

Manual do Utilizador Programação de ciclos

iTNC 530

Software NC 606420-04, SP8 606421-04, SP8 606424-04, SP8

Português (pt) 3/2016

Sobre este manual

Apresenta-se seguidamente uma lista dos símbolos indicadores utilizados neste manual

Este símbolo significa que há indicações especiais a respeitar relativamente à função descrita.

Este símbolo significa que, ao utilizar-se a função descrita, existem um ou mais dos perigos seguintes:

- Perigos para a peça de trabalho
- Perigos para o dispositivo tensor
- Perigos para a ferramenta
- Perigos para a máquina
- Perigos para o operador

Este símbolo significa que a função descrita deve ser ajustada pelo fabricante da sua máquina. Por conseguinte, a função descrita pode diferir de máquina para máquina.

Este símbolo indica que as descrições detalhadas de uma função se encontram noutro manual de utilizador.

São desejáveis alterações? Encontrou uma gralha?

Esforçamo-nos constantemente por melhorar a nossa documentação para si. Agradecemos a sua ajuda, informando-nos das suas propostas de alterações através do seguinte endereço de e-mail: tnc-userdoc@heidenhain.de.

Tipo de TNC, software e funções

Este manual descreve as funções disponíveis nos TNC a partir dos números de software de NC que a seguir se apresentam.

Tipo de TNC	N.º de software de NC
iTNC 530, HSCI e HEROS 5	606420-04, SP8
iTNC 530 E, HSCI e HEROS 5	606421-04, SP8
Posto de programação HSCI iTNC 530	606424-04, SP8
Posto de programação iTNC 530, HEROS 5 para software de virtualização	606425-04, SP8

A letra E caracteriza a versão de exportação do TNC. Nas versões de exportação do TNC, aplica-se a seguinte restrição:

Movimentos lineares simultâneos até 4 eixos

HSCI (HEIDENHAIN Serial Controller Interface) é a designação da nova plataforma de hardware dos comandos TNC.

HEROS 5 é o nome do novo sistema operativo dos comandos TNC baseados na HSCI.

O fabricante da máquina adapta à respetiva máquina a capacidade útil do TNC por meio de parâmetros de máquina. Por isso, neste manual descrevem-se também funções que não estão disponíveis em todos os TNC.

As funções do TNC que não se encontram disponíveis em todas as máquinas são, por exemplo:

Medição de ferramentas com o apalpador TT

Contacte o fabricante da máquina para ficar a conhecer exatamente todas as funções da sua máquina.

Muitos fabricantes de máquinas e a HEIDENHAIN oferecem cursos de programação para os TNC. Recomenda-se a participação nestes cursos, para se ficar a conhecer de forma intensiva as funções do TNC.

Manual do Utilizador:

Todas as funções do TNC que não estão relacionadas com ciclos encontram-se descritas no Manual do Utilizador do iTNC 530. Consulte a HEIDENHAIN se necessitar deste manual.

ID Manual do Utilizador Diálogo em texto claro: 737759-xx.

ID Manual do Utilizador DIN/ISO: 737760-xx.

Documentação do utilizador do smarT.NC:

O modo de funcionamento smarT.NC é descrito num guia independente. Consulte a HEIDENHAIN se necessitar deste guia. ID: 533191-xx.

Opções de software

O iTNC 530 dispõe de diversas opções de software, que podem ser ativadas pelo operador ou pelo fabricante da máquina. Cada opção é de ativação independente e contém respetivamente as seguintes funções:

Opção 1 de software
Interpolação de superfície cilíndrica (ciclos 27, 28, 29 e 39)
Avanço em mm/min com eixos rotativos: M116
Inclinação do plano de maquinagem (ciclo 19, função PLANE e softkey 3D-ROT no modo de funcionamento manual)
Círculo em 3 eixos com plano de maquinagem inclinado
Opcão 2 de software

Interpolação de 5 eixos

Interpolação de splines

Maquinagem 3D:

- M114: correção automática da geometria da máquina ao trabalhar com eixos inclinados
- M128: manter a posição da extremidade da ferramenta no posicionamento de eixos inclinados (TCPM)
- FUNCTION TCPM: manter a posição da extremidade da ferramenta no posicionamento de eixos inclinados (TCPM) com possibilidade de ajuste da atuação
- M144: consideração da cinemática da máquina em posições REAL/NOMINAL no fim do bloco
- Parâmetros suplementares Acabar/Desbastar e Tolerância para eixos rotativos no ciclo 32 (G62)
- Blocos LN (Correção 3D)

Opção de software DCM Collision	Descrição
Função que supervisiona os campos definidos pelo fabricante da máquina, para evitar colisões.	Diálogo em texto claro do Manual do Utilizador
Opção de software DXF-Converter	Descrição

Opção de software para definições de programa globais	Descrição
Função para sobreposição de transformações de coordenadas nos modos de funcionamento de execução, deslocações sobrepostas com o volante numa direção do eixo virtual.	Diálogo em texto claro do Manual do Utilizador
Opção de software AFC	Descrição

produção em série. do Utilizador	Função de regulação do avanço adaptável para otimização das condições de corte na produção em série.	Diálogo em texto claro do Manual do Utilizador
----------------------------------	--	--

Opção de software KinematicsOpt	Descrição
Ciclos de apalpação para teste e otimização	Página 484
da precisão das máguinas.	

Opção de software 3D-ToolComp	Descrição
Correção do raio da ferramenta 3D	Diálogo em texto
dependente do ângulo de pressão em	claro do Manual
blocos LN.	do Utilizador

Opção de software para gestão de ferramentas avançada	Descrição
Gestão de ferramentas adaptável pelo fabricante da máquina através de scripts Python.	Diálogo em texto claro do Manual do Utilizador
Opção de software CAD-Viewer	Descrição

Diálogo em texto claro do Manual do Utilizador

Abertura de modelos 3D no comando.

Opção de software Torneamento de interpolação	Descrição
Torneamento de interpolação de um escalão com o ciclo 290.	Página 326

Opção de software Remote Desktop Manager	Descrição
Controlo remoto de computadores (p. ex., PC	Diálogo em texto
Windows) através da superfície gráfica do	claro do Manual
utilizador do TNC	do Utilizador

Ť

Opção de software Cross Talk Compensation CTC	Descrição
Compensação de acoplamentos de eixos	Manual da máquina
Opção de software Position Adaptive Control PAC	Descrição
Ajuste de parâmetros de regulação	Manual da máquina
Opção de software Load Adaptive Control LAC	Descrição
Ajuste dinâmico de parâmetros de regulação	Manual da máquina
Opção de software Active Chatter Control ACC	Descrição
Função totalmente automática para suprimir vibrações durante a maquinagem	Manual da máquina

Estado de desenvolvimento (funções de atualização)

Juntamente com as opções de software, são geridos outros desenvolvimentos essenciais do software TNC através de funções de atualização, o chamado **F**eature **C**ontent **L**evel (termo inglês para Estado de Desenvolvimento). As funções contidas no FCL não estarão disponíveis se for efetuada uma atualização do software do TNC.

Se receber uma nova máquina, todas as funções de atualização estarão disponíveis sem custos adicionais.

As funções de atualização constam do manual assinalado com FCL n, em que n corresponde ao número consecutivo do estado de desenvolvimento.

É possível ativar, por um longo período, as funções FCL através da aquisição de um código. Se necessário, contacte o fabricante da sua máquina ou a HEIDENHAIN.

Funções FCL 4	Descrição
Representação gráfica do abrigo com supervisão de colisão DCM ativa	Manual do Utilizador
Sobreposição de roda de mão em posição de paragem com supervisão de colisão DCM ativa	Manual do Utilizador
Rotação básica 3D (compensação de fixação)	Manual da Máquina

Funções FCL 3	Descrição
Ciclo do apalpador para apalpação 3D	Página 473
Ciclos de apalpação para memorização automática do ponto de referência ranhura centro/nervura centro	Página 367
Redução do avanço na maquinagem da caixa de contorno quando a ferramenta está totalmente engatada	Manual do Utilizador
Função PLANE: Introdução do ângulo de eixo	Manual do Utilizador
Documentação do utilizador como sistema de ajuda sensível ao contexto	Manual do Utilizador
smarT.NC: programar smarT.NC paralelamente para maquinagem	Manual do Utilizador
smarT.NC: caixa de contorno sobre figura de pontos	Guia smarT.NC

	Funções FCL 3	Descrição
	smarT.NC: pré-visualização de programas de contornos no gestor de ficheiros	Guia smarT.NC
	smarT.NC: estratégia de posicionamento em maquinagem de pontos	Guia smarT.NC
	Funções FCL 2	Descrição
	Gráfico de linhas 3D	Manual do Utilizador
	Eixo virtual da ferramenta	Manual do Utilizador
	Suporte USB de aparelhos em bloco (unidades de memória, disco rígido, unidade de CD-ROM)	Manual do Utilizador
	Filtragem de contornos elaborados externamente	Manual do Utilizador
	Possibilidade de atribuir diferentes profundidades a cada contorno parcial através da fórmula de contorno	Manual do Utilizador
	Gestão dinâmica de endereços IP DHCP	Manual do Utilizador
	Ciclo de apalpação para ajuste geral dos parâmetros do apalpador	Página 478
	smarT.NC: suporte gráfico de processo de bloco	Guia smarT.NC
-	smarT.NC: transformações de coordenadas	Guia smarT.NC
	smarT.NC: função PLANE	Guia smarT.NC

Local de utilização previsto

O TNC corresponde à Classe A segundo EN 55022 e destina-se principalmente ao funcionamento em ambientes industriais.

Novas funções de ciclos do software 60642x-01

- Novo ciclo 275 Executar ranhura de contorno com fresagem trocoidal (ver "FRESAGEM TROCOIDAL DE RANHURA DE CONTORNO (ciclo 275, DIN/ISO: G275)" na página 212)
- No ciclo 241 para furação com gume único, agora também é possível definir uma profundidade de permanência (ver "FURAR COM GUME ÚNICO (Ciclo 241, DIN/ISO: G241)" na página 98)
- O comportamento de aproximação e afastamento do ciclo 39 CONTORNO DE CORPO CILÍNDRICO é agora ajustável (ver "Execução do ciclo" na página 240)
- Novo ciclo de apalpação para calibração de um apalpador numa esfera de calibração (ver "CALIBRAR TS (Ciclo 460, DIN/ISO: G460)" na página 480)
- KinematicsOpt: foi introduzido um parâmetro adicional para determinação da folga de um eixo rotativo. (ver "Folga" na página 495)
- KinematicsOpt: melhor apoio para posicionamento de eixos de recortes dentados hirth (ver "Máquina com eixos de recortes dentados hirth" na página 491)

Novas funções de ciclos do software 60642x-02

- Novo ciclo de maquinagem 225 Gravação (ver "GRAVAÇÃO (Ciclo 225, DIN/ISO: G225)" na página 321)
- Novo ciclo de maquinagem 276 Traçado do contorno 3D (ver "TRAÇADO DO CONTORNO 3D (Ciclo 276, DIN/ISO: G276)" na página 217)
- Novo ciclo de maquinagem 290 Torneamento de interpolação (ver "TORNEAMENTO DE INTERPOLAÇÃO (opção de software, ciclo 290, DIN/ISO: G290)" na página 326)
- Nos ciclos de fresagem de rosca 26x está agora disponível um avanço separado para a aproximação tangencial à rosca (ver a descrição dos parâmetros de ciclo correspondente)
- Nos ciclos KinematicsOpt foram introduzidas as seguintes melhorias:
 - Novo algoritmo de otimização mais rápido
 - Após a otimização de ângulo, deixa de ser necessária uma série de medições separada para a otimização de posição (ver "Diferentes Modos (Q406)" na página 500)
 - Retorno dos erros de offset (alteração do ponto zero da máquina) nos parâmetros Q147-149 (ver "Execução do ciclo" na página 488)
 - Até 8 pontos de medição de plano na medição de esfera (ver "Parâmetros de ciclo" na página 497)
 - Eixos rotativos que não estão configurados são ignorados pelo TNC ao executar o ciclo (ver "Ter em atenção ao programar!" na página 496)

Novas funções de ciclos do software 60642x-03

- No ciclo 256 Ilha retangular está agora disponível um parâmetro com o qual é possível determinar a posição de aproximação na ilha (ver "ILHA RETANGULAR (Ciclo 256, DIN/ISO: G256)" na página 164)
- No ciclo 257 Fresagem de ilha circular está agora disponível um parâmetro com o qual é possível determinar a posição de aproximação na ilha (ver "ILHA CIRCULAR (Ciclo 257, DIN/ISO: G257)" na página 168)

Novas funções de ciclos do software 60642x-04

- Novo ciclo 25: Reconhecimento automático de material residual (ver "TRAÇADO DO CONTORNO (Ciclo 25, DIN/ISO: G125)" na página 208)
- Ciclo 200: Parâmetro de introdução Q359 para determinação da referência de profundidade ampliado (ver "FURAR (ciclo 200)" na página 75)
- Ciclo 203: Parâmetro de introdução Q359 para determinação da referência de profundidade ampliado (ver "FURAR UNIVERSAL (Ciclo 203, DIN/ISO: G203)" na página 83)
- Ciclo 205: Parâmetro de introdução Q208 para avanço de retrocesso ampliado (ver "FURAR EM PROFUNDIDADE UNIVERSAL (Ciclo 205, DIN/ISO: G205)" na página 91)
- Ciclo 205: Parâmetro de introdução Q359 para determinação da referência de profundidade ampliado (ver "FURAR EM PROFUNDIDADE UNIVERSAL (Ciclo 205, DIN/ISO: G205)" na página 91)
- Ciclo 225: Permitida a introdução de tremas; agora o texto também pode dispor-se obliquamente (ver "GRAVAÇÃO (Ciclo 225, DIN/ISO: G225)" na página 321)
- Ciclo 253: Parâmetro de introdução Q439 para referência de avanço ampliado (ver "FRESAR RANHURAS (Ciclo 253, DIN/ISO: G253)" na página 152)
- Ciclo 254: Parâmetro de introdução Q439 para referência de avanço ampliado (ver "RANHURA REDONDA (Ciclo 254, DIN/ISO: G254)" na página 158)
- Novo ciclo 276: Reconhecimento automático de material residual (ver "TRAÇADO DO CONTORNO 3D (Ciclo 276, DIN/ISO: G276)" na página 217)
- Ciclo 290: Com o ciclo 290 é agora possível produzir também um recesso (ver "TORNEAMENTO DE INTERPOLAÇÃO (opção de software, ciclo 290, DIN/ISO: G290)" na página 326)
- Ciclo 404: Novo parâmetro de introdução Q305, para poder guardar uma rotação básica numa linha qualquer da tabela de pontos de referência (ver "MEMORIZAR ROTAÇÃO BÁSICA (Ciclo 404, DIN/ISO: G404)" na página 357)

Novas funções de ciclos do software 60642x-04 SP8

- No ciclo 253 Fresagem de ranhuras está agora disponível um parâmetro com o qual é possível determinar a referência de avanço na maquinagem da ranhura (ver "FRESAR RANHURAS (Ciclo 253, DIN/ISO: G253)" na página 152)
- No ciclo 254 Ranhura redonda está agora disponível um parâmetro com o qual é possível determinar a referência de avanço na maquinagem da ranhura (ver "RANHURA REDONDA (Ciclo 254, DIN/ISO: G254)" na página 158)

Funções de ciclos modificadas do software 60642x-01

 Comportamento de aproximação no acabamento lateral com o ciclo 24 (DIN/ISO: G124) modificado (ver "Ter em atenção ao programar!" na página 204)

Funções de ciclos modificadas do software 60642x-02

Posição da softkey para definição do ciclo 270 alterada

Funções de ciclos modificadas do software 60642x-04

- Ciclo 206: Desde que indicado na tabela de ferramentas, o TNC vigia o passo de rosca
- Ciclo 207: Desde que indicado na tabela de ferramentas, o TNC vigia o passo de rosca
- Ciclo 209: Desde que indicado na tabela de ferramentas, o TNC vigia o passo de rosca
- Ciclo 209: Na rotura de apara, o TNC desloca agora completamente para fora do furo, se estiver definido o parâmetro Q256=0 (retração em rotura de apara)
- Ciclo 202: O TNC não retira a ferramenta na base do furo, se estiver definido o parâmetro Q214=0 (direção de retirada)
- Ciclo 405: Agora o TNC escreve o ponto de referência também na linha 0 da tabela de pontos de referência, se estiver definido o parâmetro Q337=0
- Ciclos de apalpação correspondentes 4xx: O campo de introdução do parâmetro Q305 (número do ponto de referência ou número do ponto zero) foi aumentado para 99999
- Ciclos 451 e 452: Agora, o TNC só oculta a janela de estado durante a medição, se a distância a percorrer até à esfera de calibração for maior do que o raio da esfera de apalpação.

Funções de ciclos modificadas do software 60642x-04

Índice

	1
	2
	3
	4
	5
	6
	7
	8
	9
1	0
1	0 1
1 1 1	0 1 2
1 1 1	0 1 2 3
1 1 1 1	0 1 2 3 4
1 1 1 1 1	0 1 2 3 4 5
1 1 1 1 1 1	0 1 2 3 4 5 6
1 1 1 1 1 1 1	0 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1 1 1	0 1 2 3 4 5 6 7 8

Princípios básicos / resumos
Utilização de ciclos de maquinagem
Ciclos de maquinagem: furar
Ciclos de maquinagem: roscagem / fresagem de roscas
Ciclos de maquinagem: fresar caixas / fresar ilhas / fresar ranhuras
Ciclos de maquinagem: definições de padrões
Ciclos de maquinagem: caixa de contorno, traçados de contorno
Ciclos de maquinagem: superfície cilíndric
Ciclos de maquinagem: Caixa de contorno com fórmula de contorno
Ciclos de maquinagem: Facejar
Ciclos: Conversões de coordenadas
Ciclos: Funções especiais
Trabalhar com ciclos de apalpação
Ciclos de apalpação: determinar inclinaçõe da peça de trabalho automaticamente
Ciclos de apalpação: Determinar pontos de referência automaticamente
Ciclos de apalpação: controlar peças de trabalho automaticamente
Ciclos de apalpação: Funções especiais
Ciclos de apalpação: medir cinemática automaticamente
Ciclos de apalpação: Medir ferramentas automaticamente

1 Princípios básicos / resumos 43

- 1.1 Introdução 44
- 1.2 Grupos de ciclos disponíveis 45 Resumo dos ciclos de maquinagem 45 Resumo dos ciclos de apalpação 46

1

2 Utilização de ciclos de maquinagem 47

2.1 Trabalhar com ciclos de maquinagem 48 Avisos gerais 48 Ciclos específicos da máguina 49 Definir um ciclo com softkeys 50 Definir o ciclo com a função GOTO (IR PARA) 50 Chamada de ciclos 51 Trabalhar com eixos auxiliares U/V/W 53 2.2 Predefinições de programa para ciclos 54 Resumo 54 Introduzir GLOBAL DEF 55 Utilizar as indicações GLOBAL-DEF 55 Dados globais válidos em geral 56 Dados globais para maguinagens de furar 56 Dados globais para programas de fresagem com ciclos de caixa 25x 57 Dados globais para programas de fresagem com ciclos de contorno 57 Dados globais para o comportamento de posicionamento 57 Dados globais para funções de apalpação 58 2.3 Definição de padrões PATTERN DEF 59 Aplicação 59 Introduzir PATTERN DEF 60 Utilizar PATTERN DEF 60 Definir posições de maquinagem individuais 61 Definir série individual 62 Definir o padrão individual 63 Definir a margem individual 64 Definir o círculo completo 65 Definir o círculo parcial 66 2.4 Tabelas de pontos 67 Aplicação 67 Introduzir tabela de pontos 67 Visualizar pontos individuais para a maquinagem 68 Definir a Altura Segura 68 Selecionar tabelas de pontos no programa 69 Chamar o ciclo em ligação com as tabelas de pontos 70

3 Ciclos de maquinagem: furar 71

3.11 Exemplos de programação 101

i

4 Ciclos de maquinagem: roscagem / fresagem de roscas 107

4.1 Princípios básicos 108
Resumo 108
4.2 ROSCAGEM NOVA com mandril compensador (ciclo 206, DIN/ISO: G206) 109
Execução do ciclo 109
Ter em atenção ao programar! 109
Parâmetros de ciclo 110
4.3 ROSCAGEM NOVA sem mandril compensador GS (ciclo 207, DIN/ISO: G207) 111
Execução do ciclo 111
Ter em atenção ao programar! 112
Parâmetros de ciclo 113
4.4 ROSCAGEM ROTURA DE APARA (Ciclo 209, DIN/ISO: G209) 114
Execução do ciclo 114
Ter em atenção ao programar! 115
Parâmetros de ciclo 116
4.5 Princípios básicos para fresar rosca 117
Condições 117
4.6 FRESAGEM DE ROSCA (Ciclo 262, DIN/ISO: G262) 119
Execução do ciclo 119
Ter em atenção ao programar! 120
Parâmetros de ciclo 121
4.7 FRESAGEM DE ROSCA EM REBAIXAMENTO (Ciclo 263, DIN/ISO: G263) 122
Execução do ciclo 122
Ter em atenção ao programar! 123
Parâmetros de ciclo 124
4.8 FRESAGEM DE ROSCA EM FURO (Ciclo 264, DIN/ISO: G264) 126
Execução do ciclo 126
Ter em atenção ao programar! 127
Parâmetros de ciclo 128
4.9 FRESAGEM DE ROSCA EM FURO DE HELICE (Ciclo 265, DIN/ISO: G265) 130
Execução do ciclo 130
Ter em atenção ao programar! 131
Parâmetros de ciclo 132
4.10 FRESAGEM DE ROSCA EXTERIOR (Ciclo de apalpação 267, DIN/ISO: G267) 134
Execução do ciclo 134
Ter em atenção ao programar! 135
Parâmetros de ciclo 136
4.11 Exemplos de programação 138

5 Ciclos de maquinagem: fresar caixas / fresar ilhas / fresar ranhuras 141

5.1 Princípios básicos 142
Resumo 142
5.2 CAIXA RETANGULAR (Ciclo 251, DIN/ISO: G251) 143
Execução do ciclo 143
Ter em atenção ao programar 144
Parâmetros de ciclo 145
5.3 CAIXA CIRCULAR (Ciclo 252, DIN/ISO: G252) 148
Execução do ciclo 148
Ter em atenção ao programar! 149
Parâmetros de ciclo 150
5.4 FRESAR RANHURAS (Ciclo 253, DIN/ISO: G253) 152
Execução do ciclo 152
Ter em atenção ao programar! 153
Parâmetros de ciclo 155
5.5 RANHURA REDONDA (Ciclo 254, DIN/ISO: G254) 158
Execução do ciclo 158
Ter em atenção ao programar! 159
Parâmetros de ciclo 161
5.6 ILHA RETANGULAR (Ciclo 256, DIN/ISO: G256) 164
Execução do ciclo 164
Ter em atenção ao programar! 165
Parâmetros de ciclo 166
5.7 ILHA CIRCULAR (Ciclo 257, DIN/ISO: G257) 168
Execução do ciclo 168
Ter em atenção ao programar! 169
Parâmetros de ciclo 170
5.8 Exemplos de programação 172

i

6 Ciclos de maquinagem: definições de padrões 175

6.1 Princípios básicos 176 Resumo 176
6.2 PADRÃO DE PONTOS SOBRE CÍRCULO (ciclo 220, DIN/ISO: G220) 177 Decurso do ciclo 177 Ter em atenção ao programar! 177 Parâmetros de ciclo 178
6.3 PADRÃO DE PONTOS SOBRE LINHAS (ciclo 221, DIN/ISO: G221) 180 Decurso do ciclo 180 Ter em atenção ao programar! 180 Parâmetros de ciclo 181
6.4 Exemplos de programação 182

7 Ciclos de maquinagem: caixa de contorno, traçados de contorno 185

7.1 Ciclos SL 186 Princípios básicos 186 Resumo 188 7.2 CONTORNO (Ciclo 14, DIN/ISO: G37) 189 Ter em atenção ao programar! 189 Parâmetros de ciclo 189 7.3 Contornos sobrepostos 190 Princípios básicos 190 Subprogramas: caixas sobrepostas 191 Superfície de "soma" 192 Superfície de "diferença" 193 Superfície de "intersecção" 193 7.4 DADOS DO CONTORNO (Ciclo 20, DIN/ISO: G120) 194 Ter em atenção ao programar! 194 Parâmetros de ciclo 195 7.5 PRÉ-FURAR (Ciclo 21, DIN/ISO: G121) 196 Execução do ciclo 196 Ter em atenção ao programar! 196 Parâmetros de ciclo 197 7.6 DESBASTAR (Ciclo 22, DIN/ISO: G122) 198 Execução do ciclo 198 Ter em atenção ao programar! 199 Parâmetros de ciclo 200 7.7 ACABAMENTO EM PROFUNDIDADE (Ciclo 23, DIN/ISO: G123) 202 Execução do ciclo 202 Ter em atenção ao programar! 202 Parâmetros de ciclo 203 7.8 ACABAMENTO LATERAL (Ciclo 24, DIN/ISO: G124) 204 Execução do ciclo 204 Ter em atenção ao programar! 204 Parâmetros de ciclo 205 7.9 DADOS DO TRACADO DO CONTORNO (Ciclo 270, DIN/ISO: G270) 206 Ter em atenção ao programar! 206 Parâmetros de ciclo 207

7.10 TRAÇADO DO CONTORNO (Ciclo 25, DIN/ISO: G125) 208

Execução do ciclo 208
Ter em atenção ao programar! 209
Parâmetros de ciclo 210

7.11 FRESAGEM TROCOIDAL DE RANHURA DE CONTORNO (ciclo 275, DIN/ISO: G275) 212

Execução do ciclo 212
Ter em atenção ao programar! 213
Parâmetros de ciclo 214

7.12 TRAÇADO DO CONTORNO 3D (Ciclo 276, DIN/ISO: G276) 217

Execução do ciclo 217
Ter em atenção ao programar! 218
Parâmetros de ciclo 219

7.13 Exemplos de programação 221

8 Ciclos de maquinagem: superfície cilíndrica 229

1

9 Ciclos de maquinagem: Caixa de contorno com fórmula de contorno 247

9.1 Ciclos SL com fórmula de contorno mais complexa 248 Princípios básicos 248 Selecionar programa com definições de contorno 250 Definir as descrições de contorno 251 Introduzir fórmula de contorno mais complexa 252 Contornos sobrepostos 253 Executar contorno com ciclos SL 255
9.2 Ciclos SL com fórmula de contorno mais simples 259 Princípios básicos 259 Introduzir fórmula de contorno simples 261

Executar contorno com ciclos SL 261

10 Ciclos de maquinagem: Facejar 263

10.1 Princípios básicos 264
Resumo 264
10.2 EXECUTAR DADOS 3D (Ciclo 30, DIN/ISO: G60) 265
Decurso do ciclo 265
Ter em atenção ao programar! 265
Parâmetros de ciclo 266
10.3 FACEJAR (Ciclo 230, DIN/ISO: G230) 267
Decurso do ciclo 267
Ter em atenção ao programar! 267
Parâmetros de ciclo 268
10.4 SUPERFÍCIE REGULAR (Ciclo 231, DIN/ISO: G231) 269
Decurso do ciclo 269
Ter em atenção ao programar! 270
Parâmetros de ciclo 271
10.5 FRESAGEM TRANSVERSAL (Ciclo 232, DIN/ISO: G232) 273
Execução do ciclo 273
Ter em atenção ao programar! 275
Parâmetros de ciclo 275
10.6 Exemplos de programação 278

i

11 Ciclos: Conversões de coordenadas 281

11.1 Princípios básicos 282
Resumo 282
Ativação da conversão de coordenadas 282
11.2 Deslocação do PONTO ZERO (Ciclo 7, DIN/ISO: G54) 283
Ativação 283
Parâmetros de ciclo 283
11.3 Deslocação do PONTO ZERO com tabelas de pontos zero (ciclo 7, DIN/ISO: G53) 284
Ativação 284
Ter em atenção ao programar! 285
Parâmetros de ciclo 286
Selecionar a Tabela de Pontos Zero no programa NC 286
Editar a tabela de pontos zero no modo de funcionamento Memorização/Edição do programa 287
Editar a tabela de pontos zero num modo de funcionamento de execução do programa 288
Aceitar valores reais na tabela de pontos zero 288
Configurar a tabela de pontos zero 289
Sair da tabela de pontos zero 289
11.4 MEMORIZAR PONTO DE REFERÊNCIA (Ciclo 247, DIN/ISO: G247) 290
Ativação 290
Ter em atenção antes de programar! 290
Parâmetros de ciclo 290
11.5 ESPELHAR (Ciclo 8, DIN/ISO: G28) 291
Ativação 291
Ter em atenção ao programar! 291
Parâmetros de ciclos 292
11.6 ROTAÇAO (Ciclo 10, DIN/ISO: G73) 293
Ativação 293
l er atenção ao programar! 293
Parämetros de ciclo 294
11.7 FATOR DE ESCALA (Ciclo 11, DIN/ISO: G/2) 295
Ativação 295
Parametros de ciclo 296
11.8 FACTOR DE ESCALA ESPECIF.EIXO (Ciclo 26) 297
i er em atençao ao programar! 297
Parametros de cicio 298

11.9 PLANO DE MAQUINAGEM (ciclo 19, DIN/ISO: G80, opção de software 1) 299

Ativação 299 Ter em atenção ao programar! 300 Parâmetros de ciclo 301 Anular 301 Posicionar eixos rotativos 302 Visualização de posições num sistema inclinado 304 Supervisão do espaço de trabalho 304 Posicionamento no sistema inclinado 304 Combinação com outros ciclos de conversão de coordenadas 305 Medição automática no sistema inclinado 305 Normas para trabalhar com o ciclo 19 PLANO DE MAQUINAGEM 306 11.10 Exemplos de programação 308

12 Ciclos: Funções especiais 311

12.1 Princípios básicos 312
Resumo 312
12.2 TEMPO DE ESPERA (Ciclo 9, DIN/ISO: G04) 313
Função 313
Parâmetros de ciclo 313
12.3 CHAMADA DO PROGRAMA (Ciclo 12, DIN/ISO: G39) 314
Função do ciclo 314
Ter em atenção ao programar! 314
Parâmetros de ciclo 315
12.4 ORIENTAÇÃO DO MANDRIL (Ciclo 13, DIN/ISO: G36) 316
Função do ciclo 316
Ter em atenção ao programar! 316
Parâmetros de ciclo 316
12.5 TOLERÂNCIA (Ciclo 32, DIN/ISO: G62) 317
Função do ciclo 317
Influências na definição geométrica no sistema CAM 318
Ter em atenção ao programar! 319
Parâmetros de ciclo 320
12.6 GRAVAÇÃO (Ciclo 225, DIN/ISO: G225) 321
Execução do ciclo 321
Ter em atenção ao programar! 321
Parâmetros de ciclo 322
Carateres de gravação permitida 324
Caracteres que não podem ser impressos 324
Gravar variáveis do sistema 325
12.7 TORNEAMENTO DE INTERPOLAÇÃO (opção de software, ciclo 290, DIN/ISO: G290) 326
Execução do ciclo 326
Ter em atenção ao programar! 327
Parâmetros de ciclo 328

13 Trabalhar com ciclos de apalpação 333

13.1 Generalidades sobre os ciclos de apalpação 334 Funcionamento 334 Ciclos de apalpação nos modos de funcionamento manual e volante eletrónico 335 ciclos de apalpação para o funcionamento automático 335 13.2 Antes de trabalhar com ciclos de apalpação! 337 Percurso máximo até ao ponto de apalpação: MP6130 337 Distância de segurança para o ponto de apalpação: MP6140 337 Orientar o apalpador de infravermelhos no sentido de apalpação programado: MP6165 337 Ter em conta a rotação básica no modo de funcionamento manual: MP6166 338 Medição múltipla: MP6170 338 Margem de confiança para medição múltipla: MP6171 338 Apalpador digital, avanço de apalpação: MP6120 339 Apalpador digital, avanco para movimentos de posicionamento: MP6150 339 Apalpador digital, marcha rápida para posicionamento: MP6151 339 KinematicsOpt, limite de tolerância para o modo Otimizar: MP6600 339 KinematicsOpt, desvio do raio da esfera de calibração permitido: MP6601 339 Executar ciclos de apalpação 340

14 Ciclos de apalpação: determinar inclinações da peça de trabalho automaticamente 341

14.1 Princípios básicos 342
Resumo 342
Características comuns dos ciclos de apalpação para o registo da posição inclinada da peça de trabalho 343
14.2 ROTAÇÃO BÁSICA (Ciclo 400, DIN/ISO: G400) 344
Execução do ciclo 344
Ter em atenção ao programar! 344
Parâmetros de ciclo 345
14.3 ROTAÇÃO BÁSICA por meio de dois furos (ciclo 401, DIN/ISO: G401) 347
Execução do ciclo 347
Ter em atenção ao programar! 347
Parâmetros de ciclo 348
14.4 ROTAÇÃO BÁSICA por meio de duas ilhas (ciclo 402, DIN/ISO: G402) 350
Execução do ciclo 350
Ter em atenção ao programar! 350
Parâmetros de ciclo 351
14.5 Compensar ROTAÇÃO BÁSICA por meio dum eixo rotativo (ciclo 403, DIN/ISO: G403) 353
Execução do ciclo 353
Ter em atenção ao programar! 354
Parâmetros de ciclo 355
14.6 MEMORIZAR ROTAÇÃO BÁSICA (Ciclo 404, DIN/ISO: G404) 357
Execução do ciclo 357
Parâmetros de ciclo 357
14.7 Ajustar a inclinação duma peça de trabalho por meio do eixo C (ciclo 405, DIN/ISO: G405) 358
Execução do ciclo 358
Ter em atenção ao programar! 359
Parâmetros de ciclo 360

15 Ciclos de apalpação: Determinar pontos de referência automaticamente 363

15.1 Princípios básicos 364
Resumo 364
Características comuns de todos os ciclos de apalpação em relação à memorização do ponto de referência 365
15.2 PONTO DE REFERÊNCIA CENTRO DE RANHURA (ciclo 408, DIN/ISO: G408, função FCL 3) 367
Execução do ciclo 367
Ter em atenção ao programar! 368
Parâmetros de ciclo 368
15.3 PONTO DE REFERÊNCIA CENTRO DE NERVURA (ciclo 409, DIN/ISO: G409, função FCL 3) 371
Execução do ciclo 371
Ter em atenção ao programar! 371
Parâmetros de ciclo 372
15.4 PONTO REFERÊNCIA RETÂNGULO INTERIOR (ciclo 410, DIN/ISO: G410) 374
Execução do ciclo 374
Ter em atenção ao programar! 375
Parâmetros de ciclo 375
15.5 PONTO DE REFERÊNCIA RETÂNGULO EXTERIOR (ciclo 411, DIN/ISO: G411) 378
Execução do ciclo 378
Ter em atenção ao programar! 379
Parâmetros de ciclo 379
15.6 PONTO DE REFERÊNCIA CÍRCULO INTERIOR (ciclo 412, DIN/ISO: G412) 382
Execução do ciclo 382
Ter em atenção ao programar! 383
Parâmetros de ciclo 383
15.7 PONTO DE REFERÊNCIA CÍRCULO EXTERIOR (ciclo 413, DIN/ISO: G413) 386
Execução do ciclo 386
Ter em atenção ao programar! 387
Parâmetros de ciclo 387
15.8 PONTO DE REFERENCIA ESQUINA EXTERIOR (ciclo 414, DIN/ISO: G414) 390
Execução do ciclo 390
Ter em atenção ao programar! 391
Parâmetros de ciclo 392
15.9 PONTO DE REFERENCIA ESQUINA INTERIOR (ciclo de apalpação 415, DIN/ISO: G415) 395
Execução do ciclo 395
l er em atenção ao programar! 396
Parâmetros de ciclo 396
15.10 PONTO DE REFERENCIA CENTRO DO CIRCULO DE FUROS (ciclo 416, DIN/ISO: G416) 399
Execução do ciclo 399
I er em atenção ao programar! 400
Parametros de ciclo 400

i

15.11 PONTO DE REFERÊNCIA EIXO DO APALPADOR (ciclo 417, DIN/ISO: G417) 403 Execução do ciclo 403 Ter em atenção ao programar! 403 Parâmetros de ciclo 404
15.12 PONTO DE REFERÊNCIA CENTRO DE 4 FUROS (ciclo 418, DIN/ISO: G418) 405 Execução do ciclo 405 Ter em atenção ao programar! 406 Parâmetros de ciclo 406
15.13 PONTO DE REFERÊNCIA EIXO INDIVIDUAL (ciclo 419, DIN/ISO: G419) 409 Execução do ciclo 409 Ter em atenção ao programar! 409 Parâmetros de ciclos 410
16 Ciclos de apalpação: controlar peças de trabalho automaticamente 417

16.1 Princípios básicos 418
Resumo 418
Registar resultados de medição 419
Resultados de medição em parâmetros Q 421
Estado da medição 421
Supervisão da tolerância 422
Supervisão da ferramenta 422
Sistema de referência para resultados de medição 423
16.2 PLANO DE REFERÊNCIA (Ciclo 0, DIN/ISO: G55) 424
Execução do ciclo 424
Ter em atenção ao programar! 424
Parâmetros de ciclo 424
16.3 PLANO DE REFERÊNCIA Polar (ciclo 1) 425
Execução do ciclo 425
Ter em atenção ao programar! 425
Parâmetros de ciclo 426
16.4 MEDIR ÂNGULO (ciclo 420, DIN/ISO: G420) 427
Execução do ciclo 427
Ter em atenção ao programar! 427
Parâmetros de ciclo 428
16.5 MEDIR FURO (ciclo 421, DIN/ISO: G421) 430
Execução do ciclo 430
Ter em atenção ao programar! 430
Parâmetros de ciclo 431
16.6 MEDIR CÍRCULO EXTERIOR (ciclo 422, DIN/ISO: G422) 434
Execução do ciclo 434
Ter em atenção ao programar! 434
Parâmetros de ciclo 435
16.7 MEDIR RECTÂNGULO INTERIOR (ciclo 423, DIN/ISO: G423) 438
Execução do ciclo 438
Ter em atenção ao programar! 439
Parâmetros de ciclo 439
16.8 MEDIR RECTÂNGULO EXTERIOR (ciclo 424, DIN/ISO: G424) 442
Execução do ciclo 442
Ter em atenção ao programar! 443
Parâmetros de ciclo 443
16.9 MEDIR LARGURA INTERIOR (ciclo 425, DIN/ISO: G425) 446
Execução do ciclo 446
Ter em atenção ao programar! 446
Parâmetros de ciclo 447

37

i

16.10 MEDIR NERVURA EXTERIOR (ciclo 426, DIN/ISO: G426) 449 Execução do ciclo 449 Ter em atenção ao programar! 449 Parâmetros de ciclo 450 16.11 MEDIR COORDENADAS (ciclo 427, DIN/ISO: G427) 452 Execução do ciclo 452 Ter em atenção ao programar! 452 Parâmetros de ciclo 453 16.12 MEDIR CÍRCULO DE FUROS (ciclo 430, DIN/ISO: G430) 455 Execução do ciclo 455 Ter em atenção ao programar! 455 Parâmetros de ciclo 456 16.13 MEDIR PLANO (ciclo 431, DIN/ISO: G431) 459 Execução do ciclo 459 Ter em atenção ao programar! 460 Parâmetros de ciclo 461 16.14 Exemplos de programação 463

17 Ciclos de apalpação: Funções especiais 467

17.1 Princípios básicos 468
Resumo 468
17.2 CALIBRAR TS (ciclo 2) 469
Decurso do ciclo 469
Ter em atenção ao programar! 469
Parâmetros de ciclo 469
17.3 CALIBRAR COMPRIMENTO TS (ciclo 9) 470
Decurso do ciclo 470
Parâmetros de ciclo 470
17.4 MEDIR (ciclo 3) 471
Decurso do ciclo 471
Ter em atenção ao programar! 471
Parâmetros de ciclo 472
17.5 MEDIÇÃO 3D (ciclo 4, função FCL-3) 473
Decurso do ciclo 473
Ter em atenção ao programar! 473
Parâmetros de ciclo 474
17.6 MEDIR DESLOCAMENTO DO EIXO (ciclo de apalpação 440, DIN/ISO: G440) 475
Decurso do ciclo 475
Ter em atenção ao programar! 476
Parâmetros de ciclo 477
17.7 APALPAÇÃO RÁPIDA (ciclo 441, DIN/ISO: G441, função FCL 2) 478
Decurso do ciclo 478
Ter em atenção ao programar! 478
Parâmetros de ciclo 479
17.8 CALIBRAR TS (Ciclo 460, DIN/ISO: G460) 480
Decurso do ciclo 480
Ter em atenção ao programar! 480
Parâmetros de ciclo 481

i

18 Ciclos de apalpação: medir cinemática automaticamente 483

18.1 Medição da cinemática com o apalpador TS (opção KinematicsOpt) 48	4
Princípios básicos 484	
Resumo 484	
18.2 Condições 485	
Ter em atenção ao programar! 485	
18.3 GUARDAR CINEMÁTICA (ciclo 450, DIN/ISO: G450, opção) 486	
Execução do ciclo 486	
Ter em atenção ao programar! 486	
Parâmetros de ciclo 487	
Função de registo 487	
18.4 MEDIR CINEMÁTICA (ciclo 451, DIN/ISO: G451, opção) 488	
Execução do ciclo 488	
Sentido de posicionamento 490	
Máquina com eixos de recortes dentados hirth 491	
Seleção do número de pontos de medição 492	
Seleção da posição da esfera de calibração na mesa da máquina 492	2
Indicações acerca da precisão 493	
Indicações acerca dos diferentes métodos de calibração 494	
Folga 495	
Ter em atenção ao programar! 496	
Parâmetros de ciclo 497	
Diferentes Modos (Q406) 500	
Função de registo 501	
18.5 COMPENSAÇÃO DE PRESET (ciclo 452, DIN/ISO: G452, opção) 504	
Execução do ciclo 504	
Ter em atenção ao programar! 506	
Parâmetros de ciclo 507	
Ajuste de cabeças intercambiáveis 509	
Compensação de desvio 511	
Função de registo 513	

19 Ciclos de apalpação: Medir ferramentas automaticamente 515

19.1 Princípios básicos 516
Resumo 516
Diferenças entre os ciclos 31 a 33 e 481 a 483 517
Ajustar parâmetros da máquina 517
Introduções na tabela de ferramentas TOOL.T 519
Visualizar resultados de medição 520
19.2 Calibrar TT (ciclo 30 ou 480, DIN/ISO: G480) 521
Execução do ciclo 521
Ter em atenção ao programar! 521
Parâmetros de ciclo 522
19.3 Calibrar TT 449 sem fios (ciclo 484, DIN/ISO: G484) 523
Princípios básicos 523
Execução do ciclo 523
Ter em atenção ao programar! 523
Parâmetros de ciclo 523
19.4 Medir comprimento da ferramenta (ciclo 31 ou 481, DIN/ISO: G481) 524
Execução do ciclo 524
Ter em atenção ao programar! 525
Parâmetros de ciclo 525
19.5 Medir raio da ferramenta (ciclo 32 ou 482, DIN/ISO: G482) 526
Execução do ciclo 526
Ter em atenção ao programar! 526
Parâmetros de ciclo 527
19.6 Medir completamente a ferramenta (ciclo 33 ou 483, DIN/ISO: G483) 528
Execução do ciclo 528
Ter em atenção ao programar! 528
Parâmetros de ciclo 529

Princípios básicos / resumos

1.1 Introdução

As maquinagens que se repetem com frequência e que contêm vários passos de maquinagem memorizam-se no TNC como ciclos. Também estão disponíveis como ciclos as conversões de coordenadas e algumas funções especiais.

A maioria dos ciclos utiliza o parâmetro Ω como parâmetro de transferência. Os parâmetros com a mesma função, de que o TNC precisa em diferentes ciclos, têm sempre o mesmo número: p.ex. **Q200** é sempre a distância de segurança, **Q202** é sempre a profundidade de passo, etc.

Atenção, perigo de colisão!

Os ciclos executam, eventualmente, maquinagens de grande envergadura. Por razões de segurança executar um teste de programa gráfico antes da execução!

Se, em ciclos com números superiores a 200, se utilizarem atribuições de parâmetros indiretas (p. ex. **Q210 = Q1**), a modificação do parâmetro atribuído (p. ex., Q1) não se torna efetiva após a definição de ciclo. Nestes casos, defina diretamente o parâmetro de ciclo (p. ex. **Q210**).

Se, em ciclos de maquinagem com números superiores a 200, se definir um parâmetro de avanço, é igualmente possível atribuir, através da softkey, o avanço definido no bloco **TOOL CALL** (Softkey FAUTO) em vez de um valor numérico. Dependendo de cada ciclo e de cada função do parâmetro de avanço, estão ainda disponíveis as alternativas de avanço FMAX (marcha rápida), FZ (avanço dos dentes) e FU (avanço da rotação).

Tenha em atenção que uma alteração do avanço **FAUTO** após uma definição de ciclo não tem qualquer efeito, porque o TNC atribui internamente de forma permanente o avanço do bloco **TOOL CALL** no processamento da definição de ciclo.

Se se desejar apagar um ciclo com vários blocos parciais, o TNC emite um aviso, se deve ser apagado o ciclo completo.

1.2 Grupos de ciclos disponíveis

Resumo dos ciclos de maquinagem

A barra de softkeys mostra os diferentes grupos de ciclos

Grupo de ciclos	Softkey	Página
Ciclos para furar em profundidade, alargar furos, mandrilar e rebaixar	FURO ROSCADO	Página 72
Ciclos para furar roscas, abrir roscas e fresar roscas	FURO ROSCADO	Página 108
Ciclos para fresar caixas, ilhas e ranhuras	CAIXAS/ ILHAS/ RANHURAS	Página 142
Ciclos para a elaboração de padrões de pontos, p.ex. círculo de furos ou superfície de furos	FIGURA DE PONTOS	Página 176
Ciclos SL (lista de subcontornos) com que são elaborados contornos complicados paralelamente ao contorno e que se compõem de vários contornos parciais sobrepostos, interpolação de superfície cilíndrica	SL II	Página 188
Ciclos para facejar superfícies planas ou torcidas em si	SUPERFI- CICS PLANAS	Página 264
Ciclos para o cálculo de coordenadas com que são deslocados, rodados, refletidos, ampliados e reduzidos quaisquer contornos	TRANSF. COORD.	Página 282
Ciclos especiais Tempo de Espera, Chamada do Programa, Orientação do Mandril, Tolerância, Gravação, Torneamento de interpolação (opção)	CICLOS ESPECIAIS	Página 312

 \triangleright

Eventualmente, continuar a comutar para ciclos de maquinagem específicos da máquina. Tais ciclos de maquinagem podem ser integrados pelo fabricante da sua máquina

Resumo dos ciclos de apalpação

1.2 Grupos de ciclos disponív<mark>eis</mark>

A barra de softkeys mostra os diferentes grupos de ciclos

Grupo de ciclos	Softkey	Página
Ciclos para o registo automático e compensação da inclinação duma peça de trabalho		Página 342
Ciclos para a memorização automática do ponto de referência		Página 364
Ciclos para o controlo automático da peça de trabalho		Página 418
Ciclos de calibração, ciclos especiais	CICLOS ESPECIAIS	Página 468
Ciclos para a medição automática da cinemática		Página 484
Ciclos para a medição automática da ferramenta (disponibilizado pelo fabricante da máquina)		Página 516

 \triangleright

Eventualmente, continuar a comutar para ciclos de apalpação específicos da máquina. Tais ciclos de apalpação podem ser integrados pelo fabricante da sua máquina

TOUCH PROBE

Utilização de ciclos de maquinagem

2.1 Trabalhar com ciclos de maquinagem

Avisos gerais

Tenha em consideração as convenções seguintes, caso leia programas NC de comandos TNC antigos ou os crie externamente, p. ex., através de um sistema CAM ou também com um editor ASCI:

- Ciclos de maquinagem e de apalpação com números **menores que** 200:
 - Em versões de software iTNC mais antigas e comandos TNC mais antigos, para alguns idiomas foram utilizadas sequências de texto que o editor iTNC atual nem sempre consegue converter corretamente. Prestar atenção a que nenhum texto de ciclo termine com um ponto.
- Ciclos de maquinagem e de apalpação com números maiores que 200:
 - Assinalar o fim de linha correspondente com o caráter de til (~) O último parâmetro do ciclo não pode conter nenhum caráter de til.
 - Não é obrigatório indicar os nomes e comentários de ciclo. Ao ler para o comando, o iTNC completa os nomes e comentários de ciclo de acordo com o idioma definido.

Ciclos específicos da máquina

Em muitas máquinas estão disponíveis ciclos que são implementados adicionalmente aos ciclos HEIDENHAIN no TNC pelo seu fabricante da máquina. Para isso, está à disposição uma gama de ciclos separada.

Ciclos 300 a 399

Ciclos específicos da máquina que devem ser definidos através da tecla CYCLE DEF

Ciclos 500 a 599

Ciclos de apalpação específicos da máquina que devem ser definidos através da tecla TOUCH PROBE

Para este caso consulte a respetiva descrição de funções no manual da máquina.

No caso dos ciclos específicos de máquina, em certas circunstâncias, também são utilizados parâmetros de transferência, que a HEIDENHAIN já utilizou em ciclos standard. Na utilização simultânea de ciclos ativos DEF (ciclos que o TNC executa automaticamente na definição do ciclo, ver "Chamada de ciclos" na página 51) e ciclos ativos CALL (ciclos que é necessário chamar para a execução, ver "Chamada de ciclos" na página 51), para evitar problemas relativamente à substituição de parâmetros de transferência utilizados várias vezes, observe o seguinte procedimento:

- Regra geral, programar os ciclos ativos DEF antes dos ciclos ativos CALL
- Entre a definição de um ciclo ativo CALL e a respetiva chamada do ciclo, programe apenas um ciclo ativo DEF se não ocorrerem sobreposições nos parâmetros de transferência destes dois ciclos

Definir um ciclo com softkeys

CYCL DEF

- A barra de softkeys mostra os diferentes grupos de ciclos
- Selecionar o grupo de ciclos, p. ex., ciclos de furar
- Selecionar ciclo, p. ex. FRESAR ROSCA. O TNC abre um diálogo e pede todos os valores de introdução; ao mesmo tempo, o TNC ilumina um gráfico na metade direita do ecrã, onde está realçado o parâmetro a introduzir
- Introduza todos os parâmetros pedidos pelo TNC e termine cada introdução com a tecla ENT
- O TNC termina o diálogo depois de se terem introduzido todos os dados necessários

Definir o ciclo com a função GOTO (IR PARA)

CYCL DEF

GOTO

- A barra de softkeys mostra os diferentes grupos de ciclos
- O TNC visualiza numa janela iluminada o resumo dos ciclos.
- Selecione com as teclas de setas o ciclo pretendido ou
- Selecione com CTRL + teclas de setas (folhear página a página) o ciclo pretendido ou
- Introduza o número de ciclo e confirme respetivamente com a tecla ENT. O TNC abre então o diálogo de ciclo como atrás descrito

Exemplo de blocos NC

7 CYCL DEF 200) FURAR
Q200=2	;DISTÂNCIA DE SEGURANÇA
Q201=3	; PROFUNDIDADE
Q206=150	;AVANÇO AO CORTAR EM PROFUND.
Q202=5	;PROFUNDIDADE DE CORTE
Q210=0	;TEMPO DE ESPERA EM CIMA
Q203=+0	;COORD. SUPERFÍCIE
Q204=50	;2ª DISTÂNCIA DE SEGURANÇA
Q211=0.25	;TEMPO DE ESPERA EM BAIXO

Chamada de ciclos

Antes de uma chamada de ciclo, programe de todas as vezes:

- BLK FORM para a representação gráfica (necessário só para o teste de gráfico)
- Chamada da ferramenta
- Sentido de rotação do mandril (função auxiliar M3/M4)
- Definição do ciclo (CYCL DEF).

Tenha em conta outras condições apresentadas nas descrições a seguir sobre ciclos.

Os seguintes ciclos atuam a partir da sua definição no programa de maquinagem. Não pode nem deve chamar estes ciclos:

- os ciclos 220 padrão de pontos sobre um círculo e 221 padrão de pontos sobre linhas
- o ciclo SL 14 CONTORNO
- o ciclo SL 20 DADOS DO CONTORNO
- Ciclo 32 TOLERÂNCIA
- Ciclos para a conversão de coordenadas
- o ciclo 9 TEMPO DE ESPERA
- todos os ciclos de apalpação

Podem chamar-se todos os restantes ciclos com as funções a seguir descritas.

Chamada de ciclo com CYCL CALL

A função **CYCL CALL** chama uma vez o último ciclo de maquinagem definido. O ponto inicial do ciclo é a última posição programada antes do bloco CYCL CALL.

Programar a chamada de ciclo: premir a tecla CYCL CALL

- Introduzir chamada do ciclo: premir a softkey CYCL CALL M
- Se necessário, introduzir a função auxiliar M (p.ex. M3 para ligar o mandril), ou terminar o diálogo com a tecla END

Chamada de ciclo com CYCL CALL PAT

A função **CYCL CALL PAT** chama o ciclo de maquinagem definido em último lugar para todas as posições que se tenham definido numa definição de padrão PATTERN DEF(ver "Definição de padrões PATTERN DEF" na página 59) ou numa tabela de pontos(ver "Tabelas de pontos" na página 67).

Chamada de ciclo com CYCL CALL POS

A função CYCL CALL POS chama uma vez o último ciclo de maquinagem definido. O ponto inicial do ciclo é a posição que se definiu no bloco CYCL CALL POS.

O TNC aproxima a posição indicada no bloco **CYCL CALL POS** com lógica de posicionamento:

- Se a posição da ferramenta atual no eixo da ferramenta for superior à aresta superior da peça de trabalho (Q203), o TNC posiciona primeiro para a posição programada no plano de maquinagem e de seguida no eixo da ferramenta
- Se a posição da ferramenta atual no eixo da ferramenta for inferior à aresta superior da peça de trabalho (Ω203), o TNC posiciona primeiro para a altura segura no eixo da ferramenta e de seguida para a posição programada no plano de maquinagem

No bloco **CYCL CALL POS**, têm que estar sempre programados três eixos de coordenadas. Através da coordenada no eixo da ferramenta pode alterar facilmente a posição inicial. Funciona como uma deslocação do ponto zero adicional.

O avanço definido no bloco **CYCL CALL POS** só é válido para a aproximação à posição inicial programada nesse bloco.

O TNC aproxima a posição definida no bloco **CYCL CALL POS** basicamente com correção de raio desativada (RO).

Quando se chama um ciclo com **CYCL CALL POS** em que está definida uma posição inicial (p. ex. ciclo 212), então a posição definida no ciclo age como uma deslocação adicional sobre a posição definida no bloco **CYCL CALL POS**. Por isso deve definir a posição inicial a ser determinada no ciclo sempre para 0.

Chamada de ciclo com M99/M89

A função atuante bloco a bloco **M99** chama uma vez o último ciclo de maquinagem definido. Pode programar-se **M99** no fim dum bloco de posicionamento; o TNC desloca-se para esta posição e a seguir chama o último ciclo de maquinagem definido.

Se quiser que o TNC execute automaticamente o ciclo depois de cada bloco de posicionamento, programe a primeira chamada de ciclo com **M89** (dependente do parâmetro da máquina 7440).

Para anular a atuação de M89, programe:

- M99 no bloco de posicionamento onde se faz a aproximação ao último ponto inicial, ou
- um bloco CYCL CALL POS ou
- um novo ciclo de maquinagem com CYCL DEF

Trabalhar com eixos auxiliares U/V/W

O TNC executa movimentos de avanço no eixo que foi definido como eixo do mandril no bloco TOOL CALL. O TNC executa os movimentos no plano de maquinagem basicamente apenas nos eixos principais X, Y ou Z. Exceções:

- Se no ciclo 3 FRESAR RANHURAS e no ciclo 4 FRESAR CAIXAS se programarem eixos auxiliares diretamente para os comprimentos laterais
- Se nos ciclos SL se programarem eixos auxiliares no primeiro bloco do subprograma de contorno
- Nos ciclos 5 (CAIXA CIRCULAR), 251 (CAIXA RECTANGULAR), 252 (CAIXA CIRCULAR), 253 (RANHURA) e 254 (RANHURA REDONDA) o TNC executa o ciclo nos eixos que se programaram no último bloco de posicionamento, antes da respetiva chamada de ciclo. Com o eixo da ferramenta Z ativado, são admissíveis as seguintes combinações:
 - X/Y
 - X/V

U/Y

U/V

2.2 Predefinições de programa para ciclos

Resumo

Todos os ciclos 20 a 25 e aqueles com números superiores a 200 utilizam sempre parâmetros de ciclos idênticos, como, p.ex., a distância de segurança **Q200**, que se devem introduzir em cada definição de ciclo. Através da função **GLOBAL DEF**, tem-se a possibilidade de definir estes parâmetros de ciclos no início do programa de forma centralizada, de modo a que atuem globalmente em todos os ciclos de maquinagem utilizados no programa. No respetivo ciclo de maquinagem, basta remeter para o valor que foi definido no início do programa.

Dispõe-se das seguintes funções GLOBAL DEF:

Padrão de maquinagem	Softkey	Página
GLOBAL DEF GERAL Definição de parâmetros de ciclos válidos em geral	100 GLOBAL DEF GERAL	Página 56
GLOBAL DEF FURAR Definição de parâmetros especiais de ciclos de furos	105 GLOBAL DEF FURAR	Página 56
GLOBAL DEF FRESAR CAIXAS Definição de parâmetros especiais de ciclos fresar caixas	110 GLOBAL DEF FRESA CX.	Página 57
GLOBAL DEF FRESAR CONTORNO Definição de parâmetros especiais de ciclos fresar contorno	111 GLOBAL DEF FR.CONTORN	Página 57
GLOBAL DEF POSICIONAMENTO Definição do comportamento de posicionamento em CYCL CALL PAT	125 GLOBAL DEF POSICION.	Página 57
GLOBAL DEF APALPAÇÃO Definição de parâmetros especiais de ciclos de apalpação	120 GLOBAL DEF APALPADOR	Página 58

Através da função INSERIR SMART UNIT (ver o Manual do Utilizador Diálogo em texto claro, Capítulo Funções especiais), é possível inserir todas as funções GLOBAL DEF com a **UNIT 700**.

Execucao continua	Edicao de	progr	ama			
0 BEGIN 1 BLK F 2 BLK F 3 TOOL 4 L Z 5 END F	N PGM PLAN Form 0.1 2 Carm 0.2 Call 1 2 H100 R0 FM GM Plane	E MM × +0 S2500 RX MM	Y+0 Y+100	2+0 2+4	3	
100 GLOBAL DEF GERAL F	105 BAL DEF URAR FRESA CX.	111 GLOBAL DEF FR.CONTORN	125 GLOBAL DEF POSICION.	120 GLOBAL DEF APALPADOR		

Introduzir GLOBAL DEF

- Selecionar modo de funcionamento Memorização/Edição
- Selecionar as funções especiais
- Selecionar funções para as predefinições do programa

SELECIONAR AS FUNÇÕES GLOBAL DEF

- Selecionar as funções GLOBAL-DEF pretendidas, por ex. GLOBAL DEF GERAL
- Introduzir as definições necessárias, confirmar com a tecla ENT

0 BEGIN PGM PLANE MM 1 BLK FORM 0.1 Z X+0 Y+0 Z+0 2 BLK FORM 0.2 X+100 Y+100 Z+40 3 TOOL CALL 1 Z S2500 4 L Z+100 R0 FMAX 5 END PGM PLANE MM T + 5 END PGM PLANE MM	Execucao continua	Edicao de	progr	ama			
	0 BEGI 1 BLK 2 BLK 3 TOOL 4 L Z 5 END	N PGM PLAN Form 0.1 2 Call 1 2 +100 r0 fm PGM plane	E MM X+0 S2500 AX MM	Y+0 Y+100	Z+0 a Z+4	2	

GLOBAL DEF

GLOBAL DEF GLOBAL DEF GLOBAL DEF GLOBAL DEF FURAR FRESA CX. FR.CONTORN POSICION.

GLOBAL DEF

Utilizar as indicações GLOBAL-DEF

Se tiver introduzido as funções GLOBAL-DEF correspondentes no início do programa, então pode referir este valor globalmente válido na definição de qualquer ciclo de maquinagem.

Proceda da seguinte forma:

- Selecionar modo de funcionamento Memorização/Edição
- CYCL DEF
- Selecionar os ciclos de maquinagem
- Selecionar o grupo de ciclos pretendido, por exemplo, ciclos de furo
- 200

FIXAR

STANDARD

ROSCADO

- Selecionar o ciclo pretendido, p.ex. FURAR
- O TNC ilumina a softkey INTRODUZIR O VALOR STANDARD, quando exista um parâmetro global para tal
- Premir a softkey MEMORIZAR VALOR STANDARD: o TNC regista a palavra PREDEF (em inglês, predefinição) na definição de ciclo. Desta forma efetuou um encadeamento com o parâmetro GLOBAL DEF correspondente definido no início do programa

Atenção, perigo de colisão!

Tenha em atenção que as alterações efetuadas posteriormente aos ajustes do programa têm efeito sobre todo o programa de maquinagem e, como tal, podem alterar consideravelmente o processo de maquinagem.

Se se registar um valor fixo num ciclo de maquinagem, então este valor não será modificado pelas funções **GLOBAL DEF**.

Dados globais válidos em geral

- Distância de segurança: distância entre o extremo da ferramenta e a superfície da peça de trabalho por deslocação automática da posição inicial do ciclo no eixo da ferramenta
- 2ª distância de segurança: posição na qual o TNC posiciona a ferramenta no final de um passo de maquinagem. A posição de maquinagem seguinte é alcançada no plano de maquinagem a esta altura
- F Posicionamento: avanço com o qual o TNC desloca a ferramenta dentro de um ciclo
- F Retrocesso: avanço com o qual o TNC volta a posicionar a ferramenta na posição anterior

Os parâmetros são válidos para todos os ciclos de maquinagem 2xx.

Dados globais para maquinagens de furar

- Retrocesso rotura de apara: valor com que o TNC retrocede a ferramenta quando há rotura de apara
- Tempo de espera em baixo: tempo em segundos que a ferramenta espera na base do furo
- Tempo de espera em cima: tempo em segundos que a ferramenta permanece na distância de segurança

Os parâmetros são válidos para os ciclos de furo, de roscagem e de fresar rosca de 200 a 209, 240 e 262 até 267.

Dados globais para programas de fresagem com ciclos de caixa 25x

- Fator de sobreposição: raio da ferramenta x fator de sobreposição tem como resultado a aproximação lateral
- Modo de fresagem: sentido sincronizado/sentido contrário
- Modo de afundamento: penetração no material em hélice, pendular ou perpendicular

Os parâmetros são válidos para os ciclos de fresagem 251 até 257.

Dados globais para programas de fresagem com ciclos de contorno

- Distância de segurança: distância entre o extremo da ferramenta e a superfície da peça de trabalho por deslocação automática da posição inicial do ciclo no eixo da ferramenta
- Altura segura: altura absoluta onde não pode produzir-se nenhuma colisão com a peça de trabalho (para posicionamento intermédio e retrocesso no fim do ciclo)
- Fator de sobreposição: raio da ferramenta x fator de sobreposição tem como resultado a aproximação lateral
- Modo de fresagem: sentido sincronizado/sentido contrário

Os parâmetros são válidos para os ciclos SL 20, 22, 23, 24 e 25.

Dados globais para o comportamento de posicionamento

Comportamento de posicionamento: retrocesso no eixo da ferramenta no final de um passo de maquinagem: retroceder para a 2ª distância de segurança ou para a posição no início da unidade

Os parâmetros são válidos para todos os ciclos de maquinagem sempre que chamar cada ciclo com a função CYCL CALL PAT.

Dados globais para funções de apalpação

- Distância de segurança: Distância entre a haste de apalpação e a superfície da peça de trabalho na aproximação automática da posição de apalpação
- Altura segura: coordenadas no eixo do apalpador sobre as quais o TNC desloca o sistema de apalpação entre pontos de medição, desde que a opção Deslocar para altura segura esteja ativa
- Deslocar para altura segura: selecionar se o TNC deve deslocarse entre pontos de medição na distância de segurança ou a uma altura mais segura

Os parâmetros aplicam-se a todos os ciclos de apalpação 4xx.

2.3 Definição de padrões PATTERN DEF

Aplicação

Com a função **PATTERN DEF**, definem-se facilmente padrões de maquinagem, que se podem chamar com a função **CYCL CALL PAT**. Tal como acontece nas definições de ciclos, também na definição de padrões estão disponíveis figuras de ajuda que esclarecem quaisquer parâmetros de introdução.

Utilizar **PATTERN DEF** somente em conexão com o eixo de ferramenta Z!

Estão à disposição os seguintes padrões de maquinagem:

Padrão de maquinagem	Softkey	Página
PONTO Definição de até 9 posições de maquinagem	PONTO	Página 61
SÉRIE Definição de uma série individual a direito ou rodada	FILA	Página 62
PADRÃO Definição de um padrão individual a direito, rodado ou deformado	MODELO	Página 63
MARGEM Definição de uma margem individual a direito, rodada ou deformada	MARCO	Página 64
CÍRCULO Definição de um círculo completo	C±RCULO	Página 65
CÍRCULO PARCIAL Definição de um círculo parcial	CiRC.GRD.	Página 66

Introduzir PATTERN DEF

DEF

FILA

€

- Selecionar modo de funcionamento Memorização/Edição
- Selecionar as funções especiais
- Selecionar as funções para a maquinagem de contorno e de pontos
- Abrir o bloco PATTERN DEF
- Selecionar o padrão de maquinagem pretendido, por exemplo, a margem individual
- Introduzir as definições necessárias, confirmar com a tecla ENT

Utilizar PATTERN DEF

Assim que tiver introduzido uma definição de padrão, pode chamá-la através da função **CYCL CALL PAT** (ver "Chamada de ciclo com CYCL CALL PAT" na página 51). O TNC executa então o ciclo de maquinagem definido por último no padrão de maquinagem definido por si.

Um padrão de maquinagem mantém-se ativo até se definir um novo padrão ou selecionar uma tabela de pontos através da função **SEL PATTERN**.

Através do processo de bloco, é possível selecionar um ponto qualquer, no qual se pode iniciar ou continuar a maquinagem (consultar o Manual do Utilizador, Capítulo Teste do programa e Execução do programa).

Definir posições de maquinagem individuais

Podem-se introduzir, no máximo, 9 posições de maquinagem; confirmar a introdução com a tecla ENT.

Se se definir uma **superfície da peça de trabalho em Z** diferente de 0, então este valor será válido para a superfície da peça de trabalho **Q203** que se definiu no ciclo de maquinagem.

Coordenada X de uma posição de maquinagem (absoluta): introduzir a coordenada-X

- Coordenada Y de uma posição de maquinagem (absoluta): introduzir a coordenada-Y
- Coordenada da superfície da peça de trabalho (absoluta): introduzir a coordenada-Z em que deve começar a maquinagem

Exemplo: Blocos NC

10 L Z+100	RO FMAX
11 PATTERN	DEF
POS1 (X+25	Y+33,5 Z+0)
POS2 (X+50	Y+75 Z+0)

Definir série individual

Se se definir uma **superficie da peça de trabalho em Z** diferente de 0, então este valor será válido para a superfície da peça de trabalho **Q203** que se definiu no ciclo de maquinagem.

Ponto inicial X (absoluto): coordenada do ponto inicial da série no eixo X.

- Ponto inicial Y (absoluto): coordenada do ponto inicial da série no eixo Y.
- Distância entre posições de maquinagem (incremental): distância entre as posições de maquinagem. Introdução possível de valor positivo ou negativo
- Número de maquinagens: número total das posições de maquinagem
- Posição angular de todo o padrão (absoluta) ângulo de rotação em torno do ponto inicial introduzido. Eixo de referência: eixo principal do plano de maquinagem ativo (por exemplo, X no eixo Z da ferramenta). Introdução possível de valor positivo ou negativo
- Coordenada da superfície da peça de trabalho (absoluta): introduzir a coordenada Z em que deve começar a maquinagem

Exemplo: Blocos NC

10 L Z+100	RO FMAX
11 PATTERN	DEF
ROW1 (X+25	Y+33,5 D+8 NUM5 ROT+0 Z+0)

Definir o padrão individual

 \bigcirc

Se se definir uma **superfície da peça de trabalho em Z** diferente de 0, então este valor será válido para a superfície da peça de trabalho **Q203** que se definiu no ciclo de maquinagem.

Os parâmetros **Posição angular do eixo principal** e **Posição angular do eixo secundário** atuam adicionalmente numa **Posição angular de todo o padrão** anteriormente realizada.

- MODELO
- Ponto inicial X (absoluto): coordenada do ponto inicial do padrão no eixo X.
- Ponto inicial Y (absoluto): coordenada do ponto inicial do padrão no eixo Y.
- Distância entre posições de maquinagem X (incremental): distância entre as posições de maquinagem na direção-X. Introdução possível de valor positivo ou negativo
- Distância entre posições de maquinagem Y (incremental): distância entre as posições de maquinagem na direção-Y. Introdução possível de valor positivo ou negativo
- Número de colunas: número de colunas total do padrão
- Número de linhas: número de linhas total do padrão
- Posição angular de todo o padrão (absoluta): ângulo de rotação com o qual todo o padrão é rodado em volta do ponto inicial introduzido. Eixo de referência: eixo principal do plano de maquinagem ativo (por exemplo, X no eixo Z da ferramenta). Introdução possível de valor positivo ou negativo
- Posição angular do eixo principal: ângulo de rotação com o qual exclusivamente o eixo principal do plano de maquinagem é deformado em relação ao ponto inicial introduzido. Introdução de valor positivo ou negativo possível.
- Posição angular do eixo secundário: ângulo de rotação com o qual exclusivamente o eixo secundário do plano de maquinagem é deformado em relação ao ponto inicial introduzido. Introdução de valor positivo ou negativo possível.
- Coordenada da superfície da peça de trabalho (absoluta): introduzir a coordenada-Z em que deve começar a maquinagem

Exemplo: Blocos NC

10 L Z+100 RO FMAX 11 PATTERN DEF PAT1 (X+25 Y+33,5 DX+8 DY+10 NUMX5 NUMY4 ROT+0 ROTX+0 ROTY+0 Z+0)

Se se definir uma **superfície da peça de trabalho em Z** diferente de 0, então este valor será válido para a superfície da peça de trabalho **Q203** que se definiu no ciclo de maquinagem.

Os parâmetros **Posição angular do eixo principal** e **Posição angular do eixo secundário** atuam adicionalmente numa **Posição angular de todo o padrão** anteriormente realizada.

- MARCO
- Ponto inicial X (absoluto): coordenada do ponto inicial da margem no eixo X.
- Ponto inicial Y (absoluto): coordenada do ponto inicial da margem no eixo Y.
- Distância entre posições de maquinagem X (incremental): distância entre as posições de maquinagem na direção-X. Introdução possível de valor positivo ou negativo
- Distância entre posições de maquinagem Y (incremental): distância entre as posições de maquinagem na direção-Y. Introdução possível de valor positivo ou negativo
- Número de colunas: número de colunas total do padrão
- Número de linhas: número de linhas total do padrão
- Posição angular de todo o padrão (absoluta): ângulo de rotação com o qual todo o padrão é rodado em volta do ponto inicial introduzido. Eixo de referência: eixo principal do plano de maquinagem ativo (por exemplo, X no eixo Z da ferramenta). Introdução possível de valor positivo ou negativo
- Posição angular do eixo principal: ângulo de rotação com o qual exclusivamente o eixo principal do plano de maquinagem é deformado em relação ao ponto inicial introduzido. Introdução de valor positivo ou negativo possível.
- Posição angular do eixo secundário: ângulo de rotação com o qual exclusivamente o eixo secundário do plano de maquinagem é deformado em relação ao ponto inicial introduzido. Introdução de valor positivo ou negativo possível.
- Coordenada da superfície da peça de trabalho (absoluta): introduzir a coordenada-Z em que deve começar a maquinagem

Exemplo: Blocos NC

10 L Z+100 RO FMAX 11 PATTERN DEF FRAME1 (X+25 Y+33,5 DX+8 DY+10 NUMX5 NUMY4 ROT+0 ROTX+0 ROTY+0 Z+0)

Definir o círculo completo

Se se definir uma **superfície da peça de trabalho em Z** diferente de 0, então este valor será válido para a superfície da peça de trabalho **Q203** que se definiu no ciclo de maquinagem.

Circulo

Centro do círculo de furos X (absoluto): coordenada do ponto central do círculo no eixo X.

- Centro do círculo de furos Y (absoluto): coordenada do ponto central do círculo no eixo Y.
- Diâmetro do círculo de furos: diâmetro do círculo de furos
- Ângulo inicial: ângulo polar da primeira posição de maquinagem. Eixo de referência: eixo principal do plano de maquinagem ativo (por exemplo, X no eixo Z da ferramenta). Introdução possível de valor positivo ou negativo
- Número de maquinagens: número total das posições de maquinagem no círculo
- Coordenada da superfície da peça de trabalho (absoluta): introduzir a coordenada-Z em que deve começar a maquinagem

Exemplo: Blocos NC

10 L Z+100 RO FMAX
11 PATTERN DEF
CIRC1 (X+25 Y+33 D80 START+45 NUM8 Z+0)

Definir o círculo parcial

Se se definir uma **superfície da peça de trabalho em Z** diferente de 0, então este valor será válido para a superfície da peça de trabalho **Q203** que se definiu no ciclo de maquinagem.

- CÍRC.GRD.
- Centro do círculo de furos X (absoluto): coordenada do ponto central do círculo no eixo X.
- Centro do círculo de furos Y (absoluto): coordenada do ponto central do círculo no eixo Y.
- Diâmetro do círculo de furos: diâmetro do círculo de furos
- Ângulo inicial: ângulo polar da primeira posição de maquinagem. Eixo de referência: eixo principal do plano de maquinagem ativo (por exemplo, X no eixo Z da ferramenta). Introdução possível de valor positivo ou negativo
- Passo angular/ângulo final: ângulo polar de valor incremental entre duas posições de maquinagem. Introdução de valor positivo ou negativo possível. Ângulo final alternativo a introduzir (comutar através de softkey)
- Número de maquinagens: número total das posições de maquinagem no círculo
- Coordenada da superfície da peça de trabalho (absoluta): introduzir a coordenada-Z em que deve começar a maquinagem

Exemplo: Blocos NC

10 L Z+100	RO FMAX
11 PATTERN PITCHCIRC1 NUM8 Z+0)	DEF (X+25 Y+33 D80 START+45 STEP30

2.4 Tabelas de pontos

Aplicação

Quando quiser executar um ciclo, ou vários ciclos uns após outros, num padrão de pontos irregular, crie tabelas de pontos.

Quando utilizar ciclos de furar, as coordenadas do plano de maquinagem correspondem na tabela de pontos às coordenadas dos pontos centrais dos furos. Se introduzir ciclos de fresar, as coordenadas do plano de maquinagem na tabela de furos correspondem às coordenadas do ponto inicial do respectivo ciclo (p.ex. coordenadas do ponto central de uma caixa circular). As coordenadas no eixo do mandril correspondem à coordenada da superfície da peça de trabalho.

Introduzir tabela de pontos

Selecionar o modo de funcionamento Memorização/Edição de programas:

Chamar Gestão de Ficheiros: premir a tecla PGM MGT

NOME DO FICH	IEIRO?
ENT	Introduzir nome e tipo de ficheiro da tabela de furos, e confirmar com a tecla ENT
мм	Selecionar a unidade métrica: premir a tecla MMou POLEG O TNC muda para a janela do programa e apresenta uma tabela de pontos vazia
INSERIR LINHA	Com a softkey INSERIR LINHA, acrescentar uma nova linha e as coordenadas do local de maquinagem pretendido

Repetir o processo até estarem introduzidas todas as coordenadas pretendidas

Com as softkeys X DESLIGADO/LIGADO, Y DESLIGADO/LIGADO, Z DESLIGADO/LIGADO (segunda barra de softkeys) determinam-se as coordenadas que podem ser introduzidas na tabela de pontos.

Visualizar pontos individuais para a maquinagem

Na tabela de pontos pode assinalar na coluna **FADE** o ponto definido na respetiva linha, de modo a que este possa ser opcionalmente omitido para a maquinagem.

 \bigcirc

Para ocultar um ponto marcado correspondentemente na maquinagem, é necessário colocar a softkey **Omitir blocos** em **LIGADO** no modo de funcionamento EXECUÇÃO DO PROGRAMA.

Definir a Altura Segura

Na coluna **CLEARANCE**, é possível definir uma Altura Segura separada para cada ponto. O TNC posiciona então a ferramenta no eixo da ferramenta para este valor, antes de aproximar a posição no plano de maquinagem (ver "Chamar o ciclo em ligação com as tabelas de pontos" na página 70).

Selecionar tabelas de pontos no programa

No modo de funcionamento Memorização/Edição do Programa, selecionar o programa para o qual a tabela de pontos deve estar ativada:

PGM CALL

Chamar a função para a seleção da tabela de pontos: premir a tecla PGM CALL

TABELA PTº ZERO	Premir a softkey TABELA DE PONTOS
SELECCÃO JANELA	Premir a softkey SELEÇÃO DE JANELA: o TNC realça uma janela onde se pode selecionar a tabela de pontos zero desejada

Selecionar a tabela de pontos desejada com as teclas de setas ou clicando com o rato, confirmar com a tecla ENT: o TNC regista o nome de caminho completo no bloco **SEL PATTERN**

Terminar a função com a tecla END

Em alternativa, também é possível introduzir o nome da tabela ou o nome de caminho completo da tabela que se pretende chamar diretamente através do teclado.

Exemplo de blocos NC

7 SEL PATTERN "TNC:\DIRKT5\NUST35.PNT"

Chamar o ciclo em ligação com as tabelas de pontos

O TNC executa com **CYCL CALL PAT** a última tabela de pontos que se definiu (mesmo que se tenha definido a tabela de pontos num programa comutado com **CALL PGM**).

Se o TNC tiver que chamar o último ciclo de maquinagem definido nos pontos que estão definidos numa tabela de pontos, programe a chamada de ciclo com **CYCL CALL PAT**:

- Programar a chamada de ciclo: premir a tecla CYCL CALL
- Chamar a tabela de pontos: premir a softkey CYCL CALL PAT
- Introduzir o avanço com que o TNC deve deslocar-se entre os furos (sem introdução: deslocação com o último avanço programado, FMAX não válido)
- Se necessário, introduzir a função auxiliar M, e confirmar com a tecla END

O TNC leva a ferramenta entre os pontos iniciais de regresso à altura de segurança. Como altura segura o TNC utiliza as coordenadas dos eixos do mandril na chamada do ciclo, o valor do parâmetro de ciclo Q204 ou o valor definido na coluna CLEARANCE, dependendo de qual for maior.

Ao fazer o posicionamento prévio, se quiser deslocar com avanço reduzido no eixo do mandril, utilize a função auxiliar M103.

Atuação das tabelas de pontos com os ciclos SL e ciclo 12

O TNC interpreta os furos como uma deslocação suplementar do ponto zero.

Atuação das tabelas de pontos com os ciclos de 200 a 208 e de 262 a 267

O TNC interpreta os furos do plano de maquinagem como coordenadas do ponto central do furo. Se se quiser usar a coordenada definida na tabela de pontos como coordenada do ponto inicial no eixo do mandril, deve definir-se a aresta superior da peça de trabalho (Q203) com 0.

Atuação das tabelas de pontos com os ciclos de 210 a 215

O TNC interpreta os furos como uma deslocação suplementar do ponto zero. Se se quiserem usar os pontos definidos na tabela de pontos como coordenadas do ponto inicial, devem programar-se os pontos iniciais e a aresta superior da peça de trabalho (Q203) no respectivo ciclo de fresar com 0.

Atuação das tabelas de pontos com os ciclos de 251 a 254

O TNC interpreta os furos do plano de maquinagem como coordenadas do ponto inicial do ciclo. Se se quiser usar a coordenada definida na tabela de pontos como coordenada do ponto inicial no eixo do mandril, deve definir-se a aresta superior da peça de trabalho (Q203) com 0.

Ciclos de maquinagem: furar

3.1 Princípios básicos

Resumo

O TNC dispõe dum total de 9 ciclos para as mais variadas maquinagens de perfuração:

Ciclo	Softkey	Página
240 CENTRAR Com posicionamento prévio automático, 2.ª distância de segurança, introdução do diâmetro de centragem/profundidade de centragem opcional	249	Página 73
200 FURAR Com posicionamento prévio automático,2ª Distância de segurança	200	Página 75
201 ALARGAR FURO Com posicionamento prévio automático,2ª Distância de segurança	201	Página 77
202 MANDRILAR Com posicionamento prévio automático,2ª Distância de segurança	202	Página 79
203 FURAR UNIVERSAL Com posicionamento prévio automático,2ª Distância de segurança, rotura de apara, redução de cota	283	Página 83
204 REBAIXAMENTO INVERTIDO Com posicionamento prévio automático,2ª Distância de segurança	204	Página 87
205 FURAR EM PROFUNDIDADE UNIVERSAL Com posicionamento prévio automático,2ª Distância de segurança, rotura de apara, distância de paragem prévia	285 ↓↓↓ 2.2	Página 91
208 FRESAR FUROS Com posicionamento prévio automático, 2.ª Distância de segurança	208	Página 95
241 PERFURAÇÃO COM GUME ÚNICO Com posicionamento prévio automático sobre ponto inicial aprofundado, definição do agente refrigerante por velocidade	241	Página 98

3.2 CENTRAR (Ciclo 240, DIN/ISO: G240)

Execução do ciclo

- 1 O TNC posiciona a ferramenta no eixo do mandril em marcha rápida FMAX, na distância de segurança, sobre a superfície da peça de trabalho
- 2 A ferramenta centra com o avanço programado F até ao diâmetro de centragem introduzido ou até à profundidade de centragem definida
- **3** Se tiver sido programado, a ferramenta espera na base da centragem
- 4 Para terminar, a ferramenta desloca-se com FMAX para a distância de segurança ou - se tiver sido programado - para a 2.ª Distância de segurança

Ter em atenção ao programar!

Programar o bloco de posicionamento sobre o ponto inicial (centro do furo) do plano de maquinagem com correção de raio ${\bf R0}$.

O sinal do parâmetro de ciclo **Q344** (diâmetro) ou **Q201** (profundidade) é determinado pela direção da maquinagem. Se se programar o diâmetro ou a profundidade = 0, o TNC não executa o ciclo.

Atenção, perigo de colisão!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **diâmetro positivo ou de profundidade positiva introduzidos**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Parâmetros de ciclo

- Distância de segurança Q200 (incremental): distância entre a extremidade da ferramenta e a superfície da peca de trabalho: introduzir valor positivo. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Seleção diâmetro/profundidade (1/0) Q343: seleção, se se deve centrar com base no diâmetro introduzido ou na profundidade introduzida. Se o TNC deve centrar com base no diâmetro introduzido, tem de se definir o ângulo da ponta da ferramenta na coluna T-ANGLE da tabela de ferramentas TOOL.T. 0: Centrar à profundidade introduzida 1: Centrar ao diâmetro introduzido
- Profundidade Q201 (valor incremental): distância entre a superfície da peça de trabalho e a base de centragem (ponta do cone de centragem). Só atuante guando está definido Q343=0. Campo de introdução -99999,9999 a 99999,9999
- ▶ Diâmetro (sinal) Q344: diâmetro de centragem. Só atuante guando está definido Q343=1. Campo de introdução -99999,9999 a 99999,9999
- Avanço de corte em profundidade Q206: velocidade de deslocação da ferramenta ao centrar em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO, FU
- **Tempo de espera em baixo** Q211: tempo em segundos que a ferramenta espera na base do furo. Campo de introdução 0 a 3600,0000; em alternativa PREDEF
- Coord. da superf. da peca de trabalho Q203 (valor absoluto): coordenada da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF

Exemplo: Blocos NC

10 L Z+100 R0 FMAX
11 CYCL DEF 240 CENTRAR
Q200=2 ;DISTÂNCIA SEGURANÇA
Q343=1 ;SELEÇÃO DIÂMETRO/PROFUNDIDADE
Q201=+0 ;PROFUNDIDADE
Q344=-9 ;DIÂMETRO
Q206=250 ;AVANÇO AO CORTAR EM PROFUND.
Q211=0.1 ;TEMPO DE ESPERA EM BAIXO
Q2O3=+20 ;COORD. SUPERFÍCIE
Q204=100 ;2.ª DISTÂNCIA SEGURANÇA
12 CYCL CALL POS X+30 Y+20 Z+0 FMAX M3
13 CYCL CALL POS X+80 Y+50 Z+0 FMAX

240

3.3 FURAR (ciclo 200)

Execução do ciclo

- 1 O TNC posiciona a ferramenta no eixo do mandril em marcha rápida FMAX, na distância de segurança, sobre a superfície da peça de trabalho
- 2 A ferramenta perfura com o avanço F programado até à primeira profundidade de corte
- 3 O TNC retira a ferramenta com FMAX para a distância de segurança, espera aí - se tiver sido programado - e a seguir desloca-se de novo com FMAX para a distância de segurança sobre a primeira profundidade de corte
- 4 A seguir, a ferramenta fura com o avanço F programado até uma outra profundidade de corte
- 5 O TNC repete este processo (2 a 4) até alcançar a Profundidade de Furar programada
- 6 A partir da base do furo, a ferramenta desloca-se com FMAX para a distância de segurança ou se tiver sido programado para a 2.ª Distância de segurança

Ter em atenção ao programar!

Programar o bloco de posicionamento sobre o ponto inicial (centro do furo) do plano de maquinagem com correção de raio **R0**.

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

- Distância de segurança Q200 (incremental): distância entre a extremidade da ferramenta e a superfície da peça de trabalho: introduzir valor positivo. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Profundidade Q201 (valor incremental): distância entre a superfície da peça de trabalho e a base do furo (extremo do cone do furo). Campo de introdução -99999,9999 a 99999,9999
- Avanço de corte em profundidade Q206: velocidade de deslocação da ferramenta ao furar em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO, FU
- Profundidade de corte Q202 (incremental): medida segundo a qual a ferramenta penetra de cada vez na peça de trabalho. Campo de introdução de 0 a 99999,9999. A profundidade não tem que ser um múltiplo da profundidade de passo. O TNC desloca-se num só passo de maquinagem para a profundidade total quando:
 - a profundidade de corte e a profundidade total são iguais
 - a profundidade de corte é maior do que a profundidade total
- Tempo de espera em cima Q210: tempo em segundos que a ferramenta espera na distância de segurança depois de o TNC a ter retirado do furo. Campo de introdução 0 a 3600,0000; em alternativa PREDEF
- Coord. da superf. da peça de trabalho Q203 (valor absoluto): coordenada da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Tempo de espera em baixo Q211: tempo em segundos que a ferramenta espera na base do furo. Campo de introdução 0 a 3600,0000; em alternativa PREDEF
- PROFUNDIDADE DE REFERÊNCIA Q395: para selecionar se a profundidade introduzida se refere à extremidade da ferramenta ou à parte cilíndrica da ferramenta. Quando o TNC deva referir a profundidade à parte cilíndrica da ferramenta, é necessário definir o ângulo de ponta da ferramenta na coluna T-ANGLE da tabela de ferramentas TOOL.T.
 - 0 = O avanço refere-se à extremidade da ferramenta
 1 = A profundidade refere-se à parte cilíndrica da ferramenta

Exemplo: Blocos NC

11 CYCL DEF 200 FURAR
Q200=2 ;DISTÂNCIA SEGURANÇA
Q201=-15 ;PROFUNDIDADE
Q206=250 ;AVANÇO AO CORTAR EM PROFUND.
Q202=5 ;PROFUNDIDADE DE CORTE
Q210=0 ;TEMPO DE ESPERA EM CIMA
Q2O3=+20 ;COORD. SUPERFÍCIE
Q204=100 ;2.ª DISTÂNCIA SEGURANÇA
Q211=0.1 ;TEMPO DE ESPERA EM BAIXO
Q395=0 ;REFERÊNCIA PROFUNDIDADE
12 L X+30 Y+20 FMAX M3 M99
14 L X+80 Y+50 FMAX M99

1

3.4 ALARGAR FURO (Ciclo 201, DIN/ISO: G201)

Execução do ciclo

- 1 O TNC posiciona a ferramenta no eixo do mandril em marcha rápida FMAX na distância de segurança introduzida, acima da superfície da peça de trabalho
- 2 A ferramenta alarga o furo com o avanço F introduzido até à profundidade programada
- 3 Se tiver sido programado, a ferramenta espera na base do furo
- 4 Seguidamente, o TNC retira a ferramenta com avanço F de novo para a distância de segurança e daí – se tiver sido programado – com FMAX para a 2.ª Distância de segurança

Ter em atenção ao programar!

Programar o bloco de posicionamento sobre o ponto inicial (centro do furo) do plano de maquinagem com correção de raio **R0**.

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

- Distância de segurança Q200 (incremental): distância entre a extremidade da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Profundidade Q201 (incremental): distância entre a superfície da peça de trabalho e a base do furo. Campo de introdução -99999,9999 a 99999,9999
- Avanço de corte em profundidade Q206: velocidade de deslocação da ferramenta ao alargar o furo em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO, FU
- Tempo de espera em baixo Q211: tempo em segundos que a ferramenta espera na base do furo. Campo de introdução 0 a 3600,0000; em alternativa PREDEF
- Avanço de retração Q208: velocidade de deslocação da ferramenta ao retirar-se do furo em mm/min. Se introduzir Q208 = 0, então aplica-se o avanço para alargar furo. Campo de introdução de 0 a 99999,999
- Coord. da superf. da peça de trabalho Q203 (valor absoluto): coordenada da superfície da peça de trabalho. Campo de introdução 0 a 99999.9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF

Exemplo: Blocos NC

11 CYCL DEF 201 ALARGAR FURO
Q200=2 ;DISTÂNCIA SEGURANÇA
Q201=-15 ;PROFUNDIDADE
Q206=100 ;AVANÇO AO CORTAR EM PROFUND.
Q211=0.5 ;TEMPO DE ESPERA EM BAIXO
Q208=250 ;AVANÇO DE RETROCESSO
Q2O3=+20 ;COORD. SUPERFÍCIE
Q204=100 ;2.ª DISTÂNCIA SEGURANÇA
12 L X+30 Y+20 FMAX M3
13 CYCL CALL
14 L X+80 Y+50 FMAX M9
15 L Z+100 FMAX M2

3.5 MANDRILAR (Ciclo 202, DIN/ISO: G202)

Execução do ciclo

- 1 O TNC posiciona a ferramenta no eixo do mandril em marcha rápida FMAX , na distância de segurança, sobre a superfície da peça de trabalho
- 2 A ferramenta fura com o avanço de furar até à profundidade programada
- **3** A ferramenta se assim estiver indicado permanece na base do furo com o mandril a funcionar para cortar livremente
- 4 Seguidamente, o TNC executa uma orientação do mandril sobre a posição que está definida no parâmetro Q336
- **5** Se tiver sido selecionada deslocação livre, o TNC desloca-se livremente 0,2 mm na direção programada (valor fixo)
- 6 Seguidamente, o TNC retira a ferramenta com avanço de retração de novo para a distância de segurança e daí – se tiver sido programado – com FMAX para a 2.ª distância de segurança. Se Q214=0 a retração é feita na parede do furo

3.5 MANDRILAR (Ciclo 202, DIN/I<mark>SO</mark>: G202)

Ter em atenção ao programar!

A máquina e o TNC devem ser preparados pelo fabricante da máquina.

