HEIDENHAIN

Operating Instructions

POSITIP 850

Programmable Digital Readout for Lathes

Items Supplied
\section*{Optional}

- POSITIP 850 Display Unit
- Power Cable
- Operating Instructions
- Certificate of Inspection
- Connector, 25-pole, for D-subminiature socket X41 (EXT) external functions (Id.-Nr. 249154 ZY)
- Data transfer cable, 25 -pole, for D-subminiature socket X31 data output (Id.-Nr. 27454501)
- Angle bracket (Id.-Nr. 258 26101)

Selecting Milling/Turning

As delivered, the POSITIP 850 can be set up for either milling or turning applications. The following screen appears after the first power-up:

After pressing the 1 key, the program for turning is permanently set (i.e., is not affected by power interruptions), and thi screen display cannot be accessed again. Selection of the mil ling function is then only possible via parameter P99.0 "Millin! Turning" (see "Parameters", section 4.2).

Manufacturer's Certificate

We hereby certify that the above unit is radioshielded in accordance with the German official register decree 1046/1984. The German postal authorities have been notified of the issuance of this unit and have been granted admission for examination of the series regarding compliance with the regulations

If this unit is incorporated by the user into a system, then the complete system must comply with the above regulations.

Contents

Working with1 Controls and Screen Displays5
2: Switch-On 6
3 POSITIP Operating Modes 6
4: Cross Over Reference Marks 7
5 Keys For User Guidance 8
6 Working Aids For Turning 15
7 External Program Output 18
8: External Program Input 20
Commissioning 1 Connections and Controls (Rear Panel) 23
2. Mounting 24
3 Connecting Linear Encoders 24
4. Power Connection 25
5. Switch-On and Function Check 25
6 Optimizing the Parameters 26
Parameters 1: User Parameters 29
1.1 Changing User Parameters 30
1.2 Overview of User Parameters 32
2 Operating Parameters 33
2.1 Accessing the Operating Parameters 33
2.2 Configuring the User Parameters 35
2.3 Presetting the User Parameters 37
2.4 Overview of Operating Parameters 38
3. Tables 42
3.1 Display Step, Signal Period and Subdivision Factor for Linear Encoders 42
3.2 Distance-Coded Reference Marks 42
4 Parameter Description 43
4.1 User Parameters 43
4.2 Operating Paraneters P 44

Data	1 Definition of the RS-232-CN. 24 Interface
Interface	2 Pin Layout X31/Signal Description
	3 Connection of External Units (Wiring) __ $<$
	4 Data Transfer
	4.1 Data Transfer Rate (Baud Rate)
	4.2 Data Format
	4.3 Measured Value Output
	4.3.1 Storage via RS-232-C Interface
	4.3.2 Storage via External Functions
	4.3.3 Sequence of Character Output
	4.4 External Input/Output of Programs
	4.5 Input/Output of Operating Parameters __ !
External	1 Pin Layout X41 (EXT) (25-pole D-subminiature socket) _ !
Functions	2 External Zero Reset
	3 Storage (Pulse. Contact)
!	4 Zero Crossover Signal
	5 EMERGENCY STOP signal
Specifications	
Dimensions	

This part of the Operating instructions illustrates the most important procedures for operation of the POSITIP 850. For detailed explanations simply call the HELP functions.

1 Controls and Screen Displays

Symbol behind the display value: \varnothing : Diameter display
!: Scaling factor active
!: Oversize (only active with Distance-To-Go function)

Select user parameters chapter "Installation".
The power switch is located on the rear panel.

3 POSITIP Operating Modes:

BASIC
Mode
EXPERT
Mode

PROGO
Mode

Position display for simple machining tasks

- Actual value display with setting and resetting for up to 20 tools

Position display with expanded functions

- Distance-To-Go display with oversize compensation
- Note/Set function
- Datum

Programmable position display

- 20 different programs can be stored
- Easy programming with conversational guidance, subprograms and program section repeats
- Input and output of programs over the RS-232-C/N. 24 interface.

Select operating mode

soft key and select desirt mode of operation

4 Cross Over Reference Marks

When a reference markis crossed, a signal is generated which identifies that position as a machine datum.
Crossing over the reference marks re-establishes the relationship between axis slide positions and display values which was last set.
(Wी) After a power interruption, the reference marks must be crossed in all axes.

After crossing the reference marks in all axes:

The main menu appears for the selected mode of operation. The abbreviation REF in the entry line indicates REF mode. The position data are referenced to the highlighted tool.

If you do not wish reference mark evaluation:
 If NO REF is selected, positions and display values will be lost after a power interruption.

5 Keys For User Guidance

HELP

The HELP function can guide you through the operation of the POSITIP 850. Think of it as integrated operating instructions. At any time during operation you can call up an explanation of the current screen image by pressing the HELP key. The HELP function can also tell you how to proceed when an error message occurs.

Calling the HELP Function

Example: Operating mode EXPERT, the NOTE/SET function has been selected for the X axis.

Select main menu:

POSITIP returns to the main menu of the EXPERT operating mode.

Selection of Work Screens

The second page of the PROGRAM INPUT main menu has been selected.
The \rightarrow symbol now indicates page 2 as current page.

Return to page 1:

Press

Display returns to the first page of PROGRAM INPUT.

Selection of Tools

Selection of Data Transfer Protocol

PQSITIP features non-volatile parameter storage: the parameters become effective immediately upon switch-on. The parameters are divided into two groups: user parameters and operating parameters.
User parameters are parameters that can be changed during operation by pressing the MOD key.
Operating parameters concern machine characteristics and are given a fixed setting. For more information on operating parameters see Parameters section.

User Parameters

An overview of available parameters appears on the screen.

- Change parameter:

Call parameter:

Depart user parameters:

Press MOD once again

The INFO functions can be selected from any menu level by pressing the INFO key. The following functions are then available: pocket calculator, stopwatch, and taper calculator.

