(d)HEIDENHAIN

User's Manual

ND 281 NDP 281

Measured value display

Display of actual value and input
(7-segment LED, 9 decades with algebraic sign)

Numerickeypad with decimal point

Key	Function	Indicator	Meaning
ENT	- Set datum - Transfer input value - Leave parameter list	REF	Reference mark has been traverseddisplay stores datum points in nonvolatile memory Blinking: display is waiting for ENT or CL to be depressed
+1/12	- Select datum - Page backwards in parameter list		
MOD	- Start series of measurements - Switch display for series of measurements - Start measured value output "PRINT" - Select parameter after switch-on - Page forward in parameter list	in.	Position values in inches
		+1 / 2	Selected datum point
		PRINT	Blinking: Display is waiting for ENT to be depressed for data output
		SET	Blinking: Display is waiting for input
CL	- Abort entry / clear display - CL plus MOD: select parameter list - CL plus number: select parameter		values
		$\langle 1=1>$	Sorting and tolerance checking: measured value smaller than lower sorting limit / within the sorting limits / greater than upper sorting limit
-	- Algebraic sign - Page backwards through parameter settings		
		MIN/MAX/ DIFF / ACTL	Series of measurements: Minimum / maximum / greatest difference (MAX-MIN) / current measured value Blinking: Confirm selection or deselect function
\bullet	- Decimal point - Page forward through parameter settings		
		START	Series of measurements is running Blinking: Display is waiting for signal to start series of measurements

Items delivered with ND 281	
ND 281	Measured value display unit,
bench-top design	

This manual is for the measured value display
units ND 281 and NDP 281 with the following software number or higher:

24611010

The software number is indicated on a label on the rear panel.
Working with the ND Display Units
Position Encoders and Reference Marks 6
Switch-On, Crossing Over the Reference Marks 7
Datum Setting 8
Finding Minimum and Maximum Values 9
Sorting and Tolerance Checking 12
Measured Value Output 13
Display Freeze 14
Error Messages 15
Installation and Specifications
Rear Panel 17
Accessories 17
Mounting 18
Power Connection 19
Operating Parameters 20
List of Operating Parameters 22
Linear Encoders 25
RS-232-C/V. 24 Interface (X31) 28
Switching Inputs and Outputs EXT (X41) 34
Distance-To-Go Mode 39
Specifications 40
Dimensions 41

Position Encoders and Reference Marks

The ND 281 and NDP 281 display units are primarily intended for use with HEIDENHAIN MT length gauges. These length gauges have one reference mark. The scales of other photoelectric linear encoders (see "Linear Encoders") can contain one refereence mark or several distance-coded reference marks.

If there is an interruption of power, the relationship between the position of the length gauge and the displayed position value is lost. The reference marks on the position encoders and the REF reference mark evaluation feature enable the display unit to quickly re-establish this relationship again when the power is restored.

When a reference mark is crossed over, a signal is generated which identifies that position as a reference point. At the same time, the display unit restores the relationship between length gauge position and display values which you last defined by setting the datum.

If the linear encoders have distance-coded reference marks, you only need to traverse a maximum of 20 mm to restore the datum.

Reference marks on linear encoders

Switch-On, Crossing Over the Reference Marks

Turn on power.

(Switch located on rear panel.)

- E: E * is displayed.
- Indicator REF is blinking.

ENT. . .CL

- The position value that was last assigned to the reference mark position is displayed.
- REF indicator lights up.
- Decimal point is blinking.
5.697

For automation purposes, crossing over the reference marks and the display ENT ... CL can be disabled with parameter P82.

REF Mode

Crossing over the reference marks automatically switches the display to REF mode: The last assignment of display values to length gauge positions is stored in nonvolatile memory.

* Press the CL key if you choose not to cross over the reference marks. Note that, in this case, the relationship between length gauge position and display value will be lost if the power is interrupted or if the unit is switched off.

