

HEIDENHAIN

Modo de Empleo Diálogo-en lenguaje conversacional

TNC 320

Software NC 340 551-02

Teclas de la pantalla

Desplazar el cursor y seleccionar directamente frases, ciclos y funciones parámetricas

Desplazar el cursor

Seleccionar directamente frases, ciclos y funciones paramétricas, abrir el teclado de pantalla o el menú Drop-Down

Potenciómetros de override para avance/revoluciones del cabezal

Programación de los movimientos de trayectoria

Campo de diálogo o superficie de conmutación siguiente/anterior

(1	HEIDENHAIN					e
	N				1	
	Manual	operation		Pr	ogramming	
					s I	
	X	-9.997	T001	10		
	Y	+0.000	z	L +10.0		
	+ Z	-0.562	11 629	R +1.0 R2 +0.0	000 S	
			DL TAB +0.0000	DR DR2	2 мз 🔹	
			PGM +0.0000	+0.0000 +0.0	000 S.T.	
			CUR.TIME 0:06	TIME1 TIME 0:00 0	2 :00 5	
	NOML.	T 10 Z S	0 TOOL CALL	+10	M19	
	F 0mm/m	in Our 43.5% M5		+0		
		500%	SENMJ			
	м	S F	TOUCH SET	INCRE- MENT	TOOL	
0			PROBE DATUM	OFF ON	TABLE	
	·					
	PGM	EAR	APPR FK	で しょう 「	X 7 8 9	
			CR RND CT2			
100		neur		Ψ L		
50	150 [7]	\Rightarrow	TOUCH PROBE CYCL DEF CYCL CALL	LBL LBL CALL		
	O 5%	• •	STOP TOOL TOOL CALL	PGM CALL	0 · 7/+	
					- Q	
100)				CE 🖭 P I	
50	∐ 150 ₩ F%					
				•		
W						

Modelo de TNC, software y funciones

Este Modo de Empleo describe las funciones disponibles en el TNC a partir de los siguientes números de software NC.

Modelo de TNC	Número de software NC			
TNC 320	340 551-xx			

El fabricante de la máquina adapta las prestaciones del TNC a la máquina mediante parámetros de máquina. Por ello, en este manual se describen también funciones que no están disponibles en todos los TNC.

Las funciones del TNC que no están disponibles en todas las máquinas son, por ejemplo:

- Función de palpación para el palpador 3D
- Roscado rígido

Reentrada al contorno después de una interrupción

Para ello el TNC 320 dispone de opciones de software, que deben ser habilitadas por Ud. o por el fabricante de su máquina.

Opción de software

Eje adicional para 4 ejes y cabezal no controlado

Eje adicional para 5 ejes y cabezal no controlado

Interpolación superficie cilíndrica (ciclos 27, 28 y 29)

Rogamos se pongan en contacto con el constructor de la máquina para conocer el funcionamiento de la misma.

Muchos constructores de máquina y HEIDENHAIN ofrecen cursillos de programación para los TNC. Se recomienda tomar parte en estos cursillos, para aprender las diversas funciones del TNC.

Lugar de utilización previsto

El TNC pertenece a la clase A según la norma EN 55022 y se utiliza principalmente en zonas industriales.

5

Contenido

Introducción

Funcionamiento manual y ajuste

Posicionamiento manual (MDI)

Programación: Nociones básicas, gestión de ficheros, ayudas de programación

Programación: Herramientas

Programación: Programar contornos

Programación: Funciones auxiliares

Programación: Ciclos

Programación: Subprogramas y repeticiones parciales de un programa

Programación: Parámetros Q

Test y ejecución de programas

Funciones MOD

Ciclos de palpación

Informaciones técnicas

1.1 EI TNC 320 28
Programación: Diálogo en lenguaje conversacional HEIDENHAIN 28
Compatibilidad 28
1.2 Pantalla y teclado 29
Pantalla 29
Determinar la subdivisión de la pantalla 29
Teclado 30
1.3 Modos de funcionamiento 31
Funcionamiento Manual y Volante El 31
Posicionamiento manual (MDI) 31
Memorizar/Editar programa 31
Test del programa 32
Ejecución continua del programa y ejecución del programa frase a frase 32
1.4 Visualización de estado 33
Visualización de estados "general" 33
Visualizaciones de estado adicionales 34
1.5 Accesorios: Palpadores 3D y volantes electrónicos de HEIDENHAIN 37
Palpadores 3D 37
Volantes electrónicos HR 37

2 Funcionamiento manual y ajuste 39

2.1 Conexión, desconexión 40
Conexión 40
Desconexión 41
2.2 Desplazamiento de los ejes de la máquina 42
Indicaciones 42
Desplazar el eje con las teclas externas de dirección 42
Posicionamiento por incrementos 43
Desplazamiento con el volante electrónico HR 410 44
2.3 Revoluciones S, avance F y función auxiliar M 45
Aplicación 45
Introducción de valores 45
Modificar la velocidad de cabezal y el avance 46
2.4 Fijación del punto de referencia (sin palpador 3D) 47
Indicaciones 47
Preparación 47
Fijar punto cero con las teclas de eje 47

3 Posicionamiento manual 49

3.1 Programación y ejecución de mecanizados sencillos 50
 Empleo del posicionamiento manual 50
 Protección y borrado de programas desde \$MDI 52

4 Programación: Principios básicos, gestión de ficheros, ayuda a la programación 53

4.1 Nociones básicas 54					
Sistema de medida de recorridos y marcas de referencia 54					
Sistema de referencia 54					
Sistema de referencia en fresadoras 55					
Coordenadas polares 56					
Posiciones absolutas e incrementales de la pieza 57					
Selección del punto de referencia 58					
4.2 Gestión de ficheros: Principios básicos 59					
Ficheros 59					
Teclado de pantalla 60					
Guardar los datos 60					
4.3 Trabajar con la gestión de ficheros 61					
Directorios 61					
Caminos de búsqueda 61					
Resumen: Funciones de la gestión de ficheros 62					
Llamada a la gestión de ficheros 63					
Selección de unidades, directorios y ficheros 64					
Crear nuevo directorio 65					
Copiar ficheros individuales 66					
Copiar directorio 66					
Seleccionar uno de los 10 últimos ficheros empleados 67					
Borrar fichero 67					
Borrar directorio 67					
Marcar ficheros 68					
Renombrar fichero 69					
Clasificar ficheros 69					
Otras funciones 69					
Transmisión de datos a/desde un soporte de datos externo 70					
Copiar un fichero a otro directorio 72					
El TNC en la red 73					
Aparatos USB en el TNC 74					
4.4 Abrir e introducir programas 75					
Estructura de un programa NC en formato lenguaje conversacional HEIDENHAIN 75					
Definición de la pieza en bruto: BLK FORM 75					
Abrir un nuevo programa de mecanizado 76					
Programación de los movimientos de la herramienta con diálogo en lenguaje conversacional 78					
Aceptar las posiciones reales 79					
Editar un programa 80					
Función de búsqueda del TNC 83					

4.5 Gráfico de programación 85 Desarrollo con y sin gráfico de programación 85 Realizar el gráfico de programación para un programa ya existente 85 Activar o desactivar las frases marcadas 86 Borrar el gráfico 86 Ampliación o reducción de una sección 86 4.6 Añadir comentarios 87 Aplicación 87 Añadir líneas de comentarios 87 Funciones al editar el comentario 87 4.7 La calculadora 88 Manejo 88 4.8 Avisos de error 90 Visualizar error 90 Abrir ventana de error 90 Cerrar la ventana de error 90 Avisos de error detallados 91 Softkey INFO INTERNA 91 Borrar error 91 Protocolo de error 92 Protocolo de teclas 92 Texto de aviso 93 Memorizar ficheros de servicio 93

5 Programación: Herramientas 95

5.1 Introducción de datos de la herramienta 96 Avance F 96 Revoluciones del cabezal S 97 5.2 Datos de la herramienta 98 Condiciones para la corrección de la herramienta 98 Número y nombre de la herramienta 98 Longitud de la herramienta L 98 Radio R de la herramienta 99 Valores delta para longitudes y radios 99 Introducción de los datos de la hta. en el pgm 99 Introducir los datos de la herramienta en la tabla 100 Tabla de posiciones para cambiador de herramientas 104 Llamada a los datos de la herramienta 107 Cambio de herramienta 108 5.3 Corrección de la herramienta 110 Introducción 110 Corrección de la longitud de la herramienta 110 Corrección del radio de la herramienta 111

6 Programación: Programar contornos 115

6.1 Movimientos de la herramienta 116
Funciones de trayectoria 116
Programación libre de contornos FK 116
Funciones auxiliares M 116
Subprogramas y repeticiones parciales de un programa 116
Programación con parámetros Q 116
6.2 Nociones básicas sobre las funciones de trayectoria 117
Programación del movimiento de la herramienta para un mecanizado 117
6.3 Aproximación y salida del contorno 121
Resumen: Tipos de trayectoria para la aproximación y salida del contorno 121
Posiciones importantes en la aproximación y la salida 121
Aproximación según una recta tangente: APPR LT 123
Aproximación según una recta perpendicular al primer punto del contorno: APPR LN 123
Aproximación a una trayectoria circular con una conexión tangente: APPR CT 124
Aproximación según una trayectoria circular tangente al contorno y a una recta: APPR LCT 125
Salida según una recta con conexión tangente: DEP LT 125
Salida según una recta perpendicular al último punto del contorno: DEP LN 126
Salida según una trayectoria circular con conexión tangente: DEP CT 126
Salida según una trayectoria circular tangente al contorno y a una recta: DEP LCT 127
6.4 Movimientos de trayectoria - Coordenadas cartesianas 128
Resumen de las funciones de trayectoria 128
Recta L 128
Añadir un chaflán CHF entre dos rectas 129
Redondeo de esquinas RND 130
Punto central del círculo CC 131
Trayectoria circular C alrededor del centro del círculo CC 132
Trayectoria circular CR con un radio determinado 132
Trayectoria circular tangente CT 134
6.5 Movimientos de trayectoria - Coordenadas polares 139
Resumen 139
Origen de coordenadas polares: polo CC 139
Recta LP 140
I rayectoria circular CP alrededor del polo CC 140
Trayectoria circular tangente CTP 141
Hélice (Helix) 141

6.6 Movimientos de trayectoria - Programación libre de contornos FK 146 Nociones básicas 146 Gráfico de programación FK 148 Abrir el diálogo FK 149 Polo para la programación FK 149 Programación libre de rectas 150 Programación libre de trayectorias circulares 150 Posibles introducciones 151 Puntos auxiliares 154 Referencias relativas 155

7 Programación: funciones-auxiliares 163

- 7.1 Introducción de funciones auxiliares M y STOP 164 Nociones básicas 164
- 7.2 Funciones auxiliares para el control de la ejecución del programa, cabezal y refrigerante 166 Resumen 166
- 7.3 Programación de coordenadas referidas a la máquina: M91/M92 167
 Programación de coordenadas referidas a la máquina: M91/M92 167

7.4 Funciones auxiliares para el comportamiento en trayectoria 169
Mecanizado de pequeños escalones de un contorno: M97 169
Mecanizado completo de esquinas abiertas del contorno: M98 171
Avance en arcos de círculo: M109/M110/M111 171
Cálculo previo del contorno con corrección de radio (LOOK AHEAD): M120 172
Superposición de posicionamientos del volante durante la ejecución de un programa: M118 173
Retirada del contorno en dirección al eje de la herramienta: M140 174
Suprimir la supervisión del palpador: M141 175
Borrar el giro básico: M143 175
Con Stop NC retirar automáticamente la herramienta del contorno: M148 176
7.5 Funciones auxiliares para ejes giratorios 177

- Avance en mm/min en los ejes giratorios A, B, C: M116 177
 - Desplazamiento por el camino más corto en ejes giratorios: M126 178
 - Redondear la visualización del eje giratorio a un valor por debajo de 360°: M94 179

8 Programación: Ciclos 181

8.1 Trabajar con ciclos 182 Ciclos específicos de la máquina 182 Definir el ciclo mediante softkevs 183 Definir el ciclo a través de la función GOTO 183 Llamada de ciclos 185 8.2 Ciclos para taladrado, roscado y fresado de rosca 186 Resumen 186 TALADRAR (ciclo 200) 188 ESCARIADO (ciclo 201) 190 MANDRINADO (ciclo 202) 192 TALADRO UNIVERSAL (ciclo 203) 194 REBAJE INVERSO (ciclo 204) 196 TALADRADO PROFUNDO UNIVERSAL (ciclo 205) 199 FRESADO DE TALADRO (ciclo 208) 202 ROSCADO NUEVO con macho (ciclo 206) 204 ROSCADO RIGIDO NUEVO (ciclo 207) 206 ROSCADO CON ARRANQUE DE VIRUTA (ciclo 209) 208 Nociones básicas sobre el fresado de rosca 210 FRESADO DE ROSCA (ciclo 262) 212 FRESADO DE ROSCA AVELLANADA (ciclo 263) 214 FRESADO DE ROSCA EN TALADRO (ciclo 264) 218 FRESADO DE ROSCA HELICOIDAL EN TALADRO (ciclo 265) 222 FRESADO DE ROSCA EXTERIOR (ciclo 267) 226 8.3 Ciclos para el fresado de cajeras, islas y ranuras 232 Resumen 232 FRESADO DE CAJERA (ciclo 4) 233 ACABADO DE CAJERA (ciclo 212) 235 ACABADO DE ISLAS (ciclo 213) 237 CAJERA CIRCULAR (ciclo 5) 239 ACABADO DE CAJERA CIRCULAR (ciclo 214) 241 ACABADO DE ISLAS CIRCULARES (ciclo 215) 243 RANURA con profundización pendular (en ambos sentidos) (ciclo 210) 245 RANURA CIRCULAR con penetración pendular (ciclo 211) 248 8.4 Ciclos para realizar figuras de puntos 254 Resumen 254 FIGURA DE PUNTOS SOBRE UN CIRCULO (ciclo 220) 255

FIGURA DE PUNTOS SOBRE LINEAS (ciclo 221) 257

8.5 Ciclos SL 261 Nociones básicas 261 Resumen de los ciclos SL 263 CONTORNO (ciclo 14) 264 Contornos superpuestos 265 DATOS DEL CONTORNO (ciclo 20) 268 PRETALADRADO (ciclo 21) 269 DESBASTE (ciclo 22) 270 ACABADO EN PROFUNDIDAD (ciclo 23) 271 ACABADO LATERAL (ciclo 24) 272 TRAZADO DEL CONTORNO (ciclo 25) 273 SUPERFICIE CILINDRICA (ciclo 27, opción de software 1) 275 SUPERFICIE CILINDRICA fresado de ranuras (ciclo 28, opción de software 1) 277 SUPERFICIE CILINDRICA fresado de isla (ciclo 29, opción de software 1) 280 8.6 Ciclos para el planeado 291 Resumen 291 PLANEADO (ciclo 230) 291 SUPERFICIE REGULAR (ciclo 231) 293 FRESADO PLANO (ciclo 232) 297 8.7 Ciclos para la traslación de coordenadas 305 Resumen 305 Activación de la traslación de coordenadas 305 Desplazamiento del PUNTO CERO (ciclo 7) 306 Desplazamiento del PUNTO CERO con tablas de cero piezas (ciclo 7) 307 ESPEJO (ciclo 8) 310 GIRO (ciclo 10) 312 FACTOR DE ESCALA (ciclo 11) 313 FACTOR DE ESCALA ESPECIFICO DE CADA EJE (ciclo 26) 314 8.8 Ciclos especiales 317 TIEMPO DE ESPERA (ciclo 9) 317 LLAMADA DEL PROGRAMA (ciclo 12) 318 Orientación del cabezal (ciclo 13) 319

9 Programación: Subprogramas y repeticiones parciales de un programa 321

9.1 Introducción de subprogramas y repeticiones parciales de un programa 322 Label 322 9.2 Subprogramas 323 Funcionamiento 323 Indicaciones sobre la programación 323 Programación de un subprograma 323 Llamada a un subprograma 323 9.3 Repeticiones parciales de un programa 324 Label LBL 324 Funcionamiento 324 Indicaciones sobre la programación 324 Programación de una repetición parcial del programa 324 Llamada a una repetición parcial del programa 324 9.4 Cualquier programa como subprograma 325 Funcionamiento 325 Indicaciones sobre la programación 325 Llamada a cualquier programa como subprograma 326 9.5 Imbricaciones 327 Tipos de imbricaciones 327 Profundidad de imbricación 327 Subprograma dentro de otro subprograma 327 Repetición de repeticiones parciales de un programa 328 Repetición de un subprograma 329 9.6 Ejemplos de programación 330

10 Programación: Parámetros-Q 337

10.1 Principio de funcionamiento y resumen de funciones 338
Instrucciones de programación 339
Llamada a las funciones de parámetros Q 339
10.2 Familias de funciones – Parámetros Q en vez de valores numéricos 340
Ejemplo de frases NC 340
Ejemplo 340
10.3 Descripción de contornos mediante funciones matemáticas 341
Aplicación 341
Resumen 341
Programación de los tipos de cálculo básicos 342
10.4 Funciones angulares (Trigonometría) 343
Definiciones 343
Programación de funciones trigonométricas 344
10.5 Cálculo de círculos 345
Aplicación 345
10.6 Determinación de las funciones si/entonces con parámetros Q 346
Aplicación 346
Saltos incondicionales 346
Programación de condiciones si/entonces 346
Abreviaciones y conceptos empleados 347
10.7 Comprobación y modificación de parámetros Q 348
Procedimiento 348
10.8 Otras funciones 349
Resumen 349
FN14: ERROR: Emitir avisos de error 350
FN16: F-PRINT: Emisión formateada de textos y valores de parámetros Q 352
FN18: SYS-DATUM READ: Lectura de los datos del sistema 355
FN19: PLC: Emisión de los valores al PLC 363
FN20: WAIT FOR: Sincronización del NC y el PLC 364
FN29: PLC: entregar los valores en el PLC 366
FN37: EXPORT 367
10.9 Accesos a tablas con instrucciones-SQL 368
Introducción 368
Una transacción 369
Programar instrucciones SQL 371
Resumen de softkeys 371
SQL BIND 372
SQL SELECT 373
SQL FETCH 376
SQL UPDATE 377
SQL INSERT 377
SQL COMMIT 378
SQL ROLLBACK 378

- 10.10 Introducción directa de una fórmula 379 Introducción de la fórmula 379 Reglas de cálculo 381 Ejemplo 382
- 10.11 Parámetro de string 383 Funciones del procesamiento de cadenas de texto 383 Asignar parámetro de string 384 Parámetros de cadenas de texto en serie 384 Convertir un valor numérico en un parámetro de cadena de texto 385 Copiar una cadena de texto parcial desde un parámetro de cadena de texto 386 Convertir un parámetro de cadena de texto en un valor numérico 387 Comprobación de un parámetro de string 388 Calcular longitud de un parámetro de cadena de texto 389 Comparar orden alfabético 390 10.12 Parámetros Q predeterminados 391 Valores del PLC: Q100 a Q107 391 Radio de la hta. activo: Q108 391 Eje de la herramienta: Q109 391 Estado del cabezal: Q110 392 Estado del refrigerante: Q111 392 Factor de solapamiento: Q112 392 Indicación de cotas en el programa: Q113 392 Longitud de la herramienta: Q114 392 Coordenadas después de la palpación durante la ejecución del pgm 393
- 10.13 Ejemplo de programación 394

11 Test del programa y ejecución del programa 401

11.1 Gráficos 402
Aplicación 402
Resumen: Vistas 403
Vista en planta 403
Representación en tres planos 404
Representación 3D 405
Ampliación de una sección 406
Repetición de la simulación gráfica 407
Determinación del tiempo de mecanizado 408
11.2 Representación de la pieza en bruto en el espacio de trabajo 409
Aplicación 409
11.3 Funciones para la visualización del programa 410
Resumen 410
11.4 Test del programa 411
Aplicación 411
11.5 Ejecución de programa 413
Empleo 413
Ejecutar el programa de mecanizado 413
Interrupción del mecanizado 414
Desplazamiento de los ejes de la máquina durante una interrupción 414
Continuar con la ejecución del programa después de una interrupción 415
Reentrada deseada al programa (proceso hasta una frase) 416
Reentrada al contorno 417
11.6 Arranque automático del programa 418
Aplicación 418
11.7 Saltar frases 419
Aplicación 419
Añadir el signo "/" 419
Borrar el signo "/" 419
11.8 Parada programada en la ejecución del programa 420
Aplicación 420

12 Funciones MOD 421

12.1 Seleccionar la función MOD 422	
Selección de las funciones MOD 422	
Modificar ajustes 422	
Salir de las funciones MOD 422	
Resumen de funciones MOD 423	
12.2 Números de software 424	
Aplicación 424	
12.3 Selección de la visualización de posiciones 425	
Aplicación 425	
12.4 Selección del sistema métrico 426	
Aplicación 426	
12.5 Visualización de los tiempos de funcionamiento 427	
Aplicación 427	
12.6 Introducción del código 428	
Aplicación 428	
12.7 Ajuste de las conexiones de datos 429	
Interfaces serie en el TNC 320 429	
Aplicación 429	
Ajuste de la conexión RS-232 429	
Ajuste de la VELOCIDAD EN BAUDIOS (baudRate) 429	
Ajustar protocolo (protocol) 429	
Ajustar bits de datos (dataBits) 430	
Comprobar la paridad (parity) 430	
Ajustar bits de parada (stopBits) 430	
Ajustar handshake (flowControl) 430	
Seleccionar el modo de funcionamiento del aparato externo (fileSystem) 431	
Software para transmisión de datos 432	
12.8 Conexión Ethernet 434	
Introducción 434	
Posibles conexiones 434	
Conectar el control a la red 435	

13 Ciclos de palpación en los modos de funcionamiento Manual y Volante electrónico 441

13.1 Introducción 442
Resumen 442
Selección del ciclo de palpación 442
13.2 Calibración del palpador digital 443
Introducción 443
Calibración de la longitud activa 443
Calibración del radio activo y ajuste de la desviación del palpador 444
Visualización de los valores calibrados 445
13.3 Compensación de la inclinación de la pieza 446
Introducción 446
Calcular el giro básico 446
Visualización del giro básico 447
Anulación del giro básico 447
13.4 Fijar un punto de referencia con palpadores 3D 448
Introducción 448
Fijar punto de referencia en un eje cualquiera (ver fig, de la derecha) 448
Esquina como punto de ref Aceptar los puntos palpados para el giro básico (véase la figura de la
derecha) 449
Punto central del circulo como punto de referencia 450
13.5 Medición de piezas con -palpadores 3D 451
Introducción 451
Determinar las coordenadas de la posición de una pieza centrada 451
Determinar las coordenadas del punto de la esquina en el plano de mecanizado 451
Determinar las dimensiones de la pieza 452
Determinar el angulo entre el eje de referencia angular y una arista de la pieza 453
13.6 Gestion de los datos del palpador 454
Introduccion 454
Editor los toblos del palpador
12.7 Medición eutomótica de piezos 456
Pocumon 456
Sistema de referencia para los resultados de modición456
DI ANO DE REFERENCIA Cielo de palaceión 0
PLANO DE REFERENCIA on polaros Cielo de polazoión $1 arrow 457$
MEDIR (ciclo de palpación 3) 460

14 Tablas y resumenes 461

- 14.1 Parámetros de usuario específicos de la máquina 462 Aplicación 462
- 14.2 Distrib. de conectores y cable conexión para las conex. de datos 466
 Interfaz V.24/RS-232-C equipos HEIDEHAIN 466
 Aparatos que no son de la marca HEIDENHAIN 467
 Interface Ethernet de conexión RJ45 467
- 14.3 Información técnica 468
- 14.4 Cambio de batería 473

Introducción

1.1 EI TNC 320

Los TNCs de HEIDENHAIN son controles numéricos programables en el taller, con los cuales se pueden introducir programas de fresado y mecanizado directamente en la máquina con el diálogo en lenguaje conversacional fácilmente comprensible. El TNC 320 ha sido concebido para su utilización en fresadoras y taladradoras de hasta 4 ejes (opcionalmente 5 ejes). En vez del cuarto o quinto eje, también se puede programar la posición angular del cabezal.

El campo de control y la representación de pantalla están representados de forma visible, de forma que todas las funciones se pueden alcanzar de forma fácil y rápida.

Programación: Diálogo en lenguaje conversacional HEIDENHAIN

La elaboración de programas es especialmente sencilla con el diálgo en lenguaje conversacional HEIDENHAIN. Con el gráfico de programación se representan los diferentes pasos del mecanizado durante la introducción del programa. Adicionalmente se dispone de la programación libre de contornos FK, cuando no exite un plano acotado. La simulación gráfica del mecanizado de la pieza es posible tanto durante el test del programa como durante la ejecución del mismo.

Es posible introducir y probar un programa mientras que el otro efectúa el mecanizado de la pieza.

Compatibilidad

Las funciones del TNC 320 no se corresponden con las funciones de los controles de la serie TNC 4xx e iTNC 530. Por ello solamente pueden ejecutarse programas de mecanizado que han sido generados en controles numéricos HEIDENHAIN (a partir del TNC 150 B). En caso de que las frases NC contengan elementos no válidos, el TNC las marcará al leerlas como frases de ERROR.

1.2 Pantalla y teclado

Pantalla

El TNC se suministra con una pantalla plana TFT de 15 pulgadas (ver imagen arriba a la derecha).

1 Línea superior

Cuando el TNC está conectado, se visualiza en la línea superior de la pantalla el modo de funcionamiento seleccionado: los funcionamientos de máquina a la izquierda y los funcionamientos de programación a la derecha. En la ventana más grande de la línea superior se indica el modo de funcionamiento en el que está activada la pantalla: Aquí aparecen preguntas del diálogo y avisos de error (excepto cuando el TNC sólo visualiza el gráfico).

2 Softkeys

El TNC muestra en la línea inferior otras funciones en una carátula de softkeys. Estas funciones se seleccionan con las teclas que hay debajo de las mismas. Como indicación de que existen más carátulas de sofkteys, aparecen unas líneas horizontales directamente sobre dicha carátula. Hay tantas lineas como carátulas y se conmutan con las teclas cursoras negras situadas a los lados. La carátula de softkeys activada se representa con una línea en color más claro.

- 3 Teclas de selección de softkeys
- 4 Conmutación de la carátula de softkeys
- 5 Selección de la subdivisión de la pantalla
- 6 Tecla de conmutación para los modos de funcionamiento Máquina y Programación
- 7 Teclas de selección para softkeys del fabricante de la máquina
- 8 Carátulas de softkey para el fabricante de la máquina

Determinar la subdivisión de la pantalla

El usuario selecciona la subdivisión de la pantalla: de esta forma el TNC visualiza, p.ejemplo, en el modo de funcionamiento Programación, el programa en la ventana izquierda, mientras que en la ventana derecha se visualiza, p.ej., simultáneamente un gráfico de programación. Alternativamente también es posible representar en la ventana derecha la visualización de estados o, finalmente, el programa en una ventana grande. La ventana que el TNC visualiza depende del modo de funcionamiento seleccionado.

Determinar la subdivisión de la pantalla:

 \bigcirc

Pulsar la tecla de conmutación de la pantalla: la carátula de softkeys indica las posibles subdivisiones de la pantalla. véase "Modos de funcionamiento" en pág. 31

Selección de la subdivisión de la pantalla mediante softkey

Teclado

El TNC 320 se suministra con un teclado integrado. El cuadro superior derecho muestra los elementos del teclado de control:

- 1 Gestión de ficheros
 - Calculadora
 - Función MOD
 - Función HELP
- 2 Modos de funcionamiento Programación
- 3 Modos de funcionamiento Máquina
- 4 Apertura de los diálogos de programación
- 5 Teclas cursoras e indicación de salto GOTO
- 6 Introducción de cifras y selección del eje
- 7 Teclas de navegación

Las funciones de las teclas individuales se encuentran resumidas en la primera página.

Las teclas externas, como p.ej. NC-START o NC-STOP, se describen en el manual de la máquina.

н	eidenhain						3
	Manual	operation			Program	aing	
	X	-9.997	Tool	10			
	Y	+0.000	Z X	L R	+10.0000 +1.0100	s •	
	+ Z	-0.562	DL.	DR 0 +0.0000	+0.0000 DR2 +0.0000	зл. НЗ	
			P5H +0.000	0 +0.0000 E TIME1	+0.0000 TIME2	S.A	
	NOML. [] F Øme/mi	T 10 Z S	e TOOL CALL s RT	5 0:00 +10 +0	0:00	S M19	
		0 500	% S-IST ST: % SENm]	1			
0	М	S F	TOUCH SET PROBE DATUM	INCRE- MENT OFF ON		TOOL TABLE	
	1		APPR FK		X	789	
	CALC MOD				Y Z	4 5 6 1 2 3	
»Q.	** (*) (*) ** (*)	•	STOP TOOL CALL	SET CALL		0 • 74	6
	2	2		-		+ Q	
	<u> </u>	<u> </u>			CE	Ϋ́Ρ Ι	
» (),	150 %		7 📴 <mark>5</mark> 🖛	↑ 6000 →	CE	BAT EN	

1.3 Modos de funcionamiento

Funcionamiento Manual y Volante El.

El ajuste de las máquinas se realiza en el modo de funcionamiento manual. En este modo de funcionamiento se pueden posicionar de forma manual o por incrementos los ejes de la máquina y fijar los puntos de referencia.

La forma de funcionamiento del volante electrónico le ayuda a desplazar manualmente los ejes de la máquina con un volante electrónico HR.

Softkeys para la subdivisión de la pantalla (seleccionar según lo descrito anteriormente)

Ventana	Softkey
Posiciones	POSICION
Izquierda: Posiciones, derecha: Visualización de estado	POSICION + ESTRDO

Posicionamiento manual (MDI)

En este modo de funcionamiento se programan desplazamientos sencillos, p.ej. para el fresado de superficies o el posicionamiento previo.

Softkeys para la subdivisión de la pantalla

Ventana	Softkey
Programa	PROGRAMA
Izquierda: programa, derecha: visualización de estados	PGM + ESTADO

Memorizar/Editar programa

Los programas de mecanizado se elaboran en este modo de funcionamiento. La programación libre de contornos, los diferentes ciclos y las funciones de parámetros Q ofrecen diversas posibilidades para la programación. El gráfico de programación puede mostrar los distintos pasos, si se desea.

Softkeys para la subdivisión de la pantalla

Ventana	Softkey
Programa	PROGRAMA
Izquierda: Programa, derecha: Gráfico de programación	GRAFICO + PROGRAMA

osicionam. con introd. manual ^{Program.} MDI.H	ır
0208=+150 ;AVANCE PROFUNDIDAD 0211=0 ;TIENPO ESPERA ABAJO 0203=+0 ;CORON. SUPERFUTCE 0204-10 ;2A DIST. SEGURIDAD	H C
EXCELENTER L 2+2 REFINX L X+0 +48 REFINX L X+30 +49 REFINX L X+50 +49 REFINX L X+50 +49 REFINX	s 📕
TCH PROBE 1.0 PTO REF POLAR TCH PROBE 1.1 X PNGLUC:+0 TCH PROBE 1.2 X-20 +>55 Z+30 TCH PROBE 0.4 SUPER. REF. 010 Z- TCH PROBE 0.4 SUPER. REF. 010 Z-	<u></u>
0% S-IST 13:10 130% S-OVR	
X +52.580 ¥ +50.000 Z +10.363	
C +360.000 REAL () T 5 2 5 6 F 0es/sin Our 1564 M 5	DIAGNOSE
F MRX	TABLA HERRAM.

P S

Test del programa

El TNC simula programas y partes del programa en el modo de funcionamiento Test del programa, para p.ej. encontrar incompatibilidades geométricas, falta de indicaciones o errores en el programa y daños producidos en el espacio de trabajo. La simulación se realiza gráficamente con diferentes vistas.

Softkeys para la subdivisión de la pantalla: véase "Ejecución continua del programa y ejecución del programa frase a frase" en pág. 32.

Ejecución continua del programa y ejecución del programa frase a frase

En la ejecución continua del programa el TNC ejecuta un programa hasta su final o hasta una interrupción manual o programada. Después de una interrupción se puede volver a continuar con la ejecución del programa.

En el desarrollo del programa frase a frase se inicia cada frase con el pulsador externo de arranque START.

Softkeys para la subdivisión de la pantalla

Ventana	Softkey
Programa	PROGRAMA
Izquierda: programa, derecha: estado	PGM + ESTADO
Izquierda: Programa, derecha: Gráfico	GRAFICO + PROGRAMA
Gráfico	GRAFICOS

1.4 Visualización de estado

Visualización de estados "general"

La visualización de estados general 1 informa del estado actual de la máquina. Aparece automáticamente en los modos de funcionamiento

- Ejecución del pgm frase a frase y ejecución continua del pgm, mientras no se seleccione exclusivamente la visualización "Gráfico", y en el modo
- posicionamiento manual.

En el modo de funcionamiento Manual y en Volante electrónico aparece la visualización de estados en la ventana grande.

Informaciones de la visualización de estados

Símbolo	Significado	
REAL	Coordenadas reales o nominales de la posición actual	
XYZ	Ejes de la máquina: el TNC indica los ejes auxiliares en minúsculas. El constructor de la máquina determina la secuencia y el número de ejes visualizados. Rogamos consulten el manual de su máquina	
T	Número de la herramienta T	
ES M	La visualización del avance en pulgadas corresponde a una decima parte del valor activado. Revoluciones S, avance F y función auxiliar activada M	
→	El eje está bloqueado	
Ovr	Ajuste del potenciómetro override porcentual	
\bigcirc	El eje puede desplazarse con el volante	
	Los ejes se desplazan teniendo en cuenta el giro básico	
	no hay ningún programa activo	
Ĩ	Se ha iniciado el programa	
[<u>]</u>	Se ha parado el programa	
X	Se ha interrumpido el programa	

Visualizaciones de estado adicionales

Las visualizaciones de estados adicionales suministran información detallada sobre el desarrollo del programa. Se pueden llamar en todos los modos de funcionamiento a excepción de Memorizar/Editar programa.

Conexión de la visualización de estados adicional

Seleccionar la visualización de estados adicional

ſ	
Į	

ESTADO PGM Conmutar la carátula de softkeys hasta que aparezca la softkey STATUS

Seleccionar la visualización de estados adicional, p.ej. informaciones generales del programa

A continuación se describen diferentes visualizaciones de estado adicionales, seleccionables mediante softkeys:

Información general del programa

Softkey	Asignación	Significado
ESTADO PGM	1	Nombre del programa principal activo
	2	Programas Ilamados
	3	Ciclo de mecanizado activado
	4	Punto central del círculo CC (polo)
	5	Tiempo de mecanizado
	6	Contador del tiempo de espera

Posiciones y coordenadas

Softkey	Asignación	Significado
ESTADO POS.	1	Tipo de visualización de posiciones, p.ej. posición real
	2	Visualización de posiciones
	3	Número del punto de referencia activo de la tabla de presets (función no disponible en el TNC 320)
	4	Ángulo del giro básico

Información sobre las herramientas

Softkey	Asignación	Significado
ESTADO HERRAM.	1	Visualización T: nº y nombre de la herramienta
	2	Eje de la herramienta
	3	Longitud y radios de la herramienta
	4	Sobremedidas (valores delta) del TOOL CALL (PGM) y de la tabla de herramientas (TAB)
	5	Tiempo de vida, máximo tiempo de vida (TIME 1) y máximo tiempo de vida con TOOL CALL (TIME 2)
	6	Visualización de la herramienta activada y de la (siguiente) herramienta gemela

X -132.421	
+144.999	
Z -9.137	
C +0.000	
Pto.ref. 0	
	000

(

Traslación de coordenadas

Softkey	Asignación	Significado
ESTADO TRANSF. COORD.	1	Nombre del programa
	2	Desplazamiento del punto cero activado (ciclo 7)
	3	Ejes reflejados (ciclo 8)
	4	Ángulo de giro activado (ciclo 10)
	5	Factor(es) de escala activado(s) (ciclos 11 / 26)

Véase "Ciclos para la traslación de coordenadas" en pág. 305

Funciones auxiliares M activadas

Softkey	Asignación	Significado
ESTADO FUNCION M	1	Lista de las funciones M activadas, con un significado determinado
	2	Lista de las funciones M activas que ha ajustado el fabricante de máquina

Estado de los parámetros Q

Softkey	Asignación	Significado
STATUS OF Q PARAM.	1	Lista con los parámetros Q definidos con la softkey LISTA DE PARÁMETROS Q

1	
1.5 Accesorios: Palpadores 3D y volantes electrónicos de HEIDENHAIN

Palpadores 3D

Con los diferentes palpadores 3D de HEIDENHAIN se puede:

- Ajustar piezas automáticamente
- Fijar de forma rápida y precisa puntos de referencia
- Realizar mediciones en la pieza durante la ejecución del programa

Palpadores digitales TS 220, TS 440 y TS 640

Estos palpadores están especialmente diseñados para el centraje automático de piezas, fijación del punto de referencia y mediciones en la pieza. El TS 220 transmite la señal de conmutación mediante un cable y es, eventualmente, una alternativa económica.

Los palpadores TS 440 y TS 640 son especialmente adecuados para máquinas con cambiador de herramientas (ver imagen a la derecha), que transmiten las señales sin cable por infrarrojos.

Principio de funcionamiento: en los palpadores digitales de HEIDENHAIN un sensor óptico sin contacto registra la desviación del palpador. La señal creada ordena memorizar el valor real de la posición actual del sistema de palpador.

Volantes electrónicos HR

Los volantes electrónicos simplifican el desplazamiento manual preciso de los carros de los ejes. El recorrido por giro del volante se selecciona en un amplio campo. Además de los volantes empotrables HR 130 y HR 150, HEIDENHAIN ofrece también el volante portátil HR 410.

Funcionamiento manual y ajuste

2.1 Conexión, desconexión

Conexión

ŢŢ ____ La conexión y el sobrepaso de los puntos de referencia son funciones que dependen de la máquina. Rogamos consulten el manual de su máquina.

Conectar la tensión de alimentación del TNC y de la máquina. A continuación el TNC indica el siguiente diálogo:

SYSTEM STARTUP

Se inicia el TNC

INTERRUPCIÓN DE TENSIÓN

Ι

T

Aviso del TNC, de que se ha producido una interrupción de tensión - borrar el aviso

TRADUCIR EL PROGRAMA DE PLC

El programa de PLC se traduce automáticamente

FALTA TENSIÓN EXTERNA DE RELES

Conectar la tensión de potencia. El TNC comprueba la función de la parada de emergencia

FUNCIONAMIENTO MANUAL Sobrepasar puntos de referencia

Sobrepasar los puntos de referencia en la secuencia indicada: pulsar para cada eje la tecla de arranque externa START o

Sobrepasar los puntos de ref. en cualquier secuencia: pulsar para cada eje el pulsador externo de manual y mantenerlo hasta que se haya sobrepasado el punto de referencia

Si su máquina está equipada con sistemas de medida absolutos, no es necesario sobrepasar las marcas de referencia. El TNC está listo para el funcionamiento inmediatamente después de ser conectado.

Ahora el TNC está preparado para funcionar y se encuentra en el modo de funcionamiento Manual

Los puntos de referencia sólo deberán sobrepasarse cuando se quieran desplazar los ejes de la máquina. En el caso de que sólo se quieran editar o comprobar programas, se seleccionan, inmediatamente después de conectar la tensión del control, los modos de funcionamiento Memorizar/editar programa o Test del programa.

Después se pueden sobrepasar los puntos de referencia. Para ello se pulsa en el modo de funcionamiento Manual la softkey FIJAR PTO. REF.

Desconexión

Para evitar la pérdida de datos al desconectar, deberá salirse del sistema de funcionamiento del TNC de forma adecuada:

Seleccionar el modo de funcionamiento Manual

- Seleccionar la función para salir, confirmar de nuevo con la softkey SI
- Cuando el TNC visualiza en una ventana superpuesta el texto NOW IT IS SAFE TO TURN POWER OFF, puede interrumpir la tensión en el TNC

Si se desconecta el TNC de cualquier forma puede producirse una pérdida de datos.

2.2 Desplazamiento de los ejes de la máquina

Indicaciones

El desplazamiento con las teclas externas de dirección es una función que depende de la máquina. ¡Rogamos consulten el manual de su máquina!

Desplazar el eje con las teclas externas de dirección

De las dos formas se pueden desplazar simultáneamente varios ejes. El avance con el que se desplazan los ejes, se modifica mediante la softekey F, véase "Revoluciones S, avance F y función auxiliar M" en pág. 45.

Posicionamiento por incrementos

En el posicionamiento por incrementos el TNC desplaza un eje de la máquina según la cota incremental programada.

Para desactivar la función, pulsar la softkey **Desconectar**.

Desplazamiento con el volante electrónico HR 410

El volante electrónico HR 410 está equipado con dos teclas de confirmación. Estas teclas se encuentran debajo de la rueda dentada.

Los ejes de la máquina sólo se pueden desplazar cuando está pulsada una de las teclas de confirmación (esta función depende de la máquina).

El volante HR 410 dispone de los siguientes elementos de mando:

- 1 Pulsador de emergencia
- 2 Volante
- **3** Teclas de confirmación
- 4 Teclas para la selección de ejes
- 5 Tecla para aceptar la posición real
- 6 Teclas para determinar el avance (lento, medio, rápido; el constructor de la máquina determina los avances)
- 7 Sentido en el cual el TNC deplaza el eje seleccionado
- 8 Funciones de la máquina (determinadas por el constructor de la máquina)

Las visualizaciones en rojo determinan el eje y el avance seleccionados.

También se pueden realizar desplazamientos con el volante, durante la ejecución de un programa con **M118** activado.

Desplazamiento

0	Seleccionar el modo Volante Electrónico
	Mantener pulsada la tecla de confirmación del volante
x	Seleccionar el eje
W	Seleccionar el avance
	Desplazar el eje activo en sentido + o -

2.3 Revoluciones S, avance F y función auxiliar M

Aplicación

En el modo de funcionamiento Manual y de Volante electrónico se introducen las revoluciones S del cabezal, el avance F y la función auxiliar M mediante softkeys. Las funciones auxiliares se describen en el capítulo "7. Programación: Funciones auxiliares".

El constructor de la máquina determina las funciones auxiliares M que se pueden utilizar y la función que realizan.

Introducción de valores

Revoluciones del cabezal S, función auxiliar M

Seleccionar la introducción para la velocidad de cabezal: Softkey S

REVOLUCIONES DEL CABEZAL S =

1000

Ι

Introducir las revoluciones del cabezal y aceptar con la tecla externa START

El giro del cabezal con las revoluciones S introducidas se inicia con la función auxiliar M. La función auxiliar M se introduce de la misma manera.

Avance F

La introducción de un avance F se debe confirmar con la softkey OK en vez de con el pulsador externo START.

Para el avance F es válido:

- Cuando se introduce F=0 actúa el avance más pequeño del parámetro de máquina minFeed
- Si el avance introducido sobrepasa el valor definido en los parámetros de máquina maxFeed, se activa el valor introducido en el parámetro de máquina
- Después de una interrupción de tensión, sigue siendo válido el avance F programado

Modificar la velocidad de cabezal y el avance

Con los potenciómetros de override para las revoluciones S del cabezal y el avance F, se puede modificar el valor determinado entre 0% y 150%.

El potenciómetro de override para las revoluciones del cabezal sólo actáa en máquinas con accionamiento del cabezal controlado.

El fabricante de la máquina puede delimitar los campos de los potenciómetros de override (parámetros de máquina minFeedOverride, maxFeedOverride, minSpindleOverride y maxSpindleOverride).

La velocidad del cabezal máxima y mínima introducida como parámetro de máquina no se alcanza o se sobrepasa.

Cuando se ajusta el parámetro de máquina minSpindleOverride=0%, el movimiento del overridecabezal=0 lleva a una parada del cabezal.

1

2.4 Fijación del punto de referencia (sin palpador 3D)

Indicaciones

Fijación del punto de referencia con un palpador 3D: véase el Modo de Empleo de los ciclos de palpación.

En la fijación del punto de referencia la visualización del TNC se fija sobre las coordenadas conocidas de una posición de la pieza.

Preparación

- Ajustar y centrar la pieza
- Introducir la herramienta cero con radio conocido
- Asegurar que el TNC visualiza las posiciones reales

Fijar punto cero con las teclas de eje

Medida de seguridad En el caso de que no se pueda rozar la superficie de la pieza, se coloca sobre la misma una cala con grosor desconocido. Después para fijar el punto de referencia se introduce un valor al cual se ha sumado d.

Х

Ζ

ᇞ

Seleccionar el modo de funcionamiento Manual

Desplazar la herramienta con cuidado hasta que roce la pieza

Seleccionar el eje

FIJAR EL PUNTO DE REFERENCIA Z=

Herramienta cero, eje del cabezal: fijar la visualización sobre una posición conocida de la pieza (p.ej. 0) o introducir el grosor d de la chapa. En el plano de mecanizado: tener en cuenta el radio de la herramienta

Los puntos de referencia para los ejes restantes se fijan de la misma forma.

Si se utiliza una herramienta preajustada en el eje de aproximación, se fija la visualización de dicho eje a la longitud L de la herramienta o bien a la suma Z=L+d.

i

Posicionamiento manual

3.1 Programación y ejecución de mecanizados sencillos

El modo de funcionamiento Posicionamiento manual (MDI) es apropiado para mecanizados sencillos y posicionamientos previos de la herramienta. En este modo de funcionamiento se puede introducir y ejecutar directamente un programa corto en formato lenguaje conversacional HEIDENHAIN. También se puede llamar a ciclos del TNC. El programa se memoriza en el fichero \$MDI. En el posicionamiento manual se puede activar la visualización de estados adicional.

Empleo del posicionamiento manual

 \mathbf{I}

Seleccionar el modo de funcionamiento Posicionamiento manual (MDI). Programar el fichero \$MDI tal como se desee

Iniciar la ejecución del programa: pulsador externo START

Limitación

No están disponibles la programación libre de contornos FK, los gráficos de programación, los gráficos de ejecución de un programa, los subprogramas, las repeticiones de partes de programa y la corrección de trayectoria. El fichero \$MDI no puede contener ningúna llamada a un programa (**PGM CALL**).

Ejemplo 1

En una pieza se quiere realizar un taladro de 20 mm de profundidad. Después de sujetar la pieza, centrarla y fijar el punto de referencia, se puede programar y ejecutar el taladro con unas pocas lineas de programación.

Primero se posiciona previamente la herramienta con frases L (rectas) sobre la pieza y a una distancia de seguridad de 5 mm sobre el agujero del taladro. Después se realiza el taladro con el ciclo 1 **TALADRADO EN PROFUNDIDAD**.

O BEGIN PGM \$MDI MM	
1 TOOL DEF 1 L+0 R+5	Definir la herramienta: herramienta cero, radio 5
2 TOOL CALL 1 Z S2000	Llamada a la herramienta: eje de la herramienta Z,
	Revoluciones del cabezal 2000 rpm
3 L Z+200 RO FMAX	Retirar la herramienta (F MAX = marcha rápida)

4 L X+50 Y+50 RO FMAX M3		Posicionar la herramienta con F MAX sobre el taladro, cabezal conectado	
6 CYCL DEF 200	FALADRO	Definir ciclo TALADRADO	
Q200=5	;DISTSEGURIDAD	Distancia de seguridad de la herramienta sobre el taladro	
Q201=-15	;PROFUNDIDAD	Profundidad del taladro (signo=sentido mecanizado)	
Q206=250	;PROFUNDIDAD DE PASO F	Avance	
Q202=5	;PROFUNDIDAD DE PASO	Profundidad de paso antes de retirar la herramienta	
Q210=0	;TPO. ESPERA ENCIMA	Tiempo de espera en segundos tras cada pasada	
Q203=-10	;COORDENADAS SUPERFICIE	Coordenadas de la superficie de la pieza	
Q204=20	;2ª DISTANCIA DE SEGUR.	Distancia de seguridad de la herramienta sobre el taladro	
Q211=0,2	;TIEMPO DE ESPERA ABAJO	Tiempo de espera en segundos en la base del taladro	
7 CYCL CALL		Llamar ciclo TALADRADO	
8 L Z+200 R0 FM/	NX M2	Retirar la herramienta	
9 END PGM \$MDI M	1M	Final del programa	

Función lineal L (véase "Recta L" en pág. 128), ciclo TALADRADO (véase "TALADRAR (ciclo 200)" en pág. 188).

Ejemplo 2: Eliminar la inclinación de la pieza en mesas giratorias

Ejecutar un giro básico con un palpador 3D. Véase el Modo de Empleo de los ciclos de palpación, "Ciclos de palpación en los modos de funcionamiento Manual y Volante Electrónico", sección "Compensación de inclinación de la pieza".

Anotar el ángulo de giro y anular el giro básico

		Seleccionar el modo de funcionamiento: Posicionamiento manual
Leo	IV	Seleccionar el eje de la mesa giratoria, introducir el ángulo de giro y el avance anotados, p.ej. L C+2.561 F50
		Finalizar la introducción
I		Accionar el pulsador externo START: se anula la inclinación mediante el giro de la mesa giratoria

Protección y borrado de programas desde \$MDI

El fichero \$MDI se utiliza normalmente para programas cortos y transitorios. Si a pesar de ello se quiere memorizar un programa, deberá procederse de la siguiente forma:

FIN	Salir de la gestión de ficheros: Softkey FIN	
EJECUTAR	Ejecutar la copia	
TALADRO	Introducir el nombre bajo el cual se quiere memorizar el contenido actual del fichero \$MDI	
FICHERO DESTINO =		
	Seleccionar "Copiar fichero": Softkey COPIAR	
	Marcar el fichero \$MDI	
PGM MGT	Llamada a la gestión de programas: tecla PGM MGT (Program Management)	
¢	Seleccionar el modo de funcionamiento Memorizar/ Editar programa	

Para borrar el contenido del fichero \$MDI se procede de forma parecida: en vez de copiar se borra el contenido con la softkey BORRAR. En el siguiente cambio al modo de funcionamiento Posicionamiento manual el TNC visualiza un fichero \$MDI vacío.

Si se quiere borrar el fichero \$MDI, entonces
no se debe haber seleccionado el Posicionamiento manual (tampoco en segundo plano)
no se puede haber seleccionado el fichero \$MDI en el modo de funcionamiento Memorizar/editar programa
debe suprimirse la protección ante escritura del fichero \$MDI

Más información: véase "Copiar ficheros individuales" en pág. 66.

1

Programación: Principios básicos, gestión de ficheros, ayuda a la programación

4.1 Nociones básicas

Sistema de medida de recorridos y marcas de referencia

En los ejes de la máquina hay sistemas de medida, que registran las posiciones de la mesa de la máquina o de la herramienta. En los ejes lineales normalmente se encuentran montados sistemas longitudinales de medida, en las mesas circulares y ejes basculantes sistemas de medida angulares.

Cuando se mueve un eje de la máquina, el sistema de medida correspondiente genera una señal eléctrica, a partir de la cual el TNC calcula la posición real exacta del eje de dicha máquina.

En una interrupción de tensión se pierde la asignación entre la posición de los ejes de la máquina y la posición real calculada. Para poder volver a establecer esta asignación, los sistemas de medida incrementales de trayectoria disponen de marcas de referencia. Al sobrepasar una marca de referencia el TNC recibe una señal que caracteriza un punto de referencia fijo de la máquina. Así el TNC puede volver a ajustar la asignación de la posición real a la posición de máquina actual. En sistemas de medida longitudinales con marcas de referencia codificadas debe desplazar los ejes de la máquina un máximo de 20 mm, en sistemas de medida angulares un máximo de 20°.

En sistemas de medida absolutos, después de la puesta en marcha se transmite un valor absoluto al control. De este modo, sin desplazar los ejes de la máquina. La asignación entre la posición real y la posición del carro de la máquina se reestablece directamente después de la puesta en marcha.

Sistema de referencia

Con un sistema de referencia se determinan claramente posiciones en el plano o en el espacio. La indicación de una posición se refiere siempre a un punto fijo y se describe mediante coordenadas.

En el sistema cartesiano están determinadas tres direcciones como ejes X, Y y Z. Los ejes son perpendiculares entre sí y se cortan en un punto llamado punto cero. Una coordenada indica la distancia al punto cero en una de estas direcciones. De esta forma una posición se describe en el plano mediante dos coordenadas y en el espacio mediante tres.

Las coordenadas que se refieren al punto cero se denominan coordenadas absolutas. Las coordenadas relativas se refieren a cualquier otra posición (punto de referencia) en el sistema de coordenadas. Los valores de coordenadas relativos se denominan también coordenadas incrementales.

4.1 Noc<mark>ion</mark>es básicas

Sistema de referencia en fresadoras

Para el mecanizado de una pieza en una fresadora, deberán referirse generalmente respecto al sistema de coordenadas cartesianas. El dibujo de la derecha indica como están asignados los ejes de la máquina en el sistema de coordenadas cartesianas. La regla de los tres dedos de la mano derecha sirve como orientación: Si el dedo del medio indica la dirección del eje de la herramienta desde la pieza hacia la herramienta, está indicando la dirección Z+, el pulgar la dirección X+ y el índice la dirección Y+.

El TNC 320 puede controlar un máximo de 4 ejes (opcionalmente 5). Además de los ejes principales X, Y y Z, existen también ejes auxiliares paralelos (todavía no contemplados por el TNC 320) U, V y W. Los ejes giratorios se caracterizan mediante A, B y C. En la figura de abajo a la derecha se muestra la asignación de los ejes auxiliares o ejes giratorios respecto a los ejes principales.

Coordenadas polares

Cuando el plano de la pieza está acotado en coordenadas cartesianas, el programa de mecanizado también se elabora en coordenadas cartesianas. En piezas con arcos de círculo o con indicaciones angulares, es a menudo más sencillo, determinar posiciones en coordenadas polares.

A diferencia de las coordenadas cartesianas X, Y y Z, las coordenadas polares sólo describen posiciones en un plano. Las coordenadas polares tienen su punto cero en el polo CC (CC = circle centre; ingl. punto central del círculo). De esta forma una posición en el plano queda determinada claramente por:

- Radio en coordenadas polares: Distancia entre el polo CC y la posición
- Ángulo de las coordenadas polares: ángulo entre el eje de referencia angular y la trayectoria que une el polo CC con la posición

Veáse la fig. arriba a la dcha.

Determinación del polo y del eje de referencia angular

El polo se determina mediante dos coordenadas en el sistema de coordenadas cartesianas. Además estas dos coordenadas determinan claramente el eje de referencia angular para el ángulo en coordenadas polares PA.

Coordenadas del polo (plano)	Eje de referencia angular
X/Y	+X
Y/Z	+Y
Z/X	+Z

4.1 Noc<mark>ion</mark>es básicas

Posiciones absolutas e incrementales de la pieza

Posiciones absolutas de la pieza

Cuando las coordenadas de una posición se refieren al punto cero de coordenadas (origen), dichas coordenadas se caracterizan como absolutas. Cada posición sobre la pieza está determinada claramente por sus coordenadas absolutas.

Ejemplo 1: Taladros en coordenadas absolutas

Taladro 1	Taladro <mark>2</mark>	Taladro 3
X = 10 mm	X = 30 mm	X = 50 mm
Y = 10 mm	Y = 20 mm	Y = 30 mm

Posiciones incrementales de la pieza

Las coordenadas incrementales se refieren a la última posición programada de la herramienta, que sirve como punto cero (imaginario) relativo. De esta forma, en la elaboración del programa las coordenadas incrementales indican la cota entre la última y la siguiente posición nominal, según la cual se deberá desplazar la herramienta. Por ello se denomina también cota relativa.

Una cota incremental se caracteriza con una "I" delante de la denominación del eje.

Ejemplo 2: Taladros en coordenadas incrementales

Taladro de coordenadas absolutas 4

X = 10 mmY = 10 mm

Taladro 5, referido al taladro 4	Taladro 6, referido al taladro 5
X = 20 mm	X = 20 mm
Y = 10 mm	Y = 10 mm

Coordenadas polares absolutas e incrementales

Las coordenadas absolutas se refieren siempre al polo y al eje de referencia angular.

Las coordenadas incrementales se refieren siempre a la última posición de la herramienta programada.

Selección del punto de referencia

En el plano de una pieza se indica un determinado elemento de la pieza como punto de referencia absoluto (punto cero), casi siempre una esquina de la pieza. Al fijar el punto de referencia primero hay que alinear la pieza según los ejes de la máquina y colocar la herramienta para cada eje, en una posición conocida de la pieza. Para esta posición se fija la visualización del TNC a cero o a un valor de posición predeterminado. De esta forma se le asigna a la pieza el sistema de referencia, válido para la visualización del TNC o para su programa de mecanizado.

Si en el plano de la pieza se indican puntos de referencia relativos, sencillamente se utilizaran los ciclos para la traslación de coordenadas (véase "Ciclos para la traslación de coordenadas" en pág. 305).

Cuando el plano de la pieza no está acotado, se selecciona una posición o una esquina de la pieza como punto de referencia, desde la cual se pueden calcular de forma sencilla las cotas de las demás posiciones de la pieza.

Los puntos de referencia se fijan de forma rápida y sencilla mediante un palpador 3D de HEIDENHAIN. Véase el Modo de Empleo de los ciclos de palpación "Fijación del punto de referencia con palpadores 3D".

Ejemplo

El croquis de la herramienta situado a la derecha muestra los taladros (1 a 4), cuyas mediciones se refieren a un punto de referencia absoluto con las coordenadas X=0 Y=0. Los taladros (5 a 7) se refieren a un punto de referencia relativo con las coordenadas absolutas X=450 Y=750. Con el ciclo **DESPLAZAMIENTO DEL PUNTO CERO** se puede desplazar temporalmente el punto cero a la posición X=450, Y=750, para programar los taladros (5 a 7) sin tener que realizar más cálculos.

4.2 Gestión de ficheros: Principios básicos

Ficheros

Ficheros en el TNC	Тіро
Programas en formato HEIDENHAIN en formato DIN/ISO	.H .l
Tablas para herramientas Cambiador de htas. Puntos cero Palpadores	.T .TCH .D .TP

Cuando se introduce un programa de mecanizado en el TNC, primero se le asigna un nombre. El TNC memoriza el programa como un fichero con el mismo nombre. También puede memorizar textos y tablas como ficheros.

Para encontrar y gestionar rápidamente los ficheros, el TNC dispone de una ventana especial para la gestión de ficheros. Aquí se puede llamar, copiar y renombrar a los diferentes ficheros.

Con el TNC se pueden gestionar y guardar ficheros con un tamaño total máximo de 10 MByte.

Nombres de ficheros

En los programas, tablas y textos el TNC añade una extensión separada del nombre del fichero por un punto. Dicha extensión especifica el tipo de fichero.

PROG20	.H	
Nombre fichero	Tipo fichero	

La longitud del nombre del fichero no debe sobrepasar los 25 caracteres, de lo contrario, el TNC ya no muestra el nombre del programa completo. Los caracteres ; * \ / " ? < > . no se permiten en los nombres de ficheros.

En el nombre del fichero no deben utilizarse caracteres especiales ni espacios en blanco.

La longitud máxima permitida del nombre del fichero debe ser lo suficientemente larga, para no sobrepasar la longitud de búsqueda máxima permitida de 256 caracteres (véase "Caminos de búsqueda" en pág. 61).

Teclado de pantalla

Las letras y caracteres especiales pueden introducirse con el teclado de pantalla o (en caso de existir) con un teclado de PC conectado mediante puerto USB.

Introducir el texto con el teclado de pantalla

- Para introducir un texto, p. ej. para nombres de programa o de directorio, con el teclado de pantalla, pulsar la tecla GOTO.
- El TNC abre una ventana, en la cual se representa el campo de introducción de cifras 1 del TNC con la agrupación de letras correspondiente.
- De forma eventual, pulsando repetidamente la tecla correspondiente, se mueve el cursor hasta el carácter deseado
- Antes de introducir el siguiente carácter, espere a que el carácter seleccionado haya sido aceptado en el campo de introducción
- Aceptar el texto en el campo de diálogo abierto con la softkey OK

Seleccionar con la softkey **abc/ABC** entre mayúsculas y minúsculas. En caso de que el fabricante de la máquina haya definido caracteres especiales adicionales, puede añadirlos y llamarlos mediante la softkey **CARACTERES ESPECIALES**. Para borrar caracteres individuales, utilizar la softkey **Backspace**.

Guardar los datos

HEIDENHAIN recomienda memorizar periódicamente en un PC los nuevos programas y ficheros elaborados.

Para ello HEIDENHAIN pone a disposición una función de Backup en el software de transmisión de datos del TNCremoNT. Rogamos se pongan en contacto con el constructor de su máquina.

Además se precisa de un soporte de datos que contenga todos los datos específicos de la máquina (programa de PLC, parámetros de máquina, etc.). Para ello rogamos se pongan en contacto con el constructor de la máquina.

4.3 Trabajar con la gestión de ficheros

Directorios

En caso de memorizar muchos programas en el TNC, guardar los ficheros en directorios (carpetas), a fin de tener un resumen general. En estos directorios se pueden añadir más directorios, llamados subdirectorios. Con la tecla -/+ o ENT puede superponer o suprimir subdirectorios.

Caminos de búsqueda

El camino de búsqueda indica la unidad y todos los directorios o subdirectorios en los que hay memorizado un fichero. Las distintas indicaciones se separan con el signo "\".

Ejemplo

En la unidad del **TNC:** \ está el subdirectorio AUFTR1. Después se crea en el directorio **AUFTR1** el subdirectorio NCPROG, en el cual se memoriza el programa de mecanizado PROG1.H. De esta forma el programa de mecanizado tiene el siguiente camino de búsqueda:

TNC:\AUFTR1\NCPROG\PROG1.H

En el gráfico de la derecha se muestra un ejemplo para la visualización de un directorio con diferentes caminos de búsqueda.

Resumen: Funciones de la gestión de ficheros

Función	Softkey
Copiar (y convertir) ficheros sueltos	
Visualizar un determinado tipo de ficheros	SELECC.
Visualizar los últimos 10 ficheros seleccionados	ULTIMOS FICHEROS
Borrar fichero o directorio	BORRAR
Marcar fichero	MARCAR
Renombrar fichero	
Proteger el fichero contra borrado y modificaciones	PROTEGER
Eliminar la protección del fichero	
Administrador de red	RED
Copiar directorio	COPIA DIR
Visualizar los directorios de una unidad	ARBOL
Borrar directorio con todos los subdirectorios	TODO
Clasificar los ficheros según sus características	SORT
Crear un fichero nuevo	NEW FILE
Seleccionar editor	SELECT EDITOR

i

Pulsar la tecla PGM MGT : el TNC visualiza la ventana para la gestión de ficheros. (la figura superior a la dcha. muestra el ajuste básico. Si el TNC visualiza otra subdivisión de pantalla, pulsar la softkey VENTANA.)

La ventana estrecha de la izquierda 1 muestra las unidades y directorios disponibles. Las unidades caracterizan sistemas en los cuales se memorizan o transmiten datos. Una unidad es la memoria interna del TNC, las otras son las conexiones de datos RS232, Ethernet y USB, a las que se puede conectar p.ej. un ordenador o sistemas de memoria. Un directorio se caracteriza siempre por un símbolo (izquierda) y el nombre del mismo (derecha). Los subdirectorios están un poco más desplazados a la derecha. Si se encuentra una casilla con el símbolo + antes del símbolo de ordenador, entonces existen otros subdirectorios, que se pueden superponer con la tecla -/+ o ENT.

En la ventana grande de la derecha se visualizan todos los ficheros 2, memorizados en el directorio elegido. Para cada archivo se muestran varias informaciones, que se encuentran clasificadas en la tabla de abajo.

Visualización	Significado
NOMBRE DEL FICHERO	Nombre con una extensión separada mediante un punto (tipo de fichero)
BYTE	Tamaño del fichero en Byte
ESTADO	Características del fichero:
E	Programa seleccionado en el modo de fucionamiento Memorizar/editar programa
S	Programa seleccionado en el modo de funcionamiento Test del programa
Μ	Programa seleccionado en el modo de fucionamiento Ejecución del porgrama
â	Fichero protegido contra borrado y modificaciones (Protected)
FECHA	Fecha en la cual se modificó el fichero por última vez
TIEMPO	Hora en la cual se modificó el fichero por última vez

2º paso: Seleccionar directorio

ENT

Marcar el directorio en la ventana izquierda: automáticamente la ventana derecha muestra todos los ficheros del directorio seleccionados (destacados en un color más claro)

3er paso: Seleccionar el fichero

Marcar el fichero en la ventana derecha:

ENT

El fichero seleccionado se activa en el modo de funcionamiento desde el cual se ha llamado a la gestión de ficheros: pulsar la softkey SELECCIONAR o la tecla ENT

Crear nuevo directorio

En la ventana inzquierda marcar el directorio, en el que se quiere crear un subdirectorio

Copiar ficheros individuales

Desplazar el cursor sobre el fichero a copiar

ок

- Pulsar la softkey COPIAR: Seleccionar la función de copiar El TNC abre una ventana de superposición
- Introducir el nombre del fichero destino y aceptar con la tecla ENT o la softkey OK: el TNC copia el fichero al directorio actual, o en el directorio de destino correspondiente. Se mantiene el fichero original

Copiar directorio

Desplazar el cursor en la ventana izquierda sobre el directorio que se quiere copiar. Después pulsar la softkey COPIAR DIRECTORIO en vez de la softkey COPIAR. El TNC puede copiar también los subdirectorios.

Seleccionar el ajuste en una ventana de selección

En diferentes diálogos el TNC abre una ventana de transición, en la que se enuentran distintos ajustes agrupados en ventanas de selección.

- Mover el cursor en la caja de selección deseada y pulsar la tecla GOTO
- Posicionar el cursor sobre el ajuste requerido mediante las teclas cursoras
- Con la softkey OK se acepta el valor, con la softkey CANCELAR se anula la selección

1

4.3 Trabajar con la gestió<mark>n d</mark>e ficheros

P

DIAGNOSE

Tienpo

00:24 53:00

12:53:05 08:55:08 08:00:24 13:12:33 08:00:25 08:00:25

12

08 12

Seleccionar uno de los 10 últimos ficheros empleados

Mueve el cursor arriba y abajo en una ventana

Seleccionar el fichero: pulsar la softkey OK o la tecla ENT

Funcionamiente

Programar

1.H 113.h

_prog\screen _prog\screen _prog\screen _prog\screen

INTERRUP.

NC_PROS SCREENS 458.H

BORRAR

OF

TNC:\nc_prog\screens*.H

Byte Estado Fech

BORRAR INTERRUP.

IFT.D

10 fichero(s) 6.5 Mbyte libre

Nombre fichero

Borrar fichero

Mover el cursor sobre el fichero que se desea borrar

- Seleccionar la función de borrado: pulsar la softkey BORRAR.
- Confirmar borrado: pulsar la softkey OK o
- Cancelar el borrado: pulsar la softkey CANCELAR

Borrar directorio

- Borrar todos los ficheros y subdirectorios del directorio que se quiere borrar
- Mover el cursor sobre el fichero que se desea borrar

- Seleccionar la función de borrado: pulsar la softkey BORRAR TODOS. El TNC pregunta si se desean borrar también los subdirectorios y los ficheros
 - Confirmar borrado: pulsar la softkey OK o
 - Cancelar el borrado: pulsar la softkey CANCELAR

Marcar ficheros

Función para marcar	Softkey
Marcar ficheros sueltos	MARCAR FICHERO
Marcar todos los ficheros del directorio	MARCAR TODOS FICHEROS
Eliminar la marca del fichero deseado	ANULAR MARCA
Eliminar la marca de todos los ficheros	ANULAR TODAS LAS MARCAS

Las funciones como copiar o borrar ficheros se pueden utilizar simultáneamente tanto para un sólo fichero como para varios ficheros. Para marcar varios ficheros se procede de la siguiente forma:

Mover el cursor sobre el primer fichero

Visualizar las funciones para marcar: pulsar la softkey
MARCAR

MARCAR FICHERO

MARCAR

Marcar un fichero: pulsar la softkey MARCAR FICHERO

Mover el cursor a otro fichero

MARCAR	Márcar otro fichero: pulsar la softkey
FICHERO	MARCAR FICHERO, etc.
	Copiar los ficheros marcados: abandonar la función MARCAR con la softkey de retorno
COPIAR	Copiar los ficheros marcados: seleccionar la softkey
ABC XXZ	COPIAR
BORRAR	Borrar los ficheros marcados: pulsar la softkey de retorno para abandonar las funciones de marcado y, a continuación, pulsar la softkey BORRAR

i

Renombrar fichero

Desplazar el cursor sobre el fichero que se quiere renombrar

- Seleccionar la función para renombrar
- Introducir un nuevo nombre de fichero: el tipo de fichero no se puede modificar
- Ejecutar el renombrado: pulsar la softkey OK o la tecla ENT

Clasificar ficheros

- Seleccionar la carpeta en la que desea clasificar los ficheros
 - SORT
- Seleccionar la softkey CLASIFICAR
- Seleccionar la softkey con el criterio de representación correspondiente

Otras funciones

Proteger/desproteger ficheros

Mover el cursor sobre el fichero que se quiere proteger

- Seleccionar otras funciones: pulsar la softkey FUNCIONES ADIC.
- Activar la protección del fichero: pulsar la softkey PROTEGER. El fichero se marca con un símbolo
- La protección del fichero se elimina de la misma forma con la softkey DESPROT.

Seleccionar editor

- Mover el cursor en la ventana derecha sobre el fichero que se desea abrir
- MAS
- Seleccionar otras funciones: pulsar la softkey FUNCIONES ADICIONALES
- SELECT
- Selección del editor con el que debe abrirse el fichero seleccionado: pulsar la softkey SELECCIONAR EDITOR
- Marcar el editor deseado
- Pulsar la softkey OK para abrir el fichero

Activar o desactivar los aparatos USB

- Seleccionar otras funciones: pulsar la softkey FUNCIONES ADICIONALES
- Conmutar la carátula de softkeys
- Seleccionar la softkey para la activación o desactivación

Transmisión de datos a/desde un soporte de datos externo

Antes de que se pueda transmitir datos a un soporte de datos externo, en caso necesario, se debe ajustar el interfaz de datos (véase "Ajuste de las conexiones de datos" en pág. 429).

Si se transmiten datos mediante la interfaz serie, pueden surgir problemas dependiendo del software utilizado para la transmisión de datos, los cuales puden subsanarse ejecutando de nuevo la transmisión.

Llamada a la gestión de ficheros

VENTANA

PGM MGT

G

Seleccionar la subdivisión de la pantalla para la transmisión de datos: pulsar la softkey **VENTANA**. Seleccionar en las dos mitades de pantalla el directorio deseado. El TNC visualiza p. ej. en la mitad izquierda 1 de la pantalla todos los ficheros memorizados en el TNC, en la mitad derecha 2 de la pantalla todos los ficheros memorizados en el soporte de datos externo. Con la softkey **VISUALIZAR FICHEROS** o **VISUALIZAR ÁRBOL** se cambia de vista de carpetas a vista de ficheros.

Emplear las teclas cursoras para desplazar el cursor sobre el fichero que se desea transmitir:

Mueve el cursor arriba y abajo en una ventana

Mueve el cursor de la ventana derecha a la izquierda y viceversa

Si se quiere copiar del TNC al soporte de datos externo, se desplaza el cursor a la ventana izquierda sobre el fichero que se quiere transmitir.

Transmisión de ficheros individuales: posicionar el cursor sobre el fichero deseado, o

MARCAR

transmitir varios ficheros: pulsar la softkey **MARCAR** (en la segunda carátula de softkeys, véase "Marcar ficheros" en pág. 68) y marcar los ficheros correspondientemente. Abandonar de nuevo la función **MARCAR** con la softkey de retorno Pulsar la softkey COPIAR

Confirmar con la softkey OK o con la tecla ENT. En programas largos el TNC muestra una ventana de estados en la cual se informa sobre el proceso de copiado.

Finalizar la transmisión de datos: desplazar el cursor a la ventana izquierda y después pulsar la softkey VENTANA. El TNC mustra de nuevo la ventana standard para la gestión de ficheros

Para seleccionar otro directorio en visualización de doble ventana de datos, pulsar la softkey VISUALIZAR ÁRBOL. ¡Si pulsa la softkey VISUALIZAR FICHEROS, el TNC muestra el contenido del directorio seleccionado!

Copiar un fichero a otro directorio

- Seleccionar la subdivisión de la pantalla con las dos ventanas de igual tamaño
- Visualizar en ambas ventanas los directorios: pulsar la softkey VISUALIZAR ÁRBOL

Ventana derecha

Desplazar el cursor sobre el directorio en el cual se quieren copiar ficheros y visualizarlos con la softkey VISUALIZAR FICHEROS en dicho directorio

Ventana izquierda

Seleccionar el directorio con los ficheros que se quieren copiar y pulsar la softkey VISUALIZAR FICHEROS para visualizarlos

Visualizar las funciones para marcar ficheros

Desplazar el cursor sobre los ficheros que se quieren copiar y marcar. Si se desea se pueden marcar más ficheros de la misma forma

Copiar los ficheros marcados al directorio de destino

Otras funciones para marcar: véase "Marcar ficheros" en pág. 68.

Si se han marcado ficheros tanto en la ventana izquierda como en la derecha, el TNC copia del directorio en el que se encuentra el cursor.

Sobreescribir ficheros

Cuando copie ficheros en un directorio, en el cual ya existan ficheros con el mismo nombre, el TNC emitirá el aviso de error "Fichero protegido". Utilizar la función MARCAR para sobreescribir, a pesar de ello, el fichero:

- Sobreescribir varios ficheros: marcar "Ficheros existentes" y, en caso necesario, "Ficheros protegidos" en la ventana de superposición y pulsar la softkey OK o
- No sobreescribir ningún fichero: pulsar la softkey CANCELAR

El TNC en la red

Para conectar la tarjeta Ethernet a su red, véase "Conexión Ethernet" en pág. 434.

El TNC crea un protocolo de los mensajes de error durante el funcionamiento de la red (véase "Conexión Ethernet" en pág. 434).

Cuando el TNC está conectado a una red de comunicaciones, muestra las unidades conectadas en la ventana de directorio 1, (ver la imagen de la derecha). Todas las funciones descritas anteriormente (seleccionar la unidad, copiar ficheros, etc.) también son válidas para bases de datos de comunicaciones, siempre que su acceso lo permita.

Conexión y desconexión de unidades de comunicaciones

PGM MGT

RED

Seleccionar la gestión de ficheros: Pulsar la tecla PGM MGT, y si es preciso seleccionar la subdivisión de la pantalla con la softkey WINDOW igual que se muestra en la figura de arriba a la derecha

Gestión de sistemas de red: pulsar la softkey RED (segunda carátula de softkeys). El TNC muestra en la ventana derecha 2 posibles sistemas de red, a los que se tiene acceso. Con las softkeys que se describen a continuación se determinan las conexiones para cada unidad

Función	Softkey
Realizar la conexión en red, cuando la conexión está activada el TNC marca la columna Mnt .	CONEXION APARATO
Finalizar una conexión de red	DESCON. APARATO
Realizar la conexión en red automáticamente cuando se conecta el TNC. Cuando la conexión se ha realizado automáticamente, el TNC marca la columna Auto	CONEXION AUTOMAT.
Utilizar esta función PING para comprobar su conexión de red	PING
Al pulsar la softkey INFO DE RED, el TNC muestra los ajustes actuales de red	NETWORK INFO

Aparatos USB en el TNC

Puede proteger datos de forma especialmente fácil mediante aparatos USB o centrarlos en el TNC. El TNC soporta los aparatos USB siguientes:

- Unidades de disco con sistema de fichero FAT/VFAT
- Memory-sticks con sistema de fichero FAT/VFAT
- Discos duros con sistema de fichero FAT/VFAT
- Unidades de CD-ROM con sistema de fichero Joliet (ISO9660)

El TNC reconoce automáticamente dichos aparatos USB al conectarlos. El TNC no da soporte a aparatos USB con otros sistemas de fichero (p.ej. NTFS). Al realizar la conexión, el TNC emite un aviso de error.

El TNC emite asimismo un aviso de error, al conectar una carrera de USB. En este caso, eliminar el aviso con sólo pulsar la tecla CE.

En principio, todos los aparatos USB deberían poder ser conectados con los sistemas de fichero arriba mencionados al TNC. Si aun así continúa teneniendo problemas, póngase en contacto con HEIDENHAIN.

La gestión de ficheros visualiza los aparatos USB como una unidad propia en el árbol de directorios, de manera que puede utilizar correctamente las funciones descritas en la sección anterior para la gestión de ficheros.

Para retirar un aparato USB, debe proceder del siguiente modo:

PGM MGT	
+	

- ▶ Ir a la gestión de ficheros: pulsar la tecla PGM MGT
- Seleccionar la ventana izquierda con las teclas cursoras

Seguir conmutando la carátula de softkeys

- t
- Seleccionar el aparato USB a separar con una tecla cursora
- \triangleright

RED

- Seleccionar funciones adicionales
 - Seleccionar la función Retirar aparato USB: el TNC retira el aparato USB del árbol de directorios
 - Finalizar la gestión de ficheros

Por el contrario, puede volver a conectar un aparato USB anteriormente retirado, pulsando la siguiente softkey:

 Seleccionar la función para volver a conectar aparatos USB

4.4 Abrir e introducir programas

Estructura de un programa NC en formato lenguaje conversacional HEIDENHAIN

Un programa de mecanizado consta de una serie de frases de programa. En el dibujo de la derecha se indican los elementos de una frase.

El TNC enumera automáticamente las frases de un programa de mecanizado en secuencia ascendente.

La primera frase de un programa empieza con **BEGIN PGM**, el nombre del programa y la unidad de medida válida.

Las frases siguientes contienen información sobre:

- la pieza en bruto
- Definiciones y llamadas a la herramienta
- Desplazamiento a una posición de seguridad
- Avances y revoluciones
- Tipos de trayectoria, ciclos y otras funciones

La última frase de un programa se identifica con **END PGM**, el nombre del programa y la unidad de medida válida.

¡HEIDENHAIN recomienda desplazarse a una posición de seguridad después de la llamada de herramienta, desde la cual el TNC pueda posicionarse para un mecanizado libre de colisiones!

Definición de la pieza en bruto: BLK FORM

Después de abrir un nuevo programa se define una pieza en forma de paralelogramo sin mecanizar. Para definir la pieza en bruto, pulsar la softkey SPEC FCT y, a continuación, la softkey BLK FORM. El TNC precisa dicha definición para las simulaciones gráficas. Los lados del paralelogramo pueden tener una longitud máxima de 100 000 mm y deben ser paralelos a los ejes X, Y y Z. Esta pieza en bruto está determinada por los puntos de dos esquinas:

- Punto MIN: Coordenadas X, Y y Z mínimas del paralelogramo; introducir valores absolutos
- Punto MAX: Coordenadas X, Y y Z máximas del paralelogramo; introducir valores absolutos o incrementales

¡La definición de la pieza en bruto sólo se precisa si se quiere verificar gráficamente el programa!

