(2) HEIDENHAIN

PELTR MODE
 142.706 68325

HEIDENHAIN

User's Manual
ND 770
$\mathbb{N D} 750$

Position Display Units for Milling Machines

Position display (ND 710 only two axes)

- Select coordinate axes
(ND 710 only X and Y)
- Select axis-specific operating parameters

Numerical input

- Change the algebraic sign
- Call the last dialog
- In the parameter list: change parameters
- Confirm entry
- In the parameter list page forward

Call radius compensation of the current tool

- Select special functions
- In the list of special functions page forward
- Cancel entry
- Reset the operating mode
- Zero the selected axis (if activated in P80)
- Select parameters CL plus two-digit number

This manual is for the ND display units with the following software numbers or higher:

ND 710 for two axes AA00 ND 750 for three axes AA00

About this manual

This manual is divided into two parts:
Teill: Operating Instructions

- Fundamentals of positioning
- ND functions

Teil II: Installation and specifications

- Mounting the display unit on the machine
- Description of operating parameters

Part I Operating Instructions

Fundamentals	4
Switch-On, Traversing the Reference Points	9
Datum Setting	10
Tool Compensation	13
Moving the Axes with Distance-To-Go	14
Bolt Hole Circles and Bolt Circle Segments	16
Linear Hole Patterns	19
Working with a Scaling Factor	22
Error Messages	23

Part II
 Installation and Specifications

Fundamentals

wh
You can skip this chapter if you are already familiar with coordinate systems, incremental and absolute dimensions, nominal positions, actual positions and distance-to-go.

Coordinate system

To describe the geometry of a workpiece, the Cartesian* coordinate system is used. The Cartesian coordinate system consists of three mutually perpendicular axes X, Y and Z. The point of intersection of these axes is called the datum or origin of the coordinate system.

Think of the axes as scales with divisions (usually in millimeters) which allow us to fix points in space referenced to the datum.

To determine positions on a workpiece, the coordinate system is
"laid" onto the workpiece.

The machine axes are parallel to the axes of the coordinate system. The Z axis is normally the tool axis.
${ }^{1)}$ Named in honor of the French mathematician and philosopher René Descartes (1596 to 1650)

Datum setting

The workpiece drawing is used as the basis for machining the workpiece. To enable the dimensions in the drawing to be converted into traverse distances of machine axes X, Y and Z, each drawing dimension requires a datum or reference point on the workpiece (since a position can only be defined in relationship to another position).

The workpiece drawing always indicates one absolute datum (the datum for absolute dimensions). However, it may contain additional relative datums.

In the context of a numerical position display unit, datum setting means bringing the workpiece and the tool into a defined position in relation to each other and then setting the axis displays to the value which corresponds to that position. This establishes a fixed relationship between the actual positions of the axes and the displayed positions.

You can set 2 absolute datum points and store them in nonvolatile memory.

Absolute workpiece positions

Each position on the workpiece is uniquely defined by its absolute coordinates.

Example Absolute coordinates of position (1):

| $X=$ | 10 mm |
| :--- | ---: | ---: |
| $Y=$ | 5 mm |
| $Z=$ | 0 mm |

If you are working according to a workpiece drawing with absolute dimensions, then you are moving the tool to the coordinates.

Relative workpiece positions

A position can also be defined relative to the previous nominal position. The datum for the dimension is then located at the previous nominal position. Such coordinates are termed relative coordinates or chain dimensions. Incremental coordinates are indicated by a preceding \mathbf{I}.

Example Relative coordinate of position (2) referenced to position (1):

$$
\begin{array}{ll}
\mathbf{I X}= & 10 \mathrm{~mm} \\
\mathbf{I Y}= & 10 \mathrm{~mm}
\end{array}
$$

If you are working according to a workpiece drawing with incremental dimensions, then you are moving the tool by the dimensions.

Sign for incremental dimensioning

A relative dimension has a positive sign when the axis is moved in the positive direction, and a negative sign when it is moved in the negative direction.

Nominal position, actual position and distance-to-go

The position to which the tool is to move is called the nominal position (S). The position at which the tool is actually located at any given moment is called the actual position (1).

The distance from the nominal position to the actual position is called the distance-to-go (®).