Datum Setting

The datum setting procedure assigns a display value to a known position. With the ND 200 series, you can set two separate datum points.
There are several ways to set the datum:

- Enter a numerical value, or
- Transfer a value from an operating parameter (see P79, P86), or
- By external signal

You can switch between datums 1 and 2 as desired. Datum 2 can be used, for example, for working with incremental dimensions.

When you switch back to datum 1 , the display unit resumes display of the MT's actual position.

Without datum setting: unknown assignment of measured values to positions

Finding Minimum and Maximum Values From a Series of Measurements

After a series of measurements has been started, the display transfers the first measured value to the memory for minimum and maximum values. Every 0.55 ms , the display compares the current measured value with the memory contents: A new value is stored if it is greater than the stored maximum value or smaller than the stored minimum value. At the same time, the display calculates and stores the difference DIFF between the current MIN and MAX values.

Display	Meaning
MIN	Minimum value from the series of measurements
MAX	Maximum value from the series of measurements
DIFF	Difference MAX - MIN
ACTL	Current measured value

Starting the series of measurements and selecting the display

You can start the series of measurements either by pressing MOD and selecting the desired display - as described on the following pages - or by external signal over the switching inputs at the D-sub connection EXT (X41, see page 34). When a series of measurements is started, the internal MIN/ MAXIDIFF memory is reset.

Series of measurements: The MIN, MAX and DIFF values of an uneven surface

Example: Series of measurements for determining eccentricity e

Starting a series of measurements

Indicator preselection

Press MOD to start the series of measurements and select the display with the indicators.
Operating parameter P86 allows you to define which indicator is displayed first when MOD is pressed.

Switching between MIN, MAX, DIFF and ACTL displays

It is not possible to switch between the displays as described below if the switching input for external control of the series of measurements (pin 6 on D-sub connection EXT) is active.

As an alternative, you can select the display with operating parameter P21 (see "Operating Parameters").

The display now shows the smallest value measured during the current series of measurements.

Starting a new series of measurements

Ending a series of measurements

Sorting and Tolerance Checking

In the sorting and tolerance checking mode, the display unit compares the displayed value with the programmed upper and lower sorting limits. The sorting and tolerance checking mode is enabled and disabled with operating parameter P17.

Entering sorting limits

Sorting limits are entered in operating parameters P18 and P19 (see "Operating Parameters").

Sorting signals

The indicators and switching outputs at D-sub connection EXT (X41, see page 34) sort the display value into one of three classes.

Display Meaning

$=$	Measured value is within sorting limits
$<$	Measured value is smaller than lower sorting limit
$>$	Measured value is greater than upper sorting limit

Operating parameters for sorting and tolerance checking

Fi	Sorting ON/OFF
F	Lower sorting limit
F	Upper sorting limit

[^0]
Measured Value Output

For technical information on the RS-232-CN. 24 data interface (X31), information on the data format, etc, see the chapter "RS-232-CN 24 Interface ($\times 31)^{\prime \prime}$.

Measured values can be output over the RS-232-CN. 24 interface (X31), for example to a printer or PC.

There are several ways to start measured value output:

- Press MOD repeatedly until the indicator PRINT blinks, then start measured value output with ENT;
or
- Input the command Ctrl B over the RXD input of the RS-232-CN. 24 interface (X31);
or
$>$ Input a signal for measured data output (Pulse or Contact) at the D-sub connection EXT (X41).

The RS-232-CN. 24 interface (X31) enables you to connect a printer or a PC to your display unit

Display Freeze

With the latch command, the display can be stopped for any period of time. The internal counter remains active.
Parameter P23 selects the "display freeze" mode and offers three settings:

- Concurrent display, no display freeze-the display value
is the current measured value.
- Frozen display - display value is frozen and is updated with each signal for measured value output.
- Frozen/concurrent display - display remains frozen as long as the latch signal is present; after the signal, the display resumes continuous display of the current measured values.

Error Messages

Display	Problem
	The external device is not connected, no DSR signal (only displayed once! **

Display	Problem
Erin If these errors persist, contact your HEIDENHAIN service agency.	
	Check the operating parameters. If this error persists, contact your HEIDENHAIN service agency.

