

Uporabniški priročnik Cikli tipalnega sistema

TNC 320

NC-programska oprema 340 551-03 340 554-03

Slovenski (sl) 11/2008

TNC-tip, programska oprema in funkcije

Ta priročnik opisuje funkcije, ki so na TNC-strojih na voljo od naslednjih številk NC-programske opreme dalje.

TNC-tip	Št. NC-programske opreme
TNC 320	340 551-03
TNC 320, programirno mesto	340 554-03

Proizvajalec stroja prilagodi uporabni obseg zmogljivosti posameznega TNC-stroja s strojnimi parametri. Zato so v tem priročniku opisane tudi funkcije, ki niso na voljo na vsakem TNC-ju.

TNC-funkcije, ki niso na voljo na vseh strojih, so na primer:

izmera orodja s TT

Za dejanski obseg funkcij lastnega stroja se obrnite na proizvajalca stroja.

Mnogi proizvajalci strojev in HEIDENHAIN nudijo tečaje za programiranje TNC-strojev. Udeležba na tovrstnih tečajih je priporočljiva za intenzivno seznanitev s funkcijami TNC-stroja.

Uporabniški priročnik:

Vse TNC-funkcije, ki niso povezane s tipalnim sistemom, so opisane v uporabniškem priročniku TNC 320. Za ta priročnik se po potrebi obrnite na podjetje HEIDENHAIN. ID 550 671-xx

Programske možnosti

Pri TNC so na voljo različne programske možnosti, ki jih lahko aktivira proizvajalec stroja. Vsako možnost, ki vsebuje naslednje funkcije, je treba aktivirati posebej:

Programska možnost 1

Interpolacija plašča valja (cikli 27, 28 in 39)

Pomik v mm/min pri krožnih oseh: M116

Vrtenje obdelovalne ravnine (cikel 19 in gumb 3D-ROT v načinu delovanja Ročno)

Krog na treh oseh pri zavrteni obdelovalni ravnini

Stanje razvoja (funkcije za nadgradnjo)

Poleg programskih možnosti je s posodobitvenimi funkcijami **F**eature **C**ontent **L**evel (ang. izraz za stanje razvoja) mogoč še bistven razvoj TNC-programske opreme. Funkcije FCL-ja niso na voljo, če je na TNC-ju posodobitev programske opreme.

Ob nakupu novega stroja so brezplačno na voljo tudi vse funkcije za nadgradnjo.

Funkcije za nadgradnjo so v priročniku označene s **FCL n**, pri čemer **n** označuje zaporedno številko stanja razvoja.

FCL-funkcije lahko trajno aktivirate s plačljivo ključno številko. Za nakup te številke se obrnite na proizvajalca stroja ali podjetje HEIDENHAIN.

Predvidena vrsta uporabe

Glede na EN 55022 TNC ustreza razredu A in je v glavnem namenjen industrijski uporabi.

Nove funkcije 340 55x-03

- TNC po novem podpira tudi upravljanje referenčnih točk prek preglednice nastavitev (oglejte si »Beleženje izmerjenih vrednosti ciklov tipalnega sistema v preglednico prednastavitev« na strani 28)
- TNC zdaj podpira tudi sukanje obdelovalnih ravnin na strojih z vrtljivimi glavami in vrtljivimi mizami
- Cikel 240 centriranje
- Cikel 208 vrtalno rezkanje: zdaj je mogoče izbrati vrsto rezkanja (sotek/protitek)
- Cikel 209 vrtanje navojev z lomom ostružkov: hitrejši odmik
- Novi cikli tipalnega sistema 400 do 405 za samodejno prepoznavanje in odpravljanje poševnega položaja obdelovanca (v uporabniškem priročniku si oglejte cikle tipalnega sistema).
- Novi cikli tipalnega sistema 408 do 419 za samodejno določanje referenčne točke (v uporabniškem priročniku si oglejte cikle tipalnega sistema).
- Novi cikli tipalnega sistema 420 do 431 za samodejno merjenje obdelovanca (v uporabniškem priročniku si oglejte cikle tipalnega sistema).
- Novi cikli tipalnega sistema 480 (30) do 483 (33) za samodejno merjenje orodja (v uporabniškem priročniku si oglejte cikle tipalnega sistema).
- Cikel 19 OBDELOVALNA RAVNINA in gumb 3D-ROT
- Vračalka za pogovorno okno

Vsebina

Uvod

Cikli tipalnega sistema v načinih Ročno in El. krmilnik

Cikli tipalnega sistema za samodejni nadzor obdelovancev

Cikli tipalnega sistema za samodejno izmero orodja

1 Delo s cikli tipalnega sistema 15

1.1 Splošno o ciklih tipalnega sistema 16 Način delovanja 16 Upoštevajte osnovno rotacijo v ročnem delovanju 16 Cikli tipalnega sistema v načinih Ročno in El. krmilnik 16 Cikli tipalnega sistema za samodejno delovanje 17 1.2 Pred delom s cikli tipalnega sistema! 19 Največji premik do tipalne točke: DIST v preglednici tipalnega sistema 19 Varnostni odmik od tipalne točke: SET UP v preglednici tipalnega sistema 19 Usmeritev infrardečega tipalnega sistema na programirano smer odčitavanja: TRACK v preglednici tipalnega sistema 19 Stikalni tipalni sistem, pomik tipala: F v preglednici tipalnega sistema 20 Stikalni tipalni sistem, pomik pri pozicioniranju: FMAX 20 Stikalni tipalni sistem, hitri tek pri pozicioniranju: F PREPOS v preglednici tipalnega sistema 20 Večkratna meritev 20 Tolerančno območje za večkratne meritve 20 Izvajanje ciklov tipalnega sistema 21 1.3 Preglednica tipalnega sistema 22 Splošno 22 Urejanje preglednic tipalnega sistema 22 Podatki tipalnega sistema 23

2 Cikli tipalnega sistema v načinih Ročno in El. krmilnik 25

2.1 Uvod 26
Pregled 26
Izbira cikla tipalnega sistema 26
Zapisovanje izmerjenih vrednosti iz ciklov tipalnega sistema v preglednico ničelnih točk 27 Beleženie izmerienih vrednosti ciklov tipalnega sistema v preglednico prednastavitev 28
2 2 Stikalni tipalni sistem umeritev 29
Uvod 29
Umerjanje aktivne dolžine 29
Umerjanje aktivnega polmera in izravnava sredinskega premika tipalnega sistema 30
Prikaz vrednosti za umerjanje 31
2.3 Odpravljanje poševnega položaja obdelovanca 32
Uvod 32
Ugotavljanje osnovne rotacije 32
Shranjevanje osnovne rotacije v preglednico prednastavitev 33
Prikaz osnovne rotacije 33
Preklic osnovne rotacije 33
2.4 Postavitev referenčne točke s 3D-tipalnimi sistemi 34
Uvod 34
Postavitev referenčne točke v poljubni osi 34
Kot kot referenčna točka 35
Središče kroga kot referenčna točka 36
2.5 Merjenje obdelovancev s 3D-tipalnimi sistemi 37
Uvod 37
Določanje koordinate položaja na usmerjenem obdelovancu 37
Določitev koordinat vogalne točke v obdelovalni ravnini 37
Določanje dimenzij obdelovanca 38
Določanje kota med referenčno osjo kota in robom obdelovanca 39

3 Cikli tipalnega sistema za samodejni nadzor obdelovancev 41

- 3.1 Samodejno zaznavanje poševnega položaja obdelovancev 42
 - Pregled 42

Skupne lastnosti ciklov tipalnega sistema za zaznavanje poševnega položaja obdelovancev 43 OSNOVNA ROTACIJA (cikel tipalnega sistema 400, DIN/ISO: G400) 44 OSNOVNA ROTACIJA z dvema vrtinama (cikel tipalnega sistema 401, DIN/ISO: G401) 46 OSNOVNA ROTACIJA z dvema čepoma (cikel tipalnega sistema 402, DIN/ISO: G402) 49 Uravnavanje OSNOVNE ROTACIJE z rotacijsko osjo (cikel tipalnega sistema 403, DIN/ISO: G403) 52 NASTAVITEV OSNOVNE ROTACIJE (cikel tipalnega sistema 404, DIN/ISO: G404) 56 Izravnava poševnega položaja obdelovanca z osjo C (cikel tipalnega sistema 405, DIN/ISO: G405) 57

- 3.2 Samodejno zaznavanje referenčnih točk 61
 - Pregled 61

Nastavitev skupnih točk vseh ciklov tipalnega sistema za referenčno točko 63 REFERENČNA TOČKA SREDIŠČA UTORA (cikel tipalnega sistema 408, DIN/ISO: G408) 65 REFERENČNA TOČKA SREDIŠČA PREČKE (cikel tipalnega sistema 409, DIN/ISO: G409) 68 REFERENČNA TOČKA PRAVOKOTNIKA. ZNOTRAJ (cikel tipalnega sistema 410, DIN/ISO: G410) 71 REFERENČNA TOČKA PRAVOKOTNIKA ZUNAJ (cikel tipalnega sistema 411, DIN/ISO: G411) 74 REFERENČNA TOČKA KROGA ZNOTRAJ (cikel tipalnega sistema 412, DIN/ISO: G412) 77 REFERENČNA TOČKA KROGA ZUNAJ (cikel tipalnega sistema 413, DIN/ISO: G413) 81 REFERENČNA TOČKA VOGALA ZUNAJ (cikel tipalnega sistema 414, DIN/ISO: G413) 85 REFERENČNA TOČKA VOGALA ZNOTRAJ (cikel tipalnega sistema 415, DIN/ISO: G415) 88 REFERENČNA TOČKA SREDIŠČA KROŽNE LUKNJE (cikel tipalnega sistema 416, DIN/ISO: G416) 91 REFERENČNA TOČKA OSI tipalnega SISTEMA (cikel tipalnega sistema 417, DIN/ISO: G417) 94 REFERENČNA TOČKA SREDIŠČA 4 VRTIN (cikel tipalnega sistema 418, DIN/ISO: G418) 96 REFERENČNA TOČKA POSAMEZNE OSI (cikel tipalnega sistema 419, DIN/ISO: G419) 99 3.3 Samodejna meritev obdelovancev 105

Pregled 105

Beleženje rezultatov meritev 106

Rezultati meritev v Q-parametrih 107

Stanje meritve 107

Nadzor tolerance 108

Nadzor orodja 108

Referenčni sistem za rezultate meritev 109

REFERENČNA RAVNINA (cikel tipalnega sistema 0, DIN/ISO: G55) 109 REFERENČNA polarna RAVNINA (cikel tipalnega sistema 1) 110 MERJENJE KOTA (cikel tipalnega sistema 420, DIN/ISO: G420) 111 MERJENJE VRTINE (cikel tipalnega sistema 421, DIN/ISO: G421) 113 MERITEV KROGA ZUNAJ (cikel tipalnega sistema 422, DIN/ISO: G422) 116 MERITEV PRAVOKOTNIKA ZNOTRAJ (cikel tipalnega sistema 423, DIN/ISO: G423) 119 MERITEV PRAVOKOTNIKA ZUNAJ (cikel tipalnega sistema 424, DIN/ISO: G424) 122 MERITEV PRAVOKOTNIKA ZUNAJ (cikel tipalnega sistema 425, DIN/ISO: G425) 125 MERJENJE PREČKE ZUNAJ (cikel tipalnega sistema 426, DIN/ISO: G426) 127 MERJENJE KOORDINATE (cikel tipalnega sistema 427, DIN/ISO: G426) 129 MERJENJE KROŽNE LUKNJE (cikel tipalnega sistema 430, DIN/ISO: G430) 132 MERJENJE RAVNINE (cikel tipalnega sistema 431, DIN/ISO: G431) 135

3.4 Posebni cikli 141

Pregled 141

MERJENJE (cikel tipalnega sistema 3) 142

4 Cikli tipalnega sistema za samodejno izmero orodja 145

4.1 Izmera orodja z namiznim tipalnim sistemom TT 146

Pregled 146

Nastavitev strojnih parametrov 147

Vnosi v preglednici orodij TOOL.T 148

4.2 Cikli, ki so na voljo 150

Pregled 150

Razlike med cikli od 31 do 33 in od 481 do 483 150

Umerjanje TT (cikel tipalnega sistema 30 ali 480, DIN/ISO: G480) 151

Merjenje dolžine orodja (cikel tipalnega sistema 31 ali 481, DIN/ISO: G481) 152

Merjenje polmera orodja (cikel tipalnega sistema 32 ali 482, DIN/ISO: G482) 154

Popolno merjenje orodja (cikel tipalnega sistema 33 ali 483, DIN/ISO: G483) 156

Delo s cikli tipalnega sistema

1.1 Splošno o ciklih tipalnega sistema

Proizvajalec mora TNC pripraviti za uporabo 3D-tipalnih sistemov.

Način delovanja

Ko TNC izvaja cikel tipalnega sistema, se 3D-tipalni sistem premika v smeri, ki jo izberete vi, in s pomikom tipala, ki ga določi proizvajalec. Pomik tipala je določen v strojnem parametru (oglejte si razdelek »Pred delom s cikli tipalnega sistema« v nadaljevanju tega poglavja).

Če se tipalna glava dotakne obdelovanca,

- 3D-tipalni sistem pošlje signal v TNC: koordinate odčitanega položaja se shranijo
- se delovanje 3D-tipalnega sistema zaustavi in
- se v hitrem teku premakne nazaj na izhodiščni položaj za začetek delovanja tipalnega sistema

Če se tipalna glava na nastavljeni razdalji ne pomakne v položaj za odčitavanje, TNC prikaže ustrezno sporočilo o napaki (pot: DIST iz preglednice tipalnega sistema).

Upoštevajte osnovno rotacijo v ročnem delovanju

TNC pri delovanju tipalnega sistema upošteva aktivno osnovno rotacijo in se k obdelovancu primakne poševno.

Cikli tipalnega sistema v načinih Ročno in El. krmilnik

TNC v načinih delovanja Ročno in El. krmilnik omogoča uporabo ciklov tipalnega sistema, s katerimi lahko:

- umerite tipalni sistem
- odpravite poševne položaje obdelovanca
- postavite referenčne točke

Cikli tipalnega sistema za samodejno delovanje

TNC poleg ciklov tipalnega sistema, ki jih uporabljate v načinih Ročno in El. krmilnik, nudi tudi vrsto ciklov za najrazličnejše načine uporabe med samodejnim delovanjem:

- umeritev stikalnega tipalnega sistema (poglavje 3)
- odpravljanje poševnih položajev obdelovanca (poglavje 3)
- postavitev referenčnih točk (poglavje 3)
- samodejni nadzor obdelovancev (poglavje 3)
- samodejna izmera orodja (poglavje 4)

Cikle tipalnega sistema v načinu Programiranje programirate s tipko TOUCH PROBE. Uporabljajte cikle tipalnega sistema od številke 400 dalje, novejše obdelovalne cikle, Q-parametre in parametre vrednosti. Parametri, katerih funkcija je enaka tistim, ki jih TNC uporablja pri različnih ciklih, imajo vedno enako številko. Tako na primer Q260 vedno pomeni varno višino, Q261 vedno pomeni merilno višino itd.

Za enostavnejše programiranje TNC med definiranjem cikla prikazuje pomožno sliko. V pomožni sliki ima parameter, ki ga je treba vnesti, svetlo podlago.

TOUCH PROBE

410

Deminianje cikla upaniega Sistema v nacinu i rogramianje
--

- V orodni vrstici so prikazane vse funkcije tipalnega sistema, ki so na voljo (razdeljene po skupinah)
- Izbira skupine tipalnega cikla, npr postavitev referenčne točke. Cikli za samodejno izmero orodja so na voljo samo, če je stroj za to pripravljen
- Izbira cikla, npr. postavitev referenčne točke središč žepa. TNC odpre pogovorno okno in preišče vnose, istočasno pa na desni strani zaslona prikaže grafiko, na kateri so parametri za vnos osvetljeni.
- Vnesite vse parametre, ki jih zahteva TNC, in vsak vnos zaključite s pritiskom tipke ENT.
- TNC zapre pogovorno okno, ko vnesete vse potrebne podatke

Skupina merilnega cikla	Gumb	Stran
Cikli za samodejno prepoznavanje in odpravljanje poševnega položaja obdelovanca		Stran 42
Cikli za samodejno določanje referenčne točke		Stran 61
Cikli za samodejni nadzor obdelovancev		Stran 105
Posebni cikli	POSEBNI CIKLI	Stran 141
Cikli za samodejno izmero orodja (omogoči jih proizvajalec stroja)		Stran 146

Példa: NC-nizi

5 Z

TCH PROBE NOTR.	410 REF. TOČ. PRAVOKOT.
Q321=+50	;SREDIŠČE 1. OSI
Q322=+50	;SREDIŠČE 2. OSI
Q323=60	;1. STRANSKA DOLŽINA
Q324=20	;2. STRANSKA DOLŽINA
Q261=-5	;MERILNA VIŠINA
Q320=0	;VARNOSTNA RAZDALJA
Q260=+20	;VARNA VIŠINA
Q301=0	;PREMIK NA VARNO VIŠINO
Q305=10	;ŠT. V PREGLEDNICI
Q331=+0	;REF. TOČKA
Q332=+0	;REF. TOČKA
Q303=+1	;PRENOS IZMERJENE VRED.
Q381=1	;ODČIT. OSI TIPAL. SIST.
Q382=+85	;1. KOORD ZA OS TIPAL. SIST
Q383=+50	;2. KOORD ZA OS TIPAL. SIST
Q384=+0	;3. KOORD ZA OS TIPAL. SIST
Q333=+0	;REFERENČNA TOČKA

i

1.2 Pred delom s cikli tipalnega sistema!

Da bi bilo pri merilnih nalogah pokrito kar najširše delovno območje, so s strojnimi parametri na voljo možnosti nastavitev, ki določajo osnovno delovanje vseh ciklov cenzorskega sistema. Če na stroju nastavite več tipalnih sistemov, veljajo te nastavitve globalno za vse tipalne sisteme.

Poleg tega imate v preglednici tipalnega sistema na voljo nastavitvene možnosti, ki jih je mogoče določiti za vsak tipalni sistem posebej. S temi nastavitvami lahko delovanje prilagodite posameznemu tipalnemu sistemu oz. določeni uporabi (oglejte si "Preglednica tipalnega sistema" na strani 22).

Največji premik do tipalne točke: DIST v preglednici tipalnega sistema

Če se tipalna glava ne premakne na poti, ki je določena v DIST, TNC prikaže sporočilo o napaki.

Varnostni odmik od tipalne točke: SET_UP v preglednici tipalnega sistema

V SET_UP določite, kako daleč od definirane tipalne točke (ali tipalne točke, ki jo izračuna cikel) naj TNC vnaprej pozicionira tipalni sistem. Kolikor manjšo vrednost vnesete, toliko natančneje je treba definirati tipalni položaj. V mnogih ciklih tipalnega sistema lahko dodatno definirate varnostni odmik, ki dopolnjuje SET_UP.

Usmeritev infrardečega tipalnega sistema na programirano smer odčitavanja: TRACK v preglednici tipalnega sistema

Za povečanje natančnosti merjenja lahko s TRACK = ON nastavite, da se infrardeči tipalni sistem pred vsakim delovanjem usmeri v programirano smer delovanja. Tipalna glava se tako vedno premakne v isto smer.

Če TRACK = ON spremenite, je treba tipalni sistem znova umeriti.

Stikalni tipalni sistem, pomik tipala: F v preglednici tipalnega sistema

V F določite pomik, s katerim naj TNC izvaja odčitavanje obdelovanca.

Stikalni tipalni sistem, pomik pri pozicioniranju: FMAX

V FMAX določite pomik, s katerim TNC predpozicionira tipalni sistem ali ga premika med meritvenimi točkami.

Stikalni tipalni sistem, hitri tek pri pozicioniranju: F_PREPOS v preglednici tipalnega sistema

V F_PREPOS določite, ali naj TNC tipalni sistem pozicionira s pomikom, definiranim v FMAX, ali v hitrem teku.

- Vrednost vnosa = FMAX_PROBE: pozicioniranje s potiskom naprej iz FMAX
- Vnesena vrednost = FMAX_MACHINE: predpozicioniranje s hitrim tekom stroja

Večkratna meritev

Za povečanje natančnosti merjenja lahko TNC vsak postopek odčitavanja ponovi največ trikrat zaporedoma. Število meritev določite v strojnem parametru ProbeSettings > Konfiguracija delovanja tipalnega sistema > Samodejno delovanje: večkratno merjenje pri tipalni funkciji. Če izmerjene pozicijske vrednosti medsebojno preveč odstopajo, TNC prikaže sporočilo o napaki (mejna vrednost je določena v Tolerančno območje za večkratne meritve). Z večkratnim merjenjem je mogoče ugotoviti naključne napake pri meritvah, do katerih lahko pride npr. zaradi umazanije.

Če so izmerjene vrednosti v območju tolerance, TNC shrani srednjo vrednost ugotovljenih pozicij.

Tolerančno območje za večkratne meritve

Pri večkratnem merjenju v strojnem parametru ProbeSettings > Konfiguracija delovanja tipalnega sistema > Samodejno delovanje: tolerančno območje za večkratne meritve določite, za koliko lahko izmerjene vrednosti med seboj odstopajo. Če razlika izmerjenih vrednosti presega vrednost, ki ste jo določili, TNC prikaže sporočilo o napaki.

Izvajanje ciklov tipalnega sistema

Vsi cikli tipalnega sistema so po definicijah aktivni. TNC cikel izvede samodejno, če v programskem teku obdela definicijo cikla.

Med izvajanjem ciklov tipalnega sistema ne smejo biti aktivni cikli za preračunavanje koordinat (cikel 7 NIČELNA TOČKA, cikel 8 ZRCALJENJE, cikel 10 ROTACIJA, cikla in 26 FAKTOR MERILA in cikel 19 OBDELOVALNA RAVNINA).

Cikle tipalnega sistema od 408 do 419 lahko opravljate tudi pri aktivni osnovni rotaciji. Pri tem pa bodite pozorni, da se kot osnovne rotacije ne spremeni, če za merilnim ciklom izberete cikel 7 – zamik ničelne točke iz preglednice ničelnih točk.

Cikli tipalnega sistema s številko, ki je višja od 400, tipalni sistem predpozicionirajo v skladu s pozicionirno logiko:

- Če je trenutna koordinata najnižje točke tipalne glave manjša od koordinate varne višine (definirane v ciklu), TNC tipalni sistem najprej v osi tipalnega sistema premakne nazaj na varno višino in ga nato v obdelovalni ravnini pomakne na prvo tipalno točko
- Če je trenutna koordinata najnižje točke tipalne glave večja od koordinate varne višine, TNC tipalni sistem najprej v obdelovalni ravnini premakne na prvo tipalno točko in nato v osi tipalnega sistema neposredno na meritveno višino

1.3 Preglednica tipalnega sistema

Splošno

V preglednici tipalnega sistema so shranjeni različni podatki, ki določajo delovanje pri postopku odčitavanja. Če na stroju uporabljate več tipalnih sistemov, lahko shranite podatke za vsakega posebej.

Urejanje preglednic tipalnega sistema

Za urejanje preglednic tipalnega sistema sledite naslednjemu postopku:

Izberite Ročno delovanje.

- Izberite tipalno funkcijo: pritisnite gumb TIPALNA FUNKCIJA. TNC prikaže več gumbov: oglejte si zgornjo preglednico.
- Izberite preglednico tipalnega sistema: pritisnite gumb PREGLEDNICA TIPALNEGA SISTEMA.
- EDITIR.

TCH PROBI

- ▶ Gumb UREJANJE prestavite na VKL.
- S puščičnimi tipkami izberite želeno nastavitev.
- Opravite želene spremembe.
- Za izhod iz preglednice tipalnega sistema: pritisnite gumb KONEC.

Izbi	ra ti	e tab palne	ele ga sis	stema				Programi	ranje
Datot	.: the:N	table∖tchpr	obe.tp		Vrst.:	0		>>	
NO	TYPE	CAL_OF1	CAL_OF2	CAL_ANG	F	FMAX	DIST		
1 2	T9440	+0 +0	+0 +0	0 0	500 500	+2000 +2000	10 10		S
									DIAGNOSIS +

Podatki tipalnega sistema

Okrajšava	Vnosi	Pogovorno okno
NO	Številka tipalnega sistema: to številko je treba v orodni preglednici (stolpec: TP_NO) vnesti pod ustrezno številka orodja	-
ТҮРЕ	Izbira uporabljenega tipalnega sistema	Izbira tipalnega sistema?
CAL_OF1	Zamik med osjo tipalnega sistema in osjo vretena v glavni osi	Tipalo za sredinski premik glavne osi? [mm]
CAL_OF2	Zamik med osjo tipalnega sistema in osjo vretena v pomožni osi	Tipalo za sredinski premik pomožne osi? [mm]
CAL_ANG	TNC pred umerjanjem oz. tipalnim zaznavanjem usmeri tipalni sistem v orientacijski kot (če je orientacija možna)	Kot vretena pri umerjanju?
F	Pomik, s katerim naj TNC izvaja odčitavanje obdelovanca	Pomik tipala? [mm/min]
FMAX	Pomik, s katerim se tipalni sistem predpozicionira oz. premika med meritvenimi točkami	Hitri tek v tipalnem ciklu? [mm/min]
DIST	Če se tipalna glava na tukaj nastavljeni razdalji ne pomakne v položaj za odčitavanje, TNC prikaže sporočilo o napaki	Najdaljša pot meritve? [mm]
SET_UP	V SET_UP določite, kako daleč od definirane tipalne točke (ali tipalne točke, ki jo izračuna cikel) naj TNC vnaprej pozicionira tipalni sistem. Kolikor manjšo vrednost vnesete, toliko natančneje je treba definirati tipalni položaj. V mnogih ciklih tipalnega sistema lahko dodatno definirate varnostni odmik, ki dopolnjuje strojni parameter SET_UP.	Varnostni odmik? [mm]
F_PREPOS	Določitev hitrosti pri predpozicioniranju:	Predpoz. s hitrim tekom stroja? ENT/NO
	 Predpozicioniranje s hitrostjo iz FMAX: FMAX_PROBE Predpozicioniranje s hitrim tekom stroja: FMAX_MACHINE 	ENI
TRACK	Za povečanje natančnosti merjenja lahko s TRACK = ON nastavite, da TNC pred vsakim delovanjem tipalnega sistema usmeri infrardeči tipalni sistem v programirano smer delovanja. Tipalna glava se tako vedno premakne v isto smer:	Usmeritev tipal. sistema? Da=ENT, Ne=NOENT
	 ON: sledenje vretena vklopljeno OFF: sledenje vretena izklopljeno 	

1

Cikli tipalnega sistema v načinih Ročno in El. krmilnik

2.1 Uvod

Pregled

2.1 Uvod

V ročnem načinu so na voljo naslednji cikli tipalnega sistema:

Funkcija	Gumb	Stran
Umerjanje aktivne dolžine	KAL. L	Stran 29
Umerjanje aktivnega polmera	KAL. 3D	Stran 30
Ugotavljanje osnovne rotacije s premico	ROTACIJA	Stran 32
Določitev referenčne točke na izbrani osi	TIPANJE POS	Stran 34
Določitev kota za referenčno točko	TIPANJE P	Stran 35
Določitev središča kroga kot referenčne točke	CC	Stran 36
Upravljanje podatkov tipalnega sistema	TCH PROBE	Stran 22

Izbira cikla tipalnega sistema

Izbira načina delovanja Ročno ali El. krmilnik

Za izbiro tipalne funkcije pritisnite gumb TIPALNA FUNKCIJA. TNC prikaže več gumbov: oglejte si zgornjo preglednico

Za izbiro cikla tipalnega sistema pritisnite gumb ODČITAVANJE ROT, TNC na zaslonu prikaže ustrezni meni

i

Zapisovanje izmerjenih vrednosti iz ciklov tipalnega sistema v preglednico ničelnih točk

To funkcijo izberite, če želite izmerjene vrednosti shraniti v koordinatni sistem obdelovanca. Če želite izmerjene vrednosti shraniti v fiksni koordinatni sistem stroja (koordinate REF), pritisnite gumb VNOS V PREGLEDNICO PREDNASTAVITEV (oglejte si "Beleženje izmerjenih vrednosti ciklov tipalnega sistema v preglednico prednastavitev" na strani 28).

Z gumbom VNOS V PREGLEDNICO NIČELNIH TOČK lahko TNC po dokončanem poljubnem ciklu tipalnega sistema vnese izmerjene vrednosti v preglednico ničelnih točk za trenutno delovanje stroja:

Izvajanje poljubne tipalne funkcije

- Želene koordinate referenčne točke vnesite v polja za vnos, ki so za to namenjena (odvisno od izvedenega cikla tipalnega sistema)
- Številko ničelne točke vnesite v polje za vnos Številka v preglednici =
- Ime preglednice ničelnih točk (popolna pot) vnesite v polje za vnos Preglednica ničelnih točk
- Pritisnite gumb VNOS V PREGLEDNICO NIČELNIH TOČK, TNC ničelno točko shrani pod vneseno številko v izbrano preglednico ničelnih točk

Beleženje izmerjenih vrednosti ciklov tipalnega sistema v preglednico prednastavitev

To funkcijo uporabite, če želite izmerjene vrednosti shraniti v nespremenljiv strojni koordinatni sistem (koordinate REF). Če želite izmerjene vrednosti shraniti v koordinatni sistem obdelovanca, pritisnite gumb VNOS V PREGLEDNICO NIČELNIH TOČK(oglejte si "Zapisovanje izmerjenih vrednosti iz ciklov tipalnega sistema v preglednico ničelnih točk" na strani 27).

Z gumbom VNOS V PREGLEDNICO PREDNASTAVITEV lahko TNC po opravljenem poljubnem ciklu tipalnega sistema, zabeleži izmerjene vrednosti v preglednico prednastavitev. Izmerjene vrednosti se nato shranijo v odvisnosti od nespremenljivega strojnega koordinatnega sistema (koordinate REF). Ime preglednice prednastavitev je PRESET.PR in je shranjena v imeniku TNC:\.

- Izvajanje poljubne tipalne funkcije
- Želene koordinate referenčne točke vnesite v polja za vnos, ki so za to namenjena (odvisno od izvedenega cikla tipalnega sistema)
- Številko prednastavitve vnesite v polje za vnos Številka v preglednici =
- Pritisnite gumb VNOS V PREGLEDNICO PREDNASTAVITEV, TNC ničelno točko shrani pod vneseno številko v izbrano preglednico prednastavitev

2.2 Stikalni tipalni sistem, umeritev

Uvod

Tipalni sistem je treba umeriti ob

- prvem zagonu
- okvari tipalne glave
- menjavi tipalne glave
- spremembi pomika tipalnega sistema
- nepričakovanih težavah, na primer zaradi segrevanja stroja
- zamenjavi osi tipalnega sistema

Pri umerjanju TNC določi »aktivno« dolžino tipalne glave in »aktivni« polmer tipalne krogle. Za umerjanje 3D-tipalnega sistema vpnite nastavitveni obroč z znano višino in znanim polmerom na strojno mizo.

