（f）HEIDENHAIN

HEIDENHAIN
\triangle I $\times 789$
O
目
回葍
$\square+$
CL
Zo $4 \longdiv { 5 } 6$
$\begin{array}{lllll}z & 1 & 2 & 3\end{array}$
$1 / 0$－－
CL Mocs moo
Moo
（ENI）

User＇s Manual

Position Display Units for Lathes

This manual is for ND display units with the following software numbers or higher:

ND 930 (two axes)

ND 970 (three axes)

About this manual

This manual is divided into two parts:

Part I: Operating Instructions

- Fundamentals of positioning
- ND functions

Part II: Installation and Specifications

- Mounting the display unit on the machine
- Description of operating parameters
- Switching inputs, switching outputs

Part I: Operating Instructions

Fundamentals	$\mathbf{4}$
Switch-On, Crossing Over the Reference Marks	$\mathbf{1 0}$
Switching Between Operating Modes	$\mathbf{1 1}$
Selecting Radius or Diameter Display	$\mathbf{1 2}$
Separate Value/Sum Display (ND 970 only)	$\mathbf{1 3}$
Datum Setting	$\mathbf{1 4}$
Setting the absolute workpiece datum	14
Entering tool data (relative datums)	15
Resetting all axes to zero	16
Holding Positions	$\mathbf{1 7}$
Moving the Axes with Distance-To-Go	$\mathbf{1 8}$
Turning with Oversizes	$\mathbf{2 0}$
Taper Calculator	$\mathbf{2 2}$
Multipass Cycle	$\mathbf{2 6}$
Program Input	$\mathbf{2 8}$
Error Messages	$\mathbf{3 1}$
Items Delivered	$\mathbf{3 2}$
Part II: Installation and Specifications	$\mathbf{3 3}$

Fundamentals

You can skip this chapter if you are already familiar with coordinate systems, incremental and absolute dimensions, nominal positions, actual positions and distance-to-go.

Coordinate system

To describe the geometry of a workpiece, a rectangular or Cartesian* coordinate system is used. The Cartesian coordinate system consists of three mutually perpendicular axes X, Y and Z . The point of intersection of these axes is called the datum or origin of the coordinate system.

Think of the axes as scales with divisions (usually in millimeters) that allow us to fix points in space referenced to the datum.
To determine positions on a workpiece, the coordinate system is "laid" onto the workpiece.

With lathe work (i.e., rotationally symmetrical workpieces), the Z axis moves along the axis of rotation, and the X axis moves in the direction of the radius or diameter. The Y axis can be disregarded since it would always have the same values as the X axis.

Cross slide, saddle and top slide

On conventional lathes, the tool is mounted on a slide that moves in the direction of the X axis (the cross slide) and in the direction of the Z axis (the saddle).
Most lathes have a top slide above the saddle. The top slide moves in Z axis direction and is designated Zo.

Datum setting

The workpiece drawing is used as the basis for machining the workpiece. To enable the dimensions in the drawing to be converted into traverse distances of machine axes X and Z, each drawing dimension requires a datum or reference point on the workpiece (since a position can only be defined in relationship to another position).

The workpiece drawing always indicates one absolute datum (the datum for absolute dimensions). However, it may contain additional, relative datums.

In the context of a numerical position display unit, datum setting means bringing the workpiece and the tool into a defined position in relation to each other and then setting the axis displays to the value which corresponds to that position. This establishes a fixed relationship between the actual positions of the axes and the displayed positions.

With the ND, you can set one absolute datum point and as many as 99 relative datum points (tool datums), and store them in nonvolatile memory.

Tool datums (tool compensation)

Your display unit should show you the absolute position of the workpiece, regardless of the length and shape of the particular tool being used. For this reason you must determine the tool data and enter them. First touch the workpiece with the cutting edge of the tool and then enter the associated display value for that position.

You can enter tool data for up to 99 tools. When you have set the absolute workpiece datum for a new workpiece, all tool data (= relative datum points) are referenced to the new workpiece datum.

Absolute workpiece positions

Each position on the workpiece is uniquely defined by its absolute coordinates.

Example Absolute coordinates of position (1):

$$
\begin{array}{lr}
X= & 5 \mathrm{~mm} \\
Z= & -35 \mathrm{~mm}
\end{array}
$$

If you are working according to a workpiece drawing with absolute dimensions, you are moving the tool to the coordinates.