Other error displays

If all decimal points light up, the measured value is too great or too small:
> Set a new datum
or
> Traverse back.
If all sorting signals light up, the upper sorting limit is smaller than the lower limit:

- Change operating parameters P18 and/or P19.

To clear error messages:

When you have removed the cause of the error:
> Clear the error message with the CL key.

[^1] error signal (pin 19) at D-sub connection EXT is active.

Rear Panel

wh
Connections $\mathrm{X} 1, ~ X 31$ and X 41 comply with recommendations in DIN VDE 0160, 5.88. for separation from line power.

Encoder input X1

HEIDENHAIN flange socket, 9-pin	
Input signals	$\sim 7 \mu \mathrm{~A}_{\text {PP }}$ to $16 \mu \mathrm{~A}_{\text {PP }}$
Maximum encoder cable length	ength $\quad 30 \mathrm{~m}(98.5 \mathrm{ft})$
Maximum input frequency	100 kHz
RS-232-C/V. 24 data interface (X31)	
25 -pin D-sub connection (female)	
Switching inputs and outputs EXT (X41)	
25-pin D-sub connection (male)	
Accessories	
Connecting elements	
Connector (female) 25	25-pin for D-sub connection X41 Id.-Nr. 249154 ZY
Connector (male) 25	25-pin for D-sub connection X31 Id.-Nr. 245739 ZY
Data interface cable complete	$3 \mathrm{~m}(9.9 \mathrm{ft}), 25$-pin for D -sub connection X31, Id.-Nr. 27454501

ND 281

NDP 281
Input X1 for HEIDENHAIN linear encoder

Mounting

M4 screws are required for securing the ND 281 display unit from below (see illustration at right).

The NDP 281 display unit is designed for panel mounting (see "Dimensions" for the mounting dimensions).

ND 281 display units are stackable. Adhesive plug-in feet (supplied with your unit) prevent the stacked units from being moved out of place.

Hole positions for mounting the ND display unit

Alternatives of stacking the display units

Power Connection

Electric shock danger

Unplug the power cord before opening the housing. Connect the grounding conductor. Do not interrupt the grounding conductor.

Potential component damage

Do not engage or disengage any connections unless the power is off. Only use original type fuses.

To increase the noise immunity, it is recommended that you attach the ground terminal to, for example, the central ground point of the machine. (Minimum cross section $6 \mathrm{~mm}^{2}$.)

Line voltage range: 100 Vac to 240 Vac
A voltage selector is therefore not necessary.
Minimum cross section of the power cord: $0.75 \mathrm{~mm}^{2}$

ND 281

The rear panel of this unit contains a connecting jack for a power cord with Euro connector (power cord supplied with the delivery).

NDP 281

The rear panel of this unit features a terminal $\langle\times 51$) for power connection (see illustration to the right). Be careful to wire the connecting cable with the correct polarity.

NDP 281: Terminal for connecting the power cord

Operating Parameters

Operating parameters allow you to modify the operating characteristics of your ND display unit and define the evaluation of the encoder signals.

Operating parameters are designated by:

- the letter P.
- a two-digit parameter number, and
- an abbreviation.

Example: Fin
The factory settings of the operating parameters are indicated in the parameter list (starting on page 22) in boldface type.
Parameters consist of "user parameters" and "protected operating parameters," which can only be accessed by entering a code number.

User parameters

User parameters are operating parameters that can be changed without entering the code number:

```
P00 to P30, P50, P51, P79, P86
```

The functions of the individual user parameters are detailed in the list of operating parameters (starting on page 22).

To access a user parameter ...

... after switching on the display:

... during operation:

To go directly to a user parameter:

Code number for changing protected operating parameters

If you wish to change protected operating parameters, you must first enter the code number 95 148:
> Select the user parameter

- Enter the code number 95148.
- Confirm entry with ENT.

Parameter P30 appears on the display. By paging through the list of operating parameters you can display - and, if necessary, change - each protected operating parameter and, of course, each user parameter.