Umerjanje aktivne dolžine

Aktivna dolžina tipalnega sistema se vedno nanaša na referenčno točko orodja. Proizvajalec stroja referenčno točko orodja praviloma postavi na konico vretena.

Referenčno točko v osi vretena postavite tako, da za strojno mizo velja vrednost: Z=0.

Izberite funkcijo za umerjanje za dolžino tipalnega sistema: pritisnite gumb TIPALNA FUNKCIJA in nato še UM D. TNC prikaže menijsko okno s štirimi polji za vnos

- Vnesite orodno os (osna tipka)
- Referenčna točka: vnesite višino nastavitvenega obroča
- Aktivni polmer krogle in Aktivna dolžina ne zahtevata vnosa
- Tipalni sistem premaknite tik nad površino nastavitvenega obroča
- Po potrebi smer premikanja spremenite z gumbom ali puščičnimi tipkami
- Odčitavanje površine: pritisnite tipko START na zunanji strani

2.2 Stikalni tipalni sistem, um<mark>er</mark>itev

Umerjanje aktivnega polmera in izravnava sredinskega premika tipalnega sistema

Os tipalnega sistema se običajno ne prilagaja popolnoma osi vretena. Funkcija za umerjanje zazna odmik med osjo tipalnega sistema in osjo vretena in ga izravnava z izračunavanjem.

Pri umerjanju sredinskega premika TNC 3D-tipalni sistem zasuka za 180°. Sukanje zaženete z dodatno funkcijo, ki jo proizvajalec stroja določi v strojnem parametru mStrobeUTurn.

Pri ročnem umerjanju ravnajte tako:

v ročnem načinu delovanja tipalno kroglo pozicionirajte v vrtino nastavitvenega obroča

izberite funkcijo za umerjanje polmera tipalne glave in sredinskega premika tipalnega sistema: pritisnite gumb UM P

- izberite orodno os in vnesite polmer nastavitvenega obroča
- odčitavanje: štirikrat pritisnite zunanjo tipko START. 3D-tipalni sitem položaj vrtine odčitava v vseh smereh in izračuna aktivni polmer tipalne krogle
- če želite funkcijo za umerjanje na tem mestu dokončati, pritisnite gumb KONEC

Proizvajalec mora TNC pripraviti na možnost določanja sredinskega premika tipalne krogle. Upoštevajte priročnik za stroj!

- določite sredinski premik tipalne krogle: pritisnite gumb 180°. TNC tipalni sistem zasuka za 180°
- Odčitavanje: štirikrat pritisnite zunanjo tipko START. 3D-tipalni sitem položaj v vrtini odčitava v vseh smereh in izračuna sredinski premik tipalnega sistema

Prikaz vrednosti za umerjanje

TNC shrani aktivno dolžino in aktivni polmer tipalnega sistema v orodno preglednico. Sredinski premik tipalnega sistema TNC shrani v preglednico tipalnega sistema, in sicer v stolpca CAL_OF1 (glavna os) in CAL_OF2 (pomožna os). Če želite prikazati shranjene vrednosti, pritisnite gumb Preglednica tipalnega sistema.

Če uporabljate tipalni sistem, upoštevajte, da mora biti aktivna pravilna številka orodja, pri tem pa ni pomembno, ali želite cikel tipalnega sistema izvajati v samodejnem ali v ročnem načinu delovanja.

Določene vrednosti za umerjanje se izračunajo šele po (če je treba ponovnem) priklicu orodja.

Edit Izbi	iranj ra ti	e tab palne	ele ga sis	stema				- i ogram	
Dato	t.: thc:N	table∖tchpr	obe.tp		Jrst.:	0		>>	
NO	TYPE	CAL_OF1	CAL_OF2	CAL_ANG	F	FMAX	DIST		
1	TS120	+0	+0	0	500	+2000	10		
2	13440	+0	+0	ø	200	+2000	10		s 🚽
									т 4 "
									DIAGNOS
		EC ST	RAN S1	RANE	ITIR.	тяке	NJE		

2.3 Odpravljanje poševnega položaja obdelovanca

Uvod

TNC poševni položaj obdelovanca odpravi z izračunavanjem osnovne rotacije.

TNC vrtilni kot v ta namen nastavi na kot, ki naj bi ga tvorila površina obdelovanca in referenčna os kota obdelovalne ravnine. Oglejte si sliko desno.

Odvisno od orodne osi shrani TNC osnovno rotacijo v stolpec SPA, SPB ali SPC preglednice prednastavitev.

Pri merjenju poševnega položaja obdelovanca smer odčitavanja vedno izberite navpično na referenčno os kota.

Za pravilno izračunavanje osnovne rotacije med programskim tekom, je treba v prvem nizu premika programirati obe koordinati obdelovalne ravnine.

Ugotavljanje osnovne rotacije

- ROTACIJA
- Izberite tipalno funkcijo: pritisnite gumb ODČITAVANJE ROT
- Tipalni sistem premaknite v bližino prve tipalne točke
- Smer odčitavanja naj bo navpična glede na referenčno os kota: os in smer nastavite z gumbom
- Odčitavanje: pritisnite zunanjo tipko START
- Tipalni sistem premaknite v bližino druge tipalne točke
- Odčitavanje: pritisnite zunanjo tipko START. TNC ugotovi osnovno rotacijo in za pogovornim oknom prikaže kot Rotacijski kot =
- Aktiviranje osnovne rotacije: pritisnite gumb NASTAVITEV OSNOVNE ROTACIJE.
- Konec izvajanja tipalne funkcije: pritisnite gumb KONEC

Shranjevanje osnovne rotacije v preglednico prednastavitev

- Po postopku odčitavanja v polje za vnos Številka v preglednici: vnesite preglednico prednastavitev, v katero naj TNC beleži aktivno osnovno rotacijo
- Osnovno rotacijo v preglednico prednastavitev shranite tako, da pritisnite gumb VNOS V PREGLEDNICO PREDNASTAVITEV

Prikaz osnovne rotacije

Kot osnovne rotacije je po vnovičnem pritisku gumba ODČITAVANJE ROT prikazan v prikazu rotacijskega kota. TNC rotacijski kot prikaže tudi na dodatnem prikazu stanja (STANJE POL)

Če TNC strojne osi premika glede na osnovno rotacijo, je v prikazu stanja prikazan simbol za osnovno rotacijo.

Preklic osnovne rotacije

- Izberite tipalno funkcijo: pritisnite gumb ODČITAVANJE ROT
- Vnesite rotacijski kot 0; vrednost prevzemite z gumbom NASTAVITEV OSNOVNE ROTACIJE
- Konec izvajanja tipalne funkcije: pritisnite gumb KONEC

Ročno obrato	vanje		Program	iranje
Osnovno vrtenje				·
Rotation angle	0.144772			M
Kot tipalne po∪ršine	0			
1. merilna točka 1.os	0	-		
1. merilna točka 2. os	0	-		S
2. merilna točka 1. os	0	-		•
2. merilna točka 2. os	0	-		-
Number in table	0	-		
91% S-OVR 158% F-OVR	Ø8:43			
X -31.85	5 Y	+25.641 Z +1	34.991	
C +0.000	3 S +	224.870		DTOGNO
AKTL. 🗃 🔯 T	4 Z 5	0 F Omm/min Our 15	50% M 5	
x+ x-	V+		v _t_	EN

2.4 Postavitev referenčne točke s 3D-tipalnimi sistemi

Uvod

Funkcije za postavitev referenčne točke na usmerjenem obdelovancu lahko izberete s temi gumbi:

- postavitev referenčne točke v poljubni osi z ODČITAVANJE POL
- določitev vogala za referenčno točko z ODČITAVANJE V
- določitev središča kroga za referenčno točko z ODČITAVANJE SK

Postavitev referenčne točke v poljubni osi

Izberite tipalno funkcijo: pritisnite gumb ODČITAVANJE POL

- Tipalni sistem premaknite v bližino tipalne točke
- Hkrati izberite smer odčitavanja in os, za katero želite določiti referenčno točko: npr. Z v smeri Z – odčitavanje: izberite z gumbom
- Odčitavanje: pritisnite zunanjo tipko START
- Referenčna točka: vnesite želeno koordinato, vnos potrdite z gumbom POSTAV. REF. TOČKE, ali pa vrednost shranite v preglednico (oglejte si "Zapisovanje izmerjenih vrednosti iz ciklov tipalnega sistema v preglednico ničelnih točk", stran 27, ali oglejte si "Beleženje izmerjenih vrednosti ciklov tipalnega sistema v preglednico prednastavitev", stran 28)
- Konec izvajanja tipalne funkcije: pritisnite gumb KONEC

2.4 Postavitev referenčne točke s 3D-tipalnimi s<mark>ist</mark>emi

Kot kot referenčna točka

- Izberite tipalno funkcijo: pritisnite gumb ODČITAVANJE V
- Tipalni sistem premaknite v bližino prve tipalne točke na prvem robu obdelovanca
- Z gumbom izberite smer odčitavanja
- Odčitavanje: pritisnite zunanjo tipko START
- Tipalni sistem premaknite v bližino druge tipalne točke na istem robu
- Odčitavanje: pritisnite zunanjo tipko START
- Tipalni sistem premaknite v bližino prve tipalne točke na drugem robu obdelovanca
- Z gumbom izberite smer odčitavanja
- Odčitavanje: pritisnite zunanjo tipko START
- Tipalni sistem premaknite v bližino druge tipalne točke na istem robu
- Odčitavanje: pritisnite zunanjo tipko START
- Referenčna točka: obe koordinati referenčne točke vnesite v okno menija, vnos potrdite z gumbom DOLOČ. REF. TOČKE ali pa vrednosti shranite v preglednico (oglejte si "Zapisovanje izmerjenih vrednosti iz ciklov tipalnega sistema v preglednico ničelnih točk", stran 27 ali oglejte si "Beleženje izmerjenih vrednosti ciklov tipalnega sistema v preglednico prednastavitev", stran 28)
- Konec izvajanja tipalne funkcije: pritisnite gumb KONEC

Središče kroga kot referenčna točka

Za referenčne točke si lahko izberete središča vrtin, krožnih žepov, polnih valjev, čepov, okroglih otokov itd.

Notranji krog:

TIPANJE

00 📀

TNC odčita notranjo steno kroga v vseh štirih smereh koordinatnih osi.

Pri prekinjenih krogih (krožnih lokih) lahko izberete poljubno smer odčitavanja.

- Tipalno kroglo pozicionirajte približno v središču kroga
 - Izberite tipalno funkcijo: pritisnite gumb ODČITAVANJE SK
 - Odčitavanje: štirikrat pritisnite zunanjo tipko START. Tipalni sistem zaporedoma odčita 4 točke notranje stene kroga
 - Referenčna točka: obe koordinati središča kroga vnesite v okno menija, vnos potrdite z gumbom POSTAV. REF. TOČKE, ali pa vrednosti shranite v preglednico (oglejte si "Zapisovanje izmerjenih vrednosti iz ciklov tipalnega sistema v preglednico ničelnih točk", stran 27, ali oglejte si "Beleženje izmerjenih vrednosti ciklov tipalnega sistema v preglednico prednastavitev", stran 28)
 - Konec izvajanja tipalne funkcije: pritisnite tipko END

Zunanji krog:

- Tipalno kroglo pozicionirajte v bližino prve tipalne točke izven kroga
- Z ustreznim gumbom izberite smer odčitavanja
- Odčitavanje: pritisnite zunanjo tipko START
- Postopek odčitavanja ponovite za preostale tri točke. Oglejte si sliko desno spodaj
- Referenčna točka: vnesite koordinati referenčne točke, vnos potrdite z gumbom POSTAV. REF. TOČKE, ali pa vrednost shranite v preglednico (oglejte si "Zapisovanje izmerjenih vrednosti iz ciklov tipalnega sistema v preglednico ničelnih točk", stran 27, ali oglejte si "Beleženje izmerjenih vrednosti ciklov tipalnega sistema v preglednico prednastavitev", stran 28)
- Konec izvajanja tipalne funkcije: pritisnite tipko END

Po dokončanem odčitavanju TNC prikaže trenutne koordinate središča kroga in polmer kroga PR.

2.5 Merjenje obdelovancev s 3D-tipalnimi sistemi

Uvod

Tipalni sistem lahko v načinih Ročno in El. krmilnik uporabite tudi za enostavno merjenje obdelovanca. Za zapletene meritve so na voljo zahtevnejši tipalni cikli, ki jih je mogoče programirati (oglejte si "Samodejna meritev obdelovancev" na strani 105). S 3D-tipalnim sistemom določate:

- koordinate položajev
- dimenzije in kote obdelovanca

Določanje koordinate položaja na usmerjenem obdelovancu

-	TDON
	THHIADE
	POS
.4.	
14	777722

- Izberite tipalno funkcijo: pritisnite gumb ODČITAVANJE POL
- Tipalni sistem premaknite v bližino tipalne točke
- Hkrati izberite smer odčitavanja in os, na katero naj se nanaša koordinata: pritisnite ustrezen gumb
- Zagon postopka odčitavanja: pritisnite zunanjo tipko START

TNC prikaže koordinate tipalne točke kot referenčno točko.

Določitev koordinat vogalne točke v obdelovalni ravnini

Določitev koordinat vogalne točke: Oglejte si "Kot kot referenčna točka", stran 35.. TNC koordinate odčitanega vogala prikazuje kot referenčno točko.

Določanje dimenzij obdelovanca

- TIPANJE POS
- Izberite tipalno funkcijo: pritisnite gumb ODČITAVANJE POL
- Tipalni sistem premaknite v bližino prve tipalne točke A
- Smer odčitavanja izberite z gumbom
- Odčitavanje: pritisnite zunanjo tipko START
- Zapišite si vrednost, ki je prikazana kot referenčna točka (samo, če prej postavljena referenčna točka ostane aktivna)
- Vnesite referenčno točko »0«
- Izhod iz pogovornega okna: pritisnite tipko END.
- Znova izberite tipalno funkcijo: pritisnite gumb ODČITAVANJE POL
- Tipalni sistem premaknite v bližino druge tipalne točke B
- Z gumbom izberite smer odčitavanja: ista os, vendar nasprotna smer kot pri prvem postopku odčitavanja.
- Odčitavanje: pritisnite zunanjo tipko START

V prikazu referenčne točke je prikazana razdalja med dvema točkama na koordinatni osi.

Prikaz položaja znova prestavite na vrednosti pred meritvijo dolžine

- Izberite tipalno funkcijo: pritisnite gumb ODČITAVANJE POL
- Znova zaženite postopek odčitavanja prve tipalne točke
- Referenčno točko postavite na zapisano vrednost
- Izhod iz pogovornega okna: pritisnite tipko END.

Merjenje kota

S 3D-tipalnim sistemom lahko določite kot v obdelovalni ravnini. Merite lahko

- kot med referenčno osjo kota in robom obdelovanca ali
- kot med dvema robovoma

Izmerjeni kot je prikazan kot vrednost, ki znaša največ 90°.

Določanje kota med referenčno osjo kota in robom obdelovanca

- Izberite tipalno funkcijo: pritisnite gumb ODČITAVANJE ROT
- Rotacijski kot: če boste želeli pozneje znova vzpostaviti stanje kot je bilo pred opravljeno osnovno rotacijo, si zapišite prikazan rotacijski kot
- Izvedba osnovne rotacije s primerjalno stranjo (oglejte si "Odpravljanje poševnega položaja obdelovanca" na strani 32)
- Z gumbom ODČITAVANJE ROT prikažite kot med referenčno osjo kota in robom obdelovanca kot rotacijski kot
- Preklic osnovne rotacije ali vzpostavitev predhodne osnovne rotacije
- Rotacijski kot nastavite na zapisano vrednost

Določanje kota med dvema roboma obdelovanca

- Izberite tipalno funkcijo: pritisnite gumb ODČITAVANJE ROT
- Rotacijski kot: če boste želeli pozneje znova vzpostaviti stanje kot je bilo pred opravljeno osnovno rotacijo, si zapišite prikazan rotacijski kot
- Izvedba osnovne rotacije za prvo stran (oglejte si "Odpravljanje poševnega položaja obdelovanca" na strani 32)
- Odčitavanje druge strani izvedite tako kot pri osnovni rotaciji, rotacijskega kota ne nastavite na 0!
- Z gumbom ODČITAVANJE ROT kot PA med robovi obdelovanca prikažite kot rotacijski kot
- Preklic osnovne rotacije ali vzpostavitev predhodne osnovne rotacije: rotacijski kot ponastavite na zapisano vrednost

Cikli tipalnega sistema za samodejni nadzor obdelovancev

3.1 Samodejno zaznavanje poševnega položaja obdelovancev

Pregled

TNC ima na voljo pet ciklov, s katerimi lahko ugotovite in odpravite poševni položaj obdelovanca. Poleg tega lahko s ciklom 404 vzpostavite stanje pred osnovno rotacijo:

Cikel	Gumb	Stran
400 OSNOVNA ROTACIJA Samodejno zaznavanje z dvema točkama, odpravljanje s funkcijo Osnovna rotacija	400	Stran 44
401 ROT 2 VRTIN Samodejno zaznavanje z dvema vrtinama, odpravljanje s funkcijo Osnovna rotacija	401	Stran 46
402 ROT 2 ČEPOV Samodejno zaznavanje z dvema čepoma, odpravljanje s funkcijo Osnovna rotacija	402	Stran 49
403 ROT Z ROTACIJSKO OSJO Samodejno zaznavanje z dvema točkama, odpravljanje z vrtenjem okrogle mize	403	Stran 52
405 ROT Z OSJO C Samodejna izravnava kotnega zamika med središčem vrtine in pozitivno osjo Y, odpravljanje z vrtenjem okrogle mize	405	Stran 57
404 NASTAVITEV OSNOVNE ROTACIJE Nastavitev poljubne rotacije	484	Stran 56

i

Skupne lastnosti ciklov tipalnega sistema za zaznavanje poševnega položaja obdelovancev

Pri ciklih 400, 401 in 402 lahko s parametrom Q307 **Prednastavitev osnovne rotacije** določite, ali naj bo izmerjena vrednost popravljena za znani kot α (oglejte si sliko desno). Tako lahko osnovno rotacijo izmerite v poljubni ravni črti 1 obdelovanca ter vzpostavite referenco na dejansko smer 2 (pod kotom 0°).

HEIDENHAIN TNC 320

(

OSNOVNA ROTACIJA (cikel tipalnega sistema 400, DIN/ISO: G400)

Cikel tipalnega sistema 400 z meritvijo dveh točk, ki morata ležati na premici, zazna poševni položaj obdelovanca. S funkcijo Osnovna rotacija TNC uravna izmerjeno vrednost (Oglejte si tudi "Odpravljanje poševnega položaja obdelovanca" na strani 32.).

- TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na programirano točko zagona postopka odčitavanja 1. TNC pri tem premakne tipalni sistem za varnostni odmik v nasprotni smeri od določene smeri odčitavanja
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in izvede prvi postopek odčitavanja z nastavljenim pomikom pri odčitavanju (stolpec F)
- 3 Tipalni sistem se premakne na naslednjo tipalno točko 2 in izvede drugi postopek odčitavanja
- 4 TNC pozicionira tipalni sistem nazaj na varno višino in opravi zaznano osnovo rotacijo

Pred programiranjem upoštevajte

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

TNC na začetku cikla ponastavi aktivno osnovno rotacijo.

- 1. merilna točka 1. osi Q263 (absolutna): koordinata prve tipalne točke na glavni osi obdelovalne ravnine
- 1. merilna točka 2. osi Q264 (absolutna): koordinata prve tipalne točke na pomožni osi obdelovalne ravnine
- 2. merilna točka 1. osi Q265 (absolutna): koordinata druge tipalne točke na glavni osi obdelovalne ravnine
- 2. merilna točka 2. osi Q266 (absolutna): koordinata druge tipalne točke na pomožni osi obdelovalne ravnine
- Merilna os Q272: os obdelovalne ravnine, v kateri naj se izvaja meritev:
 1:glavna os = merilna os
 2:pomožna os = merilna os
- Smer premika 1 Q267: smer, v kateri naj se tipalni sistem primakne k obdelovancu:
 -1:negativna smer premika
 +1:pozitivna smer premika
- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
- Premik na varno višino Q301: določite, kako naj se tipalni sistem premika med merilnimi točkami:
 0: premik med merilnimi točkami na merilni višini
 1: premik med merilnimi točkami na varni višini
- Prednastavitev osnovne rotacije Q307 (absolutna): če naj se poševni položaj, ki ga želite izmeriti, ne sklicuje na glavno os, temveč na poljubno ravno črto, vnesite kot referenčne ravne črte. TNC nato za osnovno rotacijo iz izmerjene vrednosti in kota referenčnih ravnih črt izračuna odstopanje
- Številka prednastavitve v preglednici Q305: v preglednico prednastavitev, v katero naj TNC shrani izmerjeno osnovno rotacijo, vnesite številko. Če vnesete Q305=0, TNC izmerjeno osnovno rotacijo shrani v meni ROT za način delovanja Ročno

Példa: NC-nizi

5 TCH PROBE	400 OSNOVNA ROTACIJA
Q263=+10	;1. TOČKA 1. OSI
Q264=+3,5	5;1. TOČKA 2. OSI
Q265=+25	;2. TOČKA 1. OSI
Q266=+2	;2. TOČKA 2. OSI
Q272=2	;MERILNA OS
Q267=+1	;SMER PREMIKA
Q261=-5	;MERILNA VIŠINA
Q320=0	;VARNOSTNA RAZDALJA
Q260=+20	;VARNA VIŠINA
Q301=0	;PREMIK NA VARNO VIŠINO
Q307=0	;PREDNAST. OSN. ROT.
Q305=0	;ŠT. V PREGLEDNICI

OSNOVNA ROTACIJA z dvema vrtinama (cikel tipalnega sistema 401, DIN/ISO: G401)

Cikel tipalnega sistema 401 zazna središča dveh vrtin. TNC nato izračuna kot med glavno osjo obdelovalne ravnine in povezovalnimi ravnimi črtami središč vrtin. S funkcijo Osnovna rotacija TNC uravna izračunano vrednost (Oglejte si tudi "Odpravljanje poševnega položaja obdelovanca" na strani 32.). Namesto tega je mogoče zaznani poševni položaj odpraviti z vrtenjem okrogle mize.

- 1 TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na vneseno središče prve vrtine1
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in s štirimi postopki odčitavanja zazna središče prve vrtine
- 3 Tipalni sistem se premakne nazaj na varno višino in se pozicionira na vneseno središče druge vrtine 2
- 4 Tipalni sistem se nato premakne na nastavljeno merilno višino in s štirimi postopki odčitavanja zazna središče druge vrtine
- 5 TNC nato tipalni sistem premakne nazaj na varno višino in opravi zaznano osnovno rotacijo

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

TNC na začetku cikla ponastavi aktivno osnovno rotacijo.

Izvajanje tega cikla tipalnega sistema pri aktivni funkciji Vrtenje obdelovalne ravnine ni dovoljeno.

Če želite poševni položaj odpraviti z vrtenjem okrogle mize, TNC samodejno uporabi te rotacijske osi:

- C pri orodni osi Z
- B pri orodni osi Y
- A pri orodni osi X

- 1. vrtina: središče 1. osi Q268 (absolutno): središče prve vrtine v glavni osi obdelovalne ravnine
- ▶ 1. vrtina: središče 2. osi Q269 (absolutno): središče prve vrtine v pomožni osi obdelovalne ravnine
- 2. vrtina: središče 1. osi Q270 (absolutno): središče druge vrtine v glavni osi obdelovalne ravnine
- 2. vrtina: središče 2. osi Q271 (absolutno): središče druge vrtine v pomožni osi obdelovalne ravnine
- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
- Prednastavitev osnovne rotacije Q307 (absolutna): če naj se poševni položaj, ki ga želite izmeriti, ne sklicuje na glavno os, temveč na poljubno ravno črto, vnesite kot referenčne ravne črte. TNC nato za osnovno rotacijo iz izmerjene vrednosti in kota referenčnih ravnih črt izračuna odstopanje

- Številka prednastavitve v preglednici Q305: v preglednico prednastavitev, v katero naj TNC shrani izmerjeno osnovno rotacijo, vnesite številko. Če vnesete Q305=0, TNC izmerjeno osnovno rotacijo shrani v meni ROT za način delovanja Ročno. Parameter nima nikakršnega vpliva, če želite poševni položaj odpraviti z vrtenjem okrogle mize (Q402=1). V tem primeru poševni položaj ni shranjen kot kotna vrednost
- Osnovna rotacija/uravnava Q402: določite, ali naj TNC zaznan poševni položaj odpravi z osnovno rotacijo, ali naj ga uravna z vrtenjem okrogle mize:
 odpravljanje z osnovno rotacijo
 odpravljanje z vrtenjem okrogle mize
 če izberete vrtenje okrogle mize, TNC zaznanega poševnega položaja ne shrani, čeprav ste v parametru Q305 določili vrstico v preglednici
- Vnos vrednosti nič po uravnavi Q337: določite, ali naj TNC prikaz naravnane rotacijske osi nastavi na 0:
 0: prikaz rotacijske osi naj po uravnavi ne bo 0
 1: prikaz rotacijske osi naj bo po izravnavi 0
 TNC vrednost = 0 prikaže samo, če ste definirali
 Q402=1

Példa: NC-nizi

5 TCH PROBE 401 ROT 2 VRTINI
Q268=-37 ;1. SREDIŠČE 1. OSI
Q269=+12 ;1. SREDIŠČE 2. OSI
Q270=+75 ;2. SREDIŠČE 1. OSI
Q271=+20 ;2. SREDIŠČE 2. OSI
Q261=-5 ;MERILNA VIŠINA
Q260=+20 ;VARNA VIŠINA
Q307=0 ;PREDNAST. OSN. ROT.
Q305=0 ;ŠT. V PREGLEDNICI
Q402=0 ;PORAVNAVA
Q337=0 ;PONASTAVITEV

OSNOVNA ROTACIJA z dvema čepoma (cikel tipalnega sistema 402, DIN/ISO: G402)

Cikel tipalnega sistema 402 zazna središča dveh čepov. TNC nato izračuna kot med glavno osjo obdelovalne ravnine in povezovalnimi ravnimi črtami središč čepov. S funkcijo Osnovna rotacija TNC uravna izračunano vrednost (Oglejte si tudi "Odpravljanje poševnega položaja obdelovanca" na strani 32.). Namesto tega je mogoče zaznani poševni položaj odpraviti z vrtenjem okrogle mize.

- 1 TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na tipalno točko 1 prvega čepa
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino 1 in s štirimi postopki odčitavanja zazna središče prvega čepa. Med tipalnimi točkami, ki so zamaknjene za 90°, se tipalni sistem premika v krožnem loku
- 3 Tipalni sistem se premakne nazaj na varno višino in se pozicionira na tipalno točko 5 drugega čepa
- 4 Tipalni sistem se nato premakne na nastavljeno merilno višino 2 in s štirimi postopki odčitavanja zazna središče drugega čepa
- **5** TNC nato tipalni sistem premakne nazaj na varno višino in opravi zaznano osnovno rotacijo

Pred programiranjem upoštevajte

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

TNC na začetku cikla ponastavi aktivno osnovno rotacijo.

Izvajanje tega cikla tipalnega sistema pri aktivni funkciji Vrtenje obdelovalne ravnine ni dovoljeno.

Če želite poševni položaj odpraviti z vrtenjem okrogle mize, TNC samodejno uporabi te rotacijske osi:

- C pri orodni osi Z
- B pri orodni osi Y
- A pri orodni osi X

- 1. čep: središče 1. osi Q268 (absolutno): središče prvega čepa v glavni osi obdelovalne ravnine
- 1. čep: središče 2. osi Q269 (absolutno): središče prvega čepa v pomožni osi obdelovalne ravnine
- Premer 1. čepa Q313: približni premer 1. čepa. Vnesite večjo vrednost
- Merilna višina 1. čepa na osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) na osi tipalnega sistema, v kateri naj se izvede meritev čepa 1
- 2. čep: središče 1. osi Q270 (absolutno): središče drugega čepa v glavni osi obdelovalne ravnine
- 2. čep: središče 2. osi Q271 (absolutno): središče drugega čepa v pomožni osi obdelovalne ravnine
- Premer 2. čepa Q314: približni premer 2. čepa. Vnesite večjo vrednost
- Merilna višina 2. čepa na osi tipalnega sistema Q315 (absolutna): koordinata središča krogle (= točka dotika) na osi tipalnega sistema, v kateri naj se izvede meritev čepa 2
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)

1

- Premik na varno višino Q301: določite, kako naj se tipalni sistem premika med merilnimi točkami:
 0: premik med merilnimi točkami na merilni višini
 1: premik med merilnimi točkami na varni višini
- Prednastavitev osnovne rotacije Q307 (absolutna): če naj se poševni položaj, ki ga želite izmeriti, ne sklicuje na glavno os, temveč na poljubno ravno črto, vnesite kot referenčne ravne črte. TNC nato za osnovno rotacijo iz izmerjene vrednosti in kota referenčnih ravnih črt izračuna odstopanje
- Številka prednastavitve v preglednici Q305: v preglednico prednastavitev, v katero naj TNC shrani izmerjeno osnovno rotacijo, vnesite številko. Če vnesete Q305=0, TNC izmerjeno osnovno rotacijo shrani v meni ROT za način delovanja Ročno. Parameter nima nikakršnega vpliva, če želite poševni položaj odpraviti z vrtenjem okrogle mize (Q402=1). V tem primeru poševni položaj ni shranjen kot kotna vrednost
- Osnovna rotacija/uravnava Q402: določite, ali naj TNC zaznan poševni položaj odpravi z osnovno rotacijo, ali naj ga uravna z vrtenjem okrogle mize:
 odpravljanje z osnovno rotacijo
 odpravljanje z vrtenjem okrogle mize
 če izberete vrtenje okrogle mize, TNC zaznanega poševnega položaja ne shrani, čeprav ste v parametru Q305 določili vrstico v preglednici
- Vnos vrednosti nič po uravnavi Q337: določite, ali naj TNC prikaz naravnane rotacijske osi nastavi na 0:
 0: prikaz rotacijske osi naj po uravnavi ne bo 0
 1: prikaz rotacijske osi naj bo po izravnavi 0
 TNC vrednost = 0 prikaže samo, če ste definirali Q402=1

Példa: NC-nizi

5 TCH PROBE	402 ROT 2 ČEP
Q268=-37	;1. SREDIŠČE 1. OSI
Q269=+12	;1. SREDIŠČE 2. OSI
Q313=60	;PREMER ČEPA 1
Q261=-5	;MERILNA VIŠINA 1
Q270=+75	;2. SREDIŠČE 1. OSI
Q271=+20	;2. SREDIŠČE 2. OSI
Q314=60	;PREMER ČEPA 2
Q315=-5	;MERILNA VIŠINA 2
Q320=0	;VARNOSTNA RAZDALJA
Q260=+20	;VARNA VIŠINA
Q301=0	;PREMIK NA VARNO VIŠINO
Q307=0	;PREDNAST. OSN. ROT.
Q305=0	;ŠT. V PREGLEDNICI
Q402=0	;PORAVNAVA
Q337=0	;PONASTAVITEV

Uravnavanje OSNOVNE ROTACIJE z rotacijsko osjo (cikel tipalnega sistema 403, DIN/ISO: G403)

Cikel tipalnega sistema 403 z meritvijo dveh točk, ki morata ležati v ravni črti, zazna poševni položaj obdelovanca. TNC zaznani poševni položaj obdelovanca odpravi z rotacijo A, B ali C osi. Obdelovanec je lahko pri tem poljubno vpet na okroglo mizo.

