Operating Instructions

POSITIP 850

Programmable Digital Readout for Boring and Milling Machines

246 L97 L18 \&-19 よ20 д-1

HEDENHAM

- POSITIP 850 Display Unit
- Power Cable
- Operating Instructions
- Certificate of Inspection

Optional

- KT 110 Edge Finder (ld.-Nr. 25102101)
- Connector, 25-pole, for D-subminiature socket X41 (EXT) external functions (Id .-Nr. 249154 ZY)
- Data transfer cable, 25-pole, for D-subminiature socket X31 data output (ld.-Nr. 24286901)
- Angle bracket (Id.-Nr. 25826101)

Selecting Milling/Turning

As delivered, the POSITIP 850 can be set up for either milling or turning applications. The following screen appears after the first power-up:

After pressing the 0 key, the program for milling is dermanently set (i. e., is not affected by power interruptions), and this screen display cannot be accessed again. Selection of the turning function is then only possible via parameter P99.0 "Milling, Turning".

Manufacturer's Certificate

We hereby certify that the above unit is radioshielded in accordance with the German official register decree 1046/1984. The German postal authorities have been notified of the issuance of this unit and have been granted admission for examination of the series regarding compliance with the regulations.

Note
If this unit is incorporated by the user into a system then the complete system must comply with the above requirements.

These Operating Instructions are valid for software version 05.

Contents

Page
Working with the POSITIP 850 For Milling1 Controls and Screen Displays5
2 Switch-On 6
3 Modes of Operation 6
4 Cross Over Reference Marks 7
5 Keys For User Guidance 8
6 External Program Output 15
7 External Program Input 17
Commissioning 1 Connections and Controls (Rear of Unit) 19
2 Mounting the POSITIP 850 20
3 Connecting Linear and Angle Encoders 20
4 Connecting the KT 110 Edge Finder 21
5 Power Connection 21
6 Switch-On and Function Check 21
7 Optimizing the Parameters 22
1 User Parameters 25
1.1 Changing User Parameters 26
1.2 Overview of User Parameters 28
2 Operating Parameters 29
2.1 Accessing the Operating Parameters 29
2.2 Configuring the User Parameters 31
2.3 Presetting the User Parameters 33
2.4 Overview of Operating Parameters 34
3 Tables 38
3.1 Display Step. Signal Period and Subdivision Factor for Linear Encoders 38
3.2 Display Step, Line Count and Subdivision Factor for Angle Encoders 38
3.3 Distance-Coded Reference Marks 39
4 Parameter Description 40
4.1 User Parameters 40
4.2 Operating Parameters P 41
Data 1 Definition of the RS-232-C/V. 24 Interface 46
Interface 2 Pin Layout X31/Signal Description 46
3 Connection of External Units (Wiring) 47
4 Data Transfer 48
4.1 Data Transfer Rate (Baud Rate) 48
4.2 Data Format 48
4.3 Measured Value Output 49
4.3.1 Storage via RS-232-C Interface 49
4.3.2 Storage via External Functions 50
4.3.3 Storage via Probing Functions 52
4.3.4 Sequence of Character Output 54
4.4 External Input/Output of Programs 56
4.5 Inpul/Oulpul of Operaling Parameters 56
External 1 Pin Layout X41 (25-pole D-Subminiature Socket) 57Functions
2 External Zero Reset 57
3 Storage (Pulse, Contact) 57
4 Zero Crossover Signal 58
5 EMERGENCY STOP Signal 58
Probe Systems 1 KT 110 Edge Finder 59
2 TS 120 Touch Probe System 60
3 Pin Layout X10 (15-pole D-Subminiature Socket) 61
Specifications 62
Dimensions 64

Working with the POSITIP 850 For Milling

This part of the Operating Instructions illustrates the most important procedures for operation of the POSITIP 850. For a more detailed explanation, simply call the HELP functions.

1 Controls and Screen Displays

With these keys you select the datum ($\dagger 1$ to $\lfloor 20$), the desired tool radius compensation ($\mathrm{R}-, \mathrm{RO}, \mathrm{R}+$), and the data interface (FE, EXT)

Selection of cutting data calculator, pocket calculator functions and stopwatch functions

All operating modes, procedures, functions of the individual keys, and error messages are explained

For paging through the individual screens

Return to the previous menu or

Return to the main menu

3 Modes of Operation

BASIC
Mode
EXPERT
Mode

PROGO
Mode

Digital Readout for simple machining tasks

- Actual position display with up to 20 freely-selectable datum points

Digital Readout with expanded scope of functions

- Distance-To-Go display with radius compensation
- Bolt-hole circle
- Probing functions for datum setting

Programmable Digital Readout

- Storage of up to 20 different programs
- Easy programming with conversational guidance, subprograms and program section repeats

Select mode of operation别

POSITIP is in the mode of operation which was last selected (in this case BASIC).

Press soft key and select desired mode of operation.

4 Cross Over Reference Marks

When a reference mark is crossed over, a signal is generated which identifies that position as a machine datum.
Crossing the reference marks re-establishes the correspondence between axis slide positions and display values.

0,6
After a power interruption the reference marks must be crossed over in every axis.

After crossing the reference marks in all axes:

The main menu appears for the selected mode of operation. The abbeviation REF in the entry line indicates REF mode. The position data are referenced to the current datum (highlighted).

If you do not wish to work with reference mark evaluation:

NO
Press soft key

If NO REF is pressed, positions and display values are lost after a power interruption!

5 Keys For User Guidance

The HELP function can guide you through the operation of the POSITIP 850. Think of it as integrated operating instructions. At any time during operation you can call up an explanation of the current screen image by pressing the HELP key. The HELP function can also tell you how to proceed when an error message occurs.

Calling the HELP Function

Return to the main menu of the selected mode of operation (EXPERT or PROGO).

SELECT FUNCTION			EXPERT
		REF	$\begin{array}{\|l} \text { Pctual } \\ \text { Posit. } \end{array}$
$X+$	102.42		$\begin{aligned} & \text { Dist. } \\ & \text { To-Go } \\ & \hline \end{aligned}$
$Y+$	366.31		
	31.02		Bolt Circle
	13.91		Probe
d-1 d-2	d.3 d.4 d.5		

POSITIP jumps back into the main menu of the EXPERT operating mode.

Each time you press the $\boldsymbol{\Psi}$ key you jump back by one menu level until you reach the main menu of the selected mode of operation.

Paging forward and backward, selection of work screens and soft key assignment.

Selection of Work Screens

Example: POSITIP is in the PROGRAM INPUT main menu.

The \leftrightarrows symbol indicates the currentlyselected page (here, page 1).

- Select page 2:

Press

The second page of the PROGRAM INPUT main menu has been selected. The - symbol now indicates page 2 as current page.

Return to page 1:

Press

Display returns to the first page of PROGRAM INPUT.

Selection of datum points, tool radius compensation and data transfer protocol.

Selection of Datum Points

Example: POSITIP is in the main menu of the BASIC mode of operation. Datum 2 has been selected.

- Select new datum, e.g. 12 : Press \longrightarrow or hold down until datum $\downarrow 12$ is selected. Out of 20 possiblo datum points, 6 can be displayed at once.

