE REFERENCIA ESQUINA EXTERIOR (Ciclo 415, DIN/ISO: 15.9 G415)

Parámetros de ciclo

- ▶ 1er punto de medición del 1er eje Q263 (valor absoluto): coordenada del 1er punto de palpación en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 1er punto de medición del 2º eje Q264 (valor absoluto): coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Distancia 1er eje Q326 (valor incremental): Distancia entre el primer y el segundo punto de medición en el eje principal del plano de mecanizado. Campo de introducción 0 a 99999,9999
- ▶ **Distancia 2º eje** Q327 (valor incremental): Distancia entre el tercer y el cuarto punto de medición en el eje auxiliar del plano de mecanizado. Campo de introducción 0 a 99999,9999
- ► Esquina Q308: número de la esquina, en la cual el TNC debe fijar el punto de referencia. Campo de introducción 1 a 4
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- Desplazamiento a altura de seguridad Q301: determinar cómo se debe desplazar el palpador entre los puntos de medición:
 - **0**: desplazarse entre los puntos de medición a la altura de medición
 - 1: desplazarse entre los puntos de medición a la altura de seguridad
- ► Ejecutar giro básico Q304: determinar si el TNC debe compensar la posición inclinada de la pieza mediante un giro básico:
 - 0: No ejecutar ningún giro básico
 - 1: Ejecutar un giro básico
- ▶ Número del punto cero en la tabla Q305: indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas de la esquina. En la introducción de Q305=0, el TNC fija la visualización automática de tal manera que el nuevo punto de referencia se encuentra en la esquina. Campo de introducción 0 a 2999

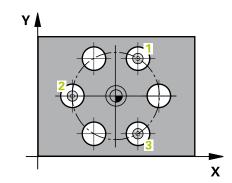
Bloques NC

Bioques IVC	
5 TCH PROBE 4 EXTERIOR	115 PUNTO REF. ESQUINA
Q263=+37	;1ER PUNTO 1ER EJE
Q264=+7	;1ER PUNTO 2° EJE
Q326=50	;DISTANCIA 1ER EJE
Q296=+95	;3ER PUNTO 1ER EJE
Q297=+25	;2° PUNTO 2° EJE
Q327=45	;DISTANCIA 2° EJE
Q261=-5	;ALTURA DE MEDICIÓN
Q320=0	;DIST. DE SEGURIDAD
Q260=+20	;ALTURA SEGURA
Q301=0	;DESPLAZAR HASTA ALTURA SEGURA
Q304=0	;GIRO BÁSICO
Q305=7	;N° EN TABLA
Q331=+0	;PUNTO DE REFERENCIA
Q332=+0	;PUNTO DE REFERENCIA
Q303=+1	;TRANSFERENCIA DEL VALOR DE MEDIDA
Q381=1	;PALPAR EJE PALPADOR
Q382=+85	;1° COOR. PARA EJE DE PALPADOR
Q383=+50	;2ª COOR. PARA EJE DE PALPADOR
Q382=+0	;3° COOR. PARA EJE DE PALPADOR
Q333=+1	;PUNTO DE REFERENCIA

15.9 PUNTO DE REFERENCIA ESQUINA EXTERIOR (Ciclo 415, DIN/ISO: G415)

- ▶ Nuevo punto de referencia eje principal Q331 (absoluto): coordenada en el eje principal en la que el TNC debe fijar la esquina determinada. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999
- ► Nuevo punto de referencia eje secundario Q332 (absoluto): coordenada en el eje secundario en la que el TNC debe fijar la esquina determinada. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999
- ► Transmisión del valor de medición (0,1) Q303: determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:
 - -1: ¡No utilizar! Lo introduce el TNC cuando se leen programas antiguos (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305)
 - 0: escribir el punto de referencia determinado en la tabla de puntos cero activa. El sistema de referencia es el sistemas de coordenadas activo de la pieza
 1: escribir en la tabla de preset el punto de referencia determinado. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).
- Palpar en eje del TS Q381: determinar si el TNC debe fijar también el punto de referencia en el eje del palpador:
 - **0**: No fijar el punto de referencia en el eje del palpador
 - 1: fijar el punto de referencia en el eje del palpador
- ▶ Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Nuevo punto de referencia eje TS Q333 (absoluto): coordenada en el eje del palpador en la que el TNC debe fijar el punto de referencia. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999

PUNTO DE REFERENCIA CENTRO DE CÍRCULO DE TALADROS 15.10 (Ciclo 416, DIN/ISO: G416)


15.10 PUNTO DE REFERENCIA CENTRO DE CÍRCULO DE TALADROS (Ciclo 416, DIN/ISO: G416)

Desarrollo del ciclo

Con el ciclo de palpación 416 se calcula el centro de un círculo de taladros mediante la medición de tres taladros y se fija dicho centro como punto de referencia. Si se desea, el TNC también puede escribir el punto central en una tabla de puntos cero o en una tabla de presets.

- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el centro introducido del primer taladro 1.
- 2 A continuación, el palpador se desplaza a la altura de medición introducida y, mediante cuatro palpaciones, determina el centro del primer taladro
- 3 A continuación, el palpador vuelve a la altura segura y se posiciona en el centro introducido del segundo taladro 2
- 4 El TNC desplaza el palpador a la altura de medición introducida y, mediante cuatro palpaciones, determina el centro del segundo taladro
- 5 A continuación, el palpador vuelve a la altura segura y se posiciona en el centro introducido del tercer taladro 3
- 6 El TNC desplaza el palpador a la altura de medición introducida y, mediante cuatro palpaciones, determina el centro del tercer taladro
- 7 Finalmente, el TNC posiciona de nuevo el palpador en la altura segura y procesa el punto de referencia determinado, en función de los parámetros de ciclo Q303 y Q305 (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305) y memoriza los valores reales en los parámetros Q que se listan a continuación
- 8 Si se desea, el TNC determina a continuación, en un proceso de palpación separado, además el punto de referencia en el eje del palpador

Número de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real centro eje secundario
Q153	Valor real del diámetro del círculo de taladros

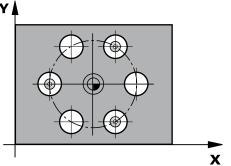
Ciclos de palpación: Determinar puntos de referencia automáticamente 15.10 PUNTO DE REFERENCIA CENTRO DE CÍRCULO DE TALADROS (Ciclo 416, DIN/ISO: G416)

¡Tener en cuenta durante la programación!

¡Atención: Peligro de colisión!

Si se fija un punto de referencia con el ciclo de palpación (Q303 = 0) y adicionalmente se emplea palpar eje de palpador (Q381 = 1), no podrá estar activa ninguna conversión de coordenadas.


Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.


PUNTO DE REFERENCIA CENTRO DE CÍRCULO DE TALADROS 15.10 (Ciclo 416, DIN/ISO: G416)

Parámetros de ciclo

- ► Centro 1er eje Q273 (valor absoluto): centro del círculo de taladros (valor nominal) en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► Centro 2º eje Q274 (valor absoluto): centro del círculo de taladros (valor nominal) en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ **Diámetro nominal** Q262: Introducir el diámetro aproximado del círculo de taladros. Cuanto menor sea el diámetro del taladro, más precisa debe ser la indicación del diámetro nominal. Campo de introducción -0 hasta 99999,9999
- ▶ Ángulo 1er taladro Q291 (valor absoluto): ángulo en coordenadas polares del primer punto central del taladro en el plano de mecanizado. Campo de introducción -360,0000 a 360,0000
- ▶ Ángulo 2º taladro Q292 (valor absoluto): ángulo en coordenadas polares del segundo punto central del taladro en el plano de mecanizado. Campo de introducción -360,0000 a 360,0000
- ▶ Ángulo 3er taladro Q293 (valor absoluto): ángulo en coordenadas polares del tercer punto central del taladro en el plano de mecanizado. Campo de introducción -360,0000 a 360,0000
- Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- ▶ Altura de seguridad Q260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- ▶ Número del punto cero en la tabla Q305: indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas del círculo de taladros. Introduciendo Q305=0, el TNC ajusta la visualización automática de tal forma que el nuevo punto de referencia se encuentra en el centro del círculo de agujeros. Campo de introducción 0 a
- Nuevo punto de referencia eje principal Q331 (absoluto): coordenada en el eje principal en la que el TNC debe fijar el centro del círculo de taladros determinado. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999
- ▶ Nuevo punto de referencia eje secundario Q332 (absoluto): coordenada en el eje secundario en la que el TNC debe fijar el centro del círculo de taladros determinado. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999

Frases NC

5 TCH PROBE 416 PTO. REF. CENTRO
DE CÍRCULO DE TALADROS

CH PROBE 4 CÍRCULO DE	16 PTO. REF. CENTRO TALADROS
Q273=+50	;CENTRO 1ER EJE
Q274=+50	;CENTRO 2° EJE
Q262=90	;DIÁMETRO NOMINAL
Q291=+34	;ÁNGULO 1ER TALADRO
Q292=+70	;ÁNGULO 2º TALADRO
Q293=+210	;ÁNGULO 3ER TALADRO
Q261=-5	;ALTURA DE MEDICIÓN
Q260=+20	;ALTURA SEGURA
Q305=12	;N° EN TABLA
Q331=+0	;PUNTO DE REFERENCIA
Q332=+0	;PUNTO DE REFERENCIA
Q303=+1	;TRANSFERENCIA DEL VALOR DE MEDIDA
Q381=1	;PALPAR EJE PALPADOR
Q382=+85	;1ª COOR. PARA EJE DE

PALPADOR

	PALPADOR
Q333=+1	;PUNTO DE REFERENCIA
Q320=0	;DIST. DE SEGURIDAD

15.10 PUNTO DE REFERENCIA CENTRO DE CÍRCULO DE TALADROS (Ciclo 416, DIN/ISO: G416)

- ► Transmisión del valor de medición (0,1) Q303: determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:
 - -1: ¡No utilizar! Lo introduce el TNC cuando se leen programas antiguos (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305)
 - O: escribir el punto de referencia determinado en la tabla de puntos cero activa. El sistema de referencia es el sistemas de coordenadas activo de la pieza
 1: escribir en la tabla de preset el punto de referencia determinado. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REE)
- ▶ Palpar en eje del TS Q381: determinar si el TNC debe fijar también el punto de referencia en el eje del palpador:
 - **0**: No fijar el punto de referencia en el eje del palpador
 - 1: fijar el punto de referencia en el eje del palpador
- ▶ Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999.9999 a 99999.9999
- ▶ Nuevo punto de referencia eje TS Q333 (absoluto): coordenada en el eje del palpador en la que el TNC debe fijar el punto de referencia. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999
- distancia de seguridad Q320 (valor incremental): distancia adicional entre el punto de medición y la bola del palpador. Q320 tiene efecto acumulativo a SET_UP (tabla del sistema de palpación) y solo para la palpación del punto de referencia en el eje del sistema de palpación. Campo de introducción 0 a 99999,9999

PUNTO DE REFERENCIA EJE DEL PALPADOR (Ciclo 417, DIN/ISO: 15.11 G417)

15.11 PUNTO DE REFERENCIA EJE DEL PALPADOR (Ciclo 417, DIN/ISO: G417)

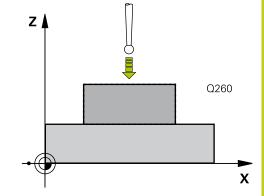
Desarrollo del ciclo

El ciclo de palpación 417 mide cualquier coordenada en el eje de palpación y lo define como punto cero. Si se desea, el TNC también puede escribir la coordenada medida en una tabla de puntos cero o de preset.

- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación programado 1. Para ello, el TNC desplaza el palpador según la distancia de seguridad en la dirección del eje de palpación positivo
- 2 A continuación, el palpador se desplaza en el eje del palpador hasta la coordinada introducida del punto de palpación 1 y detecta la posición real mediante palpación simple
- 3 Finalmente, el TNC posiciona de nuevo el palpador en la altura segura y procesa el punto de referencia determinado, en función de los parámetros de ciclo Ω303 y Ω305 (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305) y memoriza el valor real en el parámetro Ω que se lista a continuación

Número de parámetro	Significado	
O160	Valor actual del punto medido	

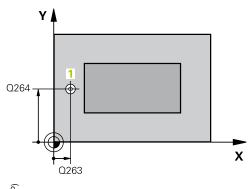
¡Tener en cuenta durante la programación!

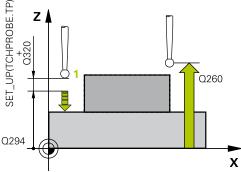

¡Atención: Peligro de colisión!

Si se fija un punto de referencia con el ciclo de palpación (Q303 = 0) y adicionalmente se emplea palpar eje de palpador (Q381 = 1), no podrá estar activa ninguna conversión de coordenadas.

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.

Entonces el TNC fija el punto de referencia en dicho eje.




15.11 PUNTO DE REFERENCIA EJE DEL PALPADOR (Ciclo 417, DIN/ISO: G417)

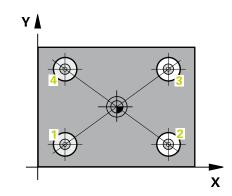
Parámetros de ciclo

- ▶ 1er punto de medición del 1er eje Q263 (valor absoluto): coordenada del 1er punto de palpación en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 1er punto de medición del 2º eje Q264 (valor absoluto): coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 1er punto de medición 3º eje Q294 (valor absoluto): coordenada del punto de palpación en el eje de palpación. Campo de introducción -99999,9999 a 99999,9999
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- ▶ Número del punto cero en la tabla Q305: indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar la coordenada. En la introducción de Q305=0, el TNC fija la visualización automática de tal manera que el nuevo punto de referencia se encuentra en la superficie palpada. Campo de introducción 0 a 2999
- Nuevo punto de referencia Q333 (absoluto): coordenada en la que el TNC debe fijar el punto de referencia. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999
- ➤ Transmisión del valor de medición (0,1) Q303: determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:
 - -1: ¡No utilizar! Lo introduce el TNC cuando se leen programas antiguos (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305)
 - 0: escribir el punto de referencia determinado en la tabla de puntos cero activa. El sistema de referencia es el sistemas de coordenadas activo de la pieza
 1: escribir en la tabla de preset el punto de referencia determinado. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).

Bloques NC

5 TCH PROBE 4	117 PTO. REF. EJE TS
Q263=+25	;1ER PUNTO 1ER EJE
Q264=+25	;1ER PUNTO 2° EJE
Q294=+25	;1ER PUNTO 3ER EJE
Q320=0	;DIST. DE SEGURIDAD
Q260=+50	;ALTURA SEGURA
Q305=0	;N° EN TABLA
Q333=+0	;PUNTO DE REFERENCIA
Q303=+1	;TRANSFERENCIA DEL VALOR DE MEDIDA

PUNTO DE REFERENCIA CENTRO DE 4 TALADROS (Ciclo 418, DIN/ 15.12 ISO: G418)


15.12 PUNTO DE REFERENCIA CENTRO DE 4 TALADROS (Ciclo 418, DIN/ISO: G418)

Desarrollo del ciclo

El ciclo de palpación 418 calcula el punto de intersección de las líneas que unen dos puntos centrales de dos taladros y fija dicho punto de intersección como punto de referencia. Si se desea, el TNC también puede escribir el punto de intersección en una tabla de puntos cero o en una tabla de presets.

- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el centro del primer taladro 1.
- 2 A continuación, el palpador se desplaza a la altura de medición introducida y, mediante cuatro palpaciones, determina el centro del primer taladro
- 3 A continuación, el palpador vuelve a la altura segura y se posiciona en el centro introducido del segundo taladro 2
- 4 El TNC desplaza el palpador a la altura de medición introducida y, mediante cuatro palpaciones, determina el centro del segundo taladro
- 5 El TNC repite los procesos 3 y 4 para los taladros 3 y 4
- 6 Finalmente, el TNC vuelve a posicionar el palpador en la altura de seguridad y procesa el punto de referencia determinado en función de los parámetros del ciclo Q303 y Q305 (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305) El TNC calcula el punto de referencia como punto de intersección de las líneas de unión de centro de taladro 1/3 y 2/4 y memoriza los valores reales en los parámetros Q que se listan a continuación
- 7 Si se desea, el TNC determina a continuación, en un proceso de palpación separado, además el punto de referencia en el eje del palpador

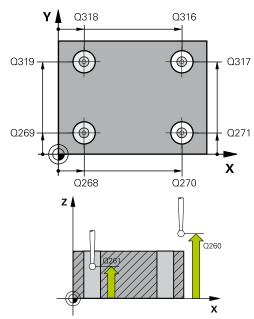
Número de parámetro	Significado
Q151	Valor actual del punto de intersección en el eje principal
Q152	Valor actual de punto de intersección en el eje auxiliar

Ciclos de palpación: Determinar puntos de referencia automáticamente 15.12 PUNTO DE REFERENCIA CENTRO DE 4 TALADROS (Ciclo 418, DIN/ ISO: G418)

¡Tener en cuenta durante la programación!

¡Atención: Peligro de colisión!

Si se fija un punto de referencia con el ciclo de palpación (Q303 = 0) y adicionalmente se emplea palpar eje de palpador (Q381 = 1), no podrá estar activa ninguna conversión de coordenadas.


Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.

PUNTO DE REFERENCIA CENTRO DE 4 TALADROS (Ciclo 418, DIN/ 15.12 ISO: G418)

Parámetros de ciclo

- ▶ 1er taladro: centro 1er eje Q268 (valor absoluto): punto central del primer taladro en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 1er taladro: centro del 2º eje Q269 (valor absoluto): punto central del primer taladro en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 2º taladro: centro 1er eje O270 (valor absoluto): punto central del segundo taladro en el eje principal del plano de mecanizado. Campo de introducción -99999.9999 a 99999.9999
- ▶ 2ª taladro: centro 2º eje Q271 (absoluto): punto central del segundo taladro en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ **3er centro 1er eje** Q316 (valor absoluto): punto central del 3er taladro en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ **3er centro 2º eje** Q317 (valor absoluto): punto central del 3er taladro en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 4º centro 1er eje Q318 (valor absoluto): punto central del 4º taladro en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999.9999
- ▶ 4º centro 2º ejeQ319 (valor absoluto): punto central del 4º taladro en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- ▶ Número del punto cero en la tabla Q305: indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas del punto de intersección de las líneas de unión. Durante la introducción de Q305=0 el TNC ajusta las visualizaciones automáticamente, de forma que el punto de referencia fije el punto de referencia en el punto de intersección de las líneas de unión. Campo de introducción 0 a 2999

Bloques NC

Dioques ivo	
5 TCH PROBE 4 TALADROS	18 PTO. REF. 4
Q268=+20	;1ER PUNTO 1ER EJE
Q269=+25	;1ER CENTRO 2° EJE
Q270=+150	;2° CENTRO 1ER EJE
Q271=+25	;2° CENTRO 2° EJE
Q316=+150	;3ER CENTRO 1ER EJE
Q317=+85	;3ER CENTRO 2° EJE
Q318=+22	;4° CENTRO 1ER EJE
Q319=+80	;4° CENTRO 2° EJE
Q261=-5	;ALTURA DE MEDICIÓN
Q260=+10	;ALTURA SEGURA
Q305=12	;N° EN TABLA
Q331=+0	;PUNTO DE REFERENCIA
Q332=+0	;PUNTO DE REFERENCIA
Q303=+1	;TRANSFERENCIA DEL VALOR DE MEDIDA
Q381=1	;PALPAR EJE PALPADOR
Q382=+85	;1° COOR. PARA EJE DE PALPADOR
Q383=+50	;2ª COOR PARA EJE DE PALPADOR
Q384=+0	;3ª COOR. PARA EJE DE PALPADOR
Q333=+0	;PUNTO DE REFERENCIA

15.12 PUNTO DE REFERENCIA CENTRO DE 4 TALADROS (Ciclo 418, DIN/ISO: G418)

- ▶ Nuevo punto de referencia eje principal Q331 (absoluto): coordenada en el eje principal en la que el TNC debe fijar el centro de intersección de las líneas de unión determinado. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999
- ▶ Nuevo punto de referencia eje auxiliar Q332 (absoluto): coordenada en el eje auxiliar en la que el TNC debe fijar el centro de intersección de las líneas de unión determinado. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999
- ➤ Transmisión del valor de medición (0,1) Q303: determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:
 - -1: ¡No utilizar! Lo introduce el TNC cuando se leen programas antiguos (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305)
 - 0: escribir el punto de referencia determinado en la tabla de puntos cero activa. El sistema de referencia es el sistemas de coordenadas activo de la pieza
 1: escribir en la tabla de preset el punto de referencia determinado. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).
- ▶ Palpar en eje del TS Q381: determinar si el TNC debe fijar también el punto de referencia en el eje del palpador:
 - **0**: No fijar el punto de referencia en el eje del palpador
 - 1: fijar el punto de referencia en el eje del palpador
- ▶ Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Solo tiene efecto si se fija Q381 = 1. Campo de introducción -99999,9999 a 99999,9999
- ▶ Nuevo punto de referencia eje TS Q333 (absoluto): coordenada en el eje del palpador en la que el TNC debe fijar el punto de referencia. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999

PUNTO DE REFERENCIA EJE INDIVIDUAL (Ciclo 419, DIN/ISO: 15.13 G419)

15.13 PUNTO DE REFERENCIA EJE INDIVIDUAL (Ciclo 419, DIN/ISO: G419)

Desarrollo del ciclo

El ciclo de palpación 419 mide una coordenada cualquiera en el eje de palpación fija esta coordenada como punto de referencia. Si se desea, el TNC también puede escribir la coordenada medida en una tabla de puntos cero o de preset.

- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación programado 1. Para ello, el TNC desplaza el palpador según la distancia de seguridad en la dirección de palpación opuesta a la programada
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y detecta la posición real mediante una simple palpación
- 3 Finalmente, el TNC vuelve a posicionar el palpador en la altura de seguridad y procesa el punto de referencia determinado en función de los parámetros del ciclo Q303 y Q305 (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305)

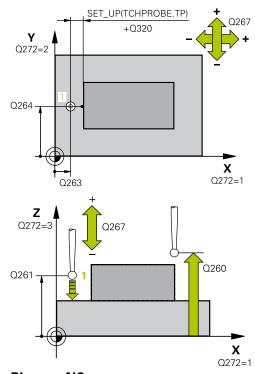
Q272=2 Q264 Q263 Q263 Q263 Q263 Q264 Q263 Q264 Q272=1

¡Tener en cuenta durante la programación!

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.

Si se utiliza el ciclo 419 varias veces para memorizar el punto de referencia in varios ejes en la tabla Preset hay que activar el número de Preset después de cada ejecución del ciclo 419 donde hay escrito anteriormente el ciclo 419 (no es necesario si se sobreescribe el Preset activo).