Relative workpiece positions

A position can also be defined relative to the previous nominal position. The datum for the dimension is then located at the previous nominal position. Such coordinates are termed incremental coordinates or chain dimensions. Incremental coordinates are indicated by a preceding I.

Example Relative coordinate of position (2)referenced to position (1):

$$
\begin{aligned}
& \mathbf{I X}=10 \mathrm{~mm} \\
& \mathbf{I Z}=-30 \mathrm{~mm}
\end{aligned}
$$

If you are working according to a workpiece drawing with incremental dimensions, you are moving the tool by the dimensions.

Sign for incremental dimensioning

A relative dimension has a positive sign when the axis is moved in the positive direction, and a negative sign when it is moved in the negative direction.

Position encoders

The position encoders on the machine convert the movements of the machine axes into electrical signals. The ND display unit evaluates these signals, determines the actual position of the machine axes and displays the position as a numerical value.
If the power is interrupted, the relationship between the machine axis positions and the calculated actual positions is lost. The reference marks on the position encoders and the REF reference mark evaluation feature enable the ND to quickly re-establish this relationship again when the power is restored.

Reference marks

The scales of the position encoders contain one or more reference marks. When a reference mark is crossed over, a signal is generated identifying that position as a reference point (scale datum = machine datum).
When this reference mark is crossed over, the ND's reference mark evaluation feature restores the relationship between axis slide positions and display values as you last defined it by setting the datum. If the linear encoders have distance-coded reference marks, you need only move the machine axes a maximum of 20 mm to restore the datum.

Switch-On, Crossing Over the Reference Marks

Crossing over the reference marks stores the last relationship between axis slide positions and display values for all datum points in nonvolatile memory.

Note that if you choose not to cross over the reference marks (by clearing the dialog REF ? with the CL key), this relationship will be lost if the power is switched off or otherwise interrupted.

```
04. You must cross over the reference marks if you want to use
the multipoint axis error compensation feature.
    (See "Multipoint Axis Error Compensation")
```


Switching Between Operating Modes

You can switch between the operating modes Distance-To-Go, Special Functions, Program Input, Set Tool Datum, Hold Position and Parameter Input at any time simply by pressing another operating mode key.

Selecting Radius or Diameter Display

Your ND can display positions in the cross slide as a diameter or as a radius. Drawings of lathe parts usually indicate diameters. When you are turning the part, however, you infeed the tool in the cross slide axis in radius values.
$\begin{array}{lll}\text { Example } & \text { Radius display, position) } & X=20 \mathrm{~mm} \\ & \text { Diameter display, position) } & X=40 \mathrm{~mm}\end{array}$
To switch the display
$>$ Press $\quad \mathbf{R}_{\mathrm{X}}$

When radius display for the X axis is selected, R_{X} lights up. When diameter display is selected, R_{X} goes out.

Separate Value/Sum Display (ND 970 only)

Separate value display

In this mode the positions of the saddle and top slide are displayed separately. The position displays are referenced to the datum points that you set for the $Z o$ and Z axes. When an axis slide moves, only the position display for that axis changes.

Sum display

In this mode the position values of both axis slides are added together. The sum display shows the absolute position of the tool, referenced to the workpiece datum.

Example
(see illustra-) tion at right)

Separate value display
Sum display:

$$
\begin{aligned}
& Z=+25.000 \mathrm{~mm} \\
& Z_{0}=+15.000 \mathrm{~mm} \\
& Z_{S}=+40.000 \mathrm{~mm}
\end{aligned}
$$

The sum display will only show correct values if the actual position values of both axis slides were correctly added and entered (with sign) when setting the datum for the "sum."

To switch over the display:

$>$ Press S_{Z}

0 m When the ND 970 displays sums, the Zo display is switched off.

Datum Setting

wh If you want datum points to be stored in nonvolatile memory, you must first cross over the reference marks
Note that the correct value to be entered for the datum in the X axis depends on whether you have selected radius or diameter display.

You can set one absolute workpiece datum and data for up to 99 tools (i.e., relative datums).

Setting the absolute workpiece datum

When you enter a new value for the absolute workpiece datum, all tool data are then based on the new workpiece datum.