Selection of Tool Radius Compensation

Example: The DISTANCE-TO-GO function has been selected.
No tool radius compensation has been selected: Display R0

- Select tool radius compensation, e.g. R+:

Selection of the Data Transfer Protocol

Example: In the PROGO operating mode, the function EXTERNAL
OUTPUT has been selected. The data transfer protocol is set on the FE 401:
display FE

- Set data transfer protocol to EXT, e.g. for printer:

User
Parameters
POSITIP features non-volatile parameter storage: the parame-
ters become effective immediately upon switch-on. The para-
meters are divided into two groups: user parameters and operating parameters.
User parameters are parameters that can be changed during operation by pressing the MOD key.
Operating parameters concern machine characteristics and are given a fixed setting. For more information on operating parameters see the "Parameters" section

User Parameters

An overview of available parameters appears on the screen.

Change parameter:

Depart user parameters:

Press
 WOD once again.

Example: Calling the Cutting Data Calculator

6 External Program Output

Using the EXTERNAL OUTPUT function in the operating mode PROGO. you can transfer one or all of the programs in the PT 850 to an external storage device via the RS-232-C data interface. Programs can be archived on diskette with the FE 401 Floppy Disk Unit from HEIDENHAIN.
Printers used with the PT 850 must have a serial RS-232-C interface (please refer to "Data Interface" section 4.2, Data Format).

Example: Transferring a Program to the FE 401

Output a single program:

Enter program number

Output all programs:

If there are programs on the diskette with the same PGM number, they will be overwritten.

Directory of programs stored in the POSITIP program memory:

The program number as well as the number of program blocks is displayed.

Directory of programs stored on FE diskettes:

During read-in of the program directory, the dialog Reading FE directory is displayed.

Cancel data transfer:

7 External
Program Input

Using the EXTERNAL INPUT function in the operating mode PROGO, you can transfer programs from an external storage device into the PT 850 via the RS-232-C data interface. Programs can be archived on diskette with the FE 401 Floppy Disk Unit from HEIDENHAIN.

Computers used with the PT 850 must have a serial RS-232-C interface (for the data format, please refer to Data Interface, section 4.2).

Example: Loading a Program from the FE 401

The EXTERNAL INPUT menu appears on the screen.
Set the data interface to FE 401:

Selecting " $F E$ " sets the data interface and the correct baud rate for the FE 401 Floppy Disk Unit.

FE: Data transfer rate is $\mathbf{9 6 0 0}$ baud, regardless of the baud rate set via MOD.

EXT: The baud rate set via MOD for printer output is in effect.

Enter the program number of the program to be transferred. If necessary, call up the directory of programs on the diskette using the soft key FE 401 PGM Dir (see "Program Output").

Commissioning

1 Connections and Controls (Rear Panel)

* The buffer batteries (three AA-size 1.5 V batteries) serve as a power supply for the program memory. Exchange the batteries if the error message EXCHANGE BUFFER BATTERY appears.

The unit must remain switched on during battery exchange to prevent erasure of stored programs.

Do not engage or disengage any connectors while the unit is under power.

2 Mounting the POSITIP 850

- Place the unit in its intended location. It can be fixed laterally to a base surface with the M4 tapped fixing holes (see illustration for dimensions).

An angle bracket for mounting the PT 850 on a table is available from HEIDENHAIN (id.-Nr. 25826101).

3 Connecting
Linear and
Angle Encoders

- Any HEIDENHAIN linear encoders with sinusoidal output signals and single or distance-coded reference marks can be connected to the PT 850.
Connect the encoders for the machine axes to the flange sockets for encoder input on the rear panel. Connect the machine axes to the flange sockets according to the following table:

Machine
 Example: Axis Flange Socket Screen Display

4 Connecting the KT 110 Edge Finder

5 Power Connection

- Connect the KT 110 Edge Finder (available as accessory Id. - Nr. 25102101) to the D-subminiature socket X10 on the rear panel.
The PT 850 can also be connected to the TS 120 Touch Probe System (see Probe Systems section).

Check whether there is a protective ground for the power connection. An M5 threaded pin on the rear panel provides an additional connection for protective ground.

- Connect power cable to the power input socket on the rear panel, and switch on power.

6 Switch-On and Function Check

The unit is adapted to the machine tool by means of parameters. See "Parameters" section. The unit is delivered with preset parameters to facilitate commissioning (see Parameters, section 2.4).

Proceed in the following sequence to commission the machine:

- Switch on power.
- Adjust desired screen image brightness with control on rear panel.
- Select desired application (milling or turning). The menu for application selection appears only once after initial switchon.
- Press any key (except the HELP key).
- Choose BASIC mode of operation (see Working with the POSITIP 850).
- Press NO REF soft key. Now you need not traverse over the reference points (ignore error messages).
- Use MOD key and the code number 95148 to access the operating parameters (see Parameters, section 2).
- Optimize operating parameters (see section 7).
- Switch power off and then on again.
- Cross over the reference marks (see Working with the POSITIP 850).

Error Messages

After the reference marks have been crossed over there should be no error message in the display.

If an error message is displayed, press the HELP key for more information and then correct the error. Switch power off and then on again.

If several errors occur at once you can display the error messages one after the other by repeatedly pressing the CE key.

7 Optimizing the Parameters

You can adapt the functions of the POSITIP to the machine tool by optimizing the parameters. Proceed in the sequence given in the following checklist. Write the axis designations of the connected machine axes onto the checklist, and check off each point after you have completed the step.

1037
Parameters which must be frequently changed during machine operation are entered as user parameters (see Parameters section). If the KT 110 Edge Finder or the TS 120 3D-Probe System is connected, the ball diameter must be entered in the corresponding the user parameter.

Checklist	Parameter	Encoder Inputs/Axes			
		X1	X2	X3	X4
		Machine Axes			
Are the machine axes assigned to the correct encoder inputs? (see section 3)					
Do the axis designations in the ACTUAL POSITION display match the machine axes? Change if necessary.	P 50.*		-		\bigcirc
Check axis definition. The axes are set as linear axes. If a rotary axis is connected (for a rotary table), the axis must be set to "rotary". (The rotary axis display can be switched from degrees decimal to degrees/ minutes/seconds via the user parameters).	P 48.*	(\bigcirc
Enter parameter value for reference marks (see Parameters, table 3.3).	P 45.*				\bigcirc
Set counting direction of the machine axes according to the "Right Hand Rule". Increasing positive display values must correspond to the positive direction of machine axis traverse in relation to tho workpiece.	P 40.*				
Approach a datum on the machine table and set the datum on the POSITIP. Then move the table parallel to the axis and compare the actually traversed length or angle with the value displayed on the POSITIP.	$\begin{aligned} & \text { P 41.* } \\ & \text { P 42.* } \end{aligned}$	\bigcirc			\bigcirc
Check display step (see Parameters, tables 3.1 and 3.2).	P43.* (linear) P44.* (angle)	C			0
Set the counting mode of the rotary axes (for rotary tables). (Presetting $=360^{\circ}$).	P 49.*	C			\bigcirc

* The asterisk „*" signifies parameters which are specified according to axis by a number behind the decimal point (e g. 1.1, 1.2 etc.)
(For parameter descriptions see Parameters, section 4).
\square

The operational characteristics of the POSITIP 850 can be modified via user parameters and operating parameters. While user parameters can be changed by the operator, operating parameters are given a fixed setting which corresponds to the details of the specific machine tool. The parameters are given a standard presetting in the factory.