Sign for distance-to-go

When you are using the distance-to-go display, the nominal position becomes the relative datum (display value 0). The distance-to-go is therefore negative when you move in the positive axis direction, and positive when you move in the negative axis direction.

Position encoders

The position encoders on the machine convert the movements of the machine axes into electrical signals. The ND display unit evaluates these signals, determines the actual position of the machine axes and displays the position as a numerical value.

If the power is interrupted, the relationship between the machine axis positions and the calculated actual positions is lost. The reference marks on the position encoders and the REF reference mark evaluation feature enable the ND to quickly re-establish this relationship again when the power is restored.

Reference marks

The scales of the position encoders contain one or more reference marks. When a reference mark is crossed over, a signal is generated which identifies that position as a reference point (scale datum = machine datum).

When this reference mark is crossed over, the ND's reference mark evaluation feature (REF) restores the relationship between axis slide positions and display values which you last defined by setting the datum. If the linear encoders have distance-coded reference marks, you only need to move the machine axes a maximum of 20 mm to do this.

Switch-On, Traversing the Reference Marks

Crossing over the reference marks stores the last relationship between axis slide positions and display values for datum points 1 and 2 in nonvolatile memory.

Note that if you choose not to traverse the reference marks (by clearing the dialog ENT ... CL with the CL key), this relationship will be lost if the power is interrupted or when the unit is switched off.

If you wish to use multipoint axis error compensation you must traverse the reference marks (see "Multipoint axis error compensation")!

Datum Setting

```
0 @h If you want to save the datum points in nonvolatile memory, you must first cross over the reference marks.
```

Only after crossing over the reference marks can you set new datums or activate existing ones.

There are two ways to set datums:
Touch the workpiece with the tool and then set the desired datum (see example). You can also touch two edges and set the centerline between them as a datum. The tool data of the tool used for this are automatically considered (see "Tool Compensation").

Datum setting with the tool

Example:

Working plane X / Y

Tool axis
Z
Tool radius
$R=5 \mathrm{~mm}$
Axis sequence for datum setting

After you have set a datum it can be activated as follows:

$\boxed{11 / 2}$	Select datum 1 or 2.

Tool Compensation

You can enter the axis, length and diameter of the current tool.

TOOL DATA

TOOL DIAM.

Enter the tool diameter, e.g. 20 mm , and confirm with ENT.

Moving the Axes with Distance-To-Go Display

Normally, the display shows the actual position of the tool. However, it is often more helpful to display the distance remaining to the nominal position (the distance-to-go). You can then position simply by moving the axis until the display value is zero.

You can enter the absolute coordinates in the distance-to-go display. An active radius compensation will be considered.

Example: Milling a shoulder with distance-to-go

| SPEC
 FCT | If appropriate, switch off the distance-
 to-go display. |
| ---: | :--- | :--- |
| or CL | |

Bolt Hole Circles and Bolt Circle Segments

Your display unit enables you to quickly and easily drill bolt hole circles and bolt hole circle segments. The required data is requested in the message field.

Each hole can be moved to by traversing to display value zero. This requires entry of the following data:

- Number of holes (maximum: 999)
- Circle center
- Circle radius
- Starting angle for first hole
- Angle step between the holes (only for circle segments)
- Hole depth

Example

$\begin{array}{ll}\text { Number of holes } & 8 \\ \text { Coordinates of the center } & X=50 \mathrm{~mm} \\ & Y=50 \mathrm{~mm} \\ \text { Circle radius } & 20 \mathrm{~mm} \\ \text { Starting angle } & 30 \text { degrees } \\ \text { Hole depth } & Z=-5 \mathrm{~mm}\end{array}$

-

HOLE DEPTH

START

Linear Hole Patterns

The linear hole pattern feature allows you to easily create rows of holes to cover an area. The required data are requested in the message field.

You can position to each hole by traversing to display value zero.
The following data are required:

- Coordinates of the first hole
- Number of holes per row (maximum: 999)
- Spacing between holes
- Angle between the rows and the reference axis
- Hole depth
- Number of rows (maximum: 999)
- Spacing between rows

Example

Coordinates of the first hole

$$
\begin{aligned}
& X=20 \mathrm{~mm} \\
& Y=15 \mathrm{~mm}
\end{aligned}
$$

Number of holes per row
Spacing between holes
Angle
Hole depth
Number of rows
Spacing between rows

4
16 mm
15 degrees
$Z=-30 \mathrm{~mm}$
3
20 mm

LIN. HOLE

Enter the Y coordinate of the first holes, e.g. 15, and confirm with ENT.

