

User's Manual

for Lathes

Screen

Symbols

Behind the position display:
∇ : Scaling factor or oversize active
Ø: Diameter display

Keyboard

Software version

This User's Manual is for POSITIP 855 models with the following software version:

Progr. 246 xxx 03.
The x's can be any numbers. The software version of your unit is shown on a label on the rear panel.

This User 's Manual describes the POSITIP 855 for turning. A separate manual is available for milling.

Usage

This unit corresponds to class A in accordance with EN 55022 and will be used predominantly in industrially zoned areas

About this manual

This manual is divided into two parts:

- Part I: Operating Instructions starts on page 5
- Part II: Technical Information starts on page 57

Operating Instructions

When using the POSITIP 855 in your work, you need only refer to the Operating Instructions (Part I).

If you're a beginner with POSITIP, you can use the operating instructions as a step-by-step workbook. This part begins with a short introduction to the basics of coordinate systems and position feedback, and provides an overview of the available features. Each feature is explained in detail, using an example which you can immediately try out on the machine - so you won't get "lost" too deeply in the theory. As a beginner you should work through all the examples presented.
If you're already an expert POSITIP user, you can use the operating instructions as a comprehensive review and reference guide. The clear layout and the subject index make it easy to find the desired topics.

Technical Information

If you are interfacing the POSITIP 855 to a machine or wish to use the data interfaces, refer to the technical information in Part II.

Subject Index

A subject index for both parts of this manual starts on page 86.

Dialog flowcharts

Dialog flowcharts are used for each example in this manual.
They are laid out as follows:

A prompt appears with some actions (not always) at the top of the screen. In the flowcharts the prompts always have a gray background.
If two flowcharts are divided by a broken line, this means that you can follow the instructions either above or below the broken line.

Some flowcharts also show the screen that will appear after you press the proper keys.

Abbreviated flowcharts

Abbreviated flowcharts supplement the examples and explanations. An arrow (\Rightarrow) indicates a new input or a work step.

Special Notes in This Manual

Especially important information is shown as a separate note in a gray box. Pay special attention to these notes. Ignoring them would prevent effective use of the control, or even result in damage to the tool or workpiece.

Symbols in the gray boxes

The symbols in the left of the gray boxes indicate the nature of the provided information.

m General information

for example on the machine tool.function

Information for the machine tool builder
for example that he must implement a certain function

Essential information

for example that a certain tool is needed for the described function

Part I: Operating Instructions

I-1 Fundamentals of Positioning 7
I-2 Working with POSITIP -First Steps 13
Before you start 13
Switch-on 13
Operating modes 14
The HELP, MOD and INFO functions 14
Selecting soft-key functions 15
On-screen operating instructions 15
Error messages 16
Selecting the unit of measurement 16
Selecting position display modes 17
Entering tool data and setting the datum 18
Displaying and moving to positions 22
Turning with oversizes 22
I-3 Programming POSITIP 27
Operating mode PROGRAMMING AND EDITING 27
Selecting a program 28
Deleting programs 28
Editing programs 29
Entering program blocks 30
Calling tool data from a program 32
Transferring positions: Teach-in mode 33
Multipass cycle 36
Entering program interruptions 38
Subprograms and program section repeats 39
Editing existing programs 44
Deleting program blocks 45
Transferring programs over the data interface 46
I-4 Executing Programs 49
I-5 INFO: Pocket Calculator, Stopwatch, Taper Calculator 51
To access the INFO functions 51
Taper calculator 52
Stopwatch 53
Pocket calculator 53
I-6 User Parameters: The MOD Function 55
Scaling factors 55
Entering user parameters 56
Part II: Technical Information 57
Subject Index 86

I-1

Fundamentals of Positioning

You can skip this chapter if you are already familiar with the concepts of coordinate systems, incremental and absolute dimensions, nominal and actual positions, and distance-to-go.

Introduction

The geometry of a workpiece is described by a rectangular or Cartesian coordinate system (named in honor of the French mathematician and philosopher René Descartes, in Latin Renatus Cartesius, 1596 to 1650). The Cartesian coordinate system consists of three mutually perpendicular axes X, Y and Z . The point of intersection of these axes is called the datum (or origin) of the coordinate system.

Fig. 1: The Cartesian coordinate system

To determine positions on a workpiece, the coordinate system is "laid" onto the workpiece. With lathe work (i.e., rotationally symmetrical workpieces), the Z axis move along the axis of rotation while the X axis moves in the direction of the radius or diameter. The Y axis can be disregarded since it would always have the same values as the X axis.

Fig. 2: The Cartesian coordinate system with lathe work

Cross slide, saddle and top slide

On conventional lathes, the tool is mounted on a slide that moves in the direction of the X axis (the cross slide) and in the direction of the Z axis (the saddle).

Most lathes have a top slide above the saddle. The top slide moves in Z axis direction and is designated Z_{0}.

Fig. 3: Axes of movement on a lathe

Fig. 4: The origin of the Cartesian coordinate system is the workpiece datum

Fig. 5: These tools have different tool data

Nominal position, actual position and distance-to-go

The positions to which the tool is to move are called the nominal positions, while the position at which the tool is actually located at any given moment is called the actual position (see Figure 6). The distance from the nominal position to the actual position is called the distance-to-go.

Sign for distance-to-go

The distance-to-go carries a positive sign when the path from the actual to the nominal position is in the negative axis direction.
The distance-to-go carries a negative sign when the path from the actual to the nominal position is in the positive axis direction.

Absolute workpiece positions

Each position on the workpiece is uniquely defined by its absolute coordinates (see Figure 7).
Example: Absolute coordinates of position (1):
$X=5 \mathrm{~mm}$
$Z=-35 \mathrm{~mm}$
Absolute coordinates of position (2):
$X=15 \mathrm{~mm}$
$Z=-65 \mathrm{~mm}$
If you are working according to a workpiece drawing with absolute dimensions, you are moving the tool to the coordinates.

Incremental workpiece positions

A position can also be defined relative to the previous nominal position (see Figure 8). The datum for the dimension is then located at the previous nominal position. Such coordinates are termed incremental coordinates (increment $=$ increase) or chain dimensions (since the position is defined by a chain of dimensions).
Incremental coordinates are identified by a preceding I.
Example: Incremental coordinates of position (3) referenced to position (1):
$\mathbf{I X}=10 \mathrm{~mm}$
$\mathbf{I Z}=0 \mathrm{~mm}$
Incremental coordinates of position (2) referenced to position (3):
IZ $=-30 \mathrm{~mm}$
Incremental coordinates of position (2) referenced to position (1):
IX $=10 \mathrm{~mm}$
IZ $=-30 \mathrm{~mm}$
If you are working according to a workpiece drawing with incremental dimensions, you are moving the tool by the dimension.

Sign for incremental dimensioning

An incremental dimension has a positive sign when the axis is moved in the positive direction.
An incremental dimension has a negative sign when the axis is moved in the negative direction.

Fig. 6: Nominal position (S) , actual position (1) and distance-to-go ©

Fig. 7: Positions (1) and (2) are absolute workpiece positions

Fig. 8: Positions (1) and (3) are ncremental workpiece positions

Example: Workpiece drawing with absolute dimensions (in accordance with ISO 129 standard)

A list of coordinates corresponding to this example is advantageous when you are working in the PROGRAMMING AND EDITING operating mode. The X -coordinate values are given as diameters.

Coordinates for	\mathbf{X}^{\varnothing} $\mathbf{[m m}]$	\mathbf{Z} $\mathbf{[m m}]$	Remarks
P0	40	0	Face
P1	80	-40	
P2	60	-80	Recess
P3	60	-120	Recess
P4	100	-120	
P5	120	-150	
P6	180	-180	
P7	180	-220	

Position encoders

The position encoders convert the movements of the machine axes into electrical signals. POSITIP then evaluates these signals, determines the actual position of the machine axes, and displays the position as a numerical value.

If power is interrupted, the relationship between the machine axis positions and the calculated actual positions is lost. The reference marks on the position encoders and the reference mark evaluation feature (REF) enable POSITIP to re-establish this relationship again when the power is restored.

Fig. 9: Linear encoder, here for the Z axis

Fig. 10: Linear scales: with distance-coded reference marks (upper illustration) and one reference mark (lower Ilustration)

NOTES

I-2

Working with POSITIP - First Steps

Before you start

You can cross over the reference marks after every switch-on. REF appears in the input line on the screen when all the reference marks have been crossed over. If you set a new datum, POSITIP automatically stores the new relationship between axis slide positions and display values.

Working without reference mark evaluation

You can also use POSITIP without crossing over the reference marks - simply press the soft key No REF.

Note that if you do not cross over the reference marks,a new datum point you set will not be stored. This means that after a power interruption the relationship between axis slide positions and display values cannot be restored.

Fig. 11: REF display on screen

Switch-on

Your POSITIP is now ready for operation and is in the operating mode ACTUAL VALUE.

Operating Modes

The operating mode determines which functions are available to you.

Available functions	Mode	Key
Position display for basic machining tasks; Tool presetting; Datum setting	ACTUAL VALUE	\downarrow
Distance-to-go display; Turning with oversize	$\begin{aligned} & \text { DISTANCE- } \\ & \text { TO-GO } \end{aligned}$	\triangle
Storage of work steps for small-lot production	PROGRAMMING AND EDITING	$\hat{\nabla}$
Run programs previously created in the PROGRAMMING AND EDITING mode	EXECUTE PROGRAM	\square

You can switch to another operating mode at any time by pressing the key for the desired mode.

The HELP, MOD and INFO functions

You can call the HELP, MOD and INFO functions at any time.
To call a function:
> Press the key for the desired function.
To leave a function:
> Press the same key again.

Available functions	Function name Key	
On-screen operating instruc- tions: graphics and text keyed to the current screen contents	HELP	HELP
User parameters: To redefine POSITIP's basic operating characteristics	MOD	
Taper calculator, stopwatch, pocket calculator	INFO	MOD

Selecting soft-key functions

The soft-key functions are grouped into one or more rows. The number of rows is indicated by a symbol at the upper right of the screen. If no symbol is shown, that means there is only one row for the function. The highlighted rectangle in the symbol indicates the current row being displayed.

Function	Key
Page forward through the soft-key rows	团
Page backward through the soft-key rows	团
Go back one level	T

m Whenever you press the key for an operating mode, POSITIP displays the soft keys with the main functions for that mode.

On-screen operating instructions

The integrated operating instructions provide you with information and assistance in any situation.

To call the operating instructions:
> Press the HELP key.

- Use the paging keys if the explanation is spread over more than one screen page.
To leave the operating instructions:
> Press HELP again.

Example: On-screen operating instructions for NOTE/SET

The function NOTE/SET is described in this manual starting on page 21.

- Select NOTE/SET by pressing the soft key Note/set in the operating mode ACTUAL VALUE.
- Press HELP.

The first page of the operating instructions for NOTE/SET appears on the screen.

Page reference at the lower right of the screen:
The number in front of the slash is the current page; the number behind the slash is the total number of pages for this topic. The on-screen operating instructions now contain the following information on NOTE/SET:

- General information on the function (page $1 / 2$)
- Sequence of entries (page 2/2)

To leave the operating instructions:
> Press HELP again.