All parameters are in non-volatile storage (i.e., they are not affected by power interruptions). All changes are effective immediately!

1 User
 Parameters

User parameters are parameters which must be entered or changed trequently during normal machine operation. Press the MOD key to call the menu for user parameters. To leave the menu, press the MOD key again.

Menu: User Parameters

1.1

Changing
User
Parameters

Via soft key
Soft keys are used to change from radius to diameter display, from degrees to degrees/minutes/seconds display and to select scaling factor ON or OFF.

Example: Radius or Diameter Display

■ Changing user parameters via numerical input

Example: Ball Tip Diameter

Ball Dia.	Shift soft key field to the right

Enter numerical value, for example 10

Ball Diameter ? 10

Ball tip diameter is entered

1.2

Overview of
User
Parameters

Selection via MOD key

Function	Axis	Change	Input
Radius/Diameter	X		
	Y	Soft key	-
	Z		
Wegrees Decimal or	X		
Degrees/min/sec	Y	Soft key	-
	Z		
Scaling Factor	X		
	Y	Numerical input	0.100000 to
	Z		
W		Soft key	-
Scaling Factor ON/OFF		Numerical input	0 to 1999.999 mm
Tool Diameter		Numerical input	0 to $\pm 1999.999 \mathrm{~mm}$
Baud Rate RS-232-C		Numerical input	$110,150,300,600$, $1200,2400,4800$,
			9600,19200, $38400 ~ b a u d ~$
Line Feed RS-232-C		Numerical input	0 to 99

(For descriptions of user parameters see section 4.1)
If "Diameter" or "Scaling Factor ON" have been selected, the following symbols appear behind the display value:
\varnothing : Diameter display
!: Scaling factor active

2 Operating Parameters

There are three groups of operating parameters:

- P 1.1 to P13.0 - configuration of the user parameters
-P21.1 to P28.0 - presetting of the user parameters
- P40.1 to P99.0 - operating parameters for machine interface

These settings are normally made only once during commissioning and then remain fixed.

Operating parameters can only be selected through code number 95148 and should not be changed by the machine operator. We recommend that you keep a written copy of the entry values for the operating parameters or store them on an external data medium.

2.1
 Accessing the Operating Parameters

Selecting the Operating Parameters

Select desired operating parameter
 with vertical soft arrow keys.
or
Selection via GOTO

Set
PMTR NR.

Press soft key (the last selected parameter number will appear in the input line).

Enter desired parameter number.

Select operating parameter.

Changing Operating Parameters

Pressing the soft key Enter transfers the entry value; the next parameter is then displayed.

Changing operating parameters with the horizontal soft arrow key

The frame in the parameter line indicates the current parameter entry value. Press the soft key to bring the next parameter entry value into the frame.

Pressing the soft key Enter transfers the entry value; the next parameter is then displayed.

Prossing the MOD key calls the uscr parameters to the display. These parameters are located in soft-key fields in a certain arrangement of field positions. The field positions are indicated by the numbers in the illustration below. (Factory presetting as it appears after switch-on.)

The field position of any user parameter can be changed by means of the operating parameters P 1.1 to P 13.0. (Exception: field position 15 - operating parameters.) By entering a position of 0 , the selected user parameter can be locked from access.

Changing the Field Position

Example:

Procedure

- First you must gain access to the operaling parameters using the procedure described above in section 2.1. Then select the desired soft-key field.

You wish to transfer the parameter in field position 14 to field position 13.

Original Display

- Select the parameter in field position 14 (factory preset to P8.0).
- Enter the new field position (position 13) with numeric keypad and press the soft key Enter.
Pressing the \uparrow key recalls the menu for the user parameters.

New Display

The overwritten parameter (Baud RS-232C) can be reentered into the table as follows:

- Repeat procedure for access to operating parameters and select the overwritten parameter (P 7.0 Baud Rate RS232C). This parameter has assumed the Position: 0 .

Access to user parameters via the MOD key can be locked by entering Position: 0 .
Note: Locked user parameters can only be changed via the operating parameters P21.1 to P28.0.

If you wish to transfer the locked user parameter (P 7.0) to the vacant field position 14 , enter the field position 14 for this parameter.
2.3
Presetting the User Parameters

User parameters can also be set with the operating parameters (P21.1 to P28.0). This makes it possible to change locked user parameters. Changing these parameters is effective regardless of whether they are changed in the "User Parameters" menu or the "Operating Paramotors" menu.

2.4

Overview of
Operating Parameters

Function	Parameter	Axis*	∞	Entry**
Radius/Diameter X1 Radius/Diameter X2 Radius/Diameter X3 Radius/Diameter X4	$\begin{aligned} & \hline \text { P } 1.1 \\ & \text { P } 1.2 \\ & \text { P } 1.3 \\ & \text { P } 1.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline X \\ & Y \\ & Z \\ & W \end{aligned}$		1234
Angle Format	P 2.0			5
Scaling Factor X1 Scaling Factor X2 Scaling Factor X3 Scaling Factor X4	$\begin{aligned} & \text { P } 3.1 \\ & \text { P } 3.2 \\ & \text { P } 3.3 \\ & \text { P } 3.4 \\ & \hline \end{aligned}$	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \end{aligned}$		6789
Scaling Factor ON	P 4.0			10
Ball Diameter	P 5.0			11
Tool Diameter	P 6.0			12
Baud Rate RS-232-C	P 7.0			13
Line Feed RS-232-C	P 8.0			14
Mode of Operation	P9.0			0
Working Plane	P 13.0			0
Radius/Diameter X1 Radius/Diameter X2 Radius/Diameter X3 Radius/Diameter X4	$\begin{array}{\|l} \hline \text { P } 21.1 \\ \text { P } 21.2 \\ \text { P } 21.3 \\ \text { P } 21.4 \\ \hline \end{array}$	XY$Z$$W$		radius, diameter
Angle Format	P 22.0			degrees decimal, degrees $/ \mathrm{min} / \mathrm{sec}$
Scaling Factor X1 Scaling Factor X2 Scaling Factor X3 Scaling Factor X4	$\begin{array}{\|l} \hline \mathrm{P} 23.1 \\ \mathrm{P} 23.2 \\ \mathrm{P} 23.3 \\ \mathrm{P} 23.4 \\ \hline \end{array}$	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & W \end{aligned}$		1.000000 (0.100000 to 9.999999)
Scaling Fáctor ON	P 24.0			OFF, ON
Ball Diameter	P 25.0			$\begin{aligned} & 10.000(0 \mathrm{to} \\ & 199.999 \mathrm{~mm}) \end{aligned}$
Tool Diameter	P 26.0			$\begin{aligned} & \hline \mathbf{0 . 0 0 0 (0 \mathrm { to }} \\ & \pm 1999.999 \mathrm{~mm}) \\ & \hline \end{aligned}$
Baud Rate RS-232-C	P 27.0			110, 150, 300, 600, 1200, 2400, 4800. 9600, 19200. 38400 baud
Line Feed RS-232-C	P 28.0			1 (0 to 99)

Operating Parameters (cont'd.)