Ciclo aplicável apenas a máquinas com mandril regulado.

Programar o bloco de posicionamento sobre o ponto inicial (centro do furo) do plano de maquinagem com correção de raio **R0**.

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

O TNC restabelece no fim do ciclo o estado do agente refrigerante e o estado do mandril que estava ativado antes da chamada de ciclo.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

Selecione a direção de livre deslocação, de forma a que a ferramenta se afaste da margem do furo.

Se programar uma orientação do mandril no ângulo, verifique onde se encontra a ponta da ferramenta que introduziu em Q336 (p.ex. no modo de funcionamento Posicionamento com Introdução Manual). Escolha o ângulo, de forma a que a ponta da ferramenta fique paralela a um eixo de coordenada.

Ao deslocar-se livremente, o TNC considera automaticamente uma rotação ativa do sistema de coordenadas.

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Parâmetros de ciclo

- Distância de segurança Q200 (incremental): distância entre a extremidade da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Profundidade Q201 (incremental): distância entre a superfície da peça de trabalho e a base do furo. Campo de introdução -99999,9999 a 99999,9999
- Avanço de corte em profundidade Q206: velocidade de deslocação da ferramenta ao mandrilar em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO, FU
- Tempo de espera em baixo Q211: tempo em segundos que a ferramenta espera na base do furo. Campo de introdução 0 a 3600,0000; em alternativa PREDEF
- Avanço de retração Q208: velocidade de deslocação da ferramenta ao retirar-se do furo em mm/min. Se introduzir Q208 = 0, então aplica-se o avanço de corte em profundidade. Campo de introdução 0 a 99999,999; em alternativa FMAX, FAUTO, PREDEF
- Coord. da superf. da peça de trabalho Q203 (valor absoluto): coordenada da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,999; em alternativa PREDEF

Direção de retirada (0/1/2/3/4) Q214: determinar a direção em que o TNC desloca livremente a ferramenta na base do furo (segundo a orientação do mandril)

- **0** Não retirar a ferramenta
- 1 Retirar a ferramenta em sentido negativo do eixo principal
- 2 Retirar a ferramenta em sentido negativo do eixo secundário
- **3** Retirar a ferramenta em sentido positivo do eixo principal
- 4 Retirar a ferramenta em sentido positivo do eixo secundário
- Ângulo para orientação do mandril Q336 (absoluto): ângulo sobre o qual o TNC posiciona a ferramenta antes de retirar. Campo de introdução -360,000 a 360,000

Exemplo:

10 L Z+100 R0 FMAX
11 CYCL DEF 202 MANDRILAR
Q200=2 ;DISTÂNCIA SEGURANÇA
Q201=-15 ;PROFUNDIDADE
Q206=100 ;AVANÇO AO CORTAR EM PROFUND.
Q211=0.5 ;TEMPO DE ESPERA EM BAIXO
Q208=250 ;AVANÇO DE RETROCESSO
Q2O3=+20 ;COORD. SUPERFÍCIE
Q204=100 ;2.ª DISTÂNCIA SEGURANÇA
Q214=1 ;DIREÇÃO DE RETIRADA
Q336=0 ;ÂNGULO MANDRIL
12 L X+30 Y+20 FMAX M3
13 CYCL CALL
14 L X+80 Y+50 FMAX M99

ĺ

3.6 FURAR UNIVERSAL (Ciclo 203, DIN/ISO: G203)

Execução do ciclo

- 1 O TNC posiciona a ferramenta no eixo do mandril em marcha rápida FMAX na distância de segurança introduzida, acima da superfície da peça de trabalho
- 2 A ferramenta perfura com o avanço F introduzido até à primeira profundidade de corte
- Se estiver programada a rotura de apara, o TNC retira a ferramenta no valor de retração programado. Se trabalhar sem rotura da apara, o TNC retira a ferramenta em marcha rápida para a distância de segurança, espera aí – se tiver sido programado – e, a seguir, desloca-se novamente com FMAX até à distância de paragem prévia sobre a profundidade perfurada atualmente
- **4** A seguir, a ferramenta fura com avanço até à profundidade de corte seguinte. Se tiver sido programada, a profundidade de corte vai diminuindo com cada corte segundo o valor de redução
- **5** O TNC repete este processo (2 a 4) até alcançar a profundidade do furo
- 6 A ferramenta se assim estiver indicado permanece na base do furo para cortar livremente e é retirada com o avanço de retrocesso para a distância de segurança após o tempo de espera. Se tiver introduzido uma 2ª distância de segurança, o TNC desloca a ferramenta para aí com FMAX

Ter em atenção ao programar!

Programar o bloco de posicionamento sobre o ponto inicial (centro do furo) do plano de maquinagem com correção de raio ${\bf R0}$.

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

1

Parâmetros de ciclo

- Distância de segurança Q200 (incremental): distância entre a extremidade da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Profundidade Q201 (valor incremental): distância entre a superfície da peça de trabalho e a base do furo (extremo do cone do furo). Campo de introdução -99999,9999 a 99999,9999
- Avanço de corte em profundidade Q206: velocidade de deslocação da ferramenta ao furar em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO, FU
- Profundidade de corte Q202 (incremental): medida segundo a qual a ferramenta penetra de cada vez na peça de trabalho. Campo de introdução de 0 a 99999,99999. A profundidade não tem que ser um múltiplo da profundidade de passo. O TNC desloca-se num só passo de maquinagem para a profundidade total quando:
 - a profundidade de corte e a profundidade total são iguais
 - a profundidade de corte é superior à profundidade total e, simultaneamente, não estiver definida qualquer rotura de apara
- Tempo de espera em cima Q210: tempo em segundos que a ferramenta espera na distância de segurança depois de o TNC a ter retirado do furo. Campo de introdução 0 a 3600,0000; em alternativa PREDEF
- Coord. da superf. da peça de trabalho Q203 (valor absoluto): coordenada da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Valor de Redução Q212 (incremental): valor com que o TNC reduz a profundidade de corte após cada corte. Campo de introdução de 0 a 99999,9999

- Quant. de roturas de apara até à retração Q213: número de roturas de apara antes de o TNC ter que retirar a ferramenta do furo para a soltar. Para a rotura de apara, o TNC retira a ferramenta respetivamente no valor de retração Q256. Campo de introdução de 0 a 99999
- Profundidade de corte mínima Q205 (incremental): se tiver introduzido um valor de redução, o TNC limita o corte ao valor introduzido com Q205. Campo de introdução de 0 a 99999,9999
- Tempo de espera em baixo Q211: tempo em segundos que a ferramenta espera na base do furo. Campo de introdução 0 a 3600,0000; em alternativa PREDEF
- Avanço de retração Q208: velocidade de deslocação da ferramenta ao retirar-se do furo em mm/min. Se introduzir Q208=0, então o TNC retira a ferramenta com o avanço Q206. Campo de introdução 0 a 99999,999; em alternativa FMAX, FAUTO, PREDEF
- Retração em rotura de apara Q256 (incremental): valor com que o TNC retrocede a ferramenta quando há rotura de apara. Campo de introdução 0,1000 a 99999,9999; em alternativa, PREDEF
- PROFUNDIDADE DE REFERÊNCIA Q395: para selecionar se a profundidade introduzida se refere à extremidade da ferramenta ou à parte cilíndrica da ferramenta. Quando o TNC deva referir a profundidade à parte cilíndrica da ferramenta, é necessário definir o ângulo de ponta da ferramenta na coluna T-ANGLE da tabela de ferramentas TOOL.T.

0 = O avanço refere-se à extremidade da ferramenta
 1 = A profundidade refere-se à parte cilíndrica da ferramenta

Exemplo: Blocos NC

1 CYCL DEF 203 FURAR UNIVERSAL
Q200=2 ;DISTÂNCIA SEGURANÇA
Q201=-20 ;PROFUNDIDADE
Q206=150 ;AVANÇO AO CORTAR EM PROFUND.
Q2O2=5 ;PROFUNDIDADE DE CORTE
Q210=0 ;TEMPO DE ESPERA EM CIMA
Q2O3=+20 ;COORD. SUPERFÍCIE
Q204=50 ;2.ª DISTÂNCIA SEGURANÇA
Q212=0,2 ;VALOR DE REDUÇÃO
Q213=3 ;ROTURA DE APARA
Q205=3 ;PROFUNDIDADE DE CORTE MÍN.
Q211=0.25 ;TEMPO DE ESPERA EM BAIXO
Q208=500 ;AVANÇO DE RETROCESSO
Q256=0.2 ;RZ EM ROTURA DE APARA
Q395=0 ;REFERÊNCIA PROFUNDIDADE

3.7 REBAIXAMENTO INVERTIDO (Ciclo 204, DIN/ISO: G204)

Execução do ciclo

Com este ciclo, podem-se efetuar rebaixamentos situados no lado inferior da peça de trabalho.

- 1 O TNC posiciona a ferramenta no eixo do mandril em marcha rápida FMAX , na distância de segurança, sobre a superfície da peça de trabalho
- 2 Aí o TNC efetua uma orientação do mandril para a posição de 0° e desloca a ferramenta segundo a dimensão do excêntrico
- 3 A seguir, a ferramenta penetra com o avanço de posicionamento prévio no furo pré-furado até a lâmina estar na distância de segurança por baixo da aresta inferior da peça de trabalho
- 4 O TNC desloca agora a ferramenta outra vez para o centro do furo, liga o mandril e, se necessário, também o agente refrigerante, e depois desloca-se com o avanço de rebaixamento para a profundidade programada
- 5 Se tiver sido programado, a ferramenta espera na base do rebaixamento e a seguir retira-se de novo do furo, efetua uma orientação de mandril e desloca-se de novo segundo a medida do excêntrico
- 6 Seguidamente, o TNC retira a ferramenta com avanço de posicionamento prévio para a distância de segurança e daí – se tiver sido programado – com FMAX para a 2.º distância de segurança.

Ter em atenção ao programar!

A máquina e o TNC devem ser preparados pelo fabricante da máquina.

Ciclo aplicável apenas a máquinas com mandril regulado.

O ciclo só trabalha com barras de broquear em retrocesso

Programar o bloco de posicionamento sobre o ponto inicial (centro do furo) do plano de maquinagem com correção de raio **R0**.

O sinal do parâmetro de ciclo determina a direção da maquinagem ao rebaixar. Atenção: o sinal positivo rebaixa na direção do eixo positivo do mandril.

Introduzir um comprimento de ferramenta que esteja dimensionado não pela lâmina mas pela aresta inferior da barra de broquear.

Ao calcular o ponto inicial do rebaixamento, o TNC tem em conta o comprimento da lâmina da barra de broquear e a solidez do material.

Também é possível executar o ciclo 204 com **M04** se, em lugar de **M03**, se tiver programado **M04** antes de se chamar o ciclo.

Atenção, perigo de colisão!

Quando programar uma orientação do mandril no ângulo, verifique onde se encontra a ponta da ferramenta programada em **Q336** (p. ex., no modo de funcionamento Posicionamento com Introdução Manual). Escolha o ângulo, de forma a que a ponta da ferramenta fique paralela a um eixo de coordenada. Selecione a direção de livre deslocação, de forma a que a ferramenta se afaste da margem do furo.

3.7 REBAIXAMENTO INVERTIDO (Ciclo 204, DIN/I<mark>SO</mark>: G204)

Parâmetros de ciclo

- Distância de segurança Q200 (incremental): distância entre a extremidade da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Profundidade de rebaixamento Q249 (incremental): distância entre a aresta inferior da peça de trabalho e a base do rebaixamento. O sinal positivo executa o rebaixamento em direção positiva do eixo do mandril. Campo de introdução -99999,9999 a 99999,9999
- Resistência do material Q250 (incremental): espessura da peça de trabalho. Campo de introdução 0,0001 a 99999,9999
- Medida do excêntrico Q251 (incremental): medida do excêntrico da barra de broquear; consultar a folha de dados da ferramenta. Campo de introdução 0,0001 a 99999,9999
- Altura de lâmina Q252 (incremental): distância da aresta inferior barra de broquear – lâmina principal; consultar a folha de dados da ferramenta. Campo de introdução 0,0001 a 99999,9999
- Avanço de posicionamento prévio Q253: velocidade de deslocação da ferramenta ao afundar na peça de trabalho ou ao retirar-se da peça de trabalho em mm/min. Campo de introdução 0 a 99999,999; em alternativa FMAX, FAUTO, PREDEF
- Avanço de rebaixamento Q254: velocidade de deslocação da ferramenta ao rebaixar em mm/min. Campo de introdução 0 a 99999,999; em alternativa, FAUTO, FU
- Tempo de espera Q255: tempo de espera em segundos na base do rebaixamento. Campo de introdução de 0 a 3600,000

- Coord. da superf. da peça de trabalho Q203 (valor absoluto): coordenada da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999; em alternativa, PREDEF
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução de 0 a 99999,9999
- Direção de retirada (0/1/2/3/4) Q214: determinar a direção em que o TNC desloca a ferramenta segundo a dimensão do excêntrico (conforme a orientação do mandril); não é permitida a introdução de 0
 - 1 Retirar a ferramenta em sentido negativo do eixo principal
 - 2 Retirar a ferramenta em sentido negativo do eixo secundário
 - **3** Retirar a ferramenta em sentido positivo do eixo principal
 - 4 Retirar a ferramenta em sentido positivo do eixo secundário
- Ângulo para orientação do mandril Q336 (absoluto): ângulo sobre o qual o TNC posiciona a ferramenta antes de a fazer afundar e antes de a retirar do furo Campo de introdução -360,0000 a 360,0000

Exemplo: Blocos NC

11 CYCL	DEF 204 R	EBAIXAMENT	O INVERTIDO
Q20	0=2 ;D]	STÂNCIA SE	EGURANÇA
Q24	9=+5 ;PF	OFUNDIDADE	REBAIXAMENTO
Q25	0=20 ;RE	SISTÊNCIA	DO MATERIAL
Q25	1=3.5 ;ME	DIDA DE EX	(CÊNTRICO
Q25	2=15 ;AL	.TURA DA LÂ	ÌMINA
Q25	3=750 ;AV	ANÇO POSIC	CION. PRÉVIO
Q25	4=200 ;AV	ANÇO DE RE	BAIXAMENTO
Q25	5=0 ;TE	MPO DE ESP	PERA
Q20	3=+20 ;CC	ORD. SUPER	RFÍCIE
Q204	4=50;2.	^a DISTÂNCI	A SEGURANÇA
Q21	4=1 ;DI	REÇÃO DE R	RETIRADA
Q33	6=0 ;ÂN	IGULO MANDR	RIL

3.8 FURAR EM PROFUNDIDADE UNIVERSAL (Ciclo 205, DIN/ISO: G205)

Execução do ciclo

- 1 O TNC posiciona a ferramenta no eixo do mandril em marcha rápida FMAX na distância de segurança introduzida, acima da superfície da peça de trabalho
- 2 Se foi introduzido um ponto inicial aprofundado, o TNC desloca-se com o avanço de posicionamento definido para a distância de segurança sobre o ponto inicial aprofundado
- **3** A ferramenta perfura com o avanço **F** introduzido até à primeira profundidade de corte
- 4 Se estiver programada a rotura de apara, o TNC retira a ferramenta no valor de retração programado. Se trabalhar sem rotura da apara, o TNC retira a ferramenta em marcha rápida para a distância de segurança, espera aí – se tiver sido programado – e, a seguir, desloca-se novamente com FMAX até à distância de paragem prévia sobre a profundidade perfurada atualmente
- 5 A seguir, a ferramenta fura com avanço até à profundidade de corte seguinte. Se tiver sido programada, a profundidade de corte vai diminuindo com cada corte segundo o valor de redução
- 6 O TNC repete este processo (2 a 4) até alcançar a profundidade do furo
- 7 A ferramenta se assim estiver indicado permanece na base do furo para cortar livremente e é retirada com o avanço de retrocesso para a distância de segurança após o tempo de espera. Se tiver introduzido uma 2ª distância de segurança, o TNC desloca a ferramenta para aí com FMAX

Ter em atenção ao programar!

 Λ

Programar o bloco de posicionamento sobre o ponto inicial (centro do furo) do plano de maquinagem com correção de raio **R0**.

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

Se se introduzirem as distâncias de posição prévia **Q258** diferentes de **Q259**, o TNC modifica de maneira uniforme a distância de posição prévia entre o primeiro e o último passo.

Se se introduzir um ponto inicial aprofundado por meio de **Q379**, o TNC modifica simplesmente o ponto inicial do movimento de passo. Os movimentos de retrocesso não são modificados pelo TNC; referem-se, portanto, à coordenada da superfície da peça de trabalho.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Parâmetros de ciclo

- Distância de segurança Q200 (incremental): distância entre a extremidade da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Profundidade Q201 (valor incremental): distância entre a superfície da peça de trabalho e a base do furo (extremo do cone do furo). Campo de introdução -99999,9999 a 99999,9999
- Avanço de corte em profundidade Q206: velocidade de deslocação da ferramenta ao furar em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO, FU
- Profundidade de corte Q202 (incremental): medida segundo a qual a ferramenta penetra de cada vez na peça de trabalho. Campo de introdução de 0 a 99999,99999. A profundidade não tem que ser um múltiplo da profundidade de passo. O TNC desloca-se num só passo de maquinagem para a profundidade total quando:
 - a profundidade de corte e a profundidade total são iguais
 - a profundidade de corte é maior do que a profundidade total
- Coord. da superf. da peça de trabalho Q203 (valor absoluto): coordenada da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- ▶ Valor de redução Q212 (incremental): valor com que o TNC reduz a profundidade de corte Q202. Campo de introdução de 0 a 99999,9999
- Profundidade de corte mínima Q205 (incremental): se tiver introduzido um valor de redução, o TNC limita o corte ao valor introduzido com Q205. Campo de introdução de 0 a 99999,9999
- Distância de posição prévia em cima Q258 (incremental): distância de segurança para posicionamento em marcha rápida, se o TNC após uma retração a partir do furo deslocar de novo a ferramenta para a profundidade de corte atual; valor aquando do primeiro corte. Campo de introdução de 0 a 99999,9999

- Distância de posição prévia em baixo Q259 (incremental): distância de segurança para posicionamento em marcha rápida, se o TNC após uma retração a partir do furo deslocar de novo a ferramenta para a profundidade de corte atual; valor aquando do último corte. Campo de introdução de 0 a 99999,9999
- Profundidade de furo até rotura de apara Q257 (incremental): passo após o qual o TNC executa uma rotura de apara. Sem rotura de apara, quando é introduzido 0. Campo de introdução de 0 a 99999,9999
- Retração em rotura de apara Q256 (incremental): valor com que o TNC retrocede a ferramenta quando há rotura de apara. O TNC efetua o retrocesso com um avanço de 3.000 mm/min. Campo de introdução 0,1000 a 99999,9999; em alternativa, PREDEF
- Tempo de espera em baixo Q211: tempo em segundos que a ferramenta espera na base do furo. Campo de introdução 0 a 3600,0000; em alternativa PREDEF
- Ponto inicial aprofundado Q379 (referido de forma incremental à superfície da peça de trabalho): ponto inicial da maquinagem de furo propriamente dita, quando já se tiver furado previamente a uma profundidade determinada, com uma ferramenta mais curta. O TNC desloca-se em avanço de posicionamento prévio da distância de segurança para o ponto inicial aprofundado. Campo de introdução de 0 a 99999,9999
- Avanço de posicionamento prévio Q253: velocidade de deslocação da ferramenta ao posicionar, desde a distância de segurança para um ponto inicial aprofundado em mm/min. Só atua se estiver introduzido Q379 diferente de 0. Campo de introdução 0 a 99999,999; em alternativa FMAX, FAUTO, PREDEF
- Avanço de retração Q208: velocidade de deslocação da ferramenta ao retirar-se após a maquinagem em mm/min. Se introduzir Q208=0, então o TNC retira a ferramenta com o avanço Q206. Campo de introdução 0 a 99999,999; em alternativa FMAX, FAUTO, PREDEF
- PROFUNDIDADE DE REFERÊNCIAQ395: para selecionar se a profundidade introduzida se refere à extremidade da ferramenta ou à parte cilíndrica da ferramenta. Quando o TNC deva referir a profundidade à parte cilíndrica da ferramenta, é necessário definir o ângulo de ponta da ferramenta na coluna T-ANGLE da tabela de ferramentas TOOL.T.
 - 0 = O avanço refere-se à extremidade da ferramenta
 1 = A profundidade refere-se à parte cilíndrica da ferramenta

Exemplo: Blocos NC

11 CYCL DEF 20 UNIVERSAL	5 FURAR EM PROFUNDIDADE
Q200=2	;DISTÂNCIA SEGURANÇA
Q201=-80	;PROFUNDIDADE
Q206=150	;AVANÇO AO CORTAR EM PROFUND.
Q202=15	;PROFUNDIDADE DE CORTE
Q203=+100	;COORD. SUPERFÍCIE
Q204=50	;2.ª DISTÂNCIA SEGURANÇA
Q212=0.5	;VALOR DE REDUÇÃO
Q205=3	;PROFUNDIDADE DE CORTE MÍN.
Q258=0.5	;DISTÂNCIA DE POSIÇÃO PRÉVIA Em cima
Q259=1	;DIST. POSIÇÃO PRÉVIA EM BAIXO
Q257=5	;PROFUNDIDADE DE FURO ROTURA Apara
Q256=0.2	;RZ EM ROTURA DE APARA
Q211=0.25	;TEMPO DE ESPERA EM BAIXO
Q379=7.5	;PONTO INICIAL
Q253=750	;AVANÇO POSICION. PRÉVIO
Q208=99999	;AVANÇO DE RETROCESSO
Q395=0	;REFERÊNCIA PROFUNDIDADE

3.9 FRESAR FURO (ciclo 208)

Execução do ciclo

- 1 O TNC posiciona a ferramenta no eixo do mandril em marcha rápida FMAX na distância de segurança programada sobre a superfície da peça de trabalho, e inicia o diâmetro programado sobre um círculo de arredondamento (se houver lugar)
- 2 A ferramenta fresa com o avanço F programado numa hélice até à profundidade de furo programada
- 3 Quando é atingida a profundidade de furo, o TNC executa outra vez um círculo completo para, por ocasião do afundamento, retirar o material que tiver ficado
- 4 Depois, o TNC posiciona a ferramenta outra vez de regresso ao centro do furo
- 5 No fim, o TNC retira a ferramenta com FMAX de novo para a distância de segurança. Se tiver introduzido uma 2ª distância de segurança, o TNC desloca a ferramenta para aí com FMAX

Ter em atenção ao programar!

Programar o bloco de posicionamento sobre o ponto inicial (centro do furo) do plano de maquinagem com correção de raio **R0**.

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

Se se tiver introduzido o diâmetro do furo igual ao diâmetro da ferramenta, o TNC fura sem interpolação de hélice, diretamente na profundidade programada.

Um espelhamento ativo $\boldsymbol{n}\tilde{\boldsymbol{a}}\boldsymbol{o}$ influencia o tipo de fresagem definido no ciclo.

Tenha em conta que a sua ferramenta, em caso de passo excessivamente grande, se danifica a ela própria e à peça de trabalho.

Para evitar a introdução com passos excessivos, indique na tabela de ferramentas TOOL.T na coluna **ANGLE** o máx. ângulo de afundamento possível da ferramenta. O TNC calcula então automaticamente o máx. passo permitido e modifica, se necessário, o valor introduzido por si.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Parâmetros de ciclo

- Distância de segurança Q200 (incremental): distância entre a aresta inferior da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Profundidade Q201 (incremental): distância entre a superfície da peça de trabalho e a base do furo. Campo de introdução -99999,9999 a 99999,9999
- Avanço de corte em profundidade Q206: velocidade de deslocação da ferramenta ao furar sobre a hélice em mm/min. Campo de introdução 0 a 99999,999; em alternativa, FAUTO, FU, FZ
- Passo por hélice Q334 (incremental): medida segundo a qual a ferramenta avança respetivamente segundo uma hélice (=360°). Campo de introdução de 0 a 99999,9999
- Coord. da superf. da peça de trabalho Q203 (valor absoluto): coordenada da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Diâmetro nominal Q335 (valor absoluto): diâmetro do furo. Se se tiver introduzido o diâmetro nominal igual ao diâmetro da ferramenta, o TNC fura sem interpolação de hélice, diretamente na profundidade programada. Campo de introdução 0 a 99999.9999
- Diâmetro furado previamente Q342 (valor absoluto): logo que em Q342 se introduz um valor superior a 0, o TNC deixa de executar qualquer verificação do comportamento do diâmetro nominal em relação ao diâmetro da ferramenta. Assim, podem fresar-se furos cujo diâmetro são mais do dobro do diâmetro da ferramenta. Campo de introdução 0 a 99999.9999
- ► Tipo de fresagem Q351: tipo de maquinagem de fresagem com M3
 - +1 = fresagem sincronizada
 - **-1** = fresagem em sentido oposto
 - **PREDEF** = utilizar o valor padrão de **GLOBAL DEF**

Exemplo: Blocos NC

12 CYCL DEF 20	8 FRESAR FURO
Q200=2	;DISTÂNCIA SEGURANÇA
Q201=-80	;PROFUNDIDADE
Q206=150	;AVANÇO AO CORTAR EM PROFUND.
Q334=1.5	;PROFUNDIDADE DE CORTE
Q203=+100	;COORD. SUPERFÍCIE
Q204=50	;2.ª DISTÂNCIA SEGURANÇA
Q335=25	;DIÂMETRO NOMINAL
Q342=0	;DIÂMETRO INDICADO PREVIAMENTE
Q351=+1	;TIPO DE FRESAGEM

3.10 FURAR COM GUME ÚNICO (Ciclo 241, DIN/ISO: G241)

Execução do ciclo

- 1 O TNC posiciona a ferramenta no eixo do mandril em marcha rápida FMAX na distância de segurança introduzida, acima da superfície da peça de trabalho
- 2 Em seguida, o TNC desloca a ferramenta com a alimentação de posicionamento definida para a distância de segurança sobre o ponto inicial aprofundado e activa aí as rotações de furação com M3, assim como o agente refrigerante. O movimento de entrada é executado de acordo com a direção de rotação definida no ciclo, com mandril de rotação para a direita, para a esquerda ou parado
- **3** A ferramenta perfura com o avanço **F** introduzido até à profundidade de furo programada ou, se definida, até à profundidade de permanência introduzida.
- 4 A ferramenta permanece na base do furo com o mandril a rodar para cortar livremente, caso programado. Depois, o TNC desliga o agente refrigerante e repõe as rotações de novo no valor de saída definido.
- 5 Na base do furo, após o tempo de espera, faz-se a retirada para a distância de segurança com avanço de retrocesso. Se tiver introduzido uma 2ª distância de segurança, o TNC desloca a ferramenta para aí com FMAX

Ter em atenção ao programar!

Programar o bloco de posicionamento sobre o ponto inicial (centro do furo) do plano de maquinagem com correção de raio **R0**.

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

Parâmetros de ciclo

- Distância de segurança Q200 (incremental): distância entre a extremidade da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Profundidade Q201 (incremental): distância entre a superfície da peça de trabalho e a base do furo. Campo de introdução -99999,9999 a 99999,9999
- Avanço de corte em profundidade Q206: velocidade de deslocação da ferramenta ao furar em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO, FU
- Tempo de espera em baixo Q211: tempo em segundos que a ferramenta espera na base do furo. Campo de introdução 0 a 3600,0000; em alternativa PREDEF
- Coord. da superf. da peça de trabalho Q203 (valor absoluto): coordenada da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Ponto inicial aprofundado Q379 (referido de forma incremental à superfície da peça de trabalho): ponto inicial da maquinagem de perfuração propriamente dita. O TNC desloca-se em avanço de posicionamento prévio da distância de segurança para o ponto inicial aprofundado. Campo de introdução de 0 a 99999,9999
- Avanço de posicionamento prévio Q253: velocidade de deslocação da ferramenta ao posicionar, desde a distância de segurança para o ponto inicial aprofundado em mm/min. Só atua se estiver introduzido Q379 diferente de 0. Campo de introdução 0 a 99999,999; em alternativa FMAX, FAUTO, PREDEF
- Avanço de retração Q208: velocidade de deslocação da ferramenta ao retirar-se do furo em mm/min. Se introduzir Q208=0, então o TNC retira a ferramenta com o avanço de furação Q206. Campo de introdução 0 a 99999,999; em alternativa FMAX, FAUTO, PREDEF

- Direção de rotação na entrada/retirada (3/4/5) Q426: direção de rotação em que a ferramenta deve rodar ao entrar no furo e ao sair do furo. Campo de introdução:
 - 3: rodar o mandril com M3
 - 4: rodar o mandril com M4
 - 5: deslocar com mandril parado
- Velocidade do mandril na entrada/retirada Q427: velocidade a que a ferramenta deve rodar ao entrar no furo e ao sair do furo. Campo de introdução de 0 a 99999
- Velocidade ao furar Q428: velocidade a que a ferramenta deve furar. Campo de introdução de 0 a 99999
- Função M Agente refrigerante LIGADO Q429: função auxiliar M para ativar o agente refrigerante. O TNC liga o agente refrigerante quando a ferramenta se encontra no ponto inicial mais profundo na perfuração. Campo de introdução de 0 a 999
- Função M Agente refrigerante DESLIGADO Q430: função auxiliar M para desligar o agente refrigerante. O TNC desliga o agente refrigerante quando a ferramenta está sobre a profundidade de perfuração. Campo de introdução de 0 a 999
- Profundidade de permanência Q435 (incremental): coordenada no eixo do mandril sobre a qual a ferramenta deve permanecer. A função não está ativa se se introduzir 0 (ajuste padrão). Aplicação: na produção de perfurações de passagem, algumas ferramentas requerem um breve tempo de permanência antes da saída da base do furo, para transportarem as aparas para cima. Definir um valor inferior à profundidade de furo Q201, campo de introdução 0 a 99999,9999

Exemplo: Blocos NC

1	CYCL DEF 24	1 FURAR COM GUME ÚNICO
	Q200=2	;DISTÂNCIA SEGURANÇA
	Q201=-80	;PROFUNDIDADE
	Q206=150	;AVANÇO AO CORTAR EM PROFUND.
	Q211=0.25	;TEMPO DE ESPERA EM BAIXO
	Q203=+100	;COORD. SUPERFÍCIE
	Q204=50	;2.ª DISTÂNCIA SEGURANÇA
	Q379=7.5	;PONTO INICIAL
	Q253=750	;AVANÇO POSICION. PRÉVIO
	Q208=1000	;AVANÇO DE RETROCESSO
	Q426=3	;DIR.ROTAÇÃO MANDRIL
	Q427=25	;VELOC. ENTRADA/RETIRADA
	Q428=500	;ROTAÇÕES FURAR
	Q429=8	;REFRIGERAÇÃO LIGADA
	Q430=9	;REFRIGERAÇÃO DESLIGADA
	Q435=0	;PROFUNDIDADE DE PERMANÊNCIA

3.11 Exemplos de programação

Exemplo: ciclos de furar

O BEGIN PGM C200 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definição do bloco
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL CALL 1 Z S4500	Chamada de ferramenta (raio da ferramenta 3)
4 L Z+250 RO FMAX	Retirar a ferramenta
5 CYCL DEF 200 FURAR	Definição do ciclo
Q200=2 ;DISTÂNCIA SEGURANÇA	
Q201=-15 ;PROFUNDIDADE	
Q206=250 ;AVANÇO F CORTE EM Profundidade	
Q2O2=5 ;PROFUNDIDADE DE CORTE	
Q210=0 ;TEMPO F EM CIMA	
Q2O3=-10 ;COORD. SUPERFÍCIE	
Q204=20 ;2.ª DISTÂNCIA DE SEGURANÇA	
Q211=0.2 ;TEMPO DE ESPERA EM BAIXO	
Q395=0 ;REFERÊNCIA PROFUNDIDADE	

6 L X+10 Y+10 R0 FMAX M3	Aproximação ao primeiro furo, ligar o mandril
7 CYCL CALL	Chamada de ciclo
8 L Y+90 R0 FMAX M99	Aproximação ao furo 2, chamada do ciclo
9 L X+90 RO FMAX M99	Aproximação ao furo 3, chamada do ciclo
10 L Y+10 RO FMAX M99	Aproximação ao furo 4, chamada do ciclo
11 L Z+250 R0 FMAX M2	Retirar ferramenta, fim do programa
12 END PGM C200 MM	

i

3.11 Exemplos de pro<mark>gra</mark>mação

Exemplo: utilização de ciclos de furar em ligação com PATTERN DEF

As coordenadas de furos estão memorizadas na definição de padrão **PATTERN DEF POS** e são chamadas pelo TNC com **CYCL CALL PAT** gerufen.

Os raios da ferramenta são selecionados de forma a que todos os passos de trabalho sejam vistos no teste gráfico.

Execução do programa

- Centrar (raio de ferramenta 4)
- Furar (raio de ferramenta 2,4)
- Furar roscas (raio de ferramenta 3)

O BEGIN PGM 1 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definição do bloco
2 BLK FORM 0.2 X+100 Y+100 Y+0	
3 TOOL CALL 1 Z S5000	Chamada de ferramenta centralizador (raio 4)
4 L Z+10 RO F5000	Deslocar a ferramenta para a altura de segurança (programar F com valor): após cada ciclo o TNC posiciona na altura de segurança
5 PATTERN DEF	Definir todas as posições de perfuração no padrão de pontos
POS1(X+10 Y+10 Z+0)	
POS2(X+40 Y+30 Z+0)	
POS3(X+20 Y+55 Z+0)	
POS4(X+10 Y+90 Z+0)	
POS5(X+90 Y+90 Z+0)	
POS6(X+80 Y+65 Z+0)	
POS7(X+80 Y+30 Z+0)	
POS8(X+90 Y+10 Z+0)	

6 CYCL DEF 240 CENTRAR	Definição do ciclo Centrar
Q200=2 ;DISTÂNCIA SEGURANÇA	
Q343=0 ;SELEÇÃO	
DIAMETRO/PROFUNDIDADE	
Q201=-2 ;PROFUNDIDADE	
Q344=-10 ;DIÂMETRO	
Q206=150 ;AVANÇO F CORTE EM Profundidade	
Q211=0 ;TEMPO DE ESPERA EM BAIXO	
Q2O3=+O ;COORD. SUPERFÍCIE	
Q204=50 ;2.ª DISTÂNCIA SEGURANÇA	
7 CYCL CALL PAT F5000 M13	Chamada de ciclo em ligação com padrão de pontos
8 L Z+100 R0 FMAX	Retirar ferramenta, troca da ferramenta
9 TOOL CALL 2 Z S5000	Chamada de ferramenta broca (raio 2,4)
10 L Z+10 R0 F5000	Deslocar a ferramenta para a distância de segurança (programar F com valor)
11 CYCL DEF 200 FURAR	Definição do ciclo de Furar
Q200=2 ;DISTÂNCIA SEGURANÇA	
Q201=-25 ;PROFUNDIDADE	
Q206=150 ;AVANÇO DE CORTE EM PROFUND.	
Q2O2=5 ;PROFUNDIDADE DE CORTE	
Q210=0 ;TEMPO DE ESPERA EM CIMA	
Q2O3=+O ;COORD. SUPERFÍCIE	
Q204=50 ;2.ª DISTÂNCIA SEGURANÇA	
Q211=0.2 ;TEMPO DE ESPERA EM BAIXO	
Q395=0 ;REFERÊNCIA PROFUNDIDADE	

i

12 CYCL CALL PAT F5000 M13	Chamada de ciclo em ligação com padrão de pontos	
13 L Z+100 RO FMAX	Retirar a ferramenta	
14 TOOL CALL 3 Z S200	Chamada de ferramenta macho tarrasca (raio 3)	
15 L Z+50 R0 FMAX	Deslocar a ferramenta para a distância de segurança	
16 CYCL DEF 206 ROSCAGEM NOVO	Definição de ciclo de roscagem	
Q200=2 ;DISTÂNCIA SEGURANÇA		
Q201=-25 ;PROFUNDIDADE DE ROSCA		
Q206=150 ;AVANÇO DE CORTE EM PROFUND.		
Q211=0 ;TEMPO DE ESPERA EM BAIXO		
Q2O3=+O ;COORD. SUPERFÍCIE		
Q204=50 ;2.ª DISTÂNCIA SEGURANÇA		
17 CYCL CALL PAT F5000 M13	Chamada de ciclo em ligação com padrão de pontos	
18 L Z+100 RO FMAX M2	Retirar ferramenta, fim do programa	
19 END PGM 1 MM		

3.11 Exemplos de pro<mark>gra</mark>mação

i

Ciclos de maquinagem: roscagem / fresagem de roscas

4.1 Princípios básicos

Resumo

O TNC dispõe dum total de 8 ciclos para as mais variadas maquinagens de roscas:

Ciclo	Softkey	Página
206 ROSCAGEM NOVA Com embraiagem, com posicionamento prévio automático, 2.ª Distância de segurança	206	Página 109
207 ROSCAGEM GS NOVA Sem mandril compensador, com posicionamento prévio automático, 2.ª distância de segurança	287 RT	Página 111
209 ROSCAGEM ROTURA DE APARA Sem mandril compensador, com posicionamento prévio automático, 2.ª distância de segurança; rotura de apara	209 RT	Página 114
262 FRESAR EM ROSCA Ciclo para fresar uma rosca no material previamente furado	262	Página 119
263 FRESAR EM ROSCA COM REBAIXAMENTO Ciclo para fresar uma rosca no material previamente furado com produção de um chanfre de rebaixamento	263	Página 122
264 FRESAR ROSCA EM FURO ciclo para furar no material todo e a seguir fresar a rosca com uma ferramenta	264	Página 126
265 FRESAR ROSCA EM FURO DE HÉLICE Ciclo para fresar a rosca no material todo	265	Página 130
267 FRESAR ROSCA EXTERIOR Ciclo para fresar uma rosca exterior com produção de um chanfre de rebaixamento	267	Página 130

4.2 ROSCAGEM NOVA com mandril compensador (ciclo 206, DIN/ISO: G206)

Execução do ciclo

- **1** O TNC posiciona a ferramenta no eixo do mandril em marcha rápida FMAX na distância de seguranca introduzida, acima da superfície da peca de trabalho
- 2 A ferramenta desloca-se num só passo até à profundidade do furo
- 3 A seguir, inverte-se a direção de rotação do mandril e, após o tempo de espera, a ferramenta retrocede à distância de segurança. Se tiver introduzido uma 2ª distância de segurança, o TNC desloca a ferramenta para aí com FMAX
- Na distância de segurança, inverte-se de novo a direção de rotação 4 do mandril

Ter em atenção ao programar!

Programar o bloco de posicionamento sobre o ponto inicial (centro do furo) do plano de maguinagem com correção de raio RO.

No ciclo, o sinal do parâmetro Profundidade determina a direção da maguinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

A ferramenta deve estar fixa num mandril compensador de comprimento. O mandril compensador de comprimento compensa tolerâncias de avanco e velocidade durante a maguinagem.

Enquanto se executa o ciclo, não está ativado o potenciómetro de override de rotações. O potenciómetro para o override do avanço está ativo com limitações (determinado pelo fabricante da máguina, consultar o manual da máquina).

Para roscar à direita, ativar o mandril com M3, e para roscar à esquerda, com M4.

Se introduzir o passo de rosca da broca de roscagem na coluna **PITCH** da tabela de ferramentas, o TNC compara o passo de rosca da tabela de ferramentas com o passo de rosca definido no ciclo. O TNC emite uma mensagem de erro se os valores não coincidirem. No ciclo 206, o TNC calcula o passo de rosca com base nas rotações programadas e no avanço definido no ciclo.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Parâmetros de ciclo

 Δ

- Distância de segurança Q200 (incremental): distância entre a ponta da ferramenta (posição inicial) e a superfície da peça de trabalho; valor aproximativo: 4 x passo de rosca. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Profundidade de furo Q201 (comprimento de rosca, incremental): distância entre a superfície da peça de trabalho e o fim da rosca. Campo de introdução -99999,9999 a 99999,9999
- Avanço F Q206: velocidade de deslocação da ferramenta na roscagem. Campo de introdução 0 a 99999,999; em alternativa, FAUTO
- Tempo de espera em baixo Q211: introduzir um valor entre 0 e 0,5 segundos para evitar o acunhamento da ferramenta quando esta retrocede. Campo de introdução 0 a 3600,0000; em alternativa PREDEF
- Coord. da superf. da peça de trabalho Q203 (valor absoluto): coordenada da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2.ª Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF

Calcular avanço: F = S x p

- F: Avanço em mm/min)
- S: Velocidade do mandril (r.p.m.)
- p: Passo de rosca (mm)

Retirar a ferramenta durante a interrupção do programa

Se, durante a roscagem, se premir a tecla de paragem externa, o TNC mostra uma softkey com que se pode retirar a ferramenta.

Exemplo: Blocos NC

25	CYCL DEF 20	6 ROSCAGEM	NOVA	
	Q200=2	;DISTÂNCIA	SEGURANÇA	
	Q201=-20	; PROFUNDID	ADE	
	Q206=150	;AVANÇO AO	CORTAR EM PROFUND.	
	Q211=0.25	;TEMPO DE	ESPERA EM BAIXO	
	Q203=+25	;COORD. SU	PERFÍCIE	
	Q204=50	;2.ª DISTÂ	NCIA SEGURANÇA	

205

4.3 ROSCAGEM NOVA sem mandril compensador GS (ciclo 207, DIN/ISO: G207)

Execução do ciclo

O TNC corta a rosca à lâmina num ou em vários passos sem mandril compensador de comprimento.

- 1 O TNC posiciona a ferramenta no eixo do mandril em marcha rápida FMAX na distância de segurança introduzida, acima da superfície da peça de trabalho
- 2 A ferramenta desloca-se num só passo até à profundidade do furo
- 3 A seguir, inverte-se a direção de rotação do mandril e, após o tempo de espera, a ferramenta retrocede à distância de segurança. Se tiver introduzido uma 2ª distância de segurança, o TNC desloca a ferramenta para aí com FMAX
- 4 O TNC para o mandril à distância de segurança

A máquina e o TNC devem ser preparados pelo fabricante da máquina.

Ciclo aplicável apenas a máquinas com mandril regulado.

Programar o bloco de posicionamento sobre o ponto inicial (centro do furo) do plano de maquinagem com correção de raio **RO**.

O sinal do parâmetro Profundidade de furo determina a direção da maquinagem.

O TNC calcula o avanço em função da velocidade. Se, durante a roscagem, se ativar o potenciómetro de override de rotações, o TNC ajusta automaticamente o avanço.

O potenciómetro de override do avanço não está ativo.

No fim do ciclo, o mandril fica parado. Antes da maquinagem seguinte, ligar novamente o mandril com M3 (ou M4).

Se introduzir o passo de rosca da broca de roscagem na coluna **PITCH** da tabela de ferramentas, o TNC compara o passo de rosca da tabela de ferramentas com o passo de rosca definido no ciclo. O TNC emite uma mensagem de erro se os valores não coincidirem.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

- Distância de segurança Q200 (incremental): distância entre a ponta da ferramenta (posição inicial) e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Profundidade de furo Q201 (incremental): distância superfície da peça de trabalho e a ponta da rosca. Campo de introdução -99999,9999 a 99999,9999
- Passo de rosca Q239
 Passo da rosca. O sinal determina se a roscagem é à direita ou à esquerda:
 += roscagem à direita
 -= roscagem à esquerda
 Campo de introdução -99,9999 a 99,9999
- Coord. da superf. da peça de trabalho Q203 (valor absoluto): coordenada da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF

Retirar a ferramenta durante a interrupção do programa

Se durante o corte de rosca, se premir a tecla de paragem externa, o TNC mostra a softkey RETIRADA MANUAL. Se premir RETIRADA MANUAL, pode retirar a ferramenta de forma controlada. Para isso, prima a tecla de direção positiva do eixo do eixo ativo do mandril.

Exemplo: Blocos NC

26 CYCL DEF 20	D7 NOVA ROSCAGEM GS
Q200=2	;DISTÂNCIA SEGURANÇA
Q201=-20	;PROFUNDIDADE
Q239=+1	;PASSO DE ROSCA
Q203=+25	;COORD. SUPERFÍCIE
Q204=50	;2.ª DISTÂNCIA SEGURANÇA

4.4 ROSCAGEM ROTURA DE APARA (Ciclo 209, DIN/ISO: G209)

Execução do ciclo

O TNC corta a rosca em vários passos na profundidade programada. Com um parâmetro, é possível determinar se em rotura de apara a ferramenta deve ser retirada completamente para fora do furo ou não.

- 1 O TNC posiciona a ferramenta no eixo do mandril em marcha rápida FMAX para a distância de segurança programada sobre a superfície da peça de trabalho e executa aí uma orientação do mandril
- 2 A ferramenta desloca-se para a profundidade de passo programada, inverte o sentido de rotação e retrocede – consoante a definição – um determinado valor ou retira-se para remoção de aparas para fora do furo. Desde que se tenha definido um fator de aumento de rotações, o TNC retira-se do furo com velocidade do mandril correspondentemente mais alta
- 3 Seguidamente, o sentido de rotação do mandril é outra vez invertido e é deslocado para a profundidade de corte seguinte
- 4 O TNC repete este processo (2 a 3) até alcançar a profundidade de rosca programada
- 5 Seguidamente, a ferramenta é retrocedida para a distância de segurança. Se tiver introduzido uma 2ª distância de segurança, o TNC desloca a ferramenta para aí com FMAX
- 6 O TNC para o mandril à distância de segurança

A máquina e o TNC devem ser preparados pelo fabricante da máquina.

Ciclo aplicável apenas a máquinas com mandril regulado.

Programar o bloco de posicionamento sobre o ponto inicial (centro do furo) do plano de maquinagem com correção de raio **R0**.

O sinal do parâmetro profundidade de rosca determina a direção da maquinagem.

O TNC calcula o avanço em função da velocidade. Se, durante a roscagem, se ativar o potenciómetro de override de rotações, o TNC ajusta automaticamente o avanço.

O potenciómetro de override do avanço não está ativo.

Se, através do parâmetro de ciclo **Q403**, se tiver definido um fator de rotações para um retrocesso mais rápido, o TNC limita as rotações às rotações máximas da relação de engrenagem ativa.

No fim do ciclo, o mandril fica parado. Antes da maquinagem seguinte, ligar novamente o mandril com M3 (ou M4).

Se introduzir o passo de rosca da broca de roscagem na coluna **PITCH** da tabela de ferramentas, o TNC compara o passo de rosca da tabela de ferramentas com o passo de rosca definido no ciclo. O TNC emite uma mensagem de erro se os valores não coincidirem.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

- 209 RT
- Distância de segurança Q200 (incremental): distância entre a ponta da ferramenta (posição inicial) e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Profundidade de rosca Q201 (incremental): distância entre a superfície da peça de trabalho e o fim da rosca. Campo de introdução -99999,9999 a 99999,9999
- Passo de rosca Q239
 Passo da rosca. O sinal determina se a roscagem é à direita ou à esquerda:
 += roscagem à direita
 -= roscagem à esquerda
 Campo de introdução -99,9999 a 99,9999
- Coord. da superf. da peça de trabalho Q203 (valor absoluto): coordenada da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Profundidade de furo até rotura de apara Q257 (incremental): passo após o qual o TNC executa uma rotura de apara. Campo de introdução de 0 a 99999,9999
- Retração em rotura de apara Q256: o TNC multiplica o passo Q239 com o valor programado e retrocede a ferramenta em rotura de apara neste valor calculado. Se se introduzir Q256 = 0, o TNC retira-se completamente para fora do furo para remoção de aparas (à distância de segurança) Campo de introdução de 0 a 99999,9999
- Ângulo para orientação do mandril Q336 (absoluto): ângulo sobre o qual o TNC posiciona a ferramenta antes do processo de corte de rosca. Desta forma, é possível, se necessário, repassar a rosca. Campo de introdução –360,0000 a 360,0000
- Fator Alteração de rotações de retrocesso Q403: fator pelo qual o TNC aumenta a velocidade e, deste modo, também o avanço de retrocesso, ao retirar-se do furo. Campo de introdução 0,0001 a 10, aumento máximo até às rotações máximas da relação de engrenagem ativa

Retirar a ferramenta durante a interrupção do programa

Se durante o corte de rosca, se premir a tecla de paragem externa, o TNC mostra a softkey RETIRADA MANUAL. Se premir RETIRADA MANUAL, pode retirar a ferramenta de forma controlada. Para isso, prima a tecla de direção positiva do eixo do eixo ativo do mandril.

Exemplo: Blocos NC

26 CYCL DEF 20)9 ROSCAR ROTURA APARA
Q200=2	;DISTÂNCIA SEGURANÇA
Q201=-20	;PROFUNDIDADE
Q239=+1	;PASSO DE ROSCA
Q203=+25	;COORD. SUPERFÍCIE
Q204=50	;2.ª DISTÂNCIA SEGURANÇA
Q257=5	;PROFUNDIDADE DE FURO ROTURA Apara
Q256=+1	;RZ EM ROTURA DE APARA
Q336=50	;ÂNGULO MANDRIL
Q403=1.5	;FATOR DE ROTAÇÕES

4.5 Princípios básicos para fresar rosca

Condições

- A máquina deve estar equipada com refrigeração interior do mandril (agente refrigerante mín. 30 bar, ar comprimido mín. 6 bar)
- Como, normalmente, ao fresar rosca surgem deformações no perfil de rosca, geralmente são necessárias correções específicas da ferramenta que se devem consultar no catálogo das ferramentas ou junto do fabricante das ferramentas. A correção faz-se com TOOL CALL através do raio delta DR
- Os ciclos 262, 263, 264 e 267 só podem ser usados com ferramentas a rodar para a direita Para o ciclo 265 podem utilizar-se ferramentas com rotação para a direita e para a esquerda
- O sentido de maquinagem obtém-se a partir dos seguintes parâmetros de introdução: sinal do passo de rosca Q239 (+ = rosca direita /- = rosca esquerda) e tipo de fresagem Q351 (+1 = sentido sincronizado/-1 = sentido oposto). Através da seguinte tabela, é possível ver a relação entre os parâmetros de introdução em caso de ferramentas de rotação à direita.

Rosca interior	Passo	Tipo de fresagem	Direção da maquinagem
para a direita	+	+1(RL)	Z+
para a esquerda	-	–1(RR)	Z+
para a direita	+	–1(RR)	Z–
para a esquerda	-	+1(RL)	Z–

Roscagem exterior	Passo	Tipo de fresagem	Direção da maquinagem
para a direita	+	+1(RL)	Z–
para a esquerda	-	–1(RR)	Z–
para a direita	+	–1(RR)	Z+
para a esquerda	_	+1(RL)	Z+

 Δ

O TNC refere o avanço programado para a fresagem de roscas à lâmina da ferramenta. Mas, como o TNC visualiza o avanço referido à trajetória do ponto central, o valor visualizado não coincide com o valor programado.

O sentido de rotação da rosca modifica-se se se executar um ciclo de fresar rosca em conjunto com o ciclo 8 REFLECTIR em apenas um eixo.

Atencao, perigo de colisao!

Nos cortes em profundidade, programe sempre os mesmos sinais, pois os ciclos contêm várias execuções que são independentes umas das outras. A sequência com que é decidida a direção de trabalho está descrita nos respetivos ciclos. Se se quiser, por exemplo, repetir um ciclo só com o processo de rebaixamento, em profundidade de rosca introduza 0, e o sentido da maquinagem é então determinado com a profundidade de rebaixamento.

Comportamento em caso de rotura da ferramenta!

Se durante a roscagem à lâmina acontecer uma rotura da ferramenta, pare a execução do programa, mude para o modo de funcionamento Posicionar com Introdução Manual e desloque a ferramenta num movimento linear para o centro do furo. A seguir, pode mover-se a ferramenta para o eixo de aproximação e fazer a troca.

4.6 FRESAGEM DE ROSCA (Ciclo 262, DIN/ISO: G262)

Execução do ciclo

- 1 O TNC posiciona a ferramenta no eixo do mandril em marcha rápida FMAX na distância de segurança introduzida, acima da superfície da peça de trabalho
- 2 A ferramenta desloca-se com o avanço de posicionamento prévio programado para o plano de partida obtido com o sinal do passo de rosca, do tipo de fresagem e do número de passos para a memorização posterior.
- 3 Seguidamente, a ferramenta desloca-se tangencialmente num movimento helicoidal no diâmetro nominal de rosca. Assim, antes do movimento de partida de hélice é executado ainda um movimento de compensação no eixo da ferramenta, para se começar com a trajetória de rosca sobre o plano inicial programado
- 4 Consoante o parâmetro de memorização posterior, a ferramenta fresa a rosca num ou em vários movimentos memorizados ou num movimento helicoidal contínuo
- **5** Depois, a ferramenta sai tangencialmente do contorno para o ponto inicial no plano de maquinagem
- 6 No fim do ciclo, o TNC desloca a ferramenta em marcha rápida para a distância de segurança, ou, caso tenha sido programado, para a 2.ª distância de segurança

Programar o bloco de posicionamento sobre o ponto inicial (centro do furo) do plano de maquinagem com correção de raio **R0**.

O sinal do parâmetro Profundidade de Rosca determina a direção da maquinagem. Se programar a profundidade de rosca = 0, o TNC não executa o ciclo.

O movimento de aproximação ao diâmetro nominal da rosca realiza-se no semicírculo a partir do centro. Se o diâmetro da ferramenta e o passo quádruplo forem inferiores ao diâmetro nominal de rosca, é executado um posicionamento prévio.

Preste atenção a que o TNC execute um movimento de compensação, antes do movimento de aproximação, no eixo da ferramenta. O valor do movimento de compensação integra, no máximo, metade do passo da rosca. Prestar atenção a que haja espaço suficiente no furo!

Se alterar a profundidade de rosca, o TNC altera automaticamente o ponto inicial do movimento helicoidal.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

Tenha em conta que o TNC, em caso de alteração da profundidade, adapta o ângulo inicial de modo a que a ferramenta alcance a profundidade definida na posição de 0º do mandril. Em tais casos, uma repassagem da rosca leva, eventualmente, a uma segunda operação.

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

- Diâmetro nominal Q335: diâmetro nominal de rosca. Campo de introdução de 0 a 99999,9999
- Passo de rosca Q239: passo da rosca. O sinal determina se a roscagem é à direita ou à esquerda:
 + = roscagem à direita
 - = roscagem à esquerda

Campo de introdução -99,9999 a 99,9999

- Profundidade de rosca Q201 (incremental): distância entre a superfície da peça de trabalho e a base da rosca. Campo de introdução -99999,9999 a 99999,9999
- Memorização posterior Q355: número de passos de rosca segundo os quais a ferramenta é deslocada:
 0 = uma hélice de 360° na profundidade de rosca
 1 = hélice contínua no comprimento de rosca total
 >1 = várias trajetórias helicoidais com aproximação e afastamento, entretanto o TNC desloca a ferramenta Q355 vezes o passo. Campo de introdução de 0 a 99999
- Avanço de posicionamento prévio Q253: velocidade de deslocação da ferramenta ao afundar na peça de trabalho ou ao retirar-se da peça de trabalho em mm/min. Campo de introdução 0 a 99999,999; em alternativa FMAX, FAUTO, PREDEF
- Tipo de fresagem Q351: tipo de maquinagem de fresagem com M3
 +1 = fresagem sincronizada
 -1 = fresagem em sentido oposto Em alternativa, PREDEF
- Distância de segurança Q200 (incremental): distância entre a ponta da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Coord. da superf. da peça de trabalho Q203 (valor absoluto): coordenada da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO
- Avanço de aproximação Q512: velocidade de deslocação da ferramenta ao entrar na rosca em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO

Exemplo: Blocos NC

25 CYCL DEF 26	2 FRESAR ROSCA
Q335=10	;DIÂMETRO NOMINAL
Q239=+1,5	;PASSO
Q201=-20	;PROFUNDIDADE DE ROSCA
Q355=0	;MEMORIZAÇÃO POSTERIOR
Q253=750	;AVANÇO POSICION. PRÉVIO
Q351=+1	;TIPO DE FRESAGEM
Q200=2	;DISTÂNCIA SEGURANÇA
Q203=+30	;COORD. SUPERFÍCIE
Q204=50	;2.ª DISTÂNCIA SEGURANÇA
Q207=500	;AVANÇO DE FRESAGEM
Q512=50	;AVANÇO DE APROXIMAÇÃO

4.7 FRESAGEM DE ROSCA EM REBAIXAMENTO (Ciclo 263, DIN/ISO: G263)

Execução do ciclo

1 O TNC posiciona a ferramenta no eixo do mandril em marcha rápida FMAX na distância de segurança introduzida, acima da superfície da peça de trabalho

Rebaixamento

- 2 A ferramenta desloca-se em avanço de posicionamento prévio para a profundidade de rebaixamento menos a distância de segurança e, a seguir, em avanço de rebaixamento para a profundidade de rebaixamento
- **3** Se tiver sido introduzida uma distância de segurança, o TNC posiciona a ferramenta igualmente em avanço de posicionamento prévio para a profundidade de rebaixamento
- 4 A seguir, consoante as relações de posições, o TNC arranca de forma suave do centro para fora ou com posicionamento prévio lateral e executa um movimento circular

Rebaixamento frontal

- **5** A ferramenta desloca-se em avanço de posicionamento prévio para profundidade de rebaixamento de lado frontal
- 6 O TNC posiciona a ferramenta sem correção a partir do centro segundo um semicírculo sobre a deslocação de lado frontal e executa um movimento circular em avanço de rebaixamento
- 7 Seguidamente, o TNC desloca a ferramenta outra vez segundo um semicírculo para o centro do furo

Fresar rosca

- 8 O TNC desloca a ferramenta, com o avanço de posicionamento prévio programado, para o plano de partida obtido com o sinal do passo de rosca e o tipo de fresagem
- 9 Seguidamente, a ferramenta desloca-se num movimento helicoidal tangencialmente ao diâmetro interior da rosca e fresa a rosca com um movimento helicoidal de 360º
- **10** Depois, a ferramenta sai tangencialmente do contorno para o ponto inicial no plano de maquinagem
- 11 No fim do ciclo, o TNC desloca a ferramenta em marcha rápida para a distância de segurança, ou, caso tenha sido programado, para a 2.ª Distância de segurança

Antes da programação, deverá ter em conta

Programar o bloco de posicionamento sobre o ponto inicial (centro do furo) do plano de maquinagem com correção de raio **R0**.

Os sinais dos parâmetros de ciclos profundidade de rosca, profundidade de rebaixamento ou profundidade de lado frontal determinam o sentido da maquinagem. O sentido da maquinagem é decidido de acordo com a seguinte sequência:

Furo Profundidade de rosca 2º Profundidade de rebaixamento 3º Profundidade de lado frontal

Caso um dos parâmetros de profundidade seja ocupado com 0, o TNC não executa este passo de maquinagem.

Se quiser rebaixar pelo lado frontal, tem que definir o parâmetro profundidade de rebaixamento com 0.

Programe a profundidade de rosca no mínimo um terço do passo de rosca inferior à profundidade de rebaixamento.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

- Diâmetro nominal Q335: diâmetro nominal de rosca. Campo de introdução de 0 a 99999,9999
- Passo de rosca Q239: passo da rosca. O sinal determina se a roscagem é à direita ou à esquerda:
 + = roscagem à direita
 - = roscagem à esquerda
 - Campo de introdução -99,9999 a 99,9999
- Profundidade de rosca Q201 (incremental): distância entre a superfície da peça de trabalho e a base da rosca. Campo de introdução -99999,9999 a 99999,9999
- Profundidade de rebaixamento Q356 (incremental): distância entre a superfície da peça de trabalho e a ponta da ferramenta. Campo de introdução -99999,9999 a 99999,9999
- Avanço de posicionamento prévio Q253: velocidade de deslocação da ferramenta ao afundar na peça de trabalho ou ao retirar-se da peça de trabalho em mm/min. Campo de introdução 0 a 99999,999; em alternativa FMAX, FAUTO, PREDEF
- ► **Tipo de fresagem** Q351: tipo de maquinagem de fresagem com M3
 - +1 = fresagem sincronizada
 - -1 = fresagem em sentido oposto Em alternativa, **PREDEF**
- Distância de segurança Q200 (incremental): distância entre a ponta da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Distância de segurança 1ado Q357 (incremental): distância entre a lâmina da ferramenta e a parede do furo. Campo de introdução de 0 a 99999,9999
- Profundidade 1ado frontal Q358 (incremental): distância entre a superfície da peça de trabalho e a ponta da ferramenta no processo de rebaixamento frontal. Campo de introdução -99999,9999 a 99999,9999
- Desvio rebaixamento lado frontal Q359 (incremental): distância com que o TNC desloca o centro da ferramenta a partir do centro do furo. Campo de introdução de 0 a 99999,9999

- Coord. da superf. da peça de trabalho Q203 (valor absoluto): coordenada da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Avanço de rebaixamento Q254: velocidade de deslocação da ferramenta ao rebaixar em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO, FU
- Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min. Campo de introdução 0 a 99999,9999; em alternativa FAUTO
- Avanço de aproximação Q512: velocidade de deslocação da ferramenta ao entrar na rosca em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO

Exemplo: Blocos NC

25	CYCL DEF 26	3 REBAIXAMENTO EM ROSCA
	Q335=10	;DIÂMETRO NOMINAL
	Q239=+1,5	;PASSO
	Q201=-16	;PROFUNDIDADE DE ROSCA
	Q356=-20	;PROFUNDIDADE DE REBAIXAMENT
	Q253=750	;AVANÇO POSICION. PRÉVIO
	Q351=+1	;TIPO DE FRESAGEM
	Q200=2	;DISTÂNCIA SEGURANÇA
	Q357=0,2	;DISTÂNCIA DE SEGURANÇA LADO
	Q358=+0	;PROFUNDIDADE FRONTAL
	Q359=+0	;DESVIO FRONTAL
	Q203=+30	;COORD. SUPERFÍCIE
	Q204=50	;2.ª DISTÂNCIA SEGURANÇA
	Q254=150	;AVANÇO DE REBAIXAMENTO
	Q207=500	;AVANÇO DE FRESAGEM
	Q512=50	;AVANÇO DE APROXIMAÇÃO

4.8 FRESAGEM DE ROSCA EM FURO (Ciclo 264, DIN/ISO: G264)

Execução do ciclo

1 O TNC posiciona a ferramenta no eixo do mandril em marcha rápida FMAX na distância de segurança introduzida, acima da superfície da peça de trabalho

Furar

- 2 A ferramenta fura com o avanço de corte em profundidade introduzido até à primeira profundidade de corte
- 3 Se estiver programada a rotura de apara, o TNC retira a ferramenta no valor de retração programado. Se se trabalhar sem rotura de apara, o TNC retira a ferramenta em marcha rápida para a distância de segurança, e a seguir outra vez com FMAX até à distância de posição prévia programada, sobre a primeira profundidade de corte
- **4** A seguir, a ferramenta fura com avanço até à profundidade de corte seguinte.
- 5 O TNC repete este processo (2 a 4) até alcançar a profundidade do furo

Rebaixamento frontal

- 6 A ferramenta desloca-se em avanço de posicionamento prévio para profundidade de rebaixamento de lado frontal
- 7 O TNC posiciona a ferramenta sem correção a partir do centro segundo um semicírculo sobre a deslocação de lado frontal e executa um movimento circular em avanço de rebaixamento
- 8 Seguidamente, o TNC desloca a ferramenta outra vez segundo um semicírculo para o centro do furo

Fresar rosca

- **9** O TNC desloca a ferramenta, com o avanço de posicionamento prévio programado, para o plano de partida obtido com o sinal do passo de rosca e o tipo de fresagem
- 10 Seguidamente, a ferramenta desloca-se tangente num movimento de hélice, de forma tangente ao diâmetro nominal de rosca e fresa a rosca com um movimento de hélice de 360º
- **11** Depois, a ferramenta sai tangencialmente do contorno para o ponto inicial no plano de maquinagem
- 12 No fim do ciclo, o TNC desloca a ferramenta em marcha rápida para a distância de segurança, ou, caso tenha sido programado, para a 2.ª Distância de segurança

Programar o bloco de posicionamento sobre o ponto inicial (centro do furo) do plano de maquinagem com correção de raio **R0**.

Os sinais dos parâmetros de ciclos profundidade de rosca, profundidade de rebaixamento ou profundidade de lado frontal determinam o sentido da maquinagem. O sentido da maquinagem é decidido de acordo com a seguinte sequência:

Furo Profundidade de rosca 2º Profundidade do furo 3º Profundidade de lado frontal

Caso um dos parâmetros de profundidade seja ocupado com 0, o TNC não executa este passo de maquinagem.

Programe a profundidade de rosca no mínimo um terço do passo de rosca inferior à profundidade de furo.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

- 264
- Diâmetro nominal Q335: diâmetro nominal de rosca. Campo de introdução de 0 a 99999,9999
- Passo de rosca Q239: passo da rosca. O sinal determina se a roscagem é à direita ou à esquerda:
 + = roscagem à direita
 - = roscagem à esquerda
 - Campo de introdução -99,9999 a 99,9999
- Profundidade de rosca Q201 (incremental): distância entre a superfície da peça de trabalho e a base da rosca. Campo de introdução -99999,9999 a 99999,9999
- Profundidade de furo Q356 (incremental): distância entre a superfície da peça de trabalho e a base do furo. Campo de introdução -99999,9999 a 99999,9999
- Avanço de posicionamento prévio Q253: velocidade de deslocação da ferramenta ao afundar na peça de trabalho ou ao retirar-se da peça de trabalho em mm/min. Campo de introdução 0 a 99999,999; em alternativa FMAX, FAUTO, PREDEF
- ▶ Tipo de fresagem Q351: tipo de maquinagem de fresagem com M3
 - +1 = fresagem sincronizada
 - -1 = fresagem em sentido oposto Em alternativa, PREDEF
- Profundidade de corte Q202 (incremental): medida segundo a qual a ferramenta penetra de cada vez na peça de trabalho. A profundidade não tem que ser um múltiplo da profundidade de passo. Campo de introdução de 0 a 99999,9999. O TNC desloca-se num só passo de maquinagem para a profundidade total quando:
 - a profundidade de corte e a profundidade total são iguais
 - a profundidade de corte é maior do que a profundidade total
- Distância de posição prévia em cima Q258 (incremental): distância de segurança para posicionamento de marcha rápida, quando o TNC após um retrocesso a partir do furo desloca de novo a ferramenta para a profundidade de passo atual. Campo de introdução de 0 a 99999,9999
- Profundidade de furo até rotura de apara Q257 (incremental): passo após o qual o TNC executa uma rotura de apara. Sem rotura de apara, quando é introduzido 0. Campo de introdução 0 a 99999,9999; em alternativa PREDEF

- Retração em rotura de apara Q256 (incremental): valor com que o TNC retrocede a ferramenta quando há rotura de apara. Campo de introdução 0,1000 a 99999,9999
- Profundidade lado frontal Q358 (incremental): distância entre a superfície da peça de trabalho e a ponta da ferramenta no processo de rebaixamento frontal. Campo de introdução -99999,9999 a 99999,9999
- Desvio rebaixamento lado frontal Q359 (incremental): distância com que o TNC desloca o centro da ferramenta a partir do centro do furo. Campo de introdução de 0 a 99999,9999
- Distância de segurança Q200 (incremental): distância entre a ponta da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Coord. da superf. da peça de trabalho Q203 (valor absoluto): coordenada da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Avanço de corte em profundidade Q206: velocidade de deslocação da ferramenta ao furar em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO, FU
- Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min. Campo de introdução 0 a 99999,9999; em alternativa FAUTO
- Avanço de aproximação Q512: velocidade de deslocação da ferramenta ao entrar na rosca em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO

Exemplo: Blocos NC

25	CYCL DEF 26	54 FRESAR ROSCA
	Q335=10	;DIÂMETRO NOMINAL
	Q239=+1,5	;PASSO
	Q201=-16	;PROFUNDIDADE DE ROSCA
	Q356=-20	;PROFUNDIDADE DE FURO
	Q253=750	;AVANÇO POSICION. PRÉVIO
	Q351=+1	;TIPO DE FRESAGEM
	Q202=5	;PROFUNDIDADE DE CORTE
	Q258=0.2	;DISTÂNCIA DE POSIÇÃO PRÉVIA
	Q257=5	;PROFUNDIDADE DE FURO ROTURA Apara
	Q256=0.2	;RZ EM ROTURA DE APARA
	Q358=+0	;PROFUNDIDADE FRONTAL
	Q359=+0	;DESVIO FRONTAL
	Q200=2	;DISTÂNCIA SEGURANÇA
	Q203=+30	;COORD. SUPERFÍCIE
	Q204=50	;2.ª DISTÂNCIA SEGURANÇA
	Q206=150	;AVANÇO AO CORTAR EM PROFUND.
	Q207=500	;AVANÇO DE FRESAGEM
	Q512=50	;AVANÇO DE APROXIMAÇÃO

) (

4.9 FRESAGEM DE ROSCA EM FURO DE HÉLICE (Ciclo 265, DIN/ISO: G265)

Execução do ciclo

1 O TNC posiciona a ferramenta no eixo do mandril em marcha rápida FMAX na distância de segurança introduzida, acima da superfície da peça de trabalho

Rebaixamento frontal

- 2 Ao rebaixar, antes da maquinagem da rosca, a ferramenta deslocase em avanço de rebaixamento para a profundidade de rebaixamento de lado frontal. Em processo de rebaixamento depois da maquinagem da rosca o TNC desloca a ferramenta para a profundidade de rebaixamento em avanço de posicionamento prévio
- 3 O TNC posiciona a ferramenta sem correção a partir do centro segundo um semicírculo sobre a deslocação de lado frontal e executa um movimento circular em avanço de rebaixamento
- 4 Seguidamente, o TNC desloca a ferramenta outra vez segundo um semicírculo para o centro do furo

Fresar rosca

- **5** O TNC desloca a ferramenta com o avanço de posicionamento prévio programado para o plano de partida destinado à rosca
- 6 Seguidamente, a ferramenta desloca-se tangencialmente num movimento helicoidal no diâmetro nominal de rosca
- 7 O TNC desloca a ferramenta segundo uma hélice contínua para baixo, até alcançar a profundidade de rosca total
- 8 Depois, a ferramenta sai tangencialmente do contorno para o ponto inicial no plano de maquinagem
- 9 No fim do ciclo, o TNC desloca a ferramenta em marcha rápida para a distância de segurança, ou, caso tenha sido programado, para a 2.ª distância de segurança

Programar o bloco de posicionamento sobre o ponto inicial (centro do furo) do plano de maquinagem com correção de raio **R0**.

Os sinais dos parâmetros de ciclos profundidade rosca ou profundidade de lado frontal determinam o sentido da maquinação. O sentido da maquinagem é decidido de acordo com a seguinte sequência: Furo Profundidade de rosca

2º Profundidade de lado frontal

Caso um dos parâmetros de profundidade seja ocupado com 0, o TNC não executa este passo de maquinagem.

Se alterar a profundidade de rosca, o TNC altera automaticamente o ponto inicial do movimento helicoidal.

O tipo de fresagem (em sentido oposto/em sentido sincronizado) é determinado pela rosca (rosca direita/rosca esquerda) e o sentido de rotação da ferramenta pois só é possível o sentido da maquinagem das superfícies da peça para o interior dessa parte.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

- 4.9 FRESAGEM DE ROSCA EM FURO DE HÉLICE (Ciclo 265, DI<mark>N/I</mark>SO: G265)
- Diâmetro nominal Q335: diâmetro nominal de rosca. Campo de introdução de 0 a 99999,9999
- Passo de rosca Q239: passo da rosca. O sinal determina se a roscagem é à direita ou à esquerda:
 + = roscagem à direita
 - = roscagem à esquerda
 - Campo de introdução -99,9999 a 99,9999
- Profundidade de rosca Q201 (incremental): distância entre a superfície da peça de trabalho e a base da rosca. Campo de introdução -99999,9999 a 99999,9999
- Avanço de posicionamento prévio Q253: velocidade de deslocação da ferramenta ao afundar na peça de trabalho ou ao retirar-se da peça de trabalho em mm/min. Campo de introdução 0 a 99999,999; em alternativa FMAX, FAUTO, PREDEF
- Profundidade lado frontal Q358 (incremental): distância entre a superfície da peça de trabalho e a ponta da ferramenta no processo de rebaixamento frontal. Campo de introdução -99999,9999 a 99999,9999
- Desvio rebaixamento lado frontal Q359 (incremental): distância com que o TNC desloca o centro da ferramenta a partir do centro do furo. Campo de introdução de 0 a 99999,9999
- Processo de rebaixamento Q360: execução do chanfro
 - **0** = antes da maquinagem de rosca
 - 1 = depois da maquinagem de rosca
- Distância de segurança Q200 (incremental): distância entre a ponta da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF

- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Avanço de rebaixamento Q254: velocidade de deslocação da ferramenta ao rebaixar em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO, FU
- Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO

Exemplo: Blocos NC

25 CYCL DEF 26	55 FRESAR ROSCA DE HÉLICE
Q335=10	;DIÂMETRO NOMINAL
Q239=+1,5	;PASSO
Q201=-16	;PROFUNDIDADE DE ROSCA
Q253=750	;AVANÇO POSICION. PRÉVIO
Q358=+0	;PROFUNDIDADE FRONTAL
Q359=+0	;DESVIO FRONTAL
Q360=0	;PROCESSO DE REBAIXAMENTO
Q200=2	;DISTÂNCIA SEGURANÇA
Q203=+30	;COORD. SUPERFÍCIE
Q204=50	;2.ª DISTÂNCIA SEGURANÇA
Q254=150	;AVANÇO DE REBAIXAMENTO
0207=500	:AVANCO DE FRESAGEM

4.10 FRESAGEM DE ROSCA EXTERIOR (Ciclo de apalpação 267, DIN/ISO: G267)

Execução do ciclo

1 O TNC posiciona a ferramenta no eixo do mandril em marcha rápida FMAX na distância de segurança introduzida, acima da superfície da peça de trabalho

Rebaixamento frontal

- 2 O TNC desloca o ponto inicial destinado ao rebaixamento de lado frontal a partir do centro da ilha sobre o eixo principal do plano de maquinagem. A posição do ponto inicial obtém-se a partir do raio da rosca, do raio da ferramenta e do passo
- **3** A ferramenta desloca-se em avanço de posicionamento prévio para profundidade de rebaixamento de lado frontal
- 4 O TNC posiciona a ferramenta sem correção a partir do centro segundo um semicírculo sobre a deslocação de lado frontal e executa um movimento circular em avanço de rebaixamento
- 5 Seguidamente, o TNC desloca a ferramenta outra vez segundo um semicírculo para o ponto inicial

Fresar rosca

- 6 O TNC posiciona a ferramenta sobre o ponto inicial se não tiver sido rebaixada antes de lado frontal. Ponto de partida fresar rosca = Ponto de partida rebaixar de lado frontal
- 7 A ferramenta desloca-se com o avanço de posicionamento prévio programado para o plano de partida obtido com o sinal do passo de rosca, do tipo de fresagem e do número de passos para a memorização posterior.
- 8 Seguidamente, a ferramenta desloca-se tangencialmente num movimento helicoidal no diâmetro nominal de rosca
- 9 Consoante o parâmetro de memorização posterior, a ferramenta fresa a rosca num ou em vários movimentos memorizados ou num movimento helicoidal contínuo
- **10** Depois, a ferramenta sai tangencialmente do contorno para o ponto inicial no plano de maquinagem
- 11 No fim do ciclo, o TNC desloca a ferramenta em marcha rápida para a distância de segurança, ou, caso tenha sido programado, para a 2.ª distância de segurança

Programar o bloco de posicionamento sobre o ponto inicial (centro da ilha) do plano de maquinagem com correção de raio **R0**.

O desvio necessário para o aprofundamento do lado frontal deve ser obtido anteriormente. Deve-se indicar o valor do centro da ilha até ao centro da ferramenta (valor não corrigido).

Os sinais dos parâmetros de ciclos profundidade rosca ou profundidade de lado frontal determinam o sentido da maquinagem. O sentido da maquinagem é decidido de acordo com a seguinte sequência: Furo Profundidade de rosca 2º Profundidade de lado frontal

Caso um dos parâmetros de profundidade seja ocupado com 0, o TNC não executa este passo de maquinagem.

O sinal do parâmetro Profundidade de Rosca determina a direção da maquinagem.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

Tenha em conta que o TNC, em caso de alteração da profundidade, adapta o ângulo inicial de modo a que a ferramenta alcance a profundidade definida na posição de 0º do mandril. Em tais casos, uma repassagem da rosca leva, eventualmente, a uma segunda operação.

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

HEIDENHAIN iTNC 530

267

- Diâmetro nominal Q335: diâmetro nominal de rosca. Campo de introdução de 0 a 99999,9999
- Passo de rosca Q239: passo da rosca. O sinal determina se a roscagem é à direita ou à esquerda:
 += roscagem à direita
 - = roscagem à esquerda
 - Campo de introdução -99,9999 a 99,9999
- Profundidade de rosca Q201 (incremental): distância entre a superfície da peça de trabalho e a base da rosca
- Memorização posterior Q355: número de passos de rosca segundo os quais a ferramenta é deslocada:
 - **0** = uma hélice na profundidade de rosca
 - 1 = hélice contínua no comprimento de rosca total
 1 = várias trajetórias helicoidais com aproximação e afastamento, entretanto o TNC desloca a ferramenta Q355 vezes o passo. Campo de introdução de 0 a 99999
- Avanço de posicionamento prévio Q253: velocidade de deslocação da ferramenta ao afundar na peça de trabalho ou ao retirar-se da peça de trabalho em mm/min. Campo de introdução 0 a 99999,999; em alternativa FMAX, FAUTO, PREDEF
- ► Tipo de fresagem Q351: tipo de maquinagem de fresagem com M3
 - +1 = fresagem sincronizada
 - -1 = fresagem em sentido oposto
 - Em alternativa, **PREDEF**

- Distância de segurança Q200 (incremental): distância entre a ponta da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Profundidade lado frontal Q358 (incremental): distância entre a superfície da peça de trabalho e a ponta da ferramenta no processo de rebaixamento frontal. Campo de introdução -99999,9999 a 99999,9999
- Desvio rebaixamento lado frontal Q359 (incremental): distância com que o TNC desloca o centro da ferramenta a partir do centro da ilha. Campo de introdução de 0 a 99999,9999
- Coord. da superf. da peça de trabalho Q203 (valor absoluto): coordenada da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Avanço de rebaixamento Q254: velocidade de deslocação da ferramenta ao rebaixar em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO, FU
- Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO
- Avanço de aproximação Q512: velocidade de deslocação da ferramenta ao entrar na rosca em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO

Exemplo: Blocos NC

25 CYCL DEF 26	7 FR. ROSCA EXTERIOR
Q335=10	;DIÂMETRO NOMINAL
Q239=+1,5	;PASSO
Q201=-20	;PROFUNDIDADE DE ROSCA
Q355=0	;MEMORIZAÇÃO POSTERIOR
Q253=750	;AVANÇO POSICION. PRÉVIO
Q351=+1	;TIPO DE FRESAGEM
Q200=2	;DISTÂNCIA SEGURANÇA
Q358=+0	;PROFUNDIDADE FRONTAL
Q359=+0	;DESVIO FRONTAL
Q203=+30	;COORD. SUPERFÍCIE
Q204=50	;2.ª DISTÂNCIA SEGURANÇA
Q254=150	;AVANÇO DE REBAIXAMENTO
Q207=500	;AVANÇO DE FRESAGEM
Q512=50	;AVANÇO DE APROXIMAÇÃO

4.11 Exemplos de programação

Exemplo: roscagem

As coordenadas de furos estão memorizadas na Tabela de Pontos TAB1.PNT e são chamadas pelo TNC com **CYCL CALL PAT**.

Os raios da ferramenta são selecionados de forma a que todos os passos de trabalho sejam vistos no teste gráfico.

Execução do programa

- Centrar
- Furar
- Roscagem

O BEGIN PGM 1 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definição do bloco
2 BLK FORM 0.2 X+100 Y+100 Y+0	
3 TOOL DEF 1 L+0 R+4	Definição da ferramenta centralizador
4 TOOL DEF 2 L+0 2.4	Definição da ferramenta broca
5 TOOL DEF 3 L+0 R+3	Definição da ferramenta macho tarrasca
6 TOOL CALL 1 Z S5000	Chamada da ferramenta centralizador
7 L Z+10 R0 F5000	Deslocar a ferramenta para a altura de segurança (programar F com valor): após cada ciclo o TNC posiciona na altura de segurança
8 SEL PATTERN "TAB1"	Determinar a tabela de pontos
9 CYCL DEF 200 FURAR	Definição do ciclo Centrar
Q200=2 ;DISTÂNCIA SEGURANÇA	
Q201=-2 ;PROFUNDIDADE	
Q206=150 ;AVANÇO F CORTE EM Profundidade	
Q2O2=2 ;PROFUNDIDADE DE CORTE	
Q210=0 ;TEMPO F EM CIMA	
Q2O3=+O ;COORD. SUPERFÍCIE	Introduzir obrigatoriamente 0, atua a partir da tabela de pontos

i

ogramação
pro
de
los
Exemp
4.11 E

Q204=0 ;2.ª DISTÂNCIA DE SEGURANÇA	Introduzir obrigatoriamente 0, atua a partir da tabela de pontos		
Q211=0.2 ;TEMPO DE ESPERA EM BAIXO			
Q395=0 ;REFERÊNCIA PROFUNDIDADE			
10 CYCL CALL PAT F5000 M3	Chamada de ciclo em conexão com a tabela de pontos TAB1.PNT, avanço entre os pontos: 5000 mm/min		
11 L Z+100 RO FMAX M6	Retirar ferramenta, troca da ferramenta		
12 TOOL CALL 2 Z \$5000	Chamada da ferramenta broca		
13 L Z+10 R0 F5000	Deslocar a ferramenta para a distância de segurança (programar F com valor)		
14 CYCL DEF 200 FURAR	Definição do ciclo de Furar		
Q200=2 ;DISTÂNCIA SEGURANÇA			
Q201=-25 ;PROFUNDIDADE			
Q206=150 ;AVANÇO DE CORTE EM PROFUND.			
Q2O2=5 ;PROFUNDIDADE DE CORTE			
Q210=0 ;TEMPO DE ESPERA EM CIMA			
Q2O3=+O ;COORD. SUPERFÍCIE	Introduzir obrigatoriamente 0, atua a partir da tabela de pontos		
Q2O4=O ;2.ª DISTÂNCIA DE SEGURANÇA	Introduzir obrigatoriamente 0, atua a partir da tabela de pontos		
Q211=0.2 ;TEMPO DE ESPERA EM BAIXO			
Q395=0 ;REFERÊNCIA PROFUNDIDADE			
15 CYCL CALL PAT F5000 M3	Chamada do ciclo em ligação com a tabela de pontos TAB1.PNT		
16 L Z+100 RO FMAX M6	Retirar ferramenta, troca da ferramenta		
17 TOOL CALL 3 Z S200	Chamada da ferramenta macho tarrasca		
18 L Z+50 RO FMAX	Deslocar a ferramenta para a distância de segurança		
19 CYCL DEF 206 ROSCAGEM NOVO	Definição de ciclo de roscagem		
Q200=2 ;DISTÂNCIA SEGURANÇA			
Q201=-25 ;PROFUNDIDADE DE ROSCA			
Q206=150 ;AVANÇO DE CORTE EM PROFUND.			
Q211=O ;TEMPO DE ESPERA EM BAIXO			
Q2O3=+O ;COORD. SUPERFÍCIE	Introduzir obrigatoriamente 0, atua a partir da tabela de pontos		
Q2O4=O ;2.ª DISTÂNCIA DE SEGURANÇA	Introduzir obrigatoriamente 0, atua a partir da tabela de pontos		
20 CYCL CALL PAT F5000 M3	Chamada do ciclo em ligação com a tabela de pontos TAB1.PNT		
21 L Z+100 RO FMAX M2	Retirar ferramenta, fim do programa		
22 END PGM 1 MM			

Tabela de Pontos TAB1.PNT

TAB1.PNTMM
NRXYZ
0+10+10+0
1+40+30+0
2+90+10+0
3+80+30+0
4+80+65+0
5+90+90+0
6+10+90+0
7+20+55+0
[END]

i

Ciclos de maquinagem: fresar caixas / fresar ilhas / fresar ranhuras

5.1 Princípios básicos

Resumo

O TNC dispõe dum total de 6 ciclos para maquinagens de caixas, ilhas e ranhuras:

Ciclo	Softkey	Página
251 CAIXA RECTANGULAR Ciclo de desbaste/acabamento, com seleção da extensão da maquinagem e afundamento em forma de hélice	251	Página 143
252 CAIXA CIRCULAR Ciclo de desbaste/acabamento, com seleção da extensão da maquinagem e afundamento em forma de hélice	252	Página 148
253 FRESAR RANHURA Ciclo de desbaste/acabamento, com seleção da extensão da maquinagem e afundamento de forma pendular	253	Página 152
254 RANHURA REDONDA Ciclo de desbaste/acabamento, com seleção da extensão da maquinagem e afundamento de forma pendular	254	Página 158
256 ILHAS RECTANGULARES Ciclo de desbaste/acabamento com corte lateral, quando são necessárias múltiplas voltas	256	Página 164
257 ILHAS CIRCULARES Ciclo de desbaste/acabamento com corte lateral, quando são necessárias múltiplas voltas	257	Página 168

5.2 CAIXA RETANGULAR (Ciclo 251, DIN/ISO: G251)

Execução do ciclo

Com o ciclo de caixa retangular 251, é possível maquinar por completo uma caixa retangular. Dependendo dos parâmetros de ciclo, estão à disposição as seguintes alternativas de maquinagem:

- Maquinagem completa: desbaste, acabamento em profundidade, acabamento lateral
- Só desbaste
- Só acabamento em profundidade e acabamento lateral
- Só acabamento em profundidade
- Só acabamento lateral

Desbaste

- 1 A ferramenta afunda no centro da caixa, na peça de trabalho, e desloca-se para a primeira profundidade de corte. A estratégia de afundamento determina-se com o parâmetro Q366
- 2 O TNC desbasta a caixa de dentro para fora, tendo em consideração o fator de sobreposição (parâmetro Q370) e a medida excedente de acabamento (parâmetro Q368)
- **3** No fim do processo de desbaste, o TNC afasta a ferramenta tangencialmente à parede da caixa, desloca-se na distância de segurança através da profundidade de corte atual e daí em marcha rápida de volta para o centro da caixa.
- 4 Este processo repete-se até se alcançar a profundidade de caixa programada

Acabamento

- 5 Desde que haja medidas excedentes de acabamento definidas, o TNC acaba as paredes da caixa em vários cortes, caso isso esteja definido. A aproximação à parede da caixa faz-se então de forma tangente
- 6 De seguida o TNC acaba o fundo da caixa de dentro para fora. A aproximação ao fundo da caixa faz-se então de forma tangente

Numa tabela de ferramentas inativa tem sempre que se afundar na perpendicular (Q366=0), já que não se pode definir o ângulo de afundamento.

Posicionar previamente a ferramenta na posição inicial no plano de maquinagem, com correção do raio **R0**. Observar o parâmetro Q367 (posição da caixa).

O TNC executa o ciclo nos eixos (plano de maquinação), com os quais fez a aproximação à posição inicial. P. ex., em X e Y, se tiver programado com CYCL CALL POS X... Y... e em U e V, se tiver programado CYCL CALL POS U... V... .

O TNC posiciona previamente a ferramenta no seu eixo, de forma automática. Respeitar o parâmetro Q204 (2.ª distância de segurança).

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

O TNC posiciona a ferramenta no fim do ciclo de regresso à posição inicial.

No fim de um procedimento de desbaste em marcha rápida, o TNC volta a posicionar a ferramenta no centro da caixa. A ferramenta encontra-se na distância de segurança sobre a profundidade de corte atual. Definir a distância de segurança de forma a que a ferramenta na deslocação não possa ficar presa nas aparas

Se espelhar o ciclo 251 num eixo, então o TNC espelha igualmente o sentido de deslocação definido no ciclo.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Se se chamar o ciclo com a extensão de maquinagem 2 (somente acabamento), o TNC posiciona a ferramenta no centro da caixa em marcha rápida sobre a primeira profundidade de corte!