Fig. 12: The symbol for soft-key rows. Here, the first row is being displayed
"Note/Set" is useful when determining tool data by scratching the workpiece

To avoid losing the position value
when the tool is retracted to measure the workpiece, this value can be stored with "Note".
After the workpiece is measured, a new position.

Fig. 13: On-screen operating instructions for NOTE/SET (page 1 of 2)

Fig. 14: On-screen operating instructions for NOTE/SET (page 2 of 2)

Error messages

If an error occurs while you are working with POSITIP, a message will come up on the screen in plain English.

To call an explanation of the error:
> Press the HELP key.
To clear the error message:

- Press the CE key.

Blinking error messages

1

W A R N IN G

Blinking error messages mean that the operational reliability of the POSITIP has been impaired.

If a blinking error message occurs:
> Note down the error message displayed on the screen.
> Switch off the power to the POSITIP.

- Attempt to correct the problem with the power off.
> If the blinking error message recurs, notify your customer service agency.

Selecting the unit of measurement

Positions can be displayed in millimeters or inches. If you choose inches, inch will be displayed at the top of the screen next to REF.

To change the unit of measurement:
> Press MOD.

- Page to the soft key row containing the user parameter mm or inch.
> Choose the soft key mm or inch to change to the other unit.
- Press MOD again.

For more information on user parameters, see Chapter I-6.

Fig. 15: The inch indicator

Selecting position display modes

Radius/diameter display

Drawings for lathe parts usually give diameter values. When you turn the part, however, you infeed the tool in radius values. POSITIP can display either the radius or the diameter for you. When the diameter is being displayed, the diameter symbol (\varnothing) is shown next to the position value.

Example: Radius display, position (1) $\quad X=20 \mathrm{~mm}$ Diameter display, position (1)

$$
X=40^{\varnothing} \mathrm{mm}
$$

To switch over the display

- Press MOD.
> Page with the paging keys to the soft key row containing Radius or Dia.
> Press this soft key to switch from radius to diameter display or vice-versa.

Separate value/sum display

Separate value display

In this display mode the positions of the saddle and top slide are displayed separately. The position displays are referenced to the datum points which you set for the axes. When an axis slide moves, only the position display for that axis changes.
The top slide is identified with a small O , for example Z_{O}.

Sum display

In this mode the position values of the saddle and top slide are added together. The sum display shows the absolute position of the tool, referenced to the workpiece datum.
When the sum display mode is active, a small S is shown next to the axis designation, for example Z_{S}.

Example: Separate value (see Fig. 17): $Z=+25.000 \mathrm{~mm}$
$Z_{O}=+15.000 \mathrm{~mm}$
Sum display (see Fig. 17): $\quad Z_{S}=+40.000 \mathrm{~mm}$
ab\}
The sum display will show correct values only if the actual position values of both axis slides were correctly added and entered (with sign) when setting the datum for the "sum."

To switch over the display

> Press MOD.

- Page with the paging keys to the soft key row containing Sum or Seprt.
- Press this soft key to switch from separate value display to sum display or vice-versa.

Fig. 16: Workpiece for radius/diameter display example

Fig. 17: Workpiece for separate value/sum display example

Entering tool data and setting the datum

Before you can use a tool you must enter its tool data (cutting edge position). You can enter the data for up to 99 tools. A workpiece datum must also be entered before you can start machining. Normally the workpiece face (flat surface) is given the value $Z=0$.

"Freezing" a position when turning the first diameter

If you want to measure the diameter of the workpiece after turning the first diameter, you can store ("freeze") the actual position before retracting the tool. This is done in the ACTUAL VALUE operating mode with the Note/Set function. See page 21 for an explanation of this function and an example.

Tool table

When you preset tools, POSITIP automatically stores the tool data in a table. You can access the tool table with a user parameter.
If you change values in the table, the position display will no longer show the values it displayed after tool presetting.

Selecting tools

The number of the current tool is shown in a small box at the lower right of the screen (next to the letter T). Use the vertical arrow keys to select another tool.

Example: Setting the workpiece datum (zero point)

The datum is set to zero for the sum display of the Z axis. All tool data entered are automatically referenced to this datum.

Preparation:

- Select the tool number (tool data) with the vertical arrow keys.

Operating mode: ACTUAL VALUE

Machine the workpiece face.
Leave the cutting edge of the tool at the face.

Example: Entering tool data when the workpiece diameter is known

Preparation:

> Select the tool number with the vertical arrow keys.

Operating mode: ACTUAL VALUE

\square

$$
\begin{aligned}
& \text { T००l } \mathrm{S} \text { etting } \\
& \mathrm{X}=\ldots
\end{aligned}
$$

10 ENT
Enter the position of the tool tip, for example $X=10 \mathrm{~mm}$. Confirm entry.

Select the axis $\left(Z_{S}\right)$.

Tool Setting

0 ENT
Set the position display for the tool tip to zero, $Z_{S}=0$.
Confirm entry.

POSITIP stores the tool data under the tool number in the tool table.

Set the tool data for all other tools as described here.

Example: Entering tool data when the workpiece diameter is unknown

Turn the first diameter and freeze the tool position with Note. Then retract the tool, measure the diameter and set the frozen position to the measured value.

The value to be entered will depend on whether you have selected radius or diameter display.

Preparation:

- Select the tool number with the vertical arrow keys.

Operating mode: ACTUAL VALUE

POSITIP stores the tool data under the tool number in the tool table.

To cancel the Note/Set function

Press the soft key Escape.
You can cancel the function at any time.

Displaying and moving to positions

Distance-to-go

Although it is often sufficient to have POSITIP display the coordinates of the actual position of the tool, it is usually better to use the distance-to-go feature - this enables you to approach nominal positions simply by traversing to display value zero. Even when working with distance-to-go you can enter coordinates in absolute or incremental dimensions.

Graphic positioning aid

When you are traversing to display value zero, POSITIP displays a graphic positioning aid (see Figure 18).
The graphic positioning aid is located in a rectangle just below the display for the active axis. Two triangular marks in the center of the rectangle symbolize the nominal position you want to reach.
The small square symbolizes the axis slide. An arrow indicating the direction appears in the square while the axis is moving, so you can easily tell whether you are moving towards or away from the nominal position.

Note that the square does not begin to move until the axis slide is near the nominal position.

0 POS POSITIP can show the absolute position instead of the graphic positioning aid. You can switch between the two modes with operating parameter P 91 (see Chapter II - 2).

Fig. 18: The graphic positioning aid

Turning with oversizes

You enter oversizes in the user parameters (see Chapter I-6). Oversizes are automatically taken into account in the distance-togo mode. When the displayed distance-to-go is 0 , only the finishing allowance remains to be machined.

When you have set the user parameter Oversize On/Off to On, a symbol for oversize (∇) appears behind the display value.

CAUTION

\% will also appear if you've activated a scaling factor for the axis. If the symbol appears but you're not sure whether it indicates a scaling factor or an oversize, check the settings of the user parameters.

Entry values for oversize or undersize

Oversize: Positive entry value (up to 999.999 mm).
Undersize: Negative entry value (down to -999.999 mm).

Fig. 29: Oversizes for X and Z

Displaying and moving to positions

Entering oversizes

> Press MOD.

- Scroll to the user parameter Oversize.
> Press the soft key Oversize X (for example).
- Enter the desired oversize for the axis (including the sign).
- Press ENT.

This returns you to the main menu for the user parameters.
> If desired, enter an oversize for the second axis.

- Switch the soft key Ovrsize ON / OFF to ON. This activates the oversizes you entered.
> Leave the user parameters: Press MOD.

The entered oversizes will now be taken into account when you traverse to display value zero with the distance-to-go display.

To deactivate oversizes

When you want to work without oversizes again:
> Switch the soft key Ovrsize ON / OFF to OFF, or enter 0 for the oversize.

Example: Effect of an oversize in the X axis

1. Diameter display for X, position (1)

Position of the tool cutting edge:

without oversize:	$X^{\varnothing}=+40.000 \mathrm{~mm}$
with oversize $(+2.000 \mathrm{~mm}):$	$X_{\varnothing}^{\varnothing}=+44.000 \mathrm{~mm}$
with undersize $(-2.000 \mathrm{~mm}):$	$X^{\varnothing}=+36.000 \mathrm{~mm}$

2. Radius display for X, position (2)

Position of the tool cutting edge:

| without oversize: | $X=+50.000 \mathrm{~mm}$ |
| :--- | :--- | :--- |
| with oversize $(+2.000 \mathrm{~mm}):$ | $X=+52.000 \mathrm{~mm}$ |
| with undersize $(-2.000 \mathrm{~mm}):$ | $X=+48.000 \mathrm{~mm}$ |

CAUTION

When the soft key Ovrsize ON / OFF is set to ON oversizes will be effective on every position which you move to with DISTANCE-TO-GO.

Fig. 20: Entering an oversize

Fig. 21: Workpiece drawing for the example on Oversizes. Tool positions without oversize or undersize

Example: Turning a shoulder by traversing to display value zero

In this example, both incremental and absolute nominal position values are used.

Position (1)	$Z=0 \mathrm{~mm}$	$X=15 \mathrm{~mm}$
Position (2)	$Z=-20 \mathrm{~mm}$	$X=15 \mathrm{~mm}$
Position (3)	$Z=-20 \mathrm{~mm}$	$\mathbf{I X}=+5 \mathrm{~mm}$
Position (4)	$\mathbf{I Z}=-45 \mathrm{~mm}$	$\mathbf{I X}=0 \mathrm{~mm}$

Preparation:

> Preset the tool and set the workpiece datum as described earlier in this chapter.
> Set the user parameters (see Chapter I-6):

- Sum display Z_{S} or for both axes (X_{S} and Z_{S})
- Radius display for both axes X and Z

- Set Ovrsize ON / OFF to OFF
- Preposition the tool appropriately (such as $X=+20 \mathrm{~mm}, \mathrm{Z}=+10 \mathrm{~mm}$).
m. If you want to turn a larger shoulder, use the Multipass cycle (see Chapter I - 3). This cycle allows you to turn the shoulder in any number of infeeds without having to enter coordinates for each feed move.

Operating mode: DISTANCE-TO-GO

Z_{5}
Select the axis $\left(Z_{S}\right)$.

Nominal position value?
Zs +
Enter the coordinate for nominal position (2) : $Z_{S}=-20 \mathrm{~mm}$. Confirm entry. The positioning aid appears for the Z_{S} axis;
the nominal position remains at the top of the screen.

Move the Z_{S} axis until the display value is zero.

Select the axis (X).

Move the X axis until the display value is zero.

Select the axis $\left(Z_{S}\right)$.

Nominal position value?

Zs +

Enter the coordinate for nominal position (4): $Z_{S}=-45 \mathrm{~mm}$ and mark the entry as an incremental dimension: $I Z_{S}=-45 \mathrm{~mm}$. Confirm entry.
The positioning aid appears for the Z_{S} axis; the nominal position remains at the top of the screen.

Move the Z_{S} axis until the display value is zero.

