HEIDENHAIN

CNC PILOT 640 MANUALplus 620

User's Manual
smart.Turn and
ISO Programming

NC Software
548431-17
68894x-17

Controls and displays

Keys

If you are using a control with touch operation，you can replace some keystrokes with hand gestures．

Keys on visual display unit

Key	Function
Q	Switch the help graphics between outside and inside machining（only during cycle programming）
\square	Select the function in the display unit with the soft key selection key
\square	\triangle

Operating mode keys

Key	Function
國	Select machine operating modes： －Machine －Teach－in －Program run －Reference
$\hat{*}$	Select programming operating modes： －smart．Turn －DIN PLUS－Unit mode －ISO Mode －Simulation －AWG
인	Select tool data and technology data： －Tool editor －Technology editor
回	Select Organization operating mode： －Machine parameters －Transfer －Project management －Network connection －Diagnostics

Numeric keypad

Key	Function
0	Number keys 0 to 9 ： －Enter numbers －Operate the menu
	Insert a decimal point
－／＋	Switch over between positive and negative values
Esc	Escape －Cancel the dialog －Navigate to the top of the menu
ws	Insert －Confirm a dialog －Create a new NC block in the editor
DEL	Delete Delete the selected range
区	Backspace Erase the character to the left of the cursor
CE	Clear Entry Clear error messages in the Machine operating modes
＞	Enable dialog input fields for further input
ent	Enter Confirm the entry

Navigation keys

Key		Function
1	\downarrow	Move the cursor up or down
		Move the cursor to the left or to the right
PGUP	PGON	Page Up and Page Down Scroll back or forward one screen or dialog page
HOME	END	Go to beginning of program/list or end of program/list

smart.Turn keys

Special keys

Key	Function
ERR	Error
	Open the error window
CALC	Calculator
	Start the integrated calculator
i	Information
	- Show additional information in the parameter editor - Call TURNguide
Gото	Go to
	- Select alternative input
	- Activate the alphabetic keyboard
	Print Screen
	Create a screenshot
3	DIADUR
	- Use the function in connection with the Remote Desktop Manager
	- Open the HEROS menu

Machine operating panel

Key	Function
(17) 닥	Start or stop machining
\%	Stop the feed rate
$\stackrel{0}{\square}$	Stop the spindle
(ib) 3	Switch on the spindle
© $\widehat{\square}$	Spindle jog
	The spindle rotates as long as you press the key.
$][$	Move the axes (e.g., in $+X$ or $+Y$ direction)
(Change the spindle (machine-dependent)
	Change the slide (machine-dependent)

Operating panel of the control

TE 745T with handwheel

TE 725T FS

TE 361T

Contents

1 Fundamentals. 31
2 First steps 39
3 NC Programming 61
4 smart.Turn Units (Option 9) 97
5 smart.Turn Units for the Y Axis (Option 9 and Option 70) 235
6 DIN/ISO Programming 273
7 Touch Probe Cycles. 577
8 ISO Programming for the Y Axis (Option 70). 627
9 TURN PLUS (Option 63) 681
10 B Axis (Option 54) 721
11 Overview of Units (Option 9) 729
12 Overview of G Codes 741
1 Fundamentals 31
1.1 About this manual 32
1.2 Software and features 34
Software options 35
New functions of NC software 68894x-17 37
2 First steps 39
2.1 Overview 40
2.2 Switching on the machine 41
2.3 Programming the first workpiece 42
Selecting an operating mode 42
Important controls and displays. 42
Creating a new NC program 42
Setting up the turret list 44
Programming a contour in ICP submode (option 8 or 9) 45
Programming the machining process in smart.Turn (option 9) 47
Closing an NC program 49
Programming a contour in ISO Mode 50
Programming the machining process in ISO Mode 52
TURN PLUS programming (option 63). 58
2.4 NC program verification in the simulation 59
3 NC Programming 61
3.1 smart.Turn and DIN/ISO programming 62
Contour follow-up 62
Structured NC program 63
Linear and rotary axes 65
Units of measure 65
Elements of an NC program 66
Creating a new NC program 67
3.2 Fundamentals: smart.Turn editor 68
Menu structure 68
Parallel editing 69
Screen layout. 69
Selecting the editor functions 70
Editing with active tree view 71
Shared menu items. 72
3.3 Program section code. 80
PROGRAM HEAD section 82
CHUCKING EQUIPMENT section 84
TURRET / MAGAZINE section 85
MANUAL TOOL section 85
Contour group section 85
BLANK section 86
FINISHED PART section. 86
AUX. BLANK section 86
AUXILIARY CONTOUR section. 86
FRONT, REAR SIDE section. 86
LATERAL section 86
FRONT Y / REAR SIDE Y section 86
SURFACE Y section. 87
MACHINING section 88
END code 88
SUBROUTINE section. 88
RETURN code 88
CONST code 89
VAR code 89
SLIDE ALLOCATION code. 90
3.4 Tool programming 91
Setting up a turret list 91
Editing tool entries 93
Multipoint tools 93
Replacement tools 94
3.5 Automatic job 95
4 smart.Turn Units (Option 9) 97
4.1 Units - smart.Turn units 98
Units menu item 98
smart.Turn unit 98
4.2 Units - Roughing 106
Unit G810 Longitudinal roughing in ICP 106
G820 Roughing in ICP unit 108
Unit G830 Contr. parallel in ICP 110
Unit G835 Bidirectional in ICP 111
Unit G810 Roughing, direct longitudnl. 112
Unit G820 Roughing, direct transverse 114
Unit G895 Simultaneous roughing (option 54). 115
4.3 Units - Recessg 119
Unit G860 Contour recess in ICP 119
Unit G869 Recess turning in ICP 120
Unit G860 Contour recess, direct 122
Unit G869 Recess turning, direct 123
Unit G859 Parting 124
Unit G85X Undercutting (H,K,U) 125
Unit G870 ICP Recessing - Recess cycle. 126
4.4 Units - Drilling / Centric 127
Unit G74 Centric drilling 127
Unit G73 Centric tapping 128
Unit G72 Boring, cntrsnkg. 130
4.5 Units - Drillg / Face C, Lateral C, and ICP C. 131
Unit G74 Single hole, front face C 131
Unit G74 Drilling lin. pattern, front face C. 133
Unit G74 Drilling circ. pattern, front face C 135
Unit G73 Tapping, front face C 137
Unit G73 Tapping linear pattern, front face C 138
Unit G73 Tapping circular pattern, front face C 139
Unit G74 Single hole, lat. surface C 141
Unit G74 Drilling lin. patt., lat. surface C. 143
Unit G74 Drilling circ. patt., lat. surface C. 145
Unit G73 Tap hole, lateral surface C 147
Unit G73 Tapping linear pattern, cylindrical C 148
Unit G73 Tapping circ. pattern, lateral surf. C 149
Unit G74 Drilling in ICP C (option 55) 151
Unit G73 Tapping in ICP C (option 55) 152
Unit G72 Boring, entrsinkg ICP C (option 55) 153
Units G75 Bore milling ICP C (option 55) 154
4.6 Units - Drillg / Predrilling, milling in C (option 55) 158
Unit G840 Predrill, contour mill, figure on face in C. 158
Unit G845 Predrill, pocket mill, figure on face in C. 160
Unit G840 Predrill, contour mill, ICP on face in C. 162
Unit G845 Predrill, pocket mill, ICP on face in C 163
Unit G840 Predrill, contour mill, fig. on lateral in C. 164
Unit G845 Predrill, pocket mill, fig. on lateral in C. 166
Unit G840 Predrill, contour mill, ICP on lateral in C. 168
Unit G845 Predrill, pocket mill, ICP on lateral in C. 169
4.7 Units - Finishing 171
Unit G890 Contouring in ICP 171
Unit G890 Contouring, direct longitdnl. 173
Unit G890 Contouring, direct transverse 175
Unit G890 Relief, type E,F,DIN76 - Recess 177
Unit G809 Measuring cut 179
Unit G891 Simultaneous finishing (option 54). 180
4.8 Units - Thread 184
Overview of thread units 184
Handwheel superimposition (option 11) 184
Parameter V: Type of infeed 185
Unit G32 Thread, direct 186
Unit G31 Thread, ICP. 187
Unit G352 API thread. 189
Unit G32 Tapered thread 190
4.9 Units - Millg / C axis, face, C axis, ICP face (option 55) 192
Unit G791 Linear slot, front face 192
Unit G791 Slot in linear pattern, front face 193
Unit G791 Slot in circ. pattern, front face. 194
Unit G797 Face milling C 195
Unit G799 Thread milling, front face C. 196
Unit G840 Contour mllng, figures front face C 197
Unit G84X Pocket mllng, figures front face C. 199
Unit G801 Engraving in C axis on face 201
Unit G840 ICP contour milling, front face C 202
Unit G845 ICP pocket milling, front face C 204
Unit G840 ICP deburring, front face C 206
Unit G797 face milling ICP 207
Unit G847 ICP Troch. contour mllng, front face C 208
Unit G848 ICP Troch. pocket mllng, front face C. 210
4.10 Units - Milling / C axis, lateral, C axis, ICP latrl. (option 55) 212
Unit G792 Linear slot, lat. surface 212
Unit G792 Slot in lin. pattern, lat. surface. 213
Unit G792 Slot in circ. pattern, lat. surface 214
Unit G798 Helical slot milling 215
Unit G840 Contour mllng, figures lat. surf. C 216
Unit G84X Pocket mllng, figures lat. surface C 218
Unit G802 Engraving in C on latrl. surface 220
Unit G840 ICP contour milling, lat. surface C 221
Unit G845 ICP pocket milling, lat. surface C. 222
Unit G840 ICP deburring, lat. surface C. 223
Unit G847 ICP Troch. contour mllng, lat. surf. C 224
Unit G848 ICP Troch. pocket mllng, lat. surf. C. 226
4.11 Units - Spec (special operations) 228
Unit Program beginning (START) 228
Unit C axis ON (option 9) 229
Unit C axis OFF (option 9). 230
Unit Subprogram call. 230
Unit Process logic / Repetition - program section repeat 231
Unit Program end (END) 232
Unit Tilt plane. 233

5 smart.Turn Units for the Y Axis (Option 9 and Option 70)

5.1 Units - Drilling / ICP Y 236
Unit G74 Drilling in ICP Y 236
Unit G73 Tapping in ICP Y 237
Unit G72 Boring, cntrsinkg ICP Y 238
Units G75 Bore milling Y 239
5.2 Units - Drilling / Predrilling, milling in Y 243
Unit G840 Predrill, contour mill, ICP on face in Y. 243
Unit G845 Predrill, pocket mill, ICP on face in Y. 244
Unit G840 Predrill, contour mill, ICP on lateral in Y. 246
Unit G845 Predrill, pocket mill, ICP on lateral in Y 247
5.3 Units - Millg / Y axis, face, Y axis, latrl 249
Unit G840 ICP contour milling on face in Y 249
Unit G845 ICP pocket milling on face in Y. 250
Unit G840 ICP deburring on front face in Y 252
Unit G841 Single surface in Y axis on face 253
Unit G843 Centric polygon, Y axis on face. 254
Unit G803 Engraving in Y axis on face 255
Unit G800 Thread milling on face in Y. 256
Unit G847 ICP Troch. contour mllng, front face Y 257
Unit G848 ICP Troch. pocket mllng, front face Y. 259
Unit G840 ICP contour mill, latrl. surf. Y 261
Unit G845 ICP pocket mill, lateral surf. Y. 262
Unit G840 ICP deburring on lateral surf. Y. 263
Unit G841 Single surface in Y axis, latrl. 264
Unit G843 Centric polygon Y axis, latrl. 265
Unit G804 Engraving in Y on latrl. surface 266
Unit G806 Thread milling, lateral in Y 267
Unit G847 ICP Troch. contour mlling, lat. surf. Y 268
Unit G848 ICP Troch. pocket mlling, lat. surf. Y. 270
6 DIN/ISO Programming 273
6.1 Programming in ISO Mode 274
Geometry and machining commands 274
Contour programming 276
NC blocks of the DIN/ISO program 278
Creating, editing and deleting NC blocks 279
Address parameters 280
Machining cycles 282
Subprograms and expert programs 283
NC program interpretation 283
ISO programs of predecessor controls 284
Geometry menu item. 286
Machining menu item 286
6.2 Definition of workpiece blank 287
Chuck part bar or tube G20-Geo 287
Casting G21-Geo. 287
6.3 Basic elements of turning contour 288
Starting point of turning contour G0-Geo 288
Machining attributes for form elements. 288
Line segment in a turning contour G1-Geo 289
Circular arc of turning contour G2-/G3-Geo 290
Circular arc of turning contour G12-/G13-Geo. 291
6.4 Form elements of turning contour 293
Recess (standard) G22-Geo 293
Recess (general) G23-Geo 295
Thread with undercut G24-Geo 296
Undercut G25-Geo 297
Thread (standard) G34-Geo 300
Thread (general) G37-Geo 301
Bore hole (centric) G49-Geo. 303
6.5 Attributes for contour description 304
Surface roughness G10-Geo 304
Feed reduction G38-Geo. 305
Attributes for superimposed elements G39-Geo 305
Separation point G44. 306
Oversize G52-Geo 306
Feed per revolution G95-Geo 307
Additive correction G149-Geo 308
6.6 C-axis contours-fundamentals 309
Position of milling contours 309
Circular pattern with circular slots 312
6.7 Front/Rear face contours 315
Starting point of front/rear face contour G100-Geo 315
Line segment in front/rear face contour G101-Geo 315
Circular arc in front/rear face contour G102-/G103-Geo 316
Bore hole on front/rear face G300-Geo 317
Linear slot on front/rear face G301-Geo 317
Circular slot on front/rear face G302-/G303-Geo 318
Full circle on front/rear face G304-Geo 318
Rectangle on front/rear face G305-Geo. 319
Text for front face CG306-Geo 319
Polygon on front/rear face G307-Geo 320
Linear pattern on front/rear face G401-Geo 320
Circular pattern on front/rear face G402-Geo 321
DataMatrix face C G405-Geo. 322
6.8 Lateral surface contours. 323
Starting point of lateral surface contour G110-Geo 323
Line segment in a lateral surface contour G111-Geo 323
Circular arc in lateral surface contour G112-/G113-Geo 324
Hole on lateral surface G310-Geo. 325
Linear slot on lateral surface G311-Geo. 325
Circular slot on lateral surface G312-/G313-Geo. 326
Full circle on lateral surface G314-Geo 326
Rectangle, surface G315-Geo 327
Text for lateral face C G316-Geo 327
Polygon on lateral surface G317-Geo 328
Linear pattern on lateral surface G411-Geo 328
Circular pattern on lateral surface G412-Geo 329
DataMatrix for lateral surface G415-Geo 330
6.9 Tool positioning. 331
Rapid traverse GO 331
Rapid traverse in machine coordinates G701 331
Tool change point G14 332
Defining the Tool change point G140 332
6.10 Linear and circular movements 333
Linear movement G1 333
Circular arc ccw G2/G3 334
Circular arc ccw G12/G13 335
6.11 Feed rate, shaft speed 336
Speed limitation G26 336
Reduce rapid traverse G48. 336
Interrupted feed G64 337
Feed per tooth Gx93. 338
Constant feed G94 (feed per minute) 338
Feed per revolution Gx95 339
Constant cutting speed Gx96 339
Spindle speed Gx97. 340
6.12 Tool-tip and cutter radius compensation 341
Fundamentals 341
Switch off TRC/MCRC G40. 341
Switch on TRC/MCRC G41/G42. 342
6.13 Datum shifts 343
Datum shift G51 344
Datum shifts - G53/G54/G55 345
Additive datum shift G56 345
Absolute datum shift G59 346
6.14 Oversizes 347
Switching off oversize G50 347
Axis-parallel oversize G57. 347
Contour-parallel oversize (equidistant) G58 348
6.15 Safety clearance 349
Safety clearance G47. 349
Safety clearance G147. 349
6.16 Tools, compensations 350
Inserting tools - T 350
Correction of cut G148 (changing the cutter compensation) 351
Additive correction G149 352
Compensation of tool tip G150/G151 353
6.17 Contour-based turning cycles 354
Working with contour-based cycles. 354
Longitud. roughing G810 356
Face roughing G820 359
Contour-parallel roughing G830 362
Contour cycle, bidirectional G835 (contour-parallel with neutral tool) 364
Recessing G860 366
Repeating recessing cycle G740 368
Repeating recessing cycle G741 368
Recess turning cycle G869 370
Recessing cycle G870 373
Contour finishing G890 374
Simultaneous roughing G895 (option 54). 378
Simultaneous finishing G891 (option 54) 384
Measuring path G809 389
6.18 Contour definitions in the machining section 390
Cycle end / simple contour G80. 390
Linear slot on front/rear face G301. 391
Circular slot on front/rear face G302/G303 391
Full circle on front/rear face G304 392
Rectangle on front/rear face G305. 392
Polygon on front/rear face G307. 393
Linear slot on lateral surface G311 393
Circular slot on lateral surface G312/G313. 394
Full circle on lateral surface G314. 394
Rectangle, surface G315. 395
Eccentric polygon on lateral surface G317. 395
6.19 Thread cycles 396
Overview of thread cycles. 396
Handwheel superimposition 396
Parameter V: Type of infeed 397
Universal tapping cycle G31 398
Single thread cycle G32 403
Thread single path G33 405
Metric ISO thread G35. 407
Tapered API thread G352. 408
Contour thread G38. 410
6.20 Parting cycle. 413
Cut-off cycle G859 413
6.21 Undercut cycles. 414
Undercut cycle G85. 414
Undercut DIN 509 E with cylinder machining G851 415
Undercut DIN 509 F with cylinder machining G852 416
Undercut DIN 76 with cylinder machining G853. 417
Undercut type U G856 419
Undercut type H G857. 420
Undercut type K G858. 420
6.22 Drilling cycles 421
Overview of drilling and boring cycles and contour reference. 421
Tapping G36 - Single path. 422
Simple drilling G71 423
Boring/cnt-sink G72. 425
Tapping G73 426
Deep boring G74. 428
Bore milling G75. 431
Linear pattern on front face G743. 433
Circular pattern on front face G745 434
Linear pattern on lateral surface G744 436
Circular pattern on lateral surface G746 437
Thread milling axial G799 439
6.23 C-axis commands 440
Reference diameter G120. 440
Datum shift in C axis G152 440
Standardize C axis G153 441
Short path in C G154. 441
6.24 Front and rear face machining 442
Rapid traverse on front/rear face G100 442
Linear segment on front/rear face G101 443
Circular arc on front/rear face G102/G103. 445
6.25 Lateral surface machining 447
Rapid traverse on lateral surface G110 447
Surface linear G111 447
Circular arc on lateral surface G112/G113 449
6.26 Milling cycles 451
Overview of milling cycles 451
Linear slot, front face G791 453
Linear slot, lat. surface G792. 454
Contour and figure milling cycle on front face G793. 455
Contour and figure milling cycle on lateral surface G794. 457
Area milling on front face G797 460
Helical slot milling G798. 462
Mill. contour G840. 463
Pocket milling - roughing G845 472
Pocket milling - finishing G846 478
Trochoidal contour milling G847 480
Trochoidal pocket milling G847 482
6.27 Engraving cycles 484
Character sets 484
Engraving on front face G801 487
Engraving on lateral surface G802 488
6.28 Contour follow-up 489
Saving/loading Contour follow-up G702 489
Contour follow-up on/off G703 489
6.29 Other G codes 490
Clamping G65 490
Blank contour G67 (for graphics) 490
Period of dwell G4 490

Contents

Precision stop ON G7 490
Precision stop OFF G8. 491
Precision stop blockwise G9 491
Switch off protection zone G60 491
Actual values in variable G901 491
Datum in variable G902 491
Lag error in variable G903 492
Fill variable memory G904 492
Feed rate override 100 \% G908 492
Interpreter stop G909 492
Spindle override 100\% G919 493
Deactivating datum shifts G920 493
Deactivating datum shift, tool lengths G921 493
Fluctuating spindle speed G924. 493
Convert lengths G927 494
TCPM G928. 494
Look-ahead parameter G932. 495
Calculating variables automatically G940. 496
Information to DNC G941 498
Misalignment compensation G976 498
Lift off after NC stop - LIFTOFF G977 499
Activating datum shift G980 500
Activating datum shifts, tool lengths G981 500
Monitoring zone G995 500
Load monitoring G996 501
Activating direct program-run continuation G999. 501
Force reduction G925 502
Sleeve monitoring G930 503
HDT mode G931. 504
Eccentric turning G725 506
Eccentric transition G726 507
Non-circular X G727 509
Compens. for helical teeth G728 510
6.30 Measuring the machine condition (option 155) 511
Measuring the machine condition - fingerprint G238 511
Component monitoring G939 513
6.31 Programming variables 514
Fundamentals 514
Variable types 515
Reading tool data 520
Reading diagnostic bits 523
Reading the current NC information 524
Reading general NC information 525
Reading configuration data - PARA 528
Determining the index of a parameter element - PARA 529
Expanded variable syntax CONST - VAR. 529
6.32 Data input and data output 533
Output window for variables - WINDOW 533
File output for variables - WINDOW. 533
Input of variables - INPUT. 534
Output of \# variables - PRINT. 534
6.33 Conditional block run 535
Program branch IF..THEN..ELSE..ENDIF. 535
Interrogating variables and constants 537
Program repeat WHILE..ENDWHILE 538
Program branch SWITCH..CASE 540
Skip level. 541
6.34 Subprograms. 542
Subprogram call L "xx" V1 542
Dialogs in subprogram calls 543
Help graphics for subprogram calls 544
6.35 M commands 545
M commands for program-run control 545
Machine commands 546
6.36 Assignment, synchronization, workpiece transfer 547
Converting and mirroring G30 547
Transformations of contours G99 548
Setting a synchronizing mark G162 548
One-sided synchronization G62 549
Synchronous start of slides G63 550
Synchronous function M97. 550
Spindle synchronization G720 551
Offset C angle G905 552
Traverse to a fixed stop G916 553
Controlled parting using lag error monitoring G917 554
6.37 G codes from previous controls 555
Fundamentals 555
Undercut G25 - contour definitions in the machining section. 555
Simple longitudinal roughing G81 - simple turning cycles. 557
Simple face roughing G82 - simple turning cycles 558
Simple contour repeat cycle G83 - simple turning cycles 559
Recessing G86 - simple turning cycle. 561
Radius cycle G87 - simple turning cycles 562
Chamfer cycle G88 - simple turning cycles 562
Simple longitudinal single-start thread G350-4110 563
Simple longitudinal multi-start thread G351-4110 564
6.38 DIN PLUS program example 565
Example of a subprogram with contour repetitions 565
6.39 Connection between geometry and machining commands 567
Turning 567
C-axis machining - front/rear face. 568
C-axis machining - lateral surface 568
6.40 Full-surface machining 569
Fundamentals of full-surface machining 569
Programming of full-surface machining. 570
Full-surface machining with counter spindle 571
Full-surface machining with single spindle. 573
6.41 Program templates. 575
Fundamentals 575
Opening a program template. 575
7 Touch Probe Cycles 577
7.1 General information on touch probe cycles (option 17) 578
Fundamentals 578
Principle of function of touch probe cycles 578
Touch probe cycles for automatic mode 579
7.2 Touch probe cycles for single-point measurement 581
Single-point meas. for tool comp. G770 581
Single-point measurmnt., datum G771 583
Datum, single point w/ C axis G772 585
Datum, C-axis object center G773 587
7.3 Touch probe cycles for two-point measurement 589
Two-point meas. G18 transverse G775 589
Two-pt. meas. G18 longitudinal G776 591
Two-point measurement G17 G777 593
Two-point measurement G19 G778 595
7.4 Calibrating touch probes 597
Calibrate touch probe standard G747 597
Calibrate touch probe via two points G748. 599
7.5 Measuring with touch probe cycles 601
Paraxial probing G764 601
Probing in C axis G765 603
Probing w/ 2 axes in ZX plane G766. 604
Probing w/ 2 axes in ZX plane G767. 605
Probing w/ 2 axes in ZY plane G768 606
Probing w/ 2 axes in XY plane G769. 607
7.6 Search cycles 608
Find hole in C face G780 608
Find hole C lateral surface G781 610
Find stud in C face G782 612
Find stud C lateral surface G783 614
7.7 Circular measurement 616
Circular measurmnt G785. 616
Calc. of pitch circle G786 618
7.8 Angular measurement 620
Angular measurmnt G787. 620
Misalignment compensation after angle measurement G788. 622
7.9 In-process measrmnt 623
Workpiece measurement 623
Switch on measurement G910 623
Activating measuring path monitoring G911 624
Actual-value determination G912 624
End measuring G913. 624
Deactivating measuring path monitoring G914 624
Example: Measuring and compensating workpieces 625
8 ISO Programming for the Y Axis (Option 70) 627
8.1 Y -axis contours - fundamentals. 628
Position of milling contours 628
Cutting limit. 628
8.2 Contours in the XY plane 629
Starting point of contour in XY plane G170-Geo 629
Line segment in XY plane G171-Geo. 629
Circular arc in XY plane G172-/G173-Geo 630
Hole in XY plane G370-Geo. 631
Linear slot in XY plane G371-Geo. 632
Circular slot in XY plane G372/G373-Geo. 632
Full circle in XY plane G374-Geo 633
Rectangle in XY plane G375-Geo 633
Single surface in XY plane G376-Geo 634
Polygon in XY plane G377-Geo 634
Text for front face Y G378-Geo 635
Linear pattern in XY plane G471-Geo 635
Circular pattern in XY plane G472-Geo 636
DataMatrix pattern in XY plane G475-Geo 637
Centric polygon in XY plane G477-Geo 637
8.3 Contours in the YZ plane 638
Starting point of contour in YZ plane G180-Geo 638
Line segment in YZ plane G181-Geo 638
Circular arc in YZ plane G182/G183-Geo 639
Hole in YZ plane G380-Geo. 640
Linear slot in YZ plane G381-Geo. 640
Circular slot in YZ plane G382/G383-Geo. 641
Full circle in YZ plane G384-Geo 641
Rectangle in YZ plane G385-Geo 642
Polygon in YZ plane G387-Geo 642
Text for lateral surface Y G388-Geo 643
Linear pattern in YZ plane G481-Geo 643
Circular pattern in YZ plane G482-Geo 644
DataMatrix pattern in YZ plane G485-Geo 645
Single surface in YZ plane G386-Geo 645
Centric polygon in YZ plane G487-Geo 646
8.4 Working planes 647
Y-axis machining 647
Tilt working plane G16. 648
Tilt working plane G16. 649
8.5 Tool positioning in Y axis 650
Rapid traverse GO 650
Approach the Tool change point G14 650
Rapid traverse in machine coordinates G701 651
8.6 Linear and circular movements in the Y axis 652
Milling: Linear movement G1 652
Milling: Circular arc cw G2, G3 - incremental center coordinates 653
Milling: Circular arc cw G12, G13 - center coordinates. 654
8.7 Milling cycles for the \mathbf{Y} axis 655
Area milling - roughing G841 655
Area milling - finishing G842 656
Centric polygon - roughing G843 657
Centric polygon - finishing G844 658
Pocket milling - roughing G845 (Y axis) 659
Pocket milling - finishing G846 (Y axis) 664
Engraving in XY plane G803 666
Engraving in YZ plane G804 667
Thread milling in XY plane G800 668
Thread milling in YZ plane G806 669
Skiving G807 669
Hobbing G808 674
8.8 Example program. 675
Machining with the Y axis. 675
9 TURN PLUS (Option 63) 681
9.1 The function TURN PLUS 682
TURN PLUS concept 682
9.2 Automatic working plan generation (AWG) submode 683
Generating a working plan 684
Machining sequence - fundamentals 685
Editing and managing the Machining sequence 686
Overview of machining sequences 688
9.3 AWG control graphic 703
Setting the AWG control graphic 703
9.4 Machining information 704
Tool selection and turret assignment list 704
Hollowing (internal profiling) 705
Contour recessing, Recessing 706
Drillg 706
Cutting data and coolant 707
Inside contours. 707
Shaft machining 709
9.5 Example 711
9.6 Full-surface machining with TURN PLUS 716
Rechucking the workpiece 716
Defining the chucking equipment for full-surface machining 717
Automatic working plan generation for full-surface machining 719
Rechucking the workpiece in the main spindle 719
Transferring the workpiece from the main spindle to the counter spindle 720
Parting and picking-off the workpiece with the counter spindle. 720
10 B Axis (Option 54) 721
10.1 Fundamentals 722
High Dynamic Turning 724
10.2 B axis compensation 725
10.3 Simulation 726
11 Overview of Units (Option 9) 729
11.1 Units - "Turning" group 730
11.2 Units - "Drilling" group 732
11.3 Units - "Predrilling in C axis" group 734
11.4 Units - "Milling in C axis" group. 735
11.5 Units - "Drilling, predrilling in Y axis" group. 737
11.6 Units - "Milling in Y axis" group 738
11.7 Units - "Special units" group 739
12 Overview of G Codes 741
12.1 Section codes 742
12.2 Overview of G commands in the CONTOUR section. 743
12.3 Overview of G commands in the MACHINING section 746

Fundamentals

1.1 About this manual

Safety precautions

Comply with all safety precautions indicated in this document and in your machine manufacturer's documentation!
Precautionary statements warn of hazards in handling software and devices and provide information on their prevention. They are classified by hazard severity and divided into the following groups:

! DANGER

Danger indicates hazards for persons. If you do not follow the avoidance instructions, the hazard will result in death or severe injury.

A WARNING

Warning indicates hazards for persons. If you do not follow the avoidance instructions, the hazard could result in death or serious injury.

NOTICE

Notice indicates danger to material or data. If you do not follow the avoidance instructions, the hazard could result in property damage.

Sequence of information in precautionary statements

All precautionary statements contain the following four sections:

- Signal word indicating the hazard severity
- Type and source of hazard
- Consequences of ignoring the hazard for example: "There is danger of collision during subsequent machining operations"
- Escape - hazard prevention measures

Informational notes

Observe the informational notes provided in these instructions to ensure reliable and efficient operation of the software. In these instructions, you will find the following informational notes:

The information symbol indicates a tip.
A tip provides important additional or supplementary information.

This symbol prompts you to follow the safety precautions of your machine manufacturer. This symbol also indicates machine-dependent functions. Possible hazards for the operator and the machine are described in the machine manual.
(1) The book symbol indicates a cross reference.

A cross reference leads to external documentation for example the documentation of your machine manufacturer or other supplier.

Have you found any errors or would you like to suggest changes?
We continuously strive to improve our documentation for you. Please help us by sending your suggestions to the following e-mail address:
tnc-userdoc@heidenhain.de

1.2 Software and features

This manual describes functions that are available in the control with NC software 688946-17 and 688947-17.
smart. Turn and DIN-PLUS programming are not included in this manual. These functions are described in the User's Manual for smart. Turn and DIN PLUS Programming (ID 685556-xx). Please contact HEIDENHAIN if you require a copy of this manual.
The machine manufacturer adapts the usable features of the control to his machine by setting the machine parameters. Some of the functions described in this manual may not be among the features possible on your machine tool.
Control functions that may not be available on your machine include:

- Positioning of spindle (M19) and driven tool
- Machining with the C or Y axis
- Machining with the B axis
- Machining with multiple slides

In order to find out about the specific support for your machine, please contact the machine manufacturer.
Many machine manufacturers and HEIDENHAIN offer programming courses. We recommend these courses as an effective way of improving your programming skill and sharing information and ideas with other users of the control.
HEIDENHAIN also offers the DataPilot MP 620 or DataPilot CP 640 software package for PCs, which is designed for use with the respective control. The DataPilot is suitable for both shop-floor programming as well as off-location program creation and testing. It is also ideal for training purposes. The DataPilot can be run on PCs with WINDOWS operating systems. HEIDENHAIN provides the DataPilot as a Windows programming station and running in an Oracle VM Virtual Box. Oracle VM VirtualBox is a software application (virtual machine), in which the control software runs as a separate system, i.e. in a virtual environment.

Intended place of operation

The control complies with the limits for a Class A device in accordance with the specifications in EN 55022, and is intended for use primarily in industrially-zoned areas.

Legal information

The control software contains open-source software that is subject to special terms of use. These special terms of use have priority. To call further information on the control:

- Switch to the Organization operating mode (floppy disk symbol).
- Switch to the second level of the soft-key row
- Press the LICENSE INFO soft key

Software options

The CNC PILOT 640 features various software options that can be enabled by your machine tool builder. Each option is to be enabled separately and contains the following respective functions:

Additional Axis (option 0 to option 7)
Additional axis Additional control loops 1 to 8

Teach-in (option 8)

Teach-in functionality	Contour description with ICP
$■$	Cycle programming
	Technology database with 9 workpiece-material/tool-material
	combinations

smart.Turn (option 9)

- Contour description with ICP
- Programming with smart.Turn
- Technology database with 9 workpiece-material/tool-material combinations

Tools and Technology (option 10)

Tool and technology database \quad Tool database expanded to 999 entries

- Technology database expanded to 62 workpiece-material/toolmaterial combinations
- Tool life monitoring with exchange tools

Thread Recutting (option 11)

Threads	Recutting of threads in Teach-in submode
	Handwheel superimposition during thread cutting

HEIDENHAIN DNC (option 18)

Communication with external PC applications over COM component

DXF Import (option 42)

Loading of DXF contours

| B-Axis Machining (option 54) | |
| :--- | :--- | :--- |
| B-axis machining | $\boxed{ }$ Tilting the working plane |
| | $■$ Tilting the tool carrier |
| | $\boxed{ }$ High Dynamic Turning |

C-Axis Machining (option 54)

C-axis machining Boring, drilling, and milling operations on the face and lateral surface

TURN PLUS (option 63)

Automatic generation of smart. Turn programs
Y-Axis Machining (option 70)

Parallel Axes (option 94)	
Parallel axes	Support of parallel axes (U, V, W)
Spindle Synchronism (option 131)	
Spindle synchronism	Synchronism of several lathe spindles
Counter Spindle (option 132)	■ Synchronism of main spindle and counter spindle
Counter spindle	Rear-face machining
Remote Desktop Manager (option 133)	
Remote operation of external comput-	Windows on a separate computer unit
er units	Incorporated in the control's interface
Synchronizing Functions (option 135)	
Synchronizing functions	Advanced synchronization of axes and spindles
Load Monitoring (option 151)	
Load monitoring	Monitoring of the axes and spindles
Multichannel (option 153)	
Multi-channel capability	Up to three channels for asynchronous multi-slide machining

New functions of NC software 68894x-17

- The G160 function allows you to conveniently tilt the working plane. Define a tilting position, up to three spatial angles, and optionally an additional shift after tilting.
Further information: "Tilt working plane G16", Page 649
- The G807 function allows you to machine helical or straight-cut cylindrical gears. After selecting the function, you can specify whether machining will take place before or behind the center of rotation or at the inside/outside of the workpiece. You can optionally define an inclination of the tool.

Further information: "Skiving G807", Page 669

Modified functions in NC software 68894x-17

- With the DF or DFF parameter, you can define a retraction feed rate for drilling cycles and units.
Further information: "Units - Drilling / Centric", Page 127
Further information: "Drilling cycles", Page 421
- If you select the tool manually in the submode AWG (option 63), use the Tool graphics soft key to display the tool control graphics of the current tool. The control will also take the tool holder into account.
Further information: "Tool selection and turret assignment list", Page 704
- You can select contour elements using touch gestures or the mouse (e.g., in the ICP editor submode or when using the Dimensioning function).
- If two holes have been specified with G49-Geo in the FINISHED PART section, the control will display a warning instead of an error message.
Further information: "Bore hole (centric) G49-Geo", Page 303
- If multiple slides have been specified and a constant cutting speed is active, the control will display the currently active slide (e.g., \$1 (option 153)) in the machine data display.
- If you stop program execution during a tapping cycle, press the Z key to retract the tool from the thread.
If the machine manufacturer has activated the optional machine parameter CfgBackTrack (no. 122000), you can no longer resume program run with the NC Start key after moving the tool manually. You need to restart the program using the Start blck search soft key.
- The Diffuse HEROS tool was removed.
- In the Certificate and keys window you can select a file with additional public SSH keys in the Externally administered SSH key file area. This allows you to use SSH keys without needing to transmit them to the control.
- You can export and import existing network configurations in the Network settings window.
- The machine manufacturer uses the machine parameters allowUnsecureLsv2 (no. 135401) and allowUnsecureRpc (no. 135402) to define whether the control disables non-secure LSV2 or RPC connections even if user administration is not active. These machine parameters are included in the data object CfgDncAllowUnsecur (135400).
When the control detects a non-secure connection, it displays an informational notice.

First steps

2.1 Overview

This chapter is intended to help you quickly learn to handle the most important procedures on the control. For more information on the respective topic, see the section referred to in the text.
The following topics are covered in this chapter:

- Switching on the machine
- Programming the workpiece
- Graphically testing the workpiece
(1) The following topics are covered in the User's Manual:
- Switching on the machine
- Setting up tools
- Setting up the workpiece
- Machining the workpiece

2.2 Switching on the machine

! DANGER

Caution: hazard to the user!

Machines and machine components always pose mechanical hazards. Electric, magnetic, or electromagnetic fields are particularly hazardous for persons with cardiac pacemakers or implants. The hazard starts when the machine is powered up!

- Read and follow the machine manual
- Read and follow the safety precautions and safety symbols
- Use the safety devices

Refer to your machine manual.
Switching on the machine and traversing the reference points can vary depending on the machine tool.

To switch on the machine, proceed as follows:

- Switch on the power supply for the control and the machine
> The control starts the operating system. This process may take several minutes.
> The control displays the Power interrupted dialog
- Press the CE key
> The control compiles the PLC program.
> The control displays the error message Switch on external dc voltage.
- Switch on the machine control voltage
$>$ The control checks the functioning of the emergency stop circuit.
$>$ The control is in the Machine operating mode.

Further information on this topic

- Switching on the machine

Further information: User's Manual

2.3 Programming the first workpiece

Selecting an operating mode

To create an NC program, select the smart. Turn operating mode.
$\Rightarrow \quad>$ Press the smart.Turn key
$>$ The control switches to the smart. Turn operating mode.

Further information on this topic

- smart. Turn operating mode

Further information: "smart.Turn and DIN/ISO programming", Page 62

Important controls and displays

Key	Functions for programming
EnT	- Confirm your input
	- Activate the next dialog prompt
INS	- Confirm a dialog
	- Create a new NC block in the editor
0	Number keys 0 to 9:
	- Enter numbers
	- Operate the menu
匋	Go to the next form
Esc	- Cancel the dialog
	- Navigate to the top of the menu
	Select the function in the display unit with the soft key selection key

Further information on this topic

- Navigating in smart.Turn

Further information: "Selecting the editor functions", Page 70

- Controls and displays

Further information: User's Manual

Creating a new NC program

Create a new NC program as follows:

Save
ve

- Select the Prog menu item
- Select the New menu item
- Select the New DIN PLUS program Ctrl+N menu item
$>$ The control opens the Save as dialog box.
- Enter a program name
- Press the Save soft key
$>$ The control opens the Program head (short) dialog box.

\rightarrow	Define the Program head (short). Example: - Material = Aluminum - Unit = Metric
ок	- Press the OK soft key > The control opens the NC program.

The control automatically generates the last block of the NC program. You do not need to enter an end-of-program command.
There are various methods of programming available to you:

- ISO programming: You program the contour and machining operations with line segments, circular arcs, and simple turning cycles in ISO Mode.
- DIN PLUS programming: You define the workpiece blank and finished part contours in ICP editor submode (option 8 or 9). The workpiece is machined using contour-based turning cycles in ISO Mode.
- smart.Turn programming (option 9): You program the workpiece blank and finished part contours in ICP editor submode. The workpiece is machined by means of smart. Turn units.
- TURN PLUS (option 63): You program the workpiece blank and finished part contours in ICP editor submode. The control automatically generates the working plan and the machining process.

Further information on this topic

- Programming in smart. Turn operating mode Further information: "smart.Turn and DIN/ISO programming", Page 62
- ICP editor submode Further information: User's Manual
- Programming in ISO Mode

Further information: "Programming in ISO Mode", Page 274

- Programming with smart.Turn

Further information: "Units - smart.Turn units", Page 98

- Programming with TURN PLUS

Further information: "TURN PLUS (Option 63)", Page 681

- Navigating with menu items

Further information: "Shared menu items", Page 72

Setting up the turret list

You need to set up the turret list before you can call tools in the NC program. The turret list shows the tools currently in the turret.

Filling the turret list

- Select the Head menu item

- Select the Set up the turret list menu item
> The control opens the turret list.
The turret list has already been defined in Machine operating mode:

Special functions	Press the Spec. functions soft key
Transter	- Press the Transfer machine soft key
	The control adopts the turret assignment from the Machine operating mode.

Turret list not defined yet:

\downarrow

- Select the desired tool in the tool table
- Press the Load tool soft key
> The selected tool is loaded into the turret list.
- Transfer all required tools to the turret list
- Press the Back soft key
- Press the Save soft key
> The control saves the turret assignment list to the TURRET section in the NC program.

Further information on this topic

- Turret list

Further information: "Tool programming", Page 91

- Tools

Further information: User's Manual

- Structure of an NC program

Further information: "Program section code", Page 80

Programming a contour in ICP submode（option 8 or 9）

Your task is to create a turning program for the aluminum part shown to the right．You have already created the NC program．
To define the workpiece blank and finished part contour in ICP editor submode，proceed as follows：

Defining the workpiece blank

目目

－1
－Press the Save soft key
＞The ICP editor submode displays the workpiece blank．

－Press the Back soft key

Defining the finished part contour

－Select the ICP menu item

－Select the Finished part menu item
$>$ The control opens the ICP editor submode．
－Select the Contour menu item
－Select the Line menu item
－Enter the coordinates：
－XS：Start point of contour $=0 \mathrm{~mm}$
－ZS：Starting point of contour $=0 \mathrm{~mm}$
－X：Target point＝ 20 mm
－Press the Save soft key
－Select the Line menu item
－Z：Target point $=-10 \mathrm{~mm}$
－Press the Save soft key
－Select the Line menu item
－Enter the coordinates：
－X：Target point $=40 \mathrm{~mm}$
－Z：Target point $=-20 \mathrm{~mm}$
－Press the Save soft key

- Select the Line menu item
- Z: Target point $=-30 \mathrm{~mm}$
- Press the Save soft key
Save
- Select the Line menu item
- X: Target point = 50 mm
- Press the Save soft key

- Select the Line menu item
- Z: Target point $=-40 \mathrm{~mm}$
- Press the Save soft key

- Select the Line menu item
- X: Target point $=0 \mathrm{~mm}$
- Press the Save soft key

Back

Press the Back soft key
> The control saves the defined contours to the NC program.

Further information on this topic

- ICP editor submode

Further information: User's Manual

- Program sections for contours
Further information: "Structured NC program", Page 63

Programming the machining process in smart.Turn (option 9)

After defining the workpiece blank and the finished part contour in ICP editor submode, you program the machining of the workpiece using smart. Turn units.
Program the machining process as follows:

Defining the Start unit

- Select the Units» menu item
> The control opens the Program beginning dialog window.
- In SO, enter the maximum speed for spindle 1 (e.g., 4000 rpm)
- Define the maximum speed for all of the available spindles
- Press the STORE soft key
> The control closes the dialog window and saves the unit.

Transverse roughing in ICP

- Select the Roughing menu item
- Select the G820 Transverse in ICP menu item
> The control opens the G820 Roughing in ICP dialog window.
- Define the parameters:
- XS: Approach position X (e.g., 60 mm)
- ZS: Approach position Z (e.g., 2 mm)
- T: Tool number - turret pocket number
- F: Feed per revolution (e.g., $0.4 \mathrm{~mm} / \mathrm{rev}$)
- S: Cutting speed in m/min (e.g., $220 \mathrm{~m} / \mathrm{min}$)
- NS: Starting block no. of contour beginning of contour section = 3
- NE: Contour end block no. - end of contour section = 3
■ P: Maximum infeed (e.g., 5 mm)
- Press the STORE soft key
> The control closes the dialog window and saves the unit.

Longitudinal roughing in ICP

- Select the G810 Longitudinal in ICP menu item
$>$ The control opens the G810 Longitudinal roughing in ICP dialog window.
- Define the parameters:
- XS: Approach position X (e.g., 60 mm)
- ZS: Approach position Z (e.g., 2 mm)
- T: Tool number - turret pocket number
- F: Feed per revolution (e.g., $0.4 \mathrm{~mm} / \mathrm{rev}$)
- S: Cutting speed in m/min (e.g., $220 \mathrm{~m} / \mathrm{min}$)
- NS: Starting block no. of contour beginning of contour section = 4
- NE: Contour end block no. - end of contour section = 8
- P: Maximum infeed (e.g., 5 mm)
- Press the STORE soft key
> The control closes the dialog window and saves the unit.

Finishing in ICP

Transverse finishing:

- Select the Finishing menu item
- Select the G890 Contouring in ICP menu item
$>$ The control opens the G890 ICP for contouring dialog window.
- Define the parameters:

■ XS: Approach position X (e.g., 20 mm)

- ZS: Approach position Z (e.g., 2 mm)
- T: Tool number - turret pocket number
- F: Feed per revolution (e.g., $0.25 \mathrm{~mm} / \mathrm{rev}$)
- S: Cutting speed in $\mathrm{m} / \mathrm{min}$ (e.g., $240 \mathrm{~m} / \mathrm{min}$)
- NS: Starting block no. of contour beginning of contour section $=3$
- NE: Contour end block no. - end of contour section = 3

Press the STORE soft key
> The control closes the dialog window and saves the unit.

Longitudinal finishing

- Select the G890 Contouring in ICP menu item
$>$ The control opens the G890 ICP for contouring dialog window.
- Define the parameters:
- XS: Approach position X (e.g., 20 mm)
- ZS: Approach position Z (e.g., 2 mm)
- T: Tool number - turret pocket number
- F: Feed per revolution (e.g., $0.25 \mathrm{~mm} / \mathrm{rev}$)
- S: Cutting speed in m/min (e.g., $240 \mathrm{~m} / \mathrm{min}$)
- NS: Starting block no. of contour beginning of contour section = 4
- NE: Contour end block no. - end of contour section = 8
- Press the STORE soft key
> The control closes the dialog window and saves the unit.

Further information on this topic

- Program beginning unit

Further information: "Unit Program beginning (START) ",
Page 228

- smart.Turn units

Further information: "Units - smart.Turn units", Page 98

- Contour-based NC programming

Further information: "smart.Turn unit", Page 98

Closing an NC program

Up to six NC programs can be open simultaneously in smart.Turn operating mode. The control automatically saves new NC programs you created.

Close an NC program as follows:

- Select the Prog menu item
- Select the Save menu item
$>$ The control saves the NC program.
- Select the Prog menu item
- Select the Close menu item
$>$ smart.Turn operating mode closes the NC program.

Further information on this topic

- Prog menu item

Further information: "Shared menu items", Page 72

Programming a contour in ISO Mode

Your task is to create a turning program for the aluminum part shown to the right. You use ISO Mode for programming. You have already created the NC program and set up the turret list.

Proceed as follows to display the contour during programming:
IT $>$ The control opens a graphic window.
n

- Press the Graph. soft key to update the graphic.
> The graphic shows the newly programmed contours.

Switch off the graphic as follows:
渭

- Select the Graph. menu item
- Select the Graphic OFF menu item
> The control closes the graphic window.
Create the workpiece blank and the finished part contour as follows:

Defining the workpiece blank

\downarrow

- Select the Geo» menu item
> The control opens a G-code menu for defining the contour.
- Position the cursor in the BLANK program section

- Select the \mathbf{G} menu item
- Enter $\mathbf{2 0}$
- Press the OK soft key
> The control opens the command G20, Chuck part cyl./tube.
- Enter the workpiece blank dimensions:
- X: Diameter $=60 \mathrm{~mm}$

- Z: Length of workpiece blank $=60 \mathrm{~mm}$
- K: Righthnd edge - Transverse oversize = 1 mm
Press the SAVE soft key
> The control saves the workpiece blank.

Defining the finished part

\downarrow	Position the cursor in the FINISHED PART program section
國直	－Select the G menu item
－1．	－Enter 0
ок	－Press the OK soft key
ок	＞The control opens the command G0，Start point．
	－Enter the coordinates：
	－X：Start point $X=0 \mathrm{~mm}$
	－Z：Start point $Z=0 \mathrm{~mm}$
Save	－Press the SAVE soft key
Save	＞The control saves the starting point．
－1旦	－Select the Line menu item
－	＞The control opens the command Distance G1．
	－X：Final point（diameter value）$=20 \mathrm{~mm}$
Save	－Press the Save soft key
－1旦	－Select the Line menu item
可	－Z：Final point $=-10 \mathrm{~mm}$
Save	－Press the Save soft key
－1旦	－Select the Line menu item
可	－Enter the coordinates：
	－X：Final point $=40 \mathrm{~mm}$
	－Z：Final point $=-20 \mathrm{~mm}$
Save	－Press the Save soft key
䦗皃	－Select the Line menu item
－	－Z：Final point $=-30 \mathrm{~mm}$
Save	－Press the Save soft key
－可血	－Select the Line menu item
－	－X：Final point $=50 \mathrm{~mm}$
Save	－Press the Save soft key
䦗号	－Select the Line menu item
－	－Z：Final point $=-40 \mathrm{~mm}$
Save	－Press the Save soft key
－1旦	－Select the Line menu item
可	－X：Final point $=0 \mathrm{~mm}$
Save	－Press the Save soft key
	＞The finished－part contour is defined．

Further information on this topic

- Menu item bar in ISO Mode

Further information: "Geometry menu item", Page 286

- NC program sections

Further information: "Structured NC program", Page 63

- ISO programs

Further information: "Geometry and machining commands", Page 274

- Description of workpiece blank

Further information: "Chuck part bar or tube G20-Geo", Page 287

- Description of finished part

Further information: "Basic elements of turning contour", Page 288

Programming the machining process in ISO Mode

After defining the workpiece blank and the finished part contour, you program the machining process using machining cycles.
Program the machining process as follows:

Defining the speed limit

$\downarrow \quad$ Position the cursor in the MACHINING program section
> The menu item bar displays the G codes for machining.

- Select the G menu item
- Enter 26
- Press the OK soft key
> The control opens the command Speed limitation G26.
Navigating using the G-menu:

Save

- Select the G-menu menu item
- Select the Feed rate, rpm menu item
- Select the Speed menu item
- Select the Limitation m.spin G26 menu item
$>$ The control opens the command Speed limitation G26.
- Enter the maximum speed (e.g., 4000 rpm)
- Press the STORE soft key
$>$ The control saves the speed limit.

Defining machining cycles

HEIDENHAIN recommends programming a machining cycle as follows:

- Insert the tool
- Define the cutting data
- Position the tool in front of the machining area
- Define the safety clearance
- Call the cycle
- Retract the tool
- Move to the tool change position

Inserting the tool

Moving to the tool change point:
ins $\quad \downarrow$ Press the INS key
$>$ The control opens a dialog window for confirming the block number.
ins \quad Press the INS key
$>$ The control creates a new NC block.

- Select the G menu item
- Enter 14
- Press the OK soft key
> The control opens the command Tool change point G14

Save

- Press the STORE soft key
$>$ The control saves the traverse. The tool change position is approached simultaneously.
Calling the tool:

- Press the INS key
> The control opens a dialog window for confirming the block number.
- Press the INS key
> The control creates a new NC block.
- Select the \mathbf{T} menu item
$>$ The control opens the command Tool.
- Enter the tool number
- Press the STORE soft key
> The control saves the NC block.

Defining the cutting data

Defining the feed rate：
ins \quad Press the INS key to create a new NC block
早昷
－Select the \mathbf{F} menu item
$>$ The control opens the command Feed per rotation．
－Enter the feed rate value（e．g．， $0.4 \mathrm{~mm} / \mathrm{rev}$ ）
－Press the STORE soft key

Defining the cutting speed：
直直具
－Select the \mathbf{S} menu item
$>$ The control opens the command Cutting speed．
－Enter the cutting speed value（e．g．， $220 \mathrm{~m} / \mathrm{min}$ ）
－Press the STORE soft key

Switching on the spindle in counterclockwise rotation：

－Select the \mathbf{M} menu item
－Enter 4
－Press the OK soft key
OK
＞The control saves the command M4，Spindle on， CCW．

Positioning the tool in front of the machining area

ins
 －Press the INS key to create a new NC block

－Open the command Rapid traverse G0

OK
－Press the OK soft key
－Enter the coordinates to be approached：
－ $\mathbf{X}=62 \mathrm{~mm}$
－ $\mathbf{Z}=2 \mathrm{~mm}$

Save
－Press the STORE soft key

Defining the safety clearance

－Press the INS key to create a new NC block

－Open the command Safety clearance G47
－Press the OK soft key
－Enter the safety clearance（e．g．， 2 mm ）
－Press the STORE soft key

Calling the roughing cycle

Transverse roughing:
ins \quad Press the INS key to create a new NC block

- Open the command Face roughing G820
- Press the OK soft key
- Define the parameters:
- NS: Starting block no. of contour beginning of contour section = 3
- NE: Contour end block no. - end of contour section = 3
- P: Maximum infeed (e.g., 5 mm)
- K: O-size Z = 0.2 mm
- Press the STORE soft key

Switching on the coolant:

- Select the \mathbf{M} menu item
- Enter 8
- Press the OK soft key
> The control saves the command M8, Coolant circuit 1 on

Longitudinal roughing:

- Press the INS key to create a new NC block
- Open the command Longitud. roughing G810
- Press the OK soft key
- Define the parameters:
- NS: Starting block no. of contour beginning of contour section = 4
- NE: Contour end block no. - end of contour section = 8
- P: Maximum infeed (e.g., 5 mm)
- I: O-size $\mathbf{X}=0.5 \mathrm{~mm}$
- K: O-size Z = 0.2 mm
- Press the STORE soft key

Switching off the coolant:

- Open the menu item M9, All circuits off
- Press the OK soft key

Inserting a new tool

Moving to the tool change position:
ms \quad Press the INS key to create a new NC block

- Open the command Tool change point G14
ok
- Press the OK soft key
Save
- Press the STORE soft key

Calling the tool:

- Press the INS key to create a new NC block
- Select the \mathbf{T} menu item
> The control opens the command Tool.
- Enter the tool number
- Press the STORE soft key

Defining the cutting data

Defining the feed rate:

ins

- Press the INS key to create a new NC block

- Select the \mathbf{F} menu item
- Define Feed per rotation (e.g., $0.25 \mathrm{~mm} / \mathrm{rev}$)
- Press the STORE soft key

Save
Defining the cutting speed:

- Select the \mathbf{S} menu item
- Define the Cutting speed (e.g., $240 \mathrm{~m} / \mathrm{min}$)
- Press the STORE soft key

Save

Switching on the spindle in counterclockwise rotation:

- Open the menu item M4, Spindle on, CCW

OK

- Press the OK soft key

Pre-positioning the tool
ins \quad Press the INS key to create a new NC block

- Open the command Rapid traverse G0

OK

- Press the OK soft key
- Enter the coordinates to be approached:
- $\mathbf{X}=20 \mathrm{~mm}$
- $\mathbf{Z}=2 \mathrm{~mm}$
- Press the STORE soft key

Calling the finishing cycle

Transverse finishing:

- Open the command Finish contour G890

ok

- Press the OK soft key
- Define the parameters:
- NS: Starting block no. of contour beginning of contour section = 3
- NE: Contour end block no. - end of contour section = 3
- Press the STORE soft key

Switching on the coolant

- Open the menu item M8, Coolant circuit 1 on
- Press the OK soft key
oK

Longitudinal finishing:

INS

- Press the INS key to create a new NC block

- Open the command Finish contour G890
- Press the OK soft key
- Define the parameters
- NS: Starting block no. of contour beginning of contour section = 4
- NE: Contour end block no. - end of contour section = 8
- Press the STORE soft key

Retracting the tool

ins \quad Press the INS key to create a new NC block

- Open the command Tool change point G14

OK

- Press the OK soft key

Save

- Press the STORE soft key

Further information on this topic

- Programming in ISO Mode

Further information: "Programming in ISO Mode", Page 274

- Menu item bar in ISO Mode

Further information: "Machining menu item", Page 286

- Defining the datum

Further information: "Datum shifts", Page 343

- Machine setup

Further information: User's Manual

- Feed rate and spindle speed

Further information: "Feed rate, shaft speed", Page 336

- Tool change position G14

Further information: "Tool change point G14", Page 332

- Miscellaneous functions M

Further information: "Machine commands", Page 546

- Pre-positioning the tool

Further information: "Rapid traverse G0", Page 331

- Safety clearance

Further information: "Safety clearance G47", Page 349

- Machining cycles

Further information: "Contour-based turning cycles", Page 354

TURN PLUS programming (option 63)

To create an NC program with TURN PLUS, you define the workpiece blank and the finished part in ICP editor submode. Then you have the control create the working plan and the NC program based on a defined Machining sequence.
For detailed explanations and a step-by-step example of this topic, refer to:

- Step-by-step example see "Example", Page 711
- Detailed information on TURN PLUS see "The function TURN PLUS", Page 682
- Detailed information on the Machining sequence see "Automatic working plan generation (AWG) submode", Page 683

2.4 NC program verification in the simulation

To verify your NC program, you can test the machining process in Simulation submode.

Open the NC program in Simulation submode as follows:
$\Rightarrow \quad \forall$ Switch to smart.Turn operating mode

Open

N

5

- Select the Prog menu item
- Select the Open ... menu item
$>$ The control opens the Open dialog box.
- Select the desired NC program
- Press the Open soft key
> The control opens the NC program.
- Press the Simulation soft key
> The control opens the Simulation submode.

Close the Simulation submode as follows:

Back

- Press the Back soft key
> The control opens the smart.Turn operating mode.

Further information on this topic

- Simulation submode

Further information: User's Manual

NC Programming

3.1 smart.Turn and DIN/ISO programming

The control supports the following types of programming:

- Conventional ISO programming: Program the basic contour with line segments, circular arcs, and simple turning cycles. Use ISO Mode in smart. Turn operating mode
- DIN PLUS programming: The geometrical description of the workpiece and the machining process are separated. First, program the geometry of the workpiece blank and the finished part. Then, machine the workpiece using contour-related turning cycles. Use ISO Mode in smart.Turn operating mode
- smart.Turn programming: The geometrical description of the workpiece and the machining process are separated. Program the geometry of the blank and the finished part and program the machining blocks as Units». Use these Units» in the smart.Turn mode of operation
Depending on the type and complexity of your machining task, you can use either simple DIN/ISO programming, DIN PLUS (ISO) programming or smart.Turn programming. All three named programming modes can be combined in one NC program.
In DIN PLUS and smart. Turn programming, contours can be described with ICP interactive graphics. ICP saves the contour descriptions as \mathbf{G} codes in the NC program.
Parallel operation: While you are editing and testing programs, your machine can run another NC program.

In smart.Turn operating mode you can create a program list (Automatic jobs) that is run automatically in Program run mode.

Contour follow-up

With DIN PLUS and smart.Turn programs, the control uses Contour follow-up. The control takes the Workpiece blank as a basis and accounts for each cut and each cycle in Contour follow-up. Thus you can inspect the current contour of the workpiece during each machining stage. With the contour follow-up function, the control optimizes the approach and departure paths and avoids air cut passes.
Contour follow-up is only available for turning operations if a Workpiece blank has been programmed. It is also performed with Auxiliary contour.

Structured NC program

smart.Turn and DIN PLUS programs are structured in fixed sections. The following program sections are created automatically with a new NC program:

Your machine tool builder can define the contents of newly created NC programs in a default template.
If there is no default template defined, the control will automatically take into account the number of turrets, etc. This may cause more than one TURRET section being created in the new NC program.
For machines with a counter spindle, the control will automatically insert the CHUCKING EQUIPMENT 2 section.

- PROGRAM HEAD: Contains information on the material of the workpiece, the unit of measure, as well as further organizational data and setup information in the form of a comment
- CHUCKING EQUIPMENT: Description of the workpiece clamping situation-for machines with a counter spindle, a second line is generated
- BLANK: The BLANK is stored. Programming a workpiece blank activates Contour follow-up
- FINISHED PART: The FINISHED PART is stored. It is advisable to describe the complete workpiece as a FINISHED PART. The units or machining cycles use NS and NE to indicate the workpiece section to be machined.
- MACHINING: Use units and cycles to program the individual machining steps. In a smart. Turn program, the START unit is located at the beginning of the machining process, and the END unit at the end
- END: Indicates the end of the NC program

If required, for example for machining with the C axis or when programming with variables, you add further program sections.
(i)

Use the ICP editor (Interactive Contour Programming) submode for describing the contours of workpiece blanks and finished parts.

Example: structured smart.Turn program

PROGRAM HEAD	
\#UNIT METRIC	
\#MATERIAL Steel	
\#MACHINE Automatic lathe	
\#DRAWING 356_787.9	
\#CLAMP. PRESS. 20	
\#COMPANY Turn \& Co	
TURRET	
T1 ID"038_111_01"	
T2 ID"006_151_A"	
CHUCKING EQUIPMENT	
H0 D0 Z200 B20 0-100 X120 K12 Q4	
BLANK	
N1 G20 X120 Z120 K2	
FINISHED PART	
N2 GO XO ZO	
N3 G1 X20 BR3	
N4 G1 Z-24	
...	
MACHINING	
N50 UNIT ID"START"	[Program beginning]
N52 G26 S4000	
N53 G59 Z320	
N54 G14 Q0	
N25 END_OF_UNIT	
...	
	[Machining commands]
...	
N9900 UNIT ID"END"	[Program end]
N9902 M30	
N9903 END_OF_UNIT	
END	

Linear and rotary axes

Principal axes: Coordinates of the X, Y and Z axes refer to the workpiece datum.
C axis as reference axis:

- Angle data are given with respect to the datum of the \mathbf{C} axis
- C-axis contours and C-axis operations:
- Positions on the front/rear face are entered in Cartesian coordinates ($\mathbf{X K}, \mathbf{Y K}$) or polar coordinates (\mathbf{X}, \mathbf{C})
- Positions on the lateral surface are entered in polar coordinates (Z, C). Instead of \mathbf{C}, the linear value $\mathbf{C Y}$ is used ("unrolled" reference diameter)
smart. Turn mode of operation respects only address letters of the configured axes.

Units of measure

You write NC programs in metric or inch values. The unit of measure is defined in the Unit box.
Further information: "PROGRAM HEAD section", Page 82

Once the unit of measure has been defined, it can no longer be edited.
\qquad

Elements of an NC program

An NC program consists of the following elements:

- Program name
- Program section identifiers
- Units
- NC blocks
- Commands for program structuring
- Comment blocks

Program name

The program name starts with a digit or a letter, followed by up to 40 characters and the .nc extension for main programs and the .ncs extension for subprograms.
For program names, you can use any ASCII characters except:
~*? < > / \:" \% \#
The following characters have special meanings:

Character	Meaning
.	The last period (dot) in a file name is the extension separator
\and/	Directory separators
:	Separates the drive name from the directory

Program section identifiers

For new NC programs, certain program section codes are already predefined. You can add new sections or delete existing codes, depending on your programming requirements. An NC program must contain at least the MACHINING and END section codes.

If you create NC programs externally or edit them in
Text editor (character) input mode, unknown words may result from typing errors (e.g., THN instead of THEN).
In the NC mode of the editor, the control checks the DIN PLUS words and the information in the program head. The editor highlights lines containing unknown words in magenta. When you simulate or run the NC program, the control will indicate an error.

UNIT

The UNIT begins with this keyword followed by the identification of the unit (ID"G..."). The following lines contain the G, M and T functions of this machining block. The unit ends with END_OF_UNIT, followed by a check digit.

NC blocks

NC blocks start with an \mathbf{N}, followed by a block number (with up to five digits). The block numbers do not affect the sequence in which the program blocks are executed. Their purpose is to identify the individual NC blocks. The NC blocks of the PROGRAM HEAD and TURRET or MAGAZINE sections are not included in the block number organization of the editor.

Commands for program structuring

You can use program branches, repeats and subprograms to structure a program (example: machining the front/back of a bar, etc.).
Input and output: With inputs, you influence the flow of the NC program. Outputs can be used to communicate information to the machine operator. Example: The machine operator is requested to check measuring points and update compensation values.
The skip level influences the execution of individual NC blocks.
On machines with multiple slides, the slide code is used to assign the NC blocks to a slide.

Comment blocks

Comments are enclosed in brackets [...]. They are located at the end of an NC block or in a separate NC block. Press the CTRL + K key combination to convert an existing block into a comment (and vice versa). You can also enclose multiple program lines in square brackets to mark them as a comment.

Creating a new NC program

To create a new NC program, proceed as follows:
$\vec{\Delta} \quad$ Select the smart.Turn operating mode

ve

- Select the Prog menu item
- Select the New menu item
- Select the New DIN PLUS program Ctrl+N menu item
> The control opens the Save as dialog box.
- Enter a program name
- Press the Save soft key
$>$ The control opens the Program head (short) dialog box.
- Define the program header, if required.
- Press the OK soft key

3.2 Fundamentals: smart.Turn editor

Menu structure

You can select the following editor modes in the smart.Turn operating mode:

- Unit programming (standard)
- ISO Mode (DIN PLUS and DIN 66025)

The menu structure of the smart. Turn operating mode is shown in the figure at right. Many menu items are used in both modes. The menus differ with respect to the programming of geometries and machining operations. In ISO Mode, the Geo» (Geometry) and Mach» (Machining) menu items are displayed instead of the ICP and Units» menu items. You can switch between the editor modes by soft key.

- Switches between the Unit mode and the ISO Mode

For special cases, you can change to text-editor mode in order to make character-by-character changes without syntax checking. To make this setting, select the Config Input mode menu item.
For a description of the functions, please refer to the following chapters:

- ICP functions

Further information: User's Manual

- Units for turning and C-axis machining

Further information: "smart.Turn Units (Option 9)", Page 97

- Units for Y-axis machining

Further information: "smart.Turn Units for the Y Axis (Option 9 and Option 70)", Page 235

- G codes for turning and C-axis machining (geometry and machining)
Further information: "DIN/ISO Programming", Page 273
- G codes for Y-axis machining (geometry and machining) Further information: "ISO Programming for the Y Axis (Option 70)", Page 627

Parallel editing

Up to six NC programs can be opened simultaneously in smart.Turn operating mode. The editor shows the names of the open programs in the tab bar. If you have changed the NC program, the editor displays the name in red.
You can program in the smart. Turn operating mode while the machine is running a program in the automatic mode.

- The smart. Turn operating mode saves all open programs every time the operating mode is switched
- The program running in the automatic mode cannot be edited

Screen layout

1 Menu bar
2 NC program bar with the names of the loaded NC programs. The selected program is marked
3 Program window
4 Contour display or large program window
5 Soft keys
6 Status bar

Selecting the editor functions

The functions of the smart. Turn operating mode are contained in the main menu and various submenus.

The submenus can be called by:

\downarrow

- Selecting the desired menu item
- Positioning the cursor in the respective program section

You can access the higher-level menu:

ESC

- By pressing the menu item
- Or alternatively by pressing the ESC key

Soft keys: Soft keys are available for fast switching to "neighboring operating modes," for changing the editing window or program view, and for activating the graphics.

Soft keys with active program window

Change ICP contour	Starts the current program in Simulation Submode
in ICP	

Editing with active tree view

\rightarrow

- Press the right arrow key to expand the program sections.
- Position the cursor on the program line you want to edit and press the right arrow key once again.
$>$ The control switches to the NC editor.
- Make the required changes
- \quad Use the left cursor key to return to the tree view and to collapse the program section
i
In the MACHINING section, you can adapt the tree view to your requirements (e.g., by combining multiple units to create a custom range of blocks). Define the new range of blocks by inserting the DIN PLUS word BLOCKSTART at the beginning of the selected program section and the DIN PLUS word BLOCKEND at the end. The DIN PLUS words are available from the Extras menu in the DIN PLUS word... menu item.

Shared menu items

The menu items described below are used in both smart.Turn mode and ISO Mode.

Prog menu item

The Prog (Program management) menu item contains the following functions for NC main programs and subprograms:

- Open ...: Load existing NC programs
- New: Create new NC programs or Automatic jobs
- Close: The selected NC program is closed
- Close all: All open NC programs are closed
- Save: The selected NC program is saved
- Save as...: The selected NC program is saved under a new name
- Direct opening of the last four programs

When an NC program is opened or when a new NC program is created, the soft-key row is switched to the sorting and organization functions.
Further information: "Sorting and file organization", Page 78

Head (program head) menu item

The menu item Head (program head) contains functions for editing the program head and the tool list.

- Program head: Edit the program head
- Go to turret list (Go to tool list): Positions the cursor in the TURRET section
- Set up the turret list (Setup the tool list): Activates the "Set up turret list" function
Further information: "Setting up a turret list", Page 91
- Go to magazine: Positions the cursor in the MAGAZINE section (machine-dependent)
- Set up magazine list: Activates the "Set up magazine list" function (machine-dependent)
- Go to chucking equipment: Positions the cursor in the CHUCKING EQUIPMENT section.
- Insert chucking equipment: Describe how the workpiece is clamped
- Go to manual tool: Positions the cursor in the MANUAL TOOL section.

ICP menu item

The ICP (Interactive Contour Programming) menu item contains the following functions:

- Contour editing: Change the current contour (cursor position)
- Workpiece blank: Edit the description of the workpiece blank
- Finished part: Edit the description of the finished part
- New auxiliary blank: Create a new auxiliary workpiece blank
- New aux. contour: Create a new auxiliary contour
- C axis: Create patterns and milling contours on the front face and lateral surface
- Y axis: Create patterns and milling contours in the $X Y$ and $Y Z$ planes
- Insert contour: Insert the saved workpiece blank contour and finished part contour (only active if you have already saved a contour via Simulation submode)

Go to menu item

The Go to menu item contains the following jump and search functions:

- Jump targets-The editor positions the cursor to the selected jump target:
- To beginning
- To turret list (To tool table)
- To finished part
- To machining
- To end
- Search functions
- Find block number... Ctrl+G: You specify a certain block number. The editor jumps to this block number if it exists
- Find unit... Ctrl+U: The editor opens the list of units available in the NC program. Select the desired unit
- Find NC word... Ctrl+F: The editor opens the dialog for entering the desired NC word. You can use the soft keys to search forward or backward
- Search for contour...: The editor opens the list of contours available in the NC program. Select the desired contour

Config menu item

The Config (configuration) menu item contains the following functions:

- Display settings... opens a dialog window that provides the following settings:
- Color display of technology: The editor shows the technology values $\mathbf{T}, \mathbf{S}, \mathbf{F}$, and \mathbf{M} in violet
- Color display of FMAX: The editor shows the command G0 in brown
- Font size: Permanent setting of the font size in the NC editor; the default value is identified by an asterisk (*)
- Font size for tree view: Permanent setting of the font size in the tree view of the NC program; the default value is identified by an asterisk (*)
- Reduce font: Reduce the font size in the NC editor; as a result, the display settings will change
- Enlarge font: Enlarge the font size in the NC editor; as a result, the display settings will change
- Input mode: Define the mode
- NC editor (word-by-word): The editor checks for syntax errors in NC mode
- Text editor (character): The editor operates character by character (no syntax checking)

If you create NC programs externally or edit them in Text editor (character) input mode, unknown words may result from typing errors (e.g., THN instead of THEN).
In the NC mode of the editor, the control checks the DIN PLUS words and the information in the program head. The editor highlights lines containing unknown words in magenta. When you simulate or run the NC program, the control will indicate an error.

- Settings
- Save: The editor memorizes the open NC programs and the respective cursor positions
- Load last saved setting: Restores the last saved condition of the editor
- Technology data: Start Technology editor submode

Misc menu item

The Misc (Miscellaneous) menu item provides the following functions:

- Format the program

While checking the NC program, the control performs the following functions:

- Adding of missing block numbers
- Renumbering of NC blocks
- Adding of missing indentations
- Displaying of error message for detected syntax errors

You need to correct the syntax errors manually. Then you should use the Format the program function to recheck any corrections you have made.

- Help: The control opens TURNguide.
- Inserting a block:
- W/o block no. Alt-N: The editor inserts an empty line at the cursor position
- With block no. Ins: The editor inserts an empty line at the cursor position with a block number. Alternative: When you press the INS key, the editor inserts a block with a block number
- Comment at line end: The editor inserts a comment at the end of the line in which the cursor is located.
- To edit word, Enter: You can edit the NC word at which the cursor is located.
- To delete word, Del: The editor deletes the NC parameter at the cursor position
- Dissolve UNIT: Position the cursor to the first line of a unit before selecting this menu item. The editor removes the brackets around the unit. The unit dialog can no longer be used for this machining block, but you can edit the machining block as desired
- Block numbering...: The block numbering is based on the starting block number and block-number increment settings. The first NC block receives the starting block number and the block-number increment is added for each further NC block. The settings for starting block number and block-number increment are specific to every NC program
- Comment/uncomment line Ctrl+K: You can hide the NC block or the unit on which the cursor is placed. The control will skip commented NC blocks.

Extras menu item

The Extras menu item contains the following functions:

- DIN PLUS word...: The editor opens the selection list with all DIN PLUS words in alphabetical order. Select the desired instruction for program structuring or the input/output command. The editor inserts the DIN PLUS word at the cursor position
- Comment line...: The comment is inserted above the position of the cursor
- Constant definition...: The expression is inserted above the position of the cursor. If the DIN PLUS word CONST is not present yet, it will also be inserted
- Assignment of variables...: Inserts a variable instruction.

- L call external (the subprogram is in a separate file): The editor opens the file selection window for subprograms. Select the subprogram and fill out the subprogram dialog. The control searches for subprograms in the following sequence: current project, standard directory, and finally machine manufacturer directory
- L call internal... (the subprogram is contained in the main program): The editor opens the subprogram dialog
- Block functions. This menu item contains functions for marking, copying, and deleting sections
- Marking On/Off: Activates/deactivates the marking mode during cursor movement
- Cancel marking: After calling the menu item, no part of the program is marked
- Cut Ctrl+X: Deletes the marked part of the program and copies it to the clipboard
- Copy Ctrl+C: Copies the marked part of the program into the clipboard
- Insert Ctrl+V: Inserts the contents of the clipboard at the cursor position. Any parts of the program that are marked will be replaced by the contents of the clipboard

Graph. menu item

The Graph. menu item provides the following functions:

- Graphic ON: Activates the graphic window or updates the displayed contour. As an alternative, you can use the soft key
- Graphic OFF: Closes the graphic window
- Graphic for Automatic: The graphic window is activated when the cursor is located in the contour description.
- Window...: Sets the graphic window. During editing, the control displays the programmed contours in up to four graphic windows. Set the desired windows
- Magnifier on: Activates the zoom function. As an alternative, you can use the soft key

The graphic window:

- Colors in contour graphics:
- White: Workpiece blank and Aux. workpiece blank
- Yellow: Finished part
- Blue: Auxiliary contour
- Red: contour element at the current cursor position. The arrow point indicates the direction of definition.
- When programming fixed cycles, you can use the displayed contour for establishing block references.
- Using the zoom functions, you can magnify, reduce or shift details
- If you are working with multiple contour groups, the control shows the number of the contour group at the top left in the graphic window
- Additions/changes to the contour will not be considered until Graph. is pressed again
- Unambiguous NC block numbers are a prerequisite for the contour display

Soft keys with active program window
Activates the contour display and starts redrawing
the contour and displays the zoom frame

Sorting and file organization

When an NC program is opened or when a new NC program is created, the soft-key row is switched to the sorting and organization functions. Use the soft keys to select the order in which the programs are to be displayed, or use the functions for copying, deleting, etc.

File manager soft keys

$\begin{aligned} & \text { Paths / } \\ & \text { fites } \end{aligned}$	Alternate between directory and file window
$\begin{aligned} & \text { cut } \\ & \text { cut } \end{aligned}$	Cut marked file
Copy	Copy marked file
Insert	Insert the file stored in the buffer memory
Rename	Rename marked file:
$\underset{\substack{\text { Delete } \\ \text { all }}}{ }$	Delete the marked file following confirmation prompt; program block display must not be open in any operating mode
Back	Return to program selection dialog

Other soft keys

Details	Display details
Mark all	Mark all files
Update	Update the marked program Urite protection
Activate/deactivate write protection for the marked program	
Alphabetic keyboard	Open the Alphabetic keyboard.

Back

Return to program selection dialog

Soft keys for sorting

Details	Displays the file attributes: size, date, time
Sort by file name	Sorts by file name
Sort by size	Sorts by file size
sort by date	Sorts by creation date or change date
Update	Updates the marked program
Reverse sorting	Reverses the sorting direction
Return to program selection dialog	

3.3 Program section code

A new NC program already contains some section codes. You can add new codes or delete existing ones, depending on your program requirements. An NC program must contain at least the MACHINING and END codes.
Further program section codes are available in the DIN PLUS word... list box (menu item Extras > DIN PLUS word....). The control enters the program section code at the correct position or at the current position.
German program section codes are used when German is set as the conversational language. All other languages use English program section codes.

If you create NC programs externally or edit them in Text editor (character) input mode, unknown words may result from typing errors (e.g., THN instead of THEN). In the NC mode of the editor, the control checks the DIN PLUS words and the information in the program head. The editor highlights lines containing unknown words in magenta. When you simulate or run the NC program, the control will indicate an error.

Example: Program section codes

BLANK
N1 G20 X100 Z220 K1
FINISHED PART
N2 G0 X60 Z0
N3 G1 Z-70
. . .
FACE_C Z-25
N31 G308 ID"01" P-10 01
N32 G402 Q5 K110 A0 Wi72 V2 XK0 YK0
N33 G300 B5 P10 W118 A0
N34 G309
FACE_C Z0
N35 G308 ID"02" P-6 01
N36 G307 XK0 YK0 Q6 A0 K34.641
N37 G309
. .

Overview of program section codes

Meaning	DIN PLUS word	Description
Program head		
Program head	PROGRAM HEAD	Page 82
Chucking equipment	CHUCKING EQUIP- MENT	Page 84
Turret	TURRET	Page 85
Magazine	MAGAZINE	Page 85
Manual tool	MANUAL TOOL	Page 85
Contour definition		
Contour group	CONTOUR GROUP	Page 85
Workpiece blank BLANK Page 86 Finished part FINISHED PART Page 86 Auxiliary contour AUXIL_CONTOUR Page 86 Aux. workpiece AUX. BLANK Page 86 blank		

C-axis contours

Front	FRONT	Page 86
REAR SIDE	REAR SIDE	Page 86
Lateral	LATERAL	Page 86

Y-axis contours		
Face \mathbf{Y}	FRONT \mathbf{Y}	Page 86
REAR SIDE \mathbf{Y}	REAR SIDE \mathbf{Y}	Page 86
Lateral surface in \mathbf{Y}	SURFACE \mathbf{Y}	Page 87

Workpiece machining

Machining operation	MACHINING	Page 88
End	END	Page 88
Subprograms		
Subprogram	SUBROUTINE	Page 88
Return	RETURN	Page 88
Others		
CONST	CONST	Page 89
VAR	VAR	Page 89
SLIDE ALLOCATION	SLIDE ALLOCATION	Page 90

(i)

If there is more than one independent contour definition for drilling and milling, use the program section codes (FRONT, LATERAL, etc.) for each of them.

PROGRAM HEAD section

Instructions and information in the PROGRAM HEAD:

- Unit:
- Select dimensional system in millimeters or inches
- No entry: The unit set in the machine parameter is used
- The other fields contain organizational information and set-up
information, which do not influence the machining process
Information contained in the program head is preceded by \# in the NC program.

You can select the Unit only when creating a new NC program. It is not possible to post-edit this entry.

Display of variables

To open the variable display in the PROGRAM HEAD, proceed as follows:

- Press the Display of variables soft key
$>$ The control opens the Definition of the variable actual-position display form.

You can define up to 20 variables. In Program run submode or Simulation submode, you define whether the variables are displayed during program run.

Only use g variables:

- g1 to g299 are freely available to the user
- $g 5 x x$ are reserved for the machine tool builder
- g810 to g815 are used in measuring cycles
- g950 to g955 are used for structure programming

For each variable you define the following:

- Variable - variable number
- Default - initialization value
- Description - text for displaying and requesting the variable during program run or simulation (max. 20 characters)

Only global variables are currently supported.
Further information: "Variable types", Page 515

Delete history

When PROGRAM HEAD is open, the Delete history soft key is available.
If you press the Delete history soft key, all old entries are deleted from the pull-down menu. The current entry is retained.
The following entries are deleted:

- Machine
- Drawing
- Workpiece
- Company
- Author
- Description of variables

CHUCKING EQUIPMENT section

In the CHUCKING EQUIPMENT program section, you can describe how the workpiece is clamped. This makes it possible to display the chucking equipment in the Simulation submode. In TURN PLUS, the chucking equipment information is used to calculate the datums and cutting limits during automatic program generation.
Parameters:
1 H: No. of clamping
2 D: Spindle number AWG
3 R: Clamp type

- 0: J=Free length

4 Z: Edge of chuck - position of chuck edge
5 B: Chuck jaw reference
6 J : Unclamping length - clamping or free length of the workpiece (depends on the Clamp type R)
7 O: Cutting limit, outside - cutting limit for outside machining
8 I: Cutting limit, inside - cutting limit for inside machining
9 K: Overlap jaw/workpiece (pay attention to sign!)
10 X: Chuck diameter of workpiece blank
11 Q: Chuck form

- 5: Outside chucking
- 5: Inside chucking

12 V: Shaft machining AWG

- 0: Chuck - automatic separation points at largest and smallest diameter
- 1: Shaft/chuck - machining also starting from the chuck
- 2: Shaft/face driver - outside contour can be machined completely
(i)

[^0]Further information: User's Manual

TURRET / MAGAZINE section

The TURRET or MAGAZINE program section defines the assignment of the tool carrier. For every assigned pocket, the tool ID number is entered. For multipoint tools, every cutting edge is entered in the turret list.

If you do not program the TURRET or MAGAZINE, the tools entered in the tool list of the Machine operating mode will be used.

Example: Turret table

Example: Magazine table

MANUAL TOOL section

The MANUAL TOOL program section defines a usage list for manually changed tools.
This program section is only required if you use the automatic working plan generation (AWG) function on a machine equipped with a Multifix tool holder. The control will use these tools in connection with the AWG function.
During NC program generation, the control checks if this list only contains manually changed tools and issues an error message, if this is not the case.

Contour group section

In this program section, you describe the position of the workpiece in the working space.
The control supports up to four contour groups (Workpiece blank,
Finished part and Auxiliary contours) in one NC program. The
Contour group section code initiates the description of a contour group. G99 assigns the machining operations to a contour group.
Parameters:

- Q: number of the Contour group
- X: Contour pos. in graphic
- Z: Contour pos. in graphic
- V: Position
- 0: Machine coordinate system
- 2: Mirrored coordinate system (opposite to Z direction)

BLANK section

In this program section, you describe the contour of the workpiece blank.

FINISHED PART section

In this program section, you describe the contour of the finished part. After the FINISHED PART section, you can use additional section codes such as FRONT, LATERAL etc.

AUX. BLANK section

In this program section you define additional workpiece blanks, which can be activated with G702 when required.

AUXILIARY CONTOUR section

In this program section, you describe the auxiliary turning contours.

FRONT, REAR SIDE section

In this program section you describe the front and rear side contours to be machined with the C axis. The program section defines the position of the contour in Z direction.
Parameters:

- Z: Position of the front-face or rear-side contour

LATERAL section

In this program section you describe the lateral surface contours to be machined with the C axis. The program section defines the position of the contour in X direction.
Parameters:

- X: Reference diameter of lateral surface contours

FRONT Y / REAR SIDE Y section

For lathes with Y axis, these program section codes define the XY plane (G17) and the position of the contour in Z direction. The Spindle angle (C) defines the spindle position.
Parameters:

- X: Limit diameter - area diameter as cutting limit
- Z: Reference dimension or Position - position of the reference plane (default: 0)
- C: Spindle angle or Angle (default: 0)

SURFACE Y section

The section code identifies the YZ plane (G19). For machines equipped with a B axis, it defines the tilted plane.
Without tilted plane: The reference diameter defines the contour position in the X direction; the C axis angle defines the position on the workpiece.
Parameters:

- X: Reference diameter
- C: C axis angle - defines the spindle position

With tilted plane: SURFACE Y additionally performs the following transformations and rotations for the tilted plane:

- Shifts the coordinate system to the position \mathbf{I}, \mathbf{K}
- Rotates the coordinate system by the Plane angle B; Plane ref. in X, Plane ref. in Z: I, K
- $\mathbf{H}=\mathbf{0}$: Shifts the rotated coordinate system by -I. The coordinate system is moved back
Parameters:
- X: Reference diameter
- C: C axis angle - defines the spindle position
- B: Plane angle (reference: positive Z axis)
- I: Plane ref. in X (radius value)
- K: Plane ref. in Z
- H: Automatic shift - automatic shift of the coordinate system (default: 0)
- 0: Shift by -I - the rotated coordinate system is shifted by -I
- 1: Do not shift - the coordinate system is not shifted

Shifting back coordinate system: The control evaluates the reference diameter for the cutting limit. This value is also used as the reference value for the depth that you program for drilling operations and milling contours.
Since the Reference diameter is referenced to the current datum, it is recommended, when working in a tilted plane, to shift the rotated coordinate system back by the distance -I. If the cutting limits are not needed, for example for drilling holes, you can disable the shift of the coordinate system ($\mathbf{H}=\mathbf{1}$) and set the Reference diameter to 0 .

Please note:

- X is the infeed axis in a tilted coordinate system. X coordinates are entered as diameter coordinates.
- Mirroring the coordinate system has no effect on the reference axis of the tilt angle (B axis angle of the tool call)

Example: SURFACE Y

PROGRAM HEAD

```
CONTOUR Q1 X0 Z600
```

BLANK

FINISHED PART

...
SURFACE Y X118 C0 B130 I59 K0
...

MACHINING

...

MACHINING section

In the MACHINING program section, you can program the required machining operations. This code is mandatory.

END code

The END code concludes the NC program. This code must be included.

SUBROUTINE section

If you define a subprogram within your NC program (within the same file), it is identified by SUBROUTINE, followed by the name of the subprogram (max. 40 characters).

RETURN code

The RETURN code concludes the subprogram.

CONST code

In the CONST section of the program you define constants. You use constants for the definition of a value.
You enter the value directly or you calculate it. If you use constants in the calculation you must first define them.
The length of the constant name must not exceed 20 characters. Lower case letters and numbers are allowed. Constants always begin with an underscore.
Further information: "Expanded variable syntax CONST - VAR",
Page 529
Example: CONST

VAR code

In the VAR program section, you assign names (descriptive text) to variables.
Further information: "Expanded variable syntax CONST - VAR", Page 529
The length of the variable name must not exceed 20 characters. Lower case letters and numbers are allowed. Variables always begin with \#.

Example: VAR

SLIDE ALLOCATION code

Refer to your machine manual.
This function is only available on a machine with multiple channels (option 153).

The SLIDE ALLOCATION code assigns the subsequent machining steps to the specified slide(s). If you specify more than one slide, the control performs the machining operation on each of the specified slides.
Parameters:

- Slide: Slide numbers

To reset the assignment, program SLIDE ALLOCATION again without entering a slide code. The control will then use all slides again as specified in the program header.
If you program a slide code in the NC block, the slides entered with a $\$ \ldots$ in the NC block will be effective.

3.4 Tool programming

d

This function is also available on machines with a tool magazine．The control uses the magazine list instead of the turret list．

The designations of the tool pockets are fixed by the machine tool builder．Each tool holder has a unique tool number．
In the \mathbf{T} command（MACHINING section），you can program the tool number，and therefore the position to which the tool carrier rotates． The control retrieves the assignment of the tools to the swivel position from the turret list of the TURRET section． You can edit the tool entries individually，or you can call the turret list via the Set up the turret list menu item and then edit it．

Setting up a turret list

This function is also available on machines with a tool magazine．The control uses the magazine list instead of the turret list．

With the Set up the turret list function，the control provides the turret assignment as a tool list for editing．
You have the following options：
－Editing the turret assignment：Transfer tools from the database， delete entries or move them to other positions
－Load the turret list from the Machine mode of operation
－Deleting the current turret assignment of the NC program

Soft keys in turret list

准	Delete entry
合院	Paste entry from clipboard
［128	Cut out entry and save it in the clipboard
${ }_{\substack{\text { Tool } \\ \text { List }}}$	Show entries in the tool database
Save	Save the turret assignment
Cancel	Close the tool list．You decide whether the changes made remain in effect
$\begin{aligned} & \text { Edit } \\ & \text { the tool } \end{aligned}$	The input window of the selected tool is opened for editing
Transfer machin	Load the turret list from the Machine mode of operation

Loading the turret list from the Machine mode of operation:

- Select the Head menu item
- Select the Set up the turret list menu item
- Switch to Special Functions if needed
- Load the tool list from the Machine mode of operation into the NC program

Deleting the turret list:

- Select the Head menu item
- Select the Set up the turret list menu item

Special
Functions

- Switch to Special Functions

Delete

- Delete all entries of the turret list

Editing tool entries

(i)

This function is also available on machines with a tool magazine. The control uses the magazine list instead of the turret list.

For each entry in the TURRET section, call the Tool dialog box, enter the ID no., or use the ID no. from the tool database.

Parameters of the Tool dialog box:

- T: T number - Position on the tool carrier
- ID: ID number - Reference to database
- AT: Replacement tool - Identification number of the tool to be used when the previous tool is worn out
- AS: Replacement strategy
- 0: Complete tool
- 1: Secondary cutting edge or any

Creating a new tool entry:
\downarrow

- Position the cursor
ins \quad Press the INS key
> The editor opens the Tool dialog box.
- Enter the ID no. of the tool
- Open the tool database

Tool
List
\downarrow

- Place the cursor on the tool to be loaded.

Load $>$ Use the ID no. of the tool
tool

Editing the tool data:

- Position the cursor

ENT

- Press the ENT key
- Edit the Tool dialog box

Multipoint tools

A multipoint tool is a tool with multiple reference points or multiple cutting edges. During \mathbf{T} call, the tool number is followed by an $\mathbf{. S}$ to identify the cutting edge.
Tool number.S (S=0..9)
$\mathbf{S}=\mathbf{0}$ identifies the main cutting edge. This does not need to be programmed.
Examples:

- T3 or T3.0: Tilted position 3; main cutting edge
- T12.2: Tilted position 12; cutting edge 2

Replacement tools

During simple tool life monitoring the program run is stopped when a tool is worn out. However, the program run is then resumed and concluded.
If you use the tool life monitoring with replacement tools function (option 10), the control automatically inserts the replacement tool when a certain tool is worn out. The control does not stop the program run until the last tool of the tool change sequence is worn out.
You can define replacement tools when setting up the turret. The interchange chain can contain more than one replacement tool. The interchange chain is a part of the NC program. In the \mathbf{T} commands, you program the first tool to be changed.

Defining replacement tools:
\downarrow

- Place the cursor on the previous tool
- Press the ENT key
- Enter the ID no. of the replacement tool (Tool dialog box)
- Define the replacement strategy

When using multipoint tools, you define in the replacement strategy whether the complete multipoint tool or only the worn-out cutting edge of the tool is to be replaced by a replacement tool:

- 0: Complete tool (default): If a cutting edge of the multipoint tool is worn out, the tool will no longer be used
- 1: Secondary cutting edge or any: Only the cutting edge of the multipoint tool that is worn out will be replaced by another tool or another cutting edge. Any other cutting edges of the multipoint tool that are not worn out will continue to be used.

3.5 Automatic job

In Program run submode, the control can execute several main programs successively without you needing to reselect and start these programs. For this purpose you create a program list (Automatic jobs) that is run in Program run submode.
Enter the quantity, i.e. the number of repetitions, for each main program.
All program calls are saved with the complete path. In this way, you can also start project-dependent programs.

Opening a job

In smart. Turn operating mode, you create an automatic job with the file extension .job. Automatic jobs are project-independent and always stored in the default directory TNC:\nc_prog_ncps.

Creating a new automatic job:

- Select the Prog menu item
- Select the New menu item
- Select the New automatic job menu item
- Enter the file name.
- Press the Save soft key

Opening an existing automatic job:

- Select the Prog menu item
- Select the Open ... menu item

- Switch to the .job file type

Open

- Press the Open soft key

Editing a job

In an automatic job，you link main programs in order to execute them successively in Program run submode．

Creating a new automatic job：

－Select the Extras menu item
－Select the Program call menu item
－Select the main program．
－Press the Open soft key
Open
－Enter the number of repetitions in the \mathbf{Q} parameter，if required

If you do not program a repetition the control runs the program once．The program is not run if you enter a 0 ．

Example：Automatic job

```
%autorun.job „TURN_V1.0"
N1 L"TNC:\nc_prog\ncps\234.nc" Q3
N2 L"TNC:\Project\Project3\ncps\10785.nc"
N3 L"TNC:\nc_prog\ncps\Huelse.nc" Q12
```


$\sqrt{4}$

$$
\begin{aligned}
& \text { smart.Turn Units } \\
& \text { (Option 9) }
\end{aligned}
$$

4.1 Units - smart.Turn units

Units menu item

The Units» menu item contains the unit calls grouped by the type of machining operation. Select the Units» menu item to call the following menu items:

- Roughing
- Recessg
- Drilling (C axis and Y axis)
- Finishing
- Thread
- Millg (C axis and Y axis)
- Spec (special operations)

Refer to your machine manual.
Your machine tool builder can provide proprietary units. Select the Spec menu item to call these functions.

smart.Turn unit

A unit describes a complete working block.
The unit includes:

- Tool call
- Technology data
- Cycle call
- Approach and departure strategies
- Global data
- Safety clearance

These parameters are summarized in a dialog-simply and clearly.

Unit forms

The unit dialog is divided into fillable forms and the forms are divided again into groups. You can navigate between the forms and groups with the smart.Turn keys.

Forms in unit dialogs

Fillable form	Function
Overvw.	Overview form with all necessary settings
Tool	Tool form with tool selection, technological settings and \mathbf{M} functions
Contour	Description or selection of the contour to be machined
Cycle	Description of the machining operation
Global	View and settings of globally set values
AppDep	Definition of approach and departure behavior
Tool ext	Extended tool settings

Overvw. Tool Contour Cycle Global

Overview form

The overview form summarizes the most important settings of the unit. These parameters are repeated in the other forms.

Tool form

You program the technological information in this form.
Tool:

- T: Tool number - turret pocket number
- TID: ID no. - the tool name will be entered automatically
- F: Feed - feed per revolution ($\mathrm{mm} / \mathrm{rev}$) for machining The tool is moved by the programmed value at each spindle revolution.
- S:Cutting speed (m/min) or Constant speed (rev/min) Switchable with Type of turning GS.
Spindle:
- GS: Type of turning
- G96: Constant Cutting speed The rotational speed changes in sync with the turning diameter.
- G97: Constant speed Rotational speed is independent of the turning diameter
- MD: Turn. direct.
- M03: Clockwise (CW)
- M04: Counterclockwise (CCW)
- SPI: Workpc spindle no. $\mathbf{0 . . 3}$ - spindle that is holding the workpiece (only on machines with more than one spindle)
- SPT: Workpc spindle no. 0.. $\mathbf{3}$ - spindle of the driven tool

M functions:

- MT: \mathbf{M} after $\mathbf{T}: \mathbf{M}$ function that is executed after the \mathbf{T} tool call
- MFS: \boldsymbol{M} at beginning: \boldsymbol{M} function that is executed at the beginning of the machining step
- MFE: \boldsymbol{M} at end: \mathbf{M} function that is executed at the end of the machining step

A machining operation is assigned to each unit for access to the technology database. The following description shows the assigned machining mode and the unit parameters that were changed by the technology proposal.

Soft keys in the Tool form

$\substack{\text { Turret } \\ \text { uist }}$	Selects the tool number
Proposed technology	Loads the feed rate, cutting speed and infeed from the technology database

Contour form

In the contour form, you can define the contours to be machined. The control distinguishes between the direct contour definition (G80) and the reference to an external contour definition (FINISHED PART or AUXILIARY CONTOUR section).

ICP contour definition

- FK: Auxiliary contour - name of the contour to be machined You can select an existing contour or describe a new contour with ICP.
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- NE not programmed: The contour element NS is machined in the direction of contour definition
- NS = NE programmed: The contour element NS is machined opposite to the direction of contour definition.
- V: Machine form elements (default: 0)

A chamfer/rounding arc is machined

- 0: At beginning and end
- 1: At beginning
- 2: At end
- 3: No machining
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- BP: Interval time - time during which the feed motion will be interrupted
The chip is broken by the intermittent feed.
- BF: Feed period - time interval until the next break The chip is broken by the intermittent feed.

1
The listed soft keys are only selectable if the input cursor is in the FK field, or on NS or NE

Soft keys in the ICP contour form

Contour list	Opens the selection list of the contours defined in the program
$\begin{gathered} \text { Graph. con- } \\ \text { tour pick } \end{gathered}$	Shows all defined contours in the graphics window. Use the arrow keys, touch gestures or a mouse for selection.
Nev turn- ing cont. ing cont	Starts the ICP editor submode. First, enter the desired contour name in FK.
$\begin{gathered} \text { Change } \\ \text { ICP contour } \end{gathered}$	Starts the ICP editor submode with the currently selected contour
Contour reference	Opens the graphics window for selection of a part of a contour for NS and NE. Use the arrow keys, touch gestures or a mouse for selection.
$\begin{gathered} \text { New } \\ \text { front face } \end{gathered}$	Starts the ICP editor submode. First, enter the desired contour name in FK
New lat surface	Starts the ICP editor submode. First, enter the desired contour name in FK

Navigating between contours

When working with multiple contour groups, you can press the Contour reference soft key to select the correct contour. The control shows the number of the Contour group and, if applicable, the name of the Auxiliary contour at top left in the graphic window.

Navigation keys

$\downarrow \quad \uparrow \quad$ Switch to the next or previous contour
(Contour group/Workpiece blank/Auxiliary contour/Finished part)
$\leftrightarrow \quad$ Switches to the next contour element

PGDN	Reduces the displayed workpiece (zoom -)

Direct contour definition parameters for turning operations:

- EC: Type of contour
- 0: Normal contour
- 1: Plunging contour
- X1, Z1: Start point contour
- X2, Z2: End point contour
- RC: Rounding - radius of contour corner
- AC: Start angle - angle of the first contour element (range: $0^{\circ}<$ AC $<90^{\circ}$)
- WC: Final angle - angle of the last contour element (range: $0^{\circ}<$ WC < 90°)
- BS: -Chamfer/+radius at start
- BS >0 : Radius of rounding arc
- $\mathbf{B S}<0$: Width of chamfer
- BE: -Chamfer/+radius at end
- BE >0 : Radius of rounding arc
- $\mathbf{B E}<0$: Width of chamfer
- BP: Interval time - time during which the feed motion will be interrupted
The chip is broken by the intermittent feed.
- BF: Feed period - time interval until the next break The chip is broken by the intermittent feed.

Direct contour definition parameters for recessing operations:

- X1, Z1: Start point contour
- X2, Z2: End point contour
- RC: Rounding - radii in the recess base
- AC: Start angle - angle of the first contour element (range: $0^{\circ}<$ AC $<90^{\circ}$)
- WC: Final angle - angle of the last contour element (range: $0^{\circ}<$ WC < 90°)
- BS: -Chamfer/+radius at start
- BS >0 : Radius of rounding arc
- $\mathbf{B S}<0$: Width of chamfer
- BE: -Chamfer/+radius at end
- BE >0 : Radius of rounding arc
- $\mathbf{B E}<0$: Width of chamfer

Global form

This form contains parameters that were defined as default values in the start unit. You can edit these parameters in the machining units.
Parameters:

- G14: Tool change point
- No axis
- 0: Simultaneously
- 1: First X, then Z
- 2: First Z, then X
- 3: Only X
- 4: Only Z

- 5: Only Y (machine-dependent)
- 6: Simultaneous w/ Y (machine-dependent)
- CLT: Coolant
- 0: Without
- 1: Coolant 1 on
- 2: Coolant 2 on
- G47: Safety clearance - indicates the distance to the current workpiece blank up to which the tool is not moved at rapid traverse during turning operations
- SCK: Safety clearance in infeed direction during drilling and milling operations
- SCI: Safety clearance in the machining plane during drilling and milling operations
- G60: Protection zone - protection zone monitoring during drilling
- 0: Active
- 1: Inactive

Programming notes:

- If, on controls without a configured Y axis, you set G14 to the default setting 5: Only Y or 6:
Simultaneous w/ Y, then the control will use No axis or 0: Simultaneously.
- The G840, Contour milling, figures, and G84X, Pocket milling, figures units additionally provide the Return plane RB parameter as part of the Global form.

AppDep form

Positions and variants of the approach and departure movements are defined in this form.
Influence the approach strategy with the following parameters.
Approach:

- APP: Type of approach

- No axis - switch off the approach function
- 0: Simultaneously $-X$ and Z axes approach diagonally
- 1: First X, then Z
- 2: First Z, then X
- 3: Only X
- 4: Only Z
- XS, ZS: Approach position \mathbf{X} and \mathbf{Z} - position of the tool tip before cycle call
Additionally with C-axis operations:
- CS: Approach position C - C-axis position that is approached before cycle call with G110
Approach with Y axis:
- APP: Type of approach
- No axis - switch off the approach function
- 0: Simultaneously $-X$ and Z axes approach diagonally
- 1: First X, then Z
- 2: First Z, then X
- 3: Only X
- 4: Only Z
- 5: Only Y
- 6: Simultaneous w/ Y - X, Y and Z axes approach diagonally
- XS, YS, ZS: Approach position X, Y and \mathbf{Z} - position of the tool tip before cycle call
- CS: Approach position \mathbf{C} - C-axis position that is approached before cycle call with G110
Influence the departure strategy with the following parameters (also applies for Y -axis functions).
Departure:
- DEP: Type of departure
- No axis - switch off the departure function
- 0: Simultaneously $-X$ and Z axes depart diagonally
- 1: First X, then Z
- 2: First Z, then X
- 3: Only X
- 4: Only Z
- XE, ZE: Departure position \mathbf{X} and \mathbf{Z} - position of the tool tip before the movement to the tool change point
(i) The units G890 ICP for contouring and G891

Simultaneous finishing additionally provide the parameter 5: Simultaneous G1 in the function DEP.

Tool ext form

In this form you can program additional tool settings.
Tool:

- T: Tool number - turret pocket number
- TID: ID no. - the tool name will be entered automatically

B axis:

- BW: B axis angle - angle in the B axis (machine-dependent)
- CW: Reverse the tool (machine-dependent)
- 0: No
- 1: Yes $\left(180^{\circ}\right)$

Misc. functions:

- HC: Shoe brake (machine-dependent)
- 0:Automatic
- 1: Tighten
- 2: Don't tighten
- DF: Miscellaneous function - can be evaluated by the machine tool builder in a subprogram (machine-dependent)
- XL, YL, ZL: Values can be evaluated by the machine manufacturer in a subprogram (machine-dependent)
(i)

With the Advanced T change soft key, you can switch quickly and easily between the Tool and Tool ext forms.

4.2 Units - Roughing

Unit G810 Longitudinal roughing in ICP

The unit machines the contour described in the FINISHED PART section from NS to NE. Any Auxiliary contour defined in FK will be used.
Unit name: G810_ICP / cycle: G810
Further information: "Longitud. roughing G810", Page 356
Contour form:

- RH: Wrkpc. blank contour - evaluation only if no workpiece blank has been defined
- 0: (depends on defined parameters)
- No parameters: workpiece blank from ICP contour and tool position
- XA and ZA: workpiece blank from ICP contour and starting point of workpiece blank
- J: workpiece blank from ICP contour and equidistant oversize
- 1: From tool position (workpiece blank from ICP contour and tool position)
- 2: With blank start point (workpiece blank from ICP contour and starting point of workpiece blank XA and ZA)
- 3 Equidistant oversize (workpiece blank from ICP contour and equidistant oversize J)
- 4: Long.-transv. oversize (workpiece blank from ICP contour, transverse oversize XA and longitudinal oversize ZA)
- J: Workpiece blank oversize (radius value - will only be evaluated if no workpiece blank has been defined)
- XA, ZA: Start point blank (Definition of the corner point of the workpiece blank contour-an evaluation will only take place if no workpiece blank has been defined beforehand)
Further information: "Contour form", Page 100
Cycle form:
- I, K: O-size X and Z
- P: Maximum infeed
- E: Plunging behavior
- $\mathbf{E}=0$: Descending contours are not machined
- $\mathbf{E}>0$: Plunging feed rate for descending contour elements. Descending contour elements are machined
- No input: The plunging feed rate is reduced during machining of descending contour elements by up to 50%. Descending contour elements are machined

- SX, SZ: Cutting limit in \mathbf{X} and \mathbf{Z} (default: no cutting limit; diameter value = SX)
- A: Start angle (reference: Z axis; default: parallel to Z axis)
- W: Depart.angle (reference: Z axis; default: orthogonal to Z axis)
- Q: Kind of liber. at end of cycle
- 0: Back to beg., X before Z
- 1: Before finished contour
- 2: Retract by safety clear.
- H: Contour smoothing
- 0: With each cut (within the infeed range)
- 1: With the last cut (entire contour) - retract at an angle below 45°
- 2: No smoothing - retract at an angle below 45°
- D: Omit elements (see figure)
- U: Cut line on horiz. element
- 0: No (uniform cutting segmentation)
- 1: Yes (irregular cutting segmentation, if applicable)
- O: Hide undercutting
- 0: No
- 1: Yes

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Roughing
- Affected parameters: F, S, E, P

G820 Roughing in ICP unit

The unit machines the contour described in the FINISHED PART section from NS to NE. Any Auxiliary contour defined in FK will be used.
Unit name: G820_ICP / cycle: G820
Further information: "Face roughing G820", Page 359
Contour form:

- RH: Wrkpc. blank contour - evaluation only if no workpiece blank has been defined
- 0: (depends on defined parameters)
- No parameters: workpiece blank from ICP contour and tool position
- XA and ZA: workpiece blank from ICP contour and starting point of workpiece blank
- J: workpiece blank from ICP contour and equidistant oversize
- 1: From tool position (workpiece blank from ICP contour and tool position)
- 2: With blank start point (workpiece blank from ICP contour and starting point of workpiece blank XA and ZA)
- 3 Equidistant oversize (workpiece blank from ICP contour and equidistant oversize J)
- 4: Long.-transv. oversize (workpiece blank from ICP contour, transverse oversize XA and longitudinal oversize ZA)
- J: Workpiece blank oversize (radius value - will only be evaluated if no workpiece blank has been defined)
- XA, ZA: Start point blank (Definition of the corner point of the workpiece blank contour-an evaluation will only take place if no workpiece blank has been defined beforehand)
Further information: "Contour form", Page 100
Cycle form:
- I, K: O-size \mathbf{X} and \mathbf{Z}
- P: Maximum infeed
- E: Plunging behavior
- $\mathbf{E}=0$: Descending contours are not machined
- $\mathbf{E}>0$: Plunging feed rate for descending contour elements. Descending contour elements are machined
- No input: The plunging feed rate is reduced during machining of descending contour elements by up to 50%. Descending contour elements are machined
- SX, SZ: Cutting limit in \mathbf{X} and \mathbf{Z} (default: no cutting limit; diameter value = SX)
- A: Start angle (reference: Z axis; default: orthogonal to Z axis)
- W: Depart.angle (reference: Z axis; default: parallel to Z axis)
- Q: Kind of liber. at end of cycle
- 0: Back to beg., X before Z
- 1: Before finished contour
- 2: Retract by safety clear.
- H: Contour smoothing

	$\text { \| DIN } 76$	DIN599E DIN599F ㄴ	Form U !	Form H Form K \qquad	G22	623 нө	623 H1
D=0	\times						
$\mathrm{D}=1$	r	r	r	r	\times	\times	\times
$\mathrm{D}=2$	\times	\times	\times	\times	\times	\times	\checkmark
$\mathrm{D}=3$	r	r	r	r	\times	\times	r
D=4	r	\times	\times	r	\times	\times	r

- 0: With each cut (within the infeed range)
- 1: With the last cut (entire contour) - retract at an angle below 45°
- 2: No smoothing - retract at an angle below 45°
- D: Omit elements (see figure)
- U: Cut line on vertical element
- 0: No (uniform cutting segmentation)
- 1: Yes (irregular cutting segmentation, if applicable)
- O: Hide undercutting
- 0: No
- 1: Yes

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Roughing
- Affected parameters: F, S, E, P

Unit G830 Contr. parallel in ICP

The unit machines the contour described in the FINISHED PART section from NS to NE, parallel to the contour. Any Auxiliary contour defined in FK will be used.
Unit name: G830_ICP / cycle: G830
Further information: "Contour-parallel roughing G830", Page 362
Contour form:

- RH: Wrkpc. blank contour - evaluation only if no workpiece blank has been defined
- 0: (depends on defined parameters)
- No parameters: workpiece blank from ICP contour and tool position
- XA and ZA: workpiece blank from ICP contour and starting point of workpiece blank
- J: workpiece blank from ICP contour and equidistant oversize
- 1: From tool position (workpiece blank from ICP contour and tool position)
- 2: With blank start point (workpiece blank from ICP contour and starting point of workpiece blank XA and ZA)
- 3 Equidistant oversize (workpiece blank from ICP contour and equidistant oversize J)
- 4: Long.-transv. oversize (workpiece blank from ICP contour, transverse oversize XA and longitudinal oversize ZA)
- J: Workpiece blank oversize (radius value - will only be evaluated if no workpiece blank has been defined)
- XA, ZA: Start point blank (Definition of the corner point of the workpiece blank contour-an evaluation will only take place if no workpiece blank has been defined beforehand)
- B: Contour calculation
B. Contour calculation
- 0: Automatic
- 1: Tool left (G41)
- 2: Tool right(G42)

Further parameters of the Contour form:
Further information: "Contour form", Page 100
Cycle form:

- P: Maximum infeed
- I, K: O-size X and Z
- SX, SZ: Cutting limit in \mathbf{X} and \mathbf{Z} (default: no cutting limit; diameter value = SX)
- A: Start angle (reference: Z axis; default: parallel to Z axis)
- W: Depart.angle (reference: Z axis; default: orthogonal to Z axis)
- Q: Kind of liber. at end of cycle
- 0: Back to beg., X before Z
- 1: Before finished contour
- 2: Retract by safety clear.
- H: Type of cut lines
- 0: Constant mach.depth - contour is shifted by a constant infeed value (paraxial)
- 1: Equidistant cut lines - cutting lines run at a constant distance from the contour (contour-parallel). The contour is scaled.
- D: Omit elements (see figure)
- HR: Main machining direction
- 0: auto
- 1: +Z
- 2: +X
- 3:-Z
- 4: -X

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Roughing
- Affected parameters: F, S, E, P

Unit G835 Bidirectional in ICP

The unit machines the contour described in the FINISHED PART section from NS to NE parallel to the contour and bidirectionally. Any Auxiliary contour defined in FK will be used.
Unit name: G835_ICP / cycle: G835
Further information: "Contour cycle, bidirectional G835 (contourparallel with neutral tool)", Page 364
Contour form:

- RH: Wrkpc. blank contour - evaluation only if no workpiece blank has been defined
- 0: (depends on defined parameters)
- No parameters: workpiece blank from ICP contour and tool position
- XA and ZA: workpiece blank from ICP contour and starting point of workpiece blank
- J: workpiece blank from ICP contour and equidistant oversize
- 1: From tool position (workpiece blank from ICP contour and tool position)
- 2: With blank start point (workpiece blank from ICP contour and starting point of workpiece blank XA and ZA)
- 3 Equidistant oversize (workpiece blank from ICP contour and equidistant oversize J)
- 4: Long.-transv. oversize (workpiece blank from ICP contour, transverse oversize XA and longitudinal oversize ZA)
- J: Workpiece blank oversize (radius value - will only be evaluated if no workpiece blank has been defined)
- XA, ZA: Start point blank (Definition of the corner point of the workpiece blank contour-an evaluation will only take place if no workpiece blank has been defined beforehand)

- B: Contour calculation

B: Contour calculation

- 0: Automatic
- 1: Tool left (G41)
- 2: Tool right(G42)

Further parameters of the Contour form:
Further information: "Contour form", Page 100
Cycle form:

- P: Maximum infeed
- I, K: O-size X and Z
- SX, SZ: Cutting limit in \mathbf{X} and \mathbf{Z} (default: no cutting limit; diameter value = SX)
- A: Start angle (reference: Z axis; default: parallel to Z axis)
- W: Depart.angle (reference: Z axis; default: orthogonal to Z axis)
- Q: Kind of liber. at end of cycle
- 0: Back to beg., X before Z
- 1: Before finished contour
- 2: Retract by safety clear.
- H: Type of cut lines
- 0: Constant mach.depth - contour is shifted by a constant infeed value (paraxial)
- 1: Equidistant cut lines - cutting lines run at a constant distance from the contour (contour-parallel). The contour is scaled.
- D: Omit elements (see figure)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Roughing
- Affected parameters: F, S, E, P

Unit G810 Roughing, direct longitudnl.

The unit machines the contour defined by the parameters. In EC you define whether you want to machine a normal or a plunging contour.
Unit name: G810_G80 / cycle: G810
Further information: "Longitud. roughing G810", Page 356
Contour form:

- EC: Type of contour
- 0: Normal contour
- 1: Plunging contour
- X1, Z1: Start point contour
- X2, Z2: End point contour

- RC: Rounding - radius of contour corner
- AC: Start angle - angle of the first contour element (range: $0^{\circ}<$ AC $<90^{\circ}$)
- WC: Final angle - angle of the last contour element (range: $0^{\circ}<$ WC < 90°)
- BS: -Chamfer/+radius at start
- BS >0 : Radius of rounding arc
- $\mathbf{B S}<0$: Width of chamfer
- BE: -Chamfer/+radius at end
- BE >0 : Radius of rounding arc
- BE <0 : Width of chamfer
- BP: Interval time - time during which the feed motion will be interrupted
The chip is broken by the intermittent feed.
- BF: Feed period - time interval until the next break The chip is broken by the intermittent feed.
Cycle form:
- P: Maximum infeed
- I, K: O-size X and Z
- E: Plunging behavior
- $\mathbf{E}=0$: Descending contours are not machined
- $\mathbf{E}>0$: Plunging feed rate for descending contour elements. Descending contour elements are machined
- No input: The plunging feed rate is reduced during machining of descending contour elements by up to 50%. Descending contour elements are machined
- H: Contour smoothing
- 0: With each cut (within the infeed range)
- 1: With the last cut (entire contour) - retract at an angle below 45°
- 2: No smoothing - retract at an angle below 45°

Further forms:

Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Roughing
- Affected parameters: F, S, E, P

Unit G820 Roughing, direct transverse

The unit machines the contour defined by the parameters. In EC you define whether you want to machine a normal or a plunging contour. Unit name: G820_G80 / cycle: G820
Further information: "Face roughing G820", Page 359
Contour form:

- EC: Type of contour
- 0: Normal contour
- 1: Plunging contour
- X1, Z1: Start point contour
- X2, Z2: End point contour
- RC: Rounding - radius of contour corner
- AC: Start angle - angle of the first contour element (range: $0^{\circ}<$ AC $<90^{\circ}$)
- WC: Final angle - angle of the last contour element (range: $0^{\circ}<$ WC < 90°)
- BS: -Chamfer/+radius at start
- BS >0 : Radius of rounding arc
- $\mathbf{B S}<0$: Width of chamfer
- BE: -Chamfer/+radius at end
- BE >0 : Radius of rounding arc
- $\mathbf{B E}<0$: Width of chamfer
- BP: Interval time - time during which the feed motion will be interrupted
The chip is broken by the intermittent feed.
- BF: Feed period - time interval until the next break

The chip is broken by the intermittent feed.
Cycle form:

- P: Maximum infeed
- I, K: O-size X and \mathbf{Z}
- E: Plunging behavior
- $\mathbf{E}=0$: Descending contours are not machined
- E > 0: Plunging feed rate for descending contour elements. Descending contour elements are machined
- No input: The plunging feed rate is reduced during machining of descending contour elements by up to 50%. Descending contour elements are machined
- H: Contour smoothing
- 0: With each cut (within the infeed range)
- 1: With the last cut (entire contour) - retract at an angle below 45°
- 2: No smoothing - retract at an angle below 45°

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Roughing
- Affected parameters: F, S, E, P

Unit G895 Simultaneous roughing (option 54)

G895 enables three-axis simultaneous roughing of the defined contour area in several steps.
(i)

In order to enable realistic collision monitoring through the cycle, you need to assign the corresponding tool holder to the tool to be used.
The real holder must be within the defined holder dimensions.
In addition to the holder, the machine tool builder can also describe another component of the tilting axis as a collision object (e.g., the B -axis head). If this description is available as a 2-D view in the plane of rotation, then this object will be displayed in the 2-D simulation and will automatically be included in collision monitoring.

NOTICE

Danger of collision!

Collision monitoring is performed only in the two-dimensional machining plane $X Z$. The cycle does not check whether an area in the Y coordinate of the cutting edge, tool holder, or tilting body will lead to a collision.