15.13 PUNTO DE REFERENCIA EJE INDIVIDUAL (Ciclo 419, DIN/ISO: G419)

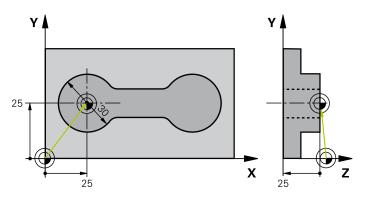

Parámetros de ciclo

- ▶ 1er punto de medición del 1er eje Q263 (valor absoluto): coordenada del 1er punto de palpación en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 1er punto de medición del 2º eje Q264 (valor absoluto): coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- ► Eje de medición (1...3: 1=Eje principal) Q272: Eje en el que debe tener lugar la medición:
 - 1: Eje principal = Eje de medición
 - 2: Eje auxiliar = Eje de medición
 - 3: Eje de palpador = Eje de medición

Disposición de los ejes

Eje del palpador activo: Q272= 3	Eje principal correspondiente: Q272 = 1	Eje auxiliar correspondiente: Q272 = 2
Z	Χ	Υ
Υ	Z	X
X	Υ	Z

Bloques NC

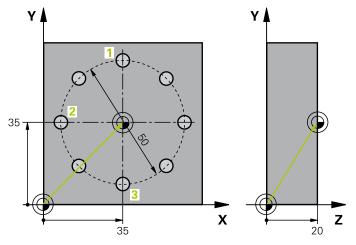

5 TCH PROBE 4 INDIVIDUAL	19 PTO. REF. EJE
Q263=+25	;1ER PUNTO 1ER EJE
Q264=+25	;1ER PUNTO 2° EJE
Q261=+25	;ALTURA DE MEDICIÓN
Q320=0	;DIST. DE SEGURIDAD
Q260=+50	;ALTURA SEGURA
Q272=+1	;EJE DE MEDICIÓN
Q267=+1	;DIRECCIÓN DE DESPLAZAMIENTO
Q305=0	;N° EN TABLA
Q333=+0	;PUNTO DE REFERENCIA
Q303=+1	;TRANSFERENCIA DEL VALOR DE MEDIDA

PUNTO DE REFERENCIA EJE INDIVIDUAL (Ciclo 419, DIN/ISO: 15.13 G419)

- ▶ **Dirección de desplazamiento 1** Q267: dirección en la que el palpador debe desplazarse hasta llegar a la pieza:
 - -1: dirección de desplazamiento negativa
 - +1: dirección de desplazamiento positiva
- ▶ Número del punto cero en la tabla Q305: indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar la coordenada. En la introducción de Q305=0, el TNC fija la visualización automática de tal manera que el nuevo punto de referencia se encuentra en la superficie palpada. Campo de introducción 0 a 2999
- ▶ Nuevo punto de referencia Q333 (absoluto): coordenada en la que el TNC debe fijar el punto de referencia. Ajuste básico = 0. Campo de entrada -99999,9999 a 99999,9999
- ► Transmisión del valor de medición (0,1) Q303: determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:
 - -1: ¡No utilizar! Lo introduce el TNC cuando se leen programas antiguos (ver "Correspondencias de todos los ciclos de palpación para fijar el punto de ref.", Página 305)
 - 0: escribir el punto de referencia determinado en la tabla de puntos cero activa. El sistema de referencia es el sistemas de coordenadas activo de la pieza
 1: escribir en la tabla de preset el punto de referencia determinado. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).

15.14 Ejemplo: Fijar el punto de referencia en el centro del segmento circular y en la superficie de la pieza

15.14 Ejemplo: Fijar el punto de referencia en el centro del segmento circular y en la superficie de la pieza



0 BEGIN PGM CYC41	3 MM		
1 TOOL CALL 69 Z		Llamada a la herramienta 0 para determinar el eje de palpación	
2 TCH PROBE 413 Pt	UNTO REF. CÍRCULO EXTERIOR		
Q321=+25	;CENTRO 1ER EJE	Punto central del círculo: Coordenada X	
Q322=+25	;CENTRO 2° EJE	Punto central del círculo: Coordenada Y	
Q262=30	;DIÁMETRO NOMINAL	Diámetro del círculo	
Q325=+90	;ÁNGULO INICIAL	Ángulo en coordenadas polares para el 1er punto de palpación	
Q247=+45	;PASO ANGULAR	Paso angular para calcular los puntos de palpación 2 a 4	
Q261=-5	;ALTURA DE MEDICIÓN	Coordenada en el eje de palpación desde la cual se realiza la medición	
Q320=2	;DIST. DE SEGURIDAD	Distancia de seguridad adicional en columna SEP_UP	
Q260=+10	;ALTURA SEGURA	Altura sobre la cual se desplaza el eje de palpación sin colisionar	
Q301=0	;DESPLAZAR HASTA ALTURA SEGURA	No desplazar a altura segura entre los puntos de medida	
Q305=0	;N° EN TABLA	Fijar la visualización	
Q331=+0	;PUNTO DE REFERENCIA	Fijar la visualización en X a 0	
Q332=+10	;PUNTO DE REFERENCIA	Fijar la visualización en Y a 10	
Q303=+0	;TRANSFERENCIA DEL VALOR DE MEDIDA	Sin función porque debe fijarse la visualización	
Q381=1	;PALPAR EJE PALPADOR	Fijar también el punto de referencia en el eje TS	
Q382=+25	;1° COOR. PARA EJE DE PALPADOR	Punto de palpación de la coordenada X	
Q383=+25	;2ª COOR PARA EJE DE PALPADOR	Punto de palpación coordenada Y	
Q384=+25	;3° COOR. PARA EJE DE PALPADOR	Punto de palpación coordenada Z	
Q333=+0	;PUNTO DE REFERENCIA	Fijar la visualización en Z a 0	
Q423=4	;NÚMERO DE PUNTOS DE MEDICIÓN	Medir el círculo con 4 palpaciones	
Q365=0	;TIPO DE DESPLAZAMIENTO	Entre los puntos de medición, desplazar en una trayectoria circular	
3 CALL PGM 35K47		Llamada al programa de mecanizado	
4 END PGM CYC413	MM		

Ejemplo: Fijar el punto de referencia en la superficie de la pieza y 15.15 en el centro del círculo de taladros

15.15 Ejemplo: Fijar el punto de referencia en la superficie de la pieza y en el centro del círculo de taladros

El punto central medido del círculo de agujeros debe escribirse para emplearse más a menudo en la tabla preset.

le erencia
erencia
JP
oación
de nadas
ugar la
oación
r

15.15 Ejemplo: Fijar el punto de referencia en la superficie de la pieza y en el centro del círculo de taladros

Q331=+0	;PUNTO DE REFERENCIA	
Q332=+0	;PUNTO DE REFERENCIA	
Q303=+1	;TRANSFERENCIA DEL VALOR DE MEDIDA	Guardar en la tabla de presets PRESET.PR el punto de referencia calculado respecto al sistema de coordenadas fijado en la máquina (sistema REF).
Q381=0	;PALPAR EJE PALPADOR	No fijar el punto de referencia en el eje TS
Q382=+0	;1ª COOR. PARA EJE DE PALPADOR	sin función
Q383=+0	;2ª COOR. PARA EJE DE PALPADOR	sin función
Q384=+0	;3 ^a COOR. PARA EJE DE PALPADOR	sin función
Q333=+0	;PUNTO DE REFERENCIA	Sin función
Q320=0	;DIST. DE SEGURIDAD	Distancia de seguridad adicional en columna SEP_UP
4 CYCL DEF 247 FIJAR PUNTO DE REFERENCIA		Activar nuevo preset con ciclo 247
Q339=1	;NÚMERO DE PUNTO DE REFERENCIA	
6 CALL PGM 35KLZ		Llamada al programa de mecanizado
7 END PGM CYC416 M	MM	

16

Ciclos de palpación: Controlar las piezas automáticamente

16.1 Fundamentos

16.1 Fundamentos

Resumen

Al ejecutar los ciclos del sistema de palpación, el ciclo 8 CREAR SIMETRÍA, el ciclo 11 FACTOR DE MEDIDA y el ciclo 26 FACTOR DE MEDIDA ESPEC. POR EJE no deben estar activos.

HEIDENHAIN solo garantiza la función de los ciclos de palpación si se utilizan sistemas de palpación de HEIDENHAIN.

El TNC debe estar preparado por el fabricante de la máquina para el empleo de palpadores 3D.
Rogamos consulte el manual de la máquina.

El TNC dispone de doce ciclos para medir piezas automáticamente:

Ciclo	Softkey	Página
O PLANO DE REFERENCIA Medición de una coordinada en un eje seleccionable	0	364
1 PLANO DE REFERENCIA POLAR Medición de un punto, dirección de palpación angular	1 PA	365
420 MEDICIÓN ÁNGULO Medición de ángulo en el plano de mecanizado	420	366
421 MEDICIÓN TALADRO Medición de posición y diámetro de un taladro	421	369
422 MEDICIÓN CÍRCULO EXTERIOR Medición de la posición y diámetro de una isla de forma circular	422	372
423 MEDICIÓN RECTÁNGULO INTERIOR Medición de la posición, longitud y anchura de una cajera rectangular	423	375
424 MEDICIÓN RECTÁNGULO EXTERIOR Medición de la posición, longitud y anchura de una isla rectangular	424	379
425 MEDICIÓN ANCHURA INTERIOR (2ª carátula d softkeys) Medición de anchura interior de ranura	425	383
426 MEDICIÓN ISLA EXTERIOR (2ª carátula de softkeys) Medición de isla exterior	426	386

Ciclo	Softkey	Página
427 MEDICIÓN COORDENADA (2ª carátula de softkeys) Medir una coordenada cualquiera en un eje seleccionable	427	389
430 MEDICIÓN CÍRCULO DE TALADROS (2ª carátula de softkeys) Medición de la posición y diámetro del círculo de taladros	430	392
431 MEDICIÓN DE PLANO (2ª carátula de softkeys) Medición del ángulo de eje A y B de un plano	431	395

Protocolización de los resultados de la medición

Para todos los ciclos, con los que se pueden medir automáticamente las piezas (excepciones: ciclos 0 y 1), el TNC puede crear un registro de medida. En el ciclo de palpación correspondiente puede definir, si el TNC

- debe memorizar el registro de medida en un fichero
- debe emitir el registro de medida en la pantalla e interrumpir el curso del programa
- no debe crear ningún registro de medida

Siempre que desee guardar el registro de medida en un fichero, el TNC memoriza los datos de forma estándar como ficheros ASCII en el directorio desde el cual se ejecuta el programa de medición.

Utilizar el software de transmisión de datos TNCremo de HEIDENHAIN en el caso de que se desee utilizar el protocolo de medición a través de la interfaz de datos

Ciclos de palpación: Controlar las piezas automáticamente

16.1 Fundamentos

Ejemplo: Fichero de mediciones para el ciclo de palpación 421:

Protocolo de medición del ciclo de palpación 421 Medir taladro

Fecha: 30-06-2005 Hora: 6:55:04

Programa de medición: TNC:\GEH35712\CHECK1.H

Valores nominales:

Centro del eje principal: 50.0000
Centro del eje auxiliar: 65.0000
Diámetro: 12.0000

Valores límite predeterminados:

Medida máxima Centro del eje principal: 50.1000Medida mínima Centro del eje principal: 49.9000Medida máxima Centro del eje auxiliar: 65.1000

Medida mínima Centro del eje auxiliar: 64.9000 Medida máxima taladro: 12.0450 Medida mínima taladro: 12.0000

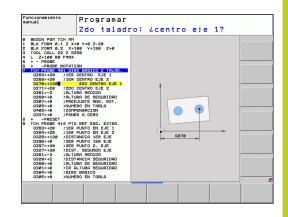
Valores reales:

Centro del eje principal: 50.0810
Centro del eje auxiliar: 64.9530
Diámetro: 12.0259

Desviaciones:

Centro del eje principal: 0.0810
Centro del eje auxiliar: -0.0470
Diámetro: 0.0259

Otros resultados de la medición: altura de -5.0000


medición:

Final del protocolo de medición

Resultados de medición en parámetros Q

Los resultados de medición del ciclo de palpación correspondientes se guardan por el TNC en los parámetros Q globales Q150 a Q160. Las desviaciones del valor nominal están memorizadas en los parámetros Q161 a Q166. Deberá tenerse en cuenta la tabla de los parámetros de resultados, que aparece en cada descripción del ciclo.

Además el TNC visualiza en la figura auxiliar de la definición del ciclo correspondiente, los parámetros con los resultados (véase fig. arriba dcha.). Con esto el parámetro de resultado resaltado atrás en claro pertenece al parámetro de introducción correspondiente.

Estado de la medición

En algunos ciclos, mediante los parámetros Q globalmente activos Q180 a Q182, se puede consultar el estado de la medición

Estado de la medición	Valor del parámetro	
Los valores de medida se encuentran dentro de la tolerancia	Q180 = 1	
Se precisa mecanizar de nuevo	Q181 = 1	
Rechazada	Q182 = 1	

En cuanto uno de los valores de la medición está fuera de la tolerancia, el TNC fija la marca de mecanizado posterior o de rechazo. Para determinar qué resultado de medida se encuentra fuera de la tolerancia, tener en cuenta el protocolo de medición, o comprobar los resultados de medida correspondientes (Q150 a Q160) en sus valores límite.

En el ciclo 427 el TNC parte de forma estándar, de que se mide una cota exterior (isla). Mediante la correspondiente selección de la cota más alta y la más pequeña en combinación con la dirección de palpación puede corregirse, sin embargo, el estado de la medición.

El TNC fija las marcas de estados incluso cuando no se introduce ninguna tolerancia o cota máxima/ mínima.

Vigilancia de la tolerancia

En la mayoría de los ciclos para la comprobación de piezas el TNC puede realizar una supervisión de la tolerancia. Para ello deberán definirse los valores límite precisos en la definición del ciclo. Si no se quiere realizar ninguna vigilancia de tolerancia, introducir este parámetro con 0 (= valor por defecto)

16.1 Fundamentos

Vigilancia de la herramienta

En algunos ciclos para la comprobación de la pieza, el TNC puede realizar una supervisión de la herramienta. El TNC vigila si

- debido a los desfases del valor nominal (valor en Q16x) se corrige el radio de la herramienta
- los desfases del valor nominal (valor en Q16x) son mayores a la tolerancia de rotura de la hta.

Corregir la herramienta

La función solo se activa

- cuando está activada la tabla de htas.
- si se conecta la vigilancia de la herramienta en el ciclo:Introducir Q330 distinto de 0 o un nombre de herramienta. Se selecciona la introducción del nombre de la herramienta mediante softkey. El TNC deja de indicar el apóstrofo derecho

Cuando se ejecutan varias mediciones de corrección, el TNC añade entonces la desviación medida correspondiente al valor ya memorizado en la tabla de la herramienta.

El TNC corrige siempre el radio de la herramienta en la columna DR de la tabla de herramientas, incluso cuando la desviación medida se encuentra dentro de la tolerancia indicada. Para ver si se precisa un mecanizado posterior se consulta en el programa NC el parámetro Q181 (Q181=1: se precisa mecanizado posterior).

Además para el ciclo 427 se tiene:

- Si un eje del plano de mecanizado activo está definido como eje de medición (Q272 = 1 o 2), el TNC lleva a cabo una corrección del radio de la herramienta como se ha descrito anteriormente. El TNC calcula la dirección de la corrección en base a la dirección de desplazamiento (Q267) definida.
- Cuando se ha seleccionado como eje de medición el eje de palpación (Q272 = 3), el TNC realiza una corrección de la longitud de la herramienta

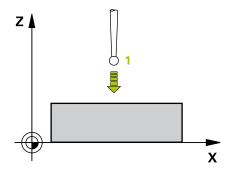
Supervisión de la rotura de la herramienta

La función solo se activa

- cuando está activada la tabla de htas.
- cuando se conecta la supervisión de herramientas en el ciclo (programar Q330 distinto de 0)
- si para el número de herramienta introducido en la tabla el valor de tolerancia de rotura RBREAK introducido es superior a 0 (véase asimismo el manual de instrucciones, capítulo 5.2 "Datos de herramienta")

El TNC emite un aviso de error y detiene la ejecución del programa, cuando el desfase medido es mayor a la tolerancia de rotura de la hta. Al mismo tiempo bloquea la hta. en la tabla de htas. (columna TL = L).

Sistema de referencia para los resultados de medición


El TNC emite todos los resultados de la medición en el parámetro de resultados y en el fichero de medición en el sistema de coordenadas activado (desplazado o/y girado/inclinado, si es preciso).

16.2 PLANO DE REFERENCIA (Ciclo 0, DIN/ISO: G55)

16.2 PLANO DE REFERENCIA (Ciclo 0, DIN/ ISO: G55)

Desarrollo del ciclo

- 1 El palpador se desplaza en un movimiento en 3D con avance rápido (valor de la columna FMAX) a la posición previa 1 programada en el ciclo
- 2 A continuación, el palpador ejecuta el proceso de palpación con avance de palpación (Columna F). La dirección de palpación está determinada en el ciclo
- 3 Una vez que el TNC ha detectado la posición, el palpador retorna al punto de partida del proceso de palpación y memoriza en un parámetro Q las coordenadas medidas. Además el TNC memoriza las coordenadas de la posición en las que se encontraba el palpador en el momento de producirse la señal, en los parámetros Q115 a Q119. Para los valores de estos parámetros el TNC no tiene en cuenta la longitud y el radio del vástago de palpación.

¡Tener en cuenta durante la programación!

¡Atención: Peligro de colisión!

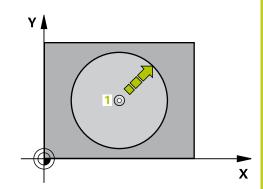
Preposicionar el sistema de palpación de tal manera que se evite una colisión al desplazar la preposición programada.

Parámetros de ciclo

- ▶ Nº parámetro para el resultado: Introducir el número de parámetro Q al que se le ha asignado el valor de la coordenada. Campo de introducción 0 a 1999
- ▶ Eje y dirección de palpación: Introducir el eje del palpador con la correspondiente tecla de selección del eje o mediante el teclado ASCII y el signo para la dirección de la palpación. Confirmar con la tecla ENT. Campo de introducción todos los ejes NC
- ▶ Valor nominal de la posición: Mediante las teclas de selección de los ejes o a través del teclado ASCII, introducir todas las coordenadas para el posicionamiento previo del palpador. Campo de introducción -99999,9999 a 99999,9999
- ► Finalizar la introducción: pulsar la tecla ENT

Frases NC

67 TCH PROBE 0.0 PLANO DE REFERENCIA Q5 X-


68 TCH PROBE 0.1 X+5 Y+0 Z-5

16.3 PLANO DE REFERENCIA Polar (Ciclo 1)

Desarrollo del ciclo

El ciclo de palpación 1 calcula cualquier posición de la pieza en cualquier dirección de palpación.

- 1 El palpador se desplaza en un movimiento en 3D con avance rápido (valor de la columna FMAX) a la posición previa 1 programada en el ciclo
- 2 A continuación, el palpador ejecuta el proceso de palpación con avance de palpación (Columna F). En el proceso de palpación el TNC desplaza simultáneamente dos ejes (dependiendo del ángulo de palpación). La dirección de palpación se determina mediante el ángulo en polares introducido en el ciclo
- 3 Una vez que el TNC ha detectado la posición, el palpador retorna al punto de partida del proceso de palpación. Las coordenadas de la posición en la que se encuentra el palpador en el momento de la señal de conexión las memoriza el TNC en los parámetros Q115 a Q119.

¡Tener en cuenta durante la programación!

¡Atención: Peligro de colisión!

Preposicionar el sistema de palpación de tal manera que se evite una colisión al desplazar la preposición programada.

El eje de palpación definido en el ciclo determina el plano de palpación:

Eje de palpación X: Plano X/Y Eje de palpación Y: Plano Y/Z Eje de palpación Z: Plano Z/X

Parámetros de ciclo

- ► Eje de palpación: Introducir el eje de palpación con la tecla de selección de eje o mediante el teclado ASCII. Confirmar con la tecla ENT. Campo de introducción X, Y ó Z
- ★ ángulo de palpación: ángulo referido al eje de palpación , en el cual debe desplazarse el palpador. Campo de introducción -180,0000 a 180,0000
- ▶ Valor nominal de la posición: Mediante las teclas de selección de los ejes o a través del teclado ASCII, introducir todas las coordenadas para el posicionamiento previo del palpador. Campo de introducción -99999.9999 a 99999.9999
- Finalizar la introducción: pulsar la tecla ENT

Frases NC

67 TCH PROBE 1.0 PLANO DE REFERENCIA POLAR

68 TCH PROBE 1.1 X ÁNGULO: +30 69 TCH PROBE 1,2 X+5 Y+0 Z-5

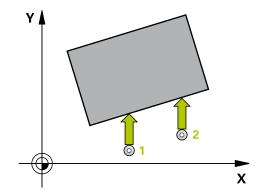
16.4 MEDIR ÁNGULO (Ciclo 420; DIN/ISO: G420)

16.4 MEDIR ÁNGULO (Ciclo 420; DIN/ISO: G420)

Desarrollo del ciclo

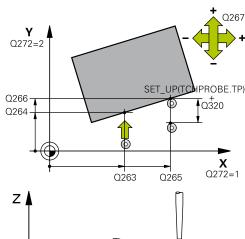
El ciclo de palpación 420 calcula el ángulo, que forma cualquier recta con el eje principal del plano de mecanizado.

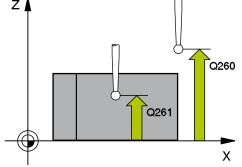
- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación programado 1. Para ello, el TNC desplaza el palpador según la distancia de seguridad en la dirección de desplazamiento opuesta a la determinada
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y ejecuta el primer proceso de palpación con avance de palpación (Columna **F**)
- 3 Luego el palpador se desplaza, hasta el siguiente punto de palpación 2 y ejecuta allí el segundo proceso de palpación
- 4 El TNC posiciona el palpador retornando a la altura segura y memoriza el ángulo determinado en el parámetro Q siguiente:


Nº de parámetro	Significado
Q150	Ángulo medido en relación al eje
	principal del plano de mecanizado

¡Tener en cuenta durante la programación!

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.


Si se ha definido eje del palpador = eje de medición, entonces debe seleccionarse **Q263** igual a**Q265**, si se ha de medir el ángulo en la dirección del eje A; seleccionar **Q263** no igual a **Q265**, si se ha de medir el ángulo en la dirección del eje B.