NOTES

\qquad
\qquad
\qquad

I-3
 Programming POSITIP

Operating mode PROGRAMMING AND EDITING

The available functions in the PROGRAMMING AND EDITING operating mode are divided into four groups:

- Programming mode for entering, running and editing programs
- Teach-in mode
- External mode for transferring programs to an external device
- Deleting programs

Programs contain the work steps for workpiece machining. You can edit programs, add work steps to them and run them as often as you wish. POSITIP can store a maximum of 20 programs with a total of 2000 nominal positions. A single program can contain a maximum of 1000 nominal positions.
The External mode enables you to store programs with the HEIDENHAIN FE 401 floppy disk unit and load them into POSITIP again on demand - you don't need to re-enter them manually. You can also transfer programs to a personal computer or printer.

Programmable functions

- Nominal position values (axes with saddle and top slides: nominal value of the summed position, see "Selecting position display modes" in Chapter I-2)
- Interrupt program
- Multipass cycle:

Turning with any number of feed moves.

- Program section repeats:

A section of a program only has to be entered once and can then be run up to 999 times in succession.

- Subprogramming:

A section of a program only has to be entered once and can then be run at various places in the program.

Transfer position: Teach-in mode

This mode allows you to transfer the actual positions of the tool directly into a program. In many cases the Teach-in function will save you considerable keying effort.

What happens with finished programs?

For workpiece machining, programs are run in the operating mode EXECUTE PROGRAM. See Chapter I-4 for an explanation of this mode.

Selecting a program

Each program is identified by a number between 0 and 99999999 which you assign it.

Operating mode: PROGRAMMING AND EDITING

inch mm	Choose the unit of measurement.
\checkmark	
(ENT)	Confirm your entry. The selected program can now be entered, edited or run.

Program directory

The program directory appears when you choose the soft key Program Number. The number in front of the slash is the program number, the number behind the slash is the number of blocks in the program.
A program always contains at least two blocks.

To delete a program

If you no longer wish to keep a program in memory, you can delete it:
> In the operating mode PROGRAMMING AND EDITING, press the soft key Delete Program in the first soft key row.
> Enter the program number.
> Press ENT to delete the program.

Editing programs

Operating mode: PROGRAMMING AND EDITING

Use the paging keys to display the programmable functions in the different soft key rows. The screens shown at the right already contain some program blocks. Turn to the next page of this manual to learn how program blocks are entered.

Entering program blocks

Current block

The current block is shown between the two dashed lines. New blocks are inserted behind the current block. When the END PGM block is between the dashed lines, no new blocks can be inserted.

Function	Soft key/Key
Go up one block	\uparrow
Go down one block	\downarrow
Cancel numerical entry	CE
Delete current block	De Lete
	B Lock

Going directly to a program block

Scrolling to the desired block with the arrow keys can be timeconsuming with long programs. A quicker way is to use the GOTO function. This enables you to move directly to the block you wish to change or add new blocks behind.

Operating mode: PROGRAMMING AND EDITING

Example: Milling a shoulder

The datum is the workpiece zero.
Position (1) $Z=0 \mathrm{~mm} X=15 \mathrm{~mm}$
Position (2)
Position (3)
Z
Position (4)
(

Summary of programming steps

- In the main menu PROGRAMMING AND EDITING use the Program Number soft key to access the program directory.
> Key in the number of the program you want to work on, and press ENT.
> Select Edit in the main menu PROGRAMming And EDITING.
- Enter the nominal positions.

Running a finished program

When a program is finished it can be run in the EXECUTE PROGRAM operating mode (see Chapter I-4).

Example of entry: Entering a nominal position into a program (block 3 in the example)

Nominal position value ?

15 ENT
Enter the nominal position value ($X=15 \mathrm{~mm}$). Confirm entry.
The nominal position is now the current block (between the dashed lines).

Program blocks

0	BEGIN PGM 10	MM	Start of program, program number and unit of measurement
1	X+50.000		Pre-position the tool in the X axis
2	$Z+20.000$		Pre-position the tool in the Z axis
3	$X+15.000$		X coordinate, position (1)
4	$Z-20.000$		Z coordinate, position (2)
5	IX+5.000		Incremental X coordinate, position (3)
6	$Z-65.000$		Z coordinate, position (4)
7	END PGM 10	MM	End of program, program number and unit of measurement

Calling tool data from a program

Chapter I-2 explained how to enter tool data (lengths) into the tool table.

The tool lengths stored in the table can also be called from a program - you don't need to select the new tool lengths from the table with the vertical arrow keys every time you change the tool during program run.
The TOOL CALL command automatically pulls the tool lengths from the table.

0 If you enter a different tool axis in the program than is stored in the table, POSITIP will store the new tool axis in the table.

Fig. 23: The tool table on the screen

Operating mode: PROGRAMMING AND EDITING

Tool CaLL	Call tool data from the tool table.

Tool number ?

4 ENT
Enter the tool number (4, for example) under which the tool lengths are stored in the tool table. Confirm your entry.

Transferring positions: Teach-in mode

Teach-in programming offers the following two options:

- Enter nominal position, transfer nominal position into program, move to positions by traversing to display value zero: TEACH-IN / DISTANCE TO GO
- Move to a position and transfer the actual value into a program: TEACH-IN / ACTUAL POSITION

You can change transferred position values with TEACH-IN / PROGRAM.

Preparation

> With Program number select the program you want to transfer positions into.

- Select the tool number (tool data) with the vertical arrow keys.

Programming example for TEACH-IN / DISTANCE TO GO

 Generating a program while turning a shoulderWith Teach-in you machine a workpiece according to the workpiece drawing. POSITIP transfers the nominal position coordinates directly into the program while you machine. Pre-positioning and retraction moves can be selected as desired and entered like drawing dimensions.

Position (1)	$Z=0 \mathrm{~mm}$	$X=15 \mathrm{~mm}$
Position (2)	$Z=-20 \mathrm{~mm}$	$X=15 \mathrm{~mm}$
Position (3)	$Z=-20 \mathrm{~mm}$	$I X=+5 \mathrm{~mm}$
Position (4)	$Z=-65 \mathrm{~mm}$	$X=20 \mathrm{~mm}$

Operating mode: PROGRAMMING AND EDITING

> Select Teach-In.
> The functions for TEACH-IN / DISTANCE TO GO are available immediately in the first soft key row.

Example: Transfer the X coordinate of corner point (1) into a program.

Transferring positions: Teach-in mode

Programming example for TEACH-IN / ACTUAL POSITION

 Transfer position and depth of grooves into a programWith TEACH-IN / ACTUAL POSITION you can generate a program that contains the actual positions of the tool.

Operating mode: PROGRAMMING AND EDITING

Select Teach-In.

Go to TEACH-IN / ACTUAL POSITION.

Example: Transfer the depth of a groove

Changing nominal positions after they have been transferred

Positions which you have transferred into a program with Teach-in can be changed. It is not necessary to leave the Teach-in mode to do so. Enter the new value in the input line.

Example: Changing a block transferred with Teach-in
Operating mode: PROGRAMMING AND EDITING, Teach-In

Nominal position value ?
0
Enter a new nominal position value (such as 0).

Confirm your changes.

Functions for changing a Teach-in program

Function	Soft key
Abort and return to main menu PROGRAMMING AND EDITING	Escape
Delete current block	De lete B lock

Multipass cycle

The multipass cycle enables you to turn a shoulder in any number of infeeds.

You only need to enter three blocks into a program:

- CYCL block
- X coordinate
- Z coordinate

The multipass cycle contains all information required for the operation.

Do not delete any blocks from the cycle.
When the program is run, POSITIP always displays the distance-to-go to the two nominal positions immediately following the CYCL block.

Example: Turning a shoulder in any number of infeeds

Workpiece diameter before machining:

Shoulder diameter:
$X=50 \mathrm{~mm}$

Start of shoulder:
$X=10 \mathrm{~mm}$

End of shoulder:
$Z=0 \mathrm{~mm}$
$Z=-30 \mathrm{~mm}$

Example: Entering the Multipass cycle into a program

Operating mode: PROGRAMMING AND EDITING

Nominal position value ?

Program blocks

0	BEGIN PGM 20	MM	Start of program, program number and unit of measurement
1	X+80.000		Pre-position tool in the X axis
2	$Z+20.000$		Pre-position tool in the Z axis
3	X+50.000		Approach the workpiece (X axis)
4	Z+0.000		Approach the workpiece (Z axis)
5	CYCL 3.0 MULTIPASS	Coordinates for a Multipass cycle follow this block	
6	X+10.000		X coordinate of the shoulder
7	Z-30.000		Z coordinate of the shoulder
8	X+80.000		Retract (X axis)
9	Z+20.000		Retract (Z axis)
10	END PGM 20	MM	End of program, program number and unit of measurement

The cycle is performed in the operating mode EXECUTE PROGRAM (see Chapter I-4) by traversing to display value zero with any number of infeeds.

Entering program interruptions

You can divide a program into sections with stop marks. POSITIP then executes the next block only after you press the soft key Next Block.

Operating mode: PROGRAMMING AND EDITING

Subprograms and program section repeats

Subprograms and program section repeats only need to be entered once in the program. You can then run them up to 999 times.

Subprograms can be run at any point in the program; program section repeats are run several times in direct succession.

Inserting program marks (labels)

You mark subprograms and program section repeats with labels (abbreviated in the program with LBL).

Labels 1 to 99

Labels 1 to 99 mark the beginning of a subprogram or program section repeat.

Label 0

Label 0 is used only to identify the end of a subprogram.

Label call

In the program, subprograms and program section repeats are called with the command CALL LBL.

The command CALL LBL 0 is not allowed.

Subprogram:
A subprogram called with CALL LBL is executed immediately after the CALL LBL block.

Program section repeat:
The program section located before the CALL LBL block is executed. You enter the number of desired repeats with the CALL LBL command.

Nesting program sections

Subprograms and program section repeats can also be "nested." For example, a subprogram can in turn call another subprogram or repeat a program section repeat.

Maximum nesting depth: 8 levels.

Fig. 24: On-screen operating instructions for subprograms (page 5 of 5)

Fig. 25: On-screen operating instructions for program section repeats (page 3 of 5)

Subprograms and program section repeats

Example: Subprogram for tool change

The coordinates of the tool change position are written in a subprogram. To activate the tool change process you just call the subprogram.
Coordinates of the
tool change position (\|): $X=+30 \mathrm{~mm}$

$$
\mathrm{Z}=+5 \mathrm{~mm}
$$

Remark

A recessing tool (width 4 mm) is inserted to turn the groove. The tool is moved back to the change position after the groove is turned.

Example: Setting a label for a subprogram
Operating mode: PROGRAMMING AND EDITING

The beginning of a subprogram or program section repeat is now marked with the label. Enter the program blocks for the subprogram after the LBL block.
Label 0 (LBL 0) is used only for the end of a subprogram.

Example: Entering a subprogram call - CALL LBL

Label number ?

Label number ?	
ENT	Accept the default label number.
9 ENT	Enter the label number (9). Confirm entry. The current block now contains the called label LBL 9.

For subprograms you can ignore the question "Repeat REP ?". Press the soft key to confirm that a subprogram is being called.