Function	Parameter	Axis*	5	Entry**
Counting Direction $\times 1$ Counting Direction X2 Counting Direction X3 Counting Direction X4	$\begin{aligned} & \hline \text { P } 40.1 \\ & \text { P } 40.2 \\ & \text { P } 40.3 \\ & \text { P } 40.4 \end{aligned}$	$\begin{aligned} & \hline X \\ & Y \\ & Z \\ & W \end{aligned}$		normal, inverse
Signal Period X1 Signal Period X2 Signal Period X3 Signal Period X4	$\begin{array}{r} \text { P } 41.1 \\ \text { P } 41.2 \\ \text { P } 41.3 \\ \text { P } 41.4 \end{array}$	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & W \end{aligned}$		$4 \mu \mathrm{~m}, 10 \mu \mathrm{~m}$, $20 \mu \mathrm{~m}, 40 \mu \mathrm{~m}$. $100 \mu \mathrm{~m}, 200 \mu \mathrm{~m}$
Line Count X1 Line Count X2 Line Count X3 Line Count X4	$\begin{aligned} & \text { P } 42.1 \\ & \text { P } 42.2 \\ & \text { P } 42.3 \\ & \text { P } 42.4 \end{aligned}$	$\begin{aligned} & \hline X \\ & Y \\ & Y \\ & Z \\ & W \end{aligned}$		$\begin{aligned} & \text { 1800, } 3600,9000, \\ & 18000,36000, \\ & 72000 \end{aligned}$
Linear Subdivision X1 Linear Subdivision X2 Linear Subdivision X3 Linear Subdivision X4	$\begin{aligned} & \text { P } 43.1 \\ & \text { P } 43.2 \\ & \text { P } 43.3 \\ & \text { P } 43.4 \end{aligned}$	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & W \end{aligned}$		100, 80, 50, 40, 20, 10, 8, 5, 4, 2. $1,0.8,0.5,0.4,0.2$, 0.1 (depends on grating period set)
Angle Subdivision X1 Angle Subdivision X2 Angle Subdivision X3 Angle Subdivision X4	$\begin{array}{\|l\|} \hline \text { P } 44.1 \\ \text { P } 44.2 \\ \text { P } 44.3 \\ \text { P } 44.4 \end{array}$	$\begin{aligned} & \hline X \\ & Y \\ & Z \\ & W \end{aligned}$		$\begin{aligned} & 100,50,25, \mathbf{2 0} \\ & 10,8,5,4,2.5,2, \\ & 1,0.4,0.2 \\ & \text { (depends on } \\ & \text { line count set) } \end{aligned}$
Distance Coding X1 Distance Coding X2 Distance Coding X3 Distance Coding X4	P45.1P45.2P45.3P45.4	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & W \end{aligned}$		$\begin{aligned} & \text { none, 500, 1000, } \\ & 2000 \end{aligned}$

(For description see section 4.2)

* For the sake of simplicity, the axis designations are assumed to be those set in parameter P50.* $(\mathrm{X} 1=\mathrm{X}, \mathrm{X} 2=\mathrm{Y}, \mathrm{X} 3=\mathrm{Z}, \mathrm{X} 4=\mathrm{W}) . \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4$ are the corresponding designations of the encoder inputs (see back of unit).
** Factory presettings are indicated in bold type.

Operating Parameters (cont.'d.)

Function	Parameter	Axis*	\triangle	Entry**
Monitoring X1 Monitoring X2 Monitoring X3 Monitoring X4	$\begin{aligned} & \text { P } 46.1 \\ & \text { P } 46.2 \\ & \text { P } 46.3 \\ & \text { P } 46.4 \end{aligned}$	$\begin{array}{\|l\|} \hline X \\ Y \\ Z \\ W \\ W \end{array}$		off, on
Linear Correction X1 Linear Correction X2 Linear Correction X3 Linear Correction X4	$\begin{aligned} & \text { P } 47.1 \\ & \text { P } 47.2 \\ & \text { P } 47.3 \\ & \text { P } 47.4 \end{aligned}$	$\begin{aligned} & \hline X \\ & Y \\ & Z \\ & W \end{aligned}$		$\begin{aligned} & \mathbf{0} \text { to } \\ & \pm 99999 \mu \mathrm{~m} / \mathrm{m} \end{aligned}$
Axis Definition X1 Axis Definition X2 Axis Definition X3 Axis Definition X4	$\begin{array}{r} \text { P } 48.1 \\ \text { P } 48.2 \\ \text { P } 48.3 \\ \text { P } 48.4 \end{array}$	$\begin{aligned} & X \\ & Y \\ & Y \\ & Z \\ & W \end{aligned}$		off, linear, rotary
Angle Counting Mode X1 Angle Counting Mode X2 Angle Counting Mode X3 Angle Counting Mode X4	$\begin{array}{r} \text { P } 49.1 \\ \text { P } 49.2 \\ \text { P } 49.3 \\ \text { P } 49.4 \end{array}$	$\begin{aligned} & \hline X \\ & Y \\ & Z \\ & W \end{aligned}$		$\begin{aligned} & 360^{\circ}, \pm 180^{\circ} \\ & \pm \infty^{\circ} \end{aligned}$
Axis Designation X1 Axis Designation X 2 Axis Designation X3 Axis Designation X4	$\begin{array}{r} P 50.1 \\ \text { P } 50.2 \\ \text { P } 50.3 \\ \text { P } 50.4 \end{array}$	$\begin{aligned} & \hline X \\ & Y \\ & Z \\ & W \end{aligned}$		$\begin{aligned} & \text { A, B, C, U, V, W, } \\ & \mathbf{X}, \mathbf{Y}, \mathbf{Z} \end{aligned}$
Axis Combination	P 51.0			$\begin{aligned} & \text { off, } 1+4,2+4, \\ & 3+4,1-4,2-4 \\ & 3-4 \end{aligned}$
Dialog Language	P 52.0			2 languages can be selected (see section 4.2)
Working Plane	P 53.0			X/Y, Y/Z, Z/X
Mirror Graphics	P 54.0			off, vertical and/or horizontal
Direction of Rotation, Bolt Circle Graphics	P 55.0			normal, inverse
Zero Range X1 Zero Range X2 Zero Range X3 Zero Range X4	P 56.1 P 56.2 P 56.3 P 56.4	$\begin{aligned} & X \\ & X \\ & Y \\ & Z \\ & W \end{aligned}$		0 (0to 99.999 mm)

Operating Parameters (cont'd.)

Function	Parameter	Axis*		
Display Froczc	P57.0			off, concurrent, stopped
Distance-To-Go Mode	P58.0			bar, actual value
Sleep Delay	P59.0			$\mathbf{1 5}$ 5 to 98 (min.) $99=$ no protective standby mode
Probing/RS-232-C	P61.0			off, on
Counter Application	P99.0			milling, turning

(For description see section 4.2)

* For the sake of simplicity, the axis designations are assumed to be those set in parameter P50.* (X1 - X, X2 - Y, X3-Z, X4 - W). X1, X2, X3, X4 are the corresponding designations of the encoder inputs (see back of unit).
** Factory presettings are indicated in bold type.

