Working with the digital readouts ND 510 ND 550

- Select datum
- Page backward in parameter list
- Clear entry
- CL plus two-digit number: select parameter
- Clear parameter entry

Indicator	Meaning
REF	Reference mark was crossed over - datum points are now stored in non-volatile memory. Blinking: Waiting for reference mark to be crossed over.
$\not \mathbf{1 / \& 2}$	Datum point 1 / Datum point 2 currently active.
$\rightarrow \mid$	Define workpiece edge as datum. Blinking: Waiting for operator to confirm selection.
$\rightarrow \mid!k$	Define centerline between two workpiece edges as datum. Blinking: Waiting for operator to confirm selection.

The ND 510 and ND 550 digital readouts can be used with HEIDENHAIN linear encoders with sinusoidal output signals.
These linear encoders have one or more reference marks, preferably of the dis-tance-coded type. When a reference mark is crossed over, a signal is generated which identifies that position as a reference point.
After switch-on, simply crossing over the reference mark restores the relationship between axis positions and display values last defined by datum setting.

With distance-coded reference marks, a maximum traverse of only 20 mm is sufficient to re-establish the relationship between axis positions and display values after switch-on.

Switch-On

Turn on the power

\Rightarrow The power switch is located on the rear panel.
The display shows Ena

Turn on reference mark evaluation

\Rightarrow Press the ENT key.
The display shows the value last assigned to the reference mark position, the REF indicator glows and the decimal point blinks.

Cross over the reference mark in each axis

\Rightarrow Move the axes one after the other until the display becomes active and the decimal point glows.

The display unit is now ready for operation.
If you do not wish reference mark evaluation, press CL instead of ENT.

Setting the Datum

The datum setting procedure assigns a display value to a specific axis position. Two separate datum points can be defined.
You can switch from one datum to the other at the touch of a key.
Use datum 2 if you want to display incremental values.
\Rightarrow Select the datum.
\Rightarrow Select the coordinate axis in which the tool moves, for example the X-axis.
\Rightarrow Touch the workpiece with the tool.

Touching the workpiece
\Rightarrow Enter the position of the tool center with the numeric keypad, for example $X=-5[\mathrm{~mm}]$. The minus sign can only be entered when at least one digit is shown in the display.
\Rightarrow Press ENT.
The display unit stores the value for this tool position.
Follow the above procedure for other axes.

Datum Setting Functions

The special functions which your display unit is capable of allow you to define a workpiece edge or the centerline between two workpiece edges as the datum. With the SPEC FCT feature, the display unit takes into account the tool diameter you entered in operating parameter P25.

Workpiece edge as datum

\Rightarrow Select the datum.
\Rightarrow Press the SPEC FCT key once.
The indicator "Workpiece edge as datum" starts blinking.
\Rightarrow Press ENT.
The indicator glows.
\Rightarrow Select the coordinate axis in which the tool moves.
The selected coordinate axis glows more brightly.
\Rightarrow Touch the workpiece with the tool.
\Rightarrow Press ENT.

Workpiece edge as datum

The display shows the current position of the edge.
\Rightarrow Enter the new coordinate value for the workpiece edge that was touched.
\Rightarrow Press ENT.
The display unit sets the workpiece edge to the new value and displays the position of the tool center based on the new datum.
This function ends automatically.

Centerline between two workpiece edges as datum

\Rightarrow Select the datum.
\Rightarrow Press the SPEC FCT key twice.
The indicator "Centerline as datum"
starts blinking.
\Rightarrow Press ENT.
The indicator glows.
\Rightarrow Select the coordinate axis in which the tool moves.
The selected coordinate axis glows more brightly.
\Rightarrow Touch the first workpiece edge with the tool.
\Rightarrow Press ENT.
The decimal point in the display blinks.
\Rightarrow Touch the second workpiece edge with the tool.

Centerline as datum

\Rightarrow Press ENT.

The display shows the current position of the centerline.
\Rightarrow Enter the new coordinate value for the centerline between the two touched workpiece edges.
\Rightarrow Press ENT.
The display unit sets the centerline to the new value and displays the position of the tool center based on the new datum.
This function ends automatically.

