(8) HEIDENHAIN

DELTR MODE
 142.705
 68.325

HEIDENHAN

User's Manual

ND 730
Position Display Units for Lathes

English (en)
10/2002

Position display (ND 730 only two axes)

- Select coordinate axes
(ND 730 only X and Z)
- Select axis-specific operating parameters

Status display:
SET = Set datum
REF = Blinking:
Traverse the
reference points
On continuously: Reference points have been traversed
$\Delta=$ Distance-to-go
Inch = Inch display
SCL = Scaling factor
R = Radius/diameter display
$\mathrm{T}=$ Selectedtool

- Tool compensation
- Page backward in the list of special functions
- Page backward in the list of parameters

Numerical input

- Change algebraic sign
- Call last dialog
- Change parameters in the parameter list
- Confirm entry
- Page forward in the parameter list

Select radius/ diameter display in X axis

- Select special functions - Page forward in the list of specialfunctions
- Cancel entry
- Reset operating mode
- Zero the selected axis (if activated via P 80)
- Select parameter: CL plus two-digit number

This manual is for ND display units with the following software numbers or higher:
$\begin{array}{lll}\text { ND } 730 \text { for two axes } & 246 & 271-07 \\ \text { ND } 770 \text { for three axes } & 246 & 271-07\end{array}$

About this manual

This manual is divided into two parts:

Part l: Operating Instructions:

- Fundamentals of positioning
- ND functions

Part II: Installation and Specifications:

- Mounting the display unit on the machine
- Description of operating parameters

Part I Operating Instructions

Fundamentals	$\mathbf{4}$
Switch-On, Traversing the Reference Marks	$\mathbf{1 0}$
Selecting Radius or Diameter Display	$\mathbf{1 1}$
Separate Value/ Sum Display	$\mathbf{1 2}$
(only ND 770)	$\mathbf{1 3}$
Datum Setting	13
Setting the absolute workpiece datum	14
Entering tool data (relative datums)	$\mathbf{1 5}$
Holding Positions	$\mathbf{1 7}$
Moving the Axes with Distance-To-Go	$\mathbf{1 9}$
Taper Calculator	$\mathbf{2 3}$
Error Messages	
Part II	Installation and Specifications and following

Fundamentals

aht

You can skip this chapter if you are already familiar with coordinate systems, incremental and absolute dimensions, nominal positions, actual positions and distance-to-go!

Coordinate system

To describe the geometry of a workpiece, a rectangular or Cartesian* coordinate system is used. The Cartesian coordinate system consists of three mutually perpendicular axes X, Y and Z . The point of intersection of these axes is called the datum or origin of the coordinate system.
Think of the axes as scales with divisions (usually in millimeters) that allow us to fix points in space referenced to the datum.

To determine positions on a workpiece, the coordinate system is "laid" onto the workpiece.
With lathe work (i.e. rotationally symmetrical workpieces), the Z axis moves along the axis of rotation, and the X axis moves in the direction of the radius or diameter. The Y axis can be disregarded since it would always have the same values as the X axis.

1) Named in honor of the French mathematician and philosopher René Descartes (1596 to 1650)

Cross slide, saddle and top slide

On conventional lathes, the tool is mounted on a slide that moves in the direction of the X axis (the cross slide) and in the direction of the Z axis (the saddle).
Most lathes have a top slide above the saddle. The top slide moves in Z axis direction and is designated Zo .

Datum setting

The workpiece drawing is used as the basis for machining the workpiece. To enable the dimensions in the drawing to be converted into traverse distances of machine axes X and Z , each drawing dimension requires a datum or reference point on the workpiece (since a position can only be defined in relationship to another position).

The workpiece drawing always indicates one absolute datum (the datum for absolute dimensions). However, it may contain additional, relative datums.

In the context of a numerical position display unit, datum setting means bringing the workpiece and the tool into a defined position in relation to each other and then setting the axis displays to the value which corresponds to that position. This establishes a fixed relationship between the actual positions of the axes and the displayed positions.
With the ND, you can set one absolute datum point and as many as 9 relative datum points (tool datums), and store them in nonvolatile memory.