Abrir un nuevo programa de mecanizado

Un programa de mecanizado se introduce siempre en el modo de funcionamiento **Memorizar/editar programa**. Ejemplo de la apertura de un programa:

\Rightarrow	Seleccionar el funcionamiento Memorizar/editar programa
PGM MGT	Ir a la gestión de ficheros: pulsar la tecla PGM MGT
Seleccionar el c programa:	lirectorio en el cual se quiere memorizar el nuevo
NOMBRE DEL F	ICHERO = 123.H
ENT	Introducir el nuevo nombre del programa y confirmar con la tecla ENT
мм	Seleccionar la unidad de medida: pulsar la softkey MM o INCH. El TNC cambia a la ventana del programa y abre el diálogo para la definición del BLK-FORM (pieza en bruto)
¿EJE DEL CAB	EZAL PARALELO A X/Y/Z ?
Z	Introducir el eje del cabezal
DEF BLK-FORM	: ¿PUNTO MÍN. ?
0 ENT 0 ENT	Introducir sucesivamente las coordenadas X, Y y Z del punto MIN

Posic. con introd.manual	Programar				
	Definición	pieza	bruto:	máximo	z
9 BELID POH 1 HT BEK TOOK 0.1 Z X Z UK FOOM 0.7 Z X Z UK FOOM 0.7 Z X Z U X TOOK 0.7 Z X U X Z U Y X X TOOK 0.7 Z X TOOK 0	0 v.0 Z-20 00 v.102 00 00 00 00 00 00 00 00 00 00 00 00 0				S II S II T 4***

i

-40

ENT

Ejemplo: Visualización del BLK-Form en el programa NC

O BEGIN PGM NUEVO MM	Principio del programa, nombre, unidad de medida	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Eje del cabezal, coordenadas del punto MIN	
2 BLK FORM 0.2 X+100 Y+100 Z+0	Coordenadas del punto MAX	
3 END PGM NUEVO MM	Final del programa, nombre, unidad de medida	

El TNC genera automáticamente los números de frase, así como las frases **BEGIN** y **END**.

¡Si no se quiere programar la definición de la pieza en bruto, se interrumpe el diálogo en **Eje del cabezal paralelo a X/Y/Z** con la tecla DEL!

El TNC sólo puede representar el gráfico, cuando la página más pequeña mide al menos 50 µm y la más grande un máximo de 99 999,999 mm.

Programación de los movimientos de la herramienta con diálogo en lenguaje conversacional

Para programar una frase se empieza con la tecla de apertura del diálogo. En la línea de la cabecera de la pantalla el TNC pregunta todos los datos precisos.

Ejemplo de un diálogo

Apertura del diálogo

:00	DORDENADAS	?
X	10	Introducir la coordenada del pto. final para el eje X
Y	20 ENT	Introducir la coordenada del pto. final para el eje Y, y pasar con la tecla ENT a la siguiente pregunta

Funcionamiento manual Programar ¿Función auxiliar M? BEGIN PGM 14 MM BLK FORM 0.1 Z X+0 Y+0 Z-20 BLK FORM 0.2 X+100 Y+100 Z+0 TOOL CALL 9 Z S3500 P TOOL CALL # 2 S360 24103 06 FM2 H23 L X-500 V-30 R6 FM2 H23 L X-50 V-30 R6 FM2 H23 L X-50 V-20 R6 FM2 H23 APPR LCT X+12 V+5 R5 R N H48 L X-50 V-20 R5 L X-50 V-20 R5 L X-50 V-20 R5 L X+50 V-50 R5 DFL CT X+10 V-50 R5 S L X+510 V-50 R5 S L X+510 V-50 R5 S L X+510 V-50 R5 S L X+10 R6 FM3 N20 S LN0 R7 L4 M1 . Y+5 R5 RL F250 80.000 40.000 20.00 DIAGNOSE M94 Μ M114 M118 M120 M128 M140

CORRECCIÓN DE RADIO: ¿RL/RR/SIN CORREC.:?

ENI	

Introducir "Sin corrección de radio" y pasar con ENT a la siguiente pregunta

AVANCE F=? / F MAX = ENT

Avance de este desplazamiento 100 mm/min, y pasar con ENT a la siguiente pregunta

¿FUNCIÓN AUXILIAR M?

ENT

ENT

Función auxiliar ${\rm M3}$ "Cabezal conectado", con la tecla ENT finalizar este diálogo

La ventana del programa indica la frase:

3 L X+10 Y+5 R0 F100 M3

Funciones para determinar el avance	Softkey
Desplazar en marcha rápida	F MAX
Desplazar con el avance calculado automáticamente en la frase TOOL CALL	F RUTO
Desplazar con el avance programado (unidad mm/min)	F

i

Aceptar las posiciones reales

El TNC permite adoptar la posición actual de la herramienta en el programa, p.ej. si se

programan frases de desplazamiento

- Si se programan ciclos
- Definir las herramientas con TOOL DEF

Para aceptar los valores de posición adecuados, proceder de la siguiente manera:

Posicionar el campo de entrada en la posición de una frase, en la que se desea aceptar una posición

Seleccionar la función Aceptar posición real: el TNC visualiza en la carátula de softkeys las posiciones de los ejes que se pueden adoptar

Seleccionar eje: el TNC escribe la posición actual del eje seleccionado en el campo de entrada activo

El TNC acepta siempre las coordenadas del punto medio de la herramienta en el plano de mecanizado, incluso cuando la corrección de radio de la herramienta se encuentra activa.

El TNC acepta en el eje de la herramienta siempre las coordenadas de la punta de la herramienta, es decir, siempre tiene en cuenta la longitud de la herramienta activa.

Editar un programa

ᇞ

Sólo se puede editar un programa, si no está siendo ejecutado por el TNC en un modo de funcionamiento de máquina. El TNC permite marcar la frase con el cursor, no obstante, impide memorizar las modificaciones con un aviso de error.

Mientras se elabora o modifica un programa de mecanizado, se puede seleccionar cualquier línea del programa o palabra de una frase con las teclas cursoras o con las softkeys:

Función	Softkey/Teclas
Pasar página hacia arriba	
Pasar página hacia abajo	PAGINA
Salto al comienzo del programa	INICIO
Salto al final del programa	FIN
Modificar la posición de la frase actual en la pantalla. De este modo puede visualizar más frases de programa, que se han programado antes de la frase actual	
Modificar la posición de la frase actual en la pantalla. De este modo es posible visualizar más frases de programa, programadas tras la frase actual	
Saltar de frase a frase	
Seleccionar palabras sueltas en una frase	
Seleccionar la frase en cuestión: pulsar la tecla GOTO, introducir el número de frase que se desee, confirmar con la tecla ENT.	GOTO

i

Función	Softkey/tecla
Fijar el valor de la palabra deseada a cero	CE
Borrar un valor erróneo	CE
Borrar un aviso de error (no intermitente)	CE
Borrar la palabra seleccionada	
Borrar la frase seleccionada	DEL
Borrar ciclos y partes de un programa	
Insertar la frase que se ha editado o borrado por última vez	ÚLTIMO FRASE NC INTROD.

Añadir frases en cualquier posición

Seleccionar la frase detrás de la cual se quiere añadir una frase nueva y abrir el diálogo

Modificar y añadir palabras

- Se elige la palabra en una frase y se sobreescribe con el nuevo valor. Mientras se tenga seleccionada la palabra se dispone del diálogo en lenguaje conversacional.
- Finalizar la modificación: pulsar la tecla END

Cuando se añade una palabra se pulsan las teclas cursoras (de dcha. a izq.) hasta que aparezca el diálogo deseado y se introduce el valor deseado.

Buscar palabras iguales en frases diferentes

Para esta función se fija la softkey DIBUJO AUTOM. en OFF.

Seleccionar la palabra de una frase: Pulsar las teclas cursoras hasta que esté marcada la palabra con un recuadro

Seleccionar la frase con las teclas cursoras

En la nueva frase seleccionada el recuadro se encuentra sobre la misma palabra seleccionada en la primera frase.

Si ha iniciado la búsqueda en programas muy largos, el TNC muestra una ventana con visualización de dicha búsqueda. Adicionalmente se puede cancelar la búsqueda por softkey.

El TNC acepta en el eje de la herramienta siempre las coordenadas de la punta de la herramienta, es decir, siempre tiene en cuenta la longitud de la herramienta activa.

Búsqueda de cualquier texto

- Seleccionar la función de búsqueda: pulsar la softkey BUSCAR El TNC muestra el diálogo Buscar texto:
- Introducir el texto que se busca
- Buscar texto: pulsar la softkey EJECUTAR

Marcar, copiar, borrar y añadir partes del programa

Para poder copiar una parte del programa dentro de un programa NC o a otro programa NC, el TNC dispone de las siguientes funciones: véase tabla de abajo.

Para copiar una parte del programa se procede de la siguiente forma:

- > Seleccionar la carátula de softkeys con las funciones de marcar
- Seleccionar la primera (última) frase de la parte del programa que se quiere copiar
- Marcar la primera (última) frase: pulsar la softkey MARCAR BLOQUE. El TNC posiciona el cursor sobre la primera posición del número de la frase y visualiza la softkey CANCELAR MARCAR
- Desplazar el cursor a la última (primera) frase de la parte del programa que se quiere copiar o borrar. El TNC representa todas las frases marcadas en otro color. La función de marcar se puede cancelar en cualquier momento pulsando la softkey CANCELAR MARCAR
- Copiar la parte del programa marcada: pulsar la softkey COPIAR BLOQUE, borrar la parte marcada del programa: pulsar la softkey BORRAR BLOQUE. El TNC memoriza el bloque marcado
- Con las teclas cursoras seleccionar la frase detrás de la cual se quiere añadir la parte del programa copiada (borrada)
 - Para añadir la parte del programa copiada en otro programa, se selecciona el programa correspondiente mediante la gestión de ficheros y se marca la frase detrás de la cual se quiere añadir dicha parte del programa.
- Añadir la parte del programa memorizada: pulsar la softkey AÑADIR BLOQUE
- Finalizar la función de marcar: pulsar la softkey CANCELAR MARCAR

Función	Softkey
Activar la función de marcar	SELECC. BLOQUE
Desactivar la función de marcar	CANCELAR MARCAR
Borrar el bloque marcado	BORRAR BLOQUE
Añadir el bloque que se encuentra memorizado	INSERTAR BLOQUE
Copiar el bloque marcado	COPIAR Bloque

Función de búsqueda del TNC

Con la función de búsqueda del TNC es posible buscar un texto cualquiera dentro de un programa, y si es necesario sustituirlo por un texto nuevo.

Buscar un texto cualquiera

Seleccionar la frase en la que se encuentra memorizada la palabra que se va a buscar

Seleccionar función de búsqueda: el TNC superpone la ventana de búsqueda y visualiza en la función de softkey las funciones de búsqueda disponibles (ver tabla funciones de búsqueda)

EJECUTAR

EJECUTAR

- Introducir el texto de búsqueda, tener en cuenta mayúsculas y minúsculas
- Comenzar la búsqueda: el TNC visualiza las funciones de búsqueda disponibles en la función de softkey (ver tabla funciones de búsqueda en la página siguiente)
- Iniciar proceso de búsqueda: el TNC salta a la página siguiente, en la que se encuentra el texto buscado
- Repetir proceso de búsqueda: el TNC salta a la frase siguiente, en la que se encuentra memorizado el texto buscado

Finalizar función de búsqueda

Buscar/sustituir un texto cualquiera

r Ser	La función Buscar/Reemplazar no es posible si
~0	un programa está protegido
	el programa está siendo ejecutado en este momento por el TNC
	En la función REEMPLAZAR TODO prestar atención en no reemplazar partes del texto, que no deben ser modificadas. Los textos reemplazados se pierden irremediablemente.
Selecci que se	ionar la frase en la que se encuentra memorizada la palabra va a buscar
BUSQUEDA	Seleccionar función de búsqueda: el TNC superpone la ventana de búsqueda y visualiza en la función de softkey las funciones de búsqueda disponibles
BUSCAR + SUSTITUIR	Activar sustituir: el TNC visualiza una posibilidad de entrada en la ventana de transición para el texto que se va a sustituir
X	Para introducir el texto de búsqueda, tener en cuenta mayúsculas y minúsculas, comprobar con la tecla ENT
Ζ	Introducir el texto que se va a sustituir, tener en cuenta mayúsculas y minúsculas
CONTINUAR	Iniciar el proceso de búsqueda: el TNC visualiza en la función de softkey las funciones de búsqueda disponibles (ver tabla opciones de búsqueda)
PALABRA ENTERA OFF ON	▶ Si es necesario modificar opciones de búsqueda
EJECUTAR	Iniciar proceso de búsqueda: el TNC salta al siguiente texto buscado
EJECUTAR	Para reemplazar el texto y saltar a continuación al siguiente punto encontrado: pulsar Softkey REEMPLAZAR, o para reemplazar en todos los puntos encontrados. pulsar Softkey REEMPLAZAR TODOS, o para no reemplazar el texto y saltar al siguiente punto encontrado: pulsar la softkey BUSCAR
	Finalizar función de búsqueda

i

4.5 Gráfico de programación

Desarrollo con y sin gráfico de programación

Mientras se elabora un programa, el TNC puede visualizar el contorno programado con un gráfico de trazos 2D.

Para la subdivisión de la pantalla cambiar el programa a la izquierda y el gráfico a la derecha: pulsar la tecla SPLIT SCREEN y la softkey PROGRAMA + GRAFICO

Softkey DIBUJO AUTOM. en ON. Mientras se introducen las líneas del programa, el TNC visualiza cada movimiento programado en la ventana del gráfico

Si no se desea que el TNC visualice el gráfico, se fija la softkey DIBUJO AUTOM. en OFF.

DIBUJO AUTOM. ON no puede representar gráficamente repeticiones parciales del pgm.

Realizar el gráfico de programación para un programa ya existente

- Con las teclas cursoras seleccionar la frase hasta la cual se quiere realizar el gráfico o pulsar GOTO e introducir directamente el nº de frase deseado
 - RESET + START

Realizar el gráfico: pulsar softkey RESET + START

Otras funciones:

Función	Softkey
Realizar el gráfico de programación completo	RESET + START
Realizar el gráfico de programación por frases	START INDIVID.
Realizar el gráfico de programación completo o completarlo después de RESET + START	START
Detener el gráfico de programación. Esta softkey sólo aparece mientras el TNC realiza un gráfico de programación	STOP

Activar o desactivar las frases marcadas

- Conmutar la carátula de softkeys: Véase figura arriba dcha
- Para visualizar nums. frase: fijar la softkey VISUALIZAR OMITIR NÚM. FRASE en VISUALIZAR
 - Para visualizar núms. frase: Fijar la softkey VISUALIZAR OMITIR NÚM. FRASE en OMITIR

Borrar el gráfico

Conmutar la carátula de softkeys: Véase figura arriba dcha.

Borrar el gráfico: pulsar la softkey BORRAR GRAFICO

Ampliación o reducción de una sección

Se puede determinar la vista de un gráfico. Con un margen se selecciona la sección para ampliarlo o reducirlo.

Seleccionar la carátula de softkeys para la ampliación o reducción de una sección (segunda carátula, véase fig. centro dcha.)

De esta forma se dispone de las siguientes funciones:

Función	Softkey
Seleccionar el margen y desplazarlo. Para desplazar mantener pulsada la softkey correspondiente	← → ↓ ↑
Reducir margen - para reducirlo mantener pulsada esta softkey	
Ampliar margen - para ampliarlo mantener pulsada esta softkey	

Con la softkey SECCIÓN PIEZA EN BRUTO aceptar el campo seleccionado

Con la softkey PIEZA EN BRUTO COMO BLK FORM se genera de nuevo la sección original.

4.6 Añadir comentarios

Aplicación

Se pueden añadir comentarios en un programa de mecanizado, a fin de explicar pasos de programa o de ofrecer instrucciones.

Cuando el TNC ya no puede mostrar un comentario entero en la pantalla, aparece el símbolo >> en la pantalla.

Añadir líneas de comentarios

- > Seleccionar la frase detrás de la cual se quiere añadir el comentario
- Seleccionar la softkey FUNC. ESPECIAL DE TNC
- Seleccionar la softkey COMMENT
- Introducir comentarios mediante el teclado de pantalla (tecla GOTO) o, en caso de existir, mediante el teclado USB y terminar la frase con la tecla END

Funciones al editar el comentario

Posic. con introd.manual	Program	nar		
	¿Coment	ario?		
BECIN PORT EST IS-2N CONTENT IS-2N CONTENT	1 HM Z X-135 V-40 Z-5 X X-135 V-40 Z+0 X1500 V-40 Z+0 X1500 V-40 Z+0 X1500 V-40 Z+0 X1500 V-40 Z+0 X1500 V-40 Z+0 NATURAL STATUS NATURAL STATUS NATU	р м Вя о		
Q9=-1 ;SE	TIN ULTIMA PALABRA	SIGUIENTE	INSERTAR SOBRESCR	

Función	Softkey
Saltar al principio del comentario	
Saltar al final del comentario	FIN
Saltar al principio de una palabra. Las palabras se separan con un espacio	ULTIMA PALABRA
Saltar al final de la palabra. Las palabras se separan con un espacio	SIGUIENTE PALABRA
Conmutar entre modo introducir y sobrescribir	INSERTAR SOBRESCR.

4.7 La calculadora

Manejo

El TNC dispone de una calculadora con las funciones matemáticas más importantes.

- Abrir la calculadora y cerrar de nuevo con la tecla CALC
- Con las softkeys seleccionar funciones de cálculo mediante comandos abreviados.

Función de cálculo	Comando abreviado (tecla)
Sumar	+
Restar	-
Multiplicar	*
Dividir	/
Cálculo entre paréntesis	()
Arcocoseno	ARC
Seno	SEN
Coseno	COS
Tangente	TAN
Elevar un valor a una potencia	Х^Ү
Sacar la raíz cuadrada	SQRT
Función de inversión	1/x
PI (3.14159265359)	PI
Sumar un valor a la memoria intermedia	M+
Guardar un valor en la memoria intermedia	MS
Llamada a la memoria intermedia	MR
Borrar la memoria intermedia	MC
Logaritmo natural	LN
Logaritmo	LOG
Función exponencial	e^x
Comprobar el signo	SGN

i

Función de cálculo	Comando abreviado (tecla)
Generar un valor absoluto	ABS
Redondear posiciones detrás de la coma	INT
Redondear posiciones delante de la coma	FRAC
Valor modular	MOD
Seleccionar vista	Ver
Borrar valor	DEL

Aceptar el valor calculado en el programa

- Seleccionar con las teclas la palabra en la que se debe adoptar el valor calculado
- Abrir la calculadora con la tecla CALC y ejecutar el cálculo deseado
- Pulsar la tecla "Aceptar posición real", el TNC abre una carátula de softkeys
- Pulsar softkey CALC: el TNC acepta el valor en el campo de entrada activo y cierra la calculadora

4.8 Avisos de error

Visualizar error

El TNC visualiza el error, entre otros, en:

- Introducciones erróneas
- Errores lógicos en el programa
- Elementos del contorno que no pueden ser ejecutados
- Aplicaciones incorrectas del palpador

Si se produce un error, éste se visualiza en rojo en la cabecera. Se visualizan avisos de error largos y de varias líneas abreviados. Si aparece un error en el modo de funcionamiento de la segunda pantalla, éste se visualiza con la palabra "Error" en rojo. La información completa referida a todos los errores surgidos se encuentra en la ventana de error.

Si, en caso excepcional, aparece un "error en el procesamiento de datos", el TNC abre automáticamente la ventana de error. No es posible corregir este tipo de error. Cierre el sistema y reinicie el TNC de nuevo.

El aviso de error de la cabecera se visualiza siempre que se borre o se sustituya por un error de mayor prioridad.

Un aviso de error que contiene el número de una frase de programa, se ha generado en dicha frase o en las anteriores.

Abrir ventana de error

Pulsar la tecla ERR. El TNC abre la ventana de error y visualiza todos los avisos de error que se han producido.

Cerrar la ventana de error

► Pulsar la softkey FIN – o

ERR

> pulsar la tecla ERR. El TNC cierra la ventana de error

Avisos de error detallados

El TNC muestra posibilidades para la causa del error y posibilidades para la solución del error:

Abrir ventana de error

INFO ADICIONAL Información sobre la causa y solución del error: posicionar el cursor luminoso sobre el aviso de error y pulsar la softkey INFO ADICIONAL. El TNC abre una ventana con información sobre la causa y la solución del error

Abandonar info: pulsar la softkey INFO ADICIONAL de nuevo

Softkey INFO INTERNA

La softkey INFO INTERNA ofrece información sobre el aviso de error, que solamente reviste importancia en un caso de servicio.

Abrir ventana de error

- Información detallada sobre el aviso de error: posicionar el cursor luminoso sobre el aviso de error y pulsar la softkey INFO INTERNA. El TNC abre una ventana con información interna sobre el error
- Abandonar Detalles: pulsar de nuevo la softkey INFO INTERNA

Borrar error

Borrar error fuera de la ventana de error:

Borrar el error/indicación visualizado en la cabecera: pulsar la tecla CE

En algunos modos de funcionamiento (ejemplo: Editor) no se puede utilizar la tecla CE para borrar el error, ya que ésta está programada para otras funciones.

Borrar varios errores:

Abrir ventana de error

Borrar errores individuales: posicionar el cursor en el aviso de error y pulsar el softkey BORRAR.

Borrar todos los errores: pulsar el softkey BORRAR TODOS.

Si la causa de un error no se soluciona, no es posible borrar este error. En este caso se mantiene el aviso de error.

Posic. con introd.manua	, P	rogram	ar				
	PI	ogramación P	(: bloque de p	sicionam	miento no ad	misible	
Causa: Se ha progras Se ha progras secuencia Fr L con compor Resolucar pri Resolucar pri solicionami están defini coordenadas aPPR/DEP>.	ioni Progra in o resuel mentes de ac mero ne per das mediani contenidas	macion "K: a con exception numerica con exception numerica "K private to con- cuencia FK private to con- cuencia FK private to con- tridas. No second to con- tridas. No secon	ionasiento no ionasiento no ion de: frases excepción de r cospizión fun grises de fun ge mecanizado	Dermitid Permitid Jertical Dertical Siones d Siones d Siones d Siones d	s dentro de DHF, APPR/DE Es al plano s frases de a travectoria on: RND, CHF	una P, frases FK. a, que Y	
							+
			-	_	(

Protocolo de error

El TNC memoriza los errores registrados y sucesos importantes (p. ej. inicio del sistema) en un protocolo de errores. La capacidad del protocolo de errores es limitada. Cuando el protocolo de errores está lleno, el TNC utiliza un segundo fichero. Si el segundo también está lleno, se borra el primer protocolo de errores y se sobreescribe, etc. En caso necesario, conmutar de FICHERO ACTUAL a FICHERO ANTERIOR, a fin de examinar el historial de errores.

Abrir ventana de error

FICHEROS PROTOCOLO	Pulsar la softkey FICHEROS DE PROTOCOLO
PROTOCOLO	Abrir el protocolo de errores: pulsar la softkey
ERROR	PROTOCOLO DE ERRORES
PREVIOUS	En caso necesario, ajustar el logfile anterior: pulsar la
FILE	softkey FICHERO ANTERIOR
CURRENT	En caso necesario, ajustar el logfile actual: pulsar la softkey FICHERO ACTUAL

La entrada más antigua del logfile de error se encuentra al principio – la más reciente al final del fichero.

Protocolo de teclas

El TNC memoriza las entradas de teclas y sucesos importantes (p. ej. inicio del sistema) en un protocolo de teclas. La capacidad del protocolo de teclas es limitada. Si el protocolo de teclas está lleno, entonces se conmuta a un segundo protocolo de teclas. Si el segundo también está lleno, se borra el primer protocolo y se sobreescribe, etc. En caso necesario, conmutar de FICHERO ACTUAL a FICHERO ANTERIOR, a fin de examinar el historial de entradas.

Pulsar la softkey FICHEROS DE PROTOCOLO

- PROTOCOLO PALPACION
- Abrir logfile de teclas: pulsar la softkey PROTOCOLO DE TECLAS
- En caso necesario, ajustar el logfile anterior: pulsar la softkey FICHERO ANTERIOR
- CURRENT FILE

PREVIOUS FILE

> En caso necesario, ajustar el logfile actual: pulsar la softkey FICHERO ACTUAL

El TNC memoriza cada tecla activada durante el funcionamiento del panel de control en un protocolo de teclas. La entrada más antigua se encuentra al principio – la más reciente al final del fichero.

Resumen de teclas y softkeys para examinar los logfiles:

Función	Softkey/Teclas
Salto al comienzo del logfile	
Salto al final del logfile	FIN
Logfile actual	CURRENT FILE
Logfile anterior	PREVIOUS FILE
Retroceder/avanzar línea	
Regreso al menú principal	

Texto de aviso

En un error, por ejemplo al activar una tecla no permitida o al introducir un valor fuera de su margen, el TNC hace referencia a este error con un texto de aviso (verde) en la cabecera. El TNC borra el texto de aviso en la próxima entrada válida.

Memorizar ficheros de servicio

En caso necesario, se puede memorizar la "situación actual del TNC" y facilitársela al técnico de servicio para su evaluación. Para ello se memoriza un grupo de ficheros de servicio (logfile de errores y de teclas, así como otros ficheros que ofrecen información sobre la situación actual de la máquina y del mecanizado).

Si se repite la función "Memorizar ficheros de servicio", se sobreescribirá el grupo de ficheros de servicio anterior.

Memorizar ficheros de servicio:

Abrir ventana de error

▶ Pulsar la softkey FICHEROS DE PROTOCOLO

Memorizar ficheros de servicio: pulsar la softkey MEMORIZAR FICHEROS DE SERVICIO

Programación: Herramientas

5.1 Introducción de datos de la herramienta

Avance F

El avance **F** es la velocidad en mm/min (pulg./min), con la cual se desplaza el punto medio de la herramienta en su trayectoria. El avance máximo puede ser diferente en cada eje de máquina y está determinado por parámetros de máquina.

Introducción

El avance se puede introducir en una frase **TOOL CALL** (llamada a la herramienta) y en cada frase de posicionamiento (véase "Elaboración de frases de programa con las teclas de función de trayectoria" en pág. 119).

Marcha rápida

Para la marcha rápida se introduce F MAX. Para introducir F MAX se pulsa la tecla ENT o la softkey FMAX cuando aparece la pregunta del diálogo AVANCE F = ?.

Para realizar la marcha rápida de su máquina, se puede programar también el valor numeral correspondiente, por ej. F30000. Esta marcha rápida tiene efecto al contrario de FMAX no sólo frase a frase, sino hasta que se programa un nuevo avance.

Duración del efecto

El avance programado con un valor numérico es válido hasta que se indique un nuevo avance en otra frase. **F** MAX sólo es válido para la frase en la que se programa. Después de la frase con **F** MAX vuelve a ser válido el último avance programado con un valor numérico.

Modificación durante la ejecución del programa

Durante la ejecución del programa se puede modificar el avance con el potenciómetro de override F para el mismo.

1

Revoluciones del cabezal S

Las revoluciones S del cabezal se indican en revoluciones por minuto (rpm) en la frase **TOOL CALL** (llamada a la hta.).

Programar una modificación

En el programa de mecanizado se pueden modificar las revoluciones del cabezal con una frase TOOL CALL en la cual se indica únicamente el nuevo número de revoluciones:

- Programación de la llamada a la hta.: Pulsar la tecla TOOL CALL
- Pasar la pregunta del diálogo ¿Número de hta.? con la tecla NO ENT
- Pasar la pregunta del diálogo ¿Eje hta. paralelo X/ Y/Z ? con la tecla NO ENT
- En el diálogo ¿Revoluciones S del cabezal = ? introducir nuevas revoluciones del cabezal y confirmar con la tecla END

Modificación durante la ejecución del programa

Durante la ejecución del programa se pueden modificar las revoluciones con el potenciómetro de override S.

5.2 Datos de la herramienta

Condiciones para la corrección de la herramienta

Normalmente las coordenadas de las trayectorias necesarias, se programan tal como está acotada la pieza en el plano. Para que el TNC pueda calcular la trayectoria del punto central de la herramienta, es decir, que pueda realizar una corrección de la herramienta, deberá introducirse la longitud y el radio de cada herramienta empleada.

Los datos de la herramienta se pueden introducir directamente en el programa con la función TOOL DEF o por separado en las tablas de herramientas. Si se introducen los datos de la herramienta en la tabla, existen otras informaciones específicas de la herramienta (QV). Cuando se ejecuta el programa de mecanizado, el TNC tiene en cuenta todas las informaciones introducidas.

Número y nombre de la herramienta

Cada herramienta se caracteriza con un número del 0 a 9999. Cuando se trabaja con tablas de herramienta, se pueden emplear números más altos y además adjudicar nombres de herramientas. Los nombres de herramienta pueden contener como máximo 16 caracteres.

La herramienta con el número 0 tiene longitud L=0 y radio R=0. En las tablas de herramientas la herramienta T0 también debería definirse con L=0 y R=0.

Longitud de la herramienta L

La longitud L de la herramienta se puede determinar de dos formas:

Diferencia entre la longitud de la herramienta y la longitud de la herramienta cero L0

Signo:

L>L0: La herramienta es más larga que la herramienta cero L<L0: La herramienta es más corta que la herramienta cero

Determinar la longitud:

- Desplazar la herramienta cero a la posición de referencia según el eje de la herramienta (p.ej. superficie de la pieza con Z=0)
- ▶ Fijar la visualización del eje de la hta. a cero (fijar pto. de ref.)
- Cambiar por la siguiente herramienta
- Desplazar la hta. a la misma posición de ref. que la hta. cero
- La visualización del eje de la herramienta indica la diferencia de longitud respecto a la herramienta cero
- Introducir el valor en la frase TOOL DEF o bien en la tabla de herramientas

Determinar la longitud L con un aparato de ajuste

Después se introduce directamente el valor calculado en la definición de la herramienta TOOL DEF o en la tabla de herramientas.

5.2 Datos d<mark>e l</mark>a herramienta

Radio R de la herramienta

Introducir directamente el radio R de la herramienta.

Valores delta para longitudes y radios

Los valores delta indican desviaciones de la longitud y del radio de las herramientas .

Un valor delta positivo indica una sobremedida (**DL**, **DR**, **DR2**>0). En un mecanizado con sobremedida dicho valor se indica en la programación por medio de la llamada a la herramienta **TOOL CALL**.

Un valor delta negativo indica un decremento (**DL**, **DR**, **DR**₂<0). En las tablas de herramienta se introduce el decremento para el desgaste de la hta.

Los valores delta se indican como valores numéricos, en una frase **TOOL CALL** se admite también un parámetro Q como valor.

Margen de introducción: los valores delta se encuentran como máximo entre $\pm 99,999$ mm.

Los valores delta de la tabla de herramientas influyen en la representación gráfica de la **herramienta**. La representación de la **pieza** en la simulación permanece invariable.

Los valores delta de la frase TOOL CALL modifican en la simulación el tamaño representado de la **pieza**. El **tamaño de la herramienta** simulado permanece invariable.

Introducción de los datos de la hta. en el pgm

El número, la longitud y el radio para una herramienta se determina una sóla vez en el programa de mecanizado en una frase **TOOL DEF**:

Seleccionar la definición de hta: pulsar la tecla TOOL DEF

- Número de herramienta: identificar claramente una herramienta con su número
- Longitud de la herramienta: Valor de corrección para la longitud
- Radio de la herramienta: Valor de corrección para el radio

Durante el diálogo es posible introducir el valor para la longitud del radio directamente en el campo de diálogo: pulsar la softkey del eje deseada.

Ejemplo

4 TOOL DEF 5 L+10 R+5

Introducir los datos de la herramienta en la tabla

En una tabla de herramientas se pueden definir hasta 9999 herramientas y memorizar sus datos correspondientes. Rogamos tengan en cuenta las funciones de edición que aparecen más adelante en este capítulo. A fin de poder introducir varios datos de corrección para una herramienta (indexar número de herramienta), añadir una línea y ampliar el número de herramienta mediante un punto y una cifra del 1 al 9 (p. ej. **T 5.2**).

Las tablas de herramientas se emplean cuando

- Se desea utilizar herramientas indexadas, como por ej. taladro de niveles con varias correcciones de longitud (Pág. 102)
- Su máquina está equipada con un cambiador de herramientas automático
- Se desea profundizar con el ciclo de mecanizado 22 (véase "DESBASTE (ciclo 22)" en pág. 270)

Tabla de herramientas: Datos de la herramienta estándard

Abrev.	Introducciones	Diálogo
т	Número con el cual se llama a la hta. en el programa (p.ej. 5, indiciado: 5.2)	-
NOMBRE	Nombre con el que se llama a la herramienta en el programa	¿Nombre de la herramienta?
L	Valor de corrección para la longitud L de la herramienta	¿Longitud de la herramienta?
R	Valor de corrección para el radio R de la herramienta	¿Radio R de la herramienta?
R2	Radio R2 de la herramienta para fresa toroidal (sólo para corrección de radio tridimensional o representación gráfica del mecanizado con fresa esférica)	¿Radio R2 de la herramienta?
DL	Valor delta de la longitud de la herramienta L	¿Sobremedida de longitud de la herramienta?
DR	Valor delta del radio R de la herramienta	¿Sobremedida radio herramienta?
DR2	Valor delta del radio de la herramienta R2	¿Sobremedida del radio de la herramienta R2?
TL	Fijar el bloqueo de la herramienta (TL : de Tool Locked = bloqueo herramienta en inglés)	¿Herramienta bloqueada? Sí = ENT / No = NO ENT
RT	Número de una herramienta gemela, si existe, como repuesto de la herramienta (RT : de R eplacement T ool = herramienta de repuesto en inglés); véase también TIME2	¿Herramienta gemela?
TIME1	Máximo tiempo de vida de la herramienta en minutos. Esta función depende de la máquina y se describe en el manual de la misma	¿Máx. tiempo de vida?
TIME2	Máximo tiempo de vida de la herramienta en un TOOL CALL en minutos: cuando el tiempo de vida actual alcanza o sobrepasa este valor, el TNC utiliza la herramienta gemela en el siguiente TOOL CALL (véase también CUR.TIME)	¿Máximo tiempo de vida en TOOL CALL?

Abrev.	Introducciones	Diálogo
CUR.TIME	Tiempo de vida actual de la herramienta en minutos: el TNC cuenta automáticamente el tiempo de vida actual (CUR.TIME : del inglés CUR rent TIME = tiempo de vida actual). Se puede introducir una indicación para las herramientas empleadas.	¿Tiempo de vida actual?
TIPO	Tipo de herramienta: softkey SELECCION TIPO (3ª carátula de softkeys); el TNC visualiza una ventana en la cual se selecciona el tipo de herramienta. Sólo los tipos de herramienta DRILL y MILL están activos ahora	¿Tipo de herramienta?
DOC	Comentario sobre la herramienta (máximo 16 signos)	¿Comentario sobre la herramienta?
PLC	Información sobre esta herramienta, que se transmite al PLC	¿Estado del PLC?
LCUTS	Longitud de la cuchilla de la herramienta para el ciclo 22	¿Longitud de la cuchilla en el eje de la herramienta?
ANGLE	Máximo ángulo de profundización de la hta. en movimientos de profundización pendular para los ciclos 22 y 208	¿Máximo ángulo de profundización?
CUT	Número de cuchillas de la herramienta (máx. 20 cuchillas)	¿Número de cuchillas?
RTOL	Desviación admisible del radio R de la herramienta para reconocer un desgaste. Si se sobrepasa el valor introducido, el TNC bloquea la herramienta (estado L). Margen de introducción: 0 a 0,9999 mm	Tolerancia de desgaste: ¿Radio?
LTOL	Desviación admisible de la longitud L de la herramienta para reconocer un desgaste. Si se sobrepasa el valor introducido, el TNC bloquea la herramienta (estado L). Margen de introducción: 0 a 0,9999 mm	Tolerancia de desgaste: ¿Longitud?
DIRECT.	Dirección de corte de la herramienta para la medición con la herramienta girando	¿Dirección de corte (M3 = -) ?
TT:R-OFFS	De momento todavía no ofrece soporte	¿Desvío de la hta. radio ?
TT:L-OFFS	De momento todavía no ofrece soporte	¿Desvío de la hta. longitud ?
LBREAK	Desvío admisible de la longitud L de la herramienta para llegar a la rotura. Si se sobrepasa el valor introducido, el TNC bloquea la herramienta (estado L). Margen de introducción: 0 a 0,9999 mm	Tolerancia de rotura: ¿Longitud ?
RBREAK	Desvío admisible del radio R de la herramienta para llegar a la rotura. Si se sobrepasa el valor introducido, el TNC bloquea la herramienta (estado L). Margen de introducción: 0 a 0,9999 mm	Tolerancia de rotura: ¿Radio?
РТҮР	Tipo de herramienta para evaluar en la tabla de posiciones	¿Tipo de herramienta para la tabla de posiciones?
LIFTOFF	Determinar si el TNC debe desplazar la herramienta en una parada NC en dirección del eje de herramienta positivo para evitar marcas de cortes en el contorno. Si está definida Y, el TNC retira la herramienta 0,1 mm del contorno, si se ha activado esta función en el programa NC con M148 (véase "Con Stop NC retirar automáticamente la herramienta del contorno: M148" en pág. 176)	¿Retirar herramienta Y/N?
TP_NO	Número del palpador en la tabla de herramientas	TP_N0

(

i

Editar las tablas de herramientas

La tabla de herramientas válida para la ejecución del programa tiene como nombre de fichero TOOL.T y debe guardarse en el directorio "tabla". La tabla de herramientas TOOL.T sólo se puede editar en un modo de funcionamiento de Máquina.

Para las tablas de herramientas que se desee archivar o utilizar para el Test de programa debe asignarse cualquier otro nombre de fichero con la terminación .T. Para los modos de funcionamiento "Test de programa" y "Programación", el TNC utiliza de forma estándar la tabla de herramientas "simtool.t", que también se encuentra memorizada en el directorio "tabla". Para editar, pulsar la softkey EDITOR DE TABLAS en el modo de funcionamiento Test de programa.

Abrir la tabla de herramientas TOOL.T:

Seleccionar cualquier modo de funcionamiento de Máquina

Seleccionar la tabla de herramientas: pulsar la softkey TABLA HTAS.

PGM MGT Fijar la softkey EDITAR en "ON"

Abrir cualquier otra tabla de herramientas

Seleccionar el funcionamiento Memorizar/editar programa

- Llamada a la gestión de ficheros
- Visualizar los tipos de ficheros: pulsar la softkey SELECCIONAR TIPO
- Visualizar ficheros del tipo .T: pulsar la softkey MOSTRAR .T
- Seleccionar un fichero o introducir el nombre de un fichero nuevo. Confirmar con la tecla ENT o con la softkey SELECCIONAR

Cuando se ha abierto una tabla de herramientas para editarla, se puede desplazar el cursor con las teclas cursoras o mediante softkeys a cualquier posición en la tabla. En cualquier posición se pueden sobreescribir los valores memorizados e introducir nuevos valores. Véase la siguiente tabla con funciones de edición adicionales.

Cuando el TNC no puede visualizar simultáneamente todas las posiciones en la tabla de herramientas, en la parte superior de la columna se visualiza el símbolo ">>" o bien "<<".

Funciones de edición para las tablas de herramientas	Softkey
Seleccionar el principio de la tabla	INICIO
Seleccionar el final de la tabla	FIN
Seleccionar la página anterior de la tabla	

Funciones de edición para las tablas de herramientas	Softkey
Seleccionar la página siguiente de la tabla	
Buscar texto o cifra	FIND
Salto al principio de la línea	INICIO FILAS
Salto al final de la línea	FINAL FILAS
Copiar el campo marcado	COPIAR VALOR ACTUAL
Añadir el campo copiado	INSERTAR VALOR COPIADO
Añadir al final de la tabla el número de líneas (htas.) que se ha introducido	AÑADIR LINEAS N AL FINAL
Añadir línea con número de herramienta programado	INSERTAR LINEA
Borrar la línea (herramienta) actual	BORRAR LINEA
Clasificar herramientas según el contenido de una columna	SORT
Visualizar todos los taladros en la tabla de herramientas	DRILL
Visualizar todos los palpadores en la tabla de herramientas	TS

Abandonar la edición de la tabla de herramientas

Llamar a la gestión de ficheros y seleccionar un fichero de otro tipo, p.ej. un programa de mecanizado

Tabla de posiciones para cambiador de herramientas

El constructor de la máquina adapta el alcance de función de la tabla de posiciones a su máquina. ¡Rogamos consulten el manual de su máquina!

Para el cambio de herramientas automático se necesita la tabla de posiciones TOOL_P.TCH. El TNC administra varias tablas de posición con los nombres de archivo deseados. La tabla de posiciones que se quiere activar para la ejecución del programa, se selecciona en un modo de funcionamiento de ejecución de programa a través de la gestión de ficheros (estado M).

Edición de una tabla de posiciones en un modo de funcionamiento de ejecución del programa

TABLA POSICIONES

Seleccionar la tabla de herramientas: pulsar la softkey TABLA HERRAMIENTAS

Seleccionar la tabla de posiciones: pulsar la softkey

TABLA PUESTOS

EDITAR

▶ Fijar la softkey EDITAR en ON

Seleccionar la tabla de posiciones en el modo de funcionamiento Memorizar/Editar programa

- PGM MGT
- Llamada a la gestión de ficheros
- Visualizar los tipos de ficheros: pulsar la softkey SELECCIONAR TIPO
- Visualizar ficheros del tipo .TCH: pulsar la softkey TCH FILES (segunda carátula de softkeys)
- Seleccionar un fichero o introducir el nombre de un fichero nuevo. Confirmar con la tecla ENT o con la softkey SELECCIONAR

Abrev.	Introducciones	Diálogo
Р	№ de posición de la herramienta en el almacén de herramientas	-
т	Número de la herramienta	¿Número de herramienta?
TNAME	Visualización del nombre de la herramienta en TOOL.T	-
ST	La herramienta es especial (ST : de S pecial T ool = en inglés, herramienta especial); si la herramienta especial ocupa posiciones delante y detrás de su posición, deben bloquearse dichas posiciones en la columna L (estado L)	¿Herramienta especial?
F	Devolver la herramienta siempre a la misma posición en el almacén (\mathbf{F} : de \mathbf{F} ixed = en inglés determinado)	¿Posición fija? Sí = ENT / No = NO ENT
L	Bloquear la posición (L : de L ocked = en inglés bloqueado, véase también la columna ST)	Posición bloqueada sí = ENT / no = NO ENT
PLC	Información sobre esta posición de la herramienta para transmitir al PLC	¿Estado del PLC?

Fiche	ero: <mark>tnc</mark> :	<pre>Ntable>tool_p.</pre>	tch		L:	inea:	0	
Р Ø	т	TNAME	RSV ST	F	L	DOC		
1.0 2.0 3.0 4.0 5.0 5.0	3 8 1 4 7			F	L			s ,
7.0 8.0	6 9		R	F				т 4 "
								DIAGNOS

Abrev.	Introducciones	Diálogo
DOC	Visualización del comentario sobre la herramienta de TOOL.T	_
РТҮР	Tipo de herramienta La función está definida por el fabricante de la máquina. Tener en cuenta la documentación de la máquina	¿Tipo de herramienta para la tabla de posiciones?
P1 P5	La función está definida por el fabricante de la máquina. Tener en cuenta la documentación de la máquina	¿Valor?
RSV	Puesto reservado para almacén de superficie	Puesto reserv.: Sí=ENT/ No = NOENT
LOCKED_ABOVE	Almacen de superficie: bloquear puesto superior	¿Bloquear puesto superior?
LOCKED_BELOW	Almacén de superficie: bloquear puesto inferior	¿Bloquear puesto inferior?
LOCKED_LEFT	Almacén de superficie: bloquear puesto izquierda	¿Bloquear puesto izquierda?
LOCKED_RIGHT	Almacén de superficie: bloquear puesto derecha	¿Bloquear puesto derecha?

Funciones de edición para tablas de posiciones	Softkey
Seleccionar el principio de la tabla	INICIO
Seleccionar el final de la tabla	FIN
Seleccionar la página anterior de la tabla	PAGINA
Seleccionar la página siguiente de la tabla	PAGINA
Anular la tabla de posiciones	RESET TABLA PUESTOS
Anular la columna de número de herramienta T	CANCELAR COLUMNA T
Salto al principio de la línea	INICIO FILAS
Salto al final de la línea	FINAL FILAS
Simular cambiador de herramientas	SIMULATED TOOL CHANGE
Seleccionar herramienta desde la tabla de herramientas	SELECT
Editar campo actual	EDIT CURRENT FIELD
Clasificar vista	SORT

El fabricante de la máquina determina la función, las características y los diferentes filtros de visualización. ¡Rogamos consulten el manual de su máquina!

i

Llamada a los datos de la herramienta

La llamada a la herramienta TOOL CALL se introduce de la siguiente forma en el programa de mecanizado:

Seleccionar la llamada a la hta. con la tecla TOOL CALL

- TOOL CALL
- ▶ Número de hta.: Introducir el número o el nombre de la hta. Antes se ha definido la herramienta en una frase TOOL DEF o en la tabla de herramientas. El TNC fija automáticamente el nombre de la herramienta entre comillas. Los nombres se refieren a un registro en la tabla de htas. activa TOOL.T. Para llamar a una hta. con distintos valores de corrección se introduce en la tabla de hta. el índice definido detrás de un punto decimal
 - Eje de la herramienta paralelo a X/Y/Z: Introducir el eje de la herramienta
 - Velocidad de cabezal S: velocidad de cabezal en revoluciones por minuto
 - Avance F: el avance actúa hasta que se programa un nuevo avance en una frase de posicionamiento o en una frase TOOL CALL
 - Sobremedida longitud de la hta. DL: Valor delta para la longitud de la herramienta
 - **Sobremedida radio de la hta. DR**: Valor delta para el radio de la herramienta
 - ▶ Sobremedida radio de la hta. DR2: Valor delta para el radio 2 de la herramienta

Ejemplo: Llamada a la herramienta

Se llama a la herramienta número 5 en el eje Z con unas revoluciones del cabezal de 2500 rpm y un avance de 350 mm/min. Las sobremedidas para la longitud y el radio 2 de la herramienta son de 0,2 o bien 0,05 mm, el decremento para el radio de la herramienta es 1 mm.

20 TOOL CALL 5.2 Z S2500 F350 DL+0,2 DR-1 DR2+0,05

El **D** ante **L** y **R** es un valor delta.

Preselección en tablas de herramientas

Cuando se utilizan tablas de herramientas se hace una preselección con una frase **TOOL DEF** para la siguiente herramienta a utilizar. Para ello se indica el número de herramienta o un parámetro Q o el nombre de la herramienta entre comillas.

Cambio de herramienta

El cambio de herramienta es una función que depende de la máquina. ¡Rogamos consulten el manual de su máquina!

Posición de cambio de herramienta

La posición de cambio de herramienta deberá poderse alcanzar sin riesgo de colisión. Con las funciones auxiliares **M91** y **M92** se puede alcanzar una posición fija para el cambio de la herramienta. Si antes de la primera llamada a la herramienta se programa **TOOL CALL 0**, el TNC desplaza la sujeción en el eje del cabezal a una posición independiente de la longitud de la herramienta.

Cambio manual de la herramienta

Antes de un cambio manual de la herramienta se para el cabezal y se desplaza la herramienta sobre la posición de cambio:

- > Desplazarse a la posición de cambio de herramienta programada
- interrupción de la ejecución del programa, véase "Interrupción del mecanizado" en pág. 414
- Cambiar la herramienta
- Continuar la ejecución del programa, véase "Continuar con la ejecución del programa después de una interrupción" en pág. 415

Cambio automático de la herramienta

En un cambio de herramienta automático no se interrumpe la ejecución del programa. En una llamada a la herramienta con **TOOL CALL**, el TNC cambia la herramienta en el almacén de herramientas.
Cambio de herramienta automático cuando se sobrepasa el tiempo de vida: M101

M101 es una función que depende de la máquina. ¡Rogamos consulten el manual de su máquina!

Cuando se alcanza el tiempo de vida de la herramienta **TIME2**, el TNC cambia automáticamente a la herramienta gemela. Para ello, se activa al principio del programa la función auxiliar **M101**. La activación de **M101** se elimina con **M102**.

Se ejecuta el cambio de herramienta automático

- después de la siguiente frase NC transcurrido el tiempo de aplicación, o
- como más tarde un minuto después de acabar el tiempo de aplicación (calculo realizado por elaboración del potenciómetro 100%)

Transcurrido el tiempo de aplicación estando activo M120 (Look Ahead), el TNC cambia la herramienta justo detrás de la frase, en la que ha anulado la corrección del radio con una frase R0.

Entonces el TNC ejecuta también un cambio de herramienta, si justo en el punto temporal del cambio se ejecuta un ciclo de mecanizado.

El TNC no realiza ningún cambio automático de herramienta mientras se esté ejecutando un programa de cambio de herramienta.

Condiciones para frases NC estándar con corrección de radio R0, RR, RL

El radio de la herramienta gemela debe ser igual al radio de la herramienta original. Si no son iguales los radios, el TNC emite un aviso y no cambia la herramienta.

5.3 Corrección de la herramienta

Introducción

El TNC corrige la trayectoria según el valor de corrección para la longitud de la herramienta en el eje del cabezal y según el radio de la herramienta en el plano de mecanizado.

Si se elabora el programa de mecanizado directamente en el TNC, la corrección del radio de la herramienta sólo actua en el plano de mecanizado. Para ello el TNC tiene en cuenta hasta un total de cinco ejes incluidos los ejes giratorios.

Corrección de la longitud de la herramienta

La corrección de la longitud de la herramienta actúa en cuanto se llama a la herramienta y se desplaza en el eje del cabezal. Se elimina nada más llamar a una herramienta con longitud L=0.

Si se elimina una corrección de longitud con valor positivo con **TOOL CALL 0**, disminuye la distancia entre la herramienta y la pieza.

Después de la llamada a una herramienta **TOOL CALL** se modifica la trayectoria programada de la herramienta en el eje del cabezal según la diferencia de longitudes entre la herramienta anterior y la nueva.

En la corrección de la longitud se tienen en cuenta los valores delta tanto de la frase **TOOL CALL**, como de la tabla de herramientas.

Valor de corrección = L + $DL_{TOOL CALL}$ + DL_{TAB} con

Ŀ	l ongitud L de la hta	de frase T00 L	DEF o tabla de htas
- .			

- DL _{TOOL CALL}: Sobremedida DL para la longitud de una frase TOOL CALL (no se tiene en cuenta en la visualización de posiciones)
- DL _{TAB}: Sobremedida DL para la longitud de la tabla de herramientas

5.3 Corrección de la herramienta

Corrección del radio de la herramienta

La frase del programa para el movimiento de la herramienta contiene

RL o RR para una corrección del radio

ф,

RO, cuando no se quiere realizar ninguna corrección de radio

La corrección de radio actua en cuanto se llama a una herramienta y se desplaza en el plano de mecanizado con RL o RR.

- El TNC elimina la corrección de radio cuando:
- se programa una frase lineal con RO
- se sale del contorno con la función DEP
- se programa un PGM CALL
- se selecciona un nuevo programa con PGM MGT

En la corrección de radio se tienen en cuenta valores delta tanto de una frase **TOOL CALL** como de una tabla de herramientas:

Valor de corrección = $\mathbf{R} + \mathbf{D}\mathbf{R}_{TOOL CALL} + \mathbf{D}\mathbf{R}_{TAB}$ con

- R: Radio de la herramienta R desde la frase TOOL DEF o desde la tabla de herramientas
- DR _{TOOL CALL}: Sobremedida DR para el radio de una frase TOOL CALL (no se tiene en cuenta en la visualización de posiciones)

DR TAB: Sobremedida **DR** para el radio de una tabla de htas.

Movimientos de trayectoria sin corrección de radio: R0

El punto central de la herramienta se desplaza en el plano de mecanizado sobre la trayectoria programada, o bien sobre las coordenadas programadas.

Empleo: Taladros, posicionamientos previos.

Movimientos de trayectoria con corrección de radio: RR y RL

- **RR** La herramienta se desplaza por la derecha del contorno
- RL La herramienta se desplaza por la izquierda del contorno

En este caso el centro de la herramienta queda separado del contorno a la distancia del radio de dicha herramienta. "Derecha" e "izquierda" indican la posición de la herramienta en el sentido de desplazamiento a lo largo del contorno de la pieza. Véase las figuras de la derecha.

Entre dos frases de programa con diferente corrección de radio **RR** y **RL**, debe programarse por lo menos una frase sin corrección de radio (es decir con **R0**).

La corrección de radio está activada hasta la próxima frase en que se varíe dicha corrección y desde la frase en la cual se programa por primera vez.

En la primera corrección de radio **RR/RL** y con **R0**, el TNC posiciona la herramienta siempre perpendicularmente en el punto inicial o final. La herramienta se posiciona delante del primer punto del contorno o detrás del último punto del contorno para no dañar al mismo.

Introducción de la corrección de radio

Programar la función de trayectoria deseada, introducir las coordenadas del punto de destino y confirmar con la tecla ENT

CORRECCIÓN DE RADIO: ¿RL/RR/SIN CORRECC.?

RL	Desplazamiento de la herramienta por la izquierda del contorno programado: pulsar softkey RL o bien
RR	Desplazar la herramienta por la derecha del contorno programado: pulsar softkey RR o bien
ENT	Desplazar la herramienta sin corrección de radio o eliminar la corrección: pulsar tecla ENT
	Finalizar la frase: pulsar la tecla END

Corrección del radio: Mecanizado de esquinas

Esquinas exteriores:

Una vez programda la corrección del radio, el TNC lleva la herramienta por las esquinas exteriores según un círculo de paso. Si es preciso el TNC reduce el avance en las esquinas exteriores, por ejemplo, cuando se efectuan grandes cambios de dirección.

Esquinas interiores:

En las esquinas interiores el TNC calcula el punto de intersección de las trayectorias realizadas según el punto central de la herramienta desplazándose con corrección. Desde dicho punto la herramienta se desplaza a lo largo de la trayectoria del contorno. De esta forma no se daña la pieza en las esquinas interiores. De ahí que para un contorno determinado no se pueda seleccionar cualquier radio de herramienta.

ф,

No situar el punto inicial o final en un mecanizado interior sobre el punto de la esquina del contorno, ya que de lo contrario se daña dicho contorno.

Programación: Programar contornos

6.1 Movimientos de la herramienta

Funciones de trayectoria

El contorno de una pieza se compone normalmente de varios elementos de contorno como rectas y arcos de círculo. Con las funciones de trayectoria se programan los movimientos de la herramienta para **rectas** y **arcos de círculo**.

Programación libre de contornos FK

Cuando no existe un plano acotado y las indicaciones de las medidas en el programa NC están incompletas, el contorno de la pieza se programa con la programación libre de contornos. El TNC calcula las indicaciones que faltan.

Con la programación FK también se programan movimientos de la herramienta según **rectas** y **arcos de círculo**.

Funciones auxiliares M

Con las funciones auxiliares del TNC se controla

- la ejecución del programa, p.ej. una interrupción de la ejecución
- las funciones de la máquina, como la conexión y desconexión del giro de la herramienta y el refrigerante
- Ia trayectoria de la herramienta

Subprogramas y repeticiones parciales de un programa

Los pasos de mecanizado que se repiten, sólo se introducen una vez como subprogramas o repeticiones parciales de un programa. Si se quiere ejecutar una parte del programa sólo bajo determinadas condiciones, dichos pasos de mecanizado también se determinan en un subprograma. Además un programa de mecanizado puede llamar a otro programa y ejecutarlo.

La programación con subprogramas y repeticiones parciales de un programa se describe en el capítulo 9.

Programación con parámetros Q

En el programa de mecanizado se sustituyen los valores numéricos por parámetros Q. A un parámetro Q se le asigna un valor numérico en otra posición. Con parámetros Q se pueden programar funciones matemáticas, que controlen la ejecución del programa o describan un contorno.

La programación con parámetros Q se describe en el capítulo 10.

6.2 Nociones básicas sobre las funciones de trayectoria

Programación del movimiento de la herramienta para un mecanizado

Cuando se elabora un programa de mecanizado, se programan sucesivamente las funciones para las diferentes trayectorias del contorno de la pieza. Para ello se introducen **las coordenadas de los puntos finales de los elementos del contorno** indicadas en el plano. Con la indicación de las coordenadas, los datos de la herramienta y la corrección de radio, el TNC calcula el recorrido real de la herramienta.

El TNC desplaza simultáneamente todos los ejes de la máquina programados en la frase del programa según un tipo de trayectoria.

Movimientos paralelos a los ejes de la máquina

La frase del programa contiene la indicación de las coordenadas: el TNC desplaza la herramienta paralela a los ejes de la máquina programados.

Según el tipo de máquina, en la ejecución se desplaza o bien la herramienta o la mesa de la máquina con la pieza fijada. La programación de trayectorias se realiza como si fuese la herramienta la que se desplaza.

Ejemplo:

	L	X+100			
--	---	-------	--	--	--

L	Función de trayectoria "Recta"
X+100	Coordenadas del punto final

La herramienta mantiene las coordenadas de Y y Z y se desplaza a la posición X=100. Véase imagen de arriba a la derecha.

Movimientos en los planos principales

La frase del programa contiene las indicaciones de las coordenadas: el TNC desplaza la herramienta en el plano programado.

Ejemplo:

L X+70 Y+50

La herramienta mantiene las coordenadas de Z y se desplaza en el plano XY a la posición X=70, Y=50.

Movimiento tridimensional

La frase del programa contiene tres indicaciones de coordenadas: el TNC desplaza la herramienta en el espacio a la posición programada.

Ejemplo:

L X+80 Y+0 Z-10

Círculos y arcos de círculo

En los movimientos circulares, el TNC desplaza simultáneamente dos ejes de la máquina: la herramienta se desplaza respecto a la pieza según una trayectoria circular. Para los movimientos circulares se puede introducir el punto central del círculo CC.

Con las trayectorias de arcos de círculo se programan círculos en los planos principales: el plano principal se define en la llamada a la herramienta TOOL CALL al determinar el eje de la herramienta:

Eje del cabezal	Plano principal
Z	XY , también UV, XV, UY
Y	ZX , también WU, ZU, WX
x	YZ , también VW, YW, VZ

Sentido de giro DR en movimientos circulares

Para los movimientos circulares no tangentes a otros Se introduce el sentido de giro DR en los elementos de contorno:

Giro en sentido horario: DR-Giro en sentido antihorario: DR+

Corrección de radio

La corrección de radio debe estar en la frase en la cual se realiza la aproximación al primer tramo del contorno. Esta no puede empezar en la frase de una trayectoria circular. Dicha corrección se programa antes en una frase lineal (véase "Movimientos de trayectoria - Coordenadas cartesianas" en pág. 128) o en una frase de aproximación (frase APPR, véase "Aproximación y salida del contorno" en pág. 121).

Posicionamiento previo

Al principio de un programa de mecanizado la herramienta se posiciona de forma que no se dañe la herramienta o la pieza.

Elaboración de frases de programa con las teclas de función de trayectoria

Con las teclas grises para los tipos de trayectoria se abre el diálogo en lenguaje conversacional. El TNC pregunta sucesivamente por los datos necesarios y añade esta frase en el programa de mecanizado.

Ejemplo – Programación de una recta.

¿FUNCIÓN AUXILIAR M?

Introducir la función auxiliar, p.ej. M3 y finalizar el diálogo con la tecla ENT

Línea en el programa de mecanizado

L X+10 Y+5 RL F100 M3

6.3 Aproximación y salida del contorno

Resumen: Tipos de trayectoria para la aproximación y salida del contorno

Las funciones APPR (en inglés. approach = aproximación) y DEP (en inglés departure = salida) se activan con la tecla APPR/DEP. Después mediante softkeys se pueden seleccionar los siguientes tipos de trayectoria:

Función	Aproximación	Salida
Recta con unión tangencial	APPR LT	DEP LT
Recta perpendicular al punto del contorno	APPR LN	
Trayectoria circular con unión tangencial	APPR CT	DEP CT
Trayectoria circular tangente al contorno, aproximación y salida a un punto auxiliar fuera del contorno sobre una recta tangente	APPR LCT	DEP LCT

Aproximación y salida en una hélice

En la aproximación y la salida a una hélice, la herramienta se desplaza según una prolongación de la hélice y se une así con una trayectoria circular tangente al contorno. Para ello se emplea la función APPR CT o bien DEP CT.

Posiciones importantes en la aproximación y la salida

Punto de inicio P_S

Esta posición se programa siempre directamente antes de la frase APPR. P_S se encuentra siempre fuera del contorno y se alcanza sin corrección de radio (R0).

Punto auxiliar P_H

La aproximación y salida pasa en algunos tipos de trayectoria por un punto auxiliar P_H que el TNC calcula de la frase APPR y DEP. El TNC se desplaza desde la posición actual al punto de ayuda P_H con el último avance programado.

Primer punto de contorno P_A y último punto de contorno P_E El primer punto de contorno P_A se programa en una frase APPR, el último punto de contorno P_E con la función de trayectoria deseada. Si la frase APPR contiene también las coordenadas de Z, el TNC desplaza primero la hta. al punto P_H sobre el plano de mecanizado y desde allí según el eje de la hta. a la profundidad programada.

121

Punto final P_N

La posición \dot{P}_{nN} se encuentra fuera del contorno y se calcula de las indicaciones introducidas en la frase DEP. Si la frase DEP contiene también las coordenadas de Z, el TNC desplaza primero la hta. al punto P_H sobre el plano de mecanizado y desde allí según el eje de la hta. a la altura programada.

Abreviatura	Significado
APPR	en inglés APPRoach = aproxim.
DEP	en inglés DEParture = salida
L	en inglés Line = recta
С	en inglés Circle = círculo
Т	Tangencial (transición constante)
Ν	Normal (perpendicular)

El TNC no comprueba en el posicionamiento de la posición real al punto auxiliar P_H si se ha dañado el contorno programado. ¡Comprobar con el test gráfico!

En las funciones APPR LT, APPR LN y APPR CT el TNC se desplaza de la posición real al punto de ayuda P_H con el avance/la marcha rápida programada por última vez. En la función APPR LCT el TNC desplaza el punto auxiliar P_H con el avance programado en la frase APPR. Si antes de la frase de aproximación no se ha programado ningún avance, el TNC emite un aviso de error.

Coordenadas polares

Mediante las coordenadas polares pueden ser tambien programados los puntos del contorno para las siguientes funciones de aproximación/salida:

- APPR LT es APPR PLT
- APPR LN es APPR PLN
- APPR CT es APPR PCT
- APPR LCT es APPR PLCT
- DEP LCT es DEP PLCT

Pulsar para ello la tecla naranja P, después de haber seleccionado mediante softkey una función de aproximación o de salida.

Corrección de radio

La corrección de radio se programa junto con el primer punto del contorno P_A en la frase APPR. ¡Las frases DEP eliminan automáticamente la corrección de radio!

Aproximación sin corrección de radio: ¡Cuando en la frase APPR se programa R0, el TNC desplaza la hta, como si fuese una herramienta con R = 0 mm y corrección de radio RR! De esta forma está determinada la dirección en las funciones APPR/DEP LN y APPR/DEP CT, en la cual el TNC desplaza la herramienta hacia y desde el contorno.

Aproximación según una recta tangente: APPR LT

El TNC desplaza la herramienta según una recta desde el punto de partida P_S a un punto auxiliar P_H. Desde allí la herramienta se desplaza al primer punto del contorno P_A sobre una recta tangente. El punto auxiliar P_H está separado a la distancia LEN del primer punto de contorno P_A.

Cualquier tipo de trayectoria: aproximación al punto de partida P_S
Abrir el diálogo con la tecla APPR/DEP y la softkey APPR LCT :

- Coordenadas del primer punto de contorno P_A
- \blacktriangleright LEN: Distancia del punto auxiliar P_{H} al primer punto de contorno P_{A}
- Corrección de radio RR/RL para el mecanizado

Ejemplo de frases NC

7 L X+40 Y+10 RO FMAX M3	P _S sin aproximación a la corrección de radio
8 APPR LT X+20 Y+20 Z-10 LEN15 RR F100	P _A con corr. del radio RR, distancia P _H a P _A : LEN=15
9 L X+35 Y+35	Punto final del primer elemento de contorno
10 L	Siguiente elemento de contorno

Aproximación según una recta perpendicular al primer punto del contorno: APPR LN

El TNC desplaza la herramienta según una recta desde el punto de partida P_S a un punto auxiliar P_H. Desde allí la herramienta se desplaza al primer punto del contorno P_A sobre una recta tangente. El punto auxiliar P_H tiene la distancia LEN + radio de la herramienta hasta el primer punto de contorno P_A.

- Cualquier tipo de trayectoria: aproximación al punto de partida P_S
- ▶ Abrir el diálogo con la tecla APPR/DEP y la softkey APPR LCT:
 - Coordenadas del primer punto de contorno P_A
 - Longitud: distancia del punto auxiliar P_H. ¡Introducir LEN siempre positivo!
 - Corrección de radio RR/RL para el mecanizado

Ejemplo de frases NC

7 L X+40 Y+10 R0 FMAX M3	P _S sin aproximación a la corrección de radio
8 APPR LN X+10 Y+20 Z-10 LEN15 RR F100	P _A con corr. del radio RR
9 L X+20 Y+35	Punto final del primer elemento de contorno
10 L	Siguiente elemento de contorno

Aproximación a una trayectoria circular con una conexión tangente: APPR CT

El TNC desplaza la herramienta según una recta desde el punto de partida P_S a un punto auxiliar $\mathsf{P}_H.$ Desde allí se aproxima según una trayectoria circular tangente al primer tramo del contorno y al primer punto del contorno $\mathsf{P}_A.$

La trayectoria circular de P_H a P_A se determina a través del radio R y el ángulo del punto medio CCA. El sentido de giro de la trayectoria circular está indicado por el recorrido del primer tramo del contorno.

- Cualquier tipo de trayectoria: aproximación al punto de partida P_S
- ▶ Abrir el diálogo con la tecla APPR/DEP y la softkey APPR CT :
 - Coordenadas del primer punto de contorno P_A

- Radio R de la trayectoria circular
 - Aproximación por el lado de la pieza definido mediante la corrección de radio: introducir R con signo positivo
 - Aproximación desde un lateral de la pieza: Introducir R negativo
- Ángulo del punto central CCA de la trayectoria circular
 - CCA sólo se introduce positivo
 - Valor de introducción máximo 360°
- Corrección de radio RR/RL para el mecanizado

Ejemplo de frases NC

7 L X+40 Y+10 R0 FMAX M3	P _S sin aproximación a la corrección de radio	
8 APPR CT X+10 Y+20 Z-10 CCA180 R+10 RR F100	P _A con corr. del radio RR, radio R=10	
9 L X+20 Y+35	Punto final del primer elemento de contorno	
10 L	Siguiente elemento de contorno	

Aproximación según una trayectoria circular tangente al contorno y a una recta: APPR LCT

El TNC desplaza la herramienta según una recta desde el punto de partida P_S a un punto auxiliar P_H. Desde allí se aproxima según una trayectoria circular al primer punto del contorno P_A . El avance programado en la frase APPR se encuentra activo.

La trayectoria circular conecta tanto la recta P_S - P_H como el primer elemento del contorno tangencial. De esta forma la trayectoria se determina claramente mediante el radio R.

- Cualquier tipo de trayectoria: aproximación al punto de partida P_S
- ▶ Abrir el diálogo con la tecla APPR/DEP y la softkey APPR LCT :
- APPR LCT
- Coordenadas del primer punto de contorno P_A
- ▶ Radio R de la trayectoria circular. Introducir R positivo
- Corrección de radio RR/RL para el mecanizado

Eie	em	plo	de	frases	NC
-,		Piv	au	114565	

7 L X+40 Y+10 RO FMAX M3	P _S sin aproximación a la corrección de radio
8 APPR LCT X+10 Y+20 Z-10 R10 RR F100	P _A con corr. del radio RR, radio R=10
9 L X+20 Y+35	Punto final del primer elemento de contorno
10 L	Siguiente elemento de contorno

Salida según una recta con conexión tangente: DEP LT

El TNC desplaza la herramienta desde una recta del último punto del contorno P_{E} al punto final $\mathsf{P}_{\mathsf{N}}.$ La recta se encuentra en la prolongación del último tramo del contorno. P_{N} se encuentra a la distancia LEN de $\mathsf{P}_{\mathsf{E}}.$

- Programar el último elemento del contorno con punto final P_E y corrección del radio
- Abrir el diálogo con la tecla APPR/DEP y la softkey APPR LCT :

 LEN: Introducir la distancia del punto final P_N del último elemento del contorno P_E

Ejemplo de frases NC

23 L Y+20 RR F100	Último elemento del contorno: P _E con corrección del radio
24 DEP LT LEN12.5 F100	Retirarse según LEN=12,5 mm
25 L Z+100 FMAX M2	Retirar Z, retroceso, final del programa

Salida según una recta perpendicular al último punto del contorno: DEP LN

El TNC desplaza la herramienta desde una recta del último punto del contorno P_F al punto final P_N. La recta parte perpendicularmente desde el último punto del contorno PE . PN se encuentra en distancia LEN de PE + radio de la herramienta.

- Programar el último elemento del contorno con punto final P_F y corrección del radio
- Abrir el diálogo con la tecla APPR/DEP y la softkey APPR LN :

23 L

24 DI

25 L

DEP CT LEN: Introducir la distancia desde el último punto P_N Importante: introducir LEN positivo!

Ejemp

	X
o de frases NC	
Y+20 RR F100	Último elemento del contorno: P _E con corrección del radio
P LN LEN+20 F100	Salida según LEN = 20 mm perpendicular al contorno
Z+100 FMAX M2	Retirar Z, retroceso, final del programa

Salida según una trayectoria circular con conexión tangente: DEP CT

El TNC desplaza la herramienta desde una recta del último punto del contorno P_F al punto final P_N. La trayectoria circular se une tangencialmente al último tramo del contorno.

- Programar el último elemento del contorno con punto final P_E y corrección del radio
- Abrir el diálogo con la tecla APPR/DEP y la softkey DEP CT:
 - Ángulo del punto central CCA de la trayectoria circular
 - Radio R de la trayectoria circular
 - La herramienta sale por el lado de la pieza determinado mediante la corrección de radio: introducir R siempre positivo
 - La herramienta debe salir por el lado opuesto de la pieza, determinado por la corrección de radio: introducir R negativo

Ejemplo de frases NC

23 L Y+20 RR F100
24 DEP CT CCA 180 R+8 F100
25 L Z+100 FMAX M2

Último elemento del contorno: P_F con corrección del radio

Ángulo del punto central=180°,

Radio de la trayectoria circular=8 mm

Retirar Z, retroceso, final del programa

Salida según una trayectoria circular tangente al contorno y a una recta: DEP LCT

El TNC desplaza la herramienta en una trayectoria circular desde el último punto del contorno P_E a un punto auxiliar P_H. Desde allí se desplaza sobre una recta al punto final P_N. El último elemento del contorno y la recta de P_H - P_N tienen transiciones tangenciales con la trayectoria circular. De esta forma la trayectoria circular está determinada por el radio R.

- Programar el último elemento del contorno con punto final P_E y corrección del radio
- ▶ Abrir el diálogo con la tecla APPR/DEP y la softkey APPR LCT:
 - ▶ Introducir las coordenadas del punto final P_N

Radio R de la trayectoria circular. Introducir R positivo

Ejemplo de frases NC

DEP LCT

*

23 L Y+20 RR F100	Último elemento del contorno: P _E con corrección del radio
24 DEP LCT X+10 Y+12 R+8 F100	Coordenadas P _N , radio de la trayectoria circular=8 mm
25 L Z+100 FMAX M2	Retirar Z, retroceso, final del programa

6.4 Movimientos de trayectoria -Coordenadas cartesianas

Resumen de las funciones de trayectoria

Función	Tecla de función de trayectoria	Movimiento de la herramienta	Introducciones precisas
Recta L en inglés: Line	L	Recta	Coordenadas del punto final de la recta
Chaflán: CHF ingl.: CH am F er	CHF c:Lo	Chaflán entre dos rectas	Longitud del chaflán
Punto central del círculo CC ; en inglés: Circle Center	¢	Ninguno	Coordenadas del punto central del círculo o polo
Arco de círculo C ingl.: C ircle	رگر د	Trayectoria circular alrededor del punto central del círculo CC, al punto final del arco de círculo	Coordenadas del punto final del círculo, sentido de giro
Arco de círculo CR ingl.: C ircle by R adius	CR	Trayectoria circular con radio determinado	Coordenadas del punto final del círculo, radio del círculo, sentido de giro
Arco de círculo CT ingl.: C ircle T angential	CTP	Trayectoria circular tangente al tramo anterior y posterior del contorno	Coordenadas del punto final del círculo
Redondeo de esquinas RND ingl.: R ou ND ing of Corner		Trayectoria circular tangente al tramo anterior y posterior del contorno	Radio de la esquina R
Programación libre de contornos FK	FK	Recta o trayectoria circular unida libremente al elemento anterior del contorno	véase "Movimientos de trayectoria - Programación libre de contornos FK" en pág. 146

Recta L

El TNC desplaza la herramienta sobre una recta desde su posición actual hasta el punto final de la misma. El punto de partida es el punto final de la frase anterior.

- L
- ▶ Coordenadas del punto final de la recta
- Si es preciso:
- ▶ Corrección de radio RL/RR/RO
- ► Avance F
- ▶ Función auxiliar M

1

Ejemplo de frases NC

- 7 L X+10 Y+40 RL F200 M3
- 8 L IX+20 IY-15
- 9 L X+60 IY-10

Aceptar la posición real

También se puede generar una frase lineal (frase L) con la tecla "ACEPTAR POSICIÓN REAL":

- Desplazar la herramienta en el modo de funcionamiento manual a la posición que se quiere aceptar
- Cambiar la visualización de la pantalla a Memorizar/Editar programa
- Seleccionar la frase del programa detrás de la cual se quiere añadir la frase L

CHF chf Pulsar la tecla "ACEPTAR POSICIÓN REAL": el TNC genera una frase L con las coordenadas de la posición real

Añadir un chaflán CHF entre dos rectas

Las esquinas del contorno generadas por la intersección de dos rectas, se pueden recortar con un chaflán.

- En las frases lineales antes y después de la frase CHF, se programan las dos coordenadas del plano en el que se ejecuta el chaflán
- La corrección de radio debe ser la misma antes y después de la frase CHF
- El chaflán debe poder realizarse con la herramienta actual

Sección del chaflán: Longitud del chaflán

Si es preciso:

Avance F (actúa sólo en una frase CHF)

Ejemplo de frases NC

7 L X+0 Y+30 RL F300 M3
8 L X+40 IY+5
9 CHF 12 F250
10 L IX+5 Y+0

El contorno no puede empezar con una frase CHF.

El chaflán sólo se ejecuta en el plano de mecanizado.

El punto de la esquina cortado por el chaflán no es parte del contorno.

El avance programado en una frase CHF sólo actúa en dicha frase. Después vuelve a ser válido el avance programado antes de la frase CHF.

Redondeo de esquinas RND

La función RND redondea esquinas del contorno.

La herramienta se desplaza según una trayectoria circular, que se une tangencialmente tanto a la trayectoria anterior del contorno como a la posterior.

El radio de redondeo debe poder realizarse con la herramienta llamada.

▶ Radio de redondeo: Radio del arco

Si es preciso:

> Avance F (actúa sólo en una frase RND)

Ejemplo de frases NC

5	L	X+10	Y+40	RL	F300	Μ3				
6	L	X+40	Y+25							
7	RN	ID R5	F100							
8	L	X+10	Y+5							

Las trayectorias anterior y posterior del contorno deben contener las dos coordenadas del plano en el cual se ejecuta el redondeo de esquinas. Cuando se mecaniza el contorno sin corrección del radio de la herramienta, deben programarse ambas coordenadas del plano de mecanizado.

El punto de la esquina no se mecaniza.

El avance programado en una frase RND sólo actua en dicha frase. Después vuelve a ser válido el avance programado antes de dicha frase RND.

Una frase RND también se puede utilizar para la aproximación suave al contorno, en el caso de que no se puedan utilizar funciones APPR.

1

6.4 Movimientos de trayectoria - Coor<mark>den</mark>adas cartesianas

Punto central del círculo CC

El punto central del círculo corresponde a las trayectorias circulares programadas con la tecla C (trayectoria circular C). Para ello

- introducir las coordenadas cartesianas del punto central del círculo o
- aceptar la última posición programada o
- se aceptan las coordenadas con la tecla "ACEPTAR POSICIONES REALES"

Coordenadas CC: Introducir las coordenadas del punto central del círculo o para aceptar la última posición programada: no introducir ninguna coordenada

Ejemplo de frases NC

5 CC X+25 Y+25

0

10 L X+25 Y+25		
11 CC		

Las líneas 10 y 11 del programa no se refieren a la figura.

Validez

El punto central del círculo queda determinado hasta que se programa un nuevo punto central del círculo.

Introducir el punto central del círculo CC en incremental

Una coordenada introducida en incremental en el punto central del círculo se refiere siempre a la última posición programada de la herramienta.

Con CC se indica una posición como centro del círculo: la herramienta no se desplaza a dicha posición.

El centro del círculo es a la vez polo de las coordenadas polares.

Trayectoria circular C alrededor del centro del círculo CC

Antes de programar la trayectoria circular C hay que determinar el centro del círculo CC. La última posición de la herramienta programada antes de la frase C, es el punto de partida de la trayectoria circular.

- Desplazar la herramienta sobre el punto de partida de la trayectoria circular
- ¢CC

°

- Coordenadas del punto central del círculo
- Coordenadas del punto final del arco de círculo

Sentido de giro DR

Si es preciso:

- ► Avance F
- Función auxiliar M

Ejemplo de frases NC

5	CC X+25 Y+2	5
6	L X+45 Y+25	RR F200 M3
7	C X+45 Y+25	DR+

Círculo completo

Para el punto final se programan las mismas coordenadas que para el punto de partida.

El punto de partida y el punto final deben estar en la misma trayectoria circular.

Tolerancia de introducción: hasta 0,016 mm (se selecciona mediante el parámetro de máguina "circleDeviation")

Trayectoria circular CR con un radio determinado

La herramienta se desplaza según una trayectoria circular con radio R.