After the CALL LBL block in the operating mode EXECUTE PROGRAM, POSITIP executes the blocks in the subprogram that are located between the LBL block with the called number and the next block containing LBL 0 .
Note that the subprogram will be executed at least once even without a CALL LBL block.

Program blocks

0	BEGIN PGM 30 MM	Start of program, program number and unit of measurement
1	LBL 9	Beginning of subprogram 9
2	$\mathrm{X}+60.000$	X coordinate of the tool change position (diameter)
3	Z+5.000	Z coordinate of the tool change position
4	LBL 0	End of subprogram 9
5	Z+2.000	Pre-position, Z coordinate
6	$\mathrm{X}+64.000$	Pre-position, X coordinate
7	CYCL 3.0 MULTIPASS	Coordinates for a multipass cycle follow
8	$\mathrm{X}+20.000$	X coordinate of the first shoulder (for the diameter)
9	Z-20.000	Z coordinate of the first shoulder
10	$\mathrm{X}+40.000$	X coordinate of the second shoulder (diameter)
11	Z-70.000	Z coordinate of the second shoulder
12	CALL LBL 9	Call subprogram 9: go to tool-change position, blocks 1 to 4 are executed
13	STOP	Program interruption for tool change
14	z-52.000	Pre-positioning for recess operation
15	$\mathrm{X}+30.000$	Machine recess (diameter)
16	IX+40.000	Retract
17	CALL LBL 9	Call subprogram 9: return to tool-change position, blocks 1 to 4 are executed
18	END PGM 30 MM	End of program, program number and unit of measurement

Subprograms and program section repeats

Entering and calling program section repeats

A program section repeat is entered like a subprogram. Since the end of the program section is identified simply by the command to repeat the section (CALL LBL), label 0 is not set.

Display of the CALL LBL block with a program section repeat

The screen displays (for example): CALL LBL 6 REP 10 / 10
The two numbers with the slash between them indicate that this is a program section repeat.
The number in front of the slash is the number of repeats you entered.

The number behind the slash is the number of repeats remaining to be performed.

Example: Program section repeat for several identical grooves

Spacing between grooves Coordinates of	20 mm		
first groove		\quad	$\mathrm{Z}=-25 \mathrm{~mm}$
:---			
Number of grooves	\quad	$X=25 \mathrm{~mm}$	
:---			

Example: Insert a label for a program section repeat
Operating mode: PROGRAMMING AND EDITING

Label
Set a program mark (LBL) for a program section repeat.
Number
POSITIP offers the lowest available label number as a default entry.

Enter the blocks for the program section repeat after the LBL block.

Example: Entering a program section repeat - CALL LBL
\square

Call label.
POSITIP offers the label number that was last set.

Label number ?

(ENT)	Accept the default label number.
8 ENT	Enter label number (8). Confirm entry. The called label is now in the current block: CALL LBL 8.

Repeat REP ?

Enter the number of repeats (3). Confirm entry.

After a CALL LBL block in the operating mode PROGRAMMING AND EDITING, POSITIP repeats the program blocks that are located behind the LBL block with the called number and before the CALL LBL block.

Note that the program section will always be executed one more time than the programmed number of repeats.

Program blocks

```
O BEGIN PGM 40 MM
    X+80.000
    Z+20.000
    X+40.000
    Z-5.000
    LBL 8
    IZ-20.000
    X+25.000
    X+40.000
    CALL LBL 8 REP 3/3
10 X+80.000
11 END PGM 40 MM
```

Start of program, program number and unit of measurement Pre-position the tool (X axis)
Pre-position the tool (Z axis)
X coordinate for pre-positioning
Z coordinate for pre-positioning
Beginning of program section 8
Move to groove position
Turn groove
Retract
Repeat program section 8 between blocks 5 and 9 three times
Retract
End of program, program number and unit of measurement

Editing existing programs

You can edit existing programs, for example to correct keying errors. POSITIP supports you with plain language dialogs - just as when you are creating a new program.
Program numbers can be changed by selecting the BEGIN or END block and entering a new program number.

Confirm your changes

You must confirm each change with the ENT key for it to become effective.

Example: Editing a program block
Operating mode: PROGRAMMING AND EDITING

Function	Key
Select the next-lowest program block	\uparrow
Select the next-highest program block	\downarrow
Go directly to block number	\square
Select program block to edit	\rightarrow
Confirm change	ENT

Deleting program blocks

You can delete any blocks in existing programs except the BEGIN and END blocks.
When a block is deleted, POSITIP automatically renumbers the remaining blocks. The block before the deleted block then becomes the current block.

Example: Deleting a program block
Operating mode: PROGRAMMING AND EDITING

| \uparrow / \downarrow | Move to the block you wish to delete
 (or use the GOTO key). |
| :--- | :--- | :--- |

可 / 可	Go to the second soft-key row.
Delete Block	Press Delete Block.

It is also possible to delete an entire program section:

- Select the last block of the program section.
> Press the soft key Delete Block repeatedly until all blocks in the section have been deleted.

Transferring programs over the data interface

The RS-232-C interface on the rear panel allows you to utilize a device such as the HEIDENHAIN FE 401 floppy disk unit or a PC for external data storage.
Programs can also be archived on diskette and downloaded back into POSITIP again as required.

Function	Soft key/Key
Directory of programs stored in POSITIP	POSITIP
	PGM Dir
Directory of programs stored on the FE	FE 401
	PGM Dir
Abort data transfer	Escape

- Switching between FE and EXT mode
- Show further programs

0 m . It is not possible for POSITIP to display a directory of programs stored on a PC.

Example: Transferring a program into POSITIP

Operating mode: PROGRAMMING AND EDITING

If you are transferring programs into POSITIP from a PC (EXT setting), the PC must send the programs.
If POSITIP's memory already contains a program with the same number as that being transferred, the error message PROGRAM ALREADY EXISTS will appear on the screen.
In this case, before you can transfer the program you must either rename or delete the program in POSITIP.

For program output, POSITIP automatically displays all programs stored in its memory.

Example: Reading a program out of POSITIP

Operating mode: PROGRAMMING AND EDITING

Program number ?

10
Enter the program number, for example 10.

Select the external device. For diskette unit or PC with HEIDENHAIN data transfer software TNC.EXE use FE setting; for PC without TNC.EXE (or printer) use EXT setting.	
Start Output	Press Start Output to transfer the program to the external device. The message Reading out program: appears.

!

CAUTION

A program on the external device with the same number as that being read out will be overwritten. No confirmation to overwrite will be requested.

To read all programs out of POSITIP's memory:

Press Output All PGM

NOTES

\qquad
\qquad

I-4

Executing Programs

Programs are run in the operating mode EXECUTE PROGRAM. The current program block is displayed at the top of the screen.

There are two ways to run programs:

Single Block

When you have moved the axis to the displayed position, call the next block with the soft key Next Block. It is recommended that you use Single Block when running a program for the first time.

Automatic

In this mode the display automatically shows the next program block as soon as you have moved to the displayed position. Use Automatic when you are sure the program contains no errors and you want to run it quickly.

Preparation

- Clamp the part to be turned.
> Press MOD.
- Check the settings of the user parameters Oversize OFF/ ON and Scaling Factor OFF/ON. Normal setting: OFF.
> Select the user parameters for the position display that are appropriate for the values entered in the program. Normal: Sum Z, Radius Z, Diameter X
> Press MOD again.
> Select the tool with the vertical arrow keys.
> Set the workpiece datum.
> Select the program to be executed with Program Number in the main menu EXECUTE PROGRAM.

Single block

Operating mode: EXECUTE PROGRAM

Continue calling blocks with the soft key Next Block until machining is complete.

An overview of functions is shown on the next page.

Automatic

Operating mode: EXECUTE PROGRAM

| Auto-
 matic Select Automatic.
 The program block and graphic positioning aid appear.
 \begin{tabular}{\|c|c|}
\hline
\end{tabular} |
| :--- | :--- |

The next program block will appear as soon as you have moved to the displayed position. The positioning aid automatically switches to the coordinate axis of the new block.

Function	Soft key/Key
Start with the block above the current block	\uparrow
Start with the block below the current block	\downarrow
Select the start block directly	Next B Lock
After the Multipass cycle: Execute the next work step	Escape
After Starting: Escape - return to main menu	

I-5

The INFO Functions: Pocket Calculator, Stopwatch and Taper Calculator

Press the INFO key to access the following functions:

- Taper calculator

Calculates half the taper angle for setting the top slide or guide plate.
Entries: Taper ratio or diameter and length.

- Stopwatch
- Pocket calculator

Basic arithmetic (+, - , \times, \div)
Trigonometric functions (sin, cos, tan, arc sin, arc cos, arc tan)
Square roots
x^{2}
Reciprocals (1/x)
π (3.14159...)

To access the INFO functions

Taper calculator: half the taper angle for top slide or guide plate

Use the taper calculator to calculate half the taper angle. A graphic display is shown along with the result.

As soon as you conclude an entry with ENT, you are prompted for the next entry.

Entry values

From the taper ratio, calculation of the:

- Radius of the taper
- Length of the taper

From both diameters and the length, calculation of the:

- Starting diameter
- End diameter
- Length of the taper

Function	Soft key/Key
Switchover for calculation from the taper ratio	Taper Rat io
Switchover for calculation from the diameter and the length	D 1/D2/ Length
Confirm entry	ENT
Go to the next-higher input line	\uparrow
Go to the next-lower input line	\downarrow
Switch over the input field for the taper ratio	\rightarrow

Fig. 26: Calculating the taper angle from the taper ratio

Fig. 27: Calculating the taper angle from the taper diameters and length

Stopwatch

The stopwatch shows the hours (h), minutes ('), seconds (') and hundredths of a second. The stopwatch continues to run even when you leave INFO. When the power is interrupted (switch-off), POSITIP resets the stopwatch to zero.

Function	Soft key
Reset the stopwatch to zero and start timing	Start
Stop timing	Stop

Pocket calculator

The pocket calculator functions are spread over three soft key rows:

- Basic arithmetic (first soft key row)
- Trigonometry (second row)
- Square root, $x^{2}, 1 / x, \pi$ (third row)

Use the paging keys to go from one soft key row to the next. POSITIP always shows an example entry - you don't have to press the HELP key.

Transferring the calculated value

The calculated value remains in the input line even after you leave the calculator. This allows you to transfer the calculated value directly into a program as a nominal position -without having to re-enter it.

Entry logic

For calculations with two operands (addition, subtraction, etc.):

- Key in the first value.
> Press ENT.
- Key in the second value.
- Press the soft key for the desired operation. POSITIP displays the result of the operation in the input line.

For calculations with one operand (sine, reciprocal, etc.):
$>$ Key in the value.
> Press the soft key for the desired operation. POSITIP displays the result of the operation in the input line.

Example: See the next page.

Example: $(3 \times 4+14) \div(2 \times 6+1)=2$

I-6

User Parameters: The MOD Function

User parameters are operating parameters which you can change without having to enter a code number.
The machine builder decides which operating parameters are available to you as user parameters as well as how the user parameters are arranged in the soft keys.
The functions of user parameters are described in Chapter II-2.

To access the user parameter menu

> Press MOD.
The user parameters appear on the screen.