Example: Calling the Taper Calculator

6 Working Aids for Turning

Using the functions ACTUAL POSITION and NOTE/SET, the data for 20 tools (T1 - T20) can be set on the machine and stored.
If the workpiece datum changes, for example after a tool change, it can be reset with the DATUM function. All preset tool data will then automatically refer to the new datum and do not need to be changed.

6.1
 Tool Presetting

- In order that allitool data are stored in non-volatile storage, the reference marks must be crossed over after switch-on. REF must appear in the entry line (see section 4, "Cross Over Reference Marks").
- The diameter display should be selected for the X axis. The symbol \varnothing appears after the display value (see "Parameters", section 1).
\rightarrow For machines with compound axes (e.g. saddle and top slide), you must select the sum display (see "Parameters", section 1).

ACTUAL POSITION (BASIC, EXPERT, PROGO)

in the ACTUAL POSITION function, the display value can be set or reset for a maximum of 20 tools.

NOTE/SET (EXPERT, PROGO)

The function NOTE/SET is helpful when determining tool data by probing the workpiece. In order that the position value is not lost when retracting the workpiece for measuring purposes, the position value can be stored beforehand ("Note"). After measurement of the workpiece, the measured value can be assigned to the stored position as the display value ("Set").

Example: Determining and setting the tool data with NOTE/SET

6.2
 Workpiece Datum

After the workpiece has been clamped, the zero point or the datum for workpiece machining is set.
Tool data 11 to T20 entered in ACTUAL POSITION or NOTE/SET then automatically refer to the new datum and do not need to be changed.

Datum (EXPERT, PROGO)

Example: Set new datum with a preset tool

The SET DATUM function appears on the screen.

- Select preset tool now inserted, for example: T20:

or hold down until T20 is highlighted.
- Face the workpiece for the new datum, or touch the workpiece face.
$-\square$ Enter value for datum:

Press

Z_{s}-axis $>$| soft |
| :--- |
| key |

The datum is now stored in non-volatile memory. All preset tools automatically refer to the new datum.

Depart SET DATUM function.

Press \uparrow

Using the EXTERNAL OUTPUT function in the operating mode PROGO, you can transfer one or all of the programs in the PT 850 to an external storage device via the RS-232-C data interface. Programs can be archived on diskette with the FE 401 Floppy Disk Unit from HEIDENHAIN.
Printers used with the PT 850 must have a serial RS-232-C interface (for the data format please refer to Data Interface, section 4.2).

Example: Transferring a Program to the FE 401

Output a single program:

- Enter program number

Output all programs:

If there are programs on the diskette with the same PGM number, they will be overwritten.

Directory of programs stored in the POSITIP program memory:

Directory of programs stored on FE diskettes:

8 External
Program Input

Using the EXTERNAL INPUT function in the operating mode PROGO, you can transfer programs from an external storage device into the PT 850 via the RS-232-C data interface.

Computers used with the PT 850 must have a serial RS-232-C interface (for the data format, please refer to Data Interface. section 4.2).

Example: Loading a Program from the FE 401

Enter the program number of the program to be transferred. If necessary, call up the directory of programs on the diskette using the soft key FE 401 PGM Dir (see "Program Output").

(II)

Commissioning

1 Connections and Controls (Rear Panel)

The buffer batteries (three AA -size 1.5 V batteries) serve as a power supply for the program memory. Exchange the batteries if the error message EXCHANGE BUFFER BATTERY appears.

The unit must remain switched on during battery exchange to prevent erasure of stored programs.

It is very important that you follow this sequence of steps when commissioning the unit.
Do not engage or disengage any connectors while the unit is under power.

2 Mounting the POSITIP 850

Place the unit in its intended location. It can be fixed laterally to a base surface with the M4 tapped fixing holes (see Dimensions, screw size M4×6).

An angle bracket for mounting the PT 850 on a table is available from HEIDENHAIN (Id.-Nr. 25826101).

3 Connecting Linear Encoders

- Any HEIDENHAIN linear encoders with sinusoidal output signals and single or distance-coded reference marks can be connected to the PT 850.
Up to four machine axes for saddle and top slide as well as cross slide and compound cross slide (if available) can be connected to the rear panel.
Connect the machine axes to the flange sockets according to the following table:

Example:		Screen Display
	Compound cross slide > X1	ACTUAL POSITION
		$X_{0}+0.000$ zero
	Cross slide \rightarrow X2 \rightarrow	$X+0.000 \underset{\substack{\text { 2ero } \\ \times}}{\substack{\text { 2ero }}}$
	Top slide \rightarrow X3 \rightarrow	$Z_{0}+0.000 \underset{\substack{\text { zero } \\ z_{0}}}{\text { zero }}$
	Saddle \rightarrow X4 \rightarrow	$2+0.000 \underset{\substack{\text { zero } \\ z}}{ }$
		174 T2 T3 T4 T5 T6 T7 T8 T9

4 Power Connection

- Check whether there is a protective ground for the power connection. An M5 threaded pin on the rear panel provides an additional connection for protective ground.
- Connect power cable to the power input socket on the rear panel, and switch on power.

5 Switch-On and Function Check

The unit is adapted to the machine tool by means of parameters. See Parameters section. The unit is delivered with preset parameters to facilitate commissioning (see Parameters, section 2.4).

Proceed in the following sequence to commission the machine:

- Switch on power.
- Adjust desired screen image brightness with control on rear panel.
- Select desired application (milling or turning). The menu for application selection appears only once after initial switchon.
- Press any key (except the HELP key).
- Choose BASIC mode of operation (see Working with the POSITIP 850).
- Press NO REF soft key. Now you need not cross over the reference marks (ignore error messages).
- Use the MOD key and code number 95148 to access the operating parameters (see Parameters, section 2).
- Optimize operating parameters (see Commissioning, section 6).
- Switch power off and then on again.
- Cross over the reference marks (see Working with the POSITIP 850)

After the reference marks have been crossed over there should be no error message in the display.