- Coordenadas del punto final del arco de círculo
- ▶ Radio R

Atención: ¡El signo determina el tamaño del arco del círculo!

Sentido de giro DR

Atención: ¡El signo determina si la curvatura es cóncava o convexa!

- Si es preciso:
- Función auxiliar M
- Avance F

6.4 Movimientos de trayectoria - Coor<mark>den</mark>adas cartesianas

Círculo completo

Para un círculo completo se programan dos frases CR sucesivas:

El punto final de la primera mitad del círculo es el punto de partida del segundo. El punto final de la segunda mitad del círculo es el punto de partida del primero.

Ángulo central CCA y radio del arco de círculo R

El punto de partida y el punto final del contorno se pueden unir entre sí mediante cuatro arcos de círculo diferentes con el mismo radio:

Arco más pequeño: CCA<180º El radio tiene signo positivo R>0

Arco mayor: CCA>180º El radio tiene signo negativo R<0

Mediante el sentido de giro se determina si el arco de círculo está curvado hacia fuera (convexo) o hacia dentro (cóncavo):

Convexo: Sentido de giro DR- (con corrección de radio RL)

Cóncavo: Sentido de giro DR+ (con corrección de radio RL)

Ejemplo de frases NC

10 L X+40 Y+40 RL F200 M3

11 CR X+70 Y+40 R+20 DR- (ARCO 1)

0

11 CR X+70 Y+40 R+20 DR+ (ARCO 2)

0

11 CR X+70 Y+40 R-20 DR- (ARCO 3)

0

11 CR X+70 Y+40 R-20 DR+ (ARCO 4)

La distancia del punto de partida al punto final del círculo no puede ser mayor al diámetro del círculo.

Trayectoria circular tangente CT

La herramienta se desplaza según un arco de círculo tangente a la trayectoria del contorno anteriormente programada.

La transición es "tangencial", cuando en el punto de intersección de los elementos del contorno no se produce ningún punto de inflexión o esquina, con lo cual la transición entre los tramos del contorno es constante.

El elemento del contorno al que se une tangencialmente el arco de círculo, se programa directamente antes de la frase CT. Para ello se precisan como mínimo dos frases de posicionamiento

Coordenadas del punto final del arco de círculo

Si es preciso:

► Avance F

▶ Función auxiliar M

Ejemplo de frases NC

7 L X+0 Y+25 RL F300 M3
8 L X+25 Y+30
9 CT X+45 Y+20
10 L Y+0

¡La frase CT y la trayectoria del contorno anteriormente programada deben contener las dos coordenadas del plano, en el cual se realiza el arco de círculo!

СТР

6.4 Movimientos de trayectoria - Coor<mark>den</mark>adas cartesianas

Ejemplo: Movimiento lineal y chaflán en cartesianas

O BEGIN PGM LINEAR MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición de la pieza en bruto para la simulación gráfica del mecanizado
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Definición de la herramienta en el programa
4 TOOL CALL 1 Z S4000	Llamada a la herramienta con eje del cabezal y revoluciones del cabezal
5 L Z+250 RO FMAX	Retirar la herramienta en el eje del cabezal en marcha rápida FMAX
6 L X-10 Y-10 RO FMAX	Posicionamiento previo de la herramienta
7 L Z-5 RO F1000 M3	Llegada a la profundidad de fresado con avance F = 1000 mm/min
8 APPR LT X+5 X+5 LEN10 RL F300	Llegada al punto 1 del contorno según una recta
	tangente
9 L Y+95	Llegada al punto 2
10 L X+95	Punto 3: primera recta de la esquina 3
11 CHF 10	Programar el chaflán de longitud 10 mm
12 L Y+5	Punto 4: segunda recta de la esquina 3, 1ª recta para la esquina 4
13 CHF 20	Programar el chaflán de longitud 20 mm
14 L X+5	Llegada al último punto 1 del contorno, segunda recta de la esquina 4
15 DEP LT LEN10 F1000	Salida del contorno según una recta tangente
16 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
17 END PGM LINEAR MM	

· (

Ejemplo: Movimiento circular en cartesianas

O BEGIN PGM CIRCULAR MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición de la pieza en bruto para la simulación gráfica del mecanizado
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Definición de la herramienta en el programa
4 TOOL CALL 1 Z X4000	Llamada a la herramienta con eje del cabezal y revoluciones del cabezal
5 L Z+250 R0 FMAX	Retirar la herramienta en el eje del cabezal en marcha rápida FMAX
6 L X-10 Y-10 RO FMAX	Posicionamiento previo de la herramienta
7 L Z-5 RO F1000 M3	Llegada a la profundidad de fresado con avance F = 1000 mm/min
8 APPR LCT X+5 Y+5 R5 RL F300	Alcanzar el punto 1 del contorno sobre una trayectoria circular
	tangente
9 L X+5 Y+85	Punto 2: primera recta de la esquina 2
10 RND R10 F150	Añadir radio con R = 10 mm , avance: 150 mm/min
11 L X+30 Y+85	Llegada al punto 3: punto de partida sobre círculo con CR
12 CR X+70 Y+95 R+30 DR-	Llegada al punto 4: punto final del círculo con CR, radio 30 mm
13 L X+95	Llegada al punto 5
14 L X+95 Y+40	Llegada al punto 6
15 CT X+40 Y+5	Llegada al punto 7: punto final del círculo, arco de círculo tangente
	al punto 6, el TNC calcula automáticamente el radio

16 L X+5	Llegada al último punto del contorno 1
17 DEP LCT X-20 Y-20 R5 F1000	Salida del contorno según una trayectoria circular tangente
18 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa

19 END PGM CIRCULAR MM

Ejemplo: Círculo completo en cartesianas

O BEGIN PGM C-CC MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición de la pieza en bruto
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+12,5	Definición de la herramienta
4 TOOL CALL 1 Z S3150	Llamada a la herramienta
5 CC X+50 Y+50	Definición del centro del círculo
6 L Z+250 RO FMAX	Retirar la herramienta
7 L X-40 Y+50 RO FMAX	Posicionamiento previo de la herramienta
8 L Z-5 R0 F1000 M3	Desplazamiento a la profundidad de mecanizado
9 APPR LCT X+0 Y+50 R5 RL F300	Llegada al punto inicial del círculo sobre una trayectoria circular
	Conexión
10 C X+0 DR-	Llegada al punto final del círculo (= punto de partida del círculo)
11 DEP LCT X-40 Y+50 R5 F1000	Salida del contorno según una trayectoria circular
	Conexión
12 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
13 END PGM C-CC MM	

6.5 Movimientos de trayectoria -Coordenadas polares

Resumen

Con las coordenadas polares se determina una posición mediante un ángulo PA y una distancia PR al polo CC anteriormente definido (véase "Nociones básicas" en pág. 146).

Las coordenadas polares se utilizan preferentemente para:

- Posiciones sobre arcos de círculo
- Planos de la pieza con indicaciones angulares, p.ej. círculo de taladros

Resumen de las funciones de trayectoria con coordenadas polares

Función	Tecla de función de trayectoria	Movimiento de la herramienta	Introducciones precisas
Recta LP	ואי ד ווּאַ איז	Recta	Radio polar, ángulo polar del punto final de la recta
Arco de círculo CP	℃ + P	Trayctoria circular alrededor del punto central del círculo/ polo CC hasta el punto final del arco del círculo	Ángulo polar del punto final del círculo, sentido de giro
Arco de círculo CTP	стр + Р	Trayectoria circular tangente al tramo anterior del contorno	Radio polar, ángulo polar del punto final del círculo
Interpolación helicoidal	<u>``</u> + P	Superposición de una trayectoria circular con una recta	Radio polar, ángulo polar del punto final del círculo, coordenadas del punto final en el eje de la herramienta

Origen de coordenadas polares: polo CC

El polo CC se puede determinar en cualquier posición del programa de mecanizado, antes de indicar las posiciones con coordenadas polares. Para determinar el polo se procede igual que para la programación del punto central del círculo CC.

Coordenadas CC: Introducir las coordenadas cartesianas del polo o Para aceptar la última posición programada: no introducir ninguna coordenada. El polo CC se dotormina antos do programar las coordonadas

determina antes de programar las coordenadas polares. Programar el polo CC sólo en coordenadas cartesianas. El polo CC permanece activado hasta que se determina un nuevo polo.

Ejemplo de frases NC

12 CC X+45 Y+25

Recta LP

La herramienta se desplaza según una recta desde su posición actual al punto final de la misma. El punto de partida es el punto final de la frase anterior.

Radio en coordenadas polares PR: Introducir la distancia del punto final de la recta al polo CC

Ángulo PA en coordenadas polares: posición angular del punto final de la recta entre -360° y +360°

- El signo de PA se determina mediante el eje de referencia angular:
- Ángulo del eje de referencia angular a PR en sentido antihorario: PA>0
- Ángulo del eje de referencia angular a PR en sentido horario: PA<0

Ejemplo de frases NC

12	CC	X+45	Y+25			
13	LP	PR+30	PA+0	RR	F300	M3
14	LP	PA+60				
15	LP	IPA+6	0			
16	LP	PA+18	0			

Trayectoria circular CP alrededor del polo CC

El radio en coordenadas polares PR es a la vez el radio del arco de círculo. PR se determina mediante la distancia del punto de partida al polo CC. La última posición de la herramienta programada antes de la frase CP es el punto de partida de la trayectoria circular.

Ángulo en coordenadas polares PA: Posición angular del punto final de la trayectoria circular entre -5400° y +5400°

▶ Sentido de giro DR

Ejemplo de frases NC

18	CC	X+25	Y+25												
19	LP	PR+20	PA+0	RR	F250	M3									
20	CP	PA+18	0 DR+												

Cuando las coordenadas son incrementales el signo es el mismo para DR y PA.

6.5 Movimientos de trayectoria - C<mark>oo</mark>rdenadas polares

Trayectoria circular tangente CTP

La herramienta se desplaza según un círculo tangente a la trayectoria anterior del contorno.

Radio en coordenadas polares PR: introducir la distancia del punto final de la trayectoria circular al polo CC

Ángulo en coordenadas polares PA: posición angular del punto final de la trayectoria circular

Ejemplo de frases NC

12 CC X+40 Y+35
13 L X+0 Y+35 RL F250 M3
14 LP PR+25 PA+120
15 CTP PR+30 PA+30
16 L Y+0

¡El polo CC no es el punto central del círculo del contorno!

Hélice (Helix)

Una hélice se produce por la superposición de un movimiento circular y un movimiento lineal perpendiculares. La trayectoria circular se programa en un plano principal.

Los movimientos para la hélice sólo se pueden programar en coordenadas polares.

Empleo

- Roscados interiores y exteriores de grandes diámetros
- Ranuras de lubrificación

Cálculo de la hélice

Para la programación se precisa la indicación en incremental del ángulo total, que recorre la herramienta sobre la hélice y la altura total de la misma.

Para el mecanizado en la direc. de fresado de abajo a arriba se tiene:

Nº de pasos n	Pasos de roscado + sobrepaso del recorrido Inicio y final de roscado
Altura total h	Paso P x nº de pasos n
Ángulo total incremental IPA	Número de pasos x 360° + ángulo para Inicio de la rosca + ángulo para sobrepaso
Coordenada Z inicial	Paso P x (pasadas de roscado + sobrepaso al principio del roscado)

1

Forma de la hélice

La tabla indica la relación entre la dirección del mecanizado, el sentido de giro y la corrección de radio para determinadas formas:

Roscado	Dirección de	Sentido	Corrección
interior	trabajo		del radio
a derechas	Z+	DR+	RL
a izquierdas	Z+	DR-	RR
a derechas	Z–	DR-	RR
a izquierdas	Z–	DR+	RL

Roscado exterior			
a derechas	Z+	DR+	RR
a izquierdas	Z+	DR-	RL
a derechas	Z–	DR-	RL
a izquierdas	Z–	DR+	RR

Programación de una hélice

Se introduce el sentido de giro DR y el ángulo completo IPA en incremental con el mismo signo, ya que de lo contrario la herramienta puede desplazarse en una trayectoria errónea.

El ángulo completo IPA puede tener un valor de -5400° a +5400°. Si el roscado es de más de 15 pasos, la hélice se programa con una repetición parcial del programa (véase "Repeticiones parciales de un programa" en pág. 324)

Ángulo en coordenadas polares: introducir el ángulo total en incremental, según el cual se desplaza la herramienta sobre la hélice. Después de introducir el ángulo se selecciona el eje de la herramienta con las teclas de los ejes.

- Introducir las coordenadas para la altura de la hélice en incremental
- Sentido de giro DR

Giro en sentido horario: DR-Hélice en sentido antihorario: DR+

Ejemplo de frases NC: Rosca M6 x 1 mm con 5 pasos

12 CC X+40 Y+25
13 L Z+0 F100 M3
14 LP PR+3 PA+270 RL F50
15 CP IPA-1800 IZ+5 DR-

1

ိုင်

Ρ

Ejemplo: Movimiento lineal en polares

O BEGIN PGM LINEARPO MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición de la pieza en bruto
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+7.5	Definición de la herramienta
4 TOOL CALL 1 Z S4000	Llamada a la herramienta
5 CC X+50 Y+50	Definición del punto de referencia para las coordenadas polares
6 L Z+250 RO FMAX	Retirar la herramienta
7 LP PR+60 PA+180 RO FMAX	Posicionamiento previo de la herramienta
8 L Z-5 RO F1000 M3	Desplazamiento a la profundidad de mecanizado
9 APPR PLCT PR+45 PA+180 R5 RL F250	Llegada al punto 1 del contorno sobre un círculo
	tangente
10 LP PA+120	Llegada al punto 2
11 LP PA+60	Llegada al punto 3
12 LP PA+0	Llegada al punto 4
13 LP PA-60	Llegada al punto 5
14 LP PA-120	Llegada al punto 6
15 LP PA+180	Llegada al punto 1
16 DEP PLCT PR+60 PA+180 R5 F1000	Salida del contorno según un círculo tangente
17 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
18 END PGM LINEARPO MM	

Ejemplo: Hélice

O BEGIN PGM HELIX MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición de la pieza en bruto
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+5	Definición de la herramienta
4 TOOL CALL 1 Z S1400	Llamada a la herramienta
5 L Z+250 R0 FMAX	Retirar la herramienta
6 L X+50 Y+50 RO FMAX	Posicionamiento previo de la herramienta
7 CC	Aceptar la última posición programada como polo
8 L Z-12,75 R0 F1000 M3	Desplazamiento a la profundidad de mecanizado
9 APPR PCT PR+32 PA-182 CCA180 R+2 RL F100	Aproximación al contorno según un círculo tangente
10 CP IPA+3240 IZ+13.5 DR+ F200	Desplazamiento de hélice
11 DEP CT CCA180 R+2	Salida del contorno según un círculo tangente
12 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
13 END PGM HELIX MM	

Si son más de 16 pasadas:

8 L Z-12.75 RO F1000	
9 APPR PCT PR+32 PA-180 CCA180 R+2 RL F100	
10 LBL 1	Inicio de la repetición parcial del programa
11 CP IPA+360 IZ+1.5 DR+ F200	Introducir directamente el paso como valor IZ
12 CALL LBL 1 REP 24	Número de repeticiones (pasadas)
----------------------	----------------------------------
13 DEP CT CCA180 R+2	
· · · ·	

6.6 Movimientos de trayectoria -Programación libre de contornos FK

Nociones básicas

Los planos de piezas no acotados contienen a menudo indicaciones de coordenadas que no se pueden introducir mediante las teclas grises diálogo. De esta forma

- puede haber coordenadas conocidas de la trayectoria del contorno o en su proximidad,
- las indicaciones de coordenadas se pueden referir a otra trayectoria del contorno o
- pueden conocerse las indicaciones de la dirección y del recorrido del contorno.

Este tipo de indicaciones se programan directamente con la programación libre de contornos FK. El TNC calcula el contorno con las coordenadas conocidas y con el diálogo de programación del gráfico FK interactivo. El TNC calcula el contorno con las coordenadas conocidas y le ofrece ayuda con el diálogo de programación del gráfico FK interactivo. La figura de arriba a la derecha muestra una acotación que se introduce sencillamente a través de la programación FK.

Para la programación FK hay que tener en cuenta las siguientes condiciones

Las trayectorias del contorno se pueden programar con la programación libre de contornos sólo en el plano de mecanizado. El plano de mecanizado se determina en la primera frase BLK-FORM del programa de mecanizado.

Para cada elemento del contorno se indican todos los datos disponibles. ¡Se programan también en cada frase las indicaciones que no se modifican: los datos que no se programan no son válidos!

Los parámetros Q son admisibles en todos los elementos FK, excepto en aquellos con referencias relativas (p.ej. RX o RAN), es decir, elementos que se refieren a otras frases NC.

Si en un programa se mezclan la programación libre de contornos con la programación convencional, deberá determinarse claramente cada sección FK.

El TNC precisa de un punto fijo a partir del cual se realizan los cálculos. Antes del apartado FK se programa una posición con las teclas grises del diálogo, que contenga las dos coordenadas del plano de mecanizado. En dicha frase no se programan parámetros Q.

Cuando en el primer apartado FK hay una frase FCT o FLT, hay que programar antes como mínimo dos frases NC mediante las teclas de diálogo grises, para determinar claramente la dirección de desplazamiento.

Un apartado FK no puede empezar directamente detrás de una marca LBL.

Generar programa FK para TNC 4xx:

Para que un programa TNC 4xx pueda leer programas FK que se hayan generado en un TNC 320, la secuencia de los elementos FK individuales dentro de una frase debe estar definida de la misma forma que en el orden en la carátula de softkeys del TNC 4xx.

Gráfico de programación FK

Para poder utilizar el gráfico en la programación FK, se selecciona la subdivisión de pantalla PROGRAMA + GRAFICO (véase "Memorizar/Editar programa" en pág. 31)

Si faltan las indicaciones de las coordenadas, es difícil determinar el contorno de una pieza. En estos casos el TNC muestra diferentes soluciones en el gráfico FK y Ud. selecciona la correcta. El gráfico FK representa el contorno de la pieza en diferentes colores:

blanco	La trayectoria del contorno está claramente determinada
verde	Los datos introducidos indican varias soluciones; Vd. selecciona la correcta

rojo Los datos introducidos no son suficientes para determinar la trayectoria del contorno; hay que introducir más datos

Si los datos indican varias soluciones y la trayectoria del contorno se visualiza en color verde, se selecciona el contorno correcto de la siguiente forma:

Pulsar la softkey MOSTRAR SOLUCIÓN hasta que se visualice correctamente el elemento del contorno. Utilizar la función Zoom (2ª carátula de Softkeys), si no son diferenciables las posibles soluciones en la visualización estándar

La trayectoria del contorno visualizada corresponde al plano: determinar con la softkey SELECCIONAR SOLUCION

Si no se quiere determinar aún un contorno representado en color verde se pulsa la softkey FINALIZAR SELECCION, para continuar con el diálogo FK.

Los elementos de contorno representados en color verde deberán determinarse lo antes posible con SELECCIONAR SOLUCION, para limitar la ambigüedad de las trayectorias siguientes a los elementos del contorno.

El constructor de su máquina puede determinar otros colores para el gráfico FK.

Las frases NC de un programa llamado con PGM CALL se indican en otro color.

Visualizar números de frase en la ventana de gráficos

Para visualizar números de frase en la ventana de gráficos:

Fijar la softkey OMISIÓN DE VISUALIZACIÓN DEL NÚM. DE FRASE a VISUALIZAR

Abrir el diálogo FK

Pulsando la tecla gris FK, el TNC muestra varias softkeys con las cuales se abre el diálogo FK: véase la siguiente tabla. Para desactivar de nuevo las softkeys, volver a pulsar la tecla FK.

Si se abre el diálogo FK con una de dichas softkeys el TNC muestra otras carátulas de softkeys con las cuales se introducen coordeandas conocidas, o se aceptan indicaciones de dirección y del recorrido del contorno.

Elemento FK	Softkey
Recta con conexión tangencial	FLT
Recta sin conexión tangencial	FL
Arco de círculo tangente	FCT
Arco de círculo no tangente	FC
Polo para la programación FK	FPOL

Polo para la programación FK

- Visualizar las softkeys para la programación libre de contornos: pulsar la tecla FK
- FPOL
- Abrir el diálogo para la definición del polo: pulsar la softkey FPOL. El TNC muestra las softkeys de eje del plano de mecanizado activo
- Introducir las coordenadas del polo mediante estas softkeys

El polo para la programación FK permanece activo hasta definirse uno nuevo mediante FPOL.

Programación libre de rectas

Recta sin conexión tangencial

- Visualizar las softkeys para la programación libre de contornos: pulsar la tecla FK
- Abrir el diálogo para rectas flexibles: pulsar la softkey FL. El TNC muestra otras softkeys
- Mediante dichas softkeys se introducen en la frase todas las indicaciones conocidas. Hasta que las indicaciones sean suficientes el gráfico FK muestra el contorno programado en rojo. Si hay varias soluciones el gráfio se visualiza en color verde (véase "Gráfico de programación FK" en pág. 148)

Recta con conexión tangencial

Cuando la recta se une tangencialmente a otra trayectoria del contorno, se abre el diálogo con la softkey FLT:

- Visualizar las softkeys para la programación libre de contornos: pulsar la tecla FK
- FLT
- ▶ Abrir el diálogo: pulsar la softkey FCT
- Mediante las softkeys se introducen en la frase todos los datos conocidos

Programación libre de trayectorias circulares

Trayectoria circular no tangente

- Visualizar las softkeys para la programación libre de contornos: pulsar la tecla FK
- Abrir el diálogo para arcos de círculo flexibles: Pulsar la sofktey FC; el TNC muestra sofkteys para indicaciones directas sobre la trayectoria circular o indicaciones sobre el punto central del círculo
- Mediante estas softkeys se programan todas las indicaciones conocidas en la frase: en base a los datos conocidos, el gráfico FK muestra el contorno programado en color rojo. Si hay varias soluciones el gráfio se visualiza en color verde (véase "Gráfico de programación FK" en pág. 148)

Trayectoria circular con unión tangencial

Cuando la trayectoria circular se une tangencialmente a otra trayectoria del contorno, se abre el diálogo con la softkey FCT:

- FCT
- Visualizar las softkeys para la programación libre de contornos: pulsar la tecla FK

- Abrir el diálogo: pulsar la softkey FCT
- Mediante las softkeys se introducen en la frase todos los datos conocidos

Posibles introducciones

Coordenadas del punto final

Datos conocidos	Softkeys	
Coordenadas cartesianas X e Y	<u> </u>	<u> </u>
Coordenadas polares referidas a FPOL	PR	PR

Ejemplo de frases NC

- 7 FPOL X+20 Y+30
- 8 FL IX+10 Y+20 RR F100
- 9 FCT PR+15 IPA+30 DR+ R15

Dirección y longitud de los elementos del contorno

Datos conocidos	Softkeys
Longitud de las rectas	LEN
Pendiente de la recta	RN
Longitud LEN de la cuerda del segmento del arco de círculo	LEN
Ángulo de entrada AN a la tangente de entrada	AN
Ángulo del punto central de la sección del arco de círculo	R33

Y AN LEN X

R15

10

20

. 30°

20

Х

Y

30

Ejemplo de frases NC

27 FLT X+25 LEN 12.5 AN+35 RL F200
28 FC DR+ R6 LEN 10 A-45
29 FCT DR- R15 LEN 15

6.6 Movimientos de trayectoria - Programación li<mark>bre</mark> de contornos FK

Punto central del círculo CC, radio y sentido de giro en la frase FC-/FCT

Para las trayectorias de libre programación, con las indicaciones que se introducen, el TNC calcula un punto central del círculo. De esta forma también se puede programar en una frase un círculo completo en una frase con la programación FK.

Si se quiere definir el punto central del círculo en coordenadas polares, se realiza mediante la función FPOL del polo, en vez de CC. FPOL actúa hasta la siguiente frase con FPOL y se determina en coordenadas cartesianas.

Un punto central del círculo programado de forma convencional o ya calculado no actua más en el apartado FK como polo o como punto central del círculo: Cuando se programan convencionalmente coordenadas polares que se refieren a un polo determinado anteriormente en una frase CC, hay que introducir de nuevo dicho polo con una frase CC.

Datos conocidos	Softkeys	
Punto central en coordenadas cartesianas		
Punto central en coordenadas polares	CC PR	
Sentido de giro de la trayectoria circular		
Radio de la trayectoria circular	R	

Ejemplo de frases NC

10	FC CCX+20 CCY+15 DR+ R15
11	FPOL X+20 Y+15
12	FL AN+40
13	FC DR+ R15 CCPR+35 CCPA+40

Contornos cerrados

Con la softkey CLSD se marca el principio y el final de un contorno cerrado. De esta forma se reducen las posibles soluciones de la última trayectoria del contorno.

CLSD se introduce adicionalmente para otra indicación del contorno en la primera y última frase de una programación FK.

Principio del contorno: CLSD+ Final del contorno: CLSD-

Ejemplo de frases NC

12 L X+5 Y+35 RL F500 M3

13 FC DR- R15 CLSD+ CCX+20 CCY+35

. . .

17 FCT DR- R+15 CLSD-

Puntos auxiliares

Tanto para rectas como para trayectorias circulares libres se pueden introducir coordenadas de puntos auxiliares sobre o junto al contorno.

Puntos auxiliares sobre un contorno

Los puntos auxiliares se encuentran directamente en la recta, o bien en la prolongación de la recta, o bien directamente sobre la trayectoria circular.

Datos conocidos	Softkeys		
Coordenadas X de un punto auxiliar P1 o P2 de una recta	PIX	PZX	
Coordenadas Y de un punto auxiliar P1 o P2 de una recta	PIY	P2Y	
Coordenadas X de un punto auxiliar P1, P2 o P3 de una trayectoria circular	PIX	PZX	P3x
Coordenadas Y de un punto auxiliar P1, P2 o P3 de una trayectoria circular	P1Y	P2Y	P3Y

Puntos auxiliares junto a un contorno

Datos conocidos	Softkeys	
Coordenada X e Y del punto auxiliar junto a una recta	PDX	PDY
Distancia del punto auxiliar a las rectas		
Coordenada X e Y de un punto auxiliar junto a una trayectoria circular	PDX	PDY
Distancia del punto auxiliar a la travectoria	× >D	
circular		

13 FC DR- R10 P1X+42.929 P1Y+60.071

14 FLT AN-70 PDX+50 PDY+53 D10

Referencias relativas

Las referencias relativas son indicaciones que se refieren a otra trayectoria del contorno. Las softkeys y las palabras del pgm para referencias **R**elativas empiezan con una **"R"**. La figura de la derecha muestra las indicaciones de cotas que se deben programar como referencias relativas.

Las coordenadas con una referencia relativa se programan siempre en incremental. Adicionalmente se indica el nº de frase de la trayectoria del contorno al que se desea hacer referencia.

La trayectoria del contorno, cuyo nº de frase se indica, no puede estar a más de 64 frases de posicionamiento delante de la frase en la cual se programa la referencia.

Cuando se borra una frase a la cual se ha hecho referencia, el TNC emite un aviso de error. Deberá modificarse el programa antes de borrar dicha frase.

Referencia relativa a una frase N: Coordenadas del punto final

Ejemplo de frases NC

12 FPOL X+10 Y+10
13 FL PR+20 PA+20
14 FL AN+45
15 FCT IX+20 DR- R20 CCA+90 RX 13
16 FL TPR+35 PA+0 RPR 13

Referencia relativa a una frase N: Dirección y distancia del elemento del contorno

Datos conocidos	Softkey
El ángulo entre la recta y otro elemento del contorno, o bien entre la tangente de entrada del arco del círculo y otro elemento del contorno	RAN [N]
Recta paralela a otro elemento del contorno	PAR N
Distancia de las rectas a la trayectoria del contorno paralelo	DP
Ejemplo de frases NC	
17 FL LEN 20 AN+15	
18 FL AN+105 LEN 12.5	
19 FL PAR 17 DP 12.5	
20 FSELECT 2	
21 EL LEN 20 TAN+05	

17 FL LEN 20 AN+15
18 FL AN+105 LEN 12.5
19 FL PAR 17 DP 12.5
20 FSELECT 2
21 FL LEN 20 IAN+95
22 FL IAN+220 RAN 18

Referencia relativa a la frase N: punto central del círculo CC

12	FL	X+10	Y+1	0 RL					
13	FL	•••							
14	FL	X+18	Y+3	5					
15	FL	•••							
16	FL	•••							
17	FC	DR –	R10	CCA+0	ICCX+20	ICCY-15	RCCX12	RCCY14	

O BEGIN PGM FK1 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición de la pieza en bruto
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Definición de la herramienta
4 TOOL CALL 1 Z S500	Llamada a la herramienta
5 L Z+250 RO FMAX	Retirar la herramienta
6 L X-20 Y+30 R0 FMAX	Posicionamiento previo de la herramienta
7 L Z-10 RO F1000 M3	Desplazamiento a la profundidad de mecanizado
8 APPR CT X+2 Y+30 CCA90 R+5 RL F250	Aproximación al contorno según un círculo con conexión tangente
9 FC DR- R18 CLSD+ CCX+20 CCY+30	Apartado FK:
10 FLT	Para cada trayectoria del contorno se programan los datos conocidos
11 FCT DR- R15 CCX+50 CCY+75	
12 FLT	
13 FCT DR- R15 CCX+75 CCY+20	
14 FLT	
15 FCT DR- R18 CLSD- CCX+20 CCY+30	
16 DEP CT CCA90 R+5 F1000	Salida del contorno según un círculo con conexión tangente
17 L X-30 Y+0 R0 FMAX	
18 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
10 END DCM EK1 MM	

Ejemplo: Programación FK 2

O BEGIN PGM FK2 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición de la pieza en bruto
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+2	Definición de la herramienta
4 TOOL CALL 1 Z S4000	Llamada a la herramienta
5 L Z+250 RO FMAX	Retirar la herramienta
6 L X+30 Y+30 R0 FMAX	Posicionamiento previo de la herramienta
7 L Z+5 RO FMAX M3	Posicionamiento previo del eje de la herramienta
8 L Z-5 R0 F100	Desplazamiento a la profundidad de mecanizado

9 APPR LCT X+0 Y+30 R5 RR F350	Aproximación al contorno según un círculo con conexión tangente
10 FPOL X+30 Y+30	Apartado FK:
11 FC DR- R30 CCX+30 CCY+30	Para cada trayectoria del contorno se programan los datos conocidos
12 FL AN+60 PDX+30 PDY+30 D10	
13 FSELECT 3	
14 FC DR- R20 CCPR+55 CCPA+60	
15 FSELECT 2	
16 FL AN-120 PDX+30 PDY+30 D10	
17 FSELECT 3	
18 FC X+0 DR- R30 CCX+30 CCY+30	
19 FSELECT 2	
20 DEP LCT X+30 Y+30 R5	Salida del contorno según un círculo con conexión tangente
21 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
22 END PGM EK2 MM	

Ejemplo: Programación FK 3

O BEGIN PGM FK3 MM	
1 BLK FORM 0.1 Z X-45 Y-45 Z-20	Definición de la pieza en bruto
2 BLK FORM 0.2 X+120 Y+70 Z+0	
3 TOOL DEF 1 L+0 R+3	Definición de la herramienta
4 TOOL CALL 1 Z S4500	Llamada a la herramienta
5 L Z+250 RO FMAX	Retirar la herramienta
6 L X-70 Y+0 R0 FMAX	Posicionamiento previo de la herramienta
7 L Z-5 RO F1000 M3	Desplazamiento a la profundidad de mecanizado

8 APPR CT X-40 Y+0 CCA90 R+5 RL F250	Aproximación al contorno según un círculo con conexión tangente
9 FC DR- R40 CCX+0 CCY+0	Apartado FK:
10 FLT	Para cada trayectoria del contorno se programan los datos conocidos
11 FCT DR- R10 CCX+0 CCY+50	
12 FLT	
13 FCT DR+ R6 CCX+0 CCY+0	
14 FCT DR+ R24	
15 FCT DR+ R6 CCX+12 CCY+0	
16 FSELECT 2	
17 FCT DR- R1.5	
18 FCT DR- R36 CCX+44 CCY-10	
19 FSELECT 2	
20 FCT CT+ R5	
21 FLT X+110 Y+15 AN+0	
22 FL AN-90	
23 FL X+65 AN+180 PAR21 DP30	
24 RND R5	
25 FL X+65 Y-25 AN-90	
26 FC DR+ R50 CCX+65 CCY-75	
27 FCT DR- R65	
28 FSELECT	
29 FCT Y+0 DR- R40 CCX+0 CCY+0	
30 FSELECT 4	
31 DEP CT CCA90 R+5 F1000	Salida del contorno según un círculo con conexión tangente
32 L X-70 RO FMAX	
33 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
34 END PGM FK3 MM	

Programación: funciones-auxiliares

7.1 Introducción de funciones auxiliares M y STOP

Nociones básicas

Con las funciones auxiliares del TNC, llamadas también funciones M, se controla

- la ejecución del programa, p.ej. una interrupción de la ejecución
- las funciones de la máquina, como la conexión y desconexión del giro del cabezal y el refrigerante
- la trayectoria de la herramienta

Es posible introducir un máximo de dos funciones auxiliares M al final de una frase de posicionamiento o también en una frase separada. El TNC indica entonces el diálogo: **¿Función auxiliar M?**

Normalmente en el diálogo se indica el número de la función auxiliar. En algunas funciones auxiliares se continua con el diálogo para poder indicar parámetros de dicha función.

En los modos de funcionamiento Manual y Volante electrónico se introducen las funciones auxiliares por medio de la softkey M.

빤

Tener en cuenta que algunas funciones auxiliares son efectivas al principio de una frase de posicionamiento, otras al final, independientemente de la secuencia en la que estén en la frase NC correspondiente.

Las funciones auxiliares se activan a partir de la frase en la cual son llamadas.

Algunas funciones auxiliares sólo actúan en la frase en la cual han sido programadas. Cuando la función auxiliar no es efectiva sólo por frases, se la debe anular nuevamente en una frase siguiente con función M separada, o el TNC la anulará automáticamente en el final del programa.

Introducción de una función auxiliar en una frase STOP

Una frase de STOP programada interrumpe la ejecución del programa o el test del programa, p.ej. para comprobar una herramienta. En una frase de STOP se puede programar una función auxiliar M:

- Programación de una interrupción en la ejecución del programa: pulsar la tecla STOP
- ▶ Introducir la función auxiliar M

Ejemplo de frases NC

87 STOP M6

7.2 Funciones auxiliares para el control de la ejecución del programa, cabezal y refrigerante

Resumen

м	Funcionamiento Actúa al	principio de la frase	final de la frase
M00	PARADA de la ejecución del programa PARADA del cabezal Refrigerante DESCONECTADO		-
M01	PARADA opcional de la ejecución del programa		
M02	PARADA de la ejecución del programa PARADA del cabezal Refrigerante desconectado Salto a la frase 1 Borrado de la visualización de estados (depende de parámetros de máquina c1earMode)		
M03	Cabezal CONECTADO en sentido horario		
M04	Cabezal CONECTADO en sentido antihorario		
M05	PARADA del cabezal		
M06	Cambio de herramienta (función que depende de la máquina) PARADA de cabezal PARADA en la ejecución del programa		
M08	Refrigerante CONECTADO	-	
M09	Refrigerante DESCONECTADO		
M13	Cabezal CONECTADO en sentido horario Refrigerante CONECTADO	-	
M14	Cabezal CONECTADO en sentido antihorario Refrigerante conectado	-	
M30	igual que M02		-

7.3 Programación de coordenadas referidas a la máquina: M91/ M92

Programación de coordenadas referidas a la máquina: M91/M92

Punto cero de la regla

En las reglas la marca de referencia indica la posición del punto cero de la misma.

Punto cero de la máquina

El punto cero de la máquina se precisa para:

- fijar los limites de desplazamiento (finales de carrera de software)
- Ilegar a posiciones fijas de la máquina (p.ej. posición para el cambio de herramienta)
- Ifijar un punto de referencia en la pieza

El constructor de la máquina introduce para cada eje la distancia desde el punto cero de la máquina al punto cero de la regla en un parámetro de máquina.

Comportamiento estándar

白

El TNC refiere las coordenadas al punto cero de la pieza véase "Fijación del punto de referencia (sin palpador 3D)" en pág. 47.

Comportamiento con M91 - Punto cero de la máquina

Cuando en una frase de posicionamiento las coordenadas se refieren al punto cero de la máquina, se introduce en dicha frase M91.

> Si se programan coordenadas incrementales en una frase M91, estas coordenadas se referirán a la última posición M91 programada. Si el programa NC activo no hay programada ninguna posición M91 programada, la coordenadas se referiran entonces a la posición actual de la herramienta.

El TNC indica los valores de coordenadas referidos al punto cero de la máquina. En la visualización de estados se conecta la visualización de coordenadas a REF, véase "Visualización de estado" en pág. 33.

Comportamiento con M92 - Punto de referencia de la máquina

Además del punto cero de la máquina el constructor de la máquina también puede determinar otra posición fija de la máquina (punto de referencia de la máquina).

El constructor de la máquina determina para cada eje la distancia del punto de referencia de la máquina al punto cero de la misma (véase el manual de la máquina).

Cuando en las frases de posicionamiento las coordenadas se deban referir al punto de referencia de la máquina, deberá introducirse en dichas frases M92.

Con M91 o M92 el TNC también realiza correctamente la corrección de radio. Sin embargo **no** se tiene en cuenta la longitud de la herramienta.

Funcionamiento

M91 y M92 sólo funcionan en las frases de posicionamiento en las cuales está programada M91 o M92.

M91 y M92 se activan al inicio de la frase.

Punto de referencia de la pieza

Cuando las coordenadas deban referirse siempre al punto cero de la máquina, se puede bloquear la fijación del punto de referencia para uno o varios ejes.

Cuando está bloqueada la fijación del punto de referencia para todos los ejes, el TNC ya no muestra la softkey FIJAR PTO. REF en el modo de funcionamiento Manual.

La figura indica sistemas de coordenadas con puntos cero de la máquina y de la pieza.

M91/M92 en el modo de funcionamiento Test del programa

Para poder simular también gráficamente los movimientos M91/M92, se activa la supervisión del espacio de trabajo visualizando la pieza en bruto en relación al punto de referencia fijado, véase "Representación de la pieza en bruto en el espacio de trabajo" en pág. 409.

7.4 Funciones auxiliares para el comportamiento en trayectoria

Mecanizado de pequeños escalones de un contorno: M97

Comportamiento estándar

El TNC añade en las esquinas exteriores un círculo de transición. En escalones pequeños del contorno, la herramienta dañaría el contorno.

El TNC interrumpe en dichas posiciones la ejecución del programa y emite el aviso de error "Radio de hta. muy grande".

Comportamiento con M97

El TNC calcula un punto de intersección en la trayectoria del contorno, como en esquinas interiores, y desplaza la herramienta a dicho punto.

M97 se programa en la frase en la cual está determinado el punto exterior de la esquina.

¡En lugar de **M97** debería utilizarse la función **M120** LA que es sustancialmente más potente (véase "Comportamiento con M120" en pág. 172)!

Funcionamiento

M97 actúa sólo en la frase del programa en la que está programada.

Con M97 la esquina del contorno no se mecaniza completamente. Si es preciso habrá que mecanizarla posteriormente con una herramienta más pequeña.

Ejemplo de frases NC

5 TOOL DEF L R+20	Radio de herramienta grande
····	
13 L X Y R F M97	Llegada al punto 13 del contorno
14 L IY-0.5 R F	Mecanizado de pequeños escalones 13 y 14
15 L IX+100	Llegada al punto 15 del contorno
16 L IY+0.5 R F M97	Mecanizado de pequeños escalones 15 y 16
17 L X Y	Llegada al punto 17 del contorno

Mecanizado completo de esquinas abiertas del contorno: M98

Comportamiento estándar

El TNC calcula en las esquinas interiores el punto de intersección de las trayectorias de fresado y desplaza la herramienta a partir de dicho punto en una nueva dirección.

Cuando el contorno está abierto en las esquinas, el mecanizado es incompleto:

Comportamiento con M98

Con la función auxiliar M98 el TNC desplaza la herramienta hasta que cada punto del contorno esté realmente mecanizado:

Funcionamiento

M98 sólo funciona en las frases del programa en las que ha sido programada.

M98 actúa al final de la frase.

Ejemplo de frases NC

Sobrepasar sucesivamente los puntos 10, 11 y 12 del contorno:

10 L X Y RL F	
11 L X IY M98	
12 L IX+	

Avance en arcos de círculo: M109/M110/M111

Comportamiento estándar

El TNC relaciona la velocidad de avance programada respecto a la trayectoria del centro de la herramienta.

Comportamiento en arcos de círculo con M109

El TNC mantiene constante el avance de la cuchilla de la herramienta en los mecanizados interiores y exteriores de los arcos de círculo.

Comportamiento en arcos de círculo con M110

El TNC mantiene constante el avance en el mecanizado interior de arcos de círculo. En un mecanizado exterior de arcos de círculo, no actúa ningún ajuste del avance.

Funcionamiento

M109 y M110 actúan al principio de la frase. M109 y M110 se anulan con M111.

TNC 320 de HEIDENHAIN

Cálculo previo del contorno con corrección de radio (LOOK AHEAD): M120

Comportamiento estándar

Cuando el radio de la herramienta es mayor a un escalón del contorno con corrección de radio, el TNC interrumpe la ejecución del programa e indica un aviso de error. M97 (véase "Mecanizado de pequeños escalones de un contorno: M97" en pág. 169) evita el aviso de error, pero causa una marca en la pieza y además desplaza la esquina.

En los rebajes pueden producirse daños en el contorno.

Comportamiento con M120

El TNC comprueba los rebajes y salientes de un contorno con corrección de radio y hace un cálculo previo de la trayectoria de la herramienta a partir de la frase actual. No se mecanizan las zonas en las cuales la herramienta puede perjudicar el contorno (representadas en la figura de la derecha en color oscuro). M120 también se puede emplear para calcular la corrección de radio de la herramienta a los datos de la digitalización o los datos elaborados en un sistema de programación externo. De esta forma se pueden compensar desviaciones del radio teórico de la herramienta.

El número de frases (máximo 99) que el TNC calcula previamente se determina con LA (en inglés Look Ahead: prever) detrás de M120. Cuanto mayor sea el número de frases preseleccionadas que el TNC debe calcular previamente, más lento será el proceso de las frases.

Introducción

Cuando se introduce M120 en una frase de posicionamiento, el TNC sigue el diálogo para dicha frase y pregunta por el número de frases precalculadas LA.

Funcionamiento

M120 deberá estar en una frase NC que tenga corrección de radio RL o RR. M120 actúa a partir de dicha frase hasta que

- se elimina la corrección de radio con R0
- Programar M120 LA0
- Se programa M120 sin LA
- Ilamar con PGM CALL a otro programa

M120 actúa al principio de la frase.

Limitaciones

- Sólo se puede realizar la reentrada al contorno después de una parada externa/interna con la función AVANCE HASTA FRASE N
- Cuando se utilizan las funciones RND y CHF las frases delante y detrás de RND o CHF sólo pueden contener las coordenadas del plano de mecanizado.
- Cuando se llega al contorno tangencialmente se debe utilizar la función APPR LCT; la frase con APPR LCT sólo puede contener las coordenadas del plano de mecanizado
- Cuando se sale tangencialmente del contorno se utiliza la función DEP LCT; la frase con DEP LCT sólo puede contener las coordenadas del plano de mecanizado

Superposición de posicionamientos del volante durante la ejecución de un programa: M118

Comportamiento estándar

El TNC desplaza la herramienta en los modos de funcionamiento de ejecución del programa tal y como se determina en el programa de mecanizado.

Comportamiento con M118

Con M118 se pueden realizar correcciones manualmente con el volante durante la ejecución del programa. Para ello se programa M118 y se introduce un valor específico en mm (eje lineal o giratorio)

Introducción

Cuando se introduce M118 en una frase de posicionamiento, el TNC continúa con el diálogo y pregunta por los valores específicos de cada eje. Utilizar la tecla ENTER para conmutar las letras de eje.

Funcionamiento

El posicionamiento del volante se elimina programando de nuevo M118 sin introducción de coordenadas.

M118 actúa al principio de la frase.

Ejemplo de frases NC

Durante la ejecución del programa, al mover el volante se produce un desplazamiento en el plano de mecanizado X/Y, de ± 1 mm del valor programado.

L X+0 Y+38.5 RL F125 M118 X1 Y1

¡M118 también actúa en el modo de funcionamiento Posicionamiento manual!

¡Cuando está activada M118, al interrumpirse el programa, no se dispone de la función DESPLAZAMIENTO MANUAL!

Retirada del contorno en dirección al eje de la herramienta: M140

Comportamiento estándar

El TNC desplaza la herramienta en los modos de funcionamiento de ejecución del programa tal y como se determina en el programa de mecanizado.

Comportamiento con M140

Con M140 MB (move back) puede retirarse del contorno en la dirección del eje de la herramienta.

Introducción

Cuando en una frase de posicionamiento se programa M140, el TNC continúa el diálogo preguntando por el recorrido de retroceso de la herramienta fuera del contorno. Introducir el camino deseado, que la herramienta debe seguir para alejarse del contorno o bien pulsar la softkey MAX para desplazarla al límite del campo de desplazamiento.

Adicionalmente puede programarse un avance con el que la herramienta se desplaza el recorrido introducido. Si no se introduce ningún avance, el TNC desplaza el recorrido programado en marcha rápida.

Funcionamiento

M140 sólo actúa en la frase en la que se programa.

M140 actúa al principio de la frase.

Ejemplo de frases NC

Frase 250: retirar la herramienta 50 mm del contorno

Frase 251: desplazar la herramienta hasta el límite del margen de desplazamiento

250 L X+0 Y+38.5 F125 M140 MB 50 F750

251 L X+0 Y+38.5 F125 M140 MB MAX

Con M140 MB MAX se puede retirar sólo en dirección positiva.

Suprimir la supervisión del palpador: M141

Comportamiento estándar

Cuando el palpador está desviado, al querer desplazar un eje de la máquina el TNC emite un aviso de error.

Comportamiento con M141

El TNC también desplaza los ejes de la máquina cuando el palpador está desviado. Esta función se precisa cuando se utiliza un ciclo de medición propio con el ciclo de medición 3, para retirar de nuevo el palpador, después de la desviación, con una frase de posicionamiento.

Cuando se utiliza la función M141, debe prestarse atención a que el palpador se retire en la dirección correcta.

M141 actúa sólo en desplazamientos con frases lineales.

Funcionamiento

M141 actúa sólo en las frases del programa, en las cuales se ha programado M141.

M141 actúa al principio de la frase.

Borrar el giro básico: M143

Comportamiento estándar

El giro básico se mantiene activado hasta que se cancela o se sobreescribe con un nuevo valor.

Comportamiento con M143

El TNC borra un giro básico programado en el programa NC.

La función **M143** no se admite en el proceso hasta una frase.

Funcionamiento

M143 sólo actúa en la frase en la que se programa.

M143 actúa al principio de la frase.

Con Stop NC retirar automáticamente la herramienta del contorno: M148

Comportamiento estándar

Con un Stop NC el TNC detiene todos los movimientos de desplazamiento. La herramienta permanece en el punto de interrupción.

Comportamiento con M148

ΓŢ	

La función M148 debe ser habilitada por el fabricante de la máquina.

El TNC retira la herramienta del contorno en dirección al eje de la herramienta, si en la tabla de herramientas en la columna **LIFTOFF** está fijado el parámetro **Y** para la herramienta activa (véase "Tabla de herramientas: Datos de la herramienta estándard" en pág. 100).

Deberá tener en cuenta que al volver a aproximarse al contorno pueden ocasionarse daños en el mismo especialmente en superficies curvadas. ¡Mover la herramienta antes de realizar la nueva aproximación!

Definir el valor, según el cual la herramienta debe retirarse en el parámetro de máquina **CfgLift0ff**. Además, generalmente, en el parámetro de máquina **CfgLift0ff** se puede desactivar la función.

Funcionamiento

M148 tiene efecto hasta que se desactiva la función con M149

M148 actúa al principio de la frase, M149 al final de la frase.

7.5 Funciones auxiliares para ejes giratorios

Avance en mm/min en los ejes giratorios A, B, C: M116

Comportamiento estándar

El TNC interpreta el avance programado en los ejes giratorios en grados/min. El avance de la trayectoria depende por lo tanto de la distancia entre el punto central de la herramienta y el centro del eje de giro.

Cuanto mayor sea la distancia mayor es el avance.

Avance en mm/min en ejes giratorios con M116

La geometría de la máquina debe ser determinada por el fabricante de la misma.

¡Rogamos consulten el manual de su máquina!

M116 actúa sólo en mesas giratorias y basculantes. M116 no puede ser utilizado con cabezales basculantes. Si la máquina está equipada con una combinación mesa/ cabeza, el TNC ignora los ejes basculantes del cabezal.

El TNC interpreta el avance programado en un eje giratorio en mm/ min. Para ello el TNC calcula al principio de la frase el avance para dicha frase. El avance no se modifica mientras se ejecuta la frase, incluso cuando la herramienta se dirige al centro del eje giratorio.

Funcionamiento

M116 actúa en el plano de mecanizado Con M117 se anula M116; al final del programa también se desactiva M116.

M116 actúa al principio del programa.

Desplazamiento por el camino más corto en ejes giratorios: M126

Comportamiento estándar

El comportamiento estándar del TNC en el posicionamiento de los ejes giratorios, cuya visualización se ha reducido a valores por debajo de 360°, lo determina el fabricante de la máquina. Éste determina, si el TNC debe desplazarse la diferencia entre la posición nominal y la posición real, o bien si el desplazamiento a la posición programada debe ser siempre (también sin M126) por el recorrido más corto. Ejemplos:

Posición real	Posición nominal	Recorrido
350°	10°	-340°
10°	340°	+330°

Comportamiento con M126

Con M126 el TNC desplaza un eje giratorio cuya visualización está reducida a valores por debajo de 360°, por el camino más corto. Ejemplos:

Posición real	Posición nominal	Recorrido
350°	10°	+20°
10°	340°	–30°

Funcionamiento

M126 actúa al principio de la frase.

M126 se anula con M127; al final del programa deja de actuar M126.

Redondear la visualización del eje giratorio a un valor por debajo de 360°: M94

Comportamiento estándar

El TNC desplaza la herramienta desde el valor angular actual al valor angular programado.

Ejemplo:

Valor actual del ángulo:	538°
Valor programado del ángulo:	180°
Recorrido real:	–358°

Comportamiento con M94

Al principio de la frase el TNC reduce el valor angular actual a un valor por debajo de 360° y se desplaza a continuación sobre el valor programado. Cuando están activados varios ejes giratorios, M94 reduce la visualización de todos los ejes. Como alternativa se puede introducir un eje giratorio detrás de M94. En este caso el TNC reduce sólo la visualziación de dicho eje.

Ejemplo de frases NC

Redondear los valores de visualización de todos los ejes giratorios activados:

L M94

Reducir sólo el valor de visualización del eje C:

L M94 C

Redondear la visualización de todos los ejes giratorios activados y a continuación desplazar el eje C al valor programado:

L C+180 FMAX M94

Funcionamiento

M94 sólo actúa en la frase en la que se programa.

M94 actúa al principio de la frase.

Programación: Ciclos

8.1 Trabajar con ciclos

Los mecanizados que se repiten y que comprenden varios pasos de mecanizado, se memorizan en el TNC como ciclos. También las traslaciones de coordenadas y algunas funciones especiales están disponibles como ciclos (Resumen: véase "" en pág. 184).

Los ciclos de mecanizado con números a partir de 200 emplean parámetros Q como parámetros de transmisión. Las funciones que son comunes en los diferentes ciclos, tienen asignado un mismo número de Q: p.ej. Q200 es siempre la distancia de seguridad, Q202 es siempre la profundidad de pasada, etc.

Los ciclos de mecanizado realizan mecanizados de gran volumen. ¡Por motivos de seguridad debe realizarse un test de programa gráfico antes del mecanizado(véase "Test del programa" en pág. 408)!

Ciclos específicos de la máquina

En muchas máquinas hay otros ciclos disponibles que se implementan por el fabricante de su máquina adicionalmente a los ciclos HEIDENHAIN en el TNC. Para ello están disponibles unos ciertos números de ciclos a parte:

Ciclos 300 al 399

Ciclos específicos de la máquina a definir mediante la tecla CYCLE DEF

Ciclos 500 al 599

Ciclos de palpación específicos de la máquina a definir mediante la tecla TOUCH PROBE

Preste atención a la descripción de la función correspondiente en el manual de la máquina.

Bajo ciertas condiciones, se utilizan también parámetros de asignación Q en ciclos específicos de la máquina, los cuales HEIDENHAIN ya ha utilizado en ciclos estándar. Para evitar problemas en cuanto a la sobreescritura de parámetros Q en la utilización simultánea de ciclos DEF activos (ciclos que el TNC ejecuta automáticamente en la definición del ciclo, Véase también "Llamada de ciclos" en pág. 185) y ciclos CALL activos (ciclos que se han de llamar para la ejecución, Véase también "Llamada de ciclos" en pág. 185), prestar atención a la siguiente forma de proceder:

Programar básicamente ciclos DEF antes de los ciclos CALL

Programar un ciclo DEF sólo entre la definición de un ciclo CALL y la llamada al ciclo correspondiente, en caso de que no se produzca ninguna interferencia en los parámetros Q de ambos ciclos

Definir el ciclo mediante softkeys

262

ROSCADO

72

- La carátula de softkeys muestra los diferentes grupos de ciclos
- Seleccionar el grupo de ciclos, p.ej. ciclos de taladrado
- Seleccionar el ciclo, p. ej. FRESADO DE ROSCA. El TNC abre un diálogo y pregunta todos los valores de introducción. El TNC visualiza simultáneamente en la mitad derecha de la pantalla un gráfico, en el cual se destaca el parámetro a introducir con un color más claro.
- Introducir todos los parámetros solicitados por el TNC y finalizar la introducción con la tecla ENT
- El TNC finaliza el diálogo después de haber introducido todos los datos precisos

Definir el ciclo a través de la función GOTO

- La carátula de softkeys muestra los diferentes grupos de ciclos
- сото
- El TNC abre una ventana superpuesta
- Introducir el número de ciclo y confirmar cada vez con la tecla ENT. El TNC abre entonces el diálogo del ciclo descrito anteriormente

Ejemplo de frases NC

7 CYCL DEF 200 TALADRO
Q200=2 ;DISTSEGURIDAD
Q201=3 ;PROFUNDIDAD
Q206=150 ;AVANCE AL PROFUNDIZAR
Q2O2=5 ;PROFUNDIDAD DE PASO
Q210=0 ;TIEMPO DE ESPERA ARRIBA
Q2O3=+0 ;COORDENADA SUPERFICIE
Q204=50 ;2A. DIST.DE SEGURIDAD
Q211=0.25;TIEMPO DE ESPERA ABAJO

Grupo de ciclos	Softkey
Ciclos para el taladrado profundo, escariado, mandrinado, rebaje inverso, roscado con macho, corte de rosca y fresado de rosca	TALADRADO Roscado
Ciclos para el fresado de cajeras,islas y ranuras	CAJERAS/ ISLAS/ RANURAS
Ciclos para el trazado de figuras de puntos, p.ej. círculo de taladros o línea de taladros	FIGURA DE PUNTOS
Ciclos SL (Subcontur List) con los que se mecanizan contornos paralelos al contorno, que se componen de varios contornos parciales superpuestos. Interpolación de una superficie cilíndrica	SL II
Ciclos para el planeado de superficiesplanas o unidas entre si	PLANEADO
Ciclos para la traslación de coordenadas con los cuales se pueden desplazar, girar, reflejar, ampliar y reducir contornos	TRANSF. COORD.
Ciclos especiales tiempo de espera, llamada al programa, orientación del cabezal,	CICLOS ESPECIAL.

Cuando se utilizan asignaciones indirectas de parámetros en ciclos de mecanizado con número mayor a 200 (p.ej. **D00 Q210 = Q1**), después de la definición del ciclo no tiene efecto la modificación del parámetro asignado (p.ej. Q1). En estos casos debe definirse directamente el parámetro del ciclo (p.ej. **Q210**).

Cuando se define un parámetro de avance en ciclos de mecanizado con números mayores de 200, entonces se puede asignar mediante softkey también el avance (Softkey **FAUTO**) definido en la frase TOOL CALL en lugar de un valor dado, o bien la marcha rápida (Softkey FMAX).

Tener en cuenta que una modificación del avance FAUTO tras una definición del ciclo no tiene ningún efecto, ya que, al procesar la definición del ciclo, el avance ha asignado internamente el avance desde la frase TOOL CALL.

Si desea borrar un ciclo con varias frases parciales, el TNC indica, si se debe borrar el ciclo completo.

Llamada de ciclos

Condiciones

Antes de la llamada al ciclo debe programarse en cualquier caso:

- BLK FORM para la representación gráfica (sólo se precisa para el test gráfico)
- Llamada a la herramienta
- Sentido de giro del cabezal (funciones auxiliares M3/M4)
- Definición del ciclo (CYCL DEF).

Deberán tenerse en cuenta otras condiciones que se especifican en las siguientes descripciones de los ciclos.

Los siguientes ciclos actúan a partir de su definición en el programa de mecanizado. Estos ciclos no se pueden ni deben llamar:

- los ciclos de figuras de puntos sobre círculos y sobre lineas
- el ciclo 14 CONTORNO
- el ciclo 20 DATOS DEL CONTORNO
- ciclos para la traslación de coordenadas
- El ciclo 9 TIEMPO DE ESPERA

Todos los ciclos restantes pueden ser llamados con las siguientes funciones descritas a continuación.

Llamada al ciclo con CYCL CALL

La función **CYCL CALL** llama una vez al último ciclo de mecanizado definido. El punto de arranque del ciclo es la última posición programada antes de la frase CYCL CALL.

- Programación de la llamada al ciclo: Pulsar la tecla CYCL CALL
- Programación de la llamada al ciclo: Pulsar la softkey CYCL CALL M
- Si es necesario, introducir la función auxiliar M (p.ej., M3 para conectar el cabezal), o finalizar el diálogo con la tecla END

Llamada al ciclo con M99/M89

La función **M99** que tiene efecto por bloques, llama una vez al último ciclo de mecanizado definido. **M99** puede programarse al final de una frase de posicionamiento, el TNC se desplaza hasta esta posición y llama a continuación al último ciclo de mecanizado definido.

Si el TNC debe ejecutar automáticamente el ciclo después de cada frase de posicionamiento, se programa la primera llamada al ciclo con **M89**.

Para anular el efecto de M89 se programa

- M99 en la frase de posicionamiento en la que se activa el último punto de arranque, o
- se define con **CYCL DEF** un ciclo de mecanizado nuevo

8.2 Ciclos para taladrado, roscado y fresado de rosca

Resumen

Ciclo	Softkey
200 Taladrado Con posicionamiento previo automático, 2ª distancia de seguridad	208
201 Escariado Con posicionamiento previo automático, 2ª distancia de seguridad	201
202 Mandrinado Con posicionamiento previo automático, 2ª distancia de seguridad	202
203 Taladrado universal Con posicionamiento previo automático, 2ª distancia de seguridad, rotura de viruta, degresión	203
204 REBAJE INVERSO Con posicionamiento previo automático, 2ª distancia de seguridad	204
205 TALADRO PROFUNDO UNIVERSAL Con posicionamiento previo automático, 2ª distancia de seguridad, rotura de viruta, distancia de parada previa	205
208 FRESADO DE TALADRO Con posicionamiento previo automático, 2ª distancia de seguridad	283
206 ROSCADO NUEVO Con macho flotante, con posicionamiento previo automático, 2ª distancia de seguridad	206
207 ROSCADO RIGIDO NUEVO Sin macho flotante, con posicionamiento previo automático, 2ª distancia de seguridad	207 RT
209 ROSCADO CON ROTURA DE VIRUTA Sin macho flotante, con posicionamiento previo automático, 2ª distancia de seguridad; rotura de viruta	209 RT
262 FRESADO DE ROSCA Ciclo para el fresado de una rosca en el material previamente taladrado	262
263 FRESADO DE ROSCA AVELLANADA Ciclo para el fresado de una rosca en el material previamente taladrado con chaflán de avellanado	263

Ciclo	Softkey
264 FRESADO DE ROSCA EN TALADRO Ciclo para taladrar la pieza y a continuación fresar una rosca con una herramienta	264
265 FRESADO DE ROSCA HELICOIDAL EN TALADRO Ciclo para fresar una rosca en la pieza	265
267 FRESADO DE ROSCA EXTERIOR Ciclo para el fresado de una rosca exterior con chaflán de avellanado	267

TALADRAR (ciclo 200)

- 1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad sobre la superficie de la pieza
- 2 La hta. taladra con el avance F programado hasta la primera profundidad de paso
- 3 El TNC retira la herramienta con FMAX a la distancia de seguridad, espera allí si se ha programado, y a continuación se desplaza de nuevo con FMAX a la distancia de seguridad sobre la primera profundidad de paso
- 4 A continuación la hta. taladra con el avance F programado hasta la siguiente profundidad de paso
- 5 El TNC repite este proceso (2 a 4) hasta que se ha alcanzado la profundidad de taladrado programada
- 6 En la base del taladro la hta. se desplaza con FMAX a la distancia de seguridad, y si se ha programado hasta la 2ª distancia de seguridad

ᇞ

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza; introducir siempre valor positivo
- Profundidad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro (extremo del cono del taladro)
- ▶ Avance al profundizar Q206: Velocidad de desplazamiento de la hta. en el taladrado en mm/min
- Profundidad de paso Q202 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza La profundidad de taladrado no tiene porque ser múltiplo del paso de profundización. El TNC se desplaza en un sólo paso de mecanizado a la profundidad total cuando:
 - El paso de profundización y la profundidad total son iguales
 - El paso de profundización es mayor a la profundidad total
- Tiempo de espera arriba Q210: Tiempo en segundos que espera la hta. a la distancia de seguridad, después de que el TNC la ha retirado del taladro para desahogar la viruta
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)
- ▶ Tiempo de espera abajo Q211: Tiempo en segundos que espera la hta. en la base del taladro

10 L Z+100 R0 FMAX
11 CYCL DEF 200 TALADRO
Q200=2 ;DISTSEGURIDAD
Q201=-15 ;PROFUNDIDAD
Q206=250 ;AVANCE AL PROFUNDIZAR
Q2O2=5 ;PROFUNDIDAD DE PASO
Q210=0 ;TIEMPO DE ESPERA ARRIBA
Q2O3=+20 ;COORDENADA SUPERFICIE
Q204=100 ;2A. DIST.DE SEGURIDAD
Q211=0.1 ;TIEMPO DE ESPERA ABAJO
12 L X+30 Y+20 FMAX M3
13 CYCL CALL
14 L X+80 Y+50 FMAX M99
15 7±100 EMAY M2

ESCARIADO (ciclo 201)

- 1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad sobre la superficie de la pieza
- 2 La herramienta penetra con el avance F introducido hasta la profundidad programada
- 3 Si se ha programado, la hta. espera en la base del taladro
- 4 A continuación, el TNC retira la hta. con el avance F a la distancia de seguridad, y desde allí, si se ha programado, con FMAX a la 2ª distancia de seguridad

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

呣

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- ▶ **Profundidad** Q201 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro
- Avance al profundizar Q206: Velocidad dedesplazamiento de la hta. en el escariado en mm/ min
- ▶ Tiempo de espera abajo Q211: Tiempo en segundos que espera la hta. en la base del taladro
- Avance de retroceso Q208: Velocidad de desplazamiento de la hta. al retirarse del taladro en mm/min. Cuando se introduce Q208 = 0 es válido el avance de escariado
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)

10 L Z+100 RO FMAX
11 CYCL DEF 201 ESCARIADO
Q200=2 ;DISTSEGURIDAD
Q201=-15 ;PROFUNDIDAD
Q206=100 ;AVANCE AL PROFUNDIZAR
Q211=0.5 ;TIEMPO DE ESPERA ABAJO
Q208=250 ;AVANCE DE RETROCESO
Q203=+20 ;COORDENADA SUPERFICIE
Q204=100 ;2A. DIST.DE SEGURIDAD
12 L X+30 Y+20 FMAX M3
13 CYCL CALL
14 L X+80 Y+50 FMAX M9
15 I 7+100 FMAX M2

MANDRINADO (ciclo 202)

La máquina y el TNC deben estar preparados por el constructor de la máquina.

Ciclo aplicable sólo a máquinas con cabezal controlado.

- 1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad sobre la superficie de la pieza
- 2 La hta. taladra con el avance de taladrado hasta la profundidad programada
- **3** La hta. espera en la base del taladro, si se ha programado un tiempo para girar libremente
- 4 El TNC realiza una orientación del cabezal hacia la posición, la cual se define en el parámetro Q336
- **5** Si se ha seleccionado el retroceso, la hta. se desplaza 0,2 mm hacia atrás en la dirección programada (valor fijo)
- 6 A continuación, el TNC retira la hta. con el avance de retroceso a la distancia de seguridad, y desde allí, si se ha programado, con FMAX a la 2ª distancia de seguridad. Cuando Q214=0 la herramienta permanece en la pared del taladro

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Al final del ciclo, el TNC vuelve a conectar el estado del refrigerante y del cabezal que estaba activado antes de la llamada al ciclo.

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

ᇞ

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- Profundidad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro
- Avance al profundizar Q206: Velocidad de desplazamiento de la hta. en el mandrinado en mm/ min
- ▶ Tiempo de espera abajo Q211: Tiempo en segundos que espera la hta. en la base del taladro
- Avance de retroceso Q208: Velocidad de desplazamiento de la herramienta al retirarse del taladro en mm/min. Cuando se programa Q208=0 es válido el avance al profundizar
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)
- Dirección de libre retroceso (0/1/2/3/4) Q214: Determinar la dirección en la cual el TNC retira la hta. de la base del taladro (después de la orientación del cabezal)
 - 0 no retirar la herramienta
 - 1 retirar la hta. en la dirección negativa del eje principal
 - 2 retirar la hta. en la dirección negativa del eje transversal
 - **3** retirar la hta. en la dirección positiva del eje principal
 - 4 retirar la hta. en la dirección positiva del eje transversal

吵

¡Peligro de colisión!

Seleccionar la dirección de retroceso para que la hta. se retire del borde del taladro.

Deberá comprobarse donde se encuentra el extremo de la hta. cuando se programa una orientación del cabezal al ángulo programado en Q336 (p.ej. en el modo de funcionamiento Posicionamiento manual). Elegir el ángulo para que el extremo de la hta. esté paralelo al eje de coordenadas.

El TNC determina en el libre desplazamiento un giro del sistema de coordenadas automáticamente.

Angulo para orientación del cabezal Q336 (valor absoluto): Angulo sobre el cual el TNC posiciona la hta. antes de retirarla

Ejemplo: Frases NC

10 L Z+100 RO FMAX
11 CYCL DEF 202 MANDRINADO
Q200=2 ;DISTSEGURIDAD
Q201=-15 ;PROFUNDIDAD
Q206=100 ;AVANCE AL PROFUNDIZAR
Q211=0.5 ;TIEMPO DE ESPERA ABAJO
Q208=250 ;AVANCE DE RETROCESO
Q2O3=+20 ;COORDENADA SUPERFICIE
Q204=100 ;2A. DIST.DE SEGURIDAD
Q214=1 ;DIRECCIÓN DE RETROCESO
Q336=0 ;ÁNGULO CABEZAL
12 L X+30 Y+20 FMAX M3
13 CYCL CALL
14 L X+80 Y+50 FMAX M99

1

TALADRO UNIVERSAL (ciclo 203)

- 1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad sobre la superficie de la pieza
- 2 La hta. taladra con el avance F introducido hasta la primera profundidad de paso
- 3 Si se introduce una rotura de viruta, el TNC retira la herramienta al valor de retroceso introducido. Si se trabaja sin rotura de viruta, el TNC retira la hta. con el avance de retroceso a la distancia de seguridad, espera allí según el tiempo programado y a continuación se desplaza de nuevo con FMAX a la distancia de seguridad sobre la primera profundidad de paso
- 4 A continuación la hta. taladra con el avance programado hasta la siguiente profundidad de paso. La profundidad de paso se reduce con cada aproximación según el valor de reducción, en caso de que este se haya programado
- 5 El TNC repite este proceso (2-4) hasta alcanzar la profundidad de taladrado
- 6 En la base del taladro la hta. espera, si se ha programado, un tiempo para el desahogo de la viruta y se retira después de transcurrido el tiempo de espera con el avance de retroceso a la distancia de seguridad. Si se ha programado una 2ª distancia de seguridad, la hta. se desplaza a esta con FMAX

Antes de la programación deberá tenerse en cuenta:

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

ᇞ

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- Profundidad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro (extremo del cono del taladro)
- ▶ Avance al profundizar Q206: Velocidad de desplazamiento de la hta. en el taladrado en mm/min
- Profundidad de paso Q202 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza La profundidad de taladrado no tiene porque ser múltiplo del paso de profundización. El TNC se desplaza en un sólo paso de mecanizado a la profundidad total cuando:
 - El paso de profundización y la profundidad total son iguales
 - El paso de profundización es mayor a la profundidad total
- Tiempo de espera arriba Q210: Tiempo en segundos que espera la hta. a la distancia de seguridad, después de que el TNC la ha retirado del taladro para desahogar la viruta
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)
- Valor de reducción Q212 (valor incremental): Valor según el cual el TNC reduce la profundidad de paso en cada aproximación
- Número de roturas de viruta antes de retirarse Q213: Número de roturas de viruta, después de las cuales el TNC retira la hta. del taladro para soltarla. Para el arranque de viruta el TNC retira la hta. según el valor de retroceso de Q256
- Mínima profundidad de paso Q205 (valor incremental): Si se ha introducido un valor de reducción, el TNC límita el paso de aproximación al valor programado en Q205
- Tiempo de espera abajo Q211: Tiempo en segundos que espera la hta. en la base del taladro
- Avance de retroceso Q208: Velocidad de desplazamiento de la hta. al retirarse del taladro en mm/min. Cuando se introduce Q208=0 el TNC retira la hta. con el avance Q206
- Retroceso para la rotura de viruta Q256 (valor incremental): Valor según el cual el TNC retira la hta. para la rotura de viruta

Ejemplo: Frases NC

11	CYCL DEF 20	3 TALADRO UNIVERSAL
	Q200=2	;DISTSEGURIDAD
	Q201=-20	;PROFUNDIDAD
	Q206=150	;AVANCE AL PROFUNDIZAR
	Q202=5	;PROFUNDIDAD DE PASO
	Q210=0	;TIEMPO DE ESPERA ARRIBA
	Q203=+20	;COORDENADA SUPERFICIE
	Q204=50	;2A. DIST.DE SEGURIDAD
	Q212=0.2	;VALOR DE REDUCCIÓN
	Q213=3	;ROTURAS DE VIRUTA
	Q205=3	;PROFUNDIDAD DE PASO MÍN.
	Q211=0.25	;TIEMPO DE ESPERA ABAJO
	Q208=500	;AVANCE DE RETROCESO
	Q256=0.2	;RETROCESO EN ROTURA DE VIRUTA

i

REBAJE INVERSO (ciclo 204)

La máquina y el TNC deben estar preparados por el constructor de la máquina.

Ciclo aplicable sólo a máquinas con cabezal controlado.

El ciclo sólo trabaja con herramientas de corte inverso.

Con este ciclo se realizan profundizaciones que se encuentran en la parte inferior de la pieza.

- 1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad sobre la superficie de la pieza
- 2 El TNC realiza una orientación del cabezal sobre la posición 0° y desplaza la hta. según la cota de excentricidad
- 3 A continuación la hta. profundiza con el avance de posicionamiento previo a través del taladro ya realizado anteriormente, hasta que la cuchilla se encuentra a la distancia de seguridad por debajo de la pieza
- 4 Ahora el TNC centra la hta. de nuevo al centro del taladro, conecta el cabezal y si es preciso el refrigerante y se desplaza con el avance de rebaje a la profundidad de rebaje programada
- **5** Si se ha programado un tiempo de espera, la hta. espera en la base de la profundización y se retira de nuevo del taladro, ejecuta una orientación del cabezal y se desplaza de nuevo según la cota de excentricidad
- 6 A continuación, el TNC retira la hta. con el avance de posicionamiento previo a la distancia de seguridad, y desde allí, si se ha programado, con FMAX a la 2ª distancia de seguridad.

Antes de la programación deberá tenerse en cuenta:

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

El signo del parámetro Profundidad determina la dirección del mecanizado en la profundización. Atención: El signo positivo profundiza en dirección al eje de la hta. positivo.

Introducir la longitud de la hta. de forma que se mida la arista inferior de la misma y no la cuchilla.

Para el cálculo de los puntos de partida de la profundización, el TNC tiene en cuenta la longitud de las cuchillas de la barra de taladrado y la espesor del material.

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
 - Profundidad de rebaje Q249 (valor incremental): Distancia entre la cara inferior de la pieza y la cara superior del rebaje. El signo positivo realiza la profundización en la direccin positiva del eje de la hta.
 - **Espesor del material** Q250 (valor incremental): Espesor de la pieza
 - Medida excéntrica Q251 (valor incremental): Medida de excentricidad de la herramienta; sacar de la hoja de datos de la hta.
 - Altura de corte Q252 (valor incremental): Distancia del canto inferior de la barra de taladrado a la cuchilla principal; sacar de la hoja de datos de la hta.
 - Avance de preposicionamiento Q253: Velocidad de desplazamiento de la hta. al profundizar en la pieza o bien al salir de la pieza en mm/min
 - ▶ Avance de rebaje Q254: Velocidad de desplazamiento de la hta. al realizar el rebaje en mm/min
 - Tiempo de espera Q255: Tiempo de espera en segundos en la base de la profundización
 - Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
 - 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)
 - Dirección de retroceso (0/1/2/3/4) Q214: Determinar la dirección en la cual el TNC desplaza la hta. según el valor de excentricidad (después de la orientación del cabezal); no se puede introducir el valor 0
 - 1 retirar la hta. en la dirección negativa del eje principal
 - 2 retirar la hta. en la dirección negativa del eje transversal
 - **3** retirar la hta. en la dirección positiva del eje principal
 - 4 retirar la hta. en la dirección positiva del eje transversal

11 CYCL DEF 2	04 REBAJE INVERSO
Q200=2	;DISTSEGURIDAD
Q249=+5	;PROFUNDIDAD DEL REBAJE
Q250=20	;GROSOR PIEZA
Q251=3.5	;MEDIDA EXCÉNTRICA
Q252=15	;LONGITUD CUCHILLA
Q253=750	;AVANCE DE PREPOSICIONAMIENT(
Q254=200	;AVANCE DE REBAJE
Q255=0	;TIEMPO DE ESPERA
Q203=+20	;COORDENADA SUPERFICIE
Q204=50	;2A. DIST.DE SEGURIDAD
Q214=1	;DIRECCIÓN DE RETROCESO
Q336=0	;ÁNGULO CABEZAL

¡Peligro de colisión!

岎

Deberá comprobarse donde se encuentra el extremo de la hta. cuando se programa una orientación del cabezal al ángulo programado en Q336 (p.ej. en el modo de funcionamiento Posicionamiento manual). Elegir el ángulo para que el extremo de la hta. esté paralelo al eje de coordenadas. Seleccionar la dirección de retroceso para que la hta. se retire del borde del taladro.

Angulo para la orientación del cabezal Q336 (valor absoluto): Angulo sobre el cual el TNC posiciona la hta. antes de la profundización y antes de retirala del taladro

1

TALADRADO PROFUNDO UNIVERSAL (ciclo 205)

- 1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad sobre la superficie de la pieza
- 2 Si se ha introducido un punto de arranque más profundo, el TNC se desplaza con el avance de posicionamiento definido a la distancia de seguridad por encima del punto de arranque más profundo
- **3** La hta. taladra con el avance F introducido hasta la primera profundidad de paso
- 4 Si se introduce una rotura de viruta, el TNC retira la herramienta al valor de retroceso introducido. Cuando se trabaja sin arranque de viruta, el TNC retira la hta. en marcha rápida a la distancia de seguridad y a continuación de nuevo con FMAX a la distancia de posición previa sobre el primer paso de profundización
- **5** A continuación la hta. taladra con el avance programado hasta la siguiente profundidad de paso. La profundidad de paso se reduce con cada aproximación según el valor de reducción, en caso de que este se haya programado
- 6 El TNC repite este proceso (2-4) hasta alcanzar la profundidad de taladrado
- 7 En la base del taladro la hta. espera, si se ha programado, un tiempo para el desahogo de la viruta y se retira después de transcurrido el tiempo de espera con el avance de retroceso a la distancia de seguridad. Si se ha programado una 2ª distancia de seguridad, la hta. se desplaza a esta con FMAX

Antes de la programación deberá tenerse en cuenta:

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

빤

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- Profundi dad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro (extremo del cono del taladro)
- ▶ Avance al profundizar Q206: Velocidad de desplazamiento de la hta. en el taladrado en mm/min
- Profundidad de paso Q202 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza La profundidad de taladrado no tiene porque ser múltiplo del paso de profundización. El TNC se desplaza en un sólo paso de mecanizado a la profundidad total cuando:
 - El paso de profundización y la profundidad total son iguales
 - El paso de profundización es mayor a la profundidad total
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)
- Valor de reducción Q212 (valor incremental): Valor según el cual el TNC reduce la profundidad de paso Q202
- Mínima profundidad de paso Q205 (valor incremental): Si se ha introducido un valor de reducción, el TNC límita el paso de aproximación al valor programado en Q205
- Distancia de parada previa arriba Q258 (valor incremental): Distancia de seguridad para el posicionamiento en marcha rápida, cuando el TNC desplaza de nuevo la hta. después de un retroceso del taladro a la profundidad de paso actual; valor de la primera profundidad de paso
- Distancia de parada previa abajo Q259 (valor incremental): Distancia de seguridad para el posicionamiento en marcha rápida, cuando el TNC desplaza de nuevo la hta. después de un retroceso del taladro a la profundidad de paso actual; valor de la última profundidad de paso

Si se programa Q258 diferente a Q259, el TNC modifica de forma regular la distancia de posición previa entre la primera y la última profundidad de paso.