Parámetros de ciclo

- ▶ 1er punto de medición del 1er eje Q263 (valor absoluto): coordenada del 1er punto de palpación en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 1er punto de medición del 2° eje Q264 (valor absoluto): coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- 2º punto de medición del 1er eje Q265 (valor absoluto): coordenada del segundo punto de palpación en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 2º punto de medición del 2º eje Q266 (absoluto): coordenada del segundo punto de palpación en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► **Eje de medición** Q272: eje, en el que se debe realizar la medición:
 - 1: Eje principal = Eje de medición
 - 2: Eje secundario = Eje de medición
 - 3: Eje de palpación = Eje de medición
- ▶ **Dirección de desplazamiento 1** Q267: dirección en la que el palpador debe desplazarse hasta llegar a la pieza:
 - -1: dirección de desplazamiento negativa
 - +1: dirección de desplazamiento positiva
- ► Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- distancia de seguridad Q320 (valor incremental): distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 hasta 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- Desplazamiento a altura de seguridad Q301: determinar cómo se debe desplazar el palpador entre los puntos de medición:
 - **0**: desplazarse entre los puntos de medición a la altura de medición
 - 1: desplazarse entre los puntos de medición a la altura de seguridad

Frases NC

5 TCH PROBE 420 MEDIR ÁNGULO		
Q263=+10	;1ER PUNTO 1ER EJE	
Q264=+10	;1ER PUNTO 2° EJE	
Q265=+15	;2° PUNTO 1ER EJE	
Q266=+95	;2° PUNTO 2° EJE	
Q272=1	;EJE DE MEDICIÓN	
Q267=-1	;DIRECCIÓN DE DESPLAZAMIENTO	
Q261=-5	;ALTURA DE MEDICIÓN	
Q320=0	;DIST. DE SEGURIDAD	
Q260=+10	;ALTURA SEGURA	
Q301=1	;DESPLAZAR HASTA ALTURA SEGURA	
Q281=1	;PROTOCOLO DE MEDICIÓN	

16.4 MEDIR ÁNGULO (Ciclo 420; DIN/ISO: G420)

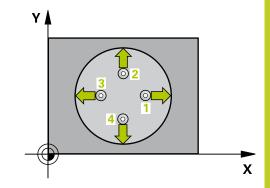
- ▶ **Protocolo de medición** Q281: determinar si el TNC debe crear un protocolo de medición:
 - **0**: No crear ningún protocolo de medición
 - 1: Crear protocolo de medición: El TNC guarda
 - el **fichero de protocolo TCHPR420.TXT** según estándar en el directorio TNC:\.
 - 2: Interrumpir el desarrollo del programa y presentar el protocolo de medición en la pantalla del TNC. Continuar el programa con la tecla arranque-NC

16.5 MEDIR TALADRO (Ciclo 421, DIN/ISO: G421)

Desarrollo del ciclo

Con el ciclo de palpación 421 se calcula el punto central y el diámetro de un taladro (cajera circular). Si se han definido los valores de tolerancia correspondientes en el ciclo, el TNC realiza una comparación del valor nominal y el real y memoriza la diferencia en los parámetros del sistema.

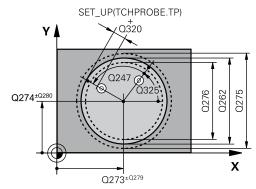
- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación1. El TNC calcula los puntos de palpación a partir de los datos del ciclo y de la distancia de seguridad de la columna SET_UP de la tabla de palpación
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y ejecuta el primer proceso de palpación con avance de palpación (Columna F) El TNC determina automáticamente la dirección de palpación en relación al ángulo inicial programado
- 3 Luego el palpador se desplaza circularmente, o bien hasta la altura de medición, o bien hasta la altura segura, para el siguiente punto de palpación 2 y ejecuta allí el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y luego en el punto de palpación 4 y ejecuta allí el tercer y el cuarto proceso de palpación respectivamente
- 5 Para finalizar el TNC hace retroceder el palpador a la altura de seguridad y memoriza los valores reales y las desviaciones en los siguientes parámetros Ω:

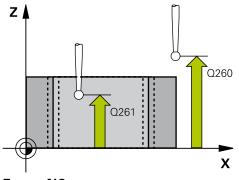

Número de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real del centro en eje auxiliar
Q153	Valor real del diámetro
Q161	Desviación del centro en eje principal
Q162	Desviación del centro en eje auxiliar
Q163	Desviación del diámetro

¡Tener en cuenta durante la programación!

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.

Cuanto menor sea el paso angular programado, más imprecisas serán las medidas del taladro calculadas por el TNC. Valor de introducción mínimo: 5°.




16.5 MEDIR TALADRO (Ciclo 421, DIN/ISO: G421)

Parámetros de ciclo

- ▶ centro 1er eje Q273 (valor absoluto): centro de la cajera en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► centro 2º eje Q274 (absoluto): centro del taladro en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ **Diámetro nominal** Q262: introducir diámetro del taladro. Campo de introducción 0 a 99999,9999
- ► Ángulo inicial Q325 (valor absoluto): ángulo entre el eje principal del plano de mecanizado y el primer punto de palpación. Campo de introducción -360.000 a 360.000
- ▶ Paso angular Q247 (valor incremental): ángulo entre dos puntos de medición, el signo del paso angular determina el sentido de giro (- = sentido horario), con el que el palpador se desplaza al siguiente punto de medición. Si se quieren medir arcos de círculo, deberá programarse un paso angular menor a 90°. Campo de introducción -120,000 a 120,000
- ► Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- Desplazamiento a altura de seguridad Q301: determinar cómo se debe desplazar el palpador entre los puntos de medición:
 - **0**: desplazarse entre los puntos de medición a la altura de medición
 - 1: desplazarse entre los puntos de medición a la altura de seguridad
- ➤ Tamaño máximo taladro Q275: mayor diámetro permitido del taladro (cajera circular). Campo de introducción 0 a 99999,9999
- ► Tamaño mínimo taladro Q276: menor diámetro permitido del taladro (cajera circular). Campo de introducción 0 a 99999,9999
- ▶ Valor tolerancia centro 1er eje 0279: desviación admisible de la posición en el eje principal del plano de mecanizado. Campo de introducción 0 a 99999,9999

Frases NC	,
-----------	---

114363 140	
5 TCH PROBE 4	21 MEDIR TALADRO
Q273=+50	;CENTRO 1ER EJE
Q274=+35	;CENTRO 2° EJE
Q262=75	;DIÁMETRO NOMINAL
Q355=+0	;ÁNGULO INICIAL
Q247=+60	;PASO ANGULAR
Q261=-5	;ALTURA DE MEDICIÓN
Q320=0	;DIST. DE SEGURIDAD
Q260=+20	;ALTURA SEGURA
Q301=1	;DESPLAZAR HASTA ALTURA SEGURA
Q275=75,1	2;MEDIDA MÁXIMA
Q276=74,95;MEDIDA MÍNIMA	
Q279=0,1	;TOLERANCIA 1ER CENTRO
Q280=0,1	;TOLERANCIA 2° CENTRO
Q281=1	;PROTOCOLO DE MEDICIÓN
Q309=0	;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR

- ▶ Valor tolerancia centro 2º eje Q280: desviación admisible de la posición en el eje auxiliar del plano de mecanizado. Campo de introducción 0 a 99999,9999
- ▶ **Protocolo de medición** Q281: determinar si el TNC debe crear un protocolo de medición:
 - 0: No crear ningún protocolo de medición
 - 1: Crear protocolo de medición: El TNC guarda el **fichero de protocolo TCHPR421.TXT** según estándar en el directorio TNC:\.
 - 2: Interrumpir el desarrollo del programa y presentar el protocolo de medición en la pantalla del TNC. Continuar el programa con la tecla arrangue-NC
- ▶ Parada de PGM por error de tolerancia O309: determinar si el TNC debe interrumpir la ejecución del programa al sobrepasar la tolerancia y emitir un aviso de error:
 - **0**: No interrumpir la ejecución del programa, no emitir aviso de error
 - 1: Interrumpir la ejecución del programa, emitir aviso de error
- ▶ Herramienta para supervisión Q330: determinar si el TNC debe realizar la supervisión de la herramienta: (ver "Vigilancia de la herramienta", Página 362). Campo de introducción 0 a 32767,9, alternativamente nombre de la herramienta con un máximo de 16 caracteres
 - 0: Supervisión no activa
 - >0: Número de herramienta en la tabla de herramientas TOOL.T
- ▶ Número de puntos de medición (4/3) Q423: determinar si el TNC debe medir la isla con 4 o con 3 palpaciones:
 - 4: Utilizar 4 puntos de medición (ajuste estándar)
 - 3: Utilizar 3 puntos de medición
- ▶ ¿Tipo de desplazamiento? Recta=0/Círculo=1 Q365: determinar con cual función de trayectoria debe desplazarse la herramienta entre los puntos de medición, cuando está activo el desplazamiento hasta la altura segura (Q301=1):
 - 0: Desplazar entre los mecanizados sobre una recta
 - 1: Desplazar entre los mecanizados circularmente sobre el diámetro del círculo parcial

Q360=0	;HERRAMIENTA
Q423=4	;NÚMERO DE PUNTOS DE MEDICIÓN
Q351=1	;TIPO DE DESPLAZAMIENTO

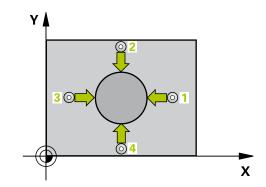
16.6 MEDIR CÍRCULO EXTERIOR (Ciclo 422; DIN/ISO: G422)

16.6 MEDIR CÍRCULO EXTERIOR (Ciclo 422; DIN/ISO: G422)

Desarrollo del ciclo

Con el ciclo de palpación 422 se calcula el punto central y el diámetro de una isla circular. Si se han definido los valores de tolerancia correspondientes en el ciclo, el TNC realiza una comparación del valor nominal y el real y memoriza la diferencia en los parámetros del sistema.

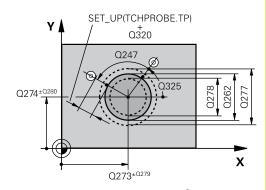
- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación 1. El TNC calcula los puntos de palpación a partir de los datos del ciclo y de la distancia de seguridad de la columna SET_UP de la tabla de palpación
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y ejecuta el primer proceso de palpación con avance de palpación (Columna F) El TNC determina automáticamente la dirección de palpación en relación con el ángulo inicial programado
- 3 Luego el palpador se desplaza circularmente, o bien hasta la altura de medición, o bien hasta la altura segura, para el siguiente punto de palpación 2 y ejecuta allí el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y luego en el punto de palpación 4 y ejecuta allí el tercer y el cuarto proceso de palpación respectivamente
- 5 Para finalizar el TNC hace retroceder el palpador a la altura de seguridad y memoriza los valores reales y las desviaciones en los siguientes parámetros Ω:

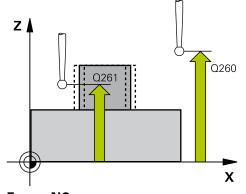

Número de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real centro eje secundario
Q153	Valor real del diámetro
Q161	Desviación del centro en eje principal
Q162	Desviación del centro en el eje secundario
Q163	Desviación del diámetro

¡Tener en cuenta durante la programación!

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.

Cuanto menor sea el paso angular programado, más imprecisas serán las medidas de la isla calculadas por el TNC. Valor de introducción mínimo: 5°.




MEDIR CÍRCULO EXTERIOR (Ciclo 422; DIN/ISO: G422) 16.6

Parámetros de ciclo

- ▶ centro 1er eje Q273 (valor absoluto): centro de la isla en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ centro 2º eje Q274 (valor absoluto): centro de la isla en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Diámetro nominal Q262: introducir diámetro de la isla. Campo de introducción 0 a 99999,9999
- ▶ ángulo inicial Q325 (valor absoluto): ángulo entre el eje principal del plano de mecanizado y el primer punto de palpación. Campo de introducción -360,0000 hasta 360,0000
- ▶ Paso angular Q247 (valor incremental): ángulo entre dos puntos de medición, el signo del paso angular determina la dirección de mecanizado (-= sentido horario). Si se quieren medir arcos de círculo, deberá programarse un paso angular inferior a 90°. Campo de introducción -120.0000 hasta 120.0000
- Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- distancia de seguridad Q320 (valor incremental): distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad Q260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- ▶ Desplazamiento a altura de seguridad Q301: determinar cómo se debe desplazar el palpador entre los puntos de medición:
 - 0: desplazarse entre los puntos de medición a la altura de medición
 - 1: desplazarse entre los puntos de medición a la altura de seguridad
- ► Cota máxima de la isla Q277: Mayor diámetro admisible de la isla. Campo de introducción 0 a 99999.9999
- ► Cota mínima de la isla Q278: Diámetro mínimo admisible de la isla. Campo de introducción 0 a 99999,9999
- ▶ Valor tolerancia centro 1er eje Q279: desviación admisible de la posición en el eje principal del plano de mecanizado. Campo de introducción 0 a 99999,9999

Frases INC	
5 TCH PROBE 4 EXTERIOR	22 MEDIR CÍRCULO
Q273=+50	;CENTRO 1ER EJE
Q274=+35	;CENTRO 2° EJE
Q262=75	;DIÁMETRO NOMINAL
Q325=+90	;ÁNGULO INICIAL
Q247=+30	;PASO ANGULAR
Q261=-5	;ALTURA DE MEDICIÓN
Q320=0	;DIST. DE SEGURIDAD
Q260=+10	;ALTURA SEGURA
Q301=0	;DESPLAZAR HASTA ALTURA SEGURA
Q275=35,1!	5;MEDIDA MÁXIMA
Q276=34,9	;MEDIDA MÍNIMA
Q279=0,05	;TOLERANCIA 1ER CENTRO
Q280=0,05	;TOLERANCIA 2° CENTRO
Q281=1	;PROTOCOLO DE MEDICIÓN
Q309=0	;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR

16.6 MEDIR CÍRCULO EXTERIOR (Ciclo 422; DIN/ISO: G422)

- ▶ Valor tolerancia centro 2º eje Q280: desviación admisible de la posición en el eje auxiliar del plano de mecanizado. Campo de introducción 0 a 99999,9999
- ▶ **Protocolo de medición** Q281: determinar si el TNC debe crear un protocolo de medición:
 - 0: No crear ningún protocolo de medición
 - 1: Crear protocolo de medición: el TNC guarda el **fichero de protocolo TCHPR422.TXT** según estándar en el directorio TNC:\.
 - 2: Interrumpir el desarrollo del programa y presentar el protocolo de medición en la pantalla del TNC. Continuar el programa con la tecla arrangue-NC
- ▶ Parada de PGM por error de tolerancia O309: determinar si el TNC debe interrumpir la ejecución del programa al sobrepasar la tolerancia y emitir un aviso de error:
 - **0**: No interrumpir la ejecución del programa, no emitir aviso de error
 - 1: Interrumpir la ejecución del programa, emitir aviso de error
- ▶ Herramienta para supervisión Q330: determinar si el TNC debe realizar la supervisión de la herramienta: (ver "Vigilancia de la herramienta", Página 362). Campo de introducción 0 a 32767,9, alternativamente nombre de la herramienta con un máximo de 16 caracteres
 - 0: Supervisión no activa
 - >0: Número de herramienta en la tabla de herramientas TOOL.T
- ▶ Número de puntos de medición (4/3) Q423: determinar si el TNC debe medir la isla con 4 o con 3 palpaciones:
 - 4: Utilizar 4 puntos de medición (ajuste estándar)
 - 3: Utilizar 3 puntos de medición
- ▶ ¿Tipo de desplazamiento? Recta=0/Círculo=1 Q365: determinar con cual función de trayectoria debe desplazarse la herramienta entre los puntos de medición, cuando está activo el desplazamiento hasta la altura segura (Q301=1):
 - 0: Desplazar entre los mecanizados sobre una recta
 - 1: Desplazar entre los mecanizados circularmente sobre el diámetro del círculo parcial

Q360=0	;HERRAMIENTA
Q423=4	;NÚMERO DE PUNTOS DE MEDICIÓN
Q351=1	;TIPO DE DESPLAZAMIENTO

16.7 MEDIR RECTÁNGULO INTERIOR (Ciclo 423; DIN/ISO: G423)

Desarrollo del ciclo

Con el ciclo de palpación 423 se calcula el punto central así como la longitud y la anchura de una cajera rectangular. Si se han definido los valores de tolerancia correspondientes en el ciclo, el TNC realiza una comparación del valor nominal y el real y memoriza la diferencia en los parámetros del sistema.

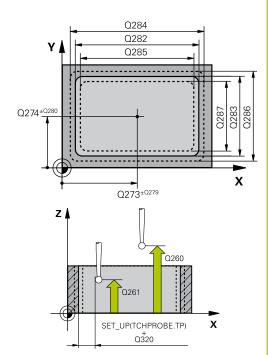
- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación 1. El TNC calcula los puntos de palpación a partir de los datos del ciclo y de la distancia de seguridad de la columna SET_UP de la tabla de palpación
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y ejecuta el primer proceso de palpación con avance de palpación (Columna **F**)
- 3 Luego el palpador se desplaza, o bien paralelamente al eje hasta la altura de medición, o bien linealmente hasta la altura segura para el siguiente punto de palpación 2 y ejecuta allí el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y luego en el punto de palpación 4 y ejecuta allí el tercer y el cuarto proceso de palpación respectivamente
- 5 Para finalizar el TNC hace retroceder el palpador a la altura de seguridad y memoriza los valores reales y las desviaciones en los siguientes parámetros Ω:

Número de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real centro eje secundario
Q154	Valor real del lado en el eje principal
Q155	Valor real del lado en el eje auxiliar
Q161	Desviación del centro en eje principal
Q162	Desviación del centro en el eje secundario
Q164	Desviación del lado en el eje principal
Q165	Desviación del lado en el eje auxiliar

16.7 MEDIR RECTÁNGULO INTERIOR (Ciclo 423; DIN/ISO: G423)

¡Tener en cuenta durante la programación!

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.


Cuando las dimensiones de la cajera y la distancia de seguridad no permiten un posicionamiento previo en la proximidad de los puntos de palpación, el TNC siempre palpa partiendo del centro de la cajera. Entre los cuatro puntos de medida el palpador no se desplaza a la altura de seguridad.

MEDIR RECTÁNGULO INTERIOR (Ciclo 423; DIN/ISO: G423) 16.7

Parámetros de ciclo

- ▶ centro 1er eje Q273 (valor absoluto): centro de la cajera en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► centro 2° eje Q274 (absoluto): centro de la cajera en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► Longitud lado 1 Q282: longitud de la cajera, paralela al eje principal del plano de mecanizado. Campo de introducción 0 a 99999,9999
- ► Longitud lado 2 Q283: longitud de la cajera, paralela al eje auxiliar del plano de mecanizado. Campo de introducción 0 a 99999,9999
- ► Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- distancia de seguridad Q320 (valor incremental): distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- Desplazamiento a altura de seguridad Q301: determinar cómo se debe desplazar el palpador entre los puntos de medición:
 - **0**: desplazarse entre los puntos de medición a la altura de medición
 - 1: desplazarse entre los puntos de medición a la altura de seguridad
- Cota máxima longitud lado 1 Q284: longitud máxima admisible de la cajera. Campo de introducción 0 a 99999,9999
- ➤ Cota mínima longitud lado 1 Q285: longitud mínima admisible de la cajera. Campo de introducción 0 a 99999,9999
- Cota máxima longitud lado 2 Q286: ancho máximo admisible de la cajera. Campo de introducción 0 a 99999,9999
- Cota mínima longitud lado 2 Q287: anchura mínima admisible de la cajera. Campo de introducción 0 a 99999,9999
- ▶ Valor tolerancia centro 1er eje Q279: desviación admisible de la posición en el eje principal del plano de mecanizado. Campo de introducción 0 a 99999,9999

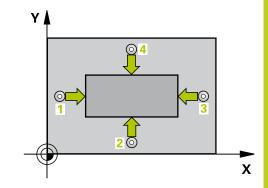
Frases NC

5 TCH PROBE 4	423 MEDIR RECTÁNGULO
Q273=+50	;CENTRO 1ER EJE
Q274=+35	;CENTRO 2° EJE
Q282=80	;LONGITUD LADO 1
Q283=60	;LONGITUD LADO 2
Q261=-5	;ALTURA DE MEDICIÓN
Q320=0	;DIST. DE SEGURIDAD
Q260=+10	;ALTURA SEGURA
Q301=1	;DESPLAZAR HASTA ALTURA SEGURA
Q284=0	;MEDIDA MÁXIMA LADO 1
Q285=0	;MEDIDA MÍNIMA LADO 1
Q286=0	;MEDIDA MÁXIMA LADO 2
Q287=0	;MEDIDA MÍNIMA LADO 2
Q279=0	;TOLERANCIA 1ER CENTRO
Q280=0	;TOLERANCIA 2° CENTRO

16.7 MEDIR RECTÁNGULO INTERIOR (Ciclo 423; DIN/ISO: G423)

- ▶ Valor tolerancia centro 2º eje Q280: error admisible de la posición en el eje auxiliar del plano de mecanizado. Campo de introducción 0 a 99999,9999
- ▶ **Protocolo de medición** Q281: determinar si el TNC debe crear un protocolo de medición:
 - 0: No crear ningún protocolo de medición
 - 1: Crear protocolo de medición: el TNC guarda el **fichero de protocolo TCHPR423.TXT** según estándar en el directorio TNC:\.
 - 2: Interrumpir el desarrollo del programa y presentar el protocolo de medición en la pantalla del TNC. Continuar el programa con la tecla de inicio-NC
- ▶ Parada de pgm por error de tolerancia Q309: determinar si el TNC debe interrumpir la ejecución del programa al sobrepasar la tolerancia y emitir un aviso de error:
 - **0**: No interrumpir la ejecución del programa, no emitir aviso de error
 - 1: Interrumpir la ejecución del programa, emitir aviso de error
- ▶ Herramienta para supervisión Q330: determinar si el TNC debe realizar la supervisión de la herramienta: (ver "Vigilancia de la herramienta", Página 362). Campo de introducción 0 a 32767,9, alternativamente nombre de la herramienta con un máximo de 16 caracteres
 - **0**: Supervisión no activa
 - >0: Número de herramienta en la tabla de herramientas TOOL.T

Q281=1	;PROTOCOLO DE MEDICIÓN
Q309=0	;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR
Q360=0	;HERRAMIENTA


16.8 MEDIR RECTÁNGULO EXTERIOR (Ciclo 424; DIN/ISO: G424)

Desarrollo del ciclo

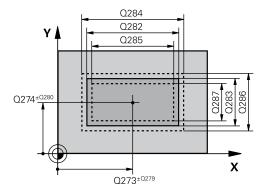
Con el ciclo de palpación 424 se calcula el punto central así como la longitud y la anchura de una isla rectangular. Si se han definido los valores de tolerancia correspondientes en el ciclo, el TNC realiza una comparación del valor nominal y el real y memoriza la diferencia en los parámetros del sistema.