Aborting the datum setting functions

To abort when the indicator for the function is blinking:
\Rightarrow Press CL.
To abort when the indicator for the function is glowing steadily:
\Rightarrow Press SPEC FCT.

Working with Scaling Factors

The ND 510 and the ND 550 can display the axis traverse lengthened or shortened by a scaling factor. You enter a scaling factor separately for each axis, then activate the scaling factor function.

```
Entering scaling factors
=> Select operating parameter P12.
Select the coordinate axis to which you want to apply the scaling factor.
    Scaling factor for the X-axis: P12.1
    Scaling factor for the Y-axis: P12.2
    Scaling factor for the Z-axis: P12.3 (ND 550 only)
A Enter the desired scaling factor.
& Select the next coordinate axis for which you want a scaling factor, and
    enter the desired scaling factor.
AWhen you have entered the scaling factor,
    press ENT.
    The ND stores the values and returns to display mode.
```


Activating scaling factors

\Rightarrow Select operating parameter P11.
\Rightarrow Set this operating parameter to ON.
The display unit now divides all dimensions by the scaling factors in P12.

Deactivating scaling factors

\Rightarrow Select operating parameter P11.
\Rightarrow Set this operating parameter to OFF.
The scaling factors in P12 no longer affect the display.

Error Messages

Message	Cause and effect
too short	

If all decimal points light up, the measured value is too large or too small.
Set a new datum.
To clear error message [E]:
When you have removed the cause of the error, \Rightarrow press CL.

Operating Parameters

Operating parameters allow you to define the operating characteristics of the display unit and how the encoder signals are evaluated．
Operating parameters are designated by the letter P ，a two－digit parameter number and an abbreviation．Examples： \bar{F} ；： or

The display unit can show the current setting under the operating parameters．

Axis assignment

Parameters which are entered separately for each axis have axis codes：
＂1＂signifies the X－axis，＂2＂the Y－axis，and（with the ND 550）＂3＂the Z－axis．
A point separates the axis code from the parameter number．
In the operating parameter list，these parameters are set off with a superscript＂A＂，
the parameter for the X－axis（e．g．；in in in the list
You select axis－specific operating parameters with the yellow arrow keys．

To call the operating parameter list：

\Rightarrow Press MOD．

To go directly to a certain operating parameter：

\Rightarrow Press and hold CL，then press the first digit of the parameter number．
\Rightarrow Release both keys and enter the second digit of the parameter number．

To page through the operating parameter list：

\Rightarrow Page forward：press MOD．
\Rightarrow Page backward：press the $+1 / \nleftarrow 2$ key．
Any changes are automatically activated when you resume paging．

To change a parameter setting：

\Rightarrow Change the value with the minus key，or
\Rightarrow Enter the desired value directly，e．g．for P25．

To correct an entry：

\Rightarrow Press CL．

To exit the operating parameters：

\Rightarrow Press ENT．
This activates all changes made．

Operating Parameter List

Parameter	Meaning	Function／Effect	Setting
$\stackrel{-10}{\square-1}$	Unit of measurement	Display in mm	＂，
		Display in inches	＂ini－i，
FO：	Radius／diameter display ${ }^{A}$	Radius	「ロージイ
		Diameter	\square
F：Si： Scaling	Scaling factor	Scaling factor on	［i］i
		Scaling factor off	－i，
Fa，：Sit	Scaling A	Enter value for each axis separately	
Fーシ Tool	Tool diameter	Enter tool diameter	

Operating Parameter List－cont＇d．

Parameter	Meaning	Function／Effect	Setting
Counting direction A	Normal（Direction：Positive）	Inverse（Direction：Negative）	

$F:$,	Signal period of encoder A （Period：） $2,4,10,20,40,100,200$

	Subdivision of the encoder signals \mathbf{A} （Subdivision：） $4,2,1,0.8,0.5,0.4,0.2,0.1$