²⁰⁵ +↓↓

8 Programación: Ciclos

- Profundidad de taladrado para el arranque de viruta Q257 (incremental): Aproximación, después de la cual el TNC realiza el arranque de viruta. No se produce rotura de virutas si se introduce 0
- Retroceso para la rotura de viruta Q256 (valor incremental): Valor según el cual el TNC retira la hta. para la rotura de viruta
- ▶ Tiempo de espera abajo Q211: Tiempo en segundos que espera la hta. en la base del taladro
- Punto de partida más profundo Q379 (incremental referido a la superficie de la pieza): El punto de partida del taladrado estricto, si ya se ha pretaladrado hasta una determinada profundidad con una herramienta más corta. El TNC se desplaza con el Avance de preposicionamiento desde la distancia de seguridad hasta el punto de partida profundizado
- Avance de preposicionamiento Q253: velocidad de desplazamiento de la herramienta al posicionar desde la distancia de seguridad sobre un punto de partida profundizado en mm/min. Tiene efecto sólo si ha introducido Q379 no igual a 0

Si se ha introducido mediante Q379 un punto de partida profundizado, el TNC modifica entonces unicamente el punto de partida del movimiento de profundización. El TNC no modifica el movimiento de retirada sino que éste toma como referencia la coordenada de la superficie de la pieza.

Ejemplo: Frases NC

11	CYCL DEF 20	5 TALADRO UNIVERSAL
	Q200=2	;DISTSEGURIDAD
	Q201=-80	;PROFUNDIDAD
	Q206=150	;AVANCE AL PROFUNDIZAR
	Q202=15	;PROFUNDIDAD DE PASO
	Q203=+100	;COORDENADA SUPERFICIE
	Q204=50	;2A. DIST.DE SEGURIDAD
	Q212=0,5	;VALOR DE REDUCCIÓN
	Q205=3	;PROFUNDIDAD DE PASO MÍN.
	Q258=0,5	;DISTANCIA DE PARADA PREVIA Arriba
	Q259=1	;DISTANCIA DE PARADA PREVIA Abajo
	Q257=5	;PROFUNDIDAD DE TALADRADO ROTURA DE VIRUTA
	Q256=0.2	;RETROCESO EN ROTURA DE VIRUTA
	Q211=0.25	;TIEMPO DE ESPERA ABAJO
	Q379=7.5	;PUNTO DE PARTIDA
	Q253=750	;AVANCE DE PREPOSICIONAMIENTO

FRESADO DE TALADRO (ciclo 208)

- 8.2 Ciclos para taladrado, <mark>ros</mark>cado y fresado de rosca
- 1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad programada sobre la superficie de la pieza y alcanza el diámetro programado según un círculo de redondeo (en caso de que exista espacio)
- 2 La hta. taladra con el avance F programado hasta la profundidad programada según una hélice
- **3** Una vez alcanzada la profundidad de taladrado, el TNC recorre de nuevo un círculo completo para retirar el material sobrante de la profundización
- 4 A continuación el TNC posiciona la hta. de nuevo en el centro del taladro
- 5 Al final el TNC retira la hta. con FMAX a la distancia de seguridad Si se ha programado una 2ª distancia de seguridad, la hta. se desplaza a esta con FMAX

ᇞ

Antes de la programación deberá tenerse en cuenta:

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Si se ha programado un diámetro de taladrado igual al diámetro de la hta., el TNC taladra sin interpolación helicoidal directamente a la profundidad programada.

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

- Distancia de seguridad Q200 (valor incremental): Distancia entre el canto inferior de la hta. y la superficie de la pieza
- Profundidad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro
- Avance al profundizar Q206: Velocidad de desplazamiento de la hta. en el taladrado sobre una hélice en mm/min
- Paso de la hélice Q334 (valor incremental): Cota, según la cual la hta. profundiza cada vez según una hélice (=360°).

Cuando la aproximación es demasiado grande debe prestarse atención a que no se dañen la hta. o la pieza.

Para evitar programar pasos demasiado grandes, se programa en la tabla de htas. en la columna ANGLE el máximo ángulo de profundización posible de la hta., véase "Datos de la herramienta" en pág. 98. Entonces el TNC calcula automáticamente el paso máximo posible y modifica, si es preciso, el valor programado.

- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)
- Diámetro nominal Q335 (valor absoluto): Diámetro del taladro. Si se programa el diámetro nominal igual al diámetro de la hta., el TNC taladra directamente hasta la profundidad programada sin interpolación helicoidal.
- Diámetro taladrado previamente Q342 (valor absoluto): Tan pronto como se introduce un valor mayor que 0 en Q342, el TNC no lleva a cabo ninguna verificación de la relación entre el diámetro nominal y el diámetro de la herramienta. De esta forma se pueden fresar taladros, cuyo diámetro seá mayor al doble del diámetro de la hta.

12 CYCL DEF 20	8 FRESADO DE TALADRO
Q200=2	;DISTSEGURIDAD
Q201=-80	;PROFUNDIDAD
Q206=150	;AVANCE AL PROFUNDIZAR
Q334=1.5	;PROFUNDIDAD DE PASO
Q203=+100	;COORDENADA SUPERFICIE
Q204=50	;2A. DIST.DE SEGURIDAD
Q335=25	;DIÁMETRO NOMINAL
Q342=0	;DIÁMETRO PRETALADRADO

ROSCADO NUEVO con macho (ciclo 206)

- 8.2 Ciclos para taladrado, <mark>ros</mark>cado y fresado de rosca
- 1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad sobre la superficie de la pieza
- 2 La herramienta se desplaza hasta la profundidad del taladro en una sola pasada
- 3 Después se invierte la dirección de giro del cabezal y la hta. retrocede a la distancia de seguridad una vez transcurrido el tiempo de espera. Si se ha programado una 2ª distancia de seguridad, la hta. se desplaza a esta con FMAX
- 4 A la distancia de seguridad se invierte de nuevo el sentido de giro del cabezal

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

La hta. debe estar sujeta mediante un sistema de compensación de longitudes. La compensación de longitud tiene en cuenta la tolerancia del avance y de las revoluciones durante el mecanizado.

Mientras se ejecuta el ciclo no está activado el potenciómetro de override de las revoluciones. El potenciómetro para el override del avance está limitado determinado por el constructor de la máquina, consultar en el manual de la máquina).

Para el roscado a derechas activar el cabezal con M3, para el roscado a izquierdas con M4.

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

ᇞ

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. (posición inicial) y la superficie de la pieza; Valor normal: 4 veces el paso de rosca
- Profundidad de taladrado Q201 (Longitud de rosca, valor incremental): Distancia de la superficie de la herramienta al final de la rosca
- Avance F Ω206: Velocidad de desplazamiento de la hta. durante el roscado
- Tiempo de espera abajo Q211: Introducir un valor entre 0 y 0,5 segundos, para evitar un acuñamiento de la hta. al retirarla
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)

Cálculo del avance: F = S x p

- F: Avance mm/min)
- S: Revoluciones del cabezal (rpm)
- p: Paso de roscado (mm)

Retirar la hta. durante la interrupción del programa

Si durante el roscado se acciona el pulsador externo de parada, el TNC indica una softkey con la cual se puede retirar la hta.

25	CYCL DEF 20)6 ROSCADO NUEVO	
	Q200=2	;DISTSEGURIDAD	
	Q201=-20	;PROFUNDIDAD	
	Q206=150	;AVANCE AL PROFUNDIZAR	
	Q211=0.25	;TIEMPO DE ESPERA ABAJO	
	Q203=+25	;COORDENADA SUPERFICIE	
	Q204=50	;2A. DIST.DE SEGURIDAD	

ROSCADO RIGIDO NUEVO (ciclo 207)

La máquina y el TNC deben estar preparados por el constructor de la máquina.

Ciclo aplicable sólo a máquinas con cabezal controlado.

El TNC realiza el roscado en varios pasos sin compensación de la longitud.

- 1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad sobre la superficie de la pieza
- 2 La herramienta se desplaza hasta la profundidad del taladro en una sola pasada
- 3 Después se invierte la dirección de giro del cabezal y la hta. retrocede a la distancia de seguridad una vez transcurrido el tiempo de espera. Si se ha programado una 2ª distancia de seguridad, la hta. se desplaza a esta con FMAX
- 4 El TNC detiene el cabezal a la distancia de seguridad

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

El signo del parámetro Profundidad de taladrado determina la dirección del mecanizado.

El TNC calcula el avance dependiendo del número de revoluciones. Si se gira el potenciómetro de override para las revoluciones durante el roscado, el TNC regula automáticamente el avance.

El potenciómetro para el override del avance está inactivo.

El cabezal se para al final del ciclo. Antes del siguiente mecanizado conectar de nuevo el cabezal con M3 (o bien M4).

吗

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. (posición de comienzo) y la superficie de la pieza
- Profundidad de roscado Q201 (valor incremental): Distancia entre la superficie de la pieza y el final de la rosca
- Paso de rosca Q239 Paso de la rosca. El signo de

Paso de la rosca. El signo determina si el roscado es a derechas o a izquierdas:

- += rosca a derechas
 -= rosca a izquierdas
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)

Retirar la hta. durante la interrupción del programa

Si durante el roscado se acciona el pulsador externo de parada, el TNC visualiza la softkey DESPLAZAR MANUALMENTE Si se pulsa RETIRAR HERRAMIENTA MANUALMENTE, se retira la hta. de forma controlada. Para ello se activa el pulsador de dirección positiva del eje de la herramienta activado.

26 CYCL DEF 2	07 ROSCADO RIGIDO GS NUEVO
Q200=2	;DISTSEGURIDAD
Q201=-20	;PROFUNDIDAD
Q239=+1	;PASO DE ROSCADO
Q203=+25	;COORDENADA SUPERFICIE
Q204=50	;2A. DIST.DE SEGURIDAD

ROSCADO CON ARRANQUE DE VIRUTA (ciclo 209)

La máquina y el TNC deben estar preparados por el constructor de la máquina.

Ciclo aplicable sólo a máquinas con cabezal controlado.

El TNC mecaniza el roscado en varias aproximaciones a la profundidad programada. Mediante un parámetro se determina si el arranque de viruta se saca por completo del taladro o no.

- El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad programada sobre la superficie de la pieza y realiza allí una orientación del cabezal
- 2 La hta. se desplaza al paso de profundización programado, invierte la dirección de giro del cabezal y retrocede - según se haya definido - un determinado valor o se retira del taladro para retirar la viruta
- **3** A continuación se vuelve a invertir el sentido de giro del cabezal y se profundiza hasta la siguiente profundidad de paso.
- 4 El TNC repite este proceso (2 a 3) hasta que se ha alcanzado la profundidad de rosca programada
- 5 Luego la herramienta retrocede a la distancia de seguridad. Si se ha programado una 2ª distancia de seguridad, la hta. se desplaza a esta con FMAX
- 6 El TNC detiene el cabezal a la distancia de seguridad

_ [Ÿ]

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

El signo del parámetro Profundidad de la rosca determina la dirección del mecanizado.

El TNC calcula el avance dependiendo del número de revoluciones. Si se gira el potenciómetro de override para las revoluciones durante el roscado, el TNC regula automáticamente el avance.

El potenciómetro para el override del avance está inactivo.

El cabezal se para al final del ciclo. Antes del siguiente mecanizado conectar de nuevo el cabezal con M3 (o bien M4).

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

al

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. (posición de comienzo) y la superficie de la pieza
- Profundidad de roscado Q201 (valor incremental): Distancia de la superficie de la herramienta al final de la rosca
- Paso de rosca Q239
 Paso de la rosca. El signo determina si el roscado es a derechas o a izquierdas:
 += rosca a derechas
 -= rosca a izquierdas
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)
- Profundidad de rascado para el arranque de viruta Q257 (incremental): Profundidad, después de la cual el TNC realiza el arranque de viruta.
- Retroceso para rotura de viruta Q256: El TNC multiplica el paso Q239 por el valor programado y hace retroceder a la hta. en el arranque de viruta según dicho valor calculado. Si se programa Q256 = 0, el TNC retira la hta. del taladro completamente (a la distancia de seguridad) para retirar la viruta
- Angulo para orientación del cabezal Q336 (valor absoluto): Angulo sobre el cual el TNC posiciona la hta. antes del roscado. De esta forma si es preciso se puede repasar la rosca

Retirar la hta. durante la interrupción del programa

Si durante el roscado se acciona el pulsador externo de parada, el TNC visualiza la softkey DESPLAZAR MANUALMENTE Si se pulsa RETIRAR HERRAMIENTA MANUALMENTE, se retira la hta. de forma controlada. Para ello se activa el pulsador de dirección positiva del eje de la herramienta activado.

26	CYCL DEF 20)9 ROSCADO RIGIDO
	Q200=2	;DISTSEGURIDAD
	Q201=-20	;PROFUNDIDAD
	Q239=+1	;PASO DE ROSCADO
	Q203=+25	;COORDENADA SUPERFICIE
	Q204=50	;2A. DIST.DE SEGURIDAD
	Q257=5	;PROFUNDIDAD DE TALADRADO Rotura de viruta
	Q256=+25	;RETROCESO EN ROTURA DE Viruta
	Q336=50	;ÁNGULO CABEZAL

Nociones básicas sobre el fresado de rosca

Condiciones

- La máquina debería estar equipada con un refrigerante interno del cabezal (refrigerante mínimo 30 bar, presión mín. 6 bar)
- Como, en el fresado de roscas, normalmente se producen daños en el perfil de roscado, se precisan generalmente correcciones específicas de la hta., que se obtienen del catálogo de la herramienta o que puede consultar al fabricante de herramientas. La corrección se realiza en el TOOL CALL mediante el radio delta DR
- Los ciclos 262, 263, 264 y 267 sólo pueden emplearse con herramientas que giren a derechas. Para el ciclo 265 se pueden utilizar herramientas que giren a derechas e izquierdas
- La dirección del mecanizado se determina mediante los siguientes parámetros de introducción: Signo del paso de roscado Q239 (+ = roscado a derechas /- = roscado a izquierdas) y tipo de fresado Q351 (+1 = sincronizado /-1 = a contramarcha). En base a la siguiente tabla se puede ver la relación entre los parámetros de introducción en las htas. que giran a derechas.

Roscado interior	Paso	Tipo de fresado	Dirección
a derechas	+	+1(RL)	Z+
a izquierdas	_	–1(RR)	Z+
a derechas	+	–1(RR)	Z–
a izquierdas	_	+1(RL)	Z–

Roscado exterior	Paso	Tipo de fresado	Dirección
a derechas	+	+1(RL)	Z–
a izquierdas	-	–1(RR)	Z–
a derechas	+	–1(RR)	Z+
a izquierdas	_	+1(RL)	Z+

¡Peligro de colisión!

ᇞ

En las profundizaciones debe programarse siempre el mismo signo ya que los ciclos contienen procesos que dependen unos de otros. La secuencia en la cual se decide la dirección del mecanizado se describe en el ciclo correspondiente. Si se desea por ej. repetir un ciclo con sólo una profundización, se programa en la profundidad de la rosca 0, con lo cual la dirección del mecanizado se determina por la profundidad.

¡Procedimiento en caso de rotura de la herramienta!

Si se rompe la hta. durante el roscado a cuchilla, Vd. deberá detener la ejecución del programa, cambiar al modo de funcionamiento Posicionamiento manual y desplazar la hta. linealmente sobre el centro del taladro. A continuación ya se puede retirar la hta. del eje y cambiarla.

El avance para el fresado de roscado que se programa se refiere a la cuchilla de la herramienta. Como el TNC visualiza el avance en relación a la trayectoria, el valor visualizado no coincide con el valor programado.

El sentido de giro del roscado se modifica si se ejecuta un ciclo de fresado de rosca junto con el ciclo 8 ESPEJO en sólo un eje.

FRESADO DE ROSCA (ciclo 262)

- 1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad sobre la superficie de la pieza
- 2 La hta. se desplaza con el avance programado en el posicionamiento previo sobre el plano de partida. Éste se obtiene del signo del paso de roscado, del tipo de fresado y del número de pasos para repasar
- 3 A continuación la herramienta se desplaza tangencialmente con un movimiento helicoidal al diámetro nominal de la rosca. Para ello, antes del movimiento de aproximación helicoidal se realiza un movimiento de compensación del eje de la herramienta, para poder comenzar con la trayectoria del roscado sobre el plano inicial programado
- 4 Dependiendo del parámetro para el nº de roscas la hta. fresa la rosca en un movimiento helicoidal, en varios o en uno contínuo
- **5** A continuación la herramienta sale tangencialmente desde el contorno hasta el punto de partida del plano de mecanizado
- 6 Al final del ciclo el TNC desplaza la hta. en marcha rápida a la distancia de seguridad o si se ha programado a la 2ª distancia de seguridad

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

En el ciclo, el signo del parámetro Profundidad de la rosca determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

El movimiento de desplazamiento en cada diámetro de rosca tiene lugar en semicírculo a partir del centro. Si el paso del diámetro de la herramienta es 4 veces menor que el diámetro de rosca, se lleva a cabo un pre posicionamiento lateral.

Tener en cuenta que el TNC realiza un movimiento de compensación antes del movimiento de aproximación en el eje de la herramienta. La longitud del movimiento de compensación depende del paso de rosca. ¡Prestar atención al espacio necesario en el hueco!

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

砚

- Diámetro nominal Q335: Diámetro nominal de rosca
- Paso de rosca Q239:Paso de la rosca. El signo determina si el roscado es a derechas o a izquierdas:
 - += rosca a derechas

- rosca a izquierdas
- Profundidad de roscado Q201 (valor incremental): Distancia de la superficie de la pieza a la base del roscado
- Repasar Q355: Cantidad de pasos de rosca en las que se desplaza la herramienta (véase la imagen de abajo a la derecha):
 - 0 = una hélice de 360º a la profundidad de la rosca
 1 = hélice continua en toda la longitud de la rosca
 >1 = varias trayectorias helicoidales con desplazamientos de ida y vuelta, entre los cuales el TNC desplaza la herramienta a Q355 multiplicado por el paso
- Avance de preposicionamiento Q253: Velocidad de desplazamiento de la hta. al profundizar en la pieza o bien al salir de la pieza en mm/min
- Tipo de fresado Q351: Tipo de fresado con M03
 +1 = Fresado sincronizado
 - -1 = Fresado a contramarcha
- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min

25 CYCL DEF 26	2 FRESADO DE ROSCA
Q335=10	;DIÁMETRO NOMINAL
Q239=+1.5	;PASO DE ROSCA
Q201=-20	;PROFUNDIDAD DE ROSCA
Q355=0	; REPASAR
Q253=750	;AVANCE DE PREPOSICIONAMIENTO
Q351=+1	;TIPO DE FRESADO
Q200=2	;DISTSEGURIDAD
Q203=+30	;COORDENADA SUPERFICIE
Q204=50	;2A. DIST.DE SEGURIDAD
Q207=500	;AVANCE DE FRESADO

FRESADO DE ROSCA AVELLANADA (ciclo 263)

1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad sobre la superficie de la pieza

Avellanado

- 2 La hta. se desplaza con avance de posicionamiento previo a la profundidad de introducción menos la distancia de seguridad y a continuación con avance de introducción a la profundidad de introducción programada
- **3** En el caso de haberse programado una distancia de seguridad lateral, el TNC posiciona la hta. inmediatamente con el avance de posicionamiento previo a la profundidad de introducción
- 4 A continuación el TNC, según las proporciones de espacio, realiza una aproximación tangente al diámetro del núcleo, ya sea tangencialmente desde el centro o con un preposicionamiento lateral, seguido de un movimiento circular

Introducción frontal o rebaje

- **5** La hta. se desplaza con el avance de posicionamiento previo a la profundidad del rebaje frontal.
- 6 El TNC posiciona la hta. sin corrección fuera del centro mediante un semicírculo a la desviación frontal y realiza un movimiento circular con el avance de introducción
- 7 Después el TNC desplaza la herramienta de nuevo realizando un semicírculo al centro del taladrado

Fresado de rosca

- 8 La hta. se desplaza con el avance programado para el posicionamiento previo a la superficie inicial de la rosca, que se obtiene del signo del paso de roscado y del tipo de fresado
- **9** A continuación la hta. se desplaza tangencialmente en un movimiento helicoidal al diámetro nominal de la rosca y fresa la rosca con movimiento helicoidal de 360°
- **10** A continuación la herramienta sale tangencialmente desde el contorno hasta el punto de partida del plano de mecanizado

11 Al final del ciclo el TNC desplaza la hta. en marcha rápida a la distancia de seguridad o - si se ha programado - a la 2ª distancia de seguridad

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

El signo de los parámetros profundidad de roscado, profundidad de introducción o profundidad frontal determinan la dirección del mecanizado. La dirección del mecanizado se decide en base a la siguiente secuencia:

- 1. Profundidad de rosca
- 2. Profundidad de avellanado
- 3. Profundidad frontal

En caso de programar para uno de los parámetros de profundización el valor 0, el TNC no ejecuta dicho paso de mecanizado.

Si se quiere profundizar frontalmente, se define el parámetro de la profundidad de introducción con el valor 0.

La profundidad de roscado debe ser como mínimo una tercera parte del paso de roscado menor a la profundidad de introducción.

吵

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

- 263
- Diámetro nominal Q335: Diámetro nominal de rosca
- Paso de rosca Q239:Paso de la rosca. El signo determina si el roscado es a derechas o a izquierdas:
 += rosca a derechas
 - = rosca a izquierdas
- Profundidad de roscado Q201 (valor incremental): Distancia de la superficie de la pieza a la base del roscado
- Profundidad de introducción Q356 (valor incremental): Distancia entre la superficie de la pieza y el extremo de la herramienta
- Avance de preposicionamiento Q253: Velocidad de desplazamiento de la hta. al profundizar en la pieza o bien al salir de la pieza en mm/min
- ▶ Tipo de fresado Q351: Tipo de fresado con M03
 - **+1** = Fresado sincronizado
 - -1 = Fresado a contramarcha
- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- Distancia de seguridad lateral Q357 (valor incremental): Distancia entre la cuchilla de la hta. y la superficie de la pieza
- Profundidad de fresado frontal Q358 (valor incremental): Distancia entre la superficie de la pieza y el extremo de la herramienta en la profundización frontal
- Desvío en la profundización frontal Q359 (valor incremental): Distancia a la que el TNC desplaza el centro de la herramienta desde el centro del taladro

- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)
- ► Avance de rebaje Q254: Velocidad de desplazamiento de la hta. al realizar el rebaje en mm/min
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min

25 CYCL DEF 2	63 FRESADO ROSCA AVELLANADA
Q335=10	;DIÁMETRO NOMINAL
Q239=+1.	5;PASO DE ROSCA
Q201=-16	;PROFUNDIDAD DE ROSCA
Q356=-20	;PROFUNDIDAD DE INTRODUCCIÓN
Q253=750	;AVANCE DE PREPOSICIONAMIENTO
Q351=+1	;TIPO DE FRESADO
Q200=2	;DISTSEGURIDAD
Q357=0,2	;DISTSEGURIDAD LATERAL
Q358=+0	;PROFUNDIDAD FRONTAL
Q359=+0	;DESVIACIÓN FRONTAL
Q203=+30	;COORDENADA SUPERFICIE
Q204=50	;2A. DIST.DE SEGURIDAD
Q254=150	;AVANCE DE REBAJE
Q207=500	;AVANCE DE FRESADO

FRESADO DE ROSCA EN TALADRO (ciclo 264)

1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad sobre la superficie de la pieza

Taladrado

- 2 La hta. taladra con el avance de profundización introducido hasta la primera profundidad de paso
- 3 Si se introduce una rotura de viruta, el TNC retira la herramienta al valor de retroceso introducido. Cuando se trabaja sin arranque de viruta, el TNC retira la hta. en marcha rápida a la distancia de seguridad y a continuación de nuevo con FMAX a la distancia de posición previa sobre el primer paso de profundización
- 4 A continuación la hta. taladra con el avance programado hasta la siguiente profundidad de paso
- 5 El TNC repite este proceso (2-4) hasta alcanzar la profundidad de taladrado

Introducción frontal o rebaje

- **6** La hta. se desplaza con el avance de posicionamiento previo a la profundidad del rebaje frontal.
- 7 El TNC posiciona la hta. sin corrección fuera del centro mediante un semicírculo a la desviación frontal y realiza un movimiento circular con el avance de introducción
- 8 Después el TNC desplaza la herramienta de nuevo realizando un semicírculo al centro del taladrado

Fresado de rosca

- **9** La hta. se desplaza con el avance programado para el posicionamiento previo a la superficie inicial de la rosca, que se obtiene del signo del paso de roscado y del tipo de fresado
- **10** A continuación la hta. se desplaza tangencialmente en un movimiento helicoidal al diámetro nominal de la rosca y fresa la rosca con movimiento helicoidal de 360°
- **11** A continuación la herramienta sale tangencialmente desde el contorno hasta el punto de partida del plano de mecanizado

12 Al final del ciclo el TNC desplaza la hta. en marcha rápida a la distancia de seguridad o - si se ha programado - a la 2ª distancia de seguridad

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

El signo de los parámetros profundidad de roscado, profundidad de introducción o profundidad frontal determinan la dirección del mecanizado. La dirección del mecanizado se decide en base a la siguiente secuencia:

- 1. Profundidad de rosca
- 2. Profundidad de taladrado
- 3. Profundidad frontal

En caso de programar para uno de los parámetros de profundización el valor 0, el TNC no ejecuta dicho paso de mecanizado.

La profundidad de roscado debe ser como mínimo una tercera parte del paso de roscado menor a la profundidad de taladrado.

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

- Diámetro nominal Q335: Diámetro nominal de rosca
- Paso de rosca Q239:Paso de la rosca. El signo determina si el roscado es a derechas o a izquierdas:
 += rosca a derechas
 -= rosca a izquierdas
- Profundidad de roscado Q201 (valor incremental): Distancia de la superficie de la pieza a la base del roscado
- Profundidad de taladrado Q356 (valor incremental): Distancia entre la superficie de la pieza y la base del taladro
- Avance de preposicionamiento Q253: Velocidad de desplazamiento de la hta. al profundizar en la pieza o bien al salir de la pieza en mm/min
- ▶ Tipo de fresado Q351: Tipo de fresado con M03
 - **+1** = Fresado sincronizado
 - -1 = Fresado a contramarcha
- Profundidad de paso Q202 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza La profundidad de taladrado no tiene porque ser múltiplo del paso de profundización. El TNC se desplaza en un sólo paso de mecanizado a la profundidad total cuando:
 - El paso de profundización y la profundidad total son iguales
 - El paso de profundización es mayor a la profundidad total
- Distancia de parada previa arriba Q258 (valor incremental): Distancia de seguridad para el posicionamiento en marcha rápida, cuando el TNC desplaza de nuevo la hta. después de un retroceso del taladro a la profundidad de paso actual
- Profundidad de taladrado para la rotura de viruta Q257 (incremental): Aproximación, después de la cual el TNC realiza la rotura de viruta. No se produce rotura de virutas si se introduce 0
- Retroceso para la rotura de viruta Q256 (valor incremental): Valor según el cual el TNC retira la hta. para la rotura de viruta
- Profundidad de fresado frontal Q358 (valor incremental): Distancia entre la superficie de la pieza y el extremo de la herramienta en la profundización frontal
- Desvío en la profundización frontal Q359 (valor incremental): Distancia a la que el TNC desplaza el centro de la herramienta desde el centro del taladro

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)
- ▶ Avance al profundizar Q206: Velocidad de desplazamiento de la hta. en el taladrado en mm/min
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min

25 CYCL DEF 26 TALADRO	04 FRESADO DE ROSCA EN
Q335=10	;DIÁMETRO NOMINAL
Q239=+1.5	;PASO DE ROSCA
Q201=-16	;PROFUNDIDAD DE ROSCA
Q356=-20	;PROFUNDIDAD DE TALADRADO
Q253=750	;AVANCE DE PREPOSICIONAMIENT
Q351=+1	;TIPO DE FRESADO
Q202=5	;PROFUNDIDAD DE PASO
Q258=0,2	;DISTANCIA DE PARADA PREVIA
Q257=5	;PROFUNDIDAD DE TALADRADO Rotura de viruta
Q256=0.2	;RETROCESO EN ROTURA DE VIRUTA
Q358=+0	;PROFUNDIDAD FRONTAL
Q359=+0	;DESVIACIÓN FRONTAL
Q200=2	;DISTSEGURIDAD
Q203=+30	;COORDENADA SUPERFICIE
Q204=50	;2A. DIST.DE SEGURIDAD
Q206=150	;AVANCE AL PROFUNDIZAR
Q207=500	;AVANCE DE FRESADO

FRESADO DE ROSCA HELICOIDAL EN TALADRO (ciclo 265)

1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad sobre la superficie de la pieza

Introducción frontal o rebaje

- 2 Si se realiza una introducción antes de fresar la rosca, la herramienta se desplaza previamente a la profundidad de rebaje frontal. En el proceso de profundización después del roscado el TNC desplaza la hta. a la profundidad de introducción con el avance de posicionamiento previo
- **3** El TNC posiciona la hta. sin corrección fuera del centro mediante un semicírculo a la desviación frontal y realiza un movimiento circular con el avance de introducción
- 4 Después el TNC desplaza la herramienta de nuevo realizando un semicírculo al centro del taladrado

Fresado de rosca

- **5** La hta. se desplaza con el avance de posicionamiento previo programado sobre el plano inicial para realizar el roscado
- 6 A continuación la herramienta se desplaza tangencialmente con un movimiento helicoidal al diámetro nominal de la rosca.
- 7 La herramienta se desplaza de forma helicoidal contínua hacia abajo, hasta que se ha alcanzado la profundidad de roscado
- 8 A continuación la herramienta sale tangencialmente desde el contorno hasta el punto de partida del plano de mecanizado
- 9 Al final del ciclo el TNC desplaza la hta. en marcha rápida a la distancia de seguridad o si se ha programado a la 2ª distancia de seguridad

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto inicial (centro del taladro) en el plano de mecanizado con corrección de radio R0.

El signo de los parámetros profundidad de roscado o profundidad frontal determinan la dirección del mecanizado. La dirección del mecanizado se decide en base a la siguiente secuencia:

- 1. Profundidad de rosca
- 2. Profundidad frontal

En caso de programar para uno de los parámetros de profundización el valor 0, el TNC no ejecuta dicho paso de mecanizado.

Si se modifica la profundidad de la rosca, el TNC cambia automáticamente el punto de inicio para el movimiento de la hélice.

El tipo de fresado (sincronizado/a contramarcha) depende de si la rosca es a izquierdas o derechas y del sentido de giro de la herramienta, ya que sólo es posible la dirección de mecanizado entrando desde la superficie de la pieza. Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

- Diámetro nominal Q335: Diámetro nominal de rosca
- Paso de rosca Q239:Paso de la rosca. El signo determina si el roscado es a derechas o a izquierdas:
 += rosca a derechas
 -= rosca a izquierdas
- Profundidad de roscado Q201 (valor incremental): Distancia de la superficie de la pieza a la base del roscado
- Avance de preposicionamiento Q253: Velocidad de desplazamiento de la hta. al profundizar en la pieza o bien al salir de la pieza en mm/min
- Profundidad de fresado frontal Q358 (valor incremental): Distancia entre la superficie de la pieza y el extremo de la herramienta en la profundización frontal
- Desvío en la profundización frontal Q359 (valor incremental): Distancia a la que el TNC desplaza el centro de la herramienta desde el centro del taladro
- Profundización Q360: Ejecución del chaflán
 0 = antes del mecanizado de rosca
 1 = tras el mecanizado de rosca
- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza

- ▶ Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)
- ► Avance de rebaje Q254: Velocidad de desplazamiento de la hta. al realizar el rebaje en mm/min
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min

25 DE	CYCL DEF 26 Hélice	5 FRESADO DE ROSCA EN TALADRO
	Q335=10	;DIÁMETRO NOMINAL
	Q239=+1.5	;PASO DE ROSCA
	Q201=-16	;PROFUNDIDAD DE ROSCA
	Q253=750	;AVANCE DE PREPOSICIONAMIENTO
	Q358=+0	;PROFUNDIDAD FRONTAL
	Q359=+0	;DESVIACIÓN FRONTAL
	Q360=0	;PROFUNDIZACIÓN
	Q200=2	;DISTSEGURIDAD
	Q203=+30	;COORDENADA SUPERFICIE
	Q204=50	;2A. DIST.DE SEGURIDAD
	Q254=150	;AVANCE DE REBAJE
	Q207=500	;AVANCE DE FRESADO

FRESADO DE ROSCA EXTERIOR (ciclo 267)

1 El TNC posiciona la hta. en el eje de la misma en marcha rápida FMAX a la distancia de seguridad sobre la superficie de la pieza

Introducción frontal o rebaje

- 2 El TNC desplaza la herramienta en el eje de referencia del plano de trabajo desde el centro de la isla al punto inicial para el rebaje frontal. La posición del punto de partida se obtiene del radio de la rosca, del radio de la hta. y del paso de roscado
- **3** La hta. se desplaza con el avance de posicionamiento previo a la profundidad del rebaje frontal.
- 4 El TNC posiciona la hta. sin corrección fuera del centro mediante un semicírculo a la desviación frontal y realiza un movimiento circular con el avance de introducción
- **5** Después el TNC desplaza la herramienta de nuevo realizando un semicírculo al punto de partida

Fresado de rosca

- 6 Si antes no se ha realizado la introducción frontal, el TNC posiciona la hta. sobre el punto de partida. Punto de partida del fresado de la rosca = punto de partida de la introducción frontal
- 7 La hta. se desplaza con el avance programado en el posicionamiento previo sobre el plano de partida. Éste se obtiene del signo del paso de roscado, del tipo de fresado y del número de pasos para repasar
- 8 A continuación la herramienta se desplaza tangencialmente con un movimiento helicoidal al diámetro nominal de la rosca.
- 9 Dependiendo del parámetro para el nº de roscas la hta. fresa la rosca en un movimiento helicoidal, en varios o en uno contínuo
- **10** A continuación la herramienta sale tangencialmente desde el contorno hasta el punto de partida del plano de mecanizado

11 Al final del ciclo el TNC desplaza la hta. en marcha rápida a la distancia de seguridad o - si se ha programado - a la 2ª distancia de seguridad

Antes de la programación deberá tenerse en cuenta

Programar la frase de posicionamiento sobre el punto de partida (centro de la isla) en el plano de mecanizado con corrección de radio R0.

Debería calcularse previamente la desviación necesaria para el rebaje en la parte frontal. Debe indicarse el valor desde el centro de la isla hasta el centro de la herramienta (valor sin corrección).

El signo de los parámetros profundidad de roscado o profundidad frontal determinan la dirección del mecanizado. La dirección del mecanizado se decide en base a la siguiente secuencia:

- 1. Profundidad de rosca
- 2. Profundidad frontal

En caso de programar para uno de los parámetros de profundización el valor 0, el TNC no ejecuta dicho paso de mecanizado.

En el ciclo, el signo del parámetro Profundidad del roscado determina la dirección del mecanizado.

吵

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

- Diámetro nominal Q335: Diámetro nominal de rosca
- Paso de rosca Q239:Paso de la rosca. El signo determina si el roscado es a derechas o a izquierdas:
 += rosca a derechas
 - = rosca a izquierdas
- Profundidad de roscado Q201 (valor incremental): Distancia de la superficie de la pieza a la base del roscado
- RepasarQ355: Cantidad de pasos de rosca en las que se desplaza la herramienta (véase la imagen de abajo a la derecha):
 - **0** = una hélice a la base de la rosca
 - 1 = hélice continua en toda la longitud de la rosca1 = varias trayectorias helicoidales con
 - desplazamientos de ida y vuelta, entre los cuales el TNC desplaza la herramienta a Q355 multiplicado por el paso
- Avance de preposicionamiento Q253: Velocidad de desplazamiento de la hta. al profundizar en la pieza o bien al salir de la pieza en mm/min
- ▶ Tipo de fresado Q351: Tipo de fresado con M03
 - +1 = Fresado sincronizado
 - -1 = Fresado a contramarcha

8 Programación: Ciclos

8.2 Ciclos para taladrado, <mark>ros</mark>cado y fresado de rosca

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- Profundidad de fresado frontal Q358 (valor incremental): Distancia entre la superficie de la pieza y el extremo de la herramienta en la profundización frontal
- Desvío en la profundización frontal Q359 (valor incremental): Distancia a la que el TNC desplaza el centro de la herramienta desde el centro de la isla
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)
- ▶ Avance de rebaje Q254: Velocidad de desplazamiento de la hta. al realizar el rebaje en mm/min
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min

25	CYCL DEF 20	57 FRESADO DE ROSCA EXTERIOR
	Q335=10	;DIÁMETRO NOMINAL
	Q239=+1.5	;PASO DE ROSCA
	Q201=-20	;PROFUNDIDAD DE ROSCA
	Q355=0	; REPASAR
	Q253=750	;AVANCE DE PREPOSICIONAMIENTO
	Q351=+1	;TIPO DE FRESADO
	Q200=2	;DISTSEGURIDAD
	Q358=+0	;PROFUNDIDAD FRONTAL
	Q359=+0	;DESVIACIÓN FRONTAL
	Q203=+30	;COORDENADA SUPERFICIE
	Q204=50	;2A. DIST.DE SEGURIDAD
	Q254=150	;AVANCE DE REBAJE
	Q207=500	;AVANCE DE FRESADO

Ejemplo: Ciclos de taladrado

O BEGIN PGM C200 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición de la pieza en bruto
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+3	Definición de la herramienta
4 TOOL CALL 1 Z S4500	Llamada a la herramienta
5 L Z+250 RO FMAX	Retirar la herramienta
6 CYCL DEF 200 TALADRO	Definición del ciclo
Q200=2 ;DISTSEGURIDAD	
Q201=-15 ;PROFUNDIDAD	
Q206=250 ;PROFUNDIDAD DE PASO F	
Q2O2=5 ;PROFUNDIDAD DE PASO	
Q210=0 ;TPO. ESPERA ENCIMA	
Q2O3=-10 ;COORDENADAS SUPERFICIE	
Q204=20 ;2ª DISTANCIA DE SEGUR.	
Q211=0,2 ;TIEMPO DE ESPERA ABAJO	

i

7 L X+10 Y+10 RO FMAX M3	Llegada al primer taladro, conexión del cabezal
8 CYCL CALL	Llamada al ciclo
9 L Y+90 RO FMAX M99	Llegada al 2º taladro, llamada al ciclo
10 L X+90 RO FMAX M99	Llegada al 3er taladro, llamada al ciclo
11 L Y+10 RO FMAX M99	Llegada al 4º taladro, llamada al ciclo
12 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
13 END PGM C200 MM	

8.3 Ciclos para el fresado de cajeras, islas y ranuras

Resumen

Ciclo	Softkey
	OUTREY
4 FRESADO DE CAJERA (rectangular) Ciclo de desbaste sin posicionamiento previo automático	4
212 ACABADO CAJERA (rectangular) Ciclo de acabado con posicionamiento previo automático 2ª distancia de seguridad	212
213 ACABADO DE ISLA (rectangular) Ciclo de acabado con posicionamiento previo automático 2ª distancia de seguridad	213
5 CAJERA CIRCULAR Ciclo de desbaste sin posicionamiento previo automático	5
214 ACABADO DE CAJERA CIRCULAR Ciclo de acabado con posicionamiento previo automático 2ª distancia de seguridad	214
215 ACABADO DE ISLA CIRCULAR Ciclo de acabado con posicionamiento previo automático 2ª Distancia de seguridad	215
210 RANURA PENDULAR Ciclo de desbaste/acabado con posicionamiento previo automático, movimiento de profundización pendular	210
211 RANURA CIRCULAR Ciclo de desbaste/acabado con posicionamiento previo automático, movimiento de profundización pendular	211

8.3 Ciclos para el fresad<mark>o d</mark>e cajeras, islas y ranuras

FRESADO DE CAJERA (ciclo 4)

Los ciclos 1, 2, 3, 4, 5, 17, 18 se encuentran en el grupo de ciclos Ciclos especiales. Seleccionar aquí, en la segunda carátula de softkeys, la softkey OLD CYCLS.

- 1 La hta. penetra en la pieza desde la posición inicial (centro de la cajera) y se desplaza a la primera profundidad de paso
- 2 A continuación la herramienta se desplaza primero en la dirección positiva del lado más largo y en cajeras cuadradas en la dirección positiva de Y, y desbasta la cajera de dentro hacia fuera
- **3** Este proceso se repite (1 hasta 2), hasta que se alcanza la profundidad programada
- 4 Al final del ciclo el TNC retira la hta. a la posición inicial

Antes de la programación deberá tenerse en cuenta

Utilizar una fresa con dentado frontal cortante en el centro (DIN 844) o pretaladrado en el centro de la cajera.

Posicionamiento previo sobre el centro de la cajera con corrección de radio R0.

Programar la frase de posicionamiento sobre el punto de partida en el eje de la hta. (distancia de seguridad sobre la superficie de la pieza).

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Para la longitud del 2º radio existe la siguiente condición: longitud del 2º lado mayor que [(2 veces el radio del redondeo) + aproximación lateral k].

吵

(P

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

11 L Z+100 RO FMAX
12 CYCL DEF 4,0 FRESADO DE CAJERAS
13 CYCL DEF 2.1 DIST. 2
14 CYCL DEF 4.2 PROFUNDIDAD -10
15 CYCL DEF 4.3 PASO 4 F80
16 CYCL DEF 4.4 X80
17 CYCL DEF 4.5 Y40
18 CYCL DEF 4.6 F100 DR+ RADIO 10
19 L X+60 Y+35 FMAX M3
20 L Z+2 FMAX M99

- Distancia de seguridad 1 (valor incremental): Distancia entre el extremo de la hta. (posición inicial) y la superficie de la pieza
- Profundi dad 2 (valor incremental): Distancia entre la superficie de la pieza y la base de la cajera
- Profundidad de paso 3 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza El TNC se desplaza en un sólo paso de mecanizado a la profundidad total cuando:
 - El paso de profundización y la profundidad total son iguales
 - El paso de profundización es mayor a la profundidad total
- Avance al profundizar: Velocidad de desplazamiento de la hta. en la profundización
- Longitud 1ado 1 4: Longitud de la cajera, paralela al eje principal del plano de mecanizado
- Longitud lado 2 5: Ancho de la cajera
- Avance F: Velocidad de desplazamiento de la hta. en el plano de mecanizado
- giro en sentido horario
 DR +: Fresado sincronizado con M3
 DR -: Fresado a contramarcha con M3
- Radio de redondeo: Radio para la esquina de la cajera Cuando el radio = 0, el radio de redondeo es igual al radio de la hta.

Cálculos:

Aproximación lateral $k = K \times R$

- K: Factor de solapamiento determinado en el parámetro de máquina PocketOverlap
- R: Radio de la fresa

8 Programación: Ciclos

8.3 Ciclos para el fresad<mark>o d</mark>e cajeras, islas y ranuras

ACABADO DE CAJERA (ciclo 212)

- 1 El TNC desplaza automáticamente la hta. en el eje de la misma a la distancia de seguridad, o, si se ha programado, a la 2ª distancia de seguridad y a continuación al centro de la cajera
- 2 Desde el centro de la cajera la hta. se desplaza en el plano de mecanizado al punto inicial del mecanizado. El TNC determina la sobremedida y el radio de la herramienta para el cálculo del punto de comienzo. Si es preciso, la hta. penetra en la mitad de la cajera
- 3 En el caso de que la hta. esté sobre la 2ª distancia de seguridad, el TNC desplaza la hta. en marcha rápida FMAX a la distancia de seguridad y desde allí, con avance de profundización a la primera profundidad de paso
- **4** A continuación la herramienta realiza la entrada tangencial al contorno y fresa una vuelta
- **5** A continuación la herramienta sale tangencialmente desde el contorno hasta el punto de partida del plano de mecanizado
- **6** Este proceso (3 a 5) se repite hasta que se ha alcanzado la profundidad programada
- 7 Al final del ciclo el TNC desplaza la hta. en marcha rápida a la distancia de seguridad, o si se ha programado, a la 2ª distancia de seguridad y a continuación al centro de la cajera (posición final = posición de partida)

Antes de la programación deberá tenerse en cuenta

El TNC posiciona automáticamente la hta. en el eje de la misma y en el plano de mecanizado.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Si se quiere realizar un acabado de la cajera, deberá utilizarse una fresa con dentado frontal cortante en el centro (DIN 844) e introducir un avance pequeño para la profundización.

Tamaño de la cajera: El triple del radio de la hta.

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

ar l

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- Profundi dad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de la cajera
- Avance al profundizar Q206: Velocidad de desplazamiento de la herramienta al profundizar en mm/min. Cuando se profundiza en la pieza se define un valor inferior al indicado en Q207.
- Profundidad de paso Q202 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza; introducir un valor mayor que 0
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)
- Centro 1er eje Q216 (valor absoluto): Centro de la cajera en el eje principal del plano de mecanizado
- Centro 2º eje Q217 (valor absoluto): Centro de la cajera en el eje transversal del plano de mecanizado
- Longitud 1ado 1 Q218 (valor incremental): Longitud de la cajera, paralela al eje principal del plano de mecanizado
- Longitud 1ado 2 Q219 (valor incremental): Longitud de la cajera, paralela al eje transversal del plano de mecanizado
- Radio de la esquina Q220: Radio de la esquina de la cajera. Si no se indica nada, el TNC programa el radio de la esquina igual al radio de la hta.
- Sobremedida 1er eje Q221 (valor incremental): Sobremedida en el eje principal del plano de mecanizado, referido a la longitud de la cajera

354	CYCL DEF	212 ACABADO DE LA CAJERA
	Q200=2	;DISTSEGURIDAD
	Q201=-20	;PROFUNDIDAD
	Q206=150	;AVANCE AL PROFUNDIZAR
	Q202=5	;PROFUNDIDAD DE PASO
	Q207=500	;AVANCE DE FRESADO
	Q203=+30	;COORDENADA SUPERFICIE
	Q204=50	;2A. DIST.DE SEGURIDAD
	Q216=+50	;CENTRO 1ER. EJE
	Q217=+50	;CENTRO 2º EJE
	Q218=80	;LONGITUD LADO 1
	Q219=60	;LONGITUD LADO 2
	Q220=5	;RADIO DE LA ESQUINA
	Q221=0	;SOBREMEDIDA

8.3 Ciclos para el fresad<mark>o d</mark>e cajeras, islas y ranuras

ACABADO DE ISLAS (ciclo 213)

- El TNC desplaza la hta. en el eje de la misma a la distancia de seguridad, o, si se ha programado a la 2ª distancia de seguridad y a continuación al centro de la isla
- 2 Desde el centro de la isla, la hta. se desplaza en el plano de mecanizado al punto inicial del mecanizado. El punto inicial se encuentra aprox. a 3,5 veces del radio de la hta. a la derecha de la isla
- 3 En el caso de que la hta. esté sobre la 2ª distancia de seguridad, el TNC desplaza la hta. en marcha rápida FMAX a la distancia de seguridad y desde allí, con avance de profundización a la primera profundidad de paso
- **4** A continuación la herramienta realiza la entrada tangencial al contorno y fresa una vuelta
- **5** A continuación la herramienta sale tangencialmente desde el contorno hasta el punto de partida del plano de mecanizado
- **6** Este proceso (3 a 5) se repite hasta que se ha alcanzado la profundidad programada
- 7 Al final del ciclo el TNC desplaza la hta. con FMAX a la distancia de seguridad, o si se ha programado, a la 2ª distancia de seguridad y a continuación al centro de la isla (posición final = posición de partida)

Antes de la programación deberá tenerse en cuenta

El TNC posiciona automáticamente la hta. en el eje de la misma y en el plano de mecanizado.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Si se quiere realizar un acabado de la cajera, deberá utilizarse una fresa con dentado frontal cortante en el centro (DIN 844). Para ello deberá introducirse un valor pequeño para el avance al profundizar.

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

al a

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- Profundi dad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de la isla
- Avance al profundizar Q206: Velocidad de desplazamiento de la hta. al profundizar en mm/min. Cuando se penetra en la pieza, introducir un valor pequeño, para una profundización en vacio introducir un valor mayor
- Profundidad de paso Q202 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza Introducir un valor mayor de 0.
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)
- Centro 1er eje Q216 (valor absoluto): Centro de la isla en el eje principal del plano de mecanizado
- Centro 2º eje Q217 (valor absoluto): Centro de la isla en el eje transversal del plano de mecanizado
- Longitud 1ado 1 Q218 (valor incremental): Longitud de la isla, paralela al eje principal del plano de mecanizado
- Longitud 1ado 2 Q219 (valor incremental): Longitud de la isla, paralela al eje transversal del plano de mecanizado
- **Radio de la esquina** Q220: Radio de la esquina de la isla
- Sobremedida 1er eje Q221 (valor incremental): Sobremedida en el eje principal del plano de mecanizado, referido a la longitud de la isla

35	CYCL DEF 2	L3 ACABADO DE LA ISLA
	Q200=2	;DISTSEGURIDAD
	Q291=-20	;PROFUNDIDAD
	Q206=150	;AVANCE AL PROFUNDIZAR
	Q202=5	;PROFUNDIDAD DE PASO
	Q207=500	;AVANCE DE FRESADO
	Q203=+30	;COORDENADA SUPERFICIE
	Q294=50	;2A. DIST.DE SEGURIDAD
	Q216=+50	;CENTRO 1ER. EJE
	Q217=+50	;CENTRO 2º EJE
	Q218=80	;LONGITUD LADO 1
	Q219=60	;LONGITUD LADO 2
	Q220=5	;RADIO DE LA ESQUINA
	Q221=0	;SOBREMEDIDA

8.3 Ciclos para el fresad<mark>o d</mark>e cajeras, islas y ranuras

CAJERA CIRCULAR (ciclo 5)

Los ciclos 1, 2, 3, 4, 5, 17, 18 se encuentran en el grupo de ciclos Ciclos especiales. Seleccionar aquí, en la segunda carátula de softkeys, la softkey OLD CYCLS.

- 1 La hta. penetra en la pieza desde la posición inicial (centro de la cajera) y se desplaza a la primera profundidad de paso
- 2 A continuación la hta. recorre la trayectoria en forma de espiral representada en la figura de la derecha con el AVANCE F programado; para la aproximación lateral k, véase "FRESADO DE CAJERA (ciclo 4)" en pág. 233
- 3 Este proceso se repite, hasta que se alcanza la profundidad
- 4 Al final el TNC retira la hta. a la posición inicial

Antes de la programación deberá tenerse en cuenta

Utilizar una fresa con dentado frontal cortante en el centro (DIN 844) o pretaladrado en el centro de la cajera.

Posicionamiento previo sobre el centro de la cajera con corrección de radio R0.

Programar la frase de posicionamiento sobre el punto de partida en el eje de la hta. (distancia de seguridad sobre la superficie de la pieza).

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

5

al

(P

- Distancia de seguridad 1 (valor incremental): Distancia entre el extremo de la hta. (posición inicial) y la superficie de la pieza
- Profundidad de fresado 2: Distancia entre la superficie de la pieza y la base de la cajera
- Profundidad de paso 3 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza El TNC se desplaza en un sólo paso de mecanizado a la profundidad total cuando:
 - El paso de profundización y la profundidad total son iguales
 - El paso de profundización es mayor a la profundidad total

- Avance al profundizar: Velocidad de desplazamiento de la hta. en la profundización
- ▶ Radio del círculo: Radio de la cajera circular
- Avance F: Velocidad de desplazamiento de la hta. en el plano de mecanizado
- ▶ giro en sentido horario
 - DR +: Fresado sincronizado con M3
 - DR -: Fresado a contramarcha con M3

Ejemplo: Frases NC

16 L Z+100 RO FMAX
17 CYCL DEF 5,0 CAJERA CIRCULAR
18 CYCL DEF 5.1 DIST. 2
19 CYCL DEF 5.2 PROFUNDIDAD -12
20 CYCL DEF 5,3 PASO 6 F80
21 CYCL DEF 5.4 RADIO 35
22 CYCL DEF 5.5 F100 DR+
23 L X+60 Y+50 FMAX M3
24 L Z+2 FMAX M99

i

ACABADO DE CAJERA CIRCULAR (ciclo 214)

- 1 El TNC desplaza automáticamente la hta. en el eje de la misma a la distancia de seguridad, o, si se ha programado, a la 2ª distancia de seguridad y a continuación al centro de la cajera
- 2 Desde el centro de la cajera la hta. se desplaza en el plano de mecanizado al punto inicial del mecanizado. Para el cálculo del punto inicial, el TNC tiene en cuenta el diámetro de la pieza en bruto y el radio de la herramienta. Si se introduce 0 para el diámetro de la pieza en bruto, la herramienta penetra en el centro de la cajera
- 3 En el caso de que la hta. esté sobre la 2ª distancia de seguridad, el TNC desplaza la hta. en marcha rápida FMAX a la distancia de seguridad y desde allí, con avance de profundización a la primera profundidad de paso
- **4** A continuación la herramienta realiza la entrada tangencial al contorno y fresa una vuelta
- **5** A continuación la herramienta sale tangencialmente desde el contorno hasta el punto de partida del plano de mecanizado
- 6 Este proceso (3 a 5) se repite hasta que se ha alcanzado la profundidad programada
- 7 Al final del ciclo el TNC desplaza la hta. con FMAX a la distancia de seguridad o, si se ha programado, a la 2ª distancia de seguridad y a continuación al centro de la cajera (posición final = posición de partida)

Antes de la programación deberá tenerse en cuenta

El TNC posiciona automáticamente la hta. en el eje de la misma y en el plano de mecanizado.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Si se quiere realizar un acabado de la cajera, deberá utilizarse una fresa con dentado frontal cortante en el centro (DIN 844) e introducir un avance pequeño para la profundización.

따

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- Profundi dad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de la cajera
- Avance al profundizar Q206: Velocidad de desplazamiento de la herramienta al profundizar en mm/min. Cuando se profundiza en la pieza se define un valor inferior al indicado en Q207.
- Profundidad de paso Q202 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)
- Centro 1er eje Q216 (valor absoluto): Centro de la cajera en el eje principal del plano de mecanizado
- Centro 2º eje Q217 (valor absoluto): Centro de la cajera en el eje transversal del plano de mecanizado
- Diámetro de la pieza en bruto Q222: Diámetro de la cajera premecanizada para el cálculo de la posición previa; introducir el diámetro del bloque menor al diámetro de la pieza terminada.
- Diámetro de la pieza terminada Q223: Diámetro de la cajera acabada; introducir el diámetro de la pieza acabada mayor al de la pieza en bruto y mayor al diámetro de la herramienta.

42 CYCL DEF 2: CIRCULAR	14 ACABADO DE LA CAJERA
Q200=2	;DISTSEGURIDAD
Q201=-20	;PROFUNDIDAD
Q206=150	;AVANCE AL PROFUNDIZAR
Q202=5	;PROFUNDIDAD DE PASO
Q207=500	;AVANCE DE FRESADO
Q203=+30	;COORDENADA SUPERFICIE
Q204=50	;2A. DIST.DE SEGURIDAD
Q216=+50	;CENTRO 1ER. EJE
Q217=+50	;CENTRO 2º EJE
Q222=79	;DIÁMETRO DE LA PIEZA EN BRUTO
Q223=80	;DIÁMETRO DE LA PIEZA ACABADA

ACABADO DE ISLAS CIRCULARES (ciclo 215)

- 1 El TNC desplaza automáticamente la hta. en el eje de la misma a la distancia de seguridad, o, si se ha programado, a la 2ª distancia de seguridad y a continuación al centro de la isla
- 2 Desde el centro de la isla, la hta. se desplaza en el plano de mecanizado al punto inicial del mecanizado. El punto inicial se encuentra aprox. a 2 veces del radio de la hta. a la derecha de la isla
- 3 En el caso de que la hta. esté sobre la 2ª distancia de seguridad, el TNC desplaza la hta. en marcha rápida FMAX a la distancia de seguridad y desde allí, con avance de profundización a la primera profundidad de paso
- **4** A continuación la herramienta realiza la entrada tangencial al contorno y fresa una vuelta
- **5** A continuación la herramienta sale tangencialmente desde el contorno hasta el punto de partida del plano de mecanizado
- **6** Este proceso (3 a 5) se repite hasta que se ha alcanzado la profundidad programada
- 7 Al final del ciclo el TNC desplaza la hta. con FMAX a la distancia de seguridad, o si se ha programado, a la 2ª distancia de seguridad y a continuación al centro de la isla (posición final = posición de partida)

Antes de la programación deberá tenerse en cuenta

El TNC posiciona automáticamente la hta. en el eje de la misma y en el plano de mecanizado.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Si se quiere realizar un acabado de la cajera, deberá utilizarse una fresa con dentado frontal cortante en el centro (DIN 844). Para ello deberá introducirse un valor pequeño para el avance al profundizar.

빤

¡Atención: Peligro de colisión!

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- Profundi dad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de la isla
- Avance al profundizar Q206: Velocidad de desplazamiento de la hta. al profundizar en mm/min. Cuando se penetra en la pieza, introducir un valor pequeño, para una profundización en vacio introducir un valor mayor
- Profundidad de paso Q202 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza; introducir un valor mayor que 0
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)
- Centro 1er eje Q216 (valor absoluto): Centro de la isla en el eje principal del plano de mecanizado
- Centro 2º eje Q217 (valor absoluto): Centro de la isla en el eje transversal del plano de mecanizado
- Diámetro de la pieza en bruto Q222: Diámetro de la isla premecanizada para el cálculo de la posición previa; introducir el diámetro de la pieza en bruto mayor que el diámetro de la pieza terminada.
- Diámetro de la pieza acabada Q223: Diámetro de la isla acabada; introducir un diámetro de la pieza acabada menor al de la pieza en bruto.

43 CYCL DEF 2 CIRCULAR	15 ACABADO DE LA CAJERA
Q200=2	;DISTSEGURIDAD
Q201=-20	;PROFUNDIDAD
Q206=150	;AVANCE AL PROFUNDIZAR
Q202=5	;PROFUNDIDAD DE PASO
Q207=500	;AVANCE DE FRESADO
Q203=+30	;COORDENADA SUPERFICIE
Q204=50	;2A. DIST.DE SEGURIDAD
Q216=+50	;CENTRO 1ER. EJE
Q217=+50	;CENTRO 2º EJE
Q222=81	;DIÁMETRO DE LA PIEZA EN Bruto
Q223=80	;DIÁMETRO DE LA PIEZA ACABADA

RANURA con profundización pendular (en ambos sentidos) (ciclo 210)

Desbaste

- El TNC posiciona la hta. en marcha rápida en el eje de la misma a la 2ª distancia de seguridad y a continuación al centro del círculo izquierdo; desde allí el TNC posiciona la hta. a la distancia de seguridad sobre la superficie de la pieza
- 2 La herramienta se desplaza con el avance de fresado sobre la superficie de la pieza; desde allí la fresa se desplaza en dirección longitudinal a la ranura y penetra inclinada en la pieza hacia el centro del círculo derecho
- **3** A continuación la hta. profundiza según una línea inclinada hasta el centro del círculo izquierdo; estos pasos se repiten hasta alcanzar la profundidad de fresado programada
- **4** En la profundidad de fresado programada, el TNC desplaza la hta. para realizar el fresado horizontal, hasta el otro extremo de la ranura y después al centro de la misma

Acabado

- 5 El TNC posiciona la herramienta en el centro del círculo izquierdo de la ranura y desde allí la desplaza tangencialmente en un semicírculo al final izquierdo de la misma; después el TNC acaba el contorno de forma síncrona (con M3), en caso de que se introduzcan también en varios pasos de profundización
- 6 Al final del contorno la herramienta se desplaza retirándose tangencialmente del contorno al centro del círculo izquierdo de la ranura
- 7 Para finalizar la hta. retrocede en marcha rápida FMAX a la distancia de seguridad, y si se ha programado, a la 2ª distancia de seguridad

Antes de la programación deberá tenerse en cuenta

El TNC posiciona automáticamente la hta. en el eje de la misma y en el plano de mecanizado.

En el desbaste la hta. profundiza en la pieza de forma pendular de un extremo a otro. Por ello no se precisa el taladrado previo.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Seleccionar el diámetro de la fresa que no sea mayor a la anchura de la ranura y que no sea menor a un tercio de la misma.

Seleccionar el diámetro de la fresa menor a la mitad de la longitud de la ranura: De lo contrario el TNC no puede realizar la introducción pendular.

¡Atención: Peligro de colisión!

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- Profundi dad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de la ranura
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min
- Profundidad de paso Q202 (valor incremental): Medida, según la cual la hta. penetra según el eje de la misma con un movimiento pendular
- Tipo de mecanizado (0/1/2) Q215: Determinación del tipo de mecanizado:
 0: Desbaste y Acabado
 1: Sólo Desbaste
 - 2: Sólo Acabado
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada Z en la cual no se puede producir ninguna colisión entre la hta. y la pieza
- Centro 1er eje Q216 (valor absoluto): Centro de la ranura en el eje principal del plano de mecanizado
- Centro 2º eje Q217 (valor absoluto): Centro de la ranura en el eje transversal del plano de mecanizado
- Longitud lado 1 Q218 (valor paralelo al eje principal del plano de mecanizado): Introducir el lado más largo de la ranura
- Longitud del lado 2 Q219 (valor paralelo al eje transversal del plano de mecanizado): Introducir la anchura de la ranura, si se introduce la anchura de la ranura igual al diámetro de la hta, el TNC sólo realiza el desbaste (fresado de la ranura)

ᇞ

- Angulo de giro Q224 (valor absoluto): Angulo, según el cual se gira toda la ranura; el centro de giro está en el centro de la ranura
- Paso de acabado Q338 (v. incremental): Medida, según la cual se desplaza la hta. en el eje de la misma para el acabado. Q338=0: Acabado en una aproximación
- Avance al profundizar Q206: velocidad de desplazamiento de la herramienta al desplazarse en profundidad en mm/min. Sólo tiene efecto en el Acabado, si la aproximación de acabado está introducida

51 CYCL DEF 2	10 RANURA PENDULAR
Q200=2	;DISTSEGURIDAD
Q201=-20	;PROFUNDIDAD
Q207=500	;AVANCE DE FRESADO
Q202=5	;PROFUNDIDAD DE PASO
Q215=0	;TIPO DE MECANIZADO
Q203=+30	;COORDENADA SUPERFICIE
Q204=50	;2A. DIST.DE SEGURIDAD
Q216=+50	;CENTRO 1ER. EJE
Q217=+50	;CENTRO 2º EJE
Q218=80	;LONGITUD LADO 1
Q219=12	;LONGITUD LADO 2
Q224=+15	;ÁNGULO DE GIRO
Q338=5	;PASO PARA ACABADO
Q206=150	;AVANCE AL PROFUNDIZAR

RANURA CIRCULAR con penetración pendular (ciclo 211)

Desbaste

- 1 El TNC posiciona la herramienta en marcha rápida en el eje de la hta. sobre la 2ª distancia de seguridad y a continuación al centro del círculo derecho. Desde allí el TNC posiciona la herramienta a la distancia de seguridad programada sobre la superficie de la pieza
- 2 La herramienta se desplaza con el avance de fresado sobre la superficie de la pieza; desde allí la fresa se desplaza en dirección longitudinal a la ranura y penetra inclinada en la pieza hasta el otro extremo de la ranura
- **3** A continuación la hta. se introduce de nuevo inclinada hasta el punto inicial; este proceso (2 a 3) se repite hasta alcanzar la profundidad de fresado programada
- 4 A la profundidad de fresado el TNC desplaza la hta. para el fresado lateral al otro extremo de la ranura

Acabado

- 5 Desde el centro de la ranura el TNC desplaza la hta. tangencialmente hacia el contorno acabado; a continuación el TNC realiza el acabado del contorno en sentido sincronizado (con M3), si se ha programado también en varios pasos El punto inicial para el proceso de acabado se encuentra en el centro del círculo derecho.
- 6 Al final del contorno la hta. se retira tangencialmente del mismo
- 7 Para finalizar la hta. retrocede en marcha rápida FMAX a la distancia de seguridad, y si se ha programado, a la 2ª distancia de seguridad

Antes de la programación deberá tenerse en cuenta

El TNC posiciona automáticamente la hta. en el eje de la misma y en el plano de mecanizado.

En el desbaste la hta. profundiza con un movimiento helicoidal de forma pendular de un extremo a otro de la ranura. Por ello no se precisa el taladrado previo.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0, el TNC no ejecuta el ciclo.

Seleccionar el diámetro de la fresa que no sea mayor a la anchura de la ranura y que no sea menor a un tercio de la misma.

Seleccionar el diámetro de la fresa menor a la mitad de la longitud de la ranura. De lo contrario el TNC no puede realizar la introducción pendular.

Con el parámetro de máquina displayDepthErr se ajusta, si el TNC debe emitir una aviso de error cuando se introduzca una profundidad positiva (on) o no (off).

¡Atención: Peligro de colisión!

ᇞ

Deberá tenerse en cuenta que, con **profundidad introducida positiva**, el TNC invierta el calculo de la posición previa. ¡La herramienta se desplaza en el eje de la herramienta a la distancia de seguridad con marcha rápida **bajo** la superfice de la pieza!

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- Profundi dad Q201 (valor incremental): Distancia entre la superficie de la pieza y la base de la ranura
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min
- Profundidad de paso Q202 (valor incremental): Medida, según la cual la hta. penetra según el eje de la misma con un movimiento pendular
- ▶ Tipo de mecanizado (0/1/2) Q215: Determinación del tipo de mecanizado:
 - **0**: Desbaste y Acabado
 - 1: Sólo Desbaste
 - 2: Sólo Acabado
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada Z, en la cual no se puede producir ninguna colisión entre la hta. y la pieza
- Centro 1er eje Q216 (valor absoluto): Centro de la ranura en el eje principal del plano de mecanizado
- ▶ Centro 2º eje Q217 (valor absoluto): Centro de la ranura en el eje transversal del plano de mecanizado
- Diámetro del círculo teórico Q244: Introducir el diámetro del arco de círculo
- Longitud 1ado 2 Q219: Introducir la anchura de la ranura; cuando la anchura de la ranura es igual al diámetro de la hta., el TNC sólo realiza el desbaste (fresado de la ranura)
- ▶ Angulo inicial Q245 (valor absoluto): Introducir el angulo del punto inicial en coordenadas polares

- 8.3 Ciclos para el fresad<mark>o d</mark>e cajeras, islas y ranuras
- Angulo de abertura de la ranura Q248 (valor incremental): Introducir el ángulo de abertura de la ranura
- Paso de acabado Q338 (v. incremental): Medida, según la cual se desplaza la hta. en el eje de la misma para el acabado. Q338=0: Acabado en una aproximación
- Avance al profundizar Q206: velocidad de desplazamiento de la herramienta al desplazarse en profundidad en mm/min. Sólo tiene efecto en el Acabado, si la aproximación de acabado está introducida

Ejemplo: Frases NC

52 CYCL DEF 2	11 RANURA CIRCULAR
Q200=2	;DISTSEGURIDAD
Q201=-20	;PROFUNDIDAD
Q207=500	;AVANCE DE FRESADO
Q202=5	;PROFUNDIDAD DE PASO
Q215=0	;TIPO DE MECANIZADO
Q203=+30	;COORDENADA SUPERFICIE
Q204=50	;2A. DIST.DE SEGURIDAD
Q216=+50	;CENTRO 1ER. EJE
Q217=+50	;CENTRO 2º EJE
Q244=80	;DIÁMETRO ARCO CIRCULAR
Q219=12	;LONGITUD LADO 2
Q245=+45	;ÁNGULO INICIAL
Q248=90	;ÁNGULO DE ABERTURA
Q338=5	;PASO PARA ACABADO
Q206=150	;AVANCE AL PROFUNDIZAR

Ejemplo: Fresado de cajera, isla y ranura

O BEGIN PGM C210 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Definición de la pieza en bruto
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+6	Definición de la herramienta para desbaste/acabado
4 TOOL DEF 2 L+0 R+3	Definición de la hta. para el fresado de la ranura
5 TOOL CALL 1 Z S3500	Llamada a la hta. para el desbaste/acabado
6 L Z+250 RO FMAX	Retirar la herramienta

7 CYCL DEF 213 ACABAD DE ISLAS	Definición del ciclo de mecanizado exterior
Q200=2 ;DISTSEGURIDAD	
Q201=-30 ;PROFUNDIDAD	
Q206=250 ;PROFUNDIDAD DE PASO F	
Q2O2=5 ;PROFUNDIDAD DE PASO	
Q207=250 ;AVANCE FRESADO F	
Q2O3=+0 ;COORDENADAS SUPERFICIE	
Q204=20 ;2ª DISTANCIA DE SEGUR.	
Q216=+50 ;CENTRO 1ER. EJE	
Q217=+50 ;CENTRO 2° EJE	
Q218=90 ;LONGITUD LADO 1	
Q219=80 ;LONGITUD LADO 2	
Q220=0 ;RADIO DE LA ESQUINA	
Q221=5 ;SOBREMEDIDA	
8 CYCL CALL M3	Llamada al ciclo de mecanizado exterior
9 CYCL DEF 5.0 CAJERA CIRCULAR	Definición del ciclo cajera circular
10 CYCL DEF 5.1 DIST. 2	
11 CYCL DEF 5.2 PROF30	
12 CYCL DEF 5.3 PASO 5 F250	
13 CYCL DEF 5.4 RADIO 25	
14 CYCL DEF 5.5 F400 DR+	
15 L Z+2 RO F MAX M99	Llamada al ciclo cajera circular
16 L Z+250 R0 F MAX M6	Cambio de herramienta
17 TOOL CALL 2 Z \$5000	Llamada a la herramienta para el fresado de la ranura
18 CYCL DEF 211 RANURA CIRCULAR	Definición del ciclo ranura 1
Q200=2 ;DIST. DE SEGURIDAD	
Q201=-20 ;PROFUNDIDAD	
Q207=250 ;FRESADO F	
Q2O2=5 ;PROFUNDIDAD DE PASO	
Q215=0 ;TIPO DE MECANIZADO	
Q2O3=+O ;COORD. SUPERFICIE	
Q204=100 ;2ª DIST. DE SEGURIDAD	
Q216=+50 ;CENTRO 1ER. EJE	
Q217=+50 ;CENTRO 2° EJE	
Q244=80 ;DIAMETRO ARCO CIRCULAR	
Q219=12 ;LONGITUD LADO 2	
Q245=+45 ;ANGULO INICIAL	
Q248=90 ;ANGULO DE ABERTURA	

Q338=5 ;PASO PARA ACABADO	
Q206=150 ;AVANCE AL PROFUNDIZAR	
19 CYCL CALL M3	Llamada al ciclo ranura 1
20 FN 0: Q245 = +225	Nuevo ángulo de inicio para la ranura 2
21 CYCL CALL	Llamada al ciclo ranura 2
22 L Z+250 R0 F MAX M2	Retirar la herramienta, final del programa
23 END PGM C210 MM	

8.4 Ciclos para realizar figuras de puntos

Resumen

El TNC dispone de 2 ciclos para poder realizar directamente figuras de puntos:

Ciclo	Softkey
220 FIGURA DE PUNTOS SOBRE UN CIRCULO	220
221 FIGURA DE PUNTOS SOBRE LINEAS	221

Con los ciclos 220 y 221 se pueden combinar los siguientes ciclos de mecanizado:

Ciclo 200	TALADRADO
Ciclo 201	ESCARIADO
Ciclo 202	MANDRINADO
Ciclo 203	TALADRO UNIVERSAL
Ciclo 204	REBAJE INVERSO
Ciclo 205	TALADRADO PROF. UNIVERSAL
Ciclo 206	ROSCADO NUEVO
Ciclo 207	ROSCADO RIGIDO GS NUEVO
Ciclo 208	FRESADO DE TALADRO
Ciclo 209	ROSCADO CON ROTURA DE VIRUTA
Ciclo 212	ACABADO DE CAJERAS
Ciclo 213	ACABADO DE ISLAS
Ciclo 214	ACABADO DE CAJERAS CIRCULARES
Ciclo 215	ACABADO DE ISLAS CIRCULARES
Ciclo 262	FRESADO DE ROSCA
Ciclo 263	FRESADO ROSCA AVELLANADA
Ciclo 264	FRESADO DE TALADRO DE ROSCA
Ciclo 265	FRESADO DE TALADRO DE ROSCA HELICOIDAL
Ciclo 267	FRESADO DE ROSCA EXTERIOR

FIGURA DE PUNTOS SOBRE UN CIRCULO (ciclo 220)

1 El TNC posiciona la hta. en marcha rápida desde la posición actual al punto de partida del primer mecanizado.

Secuencia:

220

- 2. Aproximación a la distancia de seguridad (eje de la hta.)
- Aproximación al punto de partida en el plano de mecanizado
- Desplazamiento a la distancia de seguridad sobre la superficie de la pieza (eje del cabezal)
- 2 A partir de esta posición el TNC ejecuta el último ciclo de mecanizado definido
- 3 A continuación el TNC posiciona la hta. según un movimiento lineal o según un movimeinto circular sobre el punto de partida del siguiente mecanizado; para ello la hta. se encuentra a la distancia de seguridad (o 2ª distancia de seguridad)
- 4 Este proceso (1 a 3) se repite hasta que se han realizado todos los mecanizados

Antes de la programación deberá tenerse en cuenta

El ciclo 220 se activa a partir de su definición DEF, es decir el ciclo 220 llama automáticamente al último ciclo de mecanizado definido.

Cuando se combinan los ciclos de mecanizado 200 a 209, 212 a 215, 251 a 265 y 267 con el ciclo 220 se activan la distancia de seguridad, la superficie de la pieza y la 2ª distancia de seguridad del ciclo 220.

- Centro 1er eje Q216 (valor absoluto): Centro del círculo teórico en el eje principal del plano de mecanizado
- Centro 2º eje Q217 (valor absoluto): Centro del círculo teórico en el eje transversal del plano de mecanizado
- Diámetro del arco de círculo Q244: Introducir el diámetro del círculo parcial
- ▶ Angulo inicial Q245 (valor absoluto): Angulo entre el eje principal del plano de mecanizado y el punto inicial del primer mecanizado sobre el círculo teórico
- Angulo final Q246 (valor absoluto): Angulo entre el eje principal del plano de mecanizado y el punto inicial del último mecanizado sobre el círculo teórico (no sirve para círculos completos); introducir el ángulo final diferente al ángulo inicial; si el ángulo final es mayor al ángulo inicial, la dirección del mecanizado es en sentido antihorario, de lo contrario el mecanizado es en sentido horario

- Incremento angular Q247 (valor incremental): Angulo entre dos puntos a mecanizar sobre el círculo teórico; cuando el incremento angular es igual a cero, el TNC calcula el incremento angular en relación al ángulo inicial, ángulo final y número de mecanizados; si se ha programado un incremento angular incremento angular, el TNC no tiene en cuenta el ángulo final; el signo del incremento angular determina la dirección del mecanizado (- = sentido horario)
- Número de mecanizados Q241: Número de mecanizados sobre el círculo teórico
- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza: Introducir el valor positivo
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada en el eje de la hta., en la cual no se puede producir ninguna colisión entre la hta. y la pieza; introducir siempre valor positivo
- Desplazamiento a la altura de seguridad Q301: Determinar como debe desplazarse la hta. entre los mecanizados:
 - **0**: Desplazar entre los mecanizados a la distancia de seguridad
 - 1: Desplazar entre los mecanizados a la 2ª distancia de seguridad
- ¿Tipo de desplazamiento? en línea recta=0/en círculo=1 Q365: determinar con que trayectoria debe desplazarse la herramienta entre los emcanizados:
 0: Desplazar entre los mecanizados en línea recta
 - 1: Desplazar entre los mecanizados en inea recta
 - el diámetro del circulo teórico

53	CYCL DEF 22	O FIGURA CIRCULAR
	Q216=+50	;CENTRO 1ER. EJE
	Q217=+50	;CENTRO 2º EJE
	Q244=80	;DIÁMETRO ARCO CIRCULAR
	Q245=+0	;ÁNGULO INICIAL
	Q246=+360	;ÁNGULO FINAL
	Q247=+0	;PASO ANGULAR
	Q241=8	;NÚMERO DE MECANIZADOS
	Q200=2	;DISTSEGURIDAD
	Q203=+30	;COORDENADA SUPERFICIE
	Q204=50	;2A. DIST.DE SEGURIDAD
	Q301=1	;DESPLAZ. A ALTURA SEG.
	Q365=0	;TIPO DE DESPLAZAMIENTO

FIGURA DE PUNTOS SOBRE LINEAS (ciclo 221)

Antes de la programación deberá tenerse en cuenta

El ciclo 221 se activa a partir de su definición DEF, es decir el ciclo 221 llama automáticamente al último ciclo de mecanizado definido.

Cuando se combinan uno de los ciclos de mecanizado 200 a 209, 212 a 215 y 265 a 267 con el ciclo 221, se activan la distancia de seguridad, la superficie de la pieza y la 2^a distancia de seguridad del ciclo 221.

1 El TNC posiciona la hta. automáticamente desde la posición actual al punto de partida del primer mecanizado

Secuencia:

- 2. Aproximación a la distancia de seguridad (eje de la hta.)
- Aproximación al punto de partida en el plano de mecanizado
- Desplazamiento a la distancia de seguridad sobre la superficie de la pieza (eje del cabezal)
- 2 A partir de esta posición el TNC ejecuta el último ciclo de mecanizado definido
- 3 A continuación el TNC posiciona la hta. en dirección positiva al eje principal sobre el punto inicial del siguiente mecanizado; la hta. se encuentra a la distancia de seguridad (o a la 2ª distancia de seguridad)
- 4 Este proceso (1 a 3) se repite hasta que se han realizado todos los mecanizados sobre la primera línea; la hta. se encuentra en el último punto de la primera línea
- 5 Después el TNC desplaza la hta. al último punto de la segunda línea y realiza allí el mecanizado
- **6** Desde allí el TNC posiciona la hta. en dirección negativa al eje principal hasta el punto inicial del siguiente mecanizado
- 7 Este proceso (6) se repite hasta que se han ejecutado todos los mecanizados de la segunda línea
- 8 A continuación el TNC desplaza la hta. sobre el punto de partida de la siguiente línea
- 9 Todas las demas líneas se mecanizan con movimiento oscilante

1

221

- Punto inicial ler eje Q225 (valor absoluto): Coordenadas del punto inicial en el eje principal del plano de mecanizado
- Punto inicial 2º eje Q226 (valor absoluto): Coordenadas del punto inicial en el eje transversal del plano de mecanizado
- Distancia 1er eje Q237 (valor incremental): Distancia entre los diferentes puntos de la línea
- Distancia 2º eje Q238 (valor incremental): Distancia entre las diferentes líneas
- Número de columnas Q242: Número de mecanizados sobre una línea
- Número de líneas Q243: Número de líneas
- Angulo de giro Q224 (valor absoluto): Angulo, según el cual se gira toda la disposición de la figura; el centro de giro se encuentra en el punto de partida
- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la superficie de la pieza
- Coordenadas de la superficie de la pieza Q203 (valor absoluto): Coordenadas de la superficie de la pieza
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)
- Desplazamiento a la altura de seguridad Q301: Determinar como debe desplazarse la hta. entre los mecanizados:

 $\ensuremath{\textbf{0}}$: Desplazar entre los mecanizados a la distancia de seguridad

1: Desplazar entre los mecanizados a la 2ª distancia de seguridad

54	CYCL DEF 22	21 LÍNEAS DE LA FIGURA
	Q225=+15	;PUNTO INICIAL 1ER. EJE
	Q226=+15	;PUNTO INICIAL 2º EJE
	Q237=+10	;DISTANCIA AL 1ER. EJE
	Q238=+8	;DISTANCIA AL 2º EJE
	Q242=6	;NÚMERO DE COLUMNAS
	Q243=4	;NÚMERO DE FILAS
	Q224=+15	;ÁNGULO DE GIRO
	Q200=2	;DISTSEGURIDAD
	Q203=+30	;COORDENADA SUPERFICIE
	Q204=50	;2A. DIST.DE SEGURIDAD
	Q301=1	;DESPLAZ. A ALTURA SEG.