- Perform a first run of the NC program in Single block mode
- Limit the machining area

Unit name: G895_ICP / Cycle: G895
Further information: "Simultaneous roughing G895 (option 54)",
Page 378

Contour form:

- FK: Auxiliary contour - name of the contour to be machined You can select an existing contour or describe a new contour with ICP.
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- NE not programmed: The contour element NS is machined in the direction of contour definition
- NS = NE programmed: The contour element NS is machined opposite to the direction of contour definition.
- V: Machine form elements (default: 0)

A chamfer/rounding arc is machined

- 0: At beginning and end
- 1: At beginning
- 2: At end
- 3: No machining
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- D: Omit elements (see figure)

Codes for omitting recesses and undercuts

G call	Function	D code
G22	Recess for sealing ring	512
G22	Recess for circlip	1.024
G23 H0	General recess	256
$\mathbf{G 2 3 ~ H 1}$	Relief turn	2.048
$\mathbf{G 2 5 ~ H 4}$	Undercut type U	32.768
$\mathbf{G 2 5 ~ H 5}$	Undercut type E	65.536
$\mathbf{G 2 5 ~ H 6}$	Undercut type F	131.072
$\mathbf{G 2 5 ~ H 7}$	Undercut type G	262.144
$\mathbf{G 2 5 ~ H 8}$	Undercut type H	524.288
$\mathbf{G 2 5 ~ H 9}$	Undercut type K	1.048 .576

In order to omit multiple elements, you add the D codes from the table or use the D values from the graphic.
Example for omitting the undercut types \mathbf{E} and \mathbf{F} :
$65.536+131.072=196.608$

- SX, SZ: Cutting limit in \mathbf{X} and \mathbf{Z} (default: no cutting limit; diameter value = SX)
- A: Start angle (reference: Z axis; default: parallel to Z axis)
- W: Depart.angle (reference: Z axis; default: orthogonal to Z axis)
- I: O-size X
- K: O-size Z
- B: Contour calculation
- 0: Automatic
- 1: Tool left (G41)
- 2: Tool right(G42)

Cycle form:

- P: Desired infeed - basis for calculating the infeed
- PZ: Maximum infeed

Further information: "Material removal:", Page 380

- PT: Minimum removal - maintaining the infeed \mathbf{P} in \%
- Q: Type of approach (default: 0)
- 0: automatic (with B) - the control checks:
- Diagonal approach
- First X, then Z direction
- Equidistant around the workpiece blank, taking the safety clearance into account
- Omission of the first contour elements if the starting position is inaccessible
- 1: First X, then Z
- 2: First Z, then X
- 3: No approach - tool is located near the starting point of the contour area
- H: Kind of liber.
- 3: Retract by safety clear.
- 6: X then Z to start pos.
- 7: Z then X to start pos.
- 8: with B-axis motion to start pos.
- U : Use of soft clearance angles - defines how the soft clearance angles IC and JC are used
The parameter U Use of soft clearance angles provides the following settings options:
- 0: very hard
- 1: hard
- 2: medium
- 3: soft
- 4: very soft
- IC: Primary clearance angle - soft: Desired clearance area in front of the cutting edge
- JC : Secondary clearance angle - soft: Desired clearance area behind the cutting edge
- KC: Primary clearance angle - hard: Safe clearance area in front of the cutting edge
- RC: Primary clearance angle - hard: Safe clearance area behind the cutting edge

Cycle 2 form:

- AR: Minimum angle of incidence - minimum permissible angle of the tilting axis (range: $-359.999^{\circ}<\mathbf{A R}<359.999^{\circ}$)
- AN: Maximum angle of incidence - maximum permissible angle of the tilting axis (range: $-359.999^{\circ}<\mathbf{A N}<359.999^{\circ}$)
- C: Cutting strategy - type of cut lines (cutting paths)
- 0: automatic - the control automatically combines transverse and longitudinal turning
- 1: longitudinal (outside)
- 2: transverse (front)
- 3: longitudinal (inside)
- 4: transverse (back)
- 5: parallel to blank
- EC: Cutting direction
- $\mathbf{0}$: Unidirectional - every cut is performed in the direction of contour definition
- 1: Bidirectional - the cuts are performed along the optimum cutting path with respect to the machining time, and can be performed in the direction or opposite to the direction of contour definition
- AS: Strategy for sequence - machining sequence for separate pockets
- 0: transverse (preferred) - the machining sequence is chosen so that the center of gravity of the workpiece is always as close to the chucking equipment as possible
- 1: longitudinal (preferred) - the machining sequence is chosen so that the moment of inertia of the workpiece is as low as possible
- SL: Oversize of tool holder - oversize for calculating collisions between the workpiece and the tool holder
- E: Fmax in compensating motion - speed limit during the compensation movement of the linear axes
- EW: Plunging feed rate - feed rate for plunging into the material in $\mathrm{mm} / \mathrm{min}$
- BP: Interval time - time during which the feed motion will be interrupted
The chip is broken by the intermittent feed.
- BF: Feed period - time interval until the next break The chip is broken by the intermittent feed.
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:
- Machining operation: Roughing
- Affected parameters: F, S, E, P

4.3 Units - Recessg

Unit G860 Contour recess in ICP

The unit machines the contour described in the FINISHED PART section axially/radially from NS to NE. Any Auxiliary contour defined in FK will be used.
Unit name: G860_ICP / cycle: G860
Further information: "Recessing G860", Page 366
Contour form:

- SX, SZ: Cutting limit in \mathbf{X} and \mathbf{Z} (default: no cutting limit; diameter value = SX)
- DQ: Number of recess cycles
- DX, DZ: Dist.to subsequent recess in X, Z direction ($D X=$ radius value)
- DO: Flow (with parameters $\mathbf{Q}=0$ and $\mathbf{D Q}>1$)
- 0: Complete roughing/finishing - rough-machine all recesses, then finish-machine all recesses
- 1: Single roughing/finishing - machine each recess completely before machining the next one
Cycle form:
- I, K: O-size \mathbf{X} and \mathbf{Z}
- ET: Recess depth per infeed
- P: Cut. width - Infeeds $<=\mathbf{P}$ (no input: $\mathbf{P}=0.8$ * cutting width of the tool)
- E: Finishing feed
- EW: Recessing feed
- EZ: Delay after recessing path (default: time for one spindle revolution)
- D: Rev. on recessing floor
- Q: Roughing/Finish - process variants
- 0: Roughing and finishing
- 1: Only roughing
- 2: Only finishing
- KS: Multiple plunging (default: 0)
- 0: No
- 1: Yes - Rough grooving is performed by means of full-section cuts-the ridges in between are machined centrally relative to the recessing tool
- H: Kind of liber. at end of cycle
- 0: Back to start point
- Axial recess: First Z, then X direction
- Radial recess: First X, then Z direction
- 1: Before finished contour
- 2: Stops at safety clear.
- O: End of rough cut
- 0: Lift-up at rapid
- 1: Half recessng width 45°
- U: End of finishing cut
- 0: Value from glob. param.
- 1: Parting horizntl. elem.
- 2: Complete horzntl. elem.

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Contour recessing
- Affected parameters: F, S, E

Unit G869 Recess turning in ICP

The unit machines the contour described by ICP axially/radially from NS to NE. The workpiece is machined by alternate recessing and roughing movements.
The unit machines the contour described in the FINISHED PART section axially/radially from NS to NE. Any Auxiliary contour defined in FK will be used.
Unit name: G869_ICP / cycle: G869
Further information: "Recess turning cycle G869", Page 370
Contour form:

- X1, Z1: Start point blank - evaluation only if no blank was defined
- RI, RK: Oversize blank \mathbf{X} and \mathbf{Z}
- SX, SZ: Cutting limit in \mathbf{X} and \mathbf{Z} (default: no cutting limit; diameter value = SX)
Further parameters of the Contour form:
Further information: "Contour form", Page 100
Cycle form:
- P: Maximum infeed
- I, K: O-size X and \mathbf{Z}
- RB: Depth compens. for finishing
- B: Offset width (default: 0)
- U: Direction: - cutting direction
- 0: Bidirectional (in both directions)
- 1: Unidirectional (in direction of contour)
- Q: Roughing/Finish - process variants
- 0: Roughing and finishing
- 1: Only roughing
- 2: Only finishing
- A: Approach angle (default: opposite to recessing direction)
- W: Depart.angle (default: opposite to recessing direction)
- O: Recessing feed (default: active feed rate)
- E: Finishing feed
- H: Kind of liber. at end of cycle
- 0: Back to start point
- Axial recess: First Z, then X direction
- Radial recess: First X, then Z direction
- 1: Before finished contour
- 2: Stops at safety clear.

Further forms:
Further information: "smart.Turn unit", Page 98
The control uses the tool definition to distinguish between radial and axial recessing.
Depth compens. RB: Depending on factors such as workpiece material or feed rate, the cutting edge is displaced during a turning operation. You can correct the resulting infeed error with the turning depth compensation factor. The value is usually determined empirically.
Offset width B: After the second infeed movement, during the transition from turning to recessing, the length to be machined is reduced by Offset width B. For each other transition at this edge, the path is reduced by \mathbf{B}-in addition to the previous offset. The total offset is limited to 80% of the effective cutting width (effective cutting width = cutting width $-2 *$ cutting radius). If required, the control reduces the programmed offset width. After precutting (rough grooving), the remaining material is machined with a single cut.
Access to the technology database:

- Machining operation: Recessing
- Affected parameters: F, S, O, P

Unit G860 Contour recess, direct

The unit machines the contour defined by the parameters axially or radially.
Unit name: G860_G80 / cycle: G860
Further information: "Recessing G860", Page 366
Contour form:

- DQ: Number of recess cycles
- DX, DZ: Dist.to subsequent recess in X, Z direction (DX = radius value)
- DO: Flow (with parameters $\mathbf{Q}=0$ and $\mathbf{D Q}$ > 1)

Further parameters of the Contour form:
Further information: "Contour form", Page 100
Cycle form:

- Q: Roughing/Finish - process variants
- 0: Roughing and finishing
- 1: Only roughing
- 2: Only finishing
- KS: Multiple plunging (default: 0)

- 0: No
- 1: Yes - Rough grooving is performed by means of full-section cuts-the ridges in between are machined centrally relative to the recessing tool
- I, K: O-size \mathbf{X} and \mathbf{Z}
- ET: Recess depth per infeed
- P: Cut. width - Infeeds $<=\mathbf{P}$ (no input: $\mathbf{P}=0.8$ * cutting width of the tool)
- E: Finishing feed
- EW: Recessing feed
- EZ: Delay after recessing path (default: time for one spindle revolution)
- D: Rev. on recessing floor
- 0: Complete roughing/finishing - rough-machine all recesses, then finish-machine all recesses
- 1: Single roughing/finishing - machine each recess completely before machining the next one
Further forms:
Further information: "smart.Turn unit", Page 98
The control uses the tool definition to distinguish between radial and axial recessing.
Access to the technology database:
- Machining operation: Contour recessing
- Affected parameters: F, S, E

Unit G869 Recess turning, direct

The unit machines the contour defined by the parameters axially or radially. The workpiece is machined by alternate recessing and roughing movements. The machining process requires a minimum of retraction and infeed movements.
Unit name: G869_G80 / cycle: G869
Further information: "Recess turning cycle G869", Page 370
Contour form:

- RI, RK: Oversize blank X and Z

Further parameters of the Contour form:
Further information: "Contour form", Page 100

Cycle form:

- P: Maximum infeed
- I, K: O-size X and Z
- RB: Depth compens. for finishing
- B: Offset width (default: 0)
- U: Direction: - cutting direction
- 0: Bidirectional (in both directions)
- 1: Unidirectional (in direction of contour)
- Q: Roughing/Finish - process variants
- 0: Roughing and finishing
- 1: Only roughing
- 2: Only finishing

Further forms:
Further information: "smart.Turn unit", Page 98
The control uses the tool definition to distinguish between radial and axial recessing.
Depth compens. RB: Depending on factors such as workpiece material or feed rate, the cutting edge is displaced during a turning operation. You can correct the resulting infeed error with the turning depth compensation factor. The value is usually determined empirically.
Offset width B: After the second infeed movement, during the transition from turning to recessing, the length to be machined is reduced by Offset width B. For each other transition at this edge, the path is reduced by \mathbf{B}-in addition to the previous offset. The total offset is limited to 80% of the effective cutting width (effective cutting width = cutting width -2^{*} cutting radius). If required, the control reduces the programmed offset width. After precutting (rough grooving), the remaining material is machined with a single cut.
Access to the technology database:

- Machining operation: Recessing
- Affected parameters: F, S, O, P

Unit G859 Parting

The unit parts the workpiece. If programmed, a chamfer or rounding arc is machined on the outside diameter. At the end of cycle, the tool returns to the starting point. You can define a feed rate reduction, which becomes effective as soon as the position \boldsymbol{I} is reached.
Unit name: G859_CUT_OFF / cycle: G859
Further information: "Cut-off cycle G859", Page 413
Cycle form:

- X1, Z1: Start point contour
- B: -B cham./+B round.
- $\mathbf{B}>0$: Radius of rounding
- $\mathbf{B}<0$: Width of chamfer
- D: Maximum speed
- XE: Inner diameter (pipe)
- I: Diam. feed reduction - Limit diameter above which the workpiece will be machined with a reduced feed rate
- E: Reduced feed
- SD: Speed limit from I up
- U: Collector active diameter (machine-dependent)
- K: Retraction distance after parting - Lift off the tool laterally from the plane surface before retraction

Further forms:
Further information: "smart.Turn unit", Page 98

The limit to the Maximum speed \mathbf{D} is only effective in the cycle. After the cycle ends, the speed limit that was valid before the cycle becomes effective again.

Access to the technology database:

- Machining operation: Contour recessing
- Affected parameters: F, S, E

Unit G85X Undercutting ($\mathrm{H}, \mathrm{K}, \mathrm{U}$)

Depending on $\mathbf{K G}$, the unit machines one of the following undercuts:

- Type \mathbf{U} : The unit machines an undercut and finishes the adjoining plane surface. Either a chamfer or a rounding arc can be machined
- Type \mathbf{H} : The end point of the undercut is determined from the plunging angle
- Type K: Only one linear cut at an angle of 45° is performed. The resulting contour geometry therefore depends on the tool used

- First, select the Type of undercut KG and then, enter the values for the selected type of undercut
- Changes are also reflected in other undercuts where the same parameter letters are used. Do not change these values

Unit name: G85x_H_K_U / cycle: G85
Further information: "Undercut cycle G85", Page 414
Contour form:

- KG: Type of undercut
- Form U G856

Further information: "Undercut type U G856", Page 419

- Form H G857

Further information: "Undercut type H G857", Page 420

- Form K G858

Further information: "Undercut type K G858", Page 420

- X1, Z1: Contour corner

Undercut type U:

- X2: End point transv.
- I: Undercut diameter
- K: Undercut lgth.
- B: -B cham./+B round.
- $\mathbf{B}>0$: Radius of rounding
- $\mathbf{B}<0$: Width of chamfer

Undercut type H:

- K: Undercut lgth.
- R: Radius in the undercut corner
- W: Plunging angle

Undercut type K:

- I: Undercut depth

Further forms:
Further information: "smart.Turn Units (Option 9)", Page 97
Access to the technology database:

- Machining operation: Finishing
- Affected parameters: F, S

Unit G870 ICP Recessing - Recess cycle

G870 generates a recess defined by G22-Geo. The control uses the tool definition to distinguish between external and internal machining, or between radial and axial recesses.
Unit name: G870_ICP / cycle: G870
Further information: "Recessing cycle G870", Page 373
Contour form:

- I: Allowance
- EZ: Delay after recessing path (default: time for one spindle revolution)
Further parameters of the Contour form:

Further information: "Contour form", Page 100
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Recessg
- Affected parameters: F, S

4.4 Units - Drilling / Centric

Unit G74 Centric drilling

The unit uses stationary tools to drill axial holes in several passes. Suitable tools can be positioned up to $+/-2 \mathrm{~mm}$ outside the turning center.
Unit name: G74_ZENTR / cycle: G74
Further information: "Deep boring G74", Page 428
Cycle form:

- Z1: Start point drill
- Z2: End point drill
- NS: Starting block no. of contour - beginning of contour section
- X: Start point drill (diameter value; range: $-2 \mathrm{~mm}<\mathbf{X}<2 \mathrm{~mm}$; default: 0)
- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- DFF: Retraction feed rate
- V: Feed reduction
- 0 : Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- P: 1. Boring depth
- IB: Hole depth reduct. val - value by which the hole depth decreases after every infeed.
- JB: Minimum hole depth

If you have entered a hole depth reduction value, the hole depth is reduced only to the value entered in JB.

- B: Return distance - value by which the tool is retracted after reaching the respective hole depth
- RI: Safety clearance internal - distance for reapproach inside the hole (default: Safety clearance SCK)
Global form:
- G14: Tool change point
- No axis
- 0: Simultaneously
- 1: First X, then Z
- 2: First Z, then X
- 3: Only X
- 4: Only Z
- 5: Only Y (machine-dependent)
- 6: Simultaneous w/ Y (machine-dependent)
- CLT: Coolant
- 0: Without
- 1: Coolant 1 on
- 2: Coolant 2 on
- SCK: Safety clearance in infeed direction during drilling and milling operations
- G60: Protection zone - protection zone monitoring during drilling
- 0: Active
- 1: Inactive
- BP: Interval time - time during which the feed motion will be interrupted
The chip is broken by the intermittent feed.
- BF: Feed period - time interval until the next break

The chip is broken by the intermittent feed.
Further forms:
Further information: "smart.Turn unit", Page 98

> (i) If \mathbf{X} is not programmed or $\mathbf{X S}$ is in the range of $-2 \mathrm{~mm}<\mathbf{X S}$ $<2 \mathrm{~mm}$, then the control drills at $\mathbf{X S}$.

Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

Unit G73 Centric tapping

The unit cuts axial threads using stationary tools.
Unit name: G73_ZENTR / cycle: G73
Further information: "Tapping G73", Page 426

Cycle form:

- Z1: Start point drill
- Z2: End point drill
- NS: Starting block no. of contour - beginning of contour section
- X: Start point drill (diameter value; range: -2 mm < X < 2 mm ; default: 0)
- F1: Thread pitch
- B: Run-in Igth to obtain the programmed spindle speed and feed rate (default: 2 * Thread pitch F1)
- L: Retract length when using floating tap holders (default: 0)
- SR: Return speed (default: tapping speed)
- SP: Chip breaking depth
- SI: Retraction distance

Global form:

- G14: Tool change point
- No axis
- 0: Simultaneously
- 1: First X, then Z
- 2: First Z, then X
- 3: Only X
- 4: Only Z

- CLT: Coolant
- 0: Without
- 1: Coolant 1 on
- 2: Coolant 2 on
- SCK: Safety clearance in infeed direction during drilling and milling operations
- G60: Protection zone - protection zone monitoring during drilling
- 0: Active
- 1: Inactive

Further forms:
Further information: "smart.Turn unit", Page 98
Retract length L: Use this parameter for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the retraction length. The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the tap is pulled away from the chuck by the retraction length. With this method, you can achieve higher service life of the taps.
Access to the technology database:

- Machining operation: Tapping
- Affected parameter: \mathbf{S}
(i)

If you interrupt program run during a tapping cycle, you can manually retract the tool from the hole in the Z axis. The control moves the spindle on a path matching the traverse.
If the optional machine parameter CfgBackTrack (no. 122000) is active, use the Start blck search soft key to resume program run after the manual traverse.

Unit G72 Boring, cntrsnkg.

The unit uses stationary tools to drill axial holes in several passes.
Unit name: G72_ZENTR / cycle: G72
Further information: "Boring/cnt-sink G72", Page 425
Cycle form:

- NS: Starting block no. of contour - beginning of contour section
- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- DFF: Retraction feed rate
- RB: Return plane

Global form:

- G14: Tool change point
- No axis
- 0: Simultaneously
- 1: First X, then Z
- 2: First Z, then X
- 3: Only X
- 4: Only Z
- 5: Only Y (machine-dependent)
- 6: Simultaneous w/ Y (machine-dependent)
- CLT: Coolant
- 0: Without
- 1: Coolant 1 on
- 2: Coolant 2 on
- SCK: Safety clearance in infeed direction during drilling and milling operations
- G60: Protection zone - protection zone monitoring during drilling
- 0: Active
- 1: Inactive

Further forms:
Further information: "smart.Turn unit", Page 98

4.5 Units - Drillg / Face C, Lateral C, and ICP C

Unit G74 Single hole, front face C

This unit machines a hole on the face of the workpiece.
Unit name: G74_Bohr_Stirn_C / cycle: G74
Further information: "Deep boring G74", Page 428
Cycle form:

- Z1: Start point drill
- Z2: End point drill
- CS: Spindle angle
- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- DFF: Retraction feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole

- 3: At start \& end of hole

- AB: Drilling lengths (default: 0)
- P: 1. Boring depth
- IB: Hole depth reduct. val - value by which the hole depth decreases after every infeed.
- JB: Minimum hole depth

If you have entered a hole depth reduction value, the hole depth is reduced only to the value entered in JB.

- B: Return distance - value by which the tool is retracted after reaching the respective hole depth
- RI: Safety clearance internal - distance for reapproach inside the hole (default: Safety clearance SCK)
Global form:
- G14: Tool change point
- No axis
- 0: Simultaneously
- 1: First X, then Z
- 2: First Z, then X
- 3: Only X
- 4: Only Z
- 5: Only Y (machine-dependent)
- 6: Simultaneous w/ Y (machine-dependent)
- CLT: Coolant
- 0: Without
- 1: Coolant 1 on
- 2: Coolant 2 on
- SCK: Safety clearance in infeed direction during drilling and milling operations
- G60: Protection zone - protection zone monitoring during drilling
- 0: Active
- 1: Inactive
- BP: Interval time - time during which the feed motion will be interrupted
The chip is broken by the intermittent feed.
- BF: Feed period - time interval until the next break

The chip is broken by the intermittent feed.
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

Unit G74 Drilling lin. pattern, front face C

The unit machines a linear drilling pattern in which the individual features are arranged at a regular spacing on the front face.
Unit name: G74_Lin_Stirn_C / cycle: G74
Further information: "Deep boring G74", Page 428
Pattern form:

- Q: Number of holes
- X1, C1: Polar starting point - Starting point of the pattern
- XK, YK: Cartesian starting pnt
- I, J: End point (XK) and (YK) - End point of the pattern (in Cartesian coordinates)
- li, Ji: Distance (XKi) and (YKi) - Incremental pattern spacing
- R: Distance to first/last hole
- Ri: Length - Incremental distance
- A: Pattern ang. (reference: XK axis)

Cycle form:

- Z1: Start point drill
- Z2: End point drill
- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- DFF: Retraction feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole

- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- P: 1. Boring depth
- IB: Hole depth reduct. val - value by which the hole depth decreases after every infeed.
- JB: Minimum hole depth

If you have entered a hole depth reduction value, the hole depth is reduced only to the value entered in JB.

- B: Return distance - value by which the tool is retracted after reaching the respective hole depth
- RI: Safety clearance internal - distance for reapproach inside the hole (default: Safety clearance SCK)
- RB: Return plane (default: back to start position)

Global form:

- G14: Tool change point
- No axis
- 0: Simultaneously
- 1: First X, then Z
- 2: First Z, then X
- 3: Only X
- 4: Only Z
- 5: Only Y (machine-dependent)
- 6: Simultaneous w/ Y (machine-dependent)
- CLT: Coolant
- 0: Without
- 1: Coolant 1 on
- 2: Coolant 2 on
- SCK: Safety clearance in infeed direction during drilling and milling operations
- G60: Protection zone - protection zone monitoring during drilling
- 0: Active
- 1: Inactive
- BP: Interval time - time during which the feed motion will be interrupted
The chip is broken by the intermittent feed.
- BF: Feed period - time interval until the next break The chip is broken by the intermittent feed.
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:
- Machining operation: Drilling
- Affected parameters: F, S

Unit G74 Drilling circ. pattern, front face C

This unit machines a circular drilling pattern on the face of the workpiece.
Unit name: G74_Bohr_Stirn_C / cycle: G74
Further information: "Deep boring G74", Page 428
Pattern form:

- Q: Number of holes
- XM, CM: Polar center point
- XK, YK: Cartesian center point

- A: Start angle
- Wi: End angle - Angle increment
- K: Pattern diameter
- W: Final angle
- VD: Rotation dir. (default: 0)
- VD = 0, without W: Figures are arranged on a full circle
- VD $=0$, with \mathbf{W} : Figures are arranged on the longer circular arc
- VD $=0$, with $\mathbf{W i}$: The algebraic sign of $\mathbf{W i}$ defines the direction (Wi < 0: clockwise)
- VD $=1$, with \mathbf{W} : Clockwise

- VD = 1, with Wi: Clockwise (algebraic sign of Wi has no effect)
- VD = 2, with W: Counterclockwise
- VD $=2$, with $\mathbf{W i}$: Counterclockwise (algebraic sign of $\mathbf{W i}$ has no effect)
Cycle form:
- Z1: Start point drill
- Z2: End point drill
- E: Period of dwell at end of hole (default: 0)
- D: Retraction type

- 0: Rapid traverse
- 1: Feed rate
- DFF: Retraction feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- P: 1. Boring depth
- IB: Hole depth reduct. val - value by which the hole depth decreases after every infeed.
- JB: Minimum hole depth

If you have entered a hole depth reduction value, the hole depth is reduced only to the value entered in JB.

- B: Return distance - value by which the tool is retracted after reaching the respective hole depth
- RI: Safety clearance internal - distance for reapproach inside the hole (default: Safety clearance SCK)
- RB: Return plane (default: back to start position)

Global form:

- G14: Tool change point
- No axis
- 0: Simultaneously
- 1: First X, then Z
- 2: First Z, then X
- 3: Only X
- 4: Only Z
- 5: Only Y (machine-dependent)
- 6: Simultaneous w/ Y (machine-dependent)
- CLT: Coolant
- 0: Without
- 1: Coolant 1 on
- 2: Coolant 2 on
- SCK: Safety clearance in infeed direction during drilling and milling operations
- G60: Protection zone - protection zone monitoring during drilling
- 0: Active
- 1: Inactive
- BP: Interval time - time during which the feed motion will be interrupted
The chip is broken by the intermittent feed.
- BF: Feed period - time interval until the next break The chip is broken by the intermittent feed.
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:
- Machining operation: Drilling
- Affected parameters: F, S

Unit G73 Tapping, front face C

This unit machines a single tap hole on the face of the workpiece.
Unit name: G73_Gew_Stirn_C / cycle: G73
Further information: "Tapping G73", Page 426

Cycle form:

- Z1: Start point drill
- Z2: End point drill
- CS: Spindle angle
- F1: Thread pitch
- B: Run-in lgth to obtain the programmed spindle speed and feed rate (default: 2 * Thread pitch F1)
- L: Retract length when using floating tap holders (default: 0)
- SR: Return speed (default: tapping speed)
- SP: Chip breaking depth
- SI: Retraction distance

Further forms:
Further information: "smart.Turn unit", Page 98 Use the Retract length for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the retraction length. The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the tap is pulled away from the chuck by the retraction length. With this method, you can achieve higher service life of the taps.
Access to the technology database:

- Machining operation: Tapping
- Affected parameter: \mathbf{S}

If you interrupt program run during a tapping cycle, you can manually retract the tool from the hole in the Z axis. The control moves the spindle on a path matching the traverse.
If the optional machine parameter CfgBackTrack
(no. 122000) is active, use the Start blck search soft key to resume program run after the manual traverse.

Unit G73 Tapping linear pattern, front face C

The unit machines a linear tapping pattern in which the individual features are arranged at a regular spacing on the face.
Unit name: G73_Lin_Stirn_C / cycle: G73
Further information: "Tapping G73", Page 426
Pattern form:

- Q: Number of holes
- X1, C1: Polar starting point - Starting point of the pattern
- XK, YK: Cartesian starting pnt
- I, J: End point (XK) and (YK) - End point of the pattern (in Cartesian coordinates)
- Ii, Ji: Distance (XKi) and (YKi) - Incremental pattern spacing
- R: Distance to first/last hole
- Ri: Length - Incremental distance
- A: Pattern ang. (reference: XK axis)

Cycle form:

- Z1: Start point drill
- Z2: End point drill
- F1: Thread pitch
- B: Run-in Igth to obtain the programmed spindle speed and feed rate (default: 2 * Thread pitch F1)
- L: Retract length when using floating tap holders (default: 0)
- SR: Return speed (default: tapping speed)
- SP: Chip breaking depth
- SI: Retraction distance
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Use the Retract length for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the retraction length. The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the tap is pulled away from the chuck by the retraction length. With this method, you can achieve higher service life of the taps.
Access to the technology database:

- Machining operation: Tapping
- Affected parameter: \mathbf{S}

If you interrupt program run during a tapping cycle, you can manually retract the tool from the hole in the Z axis. The control moves the spindle on a path matching the traverse. If the optional machine parameter CfgBackTrack (no. 122000) is active, use the Start blck search soft key to resume program run after the manual traverse.

Unit G73 Tapping circular pattern, front face C

This unit machines a circular tapping pattern on the front face of the workpiece.
Unit name: G73_Cir_Stirn_C / cycle: G73
Further information: "Tapping G73", Page 426
Pattern form:

- Q: Number of holes
- XM, CM: Polar center point
- XK, YK: Cartesian center point

- A: Start angle
- Wi: End angle - Angle increment
- K: Pattern diameter
- W: Final angle
- VD: Rotation dir. (default: 0)
- VD = 0, without W: Figures are arranged on a full circle
- VD = 0, with W: Figures are arranged on the longer circular arc
- VD $=0$, with $\mathbf{W i}$: The algebraic sign of $\mathbf{W i}$ defines the direction ($\mathbf{W i}<0$ 0: clockwise)
- VD $=1$, with \mathbf{W} : Clockwise

- VD = 1, with Wi: Clockwise (algebraic sign of Wi has no effect)
- VD = 2, with W: Counterclockwise
- VD $=2$, with Wi: Counterclockwise (algebraic sign of Wi has no effect)
Cycle form:
- Z1: Start point drill
- Z2: End point drill
- F1: Thread pitch
- B: Run-in Igth to obtain the programmed spindle speed and feed rate (default: 2 * Thread pitch F1)
- L: Retract length when using floating tap holders (default: 0)
- SR: Return speed (default: tapping speed)
- SP: Chip breaking depth
- SI: Retraction distance
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Use the Retract length for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the retraction length. The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the tap is pulled away from the chuck by the retraction length. With this method, you can achieve higher service life of the taps.
Access to the technology database:

- Machining operation: Tapping
- Affected parameter: S

If you interrupt program run during a tapping cycle, you can manually retract the tool from the hole in the Z axis. The control moves the spindle on a path matching the traverse. If the optional machine parameter CfgBackTrack (no. 122000) is active, use the Start blck search soft key to resume program run after the manual traverse.

Unit G74 Single hole, lat. surface C

This unit machines a hole on the lateral surface of the workpiece. Unit name: G74_Bohr_Mant_C / cycle: G74
Further information: "Deep boring G74", Page 428
Cycle form:

- X1: Start point drill (diameter value)
- X2: End point drill
- CS: Spindle angle
- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- DFF: Retraction feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- P: 1. Boring depth
- IB: Hole depth reduct. val - value by which the hole depth decreases after every infeed.
- JB: Minimum hole depth

If you have entered a hole depth reduction value, the hole depth is reduced only to the value entered in JB.

- B: Return distance - value by which the tool is retracted after reaching the respective hole depth
- RI: Safety clearance internal - distance for reapproach inside the hole (default: Safety clearance SCK)
Global form:
- G14: Tool change point
- No axis
- 0: Simultaneously
- 1: First X, then Z
- 2: First Z, then X
- 3: Only X
- 4: Only Z
- 5: Only Y (machine-dependent)
- 6: Simultaneous w/ Y (machine-dependent)
- CLT: Coolant
- 0: Without
- 1: Coolant 1 on
- 2: Coolant 2 on
- SCK: Safety clearance in infeed direction during drilling and milling operations
- BP: Interval time - time during which the feed motion will be interrupted
The chip is broken by the intermittent feed.
- BF: Feed period - time interval until the next break The chip is broken by the intermittent feed.
- CB: Brake off (1)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

Unit G74 Drilling lin. patt., lat. surface C

The unit machines a linear drilling pattern in which the individual features are arranged at a regular spacing on the lateral surface. Unit name: G74_Lin_Mant_C / cycle: G74
Further information: "Deep boring G74", Page 428
Pattern form:

- Q: Number of holes
- Z1: Start point pattern - Position of first hole
- C1: Start. angle
- Wi: End angle - Angle increment
- W: Final angle
- Z2: End point pattern

Cycle form:

- X1: Start point drill (diameter value)
- X2: End point drill
- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- DFF: Retraction feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- P: 1. Boring depth
- IB: Hole depth reduct. val - value by which the hole depth decreases after every infeed.
- JB: Minimum hole depth

If you have entered a hole depth reduction value, the hole depth is reduced only to the value entered in JB.

- B: Return distance - value by which the tool is retracted after reaching the respective hole depth
- RI: Safety clearance internal - distance for reapproach inside the hole (default: Safety clearance SCK)
- RB: Return plane (default: back to start position)

Global form:

- G14: Tool change point
- No axis
- 0: Simultaneously
- 1: First X, then Z
- 2: First Z, then X
- 3: Only X
- 4: Only Z
- 5: Only Y (machine-dependent)
- 6: Simultaneous w/ Y (machine-dependent)
- CLT: Coolant
- 0: Without
- 1: Coolant 1 on
- 2: Coolant 2 on
- SCK: Safety clearance in infeed direction during drilling and milling operations
- BP: Interval time - time during which the feed motion will be interrupted
The chip is broken by the intermittent feed.
- BF: Feed period - time interval until the next break The chip is broken by the intermittent feed.

- CB: Brake off (1)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

Unit G74 Drilling circ. patt., lat. surface C

This unit machines a circular hole pattern on the lateral surface of the workpiece.
Unit name: G74_Cir_Mant_C / cycle: G74
Further information: "Deep boring G74", Page 428
Pattern form:

- Q: Number of holes
- ZM: Center of pattern
- CM: Angle of pattern center
- A: Start angle
- Wi: End angle - Angle increment
- K: Pattern diameter
- W: Final angle
- VD: Rotation dir. (default: 0)
- VD = 0, without W: Figures are arranged on a full circle
- VD $=0$, with \mathbf{W} : Figures are arranged on the longer circular arc
- VD $=0$, with $\mathbf{W i}$: The algebraic sign of $\mathbf{W i}$ defines the direction ($\mathbf{W i}<0$ 0: clockwise)
- VD $=1$, with \mathbf{W} : Clockwise
- VD = 1, with Wi: Clockwise (algebraic sign of Wi has no effect)
- VD = 2, with W: Counterclockwise
- VD $=2$, with Wi: Counterclockwise (algebraic sign of Wi has no effect)
Cycle form:
- X1: Start point drill (diameter value)
- X2: End point drill
- E: Period of dwell at end of hole (default: 0)
- D: Retraction type

- 0: Rapid traverse
- 1: Feed rate
- DFF: Retraction feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- P: 1. Boring depth
- IB: Hole depth reduct. val - value by which the hole depth decreases after every infeed.
- JB: Minimum hole depth

If you have entered a hole depth reduction value, the hole depth is reduced only to the value entered in JB.

- B: Return distance - value by which the tool is retracted after reaching the respective hole depth
- RI: Safety clearance internal - distance for reapproach inside the hole (default: Safety clearance SCK)
- RB: Return plane (default: back to start position)

Global form:

- G14: Tool change point
- No axis
- 0: Simultaneously
- 1: First X, then Z
- 2: First Z, then X
- 3: Only X
- 4: Only Z
- 5: Only Y (machine-dependent)
- 6: Simultaneous w/ Y (machine-dependent)
- CLT: Coolant
- 0: Without
- 1: Coolant 1 on
- 2: Coolant 2 on
- SCK: Safety clearance in infeed direction during drilling and milling operations
- BP: Interval time - time during which the feed motion will be interrupted
The chip is broken by the intermittent feed.
- BF: Feed period - time interval until the next break The chip is broken by the intermittent feed.
- CB: Brake off (1)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

Unit G73 Tap hole, lateral surface C

This unit machines a tap hole on the lateral surface of the workpiece. Unit name: G73_Gew_Mant_C / cycle: G73
Further information: "Tapping G73", Page 426

Cycle form:

- X1: Start point drill (diameter value)
- X2: End point drill
- CS: Spindle angle
- F1: Thread pitch
- B: Run-in lgth to obtain the programmed spindle speed and feed rate (default: 2 * Thread pitch F1)
- L: Retract length when using floating tap holders (default: 0)
- SR: Return speed (default: tapping speed)
- SP: Chip breaking depth
- SI: Retraction distance

Further forms:
Further information: "smart.Turn unit", Page 98 Use the Retract length for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the retraction length. The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the
 tap is pulled away from the chuck by the retraction length. With this method, you can achieve higher service life of the taps.
Access to the technology database:

- Machining operation: Tapping
- Affected parameter: \mathbf{S}

If you interrupt program run during a tapping cycle, you can manually retract the tool from the hole in the Z axis. The control moves the spindle on a path matching the traverse.
If the optional machine parameter CfgBackTrack
(no. 122000) is active, use the Start blck search soft key to resume program run after the manual traverse.

Unit G73 Tapping linear pattern, cylindrical C

The unit machines a linear tapping pattern in which the individual features are arranged at a regular spacing on the lateral surface.
Unit name: G73_Lin_Mant_C / cycle: G73
Further information: "Tapping G73", Page 426
Pattern form:

- Q: Number of holes
- Z1: Start point pattern - Position of first hole
- C1: Start. angle
- Wi: End angle - Angle increment
- W: Final angle
- Z2: End point pattern

Cycle form:

- X1: Start point drill (diameter value)
- X2: End point drill
- F1: Thread pitch
- B: Run-in Igth to obtain the programmed spindle speed and feed rate (default: 2 * Thread pitch F1)
- L: Retract length when using floating tap holders (default: 0)
- SR: Return speed (default: tapping speed)
- SP: Chip breaking depth
- SI: Retraction distance
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Use the Retract length for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the retraction length. The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the tap is pulled away from the chuck by the retraction length. With this method, you can achieve higher service life of the taps.
Access to the technology database:

- Machining operation: Tapping
- Affected parameter: S

If you interrupt program run during a tapping cycle, you can manually retract the tool from the hole in the Z axis. The control moves the spindle on a path matching the traverse. If the optional machine parameter CfgBackTrack (no. 122000) is active, use the Start blck search soft key to resume program run after the manual traverse.

Unit G73 Tapping circ. pattern, lateral surf. C

This unit machines a circular tapping pattern on the lateral surface of the workpiece.
Unit name: G73_Cir_Mant_C / cycle: G73
Further information: "Tapping G73", Page 426
Pattern form:

- Q: Number of holes
- ZM: Center of pattern
- CM: Angle of pattern center
- A: Start angle
- Wi: End angle - Angle increment
- K: Pattern diameter
- W: Final angle
- VD: Rotation dir. (default: 0)
- VD = 0, without W: Figures are arranged on a full circle
- VD = 0, with W: Figures are arranged on the longer circular arc
- VD $=0$, with $\mathbf{W i}$: The algebraic sign of $\mathbf{W i}$ defines the direction ($\mathbf{W i}$ < 0: clockwise)
- VD $=1$, with \mathbf{W} : Clockwise

- VD = 1, with Wi: Clockwise (algebraic sign of Wi has no effect)
- VD $=2$, with \mathbf{W} : Counterclockwise
- VD $=2$, with Wi: Counterclockwise (algebraic sign of Wi has no effect)
Cycle form:
- X1: Start point drill (diameter value)
- X2: End point drill
- F1: Thread pitch
- B: Run-in Igth to obtain the programmed spindle speed and feed rate (default: 2 * Thread pitch F1)
- L: Retract length when using floating tap holders (default: 0)
- SR: Return speed (default: tapping speed)
- SP: Chip breaking depth
- SI: Retraction distance
- RB: Return plane

Further forms:
Further information: "smart.Turn unit", Page 98
Use the Retract length for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the retraction length. The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the tap is pulled away from the chuck by the retraction length. With this method, you can achieve higher service life of the taps.
Access to the technology database:

- Machining operation: Tapping
- Affected parameter: S

If you interrupt program run during a tapping cycle, you can manually retract the tool from the hole in the Z axis. The control moves the spindle on a path matching the traverse. If the optional machine parameter CfgBackTrack (no. 122000) is active, use the Start blck search soft key to resume program run after the manual traverse.

Unit G74 Drilling in ICP C (option 55)

The unit machines a single hole or a hole pattern on the face or lateral surface. Using ICP, you define the positions of the holes as well as further details.

Unit name: G74_ICP_C / cycle: G74
Further information: "Deep boring G74", Page 428
Pattern form:

- FK: No. of ICP finished part - name of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section

Cycle form:

- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- DFF: Retraction feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- P: 1. Boring depth
- IB: Hole depth reduct. val - value by which the hole depth decreases after every infeed.
- JB: Minimum hole depth

If you have entered a hole depth reduction value, the hole depth is reduced only to the value entered in JB.

- B: Return distance - value by which the tool is retracted after reaching the respective hole depth
- RI: Safety clearance internal - distance for reapproach inside the hole (default: Safety clearance SCK)
- RB: Return plane (default: back to start position)

Global form:

- G14: Tool change point
- No axis
- 0: Simultaneously
- 1: First X, then Z
- 2: First Z, then X
- 3: Only X
- 4: Only Z
- 5: Only Y (machine-dependent)
- 6: Simultaneous w/ Y (machine-dependent)
- CLT: Coolant
- 0: Without
- 1: Coolant 1 on
- 2: Coolant 2 on
- SCK: Safety clearance in infeed direction during drilling and milling operations
- CB: Brake off (1)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

Unit G73 Tapping in ICP C (option 55)

The unit machines a single tap hole or a tapping pattern on the face or lateral surface. Using ICP, you define the positions of the tap holes as well as further details.
Unit name: G73_ICP_C / cycle: G73
Further information: "Tapping G73", Page 426
Pattern form:

- FK: No. of ICP finished part - name of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section
Cycle form:
- F1: Thread pitch
- B: Run-in Igth to obtain the programmed spindle speed and feed rate (default: 2 * Thread pitch F1)
- L: Retract length when using floating tap holders (default: 0)
- SR: Return speed (default: tapping speed)
- SP: Chip breaking depth
- SI: Retraction distance
- RB: Return plane

Further forms:
Further information: "smart.Turn unit", Page 98
Use the Retract length for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the retraction length. The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the tap is pulled away from the chuck by the retraction length. With this method, you can achieve higher service life of the taps.
Access to the technology database:

- Machining operation: Tapping
- Affected parameter: \mathbf{S}

If you interrupt program run during a tapping cycle, you can manually retract the tool from the hole in the Z axis. The control moves the spindle on a path matching the traverse. If the optional machine parameter CfgBackTrack (no. 122000) is active, use the Start blck search soft key to resume program run after the manual traverse.

Unit G72 Boring, cntrsinkg ICP C (option 55)

The unit machines a single hole or a hole pattern on the face or lateral surface. Using ICP, you define the hole positions as well as further details for boring or countersinking.
Unit name: G72_ICP_C / cycle: G72
Further information: "Boring/cnt-sink G72", Page 425
Pattern form:

- FK: No. of ICP finished part - name of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section

Cycle form:

- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- DFF: Retraction feed rate
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

Units G75 Bore milling ICP C (option 55)

Unit G75 Bore milling ICP C face

The unit machines a single hole or a hole pattern on the face. Using ICP, you define the positions of the holes as well as further details.
Unit name: G75_BF_ICP_C / cycle: G75
Further information: "Bore milling G75", Page 431
Contour form:

- FK: Finished part contour - name of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section
- FZ: Approach feed (default: active feed rate)
- B: Milling depth (default: depth from the contour description)

Cycle form:

- QK: Machining operation
- 0: Roughing
- 1: Finishing
- 2: Roughing and finishing
- H: Mill cutting direction
- 0: Up-cut

- 1: Climb
- P: Max. approach (default: milling in one infeed)
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- WB: Diameter of the helix (default: helix diameter = 1.5 * milling diameter)
- EW: Plunging angle
- U: Overlap factor - overlap of milling paths = \mathbf{U} * milling diameter (default: 0.5)
- RB: Return plane (default: retract to starting position or to safety clearance; diameter value with radial holes and holes in the YZ plane)
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:
- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G75 Deburring ICP C face

The unit deburs a single hole or a hole pattern on the face. Using ICP, you define the positions of the holes as well as further details.
Unit name: G75_EN_ICP_C / cycle: G75
Further information: "Bore milling G75", Page 431
Contour form:

- FK: Finished part contour - name of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section
- B: Milling depth (default: countersinking depth from the contour definition)
Cycle form:
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- RB: Return plane (default: retract to starting position or to safety clearance; diameter value with radial holes and holes in the YZ plane)
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:
- Machining operation: Deburring
- Affected parameters: F, S

Unit G75 Bore milling ICP C lateral

The unit machines a single hole or a hole pattern on the lateral surface. Using ICP, you define the positions of the holes as well as further details.

This cycle produces oval contours on the lateral surface, and not circles.

Circles are machined when the Y axis is used.
Further information: "Units G75 Bore milling Y", Page 239

Unit name: G75_BF_ICP_C_MANT / cycle: G75
Further information: "Bore milling G75", Page 431
Contour form:

- FK: Finished part contour - name of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section
- FZ: Approach feed (default: active feed rate)
- B: Milling depth (default: depth from the contour description)

Cycle form:

- QK: Machining operation
- 0: Roughing
- 1: Finishing
- 2: Roughing and finishing
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- P: Max. approach (default: milling in one infeed)
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- WB: Diameter of the helix (default: helix diameter $=1.5$ * milling diameter)
- EW: Plunging angle
- U: Overlap factor - overlap of milling paths = U * milling diameter (default: 0.5)
- RB: Return plane (default: retract to starting position or to safety clearance; diameter value with radial holes and holes in the YZ plane)
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:
- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G75 Deburring ICP C lateral

The unit deburs a single hole or a hole pattern on the lateral surface. Using ICP, you define the positions of the holes as well as further details.

This cycle produces oval contours on the lateral surface, and not circles.
Circles are machined when the Y axis is used.
Further information: "Units G75 Bore milling Y", Page 239

Unit name: G75_EN_ICP_C_MANT / cycle: G75
Further information: "Bore milling G75", Page 431
Contour form:

- FK: Finished part contour - name of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section
- B: Milling depth (default: countersinking depth from the contour definition)

Cycle form:

- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- RB: Return plane (default: retract to starting position or to safety clearance; diameter value with radial holes and holes in the YZ plane)
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:
- Machining operation: Deburring
- Affected parameters: F, S

4.6 Units - Drillg / Predrilling, milling in C (option 55)

Unit G840 Predrill, contour mill, figure on face in C
The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF.
Unit name: DRILL_STI_KON_C / cycles: G840 A1; G71
Further information: "G840 - calculating hole positions", Page 464
Further information: "Simple drilling G71", Page 423
Figure form:

- Q: Type of figure
- 0: Complete circle
- 1: Linear slot
- 2: Circular slot
- 3: Triangle
- 4: Rectangle / square
- 5: Polygon
- QN: No. of polygon corners (only with $\mathbf{Q}=5$: Polygon)
- X1: Dia. of figure center
- C1: Angle of figure center (default: Spindle angle C)

- Z1: Millg. top edge (default: Starting point Z)
- P2: Depth of figure
- L: +edge Ingth/-width a. flats
- L>0: Edge length
- $\mathbf{L}<0$: Width across (inside diameter) for polygon
- B: Width of rectangle
- RE: Rounding radius (default: 0)
- A: Angle to X axis (default: 0°)

- Q2: Rot. direction of slot (only with $\mathbf{Q}=\mathbf{2}$: Circular slot)
- cw: In clockwise direction
- ccw: In counterclockwise direction
- W: Angle of slot end point (only with $\mathbf{Q}=2$: Circular slot)

Cycle form:

- JK: Cutter position
- 0: On the contour
- 1: Within the contour
- 2: Outside the contour
- H : Mill cutting direction
- 0: Up-cut
- 1: Climb
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- R: Apprch angle (default: 0)
- WB: Milling diameter
- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)
- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

Unit G845

Predrill, pocket mill, figure on face in C
The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF.
Unit name: DRILL_STI_TASC / cycles: G845; G71
Overvw. form:

- AP: Predrilling position
- 1: Determine predrilling pos
- 2: predrill. pos. fig. center

Further information: "G845 - calculating hole positions", Page 473
Further information: "Simple drilling G71", Page 423
Figure form:

- Q: Type of figure
- 0: Complete circle
- 1: Linear slot
- 2: Circular slot
- 3: Triangle
- 4: Rectangle / square
- 5: Polygon
- QN: No. of polygon corners (only with $\mathbf{Q}=5$: Polygon)
- X1: Dia. of figure center
- C1: Angle of figure center (default: Spindle angle C)
- Z1: Millg. top edge (default: Starting point Z)
- P2: Depth of figure
- L: +edge Ingth/-width a. flats
- L > 0: Edge length
- $\mathbf{L}<0$: Width across (inside diameter) for polygon
- B: Width of rectangle
- RE: Rounding radius (default: 0)
- A: Angle to X axis (default: 0°)
- Q2: Rot. direction of slot (only with $\mathbf{Q}=\mathbf{2}$: Circular slot)
- cw: In clockwise direction
- cCw: In counterclockwise direction
- W: Angle of slot end point (only with $\mathbf{Q}=2$: Circular slot)

Program only the parameters relevant to the selected figure type.

Cycle form:

- JT: Machining direction

- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap = U * milling diameter

- WB: Milling diameter
- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)
- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

Unit G840 Predrill, contour mill, ICP on face in C

The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF. If the milling contour consists of multiple sections, the unit machines a hole for each section.
Unit name: DRILL_STI_840_C / cycles: G840 A1; G71
Further information: "G840 - calculating hole positions", Page 464
Further information: "Simple drilling G71", Page 423
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- Z1: Millg. top edge (default: Starting point Z)
- P2: Depth of contour

Cycle form:

- JK: Cutter position
- 0: On the contour
- 1: Within/left of contour
- 2: Outside/right of contour
- 3: Depending on H and MD
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- R: Apprch angle (default: 0)
- WB: Milling diameter
- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)

- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

Unit G845 Predrill, pocket mill, ICP on face in C

The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF. If the pocket consists of multiple sections, the unit machines a hole for each section.
Unit name: DRILL_STI_845_C / cycles: G845; G71
Overvw. form:

- AP: Predrilling position
- 1: Determine predrilling pos
- 2: predrill. pos. fig. center

Further information: "G845 - calculating hole positions", Page 473
Further information: "Simple drilling G71", Page 423
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- Z1: Millg. top edge (default: Starting point Z)
- P2: Depth of contour

Cycle form:

- JT: Machining direction
- 0: From the inside out
- 1: From the outside in
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap = U * milling diameter

- WB: Milling diameter
- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)
- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98

Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

Unit G840

Predrill, contour mill, fig. on lateral in C
The unit determines the hole position and machines the hole.
The subsequent milling cycle obtains the hole position from the reference stored in NF.
Unit name: DRILL_MAN_KON_C / cycles: G840 A; G71
Further information: "G840 - calculating hole positions", Page 464
Further information: "Simple drilling G71", Page 423
Figure form:

- Q: Type of figure
- 0: Complete circle
- 1: Linear slot
- 2: Circular slot
- 3: Triangle
- 4: Rectangle / square
- 5: Polygon
- QN: No. of polygon corners (only with $\mathbf{Q}=5$: Polygon)
- Z1: Figure center
- C1: Angle of figure center (default: Spindle angle C)
- CY: Fig. center, unr.lat. surf.
- X1: Upper edge of milling
- P2: Depth of figure
- L: +edge Ingth/-width a. flats
- $\mathrm{L}>0$: Edge length
- $\mathbf{L}<0$: Width across (inside diameter) for polygon
- B: Width of rectangle
- RE: Rounding radius (default: 0)

- A: Angle to Z axis (default: 0°)
- Q2: Rot. direction of slot (only with $\mathbf{Q}=2$: Circular slot)
- cw: In clockwise direction
- cCW: In counterclockwise direction
- W: Angle of slot end point (only with $\mathbf{Q}=2$: Circular slot)

Program only the parameters relevant to the selected figure type.

Cycle form:

- JK: Cutter position
- 0: On the contour
- 1: Within the contour
- 2: Outside the contour
- H : Mill cutting direction
- 0: Up-cut
- 1: Climb
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- R: Apprch angle (default: 0)
- WB: Milling diameter
- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)
- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

Unit G845 Predrill, pocket mill, fig. on lateral in C

The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF.
Unit name: DRILL_MAN_TAS_C / cycles: G845; G71
Overvw. form:

- AP: Predrilling position
- 1: Determine predrilling pos
- 2: predrill. pos. fig. center

Further information: "G845 - calculating hole positions", Page 473
Further information: "Simple drilling G71", Page 423
Figure form:

- Q: Type of figure
- 0: Complete circle
- 1: Linear slot
- 2: Circular slot
- 3: Triangle
- 4: Rectangle / square
- 5: Polygon
- QN: No. of polygon corners (only with $\mathbf{Q}=5$: Polygon)
- Z1: Figure center
- C1: Angle of figure center (default: Spindle angle C)
- CY: Fig. center, unr.lat. surf.
- X1: Upper edge of milling
- P2: Depth of figure
- L: +edge Ingth/-width a. flats
- L>0: Edge length
- $\mathbf{L}<0$: Width across (inside diameter) for polygon
- B: Width of rectangle
- RE: Rounding radius (default: 0)
- A: Angle to Z axis (default: 0°)
- Q2: Rot. direction of slot (only with $\mathbf{Q}=\mathbf{2}$: Circular slot)
- cw: In clockwise direction
- ccw: In counterclockwise direction
- W: Angle of slot end point (only with $\mathbf{Q}=2$: Circular slot)

Program only the parameters relevant to the selected figure type.

Cycle form:

- JT: Machining direction
- 0: From the inside out
- 1: From the outside in
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap = U * milling diameter

- WB: Milling diameter
- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)
- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate

- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

Unit G840 Predrill, contour mill, ICP on lateral in C

The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in $\mathbf{N F}$. If the milling contour consists of multiple sections, the unit machines a hole for each section.
Unit name: DRILL_MAN_840_C / cycles: G840 A1; G71
Further information: "G840 - calculating hole positions", Page 464
Further information: "Simple drilling G71", Page 423
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- X1: Upper edge of milling (diameter value; default: Starting point X)
- P2: Depth of contour

Cycle form:

- JK: Cutter position
- 0: On the contour
- 1: Within/left of contour
- 2: Outside/right of contour
- 3: Depending on H and MD
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- R: Apprch angle (default: 0)

- WB: Milling diameter
- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)
- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

Unit G845
 Predrill, pocket mill, ICP on lateral in C

The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF. If the pocket consists of multiple sections, the unit machines a hole for each section.

Unit name: DRILL_MAN_845_C / cycles: G845; G71
Overvw. form:

- AP: Predrilling position
- 1: Determine predrilling pos
- 2: predrill. pos. fig. center

Further information: "G845-calculating hole positions", Page 473
Further information: "Simple drilling G71", Page 423
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- X1: Upper edge of milling (diameter value; default: Starting point X)
- P2: Depth of contour

Cycle form:

- JT: Machining direction
- 0: From the inside out
- 1: From the outside in
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- U: Overlap factor - defines the overlap of milling paths (default:

0.5) (range: 0 to 0.99)

Overlap = U * milling diameter

- WB: Milling diameter
- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)
- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Drilling
- Affected parameters: \mathbf{F}, \mathbf{S}

4.7 Units - Finishing

Unit G890 Contouring in ICP

The unit finishes the contour described by ICP from NS to NE in one pass.

In Machine Parameter 602322, you define whether the control is to check the usable length of the cutting edge during finishing. For recessing and button tools, the length of the cutting edge is not checked.

Unit name: G890_ICP / cycle: G890
Further information: "Contour finishing G890", Page 374
Contour form:

- B: TRC/MRC switch on - type of tool radius compensation
- 0: Automatic
- 1: Tool left (G41)
- 2: Tool right(G42)
- 3: Automatic w/o tool compens.
- 4: W/o tool compens. left (G41)
- 5: W/o tool compens. left (G42)
- HR: Main machining direction
- 0: auto
- 1: +Z
- 2: +X
- 3: -Z
- 4: -X
- SX, SZ: Cutting limit in \mathbf{X} and \mathbf{Z} (default: no cutting limit; diameter value = SX)

Further parameters of the Contour form:
Further information: "Contour form", Page 100
Cycle form:

- Q: Type of approach (default: 0)
- 0: Automatic - the control checks:
- Diagonal approach
- First X, then Z direction
- Equidistant around the workpiece blank, taking the safety clearance into account

- Omission of the first contour elements if the starting position is inaccessible
- 1: First X, then Z
- 2: First Z, then X
- 3: No approach - tool is located near the starting point of the contour area
- 4: Finish rem. mat.
- H: Type of retraction - tool backs off at an angle below 45° opposite the machining direction and moves to the position \mathbf{I}, \mathbf{K} (default: 3)
- 0: Same time, to I+K
- 1: First X then Z, to $I+K$
- 2: First Z then X, to I+K
- 3: Retract by safety clear.
- 4: No retraction motion (tool remains on the end coordinate)
- 5: Diagonal to start pos.
- 6: X then Z to start pos.
- 7: Z then X to start pos.
- 8: With G1 to I and K
- I, K: Cycle end position \mathbf{X} and \mathbf{Z} - position approached at end of cycle (I = diameter value)
- D: Omit elements (see figure)
- E: Plunging behavior
- $\mathbf{E}=0$: Descending contours are not machined
- E > 0: Plunging feed rate for descending contour elements. Descending contour elements are machined
- No input: The plunging feed rate is reduced during machining of descending contour elements by up to 50%. Descending contour elements are machined
- O: Feed reduc. off for circular elements (default: 0)
- 0: No (feed rate reduction is active)
- 1: Yes (feed rate reduction is not active)
- DXX: Add. correction number (range: 1 to 16) Further information: User's Manual
- G58: Contour-parallel oversize
- DI, DK: Oversize X and Z paraxial

Further forms:
Further information: "smart.Turn unit", Page 98

If feed rate reduction is active, at least four spindle revolutions are used to machine every small contour element.
With the address DXX, you can activate an additive compensation for the entire cycle run. The additive compensation is switched off again at the end of the cycle. To edit additive compensation values, change to Program run submode.

Access to the technology database:

- Machining operation: Finishing
- Affected parameters: F, S

Unit G890 Contouring, direct longitdnl.

The unit finishes the contour defined by the parameters in one pass. In EC you define whether you want to machine a normal or a plunging contour

In Machine Parameter 602322, you define whether the control is to check the usable length of the cutting edge during finishing. For recessing and button tools, the length of the cutting edge is not checked.

Unit name: G890_G80_L / cycle: G890
Further information: "Contour finishing G890", Page 374

Contour form:

- EC: Type of contour
- 0: Normal contour
- 1: Plunging contour
- X1, Z1: Start point contour
- X2, Z2: End point contour
- RC: Rounding - radius of contour corner
- AC: Start angle - angle of the first contour element (range: $0^{\circ}<$ AC $<90^{\circ}$)
- WC: Final angle - angle of the last contour element (range: $0^{\circ}<$ WC $<90^{\circ}$)
- BS: -Chamfer/+radius at start
- BS >0 : Radius of rounding arc
- $\mathbf{B S}<0$: Width of chamfer
- BE: -Chamfer/+radius at end
- BE >0 : Radius of rounding arc
- $\mathbf{B E}<0$: Width of chamfer

Cycle form:

- E: Plunging behavior
- $\mathbf{E}=0$: Descending contours are not machined
- $\mathbf{E}>0$: Plunging feed rate for descending contour elements. Descending contour elements are machined
- No input: The plunging feed rate is reduced during machining of descending contour elements by up to 50%. Descending contour elements are machined
- B: TRC/MRC switch on - type of tool radius compensation
- 0: Automatic
- 1: Tool left (G41)
- 2: Tool right(G42)
- 3: Automatic w/o tool compens.
- 4: W/o tool compens. left (G41)
- 5: W/o tool compens. left (G42)
- DXX: Add. correction number (range: 1 to 16) Further information: User's Manual
- G58: Contour-parallel oversize

Further forms:
Further information: "smart.Turn unit", Page 98

> 1 With the address DXX, you can activate an additive compensation for the entire cycle run. The additive compensation is switched off again at the end of the cycle. To edit additive compensation values, change to Program run submode.

Access to the technology database:

- Machining operation: Finishing
- Affected parameters: F, S, E

Unit G890 Contouring, direct transverse

The unit finishes the contour defined by the parameters in one pass. In EC you define whether you want to machine a normal or a plunging contour

In Machine Parameter 602322, you define whether the control is to check the usable length of the cutting edge during finishing. For recessing and button tools, the length of the cutting edge is not checked.

Unit name: G890_G80_P / cycle: G890
Further information: "Contour finishing G890", Page 374
Contour form:

- EC: Type of contour
- 0: Normal contour
- 1: Plunging contour
- X1, Z1: Start point contour
- X2, Z2: End point contour
- RC: Rounding - radius of contour corner
- AC: Start angle - angle of the first contour element (range: $0^{\circ}<$ AC $<90^{\circ}$)
- WC: Final angle - angle of the last contour element (range: $0^{\circ}<$ WC < 90°)
- BS: -Chamfer/+radius at start
- BS >0 : Radius of rounding arc
- BS <0 : Width of chamfer
- BE: -Chamfer/+radius at end
- BE >0 : Radius of rounding arc
- $\mathbf{B E}<0$: Width of chamfer

Cycle form:

- E: Plunging behavior
- $\mathbf{E}=0$: Descending contours are not machined
- $\mathbf{E}>0$: Plunging feed rate for descending contour elements. Descending contour elements are machined
- No input: The plunging feed rate is reduced during machining of descending contour elements by up to 50%. Descending contour elements are machined
- B: TRC/MRC switch on - type of tool radius compensation
- 0: Automatic
- 1: Tool left (G41)
- 2: Tool right(G42)
- 3: Automatic w/o tool compens.
- 4: W/o tool compens. left (G41)
- 5: W/o tool compens. left (G42)
- DXX: Add. correction number (range: 1 to 16) Further information: User's Manual
- G58: Contour-parallel oversize

Further forms:
Further information: "smart.Turn unit", Page 98

> 1 With the address DXX, you can activate an additive compensation for the entire cycle run. The additive compensation is switched off again at the end of the cycle. To edit additive compensation values, change to Program run submode.

Access to the technology database:

- Machining operation: Finishing
- Affected parameters: F, S, E

Unit G890 Relief, type E,F,DIN76 - Recess

The unit machines the undercut defined by KG, and then the plane surface. The cylinder chamfer is executed when you enter at least one of the parameters Cylinder 1st cut length or Cut-in radius.
Unit name: G85x_DIN_E_F_G / cycle: G85
Further information: "Undercut cycle G85", Page 414
Overvw. form:

- APP: Type of approach
- KG: Type of relief turn
- E: DIN 509 E; cycle G851

Further information: "Undercut DIN 509 E with cylinder machining G851", Page 415

- F: DIN 509 F; cycle G852

Further information: "Undercut DIN 509 F with cylinder machining G852", Page 416

- G: DIN 76 (thread undercut); cycle G853

Further information: "Undercut DIN 76 with cylinder machining G853", Page 417

- X1, Z1: Start point contour
- X2, Z2: End point contour

Undercut Type E:

- I: Undercut depth (default: value from standard table)
- K: Undercut length (default: standard table)
- W: Undercut angle (default: value from standard table)
- R: Undercut radius (default: standard table)
- H: Type of departure
- 0: To starting point
- 1: Plane surface end

Undercut Type F:

- I: Undercut depth (default: value from standard table)
- K: Undercut length (default: standard table)
- W: Undercut angle (default: value from standard table)
- R: Undercut radius (default: standard table)
- P2: Surf. depth (default: value from standard table)
- A: Face angle (default: standard table)
- H: Type of departure
- 0: To starting point
- 1: Plane surface end

Undercut Type G:

- FP: Thread pitch (default: value from standard table)
- I: Undercut depth (default: value from standard table)
- K: Undercut length (default: standard table)
- W: Undercut angle (default: value from standard table)
- R: Undercut radius (default: standard table)
- P1: Undercut oversize
- No input: Machining in one cut
- $\mathbf{P 1}>0$: Division into pre-turning and finish-turning. $\mathbf{P 1}$ is longitudinal oversize; the transverse oversize is preset to 0.1 mm
- H: Type of departure
- 0: To starting point
- 1: Plane surface end

Additional parameters for cylinder first cut:

- B: Cylinder 1st cut length (default: no start chamfer)
- WB: Cut-in angle (default: 45°)
- RB: Cut-in radius (no input: no element; positive value: cut-in radius; negative value: chamfer)
- E: Reduced feed for the plunge cut and the thread chamfer (default: Feed per revolution F)
- U: Grind. overs. for the area of the cylinder (default: 0)

Further forms:
Further information: "smart.Turn unit", Page 98

> - Undercuts can only be executed in orthogonal, paraxial contour corners along the longitudinal axis
> Parameters that are not programmed are automatically calculated by the control from the standard table

Access to the technology database:

- Machining operation: Finishing
- Affected parameters: F, S, E

Unit G809 Measuring cut

The unit performs a cylindrical measuring cut with the length defined in the cycle, moves to the breakpoint for measuring and stops the program. After the program was stopped, you can manually measure the workpiece.
Unit name: MEASURE_G809 / cycle: G809
Further information: "Measuring path G809", Page 389
Overview form:

- EC: Machining location
- 1: Outside
- -1: Inside
- XA, ZA: Start point of contour
- R: Length of measuring cut
- P: Measuring cut oversize

Contour form:

- O: Approach angle

If an approach angle is entered, the cycle positions the tool over the starting point taking into account the safety clearance, and from there plunges at the specified angle to the diameter to be measured.

- ZR: Start point blank - collision-free approach for inside machining
Cycle form:
- QC: Machining direction
- 0: -Z
- 1: +Z
- V: Measuring cut counter - number of workpieces after which a measurement is performed
- D: Additive correction (numbers: 1 to 16)
- WE: Type of approach
- 0: Simultaneously
- 1: First X, then Z
- 2: First Z, then X
- I, K: Breakpoint Xi for measuring and $\mathbf{Z i}$
- AX: Departure position X

Further forms:
Further information: "smart.Turn unit", Page 98

Unit G891 Simultaneous finishing (option 54)

The unit finishes the contour described by ICP from NS to NE simultaneously in three axes in one pass.

NOTICE
Danger of collision!
Collision monitoring is performed only in the two-dimensional
machining plane $X-Z$. The cycle does not check whether an area in
the Y coordinate of the cutting edge, tool holder, or tilting body will
lead to a collision.
Verify the NC program in Single Block
Limit the machining area

In machine parameter checkCuttingLength (no. 602322), you can define whether the control is to check the usable length of the cutting edge during finishing. For button tools, the default setting does not check the length of the cutting edge.

Unit name: G891_ICP / cycle: G891
Further information: "Simultaneous finishing G891 (option 54)",
Page 384

Contour form:

- D: Omit elements (see figure)

Codes for omitting recesses and undercuts

G call	Function	D code
G22	Recess for sealing ring	512
G22	Recess for circlip	1,024
G23 H0	General recess	256
G23 H1	Relief turn	2,048
G25 H4	Undercut type U	32,768
G25 H5	Undercut type E	65,536
G25 H6	Undercut type F	131,072
G25 H7	Undercut type G	262,144
G25 H8	Undercut type H	524,288
G25 H9	Undercut type K	1,048,576

In order to omit multiple elements, you add the D codes from the table or use the D values from the graphic.

- B: TRC/MRC switch on - type of tool radius compensation

- 0: Automatic
- 1: Tool left (G41)
- 2: Tool right(G42)
- O: Feed reduc. off for circular elements (default: 0)
- 0: No
- 1: Yes
- SX, SZ: Cutting limit in \mathbf{X} and \mathbf{Z} (default: no cutting limit; diameter value = SX)
- A: Start angle (reference: Z axis; default: parallel to Z axis)
- W: Depart.angle (reference: Z axis; default: parallel to Z axis)

Further parameters of the Contour form:
Further information: "Contour form", Page 100

Cycle form:

- Q: Type of approach (default: 0)
- 0: automatic (with B) - the control checks:
- Diagonal approach
- First X, then Z direction
- Equidistant around the workpiece blank, taking the safety clearance into account
- Omission of the first contour elements if the starting position is inaccessible
- 1: First X, then Z
- 2: First Z, then X
- 3: No approach - tool is located near the starting point of the contour area
- H: Kind of liber.
- 3: Retract by safety clear.
- 4: No retraction motion (tool remains on the end coordinate)
- 5: Diagonal to start pos.
- 6: X then Z to start pos.
- 7: Z then X to start pos.
- 8: with B-axis motion to start pos.
- AC: B angle at starting point - inclined tilt angle at the beginning of the contour (range: $0^{\circ}<\mathbf{A C}<360^{\circ}$)
- ZC: B angle at end point - inclined tilt angle at the end of the contour (range: $0^{\circ}<\mathbf{Z C}<360^{\circ}$)
- AR: Minimum angle of incidence - minimum permissible angle of the tilting axis (range: $-359.999^{\circ}<\mathbf{A R}<359.999^{\circ}$)
- AN: Maximum angle of incidence - maximum permissible angle of the tilting axis (range: $-359.999^{\circ}<\mathbf{A N}<359.999^{\circ}$)
- IC: Primary clearance angle - soft: Desired clearance area in front of the cutting edge
- JC : Secondary clearance angle - soft: Desired clearance area behind the cutting edge
- KC: Primary clearance angle - hard: Safe clearance area in front of the cutting edge

- RC: Primary clearance angle - hard: Safe clearance area behind the cutting edge
(i)

If you have defined hard clearance angles, they must be complied with during machining (do not go below the defined values). If the hard clearance angles defined for machining a contour cannot be complied with, the control will output an error message. In addition to the hard clearance angles, you can use the soft clearance angles to define a desired angle range for machining. The control takes into account the soft clearance angles during path calculation and preferably performs machining within the defined angle range. The soft clearance angles do not have to be complied with during machining.

- SL: Oversize of tool holder - oversize for calculating collisions between the workpiece and the tool holder
- E: Fmax in compensating motion - speed limit during the compensation movement of the linear axes

Cycle 2 form:

- U : Use of soft clearance angles - defines how the soft clearance angles IC and JC are used
- 0: very hard
- 1: hard

2: medium

- 3: soft
- 4: very soft
- RB : Roll over - uniform wear of cutting edge by controlling the inclination angle
- 0: No
- 1: Yes
- DXX: Add. correction number (range: 1 to 16)

Further information: User's Manual

- G58: Contour-parallel oversize
- DI, DK: Oversize X and Z paraxial

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Finishing
- Affected parameters: F, S

4.8 Units - Thread

Overview of thread units

Overview of thread units:

- G32 Thread, direct cuts a simple internal or external thread in longitudinal direction.
- G31 Thread, ICP cuts a single or multi-start internal or external thread in longitudinal or transverse direction. The contour on which the thread is cut is defined with ICP
- G352 API thread cuts a single or multi-start API thread. The depth of the thread decreases at the thread run-out.
- G32 Tapered thread cuts a single or multi-start tapered internal or external thread

Handwheel superimposition (option 11)

If your machine features handwheel superimposition, you can overlap axis movements during thread cutting in a limited area:

- X direction: Maximum programmed thread depth depending on the current cutting depth
- Z direction: +/- a fourth of the thread pitch

Refer to your machine manual.
This function must be set up by your machine manufacturer.
(i)

Remember that position changes resulting from handwheel superimposition are no longer effective after the cycle end or the Last cut function!

Parameter V: Type of infeed

With the \mathbf{V} parameter you define the type of infeed for thread cutting cycles.
The following infeed types are available:

- 0: Const. mach. X-section - The control reduces the cutting depth with each infeed so that the chip cross section, and therefore the removal rate, remain constant
- 1: Const. infeed - with each infeed the control uses the same cutting depth without exceeding the Max. approach I
- 2: EPL with distrib. of cuts - the control calculates the cutting depth for constant infeed from the Thread pitch F1 and Shaft speed constant S. If the multiple of the cutting depth does not correspond to the Thread depth, the control uses the Remaining cut depth $(\mathbf{V}=4)$ for the first infeed. With the "distribution of remaining cuts," the control divides the last cutting depth into four partial cuts. The first cut is half the calculated cutting depth, the second is a quarter and the third and fourth each are an eighth
- 3: EPL w/o distrib. of cuts - the control calculates the cutting depth for constant infeed from the Thread pitch F1 and Shaft speed constant S. If the multiple of the cutting depth does not correspond to the Thread depth, the control uses the Remaining cut depth $(\mathbf{V}=4)$ for the first infeed. All subsequent infeeds are constant and correspond to the calculated cutting depth
- 4: MANUALplus 4110 - the control executes the first infeed with the Max. approach I. To determine the subsequent cutting depths, the control uses the formula gt $=2 * \mathbf{I} *$ SQRT "current no. of cuts", where gt is the absolute depth. Since the cutting depth is reduced with each infeed because the current number of cuts increases by the value 1, the control uses, each time the cutting depth falls below the value given in Remaining cut depth ($V=4$) \mathbf{R}, the value defined here as the new constant cutting depth! If the multiple of the cutting depth does not correspond to the Thread depth, the control executes the last cut at the final depth
- 5: Constant infeed (4290) - with each infeed, the control uses the same cutting depth where the cutting depth corresponds to the Max. approach I. If the multiple of the cutting depth does not correspond to the Thread depth, the control uses the Remaining cut depth $(V=4)$ for the first infeed
- 6: Const. w/ distrib. (4290) - with each infeed, the control uses the same cutting depth where the cutting depth corresponds to the Max. approach I. If the multiple of the cutting depth does not correspond to the Thread depth, the control uses the Remaining cut depth $(\mathbf{V}=\mathbf{4})$ for the first infeed. With the "distribution of remaining cuts," the control divides the last cutting depth into four partial cuts. The first cut is half the calculated cutting depth, the second is a quarter and the third and fourth each are an eighth

Unit G32 Thread, direct

The unit cuts a simple internal or external thread in longitudinal direction.
Unit name: G32_MAN / cycle: G32
Further information: "Single thread cycle G32", Page 403

NOTICE

Danger of collision!

If you modify the angle of infeed or the thread depth, the control shifts the position of the thread in an axial direction. In this case, the tool no longer hits any existing thread grooves and the thread flanks are destroyed. Danger of collision during reworking!

- Be sure to compensate only the tool, not the thread parameters

Thread form:

- O: Thread location:
- 0: Internal thread (infeed in $+X$)

- 1: External thread (infeed in $-X$)
- APP: Type of approach
- XS: Starting diameter
- ZS: Starting position Z
- Z2: End point thread
- F1: Thread pitch
- U: Thread depth
- I: Max. approach
- IC: Number of cuts (only if I is not programmed and Type of infeed $\mathbf{V}=0$ or $\mathbf{V}=1$)
- KE: Run-out position:
- 0: At end
- 1: At beginning
- K: Thread runout length

Cycle form:

- H: Type of offset - offset between the individual infeeds in the cutting direction
- 0: Without offset
- 1: From left
- 2: From right
- 3: Alternating left/right
- V: Type of infeed
- 0: Const. mach. X-section
- 1: Const. infeed
- 2: EPL with distrib. of cuts
- 3: EPL w/o distrib. of cuts
- 4: MANUALplus 4110
- 5: Constant infeed (4290)
- 6: Const. w/ distrib. (4290)
- A: Approach ang. (range: $-60^{\circ}<\mathbf{A}<60^{\circ}$; default: 30°)
- R: Remaining cut depth ($\mathrm{V}=4$)
- WE: Lift off method with K=0 (default: 0)
- 0: G0 at end
- 1: Lift-off in thread
- C: Start angle
- D: No.gears
- Q: Number no-load.
- E: Variable gr. (default: 0)

Increases/decreases the pitch per revolution by \mathbf{E}.
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Thread cutting
- Affected parameters: F, S

Unit G31 Thread, ICP

The unit cuts a single or multi-start internal or external thread in longitudinal or transverse direction. The contour on which the thread is cut is defined with ICP.
Unit name: G31_ICP / cycle: G31
Further information: "Universal tapping cycle G31", Page 398 Thread form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section

- NE: Contour end block no. - end of contour section
- 01: Edit form element:
- 0: No machining
- 1: At beginning
- 2: At end
- 3: At beginning and end
- 4: Only chamfer/rounding
- O: Thread location:
- 0: Internal thread (infeed in $+X$)
- 1: External thread (infeed in $-X$)
- J1: Thread orientation
- From 1st contour element
- 0: Longitudinal
- 1: Plane
- F1: Thread pitch
- U: Thread depth
- A: Thread angle
- D: No.gears
- K: Thread runout length

Cycle form:

- H: Type of offset - offset between the individual infeeds in the cutting direction
- 0: Without offset
- 1: From left
- 2: From right
- 3: Alternating left/right
- V : Type of infeed
- 0: Const. mach. X-section
- 1: Const. infeed
- 2: EPL with distrib. of cuts
- 3: EPL w/o distrib. of cuts
- 4: MANUALplus 4110
- 5: Constant infeed (4290)
- 6: Const. w/ distrib. (4290)
- R: Remaining cut depth ($\mathrm{V}=4$)
- I: Max. approach
- IC: Number of cuts (only if I is not programmed)
- B: Run-in Igth to obtain the programmed spindle speed and feed rate (default: 2 * Thread pitch F1)
- P: Overflow length
- C: Start angle
- Q Number no-load.

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Thread cutting
- Affected parameters: \mathbf{F}, S

Unit G352 API thread

This unit cuts a single or multi-start API thread. The Thread depth decreases at the thread run-out.
Unit name: G352_API / cycle: G352
Further information: "Tapered API thread G352", Page 408
Thread form:

- O: Thread location:
- 0: Internal thread (infeed in $+X$)
- 1: External thread (infeed in $-X$)
- X1, Z1: Start point thread
- X2, Z2: End point thread
- W: Taper angle (range: $-45^{\circ}<\mathbf{W}<45^{\circ}$)
- WE: Run-out angle (reference: \mathbf{Z} axis; $0^{\circ}<\mathbf{W E}<90^{\circ}$; default: 12°)
- F1: Thread pitch
- U: Thread depth

Cycle form:

- I: Max. approach
- H: Type of offset - offset between the individual infeeds in the cutting direction
- 0: Without offset
- 1: From left
- 2: From right
- 3: Alternating left/right
- V: Type of infeed
- 0: Const. mach. X-section
- 1: Const. infeed
- 2: EPL with distrib. of cuts
- 3: EPL w/o distrib. of cuts
- 4: MANUALplus 4110
- 5: Constant infeed (4290)
- 6: Const. w/ distrib. (4290)
- A: Approach ang. (range: $-60^{\circ}<\mathbf{A}<60^{\circ}$; default: 30°)
- R: Remaining cut depth ($\mathrm{V}=4$)
- C: Start angle
- D: No.gears
- Q: Number no-load.

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Thread cutting
- Affected parameters: F, S

Unit G32 Tapered thread

The unit cuts a single or multi-start tapered internal or external thread.
Unit name: G32_KEG / cycle: G32
Further information: "Single thread cycle G32", Page 403

NOTICE

Danger of collision!

If you modify the angle of infeed or the thread depth, the control shifts the position of the thread in an axial direction. In this case, the tool no longer hits any existing thread grooves and the thread flanks are destroyed. Danger of collision during reworking!

- Be sure to compensate only the tool, not the thread parameters

Thread form:

- O: Thread location:
- 0: Internal thread (infeed in $+X$)

- 1: External thread (infeed in $-X$)
- X1, Z1: Start point thread
- X2, Z2: End point thread
- W: Taper angle (range: $-45^{\circ}<\mathbf{W}<45^{\circ}$)
- F1: Thread pitch
- U: Thread depth
- KE: Run-out position:
- 0: At end
- 1: At beginning
- K: Thread runout length

Cycle form:

- I: Max. approach
- IC: Number of cuts (only if I is not programmed)
- H: Type of offset - offset between the individual infeeds in the cutting direction
- 0: Without offset
- 1: From left
- 2: From right
- 3: Alternating left/right
- V: Type of infeed
- 0: Const. mach. X-section
- 1: Const. infeed
- 2: EPL with distrib. of cuts
- 3: EPL w/o distrib. of cuts
- 4: MANUALplus 4110
- 5: Constant infeed (4290)
- 6: Const. w/ distrib. (4290)
- A: Approach ang. (range: $-60^{\circ}<\mathbf{A}<60^{\circ}$; default: 30°)
- R: Remaining cut depth ($\mathrm{V}=4$)
- WE: Lift off method with $\mathrm{K}=\mathbf{0}$ (default: 0)
- 0: GO at end
- 1: Lift-off in thread
- C: Start angle
- D: No.gears
- Q: Number no-load.
- E: Variable gr. (default: 0) Increases/decreases the pitch per revolution by E. Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:
- Machining operation: Thread cutting
- Affected parameters: F, S

4.9 Units - Millg / C axis, face, C axis, ICP face (option 55)

Unit G791 Linear slot, front face

The unit mills a slot from the starting position to the end point on the face of the workpiece. The slot width equals the diameter of the milling cutter.
Unit name: G791_Nut_Stirn_C / cycle: G791
Further information: "Linear slot, front face G791", Page 453
Cycle form:

- Z1: Upper edge of milling
- Z2: Milling floor
- L: Slot length
- A1: Angle to X axis (default: 0°)
- X1, C1: Polar slot target point
- XK, YK: Cartes. slot target pnt
- P: Maximum infeed
- FZ: Approach feed (default: active feed rate)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G791 Slot in linear pattern, front face

The unit machines a linear slot pattern in which the individual features are arranged at a regular spacing on the face of the workpiece. The starting points of the slots correspond to the pattern positions. You define the length and the position of the slots in the unit. The slot width equals the diameter of the milling cutter.
Unit name: G791_Lin_Stirn_C / cycle: G791
Further information: "Linear slot, front face G791", Page 453
Pattern form:

- Q: Number of slots
- X1, C1: Polar starting point
- XK, YK: Cartesian starting pnt
- I, J: End point (XK) and (YK)
- Ii, Ji: Distance (XKi) and (YKi)
- R: Dist. to first/last contour
- Ri: Length - Incremental distance
- A: Pattern ang. (reference: XK axis)

Cycle form:

- Z1: Upper edge of milling
- Z2: Milling floor
- L: Slot length
- A1: Angle to X axis (default: 0°)
- P: Maximum infeed
- FZ: Approach feed (default: active feed rate)

Further forms:
Further information: "smart.Turn unit", Page 98

Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G791 Slot in circ. pattern, front face

The unit machines a circular slot pattern in which the individual features are arranged at a regular spacing on the face of the workpiece. The starting points of the slots correspond to the pattern positions. You define the length and the position of the slots in the unit. The slot width equals the diameter of the milling cutter.
Unit name: G791_Cir_Stirn_C / cycle: G791
Further information: "Linear slot, front face G791", Page 453
Pattern form:

- Q: Number of slots
- XM, CM: Polar center point
- XK, YK: Cartesian center point
- A: Start angle
- Wi: End angle - Angle increment
- K: Pattern diameter
- W: Final angle
- V: Rotation dir. (default: 0)
- $\mathbf{V}=0$, without \mathbf{W} : Figures are arranged on a full circle
- $\mathbf{V}=0$, with \mathbf{W} : Figures are arranged on the longer circular arc
- $\mathbf{V}=0$, with $\mathbf{W i}$: The algebraic sign of Wi defines the direction ($\mathbf{W i}$ < 0: clockwise)
- $\mathbf{V}=1$, with \mathbf{W} : Clockwise
- $\mathbf{V}=1$, with $\mathbf{W i}$: Clockwise (algebraic sign of $\mathbf{W i}$ has no effect)
- $\mathbf{V}=2$, with \mathbf{W} : Counterclockwise
- $\mathbf{V}=2$, with $\mathbf{W i}$: Counterclockwise (algebraic sign of Wi has no effect)
Cycle form:
- Z1: Upper edge of milling

- Z2: Milling floor
- L: Slot length
- A1: Angle to X axis (default: 0°)
- P: Maximum infeed
- FZ: Approach feed (default: active feed rate)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G797 Face milling C

Depending on \mathbf{Q} the unit mills surfaces or the defined figure. The unit cuts the material around the figures.
Unit name: G797_Stirnfr_C / cycle: G797
Further information: "Area milling on front face G797", Page 460 Figure form:

- Q: Type of figure
- 0: Complete circle
- 1: Single surface
- 2: Width across flats
- 3: Triangle
- 4: Rectangle / square
- 5: Polygon
- QN: No. of polygon corners (only with $\mathbf{Q}=5$: Polygon)
- X1: Dia. of figure center
- C1: Angle of figure center (default: Spindle angle C)
- Z1: Upper edge of milling
- Z2: Milling floor
- X2: Limit diameter
- L: Edge length
- B: Width/Width across flats
- RE: Rounding radius (default: 0)
- A: Angle to X axis (default: 0°)

Cycle form:

- QK: Machining operation
- Roughing
- Finishing
- J: Mill direction
- 0: Unidirectional
- 1: Bidirectional
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- FZ: Approach feed (default: active feed rate)
- E: Reduced feed
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap = U * milling diameter

Further forms:

Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G799 Thread milling, front face C

The unit mills a thread in existing holes.
Place the tool at the center of the hole before calling G799. The cycle positions the tool to the End point thread inside the hole. Then, the tool approaches at Apprch angle \mathbf{R} and mills the thread. With each rotation, the tool moves by the Thread pitch F1. Then, the control retracts the tool and returns it to the Start point. With parameter \mathbf{V}, you can program whether the thread is to be milled in one rotation or, with single-point tools, in several rotations.
Unit name: G799_Gewindefr_C / cycle: G799
Further information: "Thread milling axial G799", Page 439
Position form:

- Z1: Start point drill
- P2: Thread depth
- I: Thread diameter
- F1: Thread pitch

Cycle form:

- J: Direction of thread:
- 0: Right-hand thread
- 1: Left-hand thread
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- V: Milling method
- 0: One revolution - the thread is milled in a 360-degree helix
- 1: Two or more revolutions - the thread is milled in several helix paths (single-point tool)
- R: Approach radius
- FK: Finished part contour - name of the contour to be machined
- NS: Block number of contour - reference to the contour description
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:
- Machining operation: Finish-milling
- Affected parameters: F, S

Unit G840 Contour mllng, figures front face C

The unit mills the contour defined by \mathbf{Q} on the face of the workpiece.
Unit name: G840_Fig_Stirn_C / cycle: G840
Further information: "G840 - milling", Page 466
Figure form:

- Q: Type of figure
- 0: Complete circle
- 1: Linear slot
- 2: Circular slot

- 3: Triangle
- 4: Rectangle / square
- 5: Polygon
- QN: No. of polygon corners (only with $\mathbf{Q}=5$: Polygon)
- X1: Dia. of figure center
- C1: Angle of figure center (default: Spindle angle C)
- Z1: Upper edge of milling
- P2: Depth of figure

- L: +edge Ingth/-width a. flats
- L>0: Edge length
- \mathbf{L} < 0: Width across (inside diameter) for polygon
- B: Width of rectangle
- RE: Rounding radius (default: 0)
- A: Angle to X axis (default: 0°)
- Q2: Rot. direction of slot (only with $\mathbf{Q}=\mathbf{2}$: Circular slot)
- cw: In clockwise direction
- ccw: In counterclockwise direction
- W: Angle of slot end point (only with $\mathbf{Q}=2$: Circular slot)

Program only the parameters relevant to the selected figure type.

Cycle form:

- JK: Cutter position
- 0: On the contour
- 1: Within the contour
- 2: Outside the contour
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- FZ: Approach feed (default: active feed rate)

- E: Reduced feed
- R: Approach radius
- O: Plunging behavior (default: 0)
- 0: Straight - the cycle moves the tool to the starting point; the tool plunges at feed rate and mills the contour
- 1: In predrilling - the control positions the tool above the predrill hole position; the tool plunges and mills the contour
- NF: Position mark (only with $\mathbf{O}=1$)

Global form:

- RB: Return plane

Further parameters:
Further information: "Global form", Page 103

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G84X Pocket mllng, figures front face C

The unit mills the pocket defined by \mathbf{Q}. In $\mathbf{Q K}$, select the Machining operation (roughing/finishing) and the plunging strategy.
Unit name: G84x_Fig_Stirn_C / cycles: G845; G846
Further information: "G845-milling", Page 474
Further information: "Pocket milling - finishing G846", Page 478
Figure form:

- Q: Type of figure
- 0: Complete circle

1: Linear slot

- 2: Circular slot
- 3: Triangle
- 4: Rectangle / square
- 5: Polygon
- QN: No. of polygon corners (only with $\mathbf{Q}=5$: Polygon)
- X1: Dia. of figure center
- C1: Angle of figure center (default: Spindle angle C)
- Z1: Upper edge of milling
- P2: Depth of figure
- L: +edge Ingth/-width a. flats
- L > 0: Edge length
- $\mathbf{L}<0$: Width across (inside diameter) for polygon
- B: Width of rectangle
- RE: Rounding radius (default: 0)
- A: Angle to X axis (default: 0°)
- Q2: Rot. direction of slot (only with $\mathbf{Q}=\mathbf{2}$: Circular slot)
- cw: In clockwise direction
- ccw: In counterclockwise direction
- W: Angle of slot end point (only with $\mathbf{Q}=2$: Circular slot)

Program only the parameters relevant to the selected figure type.

Cycle form:

- QK: Machining operation and plunging strategy
- 0: Roughing
- 1: Finishing
- 2: Helical roughing, manual
- 3: Helical roughing, automatic
- 4: Recipr. linear roughing, manual
- 5: Recipr. linear roughing, auto
- 6: Reciproc. circ. roughing, manual
- 7: Recipr. circular roughing, auto
- 8: Plunge rough at predrill pos.
- 9: Finishing with 3-D approach arc

- JT: Machining direction
- 0: From the inside out
- 1: From the outside in
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- FZ: Approach feed (default: active feed rate)
- E: Reduced feed
- R: Approach radius
- WB: Plunging length
- EW: Plunging angle
- NF: Position mark (only with $\mathbf{Q K}=8$)
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap = U * milling diameter
Global form:

- RB: Return plane

Further parameters:
Further information: "Global form", Page 103
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G801 Engraving in C axis on face

The unit engraves character strings in linear or angular arrangement on the face of the workpiece. Diacritics and special characters that you cannot enter in smart. Turn operating mode can be defined, character by character, in NF. If you program $\mathbf{Q}=1$ (Continue from last text), tool change and pre-positioning are suppressed. The technological data of the previous engraving cycle apply.
Unit name: G801_GRA_STIRN_C / cycle: G801
Further information: "Engraving on front face G801", Page 487
Position form:

- X, C: Start point and Start. angle (in polar coordinates)
- XK, YK: Start point (in Cartesian coordinates)
- Z: Final point - Z position, infeed depth during milling
- RB: Return plane

Cycle form:

- TXT: Text to be engraved
- NF: Char. no. - ASCII code of the character to be engraved
- H: Font height
- E: Distance factor

The spacing between the characters is calculated according to the following formula: $\mathbf{H} / 6$ * \mathbf{E}

- W: Inclinat. ang. of the character string

FZ: Plunging feed rate factor (plunging feed rate = current feed rate * FZ)

- V: Execution (linear/polar)
- 0: Linear
- 1: Arched above
- 2: Arched below
- D: Reference diameter
- Q: Continue from last text
- $\mathbf{0}$ (No): Engraving starts at the starting point
- 1 (Yes): Engraving starts at the tool position
- O: Mirror writing
- $\mathbf{0}$ (No): Engraving is not mirrored
- $\mathbf{1}$ (Yes): Engraving is mirrored (mirror writing)
- NS: Block number of contour - reference to the contour description
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:
- Machining operation: Engraving
- Affected parameters: F, S

Unit G840 ICP contour milling, front face C

The unit mills the contour defined with ICP on the face of the workpiece.
Unit name: G840_Kon_C_Stirn / cycle: G840
Further information: "G840-milling", Page 466
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- BF: Machine form elements (default: 0)

A chamfer/rounding arc is machined

- 0: No machining
- 1: At beginning
- 2: At end
- 3: At beginning and end
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single

- Z1: Upper edge of milling
- P2: Depth of contour

Cycle form:

- JK: Cutter position
- 0: On the contour
- 1: Within/left of contour
- 2: Outside/right of contour
- 3: Depending on H and MD
- H: Mill cutting direction

- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- FZ: Approach feed (default: active feed rate)
- E: Reduced feed
- R: Approach radius
- O: Plunging behavior (default: 0)
- 0: Straight - the cycle moves the tool to the starting point; the tool plunges at feed rate and mills the contour
- 1: In predrilling - the control positions the tool above the predrill hole position; the tool plunges and mills the contour
- NF: Position mark (only with $\mathbf{O}=1$)
- RB: Return plane

Further forms:
Further information: "smart.Turn unit", Page 98
smart.Turn Units (Option 9) | Units - Millg / C axis, face, C axis, ICP face (option 55)

Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G845 ICP pocket milling, front face C

The unit mills the pocket defined by \mathbf{Q}. In $\mathbf{Q K}$, select the machining operation (roughing/finishing) and the plunging strategy.
Unit name: G845_Tas_C_Stirn / cycles: G845; G846
Further information: "G845-milling", Page 474
Further information: "Pocket milling - finishing G846", Page 478
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- Z1: Upper edge of milling
- P2: Depth of contour
- NF: Position mark (only with QK = 8)
- FZ: Approach feed (default: active feed rate)
- E: Reduced feed
- FP: Infeed rate in the plane

Cycle form:

- QK: Machining operation and plunging strategy
- 0: Roughing
- 1: Finishing
- 2: Helical roughing, manual
- 3: Helical roughing, automatic
- 4: Recipr. linear roughing, manual
- 5: Recipr. linear roughing, auto
- 6: Reciproc. circ. roughing, manual
- 7: Recipr. circular roughing, auto

- 8: Plunge rough at predrill pos.
- 9: Finishing with 3-D approach arc
- JT: Machining direction
- 0: From the inside out
- 1: From the outside in
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- R: Approach radius
- WB: Plunging length
- EW: Plunging angle
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap = U * milling diameter

- RB: Return plane
smart.Turn Units (Option 9) | Units - Millg / C axis, face, C axis, ICP face (option 55)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G840 ICP deburring, front face C

The unit deburrs the contour defined with ICP on the face of the workpiece.
Unit name: G840_ENT_C_STIRN / cycle: G840
Further information: "G840 - deburring", Page 470
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- BF: Machine form elements (default: 0)

A chamfer/rounding arc is machined

- 0: No machining
- 1: At beginning
- 2: At end
- 3: At beginning and end
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- NE: Contour end block no. - end of contour section
- Z1: Upper edge of milling

Cycle form:

- JK: Cutter position
- 0: On the contour
- 1: Within/left of contour
- 2: Outside/right of contour
- 3: Depending on H and MD
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- BG: Cham. width for deburring
- JG: Preparation diameter

- P: Plunging depth (indicated as a negative value)
- I: Contour-parallel oversize
- R: Approach radius
- FZ: Approach feed (default: active feed rate)
- E: Reduced feed
- RB: Return plane

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Deburring
- Affected parameters: F, S

Unit G797 face milling ICP

The unit mills the contour defined with ICP on the face of the workpiece.
Unit name: G797_ICP / cycle: G797
Further information: "Area milling on front face G797", Page 460
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- Z1: Upper edge of milling
- Z2: Milling floor
- X2: Limit diameter

Cycle form:

- QK: Machining operation
- Roughing
- Finishing
- J: Mill direction
- 0: Unidirectional
- 1: Bidirectional

- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- FZ: Approach feed (default: active feed rate)
- E: Reduced feed
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap $=\mathbf{U} *$ milling diameter
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G847 ICP Troch. contour mllng, front face C

The unit uses trochoidal milling to rough out the open or closed contour on the front face of the workpiece defined with ICP.
Unit name: G847_KON_C_STIRN / cycle: G847
Further information: "Trochoidal contour milling G847 ", Page 480
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- BF: Machine form elements (default: 0)

A chamfer/rounding arc is machined

- 0: No machining
- 1: At beginning
- 2: At end
- 3: At beginning and end
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- Z1: Upper edge of milling
- P2: Depth of contour

- I: Contour-parallel oversize
- K: Infeed-direction oversize
- RB: Return plane (default: back to start position)
- NF: Position mark (only with $\mathbf{O = 1}$)

Cycle form:

- JK: Cutter position
- 0: On the contour
- 1: Within/left of contour
- 2: Outside/right of contour
- H: Mill cutting direction (default: 1)
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- BR: Trochoid width
- R: Radius for return
- FP: Feed rate for return (default: active feed rate)
- AL: Retraction path for return
- O: Plunging behavior (default: 2)
- $\mathbf{O}=0$ (vertical plunging): The cycle moves the tool to the starting point; the tool plunges at the feed rate for infeed and mills the contour
- $\mathbf{O}=1$ (vertical plunging, e.g. at the predrilled position):
- If $\mathbf{N F}$ is programmed: The control positions the milling cutter above the first predrill hole position; the tool plunges at rapid traverse to safety clearance and mills the first area. If applicable, the cycle positions the tool to the next predrill hole position and mills the next area etc.
- If NF is not programmed: The cycle plunges at the current position at rapid traverse and mills the area. If applicable, position the tool to the next predrill hole position and mill the next area etc.
- $\mathbf{O}=2$ (plunge in helical motion): The tool plunges at the current position at the angle \mathbf{W} and mills full circles with the diameter WB.
- FZ: Approach feed (default: active feed rate)
- EW: Plunging angle
- WB: Diameter of the helix (default: helix diameter $=1.5$ * milling diameter)
- U: Overlap factor - overlap of milling paths $=\mathbf{U}$ * milling diameter (default: 0.9)
- HCC: Contour smoothing
- 0: No smoothing cut
- 1: With smoothing cut

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G848 ICP Troch. pocket mllng, front face C

The unit uses trochoidal milling to rough out the figure or figure pattern on the front face defined with ICP.
Unit name: G848_TAS_C_STIRN / cycle: G848
Further information: "Trochoidal pocket milling G847 ", Page 482
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- Z1: Upper edge of milling
- P2: Depth of contour

- I: Contour-parallel oversize
- K: Infeed-direction oversize
- RB: Return plane (default: back to start position)
- NF: Position mark (only with $\mathbf{O}=1$)

Cycle form:

- H: Mill cutting direction (default: 1)
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- BR: Trochoid width
- R: Radius for return
- FP: Feed rate for return (default: active feed rate)
- AL: Retraction path for return
- O: Plunging behavior (default: 2)
- $\mathbf{0}=0$ (vertical plunging): The cycle moves the tool to the starting point; the tool plunges at the feed rate for infeed and mills the figure
- $\mathbf{O}=1$ (vertical plunging, e.g. at the predrilled position):
- If NF is programmed: The control positions the milling cutter above the first predrill hole position; the tool plunges at rapid traverse to safety clearance and mills the first area. If applicable, the cycle positions the tool to the next predrill hole position and mills the next area etc.
- If NF is not programmed: The cycle plunges at the current position at rapid traverse and mills the area. If applicable, position the tool to the next predrill hole position and mill the next area etc.
- $\mathbf{O}=2$ (plunge in helical motion): The tool plunges at the current position at the angle \mathbf{W} and mills full circles with the diameter WB.
- FZ: Approach feed (default: active feed rate)
- EW: Plunging angle
- WB: Diameter of the helix (default: helix diameter $=1.5$ * milling diameter)
- U: Overlap factor - overlap of milling paths $=\mathbf{U}$ * milling diameter (default: 0.9)
- J: Machining operation
- 0: Complete
- 1: W/o corner machining
- 2: Only corner machining
(i)

For slots and rectangles, you need to program width BR of the trochoidal tool path; for circles and polygons, this is not necessary.

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

4.10 Units - Milling / C axis, lateral, C axis, ICP latrl. (option 55)

Unit G792 Linear slot, lat. surface

The unit mills a slot from the starting position to the end point on the lateral surface. The slot width equals the diameter of the milling cutter.
Unit name: G792_Nut_MANT_C / cycle: G792
Further information: "Linear slot, lat. surface G792", Page 454
Cycle form:

- X1: Upper edge of milling
- X2: Milling floor

- L: Slot length
- A1: Angle to Z axis (default: 0°)
- Z1, C1: Polar slot target point
- P: Maximum infeed
- FZ: Approach feed (default: active feed rate)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling

- Affected parameters: F, S, FZ, P

Unit G792 Slot in lin. pattern, lat. surface

The unit machines a linear slot pattern in which the individual features are arranged at a regular spacing on the lateral surface. The Start point of the slots corresponds to the pattern positions. The Slot length and the positions of the slots are defined in the unit. The slot width equals the diameter of the milling cutter.
Unit name: G792_Lin_Mant_C / cycle: G792
Further information: "Linear slot, lat. surface G792", Page 454
Pattern form:

- Q: Number of slots
- Z1: Start point pattern - Position of first slot
- C1: Start. angle
- Wi: End angle - Angle increment
- W: Final angle
- Z2: End point pattern

Cycle form:

- X1: Upper edge of milling
- X2: Milling floor

- L: Slot length
- A1: Angle to Z axis (default: 0°)
- P: Maximum infeed
- FZ: Approach feed (default: active feed rate)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G792 Slot in circ. pattern, lat. surface

The unit machines a circular slot pattern in which the individual features are arranged at a regular spacing on the lateral surface. The Start point of the slots corresponds to the pattern positions. The Slot length and the positions of the slots are defined in the unit. The slot width equals the diameter of the milling cutter.
Unit name: G792_Cir_Mant_C / cycle: G792
Further information: "Linear slot, lat. surface G792", Page 454
Pattern form:

- Q: Number of slots
- ZM: Center of pattern
- CM: Angle of pattern center
- A: Start angle
- Wi: End angle - Angle increment
- K: Pattern diameter
- W: Final angle
- V: Rotation dir. (default: 0)
- $\mathbf{V}=0$, without \mathbf{W} : Figures are arranged on a full circle
- $\mathbf{V}=0$, with \mathbf{W} : Figures are arranged on the longer circular arc
- $\mathbf{V}=0$, with $\mathbf{W i}$: The algebraic sign of $\mathbf{W i}$ defines the direction ($\mathbf{W i}<0$: clockwise)
- $\mathbf{V}=1$, with \mathbf{W} : Clockwise
- $\mathbf{V}=1$, with Wi: Clockwise (algebraic sign of Wi has no effect)
- $\mathbf{V}=2$, with \mathbf{W} : Counterclockwise
- $\mathbf{V}=2$, with Wi: Counterclockwise (algebraic sign of Wi has no effect)
Cycle form:
- X1: Upper edge of milling

- X2: Milling floor
- L: Slot length
- A1: Angle to Z axis (default: 0°)
- P: Maximum infeed
- FZ: Approach feed (default: active feed rate)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G798 Helical slot milling

The unit mills a helical slot. The slot width equals the diameter of the milling cutter.
Unit name: G798_WENDELNUT_C / cycle: G798
Further information: "Helical slot milling G798", Page 462
Position form:

- X1: Thread diameter
- C1: Start. angle
- Z1: Start point thread
- Z2: End point thread
- U: Thread depth

Cycle form:

- F1: Thread pitch
- J: Direction of thread:
- 0: Right-hand thread
- 1: Left-hand thread
- D: No.gears
- P: Run-in Igth
- K: Thread runout length
- I: Max. approach
- E: Cutting depth reduction

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Finish-milling
- Affected parameters: F, S

Unit G840 Contour mllng, figures lat. surf. C

The unit mills the contour defined by \mathbf{Q} on the lateral surface.
Unit name: G840_Fig_Mant_C / cycle: G840
Further information: "G840 - milling", Page 466
Figure form:

- Q: Type of figure
- 0: Complete circle
- 1: Linear slot
- 2: Circular slot

- 3: Triangle
- 4: Rectangle / square
- 5: Polygon
- QN: No. of polygon corners (only with $\mathbf{Q}=5$: Polygon)
- Z1: Figure center
- C1: Angle of figure center (default: Spindle angle C)
- CY: Fig. center, unr.lat. surf.
- X1: Upper edge of milling
- P2: Depth of figure
- L: +edge Ingth/-width a. flats
- $L>0$: Edge length
- $\mathbf{L}<0$: Width across (inside diameter) for polygon
- B: Width of rectangle
- RE: Rounding radius (default: 0)
- A: Angle to Z axis (default: 0°)
- Q2: Rot. direction of slot (only with $\mathbf{Q}=2$: Circular slot)
- cw: In clockwise direction
- ccw: In counterclockwise direction
- W: Angle of slot end point (only with $\mathbf{Q}=2$: Circular slot)

Program only the parameters relevant to the selected figure type.

Cycle form:

- JK: Cutter position
- 0: On the contour
- 1: Within the contour
- 2: Outside the contour
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- I: Infeed-direction oversize
- K: Contour-parallel oversize

- FZ: Approach feed (default: active feed rate)
- E: Reduced feed
- R: Approach radius
- O: Plunging behavior (default: 0)
- 0: Straight - the cycle moves the tool to the starting point; the tool plunges at feed rate and mills the contour
- 1: In predrilling - the control positions the tool above the predrill hole position; the tool plunges and mills the contour
- NF: Position mark (only with $\mathbf{O}=1$)

Global form:

- RB: Return plane

Further parameters:
Further information: "Global form", Page 103

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G84X Pocket mling, figures lat. surface C

The unit mills the pocket defined by \mathbf{Q}. In $\mathbf{Q K}$, select the machining operation (roughing/finishing) and the plunging strategy.
Unit name: G84x_Fig_Mant_C / cycles: G845; G846
Further information: "G845-milling", Page 474
Further information: "Pocket milling - finishing G846", Page 478
Figure form:

- Q: Type of figure
- 0: Complete circle

- 1: Linear slot
- 2: Circular slot
- 3: Triangle
- 4: Rectangle / square
- 5: Polygon
- QN: No. of polygon corners (only with $\mathbf{Q}=5$: Polygon)
- Z1: Figure center
- C1: Angle of figure center (default: Spindle angle C)
- CY: Fig. center, unr.lat. surf.
- X1: Upper edge of milling
- P2: Depth of figure
- L: +edge Ingth/-width a. flats
- L > 0: Edge length
- L < 0: Width across (inside diameter) for polygon
- B: Width of rectangle
- RE: Rounding radius (default: 0)
- A: Angle to Z axis (default: 0°)
- Q2: Rot. direction of slot (only with $\mathbf{Q}=\mathbf{2}$: Circular slot) - cw: In clockwise direction
- ccw: In counterclockwise direction
- W: Angle of slot end point (only with $\mathbf{Q}=2$: Circular slot)

[^1]
Cycle form:

- QK: Machining operation and plunging strategy
- 0: Roughing
- 1: Finishing
- 2: Helical roughing, manual
- 3: Helical roughing, automatic
- 4: Recipr. linear roughing, manual
- 5: Recipr. linear roughing, auto
- 6: Reciproc. circ. roughing, manual
- 7: Recipr. circular roughing, auto
- 8: Plunge rough at predrill pos.
- 9: Finishing with 3-D approach arc
- JT: Machining direction
- 0: From the inside out
- 1: From the outside in
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- P: Maximum infeed

- I: Infeed-direction oversize
- K: Contour-parallel oversize
- FZ: Approach feed (default: active feed rate)
- E: Reduced feed
- R: Approach radius
- WB: Plunging length
- EW: Plunging angle
- NF: Position mark (only with $\mathbf{Q K}=8$)
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap = U * milling diameter

Global form:

- RB: Return plane

Further parameters:
Further information: "Global form", Page 103
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G802 Engraving in C on latrl. surface

The unit engraves character strings aligned linearly on the lateral surface. Diacritics and special characters that you cannot enter in smart.Turn operating mode can be defined, character by character, in $\mathbf{N F}$. If you program $\mathbf{Q}=1$ (Continue from last text), then the tool change and pre-positioning are suppressed. The technological data of the previous engraving cycle apply.
Unit name: G802_GRA_MANT_C / cycle: G802
Further information: "Engraving on lateral surface G802",
Page 488
Character set:
Further information: "Character sets", Page 484
Position form:

- Z: Start point
- C: Start. angle
- CY: Start point of first character
- X: Final point - X position, infeed depth during milling (diameter value)
- RB: Return plane

Cycle form:

- TXT: Text to be engraved
- NF: Char. no. - ASCII code of the character to be engraved
- H: Font height
- E: Distance factor

The spacing between the characters is calculated according to the following formula: $\mathbf{H} / 6$ * \mathbf{E}

- W: Inclinat. ang. of the character string
- FZ: Plunging feed rate factor (plunging feed rate = current feed rate * FZ)
- D: Reference diameter
- Q: Continue from last text
- $\mathbf{0}$ (No): Engraving starts at the starting point

- $\mathbf{1}$ (Yes): Engraving starts at the tool position
- O: Mirror writing
- \mathbf{O} (No): Engraving is not mirrored
- $\mathbf{1}$ (Yes): Engraving is mirrored (mirror writing)
- NS: Block number of contour - reference to the contour description
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:
- Machining operation: Engraving
- Affected parameters: F, S

Unit G840 ICP contour milling, lat. surface C

The unit mills the contour defined with ICP on the lateral surface. Unit name: G840_Kon_C_Mant / cycle: G840 Further information: "G840 - milling", Page 466 Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- BF: Machine form elements (default: 0)

A chamfer/rounding arc is machined

- 0: No machining
- 1: At beginning
- 2: At end
- 3: At beginning and end
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- X1: Upper edge of milling
- P2: Depth of contour

Cycle form:

- JK: Cutter position
- 0: On the contour
- 1: Within/left of contour
- 2: Outside/right of contour
- 3: Depending on H and MD
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- I: Infeed-direction oversize
- K: Contour-parallel oversize
- FZ: Approach feed (default: active feed rate)
- E: Reduced feed
- R: Approach radius
- O: Plunging behavior (default: 0)
- 0: Straight - the cycle moves the tool to the starting point; the tool plunges at feed rate and mills the contour
- 1: In predrilling - the control positions the tool above the predrill hole position; the tool plunges and mills the contour
- NF: Position mark (only with $\mathbf{O = 1}$)
- RB: Return plane

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G845 ICP pocket milling, lat. surface C

The unit mills the pocket defined by \mathbf{Q}. In $\mathbf{Q K}$, select the machining operation (roughing/finishing) and the plunging strategy.
Unit name: G845_Tas_C_Mant / cycles: G845; G846
Further information: "G845-milling", Page 474
Further information: "Pocket milling - finishing G846", Page 478
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour
 section
- X1: Upper edge of milling
- P2: Depth of contour
- NF: Position mark (only with QK = 8)
- FZ: Approach feed (default: active feed rate)
- E: Reduced feed
- FP: Infeed rate in the plane

Cycle form:

- QK: Machining operation and plunging strategy
- 0: Roughing
- 1: Finishing
- 2: Helical roughing, manual
- 3: Helical roughing, automatic
- 4: Recipr. linear roughing, manual
- 5: Recipr. linear roughing, auto
- 6: Reciproc. circ. roughing, manual
- 7: Recipr. circular roughing, auto
- 8: Plunge rough at predrill pos.

- JT: Machining direction
- 0: From the inside out
- 1: From the outside in
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- I: Infeed-direction oversize
- K: Contour-parallel oversize
- R: Approach radius
- WB: Plunging length
- EW: Plunging angle
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap = U * milling diameter

- RB: Return plane

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G840 ICP deburring, lat. surface C

The unit deburrs the contour defined with ICP on the lateral surface.
Unit name: G840_ENT_C_MANT / cycle: G840
Further information: "G840 - deburring", Page 470
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- BF: Machine form elements (default: 0)

A chamfer/rounding arc is machined

- 0: No machining
- 1: At beginning
- 2: At end
- 3: At beginning and end
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- X1: Upper edge of milling

Cycle form:

- JK: Cutter position

- 0: On the contour
- 1: Within/left of contour
- 2: Outside/right of contour
- 3: Depending on H and MD
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- BG: Cham. width for deburring
- JG: Preparation diameter
- P: Plunging depth (indicated as a negative value)
- K: Contour-parallel oversize
- R: Approach radius
- FZ: Approach feed (default: active feed rate)
- E: Reduced feed
- RB: Return plane

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Deburring
- Affected parameters: F, S

Unit G847 ICP Troch. contour mling, lat. surf. C

The unit uses trochoidal milling to rough out the open or closed contour on the lateral surface of the workpiece defined with ICP.
Unit name: G847_KON_C_MANT / cycle: G847
Further information: "Trochoidal contour milling G847 ", Page 480
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- BF: Machine form elements (default: 0)

A chamfer/rounding arc is machined

- 0: No machining
- 1: At beginning
- 2: At end
- 3: At beginning and end
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- X1: Upper edge of milling (diameter value; default: Starting point X)
- P2: Depth of contour
- I: Infeed-direction oversize
- K: Contour-parallel oversize
- RB: Return plane (default: back to start position)
- NF: Position mark (only with $\mathbf{O}=1$)

Cycle form:

- JK: Cutter position
- 0: On the contour
- 1: Within/left of contour
- 2: Outside/right of contour
- H: Mill cutting direction (default: 1)
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- BR: Trochoid width
- R: Radius for return
- FP: Feed rate for return (default: active feed rate)
- AL: Retraction path for return
- O: Plunging behavior (default: 2)
- $\mathbf{O}=0$ (vertical plunging): The cycle moves the tool to the starting point; the tool plunges at the feed rate for infeed and mills the contour
- $\mathbf{O}=1$ (vertical plunging, e.g. at the predrilled position):
- If $\mathbf{N F}$ is programmed: The control positions the milling cutter above the first predrill hole position; the tool plunges at rapid traverse to safety clearance and mills the first area. If applicable, the cycle positions the tool to the next predrill hole position and mills the next area etc.
- If NF is not programmed: The cycle plunges at the current position at rapid traverse and mills the area. If applicable, position the tool to the next predrill hole position and mill the next area etc.
- $\mathbf{O}=2$ (plunge in helical motion): The tool plunges at the current position at the angle \mathbf{W} and mills full circles with the diameter WB.
- FZ: Approach feed (default: active feed rate)
- EW: Plunging angle
- WB: Diameter of the helix (default: helix diameter $=1.5$ * milling diameter)
- U: Overlap factor - overlap of milling paths $=\mathbf{U}$ * milling diameter (default: 0.9)
- HCC: Contour smoothing
- 0: No smoothing cut
- 1: With smoothing cut

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G848 ICP Troch. pocket mling, lat. surf. C

The unit uses trochoidal milling to rough out the figure or figure pattern defined on the lateral surface with ICP.
Unit name: G848_TAS_C_MANT / cycle: G848
Further information: "Trochoidal pocket milling G847 ", Page 482
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- X1: Upper edge of milling
- P2: Depth of contour

- I: Contour-parallel oversize
- K: Infeed-direction oversize
- RB: Return plane (default: back to start position)
- NF: Position mark (only with $\mathbf{O}=1$)

Cycle form:

- H: Mill cutting direction (default: 1)
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- BR: Trochoid width
- R: Radius for return
- FP: Feed rate for return (default: active feed rate)
- AL: Retraction path for return
- O: Plunging behavior (default: 2)
- $\mathbf{0 = 0}$ (vertical plunging): The cycle moves the tool to the starting point; the tool plunges at the feed rate for infeed and mills the figure
- $\mathbf{O}=1$ (vertical plunging, e.g. at the predrilled position):
- If NF is programmed: The control positions the milling cutter above the first predrill hole position; the tool plunges at rapid traverse to safety clearance and mills the first area. If applicable, the cycle positions the tool to the next predrill hole position and mills the next area etc.
- If NF is not programmed: The cycle plunges at the current position at rapid traverse and mills the area. If applicable, position the tool to the next predrill hole position and mill the next area etc.
- $\mathbf{O}=2$ (plunge in helical motion): The tool plunges at the current position at the angle \mathbf{W} and mills full circles with the diameter WB.
- FZ: Approach feed (default: active feed rate)
- EW: Plunging angle
- WB: Diameter of the helix (default: helix diameter $=1.5$ * milling diameter)
- U: Overlap factor - overlap of milling paths $=\mathbf{U}$ * milling diameter (default: 0.9)
- J: Machining operation
- 0: Complete
- 1: W/o corner machining
- 2: Only corner machining
(1)

For slots and rectangles, you need to program width BR of the trochoidal tool path; for circles and polygons, this is not necessary.

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

4.11 Units - Spec (special operations)

Unit Program beginning (START)

2.

> Refer to your machine manual.
> The machine tool builder can provide you with a machinedependent start unit containing the definitions of various transfer parameters that automatically take into account a bar feeder, for example.

In the start unit, you define default values that are used by the control in the following units. The start unit is called once at the beginning of the machining section. You can also directly specify
Max. shaft speed, Datum shift, and the Tool change point for this
NC program.
Unit name: Start / Called cycle: None
Limits form:

- SO: Maximum speed for main spindle
- S1: Maximum speed for driven tool
- Z: Datum shift G59

TC point form (tool change point):

- WT1: Tool change point
- No axis (do not approach the tool change point)
- 0: Simultaneously
- 1: First X, then Z
- 2: First Z, then X
- 3: Only X
- 4: Only Z
- 5: Only Y
- 6: Simultaneous w/ Y
- WX1: Tool change point in X (reference: distance between slide position and machine datum as radius value)
- WY1: Tool change point in Y (reference: distance between slide position and machine datum)
- WZ1: Tool change point in Z (reference: distance between slide position and machine datum)
Defaults form:
- GWW: Tool change point
- No axis (do not approach the tool change point)
- 0: Simultaneously X and Z axis depart diagonally
- 1: First X, then Z
- 2: First Z, then X
- 3: Only X
- 4: Only Z
- 5: Only Y
- 6: Simultaneous w/ Y
- CLT: Coolant
- 0: Without
- 1: Coolant 1 on
- 2: Coolant 2 on
- G60: Deactivate Protection zone for the drilling operation
- 0: Active
- 1: Inactive

Cycle form:

- L: Subprogram - Name - name of a subprogram that is called by the start unit
Global form:
- G47: Safety clearance
- SCK: Safety clearance in infeed direction during drilling and milling operations
- SCI: Safety clearance in the machining plane during drilling and milling operations
- I, K: O-size \mathbf{X} and \mathbf{Z}
(1)
- You can load the datum shift and the tool change point by soft key
- The setting in the TC point form applies only within the current program
- Position of tool change point (WX1, WZ1, WY1):
- If the tool change point is defined, you use G14 to move to this position
- If the tool change point is not defined, you use G14 to move to the position defined in manual mode
- If you call a subprogram using the start unit, you should set the subprogram with G65 Chuck selection with fixture DO. You should also move the C axes out, for example with M15 or M315

Soft keys in the program beginning form

Acceptance of datum	Loads the datum defined during setup
Acceptance TC point $\$ 1$	Loads the tool-change point defined during setup

Unit C axis ON (option 9)

The unit activates the SPI (spindle) C axis.
Unit name: C_Axis_ON / Called cycle: None

C axis ON form:

- SPI: Workpc spindle no. 0.. $\mathbf{3}$ - spindle that is holding the workpiece
- C: Approach position C

Unit C axis OFF (option 9)

The unit deactivates the SPI (spindle) C axis.
Unit name: C_Axis_OFF / Called cycle: None
C axis OFF form:

- SPI: Workpc spindle no. 0.. $\mathbf{3}$ - spindle that is holding the workpiece

Unit Subprogram call

The unit calls the subprogram defined in \mathbf{L}.
Unit name: SUBPROG / Called cycle: Any subprogram
Contour form:

- L: Subprogram - Name
- Q: Number of repetitions (default: 1)
- LA-LF: Transmiss.value
- LH: Transmiss.value
- LN: Transmiss.value - reference to a block number as contour reference
Is updated during block numbering.
Cycle form:
- LI-LK Transmiss.value
- LO: Transmiss.value
- LP: Transmiss.value
- LR: Transmiss.value
- LS: Transmiss.value
- LU: Transmiss.value
- LW-LZ: Transmiss.value

Cycle form:

- ID1: Transmiss.value - text variable (string)
- AT1: Transmiss.value - text variable (string)
- BS: Transmiss.value
- BE: Transmiss.value
- WS: Transmiss.value
- AC: Transmiss.value
- WC: Transmiss.value
- RC: Transmiss.value
- IC: Transmiss.value
- KC: Transmiss.value
- JC: Transmiss.value
(i) Accessing the technology database is not possible.