If an error message is displayed, press the HELP key for more information and then correct the error. Switch power off and then on again.

If several errors occur at once you can display the error messages one after the other by repeatedly pressing the CE key.

6 Optimizing the

 ParametersYou can adapt the functions of the POSITIP to the machine tool by optimizing the parameters. Proceed in the sequence given in the following checklist. Write the axis designations of the connected machine axes onto the checklist, and check off each step when you have completed it.

Parameters which must be frequently changed during
0 machine operation are entered as user parameters (see Parameters section).

Checklist	Parameter	Encoder Inputs/Axes			
		X1	X2	X3	X4
Are the machine axes assigned to the correct encoder inputs? (see section 3)	P 50.*	Machine Axes			
Do the axis designations X and Z match the machine axes? Change if necessary.		(
The axis combination Separate or Sum can be set in parameter P 30.* or as a user parameter.	P30.*	C			
Check axis definition. Set connected encoder inputs to linear, unconnected inputs to off.	P 48.*	C	0		\bigcirc
Enter parameter value for reference marks (see Parameters, table 3.2).	P 45.*				\bigcirc
Set counting direction of the machine axes. Increasing positive display values must correspond to the positive direction of machine axis traverse in relation to the workpiece.	P 40.*				\bigcirc
Approach a datum on the workpiece and set the display value (ACTUAL POSITION function). Then move individuali axes and compare the actually traversed distance with the value displayed on the POSITIP.	$\begin{aligned} & \text { P 41.* } \\ & \text { P 42.* } \end{aligned}$	C			\bigcirc
Check display step (see Parameters, table 3.1).	P 43.*	C	0		\bigcirc

* The asterisk „,*" signifies parameters which are specified according to axis by a number behind the decimal point (e.g. 4.1, 4.2 etc.).
(For parameter descriptions see Parameters, section 1.4).

IIII

Parameters

All parameters are in non-volatile storage (i.e., they are not affected by power interruptions). All changes are effective immediately!

1 User Parameters

The operational characteristics of the POSITIP 850 can be modified via user parameters and operating parameters. While user parameters can be changed at any time by the operator, operating parameters are given a fixed setting which corresponds to the details of the specific machine tool. The pqrameters are given a standard presetting in the factory.

User parameters are parameters which must be entered or changed frequently during normal machine operation. Press the MOD key to call the menu for user parameters. To leave the menu, press the MOD key again.

Menu: User Parameters

1.1

Changing
User
Parameters

- Changing with Soft Keys

Soft keys can be used to change from radius to diameter display, to switch the axis combination from separate to sum, and to select scaling factor ON or OFF and oversize ON or OFF.

Example: Radius or Diameter Display

Changing User Parameters Via Numerical Input
This concerns the input of scaling factors and oversizes.

Example: Oversize

1.2

Overview of
User
Parameters

Selection via MOD key

Function	Axis	Change	Input
Radius/Diameter	X	Soft key	-
	Z		
Separate/Sum	X	Soft key	-
	Z		
Scaling Factor	X	Numerical input	0.100000 to
	Z		-
Scaling Factor ON/OFF		Soft key	-99999
Oversize	X	Numerical input	0 to ± 199.999
	Z		
Oversize ON/OFF		Soft key	

(For descriptions of user parameters see section 4.1)
If "Diameter" or "Scaling Factor ON" have been selected, the following symbols appear behind the display value:
\varnothing : Diameter display
!: Scaling factor active
!: Oversize active (only with the Distance-To-Go function).
2 Operating
Parameters

These settings are normally made only once during commissloning and then remain fixed.

Operating parameters can only be selected through code number 95148 and should not be changed by the machine operator. We recommend that you keep a written copy of the entry values for the operating parameters or store them on an external data medium.

2.1

Accessing the Operating Parameters

Selecting the Operating Parameters

■ Selection via vertical soft arrow keys

Select desired operating parameter
 with vertical soft arrow keys.
or
Selection via GOTO

Press soft key (the last selected parameter number will appear in the input line).

Enter desired parameter number.

Set
PMTR NR.
Select operating parameter.

Changing
Operating
Parameters
2.2

Configuring the User Parameters

Changing operating parameters by entering a numeri-
cal value

Example: P 31.1
Enter numerical value (e.g. 1).

Pressing the soft key Enter transfers the entry value; the next parameter is then displayed.

Changing operating parameters with the horizontal soft arrow key

The frame in the parameter line indicates the current parameter entry value. Press the soft key to bring the next parameter entry value into the frame.

Pressing the soft key Enter transfers the entry value; the next parameter is then displayed.

Pressing the MOD key calls the user parameters to the display. These parameters are located in soft-key fields in a certain arrangement of field positions. The field positions are indicated dy the numbers in the illustration below (factory presetting as itt appears after switch-on).

The field position of any user parameter can be changed by means of the operating parameters P 1.1 to P 12.0. (Exception: field position 15 - operating parameters.) By entering a position of 0 , the selected user parameter can be locked from access.

Changing the Field Position

- First you must gain access to the operating parameters using the procedure described above in section 2.1. Then select the desired soft-key field.

You wish to transfer the parameter in field position 4 to field position 3.

Original Display

- Select the parameter in field position 4 (factory preset to P 10.3).
Enter the new field position (position 3) with numeric keypad and press the soft key Enter.
Pressing the \uparrow key recalls the menu for the user parameters.

New Display

The parameter which was originally displayed in field 4 is now in field 3 and has overwritten the parameter originally in field 3 (Seprt X). Field 4 is vacant.

The overwritten parameter (Seprt X) can be re-entered into the table as follows:

- Repeat procedure for access to operating parameters and select the overwritten parameter (P 10.1 Sept X). This parameter has assumed the Position: 0 .

Access to user parameters via the MOD key can be locked by entering Position: 0 .
Note: Locked user parameters can only be changed via the @perating parameters P21.1 to P32.0.