- Go to the soft key row with the desired user parameter.
- Press the soft key for the desired user parameter.

To leave the user parameter menu

- Press MOD.

Scaling factors

The user parameter Scaling Factor enables you to increase or decrease the size of workpieces. POSITIP divides the displayed value by the scaling factor you entered.

Scaling factors change the workpiece size symmetrically about the datum. The workpiece datum should therefore be located at an edge when you are working with scaling factors.

Input range: 0.1 to 9.999999

To activate scaling factors

- Switch the user parameter Scaling Factor OFF/ON to ON .

To deactivate scaling factors

- Switch the user parameter Scaling Factor OFF/ON to OFF.

Please turn to the next page for instructions on entering scaling factors.

Fig. 28: The user parameters on the POSITIP screen

Fig. 29: (1) Original workpiece
(2) After enlargement with scaling factor

Entering user parameters

Choosing settings

Some user parameter settings are chosen directly with soft keys.
You simply switch from one setting to the other.
Example: Radius/diameter display (X axis)

- Press MOD.

The MOD main menu now contains either the soft key
Dia. X or Radius X.

- Press the displayed soft key.

The soft key changes to the other setting, for example from Dia. X to Radius X.
> Press MOD again.
This ends the MOD function.
The new setting in now in effect.

Entering values

Some user parameters require that you enter a value or select a setting from a number of possible settings. When you press the soft key, a menu for the parameter is displayed.

Example: Scaling factor for the Z axis
> Press MOD.

- Press the soft key Scaling Factor Z.

POSITIP now displays an input screen for the scaling factor.

- Enter a scaling factor, for example 0.75 .
> Press ENT.
If you want this scaling factor to apply to all coordinate axes, press the soft key Set All.
The MOD menu appears again.
> Press MOD again.
This ends the MOD function.
The scaling factor is now in effect.
Part II: Technical Information
II-1 Installation and Electrical Connection 59
Items supplied 59
Installation 59
Connecting the encoders 60
Initial switch-on 61
II-2 Operating Parameters 62
Accessing the operating parameters 62
Transferring operating parameters over the data interface 63
User parameters 64
List of operating parameters 65
II - 3 Encoders and Measured Value Display 68
Adapting the encoders 68
Setting the display step with linear encoders 70
Setting the measured value display 72
Axis error compensation 73
II - 4 Data Interface 75
II - 5 Measured Value Output 77
Starting measured value output 77
Operating parameters for measured value output 78
Example of character output at the data interface 79
II-6 Switching Inputs and Outputs 80
II-7 Specifications 83
II - 8 Dimensions 84
Front view 84
Top view 84
Rear view 84
Tilting base 85
Subject Index 86

II-1

Installation and Electrical Connection

Items supplied

- POSITIP 855 Display Unit
- Power connector
- User's Manual

Installation

M4 screws are required for securing POSITIP to a support or a tilting base from HEIDENHAIN (Id.-Nr. 281619 01). See Chapter II - 8 for the hole dimensions.

Electrical connection

Danger of electrical shock!

Unplug the power cord before opening the housing. Connect a protective ground. This connection must never be interrupted.

\triangle

Danger to internal components!

Do not engage or disengage any connections while the unit is under power. Use only original replacement fuses.

Power connection

POSITIP requires AC voltage between 100 V and $240 \mathrm{~V}(48 \mathrm{~Hz}$ to 62 Hz). No voltage adjustment is required.

Wiring the power connector

See Fig. 30
Power leads: (L) and \mathbb{N}
Ground: \oplus
Minimum cross-section of the power cable: $0.75 \mathrm{~mm}^{2}$

Fig. 30: Wiring the power connector

Grounding

Noise immunity can be increased by connecting the ground screw on the rear panel to the central ground of the machine. Minimum cross-section of the connecting wire: $6 \mathrm{~mm}^{2}$.

Fig. 31: The ground screw on the rear panel

Connecting the encoders

POSITIP can be used with HEIDENHAIN linear encoders that provide sinusoidal output signals. The encoder inputs on the rear panel are designated $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ and X 4 .
The connecting cable length may not exceed $30 \mathrm{~m}(100 \mathrm{ft})$.

Danger to internal components!

Do not engage or disengage any connections while the unit is under power.

Pin layout for encoder inputs

Pin	Assignment
1	$0^{\circ}+$
2	$0^{\circ}-$
3	$+5 \mathrm{~V}\left(U_{p}\right)$
4	$0 \mathrm{~V}\left(\mathrm{U}_{\mathrm{N}}\right)$
5	$90^{\circ}+$
6	$90^{\circ}-$
7	Reference mark signal RI+
8	Reference mark signal RI-
9	Internal shield
Housing	External shield

Fig. 32: Flange socket on POSITIP for encoder signal input

The encoder inputs are permanently assigned to the four axes. Use operating parameter P49.* to designate the axes, for example axis $1=\mathrm{X}$ axis, axis $2=\mathrm{Y}$ axis.

Axis	Encoder input
1	$X 1$
2	$X 2$
3	$X 3$
4	$X 4$

Interfaces $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ and X 4 comply with the recommendations in VDE 0160, 5.88 for separation from line power.

Initial switch-on

When you switch on your POSITIP for the first time, the screen shown in Figure 34 appears. You can now select the type of application (milling or turning).

For turning:

- Press the 1 key.

For milling:

- Press the 0 key.

POSITIP automatically provides the functions appropriate to the selected application.

You can change the application later with operating parameter P 99.

Fig. 33: Encoder inputs on rear panel

Fig. 34: POSITIP screen after initial switch-on

II-2
 Operating Parameters

Operating parameters adapt the POSITIP to the machine. They are identified with the letter P, a three-digit number and a name.

Axis-specific operating parameters

Some parameters require separate entries for each axis. Such parameters are identified in the following descriptions with a star (*).
Example: Operating parameter for the counting direction: P30.* For this parameter you enter the counting direction separately for each axis in parameters P30.1, P30.2, P30.3 and P30.4.

Factory settings

The factory settings for the operating parameters in the overview on the next pages are set in bold italics.

Numerical input, dialog input

The current setting of an operating parameter is shown in plain language under the parameter designation in the on-screen operating parameter list. In addition, each parameter setting has a number in the input line at the top. These numbers are transferred when you read out the operating parameters over the data interface.

Fig. 35: Example of operating parameters

To access the operating parameters

> Press MOD.

- Go to the soft key row containing Code Number (soft key with the key symbol)
- Press the soft key Code Number
- Enter the code number 95148.
- Confirm your entry by pressing the ENT key
- Display the operating parameters one after the other with the vertical arrow keys; or
- Go directly to an operating parameter: Press GOTO, enter the parameter number and confirm with ENT.

To change parameter settings

Operating parameter settings can be changed by selecting the new setting or entering a numerical value.
> Select a new setting: Press the horizontal arrow key. or

- Enter a numerical value directly and confirm your entry with ENT.

The horizontal arrow key has no function with parameters which only allow direct numerical entry.

Transferring operating parameters over the data interface

You can save the operating parameters on the FE 401 B floppy disk unit or a PC and read them into the POSITIP again whenever required. For further information on the data interface and data transfer, see Chapter II - 4.

Preparation

- Access the operating parameters as described above.
> Go to the second soft key row.

To read out parameters

- Enter the program number under which you wish to save the operating parameters.
> Press the soft key Param. Output. POSITIP reads out all operating parameters.

To download parameters
> Enter the program number under which the operating parameters are stored on the diskette.

Fig. 36: Screen for transfer of operating parameters
> Press the soft key Param. Input.
POSITIP replaces all operating parameter settings in its memory with those on the diskette.

User parameters

The machine manufacturer has defined certain operating parameters as user parameters. You can change the settings of user parameters without having to enter a code number (see Operating Instructions section, Chapter I-6).

Position of user parameters in the menu

In operating parameters P100 to P120, the machine manufacturer defines how the user parameters are arranged in the soft key displays.
Field 15 is reserved for the soft key Code Number
If a parameter is assigned to field number 0 , it will not appear in the user parameter menu.

Operating parameter	User parameter designation *	Standard field	0
P 100	mm / inch (P 1)	4	
P 101.1	Radius / diameter 1 (P 3.1)	1	
P 101.3	Radius / diameter 3 (P 3.3)	0
P 102.1	Separate / sum 1 (P 5.1)	0
P 102.3	Separate / sum 3 (P 5.3)	2
P 104	Scaling factor On / Off (P 11)	8	
P 105.1	Scaling factor 1 (P 12.1)	6
P 105.3	Scaling factor 3 (P 12.3)	7
P 106	Oversize On / Off (P 14)	13
P 107.1	Oversize 1 (P 15.1)	11
P 107.3	Oversize 3 (P 15.3)	12
P 112	RS-232 baud rate (P 50)	0
P 113	RS-232 blank lines (P 51)	0
P 120	Tool table	5	\cdots

* The corresponding operating parameters are indicated in parentheses.

Fig. 37: Field numbering for user parameters

List of operating parameters

	Parameter	Page	Numerical	
		Function and allowed entries	entry	

[^0]| Parameter | | Page | Function and allowed entries | Numerical entry* | A] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P45. 1 | Encoder monitoring 1 | 69 | Monitoring off | 0 | P45.1 |
| P45.2 | Encoder monitoring 2 | | Monitoring on | 1 | P45.2 |
| P45.3 | Encoder monitoring 3 | | | | P45.3. |
| P45.4 | Encoder monitoring 4 | | | | P45.4 |
| P48.1 | Axis definition 1 | 69 | Do not display axis: off | 0 | P48.1 |
| P48.2 | Axis definition 2 | | Display axis: on | 1 | P48.2 |
| P48.3 | Axis definition 3 | | | | P48.3 |
| P48.4 | Axis definition 4 | | | | P48.4 |
| P49.1 | Axis designation 1 | 72 | Axis is coordinate axis \mathbf{A} | 65 2) | P49.1 |
| P49.3 | Axis designation 3 | | Axis is coordinate axis \mathbf{B} | 66 2) | P49.3 |
| | | | Axis is coordinate axis \mathbf{C} | 67 2) | |
| | | | Axis is coordinate axis \mathbf{U} | 85^{21} | |
| | | | Axis is coordinate axis \mathbf{V} | 86 2) | |
| | | | Axis is coordinate axis \mathbf{W} | 872) | |
| | | | Axis is coordinate axis \mathbf{X} | 88 2) | |
| | | | Axis is coordinate axis \mathbf{Y} | 89 2) | |
| | | | Axis is coordinate axis \mathbf{Z} | $90^{2)}$ | |
| P50 | RS-232-C baud rate | 76 | Speed of data transfer 150 [Baud] \leq P $50 \leq 38400$ [baud] | 19600 | P50 |
| P51 | RS-232-C blank lines | 78 | Number of line feeds after output of measured value [0 to 99] | 1 | P51............ |
| P60.0 | Switching output 0 | 81 | Off | 0 | P60.0 |
| P60.1 | Switching output 2 | | Assigned to axis 1 | 1 | P60.1 |
| P60.2 | Switching output 2 | | Assigned to axis 2 | 2 | P60.2 |
| P60.3 | Switching output 3 | | Assigned to axis 3 | 3 | P60.3 |
| P60.4 | Switching output 4 | | Assigned to axis 4 | 4 | P60.4. |
| P60.5 | Switching output 5 | | | | P60.5. |
| P60.6 | Switching output 6 | | | | P60.6 |
| P60.7 | Switching output 7 | | | | P60.7 |
| P61.0 | Switching range 0 | 81 | Enter the switching range | 0.0 | P61.0.... |
| P61.1 | Switching range 2 | | symmetrically to zero in [mm] | | P61.1. |
| P61.2 | Switching range 2 | | | | P61.2 |
| P61.3 | Switching range 3 | | | | P61.3......... |
| P61.4 | Switching range 4 | | | | P61.4 |
| P61.5P61.6 | Switching range 5 | | | | P61.5. |
| | Switching range 6 | | | | P61.6 |
| $\begin{aligned} & \text { P61.6 } \\ & \text { P61.7 } \end{aligned}$ | Switching range 7 | | | | P61.7......... |
| P69 | Switching signal | 78 | Mode 1 (Signal delay 80 ms) Mode 2 (Signal delay 5 ms) | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | P69 |
| P81.1 | 16/40 $\mu \mathrm{A}$ switchover 1 | 68 | Encoder signal $\mathbf{1 6 \mu A}$ | 0 | P81.1......... |
| P81.2 | 16/40 1 A switchover 2 | | Encoder signal $40 \mu \mathrm{~A}$ | 1 | P81.2 |
| P81.3 | 16/40 1 A switchover 3 | | | | P81.3 |
| P81.4 | 16/40رA switchover 4 | | | | P81.4....... |