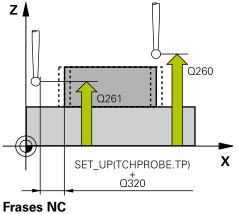
- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación 1. El TNC calcula los puntos de palpación a partir de los datos del ciclo y de la distancia de seguridad de la columna SET_UP de la tabla de palpación
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y ejecuta el primer proceso de palpación con avance de palpación (Columna **F**)
- 3 Luego el palpador se desplaza, o bien paralelamente al eje hasta la altura de medición, o bien linealmente hasta la altura segura para el siguiente punto de palpación 2 y ejecuta allí el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y luego en el punto de palpación 4 y ejecuta allí el tercer y el cuarto proceso de palpación respectivamente
- 5 Para finalizar el TNC hace retroceder el palpador a la altura de seguridad y memoriza los valores reales y las desviaciones en los siguientes parámetros Ω:

Número de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real centro eje secundario
Q154	Valor real longitud del lado eje principal
Q155	Valor real longitud del lado eje secundario
Q161	Desviación del centro en eje principal
Q162	Desviación del centro en el eje secundario
Q164	Desviación de la longitud del lado eje principal
Q165	Desviación de longitud del lado eje auxiliar

16.8 MEDIR RECTÁNGULO EXTERIOR (Ciclo 424; DIN/ISO: G424)

¡Tener en cuenta durante la programación!


Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.


MEDIR RECTÁNGULO EXTERIOR (Ciclo 424; DIN/ISO: G424) 16.8

Parámetros de ciclo

- ► centro 1er eje Q273 (valor absoluto): centro de la isla en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► centro 2º eje Q274 (valor absoluto): centro de la isla en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► Longitud lado 1 Q282: longitud de la isla, paralela al eje principal del plano de mecanizado. Campo de introducción 0 a 99999,9999
- ► Longitud lado 2 Q283: longitud de la isla, paralela al eje auxiliar del plano de mecanizado. Campo de introducción 0 a 99999,9999
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- distancia de seguridad Q320 (valor incremental): distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- ▶ Desplazamiento a altura de seguridad Q301: determinar cómo se debe desplazar el palpador entre los puntos de medición:
 - **0**: desplazarse entre los puntos de medición a la altura de medición
 - 1: desplazarse entre los puntos de medición a la altura de seguridad
- Cota máxima longitud lado 1 Q284: longitud máxima admisible de la isla. Campo de introducción 0 a 99999,9999
- ► Cota mínima longitud lado 1 Q285: longitud mínima admisible de la isla. Campo de introducción 0 a 99999,9999
- Cota máxima longitud lado 2 Q286: anchura máximo admisible de la isla. Campo de introducción 0 a 99999,9999
- ► Cota mínima longitud lado 2 Q287: anchura mínima admisible de la isla. Campo de introducción 0 a 99999,9999
- ▶ Valor tolerancia centro 1er eje Q279: desviación admisible de la posición en el eje principal del plano de mecanizado. Campo de introducción 0 a 99999,9999

5 TCH PROBE 424 MEDIR RECTÁNGULO

EXTERIOR	
Q273=+50	;CENTRO 1ER EJE
Q274=+50	;CENTRO 2° EJE
Q282=75	;LONGITUD LADO 1
Q283=35	;LONGITUD LADO 2
Q261=-5	;ALTURA DE MEDICIÓN
Q320=0	;DIST. DE SEGURIDAD
Q260=+20	;ALTURA SEGURA
•	;DESPLAZAR HASTA ALTURA SEGURA
Q284=75,1	;MEDIDA MÁXIMA LADO 1
Q285=74,9	;MEDIDA MÍNIMA LADO 1
~	;MEDIDA MÁXIMA LADO 2
-	MEDIDA MÍNIMA LADO 2

;TOLERANCIA 1ER

;TOLERANCIA 2°

CENTRO

CENTRO

Q279=0,1

Q280=0,1

16.8 MEDIR RECTÁNGULO EXTERIOR (Ciclo 424; DIN/ISO: G424)

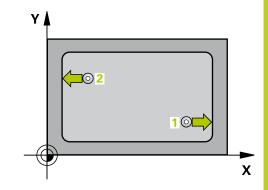
- ▶ Valor tolerancia centro 2º eje Q280: desviación admisible de la posición en el eje auxiliar del plano de mecanizado. Campo de introducción 0 a 99999,9999
- ▶ **Protocolo de medición** Q281: determinar si el TNC debe crear un protocolo de medición:
 - 0: No crear ningún protocolo de medición
 - 1: crear protocolo de medición: El TNC guarda el **fichero de protocolo TCHPR424.TXT** según estándar en el directorio TNC:\.
 - 2: interrumpir el desarrollo del programa y presentar el protocolo de medición en la pantalla del TNC. Continuar el programa con la tecla de inicio-NC
- ▶ Parada de PGM por error de tolerancia O309: determinar si el TNC debe interrumpir la ejecución del programa al sobrepasar la tolerancia y emitir un aviso de error:
 - **0**: no interrumpir la ejecución del programa, no emitir aviso de error
 - 1: interrumpir la ejecución del programa, emitir aviso de error
- ▶ Herramienta para supervisión Q330: determinar si el TNC debe realizar la supervisión de la herramienta: (ver "Vigilancia de la herramienta", Página 362). Campo de introducción 0 a 32767,9, alternativamente nombre de la herramienta con un máximo de 16 caracteres
 - **0**: Supervisión no activa
 - >0: Número de herramienta en la tabla de herramientas TOOL.T

Q281=1	;PROTOCOLO DE MEDICIÓN
Q309=0	;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR
Q360=0	;HERRAMIENTA

16.9 MEDIR ANCHURA INTERIOR (Ciclo 425, DIN/ISO: G425)

Desarrollo del ciclo

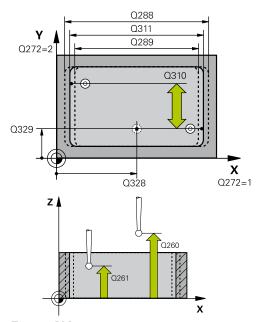
El ciclo de palpación 425 calcula la posición y la anchura de una ranura (cajera). Si se han definido los valores de tolerancia correspondientes en el ciclo, el TNC realiza una comparación del valor nominal y el real y memoriza la diferencia en los parámetros del sistema.


- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación 1. El TNC calcula los puntos de palpación a partir de los datos del ciclo y de la distancia de seguridad de la columna SET_UP de la tabla de palpación
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y ejecuta el primer proceso de palpación con avance de palpación (Columna F) 1. Palpación es siempre en la dirección positiva del eje programado
- 3 Si para la segunda medición se introduce un desplazamiento, el TNC desplaza el palpador (si es necesario, hasta altura de seguridad) al siguiente punto de palpación 2 y ejecuta allí el segundo proceso de palpación. Con longitudes nominales grandes, el TNC posiciona al segundo punto de palpación con marcha rápida. Cuando no se introduce una desviación, el TNC mide directamente la anchura en la dirección contraria
- 4 Para finalizar el TNC hace retroceder el palpador a la altura de seguridad y memoriza los valores reales y la desviación en los siguientes parámetros Ω:

Número de parámetro	Significado
Q156	Valor real de la longitud medida
Q157	Valor real posición eje central
Q166	Desviación de la longitud medida

¡Tener en cuenta durante la programación!

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.



16.9 MEDIR ANCHURA INTERIOR (Ciclo 425, DIN/ISO: G425)

Parámetros de ciclo

- ▶ Punto inicial 1er eje Q328 (valor absoluto): Punto de partida del proceso de palpación en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Punto inicial 2º eje Q329 (valor absoluto): punto de partida del proceso de palpación en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Desplazamiento para la 2ª medición Q310 (valor incremental): valor según el cual se desplaza el palpador antes de la segunda medición. Si se programa 0, el TNC no desvía el palpador. Campo de introducción -99999,9999 a 99999,9999
- ► **Eje de medición** Q272: Eje del plano de mecanizado en el que debe tener lugar la medición:
 - 1: Eje principal = Eje de medición
 - 2: Eje auxiliar = Eje de medición
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- ► Longitud nominal Q311: Valor nominal de la longitud a medir. Campo de introducción 0 a 99999,9999
- ► Cota máxima Q288: longitud máxima admisible. Campo de introducción 0 a 99999,9999
- ► Cota mínima Q289: longitud mínima admisible. Campo de introducción 0 a 99999,9999
- Protocolo de medición Q281: determinar si el TNC debe crear un protocolo de medición:
 - 0: No crear ningún protocolo de medición
 - 1: Crear protocolo de medición: el TNC guarda el **fichero de protocolo TCHPR425.TXT** según estándar en el directorio TNC:\.
 - 2: Interrumpir el desarrollo del programa y presentar el protocolo de medición en la pantalla del TNC. Continuar el programa con la tecla arrangue-NC
- ▶ Parada de PGM por error de tolerancia Q309: determinar si el TNC debe interrumpir la ejecución del programa al sobrepasar la tolerancia y emitir un aviso de error:
 - **0**: No interrumpir la ejecución del programa, no emitir aviso de error
 - 1: Interrumpir la ejecución del programa, emitir aviso de error

Frases NC

5 TCH PRONE 4 INTERIOR	425 MEDIR ANCHURA
Q328=+75	;PUNTO DE PARTIDA 1ER EJE
Q329=-12.!	5;PUNTO DE PARTIDA 2° EJE
Q310=+0	;DESPLAZAMIENTO 2ª MEDICIÓN
Q272=1	;EJE DE MEDICIÓN
Q261=-5	;ALTURA DE MEDICIÓN
Q260=+10	;ALTURA SEGURA
Q311=25	;LONGITUD NOMINAL
Q288=25.0	5;MEDIDA MÁXIMA
Q289=25	;MEDIDA MÍNIMA
Q281=1	;PROTOCOLO DE MEDICIÓN
Q309=0	;DETENCIÓN DEL PGM EN CASO DE ERROR
Q360=0	;HERRAMIENTA
Q320=0	;DIST. DE SEGURIDAD
Q301=0	;DESPLAZAR HASTA ALTURA SEGURA

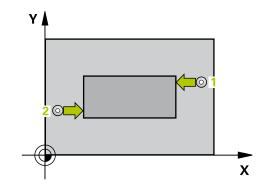
- ▶ Herramienta para supervisión Q330: determinar si el TNC debe realizar la supervisión de la herramienta: (ver "Vigilancia de la herramienta", Página 362). Campo de introducción 0 a 32767,9, alternativamente nombre de la herramienta con un máximo de 16 caracteres
 - **0**: Supervisión no activa
 - >0: Número de herramienta en la tabla de herramientas TOOL.T
- distancia de seguridad Q320 (valor incremental): distancia adicional entre el punto de medición y la bola del palpador. Q320 tiene efecto acumulativo a SET_UP (tabla del sistema de palpación) y solo para la palpación del punto de referencia en el eje del sistema de palpación. Campo de introducción 0 a 99999,9999
- Desplazamiento a altura de seguridad Q301: determinar cómo se debe desplazar el palpador entre los puntos de medición:
 - **0**: desplazarse entre los puntos de medición a la altura de medición
 - 1: desplazarse entre los puntos de medición a la altura de seguridad

16.10 MEDIR EXTERIOR ISLA (Ciclo 426, DIN/ISO: G426)

16.10 MEDIR EXTERIOR ISLA (Ciclo 426, DIN/ISO: G426)

Desarrollo del ciclo

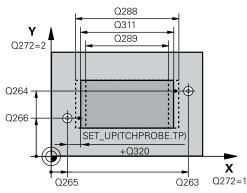
El ciclo de palpación 426 calcula la posición y la anchura de una isla. Si se han definido los valores de tolerancia correspondientes en el ciclo, el TNC realiza una comparación del valor nominal y el real y memoriza la diferencia en los parámetros del sistema.

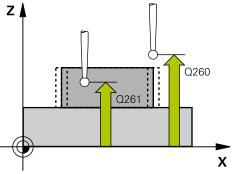

- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación 1. El TNC calcula los puntos de palpación a partir de los datos del ciclo y de la distancia de seguridad de la columna SET_UP de la tabla de palpación
- 2 A continuación, el palpador se desplaza hasta la altura de medición introducida y ejecuta el primer proceso de palpación con avance de palpación (Columna **F**) 1. palpación es siempre en la dirección negativa del eje programado
- 3 Luego el palpador se desplaza, hasta la altura de seguridad para el siguiente punto de palpación y ejecuta allí el segundo proceso de palpación
- 4 Para finalizar el TNC hace retroceder el palpador a la altura de seguridad y memoriza los valores reales y la desviación en los siguientes parámetros Ω:

Número de parámetro	Significado
Q156	Valor real de la longitud medida
Q157	Valor real posición eje central
Ω166	Desviación de la longitud medida

¡Tener en cuenta durante la programación!

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.




MEDIR EXTERIOR ISLA (Ciclo 426, DIN/ISO: G426) 16.10

Parámetros de ciclo

- ▶ 1er punto de medición del 1er eje Q263 (valor absoluto): coordenada del 1er punto de palpación en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 1er punto de medición del 2º eje Q264 (valor absoluto): coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- 2º punto de medición del 1er eje Q265 (valor absoluto): coordenada del segundo punto de palpación en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 2º punto de medición del 2º eje Q266 (absoluto): coordenada del segundo punto de palpación en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► Eje de medición Q272: Eje del plano de mecanizado en el que debe tener lugar la medición:
 - 1: Eje principal = Eje de medición
 - 2: Eje auxiliar = Eje de medición
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- distancia de seguridad Q320 (valor incremental): distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- Longitud nominal Q311: valor nominal de la longitud a medir. Campo de introducción 0 a 99999,9999
- ► Cota máxima Q288: longitud máxima admisible. Campo de introducción 0 a 99999,9999

Frases NC

5 TCH PROBE 4 EXTERIOR	426 MEDIR ISLA
Q263=+50	;1ER PUNTO 1ER EJE
Q264=+25	;1ER PUNTO 2° EJE
Q265=+50	;2° PUNTO 1ER EJE
Q266=+85	;2° PUNTO 2° EJE
Q272=2	;EJE DE MEDICIÓN
Q261=-5	;ALTURA DE MEDICIÓN
Q320=0	;DIST. DE SEGURIDAD
Q260=+20	;ALTURA SEGURA
Q311=45	;LONGITUD NOMINAL
Q288=45	;MEDIDA MÁXIMA
Q289=44.9	5;MEDIDA MÍNIMA
Q281=1	;PROTOCOLO DE MEDICIÓN

16.10 MEDIR EXTERIOR ISLA (Ciclo 426, DIN/ISO: G426)

► Cota mínima Q289: longitud mínima admisible. Campo de introducción 0 a 99999,9999

▶ **Protocolo de medición** Q281: determinar si el TNC debe crear un protocolo de medición:

0: No crear ningún protocolo de medición

1: Crear protocolo de medición: El TNC guarda el **fichero de protocolo TCHPR426.TXT** según estándar en el directorio TNC:\.

2: Interrumpir el desarrollo del programa y presentar el protocolo de medición en la pantalla del TNC. Continuar el programa con la tecla de inicio-NC

▶ Parada de pgm por error de tolerancia Q309: determinar si el TNC debe interrumpir la ejecución del programa al sobrepasar la tolerancia y emitir un aviso de error:

0: No interrumpir la ejecución del programa, no emitir aviso de error

1: Interrumpir la ejecución del programa, emitir aviso de error

▶ Herramienta para supervisión Q330: determinar si el TNC debe realizar la supervisión de la herramienta: (ver "Vigilancia de la herramienta", Página 362). Campo de introducción 0 a 32767,9, alternativamente nombre de la herramienta con un máximo de 16 caracteres

0: Supervisión no activa

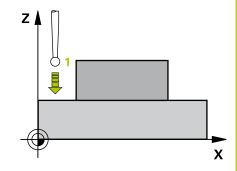
>0: Número de herramienta en la tabla de herramientas TOOL.T

Q309=0	;DETENCIÓN DEL PGM EN CASO DE ERROR
Q360=0	;HERRAMIENTA

16.11 MEDIR COORDINADA (Ciclo 427; DIN/ISO: G427)

Desarrollo del ciclo

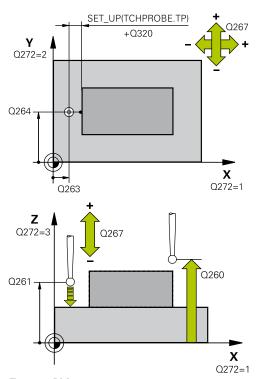
El ciclo de palpación 427 calcula una coordenada en cualquier eje seleccionable y memoriza el valor en un parámetro del sistema. Una vez definidos los valores de tolerancia correspondientes en el ciclo, el TNC realiza una comparación del valor real-nominal y memoriza la diferencia en un parámetro del sistema.


- El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación
 Para ello, el TNC desplaza el palpador según la distancia de seguridad en la dirección de desplazamiento opuesta a la determinada
- 2 Luego el TNC posiciona el palpador en el plano de mecanizado sobre el punto de palpación 1 introducido y mide allí el valor real en el eje seleccionado
- 3 Para finalizar el TNC hace retroceder el palpador a la altura de seguridad y memoriza la coordenada calculada en el siguiente parámetro Ω:

Número de parámetro	Significado	
Q160	Coordenada medida	

¡Tener en cuenta durante la programación!

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.



16.11 MEDIR COORDINADA (Ciclo 427; DIN/ISO: G427)

Parámetros de ciclo

- ▶ 1er punto de medición del 1er eje Q263 (valor absoluto): coordenada del 1er punto de palpación en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 1er punto de medición del 2° eje Q264 (valor absoluto): coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- distancia de seguridad Q320 (valor incremental): distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ► Eje de medición (1.3: 1=eje principal) Q272: Eje, en el que se debe realizar la medición:
 - **1**:Eje principal = Eje de medición
 - 2:Eje secundario = Eje de medición
 - 3: eje de palpación = Eje de medición
- Dirección de desplazamiento 1 Q267: dirección en la que el palpador debe desplazarse hasta llegar a la pieza:
 - -1: Dirección de desplazamiento negativa
 - +1: Dirección de desplazamiento positiva
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- Protocolo de medición Q281: determinar si el TNC debe crear un protocolo de medición:
 - 0: no crear ningún protocolo de medición
 - 1: crear protocolo de medición: el TNC guarda el **fichero de protocolo TCHPR427.TXT** según estándar en el directorio TNC:\.
 - 2: interrumpir el desarrollo del programa y presentar el protocolo de medición en la pantalla del TNC. Continuar el programa con la tecla arranque-NC
- ► Cota máxima Q288: valor de medición máximo admisible. Campo de introducción 0 a 99999,9999
- Cota mínima Q289: valor de medición mínimo admisible. Campo de introducción 0 a 99999,9999

Frases NC

Frases INC		
5 TCH PROBE 427 MEDIR COORDENADA		
Q263=+35	;1ER PUNTO 1ER EJE	
Q264=+45	;1ER PUNTO 2° EJE	
Q261=+5	;ALTURA DE MEDICIÓN	
Q320=0	;DIST. DE SEGURIDAD	
Q272=3	;EJE DE MEDICIÓN	
Q267=-1	;DIRECCIÓN DE DESPLAZAMIENTO	
Q260=+20	;ALTURA SEGURA	
Q281=1	;PROTOCOLO DE MEDICIÓN	
Q288=5.1	;MEDIDA MÁXIMA	
Q289=4.95	;MEDIDA MÍNIMA	
Q309=0	;DETENCIÓN DEL PGM EN CASO DE ERROR	
Q360=0	;HERRAMIENTA	

- ▶ Parada de pgm por error de tolerancia Q309: determinar si el TNC debe interrumpir la ejecución del programa al sobrepasar la tolerancia y emitir un aviso de error:
 - **0**: no interrumpir la ejecución del programa, no emitir aviso de error
 - 1: interrumpir la ejecución del programa, emitir aviso de error
- ▶ Herramienta para supervisión Q330: determinar si el TNC debe realizar la supervisión de la herramienta: (ver "Vigilancia de la herramienta", Página 362). Campo de introducción 0 a 32767,9, alternativamente nombre de la herramienta con un máximo de 16 caracteres
 - 0: Supervisión no activa
 - >0: Número de herramienta en la tabla de herramientas TOOL.T

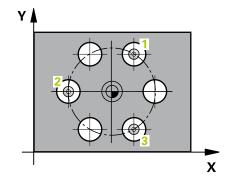
16.12 MEDIR CÍRCULO DE TALADROS (Ciclo 430; DIN/ISO: G430)

16.12 MEDIR CÍRCULO DE TALADROS (Ciclo 430; DIN/ISO: G430)

Desarrollo del ciclo

Con el ciclo de palpación 430 se calcula el punto central y el diámetro de un círculo de taladros mediante la medición de tres taladros. Si se han definido los valores de tolerancia correspondientes en el ciclo, el TNC realiza una comparación del valor nominal y el real y memoriza la diferencia en los parámetros del sistema.

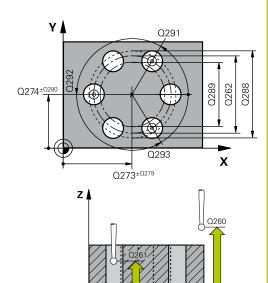
- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el centro introducido del primer taladro 1.
- 2 A continuación, el palpador se desplaza a la altura de medición introducida y, mediante cuatro palpaciones, determina el centro del primer taladro
- 3 A continuación, el palpador vuelve a la altura segura y se posiciona en el centro introducido del segundo taladro 2
- 4 El TNC desplaza el palpador a la altura de medición introducida y, mediante cuatro palpaciones, determina el centro del segundo taladro
- 5 A continuación, el palpador vuelve a la altura segura y se posiciona en el centro introducido del tercer taladro 3
- 6 El TNC desplaza el palpador a la altura de medición introducida y, mediante cuatro palpaciones, determina el centro del tercer taladro
- 7 Para finalizar el TNC hace retroceder el palpador a la altura de seguridad y memoriza los valores reales y las desviaciones en los siguientes parámetros Ω:


Número de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real centro eje auxiliar
Q153	Valor real del diámetro del círculo de taladros
Q161	Desviación del centro en eje principal
Q162	Desviación del centro en el eje auxiliar
Q163	Desviación del diámetro del círculo de taladros

¡Tener en cuenta durante la programación!

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.

El ciclo 430 solo efectúa la supervisión de rotura, no la corrección automática de herramientas.