DATUM Z =
0 ENT Enter the position of the tool tip (for example, 0 mm) and confirm with ENT.

Enter further axes in the same manner.

To enter tool data (relative datums)

Select the axis (for example X), enter the position of the tool tip (for example 20 mm), and confirm with ENT.

Resetting all axes to zero

You can reset all axes to zero by pressing a single key. The last actual position then becomes the relative datum and is not stored (incremental positioning), and the status display shows "- -" instead of the tool number. Any tool datums already set remain in memory. You can activate these by entering the corresponding tool number.

Example: Finish-turning steps

Move to position (2) first in Z and then in X. The display shows the drawing dimensions (for example, $\mathrm{X}+7$ and $\mathrm{Z}-15$).

Move to position (3) first in Z and then in X. The display shows the drawing dimensions (for example, $\mathrm{X}+3$ and $\mathrm{Z}-20$).

Holding Positions

If you want to measure the workpiece after turning the first diameter, your display unit has to capability to "freeze" (hold) the actual position before you retract the tool.

Moving the Axes with the Distance-To-Go Display

Normally, the display shows the actual position of the tool. However, it is often more helpful to display the remaining distance to the nominal position (the distance-to-go). You can then position simply by moving the axis until the display value is zero.

You can enter the absolute or the relative (incremental) coordinates in the distance-to-go display.

Example: Finish-turning a shoulder

NOML . VALUE $X=$

x 15 (20i)

Select the axis (e.g., X), enter the nominal coordinate (e.g., 15 mm) (radius), confirm entry.

NOML. VALUE $\mathrm{x}=$

z20-
Select the axis (e.g., Z), enter the nominal coordinate (e.g., -20 mm), and confirm entry.

- If an oversize is active (see "Turning with Oversizes"), OVERSIZE ON will appear in the message field when you select the distance-to-go mode (clear the message with the CL key).
- For the oversize to be correctly applied you must enter the first nominal coordinate as an absolute dimension.
- Oversizes are applied correctly only in the sum display.

Turning with Oversizes

Your ND display unit can automatically take oversizes into account in the distance-to-go mode when the Oversize function is activated. Each axis can have a different oversize.

To active the oversize function

Remember: oversizes are correctly compensated only for movement toward the contour.

To enter an oversize

OVERSIZE X ?

X 1 ENT Select the axis (for example X), enter the oversize (for example 1 mm), confirm with ENT.

SPEC FCT	End the function.

0 - If the Oversize function is active, this will be indicated by a message in the message field when you activate the distance-to-go mode.

- Use the CL key to go back one level in the special functions.

Taper Calculator

The taper calculator enables you to calculate the angle for the top slide. There are two possibilities:

- Calculation from the taper ratio:
- Difference between the taper radii to the length of the taper
- Calculation from two diameters and the length:
- Starting diameter
- Final diameter
- Length of the taper

Calculation from the taper ratio

SPEC FCT	Select Special Functions.

TAPER RATIO ?

1. VALUE ?
$1 \downarrow$ Enter the first value (for example, 1) and confirm with the arrow down key.

2. VALUE ?

$3 \downarrow$ Enter the second value (for example, 3), confirm with the arrow down key (length of taper is three times as large as radius difference).

ANGLE $=18.435$

spEC FCT	End the taper calculator.

0 - You can change entered values later by selecting them with the arrow keys.

- Use the CL key to go back one level in the special functions


```
DIA. RIGHT =
```

$10 \downarrow$ Enter value (for example, 10 mm) and confirm with the arrow down key.

DIA. LEFT =

$20 \downarrow$ Enter value (for example, 20 mm) and confirm with the arrow down key.

ANGLE $=9.462$

0 - You can change entered values later by selecting them with the arrow keys.

- Use the CL key to go back one level in the special functions.

Multipass Cycle

The multipass cycle allows you to turn a shoulder in any number of infeeds. This cycle is defined and executed in the special functions.

Define cycle and execute

NOML. VALUE $\mathrm{Zs}=$

$30-\downarrow$ Enter the nominal value for Zs (such as -30 mm) and confirm with the arrow down key.

```
START ?
\begin{tabular}{|l|l|}
\hline ENT & \begin{tabular}{l} 
Press ENT to start the multipass cycle. Use the \\
arrow down key if you need to correct your \\
entries.
\end{tabular} \\
\hline
\end{tabular}
```

```
MOVE AXES
```

 If you confirmed START with the ENT key, you
 can now turn the shoulder in any number of
 infeeds by moving to display value zero.
 | SPEC
 FCT | End the multipass cycle. |
| :--- | :--- |

$016\}$ - When the multipass cycle is activated, the ND 970
automatically switches to the sum display.

