HEIDENHAIN

Working with the position display units

ND 520 ND 560 NDP 560
 For three axes

Indicator	Meaning
REF	Reference mark crossed over - datum points are now stored in nonvolatile memory. Blinking: Waiting for confirmation from operator.
$\mathbf{L}^{\mathbf{1}} / \mathbf{L}^{\mathbf{2}}$	Datum point 1 / Datum point 2 currently active
$\mathbf{i n .}$	Position values displayed in inches
$\mathbf{S C L}$	Scaling factor active
\mathbf{R}	Set workpiece edge as datum. Blinking: Waiting for confirmation from operator.
$\rightarrow \mid!\mathbf{K}$	Set centerline between two workpiece edges as datum. Blinking: Waiting for confirmation from operator.

The ND 520, ND 560 and NDP 560 are designed for use with HEIDENHAIN linear encoders with sinusoidal output signals.
The linear encoders have one reference mark or several (preferably distance-coded) reference marks. When a reference mark is crossed over, a signal is generated which identifies that position as a reference point.

After switch-on, crossing over the reference marks restores the relationship between axis slide positions and display values last established by datum setting. With encoders which have distance-coded reference marks, this requires a traverse of no more than 20 mm .

Switch-On

Turn on the power

$>$ Switch on the display unit with the power switch on the rear panel.
The display shows Enal and REF blinks.

Switch on reference mark evaluation

> Press ENT.
The display shows the value last assigned to the reference mark position.
REF glows and the decimal point blinks.

Cross over the reference mark in each axis

Move the axes one after the other until the display becomes active and the decimal point glows steadily.

The display unit is now ready for operation.
If you do not wish reference mark evaluation, press $\mathbf{C L}$ instead of ENT.

Datum Setting

The datum setting procedure assigns a specific axis position to the associated display value.
You can set two separate datum points and switch from one to the other with the touch of a key. Use datum 2 when you want to display incremental dimensions.
> Select the datum.

- Select the coordinate axis in which the tool moves (for example, the X axis).
$>$ Touch the workpiece with the tool.
- Enter the position of the tool center using the numeric keypad (for example, $X=-5[m m]$). A minus sign cannot be entered until at least one

Touching the workpiece digit is in the display.

- Press ENT.

This stores the value for the tool position.
Follow same procedure for the other axes.

Datum Setting with an Edge Finder

The special functions of your display unit enable you to use a HEIDENHAIN KT edge finder to set a workpiece edge or the centerline between two workpiece edges as a datum. The position displays take into account the edge finder diameter which you entered in operating parameter P25.

If you are using the NDP $\mathbf{5 6 0}$ (which has no edge finder input) or if you want to use the special functions with a tool, please see the instructions on the next page.

Workpiece edge as datum

- Select the datum.
- Press the SPEC FCT key once.

The indicator "Workpiece edge as datum" blinks.
> Press ENT.
The indicator glows steadily.

- Select the coordinate axis in which the tool moves. The selected axis glows more brightly.
> Probe the workpiece with the edge finder until the LEDs in the edge finder light up and the display shows the position of the workpiece edge.
> Enter the new coordinate value for the probed edge.

Workpiece edge as datum

- Press ENT.

The workpiece edge is set to the new value, and the display shows the position of the edge finder relative to the new datum.
This function ends automatically.

Centerline between two workpiece edges as datum

> Select the datum.
> Press the SPEC FCT key twice. The indicator "Centerline as datum" blinks.
> Press ENT.
The indicator glows steadily.

- Select the coordinate axis in which the tool moves. The selected axis glows more brightly.
- Probe the workpiece with the edge finder until the LEDs in the edge finder light up and the decimal point blinks.
- Probe the second workpiece edge with the edge finder until the LEDs in the edge finder light up and the display shows the position of the centerline. The decimal point glows steadily.
> Enter the new coordinate value for the centerline.

Centerline as datum
> Press ENT.
The centerline is now set to the new value and the display shows the position of the edge finder relative to the new datum.
This function ends automatically.

To cancel the datum setting function:

> When the indicator for the function is blinking: press CL

- When the indicator for the function is glowing steadily: press SPEC FCT

Datum Setting with a Tool

It is also possible to probe the workpiece with a tool instead of the edge finder. The functions for datum setting then differ as follows:

- The tool diameter is automatically taken into account during probing
- The position of the probed workpiece edge is not automatically stored.

Tool diameter:

- Enter the tool diameter in operating parameter P25.

To store the position of the workpiece edge when the tool is touching the edge:

- Press ENT.

Working with Scaling Factors

The ND 510 and the ND 550 can display the axis traverse lengthened or shortened by a scaling factor. You enter a scaling factor separately for each axis in the user parameter P12, then activate the scaling factor function with the user parameter P11. SCL is highlighted.