Tool datums (tool compensation)

Your display unit should show you the absolute position of the workpiece, regardless of the length and shape of the particular tool being used. For this reason you must determine the tool data and enter it. First touch the workpiece with the cutting edge of the tool and then enter the associated display value for that position.

You can enter tool data for up to 9 tools. When you have set the absolute workpiece datum for a new workpiece, all tool data (= relative datum points) are referenced to the new workpiece datum.

Nominal position, actual position and distance-to-go

The positions to which the tool is to move are called the nominal positions (S). The position at which the tool is actually located at any given moment is called the actual position (1).
The distance from the nominal position to the actual position is called the distance-to-go ($®$).

Sign for distance-to-go

When you are using the distance-to-go display, the nominal position becomes the relative datum (display value 0). The distance-to-go is therefore negative when you move in the positive axis direction, and positive when you move in the negative axis direction.

Absolute workpiece positions

Each position on the workpiece is uniquely defined by its absolute coordinates.

Example Absolute coordinates of position (1):

$$
\begin{aligned}
& X=5 \mathrm{~mm} \\
& Z=-35 \mathrm{~mm}
\end{aligned}
$$

If you are working according to a workpiece drawing with absolute dimensions, you are moving the tool to the coordinates.

Relative workpiece positions

A position can also be defined relative to the previous nominal position. The datum for the dimension is then located at the previous nominal position. Such coordinates are termed relative coordinates or chain dimensions. Incremental coordinates are indicated by a preceding \mathbf{I}.
Example Relative coordinate of position (2) referenced to

$$
\begin{aligned}
& \text { position (1): } \\
& \mathbf{I X}=10 \mathrm{~mm} \\
& \mathbf{Z}=-30 \mathrm{~mm}
\end{aligned}
$$

If you are working according to a workpiece drawing with incremental dimensions, you are moving the tool by the dimensions.

Signforincremental dimensioning

A relative dimension has a positive sign when the axis is moved in the positive direction, and a negative sign when it is moved in the negative direction.

Positionencoders

The position encoders on the machine convert the movements of the machine axes into electrical signals. The ND display unit evaluates these signals, determines the actual position of the machine axes and displays the position as a numerical value.
If the power is interrupted, the relationship between the machine axis position and the calculated actual position is lost. The reference marks on the position encoders and the REF reference mark evaluation feature enable the ND to quickly re-establish this relationship again when the power is restored.

Reference marks

The scales of the position encoders contain one or more reference marks. When a reference mark is crossed over, a signal is generated identifying that position as a reference point (scale datum = machine datum).

When these reference points are crossed over, the ND's reference mark evaluation feature restores the relationship between axis slide positions and display values as you last defined it by setting the datum. If the linear encoders have distance-coded reference marks, you need only move the machine axes a maximum of 20 mm to restore the datum.

Switch-On, Traversing the Reference Marks

Crossing over the reference marks stores the last relationship between axis slide positions and display values for all datum points in nonvolatile memory.

Note that if you choose not to cross over the reference marks (by clearing the dialog ENT ... CL with the CL key), this relationship will be lost if the power is switched off or otherwise interrupted!

[^0]
Selecting Radius or Diameter Display

Your ND can display positions in the cross slide as a diameter or as a radius. Drawings of lathe parts usually indicate diameters. When you are tuming the part, however, you infeed the tool in the cross slide axis in radius values.

Example:	Radius display position (1)	$X=20 \mathrm{~mm}$
	Diameter display position (1)	$X=40 \mathrm{~mm}$

To switch the display:

When radius display for the X axis is selected, R lights up. When diameter display is selected, R goes out.

Separate Value/ Sum Display (ND 770 only)

Separate value display

In this mode the positions of the saddle and top slide are displayed separately. The position displays are referenced to the datum points that you set for the Zo and Z axes. When an axis slide moves, only the position display for that axis changes.

Sum display

In this mode the position values of both axis slides are added together. The sum display shows the absolute position of the tool, referenced to the workpiece datum.

Example	Separate value display:	$Z=+25.000 \mathrm{~mm}$
	Som display:	$Z_{S}=+15.000 \mathrm{~mm}$

$$
\begin{aligned}
& Z=+25.000 \mathrm{~mm} \\
& Z_{0}=+15.000 \mathrm{~mm} \\
& Z_{S}=+40.000 \mathrm{~mm}
\end{aligned}
$$

4 The sum display will only show correct values if the actual position values of both axis slides were correctly added and entered (with sign) when setting the datum for the "sum."