MEDIR CÍRCULO DE TALADROS (Ciclo 430; DIN/ISO: G430) 16.12

Parámetros de ciclo

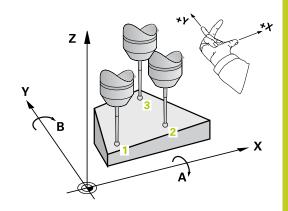
- ▶ centro 1er eje O273 (valor absoluto): centro del círculo de taladros (valor nominal) en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ► centro 2º eje Q274 (valor absoluto): centro del círculo de taladros (valor nominal) en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ **Diámetro nominal** Q262: Introducir el diámetro del círculo de taladros. Campo de introducción 0 a 99999,9999
- ángulo 1er taladro Q291 (valor absoluto): ángulo en coordenadas polares del primer punto central del taladro en el plano de mecanizado. Campo de introducción -360,0000 a 360,0000
- ▶ ángulo 2º taladro Q292 (valor absoluto): ángulo en coordenadas polares del segundo punto central del taladro en el plano de mecanizado. Campo de introducción -360,0000 a 360,0000
- ángulo 3er taladro Q293 (valor absoluto): ángulo en coordenadas polares del tercer punto central del taladro en el plano de mecanizado. Campo de introducción -360,0000 a 360,0000
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición. Campo de introducción -99999,9999 a 99999,9999
- ▶ Altura de seguridad Q260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- Cota máxima Q288: máximo diámetro admisible para el círculo de taladros. Campo de introducción 0 a 99999,9999
- Cota mínima Q289: mínimo diámetro admisible para el círculo de taladros. Campo de introducción 0 a 99999,9999
- ▶ Valor tolerancia centro 1er eje 0279: desviación admisible de la posición en el eje principal del plano de mecanizado. Campo de introducción 0 a 99999,9999
- Valor tolerancia centro 2º eje Q280: desviación admisible de la posición en el eje auxiliar del plano de mecanizado. Campo de introducción 0 a 99999,9999

Frases NC

5 TCH PROBE 4 TALADROS	30 MEDIR CIRCULO
Q273=+50	;CENTRO 1ER EJE
Q274=+50	;CENTRO 2° EJE
Q262=80	;DIÁMETRO NOMINAL
Q291=+0	;ÁNGULO 1ER TALADRO
Q292=+90	;ÁNGULO 2º TALADRO
Q293=+180	;ÁNGULO 3ER TALADRO
Q261=-5	;ALTURA DE MEDICIÓN
Q260=+10	;ALTURA SEGURA
Q288=80.1	;MEDIDA MÁXIMA
Q289=79.9	;MEDIDA MÍNIMA
Q279=0,15	;TOLERANCIA 1ER CENTRO
Q280=0,15	;TOLERANCIA 2° CENTRO
Q281=1	;PROTOCOLO DE MEDICIÓN
Q309=0	;DETENCIÓN DEL PGM EN CASO DE ERROR
Q360=0	;HERRAMIENTA

16.12 MEDIR CÍRCULO DE TALADROS (Ciclo 430; DIN/ISO: G430)

- ▶ **Protocolo de medición** Q281: determinar si el TNC debe crear un protocolo de medición:
 - 0: no crear ningún protocolo de medición
 - 1: Crear protocolo de medición: el TNC guarda
 - el **fichero de protocolo TCHPR430.TXT** según estándar en el directorio TNC:\.
 - 2: interrumpir el desarrollo del programa y presentar el protocolo de medición en la pantalla del TNC. Continuar el programa con la tecla arranque-NC
- ▶ Parada de pgm por error de tolerancia Q309: determinar si el TNC debe interrumpir la ejecución del programa al sobrepasar la tolerancia y emitir un aviso de error:
 - **0**: no interrumpir la ejecución del programa, no emitir aviso de error
 - 1: interrumpir la ejecución del programa, emitir aviso de error
- ▶ Herramienta para supervisión Q330: determinar si el TNC debe realizar la supervisión de rotura de la herramienta (ver "Vigilancia de la herramienta", Página 362). Campo de introducción 0 a 32767,9, alternativamente nombre de la herramienta con un máximo de 16 caracteres
 - 0: Supervisión no activa
 - >0: Número de herramienta en la tabla de herramientas TOOL.T


16.13 MEDIR PLANO (Ciclo 431, DIN/ISO: G431)

Desarrollo del ciclo

El ciclo de palpación 431 calcula el ángulo de un plano mediante la medición de tres puntos y memoriza los valores en los parámetros del sistema.

- 1 El TNC posiciona el palpador con avance rápido (valor de la columna FMAX) y con lógica de posicionamiento (ver "Ejecutar ciclos de palpación", Página 276) en el punto de palpación programado 1 y mide allí el primer punto del plano. Para ello, el TNC desplaza el palpador según la distancia de seguridad en la dirección opuesta a la palpación
- 2 A continuación, el palpador retorna a la altura de seguridad, y luego en el plano de mecanizado al punto de palpación 2 y mide allí el valor real del segundo punto del plano
- 3 A continuación, el palpador retorna a la altura de seguridad, y luego en el plano de mecanizado al punto de palpación 3 y mide allí el valor real del tercer punto del plano
- 4 Para finalizar el TNC hace retroceder el palpador a la altura de seguridad y memoriza los valores angulares calculados en los siguientes parámetros Ω:

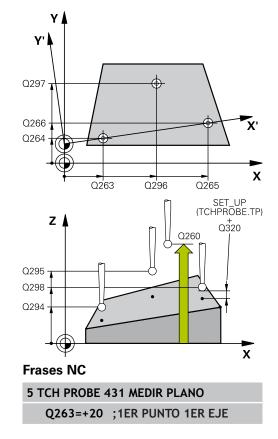
Número de parámetro	Significado
Q158	Ángulo de proyección del eje A
Q159	Ángulo de proyección del eje B
Q170	Ángulo espacial A
Q171	Ángulo espacial B
Q172	Ángulo espacial C
Q173 a Q175	Valores de medición en el eje de palpación (primera hasta tercera medición)

16.13 MEDIR PLANO (Ciclo 431, DIN/ISO: G431)

¡Tener en cuenta durante la programación!

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.

Para que el TNC pueda calcular los valores angulares, los tres puntos de medida no deben estar en una recta


En los parámetros Q170 - Q172 se memorizan los ángulos espaciales que se necesitan en la función plano de mecanizado inclinado. Mediante los primeros puntos de medida se determina la dirección del eje principal al inclinar el área de mecanizado.

El tercer punto de medición determina la dirección del eje de la herramienta. Definir el tercer punto de medida en dirección a Y positivo, para que el eje de la herramienta esté correctamente situado en el sistema de coordenadas que gira en el sentido horario.

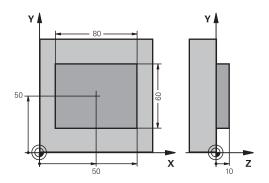
Parámetros de ciclo

- ▶ 1er punto de medición del 1er eje Q263 (valor absoluto): coordenada del 1er punto de palpación en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 1er punto de medición del 2º eje Q264 (valor absoluto): coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 1er punto de medición 3° eje Q294 (valor absoluto): coordenada del punto de palpación en el eje de palpación. Campo de introducción -99999,9999 a 99999,9999
- ▶ 2º punto de medición del 1er eje Q265 (valor absoluto): coordenada del segundo punto de palpación en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 2º punto de medición del 2º eje Q266 (absoluto): coordenada del segundo punto de palpación en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ 2º punto de medición 3er. eje Q295 (valor absoluto): coordenada del segundo punto de palpación en el eje de palpación. Campo de introducción -99999,9999 a 99999,9999

MEDIR PLANO (Ciclo 431, DIN/ISO: G431) 16.13

- ▶ **3er punto de medición del 1er eje** Q296 (valor absoluto): coordenada del tercer punto de palpación en el eje principal del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ **3er punto de medición del 2º eje** Q297 (valor absoluto): coordenada del tercer punto de palpación en el eje auxiliar del plano de mecanizado. Campo de introducción -99999,9999 a 99999,9999
- ▶ **3er punto de medición del 3er eje** Q298 (valor absoluto): coordenada del tercer punto de palpación en el eje del palpador. Campo de introducción -99999,9999 a 99999,9999
- distancia de seguridad Q320 (valor incremental): distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ Altura de seguridad O260 (valor absoluto): coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza. Campo de introducción -99999,9999 a 99999,9999
- ▶ **Protocolo de medición** Q281: determinar si el TNC debe crear un protocolo de medición:
 - 0: no crear ningún protocolo de medición
 - 1: Crear protocolo de medición: el TNC guarda el **fichero de protocolo TCHPR431.TXT** según estándar en el directorio TNC:\.
 - 2: interrumpir el desarrollo del programa y presentar el protocolo de medición en la pantalla del TNC. Continuar el programa con la tecla arranque-NC

Q264=+20	;1ER PUNTO 2° EJE
Q294=+10	;1ER PUNTO 3ER EJE
Q265=+50	;2° PUNTO 1ER EJE
Q266=+80	;2° PUNTO 2° EJE
Q295=+0	;2° PUNTO 3ER EJE
Q296=+90	;3ER PUNTO 1ER EJE
Q297=+35	;2° PUNTO 2° EJE
Q298=+12	;3ER PUNTO 3ER EJE
Q320=0	;DIST. DE SEGURIDAD
Q260=+5	;ALTURA SEGURA
Q281=1	;PROTOCOLO DE MEDICIÓN


16.14 Ejemplos de programación

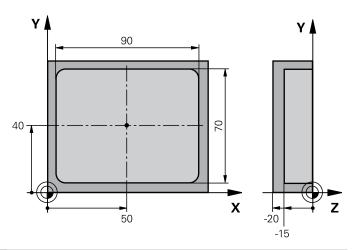
16.14 Ejemplos de programación

Ejemplo: Medición y mecanizado posterior de una isla rectangular

Desarrollo del programa

- Desbaste de la isla rectangular con una sobremedida de 0,5 mm
- Medición de la isla rectangular
- Acabado de la isla rectangular tendiendo en cuenta los valores de la medición

0 BEGIN PGM BEAMS MM 1 TOOL CALL 69 Z 2 L Z+100 R0 FMAX Retirar la herramienta 3 FN 0; Q1 = +81 4 FN 0; Q2 =+61 Longitud del rectángulo en X (cota de desbaste) 5 CALL LBL 1 Llamada al subprograma para el mecanizado 6 L Z+100 R0 FMAX Retirar la herramienta, cambio de herramienta 7 TOOL CALL 99 Z 8 TCH PROBE 424 MEDIR RECTÁNGULO EXTERIOR Medición de la cajera rectangular fresada Q273=+50 ; CENTRO 1ER EJE Q274=+50 ; CENTRO 1ER EJE Q283=60 ; LONGITUD LADO 1 Longitud nominal en X (cota definitiva) Q283=60 ; LONGITUD LADO 2 Longitud nominal en Y (cota definitiva) Q320=0 ; DIST. DE SEGURIDAD Q260=+30 ; ALTURA SEGURA Q301=0 ; DESPLAZAR HASTA ALTURA SEGURA Q284=0 ; MEDIDA MÁXIMA LADO 1 Q286=0 ; MEDIDA MÁXIMA LADO 1 Q286=0 ; MEDIDA MÍNIMA LADO 1 Q286=0 ; MEDIDA MÍNIMA LADO 2 Q279=0 ; TOLERANCIA 1ER CENTRO Q281=0 ; PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ; DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q330=0 ; NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2; Q1 = +Q1 - +Q164 Calcular la longitud en Y en base a la desviación medida 10 FN 2; Q2 = +Q2 - +Q165 Calcular la longitud en Y en base a la desviación medida			
2 L Z+100 R0 FMAX 3 FN 0; Q1 = +81 4 FN 0; Q2 =+61 4 Congitud del rectángulo en X (cota de desbaste) 5 CALL LBL 1 Llamada al subprograma para el mecanizado 6 L Z+100 R0 FMAX Retirar la herramienta, cambio de herramienta 7 TOOL CALL 99 Z Llamada al palpador 8 TCH PROBE 424 MEDIR RECTÁNGULO EXTERIOR Q273=+50 (CENTRO 1er EJE Q274=+50 (CENTRO 2° EJE Q282=80 (LONGITUD LADO 1 Longitud nominal en X (cota definitiva) Q283=60 (LONGITUD LADO 2 Longitud nominal en Y (cota definitiva) Q261=-5 (ALTURA DE MEDICIÓN Q320=0 (DIST. DE SEGURIDAD Q260=+30 (ALTURA SEGURA Q301=0 (DESPLAZAR HASTA ALTURA SEGURA Q284=0 (MEDIDA MÁXIMA LADO 1 Q285=0 (MEDIDA MÁXIMA LADO 1 Q286=0 (MEDIDA MÁXIMA LADO 2 Q287=0 (MEDIDA MÁXIMA LADO 3 Q280-0 (MEDIDA MÁXIMA LADO 3 Q280-0 (MEDIDA MÁXIMA LADO 3 Q281=0 (MEDIDA MÁXIMA LADO 3 Q	O BEGIN PGM BEAMS	MM	
A FN 0: Q1 = +81 Longitud del rectángulo en X (cota de desbaste) 4 FN 0: Q2 =+61 Longitud del rectángulo en Y (cota de desbaste) 5 CALL LBL 1 Llamada al subprograma para el mecanizado 6 L Z+100 RO FMAX Retirar la herramienta, cambio de herramienta 7 TOOL CALL 99 Z B TCH PROBE 424 MEDIR RECTÁNGULO EXTERIOR Medición de la cajera rectangular fresada Q273=+50 (CENTRO 12° EJE Q282=80 (LONGITUD LADO 1 Longitud nominal en X (cota definitiva) Q283=60 (LONGITUD LADO 2 Longitud nominal en Y (cota definitiva) Q261=-5 (ALTURA DE MEDICIÓN Q320=0 (DIST. DE SEGURIDAD Q260=+30 (ALTURA SEGURA Q301=0 (DESPLAZAR HASTA ALTURA SEGURA Q284=0 (MEDIDA MÁXIMA LADO 1 Q285=0 (MEDIDA MÁXIMA LADO 2 Q287=0 (MEDIDA MÁXIMA LADO 2 Q287=0 (MEDIDA MÁXIMA LADO 2 Q297=0 (TOLERANCIA 2° CENTRO Q280=0 (DESPLAZIA CENTRO Q280=0 (DESPLAZIA CENTRO Q280=0 (TOLERANCIA 2° CENTRO Q309=0 (DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q309=0 (NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	1 TOOL CALL 69 Z		Llamada a la hta. de premecanizado
4 FN 0: Q2 =+61 CALL LBL 1 Llamada al subprograma para el mecanizado 6 L Z+100 RO FMAX Retirar la herramienta, cambio de herramienta 7 TOOL CALL 99 Z Llamada al palpador 8 TCH PROBE 424 MEDIR RECTÁNGULO EXTERIOR Q273=+50 CENTRO 1ER EJE Q274=+50 CENTRO 2° EJE Q282=80 ;LONGITUD LADO 1 Longitud nominal en X (cota definitiva) Q283=60 ;LONGITUD LADO 2 Longitud nominal en Y (cota definitiva) Q261=-5 ;ALTURA DE MEDICIÓN Q300=0 ;DIST. DE SEGURIDAD Q260=+30 ;ALTURA SEGURA Q301=0 ;DESPLAZAR HASTA ALTURA SEGURA Q284=0 ;MEDIDA MÁXIMA LADO 1 Q286=0 ;MEDIDA MÁXIMA LADO 1 Q286=0 ;MEDIDA MÁXIMA LADO 2 Q287=0 ;MEDIDA MÁXIMA LADO 2 Q279=0 ;TOLERANCIA 1ER CENTRO Q280=0 ;TOLERANCIA 1ER CENTRO Q281=0 ;PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ;DETENCIÓN DEL PROGRAMA EN CASO de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	2 L Z+100 R0 FMAX		Retirar la herramienta
ELIAMADA AL SUBPROGRAMA ELIAMADA AL SUBPROGRAMA ELIAMADA AL SUBPROGRAMA FETIRA LIAMADA AL SUBPROGRAMA EN CASO DE ERROR ELIAMADA AL SUBPROGRAMA EN CASO DE ERROR ELIAMADA AL SUBPROGRAMA EN CASO DE ERROR ELIAMADA AL SUBPROGRAMA EN CASO DE SEROR PETEROR ELIAMADA AL SUBPROGRAMA EN CASO DE ERROR ELIAMADA AL SUBPROGRAMA EN CASO DE ERROR ELIAMADA AL SUBPROGRAMA EN CASO DE ERROR ELIAMADA AL SUBPROGRAMA EN CASO DE SEROR CASO DE ERROR Q301=0 ELIAMADA SUBPROGRAMA CASO DE CENTRO Q285=0 ELIAMADA SUBPROGRAMA CASO DE PROGRAMA EN CASO DE ERROR Q309=0 ELIAMADA SUBPROGRAMA EN CASO DE SEROR CASO DE SEROR CASO DE ERROR Q309=0 ELIAMADA SUBPROGRAMA EN CASO DE SEROR CASO DE SEROR CASO DE ERROR Q309=0 ELIAMADA SUBPROGRAMA EN CASO DE SEROR CASO DE ERROR Q309=0 ELIAMADA SUBPROGRAMA EN CASO DE ERROR CASO DE ERROR CASO DE ERROR CASO DE HERRAMIENTA SIN SUPPRISIÓN DE LA PASO EN ENCICIÓN medida CASO DE ERROR CASO DE HERRAMIENTA SIN SUPPRISIÓN DEL PASO EN ENCICÓN MEDIDA DE SER DE SER DE SER DE SER DES DE SER DE SER DE SER DE SER DES DES DE SER DES	3 FN 0: Q1 = +81		Longitud del rectángulo en X (cota de desbaste)
Retirar la herramienta, cambio de herramienta 7 TOOL CALL 99 Z 8 TCH PROBE 424 MEDIR RECTÁNGULO EXTERIOR Q273=+50 ;CENTRO 1ER EJE Q274=+50 ;CENTRO 2° EJE Q282=80 ;LONGITUD LADO 1 Longitud nominal en X (cota definitiva) Q283=60 ;LONGITUD LADO 2 Longitud nominal en Y (cota definitiva) Q261=-5 ;ALTURA DE MEDICIÓN Q320=0 ;DIST. DE SEGURIDAD Q260=+30 ;ALTURA SEGURA Q301=0 ;DESPLAZAR HASTA ALTURA SEGURA Q284=0 ;MEDIDA MÁXIMA LADO 1 Para comprobar la tolerancia no se precisan valores de introducción Q285=0 ;MEDIDA MÁXIMA LADO 1 Q286=0 ;MEDIDA MÁXIMA LADO 2 Q287=0 ;MEDIDA MÁXIMA LADO 2 Q287=0 ;TOLERANCIA 1ER CENTRO Q280=0 ;TOLERANCIA 1ER CENTRO Q281=0 ;PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q330=0 ;NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	4 FN 0: Q2 =+61		Longitud del rectángulo en Y (cota de desbaste)
TOOL CALL 99 Z B TCH PROBE 424 MEDIR RECTÁNGULO EXTERIOR Q273=+50 ; CENTRO 1ER EJE Q274=+50 ; CENTRO 2° EJE Q282=80 ; LONGITUD LADO 1 Longitud nominal en X (cota definitiva) Q283=60 ; LONGITUD LADO 2 Longitud nominal en Y (cota definitiva) Q261=-5 ; ALTURA DE MEDICIÓN Q320=0 ; DIST. DE SEGURIDAD Q260=+30 ; ALTURA SEGURA Q301=0 ; DESPLAZAR HASTA ALTURA SEGURA Q284=0 ; MEDIDA MÁXIMA LADO 1 Para comprobar la tolerancia no se precisan valores de introducción Q285=0 ; MEDIDA MÁXIMA LADO 1 Q286=0 ; MEDIDA MÁXIMA LADO 2 Q287=0 ; MEDIDA MÁXIMA LADO 2 Q287=0 ; MEDIDA MÍNIMA LADO 2 Q280=0 ; TOLERANCIA 1ER CENTRO Q280=0 ; TOLERANCIA 2° CENTRO Q281=0 ; PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ; DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q330=0 ; NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	5 CALL LBL 1		Llamada al subprograma para el mecanizado
8 TCH PROBE 424 MEDIR RECTÁNGULO EXTERIOR Q273=+50 ;CENTRO 1ER EJE Q274=+50 ;CENTRO 2° EJE Q282=80 ;LONGITUD LADO 1 Longitud nominal en X (cota definitiva) Q283=60 ;LONGITUD LADO 2 Longitud nominal en Y (cota definitiva) Q261=-5 ;ALTURA DE MEDICIÓN Q320=0 ;DIST. DE SEGURIDAD Q260=+30 ;ALTURA SEGURA Q301=0 ;DESPLAZAR HASTA ALTURA SEGURA Q284=0 ;MEDIDA MÁXIMA LADO 1 Para comprobar la tolerancia no se precisan valores de introducción Q285=0 ;MEDIDA MÁXIMA LADO 1 Q286=0 ;MEDIDA MÁXIMA LADO 2 Q287=0 ;MEDIDA MÁNIMA LADO 2 Q279=0 ;TOLERANCIA 1ER CENTRO Q280=0 ;TOLERANCIA 1ER CENTRO Q281=0 ;PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q309=0 ;NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	6 L Z+100 R0 FMAX		Retirar la herramienta, cambio de herramienta
Q273=+50 ;CENTRO 1ER EJE Q274=+50 ;CENTRO 2° EJE Q282=80 ;LONGITUD LADO 1 Longitud nominal en X (cota definitiva) Q283=60 ;LONGITUD LADO 2 Longitud nominal en Y (cota definitiva) Q261=-5 ;ALTURA DE MEDICIÓN Q320=0 ;DIST. DE SEGURIDAD Q260=+30 ;ALTURA SEGURA Q301=0 ;DESPLAZAR HASTA ALTURA SEGURA Q284=0 ;MEDIDA MÁXIMA LADO 1 Para comprobar la tolerancia no se precisan valores de introducción Q285=0 ;MEDIDA MÁXIMA LADO 1 Q286=0 ;MEDIDA MÁXIMA LADO 2 Q287=0 ;MEDIDA MÁXIMA LADO 2 Q279=0 ;TOLERANCIA 1ER CENTRO Q280=0 ;TOLERANCIA 1ER CENTRO Q281=0 ;PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q330=0 ;NÚMERO DE HERRAMIENTÁ Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	7 TOOL CALL 99 Z		Llamada al palpador
Q274=+50 ;CENTRO 2° EJE Q282=80 ;LONGITUD LADO 1 Longitud nominal en X (cota definitiva) Q283=60 ;LONGITUD LADO 2 Longitud nominal en Y (cota definitiva) Q261=-5 ;ALTURA DE MEDICIÓN Q320=0 ;DIST. DE SEGURIDAD Q260=+30 ;ALTURA SEGURA Q301=0 ;DESPLAZAR HASTA ALTURA SEGURA Q284=0 ;MEDIDA MÁXIMA LADO 1 Para comprobar la tolerancia no se precisan valores de introducción Q285=0 ;MEDIDA MÁXIMA LADO 1 Q286=0 ;MEDIDA MÁXIMA LADO 2 Q287=0 ;MEDIDA MÍNIMA LADO 2 Q279=0 ;TOLERANCIA 1ER CENTRO Q280=0 ;TOLERANCIA 2° CENTRO Q281=0 ;PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ;DETENCIÓN DEL PROGRAMA EN No emitir ningún aviso de error CASO DE ERROR Q330=0 ;NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	8 TCH PROBE 424 ME	EDIR RECTÁNGULO EXTERIOR	Medición de la cajera rectangular fresada
Q282=80 ;LONGITUD LADO 1 Longitud nominal en X (cota definitiva) Q283=60 ;LONGITUD LADO 2 Longitud nominal en Y (cota definitiva) Q261=-5 ;ALTURA DE MEDICIÓN Q320=0 ;DIST. DE SEGURIDAD Q260=+30 ;ALTURA SEGURA Q301=0 ;DESPLAZAR HASTA ALTURA SEGURA Q284=0 ;MEDIDA MÁXIMA LADO 1 Para comprobar la tolerancia no se precisan valores de introducción Q285=0 ;MEDIDA MÁXIMA LADO 1 Q286=0 ;MEDIDA MÁXIMA LADO 2 Q287=0 ;MEDIDA MÍNIMA LADO 2 Q279=0 ;TOLERANCIA 1ER CENTRO Q280=0 ;TOLERANCIA 2° CENTRO Q281=0 ;PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ;DETENCIÓN DEL PROGRAMA EN No emitir ningún aviso de error CASO DE ERROR Q330=0 ;NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	Q273=+50	;CENTRO 1ER EJE	
Q283=60 ;LONGITUD LADO 2 Longitud nominal en Y (cota definitiva) Q261=-5 ;ALTURA DE MEDICIÓN Q320=0 ;DIST. DE SEGURIDAD Q260=+30 ;ALTURA SEGURA Q301=0 ;DESPLAZAR HASTA ALTURA SEGURA Q284=0 ;MEDIDA MÁXIMA LADO 1 Para comprobar la tolerancia no se precisan valores de introducción Q285=0 ;MEDIDA MÁNIMA LADO 1 Q286=0 ;MEDIDA MÁNIMA LADO 2 Q287=0 ;MEDIDA MÁNIMA LADO 2 Q279=0 ;TOLERANCIA 1ER CENTRO Q280=0 ;TOLERANCIA 2° CENTRO Q281=0 ;PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q330=0 ;NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	Q274=+50	;CENTRO 2° EJE	
Q261=-5 ;ALTURA DE MEDICIÓN Q320=0 ;DIST. DE SEGURIDAD Q260=+30 ;ALTURA SEGURA Q301=0 ;DESPLAZAR HASTA ALTURA SEGURA Q284=0 ;MEDIDA MÁXIMA LADO 1 Para comprobar la tolerancia no se precisan valores de introducción Q285=0 ;MEDIDA MÁXIMA LADO 1 Q286=0 ;MEDIDA MÁXIMA LADO 2 Q287=0 ;MEDIDA MÁXIMA LADO 2 Q279=0 ;TOLERANCIA 1ER CENTRO Q280=0 ;TOLERANCIA 1ER CENTRO Q281=0 ;PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q330=0 ;NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	Q282=80	;LONGITUD LADO 1	Longitud nominal en X (cota definitiva)
Q320=0 ; DIST. DE SEGURIDAD Q260=+30 ; ALTURA SEGURA Q301=0 ; DESPLAZAR HASTA ALTURA SEGURA Q284=0 ; MEDIDA MÁXIMA LADO 1 Para comprobar la tolerancia no se precisan valores de introducción Q285=0 ; MEDIDA MÍNIMA LADO 1 Q286=0 ; MEDIDA MÁXIMA LADO 2 Q287=0 ; MEDIDA MÍNIMA LADO 2 Q279=0 ; TOLERANCIA 1ER CENTRO Q280=0 ; TOLERANCIA 2° CENTRO Q281=0 ; PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ; DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q330=0 ; NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	Q283=60	;LONGITUD LADO 2	Longitud nominal en Y (cota definitiva)
Q260=+30 ;ALTURA SEGURA Q301=0 ;DESPLAZAR HASTA ALTURA SEGURA Q284=0 ;MEDIDA MÁXIMA LADO 1 Para comprobar la tolerancia no se precisan valores de introducción Q285=0 ;MEDIDA MÍNIMA LADO 1 Q286=0 ;MEDIDA MÁXIMA LADO 2 Q287=0 ;MEDIDA MÍNIMA LADO 2 Q279=0 ;TOLERANCIA 1ER CENTRO Q280=0 ;TOLERANCIA 2º CENTRO Q281=0 ;PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q330=0 ;NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	Q261=-5	;ALTURA DE MEDICIÓN	
Q301=0 ;DESPLAZAR HASTA ALTURA SEGURA Q284=0 ;MEDIDA MÁXIMA LADO 1 Para comprobar la tolerancia no se precisan valores de introducción Q285=0 ;MEDIDA MÍNIMA LADO 1 Q286=0 ;MEDIDA MÁXIMA LADO 2 Q287=0 ;MEDIDA MÍNIMA LADO 2 Q279=0 ;TOLERANCIA 1ER CENTRO Q280=0 ;TOLERANCIA 2° CENTRO Q281=0 ;PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q330=0 ;NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	Q320=0	;DIST. DE SEGURIDAD	
Q284=0 ;MEDIDA MÁXIMA LADO 1 Para comprobar la tolerancia no se precisan valores de introducción Q285=0 ;MEDIDA MÍNIMA LADO 1 Q286=0 ;MEDIDA MÁXIMA LADO 2 Q287=0 ;MEDIDA MÍNIMA LADO 2 Q279=0 ;TOLERANCIA 1ER CENTRO Q280=0 ;TOLERANCIA 2º CENTRO Q281=0 ;PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q330=0 ;NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	Q260=+30	;ALTURA SEGURA	
introducción Q285=0 ;MEDIDA MÍNIMA LADO 1 Q286=0 ;MEDIDA MÁXIMA LADO 2 Q287=0 ;MEDIDA MÍNIMA LADO 2 Q279=0 ;TOLERANCIA 1ER CENTRO Q280=0 ;TOLERANCIA 2° CENTRO Q281=0 ;PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q330=0 ;NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	Q301=0	•	
Q286=0 ;MEDIDA MÁXIMA LADO 2 Q287=0 ;MEDIDA MÍNIMA LADO 2 Q279=0 ;TOLERANCIA 1ER CENTRO Q280=0 ;TOLERANCIA 2° CENTRO Q281=0 ;PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q330=0 ;NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	Q284=0	;MEDIDA MÁXIMA LADO 1	· · · · · · · · · · · · · · · · · · ·
Q287=0 ;MEDIDA MÍNIMA LADO 2 Q279=0 ;TOLERANCIA 1ER CENTRO Q280=0 ;TOLERANCIA 2° CENTRO Q281=0 ;PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q330=0 ;NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	Q285=0	;MEDIDA MÍNIMA LADO 1	
Q279=0 ;TOLERANCIA 1ER CENTRO Q280=0 ;TOLERANCIA 2° CENTRO Q281=0 ;PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q330=0 ;NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	Q286=0	;MEDIDA MÁXIMA LADO 2	
Q280=0 ;TOLERANCIA 2° CENTRO Q281=0 ;PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q330=0 ;NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	Q287=0	;MEDIDA MÍNIMA LADO 2	
Q281=0 ;PROTOCOLO DE MEDICIÓN No emitir ningún protocolo de medida Q309=0 ;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q330=0 ;NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	Q279=0	;TOLERANCIA 1ER CENTRO	
Q309=0 ;DETENCIÓN DEL PROGRAMA EN CASO DE ERROR Q330=0 ;NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	Q280=0	;TOLERANCIA 2° CENTRO	
CASO DE ERROR Q330=0 ;NÚMERO DE HERRAMIENTA Sin supervisión de la hta. 9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	Q281=0	;PROTOCOLO DE MEDICIÓN	No emitir ningún protocolo de medida
9 FN 2: Q1 = +Q1 - +Q164 Calcular la longitud en X en base a la desviación medida	Q309=0	,	No emitir ningún aviso de error
	Q330=0	;NÚMERO DE HERRAMIENTA	Sin supervisión de la hta.
10 FN 2: Q2 = +Q2 - +Q165 Calcular la longitud en Y en base a la desviación medida	9 FN 2: Q1 = +Q1 - +	Q164	Calcular la longitud en X en base a la desviación medida
	10 FN 2: Q2 = +Q2 -	+Q165	Calcular la longitud en Y en base a la desviación medida