5.2 CAIXA RETANGULAR (Ciclo 251, DIN/ISO: G251)

Parâmetros de ciclo

Extensão da maquinagem (0/1/2) Q215: determinar a

- extensão da maquinagem:
- 0: desbaste e acabamento
- 1: só desbaste
- 2: só acabamento

Acabamento lateral e acabamento em profundidade só são executados se estiver definida a respetiva medida excedente de acabamento (Q368, Q369)

- 1.º º comprimento lateral Q218 (valor incremental): comprimento da caixa, paralelo ao eixo principal do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- 2º º comprimento lateral Q219 (valor incremental): comprimento da caixa, paralelo ao eixo secundário do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- Raio da esquina Q220: raio da esquina da caixa. Quando introduzido com 0 ou menor que o raio da ferramenta ativo, o TNC define o raio da esquina igual ao raio da ferramenta. Nestes casos, o TNC emite uma mensagem de erro. Campo de introdução de 0 a 99999,9999
- Medida excedente acabamento lateralQ368 (incremental): medida excedente de acabamento no plano de maquinagem. Campo de introdução 0 a 99999.9999
- Posição angular Q224 (valor absoluto): ângulo em que é rodada toda a caixa. O centro de rotação situase na posição onde se encontra a ferramenta, na ocasião da chamada de ciclo. Campo de introdução – 360,0000 a 360,0000
- Posição da caixa Q367: posição da caixa referida à posição da ferramenta na ocasião da chamada de ciclo:
 - **0**: posição da ferramenta = centro da caixa
 - 1: posição da ferramenta = esquina inferior esquerda
 - **2**: posição da ferramenta = esquina inferior direita
 - **3**: posição da ferramenta = esquina superior direita
 - 4: posição da ferramenta = esquina superior esquerda
- Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min. Campo de introdução 0 a 99999,999; em alternativa, FAUTO, FU, FZ
- ► **Tipo de fresagem** Q351: tipo de maquinagem de fresagem com M3:
 - **+1** = fresagem sincronizada
 - -1 = fresagem em sentido oposto

+0 = Fresagem sincronizada, embora o TNC mantenha o tipo de fresagem sincronizada com espelhamento ativo Em alternativa, **PREDEF**

- 5.2 CAIXA RETANGULAR (Ciclo 251, DIN/ISO: G251)
- Profundidade Q201 (incremental): distância entre a superfície da peça de trabalho e a base da caixa. Campo de introdução -99999,9999 a 99999,9999
- Profundidade de corte Q202 (valor incremental): medida segundo a qual a ferramenta corta de cada vez na peça de trabalho; introduzir um valor maior que 0. Campo de introdução de 0 a 99999,9999
- Medida exced. acabamento em profundidade Q369 (incremental): medida excedente de acabamento para a profundidade. Campo de introdução de 0 a 99999,9999
- Avanço de corte em profundidade Q206: velocidade de deslocação da ferramenta ao deslocar-se na profundidade em mm/min. Campo de introdução 0 a 99999,999; em alternativa, FAUTO, FU, FZ
- Corte de acabamento Q338 (valor incremental): medida em que a ferramenta, no acabamento, é avançada no eixo do mandril. Q338=0: acabamento num corte. Campo de introdução de 0 a 99999,9999
- Distância de segurança Q200 (incremental): distância entre o extremo da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Coordenada da superfície da peça de trabalho Q203 (valor absoluto): coordenada absoluta da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF

- Fator de sobreposição de trajetória Q370: Q370 x raio da ferramenta dá como resultado o corte lateral k. Campo de introdução 0,1 a 1,414; em alternativa, PREDEF
- ▶ Estratégia de afundamento Q366: tipo de estratégia de afundamento:
 - 0 = afundar na perpendicular. Independentemente do ângulo de afundamento ANGLE definido na tabela de ferramentas, o TNC afunda perpendicularmente
 - 1 = afundar em forma de hélice. Na tabela de ferramentas, o ângulo de afundamento ANGLE para a ferramenta ativada tem que estar definido para um valor diferente de 0. Caso contrário, o TNC emite uma mensagem de erro
 - 2 = afundar de forma pendular. Na tabela de ferramentas, o ângulo de afundamento ANGLE para a ferramenta ativada tem que estar definido para um valor diferente de 0. Caso contrário, o TNC emite uma mensagem de erro. O comprimento pendular depende do ângulo de afundamento, o TNC utiliza como valor mínimo o dobro do diâmetro da ferramenta
 - Em alternativa, **PREDEF**
- Avanço de acabamento Q385: velocidade de deslocação da ferramenta no acabamento em profundidade e acabamento lateral em mm/min. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ

8 CYCL DEF 251	CAIXA RETANGULAR
Q215=0	;EXTENSÃO DA MAQUINAGEM
Q218=80	;1.º COMPRIMENTO DE LADO
Q219=60	;2.º COMPRIMENTO DE LADO
Q220=5	;RAIO DE ESQUINA
Q368=0.2	;MEDIDA EXCEDENTE LADO
Q224=+0	;POSIÇÃO ANGULAR
Q367=0	;POSIÇÃO DA CAIXA
Q207=500	;AVANÇO DE FRESAGEM
Q351=+1	;TIPO DE FRESAGEM
Q201=-20	;PROFUNDIDADE
Q202=5	;PROFUNDIDADE DE CORTE
Q369=0.1	;MEDIDA EXCEDENTE
	PROFUNDIDADE
Q206=150	;AVANÇO DE CORTE EM PROFUNDIDADE
Q338=5	;CORTE DE ACABAMENTO
Q200=2	;DISTÂNCIA SEGURANÇA
Q203=+0	;COORD. SUPERFÍCIE
Q204=50	;2.ª DISTÂNCIA SEGURANÇA
Q370=1	;SOBREPOSIÇÃO DA TRAJETÓRIA
Q366=1	;AFUNDAMENTO
Q385=500	;AVANÇO DE ACABAMENTO
9 CYCL CALL PO	S X+50 Y+50 Z+0 FMAX M3

5.3 CAIXA CIRCULAR (Ciclo 252, DIN/ISO: G252)

Execução do ciclo

Com o ciclo de caixa circular 252, pode-se maquinar por completo uma caixa circular. Dependendo dos parâmetros de ciclo, estão à disposição as seguintes alternativas de maquinagem:

- Maquinagem completa: desbaste, acabamento em profundidade, acabamento lateral
- Só desbaste
- Só acabamento em profundidade e acabamento lateral
- Só acabamento em profundidade
- Só acabamento lateral

Desbaste

- A ferramenta afunda no centro da caixa, na peça de trabalho, e desloca-se para a primeira profundidade de corte. A estratégia de afundamento determina-se com o parâmetro Q366
- 2 O TNC desbasta a caixa de dentro para fora, tendo em consideração o fator de sobreposição (parâmetro Q370) e a medida excedente de acabamento (parâmetro Q368)
- 3 No fim do processo de desbaste, o TNC afasta a ferramenta tangencialmente à parede da caixa, desloca-se na distância de segurança através da profundidade de corte atual e daí em marcha rápida de volta para o centro da caixa.
- 4 Este processo repete-se até se alcançar a profundidade de caixa programada

Acabamento

- 5 Desde que haja medidas excedentes de acabamento definidas, o TNC acaba as paredes da caixa em vários cortes, caso isso esteja definido. A aproximação à parede da caixa faz-se então de forma tangente
- 6 De seguida o TNC acaba o fundo da caixa de dentro para fora. A aproximação ao fundo da caixa faz-se então de forma tangente

Ter em atenção ao programar!

Numa tabela de ferramentas inativa tem sempre que se afundar na perpendicular (Q366=0), já que não se pode definir o ângulo de afundamento.

Posicionar previamente a ferramenta na posição inicial (centro do círculo) no plano de maquinagem, com correção do raio **R0**.

O TNC executa o ciclo nos eixos (plano de maquinação), com os quais fez a aproximação à posição inicial. P. ex., em X e Y, se tiver programado com CYCL CALL POS X... Y... e em U e V, se tiver programado CYCL CALL POS U... V... .

O TNC posiciona previamente a ferramenta no seu eixo, de forma automática. Respeitar o parâmetro Q204 (2.ª distância de segurança).

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

O TNC posiciona a ferramenta no fim do ciclo de regresso à posição inicial.

No fim de um procedimento de desbaste em marcha rápida, o TNC volta a posicionar a ferramenta no centro da caixa. A ferramenta encontra-se na distância de segurança sobre a profundidade de corte atual. Definir a distância de segurança de forma a que a ferramenta na deslocação não possa ficar presa nas aparas

Se espelhar o ciclo 252, então o TNC mantém o sentido de deslocação definido no ciclo e, portanto, não o espelha conjuntamente.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Se se chamar o ciclo com a extensão de maquinagem 2 (somente acabamento), o TNC posiciona a ferramenta no centro da caixa em marcha rápida sobre a primeira profundidade de corte!

Parâmetros de ciclo

252

- **Extensão da maquinagem (0/1/2)**Q215: determinar a
 - extensão da maquinagem: **0**: desbaste e acabamento
 - U: despaste e a
 - 1: só desbaste 2: só acabamento

Acabamento lateral e acabamento em profundidade só são executados se estiver definida a respetiva medida excedente de acabamento (Q368, Q369)

- Diâmetro do círculo Q223: diâmetro da caixa já maquinada. Campo de introdução de 0 a 99999,9999
- Medida excedente acabamento lateralQ368 (incremental): medida excedente de acabamento no plano de maquinagem. Campo de introdução 0 a 99999.9999
- Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min. Campo de introdução 0 a 99999,999; em alternativa, FAUTO, FU, FZ
- ► **Tipo de fresagem** Q351: tipo de maquinagem de fresagem com M3:
 - +1 = fresagem sincronizada
 - -1 = fresagem em sentido oposto
 - +0 = Fresagem sincronizada, embora o TNC mantenha o tipo de fresagem sincronizada com espelhamento ativo Em alternativa **PEDEE**
 - Em alternativa, **PREDEF**
- Profundidade Q201 (incremental): distância entre a superfície da peça de trabalho e a base da caixa. Campo de introdução -99999,9999 a 99999,9999
- Profundidade de corte Q202 (valor incremental): medida segundo a qual a ferramenta corta de cada vez na peça de trabalho; introduzir um valor maior que 0. Campo de introdução de 0 a 99999,9999
- Medida exced. acabamento em profundidade Q369 (incremental): medida excedente de acabamento para a profundidade. Campo de introdução de 0 a 99999,9999
- Avanço de corte em profundidade Q206: velocidade de deslocação da ferramenta ao deslocar-se na profundidade em mm/min. Campo de introdução 0 a 99999,999; em alternativa, FAUTO, FU, FZ
- Corte de acabamento Q338 (valor incremental): medida em que a ferramenta, no acabamento, é avançada no eixo do mandril. Q338=0: acabamento num corte. Campo de introdução de 0 a 99999,9999

- Distância de segurança Q200 (incremental): distância entre o extremo da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Coordenada da superfície da peça de trabalho Q203 (valor absoluto): coordenada absoluta da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Fator de sobreposição de trajetória Q370: Q370 x raio da ferramenta dá como resultado o corte lateral k. Campo de introdução 0,1 a 1,414; em alternativa, PREDEF
- ▶ Estratégia de afundamento Q366: tipo de estratégia de afundamento:
 - 0 = afundar na perpendicular. Independentemente do ângulo de afundamento ANGLE definido na tabela de ferramentas, o TNC afunda perpendicularmente
 - 1 = afundar em forma de hélice. Na tabela de ferramentas, o ângulo de afundamento ANGLE para a ferramenta ativada tem que estar definido para um valor diferente de 0. Caso contrário, o TNC emite uma mensagem de erro
 - Em alternativa, PREDEF
- Avanço de acabamento Q385: velocidade de deslocação da ferramenta no acabamento em profundidade e acabamento lateral em mm/min. Campo de introdução 0 a 99999,999; em alternativa, FAUTO, FU, FZ

8	CYCL DEF 252	CAIXA CIRCULAR
	Q215=0	;EXTENSÃO DA MAQUINAGEM
	Q223=60	;DIÂMETRO DO CÍRCULO
	Q368=0.2	;MEDIDA EXCEDENTE LADO
	Q207=500	;AVANÇO DE FRESAGEM
	Q351=+1	;TIPO DE FRESAGEM
	Q201=-20	;PROFUNDIDADE
	Q2O2=5	;PROFUNDIDADE DE CORTE
	Q369=0.1	;MEDIDA EXCEDENTE PROFUNDIDADE
	Q206=150	;AVANÇO DE CORTE EM Profundidade
	Q338=5	;CORTE DE ACABAMENTO
	Q200=2	;DISTÂNCIA SEGURANÇA
	Q203=+0	;COORD. SUPERFÍCIE
	Q204=50	;2.ª DISTÂNCIA SEGURANÇA
	Q370=1	;SOBREPOSIÇÃO DA TRAJETÓRIA
	Q366=1	;AFUNDAMENTO
	Q385=500	;AVANÇO DE ACABAMENTO
9	CYCL CALL PO	S X+50 Y+50 Z+0 FMAX M3

5.4 FRESAR RANHURAS (Ciclo 253, DIN/ISO: G253)

Execução do ciclo

Com o ciclo de caixa retangular 253, pode-se maquinar por completo uma ranhura. Dependendo dos parâmetros de ciclo, estão à disposição as seguintes alternativas de maquinagem:

- Maquinagem completa: desbaste, acabamento em profundidade, acabamento lateral
- Só desbaste
- Só acabamento em profundidade e acabamento lateral
- Só acabamento em profundidade
- Só acabamento lateral

Desbaste

- A ferramenta avança em movimento pendular do ponto central do círculo da ranhura esquerdo para a primeira profundidade de corte com o ângulo de afundamento definido na tabela de ferramentas. A estratégia de afundamento determina-se com o parâmetro Q366
- 2 O TNC desbasta a ranhura de dentro para fora, tendo em consideração as medidas excedentes de acabamento (parâmetro Q368 e Q369)
- 3 Este processo repete-se até se alcançar a profundidade de ranhura programada

Acabamento

- 4 Desde que haja medidas excedentes de acabamento definidas, o TNC acaba as paredes da ranhura em vários cortes, caso isso esteja definido. A aproximação à parede da ranhura faz-se então de forma tangente no círculo da ranhura direito
- 5 De seguida o TNC acaba o fundo da ranhura de dentro para fora. A aproximação ao fundo da ranhura faz-se então de forma tangente

Ter em atenção ao programar!

Numa tabela de ferramentas inativa tem sempre que se afundar na perpendicular (Q366=0), já que não se pode definir o ângulo de afundamento.

Posicionar previamente a ferramenta na posição inicial no plano de maquinagem, com correção do raio **R0**. Observar o parâmetro Q367 (posição da ranhura).

O TNC executa o ciclo nos eixos (plano de maquinação), com os quais fez a aproximação à posição inicial. P. ex., em X e Y, se tiver programado com CYCL CALL POS X... Y... e em U e V, se tiver programado CYCL CALL POS U... V... .

O TNC posiciona previamente a ferramenta no seu eixo, de forma automática. Respeitar o parâmetro Q204 (2.ª distância de segurança).

No fim do ciclo, o TNC posiciona a ferramenta no plano de maquinagem apenas de volta no centro da ranhura, enquanto que nos outros eixos do plano de maquinagem o TNC não executa nenhum posicionamento. Se se definir um centro de ranhura diferente de 0, então o TNC posiciona a ferramenta exclusivamente no eixo da ferramenta na 2.ª distância de segurança. Antes de uma nova chamada de ciclo, levar outra vez a ferramenta para a posição inicial ou programar sempre movimentos de deslocação absolutos após a chamada de ciclo.

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

Se a largura da ranhura for maior que o dobro do diâmetro da ferramenta, o TNC desbasta a ranhura respetivamente de dentro para fora. Pode portanto fresar ranhuras com ferramentas pequenas.

Se espelhar o ciclo 253, então o TNC mantém o sentido de deslocação definido no ciclo e, portanto, não o espelha conjuntamente.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Se se chamar o ciclo com a extensão de maquinagem 2 (somente acabamento), o TNC posiciona a ferramenta em marcha rápida sobre a primeira profundidade de corte!

 Δ

Parâmetros de ciclo

Extensão da maquinagem (0/1/2)Q215: determinar a extensão da maguinagem: 0: desbaste e acabamento 1: só desbaste 2: só acabamento Acabamento lateral e acabamento em profundidade só são executados se estiver definida a respetiva medida excedente de acabamento (Q368, Q369) **Comprimento da ranhura** Q218 (valor paralelo ao eixo principal do plano de maguinagem): introduzir lado mais longo da ranhura. Campo de introdução de 0 a 99999,9999 **Largura da ranhura** Q219 (valor paralelo ao eixo secundário do plano de maguinagem): introduzir largura da ranhura; se se introduzir a largura da ranhura igual ao diâmetro da ferramenta, o TNC só desbasta (fresar oblongo). Largura de ranhura máxima no desbaste: dobro do diâmetro da ferramenta. Y Campo de introdução de 0 a 99999,9999 ▶ Medida excedente acabamento lateralQ368 (incremental): medida excedente de acabamento no plano de maquinagem ▶ Posição angular Q374 (valor absoluto): ângulo em que é rodada toda a ranhura. O centro de rotação situa-se na posição onde se encontra a ferramenta, na Y ocasião da chamada de ciclo. Campo de introdução -360.000 bis 360.000 Posição da ranhura (0/1/2/3/4)Q367: posição da ranhura referente à posição da ferramenta na chamada de ciclo: **0**: posição da ferramenta = centro da ranhura 1: posição da ferramenta = esquerda fim da ranhura 2: posição da ferramenta = centro círculo esquerdo da ranhura 3: posição da ferramenta = centro círculo direito da ranhura 3: posição da ferramenta = extremidade direita da ranhura ► Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min. Campo de introdução 0 a 99999,999; em alternativa, FAUTO, FU, FZ ► **Tipo de fresagem** Q351: tipo de maquinagem de fresagem com M3: +1 = fresagem sincronizada -1 = fresagem em sentido oposto +0 = Fresagem sincronizada, embora o TNC mantenha o tipo de fresagem sincronizada com espelhamento ativo Em alternativa, PREDEF

- Profundidade Q201 (incremental): distância entre a superfície da peça de trabalho e a base da ranhura. Campo de introdução -99999,9999 a 99999,9999
- Profundidade de corte Q202 (valor incremental): medida segundo a qual a ferramenta corta de cada vez na peça de trabalho; introduzir um valor maior que 0. Campo de introdução de 0 a 99999,9999
- Medida exced. acabamento em profundidade Q369 (incremental): medida excedente de acabamento para a profundidade. Campo de introdução de 0 a 99999,9999
- Avanço de corte em profundidade Q206: velocidade de deslocação da ferramenta ao deslocar-se na profundidade em mm/min. Campo de introdução 0 a 99999,999; em alternativa, FAUTO, FU, FZ
- Corte de acabamento Q338 (valor incremental): medida em que a ferramenta, no acabamento, é avançada no eixo do mandril. Q338=0: acabamento num corte. Campo de introdução de 0 a 99999,9999

- Distância de segurança Q200 (incremental): distância entre o extremo da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Coordenada da superfície da peça de trabalho Q203 (valor absoluto): coordenada absoluta da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Estratégia de afundamento Q366: tipo de estratégia de afundamento:
 - 0 = afundar na perpendicular. Independentemente do ângulo de afundamento ANGLE definido na tabela de ferramentas, o TNC afunda perpendicularmente
 - 1 = afundar em forma de hélice. Na tabela de ferramentas, o ângulo de afundamento ANGLE para a ferramenta ativada tem que estar definido para um valor diferente de 0. Caso contrário, o TNC emite uma mensagem de erro. Apenas penetrar em forma de hélice, quando existe espaço suficiente
 - 2 = afundar de forma pendular. Na tabela de ferramentas, o ângulo de afundamento ANGLE para a ferramenta ativada tem que estar definido para um valor diferente de 0. Caso contrário, o TNC emite uma mensagem de erro
 - Em alternativa, PREDEF
- Avanço de acabamento Q385: velocidade de deslocação da ferramenta no acabamento em profundidade e acabamento lateral em mm/min. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Avanço de referência (0 a 3) Q439: Seleção da referência para o avanço programado:
 - 0 = o avanço refere-se à trajetória do ponto central da ferramenta
 - 1 = o avanço refere-se à lâmina da ferramenta apenas no acabamento lateral; de outro modo, à trajetória do ponto central
 - 2 = o avanço refere-se à lâmina da ferramenta no acabamento lateral e no acabamento em profundidade; de outro modo, à trajetória do ponto central
 - 3 = por princípio, o avanço refere-se sempre à lâmina da ferramenta

8	CYCL DEF 253	FRESAR RANHURA
	Q215=0	;EXTENSÃO DA MAQUINAGEM
	Q218=80	;COMPRIMENTO DA RANHURA
	Q219=12	;LARGURA DA RANHURA
	Q368=0.2	;MEDIDA EXCEDENTE LADO
	Q374=+0	;POSIÇÃO ANGULAR
	Q367=0	;POSIÇÃO DA RANHURA
	Q207=500	;AVANÇO DE FRESAGEM
	Q351=+1	;TIPO DE FRESAGEM
	Q201=-20	;PROFUNDIDADE
	Q202=5	;PROFUNDIDADE DE CORTE
	Q369=0.1	;MEDIDA EXCEDENTE PROFUNDIDADE
	Q206=150	;AVANÇO DE CORTE EM Profundidade
	Q338=5	;CORTE DE ACABAMENTO
	Q200=2	;DISTÂNCIA SEGURANÇA
	Q203=+0	;COORD. SUPERFÍCIE
	Q204=50	;2.ª DISTÂNCIA SEGURANÇA
	Q366=1	;AFUNDAMENTO
	Q385=500	;AVANÇO DE ACABAMENTO
	Q439=0	;REFERÊNCIA AVANÇO
9	CYCL CALL PO	S X+50 Y+50 Z+0 FMAX M3

5.5 RANHURA REDONDA (Ciclo 254, DIN/ISO: G254)

Execução do ciclo

Com o ciclo 254, pode-se maquinar por completo uma ranhura redonda. Dependendo dos parâmetros de ciclo, estão à disposição as seguintes alternativas de maquinagem:

- Maquinagem completa: desbaste, acabamento em profundidade, acabamento lateral
- Só desbaste
- Só acabamento em profundidade e acabamento lateral
- Só acabamento em profundidade
- Só acabamento lateral

Desbaste

- A ferramenta avança em movimento pendular no centro da ranhura para a primeira profundidade de corte, com o ângulo de afundamento definido na tabela de ferramentas. A estratégia de afundamento determina-se com o parâmetro Q366
- 2 O TNC desbasta a ranhura de dentro para fora, tendo em consideração as medidas excedentes de acabamento (parâmetro Q368 e Q369)
- 3 Este processo repete-se até se alcançar a profundidade de ranhura programada

Acabamento

- 4 Desde que haja medidas excedentes de acabamento definidas, o TNC acaba as paredes da ranhura em vários cortes, caso isso esteja definido. A aproximação à parede da ranhura faz-se então de forma tangente
- 5 De seguida o TNC acaba o fundo da ranhura de dentro para fora. A aproximação ao fundo da ranhura faz-se então de forma tangente

Ter em atenção ao programar!

Numa tabela de ferramentas inativa tem sempre que se afundar na perpendicular (Q366=0), já que não se pode definir o ângulo de afundamento.

Posicionar previamente a ferramenta no plano de maquinagem com correção de raio **R0**. Definir de forma correspondente o parâmetro Q367 (**Referência para a posição da ranhura**).

O TNC executa o ciclo nos eixos (plano de maquinação), com os quais fez a aproximação à posição inicial. P. ex., em X e Y, se tiver programado com CYCL CALL POS X... Y... e em U e V, se tiver programado CYCL CALL POS U... V... .

O TNC posiciona previamente a ferramenta no seu eixo, de forma automática. Respeitar o parâmetro Q204 (2.ª distância de segurança).

No fim do ciclo, o TNC posiciona a ferramenta no plano de maquinagem apenas de volta no centro do círculo teórico, enquanto que nos outros eixos do plano de maquinagem o TNC não executa nenhum posicionamento. Se se definir um centro de ranhura diferente de 0, então o TNC posiciona a ferramenta exclusivamente no eixo da ferramenta na 2.ª distância de segurança. Antes de uma nova chamada de ciclo, levar outra vez a ferramenta para a posição inicial ou programar sempre movimentos de deslocação absolutos após a chamada de ciclo.

No final do ciclo, o TNC posiciona a ferramenta no plano de maquinagem novamente no ponto inicial (centro do círculo parcial). Exceção: quando se define um centro de ranhura diferente de 0, então o TNC posiciona a ferramenta só no eixo da ferramenta na 2.ª distância de segurança. Nestes casos, programar sempre os movimentos absolutos de deslocação após a chamada do ciclo.

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

Se a largura da ranhura for maior que o dobro do diâmetro da ferramenta, o TNC desbasta a ranhura respetivamente de dentro para fora. Pode portanto fresar ranhuras com ferramentas pequenas.

Se utilizar o ciclo 254 de Ranhura Redonda em conjunto com o ciclo 221, então a posição de ranhura 0 não é permitida.

Se espelhar o ciclo 254, então o TNC mantém o sentido de deslocação definido no ciclo e, portanto, não o espelha conjuntamente.

Atenção, perigo de colisão!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Se se chamar o ciclo com a extensão de maquinagem 2 (somente acabamento), o TNC posiciona a ferramenta em marcha rápida sobre a primeira profundidade de corte!

 (Λ)

Parâmetros de ciclo

Extensão da maquinagem (0/1/2) Q215: determinar a extensão da maquinagem:
 0: desbaste e acabamento
 1: só desbaste
 2: só acabamento
 Acabamento lateral e acabamento em profundidade só são executados se estiver definida a respetiva medida excedente de acabamento (Q368, Q369)
 Largura da ranhura Q219 (valor paralelo ao eixo

- Largura da rannura 0219 (valor paralelo ao eixo secundário do plano de maquinagem): introduzir largura da ranhura; se se introduzir a largura da ranhura igual ao diâmetro da ferramenta, o TNC só desbasta (fresar oblongo). Largura de ranhura máxima no desbaste: dobro do diâmetro da ferramenta. Campo de introdução de 0 a 99999,9999
- Medida excedente acabamento lateralQ368 (incremental): medida excedente de acabamento no plano de maquinagem. Campo de introdução 0 a 99999.9999
- Diâmetro do círculo teórico Q375: introduzir diâmetro do círculo teórico. Campo de introdução de 0 a 99999,9999

 Referência para a posição da ranhura (0/1/2/3) Q367: posição da ranhura referente à posição da ferramenta com a chamada de ciclo:
 0: não é considerada a posição da ferramenta. A posição da ranhura obtém-se a partir do centro do círculo teórico introduzido e do ângulo inicial
 1: posição da ferramenta = centro círculo esquerdo da ranhura. O ângulo inicial Q376 refere-se a esta posição. Não é considerado o centro do círculo teórico introduzido

2: posição da ferramenta = centro do eixo central. O ângulo inicial Q376 refere-se a esta posição. Não é considerado o centro do círculo teórico introduzido
3: posição da ferramenta = centro círculo direito da ranhura. O ângulo inicial Q376 refere-se a esta posição. Não é considerado o centro do círculo teórico introduzido

Centro do 1.º eixo Q216 (valor absoluto): centro do círculo teórico no eixo principal do plano de maquinagem. Só atuante quando Q367 = 0. Campo de introdução -99999,9999 a 99999,9999

- Centro do 2.º eixo (valor absoluto): centro do círculo teórico no eixo secundário do plano de maquinagem.
 Só atuante quando Q367 = 0. Campo de introdução -99999,9999 a 99999,9999
- Ângulo inicial Q376 (absoluto): introduzir ângulo polar do ponto inicial. Campo de introdução -360.000 bis 360.000
- Ângulo de abertura da ranhura Q248 (incremental): introduzir ângulo de abertura da ranhura. Campo de introdução de 0 a 360,000
- Passo angular Q378 (incremental): ângulo em que é rodada toda a ranhura. O centro de rotação situa-se no centro do círculo teórico. Campo de introdução -360.000 bis 360.000
- ▶ N.º de maquinagens Q377: quantidade de maquinagens sobre o círculo teórico Campo de introdução 1 a 99999
- Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min. Campo de introdução 0 a 99999,999; em alternativa, FAUTO, FU, FZ
- Tipo de fresagem Q351: tipo de maquinagem de fresagem com M3:
 - +1 = fresagem sincronizada
 - -1 = fresagem em sentido oposto

+0 = Fresagem sincronizada, embora o TNC mantenha o tipo de fresagem sincronizada com espelhamento ativo Em alternativa, **PREDEF**

- Profundidade Q201 (incremental): distância entre a superfície da peça de trabalho e a base da ranhura. Campo de introdução -99999,9999 a 99999,9999
- Profundidade de corte Q202 (valor incremental): medida segundo a qual a ferramenta corta de cada vez na peça de trabalho; introduzir um valor maior que 0. Campo de introdução de 0 a 99999,9999
- Medida exced. acabamento em profundidade Q369 (incremental): medida excedente de acabamento para a profundidade. Campo de introdução de 0 a 99999,9999
- Avanço de corte em profundidade Q206: velocidade de deslocação da ferramenta ao deslocar-se na profundidade em mm/min. Campo de introdução 0 a 99999,999; em alternativa, FAUTO, FU, FZ
- Corte de acabamento Q338 (valor incremental): medida em que a ferramenta, no acabamento, é avançada no eixo do mandril. Q338=0: acabamento num corte. Campo de introdução de 0 a 99999,9999

- Distância de segurança Q200 (incremental): distância entre o extremo da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Coordenada da superfície da peça de trabalho Q203 (valor absoluto): coordenada absoluta da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Estratégia de afundamento Q366: tipo de estratégia de afundamento:
 - 0 = afundar na perpendicular. Independentemente do ângulo de afundamento ANGLE definido na tabela de ferramentas, o TNC afunda perpendicularmente
 - 1 = afundar em forma de hélice. Na tabela de ferramentas, o ângulo de afundamento ANGLE para a ferramenta ativada tem que estar definido para um valor diferente de 0. Caso contrário, o TNC emite uma mensagem de erro. Apenas penetrar em forma de hélice, quando existe espaço suficiente
 - 2 = afundar de forma pendular. Na tabela de ferramentas, o ângulo de afundamento ANGLE para a ferramenta ativada tem que estar definido para um valor diferente de 0. Caso contrário, o TNC emite uma mensagem de erro. O TNC pode afundar com movimento pendular quando a distância da deslocação no círculo parcial engloba, no mínimo, 3 vezes o diâmetro da ferramenta.
 - Em alternativa, **PREDEF**
- Avanço de acabamento Q385: velocidade de deslocação da ferramenta no acabamento em profundidade e acabamento lateral em mm/min. Campo de introdução 0 a 99999,999; em alternativa, FAUTO, FU, FZ
- Avanço de referência (0 a 3) Q439: Seleção da referência para o avanço programado:
 - 0 = o avanço refere-se à trajetória do ponto central da ferramenta
 - 1 = o avanço refere-se à lâmina da ferramenta apenas no acabamento lateral; de outro modo, à trajetória do ponto central
 - 2 = o avanço refere-se à lâmina da ferramenta no acabamento lateral e no acabamento lateral; de outro modo, à trajetória do ponto central
 - 3 = por princípio, o avanço refere-se sempre à lâmina da ferramenta

8 CYCL DEF 254	RANHURA CIRCULAR
Q215=0	;EXTENSÃO DA MAQUINAGEM
Q219=12	;LARGURA DA RANHURA
Q368=0.2	;MEDIDA EXCEDENTE LADO
Q375=80	;DIÂM. CÍRCULO TEÓRICO
Q367=0	;REFERÊNCIA POSIÇÃO DA Ranhura
Q216=+50	;CENTRO 1.º EIXO
Q217=+50	;CENTRO 2.º EIXO
Q376=+45	;ÂNGULO INICIAL
Q248=90	;ÂNGULO DE ABERTURA
Q378=0	;INCREMENTO ANGULAR
Q377=1	;QUANTIDADE DE MAQUINAGENS
Q207=500	;AVANÇO DE FRESAGEM
Q351=+1	;TIPO DE FRESAGEM
Q201=-20	;PROFUNDIDADE
Q202=5	;PROFUNDIDADE DE CORTE
Q369=0.1	;MEDIDA EXCEDENTE PROFUNDIDADE
Q206=150	;AVANÇO DE CORTE EM Profundidade
Q338=5	;CORTE DE ACABAMENTO
Q200=2	;DISTÂNCIA SEGURANÇA
Q203=+0	;COORD. SUPERFÍCIE
Q204=50	;2.ª DISTÂNCIA SEGURANÇA
Q366=1	;AFUNDAMENTO
Q385=500	;AVANÇO DE ACABAMENTO
Q439=0	;REFERÊNCIA AVANÇO
	C V. FO V. FO 7.0 FHAV H2

5.6 ILHA RETANGULAR (Ciclo 256, DIN/ISO: G256)

Execução do ciclo

Com o ciclo de ilhas retangulares 256, pode-se maquinar uma ilha retangular. Quando a medida do bloco é superior ao corte lateral máximo possível, então o TNC executa diversos cortes laterais até alcançar a medida acabada.

- A ferramenta avança da posição inicial do ciclo (centro da ilha) para a posição inicial de maquinagem das ilhas. A posição inicial determina-se através do parâmetro Q437. A da definição padrão (Q437=0) situa-se a 2 mm à direita, ao lado do bloco de ilhas
- 2 Se a ferramenta estiver na 2.ª distância de segurança, o TNC desloca a ferramenta em marcha rápida FMAX para a distância de segurança, e daí com o avanço de aprofundamento para a primeira profundidade de passo
- **3** Finalmente, a ferramenta avança tangencialmente ao contorno das ilhas e fresa depois uma volta.
- 4 Quando a medida acabada não se deixa atingir numa volta, o TNC coloca a ferramenta na profundidade de corte atual e fresa de novo uma volta. O TNC tem em consideração a medida do bloco, a medida acabada e o corte lateral permitido. Este processo repetese até se alcançar a medida acabada programada. Desde que o ponto inicial tenha sido colocado sobre uma esquina (Q437 diferente de 0), o TNC fresa em forma de espiral desde o ponto inicial para o interior até se alcançar a medida acabada
- 5 Se forem necessários mais cortes, a ferramenta sai tangencialmente do contorno, de regresso ao ponto inicial da maquinagem da ilha
- 6 Finalmente, o TNC conduz a ferramenta para a profundidade de corte seguinte e maquina as ilhas nesta profundidade
- 7 Este processo repete-se até se alcançar a profundidade de ilhas programada
- 8 No fim do ciclo, o TNC apenas posiciona a ferramenta no eixo da ferramenta à altura segura definida no ciclo. A posição final não coincide, portanto, com a posição inicial

Ter em atenção ao programar!

Posicionar previamente a ferramenta na posição inicial no plano de maquinagem, com correção do raio **R0**. Observar o parâmetro Q367 (posição das ilhas).

O TNC posiciona previamente a ferramenta no seu eixo, de forma automática. Respeitar o parâmetro Q204 (2.ª distância de segurança).

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

Deixar espaço suficiente ao lado das ilhas, à direita, para os movimentos de aproximação. Mínimo: diâmetro da ferramenta + 2 mm, caso se trabalhe com o raio de aproximação e o ângulo de aproximação standard.

No final, o TNC posiciona a ferramenta de volta na distância de segurança, quando introduzido na 2.ª distância de segurança. A posição final da ferramenta após o ciclo não coincide, portanto, com a posição inicial.

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Parâmetros de ciclo

256

- 1.º º comprimento lateral Q218: comprimento da ilha, paralelo ao eixo principal do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- Medida do bloco 1º comprimento do lado Q424: comprimento do bloco de ilha, paralelamente ao eixo principal do plano de maquinagem. Introduzir uma medida do bloco 1º comprimento do lado maior que o 1.º comprimento do lado. O TNC executa diversos cortes laterais quando a diferença entre a medida do bloco 1 e a medida acabada 1 é superior ao corte lateral permitido (raio da ferramenta vezes sobreposição da trajetória Q370). O TNC calcula sempre um corte lateral constante. Campo de introdução de 0 a 99999,9999
- 2º comprimento lateral Q219: comprimento da ilha, paralelo ao eixo secundário do plano de maquinagem. Introduzir uma medida do bloco 2.º comprimento do lado superior ao 2.º comprimento do lado. O TNC executa diversos cortes laterais quando a diferença entre a medida do bloco 2 e a medida acabada 2 é superior ao corte lateral permitido (raio da ferramenta vezes sobreposição da trajetória Q370). O TNC calcula sempre um corte lateral constante. Campo de introdução de 0 a 99999,9999
- Medida do bloco 2º comprimento do lado Q425: comprimento do bloco de ilha, paralelamente ao eixo secundário do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- ▶ Raio de esquina Q220: raio da esquina da ilha. Campo de introdução de 0 a 99999,9999
- Medida excedente do 1ado Q368 (incremental): medida excedente de acabamento lateral no plano de maquinagem que o TNC mantém na maquinagem. Campo de introdução de 0 a 99999,9999
- Posição angular Q224 (valor absoluto): ângulo em que é rodada toda a ilha. O centro de rotação situa-se na posição onde se encontra a ferramenta, na ocasião da chamada de ciclo. Campo de introdução -360.000 bis 360.000
- Posição da ilha Q367: posição da ilha referida à posição da ferramenta na ocasião da chamada de ciclo:
 - **0**: posição da ferramenta = centro da ilha
 - 1: posição da ferramenta = esquina inferior esquerda
 - 2: posição da ferramenta = esquina inferior direita
 - 3: posição da ferramenta = esquina superior direita
 - 4: posição da ferramenta = esquina superior esquerda

- Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min. Campo de introdução 0 a 99999,999; em alternativa, FAUTO, FU, FZ
- Tipo de fresagem Q351: tipo de maquinagem de fresagem com M3:
 +1 = fresagem sincronizada
 -1 = fresagem em sentido oposto Em alternativa, PREDEF
- Tiefe Q201 (incremental): distância entre a superfície da peça de trabalho e a base da ilha. Campo de introdução -99999,9999 a 99999,9999
- Profundidade de corte Q202 (valor incremental): medida segundo a qual a ferramenta corta de cada vez na peça de trabalho; introduzir um valor maior que 0. Campo de introdução de 0 a 99999,9999
- Avanço de corte em profundidade Q206: velocidade de deslocação da ferramenta ao deslocar-se na profundidade em mm/min. Campo de introdução 0 a 99999,999; em alternativa FMAX, FAUTO, FU, FZ
- Distância de segurança Q200 (incremental): distância entre o extremo da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Coordenada da superfície da peça de trabalho Q203 (valor absoluto): coordenada absoluta da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Fator de sobreposição de trajetória Q370: Q370 x raio da ferramenta dá como resultado o corte lateral k. Campo de introdução 0,1 a 1,414; em alternativa, PREDEF
- Posição de aproximação (0...4) Q437 Determinar a estratégia de aproximação da ferramenta:
 - 0: À direita da ilha (ajuste básico)
 - 1: Esquina inferior esquerda
 - 2: Esquina inferior direita
 - 3: Esquina superior direita
 - 4: Esquina superior esquerda

Selecionar uma posição de aproximação diferente se, na aproximação com a definição Q437=0, ocorrerem marcas de aproximação na superfície da ilha

8	CYCL DEF 256	ILHA RETANGULAR
	Q218=60	;1.º COMPRIMENTO DE LADO
	Q424=74	;MEDIDA DO BLOCO 1
	Q219=40	;2.º COMPRIMENTO DE LADO
	Q425=60	;MEDIDA DO BLOCO 2
	Q220=5	;RAIO DE ESQUINA
	Q368=0.2	;MEDIDA EXCEDENTE LADO
	Q224=+0	;POSIÇÃO ANGULAR
	Q367=0	;POSIÇÃO DA ILHA
	Q207=500	;AVANÇO DE FRESAGEM
	Q351=+1	;TIPO DE FRESAGEM
	Q201=-20	;PROFUNDIDADE
	Q202=5	;PROFUNDIDADE DE CORTE
	Q206=150	;AVANÇO DE CORTE EM Profundidade
	Q200=2	;DISTÂNCIA SEGURANÇA
	Q203=+0	;COORD. SUPERFÍCIE
	Q204=50	;2.ª DISTÂNCIA SEGURANÇA
	Q370=1	;SOBREPOSIÇÃO DA TRAJETÓRIA
	Q437=0	;POSIÇÃO DE APROXIMAÇÃO
9	CYCL CALL PO	S X+50 Y+50 Z+0 FMAX M3

5.7 ILHA CIRCULAR (Ciclo 257, DIN/ISO: G257)

Execução do ciclo

Com o ciclo de ilhas circulares 257, pode-se maquinar uma ilha circular. Quando o diâmetro do bloco é superior ao corte lateral máximo possível, então o TNC executa um corte em forma de espiral até alcançar o diâmetro da peça de trabalho pronta.

- A ferramenta avança da posição inicial do ciclo (centro da ilha) para a posição inicial de maquinagem das ilhas. A posição inicial determina-se sobre o ângulo polar referente ao centro da ilha com o parâmetro Q376
- 2 Se a ferramenta estiver na 2.ª distância de segurança, o TNC desloca a ferramenta em marcha rápida FMAX para a distância de segurança, e daí com o avanço de aprofundamento para a primeira profundidade de passo
- 3 Finalmente, a ferramenta avança em movimento helicoidal tangencialmente ao contorno das ilhas e fresa depois uma volta.
- 4 Quando não é possível alcançar o diâmetro da peça pronta com uma volta, o TNC corta de forma helicoidal durante o tempo necessário para alcançar o diâmetro da peça pronta. O TNC tem em consideração o diâmetro do bloco, o diâmetro da peça pronta e o corte lateral permitido
- 5 O TNC afasta a ferramenta do traçado do contorno numa trajetória helicoidal
- 6 Se forem necessários vários cortes em profundidade, o novo corte em profundidade realiza-se no ponto mais próximo do movimento de afastamento
- 7 Este processo repete-se até se alcançar a profundidade de ilhas programada
- 8 No fim do ciclo, o TNC apenas posiciona a ferramenta no eixo da ferramenta à altura segura definida no ciclo. A posição final não coincide, portanto, com a posição inicial

Ter em atenção ao programar!

Posicionar previamente a ferramenta na posição inicial no plano de maquinagem (centro da ilha), com correção do raio **R0**.

O TNC posiciona previamente a ferramenta no seu eixo, de forma automática. Respeitar o parâmetro Q204 (2.ª distância de segurança).

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

No final do ciclo, o TNC posiciona a ferramenta apenas no eixo da ferramenta novamente na posição inicial, mas não no plano de maquinagem.

Atencao, perigo de colisao!

Com o parâmetro de máquina 7441 Bit 2, define-se se, ao ser introduzida uma profundidade positiva, o TNC deve emitir uma mensagem de erro (Bit 2=1) ou não (Bit 2=0).

Tenha em atenção que, em caso de **profundidade positiva introduzida**, o TNC inverte o cálculo da posição prévia. A ferramenta desloca-se, por isso, no eixo da ferramenta, com marcha rápida para a distância de segurança **sob** a superfície da peça de trabalho!

Deixar espaço suficiente ao lado das ilhas, à direita, para os movimentos de aproximação. Mínimo: diâmetro da ferramenta + 2 mm, caso se trabalhe com o raio de aproximação e o ângulo de aproximação standard.

No final, o TNC posiciona a ferramenta de volta na distância de segurança, quando introduzido na 2.ª distância de segurança. A posição final da ferramenta após o ciclo não coincide, portanto, com a posição inicial.

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Parâmetros de ciclo

- Diâmetro da peça pronta Q223: introduzir diâmetro da ilha pronta. Campo de introdução de 0 a 99999,9999
- Diâmetro do bloco Q222: diâmetro do bloco. Introduzir um diâmetro do bloco superior ao diâmetro da peça pronta. O TNC executa diversos cortes laterais quando a diferença entre o diâmetro do bloco e o diâmetro da peça pronta é superior ao corte lateral permitido (Raio da ferramenta vezes sobreposição da trajetória Q370). O TNC calcula sempre um corte lateral constante. Campo de introdução de 0 a 99999,9999
- Medida excedente acabamento lateralQ368 (incremental): medida excedente de acabamento no plano de maquinagem. Campo de introdução 0 a 99999.9999
- Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min. Campo de introdução 0 a 99999,999; em alternativa, FAUTO, FU, FZ
- ▶ **Tipo de fresagem** Q351: tipo de maquinagem de fresagem com M3:
 - +1 = fresagem sincronizada
 - **-1** = fresagem em sentido oposto
 - Em alternativa, **PREDEF**

- Tiefe Q201 (incremental): distância entre a superfície da peça de trabalho e a base da ilha. Campo de introdução -99999,9999 a 99999,9999
- Profundidade de corte Q202 (valor incremental): medida segundo a qual a ferramenta corta de cada vez na peça de trabalho; introduzir um valor maior que 0. Campo de introdução de 0 a 99999,9999
- Avanço de corte em profundidade Q206: velocidade de deslocação da ferramenta ao deslocar-se na profundidade em mm/min. Campo de introdução 0 a 99999,999; em alternativa FMAX, FAUTO, FU, FZ
- Distância de segurança Q200 (incremental): distância entre o extremo da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Coordenada da superfície da peça de trabalho Q203 (valor absoluto): coordenada absoluta da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Fator de sobreposição de trajetória Q370: Q370 x raio da ferramenta dá como resultado o corte lateral k. Campo de introdução 0,1 a 1,414; em alternativa, PREDEF
- Ângulo inicial Q376: ângulo polar referente ao ponto central da ilha, a partir do qual a ferramenta aproxima à ilha. Campo de introdução -1 a 359º. O valor -1 define que, com cortes em profundidade repetidos, o ângulo inicial de cada profundidade pode variar, de modo a poder realizar os trajetos mais curtos possíveis. Um valor entre 0 e 359 define explicitamente um ângulo inicial que tem que ser respeitado em cada corte em profundidade

8	CYCL DEF 257	ILHA CIRCULAR
	Q223=60	;DIÂMETRO DA PEÇA PRONTA
	Q222=60	;DIÂMETRO DO BLOCO
	Q368=0.2	;MEDIDA EXCEDENTE LADO
	Q207=500	;AVANÇO DE FRESAGEM
	Q351=+1	;TIPO DE FRESAGEM
	Q201=-20	;PROFUNDIDADE
	Q202=5	;PROFUNDIDADE DE CORTE
	Q206=150	;AVANÇO DE CORTE EM Profundidade
	Q200=2	;DISTÂNCIA SEGURANÇA
	Q203=+0	;COORD. SUPERFÍCIE
	Q204=50	;2.ª DISTÂNCIA SEGURANÇA
	Q370=1	;SOBREPOSIÇÃO DA TRAJETÓRIA
	Q376=0	;ÂNGULO INICIAL
9	CYCL CALL PO	S X+50 Y+50 Z+0 FMAX M3

5.8 Exemplos de programação

Exemplo: fresar caixa, ilha e ranhura

O BEGINN PGM C210 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Definição do bloco
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+6	Definição da ferramenta para o desbaste/acabamento
4 TOOL DEF 2 L+0 R+3	Definição da ferramenta para a fresagem da ranhura
5 TOOL CALL 1 Z S3500	Chamada da ferramenta para desbaste/acabamento
6 L Z+250 R0 FMAX	Retirar a ferramenta
7 CYCL DEF 256 ILHA RETANGULAR	Definição do ciclo de maquinagem exterior
Q218=90 ;1.º COMPRIMENTO DE LADO	
Q424=100 ;MEDIDA DO BLOCO 1	
Q219=80 ;2.º COMPRIMENTO DE LADO	
Q425=100 ;MEDIDA DO BLOCO 2	
Q220=0 ;RAIO DE ESQUINA	
Q368=0 ;MEDIDA EXCEDENTE LADO	
Q224=0 ;POSIÇÃO DE ROTAÇÃO	
Q367=0 ;POSIÇÃO DA ILHA	
Q207=250 ;AVANÇO DE FRESAGEM	
Q351=+1 ;TIPO DE FRESAGEM	

5.8 Exemplos <mark>de</mark> programação

i

programação
de
Exemplos
5.8

Q201=-30 ;PROFUNDIDADE	
Q202=5 ;PROFUNDIDADE DE CORTE	
Q206=250 ;AVANÇO AO CORTAR EM PROFUND.	
Q200=2 ;DISTÂNCIA SEGURANÇA	
Q2O3=+O ;COORD. SUPERFÍCIE	
Q204=20 ;2.ª DISTÂNCIA DE SEGURANÇA	
Q370=1 ;SOBREPOSIÇÃO DE TRAJETÓRIA	
Q437=1 ;POSIÇÃO DE APROXIMAÇÃO	
8 CYCL CALL POS X+50 Y+50 Z+0 M3	Chamada do ciclo de maquinagem exterior
9 CYCL DEF 252 CAIXA CIRCULAR	Definição do ciclo de caixa circular
Q215=0 ;EXTENSÃO DA MAQUINAGEM	
Q223=50 ;DIÂMETRO DO CÍRCULO	
Q368=0.2 ;MEDIDA EXCEDENTE LADO	
Q207=500 ;AVANÇO DE FRESAGEM	
Q351=+1 ;TIPO DE FRESAGEM	
Q201=-30 ;PROFUNDIDADE	
Q202=5 ;PROFUNDIDADE DE CORTE	
Q369=0.1 ;MEDIDA EXCEDENTE PROFUNDIDADE	
Q206=150 ;AVANÇO DE CORTE EM	
PROFUNDIDADE	
Q338=5 ;CORIE DE ACABAMENIO	
Q200=2 ; DISTANCIA SEGURANÇA	
Q203=+0 ;COORD. SUPERFICIE	
Q204=50 ;2.ª DISTANCIA SEGURANÇA	
Q370=1 ;SUBREPUSIÇAU DA TRAJETORIA	
Q366=1 ;AFUNDAMENTO	
USSS=/50 ;AVANÇU DE ALABAMENTU	Characterie de siele de seive sizevier
10 LTLL CALL POS X+50 1+50 Z+0 FMAX	
11 L 27230 KU FMAA MO	Chamada da farramenta para a francasam da raphura
12 TULL CALL 2 2 35000	
13 LILL DEF 234 KANNUKA LIKUULAK	
Q213-0 ; LANGUNA DA KANNUKA 0268-0 2 :MEDIDA EVCEDENTE LADO	
$\sqrt{300-0.2}$, FILDIDA EACEDENTE LADO	
	Não é necessário nosicionamento právio em X/V
RANHURA	
Q216=+50 ;CENTRO 1.º EIXO	

Q217=+50 ;CENTRO 2.º EIXO	
Q376=+45 ;ÂNGULO INICIAL	
Q248=90 ;ÂNGULO DE ABERTURA	
Q378=180 ;INCREMENTO ANGULAR	Ponto inicial da 2.ª Ranhura
Q377=2 ;QUANTIDADE DE MAQUINAGENS	
Q207=500 ;AVANÇO DE FRESAGEM	
Q351=+1 ;TIPO DE FRESAGEM	
Q201=-20 ;PROFUNDIDADE	
Q202=5 ;PROFUNDIDADE DE CORTE	
Q369=0.1 ;MEDIDA EXCEDENTE PROFUNDIDADE	
Q206=150 ;AVANÇO DE CORTE EM Profundidade	
Q338=5 ;CORTE DE ACABAMENTO	
Q200=2 ;DISTÂNCIA SEGURANÇA	
Q2O3=+O ;COORD. SUPERFÍCIE	
Q204=50 ;2.ª DISTÂNCIA SEGURANÇA	
Q366=1 ;AFUNDAMENTO	
Q439=0 ;REFERÊNCIA AVANÇO	
14 CYCL CALL FMAX M3	Chamada do ciclo ranhura
15 L Z+250 RO FMAX M2	Retirar ferramenta, fim do programa
16 END PGM C210 MM	

6

Ciclos de maquinagem: definições de padrões

6.1 Princípios básicos

Resumo

O TNC dispõe de 2 ciclos com que se podem elaborar diretamente padrões de pontos:

Ciclo	Softkey	Página
220 PADRÃO DE PONTOS SOBRE CÍRCULO	220	Página 177
221 PADRÃO DE PONTOS SOBRE LINHAS	221	Página 180

É possível combinar os seguintes ciclos de maquinagem com os ciclos 220 e 221:

Se tiver que produzir padrões de pontos irregulares, utilize as tabelas de pontos com **CYCL CALL PAT** (ver "Tabelas de pontos" na página 67).

Com a função **PATTERN DEF** estão disponíveis mais padrões de pontos regulares (ver "Definição de padrões PATTERN DEF" na página 59).

Ciclo 200	FURAR
Ciclo 201	ALARGAR FURO
Ciclo 202	MANDRILAR
Ciclo 203	FURAR UNIVERSAL
Ciclo 204	REBAIXAMENTO INVERTIDO
Ciclo 205	FURAR EM PROFUNDIDADE UNIVERSAL
Ciclo 206	ROSCAGEM NOVA com mandril compensador
Ciclo 207	ROSCAGEM GS NOVA sem mandril compensador
Ciclo 208	FRESAR FURO
Ciclo 209	ROSCAGEM ROTURA DA APARA
Ciclo 240	CENTRAR
Ciclo 251	CAIXA RECTANGULAR
Ciclo 252	CAIXA CIRCULAR
Ciclo 253	FRESAR RANHURAS
Ciclo 254	RANHURA REDONDA (só é possível combinar com ciclo 221)
Ciclo 256	ILHAS RECTANGULARES
Ciclo 257	ILHAS CIRCULARES
Ciclo 262	FRESAR EM ROSCA
Ciclo 263	FRESAR EM ROSCA DE REBAIXAMENTO
Ciclo 264	FRESAR EM ROSCA DE FURO
Ciclo 265	FRESAR EM ROSCA DE FURO DE HÉLICE
Ciclo 267	FRESAR EM ROSCA EXTERIOR

i

6.2 PADRÃO DE PONTOS SOBRE CÍRCULO (ciclo 220, DIN/ISO: G220)

Decurso do ciclo

1 O TNC posiciona a ferramenta, em marcha rápida, desde a posição atual para o ponto inicial da primeira maquinagem.

Sequência:

- 2. Aproximação à distância de segurança (eixo do mandril)
- Chegada ao ponto inicial no plano de maquinagem
- Deslocamento na distância de segurança sobre a superfície da peça de trabalho (eixo do mandril)
- 2 A partir desta posição, o TNC executa o último ciclo de maquinagem definido
- **3** A seguir, o TNC posiciona a ferramenta segundo um movimento linear ou um movimento circular, sobre o ponto de inicial da maquinagem seguinte; para isso, a ferramenta encontra-se na distância de segurança (ou 2.ª distância de segurança)
- 4 Este processo (1 a 3) repete-se até se executarem todas as maquinagens

Ter em atenção ao programar!

O ciclo 220 ativa-se com DEF, quer dizer, o ciclo 220 chama automaticamente o último ciclo de maquinagem definido.

Se se combinar um dos ciclos de maquinagem de 200 a 204 e de 212 a 215 com o ciclo 220, atuam a distância de segurança, a superfície da peça de trabalho e a 2.ª distância de segurança a partir do ciclo 220.

- 220
- Centro do 1.º eixoQ216 (absoluto): ponto central do círculo teórico no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Centro 2.º eixo Q217 (absoluto): ponto central do círculo teórico no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Diâmetro do círculo teórico Q244: diâmetro do círculo teórico. Campo de introdução 0 a 99999.9999
- Ângulo inicial Q245 (absoluto): ângulo entre o eixo principal do plano de maquinagem e o ponto inicial (primeiro furo) da primeira maquinagem sobre o círculo teórico. Campo de introdução -360,000 a 360,000
- Ângulo final Q246 (valor absoluto): ângulo entre o eixo principal do plano de maquinagem e o ponto de partida da última maquinagem sobre o círculo teórico (não é válido para círculos completos); introduzir o ângulo final diferente do ângulo inicial; se o ângulo final for maior do que o ângulo inicial, a direção da maquinagem é em sentido anti-horário; caso contrário, a maquinagem é em sentido horário. Campo de introdução -360,000 a 360,000
- Incremento angular Q247 (incremental): ângulo entre duas maquinagens sobre o círculo teórico; quando o incremento angular é igual a zero, o TNC calcula o incremento angular a partir do ângulo inicial, do ângulo final e da quantidade de maquinagens; se estiver introduzido um incremento angular, o TNC não considera o ângulo final; o sinal do incremento angular determina a direção da maquinagem (– = sentido horário). Campo de introdução -360,000 a 360,000
- ▶ N.º de maquinagens Q241: quantidade de maquinagens sobre o círculo teórico. Campo de introdução 1 a 99999

- Distância de segurança Q200 (incremental): distância entre a ponta da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999, em alternativa PREDEF
- Coord. da superf. da peça de trabalho Q203 (valor absoluto): coordenada da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2.ª distância de segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999, em alternativa PREDEF
- Deslocação à altura de segurança Q301: determinar como a ferramenta se deve deslocar entre as maguinagens:

ODeslocação entre as maquinagens à distância de segurança

1: deslocar entre as maquinagens para a 2.ª distância de segurança

em alternativa, PREDEF

▶ Modo de deslocação? Reta=0/Círculo=1 Q365:

determinar com que tipo de trajetória deve deslocarse a ferramenta entre as maquinagens:

 $\pmb{0}:$ deslocação entre as maquinagens segundo uma reta

1: deslocação entre as maquinagens em círculo segundo o diâmetro do círculo teórico

53	CYCL DEF 22	O FIGURA CÍRCULO
	Q216=+50	;CENTRO 1.º EIXO
	Q217=+50	;CENTRO 2.º EIXO
	Q244=80	;DIÂM. CÍRCULO TEÓRICO
	Q245=+0	;ÂNGULO INICIAL
	Q246=+360	;ÂNGULO FINAL
	Q247=+0	;INCREMENTO ANGULAR
	Q241=8	;QUANTIDADE DE MAQUINAGENS
	Q200=2	;DISTÂNCIA DE SEGURANÇA
	Q203=+30	;COORD. SUPERFÍCIE
	Q204=50	;2.ª DISTÂNCIA DE SEGURANÇA
	Q301=1	;DESLOCAR À ALTURA SEGURANÇA
	Q365=0	;TIPO DE DESLOCAÇÃO

6.3 PADRÃO DE PONTOS SOBRE LINHAS (ciclo 221, DIN/ISO: G221)

Decurso do ciclo

1 O TNC posiciona automaticamente a ferramenta desde a posição atual para o ponto de partida da primeira maquinagem

Sequência:

- 2. Aproximação à distância de segurança (eixo do mandril)
- Chegada ao ponto inicial no plano de maquinagem
- Deslocamento na distância de segurança sobre a superfície da peça de trabalho (eixo do mandril)
- A partir desta posição, o TNC executa o último ciclo de maquinagem definido
- 3 A seguir, o TNC posiciona a ferramenta na direção positiva do eixo principal sobre o ponto de partida da maquinagem seguinte; para isso, a ferramenta encontra-se na distância de segurança (ou 2.ª distância de segurança)
- 4 Este processo (1 a 3) repete-se até se executarem todas as maquinagens da primeira linha; a ferramenta fica no último ponto da primeira linha
- 5 Depois, o TNC desloca a ferramenta para o último furo da segunda linha e executa aí a maquinagem
- 6 A partir daí o TNC posiciona a ferramenta na direção negativa do eixo principal, sobre o ponto de partida da maquinagem seguinte
- 7 Este processo (6) repete-se até se executarem todas as maquinagens da segunda linha
- 8 A seguir, o TNC desloca a ferramenta para o ponto inicial da linha seguinte
- 9 Todas as outras linhas são maquinadas em movimento pendular

Ter em atenção ao programar!

O ciclo 221 ativa-se com DEF, quer dizer, o ciclo 221 chama automaticamente o último ciclo de maquinagem definido.

Se se combinar um dos ciclos de maquinagem de 200 a 204 e de 212 a 215 com o ciclo 221, atuam a distância de segurança, a superfície da peça de trabalho, a 2.ª distância de segurança e a posição angular do ciclo 221.

Se utilizar o ciclo 254 de Ranhura Redonda em conjunto com o ciclo 221, então a posição de ranhura 0 não é permitida.

PADRÃO DE PONTOS SOBRE LINHAS (ciclo 221, DIN/ISO: G221

Parâmetros de ciclo

- 221
- Ponto inicial do 1.º eixo Q225 (absoluto): coordenada do ponto inicial no eixo principal do plano de maquinagem
- Ponto inicial do 2.º eixo Q226 (absoluto): coordenada do ponto inicial no eixo secundário do plano de maquinagem
- Distância 1.º eixo Q237 (incremental): distância entre os furos de uma linha
- Distância 2.º eixo Q238 (incremental): distância entre as diferentes linhas
- N.º de colunas Q242: quantidade de maquinagens sobre uma linha
- ▶ N.º de linhas Q243: quantidade de linhas
- Posição angular Q224 (valor absoluto): ângulo em redor do qual roda toda a imagem; o centro de rotação fica no ponto inicial
- Distância de segurança Q200 (incremental): distância entre a ponta da ferramenta e a superfície da peça de trabalho; em alternativa, PREDEF
- Coord. da superf. da peça Q203 (valor absoluto): coordenada da superfície da peça
- 2.ª distância de segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor); em alternativa, PREDEF
- Deslocação à altura de segurança Q301: determinar como a ferramenta se deve deslocar entre as maquinagens:

0:deslocar entre as maquinagens à distância de segurança

1: deslocar entre as maquinagens para a 2.ª distância de segurança em alternativa, **PREDEF**

54	CYCL DEF 22	21 FIGURA LINHAS
	Q225=+15	;PONTO INICIAL 1.º EIXO
	Q226=+15	;PONTO INICIAL 2.º EIXO
	Q237=+10	;DISTÂNCIA 1.º EIXO
	Q238=+8	;DISTÂNCIA 2.º EIXO
	Q242=6	;QUANTIDADE DE COLUNAS
	Q243=4	;QUANTIDADE DE LINHAS
	Q224=+15	;POSIÇÃO DE ROTAÇÃO
	Q200=2	;DISTÂNCIA DE SEGURANÇA
	Q203=+30	;COORD. SUPERFÍCIE
	Q204=50	;2.ª DISTÂNCIA DE SEGURANÇA
	Q301=1	;DESLOCAR À ALTURA SEGURANÇA

6.4 Exemplos de programação

Exemplo: Círculos de furos

O BEGIN PGM MAQ.FURO MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Definição do bloco
2 BLK FORM 0.2 Y+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+3	Definição da ferramenta
4 TOOL CALL 1 Z S3500	Chamada da ferramenta
5 L Z+250 RO FMAX M3	Retirar a ferramenta
6 CYCL DEF 200 FURAR	Definição do ciclo de Furar
Q200=2 ;DISTÂNCIA DE SEGURANÇA	
Q201=-15 ;PROFUNDIDADE	
Q206=250 ;ALIMENTAÇÃO F CORTE EM Profundidade	
Q2O2=4 ;PROFUNDIDADE DE CORTE	
Q210=0 ;TEMPO ESPERA	
Q2O3=+O ;COORD. SUPERFÍCIE	
Q204=0 ;2.ª DIST. SEGURANÇA	
Q211=0.25 ;TEMPO DE ESPERA EM BAIXO	
Q395=0,25 ;PROFUNDIDADE DE REFERÊNCIA	

i

7 CYCL DEF 220 FIGURA CÍRCULO	A definição de ciclo de círculo de furos 1, CYCL 200 é chamada automaticamente, Ω200, Ω203 e Ω204 atuam a partir do ciclo 220
Q216=+30 ;CENTRO 1.º EIXO	
Q217=+70 ;CENTRO 2.º EIXO	
Q244=50 ;DIÂM. CÍRCULO TEÓRICO	
Q245=+0 ;ÂNGULO INICIAL	
Q246=+360 ;ÂNGULO FINAL	
Q247=+0 ;INCREMENTO ANGULAR	
Q241=10 ;QUANTIDADE	
Q200=2 ;DISTÂNCIA DE SEGURANÇA	
Q2O3=+O ;COORD. SUPERFÍCIE	
Q2O4=100 ;2.ª DIST. SEGURANÇA	
Q301=1 ;DESLOCAR À ALTURA SEGURANÇA	
Q365=0 ;TIPO DE DESLOCAÇÃO	
8 CYCL DEF 220 FIGURA CÍRCULO	A definição de ciclo de círculo de furos 2, CYCL 200 é chamada
Q216=+90 ;CENTRO 1.º EIXO	
Q21/=+25 ;CENIRO 2.º EIXO	
Q244=70 ;DIAM. CIRCULO TEORICO	
Q245=+90 ;ANGULO INICIAL	
Q246=+360 ;ANGULO FINAL	
Q247=30 ;INCREMENTO ANGULAR	
Q241=5 ;QUANTIDADE	
Q200=2 ;DIST. SEGURANÇA	
Q2O3=+O ;COORD. SUPERFÍCIE	
Q2O4=100 ;2.ª DISTÂNCIA DE SEGURANÇA	
Q301=1 ;DESLOCAR À ALTURA SEGURANÇA	
Q365=0 ;TIPO DE DESLOCAÇÃO	
9 L Z+250 RO FMAX M2	Retirar ferramenta, fim do programa

6.4 Exemp<mark>los</mark> de programação

i

Ciclos de maquinagem: caixa de contorno, traçados de contorno

7.1 Ciclos SL

Princípios básicos

Com os ciclos SL, podem compor-se contornos complexos até 12 contornos parciais (caixas ou ilhas). Os subcontornos são introduzidos individualmente como subprogramas. A partir da lista de subcontornos (números de subprogramas), que é indicada no ciclo 14 CONTORNO, o TNC calcula o contorno total.

7.1 Ciclos S

A memória para um ciclo SL (todos os subprogramas de contorno) está limitada. A quantidade de elementos de contorno possíveis depende do tipo de contorno (contorno interior/exterior) e da quantidade de contornos parciais e ascende ao máximo de 8192 elementos de contorno.

Os ciclos SL executam internamente cálculos abrangentes e complexos e as maquinagens daí resultantes. Devido a motivos de segurança efetuar sempre antes da execução um teste de programa gráfico! Assim pode averiguar facilmente se a maquinagem calculada pelo TNC está a decorrer corretamente.

Características dos subprogramas

- São permitidas conversões de coordenadas. Se forem programadas dentro de contornos parciais, ficam também ativadas nos subprogramas seguintes, mas não devem ser anuladas depois da chamada de ciclo
- O TNC ignora avanços F e funções auxiliares M
- O TNC caracteriza uma caixa se o contorno for percorrido por dentro, p.ex., descrição do contorno em sentido horário com correção de raio RR
- O TNC caracteriza uma ilha se o contorno for percorrido por fora, p.ex. descrição do contorno no sentido horário com correção do raio RL
- Os subprogramas não podem conter nenhuma coordenada no eixo do mandril
- No primeiro bloco de coordenadas do subprograma, determina-se o plano de maquinagem. São permitidos os eixos auxiliares U,V,W em combinações convenientes. Definir sempre ambos os eixos do plano de maquinagem, por norma, no primeiro bloco
- Se utilizar parâmetros Q, execute os respetivos cálculos e atribuições apenas dentro do respetivo subprograma de contorno.
- Se no subprograma estiver definido um contorno não fechado, o TNC fecha o contorno automaticamente com uma reta desde o ponto final ao inicial

Exemplo: Esquema: trabalhar com ciclos SL:

O BEGIN PGM SL2 MM
····
12 CYCL DEF 14 CONTORNO
13 CYCL DEF 20 DADOS DO CONTORNO
•••
16 CYCL DEF 21 PRÉ-FURAR
17 CYCL CALL
•••
18 CYCL DEF 22 DESBASTAR
19 CYCL CALL
22 CYCL DEF 23 ACABAMENTO PROFUNDIDADE
23 CYCL CALL
•••
26 CYCL DEF 24 ACABAR LADO
27 CYCL CALL
•••
50 L Z+250 R0 FMAX M2
51 LBL 1
•••
55 LBL 0
56 LBL 2
60 LBL 0
•••
99 END PGM SL2 MM

Características dos ciclos de maquinagem

- O TNC posiciona-se automaticamente antes de cada ciclo na distância de segurança
- Cada nível de profundidade é fresado sem levantamento da ferramenta.; as ilhas maquinam-se lateralmente
- Para evitar marcas de corte, o TNC acrescenta um raio de arredondamento global que se pode definir em "esquinas interiores" não tangenciais. O raio de arredondamento programável no ciclo 20 atua sobre a trajetória do ponto central da ferramenta, aumentando assim, se necessário, um arredondamento definido através do raio da ferramenta (válido para o desbaste e para o acabamento lateral)
- Em acabamento lateral, o TNC efetua a chegada ao contorno segundo uma trajetória circular tangente
- Em acabamento em profundidade, o TNC desloca a ferramenta também segundo uma trajetória circular tangente à peça de trabalho (p. ex.: eixo do mandril Z: trajetória circular no plano Z/X)
- O TNC maquina o contorno de forma contínua em sentido sincronizado ou em sentido contrário

Com o bit 4 de MP7420, determina-se onde o TNC deve posicionar a ferramenta no fim dos ciclos 21 até 24:

Bit 4 = 0:

No final do ciclo, o TNC posiciona a ferramenta primeiro no eixo da ferramenta à altura de segurança definida no ciclo (**Q7**) e, em seguida, na posição do plano de maquinagem em que a ferramenta se encontrava ao chamar-se o ciclo.

Bit 4 = 1:

No final do ciclo, o TNC posiciona a ferramenta exclusivamente no eixo da ferramenta à altura de segurança definida no ciclo (**Q7**). Prestar atenção a que não ocorram colisões nos posicionamentos seguintes!

As indicações de cotas para a maquinagem, como profundidade de fresagem, medidas excedentes e distância de segurança, são introduzidas de forma central no ciclo 20 como DADOS DO CONTORNO.

Resumo

Ciclo	Softkey	Página
14 CONTORNO (absolutamente necessário)	14 LBL 1N	Página 189
20 DADOS DO CONTORNO (absolutamente necessário)	20 CONTORNO DADOS	Página 194
21 PRÉ-FURAR (utilizável como opção)	21	Página 196
22 DESBASTE (absolutamente necessário)	22	Página 198
23 ACABAMENTO EM PROF. (utilizável como opção)	23	Página 202
24 ACABAMENTO LATERAL (utilizável como opção)	24	Página 204

Outros ciclos:

Ciclo	Softkey	Página
270 DADOS DO TRAÇADO DO CONTORNO	270 **	Página 206
25 TRAÇADO DO CONTORNO	25	Página 208
275 CONTORNO RANHURA TROCOIDAL	275	Página 212
276 TRAÇADO DO CONTORNO 3D	276	Página 217

7.2 CONTORNO (Ciclo 14, DIN/ISO: G37)

Ter em atenção ao programar!

No ciclo 14 CONTORNO, faz-se a listagem de todos os subprogramas que devem ser sobrepostos para formarem um contorno completo.

Antes da programação, deverá ter em conta

O ciclo 14 ativa-se com DEF, quer dizer, atua a partir da sua definição no programa.

No ciclo 14, pode fazer-se a listagem até um máximo de 12 subprogramas (subcontornos).

Parâmetros de ciclo

- 14 LBL 1...N
- Números Label para o contorno: introduzir todos os números Label de cada subprograma e que se sobrepõem num contorno. Confirmar cada número com a tecla ENT e terminar as introduções com a tecla END. Introdução de até 12 números de subprograma 1 a 254

7.3 Contornos sobrepostos

Princípios básicos

Podem sobrepor-se caixas e ilhas num novo contorno. Assim, é possível aumentar uma superfície de caixa por meio de uma caixa sobreposta ou diminuir por meio de uma ilha.

12	CYCL	DEF	14.0	CONTOR	RNO			
13	CYCL	DEF	14.1	LABEL	DE	CONTORNO	1/2/3/4	1

Subprogramas: caixas sobrepostas

Os seguintes exemplos de programação são subprogramas de contorno, chamados num programa principal do ciclo 14 CONTORNO.

As caixas A e B sobrepõem-se.

O TNC calcula os pontos de intersecção S_1 und $S_2, pelo que não é necessário programá-los.$

As caixas estão programadas como círculos completos.

Subprograma 1: caixa A

51 LBL 1
52 L X+10 Y+50 RR
53 CC X+35 Y+50
54 C X+10 Y+50 DR-
55 LBL 0

Subprograma 2: caixa B

56 LBL 2	56
57 L X+90 Y+50 RR	57
58 CC X+65 Y+50	58
59 C X+90 Y+50 DR-	59
60 LBL 0	60

Superfície de "soma"

Maquinam-se ambas as superfícies parciais A e B incluindo a superfície coberta em comum:

- As superfícies A e B têm que ser caixas.
- A primeira caixa (no ciclo 14) deverá começar fora da segunda.

Superfície A:

51 LBL	1
52 L X	+10 Y+50 RR
53 CC	X+35 Y+50
54 C X	+10 Y+50 DR-
55 LBL	. 0

Superfície B:

•
56 LBL 2
57 L X+90 Y+50 RR
58 CC X+65 Y+50
59 C X+90 Y+50 DR-
60 LBL 0

7.3 Contornos sobrepostos

Superfície de "diferença"

A superfície A deverá ser maquinada sem a parte coberta por B:

- A superfície A tem que ser caixa e a superfície B tem que ser ilha.
- A tem que começar fora de B.
- B deverá começar dentro de A.

Superfície A:

1 LBL 1
2 L X+10 Y+50 RR
3 CC X+35 Y+50
4 C X+10 Y+50 DR-
5 LBL 0

Superfície B:

56 LBL 2
57 L X+40 Y+50 RL
58 CC X+65 Y+50
59 C X+40 Y+50 DR-
60 LBL 0

Superfície de "intersecção"

Deverá maquinar-se a superfície coberta por A e B (as superfícies não cobertas deverão, simplesmente, não ser maquinadas).

A e B têm que ser caixas.

A deverá começar dentro de B.

Superfície A:

51	LBL 1
52	L X+60 Y+50 RR
53	CC X+35 Y+50
54	C X+60 Y+50 DR-
55	LBL O

Superfície B:

56 LBL 2
57 L X+90 Y+50 RR
58 CC X+65 Y+50
59 C X+90 Y+50 DR-
60 LBL 0

7.4 DADOS DO CONTORNO (Ciclo 20, DIN/ISO: G120)

Ter em atenção ao programar!

No ciclo 20, indicam-se as informações da maquinagem para os subprogramas com os contornos parciais.

O ciclo 20 ativa-se com DEF, quer dizer, atua a partir da sua definição no programa de maquinagem.

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se programar a profundidade = 0, o TNC executa o respetivo ciclo para a profundidade 0.

As informações sobre a maquinagem indicadas no ciclo 20 são válidas para os ciclos 21 a 24.

Se se utilizarem ciclos SL em programas com parâmetros Q, não se podem utilizar os parâmetros Q1 a Q20 como parâmetros do programa.

Parâmetros de ciclo

- Profundidade de fresagem Q1 (incremental): distância entre a superfície da peça de trabalho e a base da caixa. Campo de introdução -99999,9999 a 99999,9999
- Sobreposição de trajetória, fator Q2: Q2 x raio da ferramenta dá como resultado a aproximação lateral k. Campo de introdução -0,0001 a1,9999
- Medida excedente acabamento lateralQ3 (incremental): medida excedente de acabamento no plano de maquinagem Campo de introdução -99999,9999 a 99999,9999
- Medida exced. acabamento em profundidade Q4 (incremental): medida exced. de acabamento para a profundidade. Campo de introdução -99999,9999 a 99999,9999
- Coordenada da superfície da peça Q5 (valor absoluto): coordenada absoluta da superfície da peça. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q6 (incremental): distância entre o extremo da ferramenta e a superfície da peça. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura segura Q7 (absoluto): altura absoluta onde não pode produzir-se nenhuma colisão com a peça de trabalho (para posicionamento intermédio e retrocesso no fim do ciclo). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Raio interior de arredondamento Q8: raio de arredondamento em "esquinas" interiores; o valor programado refere-se à trajetória do ponto central da ferramenta e é utilizado para calcular movimentos de deslocação mais suaves entre elementos de contorno. Q8 não é um raio que o TNC insere como elemento de contorno separado entre elementos programados! Campo de introdução de 0 a 99999,9999
- Sentido de rotação? Q9: Direção de maquinagem para caixas
 - Q9 = -1 sentido oposto para caixa e ilha
 - Q9 = +1 sentido sincronizado para caixa e ilha
 - Em alternativa, **PREDEF**

Numa interrupção do programa, podem verificar-se os parâmetros de maquinagem e, se necessário, escrever por cima.

57 CYCL DE	20 DADOS DO CONTORNO
Q1=-20	;PROFUNDIDADE DE FRESAGEM
Q2=1	;SOBREPOSIÇÃO DE TRAJETÓRIA
Q3=+0.	2 ;MEDIDA EXCEDENTE LADO
Q4=+0,	1 ;MEDIDA EXCEDENTE PROFUNDIDADE
Q5=+30	;COORD. SUPERFÍCIE
Q6=2	;DISTÂNCIA SEGURANÇA
Q7=+80	;ALTURA SEGURA
Q8=0.5	;RAIO DE ARREDONDAMENTO
Q9=+1	;SENTIDO DE ROTAÇÃO

7.5 PRÉ-FURAR (Ciclo 21, DIN/ISO: G121)

Execução do ciclo

- 1 A ferramenta fura com o avanço introduzido F desde a posição atual até à primeira profundidade de corte
- 2 Depois, o TNC retira a ferramenta em marcha rápida FMAX e volta a deslocar-se até à primeira profundidade de corte, reduzindo a distância de paragem prévia t.
- 3 O comando calcula automaticamente a distância de paragem prévia:
 - Profundidade de furo até 30 mm: t = 0,6 mm
 - Profundidade de furo superior a 30 mm: t = profundidade de furar mm
 - Máxima distância de paragem prévia: 7 mm
- 4 A seguir, a ferramenta desloca-se com o avanço F introduzido até à profundidade de corte seguinte
- **5** O TNC repete este processo (1 a 4) até alcançar a Profundidade de Furar programada
- 6 Na base do furo, uma vez transcorrido o tempo de espera para o corte livre, o TNC retira a ferramenta para a posição inicial com FMAX

Aplicação

O ciclo 21 PRÉ-FURAR considera para os pontos de recesso a medida excedente de acabamento lateral e a medida excedente de acabamento em profundidade, bem como o raio da ferramenta de desbaste. Os pontos de recesso são, simultaneamente, os pontos iniciais para o desbaste.

Ter em atenção ao programar!

Antes da programação, deverá ter em conta

O valor delta **DR**programado no bloco **TOOL CALL** não é considerado pelo TNC para o cálculo dos pontos de recesso.

Em pontos estreitos, o TNC pode, se necessário, não préfurar com uma ferramenta que seja maior do que a ferramenta de desbaste.

Atencao, perigo de colisao!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

7.5 PRÉ-FURAR (<mark>Cicl</mark>o 21, DIN/ISO: G121)

Parâmetros de ciclo

Profundidade de corte Q10 (valor incremental): medida segundo a qual a ferramenta corta de cada vez a peça de trabalho (sinal "-" quando a direção de maquinagem é negativa) Campo de introdução -99999,9999 a 99999,9999

- Avanço ao aprofundar Q11: avanço ao furar em mm/min Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Número/nome da ferramenta de desbaste Q13 ou QS13: número ou nome da ferramenta de desbaste. Campo de introdução 0 a 32767,9 na introdução numérica, 32 caracteres, no máximo, para introdução do nome

58 CYCL DEF 2	1 PRÉ-FURAR
Q10=+5	;PROFUNDIDADE DE CORTE
Q11=100	;AVANÇO AO CORTAR EM PROFUND.
Q13=1	;FERRAMENTA DE DESBASTE

7.6 DESBASTAR (Ciclo 22, DIN/ISO: G122)

Execução do ciclo

- 1 O TNC posiciona a ferramenta sobre o ponto de recesso; para isso, tem-se em conta a medida excedente de acabamento lateral
- 2 Na primeira profundidade de corte, a ferramenta fresa, com o avanço de fresagem Q12, o contorno em sentido de dentro para fora
- **3** Para isso, fresam-se livremente os contornos da ilha (aqui: C/D) com uma aproximação ao contorno da caixa (aqui: A/B)
- 4 No passo seguinte, o TNC desloca a ferramenta para a próxima profundidade de corte e repete o procedimento de desbaste até atingir a profundidade programada
- 5 Por fim, o TNC desloca a ferramenta de novo para a altura segura e, no plano de maquinagem, se necessário, para a posição na chamada de ciclo (dependente de MP7420, Bit 4)

Ter em atenção ao programar!

Se necessário, utilizar uma fresa com dentado frontal cortante no centro (DIN 844) ou pré-furar no ponto de partida.

O comportamento de afundamento do ciclo 22 é determinado com o parâmetro Q19 e na tabela de ferramentas com as colunas **ANGLE** e **LCUTS**:

- Quando está definido Q19=0, o TNC afunda, por norma, na perpendicular, mesmo quando para a ferramenta ativa estiver definido um ângulo de afundamento (ANGLE)
- Quando se defina ANGLE=90°, o TNC afunda na perpendicular. Como avanço de afundamento, é utilizado o avanço pendular Q19
- Se o avanço pendular Q19 estiver definido no ciclo 22 e ANGLE estiver definido entre 0,1 e 89,999 na tabela de ferramentas, o TNC afunda em forma de hélice no ANGLE determinado
- Se o avanço pendular estiver definido no ciclo 22 e não se encontrar nenhum ANGLE na tabela de ferramentas, o TNC emite uma mensagem de erro
- Se as condições geométricas forem tais que não seja possível efetuar o afundamento em forma de hélice (geometria da ranhura), o TNC tenta o afundamento pendular. O comprimento pendular é calculado, então, a partir de LCUTS e ANGLE (comprimento pendular = LCUTS / tan ANGLE)

Em contornos de caixa com ângulos internos agudos, pode existir material residual no desbaste, se se utilizar um fator de sobreposição superior a 1. Verificar, em especial, a trajetória interna com um teste gráfico e, eventualmente, reduzir ligeiramente o fator de sobreposição. Deste modo, obtém-se uma outra distribuição de corte, o que, frequentemente, conduz ao resultado desejado.

No desbaste posterior o TNC não tem em consideração um valor de desgaste **DR** definido da ferramenta de desbaste prévio.

A redução do avanço através do parâmetro **Q401** é uma das funções FCL3 e não está disponível automaticamente após uma atualização de software (ver "Estado de desenvolvimento (funções de atualização)" na página 9).

Atenção, perigo de colisão!

O parâmetro de máquina 7441 bit 0 serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Se tiver definido o parâmetro **MP7420 Bit 4=1**, então deve programar o primeiro movimento de deslocação no plano de maquinagem após a execução do ciclo SL com as duas indicações de coordenadas, p. ex., L X+80 Y+0 R0 FMAX. Após o final do ciclo, posicione a ferramenta no plano de forma **não incremental**, ou seja, sempre numa posição absoluta.

Parâmetros de ciclo

 Λ

- Profundidade de corte Q10 (valor incremental): Medida segundo a qual a ferramenta corta de cada vez na peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- Avanço de corte em profundidade Q11: avanço de afundamento em mm/min Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Avanço para desbaste Q12: avanço de fresagem em mm/min. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Ferramenta de desbaste prévio Q18 ou QS18: número ou nome da ferramenta com que o TNC já efetuou desbaste prévio Comutar para introdução de nome: premir a softkey NOME DE FERRAMENTA. O TNC introduz as aspas de citação em cima automaticamente quando se sai do campo de introdução. Se não tiver sido efetuado um desbaste prévio "0"; se se introduzir aqui um número ou um nome, o TNC só desbasta a parte que não pôde ser maguinada com a ferramenta de desbaste prévio. Se não se dever fazer a aproximação lateralmente à área de desbaste posterior, o TNC afunda em movimento pendular; para isso, é necessário definir na tabela de ferramentas TOOL.T o comprimento das lâminas LCUTS e o ângulo de afundamento máximo ANGLE da ferramenta. Se necessário, o TNC emite um aviso de erro Campo de introdução 0 a 32767,9 na introdução numérica, 32 caracteres, no máximo, para introdução do nome
- Avanço pendular Q19: avanço oscilante em mm/min. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Avanço de retração Q208: velocidade de deslocação da ferramenta ao retirar-se após a maquinagem em mm/min. Se introduzir Q208=0, então o TNC retira a ferramenta com o avanço Q12. Campo de introdução 0 a 99999,9999; em alternativa FMAX, FAUTO, PREDEF

Exemplo: Blocos NC

59 CYCL DEF 22	2 DESBASTAR
Q10=+5	;PROFUNDIDADE DE CORTE
Q11=100	;AVANÇO AO CORTAR EM PROFUND.
Q12=750	;AVANÇO DE DESBASTE
Q18=1	;FERRAMENTA DE DESBASTE Prévio
Q19=150	;AVANÇO PENDULAR
Q208=9999	9;AVANÇO DE RETROCESSO
Q401=80	;REDUÇÃO DO AVANÇO
Q404=0	;ESTRATÉGIA DE DESBASTE Posterior

- Fator de avanço em % Q401: fator percentual pelo qual o TNC reduz o avanço de maquinagem (Q12) logo que a ferramenta se desloca dentro do material para desbastar com o perímetro total. Se utilizar a redução do avanço, então pode definir o avanço de desbaste suficientemente alto, para que, com a sobreposição de trajetória determinada no ciclo 20 (Q2) imperem ótimas condições de corte. O TNC reduz então o avanço em transições ou pontos estreitos como definido por si, de modo que o tempo de maquinagem deverá ser mais curto na totalidade. Campo de introdução 0,0001 a 100,0000
- Estratégia de desbaste posterior Q404: definir como o TNC deverá proceder no desbaste posterior, se o raio da ferramenta de desbaste posterior for maior que metade da ferramenta de desbaste prévio:
 - Q404 = 0

Deslocar a ferramenta entre áreas a desbastar para a profundidade atual ao longo do contorno

■ Q404 = 1

Levantar a ferramenta entre áreas a desbastar para a distância de segurança e deslocá-la para o ponto inicial da área de desbaste seguinte

7.7 ACABAMENTO EM PROFUNDIDADE (Ciclo 23, DIN/ISO: G123)

Execução do ciclo

O TNC desloca a ferramenta suavemente (círculo tangente vertical) para a superfície a maquinar, desde que exista espaço suficiente. Em relações de espaço apertadas, o TNC desloca a ferramenta na perpendicular em profundidade. A seguir, fresa-se a distância de acabamento que ficou do desbaste.

Ter em atenção ao programar!

O TNC calcula automaticamente o ponto inicial para o acabamento. O ponto inicial depende das proporções de espaço da caixa.

O raio de entrada para posicionamento na profundidade final está definido internamente e não depende do ângulo de afundamento da ferramenta.

Atencao, perigo de colisao!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

7.7 ACABAMENTO EM PROFUNDIDADE (<mark>Cicl</mark>o 23, DIN/ISO: G123)

Parâmetros de ciclo

- Avanço de corte em profundidade Q11: velocidade de deslocação da ferramenta no recesso. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Avanço de desbaste Q12: avanço de fresagem. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Avanço de retração Q208: velocidade de deslocação da ferramenta ao retirar-se após a maquinagem em mm/min. Se introduzir Q208=0, então o TNC retira a ferramenta com o avanço Q12. Campo de introdução 0 a 99999,9999; em alternativa FMAX, FAUTO, PREDEF

60	CYCL	DEF	23	ACABAM	ENTO	PRO	FUN	DID	ADE	
	Q11	=100	;	; AVANÇO	0 A 0	CORT	AR	EM I	PROFU	ND.
	Q12	=350	;	, AVANÇO	DE	DESB	AST	Е		
	Q20	8=99	999	; AVANÇ	0 DE	RET	ROCE	ESSO)	

7.8 ACABAMENTO LATERAL (Ciclo 24, DIN/ISO: G124)

Execução do ciclo

O TNC desloca a ferramenta segundo uma trajetória circular tangente aos vários subcontornos. O TNC acaba cada subcontorno em separado.

Ter em atenção ao programar!

A soma da medida excedente do acabamento lateral (Q14) e do raio da ferrta. de acabamento tem que ser menor do que a soma da medida excedente de acabamento lateral (Q3, ciclo 20) e o raio da ferramenta de desbaste.

Se se executar o ciclo 24 sem primeiro se ter desbastado com o ciclo 22, é também válido o cálculo apresentado em cima; o raio da ferramenta de desbaste tem o valor "0".

Também pode utilizar o ciclo 24 para fresar contornos. Tem que

- definir os contornos a fresar como ilhas individuais (sem limitação de caixa) e
- introduzir no ciclo 20 a medida excedente de acabamento (Q3) maior que a soma de medida excedente de acabamento Q14 + raio da ferramenta utilizada

O TNC calcula automaticamente o ponto inicial para o acabamento. O ponto inicial depende das proporções de espaço da caixa e a medida excedente programada no ciclo 20. O TNC executa a lógica de posicionamento no ponto inicial da maquinagem de acabamento da seguinte forma: aproximação ao ponto inicial no plano de maquinagem e, em seguida, deslocação em profundidade na direção do eixo da ferramenta.

O TNC calcula o ponto inicial também consoante a ordem no processamento. Quando selecionar o ciclo de acabamento com a tecla GOTO e o programa começar, o ponto inicial pode estar situado numa posição diferente quando se maquina o programa na ordem definida.

Atencao, perigo de colisao!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Parâmetros de ciclo

- Sentido de rotação? Sentido horário = -1 Q9: Sentido da maquinação: +1:Rotação em sentido anti-horário -1:Rotação em sentido horário Em alternativa. PREDEF
- Profundidade de corte Q10 (valor incremental): Medida segundo a qual a ferramenta corta de cada vez na peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- Avanço de corte em profundidade Q11: avanço de afundamento. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Avanço de desbaste Q12: avanço de fresagem. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Medida excedente de acabamento lateral Q14 (incremental): medida excedente para vários acabamentos; o último acabamento é desbastado se se introduzir Q14=0. Campo de introdução -99999,9999 a 99999,9999
- Ferramenta de desbaste Q438 ou QS438: número ou nome da ferramenta com que o TNC desbastou a caixa de contorno. Comutar para introdução de nome: premir a softkey NOME DE FERRAMENTA. O TNC introduz as aspas de citação em cima automaticamente quando se sai do campo de introdução.

O ponto inicial para o círculo de aproximação da trajetória de acabamento encontra-se sobre a trajetória de desbaste mais externa do ciclo 22, que o TNC calcula a partir da soma do raio da fresa de desbaste e da medida excedente lateral Q3 do ciclo 20. Campo de introdução -1 a +30000,9 na introdução numérica, 32 caracteres, no máximo, na introdução do nome.

Q438=-1: A ferramenta utilizada em último lugar é aceite como ferramenta de desbaste (comportamento standard)

Q438=0: A ferramenta de desbaste é aceite com raio 0. Assim, é possível determinar a distância do ponto inicial do contorno através da medida excedente de acabamento Q3 no ciclo 20.

61 CYCL DEF 24	ACABAR LADO
Q9=+1	;SENTIDO DE ROTAÇÃO
Q10=+5	;PROFUNDIDADE DE CORTE
Q11=100	;AVANÇO AO CORTAR EM PROFUND.
Q12=350	;AVANÇO DE DESBASTE
Q14=+0	;MEDIDA EXCEDENTE LADO
Q438=+0	;FERRAMENTA DE DESBASTE

7.9 DADOS DO TRAÇADO DO CONTORNO (Ciclo 270, DIN/ISO: G270)

Ter em atenção ao programar!

Com este ciclo é possível determinar - se pretendido - diferentes características dos ciclos 25 TRAÇADO DO CONTORNO e 276 TRAÇADO DO CONTORNO 3D.

Antes da programação, deverá ter em conta

O ciclo 270 ativa-se com DEF, quer dizer, atua a partir da sua definição no programa de maquinagem.

O TNC anula o ciclo 270 assim que um outro ciclo SL qualquer seja definido (exceção: ciclo 25 e ciclo 276).

Ao utilizar o ciclo 270 no subprograma de contorno, não definir nenhuma correção de raio.

As características de aproximação e de saída são executadas pelo TNC de forma idêntica (simétrica).

Definir o ciclo 270 antes do ciclo 25 ou do ciclo 276.

Parâmetros de ciclo

▶ Tipo de aproximação/de afastamento Q390:

definição do tipo de aproximação/de afastamento:

- Q390 = 1: fazer a aproximação do contorno tangencialmente num arco de círculo
- Q390 = 2: fazer a aproximação do contorno tangencialmente numa reta
- Q390 = 3:

Aproximação perpendicular do contorno

- Correção do raio (0=R0/1=RL/2=RR) Q391: definição da correção de raio:
 - Q391 = 0:

Maquinar o contorno definido sem a correção do raio

■ Q391 = 1:

Maquinar o contorno definido corrigido à esquerda Q391 = 2:

Maguinar o contorno definido corrigido à direita

- Raio de aproximação/de afastamento Q392: válido apenas quando a aproximação tangencial é selecionada num arco de círculo. Raio do círculo de entrada/círculo de afastamento. Campo de introdução de 0 a 99999,9999
- Ângulo do ponto central Q393: válido apenas quando é selecionada a aproximação tangencial num arco de círculo. Ângulo de abertura do círculo de entrada. Campo de introdução de 0 a 99999,9999
- Distância do ponto auxiliar Q394: válido apenas quando a aproximação tangencial é selecionada numa reta ou numa aproximação perpendicular. Distância do ponto de auxílio, do qual o TNC deve deslocar o contorno. Campo de introdução de 0 a 99999,9999

62 CYCL DEF 27 Contorno	70 DADOS DO TRAÇADO DO
Q390=1	;FORMA DE APROXIMAÇÃO
Q391=1	;CORREÇÃO DO RAIO
Q392=3	;RAIO
Q393=+45	;RAIO DE PONTO CENTRAL
Q394=+2	;DISTÂNCIA

7.10 TRAÇADO DO CONTORNO (Ciclo 25, DIN/ISO: G125)

Execução do ciclo

Com este ciclo, podem-se maquinar contornos abertos e fechados, juntamente com o ciclo 14 **CONTORNO**.

O ciclo 25 **TRAÇADO DO CONTORNO** oferece consideráveis vantagens em comparação com a maquinagem de um contorno com blocos de posicionamento:

- O TNC vigia a maquinagem relativamente a danos no contorno. Verificar o contorno com o gráfico de testes
- Se o raio da ferramenta é demasiado grande, pode maquinar posteriormente o contorno em esquinas interiores com o reconhecimento automático de material residual
- A maquinagem executa-se de forma contínua, em marcha sincronizada ou em contra-marcha. O tipo de fresagem mantém-se até mesmo quando se espelham contornos num eixo
- Com várias profundidades de corte, o TNC pode deslocar a ferramenta em ambos os sentidos (maquinagem pendular). Desta forma, a maquinagem é mais rápida
- Podem introduzir-se medidas excedentes para desbastar e acabar, com vários passos de maquinagem
- Com o ciclo 270 DADOS DO TRAÇADO DO CONTORNO pode ajustar confortavelmente o comportamento do ciclo 25

Ter em atenção ao programar!

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

Se se utilizar o ciclo 25 **TRAÇADO DE CONTORNO**, no ciclo 14 **CONTORNO** só pode ser definido um subprograma de contorno.