[^2]
Unit Process logic / Repetition - program section repeat

Use the Repeat unit to program a program section repeat. The unit consists of two inseparable parts. Program the unit with the Start form immediately before the repeatable part, and the unit with the End form immediately after the repeatable part. Be sure to use the same variable number here.
Unit name: REPEAT / Called cycle: None

Start form:

- AE: Repetition
- 0: Beginning
- 1: End
- V: Variable number 1-30 - counting variable for the iteration loop
- NN: Number of repetitions
- QR: Save workpiece blank
- 0: No
- 1: Yes
- K: Comment

End form:

- AE: Repetition
- 0: Beginning
- 1: End
- V: Variable number 1-30 - counting variable for the iteration loop
- Z: Additive datum shift
- C: C-axis incremental shift
- Q: No. axis C
- K: Comment

Unit Program end (END)

In every smart.Turn program, the end unit should be called once at the end of the machining section.
Unit name: END / Called cycle: None
Program end form:

- ME: Type of return jump:
- 30: Without restart M30
- 99: With restart M99
- NS: Block no. for return jump
- G14: Tool change point
- No axis
- 0: Simultaneously
- 1: First X, then Z
- 2: First Z, then X
- 3: Only X
- 4: Only Z
- 5: Only Y (machine-dependent)
- 6: Simultaneous w/ Y (machine-dependent)
- MFS: \mathbf{M} at beginning: \mathbf{M} function that is executed at the beginning of the machining step
- MFE: \boldsymbol{M} at end: \boldsymbol{M} function that is executed at the end of the machining step

Unit Tilt plane

The unit executes the following transformations and rotations:

- Shifts the coordinate system to the position I, K
- Rotates the coordinate system by the Angle B; reference: I, K
- Shifts, if programmed, the coordinate system by \mathbf{U} and \mathbf{W} in the rotated coordinate system
Unit name: G16_ROTWORKPLAN / Called cycle: G16
Further information: "Tilt working plane G16", Page 648
Tilt plane form:
- Q: Tilt plane
- 0: OFF (deactivate tilting)
- 1: ON (tilt working plane)
- B: Angle - plane angle (reference: positive Z axis)
- I: Reference pt. - plane reference in X direction (radius value)
- K: Reference pt. - plane reference (in Z)
- U: Shift in X (radius value)
- W: Shift in Z
(i) Please note:
- Q0 resets the working plane. The datum and coordinate system defined before the unit are then in effect again
- The positive Z axis is the reference axis for the Angle B. This also applies in a mirrored coordinate system
■ X is the infeed axis in a tilted coordinate system. X coordinates are entered as diameter coordinates.
- Other datum shifts are not permitted as long as tilting is active

> smart.Turn Units for
> the Y Axis (Option 9 and Option 70)

5.1 Units - Drilling / ICP Y

Unit G74 Drilling in ICP Y

The unit machines a single hole or a hole pattern in the XY or YZ plane. Using ICP, you define the holes as well as further details.
Unit name: G74_ICP_Y / cycle: G74
Further information: "Deep boring G74", Page 428
Pattern form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section

Cycle form:

- E: Period of dwell at end of hole (default: 0)

- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- DFF: Retraction feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole

AB: Drilling lengths (default: 0)

- P: 1. Boring depth
- IB: Hole depth reduct. val (default: 0)
- JB: Minimum hole depth

If you have entered a hole depth reduction value, the hole depth is reduced only to the value entered in JB.

- B: Return distance - value by which the tool is retracted after reaching the respective hole depth
- RI: Safety clearance internal - distance for reapproach inside the hole (default: Safety clearance SCK)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

Unit G73 Tapping in ICP Y

The unit machines a single tap hole or a hole pattern in the $X Y$ or $Y Z$ plane. Using ICP, you define the tap holes as well as further details. Unit name: G73_ICP_Y / cycle: G73
Further information: "Tapping G73", Page 426
Pattern form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
Cycle form:
- F1: Thread pitch
- B: Run-in lgth to obtain the programmed spindle speed and feed rate (default: 2 * Thread pitch F1)
- L: Retract length when using floating tap holders (default: 0)
- SR: Return speed (default: tapping speed)
- SP: Chip breaking depth
- SI: Retraction distance
- RB: Return plane

Further forms:
Further information: "smart.Turn unit", Page 98
Use the Retract length for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the retraction length. The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the tap is pulled away from the chuck by the retraction length. With this method, you can achieve higher service life of the taps.
Access to the technology database:

- Machining operation: Tapping
- Affected parameter: S

If you interrupt program run during a tapping cycle, you can manually retract the tool from the hole in the Z axis. The control moves the spindle on a path matching the traverse. If the optional machine parameter CfgBackTrack
(no. 122000) is active, use the Start blck search soft key to resume program run after the manual traverse.

Unit G72 Boring, cntrsinkg ICP Y

The unit machines a single hole or a hole pattern in the $X Y$ or $Y Z$ plane. Using ICP, you define the hole positions as well as further details for boring or countersinking
Unit name: G72_ICP_Y / cycle: G72
Further information: "Boring/cnt-sink G72", Page 425
Pattern form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section

Cycle form:

- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- DFF: Retraction feed rate
- RB: Return plane (default: back to start position)

Further forms:

- Affected parameters: F, S

Units G75 Bore milling Y

Unit G75 Bore milling ICP Y face

The unit machines a single hole or a hole pattern on the face. Using ICP, you define the positions of the holes as well as further details.

Only the contour description (ICP) for the C axis or Y axis is used for bore milling.

Unit name: G75_BF_ICP_Y / cycle: G75
Further information: "Bore milling G75", Page 431
Contour form:

- FK: Finished part contour - name of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section
- FZ: Approach feed (default: active feed rate)
- B: Milling depth (default: depth from the contour description)

Cycle form:

- QK: Machining operation
- 0: Roughing
- 1: Finishing
- 2: Roughing and finishing
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- P: Max. approach (default: milling in one infeed)
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- WB: Diameter of the helix (default: helix diameter $=1.5$ * milling diameter)
- EW: Plunging angle
- U: Overlap factor - overlap of milling paths = \mathbf{U} * milling diameter (default: 0.5)
- RB: Return plane (default: retract to starting position or to safety clearance; diameter value with radial holes and holes in the YZ plane)
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:
- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G75 Deburring ICP Y face

The unit deburs a single hole or a hole pattern on the face. Using ICP, you define the positions of the holes as well as further details.

Only the contour description (ICP) for the C axis or Y axis is used for bore milling.

Unit name: G75_EN_ICP_Y / cycle: G75
Further information: "Bore milling G75", Page 431

Contour form:

- FK: Finished part contour - name of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section
- B: Milling depth (default: countersinking depth from the contour definition)
Cycle form:
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- RB: Return plane (default: retract to starting position or to safety clearance; diameter value with radial holes and holes in the YZ plane)
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:
- Machining operation: Deburring
- Affected parameters: F, S

Unit G75 Bore milling ICP Y lateral

The unit machines a single hole or a hole pattern on the lateral surface. Using ICP, you define the positions of the holes as well as further details.

Only the contour description (ICP) for the C axis or Y axis is used for bore milling.

Unit name: G75_BF_ICP_Y_MANT / cycle: G75
Further information: "Bore milling G75", Page 431
Contour form:

- FK: Finished part contour - name of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section
- FZ: Approach feed (default: active feed rate)
- B: Milling depth (default: depth from the contour description)

Cycle form:

- QK: Machining operation
- 0: Roughing
- 1: Finishing
- 2: Roughing and finishing
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- P: Max. approach (default: milling in one infeed)
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- WB: Diameter of the helix (default: helix diameter $=1.5$ * milling diameter)
- EW: Plunging angle
- U: Overlap factor - overlap of milling paths = U * milling diameter (default: 0.5)
- RB: Return plane (default: retract to starting position or to safety clearance; diameter value with radial holes and holes in the YZ plane)
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:
- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G75 Deburring ICP Y lateral

The unit deburs a single hole or a hole pattern on the lateral surface. Using ICP, you define the positions of the holes as well as further details.
(1)
Only the contour description (ICP) for the C axis or Y axis is used for bore milling.

Unit name: G75_EN_ICP_Y_MANT / cycle: G75
Further information: "Bore milling G75", Page 431
Contour form:

- FK: Finished part contour - name of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section
- B: Milling depth (default: countersinking depth from the contour definition)
Cycle form:
- H: Mill cutting direction

- 0: Up-cut
- 1: Climb
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- RB: Return plane (default: retract to starting position or to safety clearance; diameter value with radial holes and holes in the YZ plane)
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:
- Machining operation: Deburring
- Affected parameters: F, S

5.2 Units - Drilling / Predrilling, milling in Y

Unit G840 Predrill, contour mill, ICP on face in \mathbf{Y}

The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in $\mathbf{N F}$. If the milling contour consists of multiple sections, the unit machines a hole for each section.
Unit name: DRILL_STI_840_Y / cycles: G840 A1; G71
Further information: "G840 - calculating hole positions", Page 464
Further information: "Simple drilling G71", Page 423
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- Z1: Upper edge of milling
- P2: Depth of contour

Cycle form:

- JK: Cutter position
- 0: On the contour
- 1: Within/left of contour
- 2: Outside/right of contour
- 3: Depending on H and MD

- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- R: Approach radius
- WB: Milling diameter
- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)
- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

Unit G845 Predrill, pocket mill, ICP on face in \mathbf{Y}

The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in $\mathbf{N F}$. If the pocket consists of multiple sections, the unit machines a hole for each section.
Unit name: DRILL_STI_845_Y / Cycles: G845; G71
Overvw. form:

- AP: Predrilling position
- 1: Determine predrilling pos
- 2: predrill. pos. fig. center

Further information: "G845-calculating hole positions", Page 473
Further information: "Simple drilling G71", Page 423
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- Z1: Upper edge of milling
- P2: Depth of contour

Cycle form:

- JT: Machining direction
- 0: From the inside out
- 1: From the outside in
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- U: Overlap factor - defines the overlap of milling paths (default: 0.5) (range: 0 to 0.99)

Overlap $=\mathbf{U} *$ milling diameter

- WB: Milling diameter
- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)
- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
smart.Turn Units for the Y Axis (Option 9 and Option 70) | Units - Drilling / Predrilling, milling in Y

Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

Unit G840 Predrill, contour mill, ICP on lateral in \mathbf{Y}

The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF. If the milling contour consists of multiple sections, the unit machines a hole for each section.
Unit name: DRILL_MAN_840_Y / cycles: G840 A1; G71
Further information: "G840 - calculating hole positions", Page 464
Further information: "Simple drilling G71", Page 423
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- X1: Upper edge of milling
- P2: Depth of contour

Cycle form:

- JK: Cutter position
- 0: On the contour
- 1: Within/left of contour
- 2: Outside/right of contour
- 3: Depending on H and MD
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- R: Approach radius
- WB: Milling diameter
- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)
- E: Period of dwell at end of hole (default: 0)

- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

Unit G845 Predrill, pocket mill, ICP on lateral in Y

The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in $\mathbf{N F}$. If the pocket consists of multiple sections, the unit machines a hole for each section.
Unit name: DRILL_MAN_845_Y / Cycles: G845
Overvw. form:

- AP: Predrilling position
- 1: Determine predrilling pos
- 2: predrill. pos. fig. center

Further information: "G845-calculating hole positions", Page 473 Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- X1: Upper edge of milling
- P2: Depth of contour

Cycle form:

- JT: Machining direction
- 0: From the inside out

- 1: From the outside in
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap $=\mathbf{U} *$ milling diameter

- WB: Milling diameter

- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)
- E: Period of dwell at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- V: Feed reduction
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- AB: Drilling lengths (default: 0)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98

Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

5.3 Units - Millg / Y axis, face, Y axis, latrl.

Unit G840 ICP contour milling on face in Y

The unit mills the contour defined with ICP in the XY plane. Unit name: G840_Kon_Y_Stirn / cycle: G840
Further information: "G840 - milling", Page 466
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- BF: Machine form elements (default: 0)

A chamfer/rounding arc is machined

- 0: No machining
- 1: At beginning
- 2: At end
- 3: At beginning and end
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- Z1: Upper edge of milling
- P2: Depth of contour

Cycle form:

- JK: Cutter position
- 0: On the contour
- 1: Within/left of contour
- 2: Outside/right of contour
- 3: Depending on H and MD
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- FZ: Approach feed (default: active feed rate)
- E: Reduced feed
- R: Approach radius
- O: Plunging behavior (default: 0)
- 0: Straight - the cycle moves the tool to the starting point; the tool plunges at feed rate and mills the contour
- 1: In predrilling - the control positions the tool above the predrill hole position; the tool plunges and mills the contour
- NF: Position mark (only with $\mathbf{O}=1$)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98

Access to the technology database:

- Machining operation: Finish-milling
- Affected parameters: F, S, FZ, P

Unit G845 ICP pocket milling on face in \mathbf{Y}

The unit mills the pocket defined with ICP in the XY plane. In QK (machining operation), select whether a roughing or finishing operation is to be executed. For roughing, define the plunging strategy.
Unit name: G845_Tas_Y_Stirn / cycles: G845; G846
Further information: "G845-milling", Page 474
Further information: "Pocket milling - finishing G846", Page 478
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- Z1: Upper edge of milling
- P2: Depth of contour
- NF: Position mark (only with QK = 8)
- FZ: Approach feed (default: active feed rate)
- E: Reduced feed
- FP: Infeed rate in the plane

Cycle form:

- QK: Machining operation and plunging strategy
- 0: Roughing

- 1: Finishing
- 2: Helical roughing, manual
- 3: Helical roughing, automatic
- 4: Recipr. linear roughing, manual
- 5: Recipr. linear roughing, auto
- 6: Reciproc. circ. roughing, manual
- 7: Recipr. circular roughing, auto
- 8: Plunge rough at predrill pos.
- 9: Finishing with 3-D approach arc
- JT: Machining direction

- 0: From the inside out
- 1: From the outside in
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- R: Approach radius
- WB: Plunging length
- EW: Plunging angle
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap = U * milling diameter

- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G840 ICP deburring on front face in \mathbf{Y}

The unit deburrs the contour defined with ICP in the XY plane.
Unit name: G840_ENT_Y_STIRN / cycle: G840
Further information: "G840 - deburring", Page 470
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- BF: Machine form elements (default: 0)

A chamfer/rounding arc is machined

- 0: No machining
- 1: At beginning
- 2: At end
- 3: At beginning and end
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- Z1: Upper edge of milling

Cycle form:

- JK: Cutter position

- 0: On the contour
- 1: Within/left of contour
- 2: Outside/right of contour
- 3: Depending on H and MD
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- BG: Cham. width for deburring
- JG: Preparation diameter
- P: Plunging depth (indicated as a negative value)
- I: Contour-parallel oversize
- R: Approach radius
- FZ: Approach feed (default: active feed rate)
- E: Reduced feed
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Deburring
- Affected parameters: F, S

Unit G841 Single surface in Y axis on face

The unit mills a single surface defined with ICP in the $X Y$ plane. Unit name: G841_Y_STI / cycles: G841; G842
Further information: "Area milling - roughing G841", Page 655 Further information: "Area milling - finishing G842", Page 656
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
Cycle form:
- QK: Machining operation

- Roughing
- Finishing
- P: Maximum infeed
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap = U * milling diameter

- V: Overrun factor - defines the distance by which the tool should pass the outside radius of the workpiece (default: 0.5)
- FZ: Approach feed (default: active feed rate)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G843 Centric polygon, Y axis on face

The unit mills the centric polygon defined with ICP in the XY plane. Unit name: G843_Y_STI / cycles: G843; G844
Further information: "Centric polygon - roughing G843", Page 657
Further information: "Centric polygon - finishing G844", Page 658
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
Cycle form:
- QK: Machining operation
- Roughing
- Finishing
- P: Maximum infeed
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap = U * milling diameter

- V: Overrun factor - defines the distance by which the tool should pass the outside radius of the workpiece (default: 0.5)
- FZ: Approach feed (default: active feed rate)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G803 Engraving in Y axis on face

The unit engraves character strings aligned linearly in the XY plane. Diacritics and special characters that you cannot enter in smart.Turn operating mode can be defined, character by character, in $\mathbf{N F}$. If you program $\mathbf{Q}=1$ (Continue from last text), then the tool change and pre-positioning are suppressed. The technological data of the previous engraving cycle apply.
Unit name: G803_GRA_Y_STIRN / cycle: G803
Further information: "Engraving in XY plane G803", Page 666
Position form:

- X, Y: Start point
- Z: Final point - Z position, infeed depth during milling
- RB: Return plane
- APP: Type of approach
- DEP: Type of departure

Cycle form:

- TXT: Text to be engraved
- NF: Char. no. - ASCII code of the character to be engraved
- H: Font height
- E: Distance factor

The spacing between the characters is calculated according to the following formula: $\mathbf{H} / 6$ * \mathbf{E}

- W: Inclinat. ang. of the character string
- FZ: Plunging feed rate factor (plunging feed rate = current feed rate * FZ)
- Q: Continue from last text
- $\mathbf{0}$ (No): Engraving starts at the starting point
- 1 (Yes): Engraving starts at the tool position
- O: Mirror writing
- \mathbf{O} (No): Engraving is not mirrored
- $\mathbf{1}$ (Yes): Engraving is mirrored (mirror writing)
- NS: Block number of contour - reference to the contour description
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:
- Machining operation: Engraving
- Affected parameters: F, S

Unit G800 Thread milling on face in Y

The unit mills a thread in existing holes in the XY plane.
Unit name: G800_GEW_Y_STIRN / cycle: G800
Further information: "Thread milling in XY plane G800", Page 668
Position form:

- APP: Type of approach
- CS: Approach position C - C-axis position that is approached before cycle call with G110
- Z1: Start point drill
- P2: Thread depth
- I: Thread diameter
- F1: Thread pitch

Cycle form:

- J: Direction of thread:
- 0: Right-hand thread
- 1: Left-hand thread
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb

- V: Milling method
- 0: One revolution - the thread is milled in a 360-degree helix
- 1: Two or more revolutions - the thread is milled in several helix paths (single-point tool)
- R: Approach radius
- FK: Finished part contour - name of the contour to be machined
- NS: Block number of contour - reference to the contour description
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:
- Machining operation: Finish-milling
- Affected parameters: F, S

Unit G847 ICP Troch. contour mllng, front face \mathbf{Y}

The unit uses trochoidal milling to rough out the open or closed contour on the front face of the workpiece defined with ICP. Unit name: G847_KON_Y_STIRN / cycle: G847
Further information: "Trochoidal contour milling G847 ", Page 480 Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- BF: Machine form elements (default: 0)

A chamfer/rounding arc is machined

- 0: No machining
- 1: At beginning
- 2: At end
- 3: At beginning and end
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- Z1: Upper edge of milling
- P2: Depth of contour
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- RB: Return plane (default: back to start position)
- NF: Position mark (only with $\mathbf{O}=1$)

Cycle form:

- JK: Cutter position
- 0: On the contour
- 1: Within/left of contour
- 2: Outside/right of contour
- H: Mill cutting direction (default: 1)
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- BR: Trochoid width
- R: Radius for return
- FP: Feed rate for return (default: active feed rate)
- AL: Retraction path for return

- O: Plunging behavior (default: 2)
- $\mathbf{O}=0$ (vertical plunging): The cycle moves the tool to the starting point; the tool plunges at the feed rate for infeed and mills the contour
- $\mathbf{O}=1$ (vertical plunging, e.g. at the predrilled position):
- If $\mathbf{N F}$ is programmed: The control positions the milling cutter above the first predrill hole position; the tool plunges at rapid traverse to safety clearance and mills the first area. If applicable, the cycle positions the tool to the next predrill hole position and mills the next area etc.
- If NF is not programmed: The cycle plunges at the current position at rapid traverse and mills the area. If applicable, position the tool to the next predrill hole position and mill the next area etc.
- $\mathbf{O}=2$ (plunge in helical motion): The tool plunges at the current position at the angle \mathbf{W} and mills full circles with the diameter WB.
- FZ: Approach feed (default: active feed rate)
- EW: Plunging angle
- WB: Diameter of the helix (default: helix diameter $=1.5$ * milling diameter)
- U: Overlap factor - overlap of milling paths $=\mathbf{U}$ * milling diameter (default: 0.9)
- HCC: Contour smoothing
- 0: No smoothing cut
- 1: With smoothing cut

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G848 ICP Troch. pocket mllng, front face \mathbf{Y}

The unit uses trochoidal milling to rough out the figure or figure pattern on the front face defined with ICP. Unit name: G848_TAS_Y_STIRN / cycle: G848
Further information: "Trochoidal pocket milling G847 ", Page 482 Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- Z1: Upper edge of milling
- P2: Depth of contour
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- RB: Return plane (default: back to start position)
- NF: Position mark (only with $\mathbf{O = 1}$)

Cycle form:

- H: Mill cutting direction (default: 1)
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- BR: Trochoid width
- R: Radius for return
- FP: Feed rate for return (default: active feed rate)
- AL: Retraction path for return
- O: Plunging behavior (default: 2)
- $\mathbf{0}=0$ (vertical plunging): The cycle moves the tool to the starting point; the tool plunges at the feed rate for infeed and mills the figure
- $\mathbf{O}=1$ (vertical plunging, e.g. at the predrilled position):
- If NF is programmed: The control positions the milling cutter above the first predrill hole position; the tool plunges at rapid traverse to safety clearance and mills the first area. If applicable, the cycle positions the tool to the next predrill hole position and mills the next area etc.
- If NF is not programmed: The cycle plunges at the current position at rapid traverse and mills the area. If applicable, position the tool to the next predrill hole position and mill the next area etc.
- $\mathbf{O}=2$ (plunge in helical motion): The tool plunges at the current position at the angle \mathbf{W} and mills full circles with the diameter WB.
- FZ: Approach feed (default: active feed rate)
- EW: Plunging angle
- WB: Diameter of the helix (default: helix diameter $=1.5$ * milling diameter)
- U: Overlap factor - overlap of milling paths = \mathbf{U} * milling diameter (default: 0.9)
- J: Machining operation
- 0: Complete
- 1: W/o corner machining
- 2: Only corner machining
-

For slots and rectangles, you need to program width BR of the trochoidal tool path; for circles and polygons, this is not necessary.

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G840 ICP contour mill, latrl. surf. Y

The unit mills the contour defined with ICP in the YZ plane.
Unit name: G840_Kon_Y_Mant / cycle: G840
Further information: "G840 - milling", Page 466
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- BF: Machine form elements (default: 0)

A chamfer/rounding arc is machined

- 0: No machining
- 1: At beginning
- 2: At end
- 3: At beginning and end
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- X1: Upper edge of milling
- P2: Depth of contour

Cycle form:

- JK: Cutter position
- 0: On the contour
- 1: Within/left of contour
- 2: Outside/right of contour
- 3: Depending on H and MD
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- I: Infeed-direction oversize
- K: Contour-parallel oversize
- FZ: Approach feed (default: active feed rate)
- E: Reduced feed
- R: Approach radius
- O: Plunging behavior (default: 0)
- 0: Straight - the cycle moves the tool to the starting point; the tool plunges at feed rate and mills the contour
- 1: In predrilling - the control positions the tool above the predrill hole position; the tool plunges and mills the contour
- NF: Position mark (only with $\mathbf{O}=1$)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Finish-milling
- Affected parameters: F, S, FZ, P

Unit G845 ICP pocket mill, lateral surf. Y

The unit mills the pocket defined with ICP in the YZ plane. In QK (machining operation), select whether a roughing or finishing operation is to be executed. For roughing, define the plunging strategy.
Unit name: G845_Tas_Y_Mant / cycles: G845; G846
Further information: "G845 - milling", Page 474
Further information: "Pocket milling - finishing G846", Page 478
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- X1: Upper edge of milling
- P2: Depth of contour
- NF: Position mark (only with $\mathbf{Q K}=8$)
- FZ: Approach feed (default: active feed rate)
- E: Reduced feed
- FP: Infeed rate in the plane

Cycle form:

- QK: Machining operation and plunging strategy
- 0: Roughing

- 1: Finishing
- 2: Helical roughing, manual
- 3: Helical roughing, automatic
- 4: Recipr. linear roughing, manual
- 5: Recipr. linear roughing, auto
- 6: Reciproc. circ. roughing, manual
- 7: Recipr. circular roughing, auto
- 8: Plunge rough at predrill pos.
- 9: Finishing with 3-D approach arc

- JT: Machining direction
- 0: From the inside out
- 1: From the outside in
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- I: Infeed-direction oversize
- K: Contour-parallel oversize
- R: Approach radius
- WB: Plunging length
- EW: Plunging angle
- U: Overlap factor - defines the overlap of milling paths (default: 0.5) (range: 0 to 0.99)

Overlap = U * milling diameter

- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G840 ICP deburring on lateral surf. Y

The unit deburrs the contour defined with ICP in the YZ plane.
Unit name: G840_ENT_Y_MANT / cycle: G840
Further information: "G840 - deburring", Page 470
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- BF: Machine form elements (default: 0)

A chamfer/rounding arc is machined

- 0: No machining
- 1: At beginning
- 2: At end
- 3: At beginning and end
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- X1: Upper edge of milling

Cycle form:

- JK: Cutter position
- 0: On the contour
- 1: Within/left of contour
- 2: Outside/right of contour
- 3: Depending on H and MD
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- BG: Cham. width for deburring
- JG: Preparation diameter
- P: Plunging depth (indicated as a negative value)
- K: Contour-parallel oversize
- R: Approach radius
- FZ: Approach feed (default: active feed rate)
- E: Reduced feed
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Deburring
- Affected parameters: F, S

Unit G841 Single surface in Y axis, latrl.

The unit mills a single surface defined with ICP in the YZ plane.
Unit name: G841_Y_MANT / cycles: G841, G842
Further information: "Area milling - roughing G841", Page 655
Further information: "Area milling - finishing G842", Page 656
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
Cycle form:
- QK: Machining operation
- Roughing
- Finishing
- P: Maximum infeed
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap = U * milling diameter

- V: Overrun factor - defines the distance by which the tool should pass the outside radius of the workpiece (default: 0.5)
- FZ: Approach feed (default: active feed rate)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G843 Centric polygon Y axis, latrl.

The unit mills the centric polygon defined with ICP in the YZ plane. Unit name: G843_Y_MANT / cycles: G843; G844
Further information: "Centric polygon - roughing G843", Page 657 Further information: "Centric polygon - finishing G844", Page 658
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
Cycle form:
- QK: Machining operation
- Roughing
- Finishing
- P: Maximum infeed
- I: Contour-parallel oversize
- K: Infeed-direction oversize
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap = U * milling diameter

- V: Overrun factor - defines the distance by which the tool should pass the outside radius of the workpiece (default: 0.5)
- FZ: Approach feed (default: active feed rate)
- RB: Return plane (default: back to start position)

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

4: $\mathrm{C}+270^{\circ}$

Unit G804 Engraving in Y on latrl. surface

The unit engraves character strings aligned linearly in the YZ plane. Diacritics and special characters that you cannot enter in smart.Turn operating mode can be defined, character by character, in $\mathbf{N F}$. If you program $\mathbf{Q}=1$ (Continue from last text), then the tool change and pre-positioning are suppressed. The technological data of the previous engraving cycle apply.
Unit name: G804_GRA_Y_MANT / cycle: G804
Further information: "Engraving in YZ plane G804", Page 667
Position form:

- Y, Z: Start point
- X: Final point - X position, infeed depth during milling (diameter value)
- RB: Return plane

Cycle form:

- TXT: Text to be engraved
- NF: Char. no. - ASCII code of the character to be engraved
- H: Font height
- E: Distance factor

The spacing between the characters is calculated according to the following formula: $\mathbf{H} / 6$ * \mathbf{E}

- W: Inclinat. ang. of the character string
- FZ: Plunging feed rate factor (plunging feed rate = current feed rate * FZ)
- Q: Continue from last text
- \mathbf{O} (No): Engraving starts at the starting point
- 1 (Yes): Engraving starts at the tool position
- O: Mirror writing
- \mathbf{O} (No): Engraving is not mirrored
- $\mathbf{1}$ (Yes): Engraving is mirrored (mirror writing)
- NS: Block number of contour - reference to the contour description

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Engraving
- Affected parameters: F, S

Unit G806 Thread milling, lateral in Y

The unit mills a thread in existing holes in the $Y Z$ plane.
Unit name: G806_GEW_Y_MANT / cycle: G806
Further information: "Thread milling in YZ plane G806", Page 669

Position form:

- APP: Type of approach
- CS: Approach position C - C-axis position that is approached before cycle call with G110
- X1: Start point drill (diameter value)
- P2: Thread depth
- I: Thread diameter
- F1: Thread pitch

Cycle form:

- J: Direction of thread:
- 0: Right-hand thread
- 1: Left-hand thread
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- V: Milling method
- 0: One revolution - the thread is milled in a 360-degree helix
- 1: Two or more revolutions - the thread is milled in several helix paths (single-point tool)
- R: Approach radius
- FK: Finished part contour - name of the contour to be machined
- NS: Block number of contour - reference to the contour description
Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: Finish-milling
- Affected parameters: F, S

Unit G847 ICP Troch. contour mllng, lat. surf. Y

The unit uses trochoidal milling to rough out the open or closed contour on the lateral surface of the workpiece defined with ICP.
Unit name: G847_KON_Y_MANT / cycle: G847
Further information: "Trochoidal contour milling G847 ", Page 480
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- BF: Machine form elements (default: 0)

A chamfer/rounding arc is machined

- 0: No machining
- 1: At beginning
- 2: At end
- 3: At beginning and end
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- X1: Upper edge of milling (diameter value; default: Starting point X)
- P2: Depth of contour
- I: Infeed-direction oversize
- K: Contour-parallel oversize
- RB: Return plane (default: back to start position)
- NF: Position mark (only with $\mathbf{O}=1$)

Cycle form:

- JK: Cutter position
- 0: On the contour
- 1: Within/left of contour
- 2: Outside/right of contour
- H: Mill cutting direction (default: 1)
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- BR: Trochoid width
- R: Radius for return
- FP: Feed rate for return (default: active feed rate)
- AL: Retraction path for return
- O: Plunging behavior (default: 2)
- $\mathbf{O}=0$ (vertical plunging): The cycle moves the tool to the starting point; the tool plunges at the feed rate for infeed and mills the contour
- $\mathbf{O}=1$ (vertical plunging, e.g. at the predrilled position):
- If $\mathbf{N F}$ is programmed: The control positions the milling cutter above the first predrill hole position; the tool plunges at rapid traverse to safety clearance and mills the first area. If applicable, the cycle positions the tool to the next predrill hole position and mills the next area etc.
- If NF is not programmed: The cycle plunges at the current position at rapid traverse and mills the area. If applicable, position the tool to the next predrill hole position and mill the next area etc.
- $\mathbf{0}=2$ (plunge in helical motion): The tool plunges at the current position at the angle \mathbf{W} and mills full circles with the diameter WB.
- FZ: Approach feed (default: active feed rate)
- EW: Plunging angle
- WB: Diameter of the helix (default: helix diameter $=1.5$ * milling diameter)
- U: Overlap factor - overlap of milling paths $=\mathbf{U}$ * milling diameter (default: 0.9)
- HCC: Contour smoothing
- 0: No smoothing cut
- 1: With smoothing cut

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

Unit G848 ICP Troch. pocket mlling, lat. surf. Y

The unit uses trochoidal milling to rough out the figures defined on the lateral surface with ICP.
Unit name: G848_TAS_Y_MANT / cycle: G848
Further information: "Trochoidal pocket milling G847 ", Page 482
Contour form:

- FK: ICP contour number
- NS: Starting block no. of contour - beginning of contour section
- X1: Upper edge of milling
- P2: Depth of contour

- I: Contour-parallel oversize
- K: Infeed-direction oversize
- RB: Return plane (default: back to start position)
- NF: Position mark (only with $\mathbf{O}=1$)

Cycle form:

- H: Mill cutting direction (default: 1)
- 0: Up-cut
- 1: Climb
- P: Maximum infeed
- BR: Trochoid width
- R: Radius for return
- FP: Feed rate for return (default: active feed rate)
- AL: Retraction path for return
- O: Plunging behavior (default: 2)
- $\mathbf{O}=0$ (vertical plunging): The cycle moves the tool to the starting point; the tool plunges at the feed rate for infeed and mills the figure
- $\mathbf{O}=1$ (vertical plunging, e.g. at the predrilled position):
- If NF is programmed: The control positions the milling cutter above the first predrill hole position; the tool plunges at rapid traverse to safety clearance and mills the first area. If applicable, the cycle positions the tool to the next predrill hole position and mills the next area etc.
- If NF is not programmed: The cycle plunges at the current position at rapid traverse and mills the area. If applicable, position the tool to the next predrill hole position and mill the next area etc.
- $\mathbf{O}=2$ (plunge in helical motion): The tool plunges at the current position at the angle \mathbf{W} and mills full circles with the diameter WB.
- FZ: Approach feed (default: active feed rate)
- EW: Plunging angle
- WB: Diameter of the helix (default: helix diameter $=1.5$ * milling diameter)
- U: Overlap factor - overlap of milling paths = \mathbf{U} * milling diameter (default: 0.9)
- J: Machining operation
- 0: Complete
- 1: W/o corner machining
- 2: Only corner machining
(1)

For slots and rectangles, you need to program width BR of the trochoidal tool path; for circles and polygons, this is not necessary.

Further forms:
Further information: "smart.Turn unit", Page 98
Access to the technology database:

- Machining operation: milling
- Affected parameters: F, S, FZ, P

DIN/ISO
Programming

6.1 Programming in ISO Mode

Geometry and machining commands

The control also supports structured programming in ISO Mode. The \mathbf{G} commands are divided into:

- Geometry commands for describing the contours of the workpiece blanks and finished parts
- Machining commands for the MACHINING section.

Some G codes are used both for workpiece blank/finishedpart definition and in the MACHINING section. When copying or shifting NC blocks, keep in mind that geometry functions are used exclusively for describing a contour, while machining functions are used only in the MACHINING section.

Example: Structured DIN PLUS program

PROGRAM HEAD		
\#MATERIAL	Steel	
\#MACHINE	Automatic lathe	
\#DRAWING	356_787.9	
\#CLAMP. PRESS.	20	
\#SLIDE	\$1	
\#COMPANY	Turn \& Co	
\#UNIT	METRIC	
TURRET 1		
T1 ID"342-300.1"		
T2 ID"111-80-080.1"		
. . .		
BLANK		
N1 G20 X120 Z120 K2		
FINISHED PART		
N2 G0 X60 Z-115		
N3 G1 Z-105		
. . .		
MACHINING		
N22 G59 Z282		
N25 G14 Q0		
		[Drilling]
N26 T1		
N27 G97 S1061 G95 F0.25 M4		
. . .		
END		

Contour programming

The "contour follow-up" function and use of contour-related turning cycles require the previous description of the contour of the workpiece blank and of the finished part. With milling and drilling, contour definition is a precondition for the use of machining cycles.

Use ICP (Interactive Contour Programming) for describing blank and finished parts.

Contours for turning:

- Describe a continuous contour
- The direction of the contour description is independent of the direction of machining
- Contour descriptions must not extend beyond the turning center
- The contour of the finished part must lie within the contour of the blank part
- When machining bars, define only the required section as the workpiece blank
- Contour definitions apply to the entire NC program, even if the workpiece is rechucked for machining the rear face
- In the fixed cycles, the defined contour is used to program reference values
To describe workpiece blanks and auxiliary workpiece blanks, use:
- G20 "Blank part macro" for standard parts (cylinder, hollow cylinder)
- G21 "Cast-part macro" for blank-part contours based on finishedpart contours G21 is only used for describing workpiece blanks
- Individual contour elements (such as are used for finished-part contours) where use of G20 or G21 is not possible
To describe finished parts, use individual contour elements and form elements. The contour elements or the complete contour can be assigned attributes accounted for during the machining of the workpiece (example: oversizes, additive compensation, special feed rates, etc.). The control always uses paraxial elements to close finished parts.
For intermediate machining steps, define auxiliary contours. Auxiliary contours are programmed in the same way as finishedpart descriptions. One contour description is possible per Auxiliary contour. An Auxiliary contour is assigned a name (ID) that can be referenced by the cycles. Auxiliary contours are not closed automatically.
Contours for C -axis machining:
- Contours for C -axis machining are programmed within the FINISHED PART section.
- Identify the contours as FRONT or LATERAL. You can use section codes more than once or program multiple contours within one section code

Block references: When editing G codes related to the contour (MACHINING section), load the block references from the displayed contour.

Load the block reference:
\downarrow

- Place the cursor in the input box (NS)

Contour
reference

- Place the cursor on the desired contour element.
- Switch to NE
- Place the cursor on the desired contour element.
- Press the Take over soft key to return to the dialog

NC blocks of the DIN/ISO program

An NC block contains NC commands such as positioning, switching, or organizational commands. Traversing and switching commands begin with \mathbf{G} or \mathbf{M} followed by a number (G1, G2, G81, M3, M30, ...) and the address parameters. Organizational commands consist of key words (WHILE , RETURN, etc.) or of a combination of letters and numbers.
You can also program NC blocks containing only variable calculations.
You can program several NC commands in one NC block, provided they have different address letters and do not have opposing functions.
Examples:

- Permissible combination: N10 G1 X100 Z2 M8
- Non-permissible combination: N10 G1 X100 Z2 G2 X100 Z2 R30 - same address letters are used more than once or N10 M3 M4 opposing functionality
To describe workpiece blanks and auxiliary workpiece blanks, use:
- G20 "Blank part macro" for standard parts (cylinder, hollow cylinder)
- G21 "Cast-part macro" for blank-part contours based on finishedpart contours G21 is only used for describing workpiece blanks
- Individual contour elements (such as are used for finished-part contours) where use of G20 or G21 is not possible
NC address parameters - the address parameters consist of 1 or 2 letters followed by:
- A value
- A mathematical expression
- A question mark (VGP simplified geometry programming)
- A letter \mathbf{i} to designate incremental address parameters (examples: $\mathbf{X i} . . ., \mathbf{C i} . . ., \mathbf{X K i} . ., \mathbf{Y K i}^{. . .,}$, etc.)
- A \# variable
- A constant (_constname)

Examples:

- X20 [Absolute dimension]
- Zi-35.675 [Incremental dimension]
- X? [Simplified geometry programming]
- X\#l1 [Variable programming]
- X(\#g12+1) [Variable programming]
- X(37+2)*SIN (30) [Mathematical expression]
- X(20*_pi) [Expression with constant]

Creating, editing and deleting NC blocks

Create NC block:
ins

- Press the INS key
> The control creates a new NC block below the cursor position.
- Alternatively, you can program the NC command directly.
> The control creates a new NC block or inserts the NC command into the existing NC block.

Delete the NC block:
\downarrow

- Position the cursor on the NC block to be deleted.

DEL
> The control deletes the NC block.
Add an NC element:

- Position the cursor on an element of the NC block (NC block number, G command, \mathbf{M} command, address parameter, etc.)
- Insert NC element (G, M, T function etc.)

Change NC element:

- Position the cursor on an element of the NC block (NC block number, \mathbf{G} command, \mathbf{M} command, address parameter, etc.) or the section code.
- Press the ENT key
- Or double-click with the left mouse key
> The control activates a dialog box displaying the block number, the number of the \mathbf{G} or \mathbf{M} function, or the address parameters, which can then be edited.

Delete NC element:

- Position the cursor on an element of the NC block (NC block number, G command, \mathbf{M} command, address parameter, etc.) or the section code.
- Press the DEL key
> The NC element highlighted by the cursor and all the related elements are deleted. Example: If the cursor is placed on a G command, the address parameters are also deleted..

Address parameters

Coordinates can be programmed absolutely or incrementally. If you do not make any entry for $\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{X K}, \mathbf{Y K}, \mathbf{C}$, the coordinates of the block previously executed will be retained (modal).
The control calculates missing coordinates in the principal axes X, Y, or Z if you program ? (simplified geometry programming).
The machining functions $\mathbf{G 0} \mathbf{, G 1 , G 2 , G 3 , G 1 2}$, and $\mathbf{G 1 3}$ are modal. This means that the control uses the previous \mathbf{G} command if the address parameters $\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{I}$, or \mathbf{K} in the following block have been programmed without a \mathbf{G} code. However, the address parameters must have been programmed as absolute values.
The control supports the use of variables and mathematical expressions as address parameters.

Editing address parameters:

- Call the dialog box.
\downarrow
- Place the cursor in the input field.
- Enter or edit values
- As an alternative, use the additional input options provided by the soft keys:
- ? Simplified geometry programming
- Switch from incremental to absolute
- Activate variable input
- Load the contour reference

Simplified geometry programming:

- Press the ? soft key
- Press the ? soft key again to display further options

Simplified geometry programming provides the following options:

- ? The control calculates the value
- ?>: The control calculates the value. If there are two solutions, the control uses the higher value.
- ?<: The control calculates the value. If there are two solutions, the control uses the lower value

Soft keys in the G dialog

Help graphic	Alternately shows and hides the help graphics
variables	Opens the alphabetic keyboard for entering variables (GOTO key)
$?$	Inserts the question mark for activating the simpli- fied geometry programming
Incremental	Activates incremental programming for the current input parameter
contour reference	Allows transferring the contour references for NS and NE

Machining cycles

HEIDENHAIN recommends programming a machining cycle as follows:

- Insert the tool
- Define the cutting data
- Position the tool in front of the machining area
- Define the safety clearance
- Call the cycle
- Retract the tool
- Move to the tool change position

| NOTICE |
| :--- | :--- |
| Danger of collision! |
| Some parameters are non-volatile, e.g. special feed rates or |
| approach and departure variants |
| With missing program steps (parameters are not redefined) the |
| control uses the last programmed values for all subsequent |
| machining operations. This may cause undesired constellations, |
| e.g. feed rate for finishing with recessing cycles. |
| Always use the recommended program structure |
| Define all relevant parameters for each machining operation |

Typical structure of a machining cycle

MACHINING	
N.. G59 Z..	Datum shift
N.. G26 S..	Define the speed limit
N.. G14 Q..	Move to tool change point
...	
N.. T..	Insert the tool
N.. G96 S.. G95 F.. M4	Pre-posine the technology data
N.. G0 X.. Z..	Define the safety clearance
N.. G47 P..	Cycle call
N.. G810 NS.. NE..	If necessary, retract
N.. G0 X.. Z..	Move to tool change point
N.. G14 Q0	
...	

Subprograms and expert programs

Subprograms are used to program the contour or the machining process.
In the subprogram, transfer parameters are available as variables. You can fix the designation of the transfer parameters and illustrate them in help graphics
Further information: "Subprograms", Page 542
In every subprogram, the local variables \#l1 to \#l99 are available for internal calculations.

Channel-dependent, initialized variables that, starting from the initialization programming level, are also effective in subprograms called from this level, are available in addition to the local variables.
Further information: "General variables", Page 515

Subprograms can be nested up to six times. Nesting means that a subprogram calls a further subprogram, etc.
If a subprogram is to be run repeatedly, enter the number of times the subprogram is to be repeated in the \mathbf{Q} parameter.
The control distinguishes between local and external subprograms:

- Local subprograms are in the file of the NC main program. Local subprograms can only be called in from their corresponding main programs
- External subprograms are stored in separate NC files and can be called in from any NC main program or other NC subprograms
Expert programs - an expert program is a subprogram that executes complex processes and is adapted to the machine configurations. Expert programs are usually provided by the machine tool builder.

NC program interpretation

For programming and user communication, keep in mind that the control interprets the NC program up to the fixed word MACHINING in the program selection.
The MACHINING section is not interpreted until you select NC start

ISO programs of predecessor controls

The ISO program formats of the predecessor controls MANUALplus 4110 and CNC PILOT 4290 differ from the format of your current control. However, you can use the program converter to adapt programs of the predecessor control to the new control.
When opening an NC program, the control recognizes the programs of predecessor controls. The program concerned will be converted after a confirmation prompt. CONV_... will be prefixed to the program name.
This converter is also part of the Transfer submode.
When converting ISO programs, the different solutions for tool management, technology data, etc. must be taken into account, as well as contour description and variable programming. Remember the following when converting ISO programs of the MANUALplus 4110:

- Tool call: The loading of the tool number depends on whether the program is a multifix program (2-digit tool number) or turret program (4-digit tool number):
- 2-digit tool number: The tool number is loaded as ID and entered as the tool number T1
- 4-digit tool number (Tddpp): The first two digits of the tool number (dd) are loaded as ID and the last two (PP) as T
- Workpiece-blank definition: A G20/G21 workpiece-blank definition of the MANUALplus 4110 becomes an AUX. BLANK
- Contour descriptions: In MANUALplus 4110 programs, the machining cycles are followed by the contour description. During conversion, the contour description is converted to an AUX. BLANK. The associated cycle in the MACHINING section then refers to this auxiliary contour
- Variable programming: Variable accesses to tool data, machine dimensions, D compensation values, parameter data and events cannot be converted. These program sequences have to be adapted
- M functions are left unchanged
- Inches or metric: The converter cannot detect the unit of measure of the MANUALplus 4110 program. Consequently, no unit of measure is specified in the target program. You will have to add it manually later.

Remember the following when converting ISO programs of the CNC PILOT 4290:

- Tool call (T commands of the TURRET section):
- T commands containing a reference to the tool database are left unchanged (example: T1 ID"342-300.1")
- T commands containing tool data cannot be converted
- Variable programming: Variable accesses to tool data, machine dimensions, D compensation values, parameter data and events cannot be converted. These program sequences have to be adapted
- M functions are left unchanged
- Names of external subprograms: When an external subprogram is called, the converter prefixes CONV .. to the name

If the ISO program contains nonconvertible elements, the corresponding NC block is saved as a comment. The word WARNING is inserted in front of this comment. Depending on the situation, the nonconvertible command is taken into the comment line, or the nonconvertible NC block follows the comment.

NOTICE

Danger of collision!

Converted NC programs may have incorrectly converted contents (machine-dependent) or nonconvertible contents. Danger of collision during machining!

- Adapt converted NC programs to the current control
- Test the NC program in Simulation submode, using the graphic displayed there

Geometry menu item

The Geo»（geometry）menu item contains functions for contour description．In ISO Mode，press the Geo» menu item to call the following menu items．
－G：Direct entry of a G function
－Line：Input of a line（G1）
－Cir：Description of a circular arc（G2，G3，G12，G13）
－Form：description of form elements
－Front：Functions for contour descriptions on the front face
－Lateral：Functions for contour descriptions on the lateral surface
－ICP，Extras，Graph．：
Further information：＂Shared menu items＂，Page 72

腾 \boldsymbol{H} • Back to the DIN／ISO main menu

Machining menu item

The Mach»（machining）menu item contains functions for programming the machining operation．In ISO Mode，press the Mach» menu item to call the following menu items．
－G：Direct entry of a G function
－G－menu：Menu items for machining tasks
－ \mathbf{M} ：Direct entry of an \boldsymbol{M} function
－M－menu：Menu items for switching tasks
－T：Direct tool call
－F：Feed per revolution G95
－S：Cutting speed G96
－Extras，Graph．：
Further information：＂Shared menu items＂，Page 72

（o）

Refer to your machine manual．
Your machine tool builder can also provide his own G－code functions．You will find these functions under Misc．functions in the G－menu．
－Back to the ISO main menu

6.2 Definition of workpiece blank

Chuck part bar or tube G20-Geo

G20 defines the contour of a cylinder or hollow cylinder.
Parameters:

- X: Diameter
- Cylinder/hollow cylinder diameter
- Diameter of circumference of a polygonal blank
- Z: Length of workpiece blank
- K: Righthnd edge - distance between workpiece datum and right edge
- I: Diam. inside

Example: G20-Geo

| ... | |
| :--- | :--- | :--- |
| BLANK | |
| N1 G20 X80 Z100 K2 I30 | |
| .. | |

Casting G21-Geo

G21 generates the contour of the blank part from the contour of the finished part-plus the equidistant Ov.size P.
Parameters:

- P: Equidistant Allowance (reference: finished part contour)
- Q: Boring Y/N (default: 0)
- 0: No
- 1: Yes
(i) G21 cannot be used to describe an auxiliary blank.

Example: G21-Geo

| B. . | |
| :--- | :--- | :--- |
| BLANK | |
| N1 G21 P5 Q1 | |
| \ldots | |
| FINISHED PART | |
| N2 G0 X30 Z0 | |
| N3 G1 X50 BR-2 | |
| N4 G1 Z-40 | |
| N5 G1 X65 | |
| N6 G1 Z-70 | |
| P. | |

6.3 Basic elements of turning contour

Starting point of turning contour G0-Geo

G0 defines the Start point of a turning contour.
Parameters:

- X: Contour Start point (diameter value)
- Z: Start point of contour
- PZ: Start point (polar radius)
- W: Start point (polar angle)

Example: G21-Geo

\ldots	
FINISHED PART	
N2 G0 X30 Z0	
N3 G1 X50 BR-2	
N4 G1 Z-40	
N5 G1 X65	
N6 G1 Z-70	
...	

Machining attributes for form elements

All the basic contour elements contain the Chamf./round. form element BR. You can define machining attributes for this form element and all other form elements, such as recesses and undercuts.
Parameters:

- BE: Special feed rate factor for Chamf./round. (default: 1) Special feed rate = active feed rate * $\mathbf{B E}$ (range: $0<\mathbf{B E}<=1$)
- BF: Feed per rot. - special feed rate for Chamf./round. during the finishing cycle (default: no special feed rate)
- BD: Corr. additiv for Chamf./round. (range: 901 to 916)
- BP: Equidistant Allowance (at constant distance) for Chamf./ round.
- BH: Absolut=0,Add=1 - type of allowance for Chamf./round.
- 0: Absolute oversize
- 1: Additive oversize

Line segment in a turning contour G1-Geo

G1 defines a line segment in a turning contour.
Parameters:

- X: Final point (diameter value)
- Z: Final point
- AN: Angle to rotary axis
- Q: Intersect. pt. or Final point if the line segment intersects a circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection
- BR: Chamf./round. - defines the transition to the next contour element When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition
- $\mathbf{B R}=0$: No tangential transition
- $B R>0$: Rounding radius
- BR <0 : Width of chamfer
- PZ: Final point (polar radius; reference: workpiece datum)
- W: Final point (polar angle; reference: workpiece datum)
- AR: Incr.angle to foregoer ARi (AR corresponds to AN)

- R: Line length
- FP: Do not machine the element (required only for TURN PLUS)
- 1: Basic element (line) do not machine
- 2: Overlay element (chamfer or rounding arc) do not machine
- 3: Basic/overlay element do not machine
- IC: Measuring cut oversize
- KC: Length of measuring cut
- HC: Measuring cut counter - Number of workpieces after which a measurement is performed
BE, BF, BD, BP and BH.
Further information: "Machining attributes for form elements",
Page 288

Programming:

- X, Z: Absolute, incremental, modal or ?
- ARi: Angle to the previous element
- ANi: Angle to the subsequent element

Example: G1-Geo

FINISHED PART	
N2 G0 X0 Z0	Starting point
N3 G1 X50 BR-2	Vertical line with chamfer
N4 G1 Z-20 BR2	Horizontal line with radius
N5 G1 X70 Z-30	Oblique cut with absolute target coordinates
N6 G1 Zi-5	Horizontal line segment, incremental
N7 G1 Xi10 AN30	Incremental and angle
N8 G1 X92 Zi-5	Calculate the X coordinate
N9 G1 X? Z-80	End point and angle with unknown starting point
N10 G1 X100 Z-100 AN10	
\ldots	

Circular arc of turning contour G2-/G3-Geo

G2 and G3 define a circular arc in a contour with incremental center dimensioning.
Direction of rotation:

- G2: In clockwise direction
- G3: In counterclockwise direction

Parameters:

- X: Final point (diameter value)
- Z: Final point
- R: Radius
- I: Center, incremental - distance from starting point to center point (radius value)
- K: Center, incremental - distance from starting point to center point
- Q: Intersect. pt. or Final point if the line segment intersects a circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection
- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end
 point.

- No entry: Tangential transition
- BR = 0: No tangential transition
- $B R>0$: Rounding radius
- BR <0 : Width of chamfer
- FP: Do not machine the element (required only for TURN PLUS)
- 1: Basic element (line) do not machine
- 2: Overlay element (chamfer or rounding arc) do not machine
- 3: Basic/overlay element do not machine
$B E, B F, B D, B P$ and $B H$.

Further information: "Machining attributes for form elements",
Page 288

Example: G2, G3-Geo

FINISHED PART	
N1 G0 X0 Z-10	
N2 G3 X30 Z-30 R30	Target point and radius
N3 G2 X50 Z-50 l19.8325 K-2.584	Target point and center, incremental
N4 G3 Xi10 Zi-10 R10	Target point (incremental) and radius
N5 G2 X100 Z? R20	Unknown target point coordinate
N6 G1 Xi-2.5 Zi-15	
...	

Circular arc of turning contour G12-/G13-Geo

G12 and G13 define a circular arc in a contour with absolute center dimensioning.
Direction of rotation:

- G12: In clockwise direction
- G13: In counterclockwise direction

Parameters:

- X: Final point (diameter value)
- Z: Final point
- I: Center absolute (radius value)
- K: Center absolute
- R: Radius
- Q: Intersect. pt. or Final point if the line segment intersects a circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection
- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition

- $\mathbf{B R}=0$: No tangential transition
- $B R>0$: Rounding radius
- BR <0 : Width of chamfer
- PZ: Final point (polar radius; reference: workpiece datum)
- W: Final point (polar angle; reference: workpiece datum)
- PM: Center (polar radius; reference: workpiece datum)
- WM: Center (polar angle; reference: workpiece datum)
- AR: Start angle - tangential angle to rotary axis
- AN: Final angle - tangential angle to rotary axis
- FP: Do not machine the element (required only for TURN PLUS)
- 1: Basic element (line) do not machine
- 2: Overlay element (chamfer or rounding arc) do not machine
- 3: Basic/overlay element do not machine

BE, BF, BD, BP and BH.
Further information: "Machining attributes for form elements",
Page 288
(i)

Programming:

- X, Z: Absolute, incremental, modal or ?
- ARi: Angle to the previous element
- ANi: Angle to the subsequent element

Example: G12, G13-Geo

. . .	
FINISHED PART	
N1 G0 X0 Z-10	
. . .	
N7 G13 Xi-15 Zi15 R20	Target point (incremental) and radius
N8 G12 X? Z? R15	Only the radius is known
N9 G13 X25 Z-30 R30 BR10 Q1	Rounding arc in transition and selection of intersections
N10 G13 X5 Z-10 122.3325 K-12.584	Target point and center, absolute

6.4 Form elements of turning contour

Recess (standard) G22-Geo

G22 defines a recess on the previously programmed paraxial reference element.

Parameters:

- X: Start point for recess on plane surface (diameter value)
- Z: Start point for recess on lateral surface
- I: Inner corner (diameter value)
- Recess on face: End point of the recess
- Recess on lateral surface: Recess base
- li: Inner corner incremental (pay attention to algebraic sign!)
- Recess on face: Recess width
- Recess on lateral surface: Recess depth
- K: Inner corner
- Recess on face: Recess base
- Recess on lateral surface: End point of the recess
- Ki: Inner corner incremental (pay attention to algebraic sign!)
- Recess on face: Recess depth
- Recess on lateral surface: Recess width
- B: Outs.rad./cham. at both sides of the recess (default: 0)
- $\mathbf{B}>0$: Radius of rounding
- $\mathbf{B}<0$: Width of chamfer

- R: Inner radius in both corners of the recess (default: 0)
- FP: Do not machine the element (required only for TURN PLUS)
- 1: Yes

BE, BF, BD, BP and BH.
Further information: "Machining attributes for form elements", Page 288

[^3]
Example: G22-Geo

FINISHED PART	
N1 G0 X40 Z0	
N2 G1 X80	
N3 G22 X60 I70 Ki-5 B-1 R0.2	Recess on face, depth is incremental
N4 G1 Z-80	Longitudinal recess, width is absolute
N5 G22 Z-20 I70 K-28 B1 R0.2	Longitudinal recess, width is incremental
N6 G22 Z-50 li-8 Ki-12 B0.5 R0.3	
N7 G1 X40	
N8 G1 Z0	Longitudinal recess, inside
N9 G22 Z-38 li6 K-30 B0.5 R0.2	
. .	

Recess (general) G23-Geo

G23 defines a recess on the previously programmed linear reference element. The reference element can also be oblique.
Parameters:

- H: Kind of recess (default: 0)
- 0: Symmetrical recess
- 1: Relief turn
- X: Center point for recess on plane surface (no input: position is calculated; diameter value)
- Z: Center point for recess on lateral surface (no input: position is calculated)
- I: Depth
- $\mathbf{I}>0$: Recess at the right of the reference element
- $\mathbf{I}<0$: Recess at the left of the reference element
- K: Width (without Chamf./round.)
- U: Recess diameter - diameter of recess base

Use \mathbf{U} only if the reference element runs parallel to the Z axis.

- A: Angle (default: 0°)
- $\mathbf{H}=0$: Angle between recess edges (range: $0^{\circ}<=\mathbf{A}<180^{\circ}$)
- $\mathbf{H}=1$: Angle between reference line and recess edge (range: 0° < $\mathrm{A}<=90^{\circ}$)
- B: Outs.rad./cham. at near corner relative to starting point (default: 0)
- $\mathbf{B}>0$: Radius of rounding
- B < 0: Width of chamfer
- P: Outs.rad./cham. at far corner relative to starting point (default: 0)
- $\mathbf{P}>0$: Radius of the rounding arc
- $\mathbf{P}<0$: Chamfer width
- R: Inner radius in both corners of the recess (default: 0)
- FP: Do not machine the element (required only for TURN PLUS) - 1: Yes

BE, BF, BD, BP and BH.
Further information: "Machining attributes for form elements", Page 288
(i)

Depth always references the reference element. The recess base runs parallel to the reference element.

Example: G23-Geo

FINISHED PART	
N1 G0 X40 Z0	
N2 G1 X80	Recess on face, depth is incremental
N3 G23 H0 X60 I-5 K10 A20 B-1 P1 R0.2	
N4 G1 Z-40	Longitudinal recess, width is absolute
N5 G23 H1 Z-15 K12 U70 A60 B1 P-1 R0.2	
N6 G1 Z-80 A45	Longitudinal recess, width is incremental
N7 G23 H1 X120 Z-60 I-5 K16 A45 B1 P-2 R0.4	
N8 G1 X40	
N9 G1 Z0	
N10 G23 H0 Z-38 I-6 K12 A37.5 B-0.5 R0.2	Longitudinal recess, inside
. .	

Thread with undercut G24-Geo

G24 defines a linear basic element with a longitudinal thread and subsequent thread undercut (DIN 76). The thread is an outside or inside thread (metric ISO fine-pitch thread DIN 13 Part 2, Series 1).
Parameter:

- F: Thread pitch
- I: Undercut depth
- K: Underc. breadth
- Z: Final point of the undercut
- FP: Do not machine the element (required only for TURN PLUS)
- 1: Yes

BE, BF, BD, BP and BH.
Further information: "Machining attributes for form elements",
Page 288

- Program G24 only in closed contours
- The thread is machined with G31

Example: G24-Geo

\ldots	
FINISHED PART	
N1 G0 X40 Z0	
N2 G1 X40 BR-1.5	Starting point for thread
N3 G24 F2 I1.5 K6 Z-30	Thread with undercut
N4 G1 X50	Next transverse element
N5 G1 Z-40	
\ldots	

Undercut G25-Geo

G25 generates the undercut contours listed below. The undercuts are only possible in inside contour corners in which the planar element is parallel to the X axis. Program G25 after the first element. Specify the Cut type in the \mathbf{H} parameter.

Undercut type $\mathbf{U}(\mathrm{H}=4)$

Parameter:

- H: Cut type $U(H=4)$
- I: Undercut depth
- K: Underc. breadth
- R: Radius - Inner radius in both corners of the recess (default: 0)
- P: Trav.dpth - outside radius or Chamfer (default: 0)
- $\mathbf{P}>0$: Radius of the rounding arc
- $\mathbf{P}<0$: Chamfer width
- FP: Do not machine the element (required only for TURN PLUS)
- 1: Yes

BE, BF, BD, BP and BH.
Further information: "Machining attributes for form elements",
Page 288

Example: Call G25-Geo type U

Undercut DIN 509 E ($\mathrm{H}=0.5$)

Parameter:

- H: Cut type DIN 509 E ($\mathbf{H}=0$ or $\mathbf{H}=5$)
- I: Undercut depth
- K: Underc. breadth
- R: Radius in the undercut corner
- W: Angle - Undercut angle

BE, BF, BD, BP and BH.
Further information: "Machining attributes for form elements",
Page 288

The control uses the diameter to calculate the parameters that you do not define.

Example: Call G25-Geo DIN 509 E

...	
N.. G1 Z-15	Longitudinal element
N.. G25 H5	DIN 509 E
N.. G1 X20	Transverse element
\ldots	

Undercut DIN 509 F (H=6)

Parameter:

- H: Cut type DIN 509 F ($\mathbf{H}=6$)
- I: Undercut depth
- K: Underc. breadth
- R: Radius in the undercut corner
- P: Trav.dpth
- W: Angle - Undercut angle
- A: Angle - Trav.angle

BE, BF, BD, BP and BH.
Further information: "Machining attributes for form elements",

Page 288

Example: Call G25-Geo DIN 509 F

...	
N.. G1 Z-15	Longitudinal element
N.. G25 H6	DIN 509 F
N.. G1 X20	Transverse element
..	

Undercut DIN 76 (H=7)

Program only FP. All other values that have not been programmed are automatically taken from the standard table, derived from the Thread pitch you specified.
Parameter:

- H: Cut type DIN 76 ($\mathbf{H}=7$)
- I: Undercut depth
- K: Underc. breadth
- R: Radius in the undercut corner (default: $\mathbf{R}=0.6 * \mathbf{I}$)
- W: Angle - Undercut angle (default: 30°)
- FP: Thread pitch

BE, BF, BD, BP and BH.
Further information: "Machining attributes for form elements",
Page 288

Example: Call G25-Geo DIN 76

...	
N.. G1 Z-15	Longitudinal element
N.. G25 H7 FP2	DIN 76
N.. G1 X20	Transverse element
...	

Undercut form H(H=8)

If you do not enter \mathbf{W}, the Angle will be calculated on the basis of \mathbf{K} and \mathbf{R}. The final point of the undercut is then located at the Contour corner.
Parameter:

- H:Cut type H ($\mathbf{H}=8$)
- K: Underc. breadth
- R: Radius - Undercut radius (no input: the circular element is not machined)
- W: Angle - Undercut angle

BE, BF, BD, BP and BH

Further information: "Machining attributes for form elements",
Page 288

Example: Call G25-Geo Form H

...	
N.. G1 Z-15	Longitudinal element
N.. G25 H8 K4 R1 W30	Type H
N.. G1 X20	Transverse element
...	

Undercut form K (H=9)

Parameter:

- H: Cut type K (H = 9)
- I: Undercut depth
- R: Radius - Undercut radius (no input: the circular element is not machined)
- W: Angle - Undercut angle
- A: Angle to longitudinal axis (default: 45°)

BE, BF, BD, BP and BH
Further information: "Machining attributes for form elements",

Page 288

Example: Call G25-Geo type K

...	
N.. G1 Z-15	Longitudinal element
N.. G25 H9 I1 R0.8 W40	Type K
N.. G1 X20	Transverse element
...	

Thread (standard) G34-Geo

G34 defines a simple or an interlinked external or internal thread (metric ISO fine-pitch thread DIN 13 Series 1). The control calculates all the required values.
Parameter:

- F: Thread pitch

Threads are concatenated by programming several G1/G34 blocks after each other.

- You need to program a linear contour element as a reference before G34 or in the NC block containing G34
- Machine the thread with G31

Example: G34

FINISHED PART	
N1 G0 X0 Z0	
N2 G1 X20 BR-2	
N3 G1 Z-30	
N4 G34	
N5 G25 H7 I1.7 K7	
N6 G1 X30 BR-1.5	
N7 G1 Z-40	
N8 G34 F1.5	
N9 G25 H7 I1.5 K4 ISO fine-pitch thread	
N10 G1 X40	
N11 G1 Z-60	
I.	

Thread (general) G37-Geo

G37 defines the different types of thread. Multi-start threads and concatenated threads are possible. Threads are concatenated by programming several G01/G37 blocks after each other.
Parameter:

- Q: Sort of thread (default: 1)
- 1: ISO fine DIN 13
- 2: ISO DIN 13
- 3: Taper DIN 158
- 4: Fine taper DIN 158
- 5: ISO trapezoid DIN 103
- 6: Trapezoid DIN 380
- 7: Sawing DIN 513
- 8: Round DIN 405
- 9: Cylindrical DIN 11
- 10: Taper DIN 2999
- 11: Pipe DIN 259
- 12: Not standardized
- 13: UNC US coarse
- 14: UNF US fine-pitch
- 15: UNEF US extra-fine-pitch
- 16: NPT US taper pipe
- 17: NPTF US Dryseal pipe
- 18: NPSC US pipe (with lubricant)
- 19: NPFS US pipe (without lubricant)
- 20: Helical slot
- F: Thread pitch
- Required for $\mathbf{Q}=1,3-7,12$
- For other thread types, \mathbf{F} is calculated from the diameter if it was not programmed
- P: Thread depth (only with $\mathbf{Q}=12$)
- K: End. length for threads without undercut (default: 0)
- D: Reference pt. (default: 0)
- 0: Runout of thread at the end of the reference element
- 1: Runout of thread at the beginning of the reference element
- H: No.threads (default: 1)
- A: Flank left - enter the thread angle at left (only for $\mathbf{Q}=12$)
- W: Flank right - enter the thread angle at right (only for $\mathbf{Q}=12$)
- R: Width (enter only for $\mathbf{Q}=12$)
- E: Variable gr. (default: 0)

Increases/decreases the pitch per revolution by \mathbf{E}.

- V: Direction of thread:
- 0: Right-hand thread
- 1: Left-hand thread

- Before G37, program a linear contour element as a reference
- Machine the thread with G31
- For standard threads, the parameters $\mathbf{P}, \mathbf{R}, \mathbf{A}$ and \mathbf{W} are defined by the control
- Use $\mathbf{Q}=12$ if you wish to use individual parameters

NOTICE

Danger of collision!

The thread is generated to the length of the reference element.
The control does not check for collisions with the workpiece contour (e.g. contour of the finished part). Danger of collision during machining!

- Another linear element without undercut is to be programmed as overrun.

Example: G37

FINISHED PART	
N1 G0 X0 Z0	
N2 G1 X20 BR-2	
N3 G1 Z-30	
N4 G37 Q2	
N5 G25 H7 I1.7 K7	
N6 G1 X30 BR-1.5	
N7 G1 Z-40	
N8 G37 F1.5	
N9 G25 H7 FP1.5	
N10 G1 X40	
N11 G1 Z-60	
P. .	

Example: G37 Concatenated

A.	
AUXILIARY CONTOUR ID"G37_Kette"	
N37 G0 X0 Z0	
N 38 G1 X20	
N 39 G1 Z-30	
N 40 G37 F2	
N 41 G1 X30 Z-40	
N 42 G37 Q2	
N 43 G1 Z-70	
N 44 G37 F2	
P.	

Bore hole (centric) G49-Geo

G49 defines a single hole with countersink and thread at the turning center (front or rear face). The G49 hole is a form element, not part of the contour.
Parameter:

- Z: Position Starting position for hole (reference point)
- B: Diameter
- P: Depth excluding point
- W: Point angle (default: 180°)
- R: Sink diam.
- U: Sink depth
- E: Sink angle
- I: Thread diameter
- J: Thread depth
- K: Start of thread - run-out length
- F: Thread pitch
- V: Direction of thread: (default: 0)
- 0: Right-hand thread
- 1: Left-hand thread
- A: Angle - position of the first hole (default: 0°)
- $\mathbf{A}=0^{\circ}$: Front face
- $\mathbf{A}=180^{\circ}$: Rear side
- O: Center. diam.
- Program G49 in the FINISHED PART section, and not in AUXILIARY CONTOUR, FRONT, or REAR SIDE
- Machine the G49 hole with G71..G74

6.5 Attributes for contour description

Overview of attributes for contour description

G function	Description of function	Page
$\mathbf{G 1 0}$	Surface roughness for basic contour elements - modal	Page 304
$\mathbf{G 3 8}$	Special feed rate factor for basic elements and form elements - modal	Page 305
$\mathbf{G 5 2}$	Equidistant Allowance for basic elements and form elements - modal	Page 306
$\mathbf{G 9 5}$	Finishing feed rate for basic elements and form elements-modal	Page 307
$\mathbf{G 1 4 9}$	Additive correction for basic elements and form elements - modal	Page 308

(i)

- Once programmed, G10, G38, G52, G95, and G149Geo remain in effect for all contour elements until the function is programmed again without parameter definition
- For form elements, you can program different attributes directly in the definition of the form element Further information: "Machining attributes for form elements", Page 288
- The attributes for contour description influence the finishing feed rate of the cycles G869 and G890, not the finishing feed rate in recessing cycles.

Surface roughness G10-Geo

$\mathbf{G 1 0}$ influences the finishing feed rate of $\mathbf{G 8 9 0}$. The surface roughness (peak-to-valley height) applies only to basic contour elements.
Parameters:

- H: Kind of rough. - peak-to-valley height (DIN 4768)
- H = 1: General surface roughness (total height of the profile) Rt1
- $\mathrm{H}=\mathbf{2}$: Arithmetic mean roughness $\mathbf{R a}$
- H = 3: Maximum height of roughness profile Rz
- RH: Roughness
(i) G10 is a modal function
- Program G10 or G95 without any parameters to switch the surface roughness function off
- G10 RH... overwrites the surface roughness block by block.
- G38 overwrites the surface roughness block by block.

Feed reduction G38-Geo

G38 activates the Sp. Feed Fact. for the finishing cycle G890.
The Sp. Feed Fact. applies to basic contour elements and form elements. It is a modal function.

Parameter:

- E: Special feed rate factor (default: 1)

Special feed rate = active feed rate * \mathbf{E}
(i)

- G38 is a modal function
- Program G38 before the contour element for which it is intended
- G38 replaces a Sp. Feed Fact.
- To cancel the special feed factor, program G38 without parameters.

Attributes for superimposed elements G39-Geo

G39 influences the finishing feed rate of $\mathbf{G 8 9 0}$ with the form elements:

- Chamfers/rounding arcs (for connecting basic elements)
- Undercuts
- Recesses

Affected machining:

- Sp. Feed Fact.
- Roughness
- Additive D compensation
- Equidistant Ov.size

Parameter:

- F: Feed per revolution
- V: Kind of rough. - Peak-to-valley height (DIN 4768)
- 1: General surface roughness (profile depth) Rt1
- 2: Surface roughness Ra
- 3: Surface roughness Rz
- RH: Roughness ($\mu \mathrm{m}$, inch mode: $\mu \mathrm{inch}$)
- D: Corr. additiv (range: 901 <= D <= 916)
- P: Allowance (radius value)
- H: Absolut=0,Add=1 - \mathbf{P} applies as an absolute or additive value (default: 0)
- 0: Preplaces G57-/G58 oversizes
- 1: \mathbf{P} is added to $\mathbf{G} 57-/ \mathbf{G 5 8}$ oversizes
- E: Special feed rate factor (default: 1)

Special feed rate = active feed rate * \mathbf{E}

- Use Kind of rough. V, Roughness RH, Feed per rotation \mathbf{F} and special feed rate \mathbf{E} alternatively!
- G39 is a non-modal function
- Program G39 before the contour element for which it is intended
- G50 preceding a cycle (MACHINING section) cancels oversizes programmed for that cycle with G39
Function G39 can be replaced by directly entering the attributes in the contour elements dialog. The function is necessary to execute imported programs correctly.

Separation point G44

During automatic program creation with TURN PLUS, you can define the Separation point for rechucking with function G44.
Parameter:

- D: Location of separation point
- 0: Start of basic element
- 1: Target of basic element

If no Separation point was defined, TURN PLUS uses the largest diameter as separation point for outside machining and the smallest diameter as Separation point for inside machining.

Oversize G52-Geo

G52 defines a contour-parallel Ov.size that applies to basic contour elements and form elements and is taken into account in G810, G820, G830, G860, and G890.
Parameter:

- P: Allowance (radius value)
- H: Absolut=0,Add=1 - \mathbf{P} applies as an absolute or additive value (default: 0)
- 0: Preplaces G57-/G58 oversizes
- 1: \mathbf{P} is added to G57-/G58 oversizes
(1)
- G52 is a modal function
- Program G52 in the NC block for which it is intended.
- G50 preceding a cycle (MACHINING section) cancels an oversize programmed for that cycle with G52

Feed per revolution G95-Geo

G95 influences the finishing feed rate of G890 for basic contour elements and form elements.

Parameter:

- F: Feed per revolution

```
(1) The G95 finishing feed rate replaces a finishing feed rate defined in the machining section.
- G95 is modal
- To cancel a finishing feed rate set with G95, program G95 without an input value.
- G10 disables the finishing feed rate G95
```

Example: Attributes in contour description G95

| FINISHED PART | |
| :--- | :--- | :--- | :--- | :--- |
| N1 G0 X0 Z0 | |
| N2 G1 X20 BR-1 | |
| N3 G1 Z-20 | |
| N4 G25 H5 I0.3 K2.5 R0.6 W15 | |
| N5 G1 X40 BR-1 | |
| N6 G95 F0.08 | |
| N7 G1 Z-40 | |
| N8 G25 H5 I0.3 K2.5 R0.6 W15 BF0 | |
| N9 G95 | |
| N10 G1 X58 BR-1 | |
| N11 G1 Z-60 | |
| P. . | |

Additive correction G149-Geo

G149 followed by a D number activates or deactivates
Additive correction. The control manages 16 tool-independent compensation values in an internal table. The compensation values are managed in Program run submode.
Further information: User's Manual
Parameter:

- D: Corr. additiv (default: 900)
- $\mathbf{D}=900$: Deactivates the additive compensation
- D = 901-916: Activates the additive compensation D

- Note the direction of contour description
- Additive correction is effective from the block in which G149 is programmed
- An Additive correction remains in effect until:
- The next G149 D900
- Up to the end of the finished part description

Example: Attributes in contour description G149

FINISHED PART
N1 G0 X0 Z0
N2 G1 X20 BR-1
N3 G1 Z-20
N4 G25 H5 l0.3 K2.5 R0.6 W15
N5 G1 X40 BR-1
N6 G149 D901
N7 G1 Z-40
N8 G25 H5 I0.3 K2.5 R0.6 W15 BD900
N9 G149 D900
N10 G1 X58 BR-1
N11 G1 Z-60
P. .

6.6 C-axis contours-fundamentals

Position of milling contours

Define the reference plane or the Reference diameter in the section code.
Specify the Depth and Position of a milling contour (pocket, island) in the contour definition:

- With Depth/Height \mathbf{P} in the previously programmed $\mathbf{G} 308$ cycle
- Alternatively on figures: Cycle parameter Depth \mathbf{P}

The algebraic sign of \mathbf{P} defines the Position of the milling contour:

- $\mathbf{P}<0$: Pocket
- $\mathbf{P}>0$: Island

Position of milling contour

Section	\mathbf{P}	Surface	Milling floor
FRONT	$\mathbf{P}<0$	Z	$Z+P$
	$\mathbf{P}>0$	$Z+P$	Z
REAR SIDE	$\mathbf{P}<0$	Z	$Z-P$
	$P>0$	$Z-P$	Z
LATERAL	$\mathbf{P}<0$	X	$X+(P * 2)$
	$P>0$	$X+(P * 2)$	X

- X: Reference diameter from the section code
- Z: Reference plane from the section code
- P: Depth/Height from G308 or from cycle parameter

The area milling cycles mill the surface specified in the contour definition. Islands within this surface are not taken into consideration.

Contours in more than one plane (hierarchically nested contours):

- A plane begins with G308 and ends with G309
- G308 defines a new reference plane/Reference diameter. The first G308 uses the reference plane defined in the section code. Each following G308 defines a new plane. Calculation: New reference plane $=$ Reference plane $+\mathbf{P}$ (from previous G308)
- G309 switches back to the previous reference plane.

Beginning of pocket/island G308-Geo

G308 defines a new reference plane or Reference diameter in hierarchically nested contours.
Parameter:

- ID: Milling contour - name of the milling contour
- P: Depth/Height - depth for pockets, height for islands
- HC: Milling/drilling attribute
- 1: Contour milling G840/G847
- 2: Pocket milling G845/G848
- 3: Area milling G841-G844
- 4: Deburring G840
- 5: Engraving G801-G804
- 6: Contour + deburring G840/G847
- 7: Pocket + deburring G845/G848
- 8: face milling G797
- 9: face milling + deburring G797
- 10: bore milling G75
- 11: thread milling G799/G800/G806
- 12: bore and thread milling G75/G799..
- 14: Do not machine
- D: Cutter diameter
- Q: Cutter position
- 0: On the contour
- 1: Inside / left
- 2: Outside / right
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- O: Plunging behavior (default: 0)
- 0 / no input - vertical plunging
- 1: Helical plunging
- In roughing cycles, the tool plunges in a reciprocating movement when milling pockets, otherwise-i.e. when milling slots-in a helical movement.
- In finishing cycles, the tool plunges in a 3-D approach arc when milling pockets.
- 2: Reciprocating plunge
- In roughing cycles, the tool plunges in a reciprocating movement when milling pockets.
- In finishing cycles, the tool plunges in a 3-D approach arc when milling pockets.
- I: Limit diameter
- RC: Trochoid width
- RB: Return plane
- W: Angle
- Angle of the chamfer
- If HC = 5: Tool angle
- BR: Chamfer width

End of pocket/island G309-Geo

G309 defines the end of a reference plane. Every reference plane defined with G308 must be ended with G309.
Further information: "Position of milling contours", Page 309

Example: G308/G309

F. .	
FINISHED PART	
FRONT Z0	Define reference plane
N7 G308 ID"Rechteck" P-5 01	Starting point of rectangle with depth -5 and helical plunge
N8 G305 XK-5 YK-10 K50 B30 R3 A0	Rectangle
N9 G308 ID"Kreis" P-10 01	Starting point of full circle in rectangle with depth -10 and
N10 G304 XK-3 YK-5 R8	Full circle plunge
N11 G309	End of full circle
N12 G309	End of rectangle
LATERAL X100	Define reference diameter
N13 G311 Z-10 C45 A0 K18 B8 P-5	Linear slot with depth -5
...	

Circular pattern with circular slots

For circular slots in circular patterns you program the pattern positions, the center of curvature, the curvature radius and the position of the slots.
The control positions the slots as follows:

- Slots are arranged at the distance of the pattern radius about the pattern center if
- Pattern center = Center of curvature and
- Pattern radius = curvature radius
- Slots are arranged at the distance of the pattern radius + curvature radius about the pattern center if
- Pattern center <> center of curvature or
- Pattern radius <> curvature radius

In addition, the position influences the arrangement of the slots:

- Normal position:
- The starting angle of the slot applies as a relative value to the pattern position
- The starting angle is added to the pattern position

- Original position:

- The starting angle of the slot applies as an absolute value

The following examples show the programming of a circular pattern with circular slots.

Slot centerline as reference and normal position

Programming:

- Pattern center = center of curvature
- Pattern radius = curvature radius
- Normal position

These commands arrange the slots at the distance of the pattern radius about the pattern center.

Example: Slot centerline as reference, normal position

N.. G402 Q4 K30 A0 XK0 YK0 H0	Circular pattern, normal position
N.. G303 I0 J0 R15 A-20 W20 B3 P1	Circular slot

Slot centerline as reference and original position

Programming:

- Pattern center = center of curvature
- Pattern radius = curvature radius
- Original position

These commands arrange all slots at the same position.

Example: Slot centerline as reference, original position

N.. G402 Q4 K30 A0 XK0 YK0 H1	Circular pattern, original position
N.. G303 IO J0 R15 A-20 W20 B3 P1	Circular slot

Center of curvature as reference and normal position

Programming:

- Pattern center <> center of curvature
- Pattern radius = curvature radius
- Normal position

These commands arrange the slots at the distance of the pattern radius plus curvature radius about the pattern center.

Example: Center of curvature as reference, normal position

N.. G402 Q4 K30 A0 XK5 YK5 H0	Circular pattern, normal position
N.. G303 I0 J0 R15 A-20 W20 B3 P1	Circular slot

Center of curvature as reference and original position

Programming:

- Pattern center <> center of curvature
- Pattern radius = curvature radius
- Original position

These commands arrange the slots at the distance of the pattern radius plus curvature radius about the pattern center while keeping the starting and ending angle.

Example: Center of curvature as reference and original position

N.. G402 Q4 K30 A0 XK5 YK5 H1	Circular pattern, original position
N.. G303 I0 J0 R15 A-20 W20 B3 P1	Circular slot

6.7 Front/Rear face contours

Starting point of front/rear face contour G100-Geo

G100 defines the Start point of a front or rear face contour.
Parameter:

- X: Start point (in polar coordinates)
- C: Start angle (angle, in polar coordinates)
- XK: Start point (in Cartesian coordinates)
- YK: Start point (in Cartesian coordinates)

Line segment in front/rear face contour G101-Geo

G101 defines a line segment in a contour on the front face/rear face. Parameter:

- X: Final point (in polar coordinates; diameter value)
- C: End angle (in polar coordinates)
- XK: Final point (in Cartesian coordinates)
- YK: Final point (in Cartesian coordinates)
- AN: Angle to positive XK axis
- Q: Intersect. pt. or Final point if the line segment intersects a circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection
- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition
- $\mathbf{B R}=0$: No tangential transition
- $\quad \mathbf{B R}>0$: Rounding radius
- BR <0 : Width of chamfer
- AR: Incr.angle to foregoer ARi (AR corresponds to AN)
- R: Line length

Programming

- XK, YK: Absolute, incremental, modal or ?
- X, C: Absolute, incremental, modal, or ?
- ARi: Angle to the previous element
- ANi: Angle to the subsequent element

Circular arc in front/rear face contour G102-/G103-Geo

G102 and G103 define a circular arc in a front or rear face contour. Direction of rotation:

- G102: In clockwise direction
- G103: In counterclockwise direction

Parameter:

- X: Final point (in polar coordinates; diameter value)
- C: End angle (in polar coordinates)
- XK: Final point (in Cartesian coordinates)
- YK: Final point (in Cartesian coordinates)
- R: Radius
- I: Center (in Cartesian coordinates)
- J: Center (in Cartesian coordinates)
- Q: Intersect. pt. or Final point if the circular arc intersects a line segment or another circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection
- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end point.

- No entry: Tangential transition
- $\mathbf{B R}=0$: No tangential transition
- $\mathbf{B R}>0$: Rounding radius
- $\mathbf{B R}<0$: Width of chamfer
- XM: Center (polar radius; reference: workpiece datum)
- CM: Center - polar angle (reference: workpiece datum)
- AR: Start angle - tangential angle to rotary axis
- AN: Final angle - tangential angle to rotary axis

Programming:

- XK, YK: Absolute, incremental, modal or ?
- X, C: Absolute, incremental, modal, or ?
- I, J: Absolute, incremental or ?
- XM, CM: Absolute or incremental
- ARi: Angle to the previous element
- ANi: Angle to the subsequent element

End point must not be the starting point (no full circle).

Bore hole on front/rear face G300-Geo

G300 defines a hole with countersinking and thread in a front or rear face contour
Parameter:

- XK: Center (in Cartesian coordinates)
- YK: Center (in Cartesian coordinates)
- B: Diameter
- P: Depth excluding point
- W: Point angle (default: 180°)
- R: Sink diam.
- U: Sink depth
- E: Sink angle
- I: Thread diameter
- J: Thread depth
- K: Start of thread - run-out length
- F: Thread pitch
- V: Direction of thread: (default: 0)
- 0: Right-hand thread
- 1: Left-hand thread
- A: Angle to Z axis - angle of the hole
- Front face (range: $-90^{\circ}<\mathbf{A}<90^{\circ}$; default: 0°)
- Rear face (range: $90^{\circ}<\mathbf{A}<270^{\circ}$; default: 180°)
- O: Center. diam.

```
(1)
Machine the G300 holes with G71.. G74.
```


Linear slot on front/rear face G301-Geo

G301 defines a linear slot in a contour on the front or rear face. Parameters:

- XK: Center (in Cartesian coordinates)
- YK: Center (in Cartesian coordinates)
- X: Diameter - Center (in polar coordinates)
- C: Angle - Center (in polar coordinates)
- A: Angle to XK axis (default: 0°)
- K: Length
- B: Width
- P: Depth/Height (default: P from G308)

- $\mathbf{P}<0$: Pocket
- $\mathbf{P}>0$: Island

Circular slot on front/rear face G302-/G303-Geo

G302 and G303 define a circular slot in a contour on the front face/ rear face.
Direction of rotation:

- G302: Circular slot clockwise
- G303: Circular slot counterclockwise

Parameters:

- I: Center (in Cartesian coordinates)
- J: Center (in Cartesian coordinates)
- X: Diameter - Center (in polar coordinates)
- C: Angle - Center (in polar coordinates)
- R: Radius - Curvature radius (reference: center point path of the slot)
- A: Start angle to XK axis (default: 0°)
- W: Final angle to XK axis (default: 0)
- B. Width
- P: Depth/Height (default: P from G308)
- $\mathbf{P}<0$: Pocket
- $\mathbf{P}>0$: Island

Full circle on front/rear face G304-Geo

G304 defines a Full circle in a contour on the front face/rear face.
Parameters:

- XK: Center (in Cartesian coordinates)
- YK: Center (in Cartesian coordinates)
- X: Diameter - Center (in polar coordinates)
- C: Angle - Center (in polar coordinates)
- R: Radius
- P: Depth/Height (default: P from G308)
- P < 0: Pocket
- $\mathbf{P}>0$: Island

Rectangle on front/rear face G305-Geo

G305 defines a rectangle in a contour on the front face/rear face. Parameters:

- XK: Center (in Cartesian coordinates)
- YK: Center (in Cartesian coordinates)
- X: Diameter - Center (in polar coordinates)
- C: Angle - Center (in polar coordinates)
- A: Angle to XK axis (default: 0°)
- K: Length of rectangle
- B: Height of rectangle
- R: Chamf./round. (default: 0)
- $\mathbf{R}>0$: Radius of rounding arc
- $\mathbf{R}<0$: Chamfer width
- P: Depth/Height (default: P from G308)
- $\mathbf{P}<0$: Pocket
- $\mathbf{P}>0$: Island

Text for front face CG306-Geo

G306 defines a text on the front face.
Parameters:

- X: Start point X
- C: Start. angle
- XK: Start point (in Cartesian coordinates)
- YK: Start point (in Cartesian coordinates)
- ID: Text to be engraved
- NF: Char. no. - ASCII code of the character to be engraved
- P: Depth
- W: Inclinat. ang. of the character string
- H: Font height
- E: Distance factor

The spacing between the characters is calculated according to the following formula: $\mathbf{H} / 6$ * \mathbf{E}

- V: Execution (linear/polar)
- 0: Linear
- 1: Arched above
- 2: Arched below
- D: Reference diameter
- F: Plunging feed rate factor (plunging feed rate = current feed rate * F)
- O: Mirror writing
- $\mathbf{0}$ (No): Engraving is not mirrored
- $\mathbf{1}$ (Yes): Engraving is mirrored (mirror writing)

Polygon on front/rear face G307-Geo

G307 defines a polygon in a contour on the front face/rear face. Parameters:

- XK: Center (in Cartesian coordinates)
- YK: Center (in Cartesian coordinates)
- X: Diameter - Center (in polar coordinates)
- C: Angle - Center (in polar coordinates)
- A: Angle to XK axis (default: 0°)
- Q: Number edges
- K: +edge Ingth/-width a. flats
- K > 0: Edge length
- K <0 : Width across (Inside diameter)
- R: Chamf./round. (default: 0)
- $\mathbf{R}>0$: Radius of rounding arc
- $\mathbf{R}<0$: Chamfer width
- P: Depth/Height (default: P from G308)
- $\mathbf{P}<0$: Pocket
- $\mathbf{P}>0$: Island

Linear pattern on front/rear face G401-Geo

G401 defines a linear hole pattern or figure pattern on the front or rear face. G401 is effective for the hole/figure defined in the following block (G300..G305, G307).
Parameters:

- Q: Number of figures
- XK: Start point (in Cartesian coordinates)
- YK: Start point (in Cartesian coordinates)
- I: Final point (in Cartesian coordinates)
- li: Final point - distance between two figures (in X)
- J: Final point (in Cartesian coordinates)

- Ji: Final point - distance between two figures (in Y)
- A: Angle to XK axis (default: 0°)
- R: Length - total length of pattern
- Ri: Length - Incremental distance

Programming notes:

- Program the hole or figure in the following block without a center
- In the MACHINING section, the drilling or milling cycle calls the hole or figure in the following block-not the pattern definition

Circular pattern on front/rear face G402-Geo

G402 defines a circular hole pattern or figure pattern on the front or rear face. G402 is effective for the hole/figure defined in the following block (G300..G305, G307).
Parameters:

- Q: Number of figures
- K: Pattern diameter
- A: Start angle - position of the first figure (reference: positive XK axis; (default: 0°)
- W: Final angle - position of the last figure (reference: positive XK axis; (default: 360°)
- Wi: Final angle - Angle between two figures
- V: Direction - orientation (default: 0)
- $\mathbf{V}=0$, without \mathbf{W} : Figures are arranged on a full circle
- $\mathbf{V}=0$, with \mathbf{W} : Figures are arranged on the longer circular arc
- $\mathbf{V}=0$, with \mathbf{W} : The algebraic sign of $\mathbf{W i}$ defines the direction ($\mathbf{W}<0$: clockwise)
- $\mathbf{V}=1$, with \mathbf{W} : Clockwise
- $\mathbf{V}=1$, with \mathbf{W} : Clockwise (algebraic sign of \mathbf{W} has no effect)
- $\mathbf{V}=2$, with \mathbf{W} : Counterclockwise
- $\mathbf{V}=2$, with \mathbf{W} : Counterclockwise (algebraic sign of \mathbf{W} has no effect)

- XK: Center (in Cartesian coordinates)
- YK: Center (in Cartesian coordinates)
- H: $\mathbf{0}=$ Normal position - position of the figures (default: 0)
- 0: Normal position - the figures are rotated about the circle center (rotation)
- 1: Original position - the position of the figures relative to the coordinate system remains unchanged (translation)

Programming notes:

- Program the hole or figure in the following block without a center. Exception: circular slot
Further information: "Circular pattern with circular slots", Page 312
- The drilling or milling cycle (MACHINING section) calls the hole or figure in the following block-not the pattern definition

DataMatrix face C G405-Geo

G405 defines a pattern in DataMatrix code on the front face. G405 is effective for the hole or figure defined in the following block (G300, G304, G305, or G307).
Parameters:

- ID: Text to be converted into DataMatrix code
- XK: Start point (in Cartesian coordinates)
- YK: Start point (in Cartesian coordinates)
- A: Angle to XK axis (default: 0°)
- R: Length - total length of pattern
- Ri: Length - distance to next hole or figure

Programming notes

- If you do not enter the length, the control calculates the pattern so that the holes or figures touch each other.
- Program the hole or figure in the following block without a center
- In the MACHINING section, the drilling or milling cycle calls the hole or figure in the following block-not the pattern definition
- A maximum of 80 ASCII characters are allowed per DataMatrix code
- The G codes for rectangle and polygon are restricted to
 a square shape

6.8 Lateral surface contours

Starting point of lateral surface contour G110-Geo

G110 defines the Start point of a lateral surface contour.
Parameters:

- Z: Start point
- C: Start angle (angle, in polar coordinates)
- CY: Start point as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- PZ: Start point (polar radius)

```
1
Program either \(\mathbf{Z}, \mathbf{C}\) or \(\mathbf{Z}, \mathbf{C Y}\).
```


Line segment in a lateral surface contour G111-Geo

G111 defines a line segment in a lateral-surface contour.
Parameters:

- Z: Final point
- C: End angle
- CY: Final point as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- AN: Angle to positive Z axis
- Q: Intersect. pt. or Final point if the line segment intersects a circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection
- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition
- BR = 0: No tangential transition
- $B R>0$: Rounding radius
- BR <0 : Width of chamfer
- PZ: Final point (polar radius; reference: workpiece datum)

- AR: Incr.angle to foregoer ARi (AR corresponds to AN)
- R: Line length

Programming:

- Z, CY: Absolute, incremental, modal or ?
- C: Absolute, incremental or modal
- ARi: Angle to the previous element
- ANi: Angle to the subsequent element

Circular arc in lateral surface contour G112-/G113-Geo

G112 and G113 define a circular arc in a lateral-surface contour.
Direction of rotation:

- G112: In clockwise direction
- G113: In counterclockwise direction

Parameters:

- Z: Final point
- C: End angle (in polar coordinates)
- CY: Final point as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- R: Radius
- K: Center (in Z)
- J: Center - angle defined on the basis of the linear distance derived from the developed lateral surface and the reference diameter
- Q: Intersect. pt. or Final point if the circular arc intersects a line segment or another circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection
- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition
- $\mathbf{B R}=0$: No tangential transition
- $B R>0$: Rounding radius
- $\mathbf{B R}<0$: Width of chamfer
- PZ: Final point (polar radius; reference: workpiece datum)
- W: Center (polar angle; reference: workpiece datum)
- PM: Center (polar radius; reference: workpiece datum)
- AR: Start angle - tangential angle to rotary axis

- AN: Final angle - tangential angle to rotary axis

Programming:

- Z, CY: Absolute, incremental, modal or ?
- C: Absolute, incremental or modal
- K, J: Absolute or incremental
- PZ, W, PM: Absolute or incremental
- ARi: Angle to the previous element
- ANi: Angle to the subsequent element

Hole on lateral surface G310-Geo

G310 defines a hole with countersink and thread in a lateral surface contour.

Parameters:

- Z: Center hole
- CY: Center as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- C: Center (angle)
- B: Diameter
- P: Depth excluding point
- W: Point angle (default: 180°)
- R: Sink diam.
- U: Sink depth
- E: Sink angle
- I: Thread diameter
- J: Thread depth
- K: Start of thread - run-out length
- F: Thread pitch
- V: Direction of thread: (default: 0)
- 0: Right-hand thread
- 1: Left-hand thread

- A: Angle to Z axis (range: $0^{\circ}<\mathbf{A}<180^{\circ}$; default: $90^{\circ}=$ vertical hole)
- O: Center. diam.

(1)

Machine the G310 holes with G71..G74

Linear slot on lateral surface G311-Geo

G311 defines a linear slot in a lateral-surface contour.
Parameters:

- Z: Center of slot
- CY: Center as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- C: Center (angle)
- A: Angle to \mathbf{Z} axis (default: 0°)
- K: Length
- B: Width
- P: Depth (default: P from G308)

Circular slot on lateral surface G312-/G313-Geo

G312 and G313 define a circular slot in a lateral-surface contour. Direction of rotation:

- G312: Circular slot clockwise
- G313: Circular slot counterclockwise

Parameters:

- Z: Center of slot
- CY: Center as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- C: Center (angle)
- R: Radius - Curvature radius (reference: center point path of the slot)
- A: Start angle to Z axis (default: 0°)
- W: Final angle to Z axis (default: 0°)
- B. Width
- P: Depth (default: P from G308)

Full circle on lateral surface G314-Geo

G314 defines a full circle in a lateral-surface contour.
Parameters:

- Z: Center
- CY: Center as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- C: Center (angle)
- R: Radius
- P: Depth (default: P from G308)

Rectangle, surface G315-Geo

G315 defines a rectangle in a lateral-surface contour.
Parameters:

- Z: Center
- CY: Center as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- C: Center (angle)
- A: Angle to Z axis (default: 0°)
- K: Length of rectangle
- B: Width of rectangle
- R: Chamf./round. (default: 0)
- $\mathbf{R}>0$: Radius of rounding arc
- $\mathbf{R}<0$: Chamfer width
- P: Depth (default: P from G308)

Text for lateral face C G316-Geo

G316 defines a text on the lateral surface.
Parameters:

- Z: Start point
- C: Start. angle
- CY: Start point of first character
- ID: Text to be engraved
- NF: Char. no. - ASCII code of the character to be engraved
- P: Depth
- W: Inclinat. ang. of the character string
- H: Font height
- E: Distance factor

The spacing between the characters is calculated according to the following formula: $\mathbf{H} / 6$ * \mathbf{E}

- F: Plunging feed rate factor (plunging feed rate = current feed rate * F)
- O: Mirror writing
- $\mathbf{0}$ (No): Engraving is not mirrored
- 1 (Yes): Engraving is mirrored (mirror writing)

Polygon on lateral surface G317-Geo

G317 defines a polygon in a lateral-surface contour.
Parameters:

- Z: Center
- CY: Center as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- C: Center (angle)
- Q: Number edges
- A: Angle to Z axis (default: 0°)
- K: +edge Ingth/-width a. flats
- K > 0: Edge length
- K < 0: Width across (Inside diameter)
- R: Chamf./round. (default: 0)
- $\mathbf{R}>0$: Radius of rounding arc
- $\mathbf{R}<0$: Chamfer width
- P: Depth (default: P from G308)

Linear pattern on lateral surface G411-Geo

G411 defines a linear hole or figure pattern on the lateral surface.
G411 is effective for the hole/figure defined in the following block (G310..G315, G317).
Parameters:

- Q: Number of figures
- Z: Start point
- C: Start. angle
- CY: Start point as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- ZE: Final point
- ZEi: Final point - distance between two figures
- W: Final angle
- Wi: Final angle - Angle between two figures
- A: Angle to Z axis (default: 0°)
- R: Length - total length of pattern
- Ri: Length - Incremental distance

- If you program $\mathbf{Q} \mathbf{Z}$ and \mathbf{C} the holes/figures will be ordered in a regular manner along the circumference
- Program the hole or figure in the following block without a center
- The milling cycle calls the hole/figure in the following block-not the pattern definition

Circular pattern on lateral surface G412-Geo

G412 defines a circular hole or figure pattern on the lateral surface.
G412 is effective for the hole/figure defined in the following block
(G310..G315, G317).
Parameters:

- Q: Number of figures
- K: Pattern diameter
- A: Start angle - position of the first figure (reference: positive Z axis; (default: 0°)
- W: Final angle - position of the last figure (reference: positive Z axis; (default: 360°)
- Wi: Final angle - Angle between two figures
- V: Direction - orientation (default: 0)
- $\mathbf{V}=0$, without \mathbf{W} : Figures are arranged on a full circle
- $\mathbf{V}=0$, with \mathbf{W} : Figures are arranged on the longer circular arc
- $\mathbf{V}=0$, with \mathbf{W} : The algebraic sign of $\mathbf{W i}$ defines the direction ($\mathbf{W}<0$: clockwise)
- $\mathbf{V}=1$, with \mathbf{W} : Clockwise
- $\mathbf{V}=1$, with \mathbf{W} : Clockwise (algebraic sign of \mathbf{W} has no effect)
- $\mathbf{V}=2$, with \mathbf{W} : Counterclockwise
- $\mathbf{V}=2$, with \mathbf{W} : Counterclockwise (algebraic sign of \mathbf{W} has no effect)
- Z: Center of pattern
- C: Center (angle)
- H: $\mathbf{0}=$ Normal position - position of the figures (default: 0)
- 0: Normal position - the figures are rotated about the circle center (rotation)
- 1: Original position - the position of the figures relative to the coordinate system remains unchanged (translation)
(i)

Programming notes:

- Program the hole or figure in the following block without a center. Exception: circular slot
Further information: "Circular pattern with circular slots", Page 312
- The drilling or milling cycle (MACHINING section) calls the hole or figure in the following block-not the pattern definition

DataMatrix for lateral surface G415-Geo

G415 defines a pattern in DataMatrix code on the lateral surface.
G415 is effective for the hole or figure defined in the following block (G310, G314, G315, or G317).
Parameters:

- ID: Text to be converted into DataMatrix code
- Z: Start point
- C: Start. angle
- CY: Start point as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- A: Angle to Z axis (default: 0°)
- R: Length - total length of pattern
- Ri: Length - distance to next hole or figure

Programming notes

- If you do not enter the length, the control calculates the pattern so that the holes or figures touch each other.
- Program the hole or figure in the following block without a center
- In the MACHINING section, the drilling or milling cycle calls the hole or figure in the following block-not the pattern definition
- A maximum of 80 ASCII characters are allowed per DataMatrix code
- The G codes for rectangle and polygon are restricted to a square shape

6.9 Tool positioning

Rapid traverse G0

G0 moves at rapid traverse along the shortest path to the target point.
Parameters:

- X: Diameter
- Z: Target point

Programming:

- \mathbf{X} and \mathbf{Z} absolute, incremental or modal

If more axes are available on your machine, additional input parameters will be displayed, e.g. parameter \mathbf{B} for the B
 axis.

Rapid traverse in machine coordinates G701

G701 moves at rapid traverse along the shortest path to the target point.
Parameters:

- X: Diameter
- Z: Target point
(i)
\mathbf{X} and \mathbf{Z} refer to the machine datum and the slide reference point.
If more axes are available on your machine, additional input parameters will be displayed, e.g. parameter \mathbf{B} for the B axis.

Tool change point G14

G14 moves the tool at rapid traverse to the Tool change point. The coordinates for the tool change position can be defined in setup mode.

Parameters:

- Q: Order (default: 0)
- 0: Simultaneously
- 1: First X, then Z
- 2: First Y, then Z, then X
- 3: Only X

- 4: Only Z
- 5: Only Y (machine-dependent)
- 6: Simultaneous w/ Y (machine-dependent)
- D: Number: of the tool change position to be approached 0-2 (default: $0=$ tool change position from parameters)

Example: G14

Defining the Tool change point G140

G140 defines the position of the Tool change point specified in \mathbf{D} This position can be approached with G14.
Parameters:

- D: Number: of the tool change point 1-2
- X: Diameter - position of the tool change point
- Z: Target point - position of the tool change point

If \mathbf{X} or \mathbf{Z} parameters are missing, the values from the tool change point parameter are entered.

Example: G140

\ldots	
N1 G14 Q0	Tool change position from parameter
N2 T3 G95 F0.25 G96 S200 M3	
N3 G0 X40 Z10	Set tool change pos. 1
N5 G140 D1 X100 Z100	Move to tool change pos. 1
N6 G14 Q0 D1	Set tool change pos. 2, use Z from parameters
N7 G140 D2 X150	Move to tool change pos. 2
N8 G14 Q0 D2	
\ldots	

6.10 Linear and circular movements

Linear movement G1

G1 moves the tool on a linear path at the feed rate to the end point. Parameters:

- X: Diameter
- Z: Target point
- AN: Angle
- Q: Intersect. pt. or Final point if the line segment intersects a circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection
- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition
- $\mathbf{B R}=0$: No tangential transition
- $B R>0$: Rounding radius
- $\mathbf{B R}<0$: Width of chamfer
- BE: Special feed rate factor for Chamf./round. (default: 1)

Special feed rate $=$ active feed rate * $\mathbf{B E}($ range: $\mathbf{0}<\mathbf{B E}<=1)$

Programming:

- X and \mathbf{Z} absolute, incremental or modal

If more axes are available on your machine, additional input parameters will be displayed, e.g. parameter \mathbf{B} for the B axis.

Circular arc ccw G2/G3

G2 and G3 move the tool in a circular arc at the feed rate to the end point. The center dimensioning is incremental.
Direction of rotation:

- G2: In clockwise direction
- G3: In counterclockwise direction

Parameters:

- X: Diameter
- Z: Target point
- R: Radius ($0<\mathbf{R}<=200000$)
- I: Center, incremental (radius value)
- K: Center, incremental
- Q: Intersect. pt. or Final point if the circular arc intersects a line segment or another circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection
- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition

- BR = 0: No tangential transition
- $B R>0$: Rounding radius
- $\mathbf{B R}<0$: Width of chamfer
- BE: Special feed rate factor for Chamf./round. (default: 1)

Special feed rate $=$ active feed rate * $\mathbf{B E}($ range: $0<\mathbf{B E}<=1)$

Programming:

- \mathbf{X} and \mathbf{Z} absolute, incremental, modal or ?

Example: G2, G3

| N1 T3 G95 F0.25 G96 S200 M3 | |
| :--- | :--- | :--- |
| N2 G0 X0 Z2 | |
| N3 G42 | |
| N4 G1 Z0 | |
| N5 G1 X15 B-0.5 E0.05 | |
| N6 G1 Z-25 B0 | |
| N7 G2 X45 Z-32 R36 B2 | |
| N8 G1 A0 | |
| N9 G2 X80 Z-80 R20 B5 | |
| N10 G1 Z-95 B0 | |
| N11 G3 X80 Z-135 R40 B0 | |
| N12 G1 Z-140 | |
| N13 G1 X82 G40 | |
| . . | |

Circular arc ccw G12/G13

G12 and G13 move the tool in a circular arc at the feed rate to the end point. The center dimensioning is absolute.
Direction of rotation:

- G12: In clockwise direction
- G13: In counterclockwise direction

Parameters:

- X: Diameter
- Z: Target point
- R: Radius ($0<\mathbf{R}<=200000$)
- I: Center absolute (radius value)
- K: Center absolute
- Q: Intersect. pt. or Final point if the circular arc intersects a line segment or another circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection
- BR: Chamf./round. - defines the transition to the next contour element When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition
- BR = 0: No tangential transition
- $B R>0$: Rounding radius
- $\mathbf{B R}<0$: Width of chamfer
- BE: Special feed rate factor for Chamf./round. (default: 1) Special feed rate $=$ active feed rate * $\mathbf{B E}$ (range: $\mathbf{0}<\mathbf{B E}<=1$)

Programming:
■ \mathbf{X} and \mathbf{Z} absolute, incremental, modal or ?

6.11 Feed rate, shaft speed

Speed limitation G26

The Speed limitation remains in effect until the end of the program or until a new value is programmed for $\mathbf{G} \mathbf{2 6}$ or $\mathbf{G x} \mathbf{2 6}$

- G26: Main spindle
- Gx26: Spindle x (x: 1...3)

Parameters:

- S: Maximum Speed

If $\mathbf{S}>$ absolute maximum speed (machine parameter), the parameter value will apply.

Example: G26

Reduce rapid traverse G48

The reduction of the rapid traverse rate remains in effect until the end of the program or until G48 is programmed again without input values.
Parameters:

- F: Max. feed in mm/min for linear axes or $\% / \mathrm{min}$ for rotary axes
- D: Axis number
- 1: X
- 2: Y
- 3: Z
- 4: U
- 5: V
- 6: W
- 7: A
- 8: B
- 9: C
- A: Max. acceleration (in \%) (range: $0 \%<\mathbf{A}<100 \%$)

The parameter \mathbf{A} allows you to reduce the acceleration ramp of the selected axis to the entered percentage value.

Interrupted feed G64

G64 interrupts the programmed feed for a short period of time. G64 is a modal function.
Parameters:

- E: Interval time in seconds (range: $0.01<\mathrm{E}<99.99$)
- F: Feed period in seconds (range: $0.01<\mathrm{E}<99.99$)

Example: G64

N1 T3 G95 F0.25 G96 S200 M3		
N2 G64 E0.1 F1		
N3 G0 X0 Z2		
N4 G42		
N5 G1 Z0		
N6 G1 X20 B-0.5		
N7 G1 Z-12		
N8 G1 Z-24 A20		
N9 G1 X48 B6		
N10 G1 Z-52 B8		
N11 G1 X80 B4 E0.08		
N12 G1 Z-60		
N13 G1 X82 G40		
N14 G64		
I .		

Feed per tooth Gx93

Gx93 (x: spindle 1...3) defines the drive-dependent feed rate with respect to the number of teeth of the cutter.
Parameters:

- F: Feed per tooth in mm/tooth or inch/tooth

The actual value display shows the feed rate in $\mathrm{mm} / \mathrm{rev}$.

Example: G193

Constant feed G94 (feed per minute)

G94 defines the feed rate independent of drive.
Parameters:

- F: Feed per min in mm/min or inch/min

Example: G94

Feed per revolution Gx95

Gx95 defines a drive-dependent feed rate.

- G95: Main spindle
- Gx95: Spindle x (x: 1...3)

Parameters:

- F: Feed per rot. in mm/rev or inch/rev

Example: G95, Gx95

Constant cutting speed Gx96

The spindle speed is dependent on the X position of the tool tip or on the diameter of the drilling or milling tool.

- G96: Main spindle
- Gx96: Spindle x (x: 1...3)

Parameters:

- \mathbf{S} : Cutting speed in $\mathrm{m} / \mathrm{min}$ or $\mathrm{ft} / \mathrm{min}$

If you call a drilling tool while a constant cutting speed is active, the control automatically calculates the spindle speed from the programmed cutting speed and activates it with $\mathbf{G x 9 7}$. To prevent inadvertent rotation of the spindle, program the spindle speed first and then \mathbf{T}.

Example: G96, G196

Spindle speed Gx97

Constant spindle speed.

- G97: Main spindle
- Gx97: Spindle \times (x: 1...3)

Parameters:

- S: Speed in revolutions per minute
(i) G26/G×26 limits the spindle speed.

Example: G97, G197

-••
N1 G14 Q0
N2 T3 G95 F0.25 G97 S1000 M3
N3 G0 X0 Z2
N5 G1 Z0
N6 G1 X20 B-0.5

6.12 Tool-tip and cutter radius compensation

Fundamentals

Tool-tip radius compensation (TRC)

If TRC is not used, the theoretical tool tip is the reference point for the paths of traverse. This might lead to inaccuracies when the tool moves along non-paraxial paths of traverse. The TRC function corrects programmed paths of traverse. The TRC ($\mathbf{Q}=0$) reduces the feed rate for circular arcs if the shifted radius < the original radius. The TRC corrects the special feed rate when a rounding arc is machined as transition to the next contour element. Reduced feed rate $=$ feed rate * (shifted radius / original radius)

Milling cutter radius compensation (MCRC)

When the MCRC function is not active, the system defines the center of the cutter as the point of reference for the paths of traverse. With the MCRC function, the control accounts for the outside diameter of the tool when moving along the programmed paths of traverse. Recessing, area clearance and milling cycles already include TRC and MCRC calls. The TRC and MCRC must be switched off when these cycles are called.

Programming notes:

- If the tool radii are > than the contour radii, the TRC/MCRC might cause endless loops Recommendation: Use the finishing cycle G890 or milling cycle G840
- Never program the MCRC during a perpendicular approach to the machining plane

Switch off TRC/MCRC G40

G40 is used to deactivate TRC and MCRC.
Please note:

- The TRC and MCRC remain in effect until a block with G40 is reached
- The block containing G40 or the block after G40 only permits a linear path of traverse ($\mathbf{G 1 4}$ is not permissible)

Example: G40

...	
N.. G0 X10 Z10	
N.. G41	Activate TRC to the left of the contour
N.. G0 Z20	Path of traverse: from X10/Z10 to X10+TRC/Z20+TRC
N.. G1 X20	The path of traverse is shifted by the TRC
N.. G40 G0 X30 Z30	Path of traverse from X20+TRC/Z20+TRC to X30/Z30
...	

Switch on TRC/MCRC G41/G42

G41 and G42 switch on the TRC and MCRC.

- G41: compensation of the tool-tip/cutter radius to the left of the contour in traverse direction
- G42: compensation of the tool-tip/cutter radius to the right of the contour in traverse direction
Parameters:
- Q: Level (default: 0)
- 0: TRC on the turning plane (XZ plane)
- 1: MCRC on the front face (XC plane)
- 2: MCRC on the lateral surface (ZC plane)
- 3: MCRC on the front face (XY plane)
- 4: MCRC on the lateral surface (YZ plane)
- H: Out (only with TRC - default: 0)
- 0: Intersecting areas which are programmed in directly successive contour elements are not machined
- 1: The complete contour is machined-even if certain areas are intersecting
- O: Feed reduc. off (default: 0)
- 0: No (feed rate reduction is active)
- 1: Yes (feed rate reduction is not active)

Please note:

- Program G41/G42 in a separate NC block
- Program a straight line segment (G0/G1) after the block containing G41/G42
- The TRC/MCRC is taken into account from the next path of traverse.

Example: G40, G41, G42

\ldots		
N1 T3 G95 F0.25 G96 S200 M3		
N2 G0 X0 Z2		
N3 G42		
N4 G1 Z0		
N5 G1 X20 B-0.5 to the right of the contour		
N6 G1 Z-12		
N7 G1 Z-24 A20		
N8 G1 X48 B6		
N9 G1 Z-52 B8		
N10 G1 X80 B4 E0.08		
N11 G1 Z-60		
N12 G1 X82 G4		
P. .		

6.13 Datum shifts

You can program several datum shifts in one NC program. The relationships of the coordinates (for blank/finished part, auxiliary contours) are not affected by the datum shifts.
G920 temporarily deactivates datum shifts-G980 reactivates them.
Overview of datum shifts

G51	- Relative shift - Programmed shift - Reference: Previously defined workpiece datum	Page 344
G53/G54/G55	- Relative shift - Shift defined in setup mode (offset) - Reference: Previously defined workpiece datum	Page 345
G56	- Additive shift - Programmed shift - Reference: Workpiece datum defined at present	Page 345
G59	- Absolute shift - Programmed shift - Reference: Machine datum	Page 346

Datum shift G51

G51 shifts the workpiece datum by the defined value in the selected axis. The Displacement is referenced to the workpiece datum defined in setup mode.
Parameters:

- X: Shift (radius value)
- $Y:$ Shift (machine-dependent)
- Z: Shift
- U: Shift (machine-dependent)
- V: Shift (machine-dependent)
- W: Shift (machine-dependent)

Example: G51

\ldots	
N1 T3 G95 F0.25 G96 S200 M3	
N2 G0 X62 Z5	
N3 G810 NS7 NE12 P5 10.5 K0.2	
N4 G51 Z-28	Datum shift
N5 G0 X62 Z-15	
N6 G810 NS7 NE12 P5 10.5 K0.2	
N7 G51 Z-56	Datum shift
\ldots	

Datum shifts - G53/G54/G55

G53, G54 and G55 shift the workpiece datum by the offset values defined in setup mode.
The Displacement is referenced to the workpiece datum defined in setup mode, even if the datum is shifted several times with G53, G54, and G55.
The Displacement is valid until you program another datum shift or until the end of the program.
Before using the G53, G54, or G55 Displacement, you need to define the datum shift values in setup mode.
Further information: User's Manual

A shift in X is entered as a radius.

Additive datum shift G56

G56 shifts the workpiece datum by the defined value in the selected axis. The Displacement is referenced to the currently active workpiece datum.
Parameters:

- X: Shift (radius value)
- Y: Shift (machine-dependent)
- Z: Shift
- U: Shift (machine-dependent)
- V: Shift (machine-dependent)
- W: Shift (machine-dependent)

If you shift the workpiece datum more than once with G56, the Displacement is always added to the currently active workpiece datum.

Example: G56

\ldots	
N1 T3 G95 F0.25 G96 S200 M3	
N2 G0 X62 Z5	
N3 G810 NS7 NE12 P5 10.5 K0.2	
N4 G56 Z-28	
N5 G0 X62 Z5	
N6 G810 NS7 NE12 P5 10.5 K0.2	
N7 G56 Z-28	Datum shift
..	

Absolute datum shift G59

G59 sets the workpiece datum to the defined value in the selected axis. The new workpiece datum remains in effect to the end of the program.
Parameters:

- X: Shift (radius value)
- Y: Shift (machine-dependent)
- Z: Shift
- U: Shift (machine-dependent)
- V: Shift (machine-dependent)
- W: Shift (machine-dependent)

G59 cancels all previous datum shifts (with G51, G56 or G59).

Example: G59

\ldots	
N1 G59 Z256	Datum shift
N2 G14 Q0	
N3 T3 G95 F0.25 G96 S200 M3	
N4 G0 X62 Z2	
\ldots	

6.14 Oversizes

Switching off oversize G50

G50 switches off Ov.size defined with G52 Geo for the following cycle. Program G50 before the cycle.
To ensure compatibility, the $\mathbf{G 5 2}$ code is also supported for switching off the oversizes. HEIDENHAIN recommends using G50 for new NC programs.

Axis-parallel oversize G57

G57 defines different oversizes for X and Z. Program $\mathbf{G 5 7}$ before the cycle call.
Parameters:

- X: O-size X (only positive values; diameter value)
- Z: O-size Z (only positive values)

G57 is effective differently in the following cycles:

- After cycle run, the oversizes are deleted with G810, G820, G830, G835, G860, G869, G890, G891, G895
- After cycle run the oversizes are not deleted with G81, G82, G83

If the oversizes are programmed with $\mathbf{G 5 7}$ and in the cycle itself, the cycle oversizes apply.

Example: G57

•.	
N1 T3 G95 F0.25 G96 S200 M3	
N2 G0 X120 Z2	
N3 G57 X0.2 Z0.5	Paraxial oversize
N4 G810 NS7 NE12 P5	
..	

Contour-parallel oversize (equidistant) G58

G58 defines a contour-parallel Ov.size. Program G58 before the cycle call. A negative $\mathbf{O v}$.size is permitted during finishing with G890 Parameters:

- P: Allowance

G58 is effective differently in the following cycles:

- After cycle run, the oversizes are deleted with G810, G820, G830, G835, G860, G869, G890
- After cycle run the oversizes are not deleted with G83
(1)

If an oversize is programmed with $\mathbf{G 5 8}$ and in the cycle, the oversize from the cycle is used.