Once you have entered the code number, the protected operating parameters remain accessible until the display unit is switched off.

Functions for changing the operating parameters

A changed parameter is stored as soon as you

- leave the list of operating parameters or
- page forward or backward after the change.

Parameter	Settings／Function
F－in	Enter code number 95148 to change protected operating parameters
乐：	Unit of measurement Display in millimeters
	Display in inches
－\％－¢	Sorting and tolerance checking Sorting into classes ON
	Sorting into classes OFF EiS
FiG ESS	Lower limit for sorting
－S SG	Upper limit for sorting
	Display for series of measurements （MIN）MAX（ACTL（DIFF）
	Display stop for measured value output Concurrent display，no display freeze； the display value is the current actual value Frozen display；hold display until next measured value output Frozen／concurrent display；freeze display as long as Pulse／Contact for measured value output is present

Parameter		Settings／Function	
P－	$\mathrm{Z}^{\prime} \mathrm{IV}^{-}$	Counting direction Positive counting direction with positive direction of traverse －－－ Negative counting direction with positive direction of traverse	OM:
Fご心		$\begin{aligned} & \begin{array}{l} \text { Subdivision of the } \\ \text { encoder signals } \\ 400 / 320 / 256 / 200 / 160 / 128 / 100 \\ 80 / 50 / 40 / 20 / 10 / 8 / 5 / 4 / 2 / 1 \\ 0.8 / 0.5 / 0.4 / 0.2 / 0.1 \end{array} \end{aligned}$	
だき！	身	Counting mode $\frac{0-1-2-3-4-5-6-7-8-9}{\frac{0-2-4-6-8}{0-5}}$	$\begin{array}{r}i \\ E \\ \hline\end{array}$
9	WE	Decimal places $1 / 2 / 3 / 4 / 5 / 6$ （up to 8 with display in inches）	

Parameter	Settings / Function
P-i i	Linear error compensation - $99999[\mu \mathrm{~m} / \mathrm{m}]<\mathrm{P} 41<+99999[\mu \mathrm{~m} / \mathrm{m}]$
Factory setting:	
Example: Deter Displayed length Actual length (as for example, with comparator syst from HEIDENHA Difference	mine input value for $\mathbf{P 4 1}$
Compensation factor k ($=\mathrm{P} 41$):$k=\Delta \mathrm{L} / \mathrm{L}_{\mathrm{d}}=-124 \mu \mathrm{~m} / 0.62 \mathrm{~m} \ldots \ldots . . \mathbf{k}=\mathbf{- 2 0 0}[\mu \mathrm{m} / \mathrm{m}]$	
	Reference marks
	Distance-coded with $500 \cdot$ GP (GP: grating period)
	Distance-coded with 1000 - GP (e.g. for HEIDENHAIN LS ...C)
	Distance-coded with 2000 • GP
	Reference mark evaluation Evaluate reference marks
	Do not evaluate reference marks

Linear Encoders

Display step with linear encoders

The display step depends on the signal period of the encoder and the subdivision of the encoder signals.

You can select a specific display step by adapting the following operating parameters:

- Subdivision (P32)
- Counting mode (P33)
- Decimal places (P38)

Example

Linear encoder with a signal period of $10 \mu \mathrm{~m}$
Desired display step 0.0005 mm
Subdivision (P32) 20
Counting mode (P33) 5
Decimal places (P38) 4
The tables on this page and on the next will help you to select the appropriate parameter settings.