A memória de um ciclo SL é limitada. É possível programar um máximo de 4090 elementos de contorno num ciclo SL.

O TNC necessita que o ciclo 20 **DADOS DO CONTORNO** não esteja relacionado com o ciclo 25.

Não utilizar blocos de aproximação/afastamento **APPR/DEP** no subprograma de contorno.

Não executar cálculos de parâmetros Q no subprograma de contorno.

Utilize o ciclo **DADOS DO TRAÇADO DO CONTORNO**, para ajustar o comportamento do ciclo 25 na execução (ver "DADOS DO TRAÇADO DO CONTORNO (Ciclo 270, DIN/ISO: G270)" na página 206)

Atenção, perigo de colisão!

Para evitar possíveis colisões:

- Não programar nenhuma cota incremental diretamente depois do ciclo 25, pois refere-se à posição da ferramenta no fim do ciclo
- Em todos os eixos principais, fazer uma aproximação a uma posição definida (absoluta), pois a posição da ferramenta no fim do ciclo não coincide com a posição no início do ciclo.
- Se utilizar blocos APPR ou DEPpara a aproximação ou o afastamento, o TNC supervisiona se estes blocos lesarão o contorno..

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

- Profundidade de fresagem Q1 (incremental): distância entre a superfície da peça de trabalho e a base do contorno. Campo de introdução -99999,9999 a 99999,9999
- Medida exced. acabamento lateral Q3 (incremental): medida excedente no plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Coord. superfície da peça de trabalho Q5 (valor absoluto): coordenada absoluta da superfície da peça referente ao ponto zero da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- Altura de segurança Q7 (absoluto): altura absoluta onde não pode produzir-se nenhuma colisão entre a ferramenta e a peça de trabalho; posição de retrocesso da ferramenta no fim do ciclo. Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Profundidade de corte Q10 (valor incremental): Medida segundo a qual a ferramenta corta de cada vez na peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- Avanço de corte em profundidade Q11: avanço nos movimentos de deslocação no eixo do mandril. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Avanço de fresagem Q12: avanço nos movimentos de deslocação no plano de maquinagem. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Tipo de fresagem ? Sentido contrário = -1 Q15: Fresagem sincronizada: introdução = +1 Fresagem em sentido oposto: introdução = -1 Mudando de fresagem em sentido sincronizado para fresagem em sentido oposto com várias aproximações:introdução = 0

Exemplo: Blocos NC

62	CYCL DEF 25	TRAÇADO DE CONTORNO
	Q1=-20	;PROFUNDIDADE DE FRESAGEM
	Q3=+0	;MEDIDA EXCEDENTE LADO
	Q5=+0	;COORD. SUPERFÍCIE
	Q7=+50	;ALTURA SEGURA
	Q10=+5	;PROFUNDIDADE DE CORTE
	Q11=100	;AVANÇO AO CORTAR EM PROFUND.
	Q12=350	;AVANÇO DE FRESAGEM
	Q15=-1	;TIPO DE FRESAGEM
	Q18=0	;FERRAMENTA DE DESBASTE Prévio
	Q446=0.01	;MATERIAL RESIDUAL
	Q447=10	;DISTÂNCIA DE LIGAÇÃO
	Q448=2	;PROLONGAMENTO DE TRAJETÓRIA

- Ferramenta de desbaste prévio Q18 ou QS18: número ou nome da ferramenta com que o TNC já efetuou desbaste prévio do contorno. Comutar para introdução de nome: premir a softkey NOME DE FERRAMENTA. O TNC introduz as aspas de citação em cima automaticamente quando se sai do campo de introdução. Caso não se tenha desbastado previamente, introduzir "0", para que o TNC maquine o contorno o máximo possível com a ferramenta ativa; se introduzir aqui um número ou um nome, o TNC maquina apenas a parte do contorno que não foi possível trabalhar com a ferramenta de desbaste prévio. Campo de introdução 0 a 32767,9 na introdução numérica, 32 caracteres, no máximo, para introdução do nome
- Material residual aceite Q446: Espessura do material residual a partir da qual o TNC não deve maquinar mais o contorno. Valor padrão: 0,01 mm. Campo de introdução de 0 a +9,999
- Distância de ligação máxima Q447: distância máxima entre duas áreas a desbastar posteriormente, entre as quais a ferramenta ainda deve deslocar-se ao longo do contorno sem movimento de elevação na profundidade de maquinagem. Campo de introdução de 0 a 999
- Prolongamento de trajetória Q448: valor para o prolongamento da trajetória da ferramenta no início e no fim do contorno. Por princípio, o TNC prolonga sempre a trajetória da ferramenta paralelamente ao contorno. Determinar o comportamento de aproximação e afastamento no desbaste posterior através do ciclo 270. Campo de introdução de 0 a 99,999

7.11 FRESAGEM TROCOIDAL DE RANHURA DE CONTORNO (ciclo 275, DIN/ISO: G275)

Execução do ciclo

Com este ciclo, é possível - em conjunto com o ciclo 14 **CONTORNO** maquinar por completo ranhuras ou ranhuras de contorno **abertas** pelo processo de fresagem trocoidal.

Com a fresagem trocoidal, é possível maquinar com uma maior profundidade de corte e a uma velocidade de corte mais alta, dado que, graças às condições de corte uniformes, não são exercidas influências que aumentam o desgaste na ferramenta. Através da utilização de placas de corte, o comprimento da lâmina pode ser completamente aproveitado, deste modo elevando o volume de maquinagem a obter por dente. Além disso, a fresagem trocoidal poupa a mecânica da máquina. Se este método de fresagem for combinado adicionalmente com a regulação do avanço adaptável integrada **AFC** (opção de software, ver o Manual do Utilizador de Diálogo em Texto Claro), conseguem-se alcançar enormes economias de tempo.

Dependendo da seleção dos parâmetros de ciclo, estão à disposição as seguintes alternativas de maquinagem:

- Maquinagem completa: desbaste, acabamento lateral
- Só desbaste
- Só acabamento lateral

Desbaste

A descrição do contorno de uma ranhura aberta deve sempre começar com um bloco Approach [aproximação] (APPR).

- A ferramenta avança com lógica de posicionamento para o ponto inicial da maquinagem resultante dos parâmetros definidos no bloco APPR e posiciona-se aí perpendicularmente à primeira profundidade de corte
- 2 O TNC desbasta a ranhura com movimentos circulares até ao ponto final do contorno. Durante o movimento circular, o TNC desloca a ferramenta na direção de maquinagem com um corte que o operador pode definir (Q436). O movimento circular sincronizado ou em sentido contrário é determinado através do parâmetro Q351
- 3 No ponto final do contorno, o TNC leva a ferramenta até à altura segura e volta a posicionar-se no ponto inicial da descrição do contorno
- 4 Este processo repete-se até se alcançar a profundidade de ranhura programada

Acabamento

5 Desde que esteja definida uma medida excedente de acabamento, o TNC acaba as paredes da ranhura em vários cortes, caso isso esteja definido. Nesta fase, o TNC aproxima-se tangencialmente da parede da ranhura a partir do ponto inicial resultante do bloco APPR. Para isso, o TNC considera a marcha sincronizada ou em sentido contrário

Exemplo: Esquema para RANHURA DE CONTORNO TROCOIDAL

O BEGIN PGM CYC275 MM
12 CYCL DEF 14.0 CONTORNO
13 CYCL DEF 14.1 LABEL DE CONTORNO 10
14 CYCL DEF 275 FRES.TROCOIDAL RANHURA DE CONTORNO
15 CYCL CALL M3
····
50 L Z+250 RO FMAX M2
51 LBL 10
····
55 LBL 0
····
99 END PGM CYC275 MM

Ter em atenção ao programar!

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

Se se utilizar o ciclo 275 **FRESAGEM TROCOIDAL DE RANHURA DE CONTORNO**, no ciclo 14 **CONTORNO** só pode ser definido um subprograma de contorno.

No subprograma de contorno define-se a linha central da ranhura com todas as funções de trajetória disponíveis.

A memória de um ciclo SL é limitada. É possível programar um máximo de 4090 elementos de contorno num ciclo SL.

O TNC necessita que o ciclo 20 **DADOS DO CONTORNO** não esteja relacionado com o ciclo 275.

A maquinagem de um contorno fechado não é possível com o ciclo 275.

Atencao, perigo de colisao!

Para evitar possíveis colisões:

- Não programar nenhuma cota incremental diretamente depois do ciclo 275, pois refere-se à posição da ferramenta no fim do ciclo
- Em todos os eixos principais, fazer uma aproximação a uma posição definida (absoluta), pois a posição da ferramenta no fim do ciclo não coincide com a posição no início do ciclo.

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Parâmetros de ciclo

275

- ► Extensão da maquinagem (0/1/2) Q215: determinar a
 - extensão da maquinagem: **0**: desbaste e acabamento
 - 1: só desbaste e a
 - 2: só acabamento

O TNC também executa o acabamento lateral se a medida excedente de acabamento (Q368) estiver definida como 0

- Largura da ranhura Q219: introduzir largura da ranhura; se se introduzir uma largura de ranhura igual ao diâmetro da ferramenta, o TNC apenas desloca a ferramenta ao longo do contorno definido. Campo de introdução de 0 a 99999,9999
- Medida excedente acabamento lateralQ368 (incremental): medida excedente de acabamento no plano de maquinagem
- Corte por volta Q436 (absoluto): valor segundo o qual o TNC desloca a ferramenta em cada volta na direção de maquinagem. Intervalo de introdução: de 0 a 99999,9999
- Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min. Campo de introdução 0 a 99999,999; em alternativa, FAUTO, FU, FZ
- Tipo de fresagem Q351: tipo de maquinagem de fresagem com M3:
 - +1 = fresagem sincronizada
 - -1 = fresagem em sentido oposto
 - Em alternativa, **PREDEF**

- Profundidade Q201 (incremental): distância entre a superfície da peça de trabalho e a base da ranhura. Campo de introdução -99999,9999 a 99999,9999
- Profundidade de corte Q202 (valor incremental): medida segundo a qual a ferramenta corta de cada vez na peça de trabalho; introduzir um valor maior que 0. Campo de introdução de 0 a 99999,9999
- Avanço de corte em profundidade Q206: velocidade de deslocação da ferramenta ao deslocar-se na profundidade em mm/min. Campo de introdução 0 a 99999,999; em alternativa, FAUTO, FU, FZ
- Corte de acabamento Q338 (valor incremental): medida em que a ferramenta, no acabamento, é avançada no eixo do mandril. Q338=0: acabamento num corte. Campo de introdução de 0 a 99999,9999
- Avanço de acabamento Q385: velocidade de deslocação da ferramenta no acabamento lateral em mm/min. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ

- 7.11 FRESAGEM TROCOIDAL DE RANHURA DE CONTORNO (ciclo 275 DIN/ISO: G275
- Distância de segurança Q200 (incremental): distância entre o extremo da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Coordenada da superfície da peça de trabalho Q203 (valor absoluto): coordenada absoluta da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2º Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Estratégia de afundamento Q366: tipo de estratégia de afundamento:
 - 0 = afundar na perpendicular. Independentemente do ângulo de afundamento ANGLE definido na tabela de ferramentas, o TNC afunda perpendicularmente
 - 1: Sem função
 - 2 = afundar de forma pendular. Na tabela de ferramentas, o ângulo de afundamento ANGLE para a ferramenta ativada tem que estar definido para um valor diferente de 0. Caso contrário, o TNC emite uma mensagem de erro
 - Em alternativa, PREDEF

8 CYCL DEF 275 Contorno	5 FRES.TROCOIDAL RANHURA DE
Q215=0	;EXTENSÃO DA MAQUINAGEM
Q219=12	;LARGURA DA RANHURA
Q368=0.2	;MEDIDA EXCEDENTE LADO
Q436=2	;CORTE POR VOLTA
Q207=500	;AVANÇO DE FRESAGEM
Q351=+1	;TIPO DE FRESAGEM
Q201=-20	;PROFUNDIDADE
Q202=5	;PROFUNDIDADE DE CORTE
Q206=150	;AVANÇO DE CORTE EM Profundidade
Q338=5	;CORTE DE ACABAMENTO
Q385=500	;AVANÇO DE ACABAMENTO
Q200=2	;DISTÂNCIA SEGURANÇA
Q203=+0	;COORD. SUPERFÍCIE
Q204=50	;2.ª DISTÂNCIA SEGURANÇA
Q366=2	;AFUNDAMENTO
9 CYCL CALL FM	IAX M3

7.12 TRAÇADO DO CONTORNO 3D (Ciclo 276, DIN/ISO: G276)

Execução do ciclo

Com este ciclo, podem-se maquinar contornos abertos e fechados, juntamente com o ciclo 14 **CONTORNO**. Em caso de necessidade, também pode maquinar posteriormente o contorno em esquinas interiores com o reconhecimento automático de material residual.

O ciclo 276 **TRAÇADO DO CONTORNO 3D** também interpreta, em comparação com o ciclo **25 TRAÇADO DO CONTORNO**, coordenadas no eixo da ferramenta (eixo Z) que estão definidas no subprograma do contorno. Deste modo é possível processar facilmente, por exemplo, perfis criados no sistema CAM.

Maquinagem de um contorno sem corte: profundidade de fresagem Q1=0

- A ferramenta desloca-se com lógica de posicionamento para o ponto inicial da maquinagem, que resulta do primeiro ponto de contorno da direção de maquinagem selecionada e da função de aproximação escolhida
- 2 O TNC aproxima-se tangencialmente ao contorno e maquina-o até ao final do contorno
- 3 No ponto final do contorno, o TNC afasta a ferramenta tangencialmente do contorno. O TNC executa a função de afastamento de forma idêntica à função de aproximação
- 4 Para terminar, o TNC posiciona a ferramenta na altura segura

Maquinagem de um contorno com corte: profundidade de fresagem Q1 definida diferente de 0 e profundidade de corte Q10

- A ferramenta desloca-se com lógica de posicionamento para o ponto inicial da maquinagem, que resulta do primeiro ponto de contorno da direção de maquinagem selecionada e da função de aproximação escolhida
- 2 O TNC aproxima-se tangencialmente ao contorno e maquina-o até ao final do contorno
- 3 No ponto final do contorno, o TNC afasta a ferramenta tangencialmente do contorno. O TNC executa a função de afastamento de forma idêntica à função de aproximação
- 4 Quando é selecionada a maquinagem pendular (Q15=0), o TNC desloca-se para a próxima profundidade de corte e maquina o contorno de volta para o ponto inicial original. De outro modo, o TNC desloca a ferramenta à altura segura de volta para o ponto inicial da maquinagem e, aí, para a próxima profundidade de corte. O TNC executa a função de afastamento de forma idêntica à função de aproximação
- **5** Este processo repete-se até se alcançar a profundidade programada
- 6 Para terminar, o TNC posiciona a ferramenta na altura segura

Ter em atenção ao programar!

O primeiro bloco do subprograma do contorno deve conter valores em todos os três eixos X, Y e Z.

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Quando é programada a profundidade = 0, o TNC executa o ciclo nas coordenadas do eixo da ferramenta definidas no subprograma do contorno.

Se se utilizar o ciclo 25 **TRAÇADO DE CONTORNO**, no ciclo 14 **CONTORNO** só pode ser definido um subprograma de contorno.

A memória de um ciclo SL é limitada. É possível programar um máximo de 4090 elementos de contorno num ciclo SL.

O TNC necessita que o ciclo 20 **DADOS DO CONTORNO** não esteja relacionado com o ciclo 276.

Prestar atenção a que a ferramenta, na chamada de ciclo no eixo da ferramenta, se encontre sobre a peça de trabalho; de outro modo, o TNC emite, eventualmente, uma mensagem de erro.

Utilize o ciclo **DADOS DO TRAÇADO DO CONTORNO**, para ajustar o comportamento do ciclo 276 na execução (ver "DADOS DO TRAÇADO DO CONTORNO (Ciclo 270, DIN/ISO: G270)" na página 206)

Atencao, perigo de colisao!

Para evitar possíveis colisões:

- Posicionar a ferramenta no eixo da ferramenta antes da chamada do ciclo, de modo a que o TNC possa aproximar-se do ponto inicial do contorno sem colisão. Se a posição real da ferramenta na chamada do ciclo se encontra abaixo da altura segura, o TNC emite uma mensagem de erro.
- Se utilizar blocos APPR ou DEPpara a aproximação ou o afastamento, o TNC supervisiona se estes blocos lesarão o contorno..
- Não programar nenhuma cota incremental diretamente depois do ciclo 276, pois refere-se à posição da ferramenta no fim do ciclo
- Em todos os eixos principais, fazer uma aproximação a uma posição definida (absoluta), pois a posição da ferramenta no fim do ciclo não coincide com a posição no início do ciclo.

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Parâmetros de ciclo

- 276
- Profundidade de fresagem Q1 (incremental): distância entre a superfície da peça de trabalho e a base do contorno. Quando se definem a profundidade de fresagem Q1 = 0 e a profundidade de corte Q10 = 0, o TNC maquina o contorno de acordo com os valores Z definidos no subprograma do contorno. Campo de introdução -99999,9999 a 99999,9999
- Medida exced. acabamento lateral Q3 (incremental): medida excedente no plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Altura de segurança Q7 (absoluto): altura absoluta onde não pode produzir-se nenhuma colisão entre a ferramenta e a peça de trabalho; posição de retrocesso da ferramenta no fim do ciclo. Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Profundidade de corte Q10 (valor incremental): Medida segundo a qual a ferramenta corta de cada vez na peça de trabalho. Ativo apenas se a profundidade de fresagem Q1 for definida diferente de 0. Campo de introdução -99999,9999 a 99999,9999
- Avanço de corte em profundidade Q11: avanço nos movimentos de deslocação no eixo do mandril. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Avanço de fresagem Q12: avanço nos movimentos de deslocação no plano de maquinagem. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Tipo de fresagem ? Sentido contrário = -1 Q15: Fresagem sincronizada: introdução = +1 Fresagem em sentido oposto: introdução = -1 Mudando de fresagem em sentido sincronizado para fresagem em sentido oposto com várias aproximações:introdução = 0

Exemplo: Blocos NC

62	CYCL DEF 27	6 TRAÇADO DO CONTORNO 3D
	Q1=-20	;PROFUNDIDADE DE FRESAGEM
	Q3=+0	;MEDIDA EXCEDENTE LADO
	Q7=+50	;ALTURA SEGURA
	Q10=+5	;PROFUNDIDADE DE CORTE
	Q11=100	;AVANÇO AO CORTAR EM PROFUND.
	Q12=350	;AVANÇO DE FRESAGEM
	Q15=-1	;TIPO DE FRESAGEM
	Q18=0	;FERRAMENTA DE DESBASTE Prévio
	Q446=0.01	;MATERIAL RESIDUAL
	Q447=10	;DISTÂNCIA DE LIGAÇÃO
	Q448=2	;PROLONGAMENTO DE TRAJETÓRIA

- Ferramenta de desbaste prévio Q18 ou QS18: número ou nome da ferramenta com que o TNC já efetuou desbaste prévio do contorno. Comutar para introdução de nome: premir a softkey NOME DE FERRAMENTA. O TNC introduz as aspas de citação em cima automaticamente quando se sai do campo de introdução. Caso não se tenha desbastado previamente, introduzir "0", para que o TNC maquine o contorno o máximo possível com a ferramenta ativa; se introduzir aqui um número ou um nome, o TNC maquina apenas a parte do contorno que não foi possível trabalhar com a ferramenta de desbaste prévio. Campo de introdução 0 a 32767,9 na introdução numérica, 32 caracteres, no máximo, para introdução do nome
- Material residual aceite Q446: Espessura do material residual a partir da qual o TNC não deve maquinar mais o contorno. Valor padrão: 0,01 mm. Campo de introdução de 0 a +9,999
- Distância de ligação máxima Q447: distância máxima entre duas áreas a desbastar posteriormente, entre as quais a ferramenta ainda deve deslocar-se ao longo do contorno sem movimento de elevação na profundidade de maquinagem. Campo de introdução de 0 a 999
- Prolongamento de trajetória Q448: valor para o prolongamento da trajetória da ferramenta no início e no fim do contorno. Por princípio, o TNC prolonga sempre a trajetória da ferramenta paralelamente ao contorno. Campo de introdução de 0 a 99,999

7.13 Exemplos de programação

7.13 Exemplos de programação

Exemplo: desbaste e acabamento posterior de uma caixa

O BEGIN PGM C20 MM		
1 BLK FORM 0.1 Z X-10 Y-10 Z-40		
2 BLK FORM 0.2 X+100 Y+100 Z+0	Definição do bloco	
3 TOOL CALL 1 Z S2500	Chamada de ferramenta para o desbaste prévio, diâmetro 30	
4 L Z+250 RO FMAX	Retirar a ferramenta	
5 CYCL DEF 14.0 CONTORNO	Determinar o subprograma do contorno	
6 CYCL DEF 14.1 LABEL DE CONTORNO 1		
7 CYCL DEF 20 DADOS DO CONTORNO	Determinar os parâmetros gerais de maquinagem	
Q1=-20 ;PROFUNDIDADE DE FRESAGEM		
Q2=1 ;SOBREPOSIÇÃO DE TRAJETÓRIA		
Q3=+0 ;MEDIDA EXCEDENTE LADO		
Q4=+0 ;MEDIDA EXCEDENTE PROFUNDIDADE		
Q5=+0 ;COORD. SUPERFÍCIE		
Q6=2 ;DISTÂNCIA SEGURANÇA		
Q7=+100 ;ALTURA SEGURA		
Q8=0.1 ;RAIO DE ARREDONDAMENTO		
Q9=-1 ;SENTIDO DE ROTAÇÃO		

8 CYCL DEF 22	DESBASTAR	Definição do ciclo de desbaste prévio
Q10=5	;PROFUNDIDADE DE CORTE	
Q11=100	;AVANÇO AO CORTAR EM PROFUND.	
Q12=350	;AVANÇO DE DESBASTE	
Q18=0	;FERRAMENTA DE DESBASTE Prévio	
Q19=150	;AVANÇO PENDULAR	
Q208=3000	O;AVANÇO DE RETROCESSO	
Q401=100	;FATOR DE AVANÇO	
Q404=0	;ESTRATÉGIA DE DESBASTE Posterior	
9 CYCL CALL M3	3	Chamada do ciclo de desbaste prévio
10 L Z+250 R0	FMAX M6	Troca de ferramenta
11 TOOL CALL 2	2 Z S3000	Chamada de ferramenta para o desbaste posterior, diâmetro 15
12 CYCL DEF 22	2 DESBASTAR	Definição do ciclo desbaste posterior
Q10=5	;PROFUNDIDADE DE CORTE	
Q11=100	;AVANÇO AO CORTAR EM PROFUND.	
Q12=350	;AVANÇO DE DESBASTE	
Q18=1	;FERRAMENTA DE DESBASTE Prévio	
Q19=150	;AVANÇO PENDULAR	
Q208=3000	O;AVANÇO DE RETROCESSO	
Q401=100	;FATOR DE AVANÇO	
Q404=0	;ESTRATÉGIA DE DESBASTE Posterior	
13 CYCL CALL M	13	Chamada do ciclo desbaste posterior
14 L Z+250 RO FMAX M2		Retirar ferramenta, fim do programa
15 LBL 1		Subprograma do contorno
16 L X+0 Y+30	RR	
17 FC DR- R30 CCX+30 CCY+30		
18 FL AN+60 PDX+30 PDY+30 D10		
19 FSELECT 3		
20 FPOL X+30 Y+30		
21 FC DR- R20 CCPR+55 CCPA+60		
22 FSELECT 2		
23 FL AN-120	PDX+30 PDY+30 D10	
24 FSELECT 3		
25 FC X+0 DR-	R30 CCX+30 CCY+30	

26 FSELECT 2	
27 LBL 0	
28 END PGM C20 MM	

Exemplo: pré-furar, desbastar e acabar contornos sobrepostos

O BEGIN PGM C21 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Definição do bloco
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL CALL 1 Z S2500	Chamada da ferramenta broca, diâmetro 12
4 L Z+250 R0 FMAX	Retirar a ferramenta
5 CYCL DEF 14.0 CONTORNO	Determinar subprogramas de contorno
6 CYCL DEF 14.1 LABEL DE CONTORNO 1/2/3/4	
7 CYCL DEF 20 DADOS DO CONTORNO	Determinar os parâmetros gerais de maquinagem
Q1=-20 ;PROFUNDIDADE DE FRESAGEM	
Q2=1 ;SOBREPOSIÇÃO DE TRAJETÓRIA	
Q3=+0.5 ;MEDIDA EXCEDENTE LADO	
Q4=+0.5 ;MEDIDA EXCEDENTE PROFUNDIDADE	
Q5=+0 ;COORD. SUPERFÍCIE	
Q6=2 ;DISTÂNCIA SEGURANÇA	
Q7=+100 ;ALTURA SEGURA	
Q8=0.1 ;RAIO DE ARREDONDAMENTO	
Q9=-1 ;SENTIDO DE ROTAÇÃO	

Ciclos de maquinagem: caixa de contorno, traçados de contorno

0
δ
Ŭ
g
2
L L
5
ŏ
Ľ
0
d)
ŏ
S
2
Q
C
E
e
Ъ.
S
—
N.

8 CYCL DEF 21 PRÉ-FURAR	Definição do ciclo de Pré-furar	
Q10=5 ;PROFUNDIDADE DE CORTE		
Q11=250 ;AVANÇO AO CORTAR EM PROFUND.		
Q13=2 ;FERRAMENTA DE DESBASTE		
9 CYCL CALL M3	Chamada do ciclo de pré-furar	
10 L +250 RO FMAX M6	Troca de ferramenta	
11 TOOL CALL 2 Z \$3000	Chamada da ferramenta para desbaste/acabamento, diâmetro 12	
12 CYCL DEF 22 DESBASTAR	Definição do ciclo de desbaste	
Q10=5 ;PROFUNDIDADE DE CORTE		
Q11=100 ;AVANÇO AO CORTAR EM PROFUND.		
Q12=350 ;AVANÇO DE DESBASTE		
Q18=0 ;FERRAMENTA DE DESBASTE Prévio		
Q19=150 ;AVANÇO PENDULAR		
Q208=30000;AVANÇO DE RETROCESSO		
Q401=100 ;FATOR DE AVANÇO		
Q404=0 ;ESTRATÉGIA DE DESBASTE POSTERIOR		
13 CYCL CALL M3	Chamada do ciclo de desbaste	
14 CYCL DEF 23 ACABAMENTO PROFUNDIDADE	Definição do ciclo de profundidade de acabamento	
Q11=100 ;AVANÇO AO CORTAR EM PROFUND.		
Q12=200 ;AVANÇO DE DESBASTE		
Q208=30000;AVANÇO DE RETROCESSO		
15 CYCL CALL	Chamada do ciclo de profundidade de acabamento	
16 CYCL DEF 24 ACABAR LADO	Definição do ciclo de acabamento lateral	
Q9=+1 ;SENTIDO DE ROTAÇÃO		
Q10=5 ;PROFUNDIDADE DE CORTE		
Q11=100 ;AVANÇO AO CORTAR EM PROFUND.		
Q12=400 ;AVANÇO DE DESBASTE		
Q14=+0 ;MEDIDA EXCEDENTE LADO		
17 CYCL CALL	Chamada do ciclo de acabamento lateral	
18 L Z+250 RO FMAX M2	Retirar ferramenta, fim do programa	

Ição
na
La I
lbo
2C
<u>с</u>
ð
SC
ď
Ξ
Xe
Ш́
13
Ň

19 LBL 1	Subprograma de contorno 1: caixa esquerda
20 CC X+35 Y+50	
21 L X+10 Y+50 RR	
22 C X+10 DR-	
23 LBL 0	
24 LBL 2	Subprograma de contorno 2: caixa direita
25 CC X+65 Y+50	
26 L X+90 Y+50 RR	
27 C X+90 DR-	
28 LBL 0	
29 LBL 3	Subprograma de contorno 3: ilha quadrangular esquerda
30 L X+27 Y+50 RL	
31 L Y+58	
32 L X+43	
33 L Y+42	
34 L X+27	
35 LBL 0	
36 LBL 4	Subprograma de contorno 4: ilha quadrangular direita
39 L X+65 Y+42 RL	
37 L X+57	
38 L X+65 Y+58	
39 L X+73 Y+42	
40 LBL 0	
41 END PGM C21 MM	

O BEGIN PGM C25 MM		
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Definição do bloco	
2 BLK FORM 0.2 X+100 Y+100 Z+0		
3 TOOL CALL 1 Z S2000	Chamada de ferramenta, diâmetro 20	
4 L Z+250 RO FMAX	Retirar a ferramenta	
5 CYCL DEF 14.0 CONTORNO	Determinar o subprograma do contorno	
6 CYCL DEF 14.1 LABEL DE CONTORNO 1		
7 CYCL DEF 25 TRAÇADO DE CONTORNO	Determinar os parâmetros de maquinagem	
Q1=-20 ;PROFUNDIDADE DE FRESAGEM		
Q3=+0 ;MEDIDA EXCEDENTE LADO		
Q5=+0 ;COORD. SUPERFÍCIE		
Q7=+250 ;ALTURA SEGURA		
Q10=5 ;PROFUNDIDADE DE CORTE		
Q11=100 ;AVANÇO AO CORTAR EM PROFUND.		
Q12=200 ;AVANÇO DE FRESAGEM		
Q15=+1 ;TIPO DE FRESAGEM		
8 CYCL CALL M3	Chamada de ciclo	
9 L Z+250 R0 FMAX M2	Retirar ferramenta, fim do programa	

10 LBL 1	Subprograma do contorno
11 L X+0 Y+15 RL	
12 L X+5 Y+20	
13 CT X+5 Y+75	
14 L Y+95	
15 RND R7.5	
16 L X+50	
17 RND R7.5	
18 L X+100 Y+80	
19 LBL 0	
20 END PGM C25 MM	

Ciclos de maquinagem: superfície cilíndrica

8.1 Princípios básicos

Resumo dos ciclos para superfícies cilíndricas

Ciclo	Softkey	Página
27 SUPERFÍCIE CILÍNDRICA	27	Página 231
28 SUPERFÍCIE CILÍNDRICA Fresar ranhuras	28	Página 234
29 SUPERFÍCIE CILÍNDRICA Fresar nervuras	29	Página 237
39 SUPERFÍCIE CILÍNDRICA Fresar contornos externos	39	Página 240

8.2 SUPERFÍCIE CILÍNDRICA (ciclo 27, DIN/ISO: G127, opção de software 1)

Decurso do ciclo

Com este ciclo, pode maquinar-se um contorno cilíndrico previamente programado segundo o desenvolvimento desse cilindro. Use o ciclo 28 se quiser fresar ranhuras de guia no cilindro.

O contorno é descrito num subprograma determinado no ciclo 14 (CONTORNO).

O subprograma contém as coordenadas dum eixo angular (p. ex. eixo C) e do eixo paralelo (p. ex. eixo do mandril). Como funções de trajetória, estão à disposição L, CHF, CR, RND, APPR (exceto APPR LCT) e DEP.

Podem introduzir-se as indicações no eixo angular tanto em graus como em mm (inch - polegadas) (determinar com definição de ciclo).

- 1 O TNC posiciona a ferramenta sobre o ponto de recesso; para isso, tem-se em conta a medida excedente de acabamento lateral
- 2 Na primeira profundidade de corte, a ferramenta fresa, com o avanço de fresagem Q12, ao longo do contorno programado
- **3** No fim do contorno, o TNC desloca a ferramenta para a distância de segurança e de regresso ao ponto de recesso
- **4** Repetem-se os passos de 1 a 3 até se ter atingido a profundidade de fresagem Q1
- **5** Para terminar, a ferramenta, no eixo da ferramenta, desloca-se para a altura segura ou para a última posição programada antes do ciclo (dependente dos parâmetros da máquina 7420)

Ter em atenção ao programar

A máquina e o TNC devem ser preparados pelo fabricante da máquina para a interpolação de superfícies cilíndricas. Consulte o manual da sua máquina.

No primeiro bloco NC do programa de contorno programe sempre ambas as coordenadas da superfície cilíndrica.

A memória de um ciclo SL é limitada. É possível programar um máximo de 8192 elementos de contorno num ciclo SL.

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

Utilizar uma fresa com dentado frontal cortante no centro (DIN 844).

O cilindro deve estar fixado no centro sobre a mesa rotativa.

O eixo do mandril deverá deslocar-se perpendicularmente ao eixo da mesa rotativa. Se não for esse o caso, o TNC emite uma mensagem de erro.

Também se pode executar este ciclo com plano de maquinagem inclinado.

Parâmetros de ciclo

- Profundidade de fresagem Q1 (incremental): distância entre a superfície cilíndrica e a base do contorno. Campo de introdução -99999,9999 a 99999,9999
- Medida exced. acabamento lateral Q3 (incremental): medida excedente de acabamento no plano do desenvolvimento do cilindro; a medida excedente atua na direção da correção de raio: Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q6 (incremental): distância entre o extremo da ferramenta e a superfície cilíndrica. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Profundidade de corte Q10 (valor incremental): Medida segundo a qual a ferramenta corta de cada vez na peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- Avanço de corte em profundidade Q11: avanço nos movimentos de deslocação no eixo do mandril. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Avanço de fresagem Q12: avanço nos movimentos de deslocação no plano de maquinagem. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Raio do cilindro Q16: raio do cilindro sobre o qual se deve maquinar o contorno. Campo de introdução de 0 a 99999,9999
- Tipo de cotização ? Graus =0 MM/POLEGADA=1 Q17: programar as coordenadas do eixo rotativo no subprograma em graus ou mm (poleg.)

Exemplo: Blocos NC

63 CYCL DEF 27	SUPERFÍCIE CILÍNDRICA
Q1=-8	;PROFUNDIDADE DE FRESAGEM
Q3=+0	;MEDIDA EXCEDENTE LADO
Q6=+0	;DISTÂNCIA SEGURANÇA
Q10=+3	;PROFUNDIDADE DE CORTE
Q11=100	;AVANÇO AO CORTAR EM PROFUND.
Q12=350	;AVANÇO DE FRESAGEM
Q16=25	;RAIO
Q17=0	;TIPO DE DIMENSÃO

8.3 SUPERFÍCIE CILÍNDRICA Fresagem de ranhuras (ciclo 28, DIN/ISO: G128, opção-de software 1)

Execução do ciclo

Com este ciclo, pode-se transferir para a superfície de um cilindro uma ranhura de guia definida no desenvolvimento. Ao contrário do ciclo 27, neste ciclo o TNC coloca a ferramenta de forma a que as paredes, mesmo com a correção do raio ativada, estejam quase paralelas entre si. Obtém paredes exatamente paralelas quando utilizar uma ferramenta que tem exatamente o tamanho da largura da ranhura.

Quanto mais pequena a ferramenta em relação à largura da ranhura tanto maior são as deformações que surgem nas trajetórias circulares e retas inclinadas. Para minimizar estas deformações relacionadas com o procedimento, pode definir uma tolerância através do parâmetro Q21, com a qual o TNC aproxima a ranhura em produção a uma ranhura, que foi fabricada com uma ferramenta cujo diâmetro corresponde à largura da ranhura.

Programe a trajetória de ponto central do contorno da correção do raio da ferramenta. Com a correção do raio, determina-se se o TNC produz a ranhura em sentido sincronizado ou em sentido contrário.

- 1 O TNC posiciona a ferramenta sobre o ponto de recesso
- 2 Na primeira profundidade de corte, a ferramenta fresa, com o avanço de fresagem Q12, ao longo da parede da ranhura; é tida em conta a medida excedente de acabamento
- 3 No fim do contorno, o TNC desloca a ferramenta junto à parede oposta da ranhura e desloca-se de regresso ao ponto de recesso
- 4 Repetem-se os passos de 2 a 3 até se ter atingido a profundidade de fresagem Q1
- **5** Se definiu a tolerância Q21, o TNC executa a pós-maquinagem para obter paredes de ranhura o mais paralelas possíveis.
- 6 Para terminar, a ferramenta, no eixo da ferramenta, desloca-se para a altura segura ou para a última posição programada antes do ciclo (dependente dos parâmetros da máquina 7420)

Ter em atenção ao programar!

A máquina e o TNC devem ser preparados pelo fabricante da máquina para a interpolação de superfícies cilíndricas. Consulte o manual da sua máquina.

No primeiro bloco NC do programa de contorno programe sempre ambas as coordenadas da superfície cilíndrica.

A memória de um ciclo SL é limitada. É possível programar um máximo de 8192 elementos de contorno num ciclo SL.

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

Utilizar uma fresa com dentado frontal cortante no centro (DIN 844).

O cilindro deve estar fixado no centro sobre a mesa rotativa.

O eixo do mandril deverá deslocar-se perpendicularmente ao eixo da mesa rotativa. Se não for esse o caso, o TNC emite uma mensagem de erro.

Também se pode executar este ciclo com plano de maquinagem inclinado.

Atencao, perigo de colisao!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Parâmetros de ciclo

- Profundidade de fresagem Q1 (incremental): distância entre a superfície cilíndrica e a base do contorno. Campo de introdução -99999,9999 a 99999,9999
- Medida exced. acabamento lateral Q3 (incremental): medida excedente na parede da ranhura A medida excedente de acabamento reduz a largura da ranhura em metade do valor introduzido. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q6 (incremental): distância entre o extremo da ferramenta e a superfície cilíndrica. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Profundidade de corte Q10 (valor incremental): Medida segundo a qual a ferramenta corta de cada vez na peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- Avanço de corte em profundidade Q11: avanço nos movimentos de deslocação no eixo do mandril. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Avanço de fresagem Q12: avanço nos movimentos de deslocação no plano de maquinagem. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Raio do cilindro Q16: raio do cilindro sobre o qual se deve maquinar o contorno. Campo de introdução 0 a 99999.9999
- Tipo de cotização ? Graus =0 MM/POLEGADA=1 Q17: programar as coordenadas do eixo rotativo no subprograma em graus ou mm (poleg.)
- Largura de ranhura Q20: largura da ranhura a produzir. Campo de introdução -99999,9999 a 99999,9999
- Tolerância? Q21: Quando se utiliza uma ferramenta. que é mais pequena do que a largura da ranhura Q20 programada, ocorrem deformações condicionadas pelo procedimento na parede da ranhura no caso de círculos e de retas inclinadas. Quando definir a tolerância Q21, o TNC aproxima a ranhura num processo de fresagem posterior como se tivesse fresado a ranhura com uma ferramenta exatamente do mesmo tamanho da largura da ranhura. Com Q21 pode definir o desvio permitido desta ranhura ideal. A quantidade de passos de pós-maguinagem depende do raio do cilindro, da ferramenta utilizada e da profundidade da ranhura. Quanto mais peguena for a definição da tolerância tanto maior a exatidão da ranhura, mas também mais demorada é a pósmaguinagem. Recomendação: utilizar tolerância de 0.02 mm. Função inativa: introduzir 0 (ajuste básico). Campo de introdução 0 a 9,9999

Exemplo: Blocos NC

63 CYCL DEF 2	8 SUPERFÍCIE CILÍNDRICA
Q1=-8	;PROFUNDIDADE DE FRESAGEM
Q3=+0	;MEDIDA EXCEDENTE LADO
Q6=+0	;DISTÂNCIA SEGURANÇA
Q10=+3	;PROFUNDIDADE DE CORTE
Q11=100	;AVANÇO AO CORTAR EM PROFUND.
Q12=350	;AVANÇO DE FRESAGEM
Q16=25	;RAIO
Q17=0	;TIPO DE DIMENSÃO
Q20=12	;LARGURA DA RANHURA
Q21=0	;TOLERÂNCIA

8.4 SUPERFÍCIE CILÍNDRICA Fresagem de nervuras (ciclo 29, DIN/ISO: G129, opção de software 1)

Execução do ciclo

Com este ciclo, pode transferir-se para a superfície de um cilindro uma nervura definida no desenvolvimento. Neste ciclo o TNC coloca a ferramenta de forma a que as paredes, mesmo com a correção do raio ativada, estejam sempre paralelas entre si. Programe a trajetória de ponto central da nervura com a indicação da correção do raio da ferramenta. Com a correção do raio, determina-se se o TNC produz a nervura em sentido sincronizado ou em sentido contrário.

Nas extremidades da nervura o TNC junta normalmente um semicírculo, cujo raio corresponde a metade da largura da nervura.

- TNC posiciona a ferramenta sobre o ponto inicial da maquinagem. O TNC calcula o ponto inicial a partir da largura da nervura e do diâmetro da ferramenta. Este é metade da largura da nervura e do diâmetro da ferramenta deslocado ao lado do primeiro ponto definido no subprograma de contorno. A correção do raio determina se se inicia do lado esquerdo (1, RL=sentido contrário) ou direito da nervura (2, RR=sentido contrário)
- 2 Depois de o TNC ter posicionado para a primeira profundidade de corte, a ferramenta avança tangencial para a parede da nervura num arco de círculo com avanço de fresagem Q12. Eventualmente, é tida em conta a medida excedente lateral
- **3** Na primeira profundidade de corte, a ferramenta fresa, com o avanço de fresagem Q12, ao longo da parede da nervura até a ilha estar completamente produzida
- **4** De seguida, a ferramenta sai tangencialmente da parede da nervura de regresso ao ponto inicial da maquinagem
- **5** Repetem-se os passos de 2 a 4 até se ter atingido a profundidade de fresagem Q1
- 6 Para terminar, a ferramenta, no eixo da ferramenta, desloca-se para a altura segura ou para a última posição programada antes do ciclo (dependente dos parâmetros da máquina 7420)

Ter em atenção ao programar!

A máquina e o TNC devem ser preparados pelo fabricante da máquina para a interpolação de superfícies cilíndricas. Consulte o manual da sua máquina.

No primeiro bloco NC do programa de contorno programe sempre ambas as coordenadas da superfície cilíndrica.

Certifique-se que a ferramenta tem espaço lateral suficiente para o movimento de aproximação e de saída.

A memória de um ciclo SL é limitada. É possível programar um máximo de 8192 elementos de contorno num ciclo SL.

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

O cilindro deve estar fixado no centro sobre a mesa rotativa.

O eixo do mandril deverá deslocar-se perpendicularmente ao eixo da mesa rotativa. Se não for esse o caso, o TNC emite uma mensagem de erro.

Também se pode executar este ciclo com plano de maquinagem inclinado.

Atencao, perigo de colisao!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Parâmetros de ciclo

- Profundidade de fresagem Q1 (incremental): distância entre a superfície cilíndrica e a base do contorno. Campo de introdução -99999,9999 a 99999,9999
- Medida exced. acabamento lateral Q3 (incremental): medida excedente na parede da nervura. A medida excedente de acabamento aumenta a largura da nervura em metade do valor introduzido. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q6 (incremental): distância entre o extremo da ferramenta e a superfície cilíndrica. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Profundidade de corte Q10 (valor incremental): Medida segundo a qual a ferramenta corta de cada vez na peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- Avanço de corte em profundidade Q11: avanço nos movimentos de deslocação no eixo do mandril. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Avanço de fresagem Q12: avanço nos movimentos de deslocação no plano de maquinagem. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Raio do cilindro Q16: raio do cilindro sobre o qual se deve maquinar o contorno. Campo de introdução 0 a 99999.9999
- Tipo de cotização ? Graus =0 MM/POLEGADA=1 Q17: programar as coordenadas do eixo rotativo no subprograma em graus ou mm (poleg.)
- Largura de nervura Q20: largura da nervura a produzir. Campo de introdução -99999,9999 a 99999,9999

Exemplo: Blocos NC

63 CYCL DEF 2 Nervura	9 SUPERFÍCIE CILÍNDRICA
Q1=-8	;PROFUNDIDADE DE FRESAGEM
Q3=+0	;MEDIDA EXCEDENTE LADO
Q6=+0	;DISTÂNCIA SEGURANÇA
Q10=+3	;PROFUNDIDADE DE CORTE
Q11=100	;AVANÇO AO CORTAR EM PROFUND.
Q12=350	;AVANÇO DE FRESAGEM
Q16=25	;RAIO
Q17=0	;TIPO DE DIMENSÃO
Q20=12	;LARGURA DA NERVURA

8.5 SUPERFÍCIE CILÍNDRICA Fresar contornos externos (ciclo 39, DIN/ISO: G139, opção de software 1)

Execução do ciclo

Com este ciclo, é possível transferir um contorno definido no desenvolvimento para a superfície de um cilindro. Neste ciclo o TNC coloca a ferramenta de forma a que a parede do contorno fresado, mesmo com a correção do raio ativada, esteja em paralelo com o eixo do cilindro.

Ao contrário dos ciclos 28 e 29, no subprograma de contornos define o contorno que realmente deve ser produzido.

- TNC posiciona a ferramenta sobre o ponto inicial da maquinagem. O TNC coloca o ponto inicial deslocado no valor do diâmetro da ferramenta ao lado do primeiro ponto definido no subprograma de contorno (comportamento padrão)
- 2 Depois de o TNC ter posicionado para a primeira profundidade de corte, a ferramenta avança tangencial para a parede da nervura num arco de círculo com avanço de fresagem Q12. Eventualmente, é tida em conta a medida excedente lateral
- 3 Na primeira profundidade de corte, a ferramenta fresa, com o avanço de fresagem Q12, ao longo do contorno até o traço de contorno definido ter sido completamente produzido
- 4 De seguida, a ferramenta sai tangencialmente da parede da nervura de regresso ao ponto inicial da maquinagem
- 5 Repetem-se os passos de 2 a 4 até se ter atingido a profundidade de fresagem Q1
- 6 Para terminar, a ferramenta, no eixo da ferramenta, desloca-se para a altura segura ou para a última posição programada antes do ciclo (dependente dos parâmetros da máquina 7420)

É possível definir o comportamento de aproximação do ciclo 39 através do parâmetro de máquina 7680, bit 16:

- Bit 16 = 0:
 - Executar aproximação e saída tangenciais.
- Bit 16 = 1:

Avançar perpendicularmente à profundidade no ponto inicial do contorno sem aproximar a ferramenta tangencialmente e puxar novamente para cima no ponto final do contorno sem afastamento tangencial.

Ter em atenção ao programar!

A máquina e o TNC devem ser preparados pelo fabricante da máquina para a interpolação de superfícies cilíndricas. Consulte o manual da sua máquina.

No primeiro bloco NC do programa de contorno programe sempre ambas as coordenadas da superfície cilíndrica.

Certifique-se que a ferramenta tem espaço lateral suficiente para o movimento de aproximação e de saída.

A memória de um ciclo SL é limitada. É possível programar um máximo de 8192 elementos de contorno num ciclo SL.

No ciclo, o sinal do parâmetro Profundidade determina a direção da maquinagem. Se se programar a profundidade = 0, o TNC não executa o ciclo.

O cilindro deve estar fixado no centro sobre a mesa rotativa.

O eixo do mandril deverá deslocar-se perpendicularmente ao eixo da mesa rotativa. Se não for esse o caso, o TNC emite uma mensagem de erro.

Também se pode executar este ciclo com plano de maquinagem inclinado.

Atencao, perigo de colisao!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Parâmetros de ciclo

- Profundidade de fresagem Ω1 (incremental): distância entre a superfície cilíndrica e a base do contorno. Campo de introdução -99999,9999 a 99999,9999
- Medida exced. acabamento lateral Q3 (incremental): medida excedente na parede do contorno. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q6 (incremental): distância entre o extremo da ferramenta e a superfície cilíndrica. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Profundidade de corte Q10 (valor incremental): Medida segundo a qual a ferramenta corta de cada vez na peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- Avanço de corte em profundidade Q11: avanço nos movimentos de deslocação no eixo do mandril. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Avanço de fresagem Q12: avanço nos movimentos de deslocação no plano de maquinagem. Campo de introdução 0 a 99999,9999; em alternativa, FAUTO, FU, FZ
- Raio do cilindro Q16: raio do cilindro sobre o qual se deve maquinar o contorno. Campo de introdução 0 a 99999.9999
- Tipo de cotização ? Graus =0 MM/POLEGADA=1 Q17: programar as coordenadas do eixo rotativo no subprograma em graus ou mm (poleg.)

Exemplo: Blocos NC

63 CYCL DEF 3 Contorno	9 SUPERFÍCIE CILÍNDRICA
Q1=-8	;PROFUNDIDADE DE FRESAGEM
Q3=+0	;MEDIDA EXCEDENTE LADO
Q6=+0	;DISTÂNCIA SEGURANÇA
Q10=+3	;PROFUNDIDADE DE CORTE
Q11=100	;AVANÇO AO CORTAR EM PROFUND.
Q12=350	;AVANÇO DE FRESAGEM
Q16=25	;RAIO
Q17=0	;TIPO DE DIMENSÃO

8.6 Exemplos de programação

Exemplo: superfície cilíndrica com ciclo 27

Nota:

- Máquina com cabeça B e mesa C
- Cilindro fixado no centro da mesa rotativa.
- O ponto de referência situa-se no centro da mesa rotativa

O BEGIN PGM C27 MM	
1 TOOL CALL 1 Z S2000	Chamada de ferramenta, diâmetro 7
2 L Z+250 RO FMAX	Retirar a ferramenta
3 L X+50 YO RO FMAX	Posicionar previamente a ferramenta no centro da mesa rotativa
4 PLANE SPATIAL SPA+O SPB+9O SPC+O TURN MBMAX FMAX	Inclinar
5 CYCL DEF 14.0 CONTORNO	Determinar o subprograma do contorno
6 CYCL DEF 14.1 LABEL DE CONTORNO 1	
7 CYCL DEF 27 SUPERFÍCIE CILÍNDRICA	Determinar os parâmetros de maquinagem
Q1=-7 ;PROFUNDIDADE DE FRESAGEM	
Q3=+0 ;MEDIDA EXCEDENTE LADO	
Q6=2 ;DISTÂNCIA SEGURANÇA	
Q10=4 ;PROFUNDIDADE DE CORTE	
Q11=100 ;AVANÇO AO CORTAR EM PROFUND.	
Q12=250 ;AVANÇO DE FRESAGEM	
Q16=25 ;RAIO	
Q17=1 ;TIPO DE DIMENSÃO	

8 L C+0 R0 FMAX M13 M99	Posicionar previamente a mesa rotativa, mandril ligado, chamar ciclo
9 L Z+250 RO FMAX	Retirar a ferramenta
10 PLANE RESET TURN FMAX	Anular a inclinação, suprimir a função PLANE
11 M2	Final do programa
12 LBL 1	Subprograma do contorno
13 L C+40 X+20 RL	Indicações do eixo rotativo em mm (Q17=1), deslocação no eixo X devido a inclinação de 90º
14 L C+50	
15 RND R7.5	
16 L X+60	
17 RND R7.5	
18 L IC-20	
19 RND R7.5	
20 L X+20	
21 RND R7.5	
22 L C+40	
23 LBL 0	
24 END PGM C27 MM	

Exemplo: superfície cilíndrica com ciclo 28

Notas:

- Cilindro fixado no centro da mesa rotativa.
- Máquina com cabeça B e mesa C
- O ponto de referência situa-se no centro da mesa rotativa
- Descrição da trajetória do ponto central no subprograma de contorno

O BEGIN PGM C28 MM		
1 TOOL CALL 1 Z S2000	Chamada da ferramenta, eixo Z da ferramenta, diâmetro 7	
2 L Z+250 R0 FMAX	Retirar a ferramenta	
3 L X+50 Y+0 R0 FMAX	Posicionar a ferramenta no centro da mesa rotativa	
4 PLANE SPATIAL SPA+0 SPB+90 SPC+0 TURN FMAX	Inclinar	
5 CYCL DEF 14.0 CONTORNO	Determinar o subprograma do contorno	
6 CYCL DEF 14.1 LABEL DE CONTORNO 1		
7 CYCL DEF 28 SUPERFÍCIE CILÍNDRICA	Determinar os parâmetros de maquinagem	
Q1=-7 ;PROFUNDIDADE DE FRESAGEM		
Q3=+0 ;MEDIDA EXCEDENTE LADO		
Q6=2 ;DISTÂNCIA SEGURANÇA		
Q10=-4 ;PROFUNDIDADE DE CORTE		
Q11=100 ;AVANÇO AO CORTAR EM PROFUND.		
Q12=250 ;AVANÇO DE FRESAGEM		
Q16=25 ;RAIO		
Q17=1 ;TIPO DE DIMENSÃO		
Q20=10 ;LARGURA DA RANHURA		
Q21=O ;TOLERÂNCIA	Pós-maquinagem ativa	

8 L C+0 R0 FMAX M3 M99	Posicionar previamente a mesa rotativa, mandril ligado, chamar ciclo	
9 L Z+250 RO FMAX	Retirar a ferramenta	
10 PLANE RESET TURN FMAX	Anular a inclinação, suprimir a função PLANE	
11 M2	Final do programa	
12 LBL 1	Subprograma de contorno, descrição da trajetória do ponto central	
13 L C+40 X+0 RL	Indicações do eixo rotativo em mm (Q17=1), deslocação no eixo X devido a inclinação de 90º	
14 L X+35		
15 L C+60 X+52.5		
16 L X+70		
17 LBL 0		
18 END PGM C28 MM		

Ciclos de maquinagem: Caixa de contorno com fórmula de contorno

9.1 Ciclos SL com fórmula de contorno mais complexa

Princípios básicos

Com os ciclos SL e a fórmula de contorno mais complexa, é possível reunir contornos complexos de contornos parciais (caixas ou ilhas). Os vários subcontornos (dados geométricos) são introduzidos como programas separados. Assim, todos os subcontornos podem reutilizar-se conforme se quiser. A partir dos subcontornos selecionados, ligados entre si por meio de uma fórmula de contorno, o TNC calcula o contorno total.

A memória para um ciclo SL (todos os subprogramas de descrição de contorno) está limitada a um máximo de **128 contornos**. A quantidade de elementos de contorno possíveis depende do tipo de contorno (contorno interior/exterior) e da quantidade de descrições de contornos e ascende ao máximo de **8192** elementos de contorno.

Os ciclos SL com fórmula de contorno pressupõem uma estrutura de programa estruturada e dão a possibilidade de se colocar sempre individualmente num programa contornos a que se pretende regressar Com a fórmula de contorno, os subcontornos são ligados a um contorno total e determina-se se se trata de uma caixa ou de uma ilha.

A função de ciclos SL com fórmula de contorno está dividida em várias áreas na superfície de teclado do TNC e serve de posição de base para outros desenvolvimentos. Exemplo: Esquema: trabalhar com ciclos SL e fórmula de contorno complexa

O BEGIN PGM CONTORNO MM
5 SEL CONTOUR "MODEL"
6 CYCL DEF 20 DADOS DO CONTORNO
8 CYCL DEF 22 DESBASTAR
9 CYCL CALL
12 CYCL DEF 23 ACABAMENTO PROFUNDIDADE
13 CYCL CALL
•••
16 CYCL DEF 24 ACABAMENTO LADO
17 CYCL CALL
63 L Z+250 RO FMAX M2
64 END PGM CONTORNO MM

Características dos subcontornos

- O TNC calcula por princípio todos os contornos como caixa. Não programe nenhuma correção do raio. Na fórmula de contorno, é possível mudar para uma caixa, negando uma ilha.
- O TNC ignora avanços F e funções auxiliares M
- São permitidas conversões de coordenadas. Se forem programadas dentro de contornos parciais, ficam também ativadas nos subprogramas seguintes, mas não devem ser anuladas depois da chamada de ciclo
- Os subprogramas também podem conter coordenadas no eixo do mandril, mas estas são ignoradas
- No primeiro bloco de coordenadas do subprograma, determina-se o plano de maquinagem. São permitidos eixos auxiliares U,V,W

Características dos ciclos de maquinagem

- O TNC posiciona-se automaticamente antes de cada ciclo na distância de segurança
- Cada nível de profundidade é fresado sem levantamento da ferramenta.; as ilhas maquinam-se lateralmente
- O raio de "cantos interiores" é programável: a ferramenta não para, evitam-se marcas de corte (válido para a trajetória mais exterior em desbaste e em acabamento lateral)
- Em acabamento lateral, o TNC efetua a chegada ao contorno segundo uma trajetória circular tangente
- Em acabamento em profundidade, o TNC desloca a ferramenta também segundo uma trajetória circular tangente à peça de trabalho (p. ex.: eixo do mandril Z: trajetória circular no plano Z/X)
- O TNC maquina o contorno de forma contínua em sentido sincronizado ou em sentido contrário

Com o parâmetro de máquina 7420, determina-se onde o TNC deve posicionar a ferramenta no fim dos ciclos 21 até 24.

As indicações de cotas para a maquinagem, como profundidade de fresagem, medidas excedentes e distância de segurança, são introduzidas de forma central no ciclo 20 como DADOS DO CONTORNO.

Exemplo: Esquema: cálculo dos subcontornos com fórmula de contorno

0	BEGIN PGM MODEL MM
1	DECLARE CONTOUR QC1 = "CÍRCULO1"
2	DECLARE CONTOUR QC2 = "CÍRCULO31XY"
3	DECLARE CONTOUR QC3 = "TRIÂNGULO"
4	DECLARE CONTOUR QC4 = "QUADRADO"
5	QC10 = (QC1 QC3 QC4) \ QC2
6	END PGM MODEL MM

DEGIN FOR CIRCULUI PP	BEGIN	PGM	CÍRCULO1 MM	
-----------------------	-------	-----	-------------	--

- 1 CC X+75 Y+50
- 2 LP PR+45 PA+0
- 3 CP IPA+360 DR+
- 4 END PGM CÍRCULO1 MM
- O BEGIN PGM CÍRCULO31XY MM
- •••

contorno às quais o TNC vai buscar as descrições de contorno:

Com a funçãoSEL CONTOUR selecione um programa com definições do

- Mostrar barra de softkeys com funções especiais
- MAQUINAÇÃO PONTO CONTORNO

FORMULA

COMPLEXA

SELECÇÃO JANELA contorno e de pontos Selecionar o menu para fórmulas de contorno

Selecionar o menu de funções para a maquinagem de

complexas

- ▶ Premir a softkey SEL CONTOUR
- Premir a softkey SELEÇÃO DE JANELA: o TNC realça uma janela onde se pode selecionar o programa com as definições do contorno
- Selecionar o programa desejado com as teclas de setas ou clicando com o rato, confirmar com a tecla ENT: o TNC regista o nome de caminho completo no bloco SEL CONTOUR
- ▶ Terminar a função com a tecla END
- Introduzir o nome completo do programa com as definições de contorno. Confirmar com a tecla END

Em alternativa, também é possível introduzir o nome do programa ou o nome de caminho completo do programa com as definições do contorno diretamente através do teclado.

Programar bloco SEL CONTOUR antes dos ciclos SL. Já não é necessário o ciclo 14 KONTUR quando se utiliza SEL CONTOUR.

Definir as descrições de contorno

Com a função **DECLARAR CONTORNO**, indica-se a um programa o caminho para programas aos quais o TNC vai buscar as descrições de contorno. É ainda possível selecionar uma profundidade independente para esta descrição de contorno (Função FCL-2):

Mostrar barra de softkeys com funções especiais

- Selecionar o menu de funções para a maquinagem de contorno e de pontos
- FORMULA CONTORNO COMPLEXA
- Selecionar o menu para fórmulas de contorno complexas
- DECLARE
- ▶ Premir a softkey DECLARAR CONTORNO
- Confirmar o número para o descritor de contorno QC. Confirmar com a tecla ENT
- SELECCÃO JANELA
- Premir a softkey SELEÇÃO DE JANELA: o TNC realça uma janela onde se pode selecionar o programa que se pretende abrir
- Selecionar o programa com a descrição do contorno desejado com as teclas de setas ou clicando com o rato, confirmar com a tecla ENT: o TNC regista o nome de caminho completo no bloco DECLARE CONTOUR
- Definir a profundidade independente para o contorno selecionado
- ▶ Terminar a função com a tecla END

Em alternativa, também é possível introduzir o nome de programa do programa com a descrição do contorno ou o nome de caminho completo do programa diretamente através do teclado.

Com o descritor de contorno indicado**QC**, poderá calcular na fórmula de contorno os diferentes contornos entre si.

Quando utilizar contornos com profundidade independente, deverá atribuir uma profundidade a todos os contornos parciais (se necessário, atribuir profundidade 0).

Introduzir fórmula de contorno mais complexa

Com as softkeys, podem conjugar-se entre si variados contornos numa fórmula matemática:

Mostrar barra de softkeys com funções especiais

Selecionar o menu de funções para a maquinagem de contorno e de pontos

- Selecionar o menu para fórmulas de contorno complexas
- CONTORNO FORMULA
- Premir a softkey FÓRMULA DE CONTORNO: o TNC mostra as seguintes softkeys:

Função lógica	Softkey
cortado com z.B. QC10 = QC1 & QC5	
reunido com z.B. QC25 = QC7 QC18	
reunido com, mas sem corte z.B. QC12 = QC5 ^ QC25	
cortado com complemento de por ex.QC25 = QC1 \ QC2	
complemento da área de contorno p.ex., QC12 = #QC11	H O
Parêntese aberto z.B. QC12 = QC1 * (QC2 + QC3)	C
Parêntese fechado z.B. QC12 = QC1 * (QC2 + QC3)	,
Definir contornos individuais p. ex QC12 = QC1	
Contornos sobrepostos

Por princípio, o TNC considera um contorno programado como caixa. Com as funções da fórmula de contorno, tem-se a possibilidade de converter um contorno numa ilha

Podem sobrepor-se caixas e ilhas num novo contorno. Assim, é possível aumentar uma superfície de caixa por meio de uma caixa sobreposta ou diminuir por meio de uma ilha.

Subprogramas: caixas sobrepostas

Os seguintes exemplos de programação são programas de descrição de contorno, que são definidos num programa de definição do contorno. O programa de definição de contorno deve ser de novo chamado no programa principal propriamente dito com a função **SEL CONTOUR**.

As caixas A e B sobrepõem-se.

O TNC calcula os pontos de intersecção S1 e S2, pelo que não há que programá-los.

As caixas estão programadas como círculos completos.

Programa de descrição do contorno 1: caixa A

O BEGIN PGM CAIXA_A MM
1 L X+10 Y+50 R0
2 CC X+35 Y+50
3 C X+10 Y+50 DR-
4 END PGM CAIXA_A MM

Programa de descrição do contorno 2: caixa B

O BEGIN PGM CAIXA_B MM
1 L X+90 Y+50 R0
2 CC X+65 Y+50
3 C X+90 Y+50 DR-
4 END PGM CAIXA_B MM

Superfície de "soma"

Maquinam-se ambas as superfícies parciais A e B incluindo a superfície coberta em comum:

- As superfícies A e B têm que estar programadas em programas separados sem correção do raio
- Na fórmula de contorno, as superfícies A e B são calculadas com a função "reunido com"

Programa de definição do contorno:

50
51
52 DECLARE CONTOUR QC1 = "CAIXA_A.H"
53 DECLARE CONTOUR QC2 = "CAIXA_B.H"
54 QC10 = QC1 QC2
55
56

Superfície de "diferença"

A superfície A deverá ser maquinada sem a parte coberta por B:

- As superfícies A e B têm que estar programadas em programas separados sem correção do raio
- Na fórmula de contorno, a superfície B é descontada da superfície A com a função "cortado com complemento de"

Programa de definição do contorno:

50
51
52 DECLARE CONTOUR QC1 = "CAIXA_A.H"
53 DECLARE CONTOUR QC2 = "CAIXA_B.H"
54 QC10 = QC1 \ QC2
55
56

Deverá maquinar-se a superfície coberta por A e B (as superfícies não cobertas deverão, simplesmente, não ser maquinadas).

- As superfícies A e B têm que estar programadas em programas separados sem correção do raio
- Na fórmula de contorno, as superfícies A e B são calculadas com a função "cortado com"

Programa de definição do contorno:

50
51
52 DECLARE CONTOUR QC1 = "CAIXA_A.H"
53 DECLARE CONTOUR QC2 = "CAIXA_B.H"
54 QC10 = QC1 & QC2
55
56

Executar contorno com ciclos SL

A maquinagem do contorno total realiza-se com os ciclos SL 20 a 24 (ver "Resumo" na página 188).

Exemplo: desbastar e acabar contornos sobrepostos com fórmula de contorno

O BEGIN PGM CONTORNO MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Definição do bloco
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+2.5	Definição da ferramenta fresa de desbaste
4 TOOL DEF 2 L+0 R+3	Definição da ferramenta fresa de acabamento
5 TOOL CALL 1 Z S2500	Chamada da ferramenta fresa de desbaste
6 L Z+250 RO FMAX	Retirar a ferramenta
7 SEL CONTOUR "MODEL"	Determinar o programa de definição do contorno
8 CYCL DEF 20 DADOS DO CONTORNO	Determinar os parâmetros gerais de maquinagem
Q1=-20 ;PROFUNDIDADE DE FRESAGEM	
Q2=1 ;SOBREPOSIÇÃO DE TRAJETÓRIA	
Q3=+0,5 ;MEDIDA EXCEDENTE LADO	
Q4=+0,5 ;MEDIDA EXCEDENTE PROFUNDIDADE	
Q5=+0 ;COORD. SUPERFÍCIE	
Q6=2 ;DISTÂNCIA DE SEGURANÇA	
Q7=+100 ;ALTURA SEGURA	
Q8=0,1 ;RAIO DE ARREDONDAMENTO	
Q9=-1 ;SENTIDO DE ROTAÇÃO	
9 CYCL DEF 22 DESBASTAR	Definição do ciclo de desbaste
Q10=5 ;PROFUNDIDADE DE CORTE	

Ciclos de maquinagem: Caixa de contorno com fórmula de contorno

i

Q11=100 ;AVANÇO AO CORTAR EM PROFUND.	
Q12=350 ;AVANÇO DE DESBASTE	
Q18=0 ;FERRAMENTA DE DESBASTE Prévio	
Q19=150 ;AVANÇO PENDULAR	
Q401=100 ;FATOR DE AVANÇO	
Q404=0 ;ESTRATÉGIA DE DESBASTE POSTERIOR	
10 CYCL CALL M3	Chamada do ciclo de desbaste
11 TOOL CALL 2 Z S5000	Chamada da ferramenta fresa de acabamento
12 CYCL DEF 23 ACABAMENTO PROFUNDIDADE	Definição do ciclo de profundidade de acabamento
Q11=100 ;AVANÇO AO CORTAR EM PROFUND.	
Q12=200 ;AVANÇO DE DESBASTE	
13 CYCL CALL M3	Chamada do ciclo de profundidade de acabamento
14 CYCL DEF 24 ACABAMENTO LADO	Definição do ciclo de acabamento lateral
Q9=+1 ;SENTIDO DE ROTAÇÃO	
Q10=5 ;PROFUNDIDADE DE CORTE	
Q11=100 ;AVANÇO AO CORTAR EM PROFUND.	
Q12=400 ;AVANÇO DE DESBASTE	
Q14=+0 ;MEDIDA EXCEDENTE LADO	
15 CYCL CALL M3	Chamada do ciclo de acabamento lateral
16 L Z+250 RO FMAX M2	Retirar ferramenta, fim do programa
17 END PGM CONTORNO MM	

Programa de definição de contorno com fórmula de contorno:

O BEGIN PGM MODEL MM	Programa de definição do contorno
1 DECLARE CONTOUR QC1 = "CÍRCULO1"	Definição do descritor de contorno para o programa "CÍRCULO1"
2 FN 0: Q1 =+35	Atribuição de valores a parâmetros utilizados no PGM "CÍRCULO31XY"
3 FN 0: Q2 =+50	
4 FN 0: Q3 =+25	
5 DECLARE CONTOUR QC2 = "CÍRCULO31XY"	Definição do descritor de contorno para o programa "CÍRCULO31XY"
6 DECLARE CONTOUR QC3 = "TRIÂNGULO"	Definição do descritor de contorno para o programa "TRIÂNGULO"
7 DECLARE CONTOUR QC4 = "QUADRADO"	Definição do descritor de contorno para o programa "QUADRADO"
8 QC10 = (QC 1 QC 2) \ QC 3 \ QC 4	Fórmula de contorno
9 END PGM MODEL MM	

i

Programas de descrição de contorno:

0	
O BEGIN PGM CÍRCULO1 MM	Programa de descrição de contorno: círculo à direita
1 CC X+65 Y+50	
2 L PR+25 PA+0 R0	
3 CP IPA+360 DR+	
4 END PGM CÍRCULO1 MM	
O BEGIN PGM CÍRCULO31XY MM	Programa de descrição de contorno: círculo à esquerda
1 CC X+Q1 Y+Q2	
2 LP PR+Q3 PA+O RO	
3 CP IPA+360 DR+	
4 END PGM CÍRCULO31XY MM	
O BEGIN PGM TRIÂNGULO MM	Programa de descrição de contorno: triângulo à direita
1 L X+73 Y+42 R0	
2 L X+65 Y+58	
3 L X+58 Y+42	
4 L X+73	
5 END PGM TRIÂNGULO MM	
O BEGIN PGM QUADRADO MM	Programa de descrição de contorno: quadrado à esquerda
1 L X+27 Y+58 R0	
2 L X+43	
3 L Y+42	
4 L X+27	

i

5 L Y+58

6 END PGM QUADRADO MM

9.2 Ciclos SL com fórmula de contorno mais simples

Princípios básicos

Com os ciclos SL e a fórmula de contorno mais simples, é possível reunir contornos de até 9 contornos parciais (caixas ou ilhas). Os vários subcontornos (dados geométricos) são introduzidos como programas separados. Assim, todos os subcontornos podem reutilizar-se conforme se quiser. A partir dos contornos parciais selecionados, o TNC calcula o contorno total.

A memória para um ciclo SL (todos os subprogramas de descrição de contorno) está limitada a um máximo de **128 contornos**. A quantidade de elementos de contorno possíveis depende do tipo de contorno (contorno interior/exterior) e da quantidade de descrições de contornos e ascende ao máximo de, aprox., **8192** elementos de contorno.

Características dos subcontornos

- O TNC calcula por princípio todos os contornos como caixa. Não programe nenhuma correção do raio.
- O TNC ignora avanços F e funções auxiliares M.
- São permitidas conversões de coordenadas. Se forem programadas dentro de contornos parciais, ficam também ativadas nos subprogramas seguintes, mas não devem ser anuladas depois da chamada de ciclo
- Os subprogramas também podem conter coordenadas no eixo do mandril, mas estas são ignoradas
- No primeiro bloco de coordenadas do subprograma, determina-se o plano de maquinagem. São permitidos eixos auxiliares U,V,W

Exemplo: Esquema: trabalhar com ciclos SL e fórmula de contorno complexa

O BEGIN PGM CONTDEF MM
5 CONTOUR DEF
P1= "POCK1.H"
I2 = "ISLE2.H" DEPTH5
I3 "ISLE3.H" DEPTH7.5
6 CYCL DEF 20 DADOS DO CONTORNO
8 CYCL DEF 22 DESBASTAR
9 CYCL CALL
12 CYCL DEF 23 ACABAMENTO PROFUNDIDADE
13 CYCL CALL
16 CYCL DEF 24 ACABAMENTO LADO
17 CYCL CALL
63 L Z+250 RO FMAX M2
64 END PGM CONTDEF MM

Características dos ciclos de maquinagem

- O TNC posiciona-se automaticamente antes de cada ciclo na distância de segurança
- Cada nível de profundidade é fresado sem levantamento da ferramenta.; as ilhas maquinam-se lateralmente
- O raio de "cantos interiores" é programável: a ferramenta não para, evitam-se marcas de corte (válido para a trajetória mais exterior em desbaste e em acabamento lateral)
- Em acabamento lateral, o TNC efetua a chegada ao contorno segundo uma trajetória circular tangente
- Em acabamento em profundidade, o TNC desloca a ferramenta também segundo uma trajetória circular tangente à peça de trabalho (p. ex.: eixo do mandril Z: trajetória circular no plano Z/X)
- O TNC maquina o contorno de forma contínua em sentido sincronizado ou em sentido contrário

Com o parâmetro de máquina 7420, determina-se onde o TNC deve posicionar a ferramenta no fim dos ciclos 21 até 24.

As indicações de cotas para a maquinagem, como profundidade de fresagem, medidas excedentes e distância de segurança, são introduzidas de forma central no ciclo 20 como DADOS DO CONTORNO.

Introduzir fórmula de contorno simples

Com softkeys, podem conjugar-se entre si variados contornos numa fórmula matemática:

Mostrar barra de softkeys com funções especiais

DEF

- Selecionar o menu de funções para a maquinagem de contorno e de pontos
- Premir a softkey CONTOUR DEF: o TNC inicia a introdução da fórmula de contorno
- Selecionar o nome do primeiro subcontorno com a softkey SELEÇÃO DE JANELA ou introduzi-lo diretamente. O primeiro subcontorno deve ser sempre a caixa mais profunda, confirmar com a tecla ENT
- Determinar com a softkey se o próximo contorno é uma caixa ou uma ilha, confirmar com a tecla ENT
- Selecionar o nome do segundo subcontorno com a softkey SELEÇÃO DE JANELA ou introduzi-lo diretamente, confirmar com a tecla ENT
- Se necessário, introduzir a profundidade do segundo contorno parcial e confirmar com a tecla ENT
- Continuar o diálogo como descrito anteriormente até ter introduzido todos os contornos parciais
- Iniciar a lista dos contornos parciais sempre com a caixa mais profunda!
- Quando o contorno é definido como ilha, o TNC interpreta a profundidade introduzida como altura da ilha. O valor introduzido sem sinal, refere-se então à superfície da peça de trabalho!
- Quando é introduzida uma profundidade 0, a profundidade definida no ciclo 20 atua nas caixas e as ilhas elevam-se então até à superfície da peça de trabalho!

Executar contorno com ciclos SL

A maquinagem do contorno total realiza-se com os ciclos SL 20 a 24 (ver "Resumo" na página 188).

9.2 Ciclos SL com fórmula de contorno mais simples

i

Ciclos de maquinagem: Facejar

10.1 Princípios básicos

Resumo

O TNC dispõe de quatro ciclos com que se podem maquinar superfícies com as seguintes características:

Produzido por um sistema CAD-/CAM

- ser planas e retangulares
- ser planas segundo um ângulo oblíquo
- estar inclinadas de qualquer forma
- estar unidas entre si

Ciclo	Softkey	Página
30 EXECUTAR DADOS 3D Para facejar dados 3D em vários cortes	30 DADOS 3D FRESAR	Página 265
230 FACEJAR Para superfícies planas retangulares	230	Página 267
231 SUPERFÍCIE REGULAR Para superfícies segundo um ângulo oblíquo, inclinadas e unidas entre si	231	Página 269
232 FRESA PLANA Para superfícies planas retangulares, com indicação de medida excedente e várias cortes	232	Página 273

10.2 EXECUTAR DADOS 3D (Ciclo 30, DIN/ISO: G60)

Decurso do ciclo

- 1 O TNC posiciona a ferramenta em marcha rápida FMAX desde a posição atual no eixo do mandril para a distância de segurança sobre o ponto MAX programado no ciclo
- 2 A seguir, o TNC desloca a ferramenta com FMAX no plano de maquinagem para o ponto MIN programado no ciclo
- **3** Daí a ferramenta desloca-se com avanço de corte em profundidade para o primeiro ponto do contorno
- 4 A seguir, o TNC executa com avanço de fresagem todos os pontos memorizados no ficheiro indicado. Se necessário, durante a execução o TNC desloca-se para a distância de segurança, para saltar as zonas não maquinadas
- **5** No fim, o TNC retira a ferramenta com **FMAX** para a distância de segurança

Ter em atenção ao programar!

Com o ciclo 30, pode executar, em especial, programas de diálogo em texto claro elaborados externamente em várias profundidades de corte.

30 DADOS 3D FRESAR

- Nome do ficheiro dados 3D: introduzir o nome do programa em que estão memorizados os dados de contorno; se o ficheiro não estiver no diretório atual, introduzir o caminho completo. É possível introduzir, no máximo, 254 caracteres.
 - Campo ponto MIN: ponto mínimo (coordenada X, Y e Z) do campo onde se pretende fresar. Campo de introdução -99999,9999 a 99999,9999
 - Campo ponto MAX: ponto máximo (coordenada X, Y e Z) do campo onde se pretende fresar. Campo de introdução -99999,9999 a 99999,9999
 - Distância de segurança 1 (incremental): distância entre a ponta da ferramenta e a superfície da peça de trabalho em movimentos de marcha rápida. Campo de introdução 0 a 99999.9999
 - Profundidade de corte 2 (valor incremental): medida segundo a qual a ferramenta corta de cada vez na peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
 - Avanço de corte em profundidade 3: velocidade de deslocação da ferramenta ao afundar em mm/min. Campo de introdução 0 a 99999,999, em alternativa FAUTO
 - Avanço de fresagem 4: velocidade de deslocação da ferramenta ao fresar em mm/min. Campo de introdução 0 a 99999,9999, em alternativa FAUTO
 - Função auxiliar M: introdução opcional de uma a duas funções auxiliares, p.ex. M13. Campo de introdução 0 a 999

Exemplo: Blocos NC

64 CYCL DEF 30.0 EXECUTAR DADOS 3D	
65 CYCL DEF 30.1 PGM DIGIT.: BSP.H	
66 CYCL DEF 30.2 X+0 Y+0 Z-20	
67 CYCL DEF 30.3 X+100 Y+100 Z+0	
68 CYCL DEF 30.4 DISTÂNCIA 2	
69 CYCL DEF 30.5 CORTE -5 F100	
70 CYCL DEF 30.6 F350 M8	

10.3 FACEJAR (Ciclo 230, DIN/ISO: G230)

Decurso do ciclo

- 1 O TNC posiciona a ferramenta em marcha rápida FMAX desde a posição atual no plano de maquinagem para o ponto inicial 1; o TNC desloca a ferramenta no seu raio para a esquerda e para cima
- 2 A seguir, a ferramenta desloca-se com **FMAX** no eixo do mandril para a distância de segurança, e depois com o avanço de corte em profundidade para a posição inicial programada no eixo do mandril
- **3** Depois, a ferramenta desloca-se com o avanço de fresagem programada para o ponto final2; o TNC calcula o ponto final a partir do ponto inicial programado, do comprimento programado e do raio da ferramenta
- 4 O TNC desloca a ferramenta com avanço de fresagem transversal para o ponto inicial da linha seguinte; o TNC calcula esta deslocação a partir da largura programada e do número de cortes programados
- 5 Depois, a ferramenta retira-se em direção negativa ao 1.º eixo
- 6 O facejamento repete-se até se maquinar completamente a superfície programada
- 7 No fim, o TNC retira a ferramenta com FMAX para a distância de segurança

Ter em atenção ao programar!

O TNC posiciona a ferramenta desde a posição atual, primeiro no plano de maquinagem, e depois no eixo do mandril, sobre o ponto inicial.

Posicionar previamente a ferramenta, de forma a que não se possa produzir nenhuma colisão com a peça de trabalho ou com o dispositivo tensor.

Atenção, perigo de colisão!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Parâmetros de ciclo

- Ponto inicial do 1.º eixo Q225 (absoluto): coordenada do ponto mín. da superfície a facejar no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Ponto inicial do 2.º eixo Q226 (absoluto): coordenada do ponto mín. da superfície a facejar no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Ponto inicial do 3.º eixo Q227 (absoluto): altura no eixo do mandril a que se faz o facejamento. Campo de introdução -99999,9999 a 99999,9999
- 1.º comprimento lateral Q218 (incremental): comprimento da superfície a facejar no eixo principal do plano de maquinagem, referente ao ponto inicial do 1.º eixo. Campo de introdução 0 a 99999.9999
- 2.º comprimento lateral Q219 (incremental): comprimento da superfície a facejar no eixo secundário do plano de maquinagem, referente ao ponto inicial do 2.º eixo. Campo de introdução 0 a 99999.9999
- Número de cortes Q240: quantidade de linhas sobre as quais o TNC deve deslocar a ferramenta na largura da peça de trabalho. Campo de introdução 0 a 99999
- Avanço de corte em profundidade Q206: velocidade de deslocação da ferramenta ao deslocar-se da distância de segurança para a profundidade de fresagem em mm/min. Campo de introdução 0 a 99999,9999, em alternativa FAUTO, FU, FZ
- Avanço de fresagem Q207: velocidade de deslocação da ferramenta ao fresar em mm/min. Campo de introdução 0 a 99999,9999, em alternativa FAUTO, FU, FZ
- Avanço transversal Q209: velocidade de deslocação da ferramenta ao deslocar-se para a primeira linha em mm/min; se a deslocação se fizer lateralmente na peça de trabalho, introduzir Q9 menor do que Q8; se se deslocar em vazio, Q209 deve ser maior do que Q207. Campo de introdução 0 a 99999,9999, em alternativa FAUTO, FU, FZ
- Distância de segurança Q200 (incremental): distância entre a ponta da ferramenta e a profundidade de fresagem para posicionamento no início do ciclo e no fim do ciclo. Campo de introdução 0 a 99999,9999, em alternativa PREDEF

Exemplo: Blocos NC

CYCL DEF 23	0 FACEJAR
Q225=+10	;PONTO INICIAL 1.º EIXO
Q226=+12	;PONTO INICIAL 2.º EIXO
Q227=+2,5	;PONTO INICIAL 3.º EIXO
Q218=150	;1.º COMPRIMENTO DE LADO
Q219=75	;COMPRIMENTO LADO 2
Q240=25	;QUANTIDADE DE CORTES
Q206=150	;AVANÇO AO CORTAR EM PROFUND.
Q207=500	;AVANÇO DE FRESAGEM
Q209=200	;AVANÇO TRANSVERSAL
Q200=2	;DISTÂNCIA DE SEGURANÇA
	CYCL DEF 23 Q225=+10 Q226=+12 Q218=150 Q219=75 Q240=25 Q206=150 Q207=500 Q209=200

10.4 SUPERFÍCIE REGULAR (Ciclo 231, DIN/ISO: G231)

Decurso do ciclo

- 1 O TNC posiciona a ferramenta desde a posição atual com um movimento linear 3D sobre o ponto inicial 1
- 2 Depois, a ferramenta desloca-se com o avanço de fresagem programado sobre o ponto final 2
- 3 Aí o TNC desloca a ferramenta em marcha rápida FMAX segundo o diâmetro da ferramenta na direção positiva do eixo do mandril e de novo para o ponto inicial 1
- 4 No ponto inicial 1 o TNC desloca de novo a ferramenta para o último valor Z alcançado
- 5 Seguidamente, o TNC desloca a ferramenta nos três eixos desde o ponto 1 na direção do ponto 4 sobre a linha seguinte
- 6 Depois, o TNC desloca a ferramenta até ao último ponto final desta linha. O TNC calcula o ponto final a partir do ponto2 e de um desvio na direção ao ponto 3
- 7 O facejamento repete-se até se maquinar completamente a superfície programada
- 8 No fim, o TNC posiciona a ferramenta segundo o diâmetro da mesma sobre o ponto mais elevado programado no eixo do mandril

Direção de corte

O ponto inicial e portanto a direção de fresagem podem ser escolhidos livremente porque o TNC desloca os cortes individuais em princípio do ponto 1 para o ponto 2 e decorre toda a execução desde o ponto 1 / 2 para o ponto 3 / 4. Pode-se colocar o ponto 1 em cada esquina da superfície que se pretende maquinar.

É possível otimizar a qualidade da superfície utilizando uma fresa cilíndrica:

- Com um corte de percussão (coordenada do eixo do mandril ponto 1 maior do que coordenada do eixo do mandril ponto 2) com superfícies pouco inclinadas.
- Com um corte de puxão (coordenada do eixo do mandril ponto 1 menor do que coordenada do eixo do mandril ponto 2) com superfícies muito inclinadas
- Com superfícies torcidas, colocar a direção do movimento principal (do ponto 1 para o ponto 2) na direção da inclinação maior

É possível otimizar a qualidade da superfície utilizando uma fresa esférica:

Com superfícies torcidas, colocar a direção do movimento principal (do ponto 1 para o ponto 2) perpendicular à direção da inclinação maior

Ter em atenção ao programar!

O TNC posiciona a ferramenta desde a posição atual com um movimento retilíneo 3D para o ponto inicial 1. Posicionar previamente a ferramenta, de forma a que não se possa produzir nenhuma colisão com a peça de trabalho ou com o dispositivo tensor.

O TNC desloca a ferramenta com correção de raio R0 entre as posições programadas

Se necessário, utilizar uma fresa com dentado frontal cortante no centro (DIN 844).

Atenção, perigo de colisão!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Parâmetros de ciclo

- Ponto inicial do 1.º eixo Q225 (absoluto): coordenada do ponto inicial na superfície a facejar no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Ponto inicial do 2.º eixo Q226 (absoluto): coordenada do ponto inicial na superfície a facejar no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Ponto inicial do 3.º eixo Q227 (absoluto): coordenada do ponto inicial da superfície a facejar no eixo do mandril. Campo de introdução -99999,9999 a 99999,9999
- 2.º ponto do 1.º eixo Q228 (absoluto): coordenada do ponto final da superfície a facejar no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 2.º ponto do 2.º eixo Q229 (absoluto): coordenada do ponto final da superfície a facejar no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 2.º ponto do 3.º eixo Q230 (absoluto): coordenada do ponto final da superfície a facejar no eixo do mandril. Campo de introdução -99999,9999 a 99999,9999
- 3.º ponto do 1.º eixo Q231 (valor absoluto): coordenada do ponto 3 no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 3.º ponto do 2.º eixo Q232 (valor absoluto): coordenada do ponto 3 no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 3.º ponto do 3.º eixo Q233 (valor absoluto): coordenada do ponto 3 no eixo do mandril. Campo de introdução -99999,9999 a 99999,9999

- 4.º ponto do 1.º eixo Q234 (valor absoluto): coordenada do ponto 4 no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- ▶ 4.º ponto do 2.º eixo Q235 (valor absoluto): coordenada do ponto 4 no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 4.º ponto do 3.º eixo Q236 (valor absoluto): coordenada do ponto 4 no eixo do mandril. Campo de introdução -99999,9999 a 99999,9999
- Número de cortes Q240: quantidade de linhas que o TNC deve deslocar a ferramenta entre o ponto 1 e 4, ou entre o ponto 2 e 3. Campo de introdução 0 a 99999
- Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min. O TNC executa o primeiro corte com metade do valor programado Campo de introdução 0 a 99999,999, em alternativa FAUTO, FU, FZ

Exemplo: Blocos NC

72 CYCL DEF 2	31 SUPERFÍCIE REGULAR
Q225=+0	;PONTO INICIAL 1.º EIXO
Q226=+5	;PONTO INICIAL 2.º EIXO
Q227=-2	;PONTO INICIAL 3.º EIXO
Q228=+10	0 ;2.º PONTO 1.º EIXO
Q229=+15	;2.º PONTO 2.º EIXO
Q230=+5	;2.º PONTO 3.º EIXO
Q231=+15	;3.º PONTO 1.º EIXO
Q232=+12	5 ;3.º PONTO 2.º EIXO
Q233=+25	;3.º PONTO 3.º EIXO
Q234=+15	;4.º PONTO 1.º EIXO
Q235=+12	5 ;4.º PONTO 2.º EIXO
Q236=+25	;4.º PONTO 3.º EIXO
Q240=40	;QUANTIDADE DE CORTES
Q207=500	;AVANÇO DE FRESAGEM

10.5 FRESAGEM TRANSVERSAL (Ciclo 232, DIN/ISO: G232)

Execução do ciclo

Com o ciclo 232 pode efetuar a fresagem horizontal de uma superfície plana em vários cortes respeitando uma medida excedente de acabamento. Estão à disposição três estratégias de maquinagem:

- Estratégia Q389=0: Executar em forma de meandro, corte lateral fora da superfície a trabalhar
- Estratégia Q389=1: Executar em forma de meandro, corte lateral dentro da superfície a trabalhar
- Estratégia Q389=2: Executar linha a linha, retrocesso e corte lateral em avanço de posicionamento
- 1 O TNC posiciona a ferramenta em marcha rápida FMAX desde a posição atual com lógica de posicionamento no ponto inicial 1: Se a posição atual no eixo do mandril for maior que a 2.ª distância de segurança, o TNC coloca primeiramente a ferramenta no plano de maquinagem e de seguida no eixo do mandril, senão, primeiro na 2.ª distância de segurança e de seguida no plano de maquinagem. O ponto inicial no plano de maquinagem encontra-se deslocado à volta do raio da ferramenta e à volta da distância de segurança lateral ao lado da peça de trabalho
- 2 De seguida, a ferramenta desloca-se com avanço de posicionamento no eixo do mandril para a primeira profundidade de corte calculada pelo TNC.

Estratégia Q389=0

- 3 Depois, a ferramenta desloca-se com o avanço de fresagem programado sobre o ponto final 2 O ponto final encontra-se fora da área, o TNC calcula o ponto final a partir do ponto inicial programado, do comprimento programado, da distância de segurança lateral programada e do raio da ferramenta programado
- 4 O TNC desloca a ferramenta com avanço de posicionamento prévio transversal para o ponto inicial da linha seguinte; o TNC calcula esta deslocação a partir da largura programada, do raio da ferramenta e do fator de sobreposição de trajetórias máximo
- 5 Depois, a ferramenta retira-se novamente em direção do ponto inicial1
- **6** O procedimento repete-se até se maquinar completamente a superfície programada. No fim da última trajetória ocorre o corte para a profundidade de maquinagem seguinte
- 7 Para evitar percursos vazios, a superfície é de seguida maquinada em ordem inversa.
- 8 Este processo repete-se até todos os cortes terem sido executados. No último corte apenas se fresa a medida excedente de acabamento introduzida no avanço de acabamento
- **9** No fim, o TNC retira a ferramenta com **FMAX** para a 2.ª distância de segurança

Estratégia Q389=1

- 3 Depois, a ferramenta desloca-se com o avanço de fresagem programado sobre o ponto final 2 O ponto final encontra-se **dentro** da área, o TNC calcula o ponto final a partir do ponto inicial programado, do comprimento programado e do raio da ferramenta programado
- 4 O TNC desloca a ferramenta com avanço de posicionamento prévio transversal para o ponto inicial da linha seguinte; o TNC calcula esta deslocação a partir da largura programada, do raio da ferramenta e do fator de sobreposição de trajetórias máximo
- 5 Depois, a ferramenta retira-se novamente em direção do ponto inicial¹. A deslocação para a linha seguinte ocorre novamente dentro da peça de trabalho
- 6 O procedimento repete-se até se maquinar completamente a superfície programada. No fim da última trajetória ocorre o corte para a profundidade de maquinagem seguinte
- 7 Para evitar percursos vazios, a superfície é de seguida maquinada em ordem inversa.
- 8 Este processo repete-se até todos os cortes terem sido executados. No último corte apenas se fresa a medida excedente de acabamento introduzida no avanço de acabamento
- 9 No fim, o TNC retira a ferramenta com FMAX para a 2.ª distância de segurança

Estratégia Q389=2

- 3 Depois, a ferramenta desloca-se com o avanço de fresagem programado sobre o ponto final 2 O ponto final encontra-se fora da área, o TNC calcula o ponto final a partir do ponto inicial programado, do comprimento programado, da distância de segurança lateral programada e do raio da ferramenta programado
- 4 O TNC retira a ferramenta no eixo do mandril para a distância de segurança através da profundidade de corte atual e desloca-se com avanço de posicionamento prévio diretamente de volta para o ponto inicial da linha seguinte. O TNC calcula o desvio a partir da largura programada, do raio da ferramenta e do fator de sobreposição de trajetória máximo.
- 5 Depois, a ferramenta desloca-se novamente para a profundidade de corte atual e de seguida novamente em direção ao ponto final2
- 6 O procedimento de facejamento repete-se até se maquinar completamente a superfície programada. No fim da última trajetória ocorre o corte para a profundidade de maquinagem seguinte
- 7 Para evitar percursos vazios, a superfície é de seguida maquinada em ordem inversa.
- 8 Este processo repete-se até todos os cortes terem sido executados. No último corte apenas se fresa a medida excedente de acabamento introduzida no avanço de acabamento
- **9** No fim, o TNC retira a ferramenta com **FMAX** para a 2.ª distância de segurança

Ter em atenção ao programar!