Example: G58

\ldots	
N1 T3 G95 F0.25 G96 S200 M3	
N2 G0 X120 Z2	
N3 G58 P2	
N4 G810 NS7 NE12 P5	
\ldots	

6.15 Safety clearance

Safety clearance G47

G47 defines the Safety clearance for the following cycles:

- Turning cycles G810, G820, G830, G835, G860, G869 and G890
- Drilling cycles G71, G72 and G74
- Milling cycles G840 to G846

Parameters:

- P: Safety clearance

G47 without parameters activates the parameter values defined in the DefGlobG47P (no. 602012) machine parameter.

G47 replaces the safety clearance set in the machining parameters or that set in G147

Safety clearance G147

G147 defines the Safety clearance for the following cycles:

- Drilling cycles G71, G72 and G74
- Milling cycles G840 to G846

Parameters:

- I: Safety clearance to the milling plane (only for milling operations)
- K: Safety clearance in infeed direction (downfeed)

G147 without parameters activates the parameter values defined in the DefGlobG147SCI (no. 602014) and DefGlobG147SCK (no. 602014) machine parameters.

G147 replaces the safety clearance set in the machining parameters or that set in G47.

6.16 Tools, compensations

Inserting tools - T

This function is also available on machines with a tool magazine. The control uses the magazine list instead of the turret list.The control displays the tool assignment defined in the TURRET section. You can enter the T number directly or select it from the tool list (switch with the Tool List soft key).

Correction of cut G148 (changing the cutter compensation)

G148 defines the values compensating for wear. DX, DZ become effective after program start and after a \mathbf{T} command.
Parameters:

- O: Selection (default: 0)
- $\mathbf{O}=0$: DX, DZ active - DS inactive
- $\mathbf{O}=1$: DS, DZ active - DX inactive
- $\mathbf{O}=2$: DX, DS active - DZ inactive

The cycles G860, G869, G879, G870 and G890
automatically take the correct wear compensation into account.

Example: G148

.	
N1 T3 G95 F0.25 G96 S160 M3	
N2 G0 X62 Z2	
N3 G0 Z-29.8	
N4 G1 X50.4	
N5 G0 X62	
N6 G150	
N7 G1 Z-20.2	
N8 G1 X50.4	
N9 G0 X62	
N10 G151	Recessing finishing
N11 G148 00	Change compensation
N12 G0 X62 Z-30	
N13 G1 X50	
N14 G0 X62	
N15 G150	
N16 G148 02	
N17 G1 Z-20	
N18 G1 X50	
N19 G0 X62	
. . .	

Additive correction G149

The control manages 16 tool-independent compensation values. One G149 followed by a D number activates the additive compensation function. G149 D900 deactivates the additive compensation function. The compensation values are managed in
Program run submode.
Further information: User's Manual
Parameters:

- D: Corr. additiv (default: 900)
- $\mathbf{D}=900$: Deactivates the additive compensation
- $\mathbf{D}=901-916$: Activates the additive compensation \mathbf{D}

Programming:

- Program G149 one block before the block containing the path of traverse to which the compensation is to apply, because the tool must have moved in the compensation direction by the compensation value before compensation becomes effective.
- Additive compensation remains in effect up to:
- the next G149 D900
- the next tool change
- end of program

The additive compensation is added to the tool compensation.

Example: G149

\ldots	
N1 T3 G96 S200 G95 F0.4 M4	
N2 G0 X62 Z2	
N3 G89	
N4 G42	
N5 G0 X27 Z0	
N6 G1 X30 Z-1.5	
N7 G1 Z-25	
N8 G149 D901	
N9 G1 X40 BR-1	
N10 G1 Z-50	
N11 G149 D902	Deactivate compensation
N12 G1 X50 BR-1	
N13 G1 Z-75	
N14 G149 D900	
N15 G1 X60 B-1	
N16 G1 Z-80	
N17 G1 X62	
N18 G80	
I .	

Compensation of tool tip G150/G151

G150/G151 defines the tool reference point for recessing and button tools.

- G150: Reference point is on right tip
- G151: Reference point is on left tip

G150 and G151 is effective from the block in which it is programmed and remains in effect up to the next tool change or program end.

- The displayed actual values always refer to the tool tip defined in the tool data
- If you use TRC, after G150/G151 you must also adjust G41/G42

Example: G148

6.17 Contour-based turning cycles

Working with contour-based cycles

Possibilities of transferring the contour to be machined to the cycle:

- Transferring the contour reference in the Contour start block no. and the Contour end block no. The contour area is machined in the direction from NS to NE
- Transferring the contour reference via the name of the Auxiliary contour (ID). The complete Auxiliary contour is machined in the direction of contour definition
- Describing the contour with G80 in the block directly after the cycle
Further information: "Cycle end / simple contour G80", Page 390
- Describing the contour with G0, G1, G2 and G3 blocks directly after the cycle. The contour is concluded by $\mathbf{G 8 0}$ without parameters
Possibilities of defining the workpiece blank for calculating the number of cutting passes:
- Defining a global workpiece blank in the BLANK program section. Contour follow-up of the workpiece blank is automatically active. The cycle uses the specified Workpiece blank
- If no global Workpiece blank has been defined, the cycle calculates an internal Workpiece blank based on the definition of parameter RH

Example: Contour-based cycles

. . .	
N1 G810 NS7 NE12 P3	Block reference
N2 ...	
N3 G810 ID"007" P3	Name of auxiliary contour
N4...	
N5 G810 ID"007" NS9 NE7 P3	Combination
N6 ...	
N7 G810 P3	Predefined contour description
N8 G80 XS60 ZS-2 XE90 ZE-50 AC10 WC10BS3 BE-2 RC5 ECO	
N9...	
N10 G810 P3	Direct contour description
N11 G0 X50 Z0	
N12 G1 Z-62 BR4	
N13 G1 X85 AN80 BR-2	
N14 G1 Zi-5	
N15 G80	
N16...	

Finding the block references:
\downarrow

- Place cursor in NS or NE input field

Contour reference
N

```
Take over
- Press the Contour reference soft key
- Select the contour element:
- Use the horizontal arrow keys to select the contour element
- Use the vertical arrow keys to switch between contours (also face contours, etc.).
- Switch between NS and NE:
- Press the NS soft key
- Press the NE soft key
- Press the Take over soft key to return to the dialog

The contour element can also be selected via touch gestures or the mouse.

\section*{Cutting limits in \(\mathbf{X}, \mathbf{Z}\)}

The tool position before the cycle call determines the effect of a cutting limit. The control machines the area to the right or to the left of the cutting limit, depending on which side the tool has been positioned before the cycle is called.
(i)

A cutting limit restricts the contour area that can be machined; it does not apply to the paths for approach and departure.

\section*{Longitud. roughing G810}

G810 machines the defined contour area. The reference to the contour to be machined can be transferred in the cycle parameters, or the contour can be defined directly after the cycle call.
Further information: "Working with contour-based cycles", Page 354 The contour to be machined can contain various valleys. If required, the area to be machined is divided into several sections.
Parameters:
- ID: Auxiliary contour - ID number of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- NE not programmed: The contour element NS is machined in the direction of contour definition
- NS = NE programmed: The contour element NS is machined opposite to the direction of contour definition.
- P: Maximum infeed
- I: O-size X
- K: O-size Z
- E: Plunging behavior
- No input: Automatic feed-rate reduction
- \(\mathbf{E}=0\) : No plunging
- \(\mathbf{E}>0\) : Plunging feed rate in use
- X: Cutting limit in \(\mathbf{X}\) (diameter value; default: no cutting limit)
- Z: Cutting limit in Z (default: no cutting limit)
- A: Start angle (reference: \(Z\) axis; default: parallel to \(Z\) axis)
- W: Depart.angle (reference: Z axis; default: orthogonal to \(Z\) axis)
- H: Contour smoothing
- 0: With each cut
- 1: With the last cut
- 2: No smoothing
- Q: Kind of liber. at end of cycle
- 0: Back to beg., X before Z
- 1: Before finished contour
- 2: Retract by safety clear.
- V: Machine form elements (default: 0)

A chamfer/rounding arc is machined
- 0: At beginning and end
- 1: At beginning
- 2: At end
- 3: No machining
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- D: Omit elements (see figure)
- U: Cut line on horiz. element
- 0: No (uniform cutting segmentation)
- 1: Yes (irregular cutting segmentation, if applicable)

\section*{- O : Hide undercutting}
- 0: No
- 1: Yes
- B: Slide mov.diff. - slide lead with 4-axis machining
- \(\mathbf{B}=0\) : Both slides work on the same diameter-at double feed rate
- B \(<0\) : The slides work on different diameters at the same feed rate. The slide with larger number leads at a defined distance
- \(\mathbf{B}>0\) : The slides work on different diameters at the same feed rate. The slide with the smaller number leads at a defined distance
- RH: Wrkpc. blank contour - evaluation only if no workpiece blank has been defined
- 0: (depends on defined parameters)
- No parameters: workpiece blank from ICP contour and tool position
- XA and ZA: workpiece blank from ICP contour and starting point of workpiece blank
- J: workpiece blank from ICP contour and equidistant oversize
- 1: From tool position (workpiece blank from ICP contour and tool position)
- 2: With blank start point (workpiece blank from ICP contour and starting point of workpiece blank XA and ZA)
- 3 Equidistant oversize (workpiece blank from ICP contour and equidistant oversize J)
- 4: Long.-transv. oversize (workpiece blank from ICP contour, transverse oversize XA and longitudinal oversize ZA)
- J:Workpiece blank oversize (radius value - will only be evaluated if no workpiece blank has been defined)
- XA, ZA: Start point blank (Definition of the corner point of the workpiece blank contour-an evaluation will only take place if no workpiece blank has been defined beforehand)
The control uses the tool definition to distinguish between external and internal machining.
(i)
- The tool radius compensation is active
- A G57 oversize enlarges the contour (also inside contours).
- A G58 oversize
- >0: Enlarges the contour
- <0: Is not offset
- G57/G58 oversizes are deleted after cycle end

Cycle run:
1 Calculates the areas to be machined and the cutting segmentation
2 Approaches workpiece for first pass from starting point, taking the safety clearance into account (first in Z direction, then in X )
3 Moves at feed rate to Cutting limit in Z
4 Depending on \(\mathbf{H}\) :
- \(\mathbf{H}=0\) : Machines the contour outline
- \(\mathbf{H}=1\) or 2 : Retracts at \(45^{\circ}\)

5 Returns at rapid traverse and approaches for next pass
6 Repeats 3 to 5 until Cutting limit in \(\mathbf{X}\) has been reached
7 If required, repeats 2 to 6 until all areas have been machined
8 If \(\mathbf{H}=1\) : Smooths the contour
9 Retracts as programmed in Q
Application as 4-axis cycle
- Same diameter:
- Both slides start simultaneously
- Differing diameters:
- When the leading slide has reached Slide mov.diff. B, the second slide starts. This synchronization takes place with every cut
- Each slide advances by the calculated depth of cut
- If the number of cuts is uneven, the leading slide performs the last cut
- If you are machining at a constant cutting speed, the cutting speed of the leading slide is used. The leading tool does not retract until the subsequent tool is ready for use
(i) If you use 4-axis cycles, ensure that you use identical tools (e.g. tool type, cutting radius)
- Undercuts are not machined in 4-axis cycles. Parameter \(\mathbf{O}\) is hidden

\section*{Face roughing G820}

G820 machines the defined contour area. The reference to the contour to be machined can be transferred in the cycle parameters, or the contour can be defined directly after the cycle call.
Further information: "Working with contour-based cycles", Page 354 The contour to be machined can contain various valleys. If required, the area to be machined is divided into several sections.
Parameters:
- ID: Auxiliary contour - ID number of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- NE not programmed: The contour element NS is machined in the direction of contour definition
- NS = NE programmed: The contour element NS is machined opposite to the direction of contour definition.
- P: Maximum infeed
- I: O-size X
- K: O-size Z
- E: Plunging behavior
- No input: Automatic feed-rate reduction
- \(\mathbf{E}=0\) : No plunging
- E \(>0\) : Plunging feed rate in use
- X: Cutting limit in \(\mathbf{X}\) (diameter value; default: no cutting limit)
- Z: Cutting limit in Z (default: no cutting limit)
- A: Start angle (reference: \(Z\) axis; default: orthogonal to \(Z\) axis)
- W: Depart.angle (reference: \(Z\) axis; default: parallel to \(Z\) axis)
- H: Contour smoothing
- 0: With each cut
- 1: With the last cut
- 2: No smoothing
- Q: Kind of liber. at end of cycle
- 0: Back to beg., \(X\) before \(Z\)
- 1: Before finished contour
- 2: Retract by safety clear.
- V: Machine form elements (default: 0)

A chamfer/rounding arc is machined
- 0: At beginning and end
- 1: At beginning
- 2: At end
- 3: No machining
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- D: Omit elements (see figure)
- U: Cut line on horiz. element
- 0: No (uniform cutting segmentation)
- 1: Yes (irregular cutting segmentation, if applicable)
- O: Hide undercutting
- 0: No
- 1: Yes
- B: Slide mov.diff. - slide lead with 4-axis machining
- \(\mathbf{B}=0\) : Both slides work on the same diameter-at double feed rate
- B \(<0\) : The slides work on different diameters at the same feed rate. The slide with larger number leads at a defined distance
- \(\mathbf{B}>0\) : The slides work on different diameters at the same feed rate. The slide with the smaller number leads at a defined distance
- RH: Wrkpc. blank contour - evaluation only if no workpiece blank has been defined
- 0: (depends on defined parameters)
- No parameters: workpiece blank from ICP contour and tool position
- XA and ZA: workpiece blank from ICP contour and starting point of workpiece blank
- J: workpiece blank from ICP contour and equidistant oversize
- 1: From tool position (workpiece blank from ICP contour and tool position)
- 2: With blank start point (workpiece blank from ICP contour and starting point of workpiece blank XA and ZA)
- 3 Equidistant oversize (workpiece blank from ICP contour and equidistant oversize J)
- 4: Long.-transv. oversize (workpiece blank from ICP contour, transverse oversize XA and longitudinal oversize ZA)
- J: Workpiece blank oversize (radius value - will only be evaluated if no workpiece blank has been defined)
- XA, ZA: Start point blank (Definition of the corner point of the workpiece blank contour-an evaluation will only take place if no workpiece blank has been defined beforehand)
The control uses the tool definition to distinguish between external and internal machining.
(i)
- The tool radius compensation is active
- A G57 oversize enlarges the contour (also inside contours).
- A G58 oversize
- >0: Enlarges the contour
- <0: Is not offset
- G57/G58 oversizes are deleted after cycle end

Cycle run:
1 Calculates the areas to be machined and the cutting segmentation
2 Approaches workpiece for first pass from starting point, taking the safety clearance into account (first in X direction, then in Z )
3 Moves at feed rate to Cutting limit in \(X\)
4 Depending on \(\mathbf{H}\) :
- \(\mathbf{H}=0\) : Machines the contour outline
- \(\mathbf{H}=1\) or 2 : Retracts at \(45^{\circ}\)

5 Returns at rapid traverse and approaches for next pass
6 Repeats 3 to 5 until Cutting limit in \(\mathbf{Z}\) has been reached
7 If required, repeats 2 to 6 until all areas have been machined
8 If \(\mathbf{H}=1\) : Smooths the contour
9 Retracts as programmed in Q
Application as 4-axis cycle
- Same diameter:
- Both slides start simultaneously
- Differing diameters:
- When the leading slide has reached Slide mov.diff. B, the second slide starts. This synchronization takes place with every cut
- Each slide advances by the calculated depth of cut
- If the number of cuts is uneven, the leading slide performs the last cut
- If you are machining at a constant cutting speed, the cutting speed of the leading slide is used. The leading tool does not retract until the subsequent tool is ready for use
( If you use 4-axis cycles, ensure that you use identical tools (e.g. tool type, cutting radius)
- Undercuts are not machined in 4-axis cycles. Parameter \(\mathbf{O}\) is hidden

\section*{Contour-parallel roughing G830}

G830 machines the contour area defined in ID, or by NS, NE, parallel to the contour.
Further information: "Working with contour-based cycles", Page 354 The contour to be machined can contain various valleys. If required, the area to be machined is divided into several sections.
Parameters:
- ID: Auxiliary contour - ID number of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- NE not programmed: The contour element NS is machined in the direction of contour definition
- NS = NE programmed: The contour element NS is machined opposite to the direction of contour definition.
- P: Maximum infeed
- I: O-size X
- K: O-size Z
- X: Cutting limit in \(\mathbf{X}\) (diameter value; default: no cutting limit)
- Z: Cutting limit in Z (default: no cutting limit)
- A: Start angle (reference: \(Z\) axis; default: parallel to \(Z\) axis, or with facing tools: parallel to \(X\) axis)
- W: Depart.angle (reference: Z axis; default: orthogonal to Z axis, or with facing tools: orthogonal to X axis)
- Q: Kind of liber. at end of cycle
- 0: Back to beg., X before Z
- 1: Before finished contour
- 2: Retract by safety clear.
- V: Machine form elements (default: 0)

A chamfer/rounding arc is machined
- 0: At beginning and end
- 1: At beginning
- 2: At end
- 3: No machining
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- D: Omit elements (see figure)
- B: Contour calculation

B: Contour calculation
- 0: Automatic
- 1: Tool left (G41)
- 2: Tool right(G42)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \[
\text { | DIN } 76
\] & Din509E DIN599F & Form U ! & Form H Form K !
\(\qquad\) & G22 & G23 H0 & G23 H1
\(\square\) \\
\hline D=0 & \(\times\) \\
\hline \(\mathrm{D}=1\) & \(r\) & \(r\) & \(r\) & \(\checkmark\) & \(\times\) & \(\times\) & \(\times\) \\
\hline \(\mathrm{D}=2\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\checkmark\) \\
\hline D=3 & \(r\) & \(r\) & \(r\) & \(r\) & \(\times\) & \(\times\) & \(r\) \\
\hline D=4 & \(r\) & \(\times\) & \(\times\) & \(r\) & \(\times\) & \(\times\) & \(r\) \\
\hline
\end{tabular}
- H: Type of cut lines
- 0: Constant mach.depth - contour is shifted by a constant infeed value (paraxial)
- 1: Equidistant cut lines - cutting lines run at a constant distance from the contour (contour-parallel). The contour is scaled.
- RH: Wrkpc. blank contour - evaluation only if no workpiece blank has been defined
- 0: (depends on defined parameters)
- No parameters: workpiece blank from ICP contour and tool position
- XA and ZA: workpiece blank from ICP contour and starting point of workpiece blank
- J: workpiece blank from ICP contour and equidistant oversize
- 1: From tool position (workpiece blank from ICP contour and tool position)
- 2: With blank start point (workpiece blank from ICP contour and starting point of workpiece blank XA and ZA)
- 3 Equidistant oversize (workpiece blank from ICP contour and equidistant oversize J)
- 4: Long.-transv. oversize (workpiece blank from ICP contour, transverse oversize XA and longitudinal oversize ZA)
- J: Workpiece blank oversize (radius value - will only be evaluated if no workpiece blank has been defined)
- XA, ZA: Start point blank (Definition of the corner point of the workpiece blank contour-an evaluation will only take place if no workpiece blank has been defined beforehand)
The control uses the tool definition to distinguish between external and internal machining.

- The tool radius compensation is active
- A G57 oversize enlarges the contour (also inside contours).
- A G58 oversize
- >0: Enlarges the contour
- <0: Is not offset
- G57/G58 oversizes are deleted after cycle end

Cycle run:
1 Calculates the areas to be machined and the cutting segmentation
2 Approaches workpiece for first pass from starting point, taking the safety clearance into account
3 Executes the first cut (roughing)
4 Returns at rapid traverse and approaches for next pass
5 Repeats 3 to 4 until the complete area has been machined
6 If required, repeats 2 to 5 until all areas have been machined
7 Retracts as programmed in \(\mathbf{Q}\)

\section*{Contour cycle, bidirectional G835 (contour-parallel with neutral tool)}

G835 machines the contour area defined in ID, or by NS, NE, parallel to the contour and bidirectionally.
Further information: "Working with contour-based cycles", Page 354 The contour to be machined can contain various valleys. If required, the area to be machined is divided into several sections.
Parameters:
- ID: Auxiliary contour - ID number of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- NE not programmed: The contour element NS is machined in the direction of contour definition
- NS = NE programmed: The contour element NS is machined opposite to the direction of contour definition.
- P: Maximum infeed
- I: O-size X
- K: O-size Z
- \(\mathbf{X}\) : Cutting limit in \(\mathbf{X}\) (diameter value; default: no cutting limit)
- Z: Cutting limit in Z (default: no cutting limit)
- A: Start angle (reference: \(Z\) axis; default: parallel to \(Z\) axis, or with facing tools: parallel to \(X\) axis)
- W: Depart.angle (reference: Z axis; default: orthogonal to Z axis, or with facing tools: orthogonal to \(X\) axis)
- Q: Kind of liber. at end of cycle
- 0: Back to beg., X before Z
- 1: Before finished contour
- 2: Retract by safety clear.
- V: Machine form elements (default: 0)

A chamfer/rounding arc is machined
- 0: At beginning and end
- 1: At beginning
- 2: At end
- 3: No machining
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- B: Contour calculation

B: Contour calculation
- 0: Automatic
- 1: Tool left (G41)
- 2: Tool right(G42)
- D: Omit elements (see figure)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
DIN 76 \\
——
\end{tabular} & \begin{tabular}{l}
DIN509E
DIN509F \\
——
\end{tabular} & \begin{tabular}{l}
Form U \\
母
\end{tabular} & Form H Form K
\(\qquad\) & G22 &  & G23 H1 \\
\hline D=0 & \(\times\) \\
\hline \(\mathrm{D}=1\) & \(\checkmark\) & \(r\) & \(r\) & \(r\) & \(x\) & \(x\) & \(\times\) \\
\hline \(\mathrm{D}=2\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & r \\
\hline \(\mathrm{D}=3\) & \(r\) & \(r\) & \(r\) & \(r\) & \(\times\) & \(\times\) & \(r\) \\
\hline D=4 & \(\checkmark\) & \(\times\) & \(\times\) & \(\checkmark\) & \(\times\) & \(\times\) & \(r\) \\
\hline
\end{tabular}
- H: Type of cut lines
- 0: Constant mach.depth - contour is shifted by a constant infeed value (paraxial)
- 1: Equidistant cut lines - cutting lines run at a constant distance from the contour (contour-parallel). The contour is scaled.
- RH: Wrkpc. blank contour - evaluation only if no workpiece blank has been defined
- 0: (depends on defined parameters)
- No parameters: workpiece blank from ICP contour and tool position
- XA and ZA: workpiece blank from ICP contour and starting point of workpiece blank
- J: workpiece blank from ICP contour and equidistant oversize
- 1: From tool position (workpiece blank from ICP contour and tool position)
- 2: With blank start point (workpiece blank from ICP contour and starting point of workpiece blank XA and ZA)
- 3 Equidistant oversize (workpiece blank from ICP contour and equidistant oversize J)
- 4: Long.-transv. oversize (workpiece blank from ICP contour, transverse oversize XA and longitudinal oversize ZA)
- J: Workpiece blank oversize (radius value - will only be evaluated if no workpiece blank has been defined)
- XA, ZA: Start point blank (Definition of the corner point of the workpiece blank contour-an evaluation will only take place if no workpiece blank has been defined beforehand)
The control uses the tool definition to distinguish between external and internal machining.

- The tool radius compensation is active
- A G57 oversize enlarges the contour (also inside contours).
- A G58 oversize
- >0: Enlarges the contour
- <0: Is not offset
- G57/G58 oversizes are deleted after cycle end

Cycle run:
1 Calculates the areas to be machined and the cutting segmentation
2 Approaches workpiece for first pass from starting point, taking the safety clearance into account
3 Executes the first cut (roughing)
4 Approaches for the next pass and executes the next cut (roughing) in the opposite direction
5 Repeats 3 to 4 until the complete area has been machined
6 If required, repeats 2 to 5 until all areas have been machined
7 Retracts as programmed in \(\mathbf{Q}\)

\section*{Recessing G860}

G860 machines the defined contour area. The reference to the contour to be machined can be transferred in the cycle parameters, or the contour can be defined directly after the cycle call.
Further information: "Working with contour-based cycles", Page 354 The contour to be machined can contain various valleys. If required, the area to be machined is divided into several sections.
Parameters:
- ID: Auxiliary contour - ID number of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section
- Beginning of contour section
- Reference to a G22/G23-Geo recess
- NE: Contour end block no. - end of contour section
- NE not programmed: The contour element NS is machined in the direction of contour definition
- NS = NE programmed: The contour element NS is machined opposite to the direction of contour definition.
- I: O-size X
- K: O-size Z
- Q: Roughing/Finish - procedure (default: 0)
- 0: Roughing and finishing
- 1: Only roughing
- 2: Only finishing
- 3: multi.plunge + finishing - rough grooving is performed by means of full-section cuts-the ridges in between are machined centrally relative to the recessing tool
- 4: only multiple plunging
- \(\mathbf{X}\) : Cutting limit in \(\mathbf{X}\) (diameter value; default: no cutting limit)
- Z: Cutting limit in Z (default: no cutting limit)
- V: Machine form elements (default: 0)

A chamfer/rounding arc is machined

- 0: At beginning and end
- 1: At beginning
- 2: At end
- 3: No machining
- E: Finishing feed
- EW: Recessing feed
- EC: Delay
- D: Rev. on recessing floor
- H: Kind of liber. at end of cycle
- 0: Back to start point
- Axial recess: First \(Z\), then \(X\) direction
- Radial recess: First X, then Z direction
- 1: Before finished contour
- 2: Stops at safety clear.
- B: Cut. width
- P: Cut depth - infeed depth for a single cut
- O: End of rough cut
- 0: Lift-up at rapid
- 1: Half recessng width \(45^{\circ}\)
- U: End of finishing cut
- 0: Value from glob. param.
- 1: Parting horizntl. elem.
- 2: Complete horzntl. elem.

The control uses the tool definition to distinguish between external and internal machining, or between radial and axial recesses.
Recessing repeats can be programmed with \(\mathbf{G 7 4 1}\) before the cycle call.
(i)
- The tool radius compensation is active
- A G57 oversize enlarges the contour (also inside contours).
- A G58 oversize
- >0: Enlarges the contour
- <0: Is not offset
- G57/G58 oversizes are deleted after cycle end

Cycle run:
1 Calculates the areas to be machined and the cutting segmentation
2 Approaches workpiece for first pass from starting point, taking the safety clearance into account
- Radial recess: First \(Z\), then \(X\) direction
- Axial recess: First X, then Z direction

3 Executes first cut (roughing)
4 Returns at rapid traverse and approaches for next pass
5 Repeats 3 to 4 until the complete area has been machined
6 If required, repeats 2 to 5 until all areas have been machined
7 If \(\mathbf{Q}=0\) : Finish-machines the contour


\section*{Repeating recessing cycle G740}

G740 is programmed before \(\mathbf{G 8 6 0}\) to repeat the recessing contour defined in Cycle G860.
Parameters:
- X: Start pt. X - shifts the starting point of the recessing contour defined by \(\mathbf{G 8 6 0}\) to this coordinate
- Z: Start pt. Z - shifts the starting point of the recessing contour defined by G860 to this coordinate
- I: Length - distance between the starting points of the individual recessing contours (in \(X\) )
- K: Length - distance between the starting points of the individual
 recessing contours (in Z)
- Q: Number of recessing contours

\section*{Repeating recessing cycle G741}

G741 is programmed before \(\mathbf{G 8 6 0}\) to repeat the recessing contour defined in Cycle G860.
Parameters:
- X: Start pt. X - shifts the starting point of the recessing contour defined by G860 to this coordinate
- Z: Start pt. Z - shifts the starting point of the recessing contour defined by G860 to this coordinate
- I: Length - distance between the first and last recessing contour (in X)
- Ii: Length - distance between the recessing contours (in X)
- K: Length - distance between the first and last recessing contour (in Z)
- Ki: Length - distance between the recessing contours (in Z)
- Q: Number of recessing contours
- A: Angle at which the recessing contours are arranged
- R: Length - distance between first and last recessing contour
- Ri: Length - distance between the recessing contours
- O: Flow
- 0: Roughen all recesses then finish all recesses (default: previous behavior)
- 1: Machine each recess completely before machining the next one

\section*{Example: Attributes in contour description G149}


The following parameter combinations are allowed:
- I, K
- li, Ki
- I, A
- K, A
- A, R

\section*{Recess turning cycle G869}

G869 machines the defined contour area. The reference to the contour to be machined can be transferred in the cycle parameters, or the contour can be defined directly after the cycle call.
Further information: "Working with contour-based cycles", Page 354
The workpiece is machined by alternate recessing and roughing movements. The machining process requires a minimum of retraction and infeed movements. The contour to be machined can contain various valleys. If required, the area to be machined is divided into several sections.
Parameters:
- ID: Auxiliary contour - ID number of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section
- Beginning of contour section
- Reference to a G22/G23-Geo recess
- NE: Contour end block no. - end of contour section
- NE not programmed: The contour element NS is machined in the direction of contour definition
- NS = NE programmed: The contour element NS is machined opposite to the direction of contour definition.
- P: Maximum infeed

R: Depth compens. for finishing (default: 0)
- I: O-size X
- K: O-size Z
- \(\mathbf{X}\) : Cutting limit in \(\mathbf{X}\) (diameter value; default: no cutting limit)
- Z: Cutting limit in Z (default: no cutting limit)
- A: Start angle (default: opposite to recessing direction)
- W: Depart.angle (default: opposite to recessing direction)
- Q: Roughing/Finish - procedure (default: 0)
- 0: Roughing and finishing
- 1: Only roughing
- 2: Only finishing
- U: Unidir. turning (default: 0)
- 0: Bidirectional
- 1: Unidirectional
- H: Kind of liber. at end of cycle

\section*{- 0: Back to start point}
- Axial recess: First \(Z\), then \(X\) direction
- Radial recess: First X, then Z direction
- 1: Before finished contour
- 2: Stops at safety clear.

- V: Machine form elements (default: 0)

A chamfer/rounding arc is machined
- 0: At beginning and end
- 1: At beginning
- 2: At end
- 3: No machining
- O: Recessing feed (default: active feed rate)
- E: Finishing feed
- B: Offset width (default: 0)
- XA, ZA: Start point blank (Definition of the corner point of the workpiece blank contour-an evaluation will only take place if no workpiece blank has been defined beforehand)
- XA, ZA not programmed: The workpiece blank contour is calculated from the tool position and the ICP contour
- XA, ZA programmed: Definition of the corner point of the workpiece blank
The control uses the tool definition to distinguish between radial and axial recesses.
Program at least one contour reference (e.g.: NS or NS, NE) and \(\mathbf{P}\).
Depth compens. R: Depending on factors such as workpiece material or feed rate, the tool tip is displaced during a turning operation. You can correct the resulting infeed error with the turning depth compensation factor. The value is usually determined empirically.
Offset width B: After the second infeed movement, during the transition from turning to recessing, the length to be machined is reduced by Offset width B. For each other transition at this edge, the path is reduced by \(\mathbf{B}\)-in addition to the previous offset. The total offset is limited to \(80 \%\) of the effective cutting width (effective cutting width = cutting width \(-2 *\) cutting radius). If required, the control reduces the programmed offset width. After precutting (rough grooving), the remaining material is machined with a single cut.
(i) The tool radius compensation is active
- A G57 oversize enlarges the contour (also inside contours).
- A G58 oversize
- >0: Enlarges the contour
- <0: Is not offset
- G57/G58 oversizes are deleted after cycle end

Cycle run (with \(\mathbf{Q}=0\) or 1 ):
1 Calculates the areas to be machined and the cutting segmentation
2 Approaches workpiece for first pass from starting point, taking the safety clearance into account
- Radial recess: First \(Z\), then \(X\) direction
- Axial recess: First X, then Z direction

3 Executes first cut (recessing)
4 Machines perpendicularly to recessing direction (turning)
5 Repeats 3 to 4 until the complete area has been machined
6 If required, repeats 2 to 5 until all areas have been machined
7 If \(\mathbf{Q}=0\) : Finish-machines the contour

\section*{Machining information}
- Transition from turning to recessing: Before the transition from turning to recessing, the control retracts the tool by 0.1 mm . Thus, a tilted cutting edge will be adjusted for the recessing operation, independent of Offset width B
- Inside radii and chamfers: Depending on the recessing width and the radii of rounding arcs, single cuts preventing a fluid transition from recessing to turning are executed before the rounding is machined. This prevents damage to the tool.
- Edges: Edges are recessed. This prevents residual rings.


\section*{Recessing cycle G870}

G870 generates a recess defined by G22-Geo. The control uses the tool definition to distinguish between external and internal machining, or between radial and axial recesses.
Parameters:
- ID: Auxiliary contour - ID number of the contour to be machined
- NS: Starting block no. of contour - references G22-Geo
- I: Ov.size for precutting (rough grooving) (default: 0)
- I = 0: Recess is made in one work step
- \(\mathbf{I}>0\) : The first operation is roughing, the second finishing
- E: Delay (default: time for one spindle revolution)

- If I = 0: For every recess
- If \(\mathbf{I}>0\) : Only for finishing

Calculation of cutting segmentation: Maximum offset \(=0.8\) * cutting width
(1) The tool radius compensation is active

Cycle run:
1 Calculates the number of cutting passes
2 Approaches workpiece from starting point for first pass
- Radial recess: First \(Z\), then \(X\) direction
- Axial recess: First \(X\), then \(Z\) direction

3 Executes the first cut according to I
4 Returns at rapid traverse and approaches for next pass
5 If I=0: Dwells for time \(\mathbf{E}\)
6 Repeats 3 to 4 until the complete recess has been machined
7 If I>0: Finish-machines the contour

\section*{Contour finishing G890}

G890 finishes the defined contour area in one pass. The reference to the contour to be machined can be transferred in the cycle parameters, or the contour can be defined directly after the cycle call.
Further information: "Working with contour-based cycles", Page 354 The contour to be machined can contain various valleys. If required, the area to be machined is divided into several sections.

In Machine Parameter 602322, you define whether the control is to check the usable length of the cutting edge during finishing. For recessing and button tools, the length of the cutting edge is not checked.

Parameters:
- ID: Auxiliary contour - ID number of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- NE not programmed: The contour element NS is machined in the direction of contour definition
- NS = NE programmed: The contour element NS is machined opposite to the direction of contour definition.
- E: Plunging behavior
- No input: Automatic feed-rate reduction
- \(\mathbf{E}=0\) : No plunging
- E \(>0\) : Plunging feed rate in use
- \(\mathbf{V}\) : Machine form elements (default: 0 )

A chamfer/rounding arc is machined
- 0: At beginning and end
- 1: At beginning
- 2: At end
- 3: No machining
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)

- Q: Type of approach (default: 0)
- 0: Automatic - the control checks:
- Diagonal approach
- First X, then Z direction
- Equidistant around the workpiece blank, taking the safety clearance into account
- Omission of the first contour elements if the starting position is inaccessible
- 1: First \(X\), then \(Z\)
- 2: First Z, then X
- 3: No approach - tool is located near the starting point of the contour area
- 4: Finish rem. mat.
- H: Type of retraction - tool backs off at an angle below \(45^{\circ}\) opposite the machining direction and moves to the position \(\mathbf{I}, \mathbf{K}\) (default: 3)
- 0: Same time, to I+K
- 1: First \(X\) then \(Z\), to \(I+K\)
- 2: First \(Z\) then \(X\), to I+K
- 3: Retract by safety clear.
- 4: No retraction motion (tool remains on the end coordinate)
- 5: Diagonal to start pos.
- 6: \(X\) then \(Z\) to start pos.
- 7: \(Z\) then \(X\) to start pos.
- \(\mathbf{X}\) : Cutting limit in \(\mathbf{X}\) (diameter value; default: no cutting limit)
- Z: Cutting limit in Z (default: no cutting limit)
- D: Omit elements (see figure)

Codes for omitting recesses and undercuts
\begin{tabular}{lll}
\hline G call & Function & D code \\
\hline G22 & Recess for sealing ring & 512 \\
\hline G22 & Recess for circlip & 1.024 \\
\hline G23 H0 & General recess & 256 \\
\hline G23 H1 & Relief turn & 2.048 \\
\hline G25 H4 & Undercut type U & 32.768 \\
\hline G25 H5 & Undercut type E & 65.536 \\
\hline G25 H6 & Undercut type F & 131.072 \\
\hline G25 H7 & Undercut type G & 262.144 \\
\hline G25 H8 & Undercut type H & 524.288 \\
\hline G25 H9 & Undercut type K & 1.048 .576 \\
\hline
\end{tabular}

Add the codes if you want to hide several elements
- I: Final point that is approached at the end of the cycle (diameter value)
- K: Final point that is approached at the end of the cycle
- O: Feed reduc. off for circular elements (default: 0)
- 0: No (feed rate reduction is active)
- 1: Yes (feed rate reduction is not active)
- U: Type of cycle - required for generating the contour from the G80 parameters (default: 0)
- 0: standard contour (longitudinal or transverse), recessing contour or ICP contour
- 1: Linear path without/with return
- 2: Circular arc CW, without/with return
- 3: Circular arc CCW, without/with return
- 4: Chamfer without/with return
- 5: Rounding arc without/with return
- B: TRC/MRC switch on - type of tool radius compensation
- 0: Automatic
- 1: Tool left (G41)
- 2: Tool right(G42)
- 3: Automatic w/o tool compens.
- 4: W/o tool compens. left (G41)
- 5: W/o tool compens. left (G42)
- HR: Main machining direction
- 0: auto
- 1: +Z
- 2: +X
- 3: -Z
- 4: -X

The control uses the tool definition to distinguish between external and internal machining.
Undercuts are machined if they are programmed and if tool geometry permits.

\section*{Feed rate reduction}

For chamfers and rounding arcs:
- Feed rate is programmed with G95-Geo: No automatic feed rate reduction
- Feed rate is not programmed with G95-Geo: Automatic feed rate reduction. Each chamfer/rounding is therefore machined with at least three revolutions.
- For chamfers/rounding arcs which, as a result of their size, are machined with at least three revolutions, the feed rate is not reduced automatically.
For circular elements:
- For small circular elements, the feed rate is decreased until every element is machined with at least four spindle revolutions. You can switch this feed rate reduction off with \(\mathbf{0}\).
- The tool radius compensation (TRC) results under certain conditions to a feed rate reduction for circular elements. You can switch this feed rate reduction off with \(\mathbf{0}\).
Further information: "Fundamentals", Page 341
(1) A G57 oversize enlarges the contour (also inside contours).
- A G58 oversize
- >0: Enlarges the contour
- \(<0\) : Reduces the contour
- G57/G58 oversizes are deleted after cycle end

\section*{Simultaneous roughing G895 (option 54)}

G891 enables three-axis simultaneous roughing of the defined contour area in several steps. This allows you to machine complex contours with only one tool.
During machining the cycle continuously adjusts the inclination of the tool based on the following criteria:
- Optimum inclination angle relative to the contour
- Prevention of collisions between the workpiece and the tool holder

In order to enable realistic collision monitoring through the cycle, you need to assign the corresponding tool holder to the tool being used.
The real holder must be within the defined holder dimensions.

In addition to the holder, the machine tool builder can also describe another component of the tilting axis as a collision object (e.g., the B-axis head). If this description is available as a 2-D view in the plane of rotation, then this object will be displayed in the 2-D simulation and will automatically be included in collision monitoring.

\section*{NOTICE}

\section*{Danger of collision!}

Collision monitoring is performed only in the two-dimensional machining plane \(X Z\). The cycle does not check whether an area in the \(Y\) coordinate of the cutting edge, tool holder, or tilting body will lead to a collision.
- Perform a first run of the NC program in Single block mode
- Limit the machining area

If the geometry of the cutting edge or collision monitoring requires an interruption of the cut, the tool is withdrawn and then repositioned. The cycle uses turning tools and button tools.
Further information: "Working with contour-based cycles", Page 354 The control calculates the inclinations of the tilting axis from the minimum inclination angle, the maximum inclination angle, and the clearance angles (IC, JC, KC, and RC).

\section*{Parameters:}
- ID: Auxiliary contour - ID number of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- NE not programmed: The contour element NS is machined in the direction of contour definition
- NS = NE programmed: The contour element NS is machined opposite to the direction of contour definition.

- V: Machine form elements (default: 0)

A chamfer/rounding arc is machined
- 0: At beginning and end
- 1: At beginning
- 2: At end
- 3: No machining
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- D: Omit elements (see figure)

Codes for omitting recesses and undercuts
\begin{tabular}{lll}
\hline G call & Function & D code \\
\hline G22 & Recess for sealing ring & 512 \\
\hline G22 & Recess for circlip & 1.024 \\
\hline G23 H0 & General recess & 256 \\
\hline G23 H1 & Relief turn & 2.048 \\
\hline G25 H4 & Undercut type U & 32.768 \\
\hline G25 H5 & Undercut type E & 65.536 \\
\hline G25 H6 & Undercut type F & 131.072 \\
\hline G25 H7 & Undercut type G & 262.144 \\
\hline G25 H8 & Undercut type H & 524.288 \\
\hline G25 H9 & Undercut type K & 1.048 .576
\end{tabular}

In order to omit multiple elements, you add the D codes from the table or use the D values from the graphic.
Example for omitting the undercut types \(\mathbf{E}\) and \(\mathbf{F}\) :
\(65.536+131.072=196.608\)
- X: Cutting limit in \(\mathbf{X}\) (diameter value; default: no cutting limit)
- Z: Cutting limit in Z (default: no cutting limit)
- A: Start angle (reference: \(Z\) axis; default: parallel to \(Z\) axis)

The line that is formed from the starting point of the contour area to be machined by using the Start angle must not intersect the contour of the finished part at any point.
- W: Depart.angle (reference: Z axis; default: orthogonal to \(Z\) axis)

The line that is formed to the end point of the contour area to be machined by using the Depart.angle must not intersect the contour of the finished part at any point.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & DIN 76 Form H
\(\qquad\) & \begin{tabular}{l}
DIN509E \\
- \\
-
\end{tabular} & Form U 는 & Form K
\(\qquad\) & G22 & 623 нө & G23 H1
\(\square\) \\
\hline D=0 & \(\times\) \\
\hline D=1 & \(r\) & r & r & \(r\) & \(\times\) & \(\times\) & \(r\) \\
\hline \(\mathrm{D}=2\) & - & \(\times\) & r & - & \(\times\) & \(\times\) & \(r\) \\
\hline \(\mathrm{D}=3\) & \(r\) & \(r\) & \(r\) & \(r\) & \(\times\) & \(\times\) & x \\
\hline \(\mathrm{D}=4\) & \(r\) & \(\times\) & \(r\) & \(r\) & \(\times\) & \(\times\) & \(r\) \\
\hline D=5 & \(r\) & \(r\) & \(r\) & \(\times\) & x & x & \(r\) \\
\hline \(\mathrm{D}=6\) & x & \(r\) & - & x & \(\times\) & \(\times\) & \(r\) \\
\hline D=7 & \(r\) & \(r\) & r & r & \(r\) & \(r\) & \(r\) \\
\hline
\end{tabular}


\section*{Material removal:}
- P: Desired infeed - basis for calculating the infeed
- PZ: Maximum infeed

The Desired infeed \(\mathbf{P}\) is allowed to be exceeded up to the value specified in parameter \(\mathbf{P Z}\) for a short time (e.g., for machining a corner). If the infeed exceeds the value specified in parameter PZ, then the control divides the corresponding area into several cuts.
No input: PZ corresponds to two thirds of the length of the cutting edge
- PT: Minimum removal - maintaining the infeed \(\mathbf{P}\) in \% If the material that can be removed by a cut in the cycle is less percent of the desired infeed specified in \(\mathbf{P}\) than has been defined in \(\mathbf{P T}\), then the control skips this cut.
If small values are defined in PT (e.g., \(\mathbf{2} \%\) ), then minimum cuts that remove much less material than the desired infeed \(\mathbf{P}\) are performed at locations that are not easily accessible. The definition of larger values, such as \(\mathbf{1 5} \%\), saves machining time because contour areas that are not easily accessible are not machined completely.
- I: O-size X
- K: O-size Z
- Q: Type of approach (default: 0)
- 0: automatic (with B) - the control checks:
- Diagonal approach
- First \(X\), then \(Z\) direction
- Equidistant around the workpiece blank, taking the safety clearance into account
- Omission of the first contour elements if the starting position is inaccessible
- 1: First \(X\), then \(Z\)
- 2: First \(Z\), then \(X\)
- 3: No approach - tool is located near the starting point of the contour area
- H: Kind of liber.
- 3: Retract by safety clear.
- 6: \(X\) then \(Z\) to start pos.
- 7: \(Z\) then \(X\) to start pos.
- 8: with B-axis motion to start pos.


\section*{Dynamics:}
- AR: Minimum angle of incidence - minimum permissible angle of the tilting axis (range: \(-359.999^{\circ}<\mathbf{A R}<359.999^{\circ}\) )
- AN: Maximum angle of incidence - maximum permissible angle of the tilting axis (range: \(-359.999^{\circ}<\mathbf{A N}<359.999^{\circ}\) )

\section*{Clearance angle (reference: finished part contour)}
- U : Use of soft clearance angles - defines how the soft clearance angles IC and JC are used
The parameter Use of soft clearance angles allows you to adapt the motion dynamics of the cycle. Based on the defined clearance angles, \(\mathbf{U}\) influences the positioning of the tilting axis depending on the selected setting.
The parameter U Use of soft clearance angles provides the following settings options:
- 0: very hard
- 1: hard
- 2: medium
- 3: soft
- 4: very soft

The setting \(\mathbf{0}\) : very hard leads to large compensating movements of the tilting axis because the angular tolerance of the tool is smaller. In contrast, with the setting 4: very soft, the tilting axis performs small compensating movements because the angular tolerance of the tool is greater.
- IC: Primary clearance angle - soft: Desired clearance area in front of the cutting edge
- JC : Secondary clearance angle - soft: Desired clearance area behind the cutting edge
- KC: Primary clearance angle - hard: Safe clearance area in front of the cutting edge
- RC: Primary clearance angle - hard: Safe clearance area behind the cutting edge

The hard clearance angles that you have defined must be complied with during machining (do not go below the defined values). If the hard clearance angles defined for machining a contour cannot be complied with, the control will output an error message.
In addition to the hard clearance angles, you can use the soft clearance angles to define a desired angle range for machining. The control takes into account the soft clearance angles for path calculation. During machining the hard clearance angles are complied with where possible. The soft clearance angles do not have to be complied with during machining.


\section*{Strategy:}
- C: Cutting strategy - type of cut lines (cutting paths)
- 0: automatic - the control automatically combines transverse and longitudinal turning
- 1: longitudinal (outside)
- 2: transverse (front)
- 3: longitudinal (inside)
- 4: transverse (back)
- 5: parallel to blank
- EC: Cutting direction
- 0: Unidirectional - every cut is performed in the direction of contour definition
- 1: Bidirectional - the cuts are performed along the optimum cutting path with respect to the machining time, and can be performed in the direction or opposite to the direction of contour definition
- AS: Strategy for sequence - machining sequence for separate pockets
- 0: transverse (preferred) - the machining sequence is chosen so that the center of gravity of the workpiece is always as close to the chucking equipment as possible
- 1: longitudinal (preferred) - the machining sequence is chosen so that the moment of inertia of the workpiece is as low as possible
- SL: Oversize of tool holder - oversize for calculating collisions between the workpiece and the tool holder
- E: Fmax in compensating motion - speed limit during the compensation movement of the linear axes
- EW: Plunging feed rate - feed rate for plunging into the material in \(\mathrm{mm} / \mathrm{min}\)
- B. Contour calculation
- 0: Automatic
- 1: Tool left (G41)
- 2: Tool right(G42)


\section*{Simultaneous finishing G891 (option 54)}

G891 finishes the defined contour area simultaneously in three axes in one pass.
During machining, the cycle continuously adjusts the tool angle of inclination based on the following criteria:
- Optimum inclination angle relative to the contour
- Avoidance of collisions between the workpiece and collision bodies
This enables flexible machining of complex contours with a single tool.

In order to enable realistic collision monitoring through the cycle, you need to assign the corresponding tool holder to the tool being used.
The real holder must be within the defined holder dimensions.

In addition to the holder, the machine tool builder can also describe another component of the tilting axis as a collision object (e.g., the B-axis head). If this description is available as a 2-D view in the plane of rotation, then this object will be displayed in the 2-D simulation and will automatically be included in collision monitoring.

\section*{NOTICE}

\section*{Danger of collision!}

Collision monitoring is performed only in the two-dimensional machining plane \(X-Z\). The cycle does not check whether an area in the \(Y\) coordinate of the cutting edge, tool holder, or tilting body will lead to a collision.
- Verify the NC program in Single Block
- Limit the machining area

If the geometry of the cutting edge or collision monitoring requires an interruption of the cut, the machining operation is stopped and then resumed. The cycle uses turning tools and button tools. Recessing tools are not permitted in this cycle.
Further information: "Working with contour-based cycles", Page 354 The control calculates the inclinations of the tilting axis from the values entered for the minimum inclination angle, the maximum inclination angle, and the clearance angles (IC, JC, KC, and RC).

In machine parameter checkCuttingLength (no. 602322), you can define whether the control is to check the usable length of the cutting edge during finishing. For button tools, the default setting does not check the length of the cutting edge.

Parameters:
- ID: Auxiliary contour - ID number of the contour to be machined
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- NE not programmed: The contour element NS is machined in the direction of contour definition
- NS = NE programmed: The contour element NS is machined opposite to the direction of contour definition.
- V: Machine form elements (default: 0)

A chamfer/rounding arc is machined
- 0: At beginning and end
- 1: At beginning
- 2: At end
- 3: No machining
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- D: Omit elements (see figure)

Codes for omitting recesses and undercuts
\begin{tabular}{lll}
\hline G call & Function & D code \\
\hline G22 & Recess for sealing ring & 512 \\
\hline G22 & Recess for circlip & 1,024 \\
\hline G23 H0 & General recess & 256 \\
\hline G23 H1 & Relief turn & 2,048 \\
\hline G25 H4 & Undercut type U & 32,768 \\
\hline G25 H5 & Undercut type E & 65,536 \\
\hline G25 H6 & Undercut type F & 131,072 \\
\hline G25 H7 & Undercut type G & 262,144 \\
\hline G25 H8 & Undercut type H & 524,288 \\
\hline G25 H9 & Undercut type K & \(1,048,576\)
\end{tabular}

In order to omit multiple elements, you add the D codes from the table or use the \(D\) values from the graphic.
Example for omitting the undercut types \(\mathbf{E}\) and \(\mathbf{F}\) :
\(65.536+131.072=196.608\)
- Q: Type of approach (default: 0)
- 0: automatic (with B) - the control checks:
- Diagonal approach
- First X, then Z direction
- Equidistant around the workpiece blank, taking the safety clearance into account
- Omission of the first contour elements if the starting position is inaccessible
- 1: First \(X\), then \(Z\)
- 2: First \(Z\), then \(X\)
- 3: No approach - tool is located near the starting point of the contour area

\begin{tabular}{c|c|c|c|c|c|c|c|} 
\\
\hline
\end{tabular}

- H: Kind of liber.
- 3: Retract by safety clear.
- 4: No retraction motion (tool remains on the end coordinate)
- 5: Diagonal to start pos.
- 6: \(X\) then \(Z\) to start pos.
- 7: \(Z\) then \(X\) to start pos.
- 8: with \(B\)-axis motion to start pos.
- AC: B angle at starting point - inclined tilt angle at the beginning of the contour (range: \(0^{\circ}<\mathbf{A C}<360^{\circ}\) )
- ZC: B angle at end point - inclined tilt angle at the end of the
 contour (range: \(0^{\circ}<\mathbf{Z C}<360^{\circ}\) )

Dynamics:
- AR: Minimum angle of incidence - minimum permissible angle of the tilting axis (range: \(-359.999^{\circ}<\mathbf{A R}<359.999^{\circ}\) )
- AN: Maximum angle of incidence - maximum permissible angle of the tilting axis (range: -359.999 \(~<~ A N ~<~ 359.999 ~ ~) ~\)
- U : Use of soft clearance angles - defines how the soft clearance angles IC and JC are used
- 0: very hard
- 1: hard
- 2: medium
- 3: soft
- 4: very soft
- RB : Roll over - uniform wear of cutting edge by controlling the inclination angle
- 0: No
- 1: Yes


\section*{Clearance angle: (reference: finished part contour)}
- IC: Primary clearance angle - soft: Desired clearance area in front of the cutting edge
- JC : Secondary clearance angle - soft: Desired clearance area behind the cutting edge
- KC: Primary clearance angle - hard: Safe clearance area in front of the cutting edge
- RC: Primary clearance angle - hard: Safe clearance area behind the cutting edge


If you have defined hard clearance angles, they must be complied with during machining (do not go below the defined values). If the hard clearance angles defined for machining a contour cannot be complied with, the control will output an error message.
In addition to the hard clearance angles, you can use the soft clearance angles to define a desired angle range for machining. The control takes into account the soft clearance angles during path calculation and preferably performs machining within the defined angle range. The soft clearance angles do not have to be complied with during machining.
- O: Feed reduc. off (default: 0)
- 0: No (feed rate reduction is active)
- 1: Yes (feed rate reduction is not active)

If contour elements cannot be machined at the programmed feed rate due to their size, then the control reduces the feed rate during machining even if feedrate reduction is not active. This ensures dimensionally accurate production of contours.
With active feed-rate reduction, you only need a minimum number of spindle revolutions for machining a contour element.
Machine parameter fmur (no. 602321) enables you to define the minimum number of spindle revolutions for machining a contour element.
- B: Contour calculation
B. Contour calculation
- O: Automatic
- 1: Tool left (G41)
- 2: Tool right(G42)
- X: Cutting limit in X (diameter value; default: no cutting limit)
- Z: Cutting limit in Z (default: no cutting limit)
- A: Start angle (reference: \(Z\) axis; default: parallel to \(Z\) axis)

The line that is formed from the starting point of the contour area to be machined by using the Start angle must not intersect the contour of the finished part at any point.
- W: Depart.angle (reference: \(Z\) axis; default: orthogonal to \(Z\) axis) The line that is formed to the end point of the contour area to be machined by using the Depart. angle must not intersect the contour of the finished part at any point.
- SL: Oversize of tool holder - oversize for calculating collisions between the workpiece and the tool holder
- E: Fmax in compensating motion - speed limit during the compensation movement of the linear axes

\footnotetext{
(i)
- A G57 oversize enlarges the contour (also inside contours).
- A G58 oversize
- >0: Enlarges the contour
- <0: Reduces the contour
- G57/G58 oversizes are deleted after cycle end
}

\section*{Measuring path G809}

Cycle G809 performs a cylindrical measuring cut with the length defined in the cycle, moves to the breakpoint for measuring and stops the program. After the program was stopped, you can manually measure the workpiece.
Parameters:
- X: Start point \(X\)
- Z: Start point \(Z\)
- R: Length of measuring cut
- P: Measuring cut oversize
- I: Breakpoint Xi for measuring - incremental distance to starting point of measurement
- K: Breakpoint Zi for measuring - incremental distance to starting point of measurement
- ZS: Start point blank - collision-free approach for inside machining
- XE: Departure position X
- D: Additive correction (numbers: 1 to 16)
- V: Measuring cut counter - number of workpieces after which a measurement is performed
- Q: Mach. direction (default: 0)
- 0: -Z
- 1: +Z
- EC: Machining location
- 1: Outside
- -1: Inside
- WE: Type of approach
- 0: Simultaneously
- 1: First X, then Z
- 2: First Z, then \(X\)
- O: Approach angle

If an approach angle is entered, the cycle positions the tool over the starting point taking into account the safety clearance, and from there plunges at the specified angle to the diameter to be measured.

\subsection*{6.18 Contour definitions in the machining section}

\section*{Cycle end / simple contour G80}

By programming G80 (with parameters), a turning contour consisting of more than one element can be defined in one NC block. G80 (without parameters) ends a contour definition directly after a cycle.
Parameters:
- XS: Start point of contour in X (diameter value)
- ZS: Start point of contour in Z
- XE: Final point of contour in \(X\) (diameter value)
- ZE: Final point of contour in Z
- AC: Angle of first element (range: \(0^{\circ}<=\mathbf{A C}<90^{\circ}\) )

- WC: Angle of second element (range: \(0^{\circ}<=\mathbf{W C}<90^{\circ}\) )
- BS: -Chamfer/+radius at start
- WS: Angle for chamfer
- BE: -Chamfer/+radius at end
- WE: Angle for chamfer at contour end
- RC: Radius
- IC: Chamfer width
- KC: Chamfer width
- JC: Execution

- 1: Expanded contour
- EC: Type of contour
- 0: Rising contour
- 1: Plunging contour
- HC: 1: Transverse - contour direction for finishing
- 0: Longitudinal
- 1:Transverse

The control uses IC and KC internally to represent the chamfer/ rounding cycles.

Example: G80
\begin{tabular}{|l|l|}
\hline N1 T3 G95 F0.25 G96 S200 M3 \\
\hline N2 G0 X120 Z2 & \\
\hline N3 G810 P3 & \\
\hline N4 G80 XS60 ZS-2 XE90 ZE-50 BS3 BE-2 RC5 & \\
\hline N5 \(\ldots\) & \\
\hline N6 G0 X85 Z2 & \\
\hline N7 G810 P5 & \\
\hline N8 G0 X0 Z0 & \\
\hline N9 G1 X20 & \\
\hline N10 G1 Z-40 & \\
\hline N11 G80 & \\
\hline
\end{tabular}

\section*{Linear slot on front/rear face G301}

G301 defines a linear slot in a contour on the front or rear face. Program this figure in conjunction with G840, G845 or G846.
Parameters:
- XK: Center (in Cartesian coordinates)
- YK: Center (in Cartesian coordinates)
- X: Diameter - Center (in polar coordinates)
- C: Angle - Center (in polar coordinates)
- A: Angle to XK axis (default: \(0^{\circ}\) )
- K: Length
- B. Width

- P: Depth/Height - depth for pockets, height for islands
- \(\mathbf{P}<0\) : Pocket
- \(\mathbf{P}>0\) : Island

\section*{Circular slot on front/rear face G302/G303}

G302 and G303 define a circular slot in a contour on the front face/ rear face. Program this figure in conjunction with G840, G845 or G846.
- G302: Circular slot clockwise
- G303: Circular slot counterclockwise

Parameters:
- I: Center (in Cartesian coordinates)
- J: Center (in Cartesian coordinates)
- X: Diameter - Center (in polar coordinates)
- C: Angle - Center (in polar coordinates)
- A: Angle to XK axis (default: \(0^{\circ}\) )
- W: Final angle to XK axis (default: 0)
- B: Width
- P: Depth/Height - depth for pockets, height for islands
- \(\mathbf{P}<0\) : Pocket
- \(\mathbf{P}>0\) : Island


\section*{Full circle on front/rear face G304}

G304 defines a full circle in a contour on the front face/rear face. Program this figure in conjunction with G840, G845 or G846.
Parameters:
- XK: Center (in Cartesian coordinates)
- YK: Center (in Cartesian coordinates)
- X: Diameter - Center (in polar coordinates)
- C: Angle - Center (in polar coordinates)
- R: Radius
- P: Depth/Height - depth for pockets, height for islands
- \(\mathbf{P}<0\) : Pocket
- \(\mathbf{P}>0\) : Island

\section*{Rectangle on front/rear face G305}

G305 defines a rectangle in a contour on the front face/rear face. Program this figure in conjunction with G840, G845 or G846.
Parameters:
- XK: Center (in Cartesian coordinates)
- YK: Center (in Cartesian coordinates)
- X: Diameter - Center (in polar coordinates)
- C: Angle - Center (in polar coordinates)
- A: Angle to XK axis (default: \(0^{\circ}\) )
- K: Length
- B: Height of rectangle
- R: Chamf./round. (default: 0)
- \(\mathbf{R}>0\) : Radius of rounding arc
- \(\mathbf{R}<0\) : Chamfer width
- P: Depth/Height - depth for pockets, height for islands
- \(\mathbf{P}<0\) : Pocket
- \(\mathbf{P}>0\) : Island

\section*{Polygon on front/rear face G307}

G307 defines a polygon in a contour on the front face/rear face. Program this figure in conjunction with G840, G845 or G846.
Parameters:
- XK: Center (in Cartesian coordinates)
- YK: Center (in Cartesian coordinates)
- X: Diameter - Center (in polar coordinates)
- C: Angle - Center (in polar coordinates)
- A: Angle to XK axis (default: \(0^{\circ}\) )
- Q: Number edges
- K: +edge Ingth/-width a. flats
- K > 0: Edge length
- \(\mathbf{K}<0\) : Width across (Inside diameter)
- R: Chamf./round. (default: 0)
- \(\mathbf{R}>0\) : Radius of rounding arc
- \(\mathbf{R}<0\) : Chamfer width
- P: Depth/Height - depth for pockets, height for islands
- \(\mathbf{P}<0\) : Pocket
- \(\mathbf{P}>0\) : Island

\section*{Linear slot on lateral surface G311}

G311 defines a linear slot in a lateral-surface contour. Program this figure in conjunction with G840, G845 or G846.
Parameters:
- Z: Center
- CY: Center as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- C: Center (angle)
- A: Angle to \(\mathbf{Z}\) axis (default: \(0^{\circ}\) )
- K: Length
- B: Width

- P: Depth

\section*{Circular slot on lateral surface G312/G313}

G312 and G313 define a circular slot in a lateral-surface contour. Program this figure in conjunction with G840, G845 or G846.
Parameters:
- Z: Center
- CY: Center as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- C: Center (angle)
- R: Radius
- A: Start angle
- W: End angle (reference: Z axis)
- B: Width
- P: Depth


\section*{Full circle on lateral surface G314}

G314 defines a full circle in a lateral-surface contour. Program this figure in conjunction with G840, G845 or G846.
Parameters:
- Z: Center
- CY: Center as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- C: Center (angle)
- R: Radius
- P: Depth


\section*{Rectangle, surface G315}

G315 defines a rectangle in a lateral-surface contour. Program this figure in conjunction with G840, G845 or G846.
Parameters:
- Z: Center
- CY: Center as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- C: Center (angle)
- A: Angle to \(\mathbf{Z}\) axis (default: \(0^{\circ}\) )
- K: Length of rectangle
- B: Height of rectangle

- R: Chamf./round. (default: 0)
- \(\mathbf{R}>0\) : Radius of rounding arc
- \(\mathbf{R}<0\) : Chamfer width
- P: Depth

\section*{Eccentric polygon on lateral surface G317}

G317 defines a polygon in a lateral-surface contour. Program this figure in conjunction with G840, G845 or G846.
Parameters:
- Z: Center
- CY: Center as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- C: Center (angle)
- Q: Number edges
- A: Angle to \(Z\) axis (default: \(0^{\circ}\) )
- K: +edge Ingth/-width a. flats
- K > 0: Edge length
- K < 0: Width across (Inside diameter)
- R: Chamf./round. (default: 0)
- \(\mathbf{R}>0\) : Radius of rounding arc
- \(\mathbf{R}<0\) : Chamfer width
- P: Depth

\subsection*{6.19 Thread cycles}

\section*{Overview of thread cycles}
- G31 machines single threads, successions of threads and multi-start threads defined with G24-Geo, G34-Geo, or G37-Geo (FINISHED PART). G31 can also machine a threading contour defined directly after the cycle call and concluded by G80
Further information: "Universal tapping cycle G31", Page 398
- G32 cuts a simple thread in any desired direction and position Further information: "Single thread cycle G32", Page 403
- G33 conducts a single thread cut. The direction of the single thread cut is as desired
Further information: "Thread single path G33", Page 405
- G35 cuts a simple cylindrical metric ISO thread without run-out Further information: "Metric ISO thread G35", Page 407
- G352 cuts a tapered API thread

Further information: "Tapered API thread G352", Page 408

\section*{Handwheel superimposition}

If your machine features handwheel superimposition, you can overlap axis movements during thread cutting in a limited area:
- X direction: Maximum programmed thread depth depending on the current cutting depth
- Z direction: +/- a fourth of the thread pitch

Refer to your machine manual.
This function must be set up by your machine manufacturer.


Remember that position changes resulting from handwheel superimposition are no longer effective after the cycle end or the Last cut function!

\section*{Parameter V: Type of infeed}

With the \(\mathbf{V}\) parameter you define the type of infeed for thread cutting cycles.
The following infeed types are available:
- 0: Const. mach. X-section - the control reduces the cutting depth with each infeed so that the chip cross section, and therefore the removal rate, remain constant
- 1: Const. infeed - with each infeed the control uses the same cutting depth without exceeding the Max. approach I
- 2: EPL with distrib. of cuts - the control calculates the cutting depth for constant infeed from the Thread pitch F1 and Shaft speed constant S. If the multiple of the cutting depth does not correspond to the Thread depth, the control uses the Rem. cut depth for the first infeed. The control proportions the remaining cuts, i.e. it divides the last cutting depth into four partial cuts. The first cut is half the calculated cutting depth, the second is a quarter, and the third and fourth each are an eighth
- 3: EPL w/o distrib. of cuts - the control calculates the cutting depth for constant infeed from the Thread pitch F1 and constant shaft speed \(\mathbf{S}\). If the multiple of the cutting depth does not correspond to the Thread depth, the control uses the Rem. cut depth for the first infeed. All subsequent infeeds are constant and correspond to the calculated cutting depth
- 4: MANUALplus 4110 - the control executes the first infeed with the Max. approach I. To determine the subsequent cutting depths, the control uses the formula gt =2*| \(\mathbf{~ *} \mathbf{S R T}\) current no. of cuts, where gt is the absolute depth. Since the cutting depth is reduced with each infeed because the current number of cuts is increased accordingly by the value \(\mathbf{1}\), and if the cutting depth falls below the value given in Rem. cut depth R, the control uses the value defined here as the new constant cutting depth! If the multiple of the cutting depth does not correspond to the Thread depth, the control executes the last cut at the final depth
- 5: Constant infeed (4290) - with each infeed the control uses the same cutting depth where the cutting depth corresponds to the Max. approach I. If the multiple of the cutting depth does not correspond to the Thread depth, the control uses the remaining cutting depth for the first infeed.
- 6: Const. w/ distrib. (4290) - with each infeed, the control uses the same cutting depth where the cutting depth corresponds to the Max. approach I. If the multiple of the cutting depth does not correspond to the Thread depth, the control uses the Rem. cut depth for the first infeed. The control proportions the remaining cuts, i.e. it divides the last cutting depth into four partial cuts. The first cut is half the calculated cutting depth, the second is a quarter, and the third and fourth each are an eighth

\section*{Universal tapping cycle G31}

G31 machines single threads, successions of threads and multi-start threads defined with G24, G34 or G37-Geo. G31 can also machine a threading contour defined directly after the cycle call and concluded by G80.
Parameters:
- ID: Auxiliary contour - ID number of the contour to be machined
- NS: Contour start block no. - reference to basic element G1Geo (for successions of threads: block number of the first basic element)
- NE: Contour end block no. - reference to basic element G1Geo (for successions of threads: block number of the last basic element)
- O: Char.start/end - machine the form element
- 0: No machining
- 1: At beginning
- 2: At end
- 3: At beginning and end
- 4: Only chamfer/rounding (requirement: the contour section consists of a single element)
- J: Thread orientation - reference orientation
- From 1st contour element
- 0: Longitudinal
- 1: Plane
- I: Max. approach

No input and \(\mathbf{V}=0\) (constant chip cross section): \(\mathbf{I}=1 / 3 * \mathbf{F}\)
- IC: Number of cuts - The infeed is calculated from IC and \(\mathbf{U}\) Usable with:
- \(\mathbf{V}=0\) : Constant chip cross section
- \(\mathbf{V}=1\) : Constant infeed
- B: Run-in Igth
(No input: The run-in length is determined from the contour) If this is not possible, the value is calculated from the kinematic parameters. The thread contour is extended by the value \(\mathbf{B}\).
- P: Overflow length

No input: The run-out length is determined from the contour. If this is not possible, the value is calculated. The thread contour is extended by the value \(\mathbf{P}\).
- A: Approach ang. (range: \(-60^{\circ}<\mathbf{A}<60^{\circ}\); default: \(30^{\circ}\) )
- V: Type of infeed
- 0: Const. mach. X-section
- 1: Const. infeed
- 2: EPL with distrib. of cuts
- 3: EPL w/o distrib. of cuts
- 4: MANUALplus 4110
- 5: Constant infeed (4290)
- 6: Const. w/ distrib. (4290)
- H: Type of offset for smoothing the thread flanks (default: 0)
- 0: Without offset
- 1: From left
- 2: From right
- 3: Alternating left/right
- R: Remaining cut depth ( \(\mathrm{V}=4\) )
- C: Start angle
- BD: Outside=0 / Inside=1 - external/internal thread (no meaning
for closed contours)
- 0: External thread
- 1: Internal thread
- F: Thread pitch
- U: Thread depth
- K: Thread runout length
- K > 0 Run-out
- K < 0 Run-in
- D: No.gears
- Q: Number no-load.
- E: Variable gr. (default: 0)

Increases/decreases the pitch per revolution by E.


If a thread has been defined with G24, G34 or G37-Geo, the parameters \(\mathbf{F}, \mathbf{U}, \mathbf{K}\) and \(\mathbf{D}\) are not relevant.

Slop.length B: The slide requires a run-in distance at the thread starting point in order to accelerate to the programmed contouring feed rate before starting the actual thread.
Overflow length \(\mathbf{P}\) : The slide needs overtravel at the end of the thread to decelerate. Remember that the paraxial line \(\mathbf{P}\) needs overtravel, even with an oblique thread run-out.
You can calculate the minimum Slop.length and Overflow length using the following equation:
- Slop.length: \(\mathbf{B}=0.75 *(\mathbf{F} * \mathbf{S})^{2} / \mathbf{a} * 0.66+0.15\)
- Overflow length: \(\mathbf{P}=0.75 *(\mathbf{F} * \mathbf{S})^{2} / \mathbf{a} * 0.66+0.15\)
- F: Thread pitch in mm/revolution
- S: Spindle speed in revolutions/second
- a: Acceleration in \(\mathrm{mm} / \mathrm{s}^{2}\) (see axis data)

Determination of external/internal thread:
- G31 with contour reference-closed contour: External or internal thread is defined by the contour. BD has no meaning
- G31 with contour reference-open contour: External or internal thread is defined by \(\mathbf{B D}\). If \(\mathbf{B D}\) is not programmed, the contour is used to determine whether a thread is external or internal.
- If the thread contour is programmed directly after the cycle, BD determines whether the thread is an internal or external thread. If \(\mathbf{B D}\) is not programmed, the algebraic sign of \(\mathbf{U}\) is evaluated (as in the MANUALplus 4110).
- \(\mathbf{U}>0\) : Internal thread
- \(\mathbf{U}<0\) : External thread

Start angle \(\mathbf{C}\) : At the end of the Slop.length \(\mathbf{B}\), the spindle is at the Start angle \(\mathbf{C}\) position. Therefore, if the thread is to start exactly at the Start angle, position the tool by the Slop.length (run-in length)or by the Slop. length plus a multiple of the thread pitch-in front of the beginning of the thread.
The individual thread cuts are calculated from the Thread depth,
Max. approach I, and Type of infeed V.

- NC stop - the control retracts the tool from the thread groove and then stops all tool movements
Lift-off distance in the threadLiftOff machine parameter (no. 601804)
- Feed rate override is not effective
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ NOT/CE } \\
\hline Danger of collision! \\
The control does not check for collisions between the Overflow \\
length \(\mathbf{P}\) and the workpiece contour (e.g., contour of the finished \\
part). Danger of collision during machining! \\
Test Overflow length \(\mathbf{P}\) in Simulation submode using the \\
graphic
\end{tabular}

Example: G31
\begin{tabular}{|l|l|l|l|l|}
\hline FINISHED PART & \\
\hline N 2 G0 X16 Z0 & \\
\hline N 3 G52 P2 H1 & \\
\hline N 4 G95 F0.8 & \\
\hline N 5 G1 Z-18 & \\
\hline N 6 G25 H7 I1.15 K5.2 R0.8 W30 BF0 BP0 & \\
\hline N 7 G37 Q12 F2 P0.8 A30W30 & \\
\hline N 8 G1 X20 BR-1 BF0 BP0 & \\
\hline N 9 G1 Z-23.8759 BR0 & \\
\hline N 10 G52 G95 & \\
\hline N 11 G3 Z-41.6241 l-14.5 BR0 \\
\hline N 12 G1 Z-45 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline N 13 G1 X30 BR2 & \\
\hline N 14 G1 Z-50 BR0 & \\
\hline N 15 G2 X36 Z-71 I12 BR5 & \\
\hline N 16 G1 X40 Z-80 & \\
\hline N 17 G1 Z-99 & \\
\hline N 18 G1 Z-100 & Thread \\
\hline N 19 G1 X50 & \\
\hline N 20 G1 Z-120 & \\
\hline N 21 G1 X0 & Thread \\
\hline N 22 G1 ZON 23 G1 X16 BR-1.5 & \\
\hline -•• & \\
\hline AUXILIARY CONTOUR ID"Thread" & \\
\hline N 24 G0 X20 Z0 & \\
\hline N 25 G1 Z-30 & \\
\hline N 26 G1 X30 Z-60 & \\
\hline N 27 G1 Z-100 & \\
\hline MACHINING & \\
\hline N 32 G14 Q0 M108 & \\
\hline N 33 T9 G97 S1000 M3 & \\
\hline N 34 G47 P2 & \\
\hline N 35 G31 NS16 NE17 J0 IC5 B5 P0 V0 H1BD0 F2 K10 & \\
\hline N 36 G0 X110 Z20 & \\
\hline N 38 G47 M109 & \\
\hline & G80 contours can be inside or outside \\
\hline N 43 G31 IC4 B4 P4 A30 V0 H2 C30 BD0 F6U3 K-10 Q2 & \\
\hline \[
\text { N } 44 \text { G0 X80 Z0 }
\] & \\
\hline N 45 G1 Z-20 & \\
\hline N 46 G1 X100 Z-40 & \\
\hline N 47 G1 Z-60 & \\
\hline N 48 G80 & \\
\hline & External thread regardless of the value defined in BD \\
\hline N 49 G0 X50 Z-30 & \\
\hline N 50 G31 NS16 NE17 O0 IC2 B4 P0 A30 V0H1 C30 BD1 F2 U1 K10 & \\
\hline N 51 G0 Z10 X50 & \\
\hline & Auxiliary contours can be inside or outside if they are not closed \\
\hline N 52 G0 X50 Z-30 & \\
\hline N 53 G31 ID"Thread" 00 IC2 B4 P0 A30 V0H1 C30 BD1 F2 U1 K10 & \\
\hline N 60 G0 Z10 X50 & \\
\hline
\end{tabular}

Cycle run:
1 Calculates the number of cutting passes
2 Moves diagonally to the internal starting point at rapid traverse. This point lies in front of the thread starting point by the
Slop.length B. If \(\mathbf{H}=1\) (or 2,3 ), the current offset is taken into account for calculating the internal starting point. The internal starting point is calculated on the basis of the tool tip
3 Accelerates to feed rate (line \(\mathbf{B}\) )
4 Executes a thread cut
5 Decelerates (line \(\mathbf{P}\) )
6 Retracts to safety clearance, returns at rapid traverse, and approaches for next pass. For multiple threads, the same rate of cut is used for each thread turn, before the next infeed motion is executed
7 Repeats 3 to 6 until the complete thread has been cut
8 Executes air cuts
9 Returns to starting point

\section*{Single thread cycle G32}

G32 cuts a single thread in any desired direction and position (longitudinal, tapered or transverse thread; internal or external thread).
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ NOTICE } \\
\hline Danger of collision! \\
If you modify the angle of infeed or the thread depth, the control \\
shifts the position of the thread in an axial direction. In this case, \\
the tool no longer hits any existing thread grooves and the thread \\
flanks are destroyed. Danger of collision during reworking! \\
Be sure to compensate only the tool, not the thread \\
parameters
\end{tabular}

Parameters:
- X: Final point (diameter value)
- Z: Final point
- XS: Starting diameter
- ZS: Starting position Z
- BD: Outside=0 / Inside=1 - external/internal thread
- 0: External thread
- 1: Internal thread
- F: Thread pitch
- U: Thread depth (default: no input)
- Outside thread: \(\mathbf{U}=0.6134\) * \(\mathbf{F} \mathbf{1}\)
- Inside thread: \(\mathbf{U}=-0.5413\) * \(\mathbf{F}\) 1
- I: Max. approach
- IC: Number of cuts - The infeed is calculated from IC and U Usable with:
- \(\mathbf{V}=0\) : Constant chip cross section
- \(\mathbf{V}=1\) : Constant infeed

- V: Type of infeed
- 0: Const. mach. X-section
- 1: Const. infeed
- 2: EPL with distrib. of cuts
- 3: EPL w/o distrib. of cuts
- 4: MANUALplus 4110
- 5: Constant infeed (4290)
- 6: Const. w/ distrib. (4290)
- H: Type of offset for smoothing the thread flanks (default: 0)
- 0: Without offset
- 1: From left
- 2: From right
- 3: Alternating left/right
- WE: Lift off method with K=0 (default: 0)
- 0: GO at end
- 1: Lift-off in thread
- K: Thread runout length at thread end point (default: 0)
- W: Taper angle (range: \(-45^{\circ}<\mathbf{W}<45^{\circ}\) )

Position of the taper thread with respect to longitudinal or transverse axis:
- \(\mathbf{W}>0\) : Rising contour (in machining direction)
- \(\mathbf{W}<0\) : Falling contour
- C: Start angle
- A: Approach ang. (range: \(-60^{\circ}<\mathbf{A}<60^{\circ}\); default: \(30^{\circ}\) )
- R: Remaining cut depth (default: 0)
- \(\mathbf{0}\) : The last cut is divided into four partial cuts: \(1 / 2,1 / 4,1 / 8\) and 1/8
- 1: Without distribution of remaining cuts
- E: Variable gr. (default: 0)

Increases/decreases the pitch per revolution by E. (has currently no effect)
- Q: Number no-load.
- D: No.gears
- J: Thread orientation - reference orientation
- 0: Longitudinal
- 1: Transverse

The cycle calculates the thread from the Final point of the thread, the Thread depth, and the current tool position.
First infeed = Remainder of the division of thread depth/cutting depth.
Transverse thread: Use G31 with contour definition for cutting transverse threads.


\section*{Example: G32}
\begin{tabular}{|l|l|l|}
\hline\(\ldots\) & \\
\hline N1 T4 G97 S800 M3 & \\
\hline N2 G0 X16 Z4 & \\
\hline N3 G32 X16 Z-29 F1.5 & \\
\hline.. & & \\
\hline
\end{tabular}

\section*{Cycle run:}

1 Calculates the number of cutting passes
2 Executes a thread cut
3 Returns at rapid traverse and approaches for next pass
4 Repeats 2 to 3 until the complete thread has been cut
5 Executes air cuts
6 Returns to starting point

\section*{Thread single path G33}

G33 conducts a single thread cut. The direction of the single thread path is as desired (longitudinal, tapered or transverse threads; internal or external threads). You can make successive threads by programming G33 several times in succession.
Position the tool in front of the thread by the Slop.length B if the slide must accelerate to the feed rate. And remember the Overflow length \(\mathbf{P}\) before the Final point of the thread if the slide needs to decelerate.
Parameters:
- X: Final point (diameter value)
- Z: Final point
- F: Feed per rot. (thread pitch)
- B: Run-in lgth
- P: Overflow length
- C: Start angle
- H: Ref. direction for the thread pitch (default: 0)
- 0: Feed rate on the \(Z\) axis (for longitudinal and taper threads up to a max. angle of \(+45^{\circ} /-45^{\circ}\) to the \(Z\) axis)
- 1: Feed rate on the \(X\) axis (for transverse and taper threads up to a max. angle of \(+45^{\circ} /-45^{\circ}\) to the \(X\) axis)
- 3: Contouring feed rate

- E: Variable gr. (default: 0)

Increases/decreases the pitch per revolution by E. (has currently no effect)
- I: Retraction distance \(X\) - retraction path for cycle stop in the thread (incremental value)
- K: Retraction distance \(Z\) - retraction path for cycle stop in the thread (incremental value)
Slop.length B: The slide requires a run-in length to the thread starting point in order to accelerate to the programmed contouring feed rate before starting the actual thread. Default:
cfgAxisProperties/SafetyDist
Overflow length \(\mathbf{P}\) : The slide needs an overtravel at the end of the thread to decelerate. Remember that the paraxial line \(\mathbf{P}\) needs overtravel, even with an oblique thread run-out.
- \(\mathbf{P}=0\) : Start of a successive thread
- \(\mathbf{P}>0\) : End of a successive thread

Start angle \(\mathbf{C}\) : At the end of the Slop.length \(\mathbf{B}\), the spindle is at the Start angle C position.

- NC stop - the control retracts the tool from the thread groove and then stops all tool movements Lift-off distance in the threadLiftOff machine parameter (no. 601804)
- Feed rate override is not effective
- Create thread with G95 (feed rate per revolution)

Example: G33
\begin{tabular}{|l|l|}
\hline\(\ldots\) & \\
\hline N1 T5 G97 S1100 G95 F0.5 M3 & \\
\hline N2 G0 X101.84 Z5 & \\
\hline N3 G33 X120 Z-80 F1.5 P0 & Thread single path \\
\hline N4 G33 X140 Z-122.5 F1.5 & \\
\hline N5 G0 X144 & \\
\hline .. & \\
\hline
\end{tabular}

Cycle run:
1 Accelerates to feed rate (line B)
2 Moves at feed rate to the Final point of the thread - Overflow length \(P\)
3 Decelerates (line \(\mathbf{P}\) ) and remains at the Final point of the thread

\section*{Activating handwheel during G33}

With the G923 code, you can activate the handwheel in order to make compensations during a thread cut. In the G923 code, you define limits within which traverse with the handwheel is possible.
Parameters:
- X: Max. positive offset - limit in \(+X\)
- Z: Max. positive offset - limit in \(+Z\)
- U: Max. negative offset - limit in \(-X\)
- W: Max. negative offset - limit in -Z
- H: Ref. direction
- \(\mathbf{H}=0\) : Longitudinal thread
- \(\mathbf{H}=1\) : Transverse thread
- Q: Sort of thread
- \(\mathbf{Q}=1\) : Right-hand thread
- \(\mathbf{Q}=2\) : Left-hand thread

\section*{Metric ISO thread G35}

G35 cuts a longitudinal thread (internal or external thread). The thread starts at the current tool position and ends at the Final point X, Z.
From the tool position relative to the Final point of the thread, the control automatically determines whether an internal or external thread is to be cut.
Parameters:
- X: Final point (diameter value)
- Z: Final point
- F: Thread pitch
- I: Max. approach

No input: I is calculated from the thread pitch and the thread depth
- Q: Number no-load.
- V: Type of infeed
- 0: Const. mach. X-section
- 1: Const. infeed
- 2: EPL with distrib. of cuts
- 3: EPL w/o distrib. of cuts
- 4: MANUALplus 4110
- 5: Constant infeed (4290)
- 6: Const. w/ distrib. (4290)


NC stop - the control retracts the tool from the thread groove and then stops all tool movements Lift-off distance in the threadLiftOff machine parameter (no. 601804)
- When programming an internal thread, it is advisable to preset the Thread pitch F since the diameter of the longitudinal element is not the thread diameter. If you have the control calculate the thread pitch automatically, slight deviations may occur.

Example: G35
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \%35.nc & \\
\hline N1 T5 G97 S1500 M3 & \\
\hline N2 G0 X16 Z4 & \\
\hline N3 G35 X16 Z-29 F1.5 & \\
\hline END & \\
\hline
\end{tabular}

Cycle run:
1 Calculates the number of cutting passes
2 Executes a thread cut
3 Returns at rapid traverse and approaches for next pass
4 Repeats 2 to 3 until the complete thread has been cut
5 Executes air cuts
6 Returns to starting point

\section*{Tapered API thread G352}

G352 cuts a tapered single or multi-start API thread. The Thread depth decreases at the thread run-out.
Parameters:
- X: Final point (diameter value)
- Z: Final point
- XS: Starting diameter
- ZS: Starting position Z
- F: Thread pitch
- U: Thread depth
- \(\mathbf{U}>0\) : Internal thread
- \(\mathbf{U}<=0\) : External thread (lateral surface or front face)
- \(\mathbf{U}=+999\) or -999 : Thread depth is calculated
- I: Max. approach
- V: Type of infeed
- 0: Const. mach. X-section
- 1: Const. infeed
- 2: EPL with distrib. of cuts
- 3: EPL w/o distrib. of cuts
- 4: MANUALplus 4110
- 5: Constant infeed (4290)
- 6: Const. w/ distrib. (4290)
- H: Type of offset for smoothing the thread flanks (default: 0)
- 0: Without offset
- 1: From left
- 2: From right
- 3: Alternating left/right
- A: Approach ang. (range: \(-60^{\circ}<\mathbf{A}<60^{\circ}\); default: \(30^{\circ}\) )
- A < 0: Infeed on left thread flank
- A > 0: Infeed on right thread flank
- R: Remaining cut depth ( \(\mathrm{V}=4\) )
- W: Taper angle (range: \(-45^{\circ}<\mathbf{W}<45^{\circ}\) )
- WE: Run-out angle (range: \(0^{\circ}<\mathbf{W E}<90^{\circ}\) )
- D: No.gears
- Q: Number no-load.
- C: Start angle

Internal or external threads: See algebraic sign of \(\mathbf{U}\) Number of cutting passes: The first cut is performed at the cutting depth defined for I and is reduced with each cut until the tool reaches the remaining cutting depth \(\mathbf{R}\).
Handwheel superposition (provided that your machine is equipped accordingly): The superposition is limited to the following range:
- X direction: Depending on the current cutting depth—without exceeding the starting and end points of the thread
- Z direction: Maximal 1 thread groove-without exceeding the starting and end points of the thread
Definition of taper angle:
- XS/ZS, X/Z
- XS/ZS, Z, W
- ZS, X/Z, W
(1) NC stop - the control retracts the tool from the thread groove and then stops all tool movements Lift-off distance in the threadLiftOff machine parameter (no. 601804)
- When programming an internal thread, it is advisable to preset the Thread pitch F since the diameter of the longitudinal element is not the thread diameter. If you have the control calculate the thread pitch automatically, slight deviations may occur.

\section*{Example: G352}

\section*{\%352.nc}

N1 T5 G97 S1500 M3

\section*{N2 G0 X13 Z4}

N3 G352 X16 Z-28 XS13 ZS0 F1.5 U-999WE12
END
Cycle run:
1 Calculates the number of cutting passes
2 Executes a thread cut
3 Returns at rapid traverse and approaches for next pass
4 Repeats 2 to 3 until the complete thread has been cut
5 Executes air cuts
6 Returns to starting point

\section*{Contour thread G38}

Cycle G38 machines a thread whose form does not correspond to the tool form. Use a recessing or button tool for machining.
Describe the contour of the thread profile as an Auxiliary contour that you call in the ID parameter. The position of the Auxiliary
contour must correspond to the start position of the thread cuts.
You can select the entire Auxiliary contour or just segments in the cycle.
If you wish, you can describe the thread path in another Auxiliary contour and call it in the HID parameter. This Auxiliary contour may contain approach and departure paths, but no circular arcs or roundings.
Parameters:
- ID: Thread profile - ID number of the contour to be machined, defining the thread profile
- NS: Starting block no. of contour - beginning of contour section
- NE: Contour end block no. - end of contour section
- HID: Thread path - ID number of the contour to be machined, defining the thread path
- RH: Type of workpiece blank
- 0: The workpiece blank corresponds to a paraxial envelope around the AUXILIARY CONTOUR of the thread profile (ID).
- 1:The workpiece blank corresponds to the thread profile AUXILIARY CONTOUR that is closed on the shortest path (ID).
- Q: Roughing/Finish - process variants
- 0: Roughing: The contour is roughed out line by line at maximum infeed \(\mathbf{I}\) and \(\mathbf{K}\). A programmed oversize (G58 or G57) is taken into account.
- 1: Finishing: The turn of the thread is created in individual cuts along the contour. Define the distances between the individual thread cuts on the contour with \(\mathbf{I}\) and \(\mathbf{K}\).
- X: Final point (diameter value)
- Z: Final point
- H: Kind of liber. - Sequence for approaching the departing position (XE and ZE) after every machining step
- XE: Departure position X
- ZE: Departure position Z
- F: Thread pitch
- I: Max. approach
- If \(\mathbf{Q}=0\) : Plunging depth during roughing
- If \(\mathbf{Q}=1\) : Distance between the finishing cuts on circular arcs
- K: Max. approach
- If \(\mathbf{Q}=0\) : Offset width for roughing
- If \(\mathbf{Q}=1\) : Distance between the finishing cuts on a straight line
- J: Thread runout length
- C: Start angle
- O: Type of infeed - For checking the proportioning of cuts in the simulation
- 0: Rapid traverse
- 1: Feed rate

Notes:
- Program the contour of the thread profile (ID) at the position at which the tool is to start the thread grooves.
- Use the start point of the thread path (HID) to define the profile reference point (ID-REF). The profile reference point (ID-REF) serves as a leading point of the thread profile (ID) along the thread path (HID). During machining, the distance between the profile reference point (ID-REF) and the thread profile (ID) remains unchanged.
- If you shift the position of the thread profile (ID), you also have to shift the start point (ID-REF) of the thread path (HID). Otherwise, there will be an incorrect result.
- Depending on the desired result, the thread path (HID) may differ from the finished part contour.
- If no thread path is programmed as an Auxiliary contour (HID), the parameters \(\mathbf{X}, \mathbf{Z}\) and \(\mathbf{J}\) define the thread path. As soon as you program the thread path as an Auxiliary contour (HID), the parameters \(\mathbf{X}, \mathbf{Z}\) and \(\mathbf{J}\) have no effect anymore.
- By defining the value \(\mathbf{1}\) in the parameter RH: Type of workpiece blank, you can avoid unnecessary air cuts on taper threads.

Example: G38




\subsection*{6.20 Parting cycle}

\section*{Cut-off cycle G859}

Cycle G859 parts the workpiece. A Chamf./round. (optional) can be machined on the outside diameter. At the end of cycle, the tool retracts along the plane surface and returns to the starting point. You can define a feed rate reduction, which becomes effective as soon as the position I is reached.
Parameters:
- X: Cut-off diam.
- Z: Cut-off posit.
- XE: Inner diameter (pipe)
- B: -B cham./+B round.
- \(\mathbf{B}>0\) : Radius of rounding
- B \(<0\) : Width of chamfer
- D: Speed limitation - maximum speed during parting
- I: Diam. feed reduction - Limit diameter above which the workpiece will be machined with a reduced feed rate
- I is defined: The control switches to feed rate after this position
- I is not defined: No feed rate reduction
- E: Reduced feed
- SD: Speed limit from I up
- U: Collector active diameter (machine-dependent)
- K: Retraction distance after parting - Lift off the tool laterally from the plane surface before retraction

\section*{Example: G859}
\begin{tabular}{l} 
\%859.nc \\
N1 T3 G95 F0.23 G96 S248 M3 \\
N2 G0 X60 Z-28 \\
N3 G859 X50 Z-30 I10 XE8 E0.11 B1 \\
\hline END
\end{tabular}

\subsection*{6.21 Undercut cycles}

\section*{Undercut cycle G85}

G85 machines undercuts according to DIN 509 E, DIN 509 F, and DIN 76 (thread undercut).
Parameters:
- X: Diameter
- Z: Target point
- I: Grind. o./Depth (radius value)
- DIN 509 E, F: Finishing oversize (default: 0)
- DIN 76: Undercut depth
- K: Undercut lgth. and type of undercut
- K no input: DIN 509 E
- K = 0: DIN 509 F
- K > 0: Undercut width for DIN 76
- E: Reduc. Feed for machining the undercut (default: active feed rate)
G85 machines the adjoining cylinder if you position the tool to
Destinat. point \(\mathbf{X}\) in front of the cylinder.
The undercut rounding arcs are executed with the radius 0.6 * \(\mathbf{I}\).
Parameters for Undercut DIN 509 E
\begin{tabular}{llll}
\hline Diameter & \(\mathbf{I}\) & \(\mathbf{K}\) & \(\mathbf{R}\) \\
\hline\(<=18\) & 0.25 & 2 & 0.6 \\
\hline\(>18-80\) & 0.35 & 2.5 & 0.6 \\
\hline\(>80\) & 0.45 & 4 & 1
\end{tabular}

Parameters for Undercut DIN 509 F
\begin{tabular}{lllll}
\hline Diameter & \(\mathbf{I}\) & \(\mathbf{K}\) & \(\mathbf{R}\) & \(\mathbf{P}\) \\
\hline\(<=18\) & 0.25 & 2 & 0.6 & 0.1 \\
\hline\(>18-80\) & 0.35 & 2.5 & 0.6 & 0.2 \\
\hline\(>80\) & 0.45 & 4 & 1 & 0.3
\end{tabular}

- I = Undercut depth
- K = Undercut length
- \(R=\) Undercut radius
- \(P\) = Surf. depth
- Undercut angle according to Undercut DIN 509 E and Undercut DIN 509 F: \(15^{\circ}\)
- Face angle according to Undercut DIN 509 F: \(8^{\circ}\)
```