To switch the display

- Sum display: Press the keys Zo and Z at the same time.
- Separate value display: Press the key Zo.

When the ND 770 displays sums, the Zo display is switched off.

Datum Setting

043

- If you want datum points to be stored in nonvolatile memory, you must first cross over the reference marks.
- Note that the correct value to be entered for the datum in the X axis depends on whether you have selected radius or diameter display.

With the ND 730/ND 770 position displays, you can set one absolute workpiece datum and data for up to 9 tools (relative datums).

Setting the absolute workpiece datum

When you enter a new value for the absolute workpiece datum, all tool data are then based on the new workpiece datum.

Enter further axes in the same way.

Entering tool data (relative datums)

Holding Positions

If you want to measure the workpiece after tuming the first diameter, your display unit has the capability to "freeze" (hold) the actual position before you retract the tool.

Moving the Axes with the Distance-To-Go Display

Normally, the display shows the actual position of the tool. However, it is often more helpful to display the remaining distance to the nominal position (distance-to-go). You can then position simply by moving the axis until the display value is zero.

Application example: Finish tuming a shoulder by traversing to zero

Select the axis, e.g. Z, enter the nominal coordinate, e.g. -20 mm , and confirm with ENT.

A Move the Z axis until the display value is zero. The tool is at position (2).

Select the axis, enter the nominal coordinate, e.g. 20 mm (radius), confirm with ENT.

M ove the X axis until the display value is zero. The tool is at position (3).
$\underset{\substack{\text { SREC } \\ \text { FGT }}}{ }$ and ENT Exit the distance-to-go mode.
or CL

TaperCalculator

The taper calculator enables you to calculate the angle for the top slide. There are two possibilities:

- Calculation from taper ratio:
- Difference between taper radii and length of taper
- Calculation from two diameters and the length:
- Starting diameter
- Final diameter
- Length of taper

Calculation from taper ratio

TAPER CALC.

ENT	Confirm the function.

-
-

Calculation from two diameters and the length

ErrorMessages

Message	Cause and Effect
SIGNAL X	The encoder signal is too weak. The scale may be contaminated.
ERR. REF. \mathbf{X}	The spacing of the reference marks as defined in P43 is not the same as the actual spacing.
FRQ. ERR. X	The input frequency for this encoder input is too high. This can occur when the scale is moved too fast.
ERR. MEMORY	Checksum error! Check the datum, operating parameters and compensation values for multipoint axis-error compensation. If this error recurs, contact your service agency.

To clear error messages

When you have removed the cause of the error:

- Press the CL key.

Part II Installation and Specifications

Items Supplied	$\mathbf{2 6}$
Connections on Rear Panel	$\mathbf{2 7}$
Mounting	$\mathbf{2 8}$
Power Supply	$\mathbf{2 8}$
Connecting the Encoders	$\mathbf{2 9}$
Operating Parameters	$\mathbf{3 0}$
Entering/changing operating parameters	30
Operating parameter list	31
Linear Encoders	$\mathbf{3 4}$
Setting the display step	34
Compatible HEIDENHAIN linear encoders	35
Multipoint Axis ErrorCompensation	$\mathbf{3 7}$
Input in compensation-value table	37
Selecting a compensation-value table,	38
entering axis-rror values	39
Deleting a compensation-value table	$\mathbf{4 0}$
Specifications	41
Dimensions ND $730 / 770$	

Items Supplied

- ND 730 for 2 axes
or
- ND 770 for 3 axes
- Power connector Id. Nr. 257 811-01
- User's Manual

Optional accessories

- Tilting base for housing bottom

Id. Nr. 281 619-01

Connections on Rear Panel

Mounting

To mount the display unit on a support, use the M4 threaded holes in the rubber feet. You can also mount the display unit on the optional tilting base.

Power Connection

Power leads (L) and \mathbb{N}
Connect protective ground to \oplus
Powersupply: $\quad 100 \mathrm{Vac}$ to $240 \mathrm{Vac}(-15 \%$ to $+10 \%)$
50 Hz to $60 \mathrm{~Hz}(\pm 2 \mathrm{~Hz})$
A voltage selector is not necessary.