Definir a 2.ª distância de segurança Q204 de forma a que não se possa produzir nenhuma colisão com a peça de trabalho ou com o dispositivo tensor.

Atenção, perigo de colisão!

O parâmetro de máquina 7441 bit O serve para definir se o TNC deve emitir uma mensagem de erro (bit 0=0) ou não (bit 0=1) se, na chamada de ciclo, o mandril não funcionar. A função também deve ser ajustada pelo fabricante da sua máquina.

Parâmetros de ciclo

 Estratégia de maquinagem (0/1/2) Q389: determinar como o TNC deve maquinar a superfície:
0: Maquinar em forma de meandro, corte lateral em avanço de posicionamento fora da superfície a trabalhar

1: Maquinar em forma de meandro, corte lateral em avanço de fresagem dentro da superfície a trabalhar 2: Executar linha a linha, retrocesso e corte lateral em avanço de posicionamento

- Ponto inicial do 1.º eixo Q225 (absoluto): coordenada do ponto inicial na superfície a maquinar no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Ponto inicial do 2.º eixo Q226 (absoluto): coordenada do ponto inicial na superfície a facejar no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Ponto inicial do 3.º eixo Q227 (absoluto): coordenada da superfície da peça de trabalho a partir da qual devem ser calculados os cortes. Campo de introdução -99999,9999 a 99999,9999
- Ponto final do 3.º eixo Q386 (absoluto): coordenada no eixo do mandril sobre a qual a superfície deve ser fresada de forma plana. Campo de introdução -99999,9999 a 99999,9999

- 10.5 FRESAGEM TRANSVERSAL (Ciclo 232, DIN/ISO: G232)
- 1.º comprimento lateral Q218 (incremental): comprimento da superfície a maquinar no eixo principal do plano de maquinagem. Através do sinal, é possível determinar a direção da primeira trajetória de fresagem com referência ao ponto inicial do 1.º eixo. Campo de introdução -99999,9999 a 99999,9999
- 2.º comprimento lateral Q219 (incremental): comprimento da superfície a maquinar no eixo secundário do plano de maquinagem. Através do sinal, pode-se determinar a direção do primeiro corte transversal com referência ao ponto inicial do 2.º eixo. Campo de introdução -99999,9999 a 99999,9999
- Profundidade de corte máxima Q202 (valor incremental): medida segundo a qual a ferramenta corta no máximo de cada vez na peça de trabalho. O TNC calcula a profundidade de corte real a partir da diferença entre o ponto final e o ponto inicial no eixo da ferramenta, tendo em conta a medida excedente de acabamento, de modo a que a maquinagem seja feita com as mesmas profundidades de corte. Campo de introdução 0 a 99999.9999
- Medida exced. acabamento em profundidade Q369 (incremental): valor com o qual deve ser deslocado o último corte. Campo de introdução 0 a 99999.9999
- Fator de sobreposição de trajetória máximo Q370: Corte lateral k máximo O TNC calcula o corte lateral real a partir do 2.º comprimento de lado (Q219) e do raio da ferramenta de modo a que a maquinagem seja feita com corte lateral constante. Se introduziu na tabela de ferramentas um raio R2 (p ex. raio da placa na utilização de uma fresa composta), o TNC diminui correspondentemente o corte lateral. Campo de introdução 0,1 a 1,9999, em alternativa PREDEF

- Avanço de fresagem Q207: velocidade de deslocação da ferramenta ao fresar em mm/min. Campo de introdução 0 a 99999,9999, em alternativa FAUTO, FU, FZ
- Avanço de acabamento Q385: velocidade de deslocação da ferramenta ao fresar o último corte em mm/min. Campo de introdução 0 a 99999,9999, em alternativa FAUTO, FU, FZ
- Avanço de posicionamento prévio Q253: velocidade de deslocação da ferramenta ao aproximar-se da posição inicial e na deslocação para a linha seguinte em mm/min; quando se desloca transversalmente no material (Q389=1), o TNC desloca o corte transversal com avanço de fresagem Q207. Campo de introdução 0 a 99999,9999, em alternativa FMAX, FAUTO, PREDEF
- Distância de segurança Q200 (incremental): distância entre a ponta da ferramenta e a posição inicial no eixo da ferramenta. Se fresa com estratégia de maquinagem Q389=2, o TNC desloca-se na distância de segurança sobre a profundidade de corte atual para o ponto inicial na linha seguinte. Campo de introdução 0 a 99999,9999, em alternativa PREDEF
- Distância de segurança do lado Q357 (incremental): distância lateral da ferramenta à peça de trabalho na aproximação da primeira profundidade de corte e a distância em que é deslocado o corte lateral na estratégia de maquinagem Q389=0 e Q389=2. Campo de introdução 0 a 99999.9999
- 2.ª distância de segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999, em alternativa PREDEF

Exemplo: Blocos NC

71 CYCL DEF 23	2 FRESA PLANA
Q389=2	;ESTRATÉGIA
Q225=+10	;PONTO INICIAL 1.º EIXO
Q226=+12	;PONTO INICIAL 2.º EIXO
Q227=+2,5	;PONTO INICIAL 3.º EIXO
Q386=-3	;PONTO FINAL 3.EIXO
Q218=150	;1.º COMPRIMENTO DE LADO
Q219=75	;COMPRIMENTO LADO 2
Q202=2	;PROFUNDIDADE MÁX. DE CORTE
Q369=0.5	;MEDIDA EXCEDENTE PROFUNDIDADE
Q370=1	;SOBREPOSIÇÃO MÁX. DE TRAJETÓRIA
Q207=500	;AVANÇO DE FRESAGEM
Q385=800	;AVANÇO DE ACABAMENTO
Q253=2000	;AVANÇO POSICION. PRÉVIO
Q200=2	;DISTÂNCIA DE SEGURANÇA
Q357=2	;DISTÂNCIA DE SEGURANÇA LADO
Q204=2	;2.ª DISTÂNCIA DE SEGURANÇA

10.6 Exemplos de programação

Exemplo: facejar

O BEGIN PGM C230 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z+0	Definição do bloco
2 BLK FORM 0.2 X+100 Y+100 Z+40	
3 TOOL DEF 1 L+0 R+5	Definição da ferramenta
4 TOOL CALL 1 Z S3500	Chamada da ferramenta
5 L Z+250 RO FMAX	Retirar a ferramenta
6 CYCL DEF 230 FACEJAR	Definição do ciclo de facejar
Q225=+0 ;PONTO INICIAL 1.º EIXO	
Q226=+0 ;PONTO INICIAL 2.º EIXO	
Q227=+35 ;PONTO INICIAL 3.º EIXO	
Q218=100 ;1.º COMPRIMENTO DE LADO	
Q219=100 ;2.º COMPRIMENTO DE LADO	
Q240=25 ;QUANTIDADE DE CORTES	
Q206=250 ;AVANÇO F CORTE EM Profundidade	
Q207=400 ;FRESAR F	
Q209=150 ;F TRANSVERSAL	
Q200=2 ;DIST. SEGURANÇA	

i

7 L X+-25 Y+0 R0 FMAX M3	Posicionamento prévio perto do ponto inicial
8 CYCL CALL	Chamada de ciclo
9 L Z+250 RO FMAX M2	Retirar ferramenta, fim do programa
10 END PGM C230 MM	

10.6 Exemplos de programação

i

Ciclos: Conversões de coordenadas

11.1 Princípios básicos

Resumo

Com as conversões de coordenadas, o TNC pode executar um contorno programado uma vez em diversos pontos da peça de trabalho com posição e dimensão modificadas. O TNC dispõe dos seguintes ciclos de conversão de coordenadas:

Ciclo	Softkey	Página
7 PONTO ZERO Deslocar contornos diretamente no programa ou a partir de tabelas de ponto zero	7	Página 283
247 MEMORIZAÇÃO DO PONTO DE REFERÊNCIA Memorizar o ponto de referência durante a execução do programa	247	Página 290
8 ESPELHAR Espelhar contornos	C S	Página 291
10 ROTAÇÃO Rodar contornos no plano de maquinagem	10	Página 293
11 FACTOR DE ESCALA reduzir ou ampliar contornos	11	Página 295
26 FACTOR DE ESCALA ESPECÍFICO DO EIXO Reduzir ou ampliar contornos com fatores de escala específicos do eixo	26 CC	Página 297
19 PLANO DE MAQUINAGEM Executar maquinagens no sistema de coordenadas inclinado para máquinas com ferramenta basculante e/ou mesas rotativas	19	Página 299

Ativação da conversão de coordenadas

Início da ativação: uma conversão de coordenadas ativa-se a partir da sua definição – não é, portanto, chamada. A conversão atua até ser anulada ou definida uma nova.

Anular uma conversão de coordenadas:

- Definir o ciclo com os valores para o comportamento básico, p.ex. fator de escala 1.0
- Executar as funções auxiliares M2, M30 ou o bloco END PGM (depende do parâmetro da máquina 7300)
- Selecionar novo programa
- Programar a função auxiliar M142 Apagar informações modais de programa

11.2 Deslocação do PONTO ZERO (Ciclo 7, DIN/ISO: G54)

Ativação

Com DESLOCAÇÃO DO PONTO ZERO, é possível repetir maquinagens em qualquer ponto da peça de trabalho.

Após uma definição de ciclo DESLOCAÇÃO DO PONTO ZERO, todas as introduções de coordenadas referem-se ao novo ponto zero. O TNC visualiza a deslocação em cada eixo na apresentação adicional de estados. É também permitida a introdução de eixos rotativos

Anular

- Chamar a deslocação para as coordenadas X=0; Y=0, etc., mediante nova definição de ciclo
- Utilizar a função TRANS DATUM RESET
- Chamar a deslocação a partir da tabela de pontos zero chamar X=0; Y=0 etc..

Gráfico

Se, depois de uma deslocação do ponto zero, se programar uma nova BLK FORM, com o parâmetro de máquina 7310 é possível decidir se a BLK FORM se refere ao novo ou ao antigo ponto zero. Na maquinagem de várias unidades, o TNC pode representar cada uma delas graficamente.

Parâmetros de ciclo

7

Deslocação: introduzir as coordenadas do novo ponto zero; os valores absolutos referem-se ao ponto zero da peça de trabalho determinado através da memorização do ponto de referência; os valores incrementais referem-se sempre ao último ponto zero válido – este pode já ser deslocado. Campo de introdução até 6 eixos NC, respetivamente, de -99999,9999 a 99999,9999

Exemplo: Blocos NC

13	CYCL	DEF	7.0	PONTO	ZERO		
14	CYCL	DEF	7.1	X+60			
16	CYCL	DEF	7.3	Z - 5			
15	CYCL	DEF	7.2	Y+40			

11.3 Deslocação do PONTO ZERO com tabelas de pontos zero (ciclo 7, DIN/ISO: G53)

Ativação

Introduzem-se tabelas de pontos zero, p.ex., em

- passos de maquinagem que se repetem com frequência em diferentes posições da peça de trabalho ou
- utilização frequente da mesma deslocação do ponto zero

Dentro dum programa, podem programar-se pontos zero diretamente na definição do ciclo, como também chamá-los de uma tabela de pontos zero.

Anular

- Chamar a deslocação a partir da tabela de pontos zero chamar X=0; Y=0 etc..
- Chamar a deslocação para as coordenadas X=0; Y=0, etc., diretamente com uma definição de ciclo
- Utilizar a função TRANS DATUM RESET

Gráfico

Se, depois de uma deslocação do ponto zero, se programar uma nova BLK FORM, com o parâmetro de máquina 7310 é possível decidir se a BLK FORM se refere ao novo ou ao antigo ponto zero. Na maquinagem de várias unidades, o TNC pode representar cada uma delas graficamente.

Apresentação de estados

Na apresentação de estados suplementar, são visualizados os seguintes dados a partir da tabela de pontos zero:

- Nome e caminho da tabela de pontos zero ativada
- Número do ponto zero ativado
- Comentário a partir da coluna DOC do número do ponto zero ativado

Ter em atenção ao programar!

Atenção, perigo de colisão!

Os pontos zero da tabela de pontos zero referem-se **sempre e exclusivamente** ao ponto de referência atual (preset).

O parâmetro de máquina 7475, com o qual foi determinado anteriormente se os pontos zero se referem ao ponto zero da máquina ou ao ponto zero da peça de trabalho, tem ainda apenas uma função de segurança. Se estiver fixado MP7475 = 1, o TNC emite uma mensagem de erro se for chamada uma deslocação de ponto zero a partir de uma tabela de pontos zero.

As tabelas de pontos zero do TNC 4xx, cujas coordenadas se referem ao ponto zero da máquina (MP7475 = 1), não devem ser utilizadas no iTNC 530.

Se aplicar deslocações de ponto zero com tabelas de ponto zero, utilize a função **SEL TABLE**, para ativar a tabela de pontos zero pretendida a partir do programa NC.

Quando trabalhar sem **SEL-TABLE** tem que ativar a tabela de pontos zero pretendida antes do teste do programa ou da execução do programa (também válido para o gráfico de programação):

- Selecionar a tabela pretendida para o teste do programa num modo de funcionamento de teste do programa com a gestão de ficheiros: a tabela fica com o estado S
- Selecionar a tabela pretendida para o teste do programa num modo de funcionamento de execução do programa com a gestão de ficheiros: a tabela fica com o estado M

Os valores das coordenadas das tabelas de ponto zero são exclusivamente absolutos.

Só se pode acrescentar novas linhas no fim da tabela.

Parâmetros de ciclo

Deslocação: introduzir o número do ponto zero a partir da tabela de pontos zero, ou o parâmetro Q; se se utilizar um parâmetro Q, o TNC ativa o número de ponto zero desse parâmetro Q. Campo de introdução de 0 a 9999

Selecionar a Tabela de Pontos Zero no programa NC

Com a função **SEL TABLE**, seleciona-se a Tabela de Pontos Zero à qual o TNC vai buscar os pontos zero:

Selecionar as funções para a chamada do programa: premir a tecla PGM CALL

▶ Premir a softkey TABELA DE PONTOS ZERO

- Premir a softkey SELEÇÃO DE JANELA: o TNC realça uma janela onde se pode selecionar a tabela de pontos zero desejada
- Selecionar a tabela de pontos zero desejada com as teclas de setas ou clicando com o rato, confirmar com a tecla ENT: o TNC regista o nome de caminho completo no bloco SEL TABLE
- ▶ Terminar a função com a tecla END

Em alternativa, também é possível introduzir o nome da tabela ou o nome de caminho completo da tabela que se pretende chamar diretamente através do teclado.

Programar o bloco **SEL TABLE** antes do ciclo 7 Deslocação do ponto zero.

Uma tabela de pontos zero selecionada com **SEL TABELA** permanece ativa até se selecionar com **SEL TABELA** ou com PGM MGT uma outra tabela de pontos zero.

Com a função **TRANS DATUM TABLE** podem-se definir tabelas de ponto zero e números de ponto zero num bloco NC (ver o Manual do Utilizador de Diálogo em Texto Claro).

Exemplo: Blocos NC

77 CYCL DEF 7.0 PONTO ZERO 78 CYCL DEF 7.1 #5

Editar a tabela de pontos zero no modo de funcionamento Memorização/Edição do programa

PGM MGT Depois de ter alterado um valor numa tabela de pontos zero, tem que memorizar as alterações com a tecla ENT. Caso contrário, as alterações podem não ser consideradas na maquinagem de um programa.

A tabela de pontos zero é selecionada no modo de funcionamento **Memorização/Edição do programa**

- Chamar Gestão de Ficheiros: premir a tecla PGM MGT
- Visualizar tabelas de pontos zero: premir as softkeys SELECCIONAR TIPO e MOSTRAR. D
- Selecionar a tabela pretendida ou introduzir um novo nome de ficheiro
- Editar um ficheiro A barra de softkeys indica as seguintes funções:

Função	Softkey
Selecionar o início da tabela	INICIO
Selecionar o fim da tabela	FIM
Passar para a página de cima	
Passar para a página da frente	
Acrescentar linha (só é possível no fim da tabela)	INSERIR LINHA
Apagar linha	APAGAR LINHA
Aceitar a linha introduzida e saltar para a linha seguinte	PROXIMA LINHA
Acrescentar a quantidade de linhas (pontos zero) possíveis de se introduzir no fim da tabela	MOVER-SE LINHAS N NO FINAL

Editar a tabela de pontos zero num modo de funcionamento de execução do programa

No modo de funcionamento de execução dum programa, é possível selecionar a respetiva tabela de pontos zero ativada. Para isso, prima a softkey TABELA DE PONTOS ZERO Estão à disposição as mesmas funções de edição que no modo de funcionamento **Memorização/Edição de Programa**

Aceitar valores reais na tabela de pontos zero

Com a tecla "Aceitar posição real" pode-se aceitar a posição atual da ferramenta ou as últimas posições apalpadas na tabela de pontos zero:

Posicionar o campo de introdução sobre a linha e a coluna onde se pretende aceitar uma posição

TODOS OS VALORES

> VALOR ACTUAL

- Selecionar aceitar a função de posição real: o TNC pergunta numa janela aberta se quer aceitar a posição atual da ferramenta ou os últimos valores apalpados
- Selecionar a função pretendida com teclas de setas e confirmar com a tecla ENT
- Aceitar valores em todos os eixos: premir a softkey TODOS OS VALORES, ou
- Aceitar o valor no eixo, onde se encontra o campo de introdução: premir a softkey VALOR ATUAL

Configurar a tabela de pontos zero

Na segunda e terceira barra de softkeys é possível determinar, para cada tabela de pontos zero, os eixos para os quais se pretende definir pontos zero. De forma standard, estão todos os eixos ativados. Quando quiser desativar um eixo, fixe a softkey do eixo respetivo em OFF. O TNC apaga a coluna correspondente na tabela de pontos zero.

Se não se quiser definir nenhum ponto zero para um eixo ativado, premir a tecla NO ENT. O TNC regista então um traço na coluna respetiva.

Execucao continua	Edicao f Translad	tabela cao?	ponto-:	zero		
Distribution Ultime 0 1 40 0 1 40 2 12 12 3 149 50 2 250 50 3 120 60 4 20 120 6 -250 50 0 -1706 120 11 +0 11 12 +0 12 13 +0 12 1401 13 +0 1500 12 +0	4(1)=P0 V +0 -20 -20 +12,5 +12,5 +22,5 -240 +0 +0 +0 +0 +0 +0 +0 +0 +0	331 + +0 + 0 + 0 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	***	
INICIO	TIM PAGINA	PAGINA	INSERIR	APAGAR	PROXIMA	

Sair da tabela de pontos zero

Visualizar outro tipo de ficheiro na gestão de ficheiros e selecionar o ficheiro pretendido.

11.4 MEMORIZAR PONTO DE REFERÊNCIA (Ciclo 247, DIN/ISO: G247)

Ativação

Com o ciclo MEMORIZAR PONTO DE REFERÊNCIA, é possível ativar como novo ponto de referência um preset definido numa tabela de preset.

Depois duma definição de ciclo MEMORIZAR PONTO DE REFERÊNCIA todas as introduções de coordenadas e deslocações do ponto zero (absolutas e incrementais) referem-se ao novo preset.

Apresentação de estado

Na apresentação de estados, o TNC indica o número Preset ativo junto ao símbolo de ponto de referência.

Ter em atenção antes de programar!

Aquando da ativação de um ponto de referência da tabela de preset, o TNC anula uma deslocação de ponto zero ativo.

O TNC memoriza o Preset somente nos eixos que estão definidos com valores na tabela de preset. O ponto de referência de eixos, que estão assinalados com – permanece inalterado.

Se se ativar o número de preset 0 (linha 0), ativar o último ponto de referência fixado num modo de funcionamento manual.

No modo de funcionamento Teste PGM o ciclo 247 não está ativado.

Parâmetros de ciclo

Número para ponto de referência?: indicar o número do ponto de referência a partir da tabela de preset que deve ser ativado. Campo de introdução de 0 a 65535

Exemplo: Blocos NC

13 CYCL DEF 247 MEMORIZAR PONTO DE REFERÊNCIA Q339=4 ;NÚMERO DE PONTO DE REFERÊNCIA

11.5 ESPELHAR (Ciclo 8, DIN/ISO: G28)

Ativação

O TNC pode realizar uma maquinagem de espelhamento no plano de maquinagem.

O espelhamento atua a partir da sua definição no programa. Também atua no modo de funcionamento Posicionamento com Introdução Manual. O TNC mostra na visualização de estado adicional os eixos espelhados ativados.

- Se se espelhar só um eixo, modifica-se o sentido de deslocação da ferramenta. Isto não é válido nos ciclos de maquinagem.
- Se se espelharem dois eixos, o sentido de deslocação mantém-se.
- O resultado do espelhamento depende da posição do ponto zero:
- O ponto zero situa-se sobre o contorno que se pretende espelhar: o elemento é espelhado diretamente no ponto zero;
- O ponto zero situa-se fora do contorno que se pretende espelhar: o elemento desloca-se adicionalmente

Anular

Programar de novo o ciclo ESPELHAR com a introdução NO ENT.

Ter em atenção ao programar!

\frown
\smile

Quando se espelha só um eixo, modifica-se o sentido de deslocação nos ciclos de fresagem com números 200. Exceção: o ciclo 208, em que se mantém o ciclo de deslocação definido.

Parâmetros de ciclos

Eixo espelhado?: introduzir o eixo que se pretende espelhar; podem-se espelhar todos os eixos incluindo os eixos rotativos - exceto o eixo do mandril e o respetivo eixo secundário. É permitido introduzir, no máximo, três eixos: Campo de introdução até 3 eixos NC X, Y, Z, U, V, W, A, B, C **Exemplo: Blocos NC**

79 CYCL DEF 8.0 ESPELHAR

80 CYCL DEF 8.1 X Y U

11.6 ROTAÇÃO (Ciclo 10, DIN/ISO: G73)

Ativação

Dentro dum programa pode-se rodar o sistema de coordenadas no plano de maquinagem segundo o ponto zero ativado.

A ROTAÇÃO ativa-se a partir da sua definição no programa. Também atua no modo de funcionamento Posicionamento com Introdução Manual. O TNC visualiza o ângulo de rotação ativado na apresentação de estados adicional.

Eixo de referência para o ângulo de rotação:

- Plano X/Y eixo X
- Plano Y/Z eixo Y
- Plano Z/X eixo Z

Anular

Programa-se de novo o ciclo ROTAÇÃO indicando o ângulo de rotação.

Ter atenção ao programar!

O TNC anula uma correção de raio ativada através da definição do ciclo 10. Se necessário, programar de novo a correção do raio.

Depois de ter definido o ciclo 10, desloque os dois eixos do plano de maquinagem para poder ativar a rotação.

Parâmetros de ciclo

Rotação: introduzir o ângulo de rotação em graus (°). Campo de introdução -360.000° a +360.000° (valor absoluto ou incremental)

Exemplo: Blocos NC

12 CALL LBL 1	
13 CYCL DEF 7.0 PONTO ZERO	
14 CYCL DEF 7.1 X+60	
15 CYCL DEF 7.2 Y+40	
16 CYCL DEF 10.0 ROTAÇÃO	
17 CYCL DEF 10.1 ROT+35	
18 CALL LBL 1	

11.7 FATOR DE ESCALA (Ciclo 11, DIN/ISO: G72)

Ativação

O TNC pode ampliar ou reduzir contornos dentro dum programa. É possível, assim, diminuir ou aumentar o tamanho da peça de trabalho.

O FACTOR DE ESCALA fica ativado a partir da sua definição no programa. Também se ativa no modo de funcionamento Posicionamento com Introdução Manual. O TNC visualiza o fator de escala ativado na visualização de estados adicional.

O fator de escala atua

- no plano de maquinagem, ou simultaneamente nos três eixos de coordenadas (depende do parâmetro de máquina 7410)
- nas cotas indicadas nos ciclos
- também nos eixos paralelos U,V,W

Condições

Antes da ampliação ou redução, o ponto zero deve ser deslocado para um lado ou esquina do contorno.

Ampliar: SCL maior do que 1 a 99,999 999

Reduzir: SCL menor do que 1 a 0,000 001

Anular

Programar de novo o ciclo FACTOR DE ESCALA com fator de escala 1

Parâmetros de ciclo

Fator?: introduzir o fator SCL (em inglês: scaling); o TNC multiplica as coordenadas e raios pelo fator SCL (tal como descrito em "Ativação"). Campo de introdução de 0,000000 a 99,999999

Exemplo: Blocos NC

11 CALL LBL 1
12 CYCL DEF 7.0 PONTO ZERO
13 CYCL DEF 7.1 X+60
14 CYCL DEF 7.2 Y+40
15 CYCL DEF 11.0 FATOR DE ESCALA
16 CYCL DEF 11.1 SCL 0.75
17 CALL LBL 1

11.8 FACTOR DE ESCALA ESPECÍF.EIXO (Ciclo 26)

Ativação

Com o ciclo 26, pode ter em consideração os fatores de diminuição ou aumento específicos ao eixo.

O FACTOR DE ESCALA fica ativado a partir da sua definição no programa. Também se ativa no modo de funcionamento Posicionamento com Introdução Manual. O TNC visualiza o fator de escala ativado na visualização de estados adicional.

Anular

Programar de novo o ciclo FATOR DE ESCALA com fator 1 para o eixo respetivo

Ter em atenção ao programar!

Não é possível prolongar ou reduzir com diferentes escalas os eixos de coordenadas com posições para trajetórias circulares.

Pode-se introduzir para cada eixo de coordenadas um fator de escala específico de cada eixo

Além disso, também se pode programar as coordenadas dum centro para todos os fatores de escala.

O contorno é prolongado a partir do centro, ou reduzido em direção a este, quer dizer, não é necessário realizá-lo com o ponto zero atual - como no ciclo 11 FACTOR DE ESCALA.

Parâmetros de ciclo

- Eixo e fator: selecionar por softkey o(s) eixo(s) de coordenadas e introduzir o(s) fator(es) de escala da ampliação ou redução específicos de cada eixo. Campo de introdução de 0,000000 a 99,999999
- Coordenadas do centro: centro da ampliação ou redução específica de cada eixo. Campo de introdução de -99999,9999 a 99999,9999

Exemplo: Blocos NC

25 CALL LBL 1
26 CYCL DEF 26.0 FATOR ESCALA ESPECÍF.EIXO
27 CYCL DEF 26.1 X 1.4 Y 0.6 CCX+15 CCY+20
28 CALL LBL 1

11.9 PLANO DE MAQUINAGEM (ciclo 19, DIN/ISO: G80, opção de software 1)

Ativação

No ciclo 19, define-se a posição do plano de maquinagem – ou seja, a posição do eixo da ferramenta referente ao sistema de coordenadas fixo da máquina – com a introdução de ângulos de inclinação. Pode determinar-se a posição do plano de maquinagem de duas maneiras:

- Introduzir diretamente a posição dos eixos basculantes
- Descrever a posição do plano de maquinagem com um máx. de três rotações (ângulo sólido) do sistema de coordenadas fixo da máquina Obtém-se o ângulo sólido que se vai introduzir, fixando um corte perpendicular através do plano de maquinagem inclinado, e considerando o corte a partir do eixo em redor do qual se pretende bascular. Com dois ângulos sólidos. já está claramente definida no espaço qualquer das posições da ferramenta.

Tenha em atenção que a posição do sistema de coordenadas inclinado e, assim, também os movimentos de deslocação no sistema inclinado dependem da forma como se descreveu o plano inclinado.

Quando se programa a posição do plano de maquinagem por meio de um ângulo sólido, o TNC calcula automaticamente as posições angulares necessárias dos eixos basculantes, e coloca-as nos parâmetros de Q120 (eixo A) até Q122 (eixo C).

Atenção, perigo de colisão!

Dependendo da configuração da sua máquina, são matematicamente possíveis duas soluções (posições de eixo) numa definição de ângulo sólido. Através dos testes correspondentes, verifique na sua máquina qual a posição de eixo escolhida pelo software do TNC.

Se dispuser da opção de software DMC, pode fazer com que se visualize no programa de teste a respetiva posição de eixo na vista PROGRAMA+CINEMÁTICA (ver o Manual do Utilizador de Diálogo em Texto Claro, **Supervisão de** colisão dinâmica).

A sequência das rotações para o cálculo da posição do plano é fixa: o TNC roda primeiro o eixo A, depois o eixo B, e finalmente o eixo C.

O ciclo 19 ativa-se a partir da sua definição no programa. Logo que se desloca um eixo no sistema inclinado, ativa-se a correção para esse eixo. Para se ativar a compensação em todos os eixos, é necessário deslocá-los todos.

Se tiver fixado a função **Inclinação na execução do programa** no modo de funcionamento manual em **ativo**, o valor angular programado do ciclo 19 PLANO DE MAQUINAGEM será sobrescrito.

Ter em atenção ao programar!

As funções para a inclinação do plano de maquinagem são adaptadas ao TNC e à máquina pelo fabricante da máquina. Em determinadas cabeças basculantes (mesas basculantes), o fabricante da máquina determina se o ângulo programado no ciclo é interpretado pelo TNC como coordenadas dos eixos rotativos, ou como ângulo matemático de um plano inclinado. Consulte o manual da sua máquina.

Dado que valores de eixo rotativo são sempre interpretados como valores inalterados, deve definir sempre os três ângulos no espaço mesmo quando um ou mais ângulos forem igual a 0.

A inclinação do plano de maquinagem realiza-se sempre em redor do ponto zero ativado.

Quando se utiliza o ciclo 19 com o M120 ativo, o TNC anula automaticamente a correção do raio e também a função M120.

Atenção, perigo de colisão!

Prestar atenção a que o último ângulo definido seja introduzido menor que 360º!

Parâmetros de ciclo

Eixo e ângulo de rotação?: introduzir eixo rotativo com respetivo ângulo de rotação; programar os eixos de rotação A, B e C com softkeys. Campo de introdução de -360,000 a 360,000

Se o TNC posicionar automaticamente os eixos rotativos, é possível introduzir ainda os seguintes parâmetros:

- Avanço? F=: velocidade de deslocação do eixo rotativo em posicionamento automático. Campo de introdução de 0 a 99999,999
- Distância de segurança ?(incremental): o TNC posiciona a cabeça basculante de forma a que não se modifique relativamente à peça de trabalho a posição resultante do prolongamento da ferramenta na distância de segurança. Campo de introdução de 0 a 99999,9999

Atenção, perigo de colisão!

Tenha em conta que, no ciclo 19, a distância de segurança não se refere à aresta superior da peça de trabalho (como é o caso nos ciclos de maquinagem), mas ao ponto de referência ativo!

Anular

Para se anularem os ângulos de inclinação, definir de novo o ciclo PLANO DE MAQUINAGEM e introduzir 0° para todos os eixos rotativos. Seguidamente, definir outra vez o ciclo PLANO DE MAQUINAGEM, e confirmar a pergunta de diálogo com a tecla NO ENT. Desta forma, a função fica inativa.

Posicionar eixos rotativos

O fabricante da máquina determina se o ciclo 19 posiciona automaticamente os eixos rotativos, ou se é preciso posicionar manualmente com antecedência os eixos rotativos no programa. Consulte o manual da sua máquina.

Posicionar os eixos rotativos manualmente

Quando o ciclo 19 não posiciona automaticamente os eixos rotativos, estes devem ser posicionados com um bloco L separado de acordo com a definição do ciclo.

Se se trabalhar com ângulos de eixo, é possível definir os valores dos eixos diretamente no bloco L. Caso se trabalhe com ângulo sólido, utilizar os parâmetros Q descritos pelo ciclo 19 **Q120** (valor do eixo A), **Q121** (valor do eixo B) e **Q122** (valor do eixo C).

Exemplo de blocos NC:

10 L Z+100 RO FMAX	
11 L X+25 Y+10 RO FMAX	
12 CYCL DEF 19.0 PLANO DE MAQUINAGEM	Definir o ângulo sólido para o cálculo da correção
13 CYCL DEF 19.1 A+0 B+45 C+0	
14 L A+Q120 C+Q122 RO F1000	Posicionar os eixos rotativos com os valores calculados pelo ciclo 19
15 L Z+80 RO FMAX	Ativar a correção do eixo do mandril
16 L X-8.5 Y-10 RO FMAX	Ativar a correção plano de maquinagem

No posicionamento manual, utilize sempre, por princípio, as posições de eixo rotativo guardadas nos parâmetros Q Q120 a Q122!

Evite funções como M94 (redução de ângulo), para não obter inconsistências entre as posições reais e nominais dos eixos rotativos durante as chamadas múltiplas.

Posicionar automaticamente os eixos rotativos

Quando o ciclo 19 posiciona automaticamente os eixos rotativos, é válido:

- O TNC só pode posicionar automaticamente eixos controlados.
- Na definição do ciclo, é ainda preciso introduzir, para além dos ângulos de inclinação, a distância de segurança e o avanço com que são posicionados os eixos de inclinação.
- Utilizar apenas ferramentas previamente ajustadas (o comprimento total das ferramentas deve estar definido).
- No processo de inclinação, a posição do extremo da ferramenta permanece invariável em relação à peça de trabalho.
- O TNC efetua o processo de inclinação com o último avanço programado. O máximo avanço possível depende da complexidade da cabeça basculante (mesa basculante)

Exemplo de blocos NC:

10 L Z+100 RO FMAX	
11 L X+25 Y+10 RO FMAX	
12 CYCL DEF 19.0 PLANO DE MAQUINAGEM	Definir o ângulo para o cálculo da correção
13 CYCL DEF 19.1 A+0 B+45 C+0 F5000 DIST50	Definir adicionalmente avanço e distância
14 L Z+80 RO FMAX	Ativar a correção do eixo do mandril
15 L X-8.5 Y-10 RO FMAX	Ativar a correção plano de maquinagem

Visualização de posições num sistema inclinado

As posições visualizadas (NOMINAL e REAL) e a visualização do ponto zero na apresentação de estados adicional, depois da ativação do ciclo 19, referem-se ao sistema de coordenadas inclinado. A posição visualizada já não coincide, depois da definição do ciclo com as coordenadas da última posição programada antes do ciclo 19.

Supervisão do espaço de trabalho

O TNC comprova, no sistema de coordenadas inclinado, apenas os limites dos eixos que se estão a mover. Se necessário, o TNC emite uma mensagem de erro.

Posicionamento no sistema inclinado

Com a função auxiliar M130, também se podem alcançar posições no sistema inclinado que se refiram ao sistema de coordenadas não inclinado.

Também os posicionamentos com blocos lineares que se referem ao sistema de coordenadas da máquina (blocos com M91 ou M92), podem ser executados em plano de maquinagem inclinado. Limitações:

- O posicionamento realiza-se sem correção do comprimento
- O posicionamento realiza-se sem correção da geometria da máquina
- Não é permitida a correção do raio da ferramenta

Combinação com outros ciclos de conversão de coordenadas

Em caso de combinação de ciclos de conversão de coordenadas, há que ter-se em conta que a inclinação do plano de maquinagem efetuase sempre no ponto zero ativado. É possível realizar uma deslocação do ponto zero antes de se ativar o ciclo 19: neste caso, desloca-se o "sistema de coordenadas fixo da máquina".

Se se deslocar o ponto zero antes de se ativar o ciclo 19, está-se a deslocar o "sistema de coordenadas inclinado".

Importante: ao anular os ciclos, proceda na ordem inversa da utilizada na definição:

- 1. ativar a deslocação do ponto zero
- 2. Ativar a inclinação do plano de maquinagem
- 3. Ativar a rotação
- ...

Maquinagem da peça de trabalho

- ...
- 1. Anular a rotação
- 2. Anular a inclinação do plano de maquinagem
- 3. Anular a deslocação do ponto zero

Medição automática no sistema inclinado

Com os ciclos de medição do TNC, é possível medir peças de trabalho no sistema inclinado. Os resultados de medição são memorizados pelo TNC em parâmetros Q, que podem ser utilizados posteriormente (p.ex. emissão dos resultados de medições para uma impressora).

Normas para trabalhar com o ciclo 19 PLANO DE MAQUINAGEM

1 Elaborar o programa

- Definir a ferramenta (não é preciso, se estiver ativado TOOL.T), e introduzir o comprimento da ferramenta
- Chamada da ferramenta
- Retirar o eixo do mandril de forma a que, ao inclinar, não se possa produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo de fixação)
- Se necessário, posicionar o(s) eixo(s) rotativo(s) com o bloco L no respetivo valor angular (depende de um parâmetro de máquina)
- Se necessário, ativar a deslocação do ponto zero
- Definir o ciclo 19 PLANO DE MAQUINAGEM; introduzir os valores angulares dos eixos rotativos
- Deslocar todos os eixos principais (X, Y, Z) para ativar a correção
- Programar a maquinagem como se fosse para ser efetuada no plano não inclinado
- Definir o ciclo 19 PLANO DE MAQUINAGEM com outros ângulos, para se executar a maquinagem numa outra posição de eixo. Neste caso, não é necessário anular o ciclo 19. É possível definir diretamente as novas posições angulares
- Anular o ciclo 19 PLANO DE MAQUINAGEM, introduzir 0° para todos os eixos rotativos
- Desativar a função PLANO DE MAQUINAGEM; definir de novo o ciclo 19, confirmar a pergunta de diálogo com NO ENT
- Se necessário, anular a deslocação do ponto zero
- Se necessário, posicionar os eixos rotativos na posição 0°

2 Fixar a peça de trabalho

3 preparações no modo de funcionamento Posicionamento com introdução manual

Posicionar o(s) eixo(s) rotativo(s) para memorização do ponto de referência no valor angular respetivo. O valor angular orienta-se segundo a superfície de referência selecionada na peça de trabalho.

4 preparações no modo de funcionamento Funcionamento manual

Memorizar a função de plano de maquinagem inclinado com a softkey 3D-ROT em ACTIVADO para o modo de funcionamento manual; em eixos não comandados, introduzir no menu os valores angulares

Nos eixos não controlados, os valores angulares introduzidos devem coincidir com a posição real do(s) eixo(s) senão o TNC calcula mal o ponto de referência.

5 Memorizar o ponto de referência

- De forma manual, por apalpação como no sistema não inclinado
- Controlado com o apalpador 3-D da HEIDENHAIN (ver manual do utilizador Ciclos do apalpador, capítulo 2)
- Automaticamente com o apalpador 3-D da HEIDENHAIN (ver manual do utilizador Ciclos do apalpador, capítulo 3)

6 Iniciar o programa de maquinagem no modo de funcionamento Execução contínua do Programa

7 Modo de funcionamento manual

Fixar a função Inclinar plano de maquinagem com a softkey 3D-ROT em INACTIVO. Para todos os eixos rotativos, registar no menu o valor angular 0° .

11.10 Exemplos de programação

Exemplo: ciclos de conversão de coordenadas

Execução do programa

- Conversão de coordenadas no programa principal
- Maquinagem no subprograma

O BEGIN PGM CONVCOORD MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Definição do bloco
2 BLK FORM 0.2 X+130 Y+130 Z+0	
3 TOOL DEF 1 L+0 R+1	Definição da ferramenta
4 TOOL CALL 1 Z S4500	Chamada da ferramenta
5 L Z+250 RO FMAX	Retirar a ferramenta
6 CYCL DEF 7.0 PONTO ZERO	Deslocação do ponto zero para o centro
7 CYCL DEF 7.1 X+65	
8 CYCL DEF 7.2 Y+65	
9 CALL LBL 1	Chamada da fresagem
10 LBL 10	Fixar uma marca para a repetição parcial do programa
11 CYCL DEF 10.0 ROTAÇÃO	Rotação a 45° em incremental
12 CYCL DEF 10.1 ROTAÇ.INCR.+45	
13 CALL LBL 1	Chamada da fresagem
14 CALL LBL 10 REP 6/6	Retrocesso ao LBL 10; seis vezes no total
15 CYCL DEF 10.0 ROTAÇÃO	Anular a rotação
16 CYCL DEF 10.1 ROT+0	
17 TRANS DATUM RESET	Anular a deslocação do ponto zero

18 L Z+250 RO FMAX M2	Retirar ferramenta, fim do programa
19 LBL 1	Subprograma 1
20 L X+0 Y+0 R0 FMAX	Determinação da fresagem
21 L Z+2 RO FMAX M3	
22 L Z-5 RO F200	
23 L X+30 RL	
24 L IY+10	
25 RND R5	
26 L IX+20	
27 L IX+10 IY-10	
28 RND R5	
29 L IX-10 IY-10	
30 L IX-20	
31 L IY+10	
32 L X+0 Y+0 R0 F5000	
33 L Z+20 RO FMAX	
34 LBL 0	
35 END PGM CONV.CONT MM	

11.10 Exemplos de programação

Ciclos: Funções especiais

12.1 Princípios básicos

Resumo

O TNC disponibiliza diferentes ciclos para as seguintes aplicações especiais:

Ciclo	Softkey	Página
9 TEMPO DE ESPERA	۳	Página 313
12 CHAMADA DO PROGRAMA	12 PGM CALL	Página 314
13 ORIENTAÇÃO DO MANDRIL	¹³ ,++	Página 316
32 TOLERÂNCIA	32 2000 T	Página 317
225 GRAVAÇÃO de textos	ABC	Página 321
290 TORNEAMENTO DE INTERPOLAÇÃO (opção de software)	290	Página 326

12.2 TEMPO DE ESPERA (Ciclo 9, DIN/ISO: G04)

Função

A execução do programa é parada durante o TEMPO DE ESPERA. Um tempo de espera pode servir, por exemplo, para a rotura de apara

O ciclo ativa-se a partir da sua definição no programa. Não afeta os estados (permanentes) que atuam de forma modal, como p.ex. a rotação do mandril.

Exemplo: Blocos NC

89	CYCL	DEF	9.0	TEMPO	DE ESPERA
90	CYCL	DEF	9.1	TEMPO	ESPERA 1.5

Parâmetros de ciclo

empo de espera em segundos: introduzir o tempo de espera em segundos. Campo de introdução de 0 a 3600 s (1 hora) em passos de 0,001 s

12.3 CHAMADA DO PROGRAMA (Ciclo 12, DIN/ISO: G39)

Função do ciclo

Podem atribuir-se quaisquer programas de maquinagem como, p.ex. ciclos especiais de furar ou módulos geométricos a um ciclo de maquinagem. Este programa é chamado como se fosse um ciclo.

Ter em atenção ao programar!

O programa chamado tem que estar memorizado no disco duro do TNC.

Se introduzir só o nome do programa, o programa declarado para o ciclo deve estar no mesmo diretório que o programa chamado.

Se o programa declarado para o ciclo não estiver no mesmo diretório que o programa que pretende chamar, introduza o nome do caminho completo, p. ex. **TNC: \KLAR35\FK1\50.H**.

Se se quiser declarar um programa DIN/ISO para o ciclo, deve-se introduzir o tipo de ficheiro .l a seguir ao nome do programa.

Os parâmetros Q atuam na chamada de um programa, com o ciclo 12, basicamente de forma global. Tenha atenção a que as modificações em parâmetros Q no programa chamado, atuem também, se necessário, no programa que se pretende chamar.

Parâmetros de ciclo

Nome do programa : nome do programa que se pretende chamar, eventualmente indicando o caminho do programa. É possível introduzir, no máximo, 254 caracteres.

Pode-se chamar o programa definido com as seguintes funções:

- CYCL CALL (bloco separado) ou
- CYCL CALL POS (bloco separado) ou
- M99 (bloco a bloco) ou
- M89 (executado depois dum bloco de posicionamento)

Exemplo: Declarar o programa 50 como ciclo e chamá-lo com M99

55	CYCL DEF	12.0 PGM	CALL
56	CYCL DEF	12.1 PGM	TNC:\KLAR35\FK1\50.H
57	L X+20 Y	+50 FMAX	M99

12.4 ORIENTAÇÃO DO MANDRIL (Ciclo 13, DIN/ISO: G36)

Função do ciclo

A máquina e o TNC devem ser preparados pelo fabricante da máquina.

O TNC pode controlar o mandril principal duma máquina-ferramenta e rodá-lo numa posição determinada segundo um ângulo.

A orientação do mandril é precisa, p.ex.

- em sistemas de troca de ferramenta com uma determinada posição para a troca da ferramenta
- para ajustar a janela de envio e receção do apalpador 3D com transmissão de infra-vermelhos

O TNC posiciona a posição angular definida no ciclo com a programação de M19 ou M120 (dependente da máquina).

Se se programar M19 ou M120 sem se ter definido primeiro o ciclo 13, o TNC posiciona o mandril principal num valor angular que é determinado pelo fabricante da máquina (ver manual da máquina).

Y Z X

Exemplo: Blocos NC

93 CYCL DEF 13.0 ORIENTAÇÃO 94 CYCL DEF 13.1 ÂNGULO 180

Ter em atenção ao programar!

 \bigcirc

Nos ciclos de maquinagem 202, 204 e 209 é utilizado internamente o ciclo 13. No seu programa NC, repare que poderá ser necessário ter que programar de novo o ciclo 13 depois de um dos ciclos de maquinagem atrás apresentados.

Parâmetros de ciclo

Ângulo de orientação: : introduzir o ângulo referente ao eixo de referência angular do plano de maquinagem. Campo de introdução: 0,0000° a 360,0000°

12.5 TOLERÂNCIA (Ciclo 32, DIN/ISO: G62)

Função do ciclo

A máquina e o TNC devem ser preparados pelo fabricante da máquina. O ciclo pode estar bloqueado.

Através das indicações no ciclo 32, pode influenciar o resultado da maquinagem HSC, no que diz respeito à precisão, qualidade da superfície e velocidade, desde que o TNC tenha sido adaptado às características específicas da máquina.

O TNC retifica automaticamente o contorno entre quaisquer elementos de contorno (não corrigidos ou corrigidos). A ferramenta desloca-se, assim, de forma contínua sobre a superfície da peça de trabalho, poupando a mecânica da máquina. Além disso, a tolerância definida no ciclo atua também em movimentos de deslocação sobre arcos de círculo.

Se necessário, o TNC reduz automaticamente o avanço programado, de forma a que o programa seja executado pelo TNC sempre "sem solavancos" com a máxima velocidade possível. **Mesmo quando o TNC se desloca a velocidade não reduzida, a tolerância definida pelo operador é, em princípio, sempre respeitada**. Quanto maior for a tolerância definida, mais rapidamente se pode deslocar o TNC.

Do alisamento do contorno resulta um desvio. O valor deste desvio de contorno (**valor de tolerância**) está determinado num parâmetro de máquina pelo fabricante da sua máquina. Com o ciclo **32**, é possível modificar o valor de tolerância ajustado previamente.

Influências na definição geométrica no sistema CAM

O fator de influência mais importante na elaboração de um programa NC externo é o erro de cordão S definível no sistema CAM. Através do erro de cordão, define-se a distância de pontos máxima de um programa NC criado através de um processador posterior (PP). Se o erro de cordão for igual ou inferior ao valor de tolerância **T** selecionado no ciclo 32, então o TNC pode alisar os pontos de contorno, desde que o avanço programado não seja limitado através de ajustes especiais da máquina.

Obtém-se um excelente alisamento do contorno, se o valor de tolerância **T** selecionado no ciclo 32 for, no mínimo, o dobro do erro de cordão determinado no sistema CAM.

Ter em atenção ao programar!

Com valores de tolerância muito baixos, a máquina pode deixar de processar o contorno sem solavancos. Os solavancos não se devem a uma insuficiente capacidade de cálculo do TNC, mas ao facto de o TNC, para se aproximar exatamente das transições dos contornos, dever reduzir a velocidade de deslocação, eventualmente, também de forma drástica.

O ciclo 32 ativa-se com DEF, quer dizer, atua a partir da sua definição no programa.

- O TNC retira o ciclo 32, se
- definir novamente o ciclo 32 e confirmar a pergunta do diálogo pedindo o valor de tolerância com NO ENT
- selecionar um novo programa através da tecla PGM MGT

Depois de ter anulado o ciclo 32, o TNC ativa novamente a tolerância pré-definida através dos parâmetros da máquina.

O valor de tolerância T introduzido é interpretado pelo TNC, em mm no programa MM e em polegadas num programa de Polegadas.

Se importar um programa com o ciclo 32 que, como parâmetro de ciclo, só contém o **Valor de tolerância** T, o TNC acrescenta, se necessário, os dois parâmetros restantes com o valor 0.

Em entradas de tolerância crescentes, o diâmetro do círculo diminui, em geral, em movimentos circulares. Quando o filtro HSC está ativo na máquina (se necessário, perguntar ao fabricante da máquina), o círculo pode também tornar-se maior.

Quando o ciclo 32 está ativado, o TNC mostra na apresentação de estado adicional, separador **CYC**, os parâmetros definidos do ciclo 32.

Parâmetros de ciclo

- 32 7
- Valor de tolerância T: desvio do contorno admissível em mm (ou polegadas, em caso de programas em polegadas). Campo de introdução 0 a 99999.9999
 - **HSC-MODE**, Acabamento=0, Desbaste=1: Ativar filtro:
 - Valor de introdução 0:
 Fresar com maior precisão de contorno. O TNC utiliza definições de filtro de acabamento
 - estabelecidas internamente
 Valor de introdução 1:
 Fresar com maior velocidade de avanço. O TNC utiliza definições de filtro de desbaste estabelecidas internamente
 - ▶ Tolerância para eixos rotativos TA: desvio de posição admissível de eixos rotativos em graus com M128 ativo (FUNÇÃO TCPM). O TNC reduz o avanço de trajetória sempre de forma a que, com movimentos de vários eixos, o eixo mais lento se desloque com o seu avanço máximo. Em regra, os eixos rotativos são mais lentos do que os eixos lineares. Introduzindo uma grande tolerância (p.ex. 10°), pode-se reduzir consideravelmente o tempo de maguinagem com programas de maquinagem de vários eixos, pois o TNC nem sempre pode deslocar os eixos rotativos para a posição nominal indicada previamente. O contorno não é danificado com a introdução de uma tolerância dos eixos rotativos. Apenas se modifica a posição do eixo rotativo sobre a superfície da peça de trabalho. Campo de introdução de 0 a 179,9999

Exemplo: Blocos NC

95 CYCL DEF 3	32.0 TOLERÂNCIA	
96 CYCL DEF 3	32.1 T0.05	
97 CYCL DEF 3	32.2 HSC-MODE:1	TA5

1

12.6 GRAVAÇÃO (Ciclo 225, DIN/ISO: G225)

Execução do ciclo

Com este ciclo, é possível gravar textos sobre uma superfície plana da peça de trabalho. Os textos podem ser dispostos ao longo de uma reta ou sobre um arco de círculo.

- 1 O TNC posiciona o plano de maquinagem no ponto inicial do primeiro carácter.
- 2 A ferramenta afunda perpendicularmente à base de gravação e fresa o carácter. O TNC executa os movimentos de elevação necessários entre os carateres na distância de segurança. No final do carácter, a ferramenta encontra-se na distância de segurança sobre a superfície.
- 3 Este processo repete-se para todos os caracteres a gravar.
- 4 Para terminar, o TNC posiciona a ferramenta na 2.ª distância de segurança.

Ter em atenção ao programar!

Quando o texto é gravado sobre uma reta (**Q516=0**), a posição da ferramenta determina o ponto inicial do primeiro carácter na chamada do ciclo.

Quando o texto é gravado sobre um círculo (**Q516=1**), a posição da ferramenta determina o ponto central do círculo na chamada do ciclo.

O texto a gravar também pode ser transmitido através de uma variável de string (QS).

322

ABC

Parâmetros de ciclo

- Texto a gravar QS500: texto a gravar entre apóstrofes. Atribuição de uma variável de string através da tecla Q do bloco numérico; a tecla Q no teclado ASCI corresponde à introdução de texto normal. No máximo 256 caracteres, formato determinado internamente: Ver "Gravar variáveis do sistema", página 325
- Altura dos caracteres Q513 (absoluta): altura dos caracteres a gravar em mm. Campo de introdução de 0 a 99999,9999
- Fator distância Q514: com o tipo de letra utilizado, trata-se de um chamado tipo de letra proporcional. Em conformidade, cada caráter tem a sua própria largura, que o TNC grava correspondentemente, caso a definição de Q514=0. Se a definição de Q514 for diferente de 0, o TNC aplica uma escala à distância entre os carateres. Campo de introdução 0 a 9,9999
- Tipo de escrita Q515: momentaneamente sem função
- Texto sobre reta/círculo (0/1) Q516: Gravar texto ao longo de uma reta: Introdução = 0 Gravar texto sobre um arco de círculo: Introdução = 1
- Posição angular Q374: ângulo do ponto central, quando o texto deve ser disposto sobre um círculo. Ángulo de gravação com disposição linear do texto. Campo de introdução -360,0000 a 360,0000º
- Raio em texto sobre círculo Q517 (absoluto): raio do arco de círculo em mm sobre o qual o TNC deve dispor o texto. Campo de introdução de 0 a 99999,9999
- Avanço de fresagem Q207: velocidade de deslocação da ferramenta durante a fresagem em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO, FU ou FZ

Exemplo: Blocos NC

62 CYCL DEF 22	5 GRAVAÇÃO
QS500="TX"	T2";TEXTO A GRAVAR
Q513=10	;ALTURA DO CARÁCTER
Q514=0	;FATOR DISTÂNCIA
Q515=0	;TIPO DE ESCRITA
Q516=0	;DISPOSIÇÃO DO TEXTO
Q374=0	;POSIÇÃO DE ROTAÇÃO
Q517=0	;RAIO DO CÍRCULO
Q207=750	;AVANÇO DE FRESAGEM
Q201=-0.5	;PROFUNDIDADE
Q206=150	;AVANÇO AO CORTAR EM PROFUND.
Q200=2	;DISTÂNCIA SEGURANÇA
Q203=+20	;COORD. SUPERFÍCIE
Q204=50	;2.ª DISTÂNCIA SEGURANÇA

- Profundidade Q201 (incremental): distância entre a superfície da peça de trabalho e a base de gravação
- Avanço de corte em profundidade Q206: velocidade de deslocação da ferramenta ao furar em mm/min. Campo de introdução 0 a 99999,999; em alternativa FAUTO, FU
- Distância de segurança Q200 (incremental): distância entre a extremidade da ferramenta e a superfície da peça de trabalho. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Coord. da superf. da peça de trabalho Q203 (valor absoluto): coordenada da superfície da peça de trabalho. Campo de introdução -99999,9999 a 99999,9999
- 2.ª Distância segurança Q204 (valor incremental): coordenada no eixo do mandril na qual não se pode produzir nenhuma colisão entre a ferramenta e a peça de trabalho (dispositivo tensor). Campo de introdução 0 a 99999,9999; em alternativa PREDEF

Carateres de gravação permitida

Para além de minúsculas, maiúsculas e algarismos, são permitidos os seguintes carateres especiais:

```
! # $ % & '() * + , - . / :; < = > ? @ [ \ ]
```


O TNC utiliza os carateres especiais % e \ para funções particulares. Quando se desejar gravar estes carateres, é necessário indicá-los em duplicado no texto a gravar, p. ex., %%.

Também pode gravar tremas e o símbolo de diâmetro com o ciclo de gravação:

Caracteres	Introdução
ä	%ae
ö	%oe
ü	%ue
Ä	%AE
Ö	%OE
Ü	%UE
Ø	%D

Caracteres que não podem ser impressos

Adicionalmente a texto, também é possível definir alguns carateres que não podem ser impressos, para fins de formatação. A indicação dos carateres que não podem ser impressos começa com o carácter especial ****.

Existem as seguintes possibilidades:

- \n: quebra de linha
- \t: tabulação horizontal (a distância de tabulação é sempre de 8 carateres)
- \v: tabulação vertical (a distância de tabulação é sempre de uma linha)

Gravar variáveis do sistema

A par dos carateres fixos, é possível gravar o conteúdo de determinadas variáveis do sistema. A indicação de uma variável do sistema começa com o carácter especial %.

É possível gravar a data atual. Para isso, introduza **%time<x>**. **<x>** define o formato da data, cujo significado é igual ao da função **SYSSTR ID332** (ver o Manual do Utilizador de Diálogo em Texto Claro, Capítulo Programação de parâmetros Q, Secção Copiar dados do sistema para um parâmetro de string).

enha em conta que, ao introduzir os formatos de data 1 a 9, é necessário indicar primeiro um 0, p. ex., **time08**.

12.7 TORNEAMENTO DE INTERPOLAÇÃO (opção de software, ciclo 290, DIN/ISO: G290)

Execução do ciclo

Com este ciclo, é possível criar um escalão de rotação simétrica ou um recesso no plano de maquinagem que são definidos por um ponto inicial e um ponto final (ver também "Variantes de maquinagem" na página 330). O centro de rotação é o ponto inicial (XY) na chamada de ciclo. As superfícies de rotação podem ser inclinadas e arredondadas reciprocamente. As superfícies podem ser criadas tanto por torneamento de interpolação, como por fresagem.

No torneamento de interpolação, a peça de trabalho não roda. A ferramenta executa um movimento circular nos eixos principais X e Y. Simultaneamente, o TNC reposiciona o mandril S de modo a que a lâmina do cinzel rotativo fique sempre alinhada com o centro de rotação da peça de trabalho. Deste modo, pode utilizar o ciclo 290 também numa máquina de três eixos.

O ponto central da maquinagem não deve encontrar-se no centro de uma mesa rotativa. O ponto central determina-se através da posição da ferramenta na chamada de ciclo.

- O TNC posiciona a ferramenta na altura segura no ponto inicial da maquinagem. Este é calculado através de um prolongamento tangencial pela distância de segurança do ponto inicial do contorno.
- 2 O TNC cria o contorno definido mediante torneamento de interpolação. Com isso, os eixos principais do plano de maquinagem descrevem um movimento circular, enquanto que o eixo do mandril é reposicionado perpendicularmente à superfície.
- **3** No ponto final do contorno, o TNC afasta a ferramenta perpendicularmente para a distância de segurança.
- 4 Para terminar, o TNC posiciona a ferramenta na altura segura

Ter em atenção ao programar!

A ferramenta que se utilizar para este ciclo tanto pode ser uma ferramenta de tornear, como uma ferramenta de fresar (Q444=0). Os dados geométricos desta ferramenta são definidos na tabela de ferramentas TOOL.T da seguinte forma:

- Coluna L (DL para valores de correção): Comprimento da ferramenta (ponto inferior na lâmina da ferramenta)
- Coluna R (DR para valores de correção): Raio do círculo de afastamento da ferramenta (ponto exterior da lâmina da ferramenta)
- Coluna **R2** (**DR2** para valores de correção): Raio das lâminas da ferramenta

A máquina e o TNC devem ser preparados pelo fabricante da máquina. Consulte o manual da sua máquina.

Ciclo aplicável apenas a máquinas com mandril regulado (exceção **Q444=0**)

A opção de software 96 deve estar ativada.

O ciclo não permite maquinagens de desbaste com vários cortes.

O centro de interpolação é a posição da ferramenta na chamada de ciclo.

O TNC prolonga a primeira superfície a maquinar pela distância de segurança.

Podem realizar-se medidas excedentes através dos valores **DL** e **DR** do bloco **TOOL CALL**. O TNC não considera as introduções de **DR2** no bloco **TOOL CALL**.

Para que a sua máquina possa alcançar elevadas velocidades de trajetória, defina uma grande tolerância com o ciclo 32 antes da chamada de ciclo.

Programe uma velocidade de corte que também possa ser logo alcançada através da velocidade de trajetória dos eixos da sua máquina. Conseguirá, assim, uma ótima resolução da geometria e uma velocidade de maquinagem constante.

O TNC não supervisiona eventuais estragos no contorno que possam ocorrer devido à geometria da ferramenta.

Respeitar as variantes de maquinagem: Ver "Variantes de maquinagem", página 330

Parâmetros de ciclo

- 290
- Distância de segurança Q200 (incremental): distância de prolongamento do contorno definido ao aproximar e afastar. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
 - Altura de segurança Q445 (absoluto): altura absoluta onde não pode produzir-se nenhuma colisão entre a ferramenta e a peça de trabalho; posição de retrocesso da ferramenta no fim do ciclo. Campo de introdução -99999,9999 a 99999,9999
 - Ângulo para orientação do mandril Q336 (absoluto): ângulo para alinhar a lâmina com a posição de 0º do mandril. Campo de introdução –360,0000 a 360,0000
 - Velocidade de corte [m/min] Q440: velocidade de corte da ferramenta em m/min. Campo de introdução de 0 a 99,999
 - Passo por rotação [mm/r] Q441: avanço que a ferramenta realiza por rotação. Campo de introdução de 0 a 99,999
 - Ângulo inicial do plano XY XY Q442: ângulo inicial no plano XY. Campo de introdução de 0 a 359,999
 - Direção de maquinagem (-1/+1) Q443: Maquinagem em sentido horário: Introdução = -1 Maquinagem em sentido anti-horário: Introdução = +1
 - **Eixo de interpolação (4...9)** Q444: designação de eixo do eixo de interpolação.

O eixo A é o eixo de interpolação: Introdução = 4 O eixo B é o eixo de interpolação: Introdução = 5 O eixo C é o eixo de interpolação: Introdução = 6 O eixo U é o eixo de interpolação: Introdução = 7 O eixo V é o eixo de interpolação: Introdução = 8 O eixo W é o eixo de interpolação: Introdução = 9 Fresagem de contorno: Introdução = 0

- Diâmetro do início do contorno Q491 (absoluto): esquina do ponto inicial em X, introduzir diâmetro. Campo de introdução -99999,9999 a 99999,9999
- Início do contorno Z Q492 (absoluto): esquina do ponto inicial em Z. Campo de introdução -99999,9999 a 99999,9999
- Diâmetro do fim do contorno Q493 (absoluto): esquina do ponto final em X, introduzir diâmetro. Campo de introdução -99999,9999 a 99999,9999
- Fim do contorno Z Q494 (absoluto): esquina do ponto final em Z. Campo de introdução -99999,9999 a 99999,9999
- Ângulo da superfície periférica Q495: ângulo em graus da primeira superfície a maquinar. Campo de introdução -179,999 a 179,999
- Ângulo da superfície transversal Q496: ângulo em graus da segunda superfície a maquinar. Campo de introdução -179,999 a 179,999
- Raio da esquina do contorno Q500: arredondamento da esquina entre as superfícies a maquinar. Campo de introdução 0 a 999,999

Exemplo: Blocos NC

62 CYCL DEF 29 Interpolação	O TORNEAMENTO DE
Q200=2	;DISTÂNCIA SEGURANÇA
Q445=+50	;ALTURA SEGURA
Q336=0	;ÂNGULO MANDRIL
Q440=20	;VEL. DE CORTE
Q441=0,75	;CORTE
Q442=+0	;ÂNGULO INICIAL
Q443=-1	;DIREÇÃO DE MAQUINAGEM
Q444=+6	;EIXO INTERP.
Q491=+25	;DIÂMETRO INÍCIO DE CONTORN
Q492=+0	;INÍCIO DE CONTORNO Z
Q493=+50	;FIM DE CONTORNO X
Q494=-45	;FIM DE CONTORNO Z
Q495=+0	;ÂNGULO SUPERFÍCIE PERIFÉRIO
Q496=+0	;ÂNGULO SUPERFÍCIE TRANSVERSAL
Q500=4,5	;RAIO ESQUINA DE CONTORNO

Fresar contorno

As superfícies podem ser fresadas, introduzindo **Q444=0**. Para esta maquinagem, utilize uma fresa com raio de lâmina (R2). Se houver uma grande medida excedente nas superfícies, regra geral, a prémaquinagem é melhor realizada por fresagem do que por torneamento de interpolação.

12.7 TORNEAMENTO DE INTER<mark>PO</mark>LAÇÃO (opção de software, ciclo 290 DIN/ISO: G290

Na fresagem, o ciclo também permite maquinagens com vários cortes.

Tenha em conta que, na fresagem, a velocidade de avanço corresponde à indicação em **Q440** (velocidade de corte). A unidade da velocidade de corte é metros por minuto.

Variantes de maquinagem

Combinando o ponto inicial e o final com os ângulos Q495 e Q496, obtêm-se as seguintes possibilidades de maquinagem:

Maquinagem exterior no quadrante 1 (1):

- Introduzir o ângulo da superfície periférica Q495 positivo
- Introduzir o ângulo da superfície transversal Q496 negativo
- Introduzir o início de contorno X Q491 menor que o fim do contorno XQ493
- Introduzir o início de contorno Z Q492 maior que o fim do contorno Z Q494

Maquinagem interior no quadrante 2 (2):

- Introduzir o ângulo da superfície periférica Q495 negativo
- Introduzir o ângulo da superfície transversal Q496 positivo
- Introduzir o início de contorno X Q491 maior que o fim do contorno XQ493
- Introduzir o início de contorno Z Q492 maior que o fim do contorno Z Q494

Maquinagem exterior no quadrante 3 (3):

- Introduzir o ângulo da superfície periférica Q495 positivo
- Introduzir o ângulo da superfície transversal Q496 negativo
- Introduzir o início de contorno X Q491 maior que o fim do contorno XQ493
- Introduzir o início de contorno Z Q492 menor que o fim do contorno Z Q494

Maquinagem interior no quadrante 4 (4):

- Introduzir o ângulo da superfície periférica Q495 negativo
- Introduzir o ângulo da superfície transversal Q496 positivo
- Introduzir o início de contorno X Q491 menor que o fim do contorno XQ493
- Introduzir o início de contorno Z Q492 menor que o fim do contorno Z Q494

Recesso axial:

Introduzir o início de contorno X Q491 igual ao fim do contorno XQ493

Recesso radial:

Introduzir o início de contorno Z Q492 menor que o fim do contorno Z Q494

12.7 TORNEAMENTO DE INTER<mark>PO</mark>LAÇÃO (opção de software, ciclo 290, DIN/ISO: G290)

13

Trabalhar com ciclos de apalpação

13.1 Generalidades sobre os ciclos de apalpação

O fabricante da máquina deve preparar o TNC para a utilização de apalpadores 3D. Consulte o manual da máquina.

Tenha em consideração que, por princípio, a HEIDENHAIN só assume a garantia do funcionamento dos ciclos de apalpação se forem utilizados apalpadores HEIDENHAIN!

Se forem efetuadas medições durante a execução do programa, preste atenção a que os dados da ferramenta (comprimento, raio) possam ser utilizados a partir dos dados calibrados ou a partir do último bloco **TOOL CALL** (seleção com MP7411).

Funcionamento

Quando o TNC executa um ciclo de apalpação, o apalpador 3D desloca-se paralelamente aos eixos sobre a peça de trabalho (também com rotação básica ativada e com plano de maquinagem inclinado). O fabricante da máquina determina o avanço de apalpação num parâmetro de máquina (ver "Antes de trabalhar com ciclos de apalpação" mais adiante neste capítulo).

Se a haste de apalpação tocar na peça de trabalho,

- o apalpador 3D emite um sinal para o TNC: as coordenadas da posição apalpada são memorizadas
- o apalpador 3D para e
- regressa em avanço rápido para a posição inicial do processo de apalpação

Se a haste de apalpação não se desviar ao longo de um percurso determinado, o TNC emite a respetiva mensagem de erro (caminho: MP6130).

Ciclos de apalpação nos modos de funcionamento manual e volante eletrónico

Nos modos de funcionamento manual e volante eletrónico, o TNC põe à disposição ciclos de apalpação, com os quais pode:

- calibrar o apalpador
- Compensar inclinações da peça de trabalho
- memorizar pontos de referência

ciclos de apalpação para o funcionamento automático

Além dos ciclos de apalpação utilizados nos modos de funcionamento manual e volante eletrónico, no funcionamento automático o TNC põe à disposição uma grande variedade de ciclos para as mais diversas aplicações:

- Calibrar o apalpador digital
- Compensar inclinações da peça de trabalho
- memorizar pontos de referência
- Controlo automático da ferramenta
- Medição automática da ferramenta

Os ciclos de apalpação são programados no modo de funcionamento Memorização/Edição do Programa com a tecla TOUCH PROBE. Utilizar ciclos de apalpação com números a partir de 400, assim como ciclos mais novos de maquinagem e parâmetros Q como parâmetros de transmissão. O parâmetros com função igual, de que o TNC precisa em diferentes ciclos, têm sempre o mesmo número: p.ex. Q260 é sempre a Altura Segura, Q261 é sempre a altura de medição, etc.

Para simplificar a programação, durante a definição de ciclo o TNC mostra uma imagem auxiliar. Nessa imagem auxiliar, está realçado o parâmetro que deve ser introduzido (ver figura à direita).

TOUCH PROBE

410

336

Definir o ciclo de apalpação no modo de funcionamento
Memorização/Edição

- A barra de softkeys exibe reunidas em grupos todas as funções disponíveis do apalpador
- Selecionar o grupo do ciclo de apalpação, p.ex. Memorização do Ponto de Referência. Os ciclos para medição automática da ferramenta só estão disponíveis se a sua máquina estiver preparada para isso
- Selecionar o ciclo, p.ex., de definição do ponto de referência centro de caixa. O TNC abre um diálogo e pede todos os valores de introdução; ao mesmo tempo, o TNC abre um gráfico na metade direita do ecrã, onde o parâmetro a introduzir está realçado
- Introduza todos os parâmetros pedidos pelo TNC e termine cada introdução com tecla ENT
- O TNC termina o diálogo depois de se terem introduzido todos os dados necessários

Grupo de ciclos de medição	Softkey	Página
Ciclos para o registo automático e compensação da posição inclinada duma peça de trabalho		Página 342
Ciclos para a memorização automática do ponto de referência		Página 364
Ciclos para o controlo automático da peça de trabalho		Página 418
Ciclos de calibração, ciclos especiais	CICLOS ESPECIAIS	Página 468
Ciclos para a medição automática da cinemática	CINEMÁTICA	Página 484
Ciclos para a medição automática da ferramenta (disponibilizado pelo fabricante da máquina)		Página 516

Exemplo: Blocos NC

5	TCH PROBE 41	LO P.TO REF RETÂNG INTER
	Q321=+50	;CENTRO 1.º EIXO
	Q322=+50	;CENTRO 2.º EIXO
	Q323=60	;1.º COMPRIMENTO DE LADO
	Q324=20	;2.º COMPRIMENTO DE LADO
	Q261=-5	;ALTURA DE MEDIÇÃO
	Q320=0	;DISTÂNCIA DE SEGURANÇA
	Q260=+20	;ALTURA SEGURA
	Q301=0	;DESLOCAR À ALTURA SEGURANÇA
	Q305=10	;N.º NA TABELA
	Q331=+0	;PONTO REF
	Q332=+0	;PONTO REF
	Q303=+1	;TRANSFERÊNCIA VALOR MEDIÇÃO
	Q381=1	;APALPAR EIXO TS
	Q382=+85	;1. KO. PARA EIXO TS
	Q383=+50	;2. KO. PARA EIXO TS
	Q384=+0	;3. KO. PARA EIXO TS
	Q333=+0	;PONTO DE REFERÊNCIA

13.2 Antes de trabalhar com ciclos de apalpação!

Para poder utilizar o maior número possível de operações de medição, através dos parâmetros da máquina estão disponíveis possibilidades de ajuste que determinam o comportamento básico de todos os ciclos de apalpação:

Percurso máximo até ao ponto de apalpação: MP6130

Se a haste de apalpação não for deflectida no caminho determinado em MP6130, o TNC emite uma mensagem de erro.

Distância de segurança para o ponto de apalpação: MP6140

Em MP6140, determina-se a que distância é que o TNC deve posicionar previamente o apalpador em relação ao ponto de apalpação definido – ou calculado pelo ciclo. Quanto menor for o valor introduzido, com maior precisão terão que se definir as posições de apalpação. Em muitos ciclos de apalpação, pode-se definir, além disso, uma distância de segurança que funciona adicionalmente ao parâmetro de máquina 6140.

Orientar o apalpador de infravermelhos no sentido de apalpação programado: MP6165

Para aumentar a precisão de medição, através de MP 6165 = 1 pode fazer-se com que um apalpador de infravermelhos oriente no sentido de apalpação programado antes de cada processo de apalpação. Deste modo, a haste de apalpação é deflectida sempre no mesmo sentido.

Quando MP6165 é alterado, o apalpador deve ser calibrado novamente, dado que o comportamento de desvio se modifica.

Ter em conta a rotação básica no modo de funcionamento manual: MP6166

Para aumentar também a precisão de medição no modo de funcionamento de ajuste por apalpação de posições individuais, através de MP 6166 = 1 é possível fazer com que o TNC tenha em conta uma rotação básica no processo de apalpação, ou seja, se necessário, faça uma deslocação oblíqua sobre a peça de trabalho.

A função do apalpador oblíquo não se encontra ativa em modo de funcionamento manual para as seguintes funções:

- Calibrar comprimento
- Calibrar raio
- Determinar a rotação básica

Medição múltipla: MP6170

Para aumentar a segurança de medição, o TNC pode executar sucessivamente cada processo de apalpação até três vezes. Se os valores de posição medidos se desviarem demasiado entre si, o TNC emite uma mensagem de erro (valor limite determinado em MP6171). Com a medição múltipla, é possível, se necessário, determinar eventuais erros de medição que surjam, p.ex., devido a sujidade.

Se os valores de medição se situarem na margem de confiança, o TNC memoriza o valor médio a partir das posições registadas.

Margem de confiança para medição múltipla: MP6171

Quando executar uma medição múltipla, coloque em MP6171 o valor limite de desvio para os valores de medição. Se a diferença dos valores de medição exceder o valor em MP6171, o TNC emite uma mensagem de erro.

3.2 Antes de trabalhar com ciclos de apalpação

Apalpador digital, avanço de apalpação: MP6120

Em MP6120 determina-se o avanço com que o TNC deve aproximarse da peça de trabalho para apalpação.

Apalpador digital, avanço para movimentos de posicionamento: MP6150

Em MP6150 determina-se o avanço com que o TNC pré-posiciona o apalpador, ou posiciona entre pontos de medição.

Apalpador digital, marcha rápida para posicionamento: MP6151

Em MP6151 é possível determinar se o TNC deve posicionar o apalpador com o avanço definido em MP6150 ou em marcha rápida da máquina.

- Valor de introdução = 0: posicionar com o avanço de MP6150
- Valor de introdução = 1: posicionar previamente com marcha rápida

KinematicsOpt, limite de tolerância para o modo Otimizar: MP6600

Em **MP6600** definem-se os limites de tolerância a partir dos quais o TNC mostrará um aviso no modo Otimizar, se os dados de cinemática obtidos excederem este valor limite. Predefinição: 0.05. Selecionar valores mais altos, quanto maior for a máquina

Campo de introdução: de 0.001 a 0.999

KinematicsOpt, desvio do raio da esfera de calibração permitido: MP6601

Em **MP6601** é definido o desvio máximo permitido do raio da esfera de calibração do parâmetro de ciclo introduzido medido automaticamente pelos ciclos.

Campo de introdução: 0.01 a 0.1

O TNC calcula duas vezes o raio da esfera de calibração em cada ponto de medição através de todos os 5 pontos de apalpação. Se o raio for maior que Q407 + MP6601, é emitida uma mensagem de erro, porque se parte de uma sujidade.

Se o raio determinado pelo TNC for menor que 5 * (Q407 - MP6601), o TNC emite igualmente uma mensagem de erro.

Executar ciclos de apalpação

Todos os ciclos de apalpação são ativados em DEF. O TNC executa o ciclo automaticamente, quando na execução do programa a definição de ciclo for executada pelo TNC.

Verifique se no início do ciclo os dados de correção (comprimento, raio) relativos aos dados de calibração ou do último bloco TOOL CALL estão ativados (seleção com MP7411, ver Manual do Utilizador do iTNC530, "Parâmetros Gerais do Utilizador").

Também pode executar os ciclos de apalpação de 408 a 419 quando estiver ativada a rotação básica. No entanto, preste atenção a que o ângulo da rotação básica não se modifique mais, se depois do ciclo de medição trabalhar com o ciclo 7 Deslocação do ponto zero a partir da tabela de pontos zero.

Os ciclos de apalpação com um número superior a 400 posicionam previamente o apalpador, segundo uma lógica de posicionamento:

- Se a coordenada atual do polo sul da haste de apalpação for menor do que a coordenada da Altura Segura (definida no ciclo), o TNC primeiro faz recuar o apalpador no eixo deste na Altura Segura e a seguir posiciona-o no plano de maquinagem para o primeiro ponto de apalpação
- Se a coordenada atual do polo sul da haste de apalpação for maior do que a coordenada da Altura Segura, o TNC primeiro posiciona o apalpador no plano de maquinagem no primeiro ponto de apalpação e a seguir no eixo do apalpador diretamente na altura de medição

Ciclos de apalpação: determinar inclinações da peça de trabalho automaticamente

14.1 Princípios básicos

Resumo

O TNC dispõe de cinco ciclos com que se pode registar e compensar a inclinação duma peça de trabalho. Além disso, pode-se anular uma rotação básica com o ciclo 404:

Ciclo	Softkey	Página
400 ROTAÇÃO BÁSICA Registo automático por meio de dois pontos, compensação por meio da função rotação básica	400	Página 344
401 ROTAÇÃO 2 FUROS Registo automático por meio de dois furos, compensação por meio da função rotação básica	481 G	Página 347
402 ROTAÇÃO 2 ILHAS Registo automático por meio de duas ilhas, compensação por meio da função rotação básica	482	Página 350
403 ROTAÇÃO POR EIXO ROTATIVO Registo automático por meio de dois pontos, compensação por meio de rotação da mesa	403	Página 353
405 ROTAÇÃO POR EIXO C Ajuste automático do desvio dum ângulo entre um ponto central do furo e o eixo Y positivo, compensação por rotação da mesa circular	405	Página 358
404 MEMORIZAR ROTAÇÃO BÁSICA Memorização duma rotação básica qualquer	484	Página 357

Características comuns dos ciclos de apalpação para o registo da posição inclinada da peça de trabalho

Nos ciclos 400, 401 e 402, com o parâmetro Q307, **Ajuste prévio rotação básica** pode determinar-se se o resultado da medição deve ser corrigido num ângulo conhecido α (ver figura à direita). Deste modo, pode medir-se a rotação básica numa reta qualquer 1 da peça de trabalho e produzir a referência para a efetiva direção 0° 2.

14.2 ROTAÇÃO BÁSICA (Ciclo 400, DIN/ISO: G400)

Execução do ciclo

O ciclo de apalpação 400, por medição de dois pontos que devem situar-se sobre uma reta, calcula a inclinação duma peça de trabalho. Com a função rotação básica, o TNC compensa o valor medido.

- O TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação programado 1. O TNC desvia assim o apalpador na distância de segurança contra a direção de deslocação determinada
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e executa o primeiro processo de apalpação com avanço de apalpação (MP6120)
- Seguidamente, o apalpador desloca-se para o ponto de apalpação seguinte 2 e executa o segundo processo de apalpação
- 4 O TNC posiciona o apalpador de regresso na Altura Segura e executa a rotação básica obtida

Ter em atenção ao programar!

 \bigcirc

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

O TNC anula no início do ciclo uma rotação básica ativada.

Parâmetros de ciclo

- 1. Messpunkt 1. Achse Q263 (absoluto): coordenada do primeiro ponto de apalpação no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 1.º ponto de medição do 2.º eixo Q264 (absoluto): coordenada do primeiro ponto de apalpação no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 2.º ponto de medição do 1.º eixo Q265 (absoluto): coordenada do segundo ponto de apalpação no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 2.º ponto de medição do 2.º eixo Q266 (absoluto): coordenada do segundo ponto de apalpação no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Eixo de medição Q272: eixo do plano de maquinagem onde deve ser feita a medição:
 1:Eixo principal = eixo de medição
 2:eixo secundário = eixo de medição
- Direção de deslocação 1 direção em que o apalpador deve ser deslocado para a peça:
 -1:direção de deslocação negativa
 +1:direção de deslocação positiva
- ▶ Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita
- a medição. Campo de introdução -99999,9999 a 99999,9999 Distância de segurança Q320 (incremental):
- distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa **PREDEF**
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF

Deslocar à altura segura Q301: determinar como o apalpador se deve deslocar entre os pontos de medição:

0: deslocar entre pontos de medição à altura de medição

1: deslocar entre pontos de medição à altura segura Em alternativa, **PREDEF**

- Ajuste prévio da rotação básica Q307 (valor absoluto): quando a inclinação a medir não se deve referir ao eixo principal mas sim a uma reta qualquer, introduzir ângulo das retas de referência. O TNC calcula para a rotação básica a diferença a partir do valor medido e do ângulo das retas de referência. Campo de introdução -360,000 a 360,000
- Número de preset na tabela Q305: indicar o número na tabela de preset em que o TNC deve guardar a rotação básica determinada. Com a introdução de Q305=0, o TNC coloca a rotação básica obtida, no menu ROT do modo de funcionamento manual. Campo de introdução de 0 a 99999

Exemplo: Blocos NC

5	TCH PROBE 40	O ROTAÇÃO BÁSICA	
	Q263=+10	;1. PONTO 1º EIXO	
	Q264=+3,5	;1. PONTO 2º EIXO	
	Q265=+25	;2. PONTO 1º EIXO	
	Q266=+8	;2. PONTO 2º EIXO	
	Q272=2	;EIXO DE MEDIÇÃO	
	Q267=+1	;DIREÇÃO DE DESLOCAÇÃO	
	Q261=-5	;ALTURA DE MEDIÇÃO	
	Q320=0	;DISTÂNCIA SEGURANÇA	
	Q260=+20	;ALTURA SEGURA	
	Q301=0	;DESLOCAR À ALTURA DE Segurança	
	Q307=0	;ROTAÇ. BÁSICA PRÉ-AJUST.	
	Q305=0	;N°. NA TABELA	

14.3 ROTAÇÃO BÁSICA por meio de dois furos (ciclo 401, DIN/ISO: G401)

Execução do ciclo

O ciclo de apalpação 401 regista o ponto central de dois furos. A seguir, o TNC calcula o ângulo entre o eixo principal do plano de maquinagem e a reta de união do ponto central do furo. Com a função rotação básica, o TNC compensa o valor calculado. Em alternativa, também pode compensar a posição inclinada registada através de uma rotação da mesa circular.

- O TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto central introduzido do primeiro furo 1
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e, por meio de quatro apalpações, regista o primeiro ponto central do furo
- **3** Depois, o apalpador desloca-se de volta para distância segura e posiciona-se no ponto central introduzido do segundo furo **2**
- 4 O apalpador desloca-se na altura de medição introduzida e, por meio de quatro apalpações, regista o segundo ponto central do furo
- **5** Finalmente, o TNC desloca o apalpador de regresso à Distância Segura e executa a rotação básica determinada

Ter em atenção ao programar!

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

O TNC anula no início do ciclo uma rotação básica ativada.

Este ciclo de apalpação não é permitido quando a função inclinação do plano de maquinagem está ativa.

Se desejar compensar a posição inclinada mediante uma rotação da mesa circular, o TNC utiliza automaticamente os eixos rotativos seguintes:

- C no eixo de ferramenta Z
- B no eixo de ferramenta Y
- A no eixo de ferramenta X

Parâmetros de ciclo

- 1. º furo: centro do 1º eixo Q268 (valor absoluto): ponto central do primeiro furo no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 1. º furo: centro do 2º eixo Q269 (valor absoluto): ponto central do primeiro furo no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 2º furo: centro do 1.º eixo Q270 (valor absoluto): ponto central do segundo furo no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 2º furo: centro do 2.º eixo Q271 (valor absoluto): ponto central do segundo furo no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Ajuste prévio da rotação básica Q307 (valor absoluto): quando a inclinação a medir não se deve referir ao eixo principal mas sim a uma reta qualquer, introduzir ângulo das retas de referência. O TNC calcula para a rotação básica a diferença a partir do valor medido e do ângulo das retas de referência. Campo de introdução -360.000 bis 360.000

- Número de preset na tabela Q305: indicar o número na tabela de preset em que o TNC deve guardar a rotação básica determinada. Com a introdução de Q305=0, o TNC coloca a rotação básica obtida, no menu ROT do modo de funcionamento manual. O parâmetro não tem qualquer efeito, se a posição inclinada tiver de ser compensada através de rotação da mesa circular (Q402=1). Neste caso, a posição inclinada não é guardada como valor angular. Campo de introdução de 0 a 99999
- Rotação básica/Ajustar Q402: Definir se o TNC deve memorizar a posição inclinada determinada como rotação básica ou ajustá-la mediante rotação da mesa circular:

0: Definir rotação básica

1: Executar rotação da mesa circular

Se selecionar a rotação da mesa circular, o TNC não guarda a posição inclinada registada, mesmo que tenha definido uma linha de tabela no parâmetro **Q305**

Definir zero depois de ajuste Q337: determinar se o TNC deve fixar em 0 a visualização do eixo rotativo ajustado:

0: não definir em 0 a visualização do eixo rotativo após o ajuste

1: Definir em 0 a visualização do eixo rotativo após o ajuste

O TNC só memoriza a visualização = 0, se tiver definido **Q402=1**

Exemplo: Blocos NC

5	TCH PROBE 40	1 ROT 2 FUROS
	Q268=+37	;1. CENTRO 1º EIXO
	Q269=+12	;1. CENTRO 2º EIXO
	Q270=+75	;2. CENTRO 1º EIXO
	Q271=+20	;2. CENTRO 2º EIXO
	Q261=-5	;ALTURA DE MEDIÇÃO
	Q260=+20	;ALTURA SEGURA
	Q307=0	;ROTAÇ. BÁSICA PRÉ-AJUST.
	Q305=0	;N°. NA TABELA
	Q402=0	; AJUSTAR
	Q337=0	;MEMORIZAR ZERO

14.4 ROTAÇÃO BÁSICA por meio de duas ilhas (ciclo 402, DIN/ISO: G402)

Execução do ciclo

O ciclo de apalpação 402 regista o ponto central de duas ilhas. A seguir, o TNC calcula o ângulo entre o eixo principal do plano de maquinagem e a reta de união do ponto central da ilha. Com a função rotação básica, o TNC compensa o valor calculado. Em alternativa, também pode compensar a posição inclinada registada através de uma rotação da mesa circular.

- O TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação 1 da primeira ilha
- 2 A seguir, o apalpador desloca-se na altura de medição 1 introduzida e, por meio de quatro apalpações, regista o primeiro ponto central da ilha. Entre os pontos de apalpação deslocados respetivamente 90°, o apalpador desloca-se sobre um arco de círculo
- 3 A seguir, o apalpador desloca-se de volta para a distância segura e posiciona-se no ponto central de apalpação 5 da segunda ilha
- 4 O TNC desloca o apalpador na altura de medição 2 introduzida e, por meio de quatro apalpações, regista o segundo ponto central da ilha
- 5 Finalmente, o TNC desloca o apalpador de regresso à Distância Segura e executa a rotação básica determinada

Ter em atenção ao programar!

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

O TNC anula no início do ciclo uma rotação básica ativada.

Este ciclo de apalpação não é permitido quando a função inclinação do plano de maquinagem está ativa.

Se desejar compensar a posição inclinada mediante uma rotação da mesa circular, o TNC utiliza automaticamente os eixos rotativos seguintes:

- C no eixo de ferramenta Z
- B no eixo de ferramenta Y
- A no eixo de ferramenta X

14.4 ROTAÇÃO BÁSICA p<mark>or m</mark>eio de duas ilhas (ciclo 402, DIN/ISO: G402)

Parâmetros de ciclo

- 1. a ilha: centro do 1º eixo (absoluto): ponto central da primeira ilha no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 1. a ilha: centro do 2º eixo Q269 (absoluto): ponto central da primeira ilha no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Diâmetro ilha 1 Q313: diâmetro aproximado da 1.ª ilha. De preferência, introduzir o valor em excesso. Campo de introdução de 0 a 99999,9999
- Altura de medição ilha 1 no eixo TS Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição da ilha 1. Campo de introdução -99999,9999 a 99999,9999
- 2. a ilha: centro do 1º eixo Q270 (valor absoluto): ponto central da segunda ilha no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 2. a ilha: centro do 2º eixo Q271 (absoluto): ponto central da segunda ilha no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Diâmetro ilha 2 Q313: diâmetro aproximado da 2.ª ilha. De preferência, introduzir o valor em excesso. Campo de introdução de 0 a 99999,9999
- Altura de medição ilha 2 no eixo TS Q315 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição da ilha 2. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF

Deslocar à altura segura Q301: determinar como o apalpador se deve deslocar entre os pontos de medição:

0: deslocar entre pontos de medição à altura de medição

1: deslocar entre pontos de medição à altura segura Em alternativa, **PREDEF**

- Ajuste prévio da rotação básica Q307 (valor absoluto): quando a inclinação a medir não se deve referir ao eixo principal mas sim a uma reta qualquer, introduzir ângulo das retas de referência. O TNC calcula para a rotação básica a diferença a partir do valor medido e do ângulo das retas de referência. Campo de introdução -360.000 bis 360.000
- Número de preset na tabela Q305: indicar o número na tabela de preset em que o TNC deve guardar a rotação básica determinada. Com a introdução de Q305=0, o TNC coloca a rotação básica obtida, no menu ROT do modo de funcionamento manual. O parâmetro não tem qualquer efeito, se a posição inclinada tiver de ser compensada através de rotação da mesa circular (Q402=1). Neste caso, a posição inclinada não é guardada como valor angular. Campo de introdução de 0 a 99999
- Rotação básica/Ajustar Q402: Definir se o TNC deve memorizar a posição inclinada determinada como rotação básica ou ajustá-la mediante rotação da mesa circular:
 - **0**: Definir rotação básica

1: Executar rotação da mesa circular

Se selecionar a rotação da mesa circular, o TNC não guarda a posição inclinada registada, mesmo que tenha definido uma linha de tabela no parâmetro **Q305**

Definir zero depois de ajuste Q337: determinar se o TNC deve fixar em 0 a visualização do eixo rotativo ajustado:

0: não definir em 0 a visualização do eixo rotativo após o aiuste

 Definir em 0 a visualização do eixo rotativo após o ajuste

O TNC só memoriza a visualização = 0, se tiver definido **Q402=1**

Exemplo: Blocos NC

5 TCH PROBE 40)2 ROT 2 ILHA
Q268=-37	;1. CENTRO 1º EIXO
Q269=+12	;1. CENTRO 2º EIXO
Q313=60	;DIÂMETRO ILHA 1
Q261=-5	;ALTURA DE MEDIÇÃO 1
Q270=+75	;2. CENTRO 1º EIXO
Q271=+20	;2. CENTRO 2º EIXO
Q314=60	;DIÂMETRO ILHA 2
Q315=-5	;ALTURA DE MEDIÇÃO 2
Q320=0	;DISTÂNCIA SEGURANÇA
Q260=+20	;ALTURA SEGURA
Q301=0	;DESLOCAR À ALTURA DE Segurança
Q307=0	;ROTAÇ. BÁSICA PRÉ-AJUST.
Q305=0	;N°. NA TABELA
Q402=0	;AJUSTAR
Q337=0	;MEMORIZAR ZERO

14.5 Compensar ROTAÇÃO BÁSICA por meio dum eixo rotativo (ciclo 403, DIN/ISO: G403)

Execução do ciclo

O ciclo de apalpação 403, por medição de dois pontos que devem situar-se sobre uma reta, calcula a inclinação duma peça de trabalho. O TNC compensa a inclinação da peça de trabalho obtida, por meio de rotação do eixo A, B ou C. A peça pode, assim, estar centrada na mesa como se quiser.

- O TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação programado 1. O TNC desvia assim o apalpador na distância de segurança contra a direção de deslocação determinada
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e executa o primeiro processo de apalpação com avanço de apalpação (MP6120)
- 3 Seguidamente, o apalpador desloca-se para o ponto de apalpação seguinte 2 e executa o segundo processo de apalpação
- 4 O TNC posiciona o apalpador de regresso na Distância Segura e posiciona o eixo rotativo definido no ciclo no valor calculado. Como opção, depois do ajuste, pode mandar definir a visualização em 0

Ter em atenção ao programar!

