Betriebsanleitung Operating Instructions

VRZ 710C VRZ 750C

Inhalt

Seite

Den VRZ in Betrieb nehmen

- 4 Lieferumfang
- 5 Tastatur und Anzeigen/Geräte-Rückseite
- 6 Aufstellen des VRZ
- 7 Netzanschluß

Den VRZ an die Maschine anpassen

- 9 Einschalten
- 10 Parameter
- 12 Parameter-Beschreibung

Anhang

- 17 Fehlermeldungen
- 18 Technische Daten
- 19 Anschlußmaße

Wenn sich der VRZ nicht einschalten läßt:

Sicherung überprüfen, siehe Seite 8

Fehlermeldungen oder blinkende Anzeige: Seite 17

Weitere Dokumentation:

Lotse Arbeiten mit dem VRZ

Contents

Page

Commissioning the VRZ

- 4 Items Supplied
- 5 Controls and Displays/Rear Panel
- 6 Mounting the VRZ
- 7 Power Connection

Adapting the VRZ to the Machine

- 9 Switch-On
- 10 Parameters
- 12 Parameter Description

Additional Information

- 17 Error Messages
- 18 Specifications
- 19 Dimensions

If the VRZ will not switch on:

Check the fuse (see page 8).

Error messages or blinking display: See page 17

Further documentation: Pilot Working with the VRZ

Lieferumfang

- VRZ 710 C für 2 Achsen bzw.
- VRZ 750 C für 3 Achsen
- 2 Sicherungen T 0,5 A (im Netzsicherungshalter eingebaut), Id.-Nr.: 200 890 09
- Netzkupplung (beigepackt), Id.-Nr.: 257 811 01
- **Dokumentation** "Betriebsanleitung" mit Parameterkarte
- Dokumentation "Lotse" Bedienungsanleitung
- Kontrollschein

Auf Wunsch:

Komplett verdrahtetes Netzkabel, Länge 3 m, Id.-Nr.: 223 775 01

Bescheinigung des Herstellers:

Hiermit wird bescheinigt, daß dieses Gerät in Übereinstimmung mit den Bestimmungen der AmtsblVfg 1046/1984 funkentstört ist. Der Deutschen Bundespost wurde das Inverkehrbringen dieses Gerätes angezeigt und die Berechtigung zur Überprüfung der Serie auf Einhaltung der Bestimmungen eingeräumt.

Hinweis:

Wird vom Betreiber das Gerät in eine Anlage eingefügt, muß die gesamte Anlage den obigen Bestimmungen genügen.

Items Supplied

- VRZ 710 C for 2 axes or
- VRZ 750 C for 3 axes
- 2 fuses 0.5 A (installed), Id.-Nr.: 200 890 09
- Power Connector (enclosed), Id.-Nr.: 257 811 01
- "Operating Instructions" with parameter card
- "Pilot" operator's guide
- Certificate of Inspection

Optional:

Power cable with connectors 3 m (10 ft), Id.-Nr.: 223 775 01

Manufacturer's Certificate:

We hereby certify that this unit is radioshielded in accordance with the German official register decree 1046/1884.

The German postal authorities have been notified of the issuance of this unit and have been granted admission for examination of the series regarding compliance with the regulations.

Note:

If the unit is incorporated by the user into an installation then the complete installation must comply with the above requirements.

Tastatur und Anzeigen/Geräte-Rückseite

Controls and Displays/Rear Panel

Aufstellen des VRZ

Aufstellen/Befestigen

- ► VRZ am vorgesehenen Platz aufstellen.
- VRZ ggf. an den Standfüßen mit M5-Schrauben befestigen (Bohrbild siehe "Anschlußmaße").

Mounting the VRZ

Mounting/Securing

- > Place VRZ in desired location.
- If necessary, fasten the feet with M5 screws (see "Dimensions" for hole pattern).

Anschluß der Längenmeßsysteme

Alle HEIDENHAIN-Längenmeßsysteme mit sinusförmigen Signalen und abstandscodierten bzw. einzelnen Referenzmarken lassen sich an den VRZ anschließen.