- Use the CL key to go back one level in the special functions.

Program Input

For small-lot production you can enter the sequence of positioning steps in the Program Input mode (PGM key). Up to 99 positioning steps are possible. The program remains in memory even when the power is switched off or otherwise interrupted.

The display unit goes into sum display mode (ND 970 only) and distance-to-go mode when Program Input is activated. You can move to the entered positions simply by traversing to display value zero. The program blocks can be entered in absolute or incremental dimensions.
 The Δ symbol in the status display blinks until a block is completely entered. When you alter program blocks, the display values are updated as soon as you press ENT.

You can start from any positioning block in a finished program.

Example: Turning shoulders

The complete program:

1	Zs $=$	+0
2	$X=$	+10
3	Zs $=$	-20
4	$X=$	+20
5	IZs $=$	-35
6	$X=$	+30

Deleting programs, deleting blocks, inserting empty blocks

Program Input is active.

DELETE BLOCK ?

Press ENT to start the function

Error Messages

Message	Problem
AMPL. X TOO LOW	The encoder signal is too weak. The scale may be contaminated.
INPUT ERROR	The entered value is not within the permissible input range.
ERROR: REF. X	The spacing of the reference marks as defined in P43 is not the same as the actual spacing.
FRQ. EXCEEDED X	The input frequency for this encoder input is too high. This can occur when the scale is moved too fast.
COMP. DELETED	Compensation values for non- linear axis error compensation erased.
PARAM. ERASED	Check the operating parameters. If this error recurs, contact your service agency.
PGM ERASED	The program has been deleted. If this error recurs, contact your service agency.
PGM TOO LARGE	The maximum program length is 99 blocks.

Message	Problem
OFFSET DELETED	Offset compensation values for encoder signals erased.
PRESET ERASED	The datum points have been erased. If this error recurs, contact your service agency.
KEY W/O FUNCTION	This key currently has no function.
TEMP. EXCEEDED	The temperature of the ND is too high.
To clear error messages	
When you have removed the cause of the error,	
$>$ press the CL key.	

Items Delivered

- ND 930 for two axes
or
- ND 970 for three axes
- Power connector

Id.-Nr. 25781101

- User's Manual

Optional accessories

- Tilting base

Id.-Nr. 28161901

Part II: Installation and Specifications

Connections on Rear Panel	$\mathbf{3 4}$
Power Connection	$\mathbf{3 5}$
Mounting	$\mathbf{3 5}$
Connecting the Encoders	$\mathbf{3 6}$
Operating Parameters	$\mathbf{3 7}$
Linear Encoders	$\mathbf{4 0}$
Setting the display step	40
Display step, signal period and subdivision	40
Compatible HEIDENHAIN linear encoders	41
Multipoint Axis Error Compensation	$\mathbf{4 2}$
Specifications	$\mathbf{4 5}$
Dimensions	46

Connections on Rear Panel

aft Connections X1, X2, X3, are not shock hazardous according to EN 50178.

Mounting

To mount the display unit on a support, use the M4 threaded holes in the rubber feet. You can also mount the display unit on the optional tilting base.

Power Connection

Hot leads: (L) and (N)
Protective ground: \oplus

- Danger of electrical shock!

Connect a protective ground. This connection must never be interrupted.

- Unplug the power cord before opening the housing

ah\}
To increase the noise immunity, connect the ground terminal on the rear panel to the central ground point of the machine. (Minimum cross-section: $6 \mathrm{~mm}^{2}$)

The display unit will operate over a voltage range of 100 V to 240 V AC. A voltage selector is not necessary.

Danger to internal components!

Use only original replacement fuses.
Two line fuses and a fuse for the switching outputs are inside the housing
Fuse types:
Line: F 2.5 A 250 V
Switching outputs: F 1 A

Connecting the Encoders

Your display unit will accept all HEIDENHAIN linear encoders with sinusoidal output signals (11 to $40 \mu \mathrm{~A}_{\text {pp }}$) and distance-coded or single reference marks.

