

Modo de Empleo Ciclos de palpación

TNC 320

Software NC 340 551-03 340 554-03

Español (es) 9/2008

Modelo de TNC, software y funciones

Este Modo de Empleo describe las funciones disponibles en los TNCs a partir de los siguientes números de software NC.

Modelo de TNC	Número de software NC
TNC 320	340 551-03
Puesto de Programación TNC 320	340 554-03

El fabricante de la máquina adapta las funciones del TNC a la máquina mediante parámetros de máquina. Por ello, en este manual se describen también funciones que no están disponibles en todos los TNC.

Las funciones del TNC que no están disponibles en todas las máquinas son, por ejemplo:

Medición de herramientas con el TT

Rogamos se pongan en contacto con el constructor de la máquina para conocer el funcionamiento de la misma.

Muchos constructores de máquinas y HEIDENHAIN ofrecen cursillos de programación para los TNCs. Se recomienda tomar parte en estos cursillos, para aprender las diversas funciones del TNC.

-	~
	E.

Modo de Empleo:

Todas las funciones TNC que no estén relacionadas con el palpador se encuentran descritas en el Modo de Empleo del iTNC 320. Si precisan dicho Modo de Empleo, rogamos se pongan en contacto con HEIDENHAIN. ID 550 671-xx

Opciones de software

El TNC dispone de diversas opciones de software, que pueden ser habilitadas por el fabricante de la máquina. Cada opción debe ser habilitada por separado y contiene las funciones que se enuncian a continuación:

Opción de software 1

Interpolación superficie cilíndrica (ciclos 27, 28 y 39)

Avance en mm/min en ejes rotativos: M116

Inclinación del plano de mecanizado (ciclo 19 y Softkey 3D-ROT en el modo de funcionamiento manual)

Círculo en 3 ejes con plano de mecanizado inclinado

Nivel de desarrollo (Funciones Upgrade)

Junto a las opciones de software se actualizan importantes desarrollos del software del TNC mediante funciones Upgrade, el denominado Feature Content Level (palabra ing. para Nivel de desarrollo). No podrá disponer de las funciones que están por debajo del FCL, cuando actualice el software en su TNC.

Al recibir una nueva máquina, todas las funciones Upgrade están a su disposición sin costes adicionales.

Las funciones Upgrade están identificadas en el manual con FCL ${\bf n},$ donde ${\bf n}$ representa el número correlativo del nivel de desarrollo.

Se pueden habilitar las funciones FCL de forma permanente adquiriendo un número clave. Para ello, ponerse en contacto con el fabricante de su máquina o con HEIDENHAIN.

Lugar de utilización previsto

El TNC pertenece a la clase A según EN 55022 y se emplea principalmente en zonas industriales.

Nuevas funciones 340 55x-03

- El TNC admite también el proceso de los puntos de referencia sobre la Tabla Preset (véase "Escribir los valores de la medición de los ciclos de palpación en una tabla de presets" en pág. 28)
- El TNC contempla la inclinación de planos de mecanizado en máquinas herramienta con cabezales y mesas basculantes.
- Ciclo 240 centraje
- Ciclo 208 fresado de taladro: tipo de fresado (marcha/contramarcha) seleccionable
- Ciclo 209 Roscado con arranque de viruta: se consigue un retroceso más rápido
- Ciclo de palpación 400 a 405 para una pieza con plano inclinado para su medición y compensación automática (véase Manual de Empleo del ciclo de palpación)
- Ciclo de palpación 408 a 419 para fijar automáticamente a un nuevo punto de referencia (véase Manual de Empleo del ciclo de palpación)
- Ciclo de palpación 420 a 431 para medición automática de piezas (véase Manual de Empleo del ciclo de palpación)
- Ciclo de palpación 480 (30) a 483 (33) para medición automática de herramientas (véase Manual de Empleo del ciclo de palpación)
- Ciclo 19 PLANO DE MECANIZADO y Softkey 3D-ROT
- Tecla de Backspace Dialog

Contenido

Introducción

Ciclos de palpación en los modos de funcionamiento Manual y Volante electrónico

Ciclos de palpación para la comprobación automática de piezas

Ciclos de palpación para la medición automática de herramientas

1 Trabajar con ciclos de palpación 15

1.1 Nociones básicas sobre los ciclos de palpación 16

Modo de funcionamiento 16

Tener en cuenta el giro básico en modo de funcionamiento Manual 16

Ciclos de palpación en los modos de funcionamiento Manual y Volante electrónico 16

Ciclos de palpación para el funcionamiento automático 17

1.2 ¡Antes de trabajar con los ciclos de palpación! 19

Máximo recorrido hasta el punto de palpación: DIST en la tabla de sistema de palpación 19

Distancia de seguridad hasta el punto de palpación: SET_UP en la tabla de sistema de palpación 19 Orientar el palpador infrarrojo en la dirección de palpación programada: TRACK en la tabla del sistema de palpación 19

Palpador digital, avance de palpación: F en la tabla del sistema de palpación 20

Palpador digital, avance para posicionamiento de movimiento: FMAX 20

Palpador digital, marcha rápida para movimientos de posicionamiento: F_PREPOS en tabla del sistema de palpación 20

Medición múltiple 20

Margen de fiabilidad para la medición múltiple 20

Ejecución de los ciclos de palpación 21

1.3 Tabla de palpación 22

Generalidades 22

Editar las tablas del palpador 22

Datos del sistema de palpación 23

2 Ciclos de palpación en los modos de funcionamiento Manual y Volante electrónico 25

2.1 Introducción 26
Resumen 26
Selección del ciclo de palpación 26
Escribir los valores de la medición de los ciclos de palpación en una tabla de puntos cero 27
Escribir los valores de la medición de los ciclos de palpación en una tabla de presets 28
2.2 Calibración del palpador digital 29
Introducción 29
Calibración de la longitud activa 29
Calibración del radio activo y ajuste de la desviación del palpador 30
Visualización de los valores calibrados 31
2.3 Compensación de la inclinación de la pieza 32
Introducción 32
Calcular el giro básico 32
Memorizar el giro básico en la tabla de presets 33
Visualización del giro básico 33
Anulación del giro básico 33
2.4 Fijar un punto de referencia con palpadores 3D 34
Introducción 34
Fijar el punto de referencia en cualquier eje 34
Esquina como punto de referencia 35
Punto central del círculo como punto de referencia 36
2.5 Medición de piezas con -palpadores 3D 37
Introducción 37
Determinar las coordenadas de la posición de una pieza centrada 37
Determinar las coordenadas del punto de la esquina en el plano de mecanizado 37
Determinar las dimensiones de la pieza 38
Determinar el angulo entre el eje de referencia angular y una arista de la pieza 39

3 Ciclos de palpación para la comprobación automática de piezas 41

3.1 Medición automática de la posición inclinada de la pieza 42

Resumen 42

Datos comunes de los ciclos de palpación para registrar la inclinación de la pieza 43

GIRO BASICO (ciclo de palpación 400, DIN/ISO: G400) 44

GIRO BASICO mediante dos taladros (ciclo de palpación 401, DIN/ISO: G401) 46

GIRO BASICO mediante dos islas (ciclo de palpación 402, DIN/ISO: G402) 49

GIRO BASICO compensar mediante un eje giratorio (ciclo de palpación 403, DIN/ISO: G403) 52

GIRO BASICO (ciclo de palpación 404, DIN/ISO: G404) 56

Ajuste de la posición inclinada de la pieza mediante el eje C (ciclo de palpación 405, DIN/ISO: G405) 57

3.2 Cálculo automático de los puntos de referencia 61

Resumen 61

Correspondencias de todos los ciclos de palpación para fijar el punto de ref. 63

PUNTO DE REFERENCIA CENTRO RANURA (ciclo de palpación 408, DIN/ISO: G408) 65

PUNTO DE REFERENCIA CENTRO ISLA (ciclo de palpación 409, DIN/ISO: G409) 68

PUNTO DE REFERENCIA RECTANGULO INTERIOR (ciclo de palpación 410, DIN/ISO: G410) 71

PUNTO DE REFERENCIA RECTANGULO EXTERIOR (ciclo de palpación 411, DIN/ISO: G411) 74

PTO. REF. CIRCULO INTERIOR (ciclo de palpación 412, DIN/ISO: G412) 77

PTO. REF. CIRCULO EXTERIOR (ciclo de palpación 413, DIN/ISO: G413) 81

PTO. REF. ESQUINA EXTERIOR (ciclo de palpación 414, DIN/ISO: G414) 85

PTO. REF. ESQUINA INTERIOR (ciclo de palpación 415, DIN/ISO: G415) 88

PTO. REF. CENTRO CIRCULO TALADROS (ciclo de palpación 416, DIN/ISO: G416) 91

PTO. REF. EJE DE PALPACION (ciclo de palpación 417, DIN/ISO: G417) 94

PTO. REF. CENTRO DE 4 TALADROS (ciclo de palpación 418, DIN/ISO: G418) 96

PTO. REF. EJE INDIVIDUAL (ciclo de palpación 419, DIN/ISO: G419) 99

3.3 Medición automática de piezas 105

Resumen 105 Registrar resultados de medida 106 Resultados de medición en parámetros Q 107 Estado de la medición 107 Supervisión de la tolerancia 108 Supervisión de herramientas 108 Sistema de referencia para los resultados de medición 109 PLANO DE REFERENCIA (ciclo de palpación 0, DIN/ISO: G55) 110 PLANO DE REFERENCIA en polares (ciclo de palpación 1) 111 MEDIR ANGULO (ciclo de palpación 420, DIN/ISO: G420) 112 MEDIR TALADRO (ciclo de palpación 421, DIN/ISO: G421) 114 MEDIR CIRCULO EXTERIOR (ciclo de palpación 422, DIN/ISO: G422) 117 MEDIR RECTANGULO INTERIOR (ciclo de palpación 423, DIN/ISO: G423) 120 MEDICION RECTANGULO EXTERNO (ciclo de palpación 424, DIN/ISO: G424) 123 MEDIR ANCHURA INTERIOR (ciclo de palpación 425, DIN/ISO: G425) 126 MEDIR EXTERIOR ISLA (ciclo de palpación 426, DIN/ISO: G426) 128 MEDIR COORDENADA (ciclo de palpación 427, DIN/ISO: G427) 130 MEDIR CIRCULO DE TALADROS (ciclo de palpación 430, DIN/ISO: G430) 133 MEDIR PLANO (ciclo de palpación 431, DIN/ISO: G431) 136 3.4 Ciclos especiales 143

Resumen 143 MEDIR (ciclo de palpación 3) 144

4 Ciclos de palpación para la medición automática de herramientas 147

4.1 Medición de herramientas con el palpador de mesa TT 148

Resumen 148

Ajuste de parámetros de máquina 149

Valores en la tabla de herramientas TOOL.T 150

4.2 Ciclos disponibles 152

Resumen 152

Diferencias entre los ciclos 31 a 33 y 481 a 483 152

Calibración del TT(ciclo de palpación 30 o 480, DIN/ISO: G480) 153

Medir longitud de herramienta (ciclo de palpación 31 o 481, DIN/ISO: G481) 154

Medir radio de la herramienta (ciclo de palpación 32 o 482, DIN/ISO: G482) 157

Medir herramienta por completo (ciclo de palpación 33 o 483, DIN/ISO: G483) 159

Trabajar con ciclos de palpación

1.1 Nociones básicas sobre los ciclos de palpación

- P

El TNC debe estar preparado por el fabricante de la máquina para el empleo de palpadores 3D.

Modo de funcionamiento

Cuando el TNC ejecuta un ciclo de palpación, el palpador 3D se aproxima con un avance de palpación determinado por el fabricante de la máquina en la dirección seleccionada. El avance de palpación está definido en un parámetro de máquina (véase la sección "Antes de trabajar con ciclos de palpación" en este capítulo).

Cuando el palpador roza la pieza,

- el palpador 3D emite una señal al TNC: se memorizan las coordenadas de la posición palpada
- se para el palpador 3D y
- retrocede en avance rápido a la posición inicial del proceso de palpación

Cuando dentro de un recorrido determinado no se desvía el vástago, el TNC emite el aviso de error correspondiente (recorrido: **DIST** en la tabla sistema de palpación).

Tener en cuenta el giro básico en modo de funcionamiento Manual

El TNC considera un giro básico activo durante el proceso de palpación y se aproxima a la pieza de forma oblicua.

Ciclos de palpación en los modos de funcionamiento Manual y Volante electrónico

El TNC pone a su disposición los ciclos de palpación en los modos de funcionamiento Manual y Volante electrónico, con los que:

- calibrar el palpador
- compensar la posición inclinada de la pieza
- Fijación de los puntos cero de referencia

.1 Nociones básicas sobre los ciclos de palpac<mark>ión</mark>

Ciclos de palpación para el funcionamiento automático

Junto a los ciclos de palpación que se utilizan en los modos de funcionamiento Manual y Volante electrónico, el TNC pone a su disposición un gran número de ciclos para las más diferentes posibilidades de aplicación en el modo de funcionamiento Automático:

- calibración del palpador digital (capítulo 3)
- compensación de la posición inclinada de la pieza (capítulo 3)
- fijación de los puntos cero de referencia (capítulo 3)
- comprobación automática de la pieza (capítulo 3)
- medición automática de la herramienta (capítulo 4)

Los ciclos de palpación se programan en el modo de funcionamiento programar mediante la tecla TOUCH PROBE. Los ciclos de palpación a partir del 400, utilizan al igual que los nuevos ciclos de mecanizado, parámetros Q como parámetros de transferencia. Los parámetros de una misma función, que el TNC emplea en diferentes ciclos, tienen siempre el mismo núméro: p.ej. Q260 es siempre la altura de seguridad, Q261 es siempre la altura de medición, etc.

El TNC muestra durante la definición del ciclo una figura auxiliar para simplificar la programación. En la figura auxiliar, el parámetro que se tiene que introducir destaca en un color más claro.

TOUCH

410

Definir la programación de los ciclos de palpación en el modo de	e
funcionamiento	

- En la carátula de softkeys se pueden ver, estructuradas en grupos, todas las funciones de palpación disponibles
- Selección de un grupo de ciclos de palpación, p.ej. fijación del punto de referencia. Los ciclos para la medición automática de herramientas, sólo están disponibles si la máquina ha sido preparada para ello
- Selección del ciclo, p.ej. fijación del punto de referencia en el centro de una cajera. El TNC abre un diálogo y pregunta por todos los valores de introducción; simultáneamente aparece en la mitad derecha de la pantalla un gráfico en el cual aparecen los parámetros a introducir en color más claro
- Introducir todos los parámetros solicitados por el TNC y finalizar la introducción con la tecla ENT
- El TNC finaliza el diálogo después de haber introducido todos los datos precisos

Grupo de ciclo de medición	Softkey	Página
Ciclos para el registro automático y compensación de una posición inclinada de la pieza		Pág. 42
Ciclos para la fijación automática del punto de referencia		Pág. 61
Ciclos para control automático de la pieza		Pág. 105
Ciclos especiales	CICLOS ESPECIAL.	Pág. 143
Ciclos para medición automática de la herramienta (autorizado por el fabricante de la máquina)		Pág. 148

Ejemplo: Frases NC

5 TCH PROBE 410	PTOREF RECTÁNGULO INTERNO
Q321=+50	;CENTRO 1ER. EJE
Q322=+50	;CENTRO 2º EJE
Q323=60	;LONGITUD LADO 1
Q324=20	;LONGITUD LADO 2
Q261=-5	;ALTURA MEDICIÓN
Q320=0	;DISTANCIA DE SEGURIDAD
Q260=+20	;ALTURA SEGURIDAD
Q301=0	;DESPLAZ. A ALTURA SEG.
Q305=10	;N° EN TABLA
Q331=+0	;PUNTO REFERENCIA
Q332=+0	;PUNTO REFERENCIA
Q303=+1	;ENTREGA VALOR MEDICIÓN
Q381=1	;PALPAR EJE TS
Q382=+85	;1ª COORD. PARA EJE TS
Q383=+50	;2ª COORD. PARA EJE TS
Q384=+0	;3ª COORD. PARA EJE TS
Q333=+0	;PUNTO REFERENCIA

1.2 ¡Antes de trabajar con los ciclos de palpación!

Para poder cubrir un campo de aplicación lo más grande posible en las mediciones requeridas, se dispone de posibilidades de ajuste mediante parámetros de máquina globales, que fijan el comportameinte básico de todos los ciclos de palpación. Cuando se emplea más de un sistema de palpación en la máquina, los ajustes sirven para todos los sistemas de palpación.

Adicionalmente se dispone de posibilidades de ajuste en la tabla de sistema de palpación, las cuales se pueden definir por separado para cada sistema de palpación. Con estos ajustes se puede adaptar el comportamiento al programa de sistema de palpación a una determinada aplicación (véase "Tabla de palpación" en pág. 22).

Máximo recorrido hasta el punto de palpación: DIST en la tabla de sistema de palpación

El TNC emite un aviso de error, cuando el vástago no se desvía en el recorrido determinado en DIST.

Distancia de seguridad hasta el punto de palpación: SET_UP en la tabla de sistema de palpación

En SET_UP se determina a qué distancia del punto de palpación definido, o calculado por el ciclo, el TNC posiciona previamente el palpador. Cuanto menor sea el valor introducido, más precisas se definen las posiciones de palpación. En muchos ciclos de palpación se puede definir una distancia de seguridad adicional, que se suma al parámetro de máquina SET_UP.

Orientar el palpador infrarrojo en la dirección de palpación programada: TRACK en la tabla del sistema de palpación

Para aumentar la precisión de medida, es posible obtener por medio de TRACK = ON que un palpador infrarrojo se oriente antes de cada proceso de palpación en dirección del palpador programado. De este modo, el palpador siempre se desvía en la misma dirección.

Si modifica TRACK = ON, entonces debe calibrar el palpador de nuevo.

Palpador digital, avance de palpación: F en la tabla del sistema de palpación

En F se determina el avance con el cual el TNC palpa la pieza.

Palpador digital, avance para posicionamiento de movimiento: FMAX

En FMAX se determina el avance con el cual el TNC posiciona previamente el palpador, o bien posiciona entre puntos de medición.

Palpador digital, marcha rápida para movimientos de posicionamiento: F_PREPOS en tabla del sistema de palpación

En F_PREPOS se determina, si el TNC debería posicionar el palpador con el avance definido en FMAX, o en la marcha rápida de la máquina.

- Valor de introducción = FMAX_PRUEBA: posicionar con avance de FMAX
- Valor de introducción =FMAX_MAQUINA: posicionar previamente con marcha rápida

Medición múltiple

Para aumentar la seguridad de medida. el TNC puede ejecutar cada palpación hasta tres veces seguidas. Inserte el número de las medidas en el parámetro de máquina**PruebaSettings** > configuración del comportamiento del palpador > función automática: Fijar medición múltiple en la función de palpado. Cuando los valores de la posición medidos difieren mucho entre si, el TNC emite un aviso de error (valor límite determinado en márgen de fiabilidad en medición múltiple). Mediante la medición múltiple se pueden averiguar, si es preciso, errores de medición casuales producidos p.ej. por suciedad.

Si los valores de medición se encuentran dentro del margen de tolerancia, el TNC memoriza el valor medio a partir de las posiciones registradas.

Margen de fiabilidad para la medición múltiple

Cuando se ejecuta una medición múltiple, introducir en el parámetro de máquina **PruebaSettings** > **configuración del comportamiento de palpación** > **función automática: Margen de fiabilidad para medición múltiple** aumentar el valor, de manera que los valores de medición difieran entre si. Si la diferencia de los valores de medición sobrepasa el valor definido, el TNC proporciona un aviso de error.

Ejecución de los ciclos de palpación

Todos los ciclos de palpación se activan a partir de su definición. Es decir el TNC ejecuta el ciclo automáticamente, cuando en la ejecución del programa el TNC ejecuta la definición del ciclo.

Estando el ciclo de palpación en funcionamiento, no se debe tener activado ningun ciclo de conversión de coordenadas (Ciclo 7 CERO-PIEZA, ciclo 8 ESPEJO, ciclo 10 GIRO, ciclo 11 y 26 FACTOR DE ESCALA y ciclo 19 PLANO DE MECANIZADO).

Los ciclos de palpación 408 a 419 también se pueden ejecutar cuando está activado el giro básico. Tener en cuenta que el ángulo de giro básico no se vuelve a modificar cuando se trabaja tras el ciclo de medición con el ciclo 7 desplazamiento del punto 0.

Los ciclos de palpación con un número mayor a 400 posicionan el palpador según una lógica de posicionamiento:

- Cuando la coordenada actual de la parte inferior del vástago es menor a la coordenada de la altura de seguridad (definida en el ciclo), el TNC retira primero el palpador según el eje del mismo a la altura de seguridad y a continuación lo posiciona en el plano de mecanizado hacia el primer punto de palpación.
- Si la coordenada actual del punto sur del palpador es mayor que la coordenada de la altura de seguridad, el TNC posiciona el palpador en primer lugar en el plano de mecanizado en el primer punto de palpación y finalmente en el eje de palpador directamente en la altura de medición

1.3 Tabla de palpación

Generalidades

En la tabla de palpación hay varios datos grabados, que determinan el comportamiento del proceso de palpado. Cuando se tienen en la máquina varios palpadores en funcionamiento, se pueden grabar datos por separado en cado uno de los palpadores.

Editar las tablas del palpador

Para poder editar la tabla de palpación, proceder de la siguiente manera:

- Seleccionar el punto de menú Funcionamiento manual
- Seleccionar las funciones de palpación: Pulsar la softkey FUNCIONES PALPADOR. El TNC muestra otras softkeys: véase la tabla de arriba
- Seleccionar la tabla del palpador: pulsar la softkey TABLA DEL PALPADOR

TABLA PALPADOR

- Fijar la softkey EDITAR en ON
- ▶ Con las teclas cursoras seleccionar el ajuste deseado
- ▶ Realizar los cambios deseados
- Salir de la tabla de palpación: Pulsar la softkey FIN

Datos del sistema de palpación

Abrev.	Introducciones	Diálogo
NO.	Número del palpador: este número se introduce en la tabla de la herramienta (columna: TP_NO) bajo el correspondiente número de herramienta	-
ТҮРЕ	Selección del palpador utilizado	¿Selección del sistema de palpación?
CAL_OF1	Desplazamiento del eje del palpador al eje del cabezal en el eje principal	¿Eje principal de la desviación del centro del TS? [mm]
CAL_OF2	Desplazamiento del eje del palpador al eje del cabezal en el eje auxiliar	¿Eje auxiliar de la desviación del centro del TS? [mm]
CAL_ANG	El TNC orienta el palpador antes de la calibración o palpación en el ángulo de orientación (en caso de ser posible la orientación)	Ángulo del cabezal en la calibración?
F	Avance, con el que el TNC debe palpar la pieza	¿Avance de palpación? [mm/min]
FMAX	Avance con el que el palpador realiza el posicionamiento previo o con el que se posicionará entre los puntos de medición	¿Marcha rápida en el ciclo de palpación? [mm/min]
DIST	El TNC emite un aviso de error, si el vástago no se desvía dentro del valor definido	¿Trayectoria máxima? [mm]
SET_UP	En SET_UP se determina a que distancia del punto de palpación definido, o calculado por el ciclo, el TNC posiciona previamente el palpador. Cuanto menor sea el valor introducido, más precisas se definen las posiciones de palpación. En muchos ciclos de palpación se puede definir una distancia de seguridad adicional, que se suma al parámetro de máquina SET_UP	¿Distancia de seguridad ? [mm]
F_PREPOS	Determinar la velocidad al preposicionar:	¿Preposicionam. con avance rápido?
	Posicionamiento previo con velocidad de FMAX: FMAX_PROBE	ENT/NO ENT
	Previa posición con máquina en marcha rápida: FMAX_MAQUINA	
TRACK	Para aumentar la precisión de medida, es posible obtener por medio de TRACK = ON que un palpador infrarrojo se oriente antes de cada proceso de palpación en dirección del palpador programado. De este modo, el vástago siempre se desvía en la misma dirección:	Orient. sistema de palpación? Sí=ENT, no=NOENT
	 ON: Efectuar Seguimiento-Cabezal OFF: No Efectuar Seguimiento-Cabezal 	

Ciclos de palpación en los modos de funcionamiento Manual y Volante electrónico

2.1 Introducción

Resumen

En el modo de funcionamiento Manual están disponibles los siguientes ciclos de palpación:

Función	Softkey	Página
Calibrar la longitud activa		Pág. 29
Calibrar el radio activo	CAL 3D	Pág. 30
Calcular el giro básico mediante una línea	ROTACION	Pág. 32
Fijar el punto de referencia en un eje seleccionable	PALPAR POS	Pág. 34
Fijación de la esquina como punto de referencia	PALPAR P	Pág. 35
Fijar punto central círculo como punto de referencia	PALPAR	Pág. 36
Gestión de los datos del palpador		Pág. 22

Selección del ciclo de palpación

Seleccionar el modo de funcionamiento Manual o Volante electrónico

ROTACION

- Seleccionar las funciones de palpación: Pulsar la softkey FUNCIONES PALPADOR. El TNC muestra otras softkeys: véase la tabla de arriba
- Selección del ciclo de palpación: p.ej. pulsar la softkey PALPAR ROT, el TNC muestra en la pantalla el menú correspondiente

i

Escribir los valores de la medición de los ciclos de palpación en una tabla de puntos cero

Utilice esta función si quiere memorizar los valores de medición en el sistema de coordenadas de la pieza. Si quiere memorizar los valores de medición en el sistema de coordenadas fijado en la máquina (coordenadas REF), pulse la softkey ENTRADA TABLA PRESETS (véase "Escribir los valores de la medición de los ciclos de palpación en una tabla de presets" en pág. 28).

Mediante la softkey ENTRADA TABLA PUNTO CERO, el TNC puede introducir, después de ejecutar cualquier ciclo de palpación, los valores de la medición en una tabla de puntos cero:

Ejecutar cualquier función de palpación

- Registrar las coordenadas deseadas para el punto de referencia en las ventanas de introducción que aparecen (depende del ciclo de palpación ejecutado)
- Introducir número de punto cero en el campo de introducción Número en tabla =
- Introducir el nombre (completo) de la tabla de puntos cero en la ventana de introducción del mismo
- Pulsar la softkey ENTRADA TABLA PUNTOS CERO. El TNC guarda el punto cero con el número introducido en la tabla de puntos cero indicada

Escribir los valores de la medición de los ciclos de palpación en una tabla de presets

Utilice esta función si quiere memorizar los valores de medición en el sistema de coordenadas fijados en la máquina (coordenadas REF). Si quiere memorizar los valores de medición en el sistema de coordenadas de la pieza, pulse la softkey ENTRADA TABLA PUNTOS CERO (véase "Escribir los valores de la medición de los ciclos de palpación en una tabla de puntos cero" en pág. 27).

Mediante la softkey ENTRADA TABLA PRESETS, el TNC puede introducir, después de ejecutar cualquier ciclo de palpación, los valores de la medición en una tabla de presets: Los valores de medición serán memorizados entonces en relación al sisteam de coordenadas fijado en la máquina (coordenadas REF). La tabla de Presets tiene el nombre PRESET.PR y se está guardada en el directorio TNC:\.

- Ejecutar cualquier función de palpación
- Registrar las coordenadas deseadas para el punto de referencia en las ventanas de introducción que aparecen (depende del ciclo de palpación ejecutado)
- Introducir número de preset en el campo de introducción Número en tabla:
- Pulsar la softkey ENTRADA TABLA PRESETS. El TNC guarda el punto cero con el número introducido en la tabla de presets indicada

2.2 Calibración del palpador digital

Introducción

Hay que calibrar el palpador en los siguientes casos:

- Puesta en marcha
- Rotura del vástago
- Cambio del vástago
- Modificación del avance de palpación
- Irregularidades, como p.ej., calentamiento de la máquina
- Cambiar el eje de palpación

En la calibración el TNC calcula la longitud "activa" del vástago y el radio "activo" de la bola de palpación. Para la calibración del palpador 3D, se coloca un anillo de ajuste con altura y radio interior conocidos, sobre la mesa de la máquina.

Calibración de la longitud activa

La longitud activa del palpador se refiere siempre al punto de referencia de la herramienta. Por regla general, el fabricante de la máquina sitúa el punto de referencia de la herramienta sobre la base del cabezal.

▶ Fijar el punto de referencia en el eje del cabezal de tal manera que para la mesa de la máquina sea válido: Z=0.

- Seleccionar la función para la calibración de la longitud del palpador: pulsar la softkey FUNCION PALPACION y CAL L. El TNC muestra una ventana del menú con cuatro casillas de introducción.
- Introducir el eje de la hta. (tecla del eje)
- ▶ Punto de ref.: Introducir la altura del anillo de ajuste
- Los puntos del menú radio de la esfera y longitud activa no precisan ser introducidos
- Desplazar el palpador sobre la superficie del anillo de ajuste
- Si es preciso modificar la dirección de desplazamiento: mediante softkey o con los pulsadores de manual
- Palpación de la superficie: pulsar el arranque START

Calibración del radio activo y ajuste de la desviación del palpador

Normalmente el eje del palpador no coincide exactamente con el eje del cabezal. La función de calibrado registra el desplazamiento entre el eje de palpación y el eje del cabezal y lo iguala por cálculo.