3 Tables
3.1

Display Step, Signal Period and Subdivision Factor for Linear Encoders

Signal Period	$4 \mu \mathrm{~m}$	$10 \mu \mathrm{~m}$	$20 \mu \mathrm{~m}$	$40 \mu \mathrm{~m}$	$100 \mu \mathrm{~m}$	$200 \mu \mathrm{~m}$				
Display Step		Subdivision Factor								
$0.00005 \mathrm{~mm} / 0.000002 \mathrm{in}$.	80	-	-	-	-	-				
0.0001	$\mathrm{~mm} / 0.000005 \mathrm{in}$.	40	100	-	-	-	-			
0.0002	$\mathrm{~mm} / 0.00001$	in.	20	50	100	-	-	-		
0.0005	$\mathrm{~mm} / 0.00002$	in.	8	20	40	80	-	-		
0.001	$\mathrm{~mm} / 0.00005$	in.	4	10	20	40	100	-		
0.002	$\mathrm{~mm} / 0.0001$	in.	2	5	10	20	50	100		
0.005	$\mathrm{~mm} / 0.0002$	in.	0.8	2	4	8	20	40		
0.01	$\mathrm{~mm} / 0.0005$	in.	0.4	1	2	4	10	20		
0.02	$\mathrm{~mm} / 0.001$	in.	-	0.5	1	2	5	10		
0.05	$\mathrm{~mm} / 0.002$	in.	-	0.2	0.4	0.8	2	4		
0.1	$\mathrm{~mm} / 0.005$	in.	-	0.1	0.2	0.4	1	2		

3.2

Display Step, Line Count and Subdivision Factor for Angle Encoders

Line Count		72000	36000	18000	9000	3600	1800	
Display Step								
Degress Decimal	Degrees/ Min/Sec	Subdivision Factor						
0.0001°	$0^{\circ} 00^{\prime} 01^{\prime \prime}$	50	100	-	-	-	-	
0.0002°	$0^{\circ} 00^{\prime} 01^{\prime \prime}$	25	50	100	-	-	-	
0.0005°	$0^{\circ} 00^{\prime} 01^{\prime \prime}$	10	20	40	-	-	-	
0.001°	$0^{\circ} 00^{\prime} 05^{\prime \prime}$	5	10	20	40	-	-	
0.002°	$0^{\circ} 00^{\prime} 05^{\prime \prime}$	2.5	5	10	20	-	-	
0.005°	$0^{\circ} 00^{\prime} 10^{\prime \prime}$	1	2	4	8	20	-	
0.01°	$0^{\circ} 000^{\prime} 30^{\prime \prime}$	-	-	2	4	10	20	
0.02°	$0^{\circ} 01^{\prime}$	-	-	-	-	5	10	
0.05°	$0^{\circ} 05^{\prime}$	-	-	-	-	2	4	
0.1°	$0^{\circ} 05^{\prime}$	-	-	-	-	1	2	
0.5°	$0^{\circ} 30^{\prime}$	-	-	-	-	-	0.4	
1.0°	1°	-	-	-	-	-	0.2	

3.3
 Distance-Coded Reference Marks

$\left.\begin{array}{|l|l|l|}\hline \text { Linear Encoder } & \begin{array}{l}\text { Max. Traverse for Recovery of } \\ \text { the Datum }\end{array} & \text { Parameter } \\ \hline \begin{array}{l}\text { No distance-coded } \\ \text { reference marks }\end{array} & \text { Depends on position of the encoder } & \text { P 45.* }=\text { none } \\ \hline \text { LS 101C } & 10 \mathrm{~mm} & \text { P 45. }{ }^{*}=1000 \\ \hline \begin{array}{l}\text { LS 107C } \\ \text { LS 303C }\end{array} & 20 \mathrm{~mm} & \\ \begin{array}{l}\text { LS 403C }\end{array} & & \\ \begin{array}{l}\text { LS 404C } \\ \text { LS 603C }\end{array} & \begin{array}{l}10 \mathrm{~mm} \text { (grating period 10 } \mu \mathrm{m}) \\ \text { LS 704C }\end{array} & 20 \mathrm{~mm} \text { (grating period 20 } \mu \mathrm{m} \text {) }\end{array}\right]$

Angle Encoder	Max. Rotation for Determination of the Absolute Position	Parameter
No distance-coded reference marks	1 rotation	$\mathrm{P} 45 . .^{*}=$ none
ROD 250C (18000)	20°	$\mathrm{P} 45 .^{*}=1000$
RON 255C (18000)		
ROD 700C (18000)		
ROD 800C (18000)		$\mathrm{P} 45 . .^{*}=500$
ROD 700C (36000) ROD 800C (36000)	10°	
ROD 700C (9000)	20°	

4.1
 User Parameters

Radius/
Diameter
Angle Format

Scaling Factor

Scaling Factor

 OFF/ONBall Tip Diameter (Probing)

Tool Diameter

Baud Rate
RS-232-C
Line Feeds
RS-232-C

Special Case:
Mode of Operation and Working Plane

With this parameter you can select radius or diameter display for linear axes.
If you select diameter, the symbol " \varnothing " will appear behind the display value.

The display for a rotary axis can be switched between degrees decimal and degrees/minutes/seconds.

With the scaling factor you can enter a correction to the workpiece to be machined. The correction range is (0.100000 to 9.999999). A scaling factor greater than 1 will enlarge the workpiece, while a scaling factor less than 1 will reduce it. You can enter a separate scaling factor for each axis.

By entering scaling factor OFF, all scaling factors are deactivated. When scaling factor ON is entered, the symbol "!" appears behind the display value.

In the Probe Edge function the position value must be corrected by the radius of the ball tip.
The entry range for the ball tip diameter of the edge finder is 0 to 199.999 mm .

The tool diameter can be entered in the user parameters and in the operating mode PROGO (single block, automatic and teach-in). The tool diameter value last entered becomes effective automatically whenever radius compensation is entered.

With this parameter you can set the data transfer rate (baud rate) for the data interface.

With this parameter you can set the number of additional line feeds (blank lines) between values for an external device (maximum of 99 line feeds).

These parameters are not configured as user parameters in the factory presetting. With the Mode of Operation parameter you can choose among the BASIC, EXPERT and PROGO modes of operation via the MOD key without switching the unit off.
With the Working Plane parameter, the working plane can be selected during machining via the MOD key.

4.2
 Operating Parameters \mathbf{P}

[0,

In the following description, axis-specific parameters are indicated by a parameter number with decimal point and asterisk (example: P 1.*).
The asterisk signifies the axis-specific designation after the decimal point (e.g. P 1.1, P 1.2 etc.).
Parameters which are not axis-specific are indicated by a $\mathbf{0}$ behind the decimal point (e.g. P5.0).

P 1.*	The "User Parameters" menu is configured by entering posi-
to P13.0	ions in operating parameters P 1.* to P 13.0. The user para- meters can be configured in any desired sequence within the positions 1-14. Position: 0 locks the respective parameter from access via the MOD key (see section 2.2).

Special Case:
 P 9.0/P 13.0
 Mode of
 Operation/
 Working Plane

These parameters are configured as user parameters in the factory presetting (see sections 2.2 and 4.1).

P 21.*	User parameters can also be set in the operating parameters
to P 28.0	(P 21.1 to P 28.0), making it possible to change even locked
	user parameters. Changing these parameters is effective
regardless of whether they arc changed in the "User Parame	
ers" or in the "Operating Parameters" menu. (For description,	
see section 4.1.)	

P 40.*
 P 41.*
 Signal Period

Counting Direction
With parameters P 1.* to P 8.0 as user parameters, all 14 freely selectable field positions are occupied. If you wish to define parameters P 9.0 and P 13.0 as user parameters, you must overwrite already occupied user parameters (e.g. parameter 8.0 Line Feed).