Zuordnung der Meßsysteme

X-Achse $\rightarrow X_1$ -Buchse Y-Achse* $\rightarrow X_2$ -Buchse Z-Achse $\rightarrow X_3$ -Buchse

*VRZ 710 für Drehmaschinen: Z-Achse \rightarrow X₂-Buchse.

Connecting linear encoders

All HEIDENHAIN linear encoders with sinusoidal output signals and distance-coded or single reference marks can be connected to the VRZ.

Assignment of encoders to inputs

 $X axis \rightarrow X_1 socket$ $Y axis^* \rightarrow X_2 socket$ $Z axis \rightarrow X_3 socket$

* VRZ 710 for lathes: $Z axis \rightarrow X_2$ socket.

Netzanschluß

Gerät an Netzspannung anpassen

Die Spannungsbereiche sind über dem Spannungsumschalter aufgeführt. Grundeinstellung: 220 V ~ (Stellung 3).

Umschalten der Geräte-Netzspannung

 Spannungsumschalter mit einer Münze auf den gewünschten Spannungsbereich einstellen.

Power Connection

Set the unit to the proper line voltage

The voltage ranges are indicated above the voltage selector.

Factory presetting: 220 V AC (position 3).

To set the voltage:

 Use a coin to turn the voltage selector to the correct voltage range.

Netzkupplung verdrahten

- ► Netzanschluß an Kontakte 🛈 und 🕅
- ➤ Schutzerde an Kontakt (畫).

Unter Spannung keine Steckverbindungen herstellen oder lösen!

To wire the power connector:

- \blacktriangleright Connect power lines to contacts \bigcirc and \bigcirc .
- ► Connect protective ground to contact .

Do not engage or disengage any connectors while the unit is under power!

Netzanschluß

- Bei fehlendem oder unterbrochenem Schutzleiter kann das Gehäuse unter Spannung stehen.
- Netzstecker nur in Steckdosen mit Schutzkontakt einführen.
- Bei Anschluß über ein Verlängerungskabel muß ein **Schutzleiter** vorhanden sein.

Zur Erhöhung der EMV-Sicherheit wird empfohlen den **Erdungsanschluß** , des VRZ mit dem Sternpunkt der Maschinenerde zu verbinden (Mindestquerschnitt 6 mm²).

Power Connection

, A missing or interrupted ground line could leave the housing under voltage.

Plug the unit only into **grounded** outlets.

An extension cable must have a ground line.

To increase the electromagnetic compatibility, we recommend attaching the **ground connection**, J, of the VRZ to the star point of the machine (minimum cross section 6 mm²).

Wechseln der Netzsicherung

Der VRZ verfügt über eine Netzsicherung T 0,5 A.

- ➤ Netzkupplung ziehen.
- Netzsicherungshalter bei gleichzeitigem Druck auf Sicherungsbügel herausziehen.
- Netzsicherung wechseln. Im Netzsicherungshalter befindet sich eine Ersatzsicherung.
- Netzsicherungshalter wieder einsetzen.
 Er muß "hörbar" einrasten.
- ➤ Netzkupplung wieder einstecken.

Changing the line fuse

The VRZ contains a 0.5 A slow-blow line fuse.

- > Pull out the power connector.
- Press the locking clip and pull out the fuse holder.
- Exchange fuses. There is a spare fuse already in the fuse holder.
- Replace the fuse holder. You must hear it click into place.
- > Reinsert the power connector.

Einschalten

Der Netzschalter befindet sich über dem Netzstecker auf der Gehäuse-Rückseite.

- VRZ einschalten. Anzeigen blinken. Das Blinken zeigt an, daß eine Netzunterbrechung stattgefunden hat.
- Taste drücken. Anzeige-Blinken erlischt, Dezimalpunkte blinken.
- Meßsysteme über die Referenzmarke fahren. Anzeige läuft mit.