If you wish to transfer the locked user parameter (P 10.1) to the vacant field position 4 , enter field position 4 for this parameter.
2.3 Presetting the User Parameters

User parameters can also be set with the operating parametiers (P21.1 to P32.0). This makes it possible to change locked user parameters. Changing these parameters is effective regardless of whether they are changed in the "User Parametiers" menu or the "Operating Parameters" menu.

2.4

Overview of
Operating Parameters

Function	Parameter	Axis*	5	Entry**
Radius/Diameter $\times 1 / \times 2$ Radius/Diameter X3/X4	P 1.1	X		1
	P 1.3	Z		2
Scaling Factor $\mathrm{X} 1 / \mathrm{X} 2$ Scaling Factor $\mathrm{X} 3 / \mathrm{X} 4$	P3.1	X		6
	P 3.3	Z		7
Scaling Factor ON	P 4.0			8
Baud Rate RS-232-C	P7.0			0
Line Feed RS-232-C	P8.0			0
Mode of Operation	P9.0			0
Separate/Sum $\times 1 / \times 2$ Separate/Sum X3/X4	P 10.1	X		3
	P 10.3	Z		4
Oversize $\times 1 / \times 2$ Oversize X3/X4	P 11.1	X		11
	P 11.3	Z		12
Oversize ON	P 12.0			13
Radius/Diameter X1/X2 Radius/Diameter X3/X4	P 21.1	X		Radius,
	P 21.3	Z		Diameter
Scaling Factor $X 1 / \times 2$ Scaling Factor $\mathrm{X} 3 / \mathrm{X} 4$	P 23.1	X		1.000000
	P 23.3	Z		$\begin{aligned} & (0.100000 \text { to } \\ & 9.999999) \end{aligned}$
Scaling Factor ON	P 24.0			off, on
Baud Rate RS-232-C	P 27.0			$\begin{aligned} & 9.600 \text { (} 110, \\ & 150,300,600, \\ & 1200,2400, \\ & 4800,9600, \\ & 19200, \\ & 38400 \text { baud) } \\ & \hline \end{aligned}$
Line Feed RS-232-C	P 28.0			1 (0 to 99)
Separate/Sum X1/X2 Separate/Sum X3/X4	P 30.1	x		Separate, Sum
	P 30.3	Z		Separate, Sum
Oversize $\times 1 / \times 2$ Oversize $X 3 / \times 4$	P31.1	X		0.000
	P 31.3	Z		$\begin{aligned} & \text { (0 to } \\ & \pm 199.999) \end{aligned}$
Oversize ON	P 32.0			off, on

Operating Parameters (cont'd.)				
Function	Parameter	Axis*		Entry**
Counting Direction X1	P 40.1	$\begin{array}{\|l\|} \hline x_{0} \\ x \\ z_{0} \\ z \end{array}$		normal, inverse
Counting Direction $\times 2$	P 40.2			
Counting Direction $\times 3$	P 40.3			
Counting Direction $\times 4$	P 40.4			
Signal Period $\times 1$	P 41.1	$\begin{aligned} & X_{0} \\ & x \\ & Z_{0} \\ & z \end{aligned}$		$4 \mu \mathrm{~m} .10 \mu \mathrm{~m}$, $20 \mu \mathrm{~m}, 40 \mu \mathrm{~m}$, $100 \mu \mathrm{~m}, 200 \mu \mathrm{~m}$
Signal Period X2	P41.2			
Signal Period X3	P41.3			
Signal Period X 4	P 41.4			
Linear Subdivision X1	P43.1	$\begin{aligned} & X_{0} \\ & X \\ & Z_{0} \\ & z \end{aligned}$		$100,80,50,40$, 20, 10, 8, 5, 4, 2. 1, 0.8, 0.5, 0.4, 0.2 0.1 depends on grating period set)
Linear Subdivision $\times 2$:	P 43.2			
Linear Subdivision $\times 3$	P43.3			
Linear Subdivision X4	P 43.4			
Distance Coding $\times 1$	P 45.1	$X_{0}$$X$$Z_{0}$$Z$		$\begin{aligned} & \text { none, } 500,1000, \\ & 2000 \end{aligned}$
Distance Coding $\times 2$	P 45.2			
Distance Coding $\times 3$	P 45.3			
Distance Coding $\times 4$	P 45.4			

(For description see section 4.2)

* For the sake of simplicity, the axis designations are assumed to be those set in parameter P50.* (X1/X2 $=\mathrm{X}$-axes, $\mathrm{X} 3 / \mathrm{X} 4=\mathrm{Z}$-axes).
$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4$ are the corresponding designations of the encoder inputs (see rear panel).
** Factory presettings are indicated in bold type.

Operating Parameters (cont.'d.)

Operating Parameters (cont'd.)

Function	Parameter	Axis*	Δ	Entry**
Display Freeze	P 57.0			off, concurrent, stopped
Distance-To-Go Mode	P 58.0			graphic, actual value
Sleep Delay	P 59.0			15 5 to 98 (min.) $99=$ no protective standby mode
Positioning Aid	P 60.0			normal, inverse
Counter Application	P 99.0			milling, turning

(For description see seqtion 4.2)

* For the sake of simplicity, the axis designations are assumed to be those set in parameter P50.* (X1/X2 $=X$-axes, $X 3 / X 4=Z$-axes $)$.
$X 1, X 2, X 3, X 4$ are the corresponding designations of the encoder inputs (see rear panel).
** Factory presettings are indicated in bold type.