Display step, signal period and subdivision for linear encoders

Display step		Signal period [$\mu \mathrm{m}$]							
		$\begin{array}{r} 2 \\ \text { P32: } \end{array}$	$\stackrel{4}{4}$	10		40	100	200	2800
0.000005	0.0000002	400	-	-	-	-	-	-	-
0.00001	0.0000005	200	-	-	-	-	-	-	-
0.00002	0.000001	100	-	-	-	-	-	-	-
0.00005	0.000002	40	80	-	-	-	-	-	-
0.0001	0.000005	20	40	100	200	-	-	-	-
0.0002	0.00001	10	20	50	100	-	-	-	-
0.0005	0.00002	4	8	20	40	80	-	-	-
0.001	0.00005	2	4	10	20	40	100	-	-
0.002	0.0001	1	2	5	10	20	50	100	-
0.005	0.0002	0.4	0.8	2	4	8	20	40	-
0.01	0.0005	0.2	0.4	1	2	4	10	20	-
0.02	0.001	-	-	0.5	1	2	5	10	-
0.05	0.002	-	-	0.2	0.4	0.8	2	4	256
0.1	0.005	-	-	0.1	0.2	0.4	1	2	128
0.2	0.01	-	-	-	-	-	-	-	64

Parameter settings for HEIDENHAIN linear encoders

Encoder	Signal period [$\mu \mathrm{m}$]	Ref. marks P43	Millimeters Disp. step [mm]	Subdiv P32	Count. P33	Decim. P38	Inches Disp. step [inch]	Subdiv. P32	Count. P33	Decim. P38
$\begin{aligned} & \text { LIP } 40 x \\ & \text { CP } 60 \end{aligned}$	2	single	0.001	2	1	3	0.00005	2	5	5
			0.0005	4	5	4	0.00002	4	2	5
			0.0002	10	2	4	0.00001	10	1	5
			0.0001	20	1	4	0.000005	20	5	6
			0.00005	40	5	5	0.000002	40	2	6
			0.00002	100	2	5	0.000001	100	1	6
			0.00001	200	1	5	0.0000005	200	5	7
			0.000005	400	5	6	0.0000002	400	2	7
LIP 101 VM 101	4	single	0.001	4	1	3	0.00005	4	5	5
			0.0005	8	5	4	0.00002	8	2	5
			0.0002	20	2	4	0.00001	20	1	5
			0.0001	40	1	4	0.000005	40	5	6
			0.00005	80	5	5	0.000002	80	2	6
			0.00002	200	2	5	0.000001	200	1	6
			0.00001	400	1	5	0.0000005	400	5	7
$\begin{aligned} & \text { LIF } 101 \\ & \text { LF } 401 \end{aligned}$	4	single	0.001	4	1	3	0.00005	4	5	5
			0.0005	8	5	4	0.00002	8	2	5
			0.0002	20	2	4	0.00001	20	1	5
			0.0001	40	1	4	0.000005	40	5	6
MT xx	10	single	0.001	10	1	3	0.00005	10	5	5
LID $x \times x$		single	0.0005	20	5	4	0.00002	20	2	5
LID xxxC		2000	0.0002	50	2	4	0.00001	50	1	5
LS 103/103C		sgl./1 000	0.0001	100	1		0.000005	100	5	6
LS 405/405C		sgl./1 000								
ULS $x \times x / 10$		single								

Parameter settings for HEIDENHAIN linear encoders (continued)

Encoder	Signal period [$\mu \mathrm{m}$]	Ref. marks P43	Millimeters Disp. step [mm]	Subdiv. P32	$\begin{aligned} & \text { Count. } \\ & \text { P33 } \end{aligned}$	$\begin{aligned} & \text { Decim. } \\ & \text { P38 } \end{aligned}$	Inches Disp. step [inch]	Subdiv. P32	Count. P33	Decim. P38
LS 106	20	single	0.01	2	1	2	0.0005	2	5	4
LS 106C		1000	0.005	4	5	3	0.0002	4	2	4
LS 406		single	0.002	10	2	3	0.0001	10	1	4
LS 406C		1000	0.001	20	1	3	0.00005	20	5	5
LS 706		single	0.0005	40	5	4	0.00002	40	2	5
LS 706C		1000								
ULS/20		single								
$\begin{aligned} & \text { LIDA } 190 \\ & \text { LB } 101 \end{aligned}$	40	single	0.002	20	2	3	0.0001	20	1	4
			0.001	40	1	3	0.00005	40	5	5
			0.0005	80	5	4	0.00002	80	2	5
$\begin{aligned} & \text { LIDA } 2 x x \\ & \text { LB } 3 x x \end{aligned}$	100	single	0.01	10	1	2	0.0005	10	5	4
			0.005	20	5	3	0.0002	20	2	4
			0.002	50	2	3	0.0001	50	1	4
			0.001	100	1	3	0.00005	100	5	5
LIM 102	12800	single	0.1	128	1	1	0.005	128	5	3
			0.05	256	5	2	0.002	256	2	3