(1)
- Tool radius compensation is inactive
- Oversizes are not offset

```

Example: G85


\section*{Undercut DIN 509 E with cylinder machining G851}

G851 machines the adjoining cylinder, the undercut, and the plane surface. It also machines a cylinder start chamfer if you enter at least one of the parameters Cut-in length or Cut-in radius. Parameters:
- I: Undercut depth (default: value from standard table)
- K: Undercut length (default: standard table)
- W: Undercut angle (default: value from standard table)
- R: Undercut radius (default: standard table)
- B: Cut-in length (no input: no chamfer machined at start of cylinder)

- RB: 1st cut radius (no input: 1st cut radius is not machined)
- WB: Cut-in angle (default: \(45^{\circ}\) )
- E: Reduc. Feed for machining the undercut (default: active feed rate)
- H: Type of departure
- 0: To starting point
- 1: Plane surface end
- U: Grind. overs. for the area of the cylinder (default: 0)

Parameters that are not programmed are automatically calculated by the control due to the cylinder diameter from the standard table.


Further information: "Undercut cycle G85", Page 414

\section*{Blocks following the cycle call}
\begin{tabular}{l|l|}
\hline N.. G851 I.. K.. W.. & Cycle call \\
\hline N.. G0 X.. Z.. & Corner point of cylinder start chamfer \\
\hline N.. G1 Z.. & Undercut corner \\
\hline N.. G1 X.. & End point on plane surface \\
\hline N.. G80 & End of contour definition \\
\hline
\end{tabular}
- Undercuts can only be executed in orthogonal, paraxial contour corners along the longitudinal axis
- Cutter radius compensation is active
- Oversizes are not offset

Example: G851
\begin{tabular}{|l|l|l|}
\hline \%851.nc \\
\hline N1 T2 G95 F0.23 G96 S248 M3 \\
\hline N2 G0 X60 Z2 & \\
\hline N3 G851 I3 K15 W30 R2 B5 RB2 WB30 E0.2 H1 & \\
\hline N4 G0 X50 Z0 & \\
\hline N5 G1 Z-30 & \\
\hline N6 G1 X60 & \\
\hline N7 G80 & \\
\hline END & \\
\hline
\end{tabular}

\section*{Undercut DIN 509 F with cylinder machining G852}

G852 machines the adjoining cylinder, the undercut, and the plane surface. It also machines a cylinder start chamfer if you enter at least one of the parameters Cut-in length or Cut-in radius.
Parameters:
- I: Undercut depth (default: value from standard table)
- K: Undercut length (default: standard table)
- W: Undercut angle (default: value from standard table)
- R: Undercut radius (default: standard table)
- P: Trav.dpth (default: value from standard table)
- A: Face angle (default: standard table)
- B: Cut-in length (no input: no chamfer machined at start of cylinder)
- RB: 1st cut radius (no input: 1st cut radius is not machined)
- WB: Cut-in angle (default: \(45^{\circ}\) )
- E: Reduc. Feed for machining the undercut (default: active feed rate)
- H: Type of departure
- 0: To starting point
- 1: Plane surface end
- U: Grind. overs. for the area of the cylinder (default: 0)


Parameters that are not programmed are automatically calculated by the control based on the cylinder diameter from the standard table.
Further information: "Undercut cycle G85", Page 414

\section*{Blocks following the cycle call}
\begin{tabular}{|l|l|}
\hline N.. G852 I.. K.. W.. & Cycle call \\
\hline N.. G0 X.. Z.. & Corner point of cylinder start chamfer \\
\hline N.. G1 Z.. & Undercut corner \\
\hline N.. G1 X.. & End point on plane surface \\
\hline N.. G80 & End of contour definition \\
\hline
\end{tabular}
- Undercuts can only be executed in orthogonal, paraxial contour corners along the longitudinal axis
- Cutter radius compensation is active
- Oversizes are not offset

Example: G852
\begin{tabular}{|l|l|l|l|}
\hline \%852.nc & \\
\hline N1 T2 G95 F0.23 G96 S248 M3 & \\
\hline N2 G0 X60 Z2 & \\
\hline N3 G852 I3 K15 W30 R2 P0.2 A8 B5 RB2 WB30E0.2 H1 \\
\hline N4 G0 X50 Z0 & \\
\hline N5 G1 Z-30 & \\
\hline N6 G1 X60 & \\
\hline N7 G80 & \\
\hline END & & \\
\hline
\end{tabular}

\section*{Undercut DIN 76 with cylinder machining G853}

G853 machines the adjoining cylinder, the undercut, and the plane surface. It also machines a cylinder start chamfer if you enter at least one of the parameters Cut-in length or Cut-in radius. Parameters:
- FP: Thread pitch
- I: Undercut depth (default: value from standard table)
- K: Undercut length (default: standard table)
- W: Undercut angle (default: value from standard table)
- R: Undercut radius (default: standard table)
- P: Allowance

- \(\mathbf{P}\) is not defined: The undercut is machined in one pass
- \(\mathbf{P}\) is defined: Division into pre-turning and finish-turning - \(\mathbf{P}=\) longitudinal oversize; the transverse oversize is preset to 0.1 mm
- B: Cut-in length (no input: no chamfer machined at start of cylinder)
- RB: 1st cut radius (no input: 1st cut radius is not machined)
- WB: Cut-in angle (default: \(45^{\circ}\) )
- E: Reduc. Feed for machining the undercut (default: active feed rate)

- H: Type of departure
- 0: To starting point
- 1: Plane surface end

Parameters that are not programmed are automatically calculated by the control from the standard table
- FP from the diameter
- I, K, W and R from the FP (Thread pitch)

Blocks following the cycle call
\begin{tabular}{|l|l|}
\hline N.. G853 FP.. I.. K.. W.. & Cycle call \\
\hline N.. G0 X.. Z.. & Corner point of cylinder start chamfer \\
\hline N.. G1 Z.. & Undercut corner \\
\hline N.. G1 X.. & End point on plane surface \\
\hline N.. G80 & End of contour definition \\
\hline
\end{tabular}

> (1) Undercuts can only be executed in orthogonal, paraxial contour corners along the longitudinal axis
- Cutter radius compensation is active
- Oversizes are not offset

Example: G853
\begin{tabular}{|l|}
\hline \%853.nc \\
\hline N1 T2 G95 F0.23 G96 S248 M3 \\
\hline N2 G0 X60 Z2 \\
\hline N3 G853 FP1.5 147 K15 W30 R2 P1 B5 RB2WB30 E0.2 H1 \\
\hline N4 G0 X50 Z0 \\
\hline N5 G1 Z-30 \\
\hline N6 G1 X60 \\
\hline N7 G80 \\
\hline END \\
\hline
\end{tabular}

\section*{Undercut type U G856}

G856 machines an undercut and finishes the adjoining plane surface. A Chamf./round. (optional) can be machined. Tool position at the end of the cycle: Cycle starting point. Parameters:
- I: Undercut diameter (default: standard table)
- K: Undercut length (default: standard table)
- B: -B cham./+B round.
- \(\mathbf{B}>0\) : Radius of rounding
- \(\mathbf{B}<0\) : Width of chamfer


\section*{Blocks following the cycle call}
\begin{tabular}{|l|l|}
\hline N.. G856 I.. K.. & Cycle call \\
\hline N.. G0X.. Z.. & Undercut corner \\
\hline N.. G1X.. & End point on plane surface \\
\hline N.. G80 & End of contour definition \\
\hline
\end{tabular}

1
- Undercuts can only be executed in orthogonal, paraxial contour corners along the longitudinal axis
- Cutter radius compensation is active
- Oversizes are not offset
- If the cutting width of the tool is not defined, the control assumes that the tool's cutting width equals \(\mathbf{K}\).

\section*{Example: G856}
\begin{tabular}{|l|l|l|}
\hline \%856.nc & \\
\hline N1 T2 G95 F0.23 G96 S248 M3 & \\
\hline N2 G0 X60 Z2 & \\
\hline N3 G856 147 K7 B1 & \\
\hline N4 G0 X50 Z-30 & \\
\hline N5 G1 X60 & \\
\hline N6 G80 & \\
\hline END & \\
\hline
\end{tabular}

\section*{Undercut type H G857}

G857 machines an undercut. The end point is determined from the Plunging angle in accordance with Undercut form H.
Tool position at the end of the cycle: Cycle starting point
Parameters:
- X: Edge (diameter value)
- Z: Edge
- K: Undercut lgth.
- R: Radius (no input: no circular element; tool radius = undercut radius)
- W: Plunging angle (default: W is calculated)

- Undercuts can only be executed in orthogonal, paraxial contour corners along the longitudinal axis
- Cutter radius compensation is active
- Oversizes are not offset

Example: G857
\begin{tabular}{|l|}
\hline \%857.nc \\
\hline N1 T2 G95 F0.23 G96 S248 M3 \\
\hline N2 G0 X60 Z2 \\
\hline N3 G857 X50 Z-30 K7 R2 W30 \\
\hline END \\
\hline
\end{tabular}

\section*{Undercut type K G858}

G858 machines an undercut. This cycle performs only one linear cut at an angle of \(45^{\circ}\). The resulting contour geometry therefore depends on the tool that is used.
Tool position at the end of the cycle: Cycle starting point Parameters:
- X: Edge (diameter value)
- Z: Edge
- I: Undercut depth

- Undercuts can only be executed in orthogonal, paraxial contour corners along the longitudinal axis
- Cutter radius compensation is active
- Oversizes are not offset

\section*{Example: G858}
\(\square\)
\%858.nc
N1 T9 G95 F0.23 G96 S248 M3
N2 G0 X60 Z2
N3 G858 X50 Z-30 10.5
END

\subsection*{6.22 Drilling cycles}

\section*{Overview of drilling and boring cycles and contour reference}

The drilling and boring cycles can be used with driven or stationary tools.
Drilling and boring cycles:
- G71 Simple drilling Further information: "Simple drilling G71", Page 423
- G72 Boring/cnt-sink (only with contour reference (ID, NS) Further information: "Boring/cnt-sink G72", Page 425
- G73 Tapping (not with G743-G746) Further information: "Tapping G73", Page 426
- G74 Deep-hole drilling Further information: "Deep boring G74", Page 428
- G36 Tapping - single path (direct position input) Further information: "Tapping G36 - Single path", Page 422
- G799 Thread milling (direct position input) Further information: "Thread milling axial G799", Page 439
Pattern definitions:
- G743 Pattern linear face for drilling and milling cycles Further information: "Linear pattern on front face G743", Page 433
- G744 Pattern linear surf for drilling and milling cycles Further information: "Linear pattern on lateral surface G744", Page 436
- G745 Pattern circ. face for drilling and milling cycles Further information: "Circular pattern on front face G745", Page 434
- G746 Pattern circ. surf. for drilling and milling cycles Further information: "Circular pattern on lateral surface G746", Page 437
Possibilities of defining a contour reference:
- Path definition directly in the cycle
- Reference to a hole or pattern definition in the contour section (ID, NS) for machining on the front face or lateral surface
- Centric hole in the turning contour (G49) Further information: "Bore hole (centric) G49-Geo", Page 303
- Pattern definition in the block before the cycle call (G743-G746)

\section*{Tapping G36 - Single path}

G36 cuts axial and radial threads using driven or stationary tools. Depending on \(\mathbf{X} / \mathbf{Z}, \mathbf{G} 36\) decides whether a radial or axial hole will be machined.
Move to the starting point before G36. G36 returns to the starting position after having cut the thread.
Parameters:
- X: Diameter - end point of radial hole
- Z: Target point
- F: Feed per rot. (thread pitch)
- B: Run-in lgth for spindle and feed drive synchronization
- S: Return speed (default: tapping speed)
- P: Chip breaking depth

\section*{- I: Return distance}

Types of taps:
- Stationary tap: Main spindle and feed drive are synchronized
- Driven tap: Driven tool and feed drive are synchronized
- NC STOP interrupts the tapping operation
- NC START resumes the tapping operation
- Use the feed rate override function for speed changes

- Spindle override is not effective
- Use a floating tap holder if the driven tool is not controlled, e.g. by a ROD encoder

If you interrupt program run during a tapping cycle, you can manually retract the tool from the hole in the \(Z\) axis. The control moves the spindle on a path matching the traverse. If the optional machine parameter CfgBackTrack (no. 122000) is active, use the Start blck search soft key to resume program run after the manual traverse.

Example: G36
\begin{tabular}{|l|l|l|}
\hline N1 T5 G97 S1000 G95 F0.2 M3 & & \\
\hline N2 G0 X0 Z5 & & \\
\hline N3 G71 Z-30 & \\
\hline N4 G14 Q0 & \\
\hline N5 T6 G97 S600 M3 & \\
\hline N6 G0 X0 Z8 & Tapping \\
\hline N7 G36 Z-25 F1.5 B3 & \\
\hline P. & \\
\hline
\end{tabular}

\section*{Simple drilling G71}

G71 is used for axial and radial bore holes using driven or stationary tools.

Parameters:
- ID: Hole dimensions - name of the hole definition
- NS: Starting block no. of contour - beginning of contour section
- Reference to the contour of the hole (G49, G300 or G310-Geo)
- No input: Single hole without contour description
- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)
- XS: Start point of radial hole (diameter value)
- ZS: Start point of axial hole
- XE: Final point of radial hole (diameter value)
- ZE: Final point of axial hole
- K: Boring depth (alternative to XE and ZE)
- A: Tap/Drill. Ith (default: 0)
- V: Bore variant - feed rate reduction 50 \% (default: 0)
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- RB: Return plane (default: retract to starting position or to safety clearance; diameter value with radial holes and holes in the YZ plane)
- E: Period of dwell for chip breaking at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- DF: Retraction feed rate
- BS: Start elem.no. - number of the first hole to be machined in a pattern
- BE: End: elem.no. - number of the last hole to be machined in a pattern
- H: Brake off (1) (default: 0)
- 0: Spindle brake on
- 1: Spindle brake off
- Single hole without contour description: Program XS or ZS as alternative.
- Hole with contour description: Do not program XS, ZS
- Hole pattern: NS refers to the hole contour, and not the definition of the pattern

Example: G71
\begin{tabular}{|l|l|}
\hline\(\ldots\) & \\
\hline N1 T5 G97 S1000 G95 F0.2 M3 & \\
\hline N2 G0 X0 Z5 & \\
\hline N3 G71 Z-25 A5 V2 & Drilling \\
\hline\(\ldots\) & \\
\hline
\end{tabular}

Parameter combinations for single holes without contour description
\begin{tabular}{ll}
\hline XS, XE & ZS, ZE \\
\hline\(X S, K\) & ZS, K \\
\hline\(X E, K\) & ZE, K
\end{tabular}

Feed rate reduction:
- Indexable insert drill and twist drill with \(180^{\circ}\) drilling angle
- A feed rate reduction is only effective if the Tap/Drill. Ith A parameter has been programmed
- Other drills
- Beginning of hole: Feed rate reduction as programmed in \(\mathbf{V}\)
- End of hole: Reduction as of hole end point-length of first cut -safety clearance
- Length of first cut = tool tip
- Set-up clearance

Further information: "Safety clearance", Page 349
Cycle run:
1 Approach behavior:
- Hole without contour definition: Tool is located at the starting point (safety distance from the bore hole)
- Hole with contour definition: Tool moves at rapid traverse to the starting point
- RB not programmed: Moves up to the safety clearance
- RB programmed: Moves to the position RB and then to the safety clearance
2 Spot drilling. Feed rate reduction depending on \(\mathbf{V}\)
3 Drill hole at feed rate.
4 Through drilling. Feed rate reduction depending on \(\mathbf{V}\)
5 Retraction at rapid traverse or feed rate, depending on \(\mathbf{D}\)
6 Retraction position:
- RB not programmed: Retraction to the starting point
- RB programmed: Retraction to the position RB

\section*{Boring/cnt-sink G72}

G72 is used for holes with contour definition (individual hole or hole pattern).
Use G72 for the following axial and radial drilling functions using driven or stationary tools:
- Boring
- Countersinking
- Reaming
- NC drilling
- Centering

Parameters:
- ID: Hole dimensions - name of the hole definition
- NS: Starting block no. of contour - beginning of contour section
- Reference to the contour of the hole (G49, G300 or G310-Geo)
- RB: Return plane (default: retract to starting position or to safety clearance; diameter value with radial holes and holes in the YZ plane)
- E: Period of dwell for chip breaking at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- DF: Retraction feed rate
- BS: Start elem.no. - number of the first hole to be machined in a pattern
- BE: End: elem.no. - number of the last hole to be machined in a pattern
- H: Brake off (1) (default: 0)
- 0: Spindle brake on
- 1: Spindle brake off

Cycle run:
1 Moves to the starting point at rapid traverse, depending on RB:
- RB not programmed: Moves up to the safety clearance
- RB programmed: Moves to the position RB and then to the safety clearance
2 Drills at reduced feed rate (50\%)
3 Moves at feed rate to end of hole
4 Retraction at rapid traverse or feed rate, depending on \(\mathbf{D}\)
5 Retraction position:
- RB not programmed: Retraction to the starting point
- RB programmed: Retraction to the position RB

Hole pattern: NS refers to the hole contour, and not the definition of the pattern.

\section*{Tapping G73}

G73 cuts axial and radial threads using driven or stationary tools. Parameters:
- ID: Hole dimensions - name of the hole definition
- NS: Starting block no. of contour - beginning of contour section
- Reference to the contour of the hole (G49, G300 or G310-Geo)
- No input: Single hole without contour description
- XS: Start point of radial hole (diameter value)
- ZS: Start point of axial hole
- XE: Final point of radial hole (diameter value)
- ZE: Final point of axial hole
- K: Boring depth (alternative to XE and ZE)
- F: Thread pitch (prevails over the contour description)
- B: Run-in Igth
- S: Return speed (default: tapping speed)
- J: Retract length when using floating tap holders (default: 0)
- RB: Return plane (default: back to start position)
- P: Chip breaking depth
- I: Return distance
- BS: Start elem.no. - number of the first hole to be machined in a pattern
- BE: End: elem.no. - number of the last hole to be machined in a pattern
- H: Brake off (1) (default: 0)
- 0: Spindle brake on
- 1: Spindle brake off

The starting position is calculated from the safety clearance and the Slop.length B.

Parameter combinations for single holes without contour description
\begin{tabular}{ll}
\hline XS, XE & ZS, ZE \\
\hline\(X S, K\) & ZS, K \\
\hline\(X E, K\) & ZE, K
\end{tabular}

Retract length J: Use this parameter for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed Thread pitch, and the Retract length. The nominal pitch is somewhat smaller than the Thread pitch of the tap. During tapping, the tap is pulled away from the chuck by the Retract length. With this method, you can achieve higher service life of the taps.
(i)
- Hole pattern: NS refers to the hole contour, and not the definition of the pattern
- Single hole without contour description: Program XS or ZS as alternative
- Hole with contour description: Do not program XS, ZS.
- The NC STOP key interrupts the tapping operation
- The NC START key resumes the tapping operation
- Use the feed rate override function for speed changes
- Spindle override is not effective
- Use a floating tap holder if the driven tool is not controlled, e.g. by a ROD encoder

Cycle run:
1 Moves at rapid traverse to the starting point:
- RB not programmed: Moves up to the safety clearance
- RB programmed: Moves to the position RB and then to the safety clearance
2 Moves along Slop.length B at feed rate (synchronization of spindle and feed drives)
3 Cuts the thread
4 Retraction position:
- RB not programmed: Retraction to the starting point
- RB programmed: Retraction to the position RB
(i)

If you interrupt program run during a tapping cycle, you can manually retract the tool from the hole in the \(Z\) axis. The control moves the spindle on a path matching the traverse.
If the optional machine parameter CfgBackTrack
(no. 122000) is active, use the Start blck search soft key to resume program run after the manual traverse.

\section*{Deep boring G74}

G74 is used for axial and radial holes in several stages using driven or stationary tools.
Parameters:
- ID: Hole dimensions - name of the hole definition
- NS: Starting block no. of contour - beginning of contour section
- Reference to the contour of the hole (G49, G300 or G310-Geo)
- No input: Single hole without contour description
- XS: Start point of radial hole (diameter value)
- ZS: Start point of axial hole
- XE: Final point of radial hole (diameter value)
- ZE: Final point of axial hole
- K: Boring depth (alternative to XE and ZE)
- P: 1. Boring depth
- I: Reducing value (default: 0)
- B: Return distance (default: to starting point of hole)
- J: Minimum hole depth (default: 1/10 of \(\mathbf{P}\) )
- R: inside Safety clearance
- A: Tap/Drill. Ith (default: 0)
- V: Bore variant - feed rate reduction 50 \% (default: 0)
- 0: Without reduction
- 1: At end of the hole
- 2: At start of the hole
- 3: At start \& end of hole
- RB: Return plane (default: retract to starting position or to safety clearance; diameter value with radial holes and holes in the YZ plane)
- E: Period of dwell for chip breaking at end of hole (default: 0)
- D: Retraction type
- 0: Rapid traverse
- 1: Feed rate
- DF: Retraction feed rate
- BS: Start elem.no. - number of the first hole to be machined in a pattern
- BE: End: elem.no. - number of the last hole to be machined in a pattern
- H: Brake off (1) (default: 0)
- 0: Spindle brake on
- 1: Spindle brake off

\section*{Example: G74}
\begin{tabular}{|l|l|}
\hline N1 M5 & \\
\hline N2 T4 G197 S1000 G195 F0.2 M103 & \\
\hline N3 M14 & \\
\hline N4 G110 C0 & \\
\hline N5 G0 X80 Z2 & \\
\hline N6 G745 XK0 YK0 Z2 K80 Wi90 Q4 V2 & \\
\hline N7 G74 ZS-40 R2 P12 I2 B0 J8 & \\
\hline N8 M15 & \\
\hline P. & \\
\hline
\end{tabular}

\section*{Parameter combinations for single holes without contour} description
\begin{tabular}{ll}
\hline XS, XE & ZS, ZE \\
\hline\(X S, K\) & ZS, K \\
\hline\(X E, K\) & ZE, K
\end{tabular}

The cycle is used for:
- Single hole without contour description
- Holes with contour definition (individual hole or hole pattern)
1. Boring depth \(\mathbf{P}\) is used for the first pass. For each further drilling pass, the depth will be reduced by the Reducing value I, but the depth will not fall below the Min.drill.depth J. After each pass, the drill is retracted either by the Return distance \(\mathbf{B}\) or to the starting point of the hole. If the inside Safety clearance \(\mathbf{R}\) is defined, the tool is positioned to this distance at rapid traverse inside the hole.
Feed rate reduction:
- Indexable insert drill and twist drill with \(180^{\circ}\) drilling angle
- A feed rate reduction is only effective if the Tap/Drill. Ith A parameter has been programmed
- Other drills
- Beginning of hole: Feed rate reduction as programmed in V
- End of hole: Reduction as of hole end point-length of first cut -safety clearance
- Length of first cut = tool tip
- Set-up clearance Further information: "Safety clearance", Page 349
(i)
- Single hole without contour description: Program XS or ZS as alternative
- Hole with contour description: Do not program XS, ZS
- Hole pattern: NS refers to the hole contour, and not the definition of the pattern
- A feed rate reduction at end goes into effect only at the last drilling step

Cycle run:
1 Approach behavior:
- Hole without contour definition: Tool is located at the starting point (safety distance from the bore hole)
- Hole with contour definition: Tool moves at rapid traverse to the starting point
- RB not programmed: Moves up to the safety clearance
- RB programmed: Moves to the position RB and then to the safety clearance
2 Spot drilling. Feed rate reduction depending on \(\mathbf{V}\)
3 Drill hole at feed rate.
4 Through drilling. Feed rate reduction depending on V
5 Retraction at rapid traverse or feed rate, depending on \(\mathbf{D}\)
6 Retraction position:
- RB not programmed: Retraction to the starting point
- RB programmed: Retraction to the position RB

\section*{Bore milling G75}

G75 is used for machining or deburring axial and radial bore holes or hole patterns with a milling cutter. The milling cutter can also be used to machine counterbores or enlarge holes.
Parameters:
- ID: Hole dimensions - name of the hole definition
- NS: Starting block no. of contour - beginning of contour section
- Reference to the contour of the hole (G49-Geo, G300-Geo,G310-Geo, G71 or G73)
- No input: single hole without contour description
- O: Machining operation:
- 0: Roughing
- 1: Finishing
- 2: Roughing and finishing
- 3: Deburring
- B: Milling depth (default: depth from the contour description)
- P: Max. approach (default: milling in one infeed)
- U: Overlap factor - overlap of milling paths \(=\mathbf{U}\) * milling diameter (default: 0.5)

- H: Direction
- 0: Up-cut
- 1: Climb
- I: O-size X
- K: O-size Z
- F: Approach feed for plunging (default: active feed rate)
- RB: Return plane (default: retract to starting position or to safety clearance; diameter value with radial holes and holes in the YZ plane)
- W: Plunging angle in infeed direction
- WB: Diameter of the helix


Programming notes:
- Only the contour description (ICP) for the \(C\) axis or \(Y\) axis is used for bore milling.
- NS refers to the hole contour, and not the definition of the pattern.
- If this cycle is used with the \(C\) axis, it machines funnelshaped oval contours on the lateral surface, and not circles. Circles are machined when the \(Y\) axis is used.
Further information: "Units G75 Bore milling Y",
Page 239
- An active mirror function does not influence the type of milling defined in the cycle.
- Note that if the infeed distance is too large, the tool or the workpiece may be damaged.

\section*{Example: G75}
\begin{tabular}{|l|l|l|}
\hline N7 G300 XK30 YK25 B16 P30 W180 & & \\
\hline ... & & \\
\hline N8 M14 & & \\
\hline N9 T3 & & \\
\hline N10 G197 S1250 G195 F0.2 M103 & \\
\hline N11 M108 & \\
\hline N12 G110 C0 & Bore milling \\
\hline N13 G0 X50 Z5 & \\
\hline N14 G147 K2 & \\
\hline N15 G75 NS7 P10 H1 W15 & \\
\hline N16 G47 M109 & \\
\hline N17 G14 Q0 & \\
\hline . . & \\
\hline
\end{tabular}

Cycle run:
1 Cutter moves at rapid traverse to the starting point
- RB not programmed: moves up to the safety clearance
- RB programmed: moves to the position RB and then to the safety clearance
2 The tool mills in a helix from the current position to the first plunging depth at the programmed feed rate
3 When the drilling depth has been reached, the tool moves along helical paths to the outside until it reaches the programmed hole diameter
4 Finally, the tool moves by a full circle to remove the material left.
5 Repeats 2 to 3 if the maximum infeed \(\mathbf{P}\) does not correspond to the drilling depth
6 Retraction position:
- RB not programmed: retraction to the starting point
- RB programmed: retraction to the position RB

\section*{Linear pattern on front face G743}

Cycle G743 is used to machine linear drilling or milling patterns in which the individual features are arranged at a regular spacing on the face.
If you have not specified the Final point ZE, the drilling/milling cycle of the next NC block is used as a reference
Using this principle, you can combine pattern definitions with
- Drilling cycles (G71, G74, G36)
- The milling cycle for a linear slot (G791)
- The contour milling cycle with free contour (G793)

Parameters:
- XK: Start point (in Cartesian coordinates)
- YK: Start point (in Cartesian coordinates)
- ZS: Start point of drilling/milling operation
- ZE: Final point of drilling/milling operation
- X: Start point (in polar coordinates)
- C: Start angle (angle, in polar coordinates)
- A: Pattern ang. (reference: XK axis)
- I: Final point of pattern (in Cartesian coordinates)
- li: Final point - pattern distance (in Cartesian coordinates)
- J: Final point of pattern (in Cartesian coordinates)
- Ji: Final point - pattern distance (in Cartesian coordinates)
- R: Distance to first/last hole
- Ri: Length - Incremental distance
- Q: Number of holes

Parameter combinations for defining the starting point and the pattern positions:
- Starting point of pattern:
- XK, YK
- X, C
- Pattern positions:
- I, J and Q
- \(\mathbf{I}, \mathbf{J i}\) and \(\mathbf{Q}\)
- R, A and \(\mathbf{Q}\)
- Ri, Ai and \(\mathbf{Q}\)

\section*{Example: G743}
\begin{tabular}{|l|l|l|}
\hline \%743.nc \\
\hline N1 T7 G197 S1200 G195 F0.2 M104 \\
\hline N2 M14 & \\
\hline N3 G110 C0 & \\
\hline N4 G0 X100 Z2 & \\
\hline N5 G743 XK20 YK5 A45 Ri30 Q2 & \\
\hline N6 G791 X50 C0 ZS0 ZE-5 P2 F0.15 & \\
\hline N7 M15 & \\
\hline END & \\
\hline
\end{tabular}

Example: Sequence of commands
\begin{tabular}{|l|l|}
\hline N.. G743 XK.. YK.. ZS.. ZE.. I.. J.. Q.. & \\
\hline . . & \\
\hline N.. G7mple drilling pattern \\
\hline N.. G74 ZE.. P.. I.. & \\
\hline ... & \\
\hline & \\
\hline N.. G7illing pattern with deep-hole drilling \\
\hline N.. G791 K.. A.. Z.. & \\
\hline ... & \\
\hline
\end{tabular}

\section*{Circular pattern on front face G745}

Cycle G745 is used to machine drilling or milling patterns in which the individual features are arranged at a regular spacing in a circle or circular arc on the face.
If you have not specified the Final point \(\mathbf{Z E}\), the drilling/milling cycle of the next NC block is used as a reference
Using this principle, you can combine pattern definitions with:
- Drilling cycles (G71, G74, G36)
- The milling cycle for a linear slot (G791)
- The contour milling cycle with free contour (G793)

Parameters:

- XK: Center (in Cartesian coordinates)
- YK: Center (in Cartesian coordinates)
- ZS: Start point of drilling/milling operation
- ZE: Final point of drilling/milling operation
- X: Diameter - Center (in polar coordinates)
- C: Angle - Center (in polar coordinates)
- K: Diameter - pattern diameter
- A: Start angle - position of the first figure (reference: positive \(X\) axis; default: \(0^{\circ}\) )
- W: Final angle - position of the last figure (reference: positive \(X\) axis; default: \(360^{\circ}\) )
- Wi: End angle - Angle increment
- Q: Number of holes
- V: Rotation dir. (default: 0)
- \(\mathbf{V}=0\), without \(\mathbf{W}\) : Figures are arranged on a full circle
- \(\mathbf{V}=0\), with \(\mathbf{W}\) : Figures are arranged on the longer circular arc
- \(\mathbf{V}=0\), with \(\mathbf{W i}\) : The algebraic sign of Wi defines the direction ( \(\mathbf{W i}<0\) : clockwise)
- \(\mathbf{V}=1\), with \(\mathbf{W}\) : Clockwise
- \(\mathbf{V}=1\), with \(\mathbf{W i}\) : Clockwise (algebraic sign of \(\mathbf{W i}\) has no effect)
- \(\mathbf{V}=2\), with \(\mathbf{W}\) : Counterclockwise
- \(\mathbf{V}=2\), with Wi: Counterclockwise (algebraic sign of Wi has no effect)
Parameter combinations for defining the center of the pattern and the pattern positions:
- Center point of pattern:
- XK, YK
- X, C
- Pattern positions:
- A, W and \(\mathbf{Q}\)
- \(\mathbf{A}, \mathbf{W i}\) and \(\mathbf{Q}\)

\section*{Example: G745}
\begin{tabular}{|l|l|l|}
\hline \%745.nc & \\
\hline N1 T7 G197 S1200 G195 F0.2 M104 & \\
\hline N2 M14 & \\
\hline N3 G110 C0 & \\
\hline N4 G0 X100 Z2 & \\
\hline N5 G745 XK0 YK0 K50 A0 Q3 & \\
\hline N6 G791 K30 A0 ZS0 ZE-5 P2 F0.15 & \\
\hline N7 M15 & \\
\hline END & \\
\hline
\end{tabular}

Example: Sequence of commands
\begin{tabular}{|l|l|}
\hline N.. G745 XK.. YK.. ZS.. ZE.. A.. W.. Q.. & \\
\hline Simple drilling pattern \\
\hline .. & \\
\hline N.. G745 XK.. YK.. ZS.. A.. W.. Q.. & \\
\hline N.. G74 ZE.. P.. I.. & \\
\hline ... & \\
\hline N.. G745 XK.. YK.. ZS.. ZE.. A.. W.. Q.. & \\
\hline N.. G791 K.. A.. Z.. & \\
\hline ... & \\
\hline
\end{tabular}

\section*{Linear pattern on lateral surface G744}

Cycle G744 is used to machine linear drilling patterns or milling patterns in which the individual features are arranged at a regular spacing on the lateral surface.
Parameter combinations for defining the starting point and the pattern positions:
- Starting point of pattern: Z, C
- Pattern positions:
- \(\mathbf{W}\) and \(\mathbf{Q}\)
- Wi and \(\mathbf{Q}\)

If you have not specified the Final point XE, the drilling/milling cycle or the figure definition of the next NC block is used as a reference.


Using this principle, you can combine pattern definitions with:
- Drilling cycles (G71, G74, G36)
- or milling cycles (figure definitions with G314, G315, G317)

Parameters:
- XS: Start point of drilling/milling operation (diameter value)
- Z: Start point of pattern (in polar coordinates)
- XE: Final point of drilling/milling operation (diameter value)
- ZE: Final point of pattern (default: Z)
- C: Start angle (in polar coordinates)
- W: Final angle of pattern (no input: holes/figures are arranged on the lateral surface at regular spacing)
- Wi: End angle - Angle increment
- Q: Number of holes
- A: Angle - orientation angle of the pattern
- R: Length - distance between first and last position (reference: unrolled lateral surface using XS)
- Ri: Length - distance to next position (reference: unrolled lateral surface using XS)

\section*{Example: G744}
\begin{tabular}{|l|l|l|}
\hline \%744.nc \\
\hline N1 T7 G197 S1200 G195 F0.2 M104 & & \\
\hline N2 M14 & \\
\hline N3 G110 C0 & \\
\hline N4 G0 X110 Z2 & \\
\hline N5 G744 XS102 Z-10 ZE-35 C0 W270 Q5 & \\
\hline N6 G71 XS102 K7 & \\
\hline N7 M15 & \\
\hline End, return to start M30END & \\
\hline
\end{tabular}

\section*{Example: Sequence of commands}
\begin{tabular}{|l|l|}
\hline N.. G744 Z.. C.. XS.. XE.. ZE.. W.. Q.. & Simple drilling pattern \\
\hline ... & \\
\hline N.. G744 Z.. C.. XS.. XE.. ZE.. W.. Q.. & Drilling pattern with deep-hole drilling \\
\hline N.. G74 XE.. P.. I.. & \\
\hline ... & \\
\hline N.. G744 Z.. C.. XS.. XE.. ZE.. W.. Q.. & \\
\hline N.. G792 K.. A.. XS.. & \\
\hline ... & \\
\hline
\end{tabular}

\section*{Circular pattern on lateral surface G746}

Cycle G746 is used to machine drilling patterns or milling patterns in which the individual features are arranged at a regular spacing in a circle or circular arc on the lateral surface.
Parameter combinations for defining the center of the pattern and the pattern positions:
- Center of pattern: Z, C
- Pattern positions:
- \(\mathbf{W}\) and \(\mathbf{Q}\)
- Wi and \(\mathbf{Q}\)


If you have not specified the Final point XE, the drilling/milling cycle or the figure definition of the next NC block is used as a reference.
Using this principle, you can combine pattern definitions with:
- Drilling cycles (G71, G74, G36)
- or milling cycles (figure definitions with G314, G315, G317) Parameters:
- Z: Center (in polar coordinates)
- C: Angle - center point (in polar coordinates)
- XS: Start point of drilling/milling operation (diameter value)
- XE: Final point of drilling/milling operation (diameter value)
- K: Diameter - pattern diameter
- A: Start angle - position of the first hole/figure
- W: Final angle - position of the last hole/figure
- Wi: End angle - Angle increment
- Q: Number of holes
- V: Rotation dir. (default: 0)
- \(\mathbf{V}=0\), without \(\mathbf{W}\) : Figures are arranged on a full circle
- \(\mathbf{V}=0\), with \(\mathbf{W}\) : Figures are arranged on the longer circular arc
- \(\mathbf{V}=0\), with \(\mathbf{W i}\) : The algebraic sign of Wi defines the direction ( \(\mathbf{W i}<0\) : clockwise)
- \(\mathbf{V}=1\), with \(\mathbf{W}\) : Clockwise
- \(\mathbf{V}=1\), with \(\mathbf{W i}\) : Clockwise (algebraic sign of \(\mathbf{W i}\) has no effect)
- \(\mathbf{V}=2\), with \(\mathbf{W}\) : Counterclockwise
- \(\mathbf{V}=2\), with Wi: Counterclockwise (algebraic sign of Wi has no effect)

Example: G746
\begin{tabular}{|l|l|}
\hline \%746.nc & \\
\hline N1 T6 G197 S1200 G195 F0.2 M104 & \\
\hline N2 M14 & \\
\hline N3 G110 C0 & \\
\hline N4 G0 X110 Z2 & \\
\hline N5 G746 Z-40 C0 K40 Q8 & \\
\hline N6 G71 XS102 K7 & \\
\hline N7 M15 & \\
\hline END & \\
\hline
\end{tabular}

\section*{Example: Sequence of commands}
\begin{tabular}{|c|c|}
\hline & Simple drilling pattern \\
\hline N.. G746 Z.. C.. XS.. XE.. K.. A.. W.. Q.. & \\
\hline . . & \\
\hline & Drilling pattern with deep-hole drilling \\
\hline N.. G746 Z.. C.. XS.. K.. A.. W.. Q.. & \\
\hline N.. G74 XE.. P.. I.. & \\
\hline . . & \\
\hline & Milling pattern with linear slot \\
\hline N.. G746 Z.. C.. XS.. K.. A.. W.. Q.. & \\
\hline N.. G792 K.. A.. XS.. & \\
\hline \[
\ldots
\] & \\
\hline
\end{tabular}

\section*{Thread milling axial G799}

G799 mills a thread in existing holes.
Place the tool at the center of the hole before calling G799. The cycle positions the tool to the end point of the thread inside the hole. Then, the tool approaches at Apprch angle \(\mathbf{R}\) and mills the thread. With each rotation, the tool executes an infeed movement by the Thread pitch \(\mathbf{F}\). Then, the cycle retracts the tool and returns it to the Start pt. Z. The \(\mathbf{V}\) parameter allows you to define whether the thread is to be milled in one rotation or, with single-point tools, in multiple rotations.
Parameters:
- ID: Milling contour - name of the milling contour
- NS: Block number of contour - reference to the contour description
- I: Thread diameter
- Z: Start pt. Z
- K: Thread depth
- R: Approach radius
- F: Thread pitch
- J: Direction of thread:
- 0: Right-hand thread
- 1: Left-hand thread

- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- V: Milling method
- 0: One revolution - the thread is milled in a 360-degree helix
- 1: Two or more revolutions - the thread is milled in several helix paths (single-point tool)
(i)

Use thread-milling tools for cycle G799.

Example: G799
\begin{tabular}{|l|l|l|}
\hline \%799.nc \\
\hline N1 T9 G195 F0.2 G197 S800 \\
\hline N2 G0 X100 Z2 & \\
\hline N3 M14 & \\
\hline N4 G110 Z2 C45 X100 & \\
\hline N5 G799 I12 Z0 K-20 F2 J0 H0 & \\
\hline N6 M15 & \\
\hline END & \\
\hline
\end{tabular}

\subsection*{6.23 C-axis commands}

\section*{Reference diameter G120}

G120 determines the Reference diameter of the unrolled lateral surface. Program G120 when using CY for G110 to G113. G120 is a modal function.
Parameters:
- X: Diameter

Example: G120


\section*{Datum shift in C axis G152}

G152 defines an absolute datum for the C axis (reference: Reference point, C axis). The datum is valid until the end of the program.
Parameters:
- C: Angle - spindle position of new C-axis datum

Example: G152
\begin{tabular}{|l|l|}
\hline\(\ldots\) & \\
\hline N1 M5 & \\
\hline N2 T7 G197 S1010 G193 F0.08 M104 & \\
\hline N3 M14 & \\
\hline N4 G152 C30 & C-axis datum \\
\hline N5 G110 C0 & \\
\hline N6 G0 X122 Z-50 & \\
\hline N7 G71 X100 & \\
\hline N8 M15 & \\
\hline\(\ldots\) & \\
\hline
\end{tabular}

\section*{Standardize C axis G153}

G153 resets a traverse angle \(>360^{\circ}\) or \(<0^{\circ}\) to an angle between \(0^{\circ}\) and \(360^{\circ}\)-without moving the C axis.
(i) G153 is only used for lateral-surface machining. An automatic modulo \(360^{\circ}\) function is carried out on the face.

\section*{Short path in C G154}

G154 defines that the C axis moves on the shorter path during positioning.

Parameters:
- H: Traverse on shorter path On/Off
- 0: OFF
- 1: ON

\section*{Example: G154}
\begin{tabular}{|l|l|}
\hline\(\ldots\) & \\
\hline N1 G110 C0 & \\
\hline N2 G154 H1 & \\
\hline N3 G110 C350 & Traverse path \(-10^{\circ}\) \\
\hline N4 G110 C10 & Traverse path \(+20^{\circ}\) \\
\hline N5 G154 H0 & \\
\hline N6 G110 C350 & Traverse path \(+340^{\circ}\) \\
\hline\(\ldots\). & \\
\hline
\end{tabular}

\subsection*{6.24 Front and rear face machining}

\section*{Rapid traverse on front/rear face G100}

G100 moves at rapid traverse along the shortest path to the Final point.


With G100 the tool performs a linear movement.
To position the workpiece to a defined angle, use G110.

Parameters:
- X: Final point (diameter value)
- C: End angle
- XK: Final point (in Cartesian coordinates)

- YK: Final point (in Cartesian coordinates)
- Z: Final point

Programming
- X, C, XK, YK, Z: Absolute, incremental or modal
- Program either \(\mathbf{X} \mathbf{- C}\) or \(\mathbf{X K} \mathbf{- Y K}\)

Example: G100
\begin{tabular}{|c|c|}
\hline ... & \\
\hline N1 T7 G197 S1200 G195 F0.2 M104 & \\
\hline N2 M14 & \\
\hline N3 G110 C0 & \\
\hline N4 G0 X100 Z2 & \\
\hline N6 G100 XK20 YK5 & Rapid traverse, face \\
\hline N7 G101 XK50 & \\
\hline N8 G103 XK5 YK50 R50 & \\
\hline N9 G101 XK5 YK20 & \\
\hline N10 G102 XK20 YK5 R20 & \\
\hline N11 G14 & \\
\hline N12 M15 & \\
\hline . . . & \\
\hline
\end{tabular}

\section*{Linear segment on front/rear face G101}

G101 moves the tool on a linear path at the feed rate to the Final point.
Parameters:
- X: Final point (diameter value)
- C: End angle
- XK: Final point (in Cartesian coordinates)
- YK: Final point (in Cartesian coordinates)
- Z: Final point

Parameters for contour description (G80):
- AN: Angle to positive XK axis

- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition
- BR = 0: No tangential transition
- \(B R>0\) : Rounding radius
- \(\mathbf{B R}<0\) : Width of chamfer
- Q: Intersect. pt. or Final point if the line segment intersects a circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection


Programming:
- X, C, XK, YK, Z: Absolute, incremental or modal
- Program either \(\mathbf{X}-\mathbf{C}\) or \(\mathbf{X K} \mathbf{- Y K}\)

Using the parameters \(\mathbf{A N}, \mathbf{B R}\) and \(\mathbf{Q}\) is only allowed if the contour description is concluded by G80 and used for a cycle.

Example: G101


\section*{Circular arc on front/rear face G102/G103}

G102 and G103 move the tool along a circular arc at the feed rate to the Final point. The direction of rotation is shown in the help graphic.
Parameters:
- X: Final point (diameter value)
- C: End angle
- XK: Final point (in Cartesian coordinates)
- YK: Final point (in Cartesian coordinates)
- R: Radius
- I: Center (in Cartesian coordinates)
- J: Center (in Cartesian coordinates)
- K: Center for \(\mathbf{H}=2\) or 3 (Z direction)
- Z: Final point
- H: Rot. plane - machining plane (default: 0)
- \(\mathbf{H}=0\) or 1: Machining in XY plane (front face)
- \(\mathbf{H}=2\) : Machining in YZ plane
- \(\mathbf{H}=3\) : Machining in XZ plane

Parameters for contour description (G80):
- AN: Angle to positive XK axis
- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition
- BR = 0: No tangential transition
- \(B R>0\) : Rounding radius
- \(\mathbf{B R}<0\) : Width of chamfer
- Q: Intersect. pt. or Final point if the line segment intersects a circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection
(i)

Using the parameters \(\mathbf{A N}, \mathbf{B R}\) and \(\mathbf{Q}\) is only allowed if the contour description is concluded by G80 and used for a cycle.


\section*{Example: G102, G103}
\begin{tabular}{|l|l|l|}
\hline N1 T7 G197 S1200 G195 F0.2 M104 & & \\
\hline N2 M14 & & \\
\hline N3 G110 C0 & & \\
\hline N4 G0 X100 Z2 & Arc \\
\hline N6 G100 XK20 YK5 & \\
\hline N7 G101 XK50 & \\
\hline N8 G103 XK5 YK50 R50 & \\
\hline N9 G101 XK5 YK20 & \\
\hline N10 G102 XK20 YK5 R20 & \\
\hline N12 M15 & \\
\hline P . & \\
\hline
\end{tabular}

If you program \(\mathbf{H}=2\) or \(\mathbf{H}=3\), you can machine linear slots with a circular base.
Define the circle center with:
- \(\mathbf{H}=2\) : with \(\mathbf{I}\) and \(\mathbf{K}\)
- \(\mathbf{H}=3\) : with \(\mathbf{J}\) and \(\mathbf{K}\)
i
Programming:
- X, C, XK, YK, Z: Absolute, incremental or modal
- I, J, K: Absolute or incremental
- Program either \(\mathbf{X}-\mathbf{C}\) or \(\mathbf{X K} \mathbf{- Y K}\)
- Program either center or radius
- For radius: Only arcs <= \(180^{\circ}\) are possible
- End point in the coordinate origin: Program XK=0 and \(\mathrm{YK}=0\).

\subsection*{6.25 Lateral surface machining}

\section*{Rapid traverse on lateral surface G110}

G110 moves at rapid traverse to the Final point.
G110 is recommended for positioning the C axis to a defined angle (programming: N.. G110 C...).
Parameters:
- Z: Final point
- C: End angle
- CY: Final point as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- X: Final point (diameter value)


Programming:
- Z, C, CY: Absolute, incremental, or modal
- Program either \(\mathbf{Z}-\mathbf{C}\) or \(\mathbf{Z}-\mathbf{C Y}\)

Example: G110


\section*{Surface linear G111}

G111 moves the tool on a linear path at the feed rate to the Final point.
Parameters:
- Z: Final point
- C: End angle
- CY: Final point as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- X: Final point (diameter value)

Parameters for contour description (G80):

- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition
- BR = 0: No tangential transition
- \(B R>0\) : Rounding radius
- BR \(<0\) : Width of chamfer
- Q: Intersect. pt. or Final point if the line segment intersects a circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection

Programming:
- Z, C, CY: Absolute, incremental, or modal
- Program either \(\mathbf{Z}-\mathbf{C}\) or \(\mathbf{Z}-\mathbf{C Y}\)
(i)

Using the parameters \(\mathbf{A N}, \mathbf{B R}\) and \(\mathbf{Q}\) is only allowed if the contour description is concluded by G80 and used for a cycle.

\section*{Example: G111}
\begin{tabular}{|l|l|l|}
\hline\(\ldots\) & & \\
\hline N1 T8 G197 S1200 G195 F0.2 M104 & & \\
\hline N2 M14 & \\
\hline N3 G120 X100 & \\
\hline N4 G110 C0 & \\
\hline N5 G0 X110 Z5 & \\
\hline N6 G41 Q2 H0 & \\
\hline N7 G110 Z-20 CY0 & \\
\hline N8 G111 Z-40 & \\
\hline N9 G113 CY39.2699 K-40 J19.635 & \\
\hline N10 G111 Z-20 & \\
\hline N11 G113 CY0 K-20 J19.635 & \\
\hline N12 G40 & \\
\hline N13 G110 X105 & \\
\hline N14 M15 & \\
\hline I. . & \\
\hline
\end{tabular}

\section*{Circular arc on lateral surface G112/G113}

G112 and G113 move the tool along a circular arc at the feed rate to the Final point.
Parameters:
- Z: Final point
- C: End angle
- CY: Final point as a linear dimension (reference: unrolled lateral surface, using the Reference diameter)
- R: Radius
- K: Center (in Z)
- J: Center as linear dimension (reference: reference diameter of the unrolled lateral surface)
- W: Center - Angle (angular direction: see help graphic)
- X: Final point (diameter value)

Parameters for contour description (G80):
- AN: Angle to positive \(Z\) axis
- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition

- \(\mathbf{B R}=0\) : No tangential transition
- \(B R>0\) : Rounding radius
- BR \(<0\) : Width of chamfer
- Q: Intersect. pt. or Final point if the line segment intersects a circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection


Using the parameters \(\mathbf{A N}, \mathbf{B R}\) and \(\mathbf{Q}\) is only allowed if the contour description is concluded by G80 and used for a cycle.

Programming:
- Z, C, CY: Absolute, incremental, or modal
- K, W, J: Absolute or incremental
- Program either \(\mathbf{Z}-\mathbf{C}\) or \(\mathbf{Z}-\mathbf{C Y}\) and \(\mathbf{K}-\mathbf{J}\)
- Program either center or radius
- For radius: Only arcs <= \(180^{\circ}\) are possible

Example: G112, G113
\begin{tabular}{|l|l|l|}
\hline\(\ldots\) & & \\
\hline N1 T8 G197 S1200 G195 F0.2 M104 & \\
\hline N2 M14 & \\
\hline N3 G120 X100 & \\
\hline N4 G110 C0 & \\
\hline N5 G0 X110 Z5 & \\
\hline N7 G110 Z-20 CY0 & Arc \\
\hline N8 G111 Z-40 & \\
\hline N9 G113 CY39.2699 K-40 J19.635 & \\
\hline N10 G111 Z-20 & \\
\hline N11 G112 CY0 K-20 J19.635 & \\
\hline N13 M15 & \\
\hline .. & \\
\hline
\end{tabular}

\subsection*{6.26 Milling cycles}

\section*{Overview of milling cycles}
- G791 Linear slot, face. The position and length of the slot are defined directly in the cycle; slot width = cutter diameter Further information: "Linear slot, front face G791", Page 453
- G792 Linear slot, surf. The position and length of the slot are defined directly in the cycle; slot width = cutter diameter Further information: "Linear slot, lat. surface G792", Page 454
- G793 Contour milling cycle, face. The contour is described directly after the cycle and concluded with \(\mathbf{G 8 0}\) (MANUALplus 4110 compatibility cycle)
Further information: "Contour and figure milling cycle on front face G793", Page 455
- G794 Contour milling cycle, lateral. The contour is described directly after the cycle and concluded with G80 (MANUALplus 4110 compatibility cycle)
Further information: "Contour and figure milling cycle on lateral surface G794", Page 457
- G797 Area milling. Mills figures (circles, polygons, individual surfaces, contours) as islands on the front face Further information: "Area milling on front face G797", Page 460
- G798 Hel. slot milling. Mills a helical slot on the lateral surface; slot width = cutter diameter
Further information: "Helical slot milling G798", Page 462
- G840 Contour milling. Mills ICP contours and figures. For closed contours, milling operations can be done inside/outside the contour or on the contour itself. For open contours, milling operations can be done at the left/right of the contour or on the contour itself. G840 is used on the face and lateral surface Further information: "Mill. contour G840", Page 463
- G845 Pocket milling - roughing. Roughs out closed ICP contours and figures on the face and lateral surface Further information: "Pocket milling - roughing G845", Page 472
- G846 Pocket milling - finishing. Finishes closed ICP contours and figures on the face and lateral surface
Further information: "Pocket milling - finishing G846 (Y axis)", Page 664
- G847 Trochoidal contour milling. Roughs out open or closed ICP contours on the face and lateral surface using trochoidal milling
Further information: "Trochoidal contour milling G847", Page 480
- G848 Trochoidal pocket milling. Roughs out figures or figure patterns on the face and lateral surface using trochoidal milling Further information: "Trochoidal pocket milling G847 ", Page 482

Contour definitions in the machining section (figures):
- Face
- G301 Linear slot

Further information: "Linear slot on front/rear face G301-
Geo", Page 317
- G302/G303 Circular slot

Further information: "Circular slot on front/rear face G302-/
G303-Geo", Page 318
- G304 Full circle

Further information: "Full circle on front/rear face G304-Geo", Page 318
- G305 Rectangle

Further information: "Rectangle on front/rear face G305-Geo",
Page 319
- G307 Eccentric polygon

Further information: "Polygon on front/rear face G307-Geo",
Page 320
- Lateral surface
- G311 Linear slot

Further information: "Linear slot on lateral surface G311-
Geo", Page 325
- G312/G313 Circular slot

Further information: "Circular slot on lateral surface G312-/
G313-Geo", Page 326
- G314 Full circle

Further information: "Full circle on lateral surface G314-Geo",
Page 326
- G315 Rectangle

Further information: "Rectangle, surface G315-Geo",
Page 327
- G317 Eccentric polygon

Further information: "Polygon on lateral surface G317-Geo",
Page 328

\section*{Linear slot, front face G791}

G791 mills a slot from the current tool position to the Final point. The slot width equals the diameter of the milling cutter. Oversizes (allowances) are not taken into account.
Parameters:
- X: Diameter - final point of slot (in polar coordinates)
- C: End angle - final point of slot (in polar coordinates; for angle direction, see help graphic)
- XK: Final point (in Cartesian coordinates)
- YK: Final point (in Cartesian coordinates)
- K: Length
- A: Angle - Angle of rotation
- ZE: Milling floor
- ZS: Millg. top edge
- J: Milling depth
- J > 0: Infeed direction -Z
- \(\mathbf{J}<0\) : Infeed direction \(+Z\)
- P: Max. approach (default: milling in one infeed)
- F: Approach feed for plunging (default: active feed rate)

Parameter combinations for definition of the end point: see help graphic


Parameter combinations for definition of the milling plane:
- Milling floor ZE, Millg. top edge ZS
- Milling floor ZE, Milling depth J
- Millg. top edge ZS, Milling depth J
- Milling floor ZE

- Rotate the spindle to the desired angle position before calling G791.
- If you use a spindle positioning device (no C axis), an axial slot is machined centrically to the rotary axis.
- If \(\mathbf{J}\) or \(\mathbf{Z S}\) is defined, the tool approaches to safety clearance in \(\mathbf{Z}\) and then mills the slot. If \(\mathbf{J}\) and \(\mathbf{Z S}\) are not defined, the milling cycle starts from the current tool position

\section*{Example: G791}
\begin{tabular}{|l|l|l|}
\hline \%791.nc \\
\hline N1 T7 G197 S1200 G195 F0.2 M104 \\
\hline N2 M14 & \\
\hline N3 G110 C0 & \\
\hline N4 G0 X100 Z2 & \\
\hline N5 G100 XK20 YK5 & \\
\hline N6 G791 XK30 YK5 ZE-5 J5 P2 & \\
\hline N7 M15 & \\
\hline END & \\
\hline
\end{tabular}

\section*{Linear slot, lat. surface G792}

G792 mills a slot from the current tool position to the Final point. The slot width equals the diameter of the milling cutter. Oversizes (allowances) are not taken into account.
Parameters:
- Z: Final point
- C: End angle
- K: Length
- A: Angle - Angle of rotation
- XE: Milling floor
- XS: Upper edge of milling
- J: Milling depth
- J > 0: Infeed direction -X
- \(\mathbf{J}<0\) : Infeed direction \(+X\)
- P: Max. approach (default: milling in one infeed)
- F: Approach feed for plunging (default: active feed rate)

Parameter combinations for definition of the end point: see help graphic
Parameter combinations for definition of the milling plane:
- Milling floor XE, Millg. top edge XS
- Milling floor XE, Milling depth J
- Millg. top edge XS, Milling depth J
- Milling floor XE
(i)
- Rotate the spindle to the desired angle position before calling G792
- If you use a spindle positioning device (no C axis), a radial slot is machined parallel to the \(\mathbf{Z}\) axis.
- If \(\mathbf{J}\) or \(\mathbf{X S}\) is defined, the tool approaches to safety clearance in \(\mathbf{X}\) and then mills the slot. If \(\mathbf{J}\) and \(\mathbf{X S}\) are not defined, the milling cycle starts from the current tool position

Example: G792
\begin{tabular}{|l|l|l|}
\hline \%792.nc \\
\hline N1 T8 G197 S1200 G195 F0.2 M104 \\
\hline N2 M14 & \\
\hline N3 G110 C0 & \\
\hline N4 G0 X110 Z5 & \\
\hline N5 G0 X102 Z-30 & \\
\hline N6 G792 K25 A45 XE97 J3 P2 F0.15 & \\
\hline N7 M15 & \\
\hline END & \\
\hline
\end{tabular}

\section*{Contour and figure milling cycle on front face G793}

G793 mills figures or (open or closed) free contours.
G793 is followed by:
- The figure to be milled with:
- Contour definition of the figure (G301 to G307)

Further information: "Front/Rear face contours", Page 315
- Conclusion of milling contour (G80)
- The free contour with:
- Starting point of milling contour (G100)
- Milling contour (G101, G102, G103)
- Conclusion of milling contour (G80)
(i)

Preferentially use ICP and the G840, G845 and G846 cycles to program the contour description in the geometry section.

Parameters:
- ZS: Millg. top edge
- ZE: Milling floor
- P: Max. approach (default: milling in one infeed)
- U: Overlap factor - contour milling or pocket milling (default: 0)
- \(\mathbf{U}=0\) : Contour milling
- \(\mathbf{U}>0\) : Pocket milling-minimum overlap of milling paths = \(\mathbf{U} *\) milling diameter
- R: Apprch angle (default: 0)
- \(\mathbf{R}=0\) : Contour element is approached directly; infeed to starting point above the milling plane-then vertical plunge
- \(\mathbf{R}>0\) : Tool moves on approaching/departing arc that connects tangentially to the contour element
- \(\mathbf{R}<0\) for inside corners: Tool moves on approaching/departing arc that connects tangentially to the contour element
- \(\mathbf{R}<0\) for outside corners: Length of linear approaching/ departing element; contour element is approached/departed tangentially
- I: Contour-parallel oversize
- K: O-size Z
- F: Approach feed for plunging (default: active feed rate)
- E: Reduced feed for circular elements (default: active feed rate)
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb

- Q: Cycle type (default: 0 ) - Depending on \(\mathbf{U}\), the following applies:
- Contour milling ( \(\mathbf{U}=0\) )
- \(\mathbf{Q}=0\) : Center of milling cutter on the contour
- \(\mathbf{Q}=1\), closed contour: Inside milling
- \(\mathbf{Q}=1\), open contour: Left in machining direction
- \(\mathbf{Q}=2\), closed contour: Outside milling
- \(\mathbf{Q}=2\), open contour: Right in machining direction
- \(\mathbf{Q}=3\), open contour: Milling location depends on H and the direction of tool rotation-see help graphic
- Pocket milling ( \(\mathbf{U}>0\) )
- \(\mathbf{Q}=0\) : From the inside toward the outside
- \(\mathbf{Q}=1\) : From the outside toward the inside
- O: Roughing/Finish
- 0: Roughing
- 1: Finishing
(i)
- Milling depth: The cycle calculates the depth from the milling top edge and the milling floor-taking the oversizes into account
- Milling cutter radius compensation: Effective (except for contour milling with \(\mathbf{Q}=0\) )
- Approach and departure: For closed contours, the point of the surface normal from the tool position to the first contour element is the point of approach and departure. If no surface normal intersects the tool position, the starting point of the first element is the point of approach and departure. For contour milling and finishing (pocket milling), define with the approach radius whether the tool is to approach directly or in an arc.
- G57/G58 oversizes are taken into account if the oversizes \(\mathbf{I}, \mathbf{K}\) are not programmed:
- G57: Oversize in X, Z direction
- G58: The oversize shifts the milling contour as follows:
- With inside milling and closed contour: The contour is contracted
- With outside milling and closed contour: The contour is expanded
- With open contour and \(\mathbf{Q}=1\) : Left in machining direction
- With open contour and \(\mathbf{Q}=2\) : Right in machining direction

\section*{Contour and figure milling cycle on lateral surface G794}

G794 mills figures or (open or closed) free contours.
G794 is followed by:
- The figure to be milled with:
- Contour definition of the figure (G311 to G317)

Further information: "Lateral surface contours", Page 323
- Conclusion of contour definition (G80)
- The free contour with:
- Starting point (G110)
- Contour definition (G111, G112, G113)
- Conclusion of milling contour (G80)


Preferentially use ICP and the G840, G845 and G846 cycles to program the contour description in the geometry section.

Parameters:
- XS: Upper edge of milling
- XE: Milling floor
- P: Max. approach (default: milling in one infeed)
- U: Overlap factor - contour milling or pocket milling (default: 0)
- \(\mathbf{U}=0\) : Contour milling
- \(\mathbf{U}>0\) : Pocket milling-minimum overlap of milling paths = \(\mathbf{U} *\) milling diameter
- R: Apprch angle (default: 0)
- \(\mathbf{R}=0\) : Contour element is approached directly; infeed to starting point above the milling plane-then vertical plunge
- \(\mathbf{R}>0\) : Tool moves on approaching/departing arc that connects tangentially to the contour element
- \(\mathbf{R}<0\) for inside corners: Tool moves on approaching/departing arc that connects tangentially to the contour element
- \(\mathbf{R}<0\) for outside corners: Length of linear approaching/ departing element; contour element is approached/departed tangentially
- K: Contour-parallel oversize
- I: O-size X
- F: Approach feed for plunging (default: active feed rate)
- E: Reduced feed for circular elements (default: active feed rate)
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- Q: Cycle type (default: 0) - Depending on \(\mathbf{U}\), the following applies:
- Contour milling \((\mathbf{U}=0)\)
- \(\mathbf{Q}=0\) : Center of milling cutter on the contour
- \(\mathbf{Q}=1\), closed contour: Inside milling
- \(\mathbf{Q}=1\), open contour: Left in machining direction
- \(\mathbf{Q}=2\), closed contour: Outside milling
- \(\mathbf{Q}=2\), open contour: Right in machining direction
- \(\mathbf{Q}=3\), open contour: Milling location depends on H and the direction of tool rotation-see help graphic
- Pocket milling ( \(\mathbf{U}>0\) )
- \(\mathbf{Q}=0\) : From the inside toward the outside
- \(\mathbf{Q}=1\) : From the outside toward the inside
- O: Roughing/Finish
- 0: Roughing
- 1: Finishing

\section*{Example: G794}
\begin{tabular}{|l|l|l|}
\hline \%794.nc \\
\hline N1 T7 G197 S1200 G195 F0.2 M104 & \\
\hline N2 M14 & \\
\hline N3 G110 C0 & \\
\hline N4 G0 X110 Z5 & \\
\hline N5 G794 XS100 XE97 P2 U0.5 R0 K0.5 F0.15 & \\
\hline N6 G314 Z-35 C0 R20 & \\
\hline N7 G80 & \\
\hline N8 M15 & \\
\hline END & \\
\hline
\end{tabular}
- Milling depth: The cycle calculates the depth from the milling top edge and the milling floor-taking the oversizes into account
- Milling cutter radius compensation: Effective (except for contour milling with \(\mathbf{Q}=0\) )
- Approach and departure: For closed contours, the point of the surface normal from the tool position to the first contour element is the point of approach and departure. If no surface normal intersects the tool position, the starting point of the first element is the point of approach and departure. For contour milling and finishing (pocket milling), define with the approach radius whether the tool is to approach directly or in an arc.
- G57/G58 oversizes are taken into account if the oversizes \(\mathbf{I}, \mathbf{K}\) are not programmed:
- G57: Oversize in X, Z direction
- G58: The oversize shifts the milling contour as follows:
- With inside milling and closed contour: The contour is contracted
- With outside milling and closed contour: The contour is expanded
- With open contour and \(\mathbf{Q}=1\) : Left in machining direction
- With open contour and \(\mathbf{Q}=2\) : Right in machining direction

\section*{Area milling on front face \(\mathbf{G 7 9 7}\)}

Depending on Q G797 mills surfaces, a polygon, or the figure defined in the command following G797.
Parameters:
- ID: Milling contour - name of the milling contour
- NS: Starting block no. of contour - beginning of contour section
- Figures: Block number of the figure
- Free closed contour: First contour element (not starting point)
- X: Limit diameter
- ZS: Millg. top edge
- ZE: Milling floor
- B: Width/Width across flats

Omit for \(\mathbf{Q}=0\) : Defines the remaining material. For an even number of surfaces, you can program \(\mathbf{B}\) as an alternative to \(\mathbf{V}\).
- \(\mathbf{Q}=1: \mathbf{B}=\) Residual depth
- \(\mathbf{Q}>=2: \mathbf{B}=\) Width across flats
- \(\mathbf{V}\) : Edge length (omitted for \(\mathbf{Q}=0\) )
- R: Chamf./round. (default: 0)
- A: Inclinat. ang. omitted for \(\mathbf{Q}=0\) (reference: see help graphic)
- Q: No. of surfaces (default: 0; range: \(0<=\mathbf{Q}<=127\) )
- \(\mathbf{Q}=0\) : \(\mathbf{G 7 9 7}\) is followed by a figure definition (G301.. G307, G80) or a closed contour definition (G100, G101 to G103, G80)
- \(\mathbf{Q}=1\) : One surface
- \(\mathbf{Q}=2\) : Two surfaces offset by \(180^{\circ}\)
- \(\mathbf{Q}=3\) : Triangle
- \(\mathbf{Q}=4\) : Rectangle, square
- \(\mathbf{Q}>4\) : Polygon
- P: Max. approach (default: milling in one infeed)
- U: Overlap factor - overlap of milling paths \(=\mathbf{U}\) * milling diameter (default: 0.5)
- I: Contour-parallel oversize
- K: O-size Z
- F: Approach feed for plunging (default: active feed rate)
- E: Reduced feed for circular elements (default: active feed rate)
- H: Mill cutting direction
- 0: Roughing
- 1: Finishing
- O: Roughing/Finish
- 0: Roughing
- 1: Finishing
- J: Mill direction
- 0: Unidirectional
- 1: Bidirectional

Programming:
- The cycle calculates the milling depth from \(\mathbf{Z S}\) and \(\mathbf{Z E}\), taking the oversizes into account
- Surfaces and figures defined with \(\mathbf{G 7 9 7}(\mathbf{Q}>0)\) are symmetric with respect to the center. A figure defined in the following command can be outside the center.

G797 Q0 .. is followed by:
- The figure to be milled with:
- Contour definition of the figure (G301 to G307)

Further information: "Front/Rear face contours", Page 315
- Conclusion of contour definition (G80)
- The free contour with:
- Starting point of milling contour (G100)
- Milling contour (G101, G102, G103)
- Conclusion of milling contour (G80)

Example: G797
\begin{tabular}{|l|}
\hline \%797.nc \\
\hline N1 T9 G197 S1200 G195 F0.2 M104 \\
\hline N2 M14 \\
\hline N3 G110 C0 \\
\hline N4 G0 X100 Z2 \\
\hline N5 G797 X100 Z0 ZE-5 B50 R2 A0 Q4 P2 U0.5 \\
\hline N6 G100 Z2 \\
\hline N7 M15 \\
\hline END \\
\hline
\end{tabular}

\section*{Example: G797 / G304}
\begin{tabular}{|l|}
\hline \%304_G305.nc \\
\hline N1 T7 G197 S1200 G195 F0.2 M104 \\
\hline N2 M14 \\
\hline N3 G110 C0 \\
\hline N4 G0 X100 Z2 \\
\hline N5 G797 X100 ZS0 ZE-5 Q0 P2 F0.15 \\
\hline N6 G304 XK20 YK5 R20 \\
\hline N7 G80 \\
\hline N4 G0 X100 Z2 \\
\hline N5 G797 X100 ZS0 ZE-5 Q0 P2 F0.15 \\
\hline N6 G305 XK20 YK5 R6 B30 K45 A20 \\
\hline N7 G80 \\
\hline N8 M15 \\
\hline END \\
\hline
\end{tabular}

\section*{Helical slot milling G798}

G798 mills a helical slot from the current tool position to the Final point X, Z. The slot width equals the diameter of the milling cutter.
Parameters:
- X: Final point (diameter value)
- Z: Final point
- C: Start angle
- F: Thread pitch
- F positive: Right-hand thread
- F negative: Left-hand thread
- P: Run-in Igth - Ramp at the beginning of the slot
- K: Thread runout length - Ramp at the end of the slot
- U: Thread depth
- I: Max. approach
- E: Reducing value for infeed reduction (default: 1)
- D: No.gears

Infeeds:
- Max. approach I is used for the first infeed movement.
- The control calculates all subsequent infeed movements as follows: Current infeed \(=\mathbf{I}\) * \((1-(\mathbf{n}-1) * \mathbf{E})\)
( \(\mathbf{n}: \mathbf{n}\) - \(\boldsymbol{n}\) th infeed)

- The infeed movement is reduced down to \(>=0.5 \mathrm{~mm}\). Following that, each infeed movement will amount to 0.5 mm .


You can mill a helical slot only from the outside.

Example: G798
\begin{tabular}{|l|}
\hline \%798.nc \\
\hline N1 T9 G197 S1200 G195 F0.2 M104 \\
\hline N2 M14 \\
\hline N3 G110 C0 \\
\hline N4 G0 X80 Z15 \\
\hline N5 G798 X80 Z-120 C0 F20 K20 U5 I1 \\
\hline N6 G100 Z2 \\
\hline N7 M15 \\
\hline END \\
\hline
\end{tabular}

\section*{Mill. contour G840}

\section*{G840 - fundamentals}

G840 mills or deburrs open or closed contours (figures or free contours)
Plunge strategies: Depending on the cutter you are using, select one of the following strategies:
- Vertical plunge: The cycle moves the tool to the starting point; the tool plunges and mills the contour
- Calculate positions, predrill, mill. The machining process is performed in the following steps:
- Insert drill.
- Calculate hole positions with G840 A1 ..
- Predrill with G71 NF.
- Call cycle G840 AO .. The cycle positions the tool above the hole; the tool plunges and mills the contour
- Predrilling, milling. The machining process is performed in the following steps:
- Predrill with G71 .
- Position the cutter above the hole. Call cycle G840 AO .. The cycle plunges and mills the contour or contour section
If the milling contour consists of multiple sections, G840 takes all the sections of the contour into account for predrilling and milling.
Call G840 AO .. separately for each section when calculating the hole positions without G840 A1 ..
Oversize: A G58 oversize shifts the contour to be milled in the direction given in cycle type \(\mathbf{Q}\).
- With inside milling and closed contour: Shifted inward
- With outside milling and closed contour: Shifted outward
- Open contour: Shifts to the left or right depending on Q
i. If \(\mathbf{Q}=0\), oversizes are not taken into account
- G57 and negative G58 oversizes are not taken into account

\section*{G840 - calculating hole positions}

G840 A1 .. calculates the hole positions and stores them at the reference specified in NF. Program only the parameters given in the following table.
See also:
- G840-Fundamentals

Further information: "G840 - fundamentals", Page 463
- G840-Milling

Further information: "G840 - milling", Page 466
Parameters:
- Q: Cycle type - milling location
- Open contour. If there is any overlapping, \(\mathbf{Q}\) defines whether the first section (as of starting point) or the entire contour is to be machined
- \(\mathbf{Q}=0\) : Center of milling cutter on the contour (hole position = starting point)
- \(\mathbf{Q}=1\) : Machining at the left of the contour. If there is any overlapping, only the first area of the contour is machined
- \(\mathbf{Q}=2\) : Machining at the right of the contour. If there is any overlapping, only the first area of the contour is machined
- \(\mathbf{Q}=3\) : Not allowed
- \(\mathbf{Q}=4\) : Machining at the left of the contour. If there is any overlapping, the entire contour is machined
- \(\mathbf{Q}=5\) : Machining at the right of the contour. If there is any overlapping, the entire contour is machined
- Closed contours
- \(\mathbf{Q}=0\) : Center of milling cutter on the contour (hole position = starting point)
- \(\mathbf{Q}=1\) : Inside milling
- \(\mathbf{Q}=2\) : Outside milling
- \(\mathbf{Q}=3\) to 5: Not allowed
- ID: Milling contour - name of the milling contour
- NS: Starting block no. of contour - beginning of contour section
- Figures: Block number of the figure
- Free closed contour: First contour element (not starting point)
- Open contour: First contour element (not starting point)

- NE: Contour end block no. - end of contour section
- Figures, free closed contour: No input
- Open contour: last contour element
- Contour consists of one element:
- No input: Machining in contour direction
- NS = NE programmed: Machining against the contour direction
- D: Start elem.no.

The direction of contour definition for figures is counterclockwise.
The first contour element for figures:
- Circular slot: The larger arc
- Full circle: The upper semicircle
- Rectangles, polygons and linear slots: The orientation angle points to the first contour element.
- V: End: elem.no.
- A: (Mill=0/PredrillPos=1)
- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)
- WB: Diameter rework

Program \(\mathbf{D}\) and \(\mathbf{V}\) to machine parts of a figure.

> (1) The cycle takes the diameter of the active tool into account when calculating the hole positions. Therefore, you need to insert the drill before calling G840 A1 ...
> Program oversizes for calculating the hole positions and for milling

\section*{NOTICE}

\section*{Danger of collision!}

G840 overwrites any predrill hole positions that may still be stored at the Position mark NF without displaying a confirmation prompt. Danger of collision during subsequent machining operations!
- Observe the behavior of G840 during programming

\section*{G840 - milling}

You can change the machining direction and the cutter radius compensation (TRC) with the cycle type \(\mathbf{Q}\) the cutting direction \(\mathbf{H}\) and the rotational direction of the tool. Program only the parameters given in the following table.
See also:
- G840-Fundamentals

Further information: "G840 - fundamentals", Page 463
- G840-Calculating hole positions

Further information: "G840 - calculating hole positions",
Page 464
Parameters:
- Q: Cycle type - milling location
- Open contour. If there is any overlapping, \(\mathbf{Q}\) defines whether the first section (as of starting point) or the entire contour is to be machined
- \(\mathbf{Q}=0\) : Center of milling cutter on the contour (hole position = starting point)
- \(\mathbf{Q}=1\) : Machining at the left of the contour. If there is any overlapping, only the first area of the contour is machined
- \(\mathbf{Q}=2\) : Machining at the right of the contour. If there is any overlapping, only the first area of the contour is machined
- \(\mathbf{Q}=3\) : Not allowed
- \(\mathbf{Q}=4\) : Machining at the left of the contour. If there is any overlapping, the entire contour is machined
- \(\mathbf{Q}=5\) : Machining at the right of the contour. If there is any overlapping, the entire contour is machined
- Closed contours
- \(\mathbf{Q}=0\) : Center of milling cutter on the contour (hole position = starting point)
- \(\mathbf{Q}=1\) : Inside milling
- \(\mathbf{Q}=2\) : Outside milling
- \(\mathbf{Q}=3\) to 5: Not allowed
- ID: Milling contour - name of the milling contour
- NS: Starting block no. of contour - beginning of contour section
- Figures: Block number of the figure
- Free closed contour: First contour element (not starting point)
- Open contour: First contour element (not starting point)
- NE: Contour end block no. - end of contour section
- Figures, free closed contour: No input
- Open contour: last contour element
- Contour consists of one element:
- No input: Machining in contour direction
- NS = NE programmed: Machining against the contour direction

- BF: Machine form elements (default: 0)

A chamfer/rounding arc is machined
- 0: No machining
- 1: At beginning
- 2: At end
- 3: At beginning and end
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- I: Max. approach
- F: Approach feed for plunging (default: active feed rate)
- E: Reduced feed for circular elements (default: active feed rate)
- R: Apprch angle (default: 0)
- \(\mathbf{R}=0\) : Contour element is approached directly; infeed to starting point above the milling plane, then vertical plunge
- \(\mathbf{R}>0\) : Tool moves on approaching/departing arc that connects tangentially to the contour element
- \(\mathbf{R}<0\) with inside corners: Tool moves on approaching/ departing arc that connects tangentially to the contour element
- \(\mathbf{R}<0\) with outside corners: Contour element is approached/ departed tangentially on a linear path
- P: Milling depth (default: depth from the contour definition)
- XS: Millg. top edge lateral surface (replaces the reference plane from the contour definition)
- ZS: Millg. top edge face (replaces the reference plane from the contour definition)
- RB: Return plane (default: back to start position)
- Front or rear face: Return position in Z direction
- Lateral surface: Return position in X direction (diameter)

\section*{- D: Start elem.no.}

The direction of contour definition for figures is counterclockwise.
The first contour element for figures:
- Circular slot: The larger arc
- Full circle: The upper semicircle
- Rectangles, polygons and linear slots: The orientation angle points to the first contour element.
- V: End: elem.no.
- A: (Mill=0/PredrillPos=1)
- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)
- O: Plunging behavior (default: 0)
- \(0=0\) : Vertical plunging
- \(0=1\) : With predrilling
- If NF is programmed: The cycle positions the milling cutter above the first hole position saved in \(\mathbf{N F}\), then plunges and mills the first section. If applicable, the cycle positions the tool to the next pre-drilled hole and mills the next section, etc.
- If \(\mathbf{N F}\) is not programmed: The tool plunges at the current position and mills the section. If required, repeat this operation for the next section, etc.
Approach and departure: For closed contours, the point of the surface normal from the tool position to the first contour element is the point of approach and departure. If no surface normal intersects the tool position, the starting point of the first element is the point of approach and departure. For figures, use \(\mathbf{D}\) and \(\mathbf{V}\) to select the approach/departure element.
Cycle run:
1 Starting position \((\mathbf{X}, \mathbf{Z}, \mathbf{C})\) is the position before the cycle begins
2 Calculates the milling depth infeeds
3 Approaches to safety clearance:
- If \(\mathbf{O}=0\) : Infeed to the first milling depth
- If \(\mathbf{O}=1\) : Plunges to the first milling depth

4 Mills the contour
5 Infeeds:
- For open contour and slots with slot width equal to the cutter diameter: Moves at feed rate to the next milling depth, or plunges at rapid to the next milling depth and mills the contour in reverse direction
- For closed contours and slots: Lifts off by the safety clearance, moves forward and approaches to the next milling depth, or plunges to the next milling depth
6 Repeats steps 4 and 5 until the complete contour is milled
7 Returns to Return plane RB
You can change the machining direction and the cutter radius compensation (TRC) with the cycle type \(\mathbf{Q}\) the cutting direction \(\mathbf{H}\) and the rotational direction of the tool. Program only the parameters given in the following table.
\begin{tabular}{|c|c|c|c|c|}
\hline Cycle type & Cutting direction & Direction of tool rotation & MCRC & Execution \\
\hline Contour (Q \(=0\) ) & - & Mx03 & - & \\
\hline Contour & - & Mx03 & - & \\
\hline Contour & - & M \(\times 04\) & - & \\
\hline Contour & - & Mx04 & - & \\
\hline Inside ( \(\mathbf{Q}=1\) ) & Up-cut milling ( \(\mathbf{H}=0\) ) & Mx03 & Right & \\
\hline Inside & Up-cut milling ( \(\mathbf{H}=0\) ) & Mx04 & Left & \\
\hline Inside & Climb milling ( \(\mathbf{H}=1\) ) & Mx03 & Left & \\
\hline Inside & Climb milling (H=1) & Mx04 & Right & \\
\hline Outside ( \(\mathbf{Q}=2\) ) & Up-cut milling ( \(\mathbf{H}=0\) ) & Mx03 & Right & \\
\hline Outside & Up-cut milling ( \(\mathbf{H}=0\) ) & Mx04 & Left & \\
\hline Outside & Climb milling (H=1) & Mx03 & Left & \\
\hline Outside & Climb milling (H=1) & Mx04 & Right & \\
\hline Contour (Q \(=0\) ) & - & Mx03 & - & \\
\hline Contour & - & Mx04 & - & \\
\hline Right ( \(\mathbf{Q}=3\) ) & Up-cut milling ( \(\mathbf{H}=0\) ) & Mx03 & Right & \\
\hline Left (Q=3) & Up-cut milling ( \(\mathbf{H}=0\) ) & Mx04 & Left & \\
\hline Left (Q=3) & Climb milling (H=1) & Mx03 & Left & \\
\hline Right ( \(\mathbf{Q}=3\) ) & Climb milling (H=1) & Mx04 & Right & \\
\hline
\end{tabular}

\section*{G840 - deburring}

G840 performs a deburring operation if Chamfer width B is programmed. If there is any overlapping in the contour, use the cycle type \(\mathbf{Q}\) to specify whether the first section (starting from the starting point) or the entire contour is to be machined. Program only the parameters given in the following table.
Parameters:
- Q: Cycle type - milling location
- Open contour. If there is any overlapping, \(\mathbf{Q}\) defines whether the first section (as of starting point) or the entire contour is to be machined
- \(\mathbf{Q}=0\) : Center of milling cutter on the contour (hole position = starting point)
- \(\mathbf{Q}=1\) : Machining at the left of the contour. If there is any overlapping, only the first area of the contour is machined
- \(\mathbf{Q}=2\) : Machining at the right of the contour. If there is any overlapping, only the first area of the contour is machined
- \(\mathbf{Q}=3\) : Not allowed
- \(\mathbf{Q}=4\) : Machining at the left of the contour. If there is any overlapping, the entire contour is machined
- \(\mathbf{Q}=5\) : Machining at the right of the contour. If there is any overlapping, the entire contour is machined
- Closed contours
- \(\mathbf{Q}=0\) : Center of milling cutter on the contour (hole position = starting point)
- \(\mathbf{Q}=1\) : Inside milling
- \(\mathbf{Q}=2\) : Outside milling
- \(\mathbf{Q}=3\) to 5 : Not allowed
- ID: Milling contour - name of the milling contour
- NS: Starting block no. of contour - beginning of contour section
- Figures: Block number of the figure
- Free closed contour: First contour element (not starting point)
- Open contour: First contour element (not starting point)
- NE: Contour end block no. - end of contour section
- Figures, free closed contour: No input
- Open contour: last contour element
- Contour consists of one element:
- No input: Machining in contour direction
- NS = NE programmed: Machining against the contour direction
- E: Reduced feed for circular elements (default: active feed rate)

- R: Apprch angle (default: 0)
- \(\mathbf{R}=0\) : Contour element is approached directly; infeed to starting point above the milling plane, then vertical plunge
- \(\mathbf{R}>0\) : Tool moves on approaching/departing arc that connects tangentially to the contour element
- \(\mathbf{R}<0\) with inside corners: Tool moves on approaching/ departing arc that connects tangentially to the contour element
- \(\mathbf{R}<0\) with outside corners: Contour element is approached/ departed tangentially on a linear path
- P: Plunging depth (indicated as a negative value)
- XS: Millg. top edge lateral surface (replaces the reference plane from the contour definition)
- ZS: Millg. top edge face (replaces the reference plane from the contour definition)
- RB: Return plane (default: back to start position)
- Front or rear face: Return position in Z direction
- Lateral surface: Return position in X direction (diameter)
- J: Premach. diam.

For open contours, the control calculates the contour to be deburred from the programmed contour and \(\mathbf{J}\).
- J programmed: The cycle deburrs both sides of the slot
- J not programmed: The deburring tool is so wide that both sides of the slot are deburred in one pass
- D: Start elem.no.
- V: End: elem.no.
- A: (Mill=0/PredrillPos=1)

Approach and departure: For closed contours, the point of the surface normal from the tool position to the first contour element is the point of approach and departure. If no surface normal intersects the tool position, the starting point of the first element is the point of approach and departure. For figures, use \(\mathbf{D}\) and \(\mathbf{V}\) to select the approach/departure element.
Cycle run:
1 Starting position ( \(\mathbf{X}, \mathbf{Z}, \mathbf{C}\) ) is the position before the cycle begins
2 Moves to the safety clearance and infeed to the first milling depth
3 Milling:
- J not programmed: Mills the programmed contour
- J programmed, open contour: Calculates and mills the new contour
4 Returns to Return plane RB

\section*{Pocket milling - roughing G845}

\section*{G845 - fundamentals}

G845 roughs closed contours.
Choose one of the following plunge strategies, depending on the milling cutter you are using:
- Plunge vertically
- Plunge at a pre-drilled position
- Plunge in a reciprocating or helical motion

When plunging at a pre-drilled position, you have the following alternatives:
- Calculate positions, drill, mill-the machining process is performed in the following steps:
- Insert drill.
- Calculate hole positions with G845 A1 .. or set the hole position at the center of the figure with A2
- Predrill with G71 NF..
- Call cycle G845 A0 ... The cycle positions the tool above the hole; the tool plunges and mills the pocket
- Drill, mill-the machining process is performed in the following steps:
- Drill a hole inside the pocket with G71 ..
- Position the milling cutter above the hole and call G845 AO .. The tool plunges and mills the section
(i)

The parameters \(\mathbf{O}=1\) and \(\mathbf{N F}\) must be defined.

If the pocket consists of multiple sections, G845 takes all the sections of the pocket into account for drilling and milling. Call G845 AO .. separately for each section when calculating the hole positions without G845 A1 ..
(i) G845 takes the following oversizes into account:
- G57: Oversize in X, Z direction
- G58: Equidistant oversize in the milling plane Program oversizes for calculating the hole positions and for milling.

\section*{G845 - calculating hole positions}

G845 A1 .. calculates the hole positions and stores them at the reference specified in \(\mathbf{N F}\). The cycle takes the diameter of the active tool into account when calculating the hole positions. Therefore, you need to insert the drill before calling G845 A1... Program only the parameters given in the following table.
See also:
- G845 - fundamentals

Further information: "G845 - fundamentals", Page 472
- G845 - milling

Further information: "G845-milling", Page 474
Parameters:
- ID: Milling contour - name of the milling contour
- NS: Starting block no. of contour - beginning of contour section
- Figures: Block number of the figure
- Free closed contour: First contour element (not starting point)
- B: Milling depth (default: depth from the contour description)
- XS: Millg. top edge lateral surface (replaces the reference plane from the contour definition)
- ZS: Millg. top edge face (replaces the reference plane from the contour definition)
- I: O-size X
- K: O-size Z
- Q: Mach. direction (default: 0)
- 0: From the inside out
- 1: From the outside in
- A: Flow (sequence)
- 0: Milling
- 1: Determine predrilling pos
- 2: predrill. pos. fig. center
- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)
- WB: Plunging length - diameter of the milling cutter

- G845 overwrites any hole positions that may still be stored at the reference NF
- The parameter WB is used both for calculating the hole positions and for milling. When calculating the hole positions, WB describes the diameter of the milling cutter.


\section*{G845 - milling}

You can change the cutting direction with the cutting direction \(\mathbf{H}\), the machining direction \(\mathbf{Q}\) and the direction of tool rotation. Program only the parameters given in the following table.
See also:
- G845 - fundamentals

Further information: "G845 - fundamentals", Page 472
- G845 - calculating hole positions Further information: "G845 - calculating hole positions",
Page 473
Parameters:
- ID: Milling contour - name of the milling contour
- NS: Starting block no. of contour - beginning of contour section
- Figures: Block number of the figure
- Free closed contour: First contour element (not starting point)
- B: Milling depth (default: depth from the contour description)
- P: Max. approach (default: milling in one infeed)
- XS: Millg. top edge lateral surface (replaces the reference plane from the contour definition)
- ZS: Millg. top edge face (replaces the reference plane from the contour definition)
- I: O-size X
- K: O-size Z
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap \(=\mathbf{U} *\) milling diameter
- V: Overrun factor (no effect in C-axis machining)
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- F: Approach feed for plunging (default: active feed rate)
- E: Reduced feed for circular elements (default: active feed rate)
- FP: Infeed rate in the plane for the infeed to the next milling path
- RB: Return plane (default: back to start position)
- Front or rear face: Return position in Z direction
- Lateral surface: Return position in X direction (diameter)
- Q: Mach. direction (default: 0)
- 0: From the inside out
- 1: From the outside in
- A: Flow (sequence)
- 0: Milling
- 1: Determine predrilling pos
- 2: predrill. pos. fig. center
- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)
- O: Plunging behavior (default: 0)

- \(\mathbf{0}=0\) (vertical plunging): The cycle moves the tool to the starting point; the tool plunges at the feed rate for infeed and mills the pocket
- \(\mathbf{O}=1\) (plunge at pre-drilled position):
- If \(\mathbf{N F}\) is programmed: The cycle positions the milling cutter above the first pre-drilled hole; the tool plunges and mills the first area. If applicable, the cycle positions the tool to the next pre-drilled hole and mills the next area, etc.
- If NF is not programmed: The cycle plunges at the current position and mills the area. If applicable, position the tool to the next pre-drilled hole and mill the next area, etc.
- \(\mathbf{0}=2\) or 3 (plunge in a helical motion): The tool plunges at the angle \(\mathbf{W}\) and mills full circles with the diameter WB. As soon as it reaches the milling depth \(\mathbf{P}\), the cycle switches to face milling
- \(\mathbf{O}=2-\) manually: The cycle plunges at the current position and machines the area that can be reached from this position
- \(\mathbf{0}=3\)-automatically: The cycle calculates the plunging position, plunges and machines this area. The plunging motion ends at the starting point of the first milling path, if possible. If the pocket consists of multiple areas, the cycle successively machines all the areas
- \(\mathbf{O}=4\) or 5 (reciprocating linear plunge): The tool plunges at the angle \(\mathbf{W}\) and mills a linear path of length WB. You can define the orientation angle in WE. The cycle then mills along this path in the opposite direction. As soon as it reaches the milling depth \(\mathbf{P}\), the cycle switches to face milling
- \(\mathbf{0}=4\)-manually: The cycle plunges at the current position and machines the area that can be reached from this position
- \(\mathbf{0}=5\)-automatically: The cycle calculates the plunging position, plunges and machines this area. The plunging motion ends at the starting point of the first milling path, if possible. If the pocket consists of multiple areas, the cycle successively machines all the areas. The plunging position is determined from the type of figure and from \(\mathbf{Q}\) as follows:
- Q0 (from the inside toward the outside):
- Linear slot, rectangle, polygon: Reference point of the figure
- Circle: Circle center
- Circular slot, free contour: Starting point of the innermost milling path
- Q1 (from the outside toward the inside):
- Linear slot: Starting point of the slot
- Circular slot, circle: Not machined
- Rectangle, polygon: Starting point of the first linear element
- Free contour: Starting point of the first linear element (at least one linear element must exist)

- \(\mathbf{0 = 6}\) or 7 (reciprocating circular plunge): The tool plunges at the plunging angle \(\mathbf{W}\) and mills a circular arc of \(90^{\circ}\). The cycle then mills along this path in the opposite direction. As soon as it reaches the milling depth \(\mathbf{P}\), the cycle switches to face milling. WE defines the arc center, WB the arc radius
- \(\mathbf{0}=6\)-manually: The tool position corresponds to the center of the circular arc. The tool moves to the arc starting point and plunges
- \(\mathbf{0 = 7 - a u t o m a t i c a l l y ~ ( o n l y ~ p e r m i t t e d ~ f o r ~ c i r c u l a r ~ s l o t s ~ a n d ~}\) circles): The cycle calculates the plunging position on the basis of \(\mathbf{Q}\) :
- Q0 (from the inside toward the outside):
- Circular slot: The circular arc lies on the curvature radius of the slot
- Circle: Not permitted
- Q1 (from the outside toward the inside): Circular slot, circle: The circular arc lies on the outermost milling path
- W: Plunging angle in infeed direction
- WE: Position angle of the milling path/circular arc

Reference axis:
- Front or rear face: Positive XK axis
- Lateral surface: Positive \(Z\) axis

Default orientation angle, depending on \(\mathbf{0}\) :
- \(\mathbf{O}=4\) : WE= \(0^{\circ}\)
- \(\mathbf{0}=5\) and
- Linear slot, rectangle, polygon: WE = orientation angle of the figure
- Circular slot, circle: WE=0º
- Free contour and \(\mathbf{Q 0}\) (from the inside toward the outside): \(\mathrm{WE}=0^{\circ}\)
- Free contour and Q1 (from the outside toward the inside): Orientation angle of the starting element
- WB: Diameter rework (default: 1.5 * milling diameter)

For the machining direction \(\mathbf{Q}=1\) (from the outside toward the inside), please note:
- The contour must start with a linear element
- If the starting element is < WB, WB is reduced to the length of the starting element
- The length of the starting element must not be less than 1.5 times the diameter of the milling cutter

Cycle run:
1 Starting position ( \(\mathbf{X}, \mathbf{Z}, \mathbf{C}\) ) is the position before the cycle begins
2 Calculates the proportioning of cuts (infeeds to the milling planes, infeeds in the milling depths) and the plunging positions and paths for reciprocating or helical plunges.
3 Approaches to safety clearance and, depending on \(\mathbf{O}\), feeds to the first milling depth or approaches helically or on a reciprocating path

4 Mills a plane
5 Retracts by the safety clearance, returns and cuts to the next milling depth.
6 Repeats steps 4 and 5 until the complete area is milled.
7 Returns to Return plane RB
You can change the cutting direction with the cutting direction \(\mathbf{H}\), the machining direction \(\mathbf{Q}\) and the direction of tool rotation. Program only the parameters given in the following table.

Pocket milling - roughing G845
\begin{tabular}{|c|c|c|c|}
\hline Cutting direction & Machining direction & Direction of tool rotation & Execution \\
\hline Up-cut milling (H=0) & from inside ( \(\mathbf{Q}=0\) ) & Mx03 & \[
\square_{-\infty}
\] \\
\hline Up-cut milling (H=0) & from inside ( \(\mathbf{Q}=0\) ) & Mx04 & \(\square\) \\
\hline Up-cut milling (H=0) & from outside ( \(\mathbf{Q}=1\) ) & Mx03 & \(\square\) \\
\hline Up-cut milling (H=0) & from outside ( \(\mathbf{Q}=1\) ) & Mx04 & \(\square\) \\
\hline Climb milling ( \(\mathbf{H}=1\) ) & from inside ( \(\mathbf{Q}=0\) ) & Mx03 & \(\square\) \\
\hline Climb milling ( \(\mathbf{H}=1\) ) & from inside ( \(\mathbf{Q}=0\) ) & Mx04 & - \\
\hline Climb milling ( \(\mathbf{H}=1\) ) & from outside ( \(\mathbf{Q}=1\) ) & Mx03 & \[
\square_{-\infty}
\] \\
\hline Climb milling ( \(\mathbf{H}=1\) ) & from outside ( \(\mathbf{Q}=1\) ) & Mx04 & \[
-\infty
\] \\
\hline
\end{tabular}

\section*{Pocket milling - finishing G846}

G846 finish-machines closed contours.
If the pocket consists of multiple sections, G846 takes all the sections of the pocket into account.
You can change the cutting direction with the cutting direction \(\mathbf{H}\), the machining direction \(\mathbf{Q}\) and the direction of tool rotation.
Parameters:
- ID: Milling contour - name of the milling contour
- NS: Starting block no. of contour - beginning of contour section
- Figures: Block number of the figure
- Free closed contour: First contour element (not starting point)
- B: Milling depth (default: depth from the contour description)
- P: Max. approach (default: milling in one infeed)
- XS: Millg. top edge lateral surface (replaces the reference plane from the contour definition)
- ZS: Millg. top edge face (replaces the reference plane from the contour definition)
- R: Apprch angle (default: 0)
- \(\mathbf{R}=0\) : Contour element is approached directly. Feed to the starting point above the milling plane, then vertical plunge

- \(\mathbf{R}>0\) : Tool moves on approaching/departing arc that connects tangentially to the contour element
- U: Overlap factor - defines the overlap of milling paths (default: 0.5) (range: 0 to 0.99)

Overlap = U * milling diameter
- V: Overrun factor (no effect in C-axis machining)
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- F: Approach feed for plunging (default: active feed rate)
- E: Reduced feed for circular elements (default: active feed rate)

- FP: Infeed rate in the plane for the infeed to the next milling path
- RB: Return plane (default: back to start position)
- Front or rear face: Return position in Z direction
- Lateral surface: Return position in X direction (diameter)
- Q: Mach. direction (default: 0)
- 0: From the inside out
- 1: From the outside in
- O: Plunging behavior (default: 0)
- \(\mathbf{O = 0}\) (plunge vertically): The cycle moves the tool to the starting point; the tool plunges and finishes the pocket
- 0=1 (approaching arc with depth feed): When machining the upper milling planes, the tool advances to the milling plane and then approaches on an arc. When machining the bottom milling plane, the tool plunges to the milling depth while moving on the approaching arc (three-dimensional approaching arc). You can use this approach behavior only in conjunction with an approaching arc \(\mathbf{R}\). The precondition is machining from the outside toward the inside ( \(\mathbf{O}=\mathbf{1}\) )


Cycle run:
1 Starting position ( \(\mathbf{X}, \mathbf{Z}, \mathbf{C}\) ) is the position before the cycle begins
2 Calculates the number of cutting passes (infeeds to the milling planes, infeeds in the milling depths)
3 Move to the safety clearance and plunge to the first milling depth.
4 Mill the first plane.
5 Retract by the safety clearance, return and cut to the next milling depth.
6 Repeat steps 4 and 5 until the complete area is milled.
7 Returns to Return plane RB


You can change the cutting direction with the cutting direction \(\mathbf{H}\), the machining direction \(\mathbf{Q}\) and the direction of tool rotation.

\section*{Pocket milling, finishing G846}
\begin{tabular}{lll}
\hline Cutting direction & Direction of tool rotation & Execution \\
\hline Up-cut milling \((\mathbf{H}=0)\) & \(\mathrm{Mx03}\) & \\
\hline Up-cut milling \((\mathbf{H}=0)\) & \(\mathrm{Mx04}\) & \\
\hline Climb milling \((\mathbf{H}=1)\) & \(\mathrm{Mx03}\) & \\
\hline Climb milling \((\mathbf{H}=1)\) &
\end{tabular}

\section*{Trochoidal contour milling G847}

G847 roughs out open or closed contours using trochoidal milling. Parameters:
- Q: Cycle type (default: 0)
- 0: On the contour
- 1: Within/left of contour
- 2: Outside/right of contour
- ID: Milling contour - name of the milling contour
- NS: Block number of contour - reference to the contour description
- NE: Contour end block no. - end of contour section

- BF: Machine form elements (default: 0)

A chamfer/rounding arc is machined
- 0: No machining
- 1: At beginning
- 2: At end
- 3: At beginning and end
- 4: Only chamfer/rounding is machined-not the basic element (requirement: the contour section consists of a single element)
- H: Direction (default: 1)

- 0: Up-cut
- 1: Climb
- BR: Trochoid width
- R: Radius for return
- FP: Feed rate for return (default: active feed rate)
- AL: Retraction path for return
- U: Overlap factor - overlap of milling paths \(=\mathbf{U}\) * milling diameter (default: 0.9)
- HC: Contour smoothing - 0: No smoothing cut
- 1: With smoothing cut
- I: Max. approach
- O: Plunging behavior (default: 2)
- \(\mathbf{O}=0\) (vertical plunging): The cycle moves the tool to the starting point; the tool plunges at the feed rate for infeed and mills the contour
- \(\mathbf{O}=1\) (vertical plunging, e.g. at the predrilled position):
- If \(\mathbf{N F}\) is programmed: The control positions the milling cutter above the first predrill hole position; the tool plunges at rapid traverse to safety clearance and mills the first area. If applicable, the cycle positions the tool to the next predrill hole position and mills the next area etc.
- If NF is not programmed: The cycle plunges at the current position at rapid traverse and mills the area. If applicable, position the tool to the next predrill hole position and mill the next area etc.
- \(\mathbf{O}=2\) (plunge in helical motion): The tool plunges at the current position at the angle \(\mathbf{W}\) and mills full circles with the diameter WB.
- F: Approach feed (default: active feed)
- W: Plunging angle
- WB: Diameter of the helix (default: helix diameter \(=1.5\) * milling diameter)
- RB: Return plane (default: back to start position)
- A: (Mill=0/PredrillPos=1) (default: 0)
- 0: Milling
- 1: Determine predrilling pos
- NF: Position mark (only with \(\mathbf{O = 1}\) )
- P: Milling depth (default: depth from the contour definition)
- XS: Millg. top edge lateral surface (replaces the reference plane from the contour definition)
- ZS: Millg. top edge face (replaces the reference plane from the contour definition)

\section*{Trochoidal pocket milling G847}

G848 roughs out figures or figure patterns using trochoidal milling. Parameters:
- ID: Milling contour - name of the milling contour
- NS: Block number of contour - reference to the contour description
- H: Direction (default: 1)
- 0: Up-cut
- 1: Climb
- BR: Trochoid width
- R: Radius for return

- FP: Feed rate for return (default: active feed rate)
- AL: Retraction path for return
- O: Plunging behavior (default: 2)
- \(\mathbf{O}=0\) (vertical plunging): The cycle moves the tool to the starting point; the tool plunges at the feed rate for infeed and mills the figure
- \(\mathbf{O}=1\) (vertical plunging, e.g. at the predrilled position):
- If NF is programmed: The control positions the milling cutter above the first predrill hole position; the tool plunges at rapid traverse to safety clearance and mills the first area. If applicable, the cycle positions the tool to the next predrill hole position and mills the next area etc.
- If NF is not programmed: The cycle plunges at the current position at rapid traverse and mills the area. If applicable, position the tool to the next predrill hole position and mill the next area etc.
- \(\mathbf{0}=2\) (plunge in helical motion): The tool plunges at the current position at the angle \(\mathbf{W}\) and mills full circles with the diameter WB.
- F: Approach feed (default: active feed)
- W: Plunging angle
- WB: Diameter of the helix (default: helix diameter \(=1.5\) * milling diameter)
- U: Overlap factor - overlap of milling paths = \(\mathbf{U}\) * milling diameter (default: 0.9)
- J: Machining operation
- 0: Complete
- 1: W/o corner machining
- 2: Only corner machining
- P: Max. approach
- I: O-size X
- K: O-size Z
- RB: Return plane (default: back to start position)
- B: Milling depth (default: depth from the contour definition)
- XS: Millg. top edge lateral surface (replaces the reference plane from the contour definition)
- ZS: Millg. top edge face (replaces the reference plane from the contour definition)
- A: (Mill=0/PredrillPos=1) (default: 0)
- 0: Milling
- 1: Determine predrilling pos
- NF: Position mark (only with \(\mathbf{O = 1}\) )
(i)

For slots and rectangles, you need to program width BR of the trochoidal tool path; for circles and polygons, this is not necessary.

\subsection*{6.27 Engraving cycles}

\section*{Character sets}

The control can realize the characters listed in the following table. The text to be engraved is entered as a character string. Diacritics and special characters that you cannot enter in the editor can be defined, character by character, in \(\mathbf{N F}\). If text is defined in ID and a character is defined in \(\mathbf{N F}\), the text is engraved before the character. You can also use the engraving cycles to engrave string variables. In ID, enter the variable to be engraved using the Variables soft key.
Further information: "Variable types", Page 515
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Small letters} \\
\hline NF & Character \\
\hline 97 & a \\
\hline 98 & b \\
\hline 99 & c \\
\hline 100 & d \\
\hline 101 & e \\
\hline 102 & f \\
\hline 103 & g \\
\hline 104 & h \\
\hline 105 & i \\
\hline 106 & j \\
\hline 107 & k \\
\hline 108 & I \\
\hline 109 & m \\
\hline 110 & n \\
\hline 111 & \(\bigcirc\) \\
\hline 112 & p \\
\hline 113 & q \\
\hline 114 & r \\
\hline 115 & s \\
\hline 116 & t \\
\hline 117 & u \\
\hline 118 & v \\
\hline 119 & w \\
\hline 120 & x \\
\hline 121 & y \\
\hline 122 & z \\
\hline
\end{tabular}

Capital letters
\begin{tabular}{|c|c|}
\hline NF & Character \\
\hline 65 & A \\
\hline 66 & B \\
\hline 67 & C \\
\hline 68 & D \\
\hline 69 & E \\
\hline 70 & F \\
\hline 71 & G \\
\hline 72 & H \\
\hline 73 & I \\
\hline 74 & \(J\) \\
\hline 75 & K \\
\hline 76 & L \\
\hline 77 & M \\
\hline 78 & N \\
\hline 79 & 0 \\
\hline 80 & P \\
\hline 81 & Q \\
\hline 82 & R \\
\hline 83 & S \\
\hline 84 & T \\
\hline 85 & U \\
\hline 86 & V \\
\hline 87 & W \\
\hline 88 & X \\
\hline 89 & Y \\
\hline 90 & Z \\
\hline
\end{tabular}

Umlauts
\begin{tabular}{ll}
\hline NF & Character \\
\hline 196 & \(\ddot{\mathrm{~A}}\) \\
\hline 214 & Ö \\
\hline 220 & \(\ddot{U}\) \\
\hline 223 & \(B\) \\
\hline 228 & ä \\
\hline 246 & ö \\
\hline 7252 & \(\ddot{\mathrm{u}}\)
\end{tabular}

Numbers
\begin{tabular}{ll}
\hline NF & Character \\
\hline 48 & 0 \\
\hline 49 & 1 \\
\hline 50 & 2 \\
\hline 51 & 3 \\
\hline 52 & 4 \\
\hline 53 & 5 \\
\hline 54 & 6 \\
\hline 55 & 7 \\
\hline 56 & 8
\end{tabular}
\begin{tabular}{|c|c|}
\hline NF & Character \\
\hline 32 & Space \\
\hline 37 & \% \\
\hline 40 & ( \\
\hline 41 & ) \\
\hline 43 & \(+\) \\
\hline 44 & , \\
\hline 45 & - \\
\hline 46 & . \\
\hline 47 & 1 \\
\hline 58 & : \\
\hline 60 & \(<\) \\
\hline 61 & \(=\) \\
\hline 62 & > \\
\hline 64 & @ \\
\hline 91 & [ \\
\hline 93 & ] \\
\hline 95 & - \\
\hline 8364 & \(€\) \\
\hline 181 & \(\mu\) \\
\hline 186 & 。 \\
\hline 215 & * \\
\hline 33 & ! \\
\hline 38 & \& \\
\hline 63 & ? \\
\hline 174 & ® \\
\hline 216 & \(\varnothing\) \\
\hline
\end{tabular}

\section*{Engraving on front face G801}

G801 engraves character strings in linear or polar layout on the front face.
Further information: "Character sets", Page 484
The cycles start engraving from the starting position or from the current position, if no starting position is defined.
Example: If a character string is engraved with several calls, define the starting position in the first call. All other calls are programmed without a starting position.
Parameters:
- X, C: Start point and Start. angle (in polar coordinates)
- XK, YK: Start point (in Cartesian coordinates)
- Z: Final point - Z position, infeed depth during milling
- RB: Return plane - Z position to which the tool retracts for positioning
- ID: Text to be engraved
- NF: Char. no. - ASCII code of the character to be engraved
- NS: Block number of contour - reference to the contour description
- W: Inclinat. ang. of the character string
- H: Font height
- E: Distance factor

The spacing between the characters is calculated according to the following formula: \(\mathbf{H} / 6\) * \(\mathbf{E}\)
- V: Execution (linear/polar)
- 0: Linear
- 1: Arched above
- 2: Arched below
- D: Reference diameter
- F: Plunging feed rate factor (plunging feed rate \(=\) current feed rate * F)
- O: Mirror writing
- \(\mathbf{0}\) (No): Engraving is not mirrored
- 1 (Yes): Engraving is mirrored (mirror writing)

\section*{Engraving on lateral surface G802}

G802 engraves character strings aligned linearly on the lateral surface.
Further information: "Character sets", Page 484
The cycles start engraving from the starting position or from the current position, if no starting position is defined.
Example: If a character string is engraved with several calls, define the starting position in the first call. All other calls are programmed without a starting position.
Parameters:
- Z: Start point

- C: Start. angle
- CY: Start point of first character
- X: Final point - X position, infeed depth during milling (diameter value)
- RB: Return plane - X position to which the tool retracts for positioning
- ID: Text to be engraved
- NF: Char. no. - ASCII code of the character to be engraved
- NS: Block number of contour - reference to the contour description
- W: Inclinat. ang. of the character string
- H: Font height
- V: Overrun factor (no effect in C-axis machining)
- H: Mill cutting direction
- E: Distance factor

The spacing between the characters is calculated according to the following formula: \(\mathbf{H} / 6\) * \(\mathbf{E}\)
- D: Reference diameter
- F: Plunging feed rate factor (plunging feed rate = current feed rate * F)
- O: Mirror writing

- O: Mirror writing
- \(\mathbf{0}\) (No): Engraving is not mirrored
- \(\mathbf{1}\) (Yes): Engraving is mirrored (mirror writing)

\subsection*{6.28 Contour follow-up}

Automatic Contour follow-up is not possible with program branches or repetitions. In these cases, you can control Contour follow-up with the following commands.

\section*{Saving/loading Contour follow-up G702}

G702 saves the current contour or loads a saved contour. Parameters:
- ID: Workpc. blank contour - name of the auxiliary workpiece blank
- Q: 0=save 1=load 2=internal
- 0 : Saves the current contour. The contour follow-up is not affected
- 1: Loads the specified contour. The contour follow-up is continued with the loaded contour
- 2: The following cycle uses the internal workpiece blank
- H: Memory number (range: 0 to 9 )
- V: \(\mathbf{0}=\) all, \(\mathbf{1}=\) variable, 2=blank - selection of information to be saved
- 0: Everything (variable contents and workpiece blank contours)
- 1:Variable contents
- 2: Workpiece blank contours

G702 Q2 switches off global Contour follow-up for the following cycle. Once the cycle has been executed, global Contour follow-up is effective again.
The affected cycle uses the internal Workpiece blank. The cycle determines the internal workpiece blank from the contour and the tool position.
G702 Q2 must be programmed before the cycle.

\section*{Contour follow-up on/off G703}

G703 is used to activate/deactivate Contour follow-up.
Parameters:
- Q: On=1 Off=0 - contour follow-up on/off
- 0: Off
- 1:On

\subsection*{6.29 Other G codes}

\section*{Clamping G65}

G65 displays the selected chucking equipment in the simulation graphics.
Parameters:
- H: No. of clamping - always \(\mathbf{H}=0\)
- D: Fixture - no input
- X: Start point - diameter of workpiece blank
- Z: Start point (default: no input)
- Q: Chuck form
- 5: Outside chucking
- 5: Inside chucking
- B: Clamping length ( \(\mathbf{B}+\mathbf{P}=\) length of blank)
- P: Free length
- V: Delete chucking equipment

\section*{Blank contour G67 (for graphics)}

G67 displays an Aux. workpiece blank in Simulation submode. Parameters:
- ID: Workpc. blank contour - name of the auxiliary workpiece blank
- NS: Starting block no. of contour - beginning of contour section

\section*{Period of dwell G4}

With G4, the control interrupts the program run for the Period of dwell \(\mathbf{F}\) or until the revolutions at the recess base \(\mathbf{D}\) have been completed before executing the next NC block. If G4 is programmed together with a traverse path in the same block, the Period of dwell or No. of spindle revolutions at the recess base only becomes effective after the traverse path has been executed.
Parameters:
- F: Delay in seconds (range: \(0<\mathbf{F}<=999\) )
- D: Rev. on recessing floor

\section*{Precision stop ON G7}

G7 switches Precision stop on. It is a modal function. With a Precision stop, the control only starts running the subsequent block after the last point has been reached in the tolerance window for the position. The tolerance window is defined in the posTolerance machine parameter (no. 401101). Precision stop affects both single paths and cycles. The NC block containing G7 is also executed with a precision stop.

\section*{Precision stop OFF G8}

G8 switches Precision stop off. The block containing G8 is executed without a Precision stop.

\section*{Precision stop blockwise G9}

G9 activates a Precision stop for the NC block in which it is programmed. With a Precision stop, the control only starts running the subsequent block after the last point has been reached in the tolerance window for the position. The tolerance window is defined in the posTolerance machine parameter (no. 401101).

\section*{Switch off protection zone G60}

G60 is used to cancel protection zone monitoring. G60 is programmed before the traversing command to be monitored or not monitored.
Parameters:
- Q: activate/deactivate - Self-locking=1
- 0: Activate protection zone (modal)
- 1: Deactivate protection zone (modal)

Application example: With G60, you can temporarily deactivate a programmed monitoring of the protection zone in order to machine a centric through hole.

Example: G60
\begin{tabular}{|l|l|}
\hline\(\ldots\) & \\
\hline N1 T4 G97 S1000 G95 F0.3 M3 & \\
\hline N2 G0 X0 Z5 & Deactivate protection zone \\
\hline N3 G60 Q1 & \\
\hline N4 G71 Z-60 K65 & Activate protection zone \\
\hline N5 G60 Q0 & \\
\hline ... & \\
\hline
\end{tabular}

\section*{Actual values in variable G901}

G901 transfers the actual values of all the axes of a slide into the variables for the interpolation information.
Further information: "Fill variable memory G904", Page 492

\section*{Datum in variable G902}

G902 transfers the datum shifts into the variables for the interpolation information.
Further information: "Fill variable memory G904", Page 492

\section*{Lag error in variable G903}

G903 transfers the current following error (distance by which the actual value lags the nominal value) into the variables for the interpolation information.
Further information: "Fill variable memory G904", Page 492

\section*{Fill variable memory G904}

G904 transfers all the current interpolation information on the current slide to the variable memory.

Interpolation information
\begin{tabular}{ll} 
\#a0(Z,1) & Datum shift of the \(Z\) axis of slide \$1 \\
\hline \#a1(Z,1) & Actual position of the \(Z\) axis of slide \$1 \\
\hline \#a2(Z,1) & Nominal position of the \(Z\) axis of slide \$1 \\
\hline \#a3(Z,1) & Lag error of the \(Z\) axis of slide \$1 \\
\hline \#a4(Z,1) & Distance to go in the \(Z\) axis of slide \$1 \\
\hline \#a5(Z,1) & Logical axis number of the \(Z\) axis of slide \$1 \\
\hline \#a5(0,1) & Logical axis number of the main spindle \\
\hline \#a6(0,1) & Rotational direction of main spindle \$1 \\
\hline \#a9(Z,1) & \begin{tabular}{l} 
Trigger position of the touch probe \#a10(Z,1) IPO \\
\\
axis value
\end{tabular}
\end{tabular}

\section*{Interpolation information syntax}

Syntax: \#an(axis,channel)
- \(\mathbf{n}\) = number of the information
- axis = name of the axis
- channel = slide number

\section*{Feed rate override \(\mathbf{1 0 0}\) \% G908}

G908 sets the feed override for traverse paths (G0, G1, G2, G3, G12,
G13) to 100 \%.
Program G908 and the traverse path in the same NC block.
Parameters:
- H: Limiting type (default: 0)
- 0: Activate blockwise feed rate override
- 1: Activate modal feed rate override-if the feed-rate potentiometer is set to 0 , the axes are stopped
- 2: Deactivate feed rate override

\section*{Interpreter stop G909}

The control pre-interprets the NC blocks. If variables are assigned shortly before the evaluation, old values are processed. G909 stops the pre-interpretation. The NC blocks are processed up to G909. Only after G909, are the subsequent NC blocks processed.
Apart from G909, the NC block should only contain synchronous functions. (Some G codes generate an interpreter stop).

\section*{Spindle override 100\% G919}

G919 is used to deactivate/activate the spindle speed override.
Parameters:
- Q: No. of spindle (default: 0)
- H: Limiting type (default: 0)
- 0: Activate spindle speed override
- 1: Spindle override at \(100 \%\)-modal
- 2: Spindle override at \(100 \%\)-for the current NC block

\section*{Deactivating datum shifts G920}

G920 deactivates the workpiece datum and datum shifts. Traverse paths and position values are referenced to the distance tool tip machine datum.

\section*{Deactivating datum shift, tool lengths G921}

G921 deactivates the workpiece datum, datum shifts and tool dimensions. Traverse paths and position values are referenced to the slide reference point-machine datum.

\section*{Fluctuating spindle speed G924}

When resonances are to be reduced, you can use G924 to program a changing spindle speed. In G924, define the Repetition rate and the range for the Change of spindle speed. The G924 function is automatically reset at the end of the program. You can also deactivate the function through another call with the setting H0 (off).
Parameters:
- Q: No. of spindle (default: 0)
- K: Repetition rate - time interval in hertz (repetitions per second)
- I: Change of spindle speed
- H: Function G924 On=1 Off=0
- 0: Off
- 1:On

\section*{Convert lengths G927}

Function G927 is used to convert the tool lengths at the current tool insert angle to the initial position of the tool (reference position in B axis \(=0\) ).
The results can be interrogated in the variables \#n927( X),
\#n927( Z), and \#n927( Y).
Parameters:

\section*{- H: Type of calculation}
- 0: Convert tool length to reference position (take I + K of the tool into account)
- 1: Convert tool length to reference position (do not take I + K of the tool into account)
- 2: Convert tool length from the reference position to the current work position (take \(\mathbf{I}+\mathbf{K}\) of the tool into account)
- 3: Convert tool length from the reference position to the current work position (do not take \(\mathbf{I}+\mathbf{K}\) of the tool into account)
- \(\mathbf{X}, \mathbf{Y}, \mathbf{Z}\) : Axis values ( \(X\) value = radius; If nothing is entered, the value 0 is used)

\section*{TCPM G928}

With the TCPM G928 function, you can change the behavior of the rotary axes for tilting. With TCPM disabled, the axis will rotate about its mechanical center of rotation; with TCPM enabled, the tool tip will remain at the center of rotation and the linear axes perform a compensation movement.
With the \(\mathbf{D}\) parameter, you can specify how the position of the virtual tool tip will be converted before the control calculates the TCPM compensation movement.
The parameter \(\mathbf{Q}\) enables you to exclude individual rotary axes from

\section*{TCPM.}

Parameters:
- H: Activate TCPM
- 0: Off
- 1:On
- E: Fmax in compensating motion - speed limit during the compensation movement of the linear axes
- D: Flow
- 0: Tool-center path
- 1: Tool tip path
- Q: TCPM with/without (default: 0)
- 0: All axes
- 1: Without A axis
- 2: Without B axis
- 3: Without C axis

\section*{Look-ahead parameter G932}
(3)

Refer to your machine manual.
This function must be set up by your machine manufacturer.

The G932 G code allows you to influence the machining speed, the accuracy, and the surface definition.
The control tries to move to all contour points at the programmed contouring feed rate while adhering to the path tolerance defined in the control. The control reduces the feed rate where needed so that the defined tolerance is complied with.
The G932 G code allows you to modify the positioning behavior of the control, in order to enable higher contouring feed rates for example.
Parameters:
- H: HSC mode - machining filters predefined by the machine tool builder
- 0: standard

The control uses the default filter setting that is designed for universal machining.
- 1: roughing

The control uses the roughing filter setting that enables a higher feed rate.
- 2: finishing

The control uses the finishing filter setting that enables a higher contour accuracy.
- R: Tolerance for linear axes - permissible contour deviation for linear axes (e.g., \(X\) axis)
- W: Tolerance for rotary axes - permissible position deviation for rotary axes (e.g., C axis with G928 (TCPM) active)

The entered tolerance values are effective for both turning and milling.

\section*{Calculating variables automatically G940}

Use G940 to convert metric values to inch values. When you create a new program you can select between metric units and inches. Internally the control always calculates with metric values. If you read out variables in an "inch" program, the variables are always output as metric values. Use G940 to convert the variables to inch values.
Parameters:
- H: Function G940 On=1 Off=0
- 0: Unit conversion active
- 1: Values remain metric

In inch programs, a conversion is required for variables that refer to a metric unit of measurement.

\section*{Machine dimensions}
\#m1(n) Machine dimensions of an axis, e.g. \#m1(X) for machine dimensions of the \(X\) axis

\section*{Reading tool data}
\#wn(NL) Usable length (inside turning tools and drilling tools)
\#wn(RS) Cutting edge radius
\#wn(ZD) Stud diameter
\#wn(DF) Milling diameter
\#wn(SD) Shank diameter
\#wn(SB) Cutting width
\#wn(AL) Cut-in length
\#wn(FB) Cutter width
\#wn(ZL) Setup dim. in Z
\#wn(XL) Setup dim. in \(X\)
\#wn(YL) Setup dim. in Y
\#wn(I) Position of tool tip center in X
\#wn(K) Position of tool tip center in Z
\#wn(ZE) \(\quad\) Distance between tool tip and slide reference point Z
\#wn(XE) Distance between tool tip and slide reference point \(X\)
\#wn(YE) Distance between tool tip and slide reference point \(Y\)

\section*{Reading the current NC information}
\begin{tabular}{ll} 
\#n0(Z) & Last programmed position Z \\
\hline \#n120(X) & Reference diameter \(X\) for calculating CY \\
\hline \#n57(X) & Oversize in X \\
\hline \#n57(Z) & Oversize in Z \\
\hline \#n58(P) & Equidistant oversize \\
\hline \#n150(X) & Cutting width shifted in \(X\) by G150 \\
\hline \#n95(F) & Last programmed feed rate \\
\hline \#n47(P) & Current safety clearance \\
\hline \#n147(I) & Current safety clearance in working plane \\
\hline \#n147(K) & Current safety clearance in infeed direction
\end{tabular}

Internal information for defining constants
\begin{tabular}{|c|c|}
\hline _n0_x & 768 Last programmed position X \\
\hline _n0_y & 769 Last programmed position Y \\
\hline __n0_z & 770 Last programmed position Z \\
\hline __n120_x & 787 Reference diameter \(X\) for calculating CY \\
\hline __n57_x & 791 Oversize in X \\
\hline __n57_z & 792 Oversize in Z \\
\hline __n58_p & 793 Equidistant oversize \\
\hline __n150_x & 794 Cutting width shifted in X by G150/G151 \\
\hline __n150_z & 795 Cutting width shifted in Z by G150/G151 \\
\hline n95_f & 800 Last programmed feed rate \\
\hline
\end{tabular}

Fill variable memory G904
\#a0(Z,1) Datum shift of the \(Z\) axis of slide \$1
\#a1(Z,1) Actual position of the \(Z\) axis of slide \$1
\#a2(Z,1) Nominal position of the \(Z\) axis of slide \$1
\#a3(Z,1) Lag error of the \(Z\) axis of slide \$1
\#a4(Z,1) Distance to go in the \(Z\) axis of slide \$1

\section*{Information to DNC G941}

G941 enables you to send your own messages from the NC program via the HEIDENHAIN DNC interface.
The messages sent are evaluated by appropriate PC applications, such as StateMonitor.
Parameters:
- ID: Output text - text and optional definition of format of output values (max. 80 characters)
Examples of output format:
- \%f - output of a floating point number in original format (contents of parameter \(\mathbf{R}\) )
- \%.Of - output of a floating point number without decimal places
- \%.1f - output of a floating point number with one decimal place
- \(\%+.2 \mathrm{f}\) - output of a floating point number with algebraic sign and two decimal places
- R: Output value - value or variable

Examples of output values:
- Value, (e.g. 3.15)
- Variable, (e.g. \#l1)

Example: G941
\begin{tabular}{|l|l|} 
N 46 \#I1 \(=\# 11+1\) & Part counter \\
\hline N47 G941 ID"STUECKZAHL" R\#I1 & Send message \\
\hline
\end{tabular}

\section*{Misalignment compensation G976}

With the Misalignment compensation G976 function you can run the following operations on tapering contours (e.g., to counter a mechanical offset). The G976 function is automatically reset at the end of the program. You can also deactivate the function through another call with the setting H0 (off).
Parameters:
- Z: Start point
- K: Length
- I: Incremental distance
- J: Incremental distance
- H: Function G976 On=1 Off=0
- 0: Off
- 1:On

\section*{Lift off after NC stop - LIFTOFF G977}


G977 is only effective if machine parameter CfgLiftOff (201401) is activated.

G977 enables you to define the lift-off movement after an NC stop with respect to the tool and cutting pass.


G977 cannot be used in connection with thread cycles. Machine parameter threadLiftOff (601804) is available for thread cycles.

Parameters:
- H: On/Off
- 0: deactivate
- 1: activate
- A: Depart.angle - angle with the positive \(Z\) axis (no input: lift-off angle corresponds to the bisecting line of the tool's cutting edge for turning tools; for boring or milling tools, it corresponds to the position of the tool axis)
- W: Spatial angle - angle to positive \(X\) axis
- R: Length - lift-off length (no input: value from machine parameter distance (201402))
After a tool change, the control will reset the \(\mathbf{A}\) and \(\mathbf{W}\) parameters corresponding to the tool geometry.
Tilting the B axis will change the lift-off direction by the angular difference in \(B\).


If you load a drilling or milling tool, the control automatically deactivates G977 because it cannot unambiguously determine the lift-off direction.
- Program G977 again if you intend to use Lift-off with drilling or milling tools.
(i) Operating notes:
- If no value is defined in machine parameter distance (201402), the control uses a lift-off distance of 1 mm
- Correctly positioned recessing tools lift off paraxially
- RW tilt angles programmed for drilling and milling tools will not be considered

Example: G977


\section*{Activating datum shift G980}

G980 activates the workpiece datum and all datum shifts. Traverse paths and position values are referenced to the distance of the tool tip to the workpiece datum, while taking the datum shifts into consideration.

\section*{Activating datum shifts, tool lengths G981}

G981 activates the workpiece datum, all datum shifts and the tool dimensions. Traverse paths and position values are referenced to the distance of the tool tip to the workpiece datum, while taking the datum shifts into consideration.

\section*{Monitoring zone G995}

G995 defines the monitoring zone and the axes to be monitored. The monitoring zone corresponds to the program section that is to be monitored by the control.
To begin the monitoring zone, program G995 with the following parameters. To end the monitoring zone, program G995 without parameters.
Parameters:
- H: No. of zone (range: 1 to 99)
- ID: Axis code
- X : X axis
- \(Y: Y\) axis
- Z: Z axis
- 0: Spindle 1 (main spindle, C axis)
- 1: Spindle 2
- 2: Spindle 3


The monitoring zones must be unambiguously defined in the program. Use the \(\mathbf{H}\) parameter to assign a unique number to each monitoring zone.
(i)

If you would like to monitor more than one drive within a monitoring zone, enter the respective combination of individual parameters in the ID parameter. Please keep in mind, however, that the control can monitor a maximum of four drives per monitoring zone. To simultaneously monitor the \(\mathbf{Z}\) axis and the main spindle, enter \(\mathbf{Z O}\) in the ID parameter.


In addition to defining the monitoring zone with G995, you need to activate the load monitoring function.
Further information: "Load monitoring G996", Page 501

\section*{Example: G995}


\section*{Load monitoring G996}

G996 defines the type of load monitoring or deactivates the load monitoring temporarily.
Parameters:
- Q: Lib. switch - scope of load monitoring (default: 0)
- 0: Off
- 1: G0 Off (do not monitor rapid traverse movements)
- 2: G0 On (monitor rapid traverse movements)
- H: Monitoring 0-2 - type of load monitoring (default: 0)
- 0: Utilization and total utilization
- 1: Utilization only
- 2: Total utilization only


In addition to defining the type of load monitoring with
G996, you need to specify the monitoring zone with G995.
Further information: "Monitoring zone G995", Page 500


To be able to use the load monitoring you must also define limit values and perform reference machining.

Further information: User's Manual
Example: G996
\begin{tabular}{|l|l|}
\hline ... & \\
\hline N1 G996 Q1 H1 & \begin{tabular}{l} 
Switch on load monitoring; do not monitor rapid traverse \\
movements
\end{tabular} \\
\hline N2 T4 & \\
\hline N3 G995 H1 ID"X0" & \\
\hline ... & Machining \\
\hline N9 G995 & \\
\hline ... & \\
\hline
\end{tabular}

\section*{Activating direct program-run continuation G999}

With the G999 function, when running a program in Single Block mode, the following NC blocks are run with a single NC start to the end of the program. G999 is then deactivated by again calling the function with the setting Q0 (off).

\section*{Force reduction G925}


Refer to your machine manual.
The machine tool builder determines the scope of function and behavior of this function.

G925 activates/deactivates the force reduction function. When monitoring is activated, the maximum Contact force for one axis is defined. Force reduction can be activated for only one axis per NC channel.
The G925 function limits the Contact force for subsequent movements of the defined axis. G925 does not execute any traverse movements.
Parameters:
- H: Contact force in daN - the contact force is limited to the value entered
- Q: Axis number \((X=1, Y=2, Z=3, U=4, V=5, W=6, A=7, B=\) 8, \(C=9)\) No. of spindle, e.g. spindle \(0=\) number \(10(0=10,1=\) \(11,2=12,3=13,4=14,5=15\) )
- P: Sleeve monitoring on/off
- 0: Deactivate (contact force is not monitored)
- 1: Activate (contact force is monitored)


Lag error monitoring is not activated until the acceleration phase has been completed.

\section*{Sleeve monitoring G930}

Refer to your machine manual.
The machine tool builder determines the scope of function and behavior of this function.

G930 activates/deactivates the Sleeve monitoring function. When monitoring is activated, the maximum Contact force for one axis is defined. Sleeve monitoring can be activated for only one axis per NC channel.

G930 moves the defined axis by the Incremental distance \(\mathbf{K}\) until the defined Contact force \(\mathbf{H}\) has been reached.
Parameters:
- H: Contact force in daN - the contact force is limited to the value entered
- Q: Axis number \((X=1, Y=2, Z=3, U=4, V=5, W=6, A=7, B=\) 8, C = 9)
- K: Incremental distance

Application example: G930 is applied to use the counter spindle as a mechatronic tailstock. In this case the counter spindle is equipped with a dead center and the Contact force is limited with G930. A prerequisite for this application is a PLC program from the machine tool builder that enables the user to operate the mechatronic tailstock in the Manual and Automatic operating modes.
(i)

Lag error monitoring is not activated until the acceleration phase has been completed.

Tailstock function: With the tailstock function, the control approaches the workpiece and stops as soon as the Contact force has been reached. The remaining path of traverse is deleted.

\section*{Example: Tailstock function}
\begin{tabular}{|l|l|}
\hline ... & \\
\hline N.. G0 Z20 & Pre-position slide 2 \\
\hline N.. G930 H250 D6 K-20 & Activate the tailstock function-contact force 250 daN \\
\hline ... & \\
\hline
\end{tabular}

\section*{HDT mode G931}

G931 activates or deactivates HDT mode. Within the function you must select whether machining takes place in front of or behind the workpiece. Optionally, you can also define an inclination of the cutting edge.
Further information: "High Dynamic Turning", Page 724
Parameters:
- H: HDT mode
- H = 0: Deactivate
- \(H=1\) : Before the workpiece
- H = 2: Behind the workpiece

\section*{- B: Angle}

Notes:
- In HDT mode, the B axis must be tilted to \(\mathrm{B}=90^{\circ}\). When HDT mode is active, the programmed \(X\) movements are performed by the \(Y\) axis. Consequently, \(Y\) movements are performed by the \(X\) axis. The \(B\) axis cannot be moved while HDT mode is active.
- In HDT mode, an HDT tool must be used.
see User's Manual
- HDT tools are held by a milling spindle that is operated as a B axis (B2). If you do not define the Angle \(\mathbf{B}\), the control positions the \(\mathbf{B} \mathbf{2}\) axis with the cutting edge of the tool at \(90^{\circ}\).
- While HDT mode is active, you can switch between the individual tool teeth of the multipoint tool. Changing to a different tool, for example from the tool magazine, is not possible.
- Depending on whether "in front of" or "behind" the workpiece was selected, you have to program the appropriate direction of rotation for the tool.
- Always program contours with circular arcs corresponding to machining behind the workpiece.
- Always program G41 and G42 corresponding to machining behind the workpiece.
- Positions that you program in connection with \(\mathbf{G 7 0 1}\) or \(\mathbf{G 1 4}\) will be interpreted by the control as axis values. The control executes these movements in the non-tilted machine coordinate system.
- Additive compensations with G149 must be programmed after you have activated HDT mode. If you wish to compensate the diameter, you have to enter the desired diameter difference as an \(X\) value. A negative \(X\) value leads to a reduced diameter. A positive \(X\) value leads to an enlarged diameter.
- You cannot enter tool compensations during machining.
- Activation and deactivation of datums or tool length compensations with G980/G981 or G920/G921 are not permitted in combination with HDT mode.
- C axis machining operations are not permitted in combination with HDT mode.
- You can query the HDT mode status with the \#n931(H) variable during machining.
- The machine data display notifies you about the current activation status of HDT mode.
see User's Manual
- If you cancel program run while HDT mode is active, the current HDT status remains effective. Consider this circumstance, for example when using MDI cycles. While HDT mode is active, you also cannot measure tools.
(0) Refer to your machine manual.

The machine tool builder can provide functions for deactivating HDT mode in Machine mode.

\section*{Eccentric turning G725}

G725 is used to machine turning contours outside the original turning center.
The turning contours are programmed using separate turning cycles.
\%)
Refer to your machine manual.
This function is set by your machine tool builder.
Prerequisites:
- Y-axis machining (option 70)
- Synchronizing functions (option 135)


Parameters:
- H: Activate coupling
- \(\mathbf{H}=0\) : Deactivate coupling
- \(\mathbf{H}=1\) : Activate coupling
- Q: Reference spindle - number of the spindle coupled with axes \(X\) and \(Y\) (machine-dependent)
- R: Center offset - distance from eccentric center point to original center of rotation (radius value)
- C: Position C - C-axis angle of the center offset
- F: Max. rapid traverse - permissible rapid traverse for \(X\) and \(Y\) axes with activated coupling
- V: Direction reversal in \(\mathbf{Y}\) (machine-dependent)
- \(\mathbf{V}=0\) : The control uses the configured axis direction for \(Y\)-axis movements
- \(\mathbf{V}=1\) : The control reverses the configured axis direction for \(Y\) axis movements
(1) Programming notes:
- Program a workpiece blank increased by the center offset in the radius if you are using turning cycles that are referenced to the workpiece-blank definition
- Program the starting point increased by the center offset in the radius if you are using turning cycles that are not referenced to the workpiece-blank definition
- Reduce the spindle speed if you increase the center offset
- Reduce the maximum rapid traverse \(\mathbf{F}\) if you increase the center offset
- Use identical values for the parameter \(\mathbf{Q}\) when activating and deactivating the coupling

Programming sequence:
- Position the cursor in the MACHINING program section
- Program function \(\mathbf{G 7 2 5}\) with \(\mathbf{H 1}\) (activate coupling)
- Program turning cycles
- Program function \(\mathbf{G 7 2 5}\) with \(\mathbf{H 0}\) (deactivate coupling)


Canceling the program run automatically deactivates the coupling.


Block scan (mid-program startup) is not available for non-circular turning with a coupled spindle (option 135, Synchronizing Funct.). Select an NC block before or after the non-circular turning program section.

\section*{Eccentric transition G726}

G726 is used to machine turning contours outside the original turning center. In addition, G726 offers the possibility to continuously change the position of the turning center along a straight line or a curve. The turning contours are programmed using separate turning cycles.


Refer to your machine manual.
This function is set by your machine tool builder.
Prerequisites:
- Y-axis machining (option 70)
- Synchronizing functions (option 135)

Parameters:
- H: Activate coupling
- \(\mathbf{H}=0\) : Deactivate coupling
- \(\mathbf{H}=1\) : Activate coupling
- Q: Reference spindle - number of the spindle coupled with axes \(X\) and \(Y\) (machine-dependent)
- R: Center offset - distance from eccentric center point to original center of rotation (radius value)
- C: Position C - C-axis angle of the center offset
- F: Max. rapid traverse - permissible rapid traverse for \(X\) and \(Y\) axes with activated coupling
- V: Direction reversal in \(\mathbf{Y}\) (machine-dependent)
- \(\mathbf{V}=0\) : The control uses the configured axis direction for \(Y\)-axis movements
- \(\mathbf{V}=1\) : The control reverses the configured axis direction for \(Y\) axis movements
- Z: Z start - reference value for the parameters \(\mathbf{R}\) and \(\mathbf{C}\), as well as coordinate for tool pre-positioning
- K: Z end - reference value for the parameters \(\mathbf{W}\) and \(\mathbf{U}\)
- W: Delta C [Z start to Z end] - difference in C-axis angle with respect to \(\mathbf{Z}\) start and \(\mathbf{Z}\) end
- U: Eccentricity at Z end - distance from eccentric center point to original turning center (radius value)

\section*{NOTICE}

\section*{Danger of collision!}

When the coupling is activated, the control positions the tool in the \(\mathbf{Z}\) axis to the value of the parameter \(\mathbf{Z}\). Danger of collision during approach!
- Pre-position the tool if required before activating the coupling (before the cycle)
(1) Programming notes:
- Program a workpiece blank increased by the center offset in the radius if you are using turning cycles that are referenced to the workpiece-blank definition
- Program the starting point increased by the center offset in the radius if you are using turning cycles that are not referenced to the workpiece-blank definition
- Reduce the spindle speed if you increase the center offset
- Reduce the maximum rapid traverse \(\mathbf{F}\) if you increase the center offset
- Use identical values for the parameter \(\mathbf{Q}\) when activating and deactivating the coupling

Programming sequence:
- Position the cursor in the MACHINING program section
- Program function G726 with H1 (activate coupling)
- Program turning cycles
- Program function G726 with H0 (deactivate coupling)
(1) Canceling the program run automatically deactivates the coupling.

Block scan (mid-program startup) is not available for non-circular turning with a coupled spindle (option 135, Synchronizing Funct.). Select an NC block before or after the non-circular turning program section.

\section*{Non-circular X G727}

G727 is used to machine elliptical polygons.
The turning contours are programmed using separate turning cycles.
Refer to your machine manual.
This function is set by your machine tool builder.
Prerequisites:
- Synchronizing functions (option 135)

Parameters:
- H: Activate coupling
- \(\mathbf{H}=0\) : Deactivate coupling
- \(\mathbf{H}=1\) : Activate coupling
- Q: Reference spindle - number of the spindle coupled with axes \(X\) and \(Y\) (machine-dependent)
- I: X stroke +/- - half of overlapping X movement (radius value)
- C: Center offs. of C at Z start - C-axis angle of the \(X\) stroke
- F: Max. rapid traverse - permissible rapid traverse for \(X\) and \(Y\) axes with activated coupling
- E: Form factor? - number of \(X\) strokes with respect to one spindle revolution
- Z: Z start - reference value for the parameter C
- W: Delta C [ \({ }^{\circ} / \mathrm{mm} \mathbf{Z}\) ] - difference in C-axis angle with respect to a distance of 1 mm in the Z axis

\section*{NOTICE}

\section*{Danger of collision!}

When the coupling is activated, the control positions the tool in the \(\mathbf{Z}\) axis to the value of the parameter \(\mathbf{Z}\). Danger of collision during approach!
- Pre-position the tool if required before activating the coupling (before the cycle)


Programming notes:
- Program a workpiece blank increased by the center offset in the radius if you are using turning cycles that are referenced to the workpiece-blank definition
- Program the starting point increased by the center offset in the radius if you are using turning cycles that are not referenced to the workpiece-blank definition
- Reduce the spindle speed if you increase the center offset
- Reduce the maximum rapid traverse \(\mathbf{F}\) if you increase the center offset
- Use identical values for the parameter \(\mathbf{Q}\) when activating and deactivating the coupling

Programming sequence:
- Position the cursor in the MACHINING program section
- Program function G727 with H1 (activate coupling)
- Program turning cycles
- Program function \(\mathbf{G 7 2 7}\) with \(\mathbf{H 0}\) (deactivate coupling)

(i)
Canceling the program run automatically deactivates the coupling.

\section*{Compens. for helical teeth G728}

With the \(\mathbf{G 7 2 8}\) function, you can compensate for a \(Z\) positiondependent angular offset between tool and workpiece. This function is required for hobbing helical teeth with G808.
Parameters:
- H: Activate:
- 0: OFF
- 1: ON
- Q: Spindle with workpiece
- D: Number of teeth - number of teeth of the workpiece
- O: Module

- WC: Angle of inclination of the gear
- Z: Z start - Z position where the angular difference is \(0^{\circ}\)
- J: Offset of tool \({ }^{\circ} / \mathrm{mm}\) Z
(1)

Operating notes:
- Make sure that the tool approaches the Z starting position without collision when the function is called.
- If you program offset \(\mathbf{J}\), this offset will be used directly as programmed. If you do not program \(\mathbf{J}\), the control will calculate the offset from the module, the number of teeth and the angle of inclination

\subsection*{6.30 Measuring the machine condition (option 155)}

Refer to your machine manual.
The machine tool builder determines the performance range and behavior of these functions.
Prerequisites:
- Component Monitoring (option 155)

During their lifecycle, the machine components which are subject to loads (e.g., guides, ball screws, ...) become worn and thus, the quality of the axis movements deteriorates. This, in turn, affects the production quality.
With Component Monitoring (option 155) and the following cycles, the control is able to measure the current machine condition. As a result, any deviations from the machine's shipping condition due to wear and aging can be measured. The measurement results are stored in a text file that is readable for the machine tool builder. He can read and evaluate the data, and react with predictive maintenance, thereby avoiding unplanned machine downtimes. The machine tool builder can define warning and error thresholds for the measured values and optionally specify error reactions.

\section*{Measuring the machine condition - fingerprint G238}

Refer to your machine manual.
The machine tool builder determines the scope of function and behavior of this function.

In this cycle, the control performs various measurements in order to determine the current condition of the machine.
You can start a test run with parameter \(\mathbf{H}=\mathbf{1}\). In this mode, the machine performs the programmed movements, but no measurements are taken. During this process, you can change the traversing speed using the potentiometers.
During a measurement sequence ( \(\mathbf{H}=\mathbf{0}\) or no input), the feed-rate potentiometer is superimposed by the cycle. This means that you cannot change the traversing speed. The movement can only be stopped by setting the feed-rate potentiometer to zero.
You can select measurements for individual axes with the Q D, and V parameters.

\section*{NOTICE}

\section*{Danger of collision!}

This cycle may perform extensive movements in one or more axes at rapid traverse! If you do not program a value in parameter H or set it to 0, the feed rate and rapid traverse potentiometers, and, if applicable, the spindle potentiometer, have no effect. There is a danger of collision!
- Before recording measured data, test the cycle in test mode with \(\mathbf{H}=1\)
- Contact your machine tool builder to learn about the type and range of movements before using Function G238.

Parameters:
- H: Only axis movement (1)
- \(\mathbf{0}\) or no input: Measurement sequence (feed-rate potentiometer is not effective)
- 1: Test run (feed-rate potentiometer is effective)
- Q: Measurement method - selection of the tests to be
performed
- 0: All tests
- 1: Waterfall chart
- 2: Circular interpolation test
- 3: Frequency response
- 4: Envelope curve
- D: Axis number \((X=1, Y=2, Z=3, U=4, V=5, W=6, A=7, B=\) \(8, C=9\) ) - first axis (only if \(\mathbf{Q}\) has been defined)
- V: Axis number - second axis (only if \(\mathbf{Q}\) has been defined)


To perform a circular interpolation test of the \(C\) axis on the counter spindle, define the parameters as follows:
- Q: Measurement method =2: Circular interpolation test
- \(\mathbf{V}\) : Axis number = 9: C

In this case, you must not define the \(\mathbf{D}\) parameter.

\section*{Component monitoring G939}

Refer to your machine manual.
This function must be set up by your machine manufacturer.

Using Function G939, the control performs a one-time component test. Your machine tool builder specifies the components to be tested and the type of test via the machine parameters.
(i)

Your machine tool builder defines the components to be monitored in the machine parameter CfgMonComponent (130900).

Parameters:
- ID: Key name - name of the machine component to be monitored-defined by the machine tool builder in machine parameter CfgMonComponent (130900)

\subsection*{6.31 Programming variables}

\section*{Fundamentals}

A variable is a placeholder. Variables can contain various data during the program run.
The control provides a variety of variable types.
The following rules apply to the use of variables:
- Multiplication/division before addition/subtraction
- Up to 6 bracket levels
- Integer variables: Integer values between -32767 and +32768
- Real variables: Floating point numbers with max. 10 integers and 7 decimal places
- Do not use any blank spaces when programming variables.
- The variable number itself and an index value, if applicable, can be described by another variable, e.g.: \#g( \#c2)
The control provides the following functions:
\begin{tabular}{ll}
\hline Syntax & Functions \\
\hline \(\mathbf{+}\) & Addition \\
\hline- & Subtraction \\
\hline \(\boldsymbol{\prime}\) & Multiplication \\
\hline \(\mathbf{( ~ )}\) & Division \\
\hline\(=\) & Parenthesizing \\
\hline ABS(...) & Absolute amount \\
\hline ROUND(...) & Round \\
\hline SQRT(...) & Square root \\
\hline SQRTA(...,..) & Square root of (a²+b2) \\
\hline SQRTS(...,..) & Square root of (a²-b2) \\
\hline INT(...) & Truncate decimal places \\
\hline SIN(...) & Sine (in degrees) \\
\hline COS(...) & Cosine (in degrees) \\
\hline TAN(...) & Tangent (in degrees) \\
\hline ASIN(...) & Arc sine (in degrees) \\
\hline ACOS(...) & Arc cosine (in degrees) \\
\hline ATAN(...) & Arc tangent (in degrees) \\
\hline LOGN(...) & Natural logarithm \\
\hline EXP(...) & Exponent function \\
\hline BITSET(...) & Bitset function \\
\hline STRING(...) & String \\
\hline PARA(...) & Configuration data \\
\hline
\end{tabular}

You can also program the listed functions by soft key.
The soft-key row is available when the variable assignment function is active and the on-screen alphabetic keyboard is closed.


Programming notes:
- The distinction between variables that can be modified at runtime and those that cannot, as in predecessor controls, does not apply any longer. The NC program is no longer compiled before the program run, but at runtime.
- Program NC blocks containing variable calculations with Slide code \$.. if your lathe has more than one slide. Otherwise, the calculations are repeated.
- Positions and dimensions transferred into system variables are always indicated in metric form. This also applies when an NC program is run in inches.

\section*{Variable types}

The control distinguishes the following variable types:
- General variables
- Local variables
- Global variables
- Text variables
- Machine dimensions
- Tool compensation
- PLC variables

\section*{General variables}
- \#11 .. \#L99: Channel-dependent, local variables are effective within a main or a subprogram
- \#11(1) .. \#L99(1): Channel-dependent, initialized variables are effective in the initialization programming level, as well as in the subprograms called from this level.
(i) This characteristic makes the channel-dependent initialized variables especially suitable for use in programs called expert programs. Undesired overlapping with the variables of the main program is thus avoided. In addition, all programmable variables continue to be available for the main program without restriction.
Further information: "Subprograms and expert programs", Page 283
- \#c1 .. \#c30 Channel-dependent, global variables can be used for each slide (NC channel). The same variable numbers can be used on different slides without influencing each other. The variable content is provided globally on one channel. Global means that a variable described in a subprogram can also be evaluated in the main program, and vice versa
- \#g1 .. \#g199: Channel-independent, global real variables are provided once within the control. If an NC program changes a variable, the change applies to all slides. The variables are retained even when the control is switched off, and can be evaluated again after power-up.
- \#g200 .. \#g299: Channel-independent, global integer variables are provided once within the control. If an NC program changes a variable, the change applies to all slides. The variables are retained even when the control is switched off, and can be evaluated again after power-up.
- \#x1 .. \#x20: Channel-dependent, local text variables are effective within a main or subprogram. They can be read only on the channel for which there were defined

\section*{Example: General variables}
\begin{tabular}{|l|l|}
\hline ... & \\
\hline N.. \#l1 \(=\# 11+1\) \\
\hline N.. G1 X\#c1 & \\
\hline N.. G1 X(SQRT(3*(SIN(30))) \\
\hline N.. \#g1=(ABS(\#2+0.5)) \\
\hline ... \\
\hline N.. G1 Z\#m(\#l1)(Z) \\
\hline N.. \#x1="Text" & \\
\hline N.. \#g2=\#g1+\#l1*(27/9*3.1415) \\
\hline ... & \\
\hline
\end{tabular}

\section*{Example: Channel-dependent, initialized variables}
\begin{tabular}{|c|c|}
\hline \%_G238.ncs "TURN_V1.0" & External subprogram called from the main program \\
\hline . . & \\
\hline VAR & \\
\hline N.. \#_debug = \#198(1) & Initialize variable \\
\hline . & \\
\hline N.. L"G938" V1 & Call another external subprogram \\
\hline . . . & \\
\hline \%_G938.ncs "TURN_V1.0" & External subprogram called from the subprogram \\
\hline . & \\
\hline N.. IF \#_debug==1 & \\
\hline N.. THEN & \\
\hline N.. PRINT( "Debug") & \\
\hline N.. ENDIF & \\
\hline . . . & \\
\hline RETURN & \\
\hline
\end{tabular}

If the variables are to be retained in the memory when the control is switched off, this feature must be activated by the machine tool builder in the CfgNcPgmParState machine parameter (no 200700).
If this feature is not activated, the variables values will always be "zero" after power-up.


You can also use variables to program M functions.

\section*{String variables}
- The TIME function writes the date or time to a string variable. The value in this variable can then be engraved using an engraving cycle.
- Contents of variables can be converted to string variables and added.
- String variables can be output as floating-point numbers. They are automatically rounded off.
- File names can be specified by means of string variables.

Further information: "File output for variables - WINDOW",
Page 533""

\section*{Example: date and time}
\begin{tabular}{|l|l|}
\hline ... & \\
\hline N.. \#x1=TIME("D.M.YY") & Date in string variable \#x1 \\
\hline N.. \#x2=TIME("h:m:s") & Time in string variable \#x2 \\
\hline ... & \\
\hline
\end{tabular}

\section*{Example: conversion to a string variable}
\begin{tabular}{l|l}
\hline\(\ldots\) & \\
\hline N.. \#x1=STRING(\#i21) & Convert variable \#i21 to string variable \#x1 \\
\hline N.. \#x2=TIME("h:m:s")+STRING(\#i21) & Add time and value in variable \#i21 \\
\hline... & \\
\hline
\end{tabular}

Example: Output of floating-point number
\begin{tabular}{|l|l|}
\hline ... & \\
\hline N.. \#x1=STRING(12.43,1) & The number is rounded off and output with one decimal place. \\
\hline ... & \\
\hline
\end{tabular}

\section*{Machine dimensions}
- \#m1(n) .. \#m99(n): \(\mathbf{n}\) is the designation of the axis ( \(X, Z, Y\) ) for which the machine dimension is to be read or written. The variable calculation uses the mach_dim.hmd table. Simulation: During the startup of the control, the mach_dim.hmd table is read by the simulation. The simulation function will now use the dedicated simulation table

\section*{Example: Machine dimensions}
\begin{tabular}{|l|l|l|}
\hline ... \\
\hline N.. G1 X(\#m1 (X)*2) \\
\hline N.. G1 Z\#m3(Z) & \\
\hline N.. \#m4(Z) \(=350\) & \\
\hline .. & \\
\hline
\end{tabular}

\section*{Tool compensation}
- \#dt( \(\mathbf{n}\) ): \(\mathbf{n}\) is the compensation direction ( \(\mathrm{X}, \mathrm{Z}, \mathrm{Y}, \mathrm{S}\) ) and \(\mathbf{t}\) is the turret pocket number assigned to the tool. The variable calculation uses the toolturn.htt table. Simulation: When the program is selected, the toolturn.htt table is read by the simulation. The simulation function will now use the dedicated simulation table

\section*{Example:Tool compensations}
\begin{tabular}{|l|l|l|}
\hline ... \\
\hline N.. G1 X(\#m1 (X)*2) \\
\hline N.. G1 Z\#m3(Z) \\
\hline N.. \#m4(Z) \(=350\) & \\
\hline ... & \\
\hline
\end{tabular}

Tool information can also be interrogated directly via the ID no. This may be necessary, for example, if no turret pocket has been assigned. For this purpose, program a comma and the ID no. of the tool after the desired identification, e.g. \#l1 = \#d1(Z, "001").

\section*{PLC variables (event bits)}

Refer to your machine manual.
This function must be set up by your machine manufacturer.

For variable programming, you can use logical, arithmetical, or text values from the PLC program. The control can read the PLC variables or write to them. The symbolic names you can use have been specified by the machine tool builder in the PLC program. In earlier control versions, the reading part of this programming process was designed as "event bits."
- \#en(Symname): \(\mathbf{n}\) is the data type, Symname the symbolic name of the PLC operand
The machine tool builder may also create symbolic names in indexed form. The index may vary.

\section*{\#e1("Spindle[\#I3].Direction")}
- \#e1 (\#e0): With \#e1, the control accesses logical, integer or fractional values
- \#e2: With \#e2, the control accesses text values


Ensure that the variable type matches when assigning values. Text values from PLC variables can only be saved in string variables, numerical values only in normal variables

\section*{Example: PLC variable}
\begin{tabular}{|c|c|}
\hline & \\
\hline N.. \#14 = \#e1( "CoolingOn") & Read the state from the PLC variable and store it in \#|4 \\
\hline N.. \#e1( "CoolingOn") =1 & Overwrite the state of the PLC variable \\
\hline N.. \#e1( "CoolingOn") =\#14 & Restore the PLC variable with the stored value \\
\hline ... & \\
\hline N.. \#x3 = \#e2( "MyFieldName") & Write the state from the text variable to \#x3 \\
\hline N.. \#e2( "MyFieldName") ="Hallo" & Overwrite the PLC variable with Hallo \\
\hline N.. \#e2( "MyFieldName") =\#x3 & Restore the PLC variable with the stored value \\
\hline . . & \\
\hline N.. \#l1 = \#e1( "Channel[2].Event[57]") & Save channel 2, event 57 in \#11 \\
\hline
\end{tabular}

\section*{Reading tool data}

\section*{Refer to your machine manual.}

This function is also available on machines with a tool magazine.
The control will then use the magazine list instead of the turret list.

Use the following syntax to read the data of tools currently entered in the turret list: \#wn(select)
Access information about the currently loaded tool with the following syntax: \#w0(select)


Tool information can also be interrogated directly via the ID no.
This may be necessary, for example, if no turret pocket has been assigned: \#l1 = \#w1 (select,"ID").
If a sequence of exchange is defined, program the first tool of the sequence. The control determines the data of the active tool.

Identification codes for tool information
\begin{tabular}{ll}
\hline \#wn(ID) & Tool ID number (assign in text variable \#xn) \\
\hline \#wn(PT) & P key of the tool *10 (e.g. 12.3 becomes 123) \\
\hline \#wn(WT) & Tool type (3-digit number) \\
\hline \#wn(WTV) & 1st position of tool type \\
\hline \#wn(WTH) & 2nd position of tool type \\
\hline \#wn(WTL) & 3rd position of tool type \\
\hline \#wn(NL) & Usable length (inside turning and drilling tools) \\
\hline \#wn(HR) & Main machining direction (see tool orientation table) \\
\hline \#wn(NR) & Secondary machining direction of turning tools \\
\hline \#wn(AS) & Execution (see execution table) \\
\hline \#wn(ZZ) & Number of teeth (milling tools) \\
\hline \#wn(RS) & Cutting edge radius \\
\hline \#wn(ZD) & Stud diameter \\
\hline \#wn(DF) & Cutter diameter \\
\hline \#wn(SD) & Shank diameter \\
\hline \#wn(SB) & Cutting width \\
\hline \#wn(SL) & Tooth length \\
\hline \#wn(AL) & Length of first cut \\
\hline \#wn(FB) & Cutter width \\
\hline \#wn(WL) & Tool orientation \\
\hline \#wn(ZL) & Tool setting dimension in Z (from the tool list) \\
\hline \#wn(XL) & Tool setting dimension in X (from the tool list) \\
\hline \#wn(YL) & Tool setting dimension in Y (from the tool list) \\
\hline \#wn(TL) & Tool status (Tool Locked) \\
\hline \#wn(I) & Position of tool tip center in X \\
\hline \#wn(J) & Position of tool tip center in Y \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \#wn(K) & Position of tool tip center in Z \\
\hline \#wn(ZE) & Length of the tool in the current insert position: Distance between tool tip and slide reference point Z \\
\hline \#wn(XE) & Length of the tool in the current insert position: Distance between tool tip and slide reference point X \\
\hline \#wn(YE) & Length of the tool in the current insert position: Distance between tool tip and slide reference point Y \\
\hline \#wn(DN) & Diameter of drilling and milling tools \\
\hline \#wn(HW) & Principal angle in the normalized system ( \(0^{\circ}\) to \(360^{\circ}\) ) \\
\hline \#wn(NW) & Secondary angle in the normalized system ( \(0^{\circ}\) to \(360^{\circ}\) ) \\
\hline \#wn(EW) & Tool angle \\
\hline \#wn(SW) & Point angle \\
\hline \#wn(AW) & \begin{tabular}{l}
- 0: No driven tool \\
- 1: Driven tool
\end{tabular} \\
\hline \#wn(MD) & \begin{tabular}{l}
Direction of rotation: \\
- 3: M3
- 4:M4
\end{tabular} \\
\hline \#wn(CW) & Tilting plane angle \\
\hline \#wn(BW) & Angular offset \\
\hline \#wn(WTL) & Orientation \\
\hline \#wn(AC) & Cutting-edge insert angle \\
\hline \#wn(ZS) & Maximum cutting depth \\
\hline \#wn(GH) & Thread pitch \\
\hline \#wn(NE) & Number of secondary cutting edges \\
\hline \#wn(NS) & Number of the secondary cutting edge \\
\hline \#wn(FP) & \begin{tabular}{l}
Tool type: \\
- 0 = normal tool \\
- 1 = master tools \\
- 2 = secondary cutting edge
\end{tabular} \\
\hline \#wn(Q) & Number of tool spindle \\
\hline \#wn(AS) & Execution left/right \\
\hline \#wn(X) & Setting dimension of holder in X \\
\hline \#wn(Z) & Setting dimension of holder in Z \\
\hline \#wn(Y) & Setting dimension of holder in Y \\
\hline \#wn(DX) & Compensation in \(X\) \\
\hline \#wn(DY) & Compensation in \(Y\) \\
\hline \#wn(DZ) & Compensation in Z \\
\hline \#wn(DS) & 2nd compensation \\
\hline \#wn(BR) & Tool radius 2 (milling tool) \\
\hline \#wn(DC) & Compensation of tool radius 2 (milling tool) \\
\hline
\end{tabular}

\section*{Access to tool data of turret}
\#wn(se- ■ n = turret pocket number
lect) \(\quad \mathbf{n}=0\) for the current tool
- select \(=\) designates the information to be read

Main machining direction
\#wn(HR) - 0: Undefined
- 1: +Z
- 2: +X
- 3: \(-Z\)
- 4: \(-X\)
- \(5:+/-Z\)
- 6: +/-X

\section*{Execution}
\#wn(AS) - 1:Right-hand
- 2: Left-hand

\section*{Tool orientation}
\#wn(WL) Reference: Machining direction of tool
- 0: On the contour
- 1: To the right of the contour
- -1 : To the left of the contour

\section*{Reading diagnostic bits}


Refer to your machine manual.
This function is also available on machines with a tool magazine.
The control will then use the magazine list instead of the turret list.

Use the following syntax to read diagnostic bits. You can access tools that are entered in the turret list.


You can also read diagnostic bits with Multifix tools. For this purpose, program a comma and the ID no. of the tool after the desired identification, e.g. \#l1 = \#t( 3, "001").

Identification codes for diagnostic bits
\begin{tabular}{ll} 
\#tn(1) & Tool life expired or max. quantity exceeded \\
\hline \#tn(2) & \(\left.\begin{array}{l}\text { Breakage detected via load monitoring (limit } \\
\\
\end{array} 2\right)\)
\end{tabular}
\begin{tabular}{ll}
\hline \#tn(3) & Wear ascertained via load monitoring (limit 1) \\
\hline \#tn(4) & Wear according to load monitoring (total load) \\
\hline \#tn(5) & Wear measured through tool calibration \\
\hline \#tn(6) & \begin{tabular}{l} 
Wear measured via in-process workpiece \\
measurement
\end{tabular} \\
\hline \#tn(7) & \begin{tabular}{l} 
Wear measured via post-process workpc. \\
measurement
\end{tabular} \\
\hline \#tn(8) & Cutting edge is new
\end{tabular}

\section*{Access to turret data}
\#tn(select) - \(\mathbf{n}=\) turret pocket number
- \(\mathbf{n}=0\) for the current tool
- select \(=\) designates the information to be read

\section*{Reading the current NC information}

Use the following syntax to read NC information that was programmed with \(G\) codes.

Identification codes for NC information
\begin{tabular}{|c|c|}
\hline \#n0(X) & Last programmed position X \\
\hline \#n0(Y) & Last programmed position Y \\
\hline \#n0(Z) & Last programmed position Z \\
\hline \#n0(A) & Last programmed position A \\
\hline \#n0(B) & Last programmed position B \\
\hline \#n0(C) & Last programmed position C \\
\hline \#n0(U) & Last programmed position U \\
\hline \#n0(V) & Last programmed position V \\
\hline \#n0(W) & Last programmed position W \\
\hline \#n0(CW) & Tool insert angle (0 or 180 degrees) \\
\hline \#n18(G) & Active working plane \\
\hline \#n40(G) & Status of TRC \\
\hline \#n47(P) & Current safety clearance \\
\hline \#n52(G) & Oversize G52_Geo taken into account 0=no / 1=yes \\
\hline \#n57(X) & Oversize in \(X\) \\
\hline \#n57(Z) & Oversize in Z \\
\hline \#n58(P) & Equidistant oversize \\
\hline \#n95(G) & Programmed feed type (G93/G94/G95) \\
\hline \#n95(Q) & Spindle number of the last programmed feed rate \\
\hline \#n95(F) & Last programmed feed rate \\
\hline \#n97(G) & Programmed speed type (G96/G97) \\
\hline \#n97(Q) & Spindle number of the last programmed speed type \\
\hline \#n97(S) & Last programmed speed \\
\hline \#n119(Q) & Number of the selected C axis \\
\hline \#n120(X) & Reference diameter X for calculating CY \\
\hline \#n147(I) & Current safety clearance in working plane \\
\hline \#n147(K) & Current safety clearance in infeed direction \\
\hline
\end{tabular}

Access to current NC information
\#nx(select) - x = G-code number
- select \(=\) designates the information to be read

Active working plane
\#n18(G) - 17: XY plane (front or rear)
- 18: XZ plane (turning)
- 19: YZ plane (plan view / lateral surface)

\section*{Status of TRC/MCRC}
\#n40(G) \(\quad\)\begin{tabular}{rl}
\(\quad\) & \(40: \mathbf{G 4 0}\) active \\
& \(=41: \mathbf{G 4 1}\) active \\
& \(=42: \mathbf{G 4 2}\) active
\end{tabular}

Number of the selected C axis
\#n119(G) \(\quad\)\begin{tabular}{rl}
\(\quad\) & \(0:\) No \(C\) axis \\
& \(\quad 1: C\) axis 1 \\
& \(-2: C\) axis 2
\end{tabular}

Current machine status
Active wear compensation (G148)
\begin{tabular}{rl} 
\#n148(0) & \(\quad 0: D X, D Z\) \\
& \(=1: D S, D Z\) \\
& \(-2: D X, D S\)
\end{tabular}

\section*{Pocket data of entered tool}
\begin{tabular}{|c|c|}
\hline \#n601(n) & \begin{tabular}{l}
- S: Number of cutting edge \\
- M: Magazine number \\
- ppp: Pocket number \\
Output in the format SMppp
\end{tabular} \\
\hline
\end{tabular}

Free magazine pocket
\begin{tabular}{rl} 
\#n610(H) & M: Magazine number \\
& - ppp: Pocket number \\
& Output in the format Mppp
\end{tabular}

\section*{Software limit switches}
\#n707(n, 1) Identification code of axis:
- n: Axis \(X, Y, Z, U, V, W, A, B, C\)
- 1: Minimum value
- 2: Maximum value

\section*{Datum shift}
\#n920(G) Status of functions G920/G921
- 0: G920/G921 not active
- 1: G920 active
- 2: G921 active

\section*{Reading general NC information}

Use the following syntax to read general NC information.
Identification codes for tool information
\begin{tabular}{ll} 
\#i1 & Current operating mode \\
\hline \#i2 & Active unit of measure (inches/metric)
\end{tabular}
\begin{tabular}{|c|c|}
\hline \#i3 & \begin{tabular}{l}
- Main spindle = 0 \\
- Counterspindle with mirroring \(Z=1\) \\
- Tool mirroring in \(\mathrm{Z}=2\) \\
- Tool + path mirroring in \(Z=3\)
\end{tabular} \\
\hline \#i4 & G16 active \(=1\) \\
\hline \#i5 & Last programmed tool number \\
\hline \#i6 & Start block search active \(=1\) \\
\hline \#i7 & System is DataPilot = 1 \\
\hline \#i8 & Selected language \\
\hline \#i9 & If \(Y\) axis is configured \(=1\) \\
\hline \#i10 & If B axis is configured \(=1\) \\
\hline \#i11 & If the tool pocket in X is mirrored to the machine system = 1 \\
\hline \#i12 & If \(U\) axis is programmable \(=1\) \\
\hline \#i13 & If V axis is programmable \(=1\) \\
\hline \#i14 & If W axis is programmable \(=1\) \\
\hline \#i15 & If \(U\) axis is configured \(=1\) \\
\hline \#i16 & If V axis is configured \(=1\) \\
\hline \#i17 & If \(W\) axis is configured = 1 \\
\hline \#i18 & Datum shift of the \(Z\) axis \\
\hline \#i19 & Datum shift of the \(X\) axis \\
\hline \#i20 & Last programmed path function (G0, G1, G2 ...) \\
\hline \#i21 & Current quantity (workpiece counter) \\
\hline \#i22 & If \(U\) axis is coupled with \(X\) axis \(=1\) \\
\hline \#i23 & If \(V\) axis is coupled with \(Y\) axis \(=1\) \\
\hline \#i24 & If W axis is coupled with Z axis \(=1\) \\
\hline \#i25 & If magazine exists = 1 \\
\hline \#i26 & P key of actual tool \(* 10+\mathrm{MU}\) from tool preselection \\
\hline \#i27 & P key of desired tool *10 from tool preselection \\
\hline \#i28 & Angle of oblique axis \(Y\) \\
\hline \#i29 & \(P\) key of the tool *10 that has reached the maximum tool life \\
\hline \#i30 & \(P\) key of the tool *10 that has reached the maximum workpiece quantity \\
\hline \#i31 & If contour groups have been programmed = 1 Only for automatic working plan generation \\
\hline \#i32 & Datum shift of the contour in Z from the contour group definition in DIN PLUS
\[
(1 \ldots 4)
\] \\
\hline \#i33 & \begin{tabular}{l}
If contour group programming is to be done in AWG = 1 \\
Only for automatic working plan generation
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll} 
\#i34 & \begin{tabular}{l} 
If only SLIDE \$2 has been specified in the program \\
header = 1
\end{tabular} \\
\hline \#i36 & \begin{tabular}{l} 
Channel number of the tilted C axis (0 to 5) \\
Only with activation of C axis in the NC program
\end{tabular} \\
\hline \#i38 & Read the PLC parts counter marker \\
\hline\(\# \mathrm{i} 39\) & Current channel number \\
\hline \#i99 & \begin{tabular}{l} 
Return code of subprograms \\
\\
\\
\\
\\
\end{tabular}\(\quad\)\begin{tabular}{l} 
Values
\end{tabular} \\
\hline
\end{tabular}

\section*{Active operating mode}
\#i1
- 2: Machine
- 3: Simulation
- 5: TSF menu

\section*{Languages}
\#i8 - 0: ENGLISH
- 1: GERMAN
- 2: CZECH
- 3: FRENCH
- 4: ITALIAN
- 5: SPANISH
- 6: PORTUGUESE
- 7: SWEDISH
- 8: DANISH
- 9: FINNISH
- 10: DUTCH
- 11: POLISH
- 12: HUNGARIAN
- 14: RUSSIAN
- 15: CHINESE
- 16: CHINESE_TRAD
- 17: SLOVENIAN
- 19: KOREAN
- 21: NORWEGIAN
- 22: ROMANIAN
- 23: SLOVAK
- 24: TURKISH

PLC parts counter marker
\#i38
- 0: Attribute not defined or parts count not reached
- 1: Parts count reached

\section*{Reading configuration data - PARA}

The PARA function is used to read configuration data. To do this, use the parameter designations from the configuration parameters. You also use the designations from the configuration parameters to read user parameters.
When you read optional parameters, check whether the return value is valid. Depending on the data type of the parameter (REAL/
STRING) the value \(\mathbf{0}\) or the text _EMPTY is returned when reading an optional attribute that has not been set.

\section*{Access to configuration data}

PARA (key, - Key: Key word
entity, Entity: Name of the configuration group
attribute, ■ Attribute: Element name
index)
- Index: Array number if the attribute is from an array

\section*{Example: PARA function}
\begin{tabular}{|l|l|}
\hline . . . & \\
\hline N.. \#I10=PARA("'","CfgDisplayLanguage","ncLanguage") & Reads the number of the currently selected language \\
\hline \begin{tabular}{l} 
N.. \#I1=PARA("'","CfgGlobalTechPara", \\
"safetyDistWorkpOut")
\end{tabular} & \begin{tabular}{l} 
Reads the external safety clearance on the machined part \\
(SAT)
\end{tabular} \\
\hline \begin{tabular}{l} 
N.. \#I1=PARA("Z1","CfgAxisProperties", \\
"threadSafetyDist")
\end{tabular} & Reads the thread safety clearance for Z1 \\
\hline N.. \#I1=PARA("'","CfgCoordSystem","coordSystem") & Reads the machine orientation number \\
\hline ... & Check whether the optional parameter is set \\
\hline \begin{tabular}{l} 
\#x2=PARA("\#x30","CfgCAxisProperties"," \\
relatedWpSpindle",0)
\end{tabular} & Evaluation: \\
\hline IF \#x2<>"_EMPTY" & The parameter "relatedWpSpindle" was set \\
\hline THEN & The parameter "relatedWpSpindle" was not set \\
\hline ELSE & \\
\hline ENDIF & \\
\hline
\end{tabular}

\section*{Determining the index of a parameter element - PARA}

You activate the index search for an element by appending the name of the list element to the attribute, separated by a comma.

\section*{Example:}

Determining the logical axis number of spindle \(\mathbf{S 1}\)
\#c1 = PARA( "", "CfgAxes", "axisList,S1", 0)
The function returns the index of the \(\mathbf{S 1}\) element in the axisList attribute of the \(\mathbf{C f g} A x e s\) entity. The index of element \(\mathbf{S} \mathbf{1}\) equals the logical axis number in this example.

\section*{Access to configuration data}
\begin{tabular}{lll} 
PARA (key, & Key: Key word \\
entity, & - & Entity: Name of the configuration group \\
attribute, & - Attribute, name: Attribute name and element \\
element, & name \\
index) & - Index: 0 (not required) \\
&
\end{tabular}

Without the attribute extension \(\mathbf{S 1}\), the function would read the element located at the list index number \(\mathbf{0}\). Since the element is a string in this example, the result has to be assigned to a string variable.
\#x1 = PARA( "", "CfgAxes", "axisList", 0)
The function reads the string name of the element at list index number \(\mathbf{0}\).

\section*{Expanded variable syntax CONST - VAR}

By defining the CONST or VAR keywords, you can assign names to variables. The keywords can be used in the main program and in the subprogram. To use the definitions in a subprogram, you need to declare the constant or variable before the MACHINING code.

Rules for defining constants and variables: The names
of constants and variables must be preceded by an underscore. They can comprise lower case letters, numbers and the underscore character.
The maximum length must not exceed 20 characters.

\section*{Variable names with VAR}

By assigning variable names, you make it easier to read an NC program. To do this, you must insert the program section VAR. In this program section, you assign the variable designations to the variables.

Example: Free-text variables
\begin{tabular}{|l|l|}
\hline \%abc.nc & \\
\hline VAR & \\
\hline \#_rohdm=\#l1 & \\
\hline \#LANK rohdm is a synonym of \#l1 \\
\hline N.. & \\
\hline FINISHED PART & \\
\hline N.. & \\
\hline MACHINING & \\
\hline N.. \\
\hline ... & \\
\hline
\end{tabular}

\section*{Example: Subprogram}
\begin{tabular}{|l|l|}
\hline \%SP1.ncS & \\
\hline VAR & \\
\hline \#_wo \(=\) \#c1 & Tool orientation \\
\hline MACHINING & \\
\hline N.. \#_wo \(=\) \#w0(WTL) \\
\hline N.. G0 X(\#_posx*2) & \\
\hline N.. G0 X\#_start_x & \\
\hline .. . & \\
\hline
\end{tabular}

\section*{Example: Assignment using variables}
\begin{tabular}{|l|l|}
\hline \%NC1.nc & \\
\hline VAR & \\
\hline \#_vorschub=\#11(200) & Assignment \\
\hline
\end{tabular}

This has the following meaning of an initializing assignment:
```