Dovoljene so kombinacije merilne osi (parameter cikla Q272) in izravnalne osi (parameter cikla Q312), ki so naštete v nadaljevanju. Funkcija Vrtenje obdelovalne ravnine:

aktivna os tipalnega sistema	merilna os	izravnalna os
Z	X (Q272=1)	C (Q312=6)
Z	Y (Q272=2)	C (Q312=6)
Z	Z (Q272=3)	B (Q312=5) ali A (Q312=4)
Y	Z (Q272=1)	B (Q312=5)
Y	X (Q272=2)	C (Q312=5)
Y	Y (Q272=3)	C (Q312=6) ali A (Q312=4)
х	Y (Q272=1)	A (Q312=4)
X	Z (Q272=2)	A (Q312=4)
Х	X (Q272=3)	B (Q312=5) ali C (Q312=6)

i

- 1 TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na programirano točko zagona postopka odčitavanja 1. TNC pri tem premakne tipalni sistem za varnostni odmik v nasprotni smeri od določene smeri odčitavanja
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in izvede prvi postopek odčitavanja z nastavljenim pomikom pri odčitavanju (stolpec F)
- 3 Tipalni sistem se premakne na naslednjo tipalno točko 2 in izvede drugi postopek odčitavanja
- 4 TNC tipalni sistem pozicionira nazaj na varno višino in v ciklu definirano rotacijsko os premakne za izračunano vrednost. Po želji lahko prikaz po izravnavi nastavite na 0

Pred programiranjem upoštevajte

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

Cikel 403 izberite samo, če funkcija »Vrtenje obdelovalne ravnine« ni izbrana.

TNC zaznani kot shrani tudi v parameter Q150.

- 1. merilna točka 1. osi Q263 (absolutna): koordinata prve tipalne točke na glavni osi obdelovalne ravnine
- 1. merilna točka 2. osi Q264 (absolutna): koordinata prve tipalne točke na pomožni osi obdelovalne ravnine
- 2. merilna točka 1. osi Q265 (absolutna): koordinata druge tipalne točke na glavni osi obdelovalne ravnine
- 2. merilna točka 2. osi Q266 (absolutna): koordinata druge tipalne točke na pomožni osi obdelovalne ravnine
- Merilna os Q272: os, v kateri naj se izvaja meritev: 1: glavna os = merilna os
 - 2: pomožna os = merilna os
 - 3: os tipalnega sistema = merilna os
- Smer premika 1 Q267: smer, v kateri naj se tipalni sistem primakne k obdelovancu:
 -1: negativna smer premika
 - +1:pozitivna smer premika
- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)

403

3 Cikli tipalnega sistema za samodejni nadzor obdelovancev

- Premik na varno višino Q301: določite, kako naj se tipalni sistem premika med merilnimi točkami:
 0: premik med merilnimi točkami na merilni višini
 1: premik med merilnimi točkami na varni višini
- Os za izravnalni premik Q312: določite, s katero rotacijsko osjo naj TNC odpravi izmerjeni poševni položaj:
 - 4: odpravljanje poševnega položaja z osjo A
 - 5: odpravljanje poševnega položaja z osjo B
 - 6: odpravljanje poševnega položaja z osjo C
- Vnos vrednosti nič po uravnavi Q337: določite, ali naj TNC prikaz naravnane rotacijske osi nastavi na 0:
 0: prikaz rotacijske osi naj po uravnavi ne bo 0
 1: prikaz rotacijske osi naj bo po izravnavi 0
- Številka v preglednici Q305: vnesite številko v preglednici prednastavitev/ničelnih točk, v kateri naj TNC rotacijsko os nastavi na nič. Velja samo, če je nastavljen Q337 = 1
- Prenos izmerjene vrednosti (0,1) Q303: določite, ali naj bo izračunana osnovna rotacija shranjena v preglednico ničelnih točk ali v preglednico prednastavitev:

0: izračunana osnovna rotacija naj se kot zamik ničelne točke shrani v aktivno preglednico ničelnih točk. Referenčni sistem je izbran koordinatni sistem obdelovanca

1: izračunana osnovna rotacija naj se shrani v preglednico prednastavitev. Referenčni sistem je koordinatni sistem stroja (REF sistem)

Referenčni kot ?(0=glavna os) Q380: kot, na katerega naj TNC usmeri odčitavanje v ravni črti. Velja samo, če je izbrana rotacijska os = C (Q312 = 6)

Példa: NC-nizi

5 TCH PROBE	403 ROT S C OSJO
Q263=+0	;1. TOČKA 1. OSI
Q264=+0	;1. TOČKA 2. OSI
Q265=+20	;2. TOČKA 1. OSI
Q266=+30	;2. TOČKA 2. OSI
Q272=1	;MERILNA OS
Q267=-1	;SMER PREMIKA
Q261=-5	;MERILNA VIŠINA
Q320=0	;VARNOSTNA RAZDALJA
Q260=+20	;VARNA VIŠINA
Q301=0	;PREMIK NA VARNO VIŠINO
Q312=6	;IZRAVNALNA OS
Q337=0	;PONASTAVITEV
Q305=1	;ŠT. V PREGLEDNICI
Q303=+1	;PRENOS IZMERJENE VRED.
Q380=+90	;REFERENČNI KOT

Ď

NASTAVITEV OSNOVNE ROTACIJE (cikel tipalnega sistema 404, DIN/ISO: G404)

Cikel tipalnega sistema 404 med programskim tekom omogoča samodejno nastavitev poljubne osnovne rotacije. Uporaba tega cikla je priporočljiva, če želite ponastaviti že opravljeno osnovno rotacijo.

Prednastavitev osnovne rotacije: kot, s katerim želite nastaviti osnovno rotacijo Példa: NC-nizi

5 TCH PROBE 404 OSNOVNA ROTACIJA

Q307=+0 ;PREDNAST. OSN. ROT.

i

Izravnava poševnega položaja obdelovanca z osjo C (cikel tipalnega sistema 405, DIN/ISO: G405)

S ciklom tipalnega sistema 405 je mogoče zaznati

- zamik kota med pozitivno osjo Y izbranega koordinatnega sistema in središčno črto vrtine ali
- zamik kota med želenim položajem in dejanskim položajem središča vrtine

TNC ugotovljen zamik kota odpravi z rotacijo osi C. Obdelovanec je lahko pri tem poljubno vpet na okroglo mizo, vendar mora biti koordinata Y vrtine pozitivna. Če meritev zamika kota vrtine izvajate z osjo Y tipalnega sistema (vodoravna vrtina), bo morda potrebno večkratno izvajanje cikla, saj lahko s takšno meritvijo pride do netočnosti, ki lahko od dejanskega poševnega položaja odstopa za 1 %.

- TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na točko zagona postopka odčitavanja 1. TNC izračuna tipalne točke iz vnosov v ciklu in varnostnega odmika iz stolpca SET_UP v preglednici tipalnih sistemov
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in izvede prvi postopek odčitavanja z nastavljenim pomikom pri odčitavanju (stolpec F). TNC glede na programiran kot zagona samodejno določi smer odčitavanja
- 3 Tipalni sistem se nato na merilni višini ali na varni višini v krožnici premakne na naslednjo tipalno točko 2, kjer izvede drugi postopek odčitavanja
- 4 TNC tipalni sistem premakne na tipalno točko 3 in nato še na tipalno točko 4, kjer izvede tretji in četrti postopek odčitavanja. TNC v naslednjem koraku tipalni sistem premakne na izmerjeno središče vrtine
- 5 TNC tipalni sistem pozicionira nazaj na varno višino in poševni položaj obdelovanca izravna z vrtenjem okrogle mize. TNC pri tem okroglo mizo zavrti tako, da je središče vrtine po izravnavi (tako pri navpični kot tudi pri vodoravni osi tipalnega sistema) usmerjeno v smeri pozitivne osi Y ali na želenem položaju središča vrtine. Funkcija z izmerjenim zamikom kota je poleg tega na voljo tudi v parametru Q150

Pred programiranjem upoštevajte

Če želite preprečiti kolizijo tipalnega sistema z obdelovancem, za želeni premer žepa (vrtine) vnesite manjšo vrednost.

Če izmere žepa in varnostni odmik ne dovoljujejo predpozicioniranja v bližino tipalnih točk, TNC postopek odčitavanja vedno zažene v središču žepa. V tem primeru se tipalni sistem med štirimi merilnimi točkami ne premakne na varno višino.

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

- Središče 1. osi Q321 (absolutno): središče vrtine v glavni osi obdelovalne ravnine.
- Središče 2. osi Q322 (absolutno): središče vrtine v pomožni osi obdelovalne ravnine. Če programirate Q322 = 0, TNC središče vrtine usmeri k pozitivni osi Y; če Q322 nastavite tako, da ni enak 0, TNC središče vrtine usmeri k želeni položaj (kot, ki izhaja iz središča vrtine)
- Želeni premer Q262: približni premer krožnega žepa (vrtine). Vnesite manjšo vrednost
- Kot zagona Q325 (absolutni): kot med glavno osjo obdelovalne ravnine in prvo tipalno točko
- Kotni korak Q247 (postopen): kot med dvema merilnima točkama, predznak koraka določi smer rotacije (- = v smeri urinega kazalca), s katero se tipalni sistem premika k naslednji merilni točki. Če želite meriti krožni lok, potem programirajte kotni korak na manj kot 90°

Čim manjši kotni korak programirate, tem manjša je natančnost, s katero TNC izračuna središče kroga. Najmanjši vnos: 5°.

i

- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenialom)
- Premik na varno višino Q301: določite, kako naj se tipalni sistem premika med merilnimi točkami: 0: premik med merilnimi točkami na merilni višini 1: premik med merilnimi točkami na varni višini
- Vnos vrednosti nič po uravnavi Q337: določite, ali naj TNC prikaz naravnane rotacijske osi nastavi na 0. ali naj zamik kota zabeleži v stolpec C preglednice ničelnih točk:

0: nastavitev prikaza osi C na 0

>0:zapis izmerjenega zamika kota s pravilnim predznakom v preglednico ničelnih točk. Številka vrstice = vrednost iz Q337. Če je zamik osi C že vpisan v preglednico ničelnih točk, TNC prišteje ali odšteje izmerjeni zamik kota glede na predznak

Példa: NC-nizi

5 TCH PROBE 405 ROT S C OSJO	
Q321=+50 ;SREDIŠČE 1. OSI	
Q322=+50 ;SREDIŠČE 2. OSI	
Q262=10 ;ŽELENI PREMER	
Q325=+0 ;ZAČETNI KOT	
Q247=90 ;KOTNI KORAK	
Q261=-5 ;MERILNA VIŠINA	
Q320=0 ;VARNOSTNA RAZDALJA	
Q260=+20 ;VARNA VIŠINA	
Q301=0 ;PREMIK NA VARNO VIŠI	NO
Q337=0 ;PONASTAVITEV	

Primer: določanje osnovne rotacije z dvema vrtinama

0 BEGIN PGM CYC401 MM	
1 TOOL CALL 69 Z	
2 TCH PROBE 401 ROT 2 VRTINE	
Q268=+25 ;1. SREDIŠČE 1. OSI	Središče 1. vrtine: koordinata X
Q269=+15 ;1. SREDIŠČE 2. OSI	Središče 1. vrtine: koordinata Y
Q270=+80 ;2. SREDIŠČE 1. OSI	Središče 2. vrtine: koordinata X
Q271=+35 ;2. SREDIŠČE 2. OSI	Središče 2. vrtine: koordinata Y
Q261=-5 ;MERILNA VIŠINA	Koordinata na osi tipalnega sistema, na kateri poteka meritev
Q260=+20 ;VARNA VIŠINA	Višina, na kateri se lahko os tipalnega sistema premika brez nevarnosti kolizije
Q307=+0 ;PREDNAST. OSN. ROT.	Kot referenčnih ravnih črt
Q402=1 ;PORAVNAVA	Odpravljanje poševnega položaja z vrtenjem okrogle mize
Q337=1 ;PONASTAVITEV	Nastavitev prikaza na nič po izravnavanju
3 CALL PGM 35K47	Priklic obdelovalnega programa
4 END PGM CYC401 MM	

3 Cikli tipalnega sistema za samodejni nadzor obdelovancev

3.2 Samodejno zaznavanje referenčnih točk

Pregled

Na voljo je dvanajst ciklov, s katerimi lahko TNC referenčne točke samodejno zazna in obdela v tem zaporedju:

- neposredna nastavitev izmerjenih vrednosti kot vrednosti za prikaz
- beleženje izmerjenih vrednosti v preglednico prednastavitev
- beleženje izmerjenih vrednosti v preglednico ničelnih točk

Cikel	Gumb	Stran
408 REF.TOČ.SR.UTORA meritev notranje širine utora, nastavitev središča utora za referenčno točko	408	Stran 65
409 REF.TOČ. SR. PREČKE meritev zunanje širine prečke, nastavitev središča prečke za referenčno točko	409	Stran 68
410 REF. TOČ. PRAVOKOT. ZNOTR. meritev notranje dolžine in širine pravokotnika, nastavitev središča pravokotnika za referenčno točko	410	Stran 71
411 REF. TOČ. PRAVOKOT. ZUN. meritev zunanje dolžine in širine pravokotnika, nastavitev središča pravokotnika za referenčno točko	411	Stran 74
412 REF. TOČ. KROG ZNOTR. meritev štirih poljubnih notranjih točk kroga, nastavitev središča kroga za referenčno točko	412	Stran 77
413 REF. TOČ. KROG ZUN. meritev štirih poljubnih zunanjih točk kroga, nastavitev središča kroga za referenčno točko	413	Stran 81
414 REF. TOČ. VOGALA ZUN. meritev dveh zunanjih ravnih črt, nastavitev sečišča ravnih črt za referenčno točko	414	Stran 85
415 REF. TOČ. VOGALA ZNOTRAJ meritev dveh notranjih ravnih črt, nastavitev sečišča ravnih črt za referenčno točko	415	Stran 88
416 NAVEZ. TOČ. KROŽNE LUKNJE SREDINA (2. orodna vrstica) merjenje treh poljubnih vrtin na krožni luknji, postavitev sredine krožne luknje za referenčno točko	416 040 040	Stran 91

Ci	ikel	Gumb	Stran
41 (2 pc na	I7 REF. TOČ. OSI TIPAL. SIS. . orodna vrstica) meritev poljubnega oložaja na osi tipalnega sistema in astavitev tega za referenčno točko	417	Stran 94
41 vr: na čri	I8 REF.TOČ. 4 VRTIN (2. orodna stica) navzkrižna meritev (po 2 vrtini), astavitev sečišča povezovalnih ravnih t za referenčno točko	418 • + •	Stran 96
41 (2 pc re	I9 REF. TOČ. POSAMEZNA OS . orodna vrstica) meritev poljubnega oložaja v izbirni osi in nastavitev tega za ferenčno točko	419	Stran 99

Nastavitev skupnih točk vseh ciklov tipalnega sistema za referenčno točko

Cikle tipalnega sistema od 408 do 419 lahko opravljate tudi pri aktivni osnovni rotaciji.

Med cikli od 408 do 419 ne smete uporabiti funkcije Vrtenje obdelovalne ravnine.

Med izvajanjem ciklov tipalnega sistema ne smejo biti aktivni cikli za preračunavanje koordinat (cikel 7 NIČELNA TOČKA, cikel 8 ZRCALJENJE, cikel 10 ROTACIJA, cikla 11 in 26 FAKTOR MERILA in cikel 19 OBDELOVALNA RAVNINA).

Referenčna točka in os tipalnega sistema

TNC referenčno točko v obdelovalni ravnini postavi glede na os tipalnega sistema, ki ste jo definirali v merilnem programu:

Aktivna os tipalnega sistema	Postavitev referenčne točke v
Z	X in Y
Y	Z in X
Х	Y in Z

Shranjevanje izračunane referenčne točke

Pri vseh ciklih za postavitev referenčne točke lahko s parametrom za vnos Q303 in Q305 določite, kako naj TNC shrani izračunano referenčno točko:

Q305 = 0, Q303 = poljubna vrednost:

TNC prikaže izračunano referenčno točko. Nova referenčna točka prične veljati takoj

Q305 ni enak 0, Q303 = -1

Ta kombinacija je dovoljena samo, če

- programe vnašate s cikli od 410 do 418, ki so bili ustvarjeni na TNC 4xx
- programe vnašate s cikli od 410 do 418, ki so bili ustvarjeni v starejši različici programske opreme iTNC530
- pri definiranju cikla za prenos izmerjenih vrednosti s parametrom Q303 ta namerno ni bila definirana

V teh primerih TNC prikaže sporočilo o napaki, saj se je celotni način obdelave preglednic ničelnih točk, odvisen od referenčne točke, spremenil in je treba zato s parametrom Q303 določiti definiran prenos izmerjenih vrednosti.

Q305 ni enak 0, Q303 = 0

TNC izračunano referenčno točko zabeleži v aktivno preglednico ničelnih točk. Referenčni sistem je izbran koordinatni sistem obdelovanca. Vrednost parametra Q305 določi številko ničelne točke. **Aktiviranje ničelne točke s ciklom 7 v NC-programu**

Q305 ni enak 0, Q303 = 1

TNC izračunano referenčno točko zabeleži v preglednico prednastavitev. Referenčni sistem je strojni koordinatni sistem (koordinate REF) Vrednost parametra Q305 določi številko prednastavitve. **Aktiviranje prednastavitve s ciklom 247 v NCprogramu**

Rezultati meritev v Q-parametrih

Rezultate meritev posameznega tipalnega cikla TNC shrani v globalne Q-parametre od Q150 do Q160. Te parametre lahko nato uporabljate v programu. Upoštevajte preglednico parametrov rezultatov, ki je prikazana pri vsakem opisu cikla.

REFERENČNA TOČKA SREDIŠČA UTORA (cikel tipalnega sistema 408, DIN/ISO: G408)

Cikel tipalnega sistema 408 zazna središče utora in to središče določi za navezno točko. TNC lahko središče zabeleži tudi v preglednico ničelnih točk ali v preglednico prednastavitev.

- TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na točko zagona postopka odčitavanja 1. TNC izračuna tipalne točke iz vnosov v ciklu in varnostnega odmika iz stolpca SET_UP v preglednici tipalnih sistemov
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in izvede prvi postopek odčitavanja z nastavljenim pomikom pri odčitavanju (stolpec F)
- 3 Tipalni sistem se vzporedno z osjo premakne na varno višino, ali pa linearno na naslednjo tipalno točko 2, kjer izvede drugi postopek odčitavanja
- 4 TNC ob kocu tipalni sistem premakne nazaj na varno višino in obdela zaznano referenčno točko glede na parametra cikla Q303 in Q305 (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64) ter dejanske vrednosti shrani v Q-parametre, navedene v nadaljevanju
- 5 TNC lahko nato s posebnim tipalnim postopkom zazna še referenčno točko v osi tipalnega sistema

Številka parametra	Pomen
Q166	Dejanska vrednost izmerjene širine utora
Q157	Dejanska vrednost položaja srednje osi

Pred programiranjem upoštevajte

Če želite preprečiti kolizijo tipalnega sistema z obdelovancem, za širino utora vnesite **manjšo** vrednost.

Če širina utora in varnostni odmik ne dovoljujeta predpozicioniranja v bližino tipalnih točk, TNC postopek odčitavanja vedno izvaja iz središča utora. V tem primeru se tipalni sistem med dvema merilnima točkama ne premakne na varno višino.

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

3.2 Samodejno zaznavanje refere<mark>nčn</mark>ih točk

408

- Središče 1. osi Q321 (absolutno): središče utora v glavni osi obdelovalne ravnine.
- Središče 2. osi Q322 (absolutno): središče utora v pomožni osi obdelovalne ravnine.
- Širina utora Q311 (inkrementalno): širina utora ne glede na položaj v obdelovalni ravnini
- Merilna os (1=1.os/2=2.os) Q272: os, v kateri naj se izvaja meritev:
 1: glavna os = merilna os
 - 2: pomožna os = merilna os
- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
- Premik na varno višino Q301: določite, kako naj se tipalni sistem premika med merilnimi točkami:
 premik med merilnimi točkami na merilni višini
 premik med merilnimi točkami na varni višini
- Številka v preglednici Q305: vnesite številko v preglednici ničelnih točk/prednastavitev, pod katero naj TNC shrani koordinate središča utora. Če vnesete Q305=0, TNC prikaz samodejno nastavi tako, da je nova referenčna točka v središču utora
- Nova referenčna točka Q405 (absolutna): koordinata v merilni osi, na katero naj TNC postavi zaznano središče utora. Osnovna nastavitev = 0

- Prenos izmerjene vrednosti (0,1) Q303: določite, ali naj bo zaznana referenčna točka shranjena v preglednico ničelnih točk ali v preglednico prednastavitev:
 0: beleženje zaznane referenčne točke v izbrano preglednico ničelnih točk. Referenčni sistem je izbran koordinatni sistem obdelovanca
 1: beleženje zaznane referenčne točke v preglednico prednastavitev. Referenčni sistem je koordinatni sistem stroja (REF sistem)
- Odčitavanje v osi tipalnega sistema Q381: določite, ali naj TNC na os tipalnega sistema postavi tudi referenčno točko:
- 0: referenčna točka ne bo na osi tipalnega sistema
 1: referenčna točka bo na osi tipalnega sistema
- Odčitavanje na osi tipalnega sistema: koor. 1. osi Q382 (absolutna): koordinata tipalne točke na glavni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Odčitavanje na osi tipalnega sistema: koor. 2. osi Q383 (absolutna): koordinata tipalne točke na pomožni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Odčitavanje na osi tipalnega sistema: koor. 3. osi Q384 (absolutna): koordinata tipalne točke na osi tipalnega sistema, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Nova referenčna točka osi tipalnega sistema Q333 (absolutna): koordinata na osi tipalnega sistema, na katero naj TNC postavi referenčno točko. Osnovna nastavitev = 0

Példa: NC-nizi

5 TCH PROBE	408 REF. TOČ. SRED. UTORA
Q321=+50	;SREDIŠČE 1. OSI
Q322=+50	;SREDIŠČE 2. OSI
Q311=25	;ŠIRINA UTORA
Q272=1	;MERILNA OS
Q261=-5	;MERILNA VIŠINA
Q320=0	;VARNOSTNA RAZDALJA
Q260=+20	;VARNA VIŠINA
Q301=0	;PREMIK NA VARNO VIŠINO
Q305=10	;ŠT. V PREGLEDNICI
Q405=+0	;REF. TOČKA
Q303=+1	;PRENOS IZMERJENE VRED.
Q381=1	;ODČIT. OSI TIPAL. SIST.
Q382=+85	;1. KOORD. ZA OS TIPAL. SIST.
Q383=+50	;2. KOORD. ZA OS TIPAL. SIST.
Q384=+0	;3. KOORD. ZA OS TIPAL. SIST.
O333=+0	;REF. TOČKA

REFERENČNA TOČKA SREDIŠČA PREČKE (cikel tipalnega sistema 409, DIN/ISO: G409)

Cikel tipalnega sistema 409 zazna središče prečke in ga nastavi za referenčno točko. TNC lahko središče zabeleži tudi v preglednico ničelnih točk ali v preglednico prednastavitev.

- TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na točko zagona postopka odčitavanja 1. TNC izračuna tipalne točke iz vnosov v ciklu in varnostnega odmika iz stolpca SET_UP v preglednici tipalnih sistemov
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in izvede prvi postopek odčitavanja z nastavljenim pomikom pri odčitavanju (stolpec F)
- 3 Tipalni sistem na varni višini premakne k naslednji tipalni točki 2 in izvede drugi postopek odčitavanja
- 4 TNC ob kocu tipalni sistem premakne nazaj na varno višino in obdela zaznano referenčno točko glede na parametra cikla Q303 in Q305 (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64) ter dejanske vrednosti shrani v Q-parametre, navedene v nadaljevanju
- 5 TNC lahko nato s posebnim tipalnim postopkom zazna še referenčno točko v osi tipalnega sistema

Številka parametra	Pomen
Q166	Dejanska vrednost izmerjene širine prečke
Q157	Dejanska vrednost položaja srednje osi

Pred programiranjem upoštevajte

Če želite preprečiti kolizijo tipalnega sistema z obdelovancem, vnesite **manjšo** širino prečke.

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

叫

- Središče 1. osi Q321 (absolutno): središče prečke v glavni osi obdelovalne ravnine.
- Središče 2. osi Q322 (absolutno): središče prečke v pomožni osi obdelovalne ravnine.
- Širina prečke Q311 (inkrementalno): širina prečke ne glede na položaj v obdelovalni ravnini.
- Merilna os (1=1.os/2=2.os) Q272: os, v kateri naj se izvaja meritev:
 1: glavna os = merilna os
- 2: pomožna os = merilna os
- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
- Številka v preglednici Q305: vnesite številko v preglednici ničelnih točk/prednastavitev, pod katero naj TNC shrani koordinate središča prečke. Če vnesete Q305=0, TNC prikaz samodejno nastavi tako, da je nova referenčna točka v središču utora
- Nova referenčna točka Q405 (absolutna): koordinata v merilni osi, na katero naj TNC postavi zaznano središče prečke. Osnovna nastavitev = 0

 Prenos izmerjene vrednosti (0,1) Q303: določite, ali naj bo zaznana referenčna točka shranjena v preglednico ničelnih točk ali v preglednico prednastavitev:
 0: beleženje zaznane referenčne točke v izbrano preglednico ničelnih točk. Referenčni sistem je izbran koordinatni sistem obdelovanca

1: beleženje zaznane referenčne točke v preglednico prednastavitev. Referenčni sistem je koordinatni sistem stroja (REF sistem)

Odčitavanje v osi tipalnega sistema Q381: določite, ali naj TNC na os tipalnega sistema postavi tudi referenčno točko:

0: referenčna točka ne bo na osi tipalnega sistema
1: referenčna točka bo na osi tipalnega sistema

- Odčitavanje na osi tipalnega sistema: koor. 1. osi Q382 (absolutna): koordinata tipalne točke na glavni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Odčitavanje na osi tipalnega sistema: koor. 2. osi Q383 (absolutna): koordinata tipalne točke na pomožni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Odčitavanje na osi tipalnega sistema: koor. 3. osi Q384 (absolutna): koordinata tipalne točke na osi tipalnega sistema, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Nova referenčna točka osi tipalnega sistema Q333 (absolutna): koordinata na osi tipalnega sistema, na katero naj TNC postavi referenčno točko. Osnovna nastavitev = 0

Példa: NC-nizi

5 TCH PROBE	409 REF. TOČ. SRED. PREČKE
Q321=+50	;SREDIŠČE 1. OSI
Q322=+50	;SREDIŠČE 2. OSI
Q311=25	;ŠIRINA PREČKE
Q272=1	;MERILNA OS
Q261=-5	;MERILNA VIŠINA
Q320=0	;VARNOSTNA RAZDALJA
Q260=+20	;VARNA VIŠINA
Q305=10	;ŠT. V PREGLEDNICI
Q405=+0	;REF. TOČKA
Q303=+1	;PRENOS IZMERJENE VRED.
Q381=1	;ODČIT. OSI TIPAL. SIST.
Q382=+85	;1. KOORD. ZA OS TIPAL. SIST.
Q383=+50	;2. KOORD. ZA OS TIPAL. SIST.
Q384=+0	;3. KOORD. ZA OS TIPAL. SIST.
O333=+0	:REF. TOČKA

REFERENČNA TOČKA PRAVOKOTNIKA. ZNOTRAJ (cikel tipalnega sistema 410, DIN/ISO: G410)

Cikel tipalnega sistema 410 zazna središče pravokotnega žepa in ga nastavi za referenčno točko. TNC lahko središče zabeleži tudi v preglednico ničelnih točk ali v preglednico prednastavitev.

- TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na točko zagona postopka odčitavanja 1. TNC izračuna tipalne točke iz vnosov v ciklu in varnostnega odmika iz stolpca SET_UP v preglednici tipalnih sistemov
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in izvede prvi postopek odčitavanja z nastavljenim pomikom pri odčitavanju (stolpec F)
- 3 Tipalni sistem se vzporedno z osjo premakne na varno višino, ali pa linearno na naslednjo tipalno točko 2, kjer izvede drugi postopek odčitavanja
- 4 TNC tipalni sistem premakne na tipalno točko 3 in nato še na tipalno točko 4, kjer izvede tretji in četrti postopek odčitavanja
- 5 TNC ob kocu tipalni sistem premakne nazaj na varno višino in obdela zaznano referenčno točko glede na parametra cikla Q303 in Q305 (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64)
- 6 TNC lahko nato s posebnim tipalnim postopkom zazna še referenčno točko v osi tipalnega sistema in dejanske vrednosti shrani v teh Q-parametrih

Številka parametra	Pomen
Q151	Dejanska vrednost središča glavne osi
Q152	Dejanska vrednost središča pomožne osi
Q154	Dejanska vrednost stranske dolžine v glavni osi
Q155	Dejanska vrednost stranske dolžine v pomožni osi

Pred programiranjem upoštevajte

Če želite preprečiti kolizijo tipalnega sistema z obdelovancem, vnesite **manjšo** 1. in 2. stransko dolžino žepa.

Če izmere žepa in varnostni odmik ne dovoljujejo predpozicioniranja v bližino tipalnih točk, TNC postopek odčitavanja vedno zažene v središču žepa. V tem primeru se tipalni sistem med štirimi merilnimi točkami ne premakne na varno višino.