3 Tables
3.1

Display Step, Signal Period and Subdivision Factor for Linear Encoders

| Signal Period | $4 \mu \mathrm{~m}$ | $10 \mu \mathrm{~m}$ | $20 \mu \mathrm{~m}$ | $40 \mu \mathrm{~m}$ | $100 \mu \mathrm{~m}$ | $200 \mu \mathrm{~m}$ | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Display Step | Subdivision Factor | | | | | | | |
| $0.00005 \mathrm{~mm} / 0.000002 \mathrm{in}$. | 80 | - | - | - | - | - | | |
| 0.0001 | $\mathrm{~mm} / 0.000005$ | in. | 40 | 100 | - | - | - | - |
| 0.0002 | $\mathrm{~mm} / 0.00001$ | in. | 20 | 50 | 100 | - | - | - |
| 0.0005 | $\mathrm{~mm} / 0.00002$ | in. | 8 | 20 | 40 | 80 | - | - |
| 0.001 | $\mathrm{~mm} / 0.00005$ | in. | 4 | 10 | 20 | 40 | 100 | - |
| 0.002 | $\mathrm{~mm} / 0.0001$ | in. | 2 | 5 | 10 | 20 | 50 | 100 |
| 0.005 | $\mathrm{~mm} / 0.0002$ | in. | 0.8 | 2 | 4 | 8 | 20 | 40 |
| 0.01 | $\mathrm{~mm} / 0.0005$ | in. | 0.4 | 1 | 2 | 4 | 10 | 20 |
| 0.02 | $\mathrm{~mm} / 0.001$ | in. | - | 0.5 | 1 | 2 | 5 | 10 |
| 0.05 | $\mathrm{~mm} / 0.002$ | in. | - | 0.2 | 0.4 | 0.8 | 2 | 4 |
| 0.1 | $\mathrm{~mm} / 0.005$ | in. | - | 0.1 | 0.2 | 0.4 | 1 | 2 |

3.2
 Distance-Coded Reference Marks

$\left.\begin{array}{|l|l|l}\hline \text { Linear Encoder } & \begin{array}{l}\text { Max. Traverse for Recovery of } \\ \text { the Datum }\end{array} & \text { Parameter } \\ \hline \begin{array}{l}\text { No distance-coded } \\ \text { reference marks }\end{array} & \text { Depends on position of the encoder } & \text { P 45.* }=\text { none } \\ \hline \text { LS 101C } & 10 \mathrm{~mm} & \text { P 45.* }=1000 \\ \hline \begin{array}{l}\text { LS 107C } \\ \text { LS 303C }\end{array} & 20 \mathrm{~mm} & \\ \begin{array}{l}\text { LS 403C }\end{array} & & \\ \begin{array}{ll}\text { LS 404C }\end{array} & & \\ \text { LS 603C }\end{array}\right)$

4 Parameter Description

4.1
 User Parameters

Radius/
Diameter
Separate/Sum

Scaling Factor

Scaling Factor
OFF/ON OFF/ON

Oversize

Oversize OFF/ON

Special Case: Mode of Operation

If the scaling factor is entered with the soft key Set for all, it is effective for all axes.

By selecting scaling factor OFF, all scaling factors are deactivated. When scaling factor ON is selected, the symbol "!" appears behind the display value.
An oversize entered (0 to $\pm 199.999 \mathrm{~mm}$) is applied to the nominal position value entered in the Distance-To-Go function. Ah oversize can be entered separately for each axis.
Oversize is only effective with the Distance-To-Go function.
When working with POSITIP programs, an oversize should already be taken into account when entering the nominal posialready be taken into account when entering the nominal post-
tions. Using the Oversize user parameter with programs is not recommended, since this parameter is continually active when Oversize ON is selected (modally effective).
A negative oversize reduces the contour.
With this parameter you can select radius or diameter display. If you select diameter, the symbol " \emptyset " will appear behind the display value.
With the parameter Separate/Sum it is possible to display separately or as a sum the position values of saddle and top slide as well as of cross slide and compound cross slide.

The scaling factor changes the display value and thus either reduces (input 0.1 to 0.999999) or increases (input 1.000001 to 9.999999) the dimensions of the workpiece to be machined. The scaling factor can be entered either for the X and Z axes together, or separately for each axis.

When Oversize OFF is selected, all oversizes become inactive. When oversize ON is selected, the symbol "!" appears behind the display value.
This parameter is not configured as a user parameter in the factory presetting. With the Mode of Operation parameter you can choose among the BASIC, EXPERT and PROGO modes of operation via the MOD key without switching the unit off.

4.2
 Operating Parameters \mathbf{P}

P 1.*
to P 12.0

Special Case:
P9.0
Mode of
Operation

P 21.1 to P 32.0

In the following description, axis-specific parameters are indicated by a parameter number with decimal point and asterisk (example: P 1.*).
The asterisk signifies the axis-specific designation after the decimal point (e.g. P $1 .{ }^{*} \rightarrow \mathrm{P} 1.1$ or P 1.3 etc.).
Parameters which are not axis-specific are indicated by a $\mathbf{0}$ behind the decimal point (e.g. P 7.0).

P 1.* The "User Parameters" menu is configured by entering positions in operating parameters P 1.* to P 12.0. The user parameters can be configured in any desired sequence within the positions 1-14. Position: 0 locks the respective parameter from access via the MOD key (see section 2.2).

In order to prevent an inexperienced operator from making mistakes, the mode selection (BASIC, EXPERT, PROGO) should be made accessible immediately after switch-on and then remain unchangeable during machine operation. Parameter P9.0 is therefore not active as a user parameter (position $\mathbf{= 0} \mathbf{0}$. If parameter P 9.0 is configured as a user paramete the operating mode can also be selected during machining.

If you wish parameter P 9.0 to be a user parameter, a vacant position should be chosen (such as position $=14$).

User parameters can also be set in the operating parameters (P 21.1 to P 32.0), making it possible to change even locked user parameters. Changing these parameters is effective regardless of whether they are changed in the "User Parameters" or in the "Operating Parameters" menu. (For description, see section 4.1.)