P42.*
Line Count
P 43.* The subdivision factor is entered in parameter P 43.*. The subLinear
Subdivision
P44.*
Angle
Subdivision

P 45.*	Parameter P 45.* defines whether the display unit is to evalu-
Distance	ate signals from encoders with single or with distance-coded
reference marks. For encoders with single reference marks,	
enter none in parameter P 45.*. For distance-coded reference	
	marks, the entry value depends on the encoder model (see
	Table 3.3).

P46.*
Monitoring
The line counts of rotary encoders connected to rotary axes must be entered in parameter P 42.*. division factor determines the display step and depends on the setting of the signal period (see Table 3.1).

The angle subdivision determines the display slep for rolary axes and depends on the line count setting (see Table 3.2).

Parameter P 45.* defines whether the display unit is to evaluate signals from encoders with single or with distance-coded reference marks. For encoders with single reference marks, enter none in parameter P 45.*. For dislarice-coded reference Table 3.3).

With parameter P 46.* on, the corresponding encoder input signal is checked for the following errors:

- excessive traversing speed
- cable break
- measuring signal error

These errors are then displayed on the screen.

P47.*

Linear Correction

Machine error can be measured with the aid of a comparator measuring system (e.g. VM 101 from HEIDENHAIN). These errors can be entered in parameter P 47.* as a linear correction factor in parts per million (ppm) measuring length.
Example: Measuring length 620 mm Value actually measured (e.g. via VM 101)

Difference 619.876 mm $=-124 \mu \mathrm{~m}$

Conversion to 1 m measuring length $\frac{-124 \mu \mathrm{~m} \cdot 1000 \mathrm{~mm}}{620 \mathrm{~mm}}$
Correction factor $\quad-200 \mu \mathrm{~m}$

Linear Compensation	Parameter Input Range
"Lengthening" the encoder	P47:0 to $+99999[\mu \mathrm{~m} / \mathrm{m}]$
"Shortening" the encoder	P47:0 to $-99999[\mu \mathrm{~m} / \mathrm{m}]$

P 48.*
 Axis Definition

싼

P 49.*
Angle Counting
Mode
P 50.*
Axis Designation

P 51.0
 Axis Combination

Parameter P 48.* defines whether the axis input is inhibited (off) or the axis functions as a linear or rotary axis.

For unused encoder inputs enter off in parameter P 48.*.

Parameter P 49.* defines the way in which angular measurements are displayed.
Possible settings: $360^{\circ}, \pm 180^{\circ}, \pm \infty^{\circ}$.
Parameter P 50.* defines the assignment of axis names to inputs.
Possible settings: A, B, C, U, V, W, X, Y, Z.
Parameter P 51 .* permits the following settings:
off: no combination
1+4: Axes X 1 and X 4 added and displayed on axis X 1
2+4: Axes $X 2$ and $X 4$ added and displayed on axis $X 2$
$3+4$: Axes $X 3$ and $X 4$ added and displayed on axis $X 3$
1-4: Axis $X 4$ subtracted from $X 1$, resull displayed on axis $\times 1$
2-4: Axis $X 4$ subtracted from $X 2$, result displayed on axis $X 2$
3-4: Axis $X 4$ subtracted from $X 3$, result displayed on axis $X 3$

P 52.0
 Dialog Language

The dialog language can be chosen from two available languages. Which two languages are available depends on the program number:

Program No.	Languages	
$246060-$	German	English
$246061-$	French	English
$246062-$	Dutch	English
$246063-$	Italian	English
$246064-$	Spanish	English
$246065-$	Danish	English
$246066-$	Swedish	English
$246067-$	Finnish	English
$246068-$	Turkish	English
$246069-$	German	French
$246070-$	Dutch	French
$246071-$	Magyar	German
$246072-$	Czech	German
$246073-$	English	French

Parameter P 53.0 defines the working plane.
Possible settings: X/Y, Y/Z, Z/X

Display of the bolt hole circle graphics can be set in parameter P54.0 in the case that it deviates from the normal coordinate system.
off: no mirroring
ver: the vertical coordinate axis is mirrored
hor: the horizontal coordinate axis is mirrored
$\mathrm{ve}+\mathrm{ho}$: both coordinate axes are mirrored
When an axis is mirrored, the direction of rotation for hole numbering is changed in the graphics.

P 55.0
Direction of
Rotation, Bolt
Circle Graphics

P 56.*
 Zero Range

P 57.0
Display Freeze

P 58.0
Distance-To-Go
Mode

P 59.0
Sleep Delay

Depending on the setting of parameter P 54.0, parameter P 55.0 defines the direction of rotation of the holes in the bolt hole circle graphics.
normal: direction of rotation (in the graphics) is from the first to the second axis.
inverted: direction of rotation (in the graphics) is from the second to the first axis.

Parameter P 56.* defines a range around "zero" in which a zero crossover signal will be generated (see External Functions). Input range: 0 to 99.999 mm .

The current measured value is stored and output over the
RS-232-C data interface with every storage procedure (CTRL, pulse, contact). The display on the screen can be set with parameter P57.0:
off: the display is not stopped during a storage signal
concrnt: the display is stopped only for the duration of the storage signal
stopped: the display is stopped, but is updated by every storage signal

In the distance-to-go function, the actual value can be displayed instead of the graphic positioning aid.
bar: graphic positioning aid
actual value: display of the absolute position in small type beneath the distance-to-go display.

Parameter P 59.0 allows input of a delay time (in minutes) for protective standby mode. If no keys are pressed and no axis movements take place for the length of time entered as the delay time, the screen image is reversed. This prevents screen burning.
5 - 98: delay time in minutes 99: no protective standby mode.

P 61.0
Probe/RS-232-C

With parameter P 61.0 set to on, after probing with the edge finder (edge, centerline, or circle center) a storage signal is generated and the measured value is sent over the TXD output of the RS-232-C data interface. If no external device (such as a printer) is connected, parameter P 61.0 must be set to off. Otherwise the error message EXTERNAL UNIT NOT READY will appear after every probe.

With parameter P 99.0 the POSITIP 850 is set up either for milling or turning.

Data Interface

POSITIP is equipped with a data interface according to EIA standard RS-232-C (CCITT standard V.24).

1 Definition of the RS-232-C/V. 24 Interface

The data transfer code is ASCII with even parity bit. The RS-232-C data interface is designed for serial data transfer; devices with parallel data interfaces cannot be connected. Levels for TXD and RXD (negative level for " 1 "):

Logic Level	Working Level
$" 1 ":-3 \mathrm{~V}$ to -15 V	-5 V to -15 V
$" 0 ":+3 \mathrm{~V}+15 \mathrm{~V}$	+5 V to +15 V

2 Pin Layout X31

Signal
Description

	RS-232-CN. 24 port

Contact No.	Signal	Meaning
1	CHASSIS GND	Protective Ground
2	TXD *	Transmit Data
3	$\overline{\text { RXD }}^{*}$	Receive Data
4	RTS	Request To Send
5	CTS	Clear To Send
6	DSR	Data Set Ready
7	SIGNAL GND	Signal Ground
$8-19$		(vacant)
20	DTR	Data Terminal Ready
$21-25$		(vacant)

[^0]3 Connection of External Units (Wiring)

The connecting cables must be wired in accordance with the type of data device employed. Pin layouts are sometimes nonstandard.