Ejemplos de programación 16.14

11 L Z+100 R0 FMAX		Retirar el palpador, cambio de herramienta
12 TOOL CALL 1 Z S50	000	Llamada a la hta. para el acabado
13 CALL LBL 1		Llamada al subprograma para el mecanizado
14 L Z+100 R0 FMAX	M2	Retirar la herramienta, final del programa
15 LBL 1		Subprograma con ciclo de mecanizado isla rectangular
16 CYCL DEF 213 ACA	ABADO ISLA	
Q200=20	;DIST. DE SEGURIDAD	
Q201=-10	;PROFUNDIDAD	
Q206=150	;AVANCE PASO DE PROFUNDIZACIÓN	
Q202=2	;PASO DE PROFUNDIZACIÓN	
Q207=500	;AVANCE AL FRESAR	
Q203=+10	;COOR. SUPERFICIE	
Q204=20	;2ª DIST. DE SEGURIDAD	
Q216=+50	;CENTRO 1ER EJE	
Q217=+50	;CENTRO 2° EJE	
Q218=Q1	;LONGITUD LADO 1	Longitud en X variable para desbaste y acabado
Q219=q2	;LONGITUD LADO 2	Longitud en Y variable para desbaste y acabado
Q220=0	;RADIO DE LA ESQUINA	
Q221=0	;SOBREMEDIDA 1ER EJE	
17 CYCL CALL M3		Llamada al ciclo
18 LBL 0		Final del subprograma
19 END PGM BEAMS M	M	

Ciclos de palpación: Controlar las piezas automáticamente

16.14 Ejemplos de programación

Ejemplo: medir cajera rectangular, registrar resultados de medición

O BEGIN PGM BSMESS	5 MM	
1 TOOL CALL 1 Z		Llamada al palpador
2 L Z+100 R0 FMAX		Retirar el palpador
3 TCH PROBE 423 ME	DIR RECTÁNGULO INT.	
Q273=+50	;CENTRO 1ER EJE	
Q274=+40	;CENTRO 2° EJE	
Q282=90	;LONGITUD LADO 1	Longitud nominal en X
Q283=70	;LONGITUD LADO 2	Longitud nominal en Y
Q261=-5	;ALTURA DE MEDICIÓN	
Q320=0	;DIST. DE SEGURIDAD	
Q260=+20	;ALTURA SEGURA	
Q301=0	;DESPLAZAR HASTA ALTURA SEGURA	
Q284=90.15	;MEDIDA MÁXIMA LADO 1	Tamaño máx. en X
Q285=89.95	;MEDIDA MÍNIMA LADO 1	Tamaño mín. en X
Q286=70.1	;MEDIDA MÁXIMA LADO 2	Tamaño máx. en Y
Q287=69.9	;MEDIDA MÍNIMA LADO 2	Tamaño mín. en Y
Q279=0,15	;TOLERANCIA 1ER CENTRO	Desviación admisible de la posición en X
Q280=0.1	;TOLERANCIA 2° CENTRO	Desviación admisible de la posición en Y
Q281=1	;PROTOCOLO DE MEDICIÓN	Emitir el protocolo de medición en el fichero
Q309=0	;DETENCIÓN DEL PGM EN CASO DE ERROR	Cuando se sobrepase la tolerancia no emitir aviso de error
Q330=0	;NÚMERO DE HERRAMIENTA	Sin supervisión de la hta.
4 L Z+100 R0 FMAX M	Λ2	Retirar la herramienta, Final de programa
5 END PGM BSMESS M	M	

Ciclos de palpación: Funciones especiales

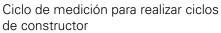
17.1 Nociones básicas

17.1 Nociones básicas

Resumen

Al ejecutar los ciclos del sistema de palpación, el ciclo 8 CREAR SIMETRÍA, el ciclo 11 FACTOR DE MEDIDA y el ciclo 26 FACTOR DE MEDIDA ESPEC. POR EJE no deben estar activos.

HEIDENHAIN solo garantiza la función de los ciclos de palpación si se utilizan sistemas de palpación de HEIDENHAIN.



El TNC debe estar preparado por el fabricante de la máquina para el empleo de palpadores 3D.

El TNC dispone de un ciclo para las siguientes aplicaciones especiales:

Ciclo Softkey Página

3 MEDICIÓN

403

17.2 MEDIR (Ciclo 3)

Desarrollo del ciclo

El ciclo de palpación 3 calcula cualquier posición de la pieza en cualquier dirección de palpación. Al contrario que otros ciclos de medición, es posible introducir directamente en el ciclo 3 el recorrido de medición **ABST** y el avance de medición **F**. También el retroceso hasta alcanzar el valor de medición se consigue a través del valor introducible **MB**.

- 1 El palpador se desplaza desde la posición actual con el avance programado en la dirección de palpación determinada. La dirección de la palpación se determina mediante un ángulo polar en el ciclo.
- 2 Una vez que el TNC ha registrado la posición se detiene el palpador. El TNC memoriza las coordenadas del punto central de la bola de palpación X, Y, Z en tres parámetros Q sucesivos. El TNC no realiza ninguna corrección de longitud ni de radio. El número del primer parámetro de resultados se define en el ciclo
- 3 A continuación el TNC retrocede el palpador en sentido contrario a la dirección de palpación, hasta el valor que se ha definido en el parámetro MB

¡Tener en cuenta durante la programación!

El funcionamiento exacto del ciclo de palpación 3 lo determina el fabricante de la máquina o un fabricante de software, para utilizar el ciclo 3 dentro de ciclos de palpación especiales.

Los parámetros de máquina activos en otros ciclos de medición **DIST** (recorrido de desplazamiento máximo al punto de palpación) y **F**(avance de palpación) no son efectivos en el ciclo de palpación 3.

Tener en cuenta que, básicamente, el TNC siempre describe 4 parámetros Q consecutivos.

En caso de que el TNC no pudiera calcular ningún punto de palpación válido, el programa continuaría ejecutando sin aviso de error. En este caso el TNC asigna el valor -1 al 4º parámetro de resultados, de manera que él mismo pueda tratar el error correspondientemente.

El TNC retrocede el palpador como máximo el recorrido de retroceso **MB**, no obstante, no desde el punto inicial de la medición. De esta forma no puede haber ninguna colisión durante el retroceso.

Con la función **FN17: SYSWRITE ID 990 NR 6** se puede determinar, si el ciclo debe actuar sobre la entrada del palpador X12 o X13.

Ciclos de palpación: Funciones especiales

17.2 MEDIR (Ciclo 3)

Parámetros de ciclo

- Nº parámetro para el resultado: Introducir el número de parámetro Q al que el TNC debe asignar el valor de la primera coordenada calculada (X). Los valores Y y Z figuran en los parámetros Q siguientes. Campo de introducción 0 a 1999
- ► **Eje de palpación**: introducir el eje en cuya dirección deba realizarse la palpación, confirmar con la tecla ENT. Campo de introducción X, Y ó Z
- Ángulo de palpación: ángulo referido al eje de palpación definido, según el cual se desplaza el palpador, confirmar con la tecla ENT. Campo de introducción -180,0000 a 180,0000
- ▶ Recorrido de medición máximo: introducir el recorrido que debe realizar el palpador desde el punto de partida, confirmar con ENT. Campo de introducción -99999,9999 a 99999,9999
- ► **Medir avance**: Introducir el avance de medición en mm/min. Campo de introducción 0 a 3000,000
- ▶ Máximo recorrido de retroceso: recorrido opuesto a la dirección de palpación una vez el vástago ha sido retirado. El TNC retrocede el palpador como máximo hasta el punto inicial, de manera que no pueda producirse ninguna colisión. Campo de introducción 0 a 99999,9999
- ▶ ¿Sistema de referencia? (0=IST/1=REF):

 Determinar si la dirección de palpación y el resultado de la medición deben referirse al sistema de coordenadas actual (REAL, puede por tanto estar desplazado o girado) o si deben referirse al sistema de coordenadas de la máquina (REF):
 - **0**: Palpar en el sistema actual y depositar el resultado de la medición en el sistema **REAL**
 - 1: Palpar en el sistema REF fijo de la máquina y depositar el resultado de la medición en el sistema **REF**
- ▶ Modo de error (0=OFF/1=ON): determinar si el TNC debe emitir un aviso de error al principio del ciclo con el vástago desviado. Si se ha seleccionado el modo 1, el TNC guarda el resultado en 4. Parámetro de resultado el valor -1 y sigue ejecutando el ciclo:
 - 0: Emitir aviso de error
 - 1: No emitir ningún aviso de error

Bloques NC

4 TCH PROBE 3.0 MEDIR

5 TCH PROBE 3.1 Q1

6 TCH PROBE 3.2 X ÁNGULO: +15

7 TCH PROBE 3.3 ABST +10 F100 MB1 SISTEMA DE REFERENCIA:0

8 TCH PROBE 3.4 ERRORMODE1

17.3 Calibración del palpador digital

Para poder determinar con exactitud el punto de conmutación real de un palpador 3D se debe calibrar el sistema de palpación. Sino, el TNC no podrá realizar mediciones exactas.

En los siguientes casos siempre hay que calibrar el sistema de palpación:

- Puesta en marcha
- Rotura del vástago
- Cambio del vástago
- Modificación del avance de palpación
- Irregularidades, p. ej. debidas al calentamiento de la máquina
- Cambio del eje de herramienta activo

El TNC incorpora los valores de calibración para el sistema de palpación activo directamente después del proceso de calibración. Los datos de herramienta actualizados pasan a estar activos de inmediato, no siendo necesaria una nueva llamada de herramienta.

En la calibración el TNC calcula la longitud "activa" del vástago y el radio "activo" de la bola de palpación. Para la calibración del palpador 3D, se coloca un anillo de ajuste o un vástago con altura y radio conocidos, sobre la mesa de la máquina.

El TNC dispone de ciclos de calibración para la calibración de longitudes y para la calibración de radios:

► Seleccionar la Softkey FUNCIÓN DE PALPACIÓN.

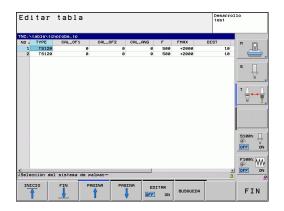
- Mostrar ciclos de calibración Pulsar CALIBRAR TS (PALPADOR)
- ► Seleccionar ciclo de calibración

Ciclos de calibración del TNC:

Softkey	Función	Página
461	Calibrar longitud	409
462	Determinar el radio y el decalaje del centro con un anillo de calibración	410
463	Determinar el radio y el decalaje del centro con un vástago o mandril de calibración	412
450	Determinar el radio y el decalaje del centro con una bola de calibración	407

17.4 Visualizar los valores de calibración

17.4 Visualizar los valores de calibración


El TNC memoriza la longitud y el radio activos del palpador en la tabla de la herramienta. El TNC memoriza el desvío del centro del palpador en la tabla del mismo, en las columnas **CAL_OF1** (eje principal) y **CAL_OF2** (eje auxiliar). Los valores memorizados se visualizan pulsando la softkey Tabla del palpador.

Cuando utilice el palpador, preste atención a la hora de activar el número de herramienta correcto, independientemente de si quiere ejecutar el ciclo de palpación en modo de funcionamiento Automático o en modo de funcionamiento Manual.

Encontrará más información sobre la tabla de palpadores en el Modo de Empleo Programación de ciclos.

17.5 CALIBRAR TS (Ciclo 460, DIN/ISO: G460)

Mediante el ciclo 460 puede calibrar un sistema de palpación 3D con función de conmutación en una bola de calibración exacta. Se puede realizar sólo una calibración de radio o una calibración de radio y de longitud.

- 1 Fijar la bola de calibración, prestar atención a la ausencia de colisión
- 2 Posicionar el palpador en el eje del palpador sobre la bola de calibración y en el plano de mecanizado aproximadamente en el centro de la bola
- 3 El primer movimiento dentro del ciclo se realiza en dirección negativa del eje del sistema palpador
- 4 A continuación, el ciclo determina el centro de bola exacto dentro del eje del sistema palpador

¡Tener en cuenta durante la programación!

HEIDENHAIN solo garantiza la función de los ciclos de palpación si se utilizan sistemas de palpación de HEIDENHAIN.

17.5 CALIBRAR TS (Ciclo 460, DIN/ISO: G460)

La longitud activa del palpador se refiere siempre al punto de referencia de la herramienta. Por regla general, el fabricante de la máquina sitúa el punto de referencia de la herramienta sobre la base del cabezal.

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

Preposicionar el sistema palpador en el programa de tal manera que, aproximadamente, se encuentra sobre el centro de la bola.