Error Messages

| Message | Cause and effect |
| :--- | :--- | :--- |

If all decimal points light up, the measured value is too large or too small.
Set a new datum.

To clear error message

When you have removed the cause of the error,
> press CL.

Non-linear Error Compensation

To work with the non-linear error compensation it is necessary to

- activate the function via the operating parameter P40.
- traverse the reference marks after switching on.
- enter the compensation values in the table.

For every axis compensation values can be entered over 16 compensation points. To determine the compensation values with a comparator system from HEIDENHAIN, such as VM 101, you must select the REF display.

Selecting the Compensation Value Table

> Select the operating parameter P00 and enter the code number 105 296. Use the following keys for the entries:

Key	Function
MOD	Save input value and select next input parameter.
$\downarrow^{1 / \neq 2}$	Save input value and select preceding input value.
SPEC FCT	Select REF display.
ENT	•
	-
Cxit compensation value table.	
	•

Enter the parameters and compensation values as follows:

Eisplay	Entry
	Enter the axis to be compensated, e.g. X.
	Enter the distance of the compensation points on the error- causing axis, e.g. $14\left(=2^{14} \mu \mathrm{~mm}=16.384 \mathrm{~mm}\right)$. Maximum input value: $10(=1.024 \mathrm{~mm})$
Select compensation point No. 1. The compensation point number can be seen while pressing the MOD key. After letting go of the MOD key the coordinates of the selected compensation point can be seen in the upper line. Enter the compensation value in the lower line.	

$\overline{\bar{F}_{i l}-} \quad \bar{\Xi} \quad$ Enter all following compensation points.

Delete all compensation values:

Display	Entry
-1i!	Press key CL.
	Press key ENT. Compensation values are deleted.

Operating Parameters

User Parameters

User parameters are operating parameters that can be changed without entering the codes: P00 to P25

Axis assignment

Axis-specific parameters (those requiring separate entries for each axis) have axis codes: 1 for the X axis, 2 for the Y axis, and 3 for the Z axis.
The axis code is separated from the parameter number by a point.
In the operating parameter list, these parameters are set off with a superscript "A" and the parameter for the X axis is given (e.g., F :
You select axis-specific operating parameters with the orange axis keys.

To access the operating parameters:

- Press MOD

To go directly to an operating parameter:

- Press and hold CL and press the first digit of the parameter number
- Release both keys and enter the second digit of the parameter number

To page through the operating parameters:

> Page forward: press MOD
> Page backward: press $+1 / \nleftarrow 2$
Any changes made are automatically activated when you resume paging.

To change a parameter setting:

> Change the setting with the minus key, or

- Enter the desired value directly, e.g. for P25

To correct an entry:

- Press CL

To exit the operating parameters:

> Press ENT
This activates all changes you made.

Operating Parameter List

Parameter	Meaning	Function / Effect	Setting
	Code Number	95148: protected operating parameter 105296: select compensation value table	
P"-1;	Unit of measurement	Dimensions in mm	
		Dimensions in inch	,
Fici	Radius-/diameter display ${ }^{A}$	Radius	
		Diameter	\square
F: : Gí Scaling	Scaling factor	Scaling factor active	!i'i
		Scaling factor inactive	C-1/:
\cdots	Scaling factor A	Enter a value for each axis separately $0,1 \leq \mathrm{P} 12 \leq 9,999999$	
$\begin{aligned} & \text { an } \\ & \text { Toal } \end{aligned}$	Tool diameter	Enter the tool diameter $0 \leq \mathrm{P} 25 \leq 199,999$ [mm]	

Operating Parameter List - cont'd.

Parameter	Meaning	Function / Effect	Setting
Counting direction A	Normal (Direction: Positive)	Inverse (Direction: Negative)	

1) Entry value for P41

Example:
Displayed measuring length: $L_{d}=620.000 \mathrm{~mm}$
Actual length (as determined with a comparator system such as the VM 101 from HEIDENHAIN): $L_{a}=619.876 \mathrm{~mm}$
Length difference: $\Delta L=L_{a}-L_{d}=-124 \mu \mathrm{~m}$
Compensation factor: $\mathrm{k}=\Delta \mathrm{L} / \mathrm{L}_{\mathrm{d}}=-124 \mu \mathrm{~m} / 0.62 \mathrm{~m}=\mathbf{- 2 0 0}[\mu \mathrm{m} / \mathrm{m}]$