- Danger of electrical shock!

Connect a protective ground. This connection must never be interrupted.

- Unplug the power cord before opening the housing.

To increase the noise immunity, connect the ground temminal on the rear panel to the central ground point of the machine (minimum cross-section: $6 \mathrm{~mm}^{2}$).

Connecting the Encoders

Your display unit will accept all HEIDENHAIN linear encoders with sinusoidal output signals (11 to $16 \mu \mathrm{~A}_{\text {pp }}$) and distance-coded or single reference marks.

Assignment of the encoder inputs for the ND 730

Encoder input $\mathrm{X1}$ is for the X axis
Encoder input $X 2$ is for the Z axis

Assignment of the encoder inputs for the ND 770

Encoder input X 1 is for the X axis
Encoder input X 2 is for the Zo axis
Encoder input $X 3$ is for the Z axis

Encodermonitoring

Your display unit features a monitoring system for checking the amplitude and frequency of the encoder signals. If it detects a faulty signal, one of the following error messages will be generated:

SIGNAL X
FRQ. ERR. X
Encoder monitoring can be activated with parameter 45.
If you are using linear encoders with distance-coded reference marks, the encoder monitoring system also checks whether the spacing of the reference marks as defined in parameter P43 is the same as the actual spacing on the scales. If it is not, the following error message will be generated:

[^1]

Operating Parameters

Operating parameters allow you to modify the operating characteristics of your display unit and define the evaluation of the encoder signals. Operating parameters that can be changed by the user are called user parameters, and can be accessed with the SPEC FCT key and the dialog PARAMETER (user parameters are identified as such in the parameter list). The full range of parameters can only be accessed via the dialog 'CODE" and input of the code number 95148.

Operating parameters are designated by the letter P and a number. Example: P11. The parameter designation is shown in the X display when a parameter is selected with the TOOL and ENT keys.
The parameter setting is shown in the $Z=N D 730 /$ Zo =ND 770 display.

Some operating parameters have separate values for each axis. Such parameters have an additional index number from 1 to 3 with the ND 770 and from 1 to 2 with the ND 730.
Example: P12.1 scaling factor, X axis
P12.2 scaling factor Zo axis (only ND 770)
P12.3 scaling factor, Z axis
The operating parameters are preset before the unit leaves the factory. These factory settings are indicated in the parameter list in boldface type.

Entering and changing operating parameters

To access the operating parameters

- Press the SPEC FCT key.
> Press SPEC FCT or TOOL until "PARAMETER" appears in the X display.
- Confirm with ENT.

To select protected operating parameters

> Press the TOOL key to select the P00 CODE user parameter.
> Enter the code number 95148.
> Confirm with the ENT key.
To page through the operating parameters
> Page forwards by pressing the ENT key.
> Page backwards by pressing the TOOL key.

To change parameter settings

- Press the minus key or enter the value and confirm with the ENT key.

To correct an entry

- Press the CL key: the old value reappears in the input line and becomes effective again.

To exit the operating parameters

> Press the SPEC FCT or CL key.

List of operating parameters

P00 CODE Enter the code number

951 48: Change protected operating parameters
6655 44: Display the software version (in the X axis) Display the date of release (in the Y axis)
1052 96: Multipoint axis error compensation

P01 Unit of measurement ${ }^{1)}$	
Display in millimeters	MI
Display in inches	INCH

P03.1 to P03.3 Radius/ diameter display ${ }^{1)}$

$\begin{array}{ll}\text { Display position value as radius } & \text { RADIUS } \\ \text { Display position value as diameter } & \text { DIAMETER }\end{array}$

P06 Select the sum display

Sum display default setting SUM ON
Sum display selectable
with the $Z 0$ and Z keys Sum OFF

P11 Activate scaling factor ${ }^{1)}$

Scaling factor active	SCALING ON
Not active	SCALING OFF

SCALING OFF

P12.1 to P12.3 Enter scaling factor ${ }^{1)}$

Enter a scaling factor separately for each axis:
Entry value > 1: workpiece will "grow"
Entry value $=1$: workpiece will remain the same size
Entry value <1: workpiece will "shrink"
Input range:
0.111111 to 9.999999