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

- Središče 1. osi Q321 (absolutno): središče žepa v glavni osi obdelovalne ravnine.
- Središče 2. osi Q322 (absolutno): središče žepa v pomožni osi obdelovalne ravnine.
- 1. stranska dolžina Q323 (inkrementalno): dolžina žepa, vzporedna glavni osi obdelovalne ravnine.
- 2. stranska dolžina Q324 (inkrementalno): dolžina žepa, vzporedna pomožni osi obdelovalne ravnine.
- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
- Premik na varno višino Q301: določite, kako naj se tipalni sistem premika med merilnimi točkami:
 premik med merilnimi točkami na merilni višini
 premik med merilnimi točkami na varni višini
- Številka ničelne točke v preglednici Q305: vnesite številko v preglednici ničelnih točk/prednastavitev, pod katero naj TNC shrani koordinate središča žepa. Če vnesete Q305=0, TNC prikaz samodejno nastavi tako, da je nova referenčna točka v središču žepa
- Nova referenčna točka glavne osi Q331 (absolutna): koordinata v glavni osi, na katero naj TNC postavi zaznano središče žepa. Osnovna nastavitev = 0
- Nova referenčna točka pomožne osi Q332 (absolutna): koordinata v pomožni osi, na katero naj TNC postavi zaznano središče žepa. Osnovna nastavitev = 0

410
Prenos izmerjene vrednosti (0,1) Q303: določite, ali naj bo zaznana referenčna točka shranjena v preglednico ničelnih točk ali v preglednico prednastavitev:
 -1: ne vnesite te vrednosti! To vrednost vnese TNC, če se naložijo stari programi (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64)
 0: beleženje zaznane referenčne točke v izbrano preglednico ničelnih točk. Referenčni sistem je izbran koordinatni sistem obdelovanca
 1: beleženje zaznane referenčne točke v preglednico prednastavitev. Referenčni sistem je koordinatni

 sistem stroja (REF sistem)
 Odčitavanje na osi tipalnega sistema Q381: določite, ali naj TNC na os tipalnega sistema postavi tudi referenčno točko:

0: referenčna točka ne bo na osi tipalnega sistema
1: referenčna točka bo na osi tipalnega sistema

- Odčitavanje na osi tipalnega sistema: koor. 1. osi Q382 (absolutna): koordinata tipalne točke na glavni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Odčitavanje na osi tipalnega sistema: koor. 2. osi Q383 (absolutna): koordinata tipalne točke na pomožni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Odčitavanje na osi tipalnega sistema: koor. 3. osi Q384 (absolutna): koordinata tipalne točke na osi tipalnega sistema, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Nova referenčna točka osi tipalnega sistema Q333 (absolutna): koordinata na osi tipalnega sistema, na katero naj TNC postavi referenčno točko. Osnovna nastavitev = 0

5 TCH PROBE ZNOTR.	410 REF. TOČ. PRAVOKOT.
Q321=+50	;SREDIŠČE 1. OSI
Q322=+50	;SREDIŠČE 2. OSI
Q323=60	;1. STRANSKA DOLŽINA
Q324=20	;2. STRANSKA DOLŽINA
Q261=-5	;MERILNA VIŠINA
Q320=0	;VARNOSTNA RAZDALJA
Q260=+20	;VARNA VIŠINA
Q301=0	;PREMIK NA VARNO VIŠINO
Q305=10	;ŠT. V PREGLEDNICI
Q331=+0	;REF. TOČKA
Q332=+0	;REF. TOČKA
Q303=+1	;PRENOS IZMERJENE VRED.
Q381=1	;ODČIT. OSI TIPAL. SIST.
Q382=+85	;1. KOORD. ZA OS TIPAL. SIST.
Q383=+50	;2. KOORD. ZA OS TIPAL. SIST.
Q384=+0	;3. KOORD. ZA OS TIPAL. SIST.
$0333 - \pm 0$	PRE TOČKA

REFERENČNA TOČKA PRAVOKOTNIKA ZUNAJ (cikel tipalnega sistema 411, DIN/ISO: G411)

Cikel tipalnega sistema 411 zazna središče osi pravokotnega čepa in ga nastavi za referenčno točko. TNC lahko središče zabeleži tudi v preglednico ničelnih točk ali v preglednico prednastavitev.

- 1 TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na točko zagona postopka odčitavanja 1. TNC izračuna tipalne točke iz vnosov v ciklu in varnostnega odmika iz stolpca SET_UP v preglednici tipalnih sistemov
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in izvede prvi postopek odčitavanja z nastavljenim pomikom pri odčitavanju (stolpec F)
- 3 Tipalni sistem se vzporedno z osjo premakne na varno višino, ali pa linearno na naslednjo tipalno točko 2, kjer izvede drugi postopek odčitavanja
- 4 TNC tipalni sistem premakne na tipalno točko 3 in nato še na tipalno točko 4, kjer izvede tretji in četrti postopek odčitavanja
- 5 TNC ob kocu tipalni sistem premakne nazaj na varno višino in obdela zaznano referenčno točko glede na parametra cikla Q303 in Q305 (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64)
- 6 TNC lahko nato s posebnim tipalnim postopkom zazna še referenčno točko v osi tipalnega sistema in dejanske vrednosti shrani v teh Q-parametrih

Številka parametra	Pomen
Q151	Dejanska vrednost središča glavne osi
Q152	Dejanska vrednost središča pomožne osi
Q154	Dejanska vrednost stranske dolžine v glavni osi
Q155	Dejanska vrednost stranske dolžine v pomožni osi

Pred programiranjem upoštevajte

Če želite preprečiti kolizijo tipalnega sistema z obdelovancem, vnesite **večjo** 1. in 2. stransko dolžino čepa.

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

Središče 1. osi Q321 (absolutno): središče čepa v glavni osi obdelovalne ravnine.

411

 \Rightarrow

- Središče 2. osi Q322 (absolutno): središče čepa v pomožni osi obdelovalne ravnine.
- 1. stranska dolžina Q323 (postopna): dolžina čepa, vzporedna glavni osi obdelovalne ravnine.
- 2. stranska dolžina Q324 (postopna): dolžina čepa, vzporedna pomožni osi obdelovalne ravnine.
- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
- Premik na varno višino Q301: določite, kako naj se tipalni sistem premika med merilnimi točkami:
 0: premik med merilnimi točkami na merilni višini
 1: premik med merilnimi točkami na varni višini
- Številka ničelne točke v preglednici Q305: vnesite številko v preglednici ničelnih točk/prednastavitev, pod katero naj TNC shrani koordinate središča čepa. Če vnesete Q305=0, TNC prikaz samodejno nastavi tako, da je nova referenčna točka v središču žepa
- Nova referenčna točka glavne osi Q331 (absolutna): koordinata v glavni osi, na katero naj TNC postavi zaznano središče žepa. Osnovna nastavitev = 0
- Nova referenčna točka pomožne osi Q332 (absolutna): koordinata v pomožni osi, na katero naj TNC postavi zaznano središče čepa. Osnovna nastavitev = 0

 Prenos izmerjene vrednosti (0,1) Q303: določite, ali naj bo zaznana referenčna točka shranjena v preglednico ničelnih točk ali v preglednico prednastavitev:
 -1: ne vnesite te vrednosti! To vrednost vnese TNC, če se naložijo stari programi (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64)
 0: beleženje zaznane referenčne točke v izbrano preglednico ničelnih točk. Referenčni sistem je izbran koordinatni sistem obdelovanca

1: beleženje zaznane referenčne točke v preglednico prednastavitev. Referenčni sistem je koordinatni sistem stroja (REF sistem)

Odčitavanje na osi tipalnega sistema Q381: določite, ali naj TNC na os tipalnega sistema postavi tudi referenčno točko:

0: referenčna točka ne bo na osi tipalnega sistema1: referenčna točka bo na osi tipalnega sistema

- Odčitavanje na osi tipalnega sistema: koor. 1. osi Q382 (absolutna): koordinata tipalne točke na glavni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Odčitavanje na osi tipalnega sistema: koor. 2. osi Q383 (absolutna): koordinata tipalne točke na pomožni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Odčitavanje na osi tipalnega sistema: koor. 3. osi Q384 (absolutna): koordinata tipalne točke na osi tipalnega sistema, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Nova referenčna točka osi tipalnega sistema Q333 (absolutna): koordinata na osi tipalnega sistema, na katero naj TNC postavi referenčno točko. Osnovna nastavitev = 0

Példa: NC-nizi

5 TCH PROBE 411 REF. TOČ. PRAVOKOT. ZUN.

Q321=+50	;SREDIŠČE 1. OSI
Q322=+50	;SREDIŠČE 2. OSI
Q323=60	;1. STRANSKA DOLŽINA
Q324=20	;2. STRANSKA DOLŽINA
Q261=-5	;MERILNA VIŠINA
Q320=0	;VARNOSTNA RAZDALJA
Q260=+20	;VARNA VIŠINA
Q301=0	;PREMIK NA VARNO VIŠINO
Q305=0	;ŠT. V PREGLEDNICI
Q331=+0	;REF. TOČKA
Q332=+0	;REF. TOČKA
Q303=+1	;PRENOS IZMERJENE VRED.
Q381=1	;ODČIT. OSI TIPAL. SIST.
Q382=+85	;1. KOORD. ZA OS TIPAL. SIST.
Q383=+50	;2. KOORD. ZA OS TIPAL. SIST.
Q384=+0	;3. KOORD. ZA OS TIPAL. SIST.
Q333=+0	;REF. TOČKA

3.2 Samodejno zaznavanje referen<mark>čn</mark>ih točk

REFERENČNA TOČKA KROGA ZNOTRAJ (cikel tipalnega sistema 412, DIN/ISO: G412)

Cikel tipalnega sistema 412 zazna središče krožnega žepa (vrtine) in ga nastavi za referenčno točko. TNC lahko središče zabeleži tudi v preglednico ničelnih točk ali v preglednico prednastavitev.

- TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na točko zagona postopka odčitavanja 1. TNC izračuna tipalne točke iz vnosov v ciklu in varnostnega odmika iz stolpca SET_UP v preglednici tipalnih sistemov
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in izvede prvi postopek odčitavanja z nastavljenim pomikom pri odčitavanju (stolpec F). TNC samodejno določi smer odčitavanja glede na programiran kot zagona
- 3 Tipalni sistem se nato na merilni višini ali na varni višini v krožnici premakne na naslednjo tipalno točko 2, kjer izvede drugi postopek odčitavanja
- 4 TNC tipalni sistem premakne na tipalno točko 3 in nato še na tipalno točko 4, kjer izvede tretji in četrti postopek odčitavanja
- 5 TNC ob kocu tipalni sistem premakne nazaj na varno višino in obdela zaznano referenčno točko glede na parametra cikla Q303 in Q305 (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64) ter dejanske vrednosti shrani v Q-parametre, navedene v nadaljevanju
- 6 TNC lahko nato s posebnim tipalnim postopkom zazna še referenčno točko v osi tipalnega sistema

Številka parametra	Pomen
Q151	Dejanska vrednost središča glavne osi
Q152	Dejanska vrednost središča pomožne osi
Q153	Dejanski premer

Pred programiranjem upoštevajte

Če želite preprečiti kolizijo tipalnega sistema z obdelovancem, za želeni premer žepa (vrtine) vnesite manjšo vrednost.

Če izmere žepa in varnostni odmik ne dovoljujejo predpozicioniranja v bližino tipalnih točk, TNC postopek odčitavanja vedno zažene v središču žepa. V tem primeru se tipalni sistem med štirimi merilnimi točkami ne premakne na varno višino.

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

and the

412

- Središče 1. osi Q321 (absolutno): središče žepa v glavni osi obdelovalne ravnine.
- Središče 2. osi Q322 (absolutno): središče žepa v pomožni osi obdelovalne ravnine. Če programirate Q322 = 0, TNC središče vrtine usmeri k pozitivni osi Y; če Q322 nastavite tako, da ni enak 0, TNC središče vrtine usmeri k želeni položaj
- Želeni premer Q262: približni premer krožnega žepa (vrtine). Vnesite manjšo vrednost
- Kot zagona Q325 (absolutni): kot med glavno osjo obdelovalne ravnine in prvo tipalno točko
- Kotni korak Q247 (inkrementalno): kot med dvema merilnima točkama, predznak kotnega koraka določi smer rotacije (- = v smeri urinega kazalca), s katero se tipalni sistem premika k naslednji merilni točki. Če želite meriti krožni lok, potem programirajte kotni korak na manj kot 90°

Čim manjši kotni korak programirate, tem manjša je natančnost, s katero TNC izračuna referenčno točko. Najmanjši vnos: 5°.

- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
- Premik na varno višino Q301: določite, kako naj se tipalni sistem premika med merilnimi točkami:
 0: premik med merilnimi točkami na merilni višini
 1: premik med merilnimi točkami na varni višini
- Številka ničelne točke v preglednici Q305: vnesite številko v preglednici ničelnih točk/prednastavitev, pod katero naj TNC shrani koordinate središča žepa. Če vnesete Q305=0, TNC prikaz samodejno nastavi tako, da je nova referenčna točka v središču žepa

- Nova referenčna točka glavne osi Q331 (absolutna): koordinata v glavni osi, na katero naj TNC postavi zaznano središče žepa. Osnovna nastavitev = 0
- Nova referenčna točka pomožne osi Q332 (absolutna): koordinata v pomožni osi, na katero naj TNC postavi zaznano središče žepa. Osnovna nastavitev = 0
- Prenos izmerjene vrednosti (0,1) Q303: določite, ali naj bo zaznana referenčna točka shranjena v preglednico ničelnih točk ali v preglednico prednastavitev:
 -1: ne vnesite te vrednosti! To vrednost vnese TNC, če se naložijo stari programi (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64)
 0: beleženje zaznane referenčne točke v izbrano preglednico ničelnih točk. Referenčni sistem je izbran koordinatni sistem obdelovanca
 1: beleženje zaznane referenčne točke v preglednico

prednastavitev. Referenčni sistem je koordinatni sistem stroja (REF sistem)

Odčitavanje na osi tipalnega sistema Q381: določite, ali naj TNC na os tipalnega sistema postavi tudi referenčno točko:

0: referenčna točka ne bo na osi tipalnega sistema1: referenčna točka bo na osi tipalnega sistema

- Odčitavanje na osi tipalnega sistema: koor. 1. osi Q382 (absolutna): koordinata tipalne točke na glavni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Odčitavanje na osi tipalnega sistema: koor. 2. osi Q383 (absolutna): koordinata tipalne točke na pomožni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Odčitavanje na osi tipalnega sistema: koor. 3. osi Q384 (absolutna): koordinata tipalne točke na osi tipalnega sistema, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Nova referenčna točka osi tipalnega sistema Q333 (absolutna): koordinata na osi tipalnega sistema, na katero naj TNC postavi referenčno točko. Osnovna nastavitev = 0
- Število merilnih točk (4/3) Q423: določite, ali naj TNC postopek odčitavanja vrtine izvede na 4 ali 3 merilnih točkah:

4: 4 merilne točke (običajna nastavitev)

3: 3 merilne točke

5 TCH PROBE 412 REF. TOČ. KROGA ZNOTR.
Q321=+50 ;SREDIŠČE 1. OSI
Q322=+50 ;SREDIŠČE 2. OSI
Q262=75 ;ŽELENI PREMER
Q325=+0 ;KOT ZAGONA
Q247=+60 ;KOTNI KORAK
Q261=-5 ;MERILNA VIŠINA
Q320=0 ;VARNOSTNA RAZDALJA
Q260=+20 ;VARNA VIŠINA
Q301=0 ;PREMIK NA VARNO VIŠINO
Q305=12 ;ŠT. V PREGLEDNICI
Q331=+0 ;REF. TOČKA
Q332=+0 ;REF. TOČKA
Q303=+1 ;PRENOS IZMERJENE VRED.
Q381=1 ;ODČIT. OSI TIPAL. SIST.
Q382=+85 ;1. KOORD. ZA OS TIPAL. SIST.
Q383=+50 ;2. KOORD. ZA OS TIPAL. SIST.
Q384=+0 ;3. KOORD. ZA OS TIPAL. SIST.
Q333=+0 ;REF. TOČKA
Q423=4 ;ŠTEVILO MERILNIH TOČK

3.2 Samodejno zaznavanje referen<mark>čn</mark>ih točk

REFERENČNA TOČKA KROGA ZUNAJ (cikel tipalnega sistema 413, DIN/ISO: G413)

Cikel tipalnega sistema 413 zazna središče krožnega čepa in ga nastavi za referenčno točko. TNC lahko središče zabeleži tudi v preglednico ničelnih točk ali v preglednico prednastavitev.

- TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na točko zagona postopka odčitavanja 1. TNC izračuna tipalne točke iz vnosov v ciklu in varnostnega odmika iz stolpca SET_UP v preglednici tipalnih sistemov
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in izvede prvi postopek odčitavanja z nastavljenim pomikom pri odčitavanju (stolpec F). TNC glede na programiran kot zagona samodejno določi smer odčitavanja
- 3 Tipalni sistem se nato na merilni višini ali na varni višini v krožnici premakne na naslednjo tipalno točko 2, kjer izvede drugi postopek odčitavanja
- 4 TNC tipalni sistem premakne na tipalno točko 3 in nato še na tipalno točko 4, kjer izvede tretji in četrti postopek odčitavanja
- 5 TNC ob kocu tipalni sistem premakne nazaj na varno višino in obdela zaznano referenčno točko glede na parametra cikla Q303 in Q305 (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64) ter dejanske vrednosti shrani v Q-parametre, navedene v nadaljevanju
- 6 TNC lahko nato s posebnim tipalnim postopkom zazna še referenčno točko v osi tipalnega sistema

Številka parametra	Pomen
Q151	Dejanska vrednost središča glavne osi
Q152	Dejanska vrednost središča pomožne osi
Q153	Dejanski premer

Pred programiranjem upoštevajte

Če želite preprečiti kolizijo tipalnega sistema z obdelovancem, vnesite **večji** želeni premer čepa.

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

ML.

ſ

- Središče 1. osi Q321 (absolutno): središče čepa v glavni osi obdelovalne ravnine.
- Središče 2. osi Q322 (absolutno): središče čepa v pomožni osi obdelovalne ravnine. Če programirate Q322 = 0, TNC središče vrtine usmeri k pozitivni osi Y; če Q322 nastavite tako, da ni enak 0, TNC središče vrtine usmeri k želeni položaj
- Želeni premer Q262: približni premer krožnega čepa Vnesite večjo vrednost
- Kot zagona Q325 (absolutni): kot med glavno osjo obdelovalne ravnine in prvo tipalno točko
- Kotni korak Q247 (inkrementalno): kot med dvema merilnima točkama, predznak koraka določi smer rotacije (- = v smeri urinega kazalca), s katero se tipalni sistem premika k naslednji merilni točki. Če želite meriti krožni lok, potem programirajte kotni korak na manj kot 90°

Čim manjši kotni korak programirate, tem manjša je natančnost, s katero TNC izračuna referenčno točko. Najmanjši vnos: 5°.

413

3.2 Samodejno zaznavanje referen<mark>čn</mark>ih točk

- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
- Premik na varno višino Q301: določite, kako naj se tipalni sistem premika med merilnimi točkami:
 0: premik med merilnimi točkami na merilni višini
 1: premik med merilnimi točkami na varni višini
- Številka ničelne točke v preglednici Q305: vnesite številko v preglednici ničelnih točk/prednastavitev, pod katero naj TNC shrani koordinate središča čepa. Če vnesete Q305=0, TNC prikaz samodejno nastavi tako, da je nova referenčna točka v središču žepa

- Nova referenčna točka glavne osi Q331 (absolutna): koordinata v glavni osi, na katero naj TNC postavi zaznano središče žepa. Osnovna nastavitev = 0
- Nova referenčna točka pomožne osi Q332 (absolutna): koordinata v pomožni osi, na katero naj TNC postavi zaznano središče čepa. Osnovna nastavitev = 0
- Prenos izmerjene vrednosti (0,1) Q303: določite, ali naj bo zaznana referenčna točka shranjena v preglednico ničelnih točk ali v preglednico prednastavitev:
 -1: ne vnesite te vrednosti! To vrednost vnese TNC, če se naložijo stari programi (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64)
 0: beleženje zaznane referenčne točke v izbrano preglednico ničelnih točk. Referenčni sistem je izbran koordinatni sistem obdelovanca
 1: beleženje zaznane referenčne točke v preglednico

prednastavitev. Referenčni sistem je koordinatni sistem stroja (REF sistem)

Odčitavanje na osi tipalnega sistema Q381: določite, ali naj TNC na os tipalnega sistema postavi tudi referenčno točko:

0: referenčna točka ne bo na osi tipalnega sistema
1: referenčna točka bo na osi tipalnega sistema

- Odčitavanje na osi tipalnega sistema: koor. 1. osi Q382 (absolutna): koordinata tipalne točke na glavni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Odčitavanje na osi tipalnega sistema: koor. 2. osi Q383 (absolutna): koordinata tipalne točke na pomožni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Odčitavanje na osi tipalnega sistema: koor. 3. osi Q384 (absolutna): koordinata tipalne točke na osi tipalnega sistema, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Nova referenčna točka osi tipalnega sistema Q333 (absolutna): koordinata na osi tipalnega sistema, na katero naj TNC postavi referenčno točko. Osnovna nastavitev = 0
- Število merilnih točk (4/3) Q423: določite, ali naj TNC postopek odčitavanja čepa izvede na 4 ali 3 merilnih točkah:

4: 4 merilne točke (običajna nastavitev)

3: 3 merilne točke

TCH PROBE 413 REF. TOČ. KROGA ZUNAJ
Q321=+50 ;SREDIŠČE 1. OSI
Q322=+50 ;SREDIŠČE 2. OSI
Q262=75 ;ŽELENI PREMER
Q325=+0 ;KOT ZAGONA
Q247=+60 ;KOTNI KORAK
Q261=-5 ;MERILNA VIŠINA
Q320=0 ;VARNOSTNA RAZDALJA
Q260=+20 ;VARNA VIŠINA
Q301=0 ;PREMIK NA VARNO VIŠINO
Q305=15 ;ŠT. V PREGLEDNICI
Q331=+0 ;REF. TOČKA
Q332=+0 ;REF. TOČKA
Q303=+1 ;PRENOS IZMERJENE VRED.
Q381=1 ;ODČIT. OSI TIPAL. SIST.
Q382=+85 ;1. KOORD. ZA OS TIPAL. SIST.
Q383=+50 ;2. KOORD. ZA OS TIPAL. SIST.
Q384=+0 ;3. KOORD. ZA OS TIPAL. SIST.
Q333=+0 ;REF. TOČKA
Q423=4 ;ŠTEVILO MERILNIH TOČK

3.2 Samodejno zaznavanje refere<mark>nčn</mark>ih točk

REFERENČNA TOČKA VOGALA ZUNAJ (cikel tipalnega sistema 414, DIN/ISO: G414)

Cikel tipalnega sistema 414 zazna sečišče dveh ravnih črt ga nastavi za referenčno točko. TNC lahko sečišče zabeleži tudi v preglednico ničelnih točk ali v preglednico prednastavitev.

- 1 TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na prvo tipalno točko 1 (oglejte si sliko desno zgoraj). TNC pri tem tipalni sistem premakne za varnostni odmik v nasprotni smeri od posamezne smeri odčitavanja
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in izvede prvi postopek odčitavanja z nastavljenim pomikom pri odčitavanju (stolpec F). NC samodejno določi smer odčitavanja glede na programirano 3. merilno točko

TNC meri prvo ravno črto vedno v smeri pomožne osi obdelovalne ravnine.

- 3 Tipalni sistem premakne k naslednji tipalni točki 2, kjer izvede drugi postopek odčitavanja
- 4 TNC tipalni sistem premakne na tipalno točko 3 in nato še na tipalno točko 4, kjer izvede tretji in četrti postopek odčitavanja
- 5 TNC ob kocu tipalni sistem premakne nazaj na varno višino in obdela zaznano referenčno točko glede na parametra cikla Q303 in Q305 (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64) ter koordinate zaznanega vogala shrani v Q-parametre, navedene v nadaljevanju
- 6 TNC lahko nato s posebnim tipalnim postopkom zazna še referenčno točko v osi tipalnega sistema

Številka parametra	Pomen
Q151	Dejanska vrednost vogala glavne osi
Q152	Dejanska vrednost vogala pomožne osi

Pred programiranjem upoštevajte

S položajem merilnih točk 1 in 3 določite vogal, v katerega TNC postavi referenčno točko (oglejte si sliko desno v sredini in naslednjo preglednico).

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

414

Vogal	Koordinata X	Koordinata Y
А	Točka 1 velika točka 3	Točka 1 mala točka 3
В	Točka 1 mala točka 3	Točka 1 mala točka 3
С	Točka 1 mala točka 3	Točka 1 velika točka 3
D	Točka 1 velika točka 3	Točka 1 velika točka 3

- 1. merilna točka 1. osi Q263 (absolutna): koordinata prve tipalne točke na glavni osi obdelovalne ravnine
- 1. merilna točka 2. osi Q264 (absolutna): koordinata prve tipalne točke na pomožni osi obdelovalne ravnine
- Odmik 1. osi Q326 (postopen): odmik med prvo in drugo merilno točko v glavni osi obdelovalne ravnine
- 3. merilna točka 1. osi Q296 (absolutna): koordinata tretje tipalne točke v glavni osi obdelovalne ravnine
- 3. merilna točka 2. osi Q297 (absolutna): koordinata tretje tipalne točke v pomožni osi obdelovalne ravnine
- Odmik 2. osi Q327 (postopen): odmik med tretjo in četrto merilno točko v pomožni osi obdelovalne ravnine
- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
- Premik na varno višino Q301: določite, kako naj se tipalni sistem premika med merilnimi točkami:
 0: premik med merilnimi točkami na merilni višini
 1: premik med merilnimi točkami na varni višini
- Izvedba osnovne rotacije Q304: TNC naj poševni položaj obdelovanca odpravi z osnovno rotacijo:
 0: brez izvedbe osnovne rotacije
 - 1: izvedba osnovne rotacije

- Številka ničelne točke v preglednici Q305: vnesite številko v preglednici ničelnih točk/prednastavitev, pod katero naj TNC shrani koordinate središča vogala. Če vnesete Q305=0, TNC prikaz samodejno nastavi tako, da je nova referenčna točka v središču vogala
- Nova referenčna točka glavne osi Q331 (absolutna): koordinata v glavni osi, na katero naj TNC postavi zaznano središče vogala. Osnovna nastavitev = 0
- Nova referenčna točka pomožne osi Q332 (absolutna): koordinata v pomožni osi, na katero naj TNC postavi zaznano središče vogala. Osnovna nastavitev = 0
- Prenos izmerjene vrednosti (0,1) Q303: določite, ali naj bo zaznana referenčna točka shranjena v preglednico ničelnih točk ali v preglednico prednastavitev:
 -1: ne vnesite te vrednosti! To vrednost vnese TNC, če se naložijo stari programi (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64)
 0: beleženje zaznane referenčne točke v izbrano preglednico ničelnih točk. Referenčni sistem je izbran koordinatni sistem obdelovanca
 1: beleženje zaznane referenčne točke v preglednico prednastavitev. Referenčni sistem je koordinatni sistem stroja (REF sistem)
- Odčitavanje na osi tipalnega sistema Q381: določite, ali naj TNC na os tipalnega sistema postavi tudi referenčno točko:
 - 0: referenčna točka ne bo na osi tipalnega sistema1: referenčna točka bo na osi tipalnega sistema
- Odčitavanje na osi tipalnega sistema: koor. 1. osi Q382 (absolutna): koordinata tipalne točke na glavni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Odčitavanje na osi tipalnega sistema: koor. 2. osi Q383 (absolutna): koordinata tipalne točke na pomožni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Odčitavanje na osi tipalnega sistema: koor. 3. osi Q384 (absolutna): koordinata tipalne točke na osi tipalnega sistema, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Nova referenčna točka osi tipalnega sistema Q333 (absolutna): koordinata na osi tipalnega sistema, na katero naj TNC postavi referenčno točko. Osnovna nastavitev = 0

Példa: NC-nizi

5 TCH PROBE ZNOTR.	414 REF. TOČ. VOGALA
Q263=+37	;1. TOČKA 1. OSI
Q264=+7	;1. TOČKA 2. OSI
Q326=50	;ODMIK 1. OSI
Q296=+95	;3. TOČKA 1. OSI
Q297=+25	;3. TOČKA 2. OSI
Q327=45	;ODMIK 2. OSI
Q261=-5	;MERILNA VIŠINA
Q320=0	;VARNOSTNA RAZDALJA
Q260=+20	;VARNA VIŠINA
Q301=0	;PREMIK NA VARNO VIŠINO
Q304=0	;OSNOVNA ROTACIJA
Q305=7	;ŠT. V PREGLEDNICI
Q331=+0	;REF. TOČKA
Q332=+0	;REF. TOČKA
Q303=+1	;PRENOS IZMERJENE VRED.
Q381=1	;ODČIT. OSI TIPAL. SIST.
Q382=+85	;1. KOORD. ZA OS TIPAL. SIST.
Q383=+50	;2. KOORD. ZA OS TIPAL. SIST.
Q384=+0	;3. KOORD. ZA OS TIPAL. SIST.

Q333=+0 ;REF. TOČKA

REFERENČNA TOČKA VOGALA ZNOTRAJ (cikel tipalnega sistema 415, DIN/ISO: G415)

Cikel tipalnega sistema 415 zazna sečišče dveh ravnih črt ga nastavi za referenčno točko. TNC lahko sečišče zabeleži tudi v preglednico ničelnih točk ali v preglednico prednastavitev.

- 1 TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na prvo tipalno točko 1 (oglejte si sliko desno zgoraj), ki jo definirate v ciklu. TNC pri tem tipalni sistem premakne za varnostni odmik v nasprotni smeri od posamezne smeri odčitavanja
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in izvede prvi postopek odčitavanja z nastavljenim pomikom pri odčitavanju (stolpec F). Smer postopka odčitavanja poteka glede na številke kota

TNC meri prvo ravno črto vedno v smeri pomožne osi obdelovalne ravnine.