Der VRZ ist betriebsbereit. Zur Anpassung des VRZ an die Maschine siehe Parametereingabe auf der nächsten Seite.

qq

Um Bezugspunkte netzausfallsicher zu speichern, **muß** im REF-Betrieb (REF-Anzeigediode leuchtet) gearbeitet werden (siehe Bedienungsanleitung "Lotse").

Switch-On

The power switch is located above the power input at the rear of the housing.

- Switch on the counter. The blinking display indicates that a power interruption has occurred.
- Press the key. The display stops blinking; the decimal points blink.
- Traverse the encoders over the reference marks. The display changes concurrently.

The VRZ is ready for operation. To adapt the VRZ to the machine, please refer to the instructions for parameter entry on the following page.

al

In order to store the datum points in nonvolatile memory, you **must** work in REF mode (REF diode lit). (See the "Pilot" operator's guide).

Parameter

Die Parameter dienen zur Anpassung des VRZ an die Maschine.

Bezeichnung

Parameter werden mit dem Buchstaben **P** und **zwei Ziffern,** der Parameter-Nummer bezeichnet, z.B. P07 oder P20.

Bei Parametern, die sich auf die einzelnen Maschinenachsen beziehen, wird der Parameter-Nummer eine **dritte, achskenn**zeichnende Ziffer angehängt:

Ziffer 1 für X-Achse (1. Achse) Ziffer 2 für Y*-Achse (2. Achse) Ziffer 3 für Z-Achse (3. Achse).

Die Achskennzeichnung ist durch einen Punkt von der Parameter-Nummer getrennt.

Beispiel

P02.1 = Parameter P02 für die X-Achse.

* Bei VRZ 710 für Drehmaschinen: Z-Achse.

Parameters

The VRZ is adapted to a specific machine by means of parameters.

Designation

Parameters are designated by the letter **P** and **two digits.** Examples: P07 or P20.

Parameters which refer to an individual machine axis have a **third digit** which identifies the **axis**:

for the X axis (1st axis)
 for the Y* axis (2nd axis)
 for the Z axis (3rd axis).

The digit identifying the axis is separated from the parameter number by a point.

Example

P02.1 = Parameter P02 for the X axis.

* VRZ 710 for lathes: Z axis.

Beispiel einer Parameter-Eingabe: P02.2

Parameter-Eingabe aktivieren:

- ► Taste 💶 drücken und halten, zusätzlich 1 Ziffer der Parameter-Nummer drücken.
- ► 2. Ziffer der Parameter-Nummer drücken.

ENT

Х

Υ

P02.1

84,550

31.865

0

Example of parameter entry: P02.2

Activate parameter entry:

Parameters

- > Press and hold CE key, press number key for first digit of parameter number.
- > Press number key for second diait of parameter number.

Select axis designation and parameter value:

- Achskennzeichnung und Parameter-Wert auswählen:
- ► z.B. Taste **Y** drücken X-Taste für Ziffer 1 Y-Taste für Ziffer 2 Z-Taste für Ziffer 3
- > Taste 妃 drücken, bis gewünschter Wert erscheint (die zulässigen Parameter-Werte sind im VRZ gespeichert).

Dies auch für übrige Achsen wiederholen.

Ausnahme: Werte für Parameter P07 "Lineare Fehlerkompensation" und P13 "Schwindmaßkorrektur" über Zehner-Tastatur eingeben.

Parameter-Werte übernehmen:

➤ Taste 💽 drücken.

Die Eingaben für diesen Parameter sind abgeschlossen, weitere Parameter-Eingaben mit "Parameter-Eingabe aktivieren" beginnen.

Х

Υ

- \succ E.g. press $[\mathbf{Y}]$ key X key for 1st axis Y kev for 2nd axis Z key for 3rd axis
- > Press 妃 key until desired value appears (the permissible values are stored in the VR7

Repeat this procedure for the remaining axes.

Exception: Enter the values for parameter P07 (linear machine error compensation) and P13 (shrinkage allowance) via the numeric keypad.