Con el calibrado de desplazamiento del centro, el palpador 3D gira 180°. El giro lo ejecuta una función auxiliar que determina el constructor de la máquina en el parámetro mStrobeUTurn.

Proceda al calibrado manual como se indica a continuación:

Posicionar la bola de palpación en funcionamiento manual en el interior del anillo de ajuste

- Selección de la función de calibración del radio de la bola de palpación y de la desviación del palpador: pulsar la softkey CAL R
- Seleccionar el eje de la hta. e introducir el radio del anillo de ajuste
- Palpación: accionar 4 veces el pulsador externo de arranque START. El palpador 3D palpa en cada dirección de los ejes una posición del interior del anillo y calcula el radio activo de la bola de palpación.
- Si se quiere finalizar ahora la función de calibración, pulsar la softkey FIN

Para determinar el desplazamiento de centros de la bola de palpador, el TNC debe estar preparado por el fabricante de la máquina. ¡Rogamos consulten el manual de su máquina!

- Determinar la desviación de la bola de palpación. Pulsar la softkey 180°. El TNC gira el palpador 180°
- Palpación: accionar 4 veces el pulsador externo de arranque START. El palpador 3D palpa en cada dirección de los ejes una posición del interior del anillo y calcula la desviación del palpador

Visualización de los valores calibrados

El TNC memoriza la longitud y el radio activos del palpador en la tabla de la herramienta. El TNC memoriza el desvío del centro del palpador en la tabla del mismo, en las columnas CAL_OF1 (eje principal) y CAL_OF2 (eje auxiliar). Los valores memorizados se visualizan pulsando la softkey Tabla del palpador.

Cuando utilice el palpador, preste atención a la hora de activar el número de herramienta correcto, independientemente de si quiere ejecutar el ciclo de palpación en modo de funcionamiento Automático o en modo de funcionamiento Manual.

Los valores de calibración calculados se calculan después de una llamada (en caso necesario, reiterada) de herramienta.

Edit ¿Sel	ar ta ecció	bla n del	siste	ema d	e pa	lpac	ión	Programa	r
Fiche	ero: tnc:\	table∖tchpr	obe.tp		Linea:	0		>>	-
NO	TYPE	CAL_OF1	CAL_OF2	CAL_ANG	F	FMAX	DIST		
1	TS120 TS440	+0 +0	+8 +8	0	500 500	+2000 +2000	10 10		S J
									DIAGNOSE
INICIO		N PAG	INA PP	GINA	EDITAR	BUSQ	JEDA		FIN

2.3 Compensación de la inclinación de la pieza

Introducción

El TNC compensa una inclinación de la pieza mediante el "Giro básico".

Para ello el TNC fija el ángulo de giro sobre el ángulo que forma una superficie de la pieza con el eje de referencia angular del plano de mecanizado. Véase figura de la derecha.

El TNC registra el giro básico, en función del eje de herramienta, en la columna SPA, SPB o SPC de la tabla de preset. .

Seleccionar siempre la dirección de palpación para medir la inclinación de la pieza perpendicular al eje de referencia angular.

Para calcular correctamente el giro básico en la ejecución del programa, deberán programarse ambas coordenadas del plano de mecanizado en la primera frase de desplazamiento.

Calcular el giro básico

- ROTACION
- Seleccionar la función de palpación: pulsar la softkey PALPAR ROT
- Posicionar el palpador cerca del pirmer punto de palpación
- Seleccionar la dirección de palpación perpendicular al eje de referencia angular: Seleccionar el eje y la dirección mediante softkey
- Palpación: accionar el pulsador externo de arranque START
- Posicionar el palpador cerca del segundo punto de palpación
- Palpación: accionar el pulsador externo de arranque START. El TNC calcula el giro básico y visualiza el ángulo tras el diálogo Angulo de giro
- Activar el giro básico: Pulsar la softkey FIJAR GIRO BÁSICO.
- Finalizar la función de palpación: Pulsar la tecla END

Memorizar el giro básico en la tabla de presets

- Tras el proceso de palpación, introducir el número de preset en el campo Número en tabla en el que el TNC debe memorizar el giro básico activo
- Pulsar la softkey REGISTRO TABLA PRESETS, para memorizar el giro básico en la tabla de presets

Visualización del giro básico

El ángulo de giro básico se visualiza después de una nueva selección de PROBING ROT en la visualización del angulo de giro. El TNC también indica el ángulo en la visualización de estados adicional (ESTADO POS.)

Siempre que el TNC desplace los ejes de la máquina según el giro básico, en la visualización de estados se ilumina un símbolo para dicho giro básico.

Anulación del giro básico

- Seleccionar la función de palpación: pulsar la softkey PALPAR ROT
- Insertar 0 giro angular, con la Sotkey INTRODUCIR GIRO BÁSICO aceptar aceptar
- ▶ Finalizar la función de palpación: Pulsar la tecla END

uncionamient	o manu	Ial Programa	r
firo básico			
Angulo de giro	0.144772		м
Angulo superf. palp.	0		
ler pto. medic. 1er eje	0		_
ler. pto. medición eje 2	0		S
2º pto. medición eje 1	0	-	٠
2º pto. medición eje 2	0	-	
Www.ero en la tabla	0	-	· .
		_	
91% S-OVR 1	13:28		
91% S-OVR 1 158% F-OVR 31.857	Y	+25.641 2 +134.991	
158% F-OVR 158% F-OVR 31.857 C +0.000	Y S +	+25.641 Z +134.991 321.790	DIAGNO
91x S-OVR 1 158x F-OVR -31.857 C +0.000 REAL	Y S 4 Z S	+25.641 Z +134.991 +321.790 • F @sevein Our 190x H 5	DIAGNO

2.4 Fijar un punto de referencia con palpadores 3D

Introducción

Las funciones para la fijación del punto de referencia en la pieza, se seleccionan con las siguientes softkeys:

- Fijar el punto de referencia en un eje cualquiera con PALPAR POS
- Fijar la esquina como punto de referencia con PALPAR P
- Fijar el punto central del círculo como punto de referencia con PALPAR CC

Fijar el punto de referencia en cualquier eje

- PALPAR
- Seleccionar la función de palpación: pulsar la softkey PALPAR POS
- Posicionar el palpador cerca del punto de palpación
- Seleccionar simultáneamente la dirección de palpación y el eje para los cuales se ha fijado el punto de referencia, p.ej. palpar Z en dirección Z-: seleccionar mediante softkey
- Palpación: accionar el pulsador externo de arranque START
- Punto de referencia: introducir coordenada nominal, aceptar con softkey FIJAR PUNTO REF., o escribir valor en una tabla (véase "Escribir los valores de la medición de los ciclos de palpación en una tabla de puntos cero" en pág. 27, ó véase "Escribir los valores de la medición de los ciclos de palpación en una tabla de presets" en pág. 28)
- Finalizar la función de palpación: Pulsar la tecla END

Esquina como punto de referencia

- Seleccionar la función de palpación: pulsar la softkey PALPAR P
- Posicionar el palpador cerca del 2º punto de palpación sobre la misma arista
- Seleccionar la dirección de palpación: mediante softkey
- Palpación: accionar el pulsador externo de arranque START
- Posicionar el palpador cerca del 2º punto de palpación sobre la misma arista
- Palpación: accionar el pulsador externo de arranque START
- Posicionar el palpador cerca del 2º punto de palpación sobre la misma arista
- Seleccionar la dirección de palpación: mediante softkey
- Palpación: accionar el pulsador externo de arranque START
- Posicionar el palpador cerca del 2º punto de palpación sobre la misma arista
- Palpación: accionar el pulsador externo de arranque START
- Punto de referencia: introducir ambas coordenadas del punto de referencia en la ventana del menú, con softkey FIJAR PUNTO DE REF. aceptar o escribir valor en una tabla (véase "Escribir los valores de la medición de los ciclos de palpación en una tabla de puntos cero" en pág. 27, ó véase "Escribir los valores de la medición de los ciclos de palpación en una tabla de presets" en pág. 28)
- Finalizar la función de palpación: Pulsar la tecla END

Punto central del círculo como punto de referencia

Como punto de referencia se pueden fijar puntos centrales de taladros, cajeras circulares, cilindros, isla, islas circulares, etc,

Círculo interior:

El TNC palpa la pared interior del círculo en las cuatro direcciones de los ejes de coordenadas.

En los arcos de círculo, la dirección de palpación puede ser cualquiera.

> Posicionar la bola de palpación aprox. en el centro del círculo

- Seleccionar la función de palpación: pulsar la softkey PALPAR CC
- Palpación: accionar 4 veces el pulsador START. El palpador palpa sucesivamente 4 puntos de la pared interior del círculo
- Punto de referencia: introducir ambas coordenadas del punto central del círculo en la ventana del menú, aceptar con softkey FIJAR PUNTO DE REF., o escribir valor en una tabla (véase "Escribir los valores de la medición de los ciclos de palpación en una tabla de puntos cero" en pág. 27, ó véase "Escribir los valores de la medición de los ciclos de palpación en una tabla de presets" en pág. 28)

Finalizar la función de palpación: pulsar la tecla END

Círculo exterior:

- Posicionar la bola de palpación cerca del primer punto de palpación fuera del círculo
- Seleccionar la dirección de palpación: seleccionar la softkey correspondiente
- ▶ Palpación: accionar el pulsador externo de arranque START
- Repetir el proceso de palpación de los 3 puntos restantes. Veáse la figura de abajo a la derecha
- Punto de referencia: introducir las coordenadas del punto de ref., aceptar con softkey FIJAR PUNTO REF., o escribir valor en una tabla (véase "Escribir los valores de la medición de los ciclos de palpación en una tabla de puntos cero" en pág. 27, ó véase "Escribir los valores de la medición de los ciclos de palpación en una tabla de presets" en pág. 28)
- Finalizar la función de palpación: pulsar la tecla END

Después de la palpación, el TNC visualiza en pantalla las coordenadas actuales del punto central y el radio del círculo PR.

2.5 Medición de piezas con -palpadores 3D

Introducción

El palpador puede utilizarse también en los modos de funcionamiento Manual y Volante electrónico para realizar mediciones sencillas en la pieza. Para tareas de medición más complejas están a su disposición un gran número de ciclos de palpación programables(véase "Medición automática de piezas" en pág. 105). Con el palpador 3D se pueden determinar::

- coordenadas de la posición y con dichas coordenadas
- dimensiones y ángulos de la pieza

Determinar las coordenadas de la posición de una pieza centrada

- Seleccionar la función de palpación: pulsar la softkey PALPAR POS
- Posicionar el palpador cerca del punto de palpación
- Seleccionar la dirección de palpación y simultáneamente el eje al que se refiere la coordenada: seleccionar la softkey correspondiente.
- Iniciar el proceso de palpación: pulsar el arranque START

El TNC visualiza la coordenada del punto de palpación como punto de referencia.

Determinar las coordenadas del punto de la esquina en el plano de mecanizado

Determinar las coordenadas del punto de la esquina:Véase "Esquina como punto de referencia" en pág. 35. El TNC indica las coordenadas de la esquina palpada como punto de referencia.

Determinar las dimensiones de la pieza

2.5 Medición de piezas con -palpado<mark>res</mark> 3D

PALPAR

- Seleccionar la función de palpación: pulsar la softkey PALPAR POS
- Posicionar el palpador cerca del primer punto de palpación A
- Seleccionar la dirección de palpación mediante softkey
- Palpación: accionar el pulsador externo de arranque START
- Anotar como punto de referencia el valor visualizado (sólo si se empleará posteriormente el punto de referencia obtenido)
- ▶ Introducir el punto de referencia "0"
- lnterrumpir el diálogo: pulsar la tecla END
- Seleccionar de nuevo la función de palpación: pulsar la softkey PALPAR POS
- Posicionar el palpador cerca del segundo punto de palpación B
- Seleccionar la dirección de palpación con las teclas cursoras: El mismo eje pero en sentido opuesto al de la primera palpación.
- Palpación: accionar el pulsador externo de arranque START

En la visualización del punto de referencia se tiene la distancia entre los dos puntos sobre el eje de coordenadas.

Fijar de nuevo la visualización de la posición al valor que se tenía antes de la medición lineal

- Seleccionar la función de palpación: pulsar la softkey PALPAR POS
- Palpar de nuevo el primer punto de palpación
- Fijar el punto de referencia al valor anotado
- Interrumpir el diálogo: pulsar la tecla END

Medición de un ángulo

Con un palpador 3D se puede determinar un ángulo en el plano de mecanizado. Se mide

- el ángulo entre el eje de referencia angular y una arista de la pieza o
- el ángulo entre dos aristas
- El ángulo medido se visualiza hasta un valor máximo de 90°.

Determinar el ángulo entre el eje de referencia angular y una arista de la pieza

- Seleccionar la función de palpación: pulsar la softkey PALPAR ROT
- Angulo de giro: anotar el ángulo de giro visualizado, en el caso de que se quiera volver a repetir después el giro básico realizado anteriormente.
- Ejecutar el giro básico con el lado a comparar(véase "Compensación de la inclinación de la pieza" en pág. 32)
- Con la softkey PALPAR ROT visualizar como ángulo de giro, el ángulo entre el eje de referencia angular y la arista de la pieza.
- Eliminar ajuste básico o restablecer el ajuste básico original
- Fijar el punto de referencia al valor anotado

Determinar el ángulo entre dos aristas de la pieza

- Seleccionar la función de palpación: pulsar la softkey PALPAR ROT
- Angulo de giro: anotar el ángulo de giro visualizado, en el caso de que se quiera volver a reproducir posteriormente
- Realizar el giro básico para el primer lado (véase "Compensación de la inclinación de la pieza" en pág. 32)
- Asimismo se palpa el segundo lado igual que en un giro básico, ¡no fijar el ángulo de giro a 0!
- Con la softkey PALPAR ROT visualizar el ángulo PA entre las aristas de la pieza como ángulo de giro
- Eliminar el giro básico o volver a reproducir el giro básico original: Fijar el ángulo de giro al valor anotado

Ciclos de palpación para la comprobación automática de piezas

3.1 Medición automática de la posición inclinada de la pieza

Resumen

El TNC dispone de cinco ciclos con los cuales registrar y compensar una posición inclinada de la pieza. Además con el ciclo 404 se puede cancelar un giro básico:

ciclo	Softkey	Página
400 GIRO BASICO Registro automático mediante dos puntos, compensación mediante la función del giro básico	400	Pág. 44
401 ROT 2 TALADROS Registro automático mediante dos taladros, compensación mediante la función del giro básico	401	Pág. 46
402 ROT 2 ISLAS Registro automático mediante dos islas, compensación mediante la función del giro básico	482	Pág. 49
403 ROT MEDIANTE EJE GIRATORIO Registro automático mediante dos puntos, compensación mediante la función giro de la mesa giratoria	403	Pág. 52
405 ROT MEDIANTE EJE C Ajuste automático de una desviación angular entre el centro del taladro y el eje Y positivo, compensación mediante giro de la mesa giratoria	405	Pág. 57
404 FIJAR GIRO BASICO Fijar cualquier giro básico	484	Pág. 56

i

Datos comunes de los ciclos de palpación para registrar la inclinación de la pieza

En los ciclos 400, 401 y 402 se puede determinar mediante el parámetro Q307 **Ajuste previo de un giro básico** si el resultado de la medición debe corregirse según un ángulo conocido α (véase la figura de la derecha). De este modo puede medirse el giro básico en cualquier recta 1 de la pieza y establecer la referencia a la dirección 0° real 2.

· (

GIRO BASICO (ciclo de palpación 400, DIN/ISO: G400)

El ciclo de palpación 400 calcula la posición inclinada de la pieza, mediante la medición de dos puntos que deben encontrarse sobre una recta. El TNC compensa a través de la función Giro básico el valor medido(Véase también "Compensación de la inclinación de la pieza" en pág. 32).

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. Para ello, el TNC desplaza el palpador según la distancia de seguridad en la dirección de desplazamiento opuesta a la determinada
- 2 A continuación el palpador se desplaza a la altura de la medición programada y ejecuta el primer proceso de palpación con avance de palpación (MP6120 o bién MP6360)
- **3** A continuación el palpador se desplaza al siguiente punto de palpación **2** y ejecuta el segundo proceso de palpación
- 4 El TNC retrocede a la altura de seguridad y realiza el giro básico calculado

Antes de la programación deberá tenerse en cuenta

Antes de la definición del ciclo deberá programarse una llamada a la herramienta para la definición del eje del palpador.

Al principio del ciclo el TNC anula el giro básico activado.

- ler punto de medición del ler eje Q263 (valor absoluto): Coordenada del 1er punto de palpación en el eje principal del plano de mecanizado
- ▶ 1er punto de medición del 2º eje Q264 (valor absoluto): Coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado
- 2º punto de medición del 1er eje Q265 (valor absoluto): Coordenada del segundo punto de palpación en el eje principal del plano de mecanizado
- 2º punto de medición del 2º eje Q266 (absoluto): coordenada del segundo punto de palpación en el eje auxiliar del plano de mecanizado
- Eje de medición Q272: Eje del plano de mecanizado en el que debe realizarse la medición:
 1:Eje principal = eje de medida
 2:Eje auxiliar = eje de medida
- Dirección de desplazamiento 1 Q267: Dirección en la cual debe desplazarse el palpador hacia la pieza:
 -1:Dirección de desplazamiento negativa
 +1:Dirección de desplazamiento positiva
- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Ω260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Desplazamiento a la altura de seguridad Q301: Determinar como debe desplazarse el palpador entre los puntos de medición:

0: Desplazar entre los puntos de medición a la altura de medición

1: Desplazar entre los puntos de medición a la altura de seguridad

- Preajuste del giro básico Q307 (valor absoluto): Introducir el ángulo de la recta de referencia cuando la posición inclinada a medir no debe referirse al eje principal, sino a cualquier recta. Entonces el TNC calcula para el giro básico la diferencia entre el valor medido y el ángulo de las rectas de referencia.
- Número de preset en la tabla Q305: Indicar el número en la tabla de presets, donde el TNC debe memorizar el giro básico calculado. Al introducir Q305=0, el TNC coloca el giro básico calculado en el menú ROT del modo de funcionamiento Manual

Ejemplo: Frases NC

5 TCH	PROBE 40	O GIRO BÁSICO
Q	263=+10	;1ER PUNTO 1ER EJE
Q	264=+3.5	;1ER PUNTO 2º EJE
Q	265=+25	;2° PUNTO 1ER EJE
Q	266=+2	;2° PUNTO 2° EJE
Q	272=2	;EJE DE MEDIDA
Q	267=+1	;DIRECCIÓN DE DESPLAZAMIENTO
Q	261=-5	;ALTURA MEDICIÓN
Q	320=0	;DISTSEGURIDAD
Q	260=+20	;ALTURA SEGURIDAD
Q	301=0	;DESPLAZ. A ALTURA SEG.
Q	307=0	;GIRO BÁSICO PREINST.
Q	305=0	;N° EN TABLA

,

GIRO BASICO mediante dos taladros (ciclo de palpación 401, DIN/ISO: G401)

El ciclo de palpación 401 registra los puntos medios de dos taladros. A continuación el TNC calcula el ángulo entre el eje principal del plano de mecanizado y la recta que une los puntos centrales de los taladros. El TNC compensa a través de la función Giro básico el valor calculado(Véase también "Compensación de la inclinación de la pieza" en pág. 32). De forma alternativa, también se puede compensar la inclinación calculada mediante un giro de la mesa giratoria.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hasta el centro del primer taladro introducido 1.
- 2 Finalmente el palpador se desplaza a la altura de medida introducida y registra mediante cuatro palpaciones el primer centro del taladro
- **3** Después el palpador retrocede a la altura de seguridad y posiciona sobre el centro programado del segundo taladro **2**
- 4 El TNC desplaza el palpador a la altura de medición introducida y registra mediante cuatro palpaciones el segundo centro del taladro
- **5** Para finalizar el TNC hace retroceder al palpador a la altura de seguridad y realiza el giro básico calculado

Antes de la programación deberá tenerse en cuenta

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

Al principio del ciclo el TNC anula el giro básico activado.

Este ciclo de palpación no está permitido con la función Inclinar plano de mecanizado activa.

Si se desea compensar la inclinación mediante un giro de la mesa giratoria, entonces el TNC utiliza automáticamente los siguientes ejes giratorios:

- C en el eje de herramienta Z
- B en el eje de herramienta Y
- A en el eje de herramienta X

- ▶ 1er taladro: Centro 1er eje Q268 (valor absoluto): Punto central del primer taladro en el eje principal del plano de mecanizado
- ▶ 1er taladro: Centro del 2º eje Q269 (valor absoluto): Punto central del primer taladro en el eje auxiliar del plano de mecanizado
- ▶ 2º taladro: Centro 1er eje Q270 (valor absoluto): Punto central del segundo taladro en el eje principal del plano de mecanizado
- ▶ 2ª taladro: Centro 2º eje Q271 (absoluto): Punto central del segundo taladro en el eje auxiliar del plano de mecanizado
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se guiere realizar la medición
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Preajuste del giro básico Q307 (valor absoluto): Introducir el ángulo de la recta de referencia cuando la posición inclinada a medir no debe referirse al eje principal, sino a cualquier recta. Entonces el TNC calcula para el giro básico la diferencia entre el valor medido y el ángulo de las rectas de referencia.

- Número de preset en la tabla Q305: Indicar el número en la tabla de presets, donde el TNC debe memorizar el giro básico calculado. Al introducir Q305=0, el TNC coloca el giro básico calculado en el menú ROT del modo de funcionamiento Manual. El parámetro no tiene ningún efecto, si la inclinación debe compensarse mediante un giro de la mesa giratoria (Q402=1). En este caso la posición inclinada no se memoriza como valor angular
- Giro básico/Alineación Q402: Determinar, si el TNC debe fijar la inclinación calculada como giro básico, o si debe alinearla mediante giro de la mesa giratoria:
 0: Fijar giro básico
 - 1: Ejecutar giro de la mesa giratoria

Si sé selecciona el giro de la mesa giratoria, el TNC no memoriza la posición inclinada calculada, aunque se haya definido una fila de la tabla en el parámetro **Q305**

Poner a cero tras la alineación Q337: Determinar, si el TNC debe poner a cero la visualización del eje giratorio alineado:

0: No poner a cero la visualización del eje giratorio tras la alineación

1: Poner a cero la visualización del eje giratorio tras la alineación

El TNC sólo fija la visualización = 0, si se ha definido **Q402=1**

Ejemplo: Frases NC

5	TCH PROBE 401 ROT 2 TALADROS
	Q268=-37 ;1ER CENTRO 1ER EJE
	Q269=+12 ;1ER CENTRO 2º EJE
	Q270=+75 ;2° CENTRO 1ER EJE
	Q271=+20 ;2° CENTRO 2° EJE
	Q261=-5 ;ALTURA MEDICIÓN
	Q260=+20 ;ALTURA SEGURIDAD
	Q307=0 ;GIRO BÁSICO PREINST.
	Q305=0 ;N° EN TABLA
	Q402=0 ;ALINEACIÓN
	Q337=0 ;FIJAR A CERO

GIRO BASICO mediante dos islas (ciclo de palpación 402, DIN/ISO: G402)

El ciclo de palpación 402 registra los puntos centrales de islas binarias. A continuación el TNC calcula el ángulo entre el eje principal del plano de mecanizado y la recta que une los puntos centrales de la isla. El TNC compensa a través de la función Giro básico el valor calculado(Véase también "Compensación de la inclinación de la pieza" en pág. 32). De forma alternativa, también se puede compensar la inclinación calculada mediante un giro de la mesa giratoria.

- 1 El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación 1 de la primera isla
- 2 A continuación el palpador se desplaza a la **altura de medición 1**introducida y registra mediante cuatro palpaciones el primer centro de la primera isla. Entre los puntos de palpación desplazados entre si 90° el palpador se desplaza sobre un arco de círculo
- **3** Después el palpador retrocede a la altura de seguridad y se posiciona sobre el punto de palpación 5 de la segunda isla
- 4 El TNC desplaza el palpador a la **altura de medición 2** introducida y registra mediante cuatro palpaciones el segundo centro de la isla
- **5** Para finalizar el TNC hace retroceder al palpador a la altura de seguridad y realiza el giro básico calculado

Antes de la programación deberá tenerse en cuenta

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

Al principio del ciclo el TNC anula el giro básico activado.

Este ciclo de palpación no está permitido con la función Inclinar plano de mecanizado activa.

Si se desea compensar la inclinación mediante un giro de la mesa giratoria, entonces el TNC utiliza automáticamente los siguientes ejes giratorios:

- C en el eie de herramienta Z
- B en el eje de herramienta Y
- A en el eje de herramienta X

- ▶ 1ª isla: Centro 1er eje (valor absoluto): Punto central de la primera isla en el eje principal del plano de mecanizado
- ▶ 1ª isla: Centro 2º eje Q269 (absoluto): Punto central de la primera isla en el eje auxiliar del plano de mecanizado
- Diámetro isla 1 Q313: Diámetro aproximado de la 1ª isla. Introducir un valor superior al estimado
- Altura de medición isla 1 en eje palpación Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se debe realizar la medición de la isla 1
- 2ª isla: Centro 1er eje Q270 (valor absoluto): Punto central de la segunda isla en el eje principal del plano de mecanizado
- ▶ 2ª isla: Centro 2º eje Q271(absoluto): Punto central de la segunda isla en el eje auxiliar del plano de mecanizado
- Diámetro isla 2 Q314: Diámetro aproximado de la 2ª isla. Introducir un valor superior al estimado
- Altura de medición isla 2 en eje palpación Q315 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se debe realizar la medición de la isla 2
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza

3.1 Medición automática de la posición inclinada d<mark>e l</mark>a pieza

402

Desplazamiento a la altura de seguridad Q301: Determinar como debe desplazarse el palpador entre los puntos de medición:

0: Desplazar entre los puntos de medición a la altura de medición

1: Desplazar entre los puntos de medición a la altura de seguridad

- Preajuste del giro básico Q307 (valor absoluto): Introducir el ángulo de la recta de referencia cuando la posición inclinada a medir no debe referirse al eje principal, sino a cualquier recta. Entonces el TNC calcula para el giro básico la diferencia entre el valor medido y el ángulo de las rectas de referencia.
- Número de preset en la tabla Q305: Indicar el número en la tabla de presets, donde el TNC debe memorizar el giro básico calculado. Al introducir Q305=0, el TNC coloca el giro básico calculado en el menú ROT del modo de funcionamiento Manual. El parámetro no tiene ningún efecto, si la inclinación debe compensarse mediante un giro de la mesa giratoria (Q402=1). En este caso la posición inclinada no se memoriza como valor angular
- Giro básico/Alineación Q402: Determinar, si el TNC debe fijar la inclinación calculada como giro básico, o si debe alinearla mediante giro de la mesa giratoria:
 - 0: Fijar giro básico
 - 1: Ejecutar giro de la mesa giratoria

Si se selecciona el giro de la mesa giratoria, el TNC no memoriza la posición inclinada calculada, aunque se haya definido una fila de la tabla en el parámetro **Q305**

Poner a cero tras la alineación Q337: Determinar, si el TNC debe poner a cero la visualización del eje giratorio alineado:

0: No poner a cero la visualización del eje giratorio tras la alineación

1: Poner a cero la visualización del eje giratorio tras la alineación

El TNC sólo fija la visualización = 0, si se ha definido **Q402=1**

Ejemplo: Frases NC

5 TCH PROBE 40	D2 ROT 2 ISLAS
Q268=-37	;1ER CENTRO 1ER EJE
Q269=+12	;1ER CENTRO 2º EJE
Q313=60	;DIÁMETRO ISLA 1
Q261=-5	;ALTURA MEDICIÓN 1
Q270=+75	;2° CENTRO 1ER EJE
Q271=+20	;2° CENTRO 2° EJE
Q314=60	;DIÁMETRO ISLA 2
Q315=-5	;ALTURA MEDICIÓN 2
Q320=0	;DISTSEGURIDAD
Q260=+20	;ALTURA SEGURIDAD
Q301=0	;DESPLAZ. A ALTURA SEG.
Q307=0	;GIRO BÁSICO PREINST.
Q305=0	;N° EN TABLA
Q402=0	;ALINEACIÓN
Q337=0	;FIJAR A CERO

GIRO BASICO compensar mediante un eje giratorio (ciclo de palpación 403, DIN/ISO: G403)

El ciclo de palpación 403 calcula la posición inclinación de una pieza, mediante la medición de dos puntos de una superficie lineal. El TNC compensa la posición inclinada de la pieza que se ha calculado, mediante el giro del eje A, B o C. Para ello, la pieza puede estar fijada a la mesa giratoria de cualquier forma.