Assignment of the encoder inputs for the ND 930

Encoder input X 1 is for the X axis
Encoder input X 2 is for the Z axis

Assignment of the encoder inputs for the ND 970

Encoder input X 1 is for the X axis
Encoder input $X 2$ is for the Zo axis
Encoder input X 3 is for the Z axis

Encoder monitoring system

Your display unit features a monitoring system for checking the amplitude and frequency of the encoder signals. If it detects a faulty signal, one of the following error messages will be generated:

AMPL.X TOO LOW
AMPL.X TOO HIGH
FRQ. EXCEEDED X

Encoder monitoring can be activated with parameter P45.
If you are using linear encoders with distance-coded reference marks, the encoder monitoring system also checks whether the spacing of the reference marks as defined in parameter P43 is the same as the actual spacing on the scales. If it is not, the following error message will be generated:

Operating Parameters

Operating parameters allow you to modify the operating characteristics of your display unit and define the evaluation of the encoder signals. Operating parameters that can be changed by the user are called user parameters, and can be accessed with the MOD key and the dialog PARAMETER (user parameters are identified as such in the parameter list). The full range of parameters can only be accessed through CODE NUMBER.

Operating parameters are designated by the letter P and a number. Example: P11. The parameter designation is shown in the input field as you press the arrow keys to select a parameter. The parameter setting is displayed in the message field.
Some operating parameters have separate values for each axis. Such parameters have an additional index number from 1 to 3 (ND 930: index 1 to 2).

Example	P12.1 scaling factor, X axis
	P12.2 scaling factor, $Z o$ axis (ND 970 only)
	P12.3 scaling factor, Z axis

Operating parameters P60 and P61 (definition of the switching ranges) have an index from 0 to 7.

The operating parameters are preset before the unit leaves the factory. These factory settings are indicated in the parameter list in boldface type.

Entering and changing operating parameters

To access the operating parameters

- Press the MOD key
- Confirm with ENT to access the user parameters, or select the dialog for entering the code number (95148) with the arrow down key to be able to change all operating parameters.

To page through the operating parameters

- Page forwards by pressing the arrow down key.
> Page backwards by pressing the arrow up key.
> Go directly to an operating parameter by pressing GOTO, keying in the parameter number and then pressing ENT.

To change parameter settings

- Press the minus key or enter the value and confirm with the ENT key.

To correct an entry

> Press CL. This restores the old value.

To leave the operating parameters

- Press MOD again.

List of operating parameters

P1 Unit of measurement ${ }^{1)}$

Display in millimeters	mm
Display in inches	inch

P11 Activate scaling factor ${ }^{1)}$

Scaling factor active	SCALING ON
Not active	SCALING OFF

P12.1 to P12.3 Enter scaling factor ${ }^{1)}$

Enter a scaling factor separately for each axis:
Entry value > 1: workpiece will "grow"
Entry value $=1$: workpiece will remain the same size
Entry value < 1: workpiece will "shrink"
Input range:
0.111111 to 9.999999

Factory setting:
1.000000

P30.1 to P30.3 Counting direction

Positive counting direction with
positive direction of traverse
COUNTR. X : POS.

Negative counting direction with
positive direction of traverse
COUNTR. X : NEG.

P31.1 to P31.3 Signal period of encoder

$2 \mu \mathrm{~m} / 4 \mu \mathrm{~m} / 10 \mu \mathrm{~m} / \mathbf{2 0} \boldsymbol{\mu \mathrm { m }} / 40 \mu \mathrm{~m}$
$100 \mu \mathrm{~m} / 200 \mu \mathrm{~m} / 12800 \mu \mathrm{~m}$

P32.1 to P32.3 Subdivision of the encoder signals

128 / 100 / 80 / 64 / 50 / 40 / 20 / 10 / 5 / 4 / 2 / 1 / 0.5 / 0.4 / 0.2 / 0.1

P40.1 to P40.3 Define axis error compensation

Axis error compensation not active AXIS COMP X OFF Linear axis error compensation active LINEAR COMP. X Multipoint axis error comp. active AXIS COMP X F (a) (See "Multipoint Axis Error Compensation")