- 3 Tipalni sistem premakne k naslednji tipalni točki 2, kjer izvede drugi postopek odčitavanja
- 4 TNC tipalni sistem premakne na tipalno točko 3 in nato še na tipalno točko 4, kjer izvede tretji in četrti postopek odčitavanja
- 5 TNC ob kocu tipalni sistem premakne nazaj na varno višino in obdela zaznano referenčno točko glede na parametra cikla Q303 in Q305 (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64) ter koordinate zaznanega vogala shrani v Q-parametre, navedene v nadaljevanju
- 6 TNC lahko nato s posebnim tipalnim postopkom zazna še referenčno točko v osi tipalnega sistema

Številka parametra	Pomen
Q151	Dejanska vrednost vogala glavne osi
Q152	Dejanska vrednost vogala pomožne osi

Pred programiranjem upoštevajte

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

- 1. merilna točka 1. osi Q263 (absolutna): koordinata prve tipalne točke na glavni osi obdelovalne ravnine
- 1. merilna točka 2. osi Q264 (absolutna): koordinata prve tipalne točke na pomožni osi obdelovalne ravnine
- Odmik 1. osi Q326 (postopen): odmik med prvo in drugo merilno točko v glavni osi obdelovalne ravnine
- Odmik 2. osi Q327 (postopen): odmik med tretjo in četrto merilno točko v pomožni osi obdelovalne ravnine
- Vogal Q308: številka vogala, v katerega naj TNC postavi referenčno točko
- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
- Premik na varno višino Q301: določite, kako naj se tipalni sistem premika med merilnimi točkami:
 0: premik med merilnimi točkami na merilni višini
 1: premik med merilnimi točkami na varni višini
- Izvedba osnovne rotacije Q304: TNC naj poševni položaj obdelovanca odpravi z osnovno rotacijo:
 0: brez izvedbe osnovne rotacije
 - 1: izvedba osnovne rotacije

- Številka ničelne točke v preglednici Q305: vnesite številko v preglednici ničelnih točk/prednastavitev, pod katero naj TNC shrani koordinate središča vogala. Če vnesete Q305=0, TNC prikaz samodejno nastavi tako, da je nova referenčna točka v središču vogala
- Nova referenčna točka glavne osi Q331 (absolutna): koordinata v glavni osi, na katero naj TNC postavi zaznano središče vogala. Osnovna nastavitev = 0
- Nova referenčna točka pomožne osi Q332 (absolutna): koordinata v pomožni osi, na katero naj TNC postavi zaznano središče vogala. Osnovna nastavitev = 0
- Prenos izmerjene vrednosti (0,1) Q303: določite, ali naj bo zaznana referenčna točka shranjena v preglednico ničelnih točk ali v preglednico prednastavitev:
 -1: ne vnesite te vrednosti! To vrednost vnese TNC, če se naložijo stari programi (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64)
 0: beleženje zaznane referenčne točke v izbrano preglednico ničelnih točk. Referenčni sistem je izbran koordinatni sistem obdelovanca
 1: beleženje zaznane referenčne točke v preglednico prednastavitev. Referenčni sistem je koordinatni sistem stroja (REF sistem)
- Odčitavanje na osi tipalnega sistema Q381: določite, ali naj TNC na os tipalnega sistema postavi tudi referenčno točko:

0: referenčna točka ne bo na osi tipalnega sistema1: referenčna točka bo na osi tipalnega sistema

- Odčitavanje na osi tipalnega sistema: koor. 1. osi Q382 (absolutna): koordinata tipalne točke na glavni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Odčitavanje na osi tipalnega sistema: koor. 2. osi Q383 (absolutna): koordinata tipalne točke na pomožni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Odčitavanje na osi tipalnega sistema: koor. 3. osi Q384 (absolutna): koordinata tipalne točke na osi tipalnega sistema, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Nova referenčna točka osi tipalnega sistema Q333 (absolutna): koordinata na osi tipalnega sistema, na katero naj TNC postavi referenčno točko. Osnovna nastavitev = 0

5 TCH PROBE 4	415 REF. TOČ. VOGALA ZUNAJ
Q263=+37	;1. TOČKA 1. OSI
Q264=+7	;1. TOČKA 2. OSI
Q326=50	;ODMIK 1. OSI
Q296=+95	;3. TOČKA 1. OSI
Q297=+25	;3. TOČKA 2. OSI
Q327=45	;ODMIK 2. OSI
Q261=-5	;MERILNA VIŠINA
Q320=0	;VARNOSTNA RAZDALJA
Q260=+20	;VARNA VIŠINA
Q301=0	;PREMIK NA VARNO VIŠINO
Q304=0	;OSNOVNA ROTACIJA
Q305=7	;ŠT. V PREGLEDNICI
Q331=+0	;REF. TOČKA
Q332=+0	;REF. TOČKA
Q303=+1	;PRENOS IZMERJENE VRED.
Q381=1	;ODČIT. OSI TIPAL. SIST.
Q382=+85	;1. KOORD. ZA OS TIPAL. SIST.
Q383=+50	;2. KOORD. ZA OS TIPAL. SIST.
Q384=+0	;3. KOORD. ZA OS TIPAL. SIST.
$0333 = \pm 0$	·REE ΤΟČΚΑ

REFERENČNA TOČKA SREDIŠČA KROŽNE LUKNJE (cikel tipalnega sistema 416, DIN/ISO: G416)

Cikel tipalnega sistema 416 z merjenjem treh vrtin izračuna središče krožne luknje in ga postavi za referenčno točko. TNC lahko središče zabeleži tudi v preglednico ničelnih točk ali v preglednico prednastavitev.

- 1 TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na vneseno središče prve vrtine1
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in s štirimi postopki odčitavanja zazna središče prve vrtine
- 3 Tipalni sistem se premakne nazaj na varno višino in se pozicionira na vneseno središče druge vrtine 2
- 4 Tipalni sistem se nato premakne na nastavljeno merilno višino in s štirimi postopki odčitavanja zazna središče druge vrtine
- 5 Tipalni sistem se premakne nazaj na varno višino in se pozicionira na vneseno središče tretje vrtine 3
- 6 Tipalni sistem se nato premakne na nastavljeno merilno višino in s štirimi postopki odčitavanja zazna središče tretje vrtine
- 7 TNC ob kocu tipalni sistem premakne nazaj na varno višino in obdela zaznano referenčno točko glede na parametra cikla Q303 in Q305 (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64) ter dejanske vrednosti shrani v Q-parametre, navedene v nadaljevanju
- 8 TNC lahko nato s posebnim tipalnim postopkom zazna še referenčno točko v osi tipalnega sistema

Številka parametra	Pomen
Q151	Dejanska vrednost središča glavne osi
Q152	Dejanska vrednost središča pomožne osi
Q153	Dejanski premer krožne luknje

Pred programiranjem upoštevajte

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

3.2 Samodejno zaznavanje referen<mark>čn</mark>ih točk

416

- Središče 1. osi Q273 (absolutno): središče krožne luknje (želena vrednost) v glavni osi obdelovalne ravnine.
- Središče 2. osi Q274 (absolutno): središče krožne luknje (želena vrednost) v pomožne osi obdelovalne ravnine.
- Želeni premer Q262: vnesite približni premer krožne luknje Manjši kot je premer vrtine, natančneje je treba vnesti želeni premer
- Kot 1. vrtine Q291 (absoluten): polarne koordinate kota prvega središča vrtine v obdelovalni ravnini
- Kot 2. vrtine Q292 (absoluten): polarne koordinate kota drugega središča vrtine v obdelovalni ravnini
- Kot 3. vrtine Q293 (absoluten): polarne koordinate kota tretjega središča vrtine v obdelovalni ravnini
- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
- Številka ničelne točke v preglednici Q305: vnesite številko v preglednici ničelnih točk/prednastavitev, pod katero naj TNC shrani koordinate središča krožne luknje. Če vnesete Q305=0, TNC prikaz samodejno nastavi tako, da je nova referenčna točka v središču krožne luknje
- Nova referenčna točka glavne osi Q331 (absolutna): koordinata v glavni osi, na katero naj TNC postavi zaznano središče krožne luknje. Osnovna nastavitev = 0
- Nova referenčna točka pomožne osi Q332 (absolutna): koordinata v pomožni osi, na katero naj TNC postavi zaznano središče krožne luknje. Osnovna nastavitev = 0

Prenos izmerjene vrednosti (0,1) Q303: določite, ali naj bo zaznana referenčna točka shranjena v preglednico ničelnih točk ali v preglednico prednastavitev:
 -1: ne vnesite te vrednosti! To vrednost vnese TNC, če se naložijo stari programi (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64)
 0: beleženje zaznane referenčne točke v izbrano preglednico ničelnih točk. Referenčni sistem je izbran koordinatni sistem obdelovanca
 1: beleženje zaznane referenčne točke v preglednico prednastavitev.

Odčitavanje na osi tipalnega sistema Q381: določite, ali naj TNC na os tipalnega sistema postavi tudi referenčno točko:

sistem stroja (REF sistem)

0: referenčna točka ne bo na osi tipalnega sistema
1: referenčna točka bo na osi tipalnega sistema

Odčitavanje na osi tipalnega sistema: koor. 1. osi Q382 (absolutna): koordinata tipalne točke na glavni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.

Odčitavanje na osi tipalnega sistema: koor. 2. osi Q383 (absolutna): koordinata tipalne točke na pomožni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.

Odčitavanje na osi tipalnega sistema: koor. 3. osi Q384 (absolutna): koordinata tipalne točke na osi tipalnega sistema, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.

Nova referenčna točka osi tipalnega sistema Q333 (absolutna): koordinata na osi tipalnega sistema, na katero naj TNC postavi referenčno točko. Osnovna nastavitev = 0

5 TCH PROBE 416 REF. TOČ. SRED. KROŽ LUKNJE
Q273=+50 ;SREDINA 1. OSI
Q274=+50 ;SREDINA 2. OSI
Q262=90 ;ŽELENI PREMER
Q291=+34 ;KOT 1. VRTINE
Q292=+70 ;KOT 2. VRTINE
Q293=+210;KOT 3. VRTINE
Q261=-5 ;MERILNA VIŠINA
Q260=+20 ;VARNA VIŠINA
Q305=12 ;ŠT. V PREGLEDNICI
Q331=+0 ;REF. TOČKA
Q332=+0 ;REF. TOČKA
Q303=+1 ;PRENOS IZMERJENE VRED.
Q381=1 ;ODČIT. OSI TIPAL. SIST.
Q382=+85 ;1. KOORD. ZA OS TIPAL. SIST.
Q383=+50 ;2. KOORD ZA OS TIPAL. SIST
Q384=+0 ;3. KOORD ZA OS TIPAL. SIST
0333=+0 :REF. TOČKA

REFERENČNA TOČKA OSI tipalnega SISTEMA (cikel tipalnega sistema 417, DIN/ISO: G417)

Cikel tipalnega sistema 417 meri poljubno koordinato na osi tipalnega sistema in jo postavi za referenčno točko. TNC lahko izmerjeno koordinato zabeleži tudi v preglednico ničelnih točk ali v preglednico prednastavitev.

- TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na programirano točko zagona postopka odčitavanja 1. TNC tipalni sistem za varnostno razdaljo premakne v smeri pozitivne osi tipalnega sistema
- 2 Tipalni sistem se nato v osi tipalnega sistema premakne na vneseno koordinato tipalne točke 1, kjer z enostavnim postopkom odčitavanja zazna dejanski položaj
- 3 TNC ob kocu tipalni sistem premakne nazaj na varno višino in obdela zaznano referenčno točko glede na parametra cikla Q303 in Q305 (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64) ter dejansko vrednost shrani v Q-parameter, naveden v nadaljevanju

Številka parametra	Pomen
Q160	Dejanska vrednost izmerjene točke

Pred programiranjem upoštevajte

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema. TNC nato referenčno os postavi na to os.

417

- 1. merilna točka 1. osi Q263 (absolutna): koordinata prve tipalne točke na glavni osi obdelovalne ravnine
- 1. merilna točka 2. osi Q264 (absolutna): koordinata prve tipalne točke na pomožni osi obdelovalne ravnine
- 1. merilna točka 3. osi Q294 (absolutna): koordinata prve tipalne točke v osi tipalnega sistema
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)

- Številka ničelne točke v preglednici Q305: vnesite številko v preglednici ničelnih točk/prednastavitev, pod katero naj TNC shrani koordinato. Če vnesete Q305=0, TNC prikaz samodejno nastavi tako, da je nova referenčna točka na odčitani površini
- Nova referenčna točka osi tipalnega sistema Q333 (absolutna): koordinata na osi tipalnega sistema, na katero naj TNC postavi referenčno točko. Osnovna nastavitev = 0
- Prenos izmerjene vrednosti (0,1) Q303: določite, ali naj bo zaznana referenčna točka shranjena v preglednico ničelnih točk ali v preglednico prednastavitev:
 -1: ne vnesite te vrednosti! To vrednost vnese TNC, če se naložijo stari programi (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64)
 0: beleženje zaznane referenčne točke v izbrano preglednico ničelnih točk. Referenčni sistem je izbran koordinatni sistem obdelovanca
 1: beleženje zaznane referenčne točke v preglednico

prednastavitev. Referenčni sistem je koordinatni sistem stroja (REF sistem)

5 TCH PROBE 417 REF. TOČ. OSI TIPAL. SIST.		
Q263=+25	;1. TOČKA 1. OSI	
Q264=+25	;1. TOČKA 2. OSI	
Q294=+25	;1. TOČKA 3. OSI	
Q320=0	;VARNOSTNA RAZDALJA	
Q260=+50	;VARNA VIŠINA	
Q305=0	;ŠT. V PREGLEDNICI	
Q333=+0	;REF. TOČKA	
$0202 - \pm 1$	DENOS IZMEDIENE VDED	

REFERENČNA TOČKA SREDIŠČA 4 VRTIN (cikel tipalnega sistema 418, DIN/ISO: G418)

Cikel tipalnega sistema 418 izračuna sečišče povezovalnih črt med dvema središčema vrtin in ga postavi za referenčno točko. TNC lahko sečišče zabeleži tudi v preglednico ničelnih točk ali v preglednico prednastavitev.

- 1 TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na središče prve vrtine1
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in s štirimi postopki odčitavanja zazna središče prve vrtine
- 3 Tipalni sistem se premakne nazaj na varno višino in se pozicionira na vneseno središče druge vrtine 2
- 4 Tipalni sistem se nato premakne na nastavljeno merilno višino in s štirimi postopki odčitavanja zazna središče druge vrtine
- 5 TNC ponovi postopek 3 in 4 za vrtini 3 in 4
- 6 TNC ob koncu tipalni sistem premakne nazaj na varno višino in obdela zaznano referenčno točko glede na parametra cikla Q303 in Q305 (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64). TNC referenčno točko izračuna kot sečišče povezovalnih črt središča vrtin 1/3 in 2/4 in dejanske vrednosti shrani v Q-parametrih, navedenih v nadaljevanju.
- 7 TNC lahko nato s posebnim tipalnim postopkom zazna še referenčno točko v osi tipalnega sistema

Številka parametra	Pomen
Q151	Dejanska vrednost sečišča glavne osi
Q152	Dejanska vrednost sečišča pomožne osi

Pred programiranjem upoštevajte

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

1. središče 1. osi Q268 (absolutno): središče 1. vrtine v glavni osi obdelovalne ravnine

*

- I. središče 2. osi Q269 (absolutno): središče 1. vrtine v pomožni osi obdelovalne ravnine
- 2. središče 1. osi Q270 (absolutno): središče 2. vrtine v glavni osi obdelovalne ravnine
- 2. središče 2. osi Q271 (absolutno): središče 2. vrtine v pomožni osi obdelovalne ravnine
- 3. središče 1. osi Q316 (absolutno): središče 3. vrtine v glavni osi obdelovalne ravnine
- 3. središče 2. osi Q317 (absolutno): središče 3. vrtine v pomožni osi obdelovalne ravnine
- 4. središče 1. osi Q318 (absolutno): središče 4. vrtine v glavni osi obdelovalne ravnine
- 4. središče 2. osi Q319 (absolutno): središče 4. vrtine v pomožni osi obdelovalne ravnine
- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)

- Številka ničelne točke v preglednici Q305: vnesite številko v preglednici ničelnih točk/prednastavitev, pod katero naj TNC shrani koordinate sečišča povezovalnih črt. Če vnesete Q305=0, TNC prikaz samodejno nastavi tako, da je nova referenčna točka v sečišču povezovalnih črt
- Nova referenčna točka glavne osi Q331 (absolutna): koordinata v glavni osi, na katero naj TNC postavi zaznano sečišče povezovalnih črt. Osnovna nastavitev = 0
- Nova referenčna točka pomožne osi Q332 (absolutna): koordinata v pomožni osi, na katero naj TNC postavi zaznano sečišče povezovalnih črt. Osnovna nastavitev = 0
- Prenos izmerjene vrednosti (0,1) Q303: določite, ali naj bo zaznana referenčna točka shranjena v preglednico ničelnih točk ali v preglednico prednastavitev:
 -1: ne vnesite te vrednosti! To vrednost vnese TNC, če se naložijo stari programi (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64)
 0: beleženje zaznane referenčne točke v izbrano preglednico ničelnih točk. Referenčni sistem je izbran koordinatni sistem obdelovanca
 1: beleženje zaznane referenčne točke v preglednico prednastavitev. Referenčni sistem je koordinatni sistem stroja (REF sistem)
- Odčitavanje na osi tipalnega sistema Q381: določite, ali naj TNC na os tipalnega sistema postavi tudi referenčno točko:

0: referenčna točka ne bo na osi tipalnega sistema1: referenčna točka bo na osi tipalnega sistema

- Odčitavanje na osi tipalnega sistema: koor. 1. osi Q382 (absolutna): koordinata tipalne točke na glavni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Odčitavanje na osi tipalnega sistema: koor. 2. osi Q383 (absolutna): koordinata tipalne točke na pomožni osi obdelovalne ravnine, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Odčitavanje na osi tipalnega sistema: koor. 3. osi Q384 (absolutna): koordinata tipalne točke na osi tipalnega sistema, na katero bo postavljena referenčna točka na osi tipalnega sistema. Aktivno samo, če je Q381 = 1.
- Nova referenčna točka osi tipalnega sistema Q333 (absolutna): koordinata na osi tipalnega sistema, na katero naj TNC postavi referenčno točko. Osnovna nastavitev = 0

5 TCH PROBE 418 REF. TOČ. 4 VRTIN
Q268=+20 ;1. SREDIŠČE 1. OSI
Q269=+25 ;1. SREDIŠČE 2. OSI
Q270=+150;2. SREDIŠČE 1. OSI
Q271=+25 ;2. SREDIŠČE 2. OSI
Q316=+150;3. SREDIŠČE 1. OSI
Q317=+85 ;3. SREDIŠČE 2. OSI
Q318=+22 ;4. SREDIŠČE 1. OSI
Q319=+80 ;4. SREDIŠČE 2. OSI
Q261=-5 ;MERILNA VIŠINA
Q260=+10 ;VARNA VIŠINA
Q305=12 ;ŠT. V PREGLEDNICI
Q331=+0 ;REF. TOČKA
Q332=+0 ;REF. TOČKA
Q303=+1 ;PRENOS IZMERJENE VRED.
Q381=1 ;ODČIT. OSI TIPAL. SIST.
Q382=+85 ;1. KOORD. ZA OS TIPAL.
5151.
Q383=+50 ;2. KOORD ZA OS TIPAL. SIST
Q384=+0 ;3. KOORD ZA OS TIPAL. SIST
0333=+0 ·RFF ΤΟČΚΔ

REFERENČNA TOČKA POSAMEZNE OSI (cikel tipalnega sistema 419, DIN/ISO: G419)

Cikel tipalnega sistema 419 meri poljubno koordinato v osi tipalnega sistema, ki jo je mogoče izbrati, in jo postavi za referenčno točko. TNC lahko izmerjeno koordinato zabeleži tudi v preglednico ničelnih točk ali v preglednico prednastavitev.

- TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na programirano točko zagona postopka odčitavanja 1. TNC pri tem tipalni sistem premakne za varnostni odmik v nasprotni smeri od programirane smeri odčitavanja
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in z enostavnim odčitavanjem zazna dejanski položaj
- 3 TNC ob kocu tipalni sistem premakne nazaj na varno višino in obdela zaznano referenčno točko glede na parametra cikla Q303 in Q305 (oglejte si "Shranjevanje izračunane referenčne točke" na strani 64)

Pred programiranjem upoštevajte

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

- 1. merilna točka 1. osi Q263 (absolutna): koordinata prve tipalne točke na glavni osi obdelovalne ravnine
- 1. merilna točka 2. osi Q264 (absolutna): koordinata prve tipalne točke na pomožni osi obdelovalne ravnine
- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)

- Merilna os (1...3: 1=glavna os) Q272: os, v kateri naj se izvede meritev:
 - 1: glavna os = merilna os
 - 2: pomožna os = merilna os
 - **3**: os tipalnega sistema = merilna os

Dodelitve osi Aktivna os tipalnega sistema: Q272 = 3	Pripadajoča glavna os: Q272 = 1	Pripadajoča pomožna os: Q272 = 2
Z	Х	Y
Y	Z	Х
Х	Y	Z

- Smer premika Q267: smer, v kateri naj se tipalni sistem primakne k obdelovancu:
 -1: negativna smer premika
 - +1:pozitivna smer premika
- Številka ničelne točke v preglednici Q305: vnesite številko v preglednici ničelnih točk/prednastavitev, pod katero naj TNC shrani koordinato. Če vnesete Q305=0, TNC prikaz samodejno nastavi tako, da je nova referenčna točka na odčitani površini
- Nova referenčna točka Q333 (absolutna): koordinata, na katero naj TNC postavi referenčno točko. Osnovna nastavitev = 0
- Prenos izmerjene vrednosti (0,1) Q303: določite, ali naj bo zaznana referenčna točka shranjena v preglednico ničelnih točk ali v preglednico prednastavitev:
 -1: ne vnesite te vrednosti! Oglejte si "Shranjevanje izračunane referenčne točke", stran 64.
 0: beleženje zaznane referenčne točke v izbrano preglednico ničelnih točk. Referenčni sistem je izbran koordinatni sistem obdelovanca
 1: beleženje zaznane referenčne točke v preglednico prednastavitev.

Példa: NC-nizi

5 TCH PROBE - OSI	419 REF. TOČ. POSAMEZNE
Q263=+25	;1. TOČKA 1. OSI
Q264=+25	;1. TOČKA 2. OSI
Q261=+25	;MERILNA VIŠINA
Q320=0	;VARNOSTNA RAZDALJA
Q260=+50	;VARNA VIŠINA
Q272=+1	;MERILNA OS
Q267=+1	;SMER PREMIKA
Q305=0	;ŠT. V PREGLEDNICI
Q333=+0	;REF. TOČKA
Q303=+1	;PRENOS IZMERJENE VRED.

1

Primer: postavitev referenčne točke v središče kolobarja in zgornji rob obdelovanca

0 BEGIN PGM CYC413 MM	
1 TOOL CALL 69 Z	Priklic orodja 0 za določitev osi tipalnega sistema

2 TCH PROBE 413 REF. TOČ. KROGA ZUNAJ	
Q321=+25 ;SREDIŠČE 1. OSI	Središče kroga: koordinata X
Q322=+25 ;SREDIŠČE 2. OSI	Središče kroga: koordinata Y
Q262=30 ;ŽELENI PREMER	Premer kroga
Q325=+90 ;KOT ZAGONA	Polarne koordinate kota za 1. tipalno točko
Q247=+45 ;KOTNI KORAK	Kotni korak za izračun tipalnih točk od 2 do 4
Q261=-5 ;MERILNA VIŠINA	Koordinata na osi tipalnega sistema, na kateri poteka meritev
Q320=2 ;VARNOSTNA RAZDALJA	Varnostni odmik poleg stolpca SET_UP
Q260=+10 ;VARNA VIŠINA	Višina, na kateri se lahko os tipalnega sistema premika brez nevarnosti kolizije
Q301=0 ;PREMIK NA VARNO VIŠINO	Brez premika na varno višino med dvema merilnima točkama
Q305=0 ;ŠT. V PREGLEDNICI	Nastavitev prikaza
Q331=+0 ;REF. TOČKA	Nastavitev prikaza v X na 0
Q332=+10 ;REF. TOČKA	Nastavitev prikaza v Y na 10
Q303=+0 ;PRENOS IZMERJENE VRED.	Brez funkcije zaradi nastavitve prikaza
Q381=1 ;ODČIT. OSI TIPAL. SIST.	Določitev referenčne točke na osi tipalnega sistema
Q382=+25 ;1. KOORD. ZA OS TIPAL. SIST.	Koordinata X tipalne točke
Q383=+25 ;2. KOORD ZA OS TIPAL. SIST	Koordinata Y tipalne točke
Q384=+25 ;3. KOORD ZA OS TIPAL. SIST	Koordinata Z tipalne točke
Q333=+0 ;REF. TOČKA	Nastavitev prikaza v Z na 0
3 CALL PGM 1860	Priklic obdelovalnega programa
4 END PGM CYC413 MM	

Primer: postavitev referenčne točke na zgornji rob obdelovanca in središče krožne luknje

Beleženje izmerjenega središča krožne luknje za poznejšo uporabo v preglednico prednastavitev.

0 BEGIN PGM CYC416 MM	
1 TOOL CALL 69 Z	Priklic orodja 0 za določitev osi tipalnega sistema
2 TCH PROBE 417 REF. TOČ. OSI TIPAL. SIST.	Definicija cikla za določitev referenčne točke na osi tipalnega sistema
Q263=+7,5;1. TOČKA 1. OSI	Tipalna točka: koordinata X
Q264=+7,5;1. TOČKA 2. OSI	Tipalna točka: koordinata Y
Q294=+25 ;1. TOČKA 3. OSI	Tipalna točka: koordinata Z
Q320=0 ;VARNOSTNA RAZDALJA	Varnostni odmik poleg stolpca SET_UP
Q260=+50 ;VARNA VIŠINA	Višina, na kateri se lahko os tipalnega sistema premika brez nevarnosti kolizije
Q305=1 ;ŠT. V PREGLEDNICI	Beleženje koordinate Z v 1. vrstico
Q333=+0 ;REF. TOČKA	Nastavitev osi tipalnega sistema 0
Q303=+1 ;PRENOS IZMERJENE VRED.	Shranjevanje izračunane referenčne točke, ki se nanaša na nespremenljiv strojni koordinatni sistem (REF sistem) v preglednico prednastavitev PRESET.PR

• (

3 TCH PROBE 416 REF. TOČ. SRED. KROŽ LUKNJE	
Q273=+35 ;SREDIŠČE 1. OSI	Središče krožne luknje: koordinata X
Q274=+35 ;SREDIŠČE 2. OSI	Središče krožne luknje: koordinata Y
Q262=50 ;ŽELENI PREMER	Premer krožne luknje
Q291=+90 ;KOT 1. VRTINE	Polarne koordinate kota za 1. središče vrtine 1
Q292=+180;KOT 2. VRTINE	Polarne koordinate kota za 2. središče vrtine 2
Q293=+270;KOT 3. VRTINE	Polarne koordinate kota za 3. središče vrtine 3
Q261=+15 ;MERILNA VIŠINA	Koordinata na osi tipalnega sistema, na kateri poteka meritev
Q260=+10 ;VARNA VIŠINA	Višina, na kateri se lahko os tipalnega sistema premika brez nevarnosti kolizije
Q305=1 ;ŠT. V PREGLEDNICI	Zapisovanje središča krožne luknje (X in Y) v 1. vrstico
Q331=+0 ;REF. TOČKA	
Q332=+0 ;REF. TOČKA	
Q303=+1 ;PRENOS IZMERJENE VRED.	Shranjevanje izračunane referenčne točke, ki se nanaša na nespremenljiv strojni koordinatni sistem (REF sistem) v preglednico prednastavitev PRESET.PR
Q381=0 ;ODČIT. OSI TIPAL. SIST.	Brez določitve referenčne točke na osi tipalnega sistema
Q382=+0 ;1. KOORD. ZA OS TIPAL. SIST.	Brez funkcije
Q383=+0 ;2. KOORD. ZA OS TIPAL. SIST.	Brez funkcije
Q384=+0 ;3. KOORD. ZA OS TIPAL. SIST.	Brez funkcije
Q333=+0 ;REF. TOČKA	Brez funkcije
4 CYCL DEF 247 DOLOČITEV REFERENČNE TOČKE	Aktiviranje nove prednastavitve s ciklom 247
Q339=1 ;ŠTEVILKA REFERENČNE TOČKE	
6 CALL PGM 1860	Priklic obdelovalnega programa
7 END PGM CYC416 MM	

3.3 Samodejna meritev obdelovancev

Pregled

Na voljo je dvanajst ciklov, s katerimi lahko TNC samodejno izvede meritev obdelovancev:

Cikel	Gumb	Stran
0 REFERENČNA RAVNINA merjenje koordinate v izbirni osi	8	Stran 109
1 REFERENČNA POLARNA RAVNINA merjenje točke, smer odčitavanja pod kotom		Stran 110
420 MERJENJE KOTA merjenje kota v obdelovalni ravnini	420	Stran 111
421 MERJENJE VRTINE merjenje položaja in premera vrtine	421	Stran 113
422 MERJENJE KROGA ZUNAJ merjenje položaja in premera okroglega čepa	422	Stran 116
423 MERJENJE PRAVOKOTNIKA ZNOTRAJ merjenje položaja, dolžine in širine pravokotnega žepa	423	Stran 119
424 MERJENJE PRAVOKOTNIKA ZUNAJ merjenje položaja, dolžine in širine pravokotnega čepa	424	Stran 122
425 MERJENJE ŠIRINE ZNOTRAJ (2. orodna vrstica) merjenje notranje širine utora	425	Stran 125
426 MERJENJE PREČKE ZUNAJ (2. orodna vrstica) merjenje zunanje širine prečke	426	Stran 127
427 MERJENJE KOORDINATE (2. orodna vrstica) merjenje poljubne koordinate v izbirni osi	427	Stran 129
430 MERJENJE KROŽNE LUKNJE (2. orodna vrstica) merjenje položaja in premera krožne luknje	430	Stran 132
431 MERJENJE RAVNINE (2. orodna vrstica) merjenje osnega kota A in B ravnine	431	Stran 135

Beleženje rezultatov meritev

Za vse cikle, s katerimi je mogoče obdelovance izmeriti samodejno (izjemi sta cikla 0 in 1), lahko TNC ustvari protokol meritve. V posameznem tipalnem ciklu lahko definirate, ali naj TNC

- protokol meritve shrani v datoteko
- protokol meritve prikaže na zaslonu in prekine programski tek
- protokola meritve ne sestavi

Če želite merilni protokol odložiti v datoteko, TNC privzeto shrani podatke v datotečni obliki ASCII v imenik TNC:\..

Vse izmerjene vrednosti, shranjene v datoteki protokola, se nanašajo na ničelno točko, ki je aktivna med izvajanjem posameznega cikla.

Če želite protokol meritve prenesti s podatkovnim vmesnikom, uporabite HEIDENHAIN programsko opremo za prenos podatkov TNCremo.

Primer datoteke s protokolom za tipalni cikel 421:

protokol meritve za tipalni cikel 421 - merjenje vrtine

Datum: 30-06-2005 Ura: 6:55:04 Merilni program: TNC:\GEH35712\CHECK1.H

Želene vrednosti:Središče glavne osi: 50,0000 Središče pomožne osi: 65,0000 Premer: 12,0000

Predpisane mejne vrednosti:Največja vrednost središča glavne osi: 50,1000 Najmanjša vrednost središča glavne osi: 49,9000 Največja vrednost pomožne osi: 65,1000 Najmanjša vrednost središča pomožne osi:64,9000 Največja dimenzija vrtine: 12,0450 Najmanjša dimenzija vrtine: 12,0000

Dejanske vrednosti:Središče glavne osi: 50,0810 Središče pomožne osi: 64,9530 Premer: 12,0259

Odstopanja:središče glavne osi: 0,0810 Središče pomožne osi: -0,0470 Premer: 0,0259

Ostali rezultati meritev: merilna višina: -5.0000

Konec protokola meritve

Rezultati meritev v Q-parametrih

Rezultate meritev posameznega tipalnega cikla TNC shrani v globalne Q-parametre od Q150 do Q160. Odstopanja od želene vrednosti so shranjena v parametrih od Q161 do Q166. Upoštevajte preglednico parametrov rezultatov, ki je prikazana pri vsakem opisu cikla.