Confirm parameter entry:

> Press the 📾 kev.

Entry is completed for this parameter. Begin entry for further parameters with "Activate parameter entry".

Parameter für den Anzeigeschritt

Die Parameter **P01 – Teilungsperiode** des angeschlossenen Längenmeßsystems – und **P04 – Unterteilungsfaktor** legen den Anzeigeschritt des VRZ fest. Beide Parameter, P01 und P04, müssen für jede Achse separat eingegeben werden.

ոդ

Bei "Durchmesser-Anzeige" Parameter P03 = 1 verdoppelt sich der Anzeigeschritt!

Parameter Description

.

Parameters for the Display Step

Parameters **P01 – grating period** of the connected linear encoder and **P04 – subdivision factor** determine the display step of the VRZ. Both parameters P01 and P04 must be entered separately for each axis.

ah

With "diameter display" parameter P03 =1, the display step is doubled!

		Anzeigeschritt/ <i>Display step</i> P03 = 0 (Radius/ <i>Radius)</i>		Anzeigeschritt/ <i>Display step</i> P03 =1 (Durchmesser/ <i>Diameter</i>)	
P01.*	P04.*	mm	inch	mm	inch
<u>4 µ</u> m	4fach/ <i>4-fold</i>	0.001	0.000 05	0.002	0.000 1
	2fach/2-fold	0.002	0.000 1	0.004	0.000 2
	0,8fach/0.8-fold	0.005	0.000 2	0.01	0.000 4
	0,4fach/ <i>0.4-fold</i>	0.01	0.000 5	0.02	0.001
10 µm	2fach/ <i>2-fold</i>	0.005	0.000 2	0.01	0.000 4
	1fach/1-fold	0.01	0.000 5	0.02	0.001
	0,5fach/ <i>0.5-fold</i>	0.02	0.001	0.04	0.002
	0,2fach/0.2-fold	0.05	0.002	0.1	0.004
	0,1fach/ <i>0.1-fold</i>	0.1	0.005	0.2	0.01
20 µm	4fach/ <i>4-fold</i>	0.005	0.000 2	0.01	0.000 4
	2fach/2-fold	0.01	0.000 5	0.02	0.001
	1fach/ <i>1-fold</i>	0.02	0.001	0.04	0.002
	0,4fach/0.4-fold	0.05	0.002	0.1	0.004
	0,2fach/ <i>0.2-fold</i>	0.1	0.005	0.2	0.01
40 µm	2fach/ <i>4-fold</i>	0.01	0.000 5	0.02	0.001
	2fach/ <i>2-fold</i>	0.02	0.001	0.04	0.002
	0,8fach/ <i>0.4-fold</i>	0.05	0.002	0.1	0.004
	0,4fach/0.4-fold	0.1	0.005	0.2	0.01
100 µm	2fach/ <i>2-fold</i>	0.05	0.002	0.1	0.004
	1fach/ <i>1-fold</i>	0.1	0.005	0.2	0.01
200 µm	4fach/4-fold	0.05	0.002	0.1	0.004
	2fach/ <i>2-fold</i>	0.1	0.005	0.2	0.01

P02 Zählrichtung

Für jede Achse kann unabhängig voneinander die Zählrichtung festgelegt werden.

Parameter	Parameter- Wert	Wirkung
P02.*	0	normale Zählrichtung
	1	umgekehrte Zählrichtung

* achsabhängiger Parameter

P03 Radius/Durchmesser-Anzeige

Für jede Achse kann unabhängig voneinander die Radius- oder die Durchmesser-Anzeige gewählt werden.

Parameter	Parameter- Wert	Wirkung
P03.*	0	Radius-Anzeige (normale Anzeige)
	1	Durchmesser-Anzeige (doppelter Anzeigeschritt)

* achsabhängiger Parameter

P20 Anzeige-Nullen mit CE

Mit der Taste CE kann wahlweise

- die Eingabe gelöscht und der vorherige Anzeigewert zurückgerufen werden, oder
- die Anzeige gelöscht und auf "0" gesetzt werden.