Example

Your encoder:
Desired display step:

> MT 101
> $0.001 \mathrm{~mm}(1 \mu \mathrm{~m})$

Parameter settings:

$$
\begin{aligned}
\mathrm{P} 01 & =\mathrm{mm} \\
\text { P43 } & =\text { single } \\
\text { P32 } & =10 \\
\text { P33 } & =1 \\
\text { P38 } & =3
\end{aligned}
$$

RS-232-C/V. 24 Interface (X31)

The RS-232-CN. 24 interface (X31) of your display unit enables you to output measured data in ASCII format, for example to a printer or PC .

Connecting cable

You can use a connecting cable with full wiring (figure at upper right) or simplified wiring (below right). A cable with full wiring is available from HEIDENHAIN (Id.-Nr. 274545 ...). On this type of cable, pin 6 and pin 8 are additionally connected over a jumper.

Maximum cable length: $20 \mathrm{~m}(66 \mathrm{ft})$

Fullwiring

Simplified wiring

Pin layout RS-232-C/V. 24 (X31)

Pin	Signal	Assignment
1	CHASSIS GND	Chassis ground
2	TXD	Transmitted data
3	RXD	Received data
4	RTS	Request to send
5	CTS	Clear to send
6	DSR	Data set ready
7	SIGN. GND	Signal ground
8 to 19	-	Not assigned
20	DTR	Data terminal ready
21 to 25	-	Not assigned

Levels for TXD and RXD

Logic level	Voltage level
Active	-3 V to -15 V
Not active	+3 V to +15 V

Levels for RTS, CTS, DSR and DTR

Logic level	Voltage level
Active	+3 V to +15 V
Not active	-3 V to -15 V

Data format and control characters

Operating parameters for measured value output

Parameter	Function
	Baud rate

Display freeze during measured value output

In operating parameter P 23 , you can specify how the measured value output signal will affect the display unit.
Display freeze during measured value output

Concurrent display, no display freeze:

The display value is the current measured value
Frozen display: Display is stopped
(frozen) and updated by every
measured value output signal
Frozen/concurrent display: Display is
frozen as long as a measured value output signal is present

To output measured values with the PRINT function:

> Press MOD repeatedly,
until the indicator PRINT blinks.
Start measured value output with ENT.
Duration of measured value transfer
$t_{\mathrm{D}}=\frac{187+(11 \cdot \text { number of blank lines })}{\text { baud rate }}[\mathrm{s}]$

Indicator preselection

Operating parameter $\mathbf{P 8 6}$ allows you to define which indicator is displayed first when MOD is pressed.

Measured value output after signal through the "Contact" or "Puise" inputs

To start measured value output through the EXT interface (X41) you can either:

- Close the "Contact" input (pin 23 on X41) against 0V, for example with a simple switch (make contact);
or
> Close the "Pulse" input (pin 22 on $\times 41$) against 0 V , for example by triggering the input with a TTL logic device (such as SN74LSxx).

Characteristic times for measured value output

Process	Time
Minimum duration of "Contact" signal	$t_{\mathrm{e}} \geq 7 \mathrm{~ms}$
Minimum duration of "Pulse" signal	$t_{\mathrm{e}} \geq 1.5 \mu \mathrm{~s}$
Storage delay after "Contact"	$t_{1} \leq 5 \mathrm{~ms}$
Storage delay after "Pulse"	$t_{1} \leq 1 \mu \mathrm{~s}$
Measured value output after	$t_{2} \leq 57 \mathrm{~ms}$
Regeneration time	$t_{3} \geq 0$

fulh The time for measured value output $\left(t_{2}\right)$ is the longest during a DIFF series of measurements.