- Radio de la bola de calibración exacto Q407: introducir el radio exacto de la bola de calibración utilizada. Campo de introducción 0,0001 a 99,9999
- ▶ **Distancia de seguridad** Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP en la tabla del sistema de palpación. Campo de introducción 0 a 99999,9999
- Desplazamiento a altura de seguridad Q301: Determinar cómo se debe desplazar el palpador entre los puntos de medición:
 - **0**: Desplazarse entre los puntos de medición a la altura de medición
 - 1: Desplazarse entre los puntos de medición a la altura de seguridad
- ▶ Número de palpaciones plano (4/3) Q423: Número de puntos de medición sobre el diámetro. Campo de introducción 0 a 8
- ▶ Ángulo de referencia Q380 (absoluto): ángulo de referencia (giro básico) para el registro de los puntos de medición en el sistema de coordenadas activo de la pieza. La definición de un ángulo de referencia puede ampliar considerablemente la zona de medición de un eje. Campo de introducción 0 a 360,0000
- ► Calibrar longitud (0/1) Q433: Determinar si el TNC después del calibrado de radio también debe calibrar la longitud del sistema palpador:
 - 0: No calibrar la longitud del sistema palpador
 - 1: Calibrar longitud del sistema palpador
- ▶ Punto de referencia para longitud Q434 (absoluto): Coordenada del centro de la bola de calibración. Definición sólo se requiere para el caso de efectuar la calibración de la longitud. Campo de introducción -99999,9999 a 99999,9999

Bloques NC

5 TCH PROBE 460 CALIBRACION TS		
Q407=12.5	;RADIO DE LA BOLA	
Q320=0	;DIST. DE SEGURIDAD	
Q301=1	;IR A ALTURA DE SEGURIDAD	
Q423=4	;NÚMERO DE PALPACIONES	
Q380=+0	;ÁNGULO DE REFERENCIA	
Q433=0	;CALIBRAR LONGITUD	
Q434=-2.5	;PUNTO DE REFERENCIA	

17.6 CALIBRAR LONGITUD DEL TS (Ciclo 461, DIN/ISO: G257)

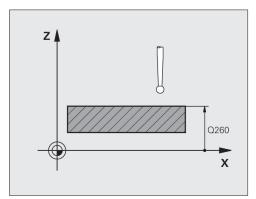
Desarrollo del ciclo

Antes de iniciar el ciclo de calibración se debe fijar el punto de referencia en el eje del cabezal de tal modo que sobre la mesa de la máquina haya Z=0 y posicionar previamente el palpador mediante el aro de calibración.

- 1 El TNC orienta el palpador al ángulo **CAL_ANG** de la tabla del palpador (únicamente cuando el palpador sea orientable)
- 2 El TNC palpa partiendo de la posición actual en la dirección del cabezal negativa con avance de palpación (Columna **F** de la tabla del palpador)
- 3 A continuación, el TNC hace retroceder el palpador con avance rápido (Columna **FMAX** de la tabla del palpador) para posicionarlo en la posición inicial

¡Tener en cuenta durante la programación!

HEIDENHAIN solo garantiza la función de los ciclos de palpación si se utilizan sistemas de palpación de HEIDENHAIN.



La longitud activa del palpador se refiere siempre al punto de referencia de la herramienta. Por regla general, el fabricante de la máquina sitúa el punto de referencia de la herramienta sobre la base del cabezal.

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

▶ Punto de referencia Q434 (absoluto): Referencia para la longitud (p. ej. altura aro de ajuste) Campo de introducción -99999,9999 a 99999,9999

Frases NC

5 TCH PROBE 461 CALIBRAR LONGITUD TS

Q434=+5 ;PUNTO DE REFERENCIA

17.7 CALIBRAR RADIO TS INTERIOR (Ciclo 462, DIN/ISO: G262)

17.7 CALIBRAR RADIO TS INTERIOR (Ciclo 462, DIN/ISO: G262)

Desarrollo del ciclo

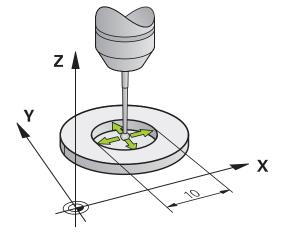
Antes de iniciar el ciclo de calibración se debe posicionar previamente el palpador en el centro del aro de calibración y a la altura de medición deseada.

Al calibrar el radio de la bola de palpación, el TNC ejecuta una rutina de palpación automática. En la primera pasada el TNC determina el centro del anillo de calibración o del vástago (medición basta) y posiciona el palpador en el centro. A continuación, en el proceso de calibración propiamente dicho (medición fina) se determina el radio de la bola de palpación. En el caso de que con el palpador se pueda realizar una medición compensada, en una pasada adicional se determina la desviación del centro.

La orientación del palpador determina la rutina de calibración:

- No es posible ninguna orientación o es posible únicamente la orientación en una dirección: El TNC ejecuta una medición basta y una medición fina y determina el radio eficaz de la espera de palpación (Columna R en tool.t)
- Permite la orientación en dos direcciones (p. ej. palpadores de cable de HEIDENHAIN): El TNC ejecuta una medición basta y una medición fina, gira 180° el palpador y ejecuta otras cuatro rutinas de palpación. Mediante la medición compensada se determina, además del radio, la desviación del centro (CAL_OF in tchprobe.tp).
- Permite cualquier orientación (p. ej. palpadores de infrarrojos de HEIDENHAIN): Rutina de palpación: véase "Permite orientación en dos direcciones"

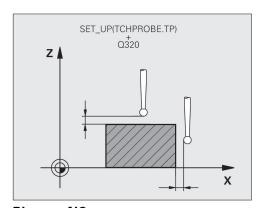
¡Tener en cuenta durante la programación!



HEIDENHAIN solo garantiza la función de los ciclos de palpación si se utilizan sistemas de palpación de HEIDENHAIN.

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

Únicamente se puede determinar el decalaje del centro con un palpador apto para ello.



Para determinar el desplazamiento de centros de la bola de palpador, el TNC debe estar preparado por el fabricante de la máquina. ¡Rogamos consulten el manual de su máquina!

La característica de si o como el palpador se puede orientar ya viene predefinida en los palpadores de HEIDENHAIN. El fabricante de la máquina configura otros palpadores.

- ► RADIO DEL ARO Q407: Diámetro del aro de ajuste. Campo de introducción 0 a 99,9999
- ▶ **DIST. SEGURIDAD** Q320 (incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- NÚMERO DE PALPACIONES Q407 (absoluto): Número de puntos de medición sobre el diámetro. Campo de introducción 0 a 8
- ▶ ÁNGULO DE REFERENCIA Q380 (absoluto): Ángulo entre el eje principal del plano de mecanizado y el primer punto de palpación. Campo de introducción 0 a 360,0000

Bloques NC

5 TCH PROBE 462 CALIBRAR TS (PALPADOR) EN ARO		
Q407=+5	;RADIO DEL ARO	
Q320=+0	;DIST. DE SEGURIDAD	
Q423=+8	;NÚMERO DE PALPACIONES	
Q380=+0	;ÁNGULO DE REFERENCIA	

17.8 CALIBRAR RADIO EXTERIOR TS (PALPADOR) (Ciclo 463, DIN/ISO: G463)

17.8 CALIBRAR RADIO EXTERIOR TS (PALPADOR) (Ciclo 463, DIN/ISO: G463)

Desarrollo del ciclo

Antes de iniciar el ciclo de calibración debe posicionarse previamente centrado el palpador mediante el mandril de calibración. Posicionar el palpador en el eje del palpador alejado aproximadamente la distancia de seguridad (valor de la tabla del palpador + valor del ciclo) mediante el mandril de calibración.

Al calibrar el radio de la bola de palpación, el TNC ejecuta una rutina de palpación automática. En la primera pasada el TNC determina el centro del anillo de calibración o del vástago (medición basta) y posiciona el palpador en el centro. A continuación, en el proceso de calibración propiamente dicho (medición fina) se determina el radio de la bola de palpación. En el caso de que con el palpador se pueda realizar una medición compensada, en una pasada adicional se determina la desviación del centro.

La orientación del palpador determina la rutina de calibración:

- No es posible ninguna orientación o es posible únicamente la orientación en una dirección: El TNC ejecuta una medición basta y una medición fina y determina el radio eficaz de la espera de palpación (Columna R en tool.t)
- Permite la orientación en dos direcciones (p. ej. palpadores de cable de HEIDENHAIN): El TNC ejecuta una medición basta y una medición fina, gira 180° el palpador y ejecuta otras cuatro rutinas de palpación. Mediante la medición compensada se determina, además del radio, la desviación del centro (CAL_OF in tchprobe.tp).
- Permite cualquier orientación (p. ej. palpadores de infrarrojos de HEIDENHAIN): Rutina de palpación: véase "Permite orientación en dos direcciones"

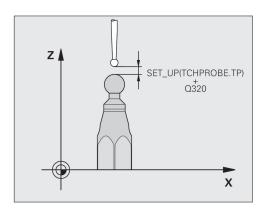
¡Tener en cuenta durante la programación!

HEIDENHAIN solo garantiza la función de los ciclos de palpación si se utilizan sistemas de palpación de HEIDENHAIN.

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

Únicamente se puede determinar el decalaje del centro con un palpador apto para ello.

CALIBRAR RADIO EXTERIOR TS (PALPADOR) (Ciclo 463, DIN/ISO: 17.8 G463)



Para determinar el desplazamiento de centros de la bola de palpador, el TNC debe estar preparado por el fabricante de la máquina. ¡Rogamos consulten el manual de su máquina!

La característica de si o como el palpador se puede orientar ya viene predefinida en los palpadores de HEIDENHAIN. El fabricante de la máquina configura otros palpadores.

- ► ZAPFENRADIUS Q407: Diámetro del aro de ajuste. Campo de introducción 0 a 99,9999
- ▶ **DIST. SEGURIDAD** Q320 (incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma a SET_UP (tabla del sistema de palpación). Campo de introducción 0 a 99999,9999
- ▶ DESPLAZAR A S: ALTURA Q301: Determinar como debe desplazarse el palpador entre los puntos de medición:
 - **0**: Desplazar entre dos puntos a la altura de medición
 - **1:** Desplazar entre dos puntos a la altura de seguridad
- NÚMERO DE PALPACIONES Q407 (absoluto): Número de puntos de medición sobre el diámetro. Campo de introducción 0 a 8
- ▶ ÁNGULO DE REFERENCIA Q380 (absoluto): Ángulo entre el eje principal del plano de mecanizado y el primer punto de palpación. Campo de introducción 0 a 360,0000

Frases NC

5 TCH PROBE 463 CALIBRAR TS (PALPADOR) EN ISLAS		
Q407=+5	;RADIO DE ISLA	
Q320=+0	;DIST. DE SEGURIDAD	
Q301=+1	;IR A ALTURA DE SEGURIDAD	
Q423=+8	;NÚMERO DE PALPACIONES	
Q380=+0	;ÁNGULO DE REFERENCIA	

18

Ciclos de palpación: medir herramientas automáticamente

18.1 Fundamentos

18.1 Fundamentos

Resumen

Al ejecutar los ciclos del sistema de palpación, el ciclo 8 CREAR SIMETRÍA, el ciclo 11 FACTOR DE MEDIDA y el ciclo 26 FACTOR DE MEDIDA ESPEC. POR EJE no deben estar activos.

HEIDENHAIN solo garantiza la función de los ciclos de palpación si se utilizan sistemas de palpación de HEIDENHAIN.

El fabricante de la máquina prepara la máquina y el TNC para poder emplear el palpador TT.

Es probable que su máquina no disponga de todos los ciclos y funciones que se describen aquí. Rogamos consulte el manual de la máquina.

Con el palpador de mesa y los ciclos de medición de herramientas del TNC se miden herramientas automáticamente: los valores de corrección para la longitud y el radio se memorizan en el almacén central de htas. TOOL.T y se calculan automáticamente al final del ciclo de palpación. Se dispone de los siguientes tipos de mediciones:

- Medición de herramientas con la herramienta parada
- Medición de herramientas con la herramienta girando
- Medición individual de cuchillas

Los ciclos para la medición de la herramienta se programan en el modo de funcionamiento Memorizar/editar programa, mediante la tecla TOUCH PROBE. Se dispone de los siguientes ciclos:

Ciclo	Formato nuevo	Formato antiguo	Página
Calibrar TT, ciclos 30 y 480	480 CAL.	30 E	422
Calibrar TT 449 sin cables, ciclo 484	484		423
Medir longitud de herramienta, ciclo 31 y 481	481	31	424
Medir radio de herramienta, ciclo 32 y 482	482	32	426
Medir longitud y radio de herramienta, ciclo 33 y 483	483	33	428

Los ciclos de medición solo trabajan cuando está activado el almacén central de herramientas TOOL.T.

Antes de trabajar con los ciclos de medición deberán introducirse todos los datos precisos para la medición en el almacén central de herramientas y haber llamado a la herramienta que se quiere medir con **TOOL CALL**.

Diferencias entre los ciclos 31 a 33 y 481 a 483

El número de funciones y el desarrollo de los ciclos es absolutamente idéntico. Entre los ciclos 31 a 33 y 481 a 483 existen solo las dos diferencias siguientes:

- Los ciclos 481 a 483 están disponibles también en DIN/ISO en G481 a G483
- En vez de un parámetro de libre elección para el estado de la medición los nuevos ciclos emplean el parámetro fijo Q199.

18.1 Fundamentos

Ajustar parámetros de máquina

Antes de trabajar con los ciclos TT, comprobar todos los parámetros de máquina, que se definen en **ProbeSettings** > **CfgToolMeasurement** y **CfgTTRoundStylus**.

El TNC emplea para la medición con cabezal parado el avance de palpación del parámetro de máquina **probingFeed**.

En la medición con herramienta girando, el TNC calcula automáticamente las revoluciones del cabezal y el avance de palpación.

Las revoluciones del cabezal se calculan de la siguiente forma:

n = maxPeriphSpeedMeas / (r • 0,0063) con

n: Revoluciones [rev/min]

maxPeriphSpeedMeas: Velocidad máxima admisible [m/min]r: Radio activo de la herramienta [mm]

El avance de palpación se calcula a partir de:

v = Tolerancia de medición • n con

v: Avance palpación (mm/min)

Tolerancia de medición: Tolerancia de medición (mm),

dependiente de maxPeriphSpeedMeas

n: Revoluciones [rev/min]

Con **probingFeedCalc** se ajusta el calculo del avance de palpación: **probingFeedCalc** = **ConstantTolerance**:

La tolerancia de medición permanece constante - independientemente del radio de la herramienta. Cuando las htas. son demasiado grandes debe reducirse el avance de palpación a cero. Cuanto más pequeña se selecciona la velocidad periférica máxima (maxPeriphSpeedMeas) y la tolerancia admisible (measureTolerance1), antes se pone de manifiesto este efecto.

probingFeedCalc = VariableTolerance:

La tolerancia de medición se modifica con el radio de herramienta activo. De esta forma se asegura un avance de palpación suficiente para radios de herramienta muy grandes. El TNC modifica la tolerancia de medición según la tabla siguiente:

Radio de la herramienta	Tolerancia de medición	
hasta 30 mm	measureTolerance1	
30 hasta 60 mm	2 • measureTolerance1	
60 hasta 90 mm	3 • measureTolerance1	
90 hasta 120 mm	4 • measureTolerance1	

probingFeedCalc = ConstantFeed:

El avance de palpación permanece constante, el error de medición aumenta de forma lineal si el radio de la herramienta se ha hecho mayor:

Tolerancia de medición = (r • measureTolerance1)/5 mm) con

r: Radio de herramienta activo [mm]

measureTolerance1: Error de medida máximo permitido

18 Ciclos de palpación: medir herramientas automáticamente

18.1 Fundamentos

Introducciones en la tabla de herramienta TOOL.T

Abrev.	Datos introducidos	Diálogo
CUT	Número de cuchillas de la herramienta (máx. 20 cuchillas)	¿Número de cuchillas?
LTOL	Desviación admisible de la longitud L de la herramienta para reconocer un desgaste. Si se sobrepasa el valor introducido, el TNC bloquea la herramienta (estado L). Margen de introducción: 0 a 0,9999 mm	Tolerancia de desgaste: ¿Longitud?
RTOL	Desviación admisible del radio R de la herramienta para reconocer un desgaste. Si se sobrepasa el valor introducido, el TNC bloquea la herramienta (estado L). Campo de introducción: 0 a 0,9999 mm	Tolerancia de desgaste: ¿Radio?
DIRECT.	Dirección de corte de la herramienta para la medición con la herramienta girando	¿Dirección de corte (M3 = -) ?
R_OFFS	Medición de la longitud: Decalaje de la herramienta entre el centro del vástago y el centro de la herramienta. Ajuste: ningun valor registrado (desviación = radio de herramienta)	¿Radio desplaz. hta.?
L_OFFS	Medición del radio: desviación adicional de la herramienta en relación con offsetToolAxis entre la superficie del vástago y la arista inferior de la herramienta. Ajuste previo: 0	¿Long. desplaz. hta.?
LBREAK	Desvío admisible de la longitud L de la herramienta para detectar la rotura. Si se sobrepasa el valor introducido, el TNC bloquea la herramienta (estado L). Campo de introducción: 0 a 0,9999 mm	Tolerancia de rotura: ¿Longitud ?
RBREAK	Desvío admisible del radio R de la herramienta para llegar a la rotura. Si se sobrepasa el valor introducido, el TNC bloquea la herramienta (estado L). Campo de introducción: 0 a 0,9999 mm	Tolerancia de rotura: ¿Radio?

Ejemplos de valores para modelos normales de herramienta

Tipo de herramienta	CUT	TT:R_OFFS	TT:L_OFFS
Taladro	– (sin función)	0 (no es necesaria la desviación, ya que la punta de la herramienta debe ser medida)	
Fresa cilíndrica con diámetro < 19 mm	4 (4 cuchillas)	0 (no es necesaria la desviación, ya que el diámetro de la herramienta es menor que el diámetro del disco del TT)	0 (no es necesaria la desviación adicional en la calibración del radio. Se utiliza el desplazamiento a partir de offsetToolAxis)
Fresa cilíndrica con diámetro > 19 mm	4 (4 cuchillas)	R (es necesaria la desviación , ya que el diámetro de la herramienta es mayor que el diámetro del disco del TT)	0 (no es necesario el desplazamiento adicional en la calibración del radio. Se utiliza el desplazamiento a partir de offsetToolAxis)
Fresa esférica	4 (4 cuchillas)	0 (no es necesaria la desviación, ya que el polo sur de la esfera debe ser medido)	5 (definir siempre el radio de la herramienta como desviación para que el diámetro no sea medido en el radio)

18.2 Calibrar TT (Ciclo 30 o 480, DIN/ISO: G480)

18.2 Calibrar TT (Ciclo 30 o 480, DIN/ISO: G480)

Desarrollo del ciclo

El TT se calibra con el ciclo de medición TCH PROBE 30 o TCH PROBE 480 (ver "Diferencias entre los ciclos 31 a 33 y 481 a 483", Página 417). El proceso de calibración se desarrolla de forma automática. El TNC también calcula automáticamente la desviación media de la herramienta de calibración. Para ello el TNC gira el cabezal 180°, en la mitad del ciclo de calibración.

Como herramienta de calibración se utiliza una pieza completamente cilíndrica, p.ej. un macho cilíndrico. El TNC memoriza los valores de calibración y los tiene en cuenta para mediciones de herramienta posteriores.

¡Tener en cuenta durante la programación!

El funcionamiento del ciclo de calibración depende del parámetro de máquina **CfgToolMeasurement**. Rogamos consulte el manual de la máquina.

Antes de calibrar deberá introducirse el radio y la longitud exactos de la herramienta de calibración en la tabla de herramientas TOOL.T.

En los parámetros de máquina **centerPos** > **[0]** a **[2]** debe fijarse la posición del TT en el área de trabajo de la máquina.

Si se modifica uno de los parámetros de la máquina **centerPos** > **[0]** bis **[2]**, deberá calibrarse de nuevo.

Parámetros de ciclo

▶ Altura de seguridad: Introducir la posición en el eje del cabezal, en la que no pueda producirse una colisión con piezas o sujeciones. La altura de seguridad se refiere al punto de referencia activo de la pieza. Si la altura de seguridad es tan pequeña que el vértice de la herramienta está por debajo de la arista superior del disco, el TNC posiciona la herramienta de calibración automáticamente sobre el disco (zona de seguridad a partir de safetyDistStylus). Campo de introducción -99999,9999 a 99999,9999

Frases NC formato antiguo

6 TOOL CALL 1 Z

7 TCH PROBE 30.0 CALIBRAR TT

8 TCH PROBE 30.1 ALTURA: +90

Frases NC formato nuevo

6 TOOL CALL 1 Z

7 TCH PROBE 480 CALIBRAR TT

Q260=+100; ALTURA SEGURA

18.3 Calibrar TT sin cables (Ciclo 484, DIN/ISO: G484)

Nociones básicas

Con el ciclo 484 se calibra el sistema de palpación de mesa infrarrojo sin cables TT 449. El proceso de calibración no es totalmente automático puesto que la posición del TT sobre la bancada de máquina no está fijada.

Desarrollo del ciclo

- Cambiar la herramienta de calibración
- ► Definir e iniciar el ciclo de calibración
- Posicionar la herramienta de calibración manualmente sobre el centro del palpador y seguir las indicaciones en la ventana. Tener cuidado que la herramienta de calibración esté sobre la superficie de medición del elemento de palpación.

El proceso de calibración es semiautomático. El TNC también calcula automáticamente el desplazamiento de centros de la herramienta de calibración. Para ello el TNC gira el cabezal 180°, en la mitad del ciclo de calibración.

Como herramienta de calibración se utiliza una pieza completamente cilíndrica, p.ej. un macho cilíndrico. El TNC memoriza los valores de calibración y los tiene en cuenta para mediciones de herramienta posteriores.

La herramienta de calibración debería tener un diámetro mayor a 15 mm y sobresalir unos 50 mm del mandril. Con esta constelación se obtiene un curvado de 0,1 µm por cada 1 N de fuerza de palpación.

¡Tener en cuenta durante la programación!

El funcionamiento del ciclo de calibración depende del parámetro de máquina **CfgToolMeasurement**. Rogamos consulten el manual de su máquina.

Antes de calibrar deberá introducirse el radio y la longitud exactos de la herramienta de calibración en la tabla de herramientas TOOL.T.

Si se modifica la posición del TT sobre la mesa, se requiere una nueva calibración.

Parámetros de ciclo

El ciclo 484 no tiene parámetros de ciclo.

18.4 Medir la longitud de herramienta (Ciclo 31 o 481, DIN/ISO: G481)

18.4 Medir la longitud de herramienta (Ciclo 31 o 481, DIN/ISO: G481)

Desarrollo del ciclo

Para la medición de la longitud de la herramienta se programa el ciclo de medición TCH PROBE 31 o TCH PROBE 480 (ver "Diferencias entre los ciclos 31 a 33 y 481 a 483", Página 417). A través de parámetros de máquina se puede determinar la longitud de la herramienta de tres formas diferentes:

- Si el diámetro de la herramienta es mayor que el diámetro de la superficie de medida del TT, se mide con herramienta girando
- Si el diámetro de la herramienta es menor que el diámetro del la superficie de medición del TT o si se determina la longitud de taladros o del fresado de radio, medir con herramienta parada
- Si el diámetro de la herramienta es mayor que el diámetro de la superficie de medida del TT, llevar a cabo una medición de corte individual con herramienta parada

Proceso "Medición con herramienta en rotación"

Para determinar el corte más largo la herramienta se sustituye al punto medio del sistema de palpación y se desplaza rotando a la superficie de medición del TT. El desplazamiento se programa en la tabla de herramientas bajo Desplazamiento de herramienta: Radio (TT: R_OFFS).