Frequently used wiring:
Complete wiring

Signals RTS, CTS, DSR and DTR must have working level "1" (+5 to +15 V) for data transfer.

Simplified wiring

Signals RTS, CTS, DSR and DTR have permanent working level " 1 " (+5 V to +15 V) due to bridges $4 / 5$ and $6 / 20$.

Measured values, part programs and operating parameters can transferred over the PT 850's RS-232-C data interface. The data interface can operate with two different data transfer protocols:

- External data transfer protocol (EXI) tor printers, punching units, readers and other peripherals.
- FE data transfer protocol (FE) for the HEIDENHAIN FE 401 Floppy Disk Unit or a suitably adapted computer.

	Data Transfer Protocol	Start Data Transfer With
Measured value output	EXT	RS-232-C interface (CTRL B) Ext. functions (pulse, contact) Probing functions (edge finder)
Program input	FE or EXT	"EXTERNAL INPUT" menu
Program output	FE or EXT	"EXTERNAL OUTPUT" menu
Input and output of operating parameters	FE or EXT	"OPERATING PARAMETERS menu

4.1

Data Transfer Rate (Baud Rate)

The baud rate indicates the number of bits which can be transferred per second.
Peripheral devices must be fully able to process the selected baud rate in order to avoid errors in data transfer. The desired baud rate is selectable under the user parameters (via the MOD key). The selected baud rate must be identical to the baud rate of the peripheral device.

In FE mode (for the FE 401 Floppy Disk Unit from HEIDENHAIN), the data transfer rate is always 9600 baud regardless of the baud rate set via the MOD key.

4.2
 Data Format

The individual characters consist of	S	D	D	D	D 1	D ${ }^{\text {D }}$	D\|D	D	P	S	S	
Start bit												
7 Data bits												
Even parity bit												
2 Stop bits												

The connected unit must be set to "even parity" because of the error monitoring employed in this output. A data transfer cable (ld.Nr. 242869..) is available from HEIDENHAIN.

4.3
 Measured Value Output

The current display value can be transferred over the RS-232-C data interface to peripheral equipment such as a printer. After a storage command, the measured value is output (for a maximum of 4 axes) through an internal buffer. The storage signal can be generated via the RS-232-C interface, the "external functions", or via probing with the edge finder.

4.3.1
 Storage via RS-232-C Interface

When the control character CTRL $B(=S T X)$ is transmitted, a storage signal is generated and the measured value is transmitted over the TXD output of the RS-232-C data interface. The duration of data transter depends on the selected baud rate, the number of axes and the number of line feeds.

Interruption of Data Transfer

The receiving device can interrupt and restart data transfer by

- Start/stop via the RXD input of the data interface $D C 3=\times \mathrm{OFF}=$ CTRL S: interrupt data transfer $\mathrm{DC1}=\mathrm{XON}=$ CTRL Q: resume data transfer
- Control line CTS

After the stop signal CTS or the stop character DC3 has been received, no more than two additional characters can be output. socket X41 causes a storage signal to be generated and the measured value to be transmitted over the TXD output of the RS-232-C interface. The time required for data transfer depends on the selected baud rate, the number of axes, the number of line feeds and the type of storage signal (pulse or contact).

The transit time of the encoder signals from input to the internal buffer is approximately $4 \mu \mathrm{~s}$. The measured value which is stored is therefore the value which existed approximately $4 \mu \mathrm{~s}$ prior to the time point of storage. (See also External Functions).
III) probing with the edge finder in the probing functions edge, centerline or circle center a storage signal is generated and the measured value is sent over the TXD output of the RS-232-C interface. (See Parameters, section 4.2).

Sequence of Character Output (example PROBE: EDGE)

Sequence of Character Output (example PROBE: CENTERLINE)

Sequence of Character Output (example PROBE: CIRCLE CENTER)

4.3.4

Sequence of Character Output

Depending on the axis definition, the characters for measured value output are generated in the following order:

Sequence of Character Output (example for linear axis)

Sequence of character output (example for rotary axis/degree decimal display)

Example for rotary axis/degree-minutes-seconds display

If the linear or angle encoder is defective, no display values are output. For the algebraic sign and the display value, question marks (?) are output.

4.4
 External Input/
 Output of Programs

4.5 Input/Output of Operating Parameters

In the PROGO mode of operation, it is possible to read programs into or out of POSITIP over the RS-232-C data interface (see Working with the POSITIP 850).

Operating parameters can be input and output over the RS -232-C data interface. Printers connected to the PT 850 must be equipped with a serial RS-232-C interface (for the data format see section 4.2).

Programs and operating parameters with the same program number can be stored with the FE 401 Floppy Disk Unit from HEIDENHAIN. When loading operating parameters, POSITIP automatically generates program number 850 unless a differint number is entered.

Sequence:

- Select operating parameter (see Parameters, section 2).
- 堅 Select page 2 (menu for parameter input/output).
$\rightarrow \rightarrow$ Set interface to FE (FE 401 Floppy Disk Unit) or EXT (for printer or other peripheral device).

In FE mode, the data transfer rate is always 9600 baud, ingependent of the baud rate set via MOD. When EXT is selected, the baud rate set via MOD for printer output is effective.

If you do not wish to input or output the operating parameters with program number 850, then the desired program number must be entered before pressing the Param. Output or Pram. Input soft keys.

External Functions

1 Pin Layout X41 (EXT) (25-pole D-Subminiature Socket)

I = Input
$\mathrm{O}=$ Output

2 External Zero Reset

The inputs (pins 2, 3, 4, 5) are active LOW (open = high level).
$\mathrm{U}_{\text {eH }} \geqq 3.9 \mathrm{~V}(\max .15 \mathrm{~V})$
$\mathrm{U}_{\mathrm{eL}} \leqq 0.9 \mathrm{~V}$ at $-\mathrm{l}_{\mathrm{eL}} \leqq 6 \mathrm{~mA}$
Switching via-TTL components (e.g. SN 74LSXX) is made possidle by an internal $\mathbf{1 k} \Omega$ pull-up resistor. Contact closing against $0 \vee$ (pin 1 or 10) clears display of the corresponding axis.

External zero reset is only possible during display of actual position.

3 Storage
(Pulse, Contact)
Contact closing against 0 V (pin 1 or 10) causes a storage sighal to be generated and a measured value to be output over the RS -232-C data interface (see Data Interface, section 4.3).

4 Zero Crossover Signal

Technical

Data

Permissible
 Load Types

A zero crossover signal is produced when the display value of the corresponding axis is zero. A zero recognition range $(0$ to 99.999 mm) can be entered in parameter P 56.*. If the zero recognition range is moved over quickly, signal duration is approximately 180 ms .

Open-collector output
Zero crossover signal active HIGH (open-collector transistor inhibited).