Parameter Settings for HEIDENHAIN Linear Encoders

Model and signal period [$\mu \mathrm{m}$]		Reference marks	P43	Displa (unit: mm	step 01) inches	Subdivision, P32
LIP 40x	2	one	single	0.001	0.00005	2
				0.0005	0.00002	4
				0.0002	0.00001	10
				0.0001	0.000005	20
				0.00005	0.000002	40
				0.00002	0.000001	100
LIP 101 A LIP 101 R	4	one	single	0.001	0.00005	4
				0.0005	0.00002	8
				0.0002	0.00001	20
				0.0001	0.000005	40
				0.00005	0.000002	80
LIF 101R LIF 101 C LIF 401 LIF 401 C	4	one dist. cod. one dist. cod	$\begin{gathered} \text { single } \\ 5000 \\ \text { single } \\ 5000 \end{gathered}$	0.001	0.00005	4
				0.0005	0.00002	8
				0.0002	0.00001	20
				0.0001	0.000005	40
LID $x \times x /$ LID $\times x \times \frac{C}{}$	-10	one/dist.cod. one/dist.cod.	$\begin{array}{\|l\|} \hline \text { single/2000 } \\ \hline \text { single } / 1000 \\ \hline \end{array}$	0.001	0.00005	10
LS $\overline{10} \overline{3 / L} \overline{S 1} \overline{03}$ C				0.0005	0.00002	20
LS 405/LS 405 C				0.0002	0.00001	50
				0.0001	0.000005	
LS 303/LS 303 CLS 603/LS 603 C	20	one/dist.cod.	single/1000	0.01	0.0005	2
				0.005	0.0002	4
LS 106/LS 106 C LS 406/LS 406 C LS 706/LS 706 C ULS/20	20	one/dist.cod.	single/1000	0.01	0.0005	2
				0.005	0.0002	4
				0.002	0.0001	10
				0.001	0.00005	20
				0.0005	0.00002	40
$\begin{aligned} & \text { LIDA 10x } \\ & \text { LB } 302 \end{aligned}$	40	one/dist.cod.	single/2000	0.002	0.0001	20
				0.001	0.00005	40
				0.0005	0.00002	80
$\begin{aligned} & \text { LIDA } 2 x x \\ & \text { LB } 3 x x \\ & \text { LB 3xx C } \end{aligned}$	100	one dist. cod.	single1000	0.01	0.0005	10
				0.005	0.0002	20
				0.002	0.0001	50
				0.001	0.00005	100
LIM 102	12800	one	single	0.1	0.005	128

Example: Linear encoder with signal period $s=20 \mu \mathrm{~m}$
Desired display step $a=0.005 \mathrm{~mm}$
Subdivision P32 $=\mathbf{0 . 0 0 1} \bullet \mathbf{s} / \mathbf{a}=4$

Linear measurement with ballscrew and rotary encoder

If you are measuring linear distance with a ballscrew and rotary encoder, calculate the signal period as follows:
Signal period $s=\frac{\text { Screw pitch }[m m] \bullet 1000}{\text { Line count }}[\mu \mathrm{m}]$

ND 520/ND560: Rear Panel

Inputs for HEIDENHAIN linear encoders (ND 520: 2, ND 560: 3) with sinusoidal output signals $\left(7 \mu \mathrm{~A}_{\text {pp }}\right.$ to $\left.16 \mu \mathrm{~A}_{\mathrm{pp}}\right)$, Connecting cable max. $30 \mathrm{~m}(98.5 \mathrm{ft})$, Input frequency max. 100 kHz

Power switch Edge finder input

Ground terminal
Interfaces X1, X2, X3 and X10 comply with the recommendations in EN 50178 for separation from line power.

NDP 560: Front and Rear Panel

ND 520/ND 560: Installation

The display unit can be mounted on a flat surface or on the tilting base from HEIDENHAIN (Id.-Nr. 281619 01) with M4 screws.

Power Supply and Connection

Danger of electrical shock!

Unplug the power cable before opening the housing.
Connect a protective ground. This connection should never be interrupted.

Danger to internal components!

Do not engage or disengage any connections while the unit is under power. Use only original replacement fuses.
Primary-clocked power supply.
Voltage range 100 V to $240 \mathrm{~V}(-15 \%$ to $+10 \%)$, Frequency 48 Hz to 62 Hz ,
Power consumption ND 520: 9 W, ND 560 and NDP 560: 12 W ,
Line fuse F 1 A (in unit).
Minimum cross-section of power cable: $0.75 \mathrm{~mm}^{2}$

Power connection - ND 520 and ND 560

The ND 520 and ND 560 have a socket on the rear panel for the power cable.

Power connection - NDP 560

The NDP 560 has a terminal (X 51) on the rear panel for the power connection.

Ambient Conditions

Temperature range	Operation: $0^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.+113^{\circ} \mathrm{F}\right)$
	Storage: $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$

Rel. humidity	Annual average: $<75 \% ;$ maximum: $<90 \%$
Weight	2.5 kg

DR. JOHANNES HEIDENHAIN GmbH

Dr.-Johannes-Heidenhain-Straße 5
D-83301 Traunreut, Deutschland
圆 (08669) 31-0
EAX (08669) 5061

```
`.0 Service (08669) 31-1272
    TNC-Service (08669) 31-1446
EAX (086 69) 9899
```