Atenção, perigo de colisão!

 Δ

Proporcione uma **altura de segurança**, suficientemente grande, para que não possam ocorrer colisões no posicionamento final do eixo rotativo!

Por princípio, a HEIDENHAIN recomenda que o parâmetro **Q312 Eixo para movimento de compensação** se defina com o valor 0. Dessa forma, o ciclo determina automaticamente o eixo rotativo a alinhar e assegura que é utilizado o eixo rotativo correto para o alinhamento. Com Q312=0, dependendo da sequência dos pontos de apalpação, o TNC determina um ângulo com a direção efetiva. O ângulo determinado aponta do primeiro para o segundo ponto de apalpação. Se selecionar o eixo A, B ou C como eixo de compensação no parâmetro **Q312**, o ciclo determina o ângulo independentemente da sequência dos pontos de apalpação. O ângulo calculado encontra-se entre -90 e +90°.

Após o alinhamento, por princípio, verifique a posição do eixo rotativo!

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

O TNC memoriza o ângulo determinado também no parâmetro **Q150**.

Para fazer com que o ciclo determine automaticamente o eixo de compensação, é necessário que no TNC esteja guardada uma descrição de cinemática.

Parâmetros de ciclo

- 1. Messpunkt 1. Achse Q263 (absoluto): coordenada do primeiro ponto de apalpação no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 1.º ponto de medição do 2.º eixo Q264 (absoluto): coordenada do primeiro ponto de apalpação no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 2.º ponto de medição do 1.º eixo Q265 (absoluto): coordenada do segundo ponto de apalpação no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 2.º ponto de medição do 2.º eixo Q266 (absoluto): coordenada do segundo ponto de apalpação no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Eixo de medição Q272: eixo em que deve ser feita a medição:
 - 1:Eixo principal = eixo de medição
 - 2: Eixo secundário = eixo de medição
 - 3: Eixo do apalpador = eixo de medição
- Direção de deslocação 1 direção em que o apalpador deve ser deslocado para a peça:
 -1: direção de deslocação negativa
 +1: direção de deslocação positiva
- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF

- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Deslocar à altura segura Q301: determinar como o apalpador se deve deslocar entre os pontos de medição:

0: deslocar entre pontos de medição à altura de medição

- 1: deslocar entre pontos de medição à altura segura
- Eixo para deslocação de compensação Q312: determinar com que eixo rotativo o TNC deve compensar a inclinação medida.

0: Modo automático – o TNC determina o eixo rotativo a alinhar com base na cinemática ativa. No modo automático, o primeiro eixo rotativo da mesa (partindo da peça de trabalho) é utilizado como eixo de compensação. Definição recomendada!

- 4: Compensar a inclinação com eixo rotativo A
- 5: Compensar a inclinação com eixo rotativo B
- 6: Compensar a inclinação com eixo rotativo C
- Definir zero depois de ajuste Q337: determinar se o TNC deve fixar em 0 a visualização do eixo rotativo ajustado:

0: não definir em 0 a visualização do eixo rotativo após o ajuste

1: Definir em 0 a visualização do eixo rotativo após o ajuste

- Número na tabela Q305: indicar número na tabela de preset/pontos zero, onde o TNC deve anular o eixo rotativo. Só atuante quando está memorizado Q337 = 1. Campo de introdução de 0 a 99999
- Transferência de valor de medição (0,1) Q303: determinar se o ângulo determinado deve ser colocado na tabela de pontos zero ou na tabela de preset:

0: escrever o ângulo obtido como deslocação de ponto zero na tabela de pontos zero ativada. O sistema de referência é o sistema de coordenadas da peça de trabalho ativado

1: escrever o ângulo determinado na tabela de preset. O sistema de referência é o sistema de coordenadas da máquina (sistema REF)

Ângulo de referência ? (0=eixo principal) Q380: ângulo em que o TNC deve alinhar a reta apalpada. Só atuante quando está selecionado eixo rotativo = modo automático ou C (Q312 = 0 ou 6). Campo de introdução -360.000 bis 360.000

Exemplo: Blocos NC

5	TCH PROBE 40	3 ROT ATRAVÉS DE EIXO C
	Q263=+25	;1. PONTO 1º EIXO
	Q264=+10	;1. PONTO 2º EIXO
	Q265=+40	;2. PONTO 1º EIXO
	Q266=+17	;2. PONTO 2º EIXO
	Q272=2	;EIXO DE MEDIÇÃO
	Q267=+1	;DIREÇÃO DE DESLOCAÇÃO
	Q261=-5	;ALTURA DE MEDIÇÃO
	Q320=0	;DISTÂNCIA SEGURANÇA
	Q260=+20	;ALTURA SEGURA
	Q301=0	;DESLOCAR À ALTURA DE Segurança
	Q312=0	;EIXO DE COMPENSAÇÃO
	Q337=0	;MEMORIZAR ZERO
	Q305=1	;N°. NA TABELA
	Q303=+1	;TRANSFERÊNCIA VALOR MEDIÇÃO
	Q380=+0	;ÂNGULO DE REFERÊNCIA

14.6 MEMORIZAR ROTAÇÃO BÁSICA (Ciclo 404, DIN/ISO: G404)

Execução do ciclo

Com o ciclo de apalpação 404, durante a execução do programa podese memorizar automaticamente uma rotação básica qualquer. De preferência, o ciclo utiliza-se quando se quiser anular uma rotação básica já executada anteriormente. **Exemplo: Blocos NC**

5 TCH PROBE	404 ROTAÇÃO BÁSICA
Q307=+0	;ROTAÇ. BÁSICA PRÉ-AJUST.
0305=1	:N°. NA TABELA

Parâmetros de ciclo

Ajuste prévio da rotação básica: valor angular com que deve ser memorizada a rotação básica. Campo de introdução -360.000 bis 360.000

Número na tabela Q305: indicar número na tabela de pontos de referência/tabela de pontos zero onde o TNC deve guardar as coordenadas da rotação básica definida.

-1: O TNC sobrescreve o ponto de referência ativo e ativa-o

0: O TNC copia o ponto de referência ativo para o ponto de referência 0, escreve a rotação básica e ativa o ponto de referência 0

>0:O TNC escreve somente a rotação básica definida no número de ponto de referência indicado e não ativa este ponto de referência. Se necessário, utilizar o ciclo 247 (ver "MEMORIZAR PONTO DE

REFERÊNCIA (Ciclo 247, DIN/ISO: G247)" na página 290)

Campo de introdução de 0 a 99999

14.7 Ajustar a inclinação duma peça de trabalho por meio do eixo C (ciclo 405, DIN/ISO: G405)

Execução do ciclo

Com o ciclo de apalpação 405, obtém-se

- o desvio angular entre o eixo Y positivo do sistema de coordenadas atuante do sistema e a linha central dum furo ou
- o desvio angular entre a posição nominal e a posição real do ponto central dum furo

O TNC compensa o desvio angular calculado por meio de rotação do eixo C. A peça de trabalho pode, assim, estar centrada na mesa como se quiser, mas a coordenada Y do furo tem que ser positiva. Se se medir o desvio angular do furo com o eixo Y do apalpador (posição horizontal do furo), pode ser necessário executar várias vezes o ciclo, pois com a estratégia de medição resulta uma imprecisão de aprox. 1% da inclinação.

- TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação 1. O TNC calcula os pontos de apalpação a partir das indicações no ciclo e da distância de segurança a partir de MP6140
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e executa o primeiro processo de apalpação com avanço de apalpação (MP6120). O TNC determina automaticamente a direção de apalpação em função do ângulo inicial programado
- A seguir, o apalpador desloca-se de forma circular à altura de medição ou à altura segura, para o ponto de apalpação seguinte 2 e executa aí o segundo processo de apalpação
- 4 O TNC posiciona o apalpador para o ponto de apalpação 3 e a seguir para o ponto de apalpação 4 e executa aí o terceiro ou o quarto processo de apalpação e posiciona o apalpador no centro do furo determinado
- 5 Finalmente, o TNC posiciona o apalpador de regresso na Altura Segura e centra a peça de trabalho por meio de rotação da mesa. O TNC roda a mesa de forma a que o ponto central do furo depois da compensação - tanto com o apalpador vertical como horizontal - fique na direção do eixo Y positivo, ou na posição nominal do ponto central do furo. O desvio angular medido está também à disposição no parâmetro Q150

Ter em atenção ao programar!

Atencao, perigo de colisao!

Para evitar uma colisão entre o apalpador e a peça de trabalho, introduza o diâmetro nominal da caixa (furo) de preferência excessivamente **pequeno**.

Quando a medida da caixa e a distância de segurança não permitem um posicionamento prévio próximo dos pontos de apalpação, o TNC apalpa sempre a partir do centro da caixa. Entre os quatro pontos de medição, o apalpador não se desloca na Altura Segura.

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Quanto mais pequeno se programar o passo angular, menor é a exatidão com que o TNC calcula o ponto central do círculo. menor valor de introdução: 5°.

Parâmetros de ciclo

- Centro 1.º eixo Q321 (absoluto): centro do furo no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Centro 2.º eixo Q322 (valor absoluto): centro do furo no eixo secundário do plano de maquinagem. Se se programar Q322 = 0, o TNC ajusta o ponto central do furo no eixo Y positivo, e se se programar Q322 diferente de 0, o TNC ajusta o ponto central do furo na posição nominal (ângulo resultante do centro do furo). Campo de introdução -99999,9999 a 99999,9999
- Diâmetro nominal Q262: diâmetro aproximado da caixa circular (furo). De preferência, introduzir o valor demasiado pequeno. Campo de introdução de 0 a 99999,9999
- Ângulo inicial Q325 (absoluto): ângulo entre o eixo principal do plano de maquinagem e o primeiro ponto de apalpação. Campo de introdução -360.000 bis 360.000
- Passo angular Q247 (valor incremental): ângulo entre dois pontos de medição; o sinal do passo angular determina a direção de rotação (- = sentido horário), com que o apalpador se desloca para o ponto de medição seguinte. Se quiser medir arcos de círculo, programe um passo angular menor do que 90°. Campo de introdução -120,000 a 120,000

4.7 Ajustar a inclinação d<mark>um</mark>a peça de trabalho por meio do eixo C (ciclo 405, DIN/ISO: G405

- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Deslocar à altura segura Q301: determinar como o apalpador se deve deslocar entre os pontos de medição:

0: deslocar entre pontos de medição à altura de medição

1: deslocar entre pontos de medição à altura segura Em alternativa, **PREDEF**

Definir zero depois de ajuste Q337: determinar se o TNC deve colocar a visualização do eixo C em 0, ou se deve escrever o desvio angular na coluna C da tabela de pontos zero.

0: Definir a visualização do eixo C para 0 e escrever o valor na linha 0 da tabela de pontos de referência

>0:Escrever com sinal correto desvio angular medido na tabela de pontos zero. Número da linha = valor de Q337. Se já estiver introduzido um deslocamento de C na tabela de pontos zero, o TNC adiciona o desvio angular medido com sinal correto

Exemplo: Blocos NC

5 TCH PROBE 40	D5 ATRAVÉS DE EIXO C
Q321=+50	;CENTRO 1º EIXO
Q322=+50	;CENTRO 2º EIXO
Q262=10	;DIÂMETRO NOMINAL
Q325=+0	;ÂNGULO INICIAL
Q247=90	;INCREMENTO ANGULAR
Q261=-5	;ALTURA DE MEDIÇÃO
Q320=0	;DISTÂNCIA SEGURANÇA
Q260=+20	;ALTURA SEGURA
Q301=0	;DESLOCAR À ALTURA SEGURANÇA
Q337=0	;MEMORIZAR ZERO

Exemplo: determinar a rotação básica por meio de dois furos

O BEGIN PGM CYC401 MM	
1 TOOL CALL 69 Z	
2 TCH PROBE 401 ROT 2 FUROS	
Q268=+25 ;1.º CENTRO 1.º EIXO	Ponto central do 1.º furo: coordenada X
Q269=+15 ;1.º CENTRO 2.º EIXO	Ponto central do 1.º furo: coordenada Y
Q270=+80 ;2.º CENTRO 1.º EIXO	Ponto central do 2.º furo: coordenada X
Q271=+35 ;2.º CENTRO 2.º EIXO	Ponto central do 2.º furo: coordenada Y
Q261=-5 ;ALTURA DE MEDIÇÃO	Coordenada no eixo do apalpador, onde é feita a medição
Q260=+20 ;ALTURA SEGURA	Altura onde o eixo do apalpador se pode deslocar sem colisão
Q307=+0 ;ROTAÇ. BÁSICA PRÉ-AJUST.	Ângulo das retas de referência
Q402=1 ;AJUSTAR	Compensar a posição inclinada mediante rotação da mesa circular
Q337=1 ;MEMORIZAR ZERO	Repor a visualização a zero após o ajuste
3 CALL PGM 35K47	Chamar o programa de maquinagem
4 END PGM CYC401 MM	

i

Ciclos de apalpação: Determinar pontos de referência automaticamente

15.1 Princípios básicos

Resumo

O TNC põe à disposição doze ciclos com os quais podem ser obtidos automaticamente pontos de referência e ser processados da seguinte forma:

- Memorizar valores obtidos, diretamente como valores de visualização
- Escrever na tabela de preset valores obtidos
- Escrever numa tabela de pontos zero valores obtidos

Ciclo	Softkey	Página
408 PONTO REF CENTRO RANHURA Medir no interior a largura de uma ranhura, memorizar o centro da ranhura como ponto de referência	408 2797 2797 2	Página 367
409 PONTO REF CENTRO NERVURA Medir no exterior a largura de uma nervura, memorizar o centro da nervura como ponto de referência	405 J 200 Z	Página 371
410 PONTO REF RECTÂNG INTERIOR Medir no interior comprimento e largura de um retângulo, centro de retângulo como ponto de referência	418	Página 374
411 PONTO REF RECTÂNG EXTERIOR Medir no exterior comprimento e largura de um retângulo, centro de retângulo como ponto de referência	411	Página 378
412 PONTO REF CÍRCULO INTERIOR Medir no interior quatro pontos de círculo quaisquer, memorizar centro do círculo como ponto de referência	412	Página 382
413 PONTO REF CÍRCULO EXTERIOR Medir no exterior quatro pontos de círculo quaisquer, memorizar centro do círculo como ponto de referência	413	Página 386
414 PONTO REF ESQUINA EXTERIOR Medir duas retas no exterior, memorizar ponto de intersecção das retas como ponto de referência	414	Página 390
415 PONTO REF ESQUINA INTERIOR Medir duas retas no interior, memorizar ponto de intersecção das retas como ponto de referência	415	Página 395

Ciclo	Softkey	Página
416 PONTO REF CENTRO CÍRCULO FUROS (2.º plano de softkeys) Medir três furos quaisquer no círculo de furos, memorizar centro do círculo de furos como ponto de referência	416 *** **	Página 399
417 PONTO REF EIXO APALP (2.º plano de softkeys) Medir uma posição qualquer no eixo do apalpador e memorizá-la como ponto de referência	417 ******	Página 403
418 PONTO REF 4 FUROS (2.º plano de softkeys) Medir respetivamente 2 furos por meio de cruz, memorizar ponto de intersecção de retas de união como ponto de referência	418	Página 405
419 PONTO REF EIXO APALP INDIVIDUAL (2.º plano de softkeys) Medir uma posição qualquer no eixo e memorizá-la como ponto de referência	419	Página 409

Características comuns de todos os ciclos de apalpação em relação à memorização do ponto de referência

Podem executar-se os ciclos de apalpação 408 a 419 também com a rotação ativada (rotação básica ou ciclo 10).

Ponto de referência e eixo do apalpador

O TNC define o ponto de referência no plano de maquinagem, em função do eixo do apalpador que se tenha definido no seu programa de medições:

Eixo do apalpador ativado	Memorizar ponto de referência em
Z ou W	XeY
Y ou V	ZeX
X ou U	YeZ

Memorizar o ponto de referência calculado

Em todos os ciclos para a memorização do ponto de referência, com os parâmetros de introdução Q303 e Q305, é possível determinar como o TNC deve memorizar o ponto de referência calculado:

■ Q305 = 0, Q303 = um valor qualquer:

O TNC memoriza o ponto de referência calculado na visualização. O novo ponto de referência fica imediatamente ativo. Simultaneamente, o TNC memoriza o ponto de referência por ciclo colocado na visualização também na linha 0 da tabela de preset

Q305 diferente de 0, Q303 = -1

15.1 Princípios básicos

Só pode dar-se esta combinação, se

- introduzir programas com ciclos 410 a 418, que tenham sido criados num TNC 4xx
- introduzir programas com ciclos 410 a 418, que tenham sido criados com um software mais antigo do iTNC530
- ao definir o ciclo, não tenha definido conscientemente a transferência de valor de medição por meio do parâmetro Q303

Nestes casos, o TNC emite uma mensagem de erro, pois modificou-se todo o tratamento relacionado com as tabelas de pontos zero referentes a REF e dado que se tem que determinar uma transferência de valor de medição por meio do parâmetro Q303.

Q305 diferente de 0, Q303 = 0

O TNC escreve o ponto de referência calculado na tabela de pontos zero ativada. O sistema de referência é o sistema de coordenadas da peça de trabalho ativado. O valor do parâmetro Q305 determina o número do ponto zero. **Ativar o ponto zero por meio do ciclo 7** no programa NC

Q305 diferente de 0, Q303 = 1

O TNC escreve o ponto de referência calculado na tabela de preset. O sistema de referência é o sistema de coordenadas da máquina (coordenadas REF). O valor do parâmetro Q305 determina o número de preset. **Ativar o preset por meio do ciclo 247 no programa NC**

Resultados de medição em parâmetros Q

O TNC coloca os resultados de medição do respetivo ciclo de apalpação nos parâmetros Q globalmente atuantes, de Q150 a Q160. Pode continuar a utilizar estes parâmetros no seu programa. Observe a tabela dos parâmetros de resultado, que é executada com cada descrição de ciclo.

Execução do ciclo

O ciclo de apalpação 408 calcula o ponto central de uma ranhura e memoriza este ponto central como ponto de referência. Se quiser, o TNC também pode escrever o ponto central numa tabela de pontos zero ou de preset.

- TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação 1. O TNC calcula os pontos de apalpação a partir das indicações no ciclo e da distância de segurança a partir de MP6140
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e executa o primeiro processo de apalpação com avanço de apalpação (MP6120)
- A seguir, o apalpador desloca-se paralelo ao eixo à altura de medição ou à altura segura, para o ponto de apalpação seguinte 2 e executa aí o segundo processo de apalpação
- 4 Finalmente, o TNC posiciona o apalpador de regresso à Altura Segura e processa o ponto de referência determinado de acordo com os parâmetros de ciclo Q303 e Q305 (ver "Memorizar o ponto de referência calculado" na página 366), guardando os valores reais nos parâmetros Q apresentados seguidamente
- 5 Quando se quiser, o TNC obtém a seguir, num processo de apalpação separado, ainda o ponto de referência no eixo do apalpador

Número de parâmetro	Significado
Q166	Valor real da largura de ranhura medida
Q157	Valor real posição eixo central

Ter em atenção ao programar!

403

Atencao, perigo de colisao!

Para evitar uma colisão entre o apalpador e a peça de trabalho, introduza a largura da ranhura, de preferência, excessivamente **pequena**.

Quando a largura da ranhura e a distância de segurança não permitem um posicionamento prévio próximo dos pontos de apalpação, o TNC apalpa sempre a partir do centro da ranhura. Entre os dois pontos de medição, o apalpador não se desloca na Altura Segura.

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Parâmetros de ciclo

- Centro do 1.º eixo Q321 (absoluto): centro da ranhura no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
 - Centro do 2.º eixo Q322 (absoluto): centro da ranhura no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
 - Largura da ranhura Q311 (incremental): largura da ranhura independente da posição no plano de maquinagem. Campo de introdução de 0 a 99999,9999
 - Eixo de medição (1=1.º eixo/2=2.º eixo) Q272: eixo em que deve ser feita a medição: 1:Eixo principal = eixo de medição
 2: Eixo secundário = eixo de medição
 - Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
 - Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
 - Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF

Deslocar à altura segura Q301: determinar como o apalpador se deve deslocar entre os pontos de medição:

 $\boldsymbol{0}:$ deslocar entre pontos de medição à altura de medição

1: deslocar entre pontos de medição à altura segura Em alternativa, **PREDEF**

- Número na tabela Q305: indicar número na tabela de pontos zero/tabela de preset onde o TNC deve memorizar as coordenadas do centro da ranhura. Com introdução de Q305=0 e Q303=1, o TNC define a visualização automaticamente de forma a que o novo ponto de referência assente no centro da ranhura. Introduzindo-se Q305=0 e Q303=0, o TNC escreve o centro da ranhura na linha 0 da tabela de ponto zero. Campo de introdução de 0 a 99999
- Novo ponto de referência Q405 (absoluto): coordenada no eixo de medição onde o TNC deve memorizar o meio da ranhura obtido. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Transferência de valor de medição (0,1) Q303: determinar se o ponto de referência determinado deve ser colocado na tabela de pontos zero ou na tabela de preset:

0: escrever o ponto de referência na tabela de pontos zero ativada. O sistema de referência é o sistema de coordenadas da peça de trabalho ativado

1: escrever o ponto de referência determinado na tabela de preset. O sistema de referência é o sistema de coordenadas da máquina (sistema REF)

Apalpação no eixo do apalpador Q381: determinar se o TNC também deve memorizar o ponto de referência no eixo do apalpador:

0: não memorizar o ponto de referência no eixo do apalpador

1: memorizar o ponto de referência no eixo do apalpador

- Apalpar eixo TS: coord. 1.º eixo Q382 (absoluto): coordenada do ponto de apalpação no eixo principal do plano de maquinagem em que se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 2.º eixo Q383 (absoluto): coordenada do ponto de apalpação no eixo secundário do plano de maquinagem, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 3.º eixo Q384 (valor absoluto): coordenada do ponto de apalpação no eixo do apalpador, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Novo ponto de referência do eixo TS Q333 (valor absoluto): coordenada no eixo do apalpador onde o TNC deve memorizar o ponto de referência. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999

Exemplo: Blocos NC

5 TCH PROBE 40	08 PONTO REF CENTRO RANHURA
Q321=+50	;CENTRO 1º EIXO
Q322=+50	;CENTRO 2º EIXO
Q311=25	;LARGURA DA RANHURA
Q272=1	;EIXO DE MEDIÇÃO
Q261=-5	;ALTURA DE MEDIÇÃO
Q320=0	;DISTÂNCIA SEGURANÇA
Q260=+20	;ALTURA SEGURA
Q301=0	;DESLOCAR À ALTURA SEGURANÇA
Q305=10	;Nº. NA TABELA
Q405=+0	;PONTO REF
Q303=+1	;TRANSFERÊNCIA VALOR MEDIÇÃO
Q381=1	;APALPAR EIXO TS
Q382=+85	;1ª CO. PARA EIXO TS
Q383=+50	;2ª CO. PARA EIXO TS
Q384=+0	;3° CO. PARA EIXO TS
Q333=+1	;PONTO REF

15.3 PONTO DE REFERÊNCIA CENTRO DE NERVURA (ciclo 409, DIN/ISO: G409, função FCL 3)

Execução do ciclo

O ciclo de apalpação 409 obtém o ponto central de uma nervura e memoriza este ponto central como ponto de referência. Se quiser, o TNC também pode escrever o ponto central numa tabela de pontos zero ou de preset.

- TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação 1. O TNC calcula os pontos de apalpação a partir das indicações no ciclo e da distância de segurança a partir de MP6140
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e executa o primeiro processo de apalpação com avanço de apalpação (MP6120)
- 3 A seguir, o apalpador desloca-se em Altura Segura para o ponto de apalpação seguinte 2 e executa o segundo processo de apalpação
- 4 Finalmente, o TNC posiciona o apalpador de regresso à Altura Segura e processa o ponto de referência determinado de acordo com os parâmetros de ciclo Q303 e Q305 (ver "Memorizar o ponto de referência calculado" na página 366), guardando os valores reais nos parâmetros Q apresentados seguidamente
- 5 Quando se quiser, o TNC obtém a seguir, num processo de apalpação separado, ainda o ponto de referência no eixo do apalpador

Número de parâmetro	Significado
Q166	Valor real da largura de nervura medida
Q157	Valor real posição eixo central

Ter em atenção ao programar!

Atencao, perigo de colisao!

Para evitar uma colisão entre o apalpador e a peça de trabalho, introduza, de preferência, uma largura de nervura excessivamente **grande**.

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Parâmetros de ciclo

- Centro do 1.º eixo Q321 (absoluto): centro da nervura no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Centro do 2º eixo Q322 (absoluto): centro da nervura no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Largura da nervura Q311 (incremental): largura da nervura independentemente da posição no plano de maquinagem. Campo de introdução de 0 a 99999,9999
- Eixo de medição (1=1.º eixo/2=2.º eixo) Q272: eixo em que deve ser feita a medição:
 1:Eixo principal = eixo de medição
 2: Eixo secundário = eixo de medição
- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Número na tabela Q305: indicar número na tabela de pontos zero/tabela de preset onde o TNC deve memorizar as coordenadas do centro da nervura. Com introdução de Q305=0 e Q303=1, o TNC define a visualização automaticamente de forma a que o novo ponto de referência assente no centro da nervura. Introduzindo-se Q305=0 e Q303=0, o TNC escreve o centro da nervura na linha 0 da tabela de ponto zero. Campo de introdução de 0 a 99999
- Novo ponto de referência Q405 (absoluto): coordenada no eixo de medição onde o TNC deve memorizar o meio da nervura obtido. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999

Transferência de valor de medição (0,1) Q303: determinar se o ponto de referência determinado deve ser colocado na tabela de pontos zero ou na tabela de preset:

0: escrever o ponto de referência na tabela de pontos zero ativada. O sistema de referência é o sistema de coordenadas da peça de trabalho ativado

1: escrever o ponto de referência determinado na tabela de preset. O sistema de referência é o sistema de coordenadas da máquina (sistema REF)

▶ Apalpação no eixo do apalpador Q381: determinar se o TNC também deve memorizar o ponto de referência no eixo do apalpador:

 $\boldsymbol{0}$: não memorizar o ponto de referência no eixo do apalpador

1: memorizar o ponto de referência no eixo do apalpador

- Apalpar eixo TS: coord. 1.º eixo Q382 (absoluto): coordenada do ponto de apalpação no eixo principal do plano de maquinagem em que se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 2.º eixo Q383 (absoluto): coordenada do ponto de apalpação no eixo secundário do plano de maquinagem, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 3.º eixo Q384 (valor absoluto): coordenada do ponto de apalpação no eixo do apalpador, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Novo ponto de referência do eixo TS Q333 (valor absoluto): coordenada no eixo do apalpador onde o TNC deve memorizar o ponto de referência. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999

Exemplo: Blocos NC

5 TCH PROBE 40	9 PONTO REF CENTRO NERVURA
Q321=+50	;CENTRO 1º EIXO
Q322=+50	;CENTRO 2º EIXO
Q311=25	;LARGURA DA NERVURA
Q272=1	;EIXO DE MEDIÇÃO
Q261=-5	;ALTURA DE MEDIÇÃO
Q320=0	;DISTÂNCIA SEGURANÇA
Q260=+20	;ALTURA SEGURA
Q305=10	;N°. NA TABELA
Q405=+0	;PONTO REF
Q303=+1	;TRANSFERÊNCIA VALOR MEDIÇÃO
Q381=1	;APALPAR EIXO TS
Q382=+85	;1ª CO. PARA EIXO TS
Q383=+50	;2ª CO. PARA EIXO TS
Q384=+0	;3° CO. PARA EIXO TS
Q333=+1	;PONTO REF

15.4 PONTO REFERÊNCIA RETÂNGULO INTERIOR (ciclo 410, DIN/ISO: G410)

Execução do ciclo

O ciclo de apalpação 410 calcula o ponto central de uma caixa retangular e memoriza este ponto central como ponto de referência. Se quiser, o TNC também pode escrever o ponto central numa tabela de pontos zero ou de preset.

- TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação 1. O TNC calcula os pontos de apalpação a partir das indicações no ciclo e da distância de segurança a partir de MP6140
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e executa o primeiro processo de apalpação com avanço de apalpação (MP6120)
- A seguir, o apalpador desloca-se paralelo ao eixo à altura de medição ou à altura segura, para o ponto de apalpação seguinte 2 e executa aí o segundo processo de apalpação
- 4 O TNC posiciona o apalpador para o ponto de apalpação 3 e a seguir para o ponto de apalpação 4 e executa aí o terceiro ou o quarto processo de apalpação
- 5 Finalmente, o TNC posiciona o apalpador de regresso à Altura Segura e processa o ponto de referência determinado dependente dos parâmetros de ciclo Q303 e Q305 (ver "Memorizar o ponto de referência calculado" na página 366)
- 6 Quando se quiser, o TNC obtém a seguir, num processo de apalpação separado, ainda o ponto de referência no eixo do apalpador e guarda os valores reais nos parâmetros Ω seguintes

Número de parâmetro	Significado
Q151	Valor real centro eixo principal
Q152	Valor real centro eixo secundário
Q154	Valor real comprimento lateral eixo principal
Q155	Valor real comprimento lateral eixo secundário

Ter em atenção ao programar!

Atenção, perigo de colisão!

Para evitar uma colisão entre o apalpador e a peça de trabalho, introduza o 1.º e o 2.º comprimento lateral da caixa, de preferência, excessivamente **pequeno**.

Quando a medida da caixa e a distância de segurança não permitem um posicionamento prévio próximo dos pontos de apalpação, o TNC apalpa sempre a partir do centro da caixa. Entre os quatro pontos de medição, o apalpador não se desloca na Altura Segura.

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Parâmetros de ciclo

- Centro do 1º eixo Q321 (absoluto): centro da caixa no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Centro do 2º eixo Q322 (absoluto): centro da caixa no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 1. º comprimento lateral Q323 (valor incremental): comprimento da caixa, paralelo ao eixo principal do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- 2º º comprimento lateral Q324 (valor incremental): comprimento da caixa, paralelo ao eixo secundário do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF

Deslocar à altura segura Q301: determinar como o apalpador se deve deslocar entre os pontos de medição:

0: deslocar entre pontos de medição à altura de medição

1: deslocar entre pontos de medição à altura segura Em alternativa, **PREDEF**

- Número na tabela Q305: indicar número na tabela de pontos zero/tabela de preset onde o TNC deve definir as coordenadas do centro da caixa. Com introdução de Q305=0 e Q303=1, o TNC define a visualização automaticamente de forma a que o novo ponto de referência assente no centro da caixa. Introduzindose Q305=0 e Q303=0, o TNC escreve o centro da caixa na linha 0 da tabela de ponto zero. Campo de introdução de 0 a 99999
- Novo ponto de referência do eixo principal Q331 (valor absoluto): coordenada no eixo principal onde o TNC deve memorizar o centro da caixa calculado. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Novo ponto de referência do eixo secundário Q332 (valor absoluto): coordenada no eixo secundário onde o TNC deve memorizar o centro da caixa calculado. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Transferência de valor de medição (0,1) Q303: determinar se o ponto de referência determinado deve ser colocado na tabela de pontos zero ou na tabela de preset:

-1: Não utilizar! Se for registado pelo TNC, quando forem introduzidos programas antigos (ver "Memorizar o ponto de referência calculado" na página 366)

0: escrever o ponto de referência na tabela de pontos zero ativada. O sistema de referência é o sistema de coordenadas da peça de trabalho ativado

1: escrever o ponto de referência determinado na tabela de preset. O sistema de referência é o sistema de coordenadas da máquina (sistema REF)

 Apalpação no eixo do apalpador Q381: determinar se o TNC também deve memorizar o ponto de referência no eixo do apalpador:
 O: não memorizar o ponto de referência no eixo do apalpador

1: memorizar o ponto de referência no eixo do apalpador

- Apalpar eixo TS: coord. 1.º eixo Q382 (absoluto): coordenada do ponto de apalpação no eixo principal do plano de maquinagem em que se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 2.º eixo Q383 (absoluto): coordenada do ponto de apalpação no eixo secundário do plano de maquinagem, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 3.º eixo Q384 (valor absoluto): coordenada do ponto de apalpação no eixo do apalpador, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Novo ponto de referência do eixo TS Q333 (valor absoluto): coordenada no eixo do apalpador onde o TNC deve memorizar o ponto de referência. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999

Exemplo: Blocos NC

5 TCH PROBE 41	LO P.TO REF RETÂNG INTER
Q321=+50	;CENTRO 1º EIXO
Q322=+50	;CENTRO 2º EIXO
Q323=60	;1.º COMPRIMENTO DE LADO
Q324=20	;2.º COMPRIMENTO DE LADO
Q261=-5	;ALTURA DE MEDIÇÃO
Q320=0	;DISTÂNCIA SEGURANÇA
Q260=+20	;ALTURA SEGURA
Q301=0	;DESLOCAR À ALTURA SEGURANÇA
Q305=10	;N°. NA TABELA
Q331=+0	;PONTO REF
Q332=+0	;PONTO REF
Q303=+1	;TRANSFERÊNCIA VALOR MEDIÇÃO
Q381=1	;APALPAR EIXO TS
Q382=+85	;1ª CO. PARA EIXO TS
Q383=+50	;2ª CO. PARA EIXO TS
Q384=+0	;3° CO. PARA EIXO TS
Q333=+1	;PONTO REF

15.5 PONTO DE REFERÊNCIA RETÂNGULO EXTERIOR (ciclo 411, DIN/ISO: G411)

Execução do ciclo

O ciclo de apalpação 411 calcula o ponto central de uma ilha retangular e memoriza este ponto central como ponto de referência. Se quiser, o TNC também pode escrever o ponto central numa tabela de pontos zero ou de preset.

- TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação 1. O TNC calcula os pontos de apalpação a partir das indicações no ciclo e da distância de segurança a partir de MP6140
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e executa o primeiro processo de apalpação com avanço de apalpação (MP6120)
- A seguir, o apalpador desloca-se paralelo ao eixo à altura de medição ou à altura segura, para o ponto de apalpação seguinte 2 e executa aí o segundo processo de apalpação
- 4 O TNC posiciona o apalpador para o ponto de apalpação 3 e a seguir para o ponto de apalpação 4 e executa aí o terceiro ou o quarto processo de apalpação
- 5 Finalmente, o TNC posiciona o apalpador de regresso à Altura Segura e processa o ponto de referência determinado dependente dos parâmetros de ciclo Q303 e Q305 (ver "Memorizar o ponto de referência calculado" na página 366)
- 6 Quando se quiser, o TNC obtém a seguir, num processo de apalpação separado, ainda o ponto de referência no eixo do apalpador e guarda os valores reais nos parâmetros Q seguintes

Número de parâmetro	Significado
Q151	Valor real centro eixo principal
Q152	Valor real centro eixo secundário
Q154	Valor real comprimento lateral eixo principal
Q155	Valor real comprimento lateral eixo secundário

Ter em atenção ao programar!

Atenção, perigo de colisão!

Para evitar uma colisão entre o apalpador e a peça de trabalho, introduza o 1.º e o 2.º comprimento lateral da ilha, de preferência, excessivamente **grande**.

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Parâmetros de ciclo

- Centro do 1º eixo Q321 (absoluto): centro da ilha no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Centro do 2º eixo Q322 (absoluto): centro da ilha no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 1. º comprimento lateral Q323 (valor incremental): comprimento da ilha, paralelo ao eixo principal do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- 2. º comprimento lateral Q324 (valor incremental): comprimento da ilha, paralelo ao eixo secundário do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF

 Deslocar à altura segura Q301: determinar como o apalpador se deve deslocar entre os pontos de medição:
 0: deslocar entre pontos de medição à altura de

medição 1: deslocar entre pontos de medição à altura ser

1: deslocar entre pontos de medição à altura segura Em alternativa, **PREDEF**

- Número na tabela Q305: indicar número na tabela de pontos zero/tabela de preset onde o TNC deve definir as coordenadas do centro da ilha. Com introdução de Q305=0 e Q303=1, o TNC define a visualização automaticamente de forma a que o novo ponto de referência assente no centro da ilha. Introduzindo-se Q305=0 e Q303=0, o TNC escreve o centro da ilha na linha 0 da tabela de ponto zero. Campo de introdução de 0 a 99999
- Novo ponto de referência do eixo principal Q331 (valor absoluto): coordenada no eixo principal, onde o TNC deve definir o centro da ilha obtido. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Novo ponto de referência do eixo secundário Q332 (valor absoluto): coordenada no eixo secundário onde o TNC deve memorizar o centro da ilha obtido. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Transferência de valor de medição (0,1) Q303: determinar se o ponto de referência determinado deve ser colocado na tabela de pontos zero ou na tabela de preset:

-1: Não utilizar! Se for registado pelo TNC, quando forem introduzidos programas antigos (ver "Memorizar o ponto de referência calculado" na página 366)

0: escrever o ponto de referência na tabela de pontos zero ativada. O sistema de referência é o sistema de coordenadas da peça de trabalho ativado

1: escrever o ponto de referência determinado na tabela de preset. O sistema de referência é o sistema de coordenadas da máquina (sistema REF)

 Apalpação no eixo do apalpador Q381: determinar se o TNC também deve memorizar o ponto de referência no eixo do apalpador:
 0: não memorizar o ponto de referência no eixo do apalpador
 1: memorizar o ponto de referência no eixo do

apalpador

- Apalpar eixo TS: coord. 1.º eixo Q382 (absoluto): coordenada do ponto de apalpação no eixo principal do plano de maquinagem em que se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 2.º eixo Q383 (absoluto): coordenada do ponto de apalpação no eixo secundário do plano de maquinagem, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 3.º eixo Q384 (valor absoluto): coordenada do ponto de apalpação no eixo do apalpador, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Novo ponto de referência do eixo TS Q333 (valor absoluto): coordenada no eixo do apalpador onde o TNC deve memorizar o ponto de referência. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999

Exemplo: Blocos NC

5 TCH PROBE 41	L1 PONTO REF RETÂNG EXT.
Q321=+50	;CENTRO 1º EIXO
Q322=+50	;CENTRO 2º EIXO
Q323=60	;1.º COMPRIMENTO DE LADO
Q324=20	;2.º COMPRIMENTO DE LADO
Q261=-5	;ALTURA DE MEDIÇÃO
Q320=0	;DISTÂNCIA SEGURANÇA
Q260=+20	;ALTURA SEGURA
Q301=0	;DESLOCAR À ALTURA SEGURANÇA
Q305=0	;N°. NA TABELA
Q331=+O	;PONTO REF
Q332=+0	;PONTO REF
Q303=+1	;TRANSFERÊNCIA VALOR MEDIÇÃO
Q381=1	;APALPAR EIXO TS
Q382=+85	;1ª CO. PARA EIXO TS
Q383=+50	;2ª CO. PARA EIXO TS
Q384=+0	;3° CO. PARA EIXO TS
Q333=+1	;PONTO REF

15.6 PONTO DE REFERÊNCIA CÍRCULO INTERIOR (ciclo 412, DIN/ISO: G412)

Execução do ciclo

O ciclo de apalpação 412 calcula o ponto central de uma caixa circular (furo) e memoriza este ponto central como ponto de referência. Se quiser, o TNC também pode escrever o ponto central numa tabela de pontos zero ou de preset.

- TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação 1. O TNC calcula os pontos de apalpação a partir das indicações no ciclo e da distância de segurança a partir de MP6140
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e executa o primeiro processo de apalpação com avanço de apalpação (MP6120). O TNC determina automaticamente a direção deapalpação em função do ângulo inicial programado
- 3 A seguir, o apalpador desloca-se de forma circular à altura de medição ou à altura segura, para o ponto de apalpação seguinte 2 e executa aí o segundo processo de apalpação
- 4 O TNC posiciona o apalpador para o ponto de apalpação 3 e a seguir para o ponto de apalpação 4 e executa aí o terceiro ou o quarto processo de apalpação
- 5 Finalmente, o TNC posiciona o apalpador de regresso à Altura Segura e processa o ponto de referência determinado de acordo com os parâmetros de ciclo Q303 e Q305 (ver "Memorizar o ponto de referência calculado" na página 366), guardando os valores reais nos parâmetros Q apresentados seguidamente
- 6 Quando se quiser, o TNC obtém a seguir, num processo de apalpação separado, ainda o ponto de referência no eixo do apalpador

Número de parâmetro	Significado
Q151	Valor real centro eixo principal
Q152	Valor real centro eixo secundário
Q153	Valor real diâmetro

Ter em atenção ao programar!

Atencao, perigo de colisao!

Para evitar uma colisão entre o apalpador e a peça de trabalho, introduza o diâmetro nominal da caixa (furo) de preferência excessivamente **pequeno**.

Quando a medida da caixa e a distância de segurança não permitem um posicionamento prévio próximo dos pontos de apalpação, o TNC apalpa sempre a partir do centro da caixa. Entre os quatro pontos de medição, o apalpador não se desloca na Altura Segura.

Quanto mais pequeno se programar o passo angular Q247, menor é a exatidão com que o TNC calcula o ponto de referência. menor valor de introdução: 5°.

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Parâmetros de ciclo

- Centro do 1º eixo Q321 (absoluto): centro da caixa no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Centro do 2º eixo Q322 (absoluto): centro da caixa no eixo secundário do plano de maquinagem. Se se programar Q322 = 0, o TNC ajusta o ponto central do furo no eixo Y positivo, e se se programar Q322 diferente de 0, o TNC ajusta o ponto central do furo na posição nominal. Campo de introdução -99999,9999 a 99999,9999
- Diâmetro nominal Q262: diâmetro aproximado da caixa circular (furo). De preferência, introduzir o valor demasiado pequeno. Campo de introdução de 0 a 99999,9999
- Ângulo inicial Q325 (absoluto): ângulo entre o eixo principal do plano de maquinagem e o primeiro ponto de apalpação. Campo de introdução --360,0000 a 360,0000
- Passo angular Q247 (valor incremental): ângulo entre dois pontos de medição; o sinal do passo angular determina a direção de rotação (- = sentido horário), com que o apalpador se desloca para o ponto de medição seguinte. Se quiser medir arcos de círculo, programe um passo angular menor do que 90°. Campo de introdução -120,0000 a 120,0000

- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Deslocar à altura segura Q301: determinar como o apalpador se deve deslocar entre os pontos de medição:

0: deslocar entre pontos de medição à altura de medição

1: deslocar entre pontos de medição à altura segura Em alternativa, **PREDEF**

- Número na tabela Q305: indicar número na tabela de pontos zero/tabela de preset onde o TNC deve definir as coordenadas do centro da caixa. Com introdução de Q305=0 e Q303=1, o TNC define a visualização automaticamente de forma a que o novo ponto de referência assente no centro da caixa. Introduzindose Q305=0 e Q303=0, o TNC escreve o centro da caixa na linha 0 da tabela de ponto zero. Campo de introdução de 0 a 99999
- Novo ponto de referência do eixo principal Q331 (valor absoluto): coordenada no eixo principal onde o TNC deve memorizar o centro da caixa calculado. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Novo ponto de referência do eixo secundário Q332 (valor absoluto): coordenada no eixo secundário onde o TNC deve memorizar o centro da caixa calculado. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Transferência de valor de medição (0,1) Q303: determinar se o ponto de referência determinado deve ser colocado na tabela de pontos zero ou na tabela de preset:

-1: Não utilizar! Se for registado pelo TNC, quando forem introduzidos programas antigos (ver "Memorizar o ponto de referência calculado" na página 366)

0: escrever o ponto de referência na tabela de pontos zero ativada. O sistema de referência é o sistema de coordenadas da peça de trabalho ativado

1: escrever o ponto de referência determinado na tabela de preset. O sistema de referência é o sistema de coordenadas da máquina (sistema REF)

Apalpação no eixo do apalpador Q381: determinar se o TNC também deve memorizar o ponto de referência no eixo do apalpador: 0: não memorizar o ponto de referência no eixo do apalpador

1: memorizar o ponto de referência no eixo do apalpador

- Apalpar eixo TS: coord. 1.º eixo Q382 (absoluto): coordenada do ponto de apalpação no eixo principal do plano de maquinagem em que se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 2.º eixo Q383 (absoluto): coordenada do ponto de apalpação no eixo secundário do plano de maquinagem, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 3.º eixo Q384 (valor absoluto): coordenada do ponto de apalpação no eixo do apalpador, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Novo ponto de referência do eixo TS Q333 (valor absoluto): coordenada no eixo do apalpador onde o TNC deve memorizar o ponto de referência. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Número de pontos de medição (4/3) Q423: definir se o TNC deve medir o furo com 4 ou 3 apalpações:
 4: Utilizar 4 pontos de medição (ajuste padrão)
 - 3: Utilizar 3 pontos de medição
- Modo de deslocação? Reta=0/Círculo=1 Q365: determinar com que função de trajetória o apalpador se deve deslocar entre os pontos de medição, quando a deslocação à altura de segurança (Q301=1) está ativa:

0: deslocação entre os pontos de medição numa reta
1: deslocação circular entre os pontos de medição segundo o diâmetro do círculo teórico

Exemplo: Blocos NC

5 TCH PROBE 41	L2 PONTO REF CÍRCULO INTERIOR
Q321=+50	;CENTRO 1º EIXO
Q322=+50	;CENTRO 2º EIXO
Q262=75	;DIÂMETRO NOMINAL
Q325=+0	;ÂNGULO INICIAL
Q247=+60	;INCREMENTO ANGULAR
Q261=-5	;ALTURA DE MEDIÇÃO
Q320=0	;DISTÂNCIA SEGURANÇA
Q260=+20	;ALTURA SEGURA
Q301=0	;DESLOCAR À ALTURA SEGURANÇA
Q305=12	;N°. NA TABELA
Q331=+0	;PONTO REF
Q332=+0	;PONTO REF
Q303=+1	;TRANSFERÊNCIA VALOR MEDIÇÃO
Q381=1	;APALPAR EIXO TS
Q382=+85	;1ª CO. PARA EIXO TS
Q383=+50	;2ª CO. PARA EIXO TS
Q384=+0	;3° CO. PARA EIXO TS
Q333=+1	;PONTO REF
Q423=4	;QUANTIDADE DE PONTOS DE Medição
Q365=1	;TIPO DE DESLOCAÇÃO

15.7 PONTO DE REFERÊNCIA CÍRCULO EXTERIOR (ciclo 413, DIN/ISO: G413)

Execução do ciclo

O ciclo de apalpação 413 obtém o ponto central duma ilha circular e memoriza este ponto central como ponto de referência. Se quiser, o TNC também pode escrever o ponto central numa tabela de pontos zero ou de preset.

- TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação 1. O TNC calcula os pontos de apalpação a partir das indicações no ciclo e da distância de segurança a partir de MP6140
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e executa o primeiro processo de apalpação com avanço de apalpação (MP6120). O TNC determina automaticamente a direção de apalpação em função do ângulo inicial programado
- 3 A seguir, o apalpador desloca-se de forma circular à altura de medição ou à altura segura, para o ponto de apalpação seguinte 2 e executa aí o segundo processo de apalpação
- 4 O TNC posiciona o apalpador para o ponto de apalpação 3 e a seguir para o ponto de apalpação 4 e executa aí o terceiro ou o quarto processo de apalpação
- 5 Finalmente, o TNC posiciona o apalpador de regresso à Altura Segura e processa o ponto de referência determinado de acordo com os parâmetros de ciclo Q303 e Q305 (ver "Memorizar o ponto de referência calculado" na página 366), guardando os valores reais nos parâmetros Q apresentados seguidamente
- 6 Quando se quiser, o TNC obtém a seguir, num processo de apalpação separado, ainda o ponto de referência no eixo do apalpador

Número de parâmetro	Significado
Q151	Valor real centro eixo principal
Q152	Valor real centro eixo secundário
Q153	Valor real diâmetro

Ter em atenção ao programar!

Atencao, perigo de colisao!

Para evitar uma colisão entre o apalpador e a peça de trabalho, introduza o diâmetro nominal da ilha, de preferência, excessivamente **grande** ein.

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Quanto mais pequeno se programar o passo angular Q247, menor é a exatidão com que o TNC calcula o ponto de referência. menor valor de introdução: 5°.

Parâmetros de ciclo

- 413
- Centro do 1º eixo Q321 (absoluto): centro da ilha no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Centro do 2º eixo Q322 (absoluto): centro da ilha no eixo secundário do plano de maquinagem. Se se programar Q322 = 0, o TNC ajusta o ponto central do furo no eixo Y positivo, e se se programar Q322 diferente de 0, o TNC ajusta o ponto central do furo na posição nominal. Campo de introdução -99999,9999 a 99999,9999
- Diâmetro nominal Q262: diâmetro aproximado da ilha. De preferência, introduzir o valor em excesso. Campo de introdução de 0 a 99999,9999
- Ângulo inicial Q325 (absoluto): ângulo entre o eixo principal do plano de maquinagem e o primeiro ponto de apalpação. Campo de introdução –360,0000 a 360,0000
- Passo angular Q247 (valor incremental): ângulo entre dois pontos de medição; o sinal do passo angular determina a direção de rotação (- = sentido horário), com que o apalpador se desloca para o ponto de medição seguinte. Se quiser medir arcos de círculo, programe um passo angular menor do que 90°. Campo de introdução -120,0000 a 120,0000

- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Deslocar à altura segura Q301: determinar como o apalpador se deve deslocar entre os pontos de medição:

0: deslocar entre pontos de medição à altura de medição

1: deslocar entre pontos de medição à altura segura Em alternativa, **PREDEF**

- Número na tabela Q305: indicar número na tabela de pontos zero/tabela de preset onde o TNC deve definir as coordenadas do centro da ilha. Com introdução de Q305=0 e Q303=1, o TNC define a visualização automaticamente de forma a que o novo ponto de referência assente no centro da ilha. Introduzindo-se Q305=0 e Q303=0, o TNC escreve o centro da ilha na linha 0 da tabela de ponto zero. Campo de introdução de 0 a 99999
- Novo ponto de referência do eixo principal Q331 (valor absoluto): coordenada no eixo principal, onde o TNC deve definir o centro da ilha obtido. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Novo ponto de referência do eixo secundário Q332 (valor absoluto): coordenada no eixo secundário onde o TNC deve memorizar o centro da ilha obtido. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Transferência de valor de medição (0,1) Q303: determinar se o ponto de referência determinado deve ser colocado na tabela de pontos zero ou na tabela de preset:

-1: Não utilizar! Se for registado pelo TNC, quando forem introduzidos programas antigos (ver "Memorizar o ponto de referência calculado" na página 366)

0: escrever o ponto de referência na tabela de pontos zero ativada. O sistema de referência é o sistema de coordenadas da peça de trabalho ativado

1: escrever o ponto de referência determinado na tabela de preset. O sistema de referência é o sistema de coordenadas da máquina (sistema REF)

apalpador 1: memorizar o ponto de referência no eixo do

apalpador

- Apalpar eixo TS: coord. 1.º eixo Q382 (absoluto): coordenada do ponto de apalpação no eixo principal do plano de maquinagem em que se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 2.º eixo Q383 (absoluto): coordenada do ponto de apalpação no eixo secundário do plano de maquinagem, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 3.º eixo Q384 (valor absoluto): coordenada do ponto de apalpação no eixo do apalpador, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Novo ponto de referência do eixo TS Q333 (valor absoluto): coordenada no eixo do apalpador onde o TNC deve memorizar o ponto de referência. Ajuste básico = 0
- Número de pontos de medição (4/3) Q423: definir se o TNC deve medir a ilha com 4 ou 3 apalpações:
 - 4: Utilizar 4 pontos de medição (ajuste padrão)
 - 3: Utilizar 3 pontos de medição
- Modo de deslocação? Reta=0/Círculo=1 Q365: determinar com que função de trajetória o apalpador se deve deslocar entre os pontos de medição, quando a deslocação à altura de segurança (Q301=1) está ativa:
 - 0: deslocação entre os pontos de medição numa reta
 1: deslocação circular entre os pontos de medição segundo o diâmetro do círculo teórico

Exemplo: Blocos NC

5 TCH PROBE 41	3 PONTO REF CÍRCULO EXTERIOR
Q321=+50	;CENTRO 1º EIXO
Q322=+50	;CENTRO 2º EIXO
Q262=75	;DIÂMETRO NOMINAL
Q325=+0	;ÂNGULO INICIAL
Q247=+60	;INCREMENTO ANGULAR
Q261=-5	;ALTURA DE MEDIÇÃO
Q320=0	;DISTÂNCIA SEGURANÇA
Q260=+20	;ALTURA SEGURA
Q301=0	;DESLOCAR À ALTURA SEGURANÇA
Q305=15	;N°. NA TABELA
Q331=+0	;PONTO REF
Q332=+0	;PONTO REF
Q303=+1	;TRANSFERÊNCIA VALOR MEDIÇÃO
Q381=1	;APALPAR EIXO TS
Q382=+85	;1ª CO. PARA EIXO TS
Q383=+50	;2ª CO. PARA EIXO TS
Q384=+0	;3° CO. PARA EIXO TS
Q333=+1	;PONTO REF
Q423=4	;QUANTIDADE DE PONTOS DE Medição
Q365=1	;TIPO DE DESLOCAÇÃO

15.8 PONTO DE REFERÊNCIA ESQUINA EXTERIOR (ciclo 414, DIN/ISO: G414)

Execução do ciclo

O ciclo de apalpação 414 obtém o ponto de intersecção de duas retas e memoriza este ponto de intersecção como ponto de referência. Se quiser, o TNC também pode escrever o ponto de intersecção numa tabela de pontos zero ou de preset.

- O TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no primeiro ponto de apalpação 1 (ver figura em cima, à direita). O TNC desvia assim o apalpador na distância de segurança contra a respetiva direção de deslocação
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e executa o primeiro processo de apalpação com avanço de apalpação (MP6120). O TNC determina automaticamente a direção de apalpação dependentemente do 3.º ponto de medição programado
- **3** A seguir, o apalpador desloca-se para o ponto de apalpação seguinte **2** e executa o segundo processo de apalpação
- 4 O TNC posiciona o apalpador para o ponto de apalpação 3 e a seguir para o ponto de apalpação 4 e executa aí o terceiro ou o quarto processo de apalpação
- 5 Finalmente, o TNC posiciona o apalpador de regresso à Altura Segura e processa o ponto de referência determinado de acordo com os parâmetros de ciclo Q303 e Q305 (ver "Memorizar o ponto de referência calculado" na página 366), guardando as coordenadas da esquina registadas nos parâmetros Q apresentados seguidamente
- 6 Quando se quiser, o TNC obtém a seguir, num processo de apalpação separado, ainda o ponto de referência no eixo do apalpador

Número de parâmetro	Significado
Q151	Valor real da esquina no eixo principal
Q152	Valor real da esquina no eixo secundário

Ter em atenção ao programar!

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

O TNC mede a primeira reta sempre na direção do eixo secundário do plano de maquinagem.

Com a posição dos pontos de medição **1** e **3**, determinase a esquina onde o TNC define o ponto de referência (ver figura no centro à direita e tabela seguinte).

Esquina	Coordenada X	Coordenada Y
А	Ponto 1 ponto grande 3	Ponto 1 ponto pequeno 3
В	Ponto 1 ponto pequeno 3	Ponto 1 ponto pequeno 3
С	Ponto 1 ponto pequeno 3	Ponto 1 ponto grande 3
D	Ponto 1 ponto grande 3	Ponto 1 ponto grande 3

Parâmetros de ciclo

- 1.º Ponto de medição do 1.º eixo Q263 (absoluto): coordenada do primeiro ponto de apalpação no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 1.º ponto de medição do 2.º eixo Q264 (absoluto): coordenada do primeiro ponto de apalpação no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Distância do 1.º eixo Q326 (incremental): distância entre o primeiro e o segundo ponto de medição no eixo principal do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- ▶ 3.º ponto de medição do 1.º eixo Q296 (absoluto): coordenada do terceiro ponto de apalpação no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 3.º ponto de medição do 2.º eixo Q297 (absoluto): coordenada do terceiro ponto de apalpação no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Distância do 2.º eixo Q327 (incremental): distância entre o terceiro e o quarto ponto de medição no eixo secundário do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF

Deslocar à altura segura Q301: determinar como o apalpador se deve deslocar entre os pontos de medição:

0: deslocar entre pontos de medição à altura de medição

1: deslocar entre pontos de medição à altura segura Em alternativa, **PREDEF**

- Executar rotação básica Q304: determinar se o TNC deve compensar a inclinação da peça por meio de rotação básica
 - 0: não executar nenhuma rotação básica
 - 1: executar rotação básica
- Número na tabela Q305: indicar número na tabela de pontos zero/tabela de preset onde o TNC deve definir as coordenadas da esquina. Com introdução de Q305=0 e Q303=1, o TNC define a visualização automaticamente de forma a que o novo ponto de referência assente na esquina. Introduzindo-se Q305=0 e Q303=0, o TNC escreve a esquina na linha 0 da tabela de ponto zero. Campo de introdução de 0 a 99999
- Novo ponto de referência do eixo principal Q331 (valor absoluto): coordenada no eixo principal onde o TNC deve memorizar a esquina obtida. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Novo ponto de referência do eixo secundário Q332 (valor absoluto): coordenada no eixo secundário onde o TNC deve memorizar a esquina obtida. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Transferência de valor de medição (0,1) Q303: determinar se o ponto de referência determinado deve ser colocado na tabela de pontos zero ou na tabela de preset:

-1: Não utilizar! Se for registado pelo TNC, quando forem introduzidos programas antigos (ver "Memorizar o ponto de referência calculado" na página 366)

0: escrever o ponto de referência na tabela de pontos zero ativada. O sistema de referência é o sistema de coordenadas da peça de trabalho ativado

1: escrever o ponto de referência determinado na tabela de preset. O sistema de referência é o sistema de coordenadas da máquina (sistema REF) Apalpação no eixo do apalpador Q381: determinar se o TNC também deve memorizar o ponto de referência no eixo do apalpador:

0: não memorizar o ponto de referência no eixo do apalpador

1: memorizar o ponto de referência no eixo do apalpador

- Apalpar eixo TS: coord. 1.º eixo Q382 (absoluto): coordenada do ponto de apalpação no eixo principal do plano de maquinagem em que se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 2.º eixo Q383 (absoluto): coordenada do ponto de apalpação no eixo secundário do plano de maquinagem, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 3.º eixo Q384 (valor absoluto): coordenada do ponto de apalpação no eixo do apalpador, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Novo ponto de referência do eixo TS Q333 (valor absoluto): coordenada no eixo do apalpador onde o TNC deve memorizar o ponto de referência. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999

Exemplo: Blocos NC

5 TCH PROBE 41	4 PONTO REF ESQUINA EXTERIOR
Q263=+37	;1.º PONTO 1.º EIXO
Q264=+7	;1.º PONTO 2.º EIXO
Q326=50	;DISTÂNCIA 1.º EIXO
Q296=+95	;3.º PONTO 1.º EIXO
Q297=+25	;3.º PONTO 2.º EIXO
Q327=45	;DISTÂNCIA 2.º EIXO
Q261=-5	;ALTURA DE MEDIÇÃO
Q320=0	;DISTÂNCIA SEGURANÇA
Q260=+20	;ALTURA SEGURA
Q301=0	;DESLOCAR À ALTURA SEGURANÇA
Q304=0	;ROTAÇÃO BÁSICA
Q305=7	;Nº. NA TABELA
Q331=+0	;PONTO REF
Q332=+0	;PONTO REF
Q303=+1	;TRANSFERÊNCIA VALOR MEDIÇÃO
Q381=1	;APALPAR EIXO TS
Q382=+85	;1ª CO. PARA EIXO TS
Q383=+50	;2° CO. PARA EIXO TS
Q384=+0	;3° CO. PARA EIXO TS
Q333=+1	;PONTO REF

15.9 PONTO DE REFERÊNCIA ESQUINA INTERIOR (ciclo de apalpação 415, DIN/ISO: G415)

Execução do ciclo

O ciclo de apalpação 415 obtém o ponto de intersecção de duas retas e memoriza este ponto de intersecção como ponto de referência. Se quiser, o TNC também pode escrever o ponto de intersecção numa tabela de pontos zero ou de preset.

- O TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no primeiro ponto de apalpação 1 (ver figura em cima, à direita), que o operador define no ciclo. O TNC desvia assim o apalpador na distância de segurança contra a respetiva direção de deslocação
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e executa o primeiro processo de apalpação com avanço de apalpação (MP6120). A direção de apalpação resulta do número de esquina
- **3** A seguir, o apalpador desloca-se para o ponto de apalpação seguinte **2** e executa o segundo processo de apalpação
- 4 O TNC posiciona o apalpador para o ponto de apalpação 3 e a seguir para o ponto de apalpação 4 e executa aí o terceiro ou o quarto processo de apalpação
- 5 Finalmente, o TNC posiciona o apalpador de regresso à Altura Segura e processa o ponto de referência determinado de acordo com os parâmetros de ciclo Q303 e Q305 (ver "Memorizar o ponto de referência calculado" na página 366), guardando as coordenadas da esquina registadas nos parâmetros Q apresentados seguidamente
- 6 Quando se quiser, o TNC obtém a seguir, num processo de apalpação separado, ainda o ponto de referência no eixo do apalpador

Número de parâmetro	Significado
Q151	Valor real da esquina no eixo principal
Q152	Valor real da esquina no eixo secundário

Ter em atenção ao programar!

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

O TNC mede a primeira reta sempre na direção do eixo secundário do plano de maquinagem.

Parâmetros de ciclo

- 1.º Ponto de medição do 1.º eixo Q263 (absoluto): coordenada do primeiro ponto de apalpação no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 1.º ponto de medição do 2.º eixo Q264 (absoluto): coordenada do primeiro ponto de apalpação no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Distância do 1.º eixo Q326 (incremental): distância entre o primeiro e o segundo ponto de medição no eixo principal do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- Distância do 2.º eixo Q327 (incremental): distância entre o terceiro e o quarto ponto de medição no eixo secundário do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- Esquina Q308: número da esquina em que o TNC deve memorizar o ponto de referência. Campo de introdução 1 a 4
- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF

Deslocar à altura segura Q301: determinar como o apalpador se deve deslocar entre os pontos de medição:

0: deslocar entre pontos de medição à altura de medição

1: deslocar entre pontos de medição à altura segura Em alternativa, **PREDEF**

- Executar rotação básica Q304: determinar se o TNC deve compensar a inclinação da peça por meio de rotação básica
 - 0: não executar nenhuma rotação básica
 - 1: executar rotação básica
- Número na tabela Q305: indicar número na tabela de pontos zero/tabela de preset onde o TNC deve definir as coordenadas da esquina. Com introdução de Q305=0 e Q303=1, o TNC define a visualização automaticamente de forma a que o novo ponto de referência assente na esquina. Introduzindo-se Q305=0 e Q303=0, o TNC escreve a esquina na linha 0 da tabela de ponto zero. Campo de introdução de 0 a 99999
- Novo ponto de referência do eixo principal Q331 (valor absoluto): coordenada no eixo principal onde o TNC deve memorizar a esquina obtida. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Novo ponto de referência do eixo secundário Q332 (valor absoluto): coordenada no eixo secundário onde o TNC deve memorizar a esquina obtida. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Transferência de valor de medição (0,1) Q303: determinar se o ponto de referência determinado deve ser colocado na tabela de pontos zero ou na tabela de preset:

-1: Não utilizar! Se for registado pelo TNC, quando forem introduzidos programas antigos (ver "Memorizar o ponto de referência calculado" na página 366)

0: escrever o ponto de referência na tabela de pontos zero ativada. O sistema de referência é o sistema de coordenadas da peça de trabalho ativado

1: escrever o ponto de referência determinado na tabela de preset. O sistema de referência é o sistema de coordenadas da máquina (sistema REF)

Apalpação no eixo do apalpador Q381: determinar se o TNC também deve memorizar o ponto de referência no eixo do apalpador:

0: não memorizar o ponto de referência no eixo do apalpador

1: memorizar o ponto de referência no eixo do apalpador

- Apalpar eixo TS: coord. 1.º eixo Q382 (absoluto): coordenada do ponto de apalpação no eixo principal do plano de maquinagem em que se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 2.º eixo Q383 (absoluto): coordenada do ponto de apalpação no eixo secundário do plano de maquinagem, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 3.º eixo Q384 (valor absoluto): coordenada do ponto de apalpação no eixo do apalpador, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Novo ponto de referência do eixo TS Q333 (valor absoluto): coordenada no eixo do apalpador onde o TNC deve memorizar o ponto de referência. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999

Exemplo: Blocos NC

5 TCH PROBE 41	.5 PONTO REF ESQUINA INTERIOR
Q263=+37	;1.º PONTO 1.º EIXO
Q264=+7	;1.º PONTO 2.º EIXO
Q326=50	;DISTÂNCIA 1.º EIXO
Q296=+95	;3.º PONTO 1.º EIXO
Q297=+25	;3.º PONTO 2.º EIXO
Q327=45	;DISTÂNCIA 2.º EIXO
Q261=-5	;ALTURA DE MEDIÇÃO
Q320=0	;DISTÂNCIA SEGURANÇA
Q260=+20	;ALTURA SEGURA
Q301=0	;DESLOCAR À ALTURA SEGURANÇA
Q304=0	;ROTAÇÃO BÁSICA
Q305=7	;N°. NA TABELA
Q331=+0	;PONTO REF
Q332=+0	;PONTO REF
Q303=+1	;TRANSFERÊNCIA VALOR MEDIÇÃO
Q381=1	;APALPAR EIXO TS
Q382=+85	;1ª CO. PARA EIXO TS
Q383=+50	;2° CO. PARA EIXO TS
Q384=+0	;3° CO. PARA EIXO TS
Q333=+1	;PONTO REF

Execução do ciclo

O ciclo de apalpação 416 calcula o ponto central dum círculo de furos através da medição de três furos e memoriza este ponto central como ponto de referência. Se quiser, o TNC também pode escrever o ponto central numa tabela de pontos zero ou de preset.

- O TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto central introduzido do primeiro furo 1
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e, por meio de quatro apalpações, regista o primeiro ponto central do furo
- **3** Depois, o apalpador desloca-se de volta para distância segura e posiciona-se no ponto central introduzido do segundo furo **2**
- 4 O apalpador desloca-se na altura de medição introduzida e, por meio de quatro apalpações, regista o segundo ponto central do furo
- **5** A seguir, o apalpador desloca-se de volta para a distância segura e posiciona-se no ponto central introduzido do terceiro furo **3**
- 6 O apalpador desloca-se na altura de medição introduzida e, por meio de quatro apalpações, regista o terceiro ponto central do furo
- 7 Finalmente, o TNC posiciona o apalpador de regresso à Altura Segura e processa o ponto de referência determinado de acordo com os parâmetros de ciclo Q303 e Q305 (ver "Memorizar o ponto de referência calculado" na página 366), guardando os valores reais nos parâmetros Q apresentados seguidamente
- 8 Quando se quiser, o TNC obtém a seguir, num processo de apalpação separado, ainda o ponto de referência no eixo do apalpador

Número de parâmetro	Significado
Q151	Valor real centro eixo principal
Q152	Valor real centro eixo secundário
Q153	Valor real diâmetro de círculo de furos

Ter em atenção ao programar!

416

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Parâmetros de ciclo

- Centro do 1.º eixo Q273 (absoluto): centro do círculo de furos (valor nominal) no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Centro do 2.º eixo Q274 (absoluto): centro do círculo de furos (valor nominal) no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Diâmetro nominal Q262: introduzir diâmetro aproximado do círculo de furos. Quanto menor for o diâmetro do furo, mais exatamente se deve indicar o diâmetro nominal Campo de introdução de 0 a 99999,9999
- Ângulo do 1.º furo 291 (absoluto): ângulo das coordenadas polares do primeiro ponto central do furo no plano de maquinagem. Campo de introdução -360,0000 a 360,0000
- Ângulo do 2.º furo 292 (absoluto): ângulo das coordenadas polares do segundo ponto central do furo no plano de maquinagem. Campo de introdução -360,0000 a 360,0000
- Ângulo do 3.º furo 293 (absoluto): ângulo das coordenadas polares do terceiro ponto central do furo no plano de maquinagem. Campo de introdução – 360,0000 a 360,0000
- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF

- Número na tabela Q305: indicar número na tabela de pontos zero/tabela de preset onde o TNC deve definir as coordenadas do centro do círculo de furos. Com introdução de Q305=0 e Q303=1, o TNC define automaticamente a visualização de forma a que o novo ponto de referência assente no centro do círculo de furos. Introduzindo-se Q305=0 e Q303=0, o TNC escreve o centro do círculo de furos na linha 0 da tabela de ponto zero. Campo de introdução de 0 a 99999
- ▶ Novo ponto de referência do eixo principal Q331 (valor absoluto): coordenada no eixo principal onde o TNC deve memorizar o centro do círculo de furos obtido. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Novo ponto de referência do eixo secundário Q332 (valor absoluto): coordenada no eixo secundário, onde o TNC deve memorizar o centro do círculo de furos obtido. Aiuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- ► Transferência de valor de medição (0,1) Q303: determinar se o ponto de referência determinado deve ser colocado na tabela de pontos zero ou na tabela de preset:

-1: Não utilizar! Se for registado pelo TNC, guando forem introduzidos programas antigos (ver "Memorizar o ponto de referência calculado" na página 366)

0: escrever o ponto de referência na tabela de pontos zero ativada. O sistema de referência é o sistema de coordenadas da peca de trabalho ativado

1: escrever o ponto de referência determinado na tabela de preset. O sistema de referência é o sistema de coordenadas da máguina (sistema REF)

Apalpação no eixo do apalpador Q381: determinar se o TNC também deve memorizar o ponto de referência no eixo do apalpador:

0: não memorizar o ponto de referência no eixo do apalpador

1: memorizar o ponto de referência no eixo do apalpador

- Apalpar eixo TS: coord. 1.º eixo Q382 (absoluto): coordenada do ponto de apalpação no eixo principal do plano de maquinagem em que se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 2.º eixo Q383 (absoluto): coordenada do ponto de apalpação no eixo secundário do plano de maquinagem, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 3.º eixo Q384 (valor absoluto): coordenada do ponto de apalpação no eixo do apalpador, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Novo ponto de referência do eixo TS Q333 (valor absoluto): coordenada no eixo do apalpador onde o TNC deve memorizar o ponto de referência. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente MP6140 e somente ao apalpar o ponto de referência no eixo do apalpador. Campo de introdução 0 a 99999,9999; em alternativa PREDEF

Exemplo: Blocos NC

5 TCH PROBE 41 Furos	6 PONTO REF CENTRO CÍRCULO
Q273=+50	;CENTRO DO 1.º EIXO
Q274=+50	;CENTRO DO 2.º EIXO
Q262=90	;DIÂMETRO NOMINAL
Q291=+34	;ÂNGULO 1.º FURO
Q292=+70	;ÂNGULO 2.º FURO
Q293=+210	;ÂNGULO 3º FURO
Q261=-5	;ALTURA DE MEDIÇÃO
Q260=+20	;ALTURA SEGURA
Q305=12	;N°. NA TABELA
Q331=+0	;PONTO REF
Q332=+0	;PONTO REF
Q303=+1	;TRANSFERÊNCIA VALOR MEDIÇÃO
Q381=1	;APALPAR EIXO TS
Q382=+85	;1ª CO. PARA EIXO TS
Q383=+50	;2. ª CO PARA EIXO TS
Q384=+0	;3. ª CO PARA EIXO TS
Q333=+1	;PONTO REF
Q320=0	;DISTÂNCIA SEGURANÇA

15.11 PONTO DE REFERÊNCIA EIXO DO APALPADOR (ciclo 417, DIN/ISO: G417)

Execução do ciclo

O ciclo de apalpação 417 mede uma coordenada qualquer no eixo do apalpador e memoriza esta coordenada como ponto de referência. Se quiser, o TNC também pode escrever a coordenada medida, numa tabela de pontos zero ou numa tabela de preset.

- O TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação programado 1. O TNC desvia assim o apalpador na distância de segurança na direção do eixo positivo do apalpador
- 2 Seguidamente, o apalpador desloca-se no seu eixo na coordenada introduzida do ponto de apalpação 1 e por apalpação simples regista a 1.ª posição
- 3 Finalmente, o TNC posiciona o apalpador de regresso à Altura Segura e processa o ponto de referência determinado de acordo com os parâmetros de ciclo Q303 e Q305 (ver "Memorizar o ponto de referência calculado" na página 366), guardando o valor real nos parâmetros Q apresentados seguidamente

Número de parâmetro	Significado
Q160	Valor real do ponto medido

Ter em atenção ao programar!

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador. O TNC memoriza o ponto de referência neste eixo.

Parâmetros de ciclo

417

- 1. Ponto de medição do 1.º eixo Q263 (absoluto): coordenada do primeiro ponto de apalpação no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 1.º ponto de medição do 2.º eixo Q264 (absoluto): coordenada do primeiro ponto de apalpação no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 1.º ponto de medição 3.º eixo Q294 (valor absoluto): coordenada do primeiro ponto de apalpação no eixo do apalpador. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Número na tabel a Q305: indicar número na tabela de pontos zero/tabela de preset, onde o TNC deve definir a coordenada. Com introdução de Q305=0 e Q303=1, o TNC define automaticamente a visualização, de forma a que o novo ponto de referência assente na superfície apalpada. Introduzindo-se Q305=0 e Q303=0, o TNC escreve a coordenada na linha 0 da tabela de ponto zero. Campo de introdução de 0 a 99999
- Novo ponto de referência do eixo TS Q333 (valor absoluto): coordenada no eixo do apalpador onde o TNC deve memorizar o ponto de referência. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Transferência de valor de medição (0,1) Q303: determinar se o ponto de referência determinado deve ser colocado na tabela de pontos zero ou na tabela de preset:

-1: Não utilizar! Se for registado pelo TNC, quando forem introduzidos programas antigos (ver "Memorizar o ponto de referência calculado" na página 366)

0: escrever o ponto de referência na tabela de pontos zero ativada. O sistema de referência é o sistema de coordenadas da peça de trabalho ativado

1: escrever o ponto de referência determinado na tabela de preset. O sistema de referência é o sistema de coordenadas da máquina (sistema REF)

Exemplo: Blocos NC

5	TCH PROBE 41	.7 PONTO REF EIXO APALPADOR	
	Q263=+25	;1. PONTO 1º EIXO	
	Q264=+25	;1. PONTO 2º EIXO	
	Q294=+25	;1. PONTO 3º EIXO	
	Q320=0	;DISTÂNCIA SEGURANÇA	
	Q260=+50	;ALTURA SEGURA	
	Q305=0	;N°. NA TABELA	
	Q333=+0	;PONTO REF	
	Q303=+1	;TRANSFERÊNCIA VALOR MEDIÇÃO	

15.12 PONTO DE REFERÊNCIA CENTRO DE 4 FUROS (ciclo 418, DIN/ISO: G418)

Execução do ciclo

O ciclo de apalpação 418 calcula o ponto de intersecção das linhas de união, respetivamente de dois pontos centrais de furo, e memoriza este ponto de intersecção como ponto de referência. Se quiser, o TNC também pode escrever o ponto de intersecção numa tabela de pontos zero ou de preset.

- O TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no centro do primeiro furo 1
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e, por meio de quatro apalpações, regista o primeiro ponto central do furo
- **3** Depois, o apalpador desloca-se de volta para distância segura e posiciona-se no ponto central introduzido do segundo furo **2**
- 4 O apalpador desloca-se na altura de medição introduzida e, por meio de quatro apalpações, regista o segundo ponto central do furo
- **5** O TNC repete os processos 3 e 4 para os furos **3** e **4**
- 6 Finalmente, o TNC posiciona o apalpador de regresso à Altura Segura e processa o ponto de referência determinado dependente dos parâmetros de ciclo Q303 e Q305 (ver "Memorizar o ponto de referência calculado" na página 366). O TNC calcula o ponto de referência como ponto de intersecção das linhas de união ponto central do furo 1/3 e 2/4 e guarda os valores reais nos parâmetros Q apresentados seguidamente
- 7 Quando se quiser, o TNC obtém a seguir, num processo de apalpação separado, ainda o ponto de referência no eixo do apalpador

Número de parâmetro	Significado
Q151	Valor real da intersecção no eixo principal
Q152	Valor real da intersecção no eixo secundário

15.12 PONT<mark>O D</mark>E REFERÊNCIA CENTRO DE 4 FUROS (ciclo 418 DIN/ISO: G418)

Ter em atenção ao programar!

418

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Parâmetros de ciclo

- Centro 1 do 1.º eixo Q268 (valor absoluto): ponto central do 1.º furo no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Centro 1 do 2.º eixo Q269 (valor absoluto): ponto central do 1.º furo no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Centro 2 do 1.º eixo Q270 (valor absoluto): ponto central do 2.º furo no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Centro 2 do 2.º eixo Q271 (valor absoluto): ponto central do 2.º furo no eixo secundário do plano de maquinagem Campo de introdução -99999,9999 a 99999,9999
- Centro 3 do 1.º eixo Q316 (valor absoluto): ponto central do 3.º furo no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Centro 3 do 2.º eixo Q317 (valor absoluto): ponto central do 3.º furo no eixo secundário do plano de maquinagem Campo de introdução -99999,9999 a 99999,9999
- Centro 4 do 1.º eixo Q318 (valor absoluto): ponto central do 4.º furo no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Centro 4 do 2.º eixo Q319 (valor absoluto): ponto central do 4.º furo no eixo secundário do plano de maquinagem Campo de introdução -99999,9999 a 99999,9999
- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF

- Número na tabela Q305: indicar número na tabela de pontos zero/de preset, onde o TNC deve memorizar as coordenadas do ponto de intersecção das linhas de união. Com introdução de Q305=0 e Q303=1, o TNC define automaticamente a visualização, de forma a que o novo ponto de referência assente nas linhas de união. Introduzindo-se Q305=0 e Q303=0, o TNC escreve as coordenadas do ponto de intersecção das linhas de união na linha 0 da tabela de ponto zero. Campo de introdução de 0 a 99999
- Novo ponto de referência do eixo principalQ331 (valor absoluto): coordenada no eixo principal onde o TNC deve memorizar o ponto de intersecção das linhas de união. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Novo ponto de referência do eixo secundário Q332 (valor absoluto): coordenada no eixo secundário onde o TNC deve memorizar o ponto de intersecção das linhas de união. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Transferência de valor de medição (0,1) Q303: determinar se o ponto de referência determinado deve ser colocado na tabela de pontos zero ou na tabela de preset:

-1: Não utilizar! Se for registado pelo TNC, quando forem introduzidos programas antigos (ver "Memorizar o ponto de referência calculado" na página 366)

0: escrever o ponto de referência na tabela de pontos zero ativada. O sistema de referência é o sistema de coordenadas da peça de trabalho ativado

1: escrever o ponto de referência determinado na tabela de preset. O sistema de referência é o sistema de coordenadas da máquina (sistema REF)

Apalpação no eixo do apalpador Q381: determinar se o TNC também deve memorizar o ponto de referência no eixo do apalpador:

0: não memorizar o ponto de referência no eixo do apalpador

1: memorizar o ponto de referência no eixo do apalpador

- Apalpar eixo TS: coord. 1.º eixo Q382 (absoluto): coordenada do ponto de apalpação no eixo principal do plano de maquinagem em que se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1
- Apalpar eixo TS: coord. 2.º eixo Q383 (absoluto): coordenada do ponto de apalpação no eixo secundário do plano de maquinagem, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Apalpar eixo TS: coord. 3.º eixo Q384 (valor absoluto): coordenada do ponto de apalpação no eixo do apalpador, onde se pretende memorizar o ponto de referência no eixo do apalpador. Só atuante quando Q381 = 1. Campo de introdução -99999,9999 a 99999,9999
- Novo ponto de referência do eixo TS Q333 (valor absoluto): coordenada no eixo do apalpador onde o TNC deve memorizar o ponto de referência. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999

Exemplo: Blocos NC

5	TCH PROBE 418	B PONTO REF 4 FUROS
	Q268=+20	;1.º CENTRO 1.º EIXO
	Q269=+25	;1. CENTRO 2º EIXO
	Q270=+150	;2. CENTRO 1º EIXO
	Q271=+25	;2. CENTRO 2º EIXO
	Q316=+150	;3. CENTRO 1º EIXO
	Q317=+85	;3. CENTRO 2º EIXO
	Q318=+22	;4. CENTRO 1º EIXO
	Q319=+80	;4. CENTRO 2º EIXO
	Q261=-5	;ALTURA DE MEDIÇÃO
	Q260=+10	;ALTURA SEGURA
	Q305=12	;Nº. NA TABELA
	Q331=+0	;PONTO REF
	Q332=+0	;PONTO REF
	Q303=+1	;TRANSFERÊNCIA VALOR MEDIÇÃO
	Q381=1	;APALPAR EIXO TS
	Q382=+85	;1ª CO. PARA EIXO TS
	Q383=+50	;2. ª CO PARA EIXO TS
	Q384=+0	;3. ª CO PARA EIXO TS
	Q333=+0	;PONTO REF

15.13 PONTO DE REFERÊNCIA EIXO INDIVIDUAL (ciclo 419, DIN/ISO: G419)

Execução do ciclo

O ciclo de apalpação 419 mede uma coordenada qualquer num eixo qualquer e memoriza esta coordenada como ponto de referência. Se quiser, o TNC também pode escrever a coordenada medida, numa tabela de pontos zero ou numa tabela de preset.

- O TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação programado 1. O TNC desvia, assim, o apalpador na distância de segurança contra a direção de apalpação programada
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e por meio duma simples apalpação, regista a posição real
- 3 Finalmente, o TNC posiciona o apalpador de regresso à Altura Segura e processa o ponto de referência determinado dependente dos parâmetros de ciclo Q303 e Q305 (ver "Memorizar o ponto de referência calculado" na página 366)

Ter em atenção ao programar!

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Se se utilizar o ciclo 419 várias vezes consecutivamente para memorizar o ponto de referência em vários eixos na tabela de preset, após cada execução do ciclo 419, devese ativar o número de preset em que o ciclo 419 escreveu anteriormente (não é necessário se o preset ativo for sobrescrito).

410

Parâmetros de ciclos

- 1.º Ponto de medição do 1.º eixo Q263 (absoluto): coordenada do primeiro ponto de apalpação no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
 - 1.º ponto de medição do 2.º eixo Q264 (absoluto): coordenada do primeiro ponto de apalpação no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
 - Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
 - Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
 - Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
 - Eixo de medição (1..3: 1=eixo principal) Q272: eixo em que deve ser feita a medição: 1:Eixo principal = eixo de medição
 2: Eixo secundário = eixo de medição
 3: Eixo do apalpador = eixo de medição

Correspondências de eixos			
Eixo do apalpador ativo: Q272 = 3	Eixo principal correspondente: Q272 = 1	Eixo secundário correspondente: Q272 = 2	
Z	Х	Y	
Y	Z	Х	
Х	Y	Z	

- Direção de deslocação Q267: direção em que deve ser deslocado o apalpador para a peça de trabalho:
 -1: direção de deslocação negativa
 +1: direção de deslocação positiva
- Número na tabel a Q305: indicar número na tabela de pontos zero/tabela de preset, onde o TNC deve definir a coordenada. Com introdução de Q305=0 e Q303=1, o TNC define automaticamente a visualização, de forma a que o novo ponto de referência assente na superfície apalpada. Introduzindo-se Q305=0 e Q303=0, o TNC escreve a coordenada na linha 0 da tabela de ponto zero. Campo de introdução de 0 a 99999
- Novo ponto de referência Q333 (valor absoluto): coordenada onde o TNC deve memorizar o ponto de referência. Ajuste básico = 0. Campo de introdução -99999,9999 a 99999,9999
- Transferência de valor de medição (0,1) Q303: determinar se o ponto de referência determinado deve ser colocado na tabela de pontos zero ou na tabela de preset:

-1: Não utilizar! Ver "Memorizar o ponto de referência calculado", página 366

0: escrever o ponto de referência na tabela de pontos zero ativada. O sistema de referência é o sistema de coordenadas da peça de trabalho ativado

1: escrever o ponto de referência determinado na tabela de preset. O sistema de referência é o sistema de coordenadas da máquina (sistema REF)

Exemplo: Blocos NC

5 TCH PROBE 41	9 PONTO REF EIXO INDIVIDUAL
Q263=+25	;1. PONTO 1º EIXO
Q264=+25	;1. PONTO 2º EIXO
Q261=+25	;ALTURA DE MEDIÇÃO
Q320=0	;DISTÂNCIA SEGURANÇA
Q260=+50	;ALTURA SEGURA
Q272=+1	;EIXO DE MEDIÇÃO
Q267=+1	;DIREÇÃO DE DESLOCAÇÃO
Q305=0	;N°. NA TABELA
Q333=+0	;PONTO REF
Q303=+1	;TRANSFERÊNCIA VALOR MEDIÇÃO

Exemplo: Memorização do ponto de referência centro segmento de círculo e lado superior da peça de trabalho

O BEGIN PGM CYC413 MM	
1 TOOL CALL 69 Z	Chamar a ferramenta 0 para determinação do eixo do apalpador

2 TCH PROBE 41	L3 PONTO REF CÍRCULO EXTERIOR	
Q321=+25	;CENTRO 1º EIXO	Ponto central do círculo: coordenada X
Q322=+25	;CENTRO 2º EIXO	Ponto central do círculo: coordenada Y
Q262=30	;DIÂMETRO NOMINAL	Diâmetro do círculo
Q325=+90	;ÂNGULO INICIAL	Ângulo de coordenadas polares do 1.º Ponto de apalpação
Q247=+45	;INCREMENTO ANGULAR	Passo angular para cálculo dos pontos de apalpação 2 a 4
Q261=-5	;ALTURA DE MEDIÇÃO	Coordenada no eixo do apalpador, onde é feita a medição
Q320=2	;DISTÂNCIA SEGURANÇA	Distância de segurança adicional a MP6140
Q260=+10	;ALTURA SEGURA	Altura onde o eixo do apalpador se pode deslocar sem colisão
Q301=0	;DESLOCAR À ALTURA SEGURANÇA	Não deslocar na altura segura entre os pontos de medição
Q305=0	;Nº. NA TABELA	Memorizar visualização
Q331=+0	;PONTO REF	Memorizar em 0 a visualização em X
Q332=+10	;PONTO REF	Memorizar em 10 a visualização em Y
Q303=+0	;TRANSFERÊNCIA VALOR MEDIÇÃO	Sem função, pois a visualização deve ser memorizada
Q381=1	;APALPAR EIXO TS	Memorizar também o ponto de referência no eixo TS
Q382=+25	;1ª CO. PARA EIXO TS	Coordenada X ponto de apalpação
Q383=+25	;2. ª CO PARA EIXO TS	Coordenada Y ponto de apalpação
Q384=+25	;3. ª CO PARA EIXO TS	Coordenada Z ponto de apalpação
Q333=+0	;PONTO REF	Memorizar em 0 a visualização em Z
Q423=4	;QUANTIDADE DE PONTOS DE Medição	Número de pontos de medição
Q365=1	;TIPO DE DESLOCAÇÃO	Posicionar sobre o arco de círculo ou linearmente no ponto de apalpação seguinte
3 CALL PGM 35	(47	Chamar o programa de maquinagem
4 END PGM CYC4	413 MM	

O ponto central medido, do círculo de furos, deve ser escrito numa tabela de preset, para posterior utilização.

O BEGIN PGM CYC416 MM	
1 TOOL CALL 69 Z	Chamar a ferramenta 0 para determinação do eixo do apalpador
2 TCH PROBE 417 PONTO REF EIXO APALPADOR	Definição de ciclo para a memorização do ponto de referência no eixo do apalpador
Q263=+7,5 ;1. PONTO 1.º EIXO	Ponto de apalpação: coordenada X
Q264=+7,5 ;1.º PONTO 2.º EIXO	Ponto de apalpação: coordenada Y
Q294=+25 ;1.º PONTO 3.º EIXO	Ponto de apalpação: coordenada Z
Q320=0 ;DISTÂNCIA SEGURANÇA	Distância de segurança adicional a MP6140
Q260=+50 ;ALTURA SEGURA	Altura onde o eixo do apalpador se pode deslocar sem colisão
Q305=1 ;Nº. NA TABELA	Escrever a coordenada Z na linha 1
Q333=+0 ;PONTO REF	Memorizar o eixo 0 do apalpador
Q3O3=+1 ;TRANSFERÊNCIA VALOR MEDIÇÃO	Memorizar o ponto de referência calculado, referente ao sistema de coordenadas fixo da máquina (sistema REF), na tabela de preset PRESET PR

3 TCH PROBE 416 PONTO REF CENTRO CÍRCULO Furos	
Q273=+35 ;CENTRO 1º EIXO	Ponto central do círculo de furos: coordenada X
Q274=+35 ;CENTRO 2° EIXO	Ponto central do círculo de furos: coordenada Y
Q262=50 ;DIÂMETRO NOMINAL	Diâmetro do círculo de furos
Q291=+90 ;ÂNGULO 1.º FURO	Ângulo de coordenadas polares do 1.º ponto central do furo 1
Q292=+180 ;ÂNGULO 2.º FURO	Ângulo de coordenadas polares do 2.º ponto central do furo 2
Q293=+270 ;ÂNGULO 3.º FURO	Ângulo de coordenadas polares do 3.º ponto central do furo 3
Q261=+15 ;ALTURA DE MEDIÇÃO	Coordenada no eixo do apalpador, onde é feita a medição
Q260=+10 ;ALTURA SEGURA	Altura onde o eixo do apalpador se pode deslocar sem colisão
Q305=1 ;N°. NA TABELA	Escrever o centro do círculo de furos (X e Y) na linha 1
Q331=+0 ;PONTO REF	
Q332=+0 ;PONTO REF	
Q303=+1 ;TRANSFERÊNCIA VALOR MEDIÇÃO	Memorizar o ponto de referência calculado, referente ao sistema de coordenadas fixo da máquina (sistema REF), na tabela de preset PRESET.PR
Q381=0 ;APALPAR EIXO TS	Não memorizar ponto de referência no eixo TS
Q382=+0 ;1° CO. PARA EIXO DO Apalpador	Sem função
Q383=+0 ;2° CO. PARA EIXO TS	Sem função
Q384=+0 ;3° CO. PARA EIXO TS	Sem função
Q333=+0 ;PONTO REF	Sem função
Q320=0 ;DISTÂNCIA SEGURANÇA	Distância de segurança adicional a MP6140
4 CYCL DEF 247 DEFINIR PONTO DE REFERÊNCIA	Ativar novo preset com o ciclo 247
Q339=1 ;NÚMERO DE PONTO DE REFERÊNCIA	
6 CALL PGM 35KLZ	Chamar o programa de maquinagem
7 END PGM CYC416 MM	

16

Ciclos de apalpação: controlar peças de trabalho automaticamente

16.1 Princípios básicos

Resumo

O TNC dispõe de doze ciclos, com que é possível medir peças automaticamente:

Ciclo	Softkey	Página
0 PLANO DE REFERÊNCIA Medição duma coordenada num eixo à escolha	e	Página 424
1 PLANO DE REFERÊNCIA POLAR Medição dum ponto, direção de apalpação por meio de ângulo	1 PA	Página 425
420 MEDIÇÃO ÂNGULO Medir ângulo no plano de maquinagem	420	Página 427
421 MEDIÇÃO FURO Medir posição e diâmetro dum furo	421	Página 430
422 MEDIÇÃO CÍRCULO EXTERIOR Medir posição e diâmetro duma ilha circular	422	Página 434
423 MEDIÇÃO RECTÂNGULO INTERIOR Medir posição, comprimento e largura duma caixa retangular	423	Página 438
424 MEDIÇÃO RECTÂNGULO EXTERIOR Medir posição, comprimento e largura duma ilha retangular	424	Página 442
425 MEDIÇÃO LARGURA INTERIOR (2.º plano de softkeys) Medir no interior largura da ranhura	425	Página 446
426 MEDIÇÃO NERVURA EXTERIOR (2.º plano de softkeys) Medir nervura no exterior	426	Página 449
427 MEDIÇÃO COORDENADA (2.º plano de softkeys) Medir uma coordenada qualquer num eixo à escolha	427	Página 452
430 MEDIÇÃO CÍRCULO DE FUROS (2.º plano de softkeys) Medir posição e diâmetro de círculo de furos	430 	Página 455
431 MEDIÇÃO PLANO (2.º plano de softkeys) Medir ângulo de eixo A e B dum plano	431	Página 459

Ciclos de apalpação: controlar peças de trabalho automaticamente

Registar resultados de medição

Para todos os ciclos com que se podem medir peças automaticamente (exceções: ciclo 0 e 1), pode mandar o TNC criar um registo de medição. No ciclo de apalpação respetivo poderá definir se o TNC

- deve memorizar o registo de medição num ficheiro
- deve emitir o registo de medição no ecrã e interromper a execução do programa
- não deve criar um registo de medição

Se pretender colocar o registo de medição num ficheiro, o TNC memoriza os dados normalmente como ficheiros ASCII no diretório a partir do qual foi executado o programa de medição. Como alternativa, o registo de medição pode ser emitido através da interface de dados, diretamente para uma impressora ou memorizar num PC. Para isso, ponha a função Print (no menu de configuração de interface) em RS232:\ (ver também o Manual do Utilizador, funções MOD, ajustar interface de dados").