Working with Scaling Factors

Scaling factors enable you to increase or decrease the display values based on the actual traverse distance. The display values are changed symmetrically about the datum.

Enter scaling factors separately for each axis in parameter P12.
Parameter P11 activates and deactivates the scaling factors in all axes (see "Operating Parameters").

Example for enlarging a workpiece:

P12.1	3.5
P12.2	3.0
P11	ON

This results in a larger workpiece as shown in the illustration at right: (1) is the original size, (2) is with axis-specific scaling factors.

If a scaling factor is active, SCL lights up in the status display.

Error messages

Message	Cause and effect
SIGNAL X	Encoder signal is too small, e.g. when an encoder is contaminated.
PROB. ERROR	Before touching off on the workpiece, the tool must move by a distance of at least 0.2 mm.
ERR. REF. X	The spacing of the reference marks as defined in P43 is not the same as the actual spacing.
FRQ. ERR. X	The input frequency for this encoder input is too high. This can occur when the scale is moved too fast.
ERR. MEMORY	Check sum error: Check the datum, operating parameters and compensation values for multi- point axis error compensation. If the error recurs, contact your service agency!

To erase error messages:

After you have removed the cause of error:
> Press the CL key.
Part II Installation and Specifications
Items Supplied 26
Connections on Rear Panel 27
Mounting 28
Power Connection 28
Connecting the Encoders 29
Operating Parameters 30
Entering/changing operating parameters 30
Operating parameter list 31
Linear Encoders 33
Setting the display step 33
Display step, signal period, and subdivision 33
Parameter settings for HEIDENHAIN linear encoders with $11 \mu \mathrm{App}$ 34
Multipoint Axis Error Compensation 35
Specifications 38
Dimensions of the ND 710/ND 750 39

Items Supplied

- ND 710 for 2 axes
or
- ND 750 for 3 axes
- Power connector Id. Nr. 257 811-01
- User's Manual

Optional Accessories

- Tilting base for housing bottom

Id. Nr. 281 619-01

Connections on Rear Panel

The interfaces X1, X2, X3 comply with the requirements for electrical separation according to EN 50178 !

Mounting

ND 710/ND 750

To mount the display unit on a support, use the M4 threaded holes in the rubber feet. You can also mount the display unit on the optional tilting base.

Power Connection

Power leads: (L) and (N)
Connect protective ground to
\qquad

- Danger of electrical shock!

Connect a protective ground. This connection must never be interrupted.

- Unplug the power cord before opening the housing.

The display unit will operate over a voltage range of 90 Vac to 260 Vac A voltage selector is therefore not necessary.

Connecting the Encoders

Your display unit will accept all HEIDENHAIN linear encoders with sinusoidal output signals (7 to $16 \mu \mathrm{~A}_{\text {pp }}$) and distance-coded or single reference marks.

Assignment of the encoder inputs

Encoder input X 1 is for the X axis
Encoder input $X 2$ is for the Y axis
Encoder input X 3 is for the Z axis (ND 750 only)

Encoder monitoring system

Your display unit features a monitoring system for checking the amplitude and frequency of the encoder signals. If it detects a faulty signal, one of the following error messages will be generated:

SIGNAL X

FRQ. X
Encoder monitoring can be activated with parameter P45.
If you are using linear encoders with distance-coded reference marks, the encoder monitoring system also checks whether the spacing of the reference marks as defined in parameter P43 is the same as the actual spacing on the scales. If it is not, the following error message will be generated:

ERR. REF. X

Operating parameters

Operating parameters allow you to modify the operating characteristics of your display unit and define the evaluation of the encoder signals. Operating parameters that can be changed by the user are called user parameters, and can be accessed with the SPEC FCT key and the dialog
"PARAMETER" (user parameters are identified as such in the parameter list). The full range of parameters can only be accessed through the dialog "CODE" and by entering 95148. Operating parameters are designated by the letter P and a number. Example: P11. The parameter designation is shown in the input field when you select it with the DATUM and ENT key in the X display. The parameter setting is shown in the Y display.