[^1]| Parameter | Page | Function and allowed entries | Numer entry ${ }^{1)}$ | A |
| :---: | :---: | :---: | :---: | :---: |
| P 83 Sleep delay Screen saver (periodically reverses the screen image) | - | Screen saver starts after 5 to 98 [min]
 No screen saver | $\begin{aligned} & 15 \\ & 99 \end{aligned}$ | P 83 |
| P 90 Graphic positioning aid Direction of traverse in positioning aid when traversing to zero | - | Positive to the right: Normal Positive to the left: Inverse | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | P $90 \ldots \ldots$. |
| P 91 Distance-to-go In DISTANCE-TO-GO mode, display either graphic positioning aid or actual position of tool | - | Graphic positioning aid: Graphic Tool position: Actual value | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | P 91. |
| P 92 Feed rate display Display of feed rate F in status line at bottom of screen | - | Do not display feed rate: Off Display feed rate: On | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | P 92. |
| P 98 Dialog language | - | First language, e.g. German Second language, e.g. English | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | P 98. |
| P99 Counter application | - | Lathe: Turning Milling machine: Milling | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | P 99. |

*) Standard factory settings are in bold italics.
Operating parameters P $\mathbf{1 0 0}$ to $\mathbf{P} \mathbf{1 2 0}$ are listed on page 64

II - 3

Encoders and Measured Value Display

This chapter describes all operating parameters which you must set for the encoders and measured value display. Most entries can be found in the operating instructions for your encoder. Chapter II - 2 contains a list of operating parameters in which you can record your entries.

- Adapting the encoder

- Encoder output signals $16 \mu \mathrm{~A}$ or $40 \mu \mathrm{~A}$
- Reference marks on the encoder: distance-coded or one reference mark
- Deactivation of reference mark evaluation
- Definition of the coordinate axes
- Counting direction of the encoder signals
- Encoder monitoring
- Linear axis error compensation
- Selection of display step
- Setting the measured value display
- Designations of the coordinate axes
- Unit of measurement
- Radius/diameter display
- Separate value/sum display

Adapting the encoders

Encoder output signal: P 81.*	
Encoder with $\mathbf{1 6} \mu \mathbf{A}$ output signal:	P 81.* $=0$
Encoder with $\mathbf{4 0} \mu \mathbf{A}$ output signal:	P 81.* $=1$

The position feedback encoders on the machine may have one reference mark or several distance-coded reference marks.

Reference marks on the encoder: P 43.*

One reference mark (None): P 43. ${ }^{*}=0$
Distance-coded reference marks ($500 \times \mathrm{GP}$): $\quad \mathrm{P} 43 .{ }^{*}=500$
Distance-coded reference marks ($\mathbf{1 0 0 0 \times 6} \times \mathrm{GP}$): P 43.* $=1000$
Distance-coded reference marks ($2000 \times$ GP): P 43.* $=2000$
Distance-coded reference marks ($\mathbf{5 0 0 0} \times \mathrm{GP}$): P 43.* $=5000$

Reference mark evaluation can be deactivated separately for each axis. Note that the datum points for those axes are then no longer stored in nonvolatile memory.

Reference mark evaluation: P 44.*			
Evaluate reference mark(s) (Yes):	P 44. ${ }^{*}=0$		
Do not evaluate reference mark(s) (No):	$P 44 .{ }^{*}=1$		

Definition of the coordinate axes: P 48.*

Do not display axis off:
P48.* $=0$
Display axis on:
P 48.* $=1$

You can define separately for each axis whether the encoder signals are counted positive or negative in positive direction of traverse.

Counting direction of the encoder signals: P 30.*

Positive counting direction:
Negative counting direction: P 30.* = 1

Monitoring of encoder:

- cable and connectors
- traversing speed
- measuring signals

Encoder monitoring: P 45.*

Encoder monitoring off: P 45. * $=0$
Encoder monitoring on: P 45. * $=1$

Setting the display step with linear encoders

With linear encoders, the display step depends on the

- signal period of the encoder (P31.*) and the
- linear subdivision (P32.*).

Both parameters are entered separately for each axis. The linear subdivision can range from 0.1 to 128 depending on the signal period of your encoder.

For linear measurement using nut/ballscrew arrangements and rotary encoders, calculate the signal period as follows:

Signal period $[\mu \mathrm{m}]=\frac{\text { Drivescrew pitch }[\mathrm{mm}] \times 1000}{\text { Line count }}$
Display step, signal period and linear subdivision for linear encoders

Signal period [$\mu \mathrm{m}$]		2	4	10	20	40	100	200	12800
Display step [mm] [inch]		Linear subdivision							
0.00002	0.000001	100	-	-	-	-	-	-	-
0.00005	0.000002	40	80	-	-	-	-	-	-
0.0001	0.000005	20	40	100	-	-	-	-	-
0.0002	0.00001	10	20	50	100	-	-	-	-
0.0005	0.00002	4	8	20	40	80	-	-	-
0.001	0.00005	2	4	10	20	40	100	-	-
0.002	0.0001	1	2	5	10	20	50	100	-
0.005	0.0002	0.4	0.8	2	4	8	20	40	-
0.01	0.0005	0.2	0.4	1	2	4	10	20	-
0.02	0.001	-	-	0.5	1	2	5	10	-
0.05	0.002	-	-	0.2	0.4	0.8	2	4	-
0.1	0.005	-	-	0.1	0.2	0.4	1	2	128
0.2	0.01	-	-	-	-	-	-	-	64

Example settings for HEIDENHAIN linear encoders

Encoder	P31.* Signal period	P43.* Reference marks	Display st mm	inch	P32.* Linear subdiv.
LIP 40x	2	0	0.001 0.0005 0.0002 0.0001 0.00005 0.00002	0.00005 0.00002 0.00001 0.000005 0.000002 0.000001	$\begin{array}{\|r} 2 \\ 4 \\ 10 \\ 20 \\ 40 \\ 100 \end{array}$
LIP 101A LIP 101R	4	0	0.001 0.0005 0.0002 0.0001 0.00005	0.00005 0.00002 0.00001 0.000005 0.000002	$\begin{array}{r} 4 \\ 8 \\ 20 \\ 40 \\ 80 \end{array}$
LIF 101. LF 401	4	0	$\begin{array}{l\|} \hline 0.001 \\ 0.0005 \\ 0.0002 \\ 0.0001 \end{array}$	0.00005 0.00002 0.00001	$\begin{array}{r} 4 \\ 8 \\ 20 \\ 40 \\ \hline \end{array}$
LID xxx LID xxxC	10	$\begin{array}{r} 0 \\ 2000 \end{array}$	$\begin{array}{\|l\|} \hline 0.001 \\ 0.0005 \end{array}$	$\begin{aligned} & 0.00005 \\ & 0.00002 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$
$\begin{aligned} & \hline \text { LS 103. LS 103C } \\ & \text { LS 405. LS 405C } \\ & \text { ULS/10 } \end{aligned}$		$\begin{array}{r} 0 \\ \text { or } \\ 1000 \end{array}$	$\begin{aligned} & 0.0002 \\ & 0.0001 \end{aligned}$	$\begin{aligned} & 0.00001 \\ & 0.000005 \end{aligned}$	$\begin{array}{r} 50 \\ 100 \end{array}$
$\begin{aligned} & \hline \text { LS 303. LS 303C } \\ & \text { LS 603. LS 603C } \end{aligned}$	20	$\begin{array}{r} 0 \\ \text { or } \\ 1000 \end{array}$	$\begin{array}{\|l\|} \hline 0.01 \\ 0.005 \end{array}$	$\begin{aligned} & 0.00005 \\ & 0.00002 \end{aligned}$	4
$\begin{aligned} & \text { LS 106. LS 106C } \\ & \text { LS 406. LS 406C } \\ & \text { LS 706. LS 706C } \\ & \text { ULS/20 } \end{aligned}$	20	$\begin{array}{r} 0 \\ \text { or } \\ 1000 \end{array}$	0.01 0.005 0.002 0.001 0.0005	0.0005 0.0002 0.0001 0.00005 0.00002	$\begin{array}{r} 2 \\ 4 \\ 10 \\ 20 \\ 40 \end{array}$
$\begin{aligned} & \hline \text { LIDA } 190 \\ & \text { LB } 101 \end{aligned}$	40	0	$\begin{array}{l\|} \hline 0.002 \\ 0.001 \\ 0.0005 \end{array}$	0.0001 0.00005 0.00002	$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$
LIDA 2xx LB 3xx	100	0	$\begin{array}{\|l\|l} \hline 0.01 \\ 0.005 \\ 0.002 \\ 0.001 \end{array}$	0.0005 0.0002 0.0001 0.00005	$\begin{array}{r} 10 \\ 20 \\ 50 \\ 100 \\ \hline \end{array}$
LIM 102	12800	0	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 64 \\ 128 \\ \hline \end{array}$

Setting the measured value display

Designation of the coordinate axes: P49.*

Axis is coordinate axis \mathbf{A} :	P 49.* $=65$
Axis is coordinate axis \mathbf{B} :	P 49.* $=66$
Axis is coordinate axis \mathbf{C} :	P 49.* $=67$
Axis is coordinate axis \mathbf{X} :	P 49.* $=85$
Axis is coordinate axis \mathbf{Y} :	P 49.* $=86$
Axis is coordinate axis \mathbf{Z} :	P 49.* $=87$
Axis is coordinate axis \mathbf{U} :	P 49.* $=88$
Axis is coordinate axis \mathbf{V} :	P 49.* $=89$
Axis is coordinate axis \mathbf{W} :	P 49.* $=90$

Unit of measurement: P1 (user parameter)

Display dimensions in millimeters (mm):	P $1=0$
Display dimensions in inches (inch):	P $1=1$

In the diameter display mode, the symbol for the diameter (\varnothing) appears next to the display value, and the display value doubles.