Ful：：：：－niz Compensation	Linear error compensation＊）A － $99999<$ P41＜＋ $99999[\mu \mathrm{~m} / \mathrm{m}]$		
F－らき，「こF	Reference marks A	One reference mark	5
		Distance－coded with 500 ＊GP （GP＝grating period）	S＇s
		Distance－coded with 1000 ＊GP （e．g．for LS 303 C／LS 603 C）	
		Distance－coded with 2000 ＊GP	（1）
F゙ージミ：EM－ Encoder	Encoder monitoring A	Monitoring off（Alarm Off）	Finkin
		Monitoring on（Alarm On）	
$F-1$	Axis display A （Axis）	Display measured position	Fix－：
		Do not display measured position／ no encoder	－n－M，M－

A These operating parameters must be entered separately for each axis．
＊）Determine the entry value for P41
Example：Displayed measuring length $L_{a}=620.000 \mathrm{~mm}$
Actual length（determined with，for example，the VM 101 comparator
system from HEIDENHAIN）$L_{t}=619.876 \mathrm{~mm}$
Length difference $\Delta L=L_{t}-L_{a}=-124 \mu m$
Compens．factor $k: k=\Delta L / L_{a}=-124 \mu \mathrm{~m} / 0.62 \mathrm{~m}=\mathbf{- 2 0 0}[\mu \mathrm{m} / \mathrm{m}]$

Parameter Settings for HEIDENHAIN Linear Encoders

Model			P43	Display step （unit：P01）		Subdi－ vision P32
LS 303	20	one	single	0.005	0.0002	4
LS 603 C	20	dist．c．	1000	0.01	0.0005	2
LB 3xx	100	one	single	$\begin{gathered} 0.025 \\ 0.05 \\ 0.1 \end{gathered}$	$\begin{aligned} & 0.001 \\ & 0.002 \\ & 0.005 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \\ & 1 \end{aligned}$

Example：Linear encoder with signal period s $=20 \mu \mathrm{~m}$
Desired display step $a=0.005 \mathrm{~mm}$
Subdivision P32 $=0.001 * \mathbf{s} / \mathrm{a}=4$

Rear Panel

Inputs for HEIDENHAIN linear encoders (ND 510: 2, ND 550: 3) with sinusoidal output signals $\left(7 \mu A_{p p}\right.$ to $\left.16 \mu A_{p p}\right)$, Connecting cable max. $20 \mathrm{~m}(66 \mathrm{ft})$, Input frequency max. 50 kHz with $6 \mathrm{~m} / 20 \mathrm{ft}$ cable (35 kHz with $10 \mathrm{~m} / 32.8 \mathrm{ft}$, 20 kHz with $20 \mathrm{~m} / 66 \mathrm{ft})$

Power switch
Ground terminal

Installation

You can mount the display unit on a surface using M4 screws, or on a tilting base from HEIDENHAIN (Id.-Nr. 281619 01).
(See illustration at right)

Power Connection

Voltage range: 100 V to $240 \mathrm{~V}(-15 \%$ to $+10 \%)$; ; frequency: 48 Hz to 62 Hz ; power consumption: ND510: 9 W , ND550: 12 W ; line fuse: F 1 A (in unit).

\triangle

WARNING - Electric Shock Danger
Grounding conductor required. Voltage may be present on the housing if a grounding conductor is not provided or is interrupted.
Electrical outlets must have a grounding contact.
Connecting cable and extension cable must have a ground wire.
Connections should only be engaged or disengaged when the power is off.
Do not open the housing unless the power cord is unplugged.

To increase electromagnetic compatibility: Connect the ground terminal on the rear panel to the star point of machine ground. Minimum crosssection of the connecting cable: $6 \mathrm{~mm}^{2}$

Ambient Conditions

Temperature range	Operation: $0^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.113^{\circ} \mathrm{F}\right)$
	Storage: $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-32^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$

Rel. humidity Annual average: $<75 \%$; maximum: $<90 \%$
Weight $\quad 2.3 \mathrm{~kg}$

DR. JOHANNES HEIDENHAIN GmbH

Dr.-Johannes-Heidenhain-Straße 5
D-83301 Traunreut, Deutschland
(08669) 31-0

FAX (08669) 5061
Service (08669) 31-1272
TNC-Service (08669) 31-1446
FAX (08669) 9899