Default setting:
1

P30.1 to P30.3 Countingdirection
Positive counting direction with positive direction of traverse
Negative counting direction with positive direction of traverse DIRECT. NEG
P31.1 to P31.3 Signal period of the encoder
Input range: 0.00000001 to $99999.9999 \mu \mathrm{~m}$ Default setting: $\mathbf{2 0} \boldsymbol{\mu m}$
P33.1 to P33.3 Counting step
$\begin{aligned} & \mathbf{0}-\mathbf{1}-\mathbf{2}-\mathbf{3}-\mathbf{4}-\mathbf{5}-\mathbf{6}-\mathbf{7 - 8}-\mathbf{9} \\ & 0-2-4-6-8 \\ & 0-5 \end{aligned}$
P38.1 to P38.3 Decimal places
1/2/3/4/5/6 (up to 8 with inch display)
P40.1 to 40.3 Define axis error compensation
No axis error compensation Linear error compensation active Multipoint error compensation active (See "Multipoint Axis Error Compensation') COMP. OFF COMP. LIN COMP. MULTI
1) User parameter

P41.1 to P41.3 Linear axis error compensation

Linear axis error compensation is activated via parameters 40.1 to 40.3.

Input range [$\mu \mathrm{m}$]: - 99999 to +99999
Default setting:
0
Example: Displayed length $\quad \mathrm{L}_{\mathrm{d}}=620.000 \mathrm{~mm}$
Actual length (as determined for example with the VM 101 from HEIDENHAIN)
$\mathrm{L}_{\mathrm{a}}=619.876 \mathrm{~mm}$
Difference $\Delta \mathrm{L}=\mathrm{L}_{\mathrm{a}}-\mathrm{L}_{\mathrm{d}}=-124 \mu \mathrm{~m}$
Compensation factor k :
$\mathrm{k}=\Delta \mathrm{L} / \mathrm{L}_{\mathrm{d}}=-124 \mu \mathrm{~m} / 0.62 \mathrm{~m}=-200[\mu \mathrm{~m} / \mathrm{m}]$

P42.1 to P42.3 Backlash compensation

Input range (mm):
Default setting:

$$
\begin{aligned}
& \text { +9.999 to }-9.999 \\
& \mathbf{0 . 0 0 0}=\text { no backlash }
\end{aligned}
$$

compensation

A change in direction might cause a clearance between rotary encoder and table. This is referred to as backlash. Positive backlash: The rotary encoder is ahead of the table. The distance traversed by the table is too short (entry of positive value). Negative backlash: The rotary encoder follows the table. The distance traversed by the table is too large (entry of negative value).

P43.1 to P43.3 Reference marks

One reference mark
SINGLE REF.
Distance-coded with 500 •SP 500 SP
Distance-coded with 1000 •SP 1000 SP
Distance-coded with 2000 •SP 2000 SP
Distance-coded with 5000 •SP 5000 SP

P44.1 to P44.3 Reference mark evaluation

Evaluation	REF. X ON
No evaluation	REF. X OFF

P45.1 to P45.3 Encoder monitoring

Amplitude and frequency monitoring

ALARM ON
No monitoring
ALARM OFF

P48.1 to P48.3 Activate axis display

Axis display active
AXIS ON
Axis display not active
AXIS OFF

P80 Function of CL key

Set to zero with CL
CL. . .RESET

No set to zero with CL
(SP = signal period)

P98 Dialog language ${ }^{1)}$

German	LANGUAGE	DE
English	LANGUAGE	EN
French	LANGUAGE	FR
Italian	LANGUAGE	IT
Dutch	LANGUAGE	NL
Spanish	LANGUAGE	ES
Danish	LANGUAGE	DA
Swedish	LANGUAGE	SV
Finnish	LANGUAGE	FI
Czech	LANGUAGE	CS
Polish	LANGUAGE	PL
Hungarian	LANGUAGE	HU
Portuguese	LANGUAGE	PT

1) User parameter

Linear Encoders

Setting the display step with linear encoders

To select a certain display step, you must define the following operating parameters:

- Signal period (P31)
- Counting mode (P33)
- Decimal places (P38)

Example
Linear encoder with signal period $20 \mu \mathrm{~m}$
Required display step.............. 0.0005 mm
Signal period (P31)................... 20
Counting mode (P33)............... 5
Decimal places (P38) 4
The following tables will help you select the parameters.