Duration of measured value transfer

$t_{\mathrm{D}}=\frac{187+(11 \cdot \text { number of blank lines })}{\text { baud rate }}[\mathrm{s}]$

EXT(X41)

EXT(X41)

Triggering the "Contact" and "Pulse" inputs at D-sub connection EXT (X41)

Signal transit times for measured value output after "Pulse" or "Contact"

Measured value output after signal "Ctrl B"

If the display unit receives the control character STX (Ctrl B) over the RS-232-CN. 24 interface (X31), it outputs the current measured value over the interface.
> Transfer the control character Ctrl B over the RXD line of the RS-232-CN. 24 interface (X31).

Characteristic times for measured value output

Process	Time
Storage delay	$t_{1} \leq 1 \mathrm{~ms}$
Measured value output after	$t_{2} \leq 22 \mathrm{~ms}$
Regeneration time	$t_{3} \geq 0$

BASIC program for measured value output with "CtrlB"

Switching Inputs and Outputs EXT (X41)

Inputs at D-sub connection EXT (X41)

Pin	Function
1,10	0 V
2	Reset display to zero, clear error message
3	Set display to the value selected in P79
4	Ignore reference mark signals
5	Start series of measurements
6	Externally select display value for series of
7	Display MiN value of series of measurements
8	Display MAX value of series of measurements
9	Pulse: Output measured value
22	Contact: Output measured value
23	Enable or disable REF mode (current REF status is changed) 25
$12,13,24$	Do not assign
$11,20,21$	Vacant

Special case: Display current measured value ACTL

If you wish to display the current measured value ACTL of a series of measurements, note for inputs 7, 8 and 9:
Either none or more than one of these inputs must be active.

Inputs

Input signals

Internal pull-up resistor $1 \mathrm{k} \Omega$, active with low level
Trigger by making contact against 0 V or by low level signal over TTL logic device

Delay for set/zero reset: $t_{d} \leq 2 \mathrm{~ms}$
Minimum pulse duration for all signals: $t_{\text {min }} \geq 22 \mathrm{~ms}$

The duration of $t_{\min }$ is prolonged if functions are active (for example, series of measurements with DIFF value display).

Signal level of inputs

Outputs

Output signals

Open collector outputs, active with low level
Delay until signal output: $t_{\mathrm{d}} \leq 22 \mathrm{~ms}$
Signal duration of zero crossover signal: $t_{0} \geq 180 \mathrm{~ms}$

The duration of t_{d} is prolonged if functions are active (for example, series of measurements with DIFF value display).

Signal level of outputs

Setting and zero resetting the display

With an external signal, you can set the display to the value selected in parameter P 79 (pin 3) or reset each axis to zero (pin 2).

Enabling and disabling REF mode

Operating parameter P85 allows you to activate the input (pin 25) which will be used for setting the display externally to REF mode when the unit is switched on or when the power is restored after an interruption. The next signal deactivates REF mode again (switchover function).

Ignoring reference mark signals

If this input (pin 4) is active, the display will ignore all reference mark signals. A typical application of this function is for measuring lengths with a rotary encoder and spindle; in this case, a cam switch releases the reference mark signal at a preset position.

Externally selecting MIN/MAX

Starting a series of measurements

Switching the display between MIN/MAX/DIFF/ACTL.

You can activate the operating mode for finding minimum and maximum values from a series of measurements with an external signal (pin 6, low-level signal must be present continuouslyl. The setting selected with MOD or operating parameter P 21 is disabled. You can switch to MIN/MAX/DIFF/ ACTL display (pins 7, 8, 9, low-level signal must be present continuously) and START (pin 5, Pulse) a new series of measurements only by external signal over the switching inputs.

Switching signals

As soon as the trigger points defined in parameters are reached, the corresponding outputs (pins 15,16) are activated. You can set up to two trigger points. The switching point "zero" has a separate output (see "Zero crossover").

Signals for sorting and tolerance checking

If the sorting limits defined in parameters are exceeded, the corresponding outputs (pins 17, 18) are activated.