Proceso "Medición con la herramienta parada" (p.ej. para taladro)

La herramienta de medición se desplaza centrada mediante la superficie de medición. A continuación se desplaza con cabezal vertical a la superficie de medición del TT. Para esta medición se introduce el desplazamiento de herramienta: radio (TT: R_OFFS) en la tabla de htas con "0".

Proceso "Medición de cortes individuales"

El TNC posiciona la herramienta a medir a un lado de la superficie del palpador. La superficie frontal de la herramienta se encuentra por debajo de la superficie del palpador tal como se determina en **offsetToolAxis**. En la tabla de herramientas, en Desplazamiento de herramienta: longitud (**TT: L_OFFS**) se puede determinar un desplazamiento adicional. El TNC palpa de forma radial con la herramienta girando para determinar el ángulo inicial en la medición individual de cuchillas. A continuación se mide la longitud de todos los cortes modificando la orientación del cabezal. Para esta medición se programa MEDICIÓN DE CUCHILLAS en el CICLO TCH PROBE 31 = 1.

¡Tener en cuenta durante la programación!

Antes de medir herramientas por primera vez, se introducen en la tabla de herramientas TOOL.T el radio y la longitud aproximados, el número de cuchillas y la dirección de corte de la herramienta correspondiente.

Se puede realizar una medición individual de cuchillas para herramientas con **hasta 20 cuchillas**.

Parámetros de ciclo

- ▶ Medir herramienta=0 / comprobar=1: determinar si la herramienta se mide por primera vez o si se desea comprobar una herramienta ya medida. En la primera medición el TNC sobreescribe la longitud L de la herramienta en el almacén central de herramientas TOOL.T y fija el valor delta DL = 0.Si se comprueba una herramienta, se compara la longitud medida con la longitud L de la herramienta del TOOL.T. El TNC calcula la desviación con el signo correcto y lo introduce como valor delta DL en TOOL.T. Además está también disponible la desviación en el parámetro Q115. Cuando el valor delta es mayor al de la tolerancia de desgaste o rotura admisible para la longitud de la herramienta, el TNC bloquea dicha herramienta (estado L en TOOL.T)
- ▶ ¿Nº Parámetro para resultado?: nº parámetro, en el que el TNC guarda el estado de la medición:
 - 0,0: herramienta dentro de la tolerancia
 - **1,0**: la herramienta está desgastada (**LTOL** sobrepasada)
 - **2,0**: la herramienta está rota (**LBREAK** sobrepasada) Si no se desea seguir trabajando con el resultado de la medición dentro del programa, confirmar con la tecla NO ENT
- ▶ Altura de seguridad: introducir la posición en el eje del cabezal, en la que no pueda producirse una colisión con piezas o sujeciones. La altura de seguridad se refiere al punto de referencia activo de la herramienta. Si la altura de seguridad es tan pequeña que el vértice de la herramienta está por debajo de la superficie del disco, el TNC posiciona la herramienta automáticamente sobre el disco (zona de seguridad a partir de safetyDistStylus). Campo de introducción -99999,9999 a 99999,9999
- Medición de cuchillas 0=No / 1=Sí: determinar si se debe realizar una medición individual de cuchillas (máximo 20 cuchillas)

Medición inicial con herramienta girando: formato antiguo

6 TOOL CALL 12 Z

7 TCH PROBE 31.0 LONGITUD DE HERRAMIENTA

8 TCH PROBE 31.1 VERIFICAR: 0

9 TCH PROBE 31,2 ALTURA: +120

10 TCH PROBE 31,3 MEDICIÓN DE CUCHILLAS: 0

Comprobar con medición de cuchilla individual, memorizar el estado en Q5; formato antiguo

6 TOOL CALL 12 Z

7 TCH PROBE 31.0 LONGITUD DE HERRAMIENTA

8 TCH PROBE 31.1 VERIFICAR: 1 Q5

9 TCH PROBE 31,2 ALTURA: +120

10 TCH PROBE 31,3 MEDICIÓN DE CUCHILLAS: 1

Frases NC; formato nuevo

6 TOOL CALL 12 Z

7 TCH PROBE 481 LONGITUD DE HERRAMIENTA

Q340=1 ;COMPROBAR

Q260=+100;ALTURA SEGURA

Q341=1 ;MEDICIÓN DE CUCHILLA 18.5 Medir el radio de herramienta (Ciclo 32 o 482, DIN/ISO: G482)

18.5 Medir el radio de herramienta (Ciclo 32 o 482, DIN/ISO: G482)

Desarrollo del ciclo

Para la medición del radio de la herramienta se programa el ciclo de medición TCH PROBE 32 o TCH PROBE 482 (ver "Diferencias entre los ciclos 31 a 33 y 481 a 483", Página 417). Mediante parámetros de introducción se puede determinar el radio de la herramienta de dos formas:

- Medición con la herramienta girando
- Medición con la herramienta girando y a continuación medición individual de cuchillas

El TNC posiciona previamente la herramienta a medir lateralmente del palpador. La superficie frontal de la fresa se encuentra ahora debajo de la superficie del palpador, tal y como se determina en **offsetToolAxis**. El TNC palpa de forma radial con la herramienta girando. Si además se quiere ejecutar la medición individual de cuchillas, se miden los radios de todas las cuchillas con la orientación del cabezal.

¡Tener en cuenta durante la programación!

Antes de medir la herramienta por primera vez, introducir el radio aproximado, la longitud aproximada, el número de cuchillas y la dirección de corte de la herramienta correspondiente en la tabla de herramientas TOOL.T.

Las herramientas en forma de cilindro con superficie de diamante se pueden fijar con un cabezal vertical. Para ello es necesario definir la cantidad de cortes en la tabla de herramientas **CUT** con 0 y ajustar el parámetro de máquina **CfgToolMeasurement**. Rogamos consulten el manual de su máquina.

Parámetros de ciclo

- ▶ Medir herramienta=0 / comprobar=1: determinar si la herramienta se mide por primera vez o si se desea comprobar una herramienta va medida. En la primera medición el TNC sobreescribe el radio R de la herramienta en el almacén central de herramientas TOOL.T y fija el valor delta DR = 0. Cuando se comprueba una herramienta, se compara el radio medido con el radio de la herramienta en TOOL.T. El TNC calcula la desviación con el signo correcto y lo introduce como valor delta DR en TOOL.T. Además está también disponible la desviación en el parámetro Q116. Cuando el valor delta es mayor al de la tolerancia de desgaste o rotura admisible para el radio de la herramienta, el TNC bloquea dicha herramienta (estado L en TOOL.T)
- ¿Nº Parámetro para resultado?: nº parámetro, en el que el TNC guarda el estado de la medición:
 - 0,0: Herramienta dentro de la tolerancia
 - **1,0**: la herramienta está desgastada (**RTOL** sobrepasada)
 - **2,0**: La herramienta está rota (**RBREAK** sobrepasada) Si no se desea seguir trabajando con el resultado de la medición dentro del programa, confirmar con la tecla NO ENT
- ▶ Altura de seguridad: Introducir la posición en el eje del cabezal, en la que no pueda producirse una colisión con piezas o sujeciones. La altura de seguridad se refiere al punto de referencia activo de la herramienta. Si la altura de seguridad es tan pequeña que el vértice de la herramienta está por debajo de la superficie del disco, el TNC posiciona la herramienta automáticamente sobre el disco (zona de seguridad a partir de safetyDistStylus). Campo de introducción -99999,9999 a 99999,9999
- Medición de cuchillas 0=No / 1=Sí: determinar si se debe realizar adicionalmente una medición individual de cuchillas (máximo 20 cuchillas medibles)

Medición inicial con herramienta girando: formato antiguo

6 TOOL CALL 12 Z

7 TCH PROBE 32,0 RADIO DE HERRAMIENTA

8 TCH PROBE 32.1 VERIFICAR: 0

9 TCH PROBE 32,2 ALTURA: +120

10 TCH PROBE 32,3 MEDICIÓN DE CUCHILLAS: 0

Comprobar con medición de cuchilla individual, memorizar el estado en Q5; formato antiguo

6 TOOL CALL 12 Z

7 TCH PROBE 32,0 RADIO DE HERRAMIENTA

8 TCH PROBE 32,1 VERIFICAR: 1 Q5

9 TCH PROBE 32,2 ALTURA: +120

10 TCH PROBE 32,3 MEDICIÓN DE CUCHILLAS: 1

Frases NC; formato nuevo

6 TOOL CALL 12 Z

7 TCH PROBE 482 RADIO DE HERRAMIENTA

Q340=1 ;COMPROBAR

Q260=+100;ALTURA SEGURA

Q341=1 ;MEDICIÓN DE CUCHILLA 18.6 Medición completa de la herramienta (Ciclo 33 o 483, DIN/ISO: G483)

18.6 Medición completa de la herramienta (Ciclo 33 o 483, DIN/ISO: G483)

Desarrollo del ciclo

Para medir completamente la herramienta (longitud y radio), se programa el ciclo de medición TCH PROBE 33 o TCH PROBE 482 (ver "Diferencias entre los ciclos 31 a 33 y 481 a 483", Página 417). El ciclo es especialmente apropiado para la primera medición de herramientas, ya que si se compara con la medición individual de longitud y radio, se ahorra mucho tiempo. Mediante parámetros de introducción se pueden medir herramientas de dos formas:

- Medición con la herramienta girando
- Medición con la herramienta girando y a continuación medición individual de cuchillas

El TNC mide la herramienta según un proceso programado fijo. Primero se mide el radio de la herramienta y a continuación la longitud. El proceso de medición se corresponde con el proceso del ciclo 31 a partir de los ciclos de medición 31 y 32.

¡Tener en cuenta durante la programación!

Antes de medir la herramienta por primera vez, introducir el radio aproximado, la longitud aproximada, el número de cuchillas y la dirección de corte de la herramienta correspondiente en la tabla de herramientas TOOL.T.

Las herramientas de forma cilíndrica con superficie de diamante se pueden medir con cabezal inmóvil. Para ello es necesario definir la cantidad de cortes en la tabla de herramientas **CUT** con 0 y ajustar el parámetro de máquina **CfgToolMeasurement**. Rogamos consulten el manual de su máquina.

Medición completa de la herramienta (Ciclo 33 o 483, DIN/ISO: 18.6 G483)

Parámetros de ciclo

- ► Medir herramienta=0 / comprobar=1: determinar si la herramienta se mide por primera vez o si se desea comprobar una herramienta ya medida. En la primera medición el TNC sobreescribe el radio R y la longitud L de la herramienta en el almacén central de herramientas TOOL.T y fija los valores delta DR y DL = 0.En el caso de comprobar una herramienta, se comparan los datos de la herramienta medidos con los datos de la herramienta de TOOL.T. El TNC calcula la desviación con el signo correcto y lo introduce como valores delta DR y DL en TOOL.T. Además las desviaciones también están disponibles en los parámetros de máquina Q115 y Q116. Cuando uno de los valores delta es mayor al de la tolerancia de desgaste o de rotura admisible, el TNC bloquea dicha herramienta (estado L en TOOL.T)
- ▶ ¿Nº Parámetro para resultado?: nº parámetro, en el que el TNC guarda el estado de la medición:
 - 0,0: Herramienta dentro de la tolerancia
 - **1,0**: la herramienta está desgastada (**LTOL** y/o **RTOL** sobrepasada)
 - **2,0**: La herramienta está rota (**LBREAK** y/o **RBREAK** sobrepasada) Si no se desea seguir trabajando con el resultado de la medición dentro del programa, confirmar con la tecla NO ENT
- ▶ Altura de seguridad: introducir la posición en el eje del cabezal, en la que no pueda producirse una colisión con piezas o sujeciones. La altura de seguridad se refiere al punto de referencia activo de la herramienta. Si la altura de seguridad es tan pequeña que el vértice de la herramienta está por debajo de la superficie del disco, el TNC posiciona la herramienta automáticamente sobre el disco (zona de seguridad a partir de safetyDistStylus). Campo de introducción -99999,9999 a 99999,9999
- Medición de cuchillas 0=No / 1=Sí: determinar si se debe realizar adicionalmente una medición individual de cuchillas (máximo 20 cuchillas medibles)

Medición inicial con herramienta girando: formato antiguo

6 TOOL CALL 12 Z

7 TCH PROBE 33.0 MEDIR HERRAMIENTA

8 TCH PROBE 33.1 VERIFICAR: 0

9 TCH PROBE 33,2 ALTURA: +120

10 TCH PROBE 33,3 MEDICIÓN DE CUCHILLAS: 0

Comprobar con medición de cuchilla individual, memorizar el estado en Q5; formato antiguo

6 TOOL CALL 12 Z

7 TCH PROBE 33.0 MEDIR HERRAMIENTA

8 TCH PROBE 33,1 VERIFICAR: 1 Q5

9 TCH PROBE 33,2 ALTURA: +120

10 TCH PROBE 33,3 MEDICIÓN DE CUCHILLAS: 1

Frases NC; formato nuevo

6 TOOL CALL 12 Z

7 TCH PROBE 483 MEDIR HERRAMIENTA

Q340=1 ;COMPROBAR

Q260=+100; ALTURA SEGURA

Q341=1 ;MEDICIÓN DE CUCHILLA

Tablas resumen ciclos

19.1 Tabla resumen

19.1 Tabla resumen

Ciclos de mecanizado

Número de ciclo	Designación del ciclo	DEF activo	CALL activo	Página
7	Decalaje del punto cero			235
8	Espejo			242
9	Tiempo de espera			259
10	Giro			243
11	Factor de escala			245
12	Llamada del programa			260
13	Orientación del cabezal			262
14	Definición del contorno			170
19	Inclinación del plano de mecanizado			248
20	Datos de contorno SL II			174
21	Pretaladrado SL II			176
22	Desbaste SL II			178
23	Profundidad de acabado SL II			181
24	Acabado lateral SL II			182
25	Trazado de contorno			184
26	Factor de escala específico para cada eje			246
27	Superficie cilíndrica			193
28	Fresado de ranuras en una superficie cilíndrica			196
29	Superficie cilíndrica de la isla			199
32	Tolerancia			263
200	Taladrado			65
201	Escariado			67
202	Mandrinado			69
203	Taladro universal			72
204	Rebaje inverso			75
205	Taladrado profundo universal			78
206	Roscado: con macho, nuevo			93
207	Roscado: rígido, nuevo			95
208	Fresado de taladro			82
209	Roscado rígido con rotura de viruta			97
220	Figura de puntos sobre círculo			159
221	Figura de puntos sobre líneas	-		162
225	Grabado			266
230	Planeado		•	221
231	Superficie regular			223

Número de ciclo	Designación del ciclo	DEF activo	CALL activo	Página
232	Fresado plano			227
240	Centrado			63
241	Taladrado de un solo labio			85
247	Fijar el punto de referencia	-		241
251	Mecanización completa cajera rectangular			127
252	Mecanización completa cajera circular			132
253	Fresado de ranuras			136
254	Ranura circular			140
256	Mecanización completa isla rectangular			145
257	Mecanización completa isla circular			149
262	Fresado de rosca			103
263	Fresado de rosca avellanada			106
264	Fresado de rosca en taladro			110
265	Fresado de rosca helicoidal en taladro			114
267	Fresado de rosca exterior		-	118

Ciclos de palpación

Número de ciclo	Designación del ciclo	DEF activo	CALL activo	Lado
0	Plano de referencia	-		364
1	Punto de referencia polar			365
3	Medir			403
30	Calibración del TT			422
31	Medir/verificar la longitud de la herramienta			424
32	Medir/verificar el radio de la herramienta			426
33	Medir/verificar la longitud y el radio de la herramienta			428
400	Giro básico mediante dos puntos			282
401	Giro básico mediante dos taladros			285
402	Giro básico mediante dos islas			288
403	Compensar la inclinación con el eje giratorio			291
404	Fijación del giro básico			294
405	Compensación de la inclinación con el eje C			295
408	Fijar punto de referencia centro ranura (función FCL 3)			307
409	Fijar punto de referencia centro isla (función FCL 3)			311
410	Fijar punto de referencia rectángulo interior			314
411	Fijar punto de referencia rectángulo exterior			318
412	Fijar punto de referencia círculo interior (taladro)		-	322
413	Fijar punto de referencia círculo exterior (islas)			327

19.1 Tabla resumen

Número de ciclo	Designación del ciclo	DEF activo	CALL activo	Lado
414	Fijar punto de referencia esquina exterior			332
415	Fijar punto de referencia esquina interior			337
416	Fijar punto de referencia centro círculo de taladros			341
417	Fijar punto de referencia eje de palpador			345
418	Fijar punto de referencia en el centro de cuatro taladros			347
419	Fijar punto de referencia ejes individuales seleccionables			351
420	Medir ángulo de la pieza			366
421	Medir pieza círculo interior (taladro)			369
422	Medir pieza círculo exterior (islas)			372
423	Medir pieza rectángulo interior			375
424	Medir pieza rectángulo exterior			379
425	Medir anchura interior de la pieza (ranura)			383
426	Medir anchura exterior de la pieza (isla)			386
427	Medir pieza ejes individuales seleccionables (coordenadas)			389
430	Medir pieza círculo de taladros			392
431	Medir plano de la pieza			392
460	Calibrar el sistema palpador			407
461	Calibrar la longitud del sistema palpador			409
462	Calibrar el radio interior del sistema palpador			410
463	Calibrar el radio exterior del sistema palpador			412
480	Calibración del TT			422
481	Medir/verificar la longitud de la herramienta			424
482	Medir/verificar el radio de la herramienta			426
483	Medir/verificar el radio y la longitud de la herramienta			428

Índice

A
Acabado de profundidad 181
Acabado lateral
Avance de palpación
Avellanado inverso
C
Cajera circular
Desbastado+Acabado 132
Cajera rectangular
Desbastado+Acabado 127
Centraje63
Ciclo
Ciclos de contorno 168
Ciclos de palpación para el modo
Automático
Ciclos de taladrado 62
Ciclos SL 168, 193
Acabado del lado 182
Acabado de profundidad 181
contorno del ciclo 170
Contornos superpuestos 171, 210
datos del contorno
Fundamentos
Fundamentos
Perfil del contorno
Pretaladrado
Vaciado
Ciclos SL con fórmula de contorno
simple
complejas
Ciclos y tablas de puntos 59
Círculo de orificios
Compensación de la posición
inclinada de la pieza
mediante dos islas circulares. 288
mediante dos taladros
mediante medición de dos puntos
de una recta
mediante un eje de giro 291, 295
Conversión de coordenadas 234
Corrección de la herramienta 362
Crear simetría242
D
Datos de palpación
Definición de modelo
Definir ciclo
E
Escariado 67
Establecer punto de referencia
automáticamente 302
automáticamente
automáticamente 302

F	
Factor de escala	245
Factor de escala específico del	
eje	246
Figura de puntos	
sobre círculo	159
sobre líneas	162
Figuras de puntos	158
resumen	158
Fijar automáticamente el punto	
referencia	0.0
centro de 4 taladros	347
centro de isla	311
centro de ranura	
centro de una cajera circular	007
(taladro)	322
centro de una cajera	022
rectangular	314
centro de una isla circular	
centro de una isla rectangular 3	
centro de un círculo de	710
taladros	2/1
en el eje del palpador	
en un eje cualquiera	
fijar automáticamente el punto (
referencia	Je
Esquina exterior	222
Fijar automáticamente el punto	ae
referencia 	007
Esquina interior	337
Fresado de ranuras	100
Desbastado+Acabado	136
Fresado de rosca con	400
avellanado	
Fresado de rosca con taladrado 1	110
Fresado de rosca con taladrado	
helicoidal	
Fresado de rosca exterior	
Fresado de rosca interior	
Fresado de taladro	
Función FCL	7
Fundamentos del fresado de	
rosca	101
G	
Giro	243
Giro básico	2 10
detección durante la ejecución	del
programa	
fijación directa	
Grabar	
Gradai	200
l	
Inclinar el plano de	
mecanizado248,	248
Inclinar plano de mecanizado	
ciclo	248

Isla circular
L
Llamada de programa
M
Mandrinado
Medición de coordinada individual
Medición de la herramienta Parámetros de máquina
Medición del círculo de taladros
0
Orientación del cabezal 262
P
Parámetro resultado
R
Ranura redonda Desbastado+Acabado 140

Índice

Resultados de medición en parámetros Q	261
Roscado	
con macho flotante	
con rotura de virutasin macho flotante	
S	
Sistemas de palpación 3D Sistemas palpadores en 3D Superficie cilíndrica	
Mecanizar contorno mecanizar ranura	. 196
mecanizar resalte Superficie reglada	
T	
Tabla de palpación	57 2, 78 2, 78 2, 78 3, 85 2, 78 65 2, 78 2, 78 2, 78 2, 78 2, 23 2,
V	
Vaciado:Véase ciclos SL, BrocharVigilancia de la herramienta Vigilancia de la tolerancia	. 362

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH

Dr.-Johannes-Heidenhain-Straße 5

83301 Traunreut, Germany

449 8669 31-0449 8669 5061E-mail: info@heidenhain.de

Technical support

Measuring systems

+49 8669 32-1000

+49 8669 31-3104

E-mail: service.ms-support@heidenhain.de

TNC support

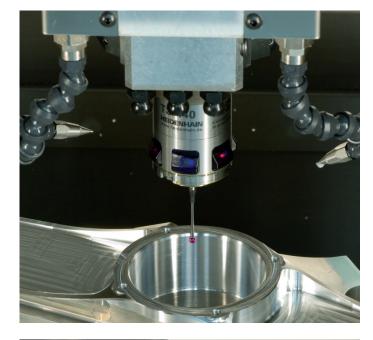
+49 8669 31-3101

TNC support © +49 8669 31-3101 E-mail: service.nc-support@heidenhain.de NC programming © +49 8669 31-3103

E-mail: service.nc-pgm@heidenhain.de **PLC programming** ② +49 8669 31-3102

E-mail: service.plc@heidenhain.de

www.heidenhain.de


Sistemas de palpación de HEIDENHAIN

ayudan para reducir tiempos auxiliares y mejorar la exactitud de cotas de las piezas realizadas.

Palpadores de piezas

TS 220 Transmisión de señal por cable
TS 440,TS 444 Transmisión por infrarrojos
TS 640,TS 740 Transmisión por infrarrojos

- Alineación de piezas
- Fijación de los puntos cero de referencia
- se miden las piezas mecanizadas

Palpadores de herramienta

TT 140 Transmisión de señal por cable
TT 449 Transmisión por infrarrojos
TL Sistemas láser sin contacto

- Medir herramientas
- Supervisar el desgaste
- Detectar rotura de herramienta