Resistive load
Inductive load only with quenching diode
High level output voltage $\mathrm{U}_{\mathrm{OH}} \leqq 32 \mathrm{~V}$
($32 \mathrm{~V}=$ absolute maximum value of the voltage applied over external resistor or relay)
Low level output voltage $\mathrm{U}_{\mathrm{oL}} \leqq 0.4 \mathrm{~V}$ at $\mathrm{l}_{\mathrm{oL}} \leqq 100 \mathrm{~mA}$
Low level output current $\mathrm{I}_{\mathrm{oL}} \leqq 100 \mathrm{~mA}$ ($100 \mathrm{~mA}=$ absolute maximum value)
Signal triggering delay $\mathrm{t}_{\mathrm{an}}=60 \pm 20 \mathrm{~ms}$
Signal duration $\mathrm{t}_{\mathrm{s}}=180 \mathrm{~ms}$

5 EMERGENCY STOP Signal

Technical
 Data

Permissible Load Types

If a critical error occurs within POSITIP, an EMERGENCY STOP signal is sent over an open-collector output.

Open-collector output
EMERGENCY STOP signal active HIGH (open-collector transistor inhibited).

Resistive load
Inductive load only with quenching diode
High level output voltage $\mathrm{U}_{\mathrm{OH}} \leqq 32 \mathrm{~V}$
($32 \mathrm{~V}=$ absolute maximum value of the voltage applied over external resistor or relay)
Low level output voltage $\mathrm{U}_{\mathrm{oL}} \leqq 0.4 \mathrm{~V}$ at $\mathrm{o}_{\mathrm{oL}} \leqq 100 \mathrm{~m} \wedge$
Low level output current lol $\leqq 100 \mathrm{~mA}$
($100 \mathrm{~mA}=$ absolute maximum value)
Signal triggering delay $\mathrm{t}_{\mathrm{an}} \leqq 50 \mathrm{~ms}$

Probe Systems

1 KT 110
Edge Finder

The PT 850 has been factory-prepared for connection of the HEIDENHAIN KT 110 2D-Edge Finder and the TS 120 3D-Probe System. In the EXPERT and PROGO modes of operation, the PT 850 can utilize its software for evaluation of the scanning signals. Select the PROBE menu with the function "Probe". The HELP key calls up the appropriate HELP screens with information and guidance on using this menu.

The KT 110 2D-Edge Finder is used for probing electrically conductive materials. The KT 110 is inserted into a 20 mm collet. Connection is via the X10 D-subminiature socket on the rear panel of the PT 850.

Minimum duration of scanning signal: $\quad t \geqq 5 \mu \mathrm{~s}$ Interval between two probes: $\quad t \geqq 100 \mathrm{~ms}$ For a complete technical description, please refer to the operating instructions for the KT 110.

Basic Circuit Diagram

Output voltage of edge finder: $\mathrm{U}_{\mathrm{KT}}=3 \mathrm{~V}$
Input current (assumed value): $\mathrm{I}_{\mathrm{e}}=1 \mathrm{~mA}$
On-state voltage at optocoupler
(assumed value): $U_{D}=1.5 \mathrm{~V}$

2 TS 120
Touch Probe System

Technical Data TS 120

The TS 120 Triggering 3D Touch Probe System for
HEIDENHAIN controls can be connected via a cable adapter to the X 10 D -subminiature socket on the rear of the unit. The material of the workpiece to be scanned must be electrically non-conducting. The stylus can deflect in the directions $\pm X$, $\pm Y$, and $-Z$. Upon stylus deflection, the TS 120 generates two triggering signals for differential line transmission.

The stylus can be deflected beyond the triggering point:
The maximum stylus deflection in both X / Y direction and in Z direction is 20 mm (when the standard 47 mm stylus is used). Various stylus lengths available
Various ball diameters available
Triggering signals: TTL square-wave pulses
For a complete technical description, please refer to the TS 120 operating instructions.

3 Pin Layout X10 (15-pole D-Subminiature Socket)

Pin	Assignment	Probe System
1	Internal shield	KT 110/TS 120
3	Standby signal	TS 120
5	+15 V	TS 120
6	+5 V	TS 120
8	0 V	KT 110/TS 120
9	Triggering signal	TS 120
10	Triggering signal	TS 120
14	KT +	KT 110
15	KT -	KT 110

Specifications POSITIP 850 For Milling

Mechanical Data	
Housing	Tabletop model, sheet metal chassis: Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) $420 \mathrm{~mm} \times 298 \mathrm{~mm} \times 330 \mathrm{~mm}$ (16.5 in. $\times 11.7 \mathrm{in} . \times 13.0 \mathrm{in}$.)
Weight	Approx. $11.7 \mathrm{~kg}(25.7 \mathrm{lb})$
Operating	0 to $45^{\circ} \mathrm{C}\left(32\right.$ to $\left.113^{\circ} \mathrm{F}\right)$
Temperature	
Storage	-30 to $70^{\circ} \mathrm{C}\left(-22\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Temperature	
Visual Display	12-inch monochrome CRT
Electrical Data	
Power Supply	Primary-clocked variable-voltage power supply $100 \mathrm{~V}-240 \mathrm{~V}$ $(-15 \% \text { to }+10 \%)$ Line frequency 48 Hz to 62 Hz
Power Consumption	Approx. 31 W
Encoder Inputs	For all HEIDENHAIN linear encoders with sinusoidal scanning signals, also with distance-coded reference marks
Signal amplitudes	7 to $16 \mu \mathrm{~A}_{\text {pp }}$
Permissible input frequency	Max. 100 kHz
Data Interface	RS-232-CN. 24 , for measured values, programs and operating parameters 110/150/300/600/1200/2400/4800/9600/19 200/38400 baud

Features	
Axes	```4 axes with the designations: A, B, C, U, V, W, X, Y or Z Combinations: }\textrm{X}1\pm\textrm{X}4\mathrm{ or X2 }\pm\textrm{X}4\mathrm{ or X3 }\pm\textrm{X}```
Display Step/ Signal Period	(see Parameters, tables 3.1 and 3.2)
Modes of Operation	BASIC, EXPERT, PROGO
Program Memory	20 different programs or 2000 program blocks
Datum Points	Five independent datum points, selectable as desired via keyboard
Reference Mark Evaluation	For linear and angle encoders with distance-coded reference marks or with one or more reference marks. After a power interruption the relationship between the encoder position and the display value is lost; this relationship is quickly and easily re-established by crossing the reference points.
Functions	- Tool radius compensation - Distance-To-Go display (traversing to display value 0) - Bolt-hole circle with graphics - Radius/Diameter display in 4 axes - Probe functions for datum acquisition (workpiece edge. centerline or circle center) - mm/inch display - Scaling factor in 4 axes (0.100000 to 9.999999) - Linear machine error compensation \pm (0 to $99999 \mu \mathrm{~m} / \mathrm{m}$) - INFO: cutting data, pocket calculator functions, stopwatch - HELP: built-in operating instructions
External Functions	- Zero reset - Storage command - Signal output with display value of zero (zero recognition range: $\pm 99.999 \mathrm{~mm}$)
Edge Finder	Connection of KT 110 (edge finder) or TS 120 (3D Touch Probe System) from HEIDENHAIN
Languages	Two languages can be selected (see Parameters, section 4.2)

Dimensions
mm/inch
(1)

Front

Angle bracket with threaded bolt M5 $\times 20$

Rear

Service
DR. JOHANNES HEIDENHAIN GmbH
Dr.-Johannes-Heidenhain-Straße 5
D-8225 Traunreut, Deutschland
Allg. Service (08669) 31-1272
T TNC-Service (08669) 31-1446

[^0]: * The designations TXD, $\overline{\mathrm{RXD}}$ indicate negative levels for "1".