P 40.* With parameter P 40.* you can set the counting direction sep-
Counting Direction arately for each axis.
$\begin{array}{ll}\text { P41.* } & \text { The signal periods of the connected linear encoders are } \\ \text { Signal Period } \quad \text { entered in parameter } P \text { 41.*. }\end{array}$

P 43.*	The subdivision factor is entered in parameter P 43 .*. The sub-
Linear	division factor determines the display step and depends on the
Subdivision	setting of the signal period (see Table 3.1).
P 45.*	Parameter P 45.* defines whether the display unit is to evalu-
Distance	ate signals from encoders with single or with distance-coded
Coding	reference marks. For encoders with single reference marks, select none. For distance-coded reference marks, the entry value depends on the encoder model (see Table 3.3).
P 46.*	With parameter P 46.* on, the corresponding encoder input
Monitoring	signal is checked for the following errors:
	- excessive traversing speed
	- cable break
	- measuring signal error
	These errors are then displayed on the screen.
P 47.*	Machine errors can be measured with the aid of a comparator
Linear Correction	measuring system (e.g. VM 101 from HEIDENHAIN). These errors can be entered in parameter P 47.* as a linear correction factor in parts per million (ppm) measuring length.
	Example: Measuring length 620 mm
	Value actually measured
	(e.g. via VM 101) 619.876 mm
	Difference $=-124 \mu \mathrm{~m}$
	Conversion to 1 m measuring length
	$-124 \mu \mathrm{~m}$ - $-200 \mu \mathrm{~m}$
	0.620 m
	Correction factor $\quad-200 \mu \mathrm{~m}$

Linear Compensation	Parameter Input Range
"Lengthening" the encoder	$\mathrm{P} 47: 0$ to $+99999[\mu \mathrm{~m} / \mathrm{m}]$
Shortening" the encoder	$\mathrm{P} 47: 0$ to $-99999[\mathrm{~m} / \mathrm{m}]$

For unused encoder inputs enter off in parameter P 48.*.

P50.* : Parameter P 50.* defines the assignment of axis names to
Axis Designation inputs.
Possible settings: A, B, C, U, V, W, X, Y, Z.
P 52.0
Dialog Language
The dialog language can be chosen from two available languages. Which two languages are available depends on the program number:

Program No.	Languages	
$246060 .$.	German	English
$246061 .$.	French	English
$246062 .$.	Dutch	English
$246063 .$.	Italian	English
$246064 .$.	Spanish	English
$246065 .$.	Danish	English
$246066 .$.	Swedish	English
$246067 .$.	Finnish	English
$246068 .$.	Turkish	French
$246069 .$.	German	French
$246070 .$.	Dutch	English
$246071 .$.	Magyar	English
$246072 .$.	Czech	French
$246073 .$.	English	

P 56.* Zero Range	Parameter P 56.* defines a range around display value "zero"
	in which a zero crossover signal will be generated (see External Functions).
	tr put range: 0 to 99.999 mm .
P 57.0	The current measured value is stored and output over the
Display Freeze	RS-232-C data interface with every storage procedure (CTRL, pulse, contact). The display on the screen can be set with parameter P 57.0:
	off: the display is not stopped during a storage signal
	concrnt: the display is stopped only for the duration of the storage signal
	stopped: the display is stopped, but is updated by every storage signal
P 58.0	In the distance-to-go function, the actual value can be dis-
Distance-To-Go	played instead of the graphic positioning aid.
Mode	
	actual value: display of the absolute position in small type beneath the distance-to-go display.
P 59.0	Parameter P 59.0 allows input of a delay time (in minutes) for
Sleep Delay	protective standby mode. If no keys are pressed and no axis
	movements take place for the length of time entered as the
	delay time, the screen image is reversed. This prevents screen
	burning.
	5-98: delay time in minutes
	99: no protective standby mode.
P 60.0	With parameter P60.0, the direction of movement of the
Positioning	graphic positioning aid (see P 58.0) can be changed to adapt
Aid	it to tool movement on the Z axis of lathes.
P99.0	This parameter sets up the POSITIP 850 either for milling or
	turning.
Application	

Data Interface

POSITIP is equipped with a data interface according to EIA standard RS-232-C (CCITT standard V.24).

1 Definition of the The data transfer code is ASCII with even parity bit. The RS-232-C/V. 24 RS-232-C data interface is designed for serial data transfer; Interface
 devices with parallel data interfaces cannot be connected. Levels for TXD and RXD (negative level for " 1 "):

Logic Level	Working Level
$" 1 ": 3 \mathrm{~V}$ to -15 V	-5 V to -15 V
$" 0 ":+3 \mathrm{~V}$ to +15 V	+5 V to +15 V

2 Pin Layout X31 Signal Description

	RS-232-C/V. 24 port
$25^{27}{ }^{19}$	

Contact No.	Signal	Meaning
1	CHASSIS GND	Protective Ground
2	TXD	Transmit Data
3	RXD	Receive Data
4	RTS	Request To Send
5	CTS	Clear To Send
6	DSR	Data Set Ready
7	SIGNAL GND	Signal Ground
$8-19$		(vacant)
20	DTR	Data Terminal Ready
$21-25$		(vacant)

3 Connection of External Units (Wiring)

The connecting cables must be wired in accordance with the type of data device employed. Pin layouts are sometimes nonstandard.

Frequently used wiring:
 Complete Wiring

RS-232-C Connection of POSITIP 850				FE 401 or External Device		
CHASSIS	GND	1		1	CHASSIS	GND
	TXD	2		2		TXD
	RXD	3		3		RXD
	RTS	4		4		RTS
	CTS	5		5		CTS
	DSR	6		6		DSR
SIGNAL	GND	7		7	SIGNAL	GND
	DTR	20		20		DTR

\$ignals RTS, CTS, DSR and DTR must have working level " 1 " $(-5$ to -15 V) for data transfer.

Simplified Wiring

Signals RTS, CTS, DSR and DTR have permanent working level " 1 " (-5 V to -15 V) due to bridges $4 / 5$ and $6 / 20$.

4 Data Transfer
4.1

Data Transfer
Rate (Baud Rate)

Measured values, part programs and operating parameters can transferred over the PT 850's RS-232-C data interface.
The data interface can operate with two different data transfer protocols:

- External data transfer protocol (EXT) for printers, punching units, readers and other peripherals.
- FE data transfer protocol (FE) for the HEIDENHAIN FE 401 Floppy Disk Unit or a suitably adapted computer.