Ejemplo: Círculos de puntos

O BEGIN PGM TALAD. MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Definición de la pieza en bruto
2 BLK FORM 0.2 Y+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+3	Definición de la herramienta
4 TOOL CALL 1 Z S3500	Llamada a la herramienta
5 L Z+250 RO FMAX M3	Retirar la herramienta
6 CYCL DEF 200 TALADRADO	Definición del ciclo taladrado
Q200=2 ;DISTSEGURIDAD	
Q201=-15 ;PROFUNDIDAD	
Q206=250 ;PROFUNDIDAD DE PASO F	
Q2O2=4 ;PROFUNDIDAD DE PASO	
Q210=0 ;TPO. ESPERA	
Q203=+0 ;COORDENADAS SUPERFICIE	
Q204=0 ;2ª DISTANCIA DE SEGUR.	
Q211=0.25;TIEMPO DE ESPERA ABAJO	

8.4 Ciclos par<mark>a re</mark>alizar figuras de puntos

7 CYCL DEF 220 FIGURA CIRCULAR	Definición del ciclo circulo de puntos 1, CYCL 220 se llama automát.
Q216=+30 ;CENTRO 1ER. EJE	Actuan Q200, Q203 y Q204 del ciclo 220
Q217=+70 ;CENTRO 2º EJE	
Q244=50 ;DIÁMETRO ARCO CIRCULAR	
Q245=+0 ;ÁNGULO INICIAL	
Q246=+360;ÁNGULO FINAL	
Q247=+0 ;PASO ANGULAR	
Q241=10 ;NÚMERO MECANIZADOS	
Q200=2 ;DISTSEGURIDAD	
Q2O3=+O ;COORDENADAS SUPERFICIE	
Q204=100 ;2ª DISTANCIA DE SEGUR.	
Q301=1 ;DESPLAZ. A ALTURA SEG.	
Q365=0 ;TIPO DE DESPLAZAMIENTO	
8 CYCL DEF 220 FIGURA CIRCULAR	Definición del ciclo circulo de puntos 2, CYCL 220 se llama automát.
Q216=+90 ;CENTRO 1ER. EJE	Actuan Q200, Q203 y Q204 del ciclo 220
Q217=+25 ;CENTRO 2º EJE	
Q244=70 ;DIÁMETRO ARCO CIRCULAR	
Q245=+90 ;ÁNGULO INICIAL	
Q246=+360;ÁNGULO FINAL	
Q247=30 ;PASO ANGULAR	
Q241=5 ;NÚMERO MECANIZADOS	
Q200=2 ;DIST. DE SEGURIDAD	
Q2O3=+O ;COORDENADAS SUPERFICIE	
Q204=100 ;2ª DISTANCIA DE SEGUR.	
Q301=1 ;DESPLAZ. A ALTURA SEG.	
Q365=0 ;TIPO DE DESPLAZAMIENTO	
9 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
10 END DEM TALAD MM	

8.5 Ciclos SL

Nociones básicas

Con los ciclos SL se pueden realizar contornos complejos compuestos de hasta 12 subcontornos (cajeras e islas). Los subcontornos se introducen como subprogramas. De la lista de subcontornos (números de subprogramas) que se indican en el ciclo 14 CONTORNO, el TNC calcula el contorno completo.

La memoria de un ciclo es limitada. En un ciclo se pueden programar un máximo de 1000 elementos de contorno.

A través de ciclos SL se realizan innumerables y complejos cálculos y con ellos los mecanizados correspondientes. ¡Por motivos de seguridad debe realizarse en cualquier caso un test de programa gráfico antes del mecanizado! Por ello se puede determinar de una forma sencilla, si el mecanizado realizado por el TNC se realiza correctamente.

Características de los subprogramas

- Son posibles las traslaciones de coordenadas. Si se programan dentro de un contorno parcial, también actúan en los siguientes subprogramas, pero no deben ser cancelados después de la llamada al ciclo
- El TNC ignora los avances F y las funciones auxiliares M
- El TNC reconoce una cajera cuando el contorno se recorre por el interior, p.ej. descripción del contorno en sentido horario con correccion de radio RR
- El TNC reconoce una isla cuando el cotorno se recorre por el exterior p.ej. descripción del contorno en sentido horario con corrección de radio RL
- Los subprogramas no pueden contener ninguna coordenada en el eje de la hta.
- Si utiliza parámetros Q, realice los cálculos correspondientes y las asignaciones sólo dentro del correspondiente subprograma de contorno

Ejemplo: Esquema: Ejecución con ciclos SL

- O BEGIN PGM SL2 MM
- 12 CYCL DEF 140 CONTORNO ...

13 CYCL DEF 20 DATOS DEL CONTORNO ...

•••

...

16 CYCL DEF 21 PRETALADRADO ...

17 CYCL CALL

18 CYCL DEF 22 DESBASTE ...

19 CYCL CALL

•••

. . .

. . .

22 CYCL DEF 23 ACABADO EN PROFUNDIDAD ...

23 CYCL CALL

•••

26 CYCL DEF 24 ACABADO LATERAL ...

27 CYCL CALL

50 L Z+250 R0 FMAX M2

51 LBL 1

... 55 LBL 0

56 LBL 2

•••

60 LBL 0

•••

99 END PGM SL2 MM

8.5 Ciclos SL

Características de los ciclos de mecanizado

- El TNC posiciona automáticamente la hta. a la distancia de seguridad antes de cada ciclo
- Cada nivel de profundidad se fresa sin levantar la hta.; las islas se mecanizan por el lateral
- Se puede programar el radio de "esquinas interiores", la hta. no se detiene, se evitan marcas de cortes (válido para la trayectoria más exterior en el Desbaste y en el Acabado lateral)
- En el acabado lateral el TNC efectúa la llegada al contorno sobre una trayectoria circular tangente
- En el acabado en profundidad el TNC desplaza también la hta. sobre una trayectoria circular tangente a la pieza (p.ej. eje de la hta Z: Trayectoria circular en el plano Z/X)
- El TNC mecaniza el contorno de forma contínua en sentido sincronizado o a contramarcha

La indicación de cotas para el mecanizado, como la profundidad de fresado, sobremedidas y distancia de seguridad se introducen en el ciclo 20 como DATOS DEL CONTORNO.

Resumen de los ciclos SL

Ciclo	Softkey	Página
14 CONTORNO (totalmente necesario)	14 LBL 1N	Pág. 264
20 DATOS DEL CONTORNO (totalmente necesario)	20 DATOS CONTORNO	Pág. 268
21 PRETALADRADO (se utiliza a elección)	21	Pág. 269
22 DESBASTE (totalmente necesario)	22	Pág. 270
23 ACABADO EN PROF. (se utiliza a elección)	23	Pág. 271
24 ACABADO LATERAL (se utiliza a elección)	24	Pág. 272

Otros ciclos:

Ciclo	Softkey	Página
25 TRAZADO DEL CONTORNO	25	Pág. 273
27 SUPERFICIE CILINDRICA	,27	Pág. 275
28 SUPERFICIE CILINDRICA fresado de ranuras	28	Pág. 277
29 SUPERFICIE CILINDRICA fresado de isla	29	Pág. 280

8.5 Ciclos SL

CONTORNO (ciclo 14)

En el ciclo 14 CONTORNO se enumeran todos los subprogramas que se superponen para formar un contorno completo.

Antes de la programación deberá tenerse en cuenta

El ciclo 14 se activa a partir de su definición, es decir actua a partir de su definición en el programa.

En el ciclo 14 se enumeran un máximo de 12 subprogramas (subcontornos).

Números label para el contorno: Se introducen todos los números label de los diferentes subcontornos, que se superponen en un contorno. Cada número se confirma con la tecla ENT y la introducción finaliza con la tecla END.

Contornos superpuestos

Las cajeras e islas se pueden superponer a un nuevo contorno. De esta forma una superficie de cajera se puede ampliar mediante una cajera superpuesta o reducir mediante una isla.

Subprogramas: Cajeras superpuestas

Los siguientes ejemplos de programación son subprogramas de contornos, llamados en un programa principal del ciclo 14 CONTORNO.

Se superponen las cajeras A y B.

El TNC calcula los puntos de corte S_1 y $\mathsf{S}_2,$ los cuales no se tienen que programar.

Las cajeras se han programado como círculos completos.

Subprograma 1: Cajera A

51 LBL 1
52 L X+10 Y+50 RR
53 CC X+35 Y+50
54 C X+10 Y+50 DR-
55 LBL 0

Subprograma 2: Cajera B

56 LBL 2
57 L X+90 Y+50 RR
58 CC X+65 Y+50
59 C X+90 Y+50 DR-
60 LBL 0

- 12 CYCL DEF 14,0 CONTORNO
- 13 CYCL DEF 14.1 LABEL DEL CONTORNO 1/2/3/4

"Sumas" de superficies

Se mecanizan las dos superficies parciales A y B incluida la superficie común:

- Las superficies A y B tienen que ser cajeras
- La primera cajera (en el ciclo 14) deberá comenzar fuera de la segunda
- Superficie A:

51 I RI 1

51 LBL 1	
52 L X+10 Y+50 RR	
53 CC X+35 Y+50	
54 C X+10 Y+50 DR-	
55 LBL 0	

Superficie B:

56 LBL 2
57 L X+90 Y+50 RR
58 CC X+65 Y+50
59 C X+90 Y+50 DR-
60 LBL 0

"Resta de" superficies

Se mecanizan la superficie A sin la parte que es común a B:

- La superficie A debe ser una cajera y la B una isla
- A tiene que comenzar fuera de B
- B debe comenzar dentro de A

Superficie A:

52 L X+10 Y+50 RR 53 CC X+35 Y+50 54 C X+10 Y+50 DR- 55 LRL 0	1 LBL 1
53 CC X+35 Y+50 54 C X+10 Y+50 DR- 55 LBL 0	2 L X+10 Y+50 RR
54 C X+10 Y+50 DR-	3 CC X+35 Y+50
55 IRI 0	4 C X+10 Y+50 DR-
55 EDE 0	5 LBL 0

Superficie B:

56 LBL 2
57 L X+90 Y+50 RL
58 CC X+65 Y+50
59 C X+90 Y+50 DR-
60 LBL 0

Superficie de la "intersección"

Se mecaniza la parte común de A y B. (Sencillamente las superficies no comunes permanecen sin mecanizar.)

■ A y B tienen que ser cajeras

A debe comenzar dentro de B

Superficie A:

1 LBL 1
2 L X+60 Y+50 RR
3 CC X+35 Y+50
4 C X+60 Y+50 DR-
5 LBL 0

Superficie B:

56 LBL 2	
57 L X+90 Y+50 RR	
58 CC X+65 Y+50	
59 C X+90 Y+50 DR-	
60 LBL 0	

DATOS DEL CONTORNO (ciclo 20)

En el ciclo 20 se indican las informaciones del mecanizado para los subprogramas con los contornos parciales.

Antes de la programación deberá tenerse en cuenta

El ciclo 20 se activa a partir de su definición, es decir se activa a partir de su definición en el pgm de mecanizado.

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado. Si se programa la profundidad = 0 el TNC ejecuta el ciclo correspondiente sobre la profundidad 0.

La información sobre el mecanizado indicada en el ciclo 20 es válida para los ciclos 21 a 24.

Cuando se emplean ciclos SL en programas con parámetros Q, no se pueden utilizar los parámetros Q1 a Q20 como parámetros del programa.

- Profundidad de fresado Q1 (valor incremental): Distancia entre la superficie de la pieza y la base de la cajera
- Factor de solapamiento en la trayectoria Q2: Q2 x radio de la hta. da como resultado la aproximación lateral k.
- Sobremedida del acabado lateral Q3 (valor incremental): Sobremedida de acabado en el plano de mecanizado.
- Sobremedida de acabado en profundidad Q4 (valor incremental): Sobremedida de acabado para la profundidad.
- Coordenada de la superficie de la pieza Q5 (valor absoluto): Coordenada absoluta de la superfice de la pieza
- Distancia de seguridad Q6 (valor incremental): Distancia entre la superficie frontal de la hta. y la superficie de la pieza
- Altura de seguridad Q7 (valor absoluto): Altura absoluta, en la cual no se puede producir ninguna colisión con la pieza (para posicionamiento intermedio y retroceso al final del ciclo)
- Radio de redondeo interior Q8: Radio de redondeo en "esquinas" interiores; el valor introducido se refiere a la trayectoria del centro de la hta.
- Sentido de giro ? Sentido horario = -1 Q9: Dirección de mecanizado para cajeras
 - en sentido horario (Q9 = -1 contramarcha para cajera e isla)
 - en sentido antihorario (Ω9 = +1 sentido sincronizado para cajera e isla)

57	CYCL DEF 2	O DATOS DEL CONTORNO
	Q1=-20	;PROFUNDIDAD DE FRESADO
	Q2=1	;SOLAPAMIENTO DE LA Trayectoria
	Q3=+0.2	;SOBREMEDIDA LATERAL
	Q4=+0.1	;SOBREMEDIDA EN PROFUNDIDAD
	Q5=+30	;COORDENADA SUPERFICIE
	Q6=2	;DISTSEGURIDAD
	Q7=+80	;ALTURA SEGURIDAD
	Q8=0.5	;RADIO DE REDONDEO
	Q9=+1	;SENTIDO DE GIRO

PRETALADRADO (ciclo 21)

En una frase **TOOL CALL**, el TNC no tiene en cuenta el valor delta programado **DR** para el cálculo de los puntos de profundización.

En lugares estrechos el TNC no puede pretaladrar con una herramienta que sea mayor que la herramienta de desbaste.

Desarrollo del ciclo

- 1 La hta. taladra con el avance F programado desde la posición actual hasta la primera profundidad de paso
- 2 Despus el TNC retira la herramienta en marcha rápida FMAX y vuelve a desplazarse hasta la primera profundidad de paso, reduciendo esta según la distancia de parada previa t.
- 3 El control calcula automáticamente la distancia de parada previa:
 - Profundidad de taladrado hasta 30 mm: t = 0,6 mm
 - Profundidad de taladrado más de 30 mm: t = profundidad /50
 - máxima distancia de parada previa: 7 mm
- 4 A continuación la hta. taladra con el avance F programado hasta la siguiente profundidad de paso
- 5 El TNC repite este proceso (1 a 4) hasta que se ha alcanzado la profundidad de taladrado programada
- **6** En la base del taladro, una vez transcurrido el tiempo de espera para el desahogo de la viruta, el TNC retira la herramienta a la posición inicial con FMAX

Empleo

En el ciclo 21 PRETALADRADO, se tiene en cuenta para los puntos de profundización la sobremedida de acabado lateral y la sobremedida de acabado en profundidad, así como el radio de la hta. de desbaste. Los puntos de penetración son además también puntos de partida para el desbaste.

Profundidad de paso Q10 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza (signo "-" cuando la dirección de mecanizado es negativa)

- Avance al profundizar Q11: Avance al profundizar en mm/min
- Número de hta. de desbaste Q13: Número de la hta. de desbaste

Ejemplo: Frases NC

58	CYCL DEF 2	1 PRETALADRADO	
	Q10=+5	;PROFUNDIDAD DE PASO	
	Q11=100	;AVANCE AL PROFUNDIZAR	
	Q13=1	;HERRAMIENTA DE DESBASTE	

DESBASTE (ciclo 22)

- 1 El TNC posiciona la hta. sobre el punto de profundización; para ello se tiene en cuenta la sobremedida de acabado lateral
- 2 En la primera profundidad de paso la hta. fresa el contorno de dentro hacia afuera con el avance de fresado Q12
- **3** Para ello se fresa libremente el contorno de la isla (aquí: C/D) con una aproximación al contorno de la cajera (aquí: A/B)
- 4 En el próximo paso el TNC desplaza la herramienta a la próxima profundidad de aproximación y repite el proceso de desbaste, hasta que se alcance la profundidad programada
- 5 Para finalizar el TNC retorna la herramienta a la altura de seguridad

Antes de la programación deberá tenerse en cuenta

Si es preciso utilizar una fresa con dentado frontal cortante en el centro (DIN 844) o pretaladrado con el ciclo 21.

El comportamiento de profundización del ciclo 22 se determina con el parámetro Q19 y en la tabla de herramienta con las columnas ANGULO y LCUTS:

- Si se define Q19=0, el TNC profundiza siempre de forma perpendicular, también si está definido un ángulo de profundización para la herramienta activa (ANGULO)
- Si se define ANGULO=90°, el TNC profundiza de forma perpendicular. Como avance de profundización se utiliza el avance pendular Q19
- Cuando se define el avance pendular Q19 en el ciclo 22 y el ÁNGULO en la tabla de herramientas entre 0.1 y 89.999, el TNC profundiza con el ÁNGULO determinado de forma pendular
- Cuando el avance pendular en el ciclo 22 se define y no existe ningún ANGULO en la tabla de herramientas, el TNC emite un aviso de error

Ejemplo: Frases NC

59 CYCL DEF 2	2 DESBASTE
Q10=+5	;PROFUNDIDAD DE PASO
Q11=100	;AVANCE AL PROFUNDIZAR
Q12=350	;AVANCE DE DESBASTE
Q18=1	;HERRAMIENTA DE DESBASTE Previo
Q19=150	;AVANCE PENDULAR
Q208=9999	9;AVANCE DE RETROCESO

- Profundidad de paso Q10 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza
- Avance al profundizar Q11: Avance al profundizar en mm/min
- Avance para desbaste Q12: Avance de fresado en mm/min
- Número de hta. para el desbaste previo Q18: Número de la hta. con la cual se ha realizado el desbaste previo. Si no se ha realizado el desbaste previo se programa "0"; si se programa un número, el TNC sólo desbasta la parte que no se ha podido mecanizar con la herramienta de desbaste previo. En caso de que la zona de desbaste no se pueda alcanzar lateralmente, el TNC penetra con Q19 definido; para ello se debe definir la tabla de herramientas TOOL.T, véase "Datos de la herramienta" en pág. 98 la longitud de la cuchilla LCUTS y el ángulo máximo de penetración ÁNGULO de la herramienta. Si es preciso, el TNC emite un aviso de error
- Avance pendular Q19: Avance oscilante en mm/min
- Avance de retroceso Q208: Velocidad de desplazamiento de la hta. al retirarse tras el mecanizado en mm/min. Cuando se introduce Q208=0 el TNC retira la hta. con el avance Q12

ACABADO EN PROFUNDIDAD (ciclo 23)

El TNC calcula automáticamente el punto inicial para el acabado. El punto inicial depende de las proporciones de espacio de la cajera.

El TNC desplaza la hta. de forma suave (círculo tangente vertical) sobre la primera superficie a mecanizar, siempre que se disponga de suficiente espacio. En caso de espacios estrechos, el TNC profundiza la herramienta de manera perpendicular. A continuación se fresa la distancia de acabado que ha quedado del desbaste.

Avance al profundizar Q11: Velocidad de desplazamiento de la hta. en la profundización

Avance para desbaste Q12: Avance de fresado

60 CYCL DEF	23 ACABADO EN P	ROFUNDIDAD
Q11=10	0 ;AVANCE AL PR	OFUNDIZAR
Q12=35	0 ;AVANCE DE DE	SBASTE

ACABADO LATERAL (ciclo 24)

El TNC desplaza la herramienta sobre una trayectoria circular tangente a los contornos parciales. El acabado de cada contorno parcial se realiza por separado.

Antes de la programación deberá tenerse en cuenta

La suma de la sobremedida del acabado lateral (Q14) y el radio de la hta. para el acabado, tiene que ser menor que la suma de la sobremedida del acabado lateral (Q3, ciclo 20) y el radio de la hta. de desbaste.

Si se ejecuta el ciclo 24 sin antes haber desbastado con el ciclo 22, también es válido el cálculo citado anteriormente; en este caso se introduce "0" para el radio de la herramienta de desbaste.

El TNC calcula automáticamente el punto inicial para el acabado. El punto de arranque depende de los comportamientos de las posiciones en la cajera y de la sobremedida programada en el ciclo 20.

- iSentido de giro ? Sentido horario = -1 Q9: Dirección del mecanizado:
 +1:Giro en sentido antihorario
 -1:Giro en sentido horario
- Profundidad de paso Q10 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza
- > Avance al profundizar Q11: Avance al profundizar
- Avance para desbaste Q12: Avance de fresado
- Sobremedida de acabado lateral Q14 (valor incremental): Sobremedida para varios acabados; cuando Q14=0 se desbasta la última distancia de acabado.

61	CYCL DEF 2	4 ACABADO LATERAL	
	Q9=+1	;SENTIDO DE GIRO	
	Q10=+5	;PROFUNDIDAD DE PASO	
	Q11=100	;AVANCE AL PROFUNDIZAR	
	Q12=350	;AVANCE DE DESBASTE	
	Q14=+0	;SOBREMEDIDA LATERAL	

TRAZADO DEL CONTORNO (ciclo 25)

Con este ciclo y el ciclo 14 CONTORNO se pueden mecanizar contornos "abiertos": el principio y el final del contorno no coinciden.

El ciclo 25 TRAZADO DEL CONTORNO ofrece considerables ventajas en comparación con el mecanizado de un contorno abierto con frases de posicionamiento:

- El TNC supervisa el mecanizado para realizar entradas sin rebabas y evitar daños en el contorno. Comprobar el contorno con el test del gráfico
- Cuando el radio de la hta. es demasiado grande, se tendrá que volver a mecanizar, si es preciso, el contorno en las esquinas interiores
- El mecanizado se ejecuta en una sola pasada de forma sincronizada o a contramarcha. El tipo de fresado elegido se mantiene incluso cuando se realiza el espejo de los contornos
- Cuando se trata de varias prof. de pasada, la hta. se desplaza en ambos sentidos: De esta forma es más rápido el mecanizado
- Se pueden introducir diversas medidas, para realizar el desbaste y el acabado con varios pasos de mecanizado

Antes de la programación deberá tenerse en cuenta

En el ciclo, el signo del parámetro Profundidad determina la dirección del mecanizado.

El TNC sólo tiene en cuenta el primer label del ciclo 14 CONTORNO.

La memoria de un ciclo es limitada. En un ciclo se pueden programar un máximo de 1000 elementos de contorno.

No es necesario el ciclo 20 DATOS DEL CONTORNO.

Las posiciones en cotas incrementales programadas directamente después del ciclo 25 se refieren a la posición de la hta. al final del ciclo.

빤

¡Atención: Peligro de colisión!

Para evitar posibles colisiones:

- No programar cotas incrementales directamente después del ciclo 25, ya que se refieren a la posición de la hta. al final del ciclo.
- En todos los ejes principales aproximar la hta. a las posiciones definidas (absolutas), ya que la posición de la herramienta al final del ciclo no coincide con la posición al comienzo del ciclo.

25

- Profundidad de fresado Q1 (valor incremental): Distancia entre la superficie de la pieza y la base del contorno
- Sobremedida acabado lateral Q3 (valor incremental): Sobremedida de acabado en el plano de mecanizado.

Ejemplo: Frases NC

62 (YCL DEF 29	5 TRAZADO DEL CONTORNO
	Q1=-20	;PROFUNDIDAD DE FRESADO
	Q3=+0	;SOBREMEDIDA LATERAL
	Q5=+0	;COORDENADA SUPERFICIE
	Q7=+50	;ALTURA SEGURIDAD
	Q10=+5	;PROFUNDIDAD DE PASO
	Q11=100	;AVANCE AL PROFUNDIZAR
	Q12=350	;AVANCE DE FRESADO
	Q15=-1	;TIPO DE FRESADO

8.5 Ciclos S

- Coordenadas de la superficie de la pieza Q5 (valor absoluto): Coordenada absoluta de la superfice de la pieza referida al cero pieza
- Altura de seguridad Q7 (valor absoluto): Altura absoluta en la cual no se puede producir una colisión entre la hta. y la pieza; posición de retroceso de la hta. al final del ciclo
- Profundidad de paso Q10 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza
- Avance al profundizar Q11: Avance de desplazamiento en el eje de la hta.
- Avance de fresado Q12: Avance de desplazamiento en el plano de mecanizado
- ¿Tipo de fresado ? (A contramarcha = -1) Q15: Fresado síncronizado: Entrada = +1 Fresado a contramarcha: Entrada = -1 Cambiando de fresado sincronizado a fresado a contramarcha en varios pasos de aproximación: Entrada = 0

SUPERFICIE CILINDRICA (ciclo 27, opción de software 1)

P

El constructor de la máquina prepara la máquina y el TNC.

Con este ciclo se puede mecanizar un contorno cilíndrico previamente programado según el desarrollo de dicho cilindro. El ciclo 28 se utiliza para fresar la guía de una ranura en un cilindro.

El contorno se describe en un subprograma, determinado a través del ciclo 14 (CONTORNO).

En el subprograma se describe siempre el contorno con las coordenadas X e Y, independientemente de qué ejes giratorios existan en la máquina. Por tanto, la descripción del contorno es independiente de la configuración de la máquina. Como funciones para programar trayectorias se dispone de L, CHF, CR, RND y CT.

Las indicaciones para el eje angular (coordenadas X) pueden ser introducidas en grados o en mm (pulgadas) (se determina en la definición del ciclo Q17).

- 1 El TNC posiciona la hta. sobre el punto de profundización; para ello se tiene en cuenta la sobremedida de acabado lateral
- 2 En la primera profundidad de paso la hta. fresa el contorno programado con el avance de fresado Q12
- **3** Al final del contorno el TNC desplaza la hta. a la distancia de seguridad y retrocede al punto de profundización;
- 4 Se repiten los pasos 1 a 3, hasta alcanzar la profundidad de fresao Q1 programada
- 5 A continuación la hta. se desplaza a la distancia de seguridad

Antes de la programación deberá tenerse en cuenta

Programar siempre ambas coordenadas en la primera frase NC del subprograma de contorno.

La memoria de un ciclo es limitada. En un ciclo se pueden programar un máximo de 1000 elementos de contorno.

El ciclo sólo puede mecanizarse con profundidad negativa. En caso de introducirse una profundidad positiva, el TNC emite un aviso de error.

Deberá utilizarse una fresa con dentado frontal cortante en el centro (DIN 844).

El cilindro debe estar sujeto a la mesa giratoria y centrado.

El eje de la hta. deberá desplazarse perpendicularmente al eje de la mesa giratoria. Si no es así, el TNC emite un aviso de error.

Este ciclo puede ejecutarse también en el plano de mecanizado inclinado.

- Profundidad de fresado Q1 (valor incremental): Distancia entre la superficie cilíndrica y la base del contorno
- Sobremedida acabado lateral Q3 (valor incremental): Sobremedida de acabado en el plano del desarrollo de la superficie cilíndrica; la sobremedida actúa en la dirección de la corrección de radio
- Distancia de seguridad Q6 (valor incremental): Distancia entre la superficie frontal de la hta. y la superficie cilíndrica
- Profundidad de paso Q10 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza
- Avance al profundizar Q11: Avance de desplazamiento en el eje de la hta.
- Avance de fresado Q12: Avance de desplazamiento en el plano de mecanizado
- Radio del cilindro Q16: Radio del cilindro sobre el que se mecaniza el contorno
- ¿Tipo de acotación ? Grados =0 MM/PULG.=1 Q17: Programar las coordenadas del eje giratorio (coordenadas X) en el subprograma en grados o mm (pulg.)

63	CYCL DEF 2	7 SUPERFICIE CILÍNDRICA
	Q1=-8	;PROFUNDIDAD DE FRESADO
	Q3=+0	;SOBREMEDIDA LATERAL
	Q6=+2	;DISTSEGURIDAD
	Q10=+3	;PROFUNDIDAD DE PASO
	Q11=100	;AVANCE AL PROFUNDIZAR
	Q12=350	;AVANCE DE FRESADO
	Q16=25	;RADIO
	Q17=0	;TIPO DE MEDICIÓN

SUPERFICIE CILINDRICA fresado de ranuras (ciclo 28, opción de software 1)

La máquina y el TNC deben estar preparados por el constructor de la máquina.

Con este ciclo se puede transferir el desarrollo de la guía de una ranura, definida sobre la superficie de un cilindro. Al contrario que en el ciclo 27, en este ciclo el TNC posiciona la herramienta de tal forma que cuando está activada la corrección de radio las paredes se mecanizan paralelas entre sí. Obtendrá un recorrido con paredes exactamente paralelas cuando utilice una herramienta con un diámetro exacto al ancho de la ranura.

Mientras menor sea la herramienta en relación al ancho de ranura, mayores distorsiones existirán en trayectorias circulares y en rectas oblicuas. Para minimizar estas distoriones por desplazamiento, se puede definir una tolerancia mediante el parámetro Q21, con la que el TNC aproxima la ranura a realizar a otra ranura fabricada anteriormente con una herramienta cuyo diámetro se corresponde con el ancho de ranura.

Programar la trayectoria de punto medio del contorno introduciendo la corrección de radio de la herramienta. Mediante la corrección del radio se fija si el TNC crea la ranura en sentido de la marcha o en sentido contrario a la marcha.

- 1 El TNC posiciona la hta. sobre el punto de profundización:
- 2 En la primera profundidad de pasada la hta. fresa la pared de la ranura con el avance de fresado Q12; para ello tiene en cuenta la sobremedida de acabado lateral
- **3** Al final del contorno el TNC desplaza la hta. a la pared contraria de la ranura y retrocede al punto de profundización
- 4 Se repiten los pasos 2 y 3, hasta alcanzar la profundidad de fresado Q1 programada
- **5** Cuando haya definido la tolerancia Q21, entonces el TNC ejecuta el postmecanizado para conseguir las paredes de la ranura lo más paralelas posibles.
- 6 Por último, la herramienta retrocede en el eje de la herramienta a una altura segura

8.5 Ciclos SL

Antes de la programación deberá tenerse en cuenta

Programar siempre ambas coordenadas de la superficie cilíndrica en la primera frase NC del subprograma de contorno.

La memoria de un ciclo es limitada. En un ciclo se pueden programar un máximo de 1000 elementos de contorno.

El ciclo sólo puede mecanizarse con profundidad negativa. En caso de introducirse una profundidad positiva, el TNC emite un aviso de error.

Deberá utilizarse una fresa con dentado frontal cortante en el centro (DIN 844).

El cilindro debe estar sujeto a la mesa giratoria y centrado.

El eje de la hta. deberá desplazarse perpendicularmente al eje de la mesa giratoria. Si no es así, el TNC emite un aviso de error.

Este ciclo puede ejecutarse también en el plano de mecanizado inclinado.

- Profundidad de fresado Q1 (valor incremental): Distancia entre la superficie cilíndrica y la base del contorno
- Sobremedida acabado lateral Q3 (valor incremental): Sobremedida de acabado en la pared de la ranura. La sobremedida de acabado empequeñece el ancho de la ranura al valor introducido dos veces
- Distancia de seguridad Q6 (valor incremental): Distancia entre la superficie frontal de la hta. y la superficie cilíndrica
- Profundidad de paso Q10 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza
- Avance al profundizar Q11: Avance de desplazamiento en el eje de la hta.
- Avance de fresado Q12: Avance de desplazamiento en el plano de mecanizado
- ▶ Radio del cilindro Q16: Radio del cilindro sobre el que se mecaniza el contorno
- ¿Tipo de acotación ? Grados =0 MM/PULG.=1 Q17: Programar las coordenadas del eje giratorio (coordenadas X) en el subprograma en grados o mm (pulg.)
- Anchura de la ranura Q20: Anchura de la ranura a realizar
- ▶ Tolerancia? Q21: Cuando utilice una herramienta menor que el ancho de ranura Q20 programado, se producen distorsiones por desplazamiento en la pared de la ranura en círculos y rectas oblicuas. Cuando se define la tolerancia Q21, entonces el TNC realiza la ranura según un proceso de fresado con una forma aproximada, como si se hubiera fresado la ranura con una herramienta exactamente del mismo tamaño que el ancho de ranura. Con Q21 se define la desviación permitida por esta ranura ideal. El número de pasos de postmecanizado depende del radio del cilindro, de la herramienta utilizada y de la profundidad de ranura. Mientras más pequeña se defina la tolerancia, más exacta es la ranura pero tardará más tiempo en realizarla. Consejo: Utilizar la tolerancia de 0.02 mm. Función inactiva: introducir 0 (Ajuste básico)

Ejemplo: Frases NC

63 CYCL DEF	28 SUPERFICIE CILÍNDRICA	
Q1=-8	;PROFUNDIDAD DE FRESADO	
Q3=+0	;SOBREMEDIDA LATERAL	
Q6=+2	;DISTSEGURIDAD	
Q10=+3	;PROFUNDIDAD DE PASO	
Q11=10	O ;AVANCE AL PROFUNDIZAR	
Q12=35	O ;AVANCE DE FRESADO	
Q16=25	;RADIO	
Q17=0	;TIPO DE MEDICIÓN	
Q20=12	;ANCHO DE RANURA	
Q21=0	;TOLERANCIA	

SUPERFICIE CILINDRICA fresado de isla (ciclo 29, opción de software 1)

La máquina y el TNC deben estar preparados por el constructor de la máquina.

Con este ciclo se puede transferir el desarrollo de una isla, a la superficie de un cilindro. En este ciclo el TNC posiciona la hta. de tal forma que cuando está activada la corrección de radio las paredes se mecanizan paralelas entre si. Programar la trayectoria de punto medio de la isla introduciendo la corrección de radio de la herramienta. Mediante la corrección del radio se fija si el TNC crea la isla en sentido de la marcha o en sentido contrario a la marcha.

En los extremos de la isla el iTNC básicamente siempre añade un semicírculo, cuyo radio es la mitad de la anchura de la isla.

- 1 El TNC posiciona la hta. sobre el punto inicial del mecanizado. El punto inicial lo calcula el TNC según el ancho de isla y el diámetro de la herramienta. Éste se encuentra próximo al primer punto definido en el subprograma del contorno y desplazado según la mitad de la anchura de la isla y el diámetro de la herramienta. La corrección del radio determina si se comienza por la izquierda (1, RL = marcha síncrona) o por la derecha de la isla (2, RR = a contramarcha)
- 2 Después de que el TNC se haya posicionado en la primera profundidad de paso, la herramienta se aproxima según un arco de círculo con avance de fresado Q12 de forma tangencial a la pared de la isla. Si se programa, se mecanizará según la sobremedida de acabado
- **3** En la primera profundidad de paso, la herramienta fresa con el avance de fresado Q12 a lo largo de la pared de la isla hasta que se realiza totalmente la isla
- 4 A continuación la herramienta retrocede tangencialmente desde la pared del contorno hasta el punto inicial del plano de mecanizado
- 5 Se repiten los pasos 2 a 4, hasta alcanzar la profundidad de fresado Q1 programada
- 6 A continuación retrocede la herramienta en el eje de la herramienta hasta la altura de seguridad o hasta la posición programada por última vez antes del ciclo

Antes de la programación deberá tenerse en cuenta

Programar siempre ambas coordenadas de la superficie cilíndrica en la primera frase NC del subprograma de contorno.

Preste atención a que la herramienta para el movimiento de aproximación y salida tenga suficiente espacio lateral.

La memoria de un ciclo es limitada. En un ciclo se pueden programar un máximo de 1000 elementos de contorno.

El ciclo sólo puede mecanizarse con profundidad negativa. En caso de introducirse una profundidad positiva, el TNC emite un aviso de error.

El cilindro debe estar sujeto a la mesa giratoria y centrado.

El eje de la hta. deberá desplazarse perpendicularmente al eje de la mesa giratoria. Si no es así, el TNC emite un aviso de error.

Este ciclo puede ejecutarse también en el plano de mecanizado inclinado.

29

- Profundidad de fresado Q1 (valor incremental): Distancia entre la superficie cilíndrica y la base del contorno
- Sobremedida acabado lateral Q3 (valor incremental): Sobremedida de acabado en la pared de la isla. La sobremedida de acabado aumenta el ancho de la isla al doble del valor introducido
- Distancia de seguridad Q6 (valor incremental): Distancia entre la superficie frontal de la hta. y la superficie cilíndrica
- Profundidad de paso Q10 (valor incremental): Medida, según la cual la hta. penetra cada vez en la pieza
- Avance al profundizar Q11: Avance de desplazamiento en el eje de la hta.
- Avance de fresado Q12: Avance de desplazamiento en el plano de mecanizado
- ▶ Radio del cilindro Q16: Radio del cilindro sobre el que se mecaniza el contorno
- ¿Tipo de acotación ? Grados =0 MM/PULG.=1 Q17: Programar las coordenadas del eje giratorio (coordenadas X) en el subprograma en grados o mm (pulg.)
- Anchura de la isla Q20: Anchura de la isla a realizar

63 CYCL DEF 2 ISLA	9 SUPERFICIE CILÂNDRICA DE LA
Q1=-8	;PROFUNDIDAD DE FRESADO
Q3=+0	;SOBREMEDIDA LATERAL
Q6=+2	;DISTSEGURIDAD
Q10=+3	;PROFUNDIDAD DE PASO
Q11=100	;AVANCE AL PROFUNDIZAR
Q12=350	;AVANCE DE FRESADO
Q16=25	;RADIO
Q17=0	;TIPO DE MEDICIÓN
Q20=12	;ANCHO DE LA ISLA

Ejemplo: Pretaladrado, desbaste y acabado de contornos superpuestos

O BEGIN PGM C21 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Definición de la pieza en bruto
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+6	Definición de la hta. Taladro
4 TOOL DEF 2 L+0 R+6	Definición de la herramienta para desbaste/acabado
5 TOOL CALL 1 Z S2500	Llamada a la hta. para el taladrado
6 L Z+250 RO FMAX	Retirar la herramienta
7 CYCL DEF 14,0 CONTORNO	Determinar el subprograma del contorno
8 CYCL DEF 14.1 LABEL DEL CONTORNO 1/2/3/4	
9 CYCL DEF 20,0 DATOS DEL CONTORNO	Determinar los parámetros de mecanizado generales
Q1=-20 ;PROFUNDIDAD DE FRESADO	
Q2=1 ;SOLAPAMIENTO DE LA Trayectoria	
Q3=+0,5 ;SOBREMEDIDA LATERAL	
Q4=+0,5 ;SOBREMEDIDA EN PROFUNDIDAD	
Q5=+0 ;COORDENADA SUPERFICIE	
Q6=2 ;DISTSEGURIDAD	
Q7=+100 ;ALTURA SEGURIDAD	
Q8=0,1 ;RADIO DE REDONDEO	
Q9=-1 ;SENTIDO DE GIRO	

10 CYCL DEF 21,0 PRETALADRADO	Definición del ciclo Pretaladrado
Q10=5 ;PROFUNDIDAD DE PASO	
Q11=250 ;AVANCE AL PROFUNDIZAR	
Q13=2 ;HERRAMIENTA DE DESBASTE	
11 CYCL CALL M3	Llamada al ciclo Pretaladrado
12 L Z+250 RO FMAX M6	Cambio de herramienta
13 TOOL CALL 2 Z \$3000	Llamada a la hta. para el desbaste/acabado
14 CYCL DEF 22.0 DESBASTE	Definición del ciclo Desbaste
Q10=5 ;PROFUNDIDAD DE PASO	
Q11=100 ;AVANCE AL PROFUNDIZAR	
Q12=350 ;AVANCE DE DESBASTE	
Q18=0 ;HERRAMIENTA DE DESBASTE PREVIO	
Q19=150 ;AVANCE PENDULAR	
Q208=30000;AVANCE DE RETROCESO	
15 CYCL CALL M3	Llamada al ciclo Desbaste
16 CYCL DEF 23.0 ACABADO EN PROFUNDIDAD	Definición del ciclo para Acabado en profundidad
Q11=100 ;AVANCE AL PROFUNDIZAR	
Q12=200 ;AVANCE DE DESBASTE	
Q208=30000;AVANCE DE RETROCESO	
17 CYCL CALL	Llamada al ciclo Acabado en profundidad
18 CYCL DEF 24,0 ACABADO LATERAL	Definición del ciclo Acabado lateral
Q9=+1 ;SENTIDO DE GIRO	
Q10=5 ;PROFUNDIDAD DE PASO	
Q11=100 ;AVANCE AL PROFUNDIZAR	
Q12=400 ;AVANCE DE DESBASTE	
Q14=+0 ;SOBREMEDIDA LATERAL	
19 CYCL CALL	Llamada al ciclo Acabado lateral
20 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa

21 LBL 1	Subprograma 1 del contorno: Cajera izquierda
22 CC X+35 Y+50	
23 L X+10 Y+50 RR	
24 C X+10 DR-	
25 LBL 0	
26 LBL 2	Subprograma 2 del contorno: Cajera derecha
27 CC X+65 Y+50	
28 L X+90 Y+50 RR	
29 C X+90 DR-	
30 LBL 0	
31 LBL 3	Subprograma 3 del contorno: Isla rectangular izquierda
32 L X+27 Y+50 RL	
33 L Y+58	
34 L X+43	
35 L Y+42	
36 L X+27	
37 LBL 0	
38 LBL 4	Subprograma 4 del contorno: Isla triangular derecha
39 L X+65 Y+42 RL	
40 L X+57	
41 L X+65 Y+58	
42 L X+73 Y+42	
43 LBL 0	
44 END PGM C21 MM	

Ejemplo: Trazado del contorno

O BEGIN PGM C25 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Definición de la pieza en bruto
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Definición de la herramienta
4 TOOL CALL 1 Z S2000	Llamada a la herramienta
5 L Z+250 RO FMAX	Retirar la herramienta
6 CYCL DEF 14,0 CONTORNO	Determinar el subprograma del contorno
7 CYCL DEF 14.1 LABEL DEL CONTORNO 1	
8 CYCL DEF 25 TRAZADO DEL CONTORNO	Determinar los parámetros del mecanizado
Q1=-20 ;PROFUNDIDAD DE FRESADO	
Q3=+0 ;SOBREMEDIDA LATERAL	
Q5=+0 ;COORDENADA SUPERFICIE	
Q7=+250 ;ALTURA SEGURIDAD	
Q10=5 ;PROFUNDIDAD DE PASO	
Q11=100 ;AVANCE AL PROFUNDIZAR	
Q12=200 ;AVANCE DE FRESADO	
Q15=+1 ;TIPO DE FRESADO	
9 CYCL CALL M3	Llamada al ciclo
10 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa

11 LBL 1	Subprograma del contorno
12 L X+0 Y+15 RL	
13 L X+5 Y+20	
14 CT X+5 Y+75	
15 L Y+95	
16 RND R7.5	
17 L X+50	
18 RND R7.5	
19 L X+100 Y+80	
20 LBL 0	
21 END DCM C25 MM	

Ejemplo: Superficie cilíndrica con ciclo 27

Nota:

- Cilindro sujeto en el centro de la mesa giratoria
- El punto de ref. está en el centro de la mesa giratoria
- Descripción de la trayectoria de punto medio en subprograma del contorno

O BEGIN PGM C28 MM	
1 TOOL DEF 1 L+0 R+3.5	Definición de la herramienta
2 TOOL CALL 1 Y S2000	Llamada a la hta. , eje de la hta. Y
3 L Y+250 RO FMAX	Retirar la herramienta
4 L X+O RO FMAX	Posicionanar la hta. sobre el centro de la mesa giratoria
5 CYCL DEF 14,0 CONTORNO	Determinar el subprograma del contorno
6 CYCL DEF 14.1 LABEL DEL CONTORNO 1	
7 CYCL DEF 27 SUPERFICIE CILÍNDRICA	Determinar los parámetros del mecanizado
Q1=-7 ;PROFUNDIDAD DE FRESADO	
Q3=+0 ;SOBREMEDIDA LATERAL	
Q6=2 ;DISTSEGURIDAD	
Q10=4 ;PROFUNDIDAD DE PASO	
Q11=100 ;AVANCE AL PROFUNDIZAR	
Q12=250 ;AVANCE DE FRESADO	
Q16=25 ;RADIO	
Q17=1 ;TIPO DE MEDICIÓN	
8 L C+O RO FMAX M3	Posicionamiento previo de la mesa giratoria
9 CYCL CALL	Llamada al ciclo
10 L Y+250 RO FMAX M2	Retirar la herramienta, final del programa
11 LBL 1	Subprograma de contorno, descripción de la trayectoria de punto medio

12 L X+40 Y+0 RR	Indicación en mm en el eje giratorio (Q17=1)
13 L Y+35	
14 L X+60 Y+52.5	
15 L Y+70	
16 LBL 0	
17 END PGM C28 MM	

Ejemplo: Superficie cilíndrica con ciclo 28

Nota:

- Cilindro sujeto en el centro de la mesa giratoria
- El punto de ref. está en el centro de la mesa giratoria

O BEGIN PGM C27 MM	
1 TOOL DEF 1 L+0 R+3.5	Definición de la herramienta
2 TOOL CALL 1 Y S2000	Llamada a la hta. , eje de la hta. Y
3 L X+250 RO FMAX	Retirar la herramienta
4 L X+O RO FMAX	Posicionanar la hta. sobre el centro de la mesa giratoria
5 CYCL DEF 14,0 CONTORNO	Determinar el subprograma del contorno
6 CYCL DEF 14.1 LABEL DEL CONTORNO 1	
7 CYCL DEF 28 SUPERFICIE CILÍNDRICA	Determinar los parámetros del mecanizado
Q1=-7 ;PROFUNDIDAD DE FRESADO	
Q3=+0 ;SOBREMEDIDA LATERAL	
Q6=2 ;DISTSEGURIDAD	
Q10=-4 ;PROFUNDIDAD DE PASO	
Q11=100 ;AVANCE AL PROFUNDIZAR	
Q12=250 ;AVANCE DE FRESADO	
Q16=25 ;RADIO	
Q17=1 ;TIPO DE MEDICIÓN	
Q2O=10 ;ANCHO DE RANURA	
Q21=0.02 ;TOLERANCIA	Postmecanizado activo
8 L C+O RO FMAX M3	Posicionamiento previo de la mesa giratoria
9 CYCL CALL	Llamada al ciclo
10 L Y+250 RO FMAX M2	Retirar la herramienta, final del programa

i

11 LBL 1	Subprograma del contorno
12 L X+40 Y+20 RL	Indicación en mm en el eje giratorio (Q17=1)
13 L X+50	
14 RND R7.5	
15 L Y+60	
16 RND R7.5	
17 L IX-20	
18 RND R7.5	
19 L Y+20	
20 RND R7.5	
21 L X+40	
22 LBL 0	
23 END PGM C27 MM	

i

8.6 Ciclos para el planeado

Resumen

El TNC dispone de cuatro ciclos, con los cuales se pueden mecanizar superficies con las siguientes características:

- ser planas y rectangulares
- ser planas según un ángulo oblícuo
- estar inclinadas de cualquier forma
- estar unidas entre sí

Ciclo	Softkey
230 PLANEADO Para superficies planas y rectangulares	230
231 SUPERFICIE REGULAR Para superficies oblicuas, inclinadas o en torsión	231
232 FRESADO PLANO Para superficies planas rectangulares, con indicación	232

de sobremedida y varias aproximaciones

PLANEADO (ciclo 230)

- 1 El TNC posiciona la hta. en marcha rápida FMAX desde la posición actual en el plano de mecanizado sobre el punto de partida 1; para ello el TNC desplaza la hta. según el radio de la hta. hacia la izquierda y hacia arriba
- 2 A continuación la hta. se desplaza en el eje de la misma con FMAX a la distancia de seguridad y posteriormente con el avance de profundización sobre la posición inicial programada en el eje de la herramienta
- **3** Después la hta. se desplaza con el avance de fresado sobre el punto final **2**; el TNC calcula el punto final en base al punto inicial programado, la longitud y el radio de la hta
- 4 El TNC desplaza la herramienta con avance de fresado transversal sobre el punto de partida de la siguiente línea; el TNC calcula este desplazamiento con la anchura y el número de cortes programados
- 5 Después la herramienta se retira en dirección negativa al 1er eje
- 6 El planeado se repite hasta mecanizar completamente la superficie programada
- 7 Al final el TNC retira la hta. con FMAX a la distancia de seguridad

Antes de la programación deberá tenerse en cuenta

El TNC posiciona la hta. en marcha rápida FMAX desde la posición actual en el plano de mecanizado sobre el punto de partida.

Posicionar previamente la herramienta, de forma que no se produzca ninguna colisión con la pieza o la sujeción.

- Punto de partida del 1er eje Q225 (valor absoluto): Coordenadas del punto de partida de la superficie a planear en el eje principal del plano de mecanizado
- Punto de partida del 2º eje Q226 (valor absoluto): Coordenadas del punto de partida de la superficie a planear en el eje transversal del plano de mecanizado
- Punto de partida del 3er eje Q227 (valor absoluto): Altura en el eje de la hta. a la cual se realiza el planeado
- Longitud 1ado 1 Q218 (valor incremental): Longitud de la superficie para el planeado en el eje principal del plano de mecanizado, referida al punto de partida del 1er eje
- Longitud 1ado 2 Q219 (valor incremental): Longitud de la superficie para el planeado en el eje transversal del plano de mecanizado, referida al punto de partida del 2º eje
- Número de cortes Q240: Número de líneas sobre las cuales el TNC desplaza la hta. a lo ancho de la pieza
- Avance al profundizar Q206: Velocidad de la hta. en el desplazamiento a la distancia de seguridad hasta la profundidad de fresado en mm/min
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min
- Avance transversal Q209: Velocidad de desplazamiento de la hta. para la llegada a la línea siguiente en mm/min; cuando la hta. se aproxima a la pieza transversalmente, se introduce Q209 menor a Q207; cuando se desplaza transversalmente en vacío, Q209 puede ser mayor a Q207
- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la profundidad de fresado para el posicionamiento al principio y al final del ciclo

Ejemplo: Frases NC

71 CYCL DEF 23	O PLANEADO
Q225=+10	;PUNTO INICIAL 1ER. EJE
Q226=+12	;PUNTO INICIAL 2º EJE
Q227=+2.5	;PUNTO INICIAL 3ER EJE
Q218=150	;LONGITUD LADO 1
Q219=75	;LONGITUD LADO 2
Q240=25	;NÚMERO DE CORTES
Q206=150	;AVANCE AL PROFUNDIZAR
Q207=500	;AVANCE DE FRESADO
Q209=200	;AVANCE TRANSVERSAL
Q200=2	;DISTSEGURIDAD

8.6 Ciclos para el planeado

SUPERFICIE REGULAR (ciclo 231)

- 1 El TNC posiciona la herramienta desde la posición actual con un movimiento de rectas 3D hasta el punto inicial 1
- 2 A continuación la hta. se desplaza con el avance de fresado programado sobre el punto final 2
- 3 Desde allí el TNC desplaza la hta. en marcha rápida FMAX según el diámetro de la hta. en la dirección positiva del eje de la hta. y de nuevo al punto de partida 1
- 4 En el punto inicial 1el TNC desplaza la hta. de nuevo al último valor Z alcanzado
- **5** A continuación el TNC traslada la herramienta en los tres ejes desde el punto **1** en dirección al punto **4** hasta la próxima fila
- 6 Después el TNC desplaza la hta. hasta el punto final de esta línea. El TNC calcula el punto final según el punto 2 y un movimiento en dirección al punto 3
- 7 El planeado se repite hasta mecanizar completamente la superficie programada
- 8 Al final el TNC posiciona la hta. según el diámetro de la misma sobre el punto más elevado programado en el eje de la hta.

Dirección de corte

El punto inicial y con él la dirección de fresado son de libre elección, ya que el TNC desplaza los cortes del punto 1 al punto 2 y recorre el proceso completo del punto 1 / 2 al punto 3 / 4. Se puede establecer el punto 1 en cualquier esquina de la superficie a mecanizar.

La calidad de la superficie al utilizar una fresa cilíndrica se puede optimizar:

- A través del corte del filo (punto 1 de coordenadas de eje del cabezal mayor que el punto 2 de coordenadas de eje del cabezal) en superficies poco inclinadas.
- A través de corte de arrastre (punto 1 de coordenadas de eje del cabezal menor que el punto 2 de coordenadas de eje del cabezal) en superficies fuertemente inclinadas
- En superficies torsionadas, establecer la dirección del movimiento principal (del punto 1 al punto 2) en la dirección de la inclinación más fuerte

La calidad de la superficie al utilizar una fresa esférica se puede optimizar:

En superficies torsionadas, establecer la dirección del movimiento principal (del punto 1 al punto 2) perpendicular a la dirección de la inclinación más fuerte

Antes de la programación deberá tenerse en cuenta

El TNC posiciona la hta. desde la posición actual Posición con un movimiento de rectas 3D hacia el punto de inicio 1. Posicionar previamente la herramienta, de forma que no se produzca ninguna colisión con la pieza o la sujeción.

El TNC desplaza la hta. con corrección de radio R0 entre las posiciones programadas.

Si es preciso se emplea una fresa con dentado frontal cortante en el centro (DIN 844).

- Punto de partida ler eje Q225 (valor absoluto): Coordenadas del punto de partida de la superficie a planear en el eje principal del plano de mecanizado
- Punto de partida 2º eje Q226 (valor absoluto): Coordenadas del punto de partida de la superficie a planear en el eje transversal del plano de mecanizado
- Punto de partida 3er eje Q227 (valor absoluto): Coordenada del punto de partida de la superficie a planear en el eje de la hta.
- 2º punto 1er eje Q228 (valor absoluto): Coordenada del pto. final de la superficie a planear en el eje principal del plano de mecanizado
- 2º punto del 2º eje Q229 (valor absoluto): Coordenada del pto. final de la superficie a planear en el eje transversal del plano de mecanizado
- ▶ 2º punto 3er eje Q230 (valor absoluto): Coordenada del pto. final de la superficie a planear en el eje de la hta.
- Ser punto del 1er eje Q231 (valor absoluto): Coordenada del 3er punto en el eje principal del plano de mecanizado
- 3er punto del 2º eje Q232 (valor absoluto): Coordenada del 3er punto en el eje transversal del plano de mecanizado
- Ser punto del 3er eje Q233 (valor absoluto): Coordenada del 3er punto en el eje de la hta.

- 4º punto del 1er eje Q234 (valor absoluto): Coordenada del 4º punto en el eje principal del plano de mecanizado
- ▶ 4º punto del 2º eje Q235 (valor absoluto): Coordenada del 4º punto en el eje auxiliar del plano de mecanizado
- 4º punto del 3er eje Q236 (valor absoluto): Coordenada del 4º punto en el eje del cabezal
- Número de cortes Q240: Número de filas que el TNC debe desplazar entre los puntos 1 y 4, o bien entre los puntos 2 y 3
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. durante el fresado en mm/ min. El TNC realiza el primer corte con la mitad del valor programado.

Ejemplo: Frases NC

2 CYCL DEF 231 SUPERFICIE REGULAR
Q225=+0 ;PUNTO INICIAL 1ER. EJE
Q226=+5 ;PUNTO INICIAL 2° EJE
Q227=-2 ;PUNTO INICIAL 3ER EJE
Q228=+100;2° PUNTO DEL 1ER EJE
Q229=+15 ;2° PUNTO DEL 2° EJE
Q230=+5 ;2° PUNTO DEL 3ER EJE
Q231=+15 ;3ER PUNTO DEL 1ER EJE
Q232=+125;3ER PUNTO DEL 2º EJE
Q233=+25 ;3ER PUNTO DEL 3ER EJE
Q234=+15 ;4° PUNTO DEL 1ER EJE
Q235=+125;4° PUNTO DEL 2° EJE
Q236=+25 ;4° PUNTO DEL 3ER EJE
Q240=40 ;NÚMERO DE CORTES
Q207=500 ;AVANCE DE FRESADO

FRESADO PLANO (ciclo 232)

Con el ciclo 232 se pueden fresar superficies en varias pasadas y teniendo en cuenta una sobremedida de acabado. Para ello están disponibles tres estrategias de mecanizado:

- **Estrategia Q389=0**: Mecanizar en forma de meandro, incremento lateral por fuera de la superficie a mecanizar
- **Estrategia Q389=0**: Mecanizar en forma de meandro, incremento lateral por dentro de la superficie a mecanizar
- **Estrategia Q389=2**: Mecanizar línea a línea, retroceso e incremento lateral con avance de posicionamiento
- 1 El TNC posiciona la herramienta en marcha rápida FMAX desde la posición actual con la lógica de posicionamiento sobre el punto de arranque 1: Si la posición actual es mayor que la segunda distancia de seguridad, el TNC desplaza la herramienta en el plano de mecanizado y entonces en el eje del cabezal, de lo contrario primero a la 2ª distancia de seguridad y entonces en el plano de mecanizado. El punto de arranque en el plano de mecanizado se situa alrededor del radio de la herramienta y a ambos lados de la distancia de seguridad junto a la pieza
- 2 A continuación la herramienta se desplaza con avance de posicionamiento en el eje de cabezal a la profundidad de aproximación calculada por primera vez por el TNC

Estrategia Q389=0

- 3 Después la hta. se desplaza con el avance de fresado programado sobre el punto final 2 El punto final se situa **fuera** de la superficie, el TNC lo calcula mediante el punto de arranque programado, la longitud programada, la distancia de seguridad lateral y el radio de la herramienta programados
- 4 El TNC desplaza la herramienta con avance de posicionamiento previo transversal sobre el punto de partida de la siguiente línea; el TNC calcula este desplazamiento con la anchura, el radio de la herramienta y el factor de solapamiento de trayectoria máximo
- 5 Después la herramienta retrocede nuevamente en dirección del punto de arranque 1
- **6** El proceso se repite hasta mecanizar completamente la superficie programada. Al final de la última trayectoria se realiza la aproximación a la próxima profundidad de mecanizado
- 7 Para evitar recorridos en vacío, la superficie se mecaniza a continuación en dirección opuesta
- 8 El proceso se repite hasta que estén ejecutadas todas las aproximaciones. En la última aproximación se fresa finalmente la sobremedida de acabado introducida en el avance de acabado
- 9 Al final el TNC retira la hta. con FMAX a la 2ª distancia de seguridad

Estrategia Q389=1

- 3 Después la hta. se desplaza con el avance de fresado programado sobre el punto final 2 El punto final se situa dentro de la superficie, el TNC lo calcula mediante el punto de arranque programado, la longitud programada y el radio de la herramienta
- **4** El TNC desplaza la herramienta con avance de posicionamiento previo transversal sobre el punto de partida de la siguiente línea; el TNC calcula este desplazamiento con la anchura, el radio de la herramienta y el factor de solapamiento de trayectoria máximo
- 5 Después la herramienta retrocede nuevamente en dirección del punto de arranque 1. El desplazamiento a la próxima línea se consigue de nuevo dentro de la pieza
- **6** El proceso se repite hasta mecanizar completamente la superficie programada. Al final de la última trayectoria se realiza la aproximación a la próxima profundidad de mecanizado
- 7 Para evitar recorridos en vacío, la superficie se mecaniza a continuación en dirección opuesta
- 8 El proceso se repite hasta que estén ejecutadas todas las aproximaciones. En la última aproximación se fresa finalmente la sobremedida de acabado introducida en el avance de acabado
- 9 Al final el TNC retira la hta. con FMAX a la 2ª distancia de seguridad

8.6 Ciclos para el planeado

Estrategia Q389=2

- 3 Después la hta. se desplaza con el avance de fresado programado sobre el punto final 2 El punto final se situa fuera de la superficie, el TNC lo calcula mediante el punto de arranque programado, la longitud programada, la distancia de seguridad lateral y el radio de la herramienta programados
- 4 El TNC desplaza a la herramienta en el eje de cabezal a la distancia de seguridad mediante la profundidad de aproximación actual y retrocede con el avance de posicionamiento previo directamente al punto de arranque de la próxima línea. El TNC calcula el desplazamiento desde el ancho programado, el radio de la herramienta y el factor de solapamiento de la trayectoria máximo
- **5** Depués la herramienta se desplaza nuevamente a la profundidad de aproximación actual y a continuación de nuevo en dirección del punto final **2**
- **6** El proceso de planeado se repite hasta mecanizar completamente la superficie programada. Al final de la última trayectoria se realiza la aproximación a la próxima profundidad de mecanizado
- 7 Para evitar recorridos en vacío, la superficie se mecaniza a continuación en dirección opuesta
- 8 El proceso se repite hasta que estén ejecutadas todas las aproximaciones. En la última aproximación se fresa finalmente la sobremedida de acabado introducida en el avance de acabado
- 9 Al final el TNC retira la hta. con FMAX a la 2ª distancia de seguridad

Antes de la programación deberá tenerse en cuenta

Introducir la segunda distancia de seguridad Q204 de forma que no se produzca ninguna colisión con la pieza o la sujeción.

232

Estrategia de mecanizado (0/1/2) Q389: Determinar, cómo debe mecanizar el TNC la superficie:

0: Mecanizar en forma de meandro, incremento lateral en avance de posicionamiento por fuera de la superficie a mecanizar

1: Mecanizar en forma de meandro, incremento lateral en el avance de fresado dentro de la superficie a mecanizar

2: Mecanizar línea a línea, retroceso e incremento lateral con avance de posicionamiento

- Punto de partida 1er eje Q225 (valor absoluto): Coordenadas del punto de partida de la superficie a mecanizar en el eje principal del plano de mecanizado
- Punto de partida 2º eje Q226 (valor absoluto): Coordenadas del punto de partida de la superficie a planear en el eje transversal del plano de mecanizado
- Punto de partida del 3er. eje Q227 (absoluto): Coordenadas de la superficie de la pieza, de la cual se deben calcular las aproximaciones
- Punto final del 3er. eje Q386 (absoluto): Coordenadas en el eje de cabezal sobre el que se debe fresar transversalmente la superficie
- Longitud 1ado 1 Q218 (valor incremental): Longitud de la superficie a mecanizar en el eje principal del plano de mecanizado. A través del signo se puede determinar la dirección de la primera trayectoria de fresado referida al punto de arranque del 1er. eje
- Longitud 1ado 2 Q219 (valor incremental): Longitud de la superficie a mecanizar en el eje transversal del plano de mecanizado. A través del signo se puede determinar la dirección de la primera aproximación transversal referida al punto de arranque del 2º eje

- Profundidad de aproximación máxima Q202 (incremental): Medida a la que la herramienta correspondiente se aproxima como máximo. El TNC calcula la profundidad de aproximación real de la diferencia entre el punto final y el de arranque en el eje de la herramienta – considerando la sobremedida de acabado – de tal forma que se mecanicen con la misma profundidad de aproximación
- Profundidad de sobremedida de acabado Q369 (incremental): Valor con el que se debe desplazar la última aproximación
- Máx. factor de solapamiento de trayectoria Q370: Aproximación lateral máxima k.El TNC calcula la aproximación real lateral según la segunda longitud lateral (Q219) y el radio de la herramienta de tal forma que se mecanice correspondientemente con aproximación constante lateral. Si se ha introducido en la tabla de herramientas un radio R2 (por ej. radio de discos en la utilización de un cabezal lector), el TNC disminuye la aproximación lateral correspondiente
- Avance de fresado Q207: Velocidad de desplazamiento de la hta. en el fresado en mm/min
- Avance de acabado Q385: Velocidad de desplazamiento de la hta. al realizar el fresado de la última aproximación en mm/min
- Avance de posicionamiento previo Q253: Velocidad de recorrido de la herramienta en el desplazamiento desde la posición de arranque y en desplazamiento a la próxima línea en mm/min; si se desplaza en el material transversalmente (Q389=1), el TNC desplaza la aproximación transversal con el avance de fresado Q207

- Distancia de seguridad Q200 (valor incremental): Distancia entre el extremo de la hta. y la posición de arranque en el eje de la herramienta. Si se fresa con la estrategia de mecanizado Q389=2, el TNC desplaza el punto de arranque según la distancia de seguridad desde la profundidad de aproximación actual a la próxima línea
- Distancia de seguridad lateral Q357 (incremental): distancia lateral de la herramienta desde la pieza en el desplazamiento según la primera profundidad de aproximación y a la distancia a la que la aproximación lateral se desplaza en la estrategia de mecanizado Q389=0 y Q389=2
- 2ª distancia de seguridad Q204 (valor incremental): Coordenada del eje de la hta. en la cual no se puede producir ninguna colisión entre la hta. y la pieza (medio de sujeción)

Ejemplo: Frases NC

71 CYCL DEF 23	2 FRESADO TRANSVERSAL
Q389=2	;ESTRATEGIA
Q225=+10	;PUNTO INICIAL 1ER. EJE
Q226=+12	;PUNTO INICIAL 2º EJE
Q227=+2.5	;PUNTO INICIAL 3ER EJE
Q386=-3	;PUNTO FINAL DEL 3ER. EJE
Q218=150	;LONGITUD LADO 1
Q219=75	;LONGITUD LADO 2
Q202=2	;MÁX. PROFUNDIDAD DE APROXIMACIÓN
Q369=0.5	;SOBREMEDIDA EN PROFUNDIDAD
Q370=1	;MÁX. SOLAPAMIENTO
Q207=500	;AVANCE DE FRESADO
Q385=800	;AVANCE DE ACABADO
Q253=2000	;AVANCE DE PREPOSICIONAMIENTO
Q200=2	;DISTSEGURIDAD
Q357=2	;DISTSEGURIDAD LATERAL
Q204=2	;2A. DIST.DE SEGURIDAD

O BEGIN PGM C230 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z+0	Definición de la pieza en bruto
2 BLK FORM 0.2 X+100 Y+100 Z+40	
3 TOOL DEF 1 L+0 R+5	Definición de la herramienta
4 TOOL CALL 1 Z S3500	Llamada a la herramienta
5 L Z+250 RO FMAX	Retirar la herramienta
6 CYCL DEF 230 PLANEADO	Definición del ciclo Planeado
Q225=+0 ;INICIO 1ER. EJE	
Q226=+0 ;INICIO 2º EJE	
Q227=+35 ;INICIO 3ER EJE	
Q218=100 ;LONGITUD LADO 1	
Q219=100 ;LONGITUD LADO 2	
Q240=25 ;NÚMERO DE CORTES	
Q206=250 ;PROFUNDIDAD DE PASO F	
Q207=400 ;AVANCE FRESADO F	
Q209=150 ;AVANCE TRANSVERSAL F	
Q200=2 ;DIST. DE SEGURIDAD	

i

7 L X+-25 Y+0 R0 FMAX M3	Posicionamiento previo cerca del punto de partida
8 CYCL CALL	Llamada al ciclo
9 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
10 END PGM C230 MM	

8.7 Ciclos para la traslación de coordenadas

Resumen

Con la traslación de coordenadas se puede realizar un contorno programado una sóla vez, en diferentes posiciones de la pieza con posición y medidas modificadas. El TNC dispone de los siguientes ciclos para la traslación de coordenadas:

Ciclo	Softkey
7 PUNTO CERO Desplazamiento de los contornos directamente en el programa o desde la tabla de puntos cero	7
8 ESPEJO Reflejar contornos	C S
10 GIRO Girar contornos en el plano de mecanizado	10
11 FACTOR DE ESCALA Reducir y ampliar contornos	11
26 FACTOR DE ESCALA ESPECIFICO PARA CADA EJE Disminuir o aumentar contornos con factores de escala específicos del eje	25 CC

Activación de la traslación de coordenadas

Principio de activación: Una traslación de coordenadas se activa a partir de su definición, es decir, no es preciso llamarla. La traslación actua hasta que se anula o se define una nueva.

Anulación de la traslación de coordenadas:

- Definir de nuevo el ciclo con los valores para el comportamiento básico, p.ej. factor de escala 1,0
- Ejecución de las funciones auxiliares M02, M30 o la frase END PGM (depende del parámetro de máquina "clearMode")
- Selección de un nuevo programa

Desplazamiento del PUNTO CERO (ciclo 7)

Con el DESPLAZAMIENTO DEL PUNTO CERO se pueden repetir mecanizados en cualquier otra posición de la pieza.

Funcionamiento

Después de la definicin del ciclo DESPLAZAMIENTO DEL PUNTO CERO, las coordenadas se refieren al nuevo punto del cero pieza. El desplazamiento en cada eje se visualiza en la visualización de estados adicional. También se pueden programar ejes giratorios.

Desplazamiento: Se introducen las coordenadas del nuevo punto cero; los valores absolutos se refieren al cero pieza, determinado mediante la fijación del punto de referencia; los valores incrementales se refieren al último cero pieza válido; si se desea, éste puede desplazarse

Anulación

El desplazamiento del punto cero con las coordenadas X=0, Y=0 y Z=0 elimina el desplazamiento del punto cero anterior.

Visualizaciones de estados

- La visualización de posiciones ampliada se refiere al punto cero activado (desplazado)
- Todas las coordenadas visualizadas en la visualización de estados adicional (posiciones, puntos cero) se refieren al punto de referencia fijado manualmente

Ejemplo: Frases NC

13 CYCL DEF	7.0 PUN	TO CERO
14 CYCL DEF	7.1 X+6	0
16 CYCL DEF	7.3 Z-5	
15 CYCL DEF	7.2 Y+4	0

Desplazamiento del PUNTO CERO con tablas de cero piezas (ciclo 7)

La tabla de puntos cero que se emplee depende del modo de funcionamiento, o se puede seleccionar en función de éste:

- Modos de funcionamiento Ejecución del programa: Tabla "zeroshift.d"
- Modo de funcionamiento Test de programa: Tabla "simzeroshift.d"

Los puntos cero de la tabla de puntos cero se refieren al punto de referencia actual.

Los valores de las coordenadas de las tablas de punto cero son exclusivamente absolutas.

Sólo se pueden añadir nuevas líneas al final de la tabla.

Aplicación

Las tablas de puntos cero se utilizan p.ej. en

- pasos de mecanizado que se repiten con frecuencia en diferentes posiciones de la pieza o
- cuando se utiliza a menudo el mismo desplazamiento de punto cero

Dentro de un programa los puntos cero se pueden programar directamente en la definición del ciclo o bien se pueden llamar de una tabla de puntos cero.

#

Desplazamiento: Introducir el número del punto cero de la tabla de puntos cero o un parámetro Q; si se introduce un parámetro Q, el TNC activa el número de punto cero del parámetro Q

Anulación

Desde la tabla de puntos cero se llama a un desplazamiento con las coordenadas

Llamar X=0; Y=0 etc.

El desplazamiento a las coordenadas X=0; Y=0 etc. se llama directamente con una definición del ciclo

Ejemplo: Frases NC

77 CYCL DEF 7.0 PUNTO CERO

78 CYCL DEF 7.1 #5

Editar la tabla de puntos cero en el modo de funcionamiento Memorizar/Editar programa

La tabla de puntos cero se selecciona en el modo de funcionamiento Memorizar/Editar programa

Ir a la gestión de ficheros: pulsar la tecla PGM MGT, véase "Gestión de ficheros: Principios básicos" en pág. 59

- Visualización de tablas de puntos cero: Pulsar la softkeys SELECC. TIPO y MOSTRAR .D
- Seleccionar la tabla deseada o introducir un nuevo nombre de fichero
- Edición de un fichero. La carátula de softkeys indica las siguientes funciones:

Función	Softkey
Seleccionar el principio de la tabla	
Seleccionar el final de la tabla	FIN
Pasar página a página hacia arriba	
Pasar página a página hacia abajo	
Añadir línea (sólo es posible al final de la tabla)	INSERTAR LINEA
Borrar línea	BORRAR LINEA
Buscar	FIND
Cursor al principio de la línea	INICIO FILAS
Cursor al final de la línea	FINAL FILAS
Copiar el valor actual	COPY FIELD COPY
Añadir el valor copiado	PASTE FIELD PASTE
Añadir el número de líneas (puntos cero) programadas al final de la tabla	AÑADIR LINEAS N AL FINAL

Configuración de la tabla de puntos cero

Si no se desea definir para un eje activo ningún punto cero, pulsar la tecla DEL. Entonces el TNC borra el valor numérico del campo de introducción correspondiente.

Salida de la tabla de puntos cero

Se visualza otro tipo de fichero en la gestión de ficheros y se selecciona el fichero deseado.

Después de haber modificado un valor en la tabla de puntos cero, se debe guardar la modificación con la tecla ENT. De lo contrario no se tomará en cuenta la modificación en el proceso de un programa.

Visualizaciones de estados

En las visualizaciones de estado adicionales se visualizan los valores del desplazamiento activo del punto cero. (véase "Traslación de coordenadas" en pág. 36):

ESPEJO (ciclo 8)

El TNC puede realizar un mecanizado espejo en el plano de mecanizado.

Funcionamiento

El ciclo espejo se activa a partir de su definición en el programa. También actúa en el modo de funcionamiento Posicionamiento manual. El TNC muestra los ejes espejo activados en la visualización de estados adicional.

- Si sólo se refleja un eje, se modifica el sentido de desplazamiento de la hta. Esto no es válido en los ciclos fijos.
- Cuando se reflejan dos ejes, no se modifica el sentido de desplazamiento.
- El resultado del espejo depende de la posición del punto cero:
- El punto cero está sobre el contorno a reflejar: La trayectoria se refleja directamente en el punto cero,
- El punto cero está fuera del contorno a reflejar: La trayectoria se prolonga;

Si sólo se refleja un eje, se modifica el sentido de desplazamiento en los ciclos de fresado de la serie 200.

¿Eje reflejado?: Introducir el eje, que se quiere reflejar; se pueden reflejar todos los ejes, incluidos los ejes giratorios, a excepción del eje del cabezal y de su correspondiente eje auxiliar. Se pueden programar un máximo tres ejes

Anulación

Programar de nuevo el ciclo ESPEJO con la introducción NO ENT.

Ejemplo: Frases NC

79 CYCL DEF 8,0 ESPEJO

80 CYCL DEF 8.1 X Y U

GIRO (ciclo 10)

Dentro de un programa el TNC puede girar el sistema de coordenadas en el plano de mecanizado según el punto cero activado.

Funcionamiento

El GIRO se activa a partir de su definición en el programa. También actúa en el modo de funcionamiento Posicionamiento manual. El TNC visualiza los ángulo de giro activados en la visualización de estados adicional.

Eje de referencia para el ángulo de giro:

- Plano X/Y Eje X
- Plano Y/Z Eje Y
- Plano Z/X Eje Z

Antes de la programación deberá tenerse en cuenta

El TNC elimina una corrección de radio activada mediante la definición del ciclo 10. Si es necesario, programar nuevamente la corrección del radio.

Después de definir el ciclo 10, hay que desplazar los dos ejes del plano de mecanizado para poder activar el giro.

 Giro: Introducir el ángulo de giro en grados (°). Campo de introducción: -360° a +360° (valores absolutos o incrementales)

Anulación

Se programa de nuevo el ciclo GIRO indicando el ángulo de giro 0°.

Ejemplo: Frases NC

12 CALL LBL	1
13 CYCL DEF	7.0 PUNTO CERO
14 CYCL DEF	7.1 X+60
15 CYCL DEF	7.2 Y+40
16 CYCL DEF	10.0 GIR0
17 CYCL DEF	10.1 ROT+35
18 CALL LBL	1

8.7 Ciclos para la traslación de coordenadas

FACTOR DE ESCALA (ciclo 11)

El TNC puede ampliar o reducir contornos dentro de un programa. De esta forma se pueden tener en cuenta, por ejemplo, factores de reducción o ampliación.

Funcionamiento

El FACTOR DE ESCALA se activa a partir de su definición en el programa. También funciona en el modo de funcionamiento Posicionamiento manual. El TNC muestra el factor de escala activado en la visualización de estados adicional.

El factor de escala actúa

- en los tres ejes de coordenadas al mismo tiempo
- en las cotas indicadas en el ciclo

Condiciones

Antes de la ampliación o reducción deberá desplazase el punto cero a un lado o esquina del contorno.

Factor de escala?: Introducir el factor SCL (en inglés.: scaling); el TNC multiplica las coordenadas y radios por el factor SCL (tal como se describe en "Activación")

Ampliar: SCL mayor que 1 hasta 99,999 999

Reducir: SCL menor que 1 hasta 0,000 001

Anulación

Programar de nuevo el ciclo FACTOR DE ESCALA indicando el factor 1.

Ejemplo: Frases NC

11 CALL LBL 1
12 CYCL DEF 7.0 PUNTO CERO
13 CYCL DEF 7.1 X+60
14 CYCL DEF 7.2 Y+40
15 CYCL DEF 11,0 FACTOR DE ESCALA
16 CYCL DEF 11.1 SCL 0.75
17 CALL LBL 1

FACTOR DE ESCALA ESPECIFICO DE CADA EJE (ciclo 26)

Antes de la programación deberá tenerse en cuenta

Los ejes de coordenadas con posiciones sobre trayectorias circulares no pueden prolongarse o reducirse con diferentes escalas.

Se puede introducir un factor de escala específico para cada eje.

Además se pueden programar las coordenadas de un centro para todos los factores de escala.

El contorno se prolonga desde el centro o se reduce hacia el mismo, es decir, no es necesario realizarlo con el punto cero actual, como en el ciclo 11 F. DE ESCALA.

Funcionamiento

El FACTOR DE ESCALA se activa a partir de su definición en el programa. También funciona en el modo de funcionamiento Posicionamiento manual. El TNC muestra el factor de escala activado en la visualización de estados adicional.

Eje y factor: Eje(s) de coordenadas y factor(es) de escala de la prolongación o reducción específicas de cada eje. Introducir el valor positivo, máximo 99,999 999.

Coordenadas del centro: Centro de la prolongación o reducción específica de cada eje

Los ejes de coordenadas se seleccionan con softkeys.

Anulación

Se programa de nuevo el ciclo FACTOR DE ESCALA con el factor 1 para el eje correspondiente.