Parameter	Parameter- Wert	Wirkung
P20	0	CE ruft vorherigen Anzeigewert zurück
	1	CE nullt die Anzeige

* achsabhängiger Parameter

Parameter Description

P02 Counting Direction

The counting direction can be set separately for each axis.

Parameter	Parameter setting	Effect
P02.*	0	Normal counting direction
	1	Inverse counting direction

* Axis-dependent parameter

P03 Radius/Diameter Display

The radius or the diameter can be displayed in each axis independently.

Parameter	Parameter setting	Effect
P03.*	0	Radius display (normal display)
	1	Diameter display (display step doubled)

* Axis-dependent parameter

P20 Reset display to zero with CE key

The CE key can serve either to

- clear the display and recall the previous value, or to
- reset the display to "0".

Parameter	Parameter setting	Effect
P20	0	CE recalls the previous display value
	1	CE resets the display to zero

* Axis-dependent parameter

P07 Lineare Fehlerkompensation

Mit einem Vergleichsmeßsystem, z. B. dem VM 101 von HEIDENHAIN, lassen sich Maschinenfehler ermitteln. Diese Fehler können für jede Achse als linearer Korrekturfaktor in µm pro 1 m Meßlänge (ppm) eigegeben werden.

Parameter	Eingabe- Bereich (µm/m)	Wirkung
P07.*	0 bis +99 999	"Verlängern" des Maßstabs
	0 bis –99 999	"Verkürzen" des Maßstabs

* achsabhängiger Parameter

Beispiel zur Ermittlung des Korrekturfaktors:

Umrechnung auf 1 m Meßlänge:	
Differenz (L – ML)	–0,124 mm
tatsächliche Länge L (ermittelt durch VM)	619,876 mm
Meßlänge ML (Anzeige des VRZ)	620 mm

–124 µm = Korrekturfaktor $= -200 \, \mu m/m$

Parameter Description

P07 Linear Machine Error Compensation

Machine errors can be measured with a comparator system such as the VM 101 from HEIDENHAIN. These errors can be compensated for each axis as linear compensation factor in µm per 1 m measuring length (ppm).

Parameter	Input range (μm/m)	Effect
P07.*	0 to +99 999	"Lengthening" the scale
-	0 to –99 999	"Shortening" the scale

* Axis-dependent parameter

Example for calculation of compensation factor:

Measuring length ML (VRZ display)	620 mm
Actual length L (as determined by comparator)	619.876 mm
Difference (L – ML)	–0.124 mm
Converted to 1 m measuring length: $-124 \mu\text{m}$ - Componentian factor	200
$\frac{1}{0.620}$ m = compensation factor	$= -200 \mu m/m$

P09 Referenzmarken-Auswertung

Für jede Achse muß unabhängig voneinander die Referenzmarken-Auswertung festgelegt werden. Abhängig vom Maßstabtyp gibt es einzelne Referenzmarken (z.B. LS 303 **ohne** Index **C**) oder abstandscodierte Referenzmarken (z.B. LS 303 **C)**.

Parameter	Para- meter- Wert	Längen- meßsystem	max. Verfahrweg zur Reproduktion des Bezugspunktes
P09.*	0	ohne Index C: keine abstands- codierte Referenz- marken	je nach Position des Meßsystems
	1000	LS 101 C, LS 103 C	10 mm
		LS 107 C, LS 303 C LS 403 C, LS 404 C LS 406 C, LS 603 C LS 704 C	20 mm
		ULS 300 C/10 ULS 300 C/20	10 mm 20 mm
	2000	LID 311 C, LID 351 C	20 mm

* achsabhängiger Parameter

Parameter Description

P09 Reference Mark Evaluation

Reference mark evaluation must be defined separately for each axis. Depending on the encoder model, there are single reference marks (e.g. LS 303 **without** suffix **C**) or distance-coded reference marks (e.g. LS 303 **C**).