	Data Transfer Protocol*	Start Data Transfer With
Measured value output	EXT	RS-232-C interface (CTRL B) Ext. functions (pulse, contact)
Program input	FE or EXT	"EXTERNAL INPUT" menu
Program output	FE or EXT	"EXTERNAL OUTPUT" menu
Input and output of operating parameters	FE or EXT	"OPERATING PARAMETERS" menu

* Select FE or EXT protocol via the arrow keys in the corresponding menus.

The baud rate indicates the number of bits which can be transferred per second.
Peripheral devices must be fully able to process the selected baud rate in order to avoid errors in data transfer. The desired baud rate is selected in the user parameters (via the MOD key). The selected baud rate must be identical to the baud rate of the peripheral device.
In FE mode (for the FE 401 Floppy Disk Unit from HEIDENHAIN), the data transfer rate is always 9600 baud regardless of the baud rate set via the MOD key.
4.2

Data Format

The connected unit must be set to "even parity" because of the error monitoring employed in this output. A data transfer cable (ld.-Nr. 242869 .) is available from HEIDENHAIN.

4.3	The current display value can be transferred over the
Measured	RS-232-C data interface to peripheral equipment such as a
Value Output	printer. After an external storage command, the measured value is output (for a maximum of 4 axes) through an internal buffer. The storage signal can be generated via the RS-232-C interface or via the "external functions".

4.3.1

Storage via RS-232-C Interface

When the control character CTRL B $(=S T X)$ is transmitted, a $\$$ torage signal is generated and the measured value is transmitted over the TXD output of the RS-232-C data interface. The duration of data transfer depends on the selected baud nate, the number of axes and the number of line feeds.

Interruption
of Data Transfer

The receiving device can interrupt and restart data transter by

- Start/stop via the RXD input of the data interface DC3 $=\mathrm{XOFF}=$ CTRL S: interrupt data transfer $D C 1=X O N=$ CTRL Q: resume data transfer
- Control line CTS

After the stop signal CTS or the stop character DC3 has been received, no more than two additional characters can be output. socket X 41 causes a storage signal to be generated and the measured value to be transmitted over the TXD output of the RS-232-C interface. The time required for data transfer depends on the selected baud rate, the number of axes, the number of line feeds and the type of storage signal (pulse or contact).

The transit time of the encoder signals from input to the internal buffer is approximately $4 \mu \mathrm{~s}$. The measured value which is stored is therefore the value which existed approximately $4 \mu \mathrm{~s}$ prior to the time point of storage.
(See also External Functions).
4.3.3

Sequence of
Character Output

Depending on the axis definition, the characters for measured value output are generated in the following order:

Sequence of Character Output (example for linear axis)

No display values are produced if the linear encoder is defective. In this case, question marks (?) are generated for the algebraic sign and display value.
4.4

External Input/ Output of Programs
4.5

Input/Output of
Operating
Parameters

In the PROGO mode of operation, it is possible to read programs into or out of POSITIP over the RS-232-C data interface (see Working with the POSITIP 850).

Operating parameters can be input and output over the RS-232-C data interface. Printers connected to the PT 850 must be equipped with a serial RS-232-C interface (for the data format see section 4.2).

Programs and operating parameters with the same program number can be stored with the FE 401 Floppy Disk Unit from HEIDENHAIN. When loading operating parameters, POSITIP automatically generates program number 850 unless a different number is entered.

Sequence:

- Access operating parameters (see Parameters, section 2).

$-\square$Select page 2 (menu for parameter input/output).
$-\longrightarrow$ Set interface to FE (FE 401 Floppy Disk Unit) or EXT (for printer or other peripheral device).

In FE mode, the data transfer rate is always 9600 baud, independent of the baud rate set via MOD. When EXT is selected, the baud rate set via MOD for printer output is effective.

Operating parameters with program number 850 are read in.

Operating parameters are read out with program number 850 .

If you do not wish to input or output the operating parameters with program number 850 , then the desired program number must be entered before pressing the Param. Input or Param. Output soft keys.

Displays the program directory of the FE 401. During read-in of the directory. the dialog Reading FE Directory: is displayed.

Data transfer is terminated.

External Functions

1 Pin Layout X41 (EXT) (25-pole D-Subminiature Socket)

Pin	Assignment	Duration of pulse/ contact closing
$1 / 10$	0 V	
2	I Set axis 1 to zero	$\mathrm{t} \geqq 100 \mathrm{~ms}$
3	I Set axis 2 to zero	$\mathrm{t} \geqq 100 \mathrm{~ms}$
4	1 Set axis 3 to zero	$\mathrm{t} \geqq 100 \mathrm{~ms}$
5	I Set axis 4 to zero	$\mathrm{t} \geqq 100 \mathrm{~ms}$
14	0 Zero crossover axis 1	
15	0 Zero crossover axis 2	
16	O Zero crossover axis 3	
17	O Zero crossover axis 4	
21	O EMERGENCY STOP	$\mathrm{t} \geqq 1.2 \mu \mathrm{~s}$
22	I Storage pulse	$\mathrm{t} \geqq 7 \mathrm{~ms}$
23	I Storage contact	

1 = Input
$\mathrm{O}=$ Output

2 External Zero The inputs (pins 2, 3, 4, 5) are active LOW (open = high level).
 Reset
 $U_{\text {eH }} \geqq 3.9 \mathrm{~V}(\max .15 \mathrm{~V})$
 $\mathrm{U}_{\mathrm{eL}} \leqq 0.9 \mathrm{~V}$ at $-\mathrm{l}_{\mathrm{eL}} \leqq 6 \mathrm{~mA}$
 Switching via TTL components (e.g. SN 74LSXX) is made pos-
 sible by an internal $\mathbf{1 k \Omega}$ pull-up resistor. Contact closing against 0 V (pin 1 or 10) clears display of the corresponding axis.
 External zero reset is only possible during display of actual $[0] 3$ position.