P41.1 to P41.3 Linear axis error compensation

Input range $(\mu \mathrm{m}):$	-99999 to +99999
Factory setting:	$\mathbf{0}$

Example Displayed length $L_{d}=620.000 \mathrm{~mm}$ Actual length (as determined for example with the VM 101 from HEIDENHAIN)
$\mathrm{L}_{\mathrm{a}}=619.876 \mathrm{~mm}$
Difference $\Delta L=L_{a}-L_{d}=-124 \mu m$
Compensation factor k :

$$
\mathrm{k}=\Delta \mathrm{L} / \mathrm{L}_{\mathrm{d}}=-124 \mu \mathrm{~m} / 0.62 \mathrm{~m}=-\mathbf{2 0 0}[\mu \mathrm{m} / \mathrm{m}]
$$

P43.1 to P43.3 Reference marks	
One reference mark	0
Distance-coded with $500 \times$ SP	500
Distance-coded with $1000 \times$ SP	1000
Distance-coded with $2000 \times$ SP	2000
Distance-coded with $5000 \times$ SP (SP = signal period)	5000
P44.1 to P44.3 Reference mark evaluation	
Reference mark evaluation active	REF. MODE X ON
Not active	REF. MODE X OFF
P45.1 to P45.3 Encoder monitoring	
Amplitude and frequency	
monitoring active	ALARM X ON
Not active	ALARM X OFF
P48.1 to P48.3 Activate axis display	
Axis display active	AXIS DISPL. X ON
Not active	AXIS DISPL.X OFF

P81.1 to P81.3 Encoder

Max. encoder signal $16 \mu A_{p p}$
ENCODER X $16 \mu \mathrm{~A}$
Max. encoder signal $40 \mu \mathrm{~A}_{\mathrm{pp}}$
ENCODER X 40んA

P98 Dialog language

German
English
French
Italian
Dutch
Spanish
Danish
Swedish
Czech
Japanese

```
DIALOG LANG. D
DIALOG LANG. US
DIALOG LANG. F
DIALOG LANG. I
DIALOG LANG. NL
DIALOG LANG. E
DIALOG LANG. DK
DIALOG LANG. S
DIALOG LANG. CZ
DIALOG LANG. J
```


Linear Encoders

Setting the display step with linear encoders

The display step depends on the

- signal period of the encoder (P31) and the - subdivision (P32).

Both parameters are entered separately for each axis.

For linear measurement using nut/ballscrew arrangements and rotary encoders, calculate the signal period as follows:

Signal period $[\mu \mathrm{m}]=\frac{\text { Drivescrew pitch }[\mathrm{mm}] \times 1000}{\text { Line count }}$

Display step, signal period and subdivision for linear encoders

Display step		P31: Signal period [mm]							
		P32:Subdivision							
[mm]	[inches]								
0.00002	0.000001	100	-	-	-	-	-		-
0.00005	0.000002	40	80	-	-	-	-	- -	-
0.0001	0.000005	20	40	100	-	-	-	-	-
0.0002	0.00001	10	20	50	100	-	-	-	-
0.0005	0.00002	4	8	20	40	80	-	-	-
0.001	0.00005	2	4	10	20	40	100	-	-
0.002	0.0001	1	2	5	10	20	50	100	-
0.005	0.0002	0.4	0.8	2	4	8	20	40	-
0.01	0.0005	0.2	0.4	1	2	4	10	20	-
0.02	0.001	-	-	0.5	1	2	5	10	-
0.05	0.002	-	-	0.2	0.4	0.8	2	4	-
0.1	0.005	-	-	0.1	0.2	0.4	1	2	128
0.2	0.01	-	-	-	-	-	-	-	64

Compatible HEIDENHAIN linear encoders

Encoder	Signal period P31	Ref. marks P43	Display step		Sub- division
LS 303	$\mathbf{2 0}$	$\mathbf{0}$	0.01	0.0005	$\mathbf{2}$
LS 303C		or LS 603		0.005	0.0002

Multipoint Axis Error Compensation

If you want to use the multipoint axis error compensation feature, you must

- activate this feature with operating parameter P40 (see "Operating Parameters")
- traverse the reference marks after switching on the display unit.
- enter compensation value table

Your machine may have a non-linear axis error due to factors such as axis sag or drivescrew errors. Such deviations are usually measured with a comparator measuring system. This allows you to determine, for example, the screw pitch error $[X=F(X)]$ for the X axis. The display value is then automatically compensated by the error associated with the current position.