Parameter	Para- meter setting	Linear encoder	Max. traversing distance to repro- duce the datum
P09.*	0	Without suffix C: no distance-coded reference marks	Depending on the position of the encoder
	1000	LS 101 C, LS 103 C LS 107 C, LS 303 C LS 403 C, LS 404 C LS 406 C, LS 603 C LS 704 C	10 mm 20 mm
	2000	ULS 300 C/10 ULS 300 C/20 LID 311 C, LID 351 C	10 mm 20 mm 20 mm

* Axis-dependent parameter

P13 Schwindmaßkorrektur

Mit Parameter P13 kann eine Korrektur des zu bearbeitenden Werkstückes eingegeben werden. Die Korrektur ist für **jede Achse** getrennt in μm/m einzugeben.

Parameter	Eingabe- Bereich (µm/m)	Wirkung
P13.*	0 bis +99 999	"Verkleinern" des Werkstücks
	0 bis –99 999	"Vergrößern" des Werkstücks

* achsabhängiger Parameter

Beispiel zur Ermittlung der Schwindmaßkorrektur:

Ein Quadrat mit einer Kantenlänge L = 10 mm soll um 5% verkleinert (L = 9,5 mm) gefräst werden.

Eingabewert: 50 000 $\mu\text{m/m} \triangleq 5\%$

αh

² Erfolgt neben einer Schwindmaßkorrektur auch eine Linearkorrektur, so überlagern sich die Korrekturwerte multiplikativ.

Beispiel:

Linearkorrektur 100 µm/m, Schwindmaßkorrektur 14 000 µm/m (1,4%)

1	000.000	unkorrigierte Anzeige
х	1.000 100	Linearkorrektur-Faktor
х	1.014 000	Schwindmaß-Faktor
= 1014.101		korrigierte Anzeige

Parameter Description

P13 Shrinkage Allowance

With parameter P13 you can enter a correction to the workpiece to be machined. The correction is entered **separately for each axis** in μ m/m (ppm).

Parameter	input range (μm/m)	Effect
P13.*	0 to +99 999	"Shrinking" the workpiece
	0 to -99 999	"Enlarging" the workpiece

* Axis-dependent parameter

Example for calculation of shrinkage allowance:

A square with side length L = 10 mm is to be milled reduced by 5% (L = 9.5 mm)

Entry value: 50 000 μ m/m \triangleq 5%

If a linear compensation factor has also been entered, the two compensation factors will multiply each other.

Example:

Linear compensation 100 μ m/m, Shrinkage allowance 14 000 μ m/m (1.4%)

1000.000	Display without compensation
x 1.000 100	Linear compensation factor
x 1.014 000	Shrinkage allowance
= 1014.101	Display with compensation

Fehlermeldunge	en	Error Messages	
Anzeige blinkt	 Es hat eine Netzunterbrechung stattgefunden. Maßstab wurde zu schnell verfahren, die zulässige Eingangsfrequenz wurde überschritten. Taste REF drücken und Meßsysteme über die Referenzmarken fahren. 	Display blinks • A pc • The inpu ➤ Pres	wer interruption has occurred. scale was moved too quickly; the permissible t frequency was exceeded. 's REF key and pass over reference marks.
EEEEEEE	 Eingabefehler. Eingabebereich wurde über- schritten. Unzulässige Parameter-Nummer wurde gewählt. Mit CE diese Fehlermeldung quittieren. 	EEEEEEE • Erro • An r > Acki	neous entry. The value entered was too large. non-existent parameter number was selected. nowledge this error message with CE.
0.0.0.0.0.3.7.5	 Überlauf-Anzeige. Alle Dezimalpunkte leuchten auf. Maschinenachsen wieder zurückfahren. 	0.0.0.0.3.7.5 • Ove ► Retr	rflow display: all decimal points light up. act machine axes.
0.0.0.1.2.3.4.5	 Gatearray-Überlauf. Alle Dezimalpunkte blinken. Zähler aus- und wieder einschalten. 	0.0.0.1.2.3.4.5 • Gate ➤ Swit	e array overflow: all decimal points blink. tch counter off, then on again.
Error 61 Error 62 Error 63	 Die abstandscodierten Referenzmarken der ent- sprechenden Achse wurden zu schnell überfahren. Der in Parameter P09 eingegebene Wert für die Referenzmarken-Auswertung stimmt nicht mit den Referenzmarken des angeschlossenen Meß- systems überein. Mit CE diese Fehlermeldung quittieren und Fehler ggf. korrigieren. 	Error 61 • The Error 62 corr Error 63 • The mar refe ► Ack. corr	distance-coded reference marks of the esponding axis were moved over too quickly. value entered for parameter P09 (reference k evaluation) does not correspond to the rence marks of the connected encoder. nowledge this error message with CE and ect the error.
Error 80 Error 81 Error 82 Error 83 Error 84 Error 98 Error 99	Sollten während des Betriebs die nebenstehenden Fehlermeldungen in der Istwert-Anzeige erscheinen, benachrichtigen Sie bitte Ihren HEIDENHAIN-Kundendienst.	Error 80 > Sho Error 81 the Error 82 con Error 83 Error 84 Error 98 Error 99	uld any of these six error messages appear in position display during operation, please tact your HEIDENHAIN service agency.