Signals	Operating parameters	Pin
Switching signals	P62, switching limit 1	15
	P63, switching limit 2	16
Sorting signals	P18, lower sorting limit	17
	P19, upper sorting limit	18

Zero crossover

The display value "zero" activates the corresponding output (pin 14). Minimum signal duration is 180 ms .

Time curve of a signal at pin 15 for trigger limit $(A 1)=5 \mathrm{~mm}, t_{d} \leq 22 \mathrm{~ms}$

Switching signal for errors

The display unit permanently monitors functions such as measuring signal, input frequency, and data output, and displays an error message if it detects an error.
If errors occur that seriously influence measurement or data output, the display unit activates a switching output. This feature allows monitoring of automated processes.

Operating Mode for Displaying Distance-To-Go

Normally, the display shows the actual position of the encoder. However, it is often more helpful to display the remaining distance to an entered nominal position - especially when you are using the display unit for machine tools and automation purposes. You can then position simply by traversing to display value zero.

You can access the distance-to-go display by entering the code number 246582.

Display	Meaning

"Traversing to zero" with distance-to-go display

- Select datum point 2 .
- Enter the nominal position.
> Move the axis until the display value is zero.

Function of switching outputs A1 and A2

In the operating mode for displaying distance-to-go, switching outputs A1 (pin 15) and A2 (pin 16) have a different function: they are symmetrical to the display value zero. For example, if a switching point of 10 mm is entered in P62, output A1 switches at both +10 mm and -10 mm . The figure below shows output signal A1 when approaching zero from the negative direction.

Time curve of a signal for switching limit $(\mathrm{A} 1)=10 \mathrm{~mm}, t_{\mathrm{d} 1} \leq 22 \mathrm{~ms}$, $t_{\mathrm{d} 2} \leq 180 \mathrm{~ms}$

Specifications

Housing	ND 281 Bench-top design, cast-metal housing $239 \times 84.6 \times 224 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$
	NDP 281 For panel mounting using supplied mounting frame, cast-metal housing $281 \times 110 \times 196 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$
Operating temperature	0° to $45^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.113^{\circ} \mathrm{F}\right)$
Storage temperature	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Weight	Approx. 1.5 kg
Relative humidity	$<75 \%$ annual average < 90% in rare cases
Power supply	Primary-clocked power supply $100 \vee$ to $240 \vee(-15 \%$ to $+10 \%)$ 48 Hz to 62 Hz Surge voltage rating: class 2 according to VDE 0160, 5.88
Line fuse	F 1 A inside the housing
Power consumption	Typ. 8 W
Electromagnetic compatibility	Class B according to EN 55022

Noise immunity	As per IEC 801-4, intensity 4
Protection	IP40 according to IEC 529
Encoder inputs	For encoders with sinusoidal output signals (7 to $16 \mu \mathrm{App}$); Reference mark evaluation for distance-coded and single reference marks
Input frequency	Max. 100 kHz with 30 m cable
Display step	Adjustable (see "Linear Encoders")
Datum points	Two
Functions	- Series of measurements - Sorting and tolerance checking - Switching and sorting signals - Set display and reset display to zero with external signal - Measured value output
$\text { RS-232-C/V. } 24$ Interface	Baud rates: 110, 150, 300, 600, 1200, 2400, 4800,9600 baud

ND 281: Dimensions in mm/inches

NDP 281: Dimensions in mm/inches

Opening for panel mounting (
Minimum installation depth 297 mm (11.7 in .)

DR. JOHANNES HEIDENHAIN GmbH
Dr.-Johannes-Heidenhain-Straße 5
D-83301 Traunreut, Deutschland
雨 (08669) 31-0
Fax (08669) 5061
6. Service (08669) 31-1272

TNC-Service (08669) 31-1446
[$\operatorname{BAX}(08669) 9899$

[^0]: Example: Upper sortinglimit $=26.02 \mathrm{~mm}$
 Lower sorting limit $=26.00 \mathrm{~mm}$

[^1]: * These errors are important for the attached device. The