\#_vorschub=200

```

If you use the variable, you can overwrite the value later in the program at any time. The variable is known later in the NC programs and the subprograms starting from the point at which it has been declared and can be edited in both. This enables the subprograms to supply further data about the calling function in addition to the RETURN value. Unlike with the \#c and \#g variables, these variables exist only within an NC program and are therefore especially suitable for use in expert programs.

\section*{Definition of constants with CONST}

Possibilities of defining constants:
- Direct assignment of values
- Internal interpreter information as constants
- Assignment of names to the transfer variables of subprograms Use the following internal information to define constants in the CONST section.

Internal information for defining constants
\begin{tabular}{|c|c|}
\hline _n0_x & 768 Last programmed position X \\
\hline __n0_y & 769 Last programmed position Y \\
\hline __n0_z & 770 Last programmed position Z \\
\hline __n0_c & 771 Last programmed position C \\
\hline __n40_g & 774 Status of TRC \\
\hline __n148_o & 776 Active wear compensation \\
\hline __n18_g & 778 Active working plane \\
\hline _n120_x & 787 Reference diameter X for calculating CY \\
\hline __n52_g & 790 Oversize G52_Geo taken into account 0=no / \(1=y e s\) \\
\hline __n57_x & 791 Oversize in \(X\) \\
\hline __n57_z & 792 Oversize in Z \\
\hline __n58_p & 793 Equidistant oversize \\
\hline _n150_x & 794 Cutting width shifted in X by G150/G151 \\
\hline __n150_z & 795 Cutting width shifted in Z by G150/G151 \\
\hline __n95_g & 799 programmed feed type G93/G94/G95) \\
\hline __n95_q & 796 Spindle number of the programmed feed rate \\
\hline _n95_f & 800 Last programmed feed rate \\
\hline __n97_g & Programmed speed type G96/G97) \\
\hline __n97_q & 797 Spindle number of the programmed speed type \\
\hline __n97_s & Last programmed speed \\
\hline __la-_z & Subprogram transfer values \\
\hline  & stant _pi is predefined to the value 26535989 and can be used directly in every NC \\
\hline
\end{tabular}

\section*{Example: Main program}


Example: Subprogram
\begin{tabular}{|l|l|}
\hline \%SP1.ncS & \\
\hline CONST & \\
\hline _start_x=__la & Subprogram transfer value \\
\hline _posx =__n0_x & Internal constant \\
\hline VAR & Tool orientation \\
\hline \#_wo = \#c1 & \\
\hline MACHINING & \\
\hline N.. \#_wo = \#w0(WTL) & \\
\hline N.. GO X(\#_posx*2) & \\
\hline N.. GOX\#_start_x & \\
\hline ... & \\
\hline
\end{tabular}

\subsection*{6.32 Data input and data output}

\section*{Output window for variables - WINDOW}

WINDOW ( \(\mathbf{x}\) ) opens an output window with \(\mathbf{x}\) lines. The window is opened as a result of the first input/output. WINDOW ( \(\mathbf{0}\) ) closes the window.
Syntax: WINDOW (line number) ( \(0<=\) line number <= 20)
The standard output window comprises three lines. You do not need to program it.

Example: Output window for variables - WINDOW


File output for variables - WINDOW
The command WINDOW ( \(\mathbf{x}\), file name) saves the PRINT instruction in a file with the defined name and the extension . LOG in the directory V:\nc_prog\. The file is overwritten when the WINDOW command is run again.
Saving the LOG file is only possible in the Program run submode.
Syntax: WINDOW (line number, file name)
Example: File output for variables - WINDOW


You can specify the file name using a string variable.

\section*{Example: data output with string variables}
\begin{tabular}{|l|l|}
\hline N 11 \#I1 = \#i39 & \\
\hline N \(12 \# x 3=\) "Channel" & Assign the current channel number \\
\hline N \(13 \# x 2=\) STRING(\#11) & Convert the channel number into a string \\
\hline N \(14 \# x 3=\# x 3+\# x 2\) & Add the variable values \\
\hline N 15 WINDOW(5, \#x3) & \\
\hline N 16 PRINT("Channelinfo") & \\
\hline . . & \\
\hline
\end{tabular}

\section*{Input of variables - INPUT}

Use INPUT to program the input of variables.
Syntax: INPUT (text, variable)
You define the input text and the number of the variable. The control stops the interpretation at INPUT, outputs the text and waits for input of the variable value. Instead of an input text, you can also program a string variable, such as \#x1.
The control displays the input after having completed the INPUT command.


\section*{Output of \# variables - PRINT}

PRINT can be used to output texts and variable values during program run. You can program a succession of several texts and variables.
Syntax: PRINT (text, variable, text, variable, ...)


Example: Output of \# variables - PRINT
N 4 PRINT("result: ",\#11,"*17 = ",\#12)

\subsection*{6.33 Conditional block run}

\section*{Program branch IF..THEN..ELSE..ENDIF}

A conditional branch consists of the elements:
- IF, followed by a condition. The condition includes a variable or mathematical expression on either side of the relational operator.
- THEN. If the condition is fulfilled, the THEN branch is executed
- ELSE. If the condition is not fulfilled, the ELSE branch is executed
- ENDIF concludes the conditional program branch

Interrogate bitset: You can also use the BITSET function as condition. The function returns \(\mathbf{1}\) if the numerical value contains the requested bit. The function returns \(\mathbf{0}\) if the numerical value does not contain the requested bit.

\section*{Syntax:}
- BITSET (x,y)
- \(\mathbf{x}\) : Bit number (0 to 15 )
- y: Numerical value (0 to 65535)

The relationship between bit number and numerical value is shown in the table. You can also use variables for \(\mathbf{x}, \mathbf{y}\).
Programming:
- Select Extras > DIN PLUS word.... The control opens the Insert DIN PLUS word selection list
- Select IF
- Enter the condition
- Insert NC blocks of the THEN branch
- If required: Insert NC blocks of the ELSE branch

- NC blocks with IF, THEN, ELSE, ENDIF can have no
further commands
- You can combine up to two conditions

Relational operators
\begin{tabular}{ll}
\(\langle\) & Less than \\
\hline\(<=\) & Less than or equal to \\
\hline\(<>\) & Not equal to \\
\hline\(>\) & Greater than \\
\hline\(>=\) & Greater than or equal to \\
\hline\(==\) & equal to
\end{tabular}

\section*{Combining conditions}
\begin{tabular}{ll} 
AND & Logical AND operation \\
\hline OR & Logical OR operation
\end{tabular}

Conversion table
\begin{tabular}{ll}
\hline Bit & Numerical value \\
\hline \(\mathbf{0}\) & 1 \\
\hline \(\mathbf{1}\) & 2 \\
\hline \(\mathbf{2}\) & 4 \\
\hline \(\mathbf{3}\) & 8 \\
\hline \(\mathbf{4}\) & 16 \\
\hline \(\mathbf{5}\) & 32 \\
\hline \(\mathbf{6}\) & 64 \\
\hline \(\mathbf{7}\) & 128 \\
\hline \(\mathbf{8}\) & 256 \\
\hline \(\mathbf{9}\) & 512 \\
\hline \(\mathbf{1 0}\) & 1024 \\
\hline \(\mathbf{1 1}\) & 2048 \\
\hline \(\mathbf{1 2}\) & 4096 \\
\hline \(\mathbf{1 3}\) & 8192 \\
\hline \(\mathbf{1 4}\) & 32768
\end{tabular}

Example: IF... THEN... ELSE... ENDIF


\section*{Interrogating variables and constants}

With the DEF, NDEF, and DVDEF elements, you can interrogate whether a valid value was assigned to a variable or a constant. For example, an undefined variable can return the value \(\mathbf{0}\), just like a variable that has explicitly been assigned the value \(\mathbf{0}\). You can prevent undesired program jumps by checking the variables.
Programming:
- Select Extras > DIN PLUS word.... The control opens the Insert DIN PLUS word selection list
- Select IF
- Enter the required interrogation element (DEF, NDEF or DVDEF)
- Enter the name of the desired variable or constant
(i)
Enter the variable name without the character \#, e.g. IF NDEF (__la)

Interrogation elements of variables and constants:
- DEF: A value has been assigned to a variable or constant
- NDEF: No value has been assigned to a variable or constant
- DVDEF: Interrogation of an internal constant

\section*{Example: Interrogating a variable in a subprogram}


Example: Interrogating a variable in a subprogram
\begin{tabular}{|l|l|l|l|}
\hline N.. IF DEF(__lb) \\
\hline N.. THEN & \\
\hline N.. PRINT("\#__lb is not defined") \\
\hline N.. ELSE & \\
\hline N.. PRINT("Value:",\#__lb) \\
\hline N.. ENDIF & \\
\hline .... & \\
\hline
\end{tabular}

\section*{Example: Interrogating constants}
\begin{tabular}{l} 
N.. IF DVDEF(__n97_s) \\
\hline N.. THEN \\
\hline N.. PRINT("__n97_s is defined",\#__n97_s) \\
\hline N.. ELSE \\
\hline N.. PRINT("\#_n97_s is not defined") \\
\hline N.. ENDIF \\
\hline . . . \\
\hline
\end{tabular}

\section*{Program repeat WHILE..ENDWHILE}

A program repeat consists of the elements:
- WHILE, followed by a condition. The condition includes a variable or mathematical expression on either side of the relational operator.
- ENDWHILE concludes the conditional program repeat

NC blocks programmed between WHILE and ENDWHILE are executed repeatedly for as long as the condition is fulfilled. If the condition is not fulfilled, the control continues execution of the program with the block programmed after ENDWHILE.
Interrogate bitset: You can also use the BITSET function as condition. The function returns \(\mathbf{1}\) if the numerical value contains the requested bit. The function returns \(\mathbf{0}\) if the numerical value does not contain the requested bit.

\section*{Syntax:}
- BITSET (x,y)
- \(\mathbf{x}\) : Bit number (0 to 15 )
- y: Numerical value (0 to 65535)

The relationship between bit number and numerical value is shown in the table. You can also use variables for \(\mathbf{x}, \mathbf{y}\).
Programming:
- Select Extras > DIN PLUS word.... The control opens the Insert DIN PLUS word selection list
- Select WHILE
- Enter the condition
- Insert NC blocks between WHILE and ENDWHILE
(1) You can combine up to two conditions.
- If the condition you program in the WHILE command is always true, the program remains in an endless loop. This is one of the most frequent causes of error when working with program repeats.

\section*{Relational operators}
\begin{tabular}{ll}
\(\langle\) & Less than \\
\hline\(<=\) & Less than or equal to \\
\hline\(<>\) & Not equal to \\
\hline\(>\) & Greater than \\
\hline\(>=\) & Greater than or equal to \\
\hline\(==\) & equal to
\end{tabular}

Combining conditions
\begin{tabular}{ll} 
AND & Logical AND operation \\
\hline OR & Logical OR operation
\end{tabular}

Conversion table
\begin{tabular}{ll}
\hline Bit & Numerical value \\
\hline \(\mathbf{0}\) & 1 \\
\hline \(\mathbf{1}\) & 2 \\
\hline \(\mathbf{2}\) & 4 \\
\hline \(\mathbf{3}\) & 8 \\
\hline \(\mathbf{4}\) & 16 \\
\hline \(\mathbf{5}\) & 32 \\
\hline \(\mathbf{6}\) & 64 \\
\hline \(\mathbf{7}\) & 128 \\
\hline \(\mathbf{8}\) & 256 \\
\hline \(\mathbf{9}\) & 512 \\
\hline \(\mathbf{1 0}\) & 1024 \\
\hline \(\mathbf{1 1}\) & 2048 \\
\hline \(\mathbf{1 2}\) & 4096 \\
\hline \(\mathbf{1 3}\) & 8192 \\
\hline \(\mathbf{1 4}\) & 16384 \\
\hline \(\mathbf{1 5}\) & 32768
\end{tabular}

Example: WHILE..ENDWHILE


\section*{Program branch SWITCH..CASE}

The program branch consists of the elements:
- SWITCH, followed by a variable. The content of the variable is interrogated in the following CASE statement
- CASE \(\mathbf{x}\) : The CASE branch is run with the variable value \(\mathbf{x}\). CASE can be programmed repeated times
- DEFAULT: This branch is executed if no CASE statement matched the variable value. DEFAULT can be omitted
- BREAK: Concludes the CASE branch or DEFAULT branch

Programming:
- Select Extras > DIN PLUS word.... The control opens the Insert DIN PLUS word selection list
- Select SWITCH
- Enter the switch variable
- For each CASE branch:
- Under Extras > DIN PLUS word..., select CASE
- Enter the SWITCH condition (value of the variable) and insert the NC blocks to be executed
- For the DEFAULT branch: Insert the NC blocks to be executed

\section*{Example: SWITCH..CASE}


\section*{Skip level}

In the Program run submode you can set and activate skip levels.
In the next program run, the control will not execute the NC blocks defined with the set and activated skip level.
Further information: User's Manual
Before you can set and activate skip levels, you need to define them in the program:
\(\hat{\Delta} \quad \downarrow\) Open the program in the smart.Turn operating mode
\(\downarrow\)
- Position the cursor in the MACHINING program section on the NC block to be skipped
- Select the Extras menu item
- Select the Skip level... menu item
> The control opens a pop-up window
- Enter the number of the skip level in the / Deletion parameter
- Press the OK soft key

OK


You can assign more than one skip level to an NC block by entering a string of numerals in the / Deletion parameter. Thus, an input of \(\mathbf{1 5 9}\) would correspond to the skip levels \(\mathbf{1}\), \(\mathbf{5}\), and 9.
To clear the defined skip levels, program the parameter without a value and press the OK soft key to confirm.

\subsection*{6.34 Subprograms}

\section*{Subprogram call L "xx" V1}

The subprogram contains the following elements:
- L: Identifying letter for subprogram call
- "xx": Name of the subprogram-file name for external subprograms (max. 16 letters or numbers)
- V1: Identification code for external subprograms-omitted for local subprograms
Note on using subprograms:
- External subprograms are defined in a separate file. They can be called from any main program or other subprogram
- Local subprograms are in the main program file. They can be called only from the main program

- Subprograms can be nested up to 6 times. Nesting means that another subprogram is called from within a subprogram
- Recursion should be avoided
- You can program up to 29 transfer values in one subprogram call
- Designations: LA to LF, LH, I, J, K, O, P, R, S, U, W, X, Y, Z, BS, BE, WS, AC, WC, RC, IC, KC and JC
- The identification code within the subprogram is: \#__.. followed by the parameter designation in lowercase letters (for example: \#__la)
- You can use these transfer values when programming with variables within the subprogram
- String variables: ID and AT
- The variables \#11 to \#199 are available in every subprogram as local variables
- To transfer a variable to the main program, program the variable or the content of a variable after the fixed word RETURN. In the main program, the information is available in \#i99.
- If a subprogram is to be executed repeatedly, in the Number of repetitions \(\mathbf{Q}\) parameter define the number of times the subprogram is to be repeated
- A subprogram ends with RETURN


The parameter \(\mathbf{L N}\) is reserved for the transfer of block numbers. This parameter may receive a new value when the NC program is renumbered.

\section*{Dialogs in subprogram calls}

You can define up to 30 parameter descriptions that precede/ follow the input fields in an external subprogram. The units of measure are defined using code numbers. Depending on the setting "metric" or "inches," the control shows the designations (of the units of measure). When calling external subprograms that contain a parameter list, parameters not contained in this list are omitted from the call dialog.
The parameter descriptions can be positioned within the subprogram as desired. The control searches for subprograms in the sequence: current project, standard directory and then machine manufacturer directory.
Parameter descriptions:
- [//] - Beginning
- [pn=n; s=...] (parameter text max. 25 characters)
- pn: Parameter designations (la, lb, ...)
- \(\mathbf{n}\) : Code number for units of measure
- 0: Non-dimensional
- 1: mm or inches
- 2: mm/rev or in./rev
- 3: mm/min or in./min
- 4: m/min or ft/min
- 5: Rev/min
- 6: Degrees \(\left({ }^{\circ}\right)\)
- 7: \(\mu \mathrm{m}\) or \(\mu\) inch
- [//] - End

\section*{Example: Dialogs}
\begin{tabular}{l}
... \\
{\([/ /]\)} \\
{\([l a=1 ; s=\) bar diameter \(]\)} \\
{\([l b=1 ; s=\) starting point in Z\(]\)} \\
\hline\([\mathrm{lc}=1 ; \mathrm{s}=\) chamfer/rounding arc \((-/+)]\) \\
\hline .. \\
\hline\([/ /]\) \\
\hline .. \\
\hline
\end{tabular}

\section*{Help graphics for subprogram calls}

With help graphics you illustrate the call parameters of subprograms. The control places the help graphics to the left next to the dialog box of the subprogram call.
If you append an underscore _ and the input field name in capital letters (beginning with \(\mathbf{L}\) ) to the name of the file name, a separate graphic will be displayed for that input field. If no separate help graphic exists for an input field, the graphic for the subprogram will be displayed (if available). In the standard setting, the help window is displayed only if there is a graphic for the subprogram. Even if you want to use individual graphics for the address letters, you should define a graphic for the subprogram.
Graphic format:
- BMP, PNG, JPG images
- Size \(440 \times 320\) pixels

You integrate help graphics for subprogram calls as follows:
- The subprogram name, entry field name and the appropriate extension (BMP, PNG, JPG) must be used as file name for the help graphic.
- Transfer the help graphic to the directory: \nc_prog\Pictures

\subsection*{6.35 M commands}

\section*{M commands for program-run control}
(0) Refer to your machine manual.

The effect of machine commands depends on the configuration of your machine.
On your lathe, other M commands may apply for the listed functions.

M commands for program-run control
\begin{tabular}{ll} 
M00 & \begin{tabular}{l} 
Unconditional stop \\
The program run stops. NC start resumes the \\
program run.
\end{tabular} \\
\hline M01 & \begin{tabular}{l} 
Optional stop \\
If the Contin. run soft key is not active in \\
Automatic mode, the program run stops with \\
M01. Press NC start to resume the program run. \\
If Contin. run is active, the program continues \\
without stopping.
\end{tabular} \\
\hline M18 & Counting pulse \\
\hline M30 & \begin{tabular}{l} 
End of program \\
M30 means "end of program" (you do not need to \\
program M30). If you press NC start after M30, \\
program execution is repeated from the start of \\
the program.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline M91 & Stop, no spindle stop M91 \\
\hline M97 & \begin{tabular}{l} 
Program synchronization \\
\\
\\
\\
Further information: "Synchronous function M97", \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline M417 & Activate protection zone monitoring \\
\hline M418 & Deactivate protection zone monitoring \\
\hline M99 NS.. & \begin{tabular}{l}
Program end with restart \\
M99 means end program and start again. \\
The control restarts program execution from: \\
- The start of program if no NS is defined \\
- The block number NS if an NS is entered
\end{tabular} \\
\hline
\end{tabular}

Modal functions (feed rate, spindle speed, tool number, etc.) which are effective at the end of program remain in effect when the program is restarted. You should therefore reprogram the modal functions at the start of program or at the startup block (with M99).

\section*{Machine commands}

Refer to your machine manual.
The effect of machine commands depends on the configuration of your machine.
On your lathe, other M commands may apply for the listed functions.

The following table lists the \(\mathbf{M}\) commands used on most machines.
M commands as machine commands
\begin{tabular}{ll} 
M03 & Main spindle on (cw) \\
\hline M04 & Main spindle on (ccw) \\
\hline M05 & Main spindle stop \\
\hline M12 & Lock main spindle brake \\
\hline M13 & Release main spindle brake \\
\hline M14 & C axis on \\
\hline M15 & C axis off \\
\hline M19 & Spindle stop at position C \\
\hline M40 & Shift gear to range 0 (neutral) \\
\hline M41 & Shift gear to range 1 \\
\hline M42 & Shift gear to range 2 \\
\hline M43 & Shift gear to range 3 \\
\hline M44 & Shift gear to range 4 \\
\hline Mx03 & Spindle \(x\) on (cw) \\
\hline Mx04 & Spindle \(x\) on (ccw) \\
\hline Mx05 & Spindle \(x\) stop
\end{tabular}

\subsection*{6.36 Assignment, synchronization, workpiece transfer}

\section*{Converting and mirroring G30}

G30 converts G codes, \(\mathbf{M}\) functions, and the No. of spindle. G30 mirrors traverse paths and tool dimensions and shifts the machine datum by the datum offset defined for the axis.
Parameters:
- H: Table No. of the conversion table (possible only if the machine tool builder has configured a conversion table)
- Q: No. of spindle (default: 0)

Application: For full-surface machining, you describe the complete contour, machine the front face, rechuck the workpiece using an expert program, and then machine the rear face. To enable you to program rear-face machining in the same way as front-face machining (Z-axis orientation, direction of rotation for arcs, etc.), the expert program includes commands for converting and mirroring.

\section*{NOTICE}

\section*{Danger of collision!}

Conversions and mirroring will be retained when you switch the operating mode (e.g., between Machine operating mode and
Program run submode). Danger of collision during subsequent machining operations!
- Always intentionally switch off converting or mirroring
- Alternatively, reselect the program

\section*{Transformations of contours G99}

With the G99 function you can select a contour group, mirror contours, move them and bring the workpiece to the desired machining position.
Parameters:
- Q: number of the Contour group
- D: No. of spindle
- X: Contour pos. in graphic - move in \(X\) (diameter value)
- Z: Contour pos. in graphic - move in Z
- V: Mirror the \(Z\) axis (1)
- \(\mathbf{V}=0\) : Do not mirror

- \(\mathbf{V}=1\) : Mirror
- H: transformation type - Move/move + mirror
- \(\mathbf{H}=0\) : Contour shift, not mirroring
- \(\mathbf{H}=1\) : Contour shift, mirroring and reversing the direction of the contour description
- K: Length of workpiece shift - shift coordinate system in Z direction
- O: Omit elements
- \(\mathbf{O}=0\) : All contours are transformed
- \(\mathbf{O}=1\) : Auxiliary contours are not transformed
- \(\mathbf{O}=2\) : Face contours are not transformed
- \(\mathbf{O}=4\) : Lateral contours are not transformed

You can also add input values in order to combine various settings (e.g. O3 Do not transform auxiliary contours or face contours)


Program G99 again if the workpiece is transferred to another spindle and/or moves its position in the working space.

\section*{Setting a synchronizing mark G162}


Refer to your machine manual.
This function is only available on a machine with multiple channels (option 153).

G162 sets a synchronizing mark. Machining is continued on this slide. Another slide waits for the slide to reach the synchronizing mark.
Parameters:
- H: Sync.mark no. - number of the synchronizing mark (range: \(0<=H<=15\) )

\section*{One-sided synchronization G62}


Refer to your machine manual.
This function is only available on a machine with multiple channels (option 153).

G62 enables you to program the synchronization of two slides. The slide programmed with \(\mathbf{G 6 2}\) waits until slide \(\mathbf{Q}\) has reached the synchronizing mark \(\mathbf{H}\) that has been set with \(\mathbf{G 1 6 2}\).
If you use parameter \(\mathbf{O}\) for programming \(\mathbf{G 6 2}\), the slide waits until the synchronizing mark \(\mathbf{H}\) and the programmed coordinate have been reached.
Parameters:
- H: Sync.mark no. - number of the synchronizing mark (range: \(0<=\mathbf{H}<=15\) )
- Q: No. of slide - slide for which the control will wait
- O: Direction (default: 0)
- \(\mathbf{O}=-1\) : The slide waits until slide Q has traversed the synchronizing mark in negative direction in the specified axis direction.
- \(\mathbf{O}=0\) : The slide waits until slide Q has reached the synchronizing mark.
- \(\mathbf{O}=1\) : The slide waits until slide Q has traversed the synchronizing mark in positive direction in the specified axis direction.
- X: Diameter - coordinate at which the waiting process ends
- Z: Length - coordinate at which the waiting process ends
- Y: Length - coordinate at which the waiting process ends

Please note:
- G162 and G62 must be defined in the same main program.
- If you are using coordinates, the control must reach this coordinate. Therefore, instead of synchronizing to the end point of an NC block, synchronize to a coordinate that will reliably be traversed.

Example: G60
\begin{tabular}{|l|l|}
\hline\(\ldots\) & Slide \$1 waits until slide \$2 has reached the mark 5 \\
\hline\(\$ 1\) N10 G62 Q2 H5 & \\
\hline\(\ldots\) & \begin{tabular}{l} 
Slide \(\$ 2\) waits until slide \(\$ 1\) has reached the mark 7, and \\
\hline p2 N40 G62 Q1 O1 H7 X200
\end{tabular} \\
\hline\(\ldots\) & \\
\hline
\end{tabular}

\section*{Synchronous start of slides G63}


Refer to your machine manual.
This function is only available on a machine with multiple channels (option 153).

G63 starts the programmed slides simultaneously (synchronously).
The slides involved can be programmed as follows:
- Select the Extras menu item

- Select the Slide... menu item
- Enter the slide numbers

\section*{Synchronous function M97}


Refer to your machine manual.
This function is only available on a machine with multiple channels (option 153).

M97 synchronizes all programmed slides. Each slide waits until all slides have reached this block-the control does not continue program run until all slides have reached the block.
If you need more than one synchronization point, use parameters to program M97.
Parameters:
- H: Sync.mark no. - number of synchronizing mark (evaluated only during NC program interpretation)
- Q: No. of slide - slide for which the control will wait
- D: on/off
- \(D=0\) : synchronization during run time of NC program
- \(D=1\) : synchronization exclusively during interpretation of the NC programs

\section*{Example: M97}


\section*{Spindle synchronization G720}

Refer to your machine manual.
This function must be set up by your machine manufacturer.

G720 controls the workpiece transfer from the Master spind. to the Slave spind. and synchronizes functions such as polygonal turning jobs. The function remains active until you deactivate \(\mathbf{G 7 2 0}\) with the setting H0.
If you would like to synchronize more than two spindles you can program G720 several times in succession.
Parameters:
- S: Number of the Master spind.
- H: Number of the Slave spind. - no input or \(\mathbf{H}=0\) : Switches off the spindle synchronization
- C: Angle - offset angle
- Q: Master spindle speed factor (range: -100 <= \(\mathbf{Q}<=100\) )
- F: Slave spindle speed factor (range: \(-100<=\) F <= 100)
- Y: Type of cycle (machine-dependent)

Program the speed of the Master spind. with Gx97 S.. and define the speed ratio between the Master spind. and Slave spind. with \(\mathbf{Q}\) and \(\mathbf{F}\). If you enter a negative value for \(\mathbf{Q}\) or \(\mathbf{F}\), the direction of rotation of the Slave spind. will be reversed.
Remember that: \(\mathbf{Q}\) * master speed \(=\mathbf{F}\) * slave speed
\begin{tabular}{|l|l|}
\hline ... & \\
\hline N.. G397 S1500 M3 & Spindle speed and direction of rotation of master spindle
\end{tabular}\(|\)\begin{tabular}{l} 
Synchronization of master spindle and slave spindle. The \\
slave spindle precedes the master spindle by \(180^{\circ}\). Slave \\
spindle: Direction of rotation M4; rotational speed 750
\end{tabular}

\section*{Offset C angle G905}

G905 measures the angular offset during workpiece transfer while the spindle is rotating. The sum of Angle \(\mathbf{C}\) and the angle offset goes into effect as the datum shift of the C axis. If you interrogate the datum shift of the current C -axis in the variable \#a0 \((\mathbf{C}, \mathbf{1})\), the sum of the programmed datum shift and the measured offset angle will be transferred.
The datum shift is effective internally as a direct datum shift for the respective \(C\) axis. The contents of the variables are retained even if the control has been switched off.
You can also examine and reset the respectively active datum shift of the C axis in the Setup menu using the Set \(\mathbf{C}\)-axis values function.
Parameters:
- Q: No. axis C
- C: Angle - angle of additional datum shift for offset gripping (range: \(-360^{\circ}<=\mathbf{C}<=360^{\circ}\); default: \(0^{\circ}\) )

\section*{NOTICE}

\section*{Danger of collision!}

When switching off the control and when switching the operating mode (e.g., between Machine operating mode and Program run submode), datum shifts of the C axis are retained. Danger of collision during subsequent machining operations or workpiece transfers!
- Always intentionally switch off datum shifts of the C axis

\section*{NOTICE}

\section*{Danger of collision!}

The control does not check for jaw collisions during workpiece transfer (e.g. between the main spindle and counter spindle).
Danger of collision with short workpieces during transfers!
- Inspect the datum shift of the C axis and reset if required to ensure offset gripping of the jaws

\section*{Traverse to a fixed stop G916}

\section*{(o)}

Refer to your machine manual.
The machine tool builder determines the scope of function and behavior of this function.

G916 switches on the monitoring of the traverse path and moves to a fixed stop (example: transferring a premachined workpiece to a second traveling spindle if you do not know the exact position of the workpiece).
The control stops the slide and saves the stop position. G916 generates an interpreter stop.


Parameters:
- H: Contact force in daN (1 daNewton = 10 newtons)
- D: Axis number \((X=1, Y=2, Z=3, U=4, V=5, W=6, A=7, B=\) 8, C = 9)
- K: Incremental distance
- R: Return path
- V: Type of departure
- \(\mathbf{V}=0\) : Stay at fixed stop
- \(\mathbf{V}=1\) : Return to start position
- \(\mathbf{V}=2\) : Retract by return path \(\mathbf{R}\)
- O: Err. evaluation
- \(\mathbf{O}=0\) : Error evaluation in expert program
- \(\mathbf{0}=1\) : The control issues an error message

\section*{(1) Lag error monitoring is not activated until the acceleration phase has been completed}
- The feed rate override is not effective during cycle execution

When traversing to a fixed stop, the control moves
- up to the fixed stop and stops as soon as the following error has been reached. The remaining path of traverse is deleted
- back to starting position
- back by the return traverse path

Programming:
- Position the slide at a sufficient distance before the fixed stop
- Use a moderate feed rate (< \(1000 \mathrm{~mm} / \mathrm{min}\) )

\section*{Example: Traversing to a fixed stop}
\begin{tabular}{|l|l|}
\hline ... & \\
\hline N.. G0 Z20 & Pre-position slide 2 \\
\hline N.. G916 H100 D6 K-20 V0 01 & Activate monitoring, traverse to a fixed stop \\
\hline ... & \\
\hline
\end{tabular}

\section*{Controlled parting using lag error monitoring G917}
(o)

Refer to your machine manual.
The machine tool builder determines the scope of function and behavior of this function.

G917 monitors the path of traverse. The controlled parting function (cut-off control) prevents collisions caused by incomplete parting processes.
The control stops the slide when the tensile force is too high and generates an interpreter stop.
Parameters:

- H: Tensile force
- D: Axis number \((X=1, Y=2, Z=3, U=4, V=5, W=6, A=7, B=\) 8, C = 9)
- K: Incremental distance
- O: Err. evaluation
- \(\mathbf{O}=0\) : Error evaluation in expert program
- \(\mathbf{0}=1\) : The control issues an error message

During parting control, the parted workpiece moves in the \(\mathbf{+ Z}\) direction. If a lag error occurs, the workpiece is defined as not cut off.
The result is saved in the variable \#i99:
- 0: Workpiece was not correctly cut off (following error detected)
- 1: Workpiece was correctly cut off (no following error detected)
- Lag error monitoring is not activated until the acceleration phase has been completed
- The feed rate override is not effective during cycle execution

\subsection*{6.37 G codes from previous controls}

\section*{Fundamentals}

The commands described in the following are supported to enable you to use NC programs from previous controls. HEIDENHAIN recommends no longer using these commands with new NC programs.

\section*{Undercut G25 - contour definitions in the machining section}

G25 generates an undercut form element (DIN 509 E, DIN 509 F, DIN 76) that can then be integrated in roughing or finishing cycles. The help graphic illustrates the undercut parameters.
Parameters:
- H: Cut type (default: 0)
- 0 or 5: DIN 509 E
- 6: DIN 509 F
- 7: DIN 76
- I: Undercut depth (default: value from standard table)
- K: Undercut width (default: standard table)

- R: Undercut radius (default: standard table)
- P: Trav.dpth (default: value from standard table)
- W: Undercut angle (default: value from standard table)
- A: Face angle (default: standard table)
- FP: Thread pitch (no input: FP is calculated from the thread diameter)
- U: Grind. overs. (default: 0)
- E: Reduc. Feed for machining the undercut (default: active feed rate)
If the parameters are not defined, the control determines the following values from the diameter or the thread pitch in the standard table:
- DIN 509 E: I, K, W, R
- DIN 509 F: I, K, W, R, P, A
- DIN 76: I, K, W, R (determined from the Thread pitch)

\footnotetext{
i
- All parameters that you enter will be accounted foreven if the standard table prescribes other values.
- If you are programming an internal thread, it is advisable to preset the Thread pitch FP since the diameter of the longitudinal element is not the thread diameter. If you have the control calculate the Thread pitch automatically, slight deviations may occur.
}

Example: G25
\begin{tabular}{|l|}
\hline \%25.nc \\
\hline N1 T1 G95 F0.4 G96 S150 M3 \\
\hline N2 G0 X62 Z2 \\
\hline N3 G819 P4 H0 I0.3 K0.1 \\
\hline N4 G0 X13 Z0 \\
\hline N5 G1 X16 Z-1.5 \\
\hline N6 G1 Z-30 \\
\hline N7 G25 H7 I1.15 K5.2 R0.8 W30 FP1.5 \\
\hline N8 G1 X20 \\
\hline N9 G1 X40 Z-35 \\
\hline N10 G1 Z-55 B4 \\
\hline N11 G1 X55 B-2 \\
\hline N12 G1 Z-70 \\
\hline N13 G1 X60 \\
\hline N14 G80 \\
\hline END \\
\hline
\end{tabular}

\section*{Simple longitudinal roughing G81-simple turning cycles}

G81 roughs the contour area defined by the current tool position and X, Z. If you wish to machine an oblique cut, you can define the angle with \(\mathbf{I}\) and \(\mathbf{K}\).

Parameters:
- X: Contour Start point (diameter value)
- Z: Final point
- I: Max. approach
- K: Offset (in Z; default: 0)
- Q: G-Fct.approach (default: 0)
- 0: Infeed with G0 (rapid traverse)
- 1: Infeed with G1 (feed rate)
- \(\mathbf{V}\) : Type of retraction (default: 0)
- 0: Return to cycle starting point in \(Z\) and last retraction diameter in \(X\)
- 1: Return to cycle starting point
- H: Contour smoothing
- 0: With each cut (machine contour outline after each pass)
- 2: No smoothing (retracts at \(45^{\circ}\); no contour smoothing)

The control uses the position of the target point to distinguish between external and internal machining. The number of cutting
 passes is calculated in such a way that an abrasive cut is avoided and the calculated Max. approach is \(<=\mathbf{I}\).

- Programming X, Z: Absolute, incremental or modal
- Tool radius compensation is inactive.
- Safety clearance after each step: 1 mm
- A G57 oversize
- Is calculated with algebraic sign (oversizes are therefore impossible for inside contour machining)
- Remains effective after cycle end
- A G58 oversize is not taken into account.

Example: G81
\begin{tabular}{|l|l|l|}
\hline\(\ldots\) & \\
\hline N1 T3 G95 F0.25 G96 S200 M3 \\
\hline N2 G0 X120 Z2 & \\
\hline N3 G81 X100 Z-70 I4 K4 Q0 & \\
\hline N4 G0 X100 Z2 & \\
\hline N5 G81 X80 Z-60 I-4 K2 Q1 & \\
\hline N6 G0 X80 Z2 & \\
\hline N7 G81 X50 Z-45 I4 Q1 & \\
\hline.. & \\
\hline
\end{tabular}

\section*{Simple face roughing G82-simple turning cycles}

G82 roughs the contour area defined by the current tool position and \(\mathbf{X}, \mathbf{Z}\). If you wish to machine an oblique cut, you can define the angle with \(\mathbf{I}\) and \(\mathbf{K}\).
Parameters:
- X: Final point (diameter value)
- Z: Start point Z
- I: Offset in X (default: 0)
- K: Max. approach
- Q: G-Fct.approach (default: 0)
- 0: Infeed with G0 (rapid traverse)
- 1: Infeed with G1 (feed rate)
- \(\mathbf{V}\) : Type of retraction (default: 0)
- 0 : Return to cycle starting point in \(X\) and last retraction position in Z
- 1: Return to cycle starting point
- H:Contour smoothing
- 0: With each cut (machine contour outline after each pass)
- 2: No smoothing (retracts at \(45^{\circ}\); no contour smoothing)

The control uses the position of the target point to distinguish between external and internal machining. The number of cutting
 passes is calculated in such a way that an abrasive cut is avoided and the calculated Max. approach is <= K.

- Programming \(\mathbf{X}, \mathbf{Z}\) : Absolute, incremental or modal
- Tool radius compensation is inactive.
- Safety clearance after each step: 1 mm
- A G57 oversize
- Is calculated with algebraic sign (oversizes are therefore impossible for inside contour machining)
- Remains effective after cycle end
- A G58 oversize is not taken into account.

Example: G82
\begin{tabular}{|l|l|}
\hline\(\ldots\) & \\
\hline N1 T3 G95 F0.25 G96 S200 M3 \\
\hline N2 G0 X120 Z2 & \\
\hline N3 G82 X20 Z-15 I4 K4 Q0 \\
\hline N4 G0 X120 Z-15 & \\
\hline N5 G82 X50 Z-26 I2 K-4 Q1 \\
\hline N6 G0 X120 Z-26 & \\
\hline N7 G82 X80 Z-45 K4 Q1 & \\
\hline\(\ldots\) & \\
\hline
\end{tabular}

\section*{Simple contour repeat cycle G83-simple turning cycles}

G83 carries out the functions programmed in the following blocks (simple traverses or cycles without a contour definition) more than once. G80 ends the machining cycle.
Parameters:
- X: Destinat. point of contour (diameter; default: apply the last \(X\) coordinate)
- Z: Destinat. point of contour (default: apply the last Z coordinate)
- I: Max. approach
- K: Max. approach

If the number of infeeds differs for the \(X\) and \(Z\) axes, the tool first advances in both axes with the programmed values. The infeed is set to zero if the target value for one direction is reached.
Programming:
- G83 is alone in the block
- G83 must not be nested, not even by calling subprograms

- Tool radius compensation is inactive.
- Safety clearance after each step: 1 mm
- A G57 oversize
- Is calculated with algebraic sign (oversizes are therefore impossible for inside contour machining)
- Remains effective after cycle end
- A G58 oversize
- Is taken into account if you work with TRC
- Remains effective after cycle end

\section*{NOTICE}

\section*{Danger of collision!}

After each cut, the G83 function pre-positions the tool along the shortest path (diagonally) for the next infeed. Danger of collision during pre-positioning!
- Test the NC program in Simulation submode, using the graphic displayed there.
- Program an additional rapid traverse path to a safe position if required

Example: G83
\begin{tabular}{|l|}
\hline N1 T3 G95 F0.25 G96 S200 M3 \\
\hline N2 G0 X120 Z2 \\
\hline N3 G83 X80 Z0 I4 K0.3 \\
\hline N4 G0 X80 Z0 \\
\hline N5 G1 Z-15 B-1 \\
\hline N6 G1 X102 B2 \\
\hline N7 G1 Z-22 \\
\hline N8 G1 X90 Zi-12 B1 \\
\hline N9 G1 Zi-6 \\
\hline N10 G1 X100 A80 B-1 \\
\hline N11 G1 Z-47 \\
\hline N12 G1 X110 \\
\hline N13 G0 Z2 \\
\hline N14 G80 \\
\hline
\end{tabular}

\section*{Recessing G86 - simple turning cycle}

G86 machines simple radial and axial recesses with chamfers. From the tool position, the control determines whether a radial or axial recess, or an inside or outside recess is to be machined.

Parameters:
- X: Base corner X (diameter value)
- Z: Base corner Z

■ I: Radial recess - Ov.size / Axial recess - Width Radial recess
- \(\mathbf{I}>0\) : Oversize (roughing and finishing)
- \(\mathbf{I}=0\) : No finishing


Axial recess:
- I > 0: Recess width
- No input: Recess width = tool width
- K: Radial recess - Width / Axial recess - Ov.size Radial recess
- K > 0: Recess width
- No input: Recess width = tool width

Axial recess
- K > 0: Oversize (roughing and finishing)
- K = 0: No finishing

- E: Delay (default: time for one spindle revolution)
- With finishing oversize: Only for finishing
- Without finishing oversize: No finishing

Oversize programmed: First roughing, then finishing
G86 machines chamfers at the sides of the recess. If you do not wish to cut the chamfers, you must position the tool at a sufficient distance from the workpiece.
Calculate the starting position XS (diameter) as follows:
- \(\mathbf{X S}=\mathbf{X K}+2\) * (1.3-b)
- XK: Contour diameter
- b: Chamfer width


\footnotetext{
- The tool radius compensation is active
}
- An oversize is not taken into account

Example: G86
\begin{tabular}{|l|l|}
\hline N1 T3 G95 F0.25 G96 S200 M3 & \\
\hline N2 G0 X62 Z2 & \\
\hline N3 G86 X54 Z-30 I0.2 K7 E2 & \\
\hline N4 G14 Q0 & \\
\hline N5 T38 G95 F0.15 G96 S200 M3 & \\
\hline N6 G0 X120 Z1 & \\
\hline N7 G86 X102 Z-4 I7 K0.2 E1 & Axial \\
\hline ... & \\
\hline
\end{tabular}

\section*{Radius cycle G87 - simple turning cycles}

G87 machines transition radii at orthogonal, paraxial inside and outside corners. The direction is taken from the position of the machining direction of the tool.
Parameters:
- X: Edge (diameter value)
- Z: Edge
- B: Radius
- E: Reduced feed

A preceding longitudinal or transverse element is machined if the tool is located at the \(\mathbf{X}\) or \(\mathbf{Z}\) coordinate of the corner before the cycle
 is executed.


Example: G87


\section*{Chamfer cycle G88 - simple turning cycles}

G88 machines chamfers at orthogonal, paraxial outside corners. The direction is taken from the position of the machining direction of the tool.
Parameters:
- X: Edge (diameter value)
- Z: Edge
- B: Cham. width
- E: Reduced feed

A preceding longitudinal or transverse element is machined if the tool is located at the \(\mathbf{X}\) or \(\mathbf{Z}\) coordinate of the corner before the cycle
 is executed.


Example: G88
\(\square\)

\section*{Simple longitudinal single-start thread G350-4110}

G350 cuts a longitudinal thread (internal or external thread). The thread starts at the current tool position and ends at the Final point Z.

Parameters:
- Z: Edge of thread
- F: Thread pitch
- U: Thread depth
- \(\mathbf{U}>0\) : Internal thread
- \(\mathbf{U}<=0\) : External thread (lateral surface or front face)
- \(\mathbf{U}=+999\) or -999 : Thread depth is calculated
- I: Max. approach (no input: I is calculated from the thread pitch and the thread depth)
Internal or external threads: See algebraic sign of \(\mathbf{U}\)
Handwheel superposition (provided that your machine is equipped accordingly): The superposition is limited to the following range:
- X direction: Depending on the current cutting depth-without exceeding the starting and end points of the thread
- Z direction: Maximal 1 thread groove-without exceeding the starting and end points of the thread
-
- NC stop becomes effective at the end of a thread cut.
- The feed rate and spindle speed overrides are not effective during cycle run.
- Handwheel superimpositioning can be activated with a switch located on the machine operating panel if your machine is equipped accordingly.
- Feedforward control is switched off.

\section*{Simple longitudinal multi-start thread G351-4110}

G351 machines a single or multi-start longitudinal thread (internal or external thread) with variable pitch. The thread starts at the current tool position and ends at the Final point Z.
Parameters:
- Z: Edge of thread
- F: Thread pitch
- U: Thread depth
- \(\mathbf{U}>0\) : Internal thread
- U <= 0: External thread (lateral surface or front face)
- \(\mathbf{U}=+999\) or -999 : Thread depth is calculated
- I: Max. approach (no input: I is calculated from the thread pitch and the thread depth)
- A: Approach ang. (range: \(-60^{\circ}<\mathbf{A}<60^{\circ}\); default: \(30^{\circ}\) )
- A < 0: Infeed on left thread flank
- A > 0: Infeed on right thread flank
- D: No.gears (default: 1 single-start thread)
- J: Remaining cut depth (default: 1/100 mm)
- E: Variable gr. (default: 0)

Increases/decreases the pitch per revolution by \(\mathbf{E}\).
Internal or external threads: See algebraic sign of \(\mathbf{U}\)
Number of cutting passes: \(\boldsymbol{I}\) is used for the first pass. The cutting depth is reduced with each further pass until the remaining cutting depth \(\mathbf{J}\) is reached.
Handwheel superposition (provided that your machine is equipped accordingly): The superposition is limited to the following range:
- X direction: Depending on the current cutting depth—without exceeding the starting and end points of the thread
- Z direction: Maximal 1 thread groove-without exceeding the starting and end points of the thread
(i) NC stop becomes effective at the end of a thread cut.
- The feed rate and spindle speed overrides are not effective during cycle run.
- Handwheel superimpositioning can be activated with a switch located on the machine operating panel if your machine is equipped accordingly.
- Feedforward control is switched off.

\subsection*{6.38 DIN PLUS program example}

Example of a subprogram with contour repetitions
Contour repetitions, including saving of the contour
\begin{tabular}{|c|c|}
\hline PROGRAM HEAD & \\
\hline \#SLIDE \$1 & \\
\hline TURRET 1 & \\
\hline T2 ID "121-55-040.1" & \\
\hline T3 ID "111-55.080.1" & \\
\hline T4 ID "161-400.2" & \\
\hline T8 ID "342-18.0-70" & \\
\hline T12 ID "112-12-050.1" & \\
\hline BLANK & \\
\hline N1 G20 X100 Z120 K1 & \\
\hline FINISHED PART & \\
\hline N2 G0 X19.2 Z-10 & \\
\hline N3 G1 Z-8.5 BR0.35 & \\
\hline N4 G1 X38 BR3 & \\
\hline N5 G1 Z-3.05 BR0.2 & \\
\hline N6 G1 X42 BR0.5 & \\
\hline N7 G1 Z0 BR0.2 & \\
\hline N8 G1 X66 BR0.5 & \\
\hline N9 G1 Z-10 BR0.5 & \\
\hline N10 G1 X19.2 BR0.5 & \\
\hline MACHINING & \\
\hline N11 G26 S2500 & \\
\hline N12 G14 Q0 & \\
\hline N13 G702 Q0 H1 & Save contour \\
\hline N14 L"1" V0 Q2 & Qx = number of repetitions \\
\hline N15 M30 & \\
\hline SUBROUTINE "1" & \\
\hline N16 M108N17 G702 Q1 H1 & Load saved contour \\
\hline N18 G14 Q0 & \\
\hline N19 T8 & \\
\hline N20 G97 S2000 M3 & \\
\hline N21 G95 F0.2 & \\
\hline N22 G0 X0 Z4 & \\
\hline N23 G147 K1 & \\
\hline N24 G74 Z-15 P72 18 B20 J36 E0.1 K0 & \\
\hline N25 G14 Q0 & \\
\hline
\end{tabular}
N25 G14 Q0
\begin{tabular}{|c|c|}
\hline N26 T3 & \\
\hline N27 G96 S300 G95 F0.35 M4 & \\
\hline N28 G0 X72 Z2 & \\
\hline N29 G820 NS8 NE8 P2 K0.2 W270 V3 & \\
\hline N30 G14 Q0 & \\
\hline N31 T12 & \\
\hline N32 G96 S250 G95 F0. 22 & \\
\hline N33 G810 NS7 NE3 P2 I0.2 K0.1 Z-12 H0 W180 Q0 & \\
\hline N34 G14 Q2 & \\
\hline N35 T2 & \\
\hline N36 G96 S300 G95 F0.08 & \\
\hline N37 G0 X69 Z2 & \\
\hline N38 G47 P1 & \\
\hline N39 G890 NS8 V3 H3 Z-40 D3 & \\
\hline N40 G47 P1 & \\
\hline N41 G890 NS9 V1 H0 Z-40 D1 I74 K0 & \\
\hline N42 G14 Q0 & \\
\hline N43 T12 & \\
\hline N44 G0 X44 Z2 & \\
\hline N45 G890 NS7 NE3 & \\
\hline N46 G14 Q2 & \\
\hline N47 T4 & Insert parting tool \\
\hline N48 G96 S160 G95 F0.18 M4 & \\
\hline N49 G0 X72 Z-14 & \\
\hline N50 G150 & Shift reference point to the right of the cutting edge \\
\hline N51 G1 X60 & \\
\hline N52 G1 X72 & \\
\hline N53 G0 Z-9 & \\
\hline N54 G1 X66 G95 F0.18 & \\
\hline N55 G42 & Activate TRC \\
\hline N56 G1 Z-10 B0.5 & \\
\hline N57 G1 X17 & \\
\hline N58 G0 X72 & \\
\hline N59 G0 X80 Z-10 G40 & Deactivate TRC \\
\hline N60 G14 Q0 & \\
\hline N61 G56 Z-14.4 & Incremental datum shift \\
\hline Return & \\
\hline END & \\
\hline
\end{tabular}

\subsection*{6.39 Connection between geometry and machining commands}

\section*{Turning}
\begin{tabular}{|c|c|c|}
\hline Function & Geometry & Machining \\
\hline Individual elements & \[
\begin{aligned}
& \text { G0..G3 } \\
& \text { G12/G13 }
\end{aligned}
\] & \begin{tabular}{l}
- Roughing longitudinal G810 \\
- Roughing transversal G820 \\
- Parallel contour G830 \\
- bidirectional G835 (contour-parallel roughing with neutral tool) \\
- Cutting-in universal G860 \\
- Recess turning G869 \\
- Finishing G890
\end{tabular} \\
\hline Recess & - G22 (standard) & ```
- Cutting-in universal G860
- Recessing cycle G870
- Recess turning G869
``` \\
\hline Recess & - G23 & \[
\begin{aligned}
& \text { Cutting-in universal G860 } \\
& \text { Recess turning G869 }
\end{aligned}
\] \\
\hline Thread with undercut & - G24 & \begin{tabular}{l}
- Roughing longitudinal G810 \\
- Roughing transversal G820 \\
- Parallel contour G830 \\
- Finishing G890 \\
- Thread turning G31
\end{tabular} \\
\hline Undercut & - G25 & \[
\begin{aligned}
& \text { Roughing longitudinal G810 } \\
& \text { - Finishing G890 }
\end{aligned}
\] \\
\hline Thread & \[
\begin{aligned}
& \text { G34 (standard) } \\
& \text { G37 (general) }
\end{aligned}
\] & - Thread turning G31 \\
\hline Hole & - G49 (turning center) & \begin{tabular}{l}
- Simple G71 \\
- G72 Boring, cntrsnkg. \\
- Tapping G73 \\
- Drilling deep G74
\end{tabular} \\
\hline
\end{tabular}

\section*{C-axis machining - front/rear face}
\begin{tabular}{|c|c|c|}
\hline Function & Geometry & Machining \\
\hline Individual elements & - G100..G103 & ```
- Mill. contour G840
■ Pock. - rough milling G845
- Pock. - finish milling G846
``` \\
\hline Figures & ```
- Linear groove G301
- Circular slot
    G302/G303
- Complete circle G304
- Rectangle G305
- Polygon G307
``` & ```
Mill. contour G840
- Pock. - rough milling G845
- Pock. - finish milling G846
``` \\
\hline Hole & - Bore hole G300 & ```
Simple G71
- G72 Boring, cntrsnkg.
- Tapping G73
- Drilling deep G74
``` \\
\hline
\end{tabular}

C-axis machining - lateral surface
\begin{tabular}{|c|c|c|}
\hline Function & Geometry & Machining \\
\hline Individual elements & - G110..G113 & ```
Mill. contour G840
- Pock. - rough milling G845
- Pock. - finish milling G846
``` \\
\hline Figures & \[
\begin{array}{ll}
\text { Linear groove G311 } \\
\text { Circular slot } \\
\text { G312/G313 } \\
\text { Complete circle G314 } \\
\text { Rectangle G315 } \\
\text { Polygon G317 } \\
\hline
\end{array}
\] & ```
- Mill. contour G840
- Pock. - rough milling G845
- Pock. - finish milling G846
``` \\
\hline Hole & - Boring G310 & \[
\begin{aligned}
& \text { Simple G71 } \\
& \text { G72 Boring, cntrsnkg. } \\
& \text { Tapping G73 } \\
& \text { Drilling deep G74 }
\end{aligned}
\] \\
\hline
\end{tabular}

Engraving - Text for lateral face C - G802 Engraving G316

\subsection*{6.40 Full-surface machining}

\section*{Fundamentals of full-surface machining}

In "full-surface machining," the front and rear ends can be machined in one NC program. The control supports full-surface machining for all common machine designs. The features include anglesynchronous part transfer with rotating spindle, traversing to a stop, controlled parting, and coordinate transformation. This ensures efficient full-surface machining and simple programming.
You describe the turning contour, the contours for the C axis as well as full-surface machining functions in one NC program. Expert programs are available for configuring the lathe.
You can also enjoy the benefits of full-surface machining on lathes with only one spindle.
Rear-face contours with C axis: The XK axis and therefore also the C axis are oriented with respect to the workpiece, not to the spindle. Therefore, for the rear face:
- Orientation of the XK axis: To the left (front face: to the right)
- Orientation of the C axis: Clockwise
- Direction of rotation for circular arcs G102: Counterclockwise
- Direction of rotation for circular arcs G103: Clockwise

Turning: The control supports full-surface machining with conversion and mirroring functions.
This makes it possible to keep the usual directions of movement for rear-side machining as well.
- Movements in a positive (+) direction depart the workpiece.
- Movements in a negative (-) direction approach the workpiece

The machine manufacturer can provide your lathe with suitable expert programs for workpiece transfer.
Reference points and coordinate system: The position of the machine and workpiece datums as well as the coordinate systems for the spindle and opposing spindle are illustrated in the figure at bottom. With this design of lathe it is recommended to mirror only the \(Z\) axis. Then, for either spindle, moving in positive direction will stand for motion away from the workpiece.
Usually the expert program contains the mirroring of the \(Z\) axis and the datum shift by the dimension NP-Offs.

\section*{Programming of full-surface machining}

When programming a contour on the rear face, be sure to consider the orientation of the XK axis (or X axis) and rotational direction of arcs.
Insofar as you use drilling and milling cycles, there are no special aspects to rear-face machining, since these cycles refer to predefined contours.
For rear-face machining with the basic commands \(\mathbf{G 1 0 0}\) to \(\mathbf{G 1 0 3}\) the same conditions apply as for rear-face contours.
Turning operations: The expert programs for reclamping contain converting and mirroring functions.
The following principle applies for rear-face machining (2nd setup):
- + direction: Goes away from the workpiece
- - direction: Goes toward the workpiece
- G2 and G12: Circular arc clockwise
- G3 and G13: Circular arc counterclockwise

Working without expert programs: If you do not use the converting and mirroring functions, the following principle applies:
- + direction: Goes away from the main spindle
- - direction: Goes toward the main spindle
- G2 and G12: Circular arc clockwise
- G3 and G13: Circular arc counterclockwise

\section*{Full-surface machining with counter spindle}

G30: The expert program switches the kinematics of the counterspindle. In addition, G30 activates the mirroring of the \(Z\) axis and converts other functions (e.g. circular arcs G2, G3).
G99: The expert program shifts the contour and mirrors the coordinate system (Z axis). Further programming of G99 is normally not required for machining the rear face after rechucking
Example: The workpiece is machined on the front face, transferred to the counter spindle through an expert program and machined on the rear face.

The expert program is used for:
- Angle-synchronous workpiece transfer to the counter spindle
- Mirroring traverse paths in the \(Z\) axis
- Activating a conversion list
- Mirroring the contour description and shifting for the 2nd setup

Full-surface machining on machines with counter spindles
\begin{tabular}{|c|c|}
\hline PROGRAM HEAD & \\
\hline \#MATERIAL STEEL & \\
\hline \#UNIT METRIC & \\
\hline \multicolumn{2}{|l|}{TURRET} \\
\hline \multicolumn{2}{|l|}{T1 ID "512-600.10"} \\
\hline \multicolumn{2}{|l|}{T2 ID "111-80-080.1"} \\
\hline \multicolumn{2}{|l|}{T102 ID "115-80-080.1"} \\
\hline \multicolumn{2}{|l|}{BLANK} \\
\hline \multicolumn{2}{|l|}{N1 G20 X100 Z100 K1} \\
\hline \multicolumn{2}{|l|}{FINISHED PART} \\
\hline \multicolumn{2}{|l|}{. . .} \\
\hline \multicolumn{2}{|l|}{FRONT Z0} \\
\hline \multicolumn{2}{|l|}{N13 G308 ID"Line" P-1} \\
\hline \multicolumn{2}{|l|}{N14 G100 XK-15 YK10} \\
\hline \multicolumn{2}{|l|}{N15 G101 XK-10 YK12 BR2} \\
\hline \multicolumn{2}{|l|}{N16 G101 XK-4.0725 YK-12.6555 BR4} \\
\hline \multicolumn{2}{|l|}{N18 G101 XK10} \\
\hline \multicolumn{2}{|l|}{N19 G309} \\
\hline \multicolumn{2}{|l|}{REAR SIDE Z-98} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{MACHINING} \\
\hline N27 G59 Z233 & Datum shift for 1st setup \\
\hline N28 G0 W\#iS18 & Counterspindle to machining position \\
\hline \multicolumn{2}{|l|}{N30 G14 Q0} \\
\hline \multicolumn{2}{|l|}{N31 G26 S2500} \\
\hline \multicolumn{2}{|l|}{N32 T2} \\
\hline . . . & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline N63 M5 & \\
\hline N64 T1 & \\
\hline N65 G197 S1485 G193 F0.05 M103 & C-axis machining in the main spindle \\
\hline N66 M14 & \\
\hline N67 M107 & \\
\hline N68 G0 X36.0555 Z3 & \\
\hline N69 G110 C146.31 & \\
\hline N70 G147 I2 K2 & \\
\hline N71 G840 Q0 NS15 NE18 10.5 R0 P1 & \\
\hline N72 G0 X31.241 Z3 & \\
\hline N73 G14 Q0 & \\
\hline N74 M105 M109 & \\
\hline N76 M15 & Deactivate C axis \\
\hline N80 L"RECHUCK" V1 LA.. LB.. LC.. & \begin{tabular}{l}
Expert prog. for part transfer with following functions: \\
G720 Spindle synchronization \\
G916 Traversing to a fixed stop \\
G30 Switch the kinematics \\
G99 Mirroring and shifting of the workpiece contour
\end{tabular} \\
\hline N90 G59 Z222 & Datum shift for 2nd setup \\
\hline . & \\
\hline N91 G14 Q0 & \\
\hline N92 T102 & \\
\hline N93 G396 S220 G395 F0.2 M304 & Technology data for opposing spindle \\
\hline N94 M107 & Turning in the counterspindle \\
\hline N95 G0 X120 Z3 & \\
\hline N96 G810 & Machining cycles \\
\hline N97 G30 Q0 & Switch off rear-face machining \\
\hline . . & \\
\hline N129 M30 & \\
\hline END & \\
\hline
\end{tabular}

\section*{Full-surface machining with single spindle}

G30: Normally not required.
G99: The expert program mirrors the contour. Further programming of G99 is normally not required for machining the rear face after rechucking.
Example: Describes the machining of the front and rear face, using one NC program. The workpiece is first machined on the front face; then it is rechucked manually. The rear face is machined subsequently.
The expert program mirrors and shifts the contour for the 2 nd setup.
Full-surface machining on machine with one spindle
\begin{tabular}{|c|c|}
\hline PROGRAM HEAD & \\
\hline \#MATERIAL STEEL & \\
\hline \#UNIT METRIC & \\
\hline TURRET & \\
\hline T1 ID "512-600.10" & \\
\hline T2 ID "111-80-080.1" & \\
\hline T102 ID "115-80-080.1" & \\
\hline BLANK & \\
\hline N1 G20 X100 Z100 K1 & \\
\hline FINISHED PART & \\
\hline -•• & \\
\hline FRONT ZO & \\
\hline -•• & \\
\hline REAR SIDE Z-98 & \\
\hline - . & \\
\hline N20 G308 ID"R" P-1 & \\
\hline N21 G100 XK5 YK-10 & \\
\hline N22 G101 YK15 & \\
\hline N23 G101 XK-5 & \\
\hline N24 G103 XK-8 YK3.8038 R6 I-5 & \\
\hline N25 G101 XK-12 YK-10 & \\
\hline N26 G309 & \\
\hline MACHINING & \\
\hline N27 G59 Z233 & Datum shift for 1 st setup \\
\hline -•• & \\
\hline N82 M15 & Prepare the rechucking \\
\hline N86 G99 H1 V0 K-98 & Contour mirroring and shifting for manual rechucking \\
\hline N87 M0 & Stop for rechucking \\
\hline N88 G59 Z222 & Datum shift for 2 nd setup \\
\hline - . & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline N125 M5 & Milling - rear face \\
\hline N126 T1 & \\
\hline N127 G197 S1485 G193 F0.05 M103 & \\
\hline N128 M14 & \\
\hline N130 M107 & \\
\hline N131 G0 X22.3607 Z3 & \\
\hline N132 G110 C-116.565 & \\
\hline N134 G147 I2 K2 & \\
\hline N135 G840 Q0 NS22 NE25 l0.5 R0 P1 & \\
\hline N136 G0 X154 Z-95 & \\
\hline N137 G0 X154 Z3 & \\
\hline N138 G14 Q0 & \\
\hline N139 M105 M109 & Switch off rear-face machining \\
\hline N142 M15 & \\
\hline N143 G30 Q0 & \\
\hline N144 M30 & \\
\hline END & \\
\hline
\end{tabular}

\subsection*{6.41 Program templates}

\section*{Fundamentals}
©: Refer to your machine manual.
This function must be enabled and adapted by the machine manufacturer.

A program template is a predefined NC program. It defines the structure for complex programming, for example. This reduces the programming efforts.
Your machine tool builder can provide you with up to nine program templates.

\section*{Opening a program template}

In order to use the program templates defined by the machine tool builder, create a new NC program from the template in smart.Turn operating mode.

Proceed as follows:

- Select the Prog menu item
- Select the New menu item
- Select the New program from template menu item
- Select the desired template

Touch Probe Cycles

\subsection*{7.1 General information on touch probe cycles (option 17)}

\section*{Fundamentals}

Refer to your machine manual.
The control must be specially prepared by the machine tool builder for the use of a 3-D touch probe.
HEIDENHAIN gives a warranty for the function of the touch probe cycles only if HEIDENHAIN touch probes are used!

\section*{Principle of function of touch probe cycles}

When you run a touch probe cycle, the 3-D touch probe is prepositioned at positioning feed rate. The actual probing movement is then executed from there at probing feed rate. The machine tool builder determines the positioning feed rate for the touch probe in a machine parameter. You define the probing feed rate in the respective touch probe cycle.
When the probe stylus contacts the workpiece,
- the 3-D touch probe transmits a signal to the control: the coordinates of the probed position are stored,
- the touch probe stops moving, and
- returns to the starting position of the probing procedure at positioning feed rate.
If the stylus is not deflected within a defined distance, the control displays an error message.

\section*{Touch probe cycles for automatic mode}

The control provides numerous touch probe cycles for various applications:
- Calibrating a touch trigger probe
- Measuring circles, circle segments, angle and position of the C axis
- Misalignment compensation
- Single-point and double-point measurement
- Finding a hole or stud
- Datum setting in the Z or C axis
- Automatic tool measurement

Touch probe cycles are programmed in the smart. Turn operating mode using the G codes. Just like the machining cycles, the touch probe cycles also use transfer parameters.
To simplify programming, the control shows a graphic during cycle definition. The appropriate input parameters are displayed in the help graphic.
The touch probe cycles save status information and measuring results in the variable \#i99.
Depending on the input parameters in the touch probe cycle you can interrogate various values.
\begin{tabular}{ll}
\hline Result \#i99 & Meaning \\
\hline\(<999997\) & Measuring result \\
\hline 999999 & Touch probe not deflected \\
\hline-999999 & Invalid measuring axis programmed \\
\hline 999998 & Max. deviation WE exceeded \\
\hline 999997 & Maximum perm. correction E exceeded
\end{tabular}

Programming the touch probe cycle in ISO Mode:
- Select ISO Mode programming and place the cursor in the MACHINING program section
- Select the Mach» menu item
- Select the G-menu menu item
- Select the Touch probe cycl. menu item
- Select measuring cycle group
- Select the cycle

Example: Touch probe cycle in the DIN PLUS program

\begin{tabular}{ll}
\hline Measuring cycle group & Page \\
\hline Single-point meas. & Page 581 \\
\hline Double-point meas. & Page 589 \\
\hline Calibration & Page 597 \\
\hline Probing & Page 601 \\
\hline Search cycles & Page 608 \\
\hline Circular measurement & Page 616 \\
\hline Angular measurement & Page 620 \\
\hline In-process measrmnt. & Page 623
\end{tabular}

\subsection*{7.2 Touch probe cycles for single-point measurement}

\section*{Single-point meas. for tool comp. G770}

Cycle G770 measures with the programmed measuring axis in the specified direction. If the tolerance value defined in the cycle is exceeded, the cycle saves the measured deviation either as tool compensation or as an additive compensation. The result of the measurement is saved additionally in the variable \#i99.
Further information: "Touch probe cycles for automatic mode", Page 579
Cycle run: From the current position the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point.
The control displays an error message if the touch probe does not reach any touch point within the defined measuring path. If a Max. deviation WE was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the Max. deviation WE, the program run is interrupted and an error message is displayed.
Parameters:
- R: Type of correction
- 1: Tool compensation DX/DZ for turning tool or additive compensation
- 2: Recessing tool Dx/DS
- 4: Milling tool DD
- D: Measuring axis - axis in which the measurement is to be made
- K: Incr. meas path w/ Ri. (the algebraic sign determines the probing direction) - maximum measuring path for probing
- AC: Target pos. nominal value - touch point coordinate
- BD: Tolerance position +/- - measurement result range in which no compensation will be applied
- WT: Correction no. T or G149
- \(\mathbf{T}\) : Tool at turret position \(\mathbf{T}\) to compensate the difference to the nominal value
- G149: Additive compensation D9xx to correct the difference to the nominal value (only possible with compensation type \(\mathbf{R}\) =1)
- E: Maximum perm. correction for the tool compensation
- WE: Max. deviation - probe twice and monitor the dispersion of the measured values

\section*{- V: Retraction type}
- 0: Without-only position touch probe back to the starting point if the touch probe was deflected
- 1: Automatic-always position touch probe back to the starting point

\section*{- O: Err. evaluation}
- 0: Program—do not interrupt program run, no error message
- 1: Automatic-interrupt program run and output error message if touch probe is not deflected within measuring path
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station
- AN: Log no. - save measurement results in the TNC: \table\messpro.mep table (line numbers: 0 to 99)
The table can be extended if necessary.

\section*{Example: G770 Single-point meas. for tool comp.}

\section*{Single-point measurmnt., datum G771}

Cycle G771 measures with the programmed measuring axis in the specified direction. If the tolerance value defined in the cycle is exceeded, the cycle saves the measured deviation as datum shift. The result of the measurement is saved additionally in the variable \#i99.
Further information: "Touch probe cycles for automatic mode", Page 579
Cycle run: From the current position the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point.
The control displays an error message if the touch probe does not reach any touch point within the defined measuring path. If a Max. deviation WE was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the Max. deviation WE, the program run is interrupted and an error message is displayed.
Parameters:
- R: Type of datum shift
- 1: Table and G59 - activate datum shift and additionally save in datum table (the datum shift also remains active after the program run)
- 2: Activate datum shift with G59 for the further program run (datum shift no longer active after program run)
- D: Measuring axis - axis in which the measurement is to be made
- K: Incr. meas path w/ Ri. (the algebraic sign determines the probing direction) - maximum measuring path for probing
- AC: Target pos. nominal value - touch point coordinate
- BD: Tolerance position +/- - measurement result range in which no compensation will be applied
- WE: Max. deviation - probe twice and monitor the dispersion of the measured values
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station
- AN: Log no. - save measurement results in the

TNC: \table\messpro.mep table (line numbers: 0 to 99)
The table can be extended if necessary.

\section*{Example: G771 Single-point measurmnt., datum}
\begin{tabular}{l}
. . \\
\hline MACHINING \\
\hline N3 G771 R1 DO K20 ACO BDO.2 QO PO HO \\
\hline.. \\
\hline
\end{tabular}

\section*{Datum, single point w/ C axis G772}

Cycle G772 measures with the C axis in the specified direction. If the tolerance value defined in the cycle is exceeded, the cycle saves the measured deviation as datum shift. The result of the measurement is saved additionally in the variable \#i99
Further information: "Touch probe cycles for automatic mode", Page 579

Cycle run: From the current position, the element to be probed is moved toward the touch probe by a rotation of the C axis. When the workpiece touches the stylus, the measured value is saved and the workpiece is returned.
The control displays an error message if the touch probe does not reach any touch point within the defined measuring path. If a Max. deviation WE was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the Max. deviation WE, the program run is interrupted and an error message is displayed.
Parameters:

\section*{- R: Type of datum shift}
- 1: Table and G152 - activate datum shift and additionally save in datum table (the datum shift also remains active after the program run)
- 2: Activate datum shift with G152 for the further program run (datum shift no longer active after program run)
- C: Incr. meas path w/ Ri. (the algebraic sign determines the probing direction) - C-axis measuring path (in degrees) starting from the current position
- AC: Target pos. nominal value - absolute coordinate of the touch point in degrees
- BD: Tolerance position +/- - measurement result range in which no compensation will be applied
- WE: Max. deviation - probe twice and monitor the dispersion of the measured values
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station
- AN: Log no. - save measurement results in the

TNC: \table\messpro.mep table (line numbers: 0 to 99)
The table can be extended if necessary.

\section*{Example: G772 Single-point measurement datum \(\mathbf{C}\) axis}

\section*{Datum, C-axis object center G773}

Cycle G773 measures an element with the C axis from two opposite sides and places the center of the element to a defined position. The result of the measurement is saved additionally in the variable \#i99.
Further information: "Touch probe cycles for automatic mode", Page 579
Cycle run: From the current position, the element to be probed is moved toward the touch probe by a rotation of the \(C\) axis. When the workpiece touches the stylus, the measured value is saved and the workpiece is returned. Then the touch probe is pre-positioned for the opposite probing procedure. When the second measured value has been determined, the cycle computes the mean value of the two measurements and applies a datum shift in the C axis. The Target
pos. nominal value AC defined in the cycle is then in the center of the probed element.
The control displays an error message if the touch probe does not reach any touch point within the defined measuring path. If a Max. deviation WE was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the Max. deviation WE, the program run is interrupted and an error message is displayed.
Parameters:
- R: Type of datum shift
- 1: Table and G152 - activate datum shift and additionally save in datum table (the datum shift also remains active after the program run)
- 2: Activate datum shift with G152 for the further program run (datum shift no longer active after program run)
- C: Incr. meas path w/ Ri. (the algebraic sign determines the probing direction) - C-axis measuring path (in degrees) starting from the current position
- E: Circumnavigation axis - axis that will be retracted by \(\mathbf{R B}\) in order to circumnavigate the element
- RB: Circumnav. dir. offset - retraction value in the circumnavigation axis \(\mathbf{E}\) for pre-positioning for the next probing position
- RC: Offset \(\mathbf{C}\) angle - difference in the C axis between the first and the second measuring positions
- AC: Target pos. nominal value - absolute coordinate of the touch point in degrees
- BD: Tolerance position +/- - measurement result range in which no compensation will be applied
- KC: Compensation offset - additional compensation value that is applied to the resulting datum
- WE: Max. deviation - probe twice and monitor the dispersion of the measured values
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station
- AN: Log no. - save measurement results in the TNC: \table\messpro.mep table (line numbers: 0 to 99)
The table can be extended if necessary.
Example: G773 Single-point measurement C-axis object center

\section*{. . . \\ MACHINING \\ N3 G773 R1 C20 E0 RB20 RC45 AC30 BD0. 2 Q0P0 H0}

\subsection*{7.3 Touch probe cycles for two-point measurement}

\section*{Two-point meas. G18 transverse G775}

Cycle G775 measures two opposite points in the X/Z plane with the measuring axis \(X\). If the tolerance values defined in the cycle are exceeded, the cycle saves the measured deviation either as tool compensation or as an additive compensation. The result of the measurement is saved additionally in the variable \#i99.
Further information: "Touch probe cycles for automatic mode", Page 579
Cycle run: From the current position, the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe returns to the starting point. For the pre-positioning for the second measurement, the cycle first moves the touch probe by the Circumnav. dir. offset RB and then by the Measuring direction offset RC. The cycle executes the second probing operation in the opposite direction, saves the result and retracts the touch probe in the circumnavigation axis by the circumnavigation value.
The control displays an error message if the touch probe does not reach any touch point within the defined measuring path. If a Max. deviation WE was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the Max. deviation WE, the program run is interrupted and an error message is displayed.
Parameters:
- R: Type of correction
- 1: Tool compensation DX/DZ for turning tool or additive compensation
- 2: Recessing tool DX/DS
- 3: Milling tool DX/DD
- 4: Milling tool DD
- K: Incr. meas path w/ Ri. (the algebraic sign determines the probing direction) - maximum measuring path for probing
- E: Circumnavigation axis - selection of axis for retraction movement between the probing positions
- 0: \(Z\) axis
- 2: Y axis
- RB: Circumnav. dir. offset - distance
- RC: Offset in \(\mathbf{X}\) - distance for pre-positioning before the second measurement
- XE: Target pos. noml value \(\mathbf{X}\) - absolute coordinate of the touch point
- BD: Tolerance position +/- - measurement result range in which no compensation will be applied
- \(\mathbf{X}\) : Nominal width in \(\mathbf{X}\) - coordinate of the second probing position
- BE: Tolerance width +/- - range for the second measurement result in which no compensation will be applied
- WT: Compens. no. 1, measd. edge
- \(\mathbf{T}\) : Tool at turret position \(\mathbf{T}\) to compensate the difference to the nominal value
- G149: Additive compensation D9xx to correct the difference to the nominal value (only possible with compensation type \(\mathbf{R}\) =1)
- AT: Compens. no.2, measd. edge
- \(\mathbf{T}\) : Tool at turret position \(\mathbf{T}\) to compensate the difference to the nominal value
- G149: Additive compensation D9xx to correct the difference to the nominal value (only possible with compensation type \(\mathbf{R}\) =1)
- FP: Maximum perm. correction
- WE: Max. deviation - probe twice and monitor the dispersion of the measured values
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station
- AN: Log no. - save measurement results in the TNC: \table\messpro.mep table (line numbers: 0 to 99)
The table can be extended if necessary.
The cycle computes the Compens. no.1, measd. edge WT from the result of the first measurement and the Compens. no.2, measd. edge AT from the result of the second measurement.

Example: G775 Two-point measurement for tool compensation
\begin{tabular}{l}
... \\
\hline MACHINING \\
\hline N3 G775 R1 K20 E1 XE30 BD0.2 X40 BE0.3WT5 Q0 P0 H0 \\
\hline .. \\
\hline
\end{tabular}

\section*{Two-pt. meas. G18 longitudinal G776}

Cycle G776 measures two opposite points in the X/Z plane with the measuring axis \(Z\). If the tolerance values defined in the cycle are exceeded, the cycle saves the measured deviation either as tool compensation or as an additive compensation. The result of the measurement is saved additionally in the variable \#i99.
Further information: "Touch probe cycles for automatic mode", Page 579
Cycle run: From the current position, the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe returns to the starting point. For the pre-positioning for the second measurement, the control first moves the touch probe by the Circumnav. dir. offset RB and then by the Offset in Z RC. The cycle executes the second probing operation in the opposite direction, saves the result and retracts the touch probe in the circumnavigation axis by the circumnavigation value.
The control displays an error message if the touch probe does not reach any touch point within the defined measuring path. If a Max. deviation WE was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the Max. deviation WE, the program run is interrupted and an error message is displayed.
Parameters:
- R: Type of correction
- 1: Tool compensation DX/DZ for turning tool or additive compensation
- 2: Recessing tool DX/DS
- 3: Milling tool DX/DD
- 4: Milling tool DD
- K: Incr. meas path w/ Ri. (the algebraic sign determines the probing direction) - maximum measuring path for probing
- E: Circumnavigation axis - selection of axis for retraction movement between the probing positions
- 0: \(X\) axis
- 2: \(Y\) axis
- RB: Circumnav. dir. offset - distance
- RC: Offset in Z - distance for pre-positioning before the second measurement
- ZE: Target pos. noml value \(\mathbf{Z}\) - absolute coordinate of touch point
- BD: Tolerance position +/- - measurement result range in which no compensation will be applied
- Z: Nominal width in Z - coordinate of the second probing position
- BE: Tolerance width +/- - range for the second measurement result in which no compensation will be applied
- WT: Compens. no.1, measd. edge
- \(\mathbf{T}\) : Tool at turret position \(\mathbf{T}\) to compensate the difference to the nominal value
- G149: Additive compensation D9xx to correct the difference to the nominal value (only possible with compensation type \(\mathbf{R}\) = 1)
- AT: Compens. no.2, measd. edge
- T: Tool at turret position \(\mathbf{T}\) to compensate the difference to the nominal value
- G149: Additive compensation D9xx to correct the difference to the nominal value (only possible with compensation type \(\mathbf{R}\) =1)
- FP: Maximum perm. correction
- WE: Max. deviation - probe twice and monitor the dispersion of the measured values
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station
- AN: Log no. - save measurement results in the TNC:\table\messpro.mep table (line numbers: 0 to 99)
The table can be extended if necessary.

The cycle computes the Compens. no.1, measd. edge WT from the result of the first measurement and the Compens. no.2, measd. edge AT from the result of the second measurement.

Example: G776 Two-point measurement for tool compensation
\(\square\)

\section*{MACHINING}

N3 G776 R1 K20 E1 ZE30 BD0. 2 Z40 BE0.3WT5 Q0 PO H0

\section*{Two-point measurement G17 G777}

Cycle G777 measures two opposite points in the X/Y plane with the measuring axis Y . If the tolerance values defined in the cycle are exceeded, the cycle saves the measured deviation either as tool compensation or as an additive compensation. The result of the measurement is saved additionally in the variable \#i99.
Further information: "Touch probe cycles for automatic mode", Page 579
Cycle run: From the current position, the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe returns to the starting point. For the pre-positioning for the second measurement, the cycle first moves the touch probe by the Circumnav. dir. offset Zi RB and then by the Offset in Yi RC. The cycle executes the second probing operation in the opposite direction, saves the result and retracts the touch probe in the circumnavigation axis by the circumnavigation value.
The control displays an error message if the touch probe does not reach any touch point within the defined measuring path. If a Max. deviation WE was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the Max. deviation WE, the program run is interrupted and an error message is displayed.
Parameters:
- R: Type of correction
- 1: Tool compensation DX/DZ for turning tool or additive compensation
- 2: Recessing tool DX/DS
- 3: Milling tool DX/DD
- 4: Milling tool DD
- K: Incr. meas path w/ Ri. (the algebraic sign determines the probing direction) - maximum measuring path for probing
- RB: Circumnav. dir. offset \(\mathbf{Z i}\) - distance
- RC: Offset in Yi - distance for pre-positioning before the second measurement
- YE: Target pos. noml value \(\mathbf{Y}\) - absolute coordinate of touch point
- BD: Tolerance position +/- - measurement result range in which no compensation will be applied
- \(\mathbf{Y}\) : Nominal width in \(\mathbf{Y}\) - coordinate of the second probing position
- BE: Tolerance width +/- - range for the second measurement result in which no compensation will be applied
- WT: Compens. no. 1, measd. edge
- \(\mathbf{T}\) : Tool at turret position \(\mathbf{T}\) to compensate the difference to the nominal value
- G149: Additive compensation D9xx to correct the difference to the nominal value (only possible with compensation type \(\mathbf{R}\) \(=1\))
- AT: Compens. no.2, measd. edge
- \(\mathbf{T}\) : Tool at turret position \(\mathbf{T}\) to compensate the difference to the nominal value
- G149: Additive compensation D9xx to correct the difference to the nominal value (only possible with compensation type \(\mathbf{R}\) =1)
- FP: Maximum perm. correction
- WE: Max. deviation - probe twice and monitor the dispersion of the measured values
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station
- AN: Log no. - save measurement results in the TNC: \table\messpro.mep table (line numbers: 0 to 99)
The table can be extended if necessary.
The cycle computes the Compens. no.1, measd. edge WT from the result of the first measurement and the Compens. no.2, measd. edge AT from the result of the second measurement.

Example: G777 Two-point measurement for tool compensation
\begin{tabular}{|c|}
\hline -•• \\
\hline MACHINING \\
\hline N3 G777 R1 K20 YE10 BD0.2 Y40 BE0.3 WT5Q0 P0 H0 \\
\hline
\end{tabular}

\section*{Two-point measurement G19 G778}

Cycle G778 measures two opposite points in the \(\mathrm{Y} / \mathrm{Z}\) plane with the measuring axis Y . If the tolerance values defined in the cycle are exceeded, the cycle saves the measured deviation either as tool compensation or as an additive compensation. The result of the measurement is saved additionally in the variable \#i99.
Further information: "Touch probe cycles for automatic mode", Page 579
Cycle run: From the current position, the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe returns to the starting point. For the pre-positioning for the second measurement, the cycle first moves the touch probe by the Circumnav. dir. offset Xi RB and then by the Offset in Yi RC. The cycle executes the second probing operation in the opposite direction, saves the result and retracts the touch probe in the circumnavigation axis by the circumnavigation value.
The control displays an error message if the touch probe does not reach any touch point within the defined measuring path. If a Max. deviation WE was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the Max. deviation WE, the program run is interrupted and an error message is displayed.
Parameters:
- R: Type of correction
- 1: Tool compensation DX/DZ for turning tool or additive compensation
- 2: Recessing tool DX/DS
- 3: Milling tool DX/DD
- 4: Milling tool DD
- K: Incr. meas path w/ Ri. (the algebraic sign determines the probing direction) - maximum measuring path for probing
- RB: Circumnav. dir. offset Xi - distance
- RC: Offset in Yi - distance for pre-positioning before the second measurement
- YE: Target pos. noml value \(\mathbf{Y}\) - absolute coordinate of touch point
- BD: Tolerance position +/- - measurement result range in which no compensation will be applied
- \(\mathbf{Y}\) : Nominal width in \(\mathbf{Y}\) - coordinate of the second probing position
- BE: Tolerance width +/- - range for the second measurement result in which no compensation will be applied
- WT: Compens. no. 1, measd. edge
- \(\mathbf{T}\) : Tool at turret position \(\mathbf{T}\) to compensate the difference to the nominal value
- G149: Additive compensation D9xx to correct the difference to the nominal value (only possible with compensation type \(\mathbf{R}\) = 1)
- AT: Compens. no.2, measd. edge
- \(\mathbf{T}\) : Tool at turret position \(\mathbf{T}\) to compensate the difference to the nominal value
- G149: Additive compensation D9xx to correct the difference to the nominal value (only possible with compensation type \(\mathbf{R}\) =1)
- FP: Maximum perm. correction
- WE: Max. deviation - probe twice and monitor the dispersion of the measured values
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station
- AN: Log no. - save measurement results in the TNC: \table\messpro.mep table (line numbers: 0 to 99)
The table can be extended if necessary.
The cycle computes the Compens. no.1, measd. edge WT from the result of the first measurement and the Compens. no.2, measd. edge AT from the result of the second measurement.

Example: G778 Two-point measurement for tool compensation
\begin{tabular}{|c|}
\hline -•• \\
\hline MACHINING \\
\hline N3 G778 R1 K20 YE30 BD0.2 Y40 BE0.3 WT5Q0 P0 H0 \\
\hline
\end{tabular}

\subsection*{7.4 Calibrating touch probes}

\section*{Calibrate touch probe standard G747}

Cycle G747 measures in the programmed axis and, depending on the selected calibration method, calculates the touch probe adjustment dimension or the ball diameter. If the tolerance values defined in the cycle are exceeded, the cycle corrects the touch probe data. In addition, the measurement result is saved additionally in the variable \#i99
Further information: "Touch probe cycles for automatic mode", Page 579
Cycle run: From the current position the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point.
The control displays an error message if the touch probe does not reach any touch point within the defined measuring path. If a Max. deviation WE was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the Max. deviation WE, the program run is interrupted and an error message is displayed.
Parameters:
- R: Calibration method
- 0: change CAx
- 1: change ball diameter
- 2: change setup dimension
- D: Measuring axis - axis in which the measurement is to be made
- K: Incr. meas path w/ Ri. (the algebraic sign determines the probing direction) - maximum measuring path for probing
- AC: Target pos. nominal value - touch point coordinate
- BD: Tolerance position +/- - measurement result range in which no compensation will be applied
- WE: Max. deviation - probe twice and monitor the dispersion of the measured values
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station
- AN: Log no. - save measurement results in the

TNC: \table\messpro.mep table (line numbers: 0 to 99)
The table can be extended if necessary.

\section*{Example: G747 Calibrate touch probe}
\begin{tabular}{|l|l|}
\hline MACHINING \\
\hline N3 G747 R1 K20 AC10 BD0.2 Q0 PO H0 \\
\hline\(\ldots\) & \\
\hline
\end{tabular}

\section*{Calibrate touch probe via two points G748}

Cycle G748 measures two opposite points and computes the touch probe adjustment dimension and the ball diameter. If the tolerance values defined in the cycle are exceeded, the cycle corrects the touch probe data. The result of the measurement is saved additionally in the variable \#i99.
Further information: "Touch probe cycles for automatic mode", Page 579
Cycle run: From the current position the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point.
The control displays an error message if the touch probe does not reach any touch point within the defined measuring path. If a Max. deviation WE was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the Max. deviation WE, the program run is interrupted and an error message is displayed.
Parameters:
- K: Incr. meas path w/ Ri. (the algebraic sign determines the probing direction) - maximum measuring path for probing
- RB: Circumnav. dir. offset - distance
- RC: Measuring direction offset - distance for pre-positioning before the second measurement
- AC: Target pos. nominal value - touch point coordinate
- EC: Nominal width - coordinate of the second probing position
- BE: Tolerance width +/- - range for the second measurement result in which no compensation will be applied
- WE: Max. deviation - probe twice and monitor the dispersion of the measured values
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station
- AN: Log no. - save measurement results in the

TNC: \table\messpro.mep table (line numbers: 0 to 99)
The table can be extended if necessary.