Technisch e Daten

Mechanische Kennwerte		
Gehäuse-Ausführung	Standmodell, Gußgehäuse; Abmessungen (B x H x T) 270 mm x 210 mm x 155 mm	
Arbeitstemperatur Lagertemperatur	0 bis 45° C –30 bis 70° C	
Masse	ca. 3,8 kg	
Elektrische Kennwerte		
Spannungsversorgung	Netzspannung umschaltbar 100 bis 110 V/120 bis 130 V/220 bis 240 V ~ (–15 bis +10%) Netzfrequenz 48 bis 62 Hz	
Leistungsaufnahme	ca. 14 W bei 220 V ~ und 3 x 135 mA Meßsystem-Strom	
Meßsystem-Eingänge	für Wegmeßsysteme mit 4, 10, 20, 40, 100, 200 μm Teilungsperiode und sinusförmigen Abtast-Signalen, 7 bis 16 μA _{SS} may 50 kHz bis 6 m Kabollöpga	
zu. Engungsnöquonz	max. 35 kHz bis 10 m Kabellänge max. 20 kHz bis 20 m Kabellänge	
Funktionen		
REF-Betrieb	Im REF-Betrieb speichert der VRZ den Bezugspunkt netzausfallsicher.	
Parameter	 Radius-/Durchmesser-Anzeige Anzeigeschritt (Teilungsperiode des Meßsystems und Unterteilung im VRZ) Lineare Fehlerkompensation Schwindmaß Funktion der CE-Taste 	

Specifications

Mechanical Data	
Housing type	Tabletop model, cast housing: dimensions (W x H x D): 270 mm x 210 mm x 155 mm (10.63 in. x 8.27 in. x 6.10 in.)
Operating temperature Storage temperature	0 to 45° C (32 to 113° F) –30 to 70° C (–22 to 158° F)
Weight	approx. 3.8 kg
Electrical Data	
Power supply	Line voltage selectable 100 to 110 V/120 to 130 V/220 to 240 V AC (–15 to +10%) Line frequency 48 to 62 Hz
Power consumption	approx. 14 W at 220 V AC and 3 x 135 mA encoder current
Encoder inputs Perm. input frequency	for linear encoders with 4, 10, 20, 40, 100, 200 μm grating period and sinusoidal scanning signals, 7 to 16 μA _{PP} max. 50 kHz up to 6 m (20 ft) cable length max. 35 kHz up to 10 m (33 ft) cable length max. 20 kHz up to 20 m (66 ft) cable length
Functions	
REF Mode	In REF mode, the VRZ stores the datum points in non-volatile memory.
Parameters	 Radius/Diameter display Display step (grating period of encoder and subdivision in VRZ) Linear error compensation Shrinkage allowance Function of the CE key