ソ

Todos os valores de medição, que estão pormenorizados no ficheiro de registo, referem-se ao ponto zero que estiver ativado no momento da execução do respetivo ciclo. Adicionalmente, o sistema de coordenadas pode ainda estar rodado no plano ou estar inclinado em 3D-ROT. Nestes casos, o TNC converte os resultados de medição no sistema de coordenadas respetivamente ativado.

Utilize o software de transferência de dados TNCremo da HEIDENHAIN, se quiser emitir o registo de medições por meio da interface de dados.

Exemplo: ficheiro do registo para ciclo de apalpação 421:

Registo de medição ciclo de apalpação 421 Medir furo

Data: 30-06-2005 Hora: 06:55:04 Programa de medição: TNC:\GEH35712\CHECK1.H

Valores nominais: Centro do eixo principal: 50.0000 Centro do eixo secundário: 65.0000 Diâmetro: 12.0000

Valores limite indicados previamente: Medida maior centro eixo principal: 50.1000 Medida mínima do centro do eixo principal: 49.9000 Medida maior centro eixo secundário: 65.1000 Medida mínima do centro do eixo secundário: 64.9000 Medida máxima furo: 12.0450 Medida mínima do furo: 12.0000

Valores reais:Centro Eixo principal: 50.0810 Centro do eixo secundário: 64.9530 Diâmetro: 12.0259

Desvios: Centro do eixo principal: 0.0810 Centro do eixo secundário: -0.0470 Diâmetro: 0.0259

Outros resultados de medição: altura de medição: -5.0000

Fim do registo de medições

Resultados de medição em parâmetros Q

O TNC coloca os resultados de medição do respetivo ciclo de apalpação nos parâmetros Q globalmente atuantes, de Q150 a Q160. Os desvios do valor nominal são armazenados nos parâmetros de Q161 a Q166. Observe a tabela dos parâmetros de resultado, que é executada com cada descrição de ciclo.

Adicionalmente, na definição do ciclo o TNC visualiza na imagem auxiliar do respetivo ciclo, os parâmetros de resultado (ver figura em cima, à direita). O parâmetro de resultado iluminado pertence ao respetivo parâmetro de introdução.

Estado da medição

Em alguns ciclos, por meio dos parâmetros Q de Q180 a Q182 de atuação global, é possível consultar o estado da medição:

Estado da medição	Valor de parâmetro
Os valores de medição situam-se dentro da tolerância	Q180 = 1
Necessário trabalho de aperfeiçoamento	Q181 = 1
Desperdícios	Q182 = 1

O TNC fixa o anotador de trabalho de aperfeiçoamento ou de desperdícios, logo que um dos valores de medição estiver fora da tolerância. Para determinar qual é o resultado de medição fora da tolerância, observe também o registo de medições, ou verifique os respetivos resultados de medição (Q150 a Q160) quanto aos os valores limite.

No ciclo 427, o TNC parte, por regra, do princípio de que se está a medir uma medida externa (ilha). No entanto, selecionando a correspondente medida máxima ou mínima em conjunto com o sentido de apalpação, pode corrigir o estado da medição.

O TNC também fixa o anotador de estado, se não tiverem sido introduzidos valores de tolerância ou medida máxima/mínima.

Supervisão da tolerância

Na maior parte dos ciclos para controlo da peça, pode-se mandar o TNC executar uma supervisão da tolerância. Para isso, na definição de ciclo, é necessário definir os valores limite necessários. Se não quiser executar qualquer supervisão de tolerância, introduza estes parâmetros com 0 (= valor ajustado previamente)

Supervisão da ferramenta

Em alguns ciclos para controlo da peça, pode-se mandar o TNC executar uma supervisão da ferramenta. O TNC supervisiona, se

- devido aos desvios do valor nominal (valores em Q16x) se dever corrigir o raio da ferramenta
- os desvios do valor nominal (valores em Q16x) forem maiores do que a tolerância de rotura da ferramenta

Corrigir ferramenta

A função só trabalha

com a tabela de ferramentas ativada

 se se ligar a supervisão da ferramenta no ciclo: Q330 diferente de 0 ou introduzir um nome de ferramenta.
 A introdução do nome da ferramenta seleciona-se por softkey e o TNC deixa de mostrar o apóstrofe direito.

Se forem executadas mais medições de correção, o TNC adiciona o respetivo desvio medido no valor já memorizado na tabela de ferramentas.

O TNC corrige o raio da ferramenta na coluna DR da tabela de ferramentas, basicamente sempre, mesmo quando o desvio medido se situa dentro da tolerância indicada previamente. Pode consultar no seu programa NC através do parâmetro Q181 (Q181=1: necessário trabalho de acabamento) se é necessário trabalho de acabamento.

Além disso, para o ciclo 427 também se aplica o seguinte:

- Quando está definido como eixo de medição um eixo do plano de maquinagem ativado (Q272 = 1 ou 2), o TNC executa uma correção de raio da ferramenta, como já foi descrito. O TNC obtém a direção de correção através da direção de deslocação definida (Q267)
- Quando está selecionado o eixo do apalpador como eixo de medição (Q272 = 3), o TNC executa uma correção do comprimento da ferramenta

Supervisão de rotura da ferramenta

A função só trabalha

- com a tabela de ferramentas ativada
- se se ligar a supervisão da ferramenta no ciclo (introduzir Q330 diferente de 0)
- se para o número de ferramenta introduzido na tabela tiver sido introduzida a tolerância de rotura RBREAK maior que 0 (ver também Manual do Utilizador, Capítulo 5.2 "Dados da Ferramenta")

O TNC emite uma mensagem de erro e para a execução do programa, se o desvio medido for maior do que a tolerância de rotura da ferramenta. Ao mesmo tempo, bloqueia a ferramenta na tabela de ferramentas (coluna TL = L).

Sistema de referência para resultados de medição

O TNC emite todos os resultados de medição para os parâmetros de resultados e para o ficheiro de registo no sistema de coordenadas ativado - portanto, eventualmente deslocado ou/e rodado/inclinado.

16.2 PLANO DE REFERÊNCIA (Ciclo 0, DIN/ISO: G55)

Execução do ciclo

- 1 O apalpador aproxima-se num movimento 3D com avanço rápido (valor de MP6150) para a posição prévia 1 programada no ciclo
- 2 Seguidamente, o apalpador executa o processo de apalpação com avanço de apalpação (MP6120). A direção de apalpação tem que ser determinada no ciclo.
- 3 Depois de o TNC ter registado a posição, o apalpador regressa ao ponto inicial do processo de apalpação e memoriza num parâmetro Q a coordenada medida. Adicionalmente, o TNC memoriza as coordenadas da posição em que se encontra o apalpador no momento do sinal de comutação, nos parâmetros de Q115 a Q119. Para os valores destes parâmetros o TNC não tem em conta o comprimento e o raio da haste de apalpação

Ter em atenção ao programar!

Atenção, perigo de colisão!

Posicionar previamente o apalpador, de forma a evitar-se uma colisão na aproximação da posição prévia programada.

Parâmetros de ciclo

- N.º de parâmetro para o resultado: introduzir o número de parâmetro Q a que se atribuiu o valor da coordenada. Campo de introdução de 0 a 1999
- Eixo e Direção de Apalpação: introduzir o eixo de apalpação com a tecla de seleção de eixos ou com o teclado ASCII e o sinal correto para a direção de apalpação. Confirmar com a tecla ENT. Campo de introdução: todos os eixos NC
- Valor nominal da posição: com as teclas de seleção dos eixos ou com o teclado de ASCII, introduzir todas as coordenadas para o posicionamento prévio do apalpador. Campo de introdução -99999,9999 a 99999,9999
- ▶ Terminar a introdução: premir a tecla ENT

Exemplo: Blocos NC

67 TCH PROBE 0.0 PLANO DE REFERÊNCIA Q5 X-68 TCH PROBE 0.1 X+5 Y+0 Z-5

16.3 PLANO DE REFERÊNCIA Polar (ciclo 1)

Execução do ciclo

O ciclo de apalpação 1 obtém, numa direção qualquer de apalpação, uma posição qualquer na peça.

- 1 O apalpador aproxima-se num movimento 3D com avanço rápido (valor de MP6150) para a posição prévia 1 programada no ciclo
- 2 Seguidamente, o apalpador executa o processo de apalpação com avanço de apalpação (MP6120). No processo de apalpação, o TNC desloca-se ao mesmo tempo em 2 eixos (depende do ângulo de apalpação). A direção de apalpação determina-se no ciclo por meio de ângulo polar
- 3 Depois de o TNC ter registado a posição, o apalpador regressa ao ponto inicial do processo de apalpação. O TNC memoriza as coordenadas da posição em que se encontra o apalpador no momento do sinal de comutação, nos parâmetros de Q115 a Q119.

Ter em atenção ao programar!

Atenção, perigo de colisão!

Posicionar previamente o apalpador, de forma a evitar-se uma colisão na aproximação da posição prévia programada.

O eixo de apalpação definido no ciclo define o plano de apalpação:

- Eixo de apalpação X: plano X/Y
- Eixo de apalpação Y: plano Y/Z
- Eixo de apalpação Z: plano Z/X

Parâmetros de ciclo

- Eixo de Apalpação: introduzir o eixo de apalpação com a tecla de seleção de eixos ou com o teclado ASCII. Confirmar com a tecla ENT. Campo de introdução X, Y ou Z
- Ângulo de apalpação: ângulo referente ao eixo de apalpação onde o apalpador deve deslocar-se. Campo de introdução -180,0000 a 180,0000
- Valor nominal da posição: com as teclas de seleção dos eixos ou com o teclado de ASCII, introduzir todas as coordenadas para o posicionamento prévio do apalpador. Campo de introdução -99999,9999 a 99999,9999
- ▶ Terminar a introdução: premir a tecla ENT

Exemplo: Blocos NC

67	TCH	PROBE	1.0	PLANO	DE	REFERÊNCIA POLAR	
68	TCH	PROBE	1.1	ÂNGULO) X:	: +30	

69 TCH PROBE 1.2 X+5 Y+0 Z-5

16.4 MEDIR ÂNGULO (ciclo 420, DIN/ISO: G420)

Execução do ciclo

O ciclo de apalpação 420 obtém o ângulo que contém uma reta qualquer com o eixo principal do plano de maquinagem.

- O TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação programado 1. O TNC desvia assim o apalpador na distância de segurança contra a direção de deslocação determinada
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e executa o primeiro processo de apalpação com avanço de apalpação (MP6120)
- Bepois, o apalpador desloca-se para o ponto de apalpação seguinte
 e executa o segundo processo de apalpação
- 4 O TNC posiciona o apalpador de regresso na Altura Segura e memoriza o ângulo obtido no seguinte parâmetro Q:

Número de parâmetro	Significado
Q150	Ângulo medido referente ao eixo principal
	do plano de maquinagem

Ter em atenção ao programar!

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Se o eixo do apalpador estiver definido igual ao eixo de medição, então, selecionar **Q263** igual a **Q265**, se o ângulo dever ser medido na direção do eixo A; selecionar **Q263** diferente de **Q265**, se o ângulo dever ser medido na direção do eixo B.

Parâmetros de ciclo

- 1.º Ponto de medição do 1.º eixo Q263 (absoluto): coordenada do primeiro ponto de apalpação no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 1.º ponto de medição do 2.º eixo Q264 (absoluto): coordenada do primeiro ponto de apalpação no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 2.º ponto de medição do 1.º eixo Q265 (absoluto): coordenada do segundo ponto de apalpação no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 2.º ponto de medição do 2.º eixo Q266 (absoluto): coordenada do segundo ponto de apalpação no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Eixo de medição Q272: eixo em que deve ser feita a medição:
 - 1:Eixo principal = eixo de medição
 - 2: Eixo secundário = eixo de medição
 - 3: Eixo do apalpador = eixo de medição

- Direção de deslocação 1 direção em que o apalpador deve ser deslocado para a peça:
 -1:direção de deslocação negativa
 +1:direção de deslocação positiva
- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Deslocar à altura segura Q301: determinar como o apalpador se deve deslocar entre os pontos de medição:

0: deslocar entre pontos de medição à altura de medição

1: deslocar entre pontos de medição à altura segura Em alternativa, **PREDEF**

- Registo de medição Q281: determinar se o TNC deve criar um registo de medição:
 - 0: não criar nenhum registo

 criar registo de medição: por norma, o TNC coloca o ficheiro de registo TCHPR420.TXT no diretório onde também está guardado o programa de medição
 Interromper execução do programa e emitir protocolo de medição no ecrã do TNC. Continuar o programa com NC-Start

Exemplo: Blocos NC

5 TCH PROBE 42	O MEDIR ÂNGULO
Q263=+10	;1.º PONTO 1.º EIXO
Q264=+10	;1.º PONTO 2.º EIXO
Q265=+15	;2.º PONTO 1.º EIXO
Q266=+95	;2.º PONTO 2.º EIXO
Q272=1	;EIXO DE MEDIÇÃO
Q267=-1	;DIREÇÃO DE DESLOCAÇÃO
Q261=-5	;ALTURA DE MEDIÇÃO
Q320=0	;DISTÂNCIA SEGURANÇA
Q260=+10	;ALTURA SEGURA
Q301=1	;DESLOCAR À ALTURA SEGURANÇA
Q281=1	;REGISTO DE MEDIÇÃO

16.5 MEDIR FURO (ciclo 421, DIN/ISO: G421)

Execução do ciclo

O ciclo de apalpação 421 obtém o ponto central e o diâmetro dum furo (caixa circular). Se se definirem no ciclo os respetivos valores de tolerância, o TNC executa uma comparação de valor nominal/real e coloca os desvios em parâmetros do sistema.

- 1 TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação 1. O TNC calcula os pontos de apalpação a partir das indicações no ciclo e da distância de segurança a partir de MP6140
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e executa o primeiro processo de apalpação com avanço de apalpação (MP6120). O TNC determina automaticamente a direção de apalpação em função do ângulo inicial programado
- A seguir, o apalpador desloca-se de forma circular à altura de medição ou à altura segura, para o ponto de apalpação seguinte 2 e executa aí o segundo processo de apalpação
- 4 O TNC posiciona o apalpador para o ponto de apalpação 3 e a seguir para o ponto de apalpação 4 e executa aí o terceiro ou o quarto processo de apalpação
- 5 Finalmente, o TNC posiciona o apalpador de regresso na Altura Segura e memoriza o ângulo os valores reais e os desvios nos seguintes parâmetros Q:

Número de parâmetro	Significado
Q151	Valor real centro eixo principal
Q152	Valor real centro eixo secundário
Q153	Valor real diâmetro
Q161	Desvio centro eixo principal
Q162	Desvio centro eixo secundário
Q163	Desvio diâmetro

Ter em atenção ao programar!

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Quanto menor se programar o passo angular, menor é a exatidão com que o TNC calcula a dimensão do furo. Menor valor de introdução: 5°.

Parâmetros de ciclo

- Centro 1.º eixo Q273 (absoluto): centro do furo no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Centro 2.º eixo Q274 (valor absoluto): centro do furo no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Diâmetro nominal Q262: introduzir diâmetro do furo. Campo de introdução de 0 a 99999,9999
- Ângulo inicial Q325 (absoluto): ângulo entre o eixo principal do plano de maquinagem e o primeiro ponto de apalpação. Campo de introdução –360,0000 a 360,0000
- Passo angular Q247 (valor incremental): ângulo entre dois pontos de medição; o sinal do passo angular determina a direção de maquinagem (- = sentido horário). Se quiser medir arcos de círculo, programe um passo angular menor do que 90°. Campo de introdução -120,0000 a 120,0000

- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Deslocar à altura segura Q301: determinar como o apalpador se deve deslocar entre os pontos de medição:

0: deslocar entre pontos de medição à altura de medição

1: deslocar entre pontos de medição à altura segura Em alternativa, **PREDEF**

- Medida maior furo Q275: máximo diâmetro permitido do furo (caixa circular). Campo de introdução de 0 a 99999,9999
- Medida menor furo 276: mínimo diâmetro permitido do furo (caixa circular). Campo de introdução de 0 a 99999,9999
- Valor de tolerância centro 1.º eixo Q279: Desvio de posição permitido no eixo principal do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- Valor de tolerância centro 2.º eixo Q280: Desvio de posição permitido no eixo secundário do plano de maquinagem. Campo de introdução de 0 a 99999,9999

- ▶ **Registo de medição** Q281: determinar se o TNC deve criar um registo de medição:
 - **0**: não criar nenhum registo

1: criar registo de medição: o TNC coloca o **ficheiro de registo TCHPR421.TXT** de forma standard no diretório onde também está memorizado o programa de medição

2: Interromper execução do programa e emitir protocolo de medição no ecrã do TNC. Continuar o programa com NC-Start

PGM-Stop em caso de erro de tolerância Q309: Determinar se em caso de a tolerância ser passada o TNC deve interromper a execução do programa e se deve emitir uma mensagem de erro:

0: não interromper a execução do programa, não emitir mensagens de erro

1: Interromper a execução do programa, emitir mensagens de erro

Ferramenta para supervisão Q330: determinar se o TNC deve executar uma supervisão da ferramenta (ver "Supervisão da ferramenta" na página 422). Campo de introdução 0 a 32767,9, em alternativa, nome da ferramenta com 16 caracteres, no máximo 0: supervisão não ativa

>0: número da ferramenta na tabela de ferramentas TOOL.T

- ▶ Número de pontos de medição (4/3) Q423: definir se
 - o TNC deve medir o furo com 4 ou 3 apalpações: **4**: Utilizar 4 pontos de medicão (ajuste padrão)
 - **3**: Utilizar 3 pontos de medição
- Modo de deslocação? Reta=0/Círculo=1 Q365: determinar com que função de trajetória o apalpador se deve deslocar entre os pontos de medição, quando a deslocação à altura de segurança (Q301=1) está ativa:
 - **0**: deslocação entre os pontos de medição numa reta
 - **1**: deslocação circular entre os pontos de medição segundo o diâmetro do círculo teórico

Exemplo: Blocos NC

5	TCH PROBE 42	21 MEDIR FURO
	Q273=+50	;CENTRO 1º EIXO
	Q274=+50	;CENTRO 2º EIXO
	Q262=75	;DIÂMETRO NOMINAL
	Q325=+0	;ÂNGULO INICIAL
	Q247=+60	;INCREMENTO ANGULAR
	Q261=-5	;ALTURA DE MEDIÇÃO
	Q320=0	;DISTÂNCIA SEGURANÇA
	Q260=+20	;ALTURA SEGURA
	Q301=1	;DESLOCAR À ALTURA SEGURANÇA
	Q275=75,1	2;MEDIDA MÁXIMA
	Q276=74,9	5;MEDIDA MÍNIMA
	Q279=0,1	;TOLERÂNCIA 1.º CENTRO
	Q280=0,1	;TOLERÂNCIA 2.º CENTRO
	Q281=1	;REGISTO DE MEDIÇÃO
	Q309=0	;PARAGEM DE PROGRAMA POR ERRO
	Q330=0	;FERRAMENTA
	Q423=4	;QUANTIDADE DE PONTOS DE
		MEDIÇAO
	Q365=1	;TIPO DE DESLOCAÇÃO

16.6 MEDIR CÍRCULO EXTERIOR (ciclo 422, DIN/ISO: G422)

Execução do ciclo

O ciclo de apalpação 422 obtém o ponto central e o diâmetro duma ilha circular. Se se definirem no ciclo os respetivos valores de tolerância, o TNC executa uma comparação de valor nominal/real e coloca os desvios em parâmetros do sistema.

- TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação 1. O TNC calcula os pontos de apalpação a partir das indicações no ciclo e da distância de segurança a partir de MP6140
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e executa o primeiro processo de apalpação com avanço de apalpação (MP6120). O TNC determina automaticamente a direção de apalpação em função do ângulo inicial programado
- A seguir, o apalpador desloca-se de forma circular à altura de medição ou à altura segura, para o ponto de apalpação seguinte 2 e executa aí o segundo processo de apalpação
- 4 O TNC posiciona o apalpador para o ponto de apalpação 3 e a seguir para o ponto de apalpação 4 e executa aí o terceiro ou o quarto processo de apalpação
- 5 Finalmente, o TNC posiciona o apalpador de regresso na Altura Segura e memoriza o ângulo os valores reais e os desvios nos seguintes parâmetros Q:

Número de parâmetro	Significado
Q151	Valor real centro eixo principal
Q152	Valor real centro eixo secundário
Q153	Valor real diâmetro
Q161	Desvio centro eixo principal
Q162	Desvio centro eixo secundário
Q163	Desvio diâmetro

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Quanto menor se programar o passo angular, menor é a exatidão com que o TNC calcula a dimensão da ilha. menor valor de introdução: 5°.

Parâmetros de ciclo

- Centro do 1.º eixo Q273 (absoluto): centro da ilha no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Centro do 2.º eixo Q274 (absoluto): centro da ilha no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Diâmetro nominal Q262: introduzir diâmetro da ilha. Campo de introdução de 0 a 99999,9999
- Ângulo inicial Q325 (absoluto): ângulo entre o eixo principal do plano de maquinagem e o primeiro ponto de apalpação. Campo de introdução -360,0000 a 360,0000
- Passo angular Q247 (incremental): ângulo entre dois pontos de medição; o sinal do passo angular determina a direção de maquinagem (- = sentido horário). Se quiser medir arcos de círculo, programe um passo angular menor do que 90°. Campo de introdução -120,0000 a 120,0000

- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Deslocar à altura segura Q301: determinar como o apalpador se deve deslocar entre os pontos de medição:

0: deslocar entre pontos de medição à altura de medição

1: deslocar entre pontos de medição à altura segura Em alternativa, **PREDEF**

- Medida maior da ilha Q277: maior diâmetro permitido da ilha. Campo de introdução de 0 a 99999,9999
- Medida menor da ilha Q278: mínimo diâmetro permitido da ilha. Campo de introdução de 0 a 99999,9999
- Valor de tolerância centro 1.º eixo Q279: Desvio de posição permitido no eixo principal do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- Valor de tolerância centro 2.º eixo Q280: Desvio de posição permitido no eixo secundário do plano de maquinagem. Campo de introdução de 0 a 99999,9999

- ▶ **Registo de medição** Q281: determinar se o TNC deve criar um registo de medição:
 - **0**: não criar nenhum registo

1: criar registo de medição: por norma, o TNC coloca o **ficheiro de registo TCHPR422.TXT** no diretório onde também está memorizado o programa de medição

2: Interromper execução do programa e emitir protocolo de medição no ecrã do TNC. Continuar o programa com NC-Start

PGM-Stop em caso de erro de tolerância Q309: Determinar se em caso de a tolerância ser passada o TNC deve interromper a execução do programa e se deve emitir uma mensagem de erro:

0: não interromper a execução do programa, não emitir mensagens de erro

1: Interromper a execução do programa, emitir mensagens de erro

Ferramenta para supervisão Q330: determinar se o TNC deve executar uma supervisão da ferramenta (ver "Supervisão da ferramenta" na página 422). Campo de introdução 0 a 32767,9, em alternativa, nome da ferramenta com 16 caracteres, no máximo 0: supervisão não ativa

>0: número da ferramenta na tabela de ferramentas TOOL.T

- ▶ Número de pontos de medição (4/3) Q423: definir se
 - o TNC deve medir a ilha com 4 ou 3 apalpações:
 - 4: Utilizar 4 pontos de medição (ajuste padrão)
 - 3: Utilizar 3 pontos de medição
- Modo de deslocação? Reta=0/Círculo=1 Q365: determinar com que função de trajetória o apalpador se deve deslocar entre os pontos de medição, quando a deslocação à altura de segurança (Q301=1) está ativa:
 - 0: deslocação entre os pontos de medição numa reta
 - **1**: deslocação circular entre os pontos de medição segundo o diâmetro do círculo teórico

Exemplo: Blocos NC

5	TCH PROBE 42	2 MEDIR CÍRCULO EXTERIOR
	Q273=+50	;CENTRO 1.º EIXO
	Q274=+50	;CENTRO 2.º EIXO
	Q262=75	;DIÂMETRO NOMINAL
	Q325=+90	;ÂNGULO INICIAL
	Q247=+30	;INCREMENTO ANGULAR
	Q261=-5	;ALTURA DE MEDIÇÃO
	Q320=0	;DISTÂNCIA SEGURANÇA
	Q260=+10	;ALTURA SEGURA
	Q301=0	;DESLOCAR À ALTURA SEGURANÇA
	Q277=35,1	5;MEDIDA MÁXIMA
	Q278=34,9	;MEDIDA MÍNIMA
	Q279=0,05	;TOLERÂNCIA 1.º CENTRO
	Q280=0,05	;TOLERÂNCIA 2º CENTRO
	Q281=1	;REGISTO DE MEDIÇÃO
	Q309=0	;PARAGEM DE PROGRAMA POR ERRO
	Q330=0	;FERRAMENTA
	Q423=4	;QUANTIDADE DE PONTOS DE Medição
	Q365=1	;TIPO DE DESLOCAÇÃO

16.7 MEDIR RECTÂNGULO INTERIOR (ciclo 423, DIN/ISO: G423)

Execução do ciclo

O ciclo de apalpação 423 obtém o ponto central e também o comprimento e largura duma caixa retangular. Se se definirem no ciclo os respetivos valores de tolerância, o TNC executa uma comparação de valor nominal/real e coloca os desvios em parâmetros do sistema.

- TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação 1. O TNC calcula os pontos de apalpação a partir das indicações no ciclo e da distância de segurança a partir de MP6140
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e executa o primeiro processo de apalpação com avanço de apalpação (MP6120)
- A seguir, o apalpador desloca-se paralelo ao eixo à altura de medição ou à altura segura, para o ponto de apalpação seguinte 2 e executa aí o segundo processo de apalpação
- 4 O TNC posiciona o apalpador para o ponto de apalpação 3 e a seguir para o ponto de apalpação 4 e executa aí o terceiro ou o quarto processo de apalpação
- **5** Finalmente, o TNC posiciona o apalpador de regresso na Altura Segura e memoriza o ângulo os valores reais e os desvios nos seguintes parâmetros Ω:

Número de parâmetro	Significado
Q151	Valor real centro eixo principal
Q152	Valor real centro eixo secundário
Q154	Valor real comprimento lateral eixo principal
Q155	Valor real comprimento lateral eixo secundário
Q161	Desvio centro eixo principal
Q162	Desvio centro eixo secundário
Q164	Desvio comprimento lateral eixo principal
Q165	Desvio comprimento lateral eixo secundário

Ter em atenção ao programar!

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Quando a medida da caixa e a distância de segurança não permitem um posicionamento prévio próximo dos pontos de apalpação, o TNC apalpa sempre a partir do centro da caixa. Entre os quatro pontos de medição, o apalpador não se desloca na Altura Segura.

Parâmetros de ciclo

- Centro do 1.º eixo Q273 (absoluto): centro da caixa no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Centro do 2.º eixo Q274 (absoluto): centro da caixa no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 1 comprimento lateral Q282: comprimento da caixa, paralelo ao eixo principal do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- 2º comprimento lateral Q283: comprimento da caixa, paralelo ao eixo secundário do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999

- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Deslocar à altura segura Q301: determinar como o apalpador se deve deslocar entre os pontos de medição:

 $\boldsymbol{0}:$ deslocar entre pontos de medição à altura de medição

1: deslocar entre pontos de medição à altura segura Em alternativa, **PREDEF**

- Medida maior 1º comprimento de lado Q284: comprimento máximo permitido da caixa. Campo de introdução de 0 a 99999,9999
- Medida menor 1º comprimento de 1ado Q285: comprimento mínimo permitido da caixa. Campo de introdução de 0 a 99999,9999
- Medida maior 2º comprimento de 1ado Q286: largura máxima permitida da caixa. Campo de introdução de 0 a 99999,9999
- Medida menor 2º comprimento de 1ado Q287: largura mínima permitida da caixa. Campo de introdução de 0 a 99999,9999
- Valor de tolerância centro 1.º eixo Q279: Desvio de posição permitido no eixo principal do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- Valor de tolerância centro 2.º eixo Q280: Desvio de posição permitido no eixo secundário do plano de maquinagem. Campo de introdução de 0 a 99999,9999

- Registo de medição Q281: determinar se o TNC deve criar um registo de medição:
 - **0**: não criar nenhum registo

1: criar registo de medição: por norma, o TNC coloca o **ficheiro de registo TCHPR423.TXT** no diretório onde também está memorizado o programa de medição

2: Interromper execução do programa e emitir protocolo de medição no ecrã do TNC. Continuar o programa com NC-Start

PGM-Stop em caso de erro de tolerância Q309: Determinar se em caso de a tolerância ser passada o TNC deve interromper a execução do programa e se deve emitir uma mensagem de erro:

0: não interromper a execução do programa, não emitir mensagens de erro

1: Interromper a execução do programa, emitir mensagens de erro

Ferramenta para supervisão Q330: determinar se o TNC deve executar uma supervisão da ferramenta (ver "Supervisão da ferramenta" na página 422). Campo de introdução 0 a 32767,9, em alternativa, nome da ferramenta com 16 caracteres, no máximo 0: supervisão não ativa

>0: número da ferramenta na tabela de ferramentas TOOL.T

Exemplo: Blocos NC

5 TCH PROBE 42	3 MEDIR RETÂNG INTERIOR
Q273=+50	;CENTRO 1.º EIXO
Q274=+50	;CENTRO 2º EIXO
Q282=80	;1.º COMPRIMENTO DE LADO
Q283=60	;2.º COMPRIMENTO DE LADO
Q261=-5	;ALTURA DE MEDIÇÃO
Q320=0	;DISTÂNCIA SEGURANÇA
Q260=+10	;ALTURA SEGURA
Q301=1	;DESLOCAR À ALTURA SEGURANÇA
Q284=0	;MEDIDA MAIOR 1.º LADO
Q285=0	;MEDIDA MENOR 1.º LADO
Q286=0	;MEDIDA MAIOR 2.º LADO
Q287=0	;MEDIDA MENOR 2.º LADO
Q279=0	;TOLERÂNCIA 1.º CENTRO
Q280=0	;TOLERÂNCIA 2º CENTRO
Q281=1	;REGISTO DE MEDIÇÃO
Q309=0	;PARAGEM DE PROGRAMA POR ERRO
Q330=0	;FERRAMENTA

16.8 MEDIR RECTÂNGULO EXTERIOR (ciclo 424, DIN/ISO: G424)

Execução do ciclo

O ciclo de apalpação 424 obtém o ponto central e também o comprimento e largura duma ilha retangular. Se se definirem no ciclo os respetivos valores de tolerância, o TNC executa uma comparação de valor nominal/real e coloca os desvios em parâmetros do sistema.

- TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação 1. O TNC calcula os pontos de apalpação a partir das indicações no ciclo e da distância de segurança a partir de MP6140
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e executa o primeiro processo de apalpação com avanço de apalpação (MP6120)
- A seguir, o apalpador desloca-se paralelo ao eixo à altura de medição ou à altura segura, para o ponto de apalpação seguinte 2 e executa aí o segundo processo de apalpação
- 4 O TNC posiciona o apalpador para o ponto de apalpação 3 e a seguir para o ponto de apalpação 4 e executa aí o terceiro ou o quarto processo de apalpação
- **5** Finalmente, o TNC posiciona o apalpador de regresso na Altura Segura e memoriza o ângulo os valores reais e os desvios nos seguintes parâmetros Ω:

Número de parâmetro	Significado
Q151	Valor real centro eixo principal
Q152	Valor real centro eixo secundário
Q154	Valor real comprimento lateral eixo principal
Q155	Valor real comprimento lateral eixo secundário
Q161	Desvio centro eixo principal
Q162	Desvio centro eixo secundário
Q164	Desvio comprimento lateral eixo principal
Q165	Desvio comprimento lateral eixo secundário

Ter em atenção ao programar!

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Parâmetros de ciclo

- Centro do 1.º eixo Q273 (absoluto): centro da ilha no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Centro do 2.º eixo Q274 (absoluto): centro da ilha no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 1º comprimento de 1ado Q282: comprimento da ilha, paralelo ao eixo principal do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- 2º comprimento de 1ado Q283: comprimento da ilha, paralelo ao eixo secundário do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999

- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Deslocar à altura segura Q301: determinar como o apalpador se deve deslocar entre os pontos de medição:

 $\boldsymbol{0}:$ deslocar entre pontos de medição à altura de medição

1: deslocar entre pontos de medição à altura segura Em alternativa, **PREDEF**

- Medida maior 1º comprimento de lado Q284: comprimento máximo permitido da ilha. Campo de introdução de 0 a 99999,9999
- Medida menor 1º comprimento de lado Q285: comprimento mínimo permitido da ilha. Campo de introdução de 0 a 99999,9999
- Medida maior 2º comprimento de 1ado Q286: largura máxima permitida da ilha. Campo de introdução de 0 a 99999,9999
- Medida menor 2º comprimento de 1ado Q287: largura mínima permitida da ilha. Campo de introdução de 0 a 99999,9999
- Valor de tolerância centro 1.º eixo Q279: Desvio de posição permitido no eixo principal do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- Valor de tolerância centro 2.º eixo Q280: Desvio de posição permitido no eixo secundário do plano de maquinagem. Campo de introdução de 0 a 99999,9999

- Registo de medição Q281: determinar se o TNC deve criar um registo de medição:
 - **0**: não criar nenhum registo

1: criar registo de medição: por norma, o TNC coloca o **ficheiro de registo TCHPR424.TXT** no diretório onde também está memorizado o programa de medição

2: Interromper execução do programa e emitir protocolo de medição no ecrã do TNC. Continuar o programa com NC-Start

PGM-Stop em caso de erro de tolerância Q309: Determinar se em caso de a tolerância ser passada o TNC deve interromper a execução do programa e se deve emitir uma mensagem de erro:

0: não interromper a execução do programa, não emitir mensagens de erro

1: Interromper a execução do programa, emitir mensagens de erro

 Ferramenta para supervisão Q330: determinar se o TNC deve executar uma supervisão da ferramenta (ver "Supervisão da ferramenta" na página 422). Campo de introdução 0 a 32767,9, em alternativa, nome da ferramenta com 16 caracteres, no máximo: 0: supervisão não ativa

>0: número da ferramenta na tabela de ferramentas TOOL.T

Exemplo: Blocos NC

	5	TCH	PROBE	424 MED	IR RE	TANG	EXTERI	OR	
		Q	273=+5	O ;CENI	FRO 1.	° EIX	0		
		Q	274=+5	O ;CENT	FRO 2º	EIXO)		
		Q	282=75	;1.°	COMPR	IMENT	O DE I	LADO	
		Q	283=35	;2.º	COMPR	IMENT	O DE I	LADO	
		Q	261=-5	;ALTU	JRA DE	MEDI	ÇÃO		
		Q	320=0	;DIST	FÂNCIA	SEGU	IRANÇA		
		Q	260=+2	0 ;ALTU	JRA SE	GURA			
		Q	301=0	;DESI	LOCAR	À ALT	URA SI	EGUR/	ANÇA
		Q	284=75	,1 ;MED]	EDA MA	IOR 1	.º LAI	D0	
		Q	285=74	,9 ;MED]	CDA ME	NOR 1	.º LAI	D0	
		Q	286=35	;MED]	EDA MA	IOR 2	.º LAI	D0	
		Q	287=34	,95;MED	IDA ME	NOR	2.º LA	DO	
		Q	279=0,	1 ;TOLI	ERÂNCI	A 1.º	CENT	RO	
		Q	280=0,	1 ;TOLI	ERÂNCI	A 2º	CENTR	0	
		Q	281=1	; REGI	LSTO D	E MED	IÇÃO		
		Q	309=0	;PAR/	AGEM D	E PRO	GRAMA	POR	ERRO
		Q	330=0	;FERI	RAMENT	A			
-	_	_							

16.9 MEDIR LARGURA INTERIOR (ciclo 425, DIN/ISO: G425)

Execução do ciclo

O ciclo de apalpação 425 obtém a posição e a largura duma ranhura (caixa). Se se definirem no ciclo os respetivos valores de tolerância, o TNC executa uma comparação de valor nominal/real e coloca os desvios num parâmetro do sistema.

- TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação 1. O TNC calcula os pontos de apalpação a partir das indicações no ciclo e da distância de segurança a partir de MP6140
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e executa o primeiro processo de apalpação com avanço de apalpação (MP6120). Furo Apalpação sempre em direção positiva do eixo programado
- 3 Quando se quiser introduzir um desvio para a segunda medição, o TNC desloca o apalpador (eventualmente a altura segura) para o ponto de apalpação seguinte 2 e executa aí o segundo processo de apalpação. Com grandes comprimentos nominais, o TNC posiciona para o segundo ponto de apalpação com avanço rápido. Se não quiser introduzir desvio, o TNC mede a largura diretamente na direção oposta
- 4 Finalmente, o TNC posiciona o apalpador de regresso na Altura Segura e memoriza os valores reais e o desvio nos seguintes parâmetros Ω:

Número de parâmetro	Significado
Q156	Valor real comprimento medido
Q157	Valor real posição eixo central
Q166	Desvio do comprimento medido

Ter em atenção ao programar!

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Parâmetros de ciclo

- Ponto inicial 1.º eixo Q328 (absoluto): ponto inicial do processo de apalpação no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Ponto inicial 2.º eixo Q329 (absoluto): ponto inicial do processo de apalpação no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Desvio para a 2.ª medição Q310 (valor incremental): valor com que o apalpador é desviado antes da segunda medição. Se se introduzir 0, o TNC não desvia o apalpador. Campo de introdução -99999,9999 a 99999,9999
- Eixo de medição Q272: eixo do plano de maquinagem onde deve ser feita a medição:
 1:Eixo principal = eixo de medição
 2:eixo secundário = eixo de medição
- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Comprimento nominal Q311 (incremental): valor nominal do comprimento que vai ser medido Campo de introdução de 0 a 99999,9999
- Medida maior Q288: comprimento máximo permitido. Campo de introdução de 0 a 99999,9999
- Medida menor Q289: comprimento mínimo permitido. Campo de introdução de 0 a 99999,9999

- Registo de medição Q281: determinar se o TNC deve criar um registo de medição:
 - **0**: não criar nenhum registo

1: criar registo de medição: por norma, o TNC coloca o **ficheiro de registo TCHPR425.TXT** no diretório onde também está memorizado o programa de medição

2: Interromper execução do programa e emitir protocolo de medição no ecrã do TNC. Continuar o programa com NC-Start

 PGM-Stop em caso de erro de tolerância Q309: Determinar se em caso de a tolerância ser passada o TNC deve interromper a execução do programa e se deve emitir uma mensagem de erro:
O: não interromper a execução do programa pão

0: não interromper a execução do programa, não emitir mensagens de erro

1: Interromper a execução do programa, emitir mensagens de erro

Ferramenta para supervisão Q330: determinar se o TNC deve executar uma supervisão da ferramenta (ver "Supervisão da ferramenta" na página 422): Campo de introdução 0 a 32767,9, em alternativa, nome da ferramenta com 16 caracteres, no máximo 0: supervisão não ativa

>0: número da ferramenta na tabela de ferramentas TOOL.T

- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Deslocar à altura segura Q301: determinar como o apalpador se deve deslocar entre os pontos de medição:

 $\boldsymbol{0}:$ deslocar entre pontos de medição à altura de medição

1: deslocar entre pontos de medição à altura segura Em alternativa, **PREDEF**

Exemplo: Blocos NC

5	TCH PROBE 42	5 MEDIR LARGURA INTERIOR
	Q328=+75	;PONTO INICIAL DO 1.º EIXO
	Q329=-12.	5;PONTO INICIAL DO 2.º EIXO
	Q310=+0	;DESVIO DA 2.ª MEDIÇÃO
	Q272=1	;EIXO DE MEDIÇÃO
	Q261=-5	;ALTURA DE MEDIÇÃO
	Q260=+10	;ALTURA SEGURA
	Q311=25	;COMPRIMENTO NOMINAL
	Q288=25.0	5;MEDIDA MAIOR
	Q289=25	;MEDIDA MENOR
	Q281=1	;REGISTO DE MEDIÇÃO
	Q309=0	;PARAGEM DE PROGRAMA POR ERRO
	Q330=0	;FERRAMENTA
	Q320=0	;DISTÂNCIA SEGURANÇA
	Q301=0	;DESLOCAR À ALTURA SEGURANÇA

16.10 MEDIR NERVURA EXTERIOR (ciclo 426, DIN/ISO: G426)

Execução do ciclo

O ciclo de apalpação 426 obtém a posição e a largura duma nervura. Se se definirem no ciclo os respetivos valores de tolerância, o TNC executa uma comparação de valor nominal/real e coloca o desvio em parâmetros do sistema.

- TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação 1. O TNC calcula os pontos de apalpação a partir das indicações no ciclo e da distância de segurança a partir de MP6140
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e executa o primeiro processo de apalpação com avanço de apalpação (MP6120). Furo Apalpação sempre em direção negativa do eixo programado
- 3 A seguir, o apalpador desloca-se à altura segura para o ponto de apalpação seguinte e executa aí o segundo processo de apalpação
- 4 Finalmente, o TNC posiciona o apalpador de regresso na Altura Segura e memoriza os valores reais e o desvio nos seguintes parâmetros Ω:

Número de parâmetro	Significado
Q156	Valor real comprimento medido
Q157	Valor real posição eixo central
Q166	Desvio do comprimento medido

Ter em atenção ao programar!

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Prestar atenção a que a primeira medição seja sempre feita na direção negativa do eixo de medição selecionado. Definir **Q263** e **Q264** em conformidade.

Parâmetros de ciclo

- 1.º ponto de medição do 1.º eixo Q263 (absoluto): coordenada do primeiro ponto de apalpação no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 1.º ponto de medição do 2.º eixo Q264 (absoluto): coordenada do primeiro ponto de apalpação no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 2.º ponto de medição do 1.º eixo Q265 (absoluto): coordenada do segundo ponto de apalpação no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 2.º ponto de medição do 2.º eixo Q266 (absoluto): coordenada do segundo ponto de apalpação no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Eixo de medição Q272: eixo do plano de maquinagem onde deve ser feita a medição:
 1:Eixo principal = eixo de medição
 2:eixo secundário = eixo de medição
- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Comprimento nominal Q311 (incremental): valor nominal do comprimento que vai ser medido Campo de introdução de 0 a 99999,9999
- Medida maior Q288: comprimento máximo permitido. Campo de introdução de 0 a 99999,9999
- Medida menor Q289: comprimento mínimo permitido. Campo de introdução de 0 a 99999,9999

- Registo de medição Q281: determinar se o TNC deve criar um registo de medição:
 - **0**: não criar nenhum registo

1: criar registo de medição: por norma, o TNC coloca o **ficheiro de registo TCHPR426.TXT** no diretório onde também está memorizado o programa de medição

2: Interromper execução do programa e emitir protocolo de medição no ecrã do TNC. Continuar o programa com NC-Start

PGM-Stop em caso de erro de tolerância Q309: Determinar se em caso de a tolerância ser passada o TNC deve interromper a execução do programa e se deve emitir uma mensagem de erro:

0: não interromper a execução do programa, não emitir mensagens de erro

1: Interromper a execução do programa, emitir mensagens de erro

Ferramenta para supervisão Q330: determinar se o TNC deve executar uma supervisão da ferramenta (ver "Supervisão da ferramenta" na página 422). Campo de introdução 0 a 32767,9, em alternativa, nome da ferramenta com 16 caracteres, no máximo 0: supervisão não ativa

>0: número da ferramenta na tabela de ferramentas TOOL.T

Exemplo: Blocos NC

5 TCH PROBE 42	6 MEDIR NERVURA EXTERIOR
Q263=+50	;1.º PONTO 1.º EIXO
Q264=+25	;1.º PONTO 2.º EIXO
Q265=+50	;2.º PONTO 1.º EIXO
Q266=+85	;2.º PONTO 2.º EIXO
Q272=2	;EIXO DE MEDIÇÃO
Q261=-5	;ALTURA DE MEDIÇÃO
Q320=0	;DISTÂNCIA SEGURANÇA
Q260=+20	;ALTURA SEGURA
Q311=45	;COMPRIMENTO NOMINAL
Q288=45	;MEDIDA MAIOR
Q289=44.9	5;MEDIDA MENOR
Q281=1	;REGISTO DE MEDIÇÃO
Q309=0	;PARAGEM DE PROGRAMA POR ERR
Q330=0	;FERRAMENTA

16.11 MEDIR COORDENADAS (ciclo 427, DIN/ISO: G427)

Execução do ciclo

Número de parâmetro

O ciclo de apalpação 427 obtém uma coordenada num eixo à escolha e coloca o valor num parâmetro do sistema. Se se definirem no ciclo os respetivos valores de tolerância, o TNC executa uma comparação de valor nominal/real e coloca o desvio em parâmetros do sistema.

- 1 TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto de apalpação 1. O TNC desvia assim o apalpador na distância de segurança contra a direção de deslocação determinada
- 2 Depois, o TNC posiciona o apalpador no plano de maquinagem sobre o ponto de apalpação 1 introduzido e mede aí o valor real no eixo escolhido
- **3** Finalmente, o TNC posiciona o apalpador de regresso na Altura Segura e memoriza a coordenada obtida no seguinte parâmetro Q:

Significado

Z A D I	
-	x

Ter em atenção ao programar!

Q160

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Coordenada medida

16.11 MEDIR COORDENADAS (ciclo 427, DIN/ISO: G427)

Parâmetros de ciclo

- 1.º ponto de medição do 1.º eixo Q263 (absoluto): coordenada do primeiro ponto de apalpação no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 1.º ponto de medição do 2.º eixo Q264 (absoluto): coordenada do primeiro ponto de apalpação no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Eixo de medição (1..3: 1=eixo principal) Q272: eixo em que deve ser feita a medição: 1:Eixo principal = eixo de medição
 2: Eixo secundário = eixo de medição
 3: Eixo do apalpador = eixo de medição
- Direção de deslocação 1 direção em que o apalpador deve ser deslocado para a peça:
 - -1: direção de deslocação negativa
 - +1:direção de deslocação positiva
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF

- Registo de medição Q281: determinar se o TNC deve criar um registo de medição:
 - **0**: não criar nenhum registo

1: criar registo de medição: por norma, o TNC coloca o **ficheiro de registo TCHPR427.TXT** no diretório onde também está memorizado o programa de medição

2: Interromper execução do programa e emitir protocolo de medição no ecrã do TNC. Continuar o programa com NC-Start

- Medida maior Q288: maior valor de medição permitido. Campo de introdução -99999,9999 a 99999,9999
- Medida menor Q289: menor valor de medição permitido. Campo de introdução -99999,9999 a 99999,9999
- PGM-Stop em caso de erro de tolerância Q309: Determinar se em caso de a tolerância ser passada o TNC deve interromper a execução do programa e se deve emitir uma mensagem de erro:

0: não interromper a execução do programa, não emitir mensagens de erro

1: Interromper a execução do programa, emitir mensagens de erro

 Ferramenta para supervisão Q330: determinar se o TNC deve executar uma supervisão da ferramenta (ver "Supervisão da ferramenta" na página 422).
Campo de introdução 0 a 32767,9, em alternativa, nome da ferramenta com 16 caracteres, no máximo: 0: supervisão não ativa

>0: número da ferramenta na tabela de ferramentas TOOL.T

Exemplo: Blocos NC

5	TCH PROBE 42	7 MEDIR COORDENADA
	Q263=+35	;1.º PONTO 1.º EIXO
	Q264=+45	;1.º PONTO 2.º EIXO
	Q261=+5	;ALTURA DE MEDIÇÃO
	Q320=0	;DISTÂNCIA SEGURANÇA
	Q272=3	;EIXO DE MEDIÇÃO
	Q267=-1	;DIREÇÃO DE DESLOCAÇÃO
	Q260=+20	;ALTURA SEGURA
	Q281=1	;REGISTO DE MEDIÇÃO
	Q288=5.1	;MEDIDA MAIOR
	Q289=4.95	;MEDIDA MENOR
	Q309=0	;PARAGEM DE PROGRAMA POR ERRO
	Q330=0	;FERRAMENTA

16.12 MEDIR CÍRCULO DE FUROS (ciclo 430, DIN/ISO: G430)

Execução do ciclo

O ciclo de apalpação 430 obtém o ponto central e o diâmetro dum círculo de furos por meio da medição de três furos. Se se definirem no ciclo os respetivos valores de tolerância, o TNC executa uma comparação de valor nominal/real e coloca o desvio em parâmetros do sistema.

- O TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) no ponto central introduzido do primeiro furo 1
- 2 A seguir, o apalpador desloca-se na altura de medição introduzida e, por meio de quatro apalpações, regista o primeiro ponto central do furo
- **3** Depois, o apalpador desloca-se de volta para distância segura e posiciona-se no ponto central introduzido do segundo furo **2**
- 4 O apalpador desloca-se na altura de medição introduzida e, por meio de quatro apalpações, regista o segundo ponto central do furo
- **5** A seguir, o apalpador desloca-se de volta para a distância segura e posiciona-se no ponto central introduzido do terceiro furo **3**
- 6 O apalpador desloca-se na altura de medição introduzida e, por meio de quatro apalpações, regista o terceiro ponto central do furo
- 7 Finalmente, o TNC posiciona o apalpador de regresso na Altura Segura e memoriza o ângulo os valores reais e os desvios nos seguintes parâmetros Ω:

Número de parâmetro	Significado
Q151	Valor real centro eixo principal
Q152	Valor real centro eixo secundário
Q153	Valor real diâmetro de círculo de furos
Q161	Desvio centro eixo principal
Q162	Desvio centro eixo secundário
Q163	Desvio diâmetro de círculo de furos

Ter em atenção ao programar!

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

O ciclo 430 executa somente a supervisão de rotura, nenhuma correção automática de ferramenta.

Parâmetros de ciclo

- Centro do 1.º eixo Q273 (absoluto): centro do círculo de furos (valor nominal) no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Centro do 2.º eixo Q274 (absoluto): centro do círculo de furos (valor nominal) no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- Diâmetro nominal Q262: introduzir diâmetro do círculo de furos. Campo de introdução de 0 a 99999,9999
- Ângulo do 1.º furo Q291 (absoluto): ângulo das coordenadas polares do primeiro ponto central do furo no plano de maquinagem. Campo de introdução -360,0000 a 360,0000
- Ângulo do 2.º furo Q292 (absoluto): ângulo das coordenadas polares do segundo ponto central do furo no plano de maquinagem. Campo de introdução -360,0000 a 360,0000
- Ângulo do 3.º furo Q293 (absoluto): ângulo das coordenadas polares do terceiro ponto central do furo no plano de maquinagem. Campo de introdução – 360,0000 a 360,0000

16.12 MEDIR CIRCULO DE FUROS (ciclo 430, DIN/ISO: G430)

- Altura de medição no eixo do apalpador Q261 (absoluto): coordenada do centro da esfera (=ponto de contacto) no eixo do apalpador, onde deve ser feita a medição. Campo de introdução -99999,9999 a 99999,9999
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Medida maior Q288: maior diâmetro de círculo de furos permitido. Campo de introdução de 0 a 99999,9999
- Medida menor Q289: mínimo diâmetro do círculo de furos permitido. Campo de introdução de 0 a 99999,9999
- Valor de tolerância centro 1.º eixo Q279: Desvio de posição permitido no eixo principal do plano de maquinagem. Campo de introdução de 0 a 99999,9999
- Valor de tolerância centro 2.º eixo Q280: Desvio de posição permitido no eixo secundário do plano de maquinagem. Campo de introdução de 0 a 99999,9999

- Registo de medição Q281: determinar se o TNC deve criar um registo de medição:
 - **0**: não criar nenhum registo

1: criar registo de medição: por norma, o TNC coloca o **ficheiro de registo TCHPR430.TXT** no diretório onde também está memorizado o programa de medição

2: Interromper execução do programa e emitir protocolo de medição no ecrã do TNC. Continuar o programa com NC-Start

PGM-Stop em caso de erro de tolerância Q309: Determinar se em caso de a tolerância ser passada o TNC deve interromper a execução do programa e se

TNC deve interromper a execução do programa e se deve emitir uma mensagem de erro:0: não interromper a execução do programa, não

emitir mensagens de erro

1: Interromper a execução do programa, emitir mensagens de erro

Ferramenta para supervisão Q330: determinar se o TNC deve executar uma supervisão de rotura da ferramenta (ver "Supervisão da ferramenta" na página 422). Campo de introdução 0 a 32767,9, em alternativa, nome da ferramenta com 16 caracteres, no máximo.

0: supervisão não ativa

>0: número da ferramenta na tabela de ferramentas TOOL.T

Exemplo: Blocos NC

5	5 TCH PROBE 430 M	EDIR CÍRCULO DE FUROS
	Q273=+50 ;CE	ENTRO 1º EIXO
	Q274=+50 ;CE	ENTRO 2.º EIXO
	Q262=80 ;DI	LÂMETRO NOMINAL
	Q291=+0 ;ÂN	IGULO 1.º FURO
	Q292=+90 ;ÂN	IGULO 2.º FURO
	Q293=+180 ;ÂN	IGULO 3.º FURO
	Q261=-5 ;AL	LTURA DE MEDIÇÃO
	Q260=+10 ;AL	LTURA SEGURA
	Q288=80.1 ;ME	DIDA MAIOR
	Q289=79.9 ;ME	DIDA MENOR
	Q279=0.15 ;TO)LERÂNCIA 1º CENTRO
	Q280=0.15 ;TO)LERÂNCIA 2º CENTRO
	Q281=1 ;RE	GISTO DE MEDIÇÃO
	Q309=0 ;PA	ARAGEM DE PROGRAMA POR ERRO
	Q330=0 ;FE	RRAMENTA

16.13 MEDIR PLANO (ciclo 431, DIN/ISO: G431)

Execução do ciclo

O ciclo de apalpação 431 obtém o ângulo dum plano, por meio de medição de três pontos e coloca os valores em parâmetros do sistema.

- O TNC posiciona o apalpador com avanço rápido (valor de MP6150) e com lógica de posicionamento (ver "Executar ciclos de apalpação" na página 340) para o ponto de apalpação 1 programado e mede aí o primeiro ponto de plano. O TNC desvia assim o apalpador na distância de segurança contra a direção de apalpação
- 2 Seguidamente, o apalpador regressa à Altura Segura e depois, no plano de maquinagem, para o ponto de apalpação 2, medindo aí o valor real do segundo ponto de plano
- 3 Seguidamente, o apalpador regressa à Altura Segura e depois, no plano de maquinagem, para o ponto de apalpação 3, medindo aí o valor real do terceiro ponto de plano
- 4 Finalmente, o TNC posiciona o apalpador de regresso na Altura Segura e memoriza os valores angulares obtidos nos seguintes parâmetros Q:

Número de parâmetro	Significado
Q158	Ângulo de projeção do eixo A
Q159	Ângulo de projeção do eixo B
Q170	Ângulo no espaço A
Q171	Ângulo no espaço B
Q172	Ângulo no espaço C
Q173 a Q175	Valores de medição no eixo do apalpador (da primeira à terceira medição)

Ter em atenção ao programar!

Antes da definição de ciclo, tem que se ter programada uma chamada da ferramenta para definição do eixo do apalpador.

Para o TNC poder calcular os valores angulares, os três pontos de medição não devem estar situados numa reta.

Nos parâmetros Q170 - Q172 são memorizados os ângulos no espaço, que são necessários na função de inclinação do plano de maquinagem. Por meio dos dois primeiros pontos de medição, determina-se a direção do eixo principal em inclinação do plano de maquinagem.

O terceiro ponto de medição estabelece o sentido do eixo de ferramenta. Definir o terceiro ponto de medição no sentido do eixo Y positivo, para que o eixo de ferramenta se situe corretamente no sistema de coordenadas de rotação para a direita

Se executar o ciclo com o plano de maquinagem inclinado ativo, então os ângulos no espaço medidos referem-se ao sistema de coordenadas de inclinação. Nestes casos, continuar a maquinagem dos ângulos no espaço registados com **PLANE RELATIV**.

6.13 MEDIR PLANO (ciclo 431, DIN/ISO: G431)

Parâmetros de ciclo

- 1.º Ponto de medição do 1.º eixo Q263 (absoluto): coordenada do primeiro ponto de apalpação no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 1.º ponto de medição do 2.º eixo Q264 (absoluto): coordenada do primeiro ponto de apalpação no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 1.º ponto de medição 3.º eixo Q294 (valor absoluto): coordenada do primeiro ponto de apalpação no eixo do apalpador. Campo de introdução -99999,9999 a 99999,9999
- 2.º ponto de medição do 1.º eixo Q265 (absoluto): coordenada do segundo ponto de apalpação no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 2.º ponto de medição do 2.º eixo Q266 (absoluto): coordenada do segundo ponto de apalpação no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 2.º ponto de medição 3º eixo Q295 (absoluto): coordenada do segundo ponto de apalpação no eixo do apalpador. Campo de introdução -99999,9999 a 99999,9999
- 3.º ponto de medição do 1.º eixo Q296 (absoluto): coordenada do terceiro ponto de apalpação no eixo principal do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 3.º ponto de medição do 2.º eixo Q297 (absoluto): coordenada do terceiro ponto de apalpação no eixo secundário do plano de maquinagem. Campo de introdução -99999,9999 a 99999,9999
- 3.º ponto de medição do 3º eixo Q298 (absoluto): coordenada do terceiro ponto de apalpação no eixo do apalpador. Campo de introdução -99999,9999 a 99999,9999

- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça de trabalho (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Registo de medição Q281: determinar se o TNC deve criar um registo de medição:
 - 0: não criar nenhum registo

1: criar registo de medição: por norma, o TNC coloca o **ficheiro de registo TCHPR431.TXT** no diretório onde também está memorizado o programa de medição

2: Interromper execução do programa e emitir protocolo de medição no ecrã do TNC. Continuar o programa com NC-Start

Exemplo: Blocos NC

5 TCH PROBE 43	31 MEDIR PLANO
Q263=+20	;1.º PONTO 1.º EIXO
Q264=+20	;1.º PONTO 2.º EIXO
Q294=+10	;1.º PONTO 3.º EIXO
Q265=+90	;2.º PONTO 1.º EIXO
Q266=+25	;2.º PONTO 2.º EIXO
Q295=+15	;2.º PONTO 3.º EIXO
Q296=+50	;3.º PONTO 1.º EIXO
Q297=+80	;3.º PONTO 2.º EIXO
Q298=+20	;3.º PONTO 3.º EIXO
Q320=0	;DISTÂNCIA SEGURANÇA
Q260=+5	;ALTURA SEGURA
Q281=1	;REGISTO DE MEDIÇÃO

16.14 Exemplos de programação

Exemplo: medir e fazer trabalho de acabamento de ilhas retangulares

Execução do programa:

- Desbastar ilha retangular com medida excedente 0,5
- Medir ilhas retangulares
- Acabar ilhas retangulares tendo em consideração os valores de medição

O BEGIN PGM BEAMS MM		
1 TOOL CALL 69 Z	Chamada da ferramenta maquinagem prévia	
2 L Z+100 RO FMAX	Retirar a ferramenta	
3 FN 0: Q1 = +81	Comprimento da caixa em X (medida de desbaste)	
4 FN 0: Q2 = +61	Comprimento da caixa em Y (medida de desbaste)	
5 CALL LBL 1	Chamar subprograma para maquinagem	
6 L Z+100 RO FMAX	Retirar ferramenta, troca da ferramenta	
7 TOOL CALL 99 Z	Chamar sensor	
8 TCH PROBE 424 MEDIR RETÂNG EXTERIOR	Medir retângulo fresado	
Q273=+50 ;CENTRO 1.º EIXO		
Q274=+50 ;CENTRO 2.º EIXO		
Q282=80 ;1.º COMPRIMENTO DE LADO	Comprimento nominal em X (medida final)	
Q283=60 ;2.º COMPRIMENTO DE LADO	Comprimento nominal em Y (medida final)	
Q261=-5 ;ALTURA DE MEDIÇÃO		
Q320=0 ;DISTÂNCIA SEGURANÇA		
Q260=+30 ;ALTURA SEGURA		
Q301=0 ;DESLOCAR À ALTURA SEGURANÇA		

Q284=0 ;MEDIDA MAIOR 1.º LADO	Valores de introdução para a verificação da tolerância, não necessários	
Q285=0 ;MEDIDA MENOR 1.º LADO		
Q286=0 ;MEDIDA MAIOR 2.º LADO		
Q287=0 ;MEDIDA MENOR 2.º LADO		
Q279=0 ;TOLERÂNCIA 1.º CENTRO		
Q280=0 ;TOLERÂNCIA 2º CENTRO		
Q281=0 ;REGISTO DE MEDIÇÃO	Não emitir registo de medição	
Q309=0 ;PARAGEM DE PROGRAMA POR ERRO	Não emitir mensagem de erro	
Q330=0 ;NÚMERO DA FERRAMENTA	Sem supervisão da ferramenta	
9 FN 2: Q1 = +Q1 - +Q164	Calcular comprimento em X por meio do desvio medido	
10 FN 2: Q2 = +Q2 - +Q165	Calcular comprimento em Y por meio do desvio medido	
11 L Z+100 RO FMAX	Retirar sensor, troca da ferramenta	
12 TOOL CALL 1 Z S5000	Chamada da ferramenta acabamento	
13 CALL LBL 1	Chamar subprograma para maquinagem	
14 L Z+100 RO FMAX M2	Retirar ferramenta, fim do programa	
15 LBL 1	Subprograma com ciclo de maquinagem ilha retangular	
16 CYCL DEF 213 ACABAR ILHA		
Q200=20 ;DISTÂNCIA SEGURANÇA		
Q201=-10 ;PROFUNDIDADE		
Q206=150 ;AVANÇO AO APROFUNDAR		
Q2O2=5 ;PROFUNDIDADE DE CORTE		
Q207=500 ;AVANÇO DE FRESAGEM		
Q2O3=+10 ;COOR. SUPERFÍCIE		
Q2O4=2O ;2.ª DISTÂNCIA SEGURANÇA		
Q216=+50 ;CENTRO 1º EIXO		
Q217=+50 ;CENTRO 2.º EIXO		
Q218=Q1 ;1.º COMPRIMENTO DE LADO	Comprimento na variável X para desbastar e acabar	
Q219=Q2 ;2.º COMPRIMENTO DE LADO	Comprimento na variável Y para desbastar e acabar	
Q220=0 ;RAIO DE CANTO		
Q221=0 ;MED.EXCED.1.º EIXO		
17 CYCL CALL M3	Chamada de ciclo	
18 LBL 0	Fim de subprograma	
19 END PGM BEAMS MM		

Exemplo: medir caixa retangular, registar os resultados de medição

O BEGIN PGM BSMESS MM		
1 TOOL CALL 1 Z	Chamada da ferramenta sensor	
2 L Z+100 R0 FMAX	Retirar o sensor	
3 TCH PROBE 423 MEDIR RETÂNG INTERIOR		
Q273=+50 ;CENTRO 1° EIXO		
Q274=+40 ;CENTRO 2.º EIXO		
Q282=90 ;COMPRIMENTO LADO 1	Comprimento nominal em X	
Q283=70 ;COMPRIMENTO LADO 2	Comprimento nominal em Y	
Q261=-5 ;ALTURA DE MEDIÇÃO		
Q320=0 ;DISTÂNCIA SEGURANÇA		
Q260=+20 ;ALTURA SEGURA		
Q301=0 ;DESLOCAR À ALTURA DE Segurança		

Q284=90.15;MEDIDA MAIOR 1º LADO	Maior medida em X
Q285=89.95;MEDIDA MENOR 1º LADO	Menor medida em X
Q286=70,1 ;MEDIDA MAIOR 2° LADO	Maior medida em Y
Q287=69,9 ;MEDIDA MENOR 2.º LADO	Menor medida em Y
Q279=0.15 ;TOLERÂNCIA 1º CENTRO	Desvio de posição permitido em X
Q280=0.1 ;TOLERÂNCIA 2º CENTRO	Desvio de posição permitido em Y
Q281=1 ;REGISTO DE MEDIÇÃO	Enviar registo de medição para ficheiro
Q309=0 ;PARAGEM DE PROGRAMA POR ERRO	Em caso de tolerância excedida, não visualizar mensagem de erro
Q330=0 ;NÚMERO DA FERRAMENTA	Sem supervisão da ferramenta
4 L Z+100 R0 FMAX M2	Retirar ferramenta, fim do programa
5 END PGM BSMESS MM	

Ciclos de apalpação: Funções especiais

17.1 Princípios básicos

Resumo

O TNC dispõe de sete ciclos para as seguintes aplicações especiais:

Ciclo	Softkey	Página
2 CALIBRAR TS: calibração do raio do apalpador analógico	2 CAL.	Página 469
9 CALIBRAR COMPRIMENTO TS: calibração do comprimento do apalpador analógico	9 CAL.L	Página 470
3 MEDIÇÃO Ciclo de medição para a criação de ciclos do fabricante	3 PA	Página 471
4 MEDIÇÃO 3D Ciclo de medição para apalpação 3D para a criação de ciclos do fabricante	4	Página 473
440 MEDIÇÃO DE DESVIO DE EIXO	440 ⊒ ⊑ ↓ ↓	Página 475
441 APALPAÇÃO RÁPIDA	441 ••••	Página 478
460 CALIBRAR TS: calibração do raio e do comprimento numa esfera de calibração	450	Página 480

i
17.2 CALIBRAR TS (ciclo 2)

Decurso do ciclo

O ciclo de apalpação 2 calibra um apalpador analógico automaticamente num anel de calibração ou num pino de calibração.

- O apalpador desloca-se com marcha rápida (valor a partir de MP6150) na Altura Segura (só quando a posição atual se encontra em altura segura)
- 2 Depois, o TNC posiciona o apalpador no plano de maquinagem, no centro do anel de calibração (calibrar no interior) ou na proximidade do primeiro ponto de apalpação (calibrar no exterior)
- 3 Depois, o apalpador desloca-se na profundidade de medição (obtém-se a partir de parâmetros da máquina 618x.2 e 6185.x) e apalpa o anel de calibração, um após outro, em X+, Y+, X- e Y-
- **4** Finalmente, o TNC desloca o apalpador na Altura Segura e escreve o raio atuante da esfera de apalpação nos dados de calibração

Ter em atenção ao programar!

 \bigcirc

Antes de calibrar, é necessário determinar nos parâmetros da máquina de 6180.0 a 6180.2 o centro da peça de calibração na área de trabalho da máquina (coordenadas REF).

Quando trabalhar com várias áreas de deslocação, para cada área de deslocação pode-se colocar uma série de coordenadas própria para o centro da peça de calibração (de MP6181.1 a 6181.2 e MP6182.1 a 6182.2.).

Parâmetros de ciclo

Distância segura (absoluta): coordenada no eixo do apalpador na qual não se pode produzir nenhuma colisão entre o apalpador e a peça de calibração (dispositivo tensor). Campo de introdução -99999,9999 a 99999,9999

Raio do anel de calibração: raio da peça de calibração. Campo de introdução 0 a 99999.9999

 Calibrar interior=0/Calibrar exterior=1: determinar se o TNC deve calibrar dentro ou fora:
 0: calibrar no interior

1: calibrar no exterior

Exemplo: Blocos NC

5 TCH PROBE	2.0	CALIBRA	R AP/	۱LI	PADOR	
6 TCH PROBE	2.1	ALTURA:	+50	R	+25.003	TIPO
DE MEDIÇAO:	0					

17.3 CALIBRAR COMPRIMENTO TS (ciclo 9)

Decurso do ciclo

O ciclo de apalpação 9 calibra automaticamente o comprimento dum apalpador analógico num ponto determinado por si.

- 1 Posicionar previamente o apalpador, de forma a poder fazer-se a aproximação sem colisão à coordenada definida no ciclo, no eixo do apalpador
- 2 O TNC desloca o apalpador na direção do eixo da ferramenta negativo, até ser emitido um sinal de comutação
- 3 Finalmente, o TNC desloca o apalpador de regresso ao ponto inicial do processo de apalpação e escreve o comprimento atuante do apalpador nos dados de calibração

Parâmetros de ciclo

- Coordenada do ponto de referência (absoluta): coordenada exata do ponto que se pretende apalpar. Campo de introdução -99999,9999 a 99999,9999
- Sistema de referência? (0=REAL/1=REF): Determinar em que sistema de coordenadas se deve referir o ponto de referência introduzido:

0: O ponto de referência introduzido refere-se ao sistema de coordenadas da peça ativado (Sistema IST)

1: O ponto de referência introduzido refere-se ao sistema de coordenadas da máquina ativado (sistema REF)

Exemplo: Blocos NC

5 L X-235 Y+356 RO FMAX
6 TCH PROBE 9.0 TS CAL. COMPRIMENTO
7 TCH PROBE 9.1 PONTO DE
REFERÊNCIA +50 SISTEMA DE REFERÊNCIA O

17.4 MEDIR (ciclo 3)

Decurso do ciclo

O ciclo de apalpação 3 obtém, numa direção de apalpação à escolha, uma posição qualquer na peça. Ao contrário de outros ciclos de medição, no ciclo 3 podem-se introduzir diretamente o caminho de medição**DIST** e o avanço de medição**F**. Também o regresso após registo do valor de medição se realiza com o valor **MB** possível de se introduzir.

- 1 O apalpador desloca-se a partir da posição atual com o avanço introduzido, na direção de apalpação determinada. A direção de apalpação tem que ser determinada no ciclo por meio de ângulo polar
- 2 Depois de o TNC ter registado a posição, o apalpador para. O TNC memoriza as coordenadas do ponto central da esfera de apalpação X, Y, Z nos três parâmetros Q seguidos entre si. O TNC não efetua quaisquer correções de comprimento e raio. O número do primeiro parâmetro é definido no ciclo
- **3** Finalmente, o TNC desloca o apalpador, de regresso contra a direção de apalpação, com o valor que definido no parâmetro **MB**

Ter em atenção ao programar!

O funcionamento exato do ciclo de apalpação 3 é definido pelo fabricante da sua máquina ou um fabricante de software, que utiliza o ciclo 3 dentro de ciclos de apalpação especiais.

Os parâmetros de máquina 6130 (percurso máximo até ao ponto de apalpação) e 6120 (avanço de apalpação) atuantes noutros ciclos de máquina não atuam no ciclo de apalpação 3.

Tenha em atenção que o TNC descreve sempre, em princípio, 4 parâmetros Q consecutivos.

Se não foi possível ao TNC registar um ponto de apalpação válido, o programa continua a ser executado sem mensagem de erro. Neste caso, o TNC atribui o valor -1 ao 4.º parâmetro de resultados, para que se possa efetuar o correspondente tratamento de erro.

O TNC desloca o apalpador ao máximo pelo curso de retrocesso **MB**, mas não para além do ponto inicial da medição. Deste modo, não pode ocorrer qualquer colisão no retrocesso.

Com a função **FN17: SYSWRITE ID 990 NR 6**, pode determinar-se se o ciclo deve atuar sobre a entrada do sensor X12 ou X13.

17.4 MEDIR (ciclo 3)

3 PA

- N.º de parâmetro para o resultado: introduzir o número de parâmetro Q a que o TNC deve atribuir o valor da primeira coordenada determinada (X). Os valores Y e Z encontram-se nos parâmetros Q imediatamente a seguir. Campo de introdução 0 a 1999
- Eixo de apalpação: introduzir o eixo em cujo sentido deve ser feita a apalpação, confirmar com a tecla ENT. Campo de introdução X, Y ou Z
- Ângulo de apalpação: ângulo referente ao eixo de apalpação definido onde o apalpador deve deslocarse, confirmar com a tecla ENT. Campo de introdução -180,0000 a 180,0000
- Máximo caminho de medição: introduzir caminho de deslocação, a distância a que o apalpador deve deslocar-se do ponto inicial, e confirmar com a tecla ENT. Campo de introdução -99999,9999 a 99999,9999
- Avanço de medição: introduzir o avanço de medição em mm/min. Campo de introdução 0 a 3000,000
- Máximo curso de regresso: percurso contra a direção de apalpação depois de ter sido deflectida a haste de apalpação. O TNC conduz o apalpador, no máximo, até ao ponto inicial, de modo a que não possa ocorrer qualquer colisão. Campo de introdução 0 a 99999.9999
- Sistema de referência? (0=REAL/1=REF): determinar se a direção de apalpação e o resultado da medição se devem referir ao sistema de coordenadas atual (REAL, pode, portanto, ser deslocado ou rodado) ou ao sistema de coordenadas da máquina (REF):
 0: apalpar no sistema atual e guardar o resultado da medição no sistema REAL
 1: apalpar no sistema REF fixo da máquina e guardar o resultado da medição no sistema REF
- Modo de erro (0=0FF/1=0N): determinar se o TNC, com a haste de apalpação deflectida no início do ciclo, deve emitir uma mensagem de erro ou não. Se o modo 1 estiver selecionado, o TNC guarda o valor 2.0 no 4.º parâmetro de resultados e continua a executar o ciclo:
 - 0: enviar mensagem de erro
 - 1: não enviar mensagem de erro

Exemplo: Blocos NC

- 4 TCH PROBE 3,0 MEDIÇÃO 5 TCH PROBE 3.1 Q1 6 TCH PROBE 3.2 X ÂNGULO: +15 7 TCH PROBE 3.3 DIST +10 F100 MB1
 - SISTEMA DE REFERÊNCIA:0 8 TCH probe 3.4 errormode1

17.5 MEDIÇÃO 3D (ciclo 4, função FCL-3)

Decurso do ciclo

O ciclo 4 é um ciclo auxiliar que só pode ser utilizado em conjunto com software externo! O TNC não disponibiliza nenhum ciclo com o qual se possa calibrar o sensor.

O ciclo de apalpação 4 obtém, numa direção de apalpação definível por vetor, uma posição qualquer na peça. Ao contrário de outros ciclos de medição, no ciclo 4 podem introduzir-se diretamente o curso de medição e o avanço de medição. Também o retrocesso após registo do valor de medição se realiza com um valor possível de se introduzir.

- O apalpador desloca-se a partir da posição atual com o avanço introduzido, na direção de apalpação determinada. O sentido de apalpação deve ser determinado através de um vetor (valores delta em X, Y e Z)
- 2 Depois de o TNC ter registado a posição, o apalpador para. O TNC memoriza as coordenadas do ponto central da esfera de apalpação X, Y, Z (sem cálculo dos dados de calibração) nos três parâmetros Q seguidos entre si. O número do primeiro parâmetro é definido no ciclo
- **3** Finalmente, o TNC desloca o apalpador com o valor, de regresso contra a direção de apalpação, com o valor que se definiu no parâmetro **MB**

Ter em atenção ao programar!

O TNC desloca o apalpador ao máximo pelo curso de retrocesso **MB**, mas não para além do ponto inicial da medição. Deste modo, não pode ocorrer qualquer colisão no retrocesso.

Prestar atenção, no posicionamento prévio, a que o TNC desloque o ponto central da esfera de apalpação não corrigido para a posição definida!

Tenha em atenção que o TNC descreve sempre, em princípio, 4 parâmetros Q consecutivos. Se não foi possível ao TNC registar um ponto de apalpação válido, é atribuído ao 4.º parâmetro de resultados o valor -1.

O TNC memoriza os valores de medição sem calcular os dados de calibração do apalpador.

Com a função FN17: SYSWRITE ID 990 NR 6, pode determinar-se se o ciclo deve atuar sobre a entrada do sensor X12 ou X13.

Parâmetros de ciclo

- N.º de parâmetro para o resultado: introduzir o número de parâmetro Q a que o TNC deve atribuir o valor da primeira coordenada (X). Campo de introdução 0 a 1999
- Percurso de medição relativo em X: parte X do vetor de direção em cujo sentido o apalpador deve deslocar-se. Campo de introdução -99999,9999 a 99999,9999
- Percurso de medição relativo em Y: parte Y do vetor de direção em cujo sentido o apalpador deve deslocar-se. Campo de introdução -99999,9999 a 99999,9999
- Percurso de medição relativo em Z: parte Z do vetor de direção em cujo sentido o apalpador deve deslocar-se. Campo de introdução -99999,9999 a 99999,9999
- Percurso de medição máximo: introduzir o curso de deslocação com a distância que o apalpador deve percorrer ao longo do vetor de direção. Campo de introdução -99999,9999 a 99999,9999
- Avanço de medição: introduzir o avanço de medição em mm/min. Campo de introdução 0 a 3000,000
- Máximo curso de regresso: percurso contra a direção de apalpação depois de ter sido deflectida a haste de apalpação. Campo de introdução 0 a 99999.9999
- Sistema de referência? (0=REAL/1=REF): determinar se o resultado de medição deve ser colocado no sistema de coordenadas atual (REAL, podendo, portanto, ser deslocado ou rodado) ou referente ao sistema de coordenadas da máquina (REF):
 0: guardar o resultado da medição no sistema REAL
 - 1: guardar o resultado da medição no sistema REF

Exemplo: Blocos NC

- 5 TCH PROBE 4.0 MEDIÇÃO 3D
- 6 TCH PROBE 4.1 Q1
- 7 TCH PROBE 4.2 IX-0.5 IY-1 IZ-1
- 8 TCH PROBE 4.3 DIST +45 F100 MB50 SISTEMA DE REFERÊNCIA:0

17.5 MEDIÇÃO 3D (ciclo 4, função FCL-3)

17.6 MEDIR DESLOCAMENTO DO EIXO (ciclo de apalpação 440, DIN/ISO: G440)

Decurso do ciclo

Com o ciclo de apalpação 440, é possível determinar os desvios de eixo da sua máquina. Para isso, deve-se utilizar uma ferramenta de calibração cilíndrica medida com exatidão, em conjunto com o apalpador TT 130.

- 1 O TNC posiciona a ferramenta de calibração com marcha rápida (valor a partir de MP6550) e com lógica de posicionamento (ver capítulo 1.2) na proximidade do apalpador TT
- 2 Primeiro, o TNC executa uma medição no eixo do apalpador. A ferramenta de calibração é deslocada no valor que se definiu na tabela de ferramentas TOOL.T na coluna TT:R-OFFS (standard = raio da ferramenta). É sempre executada a medição no eixo do apalpador
- **3** Seguidamente, o TNC executa a medição no plano de maquinagem. Com o parâmetro Q364, determina-se em que eixo e em que direção se deve medir no plano de maquinagem
- 4 Caso se execute uma calibração, o TNC guarda internamente os dados de calibração. Se quiser executar uma medição, o TNC compara os valores de medição com os dados de calibração e escreve os desvios no seguinte parâmetro Q:

Número de parâmetro	Significado
Q185	Desvio do valor de calibração em X
Q186	Desvio do valor de calibração em Y
Q187	Desvio do valor de calibração em Z

É possível utilizar diretamente o desvio, para executar a compensação por meio dum desvio incremental do ponto zero (ciclo 7).

5 Finalmente, a ferramenta de calibração regressa à Altura Segura

Ter em atenção ao programar!

Antes de executar pela primeira vez o ciclo 440, é necessário ter calibrado o apalpador TT com o ciclo 30 de TT.

Os dados da ferramenta da ferramenta de calibração devem estar guardados na tabela de ferramentas TOOL.T.

Antes de ser executado o ciclo, precisa de ativar a ferramenta de calibração com TOOL CALL.

O apalpador de mesa TT tem que estar conectado na entrada do apalpador X13 da unidade lógica e estar operacional (parâmetro de máquina 65xx).

Antes de executar uma medição, deve-se ter calibrado pelo menos uma vez, senão o TNC emite uma mensagem de erro. Quando se trabalha com várias áreas de deslocação, deve-se executar uma calibração para cada área de deslocação.

A(s) direção (direções) de apalpação, ao calibrar e ao medir, têm que coincidir, senão o TNC obtém valores errados.

Com cada execução do ciclo 440, o TNC anula os parâmetros de resultados de Q185 a Q187.

Se quiser determinar um valor limite para o desvio de eixo nos eixos da máquina, introduza na tabela de ferramentas TOOL.T nas colunas LTOL (para o eixo do mandril) e RTOL (para o plano de maquinagem) os valores limite pretendidos. Ao exceder-se os valores limite, depois de uma medição de controlo, o TNC emite a respetiva mensagem de erro.

No fim do ciclo, o TNC restabelece o estado do mandril que estava ativado antes do ciclo (M3/M4).

Parâmetros de ciclo

▶ Tipo de medição: 0=Calibr., 1=Medir? Q363:

Determinar se se quer calibrar ou executar uma medição de controlo:

- 0: calibrar
- 1: medir
- Direções de apalpação Q364: definir direção(ões) no plano de maquinagem:
 - 0: medir só na direção positiva do eixo principal
 - 1: medir só na direção positiva do eixo secundário
 - 2: medir só na direção negativa do eixo principal
 - 3: medir só na direção negativa do eixo secundário
 - **4**: medir na direção positiva do eixo principal e na direção positiva do eixo secundário

5: medir na direção positiva do eixo principal e na direção negativa do eixo secundário

6: medir na direção negativa do eixo principal e na direção positiva do eixo secundário

7: medir na direção negativa do eixo principal e na direção negativa do eixo secundário

- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e o disco do apalpador. Q320 atua adicionalmente a MP6540. Campo de introdução 0 a 99999,9999, em alternativa PREDEF
- Altura Segura Q260 (absoluta): coordenada no eixo do apalpador onde não pode haver colisão entre o apalpador e a peça (dispositivo tensor) (referente ao ponto de referência ativado). Campo de introdução -99999,9999 a 99999,9999, em alternativa PREDEF

Exemplo: Blocos NC

5 TCH PROBE 44	O MEDIÇÃO DA DESLOCAÇÃO
Q363=1	;TIPO DE MEDIÇÃO
Q364=0	;DIRECÇÕES DE APALPAÇÃO
Q320=2	;DISTÂNCIA DE SEGURANÇA
Q260=+50	;ALTURA SEGURA

17.7 APALPAÇÃO RÁPIDA (ciclo 441, DIN/ISO: G441, função FCL 2)

Decurso do ciclo

Com o Ciclo 441 do apalpador é possível memorizar globalmente diferentes parâmetros do apalpador (p. ex. avanço de posicionamento) para todos os ciclos de apalpador utilizados em seguida. Desta forma é possível otimizar os programas, o que origina tempos totais de maquinagem mais curtos.

Ter em atenção ao programar!

Antes da programação, deverá ter em conta

O ciclo 441 não origina qualquer movimento da máquina, mas memoriza apenas diferentes parâmetros de apalpação.

END PGM, M02, M30 repõe novamente os ajustes globais do ciclo 441.

A condução automática posterior do ângulo (parâmetro de ciclo **Q399**) só pode ser ativada se o parâmetro da máquina 6165 for =1. A alteração do parâmetro 6165 da máquina implica uma nova calibração do apalpador.

Parâmetros de ciclo

- Avanço de posicionamento Q396: determinar qual o avanço com que se deseja executar o movimento de posicionamento do apalpador. Campo de introdução 0 a 99999.9999
- Avanço de posicionamento=FMAX (0/1) Q397: determinar se se deseja executar os movimentos de posicionamento do apalpador com FMAX (marcha rápida da máguina):
 - 0: deslocar com o avanço de Q396
 - 1: deslocar com FMAX

Se a máquina dispuser de potenciómetros separados para a marcha rápida e para o avanço, então é possível regular o avanço também com Q397=1 apenas com o potenciómetro para movimentos de avanço.

- Condução posterior do ângulo Q399: determinar se o TNC deve orientar o apalpador antes de todos os processos de apalpação:
 - 0: não orientar

1: antes de qualquer processo de apalpação executar uma orientação do mandril para aumentar a precisão

Interrupção automática Q400: determinar se o TNC deve interromper a execução do programa após um ciclo de medição para medição automática da peça de trabalho e emitir no ecrã os resultados de medição:
 0: não interromper a execução do programa, mesmo se no ciclo de apalpação respectivo estiverem selecionados no ecrã os resultados de medição
 1: interromper a execução do programa, emitir os resultados de medição no ecrã. A execução do programa pode então prosseguir com a tecla NC-Start

Exemplo: Blocos NC

5	TCH PROBE 44	1 APALPAÇÃO RÁPIDA
	Q396=3000	;AVANÇO DE POSICIONAMENTO
	Q397=0	;SELECÇÃO DO AVANÇO
	Q399=1	;CONDUÇÃO POSTERIOR DO ÂNGULO
	Q400=1	;INTERRUPÇÃO

17.8 CALIBRAR TS (Ciclo 460, DIN/ISO: G460)

Decurso do ciclo

Com o ciclo 460, é possível calibrar automaticamente um apalpador 3D digital numa esfera de calibração exata. Pode-se executar apenas uma calibração de raio ou uma calibração de raio e comprimento.

- 1 Fixar a esfera de calibração, ter em atenção a ausência de colisão
- 2 Posicionar o apalpador no eixo de apalpação por cima da esfera de calibração e no plano de maquinagem aproximadamente no centro da esfera
- **3** O primeiro movimento do ciclo realiza-se na direção negativa do eixo do apalpador
- 4 Em seguida, o ciclo determina o centro exato da esfera no eixo do apalpador

Ter em atenção ao programar!

Antes da programação, deverá ter em conta

Posicionar previamente o apalpador no programa, de tal forma que este fique aproximadamente sobre o centro da esfera.

Parâmetros de ciclo

- Raio da esfera de calibração exato Q407: introduzir o raio exato da esfera de calibração utilizada. Campo de introdução 0,0001 a 99,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999, em alternativa PREDEF
- Deslocação à altura segura Q301: determinar como o apalpador se deve deslocar entre os pontos de medição:

0: deslocação entre pontos de medição à altura de medição

1: deslocação entre pontos de medição à altura segura

em alternativa, PREDEF

Número de apalpações no plano (4/3): Q423: definir se o TNC deve medir a esfera de calibração no plano com 4 ou 3 apalpações. 3 apalpações aumentam a velocidade:

4: Utilizar 4 pontos de medição (ajuste padrão)3: Utilizar 3 pontos de medição

- Ângulo de referência Q380 (absoluto): ângulo de referência (rotação básica) para registo dos pontos de medição no sistema de coordenadas da peça de trabalho atuante. A definição de um ângulo de referência pode aumentar consideravelmente a área de medição de um eixo. Campo de introdução 0 a 360,0000
- Calibrar o comprimento (0/1 Q433: definir se o TNC também deve calibrar o comprimento do apalpador após a calibração do raio:
- 0: não calibrar o comprimento do apalpador
- 1: calibrar o comprimento do apalpador
- Ponto de referência do comprimento Q434 (absoluto): coordenada do centro da esfera de calibração. Definição necessária somente se a calibração do comprimento dever ser executada. Campo de introdução -99999,9999 a 99999,9999

Exemplo: Blocos NC

5	TCH	PROBE	460 CAL	IBRAR	APALF	ADOR	
	Q	407=12	.5 ;RAIO) DA E	SFERA		
	Q	320=0	;DIST	FÂNCIA	DE SI	EGURAN	IÇA
	Q	301=1	;DESI	OCAR	À ALTI	JRA SE	GURANÇA
	Q	423=4	;QUAN	ITIDAD	E DE /	APALPA	ÇÕES
	Q	380=+0	;ÂNGl	JLO DE	REFE	RÊNCIA	
	Q	433=0	;CALI	BRAR	COMPR	IMENTO	1
	Q	434=-2	,5 ;PONT	O REF			

17.8 CALIBRAR TS (Ciclo 460, DIN/ISO: G460)

i

Ciclos de apalpação: medir cinemática automaticamente

18.1 Medição da cinemática com o apalpador TS (opção KinematicsOpt)

Princípios básicos

As exigências de precisão, especialmente também na área de maquinagem de 5 eixos, tornam-se cada vez mais elevadas. Por isso, deve ser produzir acabar peças complexas de forma exata e com precisão reproduzível também durante períodos prolongados.

As causas de imprecisão na maquinagem multiaxial são, entre outras, os desvios entre o modelo cinemático guardado no comando (ver figura à direita 1) e as condições cinemáticas efetivamente existentes na máquina (ver figura à direita 2). Ao posicionar os eixos rotativos, estes desvios conduzem a erros na peça (ver figura à direita 3). Devese, por isso, criar uma possibilidade de fazer coincidir o modelo e a realidade com a maior proximidade possível.

A nova função **KinematicsOpt** é uma componente importante que contribui para concretizar efetivamente esta complexa exigência: o ciclo de apalpação 3D mede os eixos rotativos existentes na sua máquina de forma totalmente automática, independentemente de os eixos rotativos estarem montados como mesa ou cabeça. Para isso, é fixada uma esfera de calibração num local qualquer da mesa da máquina e medida com a fineza a definir por si. Basta, para isso, que determine separadamente na definição de ciclo para cada eixo rotativo o intervalo que deseja medir.

Com base nos valores medidos, o TNC determina a precisão de inclinação estática. O software minimiza aqui os erros de posicionamento causados pelos movimentos de inclinação e guarda automaticamente a geometria da máquina no final do processo de medição nas respetivas constantes de máquina da tabela de cinemática.

Resumo

O TNC põe à disposição ciclos com que pode guardar, restaurar, verificar e otimizar automaticamente a cinemática da sua máquina:

Ciclo	Softkey	Página
450 GUARDAR CINEMÁTICA: memorização e restauração automática de cinemáticas	450	Página 486
451 MEDIR CINEMÁTICA: verificação ou otimização automática da cinemática da máquina	451 A	Página 488
452 COMPENSAÇÃO DE PRESET: verificação ou otimização automática da cinemática da máquina	452 ⊕ Â	Página 504

18.2 Condições

Para poder utilizar KinematicsOpt, devem estar preenchidas as seguintes condições:

- As opções de software 48 (KinematicsOpt) e 8 (opção de software 1), assim como FCL3, devem estar ativadas
- A opção de software 52 (KinematicsComp) torna-se necessária se for preciso executar compensações de posições angulares
- O apalpador 3D utilizado na medição deve estar calibrado
- Os ciclos podem ser executados apenas com o eixo de ferramenta Z
- Uma esfera de medição com um raio conhecido exatamente e suficiente rigidez deve estar fixada a um local qualquer na mesa da máquina. Recomendamos a utilização das esferas de calibração KKH 250 (Nº de artigo 655 475-01) ou KKH 100 (Nº de artigo 655 475-02), que possuem uma rigidez particularmente elevada e foram construídas especialmente para a calibração de máquinas. Caso esteja interessado, entre em contacto com a HEIDENHAIN.
- A descrição cinemática da máquina deve estar correta e completamente definida. As medidas de transformação devem ser registadas com uma precisão de aprox. 1 mm
- A máquina deve ter medidas totalmente geométricas (a realizar pelo fabricante da máquina na colocação em funcionamento)
- No parâmetro de máquina MP6600 devem definir-se os limites de tolerância a partir dos quais o TNC mostrará um aviso, se as alterações aos dados de cinemática excederem este valor limite.(ver "KinematicsOpt, limite de tolerância para o modo Otimizar: MP6600" na página 339)
- No parâmetro de máquina MP6601 deve definir-se o desvio máximo permitido do raio da esfera de calibração medido automaticamente pelos ciclos do parâmetro de ciclo introduzido (ver "KinematicsOpt, desvio do raio da esfera de calibração permitido: MP6601" na página 339)
- No parâmetro de máquina MP 6602 devem registar-se os números da função M que devem ser utilizados para o posicionamento do eixo rotativo, ou -1, se for o NC a executar o posicionamento. Uma função M especialmente para este efeito deve ser prevista pelo fabricante da sua máquina.