Parameter settings for HEIDENHAIN linear encoders with $\mathbf{1 1} \boldsymbol{\mu} \mathrm{A}_{\mathrm{pp}}$ signals

Model		Reference marks	Millimeters			Inches		
			Display step [mm]	$\left\lvert\, \begin{aligned} & \text { H } \\ & \frac{3}{3} \\ & 0 \end{aligned}\right.$		Display step [inch]	$\begin{aligned} & \text { H } \\ & \vec{J} \\ & 0 \end{aligned}$	
		P 43		P 33			P 33	P 38
CT	2	single	0.0005	5	4	0.00002	2	5
MT xx01				2	4	0.00001	1	5
LIP 401A/401R		single	$\begin{aligned} & 0.0002 \\ & 0.0001 \end{aligned}$	1	4	0.000005	5	6
			0.00005	5	5	0.000002	2	6
			Recommended only for LIP 401					
			0.00002	2	5	0.000001	1	6
			0.00001	1	5	0.0000005	5	7
			0.000005	5	6	0.0000002	2	7
$\begin{aligned} & \hline \text { LF 103/103C } \\ & \text { LF 401/401C } \\ & \text { LIF 101/101C } \\ & \text { LIP 501/501C } \end{aligned}$	4	single/5000	0.001	1	3	0.00005	5	5
			0.0005	5	4	0.00002	2	5
			0.0002	2	4	0.00001	1	5
			0.0001	1	4	0.000005	5	6
LIP 101		single	0.00005	5	5	0.000002	2	6
			Recommended only for LIP 101			0.000001	1	6
			0.00001	1	5	0.0000005	5	7
MT xx	10	single	0.0005	5	4	0.00002	2	5
			0.0002	2	4	0.00001	1	5
			0.0001	1	4	0.000005	5	6
$\begin{aligned} & \hline \text { LS 303/303C } \\ & \text { LS 603/603C } \end{aligned}$	20	single/1000	0.01	1	2	0.0005	5	4
			0.005	5	3	0.0002	2	4

Parameter settings for HEIDENHAIN linear encoders $11 \mu A_{p p}$ (continued)

Model		Reference marks	Millimeters			Inches		
			Display step [mm]	$\begin{aligned} & \text { H } \\ & \vec{J} \\ & 0 \\ & 0 \end{aligned}$		Display step [inch]	$\begin{aligned} & \text { H } \\ & \vec{J} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{\pi} \\ & \frac{B}{\bar{y}} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
	P 31	P 43		P 33	P 38		P 33	P 38
LS 106/ 106C LS 406/406C LS 706/706C	20	single/1000	$\begin{aligned} & \hline 0.001 \\ & 0.0005 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 5 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.00005 \\ & 0.00002 \end{aligned}$	$\begin{array}{\|l} 5 \\ 2 \end{array}$	$\begin{aligned} & \hline 5 \\ & 5 \end{aligned}$
ST 1201		-						
$\begin{aligned} & \hline \text { LB 302/302C } \\ & \text { LIDA 10x/10xC } \end{aligned}$	40	single/2000	$\begin{aligned} & \hline 0.005 \\ & 0.002 \\ & 0.001 \\ & 0.0005 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 2 \\ & 1 \\ & 5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \hline 3 \\ 3 \\ 3 \\ 4 \\ \hline \end{array}$	$\begin{aligned} & \hline \hline 0.0002 \\ & 0.0001 \\ & 0.00005 \\ & 0.00002 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ 1 \\ 5 \\ 2 \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & 4 \\ & 5 \\ & 5 \end{aligned}$
			Recommende 0.0002 0.0001	only for 2 1	$\begin{aligned} & \text { B } 302 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 0.000001 \\ & 0.0000005 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 1 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 5 \\ & 6 \\ & \hline \end{aligned}$
LB 301/301C	100	single/1000	$\begin{aligned} & \hline 0.005 \\ & 0.002 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 2 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 3 \\ 3 \\ 3 \end{array}$	0.0002 0.0001 0.00005	$\begin{aligned} & \hline 2 \\ & 1 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline \hline 4 \\ & 4 \\ & 5 \end{aligned}$
LIM 501	10240	single	$\begin{aligned} & \hline 0.1 \\ & 0.01 \\ & 0.05 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 0.005 \\ & 0.0005 \\ & 0.002 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 4 \\ & 3 \\ & \hline \end{aligned}$

Multipoint Axis Error Compensation

If you want to use the multipoint axis error compenstation feature, you must

- Activate this feature with operating parameter P40 (see "Operating Parameters").
- Traverse the reference marks after switching on the display unit.
- Enter a compensation-value table.