Las combinaciones de ejes de medición (parámetro de ciclo Q272) y ejes de compensación (parámetro de ciclo Q312) enumeradas a continuación están permitidas. Función inclinación de planos de mecanizado:

Eje activo TS	Eje de medición	Eje de compensación
Z	X (Q272=1)	C (Q312=6)
Z	Y (Q272=2)	C (Q312=6)
Z	Z (Q272=3)	B (Q312=5) ó A (Q312=4)
Y	Z (Q272=1)	B (Q312=5)
Y	X (Q272=2)	C (Q312=5)
Y	Y (Q272=3)	C (Q312=6) ó A (Q312=4)
Х	Y (Q272=1)	A (Q312=4)
Х	Z (Q272=2)	A (Q312=4)
Х	X (Q272=3)	B (Q312=5) ó C (Q312=6)

i

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. Para ello, el TNC desplaza el palpador según la distancia de seguridad en la dirección de desplazamiento opuesta a la determinada
- 2 A continuación el palpador se desplaza a la altura de la medición programada y ejecuta el primer proceso de palpación con avance de palpación (Columna F)
- **3** A continuación el palpador se desplaza al siguiente punto de palpación **2** y ejecuta el segundo proceso de palpación
- **4** El TNC retira el palpador a la altura de seguridad y posiciona el eje giratorio definido en el ciclo según el valor calculado. Opcionalmente se puede fijar en 0 la visualización tras la alineación

Antes de la programación deberá tenerse en cuenta

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

Solamente utilizar el ciclo 403 cuando la función "Inclinación de planos de mecanizado" esté inactiva.

El TNC también memoriza el ángulo calculado en el parámetro **Q 150**.

- Ier punto de medición del 1er eje Q263 (valor absoluto): Coordenada del 1er punto de palpación en el eje principal del plano de mecanizado
- ler punto de medición del 2º eje Q264 (valor absoluto): Coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado
- 2º punto de medición del 1er eje Q265 (valor absoluto): Coordenada del segundo punto de palpación en el eje principal del plano de mecanizado
- ▶ 2º punto de medición del 2º eje Q266 (absoluto): coordenada del segundo punto de palpación en el eje auxiliar del plano de mecanizado
- **Eje de medición** Q272: Eje en el que debe realizarse la medición:
 - 1: Eje principal = eje de medida
 - 2: Eje auxiliar = eje de medida
 - 3: Eje palpador = eje de medición
- Dirección de desplazamiento 1 Q267: Dirección en la cual debe desplazarse el palpador hacia la pieza:
 -1: Dirección de desplazamiento negativa
 +1:Dirección de desplazamiento positiva
- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza

0

54

Desplazamiento a la altura de seguridad Q301: Determinar como debe desplazarse el palpador entre los puntos de medición:

0: Desplazar entre los puntos de medición a la altura de medición

1: Desplazar entre los puntos de medición a la altura de seguridad

Eje para movimiento de compensación Q312: Determinar con qué eje giratorio compensa el TNC la posición inclinada que se ha medido:

4: Compensar la posición inclinada con el eje giratorio A

5: Compensar la posición inclinada con el eje giratorio B

 $\pmb{6}$: Compensar la posición inclinada con el eje giratorio C

Poner a cero tras la alineación Q337: Determinar, si el TNC debe poner a cero la visualización del eje giratorio alineado:

0: No poner a cero la visualización del eje giratorio tras la alineación

1: Poner a cero la visualización del eje giratorio tras la alineación

- Número en la tabla Q305: Indicar el número en la tabla de preset/tabla de puntos cero, donde el TNC debe fijar a cero el eje de giro. Sólo tiene efecto si se fija Q337 = 1
- Transmisión del valor de medición (0,1) Q303: Determinar si el giro básico calculado debe guardarse en la tabla de puntos cero o en la tabla de presets:
 0: Escribir el giro báscio calculado en la tabla de puntos cero activa. El sistema de referencia es el sistema de coordenadas de la pieza activo
 1: Escribir el giro básico calculado en la tabla de presets. El sistema de referencia es el sistema de coordenadas de la pieza activo
- Ángulo de referencia? (0=Eje principal) Q380: Ángulo sobre el que el TNC debe alinear la recta palpada. Sólo es efectivo si se selecciona el eje de giro = C (Q312 = 6)

Ejemplo: Frases NC

5 TCH PROBE 40)3 ROT MEDIANTE EJE C
Q263=+0	;1ER PUNTO 1ER EJE
Q264=+0	;1ER PUNTO 2º EJE
Q265=+20	;2° PUNTO 1ER EJE
Q266=+30	;2° PUNTO 2° EJE
Q272=1	;EJE DE MEDIDA
Q267=-1	;DIRECCIÓN DE DESPLAZAMIENTO
Q261=-5	;ALTURA MEDICIÓN
Q320=0	;DISTSEGURIDAD
Q260=+20	;ALTURA SEGURIDAD
Q301=0	;DESPLAZ. A ALTURA SEG.
Q312=6	;EJE DE COMPENSACIÓN
Q337=0	;FIJAR A CERO
Q305=1	;N° EN TABLA
Q303=+1	;ENTREGA VALOR MEDICIÓN
Q380=+90	;ÁNGULO DE REFERENCIA

GIRO BASICO (ciclo de palpación 404, DIN/ISO: G404)

Con el ciclo de palpación 404 se puede fijar automáticamente cualquier giro básico durante la ejecución del programa. Este ciclo se utiliza preferentemente cuando se quiere cancelar un giro básico realizado anteriormente.

Ajuste previo del giro básico: Valor angular con el cual se fija el giro básico

Ejemplo: Frases NC

5 TCH PROBE 404 GIRO BÁSICO

Q307=+0 ;GIRO BÁSICO PREINST.

i

Ajuste de la posición inclinada de la pieza mediante el eje C (ciclo de palpación 405, DIN/ISO: G405)

Con el ciclo de palpación 405 se calcula

- el desvío angular entre el eje Y positivo del sistema de coordenadas activo y la línea central de un taladro o
- el desvío angular entre la posición nominal y la posición real del punto central de un taladro

El TNC compensa la desviación angular calculada, girando el eje C. La pieza debe estar sujeta en la mesa giratoria, la coordenada Y del taladro debe ser positiva. Si se mide descentramiento angular del taladro con el eje de palpación Y (posición horizontal del taladro), puede ser necesario ejecutar el ciclo varias veces, puesto que debido a la estrategia de medición se origina una imprecisión de aprox. un 1% de la posición inclinada.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. El TNC calcula los puntos de palpación según las indicaciones en el ciclo y la distancia de seguridad indicada en el dispositivo SET_UP de la tabla del sistema de palpación
- 2 A continuación el palpador se desplaza a la altura de la medición programada y ejecuta el primer proceso de palpación con avance de palpación (dispositivo F). El TNC determina automáticamente la dirección de palpación en relación al ángulo inicial programado
- 3 Después el palpador se desplaza hasta el siguiente punto de palpación en altura de medición o en altura de seguridad 2 y ejecuta en ese punto el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y después en el punto de palpación 4 y ejecuta en ese punto el tercer o cuarto proceso de palpación y posiciona el palpador sobre el centro del taladro calculado
- 5 Para finalizar el TNC posiciona el palpador de nuevo a la altura de seguridad y posiciona la pieza mediante el giro de la mesa giratoria, El TNC gira la mesa de tal forma que el punto central del taladro tras las compensación tanto en ejes de palpación verticales como horizontales está situado en la dirección del eje Y positivo, o en la posición nominal del punto central del taladro. La desviación angular medida también está disponible en el parámetro Q150.

Antes de la programación deberá tenerse en cuenta

Para evitar que el palpador colisione con la pieza, deberá indicarse el diámetro nominal de la cajera (taladro) **menor** a lo estimado.

Cuando las dimensiones de la cajera y la distancia de seguridad no permiten un posicionamiento previo en la proximidad de los puntos de palpación, el TNC siempre palpa partiendo del centro de la cajera. Entre los cuatro puntos de medida el palpador no se desplaza a la altura de seguridad.

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

405

呣

- Centro ler eje Q321 (valor absoluto): Centro del taladro en el eje principal del plano de mecanizado
- Centro 2º eje Q322 (absoluto): centro del taladro en el eje auxiliar del plano de mecanizado. Si se programa Q322 = 0, el TNC dirige el punto medio del taladro al eje Y positivo si se programa Q322 distinto de 0, el TNC dirige el punto medio del taladro a la posición nominal (ángulom que resulta del centro del taladro)
- Diámetro nominal Q262: Diámetro aproximado de la cajera circular (taladro). Introducir un valor menor al estimado
- Ángulo inicial Q325 (valor absoluto): ángulo entre el eje principal del plano de mecanizado y el primer punto de palpación
- Paso angular Q247 (valor incremental): ángulo entre dos puntos de medición, el signo del paso angular determina la dirección de giro (- = sentido horario), en la cual se desplaza el palpador hacia el siguiente punto de medición. Si se quieren medir arcos de círculo, deberá programarse un paso angular menor a 90°

Cuanto menor sea el paso angular que se programa, más impreciso es el cálculo que realiza el TNC del punto central del círculo. Valor de introducción mínimo: 5°.

1

- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Desplazamiento a la altura de seguridad Q301: Determinar como debe desplazarse el palpador entre los puntos de medición:

0: Desplazar entre los puntos de medición a la altura de medición

1: Desplazar entre los puntos de medición a la altura de seguridad

- Fijar cero después del ajuste de Q337: Determinar si el TNC debe fijar la visualización del eje C a cero o si se debe escribir la desviación angular en la columna C de la tabla de puntos cero:
 - 0: Fijar la visualización del eje C a 0

>0: Escribir la desviación angular medida con el signo correcto en la tabla de puntos cero. Nº de línea = valor de Q337. Si ya está registrado un desplazamiento C en la tabla de puntos cero, el TNC suma el desvío angular medido con el signo correcto

Ejemplo: Frases NC

5 TCH PROBE 40	D5 ROT MEDIANTE EJE C
Q321=+50	;CENTRO 1ER. EJE
Q322=+50	;CENTRO 2º EJE
Q262=10	;DIÁMETRO NOMINAL
Q325=+0	;ÁNGULO INICIAL
Q247=90	;PASO ANGULAR
Q261=-5	;ALTURA MEDICIÓN
Q320=0	;DISTANCIA DE SEGURIDAD
Q260=+20	;ALTURA SEGURIDAD
Q301=0	;DESPLAZ. A ALTURA SEG.
Q337=0	;FIJAR A CERO

Ejemplo: Determinar el giro básico mediante dos taladros

O BEGIN PGM CYC401 MM	
1 TOOL CALL 69 Z	
2 TCH PROBE 401 ROT 2 TALADROS	
Q268=+25 ;1ER CENTRO 1ER EJE	Centro del 1er taladro: Coordenada X
Q269=+15 ;1ER CENTRO 2° EJE	Centro del 1er taladro: Coordenada Y
Q270=+80 ;2° CENTRO 1ER EJE	Centro del 2º taladro: Coordenada X
Q271=+35 ;2° CENTRO 2° EJE	Centro del 2º taladro: Coordenada Y
Q261=-5 ;ALTURA MEDICIÓN	Coordenada en el eje de palpación desde la cual se realiza la medición
Q260=+20 ;ALTURA SEGURIDAD	Altura sobre la cual se desplaza el eje de palpación sin colisionar
Q307=+0 ;GIRO BÁSICO PREINST.	Ángulo de las rectas de referencia
Q402=1 ;ALINEACIÓN	Compensar inclinación mediante giro de la mesa giratoria
Q337=1 ;FIJAR A CERO	Después de la alineación, poner la visualización a cero
3 CALL PGM 35K47	Llamada al programa de mecanizado
4 END PGM CYC401 MM	

3.2 Cálculo automático de los puntos de referencia

Resumen

El TNC dispone de doce ciclos, con los que se puede calcular automáticamente puntos de referencia y procesarlos como sigue:

- Fijar el valor calculado como valor de visualización
- Escribir el valor calculado en la tabla de presets
- Introducir el valor calculado en una tabla de puntos cero

ciclo	Softkey	Página
408 PTO. REF CENTRO RANURA Medir interiormente la anchura de una ranura, fijar el centro de la ranura como punto de referencia	408	Pág. 65
409 PTO. REF CENTRO ALMA Medir exteriormente la anchura de una isla, fijar el centro de la isla como punto de referencia	409	Pág. 68
410 PTO. REF. CAJERA INTERIOR Longitud y anchura de la cajera interior, fijar el centro de la cajera como punto de referencia	410	Pág. 71
411 PTO. REF. CAJERA EXTERIOR Longitud y anchura de la cajera exterior, fijar el centro de la cajera como punto de referencia	411	Pág. 74
412 PTO. REF. CIRCULO INTERIOR Medir cuatro puntos cualquiera del interior del círculo, fijar el centro del círculo como punto de referencia	412	Pág. 77
413 PTO. REF. CIRCULO EXTERIOR Medir cuatro puntos cualquiera del exterior del círculo, fijar el centro del círculo como punto de referencia	413	Pág. 81
414 PTO. REF. ESQUINA EXTERIOR Medir dos rectas exteriormente, fijar el punto de intersección de las rectas como punto de referencia	414	Pág. 85
415 PTO. REF. ESQUINA INTERIOR Medir dos rectas interiormente, fijar el punto de intersección de las rectas como punto de referencia	415	Pág. 88

ciclo	Softkey	Página
416 PTOREF CENTRO CIRCULO TALADROS (2º carátula de softkeys) Medir tres taladros cualquiera sobre el círculo de taladros, fijar el centro del círculo de taladros como punto de referencia	416 000000000000000000000000000000000000	
417 PTO. REF. EJE PALPACION (2ª carátula de softkeys) Medir cualquier posición en el eje de palpación y fijarlo como punto de referencia	417 *****	Pág. 94
418 PTO.REF. 4 TALADROS (2ª carátula de softkeys) Cada dos taladros medidos en cruz, fijar el punto de intersección de las rectas de unión como punto de referencia		Pág. 96
419 PTO. REF. EJE PALPACION (2ª carátula de softkeys) Medir cualquier posición en un eje seleccionable y fijarlo como punto de referencia	419	Pág. 99

3 Ciclos de palpación para la comprobación automática de piezas

Correspondencias de todos los ciclos de palpación para fijar el punto de ref.

Los ciclos de palpación 408 a 419 también se pueden ejecutar cuando está activado el giro básico.

La función plano de mecanizado inclinado no está permitida si se conecta con el ciclo 408 al 419.

Estando el ciclo de palpación en funcionamiento, no se debe tener activado ningun ciclo de conversión de coordenadas (Ciclo 7 CERO-PIEZA, ciclo 8 ESPEJO, ciclo 10 GIRO, ciclo 11 y 26 FACTOR DE ESCALA y ciclo 19 PLANO DE MECANIZADO).

Punto de referencia y eje de palpación

El TNC fija el punto de referencia en el plano de mecanizado dependiendo del eje de palpación que se ha definido en el programa de medición:

Eje de palpación activado	Fijación del punto de referencia en
Z	XeY
Y	ΖуХ
Х	ΥуΖ

Guardar punto de referencia calculado

En todos los ciclos para la fijación del punto de referencia puede determinarse mediante los parámetros Q303 y Q305 como debe memorizar el TNC el punto de referencia calculado:

Q305 = 0, Q303 = cualquier valor:

El TNC visualiza el punto de referencia calculado El nuevo punto de referencia es activo de inmediato

■ Q305 no igual a 0, Q303 = -1

Esta combinación puede originarse sólo, cuando

- se leen programas con los ciclos 410 hasta 418, que fueron generados en un TNC 4xx
- Leer programas con los ciclos 410 hasta 418, que fueron generados con un software del iTNC530 anterior
- no se ha definido de forma consciente en la definición del ciclo la transmisión del valor de medición con el parámetro Q303

En casos similares, aparece en el TNC un aviso de error porque se ha modificado el handling completo en relación con las tablas de cero-pieza referidas a REF y debe determinarse mediante el parámetro Q303 una transmisión del valor de medición definida.

■ Q305 no igual a 0, Q303 = 0

El TNC escribe el punto de referencia calculado en la tabla de ceropiezas activa. El sistema de referencia es el sistema de coordenadas de la pieza activo. El valor del parámetro Q305 determina el número de cero-pieza. Activar cero-pieza mediante el ciclo 7 en el programa NC

Q305 no igual a 0, Q303 = 1

El TNC escribe el punto de referencia calculado en la tabla de presets. El sistema de referencia es el sistema de coordenadas de la máquina (coordenadas REF). El valor del parámetro Q305 determina el número de preset. **Activar preset mediante el ciclo 247 en el programa NC**

Resultados de medición en parámetros Q

Los resultados de medición del ciclo de palpación correspondientes se guardan por el TNC en los parámetros Q globales Q150 a Q160. Estos parametros pueden continuar utilizándose en su programa. Deberá tenerse en cuenta la tabla de los parámetros de resultados, que aparece en cada descripción del ciclo.

PUNTO DE REFERENCIA CENTRO RANURA (ciclo de palpación 408, DIN/ISO: G408)

El ciclo de palpación 408 determina el punto central de una ranura y fija este punto central como punto de referencia. Si se desea, el TNC también puede escribir el punto central en una tabla de puntos cero o en una tabla de presets.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. El TNC calcula los puntos de palpación según las indicaciones en el ciclo y la distancia de seguridad indicada en el dispositivo SET_UP de la tabla del sistema de palpación
- 2 A continuación el palpador se desplaza a la altura de la medición programada y ejecuta el primer proceso de palpación con avance de palpación (valor de columna FMAX)
- Bespués el palpador se desplaza al siguiente punto de palpación paralelo al eje en altura de medición o lineal en altura de seguridad
 y ejecuta en ese punto el segundo proceso de palpación
- 4 A continuación el TNC posiciona el palpador de nuevo en la altura de seguridad y procesa el punto de referencia calculado en relación con los parámetros de ciclo Q303 y Q305 (véase "Guardar punto de referencia calculado" en pág. 64) y memoriza los valores actuales en los parámetros Q ejecutados a continuación
- **5** Cuando se desee, el TNC determina seguidamente en una palpación previa separada el punto de referencia en el eje de palpación

Nº de parámetro	Significado
Q166	Valor actual del ancho de ranura medido
Q157	Valor real posición eje central

Antes de la programación deberá tenerse en cuenta

Para evitar que el palpador colisione con la pieza, deberá indicarse la anchura de la ranura **menor** a lo estimado.

Si la anchura de la ranura y la distancia de seguridad no permiten un preposicionamiento cerca del punto de palpación, el TNC palpa siempre partiendo del centro de la ranura. El palpador no se desplaza entre los dos puntos de medición a la altura de seguridad.

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

ᇞ

- Centro ler eje Q321 (valor absoluto): Centro de la ranura en el eje principal del plano de mecanizado
- ▶ Centro 2º eje Q322 (absoluto): Centro de la ranura en el eje auxiliar del plano de mecanizado
- Anchura de la ranura Q311 (valor incremental): Anchura de la ranura independiente de la posición en el plano de mecanizado
- Eje de medición (1=1er eje/2=2º eje) Q272: Eje en el que debe realizarse la medición:
 1:Eje principal = eje de medida
 2: Eje auxiliar = eje de medida
- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Desplazamiento a la altura de seguridad Q301: Determinar como debe desplazarse el palpador entre los puntos de medición:
 - **0**: Desplazar entre los puntos de medición a la altura de medición

1: Desplazar entre los puntos de medición a la altura de seguridad

- Número en la tabla Q305: Indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas del centro de la ranura. Al introducir Q305=0, el TNC fija la visualización automáticamente, de forma que el nuevo punto de referencia se encuentra en el centro de la ranura
- Nuevo punto referencia Q405 (valor absoluto): coordenada en el eje de medición, sobre la cual el TNC fija el centro de la ranura calculado. Ajuste inicial = 0

Transmisión del valor de medición (0,1) Q303: Determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:

0: Escribir el punto de referencia calculado en la tabla de cero-piezas activa. El sistema de referencia es el sistema de coordenadas de la pieza activo

1: Escribir el punto de referencia calculado en la tabla de presets. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).

- Palpar en eje del TS Q381: Comprobar si el TNC debe fijar también el punto de referencia en el eje del palpador:
 - 0: No fijar el punto de referencia en el eje del palpador1: Fijar el punto de referencia en el eje del palpador
- Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): Coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): Coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): Coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Nuevo punto de referencia eje de palpación Q333 (valor absoluto): coordenada en el eje de palpación, sobre la cual el TNC debe fijar el punto de referencia. Ajuste inicial = 0

Ejemplo: Frases NC

5	TCH PROBE 40	D8 PTOREF CENTRO RANURA
	Q321=+50	;CENTRO 1ER. EJE
	Q322=+50	;CENTRO 2º EJE
	Q311=25	;ANCHO DE RANURA
	Q272=1	;EJE DE MEDIDA
	Q261=-5	;ALTURA MEDICIÓN
	Q320=0	;DISTANCIA DE SEGURIDAD
	Q260=+20	;ALTURA SEGURIDAD
	Q301=0	;DESPLAZ. A ALTURA SEG.
	Q305=10	;N° EN TABLA
	Q405=+0	;PUNTO REFERENCIA
	Q303=+1	;ENTREGA VALOR MEDICIÓN
	Q381=1	;PALPAR EJE TS
	Q382=+85	;1ª COORD. PARA EJE TS
	Q383=+50	;2ª COORD. PARA EJE TS
	Q384=+0	;3ª COORD. PARA EJE TS
	Q333=+0	;PUNTO REFERENCIA

PUNTO DE REFERENCIA CENTRO ISLA (ciclo de palpación 409, DIN/ISO: G409)

El ciclo de palpación 409 determina el punto central de una isla y fija este punto central como punto de referencia. Si se desea, el TNC también puede escribir el punto central en una tabla de puntos cero o en una tabla de presets.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. El TNC calcula los puntos de palpación según las indicaciones en el ciclo y la distancia de seguridad indicada en el dispositivo SET_UP de la tabla del sistema de palpación
- 2 A continuación el palpador se desplaza a la altura de la medición programada y ejecuta el primer proceso de palpación con avance de palpación (valor de columna FMAX)
- 3 Después el palpador se desplaza a una altura de seguridad al siguiente punto de palpación 2 y ejecuta el segundo proceso de palpación
- 4 A continuación el TNC posiciona el palpador de nuevo en la altura de seguridad y procesa el punto de referencia calculado en relación con los parámetros de ciclo Q303 y Q305 (véase "Guardar punto de referencia calculado" en pág. 64) y memoriza los valores actuales en los parámetros Q ejecutados a continuación
- 5 Cuando se desee, el TNC determina seguidamente en una palpación previa separada el punto de referencia en el eje de palpación

Nº de parámetro	Significado
Q166	Valor real de la anchura de la isla medida
Q157	Valor real posición eje central

Antes de la programación deberá tenerse en cuenta

Para evitar una colisión entre el palpador y la pieza, deberá indicarse la anchura de la isla **mayor** a lo estimado.

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

ф.

- Centro 1er eje Q321 (valor absoluto): Centro de la isla en el eje principal del plano de mecanizado
- ▶ Centro 2º eje Q322 (valor absoluto): Centro de la isla en el eje auxiliar del plano de mecanizado
- Anchura de la isla Q311 (valor incremental): Anchura de la isla independiente de la posición del plano de mecanizado
- Eje de medición (1=1er eje/2=2º eje) Q272: Eje en el que debe realizarse la medición:
 - **1**: Eje principal = eje de medida
 - 2: Eje auxiliar = eje de medida
- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Número en la tabla Q305: Indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas del centro de la isla. Al introducir Q305=0, el TNC fija la visualización automáticamente, de forma que el nuevo punto de referencia se encuentra en el centro de la ranura
- Nuevo punto referencia Q405 (valor absoluto): coordenada en el eje de medición, sobre la cual el TNC fija el centro de la isla calculado. Ajuste inicial = 0

Transmisión del valor de medición (0,1) Q303: Determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:

0: Escribir el punto de referencia calculado en la tabla de cero-piezas activa. El sistema de referencia es el sistema de coordenadas de la pieza activo

1: Escribir el punto de referencia calculado en la tabla de presets. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).

- Palpar en eje del TS Q381: Comprobar si el TNC debe fijar también el punto de referencia en el eje del palpador:
 - **0**: No fijar el punto de referencia en el eje del palpador **1**: Fijar el punto de referencia en el eje del palpador
- Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): Coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): Coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): Coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Nuevo punto de referencia eje de palpación Q333 (valor absoluto): coordenada en el eje de palpación, sobre la cual el TNC debe fijar el punto de referencia. Ajuste inicial = 0

Ejemplo: Frases NC

5 TCH PROBE 40	9 PTOREF CENTRO ALMA
Q321=+50	;CENTRO 1ER. EJE
Q322=+50	;CENTRO 2º EJE
Q311=25	;ANCHURA DEL ALMA
Q272=1	;EJE DE MEDIDA
Q261=-5	;ALTURA MEDICIÓN
Q320=0	;DISTANCIA DE SEGURIDAD
Q260=+20	;ALTURA SEGURIDAD
Q305=10	;Nº EN TABLA
Q405=+0	;PUNTO REFERENCIA
Q303=+1	;ENTREGA VALOR MEDICIÓN
Q381=1	;PALPAR EJE TS
Q382=+85	;1ª COORD. PARA EJE TS
Q383=+50	;2ª COORD. PARA EJE TS
Q384=+0	;3ª COORD. PARA EJE TS
Q333=+0	;PUNTO REFERENCIA

PUNTO DE REFERENCIA RECTANGULO INTERIOR (ciclo de palpación 410, DIN/ISO: G410)

Con el ciclo de palpación 410 se calcula el centro de una cajera rectangular y se fija este punto central como punto de referencia. Si se desea, el TNC también puede escribir el punto central en una tabla de puntos cero o en una tabla de presets.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. El TNC calcula los puntos de palpación según las indicaciones en el ciclo y la distancia de seguridad indicada en el dispositivo SET_UP de la tabla del sistema de palpación
- 2 A continuación el palpador se desplaza a la altura de la medición programada y ejecuta el primer proceso de palpación con avance de palpación (dispositivo F)
- Bespués el palpador se desplaza al siguiente punto de palpación paralelo al eje en altura de medición o lineal en altura de seguridad
 y ejecuta en ese punto el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y después en el punto de palpación 4 y ejecuta en ese punto el tercer o cuarto proceso de palpación
- 5 A continuación el TNC posiciona el palpador de nuevo en la altura de seguridad y procesa el punto de referencia calculado en relación con los parámetros de ciclo Q303 und Q305 (véase "Guardar punto de referencia calculado" en pág. 64)
- 6 Cuando se desee, el TNC determina seguidamente en una palpación previa separada el punto de referencia en el eje de palpación y memoriza los valores actuales en los siguientes parámetros Q

Nº de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real del centro en eje auxiliar
Q154	Valor real del lado en el eje principal
Q155	Valor real del lado en el eje auxiliar

Antes de la programación deberá tenerse en cuenta

Para evitar que el palpador colisione con la pieza, deberá indicarse la longitud del lado 1 y del lado 2 de la cajera con valores **inferiores** a lo estimado.

Cuando las dimensiones de la cajera y la distancia de seguridad no permiten un posicionamiento previo en la proximidad de los puntos de palpación, el TNC siempre palpa partiendo del centro de la cajera. Entre los cuatro puntos de medida el palpador no se desplaza a la altura de seguridad.

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

- Centro ler eje Q321 (valor absoluto): Centro de la cajera en el eje principal del plano de mecanizado
- Centro 2º eje Q322 (valor absoluto): centro de la cajera en el eje auxiliar del plano de mecanizado
- Longitud 1ado 1 Q323 (valor incremental): Longitud de la cajera, paralela al eje principal del plano de mecanizado
- Longitud 1ado 2 Q324 (valor incremental): Longitud de la cajera, paralela al eje auxiliar del plano de mecanizado
- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Desplazamiento a la altura de seguridad Q301: Determinar como debe desplazarse el palpador entre los puntos de medición:

0: Desplazar entre los puntos de medición a la altura de medición

1: Desplazar entre los puntos de medición a la altura de seguridad

Número del punto cero en la tabla Q305: Indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas del centro de la cajera. Introduciendo Q305=0, el TNC fija la visualización automática de tal forma que el nuevo punto de referencia se encuentre en el centro de la cajera

呣
- Nuevo punto de referencia en el eje principal Q331 (valor absoluto): coordenada en el eje principal sobre la cual el TNC fija el centro de la cajera calculado. Ajuste inicial = 0
- Nuevo punto de referencia en el eje auxiliar Q332 (absoluto): coordenada en el eje auxiliar, sobre la cual el TNC fija el centro calculado de la cajera. Ajuste inicial = 0
- Transmisión del valor de medición (0,1) Q303: Determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:

-1: ¡No utilizar! Quedará registrado por el TNC, si se leen programas antiguos(véase "Guardar punto de referencia calculado" en pág. 64)

0: Escribir el punto de referencia calculado en la tabla de cero-piezas activa. El sistema de referencia es el sistema de coordenadas de la pieza activo

1: Escribir el punto de referencia calculado en la tabla de presets. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).