An axis can only be corrected in relation to one axis causing the error. You can create a compensation value table for each axis, with each table containing 64 compensation values. The tables can then be accessed with the MOD key and CODE NUMBER.

Entries in the compensation value table

- Axis to be compensated: X, Z or Zo
(Zo only with ND 970)
- Axis with error: X, Z or Zo
(Zo only with ND 970)
- Datum for the axis to be corrected:

Here you enter the point starting at which the axis with error is to be corrected. This point indicates the absolute distance to the reference point.

Do not change the datum point after measuring the axis error and before entering the axis error into the compensation table.

- Spacing of the compensation points

The spacing of the compensation points is expressed as $2^{\mathrm{x}}[\mu \mathrm{m}]$.
Enter the value of the exponent x into the compensation value table.
Minimum input value: 6 ($=0.064 \mathrm{~mm}$)
Maximum input value: 20 ($=1052.672 \mathrm{~mm}$)
Example: 600 mm traverse and 35 compensation points: results in 17.143 mm spacing between points. Nearest power of two: $2^{14}[\mu \mathrm{~m}]=16.384 \mathrm{~mm}$ Entry in compensation value table: 14

- Compensation value

You enter the measured compensation value (in millimeters) for the displayed compensation point. Compensation point 0 always has the value 0 and cannot be changed.

To select the compensation value table and enter an axis correction

PARAMETER ?

DATUM $\mathrm{z}=$

$27 \downarrow$
Enter the active datum for the error on the axis to be corrected (e.g., 27 mm) and confirm.

Enter the spacing of the compensation points on the axis to be corrected, for example $2^{10} \mu \mathrm{~m}$ (equals 1024 mm) and confirm.

Select compensation point no. 1, enter the associated compensation value (e.g., $0.01 \mathrm{~mm})$ and confirm.

X $28.024 \mathrm{x}=$
Enter all further compensation points. If you press and hold the arrow down key when selecting the next compensation point, the number of the current compensation point will be displayed in the input line. You can go directly to compensation points by using the GOTO key and entering the corresponding number.

To delete a compensation value table

Specifications

Housing	Bench-top design, cast metal Dimensions (W x H x D): $300 \mathrm{~mm} \times 200 \mathrm{~mm} \times 108 \mathrm{~mm}$	Encoder inputs	Encoders with 7 to $16 \mu \mathrm{~A}_{\text {pp }}$ or 16 to $40 \mu \mathrm{~A}_{\text {pp }}$ output signals accepted.
Operating temp.	0° to $45^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.113^{\circ} \mathrm{F}\right)$		Grating period: 2, 4, 10, 20, 40, 100, $200 \mu \mathrm{~m}$ and 12.8 mm .
Storage temp.	-30° to $70^{\circ} \mathrm{C}\left(-22\right.$ to $\left.158^{\circ} \mathrm{F}\right)$		Reference mark evaluation for distancecoded and single reference marks.
Weight	Approx. 3 kg	Input frequency	Max. 100 kHz with $30 \mathrm{~m}(66 \mathrm{ft})$ cable
Relative humidity	$<75 \%$ annual average $<90 \%$ in rare cases	Display step	Adjustable (see "Linear Encoders")
Power supply	100 V to 240 V (-15\% to +10\%)	Tool datums	99 (nonvolatile)
Power consumption	48 Hz to 62 Hz ND 970: 19 W ND 930: 17 W	Functions	- Distance-to-go display - Radius/diameter display - Separate value/sum display (ND 970 only)
Protection	IP 40 (IEC 529)		- Memory for 99 program steps - Hold position - Set absolute datum - Taper calculator - Turning with oversizes - Multipass cycle - Scaling factors

Specifications

Dimensions in mm/inches

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH
Dr.-Johannes-Heidenhain-Straße 5
83301 Traunreut, Germany
家 + 49/86 69/31-0
[FAX] +49/86 69/50 61
e-mail: info@heidenhain.de

Service $\quad+49 / 86$ 69/31-12 72

TNC-Service + 49/86 69/31-1446
[EAX $+49 / 86$ 69/9899
e-mail: service@heidenhain.de
http://www.heidenhain.de