Your machine may have a non-linear axis error due to factors such as axis sag or drivescrew errors. Such deviations are usually measured with a comparator measuring system (such as the VM 101). This allows you to determine, for example, the screw pitch error
$[X=F(X)]$ for the X axis.
An axis can only be corrected in relation to one axis causing the error. You can create a compensation value table for each axis, with each table containing 64 compensation values. The compensation value table is selected with the SPEC FCT key and the dialog "PARAMETER/CODE".

To determine the compensation values (e.g. with a VM 101), the REF display must be selected after selecting the compensation-value table.

$\mathbf{R}_{\mathbf{x}}$	Select REF display.

The decimal point in the left display field indicates that the displayed values are referenced to the reference point. If the decimal point blinks, the reference marks have not been traversed.

Entries in the compensation value table

- Axis to be corrected:

X, Ko or Z
(Ko only ND770)

- Axis causing the error: $\quad X, Z o$ or Z
(Ko only ND770)
- Datum for the axis to be corrected: Here you enter the point starting at which the axis with error is to be corrected. This point indicates the absolute distance to the reference point.

Do not change the datum point after measuring the axis error and before entering the axis error into the compensation table.

- Spacing of the compensation points

The spacing of the compensation points is expressed as 2^{x} [$\mu \mathrm{m}$]. Enter the value of the exponent x into the compensation value table.
Minimum input value:

$$
\begin{aligned}
& 6(=0.064 \mathrm{~mm}) \\
& 20(=1052.672 \mathrm{~mm}) \\
& 23(=8388.608 \mathrm{~mm})
\end{aligned}
$$

Maximum input value:
Example: 900 mm traverse and 15 compensation points results in 60.000 mm spacing between points. Nearest power of two: $2^{16}[\mu \mathrm{~m}]=65.536 \mathrm{~mm}$ Entry in compensation value table: 16

- Compensation value

You enter the measured compensation value (in millimeters) for the displayed compensation point. Compensation point 0 always has the value 0 and cannot be changed.

Selecting the compensation table, entering an axis correction

Select the parameter function, if required, by repeatedly pressing the TOOL key.

DATUM X
27 ©
Enter the active datum for the error on the axis to be corrected e.g. 27 mm , and confirm with ENT.

SPACING X
10 ENT
Enter the spacing of the compensation points on the axis to be corrected, e.g. $2^{10} \mu \mathrm{~m}$ (equals 1.024 mm), and confirm with ENT.

Deleting a compensation value table

Specifications

Dimensionsinmm/inches

Tilting base

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH

Dr.-Johannes-Heidenhain-Straße 5
83301 Traunreut, Germany
? +49 (8669) 31-0
EAX +49 (8669) 5061
e-mail: info@heidenhain.de

Technical support EAX +49 (8669) 31-10 00
 Measuring systems : +49 (8669) 31-3104
 e-mail: service.ms-support@heidenhain.de

TNC support \quad O +49 (8669) 31-3101 e-mail: service.nc-support@heidenhain.de
NC programming
e-mail: service.nc-pgm@heidenhain.de
PLC programming ${ }^{\circ}+49$ (8669) 31-31 02
e-mail: service.plc@heidenhain.de

Lathe controls
 e +49 (711) 952803-0

e-mail: service.hsf@heidenhain.de
www.heidenhain.de

HEIDENHAIN (G.B.) Limited
200 London Road, Burgess Hill
West Sussex RH15 9RD, Great Britain
(0) (01444)247711
[FAX (01444) 870024

[^0]: abl
 You must cross over the reference marks if you want to use the multipoint axis error compensation function.
 (See "Multipoint Axis Error Compensation")

[^1]: ERR. REF. X