Palpar en eje del TS Q381: Comprobar si el TNC debe fijar también el punto de referencia en el eje del palpador:

0: No fijar el punto de referencia en el eje del palpador1: Fijar el punto de referencia en el eje del palpador

- Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): Coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): Coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): Coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Nuevo punto de referencia eje de palpación Q333 (valor absoluto): coordenada en el eje de palpación, sobre la cual el TNC debe fijar el punto de referencia. Ajuste inicial = 0

5 TCH PROBE 4	10 PTOREF RECTÁNGULO INTERNO
Q321=+50	;CENTRO 1ER. EJE
Q322=+50	;CENTRO 2º EJE
Q323=60	;LONGITUD LADO 1
Q324=20	;LONGITUD LADO 2
Q261=-5	;ALTURA MEDICIÓN
Q320=0	;DISTANCIA DE SEGURIDAD
Q260=+20	;ALTURA SEGURIDAD
Q301=0	;DESPLAZ. A ALTURA SEG.
Q305=10	;N° EN TABLA
Q331=+0	;PUNTO REFERENCIA
Q332=+0	;PUNTO REFERENCIA
Q303=+1	;ENTREGA VALOR MEDICIÓN
Q381=1	;PALPAR EJE TS
Q382=+85	;1ª COORD. PARA EJE TS
Q383=+50	;2ª COORD. PARA EJE TS
Q384=+0	;3ª COORD. PARA EJE TS
Q333=+0	;PUNTO REFERENCIA

PUNTO DE REFERENCIA RECTANGULO EXTERIOR (ciclo de palpación 411, DIN/ISO: G411)

Con el ciclo de palpación 411 se calcula el centro de una isla rectangular y se fija dicho centro como punto de referencia. Si se desea, el TNC también puede escribir el punto central en una tabla de puntos cero o en una tabla de presets.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. El TNC calcula los puntos de palpación según las indicaciones en el ciclo y la distancia de seguridad indicada en el dispositivo SET_UP de la tabla del sistema de palpación
- 2 A continuación el palpador se desplaza a la altura de la medición programada y ejecuta el primer proceso de palpación con avance de palpación (MP6120 o bién MP6360)
- Bespués el palpador se desplaza al siguiente punto de palpación paralelo al eje en altura de medición o lineal en altura de seguridad
 y ejecuta en ese punto el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y después en el punto de palpación 4 y ejecuta en ese punto el tercer o cuarto proceso de palpación
- 5 A continuación el TNC posiciona el palpador de nuevo en la altura de seguridad y procesa el punto de referencia calculado en relación con los parámetros de ciclo Q303 und Q305 (véase "Guardar punto de referencia calculado" en pág. 64)
- 6 Cuando se desee, el TNC determina seguidamente en una palpación previa separada el punto de referencia en el eje de palpación y memoriza los valores actuales en los siguientes parámetros Q

Nº de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real del centro en eje auxiliar
Q154	Valor real del lado en el eje principal
Q155	Valor real del lado en el eje auxiliar

Antes de la programación deberá tenerse en cuenta

Para evitar que el palpador colisione con la pieza, deberá indicarse la longitud del lado 1 y del lado 2 de la isla con valores **mayores** a lo estimado.

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

Centro ler eje Q321 (valor absoluto): Centro de la isla en el eje principal del plano de mecanizado

 \Rightarrow

- Centro 2º eje Q322 (absoluto): centro de la isla en el eje auxiliar del plano de mecanizado
- Longitud 1ado 1 Q323 (valor incremental): Longitud de la isla, paralela al eje principal del plano de mecanizado
- Longitud 1ado 2 Q324 (valor incremental): Longitud de la isla, paralela al eje auxiliar del plano de mecanizado
- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Desplazamiento a la altura de seguridad Q301: Determinar como debe desplazarse el palpador entre los puntos de medición:

0: Desplazar entre los puntos de medición a la altura de medición

1: Desplazar entre los puntos de medición a la altura de seguridad

- Número del punto cero en la tabla Q305: Indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas del centro de la isla. Introduciendo Q305=0, el TNC fija la visualización automáticamente, de forma que el nuevo punto de referencia se encuentra ajustado en el centro de la isla
- Nuevo punto de referencia en el eje principal Q331 (valor absoluto): coordenada en el eje principal sobre la cual el TNC fija el centro de la isla calculado. Ajuste inicial = 0
- Nuevo punto de referencia en el eje auxiliar Q332 (absoluto): coordenada en el eje auxiliar, sobre la cual el TNC fija el centro calculado de la isla. Ajuste inicial = 0

Transmisión del valor de medición (0,1) Q303: Determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:

-1: ¡No utilizar! Quedará registrado por el TNC, si se leen programas antiguos(véase "Guardar punto de referencia calculado" en pág. 64)

0: Escribir el punto de referencia calculado en la tabla de cero-piezas activa. El sistema de referencia es el sistema de coordenadas de la pieza activo

1: Escribir el punto de referencia calculado en la tabla de presets. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).

Palpar en eje del TS Q381: Comprobar si el TNC debe fijar también el punto de referencia en el eje del palpador:

0: No fijar el punto de referencia en el eje del palpador1: Fijar el punto de referencia en el eje del palpador

- Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): Coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): Coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): Coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Nuevo punto de referencia eje de palpación Q333 (valor absoluto): coordenada en el eje de palpación, sobre la cual el TNC debe fijar el punto de referencia. Ajuste inicial = 0

5 TCH PROBE 41	1 PTOREF RECTÁNGULO EXT.
Q321=+50	;CENTRO 1ER. EJE
Q322=+50	;CENTRO 2º EJE
Q323=60	;LONGITUD LADO 1
Q324=20	;LONGITUD LADO 2
Q261=-5	;ALTURA MEDICIÓN
Q320=0	;DISTANCIA DE SEGURIDAD
Q260=+20	;ALTURA SEGURIDAD
Q301=0	;DESPLAZ. A ALTURA SEG.
Q305=0	;N° EN TABLA
Q331=+0	;PUNTO REFERENCIA
Q332=+0	;PUNTO REFERENCIA
Q303=+1	;ENTREGA VALOR MEDICIÓN
Q381=1	;PALPAR EJE TS
Q382=+85	;1ª COORD. PARA EJE TS
Q383=+50	;2ª COORD. PARA EJE TS
Q384=+0	;3ª COORD. PARA EJE TS
Q333=+0	;PUNTO REFERENCIA

PTO. REF. CIRCULO INTERIOR (ciclo de palpación 412, DIN/ISO: G412)

El ciclo de palpación 412 calcula el centro de una cajera circular (taladro) y fija dicho centro como punto de referencia. Si se desea, el TNC también puede escribir el punto central en una tabla de puntos cero o en una tabla de presets.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. El TNC calcula los puntos de palpación según las indicaciones en el ciclo y la distancia de seguridad indicada en el dispositivo SET_UP de la tabla del sistema de palpación
- 2 A continuación el palpador se desplaza a la altura de la medición programada y ejecuta el primer proceso de palpación con avance de palpación (dispositivo F). El TNC determina automáticamente la dirección de palpación en relación al ángulo inicial programado
- 3 Después el palpador se desplaza hasta el siguiente punto de palpación en altura de medición o en altura de seguridad 2 y ejecuta en ese punto el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y después en el punto de palpación 4 y ejecuta en ese punto el tercer o cuarto proceso de palpación
- 5 A continuación el TNC posiciona el palpador de nuevo en la altura de seguridad y procesa el punto de referencia calculado en relación con los parámetros de ciclo Q303 y Q305 (véase "Guardar punto de referencia calculado" en pág. 64) y memoriza los valores actuales en los parámetros Q ejecutados a continuación
- 6 Cuando se desee, el TNC determina seguidamente en una palpación previa separada el punto de referencia en el eje de palpación

Nº de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real del centro en eje auxiliar
Q153	Valor real del diámetro

Para evitar que el palpador colisione con la pieza, deberá indicarse el diámetro nominal de la cajera (taladro) **menor** a lo estimado.

Cuando las dimensiones de la cajera y la distancia de seguridad no permiten un posicionamiento previo en la proximidad de los puntos de palpación, el TNC siempre palpa partiendo del centro de la cajera. Entre los cuatro puntos de medida el palpador no se desplaza a la altura de seguridad.

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

叫

ſ

- Centro ler eje Q321 (valor absoluto): Centro de la cajera en el eje principal del plano de mecanizado
- Centro 2º eje Q322 (valor absoluto): Centro de la cajera en el eje auxiliar del plano de mecanizado. Cuando se programa Q322 = 0, el TNC orienta el centro del taladro sobre el eje Y positivo, cuando Q322 es distinto de 0, el TNC orienta el centro del taladro sobre la posición nominal
- Diámetro nominal Q262: Diámetro aproximado de la cajera circular (taladro). Introducir un valor menor al estimado
- Ángulo inicial Q325 (valor absoluto): ángulo entre el eje principal del plano de mecanizado y el primer punto de palpación
- Paso angular Q247 (valor incremental): ángulo entre dos puntos de medición, el signo del paso angular determina la dirección de giro (- = sentido horario), en la cual se desplaza el palpador hacia el siguiente punto de medición. Si se quieren medir arcos de círculo, deberá programarse un paso angular menor a 90°

Cuanto menor sea el paso angular programado, más impreciso será el punto de referencia calculado por el TNC. Valor de introducción mínimo: 5°.

412

1

- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Desplazamiento a la altura de seguridad Q301: Determinar como debe desplazarse el palpador entre los puntos de medición:

0: Desplazar entre los puntos de medición a la altura de medición

1: Desplazar entre los puntos de medición a la altura de seguridad

Número del punto cero en la tabla Q305: Indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas del centro de la cajera. Introduciendo Q305=0, el TNC fija la visualización automática de tal forma que el nuevo punto de referencia se encuentre en el centro de la cajera

- 3.2 Cálculo automático de los puntos de <mark>ref</mark>erencia
- Nuevo punto de referencia en el eje principal Q331 (valor absoluto): coordenada en el eje principal sobre la cual el TNC fija el centro de la cajera calculado. Ajuste inicial = 0
 - Nuevo punto de referencia en el eje auxiliar Q332 (absoluto): coordenada en el eje auxiliar, sobre la cual el TNC fija el centro calculado de la cajera. Ajuste inicial = 0
 - Transmisión del valor de medición (0,1) Q303: Determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:

-1: ¡No utilizar! Quedará registrado por el TNC, si se leen programas antiguos(véase "Guardar punto de referencia calculado" en pág. 64)

0: Escribir el punto de referencia calculado en la tabla de cero-piezas activa. El sistema de referencia es el sistema de coordenadas de la pieza activo

1: Escribir el punto de referencia calculado en la tabla de presets. El sistema de referencia es el sistema de coordenadas de la máguina (sistema REF).

Palpar en eje del TS Q381: Comprobar si el TNC debe fijar también el punto de referencia en el eje del palpador:

0: No fijar el punto de referencia en el eje del palpador1: Fijar el punto de referencia en el eje del palpador

- Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): Coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): Coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): Coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Nuevo punto de referencia eje de palpación Q333 (valor absoluto): coordenada en el eje de palpación, sobre la cual el TNC debe fijar el punto de referencia. Ajuste inicial = 0
- Número de puntos de medición (4/3) Q423: determinar, si el TNC debe medir el taladro con 4 ó 3 palpaciones:
 - 4: utilizar 4 puntos de medición (ajuste estándar)
 - 3: utilizar 3 puntos de medición

5 TCH F	ROBE 41	2 PTOREF CÍRCULO INTERNO
Q3	21=+50	;CENTRO 1ER. EJE
Q3	22=+50	;CENTRO 2º EJE
Q2	62=75	;DIÁMETRO NOMINAL
Q3	25=+0	;ÁNGULO INICIAL
Q2	47=+60	;PASO ANGULAR
Q2	61=-5	;ALTURA MEDICIÓN
Q3	20=0	;DISTANCIA DE SEGURIDAD
Q2	60=+20	;ALTURA SEGURIDAD
Q3	01=0	;DESPLAZ. A ALTURA SEG.
Q3	05=12	;Nº EN TABLA
Q3	31=+0	;PUNTO REFERENCIA
Q3	32=+0	;PUNTO REFERENCIA
Q3	03=+1	;ENTREGA VALOR MEDICIÓN
Q3	81=1	;PALPAR EJE TS
Q3	82=+85	;1ª COORD. PARA EJE TS
Q3	83=+50	;2ª COORD. PARA EJE TS
Q3	84=+0	;3ª COORD. PARA EJE TS
Q3	33=+0	;PUNTO REFERENCIA
Q4	23=4	;NÚMERO PUNTOS MEDICIÓN

PTO. REF. CIRCULO EXTERIOR (ciclo de palpación 413, DIN/ISO: G413)

El ciclo de palpación 413 calcula el centro de la isla circular y fija dicho centro como punto de referencia. Si se desea, el TNC también puede escribir el punto central en una tabla de puntos cero o en una tabla de presets.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. El TNC calcula los puntos de palpación según las indicaciones en el ciclo y la distancia de seguridad indicada en el dispositivo SET_UP de la tabla del sistema de palpación
- 2 A continuación el palpador se desplaza a la altura de la medición programada y ejecuta el primer proceso de palpación con avance de palpación (dispositivo F). El TNC determina automáticamente la dirección de palpación en relación al ángulo inicial programado
- 3 Después el palpador se desplaza hasta el siguiente punto de palpación en altura de medición o en altura de seguridad 2 y ejecuta en ese punto el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y después en el punto de palpación 4 y ejecuta en ese punto el tercer o cuarto proceso de palpación
- 5 A continuación el TNC posiciona el palpador de nuevo en la altura de seguridad y procesa el punto de referencia calculado en relación con los parámetros de ciclo Q303 y Q305 (véase "Guardar punto de referencia calculado" en pág. 64) y memoriza los valores actuales en los parámetros Q ejecutados a continuación
- 6 Cuando se desee, el TNC determina seguidamente en una palpación previa separada el punto de referencia en el eje de palpación

Nº de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real del centro en eje auxiliar
Q153	Valor real del diámetro

Antes de la programación deberá tenerse en cuenta

Para evitar que el palpador colisione con la pieza, deberá indicarse el diámetro nominal de la isla **mayor**a lo estimado.

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

- Centro 1er eje Q321 (valor absoluto): Centro de la isla en el eje principal del plano de mecanizado
- Centro 2º eje Q322 (valor absoluto): Centro de la isla en el eje auxiliar del plano de mecanizado Cuando se programa Q322 = 0, el TNC orienta el centro del taladro sobre el eje Y positivo, cuando Q322 es distinto de 0, el TNC orienta el centro del taladro sobre la posición nominal
- Diámetro nominal Q262: Diámetro aproximado de la isla. Introducir un valor superior al estimado
- Ángulo inicial Q325 (valor absoluto): ángulo entre el eje principal del plano de mecanizado y el primer punto de palpación
- Paso angular Q247 (valor incremental): Angulo entre dos puntos de medición, el signo del paso angular determina la dirección de giro (- = sentido horario), en la cual se desplaza el palpador hacia el siguiente punto de medición. Si se quieren medir arcos de círculo, deberá programarse un paso angular menor a 90°

Cuanto menor sea el paso angular programado, más impreciso será el punto de referencia calculado por el TNC. Valor de introducción mínimo: 5°.

413

3 Ciclos de palpación para la comprobación automática de piezas

1

- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Desplazamiento a la altura de seguridad Q301: Determinar como debe desplazarse el palpador entre los puntos de medición:

0: Desplazar entre los puntos de medición a la altura de medición

1: Desplazar entre los puntos de medición a la altura de seguridad

Número del punto cero en la tabla Q305: Indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas del centro de la isla. Introduciendo Q305=0, el TNC fija la visualización automáticamente, de forma que el nuevo punto de referencia se encuentra ajustado en el centro de la isla

- Nuevo punto de referencia en el eje principal Q331 (valor absoluto): coordenada en el eje principal sobre la cual el TNC fija el centro de la isla calculado. Ajuste básico = 0
- Nuevo punto de referencia en el eje auxiliar Q332 (absoluto): coordenada en el eje auxiliar, sobre la cual el TNC fija el centro calculado de la isla. Ajuste básico = 0
- Transmisión del valor de medición (0,1) Q303: Determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:

-1: ¡No utilizar! Quedará registrado por el TNC, si se leen programas antiguos(véase "Guardar punto de referencia calculado" en pág. 64)

0: Escribir el punto de referencia calculado en la tabla de cero-piezas activa. El sistema de referencia es el sistema de coordenadas de la pieza activo

1: Escribir el punto de referencia calculado en la tabla de presets. El sistema de referencia es el sistema de coordenadas de la máguina (sistema REF).

Palpar en eje del TS Q381: Comprobar si el TNC debe fijar también el punto de referencia en el eje del palpador:

0: No fijar el punto de referencia en el eje del palpador1: Fijar el punto de referencia en el eje del palpador

- Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): Coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): Coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): Coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Nuevo punto de referencia eje de palpación Q333 (valor absoluto): coordenada en el eje de palpación, sobre la cual el TNC debe fijar el punto de referencia. Ajuste inicial = 0
- Número de puntos de medición (4/3) Q423: determinar, si el TNC debe medir la isla con 4 ó 3 palpaciones:
 - 4: utilizar 4 puntos de medición (ajuste estándar)
 - 3: utilizar 3 puntos de medición

5 TCH PROBE 4	13 PTOREF CÍRCULO EXTERNO
Q321=+50	;CENTRO 1ER. EJE
Q322=+50	;CENTRO 2º EJE
Q262=75	;DIÁMETRO NOMINAL
Q325=+0	;ÁNGULO INICIAL
Q247=+60	;PASO ANGULAR
Q261=-5	;ALTURA MEDICIÓN
Q320=0	;DISTANCIA DE SEGURIDAD
Q260=+20	;ALTURA SEGURIDAD
Q301=0	;DESPLAZ. A ALTURA SEG.
Q305=15	;N° EN TABLA
Q331=+0	;PUNTO REFERENCIA
Q332=+0	;PUNTO REFERENCIA
Q303=+1	;ENTREGA VALOR MEDICIÓN
Q381=1	;PALPAR EJE TS
Q382=+85	;1ª COORD. PARA EJE TS
Q383=+50	;2ª COORD. PARA EJE TS
Q384=+0	;3ª COORD. PARA EJE TS
Q333=+0	;PUNTO REFERENCIA
Q423=4	;NÚMERO PUNTOS MEDICIÓN

PTO. REF. ESQUINA EXTERIOR (ciclo de palpación 414, DIN/ISO: G414)

Con el ciclo de palpación 414 se calcula el punto de intersección de dos rectas y se fija dicho punto de intersección como punto de referencia. Si se desea, el TNC también puede escribir el punto de intersección en una tabla de puntos cero o en una tabla de presets.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el primer punto de palpación 1. (ver imagen arriba a la derecha). Para ello, el TNC desplaza el palpador según la distancia de seguridad en la dirección de desplazamiento opuesta a la que le corresponde
- 2 A continuación el palpador se desplaza a la altura de la medición programada y ejecuta el primer proceso de palpación con avance de palpación (dispositivo F). El TNC determina automáticamente la dirección de palpación en relación al 3er punto de medición programado

El TNC mide la primera recta siempre en dirección del eje auxiliar del plano de mecanizado.

- **3** Después el palpador se desplaza al siguiente punto de palpación **2** y ejecuta el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y después en el punto de palpación 4 y ejecuta en ese punto el tercer o cuarto proceso de palpación
- 5 A continuación el TNC posiciona el palpador de nuevo en la altura de seguridad y procesa el punto de referencia calculado en relación con los parámetros de ciclo Q303 y Q305 (véase "Guardar punto de referencia calculado" en pág. 64) y memoriza las coordenadas de la esquina calculada en los parámetros Q ejecutados a continuación
- 6 Cuando se desee, el TNC determina seguidamente en una palpación previa separada el punto de referencia en el eje de palpación

N° de parámetro	Significado
Q151	Valor actual de la esquina en el eje principal
Q152	Valor actual de la esquina en el eje auxiliar

Antes de la programación deberá tenerse en cuenta

Mediante la posición del punto de medición 1 y 3 se fija la esquina, en la que el TNC fija el punto de referencia (véase figura del centro a la derecha y la tabla siguiente).

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

ſ

414

Esquina	coordenada X	coordenada Y
A	Punto 1 mayor que punto 3	Punto 1 menor que punto 3
В	Punto 1 menor que punto 3	Punto 1 menor que punto 3
С	Punto 1 menor que punto 3	Punto 1 mayor que punto 3
D	Punto 1 mayor que punto 3	Punto 1 mayor que punto 3

- 1er punto de medición del 1er eje Q263 (valor absoluto): Coordenada del 1er punto de palpación en el eje principal del plano de mecanizado
- ler punto de medición del 2º eje Q264 (valor absoluto): Coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado
- Distancia ler eje Q326 (valor incremental): Distancia entre el primer y el segundo punto de medición en el eje principal del plano de mecanizado
- ▶ **3er punto de medición del 1er eje** Q296 (valor absoluto): Coordenada del tercer punto de palpación en el eje principal del plano de mecanizado
- 3er punto de medición del 2º eje Q297 (valor absoluto): coordenada del tercer punto de palpación en el eje auxiliar del plano de mecanizado
- Distancia 2º eje Q327 (valor incremental): Distancia entre el tercer y el cuarto punto de medición en el eje auxiliar del plano de mecanizado
- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Desplazamiento a la altura de seguridad Q301: Determinar como debe desplazarse el palpador entre los puntos de medición:

0: Desplazar entre los puntos de medición a la altura de medición

1:Desplazar entre los puntos de medición a la altura de seguridad

- Ejecutar giro básico Q304: Determinar si el TNC debe compensar la posición inclinada de la pieza mediante un giro básico:
 - 0: No realizar el giro básico
 - 1: Realizar el giro básico

- Número del punto cero en la tabla Q305: Indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas de la esquina. En la introducción de Q305=0, el TNC fija la visualización automática de tal manera que el nuevo punto de referencia se encuentra en la esquina
- Nuevo punto de referencia en el eje principal Q331 (absoluto): coordenada en el eje principal, sobre la cual el TNC fija la esquina calculada. Ajuste inicial = 0
- Nuevo punto de referencia en el eje auxiliar Q332 (absoluto): coordenada en el eje auxiliar, sobre la cual el TNC fija la esquina calculada. Ajuste inicial = 0
- Transmisión del valor de medición (0,1) Q303: Determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:

-1: ¡No utilizar! Quedará registrado por el TNC, si se leen programas antiguos(véase "Guardar punto de referencia calculado" en pág. 64)

0: Escribir el punto de referencia calculado en la tabla de cero-piezas activa. El sistema de referencia es el sistema de coordenadas de la pieza activo

1: Escribir el punto de referencia calculado en la tabla de presets. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).

Palpar en eje del TS Q381: Comprobar si el TNC debe fijar también el punto de referencia en el eje del palpador:

0: No fijar el punto de referencia en el eje del palpador1: Fijar el punto de referencia en el eje del palpador

- Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): Coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): Coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): Coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Nuevo punto de referencia eje de palpación Q333 (valor absoluto): coordenada en el eje de palpación, sobre la cual el TNC debe fijar el punto de referencia. Ajuste inicial = 0

Ejemplo: Frases NC

5	TCH PROBE 4	14 PTOREF ESQUINA INTERNA
	Q263=+37	;1ER PUNTO 1ER EJE
	Q264=+7	;1ER PUNTO DEL 2º EJE
	Q326=50	;DISTANCIA AL 1ER. EJE
	Q296=+95	;3ER PUNTO DEL 1ER EJE
	Q297=+25	;3ER PUNTO DEL 2º EJE
	Q327=45	;DISTANCIA AL 2º EJE
	Q261=-5	;ALTURA MEDICIÓN
	Q320=0	;DISTANCIA DE SEGURIDAD
	Q260=+20	;ALTURA SEGURIDAD
	Q301=0	;DESPLAZ. A ALTURA SEG.
	Q304=0	;GIRO BÁSICO
	Q305=7	;N° EN TABLA
	Q331=+O	;PUNTO REFERENCIA
	Q332=+0	;PUNTO REFERENCIA
	Q303=+1	;ENTREGA VALOR MEDICIÓN
	Q381=1	;PALPAR EJE TS
	Q382=+85	;1ª COORD. PARA EJE TS
	Q383=+50	;2ª COORD. PARA EJE TS
	Q384=+0	;3ª COORD. PARA EJE TS
	Q333=+0	;PUNTO REFERENCIA

(

PTO. REF. ESQUINA INTERIOR (ciclo de palpación 415, DIN/ISO: G415)

Con el ciclo de palpación 415 se calcula el punto de intersección de dos rectas y se fija dicho punto de intersección como punto de referencia. Si se desea, el TNC también puede escribir el punto de intersección en una tabla de puntos cero o en una tabla de presets.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el primer punto de palpación 1 que se define en el ciclo (ver figura arriba a la derecha). Para ello, el TNC desplaza el palpador según la distancia de seguridad en la dirección de desplazamiento opuesta a la que le corresponde
- 2 A continuación el palpador se desplaza a la altura de la medición programada y ejecuta el primer proceso de palpación con avance de palpación (dispositivo F). La dirección de palpación resulta del número que identifica la esquina

El TNC mide la primera recta siempre en dirección del eje auxiliar del plano de mecanizado.

- 3 Después el palpador se desplaza al siguiente punto de palpación 2 y ejecuta el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y después en el punto de palpación 4 y ejecuta en ese punto el tercer o cuarto proceso de palpación
- 5 A continuación el TNC posiciona el palpador de nuevo en la altura de seguridad y procesa el punto de referencia calculado en relación con los parámetros de ciclo Q303 y Q305 (véase "Guardar punto de referencia calculado" en pág. 64) y memoriza las coordenadas de la esquina calculada en los parámetros Q ejecutados a continuación
- 6 Cuando se desee, el TNC determina seguidamente en una palpación previa separada el punto de referencia en el eje de palpación

Nº de parámetro	Significado
Q151	Valor actual de la esquina en el eje principal
Q152	Valor actual de la esquina en el eje auxiliar

Antes de la programación deberá tenerse en cuenta

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

- ▶ 1er punto de medición del 1er eje Q263 (valor absoluto): Coordenada del 1er punto de palpación en el eje principal del plano de mecanizado
- 1er punto de medición del 2º eje Q264 (valor absoluto): Coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado
- ▶ Distancia 1er eje Q326 (valor incremental): Distancia entre el primer y el segundo punto de medición en el eje principal del plano de mecanizado
- ▶ Distancia 2º eje Q327 (valor incremental): Distancia entre el tercer y el cuarto punto de medición en el eje auxiliar del plano de mecanizado
- **Esquina** Q308: Número de la esquina, en la cual el TNC debe fijar el punto de referencia
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- ▶ Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Desplazamiento a la altura de seguridad Q301: Determinar como debe desplazarse el palpador entre los puntos de medición:

0: Desplazar entre los puntos de medición a la altura de medición

1: Desplazar entre los puntos de medición a la altura de seguridad

- **Ejecutar giro básico** Q304: Determinar si el TNC debe compensar la posición inclinada de la pieza mediante un giro básico:
 - 0: No realizar el giro básico
 - 1: Realizar el giro básico

- 3.2 Cálculo automático de los puntos de <mark>ref</mark>erencia
- Número del punto cero en la tabla Q305: Indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas de la esquina. En la introducción de Q305=0, el TNC fija la visualización automática de tal manera que el nuevo punto de referencia se encuentra en la esquina
- Nuevo punto de referencia en el eje principal Q331 (absoluto): coordenada en el eje principal, sobre la cual el TNC fija la esquina calculada. Ajuste inicial = 0
- Nuevo punto de referencia en el eje auxiliar Q332 (absoluto): coordenada en el eje auxiliar, sobre la cual el TNC fija la esquina calculada. Ajuste inicial = 0
- Transmisión del valor de medición (0,1) Q303: Determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:

-1: ¡No utilizar! Quedará registrado por el TNC, si se leen programas antiguos(véase "Guardar punto de referencia calculado" en pág. 64)

0: Escribir el punto de referencia calculado en la tabla de cero-piezas activa. El sistema de referencia es el sistema de coordenadas de la pieza activo

1: Escribir el punto de referencia calculado en la tabla de presets. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).