Some operating parameters have separate values for each axis. In the ND 750, these parameters are identified by an index of 1 to 3, and in the ND $\mathbf{7 1 0}$ by an index of one to two.
Example: P12.1 scaling factor, X axis
P12.2 scaling factor, Y axis
P12.3 scaling factor, Z axis (ND 750 only)
The operating parameters are preset before the unit leaves the factory. These factory settings are indicated in the parameter list in boldface type.

Entering and changing operating parameters

To access the operating parameters

- Press the SPEC FCT key.
> Press the SPEC FCT key or $\left\lfloor 1 \frac{2}{2}\right.$, until "PARAMETER" appears in the X display.
> Confirm your selection by pressing "ENT."
- If required, press the $11 \quad 2$ key to enter the code number 95148 and access the complete list of operating parameters

To page through the operating parameters

> Page forwards by pressing the ENT key.
> Page backwards by pressing the $1.1 \mid 2$ key.

To change parameter settings

- Press the minus key or enter the value and confirm with the ENT key.

To correct an entry

> Press CL: the old value reappears in the input line and becomes effective again.

To leave the operating parameters

- Press the SPEC FCT or CL key.

List of operating parameters

P1 Unit of measure 1)

Display in millimeters	MM
Display in inches	INCH

P3.1 to P3.3 Radius/diameter display ${ }^{1)}$

Display position value as radius Display position value as diameter

RADIUS
DIAMETER

P11 Activate scaling factor ${ }^{1)}$
 Active SCALING ON
 Not active SCALING OFF

P32.1 to P32.3 Subdivision of the encoder signals
20 / 10 / 8 / 5 / 4 / 2 / 1 / 0.8 / 0.5 / 0.4 / 0.2 / 0.1

P33.1 to P33.3 Counting mode

0-1-2-3-4-5-6-7-8-9
0-2-4-6-8
0-5

P38.1 to P38.3 Decimal places

1/2 / 3 / 4 (up to 6 with inch display)

P40.1 to P40.3 Select type of axis error compensation

No axis error compensation
CORR. OFF

Linear error compensation active, multipoint error comp. not active CORR. LIN

Multipoint error compensation active, linear error compensation not active CORR. ABS

Negative counting direction with
positive direction of traverse
DIRECT. NEG

P30.1 to P30.3 Counting direction

Positive counting direction with
positive direction of traverse
DIRECT. POS
P12.1 to P12.3 Define scaling factor ${ }^{1)}$
Enter a scaling factor separately for each axis:
Entry value > 1: workpiece will "grow"
Entry value =1: workpiece will remain the same size
Entry value < 1: workpiece will "shrink"
Input range: $\quad 0.100000$ to 9.999999
Factory default setting: 1.000000

Positive counting direction with

P43.1 to P43.3 Reference marks

One reference mark

SINGLE REF.M.

Distance-coded with 500 •SP 500 SP
Distance-coded with 1000 •SP 1000 SP
Distance-coded with 2000 •SP 2000 SP
Distance-coded with 5000 •SP 5000 SP
(SP: signal period)
P44.1 to P44.3 Reference mark evaluation
Evaluation
REF. X ON
No evaluation
REF. X OFF

P45.1 to P45.3 Encoder monitoring

Amplitude and frequency
monitoring
ALARM ON
No monitoring

P48.1 to P48.3 Activate axis display

Axis display active	AXIS ON
Not active	AXIS OFF

P80 Function of the CL key

Reset to zero with CL CL...RESET
No reset to zero with CL CL OFF

P98 Dialog language ${ }^{1)}$

German	LANGUAGE	D
English	LANGUAGE	GB
French	LANGUAGE	F
Italian	LANGUAGE	I
Dutch	LANGUAGE	NL
Spanish	LANGUAGE	E
Danish	LANGUAGE	DK
Swedish	LANGUAGE	S
Finnish	LANGUAGE	FI
Czech	LANGUAGE	CZ
Polish	LANGUAGE	PL
Hungarian	LANGUAGE	H
Portuguese	LANGUAGE	P

Linear Encoders

Selecting the display step with linear encoders

To select a certain display step you must define the following operating parameters:

- Subdivision (P32)
- Counting mode (P33)
- Decimal points (P38)

Example

Linear encoder with a signal period of $10 \mu \mathrm{~m}$
Desired display step 0.0005 mm
Subdivision (P32) 20
Counting mode (P33) 5
Decimal places (P38) 4
The following tables will help you select the parameters.