Radius/diameter display: P 3.* (user parameter)

```
Display position values as radius: P 3.* = 0
Display position values as diameter:
P 3.* = 1
```

In the separate value display mode, POSITIP displays the positions of the saddle and top slide separately. In the sum display mode, the position values of the two axes are added together.

```
Separate value/sum display: P 5.* (user parameter)
Separate value display mode: P 5.* = 0
Sum display mode:
    P 5.* = 1
```


Axis error compensation

Linear and non-linear errors can occur on the axes of a machine, e.g. errors in drivescrew pitch, or errors caused by axis sag and tilt. These errors can be detected with a comparator system such as the VM 101 from
HEIDENHAIN. POSITIP can compensate these errors. You can activate error axis compensation using parameter P40.

Axis error compensation: P40.*
Axis error compensation (Off): P40.* $=0$
Linear axis error compensation (Linear): \quad P40.* $=1$
Non-linear axis error compensation (Non-linear): P40.* $=2$

Linear axis error compensation

A factor that you enter in operating parameter P41.* compensates for this error.

Example calculation of compensation factor \mathbf{k}

Displayed distance:
Actual distance as determined with comparator system: $\quad L_{A}=619.876 \mathrm{~mm}$
Difference: $\Delta l=L_{A}-L_{D}=-0.124 \mathrm{~mm} \quad \Delta I=-124 \mu \mathrm{~m}$
Compensation factor $k=\Delta I / L_{D}=\mathbf{- 2 0 0} \boldsymbol{\mu m} / \mathbf{m}=\mathbf{- 2 0 0} \mathbf{~ p p m}$

```
Linear axis error compensation: P 41.*
Compensation factor k
P41.* \(=0\)
-99 999 [ppm] < P 41.* < 99999 [ppm]
```


Non-linear axis error compensation

Working with non-linear axis error compensation

To activate the non-linear axis error compensation you have to:
> Activate the function using working parameter P40.
> Enter the compensation values in the table.
> Traverse the reference points every time you turn the machine on.

Selection of the operating mode COMPENSATION VALUE TABLE

In the operating mode COMPENSATION VALUE TABLE enter the compensation values for non-linear axis error compensation as follows:
> Press the "MOD" key.
> Select "Code Number" soft key.

- Enter code number 105296 and confirm with ENT.

The POSITIP 855 automatically switches the position display to REF when the compensation value table is selected (the datum for the display is the scale reference point).

The functions are in two soft-key rows and can be selected using the "paging" keys.
Row 1: Enter the compensation value using the keyboard.
Row 2: Read in or output the compensation value table using data interface.
You can enter compensation values at 64 compensation points for each axis - as a function of the positions in the axis causing the error.

Input data

Select the individual input fields with the arrow keys and enter:
> The axis which is to be corrected under "faulty axis?".
Press axis soft key.

- The axis which is causing the error under "axis causing error?" Press axis soft key.
- The datum for the axis causing the error under "datum."
> The distance between the compensation points for the axis causing the error under "compensation point distance?" as an exponent to the base 2 : e.g. $14=2^{14}=16384 \mu \mathrm{~m}$.
- Compensation values: compensation point 0 is preassigned the value 0.000 and cannot be changed.

Delete the table

You can delete the table values as follows:

- Select the table to be deleted under "faulty axis?" and press the axis soft key.
- Press "delete table."

II - 4

Data Interface

The POSITIP's data interface allows you to save programs and operating parameters on diskette, or print out or save coordinates. Chapter I-3 describes how to transfer programs, and Chapter II-2 describes how to transfer operating parameters.

This chapter covers what you need to know about setting up the data interface:

- Pin layout of the data interface
- Signal levels
- Wiring of the connecting cable and connectors
- Baud rate (data transfer speed)
- Data format

Connections

The RS-232-C/N. 24 serial port is located on the POSITIP's rear panel. The following devices can be connected to this port:

- HEIDENHAIN FE 401 floppy disk unit
- Printer with serial data interface
- Personal computer with serial data interface

سh The HEIDENHAIN FE 401 floppy disk unit is immediately ready for operation at the data interface.

Wh Interface X31 complies with the recommendations in VDE 0160, 5.88 for separation from line power.

Pin layout on the POSITIP data interface

Pin	Assignment	
1	CHASSIS GND - Chassis ground	
2	TXD	- Transmitted data
3	RXD	- Received data
4	RTS	- Request to send
5	CTS	- Clear to send
6	DSR	- Data set ready
7	SIGNAL GND	- Signal ground
20	DTR	- Data terminal ready
8 to 19	Do not assign	
21 to 25	Do not assign	

Fig. 38: Pin layout of RS-232-C/V. 24 data interface

Signal levels

Signal	Signal level $\mathbf{1}=$ active	Signal level $\mathbf{0}=$ not active
TXD, RXD	-3 V to -15 V	+3 V to +15 V
RTS, CTS +3 V to +15 V	-3 V to -15 V	
DSR, DTR		

Wiring the connecting cable

The wiring of the connecting cable depends on the device being connected (see technical documentation for external device).

Full wiring

Fig. 39: Diagram for full wiring

Simplified wiring

Fig. 40: Diagram for simplified wiring

Setting the baud rate: P 50

The baud rate set on the POSITIP must be the same as that of the external device. The external device must be capable of processing the selected baud rate. The baud rate for the data interface on the POSITIP is set with an operating parameter. The machine manufacturer can also make this parameter available as a user parameter (see I-6).
Settings for the baud rate
$P 50=110,150,300,600,1200,2400$, 4800, 9600, 19 200, 38400 [baud]

The baud rate for data transfer between POSITIP and the FE 401 floppy disk unit is always 9600.

Data format

Data is transferred in the following sequence:

1. Start bit
2. Seven data bits
3. Parity bit (even parity)
4. Two stop bits

Interrupting data transfer

There are two ways to interrupt data transfer from the external device and restart it:

- Start/Stop over input RXD

DC3 $=$ XOFF = CTRL S: interrupt data transfer
DC1 = XON = CTRL Q: resume data transfer
Start/Stop over control line CTS

0 When the stop signal CTS or DC3 has been received, POSITIP sends up to two further characters.

Fig. 41: Data transfer format

II - 5
 Measured Value Output

POSITIP can output measured values over the data interface.

Starting measured value output

There are two ways to start measured value output:

- Transmit control character to the data interface
- Send signal to switching input

The delay between the latch signal and measured value output depends on the selected signal.

Transit time of encoder signals

After approximately 4μ s the encoder signals are present in a buffer that is interrogated by the internal latch signal. The measured value that is output is therefore the value that existed approximately $4 \mu \mathrm{~s}$ prior to the internal latch.

Starting measured value output over external switching input

You can start measured value output over the switching input at the D-sub connection EXT by sending a pulse or by make contact.
Contact at pin 9: make contact against 0 V
Pulse at pin 8: pulse duration $t_{e} \geq 1.2 \mu \mathrm{~s}$
The contact or pulse can also be sent over a TTL logic device (such as SN 74 LS XX):
$U_{H} \geq 3.9 \mathrm{~V}\left(U_{\mathrm{MAX}}=15 \mathrm{~V}\right)$
$\mathrm{U}_{\mathrm{L}} \leq 0.9 \mathrm{~V}$ with $\mathrm{I}_{\mathrm{L}} \leq 6 \mathrm{~mA}$

Fig. 42: Signal by make contact against 0 V

Fig. 43: Time diagram for measured value output over external switching input

- The number of axes (M)
- The number of blank lines (L)
$t_{D}=\frac{187 \times M+L \times 11}{B R}[s$
t_{e} : Minimum duration, pulse
$t_{e} \geq 1.2 \mathrm{~ms}$
t_{e} : Minimum duration, contact
$\mathrm{t}_{\mathrm{e}} \geq 7 \mathrm{~ms}$
t_{1} : Delay between pulse and internal latch $\mathrm{t}_{1} \leq 0.8 \mu \mathrm{~s}$
t_{1} : Delay between contact and internal latch $\mathrm{t}_{1} \leq 4.5 \mathrm{~ms}$
t_{2} : Delay between internal latch and measured value output $\mathrm{t}_{2} \leq 30 \mathrm{~ms}$
t_{3} : Delay between end of data output and next latch over external switching input $\mathrm{t}_{3} \geq 0 \mathrm{~ms}$
t_{D} : Duration of measured value output
The duration of measured value output (t_{D}) depends on:
- The selected baud rate (BR)

Starting measured value output with Ctrl B

t_{1} : Delay between Ctrl B command and internal latch $\mathrm{t}_{1} \leq 0.5 \mathrm{~ms}$
t_{2} : Delay between internal latch and measured value output $\mathrm{t}_{2} \leq 30 \mathrm{~ms}$
t_{3} : Time between end of data output and next latch with Ctrl B $t_{3} \geq 0 \mathrm{~ms}$
t_{D} : Duration of measured value output
The duration of measured value output (t_{D}) depends on

- The selected baud rate (BR),
- The number of axes (M)
- The number of blank lines (L)
$t_{D}=\frac{187 \times M+L \times 11}{B R} \quad[s]$

Fig. 44: Time diagram for measured value output with Ctrl B

Operating parameters for measured value output

The following operating parameters will influence measured value output - regardless of how you start it.

Number of blank lines after each measured value: P51
Number of blank lines after measured value: P51 = 0 to 99

You can also use the signal for measured value output to influence position display.

Screen display during measured value output: P23

The display is not stopped during measured value output (Off):
$P 23=0$
The display is stopped during measured value output and remains stopped as long as the switching input "output measured value" is active (Concrnt): \quad P23 $=1$
The display is stopped but is updated by every measured value output (Frozen): P23 $=2$

Example of character output at the data interface

The numbers stand for
(1) Coordinate axis
(2) Blank space (separate value mode), S (sum mode) or O (top slide)
(3) Equality sign
(4) $+/-$ sign
(5) Carriage return
(6) Line feed

Example: Linear axis with sum display mode $\mathbf{Z}=+5841.2907$ mm

Z	S	$=$	+	5	84			9	0		R	<CR>	<LF>
(1)												(5)	(6)
2 to 7 places													
Decimal point					-								
1 to 6 places					-								
Unit: blank space for mm, " for inches													
Actual value display:													
	fo	ra			for di	iam							
	nce				play: for dia	ame							

II - 6

Switching Inputs and Outputs

Switching signals at the D-sub connection EXT allow you to

- reset the actual value display of a coordinate axis to zero
- control motor cutoff
- start measured value output (see Chapter II - 5)
Interface X41 (EXT) complies with the recom-
mendations in VDE 0160, 5.88 for separation
from line power.
The outputs for the switching ranges are me-
tallically isolated from the device electronics by
means of optocouplers.

Danger to internal components!