Palpar en eje del TS Q381: Comprobar si el TNC debe fijar también el punto de referencia en el eje del palpador:

0: No fijar el punto de referencia en el eje del palpador1: Fijar el punto de referencia en el eje del palpador

- Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): Coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): Coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): Coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Nuevo punto de referencia eje de palpación Q333 (valor absoluto): coordenada en el eje de palpación, sobre la cual el TNC debe fijar el punto de referencia. Ajuste inicial = 0

5	TCH PROBE 41	L5 PTOREF ESQUINA EXTERNA
	Q263=+37	;1ER PUNTO 1ER EJE
	Q264=+7	;1ER PUNTO DEL 2º EJE
	Q326=50	;DISTANCIA AL 1ER. EJE
	Q296=+95	;3ER PUNTO DEL 1ER EJE
	Q297=+25	;3ER PUNTO DEL 2º EJE
	Q327=45	;DISTANCIA AL 2º EJE
	Q261=-5	;ALTURA MEDICIÓN
	Q320=0	;DISTANCIA DE SEGURIDAD
	Q260=+20	;ALTURA SEGURIDAD
	Q301=0	;DESPLAZ. A ALTURA SEG.
	Q304=0	;GIRO BÁSICO
	Q305=7	;N° EN TABLA
	Q331=+0	;PUNTO REFERENCIA
	Q332=+0	;PUNTO REFERENCIA
	Q303=+1	;ENTREGA VALOR MEDICIÓN
	Q381=1	;PALPAR EJE TS
	Q382=+85	;1ª COORD. PARA EJE TS
	Q383=+50	;2ª COORD. PARA EJE TS
	Q384=+0	;3ª COORD. PARA EJE TS
	Q333=+0	;PUNTO REFERENCIA

PTO. REF. CENTRO CIRCULO TALADROS (ciclo de palpación 416, DIN/ISO: G416)

Con el ciclo de palpación 416 se calcula el centro de un círculo de taladros mediante la medición de tres taladros y se fija dicho centro como punto de referencia. Si se desea, el TNC también puede escribir el punto central en una tabla de puntos cero o en una tabla de presets.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hasta el centro del primer taladro introducido 1.
- 2 Finalmente el palpador se desplaza a la altura de medida introducida y registra mediante cuatro palpaciones el primer centro del taladro
- **3** Después el palpador retrocede a la altura segura y posiciona sobre el centro programado del segundo taladro **2**
- 4 El TNC desplaza el palpador a la altura de medición introducida y registra mediante cuatro palpaciones el segundo centro del taladro
- **5** Después el palpador retrocede a la altura segura y se posiciona sobre el centro programado del tercer taladro **3**
- 6 El TNC desplaza el palpador a la altura de medición introducida y registra mediante cuatro palpaciones el tercer centro del taladro
- 7 A continuación el TNC posiciona el palpador de nuevo en la altura de seguridad y procesa el punto de referencia calculado en relación con los parámetros de ciclo Q303 y Q305 (véase "Guardar punto de referencia calculado" en pág. 64) y memoriza los valores actuales en los parámetros Q ejecutados a continuación
- 8 Cuando se desee, el TNC determina seguidamente en una palpación previa separada el punto de referencia en el eje de palpación

Nº de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real del centro en eje auxiliar
Q153	Valor real del diámetro del círculo de taladros

Antes de la programación deberá tenerse en cuenta

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

- Centro 1er eje Q273 (valor absoluto): Centro del círculo de taladros (valor nominal) en el eje principal del plano de mecanizado
- Centro 2º eje Q274 (valor absoluto): Centro del círculo de taladros (valor nominal) en el eje auxiliar del plano de mecanizado
- Diámetro nominal Q262: Introducir el diámetro aproximado del círculo de taladros. Cuanto menor sea el diámetro del taladro, más precisa debe ser la indicación del diámetro nominal
- Ángulo 1er taladro Q291 (valor absoluto): ángulo en coordenadas polares del primer punto central del taladro en el plano de mecanizado
- Ángulo 2º taladro Q292 (valor absoluto): ángulo en coordenadas polares del segundo punto central del taladro en el plano de mecanizado
- Ángulo 3er taladro Q293 (valor absoluto): ángulo en coordenadas polares del tercer punto central del taladro en el plano de mecanizado
- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Número del punto cero en la tabla Q305: Indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas del círculo de taladros. Introduciendo Q305=0, el TNC ajusta la visualización automática de tal forma que el nuevo punto de referencia se encuentra en el centro del círculo de agujeros
- Nuevo punto de referencia en el eje principal Q331 (absoluto): coordenada en el eje principal, sobre la cual el TNC fija el centro calculado del círculo de taladros. Ajuste inicial = 0
- Nuevo punto de referencia en el eje auxiliar Q332 (absoluto): coordenada en el eje auxiliar, sobre la cual el TNC fija el centro calculado del círculo de taladros.

Ajuste inicial = 0

416

92

Transmisión del valor de medición (0,1) Q303: Determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:

-1: ¡No utilizar! Quedará registrado por el TNC, si se leen programas antiguos(véase "Guardar punto de referencia calculado" en pág. 64)

0: Escribir el punto de referencia calculado en la tabla de cero-piezas activa. El sistema de referencia es el sistema de coordenadas de la pieza activo

1: Escribir el punto de referencia calculado en la tabla de presets. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).

Palpar en eje del TS Q381: Comprobar si el TNC debe fijar también el punto de referencia en el eje del palpador:

0: No fijar el punto de referencia en el eje del palpador **1**: Fijar el punto de referencia en el eje del palpador

- Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): Coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): Coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): Coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Nuevo punto de referencia eje de palpación Q333 (valor absoluto): coordenada en el eje de palpación, sobre la cual el TNC debe fijar el punto de referencia. Ajuste inicial = 0

5	TCH PROBE 41	6 PTOREF CÍRCULO TALADROS
	Q273=+50	;CENTRO 1ER. EJE
	Q274=+50	;CENTRO 2º EJE
	Q262=90	;DIÁMETRO NOMINAL
	Q291=+34	;ÁNGULO 1ER TALADRO
	Q292=+70	;ÁNGULO 2º TALADRO
	Q293=+210	;ÁNGULO 3ER TALADRO
	Q261=-5	;ALTURA MEDICIÓN
	Q260=+20	;ALTURA SEGURIDAD
	Q305=12	;N° EN TABLA
	Q331=+0	;PUNTO REFERENCIA
	Q332=+0	;PUNTO REFERENCIA
	Q303=+1	;ENTREGA VALOR MEDICIÓN
	Q381=1	;PALPAR EJE TS
	Q382=+85	;1ª COORD. PARA EJE TS
	Q383=+50	;2ª COORD. PARA EJE TS
	Q384=+0	;3ª COORD. PARA EJE TS
	Q333=+0	;PUNTO REFERENCIA

PTO. REF. EJE DE PALPACION (ciclo de palpación 417, DIN/ISO: G417)

El ciclo de palpación 417 mide cualquier coordenada en el eje de palpación y lo define como punto cero. Si se desea, el TNC también puede escribir la coordenada medida en una tabla de puntos cero o de preset.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. Para ello, el TNC desplaza el palpador según la distancia de seguridad en la dirección del eje de palpación positivo
- 2 A continuación, el palpador se desplaza en el eje de palpación hacia la coordenda del punto de palpación introducida1 y genera, tras una sencilla palpación, la posición real
- 3 A continuación el TNC posiciona el palpador de nuevo en la altura de seguridad y procesa el punto de referencia calculado en relación con los parámetros de ciclo Q303 y Q305 (véase "Guardar punto de referencia calculado" en pág. 64) y memoriza el valor actual en los parámetros Q ejecutados a continuación

	olginicado
Q160	Valor actual del punto medido

Cignificade

Antes de la programación deberá tenerse en cuenta

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación. Entonces el TNC fija el punto de referencia en dicho eje.

- ler punto de medición del ler eje Q263 (valor absoluto): Coordenada del 1er punto de palpación en el eje principal del plano de mecanizado
- ▶ 1er punto de medición del 2º eje Q264 (valor absoluto): Coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado
- Ier punto de medición 3º eje Q294 (valor absoluto): Coordenada del punto de palpación en el eje de palpación
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza

- Número del punto cero en la tabla Q305: Indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar la coordenada. En la introducción de Q305=0, el TNC fija la visualización automática de tal manera que el nuevo punto de referencia se encuentra en la superficie palpada
- Nuevo punto de referencia eje de palpación Q333 (valor absoluto): coordenada en el eje de palpación, sobre la cual el TNC debe fijar el punto de referencia. Ajuste inicial = 0
- Transmisión del valor de medición (0,1) Q303: Determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:

-1: ¡No utilizar! Quedará registrado por el TNC, si se leen programas antiguos(véase "Guardar punto de referencia calculado" en pág. 64)

0: Escribir el punto de referencia calculado en la tabla de cero-piezas activa. El sistema de referencia es el sistema de coordenadas de la pieza activo

1: Escribir el punto de referencia calculado en la tabla de presets. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).

5	TCH PROBE 41	L7 PTOREF EJE TS
	Q263=+25	;1ER PUNTO 1ER EJE
	Q264=+25	;1ER PUNTO 2º EJE
	Q294=+25	;1ER PUNTO 3ER EJE
	Q320=0	;DISTANCIA DE SEGURIDAD
	Q260=+50	;ALTURA SEGURIDAD
	Q305=0	;N° EN TABLA
	Q333=+0	;PUNTO REFERENCIA
	Q303=+1	;ENTREGA VALOR MEDICIÓN

PTO. REF. CENTRO DE 4 TALADROS (ciclo de palpación 418, DIN/ISO: G418)

El ciclo de palpación 418 calcula el punto de intersección de las líneas que unen dos puntos centrales de dos taladros y fija dicho punto de intersección como punto de referencia. Si se desea, el TNC también puede escribir el punto de intersección en una tabla de puntos cero o en una tabla de presets.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) en el centro del primer taladro 1.
- 2 Finalmente el palpador se desplaza a la altura de medida introducida y registra mediante cuatro palpaciones el primer centro del taladro
- **3** Después el palpador retrocede a la altura segura y posiciona sobre el centro programado del segundo taladro **2**
- 4 El TNC desplaza el palpador a la altura de medición introducida y registra mediante cuatro palpaciones el segundo centro del taladro
- 5 El TNC repite el proceso 3 y 4 para los taladros 3 y 4
- 6 A continuación el TNC posiciona el palpador de nuevo en la altura de seguridad y procesa el punto de referencia calculado en relación con los parámetros de ciclo Q303 und Q305 (véase "Guardar punto de referencia calculado" en pág. 64) El TNC calcula el punto de referencia como punto de intersección de las líneas de unión del centro del taladro 1/3 y 2/4 y memoriza los valores actuales en los parámetros Q ejecutados a continuación
- 7 Cuando se desee, el TNC determina seguidamente en una palpación previa separada el punto de referencia en el eje de palpación

Nº de parámetro	Significado
Q151	Valor actual del punto de intersección en el eje principal
Q152	Valor actual de punto de intersección en el eje auxiliar

Antes de la programación deberá tenerse en cuenta

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

▶ 1er centro taladro eje1 Q268 (valor absoluto): Punto central del 1er taladro en el eje principal del plano de mecanizado

`⊕

- ▶ 1 centro taladro eje 2 Q269 (valor absoluto): Punto central del 1er taladro en el eje auxiliar del plano de mecanizado
- > 2º centro taladro ejel Q270 (valor absoluto): Punto central del 2º taladro en el eje principal del plano de mecanizado
- **2 centro taladro eje 2** Q271 (valor absoluto): Punto central del 2º taladro en el eje transversal del plano de mecanizado
- ▶ 3er centro taladro eje1 Q316 (valor absoluto): Punto central del 3er taladro en el eje principal del plano de mecanizado
- **3 centro taladro eje 2** Q317 (valor absoluto): Punto central del 2º taladro en el eje transversal del plano de mecanizado
- ▶ 4º centro taladro ejel Q318 (valor absoluto): Punto central del 4º taladro en el eje principal del plano de mecanizado
- ▶ 4 centro taladro eje 2 Q319 (valor absoluto): Punto central del 2º taladro en el eje transversal del plano de mecanizado
- ▶ Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eie de palpación. desde la cual se quiere realizar la medición
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza

98

3.2 Cálculo automático de los puntos de <mark>ref</mark>erencia

- Número del punto cero en la tabla Q305: Indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar las coordenadas del punto de intersección de las líneas de unión. Durante la introducción de Q305=0 el TNC ajusta las visualizaciones automáticamente, de forma que el punto de referencia fije el punto de referencia en el punto de intersección de las líneas de unión
- Nuevo punto de referencia en el eje principal Q331 (absoluto): coordenada en el eje principal sobre la cual el TNC fija el centro calculado del punto de intersección de las líneas de unión. Ajuste inicial = 0
- Nuevo punto de referencia en el eje auxiliar Q332 (absoluto): coordenada en el eje auxiliar, sobre la cual el TNC fija el punto de intersección calculado de las líneas de unión. Ajuste inicial = 0
- Transmisión del valor de medición (0,1) Q303: Determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:

 -1: ¡No utilizar! Quedará registrado por el TNC, si se leen programas antiguos(véase "Guardar punto de referencia calculado" en pág. 64)

0: Escribir el punto de referencia calculado en la tabla de cero-piezas activa. El sistema de referencia es el sistema de coordenadas de la pieza activo

1: Escribir el punto de referencia calculado en la tabla de presets. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).

Palpar en eje del TS Q381: Comprobar si el TNC debe fijar también el punto de referencia en el eje del palpador:

0: No fijar el punto de referencia en el eje del palpador1: Fijar el punto de referencia en el eje del palpador

- Palpar en eje del TS: Coord. 1. Eje Q382 (absoluto): Coordenada del punto de palpación en el eje principal del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 2. Eje Q383 (absoluto): Coordenada del punto de palpación en el eje secundario del plano de mecanizado, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Palpar en eje del TS: Coord. 3. Eje Q384 (absoluto): Coordenada del punto de palpación en el eje del palpador, en el que se debe fijar el punto de referencia en el eje del palpador. Sólo tiene efecto si Q381 = 1
- Nuevo punto de referencia eje de palpación Q333 (valor absoluto): coordenada en el eje de palpación, sobre la cual el TNC debe fijar el punto de referencia. Ajuste inicial = 0

5	TCH PROBE 41	8 PTOREF 4 TALADROS
	Q268=+20	;1ER CENTRO 1ER EJE
	Q269=+25	;1ER CENTRO 2º EJE
	Q270=+150	;2° CENTRO 1ER EJE
	Q271=+25	;2° CENTRO 2° EJE
	Q316=+150	;3ER CENTRO 1ER EJE
	Q317=+85	;3ER CENTRO 2º EJE
	Q318=+22	;4° CENTRO 1ER EJE
	Q319=+80	;4° CENTRO 2° EJE
	Q261=-5	;ALTURA MEDICIÓN
	Q260=+10	;ALTURA SEGURIDAD
	Q305=12	;N° EN TABLA
	Q331=+O	;PUNTO REFERENCIA
	Q332=+0	;PUNTO REFERENCIA
	Q303=+1	;ENTREGA VALOR MEDICIÓN
	Q381=1	;PALPAR EJE TS
	Q382=+85	;1ª COORD. PARA EJE TS
	Q383=+50	;2ª COORD. PARA EJE TS
	Q384=+0	;3ª COORD. PARA EJE TS
	Q333=+0	;PUNTO REFERENCIA

PTO. REF. EJE INDIVIDUAL (ciclo de palpación 419, DIN/ISO: G419)

El ciclo de palpación 419 mide una coordenada cualquiera en el eje de palpación fija esta coordenada como punto de referencia. Si se desea, el TNC también puede escribir la coordenada medida en una tabla de puntos cero o de preset.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. Para ello, el TNC desplaza el palpador según la distancia de seguridad en la dirección de palpación opuesta a la determinada
- 2 A continuación el palpador se desplaza a la altura de medida introducida y registra mediante una palpación sencilla la posición real
- **3** A continuación el TNC posiciona el palpador de nuevo en la altura de seguridad y procesa el punto de referencia calculado en relación con los parámetros de ciclo Q303 und Q305 (véase "Guardar punto de referencia calculado" en pág. 64)

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

419

- ler punto de medición del ler eje Q263 (valor absoluto): Coordenada del 1er punto de palpación en el eje principal del plano de mecanizado
- 1er punto de medición del 2º eje Q264 (valor absoluto): Coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado
- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza

Eje de medición (1...3: 1=eje principal) Q272:

Eje en el cual debe realizarse la medición:

- 1: Eje principal = eje de medida
- 2: Eje auxiliar = eje de medida

3: Eje palpador = eje de medición

Disposición de los ejes		
ncipal Eje auxiliar pondiente: correspondiente: = 1 Q272 = 2		
Y		
Х		
Z		

- Dirección de desplazamiento Q267: Dirección en la cual debe desplazarse el palpador hacia la pieza:
 -1: Dirección de desplazamiento negativa
 - +1: Dirección de desplazamiento positiva
- Número del punto cero en la tabla Q305: Indicar el número en la tabla de puntos cero/tabla de presets, donde el TNC debe memorizar la coordenada. En la introducción de Q305=0, el TNC fija la visualización automática de tal manera que el nuevo punto de referencia se encuentra en la superficie palpada
- Nuevo punto de referencia Q333 (absoluto): coordenada en el eje auxiliar, sobre la cual el TNC debe fijar el punto de referencia. Ajuste inicial = 0
- Transmisión del valor de medición (0,1) Q303: Determinar si el punto de referencia calculado debe guardarse en la tabla de cero-piezas o en la tabla de presets:

-1: ¡No utilizar! Véase "Guardar punto de referencia calculado" en pág. 64

0: Escribir el punto de referencia calculado en la tabla de cero-piezas activa. El sistema de referencia es el sistema de coordenadas de la pieza activo

1: Escribir el punto de referencia calculado en la tabla de presets. El sistema de referencia es el sistema de coordenadas de la máquina (sistema REF).

Ejemplo: Frases NC

5 TCH PROBE 41	L9 PTOREF EJE ÚNICO
Q263=+25	;1ER PUNTO 1ER EJE
Q264=+25	;1ER PUNTO 2º EJE
Q261=+25	;ALTURA MEDICIÓN
Q320=0	;DISTANCIA DE SEGURIDAD
Q260=+50	;ALTURA SEGURIDAD
Q272=+1	;EJE DE MEDIDA
Q267=+1	;DIRECCIÓN DE DESPLAZAMIENTO
Q305=0	;N° EN TABLA
Q333=+0	;PUNTO REFERENCIA
Q303=+1	;ENTREGA VALOR MEDICIÓN

]

Ejemplo: Fijar el punto de referencia en el centro del segmento circular y en la superficie de la pieza

O BEGIN PGM CYC413 MM	
1 TOOL CALL 69 Z	Llamada a la herramienta 0 para determinar el eje de palpación

i

2 TCH PROBE 413 PTOREF CÍRCULO EXTERNO	
Q321=+25 ;CENTRO 1ER. EJE	Punto central del círculo: Coordenada X
Q322=+25 ;CENTRO 2° EJE	Punto central del círculo: Coordenada Y
Q262=30 ;DIÁMETRO NOMINAL	Diámetro del círculo
Q325=+90 ;ÁNGULO INICIAL	Ángulo en coordenadas polares para el 1er punto de palpación
Q247=+45 ;PASO ANGULAR	Paso angular para calcular los puntos de palpación 2 a 4
Q261=-5 ;ALTURA MEDICIÓN	Coordenada en el eje de palpación desde la cual se realiza la medición
Q320=2 ;DISTANCIA DE SEGURIDAD	Distancia de seguridad adicional en columna SEP_UP
Q260=+10 ;ALTURA SEGURIDAD	Altura sobre la cual se desplaza el eje de palpación sin colisionar
Q301=0 ;DESPLAZ. A ALTURA SEG.	No desplazar a altura segura entre los puntos de medida
Q305=0 ;N° EN TABLA	Fijar la visualización
Q331=+0 ;PUNTO REFERENCIA	Fijar la visualización en X a 0
Q332=+10 ;PUNTO REFERENCIA	Fijar la visualización en Y a 10
Q303=+0 ;ENTREGA VALOR MEDICIÓN	Sin función porque debe fijarse la visualización
Q381=1 ;PALPAR EJE TS	Fijar también el punto de referencia en el eje TS
Q382=+25 ;1ª COORD. PARA EJE TS	Punto de palpación de la coordenada X
Q383=+25 ;2ª COORD. PARA EJE TS	Punto de palpación coordenada Y
Q384=+25 ;3ª COORD. PARA EJE TS	Punto de palpación coordenada Z
Q333=+0 ;PUNTO REFERENCIA	Fijar la visualización en Z a 0
3 CALL PGM 1860	Llamada al programa de mecanizado
4 END PGM CYC413 MM	

i

Ejemplo: Fijar el punto de referencia en la superficie de la pieza y en el centro del círculo de taladros

El punto central medido del círculo de agujeros debe escribirse para emplearse más a menudo en la tabla preset.

O BEGIN PGM CYC416 MM	
1 TOOL CALL 69 Z	Llamada a la herramienta 0 para determinar el eje de palpación
2 TCH PROBE 417 PTOREF EJE TS	Definición del ciclo para la fijación del punto de referencia en el eje de palpación
Q263=+7.5 ;1ER PUNTO 1ER EJE	Punto de palpación: Coordenada X
Q264=+7.5 ;1ER PUNTO DEL 2º EJE	Punto de palpación: Coordenada Y
Q294=+25 ;1ER PUNTO DEL 3ER EJE	Punto de palpación: Coordenada Z
Q320=0 ;DISTANCIA DE SEGURIDAD	Distancia de seguridad adicional en columna SEP_UP
Q260=+50 ;ALTURA SEGURIDAD	Altura sobre la cual se desplaza el eje de palpación sin colisionar
Q305=1 ;N° EN TABLA	Escribir coordenada Z en fila 1
Q333=+0 ;PUNTO REFERENCIA	Fijar el eje del palpador a 0
Q303=+1 ;ENTREGA VALOR MEDICIÓN	Guardar en la tabla de presets PRESET.PR el punto de referencia calculado respecto al sistema de coordenadas fijado en la máquina (sistema REF).

1

Centro del círculo de taladros: Coordenada X
Centro del círculo de taladros: Coordenada Y
Diámetro del círculo de taladros
Ángulo en coordenadas polares para el 1er centro de taladro 1
Ángulo en coordenadas polares para el 2º centro de taladro 2
Ángulo en coordenadas polares para el 3er centro de taladro 3
Coordenada en el eje de palpación desde la cual se realiza la medición
Altura sobre la cual se desplaza el eje de palpación sin colisionar
Introducir centro del círculo de taladros (X e Y) en línea 1
Guardar en la tabla de presets PRESET.PR el punto de referencia calculado respecto al sistema de coordenadas fijado en la máquina (sistema REF).
No fijar el punto de referencia en el eje TS
sin función
sin función
sin función
sin función
Activar nuevo preset con ciclo 247
Llamada al programa de mecanizado

i

3.3 Medición automática de piezas

Resumen

El TNC dispone de doce ciclos para medir piezas automáticamente:

ciclo	Softkey	Página
0 SUPERFICIE DE REF. Medición de una coordenada en cualquier eje		Pág. 110
1 PUNTO REF. POLAR Medición de un punto, dirección de palpación mediante ángulo	1 PA	Pág. 111
420 MEDIR ANGULO Medir un ángulo en el plano de mecanizado	428	Pág. 112
421 MEDIR TALADRO Medir posición y diámetro de un taladro	421	Pág. 114
422 MEDIR CIRCULO EXTERIOR Medir posición y diámetro de una isla circular	422	Pág. 117
423 MEDIR INTERIOR DE CAJERA Medición de posición, longitud y anchura de una cajera rectangular	423	Pág. 120
424 MEDIR EXTERIOR DE CAJERA Medición de posición, longitud y anchura de una isla rectangular	424	Pág. 123
425 MEDIR ANCHURA INTER. (2ª carátula de softkeys)Medir la anchura interior de una ranura	425	Pág. 126
426 MEDIR ISLA EXTERIOR (2ª carátula de softkeys)Medir la anchura de una isla	426	Pág. 128
427 MEDIR COORDENDADA (2ª carátula de softkeys)Medir cualquier coordenada en cualquier eje	427	Pág. 130
430 MEDIR CIRCULO TALADROS (2ª carátula de softkeys)Medir la posición y el diámetro de un círculo de taladros		Pág. 133
431 MEDIR PLANO (2ª carátula de softkeys)Medir el ángulo del eje A y B de un plano	431	Pág. 136

Registrar resultados de medida

Para todos los ciclos, con los que se pueden medir automáticamente las piezas (excepciones: ciclos 0 y 1), el TNC puede crear un registro de medida. En el ciclo de palpación correspondiente puede definir, si el TNC

- debe memorizar el registro de medida en un fichero
- debe emitir el registro de medida en la pantalla e interrumpir el curso del programa
- no debe crear ningún registro de medida

Siempre que desee guardar el registro de medida en un fichero, el TNC memoriza los datos de forma estándar como ficheros ASCII en el directorio desde el cual se ejecuta el programa de medición.

Todos los valores de medida introducidos en el fichero de protocolo se refieren al punto cero que se encuentra activo para el momento de la ejecución de ciclo correspondiente.

Emplear el software de transmisión de datos de HEIDENHAIN TNCremo, si desea emitir el protocolo de medición mediante la interfaz de datos.

Ejemplo: Fichero de mediciones para el ciclo de palpación 421:

Protocolo de medición del ciclo de palpación 421 Medir taladro

Fecha: 30-06-2005 Hora: 6:55:04 Programa de medición: TNC:\GEH35712\CHECK1.H

Valores nominales:Centro del eje principal: 50.0000 Centro eje auxiliar: 65.0000 Diámetro: 12.0000

Valores límite predeterminados:Cota más alta centro eje principal: 50.1000 Cota más pequeña centro eje principal: 49.9000 Cota máx. del centro en eje auxiliar: 65.1000 Cota mínima en el centro del eje auxiliar: 64.9000 Cota máxima taladro: 12.0450 Cota mínima del taladro: 12.0000

Valores reales:Centro del eje principal: 50.0810 Centro eje auxiliar: 64.9530 Diámetro: 12.0259

Desviaciones:Centro del eje principal: 0.0810 Centro eje auxiliar: -0.0470 Diámetro: 0.0259

Otros resultados de medición: altura de medición: -5.0000

Final del protocolo de medición

Resultados de medición en parámetros Q

Los resultados de medición del ciclo de palpación correspondientes se guardan por el TNC en los parámetros Q globales Q150 a Q160. Las desviaciones del valor nominal están memorizadas en los parámetros Q161 a Q166. Deberá tenerse en cuenta la tabla de los parámetros de resultados, que aparece en cada descripción del ciclo.

Además el TNC visualiza en la figura auxiliar de la definición del ciclo correspondiente, los parámetros con los resultados (véase fig. arriba dcha.). Con esto el parámetro de resultado resaltado atrás en claro pertenece al parámetro de introducción correspondiente.

Estado de la medición

En algunos ciclos se puede ver el estado de la medición mediante los parámetros Q180 a Q182 que actuan de forma global:

Estado de la medición	Valor del parámetro
Los valores de medida se encuentran dentro de la tolerancia	Q180 = 1
Se precisa mecanizar de nuevo	Q181 = 1
Rechazada	Q182 = 1

En cuanto uno de los valores de la medición está fuera de la tolerancia, el TNC fija la marca de mecanizado posterior o de rechazo. Para determinar qué resultado de medida se encuentra fuera de la tolerancia, tener en cuenta el protocolo de medición, o comprobar los resultados de medida correspondientes (Q150 bis Q160) en sus valores límite.

En el ciclo 427 el TNC parte de forma estándar, de que se mide una cota exterior (isla). Mediante la correspondiente selección de la cota más alta y la más pequeña en combinación con la dirección de palapación puede corregirse, sin embargo, el estado de la medición.

El TNC fija las marcas de estados incluso cuando no se introduce ninguna tolerancia o cota máxima/mínima.

HEIDENHAIN TNC 320

Supervisión de la tolerancia

En la mayoría de los ciclos para la comprobación de piezas el TNC puede realizar una supervisión de la tolerancia. Para ello deberán definirse los valores límite precisos en la definición del ciclo. Si no se desea realizar ninguna supervisión de la tolerancia, se fija este parámetro a 0 (= valor predeterminado)

Supervisión de herramientas

En algunos ciclos para la comprobación de la pieza, el TNC puede realizar uns supervisión de la herramienta. Entonces el TNC supervisa si

- debido a los desfases del valor nominal (valor en Q16x) se corrige el radio de la herramienta
- Ios desfases del valor nominal (valor en Q16x) son mayores a la tolerancia de rotura de la hta.

Corregir la herramienta

La función sólo se activa

- cuando está activada la tabla de htas.
- cuando se conecta la supervisión de herramientas en el ciclo: Q330 distinto de 0

Cuando se ejecutan varias mediciones de corrección, el TNC añade entonces la desviación medida correspondiente al valor ya memorizado en la tabla de la herramienta.

El TNC corrige siempre el radio de la herramienta en la columna DR de la tabla de herramientas, incluso cuando la desviación medida se encuentra dentro de la tolerancia indicada. Para ver si se precisa un mecanizado posterior se consulta en el programa NC el parámetro Q181 (Q181=1: se precisa mecanizado posterior).

Además para el ciclo 427 se tiene:

- Si un eje del plano de mecanizado activo está definido como eje de medición (Q272 = 1 o 2), el TNC lleva a cabo una corrección del radio de la herramienta como se ha descrito anteriormente. El TNC calcula la dirección de la corrección en base a la dirección de desplazamiento (Q267) definida.
- Cuando se ha seleccionado como eje de medición el eje de palpación (Q272 = 3), el TNC realiza una corrección de la longitud de la herramienta
Supervisión de la rotura de la herramienta

La función sólo se activa

- cuando está activada la tabla de htas.
- cuando se conecta la supervisión de herramientas en el ciclo (programar Q330 distinto de 0
- cuando se ha programado el nº de herramienta en la tabla con una tolerancia de rotura RBREAK mayor a 0 (véase también el Modo de Empleo, capítulo 5.2 "Datos de la herramienta")

El TNC emite un aviso de error y detiene la ejecución del programa, cuando el desfase medido es mayor a la tolerancia de rotura de la hta. Al mismo tiempo bloquea la hta. en la tabla de htas. (columna TL = L).

Sistema de referencia para los resultados de medición

El TNC emite todos los resultados de la medición en el parámetro de resultados y en el fichero de medición en el sistema de coordenadas activado (desplazado o/y girado/inclinado, si es preciso).