3 Storage (Pulse, Contact)

4 Zero Crossover Signal
Technical

Data

Permissible Load Types

Contact closing against $0 \vee$ (pin 1 or 10) causes a storage signal to be generated and a measured value to be output over the RS-232-C data interface (see Data Interface, section 4.3).

A zero crossover signal is produced when the display value of the corresponding axis is zero. A zero recognition range (0 to 99.999 mm) can be entered in parameter P 56.*. If the zero recognition range is moved over quickly, signal duration is approximately 180 ms .

Open-collector output
Zero crossover signal active HIGH (open-collector transistor inhibited).

Resistive load
Inductive load only with quenching diode
High level output voltage $\mathrm{U}_{\mathrm{oH}} \leqq 32 \mathrm{~V}$
($32 \mathrm{~V}=$ absolute maximum value of the voltage applied over external resistor or relay)
Low level output voltage $\bigcup_{\mathrm{oL}} \leqq 0.4 \mathrm{~V}$ at $\mathrm{I}_{\mathrm{oL}} \leqq 100 \mathrm{~mA}$
Low level output current $\mathrm{l}_{\mathrm{oL}} \leqq 100 \mathrm{~mA}$
($100 \mathrm{~mA}=$ absolute maximum value)
Signal triggering delay $\mathrm{t}_{\mathrm{an}}=60 \pm 20 \mathrm{~ms}$
Signal duration $\mathrm{t}_{\mathrm{s}}=180 \mathrm{~ms}$

5 EMERGENCY STOP Signal

Technical
Data

Permissible
 Load Types

if a critical error occurs within POSITIP, an EMERGENCY STOP signal is sent over an open-collector output.

Open-collector output
EMERGENCY STOP signal active HIGH (open-collector transistor inhibited).

Resistive load
Inductive load only with quenching diode
High level output voltage $\mathrm{U}_{\mathrm{oH}} \leqq 32 \mathrm{~V}$
($32 \mathrm{~V}=$ absolute maximum value of the voltage applied over external resistor or relay)
Low level output voltage $\mathrm{U}_{\mathrm{oL}} \leqq 0.4 \mathrm{~V}$ at $\mathrm{l}_{\mathrm{oL}} \leqq 100 \mathrm{~mA}$
Low level output current $\mathrm{I}_{\mathrm{oL}} \leqq 100 \mathrm{~mA}$
($100 \mathrm{~mA}=$ absolute maximum value)
Signal triggering delay $\mathrm{t}_{\mathrm{an}} \leqq 50 \mathrm{~ms}$

IIII)

Specifications POSITIP 850 For Lathes

Mechanical Data	
Housing	Tabletop model, sheet metal chassis; Dimensions $(\mathrm{W} \times \mathrm{H} \times \mathrm{D}) 420 \mathrm{~mm} \times 298 \mathrm{~mm} \times 330 \mathrm{~mm}$ $(16.5 \mathrm{in} . \times 11.7 \mathrm{in} . \times 13.0 \mathrm{in})$.
Weight	Approx. $11.7 \mathrm{~kg}(25.7 \mathrm{lb})$
Operating Temperature Storage Temperature	0 to $45^{\circ} \mathrm{C}\left(32\right.$ to $\left.113^{\circ} \mathrm{F}\right)$
Visual Display	-30 to $70^{\circ} \mathrm{C}\left(-22\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Electrical Data	12 -inch monochrome CRT
Power Supply	Primary-clocked variable-voltage power supply $100 \mathrm{~V}-240 \mathrm{~V}$ $(-15 \%$ to $+10 \%)$ Line frequency 48 Hz to 62 Hz
Power Consumption	Approx. 31 W Encoder Inputs
For all HEIDENHAIN linear encoders with sinusoidal scanning signals, also with distance-coded reference marks	
Signal amplitudes Permissible input frequency	to $16 \mu \mathrm{App}$
Max. 100 kHz	

Features	
Axes	4 axes with the designations: A, B, C, U, V, W, X, Y or \mathbf{Z} Sum display: $\quad X_{0}$ and $X=X_{S}$ Z_{0} and $Z=Z_{S}$
Display Step/ Signal Period	(see Parameters, table 3.1)
Modes of Operation	BASIC, EXPERT, PROGO
Program Memory	20 different programs or 2000 program blocks
Tool Memory	Storage of data for 20 tools in non-volatile memory
Reference Mark Evaluation	For linear encoders with distance-coded reference marks or with one or more reference marks. After a power interruption the relationship between the encoder position and the display value is lost; this relationship is quickly and easily re-established by crossing the reference marks.
Functions	- Distance-To-Go display (traversing to display value 0) - Note/Set (for determining tool data) - Datum - Multipass cycle - Radius/Diameter display in 4 axes - mm/inch display - Scaling factor in 4 axes (0.100000 to 9.999999) - Oversize in 4 axes (0 to $\pm 199.999 \mathrm{~mm}$) - Linear machine error compensation $(0 \text { to } \pm 99999 \mu \mathrm{~m} / \mathrm{m})$ - INFO: pocket calculator functions, stopwatch, taper calculator - HELP: built-in operating instructions
External Functions	- Zero reset Storage command - Signal output with display value of zero (zero recognition range: $\pm 99.999 \mathrm{~mm}$)
Languages	Two languages can be selected (see Parameters, section 4.2)

Dimensions

mm/inch

Front

Angle bracket with threaded bolt M5 $\times 20$

Rear

DR. JOHANNES HEIDENHAIN GmbH
Dr.-Johannes-Heidenhain-Straße 5
D-8225 Traunreut. Deutschland
(08669) 31-0
[fax (08669) 5061
Service (08669) 31-1272
䕄 TNC-Service (08669) 31-1446
[EAx) (08669) 9899

Paper bleached without chlorine!