Ter em atenção ao programar!

Os ciclos KinematicsOpt utilizam os parâmetros de string globais **QS0** a **QS99**. Por favor, tenha em conta que estes podem ser alterados após a execução destes ciclos!

Se o MP 6602 for diferente de -1, é necessário, antes do início de um dos ciclos KinematicsOpt (exceto 450), posicionar os eixos rotativos em 0 graus (sistema IST).

18.3 GUARDAR CINEMÁTICA (ciclo 450, DIN/ISO: G450, opção)

Execução do ciclo

Com o ciclo de apalpação 450, é possível guardar a cinemática de máquina ativa, restaurar uma cinemática de máquina guardada anteriormente ou apresentar o estado atual da memória no ecrã e num protocolo. Estão disponíveis 10 posições de memória (números 0 a 9).

Ter em atenção ao programar!

Antes de efetuar uma otimização de cinemática, deverá, por princípio, guardar a cinemática ativa. Vantagem:

Se o resultado não corresponder às expectativas, ou se ocorrerem erros durante a otimização (p.ex., corte de corrente), poderá restaurar os dados antigos.

Modo **Guardar**: por princípio, o TNC guarda sempre o código introduzido em último lugar em MOD (pode definirse um código qualquer). Pode, então, escrever por cima desta posição de memória, bastando introduzir novamente este código. Se tiver guardado uma cinemática sem código, da próxima vez que se guardar, o TNC irá escrever por cima desta posição de memória sem perguntar!

Modo **Criar**: por princípio, o TNC só pode responder a dados guardados numa descrição de cinemática idêntica.

Modo **Criar**: tenha em atenção que uma alteração da cinemática conduz sempre a uma alteração do preset. Se necessário, memorizar novamente o preset.

Parâmetros de ciclo

▶ Modo (0/1/2) Q410: determinar se se deseja guardar ou restaurar uma cinemática:

- **0**: Guardar a cinemática ativa
- 1: Restaurar uma cinemática guardada
- 2: Mostrar o estado atual da memória
- Posição de memória (0...9) Q409: número da posição de memória em que se deseja guardar toda a cinemática, ou o número da posição de memória de onde se deseja restaurar a cinemática guardada. Campo de introdução 0 a 9, sem função se estiver selecionado o modo 2

Função de registo

Depois de executar o ciclo 450, o TNC cria um registo (**TCHPR450.TXT**) que contém os seguintes dados:

- Data e hora a que foi criado o registo
- Nome do atalho do programa NC em que foi executado o ciclo
- Modo executado (0=guardar/1=criar/2=estado da memória)
- Número da posição de memória (0 a 9)
- Número de linha de cinemática na tabela de cinemática
- Código, desde que tenha introduzido um código imediatamente antes da execução do ciclo 450

Os restantes dados no protocolo dependem do modo selecionado:

Modo 0:

Protocolo de todos os registos de eixos e transformações da cadeia cinemática que o TNC guardou

Modo 1:

Protocolo de todos os registos de transformação antes e depois da restauração

Modo 2:

Listagem do estado atual da memória no ecrã e no protocolo de texto com número da posição de memória, códigos, número de cinemática e data da memorização

Exemplo: Blocos NC

5 TCH PROBE	450 GUARDAR CINEMÁTICA	
Q410=0	;MODO	
Q409=1	;POSIÇÃO DE MEMÓRIA	

18.4 MEDIR CINEMÁTICA (ciclo 451, DIN/ISO: G451, opção)

Execução do ciclo

Com o ciclo de apalpação 451, pode verificar a cinemática da sua máquina e, se necessário, optimizá-la. Para isso, meça com o apalpador TS 3D uma esfera de calibração HEIDENHAIN que fixou à mesa da máquina.

A HEIDENHAIN recomenda a utilização das esferas de calibração **KKH 250** (N.º de artigo 655 475-01) ou **KKH 100** (N.º de artigo 655 475-02) , que possuem uma rigidez particularmente elevada e foram construídas especialmente para a calibração de máquinas. Caso esteja interessado, entre em contacto com a HEIDENHAIN.

O TNC determina a precisão de inclinação estática. O software minimiza aqui os erros de espaço causados pelos movimentos de inclinação e guarda automaticamente a geometria da máquina no final do processo de medição nas respetivas constantes de máquina da descrição de cinemática.

- 1 Fixar a esfera de calibração, ter em atenção a ausência de colisão
- 2 No modo de funcionamento manual, memorizar o ponto de referência no centro da esfera, se estiverem definidos Q431=1 ou Q431=3: posicionar o apalpador manualmente no eixo de apalpação através da esfera de calibração e, no plano de maquinagem, no centro da esfera
- 3 Selecionar o modo de funcionamento de execução de programa e iniciar o programa de calibração

- 4 O TNC mede automática e consecutivamente todos os eixos rotativos na fineza definida pelo operador O TNC mostra numa janela sobreposta o estado atual da medição. O TNC oculta a janela de estado assim que é necessário percorrer uma distância maior que o raio da esfera de apalpação
- **5** O TNC memoriza os valores de medição nos seguintes parâmetros Q:

Número de parâmetro	Significado
Q141	Desvio standard do eixo-A medido (-1, se o eixo não tiver sido medido)
Q142	Desvio standard do eixo-B medido (-1, se o eixo não tiver sido medido)
Q143	Desvio standard do eixo-C medido (-1, se o eixo não tiver sido medido)
Q144	Desvio standard do eixo A otimizado (-1, se o eixo não tiver sido otimizado)
Q145	Desvio standard do eixo B otimizado (-1, se o eixo não tiver sido otimizado)
Q146	Desvio standard do eixo C otimizado (-1, se o eixo não tiver sido otimizado)
Q147	Erros de offset na direção X, para aceitação manual nos parâmetros de máquina correspondentes
Q148	Erros de offset na direção Y, para aceitação manual nos parâmetros de máquina correspondentes
Q149	Erros de offset na direção Z, para aceitação manual nos parâmetros de máquina correspondentes

Sentido de posicionamento

O sentido de posicionamento do eixo redondo resulta do ângulo inicial e final definido por si no ciclo. Com 0º, faz-se automaticamente uma medição de referência. O TNC emite uma mensagem de erro, se da seleção do ângulo inicial, do ângulo final e do número de pontos de medição resulta uma posição de medição 0º.

Definir o ângulo inicial e final de forma a que a mesma posição não seja duplamente medida pelo TNC. Como referido, um registo de pontos de medição em duplicado (p.ex., uma posição de medição de +90º e -270º) não é conveniente, embora não seja produzida qualquer mensagem de erro.

- Exemplo: ângulo inicial = +90º, ângulo final = -90º
 - Ângulo inicial = +90°
 - Ângulo final = -90°
 - Número de pontos de medição = 4
 - Passo angular daí calculado = (-90 +90) / (4-1) = -60°
 - Ponto de medição 1= +90°
 - Ponto de medição 2= +30°
 - Ponto de medição 3= -30°
 - Ponto de medição 4= -90°
- Exemplo: ângulo inicial = +90º, ângulo final = +270º
 - Ângulo inicial = +90°
 - Ângulo final = +270°
 - Número de pontos de medição = 4
 - Passo angular daí calculado = (270 90) / (4-1) = +60°
 - Ponto de medição 1= +90°
 - Ponto de medição 2= +150°
 - Ponto de medição 3= +210°
 - Ponto de medição 4= +270°

Máquina com eixos de recortes dentados hirth

Atenção, perigo de colisão!

Para o posicionamento, o eixo deve mover-se para fora do entalhe Hirth. Providencie, por isso, uma distância de segurança suficientemente grande para que não ocorra nenhuma colisão entre o apalpador e a esfera de calibração. Preste atenção simultaneamente a que haja espaço suficiente na aproximação da distância de segurança (interruptor limite do software).

Definir uma altura de retração **Q408** maior que 0, se a opção de software 2 (**M128**, **FUNCTION TCPM**) não estiver disponível.

O TNC arredonda, eventualmente, as posições de medição, de modo a que se ajustem ao entalhe Hirth (dependendo do ângulo inicial, do ângulo final e do número de pontos de medição).

Dependendo da configuração da máquina, o TNC não pode posicionar os eixos rotativos automaticamente. Neste caso, é necessária uma função M especial do fabricante da máquina, com a qual o TNC possa movimentar os eixos rotativos. No parâmetro de máquina **MP6602**, o fabricante da máquina deve ter registado, para esse efeito, o número da função M.

As posições de medição são calculadas a partir do ângulo inicial, ângulo final, número de medições de cada eixo e do entalhe hirth.

Exemplo de cálculo das posições de medição para um eixo A:

Ângulo inicial **Q411** = -30 Ângulo final **Q412** = +90 Número de pontos de medição **Q414** = 4 Entalhe hirth = 3° Passo angular calculado = (Q412 - Q411)/(Q414 - 1) Passo angular calculado = (90 - -30)/(4 - 1) = 120/3 = 40 Posição de medição 1 = Q411 + 0 * passo angular = -30° -> -30° Posição de medição 2 = Q411 + 1 * passo angular = +10° -> 9° Posição de medição 3 = Q411 + 2 * passo angular = +50° -> 51° Posição de medição 4 = Q411 + 3 * passo angular = +90° -> 90°

Seleção do número de pontos de medição

Para poupar tempo, pode executar uma otimização grosseira com um número baixo de pontos de medição (1-2).

Em seguida, executa-se então a otimização fina com um número de pontos de medição médio (valor recomendado = 4). Geralmente, um número de pontos de medição ainda mais alto não fornece melhores resultados. O ideal será distribuir os pontos de medição uniformemente pela área de inclinação do eixo.

Portanto, um eixo com uma área de inclinação de 0-360º é, idealmente, medido com 3 pontos de medição nos 90º, 180º e 270º.

Se desejar verificar adequadamente a precisão , pode indicar um número mais alto de pontos de medição no modo **Verificar**.

Não é possível definir um ponto de medição em 0º ou 360º. Estas posições não fornecem quaisquer dados relevantes para a técnica de medição e causam uma mensagem de erro!

Seleção da posição da esfera de calibração na mesa da máquina

Em princípio, a esfera de calibração pode-se instalar em qualquer ponto acessível na mesa da máquina, mas também em dispositivos tensores ou peças de trabalho. Os seguintes fatores podem influenciar positivamente o resultado da medição:

- Máquinas com mesa circular/mesa inclinada: Fixar a esfera de calibração o mais afastada possível do centro de rotação
- Máquinas com cursos de deslocação longos:
 Fixar a esfera de calibração o mais próxima possível da posição de maquinagem mais posterior

Indicações acerca da precisão

Os erros de geometria e posicionamento influenciam os valores de medição e, por conseguinte, também a otimização de um eixo redondo. Deste modo, existirá sempre um erro residual que não se consiga eliminar.

Partindo do princípio de que não existem erros de geometria e posicionamento, os valores registados pelo ciclo num determinado momento em qualquer ponto da máquina serão exatamente reprodutíveis. Quanto maiores os erros de geometria e posicionamento, maior será a dispersão dos resultados de medição, se se instalar a esfera de medição em diferentes posições no sistema de coordenadas da máquina.

A dispersão assinalada pelo TNC no registo de medições é uma aferição da precisão dos movimentos estáticos de inclinação de uma máquina. Contudo, também o raio do círculo de medição, assim como o número e posição dos pontos de medição, influenciam a apreciação da precisão. Não é possível calcular a dispersão com apenas um ponto de medição; neste caso, a dispersão registada corresponde ao erro de espaço do ponto de medição.

Caso vários eixos redondos se movimentem simultaneamente, os seus erros sobrepõem-se ou, na pior das hipóteses, adicionam-se.

Se a sua máquina estiver equipada com um mandril regulado, deve ativar-se a condução posterior do ângulo através do parâmetro de máquina **MP6165**. Deste modo, aumentam-se, em geral, as precisões na medição com um apalpador 3D.

Se necessário, desativar o aperto dos eixos redondos durante a medição; de outro modo, os resultados da medição podem ser falseados. Consultar o manual da máquina.

Indicações acerca dos diferentes métodos de calibração

Otimização grosseira durante a colocação em funcionamento após introdução de medidas aproximadas

- Número de pontos de medição entre 1 e 2
- Passo angular dos eixos rotativos: aprox. 90º

Otimização fina para a área de deslocação completa

- Número de pontos de medição entre 3 e 6
- O ângulo inicial e final devem cobrir a maior área de deslocação dos eixos rotativos possível.
- Posicione a esfera de calibração na mesa da máquina, de modo a que nos eixos rotativos da mesa se crie um grande raio do círculo de medição ou a que nos eixos rotativos de cabeça seja possível a medição numa posição representativa (p.ex., no centro da área de deslocação)

Otimização de uma posição especial do eixo rotativo

- Número de pontos de medição entre 2 e 3
- As medições são feitas no ângulo do eixo rotativo em que mais tarde terá lugar a maquinagem
- Posicione a esfera de calibração na mesa da máquina, de forma a que a calibração seja efetuada no local em que mais tarde será também feita a maquinagem

Verificação da precisão da máquina

- Número de pontos de medição entre 4 e 8
- O ângulo inicial e final devem cobrir a maior área de deslocação dos eixos rotativos possível.

Determinação da folga do eixo rotativo

- Número de pontos de medição entre 8 e 12
- O ângulo inicial e final devem cobrir a maior área de deslocação dos eixos rotativos possível.

Folga

Por folga entende-se um desaperto insignificante entre o transdutor rotativo (aparelho de medição de ângulos) e a mesa, devido a uma inversão de sentido. Se os eixos rotativos tiverem uma folga fora do trajeto regulado, por exemplo, porque a medição do ângulo é feita com o encoder motorizado, podem ocorrer erros consideráveis na inclinação.

Com o parâmetro de introdução **Q432**, é possível ativar uma medição da folga. Para isso, introduza um ângulo, que o TNC utilizará como ângulo de travessia. O ciclo executa então duas medições por eixo rotativo. Se aceitar o valor de ângulo 0, o TNC não determina nenhuma folga.

O TNC não executa a compensação automática da folga.

Se o raio do círculo de medição for < 1 mm, o TNC já não executa qualquer cálculo da folga. Quanto maior for o raio do círculo de medição, com maior exatidão poderá o TNC determinar a folga dos eixos rotativos (ver também "Função de registo" na página 501).

Se estiver aplicado o parâmetro da máquina **MP6602** ou se o eixo for um eixo hirth, a determinação da folga não é possível.

Ter em atenção ao programar!

Prestar atenção a que todas as funções de inclinação do plano de maquinagem estejam desativadas. M128 ou FUNCTION TCPM são desligados.

Selecionar a posição da esfera de calibração na mesa da máquina, de forma a que não haja qualquer colisão no processo de medição.

Antes da definição de ciclo, é necessário ter definido e ativado o ponto de referência no centro da esfera de calibração, ou definir o parâmetro de introdução Q431 em conformidade para 1 ou 3.

Se o parâmetro de máquina **MP6602** estiver definido diferente de -1 (a macro PLC posiciona eixos rotativos), inicie uma medição apenas quando todos os eixos rotativos estiverem em 0° .

Como avanço de posicionamento para aproximação à altura de apalpação no eixo de apalpação, o TNC utiliza o valor mais baixo do parâmetro de ciclo **Q253** e o parâmetro de máquina **MP6150**. Em princípio, o TNC executa os movimentos do eixo rotativo com o avanço de posicionamento **Q253**, estando a supervisão do sensor inativa.

Se no modo Otimizar os dados de cinemática registados se encontrarem acima do valor limite permitido (**MP6600**), o TNC emite uma mensagem de aviso. A aceitação dos valores registados deve ser confirmada com NC-Start.

Tenha em atenção que uma alteração da cinemática conduz sempre a uma alteração do preset. Memorizar novamente o preset após uma otimização.

Em cada processo de apalpação, o TNC regista, antes de tudo, o raio da esfera de calibração. Se o raio de esfera determinado se desviar mais do raio de esfera introduzido do que o definido no parâmetro de máquina **MP6601**, o TNC emite uma mensagem de erro e termina a medição.

Se se interromper o ciclo durante a medição, pode acontecer que os dados de cinemática já não se encontrem no seu estado original. Guarde a cinemática ativa antes de uma otimização com o ciclo 450, para, em caso de erro, poder restaurar a cinemática ativa em último lugar.

Programação em polegadas: por norma, o TNC fornece os resultados de medições e dados de registo em mm.

O TNC ignora indicações na definição de ciclo para eixos não ativos.

Parâmetros de ciclo

Modo (0/1/2) Q406: determinar se o TNC deve verificar ou otimizar a cinemática ativa:
 0: verificar a cinemática de máquina ativa. O TNC mede a cinemática nos eixos rotativos por si definidos, mas não efetua quaisquer alterações na cinemática ativa. O TNC mostra os resultados de medição num registo de medição
 1: otimizar a cinemática de máquina ativa. O TNC mede a cinemática nos eixos rotativos por definidos pelo operador e otimiza a posição dos eixos rotativos da cinemática ativa
 2: otimizar a cinemática de máquina ativa. O TNC

2: otimizar a cinematica de maquina ativa. O TNC mede a cinemática nos eixos rotativos por definidos pelo operador e **otimiza a posição e compensa o ângulo** dos eixos rotativos da cinemática ativa. A opção KinematicsComp deve estar ativada no Modo 2

- Raio da esfera de calibração exato Q407: introduzir o raio exato da esfera de calibração utilizada. Campo de introdução 0,0001 a 99,9999
- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura de retrocesso Q408 (absoluta): campo de introdução 0,0001 a 99999,9999
 - Introdução 0:

Nenhuma aproximação à altura de retrocesso, o TNC faz a aproximação à posição de medição seguinte no eixo a medir. Não permitido em eixos Hirth! O TNC faz a aproximação por ordem sequencial à posição de medição em A, depois B, depois C

Introdução >0:

Altura de retrocesso no sistema de coordenadas da peça não inclinado a que o TNC posiciona o eixo do mandril antes de um posicionamento do eixo rotativo. Além disso, o TNC posiciona o apalpador no plano de maquinagem no ponto zero. Supervisão do sensor não ativa neste modo, definir a velocidade de posicionamento no parâmetro Q253 Exemplo: Programa de calibração

4 TOOL CA	LL "SENSOR	" Z		
5 TCH PRO	BE 450 GUA	RDAR CINE	MÁTICA	
Q410	=0 ;MODO)		
Q409	=5 ;POSI	ÇÃO DE ME	MÓRIA	
6 TCH PRO	BE 451 MED	IR CINEMÁ	TICA	
Q406:	=1 ;MODO			
Q407	=12.5 ;RAIO	DA ESFER	₹ A	
Q320:	=0 ;DIST	ÂNCIA SEG	URANÇA	
Q408	=0 ;ALTU	IRA DE RET	ROCESSO	
Q253	=750 ;AVAN	IÇO POSICI	ION. PRÉVI	10
Q380	=0;ÂNGU	ILO DE REF	ERÊNCIA	
Q411	=-90 ;ÂNGU	ILO INICIA	L DO EIX	0 A
Q412	=+90 ;ÂNGU	LO FINAL	DO EIXO	A
Q413	=0;ÂNGU A	ILO DE INC	IDÊNCIA D	O EIXO
Q414	=0 ; PONT	OS DE MED	JIÇÃO DO I	EIXO A
Q415	=-90 ;ÂNGU	ILO INICIA	L DO EIX	0 B
Q416:	=+90 ;ÂNGU	LO FINAL	DO EIXO I	B
Q417	=0;ÂNGU B	ILO DE INC	IDÊNCIA D	O EIXO
Q418	=2 ; PONT	OS DE MED	JIÇÃO DO I	EIXO B
Q419	=-90 ;ÂNGU	ILO INICIA	L DO EIX	0 C
Q420:	=+90 ;ÂNGU	LO FINAL	DO EIXO	C
Q421	=0;ÂNGU C	ILO DE INC	IDÊNCIA D	O EIXO
Q422	=2 ; PONT	OS DE MED	JIÇÃO DO I	EIXO C
Q423	=4 ;QUAN Medi	ITIDADE DE Ção	PONTOS I	DE
Q431	=1 ;DEFI	NIR PRESE	т	
Q432	=0 ;CAMP	O ANGULAR	DA FOLG	A

- Avanço de posicionamento prévio Q253: velocidade de deslocação da ferramenta ao posicionar em mm/min. Campo de introdução 0 a 99999,9999; em alternativa FMAX, FAUTO, PREDEF
- Ângulo de referência Q380 (absoluto): ângulo de referência (rotação básica) para registo dos pontos de medição no sistema de coordenadas da peça atuante. A definição de um ângulo de referência pode aumentar consideravelmente a área de medição de um eixo. Campo de introdução de 0 a 360,0000
- Ângulo inicial do eixo A Q411 (absoluto): ângulo inicial no eixo A em que se deve realizar a primeira medição. Campo de introdução -359,999 a 359,999
- Ângulo final do eixo A Q412 (absoluto): ângulo final no eixo A em que se deve realizar a última medição. Campo de introdução -359,999 a 359,999
- Ângulo de incidência do eixo A Q413: ângulo de incidência do eixo A em que deverão ser medidos os outros eixos rotativos. Campo de introdução -359,999 a 359,999
- Número de pontos de medição do eixo A Q414: número de apalpações que o TNC deve utilizar para medir o eixo A. Se se introduzir 0, o TNC não realiza a medição deste eixo. Campo de introdução de 0 a 12
- Ângulo inicial do eixo B Q415 (absoluto): ângulo inicial no eixo B em que se deve realizar a primeira medição. Campo de introdução -359,999 a 359,999
- Ângulo final do eixo B Q416 (absoluto): ângulo final no eixo B em que se deve realizar a última medição. Campo de introdução -359,999 a 359,999
- Ângulo de incidência do eixo B Q417: ângulo de incidência do eixo B em que deverão ser medidos os outros eixos rotativos. Campo de introdução -359,999 a 359,999
- Número de pontos de medição do eixo B Q418: número de apalpações que o TNC deve utilizar para medir o eixo B. Se se introduzir 0, o TNC não realiza a medição deste eixo. Campo de introdução de 0 a 12

- Ângulo inicial do eixo C Q419 (absoluto): ângulo inicial no eixo C em que se deve realizar a primeira medição. Campo de introdução -359,999 a 359,999
- Ângulo final do eixo C Q420 (absoluto): ângulo final no eixo C em que se deve realizar a última medição. Campo de introdução -359,999 a 359,999
- Ângulo de incidência do eixo C Q421: ângulo de incidência do eixo C em que deverão ser medidos os outros eixos rotativos. Campo de introdução -359,999 a 359,999
- Número de pontos de medição do eixo C Q422: número de apalpações que o TNC deve utilizar para medir o eixo C. Campo de introdução de 0 a 12. Se se introduzir 0, o TNC não realiza a medição deste eixo
- Número de pontos de medição Q423: determinar com quantas apalpações da esfera de calibração o TNC deve medir apalpações no plano. Campo de introdução 3 a 8 medições
- Memorizar preset (0/1/2/3) Q431: determinar se o TNC deve memorizar automaticamente o preset ativo (ponto de referência) no centro da esfera:
 0: não memorizar o preset automaticamente no centro da esfera: memorizar o preset manualmente antes do início do ciclo

 memorizar o preset automaticamente no centro da esfera antes da medição: pré-posicionar manualmente o apalpador sobre a esfera de calibração antes do início do ciclo
 memorizar o preset automaticamente no centro da esfera após a medição: memorizar o preset

manualmente antes do início do ciclo
memorizar o preset antes e depois da medição no centro da esfera: pré-posicionar manualmente o apalpador sobre a esfera de calibração antes do início do ciclo

Campo angular da folga Q432: define-se aqui o valor de ângulo que deverá ser utilizado como travessia para a medição da folga do eixo rotativo. O ângulo de travessia deve ser claramente maior que a folga efetiva dos eixos rotativos. Se se introduzir 0, o TNC não realiza a medição da folga. Campo de introdução: -3,0000 a +3,0000

Se se tiver ativado Memorizar preset antes da medição (Q431 = 1/3), posicionar o apalpador aproximadamente ao centro sobre a esfera de calibração antes do início do ciclo.

Diferentes Modos (Q406)

Modo "Verificar" Q406 = 0

- O TNC mede os eixos rotativos nas posições definidas e determina com isso a precisão estática da transformação de inclinação
- O TNC elabora um protocolo dos resultados de uma eventual otimização de posição, mas não procede a quaisquer ajustes

Otimizar modo "Posição" Q406 = 1

- O TNC mede os eixos rotativos nas posições definidas e determina com isso a precisão estática da transformação de inclinação
- Com isso, o TNC tenta alterar a posição do eixo rotativo no modelo de cinemática, de forma a que se obtenha uma precisão mais elevada
- As alterações nos dados da máquina são feitas automaticamente

Otimizar modo "Posição e ângulo" Q406 = 2

- O TNC mede os eixos rotativos nas posições definidas e determina com isso a precisão estática da transformação de inclinação
- Primeiro, o TNC tenta otimizar a posição angular do eixo rotativo mediante uma compensação (Opção #52 KinematicsComp).
- Se foi possível o TNC executar uma otimização de ângulo, o TNC otimiza automaticamente a posição para executar outra série de medições

Para otimizar o ângulo, o fabricante da máquina deve ter adaptado a configuração em conformidade. Consulte o fabricante da sua máquina, se for este o caso e houver vantagens numa otimização de ângulo. Principalmente em máquinas pequenas e compactas, a otimização do ângulo pode trazer melhorias.

A compensação do ângulo só é possível com a Opção #52 **KinematicsComp**.

Exemplo: Otimização do ângulo e da posição dos eixos rotativos com definição automática prévia dos pontos de referência

1 TOOL CALL "T	S640" Z
2 TCH PROBE 45	1 MEDIR CINEMÁTICA
Q406=2	;MODO
Q407=12.5	;RAIO DA ESFERA
Q320=0	;DISTÂNCIA SEGURANÇA
Q408=0	;ALTURA DE RETROCESSO
Q253=750	;AVANÇO POSICION. PRÉVIO
Q380=0	;ÂNGULO DE REFERÊNCIA
Q411=-90	;ÂNGULO INICIAL DO EIXO A
Q412=+90	;ÂNGULO FINAL DO EIXO A
Q413=0	;ÂNGULO DE INCIDÊNCIA DO EIXO A
Q414=0	;PONTOS DE MEDIÇÃO DO EIXO A
Q415=-90	;ÂNGULO INICIAL DO EIXO B
Q416=+90	;ÂNGULO FINAL DO EIXO B
Q417=0	;ÂNGULO DE INCIDÊNCIA DO EIXO B
Q418=4	;PONTOS DE MEDIÇÃO DO EIXO B
Q419=+90	;ÂNGULO INICIAL DO EIXO C
Q420=+270	;ÂNGULO FINAL DO EIXO C
Q421=0	;ÂNGULO DE INCIDÊNCIA DO EIXO C
Q422=3	;PONTOS DE MEDIÇÃO DO EIXO C
Q423=3	;QUANTIDADE DE PONTOS DE MEDIÇÃO
Q431=1	;DEFINIR PRESET
0432=0	:CAMPO ANGULAR DA FOLGA

Função de registo

Depois de executar o ciclo 451, o TNC cria um registo **(TCHPR451.TXT)**, que contém os seguintes dados:

- Data e hora a que foi criado o registo
- Nome do atalho do programa NC em que foi executado o ciclo
- Modo executado (0=verificar/1=otimizar posição/2=otimizar posições)
- Número de cinemática ativo
- Raio da esfera de medição introduzido
- Para cada eixo rotativo medido:
 - Ângulo inicial
 - Ângulo final
 - Angulo de incidência
 - Número de pontos de medição
 - Dispersão (desvio standard)
 - Erro máximo
 - Erro de ângulo
 - Folga média
 - Erro de posicionamento médio
 - Raio do círculo de medição
 - Valores de correção em todos os eixos (deslocação de preset)
 - Avaliação dos pontos de medição
 - Instabilidade de medição para eixos rotativos

Explicações sobre os valores do protocolo

Emissões dos erros

No modo Verificar (**Q406=0**), o TNC emite a precisão que se pode alcançar através de uma otimização ou, em caso de otimização (modo 1 e 2), a precisão alcançada.

Se tiver sido possível calcular a posição angular de um eixo rotativo, também os dados medidos figuram do protocolo.

Dispersão

O conceito de dispersão, com origem no campo da estatística, é utilizado pelo TNC no protocolo como grandeza para a precisão. A **dispersão medida** atesta que 68,3% dos erros de espaço efetivamente medidos se encontram dentro da dispersão indicada (+/-). A **dispersão otimizada** atesta que 68,3% dos erros de espaço expectáveis após a correção da cinemática se encontram dentro da dispersão indicada (+/-).

Avaliação dos pontos de medição

Os índices de avaliação são uma grandeza para a qualidade das posições de medição relativamente às transformações modificáveis do modelo de cinemática. Quanto mais alto for o índice de avaliação, melhor pode o TNC calcular a otimização. O valor do índice de avaliação de cada eixo rotativo não deverá ser inferior a **2**, o ideal são valores maiores que ou iguais a **4**. Se os índices de avaliação forem demasiado baixos, aumente a área de medição do eixo rotativo ou também o número de pontos de medição.

Se os índices de avaliação forem demasiado baixos, aumente a área de medição do eixo rotativo ou também o número de pontos de medição. Caso não se obtenha qualquer melhoria do índice de avaliação com esta medida, talvez a causa para isso esteja numa descrição de cinemática errada. Se necessário, informar o serviço de assistência técnica.

Instabilidade de medição para ângulos

O TNC indica sempre a instabilidade de medição em graus / 1 µm de instabilidade do sistema. Esta informação é importante, para poder estimar a qualidade dos erros de posicionamento medidos ou da folga de um eixo rotativo.

A instabilidade do sistema é influenciada, pelo menos, pelas precisões de repetição dos eixos (folgas) ou pela instabilidade de posicionamento dos eixos lineares (erros de posicionamento) assim como do apalpador. Como a precisão de todo o sistema não é conhecida do TNC, é necessário executar uma estimativa própria.

- Exemplo de instabilidade dos erros de posicionamento calculados:
 - Instabilidade do posicionamento de cada eixo linear: 10 µm
 - Instabilidade da sonda de medição: 2 µm
 - Instabilidade de medição registada: 0,0002 °/µm
 - Instabilidade do sistema = SQRT(3 * 10² + 2²) = 17,4 µm
 - Instabilidade da medição = 0,0002 °/µm * 17,4 µm = 0,0034°

Exemplo de instabilidade da folga calculada:

- Precisão de repetição de cada eixo linear: 5 µm
- Instabilidade da sonda de medição: 2 µm
- Instabilidade de medição registada: 0,0002 °/µm
- Instabilidade do sistema = SQRT(3 * 5² + 2²) = 8,9 µm
- Instabilidade da medição = 0,0002 °/µm * 8,9 µm = 0,0018°

18.5 COMPENSAÇÃO DE PRESET (ciclo 452, DIN/ISO: G452, opção)

Execução do ciclo

Com o ciclo de apalpação 452, é possível otimizar a cadeia de transformações cinemáticas da máquina (ver "MEDIR CINEMÁTICA (ciclo 451, DIN/ISO: G451, opção)" na página 488). Em seguida, o TNC corrige igualmente o sistema de coordenadas da peça de trabalho no modelo de cinemática, de modo que o preset atual fica no centro da esfera de calibração após a otimização.

Com este ciclo é possível, por exemplo, conjugar cabeças intercambiáveis umas com as outras.

- 1 Fixar a esfera de calibração
- 2 Medir completamente a cabeça de referência com o ciclo 451 e, em seguida, memorizar o preset no centro da esfera com o ciclo 451
- 3 Trocar pela segunda cabeça
- 4 Medir a cabeça intercambiável com o ciclo 452 até à interface de troca de cabeça
- 5 Ajustar as outras cabeças intercambiáveis à cabeça de referência com o ciclo 452

Se, durante a maquinagem, for possível deixar a esfera de calibração fixa na mesa da máquina, pode-se, por exemplo, compensar um desvio da máquina. Este processo também é possível numa máquina sem eixos rotativos.

- 1 Fixar a esfera de calibração, ter em atenção a ausência de colisão
- 2 Memorizar o preset na esfera de calibração
- **3** Memorizar o preset na peça de trabalho e iniciar a maquinagem da peça de trabalho
- 4 O TNC mede automática e consecutivamente todos os eixos rotativos na fineza definida pelo operador O TNC mostra numa janela sobreposta o estado atual da medição. O TNC oculta a janela de estado assim que é necessário percorrer uma distância maior que o raio da esfera de apalpação
- 5 Executar uma compensação de preset com o ciclo 452 a intervalos regulares. Com isso, o TNC determina o desvio dos eixos afetados e corrige-os na cinemática

Número de parâmetro	Significado
Q141	Desvio standard do eixo-A medido (-1, se o eixo não tiver sido medido)
Q142	Desvio standard do eixo-B medido (-1, se o eixo não tiver sido medido)
Q143	Desvio standard do eixo-C medido (-1, se o eixo não tiver sido medido)
Q144	Desvio standard do eixo A otimizado (-1, se o eixo não tiver sido medido)
Q145	Desvio standard do eixo B otimizado (-1, se o eixo não tiver sido medido)
Q146	Desvio standard do eixo C otimizado (-1, se o eixo não tiver sido medido)
Q147	Erros de offset na direção X, para aceitação manual nos parâmetros de máquina correspondentes
Q148	Erros de offset na direção Y, para aceitação manual nos parâmetros de máquina correspondentes
Q149	Erros de offset na direção Z, para aceitação manual nos parâmetros de máquina correspondentes

Ter em atenção ao programar!

Para poder executar uma compensação de preset, é necessário que a cinemática esteja adequadamente preparada. Consultar o manual da máquina.

Prestar atenção a que todas as funções de inclinação do plano de maquinagem estejam desativadas. M128 ou FUNCTION TCPM são desligados.

Selecionar a posição da esfera de calibração na mesa da máquina, de forma a que não haja qualquer colisão no processo de medição.

Antes da definição de ciclo, deve-se memorizar e ativar o ponto de referência no centro da esfera de calibração.

No caso de eixos sem sistema de medição de posição separado, seleccionar os pontos de medição, de modo a ter 1 grau de percurso de deslocação até ao interruptor de fim de curso. O TNC necessita deste percurso para a compensação de folga interna.

Como avanço de posicionamento para aproximação à altura de apalpação no eixo de apalpação, o TNC utiliza o valor mais baixo do parâmetro de ciclo **Q253** e o parâmetro de máquina MP6150.Em princípio, o TNC executa os movimentos do eixo rotativo com o avanço de posicionamento **Q253**, estando a supervisão do sensor inativa.

Se no modo Otimizar os dados de cinemática registados se encontrarem acima do valor limite permitido (**MP6600**), o TNC emite uma mensagem de aviso. A aceitação dos valores registados deve ser confirmada com NC-Start.

Tenha em atenção que uma alteração da cinemática conduz sempre a uma alteração do preset. Memorizar novamente o preset após uma otimização.

Em cada processo de apalpação, o TNC regista, antes de tudo, o raio da esfera de calibração. Se o raio de esfera determinado se desviar mais do raio de esfera introduzido do que o definido no parâmetro de máquina **MP6601**, o TNC emite uma mensagem de erro e termina a medição.

Se se interromper o ciclo durante a medição, pode acontecer que os dados de cinemática já não se encontrem no seu estado original. Guarde a cinemática ativa antes de uma otimização com o ciclo 450, para, em caso de erro, poder restaurar a cinemática ativa em último lugar.

Programação em polegadas: por norma, o TNC fornece os resultados de medições e dados de registo em mm.

1

Parâmetros de ciclo

Raio da esfera de calibração exato Q407: introduzir o raio exato da esfera de calibração utilizada. Campo de introdução 0,0001 a 99,9999

- Distância de segurança Q320 (incremental): distância adicional entre o ponto de medição e a esfera do apalpador. Q320 atua adicionalmente a MP6140. Campo de introdução 0 a 99999,9999; em alternativa PREDEF
- Altura de retrocesso Q408 (absoluta): campo de introdução 0,0001 a 99999,9999
 - Introdução 0:

Nenhuma aproximação à altura de retrocesso, o TNC faz a aproximação à posição de medição seguinte no eixo a medir. Não permitido em eixos Hirth! O TNC faz a aproximação por ordem sequencial à posição de medição em A, depois B, depois C

Introdução >0:

Altura de retrocesso no sistema de coordenadas da peça não inclinado a que o TNC posiciona o eixo do mandril antes de um posicionamento do eixo rotativo. Além disso, o TNC posiciona o apalpador no plano de maquinagem no ponto zero. Supervisão do sensor não ativa neste modo, definir a velocidade de posicionamento no parâmetro Q253

- Avanço de posicionamento prévio Q253: velocidade de deslocação da ferramenta ao posicionar em mm/min. Campo de introdução 0 a 99999,9999; em alternativa FMAX, FAUTO, PREDEF
- Ângulo de referência Q380 (absoluto): ângulo de referência (rotação básica) para registo dos pontos de medição no sistema de coordenadas da peça atuante. A definição de um ângulo de referência pode aumentar consideravelmente a área de medição de um eixo. Campo de introdução de 0 a 360,0000
- Ângulo inicial do eixo A Q411 (absoluto): ângulo inicial no eixo A em que se deve realizar a primeira medição. Campo de introdução -359,999 a 359,999
- Ângulo final do eixo A Q412 (absoluto): ângulo final no eixo A em que se deve realizar a última medição. Campo de introdução -359,999 a 359,999
- Ângulo de incidência do eixo A Q413: ângulo de incidência do eixo A em que deverão ser medidos os outros eixos rotativos. Campo de introdução -359,999 a 359,999
- Número de pontos de medição do eixo A Q414: número de apalpações que o TNC deve utilizar para medir o eixo A. Se se introduzir 0, o TNC não realiza a medição deste eixo. Campo de introdução de 0 a 12

Exemplo: Programa de calibração

4	TOOL CALL "S	ENSOR" Z
5	TCH PROBE 45	60 GUARDAR CINEMÁTICA
	Q410=0	;MODO
	Q409=5	;POSIÇÃO DE MEMÓRIA
6	TCH PROBE 45	2 COMPENSAÇÃO DE PRESET
	Q407=12.5	;RAIO DA ESFERA
	Q320=0	;DISTÂNCIA SEGURANÇA
	Q408=0	;ALTURA DE RETROCESSO
	Q253=750	;AVANÇO POSICION. PRÉVIO
	Q380=0	;ÂNGULO DE REFERÊNCIA
	Q411=-90	;ÂNGULO INICIAL DO EIXO A
	Q412=+90	;ÂNGULO FINAL DO EIXO A
	Q413=0	;ÂNGULO DE INCIDÊNCIA DO EIXO A
	Q414=0	;PONTOS DE MEDIÇÃO DO EIXO A
	Q415=-90	;ÂNGULO INICIAL DO EIXO B
	Q416=+90	;ÂNGULO FINAL DO EIXO B
	Q417=0	;ÂNGULO DE INCIDÊNCIA DO EIXO B
	Q418=2	;PONTOS DE MEDIÇÃO DO EIXO B
	Q419=-90	;ÂNGULO INICIAL DO EIXO C
	Q420=+90	;ÂNGULO FINAL DO EIXO C
	Q421=0	;ÂNGULO DE INCIDÊNCIA DO EIXO C
	Q422=2	;PONTOS DE MEDIÇÃO DO EIXO C
	Q423=4	;QUANTIDADE DE PONTOS DE Medição
	0432=0	CAMPO ANGULAR DA FOLGA

- Ângulo inicial do eixo B Q415 (absoluto): ângulo inicial no eixo B em que se deve realizar a primeira medição. Campo de introdução -359,999 a 359,999
- Ângulo final do eixo B Q416 (absoluto): ângulo final no eixo B em que se deve realizar a última medição. Campo de introdução -359,999 a 359,999
- Ângulo de incidência do eixo B Q417: ângulo de incidência do eixo B em que deverão ser medidos os outros eixos rotativos. Campo de introdução -359,999 a 359,999
- Número de pontos de medição do eixo B Q418: número de apalpações que o TNC deve utilizar para medir o eixo B. Se se introduzir 0, o TNC não realiza a medição deste eixo. Campo de introdução de 0 a 12
- Ângulo inicial do eixo C Q419 (absoluto): ângulo inicial no eixo C em que se deve realizar a primeira medição. Campo de introdução -359,999 a 359,999
- Ângulo final do eixo C Q420 (absoluto): ângulo final no eixo C em que se deve realizar a última medição. Campo de introdução -359,999 a 359,999
- Ângulo de incidência do eixo C Q421: ângulo de incidência do eixo C em que deverão ser medidos os outros eixos rotativos. Campo de introdução -359,999 a 359,999
- Número de pontos de medição do eixo C Q422: número de apalpações que o TNC deve utilizar para medir o eixo C. Se se introduzir 0, o TNC não realiza a medição deste eixo. Campo de introdução de 0 a 12
- Número de pontos de medição Q423: determinar com quantas apalpações da esfera de calibração o TNC deve medir apalpações no plano. Campo de introdução 3 a 8 medições
- Campo angular da folga Q432: define-se aqui o valor de ângulo que deverá ser utilizado como travessia para a medição da folga do eixo rotativo. O ângulo de travessia deve ser claramente maior que a folga efetiva dos eixos rotativos. Se se introduzir 0, o TNC não realiza a medição da folga. Campo de introdução: -3,0000 a +3,0000

1

Ajuste de cabeças intercambiáveis

O objectivo deste processo é que o preset da peça de trabalho permaneça inalterado após a troca de eixos rotativos (troca de cabeças)

No exemplo seguinte descreve-se o ajuste de uma cabeça de forquilha com os eixos AC Os eixos A são trocados, o eixo C permanece na máquina de base.

- Troca de uma das cabeças intercambiáveis que depois serve de cabeça de referência
- ▶ Fixar esfera de calibração
- ▶ Trocar de apalpador
- Mediante o ciclo 451, meça a cinemática completa com a cabeça de referência
- Memorize o preset (com Q431 = 2 ou 3 no ciclo 451) após a medição da cabeça de referência

Exemplo: Medir a cabeça de referência

1	TOOL CALL "S	ENSOR" Z
2	TCH PROBE 45	1 MEDIR CINEMÁTICA
	Q406=1	;MODO
	Q407=12.5	;RAIO DA ESFERA
	Q320=0	;DISTÂNCIA SEGURANÇA
	Q408=0	;ALTURA DE RETROCESSO
	Q253=2000	;AVANÇO POSICION. PRÉVIO
	Q380=45	;ÂNGULO DE REFERÊNCIA
	Q411=-90	;ÂNGULO INICIAL DO EIXO A
	Q412=+90	;ÂNGULO FINAL DO EIXO A
	Q413=45	;ÂNG.INCIDÊNCIA EIXO A
	Q414=4	;PONTOS DE MEDIÇÃO DO EIXO A
	Q415=-90	;ÂNGULO INICIAL DO EIXO B
	Q416=+90	;ÂNGULO FINAL DO EIXO B
	Q417=0	;ÂNG.INCIDÊNCIA EIXO B
	Q418=2	;PONTOS DE MEDIÇÃO DO EIXO B
	Q419=+90	;ÂNGULO INICIAL DO EIXO C
	Q420=+270	;ÂNGULO FINAL DO EIXO C
	Q421=0	;ÂNG.INCIDÊNCIA EIXO C
	Q422=3	;PONTOS DE MEDIÇÃO DO EIXO C
	Q423=4	;QUANTIDADE DE PONTOS DE Medição
	Q431=3	;DEFINIR PRESET
	Q432=0	;CAMPO ANGULAR DA FOLGA

- Trocar de apalpador
- Medir a cabeça intercambiável com o ciclo 452
- Meça apenas os eixos que foram efetivamente trocados (no exemplo, apenas o eixo A, o eixo C foi ocultado com Q422)
- Não é possível alterar o preset e a posição da esfera de calibração durante todo o processo
- É possível ajustar todas as outras cabeças intercambiáveis da mesma forma

A troca de cabeças é uma função específica da máquina: Consulte o manual da sua máquina.

Exemplo: Ajustar a cabeça intercambiável

3 TOOL CALL "S	ENSOR" Z
4 TCH PROBE 45	2 COMPENSAÇÃO DE PRESET
Q407=12.5	;RAIO DA ESFERA
Q320=0	;DISTÂNCIA SEGURANÇA
Q408=0	;ALTURA DE RETROCESSO
Q253=2000	;AVANÇO POSICION. PRÉVIO
Q380=45	;ÂNGULO DE REFERÊNCIA
Q411=-90	;ÂNGULO INICIAL DO EIXO A
Q412=+90	;ÂNGULO FINAL DO EIXO A
Q413=45	;ÂNG.INCIDÊNCIA EIXO A
Q414=4	;PONTOS DE MEDIÇÃO DO EIXO A
Q415=-90	;ÂNGULO INICIAL DO EIXO B
Q416=+90	;ÂNGULO FINAL DO EIXO B
Q417=0	;ÂNG.INCIDÊNCIA EIXO B
Q418=2	;PONTOS DE MEDIÇÃO DO EIXO B
Q419=+90	;ÂNGULO INICIAL DO EIXO C
Q420=+270	;ÂNGULO FINAL DO EIXO C
Q421=0	;ÂNG.INCIDÊNCIA EIXO C
Q422=0	;PONTOS DE MEDIÇÃO DO EIXO C
Q423=4	;QUANTIDADE DE PONTOS DE Medição
Q432=0	;CAMPO ANGULAR DA FOLGA

Compensação de desvio

Durante a maquinagem, os diferentes componentes de uma máquina estão sujeitos a um desvio, devido às variáveis influências circundantes. Se o desvio for suficientemente constante através da área de deslocação e a esfera de calibração puder manter-se na mesa da máquina durante maquinagem, é possível registar e compensar este desvio com o ciclo 452.

- ▶ Fixar esfera de calibração
- Trocar de apalpador
- Meça completamente a cinemática com o ciclo 451 antes de iniciar a maquinagem
- Memorize o preset (com Q432 = 2 ou 3 no ciclo 451) após a medição da cinemática
- Memorize então os presets para as suas peças de trabalho e inicie a maquinagem

Exemplo: Medição de referência para compensação do desvio

1	TOOL CALL "S	ENSOR" Z
2	CYCL DEF 247	DEFINIR PONTO DE REFERÊNCIA
	Q339=1	;NÚMERO DE PONTO DE Referência
3	TCH PROBE 45	1 MEDIR CINEMÁTICA
	Q406=1	;MODO
	Q407=12.5	;RAIO DA ESFERA
	Q320=0	;DISTÂNCIA SEGURANÇA
	Q408=0	;ALTURA DE RETROCESSO
	Q253=750	;AVANÇO POSICION. PRÉVIO
	Q380=45	;ÂNGULO DE REFERÊNCIA
	Q411=+90	;ÂNGULO INICIAL DO EIXO A
	Q412=+270	;ÂNGULO FINAL DO EIXO A
	Q413=45	;ÂNG.INCIDÊNCIA EIXO A
	Q414=4	;PONTOS DE MEDIÇÃO DO EIXO A
	Q415=-90	;ÂNGULO INICIAL DO EIXO B
	Q416=+90	;ÂNGULO FINAL DO EIXO B
	Q417=0	;ÂNG.INCIDÊNCIA EIXO B
	Q418=2	;PONTOS DE MEDIÇÃO DO EIXO E
	Q419=+90	;ÂNGULO INICIAL DO EIXO C
	Q420=+270	;ÂNGULO FINAL DO EIXO C
	Q421=0	;ÂNG.INCIDÊNCIA EIXO C
	Q422=3	;PONTOS DE MEDIÇÃO DO EIXO (
	Q423=4	;QUANTIDADE DE PONTOS DE Medição
	Q431=3	;DEFINIR PRESET
	0432=0	·CAMPO ANGULAR DA FOLGA

- Trocar de apalpador
- Activar preset na esfera de calibração
- Meça a cinemática com o ciclo 452
- Não é possível alterar o preset e a posição da esfera de calibração durante todo o processo

Este processo também é possível em máquinas sem eixos rotativos

Exemplo: Compensar desvio

4 TOOL CALL "SENSOR" Z
5 TCH PROBE 452 COMPENSAÇÃO DE PRESET
Q407=12.5 ;RAIO DA ESFERA
Q320=0 ;DISTÂNCIA SEGURANÇA
Q408=0 ;ALTURA DE RETROCESSO
Q253=99999;AVANÇO POSICION. PRÉVIO
Q380=45 ;ÂNGULO DE REFERÊNCIA
Q411=-90 ;ÂNGULO INICIAL DO EIXO A
Q412=+90 ;ÂNGULO FINAL DO EIXO A
Q413=45 ;ÂNG.INCIDÊNCIA EIXO A
Q414=4 ;PONTOS DE MEDIÇÃO DO EIXO A
Q415=-90 ;ÂNGULO INICIAL DO EIXO B
Q416=+90 ;ÂNGULO FINAL DO EIXO B
Q417=0 ;ÂNG.INCIDÊNCIA EIXO B
Q418=2 ;PONTOS DE MEDIÇÃO DO EIXO B
Q419=+90 ;ÂNGULO INICIAL DO EIXO C
Q420=+270 ;ÂNGULO FINAL DO EIXO C
Q421=0 ;ÂNG.INCIDÊNCIA EIXO C
Q422=3 ;PONTOS DE MEDIÇÃO DO EIXO C
Q423=3 ;QUANTIDADE DE PONTOS DE Medição
Q432=0 ;CAMPO ANGULAR DA FOLGA

Função de registo

Depois de executar o ciclo 452, o TNC cria um registo **(TCHPR452.TXT)**, que contém os seguintes dados:

- Data e hora a que foi criado o registo
- Nome do atalho do programa NC em que foi executado o ciclo
- Número de cinemática ativo
- Raio da esfera de medição introduzido
- Para cada eixo rotativo medido:
 - Ângulo inicial
 - Ângulo final
 - Ângulo de incidência
 - Número de pontos de medição
 - Dispersão (desvio standard)
 - Erro máximo
 - Erro de ângulo
 - Folga média
 - Erro de posicionamento médio
 - Raio do círculo de medição
 - Valores de correção em todos os eixos (deslocação de preset)
 - Avaliação dos pontos de medição
 - Instabilidade de medição para eixos rotativos

Explicações sobre os valores do protocolo

(ver "Explicações sobre os valores do protocolo" na página 502)

18.5 C<mark>OM</mark>PENSAÇÃO DE PRESET (ciclo 452, DIN/ISO: G452, opção)

i

Ciclos de apalpação: Medir ferramentas automaticamente

19.1 Princípios básicos

Resumo

O fabricante da máquina prepara a máquina e o TNC para se poder usar o apalpador TT.

É provável que a sua máquina não disponha de todos os ciclos e funcões agui descritos. Consulte o manual da sua máquina.

Com o apalpador e os ciclos para a medição de ferramentas do TNC, é possível medir ferramentas automaticamente: os valores de correção para o comprimento e o raio são guardados na memória central de ferramentas TOOL.T do TNC e calculados automaticamente no final do ciclo de apalpação. Dispõe-se dos seguintes tipos de medições:

- Medição de ferramentas com a ferramenta parada
- Medição de ferramentas com a ferramenta a rodar
- Medição individual de lâminas

Os ciclos para medição da ferramenta são programados no modo de funcionamento Memorização/Edição do Programa com a tecla TOUCH PROBE. Dispõe-se dos seguintes ciclos:

Ciclo	Novo formato	Antigo formato	Página
Calibrar TT, ciclos 30 e 480	490 III III CAL.	30 BB CAL.	Página 521
Calibrar TT 449 sem fios, ciclo 484	494		Página 523
Medir comprimento da ferramenta, ciclos 31 e 481	481	31 1	Página 524
Medir raio da ferramenta, ciclos 32 e 482	482	32	Página 526
Medir comprimento e raio da ferramenta, ciclos 33 e 483	483 	33 DB (*	Página 528

Os ciclos de medição só funcionam quando está ativa a memória central de ferramentas TOOL.T.

Antes de trabalhar com ciclos de medição, é necessário introduzir primeiro todos os dados necessários para a medição na memória central de ferramentas e chamar a ferramenta que se pretende medir com TOOL CALL.

Também é possível medir ferramentas num plano de maquinagem inclinado.

Diferenças entre os ciclos 31 a 33 e 481 a 483

As funções e a execução do ciclo são absolutamente idênticos. Entre os ciclos 31 a 33 e 481 a 483 existem apenas as duas diferenças seguintes:

- Os ciclos 481 a 483 estão disponíveis em G481 a G483 também em DIN/ISO
- Em vez de um parâmetro de livre seleção para o estado da medição, os novos ciclos utilizam o parâmetro fixo **Q199**

Ajustar parâmetros da máquina

O TNC utiliza, para a medição com o mandril parado, o avanço de apalpação de MP6520.

Na medição com a ferramenta a rodar, o TNC calcula automaticamente a velocidade do mandril e o avanço de apalpação.

A velocidade do mandril calcula-se da seguinte forma:

n = MP6570 / (r • 0,0063) com

n	Rotações [U/min]
MP6570	Máxima velocidade de rotação permitida [m/min]
r	Raio ativo da ferramenta [mm]

O avanço de apalpação calcula-se da seguinte forma:

v = tolerância de medição • n com

V	Avanço de apalpação [mm/min]
Tolerância de medição	Tolerância de medição [mm], depende de MP6507
n	Rotações [1/min]

Com MP6507 calcula-se o avanço de apalpação:

MP6507=0:

A tolerância de medição permanece constante, independentemente do raio da ferramenta. Quando as ferramentas são muito grandes, deve reduzir-se o avanço de apalpação para zero. Este efeito nota-se ainda mais rapidamente, quanto menor for a velocidade máxima seleccionada de percurso (MP6570) e a tolerância admissível (MP6510).

MP6507=1:

A tolerância de medição modifica-se com o aumento do raio da ferramenta. Assim, assegura-se um avanço de apalpação suficiente para grandes raios de ferramenta. O TNC modifica a tolerância de medição conforme o seguinte quadro:

Raio da ferramenta	Tolerância de medição
até 30 mm	MP6510
30 a 60 mm	2 • MP6510
60 a 90 mm	3 • MP6510
90 a 120 mm	4 • MP6510

MP6507=2:

O avanço de apalpação permanece constante, mas o erro de medição aumenta de forma linear à medida que aumenta o raio da ferramenta.

Tolerância de medição = (r • MP6510)/ 5 mm) com

- r Raio ativo da ferramenta [mm]
- MP6510 Máximo erro de medição admissível

Introduções na tabela de ferramentas TOOL.T

Abrev.	Introduções	Diálogo
CUT	Quantidade de lâminas da ferramenta (máx. 20 lâminas)	Quantidade de lâminas?
LTOL	Desvio admissível do comprimento L da ferramenta para reconhecimento de desgaste Se o valor introduzido for excedido, o TNC bloqueia a ferramenta (estado L) Campo de introdução: 0 até 0,9999 mm	Tolerância de desgaste: comprimento?
RTOL	Desvio admissível do raio R da ferramenta para reconhecimento de desgaste. Se o valor introduzido for excedido, o TNC bloqueia a ferramenta (estado L). Campo de introdução: 0 até 0,9999 mm	Tolerância de desgaste: Raio?
DIRECT.	Direcção de corte da ferramenta para medição com ferramenta a rodar	Direção de corte (M3 = -)?
TT:R-OFFS	Medição do comprimento: desvio da ferramenta entre o centro da haste e o centro da própria ferramenta. Ajuste prévio: raio R da ferramenta (a tecla NO ENT produz R)	Raio de desvio da ferramenta?
TT:L-OFFS	Medição do raio: desvio suplementar da ferramenta a MP6530 entre lado superior da haste e lado inferior da ferramenta. Ajuste prévio: 0	Comprimento do desvio da ferramenta?
LBREAK	Desvio admissível do comprimento L da ferramenta para reconhecimento de rotura. Se o valor introduzido for excedido, o TNC bloqueia a ferramenta (estado L) Campo de introdução: 0 até 0,9999 mm	Tolerância de rotura: comprimento?
RBREAK	Desvio admissível do raio R da ferramenta para reconhecimento de rotura. Se o valor introduzido for excedido, o TNC bloqueia a ferramenta (estado L). Campo de introdução: 0 até 0,9999 mm	Tolerância de rotura: Raio?

Exemplos de introdução para tipos de ferramenta comuns

Tipo de ferramenta	CUT	TT:R-OFFS	TT:L-OFFS
Broca	– (sem função)	0 (não é necessário desvio, pois deve ser medida a extremidade da broca)	
Fresa cilíndrica com diâmetro < 19 mm	4 (4 Cortar)	0 (não é necessário desvio, pois o diâmetro da ferramenta é menor do que o diâmetro do prato do apalpador TT)	0 (não é necessário desvio adicional na medição do raio. Desvio é utilizado a partir de MP6530)
Fresa cilíndrica com diâmetro > 19 mm	4 (4 Cortar)	0 (não é necessário desvio, pois o diâmetro da ferramenta é maior do que o diâmetro do prato do apalpador TT)	0 (não é necessário desvio adicional na medição do raio. Desvio é utilizado a partir de MP6530)
Fresa esférica	4 (4 Cortar)	0 (não é necessário desvio, pois deve ser medido polo sul da esfera)	5 (definir o raio da ferramenta sempre como desvio, para o diâmetro não ser medido no raio)

519

i

Visualizar resultados de medição

Na visualização de estado adicional, pode iluminar os resultados da medição de ferramenta (nos modos de funcionamento da máquina). O TNC visualiza à esquerda o programa e à direita os resultados da medição. Os valores que excederem a tolerância de desgaste admissível caracterizam-se com um "*"- e os valores de medição que excederem a tolerância de rotura admissível, caracterizam-se com um "B".

Execucao continua Edici progr					Edicao de programa			
19 L 17-1 89 FIRX 20 CVCL DEF 11.9 FACTOR ESCALA 21 CVCL DEF 11.9 SCL 0.9895 22 STOP 22 STOP 23 STOP 25 SCAL L08 - 20 REFIX 25 CALL L08 - 20 REFIX 25 CALL L08 - 15 REFS 26 PLNME RESET STAW 27 LBL 09 H STOT 1 HH			PGM T:S DOC:	PER PAL LEL CVC M POS TOOL TT 4 T:S DIE DOC: MAX. DVN				
								ĭ ↓
<mark>X</mark> *+B	- 10.3 +0.0	58 Y 00 ++ C	14:08 -347 +0	.642	z	+10	0.25	50 5100%
TEAL	⊕:20	TS	ZS	1875	S 1 F Ø	0.00) () M 5 /	S
ESTADO SUMÁRIO	ESTADO POS.	ESTADO FERRAM.	ESTADO COORD. TRANSF.					

i

19.2 Calibrar TT (ciclo 30 ou 480, DIN/ISO: G480)

Execução do ciclo

O TT é calibrado com o ciclo de medição TCH PROBE 30 ou TCH PROBE 480 (ver também "Diferenças entre os ciclos 31 a 33 e 481 a 483" na página 517). O processo de calibração decorre automaticamente. O TNC determina também automaticamente o desvio central da ferramenta de calibração. Para isso, o TNC roda o mandril em 180°, na metade do ciclo de calibração.

Como ferramenta de calibração, utilize uma peça exatamente cilíndrica, p.ex. um macho cilíndrico. O TNC memoriza os valores de calibração, e tem-nos em conta para posteriores medições de ferramenta.

A ferramenta de calibração deverá ter um diâmetro superior a 15 mm e sobressair aprox. 50 mm do mandril. Com esta disposição, ocorre uma deformação de 0,1 µm por 1 N de forca de apalpação.

Ter em atenção ao programar!

 \bigcirc

A forma de funcionamento do ciclo ciclo de calibração depende do parâmetro da máquina 6500. Consulte o manual da sua máquina.

Antes de calibrar, deve-se introduzir na tabela de ferramentas TOOL.T o raio e o comprimento exatos da ferramenta de calibração.

Nos parâmetros da máquina 6580.0 a 6580.2, deve estar determinada a posição do TT no espaço de trabalho da máquina.

Caso modifique um dos parâmetros da máquina 6580. até 6580.2, terá de calibrar novamente.

Ao calibrar, prestar atenção a que não estejam aplicados dispositivos tensores em torno do apalpador. Recomendação: deixar espaço para o dobro do diâmetro da ferramenta de calibração

HEIDENHAIN iTNC 530

Parâmetros de ciclo

- 30 CAL. 480 CAL.
- Altura segura: Introduzir a cota no eixo da ferramenta, na qual esteja excluída uma colisão com a peça ou com utensílios de fixação. A Altura Segura refere-se ao ponto de referência ativo da peça. Se for introduzida uma altura segura de tal forma pequena, que a extremidade da ferramenta fique por baixo da aresta superior do prato, o TNC posiciona a ferramenta automaticamente por cima do prato (zona de segurança de MP 6540). Campo de introdução -99999,9999 a 99999,9999; em alternativa, PREDEF

Exemplo: Blocos NC de formato antigo

6	T001	L CALL	1 Z	
7	TCH	PROBE	30.0	CALIBRAR TT
8	TCH	PROBE	30.1	ALTURA: +90

Exemplo: Blocos NC de formato novo

- 6 TOOL CALL 1 Z
- 7 TCH PROBE 480 CALIBRAR TT
 - Q260=+100 ;ALTURA SEGURA

1

19.3 Calibrar TT 449 sem fios (ciclo 484, DIN/ISO: G484)

Princípios básicos

O ciclo 484 permite calibrar o apalpador de mesa de infravermelhos sem fios TT 449. O processo de calibração não decorre de forma totalmente automática, dado que a posição do TT na mesa da máquina não é definida.

Execução do ciclo

- ▶ Trocar de ferramenta de calibração
- Definir e iniciar ciclo de calibração
- Posicionar manualmente a ferramenta de calibração sobre o centro do apalpador e seguir as instruções na janela sobreposta. Prestar atenção a que a ferramenta de calibração se encontre sobre a superfície de medição da sonda

O processo de calibração decorre semiautomaticamente. O TNC determina também o desvio central da ferramenta de calibração. Para isso, o TNC roda o mandril em 180°, na metade do ciclo de calibração.

Como ferramenta de calibração, utilize uma peça completamente cilíndrica, p.ex. um macho cilíndrico. O TNC memoriza os valores de calibração, e tem-nos em conta para posteriores medições de ferramenta.

A ferramenta de calibração deverá ter um diâmetro superior a 15 mm e sobressair aprox. 50 mm do mandril. Com esta disposição, ocorre uma deformação de 0,1 µm por 1 N de força de apalpação.

Ter em atenção ao programar!

A forma de funcionamento do ciclo ciclo de calibração depende do parâmetro da máquina 6500. Consulte o manual da sua máquina.

Antes de calibrar, deve-se introduzir na tabela de ferramentas TOOL.T o raio e o comprimento exatos da ferramenta de calibração.

Se a posição do TT na mesa for modificada, é necessário calibrar de novo.

Parâmetros de ciclo

O ciclo 484 não possui quaisquer parâmetros de ciclo.

19.4 Medir comprimento da ferramenta (ciclo 31 ou 481, DIN/ISO: G481)

Execução do ciclo

Para medir o comprimento da ferramenta, programe o ciclo de medição TCH PROBE 31 ou TCH PROBE 481 (ver também "Diferenças entre os ciclos 31 a 33 e 481 a 483" na página 517). Com os parâmetros de introdução da máquina, é possível determinar o comprimento da ferramenta de três formas diferentes:

- Quando o diâmetro da ferramenta é maior do que o diâmetro da superfície de medição do TT, faz-se a medição com a ferramenta a rodar
- Quando o diâmetro da ferramenta é menor do que o diâmetro da superfície de medição do apalpador TT, ou quando se determina o comprimento da broca ou da fresa esférica, mede-se com a ferramenta parada
- Quando o diâmetro da ferramenta é maior do que o diâmetro da superfície de medição do TT, efetua-se uma medição individual de lâminas com a ferramenta parada

Processo de "Medição com a ferramenta a rodar"

Para se calcular a lâmina mais comprida, a ferramenta a medir desviase em relação ao ponto central do apalpador e desloca-se sobre a superfície de medição do TT. O desvio é programado na tabela de ferramentas em Desvio da Ferramenta: Raio (**TT: R-OFFS**).

Processo de "Medição com a ferramenta parada" (p.ex. para broca)

A ferramenta a medir desloca-se para o centro da superfície de medida. Seguidamente, desloca-se com o mandril parado sobre a superfície de medição do TT. Para esta medição, registe o Desvio da Ferramenta: Raio (**TT: R-OFFS**) na tabela de ferramentas com "0".

Processo de "Medição individual de lâminas"

O TNC posiciona a ferramenta a medir a um lado da superfície do apalpador. A superfície frontal da ferramenta encontra-se por baixo da superfície do apalpador, tal como determinado em MP6530. Na tabela de ferramentas, em Desvio da ferramenta: comprimento (**TT: L-OFFS**), pode determinar um desvio adicional. O TNC apalpa de forma radial a ferramenta a rodar, para determinar o ângulo inicial na medição individual de lâminas. Seguidamente, mede o comprimento de todas as lâminas por meio da modificação da orientação do mandril. Para esta medição, programe MEDIÇÃO DE LÂMINAS no ciclo TCH PROBE 31 = 1.

Ter em atenção ao programar!

Antes de medir ferramentas pela primeira vez, registe na tabela de ferramentas TOOL.T o raio e o comprimento aproximados, o número de lâminas e a direção de corte da respetiva ferramenta.

Pode efetuar medições de lâminas individuais para ferramentas com **até 99 lâminas**. Na indicação de estado, o TNC apresenta os valores de medição de, no máximo, 24 lâminas.

Parâmetros de ciclo

▶ Medir a ferramenta=0 / verificar=1: determine se a ferramenta é medida pela primeira vez ou se pretende verificar uma ferramenta que já foi medida. Na primeira medição, o TNC sobrescreve o comprimento L da ferramenta na memória central de ferramentas TOOL.T e define o valor delta DL = 0. Quando se verificar uma ferramenta, é comparado o comprimento medido com o comprimento L da ferramenta em TOOL.T. O TNC calcula o desvio com o sinal correto, introduzindo-o depois como valor delta DL em TOOL.T. Além disso, está também disponível o desvio no parâmetro Q115. Quando o valor delta é maior do que a tolerância de desgaste ou do que a rotura admissível para o comprimento da ferramenta, o TNC bloqueia essa ferramenta (estado L em TOOL.T)

N.º de parâmetro para resultado?: número do parâmetro no qual o TNC memoriza o estado da medição:

0,0: ferramenta dentro da tolerância

1,0: a ferramenta está desgastada (LTOL excedido)
2,0: A ferramenta está quebrada (LBREAK excedido).
Se não se quiser continuar a processar o resultado da medição dentro do programa, confirma-se a pergunta de diálogo com a tecla NO ENT

Altura segura: Introduzir a cota no eixo da ferramenta, na qual esteja excluída uma colisão com a peça ou com utensílios de fixação. A Altura Segura refere-se ao ponto de referência ativo da peça. Se se programar uma altura de segurança de tal forma pequena que a ponta da ferramenta se encontre por baixo da aresta superior do prato, o TNC posiciona a ferramenta automaticamente por cima do prato (zona de segurança de MP6540). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF

Medição de lâminas 0=Não / 1 = Sim: determinar se deve ser efetuada uma medição de lâmina individual (é possível medir, no máximo, 99 lâminas) Exemplo: Primeira medição com a ferramenta a rodar; formato antigo

6 TOOL CALL 12 Z
7 TCH PROBE 31.0 COMPRIMENTO DA FERRAMENTA
8 TCH PROBE 31.1 VERIFICAR: 0
9 TCH PROBE 31.2 ALTURA: +120
10 TCH PROBE 31.3 MEDIÇÃO DE LÂMINAS: O

Exemplo: Verificar com medição de corte individual, memorizar estado em Q5; formato antigo

6 TOOL CALL 12 Z
7 TCH PROBE 31.0 COMPRIMENTO DA FERRAMENTA
8 TCH PROBE 31.1 VERIFICAR: 1 Q5
9 TCH PROBE 31.2 ALTURA: +120
10 TCH PROBE 31.3 MEDICÃO DE LÂMINAS: 1

Exemplo: Blocos NC; formato novo

6	TOOL CALL	12 Z
7	TCH PROBE	481 COMPRIMENTO DA FERRAMENTA
	Q340=1	;VERIFICAR
	Q260=+1	00 ;ALTURA SEGURA
	Q341=1	;MEDIÇÃO DE LÂMINAS

19.5 Medir raio da ferramenta (ciclo 32 ou 482, DIN/ISO: G482)

Execução do ciclo

Para medir o raio da ferramenta, programe o ciclo de medição TCH PROBE 32 ou TCH PROBE 482 (ver também "Diferenças entre os ciclos 31 a 33 e 481 a 483" na página 517). Com parâmetros de introdução, é possível determinar o raio da ferramenta de duas maneiras:

- Medição com a ferramenta a rodar
- Medição com a ferramenta a rodar seguida de medição individual de lâminas

O TNC posiciona a ferramenta a medir a um lado da superfície do apalpador. A superfície frontal da fresa encontra-se agora por baixo da aresta superior da ferramenta de apalpação, tal como determinado em MP6530. O TNC apalpa de forma radial com a ferramenta a rodar. Se, para além disso, desejar executar a medição individual de lâminas, são medidos os raios de todas as lâminas por meio de orientação do mandril.

Ter em atenção ao programar!

Antes de medir ferramentas pela primeira vez, registe na tabela de ferramentas TOOL.T o raio e o comprimento aproximados, o número de lâminas e a direção de corte da respetiva ferramenta.

As ferramentas cilíndricas com superfície de diamante podem ser medidas com o mandril parado. Para isso, deve definir com 0 a quantidade de cortes na tabela de ferramentas e adaptar o parâmetro de máquina 6500. Consulte o manual da sua máquina.

Pode efetuar medições de lâminas individuais para ferramentas com **até 99 lâminas**. Na indicação de estado, o TNC apresenta os valores de medição de, no máximo, 24 lâminas.

Parâmetros de ciclo

- Medir ferramenta=0 / verificar=1: Determine se a ferramenta é medida pela primeira vez ou se pretende verificar uma ferramenta que já foi medida. Na primeira medição, o TNC sobrescreve o raio R da ferramenta na memória central de ferramentas TOOL.T e define o valor delta DR = 0. Quando se verificar uma ferramenta, é comparado o raio medido com o raio R da ferramenta em TOOL.T. O TNC calcula o desvio com o sinal correto, e introdu-lo como valor delta DR em TOOL.T. Além disso, está também disponível o desvio no parâmetro Q116. Quando o valor delta é maior do que a tolerância de desgaste ou do que a rotura admissível para o raio da ferramenta, o TNC bloqueia essa ferramenta (estado L em TOOL.T.)
 - N.º de parâmetro para resultado?: número do parâmetro no qual o TNC memoriza o estado da medição:
 - 0,0: ferramenta dentro da tolerância

1,0: A ferramenta está desgastada (RTOL excedido)
2,0: A ferramenta está quebrada (RBREAK excedido).
Se não se quiser continuar a processar o resultado da medição dentro do programa, confirma-se a pergunta de diálogo com a tecla NO ENT

- Altura segura: Introduzir a cota no eixo da ferramenta, na qual esteja excluída uma colisão com a peça ou com utensílios de fixação. A Altura Segura refere-se ao ponto de referência ativo da peça. Se se programar uma altura de segurança de tal forma pequena que a ponta da ferramenta se encontre por baixo da aresta superior do prato, o TNC posiciona a ferramenta automaticamente por cima do prato (zona de segurança de MP6540). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF
- Medição de lâminas 0=Não / 1 = Sim: determinar se deve ser efectuada adicionalmente uma medição de lâmina individual ou não (é possível medir, no máximo, 99 lâminas)

Exemplo: Primeira medição com a ferramenta a rodar; formato antigo

6 TOOL CALL 12 Z
7 TCH PROBE 32.0 RAIO DA FERRAMENTA
8 TCH PROBE 32.1 VERIFICAR: 0
9 TCH PROBE 32.2 ALTURA: +120
10 TCH PROBE 32.3 MEDICÃO DE LÂMINAS: O

Exemplo: Verificar com medição de corte individual, memorizar estado em Q5; formato antigo

6 TOOL CALL 12 Z
7 TCH PROBE 32.0 RAIO DA FERRAMENTA
8 TCH PROBE 32.1 VERIFICAR: 1 Q5
9 TCH PROBE 32.2 ALTURA: +120
10 TCH PROBE 32.3 MEDIÇÃO DE LÂMINAS: 1

Exemplo: Blocos NC; formato novo

6 TOOL CALL 12 Z
7 TCH PROBE 482 RAIO DA FERRAMENTA
Q340=1 ;VERIFICAR
Q260=+100 ;ALTURA SEGURA
Q341=1 ;MEDIÇÃO DE LÂMINAS

19.6 Medir completamente a ferramenta (ciclo 33 ou 483, DIN/ISO: G483)

Execução do ciclo

Para medir completamente a ferramenta (comprimento e raio), programe o ciclo de medição TCH PROBE 33 ou TCH PROBE 483 (ver também "Diferenças entre os ciclos 31 a 33 e 481 a 483" na página 517). O ciclo é especialmente adequado para a primeira medição de ferramentas pois – em comparação com a medição individual de comprimento e raio – há uma enorme vantagem de tempo despendido. Com os parâmetros de introdução, você pode medir a ferramenta de duas maneiras:

- Medição com a ferramenta a rodar
- Medição com a ferramenta a rodar seguida de medição individual de lâminas

O TNC mede a ferramenta segundo um processo fixo programado. Primeiro, é medido o raio da ferramenta, e depois o seu comprimento. O processo de medição corresponde aos processos dos ciclos de medição 31 e 32.

Ter em atenção ao programar!

Antes de medir ferramentas pela primeira vez, registe na tabela de ferramentas TOOL.T o raio e o comprimento aproximados, o número de lâminas e a direção de corte da respetiva ferramenta.

As ferramentas cilíndricas com superfície de diamante podem ser medidas com o mandril parado. Para isso, deve definir com 0 a quantidade de cortes na tabela de ferramentas e adaptar o parâmetro de máquina 6500. Consulte o manual da sua máquina.

Pode efetuar medições de lâminas individuais para ferramentas com **até 99 lâminas**. Na indicação de estado, o TNC apresenta os valores de medição de, no máximo, 24 lâminas.

Parâmetros de ciclo

▶ Medir a ferramenta=0 / verificar=1: determine se a ferramenta é medida pela primeira vez ou se pretende verificar uma ferramenta que já foi medida. Na primeira medição, o TNC sobrescreve o raio R da ferramenta e o comprimento L da ferramenta na memória central de ferramentas TOOL.T e define os valores delta DR e DL = 0. Caso se verifique uma ferramenta, os dados da ferramenta medidos são comparados como os dados da ferramenta em TOOL.T. O TNC calcula os desvios com o sinal correto e introdu-los na TOOL.T como valores delta DR e DL. Para além disso, os desvios também estão disponíveis nos parâmetros da máguina Q115 e Q116. Quando um dos valores delta é maior do que a tolerância de desgaste ou do que a rotura admissível, o TNC bloqueia essa ferramenta (estado L em TOOL.T)

N.º de parâmetro para resultado?: número do parâmetro no qual o TNC memoriza o estado da medição:

0,0: ferramenta dentro da tolerância

1,0: a ferramenta está desgastada (**LTOL** e/ou **RTOL** excedidos)

2,0: a ferramenta está quebrada (LBREAK e/ou RBREAK excedidos). Se não se quiser continuar a processar o resultado da medição dentro do programa, confirmase a pergunta de diálogo com a tecla NO ENT

Altura segura: Introduzir a cota no eixo da ferramenta, na qual esteja excluída uma colisão com a peça ou com utensílios de fixação. A Altura Segura refere-se ao ponto de referência ativo da peça. Se se programar uma altura de segurança de tal forma pequena que a ponta da ferramenta se encontre por baixo da aresta superior do prato, o TNC posiciona a ferramenta automaticamente por cima do prato (zona de segurança de MP6540). Campo de introdução -99999,9999 a 99999,9999; em alternativa PREDEF

Medição de lâminas 0=Não / 1 = Sim: determinar se deve ser efectuada adicionalmente uma medição de lâmina individual ou não (é possível medir, no máximo, 99 lâminas) Exemplo: Primeira medição com a ferramenta a rodar; formato antigo

6 TOOL CALL 12 Z
7 TCH PROBE 33.0 MEDIR FERRAMENTA
8 TCH PROBE 33.1 VERIFICAR: 0
9 TCH PROBE 33.2 ALTURA: +120
10 TCH PROBE 33 3 MEDICÃO DE LÂMINAS• O

Exemplo: Verificar com medição de corte individual, memorizar estado em Q5; formato antigo

6 TOOL CALL 12 Z
7 TCH PROBE 33.0 MEDIR FERRAMENTA
8 TCH PROBE 33.1 VERIFICAR: 1 Q5
9 TCH PROBE 33.2 ALTURA: +120
10 TCH PROBE 33.3 MEDIÇÃO DE LÂMINAS: 1

Exemplo: Blocos NC; formato novo

6 TOOL CALL 12 Z
7 TCH PROBE 483 MEDIR FERRAMENTA
Q340=1 ;VERIFICAR
Q260=+100 ;ALTURA SEGURA
Q341=1 ;MEDIÇÃO DE LÂMINAS

i

Tabela de resumo

Ciclos de maquinagem

Número de ciclo	Designação de ciclo	DEF ativado	CALL ativado	Página
7	Deslocação do ponto zero			Página 283
8	Espelhar			Página 291
9	Tempo de espera			Página 313
10	Rotação			Página 293
11	Fator de escala			Página 295
12	Chamada do programa			Página 314
13	Orientação do mandril			Página 316
14	Definição do contorno			Página 189
19	Inclinação do plano de maquinagem			Página 299
20	Dados do contorno SL II			Página 194
21	Pré-furar SL II			Página 196
22	Desbaste SL II			Página 198
23	Acabamento profundidade SL II			Página 202
24	Acabamento lateral SL II			Página 204
25	Traçado do contorno			Página 208
26	Fator de escala específico do eixo			Página 297
27	Superfície cilíndrica			Página 231
28	Superfície cilíndrica Fresar ranhuras			Página 234
29	Superfície cilíndrica			Página 237
30	Executar dados 3D			Página 265
32	Tolerância			Página 317
39	Superfície cilíndrica			Página 240
200	Furar			Página 75
201	Alargar furo			Página 77
202	Mandrilar			Página 79
203	Furar universal			Página 83

Número de ciclo	Designação de ciclo	DEF ativado	CALL ativado	Página
204	Rebaixamento invertido			Página 87
205	Furar em profundidade universal			Página 91
206	Roscagem com mandril compensador, nova			Página 109
207	Roscagem sem mandril compensador, nova			Página 111
208	Fresar furo			Página 95
209	Roscagem com quebra de apara			Página 114
220	Padrão de pontos sobre círculo			Página 177
221	Padrão de pontos sobre linhas			Página 180
225	Gravação			Página 321
230	Esquadrar			Página 267
231	Superfície regular			Página 269
232	Fresagem horizontal			Página 273
240	Centrar			Página 73
241	Furar com gume único			Página 98
247	Memorizar o ponto de referência			Página 290
251	Caixa retangular maquinagem completa			Página 143
252	Caixa circular maquinagem completa			Página 148
253	Fresagem de ranhura			Página 152
254	Ranhura redonda			Página 158
256	Ilhas retangulares maquinagem completa			Página 164
257	Ilhas circulares maquinagem completa			Página 168
262	Fresar rosca			Página 119
263	Fresar rosca em rebaixamento			Página 122
264	Fresar rosca em furo			Página 126
265	Fresar rosca em furo de hélice			Página 130
267	Fresar rosca exterior			Página 134
270	Dados do traçado do contorno			Página 206
275	Ranhura de contorno trocoidal			Página 212
290	Torneam. interpol.			Página 326

Ciclos do apalpador

Número de ciclo	Designação de ciclo	DEF ativado	CALL ativado	Página
0	Plano de referência			Página 424
1	Ponto de referência polar			Página 425
2	Raio de calibração de TS			Página 469
3	Medir			Página 471
4	Medir 3D			Página 473
9	Calibrar TS comprimento			Página 470
30	Calibrar TT			Página 521
31	Medir/testar comprimento da ferramenta			Página 524
32	Medir/testar o raio da ferramenta			Página 526
33	Medir/testar o comprimento e raio da ferramenta			Página 528
400	Rotação básica sobre dois pontos			Página 344
401	Rotação básica sobre dois furos			Página 347
402	Rotação básica sobre duas ilhas			Página 350
403	Compensar posição inclinada com eixo rotativo			Página 353
404	Memorizar rotação básica			Página 357
405	Compensar a posição inclinada com eixo C			Página 358
408	Memorizar ponto de referência do centro da ranhura (função FCL-3)			Página 367
409	Memorizar ponto de referência do centro da nervura (função FCL-3)			Página 371
410	Definir ponto de referência retângulo interior			Página 374
411	Definir ponto de referência retângulo exterior			Página 378
412	Memorização do ponto de referência círculo interior (furo)			Página 382
413	Memorização do ponto de referência círculo exterior (ilha)			Página 386
414	Memorização do ponto de referência canto exterior			Página 390
415	Memorização do ponto de referência canto interior			Página 395
416	Memorização do ponto de referência centro do círculo de furos			Página 399
417	Memorização do ponto de referência eixo do apalpador			Página 403
418	Memorização do ponto de referência centro de quatro furos			Página 405
419	Memorização do ponto de referência eixo individual seleccionável			Página 409

0
F
ธ
Ŭ
<u> </u>
<u>•</u>
σ
a
Ð
Ď
a

Número de ciclo	Designação de ciclo	DEF ativado	CALL ativado	Página
420	Medir ferramenta ângulo			Página 427
421	Medir ferramenta círculo interior (furo)			Página 430
422	Medir ferramenta círculo exterior (ilha)			Página 434
423	Medir ferramenta retângulo interior			Página 438
424	Medir ferramenta retângulo exterior			Página 442
425	Medir ferramenta largura interior (ranhura)			Página 446
426	Medir ferramenta largura exterior (nervura)			Página 449
427	Medir ferramenta eixo individual seleccionável			Página 452
430	Medir ferramenta círculo de furos			Página 455
431	Medir ferramenta plano			Página 459
440	Medir deslocação de eixo			Página 475
441	Apalpação rápida: Memorizar parâmetros globais do apalpador (função FCL 2)			Página 478
450	KinematicsOpt: Guardar cinemática (opção)			Página 486
451	KinematicsOpt: Medir cinemática (opção)			Página 488
452	KinematicsOpt: Compensação de preset (opção)			Página 488
460	Calibrar TS: calibração do raio e do comprimento numa esfera de calibração			Página 480
480	Calibrar TT			Página 521
481	Medir/testar comprimento da ferramenta			Página 524
482	Medir/testar o raio da ferramenta			Página 526
483	Medir/testar o comprimento e raio da ferramenta			Página 528
484	Calibrar TT de infravermelhos			Página 523

Α

Acabamento em profundidade ... 202 Acabamento lateral ... 204 Ajustes globais ... 478 Alargar furo ... 77 Apalpação rápida ... 478 Apalpadores 3D ... 44, 334 calibrar apalpadores analógicos ... 469, 470 Avanço de apalpação ... 339

С

Caixa circular Desbaste+Acabamento ... 148 Caixa retangular Desbaste+Acabamento ... 143 Calibrar o apalpador automaticamente ... 480 Centrar ... 73 Chamada do programa através de ciclo ... 314 Chamar ciclo ... 51 Ciclo Ciclos de apalpação para o funcionamento automático ... 336 Ciclos de contorno ... 186 Ciclos de perfuração ... 72 Ciclos e tabelas de pontos ... 70 Ciclos SL Acabamento lateral ... 204 Ciclo de contorno ... 189 Contornos sobrepostos ... 190, 253 Dados do contorno ... 194 Dados do tracado do contorno ... 206 Desbaste ... 198 Pré-furar ... 196 Princípios básicos ... 186, 259 Profundidade de acabamento ... 202 Traçado do contorno ... 208 Tracado do contorno 3D ... 217

С

Ciclos SL com fórmula de contorno mais complexa ... 248 Ciclos SL com fórmula de contorno mais simples ... 259 Círculo de furos ... 177 Compensar a posição inclinada da peça de trabalho através da medição de dois pontos duma reta ... 344 através de dois furos ... 347 através de duas ilhas circulares ... 350 através de um eixo rotativo ... 353. 358 Conversão de coordenadas ... 282 Correção da ferramenta ... 422

D

Dados do traçado do contorno ... 206 Definição de padrões ... 59 Definir um ciclo ... 50 Definir automaticamente o ponto de referência Centro da nervura ... 371 Centro da ranhura ... 367 Centro de 4 furos ... 405 Esquina exterior ... 390 Esquina interior ... 395 no eixo do apalpador ... 403 Definir diretamente a rotação básica ... 357 Definir o ponto de referência automaticamente num eixo qualquer ... 409 Ponto central de um círculo de furos ... 399 Ponto central de uma caixa circular (furo) ... 382 Ponto central de uma caixa retangular ... 374 Ponto central de uma ilha circular ... 386 Ponto central de uma ilha retangular ... 378 Desbastar: Ver ciclos SL, Desbastar Deslocação do ponto zero com tabelas de pontos zero ... 284 no programa ... 283 Determinar a rotação básica durante a execução do programa ... 342

Е

Espelhar ... 291 Estado da medição ... 421 Estado de desenvolvimento ... 9 Executar dados 3D ... 265

F

Fator de escala ... 295 Fator de escala específico do eixo ... 297 Fresagem a seco ... 212 Fresagem de ranhuras Desbaste+Acabamento ... 152 Ranhura de contorno ... 212 Fresagem de rosca interior ... 119 Fresagem horizontal ... 273 Fresagem trocoidal ... 212 Fresar furo ... 95 Fresar rosca princípios básicos ... 117 Fresar rosca em furo ... 126 Fresar rosca em furo de hélice ... 130 Fresar rosca em rebaixamento ... 122 Fresar rosca exterior ... 134 Função FCL ... 9 Furar ... 75, 83, 91 Ponto inicial aprofundado ... 94, 99 Furar com gume único ... 98 Furar em profundidade Ponto inicial aprofundado ... 94, 99 Furar universal ... 83, 91

G

Gravação ... 321 Guardar ponto de referência na tabela de pontos zero ... 366 na tabela de preset ... 366

I

Ilha circular ... 168 Ilha retangular ... 164 Inclinação do plano de maquinagem ... 299 Ciclo ... 299 Diretriz ... 306

Κ

KinematicsOpt ... 484

Index

Lógica de posicionamento ... 340

Μ

Mandrilar ... 79 Margem de confianca ... 338 Medição automática da ferramenta ... 519 Medição da cinemática ... 484 450 Guardar a cinemática ... 486 450 Medir a cinemática ... 488, 504 Condições ... 485 Escolha das posições de medicão ... 492 Escolha dos pontos de medição ... 492 Folga ... 495 Funcão de registo ... 487, 501, 513 Métodos de calibração ... 494, 509, 511 Precisão ... 493 Recorte dentado Hirth ... 491 Medição da ferramenta ... 519 Calibrar TT ... 521, 523 Comprimento da ferramenta ... 524 Medição completa da ferramenta ... 528 Parâmetros da máquina ... 517 Raio da ferramenta ... 526 Visualizar resultados de medicão ... 520 Medição de cinemática ... 488 Medicão múltipla ... 338 Medir a cinemática Compensação de preset ... 504 Medir a dilatação por calor ... 475 Medir ângulo do plano ... 459 Medir ângulo dum plano ... 459 Medir ângulos ... 427 Medir caixa retangular ... 442 Medir círculo de furos ... 455 Medir círculo no exterior ... 434 Medir círculo no interior ... 430 Medir coordenada individual ... 452 Medir furo ... 430 Medir ilha retangular ... 438 Medir largura de ranhura ... 446 Medir largura no exterior ... 449 Medir largura no interior ... 446 Medir nervura no exterior ... 449 Medir pecas ... 418 Memorizar automaticamente o ponto de referência ... 364

0

Orientação do mandril ... 316

Ρ

Padrão de pontos sobre círculo ... 177 sobre linhas ... 180 Padrões de maquinagem ... 59 Padrões de pontos Resumo ... 176 Parâmetros da máquina para apalpador 3D ... 337 Parâmetros de resultado ... 366, 421 Perfuração de rosca com mandril compensador ... 109 Perfurar em profundidade ... 91, 98 Ponto inicial aprofundado ao furar ... 94, 99

R

Ranhura redonda Desbaste+Acabamento ... 158 Rebaixamento invertido ... 87 Registar resultados de medição ... 419 Resultados de medição em parâmetros Q ... 366, 421 Roscagem com quebra de apara ... 114 sem mandril compensador ... 111, 114 Rotação ... 293

S

Superfície cilíndrica Fresagem de contorno ... 240 Maquinagem de contorno ... 231 Maquinagem de nervura ... 237 Maquinagem de ranhura ... 234 Superfície regular ... 269 Supervisão da ferramenta ... 422

Т

Tabela de preset ... 366 Tabelas de pontos ... 67 Tempo de espera ... 313 Torneam. interpol. ... 326 Traçado do contorno ... 208 Traçado do contorno 3D ... 217

HEIDENHAIN

 DR. JOHANNES HEIDENHAIN GmbH

 Dr.-Johannes-Heidenhain-Straße 5

 83301 Traunreut, Germany

 [®] +49 8669 31-0

 ^{EXX} +49 8669 32-5061

 E-mail: info@heidenhain.de

 Technical support

 ^{EAX} +49 8669 32-1000

 Measuring systems

 ⁺ +49 8669 31-3104

 E-mail: service.ms-support@heidenhain.de

NC programming 🐵 +49 8669 31-3103 E-mail: service.nc-pgm@heidenhain.de PLC programming 🕲 +49 8669 31-3102 E-mail: service.plc@heidenhain.de Lathe controls 🐵 +49 8669 31-3105 E-mail: service.lathe-support@heidenhain.de

www.heidenhain.de

Os apalpadores HEIDENHAIN

contribuem para reduzir os tempos não produtivos e para melhorar a estabilidade dimensional das peças de trabalho produzidas.

Apalpadores de peças de trabalho

TŠ 220 transmissão de sinal por cabo TS 440,TS 444 transmissão por infravermelhos TS 640,TS 740 transmissão por infravermelhos

- Alinhar peças de trabalho
- Memorizar pontos de referência
- Medir peças de trabalho

Apalpadores de ferramenta

TT 140	transmissão de sinal por cabo
TT 449	transmissão por infravermelhos
TL	sistemas a laser sem contacto

- Medir ferramentas
- Supervisionar desgaste
- Detetar rotura de ferramenta