Display step, signal period and subdivision
for linear encoders

		Signal period [$\mu \mathrm{m}$]						
Display step		2	4	10	20	40	100	200
[mm]	[inch]	P32: Subdivision						
0.0001	0.000005	20	-	-	-	-	-	-
0.0002	0.00001	10	20	-	-	-	-	-
0.0005	0.00002	4	8	20	-	-	-	-
0.001	0.00005	2	4	10	20	-	-	-
0.002	0.0001	1	2	5	10	20	-	-
0.005	0.0002	0.4	0.8	2	4	8	20	-
0.01	0.0005	0.2	0.4	1	2	4	10	20
0.02	0.001	-	-	0.5	1	2	5	10
0.05	0.002	-	-	0.2	0.4	0.8	2	4
0.1	0.005	-	-	0.1	0.2	0.4	1	2

Parameter settings for HEIDENHAIN linear encoders with $11 \mu \mathrm{~A}_{\mathrm{pp}}$ signals

Model		Reference marks	Millimeters				Inches				
			Display step [mm]		$\begin{aligned} & \stackrel{\rightharpoonup}{c} \\ & \vdots \\ & 0 \\ & \text { O } \end{aligned}$		Display step [inch]		䓓		
		P 43		P 32	P 33	P 38		P 32	P 33	P 38	
CT MT $x \times 01$ LIP 401A/401R	2	single -/single		$\begin{aligned} & \hline 4 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 5 \\ 2 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & \hline 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 0,00002 \\ 0,00001 \\ 0,000005 \\ \hline \end{array}$	$\begin{aligned} & \hline 4 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 2 \\ 1 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 6 \end{aligned}$	
LF 103/103C LF 401/401C LIF 101/101C LIP 501/501C	4	single/5000	0,001 0,0005 0,0002	$\begin{aligned} & \hline \hline 4 \\ & 8 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline \hline 3 \\ & 4 \\ & 4 \end{aligned}$		$\begin{aligned} & \hline \hline 4 \\ & 8 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \end{aligned}$	
MT xx	10	single	0,0005	20	5	4	0,00002	20	2	5	
$\begin{aligned} & \hline \hline \text { LS 303/303C } \\ & \text { LS 603/603C } \end{aligned}$	20	single/1000	$\begin{aligned} & 0,01 \\ & 0,005 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 2 \\ & 3 \end{aligned}$	0,0005	$\begin{aligned} & \hline \hline 2 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline \hline 5 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline \hline 4 \\ & 4 \end{aligned}$	
$\begin{array}{\|l} \hline \hline \text { LS 106/106C } \\ \text { LS 406/406C } \\ \text { LS 706/706C } \\ \hline \text { ST 1201 } \\ \hline \end{array}$	20	single/1000	0,001	20	1	3	0,00005	20	5	5	
$\begin{aligned} & \text { LB 302/302C } \\ & \text { LIDA 10x/10xC } \end{aligned}$	40	single/2000	0	$\begin{aligned} & \hline 8 \\ & 20 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \end{aligned}$	\|	0,0002	$\begin{aligned} & \hline 8 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 4 \end{aligned}$
LB 301/301C	100	single/1000	0,005	20	5	3	0,0002	20	2	4	

Example:

Your encoder: LS 303 C, desired display step: $0,005 \mathrm{~mm}(5 \mu \mathrm{~m})$, parameter settings: $\mathrm{P} 01=\mathrm{mm}$, $P 43=1000, P 32=4, P 33=5, P 38=3$

Multipoint Axis Error Compensation

If you want to use the multipoint axis error compensation feature, you must

- activate this feature with operating parameter 40 (see "Operating Parameters"),
- traverse the reference marks after switching on the display unit,
- enter compensation value table.

Your machine may have a non-linear axis error due to factors such as axis sag or drivescrew errors. Such deviations are usually measured with a comparator measuring system (such as the HEIDENHAIN VM 101).

For example, you can determine the screw pitch error $X=F(X)$ for the X axis.