Ejemplo: Frases NC

25 CALL LBL 1
26 CYCL DEF 26,0 FACTOR DE ESCALA ESPEC. DE CADA EJE
27 CYCL DEF 26.1 X 1.4 Y 0.6 CCX+15 CCY+20
28 CALL LBL 1

Ejemplo: Traslación de coordenadas

Desarrollo del programa

- Traslación de coordenadas en el pgm principal
- Programación del mecanizado en el subprograma, véase "Subprogramas" en pág. 323

O BEGIN PGM TRASLCOORD MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición de la pieza en bruto
2 BLK FORM 0.2 X+130 Y+130 Z+0	
3 TOOL DEF 1 L+0 R+1	Definición de la herramienta
4 TOOL CALL 1 Z S4500	Llamada a la herramienta
5 L Z+250 RO FMAX	Retirar la herramienta
6 CYCL DEF 7.0 PUNTO CERO	Desplazamiento del punto cero al centro
7 CYCL DEF 7.1 X+65	
8 CYCL DEF 7.2 Y+65	
9 CALL LBL 1	Llamada al fresado
10 LBL 10	Fijar una marca para la repetición parcial del programa
11 CYCL DEF 10.0 GIRO	Giro a 45° en incremental
12 CYCL DEF 10.1 IROT+45	
13 CALL LBL 1	Llamada al fresado
14 CALL LBL 10 REP 6/6	Retroceso al LBL 10; en total seis veces
15 CYCL DEF 10.0 GIRO	Anular el giro
16 CYCL DEF 10.1 ROT+0	
17 CYCL DEF 7.0 PUNTO CERO	Anular el desplazamiento del punto cero
18 CYCL DEF 7.1 X+0	
19 CYCL DEF 7.2 Y+0	

20 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa
21 LBL 1	Subprograma 1
22 L X+O Y+O RO FMAX	Determinación del fresado
23 L Z+2 RO FMAX M3	
24 L Z-5 RO F200	
25 L X+30 RL	
26 L IY+10	
27 RND R5	
28 L IX+20	
29 L IX+10 IY-10	
30 RND R5	
31 L IX-10 IY-10	
32 L IX-20	
33 L IY+10	
34 L X+0 Y+0 R0 F5000	
35 L Z+20 RO FMAX	
36 LBL 0	
37 BEGIN PGM TRASLCOORD MM	

i

8.8 Ciclos especiales

TIEMPO DE ESPERA (ciclo 9)

La ejecución del programa se detiene según el TIEMPO DE ESPERA programado. El tiempo de espera sirve, p.ej., para la rotura de viruta.

Funcionamiento

El ciclo se activa a partir de su definición en el programa. No tiene influencia sobre los estados que actuan de forma modal, como p.ej. el giro del cabezal.

Tiempo de espera en segundos: Introducir el tiempo de espera en segundos

Campo de introducción 0 a 3 600 s (1 hora) en pasos de 0,001 s

Ejemplo: Frases NC

89	CYCL	DEF	9,0	TIEMF	PO DE	ESPERA
90	CYCL	DEF	9.1	TPO.	ESPER	RA 1.5

LLAMADA DEL PROGRAMA (ciclo 12)

Los programas de mecanizado, como p.ej. ciclos de taladrado especiales o módulos geométricos, se pueden asignar como ciclos de mecanizado. En este caso el programa se llama como si fuese un ciclo.

Antes de la programación deberá tenerse en cuenta

El programa llamado debe estar memorizado en el disco duro del TNC.

Si sólo se introduce el nombre del programa, el programa al que se llama deberá estar en el mismo directorio que el programa llamado.

Si el programa para realizar el ciclo no se encuentra en el mismo directorio que el programa llamado, se introduce el nombre del camino de búsqueda completo, p.ej TNC:\KLAR35\FK1\50.H.

Si se quiere declarar un programa DIN/ISO para el ciclo, deberá introducirse el tipo de fichero .l detrás del nombre del programa.

Nombre del programa: Nombre del programa que se quiere llamar, si es preciso indicando el camino de búsqueda en el que está el programa

El programa se llama con

- CYCL CALL (frase por separado) o
- M99 (por frases) o
- M89 (se ejecuta después de cada frase de posicionamiento)

Ejemplo: Llamada del programa

Se desea llamar al programa 50 a través de la llamada de ciclo

Ejemplo: Frases NC

55	CYCL	DEF	12.0	PGM	CALL
56	CYCL	DEF	12.1	PGM	TNC:\KLAR35\FK1\50.H

57 L X+20 Y+50 FMAX M99

8.8 Ciclos especiales

Orientación del cabezal (ciclo 13)

ĥ	1
Ē	7

La máquina y el TNC deben estar preparados por el constructor de la máquina.

En los ciclos de mecanizado 202, 204 y 209 se emplea internamente el ciclo 13. Tener en cuenta en el programa NC, que si es preciso se deberá reprogramar el ciclo 13 tras uno de los anteriomente nombrados ciclos de mecanizado.

El TNC puede controlar el cabezal principal de una máquina herramienta y girarlo a una posición determinada según un ángulo.

La orientación del cabezal se utiliza p.ej.

- sistemas de cambio de herramienta con una determinada posición para el cambio de la misma
- para ajustar la ventana de emisión y recepción del palpador 3D con transmisión por infrarrojos

Funcionamiento

El TNC posiciona la posición angular definida en el ciclo mediante la programación de M19 o M20 (depende de la máquina).

Cuando se programa M19 ó M20, sin haber definido antes el ciclo 13, el TNC posiciona el cabezal principal en un valor angular, que se ha fijado por el fabricante de la máquina (ver manual de la máquina).

Angulo de orientación: Introducir el ángulo referido al eje de referencia angular del plano de mecanizado

Margen de entrada: 0 a 360°

Resolución de la introducción: 0,1º

Ejemplo: Frases NC

93 CYCL DEF 13.0 ORIENTA	ACIÓN
--------------------------	-------

94 CYCL DEF 13,1 ÁNGULO 180

Programación: Subprogramas y repeticiones parciales de un programa

9.1 Introducción de subprogramas y repeticiones parciales de un programa

Las partes de un programa que se deseen se pueden ejecutar repetidas veces con subprogramas o repeticiones parciales de un programa.

Label

Los subprogramas y repeticiones parciales de un programa comienzan en un programa de mecanizado con la marca LBL, que es la abreviación de LABEL (en inglés marca).

Los LABEL contienen un número entre 1 y 65 534 o un nombre a introducir por el operario. Cada número LABEL o bien cada nombre de LABEL sólo se puede asignar una vez en el programa con LABEL SET. El número de nombres de Label introducibles está limitado por la memoria interna.

¡No utilizar más de una vez un número de LABEL o un nombre de label!

LABEL 0 (LBL 0) caracteriza el final de un subprograma y se puede emplear tantas veces como se desee.

9.2 Subprogramas

Funcionamiento

- 1 El TNC ejecuta el programa de mecanizado hasta la llamada a un subprograma CALL LBL
- **2** A partir de aquí el TNC ejecuta el subprograma llamado hasta el final del subprograma LBL 0
- **3** Después el TNC prosigue el programa de mecanizado en la frase que sigue a la llamada al subprograma CALL LBL

Indicaciones sobre la programación

- Un programa principal puede contener hasta 254 subprogramas
- Los subprogramas se pueden llamar en cualquier secuencia tantas veces como se desee.
- Un subprograma no puede llamarse a si mismo.
- Los subprogramas se programan al final de un programa principal (detrás de la frase con M02 o M30)
- Si existen subprogramas dentro del programa de mecanizado antes de la frase con M02 o M30, estos se ejecutan sin llamada, por lo menos una vez.

Programación de un subprograma

Señalar el comienzo: pulsar la tecla LBL SET

- Introducir el número del subprograma
- Señalar el final: pulsar la tecla LBL SET e introducir el número de LBL "0"

Llamada a un subprograma

- Llamada al subprograma: pulsar la tecla LBL CALL
- Número de label: Introducir el número de label del subprograma que se desea llamar. Si se desean utilizar nombres de LABEL: pulsar la tecla " para cambiar a la introducción de texto
- Repeticiones REP: Sin repeticiones, pulsar NO ENT. Las repeticiones REP sólo se emplean en las repeticiones parciales de un programa

No está permitido CALL LBL 0 ya que corresponde a la llamada al final de un subprograma.

9.3 Repeticiones parciales de un programa

Label LBL

Las repeticiones parciales de un programa comienzan con la marca LBL (LABEL). Una repetición parcial de un programa finaliza con CALL LBL/REP.

Funcionamiento

- 1 El TNC ejecuta el programa de mecanizado hasta el final del programa parcial (CALL LBL/REP)
- 2 A continuación el TNC repite la parte del programa entre el LABEL llamado y la llamada al label CALL LBL/REP tantas veces como se haya indicado en REP
- 3 Después el TNC continúa con el mecanizado del programa

Indicaciones sobre la programación

- Se puede repetir una parte del programa hasta 65 534 veces sucesivamente
- El TNC repite las partes parciales de un programa una vez más de las veces programadas

Programación de una repetición parcial del programa

- Marcar el comienzo: pulsar la tecla LBL SET e introducir el número de LABEL para la parte del programa que se quiere repetir. Si se desean utilizar nombres de LABEL: pulsar la tecla " para cambiar a la introducción de texto
- Introducir la parte del programa

Llamada a una repetición parcial del programa

Pulsar la tecla LBL CALL, introducir el número label de la parte del programa a repetir y el nº de repeticiones REP

9.4 Cualquier programa como subprograma

Funcionamiento

- 1 El TNC ejecuta el programa de mecanizado, hasta que se llama a otro programa con CALL PGM
- 2 A continuación el TNC ejecuta el programa llamado hasta su final
- **3** Después el TNC continúa con la ejecución del programa de mecanizado que sigue a la llamada del programa

Indicaciones sobre la programación

- Para poder emplear un programa como subprograma el TNC no precisa de ningún LABEL
- El programa llamado no puede contener la función auxiliar M2 o M30. Si se han definido subprogramas con labels en el programa llamado, entonces se puede utilizar la función M2 o M30 con la función de salto FN 9: IF +0 EQU +0 GOTO LBL 99, para ignorar forzosamente esta parte del programa
- El programa llamado no deberá contener ningúna llamada CALL PGM al programa original (ciclo sin fin)

Llamada a cualquier programa como subprograma

PROGRAMA

 Seleccionar las funciones para la llamada al programa: pulsar la tecla PGM CALL

- Pulsar la softkey PROGRAMA
- Introducir el nombre completo de búsqueda del programa a llamar y confirmar con la tecla END

Si sólo se introduce el nombre del programa, el programa al que se llama deberá estar en el mismo directorio que el programa llamado.

Si el programa llamado no se encuentra en el mismo directorio que el programa que llama, debe introducirse el camino de búsqueda completo, p.ej. TNC: \ZW35\SCHRUPP\PGM1.H

Si se desea llamar a un programa DIN/ISO, deberá indicarse el tipo de fichero .l detrás del nombre del programa.

Un programa cualquiera también puede ser llamado con el ciclo 12 PGM CALL.

Con un **PGM CALL** los parámetros Q tienen efecto básicamente de forma global. Tener en cuenta, por consiguiente, que la modificaciones en los parámetros Q en el programa llamado también tengan efecto en el programa a llamar.

9.5 Imbricaciones

Tipos de imbricaciones

- Subprogramas dentro de un subprograma
- Repeticiones parciales en una repetición parcial del programa
- Repetición de subprogramas
- Repeticiones de parte de un programa en el subprograma

Profundidad de imbricación

La profundidad de imbricación determina las veces que se pueden introducir partes de un programa o subprogramas en otros subprogramas o repeticiones parciales de un programa.

- Máxima profundidad de imbricación para subprogramas: aprox. 64.000
- Máxima profundidad de imbricación para llamadas de programa principal: no hay una cifra límite, pero depende de la memoria principal disponible.
- Las repeticiones parciales se pueden imbricar tantas veces como se desee

Subprograma dentro de otro subprograma

Ejemplo de frases NC

O BEGIN PGM UPGMS MM	
····	
17 CALL LBL "UP1"	Llamada al subprograma en LBL UP1
····	
35 L Z+100 R0 FMAX M2	Última frase del programa del
	programa principal (con M2)
36 LBL "UP1"	Principio del subprograma UP1
····	
39 CALL LBL 2	Llamada al subprograma en LBL 2
····	
45 LBL 0	Final del subprograma 1
46 LBL 2	Principio del subprograma 2
· · · ·	
62 LBL 0	Final del subprograma 2
63 END PGM UPGMS MM	

Ejecución del programa

- 1 Se ejecuta el programa principal UPGMS hasta la frase 17
- 2 Llamada al subprograma 1 y ejecución hasta la frase 39
- Llamada al subprograma 2 y ejecución hasta la frase 62. Final del subprograma 2 y vuelta al subprograma desde donde se ha realizado la llamada
- 4 Ejecución del subprograma 1 desde la frase 40 hasta la frase 45. Final del subprograma 1 y regreso al programa principal UPGMS
- 5 Ejecución del programa principal UPGMS desde la frase 18 hasta la frase 35. Regreso a la primera frase y final del programa

Repetición de repeticiones parciales de un programa

Ejemplo de frases NC

O BEGIN PGM REPS MM	
•••	
15 LBL 1	Principio de la repetición parcial del programa 1
20 LBL 2	Principio de la repetición parcial del programa 2
27 CALL LBL 2 REP 2	Parte del programa entre esta frase y LBL 2
	(frase 20) se repite dos veces
35 CALL LBL 1 REP 1	Parte del programa entre esta frase y LBL 1
	(frase 15) se repite 1 vez
50 END DGM REPS MM	

Ejecución del programa

- 1 Se ejecuta el programa principal REPS hasta la frase 27
- 2 Se repite dos veces la parte del programa entre la frase 20 y la frase 27
- **3** Ejecución del programa principal REPS desde la frase 28 hasta la frase 35
- 4 Se repite una vez la parte del programa entre la frase 15 y la frase 35 (contiene la repetición de la parte del programa entre la frase 20 y la frase 27)
- Ejecución del programa principal REPS desde la frase 36 a la frase 50 (final del programa)

9.5 Imbricaciones

Repetición de un subprograma

Ejemplo de frases NC

O BEGIN PGM UPGREP MM	
10 LBL 1	Principio de la repetición parcial del programa 1
11 CALL LBL 2	Llamada al subprograma
12 CALL LBL 1 REP 2	Parte del programa entre esta frase y LBL1
····	(frase 10) se repite 2 veces
19 L Z+100 RO FMAX M2	Última frase del programa principal con M2
20 LBL 2	Principio del subprograma
····	
28 LBL 0	Final del subprograma
29 END PGM UPGREP MM	

Ejecución del programa

- 1 Se ejecuta el programa principal UPGREP hasta la frase 11
- 2 Llamada y ejecución del subprograma 2
- **3** Se repite dos veces la parte del programa entre la frase 10 y la frase 12: el subprograma 2 se repite 2 veces
- 4 Ejecución del programa principal UPGREP desde la frase 13 a la frase 19; final del programa

9.6 Ejemplos de programación

Ejemplo: Fresado de un contorno en varias aproximaciones

Desarrollo del programa

- Posicionamiento previo de la herramienta sobre la superficie de la pieza
- Introducir la profundización en incremental
- Fresado del contorno
- Repetición de la profundización y del fresado del contorno

O BEGIN PGM PGMWDH MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Definición de la herramienta
4 TOOL CALL 1 Z S500	Llamada a la herramienta
5 L Z+250 R0 FMAX	Retirar la herramienta
6 L X-20 Y+30 R0 FMAX	Posicionamiento previo en el plano de mecanizado
7 L Z+O RO FMAX M3	Posicionamiento previo sobre la superficie de la pieza

8 LBL 1	Marca para la repetición parcial del programa	ů,
9 L IZ-4 RO FMAX	Profundización en incremental (en vacío)	C:
10 APPR CT X+2 Y+30 CCA90 R+5 RL F250	Llegada al contorno	Ja
11 FC DR- R18 CLSD+ CCX+20 CCY+30	Contorno	μ
12 FLT		jr.
13 FCT DR- R15 CCX+50 CCY+75		Ő
14 FLT		p d
15 FCT DR- R15 CCX+75 CCY+20		<u>e</u>
16 FLT		σ
17 FCT DR- R18 CLSD- CCX+20 CCY+30		SO
18 DEP CT CCA90 R+5 F1000	Salida del contorno	d
19 L X-20 Y+0 R0 FMAX	Retirar la hta.	2
20 CALL LBL 1 REP 4	Salto al label 1; en total cuatro veces	ie i
21 L Z+250 RO FMAX M2	Retirar la herramienta, final del programa	Ш
22 END PGM PGMWDH MM		9.6
		0,

Ejemplo: Grupos de taladros

Desarrollo del programa

- Llegada al grupo de taladros en el programa principal
- Llamada al grupo de taladros (subprograma 1)
- Programar una sola vez el grupo de taladros en el subprograma 1

O BEGIN PGM UP1 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+2.5	Definición de la herramienta
4 TOOL CALL 1 Z S5000	Llamada a la herramienta
5 L Z+250 RO FMAX	Retirar la herramienta
6 CYCL DEF 200 TALADRADO	Definición del ciclo taladrado
Q200=2 ;DISTSEGURIDAD	
Q201=-10 ;PROFUNDIDAD	
Q206=250 ;PROFUNDIDAD DE PASO F	
Q202=5 ;PROFUNDIDAD DE PASO	
Q210=0 ;TPO. ESPERA ENCIMA	
Q203=+0 ;COORDENADAS SUPERFICIE	
Q204=10 ;2ª DISTANCIA DE SEGUR.	
Q211=0.25;TIEMPO DE ESPERA ABAJO	

7 L X+15 Y+10 R0 FMAX M3	Llegada al punto de partida del grupo de taladros 1	n U
8 CALL LBL 1	Llamada al subprograma para el grupo de taladros	Ci.
9 L X+45 Y+60 RO FMAX	Llegada al punto de partida del grupo de taladros 2	Ja
10 CALL LBL 1	Llamada al subprograma para el grupo de taladros	μ
11 L X+75 Y+10 R0 FMAX	Llegada al punto de partida del grupo de taladros 3	l Sel
12 CALL LBL 1	Llamada al subprograma para el grupo de taladros	ő
13 L Z+250 RO FMAX M2	Final del programa principal	p 7
14 LBL 1	Principio del subprograma 1: Grupo de taladros	Ð
15 CYCL CALL	Taladro 1	σ
16 L IX.20 RO FMAX M99	Aproximación al taladro 2, llamada al ciclo	SO
17 L IY+20 RO FMAX M99	Aproximación al taladro 3, llamada al ciclo	d
18 L IX-20 RO FMAX M99	Aproximación al taladro 4, llamada al ciclo	3
19 LBL 0	Final del subprograma 1	e.
20 END PGM UP1 MM		ш
		9.6

Ejemplo: Grupo de taladros con varias herramientas

Desarrollo del programa

- Programación de los ciclos de mecanizado en el programa principal
- Llamada a la figura de taladros completa (subprograma 1)
- Llegada al grupo de taladros del subprograma 1, llamada al grupo de taladros (subprograma 2)
- Programar una sola vez el grupo de taladros en el subprograma 2

O BEGIN PGM UP2 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+4	Definición de la hta. Broca de centraje
4 TOOL DEF 2 L+0 R+3	Definición de la hta. Taladro
5 TOOL DEF 2 L+0 R+3.5	Definición de la hta. Escariador
6 TOOL CALL 1 Z S5000	Llamada a la hta. Broca de centraje
7 L Z+250 R0 FMAX	Retirar la herramienta
8 CYCL DEF 200 TALADRADO	Definición del ciclo Centraje
Q200=2 ;DISTSEGURIDAD	
Q2O2=-3 ;PROFUNDIDAD	
Q206=250 ;PROFUNDIDAD DE PASO F	
Q2O2=3 ;PROFUNDIDAD DE PASO	
Q210=0 ;TPO. ESPERA ENCIMA	
Q2O3=+O ;COORDENADAS SUPERFICIE	
Q204=10 ;2ª DISTANCIA DE SEGUR.	
Q211=0.25;TIEMPO DE ESPERA ABAJO	
9 CALL LBL 1	Llamada al subprograma 1 para la figura completa de taladros

10 1 7.050 00 5010 00	O subia da basera insta
10 L 2+250 RU FMAX M6	Campio de nerramienta
11 TOOL CALL 2 Z S4000	Llamada a la hta. Taladrado
12 FN 0: Q201 = -25	Nueva profundidad para Taladro
13 FN 0: Q202 = +5	Nueva aproximación para Taladro
14 CALL LBL 1	Llamada al subprograma 1 para la figura completa de taladros
15 L Z+250 RO FMAX M6	Cambio de herramienta
16 TOOL CALL 3 Z S500	Llamada a la hta. Escariador
17 CYCL DEF 201 ESCARIADO	Definición del ciclo Escariado
Q200=2 ;DISTSEGURIDAD	
Q201=-15 ;PROFUNDIDAD	
Q206=250 ;PROFUNDIDAD DE PASO F	
Q211=0,5 ;TPO. ESPERA DEBAJO	
Q208=400 ;AVANCE DE RETROCESO F	
Q203=+0 ;COORDENADAS SUPERFICIE	
Q204=10 ;2ª DISTANCIA DE SEGUR.	
18 CALL LBL 1	Llamada al subprograma 1 para la figura completa de taladros
19 L Z+250 RO FMAX M2	Final del programa principal
20 LBL 1	Principio del subprograma 1: Figura completa de taladros
21 L X+15 Y+10 R0 FMAX M3	Llegada al punto de partida del grupo de taladros 1
22 CALL LBL 2	Llamada al subprograma 2 para el grupo de taladros
23 L X+45 Y+60 R0 FMAX	Llegada al punto de partida del grupo de taladros 2
24 CALL LBL 2	Llamada al subprograma 2 para el grupo de taladros
25 L X+75 Y+10 R0 FMAX	Llegada al punto de partida del grupo de taladros 3
26 CALL LBL 2	Llamada al subprograma 2 para el grupo de taladros
27 LBL 0	Final del subprograma 1
28 LBL 2	Principio del subprograma 2: Grupo de taladros
29 CYCL CALL	Taladro 1 con ciclo de mecanizado activado
30 L 9X+20 R0 FMAX M99	Aproximación al taladro 2, llamada al ciclo
31 L IY+20 R0 FMAX M99	Aproximación al taladro 3, llamada al ciclo
32 L IX-20 RO FMAX M99	Aproximación al taladro 4, llamada al ciclo
33 LBL 0	Final del subprograma 2
34 END PGM UP2 MM	

Programación: Parámetros-Q

10.1 Principio de funcionamiento y resumen de funciones

Con los parámetros Q se puede definir en un programa de mecanizado una familia de piezas. Para ello en vez de valores numéricos se introducen parámetros Q.

Los parámetros Q se utilizan por ejemplo para

- Valores de coordenadas
- Avances
- Revoluciones
- Datos del ciclo

Además con los parámetros Q se pueden programar contornos determinados mediante funciones matemáticas o ejecutar los pasos del mecanizado que dependen de condiciones lógicas. Junto con la programación FK, también se pueden combinar contornos no acotados según el plano, con parámetros Q.

Un parámetro Q se caracteriza por la letra Q y un número del 0 al 1999. Los parámetros Q se dividen en varios grupos:

Significado	Campo
Parámetros de libre empleo que actúan de forma global para todos los programas que se encuentran en la memoria del TNC	Q1600 a Q1999
Parámetros de libre empleo que actúan de forma global para el programa correspondiente, mientras que no se produzcan interferencias con ciclos SL	Q0 a Q99
Parám. para funciones especiales del TNC	Q100 a Q199
Parámetros que se emplean preferentemente en ciclos y que actúan de forma global para todos los programas que hay en la memoria del TNC	Q200 a Q1399
Parámetros que se emplean preferentemente en ciclos de fabricante Call-Activos y que actúan de forma global para todos los programas que hay en la memoria del TNC	Q1400 a Q1499
Parámetros que se emplean preferentemente en ciclos de fabricante Def-Activos y que actúan de forma global para todos los programas que hay en la memoria del TNC	Q1500 a Q1599

Adicionalmente se dispone también de los parámetros **QS** (**S** para string), con los cuales también se pueden procesar textos en el TNC. En principio, para los parámetros **QS** son válidos los mismos márgenes que para los parámetros \mathbf{Q} (ver la tabla superior).

Tener en cuenta que también en los parámetros **QS**, el margen de **QS100** a **QS199** está reservado para textos internos.

Instrucciones de programación

No se pueden mezclar en un programa parámetros $\ensuremath{\mathbb{Q}}$ y valores numéricos.

El TNC asigna a ciertos parámetros Q siempre el mismo dato, p.ej. al parámetro Q108 se le asigna el radio actual de la hta., véase "Parámetros Q predeterminados" en pág. 391.

Llamada a las funciones de parámetros Q

Mientras se introduce un programa de mecanizado, pulsar la tecla "Q" (en el campo de introducción numérica y selección de ejes con la tecla -/+). Entonces el TNC muestra las siguientes softkeys:

Grupo de funciones	Softkey	Página
Funciones matemáticas básicas	FUNCIONES BASICAS	Pág. 341
Funciones angulares	FUNCIONES TRIGONOM.	Pág. 343
Función para calcular el círculo	CALCULO	Pág. 345
Condición si/entonces, salto	SALTO	Pág. 346
Otras funciones	FUNCIONES DIVERSAS	Pág. 349
Introducción directa de una fórmula	FORMULA	Pág. 379
Fórmula para parámetros de string	STRING FORMULA	Pág. 383

10.2 Familias de funciones – Parámetros Q en vez de valores numéricos

Con la función paramétrica FN0: ASIGNACIÓN se asignan valores numéricos a los parámetros Q. Entonces en el programa de mecanizado se fija un parámetro Q en vez de un valor numérico.

Ejemplo de frases NC

15 FNO: Q10=25	Asignación
	Q10 tiene el valor 25
25 L X +Q10	corresponde a L X +25

Con las familias de funciones se programan p.ej. como parámetros Q las dimensiones de una pieza.

Para la programación de los distintos tipos de funciones, se le asigna a cada uno de estos parámetros un valor numérico correspondiente.

Ejemplo

Cilindro con parámetros Q

Radio del cilindro	R = Q1
Altura del cilindro	H = Q2
Cilindro Z1	Q1 = +30
	Q2 = +10
Cilindro Z2	Q1 = +10
	$02 - \pm 50$

10.3 Descripción de contornos mediante funciones matemáticas

Aplicación

Con parámetros Ω se pueden programar en el programa de mecanizado, funciones matemáticas básicas:

- Selección de parámetros Q: Pulsar la tecla Q (situada en el campo para la introducción de valores numéricos, a la derecha). La carátula de softkeys indica las funciones de los parámetros Q.
- Selección de funciones matemáticas básicas: Pulsar la softkey FUNCIONES BÁSICAS. El TNC muestra los siguientes softkeys:

Resumen

Función	Softkey
FNO: ASIGNACIÓN p.ej. FNO: Q5 = +60 Asignar directamente el valor	FN0 X = Y
FN1: SUMA p.ej. FN1: Q1 = -Q2 + -5 Determinar y asignar la suma de dos valores	FN1 X + Y
FN2: SUBSTRACCIÓN p.ej. FN2: Q1 = +10 – +5 Determinar y asignar la diferencia de dos valores	FNZ X - Y
FN3: MULTIPLICACIÓN p.ej. FN3: Q2 = +3 * +3 Determinar y asignar la multiplicación de dos valores	FN3 X * Y
FN4: DIVISION p.ej. FN4: Q4 = +8 DIV +Q2 Determinar y asignar el cociente de dos valores Prohibido: ¡Dividir por 0!	FN4 X / Y
FN5: RAIZ CUADRADA p.ej. FN5: Q20 = SQRT 4 Sacar y asignar la raíz cuadrada de un número ¡Prohibido!: ¡Raíz cuadrada de un valor negativo!	FN5 RAIZ

A la derecha del signo "=" se pueden introducir:

- dos cifras
- dos parámetros Q
- una cifra y un parámetro Q

Los parámetros Q y los valores numéricos en las comparaciones pueden ser con o sin signo.

Programación de los tipos de cálculo básicos

—:

Ejemplo:	
Q	Selección de las funciones paramétricas: Pulsar la tecla Q
FUNCIONES BRSICAS	Selección de funciones matemáticas básicas: Pulsar la softkey FUNCIONES BÁSICAS.
FNe X = Y	Selección de la función paramétrica ASIGNACION: Pulsar la softkey FN0 X = Y
¿NÚMERO DE	PARÁMETROS PARA EL RESULTADO?
5 ENT	Introducir el número del parámetro Q: 5
1. ¿VALOR O	PARÁMETRO?
10 ENT	Asignar a Q5 el valor numérico 10
Q	Selección de las funciones paramétricas: Pulsar la tecla Q
FUNCIONES BASICAS	Selección de funciones matemáticas básicas: Pulsar la softkey FUNCIONES BÁSICAS.
FN3 X * Y	Seleccionar la función parámetrica MULTIPLICACIÓN: Pulsar la softkey FN3 X * Y
¿NÚMERO DE	PARÁMETROS PARA EL RESULTADO?
12 ENT	Introducir el número del parámetro Q: 12
1. ¿VALOR O	PARÁMETRO?
	Introducir Q5 como primer valor
2. ¿VALOR O	PARÁMETRO?
7 ENT	Introducir 7 como segundo valor

Ejemplo: Frases de programa en el TNC

16 FN0: 05 = +1017 FN3: Q12 = +Q5 * +7

ĺ

10.4 Funciones angulares (Trigonometría)

Definiciones

El seno, el coseno y la tangente corresponden a las proporciones de cada lado de un triángulo rectángulo. Siendo:

```
Seno:sen \alpha = a / cCoseno:\cos \alpha = b / cTangente:tg \alpha = a / b = sen \alpha / cos \alpha
```

Siendo

c la hipotenusa o lado opuesto al ángulo recto

- \blacksquare a el lado opuesto al ángulo α
- b el tercer lado

El TNC calcula el ángulo mediante la tangente:

 α = arctan (a / b) = arctan (sen α / cos α)

Ejemplo:

a = 25 mm

b = 50 mm

```
\alpha = arctg (a / b) = arctg 0.5 = 26.57°
```

Además se tiene:

 $a^2 + b^2 = c^2$ (mit $a^2 = a \times a$)

 $c = \sqrt{(a^2 + b^2)}$

Programación de funciones trigonométricas

Las funciones angulares aparecen cuando se pulsa la softkey FUNCIONES ANGULARES. El TNC muestra las softkeys que aparecen en la tabla de la parte inferior.

Programación: comparar "Ejemplo: Programación de los tipos de cálculo básicos".

Función	Softkey
FN6: SENO p.ej. FN6: Q20 = SEN-Q5 Determinar y asignar el seno de un ángulo en grados (°)	FNS SIN(X)
FN7: COSENO p.ej. FN7: Q21 = COS-Q5 Determinar y asignar el coseno de un ángulo en grados (°)	FN7 COS(X)
FN8: RAIZ CUADRADA DE UNA SUMA DE CUADRADOS p.ej. FN8: Q10 = +5 LEN +4 Determinar y asignar la hipotenusa de dos valores	FN8 X LEN Y
FN13. ANGULO p.ej. FN13: Q20 = +25 ANG-Q1 Determinar y asignar el ángulo con arcotangente de dos lados o seno y coseno de un ángulo (0 < ángulo < 360°)	FN13 X ANG Y

10.5 Cálculo de círculos

Aplicación

Con las funciones para el cálculo de círculos, el TNC puede calcular mediante tres o cuatro puntos el punto central del círculo y el radio del mismo. El cálculo del círculo mediante cuatro puntos es más preciso.

Empleo: Estas funciones se pueden emplear, p.ej. cuando se quiere determinar mediante la función de palpación la posición y el tamaño del taladro o de un semicírculo.

Función	Softkey
FN23: Calcular los DATOS DEL CIRCULO con tres	FN23
puntos del mismo	CIRC. DE
p.ej. FN23: Q20 = CDATA Q30	3 PUNTOS

Los pares de coordenadas de tres puntos del círculo deben estar memorizados en el parámetro Q30 y en los siguientes cinco parámetros –aquí hasta Q35.

Entonces el TNC memoriza el punto central del círculo del eje principal (X con el eje de la hta. Z) en el parámetro Q20, el punto central del círculo del eje transversal (Y con el eje de la hta. Z) en el parámetro Q21 y el radio del círculo en el parámetro Q22.

Función	Softkey
FN24: Calcular los DATOS DEL CIRCULO de cuatro	FN24
puntos del círculo	CIRC. DE
p.ej. FN24: Q20 = CDATA Q30	4 PUNTOS

Los pares de coordenadas de cuatro puntos del círculo deben estar memorizados en el parámetro Q30 y los siguientes siete parámetros – aquí hasta Q37.

Entonces el TNC memoriza el punto central del círculo del eje principal (X con el eje de la hta. Z) en el parámetro Q20, el punto central del círculo del eje transversal (Y con el eje de la hta. Z) en el parámetro Q21 y el radio del círculo en el parámetro Q22.

Deberán tener en cuenta que FN23 y FN24 además del parámetro del resultado también sobreescriban automáticamente los dos parámetros siguientes.

TNC 320 de HEIDENHAIN

10.6 Determinación de las funciones si/entonces con parámetros Q

Aplicación

Al determinar la función si/entonces, el TNC compara un parámetro Q con otro parámetro Q o con un valor numérico. Cuando se ha cumplido la condición, el TNC continua con el programa de mecanizado en el LABEL programado detrás de la condición (LABEL véase "Introducción de subprogramas y repeticiones parciales de un programa" en pág. 322). Si no se cumple la condición el TNC ejecuta la siguiente frase.

Cuando se quiere llamar a otro programa como subprograma, se programa un PGM CALL detrás del LABEL.

Saltos incondicionales

Los saltos incondicionales son aquellos que cumplen siempre la condición (=incondicionalmente), p.ej.

FN9: IF+10 EQU+10 GOTO LBL1

Programación de condiciones si/entonces

Las condiciones si/entonces aparecen al pulsar la softkey SALTOS. El TNC muestra los siguientes softkeys:

Función	Softkey
FN9: SI IGUAL, SALTO p.ej. FN9: IF +Q1 EQU +Q3 GOTO LBL "UPCAN25" Cuando dos valores o parámetros son iguales, salto al label indicado	FN9 IF X EQ Y Goto
FN10: SI DESIGUAL, SALTO p.ej. FN10: IF +10 NE -Q5 GOTO LBL 10 Cuando los dos valores o parámetros son distintos, salto al label indicado	FN10 IF X NE Y GOTO
FN11: SI MAYOR QUE, SALTO p.ej. FN11: IF+Q1 GT+10 GOTO LBL 5 Cuando el primer valor o parámetro es mayor al segundo valor o parámetro, salto al label indicado	FN11 IF X GT Y Goto
FN12: SI MENOR QUE, SALTO p.ej. FN12: IF+05 LT+0 GOTO LBL "ANYNAME" Si el primer valor o parámetro es menor que el segundo valor o parámetro, salto al label indicado	FN12 IF X LT Y GOTO

Abreviaciones y conceptos empleados

IF	(en inglés if):	Cuando
EQU	(en inglés equal):	Igual
NE	(en inglés not equal):	Distinto
GT	(en inglés greater than):	Mayor que
LT	(en inglés less than):	Menor que
GOTO	(en inglés go to):	lr a

10.7 Comprobación y modificación de parámetros Ω

Procedimiento

A la hora de generar, comprobar y ejecutar, se pueden controlar y también modificar parámetros Q en todos los modos de funcionamiento (excepto en el Test de programa).

- Interrupción de la ejecución del programa (p.ej. pulsar la tecla externa STOP y la softkey STOP INTERNO) o bien parar el test del pgm
- Q INFO

STATUS O

Q PARAMETER REQUEST

- Llamar a las funciones paramétricas Q: pulsar la softkey Q INFO en el modo de funcionamiento Memorizar/Editar
 - El TNC abre una ventana superpuesta en la cual se puede introducir el margen deseado para la visualización de parámetros Q o parámetros de string
 - Seleccionar la subdivisión de pantalla Programa + Estado en los modos de funcionamiento Ejecución de programa frase a frase, Ejecución continua y Test de programa
- Seleccionar la softkey Programa + PARAM. Q
- Seleccionar la softkey LISTA DE PARAMETROS Q
- El TNC abre una ventana superpuesta en la cual se puede introducir el margen deseado para la visualización de parámetros Q o parámetros de string
- Con la softkey CONSULTA PARAMETROS Q (solamente disponible en los modos de funcionamiento Ejecución de programa frase a frase y Ejecución continua) se pueden consultar parámetros Q individuales. Para asignar un nuevo valor, sobreescribir el valor visualizado y confirmar con OK.

Funcionamiento manual Prog EX11	ramar .H	
0 96014 201 201 201 201 201 201 201 201 201 201	Z-5 Z+0 URIDAD Dorzasetros 0 S0 hasta 58 hasta 6 hasta c OK INTERRUP.	M S J
07=+50 ;ALTURA DE SEGUR 08=+0 ;RADIO DE REDOND 09=-1 ;SENTIDO DE GIRO 14 CALL LBL 2	IDAD EO	DIAGNOSE
OK INTERRUP.		

10.8 Otras funciones

Resumen

Pulsando la softkey FUNCIONES DIVERSAS, aparecen otras funciones. El TNC muestra los siguientes softkeys:

Función	Softkey	Página
FN14:ERROR Emitir avisos de error	FN14 ERROR=	Pág. 350
FN16:IMPRIMIR F (F-PRINT) Emitir textos o valores de parámetros Q formateados	FN16 F-PRINT	Pág. 352
FN18: LEER DATOS DEL SISTEMA (READ) Lectura de los datos del sistema	FN18 LEER DATOS SIS	Pág. 355
FN19:PLC Emitir valores al PLC	FN19 PLC=	Pág. 363
FN20: ESPERA (WAIT FOR) Sincronización del NC y el PLC	FN20 ESPERAR R	Pág. 364
FN29:PLC emitir hasta ocho valores en el PLC	FN29 PLC	Pág. 366
FN37:EXPORT exportar parámetros Q o parámetros QS locales en un programa que está llamando	FN37 EXPORT	Pág. 367

FN14: ERROR: Emitir avisos de error

Con la función FN14: ERROR se pueden emitir de forma controlada en el programa, avisos de error previamente programados por el constructor de la máquina o por HEIDENHAIN: Si durante la ejecución o el test de un programa se llega a una frase que contenga FN 14, el TNC interrumpe dicha ejecución o test y emite un aviso. A continuación se deberá iniciar de nuevo el programa. Véase el número de error en la tabla de abajo.

Números de error	Diálogo standard
0 299	FN 14: № de error 0 299
300 999	Diálogo que depende de la máquina
1000 1099	Avisos de error internos (véase tabla a la dcha.)

El fabricante de la máquina puede modificar el comportamiento estándar de la función **FN14: ERROR**. ¡Rogamos consulten el manual de la máquina!

Ejemplo de frase NC

El TNC debe emitir un aviso memorizado en el número de error 254

180 FN14: ERROR = 254

Número de error	Texto
1000	¿Cabezal?
1001	Falta el eje de la hta.
1002	Radio de la herramienta
	demasiado pequeño
1003	Radio de la hta. demasiado grande
1004	Campo sobrepasado
1005	Posición inicial errónea
1006	Giro no permitido
1007	Factor de escala no permitido
1008	Espejo no permitido
1009	Desplazamiento no permitido
1010	Falta avance
1011	Valor de introducción erróneo
1012	Signo erróneo
1013	Ángulo no permitido
1014	Punto de palpación inalcanzable
1015	Demasiados puntos
1016	Introducción contradictoria
1017	CYCL incompleto
1018	Plano mal definido
1019	Programado eje erróneo
1020	Revoluciones erróneas
1021	Corrección de radio no definida
1022	Redondeo no definido
1023	Radio de redondeo demasiado grande
1024	Arranque del programa no definido
1025	Imbricación demasiado elevada
1026	Falta referencia angular
1027	No se ha definido ningún ciclo de mecanizado
1028	Anchura de la ranura demasiado pequeña
1029	Cajera demasiado pequeña
1030	Q202 sin definir
1031	Q205 sin definir
1032	Introducir Q218 mayor a Q219
1033	CYCL 210 no permitido
1034	CYCL 211 no permitido
1035	Q220 demasiado grande
1036	Introducr Q222 mayor a Q223

Número de error	Texto
1037	Introducir Q244 mayor a 0
1038	Introducir Q245 diferente a Q246
1039	Introducir el margen angular < 360°
1040	Introducir Q223 mayor a Q222
1041	Q214: 0 no permitido
1042	No está definida la dirección de desplazamiento
1043	No está activada ninguna tabla de puntos cero
1044	Error de posición: centro 1er eje
1045	Error de posición: centro 2º eje
1046	Taladro demasiado pequeño
1047	Taladro demasiado grande
1048	Isla demasiado pequeña
1049	Isla demasiado grande
1050	Cajera demasiado pequeña: repaso 1.A.
1051	Cajera demasiado pequeña: repaso 2.A.
1052	Cajera demasiado grande: rechazada 1.A.
1053	Cajera demasiado grande: rechazada 2.A.
1054	Isla demasiado pequeña: rechazada 1.A.
1055	Isla demasiado pequeña: rechazada 2.A.
1056	Isla demasiado grande: repaso 1.A.
1057	Isla demasiado grande: repaso 2.A.
1058	TCHPROBE 425: Error cota máxima
1059	TCHPROBE 425: Error cota mínima
1060	TCHPROBE 426: Error cota máxima
1061	TCHPROBE 426: Error cota mínima
1062	TCHPROBE 430: Diámet. demasiado grande
1063	TCHPROBE 430: Diámet. demasiado pequeño
1064	No se ha definido ningún eje de medición
1065	Sobrepasada tolerancia rotura
1066	Programar en Q247 un valor distinto a 0
1067	Programar en Q247 un valor mayor a 5
1068	Tabla de ptos. cero?
1069	Introducir en Q351 tipo de fresado, un valor distinto a 0
1070	Reducir la profundidad de roscado
1071	Realizar la calibración
1072	Tolerancia sobrepasada
1073	Activado el proceso hasta una frase
1074	ORIENTACION no permitida
1075	3DROT no permitida
1076	Activar 3DROT
1077	Programar la profundidad con signo negativo

TNC 320 de HEIDENHAIN

Número de error	Texto
1078	¡Q303 no definido en el ciclo de medición!
1079	Eje de herramienta no permitido
1080	Valor calculado erróneo
1081	Puntos de medida contradictorios
1082	Altura de seguridad introducida incorrectamente
1083	Tipo de profundización contradictoria
1084	Ciclo de mecanizado no permitido
1085	Línea protegida ante escritura
1086	Sobremedida mayor que profundidad
1087	No hay ningún ángulo del extremo definido
1088	Datos contradictorios
1089	Posición de ranura 0 no permitida
1090	Introd. profund. no igual a 0

FN16: F-PRINT: Emisión formateada de textos y valores de parámetros Q

Con la función FN16: F-PRINT se emiten valores de parámetros Q y avisos de error a través de la conexión de datos, por ejemplo, a una impresora. Si se memorizan los datos internamente o se emiten a un ordenador, el TNC memoriza los datos en el fichero definido en la frase FN 16.

Para emitir el texto formateado y los valores de los parámetros Q, se elabora un fichero de texto con el editor de textos del TNC, en el cual se determinan los formatos y los parámetros Q a emitir.

Ejemplo de un fichero de texto que determina el formato de emisión:

"PROTOCOLO DE MEDICIÓN PUNTO DE GRAVEDAD DE LA RUEDA DE PALETS";

"FECHA: %2d-%2d-%4d",DAY,MONTH,YEAR4;

"HORA: %2d:%2d:%2d",HOUR,MIN,SEC;

n_____n

"CIFRA DE LOS VALORES DE MEDICIÓN: = 1";

"X1 = %9.3LF", Q31;

"Y1 = %9.3LF", Q32;

"Z1 = %9.3LF", Q33;

Para elaborar ficheros de texto se emplean las siguientes funciones formateadas:

Signos especiales	Función
""	Determinar el formato de la emisión de textos y variables entre comillas
%9.3LF	Determinar el formato para los parámetros Q: 9 dígitos en total (incl. el punto decimal), de ellos 3 posiciones detrás de la coma, Long, Floating (nº decimal)
%S	Formato para variables de texto
,	Signo de separación entre el formato de emisión y el parámetro
;	Signo de final de frase, finaliza una línea

Para poder emitir diferentes informaciones junto al fichero de protocolos, se dispone de las siguientes funciones:

Palabra clave	Función
CALL_PATH	Emite el nombre del camino de búsqueda, en el cual se encuentra la función FN16. Ejemplo: "Programa de medición: %S",CALL_PATH;
M_CLOSE	Cierra el fichero, en el cual se escribe con FN16. Ejemplo: M_CLOSE;
L_ENGLISCH	Emitir texto sólo en idioma inglés
L_GERMAN	Emitir texto sólo en idioma alemán
L_CZECH	Emitir texto sólo en idioma checo
L_FRENCH	Emitir texto sólo en idioma francés
L_ITALIAN	Emitir texto sólo en idioma italiano
L_SPANISH	Emitir texto sólo en idioma español
L_SWEDISH	Emitir texto sólo en idioma idioma de diálogo sueco
L_DANISH	Emitir texto sólo en idioma danés
L_FINNISH	Emitir texto sólo en idioma finlandés
L_DUTCH	Emitir texto sólo con idioma holandés
L_POLISH	Emitir texto sólo en idioma polaco
L_HUNGARIA	Emitir texto sólo en idioma húngaro
L_ALL	Emitir el texto independientemente del idioma de diálogo

Palabra clave	Función
HOUR	Número de horas del tiempo real
MIN	Número de minutos del tiempo real
SEC	Número de segundos del tiempo real
DAY	Día del tiempo real
MONTH	Mes como número en tiempo real
STR_MONTH	Mes como abreviatura de string en tiempo real
YEAR2	Número del año con dos posiciones del tiempo real
YEAR4	Número del año con cuatro posiciones del tiempo real

Para activar la emisión se introduce FN16: F-PRINT en el programa de mecanizado:

96 FN16: F-PRINT TNC:\MASKE\MASKE1.A/RS232:\PROT1.TXT

Entonces el TNC emite el fichero PROT1.TXT a través de la conexión de datos en serie:

PROTOCOLO MEDICIÓN CENTRO GRAVEDAD RUEDA PALETS

FECHA: 27:11:2001

HORA: 8:56:34

NUMERO DE VALORES DE MEDICION : = 1

X1 = 149,360

Y1 = 25,509

Z1 = 37,000

Si se utiliza FN 16 varias veces en el programa, el TNC memoriza todos los textos en el fichero determinado con la primera función FN 16. La emisión del fichero se realiza cuando el TNC lee la frase END PGM, cuando se pulsa la tecla de parada NC o cuando se cierra el fichero con M_CLOSE.

Programar en el bloque FN16 el archivo Formato y el archivo Protocolo con la extensión correspondiente.

Si se introduce únicamente el nombre del fichero como camino del fichero LOG, entonces el TNC memorizará el fichero LOG en el directorio en el que esté el programa NC con la función FN16.

Se pueden emitir un máximo de 32 parámetros Q por línea en el formato de descripción de fichero.

FN18: SYS-DATUM READ: Lectura de los datos del sistema

Con la función FN 18: SYS-DATUM READ se pueden leer los datos del sistema y memorizarlos en parámetros Q. La elección de la fecha del sistema se realiza a través de un número de grupo (Nº ld.), un número y si es preciso a través de un índice.

Nombre de grupo, nº id.	Número	Indice	Significado
Información sobre el programa, 10	3	-	Número del ciclo de mecanizado activado
	103	Número de parámetro Q	Relevante dentro de ciclos NC; para consultar, si los parámetros indicados bajo IDX se han indicado explícitamente en el correspondiente CYCLE DEF.
Direcciones de transferencia del sistema, 13	1	-	Label al cual se saltará en M2/M30, en lugar de finalizar el programa actual; el valor = 0: M2/M30 actúa con normalidad
	2	-	Label al cual se saltará en FN14: ERROR en reacción con NC-CANCEL, en lugar de cancelar el programa con un error. El número de error programado en el comando FN14 se puede leer en ID992 NR14. El valor = 0: FN14 actúa con normalidad.
	3	-	Label al cual se saltará en un error de servidor interno (SQL, PLC, CFG), en lugar de cancelar el programa con un error. El valor = 0: Error de servidor actúa con normalidad.
Estado de la máquina, 20	1	-	Número de la herramienta activada
	2	-	Número de la herramienta dispuesta
	3	-	Eje de herramienta activo 0=X, 1=Y, 2=Z, 6=U, 7=V, 8=W
	4	-	Nº de revoluciones programado
	5	-	Estado del cabezal activado: -1=indefinido, 0=M3 activado 1=M4 activo, 2=M5 después de M3, 3=M5 después de M4
	8	-	Estado del refrigerante: 0= off, 1=on
	9	-	Avance activado
	10	-	Indice de la herramienta preparada
	11	-	Indice de la herramienta activada
Datos de canal, 25	1	-	Número de canal
Parámetro del ciclo, 30	1	-	Distancia de seguridad del ciclo de mecanizado activado

Nombre de grupo, nº id.	Número	Indice	Significado
	2	-	Profundidad de taladrado/prof. de fresado del ciclo de mecanizado activado
	3	-	Profundidad de pasada del ciclo de mecanizado activado
	4	-	Avance de fresado del ciclo de mecanizado activado
	5	-	Primer longitud lateral del ciclo Cajera rectangular
	6	-	2ª longitud lateral del ciclo Cajera rectangular
	7	-	Primera longitud lateral del ciclo Ranura
	8	-	2ª longitud lateral del ciclo Ranura
	9	-	Radio del ciclo cajera circular
	10	-	Avance de fresado del ciclo de mecanizado activado
	11	-	Sentido de giro del ciclo de mecanizado activado
	12	-	Tiempo de espera del ciclo de mecanizado activado
	13	-	Paso de rosca ciclos 17, 18
	14	-	Sobremedida de acabado del ciclo de mecanizado activado
	15	-	Ángulo de desbaste del ciclo de mecanizado activado
	15	-	Ángulo de desbaste del ciclo de mecanizado activado
	21	-	Ángulo de palpación
	22	-	Recorrido de palpación
	23	-	Avance de palpación
Estado modal, 35	1	-	Acotación: 0 = absoluto (G90) 1 = incremental (G91)
Datos para tablas SQL, 40	1	-	Código resultante para el último comando SQL
Datos de la tabla de htas., 50	1	Nº hta.	Longitud de la herramienta
	2	Nº hta.	Radio de la herramienta
	3	Nº hta.	Radio R2 de la herramienta
	4	Nº hta.	Sobremedida de la longitud de la herramienta DL
	5	Nº hta.	Sobremedida del radio de la herramienta DR
	6	Nº hta.	Sobremedida del radio DR2 de la herramienta
	7	Nº hta.	Bloqueo de la herramienta (0 ó 1)

Nombre de grupo, nº id.	Número	Indice	Significado
	8	Nº hta.	Número de la herramienta gemela
	9	Nº hta.	Máximo tiempo de vida TIME1
	10	Nº hta.	Máximo tiempo de vida TIME2
	11	Nº hta.	Tiempo de vida actual CUR. TIME
	12	Nº hta.	Estado del PLC
	13	Nº hta.	Máxima longitud de la cuchilla LCUTS
	14	Nº hta.	Máximo ángulo de profundización ANGLE
	15	Nº hta.	TT: № de cuchillas CUT
	16	Nº hta.	TT: Tolerancia de desgaste de la longitud LTOL
	17	Nº hta.	TT: Tolerancia de desgaste del radio RTOL
	18	Nº hta.	TT: Sentido de giro DIRECT (0=positivo/-1=negativo)
	19	Nº hta.	TT: Desvío del plano R-OFFS
	20	Nº hta.	TT: Desvío de la longitud L-OFFS
	21	Nº hta.	TT: Tolerancia de rotura de la longitud LBREAK
	22	Nº hta.	TT: Tolerancia de rotura del radio RBREAK
	23	Nº hta.	Valor PLC
	24	Nº hta.	Desplazamiento de centro del palpador eje principal CAL- OF1
	25	Nº hta.	Desplazamiento de centro del palpador eje transversal CAL-OF2
	26	Nº hta.	Ángulo de cabezal en la calibración CAL-ANG
	27	Nº hta.	Tipo de herramienta para la tabla de posiciones
	28	Nº hta.	Velocidad máxima NMAX
Datos de la tabla de posiciones, 51	1	Nº posición	Número de la herramienta
	2	Nº posición	Hta. especial: 0=no, 1=si
	3	Nº posición	Posición fija: 0=no, 1=si
	4	Nº posición	posición bloqueada: 0=no, 1=si
	5	Nº posición	Estado del PLC
Número de posición de una hta. en la tabla de posiciones, 52	1	Nº hta.	Número de posición

Nombre de grupo, nº id.	Número	Indice	Significado
	2	Nº hta.	Número de almacén de herramienta
Valores programados directamente después de TOOL CALL, 60	1	-	Número de herramienta T
	2	-	Eje de herramienta activo 0 = X 6 = U 1 = Y 7 = V 2 = Z 8 = W
	3	-	Revoluciones del cabezal S
	4	-	Sobremedida de la longitud de la herramienta DL
	5	-	Sobremedida del radio de la herramienta DR
	6	-	TOOL CALL automático 0 = sí, 1 = no
	7	-	Sobremedida del radio DR2 de la herramienta
	8	-	Índice de herramienta
	9	-	Avance activado
Valores programados directamente después de TOOL DEF, 61	1	-	Número de herramienta T
	2	-	Longitud
	3	-	Radio
	4	-	Indice
	5	-	Datos de herramienta programados en TOOL DEF 1 = sí, 0 = no
Corrección de la hta. activada, 200	1	1 = sin sobremedida 2 = con sobremedida 3 = con sobremedida y sobremedida de TOOL CALL	Radio activo

Nombre de grupo, nº id.	Número	Indice	Significado
	2	1 = sin sobremedida 2 = con sobremedida 3 = con sobremedida y sobremedida de TOOL CALL	Longitud activa
	3	1 = sin sobremedida 2 = con sobremedida 3 = con sobremedida y sobremedida de TOOL CALL	Radio de redondeo R2
Transformaciones activas, 210	1	-	Giro básico en funcionamiento manual
	2	-	Giro básico programado con el ciclo 10
	3	-	Eje espejo activado
			0: Espejo no activado
			+1: Eje X reflejado
			+2: Eje Y reflejado
			+4: Eje Z reflejado
			+64: Eje U reflejado
			+128: Eje V reflejado
			+256: Eje W reflejado
			Combinaciones = suma de los diferentes ejes
	4	1	Factor de escala eje X activado
	4	2	Factor de escala eje Y activado
	4	3	Factor de escala eje Z activado
	4	7	Factor de escala eje U activado
	4	8	Factor de escala V eje activado
	4	9	Factor de escala eje W activado
	5	1	3D-ROT eje A
	5	2	3D-ROT eje B

10.8 Otras funciones

Nombre de grupo, nº id.	Número	Indice	Significado
	5	3	3D-ROT eje C
	6	-	Plano de mecanizado inclinado activo/inactivo (-1/0) durante el proceso de un programa
	7	-	Plano de mecanizado inclinado activo/inactivo (-1/0) en un modo manual
Desplazamiento activo del punto cero, 220	2	1	Eje X
		2	Eje Y
		3	Eje Z
		4	Eje A
		5	Eje B
		6	Eje C
		7	Eje U
		8	V eje
		9	Eje W
Margen de desplazamiento, 230	2	1 a 9	Final de carrera de software negativo eje 1 a 9
	3	1 a 9	Final de carrera de software positivo eje 1 a 9
	5	-	Interruptor de final de carrera de software conectado o desconectado: 0 = conectado, 1 = desconectado
Posición absoluta en el sistema REF, 240	1	1	Eje X
		2	Eje Y
		3	Eje Z
		4	Eje A
		5	Eje B
		6	Eje C
		7	Eje U
		8	V eje
		9	Eje W
Posición actual en el sistema de coordenadas activo, 270	1	1	Eje X
		2	Eje Y
Nombre de grupo, nº id.	Número	Indice	Significado
---	--------	---	--
		3	Eje Z
		4	Eje A
		5	Eje B
		6	Eje C
		7	Eje U
		8	V eje
		9	Eje W
Palpador digital TS, 350	50	1	Tipo sistema palpación
		2	Línea en la tabla del palpador
	51	-	Longitud activa
	52	1	Radio de la esfera activado
		2	Radio de redondeo
	53	1	Desvío del centro del eje principal
		2	Desvío del centro del eje auxiliar
	54	-	Ángulo de la orientación del cabezal en grados (desvío del centro)
	55	1	Marcha rápida
		2	avance de medición
	56	1	Trayectoria máxima
		2	distancia de seguridad
	57	1	La orientación del cabezal es posible 0 = no, 1 = si
Punto de referencia del ciclo de palpación, 360	1	1 a 9 (X, Y, Z, A, B, C, U, V, W)	Último punto de referencia de un ciclo de palpación manual o último punto de palpación del ciclo 0 sin longitudes del palpador-, pero con corrección de radio del palpador (sistema de coordenadas de la pieza)
	2	1 a 9 (X, Y, Z, A, B, C, U, V, W)	Último punto de referencia de un ciclo de palpación manual o último punto de palpación del ciclo 0 sin longitudes del palpador y sin corrección de radio (sistema de coordenadas de la máquina)
	3	1 a 9 (X, Y, Z, A, B, C, U, V, W)	Resultado de medición de los ciclos de palpación 0 y 1 sin corrección de radio y longitud del palpador

Nombre de grupo, nº id.	Número	Indice	Significado
	4	1 a 9 (X, Y, Z, A, B, C, U, V, W)	Último punto de referencia de un ciclo de palpación manual o último punto de palpación del ciclo 0 sin longitudes del palpador y sin corrección de radio (sistema de coordenadas de la pieza)
	10	-	Orientación del cabezal
Valor de la tabla de puntos activada en el sistema de coordenadas activo, 500	línea	Columna	Leer valores
Leer datos de la herramienta actual, 950	1	-	Longitud de la herramienta L
	2	-	Radio de la herramienta R
	3	-	Radio R2 de la herramienta
	4	-	Sobremedida de la longitud de la herramienta DL
	5	-	Sobremedida del radio de la herramienta DR
	6	-	Sobremedida del radio DR2 de la herramienta
	7	-	Herramienta bloqueada TL 0 = sin bloquear, 1 = bloqueada
	8	-	Número de la herramienta gemela RT
	9	-	Máximo tiempo de vida TIME1
	10	-	Máximo tiempo de vida TIME2
	11	-	Tiempo de vida actual CUR. TIME
	12	-	Estado del PLC
	13	-	Máxima longitud de la cuchilla LCUTS
	14	-	Máximo ángulo de profundización ANGLE
	15	-	TT: № de cuchillas CUT
	16	-	TT: Tolerancia de desgaste de la longitud LTOL
	17	-	TT: Tolerancia de desgaste del radio RTOL
	18	-	TT: sentido de giro DIRECT 0 = positivo, -1 = negativo
	19	-	TT: Desvío del plano R-OFFS R = 99999,9999
	20	-	TT: Desvío de la longitud L-OFFS
	21	-	TT: Tolerancia de rotura de la longitud LBREAK
	22	-	TT: Tolerancia de rotura del radio RBREAK

es
Ĭ
<u>ci</u>
Ĭ
Ļ
as
Ę
0
8.0
$\mathbf{\nabla}$

Nombre de grupo, nº id.	Número	Indice	Significado
	23	-	Valor PLC
	24	-	Tipo de herramienta TYP 0 = Fresa, 21 = Palpador
	34	-	Lift off
Ciclos de palpación, 990	1	-	Comportamiento de desplazamiento: 0 = comportamiento estándar 1 = radio activo, distancia de seguridad cero
	2	-	0 = supervisión del palpador desconectada 1 = supervisión del palpador conectada
Estado de ejecución, 992	10	-	Activado el proceso hasta una frase 1 = sí, 0 = no
	11	-	Fase de búsqueda
	14	-	Número del último error FN14
	16	-	Ejecución real activa 1 = ejecución, 2 = simulación

Ejemplo: Asignar el valor del factor de escala activado del eje Z a Q25

55 FN18: SYSREAD Q25 = ID210 NR4 IDX3

FN19: PLC: Emisión de los valores al PLC

Con la función FN 19: PLC, se pueden emitir hasta dos valores numéricos o parámetros Q al PLC.

Pasos y unidades: 0,1 µm o bien 0,0001°

Ejemplo: Transmisión del valor numérico 10 (corresponde a 1 μm o bien 0,001°) al PLC

56 FN19: PLC=+10/+Q3

FN20: WAIT FOR: Sincronización del NC y el PLC

¡Esta función sólo se puede emplear de acuerdo con el constructor de la máquina!

Con la función FN20: ESPERAR A, se puede emplear durante la ejecución del programa una sincronización entre el NC y el PLC. El NC detiene el mecanizado, hasta que se haya cumplido la condición programada en la frase FN20. Para ello el TNC puede comprobar los siguientes operandos de PLC:

Operando de PLC	Denominación abreviada	Margen de dirección
Marca	Μ	0 a 4999
Marcha rápida	I	0 a 31, 128 a 152 64 a 126 (primera PL 401 B) 192 a 254 (segunda PL 401 B)
Salida	0	0 a 30 32 a 62 (primera PL 401 B) 64 a 94 (segunda PL 401 B)
Contador	С	48 a 79
Temporizador	Т	0 a 95
byte	В	0 a 4095
Palabra	W	0 a 2047
Doble palabra	D	2048 a 4095

Con el TNC 320 HEIDENHAIN equipa por primera vez un control con una interfaz ampliada para la comunicación entre PLC y NC. Además se trata de una nueva y simbólica Aplication Programmer Interface (**API**). La interfaz PLC-NC existente hasta la fecha continúa en el mercado de forma paralela y se puede utilizar opcionalmente. El fabricante de la máquina determina si debe utilizarse el TNC-API nuevo o el antiguo. Introducir el nombre del operando simbólico como string, para esperar al estado definido del operando simbólico.

En la frase FN20 se admiten las siguientes condiciones:

Condición	Abreviatura
lgual	==
Menor que	<
Mayor que	>
Menor-igual	<=
Mayor-igual	>=

Ejemplo: Parar la ejecución del programa, hasta que el PLC fije la marca 4095 a 1

32 FN20: WAIT FOR M4095==1

Ejemplo: Parar la ejecución del programa, hasta que el PLC fije el operando simbólico a 1

32 FN20: APISPIN[0].NN SPICONTROLINPOS==1

FN29: PLC: entregar los valores en el PLC

Con la función FN 29: PLC es posible emitir hasta ocho valores numéricos o parámetros Q en el PLC.

Pasos y unidades: 0,1 µm o bien 0,0001°

Ejemplo: Transmisión del valor numérico 10 (corresponde a 1 μm o bien 0,001°) al PLC

56 FN29: PLC=+10/+Q3/+Q8/+7/+1/+Q5/+Q2/+15

FN37: EXPORT

La función FN37: EXPORT se necesita para generar ciclos propios y para conectar al TNC. Los parámetros Q 0-99 solamente son activos en ciclos localmente. Esto significa que los parámetros Q sólo son activos en el programa en el que han sido definidos. Con la función FN 37: EXPORT se pueden exportar parámetros Q activos localmente a otro programa (que esté llamando).

Ejemplo: se exporta el parámetro Q local Q25

56 FN37: EXPORT Q25

Ejemplo: se exportan los parámetros Q locales Q25 a Q30

56 FN37: EXPORT Q25 - Q30

El TNC exporta el valor que el parámetro tiene justo en el momento de ejecutar el comando EXPORT.

El parámetro sólo se exporta en el programa directo que está llamando.

Introducción

Los accesos a tablas se programan en el TNC con instrucciones SQL en el transcurso de una "transacción". Una transacción consta de varias instrucciones SQL que garantizan un procesamiento ordenado de las entradas en la tabla.

El fabricante de la máquina configura las tablas. Para ello, también se determinan los nombres y denominaciones necesarios como parámetros para instrucciones SQL.

Conceptos, que se utilizarán a continuación:

- Tabla: una tabla consta de x columnas y líneas. Se memoriza como fichero en la gestión de ficheros del TNC y se asigna el nombre de búsqueda y de fichero (=nombre de la tabla). Se pueden utilizar sinónimos de forma alternativa a la asignación de dirección mediante el nombre de búsqueda y de fichero.
- Columnas: el número y designación de las columnas se determina en la configuración de la tabla. La denominación de las columnas se utiliza en diferentes instrucciones SQL para la asignación de dirección.
- Líneas: el número de líneas es variable. Pueden añadirse nuevas líneas. No se crearán números de línea ni nada parecido. No obstante, se pueden seleccionar líneas en función del contenido de las columnas. Solamente se pueden borrar líneas en el Editor de tablas – no mediante programa NC.
- Celda: una columna de una línea.
- Entrada de tabla: contenido de una celda
- Result-set: durante una transacción se gestionan las líneas y columnas seleccionadas en el Result-set. Considerar el Result-set como una "memoria intermedia", que registra temporalmente la cantidad de líneas y columnas seleccionadas. (Result-set = ingl. Cantidad resultante).
- Sinónimo: con este concepto se designa un nombre para una tabla, que se utilizará en lugar de los nombres de búsqueda y de fichero. El fabricante de la máquina determina los sinónimos en los datos de configuración.

1

Una transacción

Una transacción consta, principalmente, de las siguientes acciones:

- Asignar una dirección a la tabla (fichero), seleccionar líneas y transferir en el Result-set.
- Leer, modificar líneas del Result-set y/o añadir nuevas líneas.
- Finalizar las introducciones. En modificaciones/adiciones se aceptan las líneas desde el Result-set en la tabla (fichero).

Sin embargo, también se necesitan más acciones para que las entradas de la tabla en el programa NC puedan ser procesadas y evitar una modificación paralela de las mismas líneas de la tabla. De ello resulta el siguiente **desarrollo de una transacción**:

- Para cada columna que deba procesarse, se especifica un parámetro Q. El parámetro Q se asigna a la columna – se crea un "enlace" (SQL BIND...).
- 2 Asignar una dirección a la tabla (fichero), seleccionar líneas y transferir en el Result-set. Adicionalmente se definen, qué columnas deben ser aceptadas en el Result-set (SQL SELECT...).

Se pueden "bloquear" las líneas seleccionadas. Entonces otros procesos pueden tener acceso a esas líneas en modo lectura, pero no pueden modificar las entradas de la tabla. Por ello siempre deben bloquearse las líneas seleccionadas al realizar modificaciones (SQL SELECT ... FOR UPDATE).

3 Leer, modificar líneas del Result-set y/o añadir nuevas líneas: – Aceptar una línea del Result-set en los parámetros Q del programa NC (SQL FETCH...)

 Preparar las modificaciones en los parámetros Q y transferir en una línea el Result-set (SQL UPDATE...)

– Preparar una nueva línea de tabla en los parámetros Q y trasmitirla como nueva línea en el Result-set (SQL INSERT...)

4 Finalizar la transacción.

– Se han modificado/añadido entradas en la tabla: los datos se aceptan desde el Result-set en la tabla (fichero). Ahora están memorizadas en el fichero. Se desactivan eventuales bloqueos, se libera el Result-set (**SQL COMMIT...**).

 – No se han modificado/añadido entradas en la tabla (sólo accesos en modo lectura): se desactivan eventuales bloqueos, se libera el Result-set (SQL ROLLBACK... SIN ÍNDICE).

Se pueden ejecutar varias transacciones paralelamente.

Cerrar sin falta una transacción iniciada – incluso al utilizar exclusivamente accesos en modo lectura. Solamente así se garantiza que las modificaciones/adiciones no se perderán, que los bloqueos se desactivarán y que el Result-set se liberará.

Result-set

Las líneas seleccionadas dentro del Result-set se numerarán en orden ascendente empezando por 0. Esta numeración se denomina **Índice**. En los accesos en modo lectura y escritura se indica el Índice y, con ello, se apunta una línea del Result-set respondido.

A menudo resulta ventajoso clasificar las líneas en el Result-set. Ello es posible definiendo una columna de la tabla que contenga el criterio de clasificación. Adicionalmente se selecciona una secuencia ascendente o descendente (SQL SELECT ... ORDER BY ...).

A las líneas seleccionadas, que han sido aceptadas en el Result-set, se les asigna una dirección con el **HANDLE**. Todas las instrucciones SQL siguientes utilizan el handle como referencia en esta "Cantidad de líneas y columnas seleccionadas".

Al cerrar una transacción el handle se libera de nuevo (SQL COMMIT... o SQL ROLLBACK...). Entonces ya no es válido.

Se pueden procesar varios Result-sets simultáneamente. El servidor SQL edita en cada instrucción de selección un nuevo handle.

"Enlazar" parámetros Q con columnas

El programa NC no tiene acceso directo a las entradas de la tabla en el Result-set. Los datos deben transferirse en parámetros Q. Por el contrario, los datos se elaboran en primer lugar en los parámetros Q y después se transfieren en el Result-set.

Con **SQL BIND** ... se determina qué columnas de la tabla se representan en qué parámetros Q. Los parámetros Q se "enlazan" con las columnas (asignados). Las columnas que no estén "enlazadas" con parámetros Q no se tendrán en cuenta en los procesos de lectura/ escritura.

Con **SQL INSERT...** se genera una nueva línea de tabla y se asignan las columnas que no están "enlazadas" con parámetros Q con valores por defecto.

Programar instrucciones SQL

Las instrucciones SQL se programan en el modo de funcionamiento Memorizar/editar programa:

SQL

- Seleccionar funciones SQL: pulsar la softkey SQL
 - Seleccionar la instrucción SQL mediante softkey (ver Resumen) o pulsar la softkey SQL EXECUTE y programar la instrucción SQL

Resumen de softkeys

Función	Softkey
SQL EXECUTE Programar "instrucción de seleccion"	SOL EXECUTE
SQL BIND "Enlazar" parámetros Q con columnas de la tabla (asignar)	SOL BIND
SQL FETCH Leer líneas de la tabla del Result-set y memorizarlas en parámetros Q	SOL FETCH
SQL UPDATE Memorizar datos de los parámetros Q en una línea de la tabla existente del Result-set	SOL UPDATE
SQL INSERT Memorizar datos de los parámetros Q en una línea de la tabla nueva en el Result-set	SOL INSERT
SQL COMMIT Transferir líneas de la tabla del Result-set a la tabla y cerrar la transacción.	SOL COMMIT
SQL ROLLBACK	SQL
ÍNDICE sin programar: eliminar las modificaciones/ adiciones realizadas hasta el momento y cerrar la transacción.	ROLLBACK
ÍNDICE programado: la línea indexada continúa en el Result-set – todas las demás línas se eliminan del Result-set. No se cierra la transacción.	

SQL BIND

SQL BIND "enlaza" un parámetro Q con una columna de la tabla. Las instrucciones SQL Fetch, Update e Insert evalúan este "enlace" (asignación) durante la transmisión de datos entre el Result-set y el programa NC.

Un **SQL BIND** sin nombre de tabla ni de columna anula el enlace. El enlace finaliza a más tardar cuando acaba el programa NC o el subprograma.

Se pueden programar tantos "enlaces" como se deseen. En los procesos de lectura/escritura se tienen en cuenta exclusivamente las columnas, que se han indicado en la instrucción de selección.

- **SQL BIND...** debe programarse **antes** que las instrucciones Fetch, Update o Insert. Se puede programar una instrucción de selección sin instrucciones Bind anteriores.
- Si se generan columnas en la instrucción de selección, para las cuales no se ha programado ningún "enlace", entonces ocurre un error en los procesos de lectura/ escritura (interrupción del programa).

SQL BIND

Núm. de parámetro para resultado: parámetro Q al cual se "enlazará" la columna de la tabla (asignado).

Base de datos: nombre de la columna: introducir el nombre de la tabla y la designación de columna – separado por ".".

Nombre de la tabla: sinónimo o nombres de búsqueda y de fichero de esta tabla. El sinónimo se registra directamente – el nombre de búsqueda y de fichero se escribe entre comillas.

Designación de columnas: designación de la columna de la tabla determinada en los datos de configuración

Ejemplo: Enlazar parámetros Q con columnas de la tabla

11 SQL	BIND Q8	31 "TAB	_EXAMPLE.MESS_NR"
12 SQL	BIND Q88	32 "TAB _.	_EXAMPLE.MESS_X"
13 SQL	BIND Q88	33 "TAB	_EXAMPLE.MESS_Y"
14 SQL	BIND Q88	34 "TAB	_EXAMPLE.MESS_Z"

Ejemplo: Anular el enlace

91 SQL BIND	Q881
92 SQL BIND	Q882
93 SQL BIND	Q883
94 SQL BIND	Q884

SQL SELECT

SQL SELECT selecciona líneas de la tabla y las transfiere en el Resultset.

El servidor SQL memoriza los datos línea por línea en el Result-set. Las línas se numeran correlativamente empezando por 0. Este número de línea, el **ÍNDICE**, se utiliza en los comandos SQL Fetch y Update.

En la opción **SQL SELECT...WHERE...** indicar los criterios de selección. Con ello se puede delimitar el número de líneas a transferir. Si no se utiliza esta opción, se cargarán todas las líneas de la tabla.

En la opción **SQL SELECT...ORDER BY...** indicar el criterio de clasificación. Se compone de la designación de columna y de la palabra clave para clasificación ascendente/descendente. Si no se utiliza esta opción, se memorizarán las líneas aleatoriamente.

Con la opción **SQL SELCT...FOR UPDATE** se bloquean las líneas seleccionadas para otras aplicaciones. Estas líneas pueden leer otras aplicaciones, pero no las puede modificar. Utilizar sin falta esta opción al realizar modificaciones en las entradas de la tabla.

Result-set vacío: si no existen líneas que se ajusten al criterio de selección, el servidor SQL emite de nuevo un handle válido pero ninguna entrada de la tabla.

Ejemplo: Seleccionar todas las líneas de la tabla

11 SQL BIND Q881 "TAB_EXAMPLE.MESS_NR"
12 SQL BIND Q882 "TAB_EXAMPLE.MESS_X"
13 SQL BIND Q883 "TAB_EXAMPLE.MESS_Y"
14 SQL BIND Q884 "TAB_EXAMPLE.MESS_Z"
• • • •
20 SOL 05 "SELECT MESS NR.MESS X.MESS Y.
MESS_Z FROM TAB_EXAMPLE"

Ejemplo: Selección de las líneas de la tabla con la opción WHERE

•••• 20 SQL Q5 "SELECT MESS_NR,MESS_X,MESS_Y, MESS_Z FROM TAB_EXAMPLE WHERE MESS_NR<20"

Ejemplo: Selección de las líneas de la tabla con la opción WHERE y parámetros Q

. . . 20 SQL Q5 "SELECT MESS_NR,MESS_X,MESS_Y, MESS_Z FROM TAB_EXAMPLE WHERE MESS_NR==:'Q11'"

Ejemplo: Nombre de la tabla definido mediante los nombres de directorio y de fichero

• • •

20 SQL Q5 "SELECT MESS_NR,MESS_X,MESS_Y, MESS_Z FROM 'V:\TABLE\TAB_EXAMPLE' WHERE MESS_NR<20" SOL EXECUTE

Núm. de parámetro para resultado: parámetro Q para el Handle. El servidor SQL entrega el handle para este grupo de líneas y columnas seleccionadas con la instrucción de selección actual. En caso de error (no se ha podido realizar la selección), el servidor SQL emite de nuevo "1". El valor "0" designa un handle no válido.

Base de datos: texto de comando SQL: con los siguientes elementos:

SELECT (palabra clave): indicativo del comando SQL

Denominaciones de las columnas de la tabla a transferir – separar varias columnas mediante "," (ver ejemplos). Deben "enlazarse" parámetros Q con todas las columnas aquí indicadas.

FROM: sinónimo o nombres de búsqueda y de fichero de esta tabla. El sinónimo se registra directamente – el nombre de búsqueda y de tabla se escribe entre comillas (ver ejemplos).

Opcional:Criterios de selección **WHERE**: un criterio de selección se compone de una designación de columna, de una condición (ver tabla) y de un valor comparativo. Varios criterios de selección se enlazan con Y u O lógicos. El valor comparativo se programa directamente o en un parámetro Q. Un parámetro Q se inicia con ":" y se escribe entre comillas (ver ejemplo).

Opcional:Designación de columna

ORDER BY ASC para una clasificación ascendente – oDesignación de columna

ORDER BY DESC para una clasificación descendente Si no se programa ni **ASC** ni **DESC**, vale por defecto la clasificación ascendente.

Las líneas seleccionadas se memorizan clasificadas según la columna indicada.

Opcional:

FOR UPDATE (palabra clave): las líneas seleccionadas se bloquean para el acceso escrito de otros procesos.

Condición	programación de ciclos
igual	= ==
n Comparaciones mayor, menor, igual, distinto	!= <>
menor	<
menor o igual	<=
mayor	>
mayor o igual	>=
Enlazar varias condiciones:	
Y lógico	AND
O lógico	OR

SQL FETCH

SQL FETCH lee la línea dirigida con **ÍNDICE** desde el Result-set y memoriza las entradas de la tabla en los parámetros Q "enlazados" (asignados). Al Result-set se le asigna una dirección con el **HANDLE**.

SQL FETCH tiene en cuenta todas las columnas indicadas en la instrucción de selección.

SQL FETCH

 Núm. de parámetro para resultado: parámetro Q, en el cual el servidor SQL emite el resutado:
0: no se ha producido ningún error
1: se ha producido un error (handle erróneo o Índice demasiado grande)

- Base de datos: ID de acceso SQL: parámetro Q, con el handle para la identificación del Result-set (ver también SQL SELECT).
- Base de datos: Índice para el resultado SQL: número de línea dentro del Result-set. Las entradas de la tabla de esta línea se leen y se transfieren a los parámetros Q "enlazados". Si no se indica el Índice, se leerá la primera línea (n=0).

El número de línea se indica directamente o se programa el parámetro Q que contenga el Índice.

Ejemplo: El número de línea se transmite en el parámetro Q

11 SQL BIND Q881 "TAB_EXAMPLE.MESS_NR"
12 SQL BIND Q882 "TAB_EXAMPLE.MESS_X"
13 SQL BIND Q883 "TAB_EXAMPLE.MESS_Y"
14 SQL BIND Q884 "TAB_EXAMPLE.MESS_Z"
· · ·
20 SQL Q5 "SELECT MESS_NR,MESS_X,MESS_Y, MESS_Z FROM TAB_EXAMPLE"
•••
30 SQL FETCH Q1 HANDLE Q5 INDEX+Q2

Ejemplo: El número de línea se programa directamente

· · · 30 SQL FETCH Q1 HANDLE Q5 INDEX5

SQL UPDATE

SQL UPDATE transfiere los datos preparados en los parámetros Ω en la línea dirigida con **ÍNDICE** del Result-set. La línea actual en el Result-set se sobreescribe completamente.