\section*{Example: G748 Calibrate touch probe via two points}
\begin{tabular}{l|l|}
\hline MACHINING \\
\hline N3 G748 K20 AC10 EC33 Q0 PO H0 \\
\hline\(\ldots\) & \\
\hline
\end{tabular}

\subsection*{7.5 Measuring with touch probe cycles}

\section*{Paraxial probing G764}

Cycle G764 measures with the programmed axis and displays the measured values on the control screen. The result of the measurement is saved additionally in the variable \#i99.
Further information: "Touch probe cycles for automatic mode", Page 579
Cycle run: From the current position the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point.
The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path.
Parameters:
- D: Measuring axis - axis in which the measurement is to be made
- K: Incr. meas path w/ Ri. (the algebraic sign determines the probing direction) - maximum measuring path for probing
- V: Retraction type
- 0: Without-only position touch probe back to the starting point if the touch probe was deflected
- 1: Automatic-always position touch probe back to the starting point
- O: Err. evaluation
- 0: Program-do not interrupt program run, no error message
- 1: Automatic-interrupt program run and output error message if touch probe is not deflected within measuring path
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station

\section*{Example: G764 Paraxial probing}

\section*{Probing in C axis G765}

Cycle G765 measures with the C axis and displays the measured values on the control screen. The result of the measurement is saved additionally in the variable \#i99.
Further information: "Touch probe cycles for automatic mode", Page 579
Cycle run: From the current position, the element to be probed is moved toward the touch probe by a rotation of the \(C\) axis. When the workpiece touches the stylus, the measured value is saved and the workpiece is returned.
The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path.
Parameters:
- C: Incr. meas path w/ Ri. (the algebraic sign determines the probing direction) - C-axis measuring path (in degrees) starting from the current position
- V: Retraction type
- 0: Without-only position touch probe back to the starting point if the touch probe was deflected
- 1: Automatic-always position touch probe back to the starting point
- O: Err. evaluation
- 0: Program—do not interrupt program run, no error message
- 1: Automatic-interrupt program run and output error message if touch probe is not deflected within measuring path
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station

\section*{Example: G765 Probing in C axis}
\begin{tabular}{l}
... \\
\hline MACHINING \\
\hline N3 G765 C20 V1 O1 ACO BD0.2 Q0 PO H0 \\
\hline.. \\
\hline
\end{tabular}

\section*{Probing w/ 2 axes in ZX plane G766}

Cycle G766 measures the position programmed in the cycle in the X/ \(Z\) plane and displays the measured values on the control screen. In parameter \(\mathbf{N F}\) you can additionally define the variables in which the measurement results should be saved.
Cycle run: The touch probe moves from the current position toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point.
The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path.
Parameters:
- Z: Target pt Z - Z coordinate of the measuring point
- X: Target pt X - X coordinate of the measuring point
- V: Retraction type
- 0 : Without-only position touch probe back to the starting point if the touch probe was deflected
- 1: Automatic-always position touch probe back to the starting point
- O: Err. evaluation
- 0: Program-do not interrupt program run, no error message
- 1: Automatic-interrupt program run and output error message if touch probe is not deflected within measuring path
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q : Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station

\section*{Example: G766 Probing w/ \(\mathbf{2}\) axes in ZX plane}
\begin{tabular}{|l|l|}
\hline MACHINING \\
\hline N3 G766 Z-5 X30 V1 O1 ACO BD0.2 Q0 PO HO \\
\hline.. & \\
\hline
\end{tabular}

\section*{Probing w/ 2 axes in ZX plane G767}

Cycle G767 measures the position programmed in the cycle in the X/ C plane and displays the measured values on the control screen. In parameter NF you can additionally define the variables in which the measurement results should be saved.
Cycle run: The touch probe moves from the current position toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point.
The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path.
Parameters:
- XK: Target point (in Cartesian coordinates)
- YK: Target point (in Cartesian coordinates)
- V: Retraction type
- 0: Without-only position touch probe back to the starting point if the touch probe was deflected
- 1: Automatic-always position touch probe back to the starting point
- O: Err. evaluation
- 0: Program—do not interrupt program run, no error message
- 1: Automatic-interrupt program run and output error message if touch probe is not deflected within measuring path
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station

\section*{Example: G767 Probing w/ 2 axes in XC plane}
\begin{tabular}{l}
... \\
MACHINING \\
\hline N3 G767 XK30 YK5 V1 O1 Q0 P0 H0 \\
\hline .. \\
\hline
\end{tabular}

\section*{Probing w/ 2 axes in ZY plane G768}

Cycle G768 measures the position programmed in the cycle in the Z/ Y plane and displays the measured values on the control screen. In parameter NF you can additionally define the variables in which the measurement results should be saved.
Cycle run: The touch probe moves from the current position toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point.
The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path.
Parameters:
- Z: Target pt Z - Z coordinate of the measuring point
- \(\mathbf{Y}\) : Target point \(\mathbf{Y}-\mathrm{Y}\) coordinate of the measuring point
- V: Retraction type
- 0: Without-only position touch probe back to the starting point if the touch probe was deflected
- 1: Automatic-always position touch probe back to the starting point
- O: Err. evaluation
- 0: Program—do not interrupt program run, no error message
- 1: Automatic-interrupt program run and output error message if touch probe is not deflected within measuring path
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station

Example: G768 Probing w/ 2 axes in ZY plane
\begin{tabular}{l}
... \\
MACHINING \\
\hline N3 G768 Z-5 Y10 V1 O1 AC0 BD0.2 Q0 P0 H0 \\
\hline .. \\
\hline
\end{tabular}

\section*{Probing w/ 2 axes in XY plane G769}

Cycle G769 measures the position programmed in the cycle in the X/ Y plane and displays the measured values on the control screen. In parameter NF you can additionally define the variables in which the measurement results should be saved.
Cycle run: The touch probe moves from the current position toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point.
The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path.
Parameters:
- X: Target pt \(\mathbf{X}-\mathrm{X}\) coordinate of the measuring point
- \(\mathbf{Y}\) : Target point \(\mathbf{Y}-\mathrm{Y}\) coordinate of the measuring point
- V: Retraction type
- 0: Without-only position touch probe back to the starting point if the touch probe was deflected
- 1: Automatic-always position touch probe back to the starting point
- O: Err. evaluation
- 0: Program-do not interrupt program run, no error message
- 1: Automatic-interrupt program run and output error message if touch probe is not deflected within measuring path
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent) Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station

\section*{Example: G769 Probing w/ 2 axes in XY plane}
\begin{tabular}{l}
M. . \\
MACHINING \\
\hline N3 G769 X25 Y10 V1 O1 AC0 BD0.2 Q0 P0 H0 \\
\hline .. \\
\hline
\end{tabular}

\subsection*{7.6 Search cycles}

\section*{Find hole in C face G780}

Cycle G780 probes the workpiece face several times with the \(Z\) axis. Prior to each probing, the touch probe is shifted by a distance defined in the cycle until a hole is found. Optionally, the cycle determines the mean value by two probing operations in the hole. If the tolerance value defined in the cycle is exceeded, the cycle saves the measured deviation as datum shift. The result of the measurement is saved additionally in the variable \#i99.
\begin{tabular}{ll}
\hline Result \#i99 & Meaning \\
\hline\(<999997\) & Result of first measurement \\
\hline 999999 & \begin{tabular}{l}
Deviation of probing operations was higher than \\
programmed in parameter Max. deviation WE
\end{tabular} \\
\hline-999999 & Hole was not found
\end{tabular}

Cycle run: From the current position, the touch probe moves along the measuring axis \(Z\) toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe returns to the starting point. Then, the cycle rotates the C axis by the angle defined in parameter Search grid Ci RC and probes again in the \(Z\) axis. This process is repeated until a hole is found. Inside the hole, the cycle performs two probing operations in the C axis, calculates the center of the hole, and places the datum in the \(C\) axis.
The control displays an error message if the touch probe does not reach any touch point within the defined measuring path. If a Max. deviation WE was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the Max. deviation WE, the program run is interrupted and an error message is displayed.
Parameters:
- R: Type of datum shift
- 1: Table and G152 - activate datum shift and additionally save in datum table (the datum shift also remains active after the program run)
- 2: Activate datum shift with G152 for the further program run (datum shift no longer active after program run)
- D: Result:
- 1: Position-set datum without determining the hole center. No probing operation in the hole.
- 2: Object center-before the datum is set, determine hole center in two probing operations with the C axis.
- K: Incr. meas path Z with Ri. (the algebraic sign determines the probing direction) - maximum measuring path for probing
- C: Starting position \(\mathbf{C}\) - position of the \(\mathbf{C}\) axis for the first probing operation
- RC: Search grid Ci - stepping angle of the C axis for the subsequent probing operations
- A: Number of points - maximum number of probing operations
- IC: Measuring path in C - measuring path of the \(C\) axis (in degrees), starting from the current position (the algebraic sign determines the probing direction)
- AC: Target pos. nominal value - absolute coordinate of the touch point in degrees
- BD: Tolerance position +/- - measurement result range in which no compensation will be applied
- KC: Compensation offset - additional compensation value that is applied to the resulting datum
- WE: Max. deviation - probe twice and monitor the dispersion of the measured values
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station
- AN: Log no. - save measurement results in the

TNC: \table\messpro.mep table (line numbers: 0 to 99)
The table can be extended if necessary.
Example: G780 Find hole in C face G780
\begin{tabular}{l}
MACHINING \\
\hline N3 G780 R1 D1 K2 C0 RC10 IC20 AC0 BD0.2 QOPO H0 \\
\hline.. \\
\hline
\end{tabular}

\section*{Find hole C lateral surface G781}

Cycle \(\mathbf{G 7 8 0}\) probes the lateral surface of a workpiece several times with the \(X\) axis. Prior to each probing, the \(C\) axis is rotated by a distance defined in the cycle until a hole is found. Optionally, the cycle determines the mean value by two probing operations in the hole.
If the tolerance value defined in the cycle is exceeded, the cycle saves the measured deviation as datum shift. The result of the measurement is saved additionally in the variable \#i99.
\begin{tabular}{ll}
\hline Result \#i99 & Meaning \\
\hline\(<999997\) & Result of first measurement \\
\hline 999999 & \begin{tabular}{l}
Deviation of probing operations was higher than \\
programmed in parameter Max. deviation WE
\end{tabular} \\
\hline-999999 & Hole was not found
\end{tabular}

Cycle run: From the current position, the touch probe moves along the measuring axis \(X\) toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe returns to the starting point. Then, the cycle rotates the C axis by the angle defined in the parameter Search grid Ci RC and probes again in the \(X\) axis. This process is repeated until a hole is found. Inside the hole, the cycle performs two probing operations in the C axis, calculates the center of the hole, and places the datum in the \(C\) axis.
The control displays an error message if the touch probe does not reach any touch point within the defined measuring path. If a Max.
deviation WE was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the Max. deviation WE, the program run is interrupted and an error message is displayed.
Parameters:

\section*{- R: Type of datum shift}
- 1: Table and G152 - activate datum shift and additionally save in datum table (the datum shift also remains active after the program run)
- 2: Activate datum shift with G152 for the further program run (datum shift no longer active after program run)
- D: Result:
- 1: Position-set datum without determining the hole center. No probing operation in the hole.
- 2: Object center-before the datum is set, determine hole center in two probing operations with the C axis.
- K: Incr. meas path X with Ri. (the algebraic sign determines the probing direction) - maximum measuring path for probing
- C: Starting position \(\mathbf{C}\) - position of the C axis for the first probing operation
- RC: Search grid \(\mathbf{C i}\) - stepping angle of the \(C\) axis for the subsequent probing operations
- A: Number of points - maximum number of probing operations
- IC: Measuring path in \(\mathbf{C}\) - measuring path of the \(C\) axis (in degrees), starting from the current position (the algebraic sign determines the probing direction)
- AC: Target pos. nominal value - absolute coordinate of the touch point in degrees
- BD: Tolerance position +/- - measurement result range in which no compensation will be applied
- KC: Compensation offset - additional compensation value that is applied to the resulting datum
- WE: Max. deviation - probe twice and monitor the dispersion of the measured values
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station
- AN: Log no. - save measurement results in the TNC: \table\messpro.mep table (line numbers: 0 to 99)
The table can be extended if necessary.

\section*{Example: G781 Find hole in C lateral surface}
\begin{tabular}{l}
... \\
\hline MACHINING \\
\hline N3 G781 R1 D1 K2 C0 RC10 IC20 AC0 BD0.2 Q0P0 H0 \\
\hline .. \\
\hline
\end{tabular}

\section*{Find stud in C face G782}

Cycle \(\mathbf{G 7 8 2}\) probes the workpiece face several times with the \(Z\) axis. Prior to each probing, the C axis is rotated by a distance defined in the cycle until a stud is found. Optionally, the cycle determines the mean value by two probing operations on the stud diameter.
If the tolerance value defined in the cycle is exceeded, the cycle saves the measured deviation as datum shift. The result of the measurement is saved additionally in the variable \#i99.
\begin{tabular}{ll}
\hline Result \#i99 & Meaning \\
\hline\(<999997\) & Result of first measurement \\
\hline 999999 & \begin{tabular}{l}
Deviation of probing operations was higher than \\
programmed in parameter Max. deviation WE
\end{tabular} \\
\hline-999999 & Stud was not found.
\end{tabular}

Cycle run: From the current position, the touch probe moves along the measuring axis \(X\) toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe returns to the starting point. Then, the cycle rotates the C axis by the angle defined in the parameter Search grid Ci RC and probes again in the \(X\) axis. This process is repeated until a stud is found. The cycle performs two probing operations on the stud diameter with the C axis, calculates the center of the stud, and places the datum in the C axis.
The control displays an error message if the touch probe does not reach any touch point within the defined measuring path. If a Max.
deviation WE was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the Max. deviation WE, the program run is interrupted and an error message is displayed.
Parameters:

\section*{- R: Type of datum shift}
- 1: Table and G152 - activate datum shift and additionally save in datum table (the datum shift also remains active after the program run)
- 2: Activate datum shift with G152 for the further program run (datum shift no longer active after program run)
- D: Result:
- 1: Position-set datum without determining the stud center. The stud diameter is not probed.
- 2: Object center-before the datum is set, determine stud center in two probing operations with the C axis.
- K: Incr. meas path Z with Ri. (the algebraic sign determines the probing direction) - maximum measuring path for probing
- C: Starting position \(\mathbf{C}\) - position of the \(C\) axis for the first probing operation
- RC: Search grid Ci - stepping angle of the \(C\) axis for the subsequent probing operations
- A: Number of points - maximum number of probing operations
- IC: Measuring path in \(\mathbf{C}\) - measuring path of the \(C\) axis (in degrees), starting from the current position (the algebraic sign determines the probing direction)
- AC: Target pos. nominal value - absolute coordinate of the touch point in degrees
- BD: Tolerance position +/- - measurement result range in which no compensation will be applied
- KC: Compensation offset - additional compensation value that is applied to the resulting datum
- WE: Max. deviation - probe twice and monitor the dispersion of the measured values
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station
- AN: Log no. - save measurement results in the

TNC: \table\messpro.mep table (line numbers: 0 to 99)
The table can be extended if necessary.

\section*{Example: G782 Find stud in C face}
\begin{tabular}{l}
... \\
\hline MACHINING \\
\hline N3 G782 R1 D1 K2 C0 RC10 IC20 AC0 BD0.2 Q0P0 H0 \\
\hline .. \\
\hline
\end{tabular}

\section*{Find stud C lateral surface G783}

Cycle G783 probes the workpiece face several times with the \(X\) axis. Prior to each probing, the touch probe is shifted by a distance defined in the cycle until a stud is found. Optionally, the cycle determines the mean value by two probing operations on the stud diameter.
If the tolerance value defined in the cycle is exceeded, the cycle saves the measured deviation as datum shift. The result of the measurement is saved additionally in the variable \#i99.
\begin{tabular}{ll}
\hline Result \#i99 & Meaning \\
\hline\(<999997\) & Result of first measurement \\
\hline 999999 & \begin{tabular}{l}
Deviation of probing operations was higher than \\
programmed in parameter Max. deviation WE
\end{tabular} \\
\hline-999999 & Stud was not found.
\end{tabular}

Cycle run: From the current position, the touch probe moves along the measuring axis \(Z\) toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe returns to the starting point. Then, the cycle rotates the C axis by the angle defined in parameter Search grid Ci RC and probes again in the \(Z\) axis. This process is repeated until a stud is found. The cycle performs two probing operations on the stud diameter with the C axis, calculates the center of the stud, and places the datum in the C axis.
The control displays an error message if the touch probe does not reach any touch point within the defined measuring path. If a Max.
deviation WE was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the Max. deviation WE, the program run is interrupted and an error message is displayed.
Parameters:

\section*{- R: Type of datum shift}
- 1: Table and G152 - activate datum shift and additionally save in datum table (the datum shift also remains active after the program run)
- 2: Activate datum shift with G152 for the further program run (datum shift no longer active after program run)
- D: Result:
- 1: Position-set datum without determining the stud center. The stud diameter is not probed.
- 2: Object center-before the datum is set, determine stud center in two probing operations with the C axis.
- K: Incr. meas path X with Ri. (the algebraic sign determines the probing direction) - maximum measuring path for probing
- C: Starting position \(\mathbf{C}\) - position of the C axis for the first probing operation
- RC: Search grid \(\mathbf{C i}\) - stepping angle of the \(C\) axis for the subsequent probing operations
- A: Number of points - maximum number of probing operations
- IC: Measuring path in \(\mathbf{C}\) - measuring path of the \(\mathbf{C}\) axis (in degrees), starting from the current position (the algebraic sign determines the probing direction)
- AC: Target pos. nominal value - absolute coordinate of the touch point in degrees
- BD: Tolerance position +/- - measurement result range in which no compensation will be applied
- KC: Compensation offset - additional compensation value that is applied to the resulting datum
- WE: Max. deviation - probe twice and monitor the dispersion of the measured values
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station
- AN: Log no. - save measurement results in the TNC: \table\messpro.mep table (line numbers: 0 to 99)
The table can be extended if necessary.

\section*{Example: G783 Find stud in C lateral surface}

\subsection*{7.7 Circular measurement}

\section*{Circular measurmnt G785}

Cycle G785 determines the circle center and diameter by probing three times in the programmed plane and shows the measured values on the control screen. The result of the measurement is saved additionally in the variable \#i99.
Further information: "Touch probe cycles for automatic mode", Page 579
Cycle run: From the current position, the touch probe moves in the defined measuring plane toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe returns to the starting point. Another two probing operations are carried out with the defined stepping angle. If a Starting diameter D was programmed, the cycle positions the touch probe along a circular path before the respective measuring process.
The control displays an error message if the touch probe does not reach any touch point within the defined measuring path. If a Max. deviation WE was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the Max. deviation WE, the program run is interrupted and an error message is displayed.
Parameters:
- R: Measuring plane
- 0: X/Y plane G17 - probe circle in \(X / Y\) plane
- 1: Z/X plane \(\mathbf{G 1 8}\) - probe circle in \(Z / X\) plane
- 2: Y/Z plane G19 - probe circle in Y/Z plane
- 3: X/C plane on face C
- BR: Inside/outside
- 0: Inside: Probe inside diameter
- 1: Outside: Probe outside diameter
- K: Measuring path (the algebraic sign determines the probing direction) - maximum measuring path for probing
- C: Angle of 1st measurement - angle for the first probing operation
- RC: Incremental angle - stepping angle for the subsequent probing operations
- D: Starting diameter - diameter on which the touch probe is prepositioned before the measurements
- WB: Position in infeed direct. - measuring height to which the touch probe is positioned before the measuring process (no input: the circle is probed from the current position)
- I: Circle center in axis 1 - nominal position of the circle center in first axis
- J: Circle center in axis \(\mathbf{2}\) - nominal position of the circle center in second axis
- WE: Max. deviation - probe twice and monitor the dispersion of the measured values
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- NF: Variable no. result - number of the first global variable in which the result is saved (no input: variable 810)
The second measurement result is saved automatically to the next consecutive number.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station
- AN: Log no. - save measurement results in the TNC: \table\messpro.mep table (line numbers: 0 to 99)
The table can be extended if necessary.

\section*{Example: G785 Circular measurement}

\section*{Calc. of pitch circle G786}

Cycle G786 determines the center and diameter of a pitch circle by measuring three holes and shows the measured values on the control screen. The result of the measurement is saved additionally in the variable \#i99.
Further information: "Touch probe cycles for automatic mode", Page 579
Cycle run: From the current position, the touch probe moves in the defined measuring plane toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe returns to the starting point. Another two probing operations are carried out with the defined stepping angle. If a
Starting diameter \(\mathbf{D}\) was programmed, the cycle positions the touch probe along a circular path before the respective measuring process.
The control displays an error message if the touch probe does not reach any touch point within the defined measuring path. If a Max.
deviation WE was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the Max. deviation WE, the program run is interrupted and an error message is displayed.
Parameters:
- R: Measuring plane
- 0: X/Y plane G17 - probe circle in X/Y plane
- 1: Z/X plane \(\mathbf{G 1 8}\) - probe circle in \(Z / X\) plane
- 2: Y/Z plane G19 - probe circle in Y/Z plane
- 3: X/C plane on face C
- K: Measuring path (the algebraic sign determines the probing direction) - maximum measuring path for probing
- C: Angle of 1st hole - angle for the first probing operation
- AC: Angle of 2nd hole - angle for the second probing operation
- RC: Angle of 3rd hole - angle for the third probing operation
- WB: Position in infeed direct. - measuring height to which the touch probe is positioned before the measuring process (no input: the circle is probed from the current position)
- I:Circ. scale center in axis \(\mathbf{1}\) - nominal position of the circle center in first axis
- J: Circ. scale center in axis 2 - nominal position of the circle center in second axis
- D: Nominal diameter - diameter on which the touch probe is pre-positioned before the measurements
- WS: Upper tol., calcultd. dia. of pitch circle
- WC: Lower tol., calcultd. dia. of pitch circle
- BD: Tol. of center in axis 1
- BE: Tol. of center in axis 2
- WE: Max. deviation - probe twice and monitor the dispersion of the measured values
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- NF: Variable no. result - number of the first global variable in which the result is saved (no input: variable 810)
The second measurement result is saved automatically to the next consecutive number.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station
- AN: Log no. - save measurement results in the TNC: \table\messpro.mep table (line numbers: 0 to 99)
The table can be extended if necessary.

\section*{Example: G786 Calculation of pitch circle}
\begin{tabular}{|l|l|l|}
\hline MACHINING \\
\hline N3 G786 RO K8 IO J0 D50 WS50.1 WC49.9BD0.1 BE0.1 PO \\
H0 \\
\hline .. \\
\hline
\end{tabular}

\subsection*{7.8 Angular measurement}

\section*{Angular measurmnt G787}

Cycle G787 probes twice in the programmed direction and computes the angle. If the tolerance value defined in the cycle is exceeded, the cycle saves the measured deviation for a subsequent misalignment compensation. Program Cycle G788 next in order to activate the misalignment compensation. The result of the measurement is saved additionally in the variable \#i99.
Further information: "Touch probe cycles for automatic mode", Page 579
Cycle run: From the current position the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is retracted. Then the touch probe is pre-positioned for the second measurement and the workpiece is probed.
The control displays an error message if the touch probe does not reach any touch point within the defined measuring path. If a Max. deviation WE was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the Max. deviation WE, the program run is interrupted and an error message is displayed.
Parameters:

\section*{- R: Evaluation}
- 1: Prepare tool compensation and misalignment compensation
- 2: Prepare misalignment compensation
- 3: Angle output
- D: Directions
- 0: X measurement, Z offset
- 1: \(Y\) measurement \(Z\) offset
- 2: Z measurement, \(X\) offset
- 3: \(Y\) measurement, \(X\) offset
- 4: \(Z\) measurement, \(Y\) offset
- 5: X measurement, \(Y\) offset
- K: Measuring path (the algebraic sign determines the probing direction) - maximum measuring path for probing
- WS: Pos. of 1st measurement
- WC: Pos. of 2nd measurement
- AC: Nominal angle of measured surface
- BE: Tolerance of angle +/- - measurement result range (in degrees) in which no compensation will be applied
- RC: Target pos., 1st measmnt. - nominal value of first measuring point
- BD: Tol., 1st measurement +/- - measurement result range in which no compensation will be applied
- WT: Correction no. T or G149
- \(\mathbf{T}\) : Tool at turret position \(\mathbf{T}\) to compensate the difference to the nominal value
- G149: Additive compensation D9xx to correct the difference to the nominal value (only possible with compensation type \(\mathbf{R}\) = 1)
- FP: Maximum perm. correction
- WE: Max. deviation - probe twice and monitor the dispersion of the measured values
- F: Measuring feed - feed rate for probing (if nothing is entered, the measuring feed rate from the touch probe table will be used) If you enter a measuring feed rate \(\mathbf{F}\) that is higher than the one in the touch probe table, the feed rate will be reduced to the value from the touch probe table.
- Q: Tool orientation (machine-dependent)

Orient the touch probe in the programmed probing direction before each probing operation.
- NF: Variable no. result - number of the first global variable in which the result is saved (no input: variable 810)
The second measurement result is saved automatically to the next consecutive number.
- P: PRINT outputs
- 0: OFF - do not display measuring results
- 1: ON - display measuring results on the screen
- H: INPUT instead of measure
- 0: Standard - obtain measured values by probing
- 1: PC test - simulate the touch probe cycle at the programming station
- AN: Log no. - save measurement results in the TNC: \table\messpro.mep table (line numbers: 0 to 99)
The table can be extended if necessary.
Example: G787 Angular measurement
\begin{tabular}{l}
... \\
\hline MACHINING \\
\hline N3 G787 R1 D0 BR0 K2 WS-2 WC15 AC170 BE1RC0 BD0.2 \\
WT3 Q0 P0 H0 \\
\hline .. \\
\hline
\end{tabular}

\section*{Misalignment compensation after angle measurement G788}

Cycle G788 activates a misalignment compensation determined with Cycle G787 Angle Measurement.
Parameters:
- NF: Variable no. result - number of the first global variable in which the result is saved (no input: variable 810)
The second measurement result is saved automatically to the next consecutive number.
- P:Compensation:
- 0: OFF - do not perform misalignment compensation
- 1: ON - perform misalignment compensation

\section*{G788 Misalignment compensation after angle measurement}
\(\square\)
. . .
MACHINING
N3 G788 NF1 P0

\subsection*{7.9 In-process measrmnt.}

\section*{Workpiece measurement}

In-process measrmnt. is measurement at the workpiece with a touch probe located in a tool holder of the machine. In the tool list, define your touch probe as a new tool. Use the Measure probe tool type. The following cycles for In-process measrmnt. are basic cycles for probing functions that you can use to program individually adapted probing sequences.

\section*{Switch on measurement G910}

G910 activates the selected Measure probe.
Parameters:
- V: Tool probe(1)/work probe(0)
- 0: Touch probe (for workpiece measurement)
- 1: Table-mounted touch probe (for tool measurement)
- D: Axis number

Example: In-process measrmnt.

\section*{Activating measuring path monitoring G911}

G911 activates the measuring path monitoring. Then only a single feed path is permissible.
Parameters:
- V : Type of departure
- 0: Axes stay stationary with deflected touch probe
- 1: Axes automatically retract after deflection of the touch probe
- R: Return path

\section*{Actual-value determination G912}

G912 puts the positions at which the touch probe was deflected into the result variables.
Parameters:
- Q: Err. evaluation when the touch probe is not reached
- 0: Error evaluation in the NC program, measuring results = NDEF
- 1: Error message of NC, program stops

The measurement results are available in the following variables:
\#a9 (axis,channel)
- Axis = axis name
- Channel = channel number, \(0=\) current channel

Example: Measurement results
\begin{tabular}{|l|l|}
\hline\(\ldots\) & \\
\hline N1 \#11=\#a9 \((X, 0)\) & X value of current channel \\
\hline N2 \#12=\#a9(Z,1) & Z value of channel 1 \\
\hline N3 \#I3=\#a9(Y,0) & Y value of current channel \\
\hline N4 \#14=\#a9(C,0) & C value of current channel \\
\hline\(\ldots\) & \\
\hline
\end{tabular}

\section*{End measuring G913}

G913 ends the measuring process.

\section*{Deactivating measuring path monitoring G914}

G914 deactivates the measuring-path monitoring.

\section*{Example: Measuring and compensating workpieces}

The control provides subprograms for the measurement of workpieces:
- measure_pos.ncs (German dialog texts)
- measure_pos_e.ncs (English dialog texts)

The programs require a touch probe as a tool. Beginning from the current position or the defined starting position, the control moves along a measuring path in the entered axis direction. At the end it returns again to the previous position. The result of measurement can be included in error compensation.
The following subprograms are used:
- measure_pos_move.ncs
- _Print_txt_lang.ncs

Parameters:
- LA: Measurement starting point in X (diameter value; no input: Current position)
- LB: Measurement starting point in Z (no input: Current position)
- LC: Type of approach to the starting point of measurement
- 0: Diagonal
- 1: First \(X\), then \(Z\)
- 2: First \(Z\), then \(X\)
- LD: Measuring axis
- 0: X axis
- 1:Z axis
- 2: Y axis
- LE: Incremental Measuring path - the algebraic sign defines the direction
- LF: Measuring feed in mm/min (no input: the measuring feed rate from the touch probe table will be used)
- LH: Nominal value of the Target position
- LI: Tolerance +/- - if the measured deviation lies within this tolerance, the entered compensation value will not be changed
- LJ: 1: The measurement result is output as PRINT
- LK: Number of the compensation value to be changed
- 1-xx Turret pocket number of the tool to be compensated
- 901-916 Additive compensation number
- Current tool number for touch probe calibration
- LO: Number of measurements
- \(\mathbf{L O}>0\) : The measurements are evenly distributed on the circumference with M19
- LO < 0: The measurements are made at the same position
- LP: Maximum permissible difference between the measurement results at a position
The program stops if the limit is violated.
- LR: Maximum permissible compensation value (range: < 10)
- LS: 1: For test purposes, when the program runs on the PC, measurement results are interrogated through INPUT

ISO Programming for the \(Y\) Axis
(Option 70)

\subsection*{8.1 Y -axis contours - fundamentals}

\section*{Position of milling contours}

Define the reference plane and the reference diameter in the section code.
Specify the depth and position of a milling contour (pocket, island) in the contour definition:
- With Depth P in the previously programmed G308 cycle
- Alternatively on figures: Cycle parameter Depth \(\mathbf{P}\)

The algebraic sign of \(\mathbf{P}\) defines the position of the milling contour:
- \(\mathbf{P}<0\) : Pocket
- \(\mathbf{P}>0\) : Island

\section*{Position of milling contour}
\begin{tabular}{llll}
\hline Section & \(\mathbf{P}\) & Surface & Milling floor \\
\hline FRONT & \(\mathbf{P}<0\) & \(\mathbf{Z}\) & \(\mathbf{Z}+\mathbf{P}\) \\
& \(\mathbf{P}>0\) & \(\mathbf{Z}+\mathbf{P}\) & \(\mathbf{Z}\) \\
\hline REAR SIDE & \(\mathbf{P}<0\) & \(\mathbf{Z}\) & \(\mathbf{Z}-\mathbf{P}\) \\
& \(\mathbf{P}>0\) & \(\mathbf{Z}-\mathbf{P}\) & \(\mathbf{Z}\) \\
\hline LATERAL & \(\mathbf{P}<0\) & \(\mathbf{X}\) & \(\mathbf{X}+(\mathbf{P} * 2)\) \\
& \(\mathbf{P}>0\) & \(\mathbf{X}+(\mathbf{P} * 2)\) & \(\mathbf{X}\)
\end{tabular}
- X: Reference diameter from the section code

- Z: Reference plane from the section code
- P: Depth from G308 or from the figure definition

The area milling cycles mill the surface specified in the contour definition. Islands within this surface are not taken into consideration.

\section*{Cutting limit}

If parts of the milling contour lie outside of the turning contour, you must limit the machining area with the area diameter X / reference diameter \(\mathbf{X}\) (parameters of the section code or of the figure definition).

\subsection*{8.2 Contours in the XY plane}

\section*{Starting point of contour in XY plane G170-Geo}

G170 defines the Start point of a contour in the XY plane.
Parameters:
- X: Start point of contour (radius value)
- Y : Start point of contour
- PZ: Start point (polar radius)
- W: Start point (polar angle)

\section*{Line segment in XY plane G171-Geo}

G171 defines a line segment in a contour of the XY plane.
Parameters:
- X: Final point (radius value)
- \(Y\) : Final point
- AN: Angle to \(X\) axis
- Q: Intersect. pt. or Final point if the line segment intersects a circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection
- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition
- BR = 0: No tangential transition
- \(B R>0\) : Rounding radius
- BR \(<0\) : Width of chamfer
- PZ: Final point (polar radius; reference: workpiece datum)
- W: Final point (polar angle; reference: workpiece datum)
- AR: Incr.angle to foregoer ARi (AR corresponds to AN)

- R: Line length

Programming:
- X, Y: Absolute, incremental, modal or ?
- ANi: Angle to the subsequent element
- ARi: Angle to the previous element

\section*{Circular arc in XY plane G172-/G173-Geo}

G172 and G173 define a circular arc in a contour of the XY plane. Parameters:
- X: Final point (radius value)
- Y: Final point
- R: Radius
- I: Center in \(X\) direction (radius value)
- J: Center (in Y)
- Q: Intersect. pt. or Final point if the line segment intersects a circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection
- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition
- BR = 0: No tangential transition
- \(B R>0\) : Rounding radius
- BR \(<0\) : Width of chamfer
- PZ: Final point (polar radius; reference: workpiece datum)

- W: Final point (polar angle; reference: workpiece datum)
- PM: Center (polar radius; reference: workpiece datum)
- WM: Center (polar angle; reference: workpiece datum)
- AR: Start angle - tangential angle to rotary axis
- AN: Final angle - tangential angle to rotary axis

Programming:
- X, Y: Absolute, incremental, modal or ?
- I, J: Absolute or incremental
- PZ, W, PM, WM: Absolute or incremental

\section*{Hole in XY plane G370-Geo}

G370 defines a hole with countersinking and thread in the XY plane. Parameters:
- X: Center of hole (radius value)
- Y: Center of hole
- B: Diameter
- P: Depth excluding point
- W: Point angle (default: \(180^{\circ}\))
- R: Sink diam.
- U: Sink depth
- E: Sink angle
- I: Thread diameter
- J: Thread depth
- K: Start of thread - run-out length
- F: Thread pitch
- V: Direction of thread: (default: 0)
- 0: Right-hand thread
- 1: Left-hand thread

- A: Angle to \(Z\) axis - angle of the hole
- Front face (range: \(-90^{\circ}<\mathbf{A}<90^{\circ}\); default: \(0^{\circ}\))
- Rear face (range: \(90^{\circ}<\mathbf{A}<270^{\circ}\); default: \(180^{\circ}\))
- O: Center. diam.

\section*{Linear slot in XY plane G371-Geo}

G371 defines the contour of a linear slot in the XY plane.
Parameters:
- X: Center of slot (radius value)
- Y: Center of slot
- A: Position angle (reference: positive \(X\) axis; default: \(0^{\circ}\))
- K: Length
- B: Width
- P: Depth/Height (default: P from G308)
- \(\mathbf{P}<0\) : Pocket
- \(\mathbf{P}>0\) : Island

- I: Limit diameter (as cutting limit)
- No input: \(\mathbf{X}\) from section code
- I overwrites \(\mathbf{X}\) from section code

\section*{Circular slot in XY plane G372/G373-Geo}

G372 and G373 define a circular slot in the XY plane.
- G372: Circular slot clockwise
- G373: Circular slot counterclockwise

Parameters:
- X: Center of slot (radius value)
- Y: Center of slot
- R: Radius - Curvature radius (reference: center point path of the slot)
- A: Start angle (reference: positive \(X\) axis; default: \(0^{\circ}\))
- W: Final angle (reference: positive \(X\) axis; default: \(0^{\circ}\))
- B: Width
- P: Depth/Height (default: P from G308)
- \(\mathbf{P}<0\) : Pocket
- \(\mathbf{P}>0\) : Island
- I: Limit diameter (as cutting limit)
- No input: \(\mathbf{X}\) from section code
- I overwrites \(\mathbf{X}\) from section code

\section*{Full circle in XY plane G374-Geo}

G374 defines a Full circle in the XY plane.
Parameters:
- X: Center (radius value)
- Y: Center
- R: Radius
- P: Depth/Height (default: P from G308)
- \(\mathbf{P}<0\) : Pocket
- \(\mathbf{P}>0\) : Island
- I: Limit diameter (as cutting limit)

- No input: \(\mathbf{X}\) from section code
- I overwrites \(\mathbf{X}\) from section code

\section*{Rectangle in XY plane G375-Geo}

G375 defines a rectangle in the \(X Y\) plane.
Parameters:
- X: Center of rectangle (radius value)
- Y: Center of rectangle
- A: Position angle (reference: positive \(X\) axis; default: \(0^{\circ}\))
- K: Length of rectangle
- B: Width of rectangle
- R: Chamf./round. (default: 0)
- \(\mathbf{R}>0\) : Radius of rounding arc
- \(\mathbf{R}<0\) : Chamfer width
- P: Depth/Height (default: P from G308)
- \(\mathbf{P}<0\) : Pocket
- \(\mathbf{P}>0\) : Island
- I: Limit diameter (as cutting limit)
- No input: \(\mathbf{X}\) from section code
- I overwrites \(\mathbf{X}\) from section code

\section*{Single surface in XY plane G376-Geo}

G376 defines a surface in the XY plane.
Parameters:
- Z: Reference edge (default: Z from section code)
- K: Residual depth
- Ki: Depth
- B: Width (reference: Reference edge Z)
- \(\mathbf{B}<0\) : Surface in negative \(Z\) direction
- B \(>0\) : Surface in positive \(Z\) direction
- I: Limit diameter (as cutting limit and as reference for \(\mathbf{K}\) and \(\mathbf{K i}\))
- No input: \(\mathbf{X}\) from section code
- I overwrites \(\mathbf{X}\) from section code
- C: Spindle angle of surface normal (default: C from section code)
(i)

Whether the surface lies on the front or rear face has no effect on the evaluation of the algebraic sign for Width B.

\section*{Polygon in XY plane G377-Geo}

G377 defines the contour of an eccentric polygon in the \(X Y\) plane. Parameters:
- X: Center of polygon (radius value)
- Y: Center of polygon
- \(\mathbf{Q}\) : Number of corners (\(\mathbf{Q}>=3\))
- A: Position angle (reference: positive \(X\) axis; default: \(0^{\circ}\))
- K: +edge Ingth/-width a. flats
- K > 0: Edge length
- \(\mathbf{K}<0\) : Width across (Inside diameter)

- R: Chamf./round. (default: 0)
- \(\mathbf{R}>0\) : Radius of rounding arc
- \(\mathbf{R}<0\) : Chamfer width
- \(\mathbf{P}:\) Depth/Height (default: P from G308)
- \(\mathbf{P}<0\) : Pocket
- \(\mathbf{P}>0\) : Island
- I: Limit diameter (as cutting limit)
- No input: \(\mathbf{X}\) from section code
- I overwrites \(\mathbf{X}\) from section code

\section*{Text for front face Y G378-Geo}

G378 defines a text in the XY plane.
Parameters:
- X: Start point \(X\)
- Y: Start point \(Y\)
- ID: Text to be engraved
- NF: Char. no. - ASCII code of the character to be engraved
- P: Depth
- W: Inclinat. ang. of the character string
- H: Font height
- E: Distance factor

The spacing between the characters is calculated according to the following formula: \(\mathbf{H} / 6\) * \(\mathbf{E}\)
- F: Plunging feed rate factor (plunging feed rate = current feed rate * F)
- O: Mirror writing
- \(\mathbf{O}\) (No): Engraving is not mirrored
- \(\mathbf{1}\) (Yes): Engraving is mirrored (mirror writing)

\section*{Linear pattern in XY plane G471-Geo}

G471 defines a linear pattern in the XY plane.
G471 affects the hole or figure defined in the following block (G370-G375, G377).
Parameters:
- Q: Number of figures
- \(\mathrm{X}: 1\) st point of pattern (radius)
- Y: 1st point of pattern
- I: Final point of pattern (in \(X\); radius value)
- J: Final point of pattern (in Y)
- li: Final point - distance between two figures (in \(X\))

- Ji: Final point - distance between two figures (in Y)
- A: Position angle of longitudinal axis of pattern (reference: positive \(X\) axis)
- R: Length - total length of pattern
- Ri: Length - distance between two figures

Programming notes:
- Program the hole or figure in the following block without a center
- In the MACHINING section, the drilling or milling cycle calls the hole or figure in the following block-not the pattern definition

\section*{Circular pattern in XY plane G472-Geo}

G472 defines a circular pattern in the XY plane.
G472 is effective for the figure defined in the following block (G370-G375, G377).
Parameters:
- Q: Number of figures
- K: Diameter - pattern diameter
- A: Start angle - position of the first figure (reference: positive \(X\) axis; default: \(0^{\circ}\))
- W: Final angle - position of the last figure (reference: positive \(X\) axis; default: \(360^{\circ}\))
- Wi: Final angle - Angle between two figures
- V: Direction - orientation (default: 0)
- \(\mathbf{V}=0\), without \(\mathbf{W}\) : Figures are arranged on a full circle
- \(\mathbf{V}=0\), with \(\mathbf{W}\) : Figures are arranged on the longer circular arc
- \(\mathbf{V}=0\), with \(\mathbf{W}\) : The algebraic sign of \(\mathbf{W i}\) defines the direction (\(\mathbf{W}<0\) : clockwise)
- \(\mathbf{V}=1\), with \(\mathbf{W}\) : Clockwise
- \(\mathbf{V}=1\), with \(\mathbf{W}\) : Clockwise (algebraic sign of \(\mathbf{W}\) has no effect)
- \(\mathbf{V}=2\), with \(\mathbf{W}\) : Counterclockwise
- \(\mathbf{V}=2\), with \(\mathbf{W}\) : Counterclockwise (algebraic sign of \(\mathbf{W}\) has no effect)
- X: Center of pattern (radius value)
- Y: Center of pattern
- H: \(\mathbf{0}=\) Normal position - position of the figures (default: 0)
- 0: Normal position - the figures are rotated about the circle center (rotation)
- 1: Original position - the position of the figures relative to the coordinate system remains unchanged (translation)
(1)

Programming notes:
- Program the hole or figure in the following block without a center. Exception: circular slot
Further information: "Circular pattern with circular slots", Page 312
- The drilling or milling cycle (MACHINING section) calls the hole or figure in the following block-not the pattern definition

\section*{DataMatrix pattern in XY plane G475-Geo}

G475 defines a pattern in DataMatrix code in the XY plane.
G475 is effective for the hole or figure defined in the following block (G370, G374, G375, or G377).
Parameters:
- ID: Text to be converted into DataMatrix code
- X: 1st point of pattern (radius)
- Y: 1st point of pattern
- A: Position angle of longitudinal axis of pattern (reference: positive \(X\) axis)
- R: Length - total length of pattern
- Ri: Length - distance to next hole or figure

Programming notes
- If you do not enter the length, the control calculates the pattern so that the holes or figures touch each other.
- Program the hole or figure in the following block without a center
- In the MACHINING section, the drilling or milling cycle calls the hole or figure in the following block-not the pattern definition
- A maximum of 80 ASCII characters are allowed per DataMatrix code
- The G codes for rectangle and polygon are restricted to a square shape

\section*{Centric polygon in XY plane G477-Geo}

G477 defines polygonal surfaces in the XY plane.
Parameters:
- Z: Reference edge (default: Z from section code)
- K: Width across - Inscribed circle diameter
- Ki: Edge length
- B: Width (reference: Reference edge Z)
- B < 0: Surface in negative \(Z\) direction
- \(\mathbf{B}>0\) : Surface in positive \(Z\) direction
- C: Spindle angle of surface normal (default: \(\mathbf{C}\) from section code)
- Q: No. of surfaces (\(\mathbf{Q}>=2\))
- I: Limit diameter (as cutting limit)
- No input: \(\mathbf{X}\) from section code
- I overwrites \(\mathbf{X}\) from section code
(1)

Whether the surface lies on the front or rear face has no effect on the evaluation of the algebraic sign for Width \(\mathbf{B}\).

\subsection*{8.3 Contours in the YZ plane}

\section*{Starting point of contour in YZ plane G180-Geo}

G180 defines the Start point of a contour in the YZ plane.
Parameters:
- Y: Start point of contour
- Z: Start point of contour
- PZ: Start point (polar radius)
- W: Start point (polar angle)

\section*{Line segment in YZ plane G181-Geo}

G181 defines a line segment in a contour of the \(Y Z\) plane.
Parameters:
- Y: Final point
- Z: Final point
- AN: Angle to positive \(Z\) axis
- Q: Intersect. pt. or Final point if the line segment intersects a circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection
- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition
- BR = 0: No tangential transition
- \(B R>0\) : Rounding radius
- \(\mathbf{B R}<0\) : Width of chamfer
- PZ: Final point (polar radius; reference: workpiece datum)
- W: Final point (polar angle; reference: workpiece datum)
- AR: Incr.angle to foregoer ARi (AR corresponds to AN)

- R: Line length

Programming:
- Y, Z: Absolute, incremental, modal or ?
- ANi: Angle to the subsequent element
- ARi: Angle to the previous element

\section*{Circular arc in YZ plane G182/G183-Geo}

G182 and G183 define a circular arc in a contour of the YZ plane. Parameters:
- Y: Final point
- Z: Final point
- R: Radius
- J: Center (in Y)
- K: Center (in Z)
- Q: Intersect. pt. or Final point if the line segment intersects a circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection
- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition
- \(\mathbf{B R}=0\) : No tangential transition
- \(\mathbf{B R}>0\) : Rounding radius
- BR \(<0\) : Width of chamfer
- PZ: Final point (polar radius; reference: workpiece datum)
- W: Final point (polar angle; reference: workpiece datum)
- PM: Center (polar radius; reference: workpiece datum)
- WM: Center (polar angle; reference: workpiece datum)
- AR: Start angle - tangential angle to rotary axis
- AN: Final angle - tangential angle to rotary axis

Programming:
- Y, Z: Absolute, incremental, modal or ?
- J, K: Absolute or incremental
- PZ, W, PM, WM: Absolute or incremental
- ANi: Angle to the subsequent element
- ARi: Angle to the previous element
- End point must not be the starting point (no full circle)

\section*{Hole in YZ plane G380-Geo}

G380 defines a hole with countersinking and thread in the YZ plane. Parameters:
- Y: Center of hole
- Z: Center hole
- B: Diameter
- P: Depth excluding point
- W: Point angle (default: \(180^{\circ}\))
- R: Sink diam.
- U: Sink depth
- E: Sink angle
- I: Thread diameter
- J: Thread depth
- K: Start of thread - run-out length
- F: Thread pitch
- V: Direction of thread: (default: 0)
- 0: Right-hand thread
- 1: Left-hand thread
- A: Angle to \(X\) axis (range: \(-90^{\circ}<\mathbf{A}<90^{\circ}\))
- O: Center. diam.

\section*{Linear slot in YZ plane G381-Geo}

G381 defines the contour of a linear slot in the YZ plane.
Parameters:
- Y: Center of slot
- Z: Center of slot
- X: Reference diameter
- No input: \(\mathbf{X}\) from section code
- X overwrites \(\mathbf{X}\) from section code
- A: Position angle (reference: positive \(Z\) axis; default: \(0^{\circ}\))
- K: Length
- B: Width

- P: Depth/Height (default: P from G308)

\section*{Circular slot in YZ plane G382/G383-Geo}

G382 and G383 define a circular slot in the YZ plane.
- G382: Circular slot clockwise
- G383: Circular slot counterclockwise

Parameters:
- Z: Center of slot
- Y: Center of slot
- X: Reference diameter
- No input: \(\mathbf{X}\) from section code
- X overwrites \(\mathbf{X}\) from section code
- R: Radius
- A: Start angle (reference: positive \(X\) axis; default: \(0^{\circ}\))
- W: Final angle (reference: positive \(X\) axis; default: \(0^{\circ}\))
- B: Width
- P: Depth/Height (default: P from G308)

\section*{Full circle in YZ plane G384-Geo}

G384 defines a full circle in the YZ plane.
Parameters:
- Z: Center
- Y: Center
- X: Reference diameter
- No input: \(\mathbf{X}\) from section code
- X overwrites \(\mathbf{X}\) from section code
- R: Radius
- P: Depth/Height (default: P from G308)

\section*{Rectangle in YZ plane G385-Geo}

G385 defines a rectangle in the YZ plane.
Parameters:
- Z: Center of rectangle
- Y: Center of rectangle
- X: Reference diameter
- No input: \(\mathbf{X}\) from section code
- X overwrites \(\mathbf{X}\) from section code
- A: Position angle (reference: positive \(Z\) axis; default: \(0^{\circ}\))
- K: Length of rectangle
- B: Width of rectangle
- R: Chamf./round. (default: 0)
- \(\mathbf{R}>0\) : Radius of rounding arc
- \(\mathbf{R}<0\) : Chamfer width
- P: Depth/Height (default: P from G308)

\section*{Polygon in YZ plane G387-Geo}

G387 defines the contour of an eccentric polygon in the YZ plane. Parameters:
- Z: Center of polygon
- Y: Center of polygon
- X: Reference diameter
- No input: \(\mathbf{X}\) from section code
- X overwrites \(\mathbf{X}\) from section code
- Q: Number of corners (\(\mathbf{Q}>=3\))
- A: Position angle (reference: positive \(Z\) axis; default: \(0^{\circ}\))
- K: +edge Ingth/-width a. flats

- \(\mathbf{K}>0\) : Edge length
- K < 0: Width across (Inside diameter)
- R: Chamf./round. (default: 0)
- \(\mathbf{R}>0\) : Radius of rounding arc
- \(\mathbf{R}<0\) : Chamfer width
- P: Depth/Height (default: P from G308)

\section*{Text for lateral surface Y G388-Geo}

G388 defines a text in the YZ plane.
Parameters:
- Y: Start point \(Y\)
- Z: Start point Z
- ID: Text to be engraved
- NF: Char. no. - ASCII code of the character to be engraved
- P: Depth
- W: Inclinat. ang. of the character string
- H: Font height
- E: Distance factor

The spacing between the characters is calculated according to the following formula: \(\mathbf{H} / 6\) * \(\mathbf{E}\)
- F: Plunging feed rate factor (plunging feed rate = current feed rate * F)
- O: Mirror writing
- \(\mathbf{0}\) (No): Engraving is not mirrored
- \(\mathbf{1}\) (Yes): Engraving is mirrored (mirror writing)

\section*{Circular pattern in YZ plane G482-Geo}

G482 defines a circular pattern in the YZ plane.
G482 is effective for the figure defined in the following block (G380-G385, G387).
Parameters:
- Q: Number of figures
- K: Diameter - pattern diameter
- A: Position angle (reference: positive \(Z\) axis; default: \(0^{\circ}\))
- W: Final angle - position of the last figure (reference: positive Z axis; (default: \(360^{\circ}\))
- Wi: Final angle - Angle between two figures
- V: Direction - orientation (default: 0)
- \(\mathbf{V}=0\), without \(\mathbf{W}\) : Figures are arranged on a full circle
- \(\mathbf{V}=0\), with \(\mathbf{W}\) : Figures are arranged on the longer circular arc
- \(\mathbf{V}=0\), with \(\mathbf{W}\) : The algebraic sign of \(\mathbf{W i}\) defines the direction (\(\mathbf{W}<0\) : clockwise)
- \(\mathbf{V}=1\), with \(\mathbf{W}\) : Clockwise
- \(\mathbf{V}=1\), with \(\mathbf{W}\) : Clockwise (algebraic sign of \(\mathbf{W}\) has no effect)
- \(\mathbf{V}=2\), with \(\mathbf{W}\) : Counterclockwise
- \(\mathbf{V}=2\), with \(\mathbf{W}\) : Counterclockwise (algebraic sign of \(\mathbf{W}\) has no effect)

(1)

Programming notes:
- Program the hole or figure in the following block without a center. Exception: circular slot
Further information: "Circular pattern with circular slots", Page 312
- The drilling or milling cycle (MACHINING section) calls the hole or figure in the following block-not the pattern definition

\section*{DataMatrix pattern in YZ plane G485-Geo}

G485 defines a pattern in DataMatrix code in the YZ plane.
G485 is effective for the hole or figure defined in the following block (G380, G384, G385, or G387).
Parameters:
- ID: Text to be converted into DataMatrix code
- Z: 1st pattern point
- Y: 1st point of pattern
- A: Position angle (reference: positive \(Z\) axis; default: \(0^{\circ}\))
- R: Length - total length of pattern
- Ri: Length - distance to next hole or figure

Programming notes
- If you do not enter the length, the control calculates the pattern so that the holes or figures touch each other.
- Program the hole or figure in the following block without a center
- In the MACHINING section, the drilling or milling cycle calls the hole or figure in the following block-not the pattern definition
- A maximum of 80 ASCII characters are allowed per DataMatrix code
- The G codes for rectangle and polygon are restricted to a square shape

\section*{Single surface in YZ plane G386-Geo}

G386 defines a surface in the YZ plane.
Parameters:
- Z: Reference edge (default: Z from section code)
- K: Residual depth
- Ki: Depth
- B: Width (reference: Reference edge Z)
- \(\mathbf{B}<0\) : Surface in negative \(Z\) direction
- B \(>0\) : Surface in positive \(Z\) direction
- X: Reference diameter
- No input: \(\mathbf{X}\) from section code
- X overwrites \(\mathbf{X}\) from section code
- C: Spindle angle of surface normal (default: \(\mathbf{C}\) from section code)

The Reference diameter \(\mathbf{X}\) limits the surface to be machined.

\section*{Centric polygon in YZ plane G487-Geo}

G487 defines polygonal surfaces in the YZ plane.
Parameters:
- Z: Reference edge (default: Z from section code)
- K: Width across - Inscribed circle diameter
- Ki: Edge length
- B: Width (reference: Reference edge Z)
- \(\mathbf{B}<0\) : Surface in negative \(Z\) direction
- B > 0 : Surface in positive \(Z\) direction
- X: Reference diameter

- No input: \(\mathbf{X}\) from section code
- X overwrites \(\mathbf{X}\) from section code
- C: Spindle angle of surface normal (default: C from section code)
- \(\mathbf{Q}\) : No. of surfaces (\(\mathbf{Q}>=2\))

The Reference diameter \(\mathbf{X}\) limits the surface to be machined.

\subsection*{8.4 Working planes}

\section*{\(\mathbf{Y}\)-axis machining}

When programming drilling or milling operations with the \(Y\) axis, you need to define the working plane.
If no working plane is programmed, the control assumes a turning operation or a milling operation with the C axis (\(\mathbf{G} 18 \times Z\) plane).

\section*{G17 XY plane (front or rear face)}

Milling cycles are executed in the XY plane, with the depth feed for milling and drilling cycles in the \(Z\) direction.

\section*{G18 XZ plane (turning)}

In the XZ plane, normal turning operations as well as drilling and milling operations are executed with the C axis.

\section*{G19 YZ plane (lateral view / lateral surface)}

Milling cycles are executed in the YZ plane, with the depth feed for milling and drilling cycles in the \(X\) direction.

\section*{Tilt working plane G16}

G16 executes the following transformations and rotations:
- Shifts the coordinate system to the position I, K
- Rotates the coordinate system by the Angle B;

Reference pt.: I, K
- Shifts, if programmed, the coordinate system by \(\mathbf{U}\) and \(\mathbf{W}\) in the rotated coordinate system
Parameters:
- B: Plane angle (reference: positive \(Z\) axis)
- I: Plane ref. in X (radius value)
- K: Plane ref. in Z

- U: Shift in X (radius value)
- W: Shift in Z
- Q: On/Off - enable/disable tilting the working plane
- 0: Disable tilted working plane function
- 1: Tilt working plane
- 2: Restore previous G16 plane

G16 Q0 resets the working plane. The datum and coordinate system defined before \(\mathbf{G 1 6}\) are then in effect again.
G16 Q2 restores the previous G16 plane.
The positive \(Z\) axis is the reference axis for the Plane angle \(\mathbf{B}\). This
 also applies to a mirrored coordinate system.

\section*{Please note:}
- \(\mathbf{X}\) is the infeed axis in a tilted coordinate system. \(\mathbf{X}\) coordinates are entered as diameter coordinates.
- Mirroring the coordinate system has no effect on the reference axis of the tilt angle (B axis angle of the tool call)
- Other datum shifts are not permitted as long as G16 is active

\section*{Example: G16}
\begin{tabular}{|l|l|l|}
\hline ... & \\
\hline MACHINING \\
\hline .. . & \\
\hline N.. G19 & \\
\hline N.. G15 B130 \\
\hline N.. G16 B130 159 K0 Q1 \\
\hline N.. G1 X.. Z.. Y.. & \\
\hline N.. G16 Q0 & \\
\hline ... & \\
\hline
\end{tabular}

\section*{Tilt working plane G16}

Use G160 to tilt the coordinate system conveniently for machining. G16 executes the following transformations:
- Shifts the coordinate system to the positions \(\mathbf{I}, \mathbf{J}\) and \(\mathbf{K}\) prior to tilting
- Tilts the coordinate system to the defined Spatial angle A, B and C
Reference pt.: I, J, K
- Shifts the coordinate system by \(\mathbf{U}, \mathbf{V}\) and \(\mathbf{W}\) after tilting Parameters:
- A: Spatial angle
- B: Spatial angle
- C: Spatial angle
- I: Tilting position in \(\mathbf{X}\) (radius value)
- J: Tilting position in \(Y\)
- K: Tilting position in \(Z\)
- U: Shift in X (radius value)
- V: Shift Y
- W: Shift in Z

G160 without inputs resets tilting. The control activates the datum and the coordinate system that were active before G160.
Before you program further transformations, you have the reset any
 active tilting function with \(\mathbf{G 1 6 0}\) or \(\mathbf{G 1 6}\).
- The control considers mirroring with G30 for the tilting process.
- The spatial angles \(\mathbf{A}, \mathbf{B}\) and \(\mathbf{C}\) refer to the axes \(\mathbf{X}, \mathbf{Y}\) and \(\mathbf{Z}\) in the machine coordinate system.
- If you do not define the Spatial angle A, B or C, the control will use the value 0 for calculating.
- The machine manufacturer defines whether the control will show the current values of the machining plane in the machine data display.
Further information: User's Manual

\subsection*{8.5 Tool positioning in Y axis}

\section*{Rapid traverse G0}

G0 moves the tool at rapid traverse along the shortest path to the Target point \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\).
Parameters:
- X: Diameter - target point
- \(\mathbf{Y}\) : Length - target point
- Z: Length - target point

Programming:
- \(\mathbf{X}, \mathbf{Y}\) and \(\mathbf{Z}\) absolute, incremental or modal
(1)

If more axes are available on your machine, additional input parameters will be displayed, e.g. parameter \(\mathbf{B}\) for the \(B\) axis.

\section*{Approach the Tool change point G14}

G14 moves the tool at rapid traverse to the Tool change point. Coordinates for the tool change position can be defined in setup mode.
Parameters:
- Q: Order (default: 0)
- 0: Simultaneously
- 1: First \(X\), then \(Z\)
- 2: First \(Y\), then \(Z\), then \(X\)
- 3: Only X

- 5: Only Y (machine-dependent)
- 6: Simultaneous w/ Y (machine-dependent)
(1) If \(\mathbf{Q}=0-4\), the \(Y\) axis does not move.

\section*{Rapid traverse in machine coordinates G701}

G701 moves the tool at rapid traverse along the shortest path to the Destinat. point X, Y, Z.
Parameters:
- X: Final point (diameter value)
- Y: Final point
- Z: Final point
(1)
\(\mathbf{X}, \mathbf{Y}\) and \(\mathbf{Z}\) refer to the machine datum and the slide reference point.
(i)

If more axes are available on your machine, additional input parameters will be displayed, e.g. parameter \(\mathbf{B}\) for the \(B\) axis.

\subsection*{8.6 Linear and circular movements in the \(Y\) axis}

\section*{Milling: Linear movement G1}

G1 moves the tool on a linear path at the feed rate to the Final point.
The execution of \(\mathbf{G 1}\) varies depending on the working plane:
- G17 Interpolation in the XY plane
- Infeed in Z direction
- Angle A-reference: positive \(X\) axis
- G18 Interpolation in the XZ plane
- Infeed in Y direction
- Angle \(A\)-reference: negative \(Z\) axis
- G19 Interpolation in the YZ plane

- Infeed in X direction
- Angle A-reference: positive \(Z\) axis

Parameters:
- X: Diameter - target point
- \(\mathbf{Y}\) : Length - target point
- Z: Length - target point
- AN: Angle (reference: depends on the working plane)
- Q: Intersect. pt. or Final point if the line segment intersects a circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection
- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition
- \(\mathbf{B R}=0\) : No tangential transition
- \(\mathbf{B R}>0\) : Rounding radius
- \(\mathbf{B R}<0\) : Width of chamfer
- BE: Special feed rate factor for Chamf./round. (default: 1)

Special feed rate \(=\) active feed rate * \(\mathbf{B E}\) (range: \(\mathbf{0}<\mathbf{B E}<=1\))
Programming:
- \(\mathbf{X}, \mathbf{Y}\) and \(\mathbf{Z}\) absolute, incremental, modal or ?

If more axes are available on your machine, additional input parameters will be displayed, e.g. parameter \(\mathbf{B}\) for the \(\mathbf{B}\) axis.

\section*{Milling: Circular arc cw G2, G3 - incremental center coordinates}

G2 and G3 move the tool on a circular arc to the Final point at the specified feed rate.
The execution of \(\mathbf{G} \mathbf{2}\) and \(\mathbf{G 3}\) varies depending on the working plane:
- G17 Interpolation in the XY plane
- Infeed in Z direction
- Center definition: with I, J
- G18 Interpolation in the XZ plane
- Infeed in Y direction
- Center definition: with I, K
- G19 Interpolation in the YZ plane
- Infeed in \(X\) direction
- Center definition: with J, K

Parameters:
- X: Diameter - target point
- \(\mathbf{Y}\) : Length - target point
- Z: Length - target point
- I: Center, incremental (radius value)
- J: Center, incremental
- K: Center, incremental
- Q: Intersect. pt. or Final point if the line segment intersects a circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection
- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition
- \(\mathbf{B R}=0\) : No tangential transition
- \(B R>0\) : Rounding radius
- \(\mathbf{B R}<0\) : Width of chamfer
- BE: Special feed rate factor for Chamf./round. (default: 1)

Special feed rate \(=\) active feed rate * \(\mathbf{B E}\) (range: \(\mathbf{0}<\mathbf{B E}<=1\))
If you do not program the center, the control automatically calculates the possible solutions for the center and chooses that point as the center which results in the shortest arc.

Programming:
- \(\mathbf{X}, \mathbf{Y}\) and \(\mathbf{Z}\) absolute, incremental, modal or ?

\section*{Milling: Circular arc cw G12, G13 - center coordinates}

G12 and G13 move the tool on a circular arc to the Final point at the specified feed rate.
The execution of G12 and G13 varies depending on the working plane:
- G17 Interpolation in the XY plane
- Infeed in Z direction
- Center definition: with I, J
- G18 Interpolation in the XZ plane
- Infeed in Y direction
- Center definition: with \(\mathbf{I}, \mathbf{K}\)

- G19 Interpolation in the YZ plane
- Infeed in X direction
- Center definition: with J, K

Parameters:
- X: Diameter - target point
- Y: Length - target point
- Z: Length - target point
- I: Center absolute (radius value)
- J: Center, absolute
- K: Center absolute
- Q: Intersect. pt. or Final point if the line segment intersects a circular arc (default: 0)
- 0: Near point of intersection
- 1: Far point of intersection
- BR: Chamf./round. - defines the transition to the next contour element
When entering a Chamf./round., program the theoretical end point.
- No entry: Tangential transition
- BR = 0: No tangential transition

- \(B R>0\) : Rounding radius
- BR \(<0\) : Width of chamfer
- E: Special feed rate factor for the chamfer/rounding (default: 1) Special feed rate \(=\) active feed rate \(* \mathbf{E}\) (range \(0<\mathbf{E}<=1\)) If you do not program the center, the control automatically calculates the possible solutions for the center and chooses that point as the center which results in the shortest arc.

1
Programming:
- X, Y and \(\mathbf{Z}\) absolute, incremental, modal or ?

\subsection*{8.7 Milling cycles for the Y axis}

\section*{Area milling - roughing G841}

G841 roughs surfaces defined with G376-Geo (XY plane) or G386Geo (YZ plane). The cycle mills from the outside toward the inside. The tool moves to the working plane outside of the workpiece material.
Parameters:
- ID: Milling contour - name of the milling contour
- NS: Block number of contour - reference to the contour description
- P: Milling depth - maximum infeed in the working plane
- I: O-size X
- K: O-size Z
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap \(=\mathbf{U} *\) milling diameter
- V: Overrun factor - defines the distance by which the tool should pass the outside radius of the workpiece (default: 0.5) Overrun = V * milling diameter
- F: Approach feed for plunging (default: active feed rate)
- RB: Return plane (default: back to start position)
- XY plane: Retraction position in Z direction
- YZ plane: Return position in \(X\) direction (diameter)

(i) Oversizes are taken into account:
- G58: Equidistant oversize in the milling plane

Cycle run
1 Start position (\(\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{C}\)) is the position before the cycle begins
2 Calculates the number of cutting passes (infeeds to the milling planes, infeeds in the milling depths)
3 Move to the safety clearance and plunge to the first milling depth.
4 Mill the first plane.
5 Retract by the safety clearance, return and cut to the next milling depth.
6 Repeat steps 4 and 5 until the complete area is milled.
7 Returns to Return plane RB

\section*{Area milling - finishing G842}

G842 finishes surfaces defined with G376-Geo (XY plane) or G386Geo (YZ plane). The cycle mills from the outside toward the inside. The tool moves to the working plane outside of the workpiece material.
Parameters:
- ID: Milling contour - name of the milling contour
- NS: Block number of contour - reference to the contour description
- P: Milling depth - maximum infeed in the working plane
- H: Mill cutting direction for side finishing (default: 0)
- 0: Up-cut
- 1: Climb
- U: Overlap factor - defines the overlap of milling paths (default: 0.5) (range: 0 to 0.99)

Overlap = U * milling diameter
- V: Overrun factor - defines the distance by which the tool should pass the outside radius of the workpiece (default: 0.5) Overrun = V * milling diameter
- F: Approach feed for plunging (default: active feed rate)
- RB: Return plane (default: back to start position)
- XY plane: Retraction position in \(Z\) direction

- YZ plane: Return position in \(X\) direction (diameter)

Cycle run
1 Start position (\(\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{C}\)) is the position before the cycle begins
2 Calculates the number of cutting passes (infeeds to the milling planes, infeeds in the milling depths)
3 Move to the safety clearance and plunge to the first milling depth.
4 Mill the first plane.
5 Retract by the safety clearance, return and cut to the next milling depth.
6 Repeat steps 4 and 5 until the complete area is milled.
7 Returns to Return plane RB

\section*{Centric polygon - roughing G843}

G843 roughs centric polygons defined with G477-Geo (XY plane) or G487-Geo (YZ plane). The cycle mills from the outside toward the inside. The tool moves to the working plane outside of the workpiece material

Parameters:
- ID: Milling contour - name of the milling contour
- NS: Block number of contour - reference to the contour description
- P: Milling depth - maximum infeed in the working plane
- I: O-size X
- K: O-size Z
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap = U * milling diameter
- V: Overrun factor - defines the distance by which the tool should pass the outside radius of the workpiece (default: 0.5) Overrun = V * milling diameter
- F: Approach feed for plunging (default: active feed rate)
- RB: Return plane (default: back to start position)
- XY plane: Retraction position in Z direction
- YZ plane: Return position in X direction (diameter)

(1)

Oversizes are taken into account:
- G57: Oversize in \(X, Z\) direction
- G58: Equidistant oversize in the milling plane

Cycle run
1 Start position (\(\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{C}\)) is the position before the cycle begins
2 Calculate the proportioning of cuts (infeeds to the milling planes, infeeds in the milling depths) and the spindle positions
3 Spindle turns to the first position. The tool moves to the safety clearance and plunges to the first milling depth.
4 Mill the first plane.
5 Retract by the safety clearance, return and cut to the next milling depth.
6 Repeat steps 4 and 5 until the complete area is milled.
7 The tool returns as defined in Return plane J; the spindle is rotated to the next position, the cutter moves to safety clearance and plunges to the first milling plane
8 Repeat steps 4 to 7 until all polygonal surfaces are milled.
9 Returns to Return plane RB

\section*{Centric polygon - finishing G844}

G844 finishes centric polygons defined with G477-Geo (XY plane) or G487-Geo (YZ plane). The cycle mills from the outside toward the inside. The tool moves to the working plane outside of the workpiece material.

Parameters:
- ID: Milling contour - name of the milling contour
- NS: Block number of contour - reference to the contour description
- P: Milling depth - maximum infeed in the working plane
- H: Mill cutting direction for side finishing (default: 0)

\section*{- 0: Up-cut}
- 1: Climb
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap = U * milling diameter
- V: Overrun factor - defines the distance by which the tool should pass the outside radius of the workpiece (default: 0.5) Overrun = V * milling diameter
- F: Approach feed for plunging (default: active feed rate)
- RB: Return plane (default: back to start position)
- XY plane: Retraction position in \(Z\) direction
- YZ plane: Return position in \(X\) direction (diameter)

Cycle run
1 Start position (\(\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{C}\)) is the position before the cycle begins
2 Calculate the proportioning of cuts (infeeds to the milling planes, infeeds in the milling depths) and the spindle positions
3 Spindle turns to the first position. The tool moves to the safety clearance and plunges to the first milling depth.
4 Mill the first plane.
5 Retract by the safety clearance, return and cut to the next milling depth.

6 Repeat steps 4 and 5 until the complete area is milled.
7 The tool returns as defined in Return plane J; the spindle is rotated to the next position, the cutter moves to safety clearance and plunges to the first milling plane
8 Repeat steps 4 to 7 until all polygonal surfaces are milled.
9 Returns to Return plane RB

\section*{Pocket milling - roughing G845 (Y axis)}

G845 roughs closed contours that are defined in the XY or YZ plane in the program sections:
- FRONT Y
- REAR SIDE Y
- SURFACE Y

Choose one of the following Plunging behavior settings, depending on the milling cutter you are using:
- Plunge vertically
- Plunge at a pre-drilled position
- Plunge in a reciprocating or helical motion

When plunging at a pre-drilled position, you have the following alternatives:
- Calculate positions, drill, mill. The machining process is performed in the following steps:
- Insert drill.
- Calculate hole positions with G845 A1 ..: or set the hole position at the center of the figure with \(\mathbf{A} \mathbf{2}\)
- Predrill with G71 NF ..:
- Call cycle G845 A0 ..: The cycle positions the tool above the hole; the tool plunges and mills the pocket

\section*{(i) \\ The parameters \(\mathbf{0}=1\) and \(\mathbf{N F}\) must be defined.}
- Drill, mill. The machining process is performed in the following steps:
- Drill a hole inside the pocket with G71
- Position the milling cutter above the hole and call G845

A0 ... The tool plunges and mills the section
If the pocket consists of multiple sections, G845 takes all the sections of the pocket into account for drilling and milling. Call G845 A0 ... separately for each section when calculating the hole positions without G845 A1
(i)

G845 takes the following oversizes into account:
- G57: Oversize in \(X, Z\) direction
- G58: Equidistant oversize in the milling plane

Program oversizes for calculating the hole positions and for milling.

G845 (Y axis) - calculating hole positions
G845 A1 ... calculates the hole positions and stores them at the reference specified in \(\mathbf{N F}\). The cycle takes the diameter of the active tool into account when calculating the hole positions. Therefore, you need to insert the drill before calling G845 A1 Program only the parameters given in the following table.
More information:
- G845-Fundamentals: Further information: "Pocket milling roughing G845 (Y axis)", Page 659
- G845-Milling: Further information: "G845 (Y axis) -Milling", Page 661
Parameters:
- ID: Milling contour - name of the milling contour
- NS: Starting block no. of contour - beginning of contour section
- Figures: Block number of the figure
- Free closed contour: First contour element (not starting point)
- B: Milling depth (default: depth from the contour description)
- XS: Millg. top edge lateral surface (replaces the reference plane from the contour definition)
- ZS: Millg. top edge face (replaces the reference plane from the contour definition)
- I: O-size X
- K: O-size Z
- Q: Mach. direction (default: 0)
- 0: From the inside out
- 1: From the outside in
- A: (Mill=0/PredrillPos=1)
- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)
- WB: Diameter rework
(i) G845 overwrites any hole positions that may still be
stored at the reference \(\mathbf{N F}\) stored at the reference NF
- The parameter WB is used both for calculating the hole positions and for milling. When calculating the hole positions, WB describes the diameter of the milling cutter.

\section*{G845 (Y axis)-Milling}

You can change the cutting direction with the parameters for Direction \(\mathbf{H}\), the machining direction \(\mathbf{Q}\) and the direction of tool rotation.
Program only the parameters given in the following table.
More information:
- G845-Fundamentals: Further information: "Pocket milling roughing G845 (Y axis)", Page 659
- G845-Calculating hole positions: Further information: "G845 (Y axis) - calculating hole positions", Page 660
Parameters:
- ID: Milling contour - name of the milling contour
- NS: Starting block no. of contour - beginning of contour section
- Figures: Block number of the figure
- Free closed contour: First contour element (not starting point)
- B: Milling depth (default: depth from the contour description)
- P: Max. approach (default: milling in one infeed)
- XS: Millg. top edge lateral surface (replaces the reference plane from the contour definition)
- ZS: Millg. top edge face (replaces the reference plane from the contour definition)
- I: O-size X
- K: O-size Z
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap = U * milling diameter
- V: Overrun factor - defines the distance by which the tool should pass the outside radius of the workpiece (default: 0.5)
- 0 : The defined contour is milled completely
- \(0<\mathbf{V}<=1\) : Overrun \(=\mathbf{V}\) * milling diameter
- H: Mill cutting direction

- 0: Up-cut
- 1: Climb
- F: Approach feed for plunging (default: active feed rate)
- E: Reduced feed for circular elements (default: active feed rate)
- FP: Infeed rate in the plane for the infeed to the next milling path
- RB: Return plane (default: back to start position)
- XY plane: Retraction position in \(Z\) direction
- YZ plane: Return position in \(X\) direction (diameter)
- Q: Mach. direction (default: 0)
- 0: From the inside out
- 1: From the outside in
- A: (Mill=0/PredrillPos=1) (default: 0)
- NF: Position mark - reference at which the cycle stores the predrill hole positions (range: 1 to 127)
- O: Plunging behavior (default: 0)
- \(\mathbf{0}=0\) (vertical plunging): The cycle moves the tool to the starting point; the tool plunges at the feed rate for infeed and mills the pocket
- \(\mathbf{O = 1}\) (plunge at pre-drilled position):
- If \(\mathbf{N F}\) is programmed: The cycle positions the milling cutter above the first pre-drilled hole; the tool plunges and mills the first area. If applicable, the cycle positions the tool to the next pre-drilled hole and mills the next area, etc.
- If NF is not programmed: The cycle plunges at the current position and mills the area. If applicable, position the tool to the next pre-drilled hole and mill the next area, etc.
- \(\mathbf{0}=2\) or 3 (plunge in a helical motion): The tool plunges at the angle \(\mathbf{W}\) and mills full circles with the diameter WB. As soon as it reaches the milling depth \(\mathbf{P}\), the cycle switches to face milling
- \(\mathbf{0}=2-\) manually: The cycle plunges at the current position and machines the area that can be reached from this position
- \(\mathbf{0}=3\)-automatically: The cycle calculates the plunging position, plunges and machines this area. The plunging motion ends at the starting point of the first milling path, if possible. If the pocket consists of multiple areas, the cycle successively machines all the areas
- \(\mathbf{O}=4\) or 5 (reciprocating linear plunge): The tool plunges at the angle \(\mathbf{W}\) and mills a linear path of length WB. You can define the orientation angle in WE. The cycle then mills along this path in the opposite direction. As soon as it reaches the milling depth \(\mathbf{P}\), the cycle switches to face milling
- \(\mathbf{O}=4\)-manually: The cycle plunges at the current position and machines the area that can be reached from this position
- \(\mathbf{O}=5\)-automatically: The cycle calculates the plunging position, plunges and machines this area. The plunging motion ends at the starting point of the first milling path, if possible. If the pocket consists of multiple areas, the cycle successively machines all the areas. The plunging position is determined from the type of figure and from \(\mathbf{Q}\) as follows:
- Q0 (from the inside toward the outside):
- Linear slot, rectangle, polygon: Reference point of the figure
- Circle: Circle center
- Circular slot, free contour: Starting point of the innermost milling path
- Q1 (from the outside toward the inside):
- Linear slot: Starting point of the slot
- Circular slot, circle: Not machined
- Rectangle, polygon: Starting point of the first linear element
- Free contour: Starting point of the first linear element (at least one linear element must exist)
- \(\mathbf{0}=6\) or 7 (reciprocating circular plunge): The tool plunges at the plunging angle \(\mathbf{W}\) and mills a circular arc of \(90^{\circ}\). The cycle then mills along this path in the opposite direction. As soon as it reaches the milling depth \(\mathbf{P}\), the cycle switches to face milling. WE defines the arc center, WB the arc radius
- \(\mathbf{0}=6\)-manually: The tool position corresponds to the center of the circular arc. The tool moves to the arc starting point and plunges
- 0=7-automatically (only permitted for circular slots and circles): The cycle calculates the plunging position on the basis of \(\mathbf{Q}\) :
- Q0 (from the inside toward the outside):
- Circular slot: The circular arc lies on the curvature radius of the slot
- Circle: Not permitted
- Q1 (from the outside toward the inside): Circular slot, circle: The circular arc lies on the outermost milling path
- W: Plunging angle in infeed direction
- WE: Position angle of the milling path/circular arc

Reference axis:
- Front or rear face: Positive XK axis
- Lateral surface: Positive Z axis

Default orientation angle, depending on \(\mathbf{0}\) :
- \(\mathbf{O}=4: \mathbf{W E}=0^{\circ}\)
- \(\mathbf{0}=5\) and
- Linear slot, rectangle, polygon: WE = orientation angle of the figure
- Circular slot, circle: WE=0
- Free contour and \(\mathbf{Q 0}\) (from the inside toward the outside): \(\mathrm{WE}=0^{\circ}\)
- Free contour and Q1 (from the outside toward the inside): Orientation angle of the starting element
- WB: Diameter rework (default: 1.5 * milling diameter)

Cutting direction, machining direction and direction of tool rotation.
For the machining direction \(\mathbf{Q}=\mathbf{1}\) (from the outside toward the inside), please note:
- The contour must start with a linear element
- If the starting element is < WB, WB is reduced to the length of the starting element
- The length of the starting element must not be less than 1.5 times the diameter of the milling cutter

Cycle run:
1 Start position (\(\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{C}\)) is the position before the cycle begins
2 Calculates the number of cuts (infeeds to the milling planes, infeeds in the milling depths) and the plunging positions and paths for reciprocating or helical plunges.
3 Approaches to safety clearance and, depending on \(\mathbf{O}\), feeds to the first milling depth or approaches helically or on a reciprocating path
4 Mill the first plane.
5 Retract by the safety clearance, return and cut to the next milling depth.
6 Repeat steps 4 and 5 until the complete area is milled.
7 Returns to Return plane RB

\section*{Pocket milling - finishing G846 (Y axis)}

G846 finishes closed contours defined in the \(X Y\) or \(Y Z\) plane in the program sections:
- FRONT Y
- REAR SIDE Y
- SURFACE Y

You can change the cutting direction with the parameters for Mill cutting direction \(\mathbf{H}\), the Machining direction \(\mathbf{Q}\) and the direction of tool rotation.
Parameters:
- ID: Milling contour - name of the milling contour
- NS: Starting block no. of contour - beginning of contour section
- Figures: Block number of the figure
- Free closed contour: First contour element (not starting point)
- B: Milling depth (default: depth from the contour description)
- P: Max. approach (default: milling in one infeed)
- XS: Millg. top edge lateral surface (replaces the reference plane from the contour definition)
- ZS: Millg. top edge face (replaces the reference plane from the contour definition)
- R: Apprch angle (default: 0)
- \(\mathbf{R}=0\) : Contour element is approached directly. Feed to the starting point above the milling plane, then vertical plunge
- \(\mathbf{R}>0\) : Tool moves on approaching/departing arc that connects tangentially to the contour element
- U: Overlap factor - defines the overlap of milling paths (default:
0.5) (range: 0 to 0.99)

Overlap \(=\mathbf{U} *\) milling diameter
- V: Overrun factor - defines the distance by which the tool should pass the outside radius of the workpiece (default: 0.5) Overrun = V * milling diameter
- H: Mill cutting direction

- 0: Up-cut
- 1: Climb
- F: Approach feed for plunging (default: active feed rate)
- E: Reduced feed for circular elements (default: active feed rate)
- FP: Infeed rate in the plane for the infeed to the next milling path
- RB: Return plane (default: back to start position)
- XY plane: Retraction position in \(Z\) direction
- YZ plane: Return position in X direction (diameter)
- Q: Mach. direction (default: 0)
- 0: From the inside out
- 1: From the outside in
- O: Plunging behavior (default: 0)
- \(\mathbf{O = 0}\) (plunge vertically): The cycle moves the tool to the starting point; the tool plunges and finishes the pocket
- \(\mathbf{O = 1}\) (approaching arc with depth feed): When machining the upper milling planes, the tool advances to the milling plane and then approaches on an arc. When machining the bottom milling plane, the tool plunges to the milling depth while moving on the approaching arc (three-dimensional approaching arc). You can use this approach behavior only in conjunction with an approaching arc \(\mathbf{R}\). The precondition is machining from the outside toward the inside (\(\mathbf{O}=1\))
Cutting direction, machining direction and direction of tool rotation.
Cycle run
1 Start position (\(\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{C}\)) is the position before the cycle begins
2 Calculates the number of cutting passes (infeeds to the milling planes, infeeds in the milling depths)
3 Move to the safety clearance and plunge to the first milling depth.
4 Mill the first plane.
5 Retract by the safety clearance, return and cut to the next milling depth.
6 Repeat steps 4 and 5 until the complete area is milled.
7 Returns to Return plane RB

\section*{Engraving in XY plane G803}

G803 engraves character strings aligned linearly in the XY plane.
Further information: "Character sets", Page 484
The cycles start engraving from the starting position or from the current position, if no starting position is defined.
Example: If a character string is engraved with several calls, define the starting position in the first call. All other calls are programmed without a starting position.
Parameters:

\section*{- X, Y: Start point}
- Z: Final point - Z position, infeed depth during milling
- RB: Return plane - Z position to which the tool retracts for positioning
- ID: Text to be engraved
- NF: Char. no. - ASCII code of the character to be engraved
- NS: Block number of contour - reference to the contour description
- W: Inclinat. ang. of the character string

Example: \(0^{\circ}=\) vertical characters-the characters are arranged one after the other in positive \(X\) direction
- H: Font height
- E: Distance factor

The spacing between the characters is calculated according to the following formula: \(\mathbf{H} / 6\) * \(\mathbf{E}\)
- F: Plunging feed rate factor (plunging feed rate = current feed rate * F)
- O: Mirror writing
- \(\mathbf{O}\) (No): Engraving is not mirrored
- \(\mathbf{1}\) (Yes): Engraving is mirrored (mirror writing)

\section*{Engraving in YZ plane G804}

G804 engraves character strings aligned linearly in the YZ plane.
Further information: "Character sets", Page 484
The cycles start engraving from the starting position or from the current position, if no starting position is defined.
Example: If a character string is engraved with several calls, define the starting position in the first call. All other calls are programmed without a starting position.
Parameters:
- Y, Z: Start point
- X: Final point - X position, infeed depth during milling (diameter value)
- RB: Return plane - X position to which the tool retracts for positioning
- ID: Text to be engraved
- NF: Char. no. - ASCII code of the character to be engraved
- NS: Block number of contour - reference to the contour description
- W: Inclinat. ang. of the character string
- H: Font height
- E: Distance factor

The spacing between the characters is calculated according to the following formula: \(\mathbf{H} / 6\) * \(\mathbf{E}\)
- F: Plunging feed rate factor (plunging feed rate = current feed rate * F)
- O: Mirror writing
- \(\mathbf{O}\) (No): Engraving is not mirrored
- 1 (Yes): Engraving is mirrored (mirror writing)

\section*{Thread milling in XY plane G800}

G800 mills a thread in existing holes.
Place the tool at the center of the hole before calling G799. The cycle positions the tool to the End point thread inside the hole. Then, the tool approaches at Apprch angle \(\mathbf{R}\) and mills the thread. With each rotation, the tool executes an infeed movement by the Thread pitch \(\mathbf{F}\). Then, the cycle retracts the tool and returns it to the Start pt. Z. The \(\mathbf{V}\) parameter allows you to define whether the thread is milled in one rotation or, with single-point tools, in multiple rotations.
Parameters:
- ID: Milling contour - name of the milling contour
- NS: Block number of contour - reference to the contour description
- I: Thread diameter
- Z: Start pt. Z
- K: Thread depth
- R: Approach radius
- F: Thread pitch
- J: Direction of thread:
- 0: Right-hand thread
- 1: Left-hand thread
- H: Mill cutting direction
- 0: Up-cut
- 1: Climb
- V: Milling method
- 0: One revolution - the thread is milled in a 360-degree helix
- 1: Two or more revolutions - the thread is milled in several helix paths (single-point tool)
(1)

Use thread-milling tools for cycle G800.

\section*{Thread milling in YZ plane G806}

G806 mills a thread in existing holes.
Place the tool at the center of the hole before calling G799. The cycle positions the tool to the End point thread inside the hole. Then, the tool approaches at Apprch angle \(\mathbf{R}\) and mills the thread. With each rotation, the tool executes an infeed movement by the Thread pitch \(\mathbf{F}\). Then, the cycle retracts the tool and returns it to the Start pt. Z. The \(\mathbf{V}\) parameter allows you to define whether the thread is milled in one rotation or, with single-point tools, in multiple rotations.
Parameters:
- ID: Milling contour - name of the milling contour
- NS: Block number of contour - reference to the contour description
- I: Thread diameter
- X: Start pt. X
- K: Thread depth
- R: Approach radius
- F: Thread pitch
- J: Direction of thread:
- 0: Right-hand thread
- 1: Left-hand thread
- H: Mill cutting direction

- 0: Up-cut
- 1: Climb
- V: Milling method
- 0: One revolution - the thread is milled in a 360-degree helix
- 1: Two or more revolutions - the thread is milled in several helix paths (single-point tool)

Use thread-milling tools for cycle G800.

\section*{Skiving G807}

The G807 function allows you to machine helical or straight-cut cylindrical gears.
After selecting the function, you can specify whether machining will take place before or behind the center of rotation or at the inside/ outside of the workpiece. You can optionally define an inclination of the tool.
Material is removed by the axial feed movement of the tool in combination with the skiving movement.

\section*{Formulas}

Use the following formulas to calculate missing data.
Formula symbols:
- \(n_{T}\) : Tool spindle speed
- \(n_{W}\) : Workpiece spindle speed
- \(\mathrm{z}_{\mathrm{T}}\) : Number of tool teeth
- \(\mathrm{z}_{\mathrm{W}}\) : Number of workpiece teeth
- m: Module
- p: Pitch

- h: Tooth height
- d: Pitch-circle diameter
- z: Number of teeth
- c: Trough-to-tip clearance
- \(\mathrm{d}_{\mathrm{a}}\) : Diameter of the addendum circle (outside diameter)
- \(\mathrm{d}_{\mathrm{f}}\) : Root circle diameter

Formulas for speed calculation
\begin{tabular}{ll}
\hline Definition & Formula \\
\hline Workpiece spindle & \(n_{W}=n_{T}{ }^{*} \frac{z_{T}}{z_{W}}\) \\
\hline Tool spindle & \(n_{T}=n_{W}{ }^{*} \frac{z_{W}}{z_{T}}\)
\end{tabular}

Formulas for straight-cut gears
\begin{tabular}{lll}
\hline Definition & Formula & \\
\hline Module & \(m=\frac{p}{\pi}\) & \(m=\frac{d}{z}\) \\
\hline Pitch & \(p=\pi^{*} m\) & \\
\hline Pitch-circle diameter & \(d=m^{*} z\) & \\
\hline \begin{tabular}{ll}
Tooth height
\end{tabular} & \(h=2^{*} m+c\) & \(d_{a}=d+2^{*} m\) \\
\hline \begin{tabular}{l}
Diameter of the adden- \\
dum circle (outside \\
diameter)
\end{tabular} & \(d_{a}=m^{*}(z+2)\) & \(d_{f}=d-2^{*}(m+c)\)
\end{tabular}

\section*{Parameters}

\section*{- Z: Start point}

Starting point of gearing system; enter an absolute value
- K: Final point

End point of gearing system; enter an absolute value
- WC: Tool lead angle

Thread angle of the milling cutter
- RB: Return plane

Clearance height before and after machining; enter an absolute value
- C: Offset C angle

Optional spindle position (e.g., for alignment with a hole)
- AN: Pref. dir. incidence angle

Preferred direction of the \(B\) axis
- 0: +B
- 1: -B
- J: Number of workpiece teeth

This parameter is mandatory for the calculation of further values.
- U: Module

If you specify the J Number of workpiece teeth and
B Tip circle diameter parameters, the control will calculate the U Module parameter automatically. If you additionally specify the U Module parameter, the control will ignore this input.
To machine a helical gear, enter the transverse module in the U Module parameter.
- B: Tip circle diameter

If you specify the J Number of workpiece teeth and U Module parameters, the control will calculate the B Tip circle diameter parameter automatically. If you specify the \(\mathbf{B}\) Tip circle diameter parameter, the control will ignore the entry in the \(\mathbf{U}\) Module parameter.
- I: Tooth height

If you do not specify the I Tooth height parameter, the control requires the \(\mathbf{B}\) Tip circle diameter or \(\mathbf{U}\) Module parameter for calculation. In addition to the tooth height, the control will also calculate the resulting root circle diameter.

\section*{- A: Crest clearance}

Distance between the addendum circle of the gear to be cut and the root circle of the mating gear.
If you specify the A Crest clearance parameter, the control will consider this value for the root circle diameter calculation.
- W: Angle of inclination

Angle of the helical gear
For straight-cut gears, this angle is \(0^{\circ}\).
- E: Pre-positioning feed rate

Feed rate for all pre-positioning movements, including the inclination movement

- S: Cutting speed in m/min
- H: Machining side
- 0: Behind workpiece, outside
- 1: Before workpiece, outside
- 2: Behind workpiece, inside
- 3: Before workpiece, inside
- V: Direction of tool rotation
- 3: M3
- 4: M4
- O: Rotation direction reversal

Optional reversal of the workpiece spindle rotation direction
- 0: No
- 1: Yes
- P: First infeed

Incremental value of the infeed depth for the first cut
- PZ: Last infeed

Incremental value of the infeed depth for the last cut
- F: First feed rate

Feed rate in millimeters per workpiece revolution for the first cut.
- BF: Last feed rate

Feed rate in millimeters per workpiece revolution for the last cut.
- FP: Feed-rate reduction factor

The reduction factor defines the reduction of the feed rate that should decrease with increasing cutting numbers. The higher the cutting number, the faster the feed rate will be adjusted until the value of the BF Last feed rate parameter is reached.
- D: No. of first cut

Number of the cut with which the control starts machining
- Q: No. of last cut

Number of the cut with which the control stops machining
- HC: Number of cuts

If you omit the HC Number of cuts parameter, the control will calculate the required minimum number of cuts.

\section*{Notes}
- The speed ratio between the workpiece and the tool is derived from the number of teeth of the gear and the number of cutting edges. Define the number of cutting edges in the Tool editor. Create the tool as a milling cutter.
- Before starting a machining operation, make sure that the direction of rotation has been set correctly for both spindles. If required, program a low spindle speed that allows you to see clearly whether the direction of rotation is correct. Please remember that the correct direction of rotation depends on the cutting direction of the tool and the machining side.
- If you set the HC Number of cuts parameter to \(\mathbf{2}\), the control will ignore the PZ Last infeed and BF Last feed rate parameters. If you set the HC Number of cuts parameter to \(\mathbf{1}\), the control will additionally ignore the \(\mathbf{P}\) First infeed parameter.
- The control calculates the approach length and the idle travel distance automatically. Both are required for completely machining the gear between Z Start point and K Final point. When clamping the workpiece, make sure that it protrudes sufficiently from the fixture to avoid any collision of the tool with the fixture. Verify proper execution of machining in the simulation.
- Please note, however, that the simulation cannot display the gearing system. The simulation is suitable for checking the tool position and the infeed movements, for example.

\section*{Hobbing G808}

G808 mills a gear profile from the Start point \(\mathbf{Z}\) to the Final point K. In \(\mathbf{W}\) you enter the angular position of the tool.
If an oversize has been programmed, hobbing is split up in roughmachining and subsequent finishing.
In parameters \(\mathbf{O}, \mathbf{R}\) and \(\mathbf{V}\) you define the tool shift. Shifting by \(\mathbf{R}\) ensures a uniform wear of the hob cutter.
Use the parameter \(\mathbf{U}\) to specify the gear ratio in the tool drive.
Parameters:

\section*{- Z: Start point}
- K: Final point

- C: Angle - offset angle of the C axis
- H: Infeed axis
- 0: Tool infeed is performed in the \(X\) axis
- 1: Tool infeed is performed in the \(Y\) axis
- Q: Spindle with workpiece
- 0: Spindle 1 (main spindle) holds the workpiece
- 1: Spindle 2 holds the workpiece
- 2: Spindle 3 holds the workpiece
- 3: Spindle 4 holds the workpiece
- AC: Tool spindle no. 0.. 3
- 0: Spindle 1 (main spindle) holds the tool
- 1: Spindle 2 holds the tool
- 2: Spindle 3 holds the tool
- 3: Spindle 4 holds the tool
- A: Root circle diameter
- B: Tip circle diameter
- J: Number of workpiece teeth
- W: Angle position
- WC: Angle of inclination of the gear
- \(\mathbf{S}\) : Cutting speed in \(\mathrm{m} / \mathrm{min}\)
- F: Feed per revolution
- D: Turn. direct. of the workpiece
- 3: M3
- 4: M4
- P: Maximum infeed
- I: Allowance
- E: Finishing feed
- O: Shift starting position
- R: Shift value
- V: Shift quantity
- U: Transmission ratio

Program G728 to compensate for an offset occurring when you machine helical teeth.
Further information: "Compens. for helical teeth G728", Page 510

\subsection*{8.8 Example program}

\section*{Machining with the \(\mathbf{Y}\) axis}

The milling and drilling contours are nested in the following NC program. A linear slot is machined on the single surface. On the same single surface, a hole pattern with two holes is machined both to the left and right of the slot.
At first, the turning operation is performed, and then the single surface is milled. Following that, the linear slot is machined using the Pocket milling, lateral surface \(\mathbf{Y}\) unit. Then the slot is deburred. Further units are used to center the hole patterns, then drill them and finally tap the holes.

\section*{Example: Y axis [BSP_Y.NC]}
\begin{tabular}{|l|l|l|}
\hline PROGRAM HEAD & & \\
\hline \#MATERIAL & ALUMINUM & \\
\hline \#PIECE & Y AXIS & \\
\hline \#UNIT & METRIC & \\
\hline TURRET 1 & & \\
\hline T1 & ID"Roughing 80 G." & \\
\hline T2 & ID"NC center drill" & \\
\hline T3 & ID"Finishing 35 G." & \\
\hline T4 & ID"Drill 5.2mm" & \\
\hline T5 & ID"Thread outside" & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline T6 ID"Tapping M6" & \\
\hline T8 ID"Mill D16mm" & \\
\hline T10 ID"Mill D6mm" & \\
\hline T12 ID"Deburring_m" & \\
\hline BLANK & \\
\hline N 1 G20 X70 Z97 K1 & \\
\hline FINISHED PART & \\
\hline N 2 G0 X0 Z0 & \\
\hline N 3 G1 X30 BR-2 & \\
\hline N 4 G1 Z-20 & \\
\hline N 5 G25 H7 I1.5 K7 R1 W30 FP2 & Undercut DIN 76 \\
\hline N 6 G1 X56 BR-1 & \\
\hline N 7 G1 Z-60 & \\
\hline N 8 G1 X64 BR-1 & \\
\hline N 9 G1 Z-75 BR-1 & \\
\hline N 10 G1 X44 BR3 & \\
\hline N 11 G1 Z-95 BR-1 & \\
\hline N \(12 \mathrm{G1}\) XON \(13 \mathrm{G1}\) zo & \\
\hline SURFACE Y X56 C0 & Define YZ plane \\
\hline N 14 G308 ID"Surface" & \\
\hline N 15 G386 Z-55 Ki8 B30 X56 C0 & Single surface \\
\hline N 16 G308 ID"Slot 10 mm " P-2 & \\
\hline N 17 G381 Z-40 Y0 A90 K50 B10 & Linear slot on single surface \\
\hline N 18 G309 & \\
\hline N 19 G308 ID"Hole_1 M6" P-15 & \\
\hline N 20 G481 Q2 Z-30 Y15 K-30 J-15 & Linear pattern on single surface \\
\hline N 21 G380 B5.2 P15 W118 I6 J10 F1 V0 o7 & Drilling, tapping, centering \\
\hline N 22 G309 & \\
\hline N 23 G308 ID"Hole_2 M6" P-15 & \\
\hline N 24 G481 Q2 Z-50 Y15 K-50 J-15 & Linear pattern on single surface \\
\hline N 25 G380 B5.2 P15 W118 16 J10 F1 V0 07 & Drilling, tapping, centering \\
\hline N 26 G309 & \\
\hline N 27 G309 & \\
\hline MACHINING & \\
\hline N 28 UNIT ID"START" & [Program beginning] \\
\hline N 30 G26 S3500 & \\
\hline N 31 G126 S2000 & \\
\hline N 32 G59 Z256 & \\
\hline N 33 G140 D1 X400 Y0 Z500 & \\
\hline N 34 G14 Q0 D1 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline N 35 END_OF_UNIT & \\
\hline N 36 UNIT ID"G820_ICP" & [G820 Roughing in ICP] \\
\hline N 38 T1 & \\
\hline N 39 G96 S220 G95 F0.35 M3 & \\
\hline N 40 M8 & \\
\hline N 41 G0 X72 Z2 & \\
\hline N 42 G47 P2 & \\
\hline N 43 G820 NS3 NE3 P2 IO K0 H0 Q0 V3 D0 & \\
\hline N 44 G47 M9 & \\
\hline N 45 END_OF_UNIT & \\
\hline N 46 UNIT ID"G810_ICP" & [G810 Longitudinal roughing in ICP] \\
\hline N 48 T1 & \\
\hline N 49 G96 S220 G95 F0.35 M3 & \\
\hline N \(50 \mathrm{M8}\) & \\
\hline N 51 G0 X72 Z2 & \\
\hline N 52 G47 P2 & \\
\hline N 53 G810 NS4 NE9 P3 I0.5 K0.2 H0 Q0 VO D0 & \\
\hline N 54 G14 Q0 D1 & \\
\hline N 55 G47 M9 & \\
\hline N 56 END_OF_UNIT & \\
\hline N 57 UNIT ID"G890_ICP" & [G890 Contouring in ICP] \\
\hline N 59 T3 & \\
\hline N 60 G96 S260 G95 F0.18 M4 & \\
\hline N 61 M8 & \\
\hline N 62 G0 X72 Z2 & \\
\hline N 63 G47 P2 & \\
\hline N 64 G890 NS4 NE9 V1 Q0 H3 OO B0 & \\
\hline N 65 G14 Q0 D1 & \\
\hline N 66 G47 M9 & \\
\hline N 67 END_OF_UNIT & \\
\hline N 68 UNIT ID"G32_MAN" & [G32 Cylindrical thread, direct] \\
\hline N 70 T5 & \\
\hline N 71 G97 S800 M3 & \\
\hline N 72 M8 & \\
\hline N 73 G0 X30 Z5 & \\
\hline N 74 G47 P2 & \\
\hline N 75 G32 X30 Z-19 F1.5 BDO IC8 H0 V0 & \\
\hline N 76 G14 Q0 D1 & \\
\hline N 77 G47 M9 & \\
\hline N 78 END_OF_UNIT & \\
\hline
\end{tabular}
N 68 UNIT ID"G32_MAN"
[G32 Cylindrical thread, direct]
\begin{tabular}{|c|c|}
\hline N 79 UNIT ID"C_AXIS_ON" & [C axis ON] \\
\hline N 81 M14 & \\
\hline N 82 G110 C0 & \\
\hline N 83 END_OF_UNIT & \\
\hline N 84 UNIT ID"G841_Y_MANT" & [Single surface in Y axis, latrl.] \\
\hline N 86 T8 & \\
\hline N 87 G197 S1200 G195 F0.25 M104 & \\
\hline N 88 M8 & \\
\hline N 89 G19 & \\
\hline N 90 G110 C0 & \\
\hline N 91 G0 Y0 & \\
\hline N 92 G0 X74 Z10 & \\
\hline N 93 G147 K2 I2 & \\
\hline N 94 G841 ID"Surface" P5 & [Mill a single surface] \\
\hline N 95 G47 M9 & \\
\hline N 96 G14 Q0 D1 & \\
\hline N 97 G18 & \\
\hline N 98 END_OF_UNIT & \\
\hline N 99 UNIT ID"G845_TAS_Y_MANT" & [ICP pocket mill, lateral surf. Y] \\
\hline N 101 T10 & \\
\hline N 102 G197 S1200 G195 F0.18 M104 & \\
\hline N \(103 \mathrm{G19}\) & \\
\hline N 104 M8 & \\
\hline N \(105 \mathrm{G110}\) C0 & \\
\hline N 106 G0 Y0 & \\
\hline N 107 G0 X74 Z-40 & \\
\hline N 108 G147 12 K2 & \\
\hline N 109 G845 ID"Slot 10 mm " Q0 H0 & Mill a slot on single surface \\
\hline N 110 G47 M9 & \\
\hline N 111 G14 Q0 D1 & \\
\hline N 112 G18 & \\
\hline N 113 END_OF_UNIT & \\
\hline N 114 UNIT ID"G840_ENT_Y_MANT" & [G840 Deburring] \\
\hline N 116 T12 & \\
\hline N 117 G197 S800 G195 F0.12 M104 & \\
\hline N 118 G19 & \\
\hline N 119 M8 & \\
\hline N 120 G110 C0 & \\
\hline N 121 GO Yo & \\
\hline N 122 G0 X74 Z-40 & \\
\hline N 123 G147 12 K2 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline N 124 G840 ID"Slot 10mm" Q1 H0 P0.8 B0.15 & Deburr a slot on a single surface \\
\hline N 125 G47 M9 & \\
\hline N 126 G14 Q0 D1 & \\
\hline N 127 G18 & \\
\hline N 128 END_OF_UNIT & \\
\hline N 129 UNIT ID"G72_ICP_Y" & [G72 Boring, cntrsinkg ICP Y] \\
\hline N 131 T2 & \\
\hline N 132 G197 S1000 G195 F0.22 M104 & \\
\hline N 133 M8 & \\
\hline N 134 G147 K2 & \\
\hline N 135 G72 ID"Hole_1 M6" D0 & Center the holes of the first pattern \\
\hline N 136 G47 M9 & \\
\hline N 137 END_OF_UNIT & \\
\hline N 138 UNIT ID"G72_ICP_Y" & [G72 Boring, cntrsinkg ICP Y] \\
\hline N 140 T2 & \\
\hline N 141 G197 S1000 G195 F0.22 M104 & \\
\hline N 142 M8 & \\
\hline N 143 G147 K2 & \\
\hline N 144 G72 ID"Hole_2 M6" D0 & Center the holes of the second pattern \\
\hline N 145 G47 M9 & \\
\hline N 146 G14 Q0 D1 & \\
\hline N 147 END_OF_UNIT & \\
\hline N 148 UNIT ID"G74_ICP_Y" & [G74 Drilling in ICP Y] \\
\hline N 150 T4 & \\
\hline N 151 G197 S1200 G195 F0.24 M103 & \\
\hline N 152 M8 & \\
\hline N \(153 \mathrm{G147}\) K2 & \\
\hline N 154 G74 ID"Hole_1 M6" D0 V2 & Holes of the first pattern \\
\hline N 155 G47 M9 & \\
\hline N 156 END_OF_UNIT & \\
\hline N 157 UNIT ID"G74_ICP_Y" & [G74 Drilling in ICP Y] \\
\hline N 159 T4 & \\
\hline N 160 G197 S1200 G195 F0.24 M103 & \\
\hline N 161 M8 & \\
\hline N 162 G147 K2 & \\
\hline N 163 G74 ID"Hole_2 M6" D0 V2 & Holes of the second pattern \\
\hline N 164 G47 M9 & \\
\hline N 165 G14 Q0 D1 & \\
\hline N 166 END_OF_UNIT & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline N 167 UNIT ID"G73_ICP_Y" & [G73 Tapping in ICP Y] \\
\hline N 169 T6 & \\
\hline N 170 G197 S800 M103 & \\
\hline N 171 M8 & Tapping, first pattern \\
\hline N 172 G147 K2 & \\
\hline N 173 G73 ID"Hole_1 M6" F1 & \\
\hline N 174 G47 M9 & \\
\hline N 175 END_OF_UNIT & \\
\hline N 176 UNIT ID"G73_ICP_Y" Tapping in ICP Y] \\
\hline N 178 T6 & \\
\hline N 179 G197 S800 M103 & Tapping, second pattern \\
\hline N 180 M8 & \\
\hline N 181 G147 K2 & \\
\hline N 182 G73 ID"Hole_2 M6" F1 & \\
\hline N 183 G47 M9 & [C axis OFF] \\
\hline N 184 G14 Q0 D1 & \\
\hline N 185 END_OF_UNIT & \\
\hline N 186 UNIT ID"C_AXIS_OFF" & \\
\hline N 188 M15 & \\
\hline N 189 END_OF_UNIT & \\
\hline N 190 UNIT ID"END" & \\
\hline N 192 M30 & \\
\hline N 193 END_OF_UNIT & \\
\hline END & \\
\hline
\end{tabular}

TURN PLUS
(Option 63)

\subsection*{9.1 The function TURN PLUS}

To create programs with TURN PLUS, you program the blank and finished part with the aid of interactive graphics. The working plan is then generated automatically. As a result you get a commented and structured NC program.
With TURN PLUS you can create NC programs for the following applications:
- Turning
- Milling and drilling with the C axis
- Milling and drilling with the \(Y\) axis
- Full-surface machining

\section*{TURN PLUS concept}

The workpiece description is the basis for working plan generation. The strategy for generating the working plan is specified in the

\section*{Machining sequence.}

TURN PLUS generates the working plan, which takes technology attributes such as oversizes, tolerances, etc. into account.
On the basis of the contour follow-up, TURN PLUS optimizes the paths for approach and avoids air cuts or collisions between workpiece and cutting edge.
For tool selection, TURN PLUS uses the tools from the NC program or from the current turret assignment/magazine list, depending on the machine parameter settings. If there is no suitable tool in the turret assignment/magazine list, TURN PLUS looks for a suitable tool in the tool database and selects it. When programming the Tool selection TS parameter, you can select the tools manually. The technology database provides the cutting data to TURN PLUS.

\section*{Machining parameters}

The Machining parameters define details of machining. This allows you to adapt TURN PLUS to your individual needs.
When clamping the workpiece, TURN PLUS can determine the cutting limits and the datum shift for the NC program, depending on the machine parameter settings.
(i)

Before generating the working plan, please note: You define the default values for machining parameters as well as general settings in the machine parameters.

Further information: User's Manual

With the Machining parameters menu item, it is possible to set the most important parameters during the programming process. The control will apply these settings to the machine parameters.
Here, you can program settings such as
- Type of tool access
- Contour groups
- Structure program
- Set-up clearance
- Oversize

\subsection*{9.2 Automatic working plan generation (AWG) submode}

The AWG submode generates the work blocks of the working plan in the sequence defined in Machining sequence. You define the machining details in the Machining parameters input form. The TURN PLUS function automatically determines all required elements of a work block. Use the machining sequence editor to specify the machining sequence.
A work block has the following content:
- Tool call
- Cutting values (technology data)
- Approach (may be omitted)
- Machining cycle
- Tool retraction (may be omitted)
- Moving to tool change point (may be omitted)

Refer to your machine manual.
The machine tool builder can provide you with a machinedependent start unit containing the definitions of various transfer parameters that automatically take into account a bar feeder, for example.

You can change or supplement the generated work blocks subsequently.
TURN PLUS simulates machining in the AWG control graphic. You can set the sequence and representation of the control graphic by soft key.
Further information: User's Manual

TURN PLUS outputs warnings during the contour analysis if certain areas cannot be machined at all or not completely. Check the respective sections after program creation and adapt them to your needs.

In the convertICP (no. 602023) machine parameter, you define whether the control loads the programmed or calculated values into the NC program.

\section*{Information for using AWG}

Please note when using automatic working plan generation:
- The AWG submode divides each circle at the quadrant boundaries. As a result, the program generated by the AWG may contain more contour elements than the original program.
- AWG automatically closes open contours.
- AWG always creates the contours in counterclockwise (CCW) direction.
- AWG always shifts the starting point of the contour to the lower left corner.

\section*{Generating a working plan}

After the working plan generation, consider the following: If no chucking equipment has been defined in the program as yet, TURN PLUS defines the chucking equipment for a specific type of clamping/clamping length and adjusts the cutting limitation accordingly. Adapt the values in the finished NC program.

Generating a working plan with TURN PLUS:
- Press the TURN PLUS soft key
> TURN PLUS opens the most recently selected machining sequence..
- To activate AWG submode, press the AWG soft key
\(>\) TURN PLUS displays the contours of the workpiece blank and the finished part in the graphics window.
- Press the Simulation soft key
\(>\) The AWG control graphic and the program generation are started.
- Press the Back soft key to return to the TURN PLUS menu
- Press the Back soft key to switch to smart.Turn mode of operation
- Apply the name of the current NC program without any changes
- Alternatively, enter the name under which the NC program should be saved
- Press the Save soft key to overwrite the current NC program

\section*{Machining sequence - fundamentals}

In the Machining sequence you define the sequence in which the machining steps will be carried out.
TURN PLUS analyzes the contour in the sequence defined in Machining sequence. In this process the control determines the areas to be machined and the tool parameters. The AWG submode analyzes the contour using the Machining parameters.
TURN PLUS distinguishes between:
- Main mach. operation (e.g., undercutting)
- Anc. mach. operation (e.g., undercut type H, K, or U)
- Machining location (e.g., external or internal)
- Tool selection (automatic or manual)

Anc. mach. operation and Machining location allow you to refine the machining specification. If you do not define the Anc. mach. operation or the Machining location, the AWG generates machining blocks for all machining submodes and machining locations.
The following factors additionally influence the working plan generation:
- Geometry of the contour
- Attributes of the contour
- Tool availability
- Machining parameters

If you only define the Main mach. operation in the Machining sequence, all machining submodes it comprises are executed in a specific sequence. However, you can also program the machining submodes and machining locations individually in any desired sequence in the Machining sequence. In this case, you should define the associated main machining operation again after having defined the machining submodes. This way, you can ensure that all machining submodes and locations will be taken into account.

The AWG submode does not generate the work blocks if any required preparatory step is missing, or if the appropriate tool is not available, etc. TURN PLUS skips machining operations and machining sequences that do not make sense in the machining process.

\section*{NOTICE}

\section*{Danger of collision!}

In AWG submode with drilling and milling (e.g. Main mach. operation 11: Milling) the control does not consider the current rotational position-instead, the Finished part contour is used as reference. Danger of collision during pre-positioning and machining!
- Program turning operations (e.g. Main mach. operation 3:

Roughing) before the drilling and milling operations

\section*{Organizing machining sequences}
- TURN PLUS always uses the current machining sequence. The current machining sequence can be edited or overwritten by loading another Machining sequence.
- When you open TURN PLUS, the most recently used Machining sequence is automatically displayed.

\section*{Switching between views}

The Machining sequence and the NC program can be displayed in a horizontal or vertical window layout. Press the SWITCH VIEWS soft key to switch between the two views.
Press the CHANGE WINDOW soft key to move the cursor between the Program and the Machining Sequence window.

\section*{Editing and managing the Machining sequence}

TURN PLUS uses the currently active machining sequence. You can change the Machining sequence and adapt it to your range of parts.

\section*{Opening the Machining sequence}

To open any desired Machining sequence, proceed as follows:

\section*{TURN PLUS}
- Select TURN PLUS

㟃
- Select the Machining sequence

- Select Open ...
> TURN PLUS opens the selection list with the machining sequence files.
\(\downarrow\)
- Select the desired file

Saving the Machining sequence
To save any desired Machining sequence, proceed as follows:

- Select TURN PLUS
- Select the Machining sequence
- Select Save as...
> TURN PLUS opens the selection list with the machining sequence files.
- Enter the file name
- Alternative: Overwrite an existing file

\section*{Creating a default machining sequence}

To create a default machining sequence, proceed as follows:

\section*{TURN PLUS}
- Select TURN PLUS

- Select the Machining sequence
- Select Save HEIDENHAIN standard as...
> TURN PLUS opens the selection list with the machining sequence files.
- Enter a file name under which you wish to store the HEIDENHAIN default machining sequence

\section*{Editing a Machining sequence}

To edit a Machining sequence, proceed as follows:

- Position the cursor

\section*{TURN PLUS}
- Select TURN PLUS

- Select Line
- Select a function
- Inserting a new machining operation
- Moving a machining operation
- Editing a machining operation
- Deleting a machining operation

Inserting a new machining operation:

- Select Insert above the line to insert a new machining operation before the cursor position
- Select To insert below the line, press Insert to insert a new machining operation after the cursor position

Moving a machining operation:

Editing a machining operation:

Deleting a machining operation:

- Select Delete line

\section*{Overview of machining sequences}

The following table lists the possible combinations of Main mach. operation - Anc. mach. operation - Machining location and explains the working method of the AWG.

Machining sequence Predrilling
\begin{tabular}{|c|c|c|c|}
\hline Main mach. operation & Anc. mach. operation & Machining location & Execution \\
\hline \multirow[t]{3}{*}{Predrilling} & & & Contour analysis: Determining the drilling steps \\
\hline & & & Machining parameters: Centric predrilling (no.
602100) \\
\hline & All & - & Predrilling \\
\hline \multicolumn{4}{|l|}{Machining sequence for Roughing} \\
\hline Main mach. operation & Anc. mach. operation & Machining location & Execution \\
\hline \multirow[t]{13}{*}{Roughing} & & & Contour analysis: Dividing the contour into areas for longitudinal/transverse external machining and longitudinal/transverse internal machining based on the transverse/longitudinal ratio \\
\hline & & & Sequence: First external, then internal machining \\
\hline & & & Machining parameters: Roughing (no
602200) \\
\hline & All & - & Transverse machining, Longitudinal machining Extnl. and Internal \\
\hline & Longitudinal machining & - & Longitudinal machining - Extnl. and Internal \\
\hline & Longitudinal machining & Extnl. & Longitudinal machining - Extnl. \\
\hline & Longitudinal machining & Internal & Longitudinal machining - Internal \\
\hline & Transverse machining & - & Transverse machining - Extnl. and Internal \\
\hline & Transverse machining & Extnl. & Transverse machining - Extnl. \\
\hline & Transverse machining & Internal & Transverse machining - Internal \\
\hline & Contour parallel & - & Contour-parallel machining - Extnl. and Internal \\
\hline & Contour parallel & Extnl. & Contour-parallel machining - Extnl. \\
\hline & Contour parallel & Internal & Contour-parallel machining - Internal \\
\hline
\end{tabular}

Machining sequence for Hollowing

Machining sequence Finishing
\begin{tabular}{|c|c|c|c|}
\hline Main mach. operation & Anc. mach. operation & Machining location & Execution \\
\hline \multirow[t]{10}{*}{Finishing} & & & \begin{tabular}{l}
Contour analysis: Dividing the contour into areas for external and internal machining Sequence: First external, then internal machining \\
Machining parameter: finishing (no 602300)
\end{tabular} \\
\hline & Contour parallel & - & External/internal machining \\
\hline & Contour parallel & Extnl. & External machining \\
\hline & Contour parallel & Internal & Internal machining \\
\hline & Neutral tool & - & Extnl. and Internal with a neutral tool or button tool \\
\hline & Neutral tool & Extnl. & Extnl. with a neutral tool or button tool \\
\hline & Neutral tool & Internal & Internal with a neutral tool or button tool \\
\hline & Neutral tool & External/front & Axial machining - Extnl. with a neutral tool or button tool \\
\hline & Neutral tool & External/rear & Extnl./rear with a neutral tool or button tool \\
\hline & Neutral tool & Internal/front & Axial machining - Internal with a neutral tool or button tool \\
\hline
\end{tabular}

Machining sequence Contour recessing
\begin{tabular}{|c|c|c|c|}
\hline Main mach. operation & Anc. mach. operation & Machining location & Execution \\
\hline \multirow[t]{6}{*}{Contour recessing} & & & \begin{tabular}{l}
Contour analysis: Recess areas (recesses) are determined and machined based on the inward copying angle EKW \\
Sequence: First outside, then inside machining Machining parameter: Global parameter for finished parts (no. 601900)
\end{tabular} \\
\hline & All & - & Radial/axial machining - external and internal Shaft machining: external axial machining is executed on the front and rear \\
\hline & Longitudinal machining & Extnl. & Radial machining - Extnl. \\
\hline & Longitudinal machining & Internal & Radial machining - Internal \\
\hline & Transverse machining & Outside/front & Axial machining - Extnl. \\
\hline & Transverse machining & Inside/front & Axial machining - Internal \\
\hline
\end{tabular}
(i) Recessing and Contour recessing are used alternatively.