An axis can only be corrected in relation to one axis that has an error. In each axis, a compensation value table with 16 compensation values can be generated. You can select the compensation table with the SPEC FCT key and the "PARAMETERICODE" dialog.

To determine the compensation value (e.g. with a VM 101), the REF display must be selected after selecting the compensation-value table.

\mathbf{R}^{+} / \sim	Select the REF.

Entries in the compensation value table

- Axis to be corrected: X, Y or Z (Z axis only with ND 750)
- Axis causing the error: X, Y or Z (Z axis only with ND 750)
- Datum for the axis to be corrected: Here you enter the point starting at which the axis with error is to be corrected. This point indicates the absolute distance to the reference point.

Do not change the datum point after measuring the axis error and before entering the axis error into the compensation table.

- Spacing of the compensation points

The spacing of the compensation points is expressed as 2^{x} [$\left.\mu \mathrm{m}\right]$.
Enter the value of the exponent x into the compensation value table.
Minimum input value: 6 ($=0.064 \mathrm{~mm}$)
Maximum input value: 20 ($=8388.608 \mathrm{~mm}$)
Example: 900 mm traverse and 15 compensation points: results in 60.000 mm spacing between points. Nearest power of two: $2^{16}[\mu \mathrm{~m}]=65.536 \mathrm{~mm}$ Entry in compensation value table: 16

- Compensation value

You enter the measured compensation value (in millimeters) for the displayed compensation point. Compensation point 0 always has the value 0 and cannot be changed.

Selecting the compensation table, entering an axis correction

DATUM X				
2	$\mathbf{7}$	ENT		Enter the active datum for the error on
:---				
the axis to be corrected (e.g. 27 mm$)$				
and confirm with ENT.				

SPACING X	
100 ENT	Enter the spacing of the compensation points on the axis to be corrected, for example $2^{10} \mu \mathrm{~m}$ (equals 1024 mm) and confirm with ENT.

| 27.000 | | | |
| :--- | :--- | :--- | :--- | :--- |
| ENT | $\mathbf{0}$ | \bullet | Compensation point no. 1 is displayed.
 Enter the associated compensation
 value (e.g. 0.01 mm) and confirm with
 ENT. |
| $\mathbf{0}$ | $\mathbf{1}$ | ENT | |

Deleting a compensation value table

Specifications

Housing	ND 710/ND 750 Bench-top design, cast-metal housing Dimensions (W•H•D) $270 \mathrm{~mm} \cdot 172 \mathrm{~mm} \cdot 93 \mathrm{~mm}$
Oper. temperature	0° to $45^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.113^{\circ} \mathrm{F}\right)$
Storage temperature	-20° to $70^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Weight	Approx. $2.3 \mathrm{~kg} \mathrm{(5} \mathrm{lb)}$
Relative humidity	$<75 \%$ annual average $<90 \%$ in rare cases
Power supply	$\begin{aligned} & 90 \mathrm{Vac} \text { to } 260 \mathrm{Vac}(-15 \% \text { to }+10 \%) \\ & 48 \mathrm{~Hz} \text { to } 62 \mathrm{~Hz} \end{aligned}$
Power consumption	15 W
Protection	IP 40 as per IEC 529

Encoder inputs	For encoders with 7 to $16 \mu \mathrm{App}$ Grating period 2, 4, 10, 20, 40, 100, and $200 \mu \mathrm{~m}$ Reference mark evaluation for distance-coded and single reference marks
Input frequency	Max. 100 kHz for 30 m cable length
Display step	Adjustable (see "Linear Encoders")
Datums	2 (nonvolatile)
Functions	- Tool radius compensation - Distance-to-go display - Touching off function with tool - Circular \& linear hole patterns - Scaling factor

Dimensionsmm/inches

Tilting base

HEIDENHAIN

```
DR. JOHANNES HEIDENHAIN GmbH
Dr.-Johannes-Heidenhain-Straße 5
83301 Traunreut, Germany
ஜ
[FAX] +49/86 69/5061
e-mail: info@heidenhain.de
O}\mathrm{ Service +49/86 69/31-1272
\mathrm{ ర}}\mathrm{ TNC-Service + 49/86 69/31-1446
FAX] + 49/86 69/9899
e-mail: service@heidenhain.de
```

http://www.heidenhain.de