Voltage from external circuitry must conform to the recommendations in VDE 0100, Part 410 for low-voltage electrical separation.
Connect inductive loads such as relays only with a quenching diode. Shield against electromagnetic fields. Connect with a shielded cable with the shield extended to the connector housing.

Pin layout of D-sub connection EXT (X41)

	Pin	Assignment
$\begin{aligned} & n \\ & \stackrel{n}{3} \\ & \stackrel{2}{7} \\ & 0 \end{aligned}$	10	0 V for switching range
	23,24, 25	24 V DC for switching range
	11	POSITIP ready for operation
	14	Display value outside of switching range 0
	15	Display value outside of switching range 1
	16	Display value outside of switching range 2
	17	Display value outside of switching range 3
	18	Display value outside of switching range 4
	19	Display value outside of switching range 5
	20	Display value outside of switching range 6
	21	Display value outside of switching range 7
$\begin{aligned} & n \\ & \frac{n}{2} \\ & \underline{3} \end{aligned}$	1	0 V (internal)
	2	Reset axis 1 to zero
	3	Reset axis 2 to zero
	4	Reset axis 3 to zero
	5	Reset axis 4 to zero
	8	Pulse: output measured value
	9	Contact: output measured value
	$\begin{aligned} & 6,7,12, \\ & 13,22 \end{aligned}$	Do not use

Fig. 45: The D-sub connection EXT

Reset actual value display to zero

You can reset the actual value display of each axis to zero through one of the inputs at pin 2 to pin 5 (see previous page).

Minimum pulse duration for zero reset: $\mathrm{t}_{\text {min }} \geq 100 \mathrm{~ms}$
Zero reset signal: make contact against 0 V or
input pulse over TTL logic device (such as SN 74 LS XX):
$\mathrm{U}_{\mathrm{H}} \geq 3.9 \mathrm{~V}\left(\mathrm{U}_{\mathrm{MAX}}=15 \mathrm{~V}\right)$
$U_{L}^{H} \leq 0.9 \mathrm{~V}$ with $I_{L} \leq 6 \mathrm{~mA}$

Using the switching signals

If you wish to use the switching signals, you must supply POSITIP with 24 V DC at the D-sub connection EXT (pins 23 to $25 ; 0 \mathrm{~V}$ to pin 10). Pins 14 to 21 will then be supplied with 24 V as long as the display value is not within a switching range.

These pins are then assigned to the axes with operating parameter P60.x. As soon as a display value is within the switching range, the voltage to the corresponding pin will be cut off. Define the switching range in operating parameter P61.x symmetrically around zero.

If the location of the datum point changes, move the switching ranges correspondingly.

Axis assignment: P60.x

No axis assigned (Off):
P60.x = 0
Assigned to axis 1:
Assigned to axis 2 :
Assigned to axis 3:
Assigned to axis 4 :
P60. $x=1$
P60. $x=2$
P60. $x=3$
P60. $x=4$

Define the switching range: P61.x

0 to 99999.999 [mm] symmetrically around zero P61.x

Permissible load at switching outputs

$I_{\text {MAX }}=100 \mathrm{~mA}$
DC resistance
Connect inductive load only with quenching diode.

Danger to internal components!

Connect inductive loads only with a quenching diode parallel to the inductance.

Accuracy of switching ranges and switching delay: P 69

You can select the switching delay and the accuracy with which the switching outputs are switched.
You can choose between

- Accuracy $=$ display step; switching delay $=80 \mathrm{~ms}$ This is mode 1: $\mathrm{P} 69=0$
- Accuracy $=\frac{\text { Grating period GP of encoder }}{128}$

Switching delay $=5 \mathrm{~ms}$. This is mode 2: $\mathrm{P} 69=1$

Fig. 46: The switching ranges are symmetrical around zero

"POSITIP ready for operation" Output

In order to use the "POSITIP is ready for operation" signal you must supply 24 V DC to pins 23,24 and 25 (0 V to pin 10). During normal operation, pin 11 of D-sub connection EXT has $\mathbf{2 4} \mathbf{V}$.

If an error occurs which impairs the functioning of POSITIP (such as a hardware or checksum error), POSITIP switches the output at pin 11 off.

II-7
 Specifications

POSITIP	
Axes	Up to 4 axes from X, Y, Z, A, B, C, U, V, W
Display	Flat luminescent screen: position values, dialogs, entries, graphics
Status display	Operating mode, REF, inches, scaling factor Graphic positioning aid with distance-to-go display Oversize, feed rate, tool number Diameter display, sum display Z_{S} and/or X_{S}
Position encoders	Incremental HEIDENHAIN linear encoders with sinusoidal output signals
Display step	Linear axes: $5 \mu \mathrm{~m}, 1 \mu \mathrm{~m}$ or finer (to $0.02 \mu \mathrm{~m}$)
Functions	- REF reference mark evaluation - Distance-to-go mode, nominal position absolute or incremental - Scaling factor - Linear machine error compensation - HELP: on-screen operating instructions - INFO: pocket calculator, stopwatch, taper calculator
	- One datum point and table for up to 99 tools - Oversizes - Freezing the displayed tool position during retraction (note/set)
Programming	Memory for up to 20 programs and a total of 2000 program blocks Up to 1000 blocks per program Subprogramming; Teach-in (actual-position capture)
	Multipass cycle in the program
Data interface	RS-232-CN. 24 ; for output of programs, measured values and parameters Baud rate: 110 / $150 / 300 / 600 / 1200 / 2400 / 4800 / 9600 / 19200 / 38400$
Accessories	- Floppy disk unit for external storage of programs - Tilting base
Switching outputs	- 8 digital outputs (24 V), assigned to the axes with parameters - 1 "POSITIP is ready for operation" digital output
Switching inputs	- 1 input for each axis for zero reset - 2 inputs for measured value output (pulse or contact)
Power source	Switching power supply 100 V to $240 \mathrm{~V}(-15 \%$ to $+10 \%)$, 48 to 62 Hz
Power consumption	24 W
Operating temperature	0° to $45^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.113^{\circ} \mathrm{F}\right)$
Storage temperature	-30° to $70^{\circ} \mathrm{C}\left(-22^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Weight	4.8 kg

II - 8
Dimensions

Tilting base

Subject Index

E

A
Actual postition 11
Automatic 49, 50
Axis assignment 81
Axis definition 66
Axis designation 66
Axis error compensation 73
B
Baud rate 66, 76
Blank lines 78
Blinking error messages 16
C
Calculated value transferring 53
Calculating functions 53
Calculator 51, 53
CALL LBL 39
Chain dimensions 9
Character output 79
Code number 62
Connection
electrical 59
encoders 60
Coordinate axis
defining 69
designation 72
Coordinates absolute 9
incremental 9, 22
Correcting program errors 44
Correction factor 73
Counter applications 67
Counting direction 65, 69
Cutoff signals 81
CYCL 36
D
D-sub connection 80
Data format 76
Data interface 63, 75
connections 75
setup 75
signal levels 75
wiring 76
Data transfer interrupting 76
Datum setting 8, 18
Deleting program blocks 45
Deleting programs 28
Dialog language 67
Diameter display 17, 72
symbol for 2, 17
Display freeze 65
Display step 70
Distance coding 65
Distance-to-go 14, 22, 6
Downloading parameters 63

Editing existing programs 44
Electrical connection 59
Encoders 60, 68
connecting 60
counting direction 69
linear encoders 70
monitoring 69
output signal 68
signal transit time 77
ENT key 62
Entry logic 53
Error compensation 65
Error messages 16
Executing programs 49
Extern 46

F

Feed rate display 67
Freezing positions 18
Functions
HELP 14
MOD 14
INFO 14
programmable 27, 29

G

Graphic positioning aid 67
Grounding 60
H
HELP 15

I

Inches
selecting 16
Incremental dimensions 9
INFO 51
INFO key 51
Installation 59
Internal latch 78
K
Keyboard 2
L
Labels 39
label call 39
label number 40
label numbers 42
setting 40
setting (inserting) 42
LBL 39
Linear compensation 65
Linear encoders 70
Linear subdivision 65, 70

M

Measured value display . 68, 72
Measured value output . 77, 78
Millimeters
selecting 16
MOD 55
Monitoring
encoder 66
encoder signals 69
Multipass cycle 36
N
Nesting program sections 39
Nominal positions
changing after transfer 35
Non-linear compensation 65
0
Operand 53
Operating instructions (on-screen) 15
Operating modes 14
Operating parameters 62
transferring 63
Output signals of encoder 68
Oversizes 22, 65
P
Pin layout
D-sub connection EXT 80
data interface 75
encoder inputs 60
Pocket calculator 51, 53
Position display mode 17
Position encoders 11
Positioning aid 22
Positions
displaying 22
moving to 22
transferring 33
POSITIP ready for operation. 82
Power connection 59
Power connector, wiring 59
Program reading out 47
Program blocks changing 44
current block 30
deleting 30, 45
entering 30
inserting new. 30
selecting 30
Program directory 28
Program number changing 44
Program section repeats 39
calling and entering 42
Program sections nesting 39
Programming 27
Programming steps 31
Programs
archiving 46
deleting. 28
editing 44
executing 49
interrupting (STOP) 38
new 28
program directory 28
selecting 28
transferring 46
R
Radius display 17, 72
REF 13
Reference marks 11, 65, 68
crossing over 13
distance-coded 11
evaluation of 68
not crossing over 13
not evaluating 68
Reference point 11
S
Scaling factor 55, 65
symbol 2
Separate value display 17
Settings choosing 56
Shoulder turning 24
Signal period 65, 70
Signal transit time 77
Single block 49
Sleep delay 67
Soft key row 15
Software version 3
STOP 38
Stopwatch 51, 53
Storing positions 18
Subprograms 39, 40
calling 41
Sum display 17
Switch-on 13
Switching delay 81
Switching inputs 77, 80
Switching outputs 66, 80
cutoff range 81
cutoff signals 81
Switching signal 66
Switchover $16 \mu \mathrm{~m} / 40 \mu \mathrm{~m}$ 66
T
Taper angle 52
Taper calculator 51, 52
Teach-In 27, 33, 35
Tilting base 59Tool dataentering18, 21
in program 32
Tools
calling 32
tool axis 32
TOOL CALL 32
tool number 32
tool table 32
Transferring programs 46
Traversing to zero 22
U
Undersize 22
Unit of measurement 72
selecting 16
User parameters 55, 64
entering 56
menu 55
W
Workpiecechanging size of55
Workpiece datum 19
Workpiece position absolute 9
incremental 9
Z
Zero point (of workpiece) 19
Zero reset 81

NOTES

\qquad

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH
Dr.-Johannes-Heidenhain-Straße 5
83301 Traunreut, Germany
家 + 49/86 69/31-0
FAX $+49 / 86$ 69/50 61
e-mail: info@heidenhain.de
O Service $\quad+49 / 8669 / 31-1272$
T TNC-Service $+49 / 86$ 69/31-1446
[FAX] +49/86 69/9899
e-mail: service@heidenhain.de
http://www.heidenhain.de

[^0]: * Standard factory settings are in bold italics

[^1]: 1) Standard factory settings are in bold italics
 2) Factory setting for P 49.*: P49.1 = 88; P $49.3=\mathbf{9 0}$