TNC pri definiranju cikla v pomožni sliki posameznega cikla prikazuje tudi parametre rezultatov (oglejte si sliko zgoraj desno). Osvetljeni parameter z rezultati pripada trenutno izbranemu parametru za vnos.

Stanje meritve

Pri nekaterih ciklih je mogoče z globalnimi Q-parametri od Q180 do Q182 prikazati trenutno stanje meritve:

Stanje meritve	Vrednost parametra
Meritve so v mejah tolerance	Q180 = 1
Potrebna je dodatna obdelava	Q181 = 1
Izvržek	Q182 = 1

TNC postavi oznako za dodatno obdelavo ali odpad, ko ena od merilnih vrednosti ni v mejah tolerance. Če želite ugotoviti, kateri rezultat meritev ni v mejah tolerance, si oglejte mejne vrednosti protokola meritve, ali pa preverite rezultate meritev za vsak izdelek (od Q150 do Q160).

Nastavitev cikla 247 predvideva, da merite zunanje mere (čepa) Z ustrezno nastavitvijo največje in najmanjše mere skupaj s smerjo postopka odčitavanja lahko popravite stanje meritve.

TNC oznako stanja postavi tudi, če ne vnesete tolerančnih vrednosti ali največjih/najmanjših mer.

Nadzor tolerance

Pri večini ciklov za nadzor obdelovanca je na TNC mogoče izvajati nadzor tolerance. Če želite izvajati nadzor, je treba pri definiranju cikla določiti potrebne mejne vrednosti. Če ne želite izvajati nadzora tolerance, za te parametre vnesite 0 (= prednastavljena vrednost)

Nadzor orodja

Pri nekaterih ciklih za nadzor obdelovanca je na TNC mogoče izvajati nadzor orodja. TNC nato nadzoruje, če

- je treba zaradi odstopanja od želene vrednosti (vrednosti v Q16x) popraviti polmer orodja
- so odstopanja od želene vrednosti (vrednosti v Q16x) večja od tolerance loma orodja

Popravek orodja

Funkcija deluje samo

pri izbrani orodni preglednici

če v ciklu vključite nadzor orodja: Q330 ni enak 0

Če izvajate več korekturnih meritev, TNC posamezno izmerjena odstopanja prišteje k vrednosti, ki je shranjena v orodni preglednici.

TNC polmer orodja v stolpcu DR orodne preglednice popravi praviloma vedno, tudi če je izmerjeno odstopanje v prednastavljenih mejah tolerance. Če je potrebna dodatna obdelava, lahko to v NCprogramu preverite s parametrom Q181 (Q181=1: potrebna je dodatna obdelava).

Za cikel 427 velja še:

- če je kot merilna os definirana os aktivne obdelovalne ravnine (Q272 = 1 ali 2), TNC popravek polmera orodja izvede kot je opisano zgoraj. Smer popravljanja TNC določi glede na definirano smer premika (Q267)
- Če je kot merilna os izbrana os tipalnega sistema (Q272 = 3), TNC izvede popravek dolžine orodja

Nadzor loma orodja

- Funkcija deluje samo
- pri izbrani orodni preglednici
- v ciklu vključite nadzor orodja (Q330 ni enak 0)
- če je za vneseno številko orodja v preglednici toleranca loma RBREAK nastavljena višje od 0 (oglejte si tudi uporabniški priročnik, poglavje 5.2 »Podatki o orodju«)

Če je izmerjeno odstopanje večje od tolerance loma orodja, TNC prikaže sporočilo o napaki in zaustavi programski tek. Hkrati orodje blokira v orodni preglednici (stolpec TL = L).

Referenčni sistem za rezultate meritev

TNC vse rezultate meritev shrani v parametre rezultatov in v datoteko s protokolom v izbranem, torej zamaknjenem ali/in obrnjenem koordinatnem sistemu.

REFERENČNA RAVNINA (cikel tipalnega sistema 0, DIN/ISO: G55)

- 1 Tipalni sistem se s 3D-premikom v hitrem teku (vrednost iz stolpca FMAX) premakne v položaj 1, definiran v ciklu
- 2 Tipalni sistem nato izvede postopek odčitavanja s pomikom pri odčitavanju (stolpec F). Smer postopka odčitavanja je treba določiti v ciklu
- 3 Ko TNC zazna položaj, se tipalni sistem premakne nazaj na točko zagona postopka odčitavanja in izmerjene koordinate shrani v Qparameter. TNC poleg tega koordinate položaja, na katerem je tipalni sistem v trenutku stikalnega signala, shrani v parametre od Q115 do Q119. Za vrednosti v teh parametrih TNC ne upošteva dolžine in polmera tipalne glave

Pred programiranjem upoštevajte

Tipalni sistem predpozicionirajte tako, da pri premiku na programiran prvi položaj ne more priti do kolizije.

Št. parametra za rezultat: vnesite številko Qparametra, kateremu naj bo dodeljena koordinata

- Tipalna os/smer odčitavanja: tipalno os nastavite z izbirno tipko ali tipkovnico ASCII in vnesite predznak za smer odčitavanja. Potrdite s tipko ENT
- Želena vrednost položaja: s tipkami za izbiro osi ali tipkovnico ASCII vnesite vse koordinate za predpozicioniranje tipalnega sistema
- Konec vnosa: pritisnite tipko END.

Példa: NC-nizi

67 TCH PROBE 0.0 REFERENČNA RAVNINA O5 X-

68 TCH PROBE 0,1 X+5 Y+0 Z-5

REFERENČNA polarna RAVNINA (cikel tipalnega sistema 1)

Cikel tipalnega sistema 1 v poljubni smeri postopka odčitavanja zazna poljubni položaj na obdelovancu.

- 1 Tipalni sistem se s 3D-premikom v hitrem teku (vrednost iz stolpca FMAX) premakne v položaj 1, definiran v ciklu
- 2 Tipalni sistem nato izvede postopek odčitavanja s pomikom pri odčitavanju (stolpec F). Pri postopku odčitavanja se TNC hkrati premika v 2 oseh (odvisno od kota odčitavanja). Smer odčitavanja je treba v ciklu določiti s polarnim kotom
- 3 Ko TNC zazna položaj, se tipalni sistem premakne nazaj na točko zagona postopka odčitavanja. TNC koordinate položaja, na katerem je tipalni sistem v trenutku stikalnega signala, shrani v parametre od Q115 do Q119.

Pred programiranjem upoštevajte

Tipalni sistem predpozicionirajte tako, da pri premiku na programiran prvi položaj ne more priti do kolizije.

Tipalna os, definirana v ciklu, določa tipalno ravnino:

Tipalna os X: ravnina X/Y

Tipalna os Y: ravnina Y/Z

Tipalna os Z: ravnina Z/X

- Tipalna os: tipalno os nastavite z izbirno tipko ali tipkovnico ASCII. Potrdite s tipko ENT
- kot odčitavanja: kot glede na tipalno os, po kateri naj se premika tipalni sistem
- Želena vrednost položaja: s tipkami za izbiro osi ali tipkovnico ASCII vnesite vse koordinate za predpozicioniranje tipalnega sistema
- ▶ Konec vnosa: pritisnite tipko END.

Példa: NC-nizi

67 TCH PROBE 1,0 REFERENČNA POLARNA RAVNINA

68 TCH PROBE 1.1 KOT X: +30

69 TCH PROBE 1.2 X+5 Y+0 Z-5

MERJENJE KOTA (cikel tipalnega sistema 420, DIN/ISO: G420)

Cikel tipalnega sistema 420 zazna kot, ki ga tvorita poljubna premica črta in glavna os obdelovalne ravnine.

- 1 TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na programirano točko zagona postopka odčitavanja 1. TNC pri tem tipalni sistem premakne za varnostni odmik v nasprotni smeri od določene smeri odčitavanja
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in izvede prvi postopek odčitavanja z nastavljenim pomikom pri odčitavanju (stolpec F)
- 3 Tipalni sistem se premakne na naslednjo tipalno točko 2 in izvede drugi postopek odčitavanja
- **4** TNC tipalni sistem premakne nazaj na varno višino in zaznani kot shrani v naslednji Q-parameter:

Številka parametraPomenQ150Izmerjeni kot glede na glavno os
obdelovalne ravnine

Pred programiranjem upoštevajte

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

- 1. merilna točka 1. osi Q263 (absolutna): koordinata prve tipalne točke na glavni osi obdelovalne ravnine
- 1. merilna točka 2. osi Q264 (absolutna): koordinata prve tipalne točke na pomožni osi obdelovalne ravnine
- 2. merilna točka 1. osi Q265 (absolutna): koordinata druge tipalne točke na glavni osi obdelovalne ravnine
- 2. merilna točka 2. osi Q266 (absolutna): koordinata druge tipalne točke na pomožni osi obdelovalne ravnine
- Merilna os Q272: os, v kateri naj se izvaja meritev: 1: glavna os = merilna os
 - 2: pomožna os = merilna os
 - 3: os tipalnega sistema = merilna os

Pri osi tipalnega sistema = upoštevajte merilno os:

Q263 in Q265 nastavite enako, če želite meritev kota izvesti v smeri osi A; Q263 in Q265 nastavite drugače, če želite meritev kota izvesti v smeri B.

- Smer premika 1 Q267: smer, v kateri naj se tipalni sistem primakne k obdelovancu:
 -1: negativna smer premika
 +1:pozitivna smer premika
- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
- Premik na varno višino Q301: določite, kako naj se tipalni sistem premika med merilnimi točkami:
 0: premik med merilnimi točkami na merilni višini
 1: premik med merilnimi točkami na varni višini
- Protokol meritve Q281: določite, ali naj TNC ustvari protokol za meritev:

0: protokol meritve naj ne bo ustvarjen
1: protokol meritve naj bo ustvarjen: TNC privzeto shrani datoteko s protokolom TCHPR420.TXT v imenik TNC:\

2: prekinitev programskega teka in prikaz protokola meritve na TNC zaslonu. Nadaljevanje programa z NC-zagon

5 TCH PROBE 420 MERJENJE KOTA
Q263=+10 ;1. TOČKA 1. OSI
Q264=+10 ;1. TOČKA 2. OSI
Q265=+15 ;2. TOČKA 1. OSI
Q266=+95 ;2. TOČKA 2. OSI
Q272=1 ;MERILNA OS
Q267=-1 ;SMER PREMIKA
Q261=-5 ;MERILNA VIŠINA
Q320=0 ;VARNOSTNA RAZDALJA
Q260=+10 ;VARNA VIŠINA
Q301=1 ;PREMIK NA VARNO VIŠINO
Q281=1 ;PROTOKOL MERITVE

MERJENJE VRTINE (cikel tipalnega sistema 421, DIN/ISO: G421)

Cikel tipalnega sistema 421 zazna središče in premer vrtine (krožni žep). Če v ciklu definirate ustrezne tolerančne vrednosti, TNC izvede primerjavo želenih in dejanskih vrednosti ter odstopanja shrani v sistemskih parametrih.

- TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na točko zagona postopka odčitavanja 1. TNC izračuna tipalne točke iz vnosov v ciklu in varnostnega odmika iz stolpca SET UP v preglednici tipalnih sistemov
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in izvede prvi postopek odčitavanja z nastavljenim pomikom pri odčitavanju (stolpec F). TNC glede na programiran kot zagona samodejno določi smer odčitavanja
- 3 Tipalni sistem se nato na merilni višini ali na varni višini v krožnici premakne na naslednjo tipalno točko 2, kjer izvede drugi postopek odčitavanja
- 4 TNC tipalni sistem premakne na tipalno točko 3 in nato še na tipalno točko 4, kjer izvede tretji in četrti postopek odčitavanja
- 5 TNC ob koncu tipalni sistem premakne nazaj na varno višino ter dejanske vrednosti in odstopanja shrani v naslednje Q-parametre:

Številka parametra	Pomen
Q151	Dejanska vrednost središča glavne osi
Q152	Dejanska vrednost središča pomožne osi
Q153	Dejanski premer
Q161	Odstopanje središča glavne osi
Q162	Odstopanje središča pomožne osi
Q163	Odstopanje premera

Pred programiranjem upoštevajte

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

- Središče 1. osi Q273 (absolutno): središče vrtine v glavni osi obdelovalne ravnine.
- Središče 2. osi Q274 (absolutno): središče vrtine v pomožni osi obdelovalne ravnine.
- ▶ Želeni premer Q262: vnesite premer vrtine
- Kot zagona Q325 (absolutni): kot med glavno osjo obdelovalne ravnine in prvo tipalno točko
- Kotni korak Q247 (postopen): kot med dvema merilnima točkama, predznak kotnega koraka določa smer obdelave (- = smer urinega kazalca). Če želite meriti krožni lok, potem programirajte kotni korak na manj kot 90°

Manjši kot je programiran kotni korak, z manjšo natančnostjo TNC izračuna dimenzije vrtine. Najmanjši vnos: 5°.

- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
- Premik na varno višino Q301: določite, kako naj se tipalni sistem premika med merilnimi točkami:
 premik med merilnimi točkami na merilni višini
 premik med merilnimi točkami na varni višini
- Največji premer vrtine Q275: največji dovoljen premer vrtine (krožnega žepa)
- Najmanjši premer vrtine Q276: najmanjši dovoljen premer vrtine (krožnega žepa)
- Tolerančna vrednost središča 1. osi Q279: dovoljeno odstopanje položaja v glavni osi obdelovalne ravnine
- Tolerančna vrednost središča 2. osi Q280: dovoljeno odstopanje položaja v pomožni osi obdelovalne ravnine

- Protokol meritve Q281: določite, ali naj TNC ustvari protokol za meritev:
 - **0**: protokol meritve naj ne bo ustvarjen

1: protokol meritve naj bo ustvarjen: TNC privzeto shrani datoteko s protokolom TCHPR421.TXT v imenik TNC:\

2: prekinitev programskega teka in prikaz protokola meritve na TNC zaslonu. Nadaljevanje programa z NC-zagon

 Zaustavitev programa zaradi napake tolerance Q309: določite, ali naj TNC pri prekoračitvah tolerančnih mej prekine programski tek in prikaže sporočilo o napaki:
 brez prekinitve programskega teka, brez sporočila o napaki

1: prekinitev programskega teka in prikaz sporočila o napaki

Številka orodja za nadzor Q330: določite, ali naj TNC izvaja nadzor orodja (oglejte si "Nadzor orodja" na strani 108)
 brez nadzora

>0: številka orodja v orodni preglednici TOOL.T

- Število merilnih točk (4/3) Q423: določite, ali naj TNC postopek odčitavanja čepa izvede na 4 ali 3 merilnih točkah:
 - 4: 4 merilne točke (običajna nastavitev)
 - 3: 3 merilne točke

5 TCH PROBE 421 MERJENJE VRTINE
Q273=+50 ;SREDIŠČE 1. OSI
Q274=+50 ;SREDIŠČE 2. OSI
Q262=75 ;ŽELENI PREMER
Q325=+0 ;KOT ZAGONA
Q247=+60 ;KOTNI KORAK
Q261=-5 ;MERILNA VIŠINA
Q320=0 ;VARNOSTNA RAZDALJA
Q260=+20 ;VARNA VIŠINA
Q301=1 ;PREMIK NA VARNO VIŠINO
Q275=75,12;NAJVEČJA VREDNOST
Q276=74,95;NAJMANJŠA VREDNOST
Q279=0,1 ;TOLERANCA 1. SREDIŠČA
Q280=0,1 ;TOLERANCA 2. SREDIŠČA
Q281=1 ;PROTOKOL MERITVE
Q309=0 ;ZAUSTAVITEV PROGRAMA
PRI NAPAKI
Q330=0 ;ŠTEVILKA ORODJA
O423=4 :ŠTEVILO MERILNIH TOČK

MERITEV KROGA ZUNAJ (cikel tipalnega sistema 422, DIN/ISO: G422)

Cikel tipalnega sistema 422 zazna središče in premer krožnega čepa. Če v ciklu definirate ustrezne tolerančne vrednosti, TNC izvede primerjavo želenih in dejanskih vrednosti ter odstopanja shrani v sistemskih parametrih.

- TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na točko zagona postopka odčitavanja 1. TNC izračuna tipalne točke iz vnosov v ciklu in varnostnega odmika iz stolpca SET_UP v preglednici tipalnih sistemov
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in izvede prvi postopek odčitavanja z nastavljenim pomikom pri odčitavanju (stolpec F). TNC glede na programiran kot zagona samodejno določi smer odčitavanja
- 3 Tipalni sistem se nato na merilni višini ali na varni višini v krožnici premakne na naslednjo tipalno točko 2, kjer izvede drugi postopek odčitavanja
- 4 TNC tipalni sistem premakne na tipalno točko 3 in nato še na tipalno točko 4, kjer izvede tretji in četrti postopek odčitavanja
- 5 TNC ob koncu tipalni sistem premakne nazaj na varno višino ter dejanske vrednosti in odstopanja shrani v naslednje Q-parametre:

Številka parametra	Pomen
Q151	Dejanska vrednost središča glavne osi
Q152	Dejanska vrednost središča pomožne osi
Q153	Dejanski premer
Q161	Odstopanje središča glavne osi
Q162	Odstopanje središča pomožne osi
Q163	Odstopanje premera

Pred programiranjem upoštevajte

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

G

- Središče 1. osi Q273 (absolutno): središče čepa v glavni osi obdelovalne ravnine.
- Središče 2. osi Q274 (absolutno): središče čepa v pomožni osi obdelovalne ravnine.
- Želeni premer Q262: vnesite premer čepa
- Kot zagona Q325 (absolutni): kot med glavno osjo obdelovalne ravnine in prvo tipalno točko
- Kotni korak Q247 (postopen): kot med dvema merilnima točkama, predznak kotnega koraka določa smer obdelave (- = smer urinega kazalca). Če želite meriti krožni lok, potem programirajte kotni korak na manj kot 90°

Manjši kot je programiran kotni korak, tem manjša je natančnost, s katero TNC izračuna dimenzije čepa. Najmanjši vnos: 5°.

- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
- Premik na varno višino Q301: določite, kako naj se tipalni sistem premika med merilnimi točkami:
 0: premik med merilnimi točkami na merilni višini
 1: premik med merilnimi točkami na varni višini
- Največji premer čepa Q277: največji dovoljen premer čepa
- Najmanjši premer čepa Q278: najmanjši dovoljen premer čepa
- Tolerančna vrednost središča 1. osi Q279: dovoljeno odstopanje položaja v glavni osi obdelovalne ravnine
- Tolerančna vrednost središča 2. osi Q280: dovoljeno odstopanje položaja v pomožni osi obdelovalne ravnine

- Protokol meritve Q281: določite, ali naj TNC ustvari protokol za meritev:
 - **0**: protokol meritve naj ne bo ustvarjen

1: protokol meritve naj bo ustvarjen: TNC privzeto shrani datoteko s protokolom TCHPR422.TXT v imenik TNC:\

2: prekinitev programskega teka in prikaz protokola meritve na TNC zaslonu. Nadaljevanje programa z NC-zagon

 Zaustavitev programa zaradi napake tolerance Q309: določite, ali naj TNC pri prekoračitvah tolerančnih mej prekine programski tek in prikaže sporočilo o napaki:
 brez prekinitve programskega teka, brez sporočila o napaki

1: prekinitev programskega teka in prikaz sporočila o napaki

Številka orodja za nadzor Q330: določite, ali naj TNC izvaja nadzor orodja (oglejte si "Nadzor orodja" na strani 108):

0: brez nadzora

- >0: številka orodja v orodni preglednici TOOL.T
- Število merilnih točk (4/3) Q423: določite, ali naj TNC postopek odčitavanja čepa izvede na 4 ali 3 merilnih točkah:
 - 4: 4 merilne točke (običajna nastavitev)
 - 3: 3 merilne točke

TCH PROBE 422 MERITEV KROGA ZUNAJ
Q273=+50 ;SREDIŠČE 1. OSI
Q274=+50 ;SREDIŠČE 2. OSI
Q262=75 ;ŽELENI PREMER
Q325=+90 ;KOT ZAGONA
Q247=+30 ;KOTNI KORAK
Q261=-5 ;MERILNA VIŠINA
Q320=0 ;VARNOSTNA RAZDALJA
Q260=+10 ;VARNA VIŠINA
Q301=0 ;PREMIK NA VARNO VIŠINO
Q275=35,15;NAJVEČJA VREDNOST
Q276=34,9 ;NAJMANJŠA VREDNOST
Q279=0,05;TOLERANCA 1. SREDIŠČA
Q280=0,05 ;TOLERANCA 2. SREDIŠČA
Q281=1 ;PROTOKOL MERITVE
Q309=0 ;ZAUSTAVITEV PROGRAMA PRI NAPAKI
Q330=0 ;ŠTEVILKA ORODJA
Q423=4 ;ŠTEVILO MERILNIH TOČK

3.3 Samodejna meritev obd<mark>elo</mark>vancev

MERITEV PRAVOKOTNIKA ZNOTRAJ (cikel tipalnega sistema 423, DIN/ISO: G423)

Cikel tipalnega sistema 423 zazna središče, dolžino in širino pravokotnega žepa. Če v ciklu definirate ustrezne tolerančne vrednosti, TNC izvede primerjavo želenih in dejanskih vrednosti ter odstopanja shrani v sistemskih parametrih.

- TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na točko zagona postopka odčitavanja 1. TNC izračuna tipalne točke iz vnosov v ciklu in varnostnega odmika iz stolpca SET_UP v preglednici tipalnih sistemov
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in izvede prvi postopek odčitavanja z nastavljenim pomikom pri odčitavanju (stolpec F)
- 3 Tipalni sistem se vzporedno z osjo premakne na varno višino, ali pa linearno na naslednjo tipalno točko 2, kjer izvede drugi postopek odčitavanja
- 4 TNC tipalni sistem premakne na tipalno točko 3 in nato še na tipalno točko 4, kjer izvede tretji in četrti postopek odčitavanja
- 5 TNC ob koncu tipalni sistem premakne nazaj na varno višino ter dejanske vrednosti in odstopanja shrani v naslednje Q-parametre:

Številka parametra	Pomen
Q151	Dejanska vrednost središča glavne osi
Q152	Dejanska vrednost središča pomožne osi
Q154	Dejanska vrednost stranske dolžine v glavni osi
Q155	Dejanska vrednost stranske dolžine v pomožni osi
Q161	Odstopanje središča glavne osi
Q162	Odstopanje središča pomožne osi
Q164	Odstopanje stranske dolžine v glavni osi
Q165	Odstopanje stranske dolžine v pomožni osi

Pred programiranjem upoštevajte

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

Če izmere žepa in varnostni odmik ne dovoljujejo predpozicioniranja v bližino tipalnih točk, TNC postopek odčitavanja vedno zažene v središču žepa. V tem primeru se tipalni sistem med štirimi merilnimi točkami ne premakne na varno višino.

- Središče 1. osi Q273 (absolutno): središče žepa v glavni osi obdelovalne ravnine.
- Središče 2. osi Q274 (absolutno): središče žepa v pomožni osi obdelovalne ravnine.
- 1. stranska dolžina Q282: dolžina žepa, vzporedna glavni osi obdelovalne ravnine.
- 2. stranska dolžina Q283: dolžina žepa, vzporedna pomožni osi obdelovalne ravnine.
- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
- Premik na varno višino Q301: določite, kako naj se tipalni sistem premika med merilnimi točkami:
 0: premik med merilnimi točkami na merilni višini
 1: premik med merilnimi točkami na varni višini
- Največja vrednost 1. stranske dolžine Q284: največja dovoljena dolžina žepa
- Najmanjša vrednost 1. stranske dolžine Q285: najmanjša dovoljena dolžina žepa
- Največja vrednost 2. stranske dolžine Q286: največja dovoljena širina žepa
- Najmanjša vrednost 2. stranske dolžine Q287: najmanjša dovoljena širina žepa
- Tolerančna vrednost središča 1. osi Q279: dovoljeno odstopanje položaja v glavni osi obdelovalne ravnine
- Tolerančna vrednost središča 2. osi Q280: dovoljeno odstopanje položaja v pomožni osi obdelovalne ravnine

- Protokol meritve Q281: določite, ali naj TNC ustvari protokol za meritev:
 - **0**: protokol meritve naj ne bo ustvarjen

1: protokol meritve naj bo ustvarjen: TNC privzeto shrani datoteko s protokolom TCHPR423.TXT v imenik TNC:\

2: prekinitev programskega teka in prikaz protokola meritve na TNC zaslonu. Nadaljevanje programa z NC-zagon

 Zaustavitev programa zaradi napake tolerance Q309: določite, ali naj TNC pri prekoračitvah tolerančnih mej prekine programski tek in prikaže sporočilo o napaki:
 brez prekinitve programskega teka, brez sporočila o napaki

1: prekinitev programskega teka in prikaz sporočila o napaki

Številka orodja za nadzor Q330: določite, ali naj TNC izvaja nadzor orodja (oglejte si "Nadzor orodja" na strani 108)
 D: brez nadzora

>0: številka orodja v orodni preglednici TOOL.T

5 TCH PROBE ZNOTR.	423 MERJENJE PRAVOKOT.
Q273=+50	;SREDIŠČE 1. OSI
Q274=+50	;SREDIŠČE 2. OSI
Q282=80	;1. STRANSKA DOLŽINA
Q283=60	;2. STRANSKA DOLŽINA
Q261=-5	;MERILNA VIŠINA
Q320=0	;VARNOSTNA RAZDALJA
Q260=+10	;VARNA VIŠINA
Q301=1	;PREMIK NA VARNO VIŠINO
Q284=0	;NAJVEČJA VREDNOST 1. STRANI
Q285=0	;NAJMANJŠA VREDNOST 1. STRANI
Q286=0	;NAJVEČJA VREDNOST 2. STRANI
Q287=0	;NAJMANJŠA VREDNOST 2. STRANI
Q279=0	;TOLERANCA 1. SREDIŠČA
Q280=0	;TOLERANCA 2. SREDIŠČA
Q281=1	;PROTOKOL MERITVE
Q309=0	;ZAUSTAVITEV PROGRAMA PRI NAPAKI
Q330=0	;ŠTEVILKA ORODJA

MERITEV PRAVOKOTNIKA ZUNAJ (cikel tipalnega sistema 424, DIN/ISO: G424)

Cikel tipalnega sistema 424 zazna središče, dolžino in širino pravokotnega čepa. Če v ciklu definirate ustrezne tolerančne vrednosti, TNC izvede primerjavo želenih in dejanskih vrednosti ter odstopanja shrani v sistemskih parametrih.

- TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na točko zagona postopka odčitavanja 1. TNC izračuna tipalne točke iz vnosov v ciklu in varnostnega odmika iz stolpca SET_UP v preglednici tipalnih sistemov
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in izvede prvi postopek odčitavanja z nastavljenim pomikom pri odčitavanju (stolpec F)
- 3 Tipalni sistem se vzporedno z osjo premakne na varno višino, ali pa linearno na naslednjo tipalno točko 2, kjer izvede drugi postopek odčitavanja
- 4 TNC tipalni sistem premakne na tipalno točko 3 in nato še na tipalno točko 4, kjer izvede tretji in četrti postopek odčitavanja
- 5 TNC ob koncu tipalni sistem premakne nazaj na varno višino ter dejanske vrednosti in odstopanja shrani v naslednje Q-parametre:

Številka parametra	Pomen
Q151	Dejanska vrednost središča glavne osi
Q152	Dejanska vrednost središča pomožne osi
Q154	Dejanska vrednost stranske dolžine v glavni osi
Q155	Dejanska vrednost stranske dolžine v pomožni osi
Q161	Odstopanje središča glavne osi
Q162	Odstopanje središča pomožne osi
Q164	Odstopanje stranske dolžine v glavni osi
Q165	Odstopanje stranske dolžine v pomožni osi

Pred programiranjem upoštevajte

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

- Središče 1. osi Q273 (absolutno): središče čepa v glavni osi obdelovalne ravnine.
 - Središče 2. osi Q274 (absolutno): središče čepa v pomožni osi obdelovalne ravnine.
 - 1. stranska dolžina Q282: dolžina čepa, vzporedna glavni osi obdelovalne ravnine.
 - 2. stranska dolžina Q283: dolžina čepa, vzporedna pomožni osi obdelovalne ravnine.
 - Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
 - Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
 - Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
 - Premik na varno višino Q301: določite, kako naj se tipalni sistem premika med merilnimi točkami:
 0: premik med merilnimi točkami na merilni višini
 1: premik med merilnimi točkami na varni višini
 - Največja vrednost 1. stranske dolžine Q284: največja dovoljena dolžina čepa
 - Najmanjša vrednost 1. stranske dolžine Q285: najmanjša dovoljena dolžina čepa
 - Največja vrednost 2. stranske dolžine Q286: največja dovoljena širina čepa
 - Najmanjša vrednost 2. stranske dolžine Q287: najmanjša dovoljena širina čepa
 - Tolerančna vrednost središča 1. osi Q279: dovoljeno odstopanje položaja v glavni osi obdelovalne ravnine
 - Tolerančna vrednost središča 2. osi Q280: dovoljeno odstopanje položaja v pomožni osi obdelovalne ravnine

Protokol meritve Q281: določite, ali naj TNC ustvari protokol za meritev:

0: protokol meritve naj ne bo ustvarjen

1: protokol meritve naj bo ustvarjen: TNC privzeto shrani datoteko s protokolom TCHPR424.TXT v imenik TNC:\

2: prekinitev programskega teka in prikaz protokola meritve na TNC zaslonu. Nadaljevanje programa z NC-zagon

 Zaustavitev programa zaradi napake tolerance Q309: določite, ali naj TNC pri prekoračitvah tolerančnih mej prekine programski tek in prikaže sporočilo o napaki:
 brez prekinitve programskega teka, brez sporočila o napaki

1: prekinitev programskega teka in prikaz sporočila o napaki

Številka orodja za nadzor Q330: določite, ali naj TNC izvaja nadzor orodja (oglejte si "Nadzor orodja" na strani 108):

0: brez nadzora

>0: številka orodja v orodni preglednici TOOL.T

Példa: NC-nizi

5 TCH PROBE 424 MERJENJE PRAVOKOT. ZUN.

Q273=+50	;SREDIŠČE 1. OSI
Q274=+50	;SREDIŠČE 2. OSI
Q282=75	;1. STRANSKA DOLŽINA
Q283=35	;2. STRANSKA DOLŽINA
Q261=-5	;MERILNA VIŠINA
Q320=0	;VARNOSTNA RAZDALJA
Q260=+20	;VARNA VIŠINA
Q301=0	;PREMIK NA VARNO VIŠINO
Q284=75,1	;NAJVEČJA VREDNOST 1. STRANI
Q285=74,9	;NAJMANJŠA VREDNOST 1. STRANI
Q286=35	;NAJVEČJA VREDNOST 2. STRANI
Q287=34,9	5;NAJMANJŠA VREDNOST 2. STRANI
Q279=0,1	;TOLERANCA 1. SREDIŠČA
Q280=0,1	;TOLERANCA 2. SREDIŠČA
Q281=1	;PROTOKOL MERITVE
~ ~ ~ ~ ~	

- Q309=0 ;ZAUSTAVITEV PROGRAMA PRI NAPAKI
 - Q330=0 ;ŠTEVILKA ORODJA

3.3 Samodejna meritev obd<mark>elo</mark>vancev

MERITEV ŠIRINE ZNOTRAJ (cikel tipalnega sistema 425, DIN/ISO: G425)

Cikel tipalnega sistema 425 zazna položaj in širino utora (žepa). Če v ciklu definirate ustrezne tolerančne vrednosti, TNC izvede primerjavo želenih in dejanskih vrednosti ter odstopanje shrani v sistemski parameter.

- TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na točko zagona postopka odčitavanja 1. TNC izračuna tipalne točke iz vnosov v ciklu in varnostnega odmika iz stolpca SET_UP v preglednici tipalnih sistemov
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in izvede prvi postopek odčitavanja z nastavljenim pomikom pri odčitavanju (stolpec F). 1. Odčitavanje vedno v pozitivni smeri programirane osi
- 3 Če za drugo meritev vnesete zamik, TNC tipalni sistem vzporedno z osjo premakne na naslednjo tipalno točko 2, kjer izvede drugi postopek odčitavanja. Če zamika ne vnesete, TNC širino izmeri v nasprotni smeri
- **4** TNC pozicionira tipalni sistem nazaj na varno višino ter shrani dejanske vrednosti in odstopanje v naslednje Q-parametre:

Številka parametra	Pomen
Q156	Dejanska izmerjena dolžina
Q157	Dejanska vrednost položaja srednje osi
Q166	Odstopanje izmerjene dolžine

Pred programiranjem upoštevajte

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

425

- Točka zagona 1. osi Q328 (absolutna): točka zagona postopka odčitavanja v glavni osi obdelovalne ravnine.
- Točka zagona 2. osi Q329 (absolutna): točka zagona postopka odčitavanja v pomožni osi obdelovalne ravnine.
- Zamik za 2. meritev Q310 (inkrementalno): vrednost, za katero se tipalni sistem zamakne pred drugo meritvijo. Če vnesete 0, TNC ne premakne tipalnega sistema
- Merilna os Q272: os obdelovalne ravnine, v kateri naj se izvaja meritev:
 1:glavna os = merilna os
 2:pomožna os = merilna os
- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
- Želena dolžina Q311: želena dolžina meritve
- Največja vrednost Q288: največja dovoljena dolžina
- Najmanjša vrednost Q289: najmanjša dovoljena dolžina
- Protokol meritve Q281: določite, ali naj TNC ustvari protokol za meritev:
 - 0: protokol meritve naj ne bo ustvarjen

1: protokol meritve naj bo ustvarjen: TNC privzeto shrani datoteko s protokolom TCHPR425.TXT v imenik TNC:\

2: prekinitev programskega teka in prikaz protokola meritve na TNC zaslonu. Nadaljevanje programa z NC-zagon

 Zaustavitev programa zaradi napake tolerance Q309: določite, ali naj TNC pri prekoračitvah tolerančnih mej prekine programski tek in prikaže sporočilo o napaki:
 brez prekinitve programskega teka, brez sporočila o napaki

1: prekinitev programskega teka in prikaz sporočila o napaki

Številka orodja za nadzor Q330: določite, ali naj TNC izvaja nadzor orodja (oglejte si "Nadzor orodja" na strani 108):

0: brez nadzora

>0: številka orodja v orodni preglednici TOOL.T

5 TCH PROBE	425 MERJENJE ŠIRINE ZNOTR.
Q328=+75	;ZAČETNA TOČKA 1. OSI
Q329=-12,	5;ZAČETNA TOČKA 2. OSI
Q310=+0	;ZAMIK 2. MERITVE
Q272=1	;MERILNA OS
Q261=-5	;MERILNA VIŠINA
Q260=+10	;VARNA VIŠINA
Q311=25	;ŽELENA DOLŽINA
Q288=25,0	5;NAJVEČJA VREDNOST
Q289=25	;NAJMANJŠA VREDNOST
Q281=1	;PROTOKOL MERITVE
Q309=0	;ZAUSTAVITEV PROGRAMA PRI NAPAKI
Q330=0	;ŠTEVILKA ORODJA

MERJENJE PREČKE ZUNAJ (cikel tipalnega sistema 426, DIN/ISO: G426)

Cikel tipalnega sistema 426 zazna položaj in širino prečke. Če v ciklu definirate ustrezne tolerančne vrednosti, TNC izvede primerjavo želenih in dejanskih vrednosti ter odstopanje shrani v sistemskih parametrih.

- TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na točko zagona postopka odčitavanja 1. TNC izračuna tipalne točke iz vnosov v ciklu in varnostnega odmika iz stolpca SET_UP v preglednici tipalnih sistemov
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in izvede prvi postopek odčitavanja z nastavljenim pomikom pri odčitavanju (stolpec F). 1. Postopek odčitavanja vedno poteka v negativni smeri programirane osi
- 3 Tipalni sistem se na varni višini premakne k naslednji tipalni točki, kjer izvede drugi postopek odčitavanja
- 4 TNC pozicionira tipalni sistem nazaj na varno višino ter shrani dejanske vrednosti in odstopanje v naslednje Q-parametre:

Številka parametra	Pomen
Q156	Dejanska izmerjena dolžina
Q157	Dejanska vrednost položaja srednje osi
Q166	Odstopanje izmerjene dolžine

Pred programiranjem upoštevajte

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

1. merilna točka 1. osi Q263 (absolutna): koordinata prve tipalne točke na glavni osi obdelovalne ravnine

- 1. merilna točka 2. osi Q264 (absolutna): koordinata prve tipalne točke na pomožni osi obdelovalne ravnine
- 2. merilna točka 1. osi Q265 (absolutna): koordinata druge tipalne točke na glavni osi obdelovalne ravnine
- 2. merilna točka 2. osi Q266 (absolutna): koordinata druge tipalne točke na pomožni osi obdelovalne ravnine

- Merilna os Q272: os obdelovalne ravnine, v kateri naj se izvaja meritev:
 1:glavna os = merilna os
 2:pomožna os = merilna os
- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
- Želena dolžina Q311: želena dolžina meritve
- Največja vrednost Q288: največja dovoljena dolžina
- Najmanjša vrednost Q289: najmanjša dovoljena dolžina
- Protokol meritve Q281: določite, ali naj TNC ustvari protokol za meritev:

0: protokol meritve naj ne bo ustvarjen 1: protokol meritve naj bo ustvarjen: TNC privzeto shrani datoteko s protokolom TCHPR426.TXT v imenik TNC:\

2: prekinitev programskega teka in prikaz protokola meritve na TNC zaslonu. Nadaljevanje programa z NC-zagon

 Zaustavitev programa zaradi napake tolerance Q309: določite, ali naj TNC pri prekoračitvah tolerančnih mej prekine programski tek in prikaže sporočilo o napaki:
 brez prekinitve programskega teka, brez sporočila o napaki

1: prekinitev programskega teka in prikaz sporočila o napaki

Številka orodja za nadzor Q330: določite, ali naj TNC izvaja nadzor orodja (oglejte si "Nadzor orodja" na strani 108)

0: brez nadzora

>0: številka orodja v orodni preglednici TOOL.T

5 TCH PROBE ZUNAJ	426 MERJENJE PREČKE
Q263=+50	;1. TOČKA 1. OSI
Q264=+25	;1. TOČKA 2. OSI
Q265=+50	;2. TOČKA 1. OSI
Q266=+85	;2. TOČKA 2. OSI
Q272=2	;MERILNA OS
Q261=-5	;MERILNA VIŠINA
Q320=0	;VARNOSTNA RAZDALJA
Q260=+20	;VARNA VIŠINA
Q311=45	;ŽELENA DOLŽINA
Q288=45	;NAJVEČJA VREDNOST
Q289=44,9	95;NAJMANJŠA VREDNOST
Q281=1	;PROTOKOL MERITVE
Q309=0	;ZAUSTAVITEV PROGRAMA PRI NAPAKI
Q330=0	;ŠTEVILKA ORODJA

3.3 Samodejna meritev obd<mark>elo</mark>vancev

MERJENJE KOORDINATE (cikel tipalnega sistema 427, DIN/ISO: G427)

Cikel tipalnega sistema 427 zazna koordinato na izbirni osi in vrednost shrani v sistemskem parametru. Če v ciklu definirate ustrezne tolerančne vrednosti, TNC izvede primerjavo želenih in dejanskih vrednosti ter odstopanje shrani v sistemskih parametrih.

- TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na točko zagona postopka odčitavanja 1. TNC pri tem tipalni sistem premakne za varnostni odmik v nasprotni smeri od določene smeri odčitavanja
- 2 TNC nato tipalni sistem v obdelovalni ravnini pozicionira na vneseno tipalno točko 1, kjer izmeri dejansko vrednost na izbrani osi
- 3 TNC tipalni sistem premakne nazaj na varno višino in zaznano koordinato shrani v naslednji Q-parameter:

Številka parametra	Pomen
Q160	Izmerjena koordinata

Pred programiranjem upoštevajte

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

- 1. merilna točka 1. osi Q263 (absolutna): koordinata prve tipalne točke na glavni osi obdelovalne ravnine
- 1. merilna točka 2. osi Q264 (absolutna): koordinata prve tipalne točke na pomožni osi obdelovalne ravnine
- Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Merilna os (1...3: 1=glavna os) Q272: os, v kateri naj se izvede meritev:
 1:glavna os = merilna os
 2:pomožna os = merilna os
 - 3: os tipalnega sistema = merilna os
- Smer premika 1 Q267: smer, v kateri naj se tipalni sistem primakne k obdelovancu:
 -1: negativna smer premika
 +1:pozitivna smer premika
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)

427

J. .

1

- Protokol meritve Q281: določite, ali naj TNC ustvari protokol za meritev:
 - **0**: protokol meritve naj ne bo ustvarjen

1: protokol meritve naj bo ustvarjen: TNC privzeto shrani datoteko s protokolom TCHPR427.TXT v imenik TNC:\

2: prekinitev programskega teka in prikaz protokola meritve na TNC zaslonu. Nadaljevanje programa z NC-zagon

- Največja vrednost Q288: največja dovoljena izmerjena vrednost
- Najmanjša vrednost Q289: najmanjša izmerjena vrednost
- Zaustavitev programa zaradi napake tolerance Q309: določite, ali naj TNC pri prekoračitvah tolerančnih mej prekine programski tek in prikaže sporočilo o napaki:
 brez prekinitve programskega teka, brez sporočila o napaki

1: prekinitev programskega teka in prikaz sporočila o napaki

- Številka orodja za nadzor Q330: določite, ali naj TNC izvaja nadzor orodja (oglejte si "Nadzor orodja" na strani 108):
 - 0: brez nadzora

>0: številka orodja v orodni preglednici TOOL.T

5 TCH PROBE	427 MERJENJE KOORDINATE
Q263=+35	;1. TOČKA 1. OSI
Q264=+45	;1. TOČKA 2. OSI
Q261=+5	;MERILNA VIŠINA
Q320=0	;VARNOSTNA RAZDALJA
Q272=3	;MERILNA OS
Q267=-1	;SMER PREMIKA
Q260=+20	;VARNA VIŠINA
Q281=1	;PROTOKOL MERITVE
Q288=5,1	;NAJVEČJA VREDNOST
Q289=4,95	;NAJMANJŠA VREDNOST
Q309=0	;ZAUSTAVITEV PROGRAMA PRI NAPAKI
Q330=0	;ŠTEVILKA ORODJA

MERJENJE KROŽNE LUKNJE (cikel tipalnega sistema 430, DIN/ISO: G430)

Cikel tipalnega sistema 430 zazna središče in premer krožne luknje z merjenjem treh vrtin. Če v ciklu definirate ustrezne tolerančne vrednosti, TNC izvede primerjavo želenih in dejanskih vrednosti ter odstopanje shrani v sistemskih parametrih.

- 1 TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na vneseno središče prve vrtine1
- 2 Tipalni sistem se nato premakne na nastavljeno merilno višino in s štirimi postopki odčitavanja zazna središče prve vrtine
- 3 Tipalni sistem se premakne nazaj na varno višino in se pozicionira na vneseno središče druge vrtine 2
- 4 Tipalni sistem se nato premakne na nastavljeno merilno višino in s štirimi postopki odčitavanja zazna središče druge vrtine
- 5 Tipalni sistem se premakne nazaj na varno višino in se pozicionira na vneseno središče tretje vrtine 3
- 6 Tipalni sistem se nato premakne na nastavljeno merilno višino in s štirimi postopki odčitavanja zazna središče tretje vrtine
- 7 TNC ob koncu tipalni sistem premakne nazaj na varno višino ter dejanske vrednosti in odstopanja shrani v naslednje Q-parametre:

Številka parametra	Pomen
Q151	Dejanska vrednost središča glavne osi
Q152	Dejanska vrednost središča pomožne osi
Q153	Dejanski premer krožne luknje
Q161	Odstopanje središča glavne osi
Q162	Odstopanje središča pomožne osi
Q163	Odstopanje premera krožne luknje

Pred programiranjem upoštevajte

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

- Središče 1. osi Q273 (absolutno): središče krožne luknje (želena vrednost) v glavni osi obdelovalne ravnine.
 - Središče 2. osi Q274 (absolutno): središče krožne luknje (želena vrednost) v pomožne osi obdelovalne ravnine.
 - Želeni premer Q262: vnesite premer krožne luknje
 - Kot 1. vrtine Q291 (absoluten): polarne koordinate kota prvega središča vrtine v obdelovalni ravnini
 - Kot 2. vrtine Q292 (absoluten): polarne koordinate kota drugega središča vrtine v obdelovalni ravnini
 - Kot 3. vrtine Q293 (absoluten): polarne koordinate kota tretjega središča vrtine v obdelovalni ravnini
 - Merilna višina v osi tipalnega sistema Q261 (absolutna): koordinata središča krogle (= točka dotika) v osi tipalnega sistema, v kateri naj se izvede meritev
 - Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
 - Največja vrednost Q288: največji dovoljen premer krožne luknje
 - Najmanjša vrednost Q289: najmanjši dovoljen premer krožne luknje
 - Tolerančna vrednost središča 1. osi Q279: dovoljeno odstopanje položaja v glavni osi obdelovalne ravnine
 - Tolerančna vrednost središča 2. osi Q280: dovoljeno odstopanje položaja v pomožni osi obdelovalne ravnine

叫

Protokol meritve Q281: določite, ali naj TNC ustvari
protokol za meritev:
0: protokol meritve naj ne bo ustvarjen
1: protokol meritve naj bo ustvarjen: TNC privzeto

shrani **datoteko s protokolom TCHPR430.TXT** v imenik TNC:\ **2**: prekinitev programskega teka in prikaz protokola meritve na TNC zaslonu. Nadaljevanje programa z NC-zagon

 Zaustavitev programa zaradi napake tolerance Q309: določite, ali naj TNC pri prekoračitvah tolerančnih mej prekine programski tek in prikaže sporočilo o napaki:
 brez prekinitve programskega teka, brez sporočila o napaki

1: prekinitev programskega teka in prikaz sporočila o napaki

Številka orodja za nadzor Q330: določite, ali naj TNC izvaja nadzor loma orodja (oglejte si "Nadzor orodja" na strani 108):

0: brez nadzora

>0: številka orodja v orodni preglednici TOOL.T

Pozor: v tem primeru samo nadzor loma – brez samodejnega popravka orodja.

5 TCH PROBE 430 MERJENJE KROŽNE LUKNJE
Q273=+50 ;SREDIŠČE 1. OSI
Q274=+50 ;SREDIŠČE 2. OSI
Q262=80 ;ŽELENI PREMER
Q291=+0 ;KOT 1. VRTINE
Q292=+90 ;KOT 2. VRTINE
Q293=+180;KOT 3. VRTINE
Q261=-5 ;MERILNA VIŠINA
Q260=+10 ;VARNA VIŠINA
Q288=80.1 ;NAJVEČJA VREDNOST
Q289=79,9 ;NAJMANJŠA VREDNOST
Q279=0.15;TOLERANCA 1. SREDIŠČA
Q280=0.15;TOLERANCA 2. SREDIŠČA
Q281=1 ;PROTOKOL MERITVE
Q309=0 ;ZAUSTAVITEV PROGRAMA PRI NAPAKI
Q330=0 ;ŠTEVILKA ORODJA

MERJENJE RAVNINE (cikel tipalnega sistema 431, DIN/ISO: G431)

Cikel tipalnega sistema 431 zazna kot ravnine z merjenjem treh točk in shrani vrednosti v sistemskih parametrih.

- 1 TNC premakne tipalni sistem v hitrem teku (vrednost iz stolpca FMAX) s pozicionirno logiko (oglejte si "Izvajanje ciklov tipalnega sistema" na strani 21) na programirano tipalno točko 1, kjer izmeri prvo točko ravnine. TNC pri tem tipalni sistem zamakne za varnostni odmik v nasprotni smeri izvajanja odčitavanja
- 2 Tipalni sistem se premakne nazaj na varno višino, nato pa v obdelovalni ravnini na tipalno točko 2, kjer izmeri dejansko vrednost druge točke ravnine
- 3 Tipalni sistem se premakne nazaj na varno višino, nato pa v obdelovalni ravnini na tipalno točko 3, kjer izmeri dejansko vrednost tretje točke ravnine
- 4 TNC nato premakne tipalni sistem nazaj na varno višino in izmerjene kotne vrednosti shrani v naslednje Q-parametre:

Številka parametra	Pomen
Q158	Projekcijski kot osi A
Q159	Projekcijski kot osi B
Q170	Prostorski kot A
Q171	Prostorski kot B
Q172	Prostorski kot C
Q173	Izmerjena vrednost na osi tipalnega sistema

Pred programiranjem upoštevajte

Pred definiranjem cikla je treba programirati priklic orodja za definicijo osi tipalnega sistema.

Za to, da lahko TNC izračuna kotne vrednosti, tri merilne točke ne smejo biti v ravni črti.

Prostorski koti, ki so potrebni pri funkciji Vrtenje obdelovalne ravnine, se shranijo v parametrih od Q170 do Q172. S prvima dvema merilnima točkama določite usmeritev glavne osi pri vrtenju obdelovalne ravnine.

Tretja merilna točka določa usmeritev orodne osi. Če želite, da bo orodna os pravilno postavljena v koordinatnem sistemu, ki se vrti v desno, tretjo merilno točko definirajte v smeri pozitivne osi Y (oglejte si sliko).

Če se cikel izvaja pri izbrani zavrteni obdelovalni ravnini, se izmerjeni prostorski koti nanašajo na zavrten koordinatni sistem. V tem primeru je treba izmerjeni prostorski kot obdelati s postopnim vnašanjem v funkciji Vrtenje obdelovalne ravnine.

- 1. merilna točka 1. osi Q263 (absolutna): koordinata prve tipalne točke na glavni osi obdelovalne ravnine
- 1. merilna točka 2. osi Q264 (absolutna): koordinata prve tipalne točke na pomožni osi obdelovalne ravnine
- 1. merilna točka 3. osi Q294 (absolutna): koordinata prve tipalne točke v osi tipalnega sistema
- 2. merilna točka 1. osi Q265 (absolutna): koordinata druge tipalne točke na glavni osi obdelovalne ravnine
- 2. merilna točka 2. osi Q266 (absolutna): koordinata druge tipalne točke na pomožni osi obdelovalne ravnine
- 2. merilna točka 3. osi Q295 (absolutna): koordinata druge tipalne točke na osi tipalnega sistema
- 3. merilna točka 1. osi Q296 (absolutna): koordinata tretje tipalne točke v glavni osi obdelovalne ravnine
- 3. merilna točka 2. osi Q297 (absolutna): koordinata tretje tipalne točke v pomožni osi obdelovalne ravnine
- 3. merilna točka 3. osi Q298 (absolutna): koordinata tretje tipalne točke na osi tipalnega sistema
- Varnostni odmik Q320 (inkrementalno): dodatni odmik med merilno točko in kroglo tipalnega sistema. Q320 dopolnjuje stolpec SET_UP
- Varna višina Q260 (absolutna): koordinata v osi tipalnega sistema, v kateri ne more priti do kolizije med tipalnim sistemom in obdelovancem (vpenjalom)
- Protokol meritve Q281: določite, ali naj TNC ustvari protokol za meritev:

0: protokol meritve naj ne bo ustvarjen

1: protokol meritve naj bo ustvarjen: TNC privzeto shrani datoteko s protokolom TCHPR431.TXT v imenik TNC:\

2: prekinitev programskega teka in prikaz protokola meritve na TNC zaslonu. Nadaljevanje programa z NC-zagon

Példa: NC-nizi

5 TCH PROBE 431 MERJENJE RAVNINE
Q263=+20 ;1. TOČKA 1. OSI
Q264=+20 ;1. TOČKA 2. OSI
Q294=-10 ;1. TOČKA 3. OSI
Q265=+50 ;2. TOČKA 1. OSI
Q266=+80 ;2. TOČKA 2. OSI
Q295=+0 ;2. TOČKA 3. OSI
Q296=+90 ;3. TOČKA 1. OSI
Q297=+35 ;3. TOČKA 2. OSI
Q298=+12 ;3. TOČKA 3. OSI
Q320=0 ;VARNOSTNA RAZDALJA
Q260=+5 ;VARNA VIŠINA
Q281=1 ;PROTOKOL MERITVE

431

3.3 Samodejna meritev obd<mark>elo</mark>vancev

Primer: merjenje in dodatna obdelava pravokotnega čepa

Potek programa:

- grobo rezkanje pravokotnega čepa s predizmero 0,5

- merjenje pravokotnega čepa

- fino rezkanje pravokotnega čepa glede na izmerjene vrednosti

0 BEGIN PGM BEAMS MM	
1 TOOL CALL 0 Z	Priklic orodja za predhodno obdelavo
2 L Z+100 R0 HT	Odmik orodja
3 FN 0: Q1 = +81	Dolžina žepa v X (vrednost grobega rezkanja)
4 FN 0: $Q2 = +61$	Dolžina žepa v Y (vrednost grobega rezkanja)
5 CALL LBL 1	Priklic podprograma za obdelovanje
6 L Z+100 R0 HT	Odmik orodja, zamenjava orodja
7 TOOL CALL 99 Z	Priklic postopka odčitavanja
8 TCH PROBE 424 MERJENJE PRAVOKOT. ZUN.	Merjenje rezkanega pravokotnika
Q273=+50 ;SREDIŠČE 1. OSI	
Q274=+50 ;SREDIŠČE 2. OSI	
Q282=80 ;1. STRANSKA DOLŽINA	Želena dolžina v X (končna izmera)
Q283=60 ;2. STRANSKA DOLŽINA	Želena dolžina v Y (končna izmera)
Q261=-5 ;MERILNA VIŠINA	
Q320=0 ;VARNOSTNA RAZDALJA	
Q260=+30 ;VARNA VIŠINA	
Q301=0 ;PREMIK NA VARNO VIŠINO	
Q284=0 ;NAJVEČJA VREDNOST 1. STRANI	Vrednosti za preverjanje tolerance ni treba vnesti

i

Q285=0 ;NAJMANJŠA VREDNOST 1. STRANI	
Q286=0 ;NAJVEČJA VREDNOST 2. STRANI	
Q287=0 ;NAJMANJŠA VREDNOST 2. STRANI	
Q279=0 ;TOLERANCA 1. SREDIŠČA	
Q280=0 ;TOLERANCA 2. SREDIŠČA	
Q281=0 ;PROTOKOL MERITVE	Brez prikaza protokola meritve
Q309=0 ;ZAUSTAVITEV PROGRAMA PRI NAPAKI	Brez prikaza sporočila o napaki
Q330=0 ;ŠTEVILKA ORODJA	Brez nadzora orodja
9 FN 2: Q1 = +Q1 - +Q164	Izračun dolžine v X na osnovi izmerjenega odstopanja
10 FN 2: $Q2 = +Q2 - +Q165$	Izračun dolžine v Y na osnovi izmerjenega odstopanja
11 L Z+100 R0 HT	Odmik tipala, zamenjava orodja
12 TOOL CALL 1 Z \$5000	Priklic orodja za fino rezkanje
13 CALL LBL 1	Priklic podprograma za obdelovanje
14 L Z+100 R0 HT M2	Odmik orodja, konec programa
15 LBL 1	Podprogram z obdelovalnim ciklom za pravokotni čep
16 CYCL DEF 213 FINO REZKANJE ČEPA	
Q200=20 ;VARNOSTNA RAZDALJA	
Q201=-10 ;GLOBINA	
Q206=150 ;GLOBINSKI POMIK	
Q202=5 ;GLOBINA POMIKA	
Q207=500 ;POMIK PRI REZKANJU	
Q203=+10 ;KOOR. POVRŠINE	
Q204=20 ;2. VARNOSTNI ODMIK	
Q216=+50 ;SREDIŠČE 1. OSI	
Q217=+50 ;SREDIŠČE 2. OSI	
Q218=Q1 ;1. STRANSKA DOLŽINA	Dolžina v X je spremenljiva za grobo in fino rezkanje
Q219=Q2 ;2. STRANSKA DOLŽINA	Dolžina v Y je spremenljiva za grobo in fino rezkanje
Q220=0 ;POLMER VOGALA	
Q221=0 ;PREDIZMERA 1. OSI	
17 CYCL CALL M3	Priklic cikla
18 LBL 0	Konec podprograma
19 END PGM BEAMS MM	

1

Primer: merjenje pravokotnega žepa, beleženje rezultatov meritev

0 BEGIN PGM BSMESS MM	
1 TOOL CALL 1 Z	Priklic orodja – tipalo
2 L Z+100 R0 HT	Odmik tipala
3 TCH PROBE 423 MERJENJE PRAVOKOTNIKA ZNOTRAJ	
Q273=+50 ;SREDIŠČE 1. OSI	
Q274=+40 ;SREDIŠČE 2. OSI	
Q282=90 ;1. STRANSKA DOLŽINA	Želena dolžina v X
Q283=70 ;2. STRANSKA DOLŽINA	Želena dolžina v Y
Q261=-5 ;MERILNA VIŠINA	
Q320=0 ;VARNOSTNA RAZDALJA	
Q260=+20 ;VARNA VIŠINA	
Q301=0 ;PREMIK NA VARNO VIŠINO	
Q284=90,15;NAJVEČJA VREDNOST 1. STRANI	Največja vrednost v X
Q285=89,95;NAJMANJŠA VREDNOST 1. STRANI	Najmanjša vrednost v X
Q286=70.1 ;NAJVEČJA VREDNOST 2. STRANI	Največja vrednost v Y
Q287=69.9;NAJMANJŠA VREDNOST 2. STRANI	Najmanjša vrednost v Y
Q279=0.15;TOLERANCA 1. SREDIŠČA	Dovoljeno odstopanje položaja v X

Q280=0.1 ;TOLERANCA 2. SREDIŠČA	Dovoljeno odstopanje položaja v Y
Q281=1 ;PROTOKOL MERITVE	Shranjevanje protokola meritve v datoteko
Q309=0 ;ZAUSTAVITEV PROGRAMA PRI NAPAKI	Brez prikaza sporočila o napaki pri prekoračitvi tolerančnih mej
Q330=0 ;ŠTEVILKA ORODJA	Brez nadzora orodja
4 L Z+100 R0 HT M2	Odmik orodja, konec programa
5 END PGM BSMESS MM	

i

3.4 Posebni cikli

Pregled

Pri TNC je na voljo cikel za te posebne primere:

Cikel	Gumb	Stran
3 MERJENJE: merilni cikel za ustvarjanje ciklov proizvajalca	3 PA	Stran 142

MERJENJE (cikel tipalnega sistema 3)

ф,

Podrobnejše nastavitve delovanja cikla 3 tipalnega sistema določi proizvajalec stroja ali programske opreme; cikel 3 uporabljajte v posebnih ciklih tipalnega sistema.

Cikel 3 tipalnega sistema v izbrani smeri tipanja zazna poljubni položaj na obdelovancu. V nasprotju z ostalimi merilnimi cikli lahko v ciklu 3 neposredno vnesete pot meritve **ABST** in merilni pomik **F**. Tudi odmik po dokončanem merjenju vrednosti se izvede glede na vrednost, ki jo je mogoče vnesti, **MB**.

- 1 Tipalni sistem se s trenutnega položaja v določeni smeri tipanja premakne z vnesenim pomikom. Smer odčitavanja je treba določiti v ciklu s polarnim kotom
- 2 Ko TNC zazna položaj, se delovanje tipalnega sistema zaustavi. TNC koordinate središča tipalne kroge X, Y, Z shrani v tri zaporedne Q-parametre. TNC ne opravi popravkov dolžine in polmera. Številko prvega parametra rezultata definirate v ciklu
- 3 TNC premakne tipalni sistem v nasprotni smeri postopka tipanja za vrednost, ki ste jo definirali v parametru MB

Pri drugih merilnih ciklih veljavna podatka tipalnega sistema **DIST** (največji premik do tipalne točke) in **F** (tipalni pomik) v 3. ciklu tipalnega sistema nista veljavna.

Ne pozabite, da TNC praviloma vedno opiše 4 zaporedne Q-parametre.

Če TNC ni zaznal veljavnih tipalnih točk, se obdelava programa nadaljuje brez sporočila o napaki. V tem primeru TNC 4. parametru rezultata dodeli vrednost -1, tako da lahko napako odpravite po lastni presoji.

TNC tipalni sistem odmakne največ za pot pri odmiku **MB**, vendar ne dlje od točke zagona meritve. Tako pri odmiku ne more priti do kolizije.

S funkcijo FN17: SYSWRITE ID 990 NR 6 lahko določite, ali naj cikel vpliva na tipalna vrata X12 ali X13.

- Št. parametra za rezultat: vnesite številko Qparametra, kateremu naj TNC dodeli vrednost prve zaznane koordinate (X). Vrednosti Y in Z sta v naslednjih dveh Q-parametrih
- Tipalna os: vnesite os, na smeri katere naj se izvaja postopek tipanja; potrdite s tipko ENT
- Kot odčitavanja: kot glede na določeno tipalno os, na kateri naj se premika tipalni sistem; potrdite s tipko ENT
- Najdaljša pot meritve: vnesite dolžino premika, za katero naj se tipalni sistem premakne z začetne točke; potrdite s tipko ENT.
- Pomik pri merjenju: vnesite pomik pri merjenju v mm/ min
- Najdaljša pot odmika: dolžina premika v nasprotni smeri postopka tipanja, ko je tipalna glava že v položaju za delovanje. TNC tipalni sistem premakne največ do začetne točke, da ne more priti do kolizije
- REFERENČNI SISTEM (0=DEJ/1=REF): določite, ali naj bo rezultat meritve v trenutnem koordinatnem sistemu (DEJ se lahko tudi zamakne ali zasuka) ali strojnem koordinatnem sistemu (REF) shranjen
- Stanje sporočila o napaki (0=IZKLOP/1=VKLOP): določite, ali naj TNC na začetku cikla (ko je tipalna glava v položaju za delovanje) sporočilo o napaki prikaže (0) ali ne (1). Če je izbran način 1, TNC v 4. parameter rezultata shrani vrednost 2.0 in nadaljuje z izvajanjem cikla
- Konec vnosa: pritisnite tipko END.