SQL UPDATE tiene en cuenta todas las columnas indicadas en la instrucción de selección.

SQL UPDATE

 Núm. de parámetro para resultado: parámetro Q, en el cual el servidor SQL emite el resutado:
0: no se ha producido ningún error
1: se ha producido un error (handle erróneo, Índice demasiado grande, margen de valores por encima/ debajo o formato de datos erróneo)

Base de datos: ID de acceso SQL: parámetro Q, con el handle para la identificación del Result-set (ver también SQL SELECT).

Base de datos: Índice para el resultado SQL: número de línea dentro del Result-set. Las entradas de la tabla preparadas en los parámetros Q se escriben en esta línea. Si no se indica el Índice, se escribirá en la primera línea (n=0). El número de línea se indica directamente o se programa el parámetro Q que contenga el Índice.

SQL INSERT

SQL INSERT genera una nueva línea en el Result-set y transfiere los datos preparados en los parámetros Q a una nueva línea.

SQL INSERT tiene en cuenta todas las columnas que se han indicado en la instrucción de selección – las columnas de la tabla que no se han tenido en cuenta en la instrucción de selección, se escriben con valores por defecto.

SQL INSERT

 Núm. de parámetro para resultado: parámetro Q, en el cual el servidor SQL emite el resutado:
0: no se ha producido ningún error
1: se ha producido un error (handle erróneo, margen de valores por encima/debajo o formato de datos

Base de datos: ID de acceso SQL: parámetro Q, con el handle para la identificación del Result-set (ver también SQL SELECT). Ejemplo: El número de línea se transmite en el parámetro Q

11 SQL	BIND Q881 "TAB_EXAMPLE.MESS_NR"	
12 SQL	BIND Q882 "TAB_EXAMPLE.MESS_X"	
13 SQL	BIND Q883 "TAB_EXAMPLE.MESS_Y"	
14 SQL	BIND Q884 "TAB_EXAMPLE.MESS_Z"	
20 SQL	Q5 "SELECT MESS NR,MESS X,MESS Y,	
MESS_Z	FROM TAB_EXAMPLE"	
MESS_Z	FROM TAB_EXAMPLE"	
MESS_Z 30 SQL	FROM TAB_EXAMPLE"	

40 SQL UPDATE Q1 HANDLE Q5 INDEX+Q2

Ejemplo: El número de línea se programa directamente

•••• 40 SQL UPDATE Q1 HANDLE Q5 INDEX5

Ejemplo: El número de línea se transmite en el parámetro Q

11 SQL BIND Q881 "TAB_EXAMPLE.MESS_NR"
12 SQL BIND Q882 "TAB_EXAMPLE.MESS_X"
13 SQL BIND Q883 "TAB_EXAMPLE.MESS_Y"
14 SQL BIND Q884 "TAB_EXAMPLE.MESS_Z"
20 SQL Q5 "SELECT MESS_NR,MESS_X,MESS_Y, MESS_Z FROM TAB_EXAMPLE"
40 SOL INSERT O1 HANDLE 05

erróneo)

SQL COMMIT

SQL COMMIT vuelve a transferir todas las líneas existentes en el Resultset a la tabla. Se desactiva un bloqueo fijado con **SELCT...FOR UPDATE**.

El handle adjudicado en la instrucción SQL SELECT pierde su validez.

Núm. de parámetro para resultado: parámetro Q, en el cual el servidor SQL emite el resutado: 0: no se ha producido ningún error

1: se ha producido un error (handle erróneo o entradas repetidas en columnas, en las cuales se requieren entradas claras)

Base de datos: ID de acceso SQL: parámetro Q, con el handle para la identificación del Result-set (ver también SQL SELECT).

Ejemplo:

11 SQL BIND Q881 "TAB_EXAMPLE.MESS_NR"
12 SQL BIND Q882 "TAB_EXAMPLE.MESS_X"
13 SQL BIND Q883 "TAB_EXAMPLE.MESS_Y"
14 SQL BIND Q884 "TAB_EXAMPLE.MESS_Z"
20 SOL 05 "SELECT MESS NR.MESS X.MESS Y.
MESS 7 EDON TAD EVANDLE"
MESS_Z FRUM TAD_EAAMPLE
30 SQL FETCH Q1 HANDLE Q5 INDEX+Q2
· · · ·
40 SQL UPDATE Q1 HANDLE Q5 INDEX+Q2
50 SQL COMMIT Q1 HANDLE Q5

SQL ROLLBACK

La ejecución del **SQL ROLLBACK** depende de si el **ÍNDICE** ya se ha programado:

ÍNDICE sin programar: el Result-set no se contesta en la tabla (se perderán las modificaciones/adiciones eventuales). Se cierra la transacción – el handle adjudicado en SQL SELECT pierde su validez. Aplicación típica: se finaliza una transacción con accesos en modo lectura exclusivamente.

ÍNDICE programado: la línea indexada se mantiene invariable – todas las demás línas se eliminan del Result-set. No se cierra la transacción. Un bloqueo fijado con SELCT...FOR UPDATE se mantiene invariable sólo para líneas indexadas – para todas las demás líneas se desactiva.

Núm. de parámetro para resultado: parámetro Q, en el cual el servidor SQL emite el resutado: 0: no se ha producido ningún error 1: se ha producido un error (handle erróneo)

- Base de datos: ID de acceso SQL: parámetro Q, con el handle para la identificación del Result-set (ver también SQL SELECT).
- Base de datos: Índice para el resultado SQL: línea que debe permanecer en el Result-set. El número de línea se indica directamente o se programa el parámetro Q que contenga el Índice.

Ejemplo:

11 SQL BIND Q881 "TAB_EXAMPLE.MESS_NR"
12 SQL BIND Q882 "TAB_EXAMPLE.MESS_X"
13 SQL BIND Q883 "TAB_EXAMPLE.MESS_Y"
14 SQL BIND Q884 "TAB_EXAMPLE.MESS_Z"
• • • •
20 SQL Q5 "SELECT MESS_NR,MESS_X,MESS_Y, MESS_Z FROM TAB_EXAMPLE"
30 SQL FETCH Q1 HANDLE Q5 INDEX+Q2

50 SQL ROLLBACK Q1 HANDLE Q5

10.10 Introducción directa de una fórmula

Introducción de la fórmula

Mediante softkeys se pueden programar directamente en el programa de mecanizado, fórmulas matemáticas con varias operaciones de cálculo.

Las fórmulas aparecen pulsando la softkey FORMULA. El TNC muestra las siguientes softkeys en varias carátulas:

Función lógica	Softkey
Adición p.ej. Q10 = Q1 + Q5	•
Sustración p.ej. Q25 = Q7 – Q108	-
Multiplicación p.ej. Q12 = 5 * Q5	*
División p.ej. Q25 = Q1 / Q2	/
se abre paréntesis p.ej. Q12 = Q1 * (Q2 + Q3)	C
se cierra paréntesis p.ej. Q12 = Q1 * (Q2 + Q3)	>
Cuadrar un valor (en inglés square) p.ej. Q15 = SQ 5	SQ
Sacar la raíz cuadrada (en inglés square root) p.ej. Q22 = SQRT 25	SORT
Seno de un ángulo p.ej. Q44 = SEN 45	SIN
Coseno de un ángulo p.ej. Q45 = COS 45	COS
Tangente de un ángulo p.ej. Q46 = TG 45	TAN
Arcoseno Función de inversión del seno; determinar el ángulo entre el cateto opuesto y la hipotenusa p.ej. Q10 = ASEN 0,75	ASIN
Arcocoseno Función de inversión del coseno; determinar el ángulo entre el cateto contiguo y la hipotenusa p.ej. Q11 = ACOS Q40	ACOS

Función lógica	Softkey
Arcotangente Función de inversión de la tangente; determinar el ángulo entre el cateto opuesto y el cateto contiguo p.ej. Q12 = ATGQ50	ATAN
Elevar un valor a una potencia p.ej Q15 = 3^3	~
Constante PI (3,14159) p.ej. Q15 = PI	PI
Determinar el logaritmo natural (LN) de un número Número en base 2,7183 p.ej. Q15 = LN Q11	LN
Hacer el logaritmo de un número, en base 10 p.ej. Q33 = LOG Q22	LOG
Función exponencial, 2,7183 elevado a n p.ej. Q1 = EXP Q12	EXP
Negar valores (multiplicación por -1) p.ej. Q2 = NEG Q1	NEG
Redondear posiciones detrás de la coma Crear un número integro p.ej. Q3 = INT Q42	INT
Configurar el valor absoluto de un número p.ej. Q4 = ABS Q22	ABS
Redondear las posiciones delante de la coma Fraccionar p.ej. Q5 = FRAC Q23	FRAC
Comprobar el signo de un número p.ej. Q12 = SGN Q50 Si el valor resultante de Q12= 1, entonces Q50 >= 0 Si el valor resultante Q12= -1, entonces Q50 < 0	SGN
Cálculo del valor de módulo (Resto de la división) p.ej. Q12 = 400 % 360 Resultado: Q12 = 40	×

Reglas de cálculo

Para la programación de fórmulas matemáticas son válidas las siguientes reglas:

Los cálculos de multiplicación y división se realizan antes que los de suma y resta

12 Q1 = 5 * 3 + 2 * 10 = 35

- **1.** Cálculo 5 * 3 = 15
- **2.** Cálculo 2 * 10 = 20
- 3. Cálculo 15 +20 = 35

0

13 Q2 = SQ 10 - 3^3 = 73

- 1. Cálculo de 10 al cuadrado= 100
- 2. Cáculo de 3 elevado a la potencia de 3 = 27
- **3.** Cálculo 100 27 = 73

Propiedad distributiva

Ley de la distribución en el cálculo entre paréntesis

a * (b + c) = a * b + a * c

Ejemplo

Calcular el ángulo con el arctan del cateto opuesto (Q12) y el cateto contiguo (Q13); el resultado se asigna a Q25:

FORMULA Seleccionar la función Introducir fórmula: Pulsar la softkey FORMULA

_. _ _ _ . . _

SNOME	KU DE P	AKAMEIKUS PAKA EL KESULIADU?
ENT	25	Introducir el número del parámetro
	ATAN	Conmutar la carátula de softkeys y seleccionar la función arcotangente
	(Conmutar la carátula de softkeys y abrir paréntesis
Q	12	Introducir el parámetro Q número 12
,]	Seleccionar la división
Q	13	Introducir el parámetro Q número 13
,		Cerrar paréntesis y finalizar la introducción de la fórmula

Ejemplo de frase NC

37 Q25 = ATG (Q12/Q13)

10.11 Parámetro de string

Funciones del procesamiento de cadenas de texto

Se puede utilizar el procesamiento de cadenas de texto (ingl. string = cadena de caracteres) mediante parámetros **QS** a fin de generar cadenas de caracteres variables. Dichas cadenas de caracteres pueden emitirse, por ejemplo, mediante la función **FN16:F-PRINT**, a fin de generar protocolos variables.

Se puede asignar una cadena de caracteres (letras, cifras, caracteres especiales, caracteres de control y caracteres de omisión) a un parámetro de string. Los valores asignados o leídos también se pueden continuar procesando y comprobando con las funciones descritas a continuación.

En las funciones de parámetros Q STRING FORMEL y FORMEL se encuentran diferentes funciones para el procesamiento de parámetros de cadenas de texto.

Funciones de la FÓRMULA DE CADENAS DE TEXTO	Softkey	Página
Asignar parámetro de string	STRING	Pág. 384
Parámetros de cadenas de texto en serie		Pág. 384
Convertir un valor numérico en un parámetro de cadena de texto	TOCHAR	Pág. 385
Copiar una cadena de texto parcial desde un parámetro de cadena de texto	SUBSTR	Pág. 386

Funciones de cadena de texto en la función FÓRMULA	Softkey	Página
Convertir un parámetro de cadena de texto en un valor numérico	TONUMB	Pág. 387
Comprobación de un parámetro de cadena de texto	INSTR	Pág. 388
Calcular longitud de un parámetro de cadena de texto	STRLEN	Pág. 389
Comparar orden alfabético	STRCOMP	Pág. 390

Si se utiliza la función FORMULA CADENA DE TEXTO, el resultado de la operación de cálculo es siempre una cadena de texto. Si se utiliza la función FORMULA, el resultado de la operación de cálculo es siempre un valor numérico.

Asignar parámetro de string

Antes de utilizar variables de string, éstas deben asignarse primero. Para ello, utilizar el comando DECLARE STRING.

 Seleccionar las funciones especiales TNC: pulsar la tecla SPEC FCT

Seleccionar la función DECLARE

Seleccionar la softkey STRING

Ejemplo de frase NC:

37 DECLARE STRING QS10 = "PIEZA"

Parámetros de cadenas de texto en serie

Con el operador de concatenación (parámetro de cadena de texto || parámetro de cadena de texto) se pueden conectar varios parámetros de cadenas de texto unos con otros.

Seleccionar funciones de parámetros Q

- Seleccionar la función STRING FORMEL
- Introducir el número de parámetro de cadena de texto, en el cual el TNC debe memorizar la cadena de texto en serie, confirmar con la tecla ENT
- Introducir el número de parámetro de cadena de texto, en el cual está memorizada la primera cadena de texto parcial, confirmar con la tecla ENT: el TNC visualiza el símbolo de concetenación ||
- Confirmar con la tecla ENT
- Introducir el número de parámetro de cadena de texto, en el cual está memorizada la segunda cadena de texto parcial, confirmar con la tecla ENT
- Repetir el proceso hasta haber seleccionado todas las cadenas de texto parciales a concatenar, finalizar con la tecla END

Ejemplo: QS10 debe contener el texto completo de QS12, QS13 y QS14

37 QS10 = QS12 || QS13 || QS14

Contenidos de los parámetros:

- 🔳 QS12: Pieza
- QS13: Estado:
- 🔳 QS14: Rechazo
- QS10: Estado de la pieza: rechazo

Convertir un valor numérico en un parámetro de cadena de texto

El TNC convierte un valor numérico en un parámetro de cadena de texto con la función **TOCHAR**. De esta forma se pueden concatenar valores numéricos con variables de cadenas de texto.

- Seleccionar funciones de parámetros Q
- Seleccionar la función STRING FORMEL
- Seleccionar la función para convertir un valor numérico en un parámetro de cadena de texto
- Introducir la cifra o el parámetro Q deseado a convertir por el TNC, confirmar con la tecla ENT
- Si se desea, introducir el número de caracteres decimales a convertir por el TNC, confirmar con la tecla ENT
- Cerrar la expresión entre paréntesis con la tecla ENT y finalizar la introducción con la tecla END

Ejemplo: convertir el parámetro Q50 en parámetro de cadena de texto QS11, utilizar 3 posiciones de decimal

37 QS11 = TOCHAR (DAT+Q50 DECIMALS3)

Copiar una cadena de texto parcial desde un parámetro de cadena de texto

Con la función **SUBSTR** se puede copiar un margen definido desde un parámetro de cadena de texto.

SUBSTR

Seleccionar funciones de parámetros Q

- Seleccionar la función STRING FORMEL
- Introducir el número de parámetro de cadena de texto, en el cual el TNC debe memorizar la secuencia de caracteres copiada, confirmar con la tecla ENT
- Seleccionar la función para cortar una cadena de texto parcial
- Introducir el número del parámetro QS del cual se desea copiar la cadena de texto parcial, confirmar con la tecla ENT
- Introducir el número de la posición a partir de la cual se desea copiar la cadena de texto parcial, confirmar con la tecla ENT
- Introducir el número del signo que se desea copiar, confirmar con la tecla ENT
- Cerrar la expresión entre paréntesis con la tecla ENT y finalizar la introducción con la tecla END

Prestar atención a que el primer signo de una secuencia de texto empiece internamente en la posición 0.

Ejemplo: desde un parámetro de cadena de texto QS10 se lee a partir de la tercera posición (BEG2) una cadena de texto parcial de 4 caracteres (LEN4).

37 QS13 = SUBSTR (SRC_QS10 BEG2 LEN4)

Convertir un parámetro de cadena de texto en un valor numérico

La función **TONUMB** convierte un valor numérico en un parámetro de cadena de texto. El valor a convertir debe constar solamente de valores numéricos.

- Seleccionar funciones de parámetros Q
- Seleccionar la función FORMEL
- Introducir el número del parámetro, en el cual el TNC debe memorizar el valor numérico, confirmar con la tecla ENT

El parámetro QS a convertir sólo puede contener un valor

numérico, de lo contrario el TNC emite un aviso de error.

- Толимв
- Conmutar función de softkey
- Seleccionar la función para convertir un parámetro de cadena de texto en un valor numérico
- Introducir el número del parámetro QS a convertir por el TNC, confirmar con la tecla ENT
- Cerrar la expresión entre paréntesis con la tecla ENT y finalizar la introducción con la tecla END

Ejemplo: convertir el parámetro de string QS11 en un parámetro numérico Q82

37 Q82 = TONUMB (SRC QS11)

Comprobación de un parámetro de string

Con la función **INSTR** se puede comprobar si un parámetro de cadena de texto está en otro parámetro de cadena de texto, o dónde.

 \triangleleft

INSTR

- Seleccionar funciones de parámetros Q
- FORMULA
- Seleccionar la función FORMEL
- Introducir el número del parámetro Q en el cual el TNC debe memorizar la posición en la que empieza el texto a buscar, confirmar con la tecla ENT
- Conmutar función de softkey
- Seleccionar la función para comprobar un parámetro de cadena de texto
- Introducir el número del parámetro QS, en el cual está memorizado el texto a buscar, confirmar con la tecla ENT
- Introducir el número del parámetro QS a buscar por el TNC, confirmar con la tecla ENT
- Introducir el número de la posición a partir de la cual el TNC debe buscar la cadena de texto parcial, confirmar con la tecla ENT
- Cerrar la expresión entre paréntesis con la tecla ENT y finalizar la introducción con la tecla END

Si el TNC no encuentra la cadena de texto parcial a buscar, entonces memoriza el valor 0 en el parámetro de resultado.

> Si la cadena de texto parcial a buscar aparece varias veces, entonces el TNC vuelve a emitir la primera posición en la que encuentra la cadena de texto parcial.

Ejemplo: buscar QS10 en el texto memorizado en el parámetro QS13. Iniciar la búsqueda a partir de la tercera posición

37 Q50 = INSTR (SRC_QS10 SEA_QS13 BEG2)

Calcular longitud de un parámetro de cadena de texto

La función **STRLEN** emite la longitud del texto memorizado en un parámetro de cadena de texto seleccionable.

Q FORMULA

 \triangleleft

STRLEN

- Seleccionar funciones de parámetros Q
- Seleccionar la función FORMEL
- Introducir el número del parámetro Q, en el cual el TNC debe memorizar la longitud de la cadena de texto a calcular, confirmar con la tecla ENT
- Conmutar función de softkey
- Seleccionar la función para calcular la longitud de texto de un parámetro de cadena de texto
- Introducir el número del parámetro QS, desde el cual el TNC debe calcular la longitud, confirmar con la tecla ENT
- Cerrar la expresión entre paréntesis con la tecla ENT y finalizar la introducción con la tecla END

Ejemplo: calcular longitud desde QS15

37 Q52 = STRLEN (SRC_QS15)

Comparar orden alfabético

Con la función **STRCOMP** se puede comparar el orden alfabético de parámetros de string.

 \triangleleft

STRCOMP

- Seleccionar funciones de parámetros Q
- FORMULA
- Seleccionar la función FORMEL
- Introducir el número del parámetro Q, en el cual el TNC debe memorizar el resultado comparativo , confirmar con la tecla ENT
- Conmutar función de softkey
- Seleccionar la función para comparar parámetros de cadenas de texto
- Introducir el número del primer parámetro QS a comparar por el TNC, confirmar con la tecla ENT
- Introducir el número del segundo parámetro QS a comparar por el TNC, confirmar con la tecla ENT
- Cerrar la expresión entre paréntesis con la tecla ENT y finalizar la introducción con la tecla END
- El TNC emite de nuevo los siguientes resultados:
 - **0**: los parámetros QS comparados son idénticos
 - +1: el primer parámetro QS se encuentra alfabéticamente antes del segundo parámetro QS
 - -1: el primer parámetro QS se encuentra alfabéticamente después del segundo parámetro QS

Ejemplo: comparae el orden alfabético de QS12 y QS14

37 Q52 = STRCOMP (SRC_QS12 SEA_QS14)

10.12 Parámetros Q predeterminados

El TNC memoriza valores en los parámetros Q100 a Q122. A los parámetros Q se les asignan:

- Valores del PLC
- Indicaciones sobre la herramienta y el cabezal
- Indicaciones sobre el estado de funcionamiento etc.

Valores del PLC: Q100 a Q107

El TNC emplea los parámetros Q100 a Q107, para poder aceptar valores del PLC en un programa NC.

Radio de la hta. activo: Q108

El valor activo del radio de la herramienta se asigna a Q108. Q108 se compone de:

- Radio R de la hta. (tabla de htas. o frase TOOL DEF)
- Valor delta DR de la tabla de htas.
- Valor delta DR de la frase TOOL CALL

Eje de la herramienta: Q109

El valor del parámetro Q109 depende del eje actual de la hta.:

Eje de la herramienta	Valor del parámetro
Sin definición del eje de la hta.	Q109 = -1
Eje X	Q109 = 0
Eje Y	Q109 = 1
Eje Z	Q109 = 2
Eje U	Q109 = 6
V eje	Q109 = 7
Eje W	Q109 = 8

Estado del cabezal: Q110

El valor del parámetro Q110 depende de la última función auxiliar M programada para el cabezal:

Función M	Valor del parámetro
Estado del cabezal no definido	Q110 = -1
M03: cabezal conectado, sentido horario	Q110 = 0
M04: cabezal conectado, sentido antihorario	Q110 = 1
M05 después de M03	Q110 = 2
M05 después de M04	Q110 = 3

Estado del refrigerante: Q111

Función M	Valor del parámetro
M08: refrigerante conectado	Q111 = 1
M09: refrigerante desconectado	Q111 = 0

Factor de solapamiento: Q112

El TNC asigna a Q112 el factor de solapamiento en el fresado de cajeras (MP7430).

Indicación de cotas en el programa: Q113

Durante las imbricaciones con PGM CALL, el valor del parámetro Q113 depende de las indicaciones de cotas del programa principal que llama a otros programas.

Indicación de cotas del pgm principal	Valor del parámetro
Sistema métrico (mm)	Q113 = 0
Sistema en pulgadas (pulg.)	Q113 = 1

Longitud de la herramienta: Q114

A Q114 se le asigna el valor actual de la longitud de la herramienta.

1

Coordenadas después de la palpación durante la ejecución del pgm

Después de realizar una medición con un palpador, los parámetros Q115 a Q119 contiene las coordenadas de la posición del cabezal en el momento de la palpación. Las coordenadas se refieren al punto de referencia activado en el modo de funcionamiento Manual.

Para estas coordenadas no se tienen en cuenta la longitud del vástago y el radio de la bola de palpación.

Eje de coordenadas	Valor del parámetro
Eje X	Q115
Eje Y	Q116
Eje Z	Q117
Eje IV eje Depende de la máquina	Q118
Eje V Depende de la máquina	Q119

10.13 Ejemplo de programación

Ejemplo: Elipse

Desarrollo del programa

- El contorno de las elipses se realiza por medio de muchas pequeñas rectas (definible mediante Q7) Cuantos más puntos se calculen más cortas serán las rectas y más suave la curva.
- El sentido del mecanizado se determina mediante el ángulo inicial y el ángulo final en el plano:
- Dirección del mecanizado en sentido horario: Ángulo inicial > Ángulo final
- Dirección del mecanizado en sentido antihorario: Ángulo inicial < Ángulo final
- No se tiene en cuenta el radio de la hta.

O BEGIN PGM ELLIPSE MM	
1 FN 0: Q1 = +50	Centro eje X
2 FN 0: Q2 = +50	Centro eje Y
3 FN 0: Q3 = +50	Semieje X
4 FN 0: Q4 = +30	Semieje Y
5 FN 0: Q5 = +0	Ángulo inicial en el plano
6 FN 0: Q6 = +360	Ángulo final en el plano
7 FN 0: Q7 = +40	Número de pasos de cálculo
8 FN 0: Q8 = +0	Posición angular de la elipse
9 FN 0: Q9 = +5	Profundidad de fresado
10 FN 0: Q10 = +100	Avance al profundizar
11 FN 0: Q11 = +350	Avance de fresado
12 FN 0: Q12 = +2	Distancia de seguridad para posicionamiento previo
13 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definición de la pieza en bruto
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+2.5	Definición de la herramienta
16 TOOL CALL 1 Z S4000	Llamada a la herramienta
17 L Z+250 R0 FMAX	Retirar la herramienta

`O
5
ĕ
Š
a
D
0
0
Ð
ŏ
-
0
Ľ
Ð
:
ш
m
~
0

18 CALL LBL 10	Llamada al mecanizado
19 L Z+100 RO FMAX M2	Retirar la herramienta, final del programa
20 LBL 10	Subprograma 10: Mecanizado
21 CYCL DEF 7.0 PUNTO CERO	Desplazar el punto cero al centro de la elipse
22 CYCL DEF 7.1 X+Q1	
23 CYCL DEF 7.2 Y+Q2	
24 CYCL DEF 10.0 GIRO	Calcular la posición angular en el plano
25 CYCL DEF 10.1 ROT+Q8	
26 Q35 = (Q6 - Q5) / Q7	Calcular el paso angular
27 Q36 = Q5	Copiar el ángulo inicial
28 Q37 = 0	Iniciar el contador de tramos de fresado (cortes)
29 Q21 = Q3 * COS Q36	Calcular la coordenada X del punto inicial
30 Q22 = Q4 * SIN Q36	Calcular la coordenada Y del punto inicial
31 L X+Q21 Y+Q22 RO FMAX M3	Llegada al punto inicial en el plano
32 L Z+Q12 RO FMAX	Posicionamiento previo a la distancia de seguridad en el eje de hta.
33 L Z-Q9 R0 FQ10	Desplazamiento a la profundidad de mecanizado
34 LBL 1	
35 Q36 = Q36 + Q35	Actualización del ángulo
36 Q37 = Q37 + 1	Actualización del contador de tramos de fresado (cortes)
37 Q21 = Q3 * COS Q36	Calcular la coordenada X actual
38 Q22 = Q4 * SIN Q36	Calcular la coordenada Y actual
39 L X+Q21 Y+Q22 R0 FQ11	Llegada al siguiente punto
40 FN 12: IF +Q37 LT +Q7 GOTO LBL 1	Pregunta si no esta terminado, si es sí salto a LBL 1
41 CYCL DEF 10.0 GIRO	Anular el giro
42 CYCL DEF 10.1 ROT+0	
43 CYCL DEF 7.0 PUNTO CERO	Anular el desplazamiento del punto cero
44 CYCL DEF 7.1 X+0	
45 CYCL DEF 7.2 Y+0	
46 L Z+Q12 RO FMAX	Llegada a la distancia de seguridad
47 LBL 0	Final del subprograma
48 END PGM ELLIPSE MM	

Ejemplo: Cilindro concavo con fresa esférica

Desarrollo del programa

- El programa sólo funciona con fresa radial, la longitud de la hta. se refiere al centro de la bola
- El contorno del cilindro se realiza por medio de muchas pequeñas rectas (definible mediante Q13) Cuantos más puntos se definan, mejor será el contorno.
- El cilindro se fresa en tramos longitudinales (aquí: paralelos al eje Y)
- El sentido del fresado se determina mediante el ángulo inicial y el ángulo final en el espacio: Dirección del mecanizado en sentido horario: Ángulo inicial > Ángulo final Dirección del mecanizado en sentido antihorario: Ángulo inicial < Ángulo final</p>
- El radio de la hta. se corrige automáticamente

O BEGIN PGM ZYLIN MM	
1 FN 0: Q1 = +50	Centro eje X
2 FN 0: Q2 = +0	Centro eje Y
3 FN 0: Q3 = +0	Centro eje Z
4 FN 0: Q4 = +90	Ángulo inicial en el espacio (plano Z/X)
5 FN 0: Q5 = +270	Ángulo final en el espacio (plano Z/X)
6 FN 0: Q6 = +40	Radio del cilindro
7 FN 0: Q7 = +100	Longitud del cilindro
8 FN 0: Q8 = +0	Posición angular en el plano X/Y
9 FN 0: Q10 = +5	Sobremedida del radio del cilindro
10 FN 0: Q11 = +250	Avance al profundizar
11 FN 0: Q12 = +400	Avance de fresado
12 FN 0: Q13 = +90	Número de pasos
13 BLK FORM 0.1 Z X+0 Y+0 Z-50	Definición de la pieza en bruto
15 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+3	Definición de la herramienta
16 TOOL CALL 1 Z S4000	Llamada a la herramienta
17 L Z+250 RO FMAX	Retirar la herramienta
18 CALL LBL 10	Llamada al mecanizado
19 FN 0: Q10 = +0	Anular la sobremedida
ón	

aci	
Ĩ	
gra	
20 D	
e	
o d	
ld	
em	
Ξ	
.13	
10	

20 CALL LBL 10	Llamada al mecanizado
21 L Z+100 R0 FMAX M2	Retirar la herramienta, final del programa
22 LBL 10	Subprograma 10: Mecanizado
23 Q16 = Q6 - Q10 - Q108	Calcular la sobremedida y la hta. en relación al radio del cílindro
24 FN 0: Q20 = +1	Iniciar el contador de tramos de fresado (cortes)
25 FN 0: Q24 = +Q4	Copiar el ángulo en el espacio (plano Z/X)
26 Q25 = (Q5 - Q4) / Q13	Calcular el paso angular
27 CYCL DEF 7.0 PUNTO CERO	Desplazar el punto cero al centro del cilindro (eje X)
28 CYCL DEF 7.1 X+Q1	
29 CYCL DEF 7.2 Y+Q2	
30 CYCL DEF 7.3 Z+Q3	
31 CYCL DEF 10.0 GIRO	Calcular la posición angular en el plano
32 CYCL DEF 10.1 ROT+Q8	
33 L X+0 Y+0 R0 FMAX	Posicionamiento previo en el plano en el centro del cilindro
34 L Z+5 R0 F1000 M3	Posicionamiento previo en el eje del cabezal
35 LBL 1	
36 CC Z+0 X+0	Fijar el polo en el plano Z/X
37 LP PR+Q16 PA+Q24 FQ11	Llegada a la pos. inicial sobre el cilindro, profundización inclinada en la pieza
38 L Y+Q7 R0 FQ12	Tramo longitudinal en la dirección Y+
39 FN 1: Q20 = +Q20 + +1	Actualización del contador de tramos de fresado (cortes)
40 FN 1: Q24 = +Q24 + +Q25	Actualización del ángulo en el espacio
41 FN 11: IF +Q20 GT +Q13 GOTO LBL 99	Pregunta si esta terminado, en caso afirmativo salto al final
42 LP PR+Q16 PA+Q24 FQ11	Aproximación al "arco" para el siguiente tramo longitudinal
43 L Y+0 R0 FQ12	Tramo longitudinal en la dirección Y-
44 FN 1: Q20 = +Q20 + +1	Actualización del contador de tramos de fresado (cortes)
45 FN 1: Q24 = +Q24 + +Q25	Actualización del ángulo en el espacio
46 FN 12: IF +Q20 LT +Q13 GOTO LBL 1	Pregunta si no esta terminado, si es sí salto a LBL 1
47 LBL 99	
48 CYCL DEF 10.0 GIRO	Anular el giro
49 CYCL DEF 10.1 ROT+0	
50 CYCL DEF 7.0 PUNTO CERO	Anular el desplazamiento del punto cero
51 CYCL DEF 7.1 X+0	
52 CYCL DEF 7.2 Y+0	
53 CYCL DEF 7.3 Z+0	
54 LBL 0	Final del subprograma
55 END PGM ZYLIN	

i

Ejemplo: Esfera convexa con fresa cilíndrica

Desarrollo del programa

- El programa sólo funciona con una fresa cónica
- El contorno de la esfera se define mediante muchas rectas pequeñas)plano Z/X, se define mediante Q14). Cuando más pequeño sea el paso angular mejor se define el contorno.
- El número de pasos se determina mediante el paso angular en el plano (mediante Q18)
- La esfera se fresa en pasos 3D de abajo hacia arriba
- El radio de la hta. se corrige automáticamente

O BEGIN PGM KUGEL MM	
1 FN 0: Q1 = +50	Centro eje X
2 FN 0: Q2 = +50	Centro eje Y
3 FN 0: Q4 = +90	Ángulo inicial en el espacio (plano Z/X)
4 FN 0: Q5 = +0	Ángulo final en el espacio (plano Z/X)
5 FN 0: Q14 = +5	Paso angular en el espacio
6 FN 0: Q6 = +45	Radio de la esfera
7 FN 0: Q8 = +0	Ángulo inicial en la posición de giro en el plano X/Y
8 FN 0: Q9 = +360	Ángulo final en la posición de giro en el plano X/Y
9 FN 0: Q18 = +10	Paso angular en el plano X/Y para desbaste
10 FN 0: Q10 = +5	Sobremedida del radio de la esfera para el desbaste
11 FN 0: Q11 = +2	Distancia de seguridad para posicionamiento previo en el eje de hta.
12 FN 0: Q12 = +350	Avance de fresado
13 BLK FORM 0.1 Z X+0 Y+0 Z-50	Definición de la pieza en bruto
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+7.5	Definición de la herramienta
16 TOOL CALL 1 Z S4000	Llamada a la herramienta
17 L Z+250 RO FMAX	Retirar la herramienta

i

18 CALL LBL 10	Llamada al mecanizado
19 FN 0: Q10 = +0	Anular la sobremedida
20 FN 0: Q18 = +5	Paso angular en el plano X/Y para el acabado
21 CALL LBL 10	Llamada al mecanizado
22 L Z+100 RO FMAX M2	Retirar la herramienta, final del programa
23 LBL 10	Subprograma 10: Mecanizado
24 FN 1: Q23 = +Q11 + +Q6	Cálculo de la coordenada Z para el posicionamiento previo
25 FN 0: Q24 = +Q4	Copiar el ángulo en el espacio (plano Z/X)
26 FN 1: Q26 = +Q6 + +Q108	Corregir el radio de la espera para el posicionamiento previo
27 FN 0: Q28 = +Q8	Copiar la posición de giro en el plano
28 FN 1: Q16 = +Q6 + -Q10	Tener en cuenta la sobremedida en el radio de la esfera
29 CYCL DEF 7.0 PUNTO CERO	Desplazamiento del punto cero al centro de la esfera
30 CYCL DEF 7.1 X+Q1	
31 CYCL DEF 7.2 Y+Q2	
32 CYCL DEF 7.3 Z+0	
33 CYCL DEF 10.0 GIRO	Cálculo del ángulo inicial de la posición de giro en el plano
34 CYCL DEF 10.1 ROT+Q8	
35 LBL 1	Posicionamiento previo en el eje del cabezal
36 CC X+0 Y+0	Fijar el polo en el plano X/Y para el posicionamiento previo
37 LP PR+Q26 PA+Q8 R0 FQ12	Posicionamiento previo en el plano
38 CC Z+0 X+Q108	Fijar el polo en el plano Z/X para desplazar el radio de la hta.
39 L Y+0 Z+0 FQ12	Desplazamiento a la profundidad deseada

40 LBL 2	
41 LP PR+Q6 PA+Q24 R9 FQ12	Desplazar hacia arriba el "arco" aproximado
42 FN 2: Q24 = +Q24 - +Q14	Actualización del ángulo en el espacio
43 FN 11: IF +Q24 GT +Q5 GOTO LBL 2	Pregunta si el arco está terminado, si no retroceso a LBL 2
44 LP PR+Q6 PA+Q5	Llegada al ángulo final en el espacio
45 L Z+Q23 R0 F1000	Retroceso según el eje de la hta.
46 L X+Q26 RO FMAX	Posicionamiento previo para el siguiente arco
47 FN 1: Q28 = +Q28 + +Q18	Actualización de la posición de giro en el plano
48 FN 0: Q24 = +Q4	Anular el ángulo en el espacio
49 CYCL DEF 10.0 GIRO	Activar la nueva posición de giro
50 CYCL DEF 10.0 ROT+Q28	
51 FN 12: IF +Q28 LT +Q9 GOTO LBL 1	
52 FN 9: IF +Q28 EQU +Q9 GOTO LBL 1	Pregunta si no está terminado, en caso afirmativo salto al LBL 1
53 CYCL DEF 10.0 GIRO	Anular el giro
54 CYCL DEF 10.1 ROT+0	
55 CYCL DEF 7.0 PUNTO CERO	Anular el desplazamiento del punto cero
56 CYCL DEF 7.1 X+0	
57 CYCL DEF 7.2 Y+0	
58 CYCL DEF 7.3 Z+0	
59 LBL 0	Final del subprograma
60 END PGM CILINDRO MM	

1

BLOCK.

ANKIERED

6

AS

-- Z X C V

0

00

000

0

5

990

8 R

C

٩

BLOCK

LÖSCHEN

X+8 Y+8 7 X+7.908 Y+6.787 C 8 L X+10.538 Y+23.93 9 CC X-29 Y+30 10 X+10.591 C Y+35.701 X+7.153 Y+59.553 11 L 12 CC X+22 Y+61.693 13 C X+16.818 Y+75.77 14 CC X+12.5 Y+87.5 15 C X+12.5 Y+100 DR+ 16 L X-12.5 RR 17 CC X-12.5 Y+87.5

BLOCK

EINFOGEN.

BLOCK

KOPTEREN

Test del programa y ejecución del programa

11.1 Gráficos

Aplicación

En los modos de funcionamiento de Ejecución del pgm y en Test del pgm, el TNC simula gráficamente el mecanizado. Mediante softkeys se selecciona:

- Vista en planta
- Representación en tres planos
- Representación 3D

El gráfico del TNC corresponde a la representación de una pieza mecanizada con una herramienta cilíndrica. Cuando está activada la tabla de herramientas se puede representar el mecanizado con una fresa esférica. Para ello se introduce en la tabla de herramientas R2 = R.

- El TNC no muestra el gráfico cuando
- el programa actual no contiene una definición válida de la pieza en bruto
- no está seleccionado ningun programa

La simulación gráfica no se puede emplear en las partes parciales de un programa o en programas con movimientos de ejes giratorios: en estos casos el TNC emite un aviso de error.

Resumen: Vistas

En los modos de funcionamiento de ejecución del pgm y test del pgm el TNC muestra las siguientes softkeys:

Limitaciones durante la ejecución del programa

El mecanizado no se puede simular gráficamente de forma simultánea cuando el procesador del TNC esté saturado por cálculos muy complicados o por superficies de mecanizado muy grandes. Ejemplo: Planeado a través de toda la pieza en bruto con una herramienta grande. El TNC no continua con el gráfico y emite el texto **ERROR** en la ventana del gráfico. Sin embargo se sigue ejecutando el mecanizado.

Vista en planta

Esta simulación gráfica es la más rápida.

- Seleccionar con la softkey la vista en planta
- Para la representación de profundidad de este gráfico es válido:

"Cuanto más profundo, más oscuro"

Representación en tres planos

La representación se realiza en vista en planta con dos secciones, similar a un plano técnico.

En la representación en 3 planos se dispone de funciones para la ampliación de una sección, véase "Ampliación de una sección" en pág. 406.

Además se puede desplazar el plano de la sección mediante softkeys:

- Seleccionar la softkey para la visualización de la pieza en 3 planos
- Conmutar la carátula de softkey y seleccionar softkey para los planos de corte
- ▶ EI TNC muestra los siguientes softkeys:

Función	Softkeys	
Desplazar el plano de la sección vertical hacia la dcha. o hacia la izq.		
Desplazar el plano de la sección vertical hacia delante o hacia atrás	Ţ	
Desplazar el plano de la sección horizontal hacia arriba o hacia abajo		•

Durante el desplazamiento se puede observar en la pantalla la posición del plano de la sección.

El ajuste básico del plano de la sección se selecciona de tal manera, que esté en el centro de la pieza en el plano de mecanizado y en el eje de la herramienta.

Representación 3D

El TNC muestra la pieza en el espacio.

Es posible girar la representación 3D alrededor del eje vertical e inclinarlo alrededor del eje horizontal. Los contornos de la pieza en bruto para iniciar la simulación gráfica se representan mediante un marco.

Los contornos de la pieza en bruto para iniciar la simulación gráfica se representan mediante un marco.

En el modo de funcionamiento test del programa están disponibles las funciones para la ampliación de una sección, véase "Ampliación de una sección" en pág. 406.

Seleccionar la representación 3D con esta softkey.

Girar la representación 3D

Conmutar la carátula de softkeys hasta que aparece la softkey de selección para las funciones Girar.

Seleccionar las funciones para girar:

Ampliación de una sección

Es posible modificar el corte en los modos de funcionamiento Test de programa y Ejecución de programa en las vistas Representación en 3 planos y Representación 3D.

Para ello debe estar parada la simulación gráfica o la ejecución del programa. La ampliación de una sección actua siempre en todos los modos de representación.

Modificar la ampliación de la sección

Veáse las softkeys en la tabla

- Si es preciso se para la simulación gráfica
- Conmutar la barra de softkeys en el modo de funcionamiento test de programa o durante su funcionamiento, hasta que aparezca la softkey de selección para la ampliación de la sección.

- Seleccionar las funciones para el aumento de la sección
- Seleccionar el lado de la pieza con la softkey (ver tabla de abajo)
- Ampliar o reducir la pieza en bruto: mantener pulsada la softkey REDUCIR o bien AMPLIAR
- Conmutar la carátula de softkeys y seleccionar ACEPTAR SECCIÓN
- Reiniciar el test del programa o la ejecución del mismo con la softkey START (RESET + START reproduce de nuevo la pieza en bruto original)

Coordenadas en la ampliación de sección

Durante una ampliación de sección el TNC muestra la cara de la pieza seleccionada y cada eje de las coordenadas

Función	Softkeys	
Seleccionar la parte izq./dcha. de la pieza		
Seleccionar la parte posterior/frontal		
Seleccionar la parte superior/inferior	↓ ↓	t
Desplazar la superficie a cortar para reducir o aumentar la pieza en bruto	-	+
Aceptar la sección	TRANSFER. DETALLE	

Los mecanizados simulados hasta ahora no se contemplan tras el ajuste de un nuevo corte de la pieza. El TNC represena la zona ya procesada como pieza sin mecanizar.

Repetición de la simulación gráfica

Un programa de mecanizado se puede simular gráficamente cuantas veces se desee. Para ello se puede anular la pieza en bruto del gráfico o una sección ampliada del mismo.

Función	Softkey
Visualizar la pieza sin mecanizar en la última ampliación de sección seleccionada	BORRAR BLK FORM
Volver a la ampliación de la sección, para que el TNC muestre el bloque mecanizado o no, según la forma	BLOQUE COMO BLK FORM

BLK programada

Con la softkey PIEZA EN BRUTO COMO BLK FORM el TNC vuelve a visualizar la pieza en bruto en el tamaño programado.

Determinación del tiempo de mecanizado

funcionamiento de ejecución del programa

Visualización del tiempo desde el inicio del programa hasta el final del mismo. Si hay una interrupción se para el tiempo.

Test del programa

Visualización del tiempo que el TNC calcula en los desplazamientos de la herramienta con avance. El tiempo calculado por el TNC sólo tiene en cuenta los calculos del tiempo de acabado, ya que el TNC no tiene en cuenta los tiempos que dependen de la máquina (p.ej. para el cambio de herramienta).

Selección de la función del cronómetro

Conmutar la carátula de softkeys hasta que el TNC muestra las siguientes softkeys con las funciones del cronómetro:

Funciones del cronómetro	Softkey
Memorizar el tiempo visualizado	
Visualizar la suma de los tiempos memorizados y visualizados	SUMAR
Borrar el tiempo visualizado	RESET 00:00:00

i

11.2 Representación de la p<mark>iez</mark>a en bruto en el espacio de trabajo

11.2 Representación de la pieza en bruto en el espacio de trabajo

Aplicación

En el modo de funcionamiento Test del programa se puede comprobar gráficamente la posición de la pieza en bruto o del punto de referencia en el espacio de la máquina y se puede activar la supervisión del espacio de trabajo en el modo de funcionamiento Test del programa: para ello se pulsa la softkey **PIEZA EN BRUTO EN EL ESPACIO DE TRABAJO**. Con la softkey **transf. límite de final de carrera SW** (segunda carátula de softkeys) puede activarse o desactivarse la función.

Un nuevo paralelógramo representa la pieza en bruto, cuyas medidas están detalladas en la tabla **FORMA BLK**. El TNC toma las medidas de la definición de la pieza en bruto del programa seleccionado. El cubo de la pieza en bruto define el sistema de coordenadas de introducción, cuyo punto cero se encuentra dentro del cubo del campo de desplazamiento.

Cuando la supervisión del espacio de trabajo está desactivada durante un teste de programa no tiene importancia la posición de la pieza sin mecanizar en el espacio de trabajo. Al activar el control de la zona de trabajo es necesario desplazar la pieza sin mecanizar "gráficamente", de tal manera que la pieza se encuentre dentro de la zona de trabajo. Para ello emplear las softkeys indicadas en la tabla.

A partir de aquí es posible activar el punto de referencia actual para el modo de funcionamiento test de programa (ver tabla siguiente, última línea).

Función	Softkeys	
Desplazar la pieza sin mecanizar en dirección X positiva/negativa	X+ X-	
Desplazar la pieza sin mecanizar en dirección Y positiva/negativa	Y + Y -	
Desplazar la pieza sin mecanizar en dirección Z positiva/negativa	Z+ Z-	
Visualizar la pieza en bruto referida al punto de referencia fijado		
Conexión o desconexión de la función de supervisión	Supervi. lim. soft.	

11.3 Funciones para la visualización del programa

Resumen

En los modos de funcionamiento de Ejecución del pgm y en Test del programa, el TNC visualiza softkeys con las cuales se puede visualizar el programa de mecanizado por páginas:

Funciones	Softkey
Pasar una página hacia atrás en el programa	
Pasar página hacia delante en el programa	
Seleccionar el principio del programa	INICIO
Seleccionar el final del programa	FIN

i

11.4 Test del programa

Aplicación

En el modo de funcionamiento Test del programa se simula el desarrollo de programas y partes del programa para excluir errores en la ejecución de los mismos. El TNC le ayuda a buscar

- incompatibilidades geométricas
- indicaciones que faltan
- saltos no ejecutables
- daños en el espacio de trabajo

Además se pueden emplear las siguientes funciones:

- Test del programa frase por frase
- Saltar frases
- Funciones para la representación gráfica
- Determinación del tiempo de mecanizado
- visualización de estados adicional

Durante la simulación gráfica, el TNC no puede simular todos los movimientos de recorrido realizados por la máquina, como p.ej.,

- Movimientos de recorrido en el cambio de herramienta, que el fabricante de la máquina ha definido en una macro de cambio de herramienta o a través del PLC
- Posicionamientos, que el fabricante de la máquina ha definido en una marcro de funciones M
- Posicionamientos, que el fabricante de la máquina ejecuta a través del PLC
- Posicionamientos, que ejecutan un cambio de palets

Por este motivo, HEIDENHAIN recomienda cargar cada programa con precaución, aún cuando el test del programa no haya detectado ningún aviso de error ni daños visibles en la pieza.

El TNC inicia un test de programa después de una llamada de herramienta siempre en la siguiente posición:

- En el plano de mecanizado sobre el punto MIN definido en el BLK FORM
- En el eje de herramienta 1 mm fuera del punto MAX definido en el BLK FORM

Si se llama a la misma herramienta, entonces el TNC continúa simulando el programa desde la última posición programada antes de la llamada de herramienta.

A fin de tener también un comportamiento definido durante la ejecución, debe desplazarse después de un cambio de herramienta hasta una posición desde la cual el TNC pueda posicionarse para el mecanizado sin peligro de colisión.

Ejecución del test del programa

Con el almacén central de herramientas activado, se tiene que activar una tabla de herramientas para el test del programa (estado S). Para ello se selecciona una tabla de htas. en el funcionamiento Test del programa mediante la gestión de ficheros (PGM MGT).

- Seleccionar el modo Test del programa
- Visualizar la gestión de ficheros con la tecla PGM MGT y seleccionar el fichero que se quiere verificar o
- Seleccionar el principio del programa: Seleccionar con la tecla GOTO fila "0" y confirmar la introducción con la tecla ENT

EI TNC muestra los siguientes softkeys:

Funciones	Softkey
Reiniciar la pieza en bruto y verificar el programa completo	RESET + START
Verificar todo el programa	START
Verificar cada frase del programa por separado	START INDIVID.
Detener el test del programa (la softkey sólo aparece una vez se ha iniciado el test del programa)	STOP

El test de programa se puede interrumpir y retomar siempre que se desee, incluso dentro de ciclos de mecanizado. Para poder continuar el test, no se deben ejecutar las siguientes acciones:

- Seleccionar otra frase con la tecla GOTO
- Realizar modificaciones en el programa
- Modificar el modo de funcionamiento
- Seleccionar un nuevo programa

11.5 Ejecución de programa

Empleo

En la ejecución contínua del programa el TNC ejecuta un programa de mecanizado de forma continua hasta su final o hasta una interrupción.

En el modo de funcionamiento ejecución del programa frase a frase el TNC ejecuta cada frase por separado después de activar el pulsador externo de arranque START.

Se pueden emplear las siguientes funciones del TNC para los modos de funcionamiento de ejecución del programa

- Interrupción de la ejecución del programa
- ejecución del programa a partir de una frase determinada
- saltar frases
- editar la tabla de herramientas TOOL.T
- Comprobación y modificación de parámetros Q
- superposición de posicionamientos del volante
- Funciones para la representación gráfica
- visualización de estados adicional

Ejecutar el programa de mecanizado

Preparación

- 1 fijar la pieza a la mesa de la máquina
- 2 Fijar el punto de referencia
- 3 seleccionar las tablas necesarias y los ficheros de palets (estado M)
- 4 seleccionar el programa de mecanizado (estado M)

Con el potenciómetro de override se pueden modificar el avance y las revoluciones.

Con la softkey FMAX se puede reducir la velocidad de la marcha rápida, cuando se quiere ejecutar el programa NC. El valor programado permanece activado incluso después de desconectar/conectar la máquina. Para poder volver a reproducir la velocidad en marcha rápida, debe programarse de nuevo el correspondiente valor.

Ejecución contínua del programa

Iniciar el programa de mecanizado con el pulsador externo de arranque START

Ejecución del programa frase a frase

Iniciar cada frase del programa de mecanizado con el pulsador externo de arranque START

11.5 Ejecución de programa

Interrupción del mecanizado

Se puede interrumpir la ejecución del programa de diferentes modos:

- Interrupciones programadas
- Pulsador externo STOP

Si durante la ejecución del programa el TNC regista un error, se interrumpe automáticamente el mecanizado.

Interrupciones programadas

Se pueden determinar interrupciones directamente en el programa de mecanizado. El TNC interrumpe la ejecución del programa tan pronto como el programa de mecanizado se haya ejecutado hasta una frase que contenga una de las siguientes introducciones:

- STOP (con y sin función auxiliar)
- Función auxiliar M0, M2 ó M30
- Función auxiliar M6 (determinada por el constructor de la máquina)

Interrupción mediante el pulsador externo de parada STOP

- Accionar el pulsador externo STOP: La frase que se está ejecutando en el momento de accionar el pulsador no se termina de realizar; en la visualización de estados aparece el símbolo de Parada NC parpadeando (ver tabla).
- Si no se quiere continuar con la ejecución del mecanizado, se puede anular con la softkey STOP INTERNO: el símbolo de Parada NC desaparece en la visualización de estados. En este caso iniciar el programa desde el principio.

Símbolo Significado

Se ha parado el programa

Desplazamiento de los ejes de la máquina durante una interrupción

Durante una interrupción se pueden desplazar los ejes de la máquina como en el modo de funcionamiento Manual.

Ejemplo de aplicación: Retirar el cabezal después de romperse la hta.

- Interrupción del mecanizado
- Activación de los pulsadores externos de manual: Pulsar la softkey DESPLAZAMIENTO MANUAL
- Desplazar los ejes de la máquina con los pulsadores externos de manual

En algunas máquinas hay que pulsar después de la softkey DESPLAZAMIENTO MANUAL el pulsador externo START para activar los pulsadores externos de manual. Rogamos consulten el manual de su máquina.

Continuar con la ejecución del programa después de una interrupción

Si se interrumpe la ejecución del programa durante un ciclo de mecanizado, deberá realizarse la reentrada al principio del ciclo. El TNC deberá realizar de nuevo los pasos de mecanizado ya ejecutados.

Cuando se interrumpe la ejecución del programa dentro de una repetición parcial del programa o dentro de un subprograma, deberá alcanzarse de nuevo la posición de la interrupción con la función AVANCE HASTA FRASE.

En la interrupción de la ejecución de un programa el TNC memoriza

- Ios datos de la última herramienta llamada
- la traslación de coordenadas activada (p.ej. desplazamiento del punto cero, giro, espejo)
- las coordenadas del último centro del círculo definido

 Rogamos tengan en cuenta que los datos memorizados permanecen activados hasta que se anulen (p.ej. seleccionando un nuevo programa).

Los datos memorizados se utilizan para la reentrada al contorno después del desplazamiento manual de los ejes de la máquina durante una interrupción (softkey ALCANZAR POSICION).

Continuar la ejecución del pgm con la tecla START

Después de una interrupción se puede continuar con la ejecución del programa con el pulsador externo START, siempre que el programa se haya detenido de una de las siguientes maneras:

- Accionando el pulsador externo STOP
- Interrupción programada

Continuar con la ejecución del pgm después de un error

Cuando el error no es intermitente:

- Eliminar la causa del error
- ▶ Borrar el mensaje de error de la pantalla: Pulsar la tecla CE
- Arrancar de nuevo o continuar con la ejecución del pgm en el mismo lugar donde fue interrumpido

En caso de "error en el procesamiento de datos":

- Cambiar al MODO MANUAL
- ▶ Pulsar la softkey OFF
- Eliminar la causa del error
- Arrancar de nuevo

Si el error se repite anote el error y avise al servicio técnico.

Reentrada deseada al programa (proceso hasta una frase)

El constructor de la máquina activa y ajusta la función AVANCE HASTA FRASE. Rogamos consulten el manual de su máquina.

Con la función AVANCE HASTA FRASE (proceso en una frase) se puede ejecutar un programa de mecanizado a partir de una frase N libremente elegida. El TNC tiene en cuenta el cálculo del mecanizado de la pieza hasta dicha frase. Se puede representar gráficamente.

Cuando se interrumpe un programa con el STOP INTERNO, el TNC ofrece automáticamente la frase N, en la cual se ha interrumpido el programa, para la reentrada.

El proceso desde una frase no deberá comenzar en un subprograma.

Todos los programas, tablas y ficheros de palets deberán estar seleccionados en un modo de funcionamiento de ejecución del programa (estado M).

Si el programa contiene una interrupción programada antes del final del avance de frase, se efectuará dicha interrupción. Para continuar con el avance de frase, pulsar la tecla externa START.

Durante la ejecución de la frase no son posibles las consultas de manejo.

Después de un proceso desde una frase, la hta. se desplaza con la función ALCANZAR POSICION a la posición calculada.

La corrección de la longitud de la herramienta tiene efecto realizando la llamada a la herramienta y a continuación una frase de posicionamiento. Esto es válido tambien, si sólo se ha modificado la longitud de la herramienta.

Todos los ciclos de palpación son saltados por el TNC en un avance hasta una frase. Los parámetros descritos en estos ciclos no contienen por tanto ningún valor.

Ejecución continua 113.H	Programar
3 Distribution contains the view of 2-20 1 Distribution for 2 x:100 view 2-20 2 Distribution for 2 x:200 view 2-20 3 Distribution for 2 x:200 view 2-20 4 L 2:10 Re FHAX HS 5 L X:50 view 3 Re FHAX 5 C View 10	я с с с с с с с с с с с с с с с с с с с
OK INTERRUP.	· · · · ·
X +52.580 ¥ +50.000 Z +10	.363
C +360.000 REAL C T 5 Z 5 0 F 000/017 1503	M 5
VOK INTERRUF.	

Seleccionar la primera frase del programa actual como inicio para el proceso hasta una frase: Introducir GOTO "0".

- Seleccionar el avance hasta una frase: Pulsar softkey AVANCE HASTA FRASE N
- Avance hasta N: Introducir el número N de la frase, en el cual debe finalizar el proceso
- Programa: Introducir el nombre del programa en el cual se encuentra la frase N
- Repeticiones: Introducir el nº de repeticiones que deben tenerse en cuenta en el proceso desde una frase, en el caso de que la frase N se encuentre dentro de una repetición parcial del programa
- Iniciar el proceso desde una frase: Pulsar la tecla externa START
- Aproximarse al contorno (ver siguiente párrafo)

Reentrada al contorno

Con la función ALCANZAR POSICION el TNC desplaza la herramienta al contorno de la pieza en las siguientes situaciones:

- Reentrada después de desplazar los ejes de la máquina durante una interrupción, ejecutada sin INTERNAL STOP
- Reentrada después del proceso desde una frase con AVANCE HASTA FRASE, p.ej. después de una interrupción con STOP INTERNO
- Seleccionar la reentrada al contorno: Seleccionar la softkey RESTORE POSITION
- Restablecer el estado de la máquina
- Desplazar los ejes en la secuencia que propone el TNC en la pantalla: Activar el pulsador externo de arranque START o bien
- Desplazar los ejes en la secuencia deseada: Pulsar las softkeys DESPLAZAR X, DESPLAZAR Z etc. y activarlas correspondientemente con la tecla externa START
- Proseguir con el mecanizado: Pulsar la tecla externa START

11.6 Arranque automático del programa

Aplicación

Para poder realizar un arranque automático del programa, el TNC debe estar preparado por el constructor de su máquina, véase el manual de la máquina.

cerrada.

La función Autostart no debe utilizarse en aquellas máquinas que no dispongan de una zona de trabajo

Mediante la softkey AUTOSTART (véase fig. arriba dcha.), se puede activar un programa de mecanizado en un momento determinado, en el correspondiente modo de funcionamiento:

- Visualizar la ventana para determinar el momento de iniciar dicho pgm (véase la figura en el centro a la dcha.)
- Hora (Hora:Min:Seg): Hora a la que debe iniciarse el programa
- Fecha (DD.MM.AAAA): Fecha a la que debe iniciarse el programa
- ▶ Para activar el inicio: seleccionar la softkey OK

Ejecución continua 456.H	Programa	r
Instructure Instructure <thinstructure< th=""> <thinstructure< th=""></thinstructure<></thinstructure<>		
X +52.580 ¥ +50.000 Z C +360.000 Z REAL C T 5 2 0 F 0mm/resident over 0K FINALZ INTERRUP.	+10.363	DIAGNOSE

1

11.7 Saltar frases

Aplicación

Las frases que se caracterizan en la programación con el signo "/" se pueden saltar en el test o la ejecución del programa:

- No ejecutar o verificar las frases del programa con el signo "/": Poner la softkey en ON

Ejecutar o verificar las frases del programa con el signo "/": Poner la softkey en OFF

Esta función no actúa en las frases TOOL DEF.

Después de una interrupción de tensión sigue siendo válido el último ajuste seleccionado.

Añadir el signo "/"

En el modo de funcionamiento Editar/Guardar programa seleccionar la frase en la que se debe añadir el signo que debe desaparecer

Seleccionar la softkey VISUALIZAR FRASE

Borrar el signo "/"

En el modo de funcionamiento Editar/Guardar programa seleccionar la frase en la que se debe borrar el signo que debe desaparecer

Seleccionar la softkey SUPRIMIR FRASE

11.8 Parada programada en la ejecución del programa

Aplicación

EL TNC puede interrumpir la ejecución del programa o el test del programa en las frases que se haya programado M01. Si se utiliza M01 en el modo de funcionamiento ejecución del programa, el TNC no desconecta el cabezal y el refrigerante.

- No interrumpir la ejecución o el test del programa en frases con M01: Colocar la softkey en OFF
- Interrupción de la ejecución o el test del programa en frases con M01: fijar la softkey en ON

i

Funciones MOD

12.1 Seleccionar la función MOD

A través de las funciones MOD se pueden seleccionar las visualizaciones adicionales y las posibilidades de introducción. Las funciones MOD disponibles, dependen del modo de funcionamiento seleccionado.

Selección de las funciones MOD

Seleccionar el modo de funcionamiento en el cual se quieren modificar las funciones MOD.

Seleccionar las funciones MOD: Pulsar la tecla MOD.

Modificar ajustes

En el menú visualizado seleccionar la función MOD con las teclas cursoras

Para modificar un ajuste existen tres posibilidades dependiendo de la función seleccionada:

- Programación directa de valores numéricos
- Modificar el ajuste pulsando la tecla ENT
- Modificar un ajuste a través de la ventana de selección. Cuando existen varias posibilidades de ajuste, se puede visualizar una ventana pulsando la tecla GOTO, en la cual se pueden ver todos los ajustes posibles. Seleccionar directamente el ajuste deseado pulsando las teclas cursoras y, a continuación, confirmar con la tecla ENT. Si no se desea modificar el ajuste, se cierra la ventana con la tecla END.

Salir de las funciones MOD

Finalizar la función MOD: Pulsar la softkey END o la tecla END

Resumen de funciones MOD

Dependiendo del modo de funcionamiento seleccionado se pueden realizar las siguientes modificaciones:

Memorizar/Editar programas:

- Visualización de los diferentes números de software
- Introducción del código
- Parámetros de usuario específicos de la máquina

Test del programa:

- Visualización de los diferentes números de software
- Visualizar la tabla de herramientas activa en el test de programa
- Visualizar la tabla de puntos cero activa en el test de programa

En todos los demás modos de funcionamiento:

- Visualización de los diferentes números de software
- Selección de la visualización de posiciones
- Determinación de la unidad métrica (mm/pulg.)
- Determinación del lenguaje de programación para MDI
- Determinar los ejes para la aceptación de la posición real
- Visualización de los tiempos de mecanizado

Programar	Funcionamiento man
+52.580 POSICION POSICION	REAL C TYFEPPIP.
F @mp/min Our isem H s SST 13:13 JVR // TIENPO H HRO. ()	REAL I T S Z S 0 % 130 % 140

12.2 Números de software

Aplicación

Los números de software siguientes se encuentran tras la selección de las funciones MOD en la pantalla TNC:

- Tipo de control: designación del control (se administra por HEIDENHAIN)
- Software NC: Número del software NC (se administra por HEIDENHAIN)
- **NC Kern**: Número del software NC (se administra por HEIDENHAIN)
- Software PLC: Número o nombre del software PLC (se administra por el fabricante de la máquina)

12.3 Selección de la visualización de posiciones

Aplicación

Para el funcionamiento Manual y los modos de funcionamiento de ejecución del programa se puede influir en la visualización de coordenadas:

En la figura de la derecha se pueden observar diferentes posiciones de la hta.

- Posición de salida
- Posición de destino de la herramienta
- Cero pieza
- Punto cero de la máquina

Para la visualización de las posiciones del TNC se pueden seleccionar las siguientes coordenadas:

Función	Visualización
Posición nominal; valor actual indicado por el TNC	NOM
Posición real; posición actual de la hta.	REAL
Posición de referencia; posición real referida al punto cero de la máquina	REFIST
Posición de referencia; posición nominal referida al punto cero de la máquina	REFSOLL
Error de arrastre; diferencia entre la posición nominal y real	E.ARR
Recorrido restante hasta la posición programada; diferencia entre la posición real y la posición final	RESTW

Con la función MOD Visualización 1 de posiciones se selecciona la visualización de posiciones en la visualización de estados.

Con la función MOD Visualización 2 de posiciones se selecciona la visualización de posiciones en la visualización de estados adicional.

12.4 Selección del sistema métrico

Aplicación

Con esta función MOD se determina si el TNC visualiza las coordenadas en mm o en pulgadas (sistema en pulgadas).

- Sistema métrico: p.ej. X = 15,789 (mm) Función MOD cambio mm/ pulg = mm Visualización con 3 posiciones detrás de la coma
- Sistema en pulgadas: p.ej. X = 0,6216 (pulg.) Función MOD Conmutación mm/pulg = pulg. Visualización con 4 posiciones detrás de la coma

Cuando se tiene activada la visualización en pulgadas el TNC muestra también el avance en pulg./min. En un programa en pulgadas el avance se introduce con un factor 10 veces mayor.

12.5 Visualización de los tiempos de funcionamiento

Aplicación

El constructor de la máquina puede visualizar otros tiempos adicionales. ¡Rogamos consulten el manual de su máguina!

Con la softkey TIEMPO MAQUINA se pueden visualizar diferentes tiempos de funcionamiento:

Tiempo de funcion.	Significado
Control conectado	Tiempo de funcionamiento desde la puesta en marcha
Máquina conectada	Tiempo de funcionamiento de la máquina desde la puesta en marcha
Ejecución del programa	Tiempo de funcionamiento en ejecución desde la puesta en marcha

12.6 Introducción del código

Aplicación

El TNC precisa de un código para las siguientes funciones:

Función	Código
Selección de los parámetros de usuario	123
Liberar el acceso a la configuración Ethernet	NET123
Activación de las funciones especiales en la programación de parámetros Q	555343

i

12.7 Ajuste de las conexiones de datos

Interfaces serie en el TNC 320

El TNC emplea automáticamente el protocolo de transmisión LSV2 para la transmisión de datos en serie. El protocolo LSV2 está predeterminado y no puede modificarse, a excepción del ajuste de la velocidad de baudios **baudRateLsv2**). También se puede determinar otro modo de transmisión (interfaz). Entonces las posibilidades de ajuste descritas a continuación sólo son activas para la interfaz definida nuevamente.

Aplicación

Para configurar una interfaz de datos, seleccionar la gestión de ficheros (PGM MGT) y pulsar la tecla MOD. Pulsar de nuevo la tecla MOD e introducir el número clave 123. El TNC muestra el parámetro de usuario **GfgSerialInterface**, en el cual se pueden introducir los siguientes ajustes:

Ajuste de la conexión RS-232

Abrir la carpeta RS232. El TNC muestra las siguientes posibilidades de ajuste:

Ajuste de la VELOCIDAD EN BAUDIOS (baudRate)

La VELOCIDAD EN BAUDIOS (velocidad de transmisión de los datos) es de 110 a 115.220 baudios.

Ajustar protocolo (protocol)

El protocolo de transmisión de datos controla el flujo de datos de una transmisión en serie. (comparable con MP 5030)

Protocolo de transmisión de datos	Selección
Transmisión de datos estándar	STANDARD
Transmisión de datos por bloques	BLOCKWISE
Transmisión sin protocolo	RAW_DATA

Ajustar bits de datos (dataBits)

Mediante el ajuste dataBits se define, si debe transmitirse un caracter con 7 o 8 bits de datos.

Comprobar la paridad (parity)

Con el bit de paridad se pueden detectar errores de transmisión. El bit de paridad puede formarse de tres maneras distintas:

- Ninguna formación de paridad (NONE): se renuncia a una detección de errores
- Paridad par (EVEN): aquí se presenta un error, en caso de que el receptor determine una cantidad impar de bits fijados durante la evaluación.
- Paridad impar (ODD): aquí se presenta un error, en caso de que el receptor determine una cantidad par de bits fijados durante la evaluación.

Ajustar bits de parada (stopBits)

Con el bit de inicio y uno o dos bits de parada se le permite al receptor una sincronización de cada caracter transmitido durante la transmisión de datos.

Ajustar handshake (flowControl)

Dos aparatos ejercen un control de la transmisión de datos con un Handshake. Puede diferenciarse entre handshake de software y handshake de hardware.

- Ningún control de flujo de datos (NONE): el handshake no está activo
- Handshake de hardware (RTS_CTS): parada de transmisión mediante RTS activo
- Handshake de software (XON_XOFF): parada de transmisión mediante DC3 (XOFF) activo

Seleccionar el modo de funcionamiento del aparato externo (fileSystem)

En los modos de funcionamiento FE2 y FEX no se pueden utilizar las funciones "memorizar todos los programas", "memorizar el programa visualizado" y "memorizar el directorio"

Aparato externo	Funcionamiento	Símbolo
PC con software para la transmisión TNCremoNT de HEIDENHAIN	LSV2	
Unidad de discos HEIDENHAIN	FE1	
Aparatos externos, como impresora, lector, perforadora, PC sin TNCremoNT	FEX	Ŋ

Software para transmisión de datos

Para la transmisión de ficheros de TNC a TNC, debería utilizarse el software de HEIDENHAIN TNCremoNT para la transmisión de datos. Con el TNCremoNT es posible controlar todos los controles de HEIDENHAIN mediante el interfaz en serie o mediante el interfaz Ethernet.

 La versión actual de TNCremo NT puede ser descargada sin coste alguno desde la base de datos de HEIDENHAIN (www.heidenhain.es, <Servicios>, <Software>, <TNCremo NT>).

Condiciones del sistema para el TNCremoNT:

- PC con procesador 486 o superior
- Sistema operativo Windows 95, Windows 98, Windows NT 4.0, Windows 2000
- Memoria de trabajo de 16 MByte
- 5 MByte libre en su disco duro
- Una interfaz en serie libre o conexión a la red TCP/IP

Instalación bajo Windows

- Iniciar el programa de instalación SETUP.EXE con el manager de ficheros (explorador)
- Siga las instrucciones del programa de Setup

Arrancar el TNCremoNT en Windows

Pulsar en <Start>, <Programas>, <Aplicaciones HEIDENHAIN>, <TNCremoNT>

La primera vez que se inicia el TNCremoNT, éste intenta automáticamente establecer una conexión con el TNC.
Transmisión de datos entre el TNC y el TNCremoNT

Comprobar si el TNC está conectado al interfaz de datos en serie o a la red de su ordenador

Una vez iniciado el TNCremo se pueden ver en la parte izquierda de la ventana principal 1 todos los ficheros memorizados en el directorio activado A través de <Directorio>, <Cambiar carpeta> se puede elegir otra disquetera o bien otro directorio en su ordenador.

Cuando se quiere controlar la transmisión de datos desde el PC, se realiza la conexión al PC de la siguiente forma:

- Seleccionar <Fichero>, <Realizar conexión>. El TNCremo recibe la estructura del fichero y el directorio del TNC y visualiza ésta en la parte inferior de la ventana principal 2
- Para transmitir un fichero del TNC al PC, se selecciona el fichero en la ventana del TNC pulsando el botón del ratón y se arrastra el fichero marcado manteniendo pulsado el botón a la ventana del PC 1
- Para transmitir un fichero del PC al TNC, se selecciona el fichero en la ventana del PC pulsando el botón del ratón y se arrastra el fichero marcado manteniendo pulsado el botón a la ventana del TNC 2

Cuando se quiere controlar la transmisión de datos desde el TNC, se realiza la conexión al PC de la siguiente forma:

- Seleccionar <Extras>,<TNCserver>. El TNCremo se inicia ahora en el funcionamiento de servidor y puede recibir datos del TNC o bien emitir datos al TNC
- Seleccionar funciones en el TNC para la administración de datos con la tecla PGM MGT (véase "Transmisión de datos a/desde un soporte de datos externo" en pág.70) y transmitir los datos deseados

Finalizar TNCremoNT

Seleccionar el Punto de Menú <Fichero>, <Finalizar>

También debe tenerse en cuenta la función de ayuda incluida en el software del TNCremoNT, en la cual se explican todas las funciones. La llamada se realiza mediante la tecla F1

<mark>tNCremoNT ⊡</mark> Datei Ansicht Extras H	lilfe		
🔁 🗈 🛋 🛛 🗉		<i>a</i>	
s:\SCREEI	NS\TNC\TNC430	\BA\KLARTEXT\dumppgms[*.*]	Steuerung
Name	Größe	Attribute Datum	INC 400
i			- Dateistatus
⊇%TCHPRNT.A	79	04.03.97 11:34:06	Frei: 899 MByte
.m) 1.H	813	04.03.97 11:34:08	
🖻 1E.H 🛛 🚹	379	02.09.97 14:51:30	Insgesamt: 8
JE.H	360	02.09.97 14:51:30	Maskiert: 8
H) 1GB.H	412	02.09.97 14:51:30	
.m) 11.H	384	02.09.97 14:51:30	<u>-</u>
	TNC:\NK\	SCRDUMP[*.*]	Verbindung
Name	Größe	Attribute Datum	Protokoll:
			LSV-2
H) 200.H	1596	06.04.99 15:39:42	Schnittsteller
H) 201.H	1004	06.04.99 15:39:44	ICDM2
H) 202.H	1892	06.04.99 15:39:44	JCOM2
⊮203.H 2	2340	06.04.99 15:39:46	Baudrate (Auto Detect):
P) 210.H	3974	06.04.99 15:39:46	115200
эв) 211.H	3604	06.04.99 15:39:40	
. <u>.</u>) 212.H	3352	06.04.99 15:39:40	-
2) 01 A LI	0750	00.04.00.15-00.40	
NC-Verbindung aktiv			

12.8 Conexión Ethernet

Introducción

El TNC está equipado de forma estándar con una tarjeta ethernet para conectar el control como cliente en su red. El TNC transmite datos a través de la tarjeta Ethernet con

- el protocolo smb (server message block) para sistemas operativos Windows, o
- Ia familia de protocolos TCP/IP (Transmission Control Protocol/ Internet Protocol) y con ayuda del NFS (Network File System)

Posibles conexiones

Es posible conectar la tarjeta Ethernet del TNC mediante la conexión RJ45 (X26,10BaseT) en su sistema de redes, o bien, conectarla directamente con un PC. Ambas conexiones están separadas galvánicamente de la electrónica del control.

En la conexión 100BaseTX o 10BaseT se utiliza el cable Pair Twisted, para conectar el TNC a la red.

La longitud de cable máxima entre el TNC y un empalme depende de la calidad del cable, del recubrimiento y del tipo de red (100BaseTX o 10BaseT).

También se puede conectar sin gran esfuerzo el TNC directamente a un PC, el cual está equipado con una tarjeta Ethernet. Para ello, conectar el TNC (conector X26) y el PC con un cable Ethernet cruzado (denominación comercial: cable Patch cruzado o cable STP cruzado)

Conectar el control a la red

Resumen de funciones de la configuración de red

Seleccionar en la gestión de ficheros (PGM MGT) la softkey Red

Función	Softkey
Establecer la conexión al proceso de red seleccionado. Después de establecer la conexión, aparece debajo de Mount una marca para la confirmación.	CONEXION APARATO
Divide la conexión a un proceso de red.	DESCON. APARATO
Función Automount activada o desactivada (= control automático del proceso de red durante la aceleración del control). El estado de la función se visualiza mediante una marca situada debajo de Auto en la tabla del proceso de red.	CONEXION RUTOMAT.
Con la función Ping se comprueba, si está disponible una conexión a la red para un determinado usuario. La introducción de la dirección tiene lugar como cuatro decimales separados por puntos.	PING
El TNC visualiza una ventana superpuesta con información sobre las conexiones de red activas.	NETWORK INFO
Se configura el acceso al proceso de red. (después de introducir el número clave NET123 mediante MOD)	DEFINE NETWORK CONNECTN.
Se abre una ventana de diálogo para editar los datos de una conexión de red actual (después de introducir el número clave NET123 mediante MOD)	EDIT NETWORK CONNECTN.
Se configura la dirección de red del control (después de introducir el número clave NET123 mediante MOD)	CONFIGURE NETWORK
Se borra la conexión de red actual (después de introducir el número clave NET123 mediante MOD)	DELETE NETHORK CONNECTN.

12.8 Conexión Ethernet

Configurar la dirección de red del control

- Conectar el TNC (conexión X26) a la red o a un PC
- Seleccionar en la gestión de ficheros (PGM MGT) la softkey Red.
- Pulsar la tecla MOD. A continuación introducir el número clave NET123.
- Pulsar la softkey CONFIGURAR RED para la introducción de los ajustes de red generales (ver figura del centro a la derecha)
- > Se abre la ventana de diálogo para la configuración de red

Ajuste	Significado
HOSTNAME	El control se registra en la red con este nombre. Si utiliza un servidor de nombre de host, debe introducir aquí el nombre de host completo. Si no se introduce ningún nombre aquí, el control emplea la llamada identificación de autenticidad CERO.
DHCP	DHCP = D ynamic H ost C onfiguration P rotocol Si se ajusta a SÍ , entonces el control refiere automáticamente su dirección de red (dirección IP), la máscara Subnet, el router por defecto y una event. dirección de transmisión necesaria a un servidor DHCP que se encuentre en la red. El servidor DHCP identifica el control mediante el nombre de host. La red de la empresa debe estar preparada para esta función. Póngase en contacto con el administrador de la red.
IP-ADRESS	Dirección de red del control: en cada uno de los cuatro campos de introducción contiguos pueden introducirse respectivamente tres posiciones de la dirección IP. Con la tecla ENT se salta al siguiente campo. La dirección de red del control la facilita el especialista de red.
SUBNET-MASK	Sirve para diferenciar el ID de red y de host de la red: la máscara Subnet del control la facilita el especialista de red.
BROADCAST	La dirección de transmisión del control sólo se emplea si difiere del ajuste estándar. El ajuste estándar se construye a partir del ID de red y del ID host, en el que todos los bits están puestos a 1
ROUTER	Dirección de red del router: la indicación sólo debe tener lugar, si la red se compone de varias subredes conectadas las unas con las otras por medio del router.
BROADCAST	especialista de red. La dirección de transmisión del control sólo se emplea si difiere del ajuste estándar. El ajuste estándar se construye a partir del ID de red y del ID host, en el que todos los bits están puestos a 1 Dirección de red del router: la indicación sólo debe tener lugar, si la red se compone de varias subredes conectadas las unas con las otras por medio del router.

La configuración de red introducida se activa después de un reinicio del control. Después de la configuración de red y confirmar con la softkey OK, el control se reinicia.

Configurar el acceso a la red para otros aparatos (mount)

Se recomienda que configure el TNC un especialista en redes.

Los parámetros**username, workgroup** y **password** no deben ser introducidos en todos los sistemas operativos de Windows.