PLANO DE REFERENCIA (ciclo de palpación 0, DIN/ISO: G55)

- El palpador se aproxima en un movimiento 3D con avance rápido (valor de columna FMAX) a la posición previa programada en el ciclo 1
- 2 A continuación el palpador ejecuta el proceso de palpación con el avance de palpación (columna F). La dirección de palpación está determinada en el ciclo
- 3 Después de que el TNC haya adoptado la posición, el sistema de palpación retrocede al punto inicial del proceso de palpación y memoriza las coordenadas medidas en un parámetro Q. Además el TNC memoriza las coordenadas de la posición en las que se encontraba el palpador en el momento de producirse la señal, en los parámetros Q115 a Q119. Para los valores de estos parámetros el TNC tiene en cuenta la longitud y el radio del vástago

Antes de la programación deberá tenerse en cuenta

Preposicionar el sistema de palpación de tal manera que se evite una colisión al desplazar la preposición programada.

- Nº parámetro para el resultado: Introducir el número de parámetro Q al que se le ha asignado el valor de la coordenada
- Eje y dirección de palpación: Introducir el eje del palpador con la correspondiente tecla del eje o mediante el teclado ASCII y el signo para la dirección de la palpación. Confirmar con la tecla ENT
- ▶ Valor nominal de la posición: Mediante las teclas de los ejes o a través del teclado ASCII, introducir todas las coordenadas para el posicionamiento previo del palpador.
- Finalizar la introducción: Pulsar la tecla ENT

- 67 TCH PROBE 0.0 SUPERF. DE REFERENCIA Q5 X-
- 68 TCH PROBE 0.1 X+5 Y+0 Z-5

PLANO DE REFERENCIA en polares (ciclo de palpación 1)

El ciclo de palpación 1 calcula cualquier posición de la pieza en cualquier dirección de palpación.

- El palpador se aproxima en un movimiento 3D con avance rápido (valor de columna FMAX) a la posición previa programada en el ciclo 1
- 2 A continuación el palpador ejecuta el proceso de palpación con el avance de palpación (columna F). En el proceso de palpación el TNC desplaza simultáneamente dos ejes (dependiendo del ángulo de palpación). La dirección de palpación se determina mediante el ángulo en polares introducido en el ciclo
- **3** Una vez que el TNC ha registrado la posición, el palpador retrocede al punto de partida del proceso de palpación. Además el TNC memoriza las coordenadas de la posición en las que se encontraba el palpador en el momento de producirse la señal, en los parámetros Q115 a Q119.

Antes de la programación deberá tenerse en cuenta

Preposicionar el sistema de palpación de tal manera que se evite una colisión al desplazar la preposición programada.

El ciclo de definición del eje de palpación se mantiene fijo en:

Plano X/Y: Eje X Plano Y/Z: Eje Y Plano Z/X: Eje Z

- Eje de palpación: Introducir el eje de palpación con las teclas de manual o mediante el teclado ASCII. Confirmar con la tecla ENT
- Ángulo de palpación: ángulo referido al eje de palpación, en el cual debe desplazarse el palpador
- Valor nominal de la posición: Mediante las teclas de los ejes o a través del teclado ASCII, introducir todas las coordenadas para el posicionamiento previo del palpador.

Finalizar la introducción: Pulsar la tecla ENT

67 TCH PROBE 1.0 PUNTO DE REFERENCIA POLAR
68 TCH PROBE 1.1 ÁNGULO X: +30
69 TCH PROBE 1.2 X+5 Y+0 Z-5

MEDIR ANGULO (ciclo de palpación 420, DIN/ISO: G420)

El ciclo de palpación 420 calcula el ángulo, que forma cualquier recta con el eje principal del plano de mecanizado.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. Para ello, el TNC desplaza el palpador según la distancia de seguridad en la dirección de desplazamiento opuesta a la determinada
- 2 A continuación el palpador se desplaza a la altura de la medición programada y ejecuta el primer proceso de palpación con avance de palpación (MP6120 o bién MP6360)
- **3** A continuación el palpador se desplaza al siguiente punto de palpación **2** y ejecuta el segundo proceso de palpación
- **4** El TNC retira el palpador a la distancia de seguridad y memoriza el ángulo calculado en los siguientes parámetros Q:

Nº de parámetro	Significado
Q150	Ángulo medido en relación al eje principal del plano de mecanizado

Antes de la programación deberá tenerse en cuenta

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

- Ier punto de medición del 1er eje Q263 (valor absoluto): Coordenada del 1er punto de palpación en el eje principal del plano de mecanizado
- ler punto de medición del 2º eje Q264 (valor absoluto): Coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado
- 2º punto de medición del 1er eje Q265 (valor absoluto): Coordenada del segundo punto de palpación en el eje principal del plano de mecanizado
- 2º punto de medición del 2º eje Q266 (absoluto): coordenada del segundo punto de palpación en el eje auxiliar del plano de mecanizado
- Eje de medición Q272: Eje en el que debe realizarse la medición:
 - 1:Eje principal = eje de medida
 - 2:Eje auxiliar = eje de medida
 - 3: Eje palpador = eje de medida

Tener en cuenta con eje de palpación = eje de medición

Seleccionar Q263 igual a Q265, cuando el ángulo se mide en dirección al eje A: seleccionar Q263 diferente de Q265, cuando el ángulo se mide en dirección del eje B.

- Dirección de desplazamiento 1 Q267: Dirección en la cual debe desplazarse el palpador hacia la pieza:
 -1: Dirección de desplazamiento negativa
 +1: Dirección de desplazamiento positiva
- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Desplazamiento a la altura de seguridad Q301: Determinar como debe desplazarse el palpador entre los puntos de medición:

0: Desplazar entre los puntos de medición a la altura de medición

1: Desplazar entre los puntos de medición a la altura de seguridad

Protocolo de medición Q281: fijar si el TNC debe crear un protocolo de medición:

0: No realizar el protocolo de medición

1: Registrar protocolo de medición: El TNC guarda de forma estándar el **fichero de protocolo**

TCHPR420.TXT en el directorio, TNC:\ab **2**: Interrumpir el desarrollo del programa y visualizar el registro de medida en la pantalla del TNC. Continuar el programa con la tecla arranque-NC

5 TCH PROBE 42	20 MEDIR ÁNGULO
Q263=+10	;1ER PUNTO DEL 1ER EJE
Q264=+10	;1ER PUNTO DEL 2º EJE
Q265=+15	;2° PUNTO DEL 1ER EJE
Q266=+95	;2° PUNTO DEL 2° EJE
Q272=1	;EJE DE MEDIDA
Q267=-1	;DIRECCIÓN DE DESPLAZAMIENTO
Q261=-5	;ALTURA MEDICIÓN
Q320=0	;DISTANCIA DE SEGURIDAD
Q260=+10	;ALTURA SEGURIDAD
Q301=1	;DESPLAZ. A ALTURA SEG.
Q281=1	;PROTOCOLO DE MEDIDA

MEDIR TALADRO (ciclo de palpación 421, DIN/ISO: G421)

Con el ciclo de palpación 421 se calcula el punto central y el diámetro de un taladro (cajera circular). Si se han definido los valores de tolerancia correspondientes en el ciclo, el TNC realiza una comparación del valor nominal y el real y memoriza la diferencia en los parámetros del sistema.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. El TNC calcula los puntos de palpación según las indicaciones en el ciclo y la distancia de seguridad indicada en el dispositivo SET_UP de la tabla de sistema de palpación
- 2 A continuación el palpador se desplaza a la altura de la medición programada y ejecuta el primer proceso de palpación con avance de palpación (dispositivo F). El TNC determina automáticamente la dirección de palpación en relación al ángulo inicial programado
- 3 Después el palpador se desplaza hasta el siguiente punto de palpación en altura de medición o en altura de seguridad 2 y ejecuta en ese punto el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y después en el punto de palpación 4 y ejecuta en ese punto el tercer o cuarto proceso de palpación
- **5** Para finalizar el TNC hace rectroceder el palpador a la altura de seguridad y memoriza los valores reales y las desviaciones en los siguientes parámetros Q:

Nº de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real del centro en eje auxiliar
Q153	Valor real del diámetro
Q161	Desviación del centro en eje principal
Q162	Desviación del centro en eje auxiliar
Q163	Desviación del diámetro

Antes de la programación deberá tenerse en cuenta

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

- Centro ler eje Q273 (valor absoluto): Centro del taladro en el eje principal del plano de mecanizado
- Centro 2º eje Q274 (valor absoluto): Centro del taladro en el eje auxiliar del plano de mecanizado
- Diámetro nominal Q262: introducir diámetro del taladro
- Ángulo inicial Q325 (valor absoluto): ángulo entre el eje principal del plano de mecanizado y el primer punto de palpación
- Paso angular Q247 (valor incremental): ángulo entre dos puntos de medición, el signo del paso angular determina la dirección del mecanizado (- = sentido horario). Si se quieren medir arcos de círculo, deberá programarse un paso angular menor a 90°

G

Cuanto menor sea el paso angular programado, más imprecisas seran las medidas del taladro calculadas por el TNC. Valor de introducción mínimo: 5°.

- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Desplazamiento a la altura de seguridad Q301: Determinar como debe desplazarse el palpador entre los puntos de medición:

0: Desplazar entre los puntos de medición a la altura de medición

1: Desplazar entre los puntos de medición a la altura de seguridad

- ► Tamaño máximo taladro Q275: Mayor diámetro permitido del taladro (cajera circular)
- ► Tamaño mínimo taladro Q276: Menor diámetro permitido del taladro (cajera circular)
- ▶ Valor tolerancia centro ler eje Q279: Desviación admisible de la posición en el eje principal del plano de mecanizado
- Valor tolerancia centro 2º eje Q280: Desviación admisible de la posición en el eje auxiliar del plano de mecanizado

- Protocolo de medición Q281: fijar si el TNC debe crear un protocolo de medición:
 - 0: No realizar el protocolo de medición
 - 1: Registrar protocolo de medición: El TNC guarda de forma estándar el **fichero de protocolo**

TCHPR421.TXT en el directorio, TNC:\ab **2**: Interrumpir el desarrollo del programa y visualizar el registro de medida en la pantalla del TNC. Continuar el programa con la tecla arranque-NC

Parada del programa con error de tolerancia Q309: Determinar si el TNC debe interrumpir el programa cuando se sobrepasa la tolerancia y debe emitir un aviso de error:

0: No interrumpir la ejecución del programa, no emitir aviso de error

1: Interrumpir la ejecución del programa, emitir aviso de error

 Nº de hta. para supervisión Q330: Determinar si el TNC debe realizar la supervisión de la herramienta (véase "Supervisión de herramientas" en pág. 108)
 0: Supervisión inactiva

>0: N^o de hta. en la tabla de htas. TOOL.T

Número de puntos de medición (4/3) Q423: determinar, si el TNC debe medir la isla con 4 ó 3 palpaciones:

4: utilizar 4 puntos de medición (ajuste estándar)3: utilizar 3 puntos de medición

5 TCH PROBE 42	1 MEDIR TALADRO
Q273=+50	;CENTRO 1ER. EJE
Q274=+50	;CENTRO 2º EJE
Q262=75	;DIÁMETRO NOMINAL
Q325=+0	;ÁNGULO INICIAL
Q247=+60	;PASO ANGULAR
Q261=-5	;ALTURA MEDICIÓN
Q320=0	;DISTANCIA DE SEGURIDAD
Q260=+20	;ALTURA SEGURIDAD
Q301=1	;DESPLAZ. A ALTURA SEG.
Q275=75.1	2;MEDIDA MÁX.
Q276=74.9	5;MEDIDA MÍN.
Q279=0.1	;TOLERANCIA 1ER CENTRO
Q280=0.1	;TOLERANCIA 2º CENTRO
Q281=1	;PROTOCOLO DE MEDIDA
Q309=0	;PGM-STOP EN CASO DE ERROR
Q330=0	;N° HERRAMIENTA
Q423=4	;NÚMERO PUNTOS MEDICIÓN

MEDIR CIRCULO EXTERIOR (ciclo de palpación 422, DIN/ISO: G422)

Con el ciclo de palpación 422 se calcula el punto central y el diámetro de una isla circular. Si se han definido los valores de tolerancia correspondientes en el ciclo, el TNC realiza una comparación del valor nominal y el real y memoriza la diferencia en los parámetros del sistema.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. El TNC calcula los puntos de palpación según las indicaciones en el ciclo y la distancia de seguridad indicada en el dispositivo SET_UP de la tabla del sistema de palpación
- 2 A continuación el palpador se desplaza a la altura de la medición programada y ejecuta el primer proceso de palpación con avance de palpación (dispositivo F). El TNC determina automáticamente la dirección de palpación en relación al ángulo inicial programado
- **3** Después el palpador se desplaza hasta el siguiente punto de palpación en altura de medición o en altura de seguridad 2 y ejecuta en ese punto el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y después en el punto de palpación 4 y ejecuta en ese punto el tercer o cuarto proceso de palpación
- **5** Para finalizar el TNC hace rectroceder el palpador a la altura de seguridad y memoriza los valores reales y las desviaciones en los siguientes parámetros Q:

Nº de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real del centro en eje auxiliar
Q153	Valor real del diámetro
Q161	Desviación del centro en eje principal
Q162	Desviación del centro en eje auxiliar
Q163	Desviación del diámetro

Antes de la programación deberá tenerse en cuenta

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

- Centro 1er eje Q273 (valor absoluto): Centro de la isla en el eje principal del plano de mecanizado
- ▶ Centro 2º eje Q274 (absoluto): centro de la isla en el eje auxiliar del plano de mecanizado
- **Diámetro nominal** Q262: introducir diámetro de la isla
- Ángulo inicial Q325 (valor absoluto): ángulo entre el eje principal del plano de mecanizado y el primer punto de palpación
- Paso angular Q247 (valor incremental): ángulo entre dos puntos de medición, el signo del paso angular determina la dirección del mecanizado (- = sentido horario). Si se quieren medir arcos de círculo, deberá programarse un paso angular menor a 90°

Cuanto menor sea el paso angular programado, más imprecisas seran las medidas de la isla calculadas por el TNC. Valor de introducción mínimo: 5°.

- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Desplazamiento a la altura de seguridad Q301: Determinar como debe desplazarse el palpador entre los puntos de medición:

0: Desplazar entre los puntos de medición a la altura de medición

1: Desplazar entre los puntos de medición a la altura de seguridad

- Cota máxima de la isla Q277: Mayor diámetro admisible de la isla
- Cota mínima de la isla Q278: Diámetro mínimo admisible de la isla
- Valor tolerancia centro ler eje Q279: Desviación admisible de la posición en el eje principal del plano de mecanizado
- Valor tolerancia centro 2º eje Q280: Desviación admisible de la posición en el eje auxiliar del plano de mecanizado

Protocolo de medición Q281: fijar si el TNC debe crear un protocolo de medición:

0: No realizar el protocolo de medición

1: Registrar protocolo de medición: El TNC guarda de forma estándar el **fichero de protocolo**

TCHPR422.TXT en el directorio, TNC:\ab **2**: Interrumpir el desarrollo del programa y visualizar el registro de medida en la pantalla del TNC. Continuar el programa con la tecla arranque-NC

Parada del programa con error de tolerancia Q309: Determinar si el TNC debe interrumpir el programa cuando se sobrepasa la tolerancia y debe emitir un aviso de error:

0: No interrumpir la ejecución del programa, no emitir aviso de error

1: Interrumpir la ejecución del programa, emitir aviso de error

 Nº de hta. para supervisión Q330: Determinar si el TNC debe realizar la supervisión de la herramienta: (véase "Supervisión de herramientas" en pág. 108)
 0: Supervisión inactiva

>0: Nº de hta. en la tabla de htas. TOOL.T

Número de puntos de medición (4/3) Q423: determinar, si el TNC debe medir la isla con 4 ó 3 palpaciones:

4: utilizar 4 puntos de medición (ajuste estándar)3: utilizar 3 puntos de medición

5	TCH PROBE 42	2 MEDIR CÍRCULO EXTERNO
	Q273=+50	;CENTRO 1ER. EJE
	Q274=+50	;CENTRO 2º EJE
	Q262=75	;DIÁMETRO NOMINAL
	Q325=+90	;ÁNGULO INICIAL
	Q247=+30	;PASO ANGULAR
	Q261=-5	;ALTURA MEDICIÓN
	Q320=0	;DISTANCIA DE SEGURIDAD
	Q260=+10	;ALTURA SEGURIDAD
	Q301=0	;DESPLAZ. A ALTURA SEG.
	Q275=35.1	;MEDIDA MÁX.
	Q276=34.9	;MEDIDA MÍN.
	Q279=0.05	;TOLERANCIA 1ER CENTRO
	Q280=0.05	;TOLERANCIA 2º CENTRO
	Q281=1	;PROTOCOLO DE MEDIDA
	Q309=0	;PGM-STOP EN CASO DE ERROR
	Q330=0	;N° HERRAMIENTA
	Q423=4	;NÚMERO PUNTOS MEDICIÓN

MEDIR RECTANGULO INTERIOR (ciclo de palpación 423, DIN/ISO: G423)

Con el ciclo de palpación 423 se calcula el punto central así como la longitud y la anchura de una cajera rectangular. Si se han definido los valores de tolerancia correspondientes en el ciclo, el TNC realiza una comparación del valor nominal y el real y memoriza la diferencia en los parámetros del sistema.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. El TNC calcula los puntos de palpación según las indicaciones en el ciclo y la distancia de seguridad indicada en el dispositivo SET_UP de la tabla del sistema de palpación
- 2 A continuación el palpador se desplaza a la altura de la medición programada y ejecuta el primer proceso de palpación con avance de palpación (Columna F)
- Bespués el palpador se desplaza al siguiente punto de palpación paralelo al eje en altura de medición o lineal en altura de seguridad
 y ejecuta en ese punto el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y después en el punto de palpación 4 y ejecuta en ese punto el tercer o cuarto proceso de palpación
- **5** Para finalizar el TNC hace rectroceder el palpador a la altura de seguridad y memoriza los valores reales y las desviaciones en los siguientes parámetros Ω:

Nº de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real del centro en eje auxiliar
Q154	Valor real del lado en el eje principal
Q155	Valor real del lado en el eje auxiliar
Q161	Desviación del centro en eje principal
Q162	Desviación del centro en eje auxiliar
Q164	Desviación del lado en el eje principal
Q165	Desviación del lado en el eje auxiliar

Antes de la programación deberá tenerse en cuenta

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

Cuando las dimensiones de la cajera y la distancia de seguridad no permiten un posicionamiento previo en la proximidad de los puntos de palpación, el TNC siempre palpa partiendo del centro de la cajera. Entre los cuatro puntos de medida el palpador no se desplaza a la altura de seguridad.

- 423
- Centro 1er eje Q273 (valor absoluto): Centro de la cajera en el eje principal del plano de mecanizado
- Centro 2º eje Ω274 (valor absoluto): centro de la cajera en el eje auxiliar del plano de mecanizado
- Longitud lado 1 Q282: Longitud de la cajera, paralela al eje principal del plano de mecanizado
- ▶ Longitud 1ado 2 Q283: Longitud de la cajera, paralela al eje auxiliar del plano de mecanizado
- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Desplazamiento a la altura de seguridad Q301: Determinar como debe desplazarse el palpador entre los puntos de medición:
 - **0**: Desplazar entre los puntos de medición a la altura de medición

1:Desplazar entre los puntos de medición a la altura de seguridad

- Cota máxima longitud lado 1 Q284: Longitud máxima admisible de la cajera
- Cota mínima longitud lado 1 Q285: Longitud mínima admisible de la cajera
- Cota máxima longitud lado 2 Q286: Ancho máximo admisible de la cajera
- ► Tamaño mínimo longitud lado 2 Q287: Anchura mínima admisible de la cajera
- Valor tolerancia centro ler eje Q279: Desviación admisible de la posición en el eje principal del plano de mecanizado
- Valor tolerancia centro 2º eje Q280: Desviación admisible de la posición en el eje auxiliar del plano de mecanizado

- Protocolo de medición Q281: fijar si el TNC debe crear un protocolo de medición:
 - 0: No realizar el protocolo de medición
 - 1: Registrar protocolo de medición: El TNC guarda de forma estándar el **fichero de protocolo**

TCHPR423.TXT en el directorio, TNC:\ab **2**: Interrumpir el desarrollo del programa y visualizar el registro de medida en la pantalla del TNC. Continuar el programa con la tecla arranque-NC

Parada del programa con error de tolerancia Q309: Determinar si el TNC debe interrumpir el programa cuando se sobrepasa la tolerancia y debe emitir un aviso de error:

 $\pmb{0}$: No interrumpir la ejecución del programa, no emitir aviso de error

1: Interrumpir la ejecución del programa, emitir aviso de error

- Nº de hta. para supervisión Q330: Determinar si el TNC debe realizar la supervisión de la herramienta (véase "Supervisión de herramientas" en pág. 108)
 0: Supervisión inactiva
 - >0: № de hta. en la tabla de htas. TOOL.T

5	TCH PROBE 42	3 MEDIR RECTÁNGULO INTERNO
	Q273=+50	;CENTRO 1ER. EJE
	Q274=+50	;CENTRO 2º EJE
	Q282=80	;LONGITUD LADO 1
	Q283=60	;LONGITUD LADO 2
	Q261=-5	;ALTURA MEDICIÓN
	Q320=0	;DISTANCIA DE SEGURIDAD
	Q260=+10	;ALTURA SEGURIDAD
	Q301=1	;DESPLAZ. A ALTURA SEG.
	Q284=0	;MEDIDA MÁX. 1ª PÁG.
	Q285=0	;MEDIDA MÍN. 1ª PÁG.
	Q286=0	;MEDIDA MÁX. 2ª PÁG.
	Q287=0	;MEDIDA MÍN. 2ª PÁG.
	Q279=0	;TOLERANCIA 1ER CENTRO
	Q280=0	;TOLERANCIA 2º CENTRO
	Q281=1	;PROTOCOLO DE MEDIDA
	Q309=0	;PGM-STOP EN CASO DE ERROR
	Q330=0	;N° HERRAMIENTA

MEDICION RECTANGULO EXTERNO (ciclo de palpación 424, DIN/ISO: G424)

Con el ciclo de palpación 424 se calcula el punto central así como la longitud y la anchura de una isla rectangular. Si se han definido los valores de tolerancia correspondientes en el ciclo, el TNC realiza una comparación del valor nominal y el real y memoriza la diferencia en los parámetros del sistema.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. El TNC calcula los puntos de palpación según las indicaciones en el ciclo y la distancia de seguridad indicada en el dispositivo SET_UP de la tabla del sistema de palpación
- 2 A continuación el palpador se desplaza a la altura de la medición programada y ejecuta el primer proceso de palpación con avance de palpación (Columna FMAX)
- Bespués el palpador se desplaza al siguiente punto de palpación paralelo al eje en altura de medición o lineal en altura de seguridad
 y ejecuta en ese punto el segundo proceso de palpación
- 4 El TNC posiciona el palpador en el punto de palpación 3 y después en el punto de palpación 4 y ejecuta en ese punto el tercer o cuarto proceso de palpación
- 5 Para finalizar el TNC hace rectroceder el palpador a la altura de seguridad y memoriza los valores reales y las desviaciones en los siguientes parámetros Q:

Nº de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real del centro en eje auxiliar
Q154	Valor real del lado en el eje principal
Q155	Valor real del lado en el eje auxiliar
Q161	Desviación del centro en eje principal
Q162	Desviación del centro en eje auxiliar
Q164	Desviación del lado en el eje principal
Q165	Desviación del lado en el eje auxiliar

Antes de la programación deberá tenerse en cuenta

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

- Centro 1er eje Q273 (valor absoluto): Centro de la isla en el eje principal del plano de mecanizado
- Centro 2º eje Q274 (absoluto): centro de la isla en el eje auxiliar del plano de mecanizado
- ▶ Longitud 1ado 1 Q282: Longitud de la isla, paralela al eje principal del plano de mecanizado
- ▶ Longitud 1ado 2 Q283: Longitud de la isla, paralela al eje auxiliar del plano de mecanizado
- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Desplazamiento a la altura de seguridad Q301: Determinar como debe desplazarse el palpador entre los puntos de medición:
 - **0**: Desplazar entre los puntos de medición a la altura de medición

1: Desplazar entre los puntos de medición a la altura de seguridad

- Cota máxima longitud lado 1 Q284: Longitud máxima admisible de la isla
- Cota mínima longitud lado 1 Q285: Longitud mínima admisible de la isla
- Cota máxima longitud lado 2 Q286: Ancho máximo admisible de la isla
- Cota mínima longitud lado 2 Q287: Anchura mínima admisible de la isla
- Valor tolerancia centro ler eje Q279: Desviación admisible de la posición en el eje principal del plano de mecanizado
- Valor tolerancia centro 2º eje Q280: Desviación admisible de la posición en el eje auxiliar del plano de mecanizado

- Protocolo de medición Q281: fijar si el TNC debe crear un protocolo de medición:
 - 0: No realizar el protocolo de medición

1: Registrar protocolo de medición: El TNC guarda de forma estándar el **fichero de protocolo**

TCHPR424.TXT en el directorio, TNC:\ab **2**: Interrumpir el desarrollo del programa y visualizar el registro de medida en la pantalla del TNC. Continuar el programa con la tecla arranque-NC

Parada del programa con error de tolerancia Q309: Determinar si el TNC debe interrumpir el programa cuando se sobrepasa la tolerancia y debe emitir un aviso de error:

0: No interrumpir la ejecución del programa, no emitir aviso de error

1: Interrumpir la ejecución del programa, emitir aviso de error

 Nº de hta. para supervisión Q330: Determinar si el TNC debe realizar la supervisión de la herramienta: (véase "Supervisión de herramientas" en pág. 108)
 0: Supervisión inactiva

>0: Nº de hta. en la tabla de htas. TOOL.T

5	TCH PROBE 42	4 MEDIR RECTÁNGULO EXT.
	Q273=+50	;CENTRO 1ER. EJE
	Q274=+50	;CENTRO 2º EJE
	Q282=75	;LONGITUD LADO 1
	Q283=35	;LONGITUD LADO 2
	Q261=-5	;ALTURA MEDICIÓN
	Q320=0	;DISTANCIA DE SEGURIDAD
	Q260=+20	;ALTURA SEGURIDAD
	Q301=0	;DESPLAZ. A ALTURA SEG.
	Q284=75.1	;MEDIDA MÁX. 1ª PÁG.
	Q285=74.9	;MEDIDA MÍN. 1ª PÁG.
	Q286=35	;MEDIDA MÁX. 2ª PÁG.
	Q287=34.9	5;MEDIDA MÍN. 2ª PÁG.
	Q279=0.1	;TOLERANCIA 1ER CENTRO
	Q280=0.1	;TOLERANCIA 2º CENTRO
	Q281=1	;PROTOCOLO DE MEDIDA
	Q309=0	;PGM-STOP EN CASO DE ERROR
	Q330=0	;N° HERRAMIENTA

MEDIR ANCHURA INTERIOR (ciclo de palpación 425, DIN/ISO: G425)

El ciclo de palpación 425 calcula la posición y la anchura de una ranura (cajera). Si se han definido los valores de tolerancia correspondientes en el ciclo, el TNC realiza una comparación del valor nominal y el real y memoriza la diferencia en los parámetros del sistema.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. El TNC calcula los puntos de palpación según las indicaciones en el ciclo y la distancia de seguridad indicada en el dispositivo SET_UP de la tabla del sistema de palpación
- 2 A continuación el palpador se desplaza a la altura de la medición programada y ejecuta el primer proceso de palpación con avance de palpación (dispositivo F). 1. Palpación siempre en la dirección positiva del eje programado
- 3 Si se programa una desviación para la segunda medición, el TNC desplaza el palpador paralelo al eje hasta el siguiente punto de palpación 2 y realiza allí el segundo proceso de palpación. Cuando no se introduce un desplazamiento, el TNC mide directamente la anchura en la dirección contraria
- 4 Para finalizar el TNC hace rectroceder el palpador a la altura de seguridad y memoriza los valores reales y la desviación en los siguientes parámetros Q:

Nº de parámetro	Significado
Q156	Valor real de la longitud medida
Q157	Valor real posición eje central
Q166	Desviación de la longitud medida

Antes de la programación deberá tenerse en cuenta

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

- $\begin{array}{c} 0288\\ 0311\\ 0272=2\\ \hline \\ 0329\\ \hline \\ 0329\\ \hline \\ 0328\\ \hline \\ 0328\\ \hline \\ 0272=1\\ \hline \\ 0289\\ \hline \\ 0289\\ \hline \\ \\ 0272=1\\ \hline \\ \\ 0272=1\\ \hline \\ \\ 0260\\ \hline 0260\\$

Ejemplo: Frases NC

25 MEDIR ANCHO INTERIOR
;PUNTO INICIAL 1ER. EJE
5;PUNTO INICIAL 2º EJE
;DESPLAZ. 2ª MEDICIÓN
;EJE DE MEDIDA
;ALTURA MEDICIÓN
;ALTURA SEGURIDAD
;LONGITUD NOMINAL
5;MEDIDA MÁX.
;MEDIDA MÍN.
;PROTOCOLO DE MEDIDA
;PGM-STOP EN CASO DE ERROR
;N° HERRAMIENTA