Példa: NC-nizi

4	TCH PRO	BE 3.0 MERJEN	ŊE
5	TCH PROI	3E 3,1 Q1	
6	TCH PROI	3E 3.2 X KOT:	+15
7 1	TCH PROI NAVEZNI	BE 3.3 ABST +1 SISTEM:0	0 F100 MB

8 TCH PROBE 3.4 ERRORMODE1

Cikli tipalnega sistema za samodejno izmero orodja

4.1 Izmera orodja z namiznim tipalnim sistemom TT

Pregled

Stroj in TNC mora proizvajalec stroja pripraviti za delo z namiznim tipalnim sistemom TT.

Morda na stroju niso na voljo vsi opisani cikli in funkcije. Upoštevajte priročnik za stroj.

Z namiznim tipalnim sistemom in cikli za izmero orodja, ki so na voljo pri TNC, je omogočena samodejna izmera orodja: vrednosti popravkov dolžine in polmera TNC shrani v osrednjem pomnilniku orodij TOOL.T in jih samodejno uporabi po koncu tipalnega cikla. Na voljo so naslednje vrste meritev:

Izmera orodja z mirujočim orodjem

- Izmera orodja z rotirajočim orodjem
- Izmera posameznih rezil

Nastavitev strojnih parametrov

Preden zaženete cikle tipalnega sistema, preverite vse strojne parametre, definirane pod ProbSettings > CfgToolMeasurement in CfgTTRoundStylus.

TNC za merjenje z mirujočim vretenom uporabi pomik pri odčitavanju, ki je določen v strojnem parametru probingFeed.

Pri merjenju z rotirajočim orodjem TNC samodejno izračuna število vrtljajev vretena in pomik pri odčitavanju.

Število vrtljajev vretena se izračuna na naslednji način:

n = maxPeriphSpeedMeas/(r • 0,0063) z

n	Število vrtljajev [vrt/min]
maxPeriphSpeedMeas	Največja dovoljena rotacijska hitrost [m/min]
r	Trenutni polmer orodja [mm]

Pomik pri odčitavanju se obračuna iz:

v = toleranca pri merjenju • n z

V	Pomik pri odčitavanju [mm/min]
Toleranca pri merjenju	Toleranca pri merjenju [mm], odvisna od
	maxPeriphSpeedMeas
n	Število vrtljajev [1/min]

S parametrom **probingFeedCalc** nastavite izračunavanje pomika pri odčitavanju:

probingFeedCalc = ConstantTolerance:

Toleranca pri merjenju ostane konstantna – ne glede na polmer orodja. Pri zelo velikih orodjih pa se pomik pri odčitavanju zmanjša na nič. Manjši kot sta največja rotacijska hitrost (maxPeriphSpeedMeas) in dovoljena toleranca (measureTolerance1), hitreje je viden ta učinek.

probingFeedCalc = VariableTolreance:

Toleranca pri merjenju se spreminja s povečanjem polmera orodja. To tudi pri večjih orodjih zagotavlja zadosten pomik pri odčitavanju. TNC toleranco pri merjenju spreminja v skladu z naslednjo preglednico:

Polmer orodja	Toleranca pri merjenju
do 30 mm	measureTolerance1
30 do 60 mm	2 • measureTolerance1
60 do 90 mm	3 • measureTolerance1
90 do 120 mm	4 • measureTolerance1

probingFeedCalc = ConstantFeed:

Pomik pri odčitavanju ostane konstanten, napaka pri merjenju pa narašča linearno s povečevanjem polmera orodja:

Toleranca pri merjenju = (r • measureTolerance1)/ 5 mm) z

r Trenutni polmer orodja [mm] measureTolerance1 Največja dovoljena napaka pri merjenju

Vnosi v preglednici orodij TOOL.T

Okrajšava	Vnosi	Pogovorno okno
CUT	Število rezil orodja (največ 20 rezil).	Število rezil?
LTOL	Dovoljeno odstopanje od dolžine orodja L za prepoznavanje obrabe. Če se vnesena vrednost prekorači, TNC blokira orodje (stanje L). Območje vnosa: 0 do 0,9999 mm.	Toleranca obrabe: dolžina?
RTOL	Dovoljeno odstopanje od polmera orodja R za prepoznavanje obrabe. Če se vnesena vrednost prekorači, TNC blokira orodje (stanje L). Območje vnosa: 0 do 0,9999 mm.	Toleranca obrabe: polmer?
DIRECT.	Smer rezanja orodja za merjenje z rotirajočim orodjem.	Smer rezanja (M3 = –)?
R-OFFS	Meritev dolžine: premik orodja med središčem tipala in središčem orodja. Prednastavitev: vrednost ni vnesena (zamik = polmer orodja)	Zamik orodja: polmer?
L-OFFS	lzmera polmera: dodatni premik orodja k offsetToolAxis med zgornjim robom tipala in spodnjim robom orodja. Prednastavitev: 0	Zamik orodja: dolžina?
LBREAK	Dovoljeno odstopanje od dolžine orodja L za prepoznavanje loma. Če se vnesena vrednost prekorači, TNC blokira orodje (stanje L). Območje vnosa: 0 do 0,9999 mm.	Toleranca loma: dolžina?
RBREAK	Dovoljeno odstopanje od polmera orodja R za prepoznavanje loma. Če se navedena vrednost prekorači, TNC blokira orodje (stanje L). Območje vnosa: 0 do 0,9999 mm.	Toleranca loma: polmer?

Primeri vnosa za običajne vrste orodij

Vrsta orodja	CUT	R-OFFS	L-OFFS
Sveder	– (brez funkcije)	0 (zamik ni potreben, ker je treba meriti konico svedra)	
Valjčno rezkalo s premerom < 19 mm	4 (4 rezila)	0 (zamik ni potreben, ker je premer orodja manjši od premera okrogle plošče namiznega tipalnega sistema)	0 (pri merjenju polmera dodatni premik ni potreben. Uporabi se premik iz parametra offsetToolAxis.)
Valjčno rezkalo s premerom > 19 mm	4 (4 rezila)	0 (zamik je potreben, ker je premer orodja večji od premera okrogle plošče namiznega tipalnega sistema)	0 (pri merjenju polmera dodatni premik ni potreben. Uporabi se premik iz parametra offsetToolAxis.)
Krožno rezkalo	4 (4 rezila)	0 (zamik ni potreben, ker je treba meriti južni pol krogle)	5 (polmer orodja vedno definirajte kot zamik, da predmet meritve premera ne bo polmer)

4.2 Cikli, ki so na voljo

Pregled

Cikle za merjenje orodja programirate v načinu Programiranje s tipko TOUCH PROBE. Na voljo so ti cikli:

Cikel	Stara oblika	Nova oblika
Umerjanje namiznega tipalnega sistema	30 🔢 CAL.	488 夏夏 日日 - 王 CRL - 王
Merjenje dolžine orodja	31	481
Merjenje polmera orodja	32	482
Merjenja dolžine in polmera orodja	33	483 2 2 2

Merilni cikli delujejo samo pri aktivnem osrednjem orodnem pomnilniku TOOL.T.

Pred uporabo merilnih ciklov je treba v osrednji orodni pomnilnik vnesti vse podatke, ki so potrebni za izvajanje meritev in s TOOL CALL priklicati orodje, ki ga želite izmeriti.

Razlike med cikli od 31 do 33 in od 481 do 483

Obseg funkcij in potek cikla sta popolnoma enaka. Med cikli od 31 do 33 in od 481 do 483 sta samo ti dve razliki:

- Cikli od 481 do 483 so od G481 do G483 na voljo tudi v DIN/ISO
- Za stanje meritve novi cikli namesto poljubnega parametra uporabljajo nespremenljiv parameter Q199

Umerjanje TT (cikel tipalnega sistema 30 ali 480, DIN/ISO: G480)

Način delovanja cikla umerjanja določi proizvajalec stroja. Upoštevajte priročnik za stroj.

Pred umerjanjem je treba v orodno preglednico TOOL.T vnesti natančen polmer in dolžino umeritvenega orodja.

V strojnih parametrih od centerPos > [0] do [2] mora biti določen položaj TT v delovnem območju stroja.

Če spremenite enega od strojnih parametrov od centerPos > [0] do [2], je treba postopek umerjanja ponoviti.

TT umerite z merilnim ciklom TCH PROBE 30 ali TCH PROBE 480 (oglejte si tudi "Razlike med cikli od 31 do 33 in od 481 do 483" na strani 150). Postopek umerjanja se izvede samodejno. TNC samodejno zazna tudi sredinski premik umeritvenega orodja. TNC vreteno v ta namen po polovici umeritvenega cikla zavrti za 180°.

Kot umeritveno orodje uporabite valjčni del, npr. valjčno glavo. Vrednosti za umerjanje TNC shrani in jih upošteva pri naslednjih meritvah orodja.

Varna višina: vnesite položaj v osi vretena, v kateri ne more priti do kolizije med obdelovanci ali vpenjali. Varna višina se nanaša na izbrano referenčno točko obdelovanca. Če je varna višina nastavljena tako nizko, da je konica orodja pod zgornjim robom okrogle plošče, TNC umeritveno orodje samodejno postavi nad ploščo (varnostno območje iz safetyDistStylus). Példa: NC-nizi – stara oblika

- 6 TOOL CALL 1 Z
- 7 TCH PROBE 30.0 UMERJANJE TT
- 8 TCH PROBE 30.1 VIŠINA: +90

Példa: NC-nizi – nova oblika

6 TOOL CALL 1 Z

7 TCH PROBE 480 UMERJANJE TT

Q260=+100;VARNA VIŠINA

Merjenje dolžine orodja (cikel tipalnega sistema 31 ali 481, DIN/ISO: G481)

ш,

Pred prvo izmero orodja v orodno preglednico TOOL.T vnesite približni polmer, približno dolžino, število rezil in smer rezanja posameznega orodja.

Za merjenje dolžine orodja programirajte merilni cikel TCH PROBE 31 ali TCH PROBE 480 (oglejte si tudi "Razlike med cikli od 31 do 33 in od 481 do 483" na strani 150). S parametrom za vnos lahko dolžino orodja določite na tri različne načine:

- če je premer orodja večji od premera merilne površine TT, izberite meritev z rotirajočim orodjem
- če je premer orodja manjši od premera merilne površine TT ali če določate dolžino svedrov ali krožnih rezkal, izberite meritev z mirujočim orodjem
- če je premer orodja večji od premera merilne površine TT, izberite merjenje posameznih rezil z mirujočim orodjem

Potek merjenja pri »Merjenje z rotirajočim orodjem«

Za zaznavanje najdaljšega rezila se orodje, ki ga želite izmeriti, pomakne v središče tipalnega sistema in se na merilno površino TT premakne medtem, ko se vrti. Zamik programirate v preglednici orodij pod Zamik orodja: polmer (**R-OFFS**).

Potek merjenja pri »Merjenje z mirujočim orodjem« (npr. za svedre)

Orodje, ki ga želite izmeriti, se po sredini premakne čez merilno površino. Nato se z mirujočim vretenom premakne na merilno površino TT. Za to meritev v preglednico orodij pod Zamik orodja: polmer (**R**-**OFFS**) vnesite »0«.

Potek merjenja pri »Merjenju posameznih rezil«

TNC orodje, ki ga želite izmeriti, premakne na stran tipalne glave. Čelna površina orodja je pri tem pod zgornjim robom tipalne glave, kot je določeno v offsetToolAxis. V preglednici orodij pod Zamik orodja: dolžina (L-OFFS) določite dodaten zamik. TNC začne postopek odčitavanja v krožnici z rotirajočim orodjem in tako določi kot za začetek merjenja posameznih rezil. Nato spremeni usmeritev vretena in izmeri dolžino vseh rezil. Za tako meritev programirajte MERJENJE REZIL v CIKLU TCH PROBE 31 = 1.

Za orodja z največ 20 rezili lahko izberete merjenje posameznih rezil.

ŀ.2 Cikli, <mark>ki s</mark>o na voljo

Definicija cikla

- 31 481
- Izmera orodja=0/preverjanje=1: določite, ali želite zagnati prvo merjenje orodja, ali pa zagnati preverjanje že izmerjenega orodja. Pri prvem merjenju TNC prepiše dolžino orodja L v osrednjem orodnem pomnilniku TOOL.T in določi Delta vrednost DL = 0. Če pa ste izbrali preverjanje orodja, se izmerjena dolžina primerja z dolžino orodja L iz TOOL.T. TNC izračuna odstopanje s pravilnim predznakom in to v TOOL.T vnese kot Delta vrednost DL. Poleg tega je odstopanje na voljo tudi v Qparametru Q115. Če je Delta vrednost višja od dopustne tolerance obrabe ali tolerance loma za dolžino orodja, TNC orodje blokira (status L v TOOL.T)

 Št. parametra za rezultat?: številka mesta v parametru, na katerega TNC shrani stanje meritve:
 0,0: orodje v tolerančnem območju
 1,0: orodje je obrabljeno (LTOL prekoračen)
 2,0:Orodje je zlomljeno (LBREAK prekoračen). Če rezultata meritve v programu ne želite obdelovati, na vprašanje v pogovornem oknu odgovorite s tipko NO ENT

- Varna višina: vnesite položaj v osi vretena, v kateri ne more priti do kolizije med obdelovanci ali vpenjali. Varna višina se nanaša na izbrano referenčno točko obdelovanca. Če je varna višina nastavljena tako nizko, da ja konica orodja pod zgornjim robom okrogle plošče, TNC samodejno postavi orodje nad ploščo (varnostno območje iz safetyDistStylus).
- Merjenje rezil 0=ne/1=da: določite, ali naj se izvede merjenje posameznih rezil (merjenje največ 20 rezil)

Példa: Prvo merjenje z rotirajočim orodjem; stara oblika

6 TOOL CALL 12 Z
7 TCH PROBE 31.0 DOLŽINA ORODJA
8 TCH PROBE 31,1 PREVERJANJE: 0
9 TCH PROBE 31.2 VIŠINA: +120
10 TCH PROBE 31,3 MERJENJE REZIL: 0

Példa: Preverjanje z merjenjem posameznih rezil, shranjevanje stanja v Q5; stara oblika

6 TOOL CALL 12 Z
7 TCH PROBE 31.0 DOLŽINA ORODJA
8 TCH PROBE 31,1 PREVERJANJE: 1 Q5
9 TCH PROBE 31.2 VIŠINA: +120
10 TCH PROBE 31,3 MERJENJE REZIL: 1

Példa: NC-nizi; nova oblika

6 TOOL CALL	12 Z
7 TCH PROBE	481 DOLŽINA ORODJA
Q340=1	;PREVERJANJE
Q260=+10	0;VARNA VIŠINA
Q341=1	;MERJENJE REZIL

1

Merjenje polmera orodja (cikel tipalnega sistema 32 ali 482, DIN/ISO: G482)

Pred prvo izmero orodja v orodno preglednico TOOL.T vnesite približni polmer, približno dolžino, število rezil in smer rezanja posameznega orodja.

Za meritev polmera orodja programirajte merilni cikel TCH PROBE 32 ali TCH PROBE 482 (oglejte si tudi "Razlike med cikli od 31 do 33 in od 481 do 483" na strani 150). S parametrom za vnos lahko polmer orodja določite na tri različne načine:

- Merjenje z rotirajočim orodjem
- Merjenje z rotirajočim orodjem in nato merjenje posameznih rezil

Orodja v obliki valja z diamantno prevleko je mogoče izmeriti z mirujočim vretenom. V preglednici orodij je treba definirati število rezil CUT z 0 in prilagoditi strojni parameter CfgToolMeasurement. Upoštevajte priročnik za stroj.

Potek meritve

TNC orodje, ki ga želite izmeriti, premakne na stran tipalne glave. Čelna površina rezkala je pod zgornjim robom tipalne glave, kot je določeno v offsetToolAxis. TNC postopek odčitavanja začne v krožnici z rotirajočim orodjem. Če želite zagnati dodatno merjenje posameznih rezil, so polmeri vseh rezil izmerjeni z usmeritvijo vretena.

I.2 Cikli, <mark>ki s</mark>o na voljo

Definicija cikla

- 32 482
- Izmera orodja=0/preverjanje=1: določite, ali želite zagnati prvo merjenje orodja, ali pa zagnati preverjanje že izmerjenega orodja. Pri prvem merjenju TNC prepiše polmer orodja R v osrednjem orodnem pomnilniku TOOL.T in določi Delta vrednost DR = 0. Če pa ste izbrali preverjanje orodja, se izmerjen polmer primerja s polmerom orodja R iz TOOL.T. TNC izračuna odstopanje s pravilnim predznakom in to v TOOL.T vnese kot Delta vrednost DR. Poleg tega je odstopanje na voljo tudi v Qparametru Q116. Če je Delta vrednost višja od dopustne tolerance obrabe ali tolerance loma za polmer orodja, TNC orodje blokira (status L v TOOL.T)

 Št. parametra za rezultat?: številka mesta v parametru, na katerega TNC shrani stanje meritve:
 0,0: orodje v tolerančnem območju
 1,0: orodje je obrabljeno(RTOL prekoračen)
 2,0:Orodje je zlomljeno (RBREAK prekoračen). Če rezultata meritve v programu ne želite obdelovati, na vprašanje v pogovornem oknu odgovorite s tipko NO ENT

- Varna višina: vnesite položaj v osi vretena, v kateri ne more priti do kolizije med obdelovanci ali vpenjali. Varna višina se nanaša na izbrano referenčno točko obdelovanca. Če je varna višina nastavljena tako nizko, da ja konica orodja pod zgornjim robom okrogle plošče, TNC samodejno postavi orodje nad ploščo (varnostno območje iz safetyDistStylus).
- Merjenje rezil 0=ne/1=da: določite, ali naj se izvede dodatno merjenje posameznih rezil ali ne (merjenje največ 20 rezil)

Példa: Prvo merjenje z rotirajočim orodjem; stara oblika

6 TOOL CALL 12 Z
7 TCH PROBE 32.0 POLMER ORODJA
8 TCH PROBE 32,1 PREVERJANJE: 0
9 TCH PROBE 32.2 VIŠINA: +120
10 TCH PROBE 32.3 MERJENJE REZIL: 0

Példa: Preverjanje z merjenjem posameznih rezil, shranjevanje stanja v Q5; stara oblika

6 TOOL CALL 12 Z
7 TCH PROBE 32.0 POLMER ORODJA
8 TCH PROBE 32,1 PREVERJANJE: 1 Q5
9 TCH PROBE 32.2 VIŠINA: +120
10 TCH PROBE 32,3 MERJENJE REZIL: 1

Példa: NC-nizi; nova oblika

6	5 TOOL CALL 12	Z
7	TCH PROBE 48	2 POLMER ORODJA
	Q340=1 ;F	PREVERJANJE
	Q260=+100;	VARNA VIŠINA
	Q341=1 ;N	IERJENJE REZIL

Popolno merjenje orodja (cikel tipalnega sistema 33 ali 483, DIN/ISO: G483)

Pred prvo izmero orodja v orodno preglednico TOOL.T vnesite približni polmer, približno dolžino, število rezil in smer rezanja posameznega orodja.

Za popolno meritev orodja (dolžina in polmer) programirajte merilni cikel TCH PROBE 33 ali TCH PROBE 482 (oglejte si tudi "Razlike med cikli od 31 do 33 in od 481 do 483" na strani 150). Ta cikel je najprimernejši za izvajanje prvih meritev orodij, saj v nasprotju s posameznimi meritvami dolžine in polmera prihrani veliko časa. S parametrom za vnos je mogoče orodje izmeriti na tri različne načine:

- Merjenje z rotirajočim orodjem
- Merjenje z rotirajočim orodjem in nato merjenje posameznih rezil

Ľ	∍

Orodja v obliki valja z diamantno prevleko je mogoče izmeriti z mirujočim vretenom. V preglednici orodij je treba definirati število rezil CUT z 0 in prilagoditi strojni parameter CfgToolMeasurement. Upoštevajte priročnik za stroj.

Potek meritve

TNC orodje izmeri v skladu z nespremenljivim programiranim potekom. TNC najprej izmeri polmer orodja, nato pa še dolžina orodja. Potek meritve ustreza potekom iz merilnih ciklov 31 in 32.

ł.2 Cikli, <mark>ki s</mark>o na voljo

Definicija cikla

- Izmera orodja=0/preverjanje=1: določite, ali želite zagnati prvo merjenje orodja, ali pa zagnati preverjanje že izmerjenega orodja. Pri prvem merjenju TNC prepiše polmer orodja R in dolžino orodja L v osrednjem orodnem pomnilniku TOOL.T in določi Delta vrednosti DR in DL = 0. Če pa ste izbrali preverjanje orodja, se izmerjeni podatki o orodju primerjajo s podatki o orodju iz TOOL.T. TNC izračuna odstopanja s pravilnim predznakom in ta v TOOL.T vnese kot Delta vrednosti DR in DL. Poleg tega so odstopanja na voljo tudi v Q-parametrih Q115 in Q116. Če je ena od Delta vrednosti višja od dopustnih toleranc obrabe ali toleranc loma, TNC orodje blokira (status L v TOOL.T)

 Št. parametra za rezultat?: številka mesta v parametru, na katerega TNC shrani stanje meritve:
 0,0: orodje v tolerančnem območju
 1,0: orodje je obrabljeno (LTOL in/ali RTOL prekoračen)
 2,0:orodje je zlomljeno (LBREAK in/ali RBREAK prekoračen). Če rezultatov meritve v programu ne

želite obdelovati, na vprašanje v pogovornem oknu odgovorite s tipko NO ENT
 Varna višina: vnesite položaj v osi vretena, v kateri ne more priti do kolizije med obdelovanci ali vpenjali. Varna višina se nanaša na izbrano referenčno točko obdelovanca. Če je varna višina nastavljena tako nizko, da ja konica orodja pod zgornjim robom okrogle plošče, TNC samodejno postavi orodje nad ploščo

Merjenje rezil 0=ne/1=da: določite, ali naj se izvede dodatno merjenje posameznih rezil ali ne (merjenje največ 20 rezil)

(varnostno območje iz safetyDistStylus).

Példa: Prvo merjenje z rotirajočim orodjem; stara oblika

TOOL	CALL	12 Z

7 TCH PROBE 33.0 MERJENJE ORODJA

8 TCH PROBE 33.1 PREVERJANJE: 0

9 TCH PROBE 33.2 VIŠINA: +120

10 TCH PROBE 33.3 MERJENJE REZIL: 0

Példa: Preverjanje z merjenjem posameznih rezil, shranjevanje stanja v Q5; stara oblika

6 TOOL CALL 12 Z
7 TCH PROBE 33.0 MERJENJE ORODJA
8 TCH PROBE 33.1 PREVERJANJE: 1 Q5
9 TCH PROBE 33.2 VIŠINA: +120
10 TCH PROBE 33.3 MERJENJE REZIL: 1

Példa: NC-nizi; nova oblika

6	TOOL CALL 12 Z
7	TCH PROBE 483 MERJENJE ORODJA
	Q340=1 ;PREVERJANJE
	Q260=+100;VARNA VIŠINA
	Q341=1 ;MERJENJE REZIL

Symbole

3D-tipalni sistemi ... 16 umeritev umerjanje stikalni ... 29

В

Beleženje odčitanih vrednosti v preglednico prednastavitev ... 28 Beleženje rezultatov meritev ... 106

F

Funkcija FCL ... 4

I

Izmera orodja ... 148 Dolžina orodja ... 152 Polmer orodja ... 154 Popolno merjenje ... 156 Pregled ... 150 Strojni parametri ... 147 Umerjanje namiznega tipalnega sistema ... 151

Μ

Merjenja prečke zunaj ... 127 Merjenje širine utora ... 125 Merjenje kota ... 111 Merjenje kota ravnine ... 135 Merjenje krožne luknje ... 132 Merjenje kroga znotraj ... 113 Merjenje kroga zunaj ... 116 Merjenje notranje širine ... 125 Merjenje obdelovancev ... 37, 105 Merjenje posamezne koordinate ... 129 Merjenje pravokotnega žepa ... 122 Merjenje pravokotnega čepa ... 119 Merjenje vrtine ... 113 Merjenje zunanje širine ... 127

Ν

Nadzor orodja ... 108 Nadzor tolerance ... 108 Neposredna nastavitev rotacije med programskim tekom ... 42

0

Odpravljanje poševnega položaja obdelovanca s premočrtnim merjenjem dveh točk ... 32, 44 z dvema čepoma ... 49 z dvema vrtinama ... 46 z rotacijsko osjo ... 52, 57 Osnovna rotacija neposredno določanje ... 56 ugotavljanje v ročnem načinu ... 32

Ρ

Parameter rezultatov ... 64, 107 podatki tipalnega sistema ... 23 pomik tipala ... 20 Popravek orodja ... 108 pozicionirna logika ... 21 Preglednica ničelnih točk Prevzem rezultatov odčitavanja ... 27 Preglednica prednastavitev ... 64 Prevzem rezultatov odčitavanja ... 28 preglednica tipalnega sistema ... 22

R

Rezultati meritev v Q-parametrih ... 64, 107 Ročna postavitev referenčne točke Kot kot referenčna točka ... 35 Središče kroga kot referenčna točka ... 36 v poljubni osi ... 34

S

Samodejna izmera orodja ... 148 Samodejna izmera orodja: oglejte si izmere orodia Samodejna postavitev referenčne točke ... 61 na osi tipalnega sistema ... 94 Središče 4 vrtin ... 96 Središče krožne luknje ... 91 Središče krožnega žepa (vrtina) ... 77 Središče krožnega čepa ... 81 Središče pravokotnega žepa ... 71 Središče pravokotnega čepa ... 74 Središče prečke ... 68 Središče utora ... 65 v poljubni osi ... 99 Vogal znotraj ... 88 Vogal zunaj ... 85 Shranjevanje referenčne točke v preglednico ničelnih točk ... 64 točke v prealednico prednastavitev ... 64 Stanje meritve ... 107 Stanie razvoja ... 4 Strojni parametri za 3D-tipalni sistem ... 19

Т

tipalni cikli Ročni način delovanja ... 26 za samodejno delovanje ... 18 tolerančno območje ... 20

U

upoštevanje osnovne rotacije ... 16

۷

večkratno merjenje ... 20

Ζ

Zapisovanje odčitanih vrednosti v preglednico ničelnih točk ... 27

Preglednica

Cikli tipalnega sistema

Številka cikla	Opis cikla	DEF aktivno a	CALL aktivno	Stran
0	Referenčna ravnina			Stran 109
1	Polarna referenčna točka			Stran 110
3	Merjenje			Stran 142
30	Umerjanje namiznega tipalnega sistema			Stran 151
31	Merjenje/preverjanje dolžine orodja			Stran 152
32	Merjenje/preverjanje polmera orodja			Stran 154
33	Merjenje/preverjanje dolžine in polmera orodja			Stran 156
400	Osnovna rotacija z dvema točkama			Stran 44
401	Osnovna rotacija z dvema vrtinama			Stran 46
402	Osnovna rotacija z dvema čepoma			Stran 49
403	Odpravljanje poševnega položaja z rotacijsko osjo			Stran 52
404	Nastavitev osnovne rotacije			Stran 56
405	Odpravljanje poševnega položaja s C-osjo			Stran 57
408	Postavitev referenčne točke središča utora (funkcija FCL 3)			Stran 65
409	Postavitev referenčne točke središča profila (funkcija FCL 3)			Stran 68
410	Postavitev referenčne točke pravokotnika (znotraj)			Stran 71
411	Postavitev referenčne točke pravokotnika (zunaj)			Stran 74
412	Postavitev referenčne točke kroga znotraj (vrtina)			Stran 77
413	Postavitev referenčne točke krog zunaj (čep)			Stran 81
414	Postavitev referenčne točke kota (zunaj)			Stran 85
415	Postavitev referenčne točke kota (znotraj)			Stran 88
416	Postavitev referenčne točke središča krožne luknje			Stran 91
417	Postavitev referenčne točke osi tipalnega sistema			Stran 94
418	Postavitev referenčne točke središča štirih vrtin			Stran 96
419	Postavitev referenčne točke posamezne, izbirne osi			Stran 99
420	Merjenje kota obdelovanca			Stran 111

Preglednica

Številka cikla	Opis cikla	DEF aktivno	CALL aktivno	Stran
421	Merjenje obdelovanca – notranji krog (vrtina)			Stran 113
422	Merjenje obdelovanca – zunanji krog (čep)			Stran 116
423	Merjenje obdelovanca – pravokotnik znotraj			Stran 119
424	Merjenje obdelovanca – pravokotnik zunaj			Stran 122
425	Merjenje obdelovanca – notranja širina (utor)			Stran 125
426	Merjenje obdelovanca – zunanja širina (profil)			Stran 127
427	Merjenje posamezne, izbirne osi obdelovanca			Stran 129
430	Merjenje krožne luknje obdelovanca			Stran 132
431	Merjenje ravnine obdelovanca			Stran 135
480	Umerjanje namiznega tipalnega sistema			Stran 151
481	Merjenje/preverjanje dolžine orodja			Stran 152
482	Merjenje/preverjanje polmera orodja			Stran 154
483	Merjenje/preverjanje dolžine in polmera orodja			Stran 156

HEIDENHAIN

 DR. JOHANNES HEIDENHAIN GmbH

 Dr.-Johannes-Heidenhain-Straße 5

 83301 Traunreut, Germany

 [⊕] +49 (8669) 31-0

 ^E #49 (8669) 5061

 E-mail: info@heidenhain.de

 Technical support F +49 (8669) 32-1000

 Measuring systems F +49 (8669) 31-3104

 E-mail: service.ms-support@heidenhain.de

 TNC support S +49 (8669) 31-3101

 E-mail: service.nc-support@heidenhain.de

NC programming	6	+49 (8669) 31-3103	
E-mail: service.nc-	pgm	@heidenhain.de	
PLC programming	3	+49 (8669) 31-3102	
E-mail: service.plc	@hei	denhain.de	
Lathe controls	Q	+49 (8669) 31-3105	
E-mail: service.lath	ne-su	pport@heidenhain de	

www.heidenhain.de

3D tipalni sistemi HEIDENHAIN

Vam pomagajo skrajšati čas čakanja:

Na primer

- naravnavanje obdelovalnih kosov
- postavljate naveznih točk
- merjenje obdelovalnih kosov
- digitaliziranje 3D oblik

s tipalnimi sistemi za orodja TS 220 s kablom TS 640 z infrardečim prenosom

- merjenje orodij
- merjenje obrabe
- ugotavljanje loma orodja

s tipalnim sistemom za orodje **TT 140**

####