- Conectar el TNC (conexión X26) a la red o a un PC
- Seleccionar en la gestión de ficheros (PGM MGT) la softkey Red.
- Pulsar la tecla MOD. A continuación introducir el número clave NET123.
- Pulsar la softkey DEFINIR CONEXION A LA RED
- > Se abre la ventana de diálogo para la configuración de red

Ajuste	Significado			
Mount-Device	 Entrada mediante NFS: nombre de directorio que debe crearse. Éste se forma a partir de la dirección de red del aparato, dos puntos, slash y el nombre del directorio. Introducir la dirección de red como cuatro decimales separados por puntos (Dotted-Dezimal-Notation), p.ej. 160.1.180.4:/PC. Al indicar el camino de búsqueda tener en cuenta la escritura en mayúsculas/minúsculas Entrada en el ordenador con Windows mediante SMB: introducir nombre de red y nombre de autorización del ordenador, p.ej. \\PC1791NT\PC 			
Mount-Point	Nombre del aparato: el nombre del aparato aquí indicado se visualizará en el control durante la gestión de programas para la red creada, p. ej. WORLD: (jel nombre debe finalizar con dos puntos!)			
Sistema de	Tipo de sistema de archivo			
ficheros	NFS: Network File SystemSMB: Red Windows			
Opción NFS	rsize : Tamaño de paquete para la recepción de datos en bytes			
	wsize : Tamaño de paquete para el envío de datos en bytes			
	time0 : Tiempo en dcimas de segundo, tras el cual el control repite un Remote Procedure Call no contestado por el servidor			
	soft : si se ha introducido SÍ , se repetirá el Remote Procedure Call hasta que el servidor NFS conteste. Si se ha introducido NO , no se repetirá			

Ajuste	Significado
Opción SMB	Opciones, el tipo de sistema de fichero SMB en cuestión: las opciones se indican sin espacios, separadas únicamente por una coma. Tener en cuenta mayúsculas y minúsculas.
	Opciones:
	ip: Dirección IP del PC Windows, a la que se debe unir el control
	username: Nombre de usuario bajo el que se conecta el control
	<pre>workgroup: Grupo de trabajo bajo el que se conecta el control</pre>
	password : Contraseña con la que se conecta el control (máximo 80 caracteres)
	Otras opciones SMB: posibilidad de introducción para otras opciones para la red de Windows
Conexión automática	Automount (SÍ o NO): aquí se determina, si durante el encendido del control debe establecerse automáticamente la red. Los aparatos montados de forma no automática, pueden montarse en cualquier momento durante la gestión del programa.
La indica iTNC 53 RFC 894	ación mediante el protocolo corresponde al 0, se emplea el protocolo de transmisión según 1.

12.8 Conexión Ethernet

12 Funciones MOD

Ajustes en un PC con Windows 2000

específicos del PC, p.ej., 160.1.180.1

deberá reiniciar de nuevo Windows

Confirmar los ajustes con <OK>

255.255.0.0

Introducir en el campo de introducción para <Máscara subnet>

▶ Guardar la configuración de la red con <OK>, y, dado el caso, se

		Internet Protocol (TCP/IP) Properties	?
Co	ondiciones previas:	General	
La	tarjeta de red debe estar instalada ya en el PC y ser verativa.	You can get IP settings assigned automatically if your network this capability. Otherwise, you need to ask your network admir the appropriate IP settings	supports iistrator for
Si e cor dire TN	el PC que se quiere conectar con el iTNC ya está nectado a la red de su empresa, se debería mantener la rección de red del PC y adecuar la dirección de red del IC.	 O _Dbtain an IP address automatically O ⊔se the following IP address: IP address: 	1
Seleccional <conexion< td=""><td>r los ajustes de red mediante <inicio>, <ajustes>, nes de red y conexiones DFÜ></ajustes></inicio></td><td>Subnet mask: 255.255.0. Default gateway: </td><td>0</td></conexion<>	r los ajustes de red mediante <inicio>, <ajustes>, nes de red y conexiones DFÜ></ajustes></inicio>	Subnet mask: 255.255.0. Default gateway:	0
Hacer clic c <conexión hacer clic s</conexión 	con el botón derecho del ratón sobre el símbolo 1 LAN> y a continuación en el menú que se visualiza, sobre <características></características>	Obtain DNS server address automatically Use the following DNS server addresses:	
Hacer doble modificar lo	le clic sobre <protocolo (tcp="" de="" internet="" ip)=""> para os ajustes IP (ver figura superior derecha)</protocolo>	Preferred DNS server:	_
Si no estuv dirección IF	viera activa, seleccionar la opción <utilizar la="" siguiente<br="">P></utilizar>	A	d <u>v</u> anced
 Introducir e dirección IF 	en el campo de introducción <dirección ip=""> la misma P que se ha introducido en el iTNC en los ajustes de red</dirección>	DK	Cancel

Ciclos de palpación en los modos de funcionamiento Manual y Volante electrónico

13.1 Introducción

Resumen

En el modo de funcionamiento Manual están disponibles las siguientes funciones:

Función	Softkey	Página
Calibrar la longitud activa	CAL L	Pág. 443
Calibrar el radio activo	PALPAR	Pág. 444
Calcular el giro básico mediante una línea	ROTACION	Pág. 446
Fijar el punto de referencia en un eje	PALPAR POS	Pág. 448
Fijación de la esquina como punto de referencia	PALPAR	Pág. 449
Fijar punto central círculo como punto de referencia	PALPAR	Pág. 450
Gestión de los datos del palpador	TABLA PALPADOR	Pág. 450

Selección del ciclo de palpación

Seleccionar el modo de funcionamiento Manual o Volante electrónico

- Seleccionar las funciones de palpación: pulsar la softkey FUNCIONES PALPADOR. El TNC muestra otras softkeys: véase la tabla de arriba
- ROTACION
- Selección del ciclo de palpación: p.ej. pulsar la softkey PALPAR ROT, el TNC muestra el menú correspondiente

13.2 Calibración del palpador digital

Introducción

Hay que calibrar el palpador en los siguientes casos:

- Puesta en marcha
- Rotura del vástago
- Cambio del vástago
- Modificación del avance de palpación
- Irregularidades, como p.ej., calentamiento de la máquina

En la calibración el TNC calcula la longitud "activa" del vástago y el radio "activo" de la bola de palpación. Para la calibración del palpador 3D, se coloca un anillo de ajuste con altura y radio interior conocidos, sobre la mesa de la máquina.

Calibración de la longitud activa

La longitud activa del palpador se refiere siempre al punto de referencia de la herramienta. Por regla general, el fabricante de la máquina sitúa el punto de referencia de la herramienta sobre la base del cabezal.

Fijar el punto de referencia en el eje del cabezal de tal manera que para la mesa de la máquina sea válido: Z=0.

Seleccionar la función para la calibración de la longitud del palpador: Pulsar la softkey FUNCION PALPACION y CAL L. El TNC muestra una ventana del menú con cuatro casillas de introducción.

- Punto de ref.: Introducir la altura del anillo de ajuste
- Los puntos del menú radio de la esfera y longitud activa no precisan ser introducidos
- Desplazar el palpador sobre la superficie del anillo de ajuste
- Si es preciso modificar la dirección de desplazamiento: mediante softkey o con los pulsadores de manual
- Palpación de la superficie: Pulsar el arranque START

Calibración del radio activo y ajuste de la desviación del palpador

Normalmente el eje del palpador no coincide exactamente con el eje del cabezal. La función de calibrado registra el desplazamiento entre el eje de palpación y el eje del cabezal. y lo iguala por cálculo.

Con el calibrado de desplazamiento del centro, el palpador 3D gira 180°.

Una vez activado el seguimiento del palpador (TRACK), el TNC orienta el palpador de manera que siempre se palpa en la misma posición en la bola de palpación.

- Proceda al calibrado manual como se indica a continuación:
- Posicionar la bola de palpación en funcionamiento manual en el interior del anillo de ajuste

Selección de la función de calibración del radio de la bola de palpación y de la desviación del palpador: Pulsar la softkey CAL R

- ▶ Introducir el radio del anillo de ajuste
- Palpación: Accionar 4 veces el pulsador externo de arranque START. El palpador 3D palpa en cada dirección de los ejes una posición del interior del anillo y calcula el radio activo de la bola de palpación.
- Si se quiere finalizar ahora la función de calibración, pulsar la softkey FIN

Para determinar el desplazamiento de centros de la bola de palpador, el TNC debe estar preparado por el fabricante de la máquina. ¡Rogamos consulten el manual de su máquina!

- Determinar la desviación de la bola de palpación. Pulsar la softkey 180°. El TNC gira el palpador 180°
- Palpación: Accionar 4 veces el pulsador externo de arranque START. El palpador 3D palpa en cada dirección de los ejes una posición del interior del anillo y calcula la desviación del palpador

Visualización de los valores calibrados

El TNC memoriza la longitud y el radio activos del palpador en la tabla de la herramienta. El TNC memoriza el desvío del centro del palpador en la tabla del mismo, en las columnas CAL_OF1 (eje principal) y CAL_OF2 (eje auxiliar). Los valores memorizados se visualizan pulsando la softkey Tabla del palpador.

Cuando utilice el palpador, preste atención a la hora de activar el número de herramienta correcto, independientemente de si quiere ejecutar el ciclo de palpación en modo de funcionamiento Automático o en modo de funcionamiento Manual.

Los valores de calibración calculados se calculan después de una llamada (en caso necesario, reiterada) de herramienta.

Edit Sele	ar ta ction	bla of t	he to	uch pı	obe			Programa	r
Ficher	o: tnc:\	table∖tchpr	obe.tp		Linea:	0		>>	M
NO1 2	TVPE TS120 TS120	CAL_0F1 +0 +0 +0	CAL_0F2 +0 +0	CAL_ANG 0 0	F 500 500	FMAX +2000 +2000	DIST 25 10		5 J
									DIAGNOS
INICIO	FI	N PAG	INA Pr			BUSQ	JEDA		FIN

13.3 Compensación de la inclinación de la pieza

Introducción

El TNC compensa una inclinación de la pieza mediante el "Giro básico".

Para ello el TNC fija el ángulo de giro sobre el ángulo que forma una superficie de la pieza con el eje de referencia angular del plano de mecanizado. Véase figura de la derecha.

Seleccionar siempre la dirección de palpación para medir la inclinación de la pieza perpendicular al eje de referencia angular.

Para calcular correctamente el giro básico en la ejecución del programa, deberán programarse ambas coordenadas del plano de mecanizado en la primera frase de desplazamiento.

Calcular el giro básico

- ROTACION
- Seleccionar la función de palpación: Pulsar la softkey PALPAR ROT
- Posicionar el palpador cerca del pirmer punto de palpación
- Seleccionar la dirección de palpación perpendicular al eje de referencia angular: Seleccionar el eje y la dirección mediante softkey
- Palpación: Accionar el pulsador externo de arranque START
- Posicionar el palpador cerca del segundo punto de palpación
- Palpación: Accionar el pulsador externo de arranque START. El TNC calcula el giro básico y visualiza el ángulo tras el diálogo Angulo de giro
- Para activar el valor visualizado como giro básico, pulsar la softkey FIJAR GIRO BASICO

Visualización del giro básico

El ángulo de giro básico se visualiza después de una nueva selección de PROBING ROT en la visualización del angulo de giro. El TNC también indica el ángulo en la visualización de estados adicional (ESTADO POS.)

Siempre que el TNC desplace los ejes de la máquina según el giro básico, en la visualización de estados se ilumina un símbolo para dicho giro básico.

En el campo de introducción Ángulo de la superficie de palpación puede corregirse el resultado de la medición a un ángulo conocido. Con ello se puede medir el giro básico en cualquier recta y establecer la relación respecto a la alineación deseada.

Anulación del giro básico

- Seleccionar la función de palpación: Pulsar la softkey PALPAR ROT
- ▶ Introducir el ángulo de giro "0", aceptar con la tecla ENT
- Pulsar la softkey FIJAR GIRO BÁSICO

13.4 Fijar un punto de referencia con palpadores 3D

Introducción

Las funciones para la fijación del punto de referencia en la pieza, se seleccionan con las siguientes softkeys:

- Fijar el punto de ref. en el eje deseado con PALPAR POS
- Fijar la esquina como punto de ref. con PALPAR P
- Fijar un punto central del círculo como punto de ref. con PALPAR CC

빤

Prestar atención a que durante la activación de un punto cero, el TNC siempre refiere los valores de palpación en el preset activado (es decir, al punto de referencia fijado por última vez en el Modo Manual), aunque el desplazamiento del punto cero está incluido en la visualización de la posición.

Fijar punto de referencia en un eje cualquiera (ver fig, de la derecha)

- Seleccionar la función de palpación: pulsar la softkey PALPAR POS
- > Posicionar el palpador cerca del punto de palpación
- Seleccionar simultáneamente la dirección de palpación y el eje para los cuales se ha fijado el punto de ref. p.ej. palpar Z en dirección Z-: seleccionar mediante softkey
- Palpación: Accionar el pulsador externo de arranque START
- Punto de referencia: introducir la coordenada nominal (p. ej. 0), aceptar con la softkey FIJAR PTO. REF.
- Finalizar la función de palpación: Pulsar la tecla END

13.4 Fij<mark>ar u</mark>n punto de referencia con palpadores 3D

Esquina como punto de ref. - Aceptar los puntos palpados para el giro básico (véase la figura de la derecha)

- Seleccionar la función de palpación: Pulsar la softkey PALPAR P
- Seleccionar la dirección de palpación: Mediante softkey
- Palpación: Accionar el pulsador externo de arranque START
- Palpar las dos aristas dos veces
- Palpación: Accionar el pulsador externo de arranque START
- Punto de referencia: Introducir las dos coordenadas del punto de ref. en la ventana del menú y aceptar con la softkey FIJAR PTO. REF.
- Finalizar la función de palpación: Pulsar la tecla END

Punto central del círculo como punto de referencia

Como punto de referencia se pueden fijar puntos centrales de taladros, cajeras circulares, cilindros, isla, islas circulares, etc,

Círculo interior

El TNC palpa la pared interior del círculo en las cuatro direcciones de los ejes de coordenadas.

En los arcos de círculo, la dirección de palpación puede ser cualquiera.

> Posicionar la bola de palpación aprox. en el centro del círculo

- Seleccionar la función de palpación: Pulsar la softkey PALPAR CC
- Palpación: Accionar 4 veces el pulsador START. El palpador palpa sucesivamente 4 puntos de la pared interior del círculo
- Punto de referencia: Introducir las dos coordenadas del punto central del círculo en la ventana del menú y aceptar con la softkey FIJAR PTO. REF.
- Finalizar la función de palpación: Pulsar la tecla END

Círculo exterior

- Posicionar la bola de palpación cerca del primer punto de palpación fuera del círculo
- Seleccionar la dirección de palpación: Seleccionar la softkey correspondiente
- Palpación: Accionar el pulsador externo de arranque START
- Repetir el proceso de palpación de los 3 puntos restantes. Veáse la fig. de abajo a la dcha.
- Punto de referencia: Introducir las dos coordenadas del punto de ref. y aceptar con la softkey FIJAR PTO. REF.
- Finalizar la función de palpación: Pulsar la tecla END

Después de la palpación, el TNC visualiza en pantalla las coordenadas actuales del punto central y el radio del círculo PR.

13.5 Medición de piezas con -palpadores 3D

Introducción

El palpador puede utilizarse también en los modos de funcionamiento Manual y Volante electrónico para realizar mediciones sencillas en la pieza. Para tareas de medición más complejas están a su disposición un gran número de ciclos de palpación programablesVer "Medición automática de piezas" en pág.456. Con el palpador 3D se pueden determinar::

- coordenadas de la posición y con dichas coordenadas
- dimensiones y ángulos de la pieza

Determinar las coordenadas de la posición de una pieza centrada

- Seleccionar la función de palpación: Pulsar la softkey PALPAR POS
- > Posicionar el palpador cerca del punto de palpación
- Seleccionar la dirección de palpación y simultáneamente el eje al que se refiere la coordenada: Seleccionar la softkey correspondiente.
- Iniciar el proceso de palpación: Pulsar el arranque START

El TNC visualiza la coordenada del punto de palpación como punto de referencia.

Determinar las coordenadas del punto de la esquina en el plano de mecanizado

Determinar las coordenadas del punto de la esquina:Véase "Esquina como punto de ref. - Aceptar los puntos palpados para el giro básico (véase la figura de la derecha)" en pág.449. El TNC indica las coordenadas de la esquina palpada como punto de referencia.

Determinar las dimensiones de la pieza

PALPAR POS

- Seleccionar la función de palpación: Pulsar la softkey PALPAR POS
- Posicionar el palpador cerca del primer punto de palpación A
- Seleccionar la dirección de palpación mediante softkey
- Palpación: Accionar el pulsador externo de arranque START
- Anotar como punto de referencia el valor visualizado (sólo si se empleará posteriormente el punto de referencia obtenido)
- Introducir el punto de referencia "0"
- Interrumpir el diálogo: Pulsar la tecla END
- Seleccionar de nuevo la función de palpación: Pulsar la softkey PALPAR POS
- Posicionar el palpador cerca del segundo punto de palpación B
- Seleccionar la dirección de palpación con las teclas cursoras: El mismo eje pero en sentido opuesto al de la primera palpación.
- Palpación: Accionar el pulsador externo de arranque START

En la visualización del punto de referencia se tiene la distancia entre los dos puntos sobre el eje de coordenadas.

Fijar de nuevo la visualización de la posición al valor que se tenía antes de la medición lineal

- Seleccionar la función de palpación: Pulsar la softkey PALPAR POS
- Palpar de nuevo el primer punto de palpación
- Fijar el punto de referencia al valor anotado
- Interrumpir el diálogo: Pulsar la tecla END

Medición de un ángulo

Con un palpador 3D se puede determinar un ángulo en el plano de mecanizado. Se mide

- el ángulo entre el eje de referencia angular y una arista de la pieza o
- el ángulo entre dos aristas
- El ángulo medido se visualiza hasta un valor máximo de 90°.

Determinar el ángulo entre el eje de referencia angular y una arista de la pieza

- Seleccionar la función de palpación: Pulsar la softkey PALPAR ROT
- Angulo de giro: Anotar el ángulo de giro visualizado, en el caso de que se quiera volver a repetir después el giro básico realizado anteriormente.
- Ejecutar el giro básico con el lado a compararVer "Compensación de la inclinación de la pieza" en pág.446
- Con la softkey PALPAR ROT visualizar como ángulo de giro, el ángulo entre el eje de referencia angular y la arista de la pieza.
- Eliminar ajuste básico o restablecer el ajuste básico original
- Fijar el punto de referencia al valor anotado

Determinar el ángulo entre dos aristas de la pieza

- Seleccionar la función de palpación: Pulsar la softkey PALPAR ROT
- Angulo de giro: Anotar el ángulo de giro visualizado, en el caso de que se quiera volver a reproducir posteriormente
- Realizar el giro básico para el primer lado Ver "Compensación de la inclinación de la pieza" en pág.446
- Asimismo se palpa el segundo lado igual que en un giro básico, jno fijar el ángulo de giro a 0!
- Con la softkey PALPAR ROT visualizar el ángulo PA entre las aristas de la pieza como ángulo de giro
- Eliminar el giro básico o volver a reproducir el giro básico original: Fijar el ángulo de giro al valor anotado

13.6 Gestión de los datos del palpador

Introducción

Para poder cubrir un campo de aplicación lo más grande posible en las mediciones requeridas, se dispone de posibilidades de ajuste en la tabla del palpador, que fijan el comportamiento básico de los ciclos de palpación. Pulsar la softkey TABLA DEL PALPADOR para abrir la tabla para la gestión del palpador.

Tabla del palpador: datos del palpador

Abrev.	Eingaben	Diálogo
Т	Número del palpador: este número se introduce en la tabla de la herramienta (columna: TP_NO) bajo el correspondiente número de herramienta	-
ТҮРЕ	Selección del palpador utilizado	¿Selección del sistema de palpación?
CAL_OF1	Desplazamiento del eje del palpador al eje del cabezal en el eje principal	¿Eje principal de la desviación del centro del TS?
CAL_OF2	Desplazamiento del eje del palpador al eje del cabezal en el eje auxiliar	¿Eje auxiliar de la desviación del centro del TS?
CAL_ANG	El TNC orienta el palpador antes de la calibración o palpación en el ángulo de orientación (en caso de ser posible la orientación)	Ángulo del cabezal en la calibración?
F	Avance, con el que el TNC debe palpar la pieza	¿Avance de palpación?
FMAX	Avance con el que el palpador realiza el posicionamiento previo o con el que se posicionará entre los puntos de medición	¿Marcha rápida en el ciclo de palpación?
DIST	El TNC emite un aviso de error, si el vástago no se desvía dentro del valor definido	¿Trayectoria máxima?
SET_UP	Distancia de seguridad para el preposicionamiento en ciclos de palpación	¿Distancia de seguridad ?
F_PREPOS	Preposicionamiento con velocidad desde FMAX: FMAX_PROBE Preposicionamiento con avance rápido de máquina: FMAX_MACHINE	¿Preposicionam. con avance rápido?
TRACK	Realizar la orientación del cabezal (el palpador se orienta de tal manera, que siempre se palpa con la misma posición en la bola de palpación)	¿Orientar el palpador?

Editar las tablas del palpador

La tabla del palpador tiene como nombre de fichero tchprobe.tp y debe guardarse en el directorio "tabla".

Abrir la tabla del palpador tchprobe.tp:

Seleccionar el modo de funcionamiento Manual

Seleccionar la tabla del palpador: pulsar la softkey

▶ Pulsar la softkey FUNCIÓN DE PALPACIÓN

TABLA DEL PALPADOR

Edit Sele	tar ta ection	bla of t	he to	ouch p	robe			Programa	r
Fich	ero: tnc:\i	able\tchpi	obe.tp		Linea:	0		>>	
NO	TYPE	CAL_OF1	CAL_OF2	CAL_AN	F	FMAX	DIST		M _ []
1	TS120	+0	+0	0	500	+2000	25		
-	13120		70	Ū	300	72000	10		s 🥊
									[™] ∳
									DIAGNOS
INICI	0 FIN	PAG	INA	PAGINA	EDITAR	BUSQL	JEDA		FIN

13.7 Medición automática de piezas

Resumen

El TNC dispone de tres ciclos con los que es posible medir piezas automáticamente o fijar el punto de referencia. Para definir los ciclos, pulsar la tecla TOUCH PROBE en los modos de funcionamiento Programación o Posicionamiento manual.

Ciclo	Softkey
0 SUPERFICIE DE REF. Medición de una coordenada en cualquier eje	8
1 PUNTO REF. POLAR Medición de un punto, dirección de palpación mediante ángulo	1 PR
3 MEDIR Medir posición y diámetro de un taladro	3 PA

Sistema de referencia para los resultados de medición

El TNC emite todos los resultados de la medición en el parámetro de resultados y en el fichero de medición en el sistema de coordenadas activado (desplazado o/y girado/inclinado, si es preciso).

PLANO DE REFERENCIA Ciclo de palpación 0

- 1 El palpador se aproxima en un movimiento 3D con avance rápido a la posición previa programada en el ciclo1
- **2** A continuación el palpador ejecuta el proceso de palpación con el avance de palpación. La dirección de palpación está determinada en el ciclo
- 3 Después de que el TNC haya adoptado la posición, el sistema de palpación retrocede al punto inicial del proceso de palpación y memoriza las coordenadas medidas en un parámetro Q. Además el TNC memoriza las coordenadas de la posición en las que se encontraba el palpador en el momento de producirse la señal, en los parámetros Q115 a Q119. Para los valores de estos parámetros el TNC tiene en cuenta la longitud y el radio del vástago

呣

Antes de la programación deberá tenerse en cuenta

Preposicionar el sistema de palpación de tal manera que se evite una colisión al desplazar la preposición programada.

e 上 🗔

- Nº parámetro para el resultado: Introducir el número de parámetro Q al que se le ha asignado el valor de la coordenada
- Eje y dirección de palpación: Introducir el eje del palpador con la correspondiente tecla del eje o mediante el teclado ASCII y el signo para la dirección de la palpación. Confirmar con la tecla ENT
- Valor nominal de la posición: Mediante las teclas de los ejes o a través del teclado ASCII, introducir todas las coordenadas para el posicionamiento previo del palpador.
- Finalizar la introducción: Pulsar la tecla ENT

Ejemplo: Frases NC

67	TCH	PROBE	0.0	SUPERF.	REF.	Q5	X -
68	TCH	PROBE	0.1	X+5 Y+0	Z-5		

PLANO DE REFERENCIA en polares Ciclo de palpación 1

El ciclo de palpación 1 calcula cualquier posición de la pieza en cualquier dirección de palpación.

- 1 El palpador se aproxima en un movimiento 3D con avance rápido a la posición previa programada en el ciclo 1
- 2 A continuación el palpador ejecuta el proceso de palpación con el avance de palpación. En el proceso de palpación el TNC desplaza simultáneamente dos ejes (dependiendo del ángulo de palpación). La dirección de palpación se determina mediante el ángulo en polares introducido en el ciclo
- 3 Una vez que el TNC ha registrado la posición, el palpador retrocede al punto de partida del proceso de palpación. Además el TNC memoriza las coordenadas de la posición en las que se encontraba el palpador en el momento de producirse la señal, en los parámetros Q115 a Q119.

Antes de la programación deberá tenerse en cuenta

Preposicionar el sistema de palpación de tal manera que se evite una colisión al desplazar la preposición programada.

- Eje de palpación: Introducir el eje de palpación con las teclas de manual o mediante el teclado ASCII. Confirmar con la tecla ENT
- Angulo de palpación: Angulo referido al eje de palpación, en el cual debe desplazarse el palpador
- Valor nominal de la posición: Mediante las teclas de los ejes o a través del teclado ASCII, introducir todas las coordenadas para el posicionamiento previo del palpador.

Finalizar la introducción: Pulsar la tecla ENT

Ejemplo: Frases NC

67	TCH	PROBE	1.0	PLANO REF. EN POLARES
68	TCH	PROBE	1.1	X ANGULO: +30
69	TCH	PROBE	1.2	X+5 Y+0 Z-5

MEDIR (ciclo de palpación 3)

El ciclo de palpación 3 calcula cualquier posición de la pieza en cualquier dirección de palpación. Al contrario que otros ciclos de medición, es posible introducir directamente en el ciclo tres la trayectoria y el avance de medición. También el retroceso hasta alcanzar el valor de medición se consigue a través de un valor acordado.

- 1 El palpador se desplaza desde la posición actual con el avance programado en la dirección de palpación determinada. La dirección de la palpación se determina mediante un ángulo polar en el ciclo
- 2 Una vez que el TNC ha registrado la posición se detiene el palpador. El TNC memoriza las coordenadas del punto central de la bola de palpación X, Y, Z en tres parámetros Q sucesivos. El número del primer parámetro se define en el ciclo
- **3** A continuación el TNC retrocede el palpador hasta el valor en sentido contrario de la dirección de palpación, la cual se ha definido en el parámetro MB

Antes de la programación deberá tenerse en cuenta

Introducir la trayectoria de retroceso máxima MB de tal forma que no se produzca ninguna colisión

En caso de que el TNC no pudiera calcular ningún punto de palpación válido, el 4º parámetro de resultado recibe el valor -1.

Nº parámetro para el resultado: Introducir el número de parámetro Q al que el TNC debe asignar el valor de la primera coordenada (X)

- Eje de palpación: introducir el eje principal del plano de mecanizado (X cuando el eje de la hta. es Z, Z cuando el eje de la hta. es Y e Y cuando el eje de la hta. es X), confirmar con la tecla ENT
- Angulo de palpación: ángulo referido al eje de palpación sobre el cual se desplaza el palpador, confirmar con la tecla ENT
- Recorrido de medición máximo: introducir el recorrido que debe realizar el palpador desde el punto de partida, confirmar con ENT
- Medir avance: Introducir el avance de medición en mm/min
- Máximo recorrido de retroceso: recorrido opuesto a la dirección de palpación una vez el vástago ha sido retirado
- SISTEMA DE REFERENCIA (0=REAL/1=REF): Determinar si el resultado de medición se ha de guardar en el sistema de coordenadas actual (REAL) o referido al sistema de coordenadas de la máquina (REF)
- Finalizar la introducción: Pulsar la tecla ENT

Ejemplo: Frases NC

5 TCH PROBE 3.0 MEDIR
6 TCH PROBE 3.1 Q1
7 TCH PROBE 3.2 X ÁNGULO: +15
8 TCH PROBE
3.3 ABST +10 F100 MB:1 BEZUGSSYSTEM:0

	. /	7	0
IUVE	. 0	12	276
25852	н		
REIECK		1	22
ONTUS	.н	:	90
UNTUR	H		
REISI		47	2 S
	.н	7	6
EIS31XY	.н	-	~
DEI			6
	.н	416	5
PORAT	.н	00	
10		36	9
	. I	22	
WAHL	. PNT	16	
Datailan		10	
eater(en)	3716000	kbyte	frei

Tablas y resumenes

14.1 Parámetros de usuario específicos de la máquina

Aplicación

Para que el usuario pueda ajustar funciones específicas de la máquina, el fabricante de la máquina puede definir los parámetros de máquina disponibles como parámetros de usuario.

Rogamos consulten el manual de su máquina.

La introducción de los valores paramétricos tiene lugar mediante el denominado **editor de configuración**.

Cada parámetro-objeto está identificado mediante un nombre (p. ej. CfgDisplayLanguage), que agrupa diferentes parámetros de la misma funcionalidad.

Cada objeto tiene una denominada "llave" para su clara identificación.

Llamada al editor de configuración

- Seleccionar el modo de funcionamiento Programación
- Confirmar con la tecla MOD
- Introducir el código 123
- Con la softkey FIN se sale del editor de configuración

Al inicio de cada fila del árbol paramétrico se visualiza un icono, que ofrece información adicional para esta fila. Los iconos tienen el significado siguiente:

- Existe la ramificación pero está cerrada
- Bamificación abierta
- objeto vacío, no puede abrirse
- parámetro de máquina inicializado
- parámetro de máquina no inicializado (opcional)
- 🛛 🔒 🛛 se puede leer pero no editar
- no se puede leer ni editar

Visualizar el texto auxiliar

Con la tecla **HELP** puede visualizarse un texto auxiliar para cada objeto paramétrico o atributo.

Si el texto auxiliar no cabe en una página (en la parte superior derecha aparece, p.ej. 1/2), entonces puede conmutarse con la softkey **PASAR** AYUDA a la segunda página.

Si se pulsa otra vez la tecla **HELP** se conmuta de nuevo el texto auxiliar.

Adicionalmente al texto auxiliar se visualizan otras informaciones como, p.ej., la unidad de medida, un valor inicial, una selección, etc. Cuando el parámetro de máquina seleccionado corresponde a un parámetro en el TNC, también se visualiza el número MP correspondiente.

Display Settings

Ajuste para la visualización de pantalla	CfgDisplayData		
Orden de los ejes visualizados	0: (nombre clave del eje, p.ej. X)		
	1:		
	2:		
	3:		
Ajuste para la visualización de pantalla	Tipo de visualización de posición en la ventana de posicionamiento:		
	Tipo de la visualización de posición en la visualización de estado:		
	Definición de las separaciones decimales para visualizadores de cotas:		
	Visualización del avance en modo de funcionamiento Manual/Volante el.:		
	Visualización de la posición del cabezal en la visualización de posición:		
Paso de visualización para los ejes	CfgPosDisplayPace		
individuales	Paso de visualización para la visualización de posición en mm o bien grados:		
	Paso de visualización para la visualización de posición en pulgadas:		
Definición de las unidades de medida	CfgUnitOfMeasure		
válidas para la visualización	Unidad de medida para la visualización y la interfaz de usuario:		
Formato de los programas NC y de la	CfgProgramMode		
visualización de ciclos	Introducción de programa:		
	Representación de los ciclos:		
Ajuste de los diálogos del NC y PLC	CfgDisplayLanguage (MP7230)		
	Lenguaje conversacional NC:		
	Lenguaje conversacional del PLC:		
	Lenguaje de avisos de error del PLC:		
	Lenguaje de ayuda:		

Display Settings					
Comportamiento en marcha rápida del	CfgStartupData				
control	Acusar recibo del aviso "Interrupción de corriente"				
Formato de los programas NC y de la	CfgProgramMode				
visualización de ciclos	Introducción del programa en lenguaje conversacional HEIDENHAIN o en DIN/ISO:				
	Representación de los ciclos:				
Indicaciones del camino de búsqueda para el usuario final					
Lista con unidades y/o directorios	CfgUserPath				
	Paso de visualización para la visualización de posición en mm o bien grados:				
	Paso de visualización para la visualización de posición en pulgadas:				
Mundial (have Greenwich)					
Diferencia hororia a nivel mundial	Cfa Sustan Tima				
Diferencia noraria a niver munular	Diferencia beraria a nivel mundial (b):				
Indicación del camino de búsqueda para tablas					
ZEROSHIFT					
	Nombre de tabla simbólico para el acceso mediante comandos SQL:				
Aiustes para el editor NC					
Ajustes para el editor NC	CfgEditorSettings				
	Generar el fichero de backup:				
	Comportamiento del cursor después de borrar filas:				
	Comportamiento del cursor en la primera o última fila:				
	Ajuste de filas en frases con varias filas:				
	Activar la ayuda:				
	Comportamiento de la carátula de softkeys después de una introducción de ciclo:				
	Borrar la consulta de seguridad en el bloque:				

14 Tablas y resumenes

NcChannel			
Comportamiento del error programable	CfgNcErrorReaction		
FN14: ERROR	Warning-Level del canal:		
Determinación para la memorización de	CfgNcPgmParState		
parametros U/US	Memorización persistente de los parámetros Q/QS:		
	Nombre de la frase de parámetro Q/QS actual:		
serialInterfaceRS232			
A la frase de datos perteneciente al puerto	CfgSerialPorts		
serie	Nombre clave de la frase de datos para la interfaz RS232:		
	Avance de transmisión de datos para la comunicación LSV2 en baudios:		
Definición de frases de datos para los			
puertos serie	Avance de transmisión de datos en baudios:		
RS232	Protocolo de transmisión de datos:		
	Bits de datos en cada signo transmitido:		
	Tipo de comprobación de paridad:		
	Número de bits de stop:		
	Determinar el tipo de handshake:		
	Sistema de fichero para operación de fichero mediante interfaz serial:		
	Block Check Character (BCC) ningún caracter de control:		
	Estado de la conducción RTS:		
	Definir el comportamiento después de recibir ETX:		

14.2 Distrib. de conectores y cable conexión para las conex. de datos

Interfaz V.24/RS-232-C equipos HEIDEHAIN

La conexión cumple la norma EN 50 178 "Separación en baja tensión".

Para bloque adaptador de 25 polos:

TNC		VB 365 725-xx			Bloque adaptador 310 085-01		VB 274 545-xx		
Macho	Asignación	Hembra	Color	Hembra	Macho	Hembra	Macho	Color	Hembra
1	libre	1		1	1	1	1	blanco/marrón	1
2	RXD	2	amarillo	3	3	3	3	amarillo	2
3	TXD	3	verde	2	2	2	2	verde	3
4	DTR	4	marrón	20	20	20	20	marrón	8
5	Señal GND	5	rojo	7	7	7	7	rojo	7
6	DSR	6	azul	6	6	6	6 _		6
7	RTS	7	gris	4	4	4	4	gris	5
8	CTR	8	rosa	5	5	5	5	rosa	4
9	libre	9					8	violeta	20
carcasa	pantalla exterior	carcasa	pantalla exterior	carcasa	carcasa	carcasa	carcasa	pantalla exterior	carcasa

Para bloque adaptador de 9 polos:

TNC		VB 355 484-xx			Bloque adaptador 363 987-02		VB 366 964-xx		
Macho	Asignación	Hembra	Color	Macho	Hembra	Macho	Hembra	Color	Hembra
1	libre	1	rojo	1	1	1	1	rojo	1
2	RXD	2	amarillo	2	2	2	2	amarillo	3
3	TXD	3	blanco	3	3	3	3	blanco	2
4	DTR	4	marrón	4	4	4	4	marrón	6
5	Señal GND	5	negro	5	5	5	5	negro	5
6	DSR	6	violeta	6	6	6	6	violeta	4
7	RTS	7	gris	7	7	7	7	gris	8
8	CTR	8	blanco/verde	8	8	8	8	blanco/verde	7
9	libre	9	verde	9	9	9	9	verde	9
carcasa	pantalla exterior	carcasa	pantalla exterior	carcasa	carcasa	carcasa	carcasa	pantalla exterior	carcasa

Aparatos que no son de la marca HEIDENHAIN

La distribución de conectores en un aparato que no es HEIDENHAIN puede ser muy diferente a la distribución en un aparato HEIDENHAIN.

Depende del aparato y del tipo de transmisión. Para la distribución de pines del bloque adaptador véase el dibujo de abajo.

Bloque adapta 363 987-02	dor	VB 366 964-xx			
Hembra	Macho	Hembra	Color	Hembra	
1	1	1	rojo	1	
2	2	2	amarillo	3	
3	3	3	blanco	2	
4	4	4	marrón	6	
5	5	5	negro	5	
6	6	6	violeta	4	
7	7	7	gris	8	
8	8	8	blanco/ verde	7	
9	9	9	verde	9	
carcasa	carcasa	carcasa	Pantalla exterior	carcasa	

Interface Ethernet de conexión RJ45

Longitud máxima del cable:

- sin apantallar: 100 m
- protegido: 400 m

Pin	Señal	Descripción
1	TX+	Transmit Data
2	TX-	Transmit Data
3	REC+	Receive Data
4	sin conexión	
5	sin conexión	
6	REC-	Receive Data
7	sin conexión	
8	sin conexión	

14.3 Información técnica

Explicación de símbolos

Estándar

Opción de eje

Funciones de usuario	
Breve descripción	 Modelo básico: 3 ejes más cabezal 1. Eje adicional para 4 ejes y cabezal controlado o no controlado 2. Eje adicional para 5 ejes y cabezal no controlado
Programación	Diálogo en lenguaje conversacional HEIDENHAIN
Entradas de posición	 Posiciones nominales para rectas y círculos en coordenadas cartesianas o polares Cotas absolutas o incrementales Introducción de cotas con visualización en mm o pulgadas
Corrección de la herramienta	 Radio de la herramienta en el plano de mecanizado y longitud de la herramienta Contorno de radio corregido Precalcular el contorno hasta 99 frases (M120)
Tablas de herramientas	Varias tablas de herramienta con varias herramientas
Velocidad de corte constante	 Referida al punto medio de la trayectoria de la herramienta Referida al corte de la herramienta
Funcionamiento en paralelo	Crear programa con apoyo gráfico, mientras se procesa otro programa
Elementos del contoro	 Recta Chaflán Trayectoria circular Punto central círculo Radio del círculo Trayectoria circular tangente Redondeo de esquinas
Entrada y salida al contorno	 Mediante recta tangente o perpendicular Mediante arco de círculo
Programación libre de contornos FK	Libre programación de contornos FK en lenguaje conversacional HEIDENHAIN con apoyo gráfico para piezas NC no acotadas
Saltos en el programa	 Subprogramas Repetición parcial del programa Cualquier programa como subprograma
Funciones de usuario	
---	---
Ciclos de mecanizado	Ciclos para el Taladrado, Taladrado en profundidad, Escariado, Mandrinado, Profundización, Roscado con macho y Roscado rígido
	Ciclos para el fresado de roscas interiores y exteriores
	Desbaste y acabado de cajeras rectangulares y circulares
	Ciclos para el planeado de superficies planas e inclinadas
	Ciclos para el fresado de ranuras rectas y circulares
	Figuras de puntos sobre un círculo y por líneas
	Cajera de contorno paralela al contorno
	Además los ciclos de constructor pueden integrarse - especialmente los ciclos de mecanizado creados por el fabricante de la máquina
Traslación de coordenadas	Desplazar, girar, espejo, factor de escala (específico para cada eje)
Parámetros Q	Funciones matemáticas =, +, -, *, /, sen α , cos α
Programación con variables	$\sqrt{a^2 + b^2}$ \sqrt{a}
	Enlaces lógicos (=, =/, <, >)
	Cálculo entre paréntesis
	tan α , arcsen, arccos, arctg, a'', e'', ln, log, valor absoluto de un número, constante π ,
Ayudas de programación	
	Lista completa de todos los avisos de error existentes
	Función Help dependiente del contexto en avisos de error
	Apoyo Gráfico en la programación de ciclos
	Frases comentario en el programa NC
Teach In	Las posiciones reales se aceptan directamente en el programa NC
Test gráfico	Simulación gráfica antes de un mecanizado incluso cuando se procesa otro programa
Tipos de representación	Representación en 3 planos/Representación 3 D
	Ampliación de una parte
Gráfico de programación interactivo	En el modo de funcionamiento "Edición de programa" se trazan las frases NC introducidas (Gráfico de barras 2D) también si otro programa se está ejecutando
Gráfico de mecanizado Tipos de representación	Representación gráfica del programa procesado en planta / Representación en 3 planos / Representación 3D
Tiempo de mecanizado	Calcular el tiempo de mecanizado en el modo de funcionamiento "Test de programa"
	Visualización del tiempo de mecanizado actual en los modos de funcionamiento de ejecución del programa
Reentrada al contorno	Avance hasta una frase cualquiera del programa y reentrada a la posición nominal calculada para continuar con el mecanizado
	Interrumpir programa, salir del contorno y poner en marcha de nuevo
Tablas de cero piezas	Varias tablas de puntos cero para guardar los puntos cero referidos a la pieza

14.3 Información técnica

Funciones de usuario	
Ciclos de palpación	 Calibración del palpador Compensar la inclinación de la pieza de forma manual y automática Fijar punto de referencia de forma automática y manual Medición automática de piezas Ciclos para la medición automática de la herramienta
Detec técnicos	
Componentes	Ordenador principal con teclado TNC y pantalla plana a color TFT integrada de 15,1 pulgadas con softkeys
Memoria del programa	10 MByte (en tarjeta de memoria Compact Flash CFR)
Resolución de entradas y paso de visualización	 hasta 0,1 µm en ejes lineales hasta 0,0001° en ejes angulares
Campo de introducción	■ Máximo 999 999 999 mm ó 999 999 999°
Interpolación	 Lineal en 4 ejes Círculo en 2 ejes Hélice: Superposición de trayectoria circular y recta
Tiempo de procesamiento de bloques Recta 3D sin correccción de radio	6 ms (recta en 3D sin correccción de radio)
Ajuste del eje	 Resolución de la regulación de posición: Período de señal del sistema de medición de posición/1024 Tiempo de ciclo Regulación de posición:3 ms Tiempo de ciclo Regulador de velocidad: 600 µs
Recorrido	Máximo 100 m (3 937 pulgadas)
Revoluciones del cabezal	Máximo 100 000 U/min (valor nominal de velocidad análogo)
Compensación de error	 Error de eje lineal y no lineal , holgura, picos de inversión en movimientos circulares, y dilatación por temperatura Rozamiento estático
Conexiones de datos	 cada V.24 / RS-232-C máx. 115 kBaud Interfaz de datos ampliada con protocolo LSV 2 para el control externo del TNC a través del interfaz de datos con el software de HEIDENHAIN TNCremo Interface Ethernet 100 Base T aprox. 2 a 5 MBaud (dependiente del tipo de archivo y de la carga de red) 2 x USB 1.1
Temperatura ambiente	 Funcionamiento: 0°C a +45°C Almacenamiento:-30°C a +70°C

écnica
4
ón
Ū.
ma
Infor
က္
4

Accesorios	
Volante electrónico	 Un HR 410: volante portátil o Un HR 130: volante integrado o Hasta tres HR 150: Volantes integrados a través del adaptador de volantes HRA 110
Palpadores	 TS 220: palpador digital 3D con conexión por cable o TS 440: palpador digital 3D con transmisión por infrarrojos o TS 640: palpador digital 3D con transmisión por infrarrojos o

Formatos de introducción y unidades de las funciones del TNC				
Posiciones, coordenadas, radios de círculo, longitud de chaflán	-99 999,9999 a +99 999,9999 (5,4: posiciones delante de la coma,posiciones detrás de la coma) [mm]			
Número de la herramienta	0 a 32,767.9 (5.1)			
Nombres de la herramienta	16 caracteres, en TOOL CALL escribir entre "" . Signos especiales admisibles: #, \$, %, &, -			
Valores deta para correcciones de herramienta	-99,9999 a +99,9999 (2,4) [mm]			
Velocidad de cabezales	0 a 99 999,999 (5,3) (rpm)			
Avances	0 a 99 999,999 (5,3) [mm/min] ó [mm/diente] ó [mm/vuelta]			
Tiempo de espera en el ciclo 9	0 a 3 600,000 (4,3) [s]			
Paso de rosca en diversos ciclos	-99,9999 a +99,9999 (2,4) [mm]			
Ángulo para la orientación del cabezal	0 a 360,0000 (3,4) [°]			
Ángulo para coordenadas polares, rotación, inclinación del plano	-360,0000 a 360,0000 (3,4) [°]			
Ángulo de coordenadas polares para la interpolación helicoidal (CP)	-5 400,0000 a 5 400,0000 (4,4) [°]			
Números de punto cero en el ciclo 7	0 a 2,999 (4.0)			
Factor de escala en los ciclos 11 y 26	0,000001 a 99,999999 (2,6)			
Funciones auxiliares M	0 a 999 (3.0)			
Números de parámetros Q	0 a 1999 (4.0)			
Valores de parámetros Q	-99 999,9999 a +99 999,9999 (5,4)			
Etiquetas (LBL) para saltos de programa	0 a 999 (3.0)			
Etiquetas (LBL) para saltos de programa	Cualquier línea de texto entre comillas ("")			
Cantidad de repeticiones parciales de programa REP	1 a 65 534 (5,0)			
Número de errores en la función paramétrica Q FN14	0 a 1,099 (4.0)			
Parámetro Spline K	-9,99999999 a +9,99999999 (1,8)			
Exponente para el parámetro spline	-255 a 255 (3,0)			
Vectores normales N y T en la compensación 3D	-9,99999999 a +9,99999999 (1,8)			

14.4 Cambio de batería

Cuando el control está desconectado, la batería se encarga de alimentar el TNC, para no perder la memoria RAM.

Cuando el TNC emite el aviso de **cambiar batería**, ésta debe cambiarse:

al

Antes de cambiar la batería del puffer, deberían protegerse los datos

¡Para cambiar la batería desconectar antes la máquina y el TNC!

¡La batería sólo puede cambiarla personal cualificado!

Tipo de batería: 1 pila de litio, tipo CR 2450N (Renata) ID 315 878-01

- 1 La batería del puffer se encuentra en la platina principal del MC 320 (véase 1, figura superior derecha)
- 2 Destornillar los cinco tornillos de la cubierta de la carcasa del MC 320
- 3 Retirar la cubierta
- **4** La batería del puffer se encuentra en el lateral de la platina. Cambiar la batería; la nueva batería sólo puede colocarse en el lugar correcto
- **5** Cambiar la pila; la nueva pila sólo se puede introducir en el lugar adecuado

Α

Acabado de isla circular ... 243 Acabado de isla rectangular ... 237 Acabado en profundidad ... 271 Acabado lateral ... 272 Accesorios ... 37 Accesos a tablas ... 368 Aceptar la posición real ... 79 Ajustar la velocidad en BAUDIOS ... 429, 430 Añadir comentarios ... 87 Añadir, modificar frase ... 81 Arrangue automático del programa ... 418 Asegurar los datos ... 60 Avance ... 45 en ejes giratorios, M116 ... 177 modificar ... 46 Posibles introducciones ... 78 Avisos de error ... 90 Ayuda en ... 90 Avisos de error del NC ... 90 Ayuda en los avisos de error ... 90

В

Bases ... 54 Borrar directorio ... 67 frase ... 81

С

Cajera circular desbaste ... 239 schlichten ... 241 Cajera rectangular Acabado ... 235 Desbaste ... 233 Calculadora ... 88 Cálculo de círculos ... 345 cálculo del tiempo de mecanizado ... 408 Cálculo entre paréntesis ... 379 Cambio de batería ... 473 Cambio de herramienta ... 108 Camino ... 61 Chaflán ... 129

C

Ciclo datos de la herramienta ... 185 Grupos ... 184 software ... 183 Ciclos de palpación Modo de funcionamiento Manual ... 442 Ciclos de palpación: Véase Modo de Empleo de los ciclos de palpación Ciclos de taladrado ... 186 Ciclos SL Acabado lateral ... 272 Bases ... 261 Contorno del ciclo ... 264 Contornos superpuestos ... 265 Datos de contorno ... 268 Desbaste.... 270 Pretaladrado ... 269 Profundidad de acabado ... 271 Trazado del contorno ... 273 Cilindros ... 396 Círculo completo ... 132 Círculo de taladros ... 255 Códigos ... 428 Compensación de la inclinación de la pieza a través de la medición de dos puntos de una recta ... 446 Conectar/retirar aparatos USB ... 74 Conexión ... 40 Conexión a la red ... 73 Conexión de datos Conexión Ethernet Conexión y desconexión de unidades de comunicaciones ... 73 Introducción ... 434 Posibles conexiones ... 434 Coordenadas fijas de la máguina: M91, M92 ... 167 Coordenadas polares Aproximación/salida del contorno ... 122 Bases ... 56 Programación ... 139

С

Copiar parte de un programa ... 82 Copiar partes de un programa ... 82 Corrección de la herramienta Longitud ... 110 Radio ... 111 Corrección de radio ... 111 Esquinas exteriores, esquinas interiores ... 113 Introducción ... 112 Crear un directorio ... 65 copiar ... 66 por frases ... 65

D

Datos de la herramienta indexar ... 103 introducir en la tabla ... 100 introducirlos en el programa ... 99 Valores delta ... 99 Datos técnicos ... 468 Definición de la pieza en bruto ... 76 Desbaste: Véase ciclos SL, Desbaste Desconexión ... 41 Desplazamiento de los eies de la máguina ... 42 con el volante electrónico ... 44 con las teclas de dirección externas ... 42 por incrementos ... 43 Desplazamiento del punto cero con tablas de punto cero ... 307 en el programa ... 306 Diálogo ... 78 Diálogo en lenguaje conversacional HEIDENHAIN ... 78 Directorio ... 61 Disco duro ... 59 Distribución conectores conexiones de datos ... 466

Index

Ε Eje giratorio desplazamiento optimizado: M126 ... 178 Reducir la visualización: M94 ... 179 Ejecución de programa Ejecución del programa continuar después de una interrupción ... 415 ejecutar ... 413 interrupción ... 414 Proceso en una frase ... 416 Resumen ... 413 saltar frases ... 419 Eies auxiliares ... 55 Eies principales ... 55 EI TNCremoNT ... 432 Elipse ... 394 Escariado ... 190 Esfera ... 398 Espejo ... 310 Esquinas abiertas del contorno: M98 ... 171 Estado del fichero ... 63

F

Factor de escala ... 313 Factor de escala específico para cada eie ... 314 Familia de piezas ... 340 Figura de puntos Resumen ... 254 sobre líneas ... 257 sobre un círculo ... 255 Fijación del punto de referencia ... 47 sin palpador 3D ... 47 Fijar el punto de referencia manualmente en cualquier eje Achse ... 448 Esquina como punto de referencia ... 449 Punto central del círculo como punto de referencia ... 450

F

FN14: ERROR: Emitir avisos de error ... 350 FN16: F-PRINT: emitir textos formateados ... 352 FN18: SYSREAD: lectura de datos del sistema ... 355 FN19: PLC: Transmisión de los valores al PLC ... 363 FN20: WAIT FOR: Sincronización del NC v el PLC ... 364 FN23: DATOS CIRCULO: calcular círculo desde 3 puntos ... 345 FN24: DATOS CIRCULO: calcular círculo desde 4 puntos ... 345 Frase Fresado de ranura longitudinal ... 245 Fresado de ranuras pendular ... 245 Fresado de rosca avellanada ... 214 Fresado de rosca en taladro ... 218 Fresado de rosca exterior ... 226 Fresado de rosca helicoidal en taladro ... 222 Fresado de rosca interior ... 212 Fresado de rosca: Nociones básicas ... 210 Fresado de taladro ... 202 Fresado plano ... 297 Función de búsqueda ... 83 Función MOD Resumen ... 423 Salir ... 422 separadas ... 422 Funciones angulares ... 343 Funciones auxiliares para cabezal y refrigerante ... 166 para comprobación de la ejecución del programa ... 166 para ejes giratorios ... 177 para el comportamiento en travectoria ... 169 Funciones de travectoria Bases ... 116 Círculos y arcos de círculo ... 118 Posicionamiento previo ... 119 Funciones M: Véase Funciones Auxiliares

G

Gestión de ficheros ... 61 Borrar el fichero ... 67 Copiar ficheros ... 66 Directorios ... 61 copiar ... 66 por frases ... 65 llamar ... 63 Marcar ficheros ... 68 Nombre fichero ... 59 Proteger fichero ... 69 Renombrar ficheros ... 69 Resumen de funciones ... 62 Seleccionar un fichero ... 64 Sobreescribir ficheros ... 66, 72 Tipo fichero ... 59 Transmisión de datos externa ... 70 Gestión de programas: Ver Gestión de ficheros Giro ... 312 Giro básico generar en el modo de funcionamiento manual ... 446 Gráfico de programación interactivo ... 148 Gráficos Ampliación de una sección ... 406 en la programación ... 85 Ampliación de una sección ... 86 Visualizaciones ... 403

н

Hélice ... 141 Herramientas indexadas ... 103

L

Imbricaciones ... 327 Información del formato ... 472 instrucciones SQL ... 368 Interfaz de datos ajustar ... 429 Distribución de conectores ... 466 Interpolación helicoidal ... 141 Interrupción del mecanizado ... 414 Introducir las funciones auxiliares 164 Introducir las revoluciones del cabezal ... 107 iTNC 530 ... 28

L

Llamada del programa a través del ciclo ... 318 Cualquier programa como subprograma ... 325 Llamar datos de la herramienta ... 107 Llegada al contorno ... 121 con coordenadas polares ... 122 Longitud de la herramienta ... 98 Look ahead ... 172

Μ

Mandrinado ... 192 Marcha rápida ... 96 Modificar la velocidad del cabezal ... 46 Modos de funcionamiento ... 31 Movimientos de travectoria Coordenadas cartesianas Recta ... 128 Resumen ... 128 Trayectoria circular C alrededor del punto central del círculo CC ... 132 Travectoria circular con radio determinado ... 132 Trayectoria circular con unión tangencial ... 134 Coordenadas polares Recta ... 140 Resumen ... 139 Trayectoria circular alrededor del polo CC ... 140 Trayectoria circular tangente ... 141 Programación libre de contornos FK: Véase Programación FK

Ν

Nombre de la herramienta ... 98 Nombre del programa: Véase Gestión de ficheros, nombre del fichero Número de la herramienta ... 98 Número de opción ... 424 Número de software ... 424 Número de versión ... 428

0

Orientación del cabezal ... 319

Ρ

Palpadores 3D calibrar digital ... 443 Pantalla ... 29 Parámetro de string ... 383 Parámetros de máquina para palpadores 3D ... 463, 464, 465 Parámetros de usuario específicos de la máquina ... 462 generales para palpadores 3D ... 463, 464, 465 Parámetros O controlar ... 348 emisión de valores al PLC 273 ... 363, 366, 367 emitir formateados ... 352 predeterminados ... 391 Posicionamiento manual ... 50 Posiciones de la pieza absolutas ... 57 incrementales ... 57 Proceso en una frase ... 416 tras una interrupción de la corriente ... 416 Programa abrir el nuevo ... 76 editar ... 80 su construcción ... 75 Programación de los movimientos de la herramienta ... 78 Programación de parámetros Q ... 338, 383 Cálculo de círculos ... 345 Condiciones si/entonces ... 346 Funciones angulares ... 343 Funciones matemáticas básicas ... 341 Instrucciones de programación ... 339, 384, 385, 3 86, 387, 388, 390 Otras funciones ... 349

Ρ

Programación de parámetros: Véase Programación de parámetros Q Programación FK ... 146 Apertura del diálogo ... 149 Bases ... 146 Gráfico ... 148 Posibles introducciones Contornos cerrados ... 153 Datos del círculo ... 152 Dirección y longitud de los tramos del contorno ... 151 Puntos auxiliares ... 154 Puntos finales ... 151 Referencias relativas ... 155 Rectas ... 150 Trayectorias circulares ... 150 Punto central círculo ... 131 Punto de partida profundizado en Taladrado ... 201

R

Radio de la herramienta ... 99 Ranura circular Pendular ... 248 Rebaje inverso ... 196 Recta ... 128, 140 Redondeo de esquinas ... 130 Reentrada al contorno ... 417 Repetición parcial del programa ... 324 Representación 3D ... 405 Representación en tres planos ... 404 Retroceso del contorno ... 174 Roscado con macho ... 204 sin macho ... 206, 208

S

Salida del contorno ... 121 con coordenadas polares ... 122 se miden las piezas mecanizadas ... 451, 456 Selección del punto de referencia ... 58 Seleccionar la unidad métrica ... 76 Simulación gráfica ... 407 Sincronización del NC y el PLC ... 364 Sincronización del PLC y el NC ... 364 Sistema de referencia ... 55 Sobrepasar los puntos de referencia ... 40

Index

S

Software para la transmisión de datos ... 432 Subdivisión de la pantalla ... 29 Subprograma ... 323 Superficie cilíndrica Mecanizado de isla ... 280 Mecanizar contorno ... 275 Mecanizar la ranura ... 277 Superficie regular ... 293 Superposición de posicionamiento con el volante: M118 ... 173 Supervisión del espacio de trabajo ... 409, 412 Supervisión del palpador ... 175 Sustitución de textos ... 84

Т

Tabla de herramientas editar, abrir ... 102, 455 Funciones de edición ... 102 Posibles introducciones ... 100 Tabla de posiciones ... 104 Taladrado ... 188, 194, 199 Punto de partida profundizado ... 201 Taladrado profundo ... 199 Punto de partida profundizado ... 201 Taladro universal ... 194, 199 Teach In ... 79, 129 Teclado ... 30 Test del programa ejecutar ... 412 Resumen ... 410 Tiempo de espera ... 317 Tiempos de funcionamiento ... 427 TNCremo ... 432 Transmisión de datos externa iTNC 530 ... 70 Traslación de coordenadas ... 305 Trayectoria circular ... 132, 134, 140, 141 Trazado del contorno ... 273 Trigonometría ... 343

U

Utilizar las funciones de palpación con palpadores mecánicos o relojes de medición ... 454

V

Variables de texto ... 383 Velocidad de transmisión de datos ... 429, 430 Vista en planta ... 403 Visualización de estados ... 33 adicionales ... 34 generales ... 33

Tabla general: Ciclos

Número de ciclo	Dibujo del ciclo	DEF activo	CALL activo	Página
1	Taladrado profundo			
2	Roscado			
3	Fresado de ranuras			
4	Fresado de cajeras			Pág. 233
5	Cajera circular			Pág. 239
7	Desplazamiento del punto cero			Pág. 306
8	Espejo			Pág. 310
9	Tiempo de espera			Pág. 317
10	Giro			Pág. 312
11	Factor de escala			Pág. 313
12	Llamada del programa			Pág. 318
13	Orientación del cabezal			Pág. 319
14	Definición del contorno			Pág. 264
17	Roscado rígido GS			
18	Roscado a cuchilla			
20	Datos de contorno SL II			Pág. 268
21	Pretaladrado SL II			Pág. 269
22	Desbaste SL II			Pág. 270
23	Profundidad de acabado SL II			Pág. 271
24	Acabado lateral SL II			Pág. 272
26	Factor de escala específico para cada eje			Pág. 314
200	Taladrado			Pág. 188
201	Escariado			Pág. 190
202	Mandrinado			Pág. 192
203	Taladro universal			Pág. 194
204	Rebaje inverso			Pág. 196
205	Taladrado profundo universal			Pág. 199

Número de ciclo	Dibujo del ciclo	DEF activo	CALL activo	Página
206	Roscado: con macho, nuevo			Pág. 204
207	Roscado: rígido, nuevo			Pág. 206
208	Fresado de taladro			Pág. 202
209	Roscado rígido con rotura de viruta			Pág. 208
210	Ranura pendular			Pág. 245
211	Ranura circular			Pág. 248
212	Acabado de cajera rectangular			Pág. 235
213	Acabado de isla rectangular			Pág. 237
214	Acabado de cajera circular			Pág. 241
215	Acabado de isla circular			Pág. 243
220	Figura de puntos sobre círculo			Pág. 255
221	Figura de puntos sobre líneas			Pág. 257
230	Planeado			Pág. 291
231	Superficie regular			Pág. 293
232	Fresado plano			Pág. 297
262	Fresado de rosca			Pág. 212
263	Fresado de rosca avellanada			Pág. 214
264	Fresado de rosca en taladro			Pág. 218
265	Fresado de rosca helicoidal en taladro			Pág. 222
267	Fresado de rosca exterior			Pág. 226

Tabla de resumen: Funciones auxiliares

м	Funcionamiento Actúa al	principio de la frase	final de la frase	Página
M00	PARADA en la ejecución del pgm/PARADA del cabezal/refrigerante DESCONECTADO		-	Pág. 166
M01	PARADA selectiva de la ejecución del programa			Pág. 420
M02	PARADA de la ejecución del pgm/PARADA del cabezal/refrigerante DESCONECTADO/si es preciso, borrar la visualización de estados (depende de parámetros de máquina)/salto a la frase 1		-	Pág. 166
M03 M04 M05	Cabezal CONECTADO en sentido horario Cabezal CONECTADO en sentido antihorario PARADA del cabezal			Pág. 166
M06	Cambio de herramienta/PARADA en la ejecución del pgm (función que depende de la máquina)/PARADA del cabezal		-	Pág. 166
M08 M09	Refrigerante CONECTADO Refrigerante DESCONECTADO		-	Pág. 166
M13 M14	Cabezal CONECTADO en sentido horario/refrigerante CONECTADO Cabezal CONECTADO en sentido antihorario/refrigerante conectado			Pág. 166
M30	La misma función que M02			Pág. 166
M89	Función auxiliar o Llamada al ciclo que actúa de forma modal (función que depende de la máquina)	-		Pág. 185
M91	En la frase de posicionamiento: las coordenadas se refieren al punto cero de la máquina	-		Pág. 167
M92	En la frase de posicionamiento: las coordenadas se refieren a una posición definida por el constructor de la máquina, p.ej. a la posición de cambio de herramienta	-		Pág. 167
M94	Redondear la visualización del eje giratorio a un valor por debajo de 360°	-		Pág. 179
M97	Mecanizado de pequeños escalones en el contorno			Pág. 169
M98	Mecanizado completo de contornos abiertos		-	Pág. 171
M99	Llamada de ciclo por frases			Pág. 185

м	Funcionamiento Ac	túa al	principio de la frase	final de la frase	Página
M101	Cambio de herramienta automático con herramienta gemela cuando se h	na sobrepasado	-		Pág. 109
M102	Cancelar M101				
M107 M108	Suprimir el aviso de error en herramientas gemelas con sobremedida Cancelar M107		-	-	Pág. 108
M109	Velocidad constante en el extremo de la herramienta		-		Pág. 171
M110	Velocidad constante en el extremo de la herramienta		-		
M111	Anular M109/M110			•	
M116 M117	Avance en mesas giratorias en mm/min Anular M116			-	Pág. 177
M118	Superposicionamiento del volante durante la ejecución del programa		-		Pág. 173
M120	Cálculo previo del contorno con corrección de radio (LOOK AHEAD)		-		Pág. 172
M126 M127	Desplazamiento de los ejes giratorios en un recorrido optimizado Anular M126		-		Pág. 178
M140	Retirada del contorno en dirección al eje de la herramienta		-		Pág. 174
M141	Suprimir la supervisión del palpador		-		Pág. 175
M143	Borrar el giro básico		-		Pág. 175
M148 M149	Con Stop NC retirar automáticamente la herramienta del contorno Cancelar M148				Pág. 176

El constructor de la máquina puede validar ciertas funciones auxiliares que no se describen en este manual. Además el fabricante de la máquina puede modificar el significado y efecto de las funciones auxiliares descritas. Rogamos consulten el manual de su máquina.

Comparación: Funciones del TNC 320, del TNC 310 y del iTNC 530

Comparación: Funciones de usuario

Función	TNC 320	TNC 310	iTNC 530
Entrada de programa en lenguaje conversacional HEIDENHAIN	Х	Х	Х
Entrada de programa según DIN/ISO	-	_	Х
Entrada de programa con smarT.NC	-	_	Х
Indicación de cotas Posición nominal para rectas y círculo en coordenadas rectangulares	Х	Х	Х
Indicación de cotas Cotas absolutas o incrementales	Х	Х	Х
Indicación de cotas Introducción de cotas con visualización en mm o pulgadas	Х	Х	Х
Indicación de cotas Visualización de la trayectoria del volante en la mecanización con superposición del volante	-	_	Х
Corrección de herramienta en el plano de mecanizado y longitud de la herramienta	Х	Х	Х
Corrección de herramienta Precalcular hasta 99 frases para un contorno con radio corregido	Х	_	Х
Corrección de herramienta Corrección del radio de la herramienta en tres dimensiones	-	_	Х
Tabla de herramientas Memorizar los datos de la herramienta centralmente	Х	Х	Х
Tabla de herramientas Varias tablas de herramientas con tantas herramientas como se deseen	Х	_	Х
Tablas con datos de corte Cálculo de la velocidad del cabezal y del avance	-	_	Х
Velocidad de trayectoria constante referida a la trayectoria central de la herramienta o al cortante de la herramienta	Х	_	Х
Marcha en paralelo Crear programa, mientras se procesa otro programa	Х	Х	Х
Inclinación del plano de mecanizado	-	_	Х
Mecanizado de mesa giratoria Programación de contornos sobre el desarrollo de un cilindro	Х	_	Х
Mecanizado de mesa giratoria Avance en mm/min	Х	_	Х
Aproximación o alejamiento del contorno mediante una recta o círculo	Х	Х	Х
Programación libre de contornos FK, programar piezas NC que no están correctamente acotadas	Х	_	Х
Saltos de programa Subprogramas y repetición parcial de un programa	Х	Х	Х

Función	TNC 320	TNC 310	iTNC 530
Saltos de programa Cualquier programa como subprograma	Х	Х	Х
Gráfico de test Vista en planta, representación en 3 planos, representación en 3D	Х	Х	Х
Gráfico de programación Gráfico de trazos 2D	Х	Х	Х
Gráfico de mecanizado Vista en planta, representación en 3 planos, representación en 3D	Х	_	Х
Tablas de puntos cero Guardar los puntos cero referidos a la pieza	Х	Х	Х
Tabla de presets Guardar los puntos de referencia	_	_	Х
Reentrada al contorno con proceso hasta una frase	Х	Х	Х
Reentrada al contorno después de una interrupción del programa	Х	Х	Х
Autoinicio	Х	_	Х
Teach-In Aceptar posiciones reales en un programa NC	Х	Х	Х
Gestión de ficheros ampliada Establecer varios directorios y subdirectorios	Х	_	Х
Ayuda contextuada Función de ayuda en los avisos de error	Х	_	Х
Calculadora	Х	_	Х
Introducir texto y caracteres especiales en el TNC 320 mediante el teclado de pantalla, en el iTNC 530 mediante el teclado alfanumérico	Х	_	Х
Frases de comentario en el programa NC	Х	_	Х
Frases de estructuración en el programa NC	_	_	Х

Comparación: ciclos

Ciclo	TNC 320	TNC 310	iTNC 530
1, Taladrado en profundidad	Х	Х	Х
2, Roscado	Х	Х	Х
3, Fresado de ranuras	Х	Х	Х
4, Fresado de cajeras	Х	Х	Х
5, Cajera circular	Х	Х	Х
6, Desbaste (SL I)	-	Х	Х
7, Desplazamiento del punto cero	Х	Х	Х
8, Espejo	Х	Х	Х
9, Tiempo de espera	Х	Х	Х
10, Giro	Х	Х	Х
11, Factor de escala	Х	Х	Х
12, Llamada del programa	Х	Х	Х
13, Orientación del cabezal	Х	Х	Х
14, Definición del contorno	Х	Х	Х
15, Taladrado previo (SLI)	-	Х	Х
16, Fresado de contorno (SLI)	-	Х	Х
17, Roscado rígido GS	Х	Х	Х
18, Roscado a cuchilla	Х	_	Х
19, Plano de mecanizado	-	_	Х
20, Datos de contorno	Х	_	Х
21, Taladrado previo	Х	_	Х
22, Desbaste	Х	_	Х
23, Acabado en profunidad	Х	_	Х
24, Acabado lateral	Х	_	Х
25, Trazado del contorno	Х	_	Х
26, Factor de escala específico para cada eje	Х	_	Х
27, Trazado del contorno	Х	_	Х
28, Superficie cilíndrica	Х	_	Х

Ciclo	TNC 320	TNC 310	iTNC 530
29, Superficie cilíndrica de la isla	X	_	Х
30, Procesar datos 3D	-	_	Х
32, Tolerancia	-	_	Х
39, Superficie cilíndrica del contorno externo	-	-	Х
200, Taladrado	Х	Х	Х
201, Escariado	Х	Х	Х
202, Mandrinado	Х	Х	Х
203, Taladrado universal	Х	Х	Х
204, Rebaje inverso	Х	Х	Х
205, Taladrado en profundidad universal	Х	_	Х
206, Taladrado con acc.nuevo	Х	_	Х
207, Taladrado sin acc.nuevo	Х	_	Х
208, Fresado	Х	_	Х
209, Roscado Rot. de viruta	Х	_	Х
210, Ranura pendular	Х	Х	Х
211, Ranura circular	Х	Х	Х
212, Acabado de cajera rectangular	Х	Х	Х
213, Acabado de islas rectangulares	Х	Х	Х
214, Acabado de cajera circular	Х	Х	Х
215, Acabado de isla circular	Х	Х	Х
220, Círculo de muestra de puntos	Х	Х	Х
221, Líneas de muestra de puntos	Х	Х	Х
230, Planeado	Х	Х	Х
231, Superficie reglada	Х	Х	Х
232, Fresado plano	Х	_	Х
240, Centraje	-	_	Х
247, Fijar el punto de referencia	-	_	Х
251, Cajera completa	-	_	Х
252, Cajera circular completa	-	_	Х

Ciclo	TNC 320	TNC 310	iTNC 530
253, Ranura completa	-	_	Х
254, Ranura circular completa	-	-	Х
262, Fresado de rosca	Х	_	Х
263, Fresado de rosca de rebaje	Х	-	Х
264, Fresado de rosca de fresado	Х	_	Х
265, Fresado de rosca helicoidal en taladro	Х	_	Х
267, Fresado de rosca externa	Х	-	Х

Comparación: Funciones auxiliares

М	Funcionamiento	TNC 320	TNC 310	iTNC 530
M00	PARADA en la ejecución del pgm/PARADA del cabezal/refrigerante DESCONECTADO	Х	Х	Х
M01	PARADA selectiva de la ejecución del programa	Х	Х	Х
M02	PARADA de la ejecución del pgm/PARADA del cabezal/refrigerante DESCONECTADO/si es preciso, borrar la visualización de estados (depende de parámetros de máquina)/salto a la frase 1	Х	Х	Х
M03 M04 M05	Cabezal CONECTADO en sentido horario Cabezal CONECTADO en sentido antihorario PARADA del cabezal	Х	Х	Х
M06	Cambio de herramienta/PARADA en la ejecución del pgm (función que depende de la máquina)/PARADA del cabezal	Х	Х	Х
M08 M09	Refrigerante CONECTADO Refrigerante DESCONECTADO	Х	Х	Х
M13 M14	Cabezal CONECTADO en sentido horario/refrigerante CONECTADO Cabezal CONECTADO en sentido antihorario/refrigerante conectado	Х	Х	Х
M30	La misma función que M02	Х	Х	Х
M89	Función auxiliar o Llamada al ciclo que actúa de forma modal (función que depende de la máquina)	Х	Х	Х
M90	Velocidad de trayectoria constante en esquinas	_	Х	Х
M91	En la frase de posicionamiento: las coordenadas se refieren al punto cero de la máquina	Х	Х	Х
M92	En la frase de posicionamiento: las coordenadas se refieren a una posición definida por el constructor de la máquina, p.ej. a la posición de cambio de herramienta	Х	Х	Х
M94	Redondear la visualización del eje giratorio a un valor por debajo de 360°	Х	Х	Х
M97	Mecanizado de pequeños escalones en el contorno	Х	Х	Х
M98	Mecanizado completo de contornos abiertos	Х	Х	Х
M99	Llamada de ciclo por frases	Х	Х	Х

Μ	Funcionamiento	TNC 320	TNC 310	iTNC 530
M101 M102	Cambio de herramienta automático con herramienta gemela cuando se ha sobrepasado el tiempo de vida Cancelar M101	X	_	X
M107 M108	Suprimir el aviso de error en herramientas gemelas con sobremedida Cancelar M107	Х	_	Х
M109 M110 M111	Velocidad constante en el extremo de la herramienta (Aumento y reducción del avance) Velocidad constante en el extremo de la herramienta (sólo reducción del avance) Anular M109/M110	Х	-	Х
M112 M113	Añadir curvas a cualquier otra transición del contorno Anular M112	Γ	_	Х
M114 M115	Corrección automática de la geometría de la máquina al trabajar con ejes basculantes Anular M114	-	-	Х
M116 M117	Avance en mesas giratorias en mm/min Anular M116	Х	_	_
M118	Superposicionamiento del volante durante la ejecución del programa	Х	_	Х
M120	Cálculo previo del contorno con corrección de radio (LOOK AHEAD)	Х	_	Х
M124	Filtro del contorno	-	_	Х
M126 M127	Desplazamiento de los ejes giratorios en un recorrido optimizado Anular M126	Х	_	Х
M128 M129	Mantener la posición de la punta de la herramienta durante el posicionamiento de ejes basculantes (TCPM) Anular M126	_	-	Х
M134 M135	Parada de precisión en transiciones no tangentes en los posicionamientos con ejes rotativos Anular M134	_	-	Х
M138	Selección de ejes basculantes	_	_	Х
M140	Retirada del contorno en dirección al eje de la herramienta	Х	_	Х
M141	Suprimir la supervisión del palpador	Х	_	Х
M142	Borrar las informaciones modales del programa	_	_	Х
M143	Borrar el giro básico	Х	_	Х
M144 M145	Consideración de la cinemática de la máquina en posiciones REAL/ NOMINAL al final de la frase Anular M144	_	-	Х
M148 M149	Con Stop NC retirar automáticamente la herramienta del contorno Cancelar M148	Х	-	Х

Μ	Funcionamiento	TNC 320	TNC 310	iTNC 530
M150	Pulsar el aviso del conmutador final	-	_	Х
M200 - M204	Función de corte por láser	-	_	Х

Comparación: ciclos de palpación en los modos de funcionamiento Manual y Volante electrónico

Ciclo	TNC 320	TNC 310	iTNC 530
Calibrar la longitud activa	Х	Х	Х
Calibrar el radio activo	Х	Х	Х
Calcular el giro básico mediante una línea	Х	Х	Х
Fijar el punto de referencia en un eje seleccionable	Х	Х	Х
Fijación de la esquina como punto de referencia	Х	Х	Х
Fijar eje central como punto de referencia	-	_	Х
Fijar punto central círculo como punto de referencia	Х	Х	Х
Calcular el giro básico mediante dos taladros/islas circulares	-	_	Х
Fijar el punto de referencia mediante cuatro taladros/islas circulares	-	_	Х
Fijar el punto central del círculo mediante tres taladros/islas circulares	-	_	Х

Comparación: ciclos de palpación para la comprobación automática de piezas

Ciclo	TNC 320	TNC 310	iTNC 530
0, Plano de referencia	Х	_	Х
1, Punto de referencia polar	Х	_	Х
2, Calibración TS	-	_	Х
3, Medición	Х	_	Х
9, TS Calibrar la longitud	Х	_	Х
30, Calibración del TT	-	_	Х
31, Medición de la longitud de la herramienta	-	_	Х
32, Medición del radio de la herramienta	-	_	Х
33, Medición de la longitud y radio de herramienta	-	_	Х
400, Giro básico	-	_	Х
401, Giro básico mediante dos taladros	-	_	Х
402, Giro básico mediante dos islas	-	_	Х
403, Compensación del giro básico mediante un eje giratorio	-	_	Х
404, Fijar giro básico	-	_	Х
405, Ajuste de la posición inclinada de la pieza mediante el eje C	-	_	Х
410, Punto de referencia rectángulo interior	-	_	Х
411, Punto de referencia rectángulo exterior	-	_	Х
412, Punto de referencia círculo interior	-	_	Х
413, Punto de referencia círculo exterior	-	_	Х
414, Punto de referencia esquina exterior	-	_	Х
415, Punto de referencia esquina interior	-	_	Х
416, Punto de referencia centro del círculo de taladros	-	_	Х
417, Punto de referencia en el eje del palpador	-	_	Х
418, Punto de referencia centro de 4 taladros	-	_	Х
419, Punto de referencia de un único eje	-	_	Х
420, Medir un ángulo	-	-	Х
421, Medir taladro	-	-	Х
422, Medir circulo exterior	-	-	Х

Ciclo	TNC 320	TNC 310	iTNC 530
423, Medir rectángulo interior	-	_	Х
424, Medir rectángulo exterior	-	-	Х
425, Medir ancho interior	-	_	Х
426, Medir brida exterior	-	-	Х
427, Mandrinado	-	_	Х
430, Medir círculo de taladros	-	_	Х
431, Medir planos	-	_	Х

HEIDENHAIN

 DR. JOHANNES HEIDENHAIN GmbH

 Dr.-Johannes-Heidenhain-Straße 5

 83301 Traunreut, Germany

 [®] +49 (8669) 31-0

 ^{EXX} +49 (8669) 5061

 E-Mail: info@heidenhain.de

 Technical support

 ^{EAX} +49 (8669) 31-1000

 E-Mail: service@heidenhain.de

 Measuring systems

 ^E +49 (8669) 31-3104

 E-Mail: service.mc-support@heidenhain.de

 TNC support

 [®] +49 (8669) 31-3101

 E-Mail: service.nc-support@heidenhain.de

 NC programming

 [®] +49 (8669) 31-3103

E-Mail: service.nc-pgm@heidenhain.de **PLC programming** 2 +49 (8669) 31-3102 E-Mail: service.plc@heidenhain.de **Lathe controls** 2 +49 (711) 952803-0 E-Mail: service.hsf@heidenhain.de

www.heidenhain.de

Palpadores 3D de HEIDENHAIN

le ayudan a reducir tiempos secundarios:

Por ejemplo

- ajuste de piezas
- fijación del punto de referencia
- medición de piezas
- digitalización de piezas 3D

con los palpadores de piezas **TS 220** con cable **TS 640** con transmisión por infrarrojos

- medición de herramientas
- supervisión del desgaste
- registro de rotura de herramienta

con el palpador de herramientas **TT 140**