- Punto inicial ler eje Q328 (valor absoluto): Punto de partida del proceso de palpación en el eje principal del plano de mecanizado
- Punto inicial 2º eje Q329 (valor absoluto): Punto de partida del proceso de palpación en el eje auxiliar del plano de mecanizado
- Desvío para la 2ª medición Q310 (offset del valor incremental): Valor según el cual se desvía el palpador antes de la segunda medición. Si se programa 0, el TNC no desvía el palpador
- Eje de medición Q272: Eje del plano de mecanizado en el que debe realizarse la medición:
 1:Eje principal = eje de medida
 2:Eje auxiliar = eje de medida
- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Longitud nominal Q311: Valor nominal de la longitud a medir
- **Cota máxima** Q288: Longitud máxima admisible
- ▶ Cota mínima Q289: Longitud mínima admisible
- Protocolo de medición Q281: fijar si el TNC debe crear un protocolo de medición:
 - **0**: No realizar el protocolo de medición

1: Registrar protocolo de medición: El TNC guarda de forma estándar el **fichero de protocolo**

TCHPR425.TXT en el directorio, TNC:\ab **2**: Interrumpir el desarrollo del programa y visualizar el registro de medida en la pantalla del TNC. Continuar el programa con la tecla arranque-NC

Parada del programa con error de tolerancia Q309: Determinar si el TNC debe interrumpir el programa cuando se sobrepasa la tolerancia y debe emitir un aviso de error:

0: No interrumpir la ejecución del programa, no emitir aviso de error

1: Interrumpir la ejecución del programa, emitir aviso de error

 Nº de hta. para supervisión Q330: Determinar si el TNC debe realizar la supervisión de la herramienta: (véase "Supervisión de herramientas" en pág. 108):
 0: Supervisión inactiva

>0: Nº de hta. en la tabla de htas. TOOL.T

MEDIR EXTERIOR ISLA (ciclo de palpación 426, DIN/ISO: G426)

El ciclo de palpación 426 calcula la posición y la anchura de una isla. Si se han definido los valores de tolerancia correspondientes en el ciclo, el TNC realiza una comparación del valor nominal y el real y memoriza la diferencia en los parámetros del sistema.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. El TNC calcula los puntos de palpación según las indicaciones en el ciclo y la distancia de seguridad indicada en el dispositivo SET_UP de la tabla del sistema de palpación
- 2 A continuación el palpador se desplaza a la altura de la medición programada y ejecuta el primer proceso de palpación con avance de palpación (dispositivo F). 1. Palpación siempre en la dirección negativa del eje programado
- **3** Después el palpador se desplaza al siguiente punto de palpación y ejecuta el segundo proceso de palpación
- **4** Para finalizar el TNC hace rectroceder el palpador a la altura de seguridad y memoriza los valores reales y la desviación en los siguientes parámetros Q:

Nº de parámetro	Significado
Q156	Valor real de la longitud medida
Q157	Valor real posición eje central
Q166	Desviación de la longitud medida

Antes de la programación deberá tenerse en cuenta

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

- Ier. punto de medición del ler eje Q263 (valor absoluto): Coordenada del 1er punto de palpación en el eje principal del plano de mecanizado
- 1 punto de medición del 2º eje Q264 (absoluto): coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado
- 2º punto de medición del 1er eje Q265 (valor absoluto): Coordenada del segundo punto de palpación en el eje principal del plano de mecanizado
- 2º punto de medición del 2º eje Q266 (absoluto): coordenada del segundo punto de palpación en el eje auxiliar del plano de mecanizado

- Eje de medición Q272: Eje del plano de mecanizado en el que debe realizarse la medición:
- 1: Eje principal = eje de medida
- **2**: Eje auxiliar = eje de medida
- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- **Longitud nominal** Q311: Valor nominal de la longitud a medir
- **Cota máxima** Q288: Longitud máxima admisible
- Cota mínima Q289: Longitud mínima admisible
- Protocolo de medición Q281: fijar si el TNC debe crear un protocolo de medición:
 - 0: No realizar el protocolo de medida
 - 1: Registrar protocolo de medición: El TNC guarda de forma estándar el **fichero de protocolo**

TCHPR426.TXT en el directorio TNC:\ ab **2**: Interrumpir el desarrollo del programa y visualizar el registro de medida en la pantalla del TNC. Continuar el programa con la tecla arranque-NC

Parada del programa con error de tolerancia Q309: Determinar si el TNC debe interrumpir el programa cuando se sobrepasa la tolerancia y debe emitir un aviso de error:

0: No interrumpir la ejecución del programa, no emitir aviso de error

1: Interrumpir la ejecución del programa, emitir aviso de error

 Nº de hta. para supervisión Q330: Determinar si el TNC debe realizar la supervisión de la herramienta (véase "Supervisión de herramientas" en pág. 108)
 0: Supervisión inactiva

>0: № de hta. en la tabla de htas. TOOL.T

5 TCH PROBE 42	6 MEDIR ALMA EXTERIOR
Q263=+50	;1ER PUNTO 1ER EJE
Q264=+25	;1ER PUNTO 2º EJE
Q265=+50	;2º PUNTO 1ER EJE
Q266=+85	;2º PUNTO 2º EJE
Q272=2	;EJE DE MEDIDA
Q261=-5	;ALTURA MEDICIÓN
Q320=0	;DISTSEGURIDAD
Q260=+20	;ALTURA SEGURIDAD
Q311=45	;LONGITUD NOMINAL
Q288=45	;MEDIDA MÁX.
Q289=44.9	5;MEDIDA MÍN.
Q281=1	;PROTOCOLO DE MEDIDA
Q309=0	;PGM-STOP EN CASO DE ERROR
Q330=0	;Nº HERRAMIENTA

MEDIR COORDENADA (ciclo de palpación 427, DIN/ISO: G427)

El ciclo de palpación 427 calcula una coordenada en cualquier eje seleccionable y memoriza el valor en un parámetro del sistema. Una vez definidos los valores de tolerancia correspondientes en el ciclo, el TNC realiza una comparación del valor real-nominal y memoriza la diferencia en un parámetro del sistema.

- El TNC posiciona el palpador en avance rápido (Valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1. Para ello, el TNC desplaza el palpador según la distancia de seguridad en la dirección de desplazamiento opuesta a la determinada
- 2 A continuación el TNC posiciona el palpador en el plano de mecanizado sobre el punto de palpación introducido 1 y mide allí el valor real en el eje seleccionado
- 3 Para finalizar el TNC hace rectroceder el palpador a la altura de seguridad y memoriza la coordenada calculada en los siguientes parámetros Q:

Nº de parámetro	Significado
Q160	Coordenada medida

Antes de la programación deberá tenerse en cuenta

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

- Ier. punto de medición del 1er eje Q263 (valor absoluto): Coordenada del 1er punto de palpación en el eje principal del plano de mecanizado
- ▶ 1 punto de medición del 2º eje Q264 (absoluto): coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado
- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Eje de medición (1..3: 1=eje principal) Q272: Eje en el cual debe realizarse la medición:
- 1: Eje principal = eje de medida
- **2**: Eje auxiliar = eje de medida
- **3**: Eje palpador = eje de medición
- Dirección de desplazamiento 1 Q267: Dirección en la cual debe desplazarse el palpador hacia la pieza:
 -1: Dirección de desplazamiento negativa
 +1: Dirección de desplazamiento positiva
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza

- Protocolo de medición Q281: fijar si el TNC debe crear un protocolo de medición:
 - **0**: No realizar el protocolo de medición
 - 1: Registrar protocolo de medición: El TNC guarda de forma estándar el **fichero de protocolo**

TCHPR427.TXT en el directorio TNC:\ ab **2**: Interrumpir el desarrollo del programa y visualizar el registro de medida en la pantalla del TNC. Continuar el programa con la tecla arranque-NC

- Cota máximaQ288: valor de medición máximo admisible
- Cota mínima Q289: valor de medición mínimo admisible
- Parada del programa con error de tolerancia Q309: Determinar si el TNC debe interrumpir el programa cuando se sobrepasa la tolerancia y debe emitir un aviso de error:

0: No interrumpir la ejecución del programa, no emitir aviso de error

1: Interrumpir la ejecución del programa, emitir aviso de error

 Nº de hta. para supervisión Q330: Determinar si el TNC debe realizar la supervisión de la herramienta: (véase "Supervisión de herramientas" en pág. 108):
 0: Supervisión inactiva

>0: № de hta. en la tabla de htas. TOOL.T

5 TCH PROBE	427 MEDIR COORDENADA
Q263=+35	5 ;1ER PUNTO 1ER EJE
Q264=+45	5 ;1ER PUNTO 2º EJE
Q261=+5	;ALTURA MEDICIÓN
Q320=0	;DISTSEGURIDAD
Q272=3	;EJE DE MEDIDA
Q267=-1	;DIRECCIÓN DE DESPLAZAMIENTO
Q260=+20) ;ALTURA SEGURIDAD
Q281=1	;PROTOCOLO DE MEDIDA
Q288=5. 1	L ;MEDIDA MÁX.
Q289=4.9	95 ;MEDIDA MÍN.
Q309=0	;PGM-STOP EN CASO DE ERROR
Q330=0	;Nº HERRAMIENTA

MEDIR CIRCULO DE TALADROS (ciclo de palpación 430, DIN/ISO: G430)

Con el ciclo de palpación 430 se calcula el punto central y el diámetro de un círculo de taladros mediante la medición de tres taladros. Si se han definido los valores de tolerancia correspondientes en el ciclo, el TNC realiza una comparación del valor nominal y el real y memoriza la diferencia en los parámetros del sistema.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hasta el centro del primer taladro introducido 1.
- 2 Finalmente el palpador se desplaza a la altura de medida introducida y registra mediante cuatro palpaciones el primer centro del taladro
- **3** Después el palpador retrocede a la altura segura y posiciona sobre el centro programado del segundo taladro **2**
- 4 El TNC desplaza el palpador a la altura de medición introducida y registra mediante cuatro palpaciones el segundo centro del taladro
- **5** Después el palpador retrocede a la altura segura y se posiciona sobre el centro programado del tercer taladro **3**
- 6 El TNC desplaza el palpador a la altura de medición introducida y registra mediante cuatro palpaciones el tercer centro del taladro
- 7 Para finalizar el TNC hace rectroceder el palpador a la altura de seguridad y memoriza los valores reales y las desviaciones en los siguientes parámetros Q:

Nº de parámetro	Significado
Q151	Valor real del centro en eje principal
Q152	Valor real del centro en eje auxiliar
Q153	Valor real del diámetro del círculo de taladros
Q161	Desviación del centro en eje principal
Q162	Desviación del centro en eje auxiliar
Q163	Desviación del diámetro del círculo de taladros

Antes de la programación deberá tenerse en cuenta

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

- Centro 1er eje Q273 (valor absoluto): Centro del círculo de taladros (valor nominal) en el eje principal del plano de mecanizado
- Centro 2º eje Q274 (valor absoluto): Centro del círculo de taladros (valor nominal) en el eje auxiliar del plano de mecanizado
- Diámetro nominal Q262: Introducir el diámetro del círculo de taladros
- Ángulo 1er taladro Q291 (valor absoluto): ángulo en coordenadas polares del primer punto central del taladro en el plano de mecanizado
- Ángulo 2º taladro Q292 (valor absoluto): ángulo en coordenadas polares del segundo punto central del taladro en el plano de mecanizado
- Ángulo 3er taladro Q293 (valor absoluto): ángulo en coordenadas polares del tercer punto central del taladro en el plano de mecanizado
- Altura de la medición en el eje del palpador Q261 (valor absoluto): Coordenada del centro de la bola (=punto de contacto) en el eje de palpación, desde la cual se quiere realizar la medición
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Cota máxima Q288: máximo diámetro admisible para el círculo de taladros
- ▶ Cota mínima Q289: mínimo diámetro admisible para el círculo de taladros
- Valor tolerancia centro ler eje Q279: Desviación admisible de la posición en el eje principal del plano de mecanizado
- Valor tolerancia centro 2º eje Q280: Desviación admisible de la posición en el eje auxiliar del plano de mecanizado

Protocolo de medición Q281: fijar si el TNC debe crear un protocolo de medición:

0: No realizar el protocolo de medición
1: Registrar protocolo de medición: El TNC guarda de forma estándar el fichero de protocolo

TCHPR430.TXT en el directorio, en el que esté guardado el programa de medición

2: Interrumpir el desarrollo del programa y visualizar el registro de medida en la pantalla del TNC. Continuar el programa con la tecla arranque-NC

Parada del programa con error de tolerancia Q309: Determinar si el TNC debe interrumpir el programa cuando se sobrepasa la tolerancia y debe emitir un aviso de error:

0: No interrumpir la ejecución del programa, no emitir aviso de error

1: Interrumpir la ejecución del programa, emitir aviso de error

 Nº de hta. para supervisión Q330: Determinar si el TNC debe realizar la supervisión de la herramienta: (véase "Supervisión de herramientas" en pág. 108)
 0: Supervisión inactiva

>0: Nº de hta. en la tabla de htas. TOOL.T

Atención, aquí sólo está activada la supervisión de rotura, no la corrección automática de herramientas.

Ejemplo: Frases NC

5	TCH PROBE 43	O MEDIR CÍRCULO DE AGUJEROS
	Q273=+50	;CENTRO 1ER. EJE
	Q274=+50	;CENTRO 2º EJE
	Q262=80	;DIÁMETRO NOMINAL
	Q291=+0	;ÁNGULO 1ER TALADRO
	Q292=+90	;ÁNGULO 2º TALADRO
	Q293=+180	;ÁNGULO 3ER TALADRO
	Q261=-5	;ALTURA MEDICIÓN
	Q260=+10	;ALTURA SEGURIDAD
	Q288=80.1	;MEDIDA MÁX.
	Q289=79.9	;MEDIDA MÍN.
	Q279=0.15	;TOLERANCIA 1ER CENTRO
	Q280=0.15	;TOLERANCIA 2º CENTRO
	Q281=1	;PROTOCOLO DE MEDIDA
	Q309=0	;PGM-STOP EN CASO DE ERROR
	Q330=0	;N° HERRAMIENTA

al,

MEDIR PLANO (ciclo de palpación 431, DIN/ISO: G431)

El ciclo de palpación 431 calcula el ángulo de un plano mediante la medición de tres puntos y memoriza los valores en los parámetros del sistema.

- El TNC posiciona el palpador en avance rápido (valor de columna FMAX) y según la lógica de posicionamiento (véase "Ejecución de los ciclos de palpación" en pág. 21) hacia el punto de palpación programado 1 y mide allí el primer punto del plano. Para ello, el TNC desplaza el palpador según la distancia de seguridad en la dirección opuesta a la palpación
- 2 A continuación el palpador retrocede a la altura de seguridad, después en el plano de mecanizado al punto de palpación 2 y allí mide el valor real del segundo punto del plano
- 3 A continuación el palpador retrocede a la altura de seguridad, después en el plano de mecanizado al punto de palpación 3 y allí mide el valor real del tercer punto del plano
- 4 Para finalizar el TNC hace rectroceder el palpador a la altura de seguridad y memoriza los valores angulares calculados en los siguientes parámetros Q:

Nº de parámetro	Significado
Q158	Ángulo de proyección del eje A
Q159	Ángulo de proyección del eje B
Q170	Ángulo espacial A
Q171	Ángulo espacial B
Q172	Ángulo espacial C
Q173	Valor de medición en el eje de palpación

Antes de la programación deberá tenerse en cuenta

Antes de definir el ciclo deberá programarse una llamada a la herramienta para la definición del eje de palpación.

Para que el TNC pueda calcular los valores angulares, los tres puntos de medida no deben estar en una recta.

En los parámetros Q170 - Q172 se memorizan los ángulos espaciales que se necesitan en la función plano de mecanizado inclinado. Mediante los primeros puntos de medida se determina la dirección del eje principal al inclinar el área de mecanizado.

El tercer punto de medición determina la dirección del eje de la herramienta. Definir el tercer punto de medida en dirección a Y positivo, para que el eje de la herramienta esté correctamente situado en el sistema de coordenadas que gira en el sentido horario (ver figura).

Si se ejecuta el ciclo con el plano de mecanizado inclinado activo, entonces los ángulos espaciales se refieren al sistema de coordenadas inclinado. En estos casos seguir procesando los ángulos espaciales calculados mediante entradas incrementales en la función Inclinar plano de mecanizado. 3.3 Medición automática <mark>de</mark> piezas

- ler punto de medición del ler eje Q263 (valor absoluto): Coordenada del 1er punto de palpación en el eje principal del plano de mecanizado
- ▶ 1er punto de medición del 2º eje Q264 (valor absoluto): Coordenada del 1er punto de palpación en el eje auxiliar del plano de mecanizado
- Ier punto de medición 3º eje Q294 (valor absoluto): Coordenada del punto de palpación en el eje de palpación
- 2º punto de medición del ler eje Q265 (valor absoluto): Coordenada del segundo punto de palpación en el eje principal del plano de mecanizado
- 2º punto de medición del 2º eje Q266 (absoluto): coordenada del segundo punto de palpación en el eje auxiliar del plano de mecanizado
- 2º punto de medición del 3er. eje Q295 (valor absoluto): Coordenada del segundo punto de palpación en el eje de palpación
- ▶ 3er punto de medición del 1er eje Q296 (valor absoluto): Coordenada del tercer punto de palpación en el eje principal del plano de mecanizado
- ▶ 3er punto de medición del 2º eje Q297 (valor absoluto): coordenada del tercer punto de palpación en el eje auxiliar del plano de mecanizado
- ▶ 3er. punto de medición del 3er. eje Q298 (valor absoluto): Coordenada del tercer punto de palpación en el eje de palpación
- Distancia de seguridad Q320 (valor incremental): Distancia adicional entre el punto de medición y la bola del palpador. Q320 se suma al valor de columna SET_UP
- Altura de seguridad Q260 (valor absoluto): Coordenada en el eje del palpador, en la cual no se puede producir ninguna colisión entre el palpador y la pieza
- Protocolo de medición Q281: fijar si el TNC debe crear un protocolo de medición:

0: No realizar el protocolo de medición
1: Registrar protocolo de medición: El TNC guarda de forma estándar el fichero de protocolo

TCHPR431.TXT en el directorio TNC:\ ab **2**: Interrumpir el desarrollo del programa y visualizar el registro de medida en la pantalla del TNC. Continuar el programa con la tecla arranque-NC

5 TCH PROBE 43	31 MEDIR PLANO
Q263=+20	;1ER PUNTO 1ER EJE
Q264=+20	;1ER PUNTO 2º EJE
Q294=-10	;1ER PUNTO 3ER EJE
Q265=+50	;2° PUNTO 1ER EJE
Q266=+80	;2º PUNTO 2º EJE
Q295=+0	;2° PUNTO 3ER EJE
Q296=+90	;3ER PUNTO 1ER EJE
Q297=+35	;3ER PUNTO 2º EJE
Q298=+12	;3ER PUNTO 3ER EJE
Q320=0	;DISTSEGURIDAD
Q260=+5	;ALTURA SEGURIDAD
Q281=1	;PROTOCOLO DE MEDIDA

3.3 Medición automática <mark>de</mark> piezas

Ejemplo: Medición y mecanizado posterior de una isla rectangular

Desarrollo del programa:

- Desbaste de una isla rectangular con sobremedida 0,5

- Medición de una isla rectangular

- Acabado de la isla rectangular tendiendo en cuenta los valores de la medición

O BEGIN PGM BEAMS MM	
1 TOOL CALL O Z	Llamada a la hta. de premecanizado
2 L Z+100 RO FMAX	Retirar la herramienta
3 FN 0: Q1 = +81	Longitud de la cajera en X (cota de desbaste)
4 FN 0: Q2 = +61	Longitud de la cajera en Y (cota de desbaste)
5 CALL LBL 1	Llamada al subprograma para el mecanizado
6 L Z+100 RO FMAX	Retirar la herramienta, cambio de herramienta
7 TOOL CALL 99 Z	Llamada al palpador
8 TCH PROBE 424 MEDIR RECTÁNGULO EXT.	Medición de la cajera rectangular fresada
Q273=+50 ;CENTRO 1ER. EJE	
Q274=+50 ;CENTRO 2° EJE	
Q282=80 ;LONGITUD LADO 1	Longitud nominal en X (cota definitiva)
Q283=60 ;LONGITUD LADO 2	Longitud nominal en Y (cota definitiva)
Q261=-5 ;ALTURA MEDICIÓN	
Q320=0 ;DISTANCIA DE SEGURIDAD	
Q260=+30 ;ALTURA SEGURIDAD	
Q301=0 ;DESPLAZ. A ALTURA SEG.	
Q284=O ;MEDIDA MÁX. 1ª PÁG.	Para comprobar la tolerancia no se precisan valores de introducción
Q285=O ;MEDIDA MÍN. 1ª PÁG.	
Q286=O ;MEDIDA MÁX. 2ª PÁG.	

Q287=O ;MEDIDA MÍN. 2ª PÁG.	
Q279=0 ;TOLERANCIA 1ER CENTRO	
Q280=0 ;TOLERANCIA 2º CENTRO	
Q281=0 ;PROTOCOLO DE MEDIDA	No emitir ningún protocolo de medida
Q309=0 ;PGM-STOP EN CASO DE ERROR	No emitir ningún aviso de error
Q330=0 ;Nº HERRAMIENTA	Sin supervisión de la hta.
9 FN 2: Q1 = +Q1 - +Q164	Calcular la longitud en X en base a la desviación medida
10 FN 2: Q2 = +Q2 - +Q165	Calcular la longitud en Y en base a la desviación medida
11 L Z+100 RO FMAX	Retirar el palpador, cambio de herramienta
12 TOOL CALL 1 Z S5000	Llamada a la hta. para el acabado
13 CALL LBL 1	Llamada al subprograma para el mecanizado
14 L Z+100 R0 FMAX M2	Retirar la herramienta, final del programa
15 LBL 1	Subprograma con ciclo de mecanizado isla rectangular
16 CYCL DEF 213 ACABADO DE LA ISLA	
Q200=20 ;DISTSEGURIDAD	
Q201=-10 ;PROFUNDIDAD	
Q206=150 ;PROFUNDIDAD DE APROX. DE Avance	
Q2O2=5 ;PROFUNDIDAD DE PASO	
Q207=500 ;AVANCE FRESADO	
Q2O3=+10 ;COORD. SUPERFICIE	
Q204=20 ;2ª DIST. DE SEGURIDAD	
Q216=+50 ;CENTRO 1ER. EJE	
Q217=+50 ;CENTRO 2º EJE	
Q218=Q1 ;1ª LONGITUD LADO	Longitud en X variable para desbaste y acabado
Q219=Q2 ;2ª LONGITUD LADO	Longitud en Y variable para desbaste y acabado
Q220=0 ;RADIO DE LA ESQUINA	
Q221=0 ;SOBREMEDIDA 1ER EJE	
17 CYCL CALL M3	Llamada al ciclo
18 LBL 0	Final del subprograma
19 END PGM BEAMS MM	

Ejemplo: medir cajera rectangular, registrar resultados de medición

O BEGIN PGM NNUEVO MM	
1 TOOL CALL 1 Z	Llamada al palpador
2 L Z+100 R0 FMAX	Retirar el palpador
3 TCH PROBE 423 MEDIR RECTANGULO INTERIOR	
Q273=+50 ;CENTRO 1ER. EJE	
Q274=+40 ;CENTRO 2° EJE	
Q282=90 ;LONGITUD LADO 1	Longitud nominal en X
Q283=70 ;LONGITUD LADO 2	Longitud nominal en Y
Q261=-5 ;ALTURA MEDICIÓN	
Q320=0 ;DISTSEGURIDAD	
Q260=+20 ;ALTURA SEGURIDAD	
Q301=0 ;DESPLAZ. A ALTURA SEG.	
Q284=90.15;MEDIDA MÁX. 1ª PÁG.	Tamaño máx. en X
Q285=89.95;MEDIDA MÍN. 1ª PÁG.	Tamaño mín. en X
Q286=70.1 ;MEDIDA MÁX. 2ª PÁG.	Tamaño máx. en Y
Q287=69.9 ;MEDIDA MÍN. 2ª PÁG.	Tamaño mín. en Y
Q279=0.15 ;TOLERANCIA 1ER CENTRO	Desviación admisible de la posición en X
Q280=0.1 ;TOLERANCIA 2° CENTRO	Desviación admisible de la posición en Y
Q281=1 ;PROTOCOLO DE MEDIDA	Emitir el protocolo de medición en el fichero
Q309=0 ;PGM-STOP EN CASO DE ERROR	Cuando se sobrepase la tolerancia no emitir aviso de error
Q330=0 :Nº HERRAMIENTA	Sin supervisión de la hta.

i

4 L Z+100 RO FMAX M2 5 END PGM BSMESS MM Retirar la herramienta, final del programa

3.4 Ciclos especiales

Resumen

El TNC dispone de un ciclo para las siguientes aplicaciones especiales:

ciclo	Softkey	Página
3. MEDICION Ciclo de medición para realizar ciclos de constructor	3 PA	Pág. 144

3.4 Ciclos <mark>esp</mark>eciales

MEDIR (ciclo de palpación 3)

El funcionamiento exacto del ciclo de palpación 3 lo determina el fabricante de la máquina o un fabricante de software, para utilizar el ciclo 3 dentro de ciclos de palpación especiales.

El ciclo de palpación 3 calcula cualquier posición de la pieza en cualquier dirección de palpación. Al contrario que otros ciclos de medición, es posible introducir directamente en el ciclo 3 el recorrido de medición **ABST** y el avance de medición **F**. También el retroceso hasta alcanzar el valor de medición se consigue a través del valor introducible **MB**.

- 1 El palpador se desplaza desde la posición actual con el avance programado en la dirección de palpación determinada. La dirección de la palpación se determina mediante un ángulo polar en el ciclo
- 2 Una vez que el TNC ha registrado la posición se detiene el palpador. El TNC memoriza las coordenadas del punto central de la bola de palpación X, Y, Z en tres parámetros Q sucesivos. El TNC no realiza ninguna corrección de longitud ni de radio. El número del primer parámetro de resultados se define en el ciclo
- **3** A continuación el TNC retrocede el palpador hasta el valor en sentido contrario de la dirección de palpación, la cual se ha definido en el parámetro MB

Antes de la programación deberá tenerse en cuenta

Los parámetros de máquina activos en otros ciclos de medición **DIST** (recorrido de desplazamiento máximo al punto de palpación) y \mathbf{F} (avance de palpación) no son efectivos en el ciclo de palpación 3.

Tener en cuenta que, básicamente, el TNC siempre describe 4 parámetros Q consecutivos.

En caso de que el TNC no pudiera calcular ningún punto de palpación válido, el programa continuaría ejecutando sin aviso de error. En este caso el TNC asigna el valor -1 al 4º parámetro de resultados, de manera que él mismo pueda tratar el error correspondientemente.

El TNC retrocede el palpador como máximo el recorrido de retroceso MB, no obstante, no desde el punto inicial de la medición. De esta forma no puede haber ninguna colisión durante el retroceso.

Con la función **FN17: SYSWRITE ID 990 NR 6** se puede determinar, si el ciclo debe actuar sobre la entrada del palpador X12 o X13.

- ▶ Nº parámetro para el resultado: Introducir el número de parámetro Q al que el TNC debe asignar el valor de la primera coordenada calculada (X). Los valores Y y Z figuran en los parámetros Q siguientes
- Eje de palpación: Introducir el eje en cuya dirección deba realizarse la palpación, confirmar con la tecla ENT
- Ángulo de palpación: ángulo referido al eje de palpación definido, según el cual se desplaza el palpador, confirmar con la tecla ENT
- Recorrido de medición máximo: introducir el recorrido que debe realizar el palpador desde el punto de partida, confirmar con ENT.
- Medir avance: Introducir el avance de medición en mm/min
- Máximo recorrido de retroceso: recorrido opuesto a la dirección de palpación una vez el vástago ha sido retirado. El TNC retrocede el palpador como máximo hasta el punto inicial, de manera que no pueda producirse ninguna colisión
- SISTEMA DE REFERENCIA (0=REAL/1=REF): determinar si el resultado de medición se debe guardar en el sistema de coordenadas actual (REAL, es decir, puede desplazarse o girarse) o referido al sistema de coordenadas de la máquina (REF)
- Modo de error (0=0FF/1=0N): determinar si el TNC debe emitir un aviso de error al principio del ciclo con el vástago deflexionado (0) o no (1). Una vez seleccionado el modo 1, el TNC memoriza en el 4º parámetro de resultado el valor 2.0 y continúa ejecutando el ciclo
- Finalizar la introducción: Pulsar la tecla ENT

Ejemplo: Frases NC

4 TCH PROBE 3.0 MEDIR	
5 TCH PROBE 3.1 Q1	
6 TCH PROBE 3.2 X ÁNGULO: +15	
7 TCH PROBE 3.3 DIST. +10 F100 MB1 SISTEM/ DE REFERENCIA:0	
8 TCH PROBE 3.4 ERRORMODE1	

Ciclos de palpación para la medición automática de herramientas

4.1 Medición de herramientas con el palpador de mesa TT

Resumen

El fabricante de la máquina prepara la máquina y el TNC para poder emplear el palpador TT.