Machining sequence Recessing
\begin{tabular}{llll}
\hline \begin{tabular}{l}
Main mach. \\
operation
\end{tabular} & \begin{tabular}{l}
Anc. mach. opera- \\
tion
\end{tabular} & Machining location & Execution \\
\hline Recessing & & \begin{tabular}{l}
Contour analysis: \\
Without previous roughing - the complete \\
contour, including recess areas (undefined \\
recesses), is machined \\
With previous roughing - Recess areas \\
(undefined recesses) are determined and \\
machined based on the inward copying \\
angle EKW
\end{tabular} \\
& & \begin{tabular}{l}
Sequence: First external, then internal machin- \\
ing \\
Machining parameter: Global parameter for \\
finished parts (no. 601900)
\end{tabular} \\
\hline & All & Radial/axial machining - Extnl. and Internal
\end{tabular}

\footnotetext{
(i)

Recessing and Contour recessing are used alternatively.
}

\section*{Machining sequence Undercutting}
\begin{tabular}{|c|c|c|c|}
\hline Main mach. operation & Anc. mach. operation & Machining location & Execution \\
\hline \multirow[t]{11}{*}{Undercutting} & & & Contour analysis - determining the Undercut form elements: \\
\hline & & & - Type \(\mathbf{H}\) - machining using single paths of traverse; copying tool (type 22x) \\
\hline & & & - Type K - machining using single paths of traverse; copying tool (type 22x) \\
\hline & & & - Form U (G25 H4) - machining using single paths of traverse; recessing tool (type 15x) \\
\hline & & & Sequence: First external, then internal machining; first radial, then axial machining \\
\hline & All & - & All recess types - Extnl. and Internal \\
\hline & All & Extnl. & All recess types - Extnl. \\
\hline & All & Internal & All recess types - Internal \\
\hline & Type H, Type K, Form U (G25 H4) & - & Radial/axial machining - Extnl. and Internal \\
\hline & Type H, Type K, Form U (G25 H4) & Extnl. & Machining - Extnl. \\
\hline & Type H, Type K, Form U (G25 H4) & Internal & Machining - Internal \\
\hline
\end{tabular}

\section*{Machining sequence Recessing}
\begin{tabular}{|c|c|c|c|}
\hline Main mach. operation & Anc. mach. operation & Machining location & Execution \\
\hline \multirow[t]{7}{*}{Recessing} & & & \begin{tabular}{l}
Contour analysis: Determining the Recess form elements: \\
- Type S (circlip - recess type S) \\
- Type D (sealing ring - recess type D) \\
- Type A (general recess) \\
- Type FK (relief turn F) - FK is machined using only Recessing with inward copying angle EKW \\
Sequence: First outside, then inside machining Machining parameter (for type FK): Global parameter for finished parts (no. 601900)
\end{tabular} \\
\hline & All & - & All recess types; radial/axial machining; Extnl. and Internal \\
\hline & \begin{tabular}{l}
Type S, Type D, \\
Type A, Type FK
\end{tabular} & - & Radial/axial machining - Extnl. and Internal \\
\hline & Type S, Type D, Type A, Type FK & Extnl. & Radial machining - Extnl. \\
\hline & \begin{tabular}{l}
Type S, Type D, \\
Type A, Type FK
\end{tabular} & Internal & Radial machining - Internal \\
\hline & \begin{tabular}{l}
Type S, Type D, \\
Type A, Type FK
\end{tabular} & Outside/front & Axial machining - Extnl. \\
\hline & \begin{tabular}{l}
Type S, Type D, \\
Type A, Type FK
\end{tabular} & Inside/front & Axial machining - Internal \\
\hline
\end{tabular}

\section*{Machining sequence Drilling}
\begin{tabular}{|c|c|c|c|}
\hline Main mach. operation & Anc. mach. operation & Machining location & Execution \\
\hline \multirow[t]{13}{*}{Drilling} & & & \begin{tabular}{l}
Contour analysis: Determining the Hole form elements \\
Sequence - drilling operations/drilling combinations: \\
- Centering / countersinking \\
- Drilling \\
- Countersinking / drilling and countersinking \\
- Reaming / drilling with reaming \\
- Tapping / drilling with thread \\
Sequence - machining location: \\
- Centric \\
- Front face (also machines Y front if needed) \\
- Lateral surface (also machines Y surface if needed) \\
- then the elements are machined according to the sequence of geometrical definition
\end{tabular} \\
\hline & All & - & All drilling/boring operations at all machining locations \\
\hline & All & Centric & Centric machining of all drilling/boring operations \\
\hline & All & Front & All drilling/boring operations on the front face \\
\hline & All & Lateral & All drilling/boring operations on the lateral surface \\
\hline & All & Front only C & Drilling/boring operations of the \(C\) axis on the front face \\
\hline & All & Cylinder only C & Drilling/boring operations of the C axis on the lateral surface \\
\hline & All & Backward only C & Drilling/boring operations of the C axis on the rear face \\
\hline & All & Front only Y & Drilling/boring operations of the \(Y\) axis on the front face \\
\hline & All & Cylinder only Y & Drilling/boring operations of the \(Y\) axis on the lateral surface \\
\hline & All & Backward only Y & Drilling/boring operations of the \(Y\) axis on the rear face \\
\hline & Centering, Drilling, Countersinking, Reaming, Thread & - & Machining at all machining locations \\
\hline & Centering, Drilling, Countersinking, Reaming, Thread & Centric & Centric machining on the front face \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Main mach. operation & Anc. mach. operation & Machining location & Execution \\
\hline & Centering, Drilling, Countersinking, Reaming, Thread & Front & Machining on the face \\
\hline & Centering, Drilling, Countersinking, Reaming, Thread & Lateral & Machining on the lateral surface \\
\hline & Centering, Drilling, Countersinking, Reaming, Thread & Front only C & Machining operations of the \(C\) axis on the lateral surface \\
\hline & Centering, Drilling, Countersinking, Reaming, Thread & Cylinder only C & Machining operations of the \(C\) axis on the lateral surface \\
\hline & Centering, Drilling, Countersinking, Reaming, Thread & Backward only C & Machining operations of the \(C\) axis on the rear face \\
\hline & Centering, Drilling, Countersinking, Reaming, Thread & Front only Y & Machining operations of the \(Y\) axis on the lateral surface \\
\hline & Centering, Drilling, Countersinking, Reaming, Thread & Cylinder only Y & Machining operations of the \(Y\) axis on the lateral surface \\
\hline & Centering, Drilling, Countersinking, Reaming, Thread & Backward only Y & Machining operations of the \(Y\) axis on the rear face \\
\hline
\end{tabular}

\section*{Machining sequence Thread cutting}
\begin{tabular}{llll}
\begin{tabular}{l}
Main mach. \\
operation
\end{tabular} & \begin{tabular}{l}
Anc. mach. opera- \\
tion
\end{tabular} & Machining location & Execution \\
\hline Thread cutting & All & \begin{tabular}{l}
Contour analysis: Determining the Thread \\
form elements \\
Sequence: First external, then internal machin- \\
ing; the elements are then machined accord- \\
ing to the sequence of geometrical definition
\end{tabular} \\
\hline & All & \begin{tabular}{l}
External and internal machining of cylindric \\
(longitudinal), tapered, and transverse threads
\end{tabular} \\
\hline All & Extnl. & \begin{tabular}{l}
External machining of cylindric (longitudinal), \\
tapered, and transverse threads
\end{tabular} \\
\hline Cylinder & \begin{tabular}{l}
Internal machining of cylindric (longitudinal), \\
tapered, and transverse threads
\end{tabular} \\
\hline Cylinder & \begin{tabular}{l}
Machining of cylindric external and internal \\
threads
\end{tabular} \\
\hline Transverse & Extnl. & \begin{tabular}{l}
Machining of cylindric external threads
\end{tabular} \\
\hline Transverse & Internal & \begin{tabular}{l}
Machining of cylindric internal threads
\end{tabular} \\
\hline Transverse & Internal & \begin{tabular}{l}
External and internal machining of transverse \\
threads
\end{tabular} \\
\hline Taper & \begin{tabular}{l}
External machining of transverse threads
\end{tabular} \\
\hline Taper & Internal machining of transverse threads
\end{tabular}

\section*{Machining sequence for milling}
\begin{tabular}{|c|c|c|c|}
\hline Main mach. operation & Anc. mach. operation & Machining location & Execution \\
\hline \multirow[t]{17}{*}{milling} & & & \begin{tabular}{l}
Contour analysis: Determining the milling contours \\
Sequence - milling operation: \\
- Linear and circular slots \\
- Open contours \\
- Closed contours (pockets), single surfaces and centric polygons \\
Sequence - machining location: \\
- Front face (also machines Y front if needed) \\
- Lateral surface (also machines \(Y\) surface if needed) \\
- then the elements are machined according to the sequence of geometrical definition
\end{tabular} \\
\hline & All & - & All milling operations at all machining locations \\
\hline & All & Front & All milling operations on the front face \\
\hline & All & Lateral & All milling operations on the lateral surface \\
\hline & All & Front only C & All milling operations of the \(C\) axis on the front face \\
\hline & All & Cylinder only C & All milling operations of the C axis on the lateral surface \\
\hline & All & Backward only C & All milling operations of the \(C\) axis on the rear face \\
\hline & All & Front only Y & All milling operations of the \(Y\) axis on the front face \\
\hline & All & Cylinder only Y & All milling operations of the \(Y\) axis on the lateral surface \\
\hline & All & Backward only Y & All milling operations of the \(Y\) axis on the rear face \\
\hline & Area, Contour, Slot milling, Pocket & - & Milling operations at all machining locations \\
\hline & Area, Contour, Slot milling, Pocket & Front & Milling operations on the front face \\
\hline & Area, Contour, Slot milling, Pocket & Lateral & Milling operations on the lateral surface \\
\hline & Area, Contour, Slot milling, Pocket & Front only C & Milling operations of the C axis on the front face \\
\hline & Area, Contour, Slot milling, Pocket & Cylinder only C & Milling operations of the C axis on the lateral surface \\
\hline & Area, Contour, Slot milling, Pocket & Backward only C & Milling operations of the \(C\) axis on the rear face \\
\hline & Area, Contour, Slot milling, Pocket & Front only Y & Milling operations of the \(Y\) axis on the front face \\
\hline
\end{tabular}
\begin{tabular}{llll}
\begin{tabular}{l}
Main mach. \\
operation
\end{tabular} & \begin{tabular}{l}
Anc. mach. opera- \\
tion
\end{tabular} & Machining location & Execution \\
\hline & \begin{tabular}{l}
Area, Contour, Slot \\
milling, Pocket
\end{tabular} & Cylinder only Y & \begin{tabular}{l}
Milling operations of the Y axis on the lateral \\
surface
\end{tabular} \\
\hline & \begin{tabular}{l}
Area, Contour, Slot \\
milling, Pocket
\end{tabular} & Backward only Y & \begin{tabular}{l}
Milling operations of the Y axis on the rear \\
face
\end{tabular} \\
\hline
\end{tabular}

Machining sequence Cut-off
\begin{tabular}{llll}
\hline \begin{tabular}{l}
Main mach. \\
operation
\end{tabular} & \begin{tabular}{l}
Anc. mach. opera- \\
tion
\end{tabular} & Machining location & Execution \\
\hline Cut-off & All & - & The workpiece is cut off \\
\hline & \begin{tabular}{l}
Full-surface \\
machining
\end{tabular} & - & The workpiece is cut off and rechucked
\end{tabular}

Machining sequence for Rechucking
\begin{tabular}{llll}
\hline \begin{tabular}{l}
Main mach. \\
operation
\end{tabular} & \begin{tabular}{l}
Anc. mach. opera- \\
tion
\end{tabular} & Machining location & Execution \\
\hline Rechucking & \begin{tabular}{l}
Full-surface \\
machining
\end{tabular} & - & The workpiece is rechucked. \\
\hline
\end{tabular}

Machining sequence for Special machining tasks
\begin{tabular}{llll}
\hline \begin{tabular}{l}
Main mach. \\
operation
\end{tabular} & \begin{tabular}{l}
Anc. mach. opera- \\
tion
\end{tabular} & Machining location & Execution \\
\hline \begin{tabular}{l}
Special machining \\
tasks
\end{tabular} & All & - & The defined subprogram is run. \\
\multicolumn{3}{l}{\begin{tabular}{l}
Machining sequence for Deburring
\end{tabular}} & \\
\hline
\end{tabular}
\begin{tabular}{lll}
\begin{tabular}{l}
Main mach. \\
operation
\end{tabular} & \begin{tabular}{l}
Anc. mach. opera- \\
tion
\end{tabular} & Machining location
\end{tabular} Execution \begin{tabular}{l}
Deburring \\
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Main mach. operation & Anc. mach. operation & Machining location & Execution \\
\hline & All & Cylinder only C & Deburring of all milling operations of the C axis on the lateral surface \\
\hline & All & Backward only C & Deburring of all milling operations of the C axis on the rear face \\
\hline & All & Front only Y & Deburring of all milling operations of the \(Y\) axis on the front face \\
\hline & All & Cylinder only Y & Deburring of all milling operations of the Y axis on the lateral surface \\
\hline & All & Backward only Y & Deburring of all milling operations of the \(Y\) axis on the rear face \\
\hline & Contour, Slot milling, Pocket (*) & - & Deburring of the selected element at all machining locations \\
\hline & Contour, Slot milling, Pocket (*) & Front & Deburring of the selected element on the front face \\
\hline & Contour, Slot milling, Pocket (*) & Lateral & Deburring of the selected element on the lateral surface \\
\hline & Contour, Slot milling, Pocket (& Front only C & Deburring of the selected element with the C axis on the front face \\
\hline & Contour, Slot milling, Pocket (*) & Cylinder only C & Deburring of the selected element with the C axis on the lateral surface \\
\hline & Contour, Slot milling, Pocket (*) & Backward only C & Deburring of the selected element with the C axis on the rear face \\
\hline & Contour, Slot milling, Pocket (& Front only Y & Deburring of the selected element with the \(Y\) axis on the front face \\
\hline & Contour, Slot milling, Pocket (*) & Cylinder only Y & Deburring of the selected element with the \(Y\) axis on the lateral surface \\
\hline & Contour, Slot milling, Pocket (*) & Backward only Y & Deburring of the selected element with the \(Y\) axis on the rear face \\
\hline
\end{tabular}

\footnotetext{
*: Define the type of contour
}

\section*{Machining sequence Engraving}
\begin{tabular}{lll}
\hline \begin{tabular}{l}
Main mach. \\
operation
\end{tabular} & \begin{tabular}{l}
Anc. mach. opera- \\
tion
\end{tabular} & Machining location
\end{tabular} \begin{tabular}{l}
Execution \\
\hline Engraving \\
\\
\end{tabular}

\section*{Machining sequence Milling, finishing}
\begin{tabular}{|c|c|c|c|}
\hline Main mach. operation & Anc. mach. operation & Machining location & Execution \\
\hline \multirow[t]{17}{*}{Milling, finishing} & & & \begin{tabular}{l}
Contour analysis: Determining the milling contours \\
Sequence - milling operation: \\
- Linear and circular slots \\
- Open contours \\
- Closed contours (pockets), single surfaces and centric polygons \\
Sequence - machining location: \\
- Front face (also machines \(Y\) front if needed) \\
- Lateral surface (also machines \(Y\) surface if needed) \\
- then the elements are machined according to the sequence of geometrical definition
\end{tabular} \\
\hline & All & - & Finishing of all elements at all machining locations \\
\hline & All & Front & Finishing of all elements on the front face \\
\hline & All & Lateral & Finishing of all elements on the lateral surface \\
\hline & All & Front only C & Finishing of all elements with the C axis on the front face \\
\hline & All & Cylinder only C & Finishing of all elements with the C axis on the lateral surface \\
\hline & All & Backward only C & Finishing of all elements with the C axis on the rear face \\
\hline & All & Front only Y & Finishing of all elements with the Y axis on the front face \\
\hline & All & Cylinder only Y & Finishing of all elements with the \(Y\) axis on the lateral surface \\
\hline & All & Backward only Y & Finishing of all elements with the \(Y\) axis on the rear face \\
\hline & Contour, Slot milling, Pocket (*) & - & Finishing of the selected element at all machining locations \\
\hline & Contour, Slot milling, Pocket (*) & Front & Finishing of the selected element on the front face \\
\hline & Contour, Slot milling, Pocket (*) & Lateral & Finishing of the selected element on the lateral surface \\
\hline & Contour, Slot milling, Pocket (*) & Front only C & Finishing of the selected element with the C axis on the front face \\
\hline & Contour, Slot milling, Pocket (*) & Cylinder only C & Finishing of the selected element with the C axis on the lateral surface \\
\hline & Contour, Slot milling, Pocket (*) & Backward only C & Finishing of the selected element with the C axis on the rear face \\
\hline & Contour, Slot milling, Pocket (*) & Front only Y & Finishing of the selected element with the \(Y\) axis on the front face \\
\hline
\end{tabular}
\begin{tabular}{llll}
\begin{tabular}{l}
Main mach. \\
operation
\end{tabular} & \begin{tabular}{l}
Anc. mach. opera- \\
tion
\end{tabular} & Machining location & Execution \\
\hline & \begin{tabular}{lll}
Contour, Slot \\
milling, Pocket \((*)\)
\end{tabular} & Cylinder only Y & \begin{tabular}{l}
Finishing of the selected element with the \(Y\) \\
axis on the lateral surface
\end{tabular} \\
\hline & \begin{tabular}{l}
Contour, Slot \\
milling, Pocket \((*)\)
\end{tabular} & Backward only Y & \begin{tabular}{l}
Finishing of the selected element with the \(Y\) \\
axis on the rear face
\end{tabular} \\
\hline
\end{tabular}
*: Define the milling operation

\subsection*{9.3 AWG control graphic}

When you create a program in AWG submode, the programmed workpiece blank and finished part are displayed in the simulation window. In addition, all machining steps are simulated successively. The workpiece blank contour will be updated during machining.

\section*{Setting the AWG control graphic}

To use the AWG control graphic, proceed as follows:

- Press the AWG soft key
\(>\) The control starts the AWG control graphic.
- Start the simulation of the machining steps
\(>\) The control displays any dialogs that provide information about machining and tools.

The control displays the soft-key icon with a contour outlined in red to identify the AWG control graphic.
To set the display of the tool paths and the simulation mode, you proceed in the same way as in Simulation submode.
Further information: User's Manual

\section*{Closing the AWG control graphic}

The control generates the NC program during simulation. After you have simulated the machining process, you can close the graphics window.
- Press the Back soft key
> The control returns to the TURN PLUS function.
- Press the Back soft key

Back
> The control opens the Save as dialog box.
In the File name dialog box, the control displays the name of the open NC program. If you do not enter another file name, the open NC program will be overwritten. Alternatively, you can save the machining operation to another program.

\begin{tabular}{c|l}
Back & \begin{tabular}{l}
\(>\) Press the Back soft key \\
\(>\)
\end{tabular} \\
\cline { 1 - 1 } Back & \begin{tabular}{l}
\(>\) The control returns to the TURN PLUS function. \\
\\
\end{tabular}\(\quad>\) Press the Back soft key \\
\(>\) & The control opens the Save as dialog box.
\end{tabular}

\subsection*{9.4 Machining information}

\section*{Tool selection and turret assignment list}

This function is also available on machines with a tool magazine. The control uses the magazine list instead of the turret list.

The tool selection depends on:
- Machining direction
- Contour to be machined
- Machining sequence
- Setting of the Type of tool access machining parameter
- Machine parameter settings

(i)

You can influence the parameter Type of tool access WD both with the machining parameters and with the machine parameter (no. 602001).

If the ideal tool is not available, TURN PLUS:
- First looks for a replacement tool,
- Then for an emergency tool.

If necessary, TURN PLUS adapts the machining cycle to the requirements of the replacement or emergency tool. If more than one tool is suitable for a machining operation, TURN PLUS uses the optimal tool. If TURN PLUS cannot find a suitable tool, select the tool manually.
The mount type distinguishes between different tool holders.
Further information: User's Manual
TURN PLUS checks whether the mount type in the tool holder description and the mount type in the turret pocket description are the same.
(i)

Depending on machine parameter defaultG59 (no. 602022), TURN PLUS automatically calculates the required datum shift for the workpiece and activates it with G59.
Further information: User's Manual
To calculate the datum shift, TURN PLUS takes the following values into account:
- Length Z (workpiece blank description)
- Ov.size K (description of workpiece blank)
- Edge of chuck Z (description of chucking equipment and machining parameters)
- Chuck jaw reference B (description of chucking equipment and machining parameters)

In AWG submode, multipoint tools and tool holders for manual tool change are used as programmed under the MANUAL TOOL program section code.

\section*{Manual tool selection}

TURN PLUS selects the tools depending on the machining
parameters Type of tool access WD and Tool selection TS. If
TURN PLUS cannot find a suitable tool in the specified lists, you need to select the tools manually.
For machines with a Multifix tool holder, the control uses the tools selected under MANUAL TOOL as a tool pool.
TURN PLUS automatically predefines comparison parameters. With the soft keys, you can select the list in which you want to look for the tools.

Manual tool selection:
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { Tool } \\
& \text { int }
\end{aligned}
\] & > Press the Tool list soft key \\
\hline \[
\begin{aligned}
& \text { Turret } \\
& \text { list }
\end{aligned}
\] & - Alternative: Press the Turret list soft key \\
\hline & - Choose a tool from the list \\
\hline \[
\begin{aligned}
& \text { Load } \\
& \text { tool }
\end{aligned}
\] & Press the Load tool soft key to enter the tool in the tool selection \\
\hline Take over & Press the Apply soft key to conclude the tool selection \\
\hline
\end{tabular}
(i)

If you press the Tool graphics soft key, the control will show the tool control graphics instead of the help graphic. The tool control graphics show you the actual data of the selected tool, for example the tool orientation.

\section*{Hollowing (internal profiling)}

During Hollowing the control also machines recess areas whose thread angle is steeper than the inward copying angle EKW. For this turning operation, the control uses either a neutral tool or a suitable pair of tools.

\section*{Hollowing with two tools}

If this setting is used, AWG looks for two tools with different geometries in order to machine the contour from two directions. If this setting is used and the machine additionally provides a B axis, then the control uses one tool with two different B -axis angles.

\section*{Hollowing with a neutral tool}

AWG looks for a neutral tool. If a neutral tool is not available, then the control uses a button tool.

\section*{Operating information}
- Verify that Hollowing comes before recessing in the machining sequence in order to ensure that the corresponding areas have not been machined already.
- If the areas to be hollowed are too narrow, the control issues the message Recess for automatic internal profiling too narrow and opens the dialog for manual tool selection. The control displays the machining direction beneath the emergency tool. You have the following options:
- If you skip the dialog, then the control cancels the Hollowing operation and later machines the contour with a contourrecessing operation.
- If you confirm the dialogs, the contour will not be machined completely.
(i)

If needed, you can change the tool angle to ensure that the required plunging angle is achieved and the contour is machined completely.

\section*{Contour recessing, Recessing}

The Cutting radius must be smaller than the smallest inside radius of the recess contour, but >= 0.2 mm .
TURN PLUS determines the Cutting width from the recess contour:
- Recess contour includes paraxial floor elements with radii on both sides: \(\mathbf{S B}<=\mathbf{b}+2\) * \(\mathbf{r}\) (if radii differ: smallest radius).
- Recess contour includes paraxial floor elements without radii or with a radius on one side: \(\mathbf{S B}\) <= b
- The recess contour does not include paraxial floor elements: The Cutting width is determined from the recessing width divisor SBD (machining parameter no. 60240).
Abbreviations:
- SB: Cutting width
- b: Width of floor element
- r:Radius

\section*{Drillg}

Depending on the geometry of the bore hole, the AWG submode determines the appropriate tool. For centric bore holes, TURN PLUS uses stationary tools.

\section*{Cutting data and coolant}

To determine the cutting parameters, TURN PLUS uses the
- Materials (program head)
- Cutting materials (tool parameters)
- Machining operation (main operation in the machining sequence)
The values determined are multiplied by the tool-dependent compensation factors.
Further information: User's Manual
Note for roughing and finishing operations:
- Main feed rate for use of the primary cutting edge
- Auxiliary feed rate for use of the secondary cutting edge Note for milling operations:
- Main feed rate for machining in the milling plane
- Auxiliary feed rate for infeed movements

For threading, drilling and milling operations, the cutting speed is converted into rotational speed.
Coolant: Depending on the workpiece material, cutting material and machining operation specified in the technology database, you can define whether coolant is used or not. The AWG submode activates the appropriate coolant circuits for the respective tool. If you have specified that coolant is to be used, the AWG submode activates the coolant circuits for the respective machining block.
Speed limitation: TURN PLUS limits the rotational speed to the maximum speed specified in the TSF menu.

\section*{Inside contours}

TURN PLUS machines continuous inside contours up to the transition from the deepest point to a greater diameter.
The end position for drilling, roughing and finishing operations depends on:
- Cutting limit, inside
- Overhang length, inside ULI (machining parameter no. 602227)

Prerequisite: The usable tool length must be sufficient for the machining operation. If it is not, then this parameter defines the inside machining operation. The following examples explain the principle.
Limits for internal machining operations:
- Predrilling: SBI limits the drilling operation
- Roughing: SBI or SU limits the roughing operation
- SU = basic length of roughing cut (sbl) + overhang length, inside (ULI)
- To avoid residual rings during the machining process, TURN PLUS leaves an area of \(5^{\circ}\) in front of the roughing limit
- Finishing: sbl limits the finishing operation

\section*{Roughing limit in front of cutting limit}

Example 1: The roughing limit (SU) is located in front of the cutting limit, inside (SBI).
Abbreviations:
- SBI: Cutting limit, inside
- SU: Roughing limitation (SU = sbl + ULI)
- sbl: Basic length of roughing cut (deepest point of inside contour)
- ULI: Overhang length, inside (machining parameter no. 602227)
- nbl: Usable tool length (tool parameter)

\section*{Roughing limit behind cutting limit}

Example 2: The roughing limit (SU) is located behind the cutting limit, inside (SBI).
Abbreviations:
- SBI: Cutting limit, inside
- SU: Roughing limitation (SU = sbl + ULI)
- sbl: Basic length of roughing cut (deepest point of inside contour)
- ULI: Overhang length, inside (machining parameter no. 602227)
- nbl: Usable tool length (tool parameter)

\section*{Shaft machining}

For shafts, TURN PLUS supports rear-face machining of outside contours in addition to standard machining operations. This enables shafts to be completely machined using one setup. You can select the clamping type for the Shaft machining AWG (1: Shaft/chuck or 2: Shaft/face driver) in the \(\mathbf{V}\) input parameter in the chucking equipment dialog.
Precondition for shaft machining: The workpiece is clamped at spindle and tailstock.

\section*{NOTICE}

\section*{Danger of collision!}

In AWG submode and during machining on the front or rear face, the control does not automatically monitor for collisions, and automatic retraction of the tailstock is not supported. Danger of collision during machining!
- Test the NC program in Simulation submode, using the graphic displayed there.
- Edit the NC program if required

\section*{Separation point TR}

The Separation point TR subdivides the workpiece into a front and rear area. If no Separation point has been specified, TURN PLUS sets a separation point at the transition from the largest to a smaller diameter. Position the separation points at outside corners.
Tools for machining the
- Area on front side: Main machining direction - Z; and primarily left recessing or tapping tools, etc.
- Area on rear side: Main machining direction + Z; and primarily right recessing or tapping tools, etc.
Setting/changing the Separation point:
Further information: "Separation point G44", Page 306

\section*{Protection zones for drilling and milling operations}

TURN PLUS machines drilling and milling contours on transverse surfaces (front or rear face) if:
- (Horizontal) distance to transverse surface \(>5 \mathrm{~mm}\), or
- Distance between chucking equipment and drilling/milling contour is > SAR (SAR: See user parameter).
If jaws are used for clamping the shaft at the spindle side,
TURN PLUS accounts for the Cutting limit, outside \(\mathbf{O}\).

Machining information:
- Chucking the workpiece at the spindle: Ensure that the area, where the blank part is chucked, is premachined. Otherwise, the cutting limitation might adversely affect the machining strategies
- Machining of bars: TURN PLUS does not control the bar loader and does not move the tailstock and steady rest components. Workpiece adjustment between collet and dead center during machining operations is not supported.
- Transverse machining:
- Please note that the entries made for Machining sequence apply to the complete workpiece and thus also to the transverse machining of shaft ends
- In AWG submode, inside areas on the rear face will not be machined. If jaws are used for clamping the shaft at the spindle side, the rear face will not be machined
- Longitudinal machining: First the front area is machined, then the rear area
- Collision prevention - If machining operations are not performed without collisions, you can do the following:
- Add a retraction of the tailstock, a positioning of the steady rest, etc. to the program
- Add cutting limits to the program to avoid collisions
- Suppress automatic machining in AWG submode by assigning the do not machine attribute or by entering the machining location in the Machining sequence
- Define an oversize=0 for the workpiece blank. As a consequence, the front area is not machined (e.g. shafts cut to length and centered shafts).

\subsection*{9.5 Example}

On the basis of the production drawing, the working steps for defining the contour of the workpiece blank and the finished part, the setup procedures and automatic working plan generation are explained
- Workpiece blank: \(\varnothing 60 \times 80\)
- Material: Ck 45

\section*{Creating a program}

- Select the Prog menu item
- Select the New menu item
- Select the New DIN PLUS program Ctrl+N menu item
> The control opens the Save as dialog box.
- Enter a program name
- Press the Save soft key
\(>\) The control opens the Program head (short) dialog box.
- Select a material from the fixed-word list
- Press the OK soft key

\section*{Defining the workpiece blank}

- Select the ICP menu item

- Select the Workpiece blank menu item
\(>\) The control opens the ICP editor submode.
- Select the Bar menu item
> The ICP editor opens the Bar dialog box.
- Define the blank:
- X: Diameter \(=60 \mathrm{~mm}\)
- Z: Length of workpiece blank \(=80 \mathrm{~mm}\)
- K: O-size \(\mathbf{Z}=2 \mathrm{~mm}\)
- Press the Save soft key
> The ICP editor displays the workpiece blank.
- Press the Back soft key

\section*{Defining the basic contour}

弐朔䭾

Save

Save
－Select the Line menu item
－Enter the coordinates：
－XS：Start point of contour \(=0 \mathrm{~mm}\)
－ZS：Starting point of contour \(=0 \mathrm{~mm}\)

－X：Target point \(=16 \mathrm{~mm}\)
－Press the Save soft key
－Select the Line menu item
－Z：Target point \(=-25 \mathrm{~mm}\)
－Press the Save soft key
－Select the Line menu item
－X：Target point \(=35 \mathrm{~mm}\)
－Press the Save soft key
－Select the Line menu item
－Z：Target point \(=-43 \mathrm{~mm}\)
－Press the Save soft key
－Select the Line menu item
－Enter the coordinates：
－X：Target point＝ 58 mm
－AN：Angle to Z axis \(=70^{\circ}\)
－Press the Save soft key
－Select the Line menu item
－X：Target point \(=0 \mathrm{~mm}\)
－Press the Save soft key
－Press the Back soft key
－Select the Line menu item
－Z：Target point \(=-76 \mathrm{~mm}\)
－Press the Save soft key

\section*{Defining form elements}

Defining chamfer at Corner:
- Press the Form elements soft key

Select the Cham menu item

亿
- Select the desired corner
- Press the Select soft key
- In the Cham dialog box: Enter Chamfer width = 3 mm

Save
- Press the Save soft key

Defining rounding arcs

- Select the Rounding menu item

- Select the desired corner

Mark
- Select further corners if required
- Press the Select soft key
- In the Rounding dialog box: Enter Rounding radius \(=2 \mathrm{~mm}\)

Save
- Press the Save soft key

Defining an undercut:

- Select the Undercut menu item

- Select the Undercut DIN 76 menu item

- Select the desired corner
- Press the Select soft key
> The ICP editor opens the Undercut DIN 76 dialog box.
- The undercuts are already predefined in the control.
- Press the Save soft key

Defining a recess：
－Select the Recess menu item
－Select the Recess standard／G22 menu item
－Select the desired surface
－Press the Select soft key
－In the Recess standard／G22 dialog box：Enter the required values
－Destinat．point \(\mathbf{Z}=-38 \mathrm{~mm}\)
－Inner corner I＝ 27 mm
－Inner corner \(\mathbf{K i}=8 \mathrm{~mm}\)－activate the Incremental soft key
－Outs．rad．／cham． \(\mathbf{B}=-1 \mathrm{~mm}\)
－Press the Save soft key

Defining a thread：

－Select the Thread menu item
－Select the desired surface
凸

Select
－Press the Select soft key
\(>\) The ICP editor opens the Thread dialog box．
－The threads are already predefined in the control
－Press the Save soft key
Save
－Press the Back soft key

\section*{Preparing the machining process，chucking}
\((1\)
Depending on machine parameter defaultG59（no．
602022），TURN PLUS automatically calculates the required datum shift for the workpiece and activates it with G59．
To calculate the datum shift，TURN PLUS takes the following values into account：
－Length Z（description of workpiece blank）
－Allowance K（description of workpiece blank）
－Edge of chuck Z（description of chucking equipment or machining parameters）
－Chuck jaw reference B（description of chucking equipment or machining parameters）

Adding chucking equipment:
- Select the Head menu item
- Select the Insert chucking equipment menu item
- Describe the chucking equipment:
- Enter the No. of clamping
- Select the Spindle number AWG
- Select the Clamp type
- Enter the Chuck jaw reference
- Enter the Unclamping length
- Enter the Cutting limit, outside
- Enter the Cutting limit, inside
- Enter the Overlap jaw/workpiece
- Enter the Chuck diameter
- Enter the Chuck form
- Select Shaft machining AWG
> TURN PLUS takes the chucking equipment and cutting limits into account for the program creation.
- Press the Save soft key

\section*{Generating and saving a working plan}

Generating a working plan:
```

TURN PLUS

```
- Press the TURN PLUS soft key
- If necessary, select the Machining sequence

ANG
- Press the AWG soft key
- Display the AWG control graphic

Saving the program:

\section*{Back}
- Press the Back soft key
- Press the Back soft key
- Check/edit the file name
- Press the Save soft key
\(>\) TURN PLUS saves the NC program.

The AWG submode generates the work blocks according to the Machining sequence and the settings of the Machining parameters.

\subsection*{9.6 Full-surface machining with TURN PLUS}

\section*{Rechucking the workpiece}
(0) Refer to your machine manual.

Rechucking workpieces depends on the configuration of your machine.
The control uses subprograms for rechucking which are adapted by the machine tool builder.

TURN PLUS provides three full-surface machining variants:
- Rechucking the workpiece in the main spindle. Both setups are contained in one NC program
- Transferring the workpiece from the main spindle to the counter spindle (chuck part)
- Parting and picking-off the workpiece with the counter spindle.

TURN PLUS selects the required rechucking variant on the basis of the fixture and the machining sequence.
(i)

In the CfgExpertProgam machine parameters (no.
606800), a specific subprogram is defined for each rechucking variant controlling the sequence of rechucking.

\section*{Defining the chucking equipment for full-surface machining}

The full-surface machining sequence is defined in the chuckingequipment dialog. You also define the datums, pick-up position and cutting limits in this dialog.

Example of first setup for full-surface machining
Parameter:
- No. of clamping H: CHUCKING EQUIPMENT 1
- Spindle number AWG D:
- 0: Main spindle
- Clamp type R:
- 0: J=Free length
- 1: J=Fixing length
- Edge of chuck Z: No input (the AWG submode uses the value from the user parameters)
- Chuck jaw reference B: No input (the AWG submode uses the value from the user parameters)
- Clamping or Unclamping length J: Specify the clamping length / free length
- Cutting limit, outside \(\mathbf{0}\) : is calculated by the AWG submode (if outside chucking is used)
- Cutting limit, inside I: Is calculated by the AWG submode (if inside chucking is used)
- Overlap jaw/workpiece K: Overlap of jaw/workpiece
- Chuck diameter \(\mathbf{X}\) : Clamping diameter of workpiece blank
- Chuck form Q:
- 5: Outside chucking
- 5: Inside chucking
- Shaft machining AWG V: Select the desired AWG strategy

\section*{Example: Defining the first chucking equipment}
\begin{tabular}{|c|}
\hline ... \\
\hline CHUCKING EQUIPMENT 1 \\
\hline H0 D0 R0 J100 K15 X120 Q4 Vo \\
\hline
\end{tabular}

\section*{Example of second setup for full-surface machining}

Parameters:
- No. of clamping H: CHUCKING EQUIPMENT 2
- Spindle number AWG D
- 0: Main spindle
- 3: Opposing spindle (depending on type of rechucking)
- Clamp type R:
- 0: J=Free length
- 1: J=Fixing length
- Edge of chuck Z: No input (the AWG submode uses the value from the user parameters)
- Chuck jaw reference B: No input (the AWG submode uses the value from the user parameters)
- Clamping or Unclamping length J: Specify the clamping length / free length
- Cutting limit, outside O: Is calculated by the AWG submode (if outside chucking is used)
- Cutting limit, inside I: Is calculated by the AWG submode (if inside chucking is used)
- Overlap jaw/workpiece K: Overlap of jaw/workpiece
- Chuck diameter X: Clamping diameter of workpiece blank
- Chuck form Q:
- 5: Outside chucking
- 5: Inside chucking
- Shaft machining AWG V: Select the desired AWG strategy

\section*{Example: Defining the second chucking equipment}
\begin{tabular}{l}
... \\
CHUCKING EQUIPMENT 2 \\
H0 D3 R1 J15 K-15 X68 Q4 V0 \\
\hline
\end{tabular}

\section*{Automatic working plan generation for full-surface machining}

During automatic program creation (AWG submode), the machining steps for the first setup are created first. Then AWG submode opens a dialog window that prompts for the rechucking parameters.
Default values that were calculated by AWG from the defined workpiece contour are already entered for the parameters in the dialog window. You can use these values or change them. After you have confirmed the values, the AWG submode generates the machining sequence for the second setup.

In the machine parameters the machine tool builder defines the input parameters to be displayed in the dialog windows during rechucking.
You can also include further input parameters in the dialog windows. In the CfgExpertProgPara machine parameters (no. 606900), select the required parameter list. In the desired parameter, enter a default value that is assigned to this parameter in the dialog window. Enter 9999999 to display the parameter without a default value.

\section*{Rechucking the workpiece in the main spindle}

The subprogram for rechucking in the main spindle is defined in the user parameter Parameter list - manual rechucking (standard program: Rechuck_manual.ncs).
At the end of the Machining sequence, define a machining step with the Rechucking Main mach. operation and the Full-surface machining Anc. mach. operation.
In parameter \(\mathbf{D}\) of the chucking equipment description, select the main spindle for both pieces of chucking equipment.

Example: Defining the chucking equipment

\section*{Transferring the workpiece from the main spindle to the counter spindle}

The subprogram for transferring the workpiece from the main spindle to the counter spindle is defined in the user parameter
Parameter list - complete rechucking (standard program:
Rechuck_complete.ncs).
At the end of the machining sequence, define a machining step with the Rechucking Main mach. operation and the Full-surface machining Anc. mach. operation.
In parameter \(\mathbf{D}\) of the chucking equipment description, select the main spindle for the first chucking equipment and the counter spindle for the second chucking equipment.

Example: Defining the chucking equipment

\section*{Parting and picking-off the workpiece with the counter spindle}

The subprogram for parting and picking-off with the counter spindle is defined in the user parameter Parameter list - rechucking, parting (standard program: Rechuck_complete.ncs).
At the end of the machining sequence, define a machining step with the Cut-off Main mach. operation and the Full-surface machining Anc. mach. operation.
In parameter \(\mathbf{D}\) of the chucking equipment description, select the main spindle for the first chucking equipment and the opposing spindle for the second chucking equipment.

Example: Defining the chucking equipment

B Axis (Option 54)

\subsection*{10.1 Fundamentals}

Tilted working plane
Refer to your machine manual.
The machine tool builder determines the scope of function and behavior of this function.

The \(B\) axis makes it possible to drill, bore and mill in oblique planes. To make programming easy, the coordinate system is tilted in such a way that you can define the drilling patterns and milling contours in the YZ plane. The actual drilling or milling operation is then performed in the tilted plane.
Further information: "Tilt working plane G16", Page 648
The separation of contour description and machining also applies to machining operations in tilted planes. Contour regeneration is not available.
Contours in tilted planes are identified with the SURFACE Y section code.
Further information: "SURFACE Y section", Page 87
The control supports NC program creation with the B axis in ISO Mode and in the smart. Turn operating mode.
The graphical simulation shows the machining operation in a tilted working plane in the familiar lathe and front windows, as well as in the side view (YZ).

If you are using a tool with an angled tool holder, you can also use the tilted working plane without the B axis. Define the angle for the tool holder as Angular offset RW in the tool description.

\section*{TCPM}

With the TCPM (Tool Center Point Management) function, you can change the behavior of the rotary axes for tilting.
With TCPM disabled, the axis will rotate about its mechanical center of rotation; with TCPM enabled, the tool tip will remain at the center of rotation and the linear axes perform a compensation movement.
The TCPM function allows you to machine a contour with simultaneous inclination of the B-axis.
Use the TCPM G928 function to activate or deactivate this function.
Further information: "TCPM G928", Page 494

\section*{Tools for the \(B\) axis}

An advantage of the \(B\) axis is that it allows flexible use of the tools during turning operations. By tilting the \(B\) axis and rotating the tool you can bring it into positions that enable you to use one and the same tool to machine in the longitudinal and transverse (or radial and axial) directions on the main spindle and the counter spindle. In this way, you need fewer tools and fewer tool changes.
Tool data: All tools are described in the tool database by specifying the \(X, Z\) and \(Y\) dimensions as well as the compensation values. These dimensions are referenced to the tilt angle \(\mathbf{B}=\mathbf{0}^{\circ}\) (reference position).
In addition, you specify the Reverse the tool CW parameter. It defines the working positions of tools that are not driven (turning tools).
The tilt angle of the B axis is not maintained with the tool data. This angle needs to be defined in the tool call or when inserting the tool.
Tool orientation and position display: For turning tools, the position the tool tip is calculated based on the orientation of the cutting edge. The control calculates the tool orientation of lathe tools by means of the tool angle and point angle.

\section*{Multipoint tools for the B axis}

If several tools are mounted on a tool holder, this is referred to as a multipoint tool. Each cutting edge (tool) of a multipoint tool is assigned a separate ID no. and description.
The position angle, which is identified by CW in the figure, is included in the tool data. When a cutting edge (tool) of a multipoint tool is activated, the control will rotate the multipoint tool into the correct position. The position is determined from the position angle, to which the offset position angle from the tool change routine is added. This allows inserting the tool either in the normal attitude or upside down.
The photo shows a multipoint tool with three cutting edges.

\section*{High Dynamic Turning}

\section*{High Dynamic Turning}

The control supports High Dynamic Turning (HDT) developed by the company CERATIZIT. This method allows you to perform the most common turning operations with only one tool.
HDT tools are held by a milling spindle that is operated as a B axis (B2).
During HDT machining, the coordinate system is tilted such that the mechanical \(Y\) axis performs the diameter infeed.
- You define the special indexable inserts and the required tool holders in Tool editor mode.
see User's Manual
- Function G931 allows you to activate and deactivate HDT mode. see "HDT mode G931", Page 504
- You can check the machining process in Simulation submode. The 2-D simulation shows the tool paths and the cutting edge of the tool. The 3-D simulation shows the complete machining operation, including the tool holders.
- The machine data display notifies you about the current activation status of HDT mode. The control displays the same icon during simulation.
see User's Manual
Prerequisites:
- Machine with \(Y\) axis and \(B\) axis
- Machine with milling spindle (B2 axis)
- B-axis machining (option 54)
- The machine and control are prepared for HDT machining

The machine tool builder must, for example, prepare the required
 kinematics descriptions and adapt the configuration settings.
Notes:
- You can use HDT mode both on the main spindle and on a counter spindle.
- Due to the geometry of the HDT tools, among other things, undercuts and inside machining are not possible in HDT mode.

\subsection*{10.2 B axis compensation}

\section*{Compensation during program run}

Tool compensation: Enter the determined compensation values in the tool compensation form.
Also define further functions that were active while machining the measured surface:
- Angle in the B axis BW
- Reverse the tool CW
- Machining operation KM
- Angle G16

The control converts the measured data into dimensions referencing position \(\mathbf{B}=0\) and saves it in the tool database.

Compensating the tool during program run:
- Press the Tool correct. soft key during program run
> The control opens the Set tool correction dialog box
- Enter the desired values
- Press the Save soft key

In the \(\mathbf{T}\) box (machine display), the control indicates the compensation values referencing the current \(B\) axis angle and the tool position angle.

> (i) The control saves the tool compensation data in the tool database, together with the other tool data
> If the B axis is tilted, the control takes the tool compensation data into account when calculating the tool tip position

Additive correction is independent of the tool data. The compensation values are effective in the \(X, Y\), and \(Z\) directions. Tilting the \(B\) axis has no influence on additive compensation values.

\subsection*{10.3 Simulation}

\section*{Simulation of the tilted plane}

3-D view: The simulation correctly displays tilted \(Y\) planes and referenced elements (pockets, holes, patterns etc.).
Contour graphics: The simulation displays the \(Y Z\) view of the workpiece and the contours of the tilted planes in the side view. To represent the drilling patterns and milling contours perpendicularly to the tilted plane, i.e. without distortion, the simulation ignores the rotation of the coordinate system and a shift within the rotated coordinate system.
With contour graphics for tilted planes, please note the following:
- The K parameter in G16 or SURFACE Y defines the start of the drilling pattern or milling contour in the \(Z\) direction.
- The drilling patterns and milling contours are drawn perpendicularly to the tilted plane. This results in a shift relative to the turning contour
Milling, drilling and boring operations: When you use the side view to display the tool paths in the tilted plane, the same rules apply as for the contour graphics.
During work on the tilted plane, the front window shows the outline of the tool. The tool width is simulated true to scale. In this way, you can check the overlap of milling paths. The tool paths are also represented true to scale (in perspective view) as line graphics.
In all additional windows, the simulation shows the tool and the cutting path when the tool is perpendicular to the relevant plane. A tolerance of \(+/-5^{\circ}\) is taken into account. When the tool is not perpendicular to the plane, it is represented as a light dot and the tool path is depicted as a line.

Refer to your machine manual.
The depiction of the tool carrier depends on the machine.
The graphic displays a tool carrier if the following requirements are fulfilled:
- The machine tool builder has saved a description of the tool carrier, e.g. B axis head
- You have assigned a tool holder to a tool

\section*{Example: Contour in tilted plane}
\begin{tabular}{|l|l|}
\hline FINISHED PART & \\
\hline N2 G0 X0 Z0 & \\
\hline N3 G1 X50 & \\
\hline N4 G1 Z-50 & \\
\hline N5 G1 X0 & \\
\hline N6 G1 Z0 & Single surface \\
\hline SURFACE Y X50 C0 B80 I25 K-10 H0 & \\
\hline N7 G386 Z0 Ki10 B-30 X50 C0 & \\
\hline SURFACE Y X50 C0 B20 I25 K-20 H1 & Full circle \\
\hline N8 G384 Z-10 Y10 X50 R10 P5 & \\
\hline I. & \\
\hline
\end{tabular}

\section*{Displaying the coordinate system}

The simulation can show the shifted/rotated coordinate system in the lathe window if required.
To use this feature, you need to stop the simulation.
Displaying the coordinate system:
-/+
- Press the -/+ key
> The simulation displays the current coordinate system

The coordinate system disappears when the next command is simulated or when you press the -/+ key once again.

\section*{Position display with the \(B\) and \(Y\) axes}

The following boxes of the display cannot be edited:
- \(\mathbf{N}\) : Block number of the NC source block
- X, Z, C: Position values (actual values)

The other boxes can be set with the Split-Screen Layout key (three arrows arranged in a circle):
- Default settings (values of the selected slide)
- Y: Position value (actual value)
- T: Tool data with turret pocket, (in "(..)") and ID no.
- B axis settings
- B: Tilt angle of the B axis
- G16/B: Angle of the tilted plane

\section*{Overview of Units (Option 9)}

\subsection*{11.1 Units - "Turning" group}
"Roughing" group
\begin{tabular}{lll}
\hline Unit & Description & Page \\
\hline G810_ICP & G810 Longitudinal in ICP \\
& Roughing an ICP contour longitudinally & Page 106 \\
\hline G820_ICP & \begin{tabular}{lll}
G820 Transverse in ICP \\
& Roughing an ICP contour transversely & Page 108 \\
\hline G830_ICP & Roughing parallel to the contour in ICP & Page 110 \\
& Roughing an ICP contour in two directions & Page 111 \\
\hline G835_ICP & G810 Longitudinal, direct & Pongitudinal roughing with direct contour input
\end{tabular} & Page 112 \\
\hline G810_G80 & G820 Transverse, direct & Page 175 \\
\hline G820_G80 & G895 Simultaneous roughing & Page 115 \\
\hline G895_ICP & Description & Pagerse roughing with direct contour input
\end{tabular}
"Recessing" group
\begin{tabular}{lll}
\hline Unit & Description & Page \\
\hline G860_ICP & \begin{tabular}{l}
G860 Contour recess in ICP \\
Recessing an ICP contour
\end{tabular} & Page 119 \\
\hline G869_ICP & \begin{tabular}{l}
G869 Recess turning in ICP \\
Recess turning an ICP contour
\end{tabular} & Page 120 \\
\hline G860_G80 & \begin{tabular}{l}
G860 Contour recess, direct \\
Contour recessing with direct contour input
\end{tabular} & Page 122 \\
\hline G869_G80 & \begin{tabular}{l}
G869 Recess turning, direct \\
Recess turning with direct contour input
\end{tabular} & Page 123 \\
\hline G859_Cut_off & \begin{tabular}{l}
G859 Parting \\
Parting a bar with direct position input
\end{tabular} & Page 124 \\
\hline G85x_Cut_H_K_U & \begin{tabular}{l}
G85X Undercutting (H,K,U) \\
Make undercuts of type H, K and U
\end{tabular} & Page 125 \\
\hline G870_ICP & \begin{tabular}{ll}
G870 ICP Recessing \\
Machining a recess
\end{tabular} & Page 125 \\
"Thread" group & &
\end{tabular}
\begin{tabular}{lll}
\hline Unit & Description & Page \\
\hline G32_MAN & G32 Thread, direct & Page 186 \\
& Thread with direct contour definition & Page 187 \\
\hline G31_ICP & G31 Thread, ICP & Thread on any desired ICP contour
\end{tabular}

\subsection*{11.2 Units - "Drilling" group}
"Centric drilling" group
\begin{tabular}{lll}
\hline Unit & Description & Page \\
\hline G74_Zentr & G74 Centric drilling & Page 127 \\
& Drilling and pecking with \(X=0\) & Page 128 \\
\hline G73_Zentr & G73 Centric tapping & Tapping with \(X=0\)
\end{tabular}
"ICP drilling, C axis" group
\begin{tabular}{|c|c|c|}
\hline Unit & Description & Page \\
\hline \multirow[t]{2}{*}{G74_ICP_C} & G74 Drilling in ICP C & Page 151 \\
\hline & Drilling and pecking with ICP pattern & \\
\hline \multirow[t]{2}{*}{G73_ICP_C} & G73 Tapping in ICP C & Page 152 \\
\hline & Tapping with ICP pattern & \\
\hline \multirow[t]{2}{*}{G72_ICP_C} & G72 Boring, cntrsinkg ICP C & Page 154 \\
\hline & Countersinking with ICP pattern & \\
\hline \multirow[t]{2}{*}{G75_BF_ICP_C} & G75 Bore milling ICP C face & Page 154 \\
\hline & Bore milling with ICP pattern on the front face & \\
\hline \multirow[t]{2}{*}{G75_EN_ICP_C} & G75 Deburring ICP C face & Page 155 \\
\hline & Deburring with ICP pattern on the front face & \\
\hline \multirow[t]{2}{*}{G75_BF_ICP_C_MANT} & G75 Bore milling ICP C lateral & Page 156 \\
\hline & Bore milling with ICP pattern on the lateral surface & \\
\hline \multirow[t]{2}{*}{G75_EN_ICP_C_MANT} & G75 Deburring ICP C lateral & Page 157 \\
\hline & Deburring with ICP pattern on the lateral surface & \\
\hline \multicolumn{3}{|l|}{"C-axis face drilling" group} \\
\hline Unit & Description & Page \\
\hline \multirow[t]{2}{*}{G74_Bohr_Stirn_C} & G74 Single hole & Page 131 \\
\hline & Drilling and pecking a single hole & \\
\hline \multirow[t]{2}{*}{G74_Lin_Stirn_C} & G74 Linear pattern drilling & Page 133 \\
\hline & Drilling and pecking a linear hole pattern & \\
\hline \multirow[t]{2}{*}{G74_Cir_Stirn_C} & G74 Circ. pattern drilling & Page 135 \\
\hline & Drilling and pecking a circular hole pattern & \\
\hline \multirow[t]{2}{*}{G73_Gew_Stirn_C} & G73 Tapping & Page 137 \\
\hline & Tapping a single hole & \\
\hline \multirow[t]{2}{*}{G73_Lin_Stirn_C} & G73 Thread, linear pattern & Page 138 \\
\hline & Tapping a linear hole pattern & \\
\hline \multirow[t]{2}{*}{G73_Cir_Stirn_C} & G73 Thread, circ. pattern & Page 139 \\
\hline & Tapping a circular hole pattern & \\
\hline
\end{tabular}

\section*{"C-axis lateral surface drilling" group}
\begin{tabular}{lll}
\hline Unit & Description & Page \\
\hline G74_Bohr_Mant_C & \begin{tabular}{l}
G74 Single hole \\
Drilling and pecking a single hole
\end{tabular} & Page 141 \\
\hline G74_Lin_Mant_C & \begin{tabular}{l}
G74 Linear pattern drilling \\
Drilling and pecking a linear hole pattern
\end{tabular} & Page 143 \\
\hline G74_Cir_Mant_C & \begin{tabular}{l}
G74 Circ. pattern drilling \\
Drilling and pecking a circular hole pattern
\end{tabular} & Page 145 \\
\hline G73_Gew_Mant_C & \begin{tabular}{l}
G73 Tapping \\
Tapping a single hole
\end{tabular} & Page 147 \\
\hline G73_Lin_Mant_C & \begin{tabular}{l}
G73 Thread, linear pattern \\
Tapping a linear hole pattern
\end{tabular} & Page 148 \\
\hline G73_Cir_Mant_C & \begin{tabular}{l}
G73 Thread, circ. pattern \\
Tapping a circular hole pattern
\end{tabular} & Page 149
\end{tabular}

\subsection*{11.3 Units - "Predrilling in C axis" group}
"Predrilling in C-axis, face" group
\begin{tabular}{lll}
\hline Unit & Description & Page \\
\hline DRILL_STI_KON_C & \begin{tabular}{l}
Predrill face, G840 contour mill C \\
Determine the predrilling position and machine a hole
\end{tabular} & Page 158 \\
\hline DRILL_STI_840_C & \begin{tabular}{l}
Predrill on face, G840 ICP in C \\
Determine the predrilling position and machine a hole
\end{tabular} & Page 162 \\
\hline DRILL_STI_TASC & \begin{tabular}{l}
Predrill face G845, pocket mill in C \\
Determine the predrilling position and machine a hole
\end{tabular} & Page 160 \\
\hline DRILL_STI_845_C & \begin{tabular}{l}
Predrill on face, G845 ICP in C \\
Determine the predrilling position and machine a hole
\end{tabular} & Page 163 \\
"Predrilling in C axis, lateral surface" group
\end{tabular}
"Predrilling in C axis, lateral surface" group
\begin{tabular}{lll}
\hline Unit & Description & Page \\
\hline DRILL_MAN_KON_C & \begin{tabular}{l}
Predrill latrI., G840 contour mill C \\
Determine the predrilling position and machine a hole
\end{tabular} & Page 164 \\
\hline DRILL_MAN_840_C & \begin{tabular}{l}
Predrill lateral surf., G840 ICP in C \\
Determine the predrilling position and machine a hole
\end{tabular} & Page 168 \\
\hline DRILL_MAN_TAS_C & \begin{tabular}{l}
Predrill face G845, pocket mill in C \\
Determine the predrilling position and machine a hole
\end{tabular} & Page 166 \\
\hline DRILL_MAN_845_C & \begin{tabular}{l}
Predrill lateral surf., G845 ICP in C \\
Determine the predrilling position and machine a hole
\end{tabular} & Page 169
\end{tabular}

\subsection*{11.4 Units - "Milling in C axis" group}
"Milling in C-axis, face" group
\begin{tabular}{|c|c|c|}
\hline Unit & Description & Page \\
\hline \multirow[t]{2}{*}{G791_Nut_Stirn_C} & G791 Linear slot & Page 192 \\
\hline & Milling a linear slot & \\
\hline \multirow[t]{2}{*}{G791_Lin_Stirn_C} & G791 Linear slot pattern & Page 193 \\
\hline & Milling of linear slots in a linear pattern & \\
\hline \multirow[t]{2}{*}{G791_Cir_Stirn_C} & G791 Circular slot pattern & Page 194 \\
\hline & Milling of linear slots in a circular pattern & \\
\hline \multirow[t]{2}{*}{G797_STIRNFR_C} & G797 Face milling & Page 195 \\
\hline & Milling various figures as islands & \\
\hline \multirow[t]{2}{*}{G797_ICP} & G797 face milling ICP & Page 207 \\
\hline & Milling closed contours as islands & \\
\hline \multirow[t]{2}{*}{G799_GewindeFR_C} & G799 Thread milling & Page 196 \\
\hline & Inside thread milling in a single hole & \\
\hline \multirow[t]{2}{*}{G840_FIG_STIRN_C} & G840 Contour mllg., figures & Page 197 \\
\hline & Milling figures inside, outside and on the contour & \\
\hline \multirow[t]{2}{*}{G84X_FIG_STIRN_C} & G84X Pocket millg., figures & Page 199 \\
\hline & Roughing out closed figures, inside & \\
\hline \multirow[t]{2}{*}{G801_GRA_STIRN_C} & G801 Engraving & Page 201 \\
\hline & Engraving characters strings on the face & \\
\hline \multicolumn{3}{|l|}{"C-axis ICP face milling" group} \\
\hline Unit & Description & Page \\
\hline \multirow[t]{2}{*}{G840_Kon_C_STIRN} & G840 Contour milling, ICP & Page 202 \\
\hline & Machining ICP contours on the front face inside, outside, and on the contour & \\
\hline \multirow[t]{2}{*}{G845_TAS_C_STIRN} & G845 Pocket milling, ICP & Page 204 \\
\hline & Inside rough-out of closed ICP contours on the front face & \\
\hline \multirow[t]{2}{*}{G840_ENT_C_STIRN} & G840 Deburring & Page 223 \\
\hline & Deburring ICP contours on the front face & \\
\hline \multirow[t]{2}{*}{G797_ICP} & G797 face milling ICP & Page 223 \\
\hline & Milling ICP contours on the front face & \\
\hline \multirow[t]{2}{*}{G847_KON_C_STIRN} & G847 Contour milling & Page 207 \\
\hline & Rough-out of ICP contours on the front face using trochoidal milling & \\
\hline \multirow[t]{2}{*}{G848_TAS_C_STIRN} & G848 Pocket milling & Page 210 \\
\hline & Rough-out of figures on the front face using trochoidal milling & \\
\hline
\end{tabular}
\begin{tabular}{lll}
"C-axis lateral surface milling" group & \\
\hline Unit & Description & Page \\
\hline G792_NUT_MANT_C & \begin{tabular}{l}
G792 Linear slot \\
Milling a linear slot
\end{tabular} & Page 212 \\
\hline G792_LIN_MANT_C & \begin{tabular}{l}
G792 Linear slot pattern \\
Milling of linear slots in a linear pattern
\end{tabular} & Page 213 \\
\hline G792_CIR_MANT_C & \begin{tabular}{l}
G792 Circular slot pattern \\
Milling of linear slots in a circular pattern
\end{tabular} & Page 214 \\
\hline G798_WENDEL- & \begin{tabular}{l}
G798 Helical slot milling \\
Milling a thread-shaped helical slot
\end{tabular} & Page 215 \\
\hline NUT_C & \begin{tabular}{l}
G840 Contour mllg., figures \\
Milling figures inside, outside and on the contour
\end{tabular} & Page 216 \\
\hline G84x_FIG_MANT_C & \begin{tabular}{l}
G84X Pocket millg., figures \\
Roughing out closed figures, inside
\end{tabular} & Page 222 \\
\hline G802_GRA_MANT_C & \begin{tabular}{l}
G802 Engraving \\
Engraving characters strings on the lateral surface
\end{tabular} & Page 223 \\
\hline "C-axis ICP lateral surface milling" group & \begin{tabular}{l}
Description
\end{tabular} & Page \\
\hline Unit & \begin{tabular}{l}
G840 Contour milling, ICP \\
Machining ICP contours on the lateral surface inside, outside, and on the \\
contour
\end{tabular} & Page 221 \\
\hline G840_Kon_C_Mant & Page 222 \\
\hline G845_TAS_C_MANT & \begin{tabular}{l}
G845 Pocket milling, ICP \\
Inside rough-out of closed ICP contours on the lateral surface
\end{tabular} & Page 224 \\
\hline G840_ENT_C_MANT & \begin{tabular}{l}
G840 Deburring \\
Deburring ICP contours on the lateral surface
\end{tabular} & \begin{tabular}{l}
G847 Contour milling \\
Rough-out of ICP contours on the lateral face using trochoidal milling
\end{tabular} \\
\hline G847_KON_C_MANT & \begin{tabular}{l}
G848 Pocket milling \\
Rough-out of figures on the lateral surface using trochoidal milling
\end{tabular} & \\
\hline G848_TAS_C_MANT & & \\
\hline
\end{tabular}

\subsection*{11.5 Units - "Drilling, predrilling in Y axis" group}
"ICP drilling, Y axis" group
\begin{tabular}{|c|c|c|}
\hline Unit & Description & Page \\
\hline \multirow[t]{2}{*}{G74_ICP_Y} & G74 Drilling in ICP Y & Page 236 \\
\hline & Drilling and pecking with ICP pattern & \\
\hline \multirow[t]{2}{*}{G73_ICP_Y} & G73 Tapping in ICP Y & Page 237 \\
\hline & Tapping with ICP pattern & \\
\hline \multirow[t]{2}{*}{G72_ICP_Y} & G72 Boring, cntrsinkg ICP Y & Page 238 \\
\hline & Countersinking with ICP pattern & \\
\hline \multirow[t]{2}{*}{G75_BF_ICP_Y} & G75 Bore milling ICP Y face & Page 239 \\
\hline & Bore milling with ICP pattern on the front face & \\
\hline \multirow[t]{2}{*}{G75_EN_ICP_Y} & G75 Deburring ICP Y face & Page 240 \\
\hline & Deburring with ICP pattern on the front face & \\
\hline \multirow[t]{2}{*}{G75_BF_ICP_Y_MANT} & G75 Bore milling ICP Y lateral & Page 241 \\
\hline & Bore milling with ICP pattern on the lateral surface & \\
\hline \multirow[t]{2}{*}{G75_EN_ICP_Y_MANT} & G75 Deburring ICP Y lateral & Page 242 \\
\hline & Deburring with ICP pattern on the lateral surface & \\
\hline \multicolumn{3}{|l|}{"Predrilling in Y axis" group} \\
\hline Unit & Description & Page \\
\hline \multirow[t]{2}{*}{DRILL_STI_840_Y} & G840 ICP predrilling, contour milling in XY plane & Page 243 \\
\hline & Determine the predrilling position and machine a hole & \\
\hline \multirow[t]{2}{*}{DRILL_STI_845_Y} & G845 ICP predrilling, pocket milling in XY plane & Page 244 \\
\hline & Determine the predrilling position and machine a hole & \\
\hline \multirow[t]{2}{*}{DRILL_MAN_840_Y} & G840 ICP predrilling, contour milling in YZ plane & Page 246 \\
\hline & Determine the predrilling position and machine a hole & \\
\hline \multirow[t]{2}{*}{DRILL_MAN_845_Y} & G845 ICP predrilling, pocket milling in YZ plane & Page 247 \\
\hline & Determine the predrilling position and machine a hole & \\
\hline
\end{tabular}

\subsection*{11.6 Units - "Milling in Y axis" group}
"Milling in front face" group (XY plane)
\begin{tabular}{llll}
\hline Unit & Description & Page \\
\hline G840_Kon_Y_Stirn & \begin{tabular}{l}
G840 Contour milling \\
Machining contours in the XY plane inside, outside and on the contour
\end{tabular} & Page 249 \\
\hline G845_Tas_Y_Stirn & \begin{tabular}{l}
G845 Pocket milling \\
Inside rough-out of closed contours in the XY plane
\end{tabular} & Page 250 \\
\hline G840_ENT_Y_STIRN & \begin{tabular}{l}
G840 Deburring \\
Deburring contours in the XY plane
\end{tabular} & Page 252 \\
\hline G801_GRA_STIRN_C & \begin{tabular}{l}
G841 Single surf. \\
Milling a single surface (flat) in the XY plane
\end{tabular} & Page 253 \\
\hline G840_Kon_C_STIRN & \begin{tabular}{l}
G843 Centric polygon \\
Milling a centric polygon in the XY plane
\end{tabular} & Page 254 \\
\hline G803_GRA_Y_STIRN & \begin{tabular}{l}
G803 Engraving \\
Engraving character strings in the XY plane
\end{tabular} & Page 255 \\
\hline G800_GEW_Y_STIRN & \begin{tabular}{ll}
G800 Thread milling \\
Milling a thread in an existing hole in the XY plane
\end{tabular} & Page 256 \\
\hline G847_KON_Y_STIRN & \begin{tabular}{l}
G847 Contour milling \\
Rough-out of ICP contours on the XY plane using trochoidal milling
\end{tabular} & Page 257 \\
\hline G848_TAS_Y_STIRN & \begin{tabular}{l}
G848 Pocket milling \\
Rough-out of figures on the XY plane using trochoidal milling
\end{tabular} & Page 259 \\
Millingin & latrel &
\end{tabular}
"Milling in lateral surface" group (YZ plane)
\begin{tabular}{|c|c|c|}
\hline Unit & Description & Page \\
\hline G840_Kon_Y_Mant & \begin{tabular}{l}
G840 Contour milling \\
Machining contours in the YZ plane inside, outside and on the contour
\end{tabular} & Page 261 \\
\hline G845_Tas_Y_Mant & \begin{tabular}{l}
G845 Pocket milling \\
Inside rough-out of closed contours in the YZ plane
\end{tabular} & Page 262 \\
\hline G840_ENT_Y_MANT & \begin{tabular}{l}
G840 Deburring \\
Deburring contours in the YZ plane
\end{tabular} & Page 263 \\
\hline G801_GRA_STIRN_C & \begin{tabular}{l}
G841 Single surf. \\
Milling a single surface (flat) in the \(Y Z\) plane
\end{tabular} & Page 264 \\
\hline G840_Kon_C_STIRN & \begin{tabular}{l}
G843 Centric polygon \\
Milling a centric polygon in the \(Y Z\) plane
\end{tabular} & Page 265 \\
\hline G804_GRA_Y_MANT & \begin{tabular}{l}
G803 Engraving \\
Engraving character strings in the YZ plane
\end{tabular} & Page 266 \\
\hline G806_GEW_Y_MANT & \begin{tabular}{l}
G800 Thread milling \\
Milling a thread in an existing hole in the \(Y Z\) plane
\end{tabular} & Page 267 \\
\hline G847_KON_Y_MANT & \begin{tabular}{l}
G847 Contour milling \\
Rough-out of ICP contours on the YZ plane using trochoidal milling
\end{tabular} & Page 268 \\
\hline G848_TAS_Y_MANT & \begin{tabular}{l}
G848 Pocket milling \\
Rough-out of figures on the YZ plane using trochoidal milling
\end{tabular} & Page 270 \\
\hline
\end{tabular}

\subsection*{11.7 Units - "Special units" group}
\begin{tabular}{|c|c|c|}
\hline Unit & Description & Page \\
\hline \multirow[t]{2}{*}{START} & Program beginning (START) & Page 228 \\
\hline & For functions required at the beginning of the program & \\
\hline \multirow[t]{2}{*}{C_AXIS_ON} & C axis ON & Page 229 \\
\hline & Activate C-axis interpolation & \\
\hline \multirow[t]{2}{*}{C_AXIS_OFF} & C axis OFF & Page 230 \\
\hline & Deactivate C-axis interpolation & \\
\hline \multirow[t]{2}{*}{SUBPROG} & Subprogram call & Page 230 \\
\hline & Calling any desired subprogram & \\
\hline \multirow[t]{2}{*}{REPEAT} & Process logic - repetition & Page 231 \\
\hline & Describing a WHILE loop to repeat parts of the program & \\
\hline \multirow[t]{2}{*}{END} & Program end (END) & Page 232 \\
\hline & For functions required at the end of the program & \\
\hline \multirow[t]{2}{*}{ROTWORKPLANE} & Tilt plane & Page 233 \\
\hline & Tilting the working plane & \\
\hline
\end{tabular}

Overview of G Codes

\subsection*{12.1 Section codes}

Program section codes
\begin{tabular}{|c|c|}
\hline Program head & Page \\
\hline Program head / PROGRAM HEAD & Page 82 \\
\hline Turret / TURRET & Page 85 \\
\hline Clamping / CHUCKING EQUIPMENT & Page 84 \\
\hline Magazine / MAGAZINE & Page 85 \\
\hline Contour group / Contour group & Page 85 \\
\hline Manual tool / MANUAL TOOL & Page 85 \\
\hline Contour definition & page \\
\hline Workpiece blank / BLANK & Page 86 \\
\hline Aux. workpiece blank / AUX. BLANK & Page 86 \\
\hline Finished part / FINISHED PART & Page 86 \\
\hline Auxiliary contour / AUXILIARY CONTOUR & Page 86 \\
\hline C-axis contours & Page \\
\hline Front / FRONT & Page 86 \\
\hline REAR SIDE / REAR SIDE & Page 86 \\
\hline Lateral / LATERAL & Page 86 \\
\hline Y -axis contours & Page \\
\hline Face Y / FRONT Y & Page 86 \\
\hline REAR SIDE Y / REAR SIDE Y & Page 86 \\
\hline Lateral surface in \(\mathrm{Y} /\) SURFACE \(Y\) & Page 87 \\
\hline Workpiece machining & Page \\
\hline MACHINING / MACHINING & Page 88 \\
\hline End / END & Page 88 \\
\hline Subprograms & Page \\
\hline Subprogram / SUBROUTINE & Page 88 \\
\hline Return / RETURN & Page 88 \\
\hline Others & Page \\
\hline CONST & Page 89 \\
\hline VAR & Page 89 \\
\hline ZUORDNUNG [ASSIGNMENT] & Page 90 \\
\hline
\end{tabular}

\subsection*{12.2 Overview of G commands in the CONTOUR section}

G commands for turning contours
Workpiece-blank definition Page
\begin{tabular}{lll}
\hline G20-Geo & Chuck part cyl./tube & Page 287 \\
\hline G21-Geo & Cast part & Page 287
\end{tabular}
\begin{tabular}{lll}
\hline Basic contour elements & Page \\
\hline G0-Geo & Starting point & Page 288 \\
\hline G1-Geo & Distance & Page 289 \\
\hline G2-Geo & Circular arc cw & Page 290 \\
\hline G3-Geo & Circular arc ccw & Page 290 \\
\hline G12-Geo & Circ. arc. abs. \(\mathbf{c w}\) & Page 291 \\
\hline G13-Geo & Circ. arc. abs. \(\mathbf{c c w}\) & Page 291 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Contour form elements & Page \\
\hline G22-Geo & Recess (standard) & Page 293 \\
\hline G23-Geo & Recess (general) & Page 295 \\
\hline G24-Geo & Thread with undercut & Page 296 \\
\hline G25-Geo & Undercut & Page 297 \\
\hline G34-Geo & Thread (standard) & Page 300 \\
\hline G37-Geo & Thread (general) & Page 301 \\
\hline G49-Geo & Bore hole (centric) & Page 303
\end{tabular}
\begin{tabular}{lll}
\hline Help commands for contour definition & Page \\
\hline & Overview: Attributes for contour description & Page 304 \\
\hline G10-Geo & Peak-to-valley h. & Page 304 \\
\hline G38-Geo & Feed rate reduction & Page 305 \\
\hline G44 & Separation point & Page 306 \\
\hline G52-Geo & Contour-parallel oversize & Page 306 \\
\hline G95-Geo & Feed per rotation & Page 307 \\
\hline G149-Geo & Additive correction & Page 308
\end{tabular}

G commands for C -axis contours
\begin{tabular}{lll}
\hline Overlapping contours & Page \\
\hline G308-Geo & Start pocket/isl. & Page 309 \\
\hline G309-Geo & End of pocket/island & Page 309 \\
\hline Front and rear face contours & Page \\
\hline G100-Geo & Start point & Page 315 \\
\hline G101-Geo & Linear face & Page 315 \\
\hline G102-Geo & Circ. arc face \(\mathbf{c w}\) & Page 316 \\
\hline G103-Geo & Circ. arc face \(\mathbf{c w}\) & Page 316 \\
\hline G300-Geo & Hole, face & Page 317 \\
\hline G301-Geo & Linear slot, face & Page 391 \\
\hline G302-Geo & Slot cw, face & Page 391 \\
\hline G303-Geo & Slot ccw, face & Page 391 \\
\hline G304-Geo & Full circle, face & Page 392 \\
\hline G305-Geo & Rectangle, face & Page 392 \\
\hline G306-Geo & Text for front face C & Page 319 \\
\hline G307-Geo & Polygon on front face & Page 393 \\
\hline G401-Geo & Pattern linear face & Page 320 \\
\hline G402-Geo & Pattern circ. face & Page 321 \\
\hline G405-Geo & DataMatrix face C & Page 322 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\multicolumn{2}{l}{ Lateral surface contours } & Page \\
\hline G110-Geo & Start point & Page 323 \\
\hline G111-Geo & Surface linear & Page 323 \\
\hline G112-Geo & Circ.arc surface ccw & Page 324 \\
\hline G113-Geo & Circ.arc surface ccw & Page 324 \\
\hline G310-Geo & Hole, surface & Page 325 \\
\hline G311-Geo & Linear slot, surf. & Page 325 \\
\hline G312-Geo & Slot cw, surface & Page 326 \\
\hline G313-Geo & Slot ccw, surface & Page 326 \\
\hline G314-Geo & Full circle, surf. & Page 326 \\
\hline G315-Geo & Rectangle, surface & Page 327 \\
\hline G316-Geo & Text for lateral face C & Page 327 \\
\hline G317-Geo & Polygon on lateral surface & Page 328 \\
\hline G411-Geo & Pattern linear surf & Page 328 \\
\hline G412-Geo & Pattern circ. surf. & Page 329 \\
\hline G415-Geo & DataMatrix lateral C & Page 330
\end{tabular}

\section*{G commands for Y -axis contours}
\begin{tabular}{lll}
\hline XY plane & & Page \\
\hline G170-Geo & Start point & Page 629 \\
\hline G171-Geo & Linear face & Page 629 \\
\hline G172-Geo & Circ. arc face ccw & Page 630 \\
\hline G173-Geo & Circ. arc face ccw & Page 630 \\
\hline G370-Geo & Hole in XY plane & Page 631 \\
\hline G371-Geo & Linear slot in XY plane & Page 632 \\
\hline G372-Geo & Slot cw in XY plane & Page 632 \\
\hline G373-Geo & Slot ccw in XY plane & Page 632 \\
\hline G374-Geo & Full circle in XY plane & Page 633 \\
\hline G375-Geo & Rectangle in XY plane & Page 633 \\
\hline G377-Geo & Polygon in XY plane & Page 634 \\
\hline G378-Geo & Text for front face Y & Page 635 \\
\hline G471-Geo & Linear pattern, face & Page 635 \\
\hline G472-Geo & Circular patt., face & Page 636 \\
\hline G475-Geo & DataMatrix XY plane & Page 637 \\
\hline G376-Geo & Single surface in XY plane & Page 634 \\
\hline G477-Geo & Centr. polygon, face & Page 637 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline YZ plane & & Page \\
\hline G180-Geo & Start point & Page 638 \\
\hline G181-Geo & Surface linear & Page 638 \\
\hline G182-Geo & Circ.arc surface ccw & Page 639 \\
\hline G183-Geo & Circ.arc surface ccw & Page 639 \\
\hline G380-Geo & Hole in YZ plane & Page 640 \\
\hline G381-Geo & Linear slot in YZ plane & Page 640 \\
\hline G382-Geo & Slot cw in YZ plane & Page 641 \\
\hline G383-Geo & Slot ccw in YZ plane & Page 641 \\
\hline G384-Geo & Full circle in YZ plane & Page 641 \\
\hline G385-Geo & Rectangle in YZ plane & Page 642 \\
\hline G387-Geo & Polygon in YZ plane & Page 642 \\
\hline G388-Geo & Text for lateral face \(\mathbf{Y}\) & Page 643 \\
\hline G481-Geo & Lin. patt., side v. & Page 643 \\
\hline G482-Geo & Circ. patt, side v. & Page 644 \\
\hline G485-Geo & DataMatrix YZ plane & Page 645 \\
\hline G386-Geo & Single surface in \(\mathbf{X Y}\) plane & Page 645 \\
\hline G487-Geo & Centr. polyg., surf. & Page 646
\end{tabular}

\subsection*{12.3 Overview of G commands in the MACHINING section}

G commands for turning contours
\begin{tabular}{lll}
\hline \multicolumn{2}{c}{ Tool positioning without machining } & Page \\
\hline G0 & Rapid traverse & Page 331 \\
\hline G14 & Tool change point & Page 332 \\
\hline G140 & Tool change point & Page 332 \\
\hline G701 & Rap.trav.mach.coord. & Page 331 \\
\hline G977 & LIFTOFF & Page 499 \\
\hline Simple linear and circular movements & Linear movement & Page \\
\hline G1 & Circular arc ccw & Page 333 \\
\hline G2 & Circular arc ccw & Page 334 \\
\hline G3 & Circular arc ccw & Page 334 \\
\hline G12 & Circular arc ccw & Page 335 \\
\hline G13 & Page 335 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Feed rate and spindle speed & Page \\
\hline Gx26 & Speed limitation & Page 336 \\
\hline G64 & Interrupt Feed & Page 337 \\
\hline G48 & Reduce rapid traverse & Page 336 \\
\hline Gx93 & Feed per tooth & Page 338 \\
\hline G94 & Constant feed & Page 338 \\
\hline Gx95 & Feed per rotation & Page 339 \\
\hline Gx96 & Cutting speed & Page 339 \\
\hline Gx97 & Spindle speed & Page 340
\end{tabular}
\begin{tabular}{lll}
\hline Oversizes & & Page \\
\hline G50 & Switch off oversize & Page 347 \\
\hline G52 & Switch off oversize & Page 347 \\
\hline G57 & Oversize axis parall & Page 347 \\
\hline G58 & Oversize cont.parallel & Page 348
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Datum shifts} & Page \\
\hline & Overview of datum shifts & Page 343 \\
\hline G51 & Datum shift & Page 344 \\
\hline G53/G54/G55 & Datum shift & Page 345 \\
\hline G56 & Datum shift & Page 345 \\
\hline G59 & Datum shift & Page 346 \\
\hline G152 & Datum shift in C & Page 440 \\
\hline G920 & Shift OFF & Page 493 \\
\hline G921 & Shift and tool dimensions OFF & Page 493 \\
\hline G980 & Shift ON & Page 500 \\
\hline G981 & Shift and tool dimensions ON & Page 500 \\
\hline \multicolumn{2}{|l|}{Safety clearances} & Page \\
\hline G47 & Safety clearance & Page 349 \\
\hline G147 & Safety clearance & Page 349 \\
\hline \multicolumn{2}{|l|}{Tool-tip radius compensation (TRC/MCRC)} & Page \\
\hline G40 & TRC/MCRC OFF & Page 341 \\
\hline G41 & Switch on the TRC (left) & Page 342 \\
\hline G42 & Switch on the TRC (right) & Page 341 \\
\hline \multicolumn{2}{|l|}{Tools, types of compensation} & Page \\
\hline T & Tool & Page 350 \\
\hline G148 & Correction of cut & Page 351 \\
\hline G149 & Additive correction & Page 352 \\
\hline G150 & Right tool tip & Page 353 \\
\hline G151 & Left tool tip & Page 353 \\
\hline
\end{tabular}

Cycles for turning
\begin{tabular}{lll}
\hline \multicolumn{2}{c}{ Simple turning cycles } & Page \\
\hline G80 & Cycle end & Page 390 \\
\hline G81 & Simpl.longit.drill. & Page 557 \\
\hline G82 & Simpl. face drill. & Page 558 \\
\hline G83 & Repeat contour cycle & Page 559 \\
\hline G86 & Simple recessing cycle & Page 559 \\
\hline G87 & Cycle radius & Page 562 \\
\hline G88 & Cycle chamfer & Page 562 \\
\hline Drilling cycles & & Page \\
\hline G36 & Thread boring & Page 351 \\
\hline G71 & Simple drilling & Page 423 \\
\hline G72 & Boring/cnt-sink & Page 425 \\
\hline G73 & Tapping & Page 426 \\
\hline G74 & Deep boring & Page 428 \\
\hline G & & \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Undercuts & & Page \\
\hline G25 & Undercut & Page 297 \\
\hline G85 & Cycle undercut & Page 414 \\
\hline G851 & Undercut DIN 509 E & Page 415 \\
\hline G852 & Undercut DIN 509 F & Page 416 \\
\hline G853 & Undercut DIN 76 & Page 417 \\
\hline G856 & FORM U undercut & Page 419 \\
\hline G857 & FORM H undercut & Page 420 \\
\hline G858 & FORM K undercut cy. & Page 420
\end{tabular}
\begin{tabular}{lll}
\hline Contour-based turning cycles & Page \\
\hline G740 & Repeat contour cycle & Page 368 \\
\hline G741 & Repeat contour cycle & Page 368 \\
\hline G810 & Longitud. roughing & Page 356 \\
\hline G820 & Face roughing & Page 359 \\
\hline G830 & Contour parallel & Page 362 \\
\hline G835 & Contour cycle, bidirectional & Page 364 \\
\hline G860 & Simple recessing cycle & Page 366 \\
\hline G869 & Recessing & Page 370 \\
\hline G870 & Recess cycle & Page 373 \\
\hline G890 & Finish contour & Page 374 \\
\hline G891 & Cycle for simultaneous finishing & Page 384 \\
\hline G895 & Simultaneous roughing cycle & Page 378
\end{tabular}
\begin{tabular}{lll}
\hline Thread cycles & & Page \\
\hline G31 & Universal tapping cycle & Page 398 \\
\hline G32 & Single thread cycle & Page 403 \\
\hline G33 & Thread single path & Page 405 \\
\hline G35 & ISO thread (metr.) & Page 407 \\
\hline G350 & Single thread & Extended thread \\
\hline G351 & Tapered API thread G352 & Page 408 \\
\hline G352 & Thread boring & Page 422 \\
\hline G36 & Contour thread & Page 410 \\
\hline G38 & Cut-off cycle & Page \\
\hline Parting & Page 413
\end{tabular}

C-axis machining
\begin{tabular}{lll}
\hline C axis & & Page \\
\hline G120 & Reference diameter & Page 440 \\
\hline G152 & Datum shift in C & Page 440 \\
\hline G153 & Standardize C axis & Page 441 \\
\hline G154 & Short path in C & Page 441 \\
\hline Single path-Front and rear face machining & Rap. trav. face & Page \\
\hline G100 & Linear face & Page 442 \\
\hline G101 & Circ. arc face ccw & Page 443 \\
\hline G102 & Circ. arc face ccw & Page 445 \\
\hline G103 & Start point & Page 445 \\
\hline Single path-Lateral-surface machining & Page \\
\hline G110 & Surface linear & Page 447 \\
\hline G111 & Circ.arc surface ccw & Page 447 \\
\hline G112 & Circ.arc surface ccw & Page 449 \\
\hline G113 & Page 449 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Figures-Front and rear face machining & Page \\
\hline G301 & Linear slot, face & Page 391 \\
\hline G302 & Slot cw, face & Page 391 \\
\hline G303 & Slot ccw, face & Page 391 \\
\hline G304 & Full circle, face & Page 392 \\
\hline G305 & Rectangle, face & Page 392 \\
\hline G307 & Polygon on front face & Page 393
\end{tabular}
\begin{tabular}{lll}
\hline Figures-Lateral-surface machining & Page \\
\hline G311 & Linear slot, surf. & Page 393 \\
\hline G312 & Slot cw, surface & Page 394 \\
\hline G313 & Slot ccw, surface & Page 394 \\
\hline G314 & Full circle, surf. & Page 394 \\
\hline G315 & Rectangle, surface & Page 395 \\
\hline G317 & Polygon on lateral surface & Page 395 \\
\hline Milling cycles, face & Page \\
\hline G791 & Linear slot, face & Page 453 \\
\hline G793 & Contour milling cycle, face & Page 455 \\
\hline G797 & Area milling & Page 460 \\
\hline G799 & Thread milling & Page \\
\hline Milling cycles, lateral surface & Page 454 \\
\hline G792 & Linear slot, surf. & \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Milling cycles, lateral surface & Page \\
\hline G794 & Contour milling cycle, lateral & Page 457 \\
\hline G798 & Hel. slot milling & Page 462 \\
\hline Predrilling cycles & Page \\
\hline G840 & Contour milling & Page 464 \\
\hline G845 & Pocket milling - roughing & Page 473 \\
\hline Contour and pocket milling cycles & Page \\
\hline G840 & Contour milling & Page 466 \\
\hline G840 & Deburring & Page 470 \\
\hline G845 & Pocket milling - roughing & Page 474 \\
\hline G846 & Pocket milling - finishing & Page 478 \\
\hline Engraving cycles & Page \\
\hline G801 & Engraving in XC & Page 487 \\
\hline G802 & Engraving in ZC & Page 488
\end{tabular}

Variable programming, program branches
\begin{tabular}{lll}
\hline Programming with variables & Page \\
\hline \# variables & Variable types & Page 515 \\
\hline PARA & Read configuration data & Page 528 \\
\hline CONST & Constant definition... & Page 529 \\
\hline VAR & Assignment of variables... & Page 529 \\
\hline Subprograms & Subprogram call & Page \\
\hline & Page 542 \\
\hline Data input and data output & Page \\
\hline INPUT & Input (\# variables) & Page 534 \\
\hline WINDOW & Open output window (\# variables) & Page 533 \\
\hline PRINT & Output (\# variables) & Page 534 \\
\hline Program Branches, Program Repeats & Page \\
\hline IF..THEN.. & Program branching & Program repeat \\
\hline WHILE.. & Program branching & Page 538 \\
\hline SWITCH.. & Page 540
\end{tabular}

Other G codes
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Other G codes} & Page \\
\hline G4 & Period of dwell & Page 490 \\
\hline G7 & Prec. stop on & Page 490 \\
\hline G8 & Prec. st. off & Page 491 \\
\hline G9 & Block precision & Page 491 \\
\hline G30 & Converting and mirroring & Page 547 \\
\hline G44 & Separation point & Page 306 \\
\hline G60 & Switch off prot.zone & Page 491 \\
\hline G62 & One-sided synchron. (option 153) & Page 549 \\
\hline G63 & Synchronous start of slides (option 153) & Page 550 \\
\hline G65 & Chucking equipment & Page 490 \\
\hline G67 & Wrkpc. blank contour & Page 490 \\
\hline G99 & Select/position the contour & Page 548 \\
\hline G162 & Synchr. marking (option 153) & Page 548 \\
\hline G238 & Fingerprint (option 155) & Page 511 \\
\hline G702 & Contour follow-up & Page 489 \\
\hline G703 & Contour follow-up & Page 489 \\
\hline G720 & Spindle synchronization & Page 551 \\
\hline G725 & Eccentric turning & Page 506 \\
\hline G726 & Transition to eccentric & Page 507 \\
\hline G727 & Eccentric X & Page 509 \\
\hline G728 & Compens. for helical teeth & Page 510 \\
\hline G901 & Act.value in var. & Page 491 \\
\hline G902 & Zero point in variables & Page 491 \\
\hline G903 & Lag error in variables & Page 492 \\
\hline G904 & Fill variable memory & Page 492 \\
\hline G905 & Offset C angle & Page 552 \\
\hline G908 & Blockwise 100\% & Page 492 \\
\hline G909 & Interpret. stop & Page 492 \\
\hline G910 & Switch on measure. & Page 623 \\
\hline G911 & Activate measuring path monitoring & Page 624 \\
\hline G912 & Actual value detect. & Page 624 \\
\hline G913 & End measurement & Page 624 \\
\hline G914 & Deactivate measuring path monitoring & Page 624 \\
\hline G916 & Traversing to a fixed stop & Page 553 \\
\hline G919 & Spind. override 100\% & Page 493 \\
\hline G920 & Shift OFF & Page 493 \\
\hline G921 & Shift and tool dimensions OFF & Page 493 \\
\hline G923 & Handwheel offset in thread & Page 184 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Other G codes & & Page \\
\hline G924 & Fluctuating speed & Page 493 \\
\hline G925 & Force reduction & Page 502 \\
\hline G927 & Convert lengths & Page 494 \\
\hline G928 & TCPM & Page 494 \\
\hline G930 & Sleeve monitoring & Page 503 \\
\hline G931 & HDT mode & Page 504 \\
\hline G932 & Look-ahead parameter & Page 495 \\
\hline G939 & Component monitoring (option 155) & Page 513 \\
\hline G940 & Convert variables automat. & Page 496 \\
\hline G941 & DNC message & Page 498 \\
\hline G976 & Misalignment compensation & Page 498 \\
\hline G977 & LIFTOFF & Page 499 \\
\hline G980 & Shift ON & Page 500 \\
\hline G981 & Shift and tool dimensions ON & Page 500 \\
\hline G995 & Monitoring zone & Page 500 \\
\hline G996 & Load monitoring & Page 501
\end{tabular}
Index

\section*{A}
About this manual.......................... 32
Actual values in variable G901... 491
Additive correction G149............ 352
Additive correction G149-Geo.... 308
Address parameters.................... 280
Angular measurement G787...... 620
API thread G352........................... 408
Approach, smart.Turn.................. 104
attributes for contour description.....
304
Automatic job................................. 95
Automatic working plan generation.
683
AWG 683
full-surface machining............ 719
list of machining...................... 688
machining sequence............... 685
machining sequence, editing. 686

\section*{B}
B axis
compensation during program
run.
725
flexible use of tools................. 723
fundamentals........................... 722
simulation................................ 726
TCPM.. 494
\(B\) axis
HDT.. 724
Blank contour G67 (for
graphics)
Bore hole
centric G49-Geo..................... 303
front face G300-Geo............... 317
Boring G72.................................... 425
c
Calculating hole positions
G840... 464
G845... 473
G845 (Y axis)............................ 660
Calculation of pitch circle G786. 618
Calibrating
touch probe, standard G747.. 597
touch probe via two points
G748
599
Calibrating touch probes............. 597
Cast part G21-Geo....................... 287
\(C\) axis
G code..................................... 440
offset C angle G905................ 552
C-axis contours
Fundamentals......................... 309
Centric polygon
finishing G844
658
roughing G843....................... 657
XY plane G477-Geo................. 637
YZ plane G487-Geo................ 646
chamfer G88.............................. 562
Character set................................ 484
Chucking equipment in simulation
G65... 84
Chuck part bar/tube G20-Geo.... 287
Circular arc........................ 334, 335
front face contour G102-/G103-
Geo
316
front face G102/G103............ 445
lateral surface contour G112-/
G113-Geo.............................. 324
lateral surface G112/G113.... 449
milling G12, G13.................... 654
milling G2, G3........................ 653
turning contour G12-/G13-
Geo
291
turning contour G2-/G3-Geo.. 290
XY plane G172-/G173-Geo..... 630
YZ plane G182/G183-Geo...... 639
Circular measurement G785...... 616
Circular movement...................... 333
Circular pattern with circular
slots... 312
Circular slot
front face G302-/G303-Geo... 318
lateral surface G312-/G313-
Geo....................................... 326
XY plane G372/G373-Geo...... 632
YZ plane G382/G383-Geo...... 641
Clamping in simulations G65..... 490
Code
ALLOCATION............................. 90
CONST..................................... 89
END.. 88
RETURN.................................... 88
VAR.. 89
Compensation.............................. 350
B axis..................................... 725
Compensation of right-hand/left-
hand tool tip G150/G151........... 353
Conditional block run................... 535
Configuration data, reading........ 528
Connection between geometry and
machining commands............... 567
C axis - front face.................. 568
C axis - lateral surface........... 568
turning................................... 567
Constant cutting speed Gx96..... 339
Contour
in XY plane.............................. 629
in YZ plane............................. 638
simple G80............................. 390
Contour and figure milling cycle on
lateral surface G794................... 457
Contour-based turning cycle...... 354
Contour finishing G890 374
Contour follow-up 62, 489
on/off G703 489
saving/loading G702. 489
Contour form 100
Contour milling G840 463
Contour programming 276
Contour repeat cycle G83 559
Contour thread G38. 410
Control graphic TURN PLUS. 703
Controlled partingwith lag error monitoringG917.554
Converting and mirroring G30. 547
Convert lengths G927. 494
Coolant
TURN PLUS machininginformation.707
Correction
additive G149 352
additive G149-Geo. 308
Correction of cut (changing
the cutter compensation)
G148. 351,351
Countersinking G72 425
Creating a job 95
Cut-off cycle G859. 413
Cutter radius compensation. 341
Cutting limit. 628
Cutting speed, constant Gx96.... 339
Cycle end / simple contour G80 390
Data input. 533
Data output 533
Date. 517
Datum, C-axis object center G773. 587
Datum, single point w/ C axis G772. 585Datum shiftabsolute G59346
activating G980 500
activating tool length G981 500
additive G56 345
C axis G152. 440
deactivating G920. 493
deactivating tool length G921 493
in variable G902. 491
overview 343
relative G51 344
Datum shifts G53/G54/G55. 345
Deburring G840. 470
Deep drilling G74 428
Departure, smart.Turn 104
Determining cutting data, TURN
PLUS. 707
Dialog in subprograms. 543DIN PLUSconverting and mirroringG30.547
example of full-surfacemachining with counterspindle571
example of full-surface
machining with single spindle.573
DIN PLUS workpiece blank
definition. 287
Direct program-run continuation G999 501
DNC information G941 498
Drilling
bore milling G75. 431
Deep drilling G74 428
TURN PLUS 706
Drilling and boring
overview. 421
Drilling pattern
circular on front face G745. 434
circular on lateral surface G746 437
linear on front face G743 433
linear on lateral surface G744 436
Drilling unit
bore milling in ICP, C axis....... 154
bore milling in ICP, C axis, on front face 154
bore milling in ICP, C axis on lateral surface 156
bore milling in ICP, Y axis. 239
bore milling in ICP, Y axis on front
face. 239
bore milling in ICP, Y axis on lateral surface 241
Boring, countersinking 130
Boring, countersinking in ICP, Y
axis. 238
Boring in ICP, countersinking, C
axis. 153
Centric 127
centric tapping 128
Circular drilling pattern on front
face. 135
Circ ral
surface 145
Circular tapping pattern on fronface.139
Circular tapping pattern on lateral
surface. 149
deburring in ICP, C axis, on front
face. 155
deburring in ICP, C axis on laterasurface.157
deburring in ICP, Y axis on front
face 240
deburring in ICP, Y axis on lateralsurface.242
Drilling in ICP, C axis. 151
Drilling in ICP, Y axis. 236
Linear drilling pattern on frontface..133
Linear drilling pattern on lateralsurface.143
Linear tapping pattern on frontface.. 138
Linear tapping pattern on lateral
surface. 148
predrilling, contour milling in ICP,
XY plane. 243
predrilling, contour milling in ICP,
YZ plane. 246
predrilling, contour milling in ICPon front face162
predrilling, contour milling in ICP
on lateral surface 168
predrilling, contour milling of
figures. 158
predrilling, contour milling offigures on lateral surface....... 164predrilling, pocket milling in ICP,
XY plane 244
predrilling, pocket milling in ICP
YZ plane 247
predrilling, pocket milling in ICPon front face163
predrilling, pocket milling in ICP
on lateral surface. 169
predrilling, pocket milling of figures 160
predrilling, pocket milling of figures on lateral surface....... 166
Single hole on front face... 131
Single hole on lateral surface 141
Single tap hole on front face. 137
Single tap hole on lateralsurface.147
Tapping in ICP, C axis. 152
Tapping in ICP, Y axis 237
Dwell time G4. 490
E
Eccentric transition G726 507
Eccentric turning G725. 506
Elements of a DIN program 66
Engraving
character set 484
XY plane G803 666
YZ plane G804 667
Engraving on front face G801 487
Engraving on lateral surface
G802. 488
Example
full-surface machining with counter spindle. 571
full-surface machining with
single spindle. 573
machining with the Y axis.. 675
measuring and compensatingworkpieces.625
programming a machining cycle 282
subprogram with contour repetitions. 565
TURN PLUS. 711
Expert program. 283
F
Face roughing, simple G82 558
Face roughing G820 359
Feed
constant G94 338
interrupted G64 337
per revolution G95-Geo 307
per revolution Gx95 339
per tooth Gx93. 338
Feed per minute G94 338
Feed per revolution G95. 339
Feed rate. 336
Feed rate override 100 \% G908.. 492
Feed rate reduction G38-Geo 305
Figure milling cycle
front face G793. 455
lateral surface G794. 457
File organization smart.Turn operating mode.. 78
Fill variable memory G904 492
Find hole
in C front face G780 608
in C lateral surface G781 610
Find stud
in C face G782 612
in C lateral surface G783. 614
Fingerprint. 511
Finishing unit
ICP 171
longitudinal, with direct contourinput.173
measuring cut. 179
transverse, with direct contourinput.175
undercut, types E, F, DIN76. 177
Fixed stop G916 553
Fluctuating spindle speed G924
overview 99
tool. 99
tool Ext 105
Front face contour 315
Front face machining 442
Full circle
front face G304-Geo. 318
lateral surface G314-Geo 326
XY plane G374-Geo 633
YZ plane G384-Geo 641
Full-surface machining in DIN PLUS 569
with TURN PLUS. 716
Function TURN PLUS 682
G
G17 XY plane. 647
G18 XZ plane, turning 647
G19 YZ plane 647
G code for contour description. 743
additive correction G149 308
blank contour G67. 490
blockwise oversize G52 306
bore hole (centric) G49 303
bore hole on front/rear face G300 317
cast part G21 287
centric polygon in XY plane G477 637
centric polygon in YZ planeG487646
circular arc in front/rear face contour G102. 316
circular arc in front/rear face contour G103. 316
circular arc in lateral surface contour G112. 324
circular arc in lateral surface contour G113. 324
circular arc in XY plane G172 630circular arc in XY plane G173 630circular arc in YZ plane G182 639circular arc in YZ plane G183 639circular arc of turning contourG12291
circular arc of turning contour
G13. 291
circular arc of turning contourG2.290
circular arc of turning contourG3.290
circular pattern in XY plane G472 636
circular pattern in YZ plane
G482 644
circular pattern on lateral surface
G412 329
circular slot in XY plane
G372. 632
circular slot in XY plane G373. 632
circular slot in YZ plane G382 641
circular slot in YZ plane G383. 641
circular slot on front/rear face
G302. 318
circular slot on front/rear faceG303318
circular slot on lateral surface G312 326
circular slot on lateral surfaceG313.326
DataMatrix for lateral surfaceG415.330
DataMatrix on front face G405. 322
DataMatrix XY plane G475 637
DataMatrix YZ plane G485. 645
end of pocket/island G309. 309
feed per revolution G95. 307
feed rate reduction G38 305
full circle in XY plane G374.... 633
full circle in YZ plane G384.. 641
full circle on front/rear face G304. 318
full circle on lateral surface G314 326
G20 chuck part bar/tube 287
G402 circular pattern on front/rear face321
hole in XY plane G370 631
hole in YZ plane G380 640
hole on lateral surface G310. 325
linear patter in XY planeG471635
linear pattern in YZ planeG481643
linear pattern on front/rear faceG401320
linear pattern on lateral surfaceG411.328
linear slot in XY plane G371.. 632
linear slot in YZ plane G381... 64
linear slot on front/rear face
G301 317
linear slot on lateral surface G311. 325
line segment in a lateral surfacecontour G111323
line segment in a turning contourG1289
line segment in front/rear facecontour G101315
line segment in XY planeG171.629
line segment in YZ planeG181.638
polygon in XY plane G377 634
polygon in YZ plane G387 642
polygon on front/rear faceG307.320
polygon on lateral surface G317. 328
recess (general) G23 295
recess (standard) G22 293
rectangle in XY plane G375... 633
rectangle in YZ plane G385... 642
rectangle on front/rear faceG305.319
rectangle on lateral surface G315. 327
single surface in \(X Y\) planeG376.634
single surface in YZ planeG386.645
starting point of contour in XYplane G170.629
starting point of contour in YZplane G180.638
starting point of front/rear facecontour G100.315
starting point of lateral surfacecontour G110323
start of pocket/island G308... 309
superimposed elements G39 305
surface roughness G10 304
text for front face, C axis,
G306. 319
text for front face Y G378. 635
text for lateral surface, C axis, G316. 327
text for lateral surface Y G388. 643
thread (general) G37. 301
thread (standard) G34. 300
thread with undercut G24 296
Undercut contour G25... 297, 555
G code for machining 746
absolute datum shift G59 346
activating datum shift, tool lengthG981500
activating datum shift G980.. 500
actual values in variableG901491
additive correction G149 352
additive datum shift G56 345
approach tool change point in \(Y\)axis G14650
area milling, finishing in Y axisG842.
G797 460
axis-parallel oversize G57 347
bore milling G75 431
boring, countersinking G72.. 425
centric polygon - finishing in \(Y\)
axis G844 658
centric polygon - roughing in \(Y\)axis G843657
chucking equipment G65. 84
circular arc G12 335
circular arc G13 335
circular arc G2 334
circular arc G3 334
circular arc in Y axis G12 654
circular arc in Y axis G13 654
circular arc in \(Y\) axis G2 653
circular arc in Y axis G3 653
circular arc on front/rear face G102 445
circular arc on front/rear face
G103 445
circular arc on lateral surfaceG112449
circular arc on lateral surface
G113 449
circular pattern on front face
G745 434
circular pattern on lateral surfaceG746437
circular slot on front faceG302391
circular slot on front faceG303391
circular slot on lateral surfaceG312394
circular slot on lateral surfaceG313394
clamping G65 490
compensation for helical teethG728510
compensation of left-hand tooltip G151353
compensation of right-hand tooltip G150353
component monitoring G939 513constant cutting speed G96.. 339
constant feed G94 338
contour and figure milling cycleon front face G793.................. 455contour and figure milling cycleon lateral surface G794........... 457contour cycle bidirectional G835(contour-parallel with neutraltool).364
contour finishing G890 374
contour follow-up G703 489
contour milling G840 463
contour-parallel oversize G58..
contour-parallel roughing G830... 362
contour thread G38410
converting and mirroring G30 547
correction of cut G148 (changing
the cutter compensation)...... 351
cut-off cycle G859 413
cycle end / simple contour G80 390
datum shift G51 344
datum shift in C axis G152... 440
datum shift in variable G902. 491datum shifts G53/G54/G55... 345
deactivating datum shiftG920.493
deactivating datum shifts, toollength G921.493
Deep drilling G74 428
define monitoring zone G995 500
definition of tool change pointG140332
direct program-run continuationG999.501
drilling cycle G71 423
dwell time G4. 490
eccentric polygon on lateral surface G317 395
eccentric transition G726 507
eccentric turning G725 506
engraving in XY plane G803. 666
engraving in YZ plane, G80 667
engraving on front face
G801. 487
engraving on lateral surface G802 488
face roughing G820 359
feed per revolution G95 339
feed per tooth G93. 338
feed rate override 100 \% G908 492
fill variable memory G904 492
fluctuating spindle speedG924493
force reduction G925 502
full circle on front face G304. 392
full circle on lateral surface G314 394
G73 tapping 426
G799 thread milling axial. 439
HDT mode G931 504
helical slot milling G798 462
hobbing G808. 674
information to DNC G941 498
interpreter stop G909 492
interrupted feed G64 337
lag error in variable G903 492
lateral surface, linear path
G111 447
lift off G977 499
linear movement G1 333
linear movement in Y axis G1 652
linear pattern on front faceG743.433
linear pattern on lateral surfacG744.436
linear segment on front/rear faceG101443
linear slot on front face G301 391linear slot on front face G791 453linear slot on lateral surface
G311. 393
linear slot on lateral surfaceG792.454
line with chamfer G88. 562
line with radius G87 562
longitudinal roughing G810 356
measuring cut G809 389
metric ISO thread G35. 407
misalignment compensationG976.498
non-circular X G727 509
offset C angle G905 552
one-sided synchronization G62 62....
549
pocket milling, finishingG846.478
Pocket milling, roughing G845. 472
pocket milling - finishing in \(Y\)axis G846.664
pocket milling - roughing in \(Y\)axis G845.659
polygon on front/rear faceG307.393
precision stop OFF G8 491
precision stop ON G7. 490
rapid traverse, referencing themachine datum G701.... 331, 651rapid traverse, referencing theworkpiece datum G0.331
rapid traverse in Y axis G0.... 650
rapid traverse on front/rear faceG100.442
rapid traverse on lateral surfaceG110.447
recessing cycle G870 373
recessing with respect to thecontour G860366
recess turning cycle G869.. 370
rectangle on front face G305 392repeating recessing cycleG740368
repeating recessing cycle G741 368
safety clearance for milling G147 349
safety clearance G47 349
saving/loading contour follow-upG702489
setting synchronizing mark G162 548
short path in C G154 441
simple contour repeat cycle
G83. 559
simple face roughing G82.... 558
simple longitudinal multi-startthread G351564
simple longitudinal roughing G81 557
simple longitudinal single-startthread G350.563
simple recessing cycle G86.. 561
simultaneous finishing G891 384simultaneous roughing G895 378
single thread cycle G32 403
sleeve monitoring G930 503
speed limitation G26 336
spindle override 100 \% G919. 49 93
spindle speed G97. 340
spindle synchronization G720..551standardize C axis G153........ 441
switch off oversize G50. 347
switch off protection zone
G60 491
switch off TRC/MCRC G40. 341
switch on TRC/MCRC G41. 342
switch on TRC/MCRC G42... 342
synchronous start of slides
G63. 550
tapered API thread G352. 408
thread, single path G33. 405
thread milling in XY plane G800 668
thread milling in YZ plane G806 669
tilt working plane G16.... 648, 6 649
tool change point G14 332
traverse to a fixed stop G916 553trochoidal contour millingG847480
trochoidal pocket milling G848 482
type of load monitoring G996 501
undercut cycle G85 414
undercut DIN 509 E with cylindemachining G851415
undercut DIN 509 F with cylinder
machining G852 416
Undercut DIN 76 with cylinder
machining G853 417
undercut type H G857 420
undercut type K G858. 420
undercut type U G856 419
universal tapping cycle G31.. 398
workpiece group G99 548
G codes for machining Controlled parting G917 554
G36 Tapping 422
Geometry command 274
G function for machiningMeasure machine conditionG238511
Skiving G807 669
Global form 103
H
Handwheel superimposition..... 184,
396
HDT mode G931 504
Helical slot milling G798 462
Helical teeth G728 510
Help commands for contourdescription.304
Help graphics for subprogram call. 544
High Dynamic Turning. 724
Hobbing G808 674
Hole
lateral surface G310-Geo 325
XY plane G370-Geo 631
YZ plane G380-Geo 640

IF.. Program branching................ 535Inches
conversion 496
programming 65
Index of a parameter element
determining 529
Information to DNC G941 498
In-process measurement 623
INPUT. 534
Input of \# variables 534
Inside contourTURN PLUS machininginformation.............................. 707
Interpreter stop G909 492
Interrupted feed G64 337
Island (DIN PLUS) 309
ISO program conversion 284
L
Lag error in variable G903 492
contour. 323
machining 447
SURFACE Y section. 87
L call. 542
Lift off after NC stop G977. 499
Linear and circular movements in axis. 652
Linear axis 65
Linear movement 333, 652
Linear movement G1 333
Linear path
lateral surface G111 447
Linear segment
front face G101 443
Linear slot
front face G301-Geo. 317
front face G791 453
lateral surface G311-Geo. 325
lateral surface G792 454
XY plane G371-Geo 632
YZ plane G381-Geo 640
Line segment
front face contour G101-Geo 31
lateral surface contour G111
Geo.323
XY plane G171-Geo 629
YZ plane G181-Geo 638
Line segment in a turning contourG1-Geo289
Load monitoring G996. 501
Longitudinal roughing, simple G81 557
Longitudinal roughing G810 356
M
Machine command 546
Machining attributes for form elements 288
Machining command 274
Machining cycle 282
Machining information TURN PLUS 704
Machining on tapered contours. 498
Machining sequence AWG
editing. 686
list of machining 688
managing. 686
Machining sequence in AWG general 685
M command. 545
G912 624
angular 620
circular. 616
ending G913 624
switch on G910 623
with touch probe cycle 601
Measuring cut G809 389
Measuring path monitoring activating G911 624
deactivating G914. 624
Measuring the machine condition overview 511
Menu item
Configuration. 74
Extras. 76
geometry 286
Go to. 73
Graphics 77
ICP 73
machining 286
Misc. 75
program head 72
program management 72
units. 98
Menu structure
smart.Turn operating mode..... 68
Metric ISO thread G35. 407
Milline pattern
circular on front face G745.... 434
Milling
area milling on front face
G797460
contour and figure milling cycle
455
on front face G793
contour and figure milling cycle
on lateral surface G794 457
Contour milling G840 466
fundamentals G840. 463
helical slot G798. 462
linear slot on front face G791 4 453
linear slot on lateral surface G792 454
pocket milling, finishing G846 478
Pocket milling, roughing G845 472
Pocket milling G845. 474
trochoidal contour milling G848 480
trochoidal pocket milling G848 482
Milling cycle Y axis. 655
Milling cycles
overview. 451
Milling pattern
circular on lateral surface G746 437
linear on front face G743. 433
linear on lateral surface
G744. 436
Milling unit
centric polygon, \(X Y\) plane 254
centric polygon, YZ plane...... 265
circular slot pattern on front face 194
circular slot pattern on lateralsurface.214
contour milling, figures on lateral
surface. 216
contour milling in ICP, XY
plane. 249
contour milling in ICP, YZ
plane 261
contour milling in ICP on front
face. 202
contour milling in ICP on lateralsurface.221
contour milling of figures on front
face 197
deburring, XY plane 252
deburring, YZ plane 263
deburring on front face. 206
deburring on lateral surface.. 223
engraving, XY plane 255
engraving, YZ plane 266
engraving on front face.. 201
engraving on lateral surface.. 220
face milling. 195
face milling in ICP 207
helical slot. 215
linear slot on front face. 192
linear slot on lateral surface.. 212
linear slot pattern on front
face.. 193
linear slot pattern on lateral surface. 213
pocket milling in ICP, XY plane. 250
pocket milling in ICP, YZ plane. 262
pocket milling in ICP on front
face. 204
pocket milling in ICP on lateralsurface.222
pocket milling of figures on frontface199
pocket milling of figures on lateral surface. 218
single surface, XY plane. 253
single surface, YZ plane 264
thread milling 196
thread milling, XY plane 256
thread milling, YZ plane 267
trochoidal pocket milling 259
Milling unit, front face
trochoidal contour milling, C axis. 208
trochoidal contour milling, Y axis 257
trochoidal pocket milling, C axis. 210
Milling unit, lateral surface
trochoidal contour milling, C axis 224
trochoidal contour milling, Y
axis. 268 axis. 226
trochoidal pocket milling, Y axis. 270
Misalignment compensation G788622
Misalignment compensation G976.498
Monitoring zone, defining G995. 500
Multipoint tool 93
for the \(B\) axis 723
N
NC information, reading..... 524, 525
NC program interpretation. 283
New NC program, create. 67
Non-circular X G727. 509
0
One-side synchronization G62... 549
Output of \# variables. 534
Output window for variables. 533
Oversize 347
axis-parallel G57 347
contour-parallel (equidistant)G58.348
G52-Geo 306
switching off G50. 347
Overview form 99
P
PARA
configuration data, reading... 528
determining the index of aparameter element.529
Parallel editing 69
Pattern
circular in XY plane G472-
Geo. 636
circular in YZ plane G482-
G746 437
DataMatrix for lateral surface
G415-Geo 330
DataMatrix on front face G405Geo322
DataMatrix XY plane G475-
Geo. 637
DataMatrix YZ plane G485-
Geo. 645
linear in XY plane G471-Geo.. 635
linear in YZ plane G481-Geo. 643
linear on front face G401-
Geo 320
linear on front face G743. 433
linear on lateral surface G411
Geo. 328
linear on lateral surface G744 436
Pocket milling
finishing G846. 478
Roughing G845. 472
Polygon
lateral surface G317-Geo. 328
on front/rear face G307-Geo 320
XY plane G377-Geo 634
YZ plane G387-Geo 642
Position of milling contour 309
Position of milling contour in \(Y\)axis.628
Precision stop blockwise G9 491
OFF G8 491
ON G7. 490
PRINT 534
Probing
C axis G765. 603
in two axes G766 604
in two axes G767 605
in two axes G768 606
in two axes G769 607
paraxial G764. 601
Program
create.. 67
Program branch
IF. 535
SWITCH 540
WHILE 538
Program interpretation 283
Program list 95
Programming in ISO mode 274
with smart.Turn 98
Programming variables 514
Program section code 80, 742
Program templates 575
R
Radius G87 562
Rapid traversefront face G100.442
lateral surface G110. 447
reducing G48 336
referencing the machine datumG701................................. 331, 651
referencing the workpiece datumGO..331
Y axis G0. 650
Read
interpolation information G904.492
Reading
configuration data. 528
current NC information 524
general NC information 525
Reading diagnostic bits 523
Reading tool data 520
Rear face contour 315
Rear-face machiningexample of full-surfacemachining with counterspindle571
example of full-surfacemachining with single spindle.573
Recess
general G23-Geo 295
standard G22-Geo 293
Recessing
recessing cycle G870 373
recessing G860 366
repeating G740 368
repeating G741 368
repeating recessing cycle G740 368
repeating recessing cycle G741 368
Recessing cycle G870 373
Recessing G86 561
Recessing G860 366
Recessing unit
contour recessing in ICP.... 119
contour recessing with directcontour input122
parting 124
recess cycle 126
recessing in ICP 126
recess turning in ICP 120
recess turning with direct contour input 123
undercutting, type H, K, U 125
Recess turning cycle G869 370
TURN PLUS 716
Rectangle
front face G305-Geo 319
lateral surface G315-Geo. 327
XY plane G375-Geo 633
YZ plane G385-Geo 642
Reference diameter G120 440
Reference plane
SURFACE Y section 87
Replacement tool 94
Resonance, reducing 493
Rotary axis 65
Roughing
contour cycle, bidirectional G83 835
tool) 364
contour-parallel G830 362
face G820 359
longitudinal G810. 356
Roughing unit
bidirectional in ICP 111
contour-parallel in ICP. 110
longitudinal, with direct contour112
longitudinal in ICP 106
simultaneous roughing G895 115
transverse, with direct contour
input.114
transverse in ICP 108
Running NC blocks with NC start
in Program run, Single block mode
G999 501
S
Safety clearance for milling
G147. 349
Safety clearance for turningG47.349
Screen layout
smart.Turn operating mode..... 69
Search cycle. 608
Section. 80
AUXILIARY BLANK. 86
AUXILIARY CONTOUR. 86
BLANK. 86
CHUCKING EQUIPMENT 84
CONTOUR GROUP 85
END
RETURN. 88
SUBROUTINE 88
SURFACE Y 87
TURRET 85
VAR 89
Separation point G44. 306
Setting synchronizing mark
G162. 548
Shaft machining TURN PLUS. 709
shaft speed 336
Short path in C G154. 441
Simultaneous contour finishingG891384
Simultaneous finishing unit. 180
Single-point measurement, datum G771 583
Single-point measurement for toocompensation G770581
Single surface
XY plane G376-Geo 634
YZ plane G386-Geo 645
Single thread cycle G32 403
Skip level 541
Skiving (G807) 669
Sleeve monitoring G930. 503
Slot
circular on front face G302-/G303-Geo318
circular on lateral surface G312
G313-Geo. 326
linear on front face G301-
Geo 317
linear on front face G791.. 453
linear on lateral surface G311
Geo. 325
linear on lateral surface
G792 454
smart.Turn 62
editor. 68
file organization. 78
menu structure 68
screen layout 69
unit 98
Spec. unit
C axis OFF 230
C axis ON 229
Special output window. 533
Spec unit
program beginning 228
program end 232
program section repeat 231
subprogram call 230
Tilt plane. 233
Speed, constant Gx97 340
Speed limitation G26 336
Spindle override 100 \% G919 493
Spindle synchronization G720.. 551
Standardize C axis G153 441
Starting point
contour in YZ plane G180-Geo638
front face contour G100-Geo 315lateral surface contour G110-Geo323
turning contour G0-Geo. 288
Starting point of contour in XY plane629
Start of pocket/island G308-Geo.309
Structured NC program 63
Submode AWG. 683
Subprogram
call. 542
dialog in SP call 543
fundamentals 283
help graphics for SP call. 544
Surface roughness G10-Geo. 304
SWITCH..CASE program branch 540
Switch off MCRC G40. 341
Switch off protection zone G60. 491
Switch off TRC G40 341
Switch on MCRC G41/G42 342
Switch on TRC G41/G42. 342
Synchronous function M97 550
Synchronous start of slides G63 550
T
Tapered API thread G352 408
Tapping 426
universal G31 398
Tapping G36 - Single path 422
T command. 350
fundamentals. 91
TCPM 494, 722
Text
front face, C axis, G306-Geo.. 3 319
front face Y G378-Geo 635
lateral surface, C axis, G316-
Geo. 327
lateral surface Y G388-Geo 643
Thread
general G37-Geo 301
metric ISO G35 407
simple longitudinal multi-startthread G351564
simple longitudinal single-start
thread G350 563
single G32 403
single path G33. 405
standard G34-Geo 300
tapered API G352 408
Thread cyclesoverview.396
Thread milling
axial G799 439
XY plane G800 668
YZ plane G806 669
Thread overrun 396
Thread run-in 396
Thread runout. 396
Thread unit
API thread 189
direct input 186
ICP. 187
tapered thread. 190
Tilted working plane. 722
Time. 517
Tool
editing of entry. 93
inserting - T 350
multipoint tool. 93
positioning 331
positioning in Y axis 650
replacement tool. 94
Tool change point
approaching G14 332
definition G140 332
Tool command 350
Tool Ext form 105
Tool form 99
Tool programming. 91
Tool selection
TURN PLUS 704
Tool-tip radius compensation. 341
Touch probe cycle
angular measurement 620
automatic mode 579
recessing 706
rechucking the workpiece. 716
shaft machining 709
tool selection 704
turret assignment list. 704
Turret
setting up a turret list. 91
TURN PLUS turret assignment 704list.
Two-point measurement G17 G777 593
G18 longitudinal G776 591
G18 transverse G775. 589
G19 G778 595
U
Undercut
cycle. 414
DIN 509 E 297
DIN 509 E with cylinder machining G851 415
DIN 509 F. 298
DIN 509 F with cylinder
machining G852. 416
DIN 76 298
DIN 76 with cylinder machining
417
G853
299
299
type H
type H
420
420
type H G857
type H G857
299
299
type K............ 420
type U 297
type U G856. 419
Undercut contour G25-Geo 297
Undercut cycle G85. 414
Unit. 98
Unit of measure. 65
Unit - threadoverview.184
vVariable
automatically calculating G940
496
expanded syntax 529
fundamentals. 514
Variables
types 515
Vibration, reducing 493
w
WHILE 538
WINDOW. 533
Working plane tilting G16 648, 649
Workpiece group G99 548
Workpiece transfercontrolled parting with lag error
monitoring G917 554
X
XY plane G17 on front or rear
face. 647
XZ plane G18 647
Y
Y axis
G14 650
area milling, finishing G842... 656
area milling, roughing G841 655
G844. 658
centric polygon - roughing G843 657
circular arc G12, G13 654
circular arc G2, G3 653
linear movement G1 652
pocket milling - finishing G846. 664
pocket milling - roughing
G845. 659
rapid traverse G0 650
tool positioning. 650
Y-axis contour fundamentals 628
YZ plane G19, lateral view / lateral surface. 647

\section*{HEIDENHAIN}

DR. JOHANNES HEIDENHAIN GmbH
Dr.-Johannes-Heidenhain-Straße 5
83301 Traunreut, Germany
®
FAX +49 8669 32-5061
info@heidenhain.de
Technical support [FAX +498669 32-1000 Measuring systems 家 +49 8669 31-3104 service.ms-support@heidenhain.de
NC support \({ }^{2}+498669\) 31-3101
service.nc-support@heidenhain.de
NC programming
service.nc-pgm@heidenhain.de
PLC programming \(\quad\) ? 498669 31-3102
service.plc@heidenhain.de
APP programming \(\mathscr{D}^{8}+498669\) 31-3106
service.app@heidenhain.de

\section*{www.heidenhain.com}```

[^0]: If you do not define the parameters \mathbf{Z} and \mathbf{B}, TURN PLUS will use the following machine parameters during AWG (automatic working plan generation) submode:

 - Front Edge of chuck on spindle or counter spindle
 - Jaw width on spindle / counterspindle

[^1]: (1)

 Program only the parameters relevant to the selected figure type.

[^2]: (1) - The tool call is not a mandatory parameter in this unit

 - Instead of the text transfer value, texts can be displayed that were defined in the subprogram. You can also define help graphics for each line of the subprogram Further information: "Subprograms", Page 542

[^3]: (i) Program only \mathbf{X} or \mathbf{Z} for the Start point.