Es probable que su máquina no disponga de todos los ciclos y funciones que se describen aquí. Rogamos consulten el manual de su máquina.

Con el palpador de mesa y los ciclos de medición de herramientas del TNC se miden herramientas automáticamente: los valores de corrección para la longitud y el radio se memorizan en el almacén central de htas. TOOL.T y se calculan automáticamente al final del ciclo de palpación. Se dispone de los siguientes tipos de mediciones:

- Medición de herramientas con la herramienta parada
- Medición de herramientas con la herramienta girando
- Medición individual de cuchillas

1

Ajuste de parámetros de máquina

Antes de trabajar con los ciclos TT, comprobar todos los parámetros de máquina, que están definidos en **ProbSettings > CfgToolMeasurement** y **CfgTTRoundStylus**.

El TNC emplea para la medición con cabezal parado el avance de palpación del parámetro de máquina **probingFeed**.

En la medición con herramienta girando, el TNC calcula automáticamente las revoluciones del cabezal y el avance de palpación.

Las revoluciones del cabezal se calculan de la siguiente forma:

n = maxPeriphSpeedMeas / (r • 0,0063) con

n	Revoluciones [rev/min]
maxPeriphSpeedMeas	Velocidad máxima admisible [m/min]
R	Radio activo de la herramienta [mm]

El avance de palpación se calcula de la siguiente forma:

```
v = tolerancia de medición • n, siendo
```

v	Avance palpación (mm/min)
Tolerancia de	Tolerancia de medición (mm), dependiente de
medición	maxPeriphSpeedMeas
n	Revoluciones [1/min]

Con probingFeedCalc se calcula el avance de palpación:

probingFeedCalc = ConstantTolerance:

La tolerancia de medición permanece constante independientemente del radio de la herramienta. Cuando las htas. son demasiado grandes debe reducirse el avance de palpación a cero. Este efecto se observa tan pronto como se selecciona la máxima velocidad de recorrido admisible (maxPeriphSpeedMeas) y la tolerancia admisible (measureTolerance1).

probingFeedCalc = ConstantTolerance:

La tolerancia de medición se modifica con el radio de herramienta activo. De esta forma se asegura un avance de palpación suficiente para radios de herramienta muy grandes. El TNC modifica la tolerancia de medición según la tabla siguiente:

Radio de la herramienta	Tolerancia de medición
hasta 30 mm	measureTolerance1
30 hasta 60 mm	2 • measureTolerance1
60 hasta 90 mm	3 • measureTolerance1
90 hasta 120 mm	4 • measureTolerance1

probingFeedCalc = ConstantTolerance:

El avance de palpación permanece constante, el error de medición aumenta de forma lineal si el radio de la herramienta se ha hecho mayor:

Tolerancia de medición = (r. measureTolerance1)/5 mm) con

R	Radio activo de la herramienta [mm]
measureTolerance1	Error de medida máximo permitido

Valores en la tabla de herramientas TOOL.T

Abrev.	Introducciones	Diálogo
CUT	Número de cuchillas de la herramienta (máx. 20 cuchillas)	¿Número de cuchillas?
LTOL	Desviación admisible de la longitud L de la herramienta para reconocer un desgaste. Si se sobrepasa el valor introducido, el TNC bloquea la herramienta (estado L). Margen de introducción: 0 a 0,9999 mm	Tolerancia de desgaste: ¿Longitud?
RTOL	Desviación admisible del radio R de la herramienta para reconocer un desgaste. Si se sobrepasa el valor introducido, el TNC bloquea la herramienta (estado L). Margen de introducción: 0 a 0,9999 mm	Tolerancia de desgaste: ¿Radio?
DIRECT.	Dirección de corte de la herramienta para la medición con la herramienta girando	¿Dirección de corte (M3 = -) ?
R-OFFS).	Medición de la longitud: Desvíación de la herramienta entre el centro del vástago y el centro de la herramienta. Ajuste: ningun valor registrado (desviación = radio de herramienta)	¿Desvío de la herramienta radio ?
L-OFFS	Medición del radio: Desvío adicional de la herramienta en relación con offsetToolAxis entre la superficie del vástago y la arista inferior de la herramienta. Ajuste previo : 0	¿Desvío de la herramienta longitud ?
LBREAK	Desvío admisible de la longitud L de la herramienta para llegar a la rotura. Si se sobrepasa el valor introducido, el TNC bloquea la herramienta (estado L). Margen de introducción: 0 a 0,9999 mm	Tolerancia de rotura: ¿Longitud ?
RBREAK	Desvío admisible del radio R de la herramienta para llegar a la rotura. Si se sobrepasa el valor introducido, el TNC bloquea la herramienta (Estado L). Margen de introducción: 0 a 0,9999 mm	Tolerancia de rotura: ¿Radio?

i

Ejemplos de valores para modelos normales de herramienta

Tipo de herramienta	CUT	R-OFFS).	L-OFFS
Taladro	– (sin función)	0 (no es necesaria la desviación, ya que la punta de la herramienta debe ser medida)	
Fresado de cilindro con diámetro<19 mm	4 (4 cuchillas)	0 (no es necesaria la desviación , ya que el diámetro de la herramienta es menor que el diámetro del disco del TT)	0 (no es necesaria la desviación adicional en la calibración del radio. La desviación se usa de offsetToolAxis)
Fresado de cilindro con diámetro>19 mm	4 (4 cuchillas)	R (es necesaria la desviación , ya que el diámetro de la herramienta es mayor que el diámetro del disco del TT)	0 (no es necesaria la desviación adicional en la calibración del radio. La desviación se usa de offsetToolAxis)
Fresa esférica	4 (4 cuchillas)	0 (no es necesaria la desviación, ya que el polo sur de la esfera debe ser medido)	5 (definir siempre el radio de la herramienta como desviación para que el diámetro no sea medido en el radio)

i

4.2 Ciclos disponibles

Resumen

Los ciclos de palpación se programan en el modo de funcionamiento Memorizar/editar programa, mediante la tecla TOUCH PROBE. Se dispone de los siguientes ciclos:

Ciclo	Formato antiguo	Formato nuevo
Calibración del TT	30 38 CAL.	480 20 20 CAL.
Medir longitud de herramienta	31	481
Medición del radio de la herramienta	32	482
Medición de la longitud y el radio de la herramienta	33	483

Los ciclos de medición sólo trabajan cuando está activado el almacén central de herramientas TOOL.T.

Antes de trabajar con los ciclos de medición deberán introducirse todos los datos precisos para la medición en el almacén central de herramientas y haber llamado a la herramienta que se quiere medir con TOOL CALL.

Diferencias entre los ciclos 31 a 33 y 481 a 483

El número de funciones y el desarrollo de los ciclos es absolutamente idéntico. Entre los ciclos 31 a 33 y 481 a 483 existen sólo las dos diferencias siguientes:

- Los ciclos 481 a 483 están disponibles también en DIN/ISO en G481 a G483
- En vez de un parámetro de libre elección para el estado de la medición los nuevos ciclos emplean el parámetro fijo Q199.

T

Calibración del TT(ciclo de palpación 30 o 480, DIN/ISO: G480)

Su funcionamiento lo determina el constructor de la máquina. Rogamos consulten el manual de su máquina.

Antes de calibrar deberá introducirse el radio y la longitud exactos de la herramienta de calibración en la tabla de herramientas TOOL.T.

En los parámetros de máquina **centerPos** > **[0]** hasta **[2]** la posición del TT debe estar fijado en el área de funcionamiento de la máquina.

Al modificar uno de los parámetros de máquina **centerPos** > **[0]** a **[2]** hay que calibrar de nuevo el palpador.

El TT se calibra con el ciclo de medición TCH PROBE 30 o TCH PROBE 480 (Véase también "Diferencias entre los ciclos 31 a 33 y 481 a 483" en pág. 152). El proceso de calibración se desarrolla de forma automática. El TNC también calcula automáticamente la desviación media de la herramienta de calibración. Para ello el TNC gira el cabezal 180°, en la mitad del ciclo de calibración.

Como herramienta de calibración se utiliza una pieza completamente cilíndrica, p.ej. un macho cilíndrico. El TNC memoriza los valores de calibración y los tiene en cuenta para mediciones de herramienta posteriores.

Altura de seguridad: Introducir la posición en el eje de la herramienta, en la cual queda excluida una colisión con alguna pieza o utillaje. La altura de seguridad se refiere al punto de referencia activo de la pieza. Si la altura de seguridad es tan pequeña que el vértice de la herramienta está por debajo de la arista superior del disco, el TNC posiciona la herramienta de calibración automáticamente sobre el disco (zona de seguridada a partir de safetyDistStylus)

Ejemplo: Frases NC formato antiguo

6 TOOL CALL	1 Z	
7 TCH PROBE	30.0 CALIBRAR TT	
8 TCH PROBE	30.1 ALTURA: +90	

Ejemplo: Frases NC formato nuevo

6 TOOL CALL 1 Z	
7 TCH PROBE 480	CALIBRAR TT
Q260=+100	;ALTURA SEGURIDAD

Medir longitud de herramienta (ciclo de palpación 31 o 481, DIN/ISO: G481)

Antes de medir herramientas por primera vez, se introducen en la tabla de herramientas TOOL.T el radio y la longitud aproximados, el número de cuhillas y la dirección de corte de la herramienta correspondiente.

Para la medición de la longitud de la herramienta se programa el ciclo de medición TCH PROBE 31 o TCH PROBE 480 (Véase también "Diferencias entre los ciclos 31 a 33 y 481 a 483" en pág. 152). A través de parámetros de máquina se puede determinar la longitud de la herramienta de tres formas diferentes:

- Si el diámetro de la herramienta es mayor que el diámetro de la superficie de medida del TT, se mide con herramienta girando
- Si el diámetro de la herramienta es menor que el diámetro del la superficie de medición del TT o si se determina la longitud de taladros o del fresado de radio, medir con herramienta parada
- Si el diámetro de la herramienta es mayor que el diámetro de la superficie de medida del TT, llevar a cabo una medición de corte individual con herramienta parada

Proceso de medición "Medición con herramienta girando"

Para determinar el corte más largo la herramienta se sustituye al punto medio del sistema de palpación y se desplaza rotando a la superficie de medición del TT. La desviación se programa en la tabla de htas. debajo de Desvío radio herramienta (TT: **R-OFFS**).

Proceso de "Medición con la herramienta parada" (p.ej. para taladro)

La herramienta de medición se desplaza centrada mediante la superficie de medición. A continuación se desplaza con cabezal vertical a la superficie de medición del TT. Para esta medición se introduce "0" en el desvío del radio de la herramienta (**R-OFFS**) en la tabla de herramientas.

Proceso de medición "Medición de cortes individuales"

El TNC posiciona la herramienta a medir a un lado de la superficie del palpador. La superficie frontal de la herramienta se encuentra por debajo de la superficie del palpador tal como se determina en **offsetToolAxis**. En la tabla de herramientas, en desvío de la longitud de la herramienta (**L-OFFS**) se puede determinar una desviación adicional. El TNC palpa de forma radial con la herramienta girando para determinar el ángulo inicial en la medición individual de cuchillas. A continuación se mide la longitud de todos los cortes modificando la orientación del cabezal. Para esta medición se programa MEDICIÓN DE CUCHILLAS en el CICLO TCH PROBE 31 = 1.

Q	h

Se puede realizar una medición individual de cuchillas para herramientas con hasta 20 cuchillas.

Definición del ciclo

- Medir herramienta=0 / comprobar=1: Determinar si la herramienta se mide por primera vez o si se desea comprobar una herramienta ya medida. En la primera medición el TNC sobreescribe la longitud L de la herramienta en el almacén central de herramientas TOOL.T y fija el valor delta DL = 0.Si se comprueba una herramienta, se compara la longitud medida con la longitud L de la herramienta del TOOL.T. El TNC calcula la desviación con el signo correcto y lo introduce como valor delta DL en TOOL.T. Además está también disponible la desviación en el parámetro Q115. Cuando el valor delta es mayor al de la tolerancia de desgaste o rotura admisible para la longitud de la herramienta, el TNC bloquea dicha herramienta (estado L en TOOL.T)
- inº de parámetro para resultado?: Número de parámetro, en el cual el TNC memoriza el estado de la medición:

0,0: herramienta dentro de la tolerancia

1,0: Herramienta desgastada (LTOL sobrepasado)
2,0: La herramienta está rota (LBREAK sobrepasado) Si no se desea seguir procesando el resultado de la medición dentro del programa, se contesta a la pregunta del diálogo con NO ENT

- Altura de seguridad: Introducir la posición en el eje de la herramienta, en la cual queda excluida una colisión con alguna pieza o utillaje. La altura de seguridad se refiere al punto de referencia activo de la pieza. Si la altura de seguridad es tan pequeña que el vértice de la herramienta está por debajo de la arista superior del disco, el TNC posiciona la herramienta de calibración automáticamente sobre el disco (zona de seguridada a partir de safetyDistStylus)
- Medición de cuchillas 0=No / 1=Sí: determinar si se debe realizar una medición individual de cuchillas (máximo 20 cuchillas)

Ejemplo: Medición inicial con herramienta girando: formato antiguo

6 TOOL CALL 12 Z
7 TCH PROBE 31.0 LONGITUD DE HERRAMIENTA
8 TCH PROBE 31.1 VERIFICAR: 0
9 TCH PROBE 31.2 ALTURA: +120
10 TCH PROBE 31.3 MEDICIÓN DE CUCHILLAS: O

Ejemplo: Comprobación con medición individual de cuchillas, estado memorizado en Ω5; formato antiguo

6 TOOL CALL 12 Z
7 TCH PROBE 31.0 LONGITUD DE HERRAMIENTA
8 TCH PROBE 31.1 VERIFICAR: 1 Q5
9 TCH PROBE 31.2 ALTURA: +120
10 TCH PROBE 31.3 MEDICIÓN DE CUCHILLAS: 1

Ejemplo: Frases NC; formato nuevo

6 TOOL CALL 12 Z
7 TCH PROBE 481 LONGITUD DE HERRAMIENTA
Q340=1 ;VERIFICAR
Q260=+100 ;ALTURA SEGURIDAD
Q341=1 ;MEDICIÓN DE CUCHILLAS

Medir radio de la herramienta (ciclo de palpación 32 o 482, DIN/ISO: G482)

卧

Antes de medir herramientas por primera vez, se introducen en la tabla de herramientas TOOL.T el radio y la longitud aproximados, el número de cuchillas y la dirección de corte de la herramienta correspondiente.

Para la medición del radio de la herramienta se programa el ciclo de medición TCH PROBE 32 o TCH PROBE 482 (Véase también "Diferencias entre los ciclos 31 a 33 y 481 a 483" en pág. 152). Mediante parámetros de introducción se puede determinar el radio de la herramienta de dos formas:

- Medición con la herramienta girando
- Medición con la herramienta girando y a continuación medición individual de cuchillas

Las herramientas en forma de cilindro con superficie de diamante se pueden fijar con un cabezal vertical. Para ello es necesario definir la cantidad de cortes en la tabla de herramientas CUT con 0 y ajustar el parámetro de máquina **CfgToolMeasurement**. Rogamos consulten el manual de su máquina.

Proceso de medición

El TNC posiciona la herramienta a medir a un lado de la superficie del palpador. La superficie frontal de la fresa se encuentra ahora debajo de la superficie del palpador, tal y como se determina en **offsetToolAxis**. El TNC palpa de forma radial con la herramienta girando. Si además se quiere ejecutar la medición individual de cuchillas, se miden los radios de todas las cuchillas con la orientación del cabezal.

Definición del ciclo

- Medir herramienta=0 / comprobar=1: Determinar si la herramienta se mide por primera vez o si se desea comprobar una herramienta ya medida. En la primera medición el TNC sobreescribe el radio R de la herramienta en el almacén central de herramientas TOOL.T y fija el valor delta DR = 0. Cuando se comprueba una herramienta, se compara el radio medido con el radio de la herramienta en TOOL.T. El TNC calcula la desviación con el signo correcto y lo introduce como valor delta DR en TOOL.T. Además está también disponible la desviación en el parámetro Q116. Cuando el valor delta es mayor al de la tolerancia de desgaste o rotura admisible para el radio de la herramienta, el TNC bloquea dicha herramienta (estado L en TOOL.T)
- inº de parámetro para resultado?: Número de parámetro, en el cual el TNC memoriza el estado de la medición:

0,0: herramienta dentro de la tolerancia

- 1,0: Herramienta desgastada (RTOL sobrepasado)
 2,0: La herramienta está rota (RBREAK sobrepasado) Si no se desea seguir procesando el resultado de la medición dentro del programa, se contesta a la pregunta del diálogo con NO ENT
- Altura de seguridad: Introducir la posición en el eje de la herramienta, en la cual queda excluida una colisión con alguna pieza o utillaje. La altura de seguridad se refiere al punto de referencia activo de la pieza. Si la altura de seguridad es tan pequeña que el vértice de la herramienta está por debajo de la superficie del disco, el TNC posiciona la herramienta de calibración automáticamente sobre el disco (zona de seguridada a partir de safetyDistStylus)
- Medición de cuchillas 0=No / 1=Sí: determinar si se debe realizar adicionalmente una medición individual de cuchillas (máximo 20 cuchillas mesurables)

Ejemplo: Medición inicial con herramienta girando: formato antiguo

6 TOOL CALL 12 Z
7 TCH PROBE 32.0 RADIO DE HERRAMIENTA
8 TCH PROBE 32.1 VERIFICAR: 0
9 TCH PROBE 32.2 ALTURA: +120
10 TCH PROBE 32.3 MEDICIÓN DE CUCHILLAS: 0

Ejemplo: Comprobación con medición individual de cuchillas, estado memorizado en Q5; formato antiguo

6 TOOL CALL 12 Z
7 TCH PROBE 32.0 RADIO DE HERRAMIENTA
8 TCH PROBE 32.1 VERIFICAR: 1 Q5
9 TCH PROBE 32.2 ALTURA: +120
10 TCH PROBE 32.3 MEDICIÓN DE CUCHILLAS: 1

Ejemplo: Frases NC; formato nuevo

6 TOOL CALL 12 2	2
7 TCH PROBE 482	RADIO DE HERRAMIENTA
Q340=1	;VERIFICAR
Q260=+100	;ALTURA SEGURIDAD
Q341=1	;MEDICIÓN DE CUCHILLAS

Medir herramienta por completo (ciclo de palpación 33 o 483, DIN/ISO: G483)

Antes de medir herramientas por primera vez, se introducen en la tabla de herramientas TOOL.T el radio y la longitud aproximados, el número de cuchillas y la dirección de corte de la herramienta correspondiente.

Para medir completamente la herramienta (longitud y radio), se programa el ciclo de medición TCH PROBE 33 o TCH PROBE 482 (Véase también "Diferencias entre los ciclos 31 a 33 y 481 a 483" en pág. 152). El ciclo es especialmente apropiado para la primera medición de herramientas, ya que si se compara con la medición individual de longitud y radio, se ahorra mucho tiempo. Mediante parámetros de introducción se pueden medir herramientas de dos formas:

- Medición con la herramienta girando
- Medición con la herramienta girando y a continuación medición individual de cuchillas

Las herramientas en forma de cilindro con superficie de diamante se pueden fijar con un cabezal vertical. Para ello es necesario definir la cantidad de cortes en la tabla de herramientas CUT con 0 y ajustar el parámetro de máquina **CfgToolMeasurement**. Rogamos consulten el manual de su máquina.

Proceso de medición

El TNC mide la herramienta según un proceso programado fijo. Primero se mide el radio de la herramienta y a continuación la longitud. El proceso de medición se corresponde con el proceso del ciclo 31 a partir de los ciclos de medición 31 y 32.

Definición del ciclo

- Medir herramienta=0 / comprobar=1: Determinar si la herramienta se mide por primera vez o si se desea comprobar una herramienta ya medida. En la primera medición el TNC sobreescribe el radio R y la longitud L de la herramienta en el almacén central de herramientas TOOL.T y fija los valores delta DR y DL = 0.En el caso de comprobar una herramienta, se comparan los datos de la herramienta medidos con los datos de la herramienta de TOOL.T. El TNC calcula la desviación con el signo correcto y lo introduce como valores delta DR y DL en TOOL.T. Además las desviaciones también están disponibles en los parámetros de máguina Q115 y Q116. Cuando uno de los valores delta es mayor al de la tolerancia de desgaste o de rotura admisible, el TNC bloquea dicha herramienta (estado L en TOOL.T)
- inº de parámetro para resultado?: Número de parámetro, en el cual el TNC memoriza el estado de la medición:
 - 0,0: herramienta dentro de la tolerancia
 - **1,0**: Herramienta desgastada (LTOL o/y RTOL sobrepasado)

2,0: La herramienta está rota (**LBREAK** o/y **RBREAK** sobrepasado) Si no se desea seguir procesando el resultado de la medición dentro del programa, se contesta a la pregunta del diálogo con NO ENT

- Altura de seguridad: Introducir la posición en el eje de la herramienta, en la cual queda excluida una colisión con alguna pieza o utillaje. La altura de seguridad se refiere al punto de referencia activo de la pieza. Si la altura de seguridad es tan pequeña que el vértice de la herramienta está por debajo de lasuperficie del disco, el TNC posiciona la herramienta de calibración automáticamente sobre el disco (zona de seguridada a partir de safetyDistStylus)
- Medición de cuchillas 0=No / 1=Sí: determinar si se debe realizar adicionalmente una medición individual de cuchillas (máximo 20 cuchillas mesurables)

Ejemplo: Medición inicial con herramienta girando: formato antiguo

6 TOOL CALL 12 Z
7 TCH PROBE 33.0 MEDIR HERRAMIENTA
8 TCH PROBE 33.1 VERIFICAR: 0
9 TCH PROBE 33.2 ALTURA: +120
10 TCH PROBE 33.3 MEDICIÓN DE CUCHILLAS: 0

Ejemplo: Comprobación con medición individual de cuchillas, estado memorizado en Q5; formato antiguo

6 TOOL CALL 12 Z
7 TCH PROBE 33.0 MEDIR HERRAMIENTA
8 TCH PROBE 33.1 VERIFICAR: 1 Q5
9 TCH PROBE 33.2 ALTURA: +120
10 TCH PROBE 33.3 MEDICIÓN DE CUCHILLAS: 1

Ejemplo: Frases NC; formato nuevo

6 TOOL CALL 12 2	2
7 TCH PROBE 483	MEDIR HERRAMIENTA
Q340=1	;VERIFICAR
Q260=+100	;ALTURA SEGURIDAD
Q341=1	;MEDICIÓN DE CUCHILLAS

A

Avance de palpación ... 20

С

Calibrar palpadores 3D digitales ... 29 Ciclos de palpación Modo de funcionamiento Manual ... 26 para el funcionamiento automático ... 18 Compensación de la inclinación de la pieza a través de la medición de dos puntos de una recta ... 32, 44 mediante dos islas circulares ... 49 mediante dos taladros ... 46 mediante un eje basculante ... 52, 57 Compensar la inclinación de la pieza Corrección de la herramienta ... 108

D

Datos del sistema de palpación ... 23

Ε

Escribir los valores de palpación en la tabla de presets ... 28 Escribir los valores de palpación en la tabla de puntos cero ... 27 Estado de la medición ... 107

F

Fijar automáticamente el punto de referencia ... 61 Cebtro de un círculo de taladros ... 91 Centro de 4 taladros ... 96 Centro de la ranura ... 65 Centro de una cajera circular (taladro) ... 77 Centro de una caiera rectangular ... 71 Centro de una isla circular ... 81 Centro de una isla rectangular ... 74 Centro del alma ... 68 en cualquier eje Achse ... 99 en el eje de palpación ... 94 Esquina exterior ... 85 Esquina interior ... 88

F

Fijar el punto de referencia manualmente en cualquier eje Achse ... 34 Esquina como punto de referencia ... 35 Punto central del círculo como punto de referencia ... 36 Función FCL ... 4

G

Giro básico fijar directamente ... 56 realizar durante la ejecución del programa ... 42 Grabar los resultados de la medición ... 106 Guardar el punto de referencia en la tabla de presets ... 64 en la tabla de puntos cero ... 64

L

Lógica de posicionamiento ... 21

Μ

Margen de tolerancia ... 20 Medición automática de herramientas, véase medición de herramientas Medición automática de htas. ... 150 Medición de coordenadas individuales ... 130 Medición de herramientas ... 150 Calibración del TT ... 153 Longitud de la herramienta ... 154 Medir por completo ... 159 Parámetros de máguina ... 149 Radio de la herramienta ... 157 Resumen ... 152 Medición de la anchura de la ranura ... 126 Medición de la anchura interior ... 126 Medición de piezas ... 37 Medición de un ángulo ... 112 Medición de una isla rectangular ... 120 Medición del interior de un círculo ... 114

Μ

Medición múltiple ... 20 Medir cajera rectangular ... 123 Medir círculo de taladros ... 133 Medir el ángulo de un plano ... 136 Medir el ángulo del plano ... 136 Medir el exterior de un círculo ... 117 Medir el exterior de una isla ... 128 Medir la anchura exterior ... 128 Medir un taladro ... 114

Ν

Nivel de desarrollo ... 4

Ρ

Palpadores 3D ... 16 Parámetro del resultado ... 64, 107 Parámetros de máquina para el palpador 3D ... 19

R

Registrar el giro básico en el modo de funcionamiento Manual ... 32 Resultados de la medición en parámetros Ω ... 64, 107

S

se miden las piezas mecanizadas ... 105 Supervisión de herramientas ... 108 Supervisión de la tolerancia ... 108

Т

Tabla de palpación ... 22
Tabla de presets ... 64

Aceptar resultados de la

palpación ... 28

Tabla de puntos cero

Aceptar resultados de la

palpación ... 27

Tener en cuenta el giro básico ... 16

Tabla resumen

Ciclos de palpación

Número de ciclo	Dibujo del ciclo	DEF activo	CALL activo	Página
0	Plano de referencia			Pág. 110
1	Punto de referencia polar			Pág. 111
3	Medir			Pág. 144
30	Calibración del TT			Pág. 153
31	Medir/verificar la longitud de la herramienta			Pág. 154
32	Medir/verificar el radio de la herramienta			Pág. 157
33	Medir/verificar la longitud y el radio de la herramienta			Pág. 159
400	Giro básico mediante dos puntos			Pág. 44
401	Giro básico mediante dos taladros			Pág. 46
402	Giro básico mediante dos islas			Pág. 49
403	Compensar la inclinación con el eje giratorio			Pág. 52
404	Fijación del giro básico			Pág. 56
405	Compensación de la inclinación con el eje C			Pág. 57
408	Fijar punto de referencia centro ranura (función FCL 3)			Pág. 65
409	Fijar punto de referencia centro isla (función FCL 3)			Pág. 68
410	Fijar punto de referencia rectángulo interior			Pág. 71
411	Fijar punto de referencia rectángulo exterior			Pág. 74
412	Fijar punto de referencia círculo interior (taladro)			Pág. 77
413	Fijar punto de referencia círculo exterior (islas)			Pág. 81
414	Fijar punto de referencia esquina exterior			Pág. 85
415	Fijar punto de referencia esquina interior			Pág. 88
416	Fijar punto de referencia centro círculo de taladros			Pág. 91
417	Fijar punto de referenica eje de palpador			Pág. 94
418	Fijar punto de referencia en el centro de cuatro taladros			Pág. 96
419	Fijar punto de referencia ejes individuales seleccionables			Pág. 99
420	Medir ángulo de la pieza			Pág. 112

Número de ciclo	Dibujo del ciclo	DEF activo	CALL activo	Página
421	Medir pieza círculo interior (taladro)			Pág. 114
422	Medir pieza círculo exterior (islas)			Pág. 117
423	Medir pieza rectángulo interior			Pág. 120
424	Medir pieza rectángulo exterior			Pág. 123
425	Medir anchura interior de la pieza (ranura)			Pág. 126
426	Medir anchura exterior de la pieza (isla)			Pág. 128
427	Medir pieza ejes individuales seleccionables (coordenadas)			Pág. 130
430	Medir pieza círculo de taladros			Pág. 133
431	Medir plano de la pieza			Pág. 136
480	Calibración del TT			Pág. 153
481	Medir/verificar la longitud de la herramienta			Pág. 154
482	Medir/verificar el radio de la herramienta			Pág. 157
483	Medir/verificar la longitud y el radio de la herramienta			Pág. 159

HEIDENHAIN

 DR. JOHANNES HEIDENHAIN GmbH

 Dr.-Johannes-Heidenhain-Straße 5

 83301 Traunreut, Germany

 [®] +49 (8669) 31-0

 ^EMail: info@heidenhain.de

 Technical support

 ^EMail: +49 (8669) 32-1000

 Measuring systems

 [®] +49 (8669) 31-3104

 E-Mail: service.ms-support@heidenhain.de

1
3
2
5
le

www.heidenhain.de

Palpadores 3D de HEIDENHAIN

le ayudan a reducir tiempos secundarios:

Por ejemplo

- ajuste de piezas
- fijación del punto de referencia
- medición de piezas
- digitalización de piezas 3D

con los palpadores de piezas **TS 220** con cable **TS 640** con transmisión por infrarrojos

- medición de herramientas
- supervisión del desgaste
- registro de rotura de herramienta

con el palpador de herramientas **TT 140**